
5.6 Transect 7

The location of the Transect 7 P- and S-wave seismic profile, which was acquired along South Moreno Drive, is shown on Figure 1. Unmigrated and migrated P-wave seismic sections for Transect 7, with post stack processing, are presented as Figures 39 and 40, respectively. The interpreted P-wave seismic section for Transect 7 is presented as Figure 41. Unmigrated and migrated S-wave seismic sections for Transect 7 are presented as Figures 42 and 43, respectively and the interpreted S-wave seismic section is presented as Figure 44.

Borehole T2E-B3 is located near this transect and is discussed in Section 5.3.

Both the P- and S-wave seismic sections for Transect 7 (Figures 41 and 44) exhibit poor reflectivity. This line was conducted along South Moreno Drive where there is a large diameter box culvert. Although the seismic line was offset from the box culvert, the box culvert and other subsurface utilities may have degraded the seismic data. Additionally, this seismic line is located subparallel to a possible wide fault zone interpreted on Transects 2 and 4, which may have further degraded data quality. Interpretation is limited to identification of anomalous zones that could be associated with possible faults identified in borehole data. As is often the case with seismic reflection data exhibiting poor reflectivity, multiple interpretations of fault-like structures are possible and many more possible structures could have been identified on the seismic sections.

SE NW

LEGEND

T2E-B3 (Proj. 65' NE)

P-S Logging Borehole Location

T7-B4
(Proj. 24' NE)
Borehole Location

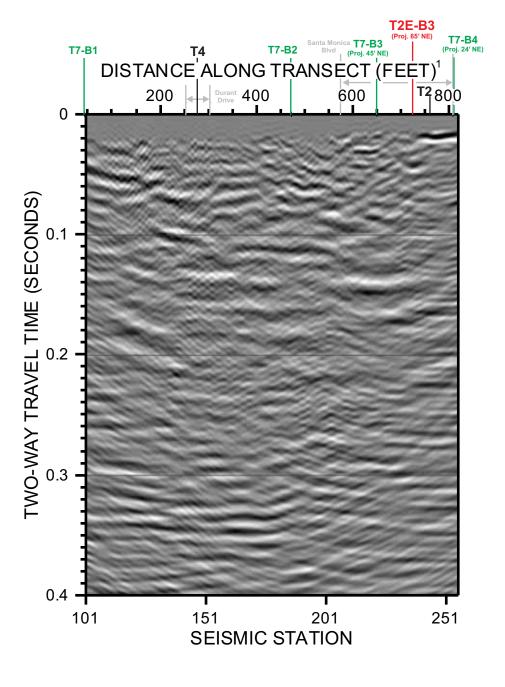
T4 Line Intersection

Santa Monica
Blvd Street Intersection

GEVision geophysical services Project # 10500

Date: SEPT 15, 2011

Drawn By: DALRYMPLE Approved By: Outry Motor File C:\GVPROJECTS\10500\F39.cdr


FIGURE 39 TRANSECT 7 - P-WAVE SEISMIC SECTION WITHOUT INTERPRETATION

MTA-WESTSIDE EXTENSION MORENO DRIVE LOS ANGELES, CALIFORNIA

PREPARED FOR AMEC ENVIRONMENT & INFRASTRUCTURE

1. Distances approximately tied to the geologic cross section where coincident with the seismic line. See report for details.

SE NW

LEGEND

T2E-B3 (Proj. 65' NE)

P-S Logging Borehole Location

T7-B4
(Proj. 24' NE)
Borehole Location

T4 Line Intersection

Santa Monica
Blvd Street Intersection

GEVision geophysical services Project # 10500

1. Distances approximately tied to the geologic cross section where coincident with the seismic

line. See report for details.

Date: SEPT 15, 2011

Drawn By: DALRYMPLE

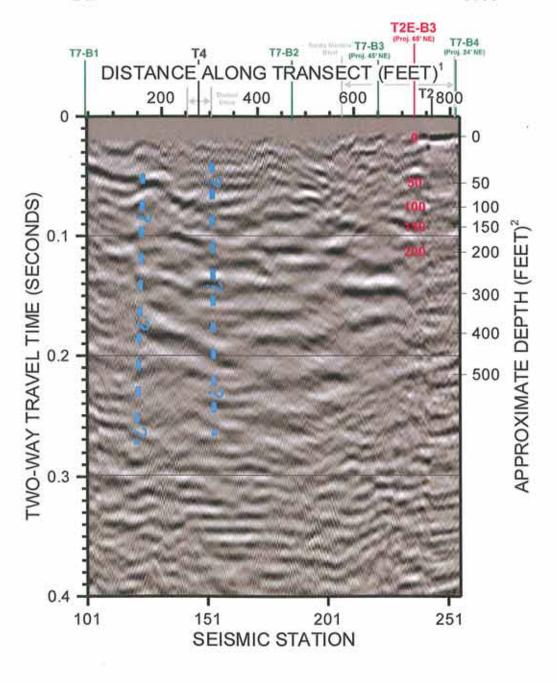

Approved By: Outry Motor
File C:\GVPROJECTS\10500F40.cdr

FIGURE 40 TRANSECT 7 - P-WAVE MIGRATED SEISMIC SECTION WITHOUT INTERPRETATION

MTA-WESTSIDE EXTENSION MORENO DRIVE LOS ANGELES, CALIFORNIA

PREPARED FOR AMEC ENVIRONMENT & INFRASTRUCTURE

SE NW

LEGEND

T2E-B3 (Proj. 65"NE)

P-S Logging Borehole Location and Estimated Depths

T7-B4 (Proj. 24" NE)

Borehole Location

T<u>4</u>

Line Intersection

Street Intersection

Possible Fault Identified on Geologic Cross Section but Inconclusive on Seismic Section

Note:

- Distances approximately tied to the geologic cross section where coincident with the seismic line. See report for details.
- 2. Depths are approximate and may vary by 20%.

GEOVision	
geophysical services	

Project # 10500

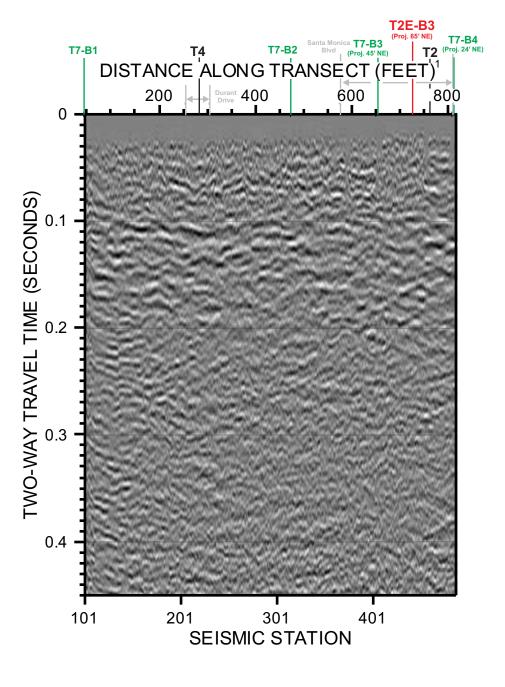
Date: rev OC 14, 2011

Approved By: Outry Mate

File C:\GVPROJECTS\10500\F41.cdr

FIGURE 41 TRANSECT 7 - P-WAVE SEISMIC SECTION

WITH INTERPRETATION


MTA-WESTSIDE EXTENSION

MORENO DRIVE

LOS ANGELES, CALIFORNIA

PREPARED FOR AMEC ENVIRONMENT & INFRASTRUCTURE

SE NW

LEGEND

T2E-B3 (Proj. 65' NE)

P-S Logging Borehole Location

T7-B4
(Proj. 24' NE)
Borehole Location

T4 Line Intersection

Santa Monica
Blvd Street Intersection

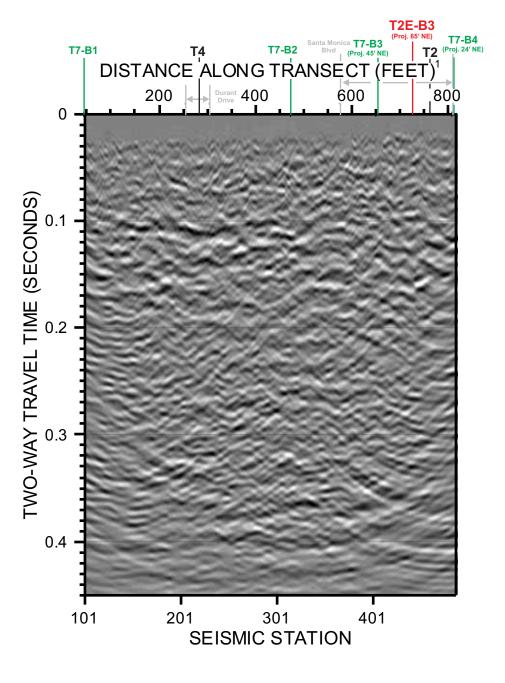
GEVision geophysical services

Project # 10500

Date: SEPT 15, 2011

Drawn By: DALRYMPLE

Approved By: Outry Materials C:\GVPROJECTS\10500\F42.cdr


FIGURE 42 TRANSECT 7 - S-WAVE SEISMIC SECTION WITHOUT INTERPRETATION

MTA-WESTSIDE EXTENSION MORENO DRIVE LOS ANGELES, CALIFORNIA

PREPARED FOR AMEC ENVIRONMENT & INFRASTRUCTURE

1. Distances approximately tied to the geologic cross section where coincident with the seismic line. See report for details.

SE NW

LEGEND

T2E-B3 (Proj. 65' NE)

P-S Logging Borehole Location

T7-B4
(Proj. 24' NE)
Borehole Location

T4 Line Intersection

Santa Monica
Blvd Street Intersection

lote:

1. Distances approximately tied to the geologic cross section where coincident with the seismic line. See report for details.

Project # 10500

Date: SEPT 15, 2011

Drawn By: DALRYMPLE
Approved By: Wary Mate

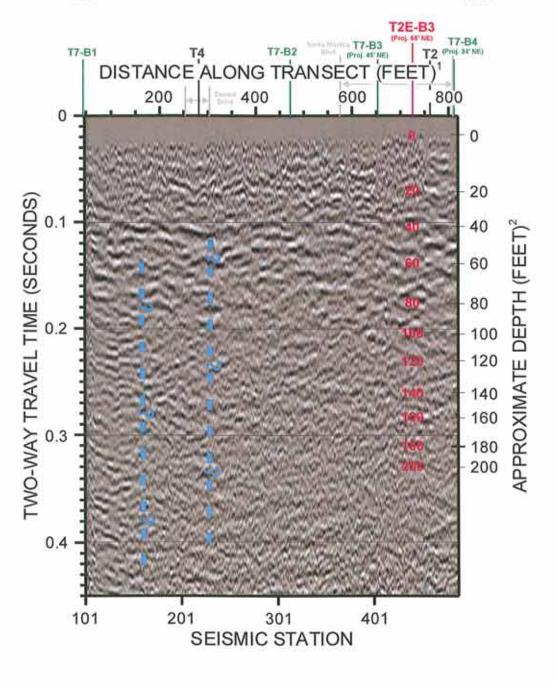

Approved By: astrony Muture File C:\GVPROJECTS\10500\F43.cdr

FIGURE 43 TRANSECT 7 - S-WAVE MIGRATED SEISMIC SECTION WITHOUT INTERPRETATION

MTA-WESTSIDE EXTENSION MORENO DRIVE LOS ANGELES, CALIFORNIA

PREPARED FOR AMEC ENVIRONMENT & INFRASTRUCTURE

SE NW

LEGEND

T2E-B3 (Proj. 65' NE) T7-B4 (Proj. 24' NE)

P-S Logging Borehole Location and Estimated Depths

Borehole Location

T<u>4</u>

Line Intersection

Street Intersection

?

Possible Fault Identified on Geologic Cross Section but Inconclusive on Seismic Section

Note:

- Distances approximately tied to the geologic cross section where coincident with the seismic line. See report for details.
- 2. Depths are approximate and may vary by 20%.

CIE	Vision
geophys	ical services

Project# 10500

Date: rev OCT 14, 2011
Drawn By: DALRYMPLE

Approved By: astry Muta

FIGURE 44 TRANSECT 7 - S-WAVE SEISMIC SECTION WITH INTERPRETATION

MTA-WESTSIDE EXTENSION MORENO DRIVE LOS ANGELES, CALIFORNIA

PREPARED FOR AMEC ENVIRONMENT & INFRASTRUCTURE

6 SUMMARY

A high-resolution seismic reflection survey was conducted in the vicinity of a portion of the proposed MTA-Westside Extension along or near Santa Monica Blvd in Los Angeles County, California, to map the location of the north strand of the Santa Monica Fault and associated faulting. This investigation supplements a previous investigation conducted in 2010 and summarized in **GEO***Vision*, 2010.

P- and S-wave seismic reflection data were acquired along five (5) profiles (Transect 1, 2, 3, 4 and 7) as shown in Figure 1 totaling about 8,400 linear feet. Transects 1 and 2 intersect and are located along Avenue of the Stars and Santa Monica Blvd., respectively. Transect 3 is located along Century Park West and is effectively the southward extension of the 2010 Line 1. Transects 4 and 7 intersect and are located along Durant Drive and South Moreno Drive, respectively.

The P-wave seismic reflection survey was designed to image to a depth on the order of 500 ft. The S-wave reflection survey was designed to image to shallower depth than possible with the Pwave technique and obtain better vertical resolution, particularly in shallow saturated sediments where P-wave velocity increases to over 5,000 ft/s, but S-wave velocity remains relatively unchanged. Generally, P-wave data quality was significantly better than S-wave data quality for a number of reasons, as follows: the larger energy source used for P-wave acquisition was better able to overcome noise from vehicle traffic in the site vicinity, shallow geologic conditions in some areas may not be conducive to imaging with the S-wave reflection technique (i.e. absence of continuous geologic layers with significant change in S-wave velocity and/or density), the smaller wavelength (high frequency) S-wave energy appears to be more significantly impacted by subsurface infrastructure, and lateral velocity variation may be more significant in the S-wave data as the shallow saturated zone beneath many of the lines tends to lower lateral velocity variation in the P-wave data. Additionally, saturated sediments efficiently transmit P-wave energy and transitions from saturated to unsaturated sediment layers at depth may give rise to strong P-wave reflections, thereby, improving reflectivity in the P-wave seismic sections. One exception is Transect 4, where both P- and S-wave seismic sections exhibit excellent reflectivity with the S-wave seismic section offering both shallower imaging and improved vertical resolution.

Approximate depth scales were added to the seismic sections for reference. These depth scales were developed from P- and S-wave velocity logs of one or two boreholes on or near the seismic lines. If multiple velocity logs were made on a seismic line, the depth scales were averaged. These depth scales should be considered a depth guide rather than exact depth as they do not account for lateral velocity variation and are only valid in close proximity to the borehole that was logged. As an example, the average S-wave velocity of the upper 100 ft varies by 28% for the 5 borehole logs. Therefore, the depth scales should be assumed to vary by 10 to 20% along each seismic line. Approximate depths on the P-wave sections were extrapolated to a depth of 500 ft by assuming that P-wave velocity was 6,000 ft/s below the bottom of each borehole, an additional source of error. Where useful, synthetic seismograms were generated from the velocity logs to facilitate correlation of geologic horizons with seismic reflectors. Synthetic seismograms for the P-wave velocity logs of boreholes T2-B4 and T2E-B3 (Figures 16 and 17) clearly show a relationship between a high amplitude reflector in the 0.08 to 0.12 s range on

many of the seismic sections and a layer(s) of unsaturated sand between saturated sediment units at a depth on the order of 180 ft.

Interpreted P-wave seismic sections for Transects 1 to 4 and 7 are presented as Figures 10, 18, 25, 35 and 41, respectively. The interpreted P-wave seismic section for the 2010 Line 1, the northward extension of Transect 3, is also included as Figure 31. Interpreted S-wave seismic sections for Transects 1 to 4 and 7 are presented as Figures 13, 21, 28, 38 and 44, respectively. A distance scale, approximately tied to the AMEC geologic cross-sections has been added to the seismic sections for spatial reference. Where the seismic lines are relatively coincident with the cross sections locations, the relative positions should be within about 5 ft. Where the seismic line and geologic cross-section locations diverge, the relative positions on the cross-sections differ from the seismic lines (up to 40 ft in associated portion of Transect 1 and 10 ft on Transect 4). The projected locations of boreholes have also been added to the seismic lines for spatial reference.

Interpretation of the seismic reflection data were generally limited to the identification of discontinuities caused by offset geologic layers or termination of geologic units that could be tracked through the seismic section and, thereby, possibly associated with faulting.

On the Transect 1 P-wave seismic section (Figure 10), several anomalous zones that could be associated with faulting are identified at approximate relative positions of: 500; 925; 1,050; 1,290; 1,450 and 1,700 ft, with the most significant structures located at 1,290 to 1,700 ft. Borehole and CPT data, acquired and interpreted by AMEC, support potential faulting near the structures identified at 1,290 to 1,700 ft. Independent interpretation was not made of the S-wave seismic section (Figure 13) due to inadequate reflectivity. However, structures identified on the P-wave seismic section were transferred to the S-wave seismic section, which indicates that the potential faulting is plausible, but not conclusive. Two additional shallow dipping potential faults, depicting a possible zone of faulting identified in borehole and CPT data, are shown on the P-wave and S-wave seismic sections for reference. Because these structures are located near the northwest end of the seismic line and have shallow dip, they cannot be confirmed on the P-wave seismic section. Faulting in this area is plausible based on the S-wave seismic section, but cannot be confirmed due to poor reflectivity.

The most significant structure on the P-wave seismic section for Transect 2 (Figure 18) is a possible wide zone of faulting between a position of about 1,850 and 2,400 ft. Interpretation of the fault-like structures is primarily based on minor disruptions and termination of reflectors in the 0.08 to 0.2 second range on the P-wave section and is supported by borehole and CPT data. Due to poor reflectivity, the S-wave seismic section (Figure 21) neither support nor refute potential faulting in this portion of the seismic line. One other potential fault-like structure is identified on the seismic line at a relative position of about 350 ft, based on an apparent pull down of a high amplitude reflector at 0.11 s. The orientation of this possible structure cannot be accurately determined from the seismic data. Continuous reflectors between 0.1 and 0.2 s indicates that faulting is not present beneath other portions of the seismic line.

The most significant structure identified in the P-wave reflection data acquired along Transect 3 (Figure 25) is a significant groundwater barrier at a relative position of about 1,000 ft, which was initially identified directly from seismic refraction data on seismic records. This groundwater barrier was previously identified at an approximate position of 1,010 ft on the 2010 Line 1,

which is located on the opposite side of Century Park West and is the northward extension of Transect 3. This groundwater barrier is believed to be formed by a fault as approximately depicted on the P- and S-wave seismic sections for Transect 3 (Figures 25 and 28) and the P-wave seismic section for the 2010 Line 1 (Figure 31). Another potential fault-like structure is identified on the P- and S-wave seismic sections at a position of about 290 ft, but does not pass through the subhorizontal S-wave reflection events in the 0.05 to 0.1 s range (approximate 15 to 50 ft depth range). Between a relative position of about 500 and 800 ft, there are several other disruptions in a prominent P-wave reflection at about 0.07 s that may also correspond to disruptions in S-wave reflections. However, reflectivity is not sufficient on the seismic sections to make conclusive statements regarding faulting in this part of the line without borehole evidence. Two other possible fault-like structures are identified at positions of about 1,200 and 1,400 ft on the P-wave seismic section for the 2010 Line 1, based on disruptions in reflectors between 0.07 and 0.11 s.

The P- and S-wave seismic sections for Transect 4 have excellent reflectivity, which permitted interpretation of potential fault-like structures common to both data sets. Multiple possible fault-like structures are interpreted over a wide zone between about 125 and 500 ft on the seismic sections (Figures 35 and 38). The fault-like structures were interpreted based on disruptions, termination or changes in dip of reflectors. Alternate geologic explanations may be possible for some, but not all, of the anomalous zones. Faulting over this portion of the seismic line is also supported by borehole and CPT data acquired and interpreted by AMEC.

The P- and S-wave seismic sections for Transect 7 (Figures 41 and 44) exhibit very poor reflectivity, likely because of subsurface infrastructure in the street and because the seismic line is located subparallel to the potential fault zone indentified on Transect 2 and 4. Interpretation of the Transect 7 seismic sections was limited to identification of anomalous zones that could be associated with possible faults identified in borehole data.

Alternate interpretations of the P- and S-wave seismic sections are possible and review of the data by professionals with extensive knowledge of the Santa Monica Fault system and future geologic investigations may lead to revision of the interpretation.

7 REFERENCES

- Dobrin, M.S., and Savit, J., 1988, Introduction to Geophysical Prospecting, McGraw-Hill Co., New York.
- **GEO***Vision*, Inc., 2010, Draft Report, "High Resolution Seismic Survey, LA Metro Westside Subway Extension Project", Los Angeles, California, report 9464, May 10, 2010.
- **GEO**Vision, Inc., 2011, "Westside Extension Borings T1-B6, T2-B4, T2E-B3, T3-B3, and T4-B5 Suspension Velocities", Report 11021-01, July 26, 2011
- Telford, W. M., Geldart, L.P., Sheriff, R.E., 1990, Applied Geophysics, Second Edition, Cambridge University Press.

8 CERTIFICATION

All geophysical data, analysis, interpretations, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by a **GEO***Vision* California Professional Geophysicist.

Antony J. Martin

Date

California Professional Geophysicist GP989

GEOVision Geophysical Services

artogogmatin

* This geophysical investigation was conducted under the supervision of a California Professional Geophysicist using industry standard methods and equipment. A high degree of professionalism was maintained during all aspects of the project from the field investigation and data acquisition, through data processing interpretation and reporting. All original field data files, field notes and observations, and other pertinent information are maintained in the project files and are available for the client to review for a period of at least one year.

A professional geophysicist's certification of interpreted geophysical conditions comprises a declaration of his/her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations or ordinances.

14, 2011

WEST SIDE EXTENSION BORINGS T1-B6, T2-B4, T2E-B3, T3-B3 AND T4-B5 SUSPENSION PS VELOCITIES

Report 11021-01 Rev 0 July 26, 2011

WEST SIDE EXTENSION BORINGS T1-B6, T2-B4, T2E-B3, T3-B3 AND T4-B5 SUSPENSION PS VELOCITIES

Report 11021-01 Rev 0 July 26, 2011

Prepared for:

AMEC

5628 East Slauson Avenue0 Los Angeles, California 90040 (323) 889-5366

Prepared by

GEOVision Geophysical Services 1124 Olympic Drive Corona, California 92881 (951) 549-1234

TABLE OF CONTENTS

TABLE OF CONTENTS	3
TABLE OF FIGURES	4
TABLE OF TABLES	4
INTRODUCTION	5
SCOPE OF WORK	5
INSTRUMENTATION	6
SUSPENSION INSTRUMENTATION	6
MEASUREMENT PROCEDURES	9
SUSPENSION MEASUREMENT PROCEDURES	
DATA ANALYSIS	10
SUSPENSION ANALYSIS	10
RESULTS	12
SUSPENSION RESULTS	12
SUMMARY	13
DISCUSSION OF SUSPENSION RESULTS	
QUALITY ASSURANCE	
SUSPENSION DATA RELIABILITY	

Table of Figures

concept illustration of P-S logging system
Table of Tables
ring locations and logging dates5
ogging dates and depth ranges9
oring T1-B6, Suspension R1-R2 depths and P- and S _H -wave velocities19
oring T2-B4, Suspension R1-R2 depths and P- and S _H -wave velocities21
pring T2E-B3, Suspension R1-R2 depths and P- and S _H -wave velocities23
oring T3-B3, Suspension R1-R2 depths and P- and S _H -wave velocities25
oring T4-B5, Suspension R1-R2 depths and P- and S _H -wave velocities27
APPENDICES
IX A SUSPENSION VELOCITY MEASUREMENT QUALITY ASSURANCE SUSPENSION SOURCE TO RECEIVER ANALYSIS RESULTS

GEOPHYSICAL LOGGING SYSTEMS - NIST TRACEABLE

CALIBRATION RECORDS

APPENDIX B

INTRODUCTION

Boring geophysical measurements were collected in five uncased borings located along the proposed alignment of the West Side Extension, in Los Angeles, California. Geophysical data acquisition was performed between January 27 and June 30, 2011 by Charles Carter and Robert Steller of **GEO***Vision*. Data analysis and report preparation was performed by Robert Steller and reviewed by John Diehl of **GEO***Vision*. The work was performed for AMEC, with Rosalind Munro as the point of contact for AMEC.

This report describes the field measurements, data analysis, and results of this work.

SCOPE OF WORK

This report presents the results of suspension PS velocity measurements collected between January 27 and June 30, 2011, in five uncased borings, as detailed below. The purpose of these studies was to supplement stratigraphic information obtained during AMEC's soil and rock sampling program and to acquire shear wave velocities and compressional wave velocities as a function of depth.

	DATES	ELEVATION	COORDINATES (1)	
BORING	LOGGED		NORTHING	EASTING
T1-B6	4/18/2011	278	1,845,353 6,434,75	
T2-B4	6/28/2011	NA	1,844,976 6,434,92	
T2E-B3	6/30/2011	NA	1,845,941	6,436,124
T3-B3	4/13/2011	279	1,843,648	6,434,394
T4-B5	1/27/2011	260	1,845,828 6,436,695	

(1) Coordinates supplied by AMEC. CA State Plane, NAD83, Zone V (0405) US Survey Feet

Table 1 Boring locations and logging dates

The OYO Suspension PS Logging System (Suspension System) was used to obtain in-situ horizontal shear (S_H) and compressional (P) wave velocity measurements at 1.6 foot intervals. Measurements followed **GEO***Vision* Procedure for P-S Suspension Seismic Velocity Logging, revision 1.5. The acquired data was analyzed and a profile of velocity versus depth was produced for both compressional and horizontally polarized shear waves.

A detailed reference for the suspension PS velocity measurement techniques used in this study is:

<u>Guidelines for Determining Design Basis Ground Motions</u>, Report T1-B602293, Electric Power Research Institute, Palo Alto, California, November 1993, Sections 7 and 8.

INSTRUMENTATION

Suspension Instrumentation

Suspension soil velocity measurements were performed using the Suspension PS logging system, manufactured by OYO Corporation, and their subsidiary, Robertson Geologging. This system directly determines the average velocity of a 3.3-foot high segment of the soil column surrounding the boring of interest by measuring the elapsed time between arrivals of a wave propagating upward through the soil or rock column. The receivers that detect the wave, and the source that generates the wave, are moved as a unit in the boring producing relatively constant amplitude signals at all depths.

The suspension system probe consists of a combined reversible polarity solenoid horizontal shear-wave source (S_H) and compressional-wave source (P), joined to two biaxial receivers by a flexible isolation cylinder, as shown in Figure 1. The separation of the two receivers is 3.3 feet, allowing average wave velocity in the region between the receivers to be determined by

inversion of the wave travel time between the two receivers. The total length of the probe as used in these surveys is 21 feet, with the center point of the receiver pair 12.5 feet above the bottom end of the probe.

The probe receives control signals from, and sends the digitized receiver signals to, instrumentation on the surface via an armored 4 or 7 conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data, using a 3.28-foot circumference sheave fitted with a digital rotary encoder.

The entire probe is suspended in the boring by the cable, therefore, source motion is not coupled directly to the boring walls; rather, the source motion creates a horizontally propagating impulsive pressure wave in the fluid filling the boring and surrounding the source. This pressure wave is converted to P and S_H -waves in the surrounding soil and rock as it passes through the casing and grout annulus and impinges upon the wall of the boring. These waves propagate through the soil and rock surrounding the boring, in turn causing a pressure wave to be generated in the fluid surrounding the receivers as the soil waves pass their location. Separation of the P and S_H -waves at the receivers is performed using the following steps:

- 1. Orientation of the horizontal receivers is maintained parallel to the axis of the source, maximizing the amplitude of the recorded S_H -wave signals.
- 2. At each depth, S_H-wave signals are recorded with the source actuated in opposite directions, producing S_H-wave signals of opposite polarity, providing a characteristic S_H-wave signature distinct from the P-wave signal.
- 3. The 7.0-foot separation of source and receiver 1 permits the P-wave signal to pass and damp significantly before the slower S_H-wave signal arrives at the receiver. In faster soils or rock, the isolation cylinder is extended to allow greater separation of the P- and S_H-wave signals.
- 4. In saturated soils, the received P-wave signal is typically of much higher frequency than the received S_H-wave signal, permitting additional separation of the two signals by low pass filtering.
- 5. Direct arrival of the original pressure pulse in the fluid is not detected at the receivers because the wavelength of the pressure pulse in fluid is significantly greater than the

dimension of the fluid annulus surrounding the probe (meter versus centimeter scale), preventing significant energy transmission through the fluid medium.

In operation, a distinct, repeatable pattern of impulses is generated at each depth as follows:

- 1. The source is fired in one direction producing dominantly horizontal shear with some vertical compression, and the signals from the horizontal receivers situated parallel to the axis of motion of the source are recorded.
- 2. The source is fired again in the opposite direction and the horizontal receiver signals are recorded.
- 3. The source is fired again and the vertical receiver signals are recorded. The repeated source pattern facilitates the picking of the P and S_H-wave arrivals; reversal of the source changes the polarity of the S_H-wave pattern but not the P-wave pattern.

The data from each receiver during each source activation is recorded as a different channel on the recording system. The Suspension PS system has six channels (two simultaneous recording channels), each with a 1024 sample record. The recorded data are displayed as six channels with a common time scale. Data are stored on disk for further processing. Up to 8 sampling sequences can be summed to improve the signal to noise ratio of the signals.

Review of the displayed data on the recorder or computer screen allows the operator to set the gains, filters, delay time, pulse length (energy), sample rate, and summing number to optimize the quality of the data before recording. Verification of the calibration of the Suspension PS digital recorder is performed every twelve months using a NIST traceable frequency source and counter, as outlined in Appendix B.

MEASUREMENT PROCEDURES

Suspension Measurement Procedures

The borings were logged uncased, while filled with bentonite based drilling mud. Measurements followed the **GEO***Vision* Procedure for P-S Suspension Seismic Velocity Logging, revision 1.5. The suspension probe was positioned with the mid-point of the receivers at grade level, and the electronic depth counter was set to zero. The probe was lowered to the bottom of the boring, stopping at 1.6-foot intervals to collect data, as summarized in Table 2.

At each measurement depth the measurement sequence of two opposite horizontal records and one vertical record was performed, and the gains were adjusted as required. The data from each depth were viewed on the computer display, checked, and recorded on disk before moving to the next depth.

Upon completion of the measurements, the probe zero depth indication at the surface was verified prior to removal from the boring.

BORING NUMBER	TOOL AND RUN NUMBER	DEPTH RANGE (FEET)	I STELL BOLLOW OF I		SAMPLE INTERVAL (FEET)	DATE LOGGED
T1-B6	SUSPENSION 1	3.3 – 139.4	151.9	151.9 NONE		4/18/2011
T2-B4	SUSPENSION 1	ON 1 1.6 – 182.1 19 ²		NONE	1.6	6/28/2011
T2E-B3	SUSPENSION 1	3.3 – 197.2	3.3 – 197.2 209.7 NONE		1.6	6/30/2011
T3-B3	SUSPENSION 1	6.6 – 136.2	148.7	NONE	1.6	4/13/2011
T4-B5	SUSPENSION 1	3.3 – 136.2	148.7	NONE	1.6	1/27/2011

Table 2. Logging dates and depth ranges

DATA ANALYSIS

Suspension Analysis

Using the proprietary OYO program PSLOG.EXE version 1.0, the recorded digital waveforms were analyzed to locate the most prominent first minima, first maxima, or first break on the vertical axis records, indicating the arrival of P-wave energy. The difference in travel time between receiver 1 and receiver 2 (R1-R2) arrivals was used to calculate the P-wave velocity for that 3.3-foot segment of the soil column. When observable, P-wave arrivals on the horizontal axis records were used to verify the velocities determined from the vertical axis data. The time picks were then transferred into an EXCEL template (EXCEL version 2003 SP2) to complete the velocity calculations based upon the arrival time picks made in PSLOG.

The P-wave velocity over the 7.0-foot interval from source to receiver 1 (S-R1) was also picked using PSLOG, and calculated and plotted in EXCEL, for quality assurance of the velocity derived from the travel time between receivers. In this analysis, the depth values as recorded were increased by 5.2 feet to correspond to the mid-point of the 7.0-foot S-R1 interval. Travel times were obtained by picking the first break of the P-wave signal at receiver 1 and subtracting 0.3 milliseconds, the calculated and experimentally verified delay from source trigger pulse (beginning of record) to source impact. This delay corresponds to the duration of acceleration of the solenoid before impact.

As with the P-wave records, using PSLOG, the recorded digital waveforms were analyzed to locate the presence of clear S_H -wave pulses, as indicated by the presence of opposite polarity pulses on each pair of horizontal records. Ideally, the S_H -wave signals from the 'normal' and 'reverse' source pulses are very nearly inverted images of each other. Digital FFT - IFFT lowpass filtering was used to remove the higher frequency P-wave signal from the S_H -wave signal. Different filter cutoffs were used to separate P- and S_H -waves at different depths, ranging from 600 Hz in the slowest zones to 2000 Hz in the regions of highest velocity. At each

depth, the filter frequency was selected to be at least twice the fundamental frequency of the S_H-wave signal being filtered.

Generally, the first maxima were picked for the 'normal' signals and the first minima for the 'reverse' signals, although other points on the waveform were used if the first pulse was distorted. The absolute arrival time of the 'normal' and 'reverse' signals may vary by +/- 0.2 milliseconds, due to differences in the actuation time of the solenoid source caused by constant mechanical bias in the source or by boring inclination. This variation does not affect the R1-R2 velocity determinations, as the differential time is measured between arrivals of waves created by the same source actuation. The final velocity value is the average of the values obtained from the 'normal' and 'reverse' source actuations.

As with the P-wave data, S_H-wave velocity calculated from the travel time over the 7.0-foot interval from source to receiver 1 was calculated and plotted for verification of the velocity derived from the travel time between receivers. In this analysis, the depth values were increased by 5.2 feet to correspond to the mid-point of the 7.0-foot S-R1 interval. Travel times were obtained by picking the first break of the S_H-wave signal at the near receiver and subtracting 0.3 milliseconds, the calculated and experimentally verified delay from the beginning of the record at the source trigger pulse to source impact. These data and analysis were reviewed by John Diehl as a component of **GEO**Vision's in-house QA-QC program.

Figure 2 shows an example of R1 - R2 measurements on a sample filtered suspension record. In Figure 2, the time difference over the 3.3-foot interval of 1.88 milliseconds for the horizontal signals is equivalent to an S_H -wave velocity of 1745 feet/second. Whenever possible, time differences were determined from several phase points on the S_H -waveform records to verify the data obtained from the first arrival of the S_H -wave pulse. Figure 3 displays the same record before filtering of the S_H -waveform record with a 1400 Hz FFT - IFFT digital lowpass filter, illustrating the presence of higher frequency P-wave energy at the beginning of the record, and distortion of the lower frequency S_H -wave by residual P-wave signal.

RESULTS

Suspension Results

Suspension R1-R2 P- and S_H -wave velocities are plotted in Figures 4 through 8. The suspension velocity data presented in these figures are presented in Tables 3 through 7. These plots and data are included in the EXCEL analysis files accompanying this report.

P- and S_H-wave velocity data from R1-R2 analysis and quality assurance analysis of S-R1 data are plotted together in Figures A-1 through A-5 to aid in visual comparison. It should be noted that R1-R2 data are an average velocity over a 3.3-foot segment of the soil column; S-R1 data are an average over 7.0 feet, creating a significant smoothing relative to the R1-R2 plots. S-R1 data are presented in Tables A-1 through A-5, and included in the EXCEL analysis file for the boring.

Calibration procedures and records for the suspension PS measurement system are presented in Appendix B.

SUMMARY

Discussion of Suspension Results

Suspension PS velocity data are ideally collected in a partially cased fluid filled boring, drilled with rotary mud (rotary wash) methods. These borings were ideal for collection of suspension PS velocity data.

Suspension PS velocity data quality is judged based upon 5 criteria:

- 1. Consistent data between receiver to receiver (R1 R2) and source to receiver (S R1) data.
- 2. Consistent relationship between P-wave and S_H -wave (excluding transition to saturated soils)
- 3. Consistency between data from adjacent depth intervals.
- 4. Clarity of P-wave and S_H-wave onset, as well as damping of later oscillations.
- 5. Consistency of profile between adjacent borings, if available.

These data show excellent correlation between R1-R2 and S-R1 data, as well as good correlation between P-wave and S_H -wave velocities, except at transitions between saturated and unsaturated formations. P- and S_H -wave onsets are clear, and later oscillations are well damped. P-wave velocities in the bottom of borings T2-B4, T2E-B3 and T3-B3 drop below water velocity (5000 ft/sec), even though they appear to be below static water table, indicating the presence of perched water tables.

Quality Assurance

These boring geophysical measurements were performed using industry-standard or better methods for measurements and analyses. All work was performed under **GEO**Vision quality assurance procedures, which include:

- Use of NIST-traceable calibrations, where applicable, for field and laboratory instrumentation
- Use of standard field data logs
- Use of independent verification of velocity data by comparison of receiver-to-receiver and source-to-receiver velocities
- Independent review of calculations and results by a registered professional engineer, geologist, or geophysicist.

Suspension Data Reliability

P- and S_H -wave velocity measurement using the Suspension Method gives average velocities over a 3.3-foot interval of depth. This high resolution results in the scatter of values shown in the graphs. Individual measurements are very reliable with estimated precision of \pm 5%. Standardized field procedures and quality assurance checks contribute to the reliability of these data.

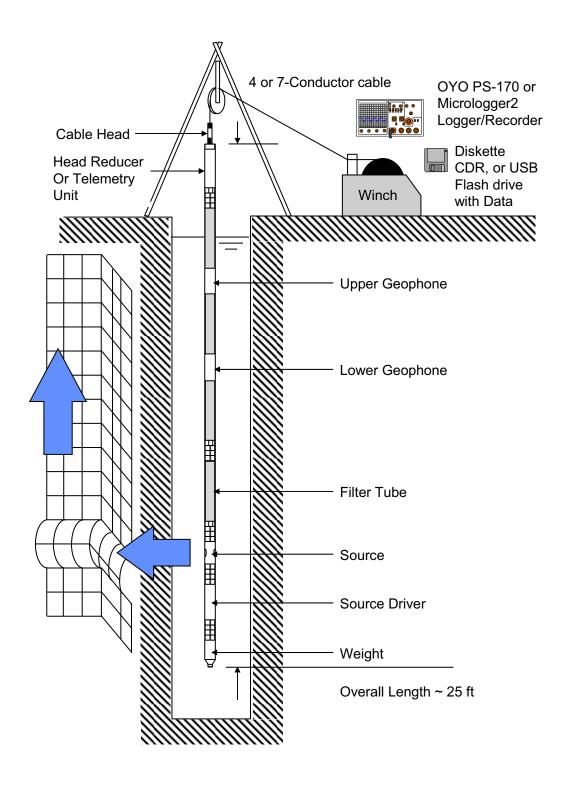


Figure 1: Concept illustration of P-S logging system

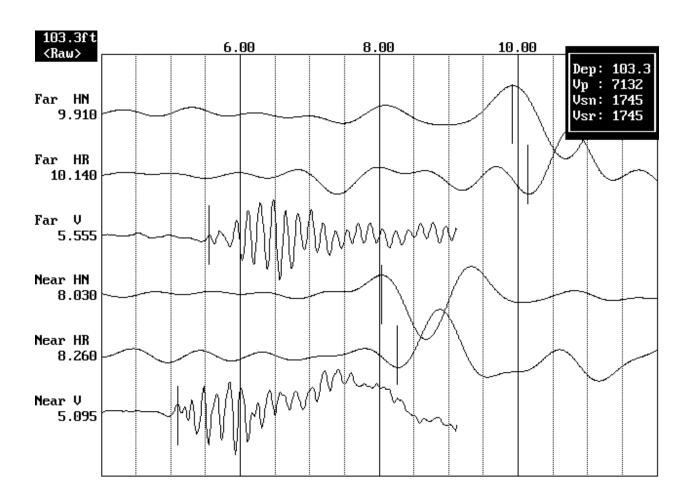


Figure 2: Example of filtered (1400 Hz lowpass) record

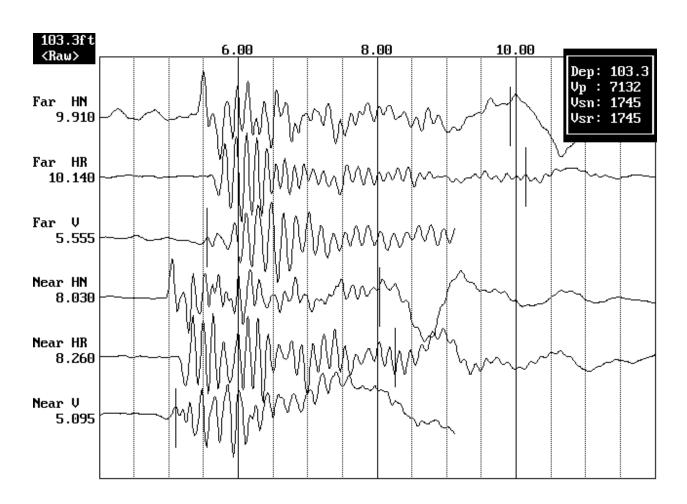


Figure 3. Example of unfiltered record

WSE BOREHOLE T1-B6 Receiver to Receiver V_s and V_p Analysis

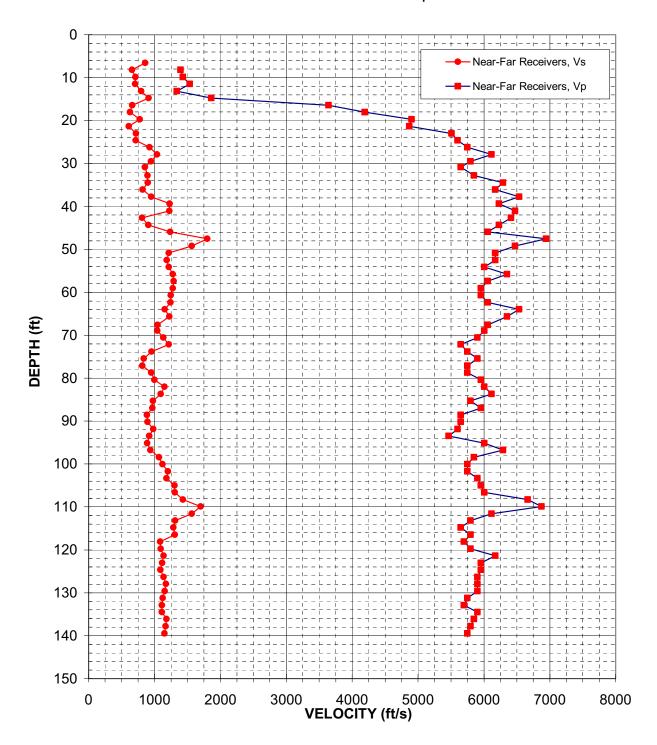


Figure 4: Boring T1-B6, Suspension R1-R2 P- and S_H-wave velocities

Depth	Depth V _s V _p							
(feet)	(feet/sec)	(feet/sec)						
3.3	-	-						
4.9	_	_						
6.6	860	_						
8.2	660	1390						
9.8	710	1430						
11.5	710	1540						
13.1	800	1340						
14.8	910	1860						
16.4	660	3640						
18.0	630	4190						
19.7	780	4900						
21.3 23.0	610 720	4870 5510						
24.6 26.3	720 930	5600 5750						
		5750						
27.9	1040	6120						
29.5	950	5800						
30.8	860	5650						
32.8	890	5850						
34.5	900	6290						
36.1	820	6170						
37.7	950	6540						
39.4	1230	6230						
41.0	1230	6470						
42.7	810	6410						
44.3	910	6230						
45.9	1240	6060						
47.6	1800	6940						
49.2	1560	6470						
50.9	1220	6170						
52.5	1190	6170						
54.1	1220	6010						
55.8	1280	6350						
57.4	1290	6060						
59.1	1280	5950						
60.7	1250	5950						
62.3	1240	6060						
64.0	1160	6540						
65.6	1230	6350						
67.6	1040	6060						
68.9	1040	6010						
70.5	1130	5900						
72.2	1220	5650						
73.8	960	5750						
75.5	840	5900						
77.1	820	5750						
78.7	950	5750						
80.4	1000	5950						
82.0	1150	6010						
83.7	1100	6120						

Depth V _s V _p						
(feet)	(feet/sec)	(feet/sec)				
85.3	980	5800				
86.9	970	5950				
88.6	890	5650				
90.2	890	5650				
91.9	980	5600				
93.5	920	5460				
95.1	890	6010				
96.8	940	6290				
98.4	1070	5850				
100.1	1120	5750				
101.7	1200	5750				
103.4	1180	5900				
105.0	1300	5950				
106.6	1310	6010				
108.3	1430	6670				
109.9	1700	6870				
111.6	1560	6120				
113.2	1310	5800				
114.8	1290	5650				
116.5	1310	5800				
118.1	1090	5700				
119.8	1090	5800				
121.4	1140	6170				
123.0	1120	5950				
124.7	1090	5950				
126.3	1140	5900				
128.0	1170	5900				
129.6	1160	5900				
131.2	1130	5750				
132.9	1110	5700				
134.5	1110	5900				
136.2	1180	5850				
137.8	1170	5800				
139.4	1150	5750				

Table 3. Boring T1-B6, Suspension R1-R2 depths and P- and S_{H} -wave velocities

WSE BOREHOLE T2-B4 Receiver to Receiver V_{s} and V_{p} Analysis

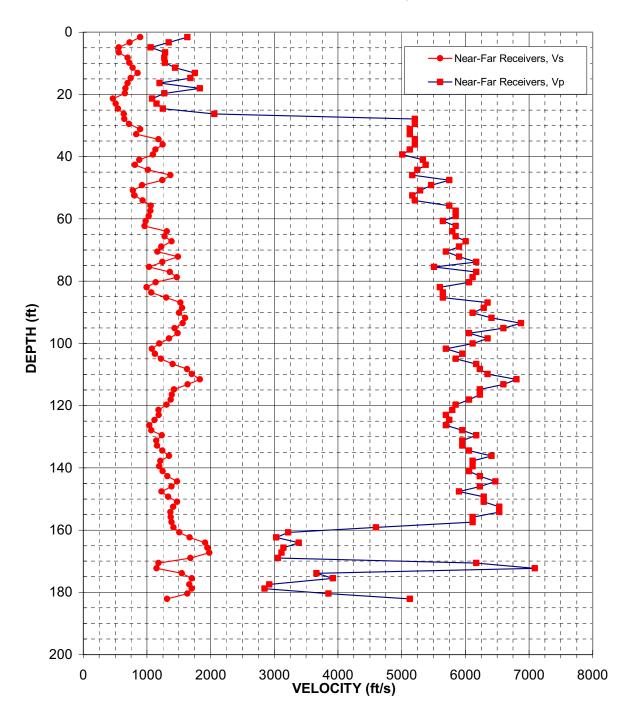


Figure 5: Boring T2-B4, Suspension R1-R2 P- and S_H-wave velocities

Depth (feet)	V _s (feet/sec)	V _p (feet/sec)	Depth (feet)	V _s (feet/sec)	V _p (feet/sec)		Depth (feet)	V _s (feet/sec)	
1.6	890	1630	83.7	1070	5650	Н	165.7	1950	+
3.3	730	1340	85.3	1300	5650	Н	167.3	1980	╁
4.9	560	1060	86.9	1530	6350	Н	169.0	1680	╁
6.6	560	1290	88.6	1550	6290	Н	170.6	1180	╁
8.2	700	1270	90.2	1500	6120	Н	170.0	1150	+
9.8	720	1280	91.9	1600	6410	Н	173.9	1550	+
11.5	780	1440	93.5	1560	6870	Н	175.5	1710	╁
13.1	850	1750	95.1	1430	6600	Н	177.5	1670	╁
14.8	740	1680	96.8	1480	6060	Н	177.3	1710	╁
16.4	700	1200	98.4	1350	6350	H	180.5	1630	╁
18.0	660	1830	100.1	1200	6120	H	182.1	1320	╁
19.7	650	1270	100.1	1080	5700	H	102.1	1320	╁
	460	1	101.7	1130	5950	1			4
21.3 23.0	510	1080 1150	105.4	1220	5850				
24.6	550	1250	106.6	1400	6170				
26.3	640	2060	108.3	1630	6230				
27.9	650	5210	109.9	1710	6350				
29.5	720	5210	111.6	1830	6800				
31.2	900	5130	113.2	1640	6600				
32.8	830	5130		 					
-	1180	5210	114.8 116.5	1420 1390	6230 6230				
34.5			·						
36.1	1250	5210	118.1	1370	6060				
37.7	1130	5130	119.8	1310	5850				
39.4	1100	5010	121.4	1180	5800				
41.0	880	5330	123.0	1190	5700				
42.7	810	5380	124.7	1120	5750 5700				
44.3	1020	5250	126.3	1040	5700				
45.9	1370	5170	128.0	1070	5950				
47.6	1240	5750 5460	129.6 131.2	1230 1150	6170 5950				
49.2	930		131.2	<u> </u>					
50.9	780	5290		1160	5950				
52.5	810	5170	134.5	1240	6060				
54.1	930	5210	136.2	1350	6410				
55.8	1060	5750	137.8	1210	6120				
57.4	1050	5850	139.4	1190	6120				
59.1	1030	5850	141.1	1250	6060				
60.7	980	5650	142.7	1320	6230				
62.3	960	5850	144.4	1470	6470				
64.0	1310	5800	146.0	1390	6230				
65.6	1280	5850	147.6	1230	5900				
67.3	1390	6010	149.3	1340	6290				
68.9	1230	5900	150.9	1470	6290				
70.5	1170	5700	152.6	1420	6540				
72.2	1490	5900	154.2	1370	6540				
73.8	1240	6170	155.8	1370	6120				
75.5	1030	5510	157.5	1390	6120				
77.1	1360	6170	159.1	1420	4600				
78.7	1470	6120	160.8	1510	3220				
80.4	1140	6060	162.4	1670	3030				
82.0	1000	5600	164.0	1920	3380				

Table 4. Boring T2-B4, Suspension R1-R2 depths and P- and S_H-wave velocities

WSE BOREHOLE T2E-B3 Receiver to Receiver $V_{\rm s}$ and $V_{\rm p}$ Analysis

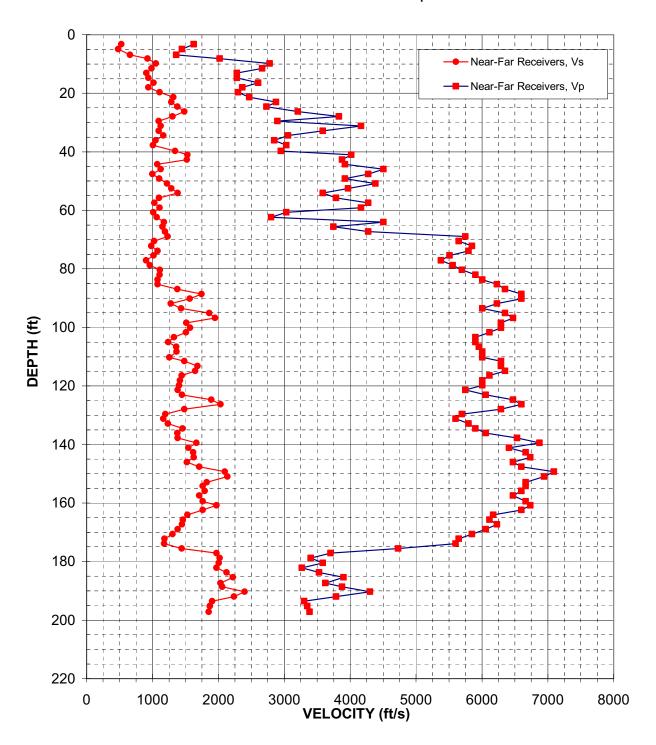


Figure 6: Boring T2E-B3, Suspension R1-R2 P- and S_H-wave velocities

Depth	V _s	V _p	Depth	V _s	V _p	Depth	V _s	V _p
(feet)	(feet/sec)	(feet/sec)	(feet)	(feet/sec)	(feet/sec)	(feet)	(feet/sec)	(feet/sec)
3.3	530	1630	85.3	1080	6230	167.3	1450	6230
4.9	480	1450	86.9	1380	6350	169.0	1380	6060
6.9	660	1360	88.6	1750	6600	170.6	1300	5850
8.2	930	2020	90.2	1560	6600	172.2	1180	5650
9.8	1050	2780	91.9	1280	6230	173.9	1180	5600
11.5	990	2670	93.5	1440	6010	175.5	1440	4730
13.1	910	2280	95.1	1860	6350	177.2	1970	3700
14.8	940	2280	96.8	1950	6470	178.8	2020	3400
16.4	1020	2600	98.4	1520	6290	180.5	2010	3580
18.0	940	2360	100.1	1570	6290	182.1	1970	3270
19.7	1110	2300	101.7	1510	6120	183.7	2120	3530
21.3	1320	2470	103.4	1330	5900	185.4	2220	3900
23.0	1290	2870	105.0	1240	5900	187.3	2030	3620
24.6	1380	2730	106.6	1360	5950	188.7	2060	3880
26.3	1480	3210	108.3	1370	6010	190.3	2400	4300
27.9	1300	3830	110.2	1260	6010	191.9	2240	3790
29.5 31.2	1090 1130	2900 4170	111.6	1480	6290	193.6 195.2	1900 1870	3300
32.8	1100	3580	113.2 114.8	1680 1650	6290	195.2		3350
	1170	3060	116.5	1440	6350	197.2	1850	3380
34.5	!	·		 	6120			<u> </u>
36.1	1050	2850	118.1	1420	6010			
37.7 39.7	1010 1340	3030 2950	119.8 121.4	1410 1380	6010 5750			
41.0	1530	4020	123.0	1450	6060			
42.7	1520	3880	124.7	1890	6470			
44.3	1070	3920	126.3	2030	6600			
45.9	1130	4500	128.0	1480	6290			
47.6	1000	4270	129.6	1190	5700			
49.2	1100	3920	131.2	1170	5600			
50.9	1220	4390	132.9	1230	5800			
52.5	1290	3970	134.5	1460	5900			
54.1	1380	3580	136.2	1380	6060			
55.8	1100	3790	137.8	1380	6540			
57.4	1030	4270	139.4	1670	6870			
59.1	1110	4170	141.1	1540	6410			
60.7	1010	3030	142.7	1620	6670			
62.3	1060	2800	144.4	1630	6730			
64.0	1170	4500	146.0	1520	6470			
65.6	1150	3750	147.6	1710	6600			
67.3	1190	4270	149.3	2100	7090			
68.9	1230	5750	150.9	2140	6940			
70.5	1030	5650	152.9	1820	6670			
72.2	980	5850	154.2	1760	6670			
73.8	1080	5800	155.8	1790	6600			
75.5	1020	5510	157.5	1710	6470			
77.1	900	5380	159.5	1760	6670			
78.7	960	5560	160.8	1970	6730			
80.4	1110	5700	162.4	1760	6600			
82.0	1110	5900	164.0	1530	6170			
	1080	6010	165.7	1460	6120			

Table 5. Boring T2E-B3, Suspension R1-R2 depths and P- and S_{H} -wave velocities

WSE BOREHOLE T3-B3 Receiver to Receiver V_{s} and V_{p} Analysis

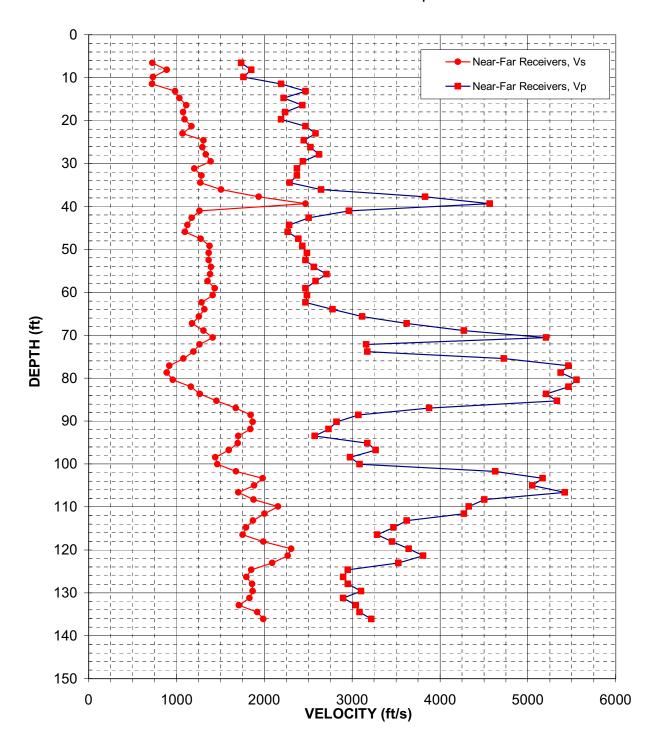


Figure 7: Boring T3-B3, Suspension R1-R2 P- and S_H-wave velocities

Depth	V _s	V_p
(feet)	(feet/sec)	(feet/sec)
6.6	730	1740
8.2	890	1850
9.8	730	1760
11.5	720	2190
13.1	990	2470
14.8	1040	2220
16.4	1110	2430
18.0	1080	2240
19.7	1090	2190
21.3	1170	2470
23.0	1070	2580
24.6	1310	2450
26.3	1300	2530
27.9	1330	2620
29.5	1390	2440
31.2	1200	2370
32.8	1290	2370
34.5	1270	2290
36.1	1510	2650
37.7	1940	3830
39.4	2470	4570
41.0	1260	2960
42.7	1170	2510
44.3	1130	2280
45.9	1100	2270
47.6	1280	2390
49.2	1380	2430
50.9	1370	2490
52.5	1370	2470
54.1	1390	2560
55.8	1380	2710
57.4	1360	2580
59.1	1440	2470
60.7	1410	2490
62.3	1290	2470
64.0	1320	2780
65.6	1260	3120
67.3	1180	3620
68.9	1310	4270
70.5	1410	5210
72.2	1260	3160
73.8	1190	3170
75.5	1080	4730
77.1	920	5460
78.7	890	5380
80.4	960	5560
82.0	1170	5460
83.7	1270	5210
85.3	1460	5330
86.9	1680	3880

Depth	V _s	V_p
(feet)	(feet/sec)	(feet/sec)
88.6	1850	3070
90.2	1870	2820
91.9	1840	2730
93.5	1710	2570
95.1	1700	3170
96.8	1590	3270
98.4	1440	2980
100.1	1470	3090
101.7	1680	4630
103.4	1980	5170
105.0	1880	5050
106.6	1710	5420
108.3	1880	4500
109.9	2160	4330
111.6	2000	4270
113.2	1870	3620
114.8	1790	3470
116.5	1750	3280
118.1	1990	3450
119.8	2310	3640
121.4	2270	3810
123.0	2090	3530
124.7	1850	2950
126.3	1800	2900
128.0	1860	2950
129.6	1870	3100
131.2	1830	2900
132.9	1710	3040
134.5	1920	3090
136.2	1990	3220

Table 6. Boring T3-B3, Suspension R1-R2 depths and P- and S_H -wave velocities

WSE BOREHOLE T4-B5 Receiver to Receiver V_{s} and V_{p} Analysis

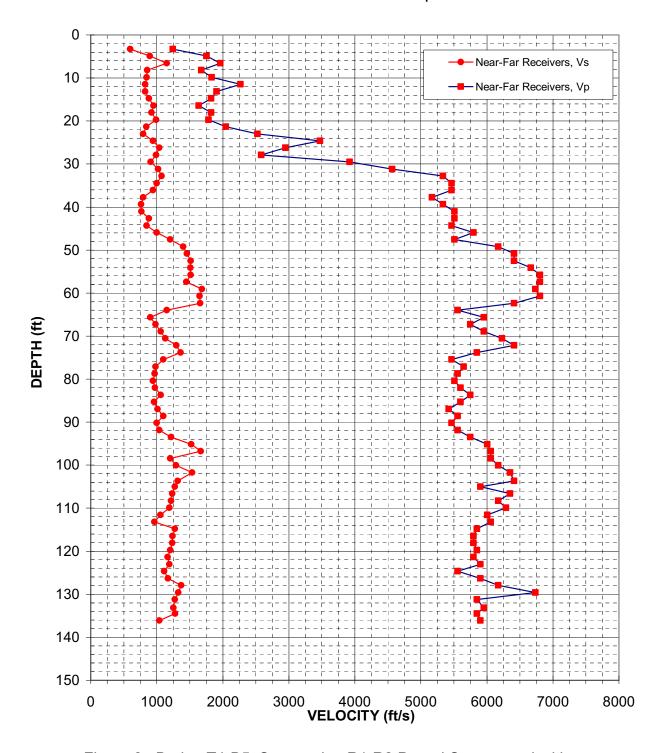


Figure 8: Boring T4-B5, Suspension R1-R2 P- and S_H-wave velocities

Depth					
(feet)	(feet/sec)	(feet/sec)			
3.3	600	1240			
4.9	890	1750			
6.6	1150	1960			
8.2	850	1680			
9.8	850	1830			
11.5	820	2270			
13.1	820	1900			
14.8	880	1820			
16.4	950	1630			
18.0	920	1820			
19.7	990	1780			
21.3	840	2040			
23.0	800	2530			
24.6	940	3470			
26.3	1040	2950			
27.9	990	2580			
29.5	910	3920			
31.2	1020	4570			
32.8	1070	5330			
34.5	1000	5460			
36.1	940	5460			
37.7	790	5170			
39.4	760	5330			
41.0	770	5510			
42.7	880	5510			
44.3	850	5460			
45.9	1000	5800			
47.6	1200	5510			
49.2	1400	6170			
50.9	1460	6410			
52.5	1520	6410			
54.1	1510	6670			
55.8	1520	6800			
57.4	1450	6800			
59.1	1680	6730			
60.7	1650	6800			
62.3	1660	6410			
64.0	1150	5560			
65.6	900	5950			
67.3	980	5750			
68.9	1060	5950			
70.5	1130	6230			
72.2	1300	6410			
73.8	1360	5850			
75.5	1100	5460			
77.1	980	5650			
78.7	970	5560			
80.4	940	5510			
82.0	970	5600			
83.7	1060	5750			

Depth	V _s	V_p
(feet)	(feet/sec)	(feet/sec)
85.3	960	5600
86.9	1010	5420
88.6	1100	5560
90.2	1000	5460
91.9	1040	5560
93.5	1220	5750
95.1	1520	6010
96.8	1670	6060
98.4	1200	6060
100.1	1290	6170
101.7	1540	6350
103.7	1320	6410
105.0	1270	5900
106.6	1230	6350
108.3	1220	6170
109.9	1190	6290
111.6	1050	6010
113.2	960	6060
114.8	1270	5850
116.5	1240	5800
118.1	1230	5800
119.8	1200	5850
121.4	1170	5800
123.0	1190	5900
124.7	1110	5560
126.3	1170	5900
128.0	1370	6170
129.6	1330	6730
131.2	1270	5850
133.2	1250	5950
134.5	1280	5850
136.2	1040	5900

Table 7. Boring T4-B5, Suspension R1-R2 depths and P- and S_H -wave velocities

APPENDIX A

SUSPENSION VELOCITY MEASUREMENT QUALITY ASSURANCE SUSPENSION SOURCE TO RECEIVER ANALYSIS RESULTS

WSE BOREHOLE T1-B6 Source to Receiver and Receiver to Receiver Analysis

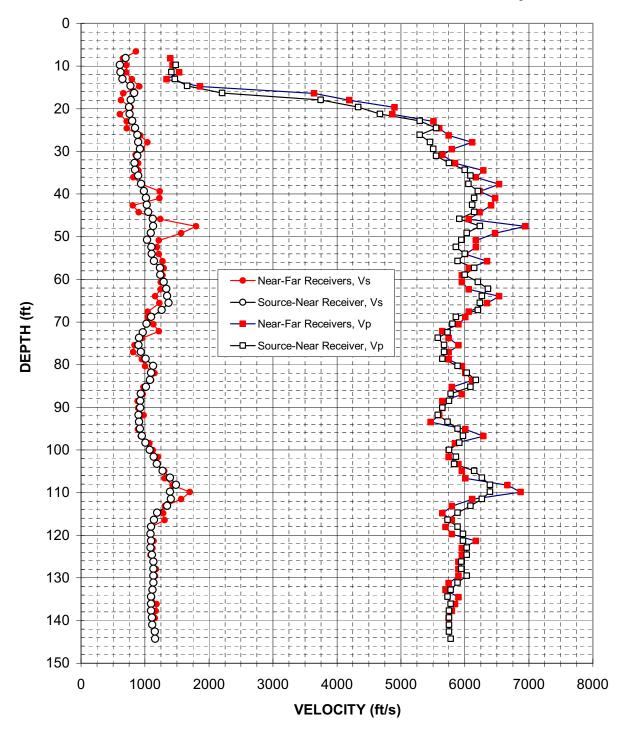


Figure A-1. Boring T1-B6, R1 - R2 high resolution analysis and S - R1 quality assurance analysis P- and S_H -wave data

Danth	Vs	V
Depth (fact)		V _p
(feet)	(feet/sec)	(feet/sec)
8.1	700	-
9.8	610	1480
11.4	620	1420
13.0	650	1470
14.7	770	1660
16.3	830	2210
18.0	780	3750
19.6	750	4340
21.2	760	4670
22.9	800	5300
24.5	840	5550
26.2	880	5300
27.8	900	5460
29.4	920	5500
31.1	880	5550
32.7	840	5750
34.4	840	6000
35.7	900	6090
37.6	940	6060
39.3	990	6210
40.9	1020	6150
42.6	1030	6120
44.2	1050	6150
45.8	1120	5920
47.5	1130	6240
49.1	1090	6030
50.8	1030	5940
52.4	1100	5860
54.0	1110	6000
55.7	1140	5890
57.3	1240	6150
59.0	1240	6000
60.6	1290	6210
62.2	1340	6360
63.9	1350	6270
65.5	1370	6240
67.2	1260	6210
68.8	1100	5860
70.5	1020	5810
72.4	970	5730
73.7	910	5580
75.4	900	5680
77.0	930	5680
78.7	1010	5650
80.3	1130	5890
81.9	1100	6030
83.6	1080	6180
	1010	6090
85.2	†	
86.9	940	5780
88.5	930	5750

Depth	Vs	V _p
(feet)	(feet/sec)	(feet/sec)
90.1	930	5650
91.8	900	5580
93.4	910	5730
95.1	920	5890
96.7	950	5970
98.3	1010	5920
100.0	1070	5750
101.6	1140	5860
103.3	1190	5830
104.9	1280	6150
106.5	1390	6270
108.2	1490	6390
109.8	1390	6390
111.5	1410	6270
113.1	1350	6090
114.7	1190	5890
116.4	1140	5730
118.0	1100	5890
119.7	1090	5970
121.3	1100	5970
122.9	1090	6030
124.6	1110	6030
126.2	1130	5940
127.9	1130	5940
129.5	1130	6030
131.1	1130	5890
132.8	1120	5780
134.4	1100	5730
136.1	1100	5780
137.7	1100	5750
139.3	1110	5750
141.0	1110	5750
142.6	1160	5750
144.3	1160	5780

Table A-1. Boring T1-B6, S - R1 quality assurance analysis P- and S_H -wave data

WSE BOREHOLE T2-B4 Source to Receiver and Receiver to Receiver Analysis

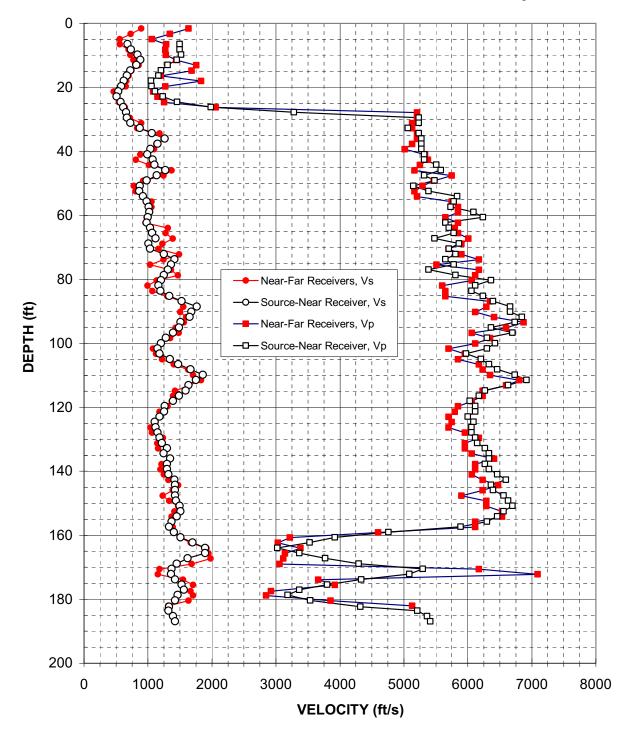


Figure A-2. Boring T2-B4, R1 - R2 high resolution analysis and S - R1 quality assurance analysis P- and S_H -wave data

Depth	V _s	V _p	Depth	V _s	V _p	1	Depth	V _s	V _p
(feet)	(feet/sec)	(feet/sec)	(feet)	(feet/sec)	(feet/sec)	i	(feet)	(feet/sec)	(feet/sec)
6.5	680	1500	88.5	1760	6660	Ħ	170.5	1370	5300
8.1	740	1500	90.1	1680	6660	П	172.2	1360	5080
9.8	840	1520	91.8	1650	6840	П	173.8	1430	4340
11.4	880	1450	93.4	1510	6730	П	175.4	1530	3800
13.0	820	1310	95.1	1490	6360	П	177.1	1560	3370
14.7	730	1200	96.7	1390	6700	1	178.7	1460	3180
16.3	670	1170	98.3	1280	6300	1	180.4	1430	3540
18.0	620	1050	100.0	1200	6430	1	182.3	1330	4320
19.6	580	1060	101.6	1150	6300	1	183.6	1320	5210
21.2	540	1110	103.3	1180	5970	1	185.3	1390	5360
22.9	510	1230	104.9	1340	6210	1	186.9	1430	5410
24.5	570	1460	106.5	1470	6330	1			
26.2	610	1980	108.2	1670	6460	1 '			•
27.8	660	3280	109.8	1860	6730	1			
29.4	670	5230	111.5	1750	6920	1			
31.1	720	5230	113.1	1640	6630	1			
32.7	870	5060	114.7	1590	6270	1			
34.4	1060	5230	116.4	1490	6180	1			
36.0	1260	5280	118.0	1390	6030	1			
37.6	1150	5280	119.7	1260	6120	1			
39.3	1040	5280	121.3	1250	6120	1			
40.9	990	5320	122.9	1180	6000	1			
42.6	1070	5320	124.6	1110	6090	1			
44.2	1100	5500	126.2	1120	6060	1			
45.8	1270	5580	127.9	1150	6060	1			
47.5	1140	5320	129.5	1180	6120	1			
49.1	980	5480	131.1	1220	6150	1			
50.8	870	5150	132.8	1300	6270	1			
52.4	860	5390	134.4	1250	6330	1			
54.0	920	5830	136.1	1350	6330	1			
55.7	980	5780	137.7	1300	6270	1			
57.3	1010	5730	139.3	1300	6330	1			
59.0	1020	6090	141.0	1320	6460	1			
60.6	1000	6240	142.6	1420	6590	i			
62.2	980	5650	144.3	1430	6360	1			
63.9	1040	5700	145.9	1430	6390	1			
65.5	1070	5780	147.6	1430	6560	1			
67.2	1120	5480	149.2	1440	6630	i			
68.8	1010	5860	150.8	1500	6700	i			
70.5	1040	5700	152.5	1510	6560	1			
72.1	1250	5810	154.1	1450	6460	1			
73.7	1420	5650	155.8	1370	6300	1			
75.4	1360	5780	157.4	1330	5890	1			
77.0	1310	5390	159.0	1400	4760	ĺ			
78.7	1250	5810	160.7	1510	3920	1			
80.3	1210	6360	162.3	1700	3530	1			
81.9	1170	6120	164.0	1900	3020	1			
83.6	1200	6060	165.6	1900	3370	1			
85.2	1330	6240	167.2	1620	3770	1			
86.9	1530	6390	168.9	1450	4290	1			
00.9	1000	0000	100.8	1700	7230				

Table A-2. Boring T2-B4, S - R1 quality assurance analysis P- and S_H-wave data

WSE BOREHOLE T2E-B3 Source to Receiver and Receiver to Receiver Analysis

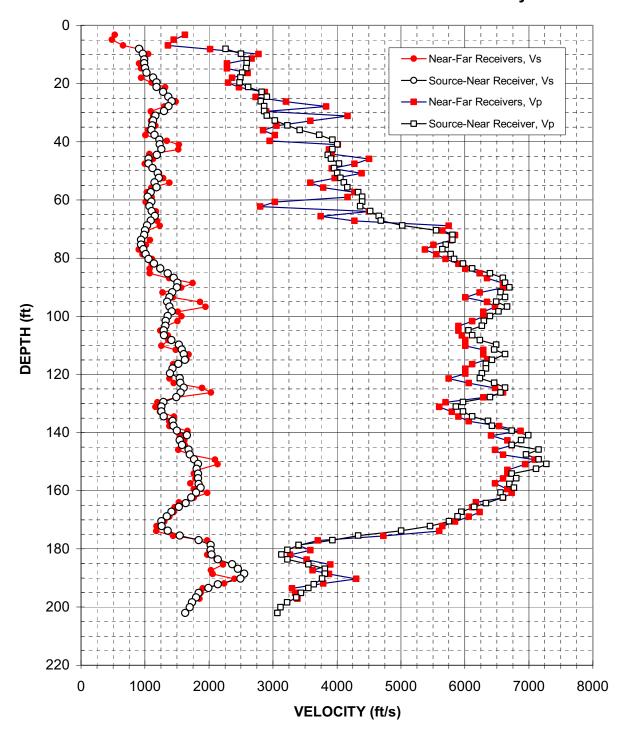


Figure A-3. Boring T2E-B3, R1 - R2 high resolution analysis and S - R1 quality assurance analysis P- and S_H -wave data

Depth	Vs	V_p	Depth	V _s	V _p	Г	Depth	V _s	V _p
(feet)	(feet/sec)	(feet/sec)	(feet)	(feet/sec)	(feet/sec)		(feet)	(feet/sec)	(feet/sec)
8.1	910	2260	90.1	1500	6700	П	172.2	1260	5460
9.8	970	2500	91.8	1430	6560	П	173.8	1360	5000
11.7	990	2590	93.4	1380	6630	П	175.4	1540	4340
13.0	990	2590	95.1	1350	6490	П	177.1	1840	3930
14.7	1000	2580	96.7	1380	6660	П	178.7	2030	3400
16.3	1020	2520	98.3	1420	6530	lľ	180.4	2030	3230
18.0	1130	2490	100.0	1360	6390	ΙĪ	182.0	2040	3130
19.6	1180	2480	101.6	1320	6300	ΙĪ	183.6	2140	3230
21.2	1180	2620	103.3	1320	6270		185.3	2360	3560
22.9	1290	2830	104.9	1290	6060		186.9	2450	3810
24.5	1360	2900	106.5	1300	6120		188.6	2550	3810
26.2	1420	2810	108.2	1410	6240		190.2	2490	3770
27.8	1370	2860	109.8	1530	6490		192.2	2140	3640
29.4	1300	2860	111.5	1570	6460		193.5	1990	3560
31.1	1160	2900	113.1	1610	6630		195.1	1840	3440
32.7	1130	3030	115.1	1620	6430	lľ	196.8	1800	3370
34.4	1110	3230	116.4	1520	6330		198.4	1740	3220
36.0	1100	3420	118.0	1430	6330		200.0	1700	3120
37.6	1150	3720	119.7	1390	6270	Ιſ	202.0	1630	3070
39.3	1230	3930	121.3	1540	6240	lſ			
40.9	1230	4010	122.9	1550	6460	•		-	
42.6	1260	3930	124.6	1610	6630				
44.5	1190	3860	126.2	1560	6560				
45.8	1060	3910	127.9	1490	6390				
47.5	1060	4030	129.5	1290	5970				
49.1	1120	3960	131.1	1260	5860				
50.8	1200	4010	132.8	1260	5970				
52.4	1220	4060	134.4	1290	6120				
54.0	1150	4110	136.1	1430	6360				
55.7	1180	4160	137.7	1450	6430				
57.3	1090	4340	139.3	1500	6730				
59.0	1040	4400	141.0	1660	6990				
60.6	1100	4400	142.6	1540	6880				
62.2	1070	4370	144.3	1580	6730				
63.9	1110	4520	145.9	1680	7150				
65.5	1160	4650	147.6	1700	6960				
67.2	1090	4690	149.2	1770	7150				
68.8	1030	5020	150.8	1830	7280				
70.5	1000	5550	152.5	1810	7110				
72.1	990	5810	154.1	1830	6730				
73.7	940	5810	155.8	1830	6810				
75.4	940	5700	157.7	1840	6700				
77.0	970	5650	159.0	1870	6770				
78.7	1010	5780	160.7	1800	6560				
80.3	1060	5830	162.3	1720	6590				
81.9	1140	5970	164.3	1640	6330				
83.6	1240	6120	165.6	1530	6150				
85.2	1360	6390	167.2	1410	5940				
86.9	1450	6590	168.9	1340	5890				
88.5	1510	6630	170.5	1260	5750				

Table A-3. Boring T2E-B3, S - R1 quality assurance analysis P- and S_{H} -wave data

WSE BOREHOLE T3-B3 Source to Receiver and Receiver to Receiver Analysis

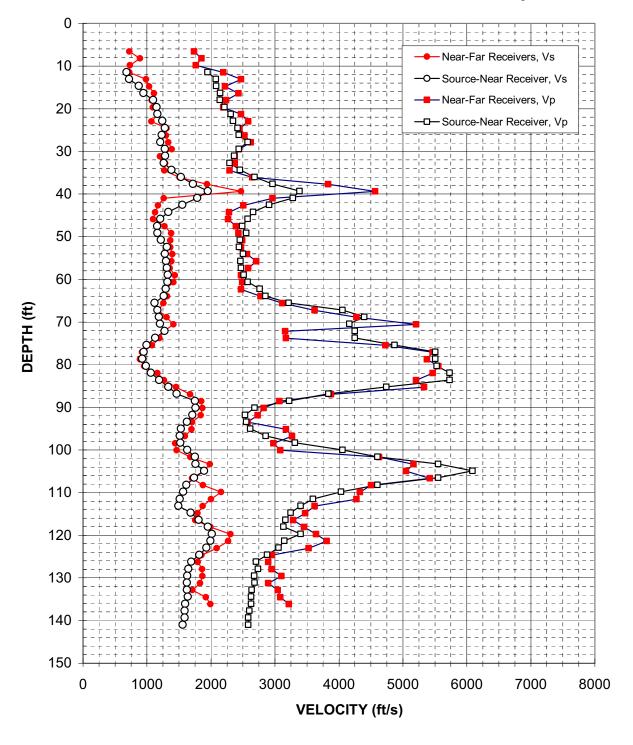


Figure A-4. Boring T3-B3, R1 - R2 high resolution analysis and S - R1 quality assurance analysis P- and S_H -wave data

Donth	V _s	V _p
Depth		(feet/sec)
(feet) 11.4	(feet/sec)	
	680	1950
13.0	720	2080
14.7	870	2080
16.3	940	2150
18.0	1100	2140
19.6	1150	2210
21.2	1160	2310
22.9	1240	2340
24.5	1280	2420
26.2	1230	2430
27.8	1210	2570
29.4	1280	2430
31.1	1290	2360
32.7	1260	2290
34.4	1380	2450
36.0	1530	2680
37.6	1720	2960
39.3	1950	3390
40.9	1790	3280
42.6	1550	2910
44.2	1340	2660
45.8	1210	2570
47.5	1160	2490
49.1	1160	2550
50.8	1220	2450
52.4	1310	2440
54.0	1280	2500
55.7	1300	2460
57.3	1310	2470
59.0	1320	2510
60.6	1320	2570
62.2	1290	2760
63.9	1260	2850
65.5	1120	3210
67.2	1160	4060
68.8	1190	4400
70.5	1200	4160
72.1	1280	4250
73.7	1130	4250
75.4	990	4870
77.0	950	5500
78.7	930	5500
80.3	980	5530
81.9	1060	5730
83.6	1190	5730
85.2	1340	4740
86.9	1470	3840
88.5	1750	3220
90.1	1760	2680
91.8	1710	2530
01.0	17.10	2000

Depth	V _s	V _p
(feet)	(feet/sec)	(feet/sec)
93.4	1630	2550
95.1	1530	2620
96.7	1510	2860
98.3	1520	3310
100.0	1630	4060
101.6	1750	4600
103.3	1760	5550
104.9	1900	6090
106.5	1740	5550
108.2	1610	4600
109.8	1570	4030
111.5	1510	3600
113.1	1490	3400
114.7	1680	3250
116.4	1810	3170
118.0	1950	3130
119.7	2020	3400
121.3	1990	3150
122.9	1930	3060
124.6	1820	2880
126.2	1690	2710
127.9	1650	2730
129.5	1630	2680
131.1	1620	2680
132.8	1620	2640
134.4	1640	2630
136.1	1600	2630
137.7	1590	2600
139.3	1590	2580
141.0	1560	2580

Table A-4. Boring T3-B3, S - R1 quality assurance analysis P- and S_H -wave data

WSE BOREHOLE T4-B5 Source to Receiver and Receiver to Receiver Analysis

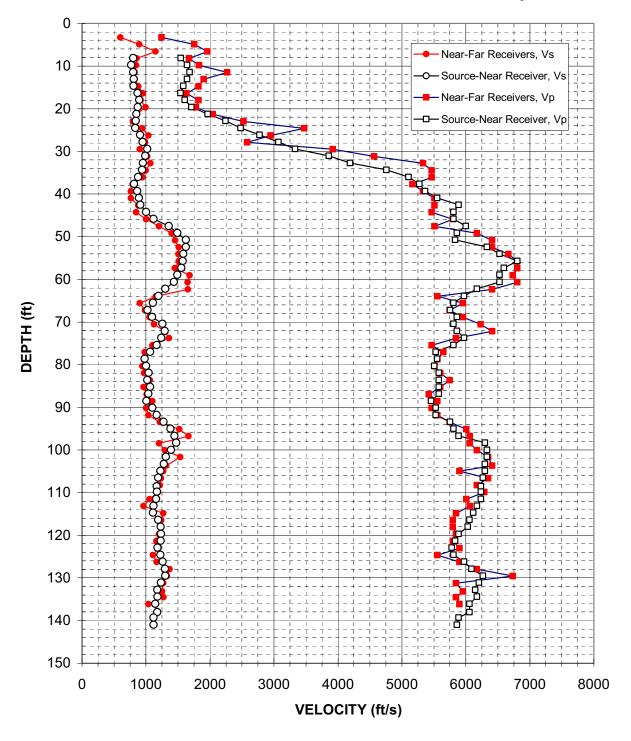


Figure A-5. Boring T4-B5, R1 - R2 high resolution analysis and S - R1 quality assurance analysis P- and S_H -wave data

Depth	Vs	V _p
(feet)	(feet/sec)	(feet/sec)
8.1	800	1540
9.8	770	1640
11.4	800	1680
13.0	810	1640
14.7	810	1590
16.3	870	1540
18.0	890	1610
19.6	870	1710
21.2	850	1970
22.9	840	2240
24.5	830	2480
26.2	910	2780
27.8	950	3070
29.4	1020	3330
31.1	990	3860
	950	4190
32.7 34.4	940	4760
36.0	880	5100
	820	
37.6		5280
39.3	860	5360
40.9	890	5550
42.6	910	5890
44.2	1000	5810
45.8	1120	5810
47.5	1360	6000
49.1	1490	5860
50.8	1620	5830
52.4	1620	6330
54.0	1590	6530
55.7	1570	6810
57.3	1550	6590
59.0	1490	6530
60.6	1440	6530
62.2	1300	6180
63.9	1190	5970
65.5	1110	5810
67.2	1020	5750
68.8	1100	5860
70.5	1260	5810
72.1	1290	5860
73.7	1240	5970
75.4	1170	5810
77.0	1070	5530
78.7	980	5550
80.3	1000	5500
81.9	1040	5580
83.6	1020	5580
85.2	1070	5580
86.9	1040	5580
88.5	1010	5460

Depth	Vs	V _p
(feet)	(feet/sec)	(feet/sec)
90.1	1100	5530
91.8	1170	5530
93.4	1280	5750
95.1	1380	5810
96.7	1450	5890
98.3	1470	6300
100.0	1390	6330
101.6	1310	6330
103.3	1280	6300
104.9	1230	6300
106.5	1190	6270
108.5	1170	6240
109.8	1170	6240
111.5	1160	6240
113.1	1120	6180
114.7	1110	6120
116.4	1190	6060
118.0	1230	6030
119.7	1240	5890
121.3	1230	5830
122.9	1180	5780
124.6	1230	5810
126.2	1260	5970
127.9	1300	6090
129.5	1300	6270
131.1	1240	6210
132.8	1180	6150
134.4	1180	6180
136.1	1150	6060
138.0	1180	6060
139.3	1120	5890
141.0	1120	5860

Table A-5. Boring T4-B5, S - R1 quality assurance analysis P- and S_H -wave data

APPENDIX B

BORING GEOPHYSICAL LOGGING SYSTEMS - NIST TRACEABLE CALIBRATION RECORDS

Certificate of Calibration

Customer:

GEOVISION

1124 OLYMPIC DRIVE Purchase Order: OH-101004-01

CORONA, CA, 92881 Work Order: N/A

 MPC Control #:
 AM6767
 Serial Number:
 160023

 Asset ID:
 160023
 Department:
 N/A

Performed By: Gage Type: **LOGGER** JIM WILLIAMS Manufacturer: OYO Received Condition: IN TOLERANCE Returned Condition: IN TOLERANCE Model Number: 3403 Cal Date: October 15, 2010 Size: N/A 70 °F /41 Cal. Interval: 12 MONTHS Temp./RH:

Temp./RH: 70 °F / 41 % Cal. Interval: 12 MONTHS
Cal. Due Date: October 15, 2011

Found conditions meet or exceed manufacturer specifications.

*Calibration Notes:

See attached data sheet for calculations. Calibrated IAW customer supplied calibration data form Rev 2.0

Test Points

Description	Standard	Tolerance -	Tolerance +	As Found	As Left	UOM	Result
Test Frequency	50.000	49.500	50.500	49.890	49.890	Hz	Pass
Test Frequency	100.000	99.000	101.000	100.100	100.100	Hz	Pass
Test Frequency	200.000	198.000	202.000	200.000	200.000	Hz	Pass
Test Frequency	500.000	495.000	505.000	500.000	500.000	Hz	Pass
Test Frequency	1000.000	990.000	1010.000	1001.100	1001.100	Hz	Pass
Test Frequency	2000.000	1980.000	2020.000	2000.000	2000.000	Hz	Pass

Standards Used To Calibrate Equipment

I.D.	Description	Model	Serial	Manufacturer	Cal. Due Date	Traceability #
BD7715	COUNTER	53131A	3416A05377	HEWLETT PACKARD	6/8/2011	991939
BD9000	CALIBRATOR	5500A	7375008	FLUKE	5/27/2011	1105086
T1700	TIME & FREQUENCY SYSTEM	365-211	96072	ODETICS	7/6/2012	258817

Calibrating Technician: QC Approval:

JIM WILLIAMS JIM WIIIIAMS

Unless Otherwise Noted, Uncertainty Estimated at >= 4 to 1. Uncertainties have been estimated at a 95 percent confidence level (k=2). Services rendered comply with ISO 17025:2005, ISO 9001:2008, ANSI/NCSL Z540-1, MPC Quality Manual, MPC CSD and with customer purchase order instructions.

Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrument identified.

All standards are traceable to the National Institute of Standards and Technology (NIST). Services rendered include proper manufacture's service instructions and are warranted for no less than (30) days. This report may not be reproduced in part or in whole without the prior written approval of the issuing MPC lab.

Page 1 of 2 (CERT, Rev 1)

Certificate of Calibration

Procedures Used In This Event:

Procedure Name Description

CALIBRATION GENERAL GENERAL CALIBRATION INSTRUCTION

Calibrating Technician:

Just

QC Approval:

gwill-

JIM WILLIAMS

Jim Williams

Unless Otherwise Noted, Uncertainty Estimated at >= 4 to 1. Uncertainties have been estimated at a 95 percent confidence level (k=2). Services rendered comply with ISO 17025:2005, ISO 9001:2008, ANSI/NCSL Z540-1, MPC Quality Manual, MPC CSD and with customer purchase order instructions.

Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrument identified.

All standards are traceable to the National Institute of Standards and Technology (NIST). Services rendered include proper manufacture's service instructions and are warranted for no less than (30) days. This report may not be reproduced in part or in whole without the prior written approval of the issuing MPC lab.

Page 2 of 2

(CERT, Rev 1)

AM 6767

SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION DATA FORM

INSTRUMEN System mfg.		OYO			Model no.:		3403		
Serial no.:		160023		Calibration		10/15/2010			
By:				Due date:		10/15/2011			
1550							TOTAL DATE		
Counter mfg	.:	Hewlett F			_Model no.:		53131A		
Serial no.:		3416A05			Calibration		6/8/2010		
By:		Micro Pre	ecision C	Calibration	Due date:		6/8/2011		
Signal gener	ator mfg.:	Fluke			Model no.:		5500A		
Serial no.:		7376008	1		Calibration		5/27/2010		
By:		Micro Pre	ecision C	Calibration	Due date:		5/27/2011		
SYSTEM SE Gain:	TTINGS:			2					
Filter					kHz; Digital				
Range:					le period in	table below			
Delay:				0ms					
Stack (1 std)				_1					
System date	= correct da	te and tim	е	10/15/201	0 9:05am				
Note actual f Set sample p Pick duration .sps file. Cal Average freq	period and re of 9 cycles culate avera	cord data using PSL ge frequer	file to di .OG.EXE ncy for e	E program, each channe	note duration al pair and r	on on data fo note on data I data points		as	
Maximum en	ror ((AVG-AC	CT)/ACT*1	00)%	As found		-0.22	2	As left	-0.22
Target	Actual	Sample	File	Time for	Average	Time for	Average	Time for	Average
Frequency	Frequency		Name	9 cycles	Frequency	9 cycles	Frequency	9 cycles	Frequency
(Hz)	(Hz)	(microS)	10000000	Hn (msec)		Hr (msec)	Hr (Hz)	V (msec)	V (Hz)
50.00	50.000	200	1	180.2	49.94	180	50.0	180,4	49.89
100.0	100.001	100	2	89.9	100-1	90	100.0	89.9	100.1
200.0	200.001	50	3	44.95	200.2	45.05	199.8	45	200.0
500.0	500.001	20	4	18.0	500.0	18.0	500.0	18.0	500.0
1000	1000,002	10	5	8.99	1001	9.01	998.9	8.99	1001.1
2000	2000,003	5	6	4.5	2000	4.5	2000	4.5	2000
Calibrated by		Jim Willia Name	ms			10/15/2010 Date	Ju	Signature	-
Witnessed by	ee	Charles C		d11	Calibration	10/15/2010 Date		Signature	artin
	Suspension F	Seismi	c Recor	der/Logger	Calibration	Data Form	Rev 2.0 Ju	ıly 21, 2008)

Certificate of Calibration

Date: 10/15/2010 Certificate #: 1125048 Lab # 935.11

Customer:

GEOVISION

OH-101004-01 1124 OLYMPIC DRIVE Purchase Order:

CORONA, CA, 92881 Work Order: N/A

MPC Control #: AM6768 Serial Number: 160024 Asset ID: Department: N/A 160024

Performed By: Gage Type: **LOGGER** JIM WILLIAMS Manufacturer: OYO Received Condition: IN TOLERANCE Returned Condition: IN TOLERANCE Model Number: 3403 Cal Date: October 15, 2010 Size: N/A 70 °F /41 Cal. Interval: 12 MONTHS

Temp./RH: Cal. Due Date: October 15, 2011

Found conditions meet or exceed manufacturer specifications.

*Calibration Notes:

See attached data sheet for calculations. Calibrated IAW customer supplied calibration data form Rev 2.0

Test Points

Description	Standard	Tolerance -	Tolerance +	As Found	As Left	UOM	Result
Test Frequency	50.000	49.500	50.500	49.890	49.890	Hz	Pass
Test Frequency	100.000	99.000	101.000	100.100	100.100	Hz	Pass
Test Frequency	200.000	198.000	202.000	199.800	199.800	Hz	Pass
Test Frequency	500.000	495.000	505.000	500.000	500.000	Hz	Pass
Test Frequency	1000.000	990.000	1010.000	1000.000	1000.000	Hz	Pass
Test Frequency	2000.000	1980.000	2020.000	2000.000	2000.000	Hz	Pass

Standards Used To Calibrate Equipment

I.D.	Description	Model	Serial	Manufacturer	Cal. Due Date	Traceability #
BD7715	COUNTER	53131A	3416A05377	HEWLETT PACKARD	6/8/2011	991939
BD9000	CALIBRATOR	5500A	7375008	FLUKE	5/27/2011	1105086
T1700	TIME & FREQUENCY SYSTEM	365-211	96072	ODETICS	7/6/2012	258817

Calibrating Technician: QC Approval:

Unless Otherwise Noted, Uncertainty Estimated at >= 4 to 1. Uncertainties have been estimated at a 95 percent confidence level (k=2). Services rendered comply with ISO 17025:2005, ISO 9001:2008, ANSI/NCSL Z540-1, MPC Quality Manual, MPC CSD and with customer purchase order instructions.

Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrument identified.

All standards are traceable to the National Institute of Standards and Technology (NIST). Services rendered include proper manufacture's service instructions and are warranted for no less than (30) days. This report may not be reproduced in part or in whole without the prior written approval of the issuing MPC lab.

(CERT, Rev 1) Page 1 of 2

Certificate of Calibration

Procedures Used In This Event:

Procedure Name Description

CALIBRATION GENERAL GENERAL CALIBRATION INSTRUCTION

Calibrating Technician:

0

QC Approval:

gw:ll-

JIM WILLIAMS

Jim Williams

Unless Otherwise Noted, Uncertainty Estimated at >= 4 to 1. Uncertainties have been estimated at a 95 percent confidence level (k=2). Services rendered comply with ISO 17025:2005, ISO 9001:2008, ANSI/NCSL Z540-1, MPC Quality Manual, MPC CSD and with customer purchase order instructions.

Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrument identified.

All standards are traceable to the National Institute of Standards and Technology (NIST). Services rendered include proper manufacture's service instructions and are warranted for no less than (30) days. This report may not be reproduced in part or in whole without the prior written approval of the issuing MPC lab.

Page 2 of 2

(CERT, Rev 1)

AM 6768

SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION DATA FORM

System mfg.:		OYO			Model no.		3403			
Serial no.:		160024			Calibration date:		10/15/2010			
By:		Charles Carter		Due date:		10/15/2011				
Counter mfg.	t	Hewlett F	ackard		Model no.	1	53131A			
Serial no.:	F	3416A05	1 10 10 10 10 10 10 10 10 10		Calibration		6/8/2010			
By:				Calibration	Due date:		6/8/2011			
Signal genera	ator mfg ·	Fluke			Model no.		5500A			
Serial no.:	ator iriig	7376008	Į.		Calibration	î:	5/27/2010			
By:			CO. Committee Co.	Calibration	Due date:		5/27/2011			
SYSTEM SE	TTINGS									
Gain:	TINGS:			2						
Filter				Analog:10	kHz; Digita	· Off				
Range:						table below				
Delay:				0ms	ic period in	table belevi				
Stack (1 std)				1						
System date	= correct do	to and tim	0	10/15/201	0.30am					
System date	- correct da	te and tim	C	10/13/201	0 3.50airi					
Set sample p Pick duration .sps file. Cale Average freq Maximum err	of 9 cycles culate avera uency must	using PSL ge frequer be within -	OG.EXE ncy for e +/- 1% o	E program, i each channe	note duration of pair and r	on on data fo note on data	form.	as As left	-0.22	
Maximum en	OI ((AVG-AC	JI)/ACT I	00)76	AS IOUIIU			10	A3 ICIC		
Target	Actual	Sample	File	Time for	Average	Time for	Average	Time for	Average	
Frequency	Frequency	Period	Name	9 cycles	Frequency	9 cycles	Frequency	9 cycles	Frequency	
(Hz)	(Hz)	(microS)		Hn (msec)	Hn (Hz)	Hr (msec)	Hr (Hz)	V (msec)	V (Hz)	
50.00	50,001	200	1	180.0	50.00	179.8	50.06	180.4	49.89	
100.0	100,001	100	2	90.1	99.9	89.9	100.1	89.9	100,1	
200.0	200,00	50	3	45.05	199.8	45.05	199.8	45.05	199.8	
500.0	500:001	20	4	18.0	500.0	18.0	500.0	18.0	500.0	
1000	1000.001	10	5	9.0	1000,0	9.0	1000.0	9.0	1000.0	
2000	2000,001	5	6	4.5	200000	4.5	2000.0	4.5	2000.0	
Calibrated by		Jim Willia Name	ms			10/15/2010 Date	0 (Signature		
Witnessed by		Charles C			- 00	10/15/2010 Date		ula (Signature	arter	
5	Suspension F	PS Seismi	c Record	der/Logger	Calibration	Data Form	Rev 2.0 Ju	ıly 21, 2008	3	

Certificate of Calibration

Customer:

GEOVISION

1124 OLYMPIC DRIVE Purchase Order: OH-101004-01

CORONA, CA, 92881 Work Order: N/A

 MPC Control #:
 BG9698
 Serial Number:
 15014

 Asset ID:
 15014
 Department:
 N/A

Performed By: Gage Type: **LOGGER** STEVE BORING Manufacturer: OYO Received Condition: IN TOLERANCE Returned Condition: IN TOLERANCE Model Number: 03331-0000 October 4, 2010 Cal Date: Size: N/A Cal. Interval: 12 MONTHS

Temp./RH: 70 °F / 35 % Cal. Interval: 12 MONTHS
Cal. Due Date: October 4, 2011

Found conditions meet or exceed manufacturer specifications.

*Calibration Notes:

The UUT (unit under test) was calibrated using the customers procedures in our Garden Grove lab. The UUT was operated by the customers personnel and data collection was observed by MPC personnel. The UUT was found to be in tolerance to customer supplied specifications. The reference standards used are in compliance with ISO/IEC 17025:2005, ISO9001:2000, ANSI/NCSL Z540-1-1994 and laboratory accreditation for lab code 935.11. Frequency is accredited. Measurement uncertainty is 0.2 x E12 Hz. Please see attached data sheet.

Standards Used To Calibrate Equipment

I.D.	Description	Model	Serial	Manufacturer	Cal. Due Date	Traceability #
AM4000	WAVEFORM GENERATOR	33250A	MY40000703	AGILENT	8/17/2011	1063979
T1100	COUNTER	53131A	3546A09912	HEWLETT PACKARD	1/20/2011	646688

Calibrating Technician:

Allen

STEVE BORING

QC Approval:

Tammy Webster

Unless Otherwise Noted, Uncertainty Estimated at >= 4 to 1. Uncertainties have been estimated at a 95 percent confidence level (k=2). Services rendered comply with ISO 17025:2005, ISO 9001:2008, ANSI/NCSL Z540-1, MPC Quality Manual, MPC CSD and with customer purchase order instructions.

Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrument identified.

All standards are traceable to the National Institute of Standards and Technology (NIST). Services rendered include proper manufacture's service instructions and are warranted for no less than (30) days. This report may not be reproduced in part or in whole without the prior written approval of the issuing MPC lab.

Page 1 of 1

(CERT, Rev 1)

BG 9698

SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION DATA FORM

INSTRUMEN		2002			22 0 0		2007				
System mfg.: OYO				Model no.:		3331					
Serial no.:					Calibration	date:	10/4/2010				
By:		Charles C	arter		Due date:	2	10/4/2011				
Counter mfg.		Hewlett P	ackard		Model no.:		53131A				
Serial no.:		3416A053			Calibration	date:	6/8/2010				
By:		Micro Pre	cision (LI	N)	Due date:		6/8/2011				
Signal genera	ator mfg.:	Agilent			Model no.:		33250A				
Serial no.:		MY40007			Calibration	date:	8/17/2010				
By:		Micro Pre	cision (L	N)	Due date:		8/17/2011				
SYSTEM SE Gain:	TTINGS:			20							
Filter				LCF: 5Hz; HCF: 20kHz							
Range:					le period in		,				
Delay:				4 ms					102		
Stack (1 std)				1			****				
System date	= correct da	te and time	е	10/4/2010	3:20pm						
PROCEDUR				-							
Set sine wave Note actual fr Set sample p Pick duration .sps file. Cale	equency on eriod and re of 9 cycles	data form cord data using PSL	file to dis OG.EXE	k. Note file program, n	name on da	ita form.	rm, and save				
Average freq	uency must	be within +	-/- 1% of	actual frequ	iency at all	data points.					
Maximum err	or ((AVG-AC	CT)/ACT*1	00)%	As found		0.22%	2	As left	0.22%		
Target	Actual	Sample	File	Time for	Average	Time for	Average	Time for	Average		
Frequency	Frequency	Period	Name	9 cycles	Frequency	9 cycles	Frequency	9 cycles	Frequency		
(Hz)	(Hz)	(microS)		Hn (msec)	Hn (Hz)	Hr (msec)	Hr (Hz)	V (msec)	V (Hz)		
50.00	50.00	200	1	180.2	49.94	179.8	50.06	180.0	50.00		
100.0	100.0	100	2	90.10	99.89	90.00	100.0	90.10	99.89		
200.0	200.0	50	3	45.00	200.0	45.05	199.8	45.05	199.8		
500.0	500.0	20	4	18.00	500.0	18.02	499.5	17.96	501.1		
1000	1000	10	5	9.010	998.9	8.990	/ 1001	9.000	1000		
2000	2000	5	6	4.510	1996	4.505	1998	4.500	2000		
Calibrated by		Charles C	arter			10/4/2010		Charles a	action		
us enect (55) (matain (55) 45) d	20	Name	2000	271		Date		Signature			
-								16R ~			
Witnessed by	<i>r</i> :	Steve Bor	ing			10/4/2010					
*1	10	Name				Date Signature					
	Suspension	PS Seismi	c Record	ler/Logger (Calibration [Data Form	Rev 2.0	July 21, 2008			