APPENDIX F-I. 5

Las Vegas Wash

Huffman-Broadway Group, Inc.
 Environmental Consultants
 - HBG

Investigation of the Presence of Wetlands and Other Waters of the United States DesertXpress Project HUC 8 Las Vegas Watershed Clark County, Nevada

July 2010

Prepared for

DesertXpress Enterprises, LLC
6750 Via Austi Parkway Suite 250
Las Vegas, NV 89119

By

Huffman-Broadway Group, Inc.
828 Mission Avenue
San Rafael, CA 94901

TABLE OF CONTENTS

1.0 INTRODUCTION 1
1.1 Project Purpose and Scope of Work 1
1.2 CONTACT InFORMATION 2
1.3 Study Area 2
1.4 Environmental Setting 2
1.4.1 Topography 3
1.4.2 Land Use. 3
1.4.3 Geology and Soils 3
1.4.4 Biological Resources 5
1.4.5 Climate 6
1.4.6 Hydrology 6
2.0 REGULATORY FRAMEWORK 9
2.1 Definition of Wetlands and Other Waters of the U.S 9
2.2 Limits of Jurisdiction 10
2.3 Identification of Ordinary High Water Marks (OHWM) 10
2.4 Wetlands Delineation Criteria 12
2.4.1 Wetland Hydrology 13
2.4.2 Hydric Soils 15
2.4.3 Prevalence of Wetland Vegetation 18
3.0 DELINEATION METHOD 21
3.1 Objective and Establishment of Study Area Boundary 21
3.2 Study Area Reconnaissance 21
3.3 Wetlands Identification and Delineation 21
3.3.1 Dominance of Wetland Vegetation 22
3.3.2 Presence of Hydric Soil Indicators 22
3.3.3 Presence of Wetland Hydrology Indicators 22
3.4 Identification and Delineation of Other Waters 23
3.5 MAPPING 24
4.0 TECHNICAL FINDINGS 25
4.1 Field Indicators of Hydric Solls 25
4.2 Field Indicators of Wetland Hydrology Conditions 25
4.2.1 Field Indicators of Surface Flow 26
4.2.2 Landscape Features that Support Surface Flow. 27
4.2.3 Landscape Features with a Recognizable OHWM 28
4.3 Field Indicators of Wetland Vegetation 29
5.0 AREAS POTENTIALLY SUBJECT TO JURISDICTION 30
5.1 WetLands 30
5.2 Other Waters of the U.S 30
6.0 REFERENCES 31

LIST OF TABLES

Table 1a Potential Geomorphic Indicators of Ordinary High Water Marks for the Arid West
Table 1b Potential Vegetation Indicators of Ordinary High Water Marks for the Arid West
Table $2 \quad$ Wetland Hydrology Indicators
Table $3 \quad$ Wetland Hydrology Indicators for the Arid West
Table $4 \quad$ Field Indicators of Hydric Soil Conditions
Table $5 \quad$ Hydric Soil Indicators for the Arid West

LIST OF EXHIBITS

Exhibit A Figures

Figure $1 \quad$ DesertXpress Project Alignment Alternatives
Figure 2 Location of Alignment Alternatives Within HUC-8 Watershed
Figure $3 \quad$ Location of Study Area
Figure 4 Location of Study Area Within HUC-8 / HUC-12 Watersheds
Figures 5-12 Typical Examples of Field Indicators of Active Surface Water Flow and Ordinary High Water Marks Found Within Ephemeral Drainages Occurring Within the DesertXpress Project Study Area.
Figures 13-23 Examples of Drainages Found Within HUC-8 Watershed
Exhibit B
Field Data
Exhibit B1 Required Corps Waters Data Summary Table
Exhibit B2 Field Data
Exhibit C Maps of Potential Jurisdictional Areas

This report should be cited as: Huffman-Broadway Group, Inc. 2010. Investigation of the Presence of Wetlands and Other Waters of the United States, DesertXpress Project, HUC 8 Las Vegas Watershed, Clark County, Nevada. Prepared for DesertXpress Enterprises, LLC, Las Vegas, Nevada. July. 32 pp. plus Exhibits.

1.0 INTRODUCTION

1.1 Project Purpose and Scope of Work

DesertXpress Enterprises, LLC (DXE) is proposing to construct and operate a dedicated two-tracked high speed passenger railway and associated operations and maintenance facilities between Victorville, California, and Las Vegas, Nevada (DesertXpress Project; Exhibit A, Figure 1). A Draft Environmental Impact Statement was issued for the project in March of 2009 and the Final EIS is nearing completion. A Supplemental Draft EIS has been prepared and will be issued shortly to address certain modifications to the proposed alignment and station locations made by the Applicant, DXE, in response to various comments made on the Draft. The U.S. Department of Transportation, Federal Railroad Administration (FRA) is the lead agency responsible for preparing the project Environmental Impact Statement (EIS).

In preparation for the permit phase of the project, DXE has retained Huffman-Broadway Group, Inc. (HBG) to investigate the presence of wetlands and other waters potentially subject to Corps and EPA regulation under Section 404 of the Clean Water Act (CWA) along the DesertXpress Project's preferred and alternative alignments and study areas for the stations and ancillary facilities.

For the purpose of the jurisdictional delineation study, the proposed DesertXpress Project has been divided into six areas using the USGS HUC $8{ }^{1}$ level of watershed classification. The scope of this report is to evaluate the presence or absence of wetlands and waters potentially subject to Corps CWA jurisdiction within the proposed DesertXpress Project alignments and facilities located within HUC 8 Las Vegas Wash Watershed (Exhibit A, Figure 2).
This study was conducted in accordance with Code of Federal Regulations (CFR) definitions of jurisdictional waters, the Corps’ 1987 Wetlands Delineation Manual, the Corps’ 2008 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0), and supporting guidance documents. The remaining portions of Section 1.0 provide project contact information, describe the location of the Study Area and provide technical details regarding the general environmental conditions found within the Study Area, including relevant technical information from the Draft EIS regarding water resource data and biological and cultural resource information. Section 2.0 provides regulatory background information and details regarding the technical criteria and types of field indicators evaluated for during the study. Section 3.0 provides a detailed description of the methods used during this investigation. Section 4.0 provides a description of technical findings and Section 5.0

1 HUC = U.S. Geological Survey (USGS) Hydrologic Unit Code. The Hydrologic Unit system is a standardized watershed classification system developed by USGS in the mid 1970s. Hydrologic units are watershed boundaries organized in a nested hierarchy by size. They range in size from national regions, to the smaller cataloging units (HUCs), which are roughly equivalent to local watershed.
describes the types of areas found that potentially may be subject to Corps CWA jurisdiction. Section 6.0 is a Clean Water Act jurisdictional analysis using the Rapanos Guidance.

HBG is seeking, on behalf of DXE, a Preliminary Jurisdictional Determination pursuant to applicable Corps guidance documents.

1.2 Contact Information

Project Owner Contact	Applicant's Agent \& Wetland Regulatory Scientist
DesertXpress Enterprises, LLC 6750 Via Austi Parkway Suite 250	Huffman-Broadway Group, Inc Las Vegas, NV 89119 Mission Avenue
	San Rafael, California 94901
Contact:	
Tom Stone	Contact:
(702) 491-8940	Terry Huffman, Ph.D.
tstone@transmaxgroup.com	(415) 925-2000

1.3 Study Area

The Study Area for this investigation is defined as the area where potential ground disturbing components of the proposed project would occur based on the alternatives identified and analyzed in conjunction with the EIS and Supplemental EIS prepared for the DesertXpress Project. The Study Area encompasses the portion of the proposed DesertXpress Project alignment alternatives and facilities located within the HUC-8 Las Vegas Wash Watershed (15010015) from the town of Sloan, Nevada, to the Las Vegas terminal station, a distance of approximately 17.5 miles. The terminal will be designed to interface with extensions of the Las Vegas Monorail ${ }^{\mathrm{TM}}$, with shuttles serving the resorts and the central business district (Exhibit A, Figure 3).

1.4 Environmental Setting

The Study Area encompasses those portions of the proposed DesertXpress Project alignments and facilities referred to in the Draft EIS as Segments 6 and 7 (together with a minor portion of Segment 5 Alternative 3B in the Town of Sloan HUC-12 watershed). The final alignment and facilities in Las Vegas have not been determined, but at the present time, Segment 6 will include the Interstate I-15 corridor from Sloan north to a central Las Vegas location. Segment 7 routing will likely depend on the selected location of the terminal station.

HUC-12 watersheds in the Las Vegas Wash Watershed through which the proposed alignment alternatives and facilities passes are:

- Town of Sloan
- Town of Arden
- Duck Creek
- Tropicana Wash
- City of Las Vegas-Las Vegas Wash

Named drainages crossed by the project include Duck Creek, Tropicana Wash, and Flamingo Wash. These drainages flow east into Las Vegas Wash and ultimately to the Colorado River via Lake Mead.

1.4.1 Topography

The Study Area is within the Basin and Range Geomorphic Province. The region is characterized by mountain ranges and hills of moderate relief that are partially buried and separated by broad alluviated basins. The Basin and Range province includes a large part of the southwestern United States. Elongate mountain ranges are separated by broad, nearly flat valleys.

The proposed alignments and facilities in the Las Vegas Wash Watershed extend across alleviated areas in the Las Vegas Valley. From an elevation of approximately 2,700 feet msl in Sloan, Nevada, south of Las Vegas, the alignment alternatives descend to an approximate elevation of 2,000 feet msl in the Las Vegas Valley at the proposed terminal locations.

1.4.2 Land Use

Most of this section of the DesertXpress Project alignment and facilities fall within the I15 transportation corridor. BLM manages lands south of Las Vegas; land in the city is in private ownership. Between the start of Segment 6 near Sloan Road and the Las Vegas passenger station, the Segment 6 alignment alternatives and facilities would traverse a spectrum of existing land uses. Near Sloan Road, the sparsely developed character of the Ivanpah Valley includes industrial uses near the freeway. North of St. Rose Parkway, the industrial uses give way to the outer fringes of metropolitan Las Vegas. Clusters of new single and multi family residential developments and several hotel/casinos are located near the freeway. Residences in this area are within 70 feet of the proposed alignment.

North of Blue Diamond Road (State Route 160), land uses change; industrial uses are located to the west of the freeway while east of the freeway is undeveloped. After crossing I-215, the land uses fully reflect the intensive urban development of Las Vegas. Hotel/casino and commercial land uses are located on either side of the freeway. McCarran International Airport is located approximately a half mile to the east.

1.4.3 Geology and Soils

A limestone formation ($\mathrm{Mmc}, \mathrm{Mm}$) mantled by younger alluvium underlies the southern end of the Las Vegas Wash Watershed area. The majority of the area is underlain by alluvial deposits, including younger Holocene wash sediments and alluvial fan deposits (Qa, Qal, Qs), older Holocene/Pleistocene alluvial fan deposits (Qai, Qoa) that are
moderately to well consolidated to cemented in places, and older Pliocene consolidated sediments (QTs) that are moderately to well consolidated to strongly cemented.

Younger Holocene alluvial wash and fan deposits (Qa) in this area may be cemented in places by petrocalcic carbonate. Older Pleistocene alluvium (Qoa) may contain a petrocalcic carbonate horizon approximately 6 feet thick near the surface. Older PlioPleistocene consolidated sediments in this area have moderately to well consolidated to strongly cemented layers of petrocalcic carbonate; surface exposures are capped in places by a resistant petrocalcic crust.

The following table provides a description of soils associated with each geologic unit described above.

Geologic Unit (Symbol[s])	Geologic Age	Description - Soils
Younger alluvial deposits (Qa, Qal, Qs)	Holocene	Active wash, alluvial fan and sheet wash deposits of gravel, sand, and minor silt; unconsolidated to locally calcic-cemented.
Intermediate alluvial deposits (Qai)	Holocene- Pleistocene	Deposits of sand and gravel on relict, inactive alluvial fans; slightly to moderately consolidated.
Older alluvial deposits (Qoa)	Pleistocene	Pebble and small cobble gravel with pebbly sand; moderately to well consolidated to locally cemented; caliche horizon approx. 6 feet thick occurs at or near surface.
Consolidated sediments (Qts)	Pliocene to Pleistocene	Fine sand interbedded with silt, pebbly sand, and gravel; moderately to well consolidated to strongly cemented. Common caliche layers and resistant caliche surface crust.
Marine sedimentary and meta-sedimentary rocks (Mmc, Mm)	Mesozoic to Paleozoic (Carboniferous)	Monte Cristo limestone (Mm).

Source: Ninyo \& Moore, 2007.

The general geology of the Las Vegas Valley is described in a recent USGS publication ${ }^{2}$:
Las Vegas Valley is located in southern Nevada and lies within both the Great Basin and Mojave Desert sections of the Basin and Range physi ographic province. The arid, northwest-trending valley is bounded on the west by several mountain ranges and drains a 1,564-square-mile watershed southeastward through Las Vegas Wash into Lake Mead.

Las Vegas V alley is a sediment-filled structural trough that has formed over many millions of years through compression, extension, and faulting of the original flat-lying marine sediments that form the bedrock. Some

2 Pavelko, M. T., D. B. Wood, and R. J. Laczniak (U.S. Geological Survey, Las Vegas, Nevada). Las Vegas, Nevada: Gambling with water in the desert. Online at: http://pubs.usgs.gov/circ/circ1182/pdf/08LasVegas.pdf
bedrock blocks were down-dropped between the faults al ong the eastern and western margins of the present-day valley. Sediment eroded by wind and water from the surrounding bedrock highl ands began filling the trough with gravel, sand, silt, and clay.

During some of the wetter periods in the past 1 million years or so, extensive playa lakes and spring-fed marshes covered the lower parts of the valley floor, depositing variably thick sequences of fine-grained sediment (citation). Coarse-grained sand and gravel tend to rim the valley, forming alluvial fans and terraces, especially in the northern, western, and southern parts. The deposits generally thicken and become finer-textured toward the central and eastern part of the valley, where their total thickness exceeds 5,000 feet (citation).

1.4.4 Biological Resources

Segment 6 would extend from the Sloan area and descend into the south end of the Las Vegas Valley through creosote bush scrub habitat. Once in Las Vegas, the segment crosses through disturbed creosote bush scrub habitat, rural developments, and urban areas. Segment 7 would be located in an urban environment (Las Vegas) with little to no habitat for sensitive species. These habitats are summarized in the following table:

Vegetation Community Type	Sensitive Community	Associated Species	
Creosote Bush Shrubland	No	A group of alliances: creosote bush may be the only shrub, other alliances are characterized by shared dominance with white bursage and/or brittlebush; also desert holly, saltbush species, and many other shrubs may be present in low densities	Various substrates and settings, including: sandy substrates, alluvial fans, bajadas; may occur on disturbed sites; 0-1,700 meters
Barren (Disturbed, graded)	No	May have sparse growth of mostly non-native species, especially invasive annual grasses	Various substrates and settings
Rural development	No	N/A	Usually flat to gently sloping sites, valley floors
Urban	No	N/A	Usually flat to gently sloping sites, valley floors

In the table below, sensitive species listed by US Fish and Wildlife Service and the State of Nevada are identified:

Biological Resource	Status Federal/State	Description	Potential for Occurrence in Segments 6 and 7
Sensitive Plant Communities \& Wetlands			
Sensitive plant communities		None present in segments	No
Special-Status Plant Species			
Las Vegas catseye	--/SS	No Nevada Natural Heritage Program occurrences in vicinity of project study area.	No
Special-Status Wildlife Species			
Desert tortoise	T/T	No Nevada Natural Heritage Program occurrences in vicinity of project study area. Suitable habitat occurs in relatively undisturbed habitat outside of urban areas.	Yes
American peregrine falcon	--/P	No Nevada Natural Heritage Program occurrences in vicinity of project study area.	Yes

1.4.5 Climate

Climate in the Las Vegas Valley is described by Pavel co et al. ${ }^{3}$

More than 24 inches of precipitation fall annually in the Spring Mountains bounding the [Las Vegas] valley to the west, but less than 4 inches of rain fall annually on the valley floor; measurable amounts (greater than 0.01 inch) seldom occur more than 30 days each year. Temperatures range from bel ow freezing in the mountains to more than $120^{\circ} \mathrm{F}$ on the valley floor. There are typically more than 125 days of $90^{\circ} \mathrm{F}$ or warmer temperatures each year in Las Vegas Valley.

1.4.6 Hydrology

Water Resources

The DesertXpress Project proposed alignments cross named and unnamed ephemeral drainages that generally flow east into the Las Vegas Wash and ultimately into the Colorado River via Lake Mead, a reservoir of the river. Named drainages crossed by the alignments include Duck Creek, Tropicana Wash, and Flamingo Wash. The drainages are ephemeral west of the Las Vegas metropolitan area but become perennial (from urban "nuisance" flow) as they flow eastward and terminate at the Las Vegas Wash. Flamingo Wash has been channelized and routed underground through a series of culverts. There is no surface expression of the Wash within the project alignments.

Groundwater Resources

Segment 6 and Segment 7 are located in the Las Vegas Groundwater Basin (Nevada Basin Number 212) (DCNR, 2007). The Las Vegas Groundwater Basin is estimated to be 1,000,960 acres (DCNR, 2007).

Pavelka et al. ${ }^{4}$ describe groundwater resources in the Las Vegas area:
The accelerating demand for water to support the rapid growth of the municipal-industrial sector in this desert region is being met with imported Colorado River System supplies and local ground water. The depletion of once-plentiful groundwater supplies is contributing to land subsidence and ground failures. Since 1935, compaction of the aquifer system has caused nearly 6 feet of subsidence and led to the formation of numerous earth fissures and the reactivation of several surface faults, creating hazards and potentially harmful impacts to the environment. . . .

Ground water is generally pumped from the upper 2,000 feet of unconsolidated sediments that constitute the aquifer system in the central part of the valley. The deeper aquifers, generally below 300 feet, are capable of transmitting significant quantities of ground water, and have been referred to variously as the "principal," "artesian," or "developedzone" aquifers (citations). In places, these principal aquifers are more than 1,000 feet thick and consist mainly of sands and gravels beneath the terraces along the margins of the valley. In the central and eastern parts, clays and silts predominate (citation). Overlying the principal aquifers, in most places, is a 100-to-300 foot-thick section of extensive clay, sand, and gravel deposits known as the "near-surface reservoir." The principal aquifers and the near-surface reservoir are separated by a variably-thick, laterally discontinuous aquitard, or confining unit. . . .

Much of the ground water found in the aquifer system originates as rain or snow falling on the Spring Mountains to the west or on the Sheep and Las Vegas Ranges to the northwest. Some of the precipitation infiltrates into the underlying bedrock through faults and fractures, eventually moving into the deposits comprising the principal aquifers. The remainder of the precipitation runs off onto the sloping alluvial terraces and rapidly enters the sand and gravel deposits, where it either recharges the underlying principal aquifers or is evaporated or transpired into the atmosphere.

4 Ibid.

FEMA Floodplains

The DEIS for the DesertXpress Project identifies several 100-year floodplains in the vicinity of the alignment in the I-15 transportation corridor:

- Floodplain along an unnamed wash between West Cactus Avenue and East Silverado Ranch Boulevard. This wash becomes the Duck Creek drainage.
- Tropicana Wash 100-year floodplain between I-15 and the UPRR tracks extends west of I-15 and south of East Tropicana Avenue, and along the railway tracks east of Wynn Road and north of West Oquendo Road. The flood plain is not mapped beyond Linwood Road south.
- Floodplain that extends south of West Flamingo Road, west of South Las Vegas Boulevard, north of West Tropicana Avenue, and east of I-15. The Clark County Regional Flood Control District has constructed and proposed new conveyances within this area that have also significantly reduced the area of the 100-year floodplain.1.5 Disclaimer
Huffman-Broadway Group, Inc. have conducted a thorough historic review and site investigation and made a good-faith effort herein to thoroughly describe and document the presence of potential factors that the Corps may consider in determining jurisdiction under their CWA jurisdiction as part of the Corps jurisdictional verification /
determination process, however, DXE reserves the right to challenge or seek revision to any areas over which the Corps may assert jurisdiction.

2.0 REGULATORY FRAMEWORK

2.1 Definition of Wetlands and Other Waters of the U.S.

Section 404 of the Federal Clean Water Act authorizes the Corps to regulate activities that discharge dredged or fill material to wetlands and other waters of the United States. As described by EPA's and the Corps' regulations (40 CFR § 230.3(s) and 33 CFR § 328.3(a), respectively), the term "waters of the United States" encompasses the following resources:
(1) All waters which are currently used, or were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide;
(2) All interstate waters including interstate wetlands;
(3) All other waters such as intrastate lakes, rivers, streams (including intermittent streams), mudflats, sandflats, wetlands, sloughs, prairie potholes, wet meadows, playa lakes, or natural ponds, the use, degradation or destruction of which could affect interstate or foreign commerce including any such waters:
(i) Which are or could be used by interstate or foreign travelers for recreational or other purposes; or
(ii) From which fish or shellfish are or could be taken and sold in interstate or foreign commerce; or
(iii) Which are used or could be used for industrial purpose by industries in interstate commerce
(4) All impoundments of waters otherwise defined as waters of the United States under the definition;
(5) Tributaries of waters identified in paragraphs (a) (1) through (4) of this section;
(6) The territorial seas;
(7) Wetlands adjacent to waters (other than waters that are themselves wetlands) identified in paragraphs (a) (1) through (6) of this section.

EPA and the Corps define wetlands as:
...those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas. (EPA regulations at 40 CFR § 230.3(t); Corps regulations at 33 CFR § 328.3(b)).

2.2 Limits of Jurisdiction

The following provides the regulatory definitions and criteria followed in determining the geographic extent of potential EPA/Corps jurisdiction as applicable to inland waters.

The geographic limits of relevant federal jurisdiction for non-tidal waters of the U.S. are defined as follows at 33 CFR § 328.4(c):

Non-Tidal Waters of the United States: The limits of jurisdiction in non-tidal waters:
(1) In the absence of adjacent wetlands, the jurisdiction extends to the ordinary high water mark.
(2) When adjacent wetlands are present, the jurisdiction extends beyond the ordinary high water mark to the limit of the adjacent wetlands.
(3) When the water of the United States consists only of wetlands the jurisdiction extends to the limit of the wetland.
The terms "adjacent" and "ordinary high water mark," used in the above definition, are defined at 33 CFR § 328.3 as follows:

The term adjacent means bordering, contiguous, or neighboring. Wetlands separated from other waters of the United States by man-made dikes or barriers, natural river berms, beach dunes and the like are "adjacent wetlands." (33 CFR § 328.3(c))

The term ordinary high water mark means that line on the shore established by the fluctuations of water and indicated by physical characteristics such as clear, natural line impressed on the bank, shelving, changes in the character of soil, destruction of terrestrial vegetation, the presence of litter and debris, or other appropriate means that consider the characteristics of the surrounding areas. (33 CFR § 328.3(e))
A site must meet certain water, soil, and vegetation criteria to qualify as a jurisdictional wetland. The Corps’ 1987 Wetlands Delineation Manual and various regional supplements describe these criteria and the methods used to determine whether they are met and the geographic extent of wetland areas identified in the field.

2.3 Identification of Ordinary High Water Marks (OHWM)

The Corps definition of Ordinary High Water Mark (OHWM) provides the criterion by which the OHWM line can be identified which consists of "that line on the shore established by fluctuations of water and indirect physical characteristics" (33 CFR § 328.3(e)). The Corps has developed a delineation manual for the identification of OHWMs within the Arid West Region, entitled A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States, A Delineation Manual (Lichvar and McColley 2008). Tables 1a and 1b, below provide a summarized listing from the manual of indicators associated with areas that become flood or ponded, but are not dominated by wetland vegetation and the duration of
flooding, ponding and/or near surface soil saturation (≤ 12 inches) is not sufficient to cause hydric soils to form or wetland hydrology conditions to occur.

Table 1a. Potential Geomorphic Indicators of Ordinary High Water Marks for the Arid West *		
Potential Geomorphic OHWM Indicators		
(A) Below OHW	(B) At OHW	(C) Above OHW
1. In-stream dunes 2. Crested ripples 3. Flaser bedding 4. Harrow marks 5. Gravel sheets to rippled sands 6. Meander bars 7. Sand tongues 8. Muddy point bars 9. Long gravel bars 10. Cobble bars behind obstructions 11. Scour holes downstream of obstructions 12. Obstacle marks 13. Stepped-bed morphology in gravel 14. Narrow berms and levees 15. Streaming lineations 16. Dessication / mud cracks 17. Armored mud balls 18. Knick Points	1. Valley flat 2. Active floodplain 3. Benches: low, mid, most prominent 4. Highest surface of channel bars 5. Top of point bars 6. Break in bank slope 7. Upper limit of sand-sized particles 8. Change in particle size distribution 9. Staining of rocks 10. Exposed root hairs below intact soil layer 11. Silt deposits 12. Litter (organic debris, small twigs and leaves) 13. Drift (organic debris, larger than twigs)	1. Desert pavement 2. Rock varnish 3. Clast weathering 4. Salt splitting 5. Carbonate etching 6. Depositional topography 7. Caliche rubble 8. Soil development 9. Surface color/tone 10. Drainage development 11. Surface relief 12. Surface rounding

* Adapted from A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West

Region of the Western United States, A Delineation Manual (Lichvar and McColley 2008).

Table 1b. Potential Vegetation Indicators of Ordinary High Water Marks						
for the Arid West *						

* Adapted from A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West

Region of the Western United States, A Delineation Manual (Lichvar and McColley 2008).

2.4 Wetlands Delineation Criteria

The Corps’ 1987 Wetlands Delineation Manual identifies the key diagnostic criteria for determining the presence of wetlands. These include:

1. Wetland Hydrology: Inundation or saturation to the surface during the growing season.
2. Hydric Soils: Soils classified as hydric or that possess characteristics associated with reducing soil conditions.
3. Predominance of Wetland Vegetation: Vegetation classified as facultative, facultative wet, or obligate according to its tolerance of saturated (i.e., anaerobic) soil conditions.

Specific criteria used to determine the presence or absence of wetland hydrology, soil, and vegetation conditions are described in the sections below.

2.4.1 Wetland Hydrology

The 1987 Corps Manual states that wetland hydrology conditions occur when a "site is inundated either permanently or periodically at mean water depths less than or equal to 6.6 feet, or the soil is saturated to the surface at some time during the growing season of the prevalent vegetation." Whether a site meets either of these criteria is determined by the presence of diagnostic indicators of wetland hydrology, which include those listed in Table 2.

Table 2. Wetland Hydrology Indicators (Based on 1987 Corps Manual and Corps Guidance Documents)	
Primary Indicators	Secondary Indicators
Watermarks	Oxidized Rhizospheres Associated with Living Roots
Drift Lines	Water-Stained Leaves
Water-Borne Sediment Deposits	FAC-Neutral Test
Drainage Patterns Within Wetlands	Local Soil Survey Data

A March 8, 1992 Corps memorandum entitled Clarification and Interpretation of the 1987 Manual provides further clarification:

Areas which are seasonally inundated and/or saturated to the surface for a consecutive number of days for more than 12.5 percent of the growing season are wetlands, provided the soil and vegetation parameters are met. Areas wet between 5 percent and 12.5 percent of the growing season in most years may or may not be wetlands. Sites saturated to the surface for less than 5 percent of the growing season are non-wetlands.
Wetland hydrology indicators have also been further defined and described in the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0) (Corps 2008). These indicators are similar to the indicators listed above from the 1987 Corps Manual and are presented in Table 3.

Table 3. Wetland Hydrology Indicators for the Arid West (Based on Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region, Version 2.0)		
	Primary Indicators (any one indicator is sufficient to make a determination that wetland hydrology is present)	Secondary Indicators (two or more indicators are required to make a determination that wetland hydrology is present)
Group A - Observation of Surface Water or Saturated Soils		
A1* - Surface Water	X	
A2 - High Water Table	X	
A3 - Saturation	X	
Group B - Evidence of Recent Inundation		
B1 - Water Marks	X (Nonriverine)	\mathbf{X} (Riverine)
B2 - Sediment Deposits	\mathbf{X} (Nonriverine)	\mathbf{X} (Riverine)
B3 - Drift Deposits	X (Nonriverine)	X (Riverine)
$\begin{aligned} & \text { B6 - Surface Soil } \\ & \text { Cracks } \end{aligned}$	X	
B7 - Inundation Visible on Aerial Imagery	X	
B9 -Water-Stained Leaves	X	
B10 - Drainage		X
B11-Salt Crust	X	
B12-Biotic Crust	X	
B13-Aquatic Invertebrates	X	
Group C - Evidence of Current or Recent Soil Saturation		
C1 - Hydrogen Sulfide Odor	X	
$\begin{array}{r} \hline \text { C2 - Dry-Season } \\ \text { Water Table } \end{array}$		X
C3- Oxidized Rhizospheres along Living Roots	X	
C4 - Presence of Reduced Iron	X	
C6 - Recent Iron Reduction in Tilled Soils	X	
C7 - Thin Muck Surface	X	
C8 - Crayfish Burrows		X

Table 3. Wetland Hydrology Indicators for the Arid West (Based on Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region, Version 2.0)		
	Primary Indicators (any one indicator is sufficient to make a determination that wetland hydrology is present)	Secondary Indicators (two or more indicators are required to make a determination that wetland hydrology is present)
C9 - Saturation Visible on Aerial Imagery		X
Group D - Evidence from Other Site Conditions or Data		
D3 - Shallow Aquitard		X
D5 - FAC-Neutral Test		X
* Denotes number of wetland hydrology indicator described in detail in the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0).		

2.4.2 Hydric Soils

The 1987 Corps Manual states that the diagnostic environmental characteristics indicative of wetland soil conditions are met when "soils are present and have been classified as hydric, or they possess characteristics that are associated with reducing soil conditions." According to the Manual, indicators of soils developed under reducing conditions may include:

1. Organic soils (Histosols);
2. Histic epipedons;
3. Sulfidic material;
4. Aquic or peraquic moisture regime;
5. Reducing soil conditions;
6. Soil colors (chroma of 2 or less);
7. Soil appearing on hydric soils list; and
8. Iron and manganese concretions.

A February 20, 1992, Corps memorandum entitled Regional Interpretation of the 1987 Manual states that the most recent version of National Technical Committee for Hydric Soils (NTCHS) hydric soil criteria will be used (to make hydric soil determinations). These soil criteria specify at least 15 consecutive days of saturation or 7 days of inundation (flooding or ponding) during the growing season in most years.
The concept of hydric soils includes soils developed under sufficiently wet conditions to support the growth and regeneration of hydrophytic vegetation. Soils that are sufficiently wet because of artificial measures are included in the concept of hydric soils. Also, soils in which the hydrology has been artificially modified are hydric if the soil, in an unaltered state, was hydric. Some series, designated as hydric, have phases that are not hydric depending on water table, flooding, and ponding characteristics. As indicated above, like the NRCS, the Corps has typically accepted guidance for the identification of hydric soils developed by the National Technical Committee for Hydric Soils (NTCHS). The

NTCHS, a working group organized by NRCS, has developed criteria for identifying and mapping hydric soils throughout the United States and defines a hydric soil as "a soil that formed under conditions of saturation, flooding or ponding long enough during the growing season to develop anaerobic conditions in the upper part [of the soil profile]" (http://soils.usda.gov/use/hydric/intro.html). The most recent (2000) version of the NTCHS hydric soils criteria identifies those soils that are likely to meet this definition. These criteria, which are accepted by most state and federal agencies, are as follows (http://soils.usda.gov/use/hydric/criteria.html):

1. All Histels except Folistels and Histosols except Folists, or
2. Soils in Aquic suborders, great groups, or subgroups, Albolls suborder, Historthels great group, Histoturbels great group, Andic, Vitrandic, and Pachic subgroups, or Cumulic subgroups that are:
a. Somewhat poorly drained with a water table equal to 0.0 foot (ft) from the surface during the growing season, or
b. poorly drained or very poorly drained and have either:
(i.) water table equal to 0.0 ft during the growing season if textures are coarse sand, sand, or fine sand in all layers within 20 inches (in), or for other soils,
(ii.) water table at less than or equal to 0.5 ft from the surface during the growing season if permeability is equal to or greater than 6.0 in /hour (h) in all layers within 20 in , or
(iii.) water table at less than or equal to 1.0 ft from the surface during the growing season if permeability is less than $6.0 \mathrm{in} / \mathrm{h}$ in any layer within 20 in , or
3. Soils that are frequently ponded for a long duration or a very long duration (7 to 30 days) during the growing season, or
4. Soils that are frequently flooded for a long duration or a very long duration (7 to 30 days) during the growing season.

On the basis of computer database searches for soils meeting the second criterion, NRCS has developed hydric soils lists for many parts of the country. Although they are useful for determining whether a particular soil series has the potential to support current hydric soil conditions, caution should be used when using these lists for site-specific hydric soil determinations. Many soils on the lists have ranges in water table depths and other characteristics that allow them to be either hydric or nonhydric depending on landscape position and other site-specific factors (e.g., soil clay content, depth to bedrock). Accordingly, hydric soils lists are good ancillary tools to facilitate wetland determinations, but are not a substitute for onsite investigations.

Field indicators of hydric soils are morphological properties known to be associated with soils that meet the definition of a hydric soil. Presence of one or more field indicators suggests that processes associated with hydric soil formation have taken place on the site being observed. The field indicators are essential for hydric soil identification because
once formed, they persist in the soil during both wet and dry seasonal periods. However, few hydric soil indicators identify soils at a site as being currently hydric in accordance with the NTCHS hydric soils criteria described above. Field indicators of hydric soil conditions are listed in Table 4:

Table 4. Field Indicators of Hydric Soil Conditions (Based on 1987 Corps Manual and Corps Guidance Documents)	
1. Indicators of Historical Hydric Soil Conditions:	2. Indicators of Current Hydric Soil Conditions:
a. Histosols b. Histic epipedons; c. Soil colors (e.g., gleyed or low-chroma colors, soils with bright mottles (Redoximorphic features) and/or depleted soil matrix d. High organic content in surface of sandy soils e. Organic streaking in sandy soils f. Iron and manganese concretions g. Soil listed on county hydric soils list	a. Aquic or peraquic moisture regime (inundation and/or soil saturation for ≥ 7 continuous days) b. Reducing soil conditions (inundation and/or soil saturation for ≥ 7 continuous days) c. Sulfidic material (rotten egg smell)

The presence of one or more of the field indicators in "1 a, b, c, and/or d" above suggests that historical processes associated with hydric soil development have taken place at a given site. These indicators are useful in determining if soils at a site were historically formed under hydric soil conditions because the indicators persist in soils during both wet and dry periods and may remain for decades and even centuries after changes in site conditions occur that inhibit subsequent wetland development, such as the elimination of wetland hydrology (NRCS 1995). However, only the presence of field indicators "2 a, b, and/or c" confirms that hydric soils occur at a site during the period of observation.
Hydric soil indicators have also been further defined and described in the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0) (Corps 2008). These indicators are similar to those listed above from the 1987 Corps Manual and are presented below in Table 5.

Table 5. Hydric Soil Indicators for the Arid West (Based on Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region, Version 2.0)			
Hydric Soil Indicators			Hydric Soil Indicators for Problem Soils**
All Soils	Sandy Soils	Loamy \& Clayey Soils	
A1* - Histosol	S1 - Sandy Mucky Mineral	F1 - Loamy Mucky Mineral	A9-1 cm Muck
A2 - Histic Epipedon	S4 - Sandy Gleyed Matrix	F2 - Loamy Gleyed Matrix	A10-2 cm Muck
A3 - Black Histic	S5 - Sandy Redox	F3 - Depleted Matrix	F18 - Reduced Vertic
A4 - Hydrogen Sulfide	S6 - Stripped Matrix	F6 - Redox Dark Surface	TF2 - Red Parent Material
A5 - Stratified Layers	--	F7 - Depleted Dark Surface	Other (See Section 5 of the Regional Supplement, Version 2.0)--
A9-1 cm Muck	--	F8 - Redox Depressions	--
A11 - Depleted Below Dark Surface	--	F9 - Vernal Pools	--
A12 - Thick Dark Surface	--	--	--
* Denotes number of hydric soil indicator described in detail in Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0). ** Indicators of hydrophytic vegetation and wetland hydrology must be present.			

It should also be noted for problematic areas that the 2008 Corps Regional Supplement specifies 14 days continuous ponding as an acceptable indicator of problematic hydric soils (USACE 2008, p. 101).

2.4.3 Prevalence of Wetland Vegetation

Species Classifications

Species classifications (e.g., tolerance of anaerobic soil conditions) are determined by consulting the National List of Plant Species that Occur in Wetlands (Reed 1988) and the relevant regional lists, which are published by FWS’ National Wetlands Inventory (NWI). Regional Interagency Review Panels develop the lists by determining species’ estimated probability of occurrence in wetlands vs. non-wetlands. Classifications are made by unanimous agreement of the Panel. If the Panel is unable to reach a unanimous decision on the status of a species, "no agreement" (NA) is recorded. If insufficient information exists to determine the status of a species, "no indicator" (NI) is recorded. Species that are not included in the NWI list are assigned a "not listed" (NL) designation in this report.

The resulting NWI lists include plants that grow in a range of soil conditions from permanently wet to dry. Species are divided into the following "indicator categories":

1. "Obligate wetland" (OBL) species, which, under natural conditions, occur almost always in wetlands (estimated probability >99 percent);
2. "Facultative wetland" (FACW) species, which usually occur in wetlands (estimated probability 67 - 99 percent), but are occasionally found in nonwetlands;
3. "Facultative" (FAC) species, which are equally likely to occur in wetlands or non-wetlands (estimated probability $34-66$ percent);
4. "Facultative upland" (FACU) species, which sometimes occur in wetlands (estimated probability $1-33$ percent), but more often occur in nonwetlands; and
5. "Obligate upland" (UPL) species, which occur in wetlands in other regions, but, under natural conditions, occur almost always in non-wetlands in the region specified (estimated probability >99 percent).
Species that have an indicator status of OBL, FACW, and FAC are typically considered to be adapted for life in anaerobic soil conditions (Corps 1987) and are used as evidence of hydrophytic vegetation when they dominate plant community composition or cover. Despite widespread use of the lists for wetland delineations, it is important to note that wetland indicator species assignments are not based on the results of a statistical analysis of species occurrence. The indicator assignments are approximations of wetland affinity based on a synthesis of submitted review comments, published botanical literature, and the field experience of the members of the Interagency Review Panel. For this reason and because many plants have properties that enable them to occur in a range of microhabitats (i.e., wetlands and non-wetlands), the presence of wetland indicator species is not unequivocal evidence of the presence of wetland hydrology and hydric soils. A positive indicator or indicators of wetlands should be emphasized, such as an assemblage of plants that can only be considered "hydrophytes" when they are growing in water or partly drained hydric soils (not effectively drained hydric soils) (Corps 1987). From the FWS perspective, all species on the NWI plant lists are hydrophytes at one time or another and the wetland indicator status (OBL, FACW, FAC, or FACU) reflects the likelihood that a given individual of a species is a hydrophyte or a certain population of these plants is hydrophytic. While OBL and FACW species are the most reliable plant indicators of wetlands, FAC and FACU species also contain populations of hydrophytes (Tiner 2006).
For the reasons stated above, the 1987 Corps Manual does not solely rely on the presence of hydrophytic vegetation to make wetland determinations.

Hydrophytic Vegetation Definitions

The Corps' 1987 Manual states that the wetland vegetation conditions are met when the prevalent vegetation (i.e., more than 50 percent of vegetation cover or tree basal area) consists of macrophytes that are typically adapted to sites having wetland hydrologic and soil conditions (e.g., periodic or continuous inundation or soil saturation). Hydrophytic vegetation is defined as "plant life growing in water or on a substrate that is at least periodically deficient in oxygen as a result of excessive water content" (Cowardin et al.
1979). Hydrophytic vegetative species, due to morphological, physiological, and/or reproductive adaptation(s), have the ability to grow, effectively compete, reproduce, and/or persist in anaerobic soil conditions. Positive indicators of the presence of hydrophytic vegetation include:

1. More than 50 percent of the dominant species are rated as Obligate ("OBL"), Facultative Wet ("FACW"), or Facultative ("FAC") on lists of plant species that occur in wetlands (see Reed 1988 for California);
2. Visual observations of plant species growing in sites of prolonged inundation or soil saturation; and
3. Reports in the technical literature indicating the prevalent vegetation is commonly found in saturated soils.

Hydrophytic vegetation indicators have been further defined and described in the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0) (Corps 2008). These indicators include:

1. Dominance Test. More than 50 percent of the dominant plant species across all strata are rated OBL, FACW, or FAC.
2. Prevalence Index. The prevalence index is 3.0 or less with indicators of hydric soils and wetland hydrology being present.
3. Morphological Adaptations. The plant community passes either the dominance test or the prevalence index after reconsideration of the indicator status of certain plant species that exhibit morphological adaptations for life in wetlands.

3.0 DELINEATION METHOD

This study was conducted in accordance with Code of Federal Regulations (CFR) definitions of jurisdictional waters, the Corps’ 1987 Wetlands Delineation Manual, the Corps’ 2008 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0), A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States, A Delineation Manual, and supporting guidance documents. The following provides an overview of the objective of the delineation approach, how the Study Area is defined, and the methods used to identify and map (delineate) areas potentially subject to Corps jurisdiction under Section 404 of the CWA.

3.1 Objective and Establishment of Study Area Boundary

The objective of this investigation is to identify and map areas potentially meeting the Clean Water Act definition of wetlands and Other Waters of the United States within the potential impact footprint of the DesertXpress Project. This impact footprint, which is encompassed within the Study Area, includes the proposed alignment and any alternative alignment and support facilities such as passenger stations and operations and maintenance facilities (e.g., maintenance yard, power substations, and transmission lines). Temporary construction areas for equipment and materials laydown, new access roads, and borrow areas are also included within the Study Area. The boundary of the Study Area also represents a slightly larger area (increased alignment and facility ROW width by an average of 200 feet) to accommodate potential minor changes in the impact footprint.

3.2 Study Area Reconnaissance

Prior to initiating detailed field survey work, existing land forms within the Study Area that may potentially contain wetlands or other waters of the United States were identified by conducting vehicle and pedestrian on-site reconnaissance inspections during the month of April 2010 in conjunction with review of the following information:

- Aerial photography and satellite imagery of the area;
- USGS topographic mapping;
- NRCS soils mapping;
- Engineer scale topographic mapping of segment alternatives
- USGS National Hydrology Dataset; and
- Preliminary level vegetation mapping and wetland / OHWM data collection efforts conducted during February and March 2008 and September and October 2009 as part of an on-going Federal EIS process by the FRA’s EIS contractor.

The above efforts led to the development, in coordination with Corps regulatory staff, and use of the project-specific methods described below.

3.3 Wetlands Identification and Delineation

Field surveys designed to identify the presence or absence of field indicators of wetland
vegetation, soils and hydrology conditions were conducted within low-lying landscape features where wetlands could potentially occur. These field surveys were conducted during the months of April, May, and June 2010.

3.3.1 Dominance of Wetland Vegetation

Presence or absence of a dominance of wetland vegetation / hydrophytes within the Study Area was evaluated using the methodology described in Sections 2.2 and 2.4.3. Indicator status of plants was confirmed by referring to the National List of Plant Species that Occur in Wetlands: 1988 National Summary (Reed). Plant cover data were collected for individual species associated within and immediately adjacent to the landscape features identified during the site reconnaissance survey as having the potential to meet the Corps’ technical criteria for wetlands. Plant cover was visually estimated within 3-foot diameter plots at each soil sample location and was recorded on a Corps Wetland Determination Data Form - Arid West Region. Copies of completed data forms are provided in Exhibit B2. Subsequently, field data were analyzed to assess whether 50 percent or greater of the dominant species within the area sampled are hydrophytes. Sites that are depressional landforms that do not have a dominance of wetland vegetation forming at least 5 percent cover were not considered to be dominated by hydrophytes and were classified as a potential "other water of the United States" following the methodology described in Section 3.4, below, except if conditions for problematic vegetation were met as described in the Corps' 2008 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0).

3.3.2 Presence of Hydric Soil Indicators

The presence or absence of hydric soil field indicators was evaluated following the methodology described in Section 2.3.2 using the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Corps 2008). At each potential wetland sampling location within the Study Area, hand-dug soil pits were excavated to a minimum of 20 inches or until a limiting layer or standing water is reached. The presence or absence of hydric soil indicators found at each soil pit location was recorded on a Corps Wetland Determination Data Form - Arid West Region. Copies of completed data forms are provided in Exhibit B2. For sampling locations where the possibility of problematic hydric soils is found, procedures for the identification of problematic hydric soils as defined by the above described publication were followed.

3.3.3 Presence of Wetland Hydrology Indicators

The presence or absence of wetland hydrology field indicators were assessed following the methodology described in Section 2.3.1 using the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0) (Corps 2008). The presence or absence of wetland hydrology indicators at each soil pit location was recorded on a Corps Wetland Determination Data Form - Arid West Region. Copies of completed data forms are provided in Exhibit B2. For sampling locations where the possibility of problematic hydrology indicators was found, procedures for the identification of problematic hydrology indicators, as defined by the above-described publication, were followed.

3.4 Identification and Delineation of Other Waters

Field surveys designed to identify the presence or absence of field indicators of an ordinary high water mark (OHWM) were conducted within low-lying landscape features where other waters of the United States could potentially occur. These field surveys were conducted during the months of April, May, and June 2010 after the detailed methodology was reviewed and approved by Corps staff during May 2010.

HBG identified drainages within each watershed that potentially met the Corps technical criteria for Other Waters of the United States (presence of field indicators of active surface water flow and associated Ordinary High Water Mark [OHWM]) using the following approach based on A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States, A Delineation Manual.

Initial efforts involved identification of all drainages within the Study Area having the potential for active surface flow. This was accomplished through field reconnaissance and imagery interpretation. Detailed sampling was then conducted to identify and delineated active drainages with an OHWM. This was accomplished by randomly sampling the identified drainages in a stratified manner by geographically dividing the Study Area into HUC 12 watershed units.

Field sampling within each HUC 12 watershed consisted of gathering OHWM data, including the measured width of the OHWM, for 3 to 5 main drainages (> 3 feet), if present, selected at random; and 6 to 10 (depending on watershed size) random samples of minor drainages (≤ 3 feet), if present. Each of the HCC 12 watersheds located within the Study Area was divided into approximate thirds. Then a minimum of one major drainage and two minor drainages, if present, was sampled within each third of a watershed. Where the length of the watershed along the project alignment alternatives was less than 5 miles, the watershed was divided into approximate halves instead. If the minor drainages (≤ 3 feet) occurring within each one-third watershed varied in OHWM width by more than 33 percent, sampling was increased in that third of the watershed.

Drainage data for each of the watershed drainages sampled were collected on a standardized field data sheet (Exhibit B2). Exhibit A, Figures 5-12 provide examples of the types of field indicators observed within various drainages along the DesertXpress Project alternative alignments. Each field sampling point was memorialized using a handheld GPS unit with submeter accuracy. Where stormwater flows originated upslope of the side of I-15 opposite the alignment, those drainages were hydrologically cut off by the freeway during construction and channeled into detention basins and / or manmade drainages on that side of I-15. As a consequence, drainages on the proposed alignment side of I-15 were hydrologically cut off from their sources and no longer technically meet the Corps OHWM criterion. This condition was noted on the field data sheets. Detailed OHWM indicator data for these historical drainage features were not collected.

All drainage data (field and photointerpreted drainage data) are summarized by HUC 12 watershed on the required Los Angeles District Excel JD Summary Data Sheet (see Exhibit B1). Widths for active drainages identified through photointerpretation are based on an average width calculated from field data. The length of each drainage is based on photointerpretation. Standardized field data sheets are provided in Exhibit B2.
Representative photographs of various drainage features are presented in Exhibit A on Figures $13-23$. The field data collected from each watershed were used to aid in the imagery interpretation process described in Section 3.5, below.

3.5 Mapping

Wetland indicator data sample locations and the locations of areas identified during field surveys that are potentially Other Waters of the United States due to the presence of an OHWM were mapped using a hand-held Trimble XT global positioning system (GPS) unit with sub-meter accuracy. This GPS data was incorporated into a Geographic Information System (GIS) and geo-referenced in overlay fashion onto digital orthorectified satellite imagery and/or high resolution aerial photograph depending on availability. Overlays were used to assist in analysis, identification, and digitization of the location and geographic extent of areas that could potentially qualify as waters of the United States. The imagery interpretation process involved the combined use of available imagery, field data, engineer level topographic mapping, field verification of mapped features and best professional judgment to map the geographic extent of areas potentially subject to Corps CWA jurisdiction. Exhibit C comprises detailed 1"=200’ scale mapping of the Study Area with field sampling points and delineated active linear drainage features. Labeling indicating their average OHWM width was overlain on orthorectified digital imagery. The maps are provided in digital PDF format due to the extensive numbers of maps required to show such detail.

4.0 TECHNICAL FINDINGS

The following sections describe the landscape features and field indicators found within the Study Area that provide a technical basis for (a) determining the presence or absence of a potential water of the United States; and (b) defining the geographic extent of any potential water of the United States identified. Two types of landscape features were found that potentially contain waters of the United States. These include:

1. Natural drainages
2. Manmade drainages

4.1 Field Indicators of Hydric Soils

Based on field observations within the Study Area soil indicators were not found that meet the wetland hydrology criteria defined by current Corps’ regulatory guidance, including the 2008 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0) except for a few locations within manmade ephemeral drainage channels that periodically receive irrigation runoff from adjacent landscaped areas. When periodic maintenance of broken irrigation sprinklers and piping occurs, the localized area no longer floods, ponds and/or saturates for long to very long periods of time. Onsite observations of surface conditions, including road and channel bank cuts and interpretation of aerial photography revealed three primary soil types, disturbed urban land, desert pavement, and more active wash sediments. Onsite examination revealed that soils or substrates within both natural drainages and manmade drainages consist of alluvial materials primarily made up of sorted sands and gravel, and are well drained, ranging from moderately well drained to excessively well drained.

4.2 Field Indicators of Wetland Hydrology Conditions

Based on field observations within the Study Area wetland hydrology indicators were not found that meet the wetlands hydrology criteria defined by current Corps’ regulatory guidance, including the 2008 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0). Onsite observations revealed evidence of flooding within the low-lying natural and manmade drainages. These observations also showed that there was no evidence of ponding and soil saturation for long to very long periods of time. The lack of ponding and soil saturation conditions meeting the wetland hydrology criteria is a direct result of the moderately well drained to excessively well drained alluvial soils. This is also the case for portions of manmade drainages receiving irrigation runoff water (nuisance flow) from adjacent landscaped areas. When periodic maintenance of broken irrigation sprinklers and piping occurs, the localized area no longer floods, ponds, and/or saturates for long to very long periods of time.

Although wetland hydrology conditions were not found within the Study Area, the field indicators of active surface water flow or flooding found within natural and manmade drainages were sufficient enough to form Ordinary High Water Marks (OHWM). As indicated in Section 2.0, an OHWM provides a technical basis for (a) determining the
presence a potential water of the United States; and (b) defining the geographic extent of potential water of the United States.

The natural and manmade drainages within the Study Area found with an OHWM exhibited the following characteristics which are discussed in detail in the following subsections:

1. identifiable field indicators of surface flow
2. identifiable landscape features that supports surface flow
3. identifiable landscape features with a recognizable OHWM

Exhibit A, Figures 5-12 provides typical examples of field indicators of active surface water flow and OHWMs found within ephemeral drainages occurring within the DesertXpress Project Study Area. Exhibit A, Figures 13-23 provide photographs of various types of drainages observed within the HUC 8 Las Vegas Wash watershed.

4.2.1 Field Indicators of Surface Flow

Review of topographic mapping (USGS and Engineer scale) and imagery of the Study Area provided visual indication of the presence of curvilinear depressional land surface features where focused surface water flow could potentially be directed. Linear drainage features associated with road drainage and flood control were also found. Field investigations confirmed the presence of surface flow within a number of these channels or drainages while others lacked evidence / field indicators of active ephemeral surface water flow. No drainages were found to contain evidence of perennial or intermittent surface water flow, and no evidence of subsurface flow was found in the form of spring discharges, artesian flows or evidence of a high groundwater table. An exception to this was occasional points where nuisance flow discharges from landscaped areas adjacent to the Study Area were evident, but the runoff water in these areas appeared (on the basis of a lack of hydric soil indicators) to have flowed through the porous soils, neither ponding and/or causing saturated soil conditions to occur for long to very long durations.
Channels further toward the Las Vegas Wash appeared to have perennial to intermittent flows.

Observation of active natural and manmade ephemeral drainages revealed evidence of surface water / hydrologic connectivity with other active drainages within and outside the Study Area. These ephemeral drainages are locally referred to as "desert dry washes." The manmade drainages served to redirect surface flow from altered natural drainages. Indicators of drainages having active surface water flow paths included (1) water marks defined by linear deposits of fine-grained sediment, minerals and/or plant debris; (2) bank scour, erosion and/or shelving; (3) deposits of sorted alluvial materials; and (4) flowdeposited woody and soft tissue plant debris (Exhibit B2).

Flow-deposited woody and soft tissue plant debris were typically absent in drainages that did not have active surface flow. If woody debris was present, the pieces observed were relatively thick (i.e., greater that $1 / 4$ inch) weathered limb or root material or milled posts
or lumber. The wood pieces found were randomly placed and were not part of a collective flow line of deposited woody and/or soft tissue plant debris, which would be indicative of an active channel. The historical drainages were found to possess one or more of the same type of indicators found in active drainages, but the indicators found were considerably weathered. Surface flow indicators such as bank scour, erosion and shelving areas had rounded edges in contrast to those found in active drainages having angular edges. Water marks defined by linear deposits of fine grained sediment and minerals, and sorted alluvial materials such as gravels, cobbles and boulders were etched or varnished from weathering. The historical drainages were found to consist of the historical remains of channel drainages that were abandoned due to upslope changes in drainage due to either channel down-cutting or the channel becoming abandoned as the surface drainage became redirected or changed course due to deposition of alluvial material damming the channel flow path. The historical drainages were found to lack indicators of active flow.

Surface water flow patterns were also found within various portions of the landscape that were relatively flat. These surface flow areas were defined by flow-deposited finegrained sediment or soft tissue plant debris. The visible surface flow pattern at these locations would continue for several feet then disappear either on a relatively flat soil surface or localized depression.

Based on the above technical findings and as documented in Exhibits B and C, drainages were found with indicators of active surface water flows within the Study Area.

4.2.2 Landscape Features that Support Surface Flow

Detailed field surveys identified land surface features that have the potential to convey surface flows. These features included a bed or channel and abutting banks. These physical features were found associated with both active flow areas and historical drainages. These drainage types can be summarized as follows:

1. Active drainage channel and abutting banks containing evidence of recent surface flows as indicated by the presence of unweathered sediment material (sand, gravel, cobbles, etc.) with unweathered surfaces, and the presence of flow deposited woody debris and/or soft tissue plant debris.
2. Active drainage channel and abutting banks containing evidence of historical surface flows as indicated by the presence of unweathered sediment material (sand, gravel, cobbles, etc.) with unweathered surfaces, but lacked the presence of flow deposited woody debris and/or soft tissue plant debris.
3. Historical drainage channels and abutting banks having no evidence of recent surface flow as indicated by weathered sedimentary gravel, cobbles, boulders, erosional or depositional deposits, and the lack of flow deposited woody debris and/ or soft tissue plant debris.

The frequency interval of flow events within drainages with observable plant debris (1 above) and unweathered sediment material is estimated to be within the 1 to 15 year
range. Strojan, et. al. (1987) found that surface litter decomposition rates for creosote bush and burro bush in the Mojave Desert were 42.5% and 58.4%, respectively over a 54 week period of study. Kemp, et. al. (2003) reported a similar one year decomposition rate for creosote bush and a 74% loss within a 41 month period. This lends support to qualitative observations made by one of the preparers of this report, Dr. Terry Huffman, who has observed over $20+$ years of delineating wetlands within arid environments that soft plant tissue (i.e., pieces of plant leaves and thin bark) will decompose in arid drainage environments within a 2 to 3 year period. In addition, field observations over these years indicated that small woody stems ($<1 / 4$ inch) decompose over many more years, perhaps $10+$ years. For older drainages where the surfaces of the sediment material (e.g., sand, gravel, cobbles, etc.) is no longer smoothed by the interaction of surface water flow and transport, but weathered, and lacks flow deposited woody and thin tissue plant debris, the frequency interval likely ranges to well over a decade in shallower channels to prehistoric times for deeply incised channels (i.e. > 6 feet in desert pavement areas).

The land surface of the Study Area is characterized by the presence of active and inactive alluvial fan systems. Ephemeral drainage channels are found on both types of these alluvial fan types. The majority of the ephemeral channels supporting active surface water flow were narrow, with an average width of less than 3 feet. Active alluvial fans were characterized by sandy soils, a uniform vegetation type, and evidence by surface flow patterns indicative of surface water sheetflow. Narrow channels within these areas were both weakly expressed and discontinuous. This discontinuity indicated that new channels could be formed with each major flood event resulting in the current channels being bypassed and blocked off. Channels >3 feet wide were also found. These channels were considerably deeper that the narrow channels found and were less common when considering the landscape as a whole in relationship to the Study Area. Evidence was found within both of these channel types where previously bypassed cutoff channels where becoming filled with sediment. The specific conditions varied within the Study Area.

Based on the above technical findings, drainages with active surface flow were found within the Study Area with physical features that allow for the conveyance of surface flows.

4.2.3 Landscape Features with a Recognizable OHWM

The desert dry washes with active flow were found to have identifiable features which represented the geographic reach of lateral surface water. These features included channels or beds with evidence of active flow and abutting banks which demarcated the lateral reach or extent of flow. Field indicators of the extent of active flow along the banks included water marks defined by linear deposits of fine grained sediment and/or minerals, bank scour, erosion, and/or shelving, and flow deposited woody and soft tissue plant debris (Exhibit B2).

Based on the above technical findings, the active drainages, described in the above
subsections, have recognizable landscape features from which the lateral extent of surface water flow can be geographically delineated. Field indicators of this surface water flow were used to identify the OHWM. Exhibit C shows the location of these active ephemeral drainages.

4.3 Field Indicators of Wetland Vegetation

Based on field observations within the Study Area, a dominance of wetland plant species was found within portions of manmade ephemeral drainages adjacent to or downdrainage of irrigated landscaped areas. These patches of wetland vegetation were typically found along the edge of the drainages in association with what appeared to be where periodic releases of runoff water from landscape irrigation was occurring. The wetland vegetation typically dominated $<5 \%$ of the total area of the ephemeral drainages. Wetland plant species found within these types of areas included Arrow Weed (Pluchea sericea; FACW), Bermuda Grass (Cynodon dactylon; FAC), Mule Fat (Baccharis salicifolia; FACW), Turpentine Broom (Tamarix ramosissima; NL), Narrow Leaf Cattail (Typha angustifolia; OBL) and California Fan Palm (Washingtonia filifera; NO).

Based on this result, the criteria defined by current Corps' regulatory guidance, including the 2008 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0), for wetland vegetation were met in these artificially irrigated portions of the manmade ephemeral drainages. However, the vegetation did not dominate entire drainages and, therefore the drainages were not determined to be dominated by wetland vegetation, but rather delineated as ephemeral drainages as described above through the measurement of an identifiable OHWM, if found to be present.
A dominance of wetland plant species or hydrophytes was not found within natural drainages or the majority of manmade drainages encountered within the Study Area where active ephemeral drainages were found. Based on this result, the criteria defined by current Corps' regulatory guidance, including the 2008 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0) for wetland vegetation was not met for these areas.

5.0 AREAS POTENTIALLY SUBJECT TO JURISDICTION

This section presents the findings of this delineation with respect to the identification and geographic extent of areas found that could potentially be regulated by the Corps and the EPA as wetlands or other waters of the United States under Section 404 of the Clean Water Act.

5.1 Wetlands

No areas meeting the Corps technical criteria for wetlands were identified within the Study Area. These findings are based on the absence of hydric soil, wetland hydrology, and / or wetland vegetation indicators as required by the Corps’ 1987 Manual, the Arid West Regional Supplement, guidance documents, and regulations.

5.2 Other Waters of the U.S.

Ephemeral drainages or desert dry washes were found within the Study Area that meet the technical criteria to potentially be subject to CWA Section 404 jurisdiction as Other Waters of the United States (Exhibit C). This finding is based on the presence of an OHWM as required by Corps regulations. Length and width measurements of the ephemeral drainages found to contain an observable OHWM are provided by Exhibit B2.

6.0 REFERENCES

Eberhart/United Consultants. 2007. Phase 1 Geologic Reconnaissance Report: Proposed Desert Sunlight Solar Energy Project, Desert Center Area, Riverside County, California. W.O. 81-02120-0031. June 21.

Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-l, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.

Field, J., \& Pearthree, P. 1997. "Geomorphologic Flood-Hazard Assessment of Alluvial Fans and Piedmonts." Journal of Geoscience Education, Vol. 45, pp. 27 - 37.

Hickman, J. (ed.). 1993. The Jepson Manual: Higher Plants of California. University of California Press, Berkeley, California.

Lichvar, R.W., D.C. Finnegan, and M.P. Ericsson. 2004. Using Hydrogeomorphic Surfaces for Delineating Floodplains: Black Water Creek Test Reach Within the Upper Puerco Watershed, Navajo Nation. ERDC/CRREL Technical Note 04-7. Hanover, NH: U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory. November.

Lichvar. R.W., and S.M. McColley. 2008. A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States, A Delineation Manual. ERDC/CRREL TR-08-12. Hanover, NH: U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory. August.

Munz, P.A. 1974. A Flora of Southern California. University of California Press, Berkeley, California.

Reed, P.B., Jr. 1988. National List of Plant Species that Occur in Wetlands: National Summary. U.S. Fish and Wildlife Service Biological Report 88(24). 244 pp.

Santos, P.F., N. Z. Elkins, Y. Steinberger and W. G. Whitford. "A Comparison of Surface and Buried Larrea Tridentata Leaf Litter Decomposition in North American Hot Deserts." Ecology, Vol. 65, No. 1 (Feb., 1984), pp. 278-284.

Sawyer, J.O., and T. Keeler-Wolf. 1995. A Manual of California Vegetation. Sacramento, CA: California Native Plant Society. 471 p.

Simley, J.D. and J.W.Carswell Jr. 2009. National Hydrography Dataset (NHD). The National Map - Hydrography: U.S. Geological Survey Fact Sheet 2009-3054, 4 p.

Strojan, C.L, D. C. Randall and F. B. Turner. 1987. "Relationship of Leaf Litter Decomposition Rates to Rainfall in the Mojave Desert." Ecology, Vol. 68, No. 3 (Jun., 1987), pp. 741-744.
U.S. Army Corps of Engineers. 2008. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-08-28. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
U.S. Army Corps of Engineers. 2009. Vegetation and Channel Morphology Responses to Ordinary High Water Discharge Events in Arid West Stream Channels, ed. R. Lichvar, D. Cate, C. Photos, L. Dixon, B. Allen, and J. Byersdorfer. ERDC/CRREL TR-09-5. Hanover, NH: U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory. May.
U.S. Department of Agriculture, Natural Resources Conservation Service. 1986. Urban Hydrology for Small Watersheds. Technical Release 55 (TR-55). June.

US Department of Agriculture, National Resources Conservation Service. 2009. Web Soil Survey: http://websoilsurvey.nrcs.usda.gov

Exhibit A

Figures

Figure 1 DesertXpress Project Alignment Alternatives
Figure 2 Location of Alignment Alternatives Within HUC-8 Watershed
Figure 3 Location of Study Area
Figure 4 Location of Study Area Within HUC-8 / HUC-12 Watersheds
Figures 5-12 Typical Examples of Field Indicators of Active Surface Water Flow and Ordinary High Water Marks Found Within Ephemeral Drainages Occurring Within the DesertXpress Project Study Area.
Figures 13-23 Examples of Drainages Found Within HUC-8 Watershed

[^0]

Figure 3. Location of Study Area

[^1]

Exhibit A. Figure 9. Typical examples of field indicators of active surface water flow and Ordinary High Water Marks found within ephemerals drainages occurring within the
DesertXpress Project Study Area.

Exhibit A. Figure 12. Typical examples of field indicators of active surface water flow and Ordingry High Water Marks found within ephemerals drainages occurring within the

Exhibit A. Figure 13. Manmade drainage connecting to ephemeral drainage within HUC 8 Las Vegas Wash Watershed / HUC 12 Town of Sloan Subwatershed

Exhibit A. Figure 14. Manmade drainage connecting to ephemeral drainage within HUC 8 Las Vegas Wash Watershed / HUC 12 Town of Sloan Subwatershed

Exhibit A. Figure 15. Ephemeral drainage within HUC 8 Las Vegas Wash Watershed / HUC 12
Town of Sloan Subwatershed

Exhibit A. Figure 16. Manmade drainage connecting to road culvert within HUC 8 Las Vegas Wash Watershed / HUC 12 Town of Sloan Subwatershed

Exhibit A. Figure 17. Manmade drainage connecting to road culvert within HUC 8 Las Vegas Wash Watershed / HUC 12 Town of Sloan Subwatershed

Exhibit A. Figure 18. Manmade drainage connecting to road culvert within HUC 8 Las Vegas Wash Watershed / HUC 12 Town of Sloan Subwatershed

Exhibit A. Figure 19. Manmade drainage connecting to road culvert within HUC 8 Las Vegas Wash Watershed / HUC 12, Town of Sloan Subwatershed

Exhibit A. Figure 20. Manmade drainage connecting to road culvert within HUC 8 Las Vegas Wash Watershed / HUC 12, Town of Sloan Subwatershed

Exhibit A. Figure 22. Manmade drainage connecting to ephemeral drainage within HUC 8 Las Vegas Watershed Wash / HUC 12 Town of Sloan Subwatershed

Exhibit A. Figure 23. Manmade drainage connecting to ephemeral drainage within HUC 8 Las Vegas Watershed Wash / HUC 12 Town of Sloan Subwatershed

Exhibit B

Field Data

Exhibit B1 Required Corps Waters Data Summary Table Exhibit B2 Field Data*
 (Exhibit B2 provided on attached CD in PDF format.)

Exhibit B1

Required Corps Waters Data Summary Table

Exhibit B1. Route Drai	$\begin{aligned} & \text { udy A } \\ & \text { jes, } \end{aligned}$	rea Field Da esertXpress	$\begin{aligned} & \text { r Areas Po } \\ & \text { ect } \end{aligned}$	entially	bject	rps Jurisdi	tion, HUC-8 L	Vegas Wash	shed, Pr	rred
Waters Na me	Cowardi n Code	HGM_Code	Area (acres)	Linear (ft)	Waters Types	Latitude (dd nad83)	Longitude (dd nad83)	Local_Waterway	width (OHWM)	HBG Data Field Point
D-37-1	R6	RIVERINE	0.025903	352.6	NRPW	35.877964	-115.233649	Town of Sloan	3.20	37D1
D-37-2	R6	RIVERINE	0.018175	263.9	NRPW	35.878678	-115.233233	Town of Sloan	3.00	
D-37-3	R6	RIVERINE	0.011081	160.9	NRPW	35.878945	-115.232851	Town of Sloan	3.00	
D-37-4	R6	RIVERINE	0.015186	220.5	NRPW	35.879045	-115.232115	Town of Sloan	3.00	
D-37-5	R6	RIVERINE	0.038685	561.7	NRPW	35.879092	-115.232525	Town of Sloan	3.00	
D-37-7	R6	RIVERINE	0.221648	965.5	NRPW	35.885425	-115.225507	Town of Sloan	10.00	
D-37-8	R6	RIVERINE	0.012257	410.7	NRPW	35.889421	-115.223178	Town of Sloan	1.30	
D-37-18	R6	RIVERINE	0.085973	374.5	NRPW	35.892545	-115.220865	Town of Sloan	10.00	
D-37-25	R6	RIVERINE	0.018905	305.0	NRPW	35.898664	-115.216580	Town of Sloan	2.70	37D5
D-37-45	R6	RIVERINE	0.325895	1774.5	NRPW	35.934212	-115.191339	Town of Sloan	8.00	
D-37-46	R6	RIVERINE	0.004745	68.9	NRPW	35.932887	-115.192141	Town of Sloan	3.00	
D-37-47	R6	RIVERINE	0.154676	2245.9	NRPW	35.926199	-115.196701	Town of Sloan	3.00	
D-37-48	R6	RIVERINE	1.242528	3608.3	NRPW	35.903009	-115.212979	Town of Sloan	15.00	
D-37-55	R6	RIVERINE	0.004043	58.7	NRPW	35.886265	-115.225889	Town of Sloan	3.00	
D-37-56	R6	RIVERINE	0.011102	161.2	NRPW	35.880020	-115.230963	Town of Sloan	3.00	
D-37-59	R6	RIVERINE	0.041024	178.7	NRPW	35.883952	-115.226761	Town of Sloan	10.00	
D-37-60	R6	RIVERINE	0.005331	77.4	NRPW	35.885817	-115.224867	Town of Sloan	3.00	
D-37-65	R6	RIVERINE	0.059573	103.8	NRPW	35.950254	-115.182943	Town of Sloan	25.00	
D-37-66	R6	RIVERINE	0.332989	483.5	NRPW	35.949601	-115.183252	Town of Sloan	30.00	
D-37-67	R6	RIVERINE	0.029289	184.9	NRPW	35.947882	-115.183353	Town of Sloan	6.90	37MD2
D-37-68	R6	RIVERINE	0.675039	976.9	NRPW	35.946586	-115.183724	Town of Sloan	30.10	37M3
D-37-69	R6	RIVERINE	0.203159	1106.2	NRPW	35.944064	-115.184695	Town of Sloan	8.00	37MD9
D-37-71	R6	RIVERINE	0.075161	327.4	NRPW	35.940047	-115.187513	Town of Sloan	10.00	
D-37-72	R6	RIVERINE	0.014862	107.9	NRPW	35.939471	-115.188081	Town of Sloan	6.00	
D-37-73	R6	RIVERINE	0.252342	549.6	NRPW	35.939887	-115.187098	Town of Sloan	20.00	
D-37-74	R6	RIVERINE	0.004986	72.4	NRPW	35.949807	-115.183649	Town of Sloan	3.00	
D-37-75	R6	RIVERINE	0.010062	146.1	NRPW	35.940688	-115.186977	Town of Sloan	3.00	
D-37-76	R6	RIVERINE	0.168733	245.0	NRPW	35.943000	-115.185228	Town of Sloan	30.00	37M10
D-37-77	R6	RIVERINE	0.013113	190.4	NRPW	35.925353	-115.197513	Town of Sloan	3.00	
D-37-79	R6	RIVERINE	0.041667	605.0	NRPW	35.894414	-115.219772	Town of Sloan	3.00	37MD8
D-37-80	R6	RIVERINE	0.007441	216.1	NRPW	35.876315	-115.235396	Town of Sloan	1.50	
D-37-81	R6	RIVERINE	0.024787	399.9	NRPW	35.896261	-115.218203	Town of Sloan	2.70	37D7
D-37-82	R6	RIVERINE	0.087009	3790.1	NRPW	35.911727	-115.206926	Town of Sloan	1.00	37M4

Exhibit B1. Route Drain	$\begin{aligned} & \text { udy Ar } \\ & \text { jes, De } \end{aligned}$	rea Field D sertXpress	$\begin{aligned} & \text { r Areas Po } \\ & \text { ect } \end{aligned}$	otentially S	ibject	rps Jurisdic	ion, HUC-8 L	Vegas Wash	shed, P	rred
Waters Na me	Cowardi n Code	HGM_Code	Area (acres)	Linear (ft)	Waters Types	Latitude (dd nad83)	Longitude (dd nad83)	Local_Waterway	width (OHWM)	HBG Data Field Point
D-37-83	R6	RIVERINE	0.623623	905.5	NRPW	35.941570	-115.186058	Town of Sloan	30.00	
D-37-82B	R6	RIVERINE	0.017984	783.4	NRPW	35.908706	-115.209322	Town of Sloan	1.00	
D-37-90	R6	RIVERINE	0.547521	1590.0	NRPW	35.896901	-115.217301	Town of Sloan	15.00	
D-37-91	R6	RIVERINE	0.041481	602.3	NRPW	35.890582	-115.222167	Town of Sloan	3.00	
D-37-92	R6	RIVERINE	0.009743	424.4	NRPW	35.881835	-115.227860	Town of Sloan	1.00	
D-38-1	R6	RIVERINE	0.020964	304.4	NRPW	35.951746	-115.183015	Town of Arden	3.00	
D-38-2	R6	RIVERINE	0.019855	288.3	NRPW	35.952029	-115.183092	Town of Arden	3.00	
D-38-3	R6	RIVERINE	0.008182	118.8	NRPW	35.951979	-115.183307	Town of Arden	3.00	
D-38-5	R6	RIVERINE	0.009522	207.4	NRPW	35.966888	-115.182475	Town of Arden	2.00	
D-38-6	R6	RIVERINE	0.011063	481.9	NRPW	35.978791	-115.182238	Town of Arden	1.00	
D-38-7	R6	RIVERINE	0.003783	164.8	NRPW	35.979110	-115.182065	Town of Arden	1.00	
D-38-10	R6	RIVERINE	0.191804	278.5	NRPW	35.998438	-115.181372	Town of Arden	30.00	
D-38-11	R6	RIVERINE	0.009690	140.7	NRPW	35.999110	-115.181486	Town of Arden	3.00	
D-38-12	R6	RIVERINE	0.012080	175.4	NRPW	36.000227	-115.181417	Town of Arden	3.00	
D-38-13	R6	RIVERINE	0.006671	145.3	NRPW	36.000282	-115.181455	Town of Arden	2.00	
D-38-14	R6	RIVERINE	0.004674	101.8	NRPW	36.000622	-115.181553	Town of Arden	2.00	
D-38-15	R6	RIVERINE	0.029821	129.9	NRPW	36.000843	-115.181457	Town of Arden	10.00	
D-38-20	R6	RIVERINE	0.037176	269.9	NRPW	36.007242	-115.181181	Town of Arden	6.00	
D-38-21	R6	RIVERINE	0.012397	180.0	NRPW	36.018883	-115.181334	Town of Arden	3.00	
D-38-25	R6	RIVERINE	0.005028	219.0	NRPW	36.023180	-115.181370	Town of Arden	1.00	38D2
D-38-30	R6	RIVERINE	0.027583	240.3	NRPW	36.024871	-115.181394	Town of Arden	5.00	38D6
D-38-31	R6	RIVERINE	0.002750	119.8	NRPW	36.024737	-115.181575	Town of Arden	1.00	38D5
D-38-32	R6	RIVERINE	0.004534	197.5	NRPW	36.025673	-115.181478	Town of Arden	1.00	38D8
D-38-33	R6	RIVERINE	0.025269	366.9	NRPW	36.025581	-115.181160	Town of Arden	3.00	
D-38-34	R6	RIVERINE	0.040517	588.3	NRPW	36.024106	-115.181122	Town of Arden	3.00	
D-38-37	R6	RIVERINE	0.009380	136.2	NRPW	35.999810	-115.181469	Town of Arden	3.00	
D-38-40	R6	RIVERINE	0.005202	226.6	NRPW	35.980603	-115.182135	Town of Arden	1.00	
D-38-42	R6	RIVERINE	0.004380	95.4	NRPW	35.975147	-115.181841	Town of Arden	2.00	
D-38-44	R6	RIVERINE	0.003861	168.2	NRPW	35.966055	-115.182625	Town of Arden	1.00	
D-38-45	R6	RIVERINE	0.017190	249.6	NRPW	36.022831	-115.181082	Town of Arden	3.00	
D-38-47	R6	RIVERINE	0.007872	114.3	NRPW	36.018897	-115.181430	Town of Arden	3.00	
D-38-48	R6	RIVERINE	0.006067	88.1	NRPW	36.002028	-115.181044	Town of Arden	3.00	
D-38-49	R6	RIVERINE	0.018602	270.1	NRPW	36.001480	-115.183004	Town of Arden	3.00	

Exhibit B1. Route Drain	Study Ar nages, Des	rea Field Da esertXpress	Areas Po ect	otentially S	bjec	rps Jurisdi	tion, HUC-8	Vegas Wash	shed, Pr	rred
Waters Na me	Cowardi n Code	HGM_Code	Area (acres)	Linear (ft)	Waters Types	Latitude (dd nad83)	Longitude (dd nad83)	Local_Waterway	width (OHWM)	HBG Data Field Point
D-38-50	R6	RIVERINE	0.017135	248.8	NRPW	36.001122	-115.183038	Town of Arden	3.00	
D-38-51	R6	RIVERINE	0.016811	244.1	NRPW	36.002222	-115.181244	Town of Arden	3.00	
D-38-52	R6	RIVERINE	0.002163	31.4	NRPW	36.002082	-115.181058	Town of Arden	3.00	
D-38-53	R6	RIVERINE	0.018602	270.1	NRPW	36.001654	-115.181071	Town of Arden	3.00	
D-38-54	R6	RIVERINE	0.005599	81.3	NRPW	36.002247	-115.181055	Town of Arden	3.00	
D-38-55	R6	RIVERINE	0.053168	772.0	NRPW	36.000214	-115.181224	Town of Arden	3.00	
D-38-56	R6	RIVERINE	0.010138	220.8	NRPW	35.972548	-115.181859	Town of Arden	2.00	
D-38-57	R6	RIVERINE	0.003843	55.8	NRPW	35.965841	-115.182657	Town of Arden	3.00	
D-38-59	R6	RIVERINE	0.001410	30.7	NRPW	35.968325	-115.182055	Town of Arden	2.00	
D-38-60	R6	RIVERINE	0.002998	130.6	NRPW	35.980891	-115.181663	Town of Arden	1.00	
D-38-70	R6	RIVERINE	0.004589	199.9	NRPW	36.022988	-115.181410	Town of Arden	1.00	
D-38-71	R6	RIVERINE	0.004320	188.2	NRPW	36.022565	-115.181412	Town of Arden	1.00	38D1
D-38-72	R6	RIVERINE	0.084532	1227.4	NRPW	36.017171	-115.181362	Town of Arden	3.00	
D-38-73	R6	RIVERINE	0.002594	113.0	NRPW	36.019313	-115.181441	Town of Arden	1.00	
D-38-74	R6	RIVERINE	0.090310	1311.3	NRPW	36.020681	-115.181045	Town of Arden	3.00	
D-38-75	R6	RIVERINE	0.004656	202.8	NRPW	36.022037	-115.181393	Town of Arden	1.00	
D-38-76	R6	RIVERINE	0.004293	187.0	NRPW	36.022144	-115.181402	Town of Arden	1.00	
D-38-77	R6	RIVERINE	0.004201	183.0	NRPW	36.022378	-115.181396	Town of Arden	1.00	
D-38-78	R6	RIVERINE	0.002324	202.5	NRPW	36.024190	-115.181470	Town of Arden	0.50	38D3
D-38-79	R6	RIVERINE	0.002312	201.4	NRPW	36.024248	-115.181445	Town of Arden	0.50	38D4
D-38-80	R6	RIVERINE	0.002374	206.8	NRPW	36.024346	-115.181473	Town of Arden	0.50	
D-38-81	R6	RIVERINE	0.005115	222.8	NRPW	36.025421	-115.181534	Town of Arden	1.00	38D7
D-38-82	R6	RIVERINE	0.037955	551.1	NRPW	36.001489	-115.184644	Town of Arden	3.00	
D-38-83	R6	RIVERINE	0.036804	534.4	NRPW	36.002205	-115.184596	Town of Arden	3.00	
D-38-84	R6	RIVERINE	0.037424	543.4	NRPW	36.002247	-115.182540	Town of Arden	3.00	
D-38-85	R6	RIVERINE	0.022803	331.1	NRPW	36.002376	-115.182187	Town of Arden	3.00	
D-39-3	R6	RIVERINE	0.057810	419.7	NRPW	36.037465	-115.181789	Duck Creek	6.00	39D21
D-39-4	R6	RIVERINE	0.008003	58.1	NRPW	36.039237	-115.181334	Duck Creek	6.00	
D-39-5	R6	RIVERINE	0.015455	224.4	NRPW	36.040349	-115.181254	Duck Creek	3.00	
D-39-6	R6	RIVERINE	0.003939	57.2	NRPW	36.040333	-115.181351	Duck Creek	3.00	
D-39-7	R6	RIVERINE	0.016494	239.5	NRPW	36.049787	-115.181532	Duck Creek	3.00	
D-39-8	R6	RIVERINE	0.032190	233.7	NRPW	36.056942	-115.181535	Duck Creek	6.00	
D-39-9	R6	RIVERINE	0.003444	50.0	NRPW	36.056970	-115.181270	Duck Creek	3.00	

Exhibit B1. Route Drain	Study Ar nages, Des	rea Field Da sertXpress	Areas Po ect	otentially S	$\overline{\text { ubject }}$	rps Jurisdi	tion, HUC-8 L	as Vegas Wash	shed, Pre	rred
Waters Na me	Cowardi n Code	HGM_Code	Area (acres)	Linear (ft)	Waters Types	Latitude (dd nad83)	Longitude (dd nad83)	Local_Waterway	width (OHWM)	HBG Data Field Point
D-39-10	R6	RIVERINE	0.005227	75.9	NRPW	36.057223	-115.181218	Duck Creek	3.00	
D-39-11	R6	RIVERINE	0.015023	81.8	NRPW	36.058907	-115.181439	Duck Creek	8.00	
D-39-12	R6	RIVERINE	0.068685	997.3	NRPW	36.058749	-115.181291	Duck Creek	3.00	
D-39-13	R6	RIVERINE	0.047989	348.4	NRPW	36.062890	-115.181902	Duck Creek	6.00	
D-39-16	R6	RIVERINE	0.003492	50.7	NRPW	36.055298	-115.181233	Duck Creek	3.00	
D-39-17	R6	RIVERINE	0.091598	1330.0	NRPW	36.055087	-115.181138	Duck Creek	3.00	
D-39-21	R6	RIVERINE	0.004112	59.7	NRPW	36.041021	-115.181323	Duck Creek	3.00	
D-39-23	R6	RIVERINE	0.019780	287.2	NRPW	36.028090	-115.181236	Duck Creek	3.00	
D-39-24	R6	RIVERINE	0.043326	629.1	NRPW	36.026900	-115.181169	Duck Creek	3.00	
D-39-25	R6	RIVERINE	0.050165	364.2	NRPW	36.053456	-115.181531	Duck Creek	6.00	
D-39-26	R6	RIVERINE	0.045317	658.0	NRPW	36.039370	-115.181237	Duck Creek	3.00	
D-39-30	R6	RIVERINE	0.003147	45.7	NRPW	36.032788	-115.181206	Duck Creek	3.00	
D-39-32	R6	RIVERINE	0.003479	757.8	NRPW	36.052093	-115.185710	Duck Creek	0.20	
D-39-40	R6	RIVERINE	0.250413	3636.0	NRPW	36.033479	-115.181210	Duck Creek	3.00	
D-39-41	R6	RIVERINE	0.001853	26.9	NRPW	36.035427	-115.181271	Duck Creek	3.00	
D-39-42	R6	RIVERINE	0.005985	86.9	NRPW	36.031938	-115.181378	Duck Creek	3.00	
D-39-43	R6	RIVERINE	0.021670	629.3	NRPW	36.032898	-115.182348	Duck Creek	1.50	39D11
D-39-44	R6	RIVERINE	0.005305	231.1	NRPW	36.032949	-115.183060	Duck Creek	1.00	
D-39-45	R6	RIVERINE	0.009012	261.7	NRPW	36.033095	-115.182971	Duck Creek	1.50	39D13
D-39-46	R6	RIVERINE	0.014481	630.8	NRPW	36.033152	-115.182394	Duck Creek	1.00	39D14
D-39-47	R6	RIVERINE	0.015452	673.1	NRPW	36.033558	-115.182295	Duck Creek	1.00	39D15
D-39-48	R6	RIVERINE	0.014137	615.8	NRPW	36.034005	-115.182344	Duck Creek	1.00	39D16
D-39-49	R6	RIVERINE	0.015115	658.4	NRPW	36.036577	-115.182325	Duck Creek	1.00	39D17
D-39-50	R6	RIVERINE	0.041288	599.5	NRPW	36.037182	-115.182335	Duck Creek	3.00	39D19
D-40-1	R6	RIVERINE	0.013354	193.9	NRPW	36.085226	-115.181614	Tropicana Wash	3.00	
D-40-2	R6	RIVERINE	0.144752	2101.8	NRPW	36.095952	-115.181073	Tropicana Wash	3.00	
D-40-3	R6	RIVERINE	0.008347	121.2	NRPW	36.098824	-115.181289	Tropicana Wash	3.00	
D-40-4	R6	RIVERINE	0.001398	20.3	NRPW	36.109722	-115.181038	Tropicana Wash	3.00	
D-40-5	R6	RIVERINE	0.001405	20.4	NRPW	36.106993	-115.181046	Tropicana Wash	3.00	
D-40-6	R6	RIVERINE	0.006880	99.9	NRPW	36.089755	-115.181759	Tropicana Wash	3.00	
D-40-7	R6	RIVERINE	0.082287	298.7	NRPW	36.088305	-115.181659	Tropicana Wash	12.00	
D-40-8	R6	RIVERINE	0.002548	37.0	NRPW	36.088542	-115.181095	Tropicana Wash	3.00	
D-40-10	R6	RIVERINE	0.027410	99.5	NRPW	36.077738	-115.181751	Tropicana Wash	12.00	

Exhibit B1. Route Drai	Study Ar nages, Des	a Field Da sertXpress	$\begin{aligned} & \text { or Areas Pc } \\ & \text { ject } \end{aligned}$	otentially	Subject	rps Jurisd	on, HUC-8	Vegas Wash	hed, Pr	rred
Waters_Na me	Cowardi n_Code	HGM_Code	Area (acres)	Linear (ft)	Waters Types	Latitude (dd nad83)	Longitude (dd nad83)	Local_Waterway	width (OHWM)	HBG Data Field Point
D-40-11	R6	RIVERINE	0.029236	424.5	NRPW	36.080817	-115.181226	Tropicana Wash	3.00	
D-40-12	R6	RIVERINE	0.007211	104.7	NRPW	36.080341	-115.181194	Tropicana Wash	3.00	
D-40-13	R6	RIVERINE	0.003988	57.9	NRPW	36.071828	-115.181142	Tropicana Wash	3.00	
D-40-14	R6	RIVERINE	0.010723	155.7	NRPW	36.065368	-115.181097	Tropicana Wash	3.00	
D-40-15	R6	RIVERINE	0.023113	83.9	NRPW	36.084409	-115.181454	Tropicana Wash	12.00	
D-40-16	R6	RIVERINE	0.007087	102.9	NRPW	36.103114	-115.181188	Tropicana Wash	3.00	
D-40-17	R6	RIVERINE	0.073616	1068.9	NRPW	36.088348	-115.183556	Tropicana Wash	3.00	
D-40-18	R6	RIVERINE	0.000792	11.5	NRPW	36.088658	-115.181895	Tropicana Wash	3.00	
D-40-19	R6	RIVERINE	0.075833	1101.1	NRPW	36.087448	-115.184482	Tropicana Wash	3.00	
D-40-20	R6	RIVERINE	0.001391	20.2	NRPW	36.089775	-115.181209	Tropicana Wash	3.00	
D-40-21	R6	RIVERINE	0.057039	828.2	NRPW	36.089096	-115.183141	Tropicana Wash	3.00	
D-40-22	R6	RIVERINE	0.013974	202.9	NRPW	36.089696	-115.181921	Tropicana Wash	3.00	
D-40-23	R6	RIVERINE	0.021371	310.3	NRPW	36.071306	-115.181152	Tropicana Wash	3.00	
D-40-24	R6	RIVERINE	0.029683	215.5	NRPW	36.064787	-115.181602	Tropicana Wash	6.00	
D-40-25	R6	RIVERINE	0.001233	17.9	NRPW	36.070768	-115.181154	Tropicana Wash	3.00	
		Totals:	8.090163	62875.5						

Exhibit B2

Field Data

(See attached CD in PDF format.)

DRAINA GES WITHIN THE DESERT XPRESS PROJECT STUDY						
AREA						
SCIENTIFIC NAME (AS LISTED IN JSA DATA SHEETS)	$\begin{gathered} \text { SCIENTIFIC } \\ \text { NAME IF } \\ \text { AVAILABLE } \\ \text { IN NWI } \\ \hline \end{gathered}$	SYNONYMY (SOURCE: CALFLORA 2010)	COMMON NAME	$\begin{gathered} \text { REGION } \\ 0 \text { (NWI) } \\ \text { CA } \end{gathered}$	$\begin{aligned} & \text { REGION } \\ & 8 \text { (NWI) } \\ & \text { NV } \end{aligned}$	STRATUM $(\mathrm{H}, \mathrm{S}, \mathrm{T})$
Amsinskia intermedeon	NL	NA	FIDDLE-NECK	NL	NL	Herb
Aristida purpurea	NL	$=A$. p. var. fendleriana $=A$. p. var. longiseta =A. p. var. nealleg i =A. p. var. parishii $=A$. p. var. purpurea $=A$. p. var. wrightii	PURPLE THREE AWN	NL	NL	Herb
Asclepias californica	NL	$\begin{aligned} & =\text { A. c. } \text { ssp. greenei } \\ & \text { =A. } \text {. ssp. } \\ & \text { californica } \end{aligned}$	CALIFORNIA MILKWEED	NL	NL	Herb
Asclepias curassavica	Asclepias curassavica	NA	SCARLET MILKWEED	FAC	NL	Herb
Atriplex canescens	Atriplex canescens	NA	FOUR-WINGED SALTBUSH	FACU	UPL	Shrub
Atriplex hymenelytra	NL	NA	$\begin{aligned} & \text { MANY-FRUITED } \\ & \text { SALTBUSH } \\ & \hline \end{aligned}$	NL	NL	Shrub
Atriplex polycarpa	Atriplex	NA	MANY-FRUIT SALTBUSH	FACU	FACU	Shrub

LST OF PLANT SPECUES ENCOUNTERED ALONG						
DRAINAGES WITHIN THE DESERT XPR AREA						
SCIENTIFIC NAME (AS LISTED IN JSA DATA SHEETS)	$\begin{gathered} \text { SCIENTIFIC } \\ \text { NAME IF } \\ \text { AVAILABLE } \\ \text { IN NWI } \\ \hline \end{gathered}$	SYNONYMY (SOURCE: CALFLORA 2010)	COMMON NAME	$\begin{gathered} \text { REGION } \\ 0 \text { (NWI) } \\ \text { CA } \end{gathered}$	$\begin{aligned} & \text { REGION } \\ & 8 \text { (NWI) } \\ & \text { NV } \end{aligned}$	$\begin{gathered} \text { STRATUM } \\ (H, S, T) \end{gathered}$
	polycarpa					
Avena barbata	NL	=A. hirsuta	SLENDER WILD OAT	NL	NL	Herb
Baccharis brachyphylla	NL	NA	SHORT LEAVED BACCHARIS	NL	NL	Shrub
Baccharis salicifolia	Baccharis glutinosa	$=B$. glutinosa $=B$. viminea =Molina salicifolia	MULE FAT	FACW-	FACW	Shrub
Baccharis sarothroides	Baccharis sarothroides	NA	DESERT FALSE-WILLOW	FAC	NI	Shrub
Baileya spp.	NL	NA	DESERT MARIGOLD	NL	NL	Herb
Bouteloua barbata	NL	$=B$. arenosa =Chrondrosum barbata $=$ C. exile =C. microstachyum =C. polystachyum =C. subscorpiodes	SIX WEEKS GRAMA	NL	NL	Herb
Brassica tournefortii	NL	NA	ASIAN MUSTARD	NL	NL	Herb

LTST OF PLANT SPECTES ENCOUNTERED ALONG						
DRAINAGES WITHIN THE DESERT XPRESS PROJECT STU AREA						
SCIENTIFIC NAME (AS LISTED IN JSA DATA SHEETS)	$\begin{aligned} & \text { SCIENTIFIC } \\ & \text { NAME IF } \\ & \text { AVAILABLE } \\ & \text { IN NWI } \\ & \hline \end{aligned}$	SYNONYMY (SOURCE: CALFLORA 2010)	COMMON NAME	$\begin{gathered} \text { REGION } \\ 0 \text { (NWI) } \\ \text { CA } \end{gathered}$	$\begin{aligned} & \text { REGION } \\ & 8 \text { (NWI) } \\ & \text { NV } \end{aligned}$	$\begin{aligned} & \text { STRATUM } \\ & (\mathrm{H}, \mathrm{~S}, \mathrm{~T}) \end{aligned}$
acanthocarpa						
Cylindroopuntia arbuscula**	NL	Unknown	No info. available on this species. C. arbuscula may $=$ typo	NL	NL	Shrub?
Cynodon dactylon	Cynodon dactylon	=Capriola dactylon $=$ C. aristiglumis =Panicum dactylon	BERMUDA GRASS	FAC	FAC	Herb
Descurainia sophia	NL	=Sisymbrium Sophia	HERB SOPHIA	NL	NL	Herb
Encelia actoni	NL	=E. virginensis ssp. actoni	ACTON ENCELIA	NL	NL	Shrub
Encelia farinosa	NL	NA	BRITTLE BUSH	NL	NL	Shrub
Encelia frutescens	NL	=Simsia frustescens	BUTTON BRITTLE BUSH	NL	NL	Shrub
Encelia virginensis	NL	$=$ Frutescens var. virginensis	NO COMMON NAME	NL	NL	Shrub
Ephedra nevadensis	NL	NA	NEVADA EPHEDRA	NL	NL	Shrub
Ephedra viridis	NL	NA	MORMON TEA	NL	NL	Shrub
Eriastrum densifolium	NL	NA	SHRUBBY ERIASTRUM	NL	NL	Shrub

LIST OF PLANT SPECIES ENCOUNTERED ALONG						
DRAINAGES WITHIN THE DESERT XPRESS PROJECT STU AREA						
SCIENTIFIC NAME (AS LISTED IN JSA DATA SHEETS)	$\begin{aligned} & \text { SCIENTIFIC } \\ & \text { NAME IF } \\ & \text { AVAILABLE } \\ & \text { IN NWI } \\ & \hline \end{aligned}$	SYNONYMY (SOURCE: CALFLORA 2010)	COMMON NAME	$\begin{gathered} \text { REGION } \\ 0 \text { (NWI) } \\ \text { CA } \end{gathered}$	$\begin{aligned} & \text { REGION } \\ & 8 \text { (NWI) } \\ & \text { NV } \end{aligned}$	$\begin{aligned} & \text { STRATUM } \\ & (H, S, T) \end{aligned}$
Ericameria cooperi	NL	=Haplopappus cooperi	COOPER'S GOLDENBUSH	NL	NL	Shrub
Ericameria laricifolia	NL	= Haplopappus lacrifolia	TURPENTINE BUSH	NL	NL	Shrub
Ericameria nauseosa	NL	$=E$. $n . \mathrm{ssp}$. consimilis $=E . n$. var. bernardina $=E . n$. var. ceruminosa =E. n. var. hololeuca $=E$. n. var. leiosperma $=E$. n. var. oreophila =E. n. var. speciosa $=E . n$. var. washoensis =Chrysothamnus nauseosus	RUBBER RABBITBRUSH	NL	NL	Shrub
Ericameria paniculata	NL	=Chrysothamnus paniculatus	MOJAVE RABBITBRUSH	NL	NL	Shrub

LST OF PLANT SPECIES ENCOUNTERED ALONG						
DRAINAGES WITHIN THE DESER						
AREA						
SCIENTIFIC NAME (AS LISTED IN JSA DATA SHEETS)	SCIENTIFIC NAME IF AVAILABLE IN NWI	SYNONYMY (SOURCE: CALFLORA 2010)	COMMON NAME	$\begin{gathered} \text { REGION } \\ 0 \text { (NWI) } \\ \text { CA } \end{gathered}$	$\begin{aligned} & \text { REGION } \\ & 8 \text { (NWI) } \\ & \text { NV } \end{aligned}$	STRATUM (H, S, T)
Eriophyllum ambiguum/E. wallacei [sic]	NL	$=$ E. ambiguum var. ambiguum $=$ E. ambigium var. paleaceum =Antherapeas wallaceei =Eriophyllum wallacei var. rubellum $=E . w$. var. wallacei =E. w. var. calvescens =Eriophyllum aureum	ANNUAL WOOLLY SUNFLOWER/WALLACE'S WOOLLY DAISY	NL	NL	Herb
Erodium cicutarium	NL	= Erodium cicutarium ssp. cicutarium $=$ E. cicutarium ssp . jacquinianum	COASTAL HERON'S BILL	NL	NL	Herb
Eschscholzia minutiflora	NL	$=E$. coville $=E$. minutiflora ssp. twisselmanii $=E$. minutiflora var. darwinensis	PYGMY POPPY	NL	NL	Herb

LIS	OFPL	NT SPE	¢S ENCOUN'	RE	0	
DRAINAGES WTTHIN THE DESERT XPRESS PROJECT STUDY						
AREA						
$\begin{gathered} \text { SCIENTIFIC } \\ \text { NAME (AS } \\ \text { LISTED IN JSA } \\ \text { DATA SHEETS) } \end{gathered}$	SCIENTIFIC NAME IF AVAILABLE IN NWI	SYNONYMY (SOURCE: CALFLORA 2010)	COMMON NAME	$\begin{gathered} \text { REGION } \\ 0 \text { (NWI) } \\ \text { CA } \end{gathered}$	$\begin{aligned} & \text { REGION } \\ & 8 \text { (NWI) } \\ & \text { NV } \end{aligned}$	$\begin{aligned} & \text { STRATUM } \\ & (\mathbf{H}, \mathrm{S}, \mathrm{~T}) \end{aligned}$
		tridentata				
Lepidium fremontii	NL	$=$ L. fremontii var. fremontii $=L$. f. var. stipitatum	DESERT ALYSSUM	NL	NL	Herb
Lepidium latifolium	Lepidium latifolium	NA	BROAD LEAFED PEPPERGRASS	FACW	FAC	Herb
Lepidium spp .	Lepidium spp.	NA	PEPPER-GRASS	FAC	NO to FACW+ depending on species	Shrub
Lepidium virginicum	Lepidium virginicum	NA	POOR-MAN'S PEPPERGRASS	FACU	FACU	Herb
Lepidospartum squamatum	Possibly Baccharis sarothroides	=Lepidospartum squamatum var. palmeri =Lepidospartum squamatum var. squamatum =Baccharis	SCALE BROOM	$\begin{gathered} \text { NL } \\ \text { Or FAC } \end{gathered}$	NL	Shrub

DRAINA GES WITHN THE DESERT XPRESS PROJECT STUDY						
AREA						
SCIENTIFIC NAME (AS LISTED IN JSA DATA SHEETS)	$\begin{aligned} & \text { SCIENTIFIC } \\ & \text { NAME IF } \\ & \text { AVAILABLE } \\ & \text { IN NWI } \\ & \hline \end{aligned}$	SYNONYMY (SOURCE: CALFLORA 2010)	COMMON NAME	$\begin{gathered} \text { REGION } \\ 0 \text { (NWI) } \\ \text { CA } \end{gathered}$	$\begin{aligned} & \text { REGION } \\ & 8 \text { (NWI) } \\ & \text { NV } \end{aligned}$	$\begin{aligned} & \text { STRATUM } \\ & (\mathrm{H}, \mathrm{~S}, \mathrm{~T}) \end{aligned}$
		sarathroides var. pluricephala =Lepidospartim squamatum var. obtectum				
Leptochloa uninervia	Leptochloa uninervia	NA	MEXICAN SPRANGLETOP	FACW	FACW	Herb
Leymus triticoides	Elymus triticoides	=Elymus triticoides $=$ E. condensatus var. triticoides $=E$. orcuttiamus $=$ E. triticoides var. pubescens	VALLEY WILD RYE	FAC+	FAC+	Herb
Lupinus concinnus	NL	$\begin{aligned} & =\text { =. c. var. pallidus } \\ & =\text { L. c. var. orcutti } \\ & =\text { L. c. var } \text { optatus } \\ & \text { =L.c. var. } \\ & \text { concinnus } \\ & \text { = L. c. var. } \\ & \text { agardhianus } \\ & =\text { L. c. ssp. orcuttii } \\ & \text { =L. c. spp. optatus } \\ & \text { =. pallidus } \\ & \text { =L. agardhianus } \end{aligned}$	ELEGANT LUPINE	NL	NL	Herb

DRAINAGES WITHU THE DESERT XPRESS PROJECT STUDY						
AREA						
SCIENTIFIC NAME (AS LISTED IN JSA DATA SHEETS) Lycin	$\begin{aligned} & \text { SCIENTIFIC } \\ & \text { NAME IF } \\ & \text { AVAILABLE } \\ & \text { IN NWI } \\ & \hline \end{aligned}$	SYNONYMY (SOURCE: CALFLORA 2010)	COMMON NAME	$\begin{gathered} \text { REGION } \\ 0 \text { (NWI) } \\ \text { CA } \end{gathered}$	$\begin{aligned} & \text { REGION } \\ & 8 \text { (NWI) } \\ & \text { NV } \end{aligned}$	$\begin{gathered} \text { STRATUM } \\ (\mathrm{H}, \mathrm{~S}, \mathrm{~T}) \end{gathered}$
Lycium andersonii	NL	$=$ L. a. var. andersonii $=$ L. a. var. deserticola	ANDERSON THORNBUSH	NL	NL	Shrub
Lycium cooperi	NL	NA	PEACH THORN	NL	NL	Shrub
Lycium parishii	NL	NONE	PARISH'S DESERT THORN	NL	NL	Shrub
Malacothrix coulteri	NL	= Zollikoferia eluiensis $=M$. var. cognate	SNAKE'S HEAD	NL	NL	Herb
Malacothrix glabrata	NL	$=M$. californica var. glabrata	DESERT DANDELION	NL	NL	Herb
Malva neglecta	NL	NA	COMMON MALLOW	NL	NL	Herb
Mentzelia spp.	NL	NA	STICK LEAF	NL	NL	Herb
Mimulus flemingii		=M. parviflorus	FLEMING MONKEYFLOWER	FACU-	NL	Herb
Mimulus fremontii	Mimulus glabratus	=M. subsecundus eunanus fremontii $=$ Mimulus glabratus ssp. fremontii	FREMONT'S MONKEYFLOWER	OBL	OBL	Herb

LIST OF PLANT SPECIES ENCOUNTERED ALONG NAGES WITHIN THE DESERT XPRESS PROJECT STUDY						
SCIENTIFIC NAME (AS LISTED IN JSA DATA SHEETS)	SCIENTIFIC NAME IF AVAILABLE IN NWI	$\begin{gathered} \text { SYNONYMY } \\ \text { (SOURCE: } \\ \text { CALFLORA } \\ \text { 2010) } \\ \hline \end{gathered}$	COMMON NAME	$\begin{gathered} \text { REGION } \\ 0 \text { (NWI) } \\ \text { CA } \end{gathered}$	$\begin{aligned} & \text { REGION } \\ & 8 \text { (NWI) } \\ & \text { NV } \end{aligned}$	$\begin{aligned} & \text { STRATUM } \\ & (\mathrm{H}, \mathrm{~S}, \mathrm{~T}) \end{aligned}$
		austalis				
Phacelia fremontii	NL	$=P$. hullii	FREMONT'S PHACELIA	NL	NL	Herb
Plantago ovata	NL	NA	DESERT INDIAN WHEAT	NL	NL	Herb
Pluchea sericea	Pluchea sericea	NA	ARROW WEED	FACW	FACW	Shrub
$\begin{aligned} & \text { Polypogon } \\ & \text { monspeliensis } \end{aligned}$	$\begin{aligned} & \text { Polypogon } \\ & \text { monspeliensis } \end{aligned}$	NA	ANNUAL RABBIT-FOOT GRASS	FACW+	FACW+	Herb
Populus fremontii	Populus fremontii	---	FREMONT'S COTTONWOOD	FACW	FACW*	Tree
Prosopis glandulosa	Prosopis juliflora	$=P$. glandulosa var. torreyana $=P$. juliflor a var. torreyana $=P$. ordorata	HONEY MESQUITE	FACU	NI	Shrub
Pucinella lemonni	Pucinella lemonni	NA	LEMON'S ALKALI GRASS	FAC	FACW*	Herb
Rafinesquia neomexicana	NL	NA	CALIFORNIA CHICORY	NL	NL	Herb
Rumexhymenose palus	NL	NA	WILD RUBARB	NL	NL	Herb
Salazaria	NL	NA	BLADDERSAGE	NL	NL	Shrub

LIST OF PLANT SPECIES ENCOUNTERED ALONG						
DRAINAGES WITHIN THE DESER						
AREA						
SCIENTIFIC NAME (AS LISTED IN JSA DATA SHEETS)	SCIENTIFIC NAME IF AVAILABLE IN NWI	SYNONYMY (SOURCE: CALFLORA 2010)	COMMON NAME	$\begin{gathered} \text { REGION } \\ 0 \text { (NWI) } \\ \text { CA } \end{gathered}$	$\begin{aligned} & \text { REGION } \\ & 8 \text { (NWI) } \\ & \text { NV } \end{aligned}$	$\begin{aligned} & \text { STRATUM } \\ & (H, S, T) \end{aligned}$
Senna armata	NL	= Cassia armata	$\begin{gathered} \text { DESERT SENNA, SPINY } \\ \text { SENNA } \end{gathered}$	NL	NL	Shrub
Sisymbrium altissimum	Sisymbrium altissimum	NA	TALL TUMBLE MUSTARD	FACU	FACU-	Herb
Spharalcea ambigua	NL	= S. parvifolia	APRICOT MALLOW	NL	NL	Shrub
Stanleya pinnata	NL	NA	DESERT PRINCE'S PLUME	NL	NL	Herb
Stephanomeria exigua	NL	NA	SMALL WIRELETTUCE	NL	NL	Herb
Stephanomeria pauciflora	NL	$\begin{aligned} & \text { =S. p. var. parishii } \\ & \text { =S. p. var. } \\ & \text { pauciflora } \\ & \text { =S. runcinata var. } \\ & \text { parishii } \\ & \text { =S. cinerea } \\ & \text { =S. lygoclesmoides } \\ & \text { =S. neomexicana } \\ & \text { =Lygodesmia } \\ & \text { payciflora } \\ & \text { =Ptiloria } \\ & \text { pauciflora } \end{aligned}$	DESERT STRAW	NL	NL	Herb

LIST OF PLANT SPE NAGES WITHIN THE						
SCIENTIFIC NAME (AS LISTED IN JSA DATA SHEETS)	SCIENTIFIC NAME IF AVAILABLE IN NWI	$\begin{aligned} & \text { SYNONYMY } \\ & \text { (SOURCE: } \\ & \text { CALFLORA } \\ & \text { 2010) } \end{aligned}$	COMMON NAME	$\begin{gathered} \text { REGION } \\ 0 \text { (NWI) } \\ \text { CA } \end{gathered}$	$\begin{aligned} & \text { REGION } \\ & 8 \text { (NWI) } \\ & \text { NV } \end{aligned}$	$\begin{aligned} & \text { STRATUM } \\ & (\mathrm{H}, \mathrm{~S}, \mathrm{~T}) \end{aligned}$
Stephanomeria virgata	NL	NA	NL	NL	NL	Herb
Tamarix aphylla	Tamarix aphylla	NA	ATHEL TAMARISK	FACW-	FACW	Tree
Tamarix ramosissima	Tamarix ramosissima	NA	SALTCEDAR	FAC	FACW	Shrub
Thamnosma montana	NL	NA	TURPENTINE BROOM	NL	NL	Shrub
Triticum aestivum	NL	$\begin{aligned} & =T . \text { hybernum } \\ & =T . \text { macha } \\ & =T . \text { sativum } \\ & =T . \\ & \text { sphaerococcum } \\ & =T . \text { vulgare } \end{aligned}$	COMMON WHEAT	NL	NL	Herb
Typha angustifolia	Typha angustifolia	NA	NARROW LEAF CATTAIL	OBL	OBL	Herb
Ulmus pumila	NL	NONE	SIBERIAN ELM	NL	NL	Tree
Washingtonia filifera	Washingtonia filifera	NA	CALIFORNIA FAN PALM	FACW	NO	Tree
Yucca brevifolia	NL	=Y. jaegeriana	JOSHUA TREE	NL	NL	Tree
Yucca schidigera	NL	$=Y$. californica	MOJAVE YUCCA	NL	NL	Shrub

LIS	F P	Sr	ENCO	ERED	ON	
AINAC	WI	TH	ERT XP	PR	CT	UDY
			Common name	(RgGiov	${ }_{\text {Regiov }}^{\text {Rem }}$	
LISTED IN JSA	AN NW NAME IF AVAILABLE	$\begin{aligned} & \text { (SOURCE: } \\ & \text { CALFLORA } \\ & \text { 2010) } \end{aligned}$			v)	

* = J.S.A. probably made a typographical error for this species.
**Using. ISA taxonomy (S. tragus) we determined that in 1988, when the wetland manual was produced, this species could have been
either S. kali (FACU*) or S. pestifer (FACU) (Region O), or FACU for both in Region 8 .
NI = Not Indicated.
NL = Not Listed in NWI 1988 .
Sources:
Calflora Database. 2010. Calflora Database was developed by the United States Forest Service working in collaboration with U.C.
Berkeley. Available at: http://www.calflora.org/
National Wetlands Inventory and US Fish And Wildlife Service. 1988. National List of Plant Species that Occur in Wetlands.

Compiled by Porter B. Reed, Jr., National Ecology Research Center, US Fish and Wildlife Service, St. Petersburg, Florida. In
cooperation with US Army Corps of Engineers, US Environmental Protection Agency, and US Soil Conservation Service.

Exhibit B2

DesertXpress Field Data
 For Las Vegas Wash Watershed (HUC 15010015)

HBG Watershed Number	HUC 12 Watershed Name	HBG Field Data	ICF Jones \& Stokes Field Data	Comments
37	Town of Sloan	Yes	Yes	
38	Town of Arden	Yes	Yes	Delineated by HBG using adjacent watershed data.
39	Duck Creek	Yes	Yes	
40	Tropicana Wash	Yes	Delineated by HBG using adjacent watershed data.	
41	City of Las Vegas-Las Vegas Wash	No	Yes	Only northernmost possible station locations would be in this watershed. Urban Drainage features. Delineated by HBG using adjacent watershed data.

Huffman-Broadway Group

Field Data Forms

For DesertXpress

HUC 12 Watershed Town of Sloan

Within Las Vegas Wash Watershed
(HUC 15010015)

HBG Watershed ID \# 37

Huffman-Broadway Group

Field Data Forms

For DesertXpress

HUC 12 Watershed Town of Sloan

Within Las Vegas Wash Watershed

(HUC 15010015)
HBG Watershed ID \# 37

DesertXpress

Field Notebook

HBG Watershed ID \# 37

Watershed Name: Town of Slean

If found, please return to:
George Ball
Huffman-Broadway Group, Inc.
828 Mission Avenue
San Rafael, California 94901
415.925.2000
gball@h-bgroup.com
Return Postage Guaranteed
Potential Geomorphic OHWM Indicators

(A) Below OHW	(B) At OHW	(C) Above OHW	
1) In-stream dunes	1) Valley flat	1) Desert pavement	
2) Crested ripples	2) Active floodplain	2) Rock varnish	
3) Flaser bedding	3) Benches: low, mid, most prominent	3) Clast weathering	
4) Harrow marks	4) Highest surface of channel bars	4) Salt splitting	
5) Gravel sheets to rippled sands	5) Top of point bars	5) Carbonate etching	
6) Meander bars	6) Break in bank slope	6) Depositional topography	
7) Sand tongues	7) Upper limit of sand-sized particles	7) Caliche rubble 8) Soil development	
8) Muddy point bars	8) Change in particle size distribution	8) Soil development 9) Surface color/tone	
9) Long gravel bars 10) Cobble bars behind obstructions	9) Staining of rocks 10) Exposed root hairs below intact soil layer	9) Surface color/tone 10) Drainage development	
10) Cobble bars behind obstructions	10) Exposed root hairs below intact soil layer 11) Silt deposits	10) Drainage development 11) Surface relief	,
12) Obstacle marks	12) Litter (organic debris, small twigs and leaves)	12) Surface rounding	
13) Stepped-bed morphology in gravel	13) Drift (organic debris, larger than twigs)		
14) Narrow berms and levees			
15) Streaming lineations			
16) Dessication/mud cracks			
17) Armored mud balls 18) Knick Points			

Potential Vegetation OHWM Indicators

	(D) Below OHW	(E) At OHW	(F) Above OHW
Hydroriparian indicators	1) Herbaceous marsh species 2) Pioneer tree seedlings 3) Sparse, low vegetation 4) * Annual herbs, hydromesic ruderals 5) Perennial herbs, hydromesic clonals	1) Annual herbs, hydromesic ruderals 2) Perennial herbs, hydromesic clonals 3) Pioneer tree seedlings 4) Pioneer tree saplings	1) Annual herbs, xeric ruderals 2) Perennial herbs, non-clonal 3) Perennial herbs, clonal and non-clonal co-dominant 4) Mature pioneer trees, no young trees 5) Mature pioneer trees w/upland species 6) Late-successional species
Mesoriparian indicators	6) Pioneer tree seedlings 7) Sparse, low vegetation 8) Pioneer tree saplings 9) Xeroriparian species	5) Sparse, low vegetation Annual herbs, hydromesic 6) Ruderals 7) Perennial herbs, hydromesic clonals 8) Pioneer tree seedlings 9) Pioneer tree saplings 10) Xeroriparian species 11) Annual herbs, xeric ruderals	7) Xeroriparian species 8) Annual herbs, xeric ruderals 9) Perennial herbs, non-clonal 10) Perennial herbs, clonal and non-clonal codominent 11) Mature pioneer trees, no young trees 12) Mature pioneer trees, xeric understory 13) Mature pioneer trees w/upland species 14) Late-successional species 15) Upland species
Xeroriparian indicators	10) Sparse, low vegetation 11) Xeroriparian species 12) Annual herbs, xeric ruderals	12) Sparse, low vegetation 13) Xeroriparian species 14) Annual herbs, xeric ruderals	16) Annual herbs, xeric ruderals 17) Mature pioneer trees w/upland species 18) Upland species

F-1.5-88
Reference: $D=$ Drainage; $M=$ Manmade; MD $=$ Major Drainage; $R=$ River
E:IDesertXpresslDesert Xpress Drainage Field Data Sheet (Final).doc

ICF Jones \& Stokes

Wetland Determination Data Forms Arid West Region

For DesertXpress

HUC 12 Watershed Town of Sloan
Within Las Vegas Wash Watershed (HUC 15010015)

HBG Watershed ID \# 37

WETLAND DETERMINATION DATA FORM - Arid West Region

Mojo Miner: Clpcie Point
 Sampling Date: $\frac{2 / 26 / 08}{88-1 / 40}$ Sampling Point: $\frac{88-1 \text { Warhol }}{88-1 E}$
\qquad $\frac{88-1 E}{3-7}$ Applicanvowner. CELL' Stook, BRYA+ MORSE, Jo ht Section, Township, Range: slope (\%): 3-7 Datum 4 AD 8 ? Landform (hilislope, terrace, etc.): VALCY' FLOOR Subregion (LRR): \qquad tatulu-15: 227340 tong N 35.845027
zONE I Soil Map Unit Name: \qquad
\square No \qquad (If no, explain in Remarks.) Are "Normal Circumstances" present? Yes \qquad No \qquad (if needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.
 $\angle v$ bind. (on thar east).

Dominance Test worksheet: Number of Dominant Species
That Are OBL, FACW, or FAC:

(A)
Species Across All Strata:

Prevalence Index worksheet:

Total \% Cover of:
OBL species
FACW species -
FAC species -
FACU species -
UPL species -10
Column Totals: 10
Multiply by:
$\times 1=-$
$\times 2=$
$\times 3=-$
$\times 4=-$
$\times 5=-50$
(A)
Prevalence Index $=B / A=$

Hydrophytic Vegetation Indicators:
_ Dominance Test is $>50 \%$
-
Prevalence Index is $\leq 3.0^{1}$
-... Morphological Adaptations ${ }^{\top}$ (Provide supporting data in Remarks or on a separate sheet)

- Problematic Hydrophytic Vegetation ${ }^{1}$ (Explain)
'Indicators of hydric soil and wetland hydrology must be present.
 \% Bare Ground in Herb Stratum gus

Depth (inches):
Remarks:

HYDROLOGY

Wetland Hydrology Indicators:
Primary Indicators (any one indicator is sufficient)
_ Surface Water (A1)
_ High Water Table (A2)

- Saturation (A3)
—. Water Marks (B1) (Nonriverine)
_ Sediment Deposits (B2) (Nonriverine)
_ Drift Deposits (B3) (Nonriverine)
Surface Soil Cracks (B6)
Inundation Visible on Aerial! Imagery (B7)
Water-Stained Leaves (B9)
Field Observations:
Surface Water Present
Water Table Present?
Saturation Present?
(includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Secondary Indicators (2 or more required. Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine)
Drift Deposits (B3) (Riverine) Drainage Patterns (B10)
__ Dry-Season Water Table (C2)

- Hydrogen Sulfide Odor (C1)
(CB)
- Presence of Reduced Iron (C4)
_ Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)
\qquad

WETLAND DETERMINATION DATA FORM - Arid West Region

 Subregion (LRR): $>$
 Datum: JAD D 83 Soil Map Unit Name: \qquad No \qquad (If no, explain in Remarks.)
Are climatic / hydrologic conditions on the site typical for this time of year? Yes
are Vegetation. Yes, soil Yes, or Hydrology Yes significantly disturbed? Are "Normal Circumstances" present? Yes \qquad No \qquad (If needed, explain any answers in Remarks.) are Vegetation No, soil No, or Hydrology No naturally problematic?
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

 Remarks:

SOIL
Profile Description; (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)
_ _ Surface Water (A1)
_ Salt Crust (B11)

- High Water Table (A2)
_ Saturation (A3)
_ Water Marks (B_{1}) (Nonriverine)
_ Sediment Deposits (B2) (Nonriverine)
_.- Drift Deposits (B3) (Nonriverine)
_ Surface Soil Cracks (B6)
__ Inundation Visible on Aerial Imagery (B7)
Water-Stained Leaves (B9)

Secondary Indicators in or more required)
_ Water Marks (B 1) (Riverine)
Sediment Deposits (B2) (Riverine)
$\boxed{ } \boxed{ }$ Drift Deposits (B3) (Riverine)

- Drainage Patterns (B10)
_ Dry-Season Water Table (C2)
_ Thin Muck Surface (C7)
_ Crayfish Burrows (C8)
_ Saturation Visible on Aerial imagery (
(CP)
- Recent Iron Reduction in Plowed Soils (C6)
-.. Other (Explain in Remarks)

Shallow Aqultard (D3)
FAC-Neutral Test (D5)

Field Observations:

Surface Water Present?
Water Table Present?
Saturation Present?
 Wetland Hydrology Present? Yes \qquad No
 (includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:
emarks: M'W Permanent flow velocity dissipation devices (rock filled -i prop) have

 1:2 slope- to minimize erosion of. S. Channel bonk immed, west of Float ITS R. WW.
$4^{\prime} \mathrm{CBC}$ under I-15 conveys flows from se to NW. Blucline $/$ tribe. to Duck Crees.
Godrantiun

WETLAND DETERMINATION DATA FORM - Arid West Region

rojectsite: DesertXPess
City/County: Clark Applicant/owner: Circle Point
Investigator (s): Broom Morse, , , , illus Shook, John Horton Section, Township, Range:
\qquad (If no, explain in Remarks.)
Are "Normal Circumstances" present? Yes \qquad No \qquad (if needed, explain any answers in Remarks.)
Are Vegetation N_{0}, Soil N_{0}, or Hydrology $\frac{N_{0}}{N_{0}}$ significantly disturbed?
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)
Depth
(inches)

Depth (inches):
Remarks: Soil pit in channel.

HYDROLOGY

Secondary indicators \{2 or more required) _ Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine)
1
_. Dry-Season Water Table (C2)
—. Thin Muck Surface (C7)
_ Crayfish Burrows (C8)
__ Saturation Visible on Aerial Imagery (C9)
. . Shallow Aquitard (D3)
-. FAC-Neutral Test (D5)

- Water-Stained Leaves (B9)

Field Observations:

Surface Water Present?
Water Table Present?
Saturation Present?

Wetland Hydrology Present? Yes \qquad No \qquad (includes capillary fringe) e) Yes __ No Depth (inches): ins), if available:
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:
Remarks: 8^{\prime} CBC under IE 15 . Blueline drainage from S. to N木, Trib. to Duck Creek. Shallow, braided ephemeral drainage (natural) parallel|' I-15 on W. side.

OHM: GO' $\omega \times 1^{\prime} h$

Troject/Site: Desert V Press
City/County: Clark applicant/owner: Circle Point investigators): Kelly Shook, Bryon Morse, John Aolsol'section, Township, Range:
 State: NV Sampling Point: 8 G- lW URL
\qquad Slope (\%): $10-15$ Subregion (LRR); D
 NWI classification: N/ $/$ / Datum: 性盆 1983

Soil Map Unit Name:
Are climatic / hydrologic conditions on the site typical for this time of year? Yes \qquad No \qquad (If no, explain in Remarks.)
Are "Normal Circumstances" present? Yes \qquad No \qquad (If needed, explain any answers in Remarks.) Are Vegetation No, Soil No, or Hydrology Mo naturally problematic?

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

vegetation

Hydrophytic Vegetation Indicators:
Dominance Test is $>50 \%$

- Prevalence Index is $\leq 3.0^{1}$
- Morphological Adaptations ${ }^{1}$ (Provide supporting
data in Remarks or on a separate sheet)
.- Problematic Hydrophytic Vegetation ${ }^{1}$ (Explain)
${ }^{1}$ indicators of hydric soil and wetland hydrology must
be present.

Prevalence index $=\mathrm{B} / \mathrm{A}=$

```
                                    S
```

```
                                    S
```

Hydrophytic
Vegetation
Present? \quad Yes___ No

Remarks:

SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Remarks: poi pit in upland.

HYDROLOGY

Wetland Hydrology Indicators:

Secondary Indicators (2 or more required)
__ Water Marks (B1) (Riverine)
_. Sediment Deposits (B2) (Riverine)
_. Drift Deposits (B3) (Riverine)
__ Drainage Patterns (B10)
__ Dry-Season Water Table (C2)
_ Thin Muck Surface (C7)
__ Crayfish Burrows (C8)
.. Saturation Visible on Aerial imagery (C9)
__ Shallow Aquitard (D3)
FAC-Neutrał Test (D5)

Primary Indicators (any one indicator is sufficient)
_ Surface Water (A1)

- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
_ Drift Deposits (B3) (Nonriverine)
Surface Soil Cracks (B6)
Inundation Visible on Aerial Imagery (B7)
Water-Stained Leaves (B9)
_Sat Crust (B11)
. Biotic Crust (B12)
__ Aquatic Invertebrates (B13)
_. Hydrogen Sulfide Odor (C1)
_ Oxidized Rhizospheres along Living Roots
_ . Presence of Reduced Iron (C4)
—. Recent Iron Reduction in Plowed Soils (C6)
__. Other (Explain in Remarks)

Wetland Hydrology Present? Yes \qquad No N
Field Observations:
Surface Water Present?
Water Table Present?
Yes \qquad No Depth (Inches): \qquad \square

Saturation Present? (includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks: See remaites on reverse.

WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: \qquad City/County: Clark Applicaniowner: Circle Point Chycounty. Clank State: \qquad Sampling Date: $\frac{2 / 29 / 08}{\text { Sampling Point: } 90-1 \mathrm{~W}}$ investigators): John holsori, Bran Morse, Kelly Shookection, Township, Range: Landform (hillsiope, terrace, etc.): Gentle hillslope Local relief (concave, convex none): None slope (\%): $1-5$ Subregion (LRR): \qquad tat :-115, 18: 946 Long 35.949896 Datum: $\omega A D 8$ Soil Map Unit Name: \qquad No \qquad (if no, explain in Remarks.)
Are climatic / hydrologic conditions on the site typical for this time of year? Yes \qquad
Are Vegetation no. Soil no, or Hydrology no significantly disturbed? Are "Normal Circumstances" present? Yes No \qquad
(If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

SOL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Remarks: Soil pit excavated in channel.

HYDROLOGY

Secondary indicators (2 or more required)
_ Water Marks (B1) (Riverine)
__ Sediment Deposits (B2) (Riverine)
$1 /$ Drift Deposits (B3) (Riverine)
__ Drainage Patterns (B10)
__Dry-Season Water Table (C2)
_ Thin Muck Surface (C7)
__ Crayfish Burrows (C8)
_ Saturation Visible on Aerial Imagery (C9)
— Shallow Aquitard (D3)
FAC-Neutral Test (D5)

Field Observations:
Surface Water Present?
Water Table Present?
Saturation Present?

\qquad No $\stackrel{\square}{ }$ (includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:
Remarks: This. to Duck Cheek. 4-12 CBC under t 5 . Flows enter cisco from sort at. $\begin{aligned} & \text { oHM }=35^{1} \mathrm{~W} \times 2^{11} \\ & 1: 2 \text { bane slope }\end{aligned}$

WETLAND DETERMINATION DATA FORM－Arid West Region

roject／Site：Desert y $/$ Press
City／County：Clank Sampling Date：$\frac{2 / 29 / 08}{90-2}$ Applicant／owner：Circle Point Investigators）：$\frac{\text { Kelly }}{5}$ Shook，Bryan Morse，John H_{s} / S_{0} Section，Township，Range： Landform（hilislope，terrace，etc．）：Gentle hillslape wo Local relief（concave，convex，none）：hone Slope（\％）： $1-5$ NWI classification：人）Δ
 Subregion（LRR）：\perp －－ toms： 35.9479 名先 2此至 Soil Map Unit Name：
Are climatic／hydrologic conditions on the site typical for this time of year？Yes \qquad No \qquad （If no，explain in Remarks．）
Are＂Normal Circumstances＂present？Yes $_$No \qquad （If needed，explain any answers in Remarks．）
Are Vegetation no，Soil wo，or Hydrology wo naturally problematic？
SUMMARY OF FINDINGS－Attach site map showing sampling point locations，transects，important features，etc．

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Remarks: Soil pit dug in channel.

HYDROLOGY

WETLAND DETERMINATION DATA FORM - Arid West Region

rojectisit: DesettMPress
City/County: \qquad Sampling Date: 2129108 Sampling Point: $90-3 u$ Applicant/owner: Circle Point investigators): Bran Morse, Kellushot, Than Ho/son Section, Township, Range: Landform (hillsiope, terrace, ic.): Hills lope
\qquad Slope (\%): $1-5$ Datum: M pD 25 Subregion (LRR): D \qquad
 No \qquad (If no, explain in Remarks.)
Are climatic / hydrologic conditions on the site typical for this time of year? Yes Are "Normal Circumstances" present? Yes \qquad No \qquad (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

HYDROLOGY

Wetland Hydrology Indicators:

Primary indicators (any one indicator is sufficient)
… Surface Water (A1)
..... High Water Table (A2)
Saturation (A3)
_ Water Marks (81) (Nonriverine)
_. Sediment Deposits (B2) (Nonriverine)
__ Drift Deposits (B 3) (Nonriverine)
_ Surface Soil Cracks (B6)
__ Inundation Visible on Aerial Imagery (B7)
Water-Stained Leaves (89)
_ Salt Crust (B11)
_ Biotic Crust (B12)
._. Aquatic Invertebrates (B13)
_ Hydrogen Sulfide Odor (C1)
_ Oxidized Rhizospheres along Living Roots (C3
_ _ Presence of Reduced Iron (C4)
_. Recent Iron Reduction in Plowed Soils (C6)
_ Other (Explain in Remarks)

Secondary indicators (2 or more required) _ Water Marks (B1) (Riverine)
Sodiment Deposits (B2) (Riverine) Mínor
Drift Deposits (B3) (Riverine)
Drainage Patterns (B10)
_ Dry-Season Water Table (C2)
__ Thin Muck Surface (C7)
_ Crayfish Burrows (C8)
__ Saturation Visible on Aerial imagery (C9)
. Shallow Aquitard (D3)
_ FAC-Neutral Test (D5)

Field Observations:

Surface Water Present?
Water Table Present?
Saturation Present?
(includes capillary fringe)
 Depth (inches): \qquad

Describe Recorded Data (strean gauge, monitoring well, aerial photos, previous inspections), if avallable:
mark: Concave depression intaned in front ot $4^{\prime} \mathrm{CBC}$ under I-15. Channel is blue line on topo it trib. to Duck Crech. Flows enter" "via chamele that paralle is I-15 on west side (chaunel flows from s to E).
OHM: $15^{\prime} \omega \times 1.5^{\prime} \mathrm{h}$; bank slopet A. 305

WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Desert X Press
Applicantuowner: Circle Point
City/County: Clark County \quad Sampling Date: $\frac{2129 / 08}{90-4 N}$
 Landform (hillsiope, terrace, etc.): Hillslopa-gentie Local relief (concave, convex, none): none Slope (\%): $1-4$ Subregion (LRR): \triangle
to
No fo: 35,940350
Datum: NAD 83

Soil Map Unit Name: \qquad No NWI classification: $\frac{N / Q \quad \text { I }}{1} \quad 20 N \in 11$ Are climatic / hydrologic conditions on the site typical for this time of year? Yes \qquad
\qquad (if no, explain in Remarks.) Are "Normal Circumstances" present? Yes \qquad No \qquad (If needed, explain any answers in Remarks.)
Are Vegetation, No, Soil no, or Hydrology no naturally problematic?
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

Remarks:

SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Remarks:

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

Secondary Indicators (2 or more required)
_ Water Marks (B 1) (Riverine)
\checkmark Sediment Deposits (B2) (Riverine) milter
1 Drift Deposits (B3) (Riverine)
— Drainage Patterns ($\mathrm{B} \dagger 0$)
_ Dry-Season Water Table (C2)

- Thin Muck Surface (C7)
_ Crayfish Burrows (CB)
_ Saturation Visible on Aerial Imagery (C9)
Shallow Aquitard (D3)
FAC-Neutral Test (D5)

Field Observations:

(includes capillary fringe)
Remarks: $36^{\prime \prime} \mathrm{CBC}$ under I-15. Channel is blue line on topot tribe. to Duck Chef.

Exhibit B2

DesertXpress Field Data
 For Las Vegas Wash Watershed (HUC 15010015)

HBG Watershed Number	HUC 12 Watershed Name	HBG Field Data	ICF Jones \& Stokes Field Data	Comments
37	Town of Sloan	Yes	Yes	
38	Town of Arden	Yes	Yes	Delineated by HBG using adjacent watershed data.
39	Duck Creek	Yes	Yes	
40	Tropicana Wash	Yes	Delineated by HBG using adjacent watershed data.	
41	City of Las Vegas-Las Vegas Wash	No	Yes	Only northernmost possible station locations would be in this watershed. Urban Drainage features. Delineated by HBG using adjacent watershed data.

Huffman-Broadway Group

Field Data Forms

For DesertXpress

HUC 12 Watershed Town of Arden
Within Las Vegas Wash Watershed
(HUC 15010015)
HBG Watershed ID \# 38

DesertXpress

Field Notebook

HBG Watershed ID \# 38

Watershed Name: of Arden

If found, please return to:
George Ball Huffman-Broadway Group, Inc.

828 Mission Avenue
San Rafael, California 94901
415.925.2000
gball@h-bgroup.com
Return Postage Guaranteed
Potential Geomorphic OHWM Indicators

(A) Below OHW	(B) At OHW	(C) Above OHW	
1) In-stream dunes	1) Valley flat	1) Desert pavement	
2) Crested ripples	2) Active floodplain	2) Rock varnish	
3) Flaser bedding	3) Benches: low, mid, most prominent	3) Clast weathening	
4) Harrow marks	4) Highest surface of channel bars	4) Salt splitting	
5) Gravel sheets to rippled sands	5) Top of point bars	5) Carbonate etching	
6) Meander bars	6) Break in bank slope	6) Depositional topography	
7) Sand tongues	7) Upper limit of sand-sized particles	7) Caliche rubble 8) Soil development	
8) Muddy point bars	8) Change in particle size distribution	8) Soil development 9) Surface color/tone	
9) Long gravel bars	9) Staining of rocks	9) Surface color/tone 10) Drainage development	
10) Cobble bars behind obstructions	10) Exposed root hairs below intact soil layer	10) Drainage development	
11) Scour holes downstream of obstructions	11) Silt deposits	11) Surface relief	
12) Obstacle marks	12) Litter (organic debris, small twigs and leaves)	12) Surface rounding	.
13) Stepped-bed morphology in gravel	13) Drift (organic debris, larger than twigs)		
14) Narrow berms and levees			
15) Streaming lineations			
16) Dessication/mud cracks			
17) Armored mud balls 18) Knick Points			

Potential Vegetation OHWM Indicators

	(D) Below OHW	(E) At OHW	(F) Above OHW
Hydroriparian indicators	1) Herbaceous marsh species 2) Pioneer tree seedlings 3) Sparse, low vegetation 4) * Annual herbs, hydromesic ruderals 5) Perennial herbs, hydromesic clonals	1) Annual herbs, hydromesic ruderals 2) Perennial herbs, hydromesic clonals 3) Pioneer tree seedlings 4) Pioneer tree saplings	1) Annual herbs, xeric ruderals 2) Perennial herbs, non-clonal 3) Perennial herbs, clonal and non-clonal co-dominant 4) Mature pioneer trees, no young trees 5) Mature pioneer trees w/upland species 6) Late-successional species
Mesoriparian indicators	6) Pioneer tree seedlings 7) Sparse, low vegetation 8) Pioneer tree saplings 9) Xeroriparian species	5) Sparse, low vegetation Annual herbs, hydromesic 6) Ruderals 7) Perennial herbs, hydromesic clonals 8) Pioneer tree seedlings 9) Pioneer tree saplings 10) Xeroriparian species 11) Annual herbs, xeric ruderals	7) Xeroriparian species 8) Annual herbs, xeric ruderals 9) Perennial herbs, non-clonal 10) Perennial herbs, clonal and non-clonal codominent 11) Mature pioneer trees, no young trees 12) Mature pioneer trees, xeric understory 13) Mature pioneer trees w/upland species 14) Late-successional species 15) Upland species
Xeroriparian indicators	10) Sparse, low vegetation 11) Xeroriparian species 12) Annual herbs, xeric ruderals	12) Sparse, low vegetation 13) Xeroriparian species 14) Annual herbs, xeric ruderals	16) Annual herbs, xeric ruderals 17) Mature pioneer trees w/upland species 18) Upland species

HBG OHWM Field Data Sheet (Arid West)

HBG OHWM Field Data Sheet (Arid West)												
HGB Team\#			Project Name: DesertXpress						HBG Sub-Basin \#(1-41) $\quad 38$		HUC 12\#	
Drainage Data												Comments
Date (M/D/Y)	Time (24-Hour)	GPS Unit\#	Sample Point \#	Map Sheet Ref\#	OHW Width	Active (A) or Inactive (I) Channel	Up (U) / or Down (D) Slope from Road	Photo (Y/N)	Below OHWM	At OHWM	Above OHWM	Use note pages at back of notebook for comments. Put comment number in block below.
9.120	1045	5	3898		1.0	A	\checkmark	1	$\begin{array}{\|l} \hline \mathrm{A}: 5,10,11,12,13,16 \\ \hline \mathrm{D}: \frac{3}{} \end{array}$	B: $2,10,11,12$	$\frac{5,10,11,12}{\text { C: }} \frac{18}{\text { F: }}$	
9.11^{0}	100^{44}	5	50^{30}		1.0	λ	U	0	A: D: $5,10,11,12,13,16$ 3	B: $2,10,11,12$ $E:-12$	$\frac{\mathrm{C}:}{5,10,11,12}$	
$a \cdot 1.10$	10^{23}	5	28^{3}		0.5	A	U	\bigcirc	$\begin{array}{\|l} \hline \mathrm{A}: S, 10,11,12,13,16 \\ \hline \mathrm{D}: 3 \end{array}$	B: $2,10,16,12$ $\mathrm{E}: \quad \mathrm{s}, 12$	$\frac{\mathrm{C}: 5,10,11,12}{\mathrm{~F}: \frac{18}{18}}$	
$a \times{ }^{\circ}$	10^{2}	S	$=38^{44}$		0.5	A	\checkmark	Y	$\begin{aligned} & \mathrm{A}:_{5,10,11,12,15,16} \\ & \hline \mathrm{D}: \frac{3}{3} \end{aligned}$	B: E: $2,10,11,12$ $5,12$	$\frac{\mathrm{C}:}{\mathrm{F}, 10,11,12}$.
$a^{i o}$	$10)^{10}$	5	380		1.0	A	V	ψ	A: $\mathrm{D}:$	B:	C	samer Draniong DATA AS 38 ± 4
a^{\bullet}	$10^{2} 1$	5	330^{6}		$\begin{aligned} & 5.0 \\ & x .5 \end{aligned}$	1	\checkmark	U	A:	B: E:	\bar{C}	RTH Fervo VEnif
	103	\checkmark	30^{2}		$1{ }_{1} 0$	f	\checkmark	\bigcup_{1}	A: $\overline{\mathrm{D}}:$	$\mathrm{B}:$	\bar{C}	Stime Dumang Desta As 3804

Reference: $\mathrm{D}=$ Drainage; $\mathrm{M}=$ Manmade; $\mathrm{MD}=$ Major Drainage; $\mathrm{R}=$ River
E:IDesertXpressIDesert Xpress Drainage Field Data Sheet (Final).doc

ICF Jones \& Stokes

Wetland Determination Data Forms Arid West Region

For DesertXpress

HUC 12 Watershed Town of Arden

Within Las Vegas Wash Watershed
(HUC 15010015)
HBG Watershed ID \# 38

DesertXpress

Field Notebook

HBG Watershed ID \#

Watershed Name:

\qquad Town of Arden

If found, please return to:
George Ball
Huffman-Broadway Group, Inc.
828 Mission Avenue
San Rafael, California 94901
415.925.2000
gball@h-bgroup.com
Return Postage Guaranteed

WETLAND DETERMINATION DATA FORM - Arid West Region

Projectile: Desert Kpitss pplicantowner: Circle Point.

City/County: $\frac{\text { Las'Vegas/Clark }}{\text { State: } \mathrm{NV}}$ Sampling Date: $\frac{2 / 28 / 08}{95-1 w}$ Sampling Point: $95-1 \mathrm{~W}$ investigators): Kelly Shook, Bremanh Horse, John Holsom Section. Township, Range: Landform (hillslope, terrace, etc.): Valley floor 4. -115.18 .2471 Subregion (LRR): \triangle
\qquad
\qquad ic conditions on the site typical for this time of year? Yes

Are climatic / hydrologic conditions on the site typical for this time of year? Yes
Are Vegetation Yes, Soil YeS, or Hydrology _ significantly disturbed? Are vegetation no. Soil Tho, or Hydrology no naturally problematic?

No \qquad (If no, explain in Remarks.) Are "Normal Circumstances" present? Yes \qquad No \qquad (ff needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

 Remarks: No vegetation pueserty.

SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)
Depth
(inches)

Depth (inches):
Hydric Soil Present? \qquad No

Remarks: N / A, See comments on reverse.

HYDROLOGY

Remains: CCRFCD facility that ultimately flows to Duck Check.

WETLAND DETERMINATION DATA FORM - Arid West Region

oject/Site: Desertupress
City/County: Uninc./Clark__ Sampling Date state: NV Sampling Point: $95-2 \mathrm{~W}$ Applicantowner: Circle Point Investigators): Bryon Morse; Kelly Shook, John Had Son section, Township, Range: Landform (hillsiope, terrace, etc.): Hillsione-guntle Local relief (concave, con Subregion (LRR): \perp
\qquad No \qquad (if no, explain in Remarks.) Are "Normal Circumstances" present? Yes \qquad No \qquad Are Vegetation Yes, Soil yes, or Hydrology $\cap \mathrm{NO}$ significantly disturbed? (If needed, explain any answers in Remarks.) Are Vegetation №, Soil , or Hydrology ho naturally problematic?
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

detention basin was constructed $P S$ entimaci

VEGETATION

Remarks: N / A,

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficieni)

Surface Water (A1)
High Water Table (A2)
Saturation (A3)
Water Marks (Bi) (Nonriverine)
Sediment Deposits (82) (Nonriverine)
-
Drift Deposits (B3) (Nonriverina)
Surface Soil Cracks (B6)
Inundation Visible on Aerial Imagery (BT) Water-Stained Leaves (B9)
Field Observations: Surface Water Present?
Water Table Present?
Saturation Present? (includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

$$
N / A
$$ investigator (s): Kelly Shook, Bran Morse, John Hop/50/Section, Township. Range:

 Subregion (LRR): D \qquad
 Datum: NAD 83 Soil Map Unit Name: \qquad No \qquad (If no, explain in Remarks.)
Are climatic / hydrologic conditions on the site typical for this time of year? Yes Are Vegetation no. Soil Mo, or Hydrology ho significantly disturbed? Are "Normal Circumstances" present? Yes \quad No \qquad Are Vegetation hon, Soil no. or Hydrology han naturally problematic?
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

Hydrophytic Vegetation Indicators:
_ Dominance Test is $>50 \%$
__ Prevalence index is $\leq 3,0^{1}$

- Morphological. Adaptations ${ }^{1}$ (Provide supporting data in Remarks or on a separate sheet)
Problematic Hydrophytic Vegetation' ${ }^{9}$ (Explain)
${ }^{1}$ indicators of hydric soil and wetland hydrology must be present.
Hydrophytic
Vegetation
Present? Yes___ No

Remarks:

Remarks:

Soil pit deng in choral.

HYDROLOGY

WETLAND DETERMINATION DATA FORM - Arid West Region

jectSite: Desert prs
Applicantowner: Circle Bunts
 Investigators): John FoIson, Kelly Shook, Brogan Kors Section, Township, Range: \qquad Local relief (concave, convex, none): nom. Slope (\%): $\frac{1-5}{83}$ Landform (hisllope, terrace, etc.): Valley floor
tat -115.181835 -tong: 35.99829^{9} Datum: MAD 83 Subregion (LRR): D
\qquadNo \qquad (if no. explain in Remarks.)

ZONE II Soil Map Unit Name: r Are "Normal Circumstances" present? Yes \qquad No \qquad Are Vegetation No, Soil Mo . or Hydrology $\cap \mathrm{no}$ significantly disturbed? (if needed, explain any answers in Remarks.) Are Vegetation $\cap \mathrm{Mo}$, Soil $\cap \mathrm{no}$, or Hydrology no naturally problematic?
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

HYDROLOGY

 Applicantowner: Circle Point Sampling Point: $\frac{87}{\frac{7}{7}-1 / W}$ Investigators): Kelly Shook, Baa, Morse, John tool Son Section, Township, Range: Landform (hillslope, terrace, etc.): Vaullen floor \qquad Local relief (concave, convex, none): home Slope (\%): $1-5$ Subregion (LRR): \perp tat - 115.181352 tong: 36.027594 Datum: $N A D E S$ Soil Map Unit Name: N/A
\qquad NW classification: UL L ZONE U

Are climatic / hydrologic conditions on the site typical for this time of year? Yes \qquad No \qquad (If no, explain in Remarks.)
are Vegetation Yes soil \qquad , or Hydrology \rightarrow significantly disturbed? Are "Normal Circumstances" present? Yes \qquad No \qquad (If needed, explain any answers in Remarks.)
\qquad . -
\qquad SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks: Top indicates a blue Line. No swale or diainages wee observed int the Photo
 graded. Natural drainage may have been diverted away in this oven

VEGETATION

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)
Depth
(inches)

Remarks: No soil pit excavated.

HYDROLOGY

Remarks:

See remotes on reverse.

WETLAND DETERMINATION DATA FORM - Arid West Region

万rojec/Site: Doserthptess_City/County: Las Vopas/Cloh/k, Sampling Date: $\frac{2 / 27 / 08}{97-3 / 1 / 2}$.aplicantoowner: Circe point Investigators): Joan hols m, Bruonkorre, Hellustat Section, Township, Range: Landform (hills!ope, terrace, etc.): Vat len flower' U Local relief (concave, convex, none): hone Slope (\%): $1-5$ Subregion (LRR): $>$
 \qquad tore: 36,024800 Datum: NAD 83 Soil Map Unit Name: \qquad No \qquad (If no, explain in Remarks.)
Are climatic / hydrologic conditions on the site typical for this time of year? Yes —— Are "Normal Circumstances" present? Ye \qquad No. \qquad Are Vegetation . Soil 120 , or Hydrology 120 significantly disturbed? (if needed, explain any answers in Remarks.) Are Vegetation Mo, Soil ho, or Hydrology ho naturally problematic?
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

[^2]

Remarks:

HYDROLOGY

WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: DesertyPress Applicantowner: Circle Point City/County: Les Veras/Clark Sampling Date: $\geq 127 / 08$ investigators): KS, BM, JHokSon Section, Township, Range:
\qquad
\qquad Local relief (concave, convex, none): none \qquad Stope (\%): $1-5 \%$ Subregion (LRR): $>$
 tonged 3 L. 0220442 Datum: $1 \mathrm{~N} D 8 \mathrm{O}$ Soil Map Unit Name: \qquad No ___ (If no, explain in Remarks.) Are climatic / hydrologic conditions on the site typical for this time of year? Yes $\quad /$ Are "Normal Circumstances" present? Yes \qquad No \qquad Are Vegetation $N v$, Soil $N O$, or Hydrology $\hat{N} 0$ naturally problematic? (If needed, explain any answers in Remarks.) ${ }^{\text {No }}$ SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

SOIL

HYDROLOGY

Wetland Hydrology indicators:

Primary Indicators (any one indicator is sufficient)
_ Surface Water (A1)
_ High Water Table (A.2)
__ Saturation (A3)
__ Water Marks (B1) (Nonriverine)
_ Sediment Deposits (B2) (Nonriverine)
_ Drift Deposits (B3) (Nonriverine)

- Surface Soil Cracks (B6)

-

- Water-Stained Leaves (B9)

Surface Water Present?
Water Table Present?
Saturation Present?
_ . Salt Crust (Bi)

Secondary Indicators (2 or more required) _ Water Marks (B1) (Riverine)
_ Sediment Deposits (B2) (Riverine)
_ Biotic Crust (B12)
_ Aquatic Invertebrates (B33)
_ Hydrogen Sulfide Odor (C1)
if Drift Deposits (B3) (Riverine)

- Drainage Patterns (B10).Dry-Season Water Table (C2)
-

Thin Muck Surface (C7)
Crayfish Burrows (CB)

- Saturation Visible on Aerial Imagery (C9)

Shallow Aquitard (D3)
\therefore FAC-Neutral Test (D5)
(includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks: See remotes on meylire.

Soil Map Unit Name: \qquad
\qquad No \qquad (If no, explain in Remarks.)
Are climatic / hydrologic conditions on the site typical for this time of year? Yes -
Are Vegetation Yes, soil Yes, or Hydrology No significantly disturbed? Are "Normal Circumstances" present? Yes \qquad No \qquad Are Vegetation $\mathbb{X} \backslash$, Soil No, or Hydrology _ io 0 naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

 east to the" " "No vega present in the 300 wide pinker stern ores because appears upspeath

SOIL

HYDROLOGY

Secondary Indicators (2 or more requited)

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

Water Marks (81) (Riverine)
Sediment Deposits (B2) (Riverine)
1 Drift Deposits (B3) (Riverine)
Drainage Patterns (B10)
__ Dry-Season Water Table (C2)
_ Thin Muck Surface (C7)
_ Grayish Burrows (CB)
. Saturation Visible on Aerial Imagery (C9)

- Shallow Aquitard (D3)
\therefore FAC-Neutral Test (D5)
_ Water-Stained Leaves (B9)
Field Observations:
Surface Water Present?
Water Table Present? Saturation Present?
(includes capillary fringe)
 No \qquad

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:
Remarks: blue line on fop, Sen-remates on reverse. Applicanvowner: Cinde Point investigators): $\angle S, B M, J . H o l s o n$ Landform \{hillsiope, terrace, etc.): Valley, floor Subregion (LRR): D
\qquad City/County: LV/Clask State: $\Lambda \sqrt{V}$ Sampling Date: $\frac{2 / 28 / 08}{97-51 /}$ Section, Township, Range: \qquad Local relief (concave, convex, none): n으﹎ㅡ﹎. Slope (\%): Datum: NAP 83

Soil Map Unit Name: \qquad
Are climatic / hydrologic conditions on the site typical for this time of year? Yes No ___ (if no, explain in Remarks.) Are Vegetation Yes, Soil Yes, or Hydrology les significantly disturbed?

Are "Normal Circumstances" present!? Yes \qquad No \qquad Are Vegetation $N 0$, Soil f) 0 , or Hydrology $\triangle 0$ naturally problematic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No $\frac{V}{1 / R}$
Hydric Soil Present?	Yes ———	No $\frac{N / i}{1 /}$
Wetland Hydrology Present?	Yes	No

Is the Sampled Area within a Wetland? Yes__ No__
Remarks: Shown on top as a blue line, howeversigniticant disturbance has modified natural drainage. Terrain in study over whap harem recenter bladed t.

 VEGETATION Check $\operatorname{cc\beta }=C B$ website.

SOIL

HYDROLOGY

WETLAND DETERMINATION DATA FORM - Arid West Region

Projec/Site: desert Mores

 Applicanv/Owner: Civcla Pointinvestigators): $K S, B M, T H O 1 \operatorname{son}$
Landform (hillslope, terrace, etc.): Walled floor
City/County: $\frac{L V / \text { Clonk }}{\text { State: } N V}$ Section, Township, Range: — Sampling Point: $97-6 \mathrm{k}$ Subregion (LRR): D Soil Map Unit Name: \qquad No \qquad (If no, explain in Remarks.)
Are climatic / hydrologic conditions on the site typical for this time of year? Yes
Are Vegetation Yes, Soil Yes, or Hydrology $N o$ significantly disturbed? 1 Are Vegetation $\frac{110}{1}$, soil $N 0$, or Hydrology $N 0$ naturally problematic? Are "Normal Circumstances" present? Yes Slope (\%): 1-5 Local relief (concave, convex, none): \qquad Sampling Date: $\frac{2 / 28 / 08}{976}$
\qquad _ City
\qquad

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

during that $/ 1 / 5$ I- 15 . Nat. drain man hi?

VEGETATION Tribe. to Duck Chef.

SOIL

HYDROLOGY

Remarks:

Tribe. to Duck creek. See remarks on-reurse.

Exhibit B2

DesertXpress Field Data
 For Las Vegas Wash Watershed (HUC 15010015)

HBG Watershed Number	HUC 12 Watershed Name	HBG Field Data	ICF Jones \& Stokes Field Data	Comments
37	Town of Sloan	Yes	Yes	
38	Town of Arden	Yes	Yes	Delineated by HBG using adjacent watershed data.
39	Duck Creek	Yes	Yes	
40	Tropicana Wash	Yes	Delineated by HBG using adjacent watershed data.	
41	City of Las Vegas-Las Vegas Wash	No	Yes	Only northernmost possible station locations would be in this watershed. Urban Drainage features. Delineated by HBG using adjacent watershed data.

Huffman-Broadway Group

Field Data Forms

For DesertXpress

HUC 12 Watershed Duck Creek
Within Las Vegas Wash Watershed (HUC 15010015)

HBG Watershed ID \# 39

DesertXpress
 Field Notebook

HBG Watershed ID \# 3a

Watershed Name: Duck creck

If found, please return to:
George Ball
Huffman-Broadway Group, Inc.
828 Mission Avenue
San Rafael, California 94901
415.925.2000
gball@h-bgroup.com
Return Postage Guaranteed
Potential Geomorphic OHWM Indicators

Potential Vegetation OHWM Indicators			
	(D) Below OHW	(E) At OHW	(F) Above OHW
Hydroriparian indicators	1) Herbaceous marsh species 2) Pioneer tree seedlings 3) Sparse, low vegetation 4) * Annual herbs, hydromesic ruderals 5) Perennial herbs, hydromesic clonals	1) Annual herbs, hydromesic ruderals 2) Perennial herbs, hydromesic clonals 3) Pioneer tree seedlings 4) Pioneer tree saplings	1) Annual herbs, xeric ruderals 2) Perennial herbs, non-clonal 3) Perennial herbs, clonal and non-clonal co-dominant 4) Mature pioneer trees, no young trees 5) Mature pioneer trees w/upland species 6) Late-successional species
Mesoriparian indicators	6) Pioneer tree seedlings 7) Sparse, low vegetation 8) Pioneer tree saplings 9) Xeroriparian species	5) Sparse, low vegetation Annual herbs, hydromesic 6) Ruderals 7) Perennial herbs, hydromesic clonals 8) Pioneer tree seedlings 9) Pioneer tree saplings 10) Xeroriparian species 11) Annual herbs, xeric ruderals	7) Xeroriparian species 8) Annual herbs, xeric ruderals 9) Perennial herbs, non-clonal 10) Perennial herbs, clonal and non-clonal codominent 11) Mature pioneer trees, no young trees 12) Mature pioneer trees, xeric understory 13) Mature pioneer trees w/upland species 14) Late-successional species 15) Upland species
Xeroriparian indicators	10) Sparse, low vegetation 11) Xeroriparian species 12) Annual herbs, xeric ruderals	12) Sparse, low vegetation 13) Xeroriparian species 14) Annual herbs, xeric ruderals	16) Annual herbs, xeric ruderals 17) Mature pioneer trees w/upland species 18) Upland species

HBG OHWM Field Data Sheet (Arid West)
F-I.5-140

Reference: $D=$ Drainage; $M=$ Manmade; $M D=$ Major Drainage; $R=$ River
E:WesertXpress\Desert Xpress Drainage Field Data Sheet (Final).doc
HBG OHWM Field Data Sheet (Arid West)

HGB Team\# $6 \mathrm{H}, 1 \mathrm{H}$			Project Name: DesertXpress						HBG Sub-Basin\# (1-41) 29		HUC 12\#	
Drainage Data												Comments
$\begin{gathered} \text { Date } \\ (\mathrm{M} / \mathrm{D} / \mathrm{Y}) \end{gathered}$	Time (24-Hour)	GPS Unit \#	Sample Point \#	Map Sheet Ref\#	OHW Width	$\left\|\begin{array}{l} \text { Active (A) } \\ \text { or } \\ \text { Inactive (I) } \\ \text { Channel } \end{array}\right\|$		$\begin{aligned} & \text { Photo } \\ & \text { (YIN) } \end{aligned}$	Below OHWM	At OHWM	Above OHWM	Use note pages at back of notebook for comments. Put comment number in block below.
$a, 10^{\circ}$	0^{939}	5	3916		1.0	A	\cup	U	$\text { A: } 5,9,10,12,13$ D: $7,10$	$\begin{array}{cc} \text { B: } & 2,12,13 \\ & 5,12 \end{array}$	$\begin{array}{ll} \hline \mathrm{C}: & 10,11,12 \\ \hline \mathrm{~F}: & 5,15,18 \end{array}$	
$a^{.10^{10}}$	$10^{0 k}$	5	390 17		1.0	A	\checkmark	$1 /$	$\text { A: } 5,9,10,12,13$ D: $7,10$		$\begin{array}{ll} \hline \mathrm{C}: & 10,11,12 \\ \mathrm{~F}: & 5,15,18 \end{array}$	
$a \cdot 10^{10}$	100^{5}	5	390^{18}		1.0	A	U	Y	$\text { A: } 5,9,10,12,13$ D: $7,10$	B: $2,12,13$	$\begin{aligned} & \text { C: } \frac{10,11,12}{5,15,18} \end{aligned}$	
$a \cdot 1^{10}$	10^{6}	5	39899		$\begin{aligned} & 3.0 \\ & \times 0 \end{aligned}$	(1)	\checkmark	l	$\begin{aligned} & \text { A: } 5,9,10,12,13 \\ & \mathrm{D}: \frac{10}{7,10} \end{aligned}$		C:$10,11,12$ $5,15,18$	
$\pi 1^{10}$	103	5	siso		3.6	A	v	$\begin{aligned} & u \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { A: } \\ \hline \text { D: } 10,12,13 \\ \hline 7,10 \\ \hline \end{array}$	B: $2,12,13$ E: $\quad 5,12$	C:$10,11,12$ F:$5,15,18$	$\begin{aligned} & \text { OUTSIDE } \\ & \text { OT ROUTE } \end{aligned}$
$a^{\prime \prime^{\prime b}}$	10^{13}	5	39		$\begin{aligned} & 6,0 \\ & x .0 \end{aligned}$	px	U	U	A: $5,9,10,12,13$ D: 7,10	B: E: 12,13 5,12	$\begin{array}{ll} \hline \text { C: } & 10,11,12 \\ \hline F: & 5,15,18 \end{array}$	RTAFFIELD verifiep
	10^{08}	5	$290{ }^{2}$		$\begin{aligned} & 6.0 \\ & \times .5 \end{aligned}$	k	V	4	$\text { A: } 5,9,10,12,13$ D: $7,10$	B: $2,12,13$	C: $10,11,12$	RTH FIELD VERIFED

Reference: $D=$ Drainage; $M=$ Manmade; MD $=$ Major Drainage; $\mathrm{R}=$ River
E:IDesertXpresslDesert Xpress Drainage Field Data Sheet (Final).doc

ICF Jones \& Stokes

Wetland Determination Data Forms Arid West Region

For DesertXpress

HUC 12 Watershed Duck Creek
Within Las Vegas Wash Watershed
(HUC 15010015)
HBG Watershed ID \# 39

WETLAND DETERMINATION DATA FORM - Arid West Region

Projecusite: Desentixpress
 Applicantowner: Circle Point
 Landform (hillslope, terrace, etc.): Valley floor Local relief (concave, convex, none): hone \qquad Slope (\%): $1-5$ Subregion (LRR): $>$ Latin -115181352 tong: 4 2fasy Datum: Na, 5 ? Soil Map Unit Name: N/A NWI classification: $1 / 4$

Are climatic / hydrologic conditions on the site typical for this time of year? Yes \qquad No \qquad (If no, explain in Remarks.)
Are Vegetation Yes, son___, or Hydrology _nan significantly disturbed?
Are "Normal Circumstances" present? Yes \qquad No \qquad Are Vegetation AO , Soil mom or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Is the Sampled Area within a Wetland?

Remarks: Tope indicate os a blue lime. No spates or diaimanes wee observes in the Photo

SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)
Depth
(inches)

HYDROLOGY

WETLAND DETERMINATION DATA FORM - Arid West Region

\qquad Cla促 Appicentowner: CIRCLE Polit \qquad
 Landform (hillstope, terrace, etc.): Va lien floor Subregion (LRR): D Soil Map Unit Name: \qquad Section, Township, Range: State: NV Sampling Date: 2127108 Sampling Point: $\frac{98-111+}{98-1 E}$ Local relief (concave, convex, none): none Slope (\%): $1-5$
\qquad
\square No \qquad (If no, explain in Remarks.)
Are Vegetation Yes? Soil Yes?, or Hydrology No significantly disturbed? Are Vegetation Yes; Soil Yes?, or Hydrology No significantly disturbed?
Are Vegetation $\ 10$, Soil____, or Hydrology___naturally problematic?

Are "Normal Circumstances" present? Yes \qquad No \qquad (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. . Wit $\mathrm{B}^{\text {nos }}$

Remarks: 8 CBCS(l00'wide total) under I-15 SB onramp@ Blue Diamond
howls interchamen: ccepfCD facilities, fully
Flow enters $C B C=$ from eorithen-lined oanabs from the south (30 when) + from the west (ISmael $)$

Remarks: No veg present.

| Profle Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) |
| :--- | :--- | :--- |
| Depth |
| finches) |

HYDROLOGY

WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: D P	City/County: Clatk
	State: NV
Investigator(s): $1<5$	ction, Township, Range: ___ 98-2
Landform (hilislope, terrace, etc.): Valley floor \qquad tat $12-115,1814$ aid tong: 36,040836 Datum: NAD 83	
oil Map Unit	
Are climatic / hydrologic conditions on the site typical for this time of year? Yes \qquad No \qquad (if no, explain in Remarks.) Are Vegetation \qquad Soil \qquad , or Hydrology \qquad NO slgnificantly disturbed? Are "Normal Circumstances" present? Yes \qquad No \qquad Are Vegetation \qquad No , Soil \qquad , or Hydrology \qquad No naturally problematic? (If needed, explain any answers in Remarks.)	

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

HYDROLOGY

WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Desert Xeres

 (pplicant/owner: Civele Point.City/County: Clank Investigators): Bryon Morse, Kelly Shook, John/Hosestion, Township, Range: State: $N V$ Sampling Date: $\frac{2 / 27 / 08}{98-3 \mathrm{~m}}$
Sampling Point: Landform (hillsiope, terrace, etc.): Valley floor, In Local relief (concave, convex, none): 19019 Stope (\%): $\frac{1-5}{03}$ Subregion (LRR): \qquad satin- $115.181 / 105 \quad$ tong: 10 3 36.033914 \qquad Datum: WiND 83 Soil Map Unit Name: N / A
\qquad No \qquad (If no, explain in Remarks.)
Are climatic / hydrologic condifitions on the site typical for this time of year? Yes. Are Vegetation NO, Soil \qquad $\xrightarrow{\text { or नhydriogy }}$ significantly disturbed? Are Vegetation No, SoIl \qquad or Hydrology \longrightarrow naturally problematic? Are "Normal Circumstances" present? Yes \qquad No \qquad (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

Remarks:

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)
Depth
(inches)
$\stackrel{\text { Remarks }}{ }$ No soil pit was excavated.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
—— High Water Table (A2)
- Saturation (A3)
— Water Marks (B1) (Nonriverine)
— Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Solis Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)
\qquad Salt Crust (B11) Biotic Crust (B12)
\qquad Aquatic invertebrates (B13)
- H Hydrogen Sulfide Odor (C1)
\qquad Oxidized Rhizospheres along Living Roots (C3)
EP Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soils (C6) Other (Explain in Remarks)

Secondary indicators (2 or more required) _ Water Marks (B1) (Riverine)
__ Sediment Deposits (B2) (Riverine)
_ Drift Deposits (B3) (Riverine)
__Drainage Patterns (B10)
_ Dry-Season Water Table (C2)
_ Thin Muck Surface (C7)
__ Crayfish Burrows (CB)
_ Saturation Visible on Aerial imagery (C9)
_ Shallow Aquitard (D3)
FAC-Neutral Test (D5)

Field Observations:
Surface Water Present?
Water Table Present?

Saturation Present?

 Depth (inches): Depth (inches): \qquad
(includes capillary fringe) Depth (inches): \qquad Wetland Hydrology Present? Yes \qquad No No $\sqrt{ }$ Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks: Channel shown as blue Un e on to po, but there's ho defined bed bi -bonk aches undeveloped parcel honky a slight swale j. Relative mem bow Sing dovelophest west of this

 (20'w' $\times 1^{\prime} \mathrm{h} ; 1$: 4"bank" slope).

Fo. 5-150

WETLAND DETERMINATION DATA FORM - Arid West Region

 ,ppicanvowner: Circle Point

City/County \qquad Sampling Date: $\frac{2 / 27 / 06}{20-116}$ Investigators): Than folsom, Holly Time, Ban Hor section, Township, Range: Investigator (s): (hilliope, terrace, etc.): Vole fa Aloof
Subregion (L RR): I tat: $-115,101305$ \qquad tong: H 36.052749 Slope ((\%): $1-5$
\qquad L No. \qquad (if no, explain in Remarks.)
Are climatic / hydrologic conditions on the site typical for this time of year? Yes \square
\qquad
Are Vegetation MO, Soil MO, or Hydrology MO significantly disturbed?
Are "Normal Circumstances" present? Yes \qquad No. \qquad Are Vegetation $\triangle O$, Soil $M O$, or Hydrology No naturally problematic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

Prevalence Index $=\mathrm{B} / \mathrm{A}=4.5$
Hydrophytic Vegetation Indicators:
Dominance Test is $>50 \%$

- Prevalence Index is $\leq 3.0^{1}$
\ldots Morphological Adaptations' (Provide supporting data in Remarks or on a separate sheet)
_ Problematic Hydrophytic Vegetation ${ }^{1}$ (Explain)
${ }^{1}$ Indicators of hydric soil and wetland hydrology must be present.

SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

HYDROLOGY

Secondary Indicators (2 or more required)

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drift Deposits (B3) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5) \quad Sediment Soling

Field Observations:
Surface Water Present?

Yes___ No	Depth (inches):	
Yes__	No	Depth (inches):
Yes__	No _	Depth (inches):

\qquad
\qquad No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:
 Drainage Drainage crosses unduvel. private parcel \& trash is disposed of in drainage.

WETLAND DETERMINATION DATA FORM－Arid West Region

Droject／ite：Desert Mores splicantowner：Circle point．

Sampling Date：$\frac{2 / 27 / 08}{\text { Sampling Point：} \frac{98-5 W / E}{2}}$
investigators）：KS，BM， \bar{W} han 1 to 15σ Section，Township，Range：
Landform（hilislope，terrace，etc．）：Vallena floor Local relief（concave，convex，none）： \qquad Slope（\％）：$\frac{1-5}{5}$
Subregion（LRR）：D
$\cup \quad$ tat th -115.181088
tong：占 36.032487

$$
2
$$ Datum：NAP 83 Soil Map Unit Name： $\mathcal{N} \mid A$

\qquad No \qquad （If no，explain in Remarks．） Are＂Normal Circumstances＂present？Yes \qquad No \qquad
（If needed，explain any answers in Remarks．）

SUMMARY OF FINDINGS－Attach site map showing sampling point locations，transects，important features，etc．

VEGETATION Land use：T－15 part undeveloped paw al to the wert or more detailed lond use info．

Remarks：

SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Remarks: Soil pit oud in champed.

HYDROLOGY

Wetland Hydrology Indicators:
Primary Indicators (any one indicator is sufficient)
_ Salt Crust (B11)
_ Biotic Crust (B12)
_ Aquatic invertebrates (B13)
_ Hydrogen Sulfide Odor (C1)
_ Oxidized Rhizospheres along Living Roots (C3)
_ Presence of Reduced Iron (C4)
—. Recent Iron Reduction in Plowed Soils (C6)
__ Other (Explain in Remarks)

Secondary indicators (2 or more required)
__ Water Marks (B 1) (Riverine)
_ Sediment Deposits (B2) (Riverine)
_ Drift Deposits (B3) (Riverine)
_ Drainage Patterns (B10)
_. Dry-Season Water Table (C2)
__ Thin Muck Surface (C7)
__ Crayfish Burrows (C8)
_ Saturation Visible on Aerial Imagery
(CP)
_ Shallow Aquitard (D3)

- FAC-Neutral Test (D5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9)

Field Observations:

Surface Water Present?
Water Table Present?
Saturation Present?
 Depth (inches):

\qquad Wetland Hydrology Present? Yes \qquad No \qquad (includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:
Remarks: Substrate sorting, Trib to Duck Creek.

WETLAND DETERMINATION DATA FORM - Arid West Region

roject/Site: \qquad
55
City/County:

\qquad Applicant/Owner: Circle Pint investigators): Kelly Shoot, Morgorct Widdowson Section, Township, Range: State: N竟 Sampling Point: $98-7$ Landform (hilisiope, terrace, etc.): Val| ens finer Subregion (LRR): \qquad Datum: VAD 83 Soil Map Unit Name: \qquad No \qquad (If no, explain in Remarks.)
Are climatic / hydrologic conditions on the site typical for this time of year? Yes Are "Normal Circumstances" present? Yes \qquad No \qquad
(ff needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

Remarks: No sail present. Surface subatime is sand, gravel, and peebles.

HYDROLOGY

Remarks: Tribe. to Duck Crete. See reimartes ore reverse.

WETLAND DETERMINATION DATA FORM - Arid West Region

Projectile: Desehtyoness
 Sampling Date: $\frac{2 / 27 / 08}{97-16}$ tppilicant/Owner: Circle Point \qquad Sampling Point: $97-1 \mathrm{M}$ investigators): Kelly Shoo, Bryon Ashe, John folsonSection, Township, Range:
\qquad Local relief (concave, convex, none): Mane Slope (\%): $1-5$ Subregion (LRR): \perp

Soil Map Unit Name; N/A
\qquad
Are climatic / hydrologic conditions on the site typical for this time of year? Yes \qquad No \qquad (If no, explain in Remarks.)
Are Vegetation Yes son___ or Hydrology significantly disturbed?
Are Vegetation $\sqrt{0}$, Soil - , or Hydrology \quad naturally problematic?
Are "Normal Circumstances" present? Yes No. \qquad (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Tree Stratum	(Use scientific names.)	Absolute	Dominant indicator
		$\%$ Cover	Species?
		Status	

1. 2.

4.	
Saping/Shrub Stratum	Total Cover:
1.	

2. | 1. |
| :--- |
| 3. |
| 4. |
| 5. |
| 6. |
| 7. |
| 8. |
| Total Cover: $\frac{\square}{\square}$ |

Woody Vine Stratum

2.

\% Bare Ground in Herb Stratum 10,5 \% Cover of Biotic Crust \qquad of
 Dominance Test worksheet: Wait of paesiche previous Number of Dominant Species That Are OBL, FACW, or FAC:
(A)

Total Number of Dominant Species Across All Strata:
(B)

\qquad -

Dominance Test is $>50 \%$

- Prevalence Index is $\leq 3.0^{1}$
- Morphological Adaptations' (Provide supporting data in Remarks or on a separate sheet)
__ Problematic Hydrophytic Vegetation ${ }^{1}$ (Explain)
${ }^{1}$ Indicators of hydric soil and wetland hydrology must be present.
Hydrophytic
Vegetation
Present? \quad Yes___ No

No

Remarks:
No veg present.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
_ Salt Crust (B11)
_ Biotic Crust (B12)
High Water Table (A2)
_ Saturation (A3)
__ Water Marks (B1) (Nonriverine)
__ Sediment Deposits (B2) (Nonriverine)
___ Drift Deposits (B3) (Nonriverine)
_ Surface Soil Cracks (B6)
_ Inundation Visible on Aerial Imagery (B7)
Water-Stained Leaves (B 9)

Secondary \{ndicators (2 or more required)
__ Water Marks (B1) (Riverine)
_ Sediment Deposits (B2) (Riverine)
_ Drift Deposits (B3) (Riverine)
_ Drainage Patterns (810)
__ Dry-Soason Water Table (C2)
_ Thin Muck Surface (C7)
_ Crayfish Burrows (C8)
_ Saturation Visible on Aerial Imagery (C9)
_ Shallow Aquitard (D3)
_FAC-Neutral Test (D5)

Field Observations:
Surface Water Present?
Water Table Present?
Saturation Present?
Yes No No
(includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
See remands de reverse.

Exhibit B2

DesertXpress Field Data
 For Las Vegas Wash Watershed (HUC 15010015)

HBG Watershed Number	HUC 12 Watershed Name	HBG Field Data	ICF Jones \& Stokes Field Data	Comments
37	Town of Sloan	Yes	Yes	
38	Town of Arden	Yes	Yes	Delineated by HBG using adjacent watershed data.
39	Duck Creek	Yes	Yes	
40	Tropicana Wash	Yes	Delineated by HBG using adjacent watershed data.	
41	City of Las Vegas-Las Vegas Wash	No	Yes	Only northernmost possible station locations would be in this watershed. Urban Drainage features. Delineated by HBG using adjacent watershed data.

Huffman-Broadway Group

Field Data Forms

For DesertXpress

HUC 12 Watershed Duck Creek

Within Las Vegas Wash Watershed

(HUC 15010015)
HBG Watershed ID \# 39

WETLAND DETERMINATION DATA FORM - Arid West Region

ojectisite: $\frac{\text { Desert } X p i \operatorname{ses}}{\text { cit }}$

Applicanvowner: Circle Point

investigators): KS, BM, J. Hols on
Landform (hillslope, terrace, etc.): Valley floor Section, Township, Range: \qquad Local relief (concave, convex, mane): Mons

$\sqrt[N / 2]{2 N E N}$

Soil Map Unit Name: \qquad No \qquad (If no, explain in Remarks.)
Are climatic / hydrologic conditions on the site typical for this time of year? Yes Are Vegetation yeS, soil $\frac{\square E S}{\sqrt{J}}$, or Hydrology $\cap .0$ significantly disturbed? Are "Normal Circumstances" present? Yes \qquad No \qquad Are Vegetation $\cap 0$, Soil $1 n 0$, or Hydrology $n \cap$ naturally problematic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

| Depth
 (inches) | Color (moist) |
| :--- | :--- | :--- |

Remarks: (sheet, limed. No sollpit dur.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

Secondary indicators (2 or more required)
__ Water Marks (B1) (Riverine)
__. Sediment Deposits (B2) (Riverine)
_ Drift Deposits (B3) (Riverine)
_ Drainage Patterns (B 10)

- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
_ Saturation Visible on Aerial Imagery (C9)
_ Shallow Aquitard (D3)
_ FAC-Neutral Test (D5)

Field Observations: Surface Water Present? Yes ___ No $\sqrt{ }$ Depth (inches) Water Table Present? Yes___ No ___ Depth (inches) Saturation Present? Yes___ No \qquad Depth (inches); \qquad
\qquad No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Concrete -Lined facility.

roject/Site:
 \qquad City/County: $\frac{\operatorname{Las} \operatorname{Vgas} 5 / C / m / t o m}{\text { state: } / \sqrt{3}}$ Sampling Date: $\frac{3 / 1 / 08}{\text { Sampling Point: } 594-1 h_{1}}$

 Applicantowner: Circa Point investigators): $K S$, ESM, THolson Section, Township, Range: Landform (hitslope, terrace, etc.): Va.(len foo \qquad Local relief (concave, convex, none): Moline slope (\%): 3-7 Subregion (LRR): D \qquad Long: $1 \mathrm{~L} \quad 36.053304$ Datum: NAD 83 Soil Map Unit Name: \qquad No \qquad (if no, explain in Remarks.)Are climatic / hydrologic conditions, on the site typical for this time of year? Yes
Are Vegetation 1 MO , Soil MO , or Hydrology MO significantly disturbed? Are "Normal Circumstances" present? Yes \qquad No \qquad (If needed, explain any answers in Remarks.)

Are Vegetation 1 , Soil $M O$, or Hydrology 120 naturally problematic?

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc,

Remarks:

SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)
Depth
(inches)

Remarks
 No soil pit excavated.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)
_. Surface Water (A1)

- High Water Table 〈A2)

Saturation (A3)
_ Water Marks (B1) (Nonriverine)
__ Sediment Deposits (B2) (Nonriverine)
_ Drift Deposits (B3) (Nonriverine)
—. Surface Soil Cracks (B6)
_ Inundation Visible on Aerial Imagery (B7)
Water-Stained Leaves (B9)

Secondary indicators (2 or more required) Water Marks (B1) (Riverine)
_ Sediment Deposits (B2) (Riverine)
_ Drift Deposits (B3) (Riverine)
_ Drainage Patterns (B10)
__ Dry-Saason Water Table (C2)
_ Thin Muck Surface (C7)
_ Crayfish Burrows (C8)
__. Saturation Visible on Aerial Imagery (C9)
.... Shallow Aquitard (D3)
_. FAC-Neutral Test (D5)

Field Observations:
Surface Water Present?
Water Table Present?
Saturation Present?
(includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if. available:

Remarks:
seat, sort, shelving:

WETLAND DETERMINATION DATA FORM - Arid West Region

rojectsite: Deserthpess

 Sampling Point: $2911-2 \mathfrak{v}$

Applicantowner: Circle Pint \qquad
investigators): $K S, B H, J, H o l s o n$ \qquad Section, Township, Range: \qquad Slope (\%): $1-5$ Landform (hillslope, terrace, etc.): Valleys forth LatiN - 115.214173 tomg.1 36.049092 Datum: NAD 83 Subregion (LRR): D \qquad
\qquad Soil Map Unit Name: \qquad
 No \qquad (If no, explain in Remarks.)
Are climatic / hydrologic conditions on the site typical for this time of year? Yes \qquad
Are Vegetation $\mathfrak{n O}$. Soil no, or Hydrology no significantly disturbed?
Are "Normal Circumstances" present? Yes" \qquad No \qquad
(If needed, explain any answers in Remarks.)
Are Vegetation 1 O , soil _ho, or Hydrology tho naturally problematic?
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

Remarks:

SOIL
Sampling Point:
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)
Depth
finches)

HYDROLOGY

Wetland Hydrology Indicators:

Primary indicators (any one indicator is sufficient)

Secondary Indicators (2 or more required) Water Marks (B1) (Riverine)
_ Sediment Deposits (B2) (Riverine)

1. Drift Deposits (B3) (Riverine)
_ Drainage Patterns ($B 10$)
—Dry-Season Water Table (C2)
— Thin Muck Surface (C7)
_ Crayfish Burrows (C8)
_ Saturation Visible on Aerial Imagery (C9)
__. Shallow Aquitard (D3)
_ FAC-Neutral Test (D5)

Field Observations:
Surface Water Present?
Water Table Present?
Saturation Present?

Wetland Hydrology Present? Yes \qquad No
 (includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

Litter t debris.
ged. Sorting.
 \section*{\section*{WETLAND DETERMINATION DATA FORM - Arid West Region
 \section*{\section*{WETLAND DETERMINATION DATA FORM - Arid West Region

 \qquad}

 DrojecuSite: Desert Ypres

 DrojecuSite: Desert Ypres Applicantowner: Circle Point} Applicantowner: Circle Point}

Investigators): $K S, B M, J+t D \mid S O n$
Landform (hillslope, terrace, etc.): $\frac{V_{a} \| \text { lees }}{}$ floor \qquad Section, Township, Range: Local relief (concave, convex, none): home Subregion (LRR): D
 Soil Map Unit Name: \qquad No. \qquad (If no, explain in Remarks.)
Are climatic /hydrologic conditions on the site typical for this time of year? Yes
Are "Normal Circumstances" present? Yes \qquad No \qquad

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)
Depth
(inches)

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)
__ Surface Water (A1)
_ High Water Table (A2)
__Saturation (A3)

- Water Marks ($B 1$) (Nonriverine)
__ Sediment Deposits $\langle B 2$) (Nonriverine)
Drift Deposits (B3) (Nonriverine)
_ Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9)

Secondary indicators (2 or more required)
_ Water Marks (B1) (Riverine)
_ Sediment Deposits (B2) (Riverine)
__ Drift Deposits (B3) (Riverine)
_ Drainage Patterns (B 10)
__ Dry-Season Water Table (C2)
... Thin Muck Surface (C7)
__ Crayfish Burrows (C8)
_ Saturation Visible on Aerial imagery (C9)
_. Shallow Aquitard (D3)
_ FAC-Neutral Test (D5)

Field Observations:

Remarks:
Concrete-lined channel. Section, Township, Range: \qquad Local relief (concave, convex, none): none Slope (\%):- Landform (hilislope, terrace, etc.): Valley floor \qquad Datum: NAD $\$ 3$ Subregion (LRR): $>$

Soil Map Unit Name:

\qquad No \qquad (If no, explain in Remarks.)
Are climatic / hydrologic conditions on the site typical for this time of year? Yes
 (f no, explain in Remarks.)

Are "Normal Circumstances" present? Yes \qquad No \qquad Are Vegetation MO, Soil MO, or Hydrology MO naturally problematic?
(If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

Remarks:
No veg.

SOIL

HYDROLOGY

Wetland Hydrology Indicators:

Primary indicators (any one indicator is sufficient)
__ Surface Water (A1)
_... Salt Crust (B11)
High Water Table (A2)
_ Biotic Crust (B12)
_ Saturation (A3)
_ Water Marks (B1) (Nonriverine)
__ Sediment Deposits (B2) (Nonriverine)
__Drift Deposits (B3) (Nonriverine)
Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)
_ Water Marks (B1) (Riverine)
_ Sediment Deposits (B2) (Riverine)
_ Drift Deposits (B3) (Riverine)
__. Drainage Patterns (B 10)
_ Dry-Season Water Table (C2)
_ Thin Muck Surface (C7)
__. Crayfish Burrows (C8)
_ Saturation Visible on Aerial Imagery (C9)
_ Shallow Aqutard (D3)
_ FAC-Neutral Test (D5)

Field Observations:

Surface Water Present?
Water Table Present?
Saturation Present? Saturation Present?
(includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Concrete hied chamind.

WETLAND DETERMINATION DATA FORM - Arid West Region

ojectSite: Desert $\frac{\text { thess }}{\text { pres }}$
City/County

 applicantowner: Curdle, Point Section, Township, Range: \qquad
\qquad ———_-_ Local relief (concave, convex, none): NSN Slope (\%): Landform (hillslope, terrace, etc.): Valley flare Local relief (concave, convex, none): Ron \qquad Subregion (LRR): \qquad Soil Map Unit Name: \qquad tat: $\frac{W-115.2}{\text { time of year? Yes }}$ No \qquad (If no, explain in Remarks.)
 Are Vegetation $M 110$, soil ho, or Hydrology ho naturally problematic? Are "Normal Circumstances" present? Yes \qquad No \qquad (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

HYDROLOGY

Wetland Hydrology Indicators:

Primary indicators (any one indicator is sufficient)
__ Surface Water (A1)
High Water Table (A2)
Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B 2) (Nonriverine)Drift Deposits (B3) (Nonriverine)
. Surface Soil Cracks (B6)
__ inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)
—. Water Marks (B 1) (Riverine)
_ Sediment Deposits (B2) (Riverine)
_ Drift Deposits (B3) (Riverine)
__Drainage Patterns (B10)
——Dry-Sẹason Water Table (C2)

- Thin Muck Surface (C7)
__ Crayfish Burrows (CB)
_ Saturation Visible on Aerial Imagery (C9)
_ Shallow Aquitard (D3)
_ FAC-Neutral Test (D5)

Field Observations:
Surface Water Present?

Water Table Present?
\qquad Depth (inches): \qquad

Saturation Present? (includes capillary fringe)
\qquad Depth (inches):
\qquad Yes___ No__ Depth (inches): Wetland Hydrology Present? Yes \qquad No L Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Exhibit B2

DesertXpress Field Data
 For Las Vegas Wash Watershed (HUC 15010015)

HBG Watershed Number	HUC 12 Watershed Name	HBG Field Data	ICF Jones \& Stokes Field Data	Comments
37	Town of Sloan	Yes	Yes	
38	Town of Arden	Yes	Yes	Delineated by HBG using adjacent watershed data.
39	Duck Creek	Yes	Yes	
40	Tropicana Wash	Yes	Delineated by HBG using adjacent watershed data.	
41	City of Las Vegas-Las Vegas Wash	No	Yes	Only northernmost possible station locations would be in this watershed. Urban Drainage features. Delineated by HBG using adjacent watershed data.

ICF Jones \& Stokes

Wetland Determination Data Forms Arid West Region

For DesertXpress

HUC 12 Watershed Tropicana Wash
Within Las Vegas Wash Watershed (HUC 15010015)

HBG Watershed ID \# 40

WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: $D \times \rho$
City/County:

State: \qquad Sampling Date: $\frac{3 / 6 / 07}{99-1 \mathrm{w}}$
 Investigators): KS, BM \qquad Section, Township, Range:
Landform (hillslope, terrace, etc.): Vallen floor
Subregion (LRR): D to ω, 11518 m
\qquad Slope (\%): z N / A tat: $w-115.181387$ Long: 36.080184 Datum: NAD 23 Soil Map Unit Name: \qquad A , _ NWI classification: N / A
Are climatic / hydrologic conditions on the site typical for this time of year? Yes \quad No \qquad (If no, explain in Remarks.) Are Vegetation Y, Soil Y, or Hydrology N significantly disturbed? Are "Normal Circumstances" present? Yes \qquad No \qquad Are Vegetation NO, Soir_ormydrogymenaturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks:

WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Desert Mares
City/County: $\frac{\text { Las Vagas/Clatk }}{/ \mathrm{NV}}$ Sampling Date: $\frac{3 / 6 / 08}{100-3 \text { and }}$ Applicant/owner: Circle Pike whom, Kelly Shook Section, Township, Range: Investigators): Maradhet WildolowSom, Kelli n Gook Section, Township, Range: ——— Slope (\%): \qquad Landform (hillsiope, terrace, etc.): $\frac{\text { Va. lees floor }}{(J}$
Subregion (LRR): D Lati 人一 11516347
 Soil Map Unit Name: \qquad No \qquad (if no, explain in Remarks.)
Are climatic / hydrologic conditions on the site typical for this time of year? Yes Are "Normal Circumstances" present? Yes \qquad No \qquad Are Vegetation Yes, Soil $\frac{405}{2}$, or Hydrology $\operatorname{Ven}_{5} 5$ significantly disturbed? Are Vegetation 19 , Soil $\cap 0$, or Hydrology $\cap 19$ naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks: USGS typo indicates blue lines however ho chaphulsexise on property. $\frac{\text { photo }}{320 \text { facing sw }}$.
Major flood control facilities convenflow around this ara in concrete

Tree Stratum (Use scientific names.)
Irodicamam Wasp, Nom - Absolute Dominant Indicator

Herb Stratum

Dominance Test worksheet:
Number of Dominant Species
That Are OBL, FACW, or FAC:

Prevalence Index worksheet:
Total \% Cover of: Multiply by:

OBL species \qquad $x 1=$ $\times 2=$ \qquad $\times 3=$ FAC species
FACU species
UPL species
Column Totals \qquad (A)
\qquad (B)

Prevalence index $=B / A=$ 4.8

Hydrophytic Vegetation Indicators:

- Dominance Test is $>50 \%$
__ Prevalence Index is $\leq 3.0^{1}$
... Morphological Adaptations' (Provide supporting data in Remarks or on a separate sheet)
Problematic Hydrophytic Vegetation' (Explain)
${ }^{1}$ Indicators of hydric soil and wetland hydrology must be present.

Hydrophytic
Vegetation
Present?
Yes ___ No V

Remarks: $V_{\text {generation is beside mennumet thownind. }}$

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)
Depth
(inches)

Remarks: No ssil present. No soil pit excavated.

HYDROLOGY

WETLAND DETERMINATION DATA FORM - Arid West Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes \qquad No \qquad Yes \qquad No \qquad Yes \qquad No \qquad	Is the Sampled Area within a Wetland?	Yes \qquad No \qquad			

VEGETATION

Remarks:

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

HYDRQLOGY

Exhibit B2

DesertXpress Field Data
 For Las Vegas Wash Watershed (HUC 15010015)

HBG Watershed Number	HUC 12 Watershed Name	HBG Field Data	ICF Jones \& Stokes Field Data	Comments
37	Town of Sloan	Yes	Yes	
38	Town of Arden	Yes	Yes	Delineated by HBG using adjacent watershed data.
39	Duck Creek	Yes	Yes	
40	Tropicana Wash	Yes	Delineated by HBG using adjacent watershed data.	
41	City of Las Vegas-Las Vegas Wash	No	Yes	Only northernmost possible station locations would be in this watershed. Urban Drainage features. Delineated by HBG using adjacent watershed data.

ICF Jones \& Stokes

Wetland Determination Data Forms Arid West Region

For DesertXpress

HUC 12 Watershed Tropicana Wash
Within Las Vegas Wash Watershed (HUC 15010015)

HBG Watershed ID \# 40

WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: $D X \rho$
City/County: \qquad Sampling Date: $\frac{3 / 6 / 07}{99-2-2}$ pplicant/Owner: Circle Point
 State: $G \sqrt{ }$ \qquad Investigators): Kelly Shook, Bryan Morse Section, Township, Range: \qquad
 Subregion (LRR): \perp -tat: $\underline{W}-115.181252$ Long N 36.077815 Datum: $N A D 83$
Soil Map Unit Name: N / A NWI classification: N / H
Are climatic / hydrologic conditions on the site typical for this time of year? Yes \qquad (If no, explain in Remarks.)
Are Vegetation Y, soil Y, or Hydrology N significantly disturbed?
Are "Normal Circumstances" present? Yes No

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

Remarks:

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)
Mepth
(inches)

${ }^{1}$ Type: $\mathrm{C}=$ Concentration, $\mathrm{D}=$ Depletion, $\mathrm{RM}=$ Reduced Matrix. $\quad{ }^{2}$ Location: $\mathrm{PL}=$ Pore Lining, $\mathrm{RC}=$ Root Channel, $\mathrm{M}=$ Matrix.
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)
__ Histosol (A1)
__ Sandy Redox (S5)
_ Stripped Matrix (S6)
__ Loamy Mucky Mineral (F1)
__ Loamy Gleyed Matrix (F2)
__ Depleted Matrix (F3)
__ Redox Dark Surface (F6)
__ Depleted Dark Surface (F7)
__ Redox Depressions (F8)
_ Vernal Pools (F9)

Indicators for Problematic Hydric Soils ${ }^{3}$:
_ $1 \mathrm{~cm} \operatorname{Muck}$ (A9) (LRR C)

- $2 \mathrm{~cm} \operatorname{Muck}$ (A10) (LRR B)
_ Reduced Vertic (F18)
__ Red Parent Material (TF2)
__ Other (Explain in Remarks)

Indicators of hydrophytic vegetation and wetland hydrology must be present.

Restrictive Layer (if present):
Type:
Depth (inches):

HYDROLOGY

Wetland Hydrology Indicators:

Primary indicators (any one indicator is sufficient)
__ Sufface Water (A1)
_ High Water Table (A2)
_ Saturation (A3)
__ Water Marks (B1) (Nonriverine)
_ Sediment Deposits (B2) (Nonriverine)
_ Drift Deposits (B3) (Nonriverine)
_ Sufface Soil Cracks (B6)
_ Inuhdation Visible on Aerial Imagery (B7)
Waler-Stained Leaves (B9)

Secondary Indicators (2 or more required)
__ Water Marks (B1) (Riverine)
__ Sediment Deposits (B2) (Riverine)
__ Drift Deposits (B3) (Riverine)
_ Drainage Patterns (B10)
_ Dry-Season Water Table (C2)
_ Thin Muck Surface (C7)
___ Crayfish Burrows (C8)
_ Saturation Visible on Aerial Imagery (C9)
_ Shallow Aquitard (D3)
_ FAC-Neutral Test (D5)

Field Observations:
Surface Water Present?
Water Table Present?
Saturation Present? (includes capillary fringe)
Describe Recorded Data (s
Remarks:

WETLAND DETERMINATION DATA FORM - Arid West Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks:

HYDROLOGY

WETLAND DETERMINATION DATA FORM - Arid West Region

 Applicantowner: Circle Point investigators): KS, BM, THolos \qquad Section, Township, Range: Landform (hillsiope, terrace, etc.): V/allang flaw tat w Local relief (concave, convex, none): 1010 Slope (\%): $1-5$ Subregion (LRR): _ $>$
\qquad No \qquad (if no, explain in Remarks.)
Are "Normal Circumstances" present? Yes \qquad No \qquad
(If needed, explain any answers in Remarks.)
Are Vegetation $M \mathrm{O}$, Soil MO , or Hydrology nO _ naturally problematic?
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

Remarks:

SOIL

HYDROLOGY

Remarks:

shelving, 5ubstrte sinting,
Troject/Site: Applicanvowner: Circle Pout
WETLAND DETERMINATION DATA FORM - Arid West Region investigators): $K S, B H$, Jho $S O M$ Landform (hillslope, terrace, etc.): Valley Floor Lat w-115.20\%62 Section, Township, Range: Local relief (concave, convex, none): م'
Sampling Date: $\frac{3 / 1 / 08}{699-21}$ Subregion (LRR): \gg

\qquad
\qquad _-S Slope (\%): $\frac{3-7}{83}$ Soil Map Unit Name: \qquad No \qquad (if no, explain in Remarks.)
Are Vegetation heS, Soil USS, or Hydrology Mo significantly disturbed? Are "Normal Circumstances" present? Yes \qquad No \qquad Are Vegetation ho, Soil ho, or Hydrology ho naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

Prevalence Index worksheet:

Prevalence index $=B / \mathrm{A}=$

(B)
Hydrophytic Vegetation Indicators:
_ Dominance Test is $>50 \%$
__ Prevalence index is $\leq 3,0^{1}$
_. Morphological Adaptations ${ }^{1}$ (Provide supporting data in Remarks or on a separate sheet)
__ Problematic Hydrophytic Vegetation ${ }^{\dagger}$ (Explain)
${ }^{1}$ Indicators of hydric soil and wetland hydrology must be present.
Hydrophytic
Vegetation
Present?

No: 1

Remarks:

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)
Depth
(inches)

Remarks:
 No soil pitencivatad

HYDROLOGY

Wetland Hydrology Indicators:

Secondary Indicators (2 or more required)
_ Water Marks (B1) (Riverine)
__. Surface Water (A1)
High Water Table (A2)
Saturation (A3)
_ Water Marks (B1) (Nonriverine)
Sediment Deposits (B2) (Nonriverine)
Drift Deposits (83) (Nonriverine)
Surface Soil Cracks (B6)
Inundation Visible on Aerial Imagery (B7)
Water-Stained Leaves (B9)
Field Observations:
Surface Water Present?
Water Table Present?
Saturation Present? (includes capillary fringe) (includes capillary fringe)

Remarks

WETLAND DETERMINATION DATA FORM - Arid West Region

ojectsite: Desert Xeres

Sampling Point: $\bar{C} 9 \dot{9}-3 W$

Applicantowner: Circle Point

Landform (hillslope, terrace, etc.): Valley flocs \qquad Subregion (LRR): D
tativ-115.201552
 No \qquad (If no, explain in Remarks.)
Are "Normal Circumstances" present? Yes \qquad No \qquad (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEgETATION

Remarks:

SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Hydric Soil indicators: (Applicable to all LRRs, unless otherwise noted.)
indicators for Problematic Hydric Soils ${ }^{3}$:

_ Histosol (A1)

_. Sandy Redux (S5)
__ Stripped Matrix (S6)
_- Loamy Mucky Mineral (F1)
__ Loamy Gleyed Matrix (F2)
__ Depleted Matrix (F3)
_ $1 \mathrm{~cm} \operatorname{Muck}$ (AS) (LR C)
Histic Epipedon (A2)
__ Redox Dark Surface (F6)

- Depleted Dark Surface (F7)
__ Redox Depressions (F8)
__ Vernal Pools (F9)
__ $2 \mathrm{~cm} \operatorname{Muck}$ (A10) (RR B)
- Reduced Vertic (F18)
—— Red Parent Material (TF2)
- Other (Explain in Remarks)

Hydrogen Sulfide (A4)
welland hydrology must be present.

- Sandy Mucky Mineral (S1)

Restrictive Layer (if present):

Type: \qquad
Depth (inches): \qquad
\qquad
Remarks: sit pit excavated, Surface is gravel 1 sand.

HYDROLOGY

Remarks:

WETLAND DETERMINATION DATA FORM - Arid West Region

Projectsite: Desert X press.
 Sampling Date: $\frac{3 / 6 / 08}{09}$. pplicanvowner: Circle Point mplicant/Owner: Circestigar(s): Kelly Shook. Mareareth hidowison, .pplicanvowner: Circle Point Landform (hillslope, terrace, etc.): Valley floor 't Local Township, Range Subregion (LRR); D --115.19555 Soil Map Unit Name: \qquad No \qquad (If no, explain in Remarks.)
Are climatic / hydrologic conditions on the site typical for this time of year? Yes Are Vegetation yeS, Soil yes, or Hydrology yes significantly disturbed? Are "Normal Circumstances" present? Yes No (If needed, explain any answers in Remarks.) Are Vegetation ho, Soil ho, or Hydrology Mo naturally problematic?
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

| Dominance Test worksheet: | | | |
| :--- | :--- | :--- | :--- | :--- |
| Number of Dominant Species | | | |
| That Are OBL, FACW, or FAC: | (A) | | |
| Total Number of Dominant | | | |
| Species Across All Strata: | (B) | | (B) |
| Percent of Dominant Species | | | |
| That Are OBL, FACW, or FAC: | | | (AB) |

Remarks:
No veg present.

Remaks: No soil pit excaulted.

HYDROLOGY

Remarks:

WETLAND DETERMINATION DATA FORM - Arid West Region

\qquad City/County: $\frac{\operatorname{Las} \operatorname{Vea} 0,5 / C l a L k}{j}$ Sampling Date: $\frac{2 / 25 / 08}{1 / 00}$ state: NV Sampling Point: $C 100-1 \mathrm{~N}^{2}$.pplicantowner: Circle point
Investigators) Kelly, Shook, Bryan hover , What folsisection, Township, Range:
Landform (hillsiope, terrace, etc.): Saith Floor Local relief (concave, convex, none): none. Slope (\%): $1-5$ Subregion (LRR): $D \quad-\operatorname{tat} 1 \downarrow-115,19 / 1026$ \qquad Lonely 36.104707 Datum: NA PD Soil Map Unit Name:

N/

Are climatic / hydrologic conditions on the site typical for this time of year? Yes \qquad
 Are Vegetation, Sol

No \qquad (If no, explain in Remarks.)
Are "Normal Circumstances" present? Yes \qquad No \qquad (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks:

SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)
 Remarks: No upland pit exconated berause the arta is paved to the west and railroad ballast to the east.

HYDROLOGY

WETLAND DETERMINATION DATA FORM - Arid West Region

roject/ite: Desert \times press
 .pplicantowner: Circle polit. Investigators); Kelly Shot, John Folsom, Bryenhorse Section, Township, Range: Landform'\{hillsiope, terrace, etc.): Valley flank

Local relief (concave, tong iv) 3 lanitate Slope (\%): $1-5$ Subregion (LRR): D Soil Map Unit Name: \qquad No \qquad (If no, explain in Remarks.) Are "Normal Circumstances" present? Yes \qquad No \qquad Are Vegetation YeS, Soil YeS, or Hydrology MO significantly disturbed? (If needed, explain any answers in Remarks.)
Are Vegetation ho, Soil ho, or Hydrology no_ naturally problematic?
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Flamingo Wast and is a tribe to the Colondo River. The CCRFCD indicates 23 "west VEGETATION this facility's dimensions are $30^{\prime} \mathrm{W}, 4 \mathrm{D}$, l: silicic staph.

[^3]\% Cover of Biotic Crust
Remarks:

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)
Depth Matrix Redox Features

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)
_ Histosol (A1)
_ Sandy Redox (S5)
_ Histic Epipedon (A2)
_. Black Fistic (A3)
_ . Hydrogen Sulfide (A4)
_ . Stratified Layers (A5) (LRR C)
_ _ 1 cm Muck (A9) (L RR D)
ED Depleted Below Dark Surface (A11)
— Thick Dark Surface (A12)
—. Sandy Mucky Mineral (Si)
_ Sandy Gleyed Matrix (S4)
Restrictive Layer (if present):
Type:
Depth (inches):

Indicators for Problematic Hydric Soils ${ }^{3}$:
_ $1 \mathrm{~cm} \operatorname{Muck}$ (A 9) (LR C)
— $2 \mathrm{~cm} \operatorname{Muck}$ (A10) (LR B)
_ Reduced Veric (F18)
_ Red Parent Material (TF2)
_ Other (Explain in Remarks)

Remark: No soil pit excavated. see remarks on reverse page.

HYDROLOGY

Wetland Hydrology Indicators:
Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
_ High Water Table (A2)
Saturation (A3)
_- Water Marks (B1) (Nonriverine)
__ Sediment Deposits (B2) (Nonriverine)
_ Drift Deposits (B3) (Nonriverine)
__ Surface Soil Cracks (B6)
__ Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Field Observations:
Surface Water Present? Yes ___ No Depth (inches): _____
\dot{W} Water Table Present? Yes___ No ___ Depth (Inches):
Saturation Present? Yes___ No ___ Depth (inches):
(includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:
Remark: This channel is named

WETLAND DETERMINATION DATA FORM - Arid West Region

roject/ist: Desert Mores City/County: $\frac{\text { Las Vara/flalme }}{d^{\prime} \text { state: } N V}$ Sampling Date: $\frac{2 / 25 / 08}{\text { Sampling Point: } C 100-2 W \text { and }}$ C100-2E Applicant/Owner: Circe Point, Section, Township, Range: \qquad Slope (\%): $\frac{1-5}{83}$ Landform (hillislope, terrace, etc.): Valley, floor Lat: N-115,184971 tong: $1 \mathrm{~s} \quad 36.115524$ Datum: NAD 83 Subregion (LRR): D Soil Map Unit Name: N α NWI classification: N/S ZONE I/

Are climatic / hydrologic conditions on the site typical for this time of year? Yes Are Vegetation NDO_{0}, Soil 1 MO , or Hydrology MO significantly disturbed? Are Vegetation 120 , Soil 110°, or Hydrology 110 naturally problematic?

No ____ (If no, explain in Remarks.)
Are "Normal Circumstances" present? Yes \qquad No \qquad (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

[^4]SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Remarks: One soil pit dug in channel on w-sids (cioo-2w), No soil pit dug in upland or on east side because the area is paved to the west a Upper ballast on the east.

HYDROLOGY

8'wide como culvert

WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: \qquad Desert Xeres City/County: \qquad Las Vegas/Clast sanding Date: 3/blos State: $N V$ Sampling Point: $C 10 h-2 W$ applicant/Owner: Circle Point \qquad ,
\qquad
Investigators): Kelly Shoot Morgorithidshuscortion, Township, Range: \qquad Landform (hillslope, terrace, etc.); Vaflech floor Local relief (concave, convex, none): No he Slope (\%): B Subregion (LRR): \qquad Lat: W-115,185025 -tome 36115595 Datum: NAD 8.3

Soil Map Unit Name: \qquad NWI classification: $\frac{N / A}{T}$
Are climatic / hydrologic conditions on the site typical for this time of year? Yes \qquad No \qquad (If no, explain in Remarks.)

Are Vegetation \qquad , Soil \qquad no , or Hydrology \qquad no significantly disturbed?
\qquad no naturally problematic? Are "Noma Circumstances" present? Yes \qquad 1 No \qquad
Are Vegetation \qquad no Soil \qquad no , or Hydrology
(If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present?
Wetland Hydrology Present?
Yes \qquad No \square Is the Sampled Area Yes \qquad No \qquad
 within a Wetland?

\qquad No

VEGETATION

SOIL

HYDROLOGY

Remarks: F laming o Wash, Small area of surface water flowing very slowly north eastward down the wash. Water source is likely ruin of fiorin adjacent pmed Rio toted Landscape Irrigation.

Exhibit B2

DesertXpress Field Data
 For Las Vegas Wash Watershed (HUC 15010015)

HBG Watershed Number	HUC 12 Watershed Name	HBG Field Data	ICF Jones \& Stokes Field Data	Comments
37	Town of Sloan	Yes	Yes	
38	Town of Arden	Yes	Yes	Delineated by HBG using adjacent watershed data.
39	Duck Creek	Yes	Yes	
40	Tropicana Wash	Yes	Delineated by HBG using adjacent watershed data.	
41	City of Las Vegas-Las Vegas Wash	No	Yes	Only northernmost possible station locations would be in this watershed. Urban Drainage features. Delineated by HBG using adjacent watershed data.

ICF Jones \& Stokes

Wetland Determination Data Forms Arid West Region

For DesertXpress

HUC 12 Watershed City of Las Vegas-
Las Vegas Wash
Within Las Vegas Wash Watershed (HUC 15010015)

HBG Watershed ID \# 41

WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: $D \times \rho$

 tpplicant/Owner: Circle PointCity/County:

Sampling Date: $\frac{3 / 14 / 08}{102-112}$ Investigators): Kelly Shook, Bran Morse Landform (hillslope, terrace, etc.): Valley for
\qquad Local relief (concave, convex, one): Sampling Point: $102-1 / 2$ LatiN -115.165232 tong: $N 6.151421$ Slope (\%): 2 Subregion (LRR): \perp Soil Map Unit Name: N / A NWI classification: N / A
Are climatic / hydrologic conditions on the site typical for this time of year? Yes ___ No \qquad (If no, explain in Remarks.)
\qquad significantly disturbed?

Are "Normal Circumstances" present? \qquad No \qquad Are Vegetation A, Soil_, or Hydrology \Rightarrow naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION

Remarks:

| Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) |
| :--- | :--- | :--- | :--- |
| Depth |
| (inches) |

HYDROLOGY

Wetland/Hydrology Indicators:
Primary findicators (any one indicator is sufficient)
nt)

Secondary Indicators (2 or more required)
_ Sufface Water (A1)
_ Salt Crust (B11)
_ Biotic Crust (B12)
_ Aquatic Invertebrates (B13)
C1)
_ High Water Table (A2)
_ Sąturation (A3)
_ Water Marks (B1) (Nonriverine)
__ Sediment Deposits (B2) (Nonriverine)
__ Difif Deposits (B3) (Nonriverine)
_ Surface Soil Cracks (B6)
__ Inefndation Visible on Aerial Imagery (B7)
__ Other (Explain in Remarks)
__ Oxidized Rhizospheres along Li
_ Recent Iron Reduction in Plowed Soils (C6)

Wăter-Stained Leaves (B9)

___ Water Marks (B1) (Riverine)

_ Sediment Deposits (B2) (Riverine)
_ Drift Deposits (B3) (Riverine)
__ Drainage Patterns (B10)
_ Dry-Season Water Table (C2)
— Thin Muck Surface (C7)
_ Crayfish Burrows (C8)
__ Saturation Visible on Aerial Imagery (C9)
__ Shallow Aquitard (D3)
__ FAC-Neutral Test (D5)

Field Observations:

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Exhibit C

Maps of Potential Jurisdictional Areas

Exhibit C. Areas Potentially Subject to Corps Jurisdiction Under Section 404 of the Clean Water Act, DesertXpress Project, HUC 8 Las Vegas Wash Watershed,
Clark County, Nevada, Current Preferred Segment 5 Alt B, Map Sheet C 250

Exhibit C. Areas Potentially Subject to Corps Jurisdiction Under Section 404 of the Clean Water Act, DesertXpress Project, HUC 8 Las Vegas Wash Watershed,
Clark County, Nevada, Current Preferred Segment 5 Alt B, Map Sheet C251

Exhibit C. Areas Potentially Subject to Corps Jurisdiction Under Section 404 of the Clean Water Act, DesertXpress Project, HUC 8 Las Vegas Wash Watershed,
Clark County, Nevada, Current Preferred Segment 5 Alt B, Map Sheet C252

[^0]: Figure 1. DesertXpress Project Alignment Alternatives ${ }^{\text {F-I.5-38 }}$

[^1]:

[^2]: Remarks:

[^3]: $\%$ Bare Ground in Herb Stratum _ 92

[^4]: Remarks:

