
A SELF-DESCRIBING DATA
TRANSFER METHODOLOGY
FOR ITS APPLICATIONS

WA-RD 463.1

Research Report
December 2000

...
:,:: Washington State .,,/I Department of Transportation

Washington State Transportation Commission
Planning and Programming Service Center
in cooperation with the U.S. Department of Transportation
Federal Highway Administration

Research Report
Research Project T9903, Task 30
IVHS-Network and Data Fusion

A SELF-DESCRIBING DATA TRANSFER
METHODOLOGY FOR ITS APPLICATIONS

by

D.J. Dailey, D. Meyers, and L. Pond
ITS Research Program

College of Engineering, Box 352500
University of Washington

Seattle, Washington 98195-2500

Washington State Transportation Center (TRAC)
University of Washington, Box 354802

University District Building
1107 NE 45th Street, Suite 535

Seattle, Washington 98105-4631

Washington State Department of Transportation
Technical Monitor

Dave Peach

Prepared for

Washington State Transportation Commission
Department of Transportation

and in cooperation with
U.S. Department of Transportation

Federal Highway Administration

December 2000

TECHNICAL REPORT STANDARD TITLE PAGE
I. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENTS CATALOG NO.

WA-RD463.l

4. TITLE AND SUBTITLE 5. REPORT DA TE

A Self-Describing Data Transfer Methodology for ITS December 2000
Applications 6. PERFORMING ORGANIZATION CODE

7. AUlHOR(S) 8. PERFORMING ORGANIZATION ru:.rvRT NO.

DJ. Dailey, D. Meyers, L. Pond

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO.

Washington State Transportation Center (TRAC)
University of Washington, Bx 354802 II. CONTRACTORGRANTNO.

University District Building; 1107 NE 45th Street, Suite 535 Agreement T9903, Task 30
Seattle, Washington 98105-4631
12. SPONSORING AGENCY NAME ANO ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED

Washington State Department of Transportation Research report
Transportation Building, MS 7370
Olympia, Washington 98504-7370 14. SPONSORING AGENCY CODE

Proiect Manager: Garv Rav, 360-705-7975
IS. SUPn . .1:.me1", ARY NOTES

This study was conducted in cooperation with the U.S. Department of Transportation, Federal Highway
Administration.
16. ABSTRACT

A wide variety of remote sensors used in Intelligent Transportation Systems (ITS) applications
(loops, probe vehicles, radar, cameras) has created a need for general methods by which data can be
shared among agencies and users who own disparate computer systems.

In this paper, we present a methodology that demonstrates that it is possible to create, encode,
and decode a self-describing data stream using the foll owing:

1. existing data description language standards

2. parsers to enforce language compliance

3. a simple content language that flows out of the data description language

4. architecture neutral encoders and decoders based on ASN .1.

17. KEY WORDS 18. DISTRIBUTION STATEMENT

Self-describing data, SQL, ITS data, ITS No restrictions. This document is available to the
architecture public through the National Technical Information

Service, Springfield, VA 226 I 6

19. SECURITYCLASSIF. (oflhisrq,ort) 20. SECURITY CLASSIF. (of this page) 21. NO.OFPAGES 22. PRICE

None None

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the

facts and accuracy of the data presented herein. The contents do not necessarily reflect the

official views or policies of the Washington State Transportation Commission, Department of

Transportation, or the Federal Highway Administration. This report does not constitute a

standard, specification, or regulation.

ii

iii

Abstract

The wide variety of remote sensors used in Intelligent Transportation Systems (ITS)

applications (loops, probe vehicles, radar, cameras, etc.) has created a need for general

methods by which data can be shared among agencies and users who own disparate computer

systems.

In this paper, we present a methodology that demonstrates that it is possible to create,

encode, and decode a self-describing data stream using the following:

I. existing data description language standards,

2. parsers to enforce language compliance,

3. a simple content language that flows out of the data description language,

and

4. architecture neutral encoders and decoders based on ASN. l.

1

Table of Contents

Disclaimer .. i

Abstract .. iii

I. Self-Describing Data Overview ... 3
I .1 INTRODUCTION ... 3
1.2 DATAMODEL .. 8

1.2.1 Dictionary Schema ... 8
1.2.2 DictionaryContents,.................. 10
1.2.3 Data Transfer............. 11
1.2. 4 Transmitter.. 11
1.2.5 SDDReceiver ... 14

1.3 ITS EXAMPLE··· 15

2. Self-Describing Data Transmitter Implementation ... 19
2.1 GENERIC REDISTRIBITTOIL ... 19

2.2 SDDTRANSMITTER ·· 20
2.2.1 CoreSDD .. 21

2.2.l.l Schema Parser ... ,. 21
2.2.1.2 Parse Tree Structure ... 22
2.2.1.3 Parse Tree Node Information Structures ... 23
2 .2. l .4 Semantic Checks ... 2 7
2.2. I .5 Contents Parser ... 27
2.2.1.6 BEREncoding ... 28
2.2. I .7 Client Connection Maintenance ... 29

2.2.2 Legacy to SDD Conversion ... 29
2.2.2. I Schema Creation .. 29
2.2.2.2 Contents File Creation...................... . .. 30

2.2.3 Creating a Specific Transmitter .. 31
2.2.3.I Define Schema .. 31
2.2.3.2 Construct Contents .. 32
2.2.3.3 ConstructDataExtractor .. 34

2.3 SDDREcElVER ·· 35

3. Conclusions .. 37

Appendix A: Schema Parser ... 39

Appendix B: Schema Scanner .. 45

Appendix C: Contents Parser .. 51

Appendix D: Contents Scanner .. 53

Appendix E: Schema Definition ... 55

2

Appendix F: Contents File .. ~

Appendix G: Newsletter of tbeITS Cooperative Deployment Network 63

Appendix H: Self-Describing Data for Dummies .. 81

References ... 89

List of Figures

Figure 1.1: Datamodelforself-describingdatatransfers .. 5

Figure 1.2: Parse tree structure at top and its leftmost child; right sibling representation at
bottom .. 9

Figure 1. 3: An overview of the structure of our system for self-describing data tranefers . .. 12

Figure I. 4: Self-describing data transmitter ... 13

Figure 1.5: The detailed structure of the SDD Receiver application I 5

Figure 1. 6: Structure of our serialized data stream for self-describing data transfers 16

Figure 1. 7: The structure of our example application for self-describing data
tranefers.dictionary contents . .. 17

Figure 2.1: A new contents file is generated when an incoming dictionary frame is different
than the one currently cached .. 3 3

3

1. Self-Describing Data Overview

1.1 OORODL'CTION

The wide variety of remote sensors used in Intelligent Transportation Systems (ITS)

applications (loops, probe vehicles, radar, cameras, etc.) has created a need for general methods by

which data can be shared among agencies and users who own disparate computer systems. Such

data sharing requires that both the sender and the recipient of the data agree on a method for

transfer. To date, most systems constructed for this purpose (I) lack in generality or (2) are limited

to data transfersofa specific type [I, 2, 3] or(3) are so general and complex as to be very difficult

to implement [4]. The work presented in this paper was aimed at creating a general mechanism for

self-describing data transfers of data streams that are produced by a set of remote sensors that

change in number and type as a function of time. We present our self-describing data transfer

concept in the context of Intelligent Transport Systems applications; however, our approach is

applicable to a variety of data types and sensors.

Self-describing data transfer requires information about the meaning of the data to be

included as part of the transfer [5]. Thesemeta-datamust include all information needed to

interpret the actual data stream. For example, the time-invariant properties of a remote sensor that

might be relevant include the sensor's location, the units of measurement, and the precision ofits

measurements. In addition, a description of the algorithm used to extract the desired information

from the data is required.

Any successful methodology that provides self-describing data transfers must meet the

follov,ing criteria:

1. The transfer includes all informationmet<Nhta needed to interpret the data,

together with the data themselves. If this requirement is met, the data transfer is

self-describing.

4

2. The transfer method can be applied to a broad category of data types and

procurement methods. This is a requirement for data type independence of the

data transfer method.

3. The transfer method is applicable to a wide variety of computing environments.

This is a requirement for portability and general applicability of the data

transfer method.

Strictly, only the first requirement need be met to qualify the data transfer as self-describing;

the effect of the other requirements is to enhance the generality of a transfer method. A variety of

proposed data transfer mechanisms transfer the data and meaning [6, 7, 8, 9, 2, 3 J. Many of the

available data sharing methods involve the construction of custom software that "understands'' the

meaning of the data to be transferred for each class of data transfer [3, 2]. Such methods fail the

second and third criteria listed above. They fail the second criterion because the transfer is specific

to one type of data. They fail the third criterion unless the custom software is written in a portable

manner.

We present a new approach to solving the self-describing data (SDD) transfer problem.

Our data transfer method serializes a data description, in the form of a Data Dictionary, with the

actual data to be transferred. Our data description makes use of the power of database query

languages to ease the task of constructing a Data Dictionary to contain the necessary meta-data.

Database languages are well suited for the task at hand because they are designed for the

description and categorization of data. This Data Dictionary is the initial part of an SDD transfer,

and the actual sensor data are serialized after the Data Dictionary, as shown in Figure 1. I . An SDD

transfer is composed of one Data Dictionary and a continuous stream of sensor data. An SDD

transfer ends when a new Data Dictionary is transferred. We are proposing the SDD transfer

method presented here as a robust mechanism for distributing ITS data to Information Service

Providers' (ISPs). We are aware of two other efforts to produce standards for communication of

'See the ITS National Architecture study for more infonnation on ISPs [I 0, I I]

5

transportation related data. They are the National Transportation Communications for ITS Protocol

and the Transportation Network Profile of the Spatial Data Transfer Standard. These standards

were designed to meet significantly different needs, though both are designed to solve the problem

of standardized data communication. The SDD paradigm presented here is related to aspects of

both standards.

~I D_a_ta_D_ic_ti_·o_n_a-ry~! _D_a_ta_~_D_a_t_a~l--•1 Data

Figure I.I: Data model for self-<lescribing data transfers

The first related standard is the National Transportation Communications for ITS Protocol

(NTCIP). NTCIP is a family of communications protocols (A, B, C, E) developed forreal-time

communication between a master controller and field devices such as traffic signal controllers,

environmental sensor stations, dynamic message signs, highway advisory radio, closed circuit TY,

and freeway ramp meters [12]. For example, the class B protocol is designed for direct

communication between a master controller and one or more field devices connected by a

communications cable for low-speed data transmission (on the order of 1200 baud). The target

application is the control of traffic signal management systems. The standard covers both the rules of

transmission and the format and meaning of a set of standardized messages to be transmitted.

NTCIP is basically an extension of the Simple Network Management Protocol (SNMP)

[13]. It extends the management information base hierarchical name-space defined with Abstract

Syntax Notation (ASN. I) [14] for use with SNMP. Groups of objects defined in this tree structured

name-space are referred to as Management Information Bases (MIBs) and represent the set of

objects (in the object oriented design sense) that are needed to effect the desired control or

information transfer operations. NTCIP is intended for many types of transportation devices, each

with different database requirements. Control or data exchange is effected by modification of the

objects in the MIB associated with the device(s) being controlled. This modification uses the get/set

6

paradigm of the SNMP to change the values ofobjects in the MIB. The resulting action depends on

the programming of the controlled devices.

NTCIP is designed to standardize the control of traffic management devices such as traffic

light controllers. The method uses a Data Dictionary, the management information base (MIB), as a

repository of information to control the external devices. A device's response to some change to its

M1B is determined by software resident at the device. Under that paradigm, to request data from a

sensor, a management application modifies the sensor's MIB in a way that allows the management

application to obtain the sensor data.

NTCIP is a control protocol that uses a globally agreed upon set of objects. To be eJfective,

the control/management software that uses the get/set operations must understand how the software

within the devices reacts to changes in the MIR So an a priori agreement on software functions, as

well as on object definitions, is necessary.

From an NTCIP perspective, SDD transfers can be cast as a compound object for

information transfer without a priori information about the data to be shared. Thus, SDD is targeted

at information transfer and not control. The control function ofNTCIP can be used to initiate or

terminate SDD transfers. The Data Dictionary components and the actual data can be declared as

objects, and an ASN. I compound object can be created. Changes in the MIB structure will then

initiate or terminate an SDD transfer by using the SNMP paradigms. The SDD transfer can be

implemented either by viewing the M1B as a control that initiates an out ofband data transfer, as in

[15], or the MIB can actually contain the components of SDD as objects. SDD transfers leverage

NTCIP in that SDD has an agreed-upon data-description language that includes methods to

describe and extract the elements of data from a data stream without the need for a great deal of a

priori knowledge. For example, it is possible to create an application that would operate in a Java

environment and that could obtain the methods from the Data Dictionary in the form of Java

language elements. Those methods could operate directly on the data stream, creating an automated

transfer of data with only SQL and Java as the required a priori knowledge.

7

The second related standard is the Transportation Network Profile (TNP) of the Spatial

Data Transfur Standard (FIPS 173) that is designed for use with geographic vector data that have

network topology. The TNP allows transfers of spatial data that can be represented by vector

objects that make up a network or planar graph. The TNP data types are nodes and links between

nodes, each of which may have associated attributes. These associated attributes may be multi

valued and, therefore, could be used to convey time-varying information associated with a node or a

link

The TNP provides a mechanism for defining an external Data Dictionary module that need

not be included in each transfer, thereby reducing the amount of overhead that must be devoted to

sending a dictionary module for multiple transfers that use the same dictionary.

Though it was not designed specifically for the purpose of transferring large amounts of

time-varying data, the SDTS/INP could be used to transfer time-varying data from a set of remote

sensors. The time-invariant information about the sensors (location, sensor type, etc.) could be

represented as single valued attributes of the nodes that make up the network, and the time-varying

data would be represented as multi-valued attributes functionally dependent on time. If the time

dependent attributes were isolated into a separate table from the time invariant information, it would

be possible to send the module containing time-invariant data first and then continue with the "open

ended" time-varying module until no more time-varying data were desired at the receiving end.

Though possible, transfer oflarge amounts of time-varying data with the SDTS/TNP has two

disadvantages: (1) the data stream must be interpreted before transfer and placed into the

appropriate attribute tables, possibly at a significant cost in required bandv,idth, and (2) the overall

design ofSDTS/INP does not really include the notion of a transfer ofindeterminate length. Our

method makes a clear distinction between time-invariant data (the Data Dictionary contents) and

time-varying data (the actual data stream) and allows for a more efficient treatment of the actual

data stream.

8

1.2 DATA MODEL

In the work presented here, the data to be transferred are modeled in two components, (1)

the Data Dictionary and (2) the actual sensor data. These two components, transferred serially,

effect an SDD transfer. The Data Dictionary component is central to our self-describing data

transfer method. In our data model, the Data Dictionary comprises two parts: (!)Dictionary

Schema and (2) Dictionary Contents. These two parts provide the necessary description of the data

to make them useful to a client and are described in the next sections.

J.:Z.1 Dictionary Schema

The first part of our Data Dictionaiyis the Dictionary Schema. This comprises meta data

that specify the schema of the data description (e.g., a sensor has a name, position, and units of

measure, and the position is specified in latitude and longitude). The Dictionary Schema is a

provider-defined database schema written ina subset ofEntry Level SQL-92 [16J. We chose Entry

Level SQL-92 because it is fully relational, and the relational model can represent an arbitraiy set of

data [17]. The SDD model presented here allows for the construction of any schema that SQL

allows, and this guarantees a powerful data-description language. In the Dictionaiy Schema, the

data provider should include sufficient information about the actual data to allow a recipient to

interpret those data. Because the sufficiency of the Data Dictionary is dependent on its author, it is

clear that the Data Dictionary concept a/lows for self-describing data transfer, but it does not

ensure that any given data transfer is in fact self-describing. It would seem difficult, if not impossible,

to make such an assurance in an automated system. It is, however, possible to automate verification

that the schema provided conforms to the data description language.

As part of the SDD transfer method, we have created a Schema Parser which is used to

verify the Data Dictionary schema definition. The language accepted by the parser is a subset of

entry level SQL-92 that allows definition of schemas, tables, etc. but does not include any of the

query processing facilities of a complete database language. Our intent in defining the Schema

9

Language is to provide sufficient power for the definition of a Data Dictionary while simultaneously

making the language simple enough that it is easy to learn.

The Schema Parser is used in two ways by our self-describing data transfer protocol. First,

the sending application uses the parser to verify that a user-provided schema definition is valid. The

second task of the parser is the construction ofa parse tree that is subsequently used to verify that

the Dictionary Contents are compatible with the defined Dictionary Schema. The receiving

application uses the parser again to verify that the received Dictionary Schema is a valid one and

constructs a parse tree that helps to create and verify the Dictionary Contents file.

Default Catala

Default Catalog

Default Schema

CABINETS ;-------------+\~L~O~O~P~S_J

Cabinet_lD Freewa Text Ram Cabinet_lD

Figure 1.2: Parse tree structure at top and its leftmost child; right sibling representation at bottom

The parse tree is a memory-resident data structure that is constructed from the schema

definition. The tree is implemented as a "leftmost child, right sibling" data structure in which the

descendants ofa node are represented as a linked list ofnodes ordered from leftmost child to

IO

rightmost child. Anode has two associated linked lists: a siblings list and a descendants list. Figure

1.2 shows an example parse tree and the list structure used to instantiate that tree.

The parse tree is used during schema verification to facilitate certain necessary. For

example, no two tables may have the same name within the same schema, and no two columns

within the same table may have the same name. When a name is encountered, it is inserted into the

parse tree and checked for uniqueness at that time. An additional check is performed on the name

to ensure that the columns named in a foreign key reference are compatible between the referencing

and referenced tables. The parse tree contains sufficient information to make such checks and is

organized so that the checks can be performed efficiently.

The structure of the Schema Language is such that the maximum depth of the parse tree is

four levels. Furthermore, at each !eve~ the nodes are of a specific type. The four types, in order of

increasing depth in the parse tree, are catalog, schema, table, and column. For entry level SQL-92,

the catalog and schema nodes are not really needed since only one ofeach can exist. Asingle

schema node could be used as the root of the parse tree. We chose the four-level tree

implementation to make it easier to extend to higher levels ofSQL-92 conformance (which allows

multiple schemas and catalogs).

1. 2. 2 Dictionary Contents

The second part of the Data Dictionary is the Dictionary Contents. The Dictionary

Contents comprise the information about the actual data stream that can be used to construct a

database describing the static information about the sensors for this data transfer. This is the

component that contains particular values for the description of each sensor (e.g., sensor one is at

122.23 deg longitude, 47.21 deg latitude, and measures rainfall in inches). We define aContents

Language and associated parser to facilitate verification that the schema contents are compatible

with the schema into which they will be placed. A Contents Parser recognizes the language used to

describe the contents of the Data Dictionary. The language is designed to allow specification of the

table and columns into which a set of data tuples will be inserted.

The contents language is fairly simple. A data dictionary file consists of a series of table

entries. Each table entry is of the following form:

TABLE <table name>
COLUMN {<column name 1>, ... , <column name n>)
<data for column name 1>, ... , <data for column name n>
... one tuple for each row to be inserted into the table
<data for column name l>, ... , <data for column name n>

The parser ensures this format and ensures that the type of data supplied in each tuple

matches the data type declared for its corresponding column.

11

An abbreviated version of the contents file used with the transmitter described in Chapter 2

is shown in Appendix F . Its associated schema file is shown in Appendix E.

On the sending end of a data transfer, the Contents Parser helps to verify that the contents

file supplied by a data provider is compatible with the Dictionary Schema in use. On the receiving

end, the Contents Parser helps to verify that the data in the contents file are compatible with the

schema during SQL command generation.

J.2.3 Data Transfer

The overall architecture of our system for self-describing data transfer is shown in Figure

I. 3. This structure is independent of the actual data stream involved. The data transfer is a serialized

stream divided into frames. The first frame of a transfer contains the Dictionary Schema. The second

frame contains the Dictionary Contents. Subsequent frames contain the most recently available set

of data from the data source. The implementation of a self-describing data transfer takes the form of

a transmitter and a receiver.

I. 2. 4 Transmitter

Figure I . 4 shows the components necessary to construct and transmit a stream of self

describing data. The SDD transmitter verifies the compliance of the schema using the Schema

Parser, which creates a parse tree as a byproduct of the compliance check. The Contents Parser

then uses this parse tree to verify that the contents comply with the schema. If both the schema and

12

Schema

SDD Transmitter

TCP

IP

Schema B Contents ~

SOD Receiver

TCP

IP

Figure 1.3: An overview of the structure ofour system for self-describing data transfers.

the contents are in compliance, they are serialized in the following order: (I) schema, (2) contents,

and (3) the actual sensor data. Transfer of the dictionary and data between computer systems is

accomplished by encoding the data according to the Basic Encoding Rules (BER) defined for the

ASN .1 standard. As a block of data is received, it is encoded and sent to all clients via the

redistributor methodology detailed in (15). In our application, the data are a stream ofbytes, and

the information is extracted with algorithms specified in the Data Dictionary. This mechanism allows

for a very general transfer that is easy to encode but that requires the transfer recipient to devote

programming effort to data extraction.

BER encoding of the self-describing data stream involves three types: data, schema, and

contents. Each of these types is encoded according to the BER standard (ISO 8825-1) [18] with a

type, length, and value.

Schema File
SQL Entry Level

Compliant

l
Schema
Parser

{verify SQL
compliance)

Parse

Schema Contents
Language

l
Contents

Parser

(verify Contents
compliance)

Tree
(Memoiy Resident

Data Structure)

Serializer

BER
Encoder

Figure 1.4: Se!f-<lescribing data transmitter

Dynamic
Sensor
Data

13

We use theASN. 1 "Application" class with the "primitive" encoding. Tag numbers I, 2, and

3 denote schema, contents, and data, respectively. Our identifiers are therefore encodable in one

octet. We encode the "schema" and "contents" types as IAS strings, and the "data" type is

unchanged during encoding. An ASN. l type declaration of our types is as follows:

DictionarySchema !!= [APPLICATION lJ IASString
DictionaryContents ::= [APPLICATION 2J IA5String
Data ::= {APPLICATION 3] OCTET STRING

14

The tag number must be unique across the family of protocols using these three data types.

For example, if this system was used with the NTCIP family of protocols, the NTCIP standards

document would need to dedicate three types to an SDD transfer facility.

The serializer in Figure I . 4 sends a type, length, and value to the BER Encoder. The BER

Encoder encodes these values as the appropriate header, length bytes, and contents bytes according

to theASN. I definition above.

1.2.5 SDD Receiver

The SDD Receiver is a client application that converts data from the data transfer stream

format back to three data sets: schema, contents, and data. The structure of the receiver, as shown

in Figure I .5, is parallel to that of the transmitter in Figure I .4. The BER Decoder takes an SDD

data stream as an input, and BER decodes the data stream and provides a decoded serial data

stream that has the structure described in Figure I. 6. The bottom portion of Figure I. 6 is the

structure for each of the frames (Scheme, Contents, and Data) in the top part of the figure. Each

frame contains both a BER encoded serial number and the data appropriate for the frame. The

serial number is a I ?-character timestamp with the format 'yyyymmddhhmmssmmm' (a four-digit

year designation, followed by a two-digit month, a two-digit date, a two-digit hour, a two-digit

minute, a two-digit second, and a three-digit millisecond). The serial number is used to maintain

state and to relate meta-data to data. The specific relationships between the serial numbers and the

individual data types are that (I) Contents and Data must have the same serial numbers and (2) the

ContentstData serial numbers must be greater-than-or-equal-to the Schema serial numbers. The

second BER packet contains the SDD data type packet, which contains either meta-data (Schema,

Contents, and Extractor) or binary data. The BER Type Demultiplexor receives a serial data stream

from the BER Decoder, and it uses the BER type field to distribute the schema and contents to the

appropriate parser. The parser components of the receiver are identical to those of the transmitter.

The schema component is sent to a Schema Parser that verifies SQL-92 compliance and creates a

parse tree for use by the Contents Parser. The contents are sent to the Contents Parser, which

Schema

Schema
Parser

DB (Dictionary)

SQL
Engine

SQL

Verify SQL I---<'!
Compliance

its-receiver

(!)

BER
TYPe

Demultiplexer

BER
Decoder

Contents

Contents
Pan.er

Dynamic
Sensor Data

Verify Contents
Compliance

Figure 1.5: The detailed structure of the SDD Receiver application

verifies the contents against the schema. The outputs of these two parsers are the verified schema

and contents used to describe the dynamic sensor data. With the arrival of the data dictionary

schema, data dictionary contents, and the sensor data, a self-describing data transfer is complete.

The practicality of this paradigm is demonstrated in the next section, which uses an ITS

example.

1.3 ITS ExAMPLE

15

The Washington State Department ofTransportation (WSDOT) operates a Traffic

Management System (TMS) to collect data from traffic sensors in the central Puget Sound region,

and these TMS traffic data are the focus for this ITS application ofSDD. The data from the TMS

consist of three parts: (I) sensor data, which represent measures of traffic conditions (e.g., speed,

16

flow, occupancy), (2) infonnation aboutthe location and type of each sensor (e.g., mile marker,

latitude, longitude, calibration), and (3) lists of presently available sensors. The sensor data come

I Schema I Contents I Data , .. ·I Data

i i i i
type type type type
field field field field

BER
Byte String

BER
Byte String

Header Header
Type/Length

Serial Number
Type/Length

Data

Figure 1.6: Structure of our serialized data stream for self-describing data transfers

from inductance loop detectors placed at approximately 3 000 locations in the Seattle metropolitan

area, and the list of sensors/detectors presently available changes slowly with time (e.g., every few

hours). This dynamic list of available sensors makes up the dynamic component of the data

dictionary contents. The name, location, measurement type, and other information make up the

static component of the data

Figure I. 7 provides details about our "trns2sdd" application, which converts legacy TMS

data to our self-describing transfer format. The application can be divided into a "legacy"

component and a "standard" component. The legacy component is dependent on the specific data

source; the standard component does not change from one source to another. As in the generic

transmitter case, the self-describing Dictionary Contents file is verified agamst the Dictionary

Schema by the standard component of tms2sdd. The schema is verified by the Schema Parser,

which constructs a memory-resident parse tree that is used by the Contents Parser during the

process of parsing and verifying the Dictionary Contents file. If verification ofboth files succeeds,

they are transmitted to the BER Encoder.

17

Operationally, when the TMS application is started, a block of meta-data is retrieved from

the TMS as an ITS Frame (as shown at the top of Figure 1 7). The meta-data block received from

the TMS Data Stream represents that part of the Dictionary Contents that is subject to relatively

frequent change. To construct a complete Dictionary Contents file, the tms2ddc function combines

ITS Frames

l
ir------11 Demultiplexorj t-----,i

Legacy Dynamk
Dictionary

i
I tms2ddc I

Schema File
SQL Entry Le""i

Compliant

l
Schema
Pam,,

(verify SQL
compliance)

Legacy Static
Dictionary

i
Schema Contents

Language

l
Contents

Parser

(verify Contents
compliance)

LGmE~,0 Data Structure)

(j)

tsm2sdd

®

I s.,1a11z., I .

• l8ER7
~

®

Legacy Dynamic
Data

Legacy
Systems

Standard
Components

Figure 1.7: The structure of our example application for self-<lescribing data transfers.dictionary contents.

18

the contents of a Static Data File(s) with the information in the meta-data block to construct a

complete Dictionary Contents File. The Data Dictionary is then transmitted in two parts: the

Dictionary Schema and the Dictionary Contents.

In this example, the Data Dictionary embodies the notion of state, in that the sensor data

stream has an unambiguous interpretation once the Data Dictionary is present and is otherwise

meaningless. Whenever a block of meta-data is received from the TMS Data Source indicating that

a change in the number, type, or availability ofloop detectors has taken place, a new Data

Dictionary is created. The transmission of this new Data Dictionary signals the end of one SDD

transfer and the beginning of another (or in other words, a change of state). Transfer of the Data

Dictionary occurs when a client first connects and subsequently whenever a block of meta-data is

received in the TMS data stream. Once the Data Dictionary has been sent to a client, the actual

data are transmitted as they become available (in our application, a new block of sensor data arrives

every twenty seconds).

In our implementation, we have added an SQL generator, as shown at the top of Figure I. 5.

The SQL Generator creates a series ofSQL INSERT commands from the Dictionary Schema and

Dictionary Contents. Each data tuple in the contents file will be represented by an INSERT

statement in the SQL output file. The commands, when used as input to an SQL database engine,

will create and fill a database that instantiates the Data Dictionary. We include this step as a practical

matter for the engineering users of the SDD paradigm, so that the results of an SDD transfer are a

data base with which an engineer can interact and a binary stream of dynamic sensor data. The

SDD methodology described here is being deployed for ITS traveler information applications in the

Seattle metropolitan area. Information service providers can connect to the regional ITS backbone

using one receiver and obtain a variety of data types.

19

2. Self-Describing Data Transmitter Implementation

This chapter explains in detail the implementation of the self-describing data transfer system

discussed in Chapter I, Section I. 3. The intent of this chapter is to provide sufficient detail for an

experienced programmer to construct an implementation of the self-describing data protocol. Our

implementation uses a Generic Redistributor developed by the UW ITS Research group to handle

transport over a network and client connection details. We have modified our Generic Redistributor

to implement the self-describing data transfer protocol as a data source. Though we have used our

Generic Redistributorto implement the self-describing data tranfer protocol, the Generic

Redistributor is not itself an integral part of that protocol.

The following discussion includes references to specific functions defined in the

implementaion

2.1 GENERIC REDISTRIBUTOR

The Generic Redistributor is an application that receives input from a single source and

redistributes that input to a set ofclients. It consists of three processes:

I. an Input Buffer,

2. a Connection Daemon, and

3. an Output Multiplexor.

The Input Buffer manages incoming communications. The Connection Daemon manages

connection requests from clients. The Output Multiplexor manages redistribution to the set of clients.

It may cache certain items (such as the legacy Data Dictionary) to be transmitted to newly

connected clients.

The data units handled by the Generic Redistributor are/TS.frames, which consist ofa type

header and a length value, followed by a number of contents bytes equal to the length value. The

redistributor uses the type associated with an ITS frame to determine what to do with an incoming

frame. The types DATA and DICTIONARY are of particular concern to this discussion; the

20

Generic Redistributor caches the most recently received DICTIONARY frame and transmits it to

any newly connected client and simply passes DATA frames on to the current set of clients without

caching them.

2.2 SDD 'fRANSMITIER

The SDD transmitter converts a legacy data stream into a self-describing data stream and

distributes it over a network to a list of clients. We based our implementation on the Generic

Redistributor described in Section 2.1. This section focuses on the changes that were made to the

Generic Redistributor to convert it into an SDD transmitter.

The functions of an SDD transmitter can be divided into two logical sections: (I) the core

SDD section and (2) the legacy to SDD conversion section. The core SDD section includes

functions that must be part of any SDD transmitter, while the legacy to SDD conversion section

includes functions that must be modified to suit a specific data source.

The SDD transmitter described here was constructed by modifying the Generic

Redistributor described in Section 2.1. The required modifications alter the Output Multiplexor

element of the Generic Redistnbutor in two ways:

1. An incoming legacy dictionary is handled by a function that is responsible (I) for

converting the incoming legacy dictionary (contained in an ITS frame of type

ITS_ T _ DICTIONARY) into an outgoing schema and contents and (2) for

packaging the schema and contents into BER encoded frames. The Generic

Redistributor then packs the BER encoded schema and contents into ITS

frames of type ITS_ T _ SCHEMA and ITS_ T _ CONTENTS. The schema and

contents frames are cached and sent to any newly connected client before any

data are sent to that client

2. The contents of an incomingdataframe(anITS frame of type ITS_ T_DATA)

are BER encoded and then re-packed into an ITS frame of type ITS_ T _ DATA

and finally distributed to clients by the Output Multiplexor.

21

Conversion from legacy dictionary to SDD dictionary involves elements of both the core

SDD and legacy to SDD sections mentioned above and described in detail below.

2.2.1 Core SDD

The core SDD consists of a set of (I) parsers that recognize the schema and contents

languages and (2) BER encoding routines that encode schema, contents, and data. The properties

of each of these are discussed in the following sections.

2.2.1.J Schema Parser

The Schema Parser can be used by either a transmitter or receiver of self-describing data.

The functions performed by the Schema Parser include the following:

I. verification that the input schema is part of the SDD Schema Language

2. verification that the semantic constraints of the Schema Language are met

3. construction of a parse tree for use internally by the Schema Parser and

externally by the Contents Parser during verification of the schema and contents.

The SDD Schema Language accepted by the Schema Parser is a subset of entry level

SQL-92 that allows creation of schemas and tables but lacks query capabilities and other aspects of

the complete SQL language. The subset is demonstrably sufficient to construct any legal SQL

relation schema and to generate any relation on that schema. The yacc (a LALR parser) granunar

definition for the Schema Language is found in Appendix A, and the flex scanner definition is found

in Appendix B.

A parse tree is constructed by the schema parser during processing of the schema file. An

illustration of an example parse tree is shown in Figure 1.2. The parse tree has a maximum depth of

four levels because of the nature of the Schema Language. At each level of the tree, all nodes are of

one type. The root node is a catalog node, the children of the catalog node are schema nodes, the

children of schema nodes are table nodes, and the children of table nodes are column nodes. Since

column nodes can have no descendants, the maximum depth of the tree is limited to four levels.

Each node type provides auxiliary storage for information about the specific entity represented by

22

the node. Because that infonnation is different for each node type, the auxiliary data structures are

node type specific.

Construction of the parse tree is controlled by the Schema Parser. Appropriate calls to tree

construction routines are placed in the yacc specification so that tree nodes are added or updated

when the needed infonnation has been recognized by the parser. The actions taken when each of

the four node types is recognized are described below. Because the data structures used are

somewhat complex, the type definitions are included here to aid in the discussion. The basic parse

tree node type is as follows:

typedef struct symbol_node { /* generic tree node *I
char ID[MAX_NAME_LENGTH];
NodeClass class; /* enumerated, one of CAT, SCH, TAB, COL*/
NodeinfoType node_data;
symbol_node_t left_Child;
symbol_node_t right_Sibling;
symbol_node;

The structure includes fields for a name, a node class (one of CAT, SCH, TAB, or COL),

an auxiliary structure to contain information relevant to the particular node class, and list headers for

children and siblings that are used to implement the leftmost-child, right-sibling tree structure that

represents the parse tree. Nodelnfo Type is a union of structure types cataloglnfonnation,

schemalnformaion, tablelnfonnation and Columnlnfo. The structures are customized to contain the

data relevant to each of the possible node types.

2.2.1.2 Parse Tree Structure

The parse tree is a general tree implemented with a leftmost-child, right-sibling linked list

data structure. Each node has pointers to two other tree nodes. One points to the leftmost child of

the node, the other points to the node's right sibling. Given this representation, the descendants of a

node are found by following first the leftmost-child pointer and then the right-sibling pointer of that

child until no more siblings of the child are found. This data structure allows an arbitrary number of

children of any node but only requires space proportional to the actual number of children of the

node.

A set of tree construction and traversal routines are defined to facilitate construction and

searching of the parse tree. They include Create _rootO, Find_ nodeQ, Insert_ nodeQ,

23

Delete_ nodeQ, Update_ nodeQ, PreorderQ, Add_ unresolved_ nodeQ, Check_ unresolved_ nodeQ,

and ClearUseFlagsQ. These routines allow for insertion to, deletion from, and searching and

updating of the parse tree and are used during construction of the parse tree and verification of

required semantics.

For example, a foreign key (a list of columns in a different table that represent a key to that

table) can be defined before all columns involved (or even the foreign table itself) have been defined.

A check of unresolved names is perfonned after the parse has completed to verify that this semantic

requirement is met.

2. 2.1. 3 Parse Tree Node information Structures

In this section, the infonnation structures used with each of the parse tree node types are

described.

The cataloglnformation structure used with a Catalog node is defined as follows:

typedef struct cat_info
char attribute[16];
cataloginformation;

Entry level SQL-92 does not allow user-specified catalogs. A default catalog is placed into

the parse tree before any other parsing actions take place. The default catalog node has a name and

no other attributes. Expansion of the Schema Language to include higher level compliance to SQL-

92 must allow for multiple catalogs. Presently, no information is stored in the cataloglnfonnation

structure.

The schemalnformation structure used with a Schema node is defined as follows:

typedef struct schema_info
int count;
char attribute;
schernainformation;

24

Entry level SQL-92 does not allow user-specified schema names. A default schema node is

inserted into the parse tree before parsing begins, immediately after creation of the default catalog

node. Expansion of the Schema Language to higher-level compliance with SQL-92 must allow for

user-specified schemas. Presently, no information is stored in the schemalnformation structure.

The tablelnformation structure definition is

typedef struct table_info

*I
queue_t prirnary_key; /* list of columns that constitute the primary key

queue_t foreign_key; /* list of ForeignKeyinfo records*/
queue_t unique; /* list of lists of columns in UNIQUE constraints*/
tableinforrnation;

A new table node is inserted into the parse tree when a table name has been recognized.

Additional attributes to a table node include a list ofcolumns that constitute the table's primary key,

a list of foreign keys defined in the table, and a list ofunique specifications for the table. Each of

these is added to the tablelnformation structure as the information becomes available during parsing.

Only one primary key can be defined for a table. It is represented as a list of column names.

A table may contain several foreign key definitions. They are represented by a list ofrecords

of type ForeignKeylnfo, defined as follows:

typedef struct f_key_info
queue t local cols; - -
queue_t foreign_cols;
ForeignKeyinfo;

The columns local to the table are contained in the list "local_ cols," and their definitions must

match those of the corresponding columns in the list "foreign_ cols." Verification of that semantic

requirement is performed by the function CheckTableConstraintsO.

A table may contain several "UNIQUE" constraints. A unique constraint requires that a

tuple of entries into the constrained columns is unique within the table. Columns referenced by a

foreign key in a different table must be either declared as a unique constraint or as a primary key.

Each unique constraint is represented by a list of column names, and the UNIQUE list is a list of

25

unique constraints. The function CheckTableConstraintsO verifies that the foreign columns of any

foreign key definition are either a primary key or are constrained to be unique.

The Columnlnfo type is defined as follows:

typedef struct column_information
DataTypes datatype;
data_type_info dataTypeinfo;
char defaults[SJ;
char constraint[32];
int offset; /* not used*/
int primary_key; /* 1 if column is primary key, O otherwise*/
int InUse; /* flag to avoid duplicate columns in contents lang */
column.Info;

A new column node is added to the parse tree when a column definition is recognized during

parsing. At that time, uniqueness of the name within its table is checked. Additional information

about the column includes a data type specification, a default value, and possible column constraints.

The information needed for a column's data type specification is dependent on the actual

data type. The data Typelnfo field is a union type that allows the information to be customized to the

specific data type of the column. The relevant type declarations are shown below. The types are

assembled into a union of structures specific to the basic data types described below:

typedef union d_type_info {
StringTypeinfo StringType;
numericTypeinfo nurnericType;
datetimeTypeinfo datetimeType;
intervalTypeinfo intervalType;
data_type_info;

/* basic datatypes */

String types are represented by the StringTypelnfo structure:

typedef struct str_type
int ConstantLength;
int length;
StringTypeinfo;

/* 0 for variable length, 1 for constant length*/
/* the max length of the string*/

Entry level SQL-92 does not allow variable length strings, so the ConstantLength field is not

really needed. It is included to ease the task of expanding the Schema Language to higher levels of

compliance.

26

Numeric types are represented by the numericTypelnfo structure:

typedef struct numeric_type {
NurnericTypes datatype;
int precision; /*precision>= scale*/
int scale; /* default scale is O */
numericTypeinfo;

The allowable types, specified in the enumerated type Numeric Types are numeric, decimal,

integer, smallint, float, real, and double precision. The scale and precision fields are relevant only to

types numeric, decimal, float, real, and double precision. The precision for real and double precision

is implementation defined; the precision for numeric, decimal, and float may be specified by the user.

Datetime and interval types are not allowed in entry level SQL-92, but the definitions are

included to ease the task of expanding the Schema Language to higher compliance levels:

typedef struct datetime_type
DTTypes datatype;
int precision;
char timezone[l6];
datetimeTypeinfo;

typedef struct interval_type {
IntervalFieldTypes startfield;
int startprecision;
IntervalFieldTypes endfield;
int end_ld_prec;
int end_sec_prec;
intervalTypeinfo;

In addition to type information, a column could be the sole element of the primary key for a

table. If so, that fact is indicated by setting the primary_ key flag to TRUE. The information is also

placed in the primary_ key list for the table containing the column.

The only allowable SOD Schema Language default value is NULL, and if that is defined to

be the default value for the column, the defaults field is set to contain the string "NULL."

Allowable column constraints are stored in the constraint field. Allowable constraints include

NOT NULL and UNIQUE. If a column is declared UNIQUE, it is added to the list of UNIQUE

column groupings for the table of which it is a part as a single-column UNIQUE specification.

27

2.2.1.4 Semantic Checks

When the end of the input schema is reached, the parser performs semantic checks before

returning. The first semantic check verifies that all names encountered during parsing have been

defined. The check is perfonned by the routine Check_ unresolved_ node 0. During parsing, a list of

undefined names is maintained, and ifit is non-empty at the end of parsing, its contents are checked

by searching the parse tree for each previously undefined name. If all names are found, all is well;

otherwise, an error has been detected, and the parser returns with an indication offailure.

If the unresolved name check succeeds, then a check of table constraints is perfonned. The

check verifies that any foreign key declarations are valid by verifying that the type defined for each

of the corresponding referencing and referenced columns matches and that the foreign key is either a

primary key in the referenced table or the set of columns has been declared UNIQUE within that

table. These checks are perfonned by the function CheckTableConstraintsO, which calls various

auxilliaryfunctions internal to the file, tree.c.

After the semantic checks have been perfonned, the parser returns either failure or a pointer

to the parse tree that it has constructed.

2.2. 1.5 Contents Parser

The purpose of the Contents Parser is to verify the syntax and semantics of the contents file

by verifying that the tables and columns referenced in the contents file are defined in the schema and

that the types of each data tuple present are compatible with the table and columns into which it is to

be placed. The Contents Parser makes use of the parse tree constructed by the Schema Parser to

perfonn the semantic verifications and to ensure that the list of columns into which a set of tuples will

be inserted does not contain the same column name more than once (indicated bythe"InUse" flag

from the colurnnlnfo structure).

The Contents Language is a simple language that allows specification of both a table name

and a list of columns from that table into which a series of tuples will be inserted. The table must

exist in the SDD schema, and the listed columns must exist in that table.

28

Each member of each of the tuples provided for insertion into a named table is checked for

type compatibility with the destination column. The parse tree generated by the Schema Parser is

used to aid this verification.

2.2.J.6 BEREncoding

Self-describing data are encoded with the Basic Encoding Rules {BER) [18] defined for the

Abstract Syntax Notation One standard (ASN. l) [14]. We use this standard to help minimize

machine dependency. We chose to hand craft a set of encoding routines because the encoding of

our ASN. I types is relatively straightfoiward and it would avoid requiring that an ASN. l compiler

be available.

We define four application specificASN. l types at present. They are schema, contents,

data, and serial number. Soon to be added will be Java byte code (for the extractor application).

BER encoding is done by two routines: BEREncodeFileSNO and BEREncodeBufferSNQ.

These encode the contents of a file or memory buffer as one of the BER types utilized by the SDD

protocol. The routines place the encoded input file or buffer into an output buffer and allocate space

for that buffer if necessary. If the output buffer has already been allocated and is large enough, it is

used; if not, it is reallocated with sufficient size. The arguments to each function are an input stream

or buffer, an output buffer, the allocated size of the output buffer, the BER type to be encoded, a

length in bytes of the buffer or file to be encoded, and a serial number. The functions encode first the

serial number and then the file or buffer, placing both BER encodings into the same output buffer.

The serial number is encoded as an IA5String, since it is a character representation of an integer that

can be interpreted as a GMT date time with millisecond resolution. Encoding as an !AS String is

done by the internal function IASEncodeQ, which takes a character argument and encodes it as its

IA5 representation. Currently, we use ascii and should revise the function to be in compliance with

the IA5 standard. The BER length octets are constructed by the internal function

EncodeLengthHeaderO, which only deals with the definite form of the length octets as defined in the

BER standard [18]

29
2. 2.1. 7 Client Connection Maintenance

To provide a self-describing data stream requires a client management system. That system

handles connection to the source of data, requests for connection from clients, distribution of

schema and contents to newly connected clients, and distribution of data to each client.

A method for managing client connection details is not specified as part of our self

describing data protocol. Our sample implementation makes use of the client connection

management provided by the Generic Redistributor described in Section 2.1.

2.2.2 Legacy to SDD Conversion

The Legacy to SDD Conversion portion of an SDD transmitter converts information about

the data stream (the legacy dictionary) into a format that is compatible with the self-describing data

protocol. Its exact structure must depend on the conversion task that will be performed. The

following description applies to the TMS loops data of our example.

2. 2. 2.1 Schema Creation

To convert the legacy TMS data into a self-describing data format requires construction of a

schema for the available information about the data stream. That only needs to be done once (but

revisions are required if there are changes to the data items available for a class of sensors). The

schema should adhere to certain guidelines, as described below.

For each distinct data reporting element (sensor), a mapping between that unit's id (which

may be a multiple component primary key if needed) and the location within a data block of the

data reported by that element must be present in the schema. For easier construction of a data

extractor, that mapping should be contained in a single table whenever practicable.

If data will be extracted from the data stream and stored in the database as they arrive, the

schema should contain definitions of tables to contain the extracted data. SeeAppendixE for an

example schema. When present, the tables will likely be used by a data extraction routine supplied

in the algorithms table (and optionally as an executable Java application). Even if data are not

30

inserted into the tables by an extraction routine, the data table definitions provide useful

documentation of the information present in the data for each sensor type.

2.2.2.2 Contents File Creation

The legacy dictionary must be used to create a new version of the contents file whenever a

new dictionary is received. The function CreateContentsFtle() converts an incoming legacy Data

Dictionary into a contents file. It makes use of several static files that contain information not present

in the legacy Data Dictionary. This additional information located in flat files is needed for a

complete description of the data stream. These files include a file containing a description of the

algorithms needed to interpret the packed data stream format (theAlgorithrnFile), afile containing

information about the measurement systems used for position infonnation (theMeasuresFile), and a

file containing information about the loop sensors that is not present in the legacy Data Dictioruuy

(the Cabinetlnfonnation file).

Because the routine that creates the contents file from the legacy dictionary and various

static files depends on the schema definition, it must be changed if the schema definition changes.

A new contents file must be generated whenever an incoming dictionary differs from the one

in current use. This is accomplished by the function labeled "tms2ddc" in Figure 2 .1. An incoming

legacy dictioruuy might not be different from the one currently cached by the transmitter ifit was

sent by an upstream server after a re-start. Since contents file generation and transmission can

require significant resources, we compare an incoming dictionary with the currently cached version

to determine ifit is a real revision and not merely a re-transmission from an upstream server and will

only create a new contents file in the former case. This prevents constructing a new contents file and

subsequent parsing and transmission of the schema and the contents to all connected clients if such

activity is not necessary. Not only does this save transmission and processing costs, it also avoids

requiring the recipient to generate a new database schema unless there is a real change to the

Dictionary Contents.

2. 2. 3 Creating a Specific Transmitter

To create a transmitter application for a specific set of data requires the legacy portion of

the transmitter to be modified. The steps required to customize a transmitter to a specific data

stream are the subject of this section.

2. 2. 3. I Define Schema

31

To be self-describing, a data set must include a Data Dictionary in the form of an SQL

schema and the associated contents. The schema should include all available information about the

data. To ease the receiver's task of interpreting the data, certain conventions should be followed.

Two important conventions are the inclusion of a table in the schema that maps from sensor ID to

the location of that sensor's actual data (the sensor-to-o1fset table) and the inclusion of an algorithm

for interpreting the data, given the sensor's type and the location ofits data.

The sensor-to-offset table may include other information but should at least include a unique

key to each sensor and an offset into a block of data where that sensor's data can be found. In the

present example implementation, data from each sensor are reported every 20 seconds as a binary

stream. The offset into that block of data is given for each sensor by the legacy dictionary. The

schema includes a table that holds the required mapping:

CREATE TABLE LOOPS
(LOOP_ID CHAR(16) NOT NULL PRIMARY KEY,
CABINET ID CHAR(?) NOT NULL,
METERED CHAR(4) NOT NULL,
RD TYPE CHAR(30) NOT NULL,
DIRECTION CHAR(l2) NOT NULL,

LANE TYPE CHAR(20) NOT NULL,
LANE NUM SMALLINT,
SENSOR TYPE CHAR (12 I NOT NULL,
DATA OFFSET INTEGER NOT NULL)

In this situation, the LOOP_ ID field is sufficient as a primary key. If, for example, a loop

could provide information described by several different sensor types, then the SENSOR_ TYPE

field would be needed in the primary key as well. The DATA_ OFFSET field contains a byte offset

into a buffer of binary data from which a number ofbytes that depend on the sensor type are

32

processed by the extraction algorithm. The extraction algorithm must "know" the correct number of

bytes to process for each sensor type.

The algorithms used to extract data into a usable form from the data stream should be

documented in a table. Since entry level SQL-92 does not provide a "text" data type, our example

application defines a table with 3 columns: line number, file name, and text:

CREATE TABLE ALG_DESCRIPT - Algorithms Used To Extract Data From
- The Real Data Stream.

(FILE_NAME CHAR(20) NOT NULL,
LINE NUMBER INTEGER NOT NULL,
LINE TEXT CHAR(128),
PRIMARY KEY (MEASURE_TYPE, LINE_NUMBER))

The contents of each file of the algorithm description can be extracted from this table by

selecting LINE_ NUMBER and LINE_ TEXT for a given FILE_ NAME, ordered by

LINE_ NUMBER. We recommend providing the algorithm description in the form ofa Java

program that performs the data extraction task. Since each Java class must be defined in its own

file, the algorithms table separates information by file name. The algorithm description takes the form

of textual Java code, and the recipient can compile the Java text to produce an executable data

extractor. If the algorithm description takes some other fonn, then a custom data extraction routine

must be constructed according to the specifications contained in the algorithms table.

2.2.3.2 Construct Contents

The contents file contains the information to be placed into the database according to the

Dictionary Schema. In some instances the contents may not change with time or may change very

slowly. In other instances the contents may change dynamically within a relatively short (hours to

weeks) period. A dynamic legacy dictionary requires some automatic way to generate an update,

while a static dictionary may only need to be defined once.

The TMS data of our example are described by a dynamic legacy dictionary. A dictionary

can arrive in the data stream at any time. The TMS SDD transmitter constructs a new contents file

33

from infonnation contained in the legacy dictionary and several static data files whenever a new

legacy dictionary arrives. To construct a new transmitter for a data transfer that has a dynamic

dictionary, a routine that does the necessary legacy-to-SOD conversion must be created and added

to the transmitter. In our TMS example, the function CreateContentsFile() performs the required

conversion.

Data

l
Add

Serial No.

BER
Encode

ITS
Framer

®

Demultiplexor

LEGACY

Dictionary
(Legacy)

l tatic Schema
Definition

Le a 2SDD
Static

Add Add Contents
Serial No. Serial No.

Schema Contents

l l
BER BER

Encode Encode

ITS ITS
Framer Framer

@

CORE
Serializer

Figure 2. I: A new contents file is generated when an incoming dictionary frame is different than the one
currently cached

34

If the legacy dictionary is static, the situation is considerably simplified. A contents file must

be constructed before transfer can begin, but no provision for dynamic change to the contents file is

necessary. The file can be generated by hand ifit is small, or suitable tools can used to construct the

file ifit is large. Once constructed, the SDD transmitter can be modified to transmit the contents file

when a new client is connected.

2. 2. 3. 3 Construct Data Extractor

Self-describing data require the description to include information needed to interpret the

data stream. Data streams are often transmitted in packed binary fonn for bandwidth reasons. If

that is the case, then the information must include a description of how many data are present in the

record for each sensor and the meaning of the individual bits in those data. An ideal way to convey

such information is a program that accomplishes the required extraction. The wide availability of

Java, together with its portability, make it well suited to the task of supplying a data extraction

algorithm.

To construct a data extraction algorithm obviously requires knowledge of the sensor data

format. If the algorithm description takes the fonn ofJava code, it should be liberally commented to

make that format clear to the reader of the code.

To obtain the mapping between sensor ID and offset, the extractor must have knowledge of

the table structure of the schema. Specifically, it must know the name of the table that contains the

required mapping. Since the extractor is constructed by the providers of the data, that knowledge

should be available. The extractor could be constructed to parse the contents file and obtain the

desired mapping from that source rather than performing a query to a database instantiation of the

Data Dictionary.

If the data extractor is configured to generate SQL statements that place the extracted data

into a database table, the extractor must have knowledge of the names of the tables and columns

devoted to storing the sensor data.

35

2.3 SDD RECEIVER

Implementation of an SOD receiver makes use of many of the components of the SOD

transmitter. It uses the same parsers for schema and contents as does the transmitter, and the BER

encoding routines of the transmitter are the inverses of the BER decoders needed by the receiver.

The receiver has the task of generating SQL commands that instantiate the Data Dictionary. That

function is easily added to the Contents Parser. In our sample implementation, both parsers are the

same, and generation ofSQL output is controlled by the setting of an internal flag variable.

Extraction of data to a usable form from the incoming data stream is a desirable property of

an SOD receiver. The wide availablilty of the Java programming language, together with its maclrine

independence, make it a prime candidate for use in the extraction problem. Using the methods

described in Section 2.2.3, a provider of self-describing data can construct an extractor with Java

and include the code in the Data Dictionary. Those methods require that the recipient extract the

Java code and place it in operation. We are planning to extend the SOD types so that an extractor

can be transmitted in Java byte code form, allowing a receiver (if implemented in Java) to

automatically use the extractor to process incoming data.

36

37

3. Conclusions

In this report we present a methodology that provides a framework to create, encode, and

decode a self-describing data stream. Clients of these data streams can interpret the detailed

information in the data transfer with limited a priori information. We demonstrate that a self

describing data transfer be completed using only

I. existing data description language standards,

2. parsers to enforce language compliance,

3. a simple content language that flows out of the data description language, and

4. architecture neutral encoders and decoders based onASN.1.

We demonstrate the use of the SOD paradigm with data from a legacy traffic management

center, and in Chapter 2 we provide a detailed technical description ofits implementation. This SDD

paradigm has the potential to enhance the NTCIP family of protocols under development to support

ITS deployment.

The complete source code for our implementation can be obtained by ftp from ftp://

ftp.its. washington.edu/pub/mdi/SDD/v2.0.0/sdd2.0.0b6.zip, and additional information is available

from http://www.its.washington.edu/bbone.

38

•

39

Appendix A: Schema Parser

This appendix contains the yacc specification of the language recognized by the Schema Parser. The

action routines have been removed for clarity.

%token BIT
%token CHAR
%token CHARACTER
%token COMMA
%token CREATE
%token DATE
%token DAY
%token DEC
%token DECIMAL
%token DEFAULT
%token DELIMITED IDENTIFIER
%token DOUBLE
%token FLOAT
%token FOREIGN
%token HOUR
%token INT
%token INTEGER
%token INTERVAL
%token KEY
%token LFT PAREN
%token MINUTE
%token MONTH
%token NON_QUOTE_CHAR
%token NOT
%token NULL TOKEN
%token NUMERIC
%token PERIOD
%token PRECISION
%token PRIMARY
%token QUOTE
%token REAL
%token REFERENCES
%token REGULAR IDENTIFIER
%token RESERVED WORD
%token RT PAREN
%token SCHEMA
%token SECOND
%token SEMICOLON
%token SMALLINT
%token TABLE
%token TIME
%token TIMESTAMP
%token TO
%token UNDERSCORE
%token UNIQUE
%token UNSIGNED INTEGER

40
%token VARCHAR
%token VARYING
%token WITH
%token YEAR
%token ZONE

%%

data_dictionary_definition
SQL_schema statement optional semicolon

optional semicolon
I SEMICOLON

/*empty*/

SQL_schema statement : schema definition

schema_definition : CREATE SCHEMA schema element list

schema_element_list : /*empty*/
schema element list schema element

schema element : table_definition;

table definition: CREATE TABLE table name table element list

table_name : identifier;

qualified_table_name qualified_name

qualified_narne :
identifier PERIOD identifier PERIOD identifier
identifier PERIOD identifier
identifier

identifier
REGULAR IDENTIFIER
DELIMITED IDENTIFIER

table element list
RT PAREN ;

LFT PAREN table element table_element list_body

table element list_body: /*empty*/
table_element list_body COMMA table_element

table element :
column definition
table constraint definition

column definition
column name data type default clause colurnn_constraint_definition

column name identifier

data_type :
character_string_type
bit_string_type
numeric_type

character_string type :
CHARACTER
CHARACTER LFI' FAREN length RT_PAREN
CHAR LFI' FAREN length RT FAREN
CHAR

length: UNSIGNED INTEGER

bit string_type :
BIT
BIT LFI' FAREN length RT FAREN

numeric_type:
exact_numeric_type
approxirnate_nurneric_type

exact_numeric_type:
NUMERIC precision_spec
DECIMAL precision_spec
DEC precision_spec
INTEGER
INT
SMALLINT

precision_spec : /*empty*/
LFT PAREN precision RT FAREN
LFT PAREN precision COMMA. scale RT FAREN

precision: UNSIGNED INTEGER

scale: UNSIGNED INTEGER

approxirnate_numeric_type
FLOAT
FLOAT LFT_PAREN precision RT FAREN
REAL
DOUBLE PRECISION

41

42

default clause : /*empty*/
DEFAULT default option

default_option : NULL_TOKEN;

column_constraint_definition : /*empty*/
column constraint definition column constraint - -

column constraint :
NOT NULL TOKEN
UNIQUE
PRIMARY KEY

table constraint definition - -
table constraint :

table constraint

unique constraint_definition
referential constraint definition - -

unique constraint_definition:
UNIQUE LFT_PAREN unique_column_list RT FAREN
PRIMARY KEY LFT_PAREN unique_column_list RT FAREN

unique_colurnn list : local column_name_list;

column name list - - constraint_column_name column_name_list_body

column name list_body: /*empty*/
column_narne_list_body COMMA constraint column name

local column name list : column_name local_column_name_list_body

local column_name_list_body: /*empty*/
local_column_name_list_body COMMA constraint_column_name

constraint_column_name : column_name;

constraint table_name : qualified_table_name

referential constraint definition: - -FOREIGN KEY LFT_PAREN referencing_columns RT PAREN
references specification

referencing_column.s local_column_name_list

reference column_list : column_name_list;

references specification : REFERENCES referenced table and columns

referenced table and columns :
qualified_table_narne
qualified_table_name LFT FAREN reference_column_list RT FAREN

43

44

45

Appendix B: Schema Scanner

This appendix contains the flex specification of the scanner used with the Schema Parser defined in

the preceeding yacc grammar. The scanner is called by the parser, and recognizes the tokens

defined in the Schema Grammar, returning an appropriate value to the Parser.

A [Aa]
B [Bb]

C [Cc]
D [Dd]

E [Ee]
F [Ff]
G [Gg]
H [Hh]
I [Ii]

J [Jj l
K [Kk]
L [Ll]
M [Mm]
N [Nn]
0 [Oo]

P [Pp]
Q [Qq]

R [Rr]
S [Ss]
T [Tt]
U [Uu]
V [Vv]
W [Ww]
X [Xx]
y [Yy]
Z [Zz]

%%
" " SchemaLength += l; return (PERIOD); }
"" SchemaLength += strlen(yytext); return{UNDERSCORE);
"(" SchemaLength += strlen (yytext}; return (LFT_PAREN); }
\')" SchemaLength += strlen(yytext); return(RT_PAREN);}
"," SchernaLength += strlen(yytext); return(COMMA); J
""

1 SchernaLength += strlen (yytext); return (QUOTE); }
";" SchemaLength += strlen(yytext); return(SEMIC0L0N);
"" SchernaLength += l;
\t SchernaLength += 1;
\n { SchemaLength += 1; LineNum += l; }
{B)[I){T) { SchemaLength += strlen(yytext); return(BIT);)
(C){H)[A){R) [SchemaLength += strlen(yytext); return(CHAR);
{C) {H) {A) (R) {A) {C) {T} [E) (R} [SchemaLength += strlen(yytext};

return(CHARACTER}; }
{C){R}(E}{A)[T}(E} { SchemaLength += strlen(yytext}; return(CREATE};}
[D}{A}{T)(E} { SchemaLength += strlen(yytext}; return(DATE);)
{D}(A){Y) [SchemaLength += strlen(yytext); return(DAY}; }

46

{D){E){C) { SchemaLength += strlen(yytext); return(DEC);)
(D)(E){C)(I){M){A) {L) (SchemaLength += strlen(yytext); return(DECIMAL);
{D){E){F){A){U)(L)(T) { SchemaLength += strlen{yytext); return{DEFAULT);
(D)(O){U)(B){L){E) I SchemaLength += strlen(yytext); return(DOUBLE);)
{F){L)(O){A){T) { SchemaLength += strlen{yytext); return(FLOAT);)
{F){O){R){E){I){G){N) { SchemaLength += strlen(yytext); return(FOREIGN);
(H){O)(U){R) { SchemaLength += strlen(yytext); return(HOUR);)
{IJ (NI {T) { SchemaLength += strlen{yytext); return(INT);)
{I){N){T)(E){G)(E){R) { SchemaLength += strlen{yytext); return(INTEGER);
{I) {NJ {T) (E) {R) {V) {A) {L) I SchemaLength += strlen(yytext);
return(INTERVAL);)
(KJ{E){Y) { SchemaLength += strlen(yytext); return(KEY);)
(M){I){N){U)(T){E) { SchemaLength += strlen(yytext); return(MINUTE);
(M)(O) {N) IT) {H) I Schema Length += strlen (yytext); return (MONTH); J
{N){O){T) { SchemaLength += strlen(yytext); return(NOT);)
{N){U){L){L) { SchemaLength += strlen(yytext); return(NULL_TOKEN);
{N){U){M){E){R){I){C) { SchemaLength += strlen(yytext); return(NUMERIC);
{P)(R)(E)(C) {I) (S)(I) {O) {N) { SchemaLength += strlen (yytext);

return(PRECISION);)
{P){R)(I){M){A){RJ{Y) { SchemaLength += strlen(yytext); return(PRIMARY);
{R) {E) {A) {L) { SchemaLength += strlen(yytext); return I REAL);)
(R) {E) {FJ (E) {R) {E) {N) {C) {E) {S) { SchemaLength += strlen(yytext);

return(REFERENCES);)
{S) {C) (H) {E)(M)(A) { SchemaLength += strlen(yytext); return{SCHEMA);
{S) {E) {C)(O) {N) {D) { SchemaLength += strlen(yytext); return(SECOND);
{S){M){A){L){L){I){N){T) { SchemaLength += strlen(yytext);
return{SMALLINT); }
{T) {A){B)(L)(E) { SchemaLength += strlen(yytext); return(TABLE);
(T) {I) (M) {E) (SchemaLength += strlen(yytext); return(TIME);)
{TJ (I) {M)(E)(S) {T) (A)(M) IP) (SchemaLength += strlen(yytext);

return(TIMESTAMP); }
{T) (O) { SchemaLength += strlen(yytext); return(TO);)
(U){N)(I)(Q){U)(E) (SchemaLength += strlen(yytext); return(UNIQUE);
(V) {A){R){CJ{H){A)(RJ (SchemaLength += strlen(yytext); return(VARCHAR);
(V){A)(R){Y}(I)(N){G) { SchemaLength += strlen(yytext); return(VARYING);
{W)(I){T)(H) { SchemaLength += strlen(yytext); return(WITH);)
{ Y) { El {A) { R} { SchemaLength += strlen {yytext) ; return (YEAR);)
{Z}{O){N}{E) { SchemaLength += strlen(yytext); return(ZONE);)

{A) {B) {S) {O) {L) {U) {T) {E)

{A) {C) {T) {I) {O) {N)

{A){D){D)
{A){L){L)
{A) {L) {L) {O) {C) {A) {T) {E)

{A) {L) {T) {E) {R)

{A){N){D)
{A) {N) {Y)

{A) {R) {E)

{A) {S)

{A){S){C)
{A) {S) {S) {E) {R) {T) {I) {O) {N)

{A) {T)

{A) { U) { T){ H) { 0) { R) {I) { Z) {A) { T) {I) { 0) { N)

{A){V){G)

(B) (E) (G) (I) (N)

(B) (E) (T) (W) (E) (E) (N)

(B) (I) (T)_(L) (E} (N) (G) (T) (H)

(B) (0) (T) (H)

(B) (Y)

(CJ (A} (SJ (CJ (A} (D) (E}

(CJ (A} (S) (CJ (A) (D) (E) (D)
(C) (A} (S) (E}

(C) (A} (S) (Tl

(C) (A) (T) (A) (L) (0) (G)

(CJ (H) (A} (R)_{L) {E} {NJ (G) {T} (HJ

(CJ (H) {A) (R) {A) {C) {T} (E) (R)_(L) {E) {N) (G) (T) (HJ
{C) (H) (E) (CJ (K)

(C) (L} (0) (SJ (El

(C) {0) (A) {L) (E) (S) (C) (E)

(C) (0) (L) (L) {A) (T) (E)

(C) (0) (L) (L) {A) (T) (I) (0) (N)

(C) (0) { L) (U) {M) (NJ

{C) (0) {M) (M) {I) {T)

{C) (0) (N) (N) (E) (C) (T)

{C) (0) (N) (N) (E) (C) (T) {I) (0) {N)

(C) {0) (N) {S) (T) (R) (A) (I) {N) (T)

(C) (0) (N) (S) (T) (R) (A) (I) (N) (T) (S)

(C) (0) {NJ (T) (I) (NJ (U) (E)

{C) (0) {N) (V) (E) {R) {T}

(C) (0) (R) (R) (E) (S) (P) {0) {N) (D) {I) {N) (G)
(C) (0) (U) (N) (T)

(C) {R) (0) {S) {S)

(C) (U) (R) (R) (E) (N) (T}

(C} (U) (R} (R} (E} (N) (T}_(D} {A) (T} (E)

(C} (U} (R} (R} (E) (N} (T}_(T} (I) (M} (E}

(C) (U} (R) (R} (E) (N} (T}_(T} (I) (M) (E} (S} (T) (A} (M} (P)

(C) (U) (R) (R) (E) (N) (T)_{U) {S) (E) (R)

(C) (U} (R) (S} (0} (R)

(D) (E) (A) {L) (L} (0) (C) (A) (T) (E}

(D)(E){C)(L){A)(R}(E)

(D} (E) (F) (E) (R} (R} (A) (B} (L} (E}

{D} (E) (F) (E} (R) (R) (E) (D}

(D) (E} (L) (E} (T) (E}
(D} {E) (S} (C)

(D} (E) (S} (C) (R) (I} (B) (E}

(D} (E) (S} (C) (R) (I} (P} (T} (0} (R}

(D} (I) (A} (G) (N} (0} (S} (T} (I} (C} (S}

(D} (I} (S} (C} (0) (N} (N} (E} (C} (T}

(D} (I) (S} (T) (I) (N} (C} (T}

(D} (O) (M) (A) (I) (N)

(D) (R) (0} {P}

(E) (L} (S) (E}

(E) (N} (D)

(E} (N) (D}\-(E} (X} (E} (C}

(E} (S} (C} (A} (P) (E}

(E} (X) (C} (E} (P} (T)

(E} (X) (E} (C} (U} (T) (E)

(E) (X} (I) (S} (T} (S}

47

48
{E} {X} {T) {E} {R} {N} {A} {L}

{E) {X} {T} {R} {A} {C} {T}

{F} {A) {L} {S} {E}

{F} {E) {T} {C} {H)

{F} {I) {R} {S} {T}

{ F} {OJ { R}

{F} (0) {U} {N} {D}

{F} {R} {O} {M}

{F} {U) {L} {L}

{G}{E}{T}

{G) {L} {O} {B} {A} {L}

{G} {O}

{G} {O} {T} {O}

{G} {R} {A} {N} {T}

{G} {R} {0} {U} {P}

{H} {A} {V} {I} {N} {G}

{I} {D} {E} {N} {T} {I} {T} {Y}

{I} {M} {M} {E} {D} {I} {A} {T} {E}
{ I}{N}

{I} {N} {D} {I} {C} {A} {T} {O} {R}

{I} {N} {I} {T} {I} {A} {L} {L} {Y}
{I} {N} {N} {E} {R}

{I} {N} {P} {U} {T}

{I} {N} {S} {E} {N} {S} {I} {T}{I} {V} {E}
{I} {N} {S} {E} {R} {T}

{I} {N} {T} {E} {R} {S} {E} {C} {T}
{I} {N} {T} {O}

{I}{ S}

{I} {S} {O} {L) {A} {T} {I} (0) {N}

{J} (0) {I} {N)

{L} {A} {N} {G} {U} {A) {G} {E}
{L){A}{S}{T}

{L) {E} {A} {D} {I} {N} {G}

{L}{E}{F){T}

{L} {E} {V) {E} {L}

{L} {I} {K} {E}

{L} {O} {C} {A} {L}

{L} {O} {W} {E) {R}

{M} {A} {T} {C} {H)

{M){A} {X}

{M} { I} {N}

{M} {O} {D} {U} {L) {E}

{N}{A}{M}{E}{S}

{N} {A} {T} {I) {O} {N) {A} {L}

{N} {A} {T} {U} {R} {A} {L}

{N} {C} {H} {A} {R}

{N} {E} {X} {T}

{N} {O}

{N} {U} {L} {L} {I} {F}

{O} {C} {T} {E} {T}_{L} {E} {N} {G} {T} {H}
{O} {F}

{O} {N}

(0) {N} {L} {Y}

(0) {P} {E} {N)

{OJ {P} {Tl {I} {O} {N}
{OJ { R}

{O) {R) {DJ {E) {R)

{OJ {U} {T) {E} {R}

{OJ {U} {T} {P} {U} {T}

{O} {V} {E} {R} {L} {A} {P} {S}

{Pl{A}{D}

{P) {A} {R} {T} {I} {A} {L}

{P) {O} {S} {I} {T} {I} {O} {N}

{P) {R}{E} {P}{A} {R} {E}

{P} {R} {E} {S} {E} {R} {V} {E}
{P} {R} {I} {O} {R}

{P) {R} {I} {V} {I} {L} {E} {G} {E} {S}

{P) {R} {O} {C} {E} {D} {U} {R} {E}
{P} {U) {B} {L} {I} {C}

{R} {E} {A} {D}

{R} {E} {L} {A} {T} {I} {V} {E}

{R} {E} {S} {T} {R} {I} {C} {T}

{R} {E} {V} {O} {K} {E}

{R} {I} {G} {H} {T}

{R} {O} {L} {L} {B} {A} {C} {K}

{R}{O}{W}{S}

{S} {C} {R} {O} {L} {L}

{S} {E} {C} {T} {I} {O} {N}

{S} {E} {L) {E) {CJ {T)

{S} {E) {SJ {SJ {I) {OJ {NJ

{SJ {E) {SJ {SJ {I) {OJ {NJ {U) {SJ {EJ {R)
{SJ {E) {TJ

{S){I){Z){E}

{SJ {OJ {M} {E)

{SJ {P) {A) {CJ {E)

{SJ {Q) {L)

{SJ {Q} {L) {CJ {OJ {DJ {E)

{SJ {Q} {L) {E} {R) {RJ {OJ {R)

{SJ {Q} {L) {S} {T) {A) {T) {EJ

{SJ {U}{B) {SJ {T} {RJ {I) {NJ {G}
{S} {U) {M}

{SJ {Y} {SJ {TJ {E) {M)_{U} {SJ {E} {R)

{T) {EJ {M) {P) {O} {R) {A) {R) {Y)

{T) {HJ {E) {NJ

{T} {I) {M) {E) {ZJ {OJ {NJ {E)_{H) {OJ {U) {RJ

{TJ {I) {M) {E} {Z) {O} {NJ {EJ_{M) {I) {N} {UJ {T) {EJ
{T) {R) {A) {I) {L} {I) {NJ {G)

{T) {RJ {A) {NJ {SJ {A) {CJ {TJ {I) {OJ {NJ
{T}{R){I}{M)

{TJ {R) {UJ {E)

{U) {NJ {I) {OJ {NJ

{U) {NJ {K) {N} {OJ {W} {NJ

{UJ {P) {DJ {A} {TJ {E}
{UJ {P) {PJ {E) {R)

{U) {SJ {A) {GJ {E)
{U){S){E){R)

{UJ {SJ {I) {NJ {G)

{V} {A) {L) {U) {EJ

49

50
{VJ {A} {L} {UJ {E} {SJ

{VJ {I} {El {WJ

{WJ {HJ {El {NJ

{WJ {HJ {El {NJ {El {VJ {El {RJ

{WJ {HJ {EJ {RJ {E}

{W} {OJ {RJ {K}

{W}{R}{I){T}{E} { SchemaLength += strlen(yytext); return(RESERVED_WORD);

[A-Z) ([A-Z0-9)*[A-Z0-9))* { SchernaLength += strlen(yytext);

return(REGULAR_IDENTIFIER); }
\"([""\n]*(\"\"}*["'"\n]*)*V' { SchemaLength += strlen(yytext);

return{DELIMITED_IDENTIFIER); }
\-\-["'\n]*\n { SchernaLength += strlen{yytext); LineNum += l; }

[0-9]+ { SchemaLength += strlen(yytext); return(UNSIGNED_INTEGER);
["'] { SchemaLength += strlen(yytext); return(NON_QUOTE_CHAR); }

Appendix C: Contents Parser

This appendix contains the yacc specification for the contents language.

%token CATALOG
%token SCHEMA
%token TABLE
%token COLUMN
%token LFT PAREN
%token RT PAREN
%token SEMICOLON
%token COMMA
%token NULL TOKEN
%token DEFAULT
%token INTEGER LITERAL
%token EXACT DOUBLE LITERAL
%token APPROXIMATE DOUBLE LITERAL
%token REGULAR IDENTIFIER
%token DELIMITED IDENTIFIER
%token CHARACTER STRING
%start data_dictionary_file
%%
data_dictionary_file: table_list

table_list : /*empty*/
! table list table_entry

table_entry

column list

TABLE table name column list row_values_list;

COLUMN LFT FAREN column name col name list RT FAREN

table_narne : identifier;

column name : identifier;

identifier :
REGULAR IDENTIFIER
DELIMITED IDENTIFIER

col name list : /*empty*/
col name list COMMA column name

row values_list : /*empty*/
row values list row values

row values
row value SEMICOLON
row value COMMA row values

51

52

row value

%%

NULL TOKEN
DEFAULT
INTEGER LITERAL
EXACT DOUBLE LITERAL
APPROXIMATE DOUBLE LITERAL - -
CHARACTER STRING

Appendix D: Contents Scanner

This appendix contains the flex specification for the scanner used with the Contents Parser.

D [0-9]
E [eE] [-+] ?{D}+
Q l 'l l 'l
%%

" (" ContentLength += strlen (ddftext); return{LFT FAREN} ; } -

\\) ,, ContentLength += strlen(ddftext); return(RT FAREN}; -
\\ ,, Content Length += strlen(ddftext); return (COMMA) ; } ,

\\ . ,, Content Length += strlen{ddftext); return(SEMICOLON); ,

ContentLength += strlen(ddftext);

\t ContentLength += strlen(ddftext);

\n { ContentLength += strlen(ddftext); LineCount += 1; }

[Nn] [Uu] [Ll] [Ll] { ContentLength += strlen{ddftext); return(NULL_TOKEN);

[Dd] [Ee] [Ff) {Aa) [Uu) [Ll) [Tt] { ContentLength += strlen{ddftext);
return(DEFAULT); }

[Tt] [Aa) [Bbl [Ll) [Ee) { ContentLength += strlen(ddftext); return(TABLE);

[Cc] [Oo) [Ll] [Uu) [Mm) [Nn] { ContentLength += strlen(ddftext);
return(COLUMN); }

[A-Z] I [A-Z0-9) * [A-Z0-9) I* { ContentLength += strlen (ddftext);
return(REGULAR_IDENTIFIER); }

\" (["'" \n] * (\" \") * ("" \n] *) * \" { ContentLength += strlen (ddftext) ;
return(DELIMITED_IDENTIFIER); }

\-\-['\n)*\n ContentLength += strlen(ddftext); LineCount += l; }

[+\-)?{D}+ { ContentLength += strlen{ddftext}; return(INTEGER_LITERAL);

[+\-)?{D}+[.] { ContentLength += strlen(ddftext);
return(EXACT_DOUBLE_LITERAL);

[+\-]?{D}+[.] {D}+ { ContentLength += strlen(ddftext);
return(EXACT_DOUBLE_LITERAL); }

[+\-]?[.] {D}+ { ContentLength += strlen(ddftext);
return{EXACT_DOUBLE_LITERAL);

[+\-)?{D}+{E} { ContentLength += strlen(ddftext);

53

54

return{APPROXIMATE_DOUBLE_LITERAL);

[+\-)?{D)+[.){E) (ContentLength += strlen(ddftext);
return(APPROXIMATE_DOUBLE_LITERAL);

[+\-)?(DJ+[.) (D)+(EJ ContentLength += strlen(ddftext);
return(APPROXIMATE_DOUBLE_LITERAL);

[+\-]?[.]{D}+{E} { ContentLength += strlen(ddftext);
return(APPROXIMATE_DOUBLE_LITERAL);

(['JI {["\n)*I [') ['))*([')) (ContentLength += strlen{ddftext);
return(CHARACTER_STRING);)

Appendix E: Schema Definition

This appendix contains the definition of the Data Dictionary schema used by the SOD transmitter

described in Chapter 2.

CREATE SCHEMA. - recipient will need to supply AUTHORIZATION information

CREATE TABLE CABINETS
(CABINET_ID CHAR(7) NOT NULL PRIMARY KEY,
FREEWAY CHAR(lO) NOT NULL,
TEXT CHAR(255),
RAMP SMALLINT NOT NULL)

CREATE TABLE LOOPS
(LOOP_ID CHAR(16) NOT NULL PRIMARY KEY,
CABINET ID CHAR{7) NOT NULL,
METERED CHAR{4) NOT NULL,
RD TYPE CHAR{30) NOT NULL,
DIRECTION CHAR{12) NOT NULL,
LANE TYPE CHAR{20) NOT NULL,
LANE NUM SMALL INT,
SENSOR TYPE CHAR{l2) NOT NULL,
DATA OFFSET INTEGER NOT NULL)

CREATE TABLE COORDINATES
{COORD_TYPE CHAR(40) NOT NULL PRIMARY KEY,
NAMEl CHAR{40) NOT NULL,
NAME2 CHAR{40) NOT NULL,
NAME3 CHAR{40) NOT NULL,
UNITl CHAR{40) NOT NULL,
UNIT2 CHAR{40) NOT NULL,
UNIT3 CHAR{40) NOT NULL)

CREATE TABLE CABINET LOCATION
{CABINET_ID CHAR{7) NOT NULL,
COORD TYPE CHAR{40) NOT NULL,
AUTHORITY CHAR{30) NOT NULL,
VALUEl DEC{ll,8),
VALUE2 DEC{ll,8),
VALUE3 DEC{ll,8),
PRIMARY KEY {CABINET_ID, COORD_TYPE, AUTHORITY),
FOREIGN KEY {COORD_TYPE, AUTHORITY) REFERENCES MEASURES)

CREATE TABLE MEASURES
{COORD_TYPE CHAR{40) NOT NULL,
AUTHORITY CHAR{30) NOT NULL,
REF SYSTEM CHAR{128) NOT NULL,
REF PTl
REF PTZ
REF PT3
ACCURACYl

DEC(ll,8),
DEC { 11, 8) ,
DEC (11, 8),
DEC (11, 8),

55

56
ACCURACY2 DEC(ll,8),
ACCURACY3 DEC(ll,8),
PRIMARY KEY (COORD_TYPE, AUTHORITY),
FOREIGN KEY (COORD_TYPE) REFERENCES COORDINATES)

CREATE TABLE LOOP DATA
(SENSOR_ID CHAR(lS) NOT NULL,
DATA TIME CHAR(30) NOT NULL,
VOLUME SMALLINT NOT NULL,
SCAN COUNT SMALLINT NOT NULL,
FLAG SMALLINT NOT NULL,
LANE COUNT SMALLINT NOT NULL,
INCIDENT DETECT SMALLINT NOT NULL,
PRIMARY KEY (SENSOR_ID, DATA_TIME))

CREATE TABLE STATION DATA
(SENSOR_ID CHAR(lS) NOT NULL,
DATA TIME CHAR(30) NOT NULL,
VOLUME SMALLINT NOT NULL,
SCAN COUNT SMALLINT NOT NULL,
FLAG SMALLINT NOT NULL,
LANE COUNT SMALLINT NOT NULL,
INCIDENT DETECT SMALLINT NOT NULL,
PRIMARY KEY (SENSOR_ID, DATA_TIME))

CREATE TABLE SPEED TRAP DATA - -
(SENSOR_ID CHAR(lS) NOT NULL,
DATA TIME CHAR(30) NOT NULL,
SPEED DEC(4,1) NOT NULL,
LENGTH DEC(4,1) NOT NULL,
FLAGSl SMALLINT NOT NULL,
FLAGS2 SMALLINT NOT NULL,
BINl SMALLINT NOT NULL,
BIN2 SMALLINT NOT NULL,
BIN3 SMALLINT NOT NULL,
BIN4 SMALLINT NOT NULL,
PRIMARY KEY (SENSOR_ID, DATA_ TIME))

CREATE TABLE LOOP FLAGS
(FLAG_VAL SMALLINT NOT NULL,
EXPLANATION CHAR (24 I NOT NULL,
PRIMARY KEY (FLAG_VAL) I

CREATE TABLE STATION FLAGS
(FLAG_VAL SMALLINT NOT NULL,
EXPLANATION CHAR(24) NOT NULL,
PRIMARY KEY (FLAG_VAL))

CREATE TABLE INCIDENT DETECT
(FLAG_VAL SMALLINT NOT NULL,
EXPLANATION CHAR(24) NOT NULL,
PRIMARY KEY (FLAG_VAL) I

To deal with lack of a "text" data type in SQL, we use the construct
that follows:

The lines are stored in a table, keyed by line number and
measure name.

To get the text for a given file, select all lines with the
desired FILE_NAME, in LINE NUMBER order.

CREATE TABLE ALG_DESCRIPT - Algorithm~ used to extract data from
- the real data stream.

(FILE_NAME CHAR(l6) NOT NULL,
LINE NUMBER INTEGER NOT NULL,
LINE TEXT CHAR(l25),
PRIMARY KEY (FILE_NAME, LINE_NUMBER))

57

58

Appendix F: Contents File

This appendix contains an abbreviated version of the Dictionary Contents file created when the

SDD transmitter described in Chapter 2 receives a legacy dictionary. Since the complete file is

approximately 450 kilobytes in size, this version is heavily edited.

TABLE ALG DESCRIPT
COLUMN (FILE_NAME, LINE_NUMBER, LINE_TEXT)
'TmsLoop.java', 0,
'TmsLoop.java', 1,

"
"

'TmsLoop.java', 2, '/**'
'TmsLoop.java', 3,
'* Encapsulates a TMS loop sensor in packed form.at, plus other fields'
'TrnsLoop. java', 4,
'* necessary to support SDD. This is an immutable class which may'
'TrnsLoop. java', 5,
'* only be initialized from a TMS data block.'

the remainder of the TmsLoop.java file

"
"
'/**'

'TmsStation.java', O,
'TmsStation. java', 1,
'TmsStation.java', 2,
'TmsStation.java', 3,
'TmsStation.java', 4,
'TmsStation.java', 5,
'TrnsStation.java', 6,
'TrnsStation.java', 7,

'* Encapsulates a TMS station in packed format'
\ */'
"
"

'TmsStation.java', 8,
'TrnsStation.java',
'TmsStation.java',

'public class TmsStation extends TmsData'
\ { \ ;

9,
10,

/**'

* Constructs a Tmsstation using the 3 bytes of data at'

the remainder of the TmsStation.java file

'TmsTrap.java', 0,
'TmsTrap. java', 1,
'TmsTrap.java', 2,
' * Encapsulates a
'TmsTrap. java', 3,
'TmsTrap. java', 4,

"
\ /**'

TMS speed trap in packed format.
* a period of 20 seconds.'
*'

... the remainder of the TmsTrap.java file

TABLE COORDINATES

Data covers '

COLUMN (COORD_TYPE,NAME1,NAME2,NAME3,UNIT1,UNIT2,UNIT3)
'spherical', 'x', 'y', 'z',

'kilometers', 'kilometers', 'kilometers'
'geodetic', 'latitude', 'longitude', 'altitude',

'"degrees', 'degrees', 'feet' ;

59

60

'state plane', 'x', 'y',
'miles',

'linear', 'mile marker',

'not used' ,
'miles', 'not used'
'not used', 'not used',

'miles', 'not used', 'not used' ;

TABLE MEASURES
COLUMN (COORD_TYPE, AUTHORITY, REF SYSTEM,

REF_PTl, REF_PT2, REF_PT3,
ACCURACYl, ACCURACY2, ACCURACY3)

'geodetic', 'WSDOT',
'geodetic' , 'UW ITS
'linear' ,'WSDOT GIS

'NAD23', 0, o, o, 0.001, 0.001, 0.001 ;
group', 'NAD89', O, 0, a, 0.001, 0.001, 0.001
Section' ,'WSDOT 1997', 0, NULL, NULL, 0,01, NULL, NULL

'linear' ,'TMC RTDB' ,'WSDOT 1997', 0, NULL, NULL, 0.01, NULL, NULL;

TABLE LOOP FLAGS
COLUMN I FLAG_VAL, EXPLANATION)
0, 'Good Data'
1, 'Short Pulse'
2, 'Chatter'
3, 'Outside Vol/Occ Envelope'

4' 'Reserved'
5, 'Reserved'
6, 'Operator Disabled'
7, 'Bad Loop'

TABLE STATION FLAGS
COLUMN I FLAG_VAL, EXPLANATION
0, 'Data not Usable'
1, 'Data Usable'

TABLE INCIDENT DETECT
COLUMN I FLAG_VAL, EXPLANATION
o, 'No Incident'
1, 'Tentative'
2, 'Occurred'
3, 'Continuing'

TABLE CABINETS
COLUMN (CABINET_ID, FREEWAY, TEXT, RAMP)
'ES-059D', 'I-5', "'Sl 70thSt"', 0 ;
'ES-068D', 'I-5', "'Sl54thSt"', 0 ;
'ES-069D', 'UNKNOWN', 'UNKNOWN', 0;
'ES-074D', 'I-5', "'Sl29thSt"', 0
'ES-079D', 'I-5', "'SNorfolkSt"', O ;

... one entry for each cabinet in the legacy data dictionary.

TABLE CABINET LOCATION
COLUMN (CABINET ID, COORD_TYPE, AUTHORITY, VALUEl, VALUE2, VALUE3
'ES-059D' ,'linear' ,'TMC RTDB',153.51, NULL, NULL;
'ES-059D' ,'linear' ,'WSDOT GIS Section' ,153.510000, NULL, NULL ;
'ES-059D' ,'geodetic' ,'WSDOT' ,47.449, -122.267, NULL;

... one entry for each set of coordinates (possibly several per cabinet).

TABLE LOOPS
COLUMN (LOOP ID, CABINET_ID, METERED, RD_TYPE, DIRECTION,

LANE_TYPE, LANE_NUM, SENSOR_TYPE, DATA_OFFSET)
'ES-059D:_MNH_S', 'ES-059D', 'NO', 'mainline', 'northbound',
'HOV mainline', 5, 'loop', 16
'ES-059D:_MN_Stn', 'ES-059D', 'NO', 'mainline', 'northbound',
'mainline', 0, 'station', 19 ;

... one entry for each loop in the legacy dictionary.

61

62

Appendix G: Newsletter of the ITS Cooperative Deployment Network

Describing "Self-Describing Data"

Looking Under the Hood at the Seattle MDI Data Engine

(http://www. nawgits. comlsdd_ dd html)

63

The Seattle Smart Trek (http:!lwww.smarttrek.org/) Project, perhaps more than any other Model

Deployment Initiative (http:llwww.its.dot.gov/mdil) (MDI) project, includes the participation ofa

wide range of private-sector firms as so-called "Information Service Providers" or "ISPs." These

ISPs often take raw data about traffic conditions (typically from loop or video detectors) and then

"add value" by post-processing that data and communicating it to travelers through a variety of

channels and devices. A key question in that scenario: how best to acquire that data while requiring

a minimum ofhand-holding on the part ofits source (in this case, the Washington State Department

ofTransportation)? Many of the Smart Trek projects have found the answer in so-called "self

describing data," in which the data stream itself contains not only raw traffic data but information

about where the data comes from and what it means. ICON Editor Jerry Werner recently discussed

the background and potential national applicability ofSDD with its developer and foremost

proponent, Professor Dan Dailey of the University ofWashington. Dailey, the director ofUW's

Intelligent Transportation Systems (http:!lwww.its.washington.edu/) program, is a research track

Associate Professor in the Department ofElectrical Engineering who also holds adjunct

appointments in the departments of Civil Engineering and Technical Communication in the College of

Engineering.

64

The Discussion

ICD N: How long have you been involved with ITS projects?

Dailey: My relationship to using traffic data in modeling goes back to 1989. My involvement was

initially modeling using data from the Washington State Department ofTransportation traffic

management center. The present ITS backbone activity evolved as sort of a defense mechanism.

We had a series of students who wanted to do modeling. Each student that came along said 'well,

how do I get the data?' and invented a new way to do so. Eventually, we came up with the idea for

reusable code to make the data available and not spend the first six months of a project redoing the

data acquisition task. Instead, students can spend time actually doing something with the data. So,

we created a set ofU nix applications that were designed to extract data from remote places, in this

case the Washington State Dept. ofTransportation 's traffic management center. We obtained data

from loop sensors for about 3,000 locations around the region's highways. We can measure

something about the duration of time a vehicle is over the loop and from that do modeling. At about

the same time, we also learned that the people at Metro Transit, the local transit operator, put a

vehicle location system in operation - a way to track their buses. A student took a "sniffer" and

eavesdropped on their network in their building downtown. He found that we could collect packets

off their network containing data about how often the bus wheels tum and bring that data back to

the UW to do modeling.

I CDN: Sounds like your students will be well prepared for a career in espionage!

Dailey: You use what tools you have available. Actually, espionage is perhaps an apt term, because

what you have to do to obtain data from many agencies is essentially espionage. The agencies have

a funded mission directed toward doing a particular task, and that mission really has nothing to do

with providing data to "those guys at the University" for research. They're not going to allocate staff

resources or any dollars or time to support the University ifit detracts from their mission. They'll let

65

you put your computer under the coffeepot, and if you can hook up to the wire and it doesn't cost

them anything but the electricity to run your computer-that's okay!

ICD N: Did Washington State DOT fund this early work?

Dailey: Yes, WSDOT and the USDOT gave me little bits of funding, starting at about $21,000-a

year, several years ago, which was steadily built up by a series of additional projects. The ITS

notion of combining data from a lot of places and making products downstream ofit was becoming

popular then. We had already been in the business of pulling the data out ofagencies to do these

smaller projects. We were already doing what needed to be done to build a backbone.Actually, I

had attended a number of meetings as early as 1992 and suggested that most regions need a

backbone to make modeling and applications possible in more communities. That idea has had a

mixed appeal: It has a positive appeal to public-sector transportation agencies in terms of potentially

creating a level playing field, but it has a negative appeal for commercial entities - that would like

to control that data.

ICON: Do companies have an interest in pulling out data through some sort ofbackbone, but not

of putting new information in?

Dailey: Yes, they have an interest in controlling data access, as information is potentially money.

There is this notion that if you' re the only company that can sell data to others -you have a

contract to be the single source - that you can then charge whatever fees you want. Conversely, if

your vision is for a State to have an obligation to create a level playing field among commercial

information providers, you would want to come up with a set of paradigms and protocols to

effectively give away that data in a clearly understandable format. That is the "self-described data"

concept, which largely eliminates the need to then answer downstream questions about the data. We

used to receive requests for traffic data from Research Triangle (North Carolina) and California

among others, and we would provide that data to them. Then they'd call back the next week and

want one of our programmers to consult with them for a month to explain the data to them. We

66

didn't have that resource. So we created a protocol called self-describing data that in theory

addressed that problem

ICDN: Self-describing data is being used on a number Smart Trek projects, right?

Dailey: Yes. The idea is that you need to get one self-describing data receiver and then you can

understand data from a variety of sources.

ICDN: Users tap into that data via the Internet, is that right?

Dailey: We use a set oflntemet protocols because the Internet exists and it's the cheapest way to

do it. You could have dedicated connections, but the Internet is the low-cost way of getting the data.

ICDN: I understand that this receiver you refer to is written in the Java language.

Dailey: Yes, we give away a Java-based receiver.

ICDN: You chose Java so it will run on different platforms?

Dailey: That is correct. We originally programmed it in C on a Unix platform, but the MDI project

said to us, "You have to run a Windows NT environment,' and we in tum asked, 'What version?'

Their reply was, 'There are versions?' So we adopted Java in order to be platform independent.

ICDN: Which specific Smart Trek applications are using SOD right now?

Dailey: Traffic TV (http://www. its. washington. edultrafchanl), Buslink (http://

www. its. washington. edu/bus/inkl)ff ransit Watch (http: I !\vww. its. washington. edultransitwatch!),

and Busview (http:1/www.its.washington.edu/busviewl) all use it. We're giving it away to the

North SeattleATMS, which is a flow of data from WSDOT and then back into WSDOT.North

Seattle ATMS is a new management system they' re bringing on-line, but the easiest way for them to

get the data out of their historical systems was just tapping into the backbone. It's also being used

67

by Fastline, which markets traffic applications on hand-held, palm-top computers, and it has been

used by a number of research institutions around the country.

ICDN: Is it being used yet in any other similar ITS projects, like Travinfo in San Francisco's Bay

Area.

Dailey: No, not at this point. I don't know the details of the other projects, but until you have some

thing that you hand them - some code you can use to build transmitters and receivers- people

won't adopt it. People didn't rush up and adopt Internet protocols; they adopted the ability to do

work with these protocols. So, now we' re giving away the receivers and writing generic transmitters

to give away in the next release from our web site. And people can use it. We've had inquiries from

the other sites, but without making it so easy that they wouldn't do anything else, they're not going

to adopt it beyond their specialty protocols. We were involved with Etak, Seiko, and other

companies in the previous SWIFT project. Atthat time, it was simply much easier for them to

describe a protocol that would work that year for that data and be done with it, than to think about

what might happen over the next 5 years.

ICDN: IsEtakusingitnow?

Dailey: I don't know. They've expressed an interest in it, but I don't know if they're actually using

it right now. We built a specialty protocol for them for the SWIFT project, which I believe they are

still using.

ICD N: I understand that your self-describing data approach is an alternative to having a central

data server, such as the one used in Atlanta for the Traveler Information Showcase. Is that a fair

statement?

Dailey: Yes. There's no requirement to geographically centralize the data. Instead, the SOD

protocols allow you to get data from a number of sources. You can imagine those sources would

live in a number of different places geographically. What's common is the way that you get it. In a

68

simple example, SDD is used in the same sense that you use the HTML language for web pages:

you share a language between your browser and the people who are sending information. You can

go to a lot of different places on the web and get that data into your browser. SDD involves a much

more complex language to describe data, but it's essentially that same concept.

ICD N: Is the transmitter the piece of software that gets the data onto the network via a TCP/IP

protocol?

Dailey: The transmitter is a piece of software that takes real-time legacy data, which all of the

agencies produce - usually in some binary format for their own management purposes, and

packages it into the SDD format. The SDD format is a combination of intelligent "meta-data" that

says what the data is; the content that says what type of sensors we have, where they are located,

and what they measure; and finally binary data. We talk about those three pieces on technical

papers that are on-line (http://www.its.washington.edu/its _pubs.html). The combination ofnot

only the binary data but also an understanding of what it is, is what SDD gives you in completeness.

ICD N: Does the description of the data, what you call the "meta data," take up much overhead in

the overall scheme of things?

Dailey: Anything that provides additional information is information rather than overhead. You can

view it as information or as overhead in the same sense that if you use TCP /IP (Internet) protocol

and type one character on your keyboard, you sent 4 3 bytes to get that character from there and

back. But those 4 3 bytes guarantee your character will getto there and back correctly. The

important thing here is that that each time the data structure changes - say, for instance, that the

folks at WSDOT add new sensors on the highway- somehow you need to communicate that

dynamically to everyone downstream of you so that they can use the new data. In that case, you

would need to send a new data dictionary because without a data dictionary, the new data would be

meaningless.

ICDN: As I understand it, you just send the data dictionary once, you don't send it periodically

every so many seconds?

69

Dailey: You send it once when you connect because you don't know what the data is until you get

the data dictionary. Then whenever the source of a data changes it, a new data dictionary is

transmitted so you can understand the following data. In our case, we were working with the

WSDOT people who could sit at their console and change the data once a day, once a minute, or

once a month without telling us. We had no control over that process. Realistically, operators don't

change things a lot. But they couldn't tell us they would do it once a day, once a month, or

whatever, so the "overhead" is that you need to understand what the data is and that "overhead"

takes place anytime the meaning of the data changes.

ICDN: So, what would be involved if another DOT - say Illinois DOT, because they have a

policy of making data freely available to anybody who can use it - is interested in using self

describing data? How big a process is it for them to understand the SOD concept and to put their

data out on the Internet and to work with ISP' s that want to take it? Have you done most of the

legwork already? Is SDD "plug-and-play'' at this stage?

Dailey: Transmitters are the keys to that, because transmitters have to turn legacy data into generic

data. We have a transmitter under testing right now; we have 2 more kinds of data coming to us,

and we' re going to build specific transmitters with our generic transmitter and tell folks how hard it is

to do. Instructions are available right now to do that, so someone who was modestly clever could

take what we have right now, hook it up to their data, and make it work.

ICDN: The transmitter needs to be customized for each site?

Dailey: Of course. Think about it. Each site has custom data; we're trying to make the transmitters

generic.

ICDN: How about on the receiving end?

70

Dailey: The receiver we're giving away now would work for any data anywhere. So once Illinois

customized our transmitters to work with their data, they could use the same receiver we're using in

Seattle to receive data in illinois.

ICD N: In reading some of your documentation, it's clear that your receiver outputs data in a raw

tabular and ASCII format, but obviously a lot of post-processing would be required to do anything

with that data. Is that a fair statement?

Dailey: Of course. The intent of the receiver was never actually to be "the application" The intent

of the receiver was to be a framework in which you could build an application to use the data. Once

users discovered that they could get these tables of data and understand what these tables meant,

they didn't botherusing the model to build new applications, they just used the data in a couple of

cases. That's one model. Another model that Fastline uses involves taking both the data and our

hooks in the databases and actually pulling the data out and putting it in their own database.

Downstream, they can then do whatever they want with their own database. So, there are two

models that people follow-the "quick-and-dirty model" and the "long-term investment model."

ICD N: You make the software, instructions, and documentation for self-describing data freely

available, is that right?

Dailey: Yes.

ICDN: Is licensing involved?

Dailey: Yes, the whole package is Copyrighted by the University ofWashington, and any

transmitters we give away right now will say "For Noncommercial Purposes Only." If a company or

consulting firm wants to use it in a product they sell to someone else, then we'd have to address that

licensing issue. The commercial use details haven't been worked out; there's no reason to worry

about that until there's money on the table.

ICON: So no money from SOD licenses is flowing into the university at this stage?

Dailey: Our objective is to give it away in hopes that ifit is adopted by public agencies it will

provide a way of sharing data across the country.

ICON: Will SOD receivers require a license or will they be royalty free?

71

Dailey: Well, I''d get chewed out by the intellectual property people of the university ifI said they

were royalty free. They are copyrighted by the University ofWashington and available for use for

noncommercial purposes.

ICON: But aren"t you trying to encourage use by commercial ISPs (Note: the term ISP in this

context means "information service provider") that are sprouting up around the country?

Dailey: Right. And we would happily cooperate with them. For right now, we are giving it away.

We know who's using it, but we haven't stopped anyone from using it.

ICON: Okay, but there could be some royalties involved down the road?

Dailey: There could be, but it hasn"t come up.

ICON: ls the SOD compatible with the "National ITS System Architecture?" I know they've

looked at it many times.

Dailey: Yes.

ICON: Did it help define portions of the architecture, do you think?

Dailey: Absolutely not.

ICON: What is its relationship with National Architecture?

Dailey: The National ITS System Architecture envisions named flows between certain types of

agencies, including Transit Management and Transportation Management Agencies. The SOD is an

72

implementation of those flows. We're considering overlaying the naming convention that they use for

the National Architecture onto the SDD scheme, so it becomes clearer where the SDD names map

into the National Architecture names.

ICON: That's probably a good idea.

Dailey: Yes, but it takes time.

ICON: I know it does, but it might reduce some potential concern and it might make it clearer how

the SDD concept fits into the national architecture.

Dailey: We're going down that path. We can't have that task take priority over what we're doing,

however. We're doing the Seattle MDI project first and my national vision second because of the

way the funding works out. There's funding for the MDI project and not for my national vision. But,

no, the person who's working building the transmitter right now has attended the architecture

classes; we have the national architecture CDs, and are working on architecture compliance. It's

clearly mapped into the architecture. It will be clearer when we change our naming structure to

match the architecture names. We had long discussions about that in January; however, we had a

change of personnel because right now it's a hot job market out there. We are now starting those

discussions over again.

ICON: How does the SDD approach relate to NTCIP? I know you're doing a data dictionary and

that NTCIP also has an ongoing data dictionary effort.

Dailey: NTCIP is a set of protocols. The ones that are implemented right now address

communication between traffic control masters on the street and the agency, and changeable

message signs-all what might be called "intra-agency applications." This fall, we'll be publishing a

TRB paper that discusses exactly how NTCIP and SDD fit together.

ICDN: Is that paper already written?

73

Dailey: Yes, it's being reviewed right now. In essence, what it comes down to is that NTCIP has a

number of types of defined kinds of data, and they have room for defining more kinds of data. So

NTCIP can have simple data types and complex types as described by a language called "Abstract

Syntax Notation. I." It's an ISO standard. Some implementations allow you to transmit that data.

We actually transmit using the ASN. l encoding of the data. NTCIP and ISO have a tree ofnumbers

and names. So, if they'd assign us a number at the bottom of their tree saying this is one of the data

types, we would then map into their data notions. The difference between the larger NTCIP efforts,

which don't involve just data communication but involve dictionaries and so forth, is that there are 2

different notions that you can hold pertaining to dictionaries: One is we all go out and we buy the

same dictionary. I can say 42 to you because you can look in your dictionary and know what 42

means. The other notion is that you may know in advance that your dictionary may change

dynamically, that is the model we are using, and it requires transmitting a new dictionary when the

data meaning changes.

ICD N: You have the ability to change, enhance, or expand the dictionary yourselfat anytime, don't

you?

Dailey: Right. Or contract it-whatever is necessary to make it work. We're sort ofa super-set

of the dictionary that everyone is holding, because if everyone hooked up and got SDD at this

moment, we'd all hold the same dictionary. The models would match exactly. Until that dictionary

changed, we'd all be doing NTCIP. When the dictionary changed then, the NTCIP model doesn't

have any mechanism except for going through a committee process of changing the dictionary, which

makes it a little harder.

ICON: So, do you anticipate more and more discussions about the data dictionary with the NTCIP

folks?

74

Dailey: I attended a number of meetings with NTCIP and presented our SDD ideas early on in the

development of what they' re doing. There's no conflict and they' re well aware ofour work.

Nothing they're going to do will conflict with this work.

ICDN: Do they see the SDD concept as "competition" as far as you know?

Dailey: I never asked them that question. I asked them' Are we compatible?' and 'Can we work

within your domain?' We shouldn't be competing-we should be collaborating. I should stress that

-this should be something that fits underneath their rubric if we're all doing our jobs.

ICON: Is it fair to characterize you as the "granddaddy" of SDD?

Dailey: "Proud, proud papa of young baby" is a better characterization.

ICON: Do you believe the whole concept has been proven or are there still some things to prove?

Dailey: It's a set of protocols. Proofis in the usage, in a sense. An analogy is how TCP/IP was

chosen. Some years ago there existed a bunch of protocols, TCP/IP, DECNET,AppleTalk, IPX,

and to this day, many of those still exist. Most folks picked TCP/IP because people from MIT gave

away some implementations and eventually Microsoft sold it and then everyone used it. So, there

was nothing wrong with the other protocols. They just weren't adopted as thoroughly. They are still

in use but only in little comers.

ICON: And so you'd like to see yours in that same TCP/IP model?

Dailey: We' re giving it away with that same notion, that if you give something away as a first

implementation ofit, people will try it out and ifit does what they need, they'll use it. And, of course,

ifit doesn't, they won't.

ICON: What are your future plans for SDD? Where do you see it going? You mentioned your

primary involvement so far has been with the WSDOT projects, right?

Dailey: Right. I've had discussions with people from other universities who are doing data

communication in other science areas, such as forestry. The notion applies to any sort of dynamic

data; it's not specific to transportation data. We just happened to come across it in that domain.

ICON: Did you invent the notion itself that you combine the description with the data?

Dailey: In terms of data flow across the network, yes. In terms of earlier work, there was earlier

work for self-describing databases by Leo Mark, who is now a faculty member in Maryland, I

believe. I don't think he called it "self-describing data" because he had no notion of transferring

data. He had the notion of creating databases that had this property. We think we invented it but

you know, there's nothing new under the sun. I know that we've sent it out for publication and no

one has said 'Oh, yeah, Joe did that before.'

ICON: Have you patented it, to the extent you can patent software?

Dailey: No. It is copyrighted through the UW.

75

ICON: The SOD concept theoretically means that ITS information service providers, "ISPs," could

essentially provide new services in new cities very easily if they've already hooked into the data in

another city, is that correct?

Dailey: That was our intent.

ICDN: So that's the allure, the attractiveness of the overall concept?

Dailey: That's our intent, but only if we can get other cities to adopt it, so that's why we're giving it

away.

ICON: As far as you know, do you think that any other cities are on the brink ofadopting it, or is it

still too early to tell?

76

Dailey: I don't have an answer to that question. We've had some discussions with New York.

We've had discussions with Arizona. What it comes down to is we haven't given away a robust

transmitter yet. Until we give the transmitter away and they can see that it's easy to give their data

away that way rather than some other way, there's no way they can evaluate it. The transmitter is

done, but it's still being tested. We'll be giving away a transmitter this fall. Call me in December

I'll be in a better position to answer that question then.

ICD N: ls the transmitter also written in Java?

Dailey: Yes, it's also in Java. We had problems doing it in other languages because certain system

calls are necessary if you use C or other languages that aren't portable across platforms.

ICDN: Is there anything else germane to SDDs you can think of that would be important to people

deploying systems?

Dailey: The SOD concept was originally implanted in C, later C++, then Java. So, we're not tied

to a language implementation. Java was the popular language that gave us platform independence

just now, but there's no reason you would have to adopt Java for your agency to be able to use this

notion. I would like to separate those two things. Because we did a Java implementation, we put an

object-oriented overlay on the concept of self-describing data, so that we'll be in line with the

National Architecture as it moves to a more object-oriented view of the world. There's nothing

inherent that has to be object-oriented about this idea - this is a concept for data transfer.

ICON: We've talked about the fact that SDDs potentially let ISPs grab information that the public

sector is putting on the Net and use it however they want. Can a number of sources combine data

into one data stream?

Dailey: Yes. That is a layer above SOD that involves operating on the data and putting it back

together. If you look at our SOD distribution site, you'll see a model for how data comes in and

goes out. Our ITS Journal article (http:iwww.its.washington.ed1tpubslits _jour.pdf) [Note:

77

requires an Adobe Acrobat Reader (http: /lwww. adobe. comlproductslacrobatlreadstep. html)]

talks about an architecture for building ITS applications with reusable components. It shows a

model where these components would plug together and might include something that we'd call a

"data fusion element." A data fusion element might put 2 data streams together and output the sum of

the streams. SOD would handle the data flow through the components that operate on that data.

ICDN: Before we close, I'd like to get back to your comments about how the private sector might

view the SOD concept. You were saying that the private sector might not fully embrace the concept?

Dailey: The SOD concept is very attractive to the public sector because it provides a way of giving

data away to everyone on an equal footing. However, it's a mixed bag from the private sector's

standpoint. On the positive side, they could conceptually go into any new market and gain access to

data quickly. On the negative side, not having control of the data in any market could be a

disadvantage.

ICD N: That is a very interesting quandary.

Dailey: My understanding is that the business model for several private sector companies is to

control the data in each of the market's they go into. They're going to standardize by getting a

license to be the sole distributor for data. That's a very different market model than one that would

create a level playing field for lots of players. However, people in the private sector have told me

that they are convinced that the market won't bear open competition with a large number of players.

This web page created by the National Associations Working Group for ITS (J-1,AWG) (http:/!

www.nawgits.com!), a cooperative effort of organizations whose members are spearheading ITS

deployment in the U. S The NAWG makes every effort to ensure the accuracy of these pages,

although errors can an do occur. Report any errors or omissions to the NAWG webmaster

(nawgwm@nawgits.com). Each participating member of the National Associations Working Group

for ITS is responsible only for the information it provides.

78

DESCRIPTION: The National Associations Working Group for ITS' (NAWG) ITS Cooperative

Deployment Network (ICON) is a cooperative effort to share and exchange information on

Intelligent Transportation Systems (ITS) through a shared Internet resource for the benefit of

NAWG members, produced by the Institute ofTransportation Engineers (ITE) and its agent,

Communication Alchemy, Inc, and funded by the U.S. Department ofTransportation.

DISCLAIMER OF OPINIONS AND VIEWS: The views and opinions of document authors do

not necessarily state or reflect those of the U.S. Government or any agency thereofor the Institute

ofTransportation Engineers, or CommunicationAlchemy, Inc., or members of the National

Associations Working Group for ITS, or any members of the National Associations Working Group

for ITS' ITS Cooperative Deployment Network, or any of their directors, officers, employees,

agents, and members. The information provided and the views and opinions of opinions expressed

in material submitted to the ICON are those of the participant organization attributed to the material

posted on the ICDN's shared Internet resource.

DISCLAIMER OF LIABILITY: Neither the U.S. Government nor any agency thereof, nor the

Institute ofTransportation Engineers, nor CommunicationAlchemy, Inc., nor members of the

National Associations Working Group for ITS, nor any members of the National Associations

Working Group for ITS' ITS Cooperative Deployment Network, nor any of their directors,

officers, employees, agents, and members makes any warranty, express or implied, or assumes any

legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that its use would not infringe privately

owned rights.

DISCLAIMER OF ENDORSEMENT: Reference to any specific commercial product, process,

or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

imply its endorsement, recommendation, or favoring by the U.S. Government nor any agency

thereof, or the Institute of Transportation Engineers, or CommunicationAichemy, Inc., or members

79

of the National Associations Working Group for ITS, or any members of the National Associations

Working Group for ITS' ITS Cooperative Deployment Network, or any of their directors, oficers,

employees, agents, and members.

This web page created by the National Associations Working Group for ITS (NAWG), a

cooperative effort of organizations whose members are spearheading ITS deployment in the U.S.

The NAWG makes every effort to ensure the accuracy of these pages, although errors can an do

occur. Report any errors or omissions to the NAWG webmaster. Each participating member of the

National Associations

Working Group for ITS is responsible only for the information it provides.

80

Appendix H: Self-Describing Data for Dummies

Self-Describirg Data (SDD)

forDumries

ifoEliiW5

For Those who Would like to Understand
More about SDD, but were Afraid to Ask

Version 1.4 November 17, 1997

Mark A Whiting
Smart Trek MMDI

1.509.375.2237
Mark.A.Whiting@pnl.gov

The Smart Trek SDD Development team is led by Dr. Daniel Dailey
at the Univeristy of Washington

See: http://www.its.washiogton.edu/bbone/ for
more information-

81

82

Self-Describing Data for Dummies

Introduction

Self-Describing Data (SOD) is an approach to transmitting and delivering data, such as
transportation data, where a stream of actual data is prefixed with a set of data that "describes" it.
This descriptive data can be anything. Yet the intent is to provide descriptive data that helps users,
and applications, to understand the actual data that follows. An example data stream is the traffic
loop sensor data collected by the Washington State Department ofTransportation (WSDOT),
where over two thousand sensors provide new data every twenty seconds. The descriptive data for
this stream consists of descriptions of the sensors, their cabinets, their locations, and so on. This
preface plus the continuous actual data stream create an SOD stream.

SDD is often difficult to understand as it is a new approach to data packaging and transmission and
because the approach is still evolving. This document attempts to provide an introduction to SOD
for those ofus trying to keep up.

What is Self-Describing Data?

Self-Describing Data (SOD) is a data stream that consists of descriptive data, followed by a
continuous stream of data. Figuratively, an SOD stream would appear as:

An
application - I describe data to follow! Actual data Actual data Actual data Actual data
needing data

In terms of traffic data, this stream might appear (using English prose):

"You 'II be getting traffic loop sensor data; that belongs to these cabinets X, Y, Z;
from locations A, B, and C. The format is "loop sensor name": 8 bytes,
"occupancy'': 16 bytes, and "volume": 8 bytes."

"XXX-4583" 50 3
"XXX-4587" 43 2
":XXX-3848" 48 2

More on the SOD format shortly ...

83
What Kind of Actual Data Should be Made Seff-Describing?

Any kind of data can be delivered as self-describing. But if you have an unchanging (static) set of
data, such as a set of reports, or a very slowly changing set of data, such as the King County Metro
Transit schedule data that is updated only three times a year, it may not be worth encoding and
delivering this data using the SOD approach.

It may be that the best kind of data to be delivered in SOD format is real-time (or near-real time)
data streams such as the WSDOT traffic loop sensor data or the King County Metro Transit bus
location data. The data elements of these streams are constantly changing in content (remember
loop sensor data is updated every 20 seconds), and they have a rich set of descriptive data that can
be used by applications in providing traffic management information, traveler information, and so on.

About the Description

The real-time or actual data may be very simple in structure. Even if the actual data is simple, the
descriptive data component of an SOD stream may be quite extensive and complex. This
complexity is a confusing aspect ofSDD. Elements of a simple data stream may have a lot of hidden
or implicit meaning (We'll see an example of this below.). If users do not know this, data can be
misinterpreted or misused. SOD tries to make more of this implicit meaning available through the
descriptive data. Because of this potential complexity, descriptive data is encoded as adatabase,
using database structures and language. This was designed so that applications could use relational
database technology to manage large and complex data descriptions, as opposed to having to
derive ad-hoc management schemes. The database is sent in two parts: a specification for the
structure (or "schema") and the contents. So, changing the English prose we used above around a
little bit, the stream would more closely look like:

"Create one data base table that contains descriptions of the traffic loop sensors. Include a
field forloop _id (16 bytes), a cabinet_id (7 bytes), etc. Create another database table that
contains descriptions of the loop data. Include a field for sensor_id (I 5 bytes), volume (int),
occupancy(int), etc ... "

"Put the following data in the Sensor table:
"XXX:-3848", "YYI",.
"XXX-4959", "YY2",.

Put the following data in the Loop table:

"

"XXX-4583" 50 3
"XXX-4587" 43 2
"XXX-3848" 48 2

84

This gives us a specification of the data base tables that describes the traffic loop sensors. This is
followed by the contents to insert into those tables. Finally, the data stream is sent.

The descriptive data, that the SOD development team calls a data dictionary, is not actually
encoded in English, but in a database language called SQL-92. SQL-92 is a standard database
language that will allow developers to pass these commands directly to a database and have it
understand and perform the appropriate actions (hopefully, create the database and store the
values). In SQL-92, our English prose above looks more like:

CREATE SCHEMA <<<this is the structure or schema definition>>>

CREATE TABLE SENSORS
(LOOP _IDCHAR(J6),
CABINET_ ID CHAR (7),

)

CREATE TABLE LOOP DATA
(SENSOR_IDCHAR(l5),
VOLUME SMALLINT,
OCCUPANCY SMALLINT,

)

TABLE SENSORS
COLUMN (LOOP _ID, CABINET_ID ...) <<<this fills the tables we created>>>
"XXX:-3848", "YYI" .. .
"XXX-4959'', "YY2" .. .

TABLE LOOP _DATA

"XXX-4583" 50 3 <<<then finally the data ... >>>
"XXX-4587" 43 2
"XXX-3848" 48 2

This specification is the same as the previous one, only written using SQL-92 language' . The
CREATE instructions would allow a database to create the specified tables. The TABLE
specification with its COLUMN dependents allows the database to fill the tables with the included
data. Finally, the data stream trails as before.

1 Actually, the section that describes the contents of the data dictionary is written in a SQL-like language that
the SDD development team calls their "Content Language." The Content Language specifications are translated
into SQL-92 by the SDD software.

85
More Wrapping for SDD

The stoiy of the SOD fonnat doesn't end with SQL-92. SDD streams are packaged much like
Christmas presents with many layers of wrapping paper. To be compliant with a computing
standard known as ASN.1, the data dictionary and the actual data are wrapped using Basic
Encoding Rules (BER). Why ASN. l? (Which, by the way, is pronounced "ay-ess-enn-dot-1. ")
It's much too long a stoiy for this paper, but it is a standard the National Architecture and other ITS
standards groups prefer. Using BER means give each of the three components ofSDD a type, a
length and a value. The SDD development team has created software that includes a BER encoder
on the SDO transmission side, and a BER decoder on the SDD receiver side. The SDD
development team has created software that does this automagically, so we really don't have to
woriy about it too much. But if anyone asks if SDD is ASN. l compliant, we can say "Yes!"

The BER-encoded SDD streams are then also encoded into "ITS Frames." An ITS Frame is a
package developed by the SDD development team to make the network transfer easier. There is
an ITS "Framer" at the SDD transmission side and an ITS "Deframer" on the SDD receiver side.
The SDD code perfonns this work automagically as well, so we really don't have to woriy about it
either. Below is a diagram of the flow ofSDD from a source generating data to a sink that would
use it.

Descriptive
Data
Structure
or "Schema"

Descriptive
Data
Contents

SOD Transmitter

BER Encoder

ITS Framer

Data
Stream

Descriptive
Data
Structure
or "Schema•

Internet Communications Protocol

Descriptive
Data
Contents

SOD Receiver

BER Decoder

ITS Deframer

Figure 1 The flow of an SDD stream

Data
Stream

What does an SOD stream look like that is BER-encoded and ITS-framed? You really don't want
to see it. It's best to just think about SDD in tenns of the original three components: the Data
Dictionary Schema, the Data Dictionary Contents, and the actual Data.

86

What goes into a Data Dictionary?

Remember: There are no rules as to what must be in an SDD data dictionary.

We gave some examples above as to what might go into a data dictionary. They are not far from
what has actually been encoded into one. The SDD development team has created extensive data
dictionaries for WSDOT traffic loop sensors and an SDD stream is available with this data for ISPs
and other interested parties to use. Let's look at that dictionary-it has 8 tables.

Here are the tables to be defined as part of the database:

COORDINATES- This table describes coordinate data types, such as "geodetic"; and their
measurements, such as "longitude" and "latitude"; and their units of measure, such as
"degrees".

MEASURES - This table provides additional data on coordinate data types, such as the fact
that WSDOT uses NAD23 coordinate referencing, while UW uses NAD89.

STATION _FLAGS - This table provides flag values as to whether or not data is usable.

INCIDENT_ DETECT - This table provides flag values as to whether an incident has
occurred or not.

CABINETS - This table provides cabinet IDs, freeway names, text descriptions, and
whether there is a ramp or not.

CABINET_ LOCATION - This table provides the location of cabinets. It includes the
cabinet ID, the coordinate type used (see above), and whether the data type is defined using
the WSDOT or the UW methods, and the location.

LOOPS - This table describes the loop sensors. It contains the loop ID, the cabinet ID,
whether ornot it's metered, the road type, the direction of the traffic, the lane type, the lane
number, and the sensor type code (a number).

ALG _ DESCRIPT - This table provides a complete listing ofJava code that will extract the
loop sensor data!

As you can see, there is a lot of data here about the data. Heck, there's even the code to use it. If
you didn't have access to this descriptive data, you would not automatically be aware ofinforrnation
such as locations and sensor types and so on. SDD makes that implicit data explicit and available.
The user ofSDD is not forced to use any of this descriptive information, but since it's being
provided ... why not?

87

When Do You Get a Data Dictionary and When Do You Just Get Data?

The data dictionary is sent upon connection to an SDD transmitter. An SDD transmission rule is
that the data description remains valid until something changes in the data. So the data dictionary is
sent once and is not sent again until there is a data change. When a data change does occur, a new
data dictionary is sent through the stream. Again, if a data stream were being processed, and a
change occurred in the data, the following might appear (going back to the English prose):

"XXX-4583" 50 3
"XXX-4587" 43 2
"XXX-3848" 48 2
"XXX-4589" 43 2
"XXX-3850" 48 2

"You'll now be getting traffic loop sensor data; that belong to these cabinets X, Y, Z; from
locations A, B, and C. The format is 'loop sensor name': 8 bytes, 'occupancy': 16 bytes,
'volume': 8 bytes, and 'validity flag': I byte."

"XXX-4583" 50 3 I
"XXX-4587" 43 2 0
"XXX-3848" 48 2 I

The change that occurred was that a new data element was added to the stream called "validity
flag." The reason for the new description is to allow users and smart applications that use SDD to
handle the data change gracefully and perhaps even adapt to the change and continue functioning
normally and without significant loss of service.

How Do You Know Whether or Not You Received a New Data Dictionary?

That is, without doing a lot of searches, data comparisons, and so on. It wasn't mentioned before,
but the SDD stream also includes a time-stamp that is updated when the data dictionary changes. If
an application sees a new time stamp, it knows something has changed. And yes, the SDD
development team remembered to use four digits to represent the year portion of the time-stamp.

Software for SDD

We've mentioned an SDD transmitter and an SDD receiver, in terms almost like a television station
transmitter and a home TV receiver, and this is just about how they work. Most ISPs are concerned
with the "TV receiver" part of this setup, as they want to get traffic data. They are both pieces of
software that projects can use to send and receive SDD. The receiver is the more mature piece of
software at this writing, so we will review this.

88

The SOD receiver is a Java software program that can receive and understand the Data Dictionary
and receive and extract the actual data from the SOD stream. The receiver has some quality checks
in it that make sure the SQL-92 language is in the right format and the schema part is in sync with
the contents part. The SOD receiver's primary job is to generate two files:

An ASCII file that contains the SQL-92 code that can create the database for all of the
descriptive data. This file can be given to a database system, such asACCESS or
SYBASE, to import the data.An ASCII file that contains the actual data.

So what do you do with this, if you're an ISP? Write software that can dump the Data Dictionary
SQL-92 code into a data base, and write other software that can do something interesting with the
data stream. That's the basic stuff More advanced efforts will work with the newly formed
database to provide very cool information to traffic managers or travelers.

How Do I Tap Into an SDD Data Stream?

SOD is delivered over the ITS INFORMATION BACKBONE (a.k.a. the "I2B", pronounced
"eye-too-bee"). You plug into it using an Internet (TCP/IP) connection. Programmers know how
to do these things. The address for the loop sensor data stream is "sdd.its.washington.edu" at port
9033. This provides the loops data on a 20-second cycle.

Want to see if this connection is for real (and you're not a programmer)? Open up Netscape on
your PC and enter the URL: http://sdd.its.washington.edu: 9033/. Quickly, you will see a lot of data
dictionary filling your screen. You won't be able to see the actual data decoded correctly, but you'll
be able to tell if the port is active or not.

89

References

(1) Hall, Sydney R. "The star file: a new fonnat for electronic data transfer and archiving," J.
Chem. Inf Comput. Sci., vol. 31, no. 2, pp. 326-333, 1991.

(2) Wideman, Graham. "Streamlining experiment data manipulation with psycholog experiment
data interchange format (pxdif),"Behavior Research Methods, Instruments, and
Computers, vol. 23, no. 2, pp. 288-291, 1991.

(3) Allen, FrankH, JohnM. Bamard,AnthonyP. F. Cook, and SydneyR. Hall, "The
molecular infonnation file (mif): core specifications of a new standard fonnat for
chemical data," J. Chem. Inf Comput. Sci., vol. 35, no. 3, pp. 412-427, 1995.

(4) NTIS. "Spatial data transfer standard: Fips 173-1," National Technical Infonnation Service
{NTIS) Computer Products Office, 5285 Port Royal Road, Springfield, VA 22161,
703-487-4650 Specify FIPSPUB 173-1, parts 1 through 4 when ordering., June
1994.

(5) Mark, Leo and Nick Roussopoulos. "Infonnation interchange between self-describing
databases," Information Systems, vol. 15, no. 4, pp. 393-400, 1990.

(6) Hall, Sydney R., Frank H Allen, and I. David Brown. "The crystallographic infonnation file
(cif): a new standard archive file for crystallography,''.Acta C,yst. vol. A47, pp. 655-
685, 1991.

(7) Hall, Sydney R. and Anthony P. F. Cook "Star dictionary definition language: initial
specification," J. Chem. Inf Comput. Sci., vol. 35, no. 5, pp. 819-825, 1995.

(8) Johnson, JohnA. and Frederic C. Billingsley. "A standard method for creating self-defining
data structures for infonnation archive and transfer,'' Digest of Papers. Tenth IEEE
Symposium on Mass Storage Systems. Crisis in Mass Storage, Washington, DC,
USA., May 1990, IEEE, pp. 26-32, IEEE Comput. Soc. Press.

(9) Johnson, J A and F .C Billingsley. "A standard method for creating self-defining data
structures for infonnation archive and transfer," Digest of Papers. Tenth IEEE
Symposium on Mass Storage Systems. Crisis in Mass Storage (Cat. No.
90CH2844-9). KD. Friedman and B.T. Olear, Eds., Monterey, CA, USA, May
1990, pp. 26-32, IEEE Comput. Soc. Press, Washington, DC, USA

(10) Rockwell International and Lockheed Martin. "Theory ofoperations," inlntelligent
Transportation Systems. The National Architecture for ITS: A Framework for
Integrated Transportation into the 21st Century. FHWAJoint Program Office,
January 1997, published on CD-ROM, uses Adobe Acrobat Reader, runs on
Macintosh (68020 or greater or Power Mac) or Wmdows (386 or greater and Win

90

3.1, 95 or NT 3.5 I orlater), also available from www.itsa.org/public/archdocs/
national.html orwww.rockwell.com/itsarch/.

(II) Rockwell International and Lockheed Martin, "Physical architecture," inlntelligent
Transportation Systems. The National Architecture for ITS: A Framework for
Integrated Transportation into the 21st Century. FHWA Joint Program Office,
January 1997, published on CD-ROM, uses Adobe Acrobat Reader, runs on
Macintosh (68020 or greater or Power Mac) or Wmdows (3 86 or greater and Win
3. I, 95 or NT 3. 51 orlater), also available from www.itsa.org/public/archdocs/
national.html orwww.rockwell.com/itsarch/.

(12) NTCIP Steering Group. "National transportation communications for its protocol (ntcip) a
family of protocols," 1996.

(13) Stallings, William. SNMP SNMP-2 andRMON: Practical Network Management, 2nd
Ed, Addison-Wesley Publishing Company, 1996.

(14) ISO. "Iso/iec 8824-1 information technology- abstract syntax notation one (asn. l):
Specification ofbasic notation.," ISO/IEC Copyright Office, Case postale 56, CH-
1211 Geneva 20, Switzerland, 1995.

(15) Dailey, D. J., M. P. Haselkorn, and D. Meyers. "A structured approach to developing real-
time, distributed network applications for its deployment,'7T.S' Journal, vol. 3, no. 3,
1996.

(I 6) ANSI. "American national standard database language sql, ansi x3. 13 5-1992, "American
National Standards Institute, 1992.

(17) Codd, E.F. "A relational model of data for large shared data banks," Communnications of
the ACMe, vol. 13, no. 6, June 1970.

(18) ISO. "Iso/iec 8825-1 information technology- asn. l encoding rules: Specification ofbasic
encoding rules (ber), canonical encoding rules (cer) and distinguished encoding rules
(der)," ISO/IEC Copyright Office, Case postale 56, CH-1211 Geneva 20,
Switzerland, 1995.

