TABLE OF CONTENTS

Page
BACKGROUND AND OBJECTIVES 1
MAJOR FINDINGS 4
DEMOGRAPHIC CHARACTERISTICS
Age of Riders 12
Rider Gender 21
Ethnic Background 26
Annual Household Income 31
Hoúsehold Size 40
Number of Cars 44
TRIP-RELATED CHARACTERISTICS
Type of Fare 51
Reasons For Not Using RTD Pass 64
Frequency Of Bus Use 74
Number of Buses To Complete Linked Trip 84
Mode Of Access 95
Trip Purpose 102
Riders Rate RTD Service 116
Linked Trip Origins And Destinations 126
Linked Trips Originating or Terminating in West Los Angeles Sector 133
Linked Trips Originating or Terminating in South Central Sector 137
Linked Trips Originating or Terminating in CBD 141
Linked Trips Originating or Terminating in San Fernando Valley 144
Linked Trips Originating or Terminațing in South Bay 148
Linked Trips Originating or Terminating in San Gabriel Valley 152
Linked Trips Originating or Terminating in North Central Sector 157
Linked Trips Originating or Terminating in East Los Angeles Sector 162
Linked Trips Originating or Terminating in East Central Sector 166
Linked Trips Originating or Terminating in Mid-C̄ities 170

Linked Trips Originating or Terminating i^{n} Long Beach Sector
 174

Number of Boardings 177
METHODOLOGY 197
APPENDIX 248

Number
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44 Table 45 Table 46 Table 47

Table 48 Table 49 Table 50

Table 51
Table 52
Table 53
Table 54
Table 55
Table 56
Table 57
Table 58
Table 59
Table 60

Table 61
Table 62
Table 63
Table 64
Table 65
Table 66
Table 67
Table 68

Reason For Not Using RTD Pass By Residence
Sector
68
Reason For Not Úsing RTD Pass By Time of Day
$\begin{array}{lllll}\text { Reason For Not Using RTD Pass By Rider Age } & 70 \\ \text { Reason For Not Using RTD Pass By Gender } & 71 \\ \text { Reason For Not Using RTD Pass By Ethnic } & \\ \text { Background }\end{array}$
Reason For Not Using RTD Pass By Annual
Household Income
Frequency of Bus Use By Bus Line $\quad 76$
Frequency of Bus Use By Type Of Fare 77
Frequency Of Bus Use By Time Of Day 78
Frequency of Bus Use By Residence
Sector
Frequency Of Bus Use By Rider Age 80
Frequency of Bus Use By Gender 81
Frequency Of Bus Use By Ethnic
Background
82
Frequency Of Bús Use By Annual Hoúsehold Income
Number Of Buses Required For Trip
From Origin To Destination By Bus Line
Number Of Buses Required For Trip From
Origin to Destination By Type Of Fare
$\begin{array}{lll}\text { Number of Buses Required For Trip From } \\ \text { Origin To Destination By Time Of Day } & 88\end{array}$
Number of Buses Required For Trip From Origin To Destination By Trip Purpose 89
Number Of Buses Required For Trip From
Origin To Destination By Residence Sector $\quad 90$
Number Of Buses Required For Trip From
Origin To Destination By Rider Age
Number of Buses Required For Trip From
Origin To Destination By Gender
Number Of Buses Required For Trip From
Origin To Destination By Ethnic Background
Number Of Buses Required For Trip From
Origin To Destination By Annual Household Income 94
Mode Of Access To RTD System By Bus Line 96
Mode Of Access To RTD System By Residence Sector

97
Mode Of Access To RTD System By Rider Age 98
Mode Of Access To RTD System By Gender 99
Mode Of Access To RTD System By Ethnic Background
Mode of Access To RTD System By Annual
Household Income
Trip Purpose By Bus Line 108
Trip Purpose By Type Of Fare 109

Page

Table 69
Table 70
Table 71
Table 72
Table 73
Table 74
Table 75
Table 76
Table 77
Table 78
Table 79
Table 80
Table 81
Table 82
Table 83
Figure 1
Table 84
Table 85
Figure 2
Table 86

Figure 3

Table 87

Table 88

Figure 4

Table 89
Trip Purpose By Time Of Day 110
Trip Pưrpose By Residence Sector 111
Trip Purpose By Rider Age 112
Trip Purpose By Gender 113
Trip Purpose By Ethnic Rackground 114
Trip Purpose By Annual Household Income 115
Riders Rate RTD Service By Bus line 118
Riders Rate RTD Service By Type Of Fare 119
Riders Rate RTD Service By Time Of Daÿ 120
Riders Rate RTn Service By Residence Sector 121
Riders Rate RTD Service By Rider Age 122
Riders Rate RTD Service By Gender 123
Riders Rate RTD Service By Ethnic Background 124
Riders Rate RTD Service By Annual
Household Income 125
Linked Trip Origins and Destinations By Sector 128
Línked Trips As Percent of All Trips On Regular-Service Lines 129
Linked Trips As Percent Of All Trips On Regular-Serivice Lines 130
Population And Bus Use By Sector 131
Sub-Sector Map 132
Summary Of Linked Trips To Or From West Los Angeles Sector By Sub-Sector Of Origination Or Destination 13.4Linked Trips Originating Or TerminatingIn West Los Angeles Sector As Percent OfWest Los Angeles Trips On Regular-ServiceLines135Linked Trips Originating Or TerminatingIn West Los Angeles Sector As Percent ofWest Los Angeles Trips On Regular-ServiceLines136
Summary of Linked Trips To Or From South Central Sector By Sub-Sector Of Origination Ör Destination 138
Linked Trips Originating Or Terminating In South Central Sector As Percent of South Central Trips On Regular-Service Lines 139
Linked Trips Originating Or Terminating In South Central Sector As Percent of South Central Trips On Regular-Service Lines 140

Table 98 Linked Trips Originating Ori Terminating In North Central Sector As Percent of North Central Trips On Regular-Service Lines
Summary Of Linked Trips To Or From East Los Angeles Sector By Süb-Sector Of Origination or Destination
Linked Trips Originating Or Terminating In East Los Angeles Sector As Percent Of East Los Angeles Trips On Regular-Service Lines
Linked Trips Originating Or Terminating In East Los Angeles Sector As Percent Of East Los Angeles Trips On Regular-Service Lines165

Table 101 Summary Of Linked Trips To Or From East Central Sector By Süb-Sector Of Origination Or Destination167

Figure 11 Linked Trips Originating Or Terminating In East Central Sector As Percent of East Central Trips On Regular-Service Lines
Table 102

Table 103

Figure 12

Table 104

Figure 13

Table 105

Table 106
Table 107

Figure 14
Linked Trips Originating Ợ Terminating
In East Central Sector As Percent Of
East Central Trips On Regular-Service Lines
Summary Of Linked Trips To Or From MidCities By Sub-Sector Of Origination or Destination
Linked Trips Originating. Or Terminating In Mid-Cities Sector As Percent Of Mid-Cities Trips On Regular-Service Lines
Linked Trips Originating Or Terminating In Mid-Cities Sector As Percent of Mid-Cities Trips On Regular-Service Lines
Linked Trips Originating Or Terminating In Long Beach Sector As Percent of Long Beach Trips On Regular-Service Lines
Linked Trips Originating Or Terminating
In Long Beach Sector As Percent of Long Beach Trips On Regular-Service Lines176

Average Number Of Boardings Per Weekday
Regular Ser ivee Rider By Bus Line 183
Average Number of Boardings per Weekday Regular-Service Rider By Type Of Fare 184
Boardings Per Day By Type Of Fare 18.5
Figure 15
Table 109
Table 110
Figure 16
Table 111
Figure 17
Table 112
Figure 18
Table 113
Figure 19
Figure 20
Table 114
Table 115
Figure 21
Figure 2.2
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Table 116
Table 108
Average Number Of Boardings Per
Average Number Of Boardings Per Weekday Regular-Service Rider By Time Period 186
Boardings Per Day By Time Of Day 187
Average Number Of Boardings PerWeekday Regular-Service Rider ByResidence Sub-Sector188
Average Number Of Boardings Per Weekday Regular-Service Rider By Number of Cars Per Person in Household 189
Boardings Per Day By Number of Cars Per Person In Household 190
Average Number Of Boardings PerHeekday Regular-Service Rịder ByAge Group191
Boardings Per Day By Age Grounp 192
Average Number Of Boardings Per Weekday Regular-Service Rider By Ethnic Background 193
Boardings Per Day By Ethnic Group 194
Average Number Of Boardings Per Weekday Regular-Service Rider By Annual Household Income 195
Boardings Per Day By Annual Household Income 196
Task Flow Chart 1981 Ridership Tracking Study 200
Questionnaire Distribution Cost 202
Distribution of Interviewer Labor Cost Per Respondent 2.03
Market Research Project Proposal Approval 205
Purchase Requisition 206
Purchase Request Memo 208
Proposed Vendors For 1981 Ridership Tracking Study 210
Project Contract 211
Questionnaire 216
Supervisor Summary 220
Line Numbers, Operating Divisions, Line Names And One-Way Route Miles 221
On-Board Survey Trip Record 225
Request For Production Of Materials 229
Questionnaire Log-In Sheet By Trip 233
Qüestionnaire Serial Numbers By Line 23.5
Sub-sector Definitions By Zip Codes 237

Number		Title	Page
Table	117	Expansion Factors To Line Ridership Leṽels	238
Table	118	1981 Ridership Tracking Study Data List	242
Figure	33	Riding Check Data Sheet	244
Figure	34	Geo-Code Data Sheet	245
Table	A-I	RTD System-Wide Number of Buses In Service, Peak/Base, 1976-1981	249
Table	A-II	RTD System-Wide Vehicle Miles, 1976-1981	250
Table	A-III	RTD System-Wide Number Of Scheduled Vehicle Hours, 1976-1981	251
Table	A-IV	RTD System-Wide Actual Driver Pay Hours	252
Table	$A-V$	RTD System-Wide Total Operating Cost, 1976-1981	253
Table	$A-V I$	RTD System-Wide Average Estimated Boardings, 1976-1981	254
Table	A-VII	Local Lines Ranked By Boardings Per Bus Hoür	255
Table	$A-V I I I$	Local Lines With Express Service During Peak Hours Only Ranked By Boardings per Bus Hour	256
Table	A-IX	Local Lines With Full-Day Express Service Ranked By Boardings Per Bus Hour	257
Table	A-X	Express Lines Operating Only During Peak Hours Ranked By Boardings Per Bus Hour	258
Table	$\mathrm{A}-\mathrm{XI}$	Park 'N' Ride Lines Ranked By Boardings Per Büs Hour	259
Table	A-XII	Subscription Lines	260
Table	A-XIII	Local Lines Operating Only During Peak Ḣours	261
Table	A-XIV	Special Services	262
Table	A-XV	Sample Lines By Type	263
Table	$A-X V I$	May Pass Sales Mix, 1978-1981	264
Table	A-XVII	Percent Of Work Trips By Public Transit, 1970-1977	265
Table	A-XVIII	Work Trip Characteristics, 1977	266

Three years have elapsed since Market. Research conducted compreherisive on-board surveys of RTD weekday ridership .in May and September of 1978. These two surveys of riders on a sample of forty randomly-selected bus lines provided benchmark data for eighteen demographic and system-wide transit-use variables. The results of the 1978 surveys pointed out which market segments were using, public transit and helped to illuminate riders' trip needs.

Abstract

Many changes in fares and service levels have occurred since 1978, however. During the last three years RTD has raised fares annually. Between May, 1978 and. May, 1981, RTD base fare increased 62.5%, from 40 cents to. 65 cents, and transfers which were 10 cents in 1978 cost 20 cents by May, 1981. In July, 1981 RTD raised the base fare again to $\$ 0.85$, with a 15 cents transfer fee. The net result is that a cash-paying rider boarding more than one bus after July, 1981 would pay twice the fare required for the same trip in May, 1978. During that same period, the price of a monthly pass increased between 83% and 89%, and new express charges are now levied on riders using student, senior citizen or handicapped passes ō express lines. Dúe to cutbacks in Federal subsidies, fares could increase again in 1982.

Since 1978, RTD has also introduced extensive service changes. New lines have been introduced, old lines eliminated. Lines have been re-routed or renumbered. New equipment has replaced worn-out old buses. Between the second quarter of 1978 and the second quarter of 1981, the number of buses in service during peak hours increased 13%, while vehicle hours and vehicle miles increased 5% and 3% respectively. Tables $A-I$ through $A-V I$ in the Appendix provide data on service levels since 1976.

The main purpose of the 1981 survey of weekday ridership is to document changes which have occurred in the market for public transit and in transit use patterns since 1978. This report explores the demographic and trip-related characteristics of riders on a sample of fifty lines before the July 1981 fare increase. A follow-up survey of bus rider households will explore short-term shifts in transit use patterns by various market segments after that fare increase.

In order to select the sample lines for this survey, Market Research stratified all 226 RTD lines into eight categories of service, as shown in Table l. Lines to be included in this sample were randomly selected from three categories local lines, local.lines. providing some express service during peak hours and local lines providing day-long express service over a portion of their routes. The 156 lines in these three categories, represent only 69% of all RTD lines, but account for at least 94% of the weekday boardings. Together they constitute what could be called RTD's "regular-service". lines. The categorization of all RTD lines by type is shown in Table A-VII through A-XIV in the Appendix.

The regular service lines selected to be surveyed are shown by categories in Table A-XV. The 43 local lines surveyed account for nearly 23\% of the boardings in that category; the 3 local lines with peak hour express service account for over 53\% of the category boardings; the 4 local lines with day-long express, service account for 27% of boardings in the category. Overall, the 50 sample lines account for about 25% of all weekday boardings on 226 RTD lines.

Subsequent reports will profile ridership characteristics on peak-hour express lines and on subscription lines.
(Market Research issued a report on Park and Ride Lines in Fébruary, 1981).

TABLE 1
BOARDINGS BY TYPE OF LINE (Ranked by boardings per bus hour).

Type of Line	of Lines	Boardings	Median	Low	High
Local	124	965,813+	37.5	10.3	110.6
Local with Peak		:		.	
Hiour Express	8	159,679	58.3	20.1	94.9
Local with Day Long Express	24	90,535	25.4	12.5	44.3
SubTotal	156	1,216,027+			
Park \& Ride	9	8,240	33.1	27.8	48.5
Express---peak Hour Only	17	7,923	13.5	8.2	25.5
Subscription	10	1,217	NA	NA	NA
Local--Peak Hour Only (Beep)	11	417	NA	NA	NA
Special Services	23	NA	NA	NA	NA
Total	226	1,233,824	-	-	-

MAJOR FINDINGS

1. Type of Fare

Riders using cash, ticket or transfer fares account for 48% of the Regular-Service boardings, a decline of 14 percentage points since 1978. The regular monthly pass accounts for 23\% of Regular-Service boardings, up 11 percentage points. Fare mix varies widely by bus line.

Fare mix varies by time of day. The proportion of cash boardings is lowest during morning peak hours, highest during base periods. proportionate use of regular, express and student passes is highest during the morning peak period. The proportion of college/vocational pass boardings is highest during the afternoon base period. The proportion of senior citizen pass boardings is highest during the morning base period, extremely low during evening hours.

Type of fare varies by residence sector. Residents of the Long Beach, Mid-Cities and East Central Sectors are more likely than other riders to pay cash fares. Residents of downtown Los Angeles, West Los Angeles and South Central Sectors are least likely to use cash.

Type of fare varies by rider age. The median age of cash riders is 26.1 years. Regular monthly pass users' average age is 29.9, and express pass users average 33.1. The average student pass user is 14 and the average college/vocational pass user is 24.7. The median age of handicapped pass users is 39.5 and of senior citizen pass users 67.7.

Men are somewhat more likely than women to pay cash fares.
The largest proportion of cash riders is found among Latinos. The largest proportion of regular monthly pass users is also found among Latinos. The smallest proportion of cash riders is found among the Asian/Pacific Islander group.

Type of fare used varies by household income. The lowest median household income, under $\$ 6,000$, is reported by handicapped and senior citizen pass users. The highest incomes, $\$ 15,000$ and up were reported by riders using express passes.

Nearly 63% of the cash riders use the bus five or more days a week. Up to 6.5% of the cash riders say they do not know where to buy a pass, and another 7.1% say there is no conveniently-located outlet at which they can buy a pass.

2. Frequency of Bus Use

The average RTD Regular-Service patron rides the bus 4.9 days per week. Cash riders average 4.3 days of bus úse. Regular pass users average 5.7 days.

Frequency of bus use varies with rider age. Senior citizens use the bus least often - 4.6 days on average: The most frequent riders are 40 to 49 years old. They ride an average of 5.2 days a week.

Frequency of bus use varies by ethnic group. Latinos and Asian/Pacific Islanders are the most frequent bus riders; they ride 5.1 days per week. Whites are the least frequent riders, averaging 4.8 days a week.
3. Boardings Per Linked Trip

Nearly 45% of RTD Regular-Service patrons ride just one bus to complete their oneway linked trips from origin to destination; 39\% ride two buses. Only 168 must ride three or more buses. The average is 1.8 buses per linked trip.

Regular monthly pass users are most likely to ride two buses for a linked trip; 49% ride two buses. Over 228 ride three or more buses.

The number of buses ridden on a linked trip varies by time of day.

Variation in the number of buses ridden on oneway linked trips can be seen by ethnic group. White riders take an averiage of 1.6 buses, Blacks and Asian/Pacific Islanders take 1.8 and Latinos take 1.9 buses to complete their trips.

The number of buses ridden to complete a linked trip tends to decline as household income goes up.
4. Daily and Monthly Boardings

On average, weekday Regular-Service riders make 3.3 boardings on a typical weekday, 1.7 boardings on a Saturday and 1.3 boardings on a Sunday.

Overall, weekday Regular-Service riders average 85 boardings per month.

Levels of boarding activity vary by bus line.
Boarding activity varies by type of fare. Express pass users and cash riders make relatively few boardings - 74 to 77 per
month. Handicapped pass users tend to make the most boardings - 108 per month. Users of the RTD regular monthly pass also make an above-average number of boardings, 98 per month. The level of boardings made by college/vocational pass riders is also relatively high, about 95 a month.

Boardings vary by rider's residence location. Riders from the San Gabriel Valley, South Bay and Long Beach Sector tend to make the fewest boardings in a month - 76 to 78. Riders from downtown or East Los Angeles tend to make the most boardings - about 98 per month. Boarding activity levels also vary by sub-sector within sector.

A relationship was found between boarding activity and the ratio of cars per person in household. Riders with no car average 93 boardings a month. Those riders from households with .75 or more cars per person average 74 boardings. A relationship was found between annual household income and boardings. As income increases, boarding levels tend to decline. Low-income riders average 86 to 93 boardings a month. High-income riders average 72 to 80 boardings.

Boarding activity varies by age. Riders under 19 years old and senior citizens tend to make fewer boardings than other riders - only 78 to 80 boardings, as opposed to 87 to 90.

Black riders tend to make more boardings per month than riders in other groups. Blacks make 91 boardings a month, followed by Latinos who make 86. Whites and Asian/Pacific Islanders average only 80 boardings a month.
5. Linked Trip origins and Destinations

The West Los Angeles Sector serves as origin or destination for 48% of all linked trips made on Regular-Service lines on weekdays. Up to 22% of all linked trips are made entirely within the boundaries of the West Los Angeles Sector.

Three other sectors - South Central LA, the CBD and the San Fernando Valley - serve as major trip generators. Each of these sectors is origin or destination for 22% to 25% of all linked trips made on Regular-Service lines.

Together, these four sectors - West LA, South Central, CBD and San Fernando Valley - serve as origin or destination for 76% of all linked trips on Regular-Service line.

Within each sector, a limited number of sub-sectors serve as primary trip generators:

Of the eighteen sub-sectors in the West Los Angeles sector, Hollywood serves as origin or destination for 27% of all trips beginning or ending in the sector.

The Crenshaw subbesector accounts for 42% of South Central sector trip origins and destinations.

In the San Fernando Valley, Van Nuys serves as origin or destination for 34% of the linked trips.

Hawthorne is the primary trip generator in the South Bay sector, accounting for nearly a quarter of all trip orígins and destinations.
of all linked trips beginning or ending in the San Gabriel Valley, over 37% begin or end in the Pomona Valley.

Th Glendale/Eagle Rock sub-sector accounts for 35% of the trips beginning or ending in the North Central Sector.

The East Los Angeles/Boyle Heights sub-sector accounts for 92% of the linked trips to or from the East LA Sector.

Up to 86% of the linked trips to or from the East Central sector are generated by the Vernon/Hüntington Park/Bell/ Maywood sub-sector.

The primary trip generator in the Mid-Cities sector is the Downey sub-sector, accounting for 36% of the linked trips.

6. Trip Purpose

About half the RTD Regular-Service riders are traveling on work trips, 21.8 are on school trips.

Trip purpose mix varies by bus line.
Trip purpose varies by type of fare. Up to 80% of regular and express pass users are on work trips. Over 73% of student pass users are on school trips, as are 70\% of college/vocational pass users.

Only about 22% of senior citizen and handicapped pass users are on work trips; up to 40% of their trips are for shopping and 20\% are for social/recreational purposes.

The mix of trip purposes varies by time of day. During peak hours, up to 66% of the riders are on work trips. The next highest proportion of work trips occurs during evening hours - 55\% of travel after 6:30 PM is to or from work.

The largest proportions of school trips are found during he morning peak and afternoon base periods. Traviel to or from school accounts for over 11% of the trips after 6:30 PM.

Trip purpose varies by sector. Only 42% to 46% of the trips by residents of the San Gabriel or San Fernando Valleys are work trips. From 61\% to 72% of the trips by residents of the East Los Angeles, downtown and East Central Sectors are work trips.

Rider age has an effect on trip purpose. The proportion of school trips is highest among riders under 19 years old. Among riders over 19 the proportion traveling to or from work rises with age to a peak of 77% among riders between 40 and 49 years old, and declines thereafter. only 35% of senior citizens use the bus for work trips.

Trip purpose variation by gender also exists. A larger proportion of women ride the bus on shopping trips. More men üse the bus on social/recreational trips.

Latinos make the largest proportion of work trips by bus, 62.7\%, and the smallest proportion of school trips by bus, only 16.18.

Household income has an effect on trip purpose. The proportion of work trips tends to rise as income rises up to $\$ 20,000$. Work trips then decline in proportion among riders with household incomes above $\$ 20,000$. The opposite pattern prevails for school trips. The proportion of school trips declines as income rises to the $\$ 20,000$ level. After $\$ 20,000$, school trips increase in proportion. Shopping and medical trips decline in proportion as income rises. Social/ recreational trips decline as income rises to the $\$ 25,000$ level. Above $\$ 25,000$, the proportion of social/recreational trips increases to its highest point.

7. Mode of Access

At least 90% of Regular-Service riders access the RTD system on foot.

As household income rises, riders are less likely to access the RTD system on foot and more likely to access by car.
8. Rider Attitudes About RTD Service

Overall, 76% of RTD Regular-Service riders häve an opinion of RTD service that is "somewhat favorable" or "very favorable".

Satisfaction with RTD service varies by bus line.

Levels of rider satisfaction with RTD service vary by residence sector. The most favorable ratings come from riders in the Mid-Cities, Long Beach, San Gabriel Valley, East Central and East Los Angeles Sectors.

Level of satisfaction tends to increase as riders get older.
Latinos and Asian/Pacific Islanders register the highest satisfaction levels, Blacks register the lowest.

Satisfaction with RTD service tends to decrease as income increases.

9. Rider Age

The median age of RTD Regular-Service riders has increased to 2.7.4, still two and a half years below the median age of the general population. The largest bloc of RTD regular service riders is the 19 to 29 year old group - 38\% of riders. The next largest group is riders under 19. Together, these two groups comprise 59% of the riders.

Median rider age varies dramatically by bus line - from 18.4 to 32.4 years old.

Median rider age varies by time of day - highest during morning peak, lowest during afternoon base period. Riders under 19 years old ride most during morning peak and afternoon base periods. Senior citizens ride most during base periods.

Median rider age varies by residence sector - youngest riders in the South Bay, oldest in Mid-Cities and West Los Angeles Sectors.

White riders tend to be older than minority riders - 32 years old versus about 27.

10. Rider Gender

Although women still comprise a majority, their proportion of RTD Regular--Service ridership has declined to 54% from 58\% in 1978. About 66% of the new riders since 1978 have been men.

Gender mix varies by bús line - from 71% male to 76% female.
Male riders are in the majority during peak periods and during the evening.

Gender mix tends to vary by residence sector.

11. Ethnic Background

The proportion of minority riders on the RTD system is greater than their proportion in the county population. Up to 63\% of RTD Regular-Service riders are members of a minority; minorities comprise 48% of Los Angeles County population.

Ethnic composition of ridership varies by bus line and by residence sector.

The proportions of White riders using transit drops to its lowest point during evening hours.
12. Household Income

The median household income reported by RTD Regular-service riders is $\$ 11,066$, about half the level of the average effective buying income among Los Angeles County residents. Although Regular-Service riders as a group tend to have below-average household incomes, there is evidence that more affluent riders have begun to ride RTD buses during the last three years.

As household size increases, rider median income moves closer to poverty levels. The median income of rider households with six or more residents actually falls below poverty levels.

Median household income of Regular-Service riders varies by time of day. It is highest among riders during morning peak hours, lowest during the afternoon base period.

Income varies by residence location, the poorest riders live in downtown Los Angeles, East Los Angeles, and the north Central and South Central Sectors.

Income varies by ethnic background. The poorest riders are Latinos. The most affluent are Whites and Asians.

Household income varies by age of the rider. The poorest age group is composed of senior citizens. Their median income is only 56% as high as the overall median income of riders.

13. Number of Cars

At least one third of the riders on Regular-service lines live in households that do not own a car.

The proportion of riders from households without cars varies by bus line, by residence location, by rider age and ethnic background and by household income.

Riders living in the West Los Angeles and Downtown sectors are most likely to have no car in the household. Those from the South Bay sector are least likely to have no car. Within sectors, however, there is wide variation in the proportion of no-car households in different sub-sectors.

Riders under 19 years of age are least likely to reside in households that have no car (only 13% are in this category). Senior citizens are most likely to be entirely without a car Fifty-six percent of the riders over 62 years old reported having no car.

There is a strong relationship between annual household income and car ownership. Among riders in the lowest income group, 57\% have no car in the household. Among riders in the highest income group, only 7% have no car.

The average number of cars per household and the average number of cars per person in the household also tend to vary by bus line, residence sector, age, ethnic background and household income.

White riders own the largest number of cars per person in the household (.43). Latino and Indian riders own the smallest number (.31 per person).

The relationship between household income and car ownership is seen in the steady increase in the ratio of cars per person in household - from .21 cars per person in low-income households to .60 cars per person in high-income households.
14. Household Size

The median household size among Regular-Service riders is 3.6 persons.
Household size varies by residence sector. The smallest households are in the West Los Angeles and downtown sectors. The largest households are in the East Los Angeles Sector.

Household size varies by ethnic group. Latinos have the largest households, Whites the smallest.

Median household size tends to be larger among income groups earning more than $\$ 20,000$.

DEMOGRAPHIC CHARACTERISTICS OF REGULAR-SERVICE WEERDAY RIDERS

Age of Rideris

The analysis of rider age has produced eight main findings:

1) There may be a gradual aging of the RTD rider population. The median age of riders on RTD regular-service lines is now 27.4 as shown in Table 2. The 1978 surveys of regular-service lines indicated a median age of 26 . The difference in median rider age can be explained partly by the fact that the two surveys were conducted somewhat differently. The 1981 survey sampled riders over a full day, whereas the 1978 survey was limited to eight hours on each line. Variation found in rider age distribution by time of day would indicate that a sample conducted over less than a full service day could contain a significant bias in favor of younger age groups.

On the other hand, there has been a gradual aging of the U.S. population as birth rates have declined and products of the post-war baby boom have matured. The Census Bureau points out, for example, that the percentage of California population over 65 years of age grew from 9.7\% in 1969 to 10.2% in 1980.

RTD must continue to monitor age distribution of its ridership. If average RTD ridership is indeed growing older, this trend could portend changes in terms of trip needs, fare mix, rider attitudes and other important areas.
2) RTD regular-service riders tend to be younger . than the general population. The 1980 census showed that the median age of California residents is 29.9, a full two and a half years older than the average RTD rider.
3) The distribution of riders by age tends to vary widely by bus line. The median rider age on the 50 sample lines ranges from a low of 18.4 up to 32.4. Seven of the lines carry riders whose median age is less than 19. Four of the lines carry riders who average over 30 years old.
4) The following table shows how weekdays have been segmented for analytical purposes.

Definition of Time Periods

Time Period
Pre-AM Peak
AM Peak
Morning Base
Afternoon Base
PM Peak
Evening

Hours

Midnight to 5:59 AM
6:00 AM to 8:29 AM
8:30 AM to 11:59 AM
Noon to 3:29 PM
3:30 PM to 6:29 PM
6:30 PM to 11:59 PM
Table 3 shows that rider age also tends to vary by time of day. Riders on the bus during the morning peak tend to be somewhat older than average, with a median age of 28.6. The lowest median age is found among riders during the afternoon base period. During this period, when many younger students return home from school, the median age is 26.1. Ridership by the under-19 age group is highest during this period 28\%. During the morning base period, the $P M$ peak and the evening period, ridership by the under-19 group falls to below average levels.

Precisely the opposite patterns occur among riders in the 19 to 29 age group. This group constitutes the largest single bloc of riders during all periods of the day, but the proportion of riders in this age group is above average during the $A M$ base, $P M$ peak and evening periods and below average during the AMM peak and afternoon base.

A pattern can be seen among senior citizens also. Overall they constitute 8.5% of the weekday riders, but during the AM and PM base periods they account for 11.6% and 10.4\% of the riders, respectively. Riding by senior citizens drops off throughout the day, until they account for only about 4% of the riders during the evening hours.
5) Average rider age can vary significantly by geographic area. Table 4 shows the age distribution of riders according to the location of their residence. High concentrations of senior citizen riders are found in the Mid-Cities and West Los Angeles sectors, resulting in an above-average median rider age of over 28. The youngest median age occurs among South Bay riders who average 24.3 years old. The rider populations from South Bay, San Fernando Valley and North Central sectors each have a large contingent of riders under 19 years old. The size of this young rider group ranges from 30% to 34% of the riders in each of these sectors.
6) Table 5 shows that there are only slight differences in age distribution by gender, resulting in a median age among male riders of 27.1 and among female riders of 27.5 .
7) Greater variation in age is seen by ethnic group. The youngest riders are American Indians at 18.9 years old. Latino and Black riders average 26.5 and 27.0 years of age respectively. The oldest group of riders is the White riders, who average 32.1 years old. Table 6 provides a breakdown of rider age by ethnic background.
8) Average age tends to decline as household income goes up. The median age of riders from households earning less than $\$ 10,000$ is 28.8. Among riders from households with annual incomes between $\$ 10,000$ and $\$ 25,000$, the average age ranges from 27.5 to 27.9. The lowest median age, 26.1, is found among riders from high income households earning over \$25,000. Table 7 provides more detail.

TABLE 2
AGE OF RIDERS
BY BUS INNE

Bus Line	$\begin{aligned} & \text { Under } \\ & 19 \\ & \hline \end{aligned}$	19-29	30-39	40-49	50-61	62 or Older	Total	Median	Number of Respondents
12	30.98	29.48	19.18\%	9.88	7.7\%	3.18	100.008	26.1	194
18	55.2	28.4	10.4	6.0	-	-	100.00	18.4	67
29	17.4	44.3	14.1	8.1	8.1	8.1	J00.10	27.1	149
32	9.7	55.9	18.3	4.3	10.8	1.1	100.10	26.9	93
44	12.4	40.0	18.1	8.9	7.6	13.0	100.00	29.3	315
47	8.6	48.4	17.2	8.6	9.7	7.5	100.00	28.4	93
73	53.2	22.6	8.1	6.5	6.5	3.2	100.10	18.6	62
81	31.1	24.2	15.3	7.9	8.9	11.6	100.00	27.6	190
86	11.0	37.2	22.1	12.2	11.0	6.4	99.90	30.8	172
88	20.9	35.7	14.8	7.0	10.0	11.7	100.10	28.0	230
89	19.6	26.8	14.9	8.9	11.5	18.3	100.00	32.4	235
91	8.8	44.5	21.4	11.0	6.6	7.7	100.00	28.1	182
96	47.8	26.1	8.7	8.7	-	8.7	100.00	19.9	23
114	47.5	30.9	9.9	3.0	4.3	4.3	100.00	19.9	233
152	36.2	35.2	11.2	2.6	9.5	4.3	100.00	23.2	116
155	35.7	35.7	10.7	7.1	3.6	7.1	99.90	23.4	28
156	40.4	33.1	12.5	2.9	8.9	2.2	99.90	22.2	136
157	42.1	33.5	10.5	5.9	4.5	3.3	100.00	21.6	152
160	50.0	19.2	13.5	5.8	1.9	9.5	100.00	18.9	52
164	15.2	39.4	17.2	6.1	14.1	8.1	100.10	28.7	99
165	35.4	35.6	12.2	4.9	4.9	5.1	100.10	23.4	82
166	23.8	44.1	9.8	8.4	7.7	6.3	100.10	25.5	143
158	52.9	22.4	9.4	8.2	5.9	1.2	100.00	18.7	85
169	34.9	37.1	8.5	5.4	5.9	8.1	100.00	23.5	185
175	35.8	30.3	15.5	2.8	5.5	9.2	100.10	24.2	109
210	20.6	40.7	19.4	5.9	5.5	7.9	100.00	26.9	253
354	53.6	26.8	10.7	3.6	3.5	1.8	100.10	18.6	55
424	25.6	44.4	13.3	5.5	6.7	4.4	100.00	25.0	90
425	25.5	35.8	14.2	6.6	9.9	8.0	100.00	26.5	212
431	29.8	25.6	15.3	5.6	6.5	16.1	99.90	27.4	124
435	41.0	33.1	11.2	2.8	4.5	7.3	99.90	22.0	178
451	36.8	34.7	10.5	3.2	8.4	6.3	99.90	23.2	95
452	52.5	30.0	5.0	5.0	2.5	5.0	100.00	18.7	40
453	40.6	15.6	12.5	-	9.4	21.9	100.00	25.6	32
454	53.8	30.8	5.1	3.8	2.6	3.8	$\underline{99.90}$	18.5	79
484	12.5	48.4	15.5	7.8	7.8	7.8	99.90	27.5	64
488	10.1	38.5	16.2	12.2	13.5	9.5	100.00	30.9	148
813	12.5	33.3	18.1	12.5	13.9	9.7	100.20	32.3	72
821	29.5	31.8	6.8	11.4	6.8	13.6	99.90	25.1	44
822	13.4	41.8	9.0	11.9	14.9	9.0	100.00	28.6	67
826	9.3	43.4	16.3	14.0	14.0	3.1	100.10	20.3	129
831	39.7	22.4	10.3	10.3	5.2	12.1	100.00	24.1	58
840	25.9	38.9	17.6	7.4	4.5	5.5	100.00	25.8	108
844	45.2	35.5	4.6	5.3	5.3	3.3	100.30	20.2	J52
846	25.5	41.8	11.4	8.2	6.4	6.8	100.10	25.4	220
861	18.8	44.9	9.1	9.7	6.8	10.8	100.10	26.6	176
867	24.2	38.5	9.9	4.4	12.1	11.0	100.10	26.4	91
869	49.0	19.3	10.9	5.8	9.4	4.7	100.10	19.5	192
871	18.8	36.5	12.7	9.6	12.7	9.6	99.90	28.4	197
872	33.9	25..4	8.5	5.1	13.6	1.3 .6	100.10	26.0	59
OVERALL	21.48	37.6\%	16.28	8.48	7.9\%	8.58	100.008	27.4	6361

[^0]TABLE 3
AGE OF RIDERS
BY TIME OF DAY

Time Period	$\begin{aligned} & \text { Under } \\ & 19 \end{aligned}$	$\begin{aligned} & 19 \text { to } \\ & 29 \end{aligned}$	$\begin{aligned} & 30 \text { to } \\ & 39 \end{aligned}$	$\begin{aligned} & 40 \text { to } \\ & 49 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \text { to } \\ & 61 \end{aligned}$	62 or Older	Total	Median Age	Number of Respondents
AM Peak	24.18	29.6\%	19.4\%	11.8\%	7.8\%	7.2\%	99.9\%	28.5	1074
AM Base	16.0	41.3	17.9	5.7	7.5	11.6	100.0	28.1	1136
PM Base	28.0	34.1	13.9	7.1	6.6	10.4	100.1	26.1	1906
PM Peak	17.6	40.5	15.9	10.8	8.5	6.7	100.0	27.8	1825
Evening	18.8	42.5	18.1	5.9	10.7	3.9	99.9	27.1	419
OVERALL	21.4\%	37.6%	16.2\%	8.4\%	7.9%	8.5%	100.0\%	27.4	6360

Response Rate: 48.9\%

TABLE 4
AGE OF RIDERS BY RESIDENCE SECTOR

Residence Sector	$\begin{aligned} & \text { Under } \\ & 19 \end{aligned}$	19 to 29	$\begin{aligned} & 30 \text { to } \\ & .39 \end{aligned}$	$\begin{gathered} 40 \text { to } \\ 49 \\ \hline \end{gathered}$	$\begin{aligned} & 50 \text { to } \\ & 61 \end{aligned}$	$\begin{aligned} & 62 \text { or } \\ & \text { older } \end{aligned}$	Total	Median Age	Number of Respondents
San Fernando Valley	31.68	31.5\%	16.7\%	6.38	7.5\%	6.38	99.98	25:4	825
North Central	30.2	27.2	20.8	10.5	5.1	6.2	100.0	27.0	171
San Gabriel Valley	21.1	40.3	13.9	10.1	8.7	5.9	100.0	26.9	540
West Los Angeles	14.8	40.7	18.6	$8 \cdot 3$	6.6	10.9	99.9	28.5	724
South Central	24.8	41.3	15.2	9.7	4.0	5.0	100.0	25.7	535
East Central	15.1	53.3	13.8	11.3	5.8	. 7	100.0	26.2	120
East Los Angeles	17.3	44.8	14.6	8.0	13.4	2.0	100.1	27.0	118
Mid-Cities	17.6	39.2	17.4	9.5	6.2	10.2	100.1	28.1	162
South Bay	34.1	32.7	15.0	5.6	5.8	6.9	100.1	24.3	458
Downtown L.A.	17.6	42.9	16.8	8.1	9.1	$5 \cdot 5$	100.0	27-3	42
Long Beach	4.5	58.0	5.4	14.5	8.3	9.3	100.0	27.6	58
North L.A. Coünty	-	-	-	-	-	- .	-	- '	$4 *$
Orange County	-	-	-	\cdots	\sim	-		-	1.3 *
San Bernardino County	-	-	-	\cdots	-	-	-	\cdots.	11 *
Ventura County	-	-	-	-	-	-	-	-	1 *
OVERALL	21.4\%	37.6\%	16.2\%	8.4\%	7.98	8.5\%	100.0\%	27.4	3782
Response Rate:	29.18								

[^1]
TABLE 5

RIDER AGE BY GENDER

Gender	$\begin{aligned} & \text { Under } \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & 19 \text { to } \\ & 29 \\ & \hline \end{aligned}$	$\begin{array}{r} 30 \text { to } \\ \quad 39 \\ \hline \end{array}$	$\begin{array}{r} 40 \text { to } \\ \quad 49 \\ \hline \end{array}$	$\begin{gathered} 50 \text { to } \\ 61 \\ \hline \end{gathered}$	62 or older	Total	$\begin{gathered} \text { Median } \\ \text { Age } \\ \hline \end{gathered}$	Number of Respondents
Male	19.5\%	41.6	17.1	7.5	7.1	7.2	100.0	27.1	2761
Female	23.5\%	34.3	15.6	9.0	8.8	8.8	100.0	27.5	3515
OVERALL	21.4%	37.6	16.2	8.4	7.9	8.5	100.0	27.4	6276
Response	Rate:	48.3\%							

TABLE_6

RIDER AGE

BY ETHNIC BACKGROUND

Ethnic Back- ground	Under 19	$\begin{gathered} 19 \text { to } \\ 29 \end{gathered}$	$\begin{gathered} 30 \text { to } \\ \quad 39 \\ \hline \end{gathered}$	$\begin{gathered} 40 \text { to } \\ \quad 49 \\ \hline \end{gathered}$	$\begin{gathered} 50 \text { to } \\ 61 \\ \hline \end{gathered}$	62 and Older	Total	Median Age	Number of Respondents
White	18.2\%	28.4\%	16.0\%	8. 8%	11.8\%	16.8\%	100.0\%	32.1	2500
Black	27.7	41.1	14.5	7.0	5.1	4.7	100.1	27.0	1582
Latino	19.2	45.2	19.1	9.0	5.4	2.1	100.0	26.5	1612
Asian or Pacific Islander	17.1	38.5	18.8	9.9	10.9	4.7	99.9	29.2	369
Indian	50.4	26.6	10.8	7.2	2.3	$2 . .6$	99.9	18.9	77
Other	23.3	44.7	8.8	6.8	13.2	3.2	100.0	25.6	52
OVERALL	21.4\%	37.6%	16.2\%	8.4\%	7.9%	8.5\%	100.0\%	27.4	6192
Response	Rate:	47.6\%							

TABLE 7
RIDER AGE
BY ANNUAL HOUSEHOLD INCOME

Annual
Household Under 19 to 30 to 40 to 50 to 62 or Median Number of Income 19 29 39 Older Total Age Respondents Under \$5,000
$\begin{array}{lllllll}11.7 \% & 43.1 \% & 14.3 \% & 9.4 \% & 8.1 \% & 13.5 \% & 100.1 \% \\ 28.8\end{array}$ 866 \5000\$ 9999$
$14.1 \quad 40.3 \quad 18.8 \quad 10.0$
$5.7 \quad 11.1$
100.0
28.8

738
\$10000\$14999
\$15000-

$\$ 19999$	13.9	45.1	18.6	12.8	7.5	2.1	100.0	27.8	467

\$20000-

$\$ 24999$	24.1	33.4	21.0	10.1	6.8	4.6	100.0	27.5	409

$\$ 25000$

Or MOre	26.5	36.6	18.5	9.0	5.8	3.6	100.0	26.1	708
OVERALL	21.4%	37.6%	16.2%	8.4%	7.9%	8.5%	100.0%	27.4	3882

MEDIAN INCOME $\$ 14119$ \$11076 \$12149 \$11485 \$11124 $\$ 6250 \$ 11066$ Response Rate: 29.9\%

Since the 1980 Sürvey of Weekend Ridership, surveyors who distribute on-board questionnaires have been providing data on three observable variables - rider gender, ethnic group and boarding point - whenever a rider refuses to answer a questionnaire. As a result, the "response rate" to the rider gender question is nearly 90%.

Previous surveys have indicated that women are in the majority among RTD riders. The 1981 survey of regular-service weekday lines confirms that this phenomenon still prevails, but to a lesser extent. In May, 1978 over 58\% of the riders were women. In May, 1981 the percentage of women declined to 53.5% as shown in Table 8. This change represents a significant shift in the gender mix of RTD customers.

Between May, 1978 and May, 1981 the average number of weekday boardings increased 25\%, from 1,090,000 to 1,360,000. The gender mix figures derived from the on-board surveys conducted in 1978 and 1981 suggest that 66% of RTD's new riders are men and that the average one-way linked transit trip consists of 2.1 boardings. If we assume that most riders complete a round trip during the course of a day, we find that the increase of 270,000 daily boardings would represent a net increase of about 64,000 new bus riders. Over 42,000 of these new riders would be men and 22,000 women.

```
(270,000) additioñal boardings
(2.1) boardings per one-way trip
    = 64,286 X . 66 men = 42,429 net increase
```

The gender mix of riders varies by bus line. As many as 71% of the riders on the 29 line, for example, are men--considerably above the 46.5% average system-wide proportion of male riders. On the other hand, only 24.1% of the riders on the 354 line are male.

Rider gender mix also tends to vary by time of day, as shown in Table 9. Male riders are in the majority during the AM peak and AM base periods, as well as during the evening hours. There are more women than men on the bus during the afternoon base and peak periods.

Variation in gender mix is also apparent by geographic area. Table 10 shows that the proportion of male riders ranges from a low of 29% among riders from the North Central Sector to over 62\% among riders who live in downtown Los Angeles. Male riders from the Mid-Cities and West Los Angeles sectors also tend to be in the majority by a slight margin.

TABLE 8
RIDER GFNDER
BY BUS LINE

Bus Line	Male	Female	Total	Number of Respondents
12	61.78	38.38	100.00\%	426
18	44.2	55.8	100.00	86
29	71.0	29.0	100.00	599
32	41.9	58.1	100.00	222
44	45.2	54.8	100.00	535
47	57. 3	42.7	100.00	253
73	49.5	50.5	100.00	91
81	50.2	49.8	100.00	279
86	40.6	59.4	100.00	411
88	53.7	46.3	100.00	244
89	41.3	58.7	100.00	511
91	53.5	46.5	100.00	258
96	40.0	60.0	100.00	40
114	36.7	63.3	100.00	379
152	48.1	51.9	100.00	270
155	58.0	42.0	100.00	50
156	41.7	58.3	100.00	163
157	43.7	56.3	100.00	300
160	41.9	58.1	100.00	155
164	37.1	62.9	100.00	175
165	40.5	59.5	100.00	153
166	43.3	56.7	100.00	157
168	58.1	41.9	100.00	93
169	45.2	54.8	100.00	303
175	40.5	59.4	100.00	128
210	49.3	50.7	100.00	450
354	24.1	75.9	100.00	87
424	44.2	55.8	100.00	217
425	38.3	61.7	100.00	478
431	42.9	57.1	100.00	259
435	39.3	60.7	100.00	328
451	37.9	62.1	100.00	140
452	51.6	48.4	100.00	64
453	31.7	68.3	100.00	63
454	34.3	65.7	100.00	99
484	52.7	47.3	100.00	239
488	41.5	58.5	100.00	277
813	41.9	58.1	100.00	86
821	36.8	63.2	100.00	68
822	49.4	50.6	100.00	87
826	47.0	53.0	100.00	151
831	52.1	47.9	100.00	146
840	53.1	46.9	100.00	196
844	44.6	55.4	100.00	202.
846	47.7	52.3	100.00	323
861	35.4	64.5	100.00	229
867	50.9	49.1	100.00	171
869	43.3	56.7	100.00	263
871	47.3	52.7	100.00	421
872	33.3	66.7	100.00	105
OVERALL	46.5\%	53.5\%	100.00	11430

TABLE 9
RIDER GENDER BY TIME OF DAY

Time Period	Male	Female	Total	Number of Respondents
AM Peak	56.2%	43.8%	100.0%	1960
AM Base	58.3	41.7	100.0	2499
PM Base	48.8	51.2	100.0	3461
PM Peak	46.0	54.0	100.0	2843
Evening	60.5	39.5	100.0	666
OVERALI	46.5%	53.5%	100.0%	11429
Response Rate: 87.9%				

TABLE 10
RTDER GENDER
BY RESIDENCE SECTOR

Residence Sector	Male	Female	Total	Nusaber of Respondents
San Fernando valley	43.9\%	56.1\%	100.0\%	892
North Central	29.0	71.0	100.0	186
San Gabriel valley	46.9	53.1	100.0	576
West Los Angeles	51.8	48.2	100.0	774
South Central	37.1	62.9	100.0	580
East Central	39.7	60.3	100.0	127
East Los Angeles	44.7	55.3	100.0	128
Mid-Cities	50.2	49.8	100.0	175
South Bay	37.6	62.4	100.0	491
Downtown L.A.	62.1	37.9	100.0	43
Long Beach	46.5	53.5	100.0	63
North L.A. County	-	-	-	4
Orange County	-	-	-	14
San Bernardino County	-	-	-	10
Ventura County	-	-	-	1
OVERALL	46.5\%	53.5\%	100.0\%	4064
Response Rate:	31.38			

Ethnic Background

The ethnic composition of the Los Angeles area has changed dramatically during the last thirty years. In 1950, 86.3% of Los Angeles County residents were White; Blacks and Latinos each comprised less than 7% of the population. The 1980 census results demonstrate the extent of the shift away from an Anglo majority. Today oniy 53% of the county's residents are White, 28% Latino, 138 Black and 68 Asian. The following table shows the ethnic breakdown of the five-county Southern California area.

SOUTHLAND COUNTIES BY RACE

	$\frac{1980}{\text { Pop. }}$	Angl	Blac	Latin	Asian	Indian
Los Angeles	$7,477,657$	53\%	13\%	28\%	6\%	1\%
Orange	1,931,570	79	1	1.5	4	1
Ventura	529,899	73	2	21	3	1
San Bernardino	893,157	73	5	19	2	1
Riverside	663,923	74	5	19	1	1
Total	11,496,206	61\%	9\%	24\%	5\%	1%

The ethnic composition of RTD ridership, shown in Table ll, differs significantly from that of the county population. Minority riders predominate to a greater extent than their representation in the general population would suggest. Less than 37% of RTD riders are White, over 30% are Latino and nearly 26% are Biack. Asian and Pacific Islanders and American Indians are the only groups whose representation among RTD riders is identical to their representation among the general population.

The ethnic composition of riders varies by line, reflecting the area served by the line and the type of service provided. For example, the 354 line, which serves the South Central sector has virtually no White riders, whereas the San Fernando Valley's 164 line serves a clientele which is 67\% White.

Table 12 demonstrates the wide variations in ethnic mix that exist in different sectors. White riders are in the majority among San Fernando Valley and Long Beach sector residents. Blacks comprise over 61% of the riders living in South Central Los Angeles and Latinos account for 63% of the riders from the East Central sector and for over $84 \%^{\circ}$ of the riders from East Los Angeles. Latinos are also in the majority among riders residing in the downtown sector.

Time of day also has an effect on the ethnic composition of RTD ridership. Table 13 shows, for example, that White ridership drops to its lowest level during evening hours after 6:30 PM, when only i9\% of the riders are White. The proportion of Black and Latino riders rise to their highest levels in the evening, up to 34.3% and 39.1%, respectively.

Asian

Bus
Line White Black Latino

12	7.18	50.18
18	1.2	80.0
29	5.8	39.4
32	5.9	13.6
44	26.0	30.7
47	16.5	15.0
73	4.4	82.2
81	64.1	9.2
86	51.1	7.0

or Pac. Amer.
Islan. Indian

No. of
Respondents

6.48	-	. 5%	100.00\%	421
2.4	2.4	-	100.10	85
. 8	. 3	. 7	100.00	606
1.4	-	-	100.00	220
11.2	1.0	1.6	100.00	511
6.9	. 4	-	100.00	260
3.3	2.2	2.2	99.90	90
5.1	1.5	. 4	100.10	273
10.3	-	. 5	100.00	399
5.4	. 4	. 8	99.90	240
3.4	. 2	1.4	100.00	503
3.9	. 8	. 4	100.00	257
2.4	-	-	100.00	41
. 8	. 8	. 5	100.00	373
4.5	. 7	. 4	100.10	269
4.2	-	2.1	100.10	48
7.5	-	1.3	100.00	159
4.4	. 3	. 3	99.90	29.4
3.2	1.3	-	100.10	157
6.3	-	. 6	100.00	174
4.6	-	1.3	99.90	152
6.4	. 6	. 6	99.90	157
6.5	2.2	-	100.00	92
6.9	2.8	. 3	99.90	288
. 8	-	. 8	100.00	125
2.5	. 7	. 7	100.10	447
-	-	-	100.00	86
18.6	1.4	. 5	100.10	220
9.9	3.2	. 2	100.00	476
11.2	1.2	1.9	99.90	258
4.6	2.1	. 9	100.00	327
2.4	2.4	. 8	99.90	123
6.3	-	-	100.10	64
-	-	-	100.00	61
1.1	2.2	-	100.10	92
6.3	-	-	100.10	238
23.7	. 4	. 7	100.00	274
7.3	1.2	1.2	99.90	82
6.0	3.0	-	100.10	67
1.2	4.8	-	100.00	84
. 7	1.4	-	100.10	148
2.8	. 7	-	100.00	145
5.6	. 5	1.0	100.00	196
2.5	1.0	1.5	100.00	202
9.1	1.9	. 6	100.00	319
7.3	. 9	1.3	100.00	233
3.5	1.2	-	100.00	172
10.3	. 8	. 4	100.00	252
7.5	1.0	-	100.00	412
2.9	2.9	1.0	100.00	102
6.1\%	1.0\%	. 6%	100.00\%	11274

85
606
220
511
90
273
399
240
257
41
373
269 48 159
29.4

157
174
152
157
92
288
125
447
86
220
476
258
327
123
64
61
92
238
274
82
67
148
145
196
202
319
233
172
252
412
102
11274

TABLE 12
ETRNIC EACKGROUND
BY RESIDEACE STCTOR

Residence Sector	White	Black	Latino	Asian or pacific Islander	American Indian	Other	Total	Number of Respondents
San Fernando Valley	62.58	10.08	20.78	5.4*	.88	.68	100.08	875
North Central	25.5	11.4	49.6	11.8	1.1	.5	100.0	182
San Gabriel Valley	38.9	24.8	26.2	7.6	1.5	1.0	100.0	562
West Los Aingeles	44.4	21.2	25.8	7.7	. 5	. 9	100.0	760
South Central.	6.7	61.2	25.7	3.1	1.4	1.9	100.0	576
East Central	23.3	8.3	63.3	1.4	2.9	. 7	99.9	125
East Los Angeles	11.2	2.5	84.2	1.0	1.1	.	100.0	126
Mid-Cities	45.7	11.5	32.8	7.8	2.0	. 2	100.0	175
South day .	41.4	. 38.0	II. 1	7.8	1.0	.6	10.0 99.9	489
Downtown L.A.	23.0	19.5	56.4	1.1	-	-	100.0	42
Long Beach	72.8	15.9	5.9	2.1	. 5	1.8	100.0	62
Fiorth L, A. County	-	-	-	2.	. 5	1.0	100.0	4 *
Orange County	-	-	-	-	-		-	14*
San Bernardino County	-	-	\cdots	-	-	-	-	11 *
ventura County	-	-	-	-	-	-	$=$	1 *
OVERALL	35.6\%	25.5\%	30.28	6.18	1.08	. 68	100.08	4004
Response Rate:	30.88							

[^2]TABLE 13
EIGNIC BACKGROUND
BY TIME OF DAY

Time per.	White	Black	Latino	Asian ox Pacific Islander	Amer. Indian	Other	Total	Number of Respondents
AM Peak	28.2\%	30.5\%	35.7\%	5.1\%	. 5\%	-	100.0\%	1933
AM Base	28.2	29.9	38.0	2.6	. 7	. 6	100.0	2458
PM Base	30.6	30.1	32.8	5.1	. 7	. 6	99.9	3399
PM Peak	33.3	24.5	33.7	6.8	. 6	1.1	100.0	2811
Evening	19.0	34.3	39.1	6.8	-	. 7	99.9	662
OVERALL	36.5\%	25.5\%	30.2\%	6.18	1.0\%	. 6%	100.0\%	11273

Response Rate: 86.7\%

The 1978 survey of weekday ridership found that median household income was $\$ 8409$, at a time when the poverty level for a family of four was set by the Census Bureau at $\$ 7412$. The median household effective buying income in 1979 was $\$ 18,680$ for Los Angeles County as a whole. Bus riders' median income was just 13.5% above the poverty level, and only 45\% as high as the median income of the general population. In other words, RTD regular-service riders tended to be significantly less affluent than the general population and, in fact, nearly half the riders had household incomes near or below the poverty level.

Table 14 shows that the 1981 median household income reported by riders is $\$ 11,066$ (although the income figure varies by bus line - from $\$ 7199$ on the 354 line to $\$ 22,233$ on the 869). The 1981 poverty level for a family of four is estimated to be $\$ 9466$, and the median household effective büying income for Los Angeles County is now \$21,231. The median income of regular-service bus riders,therefore, is now 16.9 .8 higher than the estimated poverty level and equivalent to 52% of the general population's effective buying income. These figures indicate an increase in bus riders' median income in relation to the poverty level and average county-wide household income. A larger proportion of more affluent people may have begun riding RTD buses during the last three years, but, on average, bus riders are still among the area's least affluent residents.

Table 15 shows bus riders' median household income by number of people living in the household. An analysis of bus rider median income in relation to poverty levels by family size is shown in Table l6. This table indicates a relationship between family size and relative affluence of bus riders. The median income of one and two person rider households is at least twice as high as the poverty levels set for households of that size. As household size increases, however, the median income moves steadily closer to the poverty level. Three peirson households report a median income which is 56% higher than the poverty level; four person households have a median income 30% higher; and five person hourseholds' median income is only 17% above the poverty level. The median income of households containing six or more persons actually falls below the poverty level. Six person households'average incomes are nearly 11% below the poverty level, and larger households are 27% below.

The median household income of regular-service weekday riders also shows variation by time of day, as demonstrated in Table 17. The median income of riders during the aM peak period is nearly $\$ 13,000--\$ 1,900$ above the average overall income. The lowest wedian income figures are reported by riders on board the bus during the aftenoon base period. With an average income of only $\$ 9.677$, these riders are nearly $\$ 1.400$ below the overall average. The median income of riders using the bus service after 6:30 PM is also somewhat below the overall average, though only by about $\$ 400$.

Household income also tends to vary according to location of the bus rider's residence. Table 18 clearly shows the wide spread in median household income by sector. The poorest regular-service riders live in East Los Angeles, the North Central sector, and South Central Los Angeles. The median household income among riders from these sectors ranges from $\$ 7,362$ to $\$ 8,021$ - well below the overall median of $\$ 11,066$. Riders from the East Central sector also report below average incomes of just over $\$ 9,000$.

Riders from South Bay, Orange County, the San Fernando valley and Long Beach sectors tend to be more affluent, with above-average household incomes of from $\$ 14,000$ to over $\$ 18,400$.

Variation in household income can also be found among riders in different age groups. Riders in the 30 to 39 and under-19 age groups tend to live in households with above-average incomes, as shown in Table 19. The most striking variation, however, is that riders in the senior citizen category report median household incomes which equal just 568 of the overall median. With a median income of only $\$ 6,250$ senior citizens are by far the poorest age group.

Annual household income also varies according to the ethnic background of the rider. Table 20 shows the poorest group of riders to be Latinos with a median household income of only $\$ 7,600$. The White, Asian and "othern groups have median incomes at least $\$ 2,400$ above the overall rider average, while Black riders report a median income virtually identical to the overall rider average.

ANNJAL HOUSEHOLD INCOME BY BUS LINE

Bus Line	Under $\$ 5000$	$\begin{aligned} & \mathbf{\$ 5 0 0 0} \text { to } \\ & \mathbf{\$ 9 9 9 9} \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 10000 \text { to } \\ & \$ 14999 \end{aligned}$	$\begin{aligned} & \$ 15000 \text { to } \\ & \$ 19999 \end{aligned}$	$\begin{aligned} & \$ 20000 \text { to } \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 25000 \\ & 8 \text { Over } \\ & \hline \end{aligned}$	Total	Median	Number of Respondents
12	21.0\%	38.38	17.38	12.38	6.23	4.9\%	100.00\%	\$ 8.786	81
18	26.5	22.4	18.4	8.2	16.3	8.2	100.00	10.299	49
29	21.5	24.3	38.9	6.3	5.6	3.5	100.10	10,540	144
32	34.3	22.9	22.9	12.9	2.9	4.3	100.20	8,428	70
44	29.9	24.4	20.9	12.4	7.5	5.0	100.10	9,119	201
47	38.8	20.9	11.9	13.4	3.0	11.9	99.90	7,679	67
73	15.4	25.6	15.4	10.3	7.7	25.6	100.00	12,922	39
81	18.8	12.1	20.1	10.1	10.7	28.2	100.00	14,751	149
86	24.2	9.8	18.2	17.4	12.1	18.2	99.90	14,396	132
88	26.8	12.2	15.9	8.5	13.4	23.2	100.00	13,459	82
89	26.1	27.1	19.1	10.6	8.5	8.5	99.90	9;410	199
91	17.5	17.5	23.0	13.5	7.9	20.6	100.00	13,261	126
96	35.7	35.7	14.3	-	-	14.3	100.00	7,003	14
114	33.3	22.5	10.9	9.3	7.8	16.3	100.10	8,711	129
152	19.8	13.6	17.3	8.6	8.6	32.1	100.00	14,798	81
155	22.2	11.1	27.8	16.7	16.7	5.6	100.10	13;004	18
156	12.6	12.6	13.8	17.2	. 17.2	26.4	99.80	18,198	87
157	16.1	9.3	18.6	19.5	11.0	25.4	99.90	16,538	118
160	26.3	13.2	15.8	10.5	13.2	21.1	1000.1	13,323	38
164	22.1	18.2	19.5	10.4	11.7	18.2	100.10	12,487	77
165	16.7	13.3	18.3	11.7	15.0	25.0	100.00	15,726	60
166	15.7	21.6	13.7	7.8	15.7	25.5	100.00	14,635	51
168	16.7	13.9	11.1	5.6	8.3	44.4	100.00	21,627	36
169	16.3	24.0	12.4	13.2	14.0	20.2	100.10	13,911	129
175	29.3	15.9	9.8	4.9	6.1	34.1	100.10	12,449	82
210	21.6	24.2	20.9	9.8	8.5	15.0	100.00	11,005	153
354	40.5	21.6	8.1	13.5	13.5	2.7	99.90	7,199	37
424	25.0	15.6	23.4	17.2	7.8	10.0	99.90	12,009	64
425	20.6	25.0	16.2	7.4	14.0	16.9	100.10	11,358	136
431	23.1	18.5	21.5	6.2	9.2	21.5	100.00	11,953	65
435	25.2	23.6	13.8	11.4	8.1	17.9	100.00	10,435	123
451	39.2	13.7	19.6	11.8	2.0	13.7	100.00	8,942	51
452	30.0	30.0	25.0	5.0	5.0	5.0	100.00	8;333	20
453	33.3	25.0	16.7	-	-	25.0	100.00	8,340	12
454	29.3	14.6	22.0	14.6	12.2	7.3	100.00	11,386	41
484	38.5	15.4	19.2	15.4	3.8	7.7	100.00	8,734	52
488	10.5	9.7	20.2	25.8	16.1	17.7	100.00	16,860	124
813	11.5	14.8	11.5	13.1	13.1	36.1	100.10	19,656	61
821	13.3	16.7	26.7	10.0	16.7	16.7	100.10	13,745	30
822	28.9	20.0	6.7	17.8	6.7	20.0	100.10	10,821	45
826	32.4	23.9	16.9	9.9	7.0	9.9	100.00	8,682	71
831	14.0	18.6	25.6	14.0	11.6	16.3	100.10	13,398	43
840	27.5	18.8	13.7	11.2	8.8	20.0	100.00	11,350	80
844	26.0	29.0	14.0	5.0	13.0	13.0	100.00	9,138	100
845	19.1	15.4	14.2	11.1	14.8	25.3	99.90	15,586	162
861	23.7	21.6	13.4	8.2	12.4	20.6	99.90	11,754	97
867	33.3	18.8	15.9	7.2	13.0	11.6	99.80	9,441	69
869	13.4	7.2	12.4	12.4	10.3	44.3	100.00	22,233	97
871	16.5	15.8	19.5	20.3	9.5	18.4	100.10	14,515	158
872	33.3	18.2	21.2	9.1	9.1	9.1	100.00	9,588	33
OVERAIL	24.23	21.38	21.1\%	11.1*	8.28	14.2\%	100.10\%	11,066	4183

[^3]
$!$ $!$
 Table is

 By MANAL HOUSEHOLD DKCOHE

Arnual Househola income	One	Tin	Three	Pour	Plve	Six	Seven or More	20tal	Median Mumber in thusehold	Namber of Responden
under s500n	24.84	22.98	17.17	13.in	8.54	5.78	B.0n	100. ${ }^{\text {n }}$	3.1	880
$\begin{aligned} & \mathbf{\$ 5 0 0 0}- \\ & \mathbf{\$ 9 9 9 9} \end{aligned}$	21.8	20.7	17.4	16.2	11.1	6.1	6.7	200.0	3.4	749
$\begin{aligned} & \text { \$100n0- } \\ & \text { \$14999 } \end{aligned}$	26.8	:24.9	27.5	9.7	9.5	5.1	6.4	100.0	2.9	693
$\begin{aligned} & \text { E1500~ } \\ & \text { s19999 } \end{aligned}$	18.2	29.8	15.8	17.6	8.8	5.2	5.6	100.0	3.2	480
$\begin{aligned} & \text { E2nood- } \\ & \text { s740009 } \end{aligned}$	25.7	27.0	18.5	15.1	13.1	5.8	B. 7	100.0	3.7	418
\$25000 or more	4.4	28.4	18.3	18.5	15.8	6.6	6.8	100.0	3.9	727
Everali	16.94	22,38	1P.04	16.54	12.28	5.78	8.41	100.04	3.6	3947
Median Income	59,454	512,366	511,412	\$12,180	\$12,932	511,173	\$11,371	\$11,066		
Response	te: 3									

TABLE 16
COMPARISON BEIWEEN BUS RIDER MEDIAN INCOME AND POVERTY LEVELS BY HOUSEHOLD SIZE

Mumber in Household	'	$\begin{aligned} & \text { Census } \\ & 1980 \\ & \hline \end{aligned}$	Bureau	$\begin{aligned} & \text { Poverty Levels } \\ & 1981 * \end{aligned}$	1981 Bus Rider Median Household Income	Relation to 1991 Poverty Level
One	-	\$4;190		\$4,655	\$ 9,464	+103. 3\%
Two		5,363		5,958	12,356	+107.6
Three		6;565		7,294	11,411	+ 56.4
Four		8,414		9,347	12,180	+ 30.3
Five		9;965		11,072	12,931	$+16.8$
Six		11,269		12,519	11,173	- 10.8
Seven or more		13,055		15,504	11,371	- 26.7

* 1981 poverty levels are estimates, based on 11.18 annual increase in consumer price index in Los Angeles ärea as of August 1981. Official Census Bureau poverty level figures for 1981 will be released in 1982.

ANNUAL HOUSEHOLD INCOME BY TIME OF DAY

Time Period	$\begin{aligned} & \text { under } \\ & \$ 5000 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 5000- \\ & \$ 9999 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 10000- \\ & \$ 14999 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 15000- \\ & \$ 19999 \end{aligned}$	$\begin{aligned} & \$ 20000- \\ & \$ 24999 \end{aligned}$	$\$ 25000 \text { or }$ more	Total	Median Income	Number Responde
AM Pfeak	14.98	19.78	25.08	13.8\%	10.98	14.78	100.0\%	\$12,952	706
AM BASE	19.2	23.0	27.1	10.0	7.4	13.2	99.9	\$11,439	824
FM EASE	29.7	21.7	20.0	10.0	6.0	12.5	99.9	\$ 9,677	1267
PM PEAK	24.7	19.8	17.4	12.1	9.6	15.4	100:0	\$11,580	1163
EVENing	25.8	22.4	16.3	11.2	9.8	14.6	100.1	\$10,604	222
OVERALLL	24.2\%	21.3\%	21.18	11.18	8.28	14.28	100.18	\$11,056	4182
Response Rate:	32.28								

TABLE 18
ANNUAL HOUSEHOLD INCOME
BY RESIDENCE SECTOR

Residence Sector	$\begin{aligned} & \text { Under } \\ & \$ 5000 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 5000- \\ & \$ 9999 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 10000- \\ & \$ 14999 \end{aligned}$	$\begin{aligned} & \$ 15000- \\ & \$ 19999 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 20000- \\ & \mathbf{\$ 2 4 9 9 9} \end{aligned}$	$\begin{aligned} & \$ 25000 \\ & \text { or more } \end{aligned}$	Total	Median Income	Number Respondents
San Fernando Valley	16.28	14.5\%	17.88	14.48	13.38	23.98	100.18	\$15,521	654
North Central	36.0	25.9	18.7	7.1	2.8	9.6	100.1	7,703	130
San Gabriel Valley	25.7	16.5	16.8	15.1	10.7	15.2	100.0	12,321	384
West Los Angeles	23.5	20.9	22.4	11.2	8.2	13.8	100.0	11,250	577
South Central	32.6	28.8	17.5	8.4	8.3	4.5	100.1	8,021	371
East Central	29.2	25.7	17.2	9.0	6.4	12.5	100.0	9,047	89
East Los Angeles	35.4	30.9	16.9	12.2	4.1	. 5	100.0	7.362	87
Mid-Cities	16.5	24.5	22.7	24.2	5.8	6.2	99.9	11,982	127
South Bay	16.1	9.5	16.6	11.4	13.7	32.9	100.2	18,421	342
Downtown L.A.	-	-	-	-	-	-	-		31*
Long Beach	15.9	23.5	15.6	23.2	19.2	2.5	99.9	1:3,397	48
Worth L.A. County	-	-	-	-	-	-	-	-	4*
Orange County	-	-	-	-	-	-	-	-	13*
San Bernardino County	-	-	-	-	-	-	\%	-	10*
Ventura County	-	-	-	-	-	-	\cdots	-	$1 *$
OVERALL	24.28	21.38	21.18	11.18	8.2\%	14.2\%	100.18	\$11,066	2868
Response Rate: 22.1\%									

[^4]TABLE 19
ANNUAL HOUSEHOLD INCOME
...BY RIDER AGE:

Annual House- hold Income	$\begin{gathered} \text { Under } \\ 19 \\ \hline \end{gathered}$	$\begin{array}{r} 19 \text { to } \\ \quad 29 \\ \hline \end{array}$	$\begin{array}{r} 30 \text { to } \\ \quad 39 \\ \hline \end{array}$	$\begin{array}{r} 40 \text { to } \\ \hline 49 \\ \hline \end{array}$	$\begin{gathered} 50 \text { to } \\ 61 \\ \hline \end{gathered}$	62 or Older	Total	$\begin{gathered} \text { Median } \\ \text { Age } \\ \hline \end{gathered}$	Number of Respondents
$\begin{aligned} & \text { Under } \\ & \$ 5,000 \end{aligned}$	11.7\%	43.18	14.3\%	9.4%	8.18	13.5\%	100.1\%	28.8	866
$\begin{aligned} & \$ 5000- \\ & \$ 9999 \end{aligned}$	14.1	40.3	18.8	10.0	5.7	11.1	100.0	28.8	738
$\begin{aligned} & \$ 10000- \\ & \$ 14999 \end{aligned}$	13.8	44.8	22.7	7.7	7.0	4.0	100.0	27.9	694
$\begin{aligned} & \$ 15000- \\ & \$ 19999 \end{aligned}$	13.9	45.1	18.6	12.8	7.5	2.1	100.0	27.8	467
$\begin{aligned} & \$ 20000- \\ & \$ 24999 \end{aligned}$	24.1	33.4	21.0	10.1	6.8	4.6	100.0	27.5	409
$\begin{aligned} & \$ 25000 \\ & \text { Or More } \end{aligned}$	26.5	36.6	18.5	9.0	5.8	3.6	100.0	26.1	708
OVERALL	21.4\%	37.6%	16.2\%	8.4\%	7.98	8.5\%	100.0\%	27.4	3882
$\begin{aligned} & \text { MEDIAN } \\ & \text { INCOME } \end{aligned}$	4119	1076	\$12149	\$11485	\$11124	\$ 6250	\$11066		
Response	Rate:	29.9\%							

TABLE 20
ANNUAL HOUSETHOLD INCOMIE BY ETHNIC GROUP

Household Size.

The median household size among regular-service weekday riders is 3.6 persons. Overall, 17% of the riders live alone, and another 22% live with one other person. More than one-quarter of the riders, 26\%, live in households of five or more persons.

Table 21 shows that household size does vary somewhat by bus line, ranging from 3 persons on the 86 line to 5.4 persons on the 452 .

Table 15 in the previous section showed that household size also tends to vary by income group. Although the relationship is far from perfect, household size tends to be larger among the higher income groups. The number of people per household among riders whose median income is below $\$ 20,000$ ranges from 2.9 to 3.4 ; the number of persons in households with median incomes above $\$ 20,000$ ranges from 3.6 to 3.9 .

Variation in household size according to ethnic group can be seen in Table 22. The median household size of White riders is less than 3 persons, whereas Asian, Indian and Latino riders all report 4.2 to 4.5 persons per household. Black riders report a median of 3.7 persons per household.

Table 23 shows that household size also tends to vary by bus rider's residence location. Riders living in the West Los Angeles and downtown sector report a median household size of fewer than three persons. East Los Angeles residents report the largest households, 4.9 persons.

Bus Line.	One	Two	Three	Four	Five	Six	Seven or miore	Total	Median	Number of Respondents
12	8.18	15.38	19.8\%	20.78	15.38	7.2\%	13.6\%	100.0\%	4.3	111
18	9.0	13.4	17.9	20.9	11.9	9.0	17.9	100.0	4.5	67
29	26.1	13.0	20.0	7.8	12.2	5.2	15.7	100:0	3.5	115
32	6.2	12.4	23.7	11.3	9.3	15.5	21.6	100.0	4.7	97
44	16.2	20.9	15.9	20.1	13.3	4.7	7.9	100.0	3.8	278
47	10.1	22.5	19.1	16.9	9.0	13.5	8.9	100.0	3.9	89
73	3.4	15.9	20.3	25.4	3.4	16.9	13.7	100.0	4.4	59
81	16.3	26.0	19.4	15.3	1.3.8	3.6	5.6	100.0	3.4	196
86	18.5	32.0	14.0	14.6	9.6	4.5	6.8	100.0	3.0	178
88	20.0	22.0	14.0	15.0	15.0	3.0	11.0	100.0	3.6	100
89	30.8	27.0	18.1	9.3	8.9	1.3	4.6	100.0	2.7	237
91	25.8	32.9	15.9	11.0	7.9	2.4	3.1	100.0	2.7	164
96	9.5	23.8	19.0	23.8	9.5	4.8	9.6	100.0	3.9	21
114	5.2	11.7	14.1	23.0	20.7	12.7	12.6	100.0	4.8	213
152	11.3	15.1	17.9	28.3	11.3	5.7	10.4	100.0	4.2	106
155	11.1	25.9	7.4	25.9	11.1	11.1	7.5	100.0	4.2	27
156	5.3	9.2	17.6	25.2	19.1	1.3.7	9.9	100.0	4.7	131
157	8.3	17.2	22.1	22.8	13.1	4.8	11.7	100.0	4.1	145
160	12.1	20.7	6.9	19.0	24.1	12.1	5.1	100.0	4.5	58
154	16.3	24.5	20.4	19.4	8.2	7.1	4.1	100.0	3.5	98
165	12.5	31.3	16.2	11.2	16.2	6.3	6.3	100.0	3.4	80
166	9.0	19.2	29.5	19.2	11.5	3.8	7.8	100.0	3.7	78
168	5.2	13.8	15.5	27.6	20.7	5.2	12.0	100.0	4.5	58
169	10.4	20.3	20.9	14.3	17.0	8.8	8.3	100.0	3.9	182
175	5.9	17.5	25.5	18.6	17.6	5.9	6.9	100.0	4.0	102
210	16.1	25.6	18.1	16.1	16.1	4.5	3.5	100.0	3.5	199
354	5.9	9.8	21.6	15.7	23.5	3.9	19.6	100.0	4.8	51
424	4.4	15.6	18.9	22.2	16.7	10.0	12.2	100.0	4.5	90
425	12.7	18.9	14.2	21.7	10.4	9.0	13.1	100.0	4.2	21.2
431	6.6	21.7	14.2	17.9	23.6	7.5	8.5	100.0	4.4	106
435	12.3	13.5	14.0	20.5	18.7	9.4	11.6	100.0	4.5	171
451	8.5	9.9	16.9	28.2	7.0	12.7	16.8	100.0	4.5	71
452	3.2	6.5	9.7	22.6	19.4	12.9	25.7	100.0	5.4	31
453	4.5	22.7	13.6	22.7	18.2	13.6	4.7	100.0	4.4	22
454	7.0	15.8	35.1	24.6	10.5	1.8	5.2	100.0	3.8	57
484	14.8	23.0	16.4	23.0	8.2	8.2	6.4	100.0	3.7	61
488	10.3	17.8	21.2	24.0	13.7	7.5	5.5	100.0	4.0	146
813	17.4	29.0	11.6	14.5	13.0	7.2	7.3	100.0	3.3	69
821	5.1	20.5	15.4	28.2	7.7	12.8	10.3	100.0	4.3	39
822	8.2	19.7	27.9	11.5	18.0	4.9	9.8	100.0	3.8	61
826	10.3	13.8	29.9	18.4	13.8	4.6	9.2	100.0	3.9	87
831	6.7	15.0	20.0	15.7	16.7	8.3	15.6	100.0	4.5	60
840	10.3	12.0	19.7	18.8	19.7	12.8	5.7	100.0	4.4	117
844	3.4	17.6	15.5	20.3	17.6	12.8	12.8	100.0	4.7	148
846	14.6	23.0	19.7	17.4	10.8	7.5	7.0	100.0	3.6	213
861	14.3	22.9	14.3	19.3	14.3	10.0	4.9	100.0	3.9	140
867	14.6	19.8	25.0	12.5	14.6	6.3	7.2	100.0	3.6	96
869	5.8	20.1	16.9	22.7	18.2	5.2	11.1	100.0	4.3	154
871	16.3	28.1	21.4	15.8	9.2	5.1	4.1	100.0	3.3	196
872	20.7	13.8	22.4	17.2	12.1	8.6	5.2	100.0	3.7	58

OVER-
$\begin{array}{lllllllllll}\text { ALL } & 16.9 \% & 22.3 \% & 18.0 \% & 16.5 \% & 12.2 \% & 5.8 \% & 8.3 \% & 100.0 \% & 3.6 & 5654\end{array}$

TABLE 22
HOUSEHOLD SIZE
BY EIHNIC BACKGROUND

Ethnic Background	One	Two	Three	Four	BY ETHNIC BACKGROUND					Number of Respont dents
					Five	Six	Seven or More	Total	Median House Hold Size	
White	27.2\%	30.0\%	14.98	13.3\%	7.7\%	3.48	3.5\%	100.0\%	2.8	2,317
Black	14.6	21.1	20.9	16.5	13.3	4.6	9.0	100.0	3.7	1,413
Latino	6.6	13.5	19.6	21.6	16.1	9.8	12.8	100.0	4.5	1,324
Asian or pacific										
Indian	8.1	17.9	18.3	20.4	13.1	18.0	4.2	100.0	4.3	74
Other	6.1	19.5	19.4	21.5	10.2	3.6	9.7	100.0	3.7	53
OVERALL	16.9\%	22.3%	18.0\%	16.5\%	12.2\%	5.8\%	8.3\%	100.0\%	3.6	5,487
Response Rate:		42.2\%								

TABLE 23
HOUSEHOLD SIZE
BY RESIDENCE SECTOR

Residence Sector	One	Two	Three	Four	Five	Six	Seven or More	Total	Median House hold Size.	Number of Respondents
San Fernando Valley	12.4\%	22.6\%	15.6\%	19.0\%	14.7\%	6.3\%	9.4\%	100.0\%	4.0	827
North Central	13.2	14.9	17.2	19.8	9.9	8.7	16.3	100.0	4.2	173
San Gabriel valley	12.4	18.8	19.1	21.3	13.4	8.3	6.7	100.0	4.0	529
West Los Angeles	24.0	30.5	14.9	12.9	8.7	2.7	6.3	100.0	2.9	717
South Central	8.9	17.3	19.2	17.4	16.3	8.4	12.5	100.0	4.3	534
East Central	6.8	14.6	26.8	22.6	17.3	4.1	7.8	100.0	4.1	115
East Los Angeles	9.1	17.0	11.7	12.9	5.6	23.0	20.7	100.0	4.9	111
Mid-Cities	10.6	20.5	17.5	14.2	19.7	9.1	8.4	100.0	4.1	162
South Bay	12.1	20.8	27.7	14.4	12.7	4.4	7.9	100.0	3.6	458
Downtown Los Angeles	-	$=$	\div	-	-	-	-	-	-	38*
Long Beach	15.8	25.6	18.6	5.4	28.1	1.7	4.8	100.0	3.5	60
North Los Angeles County	-	-	-	-	-	-	-	-	-	4*
Orange County	-	-	-	-	-	-	-	-	-	14*
San Bernardino County	-	-	-	-	-	-	-	-	-	11*
Ventura County	-	-	-	-	-	-	-	-	-	1^{*}
OVERALL	16.9\%	22.38	18.0\%	16.5\%	1.28	5.8%	8.3\%	100.0	3.6	3,786
Response Rate:	29.18									

[^5]The on-board surveys conducted in 1978 found that over a third (36%) of the respondents lived in households that did not own a car, and that about 60% of the respondents were riding the bus because no car was available tio them for that trip.

The findings of the 1981 Ridership Tracking Study confirm the 1978 findings in regard to the proportion of riders from households without cars. Among respondents on the fifty Regular-Service lines surveyed in 1981, nearly 34%, overall, live in no-car households. Table 24 shows that the proportion of carless households varies by bus line. On the San Fernando Valley's 168 line, for example, which operates along Lassen Street in the North Valley, only 8.5% of the respondents said their households do not have a car. Over 52% of the 89 line (Fairfax Avenue) respondents, on the other hand, said they had no car in their household. The average number of cars per household ranges from. 78 on the 89 line to 1.98 on the 168 line. Overall, the number of cars per household among Regular-Service ine riders is 1.22.

Table 25 suggests that automobile ownership does vary by age of the bus rider. Young riders under 19 years old live in households which own, on average, the largest number of cars, 1.9, as well as the largest number of cars per person: . 41. Respondents in the 19 to 29 age group also claim a fairly large number of cars per household, 1.2. Riders betwen 30 and 61 have . 82 to . 99 ears per household. Senior citizens have the smallest number of cars per household, only .64. There is an indirect negative correlation of -.28 between age and number of cars in the household. In other words, there is a tendency for the number of cars to decrease as age increases.

Table 26 indicates that there are differences in car ownership by ethnic background, too. White riders report the largest number of cars per person, .43. Latinos report the smallest number of cars per person; .31. There are some anomalies in Table 26 , however. When the nümber of cars per household is considered, White riders rank lowest, with only 1.16 cars. This paradox is probably best explained by the fact that Whites tend to live in smaller households than minorities. Winite households were seen in the Table 22 to average 2.8 persons, and minority households 3.7 to 4.5 persons.

Another apparent anomaly in the data is the fact that the largest proportion of riders reporting that their households own no cars is found among White riders. Over 37q of the White riders have no car in the household, as composed to 34\% of Elack or Indian riders, 31% of Latino riders and only 19\% of Asian riders. This apparent contradiction in the data is probably best explained in terms of the different age distributions among these groups of riders. As shown previously in Table 25, senior citizens are least likely to own a car. Table 6 showed that the proportion of senior citizens was highest among White riders up to 17%. Senior citizens account for only 2% to 5% of minority riders on Regular-Service line.

A positive relationship between household income and the number of cars owned is apparent. As income rises, so does the number of cars. The correlation between these two variables is . 41. The average number of cars per household and per person both tend to increase as income goes up. Households earning at the lowest end of the income scale report only . 68 cars per household; those at the top end of the scale report 2.17 cars. The low-income households average . ? 1 cars per persion, and the high-income households average . 60.

Table 28 shows how car ownership tends to vary by respondent's residence location. The number of cars per household varies by major planning sector, from about one car or less in the Long Beach, East Central, West Los Angeles and Downtown sectors to 1.5 cars in the San Fernando Valley and 1.65 cars in the South Bay sector. The range in variation of car ownership is even more broad at the sub-sector level. Respondents living in Hollywood report only .63 cars per household, while those living in Malibu/Topanga, Sunland/Tujunga, Canoga Park, Granada Hills/Mission Hills, and Palos Verdes report an average of two or more cars per household (up to 2.32 cars in palos Verdes.)

Number of Cars Per Hoüsehold

$\begin{aligned} & \text { Bus } \\ & \text { Line } \end{aligned}$	None	One	Two	Three	Four	Five or More	Total	Mean No. of Cars/th	Number of Respondents
12	23.48	34.6%	29.98	7.58	2.88	1.98	100.08	1.39	107
18	29.9	31.3	16.4	6.0	10.4	6.0	100.0	1.60	67
29	49.5	28.8	7.2	11.7	1.8	. 9	99.9	. 92	111
32	36.9	23.8	20.2	9.5	6.0	3.6	100.0	1.39	84
44	38.8	31.8.	20.7	6.6	. 8	1.2	99.9	1.03	242
47	34.2	30.1	16.4	6.8	8.2	4. 1	99.8	1.37	73
73	18.3	33.3	28.3	10.0	3.3	6.7	99.9	1.70	60
81	31.4	22.9	24.5	10.1	7.4	3.7	100.0	1.53	188
86	29.0	39.5	$21 . \ldots 0$	6.8	3.7	,	100.0	1.17	162
88	27.1	32.3	24.0	11.5	3.1	2.0	100.0	1.39	96
89	52.2	29.7	12.1	1.7	2.6	1.7	100.0	. 78	232
91	36.2	38.8	17.1	5.3	2.0	. 7	100.1	1.01	152
96	.	-	-	,	-	*	-	-	22
114	20.7	33.3	25.7	11.3	4.1	5. 0	100.1	1.63	222
152	24.3	29.0	29.0	7.5	7.5	2.8	100.1	1.58	107
155	-		-	-	\cdots	-	\cdots		38
156	11.3	25.8	37.9	19.4	3.2	2.4	100.0	1.85	124
1.57	18.7	23.9	35.8	14.9	3.7	2.8	99.8	1.75	134
160	21.3	24.6	27.9	11.5	13.1	1.6	100.0	1.77	61
164	32.3	32.3	19.4	9.7	3.2	3.3	100.2	1.30	93
165	23.1	35.9	24.4	6.4	9.0	1.3	100.1	1.46	78
166	26.0	32.5	19.5	15.6	3.9	2.6	100.1	1.49	77
168	8.5	28.8	35.6	15.3	6.8	5.1	100. 1	1.98	59
169	20.9	30.8	29.7	11.0	4.7	2.9	100.0	1.58	172
175	19.0	37.0	25.0	12.0	5.0	2.0	100.0	1.54	100
210	34.0	33.5	23.1	6.1	1.9	1.4	100:0	1.14	212
354	24.5	32.7	26.5	6.1	6.1	4.0	99.9	1.51	49
424	25.6	22.1	31.4	19.6	4.7	4.7	100.1	1.62	86
425	29.3	31.6	23.1	11.1	3.6	1.3	100.0	1.33	225
431	25.7	26.7	29.7	9.9	5.9	2.0	99.9	1.50	101
435	20.4	31.5	25.9	17.9	1.9	2.4	100.0	1.59	162
451	29.0	21.0	27.4	11.3	6.5	4.8	100.0	1.61	62
452	-	.	-	.	*	.	.	-	29
453	-		*	-	*	-	-	-	36
454	27.3	28.8	31.8	9.1	-	3.0	100.0	1.36	66
484	33.9	30.4	23.2	8.9	1.8	1.8	100.0	1.21	56
488	18.2	44.9	25.2	9.1	2.8	-7	100.1	1.36	14.3
813	25.0	33.8	29.4	4.4	4.4	2.9	99.9	1.38	68
821	*	.	-	-	.	-	-		39
822	30.2	31.7	22.2	6.3	3.2	6.4	100.0	1.43	63
826	36.4	36.4	16.9	6.5	1.3	2.6	100.1	1.09	77
831	23.3	33.3	16.7	16.7	1.7	8.4	100.1	1.68	60
840	24.8	33.0	27.5	8.3	2.8	3.6	100.3	1.44	109
84.4	22.6	30.3	29.0	19.6	3.2	3.2	99.9	1.56	155
846	28.0	25.7	26.6	13.1	2.8	3.7	99.9	1.50	214
869	26.7	34.1	21.5	13.3	1.5	2.9	100.0	1.40	135
867	24.1	34.5	28.7	6.9	3.4	2.2	99.8	1.40	87
869	14.8	31.0	29.0	13.5	5.8	5.8	99.9	1.86	1.55
871	24.0	37.0	24.0	8.9	2.6	3.6	100.1	3.41	192
872	38.6	31.6	21.1	8.8	*	*	100.1	1.00	57
overall	33.68	32.38	20.98	8.08	3.2\%	2.08	100.08	1.22	5500

[^6]
$\frac{\text { NUMBER OF CARS PER HOUSEHOLD }}{\text { BY RIDER AGE }}$
 BY RIDER AGE

	$\frac{\text { NUMBER OF CABLE } 26}{\text { CARS PER HOUSEHOLD }}$									
Ethnic Background	None.	One	Two	Three	Four	Five or More	Total	Mean Number Of Cars Per House- hold	Per Person	Number of Respondents
White	37.3\%	31.6\%	19.0\%	6.5\%	3.2\%	2.5\%	100.1%	1.16	. 43	2305
Black	33.6	34.0	20.6	7.9	2.1	1.6	99.9	1. 188	. 33	1420
Latino	30.5	31.9	20.5	11.2	4.1	1.7	99.9	1.32	. 31	1140
Asian/Pacific Islander	1.8 .7	33.4	32.4	10.0	4.4	1.0	99.9	1.51	. 38	$30 \cdot 1$
American Indian	34.0	26.3	27.5	5.3	3.1	3.8	100.0	1.2 .9	. 31	74
Other	36.4	30.4	25.5	. 6	1.9	5.2	100.0	1.20	. 40	53
Overall	33.6\%	32.3\%	20.9\%	8.0\%	3.2\%	2.0\%	100.0.\%	1.22	. 36	5293
Response Rate:	41\%									

NUMBER OF CARS PER HOUSEHOLD
BY MEDIAN HOUSEHOLD INCOME

SuD_Sector	Mone		$\begin{aligned} & \text { TARLE } \\ & \text { CARS } \\ & \text { DEMCE } \end{aligned}$		SEROLD	P190		Neas Nuabar of Carg/HN	mumber of Respondont
		On¢	Two	Three	Four	Moro	Totel		
Dountoun	47.08	27.68	11.28	14.18	$!$	\square	99.98	. 92	43
Secior Sub-total	47.0	27.6	11.2	14:1	-	-	99.9	92	4
Wilanira cort	41.5	33.1	15.0	7.8	\cdot^{3}	2.8	100. ${ }^{\text {a }}$.98	0
Pico corr	33.6	41.4	16.0	8.9			100.1	7.00	69
tetio park				-	-	-		!	34
LȮ̈ filyillace	-	-	-	-	-	-	0	-	39
Holl y wood	53.9	33.3	10.8	$\cdot 3$	$1 . T$	-	100.0	. 63	14
W. Kolly wood	37.3	42.5	11.1	7.2	1.9	-	100.0	9	63 29
Park is brat	!	:	!	-	-	\%	-		2
uesituosd	-	-	-	,		-	-	-	,
Brentivod/pat fil	*	-	-	-	-	-	-	,	5
wast 14	-	-	-	-	-	:	-	!	T
Venice Mar viata	-	-	-	:	\%	-	:	'	14
Sonta Monsta	-	\%	$\stackrel{-}{8}$		-	-	0	.	9
Malibu-Topanga	9.3	27.9	27.9	25.6	4.7	: ${ }^{6}$	100.0	2.05	16
cuiver city/pilas	\cdots	-	,	-	-	-	-	-	9
Ineliavood.	21.7	33.5	23.9	20.5	-2	$:^{2}$	100.0	9.45	\%
Century city									¢
$\begin{aligned} & \text { Wha sector } \\ & \text { sut-total } \end{aligned}$	00.5	35.2	15.5	6.5	. 9	1.3	99.9	96	639
crenshaw Cort	32.5	34.6	22.3	6.9	2.2	1.6	100.1	2.17	183
Westerin Ave Copr	37.0	16.4	26.6	19.1	\therefore		100.1	1.30	49
Harborr Fuy corr	51.9 30.5	15.6	24.9	2.5	${ }^{2} \cdot 1$	2.9	100.9	. 99	73
Cectral ave corr	39.5 18.2	35.6 0.8	11.7 27.1	B. 11.2	1.2	9.4	100.8 99.9	¢ 9.96	145
South Contral									
Sector Sub-total	3R.4	27.9	22.0	7.7	1.6	2.2	99.9	1.15	553
Vernon-Kp-Beil	31.4	45.8 54.8	15.5	7.3	. 6	5.8	$100: \%$	1.29	52 53
Lynvood/50.Gete	25.2	54.B	5.6	*. 1	. 6	5.8	100.9	1.26	53
Secter Sub-Total	30.2	47.5	13.5	7.5	. 1	1.1	90.9	1. 04	105
tla-Boyla Hta	32.0	26.5	21.6	11.8	2.0	5.3	100.0	1.00	95
Cornered	$:$	-	:	:			!		11
Ela Setior									
Sur-total	32.2	27.0	$21 . ?$	12.1	1.9	5.1	100.0	1.00	107
silveriaky	-	-	-	-	-	-	-	-	15
Lfric ktitl serenio	21.0	40.3	17.9	-R	71.0	1.0	100.0	1.52	62
Higniand/ciasasi	22.6	42.2	18.5	15.2	1.5		100.0	3.31	34
ciencole/Eagic mk		-	-	$\stackrel{\square}{6}$			-		22
La cananaly crant	15.0	25.4	18.4	7.5	29.5	3.8	100.0	2.22	20
Morth cinimit	15.0	25.4	16.4	7.5	29.5	3.			2
Setior Sub-total	28. ?	39.6	16.1	8.8	6.2	. 6	100.0	1.26	16
Sun valiay	!	-	\%	$!$!	!	\because	!	32
Burbank	-	-	-	\cdots	-	-	\cdots	-	37
M. Hotly yood	33.2	33.3	24.9	4.9	4.5	-	100.0	1.14	125
Van Muys/pinicty	26.9	38.2	20.7	6.3	5.6	2.3	100.0	1.35	P68
Shermen Oake	!	-	$!$			-	!		33
Enerino	:	:	!	:	:	:	-	:	34
Tareme	-	:	!	:	!	:	!	-	10
voodigind H1130	-	-	\cdots	\cdots	-	-			28
Conogn Park west SFV	15.9	22.5	25.0	20.6	10.?	$5 \cdot$	900. 9	2,04	${ }_{5}$
Pe\%oimn/Sn Fern	17.1	36.2	31.9	9	3.8	. 5	99.9	1.99	106
Cranace/mission	15.2	31.5	13.4	2.3	${ }_{6}{ }^{4}$	$9{ }^{9}$	100.0	2:15	51 33
Chatsiorth	-	-	-	-	-	-	-	.	17
ninsede	-	-	-	-	-	-	4	-	4
Sen Farnendo Viy Sector Sub-total	24.1	.31.5	25.6	11.5	5.1	2.3	. 100.1	1.50.	799
Aitedana	-	-	-	-	-	-	-	-	35
Artociaitsra mente	-	-	-	-	-	-	-	-	10
Monrovie/suartic	\cdots	*	,	-	-	-	\cdots		\%
Pissodinots. Pis	39.1	32.3	21.6	6.3	. 7	-	100.0	-97	10%
azusa/tiencore	-	-	\%	$!$,	\%		13
Baidurin Park	:	:	:	\%	:	:	:	:	16
Covinalk. Coving	-	-	-	-	-	-	-	-	40
1. Puerita	*	-	-	*	-	-	-	-	20
Maniry Pk/Rosind	22.6	9.1	$16: 3$	6.	\%9	-	100.0	1:29	51
santutitinausty	!	-	-	$\stackrel{\square}{6}$:	-	-	!	2
alnambre	\therefore	\because	\%	is	-	-	10	\because	15
Pomona viy Son Gabrial Viy	0.5	29.6	17.2	10.6	1.2	. 9	100.0	1.06	154
Settor Sub-total	27.1	9.0	20.7	12.5	2.1	1.6	90.9	: 38	529
Dounay	-	\bullet	-	-	-	-	$!$	-	is
Whittier	-	-	-	-	-	-	-	-	31
Le mirada	-	-	-	-	-	-	-	-	7
sorunik/stoteapg	-	-	-	-	-	-	-	-	16
Pito Mivera	-	-	\bullet	:	-	-	-	-	21
artasiocceritos	\cdots	\cdots	-	-	-	'	!	-	21
Bellfiwr/parant	39.1	36.2	20.2	3.5	. 9	-	99.9	. 95	46
$\begin{aligned} & \text { Myd-citian } \\ & \text { sector sub-total } \end{aligned}$? 0.2	25.7	31.3	0.2	1.3	1.3	100.0	1.29	161
[1 sasundo	-	-	-	-	-	-	-	-	
Eardieni	-	-	-	-	-	\cdots	-	-	32
haythorne/Lundale	22.0	20.4	30.0	5.5	17.0	1.1	100.0	1.69	01
Besth Citie:	17.3	45.4	28.0	6.4	1.1	1.9	100.9	1.34	128
palos virdas	-	33.9	30.3	16.3	13.4	6.9	100.0	2.32	16
Torrantilomita	-					-	-		34
Sn Padrolulectn	-	:	:	-	:	,	,	-	1
Carion South Bay	-	-	-	-	-	-	-	-	338
Setzor sub=tiotal	17.2	29.9	35.5	9.3	4.9	2.3	100.1	1.65	420
Lakavoed	-	\bullet	-	*	-	-	-	-	6
torig biach	43.1	30.2	12.2	12.9	. 9	. ${ }^{\text {P }}$	100.0	1.00	56
Lonk Berch	32.3	16.2	9.9	0.6	1.6	. 5	100.1	1.04	62
									62

esemple at se toe enaly
to ilion relle
ataticitcial oéaperiaon.

TRIP - RELATED CHARACTERISTICS

Type of Fare
Table 29 indicates that fare mix can vary significantly by bus line. The percentage of cash riders ranges from 30.4% on the 89 line, for example, up to 70.5% on the 867 line. Use of each type of pass also varies widely by line. Only 1.4% of the riders boarding the 813 line use a regular pass, whereas 33.6% of those boarding the 29 line use this type of pass. Several lines surveyed have no boardings by express pass users, but 31% of the riders boarding the 813 use an express pass. Student pass use also varies widely, from 2.1% of ine 47 riders to 33.9% of the riders on the 354 line. Three lines in the sample experience no boardings with the college/vocational pass, but nearly 25% of the riders on the 484 line use this pass. Senior citizen pass use ranges from less than 1% on the 152 and 156 lines to 22% on the 89. The proportion of handicapped pass use is small on all lines, ranging from none (on ll of the sample lines) to 4.2% of the boardings on the 813 line.

Overall, the 1981 survey of regular-service weekday riders found that 48% of the riders use cash, tickets or transfers to board the büs, 23\% use a regular pass and 4% used an express pass. Student passes account for 11% of the boardings, and college/vocational passes for 5\%. Senior citizen passes are used for 7\% of the boardings and handicapped passes for less than 2\%.

Table 30 compares the results of the 1978 and 1981 on-board surveys with each other, as well as with fare surveys and line profiles compiled by the Service Analysis Section. Differences in fare mix found by the Market Research on-board surveys, and the Service Analysis Section's fare surveys can be attributed to a number of causes. The on-board surveys collect data supplied by riders, whereas the fare survey collects data by observation. The on-board survey samples one bus run on each line sürveyed for a full day; the fare survey samples single one-way trips. The on-board data represented in Table 30 was collected on regular-service lines only, but the fare survey data represents a mix of all types of bus lines.

The cash fare ratio published for the Spring Quarter of 1978 was calculated from Line Profile data collected by observation of boardings on a non-random sample of lines over a period of several months. In spite of the differences in method of collection, the same trend is apparent from the results of all three surveys. The proportion of cash, ticket and transfer boardings has declined significantly, from over 61% in 1978 to between 42% and 48% in 1981. Use of the monthly passes is up since 1978 too. In the Spring of 1978, 38% of boarding passengers used some kind of pass. In 1981, between 51% and 53% of the passengers used a pass. Use of the regular monthly pass increased from 12% of the boardings to 23\%.

The increased proportion of pass boardings since 1978 reflects increased sales of monthly passes during the last three years. In May, 1978 134,286 passes were sold, as compared to 224,519 passes sold in May, 1981~- an overall increase of 67\%. The rate of growth in the number of passes sold has viaried by tÿpe of pass. The fastest growing pass has been the handicapped pass. Sales increased 178% over the last three years - from 3,645 passes sold in May, 1978 to 10,124 sold in May, 1981. Market share increased from 2.7\% to 4.5\%. Growth in sales of the Park and Ride pass has been 90.5\%, but this pass still constitutes a small . 2% share of the passes sold.

Regular and express passes increased market share from 43.2% to 45.8% on a sales increase of 77.1\%. During the past three years, the number of express stamps sold increased 90.7\%. The increase in the sales of senior citizen passes has been 55.3\%, but market share declined to 23.6% from the May, 1978 level of 25.4\%. Although sales of the student and college/vocational passes increased 39\%, market share fell to 23.6\% from 28.4\%. The inter-agency pass accounts for less than . 1% of the passes sold. Table A-XVI in the Appendix compares the pass sales mix in May of 1978 and 1981.

Fare mix does tend to vary by time of day, as seen in Table 31. The proportion of riders using cash, ticket or transfer fares is lowest during the morning peak - only 39.7\%, as compared to an overall daily average of 47.9\%. Cash, ticket and transfer fares are used for half the boardings during the morning and afternoon base periods. Use of the regular monthly pasi is highest during the AM peak, and the evening hours. During both periods of the day, the regular pass accounts for 29% of the boardings.

The express pass is used most often during the morning peak, when it represents 7.5% of the boardings. During the PM peak express passes are used for 5.2% of the boardings on regular-service weekday lines.

Greatest use of the under-19 student pass also occurs during morning peak hours, when it is used for 14.4% of the boardings. This pass also accounts for 14% of the boardings during the $P M$ base period.

Use of the college/vocational pass ranges from 3\% of boardings to 5.5\%. This pass accounts for its largest share of boardings (5.5\%) during the PM base period, followed closely by the evening period (5.3\% of boardings).

The use of the senior citizen pass varies greatly by time period. This pass is used for 11.3% of the boardings during the $A M$ base period and 8.2% of the boardings during the PM base. During peak periods the senior citizen pass accounts for about 5% of boardings. Use during the evening period is significantly lower - only 3.3% of boardings.

Use of the handicapped pass is fairly consistent throughout the day, ranging from 1.1\% to 2.1\% of the boardings. Heaviest use occurs during the am base (2.1\% of boardings) and PM peak periods (1.8\%).

Table 32 shows that type of fare used varies significantly by location of rider's residence. Relatively high proportions of riders from the Long Beach, Mid-Cities and East Central sectors use cash, ticket or transfer fares (85.7%, 75.6% and 66.0%, respectively). The least likely users of cash, tickets or transfers live in the downtown. West Los Angeles, and South Central sectors (32.9\%, 42.1\% and 45.5\%, respectively).

Use of the regular monthly pass is greatest among downtown residents, 37% of whom use this type of pass. Nearly 30% of South Central residents and 28% of West L.A. residents use a regular pass. Below-average proportions of riders from the South Bay, San Fernando Valley and San Gabriel Valley use a regular pass (17.5\%, 16.8\% and 14.5\% respectively). Only 3.9\% and 3.0% of riders from the Mid-Cities and Long Beach sectors respectively, use a regular pass.

No residents of the East Central sector or downtown Los Angeles reported use of an express pass. Nearly 7\% of the riders from the San Gabriel Valley and South Bay sectors did use an express pass.

Above-average use of the under-19 student pass ranging from 13.6\% to 16.8% of boardings - is found among riders from the San Fernando Valley, South Central Los Angeles, South Bay and downtown sectors. Fewer than 5% of the riders from the East L.A., Mid-Cities, East Central or Long Beach sectors use a student pass.

The college/vocational pass is most popular among San Bernardino County and San Gabriel Valley riders, who use this pass for 24.5% and 12.7% of their boardings, respectively.

Above-average proportions of senior citizen pass boardings are made by Mid-Cities (9.6\%) and West Los Angeles (8.4%) riders. Less than 4% of the riders from South Bay, East L.A., Long Beach or the East Central sector use a senior citizen pass.

The largest proportions of handicapped pass users are found among Long Beach and North Central riders, 3.4% and 3.8% of whom use this type of pass.

As would be expected, type of fare used tends to vary by age of the rider, as illustrated in Table 33. The median age of the users of the under-19 student pass is lowest, of course, about 14 years old, and senior citizen pass users are oldest, with a median age of 67.7 years.

College/vocational pass users, tourist pass users and riders using cash, ticket or transfer fares report a median age below the overall rider average. Riders in these three fare categories are 24.7 , 26 and 26.1 years old, on average.

Regular pass users and express pass users are older than average, with median ages of 29.9 and 33.1, respectively.

The median age of handicapped pass users is 39.5 .
Table 34 shows type of fare by rider gender. Men are somewhat more likely than women to use cash, ticket or transfer fare. Nearly 50% of the men surveyed used cash, tickets or transfers, as compared to just over 47% of the women. A larger proportion of women use a senior citizen pass - 7.6% versus 5.7% of the men.

Table 35 shows fare type by ethnic background. The largest proportion of cash, ticket, or transfer riders is found among latinos - 52.9\% of whom do not use a pass. The Asian or pacific Islander group is least likely to pay cash fares - only 37% of these riders do not use a pass.

Besides being most likely to pay cash fares, Latinos are also the group most likely to use a regular monthly pass; 29.5% of the Latinos use a regular pass. Only 19% of White riders and 10% of Indian riders use a regular pass.

Asians and pacific Islanders constitute the group most likely to use an express pass on regular-service bus lines; 8% of this group uses an express pass. The express pass is used by 5.5% of White riders and 3.2% of Latino riders. Only 1.3% of Black. and "Other" riders use an express pass.

The under-19 student pass is used by 32% of American Indian riders (based on a small sample of only 75 respondents). Just over 15% of Black riders use a student pass, as do 11.2% of Asian/Pacific Islander riders. Below-average proportions of Latinos and Whites use a student pass -- 8.4% and 7.3% respectively.

Asians and Pacific Islanders contain the largest proportion of college/vocational pass users, 11.8\%. Over 5\% of Black riders use a college/vocational pass, but only 3.8% of White or Latino riders use this type of pass.

The largest proportion of senior citizen pass users is found among White riders, 14% of whom use this pass. Use of the senior citizen pass by Latino riders is an extremely low .7\% of the riders.

The largest proportions of handicapped pass users are among White riders (2.6\%) and Indian riders (2.8\%). use of the handicapped pass by Latino riders is also extremely low - . 6\%.

Table 36 shows that variations in fare type are also apparent by household income. The lowest median household income - $\$ 4845$ - is reported by handicapped pass users, followed by senior citizen pass users whose median income is only $\$ 5784$ per year. Riders who use the college/vocational pass have median household incomes of $\$ 7801$. The median household income of regular pass users is shown to be $\$ 10,432$, $\$ 634$ below the average rider income. Cash riders' income, at $\$ 11,923$ is $\$ 857$ above average. The median household income of student pass users is \$14,641, \$3,575 above average. Express pass riders report a median household income of $\$ 15,645, \$ 4,579$ above the average. The most affluent riders, with a median income of over $\$ 25,000$, are in that small group who use "other" types of fare (which can include RTD employee passes, police badges, free blind boardings, etc.).

FARE M:IX COMPARISON

Type of fare
Market Research
Service Analysis Section
on-Board surveys May 1978 May_Jun 1981

Line profiles
Fare Surveys Spring 1378.

March 1980 Alegust 1980 October 1980

Cash,Ticket or Transfer	61.98	47.98
Regular pass	11.8	23.2
Express pass	4.4	3.8
Student Pass	12.2	10.6
College/Vocational pass	-	4.7
Senior Citizen pass	5.9	7.1
Handicap Pass	1.6	1.6
Tourist pass	-	. 3
Other	2.1	. 8
OVERALL	99.98	100.08
Number of Respondents	3,419	6. 106

*Includes summer youth pass Boardings
Includes both Serifor Citizen and Handicapped pass Boardings *Includes both Regular and Express Pass Boardings

TABLE 31
TYPE OF FAPE
BY TIME OF DAY

Time Period	Cash,Ticket or Transfer	Regular Pass	Express Pass	Student pass (Under 19)	Coll./ voc. Pass	Senior Cit. Pass	Handicap Pass	Tourist pass.	Other	Btal	Number of Respondents
AM Peak	39.74	29.08	7.5\%	14.48	3.08	4.78	1.18	. 38	. 48	100.18	1121
AM Base	50.0	22.5	1.9	7.2	4.4	11.3	2.1	. 1	. 5	100.0	1170
PM Base	49.9	17.5	2.3	13.9	5.5	8.2	1.4	. 6	. 7	100.0	1820
EM Peak	48.0	25.9	5.2	8.0	4.6	5.3	1.8	-	1.2	100.0	1691
Evening	46.7	29.1	3.2	8.9	5.3	3.3	1.3	1.0	1.3	100.1	303
OVERALI	47.98	23.28	3.88	10.6\%	4.78	7.18	1.68	. 38	.88	100.0\%	6105

[^7]
$$
\frac{\text { TYABIE } 33}{\text { BY RIDER } \operatorname{AGEE}}
$$

AGE	Cash Ticket or TrE.	Regular pass	Express Pass	Stü̈dent pass (uar 19)	Coll./ Voc. pass	Senior Citizen pass	Handicap Pass	Tourist pass	Other	Total	Number of Responidents
Under 19	45.18	5.28	1.58	43.3\%	3.28	. 18	.18	. 18	1.38	99.98	1522
19 to 29	56.8	27.2	3.2	2.0	8.2	. 4	. 9	. 3	1.0	100.0	1885
30 to 39	52.8	34.0	5.9	. 3	3.6	.1	1.8	.4	1.0	99.9	707
40 to 49	48.5	36.2	10.2	-	2.9	. 1	1.9	.	. 4	100.2	360
50 to 61 62 or	42.9	39.1	5.6	-	1.3	4.0	6.8	-	. 3	100.0	370
older	21.6	7.7	. 9	-	-	68.4	. 8	. 1	. 1	99.6	366
$\begin{aligned} & \text { OVER- } \\ & \text { ALL } \end{aligned}$	47.98	23.28	3.8\%	10.6\%	4.78	7.18	1.68	-38	. 87	100.0	5210
$\begin{aligned} & \text { MEDIAN } \\ & \text { AGE. } \end{aligned}$	26.1	29.9	33.1	14.2	24.7	67.7	39.5	26.0	23.1	27.4	
Response	Rate:	40.18									

Gencier	Cash, Ticket or Tfr.	Regular pass	Express pass	Student pass (Udr 19)	Coll. 1 voc. pass	Senior Citizen pass	Handicap pass	Tourist Pass	Other	Total	Number of Respondents
Male	49.78	22.8\%	4.0\%	10.38	4.58	5.7\%	1.7\%	. 58	. 88	100.08	2530
Female	47.2	23.8	3.5	10.7	4.5	7.6	1.6	. 2	. 9	100.0	3376
Total	47.98	23.28	3.88	10.68	4.78	7.18	1.68	. 38	.8\%	-100.0\% ${ }^{\text {. }}$	5906
Response	Rate:	45.48									

TABLE 35

 TYPE OF EAREBY ETHNIC BACKGROUND

Ethrifc Background	Cash, Ticket or Transfer	$\begin{aligned} & \text { Regular } \\ & \text { pass } \\ & \hline \end{aligned}$	Express Pass	Student Pass (udr 19)	college/ vac. pass	Senior Citizen pass	Pardicap Pass	Tourist pass	Other	Total	Munber of Respondents
White	46.9\%	19.38	5.58	7.38	3.88	14.08	2.6\%	. 34	. 58	100.2\%	2462
Black	48.3	24.1	1.3	15.3	5.2	3.3	1.0	. 1	1.4	100.0	1516
Latino	52.9	29.5	3.2	8.4	3.8	. 7	. 6	. 5	. 5	100.1	1355
Asian or Pacific Islander	37.0	24.7	8.0	11.2	11.8	4.6	1.2	. 8	.5	99.8	325
Indian	50.2	10.1	-	32.0	1.7	1.6	2.8	-	1.5	99.9	75
Other	40.0	26.7	1.3	19.2	9.5	3.2	-1	-	. 2	100.2	54
Total	47.98	. 23.28	3.88	10.6\%	4.7	7.18	1.68	.38	. 88	100.08	5787
Response Rate:	44.58										

table 36
TYPE OF FARE
BY ANNUAL HOUSEYOLD IXICCNE

Annüal Household Income	Cash, Ticket or Transfer	$\begin{aligned} & \text { Regular } \\ & \text { Pass } \end{aligned}$	Express pass	Student pasis (ừir 19)	College/ voc. Pass	Senior Citizen Rass	Handicap pass	Tourist Pass	Other	Total	Number of Respondents
Under $\$ 5000$	43.8\%	25.68	2.08	5.2%	7.68	11.8%	3.58	. 38	. 38	100.18	851
\$5000-\$9999	47.0	26.7	2.5	7.4	5.0	8.5	2.5	-	. 3	99.9	724
\$10000-\$14999	49.8	28.8	5.7	6.4	3.4	5.1	. 2	. 1	. 5	100.0	663
\$15000-\$19999	45.3	33.5	3.6	10.8	2.7	1.4	1.0	1.0	. 8	100.1	454
\$20000-\$24999	48.7	22.4	8.2	13.2	4.4	2.4	. 1	-	. 5	99.9	398
\$25000 or more	61.3	11.5	7.1	10.3	4.2	2.0	. 6	. 3	2.6	99.9	711
OVERALL	47.9\%	23.28	3.8\%	10.6\%	4.78	7.18	1.6\%	-38	. 8%	100.0	3801
MEDIAN INCOME	\$11,923 \$	\$10,432	\$15,645	\$14,641	\$7,801	\$5,784	\$4,845	\$16,363	\$25,255	\$11,066	
Response Rate:	29.2\%										

Although pass sales have increased 66% over the last three years and the proportion of cash boardings has declined steadily from 62\% to 48% during that same period, there is still a large market for additional pass sales.

Table 37 shows that fewer than half (46\%) of the cash riders pay cash fares because they don't ride the bus enough to justify the cost of a pass. Nearly 23% of the cash riders say they cannot afford a pass. Another 6.5\% of the cash riders claim they do not know where to buy a pass, and 7.1\% say there is no convenient sales outlet at which they can purchase a pass. Nearly 7.5\% of the cash riders express the fear that they might lose a pass if they had one. Nearly 10% say there is some "other" reason they do not use a pass.

Reasons for not using an RTD pass vary significantly by bus line. The largest proportions of infrequent cash riders are found on the 155 and 488 lines (each 71.4\%), and the 813 inne, where 73.1\% of the cash riders do not ride enough to justify purchase of a pass.

The proportion of cash riders who say they cannot afford a pass is highest on the 32 line (45.2\%). 453 line (50\%), and the 29 line (56.8%).

0 ver 20\% of the cash riders on the 8.21, 156, and 454 lines said they do not know where to buy a pass. A quarter of the cash riders on the 160 line say there is no convenient outlet at which to buy a pass.

Table 38 analyzes by rider's residence location the reasons for not using a pass. Relatively infrequent bus riding is given as a reason by a majority of cash riders from the San Gabriel Valley, North Central L.A. and South Bay. The inability to afford a pass is highest aming cash riders from East Central L.A. (29.7\%), South Central L.A. (34.1%), and East Los Angeles (37.3%).

Relatively large proportions of cash riders from three sectors say they do not know where to buy a pass: 8.7\% of East L.A. riders, 9.8\% of San Fernando Valley riders and 9.9\% of Mid-cities riders.

More than 9.5% of cash riders from four sectors claim that there is no convenient sales outlet at which to buy a pass: West Los Angeles (9.5\%), San Fernando Valley (10.2\%). East Central and South Bay (13.3\%).

Fear that they might lose a pass deters over 12\% of the cash riders from East Los Angeles and 20.3\% from Mid-Cities.

There is some variation by time of day in the reasons for not buying a pass, as shown in Table 39. The proportion of cash riders who do not ride the bus often enough to justify purchase of a pass, and of those who cannot afford a pass is significantly lower during the AM peak than during other parts of the day. The proportion of AM peak cash riders who say there is no convenient pass sales outlet is more than twice as high as the average proportion in this category. The 11.8% of evening cash riders in this category is also well aboveaverage. Fear of losing their pass is highest among $A M$ peak cash riders (10.3\%). followed by AM base period riders (9.5\%).

Table 40 shows that reasons for not buying a pass vary by age of the rider. The proportion of cash riders who do not ride the bus often enough is highest among the 50 to 61 age group, 61.5\%, followed by the under 19 age group with 50.9\% of the respondents in this category.

The proportion of cash riders who say they cannot afford a pass is above average in the 19-to-29 and 30-to-39 age groups - 25.6\% and 27.7\%, respectively. Significantly below-average proportions of the under-19 group and the 50 or older group say they cannot afford a pass. Fewer than 16\% of the respondents in these age categories gave this as the reason. Ignorance of where to buy a pass is highest among senior citizens, 11.1% of the cash riders over 62. This age category also has the highest proportion of cash riders who say there is no convenient pass sales outlet (10.4%). Fear of losing a pass is highest among the 40-to-49 age group (9.8\%).

Table 41 shows the reasons given by men and women for not using a pass. Only slight differences exist. Over 48\% of the male cash riders say they do not ride the bus often enough, as opposed to 45.4% of the female cash riders.

Table 42 shows the influence of ethnic background on reasons for not using an RTD pass. Over 55% of White riders don't ride the bus often enough to justify purchase of a pass, but only 38\% of Latinos give this as a reason.

Latinos are most likely to state that they cannot afford a pass. Qver 31% of Latinos are in this category, as are 26% of Black cash riders. Only 13% of White cash riders say they cannot afford a pass.

Asians and Pacific Islanders are most likely to cite lack of knowledge of pass sales locations as a reason for not buying a pass. Up to 8.3\% of the Asian cash riders are in this category, followed by 7.8% of the Latinos.

Nearly 11\% of White and 10% of Asian/Pacific Islander cash riders say there is no convenient sales outlet where they can buy a pass. Fear of losing their pass is greatest among Latino respondents (12\% gave this reason) and Blacks (7.8\%).

Table 43 shows the variation by household income in reasons given for not buying a pass. The proportion of cash riders who do not ride the bus often enough tends to increase as income increases, from 37.2\% of low-income riders to 62.3\% of high income riders. The proportion of cash riders who cannot afford to buy a pass tends to decrease as income increases; so that 42.9\% of the cash riders from low-income households give this reason, but only 9\% of high-income riders do. At 11.2%, the proportion of riders who do not know where to buy a pass is highest among riders in the $\$ 20,000$ to $\$ 24,999$ income category. Lack of a convenient sales outlet deters 11% of the cash riders in the $\$ 25,000$ or more income category. Fear of losing a pass is highest, at 14.4%, among the cash riders in the $\$ 15,000$ to \$19.999 category.

Bus Line	Don't Ride Enough	Can't Afford pass	Don't know Where To Buy Pass	No Convenient Outlet	Might Iose pass	Other	Total	Number of Respondents
12	54.5\%	15.9\%	2.3\%	4.5\%	13.6\%	9.1\%	99.90\%	44
18	30.0	20.0	15.0	5.0	5.0	25.0	100.00	20
29	18.9	56.8	-		16.2	8.1	100.00	37
32	33.3	45.2	2.4	9.5	4.8	4.8	100.00	42
44	37.0	31.5	6.5	10.2	6.5	8.3	100.00	108
47	43.2	29.7	2.7	5.4	16.2	2.7	99.90	37
73	58.3	8.3	16.7	8.3	-	8.3	99.90	12
81	63.8	6.9	12.1	6.9	3.4	6.9	100.00	58
86	36.6	19.5	1.2	8.5	11.0	23.2	100.00	82
88	48.8	22.0	14.6	7.3	-	7.3	100.00	41
89	41.4	25.7	4.3	11.4	4.3	12.9	100.00	70
91	48.4	17.2	7.8	3.1	6.3	17.2	100.00	64
96	41.7	33.3	8.3	-	8.3	8.3	99.90	12
114	52.8	18.5	4.6	4.6	6.5	13.0	100.00	108
152	57.1	7.1	5.4	16.1	1.8	12.5	100.00	56
155	71.4	7.1	7.1	-	-	14.3	99.90	14
156	54.7	7.5	24.5	9.4	1.9	1.9	99.90	53
157	50.0	13.2	10.3	11.8	4.4	10.3	100.00	68
160	50.0	6.3	-	25.0	12.5	6.3	100.10	16
164	57.1	8.6	2.9	11.4	5.7	14.3	100.00	35
165	56.7	16.7	16.7	10.0	-	-	100.10	30
166	54.3	8.6	8.6	2.9	11.4	14.3	100.10	35
168	61.5	7.7	7.7	11.5	-	11.5	99.90	26
169	45.0	15.0	12.5	7.5	5.0	15.0	100.00	80
175	64.6	8.3	8.3	10.4	4.2	4.2	100.00	48
210	48.4	18.8	7.8	7.8	10.9	6.3	100.00	64
354	40.0	6.7	-	6.7	20.0	26.7	100.10	15
424	40.0	36.7	3.3	10.0	3.3	6.7	100.00	30
425	56.3	16.9	2.8	8.5	4.2	11.3	100.00	71
431	62.0	18.0	12.0	2.0	-	6.0	100.00	50
435	62.5	17.2	6.3	7.8	3.1	3.1	100.00	64
451	60.0	13.3	6.7	13.3	-	6.7	100.00	30
452	65.7	22.2	-	-	5.6	5.6	100.10	18
453	33.3	50.0	-	-	-	16.7	100.00	6
454	35.0	25.0	25.0	10.0	5.0		100.00	20
484	53.8	19.2	1i. 5	11.5	5.0	3.8	99.80	26
488	71.4	12.2	8.2	4.1	2.0	2.0	99.90	49
813	73.1	11.5	-	3.8	11.5	-	99.90	26
821	47.4	5.3	21.1	10.5	5.3	10.5	100.10	19
822	45.2	16.1	6.5	19.4	9.7	3.2	100.10	31
826	45.8	22.9	4.2	6.3	10.4	10.4	100.00	48
831	47.8	17.4	8.7	13.0	8.7	4.3	99.90	23
840	53.6	19.6	7.1	7.1	7.1	5.4	99.90	56
844	42.2	9.4	10.9	17.2	4.7	15.6	100.00	64
846	57.1	15.1	3.4	8.4	5.0	10.9	99.90	119
861	67.9	12.5	1.8	8.9	1.8	7.1	100.00	56
867	36.1	16.7	11.1	11.1	5.6	19.4	100.00	36
869	62.9	12.9	4.3	7.1	2.9	10.0	100.10	70
871	57.7	9.3	9.3	10.3	5.2	8.2	100.00	97
872	38.9	16.7	11.1	16.7	11.1	5.6	100.10	18
OVER-								
ALL	46.3\%	22.8\%	6.5\%	7.1\%	7.4\%	9.9\%	100.00\%	2302

TABLE 38
REASON FOR NOT USING RTD PASS
BY RESIDENCE SECTOR

Residence Sector	$\begin{aligned} & \text { Don' 't } \\ & \text { Ridue } \\ & \text { Emough } \end{aligned}$	Can't Afford Pass	Don't Know Where to Buy Pass	No Convenient Outlet	Might Lose pass	Other	Total	Number of Respondent
San Fernando valley	48.8%	12.08	9.8\%	10.28	8.48	10.88	100.08	356
North Central	54.9	16.3	5.4	5.2	6.6	11.6	100.0	79
San Gabriel Valley	54.5	24.8	3.9	8.0	1.2	7.6	100.0	212
West Los Angeles	43.9	23.7	6.9	9.5	8.2	7.8	100.0	280
South Central	41.1	34.1	5.0	2.8	6.5	10.6	100.1	210
East Central	31.6	29.7	6.1	13.3	3.1	16.2	100.0	62
East Los Angeles	32.1	37.3	8.7	4.5	12.3	5.1	100.0	56
Mid-Cities	35.3	19.8	9.9	5.6	20.3	9.2	100.1	98
South Bay	57.0	10.3	4.0	13.3	5.5	10.0	100.1	215
Downtown Los Angeles	-	-	-	-	\because -	-	- .	16*
Long Beach	-	-	-	-	-	-	-	33*
North L.A. County	- -	- -	-	--	-	-	-	2*
Orange County	-	2.5	-	-	-	-	-	11*
San Bernardino County	-	33.3	-	- -	- -	- -	-	6*
Ventura Cointy	-	-	--	-	-	-	-:	$1 *$
OVERALL	46.38	22.8\%	6.58	7.18	7.48	9:98	100.0\%	1637
Response Rate: 56:0\%	of respo	ts payin	cash fares					

TABLE 39
REASON FOR NOT USING RTD PASS.
BY TIME OF DAY

Time Period	Don't Ride Enough	Can't Afford Pass	Don't know Where to Buy	No Convenient Qutlet	Might Lose Rass	Other	Total	Number of Respondents
AM PEAK	35.9\%	17.0\%	6.7\%	15.6\%	10.38	14.6\%	100.1\%	390
AM BASE	47.8	20.6	4.8	7.6	9.5	9.6	99.9	455
PM BASE	46.1	27.7	6.9	5.3	6.7	7.3	100.0	695
PM PEAK	49.1	20.4	7.0	5.1	6.1	12.3	100.0	657
EVENING	44.2	21.8	7.4	11.8	7.0	7.8	100.0	105
OVERALL	46.3\%	22.8\%	6.5\%	7.1\%	7.4\%	9.9\%	100.0\%	2302
Response Rat	:	78.78	(of respon	dents pay	ing cas	fares)		

TABLE 40
REASON FOR NOT USING RẌD PASS.
BY RIDER AGE

Age

UUnder 19	50.9%	15.3%	8.4%	5.4%	6.4%	13.6%	100.0%	569
19 to 29	43.7	25.6	6.1	8.1	7.0	9.4	99.9	872
30 to 39	42.8	27.7	4.7	9.0	7.0	8.7	99.9	316
40 to 49	47.4	22.9	6.4	1.5	9.8	12.0	100.0	148
50 to 61	61.5	15.7	2.0	6.7	5.6	8.5	100.0	159
62 or		49.2	14.5	11.1	10.4	7.8	7.0	100.0
Older	26.8	6.5%	7.1%	7.4%	9.9%	100.0%	2148	
OVERALL	46.3%	22.8%		26.9	26.8	25.1	27.4	

Response Rate: 73.4% (of respondentṣ paying cash fares)

TABLE 41
 REASON.FOR NOT USING RTD PASS.
 BY GENDER

Gender	Don't Ride Enough	Can't Afford Pass	Don't Know Where to Buy	No Convenient Outlet	Might Lose Pass	Other	Total	Number of Respondents
Male	48.3\%	21.7\%	6.4\%	8.4\%	7.38	7.9\%	100.0\%	1052
Female	45.4	23.3	6.0	6.1	7.0	12.2	100.0	1223
OVERALL	46.3\%	22.8\%	6.5\%	7.1\%	7.48	9.9\%	100.0\%	2275
Response	ate:	77.8% (0	responde	ts paying	cash fa	res)		

TABLE 42
REASON FOR NOT USING RTD PASS
BX EIHNIC BACKGROUND

Ethnic Background	Don't Ride Enough	Can't Afford pass	Don't know Where to Buy	No Convenient Qutlet	Might Lose Pass	Other	Rotal	Number of Respondents
White	55.3\%	12.9\%	6.2\%	10.5\%	4.2\%	11.0\%	100.18	960
Black	43.0	26.3	$5 \cdot 5$	4.8	7.8	12.5	99.9	546
Latino	38.4	31.4	7.8	4.1	12.0	6.2	99.9	528
Asian or Pacific Islander	49.8	20.8	8.3	9.8	2.0	$9 \cdot 2$	99.9	132
Indian	-	-	-	-	-	-	-	33*
Other	-	-	-	-	-	-	-	20^{*}
OVERALL	46.3\%	22.8\%	6. 5 \%	7.18	7.48	9.9%	100.0\%	2219
Response Rate:	75.9%	f respo	ndents payin	cash fa				

[^8]TABLE 43
REASON FOR NOT USING RTD PASS BY ANNUAL HOUSEHOLD INCOME

Annual Household Income	Don't Ride Enough	Can't Afford pass	Don't Know Where to Buy	$\begin{aligned} & \text { No Con- Might } \\ & \text { venient Lose } \\ & \text { Outlet pass } \end{aligned}$		Other	Total	Number of Respondents
Under \$5000	37.2\%	42.9\%	4.5\%	4.9\%	4.5\%	6.0\%	100.0\%	327
\$5000 to \$9999	43.9	26.3	5.6	8.1	6.8	9.4	$100 \cdot 1$	328
\$10000-14999	42.5	19.7	5.1	8.5	9.2	15.0	100.0	308
\$15000-19999	48.9	9.0	6.1	9.5	14.4	12.1	100.0	197
\$20000-24999	56.4	6.5	11.2	9.0	2.4	14.5	100.1	187
\$25000 or more	62.3	9.0	4.0	11.0	5.0	8.7	100.0	358
OVERALL	46.3\%	22.8\%	6.5\%	7.18	7.4\%	9.9\%	100.0\%	1705
MEDIAN INCOME	\$13,408	\$6,508	\$12,717	\$13,725.	\$12,672	\$13,059	\$11,066	
Response Rate:	58.3\% (0)	respond	ts paying	ash fares				

The on-board survey conducted in May, 1978 found that 71.1% of the riders rode the bus five or more days a week. Table 44 shows that 76.3% of the 1981 survey respondents ride five or more days per week. The average number of days of bus use is 4.9. As do most measüres, the frequency of bus use varies by bus line.

Frequency of bus use also varies by type of fare, as illustrated in Table 45. Riders who use cash, ticket or transfer fares ride least often, 4.3 days per week. Senior Citizen pass users ride 4.9 days a week. Express, student, handicapped and college/vocational pass users average 5.4 to 5.5 days of büs riding each week. Regular pass users ride 5.7 days a week.

Riders surveyed during different periods of the day showed only slight variation in frequency of bus use. Riders during the morning peak period average 5.1 days of bus riding per week, while riders during the base periods average 4.8. Evening riders average 5.3 days of bus use per week. Almost 60% of the AM peak riders use the bus five days a week, and another 26.7% ride more than five days. Among evening riders, on the other hand, only 31.8% ride five days a week, and 45.9\% ride more than five days. Table 46 breaks down frequency of bus use by time period.

Overall, 35% of the regular-service riders ride more than five days a week, but Table 47 shows variations by sector. Half the riders who live in the downtown sector ride more than five days, as do 42% of the South Central riders and 40% of the West Los Angeles riders. Frequency of bus use ranges from a low of 4.2 days a week among riders from the Mid-Cities Sector to 5.5 days among riders living in downtown Los Angeles.

Differences in frequency of bus use by different age groups can be seen in Table 48. Riders under 19 years of age are least likely to ride more than five days a week. Oniy 28.6\% of this age group rides six or seven days a week, as compared to an overall average of 35 .1\% of riders in this category. Riders in the 40 to 49 age group seem most likely to ride more than five days, as attested to by the 39.9\% of these riders who say they ride six or seven days a week.

The proportion of riders who use the bus five days a week tends to decline with age. Nearly 49% of the riders under 19 years old ride five days a week. About 41 to 42 percent of riders between 19 and 49 ride five days, but only 37% of the riders between 50 and 61 ride five days. Among senior citizens, the proportion riding five days declines to only 28\%. Senior citizens are most likely to ride three or four days a week; 23.4\% of the riders 62 or older ride only
three or four days. Average bus use among senior citizens is 4.6 days per week. Riders under 19 years of age ride the bus 4.8 days a week on average. Riders between 19 and 39 ride 4.9 to 5.0 days, as do those between 50 and 61. The most frequent bus riders are between 40 and 49 years old; they ride an average of 5.2 days a week.

Gender also has some effect on frequency of büs use. Whereas 38.2% of the male riders ride six or seven days a week, only 31.9% of the females do. On the other hand, females are more likely than males to ride five days a week, 44.1% to 38.1%. Table 49 shows that the median number of days on the bus is just slightly higher for men than it is for women -- 5.0 versus 4.9 days.

Variation in bus use frequency by different ethnic groups is shown in Table 50. the most frequent users of the RTD are the Latinos, over 44\% of whom ride six or seven days a. week. They average 5.1 days of bus use during the week. The group with the largest proportion riding five days a week -- 51.8%-- is the Asian/Pacific Islander group. Black riders ride 5.0 days a week on average, and white riders use the bus 4.8 days.

Table 51 shows that the frequency of bus use tends to decline as income rises. Riders with incomes below $\$ 10,000$ tend to ride most often, an average of 5.1 days a week. Riders with household incomes between $\$ 10,000$ and $\$ 20,000$ ride 5.0 days, and those earning between $\$ 20,000$ and $\$ 25,000$ ride 4.7 days. The least frequent bus users have incomes above $\$ 25,000$; this high income group rides 4.4 days a week, on average. Whereas 45.3% of the riders from households earning less than $\$ 5000$ ride more than five days a week, only 18% of the riders with household incomes above $\$ 25000$ ride as often. High income riders are more likely to ride the bus five days a week than are low income riders. Only 27.6\% of the low income riders are in this category, as opposed to 53.8% of the high income riders.

The lowest median household income - \$7490- was reported by riders who ride only one day a week, followed by seven-day-a-week riders with a median income of $\$ 8510$. Four-day and six-day riders also report below-average incomes - $\$ 9380$ and $\$ 9774$, respectively. Riders who ride five days a week have an aboveraverage income of $\$ 13,581$. The most affluent rider - with a median income of \$17.817 is the infrequent bus rider, who ride less than one day a week.

$\begin{aligned} & \text { Bus } \\ & \text { Line } \\ & \hline \end{aligned}$	Seven	Six	Five	Four	Three	Two	One	Lēss Than One	Total	Mean Number of Days	Number of Respondents
12	20.5\%	16.4\%	28.7\%	9.0\%	10.7\%	7.4\%	4.1\%	3.3\%	100.1\%	4.7	122
18	22.8	10.1	51.9	2.5	2.5	2.5	5.1	2.5	. 99.9	5.1	79
29	28.2	7.6	41.2	7.6	6.1	5.3	3.1	. 8	99.9	5.1	131
32	24.5	13.6	51.8	2.7	3.6	. 9	1.8	. 9	99.8	5.4	110
44	23.6	18.5	40.4	5.1	4.0	3.3	2.5	2.5	99.9	5.2	275
47	23.1	15.4	39.4	6.7	4.8	4.8	1.9	3.8	99.9	5.1	104
73	18.8	15.9	52.2	1.4	4.3	-	2.9	4.3	99.8	5.1	69
81	15.8	12.2	48.0	5.1	6.1	5.6	2.6	4.6	100.0	4.8	196
86	15.3	10.9	53.0	8.2	4.4	3.3	1.6	3.3	100.0	4.9	183
88	20.0	10.5	40.0	9.5	5.7	7.6	1.9	4.8	100.0	4.8	105
89	27.6	18.0	33.0	8.0	5.4	4.6	1.1	2.3	100.0	5.3	261
91	25.1	14.3	39.4	5.7	6.3	4.6	. 6	4.0	100.0	5.1	175
96	17.4	13.0	34.8	8.7	4.3	-	13.0	8.7	99.9	4.4	23
114	9.2	12.6	48.1	7.1	6.7	6.3	5.0	5.0	100.0	4.5	239
152	12.6	15.1	45.4	4.2	8.4	4.2	3.4	6.7	100.0	4.6	119
155	12.1	12.1	36.4	3.0	9.1	9.1	9.1	9.1	100.0	4.1	33
156	10.0	12.1	54.3	7.9	5.7	3.6	. 7	5.7	100.0	4.7	140
157	14.0	18.3	37.8	6.7	5.5	6.1	4.9	6.7	100.0	4.6	164
160	12.5	20.3	48.4	3.1	9.4	3.1	1.6	1.6	100.0	5.0	64
164	22.0	13.0	40.0	8.0	6.0	6.0	2.0	3.0	100.0	5.0	100
165	17.4	14.0	41.9	8.1	7.0	2.3	2.3	7.0	100.0	4.8	86
166	15.3	14.1	51.8	2.4	2.4	2.4	3.5	8.2	100.1	4.8	85
168	7.4	5.9	54.4	14.7	4.4	4.4	4.4	4.4	100.0	4.5	68
169	10.6	14.1	55.6	4.5	2.5	4.0	3.5	5.1	99.9	4.8	198
175	20.6	13.1	25.2	12.1	10.3	4.7	4.7	9.3	100.0	4.5	107
210	24.4	17.5	41.0	5.1	3.7	3.7	1.8	2.8	100.0	5.2	217
354	15.5	20.7	46.6	8.6	5.2	3.4	-		100.0	5.2	58
424	9.6	14.9	55.3	6.4	7.4	2.1	2.1	2.1	99.9	4.9	94
425	16.9	14.0	45.3	6.8	3.4	6.8	1.3	5.5	100.0	4.8	236
431	7.8	9.5	56.9	5.2	6.9	6.0	1.7	6.0	100.0	4.5	116
435	12.0	8.5	46.0	9.0	6.5	7.0	2.5	8.5	100.0	4.4	200
451	9.5	1.4	59.5	13.5	6.8	1.4	1.4	6.8	100.3	4.5	74
452	7.7	7.7	53.8	5.1	5.1	2.6	10.3	7.7	100.0	4.2	39
453	5.3	5.3	47.4	10.5	5.3	5.3	10.5	10.5	100.1	3.9	19
454	4.3	8.7	62.3	5.8	4.3	4.3	1.4	8.7	99.8	4.4	69
484	14.5	14.5	38.7	6.5	9.7	3.2	4.8	8.1	100.0	4.5	62
488	5.6	13.2	50.0	8.3	6.9	5.6	5.6	4.9	100.1	4.4	144
813	10.0	5.7	55.7	7.1	5.7	5.7	1.4	8.6	99.9	4.5	70
821	11.9	7.1	54.8	4.8	2.4	9.5	9.5	-	100.0	4.5	42
822	3.1	9.2	63.1	3.1	7.7	4.6	4.6	4.6	100.0	4.4	65
826	20.2	20.2	31.5	6.7	6.7	3.4	6.7	4.5	99.9	4.8	89
831	10.0	5.7	61.4	7.1	7.1	2.9	-	5.7	99.9	4.7	70
840	11.5	19.5	42.5	8.0	5.3	5.3	. 9	7.1	100.1	4.7	113
844	3.5	8.2	64.1	6.5	5.3	6.5	4.1	1.8	100.0	4.5	170
846	10.7	7.3	49.4	8.6	5.6	6.9	4.3	7.3	100.1	4.4	233
861	6.5	15.8	50.4	12.2	5.0	4.3	3.6	2.2	100.0	4.7	139
867	12.6	21.4	38.8	8.7	1.9	4.9	5.8	5.8	99.9	4.7	103
869	5.5	13.9	57.6	7.3	4.8	6.1	2.4	2.4	100.0	4.7	165
871	12.6	11.1	39.4	8.1	9.1	7.1	6.6	6.1	100.1	4.4	198
872	11.3	14.5	48.4	8.1	6.5	1.6	3.2	6.5	100.1	4.7	62
OVER- ALL	20.6\%	14.5\%	41.2\%	6.6\%	5.8\%	4.4\%	2.9\%	4.0\%	100.0\%	4.9	6083

Type of Fare	Number: of Days Per Week								Total	Mean Number of Days	Number of Respon-\qquad
	Seven	Six	Five	Four	Three	Two	One	$\begin{aligned} & \text { Lëss } \\ & \text { Than } \\ & \text { One } \end{aligned}$			
Cash, Ticket or Transfer	12.7\%	11.5\%	38.4\%	8.9\%	8.3\%	7.3\%	5.3\%	7.6\%	100.0\%	4.3	3057
Regular Pass	31.1	20.2	42.6	2.4	1.7	1.0	. 3	. 6	99.9	5.7	1044
Express Pass	18.0	16.0	63.8	1.4	- -	-	. 3	. 5	100.0	5.5	192
Student Pass (Under 19)	24.0	15.6	52.3	4.2	1.0	. 7	. 8	1.4	100.0	5.5	682
College/Vocational Pass	23.6	13.2	55.1	3.2	3.7	. 3	. 3	. 6	100.0	5.4	270
Senior Citizen Pass	24.7	12.0	25.5	15.0	14.5	6.4	1.8	-	99.9	4.9	308
Handicap Pass	43.9	8.9	23.6	10.7	6.2	5.9	. 5	. 3	100.0	5.5	82
Tourist Pass	-	-	-	-	-	-	-	-	-	: 6	15*
Other	22.6	20.1	43.1	2.6	1.1	4.2	1.1	5.2	100.0	5.2	63
OVERALL	20.6\%	14.5%	41.2\%	6.6\%	5.8\%	4.4\%	2.98	4.0\%	100.0	4.9	5713
Response Rate:	43.98										

Time Period	Seven	Six	Five	Four	Three	Two	One	Less Than One	Total	Mean
AM Peak	12.8\%	13.9\%	59.78	5.6\%	2.9\%	2.4\%	. 7%	2.1\%	100.1	5.1
AM Base	19.7	15.2	35.4	7.5	8.9	5.0	4.1	4.2	100.0	4.8
PM Base	22.3	14.1	35.2	7.0	7.2	5.2	3.8	5.2	100.0	4.8
PM Peak	19.8	14.8	46.2	5.5	3.7	4.1	2.2	3.7	100.0	5.0
Evening	31.2	14.7	31.8	8.1	5.1	4.6	2.3	2.2	100.0	5.3
OVERALL	20.6\%	14.5\%	41.2%	6.6\%	5.8\%	4.4\%	2.9\%	4.0%	100.0\%	4.9
Response	Rate:	46.8\%								

Number of Respondeñts
$11: 30$
1160
1798

1682

312

6082

Response Rate: 46.8\%

TABLE 47
FREQUENCY OF BUS USE BY RESIDENCE SECTOR

Number of days per week

Residence Sector	Seven	Six	Five	Four	Three	Two	One	Less Than One	Total	Mean	Number of Respo dents
San Fernando Valley	14.9\%	13.1\%	47.5\%	7.0\%	6.0\%	4.5\%	2.2\%	4.7\%	99.9\%	4.8	860
North Central	21.4	10.5	42.7	7.1	5.6	8.1	1.9	2.7	100.0	4.9	183
San Gabriel Valley	12.7	8.6	46.3	9.4	9.5	3.5	3.4	6.6	100.0	4.5	554
West Los Angeles	24.0	16.3	39.3	6.1	5.5	4.1	1.5	3.2	100.0	5.1	741
South Ceñtral	25.2	16.4	39.7	4.2	5.4	3.0	3.2	3.0	100.1	5.0	579
East Central	13.4	21.6	43.5	5.6	6.3	2.6	5.1	1.9	100.0	4.9	111
East Los Angeles	15.5	30.8	39.0	1.6	5.5	7.0	-	. 6	100.0	5.3	122
Mid-Cities	3.5	7.8	49.0	18.2	5.3	6.8	2.2	7.3	100.1	4.2	171
South Bay	16.1	11.2	47.1	9:1	5.4	5.0	2.5	3.5	99.9	4.8	479
Downtown L.A.	41.9	9.1	33.2	3.1	1.1	6.5	5.0	-	99.9	5.5	42
Long Beach	8.8	10.1	36.6	36.1.	3.6	1.7	1.1	1.9	99.9	4.7	61
North L.A. County	-	-	-	-	-	-	-	-	-	-	4*
Orange Coünty	-	-	-	-	-	-	-	-	-	-	14*
San Bernardino County	-	-	-	-	-	-	-	-	-	-	10*
Ventura County	-	-	-	-	-	-	-	-	-	-	1*
OVERALL	20.6\%	14.5\%	41.2\%	6.6\%	5.8\%	4.4\%	2.9\%	4.0\%	100.0\%	5.6	3932
Response Rate:	30.2\%										

*Sample size too small to allow valid statistical comparison

TABLE 48
FREQUENCY OF BUS USE
BY RIDER AGE

Number of Days per Week

Age	Seven	Six	Five	Four	Three	Two	One	Less Than One	Total	Mean	Number of Res! dents.
Under 19	16.2\%	12.4\%	48.5\%	5.7\%	4.6\%	4.7\%	3.6\%	4.3\%	100.0\%	4.8	1511
19 to 29	22.7	14.6	41.0	5.0	5.4	3.3	3.0	4.9	99.9	5.0	1867
30 to 39	19.1	16.1	41.2	7.0	5.4	4.6	1.5	5.0	99.9	4.9	687
40 to 49	21.5	18.4	42.0	6.6	5.1	1.8	2.6	2.0	100.0	5.2	354
50 to 61	22.3	14.0	36.8	7.2	6.3	7.8	2.8	2.8	100.0	4.9	362
62 or older	21.8	10.9	27.9	11.8	11.6	9.2	3.4	3.3	99.9	4.6	342
OVERALL.	20.6\%	14.5\%	41.2\%	6.6\%	5.8\%	4.48	2.9\%	4.0\%	100.0\%	4.9	5123
MEDIAN AGE	26.9	27.2	25.5	29.1	28.2	28.4	24.7	25.6	27.4		
Response	Rate:	39.4\%									

Number of days per week								Less Than One	Total	Mean Number of Days	Number of Respondents
Gender	Seven	Six	Five	Four	Three	Two	Oñe				
Male	23:0\%	15.2\%	38.1\%	6.7%	5.8\%	4.3\%	2.4\%	4.6\%	100.0\%	5.0	2532
Female	17.9	14.0	44.1	6.5	5.8	4.7	3.3	3.7	100.0	4.9	3344
OVER- ALL	20.6\%	14.5\%	41.2\%	6.6\%	5.8\%	4.4\%	2.9\%	4.0\%	100.0\%	4.9	5876
Respons	Rate:		45.2\%								

TABLE 50
FREQUENCY OF BUS USE
BY ETHNIC BACKGROUND

Number of Days Per Week

TABLE 51
FREQUENCY OF BUS USE
BY ANNUAL HOUSEHOLD INCOME

Nümber of Days Per Week

Annual Household Income	Seven	Six	Five	Four	Three	Two	One	Less Than One	Total	Mean Number of Days /Week	Number of Respondents
$\begin{aligned} & \text { Under } \\ & \$ 5000 \end{aligned}$	27.6\%	17.7\%	27.6\%	7.9\%	6.8\%	4.9\%	4.5\%	3.0\%	100.0\%	5.1	82.1
$\begin{aligned} & \$ 5000- \\ & \$ 9999 \end{aligned}$	25.1	15.6	35.3	8.6	4.6	4.3	3.3	3.3	100.1	5:1	713
$\begin{aligned} & \$ 10000- \\ & \$ 14999 \end{aligned}$	19.7	13.3	46.8	6.1	6.2	3.5	1.2	3.1	99.9	5.0	652
$\begin{aligned} & \$ 15000- \\ & \$ 19999 \end{aligned}$	19.2	19.0	40.6	5.9	6.0	2.1	1.3	5.9	100.0	5.0	457
$\begin{aligned} & \$ 20000- \\ & \$ 24999 \end{aligned}$	11.2	13.4	53.4	4.9	3.7	3.3	3.2	6.9	100.0	4.7	393
$\$ 25000$ or more	10.4	7.6	53.8	5.9	4.1	6.3	2.4	9.5	100.0	4.4	701
OVERALL	20.6\%	14.5\%	41.2\%	6.6\%	5.8\%	4.48	2.9\%	4.0\%	100.0\%	4.9	3737
MEDIAN INCOME:	\$8510	\$9774	\$13581	\$9380	\$10608	\$. 10535	\$7.490	\$17817	\$11066		
Response	Rate:	28.7\%									

Number of Buses to Complete Linked Trip

Nearly 45% of regular-service weekday riders are able to complete their linked transit trip on only one bus. and 39% must ride two buses. Another 12.4% must ride three buses. The proportion riding more than three buses to complete their linked trip is only 4.1% of the riders. Table 52 shows wide variation in transfers by bus line, however. The proportion of riders using only one bus to complete a transit trip ranges from a low of 24% to a high of 72\%. The proportion riding more than three buses ranges from none to 8.7\%.

Table 53 shows by type of fare the variation in number of buses required to complete a linked trip. Half the cash riders ride only one bus. The proportion of senior citizen and handicapped pass users who ride a single bus is a bit above average -- 47. 3% and 46.1% respectively. The group with the lowest proportion of one-bus linked trips is regular pass users; only 28.8% of this group ride just one bus.

Regular pass users are the most likely to ride two buses, however. Nearly 49% of the regular pass üsers ride two buses. An above-average proportion of riders in two other fare categories also use two buses. Nearly 45% of student pass users and 44% of college/vocational pass users ride two buses.

Transfers also tend to vary by time of day. Riders during the morning base period are more likely to ride only one bus than are riders during any other part of the day. Nearly 53\% of the morning base period riders report riding one bus. The proportion of riders using only one bus is somewhat below average during the $P M$ peak and evening periods, when 41% and 40.2%, respectively, do not transfer.

Table 54 shows further that the proportion of riders taking two buses to complete their trips is above average during the AM peak (41.1\%) and PM peak (43.1\%) and somewhat below average during the remainder of the day. The proportion of riders taking three or more buses is highest during evening hours. Over 18\% of evening riders ride three buses, and 4.7\% ride more.

Table 55 shows transfers by trip purpose. The median number of buses needed for a linked trip varies from 1.7 buses for shopping, school and social/recreational to 1.9 for medical and "other" trips. Work trips require 1.8 buses, on average. Over 53% of the riders on shopping trips take only one bus, as do 46.1\% of those on social/recreational trips, and 45% of those on school trips. About 41% of riders on medical or work trips take one bus.

The number of buses required to complete a linked trip varies considerably by geographic sector. Table 56 shows that the proportion of riders taking just one bus ranges from 27.6\% among North Central residents to 50\% among those from South BAy. 0verall, the proportion of riders requiring a single bus for their trips is 44.7%. Above average proportions of riders in this category can be found in the San Fernando Valley (46.3\%), Mid-Cities (48.7%) and South Bay (50%).

Table 57 shows that the number of buses ridden to complete a linked trip varies by age group. Senior citizens and riders under 19 years old are most likely to complete their trips on one bus. Over half the senior citizens and 47.2\% of the young riders take only one bus. Riders in the 30 to 39 age group are least likely to ride only one bis. Only 38\% are in this category.

There is a relationship between rider age and the number of buses ridden on a linked trip. The median age of riders taking one bus is 26. the median age for riders taking two or three buses is nearly 27. The median age of riders who report taking four buses is over 29. Above that level of riding, median age drops back to less than 26 years old.

Table 58 shows that there is no significant difference between male and female riders in terms of the number of büses ridden to complete a linked trip. The median for each group is 1.8 buses.

There are significant differences by ethnic group, however. These differences are illustrated in Table 59, which shows that White riders ride an average of 1.6 buses, whereas Latinos ride 1.9. Blacks and the Asian/Pacific Islander group both ride an average of 1.8 buses on linked trips.

Table 60 shows the relationship between household income and number of buses ridden on a linked trip. Generally, the number of buses ridden tends to decrease as income goes up. Riders from households at the bottom of the economic ladder ride an average of 2.3 buses, but riders from affluent households ride an average of 1.6 buses. Over 8\% of the poor respondents ride more than three buses;only 2% of the affluent ride as many buses.

Bus Line		Number	Buses			Total	Mean Number of Buses	Number of Respon dents
	One	Two	Three	Four	Five or More			
12	42.1\%	42.18	12.18	1.9\%	1.9\%	100.1\%	1.8	107
18	26.6	48.1	19.0	-	6.3	100.0	2.1	79
29	56.2	25.3	13.0	3.4	2.1	100:0	1.7	146
32	38.5	38.5	16.8	4.2	2. 1	100.1	1.9	143
44	42.2	40.4	11.6	3.6	2.2	100.0	1.8	275
47	46.1	42.7	7.9	2.2	1.1	100.0	1.7	89
73	41.7	45.2	10.7	2.4	-	100.0	1.7	84
81	39.1	38.2	18.6	2.7	1.4	100.0	1.9	220
86	43.3	42.8	12.2	1.1	. 6	100.0	1.7	180
88	39.8	36.6	16.1	5.4	2.2	100.1	1.9	93
89	46.0	39.2	12.0	. 9	1.9	100.0	1.7	324
91	44.0	42.9	9.4	2.6	1.0	99.9	1.7	191
96	30.4	34.8	26.1	8.7	-	100.0	2.1	23
114	38.1	43.3	13.3	3.8	$1 . .4$	99.9	1.9	210
152	46.6	46.6	4.9	1.0	1.0	100.1	1.6	103
155	44.4	47.2	5.6	2.8	-	100.0	1.7	36
156	36.0	50.9	9.3	3.1	. 6	99.9	1.8	161
157	43.8	34.7	16.5	4.0	1.1	100.1	1.8	176
160	51.5	36.8	8.8	2.9	-	100.0	1.6	68
164	49.6	38.1	9.7	1.8	. 9	100.1	1.7	113
165	55.9	37.6	4.3	1.1	1.1	100.0	1.5	93
166	46.2	44.0	7.7	2.2	-	100.1	1.7	91
168	61.6	26.0	11.0	-	1.4	100.0	1.5	73
169	51.5	37.1	9.2	1.3	. 9	100.0	1.6	229
175	60.5	22.8	14.0	. 9	1.8	100.0	1.6	114
210	34.2	44.9	17.1	3.0	. 9	100.1	1.9	234
354	35.2	49.3	12.7	1.4	1.4	100.0	1.8	71
424	52.2	37.4	8.7	. 9	. 9	100.1	1.6	115
425	41.0	41.0	15.0	2.9	9	99.9	1.8	273
431	51.0	35.8	9.9	3.3	-	100.0	1.7	151
435	57.1	35.5	5.5	1.8	-	99.9	1.5	217
451	59.1	24.7	10.8	3.2	2.2	100.0	1.6	93
452	47.6	42.9	9.5	-	-	100.0	1.6	42
453	44.8	44.8	6.9	-	3.4	99.9	1.7	29
454	67.6	27.0	4.1	1.4	-	100.1	1.4	74
484	67.1	19.2	9.6	2.7	1.4	100.0	1.5	73
488	52.9	28.8	14.7	1.8	1.8	100.0	1.7	170
813	55.3	34.2	9.2	1.3	-	100.0	1.6	76
821	60.4	27.1	6.3	6.3	-	100.1	1.6	48
822	51.9	27.2	18.5	2.5	-	100.1	1.7	81
826	30.5	42.7	24.4	2.4	-	100.0	2.0	82
831	52.4	41.7	2.9	1.0	1.9	99.9	1.6	103
840	23.8	57.1	16.2	1.0	1.9	100.0	2.0	105
844	34.0	50.4	15.6	-	-	100.0	1.8	141
846	55.5	32.8	9.8	1.6	. 4	100.1	1.6	256
861	63.8	29.3	6.3	. 6	-	100.0	1.4	174
867	46.6	37.0	8.2	5.5	2.7	100.0	1.8	73
869	68.5	23.9	5.1	2.5	-	100.0	1.4	197
871	48.8	37.7	9.8	2.8	. 9	100.0	1.7	215
872	71.6	20.3	4.1	4.1	-	100.1	1.4	74
OVER- ALL	44.7\%	38.7\%	12.48	2.8\%	1.3\%	99.9\%	1.8	6588

TABLE 53
NUMBER OF BUSES REQUIRED FOR TRIP FROM ORIGIN TO DESTINATION BY TYPE OF FARE

Number of Buses

		Number	of Bus					
Type of Fare	One	Two	Three	Four	Five or more	Total	Mean Number of Buses	Number of Respondents
Cash, Ticket or Transfer	50.1%	36.5\%	10.7\%	2.2\%	.5\%	100.0\%	1.7	3007
Reguiar Pass	28.8	48.8	16.4	3.3	2.7	100.0	2.0	1029
Express Pass	44.4	36.8	16.3	2.5	-	100.0	1.8	195
Student Pass (under 19)	38.9	44.6	12.9	1.2	2.4	100.0	1.8	681
College/Vocational Pass	37.5	43.9	12.0	4.1	2.5	100.0	1.9	279
Senior Citizen Pass	47.3	35.0	12.6	4.3	. 8	100.0	1.8	31.9
Handicap Pass	46.1	23.9	21.9	5.4	2.7	100.0	1.9	79
Tourist Pass	-	-	-	-	-	-	-	15*
Other	41.2	37.6	12.8	6.7	1.7	100.0	1.9	63
OVERALL	44.78	38.7\%	12.4\%	2.8\%	1.3\%	99.9\%	1.8	5667
Response Rate:	43.6\%							

[^9]| Time Period | Number of Buses | | | | | | Mean Number of Buses | Number of Respondents |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | One | Two | Three | Foür | Five or More | Total | | |
| AM Peak | 45.0\% | 41.1\% | 12.6\% | 1.0\% | . 4% | 100.1\% | 1.7 | 1195 |
| AM Base | 52.6 | 35.3 | 9.4 | 2.3 | . 3 | 99.9 | 1.6 | 1291 |
| PM Base | 44.4 | 36.3 | 13.6 | 3.6 | 2.2 | 100.1 | 1.8 | 1961 |
| PM Peak | 41.0 | 43.1 | 11.7 | 3.1 | 1.2 | 100.1 | 1.8 | 1826 |
| Evening | 40.2 | 36.6 | 18:4 | 2.5 | 2.2 | 99.9 | 1.9 | 314 |
| OVERALL | 44.7\% | 38.7\% | 12.4\% | 2.8\% | 1.38 | 99.9\% | 1.8 | 6587 |
| Response | Rate: | 50.7\% | | | | | | |

Trip purpose	Number of Buses						Mean Number of Buses	Number of Respondents
	One	Two	Three	Four	Five or More	Total		
Work	40.9\%	42.2\%	12.9\%	2.6\%	1.3\%	100.0\%	1.8	2524
School	45.0	40.0	12.9	1.2	. 9	100.0	1.7	1522
Shopping	53.3	31.1	11.4	3.2	. 9	99.9	1.7	506
Medical	41.3	38.0	13.6	6.4	. 7	100.0	1.9	205
Social/Recreational	46.1	38.1	12.3	2.0	1.4	99.9	1.7	422
Other	36.8	40.1	16.6	4.4	2.1	100.0	1.9	268
OVERALL	44.7\%	38.7\%	12.4\%	2.8\%	1.3\%	99.9\%	1.8	5447
Response rate:	41.9\%							

TABLE 56
NUMBER OF BUSES REQUIRED FOR TRIP FROM ORIGIN TO DESTINATION BY RESIDENCE SECTOR

Residence Sector	Number of Buses						Mean Number of Buses	Number of Respondents
	One	Two	Three	Four	Five or More	Total		
San Fernando Valley	46.3\%	42.0\%	9.28	2.1\%	. 38	99.9\%	1.7	858
North Central	27.6	43.3	17.0	8.9	3.2	100.0	2.2	181
San Gabriel Valley	44.9	34.9	14.1	5.7	. 4	100.0	1.8	575
W. Los Angeles	42.0	43.9	10.8	2.3	1.0	100.0	1.8	744
South Central	29.5	43.4	19.7	5.0	2.4	100.0	2.1	562
East Central	31.5	38.0	26.9	3.3	. 3	100.0	2.0	108
East Los Angeles	41.9	37.6	13.2	3.5	3.8	100.0	1.9	126
Mid-Cities	48.7	33.4	17.5	. 3	-	99.9	1.7	167
South Bay	50.0	35.5	13.1	. 7	. 6	99.9	1.7	484
Downtown L.A.	31.5	47.5	5.0	11.5	4.4	99.9	2.1	38
Long beach	38.8	36.8	10.4	10.8	3.2	100.0	2.0	62
N. Los Angeles County	-	-	-	-	-	-	-	4*
Orange County	-	-	-	-	-	-	-	13*
San Bernardino Coünty	-	-	-	二	-	-	-	11*
Ventura County	-	-	-	-	-	-	-	1*
OVERALL	44.78	38.7\%	12.48	2.8%	1.3%	99.9	1.8	3934
Response Rate:	30.3\%							

*Sample size too small to allow valid statistical comparison

Age	Number of Buses						Mean Number of Büses	Mumber of Respondents
	One	Two	Three	Four	Five or More	Total		
Under 19	47.2\%	37.6\%	12.7\%	1.5\%	1.0\%	100.0\%	1.7	1564
19 to 29	41.9	40.6	12.8	2.9	1.9	100.1	1.8	1909
30 to 39	37.6	43.7	14.0	3.0	1.7	100.0	1.9	715
40 to 49	43.3	37.8	16.7	1.5	. 6	99.9	1.8	360
50 to 61	37.9	46.3	11.4	4.2	. 1	99.9	1.8	381
62 or older	50.4	31.5	11.3	6.0	. 8	100.0	1.8	370
OVERALL	44.7\%	38.7\%	12.4\%	2.8\%	1.3\%	99.9\%	1.8	5299
median age	26.0	26.8	26.9	29.2	25.6	27.4		

TABLE 58
NUMBER OF BUSES REQUIRED TO COMPLETE TRIP FROM ORIGIN TO DESTINATION BY' GENDER

TABLE 59
NUMBER OF BUSES REQUIRED TO COMPLETE TRIP FROM ORIGIN TO DESTINATION BY ETHNIC BACKGROUND

Ethnic Background	Number of buses						Mean Number of Buses	Number of Respondents
	One	Two	Three	Four	Five or More	Total		
White	51.6\%	36.28	9.7\%	2.0\%	. 5%	100.0\%	1.6	2645
Black	41.1	39.9	14.8	3.1	1.1	100.0	1.8	1606
Latino	39.0	40.3	14.6	3.9	2.2	100.0	1.9	1478
Asian or Pacific Islañder	43.4	42.7	9.2	2.5	2.3	100.1	1.8	346
American Indian	44.2	52.3	1.5	1.0	1.1	100.1	1.6	81
Other	47.8	30.9	14.3	. 3	6.7	100.0	1.9	49
OVERALL	44.7\%	38.7\%	12.48	2.8\%	1.3\%	99.9\%	1.8	6205
Response Rate:	47.7\%							

TABLE 60
NUMBER OF BÜSES REQUIRED FOR TRIP FROM ORIGIN TO DESTINATION BY ANNUAL HOUSEHOLD INCOME

Annual Household Income	Number of Buses.						Mean Number of Buses	Number of Respondents
	One	Two	Three	Four	Five or More	Total		
Under \$5000	37.98	36.9\%	17.1\%	4.8\%	3.3\%	100.0\%	2.0	841
\$5000-\$9999	39.9	41.8	14.4	2.7	1.2	100.0	1.8	720
\$10000-\$14999	46.1	37.5	14.0	1.3	1.2	100.1	1.7	669
\$15000-\$19999	43.0	40.3	9.5	5.3	1.9	100.0	1.8	451
\$20000-\$24999	43.1	40.1	14.0	2.7	. 1	100.0	1.8	399
\$25000 or more	50.9	38.6	8.6	1.3	. 6	100.0	1.6	727
OVERALL	44.7\%	38.7\%	12.4\%	2.8\%	1.3\%	99.9\%	1.8	3807
MEDIAN INCOME	\$12,251	\$11,296	\$9,378	\$8,182	\$5,125	\$11,066		
Response Rate:	29.3\%							

Mode of Access

Table 61 reveals that 90% of the regular-service weekday riders access the RTD system on foot. Only 8.6\% get to the RTD system by car -- 3.2\% drive and 5.4\% ride as passengers in a car. The remaining 1.4% of the respondents say that they get to the RTD system by some other means, which would imply that some transferred to RTD from one of the municipal bus lines. Further analysis does indicate that about 18 of RTD regular-service riders ride a municipal line bus over a portion of their linked trip.

Differences in access mode by residence sector are displayed in Table 62. Riders most likely to drive to the bus are fromMid-cities (5.9\%). San Gabriel Valley or South Bay (5.6\% each).

The percentage of riders getting to the bus on foot ranges from less than 86% in the San Gabriel Valley, Mid-Cities and South Bay to 95.7% in East Los Angeles.

There is a relationship between age and mode of access shown in Table 63. Riders who drive to the bus have a median age of 29 and are significantly older than other riders, while riders who get to the bus as passengers in a car have a median age of 25.5. Riders who walk to the bus are 26.5 years old, on average. The youngest group, with a median age of 22.9, are those riders who access the RTD by some means other than by car or on foot.

Table 64 shows no significant differences in mode of access to the RTD system by gender.

Table 65 shows that the Asian/Pacific Islander and "other" riders are most likely to drive to the bus. Nearly 5% of the former and 6% of the latter, say they drive. Least likely to drive, at 1.9% and 1.2\%, respectively, are Black riders snd Indians.

A relationship can be seen in Table 66 between income and mode of access to the RTD system. The less affluent the household, the more likely is the rider to walk to the bus. About 94% of the riders whose household incomes are below $\$ 15,000$ walk, whereas, only 83.5% to 88.5% of the riders with incomes above that level walk to the bus. The median household income of riders who access the RTD system on foot is $\$ 10,796$. Those who ride as passengers in a car have an income of $\$ 17,523$, and those who drive have $\$ 15,962$ median income.

Bus Line	Drove	Was Driven	Walked	Other	Total	Number of Respondents
12	5.2\%	6.5\%	87.7\%	. 6%	100.00\%	154
18	2.0	2.0	94.1	2.0	100.10	101
29	1.7	5.0	92.8	. 6	100.10	181
32	. 8	4.5	94.0	. 8	100.10	133
44	3.6	4.4	90.5	1.5	100.00	338
47	6.9	6.9	83.6	2.6	100.00	116
73	3.8	9.0	84.6	2.6	100.00	78
81	6.4	5.5	83.6	4.5	100.00	220
85	8.0	4.5	85.5	1.0	100.00	200
88	6.8	7.6	82.2	3.4	100.00	118
89	. 9	2.5	94.1	2.5	100.00	322
91	2.2	4.4	92.9	. 5	100.00	183
96	-	3.7	96.3	-	100.00	27
114	1.4	6.7	89.1	2.8	100.00	285
152	3.0	9.0	87.2	. 8	100.00	133
155	2.6	7.9	89.5	-	100.00	38
156	3.3	7.9	84.1	4.6	99.90	151
157	1.7	4.6	91.9	1.7	99.90	173
160	1.4	4.3	91.3	2.9	99.90	69
164	4.3	7.0	88.7	-	100.00	115
165	1.9	8.7	87.4	1.9	99.90	103
166	5.1	8.1	84.8	2.0	100.00	99
168	1.4	6.8	89.0	2.7	99.90	73
169	3.4	6.0	89.7	. 9	100.00	233
175	5.0	11.7	79.2	4.2	100.00	120
210	1.7	3.4	94.5	. 4	100.00	238
354	1.5	4.4	94.1	-	100.00	68
424	5.5	9.1	83.6	1.8	100.00	110
425	2.9	5.1	89.5	2.5	100.00	276
431	4.2	3.5	90.8	1.4	99.90	142
435	3.4	5.5	91.1	-	100.00	237
451	3.1	4.1	91.8	1.0	100.00	98
452	5.4	2.7	89.2	2.7	100.00	37
453	-	14.3	78.6	7.1	100.00	28
454	1.3	1.3	96.1	1.3	100.00	77
484	3.8	9.0	85.9	1.3	100.00	78
488	10.5	9.9	79.5	-	99.90	171
813	16.0	10.7	73.3	-	100.00	75
821	-	17.8	80.0	2.2	100.00	45
822	2.5	3.8	91.2	2.5	100.00	80
826	1.0	3.1	94.8	1.0	99.90	97
831	3.4	11.4	8.3 .0	2.3	100.10	88
840	2.9	10.9	83.9	2.2	99.90	137
844	3.1	9.7	85.1	2.1	100.00	195
846	1.9	6.9	85.7	5.4	99.90	259
861	1.2	7.1	90.5	1.2	100.00	169
867	2.5	2.5	94.9	-	99.90	118
869	2.6	6.8	87.4	3.2	100.00	190
871	2.7	6.8	88.6	1.8	99.90	219
872	1.4	1.4	95.7	1.4	99.90	69
OVER-						
ALL	3.2\%	5.4\%	90.0\%	1.4\%	100.00\%	7064

TABLE 62
MODE OF ACCESS TO RTD SYSTMM
BY RESIDENCE SECTOR

Residence Sector	Drove	Was Driven	Walked	Other	Total	Number of Respondents
San Fernando valley	3.2\%	6.2\%	88.7\%	1.9\%	100.0\%	876
North Central	2.5	6.1	89.8	1.6	100.0	179
San Gabriel valley	5.6	7.8	85.4	1.2	100.0	554
West Los Angeles	2.1	3.3	93.8	. 8	100.0	753
South Central	2.1	2.7	94.1	1.2	100.1	569
East Central	-	6.9	92.8	. 2	99.9	1.23
East Los Angeles	. 6	3.2	95.7	. 4	99.9	123
Mid-Cities	5.9	7.2	85.7	1.1	99.9	172
South Bay	5.6	8.1	85.9	. 4	100.0	482
Downtown L.A.	-	-	-	-	-	35 *
Long Beach	1.5	3.4	92.2	2.9	100.0	62
North L.A. County	-	-	-	-	-	4 *
Orange County	-	-	-	-	-	13 *
San Bernardino County	-	-	-	-	-	11 *
Ventura County	-	-	-	-	-	1 *
OVERALI	3.2\%	5.48	90.0%	1.4%	100.0\%	3967
Response Rate: 30.58						

[^10]
TABLE 63

MODE OF ACCESS TO RID SYSTEM
BY RIDER AGE

| Age | | Was
 Driven | | | Mumber
 of Respon-
 dents | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Under 19 | 1.5% | 5.0% | 91.4% | 2.0% | 99.9% | 1628 |

TABLE 64
MODE OF ACCESS TO RTD SYSTEM BY GENDER

Gender	Drove	Was Driven	Walked	Other	Total	Number of Respondents
Male	3.8\%	5.68	89.0\%	1.78	100.1\%	2916
Female	2.6	5.2	9.1 .0	1.2	100.0	3804
Total	3.2\%	5.4\%	90.0\%	1.48	100.0	6720
Respons		51.7\%				

TABLE 65
MODE OF ACCESS TO RTD SYSTEM
BY ETHNIC BACKGROUND

Ethnic Background	Drove	Was Driven				Walked Other	Number Of Respon- dents

TABLE 66
MODE OF ACCESS TO RTD SYSTEM BY ANNUAL HOUSEHOLD INCOME

Annual Household Income	Drove	Was Driven	Walked	Other	Total	Number of Respondents
Under \$5000	2.9\%	2.9\%	93.7\%	. 5%	100.0\%	884
\$5000-\$9999	1.4	3.3	94.2	1.1	100.0	744
\$10000-\$14999	2.6	2.7	93.6	1.1	100.0	668
\$15000-S19999	4.4	9.5	85.2	. 8	99.9	463
\$20000-\$24999	4.4	6.0	88.5	1.1	100.0	408
\$25000 or more	5.4	9.3	83.5	1.7	99.9	729
OVERALL	3.28	5.4\%	90.0\%	1.4\%	100.0\%	3896
MEDIAN INCOME	\$15,962	17,523	\$10,796	\$13,660	\$11,066	
Response Rate:	30.0\%					

Table 67 shows that just over half the regular-service weekday riders are on trips to or from work, 21.2% are going to or from school and 10.5% are on shopping trips. Social/recreational trips motivate 9.2% of the riders to ride the bus and 4.7% are riding on medical trips.

Results of the 1978 on-board surveys indicated a similar mix of trip purposes, with one notable exception. In 1978, 49.2\% of the riders were on work trips and 27.8\% were on school trips. The lower proportion of school trips found in 1981 may be partially attributable to two causes: 1) Surveying in 1981 was conducted for a full day, from early morning to evening, on each line, whereas the 1978 survey was conducted for about eight hours on each line. 2) in 1981, some lines were surveyed during the first week in June, rather than in May. These June surveys may have been conducted after the beginning of final exams and semester break at some schools. The proportion of other trip purposes did not change significantly since 1978, when 8.5% of the trips were social/recreational, 5.5% were shopping trips and 5.2\% were medical.

There is wide variation in trip purpose by bus line. The percentage of work trips, for example, ranges from a low of 15% on the 96 line to a high of 70.3% on both the 32 and 47 lines.

As expected, the trip purpose mix is different for each fare category, as shown in Table 68. Riders using the under-19 student pass report the lowest proportion of work trips, 9.1\%, and the highest proportion of school trips. 73.2\%. Most regular and express pass users are on work trips, 80\% and 76.5\%, respectively. School trips are also fairly frequent among express pass riders, 13\% of them checked this trip purpose.

Half the cash riders are on work trips, 17% on school trips and 12% on social/recreational trips. Another 9.4\% of the cash riders are going to or from shopping and 5.7\% are on medical trips.

Few senior citizen and handicapped pass users ride the bus on work trips -- only about 21% to 23%. Shopping trips are important to riders using these passes; 34% of the handicapped pass users and 40% of the senior citizen pass users are on shopping trips. Social/recreational trips account for 17% of the trips by senior citizen pass users and 20% of the trips by handicapped pass riders.

Riders using senior citizen or handicapped passes are more likely to travel on medical trips than are riders in any other fare category. Nearly 10\% of the handicapped pass riders and 13.3% of those using senior citizen passes are on medical trips.

Senior citizen pass users are least likely to ride on school trips. Only 2.5\% do. Over 8\% of handicapped pass riders say they are on school trips.

Overall, the chief trip purpose of regular-service weekday riders is travel to and from work. Table 69 shows that commuting to or from work is the predominant trip purpose during all periods of the day. The largest proportion of work trips can be found during the peak periods. During the morning peak 65.7% of the riders are on work trips, and during the afternoon peak 61.6\% are on work trips.

It may be a standard assumption that people work 40 hours a week, 9 to 5, Monday to Friday, but the Bureau of Labor Statistics notes that there are nearly seven million Americans who work nights. These workers represent 11\% of all wage and salary workers. Indeed, the third highest proportion of transit work trips on RTD can be found during the evening hours. Over 55% of these riders are going to or from work, according to the findings in Table 70.

The smallest proportion of work trips occurs during the morning and afternoon base periods, when 47.9% and 33.6% of the riders, respectively, are travelifing to or from work.

School trips account for the second highest proportion of bus trips overali. Just over 21% of the riders are travelling to or from school. The largest proportion of riders on school trips is found during two periods-- the morning peak, when the proportionn is 28.7\%, and the afternoon base period, when it is 29.6\%. Even during the evening period, 11.4% of the riders are going to or from school.

Shopping trips account for 10.2\% of the trips during the course of a day, but this proportion, too, varies by time of day. Düring the morning peak period only 1.2% of the riders are on shopping trips. The largest proportion of shopping trips occurs during the base period --14.9\% of the trips during the morning base and 13.9\% during the afternoon base. After 3:30 pm the proportion of shopping trips declines to about 9\%.

Social/recreational trips, which account for 9.2% of trip purposes, overall, are low - only 3\% - during the morning peak period. The proportion of social/recreational trips fluctuates throughout the remainder of the day, from 8\% during the morning base, up to 12% during the afternoon base, back down to 8% during the PM peak and up once more in the evening to its highest point of the day - 15.8%.

The pattern of medical trips is different, starting from a negligible . 8% during the $A M$ peak and hitting a high of $7,1 \%$ during the $A M$ base. The proportion of medical trips then declines throughout the days from 6.5\% during the PM base, to 3.6\% during the PM peak to 2.2\% during the evening.

Trip purpose also varies by residence sector, as displayed in Table 70. Work as a trip purpose is less important among San Gabriel Valley and San Fernando Valley residents, where it accounts for 41.7% and 45.7% of the boardings, respectively -- than it is in East Los Angeles, downtown and the East Central sector -- where it accounts for 61\% to 72% of the boardings.

School trips also vary widely in importance by sector, ranging from less than 10% of the trips among East Central residents up to 28.3% of the trips made by San Fernando Valley residents.

The proportion of riders using public transit for shopping trips is less than 8\% among residents of South Bay, East Los Angeles, and Mid-Cities. The largest proportion of shopping trips is in the West Los Angeles (12.7\%) and North Central (13.6\%) sectors.

Overall, medical trips account for 4.7% of the transit trips. Residents of the South Bay sector report less than 3\%, but above-average proportions of riders from other sectors use the bus for medical trips. The percentage of East Los Angeles residents riding the bus on medical trips is 6.8\%, and the percentage of East Central residents is 8.1\%. Nearly 10% of the riders from the Long Beach sector use public transit on medical trips.

Social/recreational trips, which account for 9.2% of overall trip purposes, are also reported in differing proportions by sector. The percentage of social/recreational trips reported by riders from Mid-Cities, and the Long Beach sectors are high, ranging from 18.8% to 20.6\%. The proportion of social/recreational trips by residents of all other sectors is below average, ranging from 1.9\% to 7.5\%.

Tsble 71 shows that trip purpose varies by age. The highest median age is reported by riders on medical (33.5 years old), and shopping trips (32.8). The median age of riders commuting to or from work is 2.9.1, and those on social/recreational trips average 27 years old. As expected, the youngest group of riders makes school trips by transit. The median sge of student riders is 15.9.

Table 71 shows how dramatically the proportion of work trips varies by age. Whereas, only 13.5% of the riders under 19 years old use the bus on work trips, nesrly 77% of the riders in the 40 to 49 age group are on work trips. The proportion of work trips rises with age until it begins to decline to the 56% level with the 50 to 61 age group. Only 35.1\% of the senior citizen riders use public transit to ride to and from work.

School trips, of course, tend to decrease with age, from 62\% of the under-19 riders to less than 2% of riders over 50. Shopping and medical trips, on the other hand, tend to increase with age. Only about 7% of riders under 30 use transit for shopping trips, but 21.3% of riders between 50 and 61 and 29.1% of riders over 61 use the bus for shopping. Between 3% and 3.6% of riders üder 40 use the bus for medical trips, as do 5.8\% of the 40 to 49 riders, 9.3\% of the 50 to 61 riders and 11.2% of those 62 or older.

Social/recreational trips account for 7.4\% of trips by under-19 riders, rising to 9.6% of the trips by 19 to 29 year old riders. The proportion of social/recreational trips then declines to 8.2% among 30 to 39 year olds, and 5% to 6\% among riders aged 40 through 61. The percentage rises to its highest level among senior citizens, 18.6% of whom are on social/recreational trips.

Trip purpose by gender, as shown in Table 72, varies significantiy in only two aspects. The proportion of female riders using the bus for shopping trips is higher than the proportion of males -- 11.6% to 8.9\%. The proportion of males on social/recreational trips is higher than the proportion of females -- 11.5% to 7.2\%.

Even ethnic background can be seen to have an effect on the mix of transit trip purposes, as illustrated by table 73. Latino riders make the highest proportion of work trips, 62.7\%, and American Indian riders the lowest, 26\%. Indians, on the other hand, make the highest proportion of school trips, 36.1\%, and Latinos the lowest, only 16.1\%.

The proportion of shopping trips also varies, Indians and White riders making more of these trips (13.5\% and 15.5\%, respectively) than Black riders (9.1\%), Latinos (7.8\%) or Asian/Pacific Islanders (3.9\%).

The variation in trip purpose mix by income group is shown in Table 74. the lowest median household income is reported by riders making medical trips by bus. Their income averages $\$ 6,678$. Riders on shopping trips average $\$ 8,488$. The median income of social/recreational riders is $\$ 10,635$, and those on "other" kinds of trips report an average income of $\$ 11,310$. The highest incomes are reported by riders on work trips, $\$ 12,244$, and on school trips, \$12.831.

The proportion of work trips tends to rise with income up to the $\$ 15,000$ to $\$ 19.999$ level, but then begins to decifine as income level increases further. The proportion of transit work trips among riders with household incomes below $\$ 5000$ is only 45.7\%, and 52.5\% for those whose incomes are between $\$ 5000$ and $\$ 9999$. From $\$ 10,000$ to $\$ 19.999$, the proportion of work trips is 63\%. This percentage drops to 59.8\% among riders with $\$ 20,000$ to $\$ 24.999$ incomes and to 49.48 among riders with more than $\$ 25,000$ of household income.

School trips tend to decrease in proportion as income rises to the $\$ 15,000$ to $\$ 19,999$ level, and then to increase as income increases above $\$ 20,000$. Under $\$ 5000$ household income, 17.1\% of the riders are on school trips. In the $\$ 5000$ to $\$ 14.999$ category, the percentage of riders on school trips is from 14.1% to 14.6\%. Only $1.2 .8 \%$ of the riders in the $\$ 15,000$ to $\$ 19,999$ category are using transit for school trips. This proportion rises to 21.6% among riders in the $\$ 20,000$ to $\$ 24.999$ category and, to 25.2% among riders in the top income category.

Shopping trips as a proportion of all transit trips decline as income increases. Under $\$ 10,000$, 13.4% to 13.7% of the riders are on shopping trips. In the $\$ 10,000$ to $\$ 14.999$ category, the proportion of riders shopping is 8.7%. Between 7.48 and 7.9\% of the riders with household incomes between $\$ 15,000$ and $\$ 24,999$ are on shopping trips. Only 6.5\% of the highest income riders use the bus on shopping trips.

Similarly, medical trips decline as income increases, from 8.4\% of the trips among riders whose household incomes are below $\$ 5000$, to 1.5% of the riders with $\$ 25,000$ or greater earnings.

Social/recreational trips tend to decline in importance as income level increases, until the $\$ 25,000$ or more category, at which point the proportion of these trips reaches its highest point. of the riders in the under $\$ 5,000$ category, 10.7% use the bus to make these trips. This percentage decilnes to 5.1% among riders in the $\$ 20,000$ to $\$ 24,999$ category, but rises to 13.9% among those earning more than \$25,000.

Although work trips predominate as the chief trip purpose among riders on the RTD system, the share of all work trips served by RTD is relatively small. In fact, there is evidence to show that the share of work trips served by RTD may be diminishing. According to Bureau of the Census figures shown in the Appendix (Table A-XVII) the proportion of work trips in the Los Angeles area served by public transit declined from 6\% to 5.3\% from 1970 to 1977. These figures are five years old, however - too old to reflect the effects of the 1979 energy crisis and subsequent increases in petroleum prices.

Table A-XVII in the Appendix describes work trip characteristics by mode of transportation to work. This table demonstrates one of the reasons for public transit's low share of L.A. County work trips. The median distance from home to work reported by transit riders is 14.3\% to 25.8\% less, respectively, than the distance reported by commuters who drive alone or those who carpool. The median travel time to work reported by transit riders is 64.8\% greater than that reported by commuters who drive alone and 49.8\% greater than that reported by carpoolers.

Bus Line	Work	School	Shopping	Medical	Social/ Recrea- tional	Other	Total	Number Respon
12	47.0\%	13.7\%	12.0\%	4.3\%	15.5\%	7.7\%	100.20\%	117
18	32.4	47.9	8.5	2.8	-	8.5	100.10	71
29	49.2	19.8	13.5	5.6	8.0	4.0	100.10	126
32	70.3	17.1	8.1	1.8	1.8	. 9	100.00	111
44	54.2	15.5	13.3	4.5	9.1	3.4	100.00	264
47	70.3	5.9	9.9	5.0	6.0	3.0	100.10	101
73	30.6	40.3	14.5	1.6	6.4	6.5	99.90	62
81	43.5	24.5	9.0	4.5	13.0	5.5	100.00	200
86	61.1	11.7	11.1	3.3	5.6	7.2	100.00	180
88	37.1	25.8	11.3	4.1	17.5	4.1	99.90	97
89	46.6	18.1	18.5	2.0	11.2	3.6	100.00	249
91	65.7	9.5	10.1	4.7	8.3	1.8	100.10	169
96	15.0	55.0	-	10.0	15.0	5.0	100.00	20
114	30.5	41.8	11.8	4.1	5.4	6.4	100.00	220
152	49.2	25.4	5.9	5.1	8.4	5.9	99.90	118
155	26.5	38.2	14.7	8.8	8.8	2.9	99.90	34
156	48.9	34.5	6.5	-	4.4	5.8	100.10	139
157	37.0	33.6	6.8	2.7	13.7	6.2	100.00	146
160	28.3	51.7	10.0	5.0	5.0	-	100.00	60
164	49.0	16.7	7.3	7.3	8.3	11.5	100.10	96
165	46.7	31.1	10.0	2.2	4.4	5.6	100.00	90
166	49.4	27.7	12.0	1.2	6.0	3.6	99.90	83
168	29.9	49.3	6.0	1.5	7.5	6.0	100.20	67
169	48.2	31.6	5.7	4.7	4.1	5.7	100.00	193
175	56.9	22.0	5.5	1.8	11.0	2.8	100.00	109
210	48.5	20.9	8.7	7.7	9.7	4.6	100.10	196
354	36.2	32.8	10.3	3.4	13.8	3.4	99.90	58
424	45.6	42.2	1.1	4.4	5.5	1.1	99.90	90
425	42.1	33.9	9.0	4.5	4.5	5.9	99.90	221
431	42.7	30.0	9.1	2.7	8.1	7.3	99.90	110
435	38.7	35.9	14.4	1.1	4.5	5.5	100.10	181
451	40.3	35.1	9.1	7.8	2.6	5.2	100.10	77
452	29.0	48.4	3.2	3.2	16.1	-	99.90	31
453	23.8	52.4	19.0	4.8	-	-	100.00	21
454	17.9	52.2	11.9	4.5	4.5	9.0	100.00	67
484	25.4	49.2	12.7	3.2	7.9	1.6	100.00	63
488	55.7	12.8	10.1	9.4	8.1	4.0	100.10	149
813	67.6	7.0	8.5	1.4	12.7	2.8	100.00	71
821	39.0	34.1	14.6	4.9	7.2	.	99.80	41
822	67.7	13.8	6.2	6.2	4.6	1.5	100.00	65
826	64.9	9.6	8.5	7.4	5.3	4.3	100.00	94
831	30.4	47.8	13.0	4.3	-	4.3	99.80	69
840	64.3	15.2	3.6	4.5	9.8	2.7	100.10	112
844	40.2	46.3	3.7	1.8	4.9	3.0	99.90	164
846	44.2	26.3	4.5	2.7	16.5	5.8	100.00	224
861	41.4	42.9	5.7	2.1	2.8	5.0	99.90	140
867	62.2	21.4	5.1	6.1	4.1	1.0	99.90	98
869	39.6	45.3	3.8	. 6	4.4	6.3	100.00	159
871	47.2	12.1	10.1	5.5	17.0	8.0	99.90	199
872	37.1	21.0	19.4	4.8	8.1	9.7	100.10	62
OVER-								
ALL	50.38	21.2\%	10.5\%	4.78	9.2\%	4.1\%	100.00\%	5884

TABLE 58
TRIP"PURPOSE
BY TYPE OF FARE

Type of Fare	Work	School	Shopping	Medical	Social/ Recrea- tional	Other	Total	Number of Respondents
Cash, Ticket or Transfer	50.38	17.0\%	9.4\%	5.7\%	12.0\%	5.5%	100.0\%	3024
Regular pass	80.0	4.0	6.8	2.2	4.6	2.4	100.0	1010
Express Pass	76.5	13.0	4.6	2.7	. 7	2.5	100.0	191
Student pass (under 19)	9.1	73.2	7.9	1.5	4.5	3.8	100.0	653
College/vocational Pass	21.3	69.7	4.1	1.4	3.0	. 3	09.8	246
Senior Citizen pass	22.8	2.5	39.5	13.3	17.2	4.6	99.9	300
Handicap pass	21.3	8.2	33.9	9.5	20.1	7.0	100.0	70
Toürist pass	-	-	-	-	-	-	-	15***
Other	51.7	23.3	7.1	1.4	14.8	1.7	100.0	50
OVERALL	50.38	21.28	10.5\%	4.7\%	9.2%	4.18	100.0	5579
Response Rate:	42.9\%							

[^11]| Time period | Work | School | Shopping | Medical | Social/ Recreational | Other | Total | Number of Responidents |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AM Peak | 65.7\% | 28.7\% | 1.2\% | . 8% | 2.9\% | . 8% | 100.1\% | 1122 |
| AM Base | 47.9 | 18.4 | 14.9 | 7.1 | 8.2 | 3.6 | 100.1 | 1096 |
| mM Base | 33.6 | 29.6 | 13.9 | 6.5 | 11.5 | 4.8 | 99.9 | 1736 |
| EM Peak | 61.6 | 13.4 | 8.7 | 3.6 | 8.1 | 4.6 | 100.0 | 1638 |
| Evening | 55.4 | 11.4 | 8.5 | 2.2 | 15.8 | 6.7 | 100.0 | 291 |
| OVERALL | 50.3\% | 21.2\% | 10.28 | 4.7\% | 9.2\% | 4.1\% | 99.7\% | 5883 |
| Response | ate: | . 38 | | | | | | |

TABLE 70
TRIP PURPOSE BY RESIDENCE SECTOR

Residence Sectori	Work	School	Shopping	Medical	Social/ Recrea- tional	Other	Total	Number of Respondents
San Fernando valley	45.7\%	28.3\%	10.0\%	3.7\%	7.18	5.2%	100.0	851
North Central	54.0	13.5	13.6	5.7	7.0	6.3	100.1	174
San Gabriel Valley	41.7	36.8	9.1	3.9	4.9	3.6	100.0	545
West Los Angeles	58.0	14.7	12.7	4.6	7.5	2.6	100.1	732
South Central	51.11	24.3	9.2	4.2	4.4	6.8	100.0	543
East Central	71.8	9.5	6.8	8.1	1.9	1.7	99.9	118
East Los Angeles	61.7	22.9	5.0	6.8	3.3	. 3	100.0	120
Mid-Cities	50.7	18.9	7.4	4.0	18.8	. 2	100.0	177
South Bay	56.7	26.4	4.7	2.7	5.9	3.6	100.0	474
Downtown L.A.	-	-	-	-	-	-	-	38 *
Long Beach	50.7	8.6	9.6	9.6	20.6	. 8	99.9	58
North L.A. County	-	-	-	-	-	-	-	4 *
Orange County	$-$	-	-	-	-	-	-	12 *
San Bernardino County	-	-	-	-	-	-	-	11 *
Ventura County	-	-	--	-	-	-	-	1 *
OVERALL	50.3\%	21.28	10.5\%	4.7\%	9.28	4.1\%	100.0\%	3858
Response Rate:	29.78							

[^12]TABLE 71
TRIP PURPOSE
BY RIDER AGE

Age	Work	School	Shopping	Medical	Social/ Recreational	Other	Total	Number of Respondents
Under 19	13.58	61.9\%	7.3\%	3.0\%	7.48	6.98	100.0\%	1509
19-29	62.4	14.1	7.4	3.5	9.6	3.0	100.0	1827
30-39	69.7	7.6	8.6	3.6	8.2	2.2	99.9	675
40-49	76.5	3.2	6.0	5.8	5.1	3.4	100.0	345
50-61	55.8	1.1	21.3	9.3	5.9	6.5	99.9	369
62 or older	35.1	1.7	29.1	11.2	18.6	4.3	100.0	340
OVERALL	50.3\%	21.2\%	10.5\%	4.7\%	9.28	4.18	100.0\%	5065
MEDIAN Age	29.1	15.9	32.8	33.5	27.0	23.2	27.4	
Response Rat	39							

TABLE 72
 TRIP PURPOSE
 BY GENDER

Cender	Work	School	Shopping	edical	Social/ Recreational	Other	Total	Number of Respondents
Male	50.5\%	21.38	8.9\%	4.2\%	11.5\%	3.5\%	99.9\%	2447
Female	50.5	21.3	11.6	4.8	7.2	4.7	100.1	3262
OVERALL	50.3\%	21.28	10.5\%	4.7\%	9.2\%	4.18	100.0\%	5709
Response	te:	43.9\%						

TABLE 73
TRIP PURPOSE
BẎ EIFINIC BACKGROUND

Ethnic
Background

White	48.0\%	18.0\%	13.5\%	4.78	11.58	4.38	100.0\%	2382
Black	46.0	27.1	9.1	5.4	8.2	4.1	99.9	1438
Latino	62.7	16.1	7.8	4.0	5.8	3.5	100.1	1326
Asian or Pacific Islander	46.0	33.4	3.9	1.9	11.3	3.6	100.1	322
Indian	26.0	36.1	15.5	4.4	5.1	12.8	99.9	75
Other	29.9	30.7	11.8	1.3	13.8	12.6	100.1	49
OVERALL	50.38	21.2\%	10.5\%	4.78	9.2\%	4.18	100.0\%	5592
Response Rate:	43.0\%							

TABLE 74
TRIP PURPOSE
BY ANNUAL HOUSEHOLD INCOME

Annual Household Income	Work	School	Shopping	Medical	Social/ Recreational	Other	Total	Number of Respondents
Underi \$5000	45.78	17.18	13.48	8.48	10.7\%	4.7\%	100.0\%	795
\$5000-\$9999	52.5	14.1	13.7	6.6	9.6	3.5	100.0	698
\$10000-\$14999	63.0	14.6	8.7	3.7	8.1	3.9	102.0	639
\$15000-\$19999	63.0	12.8	7.4	3.3	8.6	5.0	100.1	460
\$20000-\$24999	59.8	21.6	7.9	1.9	5.1	3.8	100.1	387
\$25000 or more	49.4	25.2	6.5	1.5	$13.9{ }^{\circ}$	3.5	100.0	692
OVERALL	50.38	21.28	10.5\%	4.78	9.2\%	4.18	100.0	3671
MEDIAN INCOME	\$12,244	\$12,831	\$8,488	\$6,678	\$10,635 \$	\$11,310	\$11,066	
Response Rate	28.2\%							

Overall, more than 76\% of the respondents view RTD service "somewhat" favorably (47.4\%), or "very" favorably (28.9\%). Table 75 indicates that satisfaction levels do vary by line. The proportion of respondents giving RTD service a "very favorable" rating ranges from 19.1\% on the 210 line to 58.3\% on the 452 line. Similarly, "somewhat favorablen ratings range from a low of 32.9\% of the line 451 riders to a high of 55.7\% of the 73 line riders.
"Somewhat unfavorable" ratings range from 4.8\% on line 822 up to 26.1% on the 96 . The proportion of riders giving the "very unfavorablen rating to RTD service ranges from 1.2\% on the 166 to 15.7% on the 18 line.

A "satisfaction index" ranging from 1 to 4, has been calculated for each line. The index number is an average point, based on the mean of the scores given RTD service by the respondents. An index number of 1 would indicate a rating of 4 would indicate "very favorablen opinion. The satisfaction index by line ranges from a low of 1.4 on the 826 line up to 3.5 on the 152 and 452 lines. Overall, the system-wide satisfaction index is 3.0, indicating a generally favorable opinion of RTD service among regular-service riders.

Table 76 shows how riders in different fare categories rate RTD service. The best overall rating is given by Express and Senior Citizen pass users. The satisfaction index of these group is 3.1. The poorest ratings come from riders using the student pass and the college/vocational or handicapped pass. Only 18.8\% to 21.3\% of the riders in these three categories rate RTD service as "very favorable." The satisfaction index is 2.8.

Table 77 shows little variation in satisfaction index by time of day. The index is 3.0 throughout the day.

The service ratings given by riders are shown by residence sector in Table 78. There is variation by sector, from the low satisfaction indices of 2.9 among riders from South Central L.A. and downtown to the high index of 3.4 found among riders from Mid-Cities.

Age also seems to have an effect on rider ratings of RTD service, as shown in Table 79. Generally, the level of satisfaction tends to improve as riders get older. The satisfaction index for riders under 40 is 2.9 to 3.0, but this rises to 3.1 among riders between 40 and 61 and to 3.2 among those over 62.

Table 80 shows that men and women are equally satisfied with RTD service.

Ratings of RTD service by different ethnic groups differ as indicated in Table 81. The percentage of "very favorablen opinions ranges from only 10.7% among riders in the nother" category to 36.5% among Latinos, and 37.0% among Âsians and Pacific Islanders.

The satisfaction index of 3.2 shows that Latinos and Asian/Pacific Islanders rate RTD service somewhat more favorably than any other group. White riders score a satisfaction index of 3.0, but Blacks score only 2.8 .

Ratings of RTD service by income group are shown in Table 82. Riders with annual household incomes below $\$ 10,000$ tend to view RTD service somewhat more favorably than those earning more. Among riders with incomes below $\$ 10,000$ the satisfaction index is 3.0 to 3.1. Riders earning $\$ 10,000$ to $\$ 14,999$ have an index of 2.9, and riders earning $\$ 15,000$ to $\$ 24,999$ have an index of 2.8. The satisfaction index of the highest income group goes up to 3.0 .

TABLE 75
RIDERS RATE RTD SERVIICE
BY BUS LINE

Bus Line	Very Favorable	Somewhat favorable	Somewhat UnFavorable	Somewhat UnFavorable	Total	Satis- faction Index	Nümber of Respondents
12	34.4\%	41.0\%	18.0\%	6.6\%	100.00	3.0	122
18	21.4	50.0	12.9	15.7	100.00	2.8	70
29	29.8	45.5	13.2	11.6	100.10	2.9	121
32	43.0	43.0	10.3	3.7	100.00	3.3	107
44	24.3	49.3	19.6	6.8	100.00	2.9	280
47	39.2	47.4	10.3	3.1	100.00	3.2	97
73	21.3	55.7	14.8	8.2	100.00	2.9	61
81	30.9	50.7	10.1	8.2	99.90	3.0	207
86	32.8	47.5	18.1	1.7	100.10	3.1	177
88	22.2	48.5	25.3	4.0	100.00	2.9	99
89	24.4	47.7	18.7	9.2	100.00	2.9	262
91	24.2	47.2	21.9	6.7	100.00	2.9	178
96	26.1	39.1	26.1	8.7	100.00	2.8	23
114	41.5	45.4	9.6	3.5	100.00	3.2	229
152	34.2	52.6	11.4	1.8	100.00	3.5	114
155	35.3	52.9	8.8	2.9	99.90	3.2	34
156	26.1	54.3	10.1	9.4	99.90	3.1	138
157	36.5	50.6	10.3	2.6	100.00	3.2	156
160	20.0	50.0	20.0	10.0	100.00	2.8	60
164	26.3	53.7	11.6	8.4	100.00	3.0	95
165	24.4	54.4	16.7	4.4	99.90	3.0	90
166	34.1	45.9	18.8	1.2	100.00	3.1	85
168	44.1	48.5	5.9	1.5	100.00	3.3	68
169	37.6	48.5	10.3	3.6	100.00	3.2	194
175	39.7	49.1	7.8	3.4	100.00	3.1	116
210	19.1	51.5	19.1	10.3	100.00	2.8	204
354	24.1	50.0	22.4	3.4	99.90	2.9	58
424	35.6	46.0	10.3	8.0	99.90	3.1	87
425	37.4	45.7	10.9	6.1	100.10	3.1	230
431	42.1	48.2	6.1	3.5	99.90	3.3	114
435	39.9	47.9	9.0	3.2	100.00	3.2	188
451	45.6	32.9	8.9	12.7	100.10	3.1	79
452	58.3	33.3	5.6	2.8	100.00	3.5	36
453	36.4	50.0	9.1	4.5	100.00	3.2	22
454	31.9	49.3	14.5	4.3	100.00	3.1	69
484	29.0	43.5	21.0	6.5	100.00	3.0	62
488	36.4	45.0	11.9	6.6	99.90	3.1	151
813	37.3	50.7	9.0	3.0	100.00	3.2	67
821	52.3	38.6	6.8	2.3	100.00	3.4	44
822	55.6	34.9	4.8	4.8	100.10	3.4	63
826	44.2	38.9	8.4	8.4	99.90	1.4	95
831	29.7	45.3	18.8	6.3	100.10	3.0	64
840	31.5	49.1	14.8	4.6	100.00	3.1	108
844	37.5	49.3	10.5	2.6	99.90	3.2	152
846	27.1	53.0	14.4	5.5	100.00	3.0	236
861	36.7	45.3	14.4	3.6	100.00	3.2	139
867	46.2	40.9	9.7	3.2	100.00	3.3	93
869	34.2	48.7	9.5	7.6	100.00	3.1	158
871	26.3	49.3	15.8	8.6	100.00	2.9	209
872	50.8	39.3	6.6	3.3	100.00	3.4	61
OVER-							
ALL	28.9\%	47.4\%	16.8\%	6.9\%	100.00\%	3.0	5972

Type of Fare	Very Favorable	Somewhat Favorable	Somewhat Unfavorable	Very Unfavorable	Total	Satis_ faction Index	Number Respon
Cash, Ticket or Transfer	30.9\%	48.18	14.8\%	6.2\%	100.0\%	3.0	3046
Regular Pass	26.3	45.7	21.3	6.7	100.0	2.9	1038
Express Pass	32.4	43.0	22.5	2.2	100.1	3.1	178
Student Pass (under 19)	18.8	51.6	22.4	7.2	100.0	2.8	666
College/Vocational Pass	21.3	49.0	17.4	12.3	100.0	2.8	273
Senior Citizen Pass	36.2	47.3	10.2	6.3	100.0	3.1	316
Handicap Pass	19.3	55.3	15.4	10.0	100.0	2.8	79
Tourist Pass	-	-	-	-	-	-	15*
Other	44.1	44.6	1.0	10.3	100.0	3.2	62
OVERALL	28.98	47.4\%	16.8\%	6.9\%	100.0\%	3.0	5673
Response Rate:	43.68						

*Sample size too small to allow valid statistical comparison

TABLE 77
RIDERS RATE RTD SERVICE
BY TIME OF DAY

Time Period	Very Favorable	Somewhat Favorable	Somewhat Unfavorable	Very Unfavorable	Satisfaction Index	Number of Respondents	
AM Peak	32.38	45.98	14.28	7.78	100.18	3.0	1100
AM Base	30.5	47.9	15.0	6.5	99.9	3.0	1133
PM Base	28.1	47.6	17.1	7.2	100.0	3.0	1785
PM Peak	26.9	48.7	17.9	6.5	100.0	3.0	1671
Evening	30.8	42.5	20.0	6.7	100.0	3.0	282
OVERALL	28.98	47.4%	16.88	6.98	100.0%	3.0	5971

TABLE 78
RIDERS RATE RTU SERVICE
BY RESIDENCE SECTUR

Residence Sector	Very Favorable	Somewhat Favorable	Somewhat Unfavorable	Very Unfavor able	Total	Satisfaction Index	Number Respondents
San Fernando Valley	31.1\%	50.9\%	14.1\%	3.9\%	100.0\%	3.1	870
Korth Central	32.7	48.4	16.0	2.9	100.0	3.1	182
San Gabriel Valley	40.8	43.7	10.4	5.1	100.0	3.2	567
West Los Angeles	26.9	49.1	19.5	4.5	100.0	3.0	759
South Central	28.0	44.2	17.9	9.9	100.0	2.9	573
East Central	39.6	41.7	6.8	11.9	100.0	3.1	123
East Los Angeles	33.4	55.2	11.0	. 4	100.0	3.2	128
Mid-Cities	54.2	33.1	10.0	2.7	100.0	3.4	173
South Bay	30.4	44.0	20.0	5.6	100.0	3.0	483
Downtown L.A.	26.5	43.6	19.3	10.6	100.0	2.9	40
Long Beach	39.5	52.5	6.5	1.4	99.9	3.3	59
North L.A. County	-	-	-	-	-	-	4*
Orange County	-	-	-	-	-	-	14*
San Bernardino County	-	-	-	-	-	-	11.
V̇entura County	-	-	-	-	-	-	1*
OVERALL.	28.9\%	47.4\%	16.8\%	6.9\%	100.0\%	3.0	3987
Response Rate:	30.7\%						

ESample size too small to allow valid statistical comparison

TABLE 79
RIDERS RATE RTD SERVICE
BY RIDER AGE

Age	Very Favorable	Somewhat Favorable	Somewhat Unfavorable	Somewhat Unfavorable	Total	Satis- faction Index	Number of Respondents
Under 19	25.6\%	52.1\%	15.4\%	7.0\%	100.1\%	3.0	1517
19 to 29	24.4	49.2	19.5	6.9	100.0	2.9	1879
30 to 39	28.1	45.5	21.2	5.2	100.0	3.0	702
40 to 49	41.7	37.6	13.0	7.7	100.0	3.1	356
50 to 61	32.5	48.1	14.6	4.8	100.0	3.1	371
62 or older	41.3	43.0	8.6	7.0	99.9	3.2	356
OVERALL	28.9\%	47.4\%	16.8\%	6.9\%	100.0	3.0	5181
median age	28.5	25.7	26.2	25.8			
Response Rat	te: 39.						

Gender	Very Favorable	Somewhat Favorable	RIDERS Somewhat Unfavorable	$\frac{\frac{\text { TABLE } 80}{\text { RATE RTD SERVICE }}}{\text { RY GENDER }}$		Satisfaction Index	Number of Respondents
				Very Unfavorable	Total		
Male	30.0\%	46.18	17.28	6.7\%	100:08	3.0	2499
Female	27.5	49.1	16.2	7.2	100.0	3.0	3316
OVERALL	28.98	47.48	16.88	6.9\%	100.0\%	3.0	5815
Response	Rate:	44.7\%					

TABLE 81
RIDERS RATE RTD SERVICE
BY ETHNIC BACKGROUND

Ethnic Background	Very Favorable	Somewhat Favorable	Somewhat Unfavorable	Very Unfavorable	Total	Satis- faction Index	Number of Respondents
White	28.98	48.8\%	16.8\%	5.5\%	100.0\%	3.0	2417
Black	21.8	46.0	20.2	12.0	100.0	2.8	1483
Latino	36.5	46.3	13.5	3.7	100.0	3.2	1335
Asian or Pacific Islander	37.0	47.4	13.2	2.4	100.0	3.2	323
Amer. Indian	29.3	42.9	16.5	11.4	100.1	2.9	80
Other	10.7	51.6	29.4	8.2	99.9	2.6	53
OVERALL	28.9\%	47.48	16.8\%	6.98	100.0\%	3.0	5691
Response Rate:	43.8\%						

Annual Household Income	Very Favorable	Somewhat Favorable	Somewhat Unfavorable	Very Unfavorable	Total	Satis- faction Index	Number of Respondents
Under $\$ 5000$	34.7\%	42.48	14.5\%	8.48	100.0\%	3.0	856
\$5000-\$9999	28.3	52.0	16.2	3.5	100.0	3.1	717
\$10000-\$14999	24.0	48.6	21.3	6.1	100.0	2.9	658
\$15000-\$19999	22.9	45.0	25.0	7.2	100.1	2.8	454
\$20000-\$24999	17.6	52.2	25.1	5.1	100.0	2.8	398
\$25000 or more	26.7	51.5	16.7	5.1	100.0	3.0	707
overall	28.9\%	47.48	16.8\%	6.98	100.0\%	3.0	3790
median income	\$9,292	\$11.472	\$12,825	\$10,863	\$11,066		
Response Rate:	29.2\%						

The latest available data at the time of the on-board survey in 1981 indicated that over 1.2 million daily boardings were made on Regular-Service lines. The survey of riders on a sample of fifty of these lines has shown that the average rider uses 1.8 buses to complete a oneway linked trip from origin to destination. We find, then, that approximately 675.000 one-way linked trips are made each day on Regular-Service lines.

Table 83 shows that the West Los Angeles sector is by far the primary trip generator among RTD's Regular-Service patroñ. This sector serves as either origin or destination for 48% of all the linked trips made on Regular-Service lines. Nearly 325,000 trips either begin or end in the West Los Angeles sector. Assuming that most riders make a round trip on the bus each day, the number of linked trips originating in the West Los Angeles sector would be over 162.000 per day.

Three other sectors serve as major trip generators. The South Central sector, the Central Business District and the San Fernando Valley each account for 22% to over 25% of the linked trips made on Regular-Service lines. The South Central sector generates nearly 172,000 linked trips each day. This sector would serve as origin for 86,000 trips. The CBD and the San Fernando Valley each account for nearly 149.000 linked trips, or as the origin of nearly 75,000 trips per day.

Figure 1 provides a visual display of linked trips made on Regular-Service lines within and between sectors, and Table 84 provides the detailed data based on the responses of over 4400 bus riders. It is notable that 22% of all linked trips, nearly 149,000, occur entirely within the West Los Angeles sector, and another 16\%, or 111,000 trips; occur within the San Fernando valley. Trips within and among the four major trip-generating sectors - West LA, South Central, the $C B D$ and the San Fernando valley -- together account for 75.6% of all linked trips made on Regular-Service lines. That these four sectors account for nearly 511,000 iinked trips out of the system-wide total of 675,000 is especially remarkable when one considers that these sectors contain only 43% of the County population and a like proportion of County land area. These four sectors receive about 57% of the service provided by RTD. measured in terms of bus miles.

Table 85 provides population and service measures by sector, as well as measures of bus use. This table shows, for example, that RTD provides 206 daily bus miles of service per square mile of area in Los Angeles County. The level of service in each sector varies widely from this overall figure, however, ranging from 95 bus miles per square mile in the Mid-Cities sector to over 7,400 bus miles per square mile in the CBD. The overall level of service provided per resident is .041 bus miles. This measure, too, varies by sector, from. 016 bus miles per person in Mid-Cities to. 752 bus miles per person in the CBD.

The level of transit use also varies by sector. While the overall number of daily linked transit trips per person in the County is .093, the number of trips per person in the Long Beach sector is only . 005, and the number of trips per person in the CBD is 6.7. Of course, the level of transit use in the CBD is distorted because the calculation is based on the resident population instead of on the weekday worker population. (Based on an estimated worker population of 200, 000, the number of linked trips per person in the CBD would drop to -743, still the highest average among all the sectors). Data for the other three major trip-generating sectors show that RTD Regular-Service lines are delivering .266 linked trips per person in the West Los Angeles sector, .221 trips per person in the South Central sector and. . 132 trips per person in the San Fernando Valley. In terms of this measure of transit use, the East Los Angeles sector ranks fifth, accounting for . 111 linked trips per person.

Linked trip data based on planning sectors is rather broad for analytical purposes, however. In order to provide more precise analyses of the trip needs being served by RTD Regular-Service lines, Market Research has divided the five-county RTD service area into 86 smaller sub-sectors, as shown in Figure 2.

Linked trips originating or terminating in each of the eleven major planing sectors have been analyzed and the results presented in the following series of maps and tables in order of precedence according to trip volume.

TABLE 83
LINKED TRIP ORIGINS AND DESTINATIONS BY SECTOR

Sector

West LA
South Central
Central Business
District
San Fernando
Valley
South Bay
San Gabriel
Valley
North Central
East LA
East Central
Mid-Cities
Long Beach
Total*
Base
*Totals exceed Base due to double counting of trips originating and terminating in different sectors.

	West LA	LINKED	TRIPS	AS PERCENT		$\text { OF } \frac{\text { TABLE } 84}{\text { ALL } \frac{1}{L} \mathrm{IP}}$		ON RE	GULAR-SERVICE		LINES		$\begin{aligned} & \text { SBdo } \\ & \text { C.ty } \end{aligned}$	Total
		SFV	So . Cen	CBD	So . Bay	SGV	No. Cen	ELA	E. Cen	$\begin{aligned} & \text { Mid } \\ & \text { Cit } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Pom } \\ & \text { Vly } \end{aligned}$	Long Bch		
West LA	21.9\%	3.0\%	8.2\%	10.1\%	1.9\%	. 5%	. 7%	1.2\%	. 5%	. 1%	-	-	-	48.1\%
San Fernando														
Valley	-	16.4	. 7	1.3	-	. 1	. 5	-	-	-	-	-	-	19.0%
So. Central	-	-	6.5	6.0	1.7	- 3	. 6	. 6	- 3	. 4	-	. 1	-	16.5%
CBD	-	-	-	1.5	. 6	. 3	1.0	. 8	. 1	. 1	. 1	. 1	-	4.6\%
South Bay	-	-	-	-	1.8	-	. 1		. 2	. 2	-	-	-	2.3\%
SGV	-	-	_	-	-	2.0	. 6	. 1	-	-	. 6	-	-	3.3\%
No.Central	-	-	-	-	-	-	. 3	. 5	-	-	-	-	-	. 8%
ELA	-	-	-	-	-	-		. 8	. 2	. 1	-	-	-	1.1%
E.Central	-	-	-	-	-	-	-	-	1.3	. 6	-	-	-	1.9\%
Mid-Cities	-	-	-	-	-	-	-	-	-	. 7	-	-	-	. 7%
Pomona Vly	-	-	-	-	-	-	-	-	-	-	. 8	-	. 1	. 9%
Long Bch	1.	1	-	-	-	-	-	-	-	-				.1\%
Total	21.9\%	19.4\%	15.4\%	18.9\%	6.0\%	3.2\%	3.8\%	4.0\%	2.6\%	2.29	1.5\%	. 3%	. 1%	99.3\%

TABLE 85
POPULATION AND BUS USE BY SECTOR

*Figures from 1980 Service Allocation Study by SCRTD Service Analysis Section include Peak-Hour Express, Park and Ride, BEEP and Subscription Lines in addition to Regular-Service Lines.
**Overall figures do not include the North LA County sector (Lancaster, Palmdale, Santa Clarita Valley,etc.)

Hollywood is the primary trip generator in the West los Angeles sector. Over 27\% of the linked trips beginning or ending in the West Los Angeles sector, some 88,000 trips daily, originate or terminate in the Hollywood area. The Wilshire Corridor and West Hollywood each account for about 20% of the West LA trips. Each of these sub-sectors serves as origin or destination for up to 66,000 linked trips daily.

The Pico Corridor generates over 47,000 linked trips daily, and the Park La Brea süb-sector and the Los Feliz/LACC area each serve up to 38,000 trips. Table 86 indicates that the remaining twelve sub-sectors each serve less than 9% of the Hest Los Angeles sector linked trips.

The first map in the series is Figure 3, which shows a plot of linked trips beginning or ending in the West los Angeles sector. This sector generates approximately 325,000 linked trips daily. Within the West Los Angeles sector, eighteen distinct sub-sectors have been identified. The map shows that six of these sub-sectors serve as the primary trip generators within the West Los Angeles sector. These sub-sectors -- Hollywood, the Wilshire Corridor, West Hollywood, Pico Corridor, the Park La Brea area and the Los Feliz/LACC area -- together serve as origin or destination of 74% of all West Los Angeles linked trips. These six sectors, located between the CBD and Beverly Hills, account for nearly 240,000 linked trips, or more than a third of all linked trips served by Regular-Service lines throüghout the entire RTD service area.

Table 87 indicates that 52% of West Los Angeles linked trips, up to 169,000 trips, are made entirely within the sector. Major trip generators outside the boundaries of the West Los Angeles sector are the Los Angeles CBD which attracts nearly 14% of the linked trips (up to 44,000 trips) and the Crenshaw sub-sector accounting for almost 10% of the West LA trips, or 32,000 trips.

TABLE 86
SUMMARY OF LINKED TRIPS TO OR FROM WEST LOS ANGELES SECTOR BY SUB-SECTOR OF ORIGINATION OR DESTINATION

Sub-Sector	Percent of West L.A. Trips	Estimated Number of Trips
Hollywood	27.07\%	87,964
Wilshire Corridor	20.30	65,965
West Hollywood	20.12	65,380
Pico Corridor	14.54	47,248
Park La Brea	11.56	37,565
Los Feliz/LACC	11.10	36,069
Beverly Hills	8.24	26,776
Inglewood	7.54	24,501
Westwood	4.34	14,103
Echo Park	4.13	13,420
Culver City/Palms	3.71	12,056
Westchester/LAX	3.17	10,301
Santa Monica	1.73	5,622
Venice/MarVista	1.22	3,964
Brentwood	1.16	3,769
Malibu/Topanga	1.06	3,444
West Los Angeles	. 51	1,657
Century City	-	- ${ }^{-}$
Total	141.50\%*	459,804*
Base	100.00\%	324;950

* Totals exceed base due to double counting of trips originating and terminating in different sub-sectors

Table 88 shows that the Crenshaw sub-sector is the primary trip generator in the South Central sector. This area accounts for over 42\% of the linked trips beginning or ending in this sector. In other words, of the 172,000 linked trips in this sector, 73,000 of them begin or end in the Crenshaw area. The Central Avenue Corridor generates 29\% of the linked trips, or over 50,000 trips a day, and the Harbor Freeway Corridor generates 22% of the trips, or 37,000. The proportion of South Central linked trips to or fram the Western Avenue Corridor is about 14\%, or 24,000 trips. The Compton/Willowbrook sub-sector accounts for only 8% of the linked trips, about 13,000 trips daily.

Figure 4 plots linked trips beginning or ending in the South Central Sector. Table 89 data indicate that 28\% of the trips beginning or ending in this sector are made entirely within the boundaries of the sector. These 49.000 intra-sector trips are nearly equalled by the 43,000 trips that are made between the South Central sector and the Los Angeles CBD. Other major trip generators outside the South Central sector are the Wilshire Corridor, which attracts about 8%, or 13,000 of the trips, and the Pico Corridor, which attracts 7%, or 11,000 linked trips. The Inglewood area draws about 10,000 linked trips daily, 6% of trips to or from the South Central Sector.

TABLE 88
SUMMARY OF LINKED TRIPS TO OR FROM SOUTH CENTRAL SECTOR BY SUB-SECTOR OF ORIGINATION OR DESTINATION

	Percent of South Central Trips	Estimated Number of Trips
Crenshaw	42.31%	72,602
Central Ave Corridor	29.25	50,192
Harbor Fwy Corridor	21.70	37,236
Western Ave Corridor	13.92	23,886
Compton	7.58	13,007
Total*	114.76	196,923
Base	100.00%	171,595

* Totals exceed base due to double counting of trips originating and terminating in different sub-sectors.

	Crenshaw	Western Ave	Har bor Fwy	Cen- tral Ave	Compton	Total
Crenshaw	4.86	3.20	4.60	1.50	.34	14.58
Western Ave Corr	-	2.93	. 28	1.25		4.46
Harbor Fwy Corr	-		1.05	1.65	. 18	2.88
Central ave corr	-	-	-	3.77	1.80	5.57
Compton	-	-	-	-	1. 03	1. 03
CBD	5.62	2.27	4.83	11.44	. 81	24.98
Wilshire Corr	2.66	-	2.18	2.77	.09	7.71
Pico Corr	2.90	2.14	. 85	.71	-	6.60
Echo Park	.31	-	. 50	-	-	. 81
Los Feliz	1.01	. 03	-	. 90	-	1.94
Hollywood	1.92	$: 15$. 42	.	-	2.49
W.Hollywood	.77	-	. 95	. 15	-	1.86
Park La Brea	. 83	. 25	-	.03	-	1.11
Beverly Hills	.34	. 95	-	-	-	1.28
Westwood	. 17	-	-	.36	-	. 53
West L.A.	. 25	-	-	-	-	. 25
Venice	. 52	-	-	. 08	-	. 60
Malibu	. 02	-	-	. 02	-	. 05
Westchester	. 25	. 04	.17	-	-	. 45
culver city	. 56	-	-	-	-	. 56
Inglewood	5.27	-	. 50	-	. 05	5.83
Vernon/hp/Bell	-	. 03	. 16	.31	-	. 50
Lÿnwood/So. Gate	.17	.01	. 04	-	. 32	. 54
East L.A.	. 27	-	. 79	. 58	-	1.64
commerce	. 02	-	. 02	-	-	. 05
Montebello	-	-	. 02	-	-	. 02
Lincoln Hts	. 28	-	.25	. 08	-	. 61
Highland Park	-	. 03	. 03	-	-	. 06
Gilendale	-	-	-		.36	.36
Burbenk	. 08	.03	. 48	. 08	-	. 66
N. Hollywood	. 16	-	-	-	-	. 16
Van Nuys	.17	. 03	. 05	-	-	. 25
Sherman Daks	- 11	-	-	-	-	. 11
Tarzana	-08	-	-	-	-	. 08
Woodiand Hills	.08	-	. 08	.36	-	. 52
Canoga Park		-	.03	. 11	-	. 14
Pacoima	-	. 05	-	.19	-	. 25
Northridge	. 08	-	-	-	-	. 08
Reseda	.10	-	-	-	-	. 10
Altadena	-	-	. 02	-	-	. 02
El Monte	. 25	-	-	-	-	. 25
La Puente	-	-	.25	-	-	$\bigcirc 25$
Monterey Park	.17	-	. 02	-	-	. 18
San Gabriel	. 25	-		-	-	. 25
Pomona vailey	-	-	. 28	-	. 01	. 29
Downey	-	-	,	. 25	.19	. 44
Whittier	-	-	. 02	.05	-	. 07
Le Mirade	. 09	-	-	-	-	. 09
Norwalk	-	-	. 08	. 03	.28	.40
Pico Rivera	-	-	-	. 02	-	. 02
Bellflower	-	. 08	.01	. 01	.40	. 50
El Segundo	. 17	-	-	-		. 17
Gardeñ	. 08	-	.17	. 08	.27	1.37
Hawthorne	. 65	. 12	. 09	.26	. 58	1.71
Beach Cities	. 07	.05	. 33	-	. 13	. 58
Palos Verdes	-	-	. 11	. 02	.02	. 15
Torrance	.17	-	. 07	-	-	. 24
San Pedro	-	-	. 04	-	. 36	. 39
Carson	. 04	-	. 01	. 38	.33	. 77
Long Beach	. 10	-	. 09	.01	.03	. 24
Total						100.0\%

The Central Business District serves as origin or destination for 22% of all linked trips made on the RTD system, making this small sector one of the major trip generators in the County: As shown earlier in Table 85, the CBD is served by over 7,400 bus miles of service per square mile, eleven times more than any other sector. Buses operating in the CBD provide 6.736 linked trips per resident and .743 per worker, the highest level of service utilization to be found anywhere in the RTD system.

Only about 8% of the linked trips in the CBD both originate and terminate within this sector - most trips are between the CBD and other sectors. The major trip generator is the West Los Angeles sector, which accounts for over 47% of linked trips to or from the CBD.

The South Central sector accounts for over 23% of the CBD linked trips. The sub-sectors generating the largest proportion of trips are the wilshire corridor (15.26\% or 22,680 linked trips per day), the Central Avenue corridor (10.74\% or 16,000 trips) and Hollywood (8.51\% or nearly 13,000 trips).

Figure 5 illustrates linked trips generated in the $C B D$, and Table 90 provides data.

TABLE 90
LINKED TRIPS ORIGINATING OR TERMINATING IN CENTRAL BUSINESS DISTRICT AS PERCENT OF CENTRAL BUSINESS DISTRICT TRIPS ON REGULAR-SERVICE LINES

CBD	7.76
Wilshire Corr	15.26
Pico Corr	5.54
Echo Park	2.99
Los Feliz	5.00
Silver Lake	.43
Hollywood	8.51
W. Hollywood	4.74
Park La Brea	2.33
Westwood	.25
Brentwood	.89
Venice	.14
Westchester	.34
Culver City	.65
Inglewood	.53
Crenshaw	5.28
Western Ave Corr	2.13
Harbor Fwy Corr	4.54
Central Ave Corr	10.74
Compton	.76
Vernon/HP/Bell	.62
Lynwood/So. Gate	.01
East L,A.	4.30
Montebello	.33
Lincoln Hts	3.70
Highland Park	.1 .3
Glendale	.69
Sunland	.05
Sun Valley	. .14
Burbank	1.62
N. Hollywood	1.81
Van Nuys	1.89

Total

Sherman Oaks . 26
Encino . 16
Tarzana .08
Woodland Hills . 08
Canoga Park . 03
Pacoima $\quad 20$
Granada Mission Hills . 05
Northridge . 03
Chatsworth $\quad 04$
Reseda . 09
Pasadena . 03
Baldwin Park . 15
Covina . 48
El Monte .91
La Puente . 26
Monterey Park. . 10
San Gabriel . 05
Walnut . . 03
Alhambra .03
Pomona Valley . 45
Downey . 22
La Mirada . 08
Pico Rivera .02
Bellflower . 02
El Segundo . 07
Hawthorne . 26
Beach Cities 33
Palos Verdes $\quad 80$
Torrance . 98
San Pedro . 08
Carson .03
Long Beach . 25

LINKED TRIPS ORIGINATING OR TERMINATING IN SAN FERNANDO VALLEY

Table 91 shows that among sub-sectors in the San Fernando Valley, there are four which serve as primary trip generators, and four which serve as secondary generators. The Van Nuys area accounts for nearly 34% of the linked trips beginning or ending in the Valley, or 50,000 trips daily. North Hollywood is origin or destination for a quarter of the Iinked trips -- 37,000 trips a day. The Pacoima/San Fernando and Canoga Park sub-sectors each account for between 14% and 16% of the linked trips made in the Valley, or 21,000 to 23,000 trips.

The four secondary trip generators in the Valley account for about 9% to 10% of the linked trips made on Regular-Service lines on weekdays. Burbank, the Granada Hills/Mission Hills sub-sector, Reseda and Sherman Oaks each serve as origin or destination for 13,000 to 15,000 linked trips each day.

Figure 6 illustrates the linked trip patterns in the San Fernando Valley. Table 92 provides the data on which figure 6 is based. The Valley is unusual in one respect; 75% of the linked trips are made entirely within its boundaries. This is an unusually high proportion of intra-sector trips, matched only by the intra-sector travel that occurs in the San Gabriel Valley.

The major trip generators outside the San fernando Valley are the Los Angeles CBD (which attracts approximately 6\% of the trips, or 9,400 trips a day), Hollywood and Westwood (each of which attract about 3% of the trips, or some 5,000 a day).

Sub-Sector	Percent of San Fernando Valley Trips	Estimated Number of Trips
Van Nuys	33.64\%	49.998
North Hollywood	24.88	36.978
Pacoima/San Fernando	15.56	23,126
Canoga Park	14.18	21,075
Burbank	9.81	14.580
$\begin{aligned} & \text { Granada Hills/ } \\ & \text { Missioñ Hills } \end{aligned}$	9.27	13.778
Reseda	9.09	13.510
Sherman Oaks	8.69	12.916
Northridge	6.92	10,285
Encino	5.33	7.922
Woodland Hills	4.8 .2	7.164
Chatsworth	3.11	4,622
Sun Valley	2.83	4,206
Tarzana	1.61	2,393
West SFV	. 08	119
TOTAL*	1.49.82\%	202,672
Base	100.0\%	148,626
FTotals exceed originating and	base due to do rminating in diff	e counting of nt sub-sectors.

TABLE 92
LIMKED TAIPS ORIGGivatiwg of TERMINATIMG IM sin FERMANDO VALLEY AS PERCEMT OF SAN FERMAMDO MALLEY TRIPS OM NECULAR SERVICE LIMES

The South Bay sector accounts for about 6.5% of all linked trips made on RTD Regular-Service lines, or about 44,000 linked trips a day. Of the eight sub-sectors that comprise the South Bay sector, three are major trip generators, as shown in Table 93. Hawthorne serves as origin or destination for over 24\% of the South Bay trips, about 11,000 trips a day. The Beach Cities sub-sector (Manhattan, Hermosa and Redondo) account for 23%, or 10,000 of the linked trips, and Gardena for 22\%, or 9,500 trips.

Torrance and the Palos Verdes Peninsula serve as secondary trip generators, each being origin or destination for 12% to 13% of the South Bay trips, or between 5,200 and 6,000 trips. The fact that Gardena and Torrance rank rather high as South Bay trip generators is somewhat surprising because each of these cities operates its own municipal bus system. Nearly 70\% of the transit trips involving these two sub-sectors are inter-sector trips. Of the 9,500 trips to or from Gardena, 6,400 go to or originate in other sub-sectors. Of the 5,900 Torrance trips, 4,000 are to or from other sub-sectors.

South Bay linked trips are plotted on the map in Figure 7. Supporting data appear in Table 94. About 29\%, nearly 13,000 trips, are intra-sector--entirely within the boundaries of the South Bay sector. The major trip generators outside the South Bay sector are the Los Angeles CBD, Inglewood, the Crenshaw sub-sector, Compton and the Wilshire Corridor. Up to 5,000 linked trips a day are made between South Bay and the CBD, and another 4,700 involve travel to and from Inglewood. The Crenshaw sub-sector accounts for about 3,600 linked trips a day, and Compton for about 3,100. The Wilshire corridor serves as origin or destination for about 2,200 linked trips to or from South Bay.

TABLE 93
SUMMARY OF LINKED TRIPS TO OR FROM SOUTH BAY BY SUB-SECTOR OF ORIGINATION OR DESTINATION

Sub-Sector	Percent of South Bay Trips	Estimated Number of Trips
Hawthorne	24.42%	10,723
Beach Cities	22.77	9,968
Gardena	21.55	9,463
Torrance	13.48	5,919
Palos Verdes	11.91	5,230
San Pedro/	8.29	3,640
Wilmington	7.05	3,096
El Segundo	6.27	2,753
Carson	115.74	50,792
Total*	100.0%	43,912

* Totals exced base due to double counting of trips originating and terminating in different sub-sectors.

TABLE 94
LINRED IRIPS ORIGINATING OR TERMINATING IN SOUTH BAY
AS. PERCENT OF SOUTH BAY TRIPS ON REGULAR-SERVICE LINES

	El Segundo	Gardena	Haw thorne	Beach cities	Palos Verdes	Torrance	San Pedro	$\begin{aligned} & \text { Car- } \\ & \text { son } \\ & \hline \end{aligned}$	Total
El Segundo	.454	. 358	-	1.318	. 218	. 108	-	-	2.428
Gardeña		.57	2.22%	2.25	-	1.13	-	. 48%	6.65
Hawthorne			. 73	2.60	. 29	. 39	-	-	4.01
Beach Cities				3.53	1.40	1.26	. 118	. 34	6.64
Palos Verdes					2.98	. 97	-10	-	4.05
Torrance						. 34	10	. 13	. 57
San Pedrol									
Wilmington							4.29	-	4.29
Carson								. 27	. 29
CBD	.30		1.17	1.49	3.58	4.35	. 34	. 11	11.34
Wilshire Corr		.42	.70	$\because 44$	1.15	1.16		1.13	5.0
Pico Corr	.70	.70	.73	.15		. 09			2.37
Echo Park						. 29			. 29
Los Feliz		. 70		. 30					9.00
Holl ywood	. 15	1.40	. 35	.30		.70			2.90
W. Hollywood			. 70						. 70
Park La Brea			.73	. 15				. .04	. 92
Beverly Hills	+		.81						. 81
Westwood	$\therefore 81$.10						. 91
Brentwood/									
Pac Palisodes		.70							. 70
Venice				.10		.10			. 20
Sta Monica		.10							.10
Westchester	1.36		.06	2.22	. 30				3.94
Culver City	. 15			. 71					. 86
Inglewood	. 31	3.05	4.97	1.14		1.33			10.8
Crenshaw	.70	3.57	2.73	. 30		. 70		. 19	8.19
Western Ave									
Corridor			. 51	. 20					.71
Harbor Fwy									
Corridor		. 6.9	.39	1.38	. 44	.29	. 15	. 04	3.38
Central Ave									
Corridor		. 35	1.08		- 10			1.61	3.14
Comptoin		2.13	2.42	$\bigcirc 53$. 10		$\begin{array}{r} 1.50 \\ .65 \end{array}$	1.39	7.07 .79
Vernon/HP/Bell				. 14			$.65$.79 .817
Lynwood/So.Gate			.74	. 04				. 39	1.17
East L.A.		. 65		. 15					. 15
Lincoln Hts							1.05		1.05
La Canada					.29				. 29
Sun valley	. 15								. 25
Canoga Pk								.10	. 10
Norwalk		9.04				. 05			1.09
Artesta				. 09					. 09
Bellfiower		. 05		. 05				. 05	. 14
Orange Cty				.09					. 09
Total						d			100.01

LINKED TRIPS ORIGINATING OR TERMINATING IN SAN GABRIEL VALLEY

Table 95 showis that among sub-sectors in the San Gabriel Valley, there are three which serve as primary trip generators and four secondary generators. The Pomona Valley, encompassing the communities of pomona, La Verne, Claremont and San Dimas, is the foremost generator of linked transit trips. Over 37% of the San Gabriel valley trips begin or end in the Pomona Valley sub-sector. This sub-sector alone accounts for nearly 11,400 linked trips per day.

The second highest ranking trip generator is the pasadena area, which accounts for almost 29% of the linked trips. Close to 8,700 linked trips originate or terminate in the Pasadena sub-sector each day.

El Monte is the third major trip generator in the San Gabriel Valley. Over 5,200 linked trips begin or end in El Monte -- over 17% of San Gabriel Valley linked trips.

The four secondary trip generators each account for 7.5\% to 8. 0% of the San Gabriel Valley linked trips. The Monterey Park/Rosemead sub-sector, Walnut, the San Gabriel/Temple City sub-sector and the Covina/West Covina sub-sector each serve as origin or destination for 2,300 to 2,500 linked trips on an average weekday.

Figure 8 shows a plot of linked trips beginning or ending in the San Gabriel V alley. The supporting figures in Table 96 indicate that 75.87% of the linked trips both begin and end within the boundaries of the San Gabriel Valley. This high proportion of intra-sector trips is matched only by the similar proportion of such trips noted in the san Fernando Valley.

At least 20% of San Gabriel Valley trips occur entirely within the boundaries of the pomona valley sub-sector. In other words, nearly 6, 100 linked trips occur within this sub-sector. The Pasadena sub-sector, too, boasts a high proportion of linked trips whose origin and destination are both within the sub-sector. Nearly 14\% of the San Gabriel Valley trips, or nearly 4,200 trips both begin and end in the Pasadena sub-sector.

Figure 8 also indicates a relatively high proportion of linked trips between the Pomona valley and Walnut sub-sectors. Up to 7% of the San Gabriel Valley trips, some 2, 100 trips daily, are between these two sub-sectors.

Two sub-sectors outside the San Gabriel Valley stand out as major trip generators. The Los Angeles Central Business District accounts for just over 7% of the San Gabriel Valley trips, serving as origin or destination for over 2, 100 trips on Regular-Service lines daily. The Lincoln Heights/El Sereno sub-sector draws nearly 5% of the San Gabriel Valley trips, or nearly 1,400 linked trips a day.

The Crenshaw sub-sector, the Highland Park/Glassell Park sub-sector and the Brentwood/Pacific. Palisades sub-sector each account for 725 to 760 linked trips a day, about 2.5% of the San Gabriel Valley trips.

TABLE 95
SUMMARY OF LINKED TRIPS TO OR FROM SAN GABRIEL VALLEY
BY SUB-SECTOR OF ORIGINATION OR DESTINATION

Sub - Sector	Trips	of Trips
Pomona Valley	37.35	11,355
Pasadena	28.53	8,673
El Monte	17.15	5,214
Monterey Park/		
Rosemead	8.02	2,438
Walnut	7.77	2,362
San Gabriel/		
Temple City	7.69	2,338
Covina/West Covina	7.47	2,271
La Puente	5.52	1.678
Altadena	4.32	1,313
Arcadia/Sierra Madre	3.98	1,210
Baldwin Park	2.90	882
Azusa/Glendora	1.95	59.3
Alhambra	1.36	413
Monrovia/Duarte	. 49	149
Total*	134.50\%	40,889
Base	100.0\%	30,401

* Totals exceed Base due to double counting of trips originating and terminating in different sub-sectors.

TABLE 96
LINKED TRIPS ORIGINATING OR TERMINATING IN SAN GABRIEL VALLET AS PERCENT OF SAN GABRIEL VALLEY TRIPS ON REGULAR-SERVICE LIAES

	Altadena	Arcm adia	Monrovia	Pasadena	Azusa	$\begin{aligned} & \text { Bald- } \\ & \text { Win } \\ & \text { Park } \end{aligned}$	$\begin{aligned} & \text { Cov- } \\ & \text { ina } \end{aligned}$	E1 Monte	La Puente	Mont erey Park	San. Gab- riel	Wal- nut	$\begin{aligned} & \text { Alham- } \\ & \text { bra } \end{aligned}$	Pom- ona Vallay	Total
Altadena	. 47	.20	-	3.33	-	-	-	-	-	. 16	-	-	-	-	4.16
Areadia		. 50		1.48			.30	. 60	-	-	.90	-	-	-	3.78
Monrovia			-	-	-	. 13		. 18	-	\checkmark	. 08	-	-	-	. 39
Pasadena				13.73	. 08	-	.13	. 50	.10	. 62	. 80	-	.16	-	16.12
Azusa						. 40	. 94	. 40	.13	-	-	-	-	-	1.87
Baldwin PK						.13	. 81	. 94	-	-	.10	-	.13	.13	2.24
Covina							1.2:1	1.61	-	-	-	-	. 13	. 97	3.92
El Monte								2.42	1. 1.5	.63	. 20	-	-	2.07	6.47
La Puente									. 97	. 18	-	. 97	-	2.02	4. 14
Monterey PR										1. $2 \cdot 1$	1.50	-	. 44 -	. 18.	3.33
San Gabriel PK											. 63	-	-	1.95	2.58
Walnut												-	-	6.80	6.80
Alhambra													-	-	-
Pomone V1y														20.02	20.02
CBD							1.11	3.64		. 26				2.04	7.05
Wilshire Corr													.18		. 18
Los Feliz								.18							.18
- Holl ywood										. 84					. 84
תW.Hollywood				. 08											. 08
O Park La Brea.				. 08										. 20	. 28
Brentwood/															
Pac Palis				2.38											2.38
Crenshaw								1.25			1.25				2.50
Vernon/HP/															
Bell										. 18					. 18
Lynwood/															
So'.Gate						.13									.13
East Li.A.			. 10	. 16				.36		. 41			.16		1. 19
Montebello							.13								. 13
Lincoln Hts				1.56				. 18		1.41	. 28		.16	. 97	4.56
Highland P.k				2.42											2.42
Glendale				. 41											. 41
Burbank	.16														. 16
N. Hlywd				.41											.41
Van Nuys								. 78							. 78
Norwalk								. 06							. 06
Pico Rivera							.13								.13
Long Beach				. 10											$.10$
Total															100.0\%\%

Table 97 shows that the major trip generator in the North Central sector is the Glendale/Eagle Rock sub-sector. This area accounts for over 35% of the linked trips in the sector, serving as origin or destination for over 10,000 transit trips daily.

The second highest proportion of linked trip origins and destinations occurs in the Silverlake sub-sector, which accounts for over 29% of the North Central trips. Nearly 8,500 trips begin or end in the Silverlake area each day.

The Highland Park/Glassell Park sub-sector serves as origin or destination for about 20% of the North Central linked trips -- 5,700 trips a day. The Sunland/Tujünga area accounts for nearly 15% of the trips, about 4,200 a day. The sub-sector consisting of La Canada, Flintridge, La Crescenta and Montrose represents only 1.5% of the linked trips made in the sector. Only about 430 trips beginnning or ending in this sub-sector were identified.

The North Central sector is unusual in that there appears to be a low proportion of intra-sector linked trips served. Only about 5\%, or 1400 linked trips, are made entirely Within the boundaries of the sector. Up to 95% of the trips are between the North Central sector and points outside the sector.

Figúre 9 plots linked trips beginning or ending in the North Central sector. Obvious trip demand exists between Glendale and the CBD, between Sunland and the San Fernando Valley, between the Highland Park/Glassell Park sub-sector and Pasadena, and between Silverlake and the Malibu/Topanga süb-sector.

Table 98 provides data used to plot Figure 9. The primary trip generator for the North Central sector is the CBD, which accounts for nearly 17% of the linked trips. Nearly 5, 000 trips a day are made between the CBD and points within the North Central sector. About 2,600 of these trips are between Glendale/Eagle Rock and the CBD, and about 1600 of the trips are between Silverlake and the CBD.

Pasadena is the next highest ranking trip generator. Nearly 9% of the trips are between points in the North Central sector and Pasadena. Over 2,500 trips are in this category each day. Most of these trips, almost 2,300, are between the Highland Park/Glassell Park súb-sector and Pasadeña.

The Lincoln Heights/El Sereno area accounts for 7% of the North Central trips. This sub-sector is origin or destination for over 2,000 trips a day.

Taken as a whole, the San Fernando Valley accounts for a quarter of the trips beginning or ending in the North Central sector. Over 7% of North Central trips begin or end in Van Nuys; that's nearly 2, 100 trips a day. Over half those trips -- 1,100 of them -- are between the Sunland/Tujunga sub-sector and Van Nuys. Burbank and North Hollywood each serve as origin or destination for more than 5% of the North Central trips -- between 1,500 and 1,600 a day.

Linked trips between the Silverlake district and the Malibu/Topanga sub-sector account for nearly 6% of the North Central trips. Almost 1,700 trips a day are made between these two points.

East Los Angeles also attracts about 6% of the North Central linked trips each day. Compton and Hollywood attract about 4% of the North Central trips. Each sub-sector is origin or destination for over 1, 200 trips.

Sub-sector
Glendale/Eagle Rock
Silverlake
Highland Pk/Glassell Park

Sunland/Tujunga
La Canada/Finntridge/ Montrose

Total*

Base

Percent of North Central Trips
35.48%
29.19
19.69
14.55
1.49
100.40%
100.00%

Estimated Number of Trips
10.307

$$
8.480
$$

$$
5.720
$$

$$
4,227
$$433

29.167
29.050

* Totals exceed base due to double counting of trips originating and terminating in different sub-sectors.

FIGURE 9
LINKED TRIPS ORIGINATING OR TERMINATING IN NORTH CENTRAL SECTOR LINKED TRIPS ORIGINATING OR TERMINATING IN NORTH
SAN AS PERCENT OF NORTH CENTRAL TRIPS

	Silver Lake	High Land- Park	$\begin{aligned} & \text { Gien- } \\ & \text { Dale } \end{aligned}$	La Canada	Sunland	Total
Silverlake	3.03	-	-	-	-	3.03
Highland Pk		. 76	. 38	-	-	1.14
Glendale			-	-	-	-
La Canada				-	-	
Sunland					. 65	. 65
CBD	5.52	1.73	8.93		. 65	16.83
Wilshire Corr	. 92					. 92
Echo Park	3.03					3.03
Los Feliz	1.84		. 92			2.76
Hollywood		2.41	1.76			4.17
W. Holl ywood			1.76			1.76
Park La Brea			3.03			3.03
Westwood					. 32	. 32
Sta Monica	2. 35					2.35
Malibu	5.76					5.76
Western Ave Corr		. 38				. 38
Harbor Fwy Corr		. 38				- 38
Compton			4.33			4.33
ELA	. 92	1.14	3.65			5.71
Commerce			. 30			. 30
Lincoln Hts	3.03	2.65	1.30			6.98
Sun Valley					2.92	2.92
Burbank	. 92		3.06		1.30	5.28
N. Holl ywood	1.22		2.14	. 65	1.62	5.63
Van Nuys	. 65	1.33	1.22		3.90	7.10
Canoga Park			1.22			1.22
Pacoima					2.87	2.87
Reseda					. 32	- 32
Arcadia		. 38				. 38
Pasadena		7.77	1.00			8.77
San Gabriel		. 38	. 24			. 62
Pomona Valley			. 24			. 24
Palos Verdes				. 84		. 84
Total						100.02\%

Over 29,000 linked trips begin or end in the East Los Angeles sector each day. Table 99 indicates that most of these trips, 92\%, begin or end in the East Los Angeles/Boyle Heights sub-sector. The Montebello and Commerce sub-sectors account for 9% and 4% of the linked trips, respectively.

The map in figure 10 shows the pattern of linked trips beginning or ending in the East Los Angeles sector. The most significant trip generators are the CBD, and the Wilshire corridor. Trips within the East Los Angeles/Boyle Heights sub-sector also account for a large percentage of trips. Table 100 shows that over 29\% of the trips (over 8,500 trips) are between the East LA sector and the CBD, and 18% (5,300 trips) between the Wilshire Corridor and East LA. The Lincoln Heights/Ei Sereno sub-sector is origin or destination for nearly 5%, or over 1,300 trips a day, as is Hollywood.

About 20\% of the East Los Angeles trips are intra-sector. Over 5,800 trips are made each day entirely within the boundaries of the sector. More than 4,300 of these transit trips are made within the East Los Angeles/Boyle Heights sub-sector.

TABLE 99
SUMMARY OF TRIPS TO OR FROM EAST LOS ANGELES BY SUB-SECTOR.OR ORIGINATION OR DESTINATION

Sub-sector
East LA/Boyle Hts
Montebello
Commerce
Total*
Base
*Totals exceed base due to double counting of trips originating and terminating in different süb-sectors.

TABLE 100
LINKED TRIPS ORIGINATING OR TERMINATING IN EAST LOS ANGELES AS PERCENT OF EAST LOS ANGELES TRIPS ON REGULAR-SERVICE LINES

Monte-

East LA	Commerce	bello	Total
14.86\%	-	4.97\%	19.83\%
	-	. 30	.30
		-	-
27.28		2.10	29.38
17.97	. 15	. 15	18.26
. 98			. 98
2.83			2.83
. 45			. 45
4.43		. 15	4.59
1.49			1.49
. 43			. 43
1.61	. 15		1.75
. 64	. 15	. 15	. 93
2.46			2.46
. 93	. 93		1.86
. 49	. 93		1.42
4.69			4.69
. 56			. 56
1.79	. 15		1.94
. 12			. 12
. 19			. 19
. 32			. 32
. 16		. 16	. 32
. 58	. 15		. 73
. 68			. 68
. 19			. 19
. 09			. 09
. 29	. 29	. 29	. 88
	. 15	.16	. 31
. 24	.15		. 39
		. 09	. 09
. 49			. 49
	. 93		. 93
. 21			. 21
			100.19

LINKED TRIPS ORIGINATING OR_TERMINATING IN EAST CENTRAL SECTOR

The East central sector consists of only two sub-sectors: The Vernon/Huntington Park/Bell/May̆wood sub-sector and the Lynwood/Southgate süb-sector. As shown in Table 101, the Vernon/Huntington Park/Bell/Maywood sub-sector accounts for most of the linked trips generated by the East Central sector. Nearly 86% of the linked trips begin or end in this sub-sector. Only aboút 15% of the trips begin or end in the Lynwood/Southgate sub-sector.

Figure 11 shows a plot of East Central linked trips. Of the nearly 22,000 linked trips to or from this sector daily, a full 39%, or 8.500 trips, are intra-sector. Over 37% of the trips occur within the boundaries of the sub-sector which contains Vernon, Huntington Park, Bell and Maywood. Some 8.000 trips are made with their origins and destinations both within this sub-sector.

The single largest trip generator outside the East Central sector is Downey which attracts nearly 16% of the sector's linked trips. Almost 3,400 linked trips are made daily between the East Central sector and Downey - 3,100 of these trips begin or end in the Vernon/Huntington Park/Bell/ Maywood area

The second major trip generator outside the East Central sector is the Wilshire Corridor. This sub-sector runs a poor second to Downey, generating only about 7% or 1,400 , of the sector's linked trips.

The East Los Angeles/Boyle Heights sub-sector and the CBD each attract about 5\% of the East Central trips, 1,000 to 1.100 trips a day.

Table 102 provides detailed information on linked trips beginning or ending in the East Central sector.

TABLE 101
SUMMARY OF LINKED TRIPS TO OR FROM EAST CENTRAL SECTOR BY SUB-SECTOR OF ORIGINATION OR DESTINATION

	Percent of E. Central Sub-Sector	Estimat Number Trips
Vernon/Huntington Park/		
Beli		
Lynwood/Southgate	85.87	18.563
Total*	15.25	3.297
Base	101.12	21.860

* Totals exceed base due to double counting of trips originating and terminating in different sub-sectors.

TABLE 102
LINKED TRIPS ORIGINATING OR TERMINATING IN EASTCENTRAL SECTOR AS PERCENT OF EAST CENTRAL TRIPS ON REGULAR-SERVICE LINES

	```Vernon/ HP/ Bell```	Lynn-   wood/   Bell	Total
Vernon/HP/			
Bell	$37.11 \%$	1.11\%	38.22\%
Lynnwood/			
Southgate	-	$1 . .25$	1.25
CBD	4.65	. 06	4.71
Wilshire Corr	6.56	-	6.56
Pico Corr	. 44	-	. 44
Los Feliz	-	3.37	3.37
Hollywood	-	.06	. 06
W. Hollywood	1. 11	-	1.11
Park La Brea	2.06	-	2.06
Inglewood	-	. 13	. 13
Crenshaw	-	1. 19	1.19
Western Ave.			
Corridor	.22	. 06	. 28
Harbor Fwy			
Corridor	1.11	. 25	1.36
Central Ave			
Corridor	3.32	-	3.32
Compton	-	2.29	2.29
ELA	4.43	. 58	5.01
Commerce	1. 11	1. 11	2.22
Burbank	. 5.4	-	. 54
N. Hollywood	1.11	-	1.11
Baldwin Park	-	-19	. 19
Monterey Park	. 25	-	. 25
Alhambra	. 25	-	. 25
Downey	14.39	1.17	15.56
Whittier	. 17	-	. 17
Norwalk	2.21	-	2.21
Bellflower	1.26	. 40	1.66
Hawthorne	-	1.25	1.25
Beach Cities	. 24	. 06	. 30
San Pedro	1.11	-	1.11
Carson	-	. 66	. 66
Long Beach	1. 11	. 06	1.17
Total			100.01\%

[^13]
## LINKED TRIPS ORIGINATING OR TERMINATING IN MID-CITIES

Nearly 15,000 linked trips begin or end in the Mid-Cities sector each day. The four major trip generators among sub-sectors in this area are Downey (36\%, or 5,400 of the trips), Bellflower/Paramount ( $28 \%$ of the trips, or 4, 200), Norwalk/Santa Fe Springs ( $26 \%$ or 3,800 trips) and Whittier (13\% of the trips, or just under 2,000 trips). The remaining three sub-sectors in the Mid-Cities sector (La Mirada, Artesia/Cerritos and Pico Rivera) each account for only aboüt 700 linked trips per day. Details are provided in Table 103.

Figure 12 illustrates the pattern of linked trips beginning or ending in the Mid-Cities sector, and the figures in Table 104 quantify these patterns. Over $29 \%$ of the linked trips are intra-sector trips which both begin and end in the Mid-Cities sector. The major trip generator outside the sector is the Vernon/iuntington Park/Bell/Maywood sub-sector, which draws about $26 \%$ of the linked trips. Nearly $21 \%$ of the sector's trips are between Downey and this sub-sector.

Compton is another major trip generator, accounting for almost $9 \%$ of the Mid-Cities trips. Gardena, the Central Avenue corridor and the Los Angeles CBD each attract around $4 \%$ of the linked trips, or about 550 to 600 linked trips a day.

TABLE 103
SUMMARY OF LINKED TRIPS TO OR FROM MID-CITIES BY SUB-SECTOR OF ORIGINATION OR DESTINATION



TABLE 104
LINKED TRIPS ORIGINATING OR TERMINATING IN MID-CITIES AS PERCENT OF MID-CITIES TRIPS ON REGULAR-SERVICE LINES

	Downey	Whittier	La Mirada	Nor-   walk	Pico   Rivera	$\begin{aligned} & \text { Art }- \\ & \text { esia } \end{aligned}$	Bell-   Flower	Total
Downey	2.03\%	-	-	. 95	. 32	-	3.05	6.35\%
Whittier		2.33	. 75	. 80	2.10	. 64	-	6.62
La Mirada			. 11	1.53	-	-	. 34	1.98
Norwalk				1.12	. 16	. 32	6.93	8.53
Pico Rîvera					-	-	. 32	. 32
Artesia						. 98	. 71	1.69
Bellflower							3.60	3.60
CBD	2.37		. 84		. 25		. 23	3.69
Wilshire Corr		. 25		. 11				. 36
Park La Brea		2.55						2.55
Westchester							. 36	. 36
Inglewood				. 84				. 84
Crenshaw			. 96					. 96
Western Ave Corr							. 84	. 84
Harbor Fwy Corr		. 25		. 84			. 11	1.20
Central Ave Cörr	2.55	. 50		. 34	. 25		. 23	3.87
Compton	1.89			2.85			4.06	8.80
Vernon/HP/Bell	20.74	. 25		3.19			1.82	26.00
Lynwood/So. Gate	1.69						. 57	2.26
ELA	. 16	. 50			. 41		. 84	1.91
Commerce		. 50		. 25	. 25			1.00
Montebello		. 50		. 27			. 16	. 93
Lincoln Hts		. 25					. 32	. 57
Burbank		1.03						1.03
$\dot{\text { Ṅ. Holl ywood }}$				. 84		. 16		1.00
Van Nuys	.			. 30				. 30
Northridge							. 11	. 11
Covina				. 25	. 55			. 80
El Monte				. 11				. 11
Gardena				2.64			1.30	3.94
Hawthorne			. 84	. 84				1.69
Beach Cities						. 46	. 96	1.42
Torrance				. 11		. 23		. 34
San Pedro							. 27	. 27
Carson						. 46	. 21	. 67
Long Beach				. 11	. 11	. 68	. 84	2.38
Orange Cty				. 16		. 23	. 11	. 50
San B'do Cety						. 16		. 16
Total								99:95\%

## LINKED TRIPS ORIGINATING OR TERMINATING IN LONG BEACH

The Long Beach sector accounts for only about 2,000 linked trips per day on RTD Regular-Service lines.

Figure 13 shows that transit trips tend to radiate from the Long Beach sector in a sunburst pattern and tend to be relatively long-distance trips. The figures in Table 105 confirm that the major trip generator is the Los Angeles CBD. Up to $18 \%$ of the Long Beach trips operate between that sector and the CBD. Between $6 \%$ and $7 \%$ of the trips are between the Long Beach sector and either the Crenshaw Corridor or the Harbor Freeway Corridor.

Over 6\% of the trips are between Long Beach and the Bellflower/Paramount sub-sector, and $5 \%$ between Long Beach and Gardena.

About $17 \%$ of the Long Beach sector trips both begin and end within the boundaries of the sector.


TABLE 105
LINKED TRIPS ORIGINATING OR TERMINATING IN LONG BEACH AS PERCENT OF LONG BEACH TRIPS ON REGULAR-SERVICE LINES

	Lakew.o.od	Long Beach	Total
Lakewood	-	1.03\%	1. $03 \%$
Long Beach	-	15.88	15.88
CBD	-	17.79	17.79
Westchester	-	2.35	2.35
Crenshaw	-	6.62	6.62
Harbor Fwy Corr	-	6.03	6.03
Central Ave Corr	-	. 74	. 74
Compton	-	2.21	2.21
Vernon/HP/Bell	-	10.29	10.29
Lynwood/So. Gate	-	. 59	. 59
Pasadena	-	1.32	1.32
Monterey Park	-	2.35	2.35
Downey	-	4. 12	4.12
Norwalk	-	.74	. 74
Pico Rivera	1.03		1.03
Artesia	-	2.94	2.94
Bellflower	1.76	4.71	6.47
Gardena	-	4.56	4.56
Beach Cities	-	2.94	2.94
Torrance	$-$	3.68	3.68
San Pedro	-	3.53	3.53
Carson	-	4.26	4.26
Total			109.47

In order to obtain estimates of boarding activity by weekday riders on Regular-Service lines, the questionnaire used for the 1981 Ridership Tracking Study contained three questions pertinent to this issue. Riders were requested to indicate the number of times they board an RTD bus on an average weekday, an a verage Saturday and an average Sunday. Based on these factors, estimates of the number of bordings during an average month were calculated according to the formula:

$$
\begin{aligned}
& x=(A \times 21.25)+(B \times 4.33)+(C \times 4.33) \\
& \text { Where } \quad X=\text { Estimated number of boardings during a } \\
& \text { one month period } \\
& A=\text { Number of boardings on an average } \\
& \text { weekday } \\
& B=\text { Number of boardings on an average } \\
& \text { Saturday } \\
& C \text { = Number of boardings on an average } \\
& \text { Sünday } \\
& 21.25 \text { = Average number of workdays per month } \\
& 4.33=\text { Average number of Saturdays or Sundays } \\
& \text { per month }
\end{aligned}
$$

Table 106 shows that the mean number of boardings per day made by Regular-Service riders varies by bus line. The overal.l mean is 3.3 boardings per weekday, but the range is from 2. 1 to 5.9 boardings. Weekday Regular-Service riders surveyed during the 1981 Ridership Tracking Study average 1.7 boardings on an avage Saturday and 1.3 boarings on an average Sunday. Variation by line is seen during weekends, too. The mean number of Saturday boardings ranges from. 4 to 2.7. Sunday boardings range from an average of .3 to 1.7.

Because of the variation in average boardings per daÿ, the estimated average number of boardings per month also shows wide variation by bus line. Overall, Regular-Service riders surveyed on a weekday average 85 boardings per month. The average ranged from about 65 boardings up to 110 boardings per month.

Variations in boarding activity can also be seen by type of fare. Table 107 indicates that riders using an express pass to board Regular-Service lines tend to make the fewest boardings - about 74 a month. Cash riders also tend to be below average in the number of boardings they make - only about 77 a month.

Handicapped pass users tend to make more boardings during the month than any other group. They account for about 108 boardings per month. Riders using a base pass also accoünt for a high number of boardings - 98 a month. College/vocational pass users, too, account for an above-average number of boardings - about 95 each month.

Ón ayerage, express pass users and cash riders on Regúlar-Service lines board about three buses on a given weekday. Riders in other fare categories, however, board 3.4 to 4.3 buses per weekday.

Some of the variation in monthly boarding activity can be explained by differences in weekend bus use. The histograms in Figure 14 show that up to $45 \%$ of the express pass users and cash riders in the weekday regular-service line sample do not ride the bus on Saturdays. On Sundays up to $67 \%$ of the riders in these two fare categories do not ride the bus.

Riders in other fare categories are müch more likely to use the bus on weekends. Fewer than $20 \%$ of the respondents using a base pass, senior citizen pass or handicapped pass do not ride the bus on Saturdays. Fewer than $35 \%$ of the base pass üsers. $25 \%$ of the senior citizen pass users and $18 \%$ of the handicapped pass users do not ride the bus on Sundays.

Figure 14 also indicates that the distribution of boarding activity tends to be multi-modal in all fare categories. On weekdays, most respondents board an even number of buses. Among cash riders, for example, $45 \%$ board two buses per day, $25 \%$ board four buses and nearly 12\% board six or more búses. A more extreme distribution can be seen among express pass users, $55 \%$ of whom board only two buses a day, $25 \%$ board four buses and $8 \%$ board six or more.

The distribution of boarding activity on weekends is markedly different, when large proportions of weekday riders on Regular-Service lines do not ride the bus. Rather than the trimodal distribution found among weekday riders, with peaks at two, four or six and more boardings, the distribution of Saturday boardings is quatre-modal. On Saturdays from $15 \%$ to $45 \%$ of the respondents (depending on fare category) board no buses. Boardings of other respondents who do ride the bus on Saturdays still tend to be grouped around two, four and six or more boardings, although the percentage of respondents in the later category shrinks to under $10 \%$ in all fare categories. The distribution of boarding activity on Sundays by weekday Regular-Service line riders is again tri-modal, with peaks at zero boardings, two boardings or four boardings.

An examination of Table 108, which shows boarding activity by weekday Reguilar-Service riders according to the time of
day they were surveyed on the bus, indicates few differences by time period. Monthly boardings fall between 83 and 87 for riders in all time periods, with the exception of those riding during the evening hours, after 6:30 pM. Evening riders average about 93 boardings per month. Table 108 shows that the higher number of monthly boardings made by evening riders is chiefly attributable to the higher average number of weekend boardings made by this group. Whereas the range of Saturday boardings among other weekday RegularService riders is from 1.6 to 1.8 , among evening riders the number of Saturday boardings averages 2.2. Other riders average 1.0 to 1.3 Sunday boardings; evening riders average 1. 6.

Figure 15 illustrates boarding activity by day among weekday Regular-Service riders in each time period. Note that on weekdays the proportion of riders boarding two buses per day is highest during each time period except the evening, when the proportion boarding foür buses is highest.

With the exception of the evening period, at least a third of the weekday riders in each time period do not ride the bus on Saturdays. Among evening riders only about a quarter do not use the bus on Satürdays. On Sundays, too, evening riders are more likely to ride the bus than are riders in other time periods.

Boarding activity also tends to vary by where bus riders live, as shown in Table 109. Weekday Regular-Service riders from the San Gabriel Valley, South Bay Sector and the Long Beach sector tend to account for the fewest boardings during the month, about 76 to 78 boardings. Riders who live in the downtown and East Los Angeles sectors account for the highest number of monthly boardings, about 98.

Although there was an insufficient number of respondents from many sub-sectors, the data in Table 109 suggest that there are wide variations in boarding activity within major sectors. Riders from the West Los Angeles sector as a whole, for example, average 88 boardings per month. Riders living in the West Hollywood and Los Feliz sub-sectors, however, average only 78 boardings, whereas those living in the Pico Corridor average 101 boardings. Similar variation can be seen within other major sectors as well.

Table 110 demonstrates the relationship between car availability and boarding activity. The number of boardings made on any given day of the week tends to decrease as the ratio of cars per person in the household increases. On weekdays, then, riders whose households do not own a car average 3.5 boardings, whereas those who have 75 or more cars for each person in the household average only 3.0 boardings.

On Saturdays, riders from households with no car average 2.1 boardings. Riders from households in which every member has a car average less than t boarding. On Sundays, riders who have no car available average 1.5 boardings. Those who live in households that have a car available for each resident average only .5 boardings.

Monthly boarding estimates reflect the same relationship with car availability. Riders who have no cars available average over 93 boardings a month, whereas those who have at least . 75 cars per resident average only about 74 boardings.

The histograms in figure 16 show boarding distributions by relative car availability. Especially notable is the relationship between car availability and the proportion of riders who do not use the bus on weekends. Only about one-quarter of the weekday Regular-Service riders with no car in the household do not ride the bus on Saturdays. The proportion of riders who don't use the bus on Saturdays increases as the ratio of cars to persons increases. Among riders who live in households where each resident has a car. 65\% do not ride the bus on Saturdays.

The same relationship is found when Sunday boardings are considered. Among riders from households with no cars about $40 \%$ do not ride the bus on Sundays. This proportion, too, increases steadily as the car availability ratio increases. Of the riders whose households own a car for each resident, over $80 \%$ do not ride the bus on Sundays.

The relationship between rider age and boarding activity is shown in Table 111. The two age groups at the ends of the age scale exhibit unique patterns. The youngest group of riders - under 19 years old - and the oldest group - 62 or older - both average 3.2 weekday boardings, as opposed to the other age groups, which average 3.3 to 3.5 daily boardings. On Saturdays, too, the youngest and oldest weekday Regular-Service riders make fewer average boardings than riders in other age groups. Young riders average 1.6 boardings on Saturdays, senior citizens average 1.7 and all other riders average 1.8 to 1.9.

On Sundays, young riders and senior citizens exhibit levels of boarding activity not only different from that shown by other riders, but also different from each other. Whereas other rider age groups average 1.2 to 1.4 boardings on Sündays, riders under 19 years old average only . 9 boardings. Senior citizens, on the other hand, are at the high end of the scale, averaging 1.6 Sunday boardings.

Overall, riders under 19 tend to make the smallest number of boardings during the month - about 78. Senior citizens average only 80 boardings per month (followed closely by riders in the 40 to 49 age group, who average 81 boardings).

Riders in the remaining age groups average 87 to 90 boardings during an average month.

The histograms in figure 17 show the distribution of boardings among weekday Regular-Service riders in each age category. Most riders make two boardings on an average weekday, although those in the 19 to 29 and 50 to 61 age groups are about as likely to make four boardings.

With the exception of the señior citizen age group, from one third to $40 \%$ of the weekday Regular-Service riders do not usually board a bus on Saturdays. Among senior citizens, only about $25 \%$ do not use the bus on Saturdays.

Senior citizens are more likely to ride the bus on Sundays as well. From $42 \%$ to $63 \%$ of riders in other age groups do not ride on Sundays. Only about a third of the senior citizens do not ride on Sundays.

There are differences in levels of boarding activity among different ethnic groups too. Table 112 shows that Black riders on weekday Regular-Service lines tend to board more buses during a typical month than do riders in any other ethnic group. Black riders make 91 boardings a month, Latinos make about 86 and Whites and Asians make only about 80.

Figure 18 shows that White weekday Regular-Service riders are least likely to use the bus on weekends. About $44 \%$ of the White riders do not board a bus on Saturdays and over $51 \%$ do not board on Sundays.

Table 113 shows that boardings tend to decline as annual household income increases. Among riders with household incomes below $\$ 15,000$, the average number of monthly boardings ranges from 89 to 93 . Among riders with incomes between $\$ 15,000$ and $\$ 20,000$ the average number of boardings is 86 per month and among riders whose income ranges between $\$ 20,000$ and $\$ 24,999$ the average number of boardings is about 80. Among those with incomes above $\$ 25,000$, the average number of boardings is only 72 per month.

Figure 19 shows boarding distributions by annual household income. On weekdays; the proportion of riders boarding two buses a day increases as income increases. Among low income riders $37 \%$ make just two boardings a day. Among high-income riders 47\% make two boardings. The proportion of riders making six or more weekday boardings is seen to decrease as income goes up. Among low-income riders $17 \%$ board six or more buses on a typical weekday. Among high-income riders only about $8 \%$ board six or more buses.

There is also a relationship between income and büs use on weekends. Only about $16 \%$ of the low-income weekday regular
service riders do not úse the bus on Saturdays. Among high-income riders, at least $60 \%$ do not ride on Saturdays.

Up to $36 \%$ of low-income riders do not use the bus on Sundays, among high-income riders, however, up to 75\% do not board a bus on Sundays.

TABLE 106
AV̇ERAGE NUMBER OF BOARDINGS PER WEEKDAY REGULAR-SERVICE RIDER
BY BUS. LINE

Mean Number of Boardings Number of

Line	Weekday	Saturday	Sunday	Per Mö	Respondents
12	3.1	2.0	1.5	76.9	101
18	2.9	2.0	1.2	75.3	54
29	3.8	2.0	1.7	96.3	121
32	3.4	2.2	1.6	83.3	82
44	3.5	2.1	1.5	88.4	233
47	3.9	2.1	1.7	99.6	84
73	3.6	1.8	. 9	84.0	45
81	3.6	1.6	1.2	91.3	179
86	3.2	1.6	1.0	77.9	165
88	3.0	1.5	1.2	77.4	88
89	3.6	2.0	1.6	90.6	222
91	3.0	1.9	1.4	77.9	137
96	3.3	1.5	1.1	84.6	21
114	2.8	1.6	. 8	71.3	183
152	2.8	1.5	1.1	71.4	89
155	3.3	. 7	. 3	75.8	33
156	3.4	1.4	. 6	81.0	10.3
157	3.5	2.0	1.3	87.3	129
160	3.6	1.4	. 9	86.0	53
164	3.3	1.4	1.0	79.0	91
165	2.1	1.2	. 9	75.7	63
166	2.9	1.3	. 9	70.9	63
168	3.1	1.2	. 6	72.5	56
169	3.3	1.4	. 8	78.8	150
175	2.7	1.6	1.3	71.7	97
210	3.7	1.9	1.3	92.8	197
354	5.9	2.7	1.0	103.0	46
424	3.4	1.4	1.0	79.7	90
425	3.5	1.8	1.1	87.3	182
431	3.3	1.2	. 7	77.5	88
435	3.0	1.4	. 8	72.5	132
451	$3 \cdot 3$	1.0	. 6	79.2	4.5
452	3.1	1.0	. 3	76.6	22
453	2.8	. 4	. 6	67.1	30
454	2.6	. 8	. 6	64.6	48
484	3.1	1.0	. 5	74.1	50
488	2.4	1.1	. 7	79.1	11.5
813	3.0	1.2	. 8	72.9	65
821	3.3	. 8	. 6	73.6	37
822	3.2	1.6	. 8	75.9	57
826	3.3	2.0	1.5	87.7	78
831	3.2	. 9	. 5	74.2	43
840	3.7	1.6	1.0	89.6	93
844	2.5	. 9	. 6	65.7	128
846	3.0	1.2	. 8	73.0	221
861	3.0	1.2	. 7	71.0	127
867	3.2	1.8	1.0	82.4	74
869	2.9	1.0	. 5	66.7	131
871	4.4	1.5	. 9	10.9 .6	163
872	2.8	1.6	1.0	69.9	44
Overall	3.3	1.7	1.3	85.0	49.48

TABLE 107
AVERAGE NUMBER OF BOARDINGS PER WEERDAY REGULAR SERVICE RIDER BY TYPE OF FARE

Type of Fare
Mean Number of Boardings
Cash, Ticket

Transfer
3. 1
1.4
. 9
76.5

2397
Base Pass
3.8
2. 4
1.8
97.8

868
$\begin{array}{llllll}\text { Express Pass } & 3.0 & 1.6 & .8 & 73.5 & 155\end{array}$
$\begin{array}{lllllll}\text { Under } 19 & \text { Pass } & 3.6 & 2.0 & 1.2 & 89.2\end{array}$
College/Vocational Pass
3.8
2.0
1.4
94.9

223
Senior Citizen
Pass 3.4
1.9
1.8
86.8

244

Handicapped
Pass

Tourist Pass
Other
Overall
3.3
1.7

1. 3
85.0

4521

* Sample size too small to allow valid statistical comparison.


FIGURE 14 BOARDINGS PER DAY BY TYPE OF FARE

TABLE 108
AVERAGE NUMBER OF BOARDINGS PER WEEKDAY REGULAR-SERVICE RIDER BY TIME PERIOD

Time Period	Mean Number of Boardings				```Number of Respondents```
	Per   Weekday	Per   Saturday	Per   Sunday	Per   Month	
AM PEAK	3.5	1.6	1.0	86.6	905
AM BASE	3.4	1.7	1.3	83.2	918
PM BASE	3.4	1.8	1.3	84.5	1481
PM PEAK	3.3	1.8	1.2	84.1	1408
EVENING	3.5	2.2	1.6	92.5	237
OVERALL	3.3	1.7	1.3	85.0	4949



FIGURE 15
BOARDINGS PER DAY
BY TIME OF DAY

Sub-Sector	Mean mumber of Botrdinst				Muaber of Eespondents
	Weokaty	$\begin{aligned} & \text { Fer Day. } \\ & \text { sidurday } \end{aligned}$	Sunday	$\begin{aligned} & \text { Per } \\ & \text { Month } \end{aligned}$	
Domitomm Sector	2.6	9.7	1.4	97.5	55
Milahlre Corr	3.1	1.6	1.1	98.7	143
Plico Corr	2.1	2.1	1.5	100.7	93
Eaho Park	2.7	1.7	1.3	83.9	49
Los Fellz	2.3	1.3	. 9	78.3	55
Holly	2.9	1.8	1.3	88.7	133
W. Holl wood	2.5	1.5	9.2	77.9	71
Park L Erea	-	-	*	-	26
Boveriy mila	-	-	-	-	9
Mastupod	-	-	-	-	4
Prentuod/Pac Pal	-	-	-	-	5
vest $b a$	-	!	-	-	7
Century city	-	-	-	-	1
Venice	-	-	$!$	-	15
Santio Monlca	-	*	*	-	10
Melibu-Topengo	-	-	-	-	43
wasteheater-Lax	-	-	-	-	17
Culver City/Polms	-	-	-	-	11
Inglevoot	3.1	1.9	1.5	93.4	92
WLA Sector.	2.8	1.6	1.2	88.4	784
Crenahou Corr	3.1	1.6	. 9	92.1	206
Vestern ave Corr	2.6	1.4	1.2	95.6	61
Hiptor Piy Corir	2.7	1.4	. 8	82.2	128
Central ave Corr	3.6	2.5	1.5	102.3	81
Cisplion	2.3	1.1	. 4	89.7	163
South Central Sector	3.0	1.6	1.0	97.4	639
Vernon-AP-Bell	2.9	1.6	-9	89.7	68
Lmuood/So.Ginte	3.4	1.2	. 9	101.7	60
East Central Sector	3.0	1.5	. 9	92.0	128
ELA_Boyle Hta	3.3	1.5	- ${ }^{\text {A }}$	98.5	119
commerce	,	,	-		. 1
Montebello	-	-	-	-	11
ELA Sector	3.3	1.5	. 8	97.8	131
Linc Hz/El Sereno	2.4	1.6	9.0	71.9	74
Highl ond/Gl osisel					42
Glendale/Eagle RK	-	-	!	-	${ }^{28}$
Le Conisdo/Le Crisint	-	*	-	-	7
Sunland/7ujunga	-	!	4	-	21
311 verlake	-	$\bullet$	-	-	16
Worth Central Sector	3.0	7.7	1.2	84.2	188
Suñ valley		-	-	-	35
Burbenk	-	-	-	-	4
N. Hoilymood	2.1	1.9	. 7	79.1	146
Ven Huys	2.6	1.3	. 9	79.4	200
Shermis Oaks	-	-	-	-	35
Enctino	-	!	-	*	39
Tarzans	-	-	-	-	12
Moodland HIL1s	${ }^{\circ}$	-	-	$\bullet$	29
Canoga Park	2.6	. 8	. 7	74.3	B6
West SFi	${ }^{6}$	-	-		6
Pacolua/Sn Fern	2.3	1.2	. 8	82.7	126
Grineda/Misision	3.0	. 9	. 4	89.?	55
Morthridge	-	-	-	-	36
Chetsuorth	-	-	-	:	17
Reseda	-	$\bullet$	-	$\bullet$	42
SFV sector	2.7	1.1.	. 7	80.9.	905
altaden*	-	*	-	-	38
Arcadia/Sra Madre	!	-	-	-	16
Monrovia/Duarte	-	-	-	$\bullet$	8
Pasadena/S. Pas	2.6	1.2	. 5	84.7	123
Azusa/GIendor:	.	$\cdot$	-	,	14
Balduin Park	-	-	-	-	17
Covinam, Covina	-	-	-	$\bigcirc$	33
0 Monte	2.4	. 6	$\cdot 4$	67.6	52
1. Prente	,	-	-	-	21
Montry Pk/Rosend	2.0	1.4	. 7	77.8	57
San Gab/Templ	-	-	-	-	26
Malnut/Industry	-	-	-	-	3
Alhambra	-	-	-	$\bullet$	14
Pomona viy	2.4	. 8	$\cdot 3$	74.0	165
Sci Sector	2.5	1.0	.	76.3	587
Downey	*	$\bullet$	$!$	-	22
unitider	*	-	-	-	38
14 hireda	-	-	-	-	B
Morwalk/3tafespess	-	-	-	*	18
Plico livars	$\bullet$	!	$!$	-	21
Artosis/Carritos	$\cdots$	$\bullet$	-	-	23
Belliflur/Parmit	2.7	1.5	. 9	81.5	52
Mio-Cities sactor	3.1	. 9	. 5.	82.4	182
E1 Segundo	$\bullet$	-	-	-	24
Gardena	$\cdots$	$\bullet$	-	-	35
Heuthorne /land ale	1.7	. 7	.	71.0	95
Reach Citlea	3.0	. 8	. 5	85.9	141
Pilos verdes	*	,		-	48
Forrance/Lomita	-	$!$	-	-	36
In Padro/vimatn	-	-	-	-	46
cerson	-	-	-	$\because$	4
Pouth Say Sentor.	$2 \cdot 6$	1.0	*	17.7	469
Lonswod Begen					${ }^{6}$
Lons Bapen	3.3	1.3	. 9	88.7	59
Liong Biech Seator	3.0	1.2	. 7	78.4	65
Ovarell	3.3	1.7	1.3	85.0	133

TABLE 1.10
AVERAGE NUMBER OF BOARDINGS PER WEEKDAY REGULAR-SERVICE RIDER BY NUMBER OF CARS PER PERSON IN HOUSEHOLD

Number of Cars Per Person	Mean Number of Boardings				
	Weekday	Par Day	Sunday	Per Month	Number of Respondents
None	3.5	2.1	1.5	93.2	1626
Under . 25	3.3	1.7	1.1	81.8	359
$.25+.49$	3.2	1. 4	. 8	77.8	930
$.50+.74$	3.2	1.1	. 6	76.7	1143
$.75+.99$	3.0	1.0	. 6	73.5	189
1.00 or more	3.0	. 9	. 5	74.0	432
Overall	3.3	1.7	1.3	85.0	4679



1
6
0

TABLE 111
$\frac{\text { AVERAGE NUMBER OF BOARDINGS PER WEERDAY REGULAR-SERVICERIDER }}{\text { BY AGE GROUP }}$

	Weekday	Saturday	Sunday		
Under Month 19	3.2	1.6	.9		Number of   Respondents
19 to 29	3.4	1.9	1.3	88.1	1270
30 to 39	3.5	1.8	1.4	89.9	618
40 to 49	3.3	1.8	1.2	80.9	317
50 to 61	3.5	1.8	1.4	86.8	326
62 or 01der	3.2	1.7	1.6	80.0	287
0iverall	3.3	1.7	1.3	85.0	4438



## TABLE 112




## TABLE 113

AVERAGE NUMBER OF BOARDINGS PER WEEKDAY REGULAR-SERVICE RIDER BY ANNUAL HOUSEHOLD INCOME

	Mean Number of Boardings				
	Weekday	$\frac{\text { Per Däy }}{\text { Sätürday }}$	Sunday	Per   Month	Number of Respondents
Under \$5,000	3.5	2.3	1.7	88.7	753
\$5,000-\$9,999	3.6	2.2	1.6	92.8	649
\$10,000-\$14.999	3.5	1. 9	1.5	89.2	612
\$15,000-\$19,999	3.4	1.7	1.1	86.1	426
\$20,000-\$24,999	3.3	1.1	. 6	79.7	361
\$25,000 or more	2.9	1.0	. 6	72.3	627
Overall	3.3	1.7	1.3	85.0	34.28


-
0
0
0

## METHODOLOGY

The 1981 Ridership Tracking Study represents the continuing efforts of the SCRTD to measure the market for public transit in the Los Angeles area. The on-board surveys condücted to collect ridership data for this study are but the latest link in a chain of surveys extending back to 1975, when a professional Market Research Unit was first installed at RTD. Early on, it was ascertained that a comprehensive program of ridership surveying was needed to collect data on the demographic and trip-making characteristics of RTD patrons and on their attitudes and opinions regarding pertinent transit issues. The short-term need for these types of data was to provide insights into the effects of changes in service levels or fares. Over the long term, the data obtained from these on-board surveys contributed to the SCRTD Ridership Data Base, allowing the longitudinal study of changes in the demographic composition of ridership, in trip needs or in attitudes and opinions.

One of the first steps in developing an on-board survey methodology at RTD was to analyze survey activity at the agency prior to 1975. In previous years a limited number of small-scale on-board surveys had been conducted to collect data to support implementation of service changes. Reports on these sürveys and samples of the questionnaires used were gathered together by Market Research for analysis. Examination of these pre-1975 surveys led to three main conclusions:

1) Whenever faced with the need for data relating to a particular project, the project managers tended to design a questionnaire "from scratch", so that a wide variety of questionnaires were used -- practically a different questionnaire for each project.
2) This "re-inventing" of the survey instrüment for each project resulted in distinct questionnaires with only a few similarities, and these probably more coincidence than the result of coordination. The similarities in the different questionnaires centered around questions relating to a small group of variables which were repeated on nearly è viery questionnaire - albeit in different form. These "core variables" which appeared on most, if not all, the on-board surveys before 1975 included:

Rider Age
Rider Gender
Household Income
Number of Cars in Household
Bus Use Frequency
Trip Purpose Type of Fare

Trip Origin
Trip Destination
Boarding Point
Alighting Point
Mode of Access
Mode of Egress

Although most of the questionnaires designed before 1975 sought information pertaining to many of these core variables, the questions were posed in different language on each questionnaire, and multiple-choice answers to these questions were categorized into different intervals. The effects of such inconsistent and arbitrary questionnaire design were to nullify any attempts at long-term analysis of ridership trends.
3) There was an obvious lack of training and professional experience in the fields of sampling, questionnaire design, development and implementation of survey methodology and the analysis of survey results. These tasks would normally lie outside the range of duties performed by the employees who conducted on-board surveys prior to 1975, just as their duties might be foreign to a schedule maker or a marketer.

As a result of its analysis of previous survey work conducted at RTD, and after a series of meetings with personnel of the Planning and Marketing Departments, Market Researach designed a stanardized on-board questionnaire. This questionnaire includes the "core variables" already. identified as being almost universally required by either department, plus other important variables. To say that the questionnaire was standardized does not imply that it was cast in concrete. Rather, it is a flexible instrument to which other questions can be added when they are necessary to the needs of a particular research project. The standardization of the questionnaire does indicate, however, that whenever an on-board survey is conducted at this agency, information about the important core variables will be collected and that the answer categories relating to these yariables will not change arbitrarily from one survey to the next. This level of standardization allows information pertinent to the study at hand to be gathered, while at the same time providing data on core variables that are comparable over time.

A large-scale on=board survey such as the 1981 Ridership Tracking Study is a relatively complex undertaking. the flow chart designated as Figure 20 indicates the large number of tasks which must be completed in the research process. It is not a strictly linear process. The successful administration of such a complex project often requires that work be conducted on seveal tasks simultaneously. An explanation of the major tasks in the on-board surveying process should be illustrative of its complexities.

## Define Purpose of Survey

Before embarking on a research project, the researcher must have clearly in mind the specific objectives to be achieved. only when the problem is carefully and precisely defined can research be designed to provide pertinent information. Each project should have one or more objectives, and the researcher should not proceed to the other steps in the process until these objectives can be explicitly stated. The objectives of the 1981 Ridership Tracking Study numbered five:

1) To compare demographic characteristics and trip needs of RTD riders by type of service -- Peak-Hour Express, Subscription, and Regular-Service lines.
2) To obtain measurements of change in the demographic profile and trip needs of RTD riders since the previous major on-board survey in 1978.
3) To measure rider attitude and opinions concerning proposed levels of increased fares and discount fare levels aviailable to students and senior citizens.
4) To provide base data against which to measure the effects of subsequent fare changes. A mail-out survey to respondent households six months after the 1981 fare increase was designed to measure the effects of that increase.

5) To maintain a base of comparable data so that long-term trends in ridership characteristics and trip needs can be tracked longitudinally.

Identify Population To Be Surveyed
The population to be surveyed for the 1981 Ridership Tracking Study consisted of weekday riders on RTD Regular-Service lines, Peak-Hour Express lines and Subscription lines. Patrons of Park and Ride lines would not be surveyed because a survey had been conducted on these lines as recently as 1980 . BEEP lines and special service lines such as the race track or Hollywood Bowl lines were not to be included in the population to be surveyed.

## Ascertain Budget

The budget for the 1981 Ridership Tracking Study was set at around $\$ 11,000$, excluding RTD staff time and in-house expenses. The major expense was the data collection phase of the survey. Interviewers logged nearly 1,000 hours on board RTD buses distributing and collecting questionnaires. At the time of the sürvey, in May, 1981, the cost of interviewers was $\$ 7$ per hour, including supervision charges. Total labor cost for interviewers was $\$ 6,608$. Table 114 shows questionnaire distribution costs by line. Costs per respondent varied from a low of 466 to a high of $\$ 2.23$. The mean cost per respondent was $94 \%$, the median cost $91 \%$.

Table 115 looks at the distribution of interviewer labor costs per respondent. The table shows that on $54 \%$ of the Regular-Service lines surveyed labor costs were under $\$ 1.00$ per respondent. Ninety-two percent of the time, labor costs were under $\$ 1.50$ per respondent.

Additional costs were incurred for interviewer mileage and travel time to and from the point where they boarded the bus to begin their assignments. These costs were $\$ 1,456.86$, or an additional $21 \%$ per respondent, on average. These costs could not be allocated by büs line. Total cost for data collection on fifty weekday Regular-Service bus lines, then was \$3,064.86.

Questionnaire distribution and collection on the Regular-Service lines was carried out by interviewers employed by the market research firm of Integrity Research. Distribution and collection of questionnaires on Peak-Hour Express lines and on Subscription lines was handled by the RTD drivers. There was no additional expense for data collection on these lines, therefore.

TABLE 114
QUESTIONNAIRE DISTRIBUTION COST

Line	Hours	Mins:	$\begin{aligned} & \text { Labor } \\ & \text { at } \\ & \$ 7 / \mathrm{Ar.} . \end{aligned}$	Number of Questionnaires Distributed	Number of Respondents -	Response Rate	Labor   Cost   Pex   Boarding	Labor   Cost   Per Respon-   dent*
12	49	8	. 343.93	479	154	32.2\%	. 72	2.23
18	10	35	74.08	120	101 :	84.2	. 62	. 73
29	44	26	311.03	678	181	26.7	. 46	1.72
32	9	54	69.30	240	133	55.4	. 29	. 52
44	40	54	286.30	817	338	41.4	. 35	. 85
47	22	54	160.30	310	116	37.4	. 52	1.38
73	11	26	80.03	103	78	75.7	. 78	1.03
81	20	28	143.27	323	220	68.1	. 44	. 65
86	21	46	152.37	431	200	46.4	.35	. 76
88	12	23	86.68	358	118	33.0	. 24	. 73
89	23	18	149.10	59.	322	54.0	. 25	. 46
91	41	50	292.83	322	183	56.8	.91	1.60
96	5	23	37.68	52	27	51.9	. 72	1:40
114	20	46	145.37	394	285	72.3	. 37	. 51
152	21	07	147.82	298	133	44.6	. 50	1.11
156	20	34	143.97	171	151	88.3 .	. 84	. 95
157	21	40	151.67	320	173	54.1	. 47	. 88
155/160	21	41	151.78	254	107	42.1	. 60	1.42
164/165	22	00	154.00	367	218	59.4	. 42	. 71
266/168	22	59	160.88	293	172	58.7	. 55	. 94
169	20	51	145.95	318	233	73:3	. 46	. 63
175	20	16	141.87	153	120	78.4	. 93	1.18
210	45	00	315.00	540	238	44.1	. 58	1.32
354	9	12	64.40	92	68	73.9	. 70	. 95
424	22	04	154.47	231	110	47.6	. 67	1.40
425	21	12	148.40	500	. 276	55.2	. 30	. 54
431	21	00	147.00	264	142	53.8	. 56	1.04
435	19	58	139.77	341	237	69.5	. 41	. 59
451/453	20	41	144.78	208	126	60.6	. 70	1.15
452/454	21	06	147.70	172	114	66.3	- 86	1.30
484	8	49	61.72	255	78	30.6	. 24	. 79
488	21	23	1499.68	288	171	59.4	. 52	. 88
813	23	43	152.02	87	75	86.2	1.75	2.03
822	9	57	69.65	91	80	87.9	. 77	. 87
826	20	20	142.33	181	97	53.6	. 79	1.47
821/831	20	49	145:72	226	133	58.8	. 64	1.10
840	10	54	76.30	226	137	60.6	. 34	. 56
844	20	08	140.93	276	195	70.7	. 51	.72
846	23	48	166.60	352	259	73.6	. 47	. 64
861	21	19	149.22	246	169	68.7	. 61	. 88
867	21	56	153.53	188	118	62.8	. 82	1.30
869	22	57	160.65	292	190	65.1	. 55	. 85
871	23	42	165.90	436	219	50.2	. 38	. 76
872	11.	51	82.95	112	69	61.6	. 74	1.20
TOTAL	943	56	\$6,608.00	13,001	7,064	54.34	. 51	. 94

- Nileage and miscellaneous charges were $\$ 1,456.86$, or an adaitional 21 cents per respondent.

TABLE 115
DISTRIBUTION OF INTERVIEWER LABOR COST PER RËSPONDDENT

Interviewer Labor Cost Per Respondent	Number of Lines	Percent of Lines	Cumulative Percent
Less than 500	1	2.0\%	2.0\%
50t - 59x	5	10.0	12.0
60¢ - 696	3	6.0	18.0
70t - 79t	8	16.0	34.0
80d - 89	6	12.0	46.0
90¢ - 99t	4	8.0	54.0
\$1.00-\$1.09	2	4.0	58.0
\$1.10-\$1.19	6	12.0	70.0
\$1.20-\$1.29	1	2.0	72.0
\$1.30-\$1.39	5	10.0	82.0
\$1.40-\$1.49	5	10.0	92.0
\$1.50-\$1.59	0	-	92.0
\$1.60-\$1.69	1	2.0	94.0
\$1.70-\$1.79	1	2.0	96.0
\$1.80-\$1.89	0	-	96.0
\$1.90-\$1.99	0	-	96.0
\$2.00-\$2.09	1	2.0	98.0
\$2.10-\$2.19	0	-	98.0
\$2.20-\$2.29	1	2.0	100.0\%
Total	50	100.0\%	

Another important budget item to be considered is the cost of questionnaire editing and coding, operations which must be completed before the data reduction phase of the study can begin. Temporary as-needed personnel were hired to code and edit questionnaires and provide assistance with other tasks. The cost of these temporary data technicians in FY82 was $\$ 8.32$ per hour. In spite of the enormity of the coding and editing tasks with which Market Research was faced, the Personnel Department would allow the hiring of only one full time and one part-time data technician. This unnecessary restriction on personnel availability lengthened the amount of time needed to perform the coding and editing to well over a jear (and actually prevented the full completion of geo-coding on Peak-Hour Express and Subscription Lines). Due to the fact that the temporary data technicians were also required to work on other tasks and projects during the time they were at the District, it is difficult to ascertain precisely the amount of time actually spent on coding and editing questionnaires collected on weekday Regular-Service lines.

Data reduction of the questionnaires collected on Regularmervice lines was conducted by RTD's own keypunch department. This in-house service was not included in the project budget.

Write Project Proposal
Before Market Research can proceed on any project, the researcher must write a brief Project Proposal. This proposal contains a section which explains the Problem and Backgroünd and a section describing the Method and Project Design to be used to approach that problem. The researcher also estimates the project Costs and Timing. Figure 21 shows the original Project Proposal for the 1981 Ridership Tracking Study. This project Proposal had to be approved by the requesting department, Scheduling, as well as by the Manager of Planning and Marketing before the project design could be begun.

## Write Purchase Requisition

The next step in the project approval process was to write a Purchase Requisition, to be submitted to Purchasing. The study of weekday ridership was being paid out of the requesting department's büdget. Costs of data collection were to be under $\$ 8,000$, as shown in Figure 22.

## Title : 1981 Fare Change Evaluation

That RTD's fare structure will be adjusted in July is a fore.
Problem \& Background gone conclusion, If Proposition A survives court challenges: the base fare will be slashed to 504 , a considerable 154 cut. - If Prop $A$ does not prevail, the base fare might be increased to as much as 85 c. No matter what the direction and magnitude of fare adjustment, however, data will be needed for an evaluation of its effects in five categories: 1) Number of boardings 2) Fare distribution 3) Fare elasticities 4) Trip patterns 5) Rider attitudes. Both Service Analysis and Market Research will contribute to the data pool needed for the evaluation.

Method \& Design The tasks to be done by Market Research center around a "tracking study" of Method \& The first phase of the study would be a series of on-board surveys to establish benchmark data for weekday, Saturday and Sunday ridership before the adjustment. The attached draft questionnaire includes the core group of major demographic and trip variables contained on the standard on-board questionnaire plus attitudinal variables. Representative samples of bus lines, stratified by type of service, area served and day, will be surveyed. The second phase would require a post-fare-change follow-up study of the riders who responded to the first phase on-board survey. Follow-up would be effected by a survey mailed to these riders at the home addresses noted on the on-board questionnaires.

## Costs \& Timing

On-board survey of weekend service will be conducted in March as authorized under Phase 2 of weekend service evaluation. Weekday on-board surveys to be conducted in May. Follow-up mailout surveys to be conducted in September. Project costs $\$ 19,390$, excluding RTD:staff time and in-house expenses. (See attached breakdown of cost estimates).
comments. Planning and Scheduling to share costs of the project.
In addition to serving as an evaluation of the effects of the fare change, this study will provide current system-wide ridership data to-illustrate changes that have occurred in transit market since 1978, when the last major series of system-wide surveys was completed. To ensure that follow-up survey will be sent to same respondents who completed on-board questionnaires, we need to collect their names and addresses. Sügest motivation such as drawing for free bus passes Approved to sy timulate on-board survey response and collection of names.
G. L. MCDoñald

## Ed Vandeventer

Return to: J. Matosian, Market Research


After the head of the requesting department approved the Purchase Requisition, Market Research had to write a Purchase Request Memorandum to the chairman of the Purchasing Committee, as shown in Figure 23, and request a date to appear before that committee. This committee is composed of representatives of the following RTD departments: General Counsel, EEO, Safety, Bus Facilities Engineering, Operations, Accounting and Pürchasing. The Purchasing Committee evaluates the adequacy of justification for the project or purchase, reviews the technical aspects of the requested project or purchase and ensures that the project or purchase meets the District's legal and safety requirements: At the April 29, 1981 meeting of the committee, the 1981 Ridership Tracking Study was recommended for approval. Following the approval by the committee, the Project Requisition was approved by the General Counsel and the General Manager.

## Obtain Bids From Vendors

Because of the necessity to collect on-board survey data before the end of May, an informal bidding procedure was approved. Five potential vendors were slated for telephone contact by the researcher, as shown in Figure 24. These vendors were contacted. Two of them submitted bids for the data collection phase of the project.

Select Vendor
After the bids were obtained, they were evaluated by Market Research. The vendor selected to collect weekday data on Regular-Service lines was Integrity Research, the low bidder.

## Contract Approval

The final preparatory administrative step to be completed before the survey work got under way was for the legal Department to write up a formal contract with the vendor, based on information supplifed by Market Research. After the contract was signed, the survey could begin. A copy of the contract appears as Figüre 25.

Identify Variables
Another primary step in the on-board survey process is to develop a questionnaire that will extract from the population being surveyed the data necessary to meet the project objectives. As discussed above, RTD on-board surveys since 1975 have included a set of ncore variables" which meet the basic informational needs of the Planning and

# SOUTHERN CALIFORNIA RAPID TRANSIT DISTRICT 

	425 south daln street los Antigles		
	do not incluge more than one subject in this communication		
4		date:	April 21, 1981
Waiters			
atosian			
Request:	981 Fare Change	uati	

When RTD increased bus fares in 1978; Market Research conducted a series of on-board surveys on a representative sample of 40 bus lines. The purpose of these surveys was to measure the impact of the fare increase on various groups of riders, such as the elderly, students and the poor. The surveys provided extensive data descriting the demographics of RTD riders, their transit use patterns and their attitudes concerning RTD and its service.

The 1978 on-board surveys were the first major comprehersive ettempt to provide important benchmark data about weekday ridership. After three years, however, the data are not relevant to 1981 ridership patterns. Market Research Las again been requested to evaluate the effects of the fare change scheduled for July 1, 1981. It is imperative, herefore, that fresh ridership data be collected in three main azeas of interest:
i) Elasticity of ridership demand by market segmen: ,
2) Recovery rates for various :.iarket segments after the fare change. How soon do lost riders retur: : Are some riders lost forever? How many riciers diminish riding levels, permanently or temporaricy? At what rate does R'ID gain new riders?
3) Linked trip descriptions by market segment for weekdays and weekends. How many buses are ridder: per trip? How many transit trips per day are made? Can a model of the pass buying decision be made?

The first phase of the fare change evaluation will require on-buird surveys to be conducted on 50 RTD bus lines in weckday service, in order to establish current market descriptions, trif

Saynard Walters.
FIGURE 23 Cont'd
Page ?
April 21, 1981
patterns and attitudinal profiles. This information, collected before the fare change, will provide the bisis for the lacer evaluation of changes which oecur as a result of the change in fares.

In order to collect the data, surveyors will be necded to ride one randomly-selected bus run on each of the 5 itines during mid-May. Surveyors will be required to distribute questionnaires to every boarding passenger, collect completed questionnaires frem disembarking passengers and mointain accurate trip records. When passengersrefuse to fill out a questionnaire, surveyors will be required to note on the questionnaire that passenger's gender, ethnic background and boarding point.

It is estimated that about 800 manhours of surveyor services will be required. The cost is exfected to be below $\$ 8,000$.

This information must be collected defore the end of May. As a result, the time frame is rather short. We are requesting that an informal bidding process be used, botin because of tiee time constraints and because the task is straifhtforward, uncomplicated one. A list of proposec vendor̈'s is atwached for your convenience.
A.tt

Vendor ..... Bid
Garsen Research, Inc.
5711 Rawlings AvenueWoodland Hills, Ca.
This firm no longer doesfield work, but only focusgroups, telephone interviews, etc.
Integrity Research7219 Canby AvenueReseda, Ca.\$7 per interviewer hour (includingsüpervision) \& 22¢ per mile
Southern California Interviewing ServiceToo busy to bid on another project17200 Ventura BoulevardEncino, Ca.
National Marketing Research of California 347 South Ogden Drive
$\$ 9$ per interviewer hour (including supervision)
Los Angeles, Ca.
Weiser Research Consultants No Answer
6219 Van Nuys Boulevard
Van Nuys, Ca.

FIGURE 25
AGREEMENTT
between
INTEGRITY RESEARCH
7219 Canby Avenue, Suite $F$
Reseda, California 91335
and
SOUTHERN CALIFORNIA RAPID
TRANSI'T DISTRICTT
TO PROVIDE SERVICES TO EVALUATE
THE JUIY 1, 198l FARE CHANGE

# Received H前 - 1981 SCATD MARKET RESEARCH 

The Southern California Rapid Transit District (District) and Integrity Research (Consultant), the parties to this contract, hereby agree as follows:

## 1. SCOPE OF WORK

Consultant shall distribute, Monday through Friday, approximately 20,000 District-supplied questionnaires to every boarding passenger on fifty District bus lines. The times and lines will be designated by the Project Manager upon Consultant's commencement of work. Consultant shall collect completed questionnaires from disembarking passengers and maintain accurate trip records. Consultant shall note on each incompletely filled out questionnaire the passenger's gender, ethnic background and boarding point. Consultant shall return the collected questionnaires to the District's Project Manager at mutually agreed upon intervals during the survey period.

## 2. TIME OF PERFORMANCE

Consultant shall begin the survey on May 18, 1981, and return to District all collected questionnaires by June 12 , 1981.

## 3. DISTRICT PERSONNEL

The District's Project Manager is the Marketing Analyst from the Marketing Department.

## 4. PAYMENT

District shall pay Consultant an amount not-to-exceed $\$ 8,000.00$, to be billed at the rate of $\$ 7.00$ per hour. Consultant shall invoice the District upon project completion detailing the number of hours expended on each bus line.
5. CONSULTANT'S RELATIONSHIP TO DISTRICT

It is expressly understood that Consultant's relationship to District shall be that of an independent contractor.

INTEGRITY RESEARCH


SOUTHERN CALIFORNIA RAPID TRANSIT DISTRICT


APPROVED AS TO FORM:


Marketing Departments (and other deparatments and agencies as well, which often require the types of information obtained from on-board surveys).

Because one of the objectives of the 1981 Ridership Tracking Study is to provide base data against which to measure the effects of subsequent fare changes, additional attitudinal variables were included on the questionnaire. These variables were decided upon after a series of discussions with appropriate department managers and execütive staff members.

The variables included on the on-board questionnaire in 1981 were:

Demographic Variables:	Rider gender   Rider Age   Annual Household Income   Ethnic Background   Number of Persons in Household   Number of Cars in Household
Trip Variables:	Initial Mode of Access to RTD System
	Mode of Access to Survey Bus Mode of Egress from Survey Bus
	Linked Trip Bus Lines Ridden
	Trip Origin
	Trip Destination
	Home Address
	Point of Boarding Survey Bus
	Point of Alighting from Survey Bus
	Type of Fare
	Amount of Cash or Ticket Fare
	Frequency of Bus Use
	Average Number of Weekday Boardings
	Average Number of Saturday Boardings
	Average Number of Sunday Boardings
	Trip Purpose
Attitudinal Variables:	Rating of RTD Service
	Reason For Not Using RTD Monthly Pass
	Preference For Service Cuts
	vs. Fare Increase
	Preferred Senior Citizen Fare
	Levels
	Preferred High School stüdent
	Fare Levels

Preferred College Student Fare Levels
Prediction of Riding Levels by Proposed Fares
Opinion of Increased Headways Opinion of Evening Service Cuts
Opinion of Saturday Service Cuts
Opinion of Sunday Service Cuts
Opinion About General Fare Increases
Preference For Increases in Discount Fares
Opinion About Elimination of Transfers

## Develop Question and Answer Categories

As stated above, one of the objectives of on-board surveying at RTD has been to develop a base of data comparable over time so that long-term trends in ridership characteristics and trip needs can be tracked. To this end, questions and answer categories were kept as consistent as possible from survey to survey. This consistency simplifies questionnaire design immeasurably. The striving for consistency does not preclude the possibility of improvement in question design or response categorization. It does prevent arbitrary change for its own sake, however.

There are several conventions which have been followed in the design of the on-board questionnaire used by RTD:

1) All questions and response categories are stated as clearly and concisely as possible, in simple language. The key is simplicity. Because many of the respondents surveyed on RTD buses appear to have some difficulty reading, short words are used instead of long words.
2) Response to questions is made as easy as possible. To answer most questions on the questionnaire the respondent need only to check the appropriate category. Other questions require the respondent to write in a number, such as the number of people in their household or the number of buses they board during an average weekday. The most difficult questions for some respondents may require them to list the buses they ride on their linked trip or to write in their boarding and alighting points and trip origins and destinations.
3) All questionnaires are produced in both English and Spanish because of the large proportion of Spanish-speaking residents living in the SCRTD service area.
4) Response categories are mutually exclüsive and encompass all reasonable alternative answers to the question.

Format Questionnaire
When the basic on-board questionnaire was being designed in the mid-1970's, a series of meetings were held with the Planning and Marketing Departments to ascertain their data needs. out of these meetings grew a relative ranking of questions on the questionnaire in their order of importance to the District. The questions which appear near the beginning of the questionnaire describe the nature of the transit trip being taken by the respondent. These questions include mode of access and egress, boarding and alighting points, trip origin and destination, a listing of all buses ridden to complete a one-way linked trip, frequency of bus use and type of fare used to board the bus. These trip-related variables were deemed as being the most important information to be obtained from riders; for they describe the kinds of trips being served by the bus system.

The on-board questionnaire was divided into two columns in order to accommodate all the variables. The variables in the second column were deemed secondary in importance to the trip-related variables - they describe the demographic characteristics of the riders and quantify ridersi opinions about certain transit-related issues. At the top of the second column were placed the gender and ethnic background questions. These questions were printed here so that the interviewer could indicate the sex and race of those riders who refuse to take a questionnaire. The purpose of collecting data on these two variables by means of interviewer observation was two-fold: 1) to provide a more complete analysis of ridership in terms of these two important questions (the "response rate" was over $90 \%$ on these two items), and 2) to provide data against which to check for the effects of non-response bias. To find out, in other words, if riders who refuse to answer a questionnaire differ in some identifiable way from those who do cooperate.

A sample of the questionnaire used for the 1981 Ridership Tracking Study follows, in both the English-language and Spanish versions, in Figure 26.



FLEASE ANSUER ALL THE OUESTIONS AND RETURN THIS FORM TO THE RTD REPRESENTATIVE
№ 073692

1. How did \%			
on in in	$\stackrel{H}{4}$	$\frac{\omega m}{a}$	4
	$\begin{aligned} & i \\ & i \end{aligned}$		$\cdots$
QuETHONS 2 AND 3 DEAL WITH TOUR DURE ON THE BUS YOU ARE ON NOW.			
2 Whor didyourn on tin busy			
(Mapr, Sous)		asisisai)	1004
3. Whari wily your of tie bun?  			
OMinar Socent		cosowa)	(178)

4. Aker you mof dis ben, you wil:


QUESTIONS S, 6 ASD Y DEAL WITH YOÜ ENTIRE TITP: NOT JUST THE WIDE ON THIS ELS. THLSE QLESTHONS DEFINE YOUS ONE.WAY TRT HEOM STAET TO FMASHL
3. Whar did you tart the rip?
cesm










 OT TIMES YOU BOADDANY BTD EUS DLTENG AN AVIMAGI DAY. ADD UPALLTHE TIMES YOU USUALIY GET ONABLS DAY. ADD UPANL THE TIMES YOU UBUNLIY GET ONA
ONA TMPICAL DAY AND WEITE THE TOTAL DN THE
gPact

 WOEE AND TWO EUSES HOME YHEM WORE, TEST TOTAL wound be rous



tose meth Seuxtry?	
	(m) + m






## CUESTIONARIO PARA PASAJEROS



Design of the sample plan began after identification of the population to be surveyed and after the size of the study budget had been determined. The first step in establishing a sample plan is to decide whether it is necessary to stratify the lines to be surveyed and how that stratification is to be effected. For purposes of the 1981 Ridership Tracking Study, the 226 RTD innes extant at that time were stratified into eight different types: 1) Local lines. 2) Local lines with some peak hour express trips. 3) Local lines with day-long express service along a portion of their routes. 4) Peak-Hour Express lines, 5) Subscription lines. 6) Park and Ride lines. 7) Peak-Hoür Local lines (BEEP) and 8) Special service lines.

The decision to stratify lines was based on previous survey reesults that had indicated vast differences among riders' demographic characteristics and trip patterns on various types of lines. In order to stratify the 226 RTD ines. three main data sources were used: 1) Public timetables published by RTD for each of its lines, 2) Supervisor Summaries and 3) The RTD report entitled ${ }^{\text {Line }}$ Numbers. Operating Divisions, Line Names and One-way Route Miles." Without the use of these source materials, it would have been difficult to determine just how many lines RTD operated at the time the sample plan was being drawn. Each department within the District seems to have its own method of counting lines. Some departments coünt as one line any combination of two or three lines which are linked operationally. Buses operating on the $155 / 160$ lines, for example, alternate route numbers throughout the day. While operating along White Oak Avenue, the buses carry a ine 155 headsign. When operating on Laürel Canyon Boulevard, their headsigns indicate the 160 line designation. By collecting copies of all public timetables available, the research team was able to separate such operationally linked lines into separate components.

The public timetables also made it possible to identify in most cases the stratum to which a line belonged. Some lines which are operationally linked are really of entirely different types. The $493 / 494$ lines, for example, share a timetable, but are really quite distinct from each other. The 493 line operates in local service in the San Gabriel Valley every half hour throughout the day, from 5:25 AM to 7:41 PM. The line usually operates between Monrovia and the El Monte Station. During peak hours three trips operate in express service, extending the route from El Monte Station to the Wilshire District. The 493 also operates in local service on Saturdays and Sundays.

The 494 line, on the other hand, operates only in peak-hours during weekdays, originating in Glendora and going into express service at the El Monte Station. The line makes four peak hour trips to the Wilshire District in the morning, and four return trips during the evening peak. It does not operate on Saturdays or Sundays.

The public timetable for the $493 / 494$ lines helped to identify the correct strata in which to place each of the lines. The route maps in the timetable depicted the different origin points of the two lines. The trip times listed indicated that the 4.94 operated only during peak hours on weekdays, whereas the 493 operated all day every day of the week.

In order to clarify the correct stratum in which to place some lines, it was sometimes necessary to refer to the Supervisor Summary for the line in question. A sample of a page from a supervisor Summary for weekday service on the 488 line is shown in Figure 27. These Süpervisor Summaries provide information on the movements of each bus operating on a line. All trips made on the line are shown by direction for each bus run, along with the time at each time point. Supervisor Summaries were also invaluable during later stages of project design, especially when details of the sample plan were being developed and interviewer trip records were being compiled.

To identify BEEP lines and special service lines such as the Hollywood Bowl Park and Rịde lines or the race track lines, the RTD report on "Line Numbers, Operating Divisions, Line Names and One-Way Route Miles" was referred to by the research team. Figure 28 is a sample page from this report.

The results of the line stratification process are shown in the Appendix of this report in Tables A-VII through A-XIV. Data on the number of daily boardings and boardings per bus hour on each line were obtained from the RTD Service Analysis Section report entitled "Line Performance Trends Report." Lines in each stratum were ranked by the number of boardings per bus hour.

After all 226 lines in the RTD system had been stratified according to type, a second stratification was made among Local lines, Local lines with express trips during peak hours and Local lines with full-day express service along a portion of their routes. Each of these groups was stratified into light, medium or heavy ridership lines, according to


LINE NUMEERS, OPERATING DIVISIONS. LINE NAMES
AND ONE:- WAY ROUTE MILES

AEPCRT OF LINE NUMBERS, OPERATING DIVISGONS, LINE NAMES AND CNE-GAY ROUTE MILES. FCR THIS REPORT, ONE-GAY ROUTE MILES ARE CONSIDERED TO BE ONE-HALF THE ROUND TRIP DISTANCE OPERATED OVER THE LONGEST PREDOMINANT ROUTF OF EAC.H IIME.

the number of riders per bus hour. A light ridership line was defined as having 20 or fewer boardings per hour. A medium line carries 21 to 40 riders per hour, and a heavy line more than 40. The result of this second stratification was nine sub-strata from among which the sample lines to be surveyed were selected. (This second stratification was applied only to Regular-Service lines, i.e., the three types of local lines. Because the survey methodology called for a survey of all Peak-Hour Express and Subscription lines, no further selection had to be made among these lines.)

After the second stratification of Regular-Service lines had been effected, sample lines were selected randomly from each sub-stratum, using a table of random numbers. Although sampling theory assumes that the sample used is drawn at random, the actual fact is that obtaining a random sample is one of the greatest problems in research and surveying. It is of the greatest importance to remember that if a random sample is not used, statistical formulae relative to confidence levels and reliability do not apply. The scientific way to obtain random selection is by use of random numbers. When a table of random numbers is used in sample selection, each unit has an equal and independent probability of being included in the sample.

The researcher continued to draw a random sample of lines from each sub-stratum of Regular-Service lines until the number of boardings on the sample lines produced a total roughly proportional to that sub-stratum's representation among all RTD lines. In other words, the sample being selected would provide a proportional representation of the RTD system. Light, medium and heavy lines would be represented proportionally.

In order to stay within the budgetary constraints for data collection, it was necessary to estimate the number of interviewer hours to be spent on each assignment. Market research interviewers hired throügh outside vendors are customarily paid from the time they leave home until they return from an assignment, so it was necessary to account for interviewer travel time to and from the bus boarding/alighting point. Allowance for mileage charges also had to be made. Throughout the sample design phase, then, the researcher had to keep the budget in mind. This is always an important consideration when determining the number of lines to be surveyed during an on-board survey.

After the final selection of sample lines had been made, the next step in the sample design process was to select the bus runs that were to be surveyed. At this point, sample selection ceased to be an entirely random process, and became instead somewhat judgemental. Bus runs to be surveyed had to be selected with some practical considerations in mind.

1) Interviewers would be burdened down by a large bundle of questionnaires, return envelopes, record sheets and a supply of pencils.
2) The interviewers would be traveling through unfamiliar territory and could get lost or confused if required to change buses.
3) Bus schedules are sometimes disrupted, so interviewers could miss an assigned bus, especially if required to change buses during an assignment.
4) Waiting for buses on some street corners could expose the interviewers to the dangers of street crime. This would be hazardous for the interviewers and could make RTD liable for damages.
5) Interviewers would have to end their assignments at the point at which they began, because that is where they parked their cars.
6) Riding one bus run from early morning to evening minimizes ${ }^{\text {d deadhead" time and time waiting at bus }}$ stops. Thus the number of potential respondents could be increased in direct relationship to the actual amount of time interviewers spent on the buses distributing and collecting questionnaires.

With these considerations in mind, then, the researcher selected sample bus runs that would operate from early morning until early evening. This allowed the interviewers to stay on one bus for the duration of their assignments, in most cases. By minimizing the number of bus changes, the potential number of respondents could be maximized.

## Design Survey Methodology

The methodology for on-board sürveys can vary considerably according to data needs, type of line being surveyed, line load factors, budget and other variables. RTD Market Research has tried sev̈eral different methods of distributing and collecting questionnaires on board buses:

1) Driver distributes and collects questionnaires. This method is feasible on Express of Park and Ride lines which board passengers at one location or at only a few stops. This method might also work on lines which have extremely light ridership.
2) Driver distributes questionnaires to boarding passengers; RTD representatives collect the questionnaires at a collection point along the route. This method has been used when several lines being surveyed share a common stop at wioh questionnaires can be collected.
3) RTD representative interviews passengers on the bus and fills out the questionnaire. Due to the amount of time to complete an interview, this method is not very efficient. It works best on Express lines with fairly light loads and no turnover of passenger loads.
4) Interviewer distributes questionnaires at bus stop or on bus. Respondent mails response back to RTD. This methodology is among the least successful. Response rate to mail-back questionnaires tend to be half that of questionnaires completed and returned on the bus.
5) Interviewer distributes and collects questionnaires on board the bus. This is the method used most often by RTD to collect on-board data.

To conduct the 1989 Ridership Tracking Study, Market Research used two different methods of questionnaire distribution and collection. To collect data from riders on Regular-Service lines, interviewers employed by a market research firm under contract to RTD distributed questionnaires to each boarding passenger on the sample bus runs. Interviewers were instructed to hand out questionnaires in serial number order, beginning with the lowest number. If a passenger refused to take a questionnaire, the interviewer was supposed to identify that passenger's gender and ethnic background on the questionnaire and also write in the boarding stop where that passenger got on the bus. At the end of each trip, interviwers were supposed to collect completed questionnaires into envelopes labelled with the bus line number, bus run, and beginning and ending time of the trip. These envelopes were to be deposited daily at the office of the market research vendor for forwarding to RTD. At the end of each trip surveyed, the interviewers were supposed to fill out an On-Board survey Trip record, a sample of which appears in Figure 29.

FIGUURE 29
ON-BOARD SURVEY TRIP RECORD

Please supply all the information requested below for each trip on which you hand out on-board survey forms. Be sure to hand out the survey forms in number order, always starting with the lowest number. Give a survey form to every passenger. Turn in a blank survey form for each passenger who refuses to fill one out.

		Trip 1	Trip 2	Trip 3	Trip 4	Trip 5	Trip 6	Trip 7
1.	Bus Line							
2.	Bus Run Number							
3.	Your Boarding Point (where you began survey)							
4.	Scheduled Time At Boarding Point			-				
5.	Actual Time							
$N_{\sim}^{N} 6 .$	Riders On Board At Boarding Point							
7.	Your Alighting Point (where you ended survey)							
8.	Scheduled Time At Alighting Point							
9.	Actual Time							
10.	Riders On Board At Alighting Point							
11.	First Survey Number							
	Last Survey Number							

Name $\qquad$
Employee Number

Several items of information on the Trip record had previously been filled in by the RTD Market Research Unit before assignments were given to interviewers:

1) Bus Line
2) Bus Run
3) Starting Point of Each Survey Trip
4) Scheduled Departure Time from Starting Point
5) Ending Point of Each Survey Trip
6) Scheduled Arrival Time at Ending point

At the end of each trip, the interviewers were required to fill in the actual times at the beginining and end of the trip, as well as the numbers of the first and last questionnaires distributed on that trip.

The completed Trip Records and the envelopes containing the questionnaires distributed and collected on each trip served to provide a system of checks. If an interviewer were to distribute questionnaires in some non-sequential order (as sometimes happens), Market Research could examine the contents of the envelopes turned in by that interviewer and ascertain which questionnaires were handed oult on each trip. Having, in effect, two simultaneous record-keeping systems helped in assigning completed questionnaires to the correct trips.

The method of questionnaire distribution and collection selected for the Peak-Hour Express lines and the Subscription lines involved the bus drivers. They handed out questionnaires on all inbound trips as passengers boarded the bus and collected them as the passengers left the bus. Drivers were not required to record the gender, ethnic background or boarding stop of passengers who refused to fill out a questionnaire. At the end of each survey trip, the drivers were supposed to put the completed questionnaires into an envelope labelled with the bus line number, bus run, trip beginning time and trip ending time. These envelopes were turned in to the dispatchers, who forwarded them to RTD Market Research. Drivers were not required to fill out an On-Board Survey Trip Record at the end of each trip.

Print Pre-Test Questionnaire
The pre-test affords the researcher an opportunity to identify weaknesses in the survey methodology, problems with the questionnaire format or poorly written questions which are not understood by respondents. The pre-test should also provide insight into the level of response that can be expected during the actual on-board survey.

During the pre-test, several different versions of the questionnaire can be printed. The format and the order in which questions appear can be varied to find out which version is most easily understood by respondents and which obtains the highest level of response.

Because Market Research has been using the same basic on-board questionnaire for several years, it was not necessary to conduct a pre-test before the 1.981 Ridership Tracking Study. A pre-test of questionnaire format and design had been conducted before the introduction of the standardized questionnaire in the mid=1970's. Since that time each successive on-board survey has suggested improvements to the questionnaire and to the survey methodology. In effect, then, each survey is a learning experience that helps Market Research to nfine-tune" some aspects of its on-board survey methodology. The cumulative effect of this long experience with on-board surveying negated the need for a pre-test before the 1981 Study.

## Typeset, Proofread and Correct Questionnaires

After the questionnaire was typeset it was proofread carefully by the researcher. At this stage, the researcher checked the spelling of every word on the questionnaire, checked the punctuation and checked the keypunch instructions to ensure that the data would be entered into the correct columns on the case cards. The proofreading and correcting processes were repeated as often as necessary to ensure that the questionnaire was correct in all aspects.

Print and Sequentially Number Questionnaires
On-board questionnaires conducted by RTD Market Research are usually printed on heavy index card stock. The rigidity of this stock makes it somewhat easier for respondents to write on the questionnaires while riding on moving bus.

The sequential numbering of the questionnaire is an essential element in the record-keeping system devised by Market Research for use during on-board surveys. The serial numbers on the questionnaires serve to identify each case for data manipulation purposes. Because interviewers assign a questionnaire to each boarding passenger, even riders who do not fill out a questionnaire are counted as boardings. If the interviewer fills in the gender, ethnic background and boarding point of non-responding riders, we are able to obtain three important items of data even for non-cooperative passengers.

In order to have the questionnaires printed, the researcher filled out a Request For Production Of Materials form to be Coordinator. This request for 19,000 questionnaires had to be approved by the Director of Marketing. The Request For Production is Figure 30.

Prepare Interviewer Assignment Sheets (Trip Records)
As explained previously, a Trip record, such as seen in Figure 23, was prepared by Market Research for each interviewer assignment. Pre-recorded on each Trip record was 1) the bus line number, 2) bus run, 3) starting point of each trip, 4) scheduled departure time from starting point, 5) ending point of each trip and 6) scheduled arrival time at ending point. Armed with the Trip Record for each day's assignment (and the public timetable for the line being surveyed) the interviewers knew where and when to board the bus each day and which trips were supposed to be surveyed.

The source materials used in the preparation of the Trip Records consisted of the Supervisor Summaries for each of the lines being surveyed, as shown previously in Figure 27.

There can be no error allowed in the preparation of the Trip Records. The interviewers must know where and at what time to board the bus. In order to prepare Trip Records, then, information about each trip to be surveyed must be copied precisely from the Superivisor Summary. That information should then be double checked for accuracy.

Prepare Questionnaire Return Envelopes
For each trip to be surveyed, the interviewers received a 12 by 15 inch manila envelope in which to return completed questionnaires. each envelope was pre-labelled by Market Research with information which also appeared on the Trip Record -- 1) line number, 2) bus run, 3) scheduled time of departure from beginning point of trip and 4) scheduled arrival time at end of trip. Comparison of the duplicate information on the trip envelope with that on the Trip Record was intended to make it a simple matter for interviewers to file completed questionnaires in the correct envelopes.

Marketing and Communications Department
REQUEST FOR PRODUCTION OF MATERIALS

i.

TYPE OF MATERIAL NEEDED: (check One)

Audio :Visual
.... Bulkhead Card
Brochure
Counter Card
Envelopes
Exterior Car Card

Interior Car Card
Letter
Map
.. Newsletter
Poster
Response Card
_ Rider Bulletin
...- Signage
__Take One
...Tokens/Ccupjus
X Other on-ROARD Questrisiva.

DESCRIPTION: (include quantity, colors desired and size)
purpose: Collect Ridership Data to measure infect of fere
chime on weekday Riders
lúedate: May 5, 198: $\qquad$
Ti be Numbered SERIALLY 81001 thing 99999 FOR PRODUCTION UNIT USE ONLY

VENDOR:
DUE DATE:

COMMENTS:
Layout: $\qquad$ Type Final Printing
$\qquad$
$\qquad$
$\qquad$
$\qquad$

APPROVED:
iurocuction Coordinator

## Assemble Interviewer Assignment Packages

The interviewer assignment package consisted of five elements:

1) On-Board Survey Trip Record which informed the interviewers as to which trips they were to survey.
2) Questionnaire Return Envelopes, one for each trip to be surveyed.
3) Questionnaires, the quantity of which was dependent on ridership levels on the line being surveyed. At the time the assignment packages were being assembled, the questionnaire serial numbers assigned to each survey assignment were recorded in order that stray questionnaires could be attributed to the correct line of origin.
4) Pencils. An ample supply of golf pencils was provided to each interviewer for distribution to riders who need one to fill out a questionnaire. Each interviewer was given at least one gross of pencils. Those surveying on heavy ridership lines were given more.
5) Public timetable for the line being surveyed.

## Prepare Interviewer Training Materials

Each on-board survey is different to some extent. Even interviewers who have participated in previous similar surveys need to be trained before they are ready to go out on the buses to collect data. Among the materials needed for the training session that was conducted by the researcher were:

1) A sample of the questionnaire
2) A sample Trip Record
3) A sample of the questionnaire return envelope
4) A hand-out summary of the main points of the training session.

Train Interviewers
The training session conducted by the RTD researcher consisted of at least seven main parts:

1) A project overview, explaining why the sürvey was being done, what information was needed and why the survey was important to RTD and to bus riders.
2) An explanation of the questionnaire. The purpose of each question was explained.
3) An explanation of the survey procedures to be followed by the interviewers. They were to give a questionnaire to every boarding passenger, in serial number order. When a passenger refused to take a questionnaire, the interviewer was to fill in the boarding stop, gender and ethnic background questions on the questionnaire. Interviewers were to put all questionnaires in the envelope labelled for the trip on which they were collected.
4) Explanation of the Trip Record and how to fill it out properly.
5) Training exercises. To gauge the level of understanding among interviewers, brief exercises were conducted to acquaint them with situations they might encounter during the survey.
6) Training session summaries were handed out so interviewers could review later points of which they were unsure.
7) Question and answer period.

Distribute Interviewer Assignment Packages
At the end of the training session the distribution of assignment packages was begun. Each assignment was dated according to the day on which that line was to be surveyed. The morning and afternoon assignments for that line were then distributed. On lines with very heavy ridership, two interviewers were given the same assignment in order to increase their ability to distribute questionnaires to each boarding passenger and to collect completed questionnaires. Throughout the survey period the vendor distributed new assignment packages to interviewers as they handed in completed assignments, according to the timetable developed by RTD Market Research.

## Begin Sürv̈eying

Collection of weekday ridership data on Regular-Service lines began on May 15, 1981, and continued throughout the month of May. The lines remaining to be surveyed at the end of May were few in number. These lines were surveyed during the first week of June. On June 3 the survey of Peak-Hour Express lines and Subscription lines was conducted.

Although the vendor providing the interviewers was responsible for field supervision of the interviewers, occasional questions concerning procedures did arise. The researcher was available to answer these questions and to ensure that assignments were being carried out properly. During the time the survey was in the field, the researcher made several trips to the vendor's office to pick up completed questionnaires and check that the project was proceeding as planned.

Log-In Completed Assignments
When envelopes containing questionnaires by trip arrived in Market Research, the first step was to log them in. This process involved recording certain items of information on a Log-In Sheet, as shown in Figure 31. Each trip on each bús line to be surveyed had been pre-recorded by Market research on the Log-In Sheet, along with the appropriate bus run number. When the assignments were returned, the beginning and ending questionnaire serial numbers distributed during each trip were recorded, as were the actual times the bus began and ended that trip. This information should have been entered on the on-Board Survey Trip Record by the interviewers.

During the log-in procedure, errors in the questionnaire numbers recorded by the interviewers would sometimes become apparent. There might be some "overlap" from one trip to the next, for example, as when the last questionnaire number of trip number 1 is identical to the first questionnaire number of trip number 2. In cases such as these, it was necessary to refer to the questionnaire return envelopes for the trips in question to ascertain which envelope actually contained the questionnaire. It was then necessary to correct the questionnaire numbers on the Log-In Sheet. This sheet would be used later as the basis for correspondence tables to be entered into the computer, so it had to be correct.

Columns designating each subsequent procedure to be performed on the completed questionnaires -- editing, coding, keypunching -- also appeared on the log-In Sheet. As each procedure was completed, an indication was to be made on the Log-In Sheet.

Re-Survey Unfinished Assignments
As the log-in of completed assignments proceeded, it sometimes became apparent that some assignments were only partially complete or had not been done at all. Interviewers may have been ill or had a personal problem or missed their bus, or the bus may have broken down. Whenever posssible, replacement interviewer assignment packages were assembled and these assignments were re-assigned.

Input Correspondence Tables
In order to perform some data editing functions and analyses of on-board survey data, it was necessary to enter correspondence tables into the computer. During the 1981 Ridership tracking Study, at least four correspondence tables were developed and entered into the computer data base:

FIGÜRE 31
QUESTIONNAIRE LOG-IN SHEET BY TRIP.

1510\%	LINE	Bus   124	$\begin{gathered} \text { Trip } \\ \text { no. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Ind } \\ \text { sunvoy } \\ \text { no. } \end{gathered}$	$\begin{aligned} & \text { LAST } \\ & \text { survery } \\ & \text { no. } \end{aligned}$	BEGIN	ME END	EDIT	$\begin{aligned} & \angle O D E \\ & B+A \end{aligned}$	1scy   puaiki
72	826	6	1	097376	297402	62549	735101		$\checkmark$	$7 / 20$
9	\& 26	- 6	2	097403	092421	$752 \mathrm{A4}$	. 900 Am		$\checkmark$	$3 / 200$
8	826	6	3	097422	0.92439	910 Am	$1022 R 4$	4	$\checkmark$	7/20
	826	- 6	4	1097440	097452	1050 A 2	120580		$\checkmark$	7/20
$4$	826	6	1	09.7751	097784	1230 Pm	142 PM	$\theta$	$\checkmark$	$3 / 20$
	826	,	2		097826	158 PM	315 PM	1		$7 / 20$
	$826$	$1$	$3$	$097785$	097812	325 PM	4418 FH	$\checkmark$		$7 / 200$
	8.26			09787	078958	$61785$	624 FM			7/200
	840	7		$\cdots$	-	63544	803 AM			
	840	7	2	-	-	C20AM	948 AM			
	cll	7	3	-	-	100541	1132 A1			
	Cll		4		-	$11509 m$	118 FM			
2	40	7	1	098509	098553	1359	308 pm			
$6$	840	$7$	2	298-54	098629	330 fm	454042	$1$		$7 / 90$
	40	$7$	$3$	1028630	098709	5057 m	$636104$			$3 / 60$
	840	7	4	$1098710$	095726	$650 \mathrm{PM}$	$\operatorname{Sin} P M$			3/20
	46	4	1	099226	099309	6isi4	24412	-		18/4
	546	4	2	099310	099350	$8114 M$	950 Am			8
	846	4	3	099351	099.398	1015AM	1151 An	1		$8 / 4$
	846	4	4	099399	099454	1211 Mm	150 Pm			814
0	846	2	T	10.994710	099514	1215 PM	151 PM	$\checkmark$		14
	846		2	099515	099537	211 PM	350 PM	$\gamma$		$8 / 4$
	846	2	3	1099,58	099584	415 PM	552 PM	$\downarrow$		$16 k$
	8410	$2$	4	099585	099598	-615pm	$742-P_{1}$			$8 / 4$
	Sl	1	1	099725	09757	6454 m	713 Am			$8 / 1$
$x$	861		2	099758	097788	715AM	718AM			8/18
	8101		3	$\log 70^{\circ}$	099804	8/5AM	$848 \mathrm{AM}$			
$17 \quad 3$	$861$	1	4	1099805	099821	$8504 M$	9.19 Am	$V$		$8 / 18$
O. 3	861		5	-̇99822	099831	$945 \% 7$	10144 A		$\checkmark$	$81 / 18$
	861	-1	6	099832	0.99842	1015AM	104480			$81$
$4 \quad 3$	861		7	1099843	099858	11.59m	1. 4 YAN			ol
$3$	861		8.	$\begin{aligned} & 299899 \\ & 1101677 \end{aligned}$	$\frac{099872}{110640}$	1145 Am	12.14 PM			$8 /$
$4$	861		9	$1110633$	110636	$12.45 P M$	114 PM			$\theta /$
$4$	861		10	109131	109134	$115 P 4$	144 PM	1	$V$	$8 / 18$
		$\ldots 1$.	1	099876	099894	215 Pm	$246 P M$			
$4$	861		2	099895	099898	247 Mm	320 PA			
$18$	$861$	1	3	099899	099416	345 PM	420 PM			$8 / 18$
$17$	c/nd				A0942?	-1.anom	Uく7 Pat			c/LP

1) Questionnaire Serial Numbers by Line. This correspondence table was to be used by an editing program. The table identified the bus line on which any questionnaire or series of questionnaires was distributed. The table also identified the date on which each line was surveyed. Figure 32 shows a sample listing from the Serial Numbers correspondence table. The first three digits in a row of data represent the number of the bus line. The next
six digits show the date of the on-board survey (year, month, day). The next six digits indicate the first in the series of questionnaire numbers distribüted on that line, and the last six digits show the last questionnaire number given out. The importance of the correctness of the Log-In Sheet becomes apparent, for that is the source of the data in the correspondence table of Questionnaire Serial Numbers by Line.
2) Trip Times. The Log-In Sheet also serves as the source of the data entered into this correspondence table. In order to analyze ridership characteristics and trip patterns by time of day, Market Research had to create a correspondence table which assigned questionnaires to the time periods during which they had been distributed. Time period definitions were essentially those used routinely in the RTD Planning Department and Service Analysis Section, except that the base period was divided into the morning base (8:30 AM to 11:59 AM) and the afternoon base (Noon too 3:29 PM). Time period definitions appear in this report in the section entitled "Age of Riders."

Trips were assigned to a particular time period based on their mid-point. For each trip shown on the Log-In Sheet, the mid-point was calculated. Where the mid-point occurred determined which time period the trip would be assigned to. Questionnaires distributed on that trip would thus be assigned to that time period through the correspondence table.

This is somewhat a clumsy, inexact and inflexible method of assigning suryey cases to a time period. In future, the on-board questionnaire will contain a question about the time the respondent boards the bus. The time can then be entered by the rider or by the interviewer. This will provide more exact boarding time data and will allow the flexibility to change time period definitions more easily during analysis..

FIGURE 32
QUESTIONNAIRE SERIAL NUMBERS BY LINE (Sample of Correspondence Table)

L760800624049591048638
L760800624048651048696
L760800624048711048723
L760800624048749048750
L042790308048751048965
L.042790.308049001049197

L758800625049199049204
L716800326049206049207
L716800326049232049250
L042790308049251049456
L760800624049735049750
L042790308049751049771
L042790308049772049812
L757800625049915049857
L757800625049976049921.
L757800625049936049952
L757800625049987050010
L757800625050039050057:
L757800625050085050146
L760800624050177 0.50201
L081300823051001051278
L440800823051651051887
L 025800824051888052300
$L 155800823052301052308$
L160800823052309052353
L155800823052354052368
L160800823052369052418
L15580082305241905242 1
L490800323052551052706
L009800824052707053010
L088800823053051053229
L495800824053230053290
L163800823053451053766
L086300824053767053995
L488800823054001054027
$L 493900823054028054056$
L488800823054057054058
L493800823054059054059
L4888008230.54060054089
L493800323054089054110
L488800823054111054135
L496800824054359054400
L435800823054401054567
L026800824054568055057
L017800823055351055491
L 028800824055492056300
L432800823056301 056486
L049800920056551056899
L 049800920056907056908
L025800824056911056922
L086800824056952056960
L081800823056963057061
L073800913058001058143
L 075800906058251059720
L826800906058721058738
3) Süb-Sector Definitions. The RTD service area, over 2,200 square miles, has been defined traditionally in terms of a dozen or so Planning Sectors. While these sectors may be well-suited for planing purposes, they are too broad to allow incisive analysis of demographic characteristics or even trip patterns by geographic area. Instead, Market Research defined the RTD service area in terms of some 85 sub-sectors. Each of the sub-sectors in Los Angeles County consists of a city, aggregation of two or more cities, or a fairly well-defined area of the City of Los Angeles. Definition of the latter was judgemental, but rarely arbitrary. Each of the other counties in Southern California was designated as a sub-sector unto itself. Definitions of sub-sectors were based upon aggregations of zip codes. The on-board questionnaire contains a home address question, so respondents' home zip codes were already in the data base. Coding of trip origins and destinations was also done in terms of zip codes. A correspondence table of sub-sector definitions, then, would allow analyses of any variable on the questionnaire by residence location of riders and it would allow extensive analyses of linked trips by any variable on the questionnaire. table 116 shows the sub-sector definitions used in the correspondence table.
4) Line Data Expansion Factors. Before analysis of the on-board survey data could begin, the sample data had to be weighted to compensate for the over- or undersampling of some sub-strata of the population, as reflected in the varying response rates by büs line. The weighting procedure allows each individual case to be considered more or less heavily than other cases when statistical procedures are applied to the data. The data collected during the 1981 Ridership Tracking Study were weighted on the basis of the number of daily boardings on each of bus lines surveyed. The number of respondents on each of these lines was expanded to daily boarding levels. Table 117 shows the expansion factors used to effect this weighting.

## Edit Questionnaires

The purpose of questionnaire editing is to make sure that the responses are as correct and consistent as possible and to prepare the questionnaire for keypunching. Among the inconsistencies the editor looks for are:

1) Múltiple responses to a question requiring a single response. For example, a respondent cannot be in two income categories simultaneously.

0ub-sactioz		Stp.Codae
Number		
1	Downtown	*0012 thru 00015, 00017, 00052. 0060, 0071
2	wilshiza Cozz	\$0004. 90005. 00010.00020 .20037
3	Fico Cozz	90006. 90019, 90035
4	Eeho Paik	90026
5	Lod Falis-1ACE	90027. 90029
4	Alvazlaka	90039
7	Bolly yood	90028, 90038, 90068
*	W H0:1ymood	90046.90069
9	Pazk Lestan	90036.90048
10	Buveriy Hills	90210 ctixu 90213
12	mastivod	90024
12	-inivd/Pac Pal	90049. 90272
13	Mesit La	90025, 90064
24	Century city	90067
35	Varice-Maz	
	vista.	90086.90291
16	ganta monita	90401 thru 90406
17	Malibu-ToFanga	90265. 90290
18	Westchertaz-iAx	90009, 90045
19	Culver CityPalns	90230, 90034
20	Inglevood	90301 thris 90310
21	Crainsham cozz	9000日, 90016, 90018. 90043, 90036
22	Waitérn kv Cozt	90047. 90062
23	$\begin{aligned} & \text { Haibor fwy } \\ & \text { Cózz } \end{aligned}$	90003. 90007, 90037. 90044, 90061
24	$\begin{gathered} \text { Contzal av } \\ \text { Cori } \end{gathered}$	90001, 90002, 90011, 90021, 90059
25	Compton	$90220^{\circ} \mathrm{thzt} 90224$
26	$\begin{gathered} \text { Voznon-hp- } \\ \text { Betil } \end{gathered}$	90058, 90201. 90253.90270.
27	Lynvood/80	
	Gate	90262, 90280 900 90033,90063
28	ELA-goyle Mts	90622, 90023, 90033, 90063
29	commerce	90040
36	Montebel10	90640
31	Lanc Hz/E	
	Serero	90031. 90032
32	Highiand-	
	Giastull	90042, 90065
33	Glendele-	
	Esgie RK	90041. 91201 thru 91209
34	Le Canada-La crescenta	91011, 91020, 91046, 91214
35	Suntiant-Tusunga	91046.92042
36	sun ${ }^{\text {cidiay }}$	91352
37	Burbaink	91501 thzu 91506, 91522
38	p Hollyrood	91601.thzu 91609
39	Van Muya-pan $c: z y$	$\begin{aligned} & 91343,91401,21402,91404 \mathrm{thra} 91409, \\ & 91411,91412 \end{aligned}$
40	Sheriman daks	91403. 91413, 91423
41	Encino	91316.91436
42	Tazzene	91356
43	$\begin{aligned} & \text { woodiand } \\ & \text { Hillin } \end{aligned}$	91364, 91367
44	cancga Purk	91303 thru 91307
45	West syv	91301.91302
46	$\begin{gathered} \text { ficoimessan } \\ \text { fexn } \end{gathered}$	91331. 91340 thzu 91342
47	$\begin{aligned} & \text { Gransde- } \\ & \text { mitaion } \end{aligned}$	91344, 91345
46	Moztiridge	91324 thz4 91330
49	chativorth	9.1311
30	Reande	91335
51	Aitedera	91001
52	arcadia-sia madra	0.1006.91024
53	,monzovié-	
	Duazte	91016.91010


Hyber	mane	Ese Coder
34	Puactana-5.	91030, 91101 thry 1125
53	asusa-cindeza	91902. 91740
36	-ildín Fizk	01706
57	covinite. Covina	91722 thzu 91724, 92790 thru 92793
38	$E 1$ Monta	92731 thru 91734
39	Latyonta	\$2744 thzu 91748
60	Montzy Pkmosend	91754. 91770
6.1	gen Gab/Tompl	91775 thru 11778.91780
62	Malnut-Industry	91789
63	Alhämza	
64	pomana valiay	\$2722. 91750, 91763 thzu 91768, 91773
65	Downay	90240 thzu 90242
66	mhtatioz	\$0601 thzu 90608
67	Le Mizady	90838
60	$\begin{gathered} \text { Mozvelk-sta Fo } \\ \text { spzinge } \end{gathered}$	90650, 90666, 90670
69	Pico Rivara	90660
70	Art*ainCerzito	90701
71	Balfitowarpírifiount	90706.90723
72	Lakevood	90752 thzu 90716
73	E1 Segiundo	90245
74	Gazdena	0.0247 thzu 90249
75	GevthornaLevndela	\$0250, 90260, 90261
76	fanch Cities	\$0254, 90266, 90277, 90278
77	Palos Vardea	90274
78	TarzancaLoalta	90301 thzu 90310. 90710, 90727
79	$\begin{gathered} \text { San Padro-wil- } \\ \text { (eington } \end{gathered}$	30731 thzu 90733. $907 \times 4$
0	carson	90745 thyu 90747
81	lóng Baech	90801 thru 90840
82	- zin counzy	$\begin{array}{llll} 91301, & 91310, & 91321, & 91350,91351, \end{array} 91355,$
		93544, 93550, 93533, 93563
83	Orange County	90620 thzu90623. 90630, 90631, 90680. 90720. 90740,90742. 90743.92601,92t21.92624 thzu
		92627, 92629 thzu 92635. 92630.92640 thzu
		92653. 926ss. 92660 thzu 92663. 92665 thzu
		92670, 92672, 92675 thru 92678. 92680, 92603.
		92686. 92691, 92701 thru 92711, 92713 thru 92717. 92001 thzu 92807
04	Riveraide County	91720, 91752, 91760, 92201, 92220, 92223, 92225,
		92230, 92234, 92238 thru 92241, 92253 thriu
		92255, 92238, 92260, 92262, 92270, 92272,
		92274. 92276. 92282, 92302, 92303.92036.
		92320 , 9233092340 92343, 92348,92349 , 92353 . 92360 thru 92362, 92367, 92370, 92380, 92381,
		92383, 92388, 92390, 92395, 92396. 92501 thzu
		92518,93656 , 91730
45	San Bua Ety	91701.91710 , 91730, 91739.91743,91761 thzu 91763.91786, 92232, 92256. 92267. 92277.
		92204, 92301, 92305,92307, 92309, 92J11.
		g2314 thry 92316. 92318, 92324, 92325, 92327,
		92335, 92345 thzu 92347,92352, 92354,92356.
		97359, 92363, 92365, 92368, 92373, 92376.
16	Vantura cty	- 23.2. 2392,923*7 thzu 92400, 9240̈s. 93562 20263. 11320, 92360, 93002, 93003, 93010.
		93015.93021 trizu 93023. 93030, 93040, 3041,
		$93060, \$ 3063,93065,93066$

TABLE 117
EXPANSION FACTORS TO LINE RIDERSHIP LEVELS
1.981 RIDERSHIP TRACKING STUDY REGULAR-SERVICE. LINES

2) A specified "other" response which should obviously be categorized under a different, more precise response category.. If the respondent designates his trip purpose as "other" and specifies "going to movies", the editor would put the answer into the "recreation" category:
3) Obvioúsly wrong responses. The question asking about bus lines ridden to complete a linked one-way trip would be in need of editing if the respondent listed the buses ridden on a round trip.
4) Response category not checked. Often a respondent will write in a response rather than check the appropriate box on the questionnaire. If the respondent writes in his annual income figure, for example, but does not check the box, the editor will püt the response in its proper form.
5) Missing data. If a respondent writes in his home address, for example, but neglects to provide the zip code, the editor will look up the correct zip code and write it in.
6) Illegible response: If the home address is extremely hard to read, the editor will write it in more legibly so the keypuncher can read it and enter it correctly into the data base.
7) Inappropriate response. It would be inappropriate for a respondent who uses a pass to board the bus to answer the question asking "why didn't you use an RTD pass to board the bus?"

Keypunching - Phase I

After the questionnaires had been edited, keypunching could begin. In order to have the data available for analysis as soon as possible, keypunching was divided into two phases. Edited questionnaires were keypunched before boarding and alighting points or trip origins and destinations were coded. These coding operations are very time-consuming, particularly when no resources are available for hiring additional temporary personnel as needed to complete the project in a timely manner.

Phase $I$ Keÿpunching was begun after data from a few bus lines had been edited. Keypunching and editing operations were thus being performed at the same time.

Input Phase I Data
When the keypunching of Phase $I$ data was completed the data were entered into the RTD in-house computer.

In order to perform the functions necessary to put the data base in order for analysis, four editing programs were developed. The first program simply sorts the data into questionnaire number order (it's easier to locate a given case in the data listing if the cases are in sequential order.) This program also sorts the cards in each case into appropriate order (Card 1, Card 2).

The second editing program checks the responses to the fare question. If a cash fare amount has been entered in columns 54 to 56 of the data, this editing program ensures that the cash fare code is entered as the type of fare paid in columns 60 to 61.

The third editing program "plugs in" to each case the bus line nümber on which the questionnaires were distributed. This program refers to the Questionnaire Serial Numbers correspondence table explained previously.

The fourth editing program was used to edit Phase II of the data base. This program "plugs in" the boarding/alighting and origin/destination variables after they have been coded, keypunched and entered into the computer.

Edit Data Base
Working from a printout of all the cases that were entered into the data base, the researcher checked to be sure that each case had two data cards, that there were no duplicate questionnaire numbers and that there were no obvious keypunch errors (such as alpha characters or symbols where numbers were supposed to be). Corrections to the data were made at the computer terminal. This editing task was repeated as often as necessary to ensure that the data base was correct.

Develop Computer Analytical Programs
The analytical tool used by Market Research is the Statistical Package For The Social Sciences (SPSS), an integrated system of computer programs designed for the añalysis of social science data. There are eight basic components in an SPSS program:

1) File Name, which identifies each SPSS system file and is used whenever reference to that file is required. The file name used for this study was onBoard Survey 1981.
2) Data List, a complete map of the content and structure of the raw input data file. This Data List contains the variable names assigned by the researcher and it associates with these names all the information on column locations required to read and store the variables correctly. Table 118 shows the variable names assigned to each variable on the questionnaire and the location of each variable in the input data file.
3) Input Medium, which informs the SPSS system of the type of medium (card, tape or disk) from which the raw input data will be entered into the system.
4) Missing Values. Very often in survey research some of the cases in a file do not have complete information on every variable. The SPSS system enables the researcher to specify how these missing variables will be designated so that cases containing incomplete data may still be processed.
5) Number of Cases is simply an instruction that informs the SPSS system of the number of cases in the file.
6) Variable Labels, which allow the researcher to attach names to each of the variables in the Data List. These labels permit easier understanding of what the variable is than do the shorter names used on the Data List.
7) Value labels are attached to each response category under each variable. These iabels are helpful for documenting output from analytical programs.
8) Task-Definition Cards control the specific calculations to be performed by the SPSS system on the data. The Task-Definition Cards activate, define and control the calculations to be performed on the data. These cards enable the researcher to cross-tabulate data, do T-tests and discriminant analyses, run regressions and correlations, calculate measures of central tendency and to perform other statistical and analytical functions.

Run SPSS Analytical Programs
Analysis of Phase $I$ of the data base consisted chiefly of frequency tabulations and cross-tabulations of each relevant variable on the questionnaire by a series of major groupdefinition variables. Each relevant variable on the questionnaire was analyzed individually in terms of 1 ) bus line on which surveying took place, 2) major planning sector in which respondent lives, 3) sub-sector in which respondent lives, 4) time of day when survey took place, 5) type of fare paid, 6) respondent age, 7) respondent gender, 8) respondent's ethnic background and 9) annual household income.

Question Nümber


Variable
Questionnaire Number
Mode of Access to RTD System Mode of Access to Survey bus
Survey Bus Line Nümber
Boarding Point
Alighting Point
Mode of Egress From Survey Bus
Linked Trip Origin
Linked Trip Destination
Buses Ridden on Linked Trip: First Bus Second Bus Third Büs Fourth Bus Fifth Bus
Bus Use Frequency
Amount of Cash Fare Paid
Amount of Ticket Fare Paid Type of Fare Used
Denomination of Express Pass Denomination of Tourist Pass Trip purpose
Impression of RTD Service
Questionnaire Number
Rider's Home Address
Apartment Number
city
Zip Code
Rider Gender
Rider's Éthnic Background
Rider's Age
Number of Cars in Rider's Household
Number of Persons in Rider's Household
Annual Household Income
Attitude about Fares vs.
Service
Attitude about Measures to
Increase RTD Revenues:
Increase Headways
Decrease Evening Service
Decrease Saturday Service
Decrease Sunday Service
Increase All Fares
Eliminate Transfers
Fuli Fare for college
Students
Full Fare for High School Students
Raise Senior Citizen Fares
Raise Park and Ride Fares
Discount Fares Levels:
Senior Citizen Discount
High School Student Discount
College Student Discoünt
Anticipated Level of Bus
Use at Varíous Fare Levels:
50\& Fare
70\& Fare
754 Fare
80e Fare
Average Daily Bus Boardings Average Saturday Bus Boardings Average Sunday Büs Boardings Reason for Not Using RTD Pass Response to Spanish Questionnaire
Variable
Name on
SPSS Data
Datb List
$\quad$ QNO
How to RTD
Access
LIne
Board
Alight
Egress
Origin
Dest

B
Bus 1
Bus 2
Bus 3
Bus 4
Bus 5
Freq
Cash

Card Columns In Input

Card Nümber

$1-6$	1
7	1
8	1
$10-12$	1
$10-16$	1
$17-23$	1
24	1
$28-32$	1
$33-37$	1

38-40
41-43
44-46
47-49
50-52
53
54-56
$57-59$
$60-61$
62-63
6.4-65
66

9-6
7-21
22-24
25-38
$39-43$
44
44
45
46-47
48
49-50
51
52

Headways
Evenings
Saturday Sunday
$\begin{array}{ll}\text { Up Fares } & 57\end{array}$
NoTrnsfr 58
Collfare
StudFare
SCFare 61
PNRFare
SCDI 3
HSD1 3 e
Colldisc

Fare50
Fare70
Fare75
Fare80
DayBrd
Sat Brd
SünBrd
NoPass
Span
1
1
1
1

When appropriate, programs were run to calculate means, medians, correlations and other statistical measures. Other programs calculated mathematical values or created new variables or re-groupings of variables previously entered into the data base.

Analyze 0utput
For the purposes of this report, analysis of Phase I data was limited to providing descriptive statistics of ridership characteristics, trip patterns and attitudes by bus line, by time of day, by residence sector and sub-sector, by rider age, by gender, by ethnic background and by annual income.

Analysis relied heavily on the cross-tabulation of questionnaire variables. Cross-tabulation, the joint frequency distribution of cases according to two or more variables, is the chief component of contingency table analysis and is the most commonly used analytical method in social science research. These joint frequency distributions can be statistically analyzed by certain tests of significance, such as the chi square statistic, to determine whether or not the variables are statistically independent.

## Geo-Code Questionnaires

One of the most time-consuming tasks to be performed was the coding of the answers to geographically based questions. Coding of boarding and alighting points was relatively simple. During fare surveys RTD checkers use a stop-by-stop ride check list on which to record boardings by fare type, as well as alightings at each stop along the route of a line. For each bus line in the system there are two lists of stops, one for each direction of travel. Each stop on a ride check list is assigned a four digit code number. A typical ride check list is shown as Figure 33.

For coding boardings and alightings, Market Research used either Southbound or Eastbound stop lists, rather than two different stop lists for each line. By using only one list per line, the number of codes was halved. Coders assigned boarding and alighting points the appropriate stop codes and entered these codes on the Geo-Code Data Sheet which is represented as Figure 34.

FIGURE 33


- CE 1 OF date bus runa__ vehicles.-

SCheDULE,
-
02 -EASTËOUND - OBSERVER $\qquad$ . heather $\qquad$ sears
 stops

001.2 CEDARS	mospital			.			$\cdots$	$\bigcirc$		I	1		
0020 3RD ST	Ca Cínnegal	-	\%mi!				,				i		
0030	drlando		,	:									1
c0.40	SWEETIER		-										
00, 0	CRSCOTIT HTS	$\cdots$	;									I	I
5060	Faitrax 03	-	!										
0070	OGDEN.		\|êe 56										
0080	BURNSIDE	:											
0090	GARONER		;									i	I
0100	HAUSERR	-	;					-					.
0110	Cocimran						.						
0120	la brea												
0130	MANSFIELO		1									I	
0140	MICHLANO		?										
0159.	las palmas		Irest										
0160	HÚOSON		1										
0170	RIAPAU		1										
2180	ROSSMORE Of	*	,										
0:90	Larchmotit												
6200	LCRqAINE												m
2210	NOR TON												- 1
c2:0	WILTON												
0230 HILITON.	ATH ST OS	-											5
10235 6TH	PKin		$\therefore$										
10240 :11LTON	STH ST. 06	-	.										
0250 6.7ti 51	ST ANOREWS		:										
$0: 60$	mesteria		fered										
027.	SERKANO												
0290	HAR VARO		!			-							
0290	NORMANOIE												
10300	ALEXANORIA												
0310	CATALINA								-				
0320	VERMONT 07	$\bullet$											
15330	WESTMRLAND	1											
034.)	COMMNHELTM		'										
0350 .	LAFAYETTE		fres:7										2
10360	RA:YPART												
03.73	Park viek												
$03 E 0$	alvaraod os	-											
:0390 ETH ST	SONNIE ERE.	-									.		

FIGURE 34
GEO-CODE DATÄ SHEET

$\begin{gathered} Q \\ \hline \end{gathered}$		$\begin{aligned} & \text { Bancoine } \\ & \text { stop } \end{aligned}$	$1 \text { stop }$							$\begin{array}{r} 4 \\ 2 \\ 1 \\ 5 \end{array}$		$\begin{aligned} & 0 \rightarrow 20 \\ & y \\ & y \\ & \hline 100 \pi \\ & \hline \end{aligned}$	
12	d		IT 10.10 .10							asil	${ }^{60}$		
105158		0860580	0.816 .1	1020			9160	66	9,50	0611	2	210	0
105146		0860850	010861	1410			9160	29	9001	121	2	20	0
105142		0860650	010861	1460			9160	69	9007	71	12	2	
405135		08611000	00861	1440			9150	69	9007	त			
405131		086611110	0.0861	1450			9150	29	9007	7	2	20	-
<0,5111		0861150	0.0861	1470			9150	219	90 c 1	142	22	0	
105098		0861200	0.0861	1450			9002	79	9007	71	12	0	
105.019		0861200	00861	1450			d	79	-2 7	710		22	
105100		08611200	00861	1450				79	7	2			
1051107		5612200	-0.861	14530									
105102		8612	O 8	44			90102		91007	-		0	0
105103		0861220	0.08 .6 .1	1430			90.	79	9007	-	4	0	0
105105		08611230	0.0861	1390			9003	199	9001	12	22	-	,
105106		08611230	0.861	1450			900	919	9007	7	4	4	4
40.5112		0861150	008611	200							4	4	0
405113		61150	00 061	1450					,	172	22	20	
40514		8611180	00861	1460			9120	119	,			20	
105116		861180	010861	1460			9120	119	9001	17		0	0
105119		0861190	00861	1450			9120	19	9001	込		210	0
405120		0861190	00861	1470			9120	19	9001	仡		0	0
105127		- 8611080		1460			9150	59	90011	1			
105132		08611120	09861	450			9150		90011	$1-2$		20	0
105134			0861	1480					9001	140	O	6.1	
105137		08610990	016161	1396			9150	69	9001	12			
105139		0860630	0.861	450			9160	69	9001	172		0	0
10.5140		860650					9160	69	9003	38			
105141		0860650	0.0861	1080			19160	62	2150	C12	22	210	0

The process of geo-coding trip origins and destinations is more complicated and is, in fact, one of the most time-consuming coding tasks that has to be done. The trip origins and destination questions on the on-board questionnaire were answered by the respondent in terms of street intersections where the trip began or ended. The coder used the Thomas Brothers Popular Street Atlas series to provide the appropriate code for these intersections. The Thomas Brothers series contains both zip code and census tract designations for Los Angeles, Orange, Riverside, San Bernardino and Ventura Counties.

In order to obtain useable information that will lend itself to analysis on the SPSS system, Market Research has been coding trip origin and destination in terms of zip codes. When the coder encountered a trip origin or destination on the questionnaire, then, he or she referred to the street index in the back of the appropriate Thomas Brothers Atlas to ascertain the page number and map coordinates of one of the cross-streets. The coder then referred to the index again to locate the page number and coordinates of the second cross-street. This process was repeated until the map page containing the intersection of the two cross-streets was located. The zip code area in which this intersection was found was then written on the Geo-Code Data Sheet. After the zip code of the trip origin had thus been properly recorded, the coder was then required to locate and record the trip destination in the same manner.

The geo-coding of trip origins and destinations in this manner is a ponderous but necessary task. Analysis of this information provides a profile of bus riders linked trip needs, as reported in this document. Market Research is currently exploring the feasibility of using DIME Files and software capable of sorting intersection data keypunched in English language. If available, such software would read the intersection data and assign an appropriate numeric code or series of codes (census tract, zip code, traffic analysis zone, map coordinates, etc.).

Unfortünately, howevier, such a computer coding capability would not preclude the need to edit origin and destination data. Many respondents answer the trip origin question, for example, by writing in the street intersection at which they boarded the bus. It is often obvious that these individuals really began their trips at home, so an adjustment to the data is necessary. Editors are also required to correct some of the more egregious misspellings of street names that occur on the questionnaires or to decipher for the keypunchers the illegible handwriting of some respondents.

## Keypunching Phase II Data

After the geo-coding tasks were completed the Regular-Service line boarding/alighting and origin/destination data were keypunched.

Input Phase II Data
The keypunched data were entered into the computer files.
Merge Data Bases
A special computer program was developed to "plug in" to the Phase I data the geo-coded variables in the Phase II data.

Run Analytical SPSS Programs
The same SPSS programs described earlier were used to analyze Phase II data. Additional cross-tabulations of origin by destination were also run to provide descriptive data on linked trips.

Analyze Output
Linked trip data were analyzed by major planning Sector, as well as by sub-sector, as detailed in this report.

> APPEXD IX

TABLE A-I
RTD System-Wide
$\frac{\text { Number of Buses in Service }}{\text { Peak/Base }}$

Year	Quarter	Average Weekday		Average Saturday		Average Sunday	
		Peak	Base	Peak	Base	Peak	Base
1976	Winter	NA	NA	NA	NA	NA	NA
	Spring (June only)	2028	1329	1185	1186	872	873
	Summer**	2060	1370	1215	1216	906	908
	Fall	2027	1364	1260	1260	885	885
1977	Winter	19.58	1345	1181	1181	875	872
	Spring	1929	1320	1149	1148	857	852
	Summer	1952	1302	987	982	735	732
	Fali	1845	1207	967	962	726	72.3
1978	Winter	1848	1219	972	967	728	724
	Spring	1799	1181	926	921	695	691
	Summer	1832	1185	927	921	699	695
	Fall	1897	1194	941	935	701	697
1979	Winter	1990	1224	943	935	701	697
	Spring	1962	1221	957	952	721	717
	Summer*	2006	1235	961	955	717	714
	Fal1	2006	1235	96.1	955	717	714
1980	Winter	2006	1235	961	955	717	714
	Spring	1999	12.24	971	926	731	694
	Summer	2000	1214	968	926	726	678
	Fall	2016	1228	967	918	728	667
1981	Winter	2016	1.228	967	918	728	667
	Spring	2036	1218	963	936	748	706
	Summer	2036	1218	963	936	748	706

[^14][^15]
## TABLE A-II

## RTD System-Wide <br> Vehicle Miles

Year	Quarter	Average Weekday	Average Saturday	Average Sunday	Month   Total	Quarter Total
1976	Winter	NA	NA	NA	NA	NA
	Spring (June only)	349,000	257,000	195,700	9,490,000	NA
	Summer*	355,160	265,950	197,500	9,420,000	26,206,00
	Fall	350,300	240,600	192,470	9,592,000	28,776,000
1977	Winter	350,333	261,633	196,500	9,438,000	28,314, 00
	Spring	343,100	254, 367	189,833	9,308,000	27,925,000
	Summer	338,800	229,800	170,500	9,1.53,000	27,458,000
	Fall	327,700	208,100	159,700	8,583,000	25,750,00
1978	Winter	320,900	208,600	159,000	8,491,000	25,473,000
	Spring	321,500	210,000	159,600	8,514,000	25,541,00=
	Summer	315,300	204, 000	153,100	8,271,000	24,813,00
	Fall	319,200	200,300	152,000	8,332,000	24,997,000
1979	Winter	330,300	201,900	152,200	8,631,000	25,893,00
	Spring	334,400	200,000	1.51,600	8,708,000	26,124,000
	Summer*	340,000	196,900	154,600	6,612,000	19,836,000
	Fall	341,100	200,700	153,700	8,800,000	26,401,00
1980	Winter	337,200	203,000	160,000	8,820,000	26,459,000
	Spring	335,800	201,800	158,200	8,776,000	26,329,00
	Summer ${ }^{1}$	330,400	198,400	151,600	8,557,000	25,671,00
	Fall	332,600	197,200	150,100	8,589,000	25,767,000
1981	Winter	332,600	197,200	150,100	8,650,000	25,950,00
	Suring	332,600	197,200	150,100	8,650,000	25,950, טU
	Summer	336,900	201,900	156,500	8,767,030	26,300,000

Source: Statistical Digest, Service Analysis Section
*Strike

1
Beginning Summer 1980, scheduled mileage figures from 4-24 Report are used. Previous actual vehicle miles were from Hub Mileage Report and averaged approximately $2 \%$ over scheduled miles.

TABLE A-III
RTD System-Wide Ňumber of Scheduled Vehicle Hours

Year
1976

1980
I.

Winter
spring Summer
Fall
Average
Weekday
NA
24,400
25,070
24,900
24,500
24,000
23,600
23,200
22,500
22,400
21,800
22,400
23,000
23,400
23,300
23,500
23,500
23,500
23,200
23,400
23,400
23,400
23,600

Average   Saturday	Average   Sunday
NA	NA
18,200	13,200
18,800	13,700
18,500	13,400
18,300	13,300
17,800	13,000
15,800	11,600
15,000	11,400
14,900	11,100
15,000	11,000
14,300	10,600
14,300	10,600
14,400	10,600
14,500	10,700
14,700	10,800
14,500	10,700
14,500	10,700
14,500	10,700
14,500	10,700
14,500	10,700
14,500	10,700
14,500	10,700
14,700	11,100


Average   Month   Total	Quarter   Total
NA	NA
NA	NA
615,600	$1,846,900$
682,000	$2,045,000$
656,000	$1,969,000$
649,000	$1,948,000$
634,000	$1,903,000$
607,000	$1,821,000$
596,000	$1,787,000$
592,000	$1,775,000$
573,000	$1,720,000$
584,000	$1,753,000$
603,000	$1,808,000$
612,000	$1,835,000$
458,000	$1,374,000$
610,000	$1,829,000$
614,000	$1,842,000$
614,000	$1,843,000$
603,000	$1,809,000$
607,700	$1,823,000$
612,000	$1,836,000$
612,000	$1,836,000$
633,000	$1,900,000$

Source: Statistical Digest, Service Analysis Section
*Strike

## TABLE A-IV

RTD System-Wide Actual Driver Pay Hours

Year	Quarter	Average Weekday	Average Saturday	Average Sunday	Average Month Total	Quarter Total
1976	Winter	NA	NA	NA	NA	NA
	Spring (June only)	30,700	21,700	16,400	827,000	NA
	Summer*	31,000	22,600	18,700	767,100	2., 301,000
	Fall	30,900	21,500	18,500	848,000	2,543,000
1977	Winter	29,800	21,300	17,100	802,000	2,407,000
	Spring	29, 300	21,000	16,700	796,000	2,388,000
	Summer	29,000	19,400	16,500	792,000	2,375,000
	Fall	29,000	17,400	15,200	761,000	2, 284,000
1978	Winter	27,000	17,100	14,300	717,000	2,152,000
	Spring	27,300	17,500	13,500	721,000	2,162,000
	Summer	26,500	17,200	13, 300	697,000	2,0.91,000
	Fall	27,200	17,300	13,300	713,000	2,139,000
1979	Winter	28,300	17,200	14,200	745,000	2,234,000
	Spring	28,900	17,700	14,600	761,000	2, 284,000
	Summer*	28,900	17,800	15,000	572,000	1,716,000
	Fall	28,700	16,700	14,400	746,000	2,239,000
1980	Winter	28,000	17,000	14,100	736,000	2,209,000
	Spring	28,000	17,200	14,100	737,000	2,212,000
	Summer	28,000	17,600	14,400	736,000	2,208,000
	Fall	N/A	N/A	N/A	N/A	N/A
1981	Winter	N/A	N/A	N/A	N/A	N/A
	Spring	N/A	N/A	N/A	N/A	N/A
	Summer	28,087	17,438	15,370	745,783	2,237,350
	Fall					

Source: Statistical Digest, Service Analysis Section
*Strike

## TABLE A-V

RTD System-Wide Total Operating Cost

Year	Quarter
1976	Winter   Spring   Summer*   Fall
	Winter   Spring   Summer   Fall
1977	Winter   Spring
Summer	
Fail	

TABLE A-VI.
RTD System-Wide
Average Estimated Boardings

Year	Quarter	Per Weekday	$\begin{gathered} \text { Per } \\ \text { Saturday } \end{gathered}$	\% of Weekday	Per   Sunday	\% of Weekday	Total
1976	Winter	NA	NA	NA	NA	NA	NA
	Spring	NÄ	NA	NA	NA	NA	NA
	Summer*	990,000	550,000	55.5\%	390,000	39.4\%	48,000,000
	Fall	970,000	520,000	53.6	340,000	35.1	73,800,000
1977	Winter	1,050,000	570,000	54.3	390,000	37.1	79,300,000
	Spring	1,060,000	580,000	54.7	390,000	36.8	81,000, 000
	Suramer	1,020,000	540,000	52.9	.360,000	35.3	77,900,000
	Fall	1,040,000	520,000	50.0	350,000	33.7	77,300;000
1978	Winter	1,020,000	540,000	52.9	370,000	36.3	77,800,000
	Spring	1,090,000	570,000	52.3	410,000	37.6	83,000,000
	Summer	1,090,000	580,000	53.2	380,000	34.9	81,900,000
	Fall	1,100,000	570,000	51.8	370,000	33.6	82,300,000
1979	Winter	1,100,000	590,000	53.6	380,000	34.5	83,600,000
	Spring	1,280,000	670,000	52.3	450,000	35.2	97,000,000
	Summer*	1, 210,000	610,000	50.4	440,000	36.4	68,700,000
	Fall	1,180,000	610,000	51.7	390,000	33.1	88,100,000
1980	Winter	1,230,000	700.000	56.9	440.000	35.8	93,700,000
	Spring	1, 320,000	790,000	59.8	520,000	39.4	101,800,000
	Suramer	1,220,000	730,000	59.8	480,000	39.3	93,400,000
	Fall	1,330,000	750,000	56.4	490,000	36.8	100,800,000
1981	Winter	1,310,000	720,000	55.0	470,000	35.9	100,100,000
	Spring	1,360,000	720,000	52.9	450,000	33.1	102,800,000
	Summer	1,180,000	690,000	58.5	480,000	40.7	91,000,000

Mean

Source: Statistical Digest, Service Analysis Section
*Strike

TABLE A- VII
LOCAL LINES
(Ranked by boardings per bus hour)

Line	Boardings	Boardings per Bus Hour	Line Boardings		$\begin{gathered} \text { Boardings } \\ \text { per Bus } \\ \text { Hour } \\ \hline \end{gathered}$	Line Boardings		Boardings per Bus Hour
84	28,774	110.6	81	8,055	49.2	872	704	24.5
29	28,879	106.3	202	5,297	48.3	306	773	24.3
26	54,689	104.1	840	4,389	47.7	846	1,448	24.3
28	34,768	93.1	426	7,163	46.2	151	1,536	23.8
834	10,130	87.5	18	2.,822	45.0	430	1,565	23.5
41	10,167	86.7	836	7,987	44.0	842	681	23.5
3	36,708	84.4	164/165	9,8.59	43.6	829	3,516	23.1
50	23,982	83.0	438	3,902	43.6	871	3,436	23.1
6	30,069	81.5	423	6,394	42.4	14/87	1,662	23.0
94	19,074	81.1	841	7,172	41.4	142	2,441	23.0
12	17,.235	79.5	76	1,350	40.9	822	1,010	22.8
89	19,820	79.5	152	5,648	40.0	844	989	22.5
4	53,045	77.6	155/160	5,583	39.1	434	2,124	22.0
83	68,480	77.0	428	4,817	38.9	34	1,1.14	22.0
75	24,271	74.8	158	3,265	38.4	867	627	22.0
96	32,755	69.7	10	3,704	38.1	97	1,860	21.0
32	5,553	67.2	33	4,315	37.6	201	1,149	20.2
49	15,896	67.2	8.38	2,122	36.3	359	575	20.1
105	19,040	65.8	153	2,102	35.5	446	848	19.6
55	15,355	65.8	877	3,728	35.2	869	2,032	18.9
7	21,579	62.5	849	2,234	34.6	445	825	18.8
9	30,305	61.4	154	3,613	34.5	431	1,052	18.5
832	16,899	59.3	440	3,874	33.8	821/831	1,014	18.0
422	8,802	58.4	15	, 923	33.2	432	2,017	17.6
47	11,441	58.1	159	2,781	33.1	825	520	17.6
210	17,809	58.1	73	3,390	31.5	827	1,441	17.4
92	14,406	56.4	166/168	3,529	30.3	861	506	17.3
436	13,184	56.3	425	3,720	30.0	451/453	1,216	15.0
78	1,386	56.2	183	2,069	29.5	205	290	12.1
826	7,943	55.2	169	2,825	29.5	452/4.54	779	11.5
25	10,008	55.0	433	2,669	28.7	874	160	11.5
8	8,442	54.3	175	1,246	27.7	161	317	11.4
212	12,317	54.1	356	1,106	27.5	441/443	755	10.3
39	10,883	53.8	424	1,887	27.3	204	NA	NA
24	11, 325	$52 . .8$	435	2,469	27.2	232	NA	NA
103	2,139	$52 . .1$	447	1,230	27.1			
420	6,460	50.8	114	1,029	27.0			
163	7,865	50.7	17	1,477	26.0			
828	11, 269	50.5	16	1,086	25.3			
3.54	1,356	50.4	206	- 956	24.7			
157	4,196	50.0	156	1,740	24.6			
TAL	965,813							
DIAN		37.6						

TABLE A-VIII
LOCAL LINES WITH
EXPRESS SERVICE DURING
PEAK HOURS ONLY
(Ranked by boardings per bus hour)

Line	Boardings	Boardings per   Bus Hour
44	38,385	94.9
91	38,990	79.7
42	20,580	68.3
5	27,039	63.3
93	20,245	53.3
86	7,594	42.4
56	5,687	36.2
495	1,159	20.1
TOTAL	159,679	58.3
MEDIAN		
8 LINES		

TABLE A-IX
LOCAL LINES WITH
FULL DAY EXPRESS SERVICE (Ranked by boardings per buis hours)

Line	Boardings	Boardings per   Bus Hour
	10,476	44.3
88	13,040	43.9
35	789	35.0
493	5,128	34.4
810	3,933	33.3
$401 / 402$	6,603	30.0
484	2,516	29.6
486	3,594	28.0
490	7,552	27.1
$483 / 485$	1,719	26.4
801	6,872	25.4
820	6,302	24.5
480	2,868	24.3
482	1,968	23.6
488	2,529	23.1
813	5,292	21.7
$487 / 491$	2,588	19.0
456	3,083	18.0
800	1,830	16.7
607	1,238	12.2
496	615	
860		
TOTAL		
MEDIAN		
24 LINES		

TABLE A-X EXPRESS LINES OPERATING ONLY DURING PEAK HOURS
(Ranked by boardings per bus hour)

Line	Boardings	Boardings Per Bus Hour
12.2	279	25.5
176	1149	23.7
144	964	23.3
494	340	19.4
492	323	16.1
604	624	16.1
606	324	14.8
123	70	13.6
814	550	12.7
601	146	11.8
602	320	11.3
605	237	9.5
608	163	8.2
410	196	$\cdots \mathrm{N} / \mathrm{A}$
481	1229	N/A
489	946	N/A
34	63	N/A
TOTAL	7872	
MEDIAN		13.6
17 LINE		

## TABLE A-XI <br> PARK 'N RIDE LINES

(Ranked by boardings per bus hour)

Line	Boardings	Boardings   per Bus   Hour
737	411	25.0
757	1,697	23.4
721	921	20.3
764	786	20.3
760	1,321	20.2
755	990	18.0
762	939	17.4
716	366	15.1
758	545	14.6
TOTAL	7,976	20.2
MEDIAN		

## TABLE $A=X I I$

 SUBSCRIPTION LINES| Line | Boardings | Boardings <br> per Bus <br> Hour |
| :--- | :---: | :---: |
| 501 | 112 | N/A |
| 503 | 98 | $\mathrm{~N} / \mathrm{A}$ |
| 504 | 86 | $\mathrm{~N} / \mathrm{A}$ |
| 505 | 248 | $\mathrm{~N} / \mathrm{A}$ |
| 507 | 100 | N/A |
| 508 | 106 | $\mathrm{~N} / \mathrm{A}$ |
| 509 | 194 | $\mathrm{~N} / \mathrm{A}$ |
| 511 | 100 | N/A |
| 512 | 60 | 5.6 |
| 514 | 113 | 10.0 |
| TOTAL | 1,044 |  |

## TABLE A - XIII LOCAL LINES OPERATING ONLY DURING PEAK HOURS <br> (Premium Fare)

(Ranked by boardings per bus hour)

Line	Boardings	Boardings   per Bus   Hour
521	30	NA
522	26	NA
524	24	NA
531	74	NA
535	73	NA
536	35	$N A$
537	25	$N A$
541	40	$N A$
542	45	$N A$
543	15	$N A$
545	30	$N A$
TOTAL	417	$N A$

11 LINES

TABLE A-XIV
SPECIAL SERVICES

Line	Boardings	Boardings   Per Bus   Hour
	NA	NA
552	NA	NA
553	NA	NA
554	NA	NA
555	NA	NA
556	NA	NA
557	NA	NA
558	NA	NA
559	NA	NA
561	NA	NA
566	NA	NA
567	NA	NA
571	NA	NA
572	NA	NA
573	NA	NA
574	NA	NA
603	NA	NA
609	NA	NA
610	NA	NA
611	NA	NA
612	NA	NA
613	NA	NA
635		NA

## 23 LINES

TABLE A-XV - SAMPLE LTNES BY TYPE

Trpe of Line	Line Number	Daily   Boardings	S of Category	Riders Per Bus four	Revenue   Per   Boarding	Subsidy   Per   Boarding
					S	\$
Local	29	28,879	3.08	106.3	. 40	. 17
	12	17,235	1.8	79.5	. 38	. 29
	89	19,820	2.1	79.5	. 24	. 35
	96	32,755	3.4	69.7	.38	. 19
	32	5,553	. 6	67.2	. 41	. 37
	47	11,441	1.2	58.1	. 35	- 30
	210	17,809	1.8	58.1	. 38	. 29
	826	7,943	-8	55.2	. 48	. 49
	354	1,356	. 1	50.4	. 37	. 81
	157	4,196	. 4	50.0	. 48	. 38
	81	8,055	. 8	49.2	. 36	.52
	840	4,989	. 5	47.7	. 42	1.88
	18	2,822	. 3	45.0	. 43	. 41
	164					
	$165{ }^{1}$	9,859	1.0	43.6	. 49	. 50
	152	5,648	. 6	40.0	. 49	. 48
	155					
	$160)$	5,583	. 6	39.1	. 46	. 97
	73	3,390	. 4	31.5	. 25	. 78
	166)					
	168)	3,529	. 4	30.3	. 53	1.15
	425	3,720	. 4	30.0	. 40	. 83
	169	2,825	. 3	29.5	. 48	1.16
	175	1,246	-1	27.7	. 29	. 41
	424	1,887	- 2	27.3	. 46	1.29
	435	2,469	- 3	27.2	. 47	1.44
	114	1,029	-1	27.0	. 52	. 95
	156	1,740	. 2	24.6	. 48	1.06
	872	704	. 1	24.5	. 31	. 73
	846	1,448	-1	24.3	. 52	1.31
	871	3,436	. 4	23.1	.44	1.52
	822	1,010	-1	22.8	. 51	1.44
	844	989	-1	22.5	. 55	2.08
	867	627	$\cdots$	22.0	. 55	1.52
	869	2,032	- 2	18.9	. 49	1.66
	431	1,052	. 1	18.5	. 48	1.86
	8213					
	$831)$	1;014	-1	18.0	. 53	1.89
	861	506	-1	17.3	. 51	1.83
	4513					
	$453)$	1,216	. 1	15.0	. 50	2.10
	$4523$					
	$454\}$	779	-1	11.5	. 50	4:50
	Sub-total	$220,591$	22.8\%	30.2	. 465	. 89
	Median	$2,823$				
Local						
Peak Express	44	38,385	24.0\%	94.9	. 40	. 13
	91	38,990	24.4	79.7	. 26	. 25
	86	7,594	4.8	42.4	. 42	. 88
	Sub-total	84,969	53.2\%	79.7	. 40	. 25
	Median	38,385				
Local-Day torg						
Express	88	10,476	11.68	44.3	. 51	. 41
	484	6,603	7.3	30.0	. 63	. 87
	488	1,968	2.2	23.6	. 64	2.27
	813	2,529	2.8	23.1	. 77	1.37
	Sub-total	21,576	23.8\%	26.8	. 635	1.12
	Median	4,566				
	TOTAL	327,136	26.98		\$.47	\$. 95

TABLE A-XVI
MAY PASS SALES MIX

Type of Pass	1978		1981		\% Change   Since 1978
	Number	$\begin{aligned} & \hline \% \text { of } \\ & \text { Sales } \end{aligned}$	Number	$80 f$ Sales	
Regular + Express	58,050	43.2\%	102,796	$45.8 \%$	+77.1\%
Park \& Ride	274	. 2	522	. 2	+90.5
Interagency	18	-	20	-	+11.1
Extra-County	40	-	-	-	-
Student   College/Vocational	38,089*	28.4	$\begin{aligned} & 40,707 \\ & 12,285 \end{aligned}$	$\begin{array}{r} 18.1 \\ 5.5 \end{array}$	+39.1
Senior Citizen	34,170	25.4	53,076	23.6	+55.3
Handicapped	3,645	2.7	10,124	4.5	+177.8
Tourist	-	-	4,989	2.2	-
Total Passes	134,286	100.0\%	224,519	99.9\%	+67.2\%
Express Stamps	17,612	100.0\%	33,591	100.0\%	+90.7\%

*Student pass included college students, no age limit

Source: Pass Sales Report

TABLE A-XYII

## PERCENT OF WORK TRIPS BY. PUBLIC TRANSIT

AREA	$\underline{19.7 .0}$	$\underline{1977}$
Los Angeles-Long Beach	6.08	5.38
Anaheim-Santa Ana-Garden   Grove	.5	1.9
20 SMSA's	10.3	7.3

Source: Current Population Reports, Special Studies, P. 2.3 No. 105 Bureau of the Census, January, 1981.

TABLE, A-XYIII
WORK TRIP CHARACTERISTICS: 1977

Mode of Transportation To Work	Los Angeles-Long Beach Namber Percent		Anaheim-Santa Ana Garden Grove		20 SMSA'S	
All Workers	2,934,000		843,000		13,658,000	
Drive Alone	2,090,000	73\%	640,000	77\%	9,062,000	70\%
Carpoil	452,000	16	128,000	15	2,266,000	17
Public Transit	. 145,000	5	15,000	2	921,000	7
Walk	- 89,000	3	16,000	2	518,000	4
Bicycle	24,000	1	11,000	1	98,000	1
Other Means	29,000	1	10,000	1	109,000	1
Work at Home	54,000	2	15,000	2	227,000	2
Median Distance from Home to Work						
All Workers	8.0 Miles		10.0 Miles		7.7 Miles	
Drive Alone	8.4		10.2		8.2	
Carpool	9.7		12.1		9.4	
Bus or Streetcar	7.2		10.1		6.7	
Walk	. 6		. 6		. 6	
Other Means	3.6		3.3		3.5	
Median Travel Time To Work						
All Workers	20.2 mins		20.4 mins		20.3 mins	
Drive Alone	19.9		20.2		19.7	
Carpool	21.9		22.3		22.3	
Bus or Streetcar	32.8		44.1		32.5	
Walk	9.8		7.6		9.3	
Other Means	13.8		13.9		14.9	

Source: Current population Reports, Special Studies P. 23 No. 105 Bureau of the census, Jan. 1981


[^0]:    Response Rate: 48.9\%

[^1]:    *Sample size too small to allow valid statistical comparison.

[^2]:    * Sample size too small to allow valid statistical comparison

[^3]:    Response Rate: 32.28

[^4]:    * Sample size too small to allow valid statistical comparison

[^5]:    * Sample size too small to allow valid statistical comparison

[^6]:    Bample size too smail to alion valid atstisticai oomparison

[^7]:    Response Rate: 47.0\%

[^8]:    * Sample size too small to allow valid statistical comparison

[^9]:    *Sample size too small to allow valid statistical comparison

[^10]:    * Sample size too small to allow valid statistical comparison

[^11]:    * Sample size too small to allow valid statistical comparison

[^12]:    * Sample size too small to allow valid statistical comparison

[^13]:    39.47\% of East Central trips are within East Central sector.

[^14]:    Source: Statistical Digest, Service Analysis Section

[^15]:    *Strike

