

METRO RAIL TRANSIT CONSULTANTS

August 31, 1983

Mr. Robert J. Murray
Assistant General Manager
Transit Systems Development
SOUTHERN CALIFORNIA RAPID TRANSIT DISTRICT
425 South Main Street
Los Angeles, California 90013
Subject: Communications Alternatives Analyses Study, WBS 14CAC
File : POO12410 94CAC
Dear Mr. Murray:
Attached are four (4) copies of the Communications Alternatives Analyses Study, a preliminary version of which was submitted with a January 17, 1983 letter from P. M. Burgess to W. J. Rhine and commented on in Mr. Rhine's February 22, 1983 memo to Mr. Burgess. The frequency allocation study addressed in the February 22 memo, and being carried out by T. J. Collins Associates, will address the vehicle radio configuration and, as such, is not being undertaken at this time. The telephone description in the Executive Summary now has been clarified, deleting references to the emergency telephone system. The Deleuw Cather study on cable transmission alternatives was transmitted separately on May 16, 1983 as Chapter V for District comments. We have not received any comments and are including this as Chapter V of the 14CAC deliverable.

This fulfills our requirements for deliverable under WBS $14 C A C$.
METRO RAIL TRANSIT CONSULTANTS
livy Hammond
DAVID G. HAMMOND
Project Director
DGH/DPM/1m
attachments (4)
cc: W. J. Rhine, w/attachment
H. Chaliff, who attachment
A. M. Dale, w/o attachment
M. L. Kenney, wo attachment
K. G. Rommel, wo attachmen:

Final Report COMMUNICATIONS ALTERNATIVES ANALYSES

UBS 14CAC

RE E Job 81152-403

Prepared for the Southern California Rapid Transit District by

Kaiser Engineers California
August 1983

The preparation of this document has been financed in part through a grant from the D.S. Department of Transportation, Urban Mass Transportation Administration, under the Urban Mass Transportation Act of 1964, as amended, the State of California, and the Los Angeles County Transportation Commission.

LIBRARY
SECTION PAGE
List of Tables 11
List of Figures 111
Executive Sumary 1
Chapter 1. Introduction 1-1
Chapter 2. Passenger Vehicle Radio Service Analysis 2-1
Chapter 3. Telephone Service Analysis 3-1
Chapter 4. Closed Circuit Television (CCTV) Monitor Analysis 4-1
Chapter 5. Cable Transmission Subsystem (CTS) Analysis 5-1
Appendix A. Bibliography A-1
Appendix B. List of Sources B-1
Appendix C. Calculations C-1
Appendix D. Radio Service Data D-1
Appendix E. Telephone Service Data E-1
Appendix F. CCTV Backup Data F-1
Appendix G. Controlled Aperture Evaluation G-1
Appendix H. Telephoine Lease vis: Büy Evaluation $\mathrm{E}=1$
Appendix I. Manufacturer's Cut Sheets (CTS) I-1
Appendix J. Handwritten Notes, Telephone Estimates,
Kandwritten Calculations (CTS) J-1
Appendix K. Cost Estimate Sheets (CTS) K-1
Table Page
Table A. Cost Sumary of Commication Analyses 3
Table 2-1. Capital Costs 2-7
Table 2-2. Annual Operating Costs 2-9
Table 2-3. Annual Maintenance Costs 2-9
Table 2-4. Radio Cost Analysis 2-10
Table 3-1. Comparison of Telephone Facilities 3-3
Table 3-2. Distribution of Telephones 3-5
Table 3-3. Cost Development Data 3-6
Table 3-4. Capital Costs 3-7
Table 3-5. Annual Maintenance Expense 3-9
Table 3-6. Telephone Alternatives Cost Analysis 3-9
Table 4-1. Capital Costs 4-8
Table 4-2. Employees Required in Central Control 4-9
Table 4-3. Annual Operating Costs (Labor) 4-11
Table 4-4. Annual Maintenance Costs 4-12
Table 4-5. CCTV̇ Cost Analysis 4-13

LIST OF FIGURES

FIGURE PAGE
Figure 2-1. Nonremovable Radio 2-2
Figure 2-2. Removable Nonoperable Radio 2-4
Figure 2-3. Removable Operable Radio 2-5
Figure 4-1. Multiple Camera Sequencing 4-3
Figure 4-2. Split-Screen Profection 4-4
Figüre 4-3. Split-Screen Sequencing 4-5
Figure 5-1. Basic Requirements and Rail Alignment 5-3
Figure 5-2. Circuit 1 - Central Control to Main Yard $5 \div 6$
Figure 5-3. Circuit 2 - Central Control to Seventh and Flower 5-7
Figure 5-4. Circuit 3 - Central Control to La Brea 5-8
Figure 5-5. Circuit 4 - Central Control to Studio City 5-10
Figure 5-6. Circüit 5 - Central Control to North Yard 5-11
Figure 5-7. Transmission Equipment 5-14
Figure 5-8. Alternatives 1 and 2 Coaxial Cable 5-15
Figure 5-9. Alternatives 1 and 2 Coaxial Cable 5-16
Figure 5-10. CCTV Coaxial Cable \# 1 5-17
Figure 5-11. CCTV Coaxial Cable \#1 5-18
Figure 5-12. CCTV Coaxial Cable Circuit \# 3 5-19
Figure 5-13. Overall Plan Outbound Voice Cable 5-21
Figure 5-14. Coaxial Cable for Voice Circuit 5-22
Figure 5-15. FM/PCM Digital Outbound 5-23
Figure 5-16. Inbound Coaxial Voice Cable 5-24
Figure 5-17. Fiber Optics - Alternative 3 - Circuit 2 5-26

LIST OF FIGURES (continued)

FIGURE PAGE
Figure 5-18. Fiber Optics - Alternative 3 - Circuit 1 5-27
Figure 5-19. Fiber Optics - Alternative 3 - Circuits 3 \& 4 . . 5-28
Figure 5-20. Fiber Optics Video Transmission Scheme 5-29
Figure 5-21. Voice Transmission Fiber Optics 5-30

FXECUTIVE SUMMARY

The purpose of this work element is to enable the Metro Rail Project staff to select preferred design alternatives for the commuications system and its major components. This report includes analyses of the alternatives and recommendations for vehicle radio service, telephone service, closed circuit television (CCTV), and cable transmission service (CTS).

Originally, two other analyses were to be included: an analysis of lease-vs.-buy telephone equipment, and an analysis of TV camera aperture control vs. higher levels of illumination.

Analysis of the lease-vs.-buy alternative was discontinued after Pacific Telephone representatives informed us that a recent court ruling precludes any guarantee that the telephone company will be in the leasing business when telephone services and equipment are being procured for the Metro Rail System (see Appendix H). The evaluation of TV camera aperture control was discontinued after a technology assessment showed that moderately priced cameras meeting the video requirements with relatively wide-range automatic aperture control have recently become available. Thus, one camera design is suitable for all station requirements, without the need for extra illumination (see Appendix G).

The methodology used in the analyses compares the total annual costs of each alternative, including capital, maintenance, and operating costs. Annualized capital costs were developed on the assumption that money can be borrowed for 32 years at 12% annual interest. All costs are in 1982 dollars.

The results of these alternatives analyses are expected to advance the design of the communications system toward a configuration that will optimize economy, performance, and reliability. Table A and the paragraphs below summarize the results of each alternative analysis.

PASSENGER VEHICLE RADIO SERVICE

The änalysis of vehicle radios evaluates three alternatives: nonremoviable radio, removable nonoperable radio, and removable operable radio. For the first two alternatives a portable radio is needed for each train so that the operator can coumunicate while away from the train. The annual equivalent cost ($\$ 74,153$) of the removable operable radio is the lowest. The additional handilng risk during check-in and check-out and mounting and dismounting from the vehicle raises concerns that need to be addressed in detailed design. The removable nonoperable radio has the same risks and has an annual equivalent cost of $\$ 90,327$. The nonremovable radio, with an annual equivalent cost of $\$ 100,350$, is the most expensive of the 3 alternatives. The removable operable radio is recommended for the Metro

Rail System at this time. However, it is also recommended that the current PATCO system, which is similar to the removable operable radio analyzed in this chapter, be considered during final design.

TELEPHONE SERVICE

The telephone service covers administrative calling, maintenance calling, and emergency calling. This analysis evaluates three alternatives: three separate exchanges, two combined exchanges, and one combined exchange. The one combined exchange configuration has a 24\% savings in annual equivalent costs over three separate exchanges, and a 15\% savings over the two combined exchanges configuration. Thus, the one combined exchange configuration is recomended for the Metro Rail System.

CLOSED CIRCUIT TELEVISION (CCTV) MONITORS

The analysis of monitoring techniques evaluates three alternatives to dedicated monitoring. (Dedicated monitoring was eliminated due to the high cost of providing such a system.) Yultiple camera sequencing, split-screen projection, and split-screen sequencing are analyzed. Although multiple camera sequencing is not the least expensive, it is only 5% more than split-screen sequencing and has a proven track record in the rail rapid transit industry. It also has the lowest equipment cost of all three alternatives and implements the fullest potential of a single TV screen.

It is recomended that this alternative be implemented. However, during detailed design certain cameras may be appropriately sequenced in monitors, while other scenes may require continual surveillance. Thus, a combination of multiple camera sequencing and dedicated monitoring might be most effective.

CABLE TRANSMISSION SYSTEM

This analysis evaluates three alternatives for use as the back bone commuications facility: 1) an audio frequency copper wire system using physical copper pairs for each telephone and audio circuit back to central control (with coaxial cable for CCTV), 2) a multiplexed coaxial cable system for both audio and video circuits and 3) an optical fiber cable system using digitized audio and video maltiplexing (TDM).

To enhance future expansion capabilities and to realize expected future cost reductions and performance capability of the optical fiber cable system its implementation is recoumended even though its present annual equivalent cost is highest.

Table A
COST SUMMARY OF COMMUNICATION ANALYSES*

vEHICLE RADIO SERV̇ICE

Nonremovable Radio		$\mathbf{1 0 0 , 3 5 0}$	
Removavle Nonoperable Radio Removable Operable Radio	$\mathbf{7 4 , 1 . 5 3}$	90,327	

TELEPHONE SERVICE

Three Separate Exchanges		166,400	
Two Combined Exchanges	140,900		
One Combined Exchange	$1.26,600$		

CCVT MONITORS

Multiple Camera Sequencing		962,907	
Split-Screen Projection	$\mathbf{1 , 5 0 3 , 4 3 5}$		
Split-Screen Sequencing	$92: 3,218$		

CABLE TRANSMISSION SYSTEM
Copper Wire (Video on Coax) 805,142
Coaxial Cable
891,544
Optical Fiber Cables
$1,179,669$

[^0]
Chapter 1

INTRODU̇CTION

BACKGROUND
In WBS element 14CAC, Raiser Engineers' contractual responsibility was to develop engineering analyses, conclusions, and recommendations on the alternative characteristics of the communications system where several options are available. KE was to analyze the alternatives, reporting on the following:

- The most cost-effective components
- Differences in performance characteristics and operating experience
- Any problem areas for SCRTD application

It was recognized that some design options would have a major impact on the Metro Rail System's and the communication system's effectiveness, while others would have only minor impact, or no impact at all. RE was to analyze only those items that would have a major impact on the commünication system and/or the Metro Rail System.

RE prepared a list of candidate design alternatives which was influenced by the District-furnished list of Metro Rail Project Alternatives, dated December 30, 1981. At a meeting on March 1, 1982 with the Metro Rail Project staff; the proposed list was presented and discussed. At that time the following six items were selected for analysis:

- Vehicle radios
- Telephone service configuration
- Closed circuit television monitors
- Cable transmission system
- Controlled aperture cameras
- Lease or purchase of telephone system

The first four of these items became the framework for RE's work effort in WBS 14CAC, and are discussed in Chapters 2 through 5 of this report. The last two items are covered in Appendices G and B.

1.2 PURPOSE/OBJECTIVES
 Kaiser Engineers' primary task in WBS 14CAC was to develop engineering analyses; conclusions, and recommendations on the communication system alternatives in sufficient detail to enable the District to make the most beneficial choice from among the alternatives.
 The output of WBS 14CAC leads directly into later communication work elements, and the development of information in this work element will be used to establish the design criteria called for by WBS 16CAC.

1.3 SCOPE

The following paragraphs summarize the general scope of the alternative analyses covered in Chapters 2 through 5.
1.3.1 Passenger Vehicle Radio Service Analysis

Alternatives studied:

- Nonremovable vehicle radio with portable operator's radio
- Removable nonoperable radio with portable operator's radio
- Removable operable radio

The analysis was based on a fleet size of 142 vheicles made into 71 dependent pairs. The functional requirements of the service are to provide the train operator with continuous commuication with Central Control, communication capability when not onboard the vehicle, and coumunication with yard control when entering or leaving the gard.

1.3.2 Telephone Service Analysis

This analysis studied methods which could be used to provide the three telephone functions: administrative calling, maintenance calling, and emergency calling. The following alternatives were studied:

- Three separate exchanges
- Two coimbined exchanges
- One combined exchange

1.3.3 Closed Circuit Television (CCTV) Monitor Analysis

Alternatives to be studied:
o Multiple camera sequencing

- Split-screen projection
- Sequential split-screen projection
Initial screening of the alternatives determined that the "dedicated monitoring" alternative, which requires one TV monitor for each camera, would be too expensive.

1.3.4 Cable Transmission Service CTS) Analysis

This analysis will be submitted under separate cover in January 1983.
1.4 METEODOLOGY
KE made an analysis of the alternatives under consideration. The following list was developed to define those areas which would show critical differences between the alternatives:

- Capital Costs
- Operating Costs
- Maintenance Costs
- Aninual Equivalent Costs
- Technical Risk
- Availability
In some instances, other qualitative factors which showed major differences between the alternatives were also included. The methodology section of each chapter detalls the addition or deletion of any evaluation factor.

```
1.4.1 Design Assumptions
Design assumptions for the purpose of this report were made by
Kaiser Engineers on the basis of the following:
o SCRTD Metro Rail Project Architectural Standards for Communication
- SCRTD Metro Rail Pieliminary Operating Plan and Design Criteria
```

The particular design assumptions used for each analysis are listed in each chapter.

1.4.2 Pertinent Literature

In order to obtain the latest information on communication systems, a literature search was made. Vendors were contacted and applicable reports, papers, and equipment specifications obtained and reviewed. Kaiser Engineers' reports on other transit systems were reviewed for any data that would apply to the Metro Rail System. For details, see Appendix A, Bibliography.

1.4.3 Vendors, Users, and Associates:

Interviews were also conducted with the following:

- Equipment manufacturers
o Personnel at existing rail rapid transit sustems
- Telephone company personnel
o Engineering associates in the rail rapid transit field

For a complete listing of users, vendors, and associates, see Appendix B, List of Sources.
1.4.4 Calcülations

Cost comparisons were based on preliminary estimates; these costs will be further developed in later work elements. The cost analyses include annualized capital cost, based on borrowing money at 12% interest for 32 years at an annual payment schedule of $\$ 123.28$ per $\$ 1,000.00$ borrowed.

Other cost values used in calculations were:

- Energy cost - $\$ 0.07 / \mathrm{kWh}$
- Operating labor rate - $\$ 18.00 / \mathrm{hr}$
- Maintenance labor rate - $\$ 19.30 / \mathrm{hr}$

For more details regarding calculations, see Appendix C, Calculations.
1.4.5 Appendices

Backup data for the analyses is presented in Appendices D, E, F, I, J, and K. Information on two analyses that were discontinued is included in Appendices G and H.

2.1 INTRODUCTION

The purpose of this study is to determine the optimin configuration for the passenger vehicle radio service equipment to be used on the Metro Rail System. The functional requirements of the service are to provide the train operator with the ability to maintain continuous commaications with Central Control on the mainline during revenue operation and with yard control when entering or leaving the yard and operating within the gard limits. Additionally, the vehicle radio service will be required to provide compnications capability at any other location on or near the train.

2.2 DESCRIPTION OF ALTERNATIVES

In all three alternatives the control head allows the cab speaker and microphone to be used with the train PA and intercomunications apparatus. Also, the train number can be set manually by the train operator.

-2.2.1 Nonremovable Radio (Alternative I)

In this alternative all radio equipment is permanently installed on each dependent pair of cars. Figure 2-1 shows the configuration for a dependent pair. The train operator is issued a portable radio unit to provide commications while away from the cab. The following equipment is required:

- A-Car: Transmitter/receiver, quarter-wave antenna installed on top of the car, encoder, control head, power supply, microphone, and speaker.
- B-Car: Control head, microphone, and speaker.
- Portable Equipment: One handheld-type radio per train.

In this alternative, the transmitter/receiver unit is removable. All other radio equipment is permanently installed, as shown in Figure 2-2, on each dependent pair of cars. As with the first alternative, the train operator is issued a portable radio unit to provide commication capability while away from the cab. The following equipment is required:

- A-Car: Quarter-wave antenna installed on top of the car, encoder, control head, power supply, microphone, and speaker.
- B-Car: Same as A-car except no power supply.
- Portable Eqüipment: One handheld-type radio per train and ône removable transmitter/receiver per train.
2.2.3 Removable Operable Radio (Alternative 3)

In this alternative, the radio transmitter/receiver is removable and, since it is fully operable outside the train, it can be used by the operator to provide communication while away from the cab. The control head charges the battery in the removable radio unit whenever it is installed in the operator's console. The following equipment, as shown on Figure 2-3, is required:

- A-Car: Qüarter-wave antenna installed on top of the car, encoder, control head, battery charger, power supply, 60-watt linear amplifier, microphone, and speaker.
- B-Car: Same as A-car except no power supply.
- Portable Equipment: One hand-held type removable operable radio per trän.

2.3 APPLICATION HISTORY

WMATA, BART, and MARTA use a nonremovable vehicle radio for train operator comminications and Baltimore and Miami plan to do the same. Transit systems in Philadelphia, New York, and Chicago use a removable nonoperable radio for train operator communications on the train. CONRAIL and the San Diego trolley use a removable operable radio service for train operator commication. patco recently modified their existing fleet to have a removable operable radio in each car of each dependent pair.

2.4 METHODOLOGY

The basic quantitative and qualitative evaluation factors discussed in Chapter 1, Section 1.4, are used in this analysis.

2.4.1 Design Assumptions

For the purpose of this analysis, Raiser Engineers made the following assumptions:

- Alternatives 1 and 2 have 6 -channel capacity with a rated power output of 60 watts.
- The handheld radio has 6 -channel capaicty with a rated power output of 6 watts.
- The radio operates in the FCC allocated frequency range of 150 to 176 MHz .
o No coaxial antenna leads would be routed between the cars. Therefore, an antenna mist be instalied on each car that has a transmitter.
- Fleet size is 142 vehicles made into 71 dependent pairs.
- A maximum of 19 6-car trains (114 cars total) will be operating düring peak hours.
- The remainder of the fleet (28 cars) will be on standby or undergoing maintenance.
- Annual Metro Rail operating time is 20 hours/day $x 365$ days $=7,300$ hours.
- Portable transmitter/receivers and radios will be checked in and out of a secured storeroom once each day.
- 25 portable units will be required to support a peak of 19 revenue trains.
- The operator inserts removable equipment in the cab area of only the headend car of the train.
2.5 RESULTS
2.5.1 Capital Costs

The capital costs are systemwide. Three battery chargers (\$360 each) are required for the portable units in Alternatives 1 and 2. These chargers will charge the batteries in the portable units while they are in the store room between assignments to a train operator. One charger is required for Alternative 3 to charge the
portable units which are not assigned to train operators. Those assigned to train operators are charged while they are plugged into the train units.
A. Fixed radio. Permanently installed radios will be required for each married pair; a total of 71 units at $\$ 2,515$ each or $\$ 178,565$. Also 25 portable units at $\$ 2,595$ or a total of $\$ 64,875$ are required.
B. Removable nonoperable radio. A removable transmitter/receiver will be required for each operating train, 25 units at $\$ 2,136$ each or $\$ 53,400$. One hundred forty-two of the permanently installed section of the radio are required at $\$ 445$ each or $\$ 63,190$. Also 25 portable units at $\$ 2,595$ or a total of $\$ 64,875$ are required.
C. Removable operable radio. Removable operable radios will be required for each operating train, 25 units at $\$ 2,595$ each or $\$ 64,875$. One hundred forty-two of the permanently installed section of the radio are required at $\$ 455$ each or $\$ 63,190$.

Table 2-1
CAPITAL COSTS

	(1)	(2)	(3)
Equipment	Nonremovable Radio	Removable Nonoperable Radio	Removable Operable Radio
Permanently installed radio equipment	178,565	63,190	63,190
Portable radio unit	64,875	64,875	64,875
Portable nonoperable transmitter/receiver	-	53,400	
Battery charger (3 units for complete system)	1,080	1,080	360
TOTAL CAPITAL COSTS	\$244,520	\$182,545	\$128,425
ANNUALIZED CAPITAL COSTS	\$ 30,144	\$ 22,504	\$ 15,832

[^1]
2.5.2 Operating Costs

Operating costs are shown in Table 2-2.
A. Energy. There, are 59,830 annual operating train hours for the Metro Rail System. A 110\% factor is assumed to allow for gap trains and wait time before and after runs $(59,830 \times 1.1=65,813)$.

1. Nonremovable radio. Based on manufacturers' information, the power consumption for each 60 watt radio will be 480 watts (0.48 kW). This gives a total annual energy cost of:
$\$ 0.07$ per $\mathrm{kWh} \times 65,813 \mathrm{hr} \times 0.48 \mathrm{~kW}=\$ 2,211$
2. Removable nonoperable radio. Based on manufacturers' information, the power consumption for each 60 watt radio is 480 watts (0.48 kW). This gives a total annual energy cost of :
$\$ 0.07$ per kWh x $65,813 \mathrm{hr} \times 0.48 \mathrm{~kW}=\$ 2,211$
3. Removable operable radio. To approximate the power consümption for the 6 watt radios, 60 watts were subtracted from the 60 watt radio power consumption to give a net of 420 watts (.42 kW). This gives a total annual energy cost of:
$\$ 0.07$ per $\mathrm{kWh} \times 65,813 \mathrm{hr} \times 0.42 \mathrm{~kW}=\$ 1,935$
B. Labor: Since train operators will, as part of their routine duties, operate the radio equipment no matter which alternative is selected, the labor costs are the same for all and have not been included in this study. There is, however, labor involved with checking out the portable transmitter/receivers and radio units. The estimated (by KE) average time to check a unit in-and-out on a daily basis is 2 hours total per unit per week. Therefore, this annual labor cost would be:

2 hours/week $\times 52$ weeks $\times 19$ units $\times \$ 19.30 / \mathrm{hr}=\$ 38,137$
For option 2 the operator has 2 units to check in and out. An additional time equal to 10% of the time for the first unit has been allocated to the second unit.

$$
\$ 38,137 \times .10=\$ 3,814
$$

[^2]Table 2-2
ANNUAL OPERATING COSTS

	(1) Nonremovable Radio	(2) Removable Nonoperable Radio	(3) Removable Operable Radio
Energy*	2,211	2,211	1,935
Administration (checkin and check-out)			
Removable nonoperable transmitter/receiver	-	3,814	-
Removable operable radio	0 -	-	38,137
Portable radio	38,137	38,137	-
ANNUAL OPERAIING COSTS	\$40,348	\$44,162	\$,40,072

2.5.3 Maintenance Costs

For the purposes of evaluating the three alternatives, the cost of an annual maintenance contract for parts and labor was calculated. General Electric stated that 10% of the equipment capital costs are normally asked for parts and labor on an annual maintenance contract.** Maintenance costs are shown in Table 2-3.

Table 2-3
ANNUAL MAINTENANCE COSTS

(1) Nonremovable Radio	(2) Removable Nonoperable Radio	(3) Removable Operable Radio
$\$ 24,452$	$\$ 18,255$	$\$ 12,843$

Replacement of portable radios (1/12/yr.) 5,406

5,406
5,406
Servíce contract with radio vendor
$\$ 24,452$
$\$ 18,255$
$\$ 12,843$

ANNUAL MAINTENANCE COSTS
29,858
23,661
18,249

[^3]```
2.5.4 Annual Equivalent Costs
 Table 2-4 summarizes the above three costs, and, using the formula shown in Appendix D, shows the annual equivalent costs.
```

Table 2-4
RADIO COST ANALYSIS

|  |  | (1) <br> Noṇ removable Radio | (2) <br> Removable <br> Nonoperable Radio | (3) <br> Removable <br> Operable <br> Radio |
| :---: | :---: | :---: | :---: | :---: |
| Capital Cost (installed) |  | 244,520 | 182,545 | 128,425 |
| Operating Cost (annual) |  | 40,348 | 44,162 | 40,072 |
| Maintenance Cost (annual) |  | 29,858 | 23,661 | 18,249 |
| Total Operating and Maintenance Costs |  | \$ 70,206 | \$ 67,823 | \$ 58,321 |
| Annualized Capital Cost |  | \$ 30,144 | \$ 22,504 | \$ 15,832 |
| ANNUAL EQUIVALENT COST |  | \$100,350 | \$ 90,327 | \$ 74,153 |
| 2.5.5 Technical Risk |  |  |  |  |
| All three alternatives utilize off-the-shelf equipment that has been used in rail rapid transit service. The radio equipment will be furnished with solid-state components that provide a long life expectancy, instantaneous operation, and very low failure rates. The technical risk with the radio is more associated with having correct interfaces between the various system elements on the vehicle, in Central Control, and in the portable usage than in the equipment itself. The removable radio alternativies have the disadvantage of additional handling risk during the check-out/ check-in procedure and mounting and dismounting from cars. Both require repeated installation and removal of equipment with connectors. Such connectors are subject to malfunction due to vibration, dirt accumulation, and physical damage. Removable equipment is also subject to loss and damage while being handed and carried by train operators. |  |  |  |  |

### 2.5.6 Availability

Equipment for all three alternatives is readily available. During final design the availability of equipment required for the selected alternative will be determined.

### 2.6 CONCLUSION

On a cost basis, the removable operable radio (Alternative 3) is the least expensive. However, the risks (as discussed in Section 2.5.5) associated with the constant removal and replacement of the radio raises concerns that would need to be addressed in detailed design. Alternative 2 also has the same risks. Therefore, the removable operable radio (Alternative 3 ) is best suited to the Metro Rail requirements.

### 2.7 RECOMMENDATION

It is recomended that Alternative 3 be selected for the passenger vehicle radio service for the Metro Rail system. Is is also recomended that the current PATCO system, which is similar to Alternative 3 except that a removable, operable radio is installed in each car, be considered during final design. This PATCo configuration eliminates the administrative costs of a constant check-in/check-out activity, minimizes the reliability/loss/damage problems associated with frequent insertion into the mounting, but does not, however, realize the capital cost savings due to fewer transmitters/receivers fleet wide. Because of these factors the cost effectiveness of this additional alternative should be examined more closely.

Chapter 3

## TELEPHONE SERVICE ANALYSIS

3.1 INTRODUCTION

The telephone facilities may be broken down into three categories for analysis:

```
- Telephone instruments
0 Cable transmission system (outside cable)
o Central switching equipment (PBX)
```

The first category of equipment includes telephone sets, terminal blocks, distribution panels, and the corresponding interconnecting wiring. The second category, outside cable, provides the conductive connection for carrying signals to and from the telephone instruments. The third category is the PBX* equipment, which makes the connection between the calling- and called-telephone lines.

This chapter of the report is concerned with the cost of installation and maintenance of the first and third categories of equipment, including telephone plant, telephone instruments, and PBX equipment. The second category or outside cable is the subject of a separate section of this report (see Chapter 5).

### 3.1.1 Fünctional Requirements

The telephone service will provide a means of comminication to serve the following three functions:
A. Administrative calling. This function will be provided by telephones located in Metro Rail offices, stations, shops, and Central Control. They will be used for placing calls to and receiving calls from other Metro Rail telephones, exchange telephones in the Los Angeles extended area, and telephones reached over the toll telephone and state private-line networks.

[^4]B. Maintenance calling. This function will be provided by telephone sets located in shops and equipment rooms, and by telephone test sets which plug into weatherproof jacks located in signal bungalows, on wayside signals, in the fare collection areas, ventilation shafts, and in traction power substations. These telephones will be used for communication between maintenance personnel.
C. Emergency calling. This function will be provided by telephones located on station platforms and other critical locations. They will be used for calling Central Control. These telephones will have no pushbuttons or dials but will be provided with automatic ringdown sent by removing the handset from its cradle.
If administrative and maintenance telephones also have the capability for emergency calling to Central Control, they will have ringdown sent by pressing only one dual-tone multifrequency (DTMF) key on the instrument.

### 3.2 DESCRIPTION OF ALTERNATIVES

The following paragraphs describe the options studied for telephone service:

### 3.2.1 Alternative 1: Three Separate Exchanges

The three telephone services may be provided by installing separate exchanges for each function including separate instruments, lines, channels, and switching arrangements for their interconnection.
3.2.2 Alternative 2: Two Combined Exchanges
Two services, administrative and maintenance, combine calling on one exchange with emergency calling on another exchange. Separate instruments, lines, channels, and switching apparatus are supplied for each exichange.

### 3.2.3 Alternative 3: One Combined Exchange

All three services are combined into one exchange with all telephone calling with common lines, channels, and switching apparatus. Instruments for emergency phones are separate.

### 3.3 APPLICATION HISTORY

Recently constructed heavy-rail transit properties have similar telephone service needs as those required for Metro Rall. Table 3-1 provides a comparison of the facilities installed on BART, MARTA, and WMATA.

Table 3-1
COMPARISON OF TELEPHONE FACILITIES

|  | BART | MARTA | WMATA |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { EMERGENCY } \\ & \text { TFTEPRONE } \end{aligned}$ |  |  |  |
|  |  |  |  |
| Type | Automatic ringdown | Automatic ringdown | Press "*" pushbutton |
| $\begin{aligned} & \text { Ability to } \\ & \text { Call } \end{aligned}$ | Central Control | Central Control | Ceñtral Control |
| Central Office Switching | None-telephones <br> from each station <br> appear on a separate <br> "press-and-holdi" <br> button on console | None--calls are handled by one-way ríngdown apparatus and appear on console communications panel | Combined PBX |

MAINTENANCE
TELEPHONES

| Type | Plug-in | Plug-in | Plüg-in |
| :---: | :---: | :---: | :---: |
| Able to Communicate with | Party on own line | Party on own line | Party on own line |
| Centráal Office Switching | None | None | None |
| ADMINISTRATIVE |  |  |  |
| Type | DTMF pushbutton | DTMT P pushbutiton | DTMF pushbutton |
| $\begin{aligned} & \text { Ability } \\ & \text { to Call } \end{aligned}$ | Any admin. telephone | Any admín. telephone | Any admin. telephone |
| Central Office Switching | Separate PBX | Separate PBX | Combined PBX |

### 3.4 METHODOLOGY

The evaluation factors discussed in Chapter 1, Section 1.4. were used in the andylysis of the alternatives. The primary evaluation factor in the study of the telephone service alternatives is the annual equivalent cost. This cost is composed of two components--the annual capital cost of the installed equipment plus the maintenance expense of the installed equipment.

Cost estimates for the telephone equipment are based on averaging data obtained from various suppliers of telephone equipment. The annual -maintenance expense is calculated from expense ratios applied to the cost of corresponding categories of telephone equipment. These ratios are based on the experience of typical small telephone utilities operating in Southern California.

### 3.4.1 Design Assumptions

Under all alternatives, the telephone service will provide the following functions and facilities:
A. Emergency telephones. Separate emergency telephones will be installed at public locations where required. These telephones will be without dials and will be provided with automatic ringdown to Central Control activated by removing the handset from its cradle. A separate line or channel will connect each telephone to the PBX at Central Control, which will have access to the required number of answering lines at the attendant's console.
B. Administrative and maintenance telephones. Administrative and maintenance telephonés with maintenance jacks will be installed, where required, with DTMF dialing and access to all other administrative and maintenance telephones. Call waiting, call forwarding, and call conferencing capabilities will be included. Access to Central Control for emergency calling would be possible by pressing a single "*" pushbutton. Each telephone or jack location will have a separate line or channel to the PBX at Central Control.

Table 3-2 shows the distribution and function of the telephone apparatus assumed for the alternatives studied. It shows the number of telephones and jack locations that would be required if separate exchanges were to be provided for each function, and the number required for the alternatives which combine more than one function into a single exchange. The chart also shows the total number of circuits, including the allowance for trunk circuits which are required for calls made to telephones served by other exchanges.

Table 3-2
DISTRIBUTION OF TELEPHONES

|  | Separate Exchanges (1) |  |  |  | Combined Exchanges ( $2 \& 3)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Emerg. Ringdown Telephones | Admin. Telephones | Maintenance Telephones | Jacks | Emerg. <br> Ringdown <br> Telephones | Admin. and <br> Telephones | intenance <br> Jacks |
| Each Passenger Station |  |  |  |  |  |  |  |
| Platform | 6 | - | - | 3 | 6 | - | 3 |
| Ventilation shaft | 1 | - | - | 2 | 1 | - | 2 |
| Fare collection area | 2 | - | - | 2 | 2 | - | 2 |
| Equipment room | , | 2 | 2 | 2 | - | 2 | 2 |
| Attendant's booth | 1 | 1 | - | - | - | 1 | - |
| Power substation | 1 | 1 | 2 | 4 | - | 2 | 4 |
| Tunnel cross-passages | 12 | - | - | - | 12 | - |  |
| t0TAL/station | 24 | 4 | 4 | 13 | 21 | 5 | 13 |
| TOTAL/16 stations | 384 | 64 | 64 | 208 | 336 | 80 | 208 |
| Wayside Locations |  |  |  |  |  |  |  |
| Signals | - | - | - | 28 | - | - | 28 |
| Switch machines | - | - | - | 38 | - | - | 38 |
|  |  |  |  |  |  |  |  |
| Control room | - | 65 | 2 | 12 | - |  |  |
| Yards and Shops 32 |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Signal bungalows | - | - | - | 20 | - | - |  |
| Yard signals | - | - | - | 35 | - | - | 35 |
| Signal towers | 3 | 12 | 3 | 25 | - | 12 | 35 25 |
| S. 8 I. Shop | - | 32 | 12 | 2 | - | 32 | 25 |
| Maintenance shops | $\pm$ | 50 | 18 | - | - | 50 | - |
| TOTAL Telephones \& Jacks * | 387 | 228 | 101 | 398 | 336 | 244 | 398 |
| Required PBX Lines \& Trunks: | 387 | 274 | 599 |  | 336 | 770 | 398 |

[^5] for the emergency telephone service where outside calls are not anticipated.

### 3.5 RESULTS

### 3.5.1 Capital Costs

The capital costs are the total of the procurement and installation costs. Table 3-3 provides the unit costs which are used in developing the total capital costs for each option.

Table 3-3
COST DEVELOPMENT DATA*
Material

| Telephone instrument, DTMF pushbutton | $\mathbf{5 5 . 0 0}$ |
| :--- | ---: |
| Telephone instrument, wall-mounted, without |  |
| dial for automatic ringdown | 36.00 |
| Telephone jack | 16.00 |
| Electronic PBX: |  |
| $100-400$ 1ine capacity, per line | 450.00 |
| $400-800$ line capacity, per line | 400.00 |
| $800-1600$ line capacity, per iine | 350.00 |

Labor
Install telephone instrument, each 50.00
Install PBX equipment, per line 40.00

Table 3-4 shows the capital cost for each alternative based on the material and labor costs given in Table 3-3.

[^6]Table 3-4

## CAPITAL COSTS

Alternative 1
Alternative 2
Alternative 3

| Number <br> Required | Unit <br> Cost | Amount | Number <br> Required | Unit | Cost |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Amount | Number |
| :--- | :--- | :--- | :--- | :--- |
| Required |$\quad$| Unft |
| :--- |
| Cost |$\quad$ Amount

MATERIAL
Emergency Exchange

| Ringdown instruments | 387 | \$ 36 | \$ 13,932 | 336 | \$ 36 | \$ 12,096 | 336 | \$ 36 | \$12,096 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PBX IIne equipment | 400 | 450 | 180,000 | 350 | 450 | 157,500 | - | - | - |
| Admin. Exchange |  |  |  |  |  |  |  |  |  |
| Telephone instruments | 228 | 55 | 12,540 | - | - | - | - | - | - |
| PBX Iine equipment | 300 | 450 | 135,000 | - | - | - | - | - | - |
| Main./Combined Ex. |  |  |  |  |  |  |  |  |  |
| Telephone instruments | 101 | 55 | 5,555 | 244 | 55 | 13,420 | 244 | 55 | 13,420 |
| Telephone jacks | 499 | 16 | 7,984 | 398 | 16 | 6,368 | 398 | 16 | 6,368 |
| PBX Iine equipment | 600 | 400 | 240,000 | 800 | 400 | 320,000 | 1200 | 350 | 420,000 |
| TOTAL MATERIAL |  |  | \$595,011 |  |  | \$ $\overline{509,384}$ |  |  | \$451,884 |
| INSTALLATION |  |  |  |  |  |  |  |  |  |
| Telephone instruments and jacks | 1215 | 50 | 60,750 | 978 | 50 | 48,900 | 9.78 | 50 | 48,900 |
| PBX equipment, per line | 1300 | 40 | 52,000 | 1150 | 40 | 46,000 | 1200 | 40 | 48,000 |
| TOTAL INSTALLATION |  |  | \$112,750 |  |  | \$ 94;900 |  |  | \$ 96,900 |
| TOTAL Material and Installation |  |  | 707,761 |  |  | 604, 284 |  |  | 548,784 |
| ROUNDED CAPITAL COST |  |  | \$710,000 |  |  | \$600,000 |  |  | \$550,000 |

### 3.5.2 Operating Costs

A. Labor. The cost of operating personnel is not included because all the equipment operates unattended. Any "operator assistance ${ }^{\text {" }}$ which may be required would be performed by the same Central Control personnel, irrespective of the altemative selected.
B. Energy. The cost of electrical energy used in electronic telephone systems is very low compared to other types of electrical power loads. The largest telephone exchange considered in this study would have a power requirement of only 2,000 watts. Supplying this load on an annual basis would represent an insignificant amount in the overall cost of the alternatives (approximately 1\%).

### 3.5.3 Maintenance Costs

A. Labor. Unless telephone service is obtained from The Pacific Telephone and Telegraph Company on a monthly-charge basis, maintenance will be performed by Metro Rail techinicians. The same crews will maintain other electrical and electronic apparatus in addition to the telephone apparatus. It is necessary, therefore, to estimate the amount of time and and material that will be used in the maintenance of the telephone equipment.

As an approximation of this cost, the expense ratios were derived from the experience of public utilities engaged in providing similar telephone service:* Data obtained from the files of the California Public Utilities Comission have shown that, for the telephone companies examined, the ratio of expense of instrument repairs to the plant value of telephone instruments ranges from 17.8 to 18.7 percent. Similar ratios for expense of repair central office equipment ( PBX ) to the plant value of central office equipment ranges from 9.9 to 10.3 percent.

The values-fudged appropriate for use in this study and the resulting maintenance expense estimates are shown in Table 3-5.

[^7]Table 3-5
ANNUAL MAINTENANCE EXPENSE

|  | Alternative | Alternative 2 | Alternative 3 |
| :---: | :---: | :---: | :---: |
| Telephone instruments | \$101,000 | \$ 80,800 | \$ 80,800 |
| Maintenance (18\% of capital cost. | 18,200 | 14,500 | 14,500 |
| PBX equipment | 607,000 | 524,000 | 468,000 |
| Maintenance expense ( $10 \%$ of capital cost) | 60,700 | 52,400 | 46,800 |
| TOTAL ESTIMATED |  |  |  |
| MAINTENANCE | \$ 78,900 | \$ 66,900 | \$ 61,300 |

### 3.5.4 Annual Equivalent Costs

For the analysis of the telephone service, the total annual equivalent cost consists of the annualized capital cost plus the estimated annual maintenance expense. Table 3-6 shows the combination of the capital costs from Table 3-4 as modified to obtain the annual cost, and the estimated maintenance from Table 3-5 to obtain the annual equivalent cost for all three options.

Table 3-6
TELEPHONE ALTERNATIVES COST ANALYSIS

|  | Alternative 1 | Alternative 2 | Alternative 3 |
| :--- | ---: | ---: | ---: |
| Capital Cost (Table 3-4) | $\$ 710,000$ | $\$ 600,000$ | $\$ 530,000$ |
| Annualized Capital Cost | $\mathbf{8 7 , 5 0 0}$ | 74,000 | 65,300 |
| Estimated Annual Maintenance <br> (Table 3-5) | $\mathbf{7 8 , 9 0 0}$ | 66,900 | 61,300 |
| ANNUAL EQUIVALENT COST | $\$ 166,400$ | $\$ 140,900$ | $\$ 126,600$ |
| SAVINGS (compared <br> to highest cost) | - | $15 \%$ | $24 \%$ |

### 3.5.5 Reliability

The central switching equipment (PBX) used in this comparative analysis comprises small electronic switching systems (ESS). Experience with ESS equipment has shown that it is more reliable and requires less maintenance than the electromechanical PBX equipment used previously, and its reliability may be further increased for larger electronic PBX installations. For units of 1,000 lines or more, it is possible to add a redundant central processing unit (CPU) to the PBX apparatus to assume operation in case of malfunction of the primary CPU. This can be obtained without appreciable increase in the cost per line.

For many years telephone instruments have been considered fairly rugged and rellable. Their reliability has also been increased by replacing the rotary dial, which is susceptible to dirt contamination and to mechanical maladfustment, with touch-tone dialing.

Overall, the only option which offers an advantage in reliability is the option that will be able to profit by the redundant features offered in the larger PBX units; that is, Alternative 3.

### 3.5.6 Technical Risk

The telephone instrument is a standard electromechanical device including a receiver, transmitter, hybrid coil, ringer, switchhook, and DTMF dial. The basic apparatus has been in general use for over 30 years and the touch-tone feature has been in general use on telephone company exchanges in California for over 15 years.

Electronic PBX installations began replacing electromechanical PBX plants approximately 12 years ago and have since become standard. For these reasons there is little technical risk with any of the telephone service altenatives considered.

### 3.5.7 Availability

The availability of telephone equipment is very broad. Telephone instruments and PBXs are available from many vendors offering apparatüs manufactured in a number of European countries, Japan, Canada, and the United States. The equipment for any of the alternatives should therefore be obtainable with little difficulty.

### 3.6 CONCLUSTON

This analysis concludes that the alternative offering the lowest annual equivalent cost is that which combines into one exchange all telephone calling with common lines and switching apparatus. The analysis showed that this configuration offers a $24 \%$ savings in annual equivalent costs over the separate exchange altermative, and a $15 \%$ savings over the partially combined exchange alternative. These savings are obtained by minimizing the quantity of telephone instruments and $\operatorname{PBX}$ line equipment required, as well as by taking advantage of the lower cost per line available with larger $P B X$ equipment.

Additional savings will be realized in the CTS through the use of a combined exchange, because fewer telephone lines will be required to carry signals to and from Central Control. Under the combined exchange configuration, emergency telephone service would be provided in public areas by separate wall-mounted telephones without dials, arranged to ring at Central Control when the handset is removed from the switchhook.

All telephones in this analysis are single party line units. Each telephone has a dedicated circuit to the central PBX. In this way, there would be no interference caused by a telephone ine being shared by maintenance or administrative personnel.

### 3.7 RECOMMENDATION

The recomendation is to combine all telephone requirements into one exchange using common switching apparatus and lines (Alternative 3). Emergency phone instruments are separate. This installation would offer the lowest equivalent annual cost and fuliy meet the requirements of the Metro Rail System telephone service.

## CLOSED-CIRCUIT TELEVISION MONITOR ANALYSIS

### 4.1 INTRODUCTION

The use of closed-circuit television (CCTV) surveillance on transit systems as a deterrent to crime has been an accepted practice for many years. All of the newer operating rail systems (BART, MARTA, WMATA, and PATCO) employ some form of CCTV sürveillance. Systems under construction or in the design stage, such as Miami, Baltimore, and Houston, are including CCTV for their future operation. The extent to which each of these systems use CCTV varies from property to property and is based upon the uniqueness of each property.

An example of factors which influence the extent of CCTV usage on a system are: the operating environment through which the system traverses, physical constraints of the system, manned or unmanned stations, budget limitations, and others. Once a decision is reached to use CCTV on a system, several critical issues must be addressed, such as: areas of system to be monitored, the monitoring technique to be used, and local or remote monitoring. All of these issues must be addressed early in the design as they greatly impact the design of facilities.

This analysis of monitoring techniques reviews the advantages and disadvantages of three viable alternatives to dedicated monitors for each camera, and provides sufficient cost data to enable an economic comparison of alternatives.

### 4.2 DESCRIPTION OF ALTERNATIVES

Sevieral techniques for CCTV monitoring are available in the marketplace, each with advantages and disadvantages. These techniques include:

- Dedicated monitoring
- Multiple camera sequencing
- Split-screen projection
- Sequential split-screen projection

The initial screening of the alternatives eliminated dedicated monitoring as a further consideration as a result of the high cost of providing such a system. Dedicated monitoring for the SCRTD system would require an array of 216 CCTV monitors with a large monitoring staff. Elimination of this alternative is consistent with the transit industry trend toward providing an effective system at a reasonable cost. The three remaining alternatives, which are described below, will be analyzed.

### 4.2.1 Multiple Camera Sequencing (Alternative 1)

Multiple camera sequencing is a method in which several scenes are projected on one monitor in automated sequential order. The normal range of ecenes is from 2 to 5 . For this alternative, the system is designed to sequence 4 cameras on each monitor. Large or small monitors can be used. This method, which requires 3 monitor screens per station, additionally allows the viewer to select and hold a specific scene desired, and can be likened to changing a channel on a television set. Normally, the sequencing rate can be adjusted from 2 seconds to 3 minutes of viewing time. A block diagraim of Alternative 1 is shown in Figure 4-1.

### 4.2.2 Split-Screen Projection (Alternative 2)

Split-screen projection is a method whereby 2 or more scenes are projected on a single monitor via a splitter. Two scenes per monitor were selected as the basis for the study of this alternative. This method would require 6 monitor screens per station. A block diagram of Alternative 2 is shown in Figure 4-2.
4.2.3 Split-Screen Sequencing (Alternative 3)

The split screen sequencing method would use a combination of apparatus to permit three camera images to be sequenced in rotation on a split screen showing two displays. Two monitors per station would be required. A block diagram of Alternative 3 is shown in Figure 4-3.

### 4.3 APPLICATION HISTORY

In the transportation industry CCTV is being used for monitoring activities at passenger stations and facilities. The Illinois Central Gulf Railroad uses Alternative 1, multiple camera sequencing. Each monitor is dedicated to 5 fixed cameras which are sequenced every seven seconds. Port Authority Transit Corporation (PATCO) uses one monitor screen per camera, as does the Washington Metropolitan Area Transit Authority (WMATA) and the Port Authority of New York and New Jersey. A review of the above properties and BART, Baltimore, Miami, and MARTA determined that the Metro Rail System will monitor by far the largest number of cameras in a single Central Control center.



PGURE 4-2. ALTERATVE\#2 SPLIT-SCREEN PROJEETON


```
4.4 METHODOLOGY
The alternatives are analyzed using the evaluation factors described in Chapter 1, Section 1.4. Additional qualitative factors; observation continuity and TV் monitor personnel work load, are discussed in Sections 4.5.5 and 4.5.6. The SCRTD Architectural Standards for Comminications and the APTA Guidelines for Transit Security were reviewed, and a possible configuration was developed for the Metro Rail System.
```


### 4.4.1 Design Assumptions

```
The following assumptions were made for the pürpose of this analysis:
```

- Closed circuit television surveillance of stations shall be reqüired on a 24 -hour a day basis.
- Two TV surveillance sites are added for the purpose of monitoring two storage yards.
- The primary location for monitoring the CCTV system is the Central Control facility.
- CCTV monitoring personnel are also responsible for answering the public assistance telephones.
- Twelvie fixed TV cameras will be provided at each passenger station and at each shop/yard.
- No CCTV coverage of a central revenue-counting facility is considered because of its specialized function and separate monitoring location.
- Areas subject to CCTV surveillance include: fare collection, handicapped/service entrance and egress, security telephones, fire emergency telephones, patron assistance telephones, toilet room entrances, stairs at terminations, escalators at terminations, station platforms at termination of vertical circulation elements and at platform ends and at corridors, and pedestrian bridges and underpasses within stations.
- No video recorders are included in the analysis since the costs would be similar for all three alternatives.


### 4.4.2 Operational Assumptions

The SCRTD operational concept for CCTV sürveillance established to date requires that Central Control will have the primary responsibility for monitoring the CCTV surveillance system. Each station will be provided with twelve fixed cameras which will send images of various areas within each station to Central Control. An array of monitoring equipment combined with dedicated monitoring personnel will be located at this facility. Additional TV monitors will be provided for the surveillance of two vehicle storage yards located at each end of the operating line.

Provisions for one additional monitor in each station will be included in the design of stations. It is expected that if stations are manned, CCTV monitoring will not be a primary duty of the station agent. Central Control will advise the station agent of any situation which is occurring at his/her station which may necessitate fürther investigation or assistance. The station agent may then switch a single video monitor to the appropriate image for further viewing.

Both of these policies are in accordance with the recommendations of Closed Circuit Television in Transit Stations: Application Guidelines.*

### 4.5 RESULTS

4.5.1 Capital Costs

The capital costs for equipment for each of the three alternatives are shown in Table 4-1. These costs have been obtained from the manufacturers and include only the cost of the basic equipment.** The costs associated with the installation of equipment and the procurement and installation of cabling from stations and yards to Central Control have not been included in this analysis. For Alternatives 1 and 3; no cost was included for the master sequencer function since it is anticipated that the timing will be established at each station and no additional hardware is required. The detailed cost data for capital equipment is shown in Appendix $F$.

[^8](1)

Qty \begin{tabular}{c}
Multiple <br>
Camera <br>
Sequencing

 Qty 

Split- <br>
Screen <br>
Projection

$\quad$

Cöimination <br>
Split-Screer <br>
Sequencing
\end{tabular}

TV cameras at each stâtion, automatic light compensation lens, scanner control ( $\$ 1,260$ ea.)

Camera sequencers
at each station (\$280 ea.)

| a) Four image | 3 | 840 | - |  | - |  | |
|---|---|---|---|---|---|---|---|
| b) Three image | - |  |  |  | 4 | 1,120 |
| TV monitors, $12^{\prime \prime}$, |  |  |  |  |  |  |
| aütoinatic control |  |  |  |  |  |  |
| (\$360 ea.) |  |  |  |  |  |  |  |
| a) Central Control | 3 | 1,080 | 6 | 2,160 | 2 | 720 |
| b) Each station | 1 | 360 | 1 | 360 | 1 | 360 |
| Camera splitters |  |  |  |  |  |  |
| ```at each station ($360 ea.)``` |  |  |  |  |  |  |
| a) Two image | - |  | 6 | 2,160 | - |  |
| b) Three image | - |  | - |  | 4 | 1,440 |
| TOTAL STATION COST |  | \$ 17,400 |  | \$ 19;800 |  | \$ 18,760 |
| TOTAL SYSTEM COST* |  | \$313,200 |  | \$356,400 |  | \$337,680 |
| ANNUALIZED CAPITAL COST |  | \$ 38,611 |  | \$ 43,937 |  | \$ 41,602 |

*16 at passenger stations and 2 for the yards.
Closed Circuit Television in Transit Stations: Application Guidelines wàs püblished by UMTA in Augüst 1980. This feport discuisseä life-cycle costs of CCTV installations. The report stated that "Depending on size, pricing policies, construction requirements, and many other factors, a CCTV transit station security system can have a purchase cost of anywhere from $\$ 1,500$ to $\$ 20,000$ per camera/monitor installed." This was for a one camera to one monitor system. This indicates that there is a large tolerance on the anticipated cost of CCTV installations. The costs shown above are within this range but on the low side since combined monitoring, minimum functional requirements, and a competitive bid process are anticipated. Also, the data transmission equipment is not included.

### 4.5.2 Operating Costs

The labor cost associated with monitoring a CCTV system is inevitably a major factor in the selection of a surveillance system. The only cost item in this category consists of personnel to monitor the televisions at Central Control. Table 4-2 shows the total quantity of monitor screens required in Central Control for each alternative, and the number of employees needed for each operating period and the number of monitors each employee would watch.

Table 4-2
Employees Requifred in Central Control

Alternative 1 Alternative 2 Alternative 3

TV Monitors at Central

| Screens per sitation | 3 | 6 | 2 |
| :--- | ---: | ---: | ---: |
| Total screens | 54 | 108 | 36 |

Off-Hours Period
10 pm 6 am,
7 days/week
11
1

Sunday Base Period
6 am-10 pm,
1 day/week $\quad 2 \quad 3$

Peak Periods
6-10 am \& 2-6 pin,
5 days/week 2
2

Base Period
6 am-10pm,
6 days/week $\quad 3 \quad 6$
Total employees in
Central during peak period $5 \quad 8$

TV Monitors
per employee during
peak periods 11
13.5

9

The number of employees per shift is based upon a review of related transit property studies and actual experience of Kaiser Engineers personnel. The calculations used to determine the number of personnel required are shown in Appendix C, Calculations. The following factors determine the number of employees required:

- Sequencing or nonsequencing
- Other employee duties
- Distance employee is from TV screens
- Configuration of TV screens
- Level of activity on the display screens

Closed Circuit Television in Transit Stations: Application Guidelines discussed, in Section 3.3, the number of monitiors which can be viewed by each "operator." It concludes that 9 to 16 is the reasonable range of monitors for each employee.

These numbers of employees convert to a total staff level and annual operating costs for the three alternatives as shown in Table 4-3. Only labor costs are included because a cost comparison of energy costs between all these alternatives showed only a siight cost difference. The labor costs are based on 2,080 total paid work hours per year and 1,920 total productive work hours per year.

The staff levels are established around four system operating time zones. The base period consists of two eight-hour shifts: 6 am to 2 pm and 2 pm to 10 pm , six days/week. The peak period consists of two four-hour periods: 6 am to 10 am and 2 pm to 6 pm. The off-hour period consists of the eight-hour period from 10 pm to 6 am , seven days/week. The Sunday base period consists of two eight-hour shifts: 6 am to 2 pm and 2 pm to 10 pm .

Table 4-3
ANNUAL OPERATING COSTS (LABOR)
(1)
(2)
(3)

| Multiple Camera | Split-Screen | Combinatioū <br> Sequencing |
| :---: | :---: | :---: |
|  | Projection | Split-Screen |
| Sequencing |  |  |

Peak Periods 6-10 аต \& 2-6 pm, 5 days/week, 8 hours/day

$$
112,320
$$

112,320
74,880
Employees/yr
(3)
(3)
(2)
$\frac{\text { Base Periods }}{6}$
6 days/week,
16 hours/day
299,520
599,040
299,520
Employees/yr
(8)
(16)
(8)

Off-Hours Period
10 pm-6 am,
7 days/week,
8 hours/day
74,880
74,880
74,880
Employees/yr
(2)
(2)
(2)

Sunday Base Period


### 4.5.3 Maintenance Costs

Table 4-4 shows the maintenance costs for all three alternatives.
A. Labor. The labor costs are established around two time zones: the Monday to Saturday (6 day) coverage over a 24 -hour period and the Sunday only 24 -hour period. For Alternatives 1 and 3, during the 6-day period at least one technician would be stationed at Central Control and one other technician would be available for on-site maintenance at the stations. During the 24-hour Sunday period, one technician would cover the complete system. For Alternative 2, because twice the number of monitors are required, the number of technicians has been appropriately increased as shown. The backup data is shown in Appendix $F$.
B. Spares. The cost of spares is based upon $10 \%$ of the base equipment cost for each alternative as recommended by both Panasonic and GE. The backup data is shown in Appendix F.

Table 4-4

ANNUÄL MAINTENANCE COSTS
(1)
(2)

| Multiple Camera | Split-Screen | Combination |
| :---: | :--- | :--- |
| Sequencing | Projection | Split-Screen |
|  |  | Sequencing |

Labor
a) CCTV̈ Technicians

24 hrs/day
6 days/week
Technicians
8
321, 1.52
481,728
321,152
8
b) CCTV Technicians

24 hrs/day
Sunday
40,144
80,288
40,144
Tectinicians
1
2
1

36,360
33,600
Spares
38,840
12

TOTAL MAINTENANCE COSTS $\$ 400,136$
\$598,376
\$394,896

```
 4.5.4 Annual Equivalent Costs
Table 4-5 provides the annual equivalent cost comparison data for the three configurations. The annual equivalent costs are computed using the formula shown in Appendix C, Calculations.
```

Table 4-5
CCTV COST ANALYSIS
(1)
(2)
(3)

| Miltiple Camera <br> Sequencing | Split-Screen <br> Projection | Combination <br> Split-Screen |
| :--- | :--- | :--- |
|  |  | Sequencing |


| Capital Costs: | 313,200 | 356,400 | 337,680 |
| :--- | :--- | :--- | :--- |
| Operating Costs (annual) | 524,160 | 861,120 | 486,720 |
| Maintenance Costs (annual) | 400,136 | 598,376 | 394,896 |
| Total Operating and <br> Maintenance Costs | $\$ 924,296$ | $\$ 1,459,496$ | $\$ 806,7.36$. |
| Annualized Capital Costs | $\$ 38,611$ | $\$ 43,937$ | $\$ 41,602$ |
| ANNUAL EQCIIVALENT COST | $\$ 962,907$ | $\$ 1,503,435$ | $\$ 923,218$ |

### 4.5.5 Observation Continuity

All 12 TV cameras at each station are energized 24 hours a day. Patrons are not aware of whether the image seen by the camera is being observed by a Metro Rail employee. It is therefore possible to achieve the crime deterrent affect without having an employee actually look at each camera scene 24 hours a day. The operating scenarios for each alternative are discussed below:
A. Multiple Camera Sequencing (Alternative 1). With this alternative the scene from each camera is shown on the TV monitor only $25 \%$ of the time. If the scenes are sequenced every 6 seconds, then each area being monitored would appear on the monitor for 6 seconds, then be off for 18 seconds. In the event that a TV monitor or sequencer failed, the scenes from 4 cameras would be lost until repairs were made.
B. Split-Screen Projection (Alternative 2). With this alternative each scene from each camera is shown $100 \%$ of the time on one-half of the monitor screen. The images are therefore one-half the size of those available for observation using Alternative 1 . In the event that a TV monitor or splitter fails, then scenes from 2 cameras would be lost until repairs were made.
C. Split-Screen Sequencing (Alternative 3). With this alternative each scene froim each camera is shown one-third of the time. If the scenes are sequenced every 6 seconds, each area being monitored would appear on one-half the monitor for 6 seconds and then be off for 12 seconds. In the event that a sequencer failed, scenes from 3 cameras would be lost. If a splitter or monitor failed, scenes from 6 cameras would be lost until repairs were made.

A potential solution for monitor failures for any of the alternatives would be to provide redundant monitoring capability. The plan would require an additional number of spare monitors which would permit monitoring personnel to switch the images normally seen on the failed monitors to the spare monitors. Equipment which would permitt this redundancy has not been developed at this time, but the possibility should be analyzed upon selection of the alternative. In general, the best continuity is provided by Alternative 2, followed by Alternative 1 and then 3.

### 4.5.6 TV Monitor Personnel Workload

Closed Circuit Television in Transit Stations addresses personnel work schedules, including the nümber of TV screens each employee can effectively monitor. The report concludes that if a lot of activity were present one person could monitor 9 screens. If there were little activity then one person could monitor üp to 16 screens. In the report's discussion of constant
U.S. sequential monitoring modes, the constant monitoring mode is the preferred method. However, the report does state that sequential monitoring would be acceptable for unusually low activity areas and in areas where there were extreme limitations on space. The number of employees has been adjusted for an equal work load (see Table 4-2) for each alternative, thus the labor costs reflect any variation in work load.

### 4.5.7 Technical Risk

The use of splitters (Alternatives 2 and 3) is a somewhat new technology for widespread comnercial use and must be considered a greater risk than the sequencing mode (Alternative 1).

### 4.5.8 Availability

Based on conversations with both G.E. and Panasonic, splitters are not as comercially aviailable as sequencers. This limitation may not be a factor by the time of the procurement stage.

### 4.6 CONCLUSION

Alternative 1 requires the least amount of equipment, which is reflected in the total equipment dollar value. This is a direct result of sequencing four images onto one monitor, significantly reducing the number of monitor screens required. This method requires 3 TV monitor screens per passenger station. Sequencing has a proven track record in the transit industry, with off-the-sheif hardware available from most vendors. However, due to the sequencing feature, periods of unobserved time are a characteristic of this method; the condition could be compensated for by providing the operator with a device to stop and hold a particular scene.

Alternative 2 is not an attractive alternative due to the intensive labor requirements. A total of 37 employees makes this plan the most labor intensive, because the split screen showing only 2 images per monitor significantly increases the number of monitors required per station, which increases the labor force. The plan also has the highest equipment cost due to the increased number of units required.

Alternative 3 has the lowest labor requirement of all three alternatives, due to the optimum use of a single TV screen by splitting the screen and sequencing the projected images. These features require less monitoring personnel. A disadvantage is that combining all these features results in a "busy" TV screen and coüld possibly result in operator monotony and fatigue. Equipment cost ranks second when compared to the other plans. This altemative has no track record and is not convenfently available from vendors.

### 4.7 RECOMMENDATION

It is recomended that Alternative 1 be implemented. Although this plan is not the least expensive overall (ranked second), it is only $5 \%$ more than Alternative 3, its proven track record and availability makes it the best alternative. It has the least equipment cost of the three alternatives, and effectively implementes the fullest potential of a single TV screen. Once the final decision to have or not to have a station attendant is made, the final criteria for CCTV can be established. Further analysis at that time would determine the optimum CCTV configuration.

During detailed design, certain cameras (scenes) may be appropriately sequenced in monitors while other scenes may require continual sürveillance. Thus, a combination of Alternative 1 and the "one camera-one monitor" approach may be logical. Also, slow scan transmission, as described in Closed Circuit Television in Transit Stations in Section 4.6 .2 may also be an altẹnative for certain scenes (see Appendix F).

## CABLE TRANSMISSION SUBSYSTEM ANALYSIS

### 5.1 INTRODUCTION

On October 26, 1982, Kaiser Engineers Corporation of California issued a letter of intent to enter into a contract with De Leuw, Cather \& Company to perform certain preliminary engineering studies and tasks associated with the Cable Transmission Subsystem which will be the basic backbone communications subsystem which ties passenger stations to Central Control in the Los Angeles rapid rail line.

Task I of the work involved performing a comparative evaluation of three alternative methods of configuration for the cable transmission subsystem. These three alternatives were stipulated by Kaiser Engineers and are briefly described as follows:

1. Alternative I - All voice, data and control functions would be connected between Central control and each passenger station via copper wire pairs without repeaters. video signals would utilize coaxial cables and repeaters where necessary.
2. Alternative II - Voice, data, control circuits and video would be connected from Central Control to the passenger stations via coaxial cable. Either frequency division or time-division multiplex techniques could be used. The cable transmission subsystem must provide for ringing, supervision and all signaling for the circuits carried.
3. Alternative III - The communications signals all may be transmitted by light waves over optical fiber-cables with appropriate terminal equipment and repeaters.

The factors to be considered in the evaluation were specified to be:

1. Cost Factors
a. Capital Costs
b. Operating Costs
c. Maintenance Costs
2. Quantitative Factors
a. Technical Risk
b. Hardware Availability
c. Relevant Judgemental Factors

Task II of the work involved preparation of detailed subsystem description, preliminary specifications and drawings, and definition of interfaces.

The following material pertains to the evaluation of the alternative subsystems.

### 5.2 DESCRIPTION OF ALTERNATIVES

Figure 1 is a composite of the system which has been constructed from information contained in the scope of services pertaining to the number of circuits for each terminal location, from the recommended alignment drawings dated 9-16-82, and from Kaiser supplied Figure 5-1 entitled "Cable Alígnment."
5.2.1 Alternative \#1

Alternative 1 utilizes dedicated copper pairs for each telephone, voice or data circuit between the central control facility and each terminal location. In addition, each passenger station is equipped to transmit a minimum of four video signals to the central control facility at which location certain areas of each passenger station will be monitored on closed circuit television (CCTV) monitors.

This alternative contains only CTS cabling between Central Control and the terminal points. It does not include any cabling between PABX or other subsystems and the CTS, nor does it include station circuits at the terminal locations.

Most PABX equipment can tolerate a loop resistance of 1,200 to 1,500 ohms where subscriber equipment is connected directly by copper wire pairs. The PABX to be used in the Los Angeles RTD system is not yet specified. Therefore, a loop resistance of 1,500 will be assumed.

The loop resistance is a function of the wire guage and the temperature, and is the sum of the resistance of both conductors for the length of the circuit. Telephone cable with large pair counts can be obtained in standard wire gauges, AWG 26. AWG 24, AWG 22 and AWG 19. Where circuits must be extended for great distances, economics dictate that the smallest wire gauge that can satisfy the requirements be uised. Because of the environment which exists along a rapid transit wayside, wire gauges smaller than AWG 22 are not considered adequate.

Because the cost of copper cable increases rapidly with increases in wire gauge, devices have been developed which effectively increase the loop resistance that can be handled by a PABX or central office. Such devices are called long line adaptors or loop extenders. These devices are used to overcome the resistance to direct current flow.
$\qquad$
$\qquad$

PASSENGER STATION REQUIREMENTS


In voice circuits, there are other losses that must be considered. One of these is the audio attenuation in the cable. Telephone circuits are considered to have a band pass ranging between 180 kz and $4,000 \mathrm{kz}$. Between the conductors of a pair of wires in a multicondüctor cable, there exists mutual capacitance. Techniques of cable construction have been developed such that the capacitance is minimized and is approximately 0.083 microfarads per mile. However, in every long circuit, there is sufficient capacity between conductors to cause nonlinear attenuation of a complex voice signal. Higher frequencies in the voice signal are attenuated at a higher rate than are the lower frequencies.

The least expensive method of treating a cable to improve its frequency response is to load the cable with lumped inductance for each pair at periodic intervals. One standard loading scheme allows the addition of 88 mh coils at intervals of $6 ; 000$ fet $+0 \%,-6 \%$. This treatment results in a fairly flat response between 200 Hz and $3,200 \mathrm{gz}$ with a cutoff frequency of about $3,600 \mathrm{~Hz}$. Each added coil will increase the loop resistance by about 8.5 ohims. For this study, $\mathrm{H}-88$ loading will be considered. When AWG \#19 or AWG \#22 wire is used, the maximam length of a telephone circuit without loading is 18,000 feet.

Finally, even with loop extenders and loading on the cables, some circuits in the RTD starter line are of sufficient length to require amplifiers to overcome the effects of overall signal attenuation.

If we assume that the conduits from the guideway to the communications equipment areas are to be standard 4" pipes, the maximum size cable that can be put into the cableway for the cable transmission subsystem can have a diameter of not more than 2.5 inches for $40 \%$ fill of the conduit.

AWG \#19 communications cable suitable for direct burial or duct installation can be procured in pair counts of up to 300 pairs with the diameter less than 2.5 inches. A standard reel length is 1,000 feet for this pair count.

AWG \#22 communications cable suitable for direct burial or duct installation can be procured in pair counts of up to 600 pair count is 1000 feet.

Cables with smaller pair counts in both gauges can be procured in longer reel lengths. Jumbo reels that hold 6,000 feet can be obtained in either gauge in a 75 pair count.

The cables which make up the various circuits for Alternative 1 in this study will utilize AWG \#22, where possible, to reduce the cost. Composite cables utilizing lengths of $\$ 22$ and $\# 19$ gauge wire have been calculated to produce loop
resistances which can be used with the 100 extenders and loading plans.

For each cable, where entrance is made to a passenger station to drop circuits, all circuits which terminate at the station will be wired to protector blocks. Through-circuits will be wired to standard terminals and jumpered through to continue to the next station. All circuits at Central Control will be terminated on protector blocks.

The material immediately following will describe each of the separate circuits which make up the Cable Transmission Subsystem in Alternative $I$. Each circuit is accompanied by a figure showing the terminal points, distances and circuit requirements.
5.2.1.1 Circuit \#1 - Central Control to Main Yard

This circuit provides for 400 telephone subscriber circuits and ten voice grade circuits for other purposes between Central Control and the Yard. The 10 percent spare requirement raises the total pair count requirement to 450 pairs.

Two separate cables will be installed for the primary circuits. One cable of $\$ 22$. AWG gauge wire will contain 300 pairs, and the second cable of \#22 AWG gauge wire will contain 150 pairs.

No loading, long line adaptors or other special treatment is required on any of the pairs in this circuit.

The redundant cirucit will be identical to the primary circuit.

### 5.2.1.2 Circuit \#2 - Central Control to Seventh \& Flower

This cable circuit provides for 209 voice grade circuits to be dropped at Union Station, Civic Center, Fifth \& Hill and Seventh and Flower stations. Requirements for each station are as shown on Figure 3. A 300 pair, $\$ 22$ AWG cable will be installed between Central Control and Union Station. Leaving Union Station, a 200 pair $\# 22$ cable will continue to the Civic Center Station. Between Civic Center and Fifth and Hill, a 150 pair \#22 AwG cable will be installed. Seventyfive pairs of $\$ 22$ wire will be required between fifth and Hill and Seventh and Flower.

The cables require no loading, long line adaptors or special conditionaing. Because of reel length restrictions, splices will be required.

CIRCUIT 1 - CENTRAL CONTROL TO MAIN YAPMEETNO. $\qquad$ OF $\qquad$ MADE BY DATE CHECXED BY


410 Voice
0 Mrel
40 Spare
0 Video
$\qquad$ OF $\qquad$
$\qquad$
$\qquad$ CHECRED BY $\qquad$



### 5.2.1.3 Circuit $\# 3$ - Central Control to La Brea

The distance for each of the drop points on this circuit is greater than can be handled with an unloaded circuit. However, with proper selection of cable size and splice points, the loop resistance, including the loading coil resistance, can be held to 1,500 ohms. The PABX can work with this loop resistance without long line adaptors or amplifiers.

For this circuit, \#22 AWG gauge is used between Central and Western. Between Western and La Brea, approximately 5,000 feet of $\$ 22$ will be installed, and approximately 6,000 feet of \#19 cable will be used. With this arrangement, the total loop resistance to the farthest point will be very close to 1,500 ohms.

A 300 pair cable will be installed between Central Control and the Alvarado station, and also between Alvarado and Vermont. Between Vermont and Normandie, only 200 pairs will be required, and a 150 pair cable can satisfy the needs between Normandie and Western. The composite \#22/19 cable between Western and La Brea need only be 75 pairs.
5.2.1.4 Circuit \#4 - Central Control to Studio City

This circuit is a total of $92.839 \mathrm{kilofeet} \mathrm{~A} \mathrm{cable} \mathrm{of} \#$. AWG would result in a total loop resistance of 3,360 ohms not including loading coils. Even with \#19 AWG wire, the total loop resistance minus loading coils would exceed the 1,500 ohm capability of the PABX equipment. Thus, it will be necessary to use long line adaptor techniques which will provide the capacity for the PABX to work with as much as 3,500 ohms total loop resistance. The cable will require 14 loading points. Each coil will add 8.5 ohms of resistance. The total loaded loop resistance for the farthest circuit will be 3,479 ohms which is within the capacity of the 100 p extenders. Voice frequency amplifiers will also be required.

A 300 pair cable will be required between Central Control and Fairfax, extending on to the Beverly station. Between Beverly and Santa Monica, a 200 pair cable will be required. Between Santa Monica and Studio City, a 75 pair cable can satisfy all requirements.

### 5.2.1.5 Circuit \#5 - Central Control to the North Yard

This circuit is a total of 109.05 kilofeet. It will require loading at 17 points with H-88 loading coils. Therefore, the total wire resistance which can be tolerated while remaining within the 3,500 ohm capability of the loop extenders would be 3,356 ohms. The circuit must be a mixture of $\# 22$ and \#19 AWG wire. The most economic arrangement utilizes
$\qquad$ OF $\qquad$

$\qquad$


5-11

76,080 feet of $\$ 22$ gauge wire, and 28,504 feet of $\$ 19$ wire to reach the North Hollywood station. This much of the circuit will require 200 pairs in the cable. From the North Hollywood Station to the North Yard, a 150 pair cable of 19 AWG gauge will be required. Voice frequency amplifiers will be required.
5.2.1.6 Video Transmission - Alternatives 1 and 2

By agreement, the video transmission techniques and elements were established as being the same for the wireline subsystem -Alternative 1 - and the coaxial cable subsystem - Alternative 2.

The video circuits discussed in this and succeeding paragraphs in Section 5.2 are applicable to Alternative 2 as well as Alternative 1 .

Because of the noise environment inherent in electrical rail transit, frequency modulation techniques have been selected for this alternative subsystem study. Despite the require= ment for additional bandwidth when $F M$ is used rather than the Vestigial Sideband AM modulation technique normally employed in CATV systems, the 10 dB signal to noise ratio improvement over AM modulation in the same carrier-to-noise enviornment is sufficient to warrant utilizing FM modulation. In addition, FM systems display a very high immunity to impulse noise because of the inherent discrimination against AM signals.

The choice of cable size wil materially affect the overall subsystem costs. CATEL applications engineers have stated that the twenty-mile starter line can be operated with a coaxial cable of $1 / 2$ diameter. While this will result in a greater number of trunk amplifiers, the larger diameter cables would increase the total cost were they to be used. There are, however, some practical limits on the number of amplifiers which can be cascaded on a common circuit.

In the Los Angeles CTS subsystem, trunk amplifiers must be placed where they can be serviced. This will mean installation of amplifiers in the cross passages in the subway areas, and these cross passages will occur every 600 feet along the rail system. Getting out of the cable tray and into the cross passage will involve cable length in addition to the normal linear run length. If we assume that each trunk amplifier installation will add 50 feet to the cable length, and that each pair of connectors will add 1 dB of loss, the 400 MHz loss of a $1 / 2$ inch cable will dictate that amplifiers be located every 1,200 feet (every other cross passage).

The subsystem will be designed for a 27 dB loss maximum in each span to the extent that this possible with the cross passage spacing of the rail system. The higher frequency carrier assignments will be allocated to stations closest to Central Control. In this manner, as the cable gets farther from Centrol Control, the modulator frequencies will continue to decrease. Since Cable losses are calculated on the basis of the highest frequency in use, greater spacing may be possible between amplifiers in the sections of cable where the frequencies are lower than 400 MHz .

Video will be transmitted within the 50 to 400 MHz band with video channels on 14 MHz spacings. Within this band, 25 video channels can be multiplexed on a single cable via freqency-division techniques.

Because the attenuation of the video signals is greater at the higher radio frequencies, it will be necessary to introduce equalizers at each amplifier location. These devices serve to equalize the signal levels across the total spectrum prior to introducing the signals into the trunk amplifiers. Thus, the amplified signals enter the cable following each amplifier at equal levels.

Figure 7 shows a typical station arrangement for CCTV. Video from each camera (or sequencer, if employed) is fed into an FM modulator. Each modulator operates on a different RF frequency. The signals are combined in a "splitter" network, and are introduced into the cable via a dirctional coupler where they join signals from passenger stations more distant from Central Control and share the same cable path.

Figure 8 shows a typical section of coaxial cable passing through several passenger stations. Figure 9 depicts a typical setup for receiving and demodulating video signals from a passenger station.

Redundancy in the CCTV transmission facility will be through an arrangement where two separate cables are fed from the same source material toward the terminal point. At the terminal point, the carriers on each cable will be monitored. Loss of any single carrier should result in an alarm condition. Loss of all carriers on a cable should cause an alarm condition and switch all service to the redundant cable.

The redundant cable will be monitored in the same manner as the main cable. Should a failure occur in the redundant cable while the main is in use, an alarm should be sounded, and switching to the failed facility should be inhibited.

Figures 10, 11 , and 12 show the cable circuits and typical frequency plans for the inbound video service.







D $=$ Directional Coupler
$1=$ Spacing of amplifiers 3000 feet. Highest frequency 104 Mhz .
2 = Spacing of amplifiers 2400 feet. Highest frequency 160 Mhz .
3 = Spacing of Amplifiers 1800 feet. Highest Frequency 216 Mhz.
5.2.2 Alternative \#2 - Coaxial Cable for Voice/Telephone/Data

For Alternative 2, the video transmission syster will be identical to that shown for Alternative 1.

For voice circuits, Pulse Coded Modulation of the $F M$ carriers will be used rather than frequency-division multiplexing. With hardware that is available today, PCM will likely be somewhate less expensive, and will provide the added benefit of increasing the immunity of the voice and data to the noise environment prevalent along an electrified railway. PCM modulation on FM carrier equipment should provide extremely good immunity from noise.

VIDAR has successfully used a 12-port multiplexer which it offers as an off-the-shelf hardware item to combine three T-2 carriers at 6.3 mbps into a 19 Mbps bit stream to transmit 288 voice channels over one 16 MHz wide carrier channel.

There is a requirement to transmit 979 voice channels from Central Control toward the North Yard. By utilizing a scheme in which up to 288 channels may be multiplexed on a single carrier, the number of carrier frequencies needed is reduced.

Figure 13 is a simplified schematic of the outbound cable for coaxial voice and data subsystem. In this scheme, the same radio frequency channel is monitored at several suceeding stations. At each location, the 12 -port multiplexer demodulates the bit stream and feeds the time-division multiplexed signals to the appropriate $T-1$ carrier terminals. By employing this scheme, only the four lower frequency channels are used on the outbound cable. This allows trunk amplifier spacing to be maximum and reduces the costs.

Figure 14 is a simplified schematic showing the arrangement for connecting $T-1$ carrier terminals at Central Control into the 12 -port multiplexer for transmission on the coaxial cable. Figure 15 shows the station arrangement for demodulation.

Figure 16 is a simplified schematic of the inbound cable for coaxial voice and data. In this scheme, each passenger station is assigned its own carrier channel. As was done in the CATV cable, the coaxial cable enters each passenger station where that station's carrier is injected into the cable via a directioal coupler. At Central Control, carriers are separated by frequency division multiplex techniques, and each carrier is demodulated via a 12 port multiplexer which, in turn, feeds its assigned $T-1$ carrier units.



inbound coakial cable plan for! voice frequegct qable tranqmission link!

Redundancy in this scheme is achieved in the same manner as in the CCTV coaxial cable scheme. The data will be fed into both the primary and the redundant cable for both the inbound and outbound cable paths. At the receiving end, the carriers will be monitored, and loss of the carriers will cause a switch to the redundant cable.

### 5.2.3 Alternative 3 - Fiber Optics

As described in the Scope of Services, Alternative 3 will utilize a pair of fibers for each voice link between Central Control and a teminal point. In addition, one fiber will be required between each passenger station and Central Control for each television circuit. As a minimum, then, six fibers are required for each passenger station, with seven being the minimum required for three of the stations. A pair of fibers will satisfy the requirements for the Main Yard and the North Yard.

For the purpose of this study, we will assume a cable with high quality, graded index, fiber having losses of not more than 3.5 dB per kilometer due to attenuation. Repeater spacing will be about 10 kilometers (see design assumptions 5.4.1).

ITT reports that it has supplied fiber cables with up to 35 fibers for its customers. A single cable to carry all of the circuits in the first link of the rail starter line would require 89 fibers between Central Control and Union Station. Because there is a lack of information concerning the tensile strength and pulling problems with a cable of almost 90 fibers, this study will be based on cables with a maximum of 38 fibers.

Full motion television can be transmitted at a 6.3 Mbps rate (T-2 carrier with 96 channel capacity). The equipment to allow this is designed to interleave television and voice signals into a common bit stream, and it is quite expensive. Since the fiber optic alternative described in the Scope of Services stipulates a separate fiber for each television signal, this study will utilize the $T-3$ carrier television encoder and transmission rate of 44.7 Mbps .

Voice signals will be transmitted at the standard T-2 rate for 96 channels - 6.3 Mbps - over a separate pair of fibers. One fiber will carry the outbound signals, and the second fiber will carry the inbound signals.

Figures 17,18 and 19 show the cable arrangements for each of the fiber optics circuits. Because fiber cables are made-to-order, each leg of the circuit contains only those fibers which are required for stations beyond.






SIMPLIFIED BLOCK DIAGRAM - VOICE TRANSMISSIOA SCIEME FIDER OPTICS

### 5.3 APPLICATION HISTORY

Of the three technologies involved in the three alternatives under study, the utilization of wire pairs - Alternative 1 -is the oldest and most mature. Largely because of the Bell Telephone System, the standards for telephone performance are such that all of the hardware required for the first alternative is available from a large number of suppliers. However, circuits of the length required in the RTD starter line are generally avoided because of noise problems.

CȦTV techniques which are recommended for the video transmission in both Alternatives 1 and 2 , and for the voice, data and control circuits in the second alternative are quite mature, and video modulators, trunk amplifiers, combining circuits and directional couplers are available from a number of suppliers. The number of sources for $F M$ modulators and demodulators is not as numerous as for AM hardware.

The Pulse Coded Modulation equipment which is used to translate the voice, data and control signals from an analog signal to a binary bitstream is avaible from a number of telephone equipment manufacturers. Perhaps as many as 200,000 T-1 carrier systems are in use in interexchange service for trunking in telephone systems in this country alone.

It has only been within the last year or so that fiber optics systems have begun to be designed and installed in system applications which are not, to some degree, experimental. Prior to that time, most of the system, applications were largely experimental or test applications between telephone exchanges in this county. The crowded conditions of many existing cable ducts within metropolitan areas makes the small fiber cable size and the inherent very wide bandwidth of the fibers extremely attractive for telephone service expansion and for cable replacement.

Fiber optic technology is maturing rapidy, and standard hardware is now available from a number of manufacturers. There are several sources for the type of hardware postulated in Alternative 3.

By the time when a CTS subsystem might be specified, procured and installed, lasers and photodiodes will be available which operate in the longer wavelength region of 1.3 micrometers will be as readily available as those now available for operation in the 0.850 micrometer wavelength.

### 5.4 METHODOLOGY

The methodology which led to the development of the individual subsystem configurations which were studied as Alternatives 1, 2, and 3 in this report is largely explained in the portions of this report which describe the three basic configurations. There are, however, some assumptions which were made, and some calculations to support the basic study designs which will be presented here.

### 5.4.1 Design. Assumptions

1. The PABX equipment will handle a loop resistance of 1,500 ohms for a subscriber line.
2. The maximum temperature in a ductline or cableway will not exceed 50 degrees Celsius or 122 degrees Farenheit.
3. The resistivity of annealed copper is 10.371 ohms for one foot of wire having an area of one circular mil.
4. Each station entrance adds 100 feet to the cable length. Each station exit adds 100 feet to the cable length.
5. Telephone circuits will be two-wire.
6. Emergency telephones are to be located at cross passages at intervals of 600 feet. At each cross passage, two telephones will be located. Each phone will be a part of a separate system. These two telephones will constitute the redundancy for emergency telephones along the guideway.
7. Emergency telephones within the passenger station are included in the 24 telephone channels stipulated for each passenger station.
8. Emergency telephone circuits will be fully supervised by equipment which is a part of the emergency telephone subsystem, and any süch súpervisory signals inherent in the subsystem can be used to switch CTS circuits upon failure.
9. DTS circuits will be four-wire because of the fullduplex requirement. DTS equipment will be self-supervising with automatic switchover.
10. Redundancy with automatic switchover for the Radio and P.A. control will require that those circuits be fourwire.
11. Complete redundancy, as stipulated in 3.12.1.E of the Design Criteria implies that there will be redundant, physically separated; cable facilities connecting Central Control to the passenger stations and to the yard areas.
12. Within each separate cable facility; certain channels will have independent redundancy at the channel level.
13. Each cable should have a minimum $10 \%$ spare pairs terminated

- at each location.

14. Cables with standard pair counts will be used. AWG \#22 wire cable can be procured in pair counts of 6, 12, 18, $25,50,75,100,150,200,300,400$ and 600 pairs. AWG \#19 wire cable is not put up in the 600 pair configuration, but can be obtained in the other pair counts as shown for AWG \#22.
15. Video Frequency Modulation has a 7.4 dB advantage in signal-to-noise over Vestigial Sideband Amplitude Modulation when standard to five times the number of cascaded amplifiers in a trunk cable over that possible with AM. (See "Ä Frequency Modulation System for Cable Transmission of Video or Other Wideband Signals," Court, Patrick R. J., et al, April 1720, 1977.)
16. High quality, graded index, fibers will be used, and these can be procured cabled in lengths up to one mile without splices.

### 5.4.2 Calculations

Repeater spacing in the fiber optics subsystem configuration is based on the following:

Type of Light Source:
Coupling Loss into Fiber: Connector Loss:
Splice Losses:

Type of Detector:
Required Bit Error Rate:
Required Receive Power:
System Margin for Aging:
Allowable Link Loss
Cable Attenuation:
Link Attenuation Limit:

Injection Laser 850 nm -
$5 \mathrm{mw}=7 \mathrm{dBm}$ 3 dB per source
1 dB
0.25 dB splice (Assume 1 mile $=0.155 / \mathrm{km})$

Avalanche Photo Diode
45 Mbps
$-53 \mathrm{dBm}$
10 dB
39 dB
$3.5 \mathrm{~dB} / \mathrm{km}$
$39 /(3.5+.155)=10.67 \mathrm{~km}$

The system bandwidth for the fiber optics link is a function of the link rise time, and has been calculated using the following parameters:


### 5.5.1 Capital Costs

The capital costs for the three alternative CTS subsystem concepts were developed on the basis of the cost estimate sheets contained in Appendix iii. Copper wire costs were obtained from Okonite for the part numbers shown, and are current quotations. Similarly, many of the hardware items were priced on the basis of telephone quotations for specific items. Coaxial cable costs were based on 1981 catalogue price lists which werte escalated 15 percent. Where necessary, other catalogue prices were escalated to reflect more nearly current pricing.

All of the costs contained in this analysis were developed on the basis of preliminary configurations of hardware items. As such, they are quite suitable for comparison purposes. Detailed engineering of the various alternatives would almost certainly result in somewhat higher costs for each, but would not result in reversal of the relative positions of each of the alternatives.
5.5.1.1 Alternative 1 Cost Summary

Circuit \#l - Wireline Voice
Central Control to Main Yard 67,371
Circuit \#2 - Wireline Voice
Central Control to Seventh \& Flower 67,362
Circuit \#3 - Wireline Voice
Central Control to La Brea
325,909
Circuit \#4 - Wireline Voice
Central Control to Studio City
512,918
Circuit \#5 - Wireline Voice
Central Control to North Yard
612,829

Video Circuit $\$ 1$
Central Control to Avlarado 246,907
Video Circuit $\$ 2$
Central Control to Beverly 408;101
Video Circuit $\$ 3$
Central Control to North Hiollywood 506,982 TOTAL VIDEO 1,161,990

Redundant Wireline
1,586,389
Redundant Video
784;394

## TOTAL COSTS - ALTERNATIVE \#1 5,119,162

5.5.1.2 Alternative \#2 Cost Summary

Outbound Coaxial Voice Cable 476,578
Inbound Coaxial Voice Cable 518,636
Central Control RF Hardware 68,753
PCM Multiplexers \& T-1 Carrier 1,392,288 COAXIAL VOICE CABLE $2,456,255$

Video Circüits
Redundant Coaxial Voice
1,161,990
920,913
Redundant Video Cable 784,394
total alternative \#2
5.5.1.3 Alternative \#3 Cost Summary

Circuit \#l
Fiber Cable Installed 181,547
Circuit ${ }^{\text {\# }}$
Fiber Cable Installed 891,586
Circuit \#3
Fiber Cable Installed 676,029
Circuit \#4
Fiber Cable Installed 21.,081

| Voice Circuit Optical Hardware | 201,267 |
| :--- | ---: |
| Voice Digital Carrier Hardware | $1,104,795$ |
| CCTV Optical Hardware | $2,398,704$ |

TOTAL HARDWARE COSTS
Redundant Fiber Cable Circuits $\quad 1,770,243$

> TOTAL ALTERNATIVE \#3 COSTS 7,043,985
5.5.2 Operating Costs

Operating costs pertaining to the overall communications system have been defined elsewhere by Kaiser Engineers as consisting of:
a. Labor for Operators
b. Off-hour surveillance labor
c. Energy
5.5.2.1 Labor Costs

The CTS subsystem will be operating 365 days a year, 24-hours per day. The choice of subsystem type is not likely to effect the quantity or quality of the operators. Thus, all three subsystem configurations are considered to be equal in terms of operating labor requirements.

Similarly, there appears to be no requirement for a different amount of off-hour surveillance for either of the alternatives considered. All of the systems will be equipped with failure alarms.
5.5.2.2 Energy Costs

At this preliminary level of engineering, estimates of power consumption for each alternative subsystem would only represent the roughest order of energy requirements for one subsystem as opposed to another. The CCTV transmission subsystems are precisely the same for Alternatives 1 and 2, and the requirements for transmission of information in one alternative subsystem do not change from those of the others.

For purposes of this study, we consider the energy requirements equal for all three alternatives.
5.5.3 Maintenance Costs

Based on historical information relative to the maintenance of small public telephone systems, it is estimated that the annual costs for maintaining the subsystem configured as Alternative \#l would equal approximately 3.4 percent of the capital cost.

Recognizing that a significant amount of the hardware requirements in Alternative \#1 are met by the PABX equipment, it is estimated that the maintenance for Alternatives 2 and 3 would likely be at least $30 \%$ greater than for Alternative 1.

Utilizing these factors as a basis for estimating the maintenance and spare parts costs for the three alternatives, the costs are as follows:

Alternative 174 ,052 per year
Alternative $\# 2 \quad 235,257$ per year
Alternative \#3 311,344 per year

### 5.5.4 ANNUAL EQUIVALENT COSTS

The annual equivalent costs for the three alternative subsystems are those capital costs for subsystem acquisition annualized over the system lifetime at some time value for the capital dollars plus annual operating and annual maintenance costs.

For purposes of this analysis the system lifetimes are considered to be a period of 32 years, and the time value for the investment is considered $12 \%$ annually.
5.5.4.1 Annualized Capital Costs

Annualized capital costs have been defined by Kaiser Engineers as follows:

$$
A C C=\text { Capital Costs } \times \frac{i(1+i)^{n}}{(1+i)^{n}-1}
$$

Where $i=$ interest rate
$n=$ subsystem lifetime
For the parameters previously cited concerning lifetime and annual percentage rate for money, this formula yields the following multiplier:

$$
\text { ACC }=\text { Capital Costs } \times \frac{.12(1+0.12)^{32}}{(1+0.12)^{32}-1}=0.123280
$$

The annualized capital costs for each of the three alternatives are as follows:

Alternative \#1

$$
5,119,162 \times 0.123280=\$ 6.31,090
$$

$$
\text { Alternative \#2 } 5,323,552 \times 0.123280=\$ 656,287
$$

$$
\text { Alternative \#3 } 7,043,522 \times 0.123280=\$ 868,325
$$

### 5.5.4.2 Relative Standings of Alternatives

The relative standings of the alternatives based on cost factors can be found by adding the annualized capital costs for each alternative to the annual operating and maintenance costs. Since the operating costs are considered equal for all alternatives, the annual equivalent costs for the three alternatives are:

$$
\begin{aligned}
& \text { Alternative \#1 } 631,090+174,052=\$ 805,142 \\
& \text { Alternative \#2 } 621,945+235,257=\$ 891,544 \\
& \text { Alternative \#3 } 868,325+311,344=\$ 1,179,669
\end{aligned}
$$

### 5.5.5 RELIABILITY

This alternative study has been based on very preliminary engineering. Therefore, there will be no attempt to assess the reliabilities of the subsystem configurations in a quantitative manner.

From a relative standpoint, Alternative \#l utilizes very mature technology, and hardware to implement that configuration is highly standardized and has been in use for a very long time. Based on these facts, it would appear that Alternative \#l should experience fewer failures per unit time that could be expected in Alternatives 2 and 3.

Since Alternatives 2 and 3 both utilize digital carrier techniques to transmit the voice signals, much of the hardware for this purpose is common to both subsystems. It does not appear that either of these two alternative subsystems has a reliability advantage over the other.
5.5.6 TECHNICAL RISK
5.5.6.1 Alternative \#!

The technology involved in Alternative \#l is that of the telephone indüstry. As such, it is very mature, and iftle technical risk would be involved provided that the subsystem were within normal operating limits for the technology.

Many of the circuits in the Alternative \#l configuration are sufficiently long to require specialized treatment of the telephone pairs that make up the circuits. The Scope of Services which sets forth the various subsystem alternative stipulated that the circuits utilize no repeaters. All of the circuits beyond LaBrea will require voice frequency amplifiers or repeaters.

In the environment which will exist along the electrified rapid rail system, Alternative \#l involves technical risks in that the voice circuits which extend beyond the LaBrea station are likely to be very noisy. The amplifiers necessary to make the circuits workable will also amplify any induced noise.

Certainly expansion beyond the North Yard location would worsen this problem, and there are finite limits beyond which a subsystem configured as Alternative ${ }^{(1)}$ will not work.

### 5.5.6.2 Alternative $\$ 2$

The technology involved in Alternative 2 is basically that of the CATV industry. Bundreds of systems with thousands of miles of trunks are in daily operation. The majority of these systems utilize Vestigial Sidband AM modulation because the narrower bandwidth requirements will allow a larger number of channels to be transmitted on a single cable. The noise environment inherent in electrified rapid rail transit is such that there is a high risk of inducing hum and noise impulses into a trunk cable which utilizes AM modulation techniques. The FM modulators utilized in this Alternative should provide a large measure of protection against noise. The reduced bandwidth capabilities when FM is used will limit the number of channels on a common cable to less than that available with AM. However, utilizing separate cables for voice and video will provide a measure of protection from interference to the video from digital signals in the voice system.

The hardware necessary to implement Alternative $\# 2$ is readily available, although theere are not so many suppliers of the FM modulators as there are of the AM modulator equipment.

### 5.5.6.3 Alternative \#3

The technology involved in Alternative \#3 is relatively new. However, the techniques for transmitting both voice and video information over fiber cables are quite mature in terms of multiplexing techniques. Developmental work has continued in the manufacture of glass fibers, and in improving the transmitting and receiving equipment. Manufacturers are now delivering tränsmitters and receivers which operate in the 1.2 to 1.3 micrometer region at which today's glass fibers have a very low attenuation rate.

Telephone companies in this country and abroad are now beginning to construct new interexchange trunking facilities utilizing fiber optics. In locations where wireline duct capacity has limited growth, wire pairs are being replaced with fibers which vastly increase the bandwidth and consequently the number of voice circuits which can be handled in the physical space occupied by the cables.

By the time that the cirs subsystem is constructed for the RTD starter line, the technical risks associatd with a relatively new technology will have been minimized.

### 5.5.7 AVAILABILITY

### 5.5.7.1 Alternative \#1

Hardware with which to construct a subsystem such as described in this alternative is readily available from numerous manufacturers and suppliers of equipment to the telephone industry. The equipment is generally very standardized because most telephone companies specify that hardware be compatible with and meet the Bell System Standards.

### 5.5.7.2 Alternative \#2

Hardware to construct a CATV distribution system is readily available from a number of sources. All CATV sources have AM modulators available. Not every supplieñ can provide the FM modulators specified for Alternative \#2.

### 5.5.7.3 Alternative \#3

Hardware to construct a fiber optics subsystem is available from several manufacturers. Not only is the number of manufacturers of fiber optics hardware more limited than Alternative 1, not every item utilized in Alternative \#3 as specified herein is available from every manufacturer. However, there are sufficient sources to assure that competitive procurement can be undertaken.

## 5. 6 CONCLUSION AND RECOMMENDATION

The circuits in Alternative $\# 1$ are stretched to the maximum for direct operation from a PABX. On the longer runs, amplifiers will be required enroute, and any noise accumulated between Central Control and the terminal points will be amplified along with the voice signals. Because of the Electromagnetic Interference (EMI) associated with signal and communications circuits along an electrified railway, Alternative is not recommended for further consideration.

Alternative \#2 is a feasible approach to the Cable Transmission Subsystem design for the RTD starter system. There are some limiting considerations. The basic design which was considered in this study uses a $1 / 2$ inch coaxial cable. Were the basic starter line to be lengthened, or if longer rail segments are later constructed, a larger copaxial cable would be required. Increasing the diameter of the coaxial cable with a RULON low smoke jacket from $1 / 2$ inch to $7 / 8$ inch would increase the cable cost per foot from 2.02 to about 5.00. While not all of this would be increased costs for the system - the lower
attenuation would mean fewer trunk amplifiers - the costs for a CTS subsystem along a longer transit line would be more expensive on a per mile basis than the optimum system discussed in this report. it is not possible to continue adding CCTV trunk amplifiers without limit to meet the requirements of longer circuits. As the rail segments get longer, the costs per mile for CATV techniques are going to more nearly approach those for the third alternative.

Alternative \#3 is a feasible approach to the Cable Transmission Subsystem. From a noise environment standpoint, the fibers themselves are immune to the types of EMI normally associated with cable systems along an electrified railway. However, the transmitters and receivers associated with the optical system are not designed to be specifically immune to the effects of induced or impulse noise. ITT recommends that these devices be installed in shielded enclosures when systems are operated in heavy EMI environments.

High speed operation on fiber cables generally requires that a laser diode be used as a light source. Laser diodes are somewhat more pure in spectral output than are the Light Emitting Diodes (LEDS), and the pulse stretching that occurs with broader spectrum light sources is minimized when lasers are used. Lasers, however, must be cooled, and lifetimes are quoted on the basis of accelerated tests at which the laser diodes have been operated at higher than recommended temperatures. On the basis of accelerated testes, lifetimes of 100,000 hours are projected.

### 5.6.1 Recommendation

Alternative \#3 is recommended for implementation because it will provide the greatest flexibility for growth and change within the CIS subsystem. Were a rail system longer than the RTD starter line considered for Alternative \#2, larger cable would be required, and Alternative \#2 Annual Equaivalent Costs would more nearly equal those for Alternative \#3.

Once the fiber cables have been installed along the starter line, they will represent a fixed facility which cannot readily be discarded. As such, it might be difficult to retrofit the starter line should a new and dramatic breakthrough in fiber technology occur within the lifetime of the system. However, on the basis of the known requirements, there should be no reason to consider replacement of the fibers during the system lifetime.

Future rail extensions will not be bound by existing fiber optics hardware and fiber technology. Improved transmitter/receiver and fiber technology can be utilized on each new rail segment when the CTS for that segment is designed.

It is recommended that the fiber optics approach be pursued, but that the design incorporate available hardware and technigues which can promise to reduce the acquisition cost. The Cis system need not necessarily employ a dedicated fiber for every function at every terminal. Utilizing existing technology, the number of fibers in the cables can be reduced. This would materially reduce the cost for this alternative subsystem.


Kaiser Engineers contacted various vendors, users, and associates in the process of the communications system alternatives analyses. This appendix details the organization or company and, where applicable, the person contacted.

## VENDORS

## Radio Service:

General Electric Company, Mobile Radio Communications Division: Hank Williams, Glen Gelineau, Jack Miller, and William Ne
Motorola Electronics and Communications Division: Larry Hamilton and Kristine White

## Telephone Service:

Frontier Electronics (CSC): Tim Moses
General Dynamics (Stromberg-Carlson)
General Telephone \& Electronics: Frank Jot
Pacific Telephone: William $\mathbb{K}$ : Hendley, Jr. and Jim Picker
ROLM Telecommunications: Phil Mackey and D. Miller
Closed Circuit Television:
COHU Closed Circuit TV: Julian J. Peck and G. Küntz
General Electric: William Ne
Javelin Electronics: David Gibbs
Pacific International Corporation: J. T. Booth
Progress Research Organization (Panasonic): R. E. Johnson
Cable Transmission Service:
Anaconda Telecommunications: R. Glisson
Anixter-Pruzan: Roland Watkins and Guy Stuart
Artel Communications Division: Richard Corny
ITT, Electro-Optical Products Division: Dale, G. McBride
Leeds \& Northrup: Peter Kraus
Pirelli Communications Products Division: Michael Salisbury and J. W. Johnston
RFL Industries: Pete Tarbell
Wescom: H. L. Robinson

## USERS

American Natural Resources, Detroit, Michigan: W. L. Johnson
Bay Area Rapid Transit District (BART): G. Austin, J. Schiro, and J. Allen Chicago Transit Authority (CTA): J. Stewart
Grumman Aerospace Engineering and Manufacturing, Bethpage, Long Island: J. Mooney
Mass Transit Administration (MTA): D. Wellington
Metropolitan Atlanta Rapid Transit Authority (MARTA): J. Tucker and R. Miller
Metropolitan Dade County Transportation Rapid Transit System: J. Abbas, R. Maguire, and W. Brownson
Naval Ocean Systems Center, San Diego, California: R. A. Greenwell and D. N. Williams

Naval Submarine Base, Kings Bay, Georgia: E. J. Clarke
Navy Public Works Center, San Diego, California: Ed Murdock and Jack. McClanahan
New York City Transit Authority (NYCTA): C. Kalkhof
San Francisco Municipal Trañit Authority, San Francisco, California: T.
E. Hopkins

## ASSOCIATES

Kaiser Engineers
Tony Kan
Jan Van Buuren
Roy Yamada

## CALCULATIONS

## ECONOMIC ANALYSIS PARAMETERS

In the tables, all costs are based on 1982 dollars.
Annualized Capital Cost (ACC)

$$
\begin{aligned}
& \text { ACC = Annualized Capital Cost }=C C x \frac{i(1+i)^{N}}{(1+i)^{N}-1}=C C \times 0.12328 \\
& C C
\end{aligned} \quad=\text { Capital Cost } \quad \begin{aligned}
& 1=\text { Interest Rate (12\%) } \\
& N=\text { Economic Life (32 Years) }
\end{aligned}
$$

Annual Operating Cost (AOC)
Conmunications equipment installed in stations and central control will operate for 365 days/year based on 24 hour operation for a total of 8760 hours a year. vehicle radios will operate for 365 days/year based on 20 hours operation.

$$
\begin{array}{ll}
\text { Labor (cost for operators) } & =18.00 / \text { hour } \\
\text { Off-hour surveillance labor cost } & =15.00 / \text { hour } \\
\text { Energy (cost of electricity) } & =0.07 / \mathrm{kWH}
\end{array}
$$

Operating costs shown in this report are based on equipment data power consumption required to perform its intended function.

Annual Maintenance Cost (AMC)
Based on service contracts offered by the manufacturer of radio equipment, $10 \%$ of capital cost will be the annual maintenance cost, including labor and parts. Maintenance for other comminication services will be by the Metro Rall Project personnel with the following rate:

Labor (cost for technicians) $=\$ 19.30 /$ hour
Annual Equivalent Cost (AEC)
The annual total cost can be obtained from the following equation:
AEC $=$ Annual Equivalent Cost $=A C C+A O C+A M C$

$$
c-1
$$

## APPENDIX D

## RADIO SERVICE DATA

## GENERAL ELECTRIC

```
April 5, 1982
```

Kaiser Engineers
300 Lakeside Drive
P.O. Box 23210

Oakland, CA 94623
Attention: AP (Jun) Adela Jr.
Dear Jun:
As per you request please find the attached budgetary pricing for the equipment in your consideration for use by SCRTD PROJECT. If you should have any further questions regarding this equipment please do not hesitate to call me.

Sincerely,

Glenn W. Gelineau

Major Account Sales Agent
560 San Antonio Road, \#201
Palo Alto California 94306
GWG: rac
Encl

| Item | Qty | Descriotion | Unit Price |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | CP2BK̈K66KEN 6 watt VHF MPR Portable Radio, equipped with GE STAR toggle switch encoder. 6 Frequency capability eauipped to operate on 1 frequency with Channel fuard. | \$ | ,595.00 |
| 2 | 1 | 354C3AIK MPR VHF Vehicular Charger, includes MNTG accessories,speaker and microphone. | \$ | 350.00 |
| 2A | 1 | P3AK6AG Power Master. 60 watt UHF power amplifier for use with MPR Vehicular Charger. | \$ | 510.00 |

## GENERALOELECTRIC

Kaiser Engineers
April 5, 1982

| Item | Oty | Description | Unit Total |
| :---: | :---: | :---: | :---: |
| 1 | 1 | Mc66KAU66A Mastr II Mobile Radio | \$ $2,285.00$ |
|  |  | 65 watts VIFF, 8 frequency capabil- |  |
|  |  | ity. Equipped for single frequecy |  |
|  |  | operation, Channel Guard, and GE-Star |  |
|  |  | encoder, includes speaker, mi crophone |  |
|  |  | 1/4 wave antenna, and MNTG hardware. |  |



ATTEXULEE:

RTD
MIKE BEATOL JIM TRANI
G.E.

HaNk willurims GLEN GELINEAN
K.E.

JUN AOELA $\checkmark$. MIERNAN

Time: - Dfwiser tre praver, neftro: of fion Eulprotert will perictizsto AND information flow betwein venocers TP RTI, LEIY ONIY


 EENAG US(T) BY (TD EN TZZ BTS SYSTEM. THE unit: antallei on Thi 3u: rie
 SELTION, ALTHUSS THE REY NHE NT! prodivect TO THE orivers.

ODM JHENE!N:






 -the 4 wise firl Then TS RTD. $D-5$
$\qquad$
$\qquad$ OATE

6E. UNS ALSO REPUESTGD TO PROVIDE COT compiruson For MAINTEANNCE of TtE EQUIPRENT. WIMNANS ADO GELUNEAS IMDLCATIO TIATH IT WOULO AE LAEXPER ON RTV' PAOT (METM RAIC) TO ARRE OR GET WTO A SGUNICE CONTAACT RATHER THAN MARINANING TIE RADIO: OEREVE:

1. MOTV RKIC TO TOCK GPARE



- TRAINED AD LICEXSED To HaFFotm


3. GPARE PRITS ARE REAOICY AKICABLE नT SERVICE CONTILACTG2S AND TOME spovit at serviculs Ttivn tre

4. ALTHOUGH RTO HVE PERAONNEL QUAUFUOD TO SHRVICE TITESE LNITE, THE PRIORITY SETUVICES APPUFS To wY DEP to Truerfs RTO HAVE which will welvoe inemie RAIL E!U!P:NAT.
5. GELINEDA UD:CATGO THAT SERNICE COUTRACTS WITI TEAIMEO ANO PREEVTLY CONNETTED W!T: 6.E., Normauy Asle for $10 \%$ of T应 TVAL EUViPmext cort, witich will IACLIOE SUCNICE POREDINES AD PARTS.
$\qquad$
$\qquad$

WHETHER THE SGONICING LS COTMACTCD OR NOT, GE INDLCATEN THKT PHOY NORMrilly RECOMMETD $10 \%$ OF EACH REPLACEABLE PRETE
 PURCTISEE OF EQIPMIDTT.

 THT ONLY $2-5$ O
 1 EUT OF 10 fics on THE FXGO wits WRTKLEO ON THE TRAN CRES.
cast QuOTED By G.E. (GELutivu) CN
 lSED por Bwtotary purpses. ACTML
 sperto =A-cos.

Telecm wath Pite Tereshuner $12 / 22 / 82$
SAN Diags Taoly 619-239-6054 SAN Diag Taelly 619-239-6054
Nef: Corbourve Connumicativis
Thir syptem bee partable band-held units. 35 units resed:

$$
\begin{aligned}
& 10 \text { transpontation } \\
& 10 \text { Marifeoucerene }
\end{aligned}
$$

$$
10 \text { Maniterec }
$$

car dole put bave chargivg pervisions (biz problem - baitey goso doad)
clech-ont is meins offat - $5 / \mathrm{N}$ logge $\mathrm{A}_{4}$ deace
lete sotematel on a big azatan (LA- 140 cus
17 opeationoater)
the alminestration sffot coould be $1 / 4$ of a puan'e

(1) tivis $=30 \mathrm{hanz}$ per well



NOTS RE: TEL CNVV. Stancors on Prucers

 of SINGLE PRER.

$$
\text { and } 1003
$$

KF:FOR ENGYEOSS

## APPENDIX E

TELEPHONE SERVICE DATA

## CAPITAL COSTS

Unit costs were obtained from the sources indicated below:
Push-button telephone instrüment: The Pacific Telephone and Telegrāph Company invientory price list mailed to customers of record in Southern California, November 1982.

Wall-mounted instrument without dial and test set jack: GTE Automatic Electric Company, Milbrāé, California estimating prices provided by sales representative.

Electronic PBX: This item of cost presented the most difficulty in obtaining. Most PBX apparatus is sold by communication consultants or contractors who freely quote approximate turnkey estimates of $\$ 1,000$ per line. Two suppliers, however, were willing to quote approximate costs of PBX equipment only. The figures used in this report were obtained from a representative of Northern Telecom in Pomona, California. The prices quoted were as follows:

Size of PBX

$$
\begin{aligned}
& 400 \text { lines } \\
& 1400 \text { lines } \\
& 1400 \text { lines }
\end{aligned}
$$

Cost Range
$\$ 150$ to $\$ 200,000$
550 to 600,000
650 to 700,000

Substantiation was obtained from a sales representative of GTE Business Communications Systems in Reseda, California who quoted an eqüipment only price for a 400 line $P B X$ at $\$ 500$ per line.

Labor to install: GTE Business Commications Systems in Reseda, California, sales representative stated that $\$ 80$ per line was appropriate. Universal Communications Systems, Culver City, California, sales engineer indicated cost to install each line was $\$ 100$.

## MAINTENANCE COSTS

Maintenance expense data were derived from information in the annual reports of telephone companies on file with the State of California Public Utilities Commission. Reported data was obtained frow two smaller telephone companies which serve Southern California. The two companies are CP National Corporation and Continential Telephone Comany of California. The date of the annual reports are December 31, 1981. Data from plant accounts for central office equipment and station apparatus provided the base for which corresponding expense accounts, repairs to central office equipment, and repairs to station apparatus were compared. The ratios developed are as follow:

Central Office
Eqüpment Ratio
CP National Corporation Continential Telephone Co
9.9\%

Station
Apparatus Ratio
17.7\%
18.7\%

APPENDIX F

# MULTIPLE CAMERA SEQUENCING 

## (ALTERNATIVE 1)

OPERATING COST (LABOR)
CCTV Monitoring Personnel. (Central Control)
Base Period
6 am-10 pm, 6 days/week, 16 hours/day
3 monitors/hr x 16 hours/day x 312 days/year $\div 1,920$ work hours/year $=7.8$saý 8 television monitor employees.
Peak Period
6-10 am \& 2-6 pm, 5 days/week, 8 hours/day2 monitors/hr x 8 hours/day $\times 260$ days/year $\div 1,920$ work hours/year $=2.1$say 3 television monitor employees.
Off-Hours Period
10 pm-6 am, 7 days/week, 8 hourss/day
1 monitor/hr x 8 hours/day $\times 365$ days/year $\div 1,920$ work hours/year $=1.5$say $\underline{2}$ television monitor employees.
Sunday Base Period
6 am-10 pm, 1 day/week, 16 hoürs/day 2 monitors/hr x 16 hours/day $\times 52$ days/year $\div 1,920$ work hours/year $=.8$ say 1 television monitor employee.TOTAL MONITORING PERSONNEL14
Annual CCTV Operating Personnel Cost
14 employees $\times 2,080$ paid work hours/year $\times \$ 18 / \mathrm{hr}$
TOTAL OPERATING COST ..... \$524,160
MAINTENANCE COSTS
Spare Parts
22 TV cameras @ $\$ 1,260 /$ camera ..... \$ 27,720
8 Sequencers @ $\$ 1,120 /$ sequencer ..... 8,960
6 12-inch TV monitors @ $\$ 360$ /monitor ..... 2,160
TOTAL SPARE PARTS ..... \$ 38,840

## Labor

## CCTV Maintenance Personnel

2. CCTV technicians/hr x 24 hrs/day $x 312$ days/year $\div 1,920$ productive work hrs/year $=7.8$ say 8 technicians

1 CCTV techṇician/hr x 24 hrs/day $x 52$ days/year $\div 1,920$ productive work hrs/year $=.65$ say 1 technician

TOTAL MAINTENANCE PERSONNEL

Annüal CCTV MAINTENANCE Personnel Cost
9 CCTV Technicians $\times 2,080$ paid work hrs/year $x \$ 19.30 / \mathrm{hr}$ TOTAL MAINTENANCE PERSONNEL $\$ 361,296$

TOTAL MAINTENANCE COST $\$ 400,136$

## SPLIT-SCREEN PROJECTION

## (Alternative 2)

```
OPERATING COST (LABOR, INCLUDES FRINGE BENEFITS)
 CCTV Monitoring Personnel (Central Control)
 Base Period
6 am-10 pm, 6 days/week, 16 hours/day
6 monitors/hr x 16 hours/day x 312 days/year \(\div 1,920\) work hrs/year \(=15.6\)
say 16 TV monitor employees.
```

Peak Period
6-10 am \& 2-6 pm, 5 days/week, 8 hours/day 2 monitors/hr x 8 hours/day x 260 days/year $\div 1,920$ productive work hours/year $=2.1$ say 3 TV monitor employees.

Off-Hours Period
10 pm-6 am, 7 days/week, 8 hours/day 1 monitor/hr x 8 hours/day $x 365$ days/year $\div 1,920$ productive work hours/year $=1.5$ say $\underline{2}$ TV monitor employees.

## Sunday Base Period

6 am-10 pm, 1 day/week, 16 hours
3 monitors/hr x 16 hours/day x 52 days/year $\div 1,920$ work hours/year $=1.3$ say 2 TV monitor employees.

TOTAL MONITORING PERSONNEL
Annual CCTV Operating Personnel Cost
23 employees $\times 2,080$ paid work hours/year $\times \$ 18 / \mathrm{hr}$
TOTAL OPERATING COST
\$861,120
MAINTENANCE COSTS

## Spare Parts

22 TV cameras @ \$1,260/camera \$ 27,720
11 2-image camera splitters @ \$360/splitter 3,960
11 12-inch TV monitors @ \$360/monitor 3,960
2 12-inch TV monitors @ \$360/monitor 720
TOTAL SPARE: PARTS COST \$ 36,360

## Labor

## CCTV Maintenance Personnel

3 CCTV technicians/hr x $24 \mathrm{hrs} /$ day $\times 312$ days/year $\div 1,920$ productive work hrs/year $=11.7$ say 12 technicians

2 CCTV technician/hr x $24 \mathrm{hrs} /$ day x 52 days/year $\div 1,920$ productive work hrs/year $=1.3$ say $\underline{2}$ technicians

TOTAL MAINTENANCE PERSONNEL 14
Annual CCTV MAINTENANCE Personnel Cost
14 CCTV Technicians $\times 2,080$ paid work hrs/year $\times \$ 19.30 / \mathrm{hr}$
TOTAL MAINTENANCE PERSONNEL \$562,016

TOTAL MAINTENANCE COST $\$ 598,376$

## COMBINATION SPLIT-SCREEN SEQUENCING (ALTERNATIVE 3)

OPERATING COST (LABOR, INCLUDES FRINGE BENEFITS)

## CCTV Monitoring Personnel (Central Control)

Base Period
6 am-10 pm, 6 days/week, 16 hours/day 3 monitors/hr x 16 hours/day x 312 days/year $\div 1,920$ work hours/year $=7.8$ say 8 TV monitor employees.

## Peak Period

6-10 am \& 2-6 pm, 5 days/week, 8 hours/day
1 monitor/hr x 8 hours/day $\times 260$ days/year $\div 1,920$ work hours/year $=1.08$ say 2 TV monitor employees.

## Off-Hours. Period

10 pm-6 am, 7 days/week, 8 hours/day 1 monitor/hr $\times 8$ hours/day $\times 365$ days/year $\div 1,920$ work hours/year $=1.5$ say $\underline{2}$ television monitor employees.

Sunday Base Period
6 am-10 pm, 1 day/week, 16 hours/day 2 monitors/hr x 16 hours/day x 52 days/year $\div 1,920$ work hours/year $=.8$ say 1 TV monitor employee.

TOTAL MONITORING PERSONNEL

## Annual CCTV Operating Personnel Cost

13 employees $\times 2,080$ paid work hours/year $\times \$ 18 / \mathrm{hr}$
TOTAL OPERATING COST $\$ 486,720$
MAINTENANCE COSTS
Spare Parts
22 12-inch TV cameras @ \$1,260/camera ..... \$ 27,7208 3-image camera splitters @ $\$ 360 /$ splitter2,880
8 3-image camera sequencers @ $\$ 280 /$ sequencer ..... 840
4 l2-inch TV monitors © $\$ 360 /$ monitor ..... 1,440
2 12-inch TV monitors @ \$360/monitor ..... 7.20
Labor
CCTV Maintenance Personnel
2 CCTV technicians/hr $\times 24 \mathrm{hrs} /$ day $\times 312$ days/year $\div 1,920$ productivework hrs/year $=7.8$ say 8 technicians
1 CCTV technician/hr x $24 \mathrm{hrs} /$ day $\dot{x} 52$ days/year $\div 1,920$ productive work$\mathrm{hrs} / \mathrm{year}=.65$ say 1 technician
TOTAL MAINTENANCE PERSONNEL ..... 9
Annual CCTV MAINTENANCE Personnel Cost
9 CCTV Technicians x 2,080 paid work hrs/year x \$19.30/hr
TOTAL MAINTENANCE PERSONNEL ..... \$361,296
TOTAL MAINTENANCE COST ..... \$394,986

Toleptore converation notes:
WITt mb. Jont T. GodTt of PACIFIC INTOMATICOAL Corromatien RETHOUTING: Vavelin eretronics nol pantedic CCTV produr

Discussed TAE SCRTD MOTTO PAIC Pravert tan phason for coit reguirenevts an Autidenatile tunlysis K.E. is propiting.

BOOTH: SEquencers ARE Commerciacly avalurele TAD BELNG USED BY NORUY all seunod aviranimunt.
SPCUTteres Are commaily cred AT Crset ROBISTERS AND STVOLD OR comiaconceall? BUT NOT YET Rexplly avallatole To concomeres.
cambas for all types of eavironmey the duniciocle from Virtally no LL6HT TO DIRERT SENLIGAT WITA ATOWATLC comperranion type learser.

KDELA: REZVESTOD NFFOR-ATLIN aS cost/un), F-B ATD Expondices on Fallures!.

Rator of repair ind axture of nd wTadouce REFUIREMENTS.
cost: 1. CAWORA. WITH\$V70-U6tt - 1260lenor AnD scaninere
2. 6-camena sequealcer - 280-
3. 12" TV mowtion unTlt - 360 atonajer couplacs
4. 2 camera sputter
(4) FAllures: $1 / Y R:$ AVE:

Ropescemary
WIDE ANGLE LENS f 1.8 - 245.02 motouzed irs ins 12.50 m 299.
12.5 mm f 1.4 w.OE ANGE - 179.50
2. CAmera tubes
$1^{" V I D C L O N}$ HIGO SOESITivity - 65.00
I" sepmate wett ViDicon
w/ Hiblt RESOLUTION - $150 \%$
3. Pand ano Tllts ans avto zean

AUTO SEANNERUNIT ———26. $265^{\circ}$
0-360 dezuers
(b)
$1 / 5$ yeres

1. Corprols, sequasiobs on spcitzens
2. neontitors

MANTENANCE : $10 \%$ - of REPLACLABle cropouérs BISED ON TOAL EXUIPMENY cost.

Powiter consuruptlons.

1. 12"TU movitions - 3ow
2. Cuscundias - 34w
3. eputiens - $3 w$
4. CAmenss - $11 W$

REOROED: OF IUN ADELA
uxy 2.7,1982
 GE. - CCTU CANETAS IEN ACC.

- asusize The Ariysis LEE : D DEPRTANS





 of kw minctiond.

6e. dospre have sputtex Alaliasie
 rents

VIgFO The TELOMOL w/ GDmen TaDE CASE NLD

Motion DETESTER

17"V10e0 nowitern

- $525-$

VIDED SOI Zut

- 152 -

GE. Will sownce THotiz OAN EQUIPWOT WITH SOWLLE COHT:-AETAL jSUCUY $10 \%$ of Equirwtit cat.

FIUNE ANE minimal GPCEVT FR CAMEVLA TUEEI, LENSES AMS SCANNLAG wits.
tow fite

$$
\begin{aligned}
& \text { fite pul poct } \\
& \text { gout }
\end{aligned}
$$




# Parsons, Brinckerhoff, Quade and Douglas, Inc./ Tudor Engineering Company General Engineering Consultants to the Metropolitan Atlanta Rapid Transit Authority 

### 4.4 Monitor Display Technique

Since the indicated camera quantities reflect presently anticipated requirements; the monitor display board must be large enough to accomnodate the monitors required for initial use as well as the future potential growth. There are four basic methods that may be employed individually or possibly as a combination of two or more, namely:

1. Individually dedicated large screen monitors, one for each camera,
2. Individually dedicated small screen monitors, one for each camera,
3. Split-screen projection on a large screen monitor, viewing two, three or four cameras, or,
4. Sequencing of several cameras (2 to 5 max.) on each large or small monitor.

### 4.4.1 Dedicated Monitors

Three of the four transit authorities currently employing the CCTV surveillance technique, reference 3 , favor employing one monitor dedicated to each camera. One of these authorities use 8 inch and 19 inch monitors (at different zone centers) while the other two employ 9 and 10 inch monitors respectively.

Each authority felt that the size of monitor they employed adequately revealed the degree of surveillance desired. Although the larger screen (19 inch) projected a larger
picture than did that of the small screens, each had equal resolution (624 lines). In general, the small screens displayed a sharper picture, however, this was partially due to the use of more advanced equipment. Based on the CCIV camera and monitor display and ensuing discussion with an equipment supplier, arranged by Bechtel, the lack of clear display by $19^{\prime \prime}$ screens was attributed to the fact that they provided only 624 lines of resolution reflecting old equipment. The recommendation was made to employ 21 inch monitors having 1200 + lines of resolution (the current suitable monitor for the application under consideration.

## 4.4 .2

Split-Screen Projection
Split-screen projection, employing large screen monitors is another technique for effectively accomplishing multiple camera viewing within a limited space. Although this approach may at first be considered undesirable since the requirement for additional equipment means added cost, the savings that will be realized in requiring less monitors may more than compensate. This technique will enable the projection of $1,2,3$ or 4 pictures on one monitor. By employing the recommended 21 inch monitor, the diagonal viewing display achievable would be 10.5 inch picture when 4 pictures are projected. In areas where a camera is required to view a wide area and a corresponding wide monitoring area is desired, a two picture split-screen projection (horizontal or vertical) may be employed resulting in a viewing display of 7.4 inches $\times 14.85$ inches. Single picture projection may be employed when desiring better definition and/or video taping.

$$
-20-
$$

### 4.4.3 Sequencing Multinle Cameras

Sequencing is yet another method that may be employed to minimize the quantity of monitors in the zone center. Although other authorities have considered the application, Illinois Central Gulf was found to be the only authority currently employing sequencing of camera coverage, and found it to be acceptable. The sequencing rate is adjustable from two seconds to three minutes of viewing time. The one major drawback to this approach is that during the period after a camera transmission has been terminated and until it is once more transmitting on screen, dependent upon the sequencing rate and number of cameras dedicated to a given monitor, the activity within the purview of the camera will go unnoticed. When more than two cameras are sequenced, this situation then involves all but one camera dedicated to a particular monitor. As related in the trip report,reference 3 , such an occuirence was detected during one evening of observance.

This technique should not be considered for the MARIA system. With the Avondale Zone Center initially responsible for Observing 33 cameras, the sequencing of two cameras per monitor would reduce the quantity of monitors to 17. Sequencing four cameras per monitor would result in a need of nine monitors. If a three second sequencing rate were employed, the first consideration would result in an unobserved period of three seconds with the second conbideration resulting in a nine second unobserved period.

$$
F-10
$$

Increasing the seguencing time period would result in a correspondingly longer unobserved period of time, which would permit undesirable activity to ensue.

### 4.5 Monitor Arrangement Rationale_

There are several possible monitor arrangements that may be employed for effective surveillance. An assessment, also considering maximization of effectiveness and minimization of quantity on the part of observers, indicates that the arrangement should be based on the overall surveillance requirements anc intensity of activity that may occur. By arranging the monitors in two major groups, namely platform and concourse, the optimal balance can be achieved relative to operational activity. The group containing platform viewing camera monitors will be greater in number since more cameras are so located. Since comminications will also be a major activity of the zone centers, and the patron assistance calls are anticipated to comprise the greatest activity of communications, the combination of a lesser quantity of monitors to view in the concourse group plus the involvement with patron assistance should approximately balance the effort of observing the greater number of platform dedicated monitors and the associated communications involving public. address and security telephones.

The proposed monitor application and arrangements for the Avondale and West Lake zone centers, as considered necessary

$$
\begin{array}{r}
-22- \\
\mathrm{F}-17
\end{array}
$$

to satisfy the four zone center concept, are shown on drawings CMX110 and CrX210. Since the West Lake zone center will have interim jurisdiction for four stations and later have other stations added, a rearrangement of the monitors will be required as shown on drawing cry 220. By arranging the monitors and cameras as shown on the drawings, the observers can achieve and maintain orientation of the assigned sector.

Two major factors were considered in establishing the rationale for arranging the monitors for stations and their respective cameras. In most cases, the station monitors were arranged such that at the Avondale center, the extreme upper left monitor would be assigned to the extreme west station (Georgia State) and extend to the . right, reflecting adjacent stations to the east. However, : when a station requires two or more monitors, the desired arrangement must be compromised. The West Lake center arrangement is reversed such that the upper right monitor is assigned to the eastern most station (Five Points), then progressing to the left for stations progressively west. This format is duplicated, to the extent possible, for both concourse and platform sections of the display board. The second factor involved is specific camera/split-sereen assignment. The monitors will display an arrangement based on the type of camera (s) dedicated. Cameras having
-23-

$$
F-18
$$





# COSED CIRCUTT TEEENBOR lie TRAIUSIT STATIONS: APPLICATION GUIDELINES 

AUGUST 1980

# AUTOMATED GUIDEWAY TRANSIT TECHNOLOGY PROGRAM! 

## 



U.S. DEPARTMENT OF TRANSPORTATION<br>Urban Mass Transportation Administration<br>Office of Technology Development and Deployment Washingtion DC 20590

Chapter 6, but are referenced here so that the designer can plan for them in the layout of operator workplaces. It is important to have an appropriate location for storing those documents, and flat surfaces for using them. In addition, space should be made available for storing expendable items like writing supplies, new and used cassettes, labels, bulbs, and other articles that are necessary for day-to-day operations.

### 3.3 PERSONNEL AND KORK SCHEDULES

The questions to be addressed when planning for personnel in the monitoring center include: (1) how many monitor screens can an operator view effectively; (2) what hourly, weekly and monthly shifts are best; (3) how many operators, supervisors and other personnel are needed on each shift; and
(4) which other jobs can operators te expected to perform? To answer these questions, current practice and the research literature have been reviewed. As a result, it is possible to provide some general guidelines, but each transit security system müst also accommodate its own sets-of resource constraints and variations among its own personnel when considering those generalities. For instance, it may be ideal to use trained young police officers, working in 6 -hour shifts of $1 / 2$ hour on - 1 hour off, viewing no more than 8 video monitors, with no duties other than interacting with the passengers under surveillance and the responding units, but this ideal option could require ingenious planning or be prohibitively expensive to implement. One then needs to know what kinds of compromises with the ideal are reasonable. It is the intent of this section to provide a sense of operating ranges around the ideal design parameters.

### 3.3.1 Number of Monitors Viewed per Operator

The practical upper goal that is most frequently established by CCTV transit security personnel contacted during the preparation of this document is 16 video monitors per operator. However, the actual number at which performance (detection and interpretation capability) becomes unacceptable depends upon many factors, including: (1) how crowded the scene is and how much activity is taking place; (2) whether or not multiple cameras are sequentially scanned on individual video monitors; (3) how far into the work shift the operator is; (4) what other duties the operator must perform; and (5) operator experience. (10)

Of over a dozen existing CCTV security systems examined, the number of monitors in the control center ranged from 2 to 55, and the number of operators ranged from 1 to 3 . In some of these systems, the number of operators varied during the day as a function of predictable peak activity levels. As a representative example, the second largest system examined has 38 monitor screens (no sequencing) and employs 2 civilian operators most of the time, going up to 3 operators during rush hours in the morning (7:00-8:45 AM) and afternoon (4:006:30 PM), and dropping to 1 operator after 10:00 PM. This particular system is "shut down" from 12:30-5:30 AM, but a police duty officer is present and can observe the screens during that period. The operator's responsibilities, other than
the video monitors, include patron assistance telephones, police telephone and radio, remotely controlled access to rest rooms, intrusion alarms, elevator telephones and the public address system. Sequential switching of 2 to 3 cameras per monitor screen was tried and rejected when it was found to degrade operator attention. To help reduce fatigue, operators receive a 10 -minute break about every 1 to $1-1 / 2$ hours.

Relatively few researchers have conducted relevant scientific studies on the number of video monitors one operator can view effectively. Target numerosity studies on air traffic control type displays have demonstrated the degradation of detection and recognition as the number of significant targets, or even the number of irrelevant forms, increases. More applicable studies involving outdoor television scenes of people and vehicles showed that police officers were better than civilians at detecting critical incidents; near incidents were detected more reliably than distant incidents; and learning what to look for masked fatigue effects (even after 4 hours). (5, 24, 26, 28)

The most relevant research studies involved the problems of monitoring numerous video displays for one or two hours. In' one study, 16 and 24 television displays showing little movement were observed. In the other, 16 displays showing a great deal of movement were observed. Both required the detection of incidents in prison environments, by civilians and police officers. The video display monitors were $40 \times 30 \mathrm{~mm}$ (about 19 inches diagonal) in size, and typically arranged in a $4 \times 4$ or wider $4 \times 6$ array at a distance of 13 feet from the observer. In some parts of the tests only $1,4,8$ or 9 of the video monitors were used, but the array was maintained. It was found that, for scenes involving a great deal of movement, a $100 \%$ likelihood of detecting incidents requires viewing only one monitor display. If it is necessary to watch more than 1 screen with a great deal of movement, then no more than $\underline{g}$ should be viewed by one person. The likelihood of detecting incidents on 9 mónitors was 83\%, and on 4 monitors it was $84 \%$-no significant improvement by going from 9 to 4 monitor screens. However, for 16 monitors that figure dropped to $64 \%$. If very little movement is present in the viewed scenes, then 16 monitors is the recommended maximum number by the authors, When 24 monitors with very littie movement were viewed. the likelihood of detection dropped from 97\% (for the 16) to $88 \%$ (for the 24). It is recommended that these same guidelines of a maximum of 9 or 16 monitor screens per operator be followed by transit systems as well, for the high and low movement conditions, respectively: $(25,27)$

### 3.3.2 Viewing Time and Shifts

Where security of busy transit stations is the primary mission, eyes should be kept on the screens virtually full time; non-viewing activities increase the probability of missing the detection of a brief critical incident and lengthen reaction time generally. In one large department store examined, detectiveoperators only attend the monitor screens for just one hour at a time, rotating duties with other roving store detectives throughout the full workday. The tendency among existing CCTV transit security organizations is to maintain the conventional, non-rotating work shift of about eight hours' duration. However, these organizations recognize the need for breaks from the routine of watching monitor
screens. Such breaks are provided in more or less formal ways, by either scheduling an actual relief (e.g., for about 2 to 10 minutes per $1 / 2$ to 1 hour) or by designing the operator's job to include non-viewing activities such as found in the role of communicator or police desk officer. For many systems, the shift assignments are determined and specified through terms negotiated with a transit workers' union. In the 38 -monitor system referred to in the previous section, for instance, the agreement permits from one to three operators to be present during the operating period of 19 hours per day. A $30-$ minute lunch break is required and approximately 5-10 minutes per hour or so are provided for a rest break. (22)

The research on optimum viewing time indicates that vigilance can be maintained for about one hour, and then begins to degrade noticeably. This onehour criterion is borne out by objective measures of missed incidents and by subjective preferences reported by viewers. For example, the previously cited research study involving eight monitor screens and a great deal of movement showed a $71 \%$ likelihood of detecting incidents during the first hour, dropping to 62\% in the second hour. The authors concluded that the maximum desirable length of watch is about one hour. Two hours is certainly too long. Half an hour gives us advantage over one hour. In the research study involving 16 monitor screens showing little movement, no objective time comparisons were made, but interviews with the viewers revealed that 50 out of 65 considered that 1 hour was not too long a viewing period; 7 considered 1 hour to be about the maximum, while 8 felt it to be too long. Opinions about the length of a regular viewing period included durations from $1 / 2$ to 3 hours, and 55 observers considered that it should not be more than 1 hour. $(22,27)$

In summary, the maximum recommended viewing time is about 1 hour. When longer shifts are used, it is recommended that viewer personnel be provided with 5- to $10-m i n u t e$ rest periods each hour, or rotate jobs with other nonviewer personinel each hour.

When operators work in shifts, usually of eight hours each, the issue of changing or rotating shifts must be considered. Typical shifts run from 8 AM $4 \mathrm{PM}, 4 \mathrm{PM}-12 \mathrm{M}$, and $12 \mathrm{M}-8 \mathrm{AM}$, give or take an hour and some overlap. While most police and transit departments have experience with shift changing, it mey be helpful to consider some of the research findings on this subject., Biological rhythms and personality attributes have been found to be associated'with the ability to adjust successfully to shift changes. Certain types of people adjust more easily than others to shift changes and night work. Since those adjustments can take up to two or three weeks for some people, frequent (e.g., weekly, biweekly) reassignment of an individual's work shift is not appropriate under ordinary circumstances. Several studies of individual circadian rhythms have shown that evening-type people adjust better than morning types to night work. Studies of personality have shown that extroverts adjust better than introverts, especially if those extroverts have certain neurotic tendencies. The ability to sleep at unusual times of day, and to overcome drowsiness, is likewise characteristic of those who adapt better among the general population. Interestingly, the indications are that most people, if given the opportunity, will tend to choose the shifts that best fit their combined biological, psychological and social situation. "Permanent" or long-term shift assignments have met with great success in such cases. Finally, there is some early research underway which is investigating the use of drugs to alter biological cycles and possibly aid adaptation to shift

### 4.6 TRANSMISSION LINKS

### 4.6.1 Meitods of Transmitting Video Signals

The Direct Wire system is the most common end economical approach for CCT' signal iransmission. In this method, the video signel is carried directly from the camera to the monitoring center by soaxial cable. No license is necessary, but one may have to obtain rights of way to cross certain properties. This method is limited in distance of transmission, unless equalization and amplification are used. It is also quite susceptible to interference, especially over long distances.

The other methods of transmission generally make use of radio frequency (RF) carrier signals onto which the video signal is placed electronically through a process known as modulation. The modulated carrier signal can be transmitted on a coaxial cable, in which case the method can be referred to as an RF (Wir,e) transmission system. Several separate video signals (e.g., 12 or more) can be trensmitted on a single coerial cable by this method. Like the direct wire method, no license is necessary, but rights of way may need to be obtained. When the modulated carrier is transmitted over a wireless, RF (Microwave) system, a license is required from the Federal Communications Commission (FCC), but rights of way become unnecessary. These radio links are limited to line-of-sight arrangements, so that repeater stations may be necessary if long distances or terrain obstacles are to be traversed. Although the RF (Microwave) link is typically limited to a single channel (or camera signal), multiple channels (or camera signals) can be transmitted on the UHF (Ultra-High-Frequency) system. The UHF system is like the RF (Microwave) system in the other noted characteristies. Finally, the Optical Transmission system is one of newest techniques for transmitting video signals. One method does so over a modulated laser or light beam. Unfortunately, this method is presently subject to weather variations such as precipitation and fog. It requires line-of-sight clearance (though mirror relays are possible) but may have an all-weather limitation of about 1,000 feet. This method is convenient for traversing railroad yards, parking lots and other locations where cable installation may be a problem. No license or rights of way are required. Development is currently continuing on optical fiber transmission systems which have relatively unlimited distance capabilities for multiple channels carried in cables of optical fiber bundles. Satellite Transmission, now in its infancy, will probably become available in the next several years for those willing to pay the price for it. $(8,9)$

### 4.6.2 Slow Scan Television Transmission

Standard telephone lines, ordinary paired wires or other existing marrow-band" transmission systems can be used to transmit "frozen frame" video images. These special systems typically provide a sequence of still pictures with rates varging from one frame every 0.5 to 300 seconds. To speed up the process, some systems may also reduce resolution from the normal 525 lines to less than half that number. Under favorable conditions, transmissions up to a mile are practical with some individual devices and repeaters can be used to increase that distance to the extent that noise or resolution levels become objectionable. These systems are useful only where brief or high speed events are not anticipated and where some picture degradation can be tolerated. An extreme version of this slow transmission method would be to make an "instant" photograph of the CCTV monitor screen and then place the photograph on a facsimile scanner for transmission to another location. (6)

## 6. OPERATOK MONITORING AND RESFONSE PATTERNS

### 6.1 GENERAL

It is the expressed belief of many security officials that any crime countermeasure or safety system must be perceived by those served as providing rapid and certain response, or its credibility will be questioned, confidence will falter and the consequent value of that system will be seriously diminished. The purpose of this chapter is to provide the reader with information about appropriate operating procedures and action sequences that typical transit CCTV monitor personnel employ in the course of their day-to-day activities. These activities include routine monitoring of displays, response sequences to representative incidents, communications procedures in working with related services and the public, the use of automatic capabilities and the keeping of records. The information presented in this chapter is a further development of the operator issues addressed in Chapter 5. (Personinel Practices). It is considerably more specific, however, about step-by-step procedures employed-when detections are made on the monitor displays:

### 6.2 ROUTINE MONITORING

### 6.2.1 General

The continuous, routine human activity most associated with CCTV station security operators is the monitoring of television screens for the purpose of detecting events requiring a response. This activity is an essential part of maintaining an overall awareness of the security and safety status et each location. Typically, the function of routine monitoring is carried out e: cirely by the human operator, although there are certain conditions which permit the use of automatic detection devices which can alert operators by distinct larms when conditions change. This section on Routine Monitoring addresses :ly the continuous monitoring of conditions by the human operator. Automatic r sitoring and detection capabilities are the subject of a subsequent section in $t$. s chapter. The response sequence following the detection of a significant sect-ity or safety event is also treated in a subsequent section.

### 6.2.2 Patterns of Station Activity

After the system has been operating for some period of time, monitor operators will begin to notice the existence of certain trends or petterms which are characteristies of each station and its various surveillance zones. Each station will usually have some cameras that observe an abundance of activity while others may show activity only during certain time periods of the day. At certain times, there may be a predominance of particular types of passengers (e-g., school children, elderly, shoppers, office workers, etc.), so that other types stand out as different from the majority. Some of these routine patterns may contribute to reduced vigilance or even boredom.

### 5.2.3 Maintaining Visilance

The administrator's continuing challenge is to help the operators overcome those tendencies toward degraded monitoring performance created by routine and boring activity petterns. Overail alertness and awareness must be maintained so thet threats to security of safety are readily and reliably recognized. The operator's ability to detect significant events can be sustained even when facing routine and boring patterns by sensitizing him/her to expect. such events and to be accountable for recognizing them. One way such sensitization is accomplished in certain CCTV security systems is to inform operators that periodic training and testing of the entire system (including operators) will be carried out using unannounced events staged before the cameras at random times. These events are actually carried oüt, operators are later informed of their occurrence and response patterns are reviewed.

### 6.2.4 Adherence to Geometrical and Numerical Guidelines

Routine monitoring is influenced by the degree to which the operatoris physical, perceptual and cognitive capacities are respected. Found elsewhere in this document are guidelines for the geometrical arrangement of CCTV displays before the monitor operator and the number of monitors one person carn monitor effectively. Should those guidelines be violated, the reliability of roxatine monitoring and detection can be degraded because of resulting fatigue, task averloading, eyestrain or other consequences of the mismatch between operators and equipment under the given conditions.

### 6.2.5 Redeployment of Police Surveillance Patrols

To the extent that the CCTV surveillance system accomplishes its funetion. the use of police patrols for broad surveillance in all areas of the transit stations can be reduced. Those police officers should be deployed instead to other locations where CCTV surveillance is not as effective, or from where they can make more rapid responses and more certain apprehensions (such as near exit gates). It is not recommended that police patrol activity be stopped, bat rather that the emphasis be shifted if CCTV surveillance is effective. Impliesit in this guideline is the need for good communications between the CCTV momsitor operators and the police patrol units. Police patrol units can even vișit she monitoring center to gain a perspective on station and system status prior to initiating their patrol tour.

### 6.2.6 Local Monitoring and Central Monitoring

Some systems which are staffed by people (e.g., police officers, ticket agents, change-makers) at each station, may encounter technical or administrem tive circumstances which necessitate that monitoring functions be shared or otherwise divided between those local individuals and personnel in a central monitoring location. If such a compromise is necessary, it could be executed on the besis of relative workloads at given times of day (or week) or the relative hours of operation for certain positions or functions. In the event that routine momitoring and detection functions are so shared, it is essential that appropriate equipment and procedures be provided to insure effective monitoring performance.

For example, it may be necessary to locate small CCTV monitors and a videotape recorder in an agent's booth, along with an audio capability for communicating with other system personnel or with the public. As protection for such an agent, it is also possible to keep an open audio link to another agent, in a form of "buddy" systems, thus making the source of detection and alarm ambiguous to a potential assailant. In local station security booths, oneway mirrors facing the station can provide a similar sense of ambiguity, whereby a potential difender or fare evader will remain uncertain if a police officer or other official is present in the booth.

### 6.2.7 Combined Audio and Visual Remote Surveillance

To help overcome the tedium that sometimes occurs in visual CCTV surveillance alone, generally quiet stations can also be monitored by an audio system. In this case, the control center operator would be alerted to observe some significan.t events on the CCTV monitor üpon hearing unusual sounds or commotion over the speaker system. Typically, this approach does not insure that all types of iincidents will be detected and it is really limited to use on one or, at most, a few stations having unusually low background noise levels. Once the background noise becomes annoying, the operator is likely to turn off the audio monitor until it is needed. (2)

### 6.2.8 Attention to Vulnerable Passengers

The CCTV monitor operator should usually be alert to the types of people, numbers of people and kinds of movements seen on the monitor screen. For example, handicapped, elderly and infirm passengers are highly vulnerable targets for crimenals and may require extra attention. Sleeping passengers awaiting the arrival of their train are vulnerable, as are lone passengers in isolated areas and intoxicated passengers. Accelerated activity at the time of boarding and unboarding of vehicles may provide special opportunities for certain kinds of crimes (e.g., purse or necklace Snatching, fare evasion). Each geographical area and transit system has its own segments of the population and types of circumstances that may require special attention because of an increased likelihood of people being victimized or hurt. The local police unit is usually in the best position to train monitor operators in recognizing those higher risk passengers and circumstances as well as the types of individuals who are likely to commit offenses.

### 6.2.9 Constant vs. Sequential Monitoring Modes

Most operators interviewed during the preparation of this guidebook expressed a strong preference for one constant, individual camera's pictures on each CCTV monitor, rather than sequentially switching from one camera to another on a single screen. In special circumstances, the sequentially switched cameras viewed on a single monitor are acceptable. These circumstances include extreme limitations of space, unusually low activity levels being monitored and a high likelihood that the events requiring a response would take place over long enough periods of time so as not to be missed by the sequential monitoring process. A typical sequential mode could include as many as six cameras, with abou: three seconds of monitoring on each one in succession. Of course, the operator must have the capability to stop the sequencer and display only the picture from
any one camera at will, when necessary. Obviously, the other cameres may be going unattended at thet time, unless the system is designed to contirice the sequential displey on one monitor screen while using a second monitor screen to dwell on the one selected camera. As noted elsewhere in this guidebook, the disadvantage of sequentiel swisching of cameras on a single monitor screen is that it virtually eliminates the possibility for an operator to make good use of movement on the screen as a cue to be more attentive to what is happening at the station.

### 6.2.10 Experienced vs. Inexperienced Observers

There is some air-defense research which indicates a difference in the way skilled and unskilled observers view television-type situation displays. Unsophisticated viewers tend to be stimulus oriented rather than response oriersted. That is, the unskilled observers tend to make judgments in terms of stimuls:s characteristics rather than in terms of what the situation requires of them. Certain characteristics of complex situations tend to be selectively ignored, fand the observer concentrates on only one or two characteristics. While no sirnple guidelines can be presented at this time, it may be helpful to the systern, designer and trainer to be aware that there are complex relationships betwet:n the characteristics of a display (number and forms of things seen) and the i dividual's perceptual style (how things are scanned, discriminated and assessec and cognitive style (how perceptions are integrated and processed for a respo :se). $(3,7,8)$

### 6.3 RESPONSE SEQUENCES

### 6.3.1 General Sequence of Events

The generalized response sequence for the CCTV monitor open ator begins when he/she detects a suspicious activity or event on the displey. Usually the operator will immediately start the videotape recorder for the t (and audiotape, if available) while attempting to further recog ad identify what is actually taking place. Based upon this determination at is occurring, the operator next evaluates the need for a response based upe ner knowledge of available options. Those options range from minimal respo: thing, making a brief announcement over the public address sys: responses involving coordination with personnel of other departm.g., doing noto complex fire, train operations, medical, etc.). Often the detection, identifs ion and evaluation functions oceur almost simultaneously. The operator next c. response, taking responsibility for its completion unless that respo:
-ies out the bility is legitimately assumed by another authority. After the crisis period is ver, the operator must frequently follow-up the incident with the preparation of. written notation or report. In more complex situations, the operator's follow-up rer: onsibilities may also include the preservation of videotape evidence and possible cou;"t appearances as a witness to, or even a participant in, the incident.

### 6.3.2 Incident Recognition and Identification

Upon detecting an event that must be further examined, the operator shouid start the videotape recorder (and audio recorder, if used). A time and date generator
should be overlaying its information on the upper or lower edge of the image at the same time. The operator must determine where the incident is occurring, its nature and scope; who appears to be involved, and how it is developing. To aid in this function, the image should be switched to the largest available monitor. Often, that is the one which monitors whatever is being recorded on the videotape recorder. To help identify what is occurring, the operator should also make use of any additional information available, such as alarms, prior knowledge from the supervisor, and verbal reports from passengers or other system employees. At this time, the operator should also take advantage of any special capabilities available, such as camera pan, tilt and zoom features. In unclear situations, an officer or other individual may need to be dispatched to the incident location in order to make a final determination of what is taking place.

### 6.3.3 Incident Evaluation

One of the first assessments to be made by the operator is whether the identified situation is a life-endangering one. If it is, an immediate call for police response is usually appropriate. In some systems, the police will then initiate and coordinate contacts with all other outside organizations like fire or emergency medieal services. In other systems, the operator or his/her supervisor must initiate those contacts. If no life is endangered, the operator may still determine that a police response is needed, especially if the incident is criminal in nature. Other respomses, which the operator could determine a need for, include notification of tramsit system personinel or direct contact with the passengers with no other departments involved. The implication of all these evaluation options for response to an incident is that pre-determined response procedures and communications link to related services and passengers are essential if the response is to be most effective. For systems with small monitors (e.g., 12 inches or less), the identification and evaluation functions can usually be aided if the scene can be switched to a larger monitor (e.g., 19 inches) such as one used in conjunction with the videotape recorder. CCTV systems having pan, tilt and 200 m capabilities on its cameras can make use of those capabilities to carry out these functions. (6)

### 6.3.4 Planned Responses and Job Aids

The more structured and pre-planned the response procedures are for each kind of incident, the lesis likelihood there is of an inappropriate response by the operator. It is helpful to have a book of prepared instructions describing the special actions to be taken for the different kinds of incidents that could be encountered. It is also helpful to have a readily available list of telephone numbers of persons to call in different types of emergencies. For certain kinds of incidents the operator should also have maps of the station, showing all access features, camera surveillance zones, and other important facts. Responding police officers also reguire these handy facts and should have them readily available (e.g.; as part of the small loose-leaf notebooks they carry with them at all times).

### 6.3.5 Response Authority

In some monitoring systems, especially those staffed by civilian rather then police operators, it may be necessary to notify a higher level supervisor or sworn
police officer of the incident. As a result the operator may either rejey response instructions or may hand over management of the incident to that higher authority.

### 6.3.6 Response to Suspected Criminal Activity

The videotape and audio recorders should be in continuous operation during every significant event, especially if a criminal incident is taking place. The operator should be recording the event using the camera that shows the clearest image of the suspect, the victim, the suspected criminal activity, the responding officers or civilians and the apprehension or escape process. Police procedures and control center capabilities will dictate particular steps to be taken, such as calling a second officer if an apprehension is taking place, using automatic gatelocking devices to contain the suispect, stopping of elevators and escalators, closing (or opening) of selected doors/gates, re-directing of vehicles in the system and using existing contingency plans (e.g., for station evacuation, bomb threats, hostagetaking). In the events of system failures, all automatic locking devices should have reliable (but secure) methods for manually bypassing such locks. Many transit systems are inherently designed to make apprehensions relatively easy, since they typically restrict escape to the exit gates or to tracks and guideways. Direct communication between the CCTV operator, or someone (like a desk officer) with the same monitor coverage as the operator, and the responding police officer is essential if accurate information for apprehension is to be made available rapidiy and if escape is to be prevented. (6)

### 6.3.7 Availability of Responding Officers

When an officer is on patrol at the station, the operator (or saperior official) must establish radio, telephone or public address contact with him/her and direct that officer to the incident location. When the station is pert of a multistation patrol area for the officer, a more difficult and slower sequence may result. Good communication facilities are essential, and the contactec officer must then use his own resources in getting to the scene as quickly as possible. In some systems, where the transit vehicles are used to conduct the patroi and long headways are sometimes in effect, it may take considerable time ( $20-30$ minutes) to reach the scene. Often, the use of a radio patrol car (or even a hellicopter) traveling between stations can reduce that response time significantly. This may or may not be adequate, depending upon the incident in progress (e.g., rape tre purse snatching). The operator should know vehicle schedules and the location of all police officers and transit personnel in the system. More or less complex and sophisticated techniques are available to accomplish that purpose (from simple phone-in to costly, automatic radio transponder tracking). Considering the countermeasures potential of the CCTV surveillance system and rapid communications techniques, everything possible should be done to shorten the time required to get a police office to the scene. Once a suspect escapes from the transit property and is on the streets outside, local police usually must be called with a description to aid in the apprebension.

### 6.3.8 Inhibiting Effect of CCTV on Responding Officers

With the prevailing concern over charges of "police brutality," some police officers making an apprehension in a criminal incident hesitate to use necessary
force to subdue a resisting suspect, if those officers know they are being observed on camera and being videotaped for possible evidence purposes. This could result in injury to officers and others. Police administrators should remind police officers of their right to use whatever force is necessary to arrest the resisting suspect.

### 6.3.9 Direct Contact Responses Between Operators and Passengers

In cases where the operator is to respond directly with passengers or suspects, the use of a one-way or two-way audio system is generally necessary. This can be one that is non-private (e.g., the Public Address System) or it can be private (e.g., the Passenger Assistance Telephone). One way of establishing contact with a specific passenger is to use the public address system to direct that individual to go over and pick up the passenger assistance telephone (e.g., "That man in the leather jacket who just cocked the turnstile, please go to the wall on your right and pick up the yellow telephone"). A firm, but polite discussion can then be carried out to find out what the problem is and to direct subsequent proper action. in other cases, such as if a person goes onto the tracks or guideway, the one-way public system may provide the only immediate response eapability. The public address system can also be used to signal police officers (using codes or calls to the telephone) if no radio is available for that purpose.

Depending on the transit system design and the purpose of the CCTV operation, many other interactions can take place between operators and passengers. Some of these interactions would have more to do with passenger convenience services than with security or safety. For example, passengers may call to reguest directions for reaching their destination or to report a lost child. Pre-planned procedures may be necessary for some of these types of inquiries or services. (3)

### 6.3.10 Response Failures Due to Lack of Confidence

It is essential that operators develop confidence in the surveillance systems and the organizations responding to it. That confidence can be seriously diminished by excessive equipment failures, false alarms, ündependable individuals needed to aid the response, inadequate support and follow-up resources or other reasons. For example, a major department store in a very large Eastern city recently suffered an unrecognized after-hours burglary in its jewelry department, despite its CCTV monitoring system. The perpetrators had simply turned the cameras to look at the ceiling. The security force assumed that this was just a continuation of a recent series of camera malfunctions and chose to do nothing about the inappropriate images on the television monitors. Even the best system is likely to suffer similar costly consequences if the attitude and confidence of its operators is poor.

## 8. COSTS

### 8.1 LIFE-CYCLE COSTS

### 8.1.1 General

To aid the reader in calculating the costs of a potential CCTV transit station security system, this chapter identifies typical categories of costs and provides some representative dollar figures of possible items for which one must pay. It is concerned only with economic costs. In the earlier chapter on system evaluation, non-economic (e.g., social and political) costs were addressed, and those also shou!d be kept in mind.

Depending on size, pricing policies, construction requirements and many other factors, a CCTV transit station secürity system can have a purchase cost of anywhere from $\$ 1,500$ to $\$ 20,000$ per camera/monitor installed. For example, a very low cost, recently installed system covering a single platform, a waiting room and a ramp area, using eight monochrome cameras and eight. 10 -inch monitors, an automatic sequential switcher, a videotape recorder and 17 -inch monitor, a two-way audio system, and no special installation problems, at low prices based on authorized Federal supply schedules (General Services Administration), actually was purchased for about $\$ 12,000$ ( $\$ 1,500$ per camera/monitor). This is considered an unusually low cost, and should not be the expected purchase cost of most systems. It is also essential to note that many other development, operation, and maintenance costs are incurred, which could easily and rapidly exceed the purchased equipment costs. This chapter provides some perspective on all of those cost components.

### 8.1.2 Cost of Ownership

To estabiish a comprehensive framework for estimating all economic costs, the life cycle of a transit system can be used to define a séries of stages, and then costs can be computed for each stage. The life cycle of a transportation system has been classified by others, and is depicted in Table 8-1. Most "advanced" transit systems will go through all of these phases. "Conventional" systems will require little, if any. RD\&D, and "revolutionary" systems generally will be confined to RD\&D until they probably become "advanced" systems. The CCTV security system planner must determine which stages of the life cycle are relevant to his/her cost computations. In most instances, it is expected that the Acquisition and Use periods would include the applicable cost categories. (3, 5, 6)

TAELE 8-1. LIFE CYCLE OF A TRANSIT SYSTEM

| Perioz | Phase | Stage |
| :---: | :---: | :---: |
| Research, Design and Development (RD\&D) | Novel System Development | Concept Formulation and Definition |
|  |  | Technology Development and Demonstration. |
| Acquisition | Revenue System Engineering | Concept Selection |
|  |  | System Definition and Planning |
|  |  | Detail Design and Development |
|  | Property Development | Construction, Fabrication, Assembly, Test and Checkout |
| Use | Operation | Operation, Maintenance, Modification, and Removal |

Within each category one must consider the costs of purchased items (equipment and materials), labor (designers, operators, technicians, and other system employees), travel expenses (transportation, per diem, etc.), outside services (consultants, etc.), and any other miscellaneous expenses (e.g., leased items). One possible way of classifying those costs is in terms such as shown in Table 8-2. Obviously, each planner or designer will be subject to the general planning and budgeting practices followed in his/her agency.

TABLE 8-2. COST FACTORS IN EACH STAGE OF THE LIFE CYCLE

1. One-time costs, such as purchased equipment. These costs can often be depreciated or amortized over the useful life, in aceordance with generally accepted accounting principles. They include office equipment as well as CCTV apparatus. Upon system removal, a scrap value credit may be realized.
2. Fixed costs, such as needed to maintain and operate the activities at any stage of the life cycle. They include wages, employee benefits (holidays, insurance, etc.), utilities, insurance, leasing and renting costs. These costs can increase if the gross activity level requires more permanent personnel.
3. Variable costs, which are incurred in accordance with activity level at any stage. They include repair and replacement costs, office supplies, etc.
4. General and administrative expenises, which are allocable to the system activity in accordance with generally accepted accounting principles.

## APPENDIX G

CONTROLLED APERTURE EVALUATION

# Kaiser Engineers California 

## Ris



Job 非: 81152-403
i2: Séin Main Siree: 6it Fioct
Les Ange'es. Calitornas 90013
(2‘3) 972.8033

```
WBS #: 14 CAC
```

DECEMBER 21, 1982

MEMORANDUM TO: W. J. Rhine
FROM: P. M. Burgess


RE: ALTERNATIVE ANALYSIS -- COMMUNICATION SYSTEM

This is in response to a December 20,1982 request by your staff to write you a memo to be inserted in the appendix of our revised WBS \#14 CAC report. The desired purpose of the memorandum is to confirm that alternative analysis work, on the subject of controlled aperture CCTV for dimly-lit areas versus higher illumination, was suspended after the technology assessment phase of the alternative analysis showed that moderately priced cameras are available with aperture control range that precludes the need for extra illumination.

On March 17, 1982 we confirmed, by memo, that we would evaluate six commuications alternatives under task WBS \#14 CAC. On June 14, 1982, we included the controlled aperture CCTV alternative in a composite list of altemative analysis subjects that we had analyzed or were continuing to analyze.

On April 27, 1982, we discussed with Metro Rail staff summarized results of the analysis work completed to that date. Our May 28, 1982 memo to you advised that $w$ had suspended the TV camera aperture control alternati e analysis because we had verified that a readily available, : easonably priced, general purpose camera with automatic ligh compensation would accommodate the range of minimum emer, ency lighting to maximum illumination for passenger station application.

Our July 19, 1982 WBS \#14 CAC draft report summarized the analysis work that had been done and the significant results and conclusions.

As requested, we will append these written communications to our WBS \#14 CAC final report, including a copy of Chapter Ví of our draft report.
cc: C. Fisher
D. Wellington
A. Adela
D. Schuler

PMB/Im

RAISER
ENGINEERS

June 14, 1982

raiser mangers. ne. ATS SOUTH MAIN STREET Em FLOOA
LOS ANGELES. CALIFORNIA 00013
TELEPHONE RTM grisons
File: 81152-100
WB: 11DAF A/2439

MEMO TO:
FROM:

SUBJECT:

พ. J. Rhine
P. M. Burgess


## Composite List of WBS 14 Alternatives*

Following is a list combining the eight separate lists of alternatives that I forwarded to you with eight memoranda all dated as a convenient reference document for use in keeping track of alternatives that have been deferred or eliminated during the alternative analysis work and for keeping track of changes in terminology.

* This is a Basic Data Subject

PMB:mea


| Fils |  |
| :--- | :--- |
| Chis |  |
| Asst. Christ |  |
| CiA |  |
| Cr. |  |
| Acini. |  |
| Invest. |  |
| Serve. Insp. |  |
| Support |  |

1. Vehicle Configuration
A. Semi-permanent dependent pairs (shared equipment).
B. Quick separable dependent pairs (shared equipment).
C. Double-ended single cars (controls each end).
D. Single-ended single cars (controls one end only).
2. $A C$ ( 60 Hz and 400 Hz ) vs. DC Auxiliaries.
3. Chopper vs. Cam Controller.
4. Disc vs. Tread Brakes (or both).
5. Wheel Diameter ( 28 inch minimum to 34 inch maximum).
6. Roof wis. Ündercar Airconditioning.
7. Material and Structural (steel, aluminum, or combination).

Train Control
NBS: 14CAB
March 17, 1982

1. Reverse Running:
A. Full protection for close following moves.
B. Headblock to headblock with no following moves between interlockings:
2. Automatic Vehicle Identification:
A. Passive - intermittent (only reads labels for vehicle and train information).
B. Active - Also intermittent but can be used for: 1. Automatic track switching.
3. Control of station destination signs.
4. Control of train arrival and boarding location indicators.
5. Central Control:
A. Mimic Panel vs. banked CRT display.
B. Operator interface via CRT vs. control console.
6. Platform Train Destination Signs:
A. Signs triggered by wayside AVI.
B. Signs controlled by Central CPU (possibility of having equipment cost underwritten by advertising).
C. No platform destination signs.
7. Scope of Starter Line ATO:
A. Automatic speed regulation.
B. Programmed station stops.
C. Automatic station dispatching.
D. Automatic door closing.
8. Vehícle radios fixed or removable, as in a combination having an installed handset.
9. PABX, maintenance and emergency telephone systems, separate or combined employing common equipment.
10. Lease vs. purchase of telephone systems.
11. Controlled aperture CCTV, for dimly lighted areas, vis. higher illumination.
12. TV monitors sequenced or split screen, or combination.
13. Cable transmission via fiber optics, vs. multi-conductor cable, vs. coaxial cable.

Electrific̈ation System WBS: 14CAD11 March 17, 1982
Traction Power

1. Substation configuration single unit vs. double unit.
2. Substation spacing and location at passenger station vs. intermediate other locations.
3. Substation cooling system, self-cooling vis. forced cooling, dry vs. liquid.
4. Contact rail, aluminum with stainless steel cap vs. steel rail with extruded aluminum sides.
5. Switchgear overload protection, breakers vs. fuses.
6. Cable and raceway system in tunnel exposed conduit vs. embedded.

Auxiliary Power WBS: 14CAD12 March 17, 1982

1. Primary power supply integration with traction power vs. separate feeders from utility company.
2. Secondary power distribution, radial vis. dual selective.
3. Emergency standby power supply, DG/OPS vs. turbine-generator/UPS.
4. Tunnel lighting fixture, fluorescent vs. incandescent or high intensity discharge.
5. Secondary distribution equipment panelboards vs. switchgear.
6. Secondary distribution transformer, liquid vs. dry, self-cooling vs. forced cooling.
7. Low voltage switching system, large $A C B$ vs. fuses, insulated case vE. fuses, molded case vs. fuses, drawout vs. fixed.

$$
G-5
$$

1. Self service is. barrier.
2. Flat fare structure vs. graduated.
3. Bus fare compatibility.
4. Special fares capability.

Auxiliary Vehicles
UBS: 14CAE13
March 17. 1982

1. Self propelled maintenance and service vehicles vs. locomotive and unpowered vehicles. (Types of self-propulsion might be 3 rd rail, diesel or both).
2. Rail grinding and track alignment equipment procured during construction or deferred. (Equipment could be purchased or leased; it will be needed before start of revenue operations and again after approximately two to five years of operation).

## Escalators and Elevators WBS: 14BAG

March 17, 1982
Escalators

1. One standardized width for all stations vs. sized according to projected patronage.
2. Treadle operated vs. supervised starting and stopping.
3. Long escalators vs. segmented design.
4. Inclined moving sidewalk vs. escalator for short rise.

## Elevators

1. No laternative developed in wiS 14BAG.

Vehicle Maintenance
Shop Equipment
NBS: 14AAG11:
March 17, 1982

1. In-floor vehicle hoists vs. portable jacks for lifting vehicles.
2. Shop stinger system vs. self-propelled car switcher.
3. Shop lubrication system vs. portable flub carts.
4. Shop air system vs. electric powered tools.
5. Lathe vs. milling method for wheel truing.

## INTEROFFICE MEMORANDUM

то
it

## copiss to

P. M. Burgesg
date
mom

March 22, 1982
A. P. Adela, Jry
ar. OB 601 - Oakland.
J0: no. 81152-403

RTD METRO RAIL PROJECT
COMMUNICATION SYSTEM
Attached is an outline for WBS 14CAC Deliverable to be prepared. This outline will be used unless a standard format has been prepared. I also would like to amend the alternatives previously sumitted to a delete the following:

1. 1 footcandle level of 11 ghting as agasnst aperture control of TV cameras for higher FC light level.

There is no operational and cost difference involved. The type of camera with automatic light compensation applicable for 1 FC and 2 FC or more is the same. General purpose cameras will be used with options. The ranges are as follows:

Type of Camera
General Purpose
Normal Light Range
Low Light Level
Very Low Light Level 0.001FC - 0.01FC
2. Masterclosk programmable against non-programmable controi ünit. There is no considerable difference in the functions required. Prograumable control units are more complex and expenisive as against a non-programable. The following features envisioned to be required for the Masterclock System are standard to both types.

1. Central reset
2. Hourly correction
3. Instant reset after power failure
4. Pre-set timer for ständard and daylight savings time
5. 12-hour correction

Please advise if you or the clients disagree with this motion, otherwise, we will proceed as outlined.
/spt
attachment
P. M. Burgess
$\int_{\text {at }}^{\text {TO }} \quad$ KE Mo Burgess
conics to Ed Freeman, UİI

OATE April 27. 1982
From A. P. Adela, Ir.

AT OB-601


Jo: no. 81152-403

## subject

COMMUNICATIONS SYSTEM
LBS 14 CBC DESIGN ALTERNATIVES

This is to confirm our recent meeting with the cleat regarding the various design alternatives to be evaluated.

1. Radio Service - Passenger Vehicle
a. Fixed
b. Removable
2. Non-operable
3. Operable
4. Telephone Service

Equipment Configuration
a. PABX, PAX and Emergency Telephones as separate equipment.
b. Combine two or three services in one common equipment or instrument

Method of Acquisition:
8. Lease
b. Buy
3. Closed Circuit Television (CCTV)
a. Sequencer
b. Split Screen
c. Combination
4. Cable Transmission Service (CTS)
a. Fiber Optics
b. Paired Cables
c. Coaxial Cables

The following criteria has been evaluated to further enilghten the reasons for dropping the alternative for CCTV on the aperture control as against the light level.
P. M. Burgess

RE - Los Angeles
A. P. Adela, Jr.

April 27, 1982

1. The requirements for emergency lighting are primarily established by NEC and Section 5 of the life Safety Code (NFPA 101), which states that the light level shall not be less than 1.0 foot candle measured at the floor.
2. The locomotive headlights classified by the federal Railroad Administration are classified as road service giving 800 ft. object visibility. Each lamp projects a beam about 5 degrees wide of 300,000 candelas.

Using a 10 ft. distance from the light to camera lens, with direct exposure, the vertical illumination level will be;

FC = Candlepower $x \sin \theta$
Distance Squared
$=\frac{300,000 \times \sin 5^{\circ}}{102}=\frac{26147}{100}=261 \mathrm{FC}$
3. Although the calculated illumination level is high, the camera lens wont be directly exposed to the headlight. The actual light level will just be a spill frow the 261 pfC.
4. As previously mentioned in my memo of March 22, 1982, the general purpose camera with automatic light compensation will be able to handle the minimum emergency lighting level of 1.0 FC and a maximum of 1000 FP.

APA/jln

RARER ENGINEERS. INC. ass sort MAIN STREET in H LOOn


May 28, 1982
LOS ANGELES. CALIFORNIA SOOT
TELEPMONE: Cij9724033
File: 81152-403
NBS: 14CAC A/2439

MEMO TO: W. J. Rhine
FROM:
P. M. Burgess

wiS 14CAC Telephone Lease vs Buy Alternatives Analysis

A meeting was held June 25 between representatives of Pacific Telephone, Kaiser Engineers and your staff to obtain telephone leasing information for our lease vs buy alternatives analysis.

We were informed by the telephone representatives that a recent anti-tifist court ruling against the telephone company precludes any guarantee that Pacific Telephone will be in the leasing business during the time we will be procuring telephone services or equipment. Therefore, as discussed with Jim Trani and Mike Becher, we have discontinued the analysis of the lease versus buy alternative.

We plan to address the lease vs buy subject again in WBS 16CAC work when we expect to have more definite information regarding the possible deregulation of communication utilities and its effect on leasing vs owning options.

Our WBS 14CAC Alternatives Analysis report will include a narrative of the previous work that was done on this alternative subject.

Coincidentally the report will briefly address the subject of T.V. Camera aperture control versus increased illumination on which we suspended the analysis because our technology assessment showed that moderately priced cameras have recently become available with aperture control range that precludes the need for extra illumination.

## CHAPTER 7

CLOSED CIRCUIT TELEVISION APERTU̇RE CONTROL EVALUATION

### 7.1 INTRODUCTION

The intent of this analysis was to assess the capabilities of current CCTV camera lens technology for providing good TV coverage of areas there 11 lumination levels differ widely, as they do in transit system stations and yards. The analysis was suspended after the initial technology assessment showed that moderately priced caneras have recentiy become available with aperture control range wide enough to accommodate the entire range. Following are details of the information obtained and the results concluded.

### 7.2 DESCRIPTION OF ALTERNATIVES

7.2.1 1.0 Footcandle of Lighting

According to the Life Safety Code, 1.0 footcandle should be the minfum level of lighting for emergency pürposes. Camera lenses should conform to this lighting level to provide clear and usable images.

### 7.2.2 Higher Level of Lighting

Nomal lighting in stations and concourse areas is maintained at a level of 100 to 200 footcandle. The cameras intended for these areas do not require highly sophisticated control functions as long as the lighting levels are maintained.

### 7.3 RESULTS

The requirements for emergency lighting are primarily established by NEC and Section 5 of the Life Safety Code (NFPAIOI), which states that the light level shall not be less than 1.0 foot footcande measured at the floor.

The greatest amount of localized light intensity that can be expected in a transit traimay is that of a locomotive headight. These are classified by the Federal Railroad Administration as road service headilghts giving 800-ft object visibility. Each lamp projects a beam about 5 degrees wide of 300,000 candles, which converts to 261 footcandle as shown below.

Using a 10 -ft distance from the light to camera lens, with direct exposure, the vertical illumination level will be:

| $f c$ | $=\frac{\text { candlepower } \pi \sin \text { (theta) }}{\text { distance squared }}$ |
| ---: | :--- |
|  | $=\frac{300,000 \times \sin 5^{\circ}}{10^{2}}=261$ |

Although the calculated illumination level is high, the camera lens will not be directly exposed to the headight; the actual light level will just be a spill from the 261 footcandle.

The type of camera with automatic light compensation applicable for 1 footcande and 2 footcande or more is the same. General purpose cameras, with options, will be used. The ranges are as follows:

Type of Camera
General pürpose
Nomal light range
Low light level
Very low light level

## Sensitivity

$1 \mathrm{fc}-1000 \mathrm{fc}$
$0.1 \mathrm{fc}-1 \mathrm{fc}$
$0.01 \mathrm{fc}-0.1 \mathrm{fc}$
$0.001 \mathrm{fc}-0.01 \mathrm{fc}$

## APPENDIX H

May 28, 1982
RAISEA ENGINEERS. INE. CES SOUTM MAIN STREET Gin FLOOA
LOS ANGELES. CALIFORMA 900!J TELEPMONE (2:3) 072 \&OM
File: 81152-403
WBS: i4CAC A/24.39

MEMO TO:
FROM:
SUBJECT:
W. J. Rhine
P. M. Burgess

WंS 14CAC Telephone Lease vs Buy Alternatives Analysis

A meeting was held June 25 between representatives of Pacific Telephone, Kaiser Engineers and yoür staff to obtain telephone leasing information for our lease vs buy alternatives analysis.

We were informed by the telephone representatives that a recent anti-turst court ruling against the telephone company precludes any gurantee that Pacific Telephone will be in the leasing business during the time we will be procuring telephone services or equipment. Therefore, as discussed with Jim Trani and Mike Becher, we have discontinued the analysis of the lease versus buy alternative.

We plan to address the lease vs buy subject again in WBS 16CAC work when we expect to have more definite information regarding the possible deregulation of communication utilities and its effect on leasing vs owning options.

Oür WBS 14CAC Alternatives Analysis report will include a narrative of the previous work that was done on this alternative subject.

Coincidentally the report will briefly address the subject of T.V. Camera aperture control versus increased illumination on which we suspended the analysis because our technology assessment showed that moderately priced cameras have recentiy become available with aperture control range that precludes the need for extra illumination.

## CHAPTER 6

## TELEPHONE SERVICE

## LEASE vs. BUY EVALUATION

### 6.1 INTRODUCTION

In this alternative, Kaiser Engineers was to analyze leasing and purchasing options for the telephone equipment.

### 6.2 DESCRIPTION OF ALTERNATIVES

## 6.2 .1 Lease

Leasing the PABX and PAX main frames, including lines and telephone instruments, is the current trend of major business industries. This equipment, installed on the Metro Rail premises according to the Metro Rail system specifications, will be furnished and maintained by the local telephone company.

### 6.2.2 Buy

This alternative presents an advantage to the Metro Rail system in purchasing the telephone system, because it could be precisely engineered and specified to meet specific requirements.

### 6.3 RESULTS

A preliminary functional specification was prepared by Raiser Engineers and presented to the telephone company for a lease quotation. A meeting was held at the Metro Rail project premises and was attended by representatives of Pacific Telephone, Kaiser Engineers, and the Metro Rail Project staff.

A recent antitrust court ruling against the telephone company precludes any guarantee that Pacific Telephone will be in the leasing business when the telephone system for the Metro Rail project is installed. As a result of this discussion, the analysis of this alternative will not be included in this report until more definite information is gathered.

## APPENDIX I

## MANUFACTURER'S CU̇T SHEETS

## HEAVY DUTY <br> OPTICAL FIBER CABLE



These optical fiber cables are especially suited for employment in voice, video and data transmission applications which require ruggedized cables. High cable strength, crush and abrasion resistance, and moisture protection characterize the rugged nature of these cables. (See Installation Suitability Table)
The optical fiber cables are available in two types which are described as General Purpose and Heavy Duty. The General Purpose cables incorporate standard ITT optical fibers which have 0.5 millimeter outer jacket diameters. These cables are generally intended for installation in ducts, cable trays, or similar applications. The Heavy Duty cables incorporate ITT optical fibers having outer jackel diameters of 0.95 millimeter. The additional butfering material on the fibers provides an additional measure of ruggedness which makes these cables well suited for direct burial or aerial instaliations. Both cable types are characterized by high cable strength and excelient abrasion resistance. Either cable type can incorporate up to nineteen optical fibers.
Both cable types are comprised of an inner core of optical fibers over which is extruded a black polyurethane jacket. This inner jacket is surrounded by helically laid Keviare strength members over which the outer jacket of polyurethane is extruded.
The Heavy Duty cable is designed for aerial installation by lashing to a messenger wire. It is also suitable for duct installation using standard ducl-pulling techniques. This cable is available with an optional voidfilling compound applied within the inner cable jacket as well as an aluminüm tape armor with an outer polyethelene jacket. This cable complies with the "REA General Guidelines for Fiber Optic Comimunication Cables, Issue 2." With the addition of these options, the cable is suitable for direct burial by plowing or trenching.
Since the optical fibers used in these cables are inherently strong (coatinuous proof tested at 100 kpsi loads) and special attention has been paid to increased cable strength in cable designs, standard cable installation techiniaues can be used without damaging the optical fibers in the cable. Additionally, termination of the strength member and optical fiber is enhanced by the fexibility and internal structure of the cables.
These cables can be ordered with any ITT multimode optical fibers. Fibers in a wide range of attenuation and dispersion are available. As an option, the fibers can be color-coded in accordance with "REA General Guidelines for Fiber Optic Communication Cables, Issue 2." These cables are available in lengths up to one kilometer. Longer continuous lengths can also be provided on special order.

© 1979. International Tèlephona and Telegraph Corporation


INSTALLATION SUITABILITY
CABLE TYPE

| TYPES OF INSTALLATION |  |  |  |
| :---: | :---: | :---: | :---: |
| Aerial | Ductwet | Ductury | Direct Burial |
| - |  | - |  |
|  | - |  |  |
|  |  | - |  |

CABLE SPECIFICATIONS
OPTICAL
Numerical Aperture Attenuation © $0.85 \mu \mathrm{~m}$ Dispersion ( -308 Intermodal)

Reter to Optical Fiber Data Sheets
Refer to Optical Fiber Data Sheers
Reier to Optical Fiber Daţa Sheets
MECHANICAL

| GENERAL PURPOSE* | HEAV <br> Unsheathed | DUTY Sheathed |
| :---: | :---: | :---: |
| 0.5 mm | 1.0 mm | 1.0 mm |
| 6.1 mm | 7.0 mm | 9.7 mm |
| $30 \mathrm{~kg} / \mathrm{km}$ | $39 \mathrm{~kg} / \mathrm{km}$ | $58 \mathrm{~kg} / \mathrm{km}$ |
| 4 cm | 5 cm | 10 cm |
| 150 kgt | 150 kgf | 150 kgf |
| 1 to $7^{*}$ | 1 to $7^{*}$ | 1 to ${ }^{*}$ |

-Eigh to ninateen libers can be specithed on special orter.

## CABLE ORDERING INFORMATION

(Cable Part Number is prefixed by the letter " $T$ ". followed by a three-element number as follows: T-XXXX-YY-ZZZZ - see below.)

XXXX
Cable Type
Heavy Dutyt Filled, unisheathed 2500 Unfilled. Unsheathed 2501 Filled, sheathed 2502
General Purposett 3500
4Formerly designated types T-491 to T-499
HFormerly designated tyipes $T$ - 111 to $T+419$

- Diete "T arefa
$\cdots$ For color-coded, fibers. add suffix "C" ather Fiber Type Number
EXAMPLE: 7 -2502-07-1208 is a filled. sheathed seven fiber eable using graded index fiber with an outer iacket diameter of 0.5 mm exhibiting $4.00 \mathrm{~B} / \mathrm{km}$ maximum attenuation at $0.85 \mu \mathrm{~m}$, and maximum -3 dB intermodal dispersion of $0.5 \mathrm{ra} / \mathrm{km}$ al $0.9 \mu \mathrm{~m}$. (fiber ypo. liber outer jacken diameter, attenustion, anct dispersion are taken from Graded ingex Oprical Fiber dats shèer.)



## Linear, High Quality Video Transmission to Ten (10) Kilometers Without Repeaters Using Fiber Optics <br> Designed to accommodate a wide range of custom

 system requirements. ITT's Video Laser Transmission System is a single, modularized package that expands to satisfy multiple channel transmission of simplex or duplex signals. The standard $5 \%^{\prime \prime} \times 19^{\prime \prime}$ equipmen: shiell has provisions for accepting up to four (4) video channel units and an AC power supply unit Superior video quality for signal band widths to 10 MHz is combined with the abilify to transmit over nonrepeated fiber optic links up to ten (10) kilometers.A low noise, high linearity fiber optic transmission system, the ITT VLT unit employs F.M. modulation to provide a signal-to-noise ratio (weighted) of greater than 60 dB and differential gain of less than $1.5 \%$.
Easy to install and maintain, it is an ideal transmission system for video and other wideband analog signals where the signal quality is critical.
Uniquely suited to new system configurations, the ITT Video Laser Transmission System bypasses the traditional installation probiems associated with copoer cable systems and is capable of transmission in high noise environments, because it is inherenty immune to radio frequency and electromagnetic̣ interterence.


## Video/FM Coaxial Cable Transmission System

## FEATURES:

Greater than 60 dB Signal to Noise Improved Impulse Noise Immunity Longer Transmission Runs with Less Distortion No Gain and Tilt Compensation Required Low Maintenance, Solid State Design Minimum Cross-Modulation Effect
High Level Signals
Improved Group Delay Performance Ideal for PCM Mültiplex
Lower Cost than Comparable AM Systems
Minimum Effect from Intruded Signals-FM Capture Effect

## DESCRIPTION

The Catel VFMS Video FM Transmission System consists of a VFMM-2000 Video FM Modulator and a VFMD-2000 FM Video Demodulator. Frequency range is available from 19 to 293 MHz with standard bandwidth of 14 MHz . (Special bandwidths optional)

Due to the noise immunity advantages inherent in $F M$, the systern is capable of long distance tranismission of high speed data, television pictures and facsimile with minimum distortion.

## Unique Advantages of FM/Video Transmission...

Special features of Frequency Modulation make it ideally suited for wideband cable ?ransmission applications.
First, the high signal to noise and impulse noise immunity characteristics of FM provide improved performance in three areas: longer runs with minimum distortion, multiple regeneration in eascaded systems with fewer amplifiers
and improved overall transmission of high speed data, television pictures and tacsimile.
Secondly. the straight.forward, design of the FM system lowers purchase price, maintenance costs, and reduces the number of additional active etements in the system.

"Off.Air" Video
Figure A
Figure $B$

Figure $A$ shows $A M$ video display from input through 8 amplifièr cascëade. Figưie e shows improved characteristics of FM̈ransmission within the same parameters.

## Versatile, Modular Design Concept.

The chart shows various combinations of Catel video and audio bandwidth modules which make up specific frequency- and application-tailored systems. Full pricing available on request.


[^9]
## SPECIFICATIONS




## GENERAL

DCC's T-3 Rate Fiber Optic Transmitter FT-3201 shown in Figure 1, accepts differential ECL imputs. It is capable of operation from $D C$ to $100 \mathrm{MB} / \mathrm{s}$. The equipment meets telephone standards for high refi-
ability transmission of telephone, data, or video tratfic. The FT-3201 has been designed for use in DCC's FT-3 and FT-3C fiber optic transmission equipment. A block diagram of the transmitter is shown in Figure 2.


FEATURES

- Injection Laser Diode Source
- DC to $100 \mathrm{MB} / \mathrm{s}$ Operation
- 10 Bit Scrambler
- Optional Thermoelectric Cooler
- Major and Minor Alarms
- Optical Feedback-Preventive Maintenance

FIGURE 1.T-3 RATE FIBER OPTIC TRANSMITTER, FT-3201


Excellence in Telecommunications Engineering Digital Communications Corporation
A ageseor: COMPANY
11717 Explorotion Lone
Germantown. Niary:and 20707

## SPECIFICATIONS

## General

Transmission Rate
Electrical Signal Interface

## Optical

Light source
Operating Wavelength
Fiber Pigtail
Average Optical Power (at bulkhead connector)
Extinction ratio

## Electrical Power

## Operating voltage levels

Electrical power consumption
Mechanical
Size
Mounting
Temperature
Humidity
Laser Temperature With TEC Cooler

DC to $100 \mathrm{MB} / \mathrm{s}$
optimized for DS-3 and DS-3C operation NRZ-L ECL-Level, Differential

## Injection Laser

820 nm (typical)
$125 \mu$ mdia. $50 \mu$ meore $N A=0.21$ graded index fiber OdBm. (typical)

$$
>10: 1
$$

$\pm 8 \mathrm{vdc}$ 10 watts (max)
8.75"H $\times 1.375^{\prime \prime} \mathrm{W} \times 8.5^{\prime \prime} \mathrm{D}$

19 inch terminal tray
$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ $0-95 \%$ (no condensation) $30^{\circ} \mathrm{C}$ (Max)

In accordance with standards established by the Bureau of Radiological Health, DHEW, each of the labels below are attached to transmitter equipment.
$* * * * * *$ DANGER ******
INVISIBLE LASER RADIATION
WHEN OPEN
(CONNECTOR REMOVED)
AVOID DIRECT EXPOSURE
TO BEAM

| DIGTTAL COMMUNICATIONS CORPORATION |
| :--- |
| MANUFACTURED |
| COMPLIES WITH 21CFR 1040.10 \& 1040.11 |



## INTRODUCTION

The Model 6013 Digital Television Codec is a low cost, bandwith efficient digital video codec. It provides good quality digital NTSC color video at onehalf the bit rate of standard PCM encoded video.

The Model 6013 Digital Television Codec offers TV transmission capability over digital links at the Bell System Standard T-3 rate of 44.736 Mbps . Its primary application is video transmission over fiber optic cable but will operate over other digital links as well.

## KEY FEATURES

- High quality television transmission.
- Two-to-one compression of the digital video üsing Differential PCM (DPCM) techniques.
- Interframe coding with adjacent pixel as well as previous line prediction.
- Line substitution for lines received in error.
- Adaptive quantizer (based on buffer memory fill status).
- Program audio (mono or stereo).
- Standard T. 3 frame compatible (allows use of Standard T.3 rate monitoring equipment on digital link).
- Alarm LEDs on front panels.
- Front panel test points.
- Internal or external 44.736 MHz clock.

There are two versions (network quality and CATV quality) of the Model 6013 Digital Television Codec. These two differ in their video performance specifications which result from different hardware implemertations. The CATV quality version is upgradable to the network quality version by adding the Entropy Encoder Module and Buffer Memory Module to all ercoders and by adding that Entropy Decoder Module and the Butfer Memory Module to all decoders. Additional jumper changes are also required. The CATV quality version has been given the designation 6013C and the network version has been given the designa: tion 6013 N .


Excellence in Telecommunicotions Engineering Digital Communications Corporation
A Mfes: COMPANY
11747 Exploration Lane
Germentown Maviono 20767

## SPECIFICATIONS

| VIDEO INTERFACE | (BNC Coaxial Connectors) |
| :---: | :---: |
| nal Type | NTSC (color or monochiome) |
| Amplitude | 1.0 V p-p |
| impedance | 75 ohims unbalanced |
| Polarity | Black negative |
| Bandwid | 0.4.2 MHz |
| AUDIO INTERFACEImpedance. . . . | (Terminal Block) |
|  | 600 ohms balanced |
| Input | 0 dBm (nominäl) <br> ( $\pm 6 \mathrm{~dB}$ adjustment capability) |
| TRANSMISSION ${ }^{\text {INTERFACE }}$ (BNC Coaxial Connectors) |  |
|  |  |
| Bit Rate . | $44.736 \mathrm{Mbps} \pm 20 \mathrm{ppm}$ (Standard T-3 rate) |
| Clock | Internal crystal oscillator or external ECL level reference |
| VIDEO PERFORMANCE |  |
|  | Model 6013C Model 6103 N <br> (CATV Quality) <br> (Network Ouality) |
| Subjective Equivalent Signal-to-Noise Ratio |  |
|  |  |
|  |  |
| RMS weighted) . . . . . . . . . $\geq 45 \mathrm{~dB}$. . . . . . . . . . . $\geq 544 \mathrm{~dB}$ |  |
| Differential Phase . . . . . . . $6^{\circ}$ max. ... . . . . . . . . . $4^{\circ}$ max. |  |
| Differential Gain . . . . . . . $12 \%$ max. . . . . . . . . . . . . . $8 \%$ max. |  |




This 75 -ohm LDF serjes foam-dielettric HELIAX coaxial cable provides a combination of strength, flexibility, and efficiency not available in other cables. The proprietary low-loss foam dielectric offers attenuation pertormance equalling that of airdielectric cables of similar size. An annularly corïugated outer
conductor, in conjunction with the connector " 0 ". ring seals, provides a longitudinal moisture block. Differential expansion is eliminated by mechanically locking the outer conductor and bonding the inner conductor to the dielectric.

The connectors feature a unique self-flaring dèsign for superior electrical contact. high resistance to connector pull-off and twist-off and easy assembly with ordinary hand tools.

LDF4.75 is ovailable in long continuous lengths for easy installation and maintenance:free service. The rugged black polyethylene jacker makes the cable suitable for direct burial or for installation in corrosive environments. The cable is suitable for installation down to $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ and for operation up to $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$.

CHARACTERISTICS FOR TYPE LDF4-75



Andrew Aniennas

## Loengelly. Fite. Great Britain

Andrew Antennay

Andrew Antenar Limitade Sorocabs, SP. Brazil
Anteñis Y Popitaies

Antannes Andrew S.ÄR.L Nogent de-Rotrou. Franes


Table 4
Meecured attamuation of the fibre lengits eonverted to sgonin wevolength

Table 5
Metesured diaperaion of the fibre longth at 850 mm wevelength


I No comperable metarment razults ero avalable

Table 6
Tranemistion date at 8 and 10 tm .
Wavelength 950 nm MT eable


Table 7
Trensmanaion date at 8 and 90 km .
Wravengit B50 nm. SKV eable

## APPENDIX J

HANDWRITTEN NOTES
TELEPHONE COST ESTIMATES

## HANDWRITTEN CALCULATIONS

 $\qquad$ De Leuw. Cother \& Company Enoinears and Plenners MADE BY $\qquad$ .-1
$\qquad$ of $\square$

$$
C N B=59-8.5+10-10 \mathrm{kmg} 11=50.09
$$

$$
\text { g-axd } 1 / \text { ' }^{\prime \prime} 1 \text { z2/100 }-\cdots 310
$$

$\qquad$ $5 / 8^{\prime \prime} 1,08 \% 7 / 0$
$3 / 4{ }^{\circ} 0.91 / 100 \prime$
$7 / 8^{\prime \prime} 0.79 / 100$

$$
1.0^{\prime \prime} 0: 75 / 10{ }^{\prime \prime}
$$

Finith amplefen 1;00 cal

$$
54-300 \mathrm{nltz} \pm: 20
$$

C̄ÄTHEE $\qquad$ SHEET NO. $\qquad$ - ${ }^{\circ}$ Mites on CAST Pypene
Itgkest forguency in cable typoncey to xHz Bund for $T V^{\prime}=350 \mathrm{mH}=$ hadwith $\sim$ 35 denvels of TV with bor lim sisetut. Auplefien fom 27ds gain $=$ opeune $A+10 d$ s. injut with 18 d 1 m sityut
Cille shmesthe alidd euch thet finch amplefinin am le mintrin ain oirg Thin' 21 ds hisis, at mutepien got os Lieal

$$
\begin{aligned}
& 1 / 8^{\prime \prime}=82 \mathrm{~dB} / \mathrm{C}=\frac{3292 \text { fet } 22 \mathrm{~J} / \mathrm{R}}{15 \mathrm{~EB} / \mathrm{C}}=\frac{158 \text { fet }}{1708 \text { fet }}
\end{aligned}
$$

$P=.001 r$
3.184

11Asp pisicen
 $\qquad$ of $\qquad$
 gasd ender $400 \mathrm{mHz} / \mathrm{cm} 3.5 \mathrm{de} / \mathrm{cm}$ ettern. sud Jype delue T.2T00-08-11
est 633 gus nettru
foumedint phiciel ader $15100 /$ miter $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Galmen
$\qquad$
$\qquad$
$\qquad$
$\qquad$ Consultung Engineers and Plannert MAOE $\qquad$
$\qquad$ DATE edculete empsite $\# 1 f / フ 2$ edhe lmgit. vircuit to La Prow

$$
\begin{aligned}
36.16 x+18 y & =1500 \\
x+y & =42.916 \\
-18.16 x & =-772.488 \\
-18.16 x & =727 . \sqrt{12} \\
x & =40.061 \text { кft }-22 \\
y & =2.855 \text { 14 } 44.6 \Omega
\end{aligned}
$$

Cerenit to ftudis city

encinit to Xoide yerd

$$
\begin{aligned}
36.16 x+18 y & =(3500-157.34)-3342 . \\
4+y & =108.951 \\
-18.16 x & =+1961.12 x+8 \\
-18164 & =1381.54 \\
x & =76.08 \mathrm{k} / \mathrm{ft} 422 \\
& 32.794 \mathrm{kft}+19
\end{aligned}
$$

Memorandum from
T. L. Green

Qeselancerof, uopoy, at vo

$$
\begin{aligned}
& \pm 18=651^{1.000} \times 1.096=7.135 / \text { conduda } \\
& \# 19=8.2 \times 1.096=8.998 / \text { cndustar } \\
& \pm 22=16.5 \times 1.096=18.084 / \text { cruluater }
\end{aligned}
$$

\#19 loop inctivec $=18 \Omega / 1000^{\prime}$


14915

$$
19-14+159087
$$

Memorandum from R. R. Williams

Tom,
Sow Page guoted Tre \& sepence fogine per oter undergroved cable $003.4 \%$
Uf hear is any need \% call Anin, hos mumber is 2/3-972-3462

Alternatide \#1
mantedance: Sparets.

CATHER $\qquad$ SMEET NO．OF $\square$
 made by $\qquad$ oate $\qquad$ CMECKED EY $\qquad$ DATE $\square$
$\qquad$

能为电 $\qquad$ O $\qquad$ siso

$$
\begin{aligned}
& 37 \text { =yo } 144,16 \\
& \text { 53シ」 } \\
& 752
\end{aligned}
$$

$\qquad$
 6 312 11 3 S $\qquad$

Firith gara

$$
\begin{gathered}
\text { T-2 } 12 \text { putt mif } \frac{2100}{9120} \\
241
\end{gathered}
$$

$24 T$

Bunct yack 1900
phove $\begin{array}{r}1384! \\ 465\end{array}$

$$
\frac{\begin{array}{l}
468 \\
1411
\end{array}}{15720}
$$

ii－6

$\therefore \therefore=172$ Lucu ascerohisel


$$
=-521575 .
$$

Sh Turumin pioptit
prafrernty - 14
Precerit J-2 carsuen

- $5 \sqrt{2} 161$
$5 \sqrt{2} 1703$



$r=1707$ More 3 . Sive entiupuer.


- $\sqrt{2} 17142$-wie. FXO
…521715 22mo. Fxs
… 21726 2.un- Outu Riribion


H MTELE 2MAG

Hiouck $\div \operatorname{coc}$

C̄ĀTHËR $\qquad$ SHEET NO． $\qquad$ of
$\qquad$

Hel mixtix Tr $=6.3 \mathrm{mbps}$ TECNINAL $=\$ 80.00$

… 7 mbps $60 \nu \in C$


$\qquad$ J－60 a $\beta$
$T-3$ opteal termad
$\cdots \cdot T-2$ optial terimat
sutheom ooder ．．．．．．．．．． T：r lisce repenter
ymit $\$ 28 \mathrm{C}$ Rec 5230
$\qquad$

88720 $4-\omega$ $8=9$

Need quotation (budgetary) for Okonite RIT-Mr cable in following quantities

| Guage | Pairs | Iength | Okonite Product |  |
| :---: | :---: | :---: | :---: | :---: |
| 422 | 300 | 80,000' | 707-25-3300 | $3609 / \mathrm{kft}$ |
| \#22 | 200 | 170,000 ${ }^{1}$ | 707-15-3200 | $2398 / \mathrm{KA}$ |
| \# 22 | 250 | 30,000 | 707-15-3150 | 1820/Ret |
| \#22 | 75 | 6,000 | 707-15-3075 | $970 / R F$ |
| \#19 | 200 | 60,000 | 707-15-4200 | $44 a-\ln F t$ |
| \$19 | 250 | 9,000 | 707-15-4150 |  |
| \#19 | 75 | 22,000 | 707-15-4075 | 1766/reft |

APPENDIX K

COST ESTIMATE SHEETS
, subject Cost estimate
108 No. $3469-02$
WIRELINE - ALTERNATIVE \#1 - PRIMARY CIRCUIT
\#i
8tIEET MO. $\qquad$ OF
De Leuw, Calher A Company Consulting Engineors and Planners
made ay $\qquad$ OATE $\qquad$ CHECKEO BY $\qquad$ diate

| No | ITEM NO. | description | NOTES | QUANTITY | UNIT | $\begin{aligned} & \text { UNIT } \\ & \text { PRICE } \end{aligned}$ | AMOI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Cable | AṀ .i22. 300 Dair OKONLTE 717-15-3300 | 8.4 | Kft | 3609 | ${ }_{30134}$ |
|  | 2 | Cable | AWG \#33, 150 pair OKONITE 717-15-3150 | 8:4 | Kft | 1820 | 151288 |
|  | 3 | Splice cases | For Armored, buried cable. | 6 | ea | 18 | 10 |
|  | 4 | Splice sleeves |  | 5400 | ea | 0.10 | 1.541 |
|  | 5 | Protector Blocks | $4 \times 26$ | 17 | EA | 167 | 2, 1835 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | Total Material |  |  |  | 49! 099 |
|  |  | . | . |  |  |  | 1 |
|  |  |  | İSSTALLATION COSTS |  |  |  | 1 |
|  | 1 | Equipment Rental | -8 hrs $/ 1,000^{\prime}$ cable | 67.2 | HRS | 27,70 | 2 |
|  | 2 | Labor | pull Cable, Electrician $40 \mathrm{HRS} / 1,000^{\prime}$ | 320 | HRS | 27.70. | 8864 |
|  | 3 | Splipe cable | Electrician e $0.033 \mathrm{HRS} / \mathrm{Splice}$ | 180 | HRS | 27.70 | 4,986 |
|  | 4 | Terminate Cables | Blectrician 0 0.083 HRS/pair | $t 5$ | HRS | 27.70 | 2.1078 |
|  |  |  | $1{ }^{1}$ | : |  |  | 1 |
|  |  |  | Total Installation |  |  |  | ${ }_{10} 8^{880}$ |
|  |  |  |  |  |  |  |  |
|  |  |  | Total circuit cost |  |  |  |  |
|  |  |  |  |  |  |  | $\xrightarrow{1}$ |
|  |  |  |  | . |  |  | , |
|  |  |  | - |  |  |  | -1 |
| - |  |  |  |  |  |  |  |
|  |  |  | 1 |  |  |  |  |
|  |  |  |  |  |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  |  |  |  |  |  |

sUnJECT COST ESTIMATE
JOB NO. $\qquad$ SHEET NO. $\qquad$ of
CATHER wIRELINE - ALTERNATIVE 1 - primary CIRCUIT $\boldsymbol{A}_{2}$ $\qquad$ De Leuw, Calher \& Company Consulting Englnears and Piannars

MADE BY' $\qquad$ OATE $\qquad$ CHECREO AY $\qquad$ date

| NO | ITEM NO. | DESCRIPTION. | - NOTES | QUANTITY | UNIT | UNIT PRICE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Cable | AWG隹22, 300 paire OKONITE 717-15-3300 | . 5.124 | Kft | 3609 | 18149: |
|  | 2 | Cable | AWG\#22. 200 pair, OKONITE 717-15=3200 | 4.139 | Kft | 2398 | 9192 ! |
| . | 3 | Cable: | AWG\# 22, 150 pair, OKKONITE 717-15-3150 | 2.826 | Kft | 1820 | 514 : |
|  | 4 | Cable | AWG\#22, 75 pair, OKONITE 717-15-3075 | 2.826 | Kft | 970 | $2{ }^{1} 74$ |
|  | 5 | Splice Cases | Buried Cable. | 4 | EA | 18 | 17 |
|  | 6 | Splice sleeves | - | 2800 | EA | . 0.10 | $1^{281}$ |
|  | 7 | Terminal Blocks | Bee hive | 7 | EA | 16 | $113:$ |
|  | 8 | protector Blocis | $4 \times 26$ | 24 | EA | 167 | 4008 |
|  |  | . | $\cdots{ }^{\circ}$. ${ }^{\circ}$ | : |  |  |  |
|  |  |  | $\cdots$ MATERIAL COSTS |  |  |  | $41^{1 / 4.39}$ |
|  |  |  | $7$ |  |  |  | $1$ |
|  |  | 1. | IMSTnLmatron cosis | - |  |  | $1$ |
|  | 1. | Equipment | Rental $08 \mathrm{hrs} / 1,000$ : | 119 | HRS | 35.00 | 41165 |
|  | 2 | Labor | Pull Cable Electricianile 40 hrs/1,000' | 5.97 | Hrs | 27.70 | 16:537 |
|  | 3 | Splice Cable | Electrician $0.033 \mathrm{hrs} / \mathrm{splice}$. | 93 | Hrs | 27.70 | 21576 |
|  | 4 | Terminate Cables | Electrician e $0.083 \mathrm{hrs} / \mathrm{pair}$ | 95.5 | Hirs | 27.70 | $2 \longdiv { 6 4 5 }$ |
|  |  |  |  |  |  |  | 1 |
|  |  | - | Total Installation |  |  |  | 25,923 |
|  |  |  | . | , |  |  | 1 |
|  |  | , | TOTAL COST CIRCUIT \#2 | - |  |  | $671362$ |
|  |  |  | - |  |  |  | 1 |
|  |  |  | - 1 | 1 |  |  | $1$ |
|  |  |  | - | - |  |  | 1 |
|  |  |  | - | - . |  |  | 1 |
|  |  |  | . $\cdot \cdot$ | . |  | . | $T$ |



DeLEUW
SUBJECT COST ESTTMANTE
JOg NO. $\qquad$ $3469=00$

WIRELINE - ALTERNATIVE \#1 - PRIMARY CIRCUIT \# 4
SHEET NO. $\qquad$ Of
Oe Leuw, Colher a Company
made by $\qquad$ DATE $\qquad$ ChECKEO © $\qquad$ Date

| NO | ITEM NO. | DESCRIPTION | : . NOTES | QUANTITY | UNIT | UNIT PRICE \$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Cable | AWG\# 22, 300 pair OKONITE 717-15-3300 | 55.218 | Kft | 3609 | 1991282 |
|  | 2 | Cable | AWG\#22, 200 pair OKONITE 717-15-3200 | 5.452 | Kft | 2398 | 13107 c |
|  | 3 | Cable | AWG\#22, 75 pair OKONITE 717-15-3075 | 32.169 | Kft | 970 | 31-20' |
|  | 4 | Splice Cases | Buried Cable | 61 | EA | 18. | 4091 |
|  | 5 | Splice sleeves | . . . | 35350 | EA | 0.10 | 3153 ! |
|  | 6 | Loading Coils | 88mh, 300 stack | 9 | EA | -832 | 7481 |
|  | 7 | Loading Coils | 88mh, 200 stack | 2 | EA | 580 | 115 |
|  | 8 | Loading Coils | 88mh, 75 stack | 5 | EA | 215 | 1 075 |
|  | 9 | Iong_Kine Adaptor: | Ioop Extendex ${ }^{\text {a }}$ ' | 300 | EA | 167 | 50:100 |
|  | 10 | Amplifiers | Voice Frequency | 300 | EA | 116 | $34{ }^{1800}$ |
|  | 11 | Equipment Racks | 7 feet tall, 19 inch panel | 4 | EA | 200 | 1800 |
|  | 12 | Card Shelves | 10 card, 19" | . 60 | EA | 64 | $3{ }^{3} 840$ |
|  | 13 | Power Supply | 48 volts : | 1 | EA | 560 | 1560 |
|  | 14 | Fuse Panels | $\therefore 1$ | 13 | EA | 68 | 1884 |
|  | 15 | Fuses | $\square$ | 300 | EA | 0.35 | $10!$ |
|  | 16 | Terminal Blocks | Bee Hive | - 9 | EA | 16 | 144i |
|  | 17 | Protector Blocks | $4 \times 26$ | 24 | Ea | 167 | 41001 |
|  |  |  | MATERIAL TOTAL |  |  |  | 32251 |
|  |  | . | . | . |  |  | 1 |
|  |  |  | - . . | - |  |  |  |
|  |  | . | - |  |  |  | 1 |
|  |  |  | $1$ | $\pm$ |  |  | $i$ |
|  |  | . |  |  |  |  | 1 |
|  |  |  |  | $\cdot$ - |  |  | 1 |
|  |  |  |  |  |  | - | i |



WIRELINE :- ALYERNATIVE \# 1 - PRTMARY CIRCUIT \# 5 SHEET NO. $\qquad$ OF

De Leuw. Cather A. Compeny Consulling Englineers and Pisnneva

| NO | ITEM <br> NO. | DESCRIPTION | : . NOTES | QUANTITY | UNIT | UNIT PRICE \$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Cable | AWG日22, 200 pair, OKONITE 717-15-3200 | 76.080 | Kft | 2398 | 1821440 |
|  | 2 | Cable | AWG\#19, 200 pair. OKONITE 717-15-4200 | 28.504 | Kft | 4405 | 136!962 |
|  | 3 | Cable | AWG\#19, 150 pair. OKONITE 717-15-4150 | -4.467 | Kft | 3412 | 151241 |
|  | 4 | Splice Cases | Buried Cable. | 34 | EA | 18 | 1612 |
|  | 5 | Splice Sleeves | . . . | 13500 | EA | 0.10 | 1350 |
|  | 6 | Loading Coils | 88mh, 200 stack | 18 | EA | . 580 | 10 140 |
|  | 7 | Long Ine Adaptor | loop extender | 200 | EA | 167 | 334400 |
|  | 8 | Amplifier | Voice Frequency | 200 | EA | 116 | 231200 |
|  | 9 | Equipment Racks | 7 feet high, 19 inch panel | : 3 | EA. | 200 | 600 |
|  | 10 | Card Shelves | io-card, 19 inch panel | 45 | EA | 64 | 2. 8880 |
|  | 11 | Fuse Panels |  | 8 | EA | 68 | 544 |
|  | 12 | Fuses | . | 200 | EA | 0.35 | 170 |
|  | 13 | Power Supply | 1 | 1 | EA | 560 | 560 |
| . | 14 | Terminal Blocks | Bee Hive 1 | $\therefore 2$ | EA | 16 | 32 |
|  | 15 | protector Blocks | $4 \times 26$ | 14 | EA | 167 | 21338 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | TOPAL_MAYTERTAL |  |  |  | 4071789 |
|  |  |  |  |  |  |  | 1 |
|  |  |  |  | - |  |  | 1 |
|  |  |  | - . . | - |  |  | - 1 |
|  |  |  | - |  |  |  | 1 |
|  |  |  | 1 | $\cdots$ |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  |  | $\cdot$ • |  |  | , |
|  |  |  | . $\cdot$ |  |  | . | i | sU@JECT COST ESTIMATE:

IMATE: JOB NO. $\qquad$ 3469-00 RNATIVE \#1 - PRIMARY CIRCUIT \#5 SHEET NO. $\qquad$ OF $\qquad$
De Leuw; Cother at Company Consulting Enghneere and Pimaners
made by oate $\qquad$ CHECKEO BY. $\qquad$ bate

| NO | ITEM NO. | DESCRIPTION | . . NOTES | QUANTITY | UNIT | $\begin{aligned} & \text { UNHT } \\ & \text { PRICE \$ } \end{aligned}$ | AMO $\$$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | INSTYALLATION COSTS | . |  |  | 1 |
|  | 1 | Equipment | Rental e $8 \mathrm{hrs} / 1,000$ ' | 147 | HRS | 35.00 | $5_{1}^{\prime} 14$ |
|  | 2. | Labor | Puil cable, Electrician e 40 hrs $/ 1,000^{\circ}$ | 5563 | HRS | 27.70 | 154109: |
|  | 3 | Splice Cable | Electrician 0 $0.033 \mathrm{hrs} / \mathrm{splics}$. | 450 | HRS | 27.70 : | 12146: |
|  | 4 | Terminate cable | Electrician e $0.083 \mathrm{hrs} / \mathrm{pair}$ | 562 | HRS | 27.70 | 15156. |
|  | 5 | Mount Load Coils | 04 hrs per location | 72 | HRS | 27.70 | 1) 99. |
|  | 6 | Mount Racks | $2 \mathrm{hrs} / \mathrm{rack}$ | 6 | HRS | 27.70 | 161 |
|  | 7 | Install shelves | 1 hrs/shelf | 45 | HRS | 27.70 | 1124 |
|  | 8 | Install CArds | Wire backplane e 1 hr/card | 400 | HRS | 27.70 | 11081 |
| . | 9 | Power Supply | Instali and wire to racks | 24 | HRS | 27.70 | 166 ! |
|  | 10 | Fuse panels | Mount in racks and wire 1/2 hour/fuse | 100 | HRS | 27.70 | 2771 |
|  |  | 1 |  | . |  |  |  |
|  |  | . | - TOTAL INSTALLATION |  |  |  | 204, 19. |
|  |  |  | 1 . | : |  |  |  |
|  |  |  | . ${ }^{\text {a }}$ |  |  |  | 1 |
|  |  |  | TOTAL CIRCUIT \#5 | $\cdot$ |  |  | 61298: |
|  |  |  | . . |  |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | . | . |  |  | 1 |
|  |  |  | - . - | - |  |  | $\cdots 1$ |
|  |  |  | - . |  |  |  | $!$ |
|  |  |  | $\cdots-1 \cdot$ | , |  |  | 1 |
|  |  |  |  | $\cdots$ |  |  | 1 |
|  |  |  |  | $\cdot$. |  |  | 1 |
|  |  |  | . $\cdot$ |  |  |  | 1 |




Deleuw
subject
COST ESTIMATE JOB ND. 3469-00

CATHER
VIDEO CIRCUIT \#2-ALTERNATIVES 182
SheET MD. $\qquad$ of De Leuw, Cather a Company
Consuling Enginears and Planner MADE BY DATE: CHECKED BY date

| NO | ITEM NO. | DESCRIPTION | NOTES | QUANTITY | UNIT | $\begin{aligned} & \text { UNIT } \\ & \text { PRICE } \$: \end{aligned}$ | $\begin{gathered} \text { AMOI } \\ \$ \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | PM STNGLE CHANNEL NTSC | 25 | EA | 2780 | 691501 |
|  | 1 | MODLLATORS | EM, SINGLE CHANNEL, NTSC | 25 | EA | 2699 | 74.15 |
|  | 2 | demodulators | EMC SINGYE CHANNELE NTSC | 30 | EA | 1050 | 391.90 |
|  | 3 | TRUNK AMPLIFIERS |  | 38 | EA | 240 . | 9f 12 |
|  | 4 | EQUALIZERS | Cable 1/2" 75 ohm | 54818 | FT | 2.02 | 110, 73 |
|  | 5 | CABLE | CATV TO ATTACH TO TRUNR AMPLIFIERS | 78 | EA | 11.00 | 185 |
|  | 6 | CABLE CONNECTOR | 4-WAY, COMBINER | 5 | EA | 750 | $\frac{1}{3} 75$ |
|  | B | SPLITTER | 4-WAY, SEPARATOR | 5 | EA | 750 | 375 |
|  | 9 | SpLITTER | 5-WAY, COMBINER | 1 | EA | 900 | 190 |
|  | 10 | SPLITTER | 5-WAY, COMBYMER Repparctos | 1 | EA | 900 | 90 |
|  | 11 | RACKS | 7 feet taili, 19 inch panels | 12 | EA | 200 | 240 |
|  | 12 | PONER SUPPLY |  | 1 | EA | 395 | 39 |
|  | 13 | DIRECTIONAL COUPLERS | $!$ | 6 | EA | 85 | 51 |
|  |  |  | 1 | : |  |  | 1 |
|  |  |  | MATERIAL COSTS |  |  |  | $316^{1} 86$ |
|  |  |  |  |  |  |  | I |
|  |  |  | . |  |  |  | , |
|  |  |  |  |  |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | - • | - |  |  | $\cdots$ |
|  |  |  | . |  |  |  | 1 |
|  |  |  | 1 | , |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | . $\cdot$ |  |  |  | 1 |

subject COST ESTIMATE
دов no: - 3469-00
vIDEO CIRCUIT \#2 - ALTERNATIVES $1 \& 2$
sheet mo. $\qquad$ . 07 $\qquad$
De Leuv, Cather 8 Company
MADE BY
OAT $\qquad$ CHECRED 日Y DATE Consulting Enginears and Plannare Mane al .$\quad$.... T

| NO | ITEM NO. | DESCRIPTION | - NOTES | quantity | UNIT | UNIT PRICE \$ | AMC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 50 | HRS | 22.70 | $1{ }_{1}$ |
|  | 1 | MODULATMB/DEMODULATOR | Inatall \& -uird, a 1 hr/unit | 24 | HRS | 27.70 | 165 |
|  | 2 | backs | Install P 2 HRS EACH | 24 | HRS | 27.70 |  |
|  | 3 | TRUNK AMPLIFIERS | INSTALL 02 HRS EACH | 76 | HRS | 27.70 | 2110 |
|  | 4 | EQUALIZERS | Instail al 1 HR EA | 38 | hrs | 27.70 . | 110 |
|  | 5 | ANCILLARY EQUIPMENT | INSTALL \& TEST © 40 HRS/SITE | 280 | HRS | 27.70 | $7{ }^{7}$ |
|  | 6 | Cable | INSTALL CONNECTORS © 1 HR EACH | 78 | HRS | 27.70 | 2114 |
|  | 7 | Cable | PULL IN - ELECTRICIAN © 40 HRS $/ 1,000{ }^{\circ}$ | 2193 | HRS | 27.70 | $60: 7$. |
|  | 8 | Cable - | EQUIPMENT RENTAL © 8 HRS $/ 1,000^{*}$ | 439 | HRS | 35.00 | 15:31 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | INSTALLATION COSTS |  |  |  | $91{ }^{\prime}{ }^{\prime} 2$ |
|  | - |  |  |  |  |  | 1 |
|  |  | 1 | TOTAL CIRCIIT |  |  |  | $408+1$ |
|  |  |  | $\because$ | , |  |  | 1 |
|  |  |  | 1 | : |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  |  | $\cdot$ |  |  | 1 |
|  |  |  | . $\cdot$ |  |  |  | 1 |
|  |  |  |  | . |  |  | 1 |
|  |  |  |  | . |  |  | I |
|  |  |  | - . . | $\cdot$ |  |  | - 1 |
|  |  |  | . |  |  |  | 1 |
|  |  |  | 1 | . |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | . $\cdot$ |  |  |  | I | sundect

COST ESTIMATE
jOR NO. 3469-00

CATHER
VIDEO CIRCUIT \#3 - ALTERNATIVES I\& 2 SHEET NO. Of
De Leuw. Cather a Company Consuliting Englneers and Pismers

MADE BY DATE CHECRED EY $\qquad$ DATE

| NO | $\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION | NOTES | quantity | UNIT | $\begin{aligned} & \text { UNIT } \\ & \text { PRICE } \$ \\ & \hline \end{aligned}$ | ${ }_{\text {AMC }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | MODULATORS | FM, SINGLE CHANNEL, NTSC | 12 | EA. | 2780 | 3313 |
|  | 2 | DEMODULATORS | FM. SINGLE CHANNEL, NTSC | 12 | EA. | 2966 | 35 ${ }^{1}$ 5: |
|  | 3 | trunk amplifiers | 54-400 MHZ | 50. | EA | 1050 | 5215 |
|  | 4 | EQUALİERS |  | 50 | EA | 240 | 121 or |
|  | 5 | Cable | COAXIAL $1 / 2^{\prime \prime}, 75$ ohm | 104384 | FT | 2.02. | 219'8: |
|  | 6 | Cable Connectors | CATV ṪO FIT TRUNK AMPLIFIERS | 102 | EA | 11.00 | 1) 1: |
|  | 7 | SPLITtER | 4-way combiner | 3 | EA | 750 | 2) 2 |
|  | 8 | SPLItter | 4-WAY SEPARATOR | 3 | EA | 750 | ${ }_{1} 12$ |
|  | 9 | RACKS | 7. FEET TALL 19" panels | 6 | EA | 200 | $1{ }_{1}^{12}$ |
|  | 10 | POWER SUPPLY |  | 1 | EA | 395 | 13 |
|  | 11 | directionai couplers |  | 3 | EA | 85 | 12 |
|  |  | 1 |  | . |  |  | 1 |
|  |  |  | , material costs | , |  |  | 350\| 58 |
|  |  |  | 1 ! | : |  |  |  |
|  |  |  | $\because$ |  |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | . |  |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  |  | . |  |  | I |
|  |  |  | . |  |  |  | $\cdot 1$ |
|  |  |  |  |  |  |  | 1 |
|  |  |  | 1 | , |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | _-_ |  |  |  | - |



VIDEO CIRCUITS - ALTERNATEVES 1_E 2- RENIMDAKM CARIF SHEET NO. $\qquad$ OF

De Leuw, Cather \& Company
MAOE BY
DATE $\qquad$ CIECKEO 日Y date

| NO | ITEM NO. | DESCRIPTION | NOTES | quantity | UNIT | UNIT PRICE \$ | As |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | CABLE | 1/2 INCH COAXIAL, 75 ohms | 181,523 | FT | 2.02 | 3661 |
|  | 2 | CABLE | CONNECTORS | . 218 | EA | 11.00 | 21 |
|  | 3 | TRUNK AMPLIFIERS | 54-400 MHZ | 106 | EA | 1050 | 111 |
|  | 4 | EQUALIZERS |  | 106. | EA | 240. | 2516 |
|  | 5 | POWER SUPPLY | . | 3. | EA | 395. | 1 |
|  | 6. | COUPLERS | DIRECTIONAL | 14 | EA | 85 | 11 |
|  | 7 | SWITCH, | AUTOMATIC. COAXIAL WITH LOGIC. | 3 | EA | 870 | 217 |
|  |  | . |  |  |  |  | 1 |
|  |  | , . | MATERTAL COST | : |  |  | 51 l |
|  |  |  |  |  |  |  | 1 |
|  |  |  | INSTALLATION COSTS |  |  |  | 1 |
|  | 1 | CABLE | EQUIPMENT RENTAL 08 hrS $/ 1,000$ feet | 1452 | HRS | 35.00 | $50!$ |
|  | 2 | Cable | PULL IN ELECTRICIAN e 40 hrs $/ 1,000$ | 7261 | HRS | 27.70 | 20111 |
|  | 3 | Cable | Connectors 1 HR EACH 1 | 218 | HRS | 27.70 | 615 |
|  | 4 | TRUNK AMPLIFIERS | INSTALL 2 HRS EACH | 212 | HRS | 27.70 | 51 |
|  | 5 | EQUALIZERS | INSTALL 11 HR EACH | 106 | HRS | 27.70 | 21: |
|  | 6 | ANCIKLARX EOUIPMENT | . . | 72 | HRS | 27.70 | 15 |
|  | 7 | COAXIAL SWITCHES | INSTALL 8 TEST | 96 | HRS | 27.70 | 21. |
|  |  |  |  | . |  |  | 1 |
|  |  |  | INSTALLATION COSTS | - |  |  | $271{ }^{1}$ |
|  |  |  | . ${ }^{\text {a }}$ |  |  |  | 1 |
|  |  |  | $I_{\text {total medindant cable cost }}$ | , |  |  | 7810 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | $\therefore$ |  |  |  | 1 |
|  |  |  | $\because$ |  |  |  | 1 |




$\qquad$ of $\qquad$
De Leuw, Cather \& Company
MADE BY DATE $\qquad$ cileckeo ar DATE Consutting Engtinsors and Plannors $\qquad$
$\qquad$

| NO | ITEM NO. | DESCRIPTION. | :. . NOTES | quantiry | UNIT | UNIT PRICE \$. | Al |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Cable | 1/2 INCH, COANIAL CABLE, 75 OHMS | 119,352 | FT | 2.02 | 241. |
|  | 2 | CABLE CONNECTORS | CATV TYPE TO FIT TRUNK AMPLIFIERS | . 66 | EA | 11.00 | I |
| : | 3 | TRUNK AMPLIFIERS | 54-400 MHZ | - 32 | EA | 1050 | 331 |
|  | 4 | EQUALIT2ERS | . ${ }^{\text {a }}$ | 20 | EA | 240 - | 41 |
|  | 5 | DIRECTIONAL COUPLERS | . ${ }^{\text {a }}$ | $\therefore 16$ | EA | 85. | 1 |
|  |  |  | ${ }^{\text {• }}$ - |  |  |  | , |
|  |  | . | MATRRIAL COSTS |  |  |  | 2815 |
|  |  | - |  |  |  |  | 1 |
|  |  | . | INSTALLATION COSTS | : |  |  | 1 |
|  | 1 | CABLE CONNECTORS | © 1 HR EACH | 66 | HRS | 27.70 | $1{ }_{1}^{1}$ |
|  | 2 | TRUNK AMPLIFIERS | C 2 HRS EACH | 64 | HRS | 27.70 | 11 |
|  | 3 | COUqLERS | e 1 hours each | . 16 | HRS | 27.70 |  |
|  | 4 | CABLE | PULL IN ELECTRICIAN e 40 HRS $/ 1,000$ " | 4i774 | HRS | 27.70 | 1321: |
|  | 5 | cable | EQUIPMENT RENTAL 8 e has/1,000". | 955 | HRS | 35.00 | 3315 |
|  |  |  | . |  |  |  | 1 |
|  |  |  | INSTALLATION COSTS |  |  |  | 169\% |
|  |  |  | . . . . . |  |  |  | 1 |
|  |  |  | TOTAL COST REDUNDANT INBOUND CABLE |  |  |  | 4542 |
|  |  |  |  | . |  |  | 1 |
|  |  |  | $\cdot$. |  |  |  | - |
|  |  |  | - |  |  |  | 1 |
|  |  |  | 1 | - |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  | - |  |  |  |  |
|  |  |  | . . ${ }^{\circ}$ |  |  | . |  | CATHER


| NO | $\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION. | : $\cdot$ NOTES . | QuANTITY | UNIT | UNIT PRICE | $\wedge$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | MODULIATORS | FM Single channel | . 5 | EA | 2780 | 13 |
|  | 2 | DEMODULATORS | FM SINGLE CHANNEL | 16. | EA. | 2966 | 47 |
|  | 3 | RACKS | 7 EEET, 19 INCH PANELS | 5 | EA. | 200 | 1 |
|  |  |  | $\cdots$ |  |  | . | 1 |
|  |  |  | $\cdots$. . . MATERIAİ. CEntral controt | . ${ }^{\prime}$ |  |  | -61 |
|  |  |  | , |  |  | - | 1 |
|  |  |  | INSTALLATION | ' |  |  | 1 |
|  | 1 | RACKS. | ( 2 HRS EACH | 10 | HRS | 27,70 | 1 |
|  | 2. | MODULATORS | INSTALL \& WIRE © 1 HR EACH | 5 | HRS | 27.70 | 1 |
|  | 3 | DEMODULATORS | INSTALL \& WIRE © 1 HR EACH | 16 | HRS | 27.70 | 1 |
|  | 4 | INTERCONNECT | VIDEO MODULATORS TO MULTIPLEXERS | 160 | HRS | 27.70 | 4 |
|  | 5 | TEST |  | 40 | HRS | 27.70 | 1 |
|  |  |  | 1 | - |  |  | 1 |
|  |  |  |  | : |  |  | \% |
|  |  |  | OTAL INSTALLATION COSTS . |  |  |  | $6!$ |
|  |  |  | . . . |  |  |  | 1 |
|  |  |  | . . TOTAL RF EQUIPMENT COSTS |  |  |  | 681 |
|  |  |  |  |  |  |  | 1 |
|  |  |  |  | . |  |  | 1 |
|  |  |  | - - . | . |  |  |  |
|  |  |  | - |  |  |  | 1 |
|  |  |  | - 1 | , |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | $\cdots$ | - |  |  | 1 |
|  |  |  | [_U_- |  |  |  | 1 |


| DemeUW CATHER |  |  | subject $\qquad$ , Cable $\qquad$ alternative 2 $\qquad$ |  |  | $\cdots$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| De Leuw; Cather \& Company Consulting Englnegrs and Ptennore$\qquad$ |  |  |  | _ Diate | - |  |  |
| NO | ITEM NO. | DESCRIPTION | : . NOTES | qUANTITY | UNIT | $\begin{aligned} & \text { UNIT } \\ & \text { PRICE } \$ . \\ & \hline \end{aligned}$ | A |
|  |  |  | T1 \& 22 PCM EOUIPMENT BY LOCATION |  |  |  | J |
| : |  | CENTRAL CONTROL | INCLUDES CHANNEL UNITS |  |  |  | 528 |
|  |  | MAIN YARD | INCIUDES_CHANNEL UNLTSS. |  |  |  | 161 |
|  |  | UNION STATITON | INCLUDES CHANNEL UNITS |  |  | . | $22: 1$ |
|  |  | CIVIC CENTER | INCLUDES CHANNEL UNITS | . |  |  | 224 |
|  |  | FIFTH \& HILL | INCLUDES CHANNEL UNITS |  |  |  | 22.1 |
|  |  | SEVENTH \& PLOWER | INCLUDES CHANNEL UNITS | , |  |  | 241 |
|  |  | alvarado | INCLUDES CHANNEL UNITS |  |  |  | 23. |
|  |  | VERMONT | INCLUDES CHANNEL UNITS |  |  |  | 22.1 |
|  |  | NORMANDIE | INCLUDES CHANNEL UNTTS | . |  |  | $221:$ |
|  |  | WESTERN | INCLUDES CHANNEL UNITS |  |  |  | 25! |
|  |  | LA FREA | INCLUDES CHANNEL UNITS | - |  |  | $23!$ |
|  |  | FAIREAX | INCLUDES CHANNEL UNITS: |  |  |  | 2412 |
|  |  | BEVERLY | INCLUDES CHANNEL UNITS! | . |  |  | 2313 |
|  |  | SANTA MONICA | INCLUDES CHANNEL UNITS $\quad$. |  |  |  | $33^{1} 1$ |
|  |  | STUDIO CITY | INCLUDES CHANNEL UNITS |  |  |  | 2519 |
|  |  | NORTH HOLLXHOOD | INCLUDES CHANNEL UNITS |  |  |  | 2311 |
|  |  | NORTH YARD | INCLUDES CHANNEL UNITS |  |  |  | 3717 |
|  |  |  |  | . |  |  | 1 |
|  |  |  | PCM MATERIAL COSTS | - |  | 1 | 07716 |
|  |  | - | __. . . . . |  |  |  | 1 |
|  |  | INSTTALL \& TEST | ¢ 80 HOURS PER T-1 TERIINAL | 11360 | HRS | 27.70 | 3146 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | COST FOR PGM VOICE EOUIPMENT |  |  | 1 | :3921 2 |
|  |  |  | $\ldots \ldots$ |  |  | . | i |


| DeLEUW CATHER |  |  | , sunject _COST ESTIMATE ___ | 3469-00 <br> of |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| De Leuw, Cather a Company Consulling Einginears and Plannors |  |  |  |  |  |  |  |
| NO | ITEM NO. | DESCRIPTION | NOTES | OUANTITY | UNIT | UNIT PRICE | $\begin{gathered} \text { AMOI } \\ \$ \end{gathered}$ |
|  | 1 | EIbER CABLE | 38_EIBERS. RODENT SHIELD | 1.5 | KM | 32480 | 481600 |
|  | 2 | EIBRR CABLE | 32 fibers, rodent shield | 1.2 | KM | 27600 | 33.125 |
|  | 3 | FIBER CABLE | 25 FIBERS, RODENT SHIELD | 0.8 | KM | 21500 | 171208 |
|  | 4 | FIBER CABLE | 18 FIBERS, RODENT SHIELD | 0.8 | KM | 14490 . | 111590 |
|  | 5 | fiber Cable | 12 PIBERS, RODENT SHIELD | 2.0 | KM | 10260 | 20, 520 |
|  | 6 | FIBER CAble | 6 PIBERS, RODENT SHIELD | 1.6 | km | 5890 | 91420 |
|  |  |  |  |  |  |  | 1 |
|  |  | . | material cost |  |  |  | 1401045 |
|  |  |  | $\cdots$ - |  |  |  | 1 |
|  |  |  | INSTALLATION COSTS |  |  |  | I |
|  | 1 | EOUIPMENT | RENTAL - 919/KM | 7.9 | KM | 919 | 71265 |
|  | 2 | LABOR | puld cable e 3637/kM | 7.2 | KM | 3637 | ${ }_{28!}^{1} 732$ |
|  | 3 | SPLICES | 1,000' REELS : | 5311 | EA | 10.00 | 51310 |
|  | 4 | CABLE BOOTS | EACH SPLICE LOCATION 1 | 4 | EA | 50.00 | 1200 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | INSTALLATION COSTS |  |  |  | 41,502 |
|  |  |  | . . |  |  |  | 1 |
|  |  |  | total Circuit cost |  |  |  | 1811547 |
|  |  |  |  | . |  |  | - |
|  |  |  | - |  |  |  | $\cdot 1$ |
|  |  |  | - |  |  |  | I |
|  |  |  | 1 |  |  |  | I |
|  |  |  |  | - |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  |  |  |  |  | 1 |



| DeLEUW CATHER |  |  | $\qquad$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| De Leuw, Cather a Company |  |  |  |  |  |  |  |
| NO | ITEM NO. | DESCRIPTION | NOTES | QUANTITY | UNIT | UNIT PRICE | AM |
|  |  | ELBER CABLE | 14 FIBER, RODENT SHIELD | 28.1 | KM | 11640 | 327 |
|  | 2 | FIBER CABLE | 8 FIBER, RODENT SHIELD | 3.7 | KM | 7330 | 219 |
|  | 3 | FIbER CABLE | 2ifIBER, RODENT SHIELD | 1.3 | KM | 3650 | 4 4! |
|  | 4 | LINE REPEATER | T-2 CARRIER | 6 | EA | 8300 | ${ }^{49} j^{81}$ |
|  | 5 | LINE REPEATER | T-3 CARRIER. | 8 | EA | 1200 | 9610 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | material cost | ; |  |  | 499! 6 : |
|  |  | - | . | , | . |  | 1 |
|  |  | . | InStallation | . |  |  | 1 |
|  | 1 | EQUIPMENT | RENTAL © 919/KM | 33.1 | KM | 919 | 3014 |
|  | 2 | LABOR | puLl Cable e 3637/KM | 33.1 | KM | 3637 | 1293 |
|  | 3 | LINE, REPEATERS | T-2 CARRIER, INSTALL 16 HRS EA | . 96 | HRS | 27.70 | $2{ }^{2} 6$ |
|  | 4 | LINE REPEATERS | T-3 CARRIER, INSTALL e. 16 hts EA | 128 | HRS | 27.70 | 35 |
|  | 5 | SPLICES | 1,000! REELS 1 | 1395 | EA | 10.00 | 139 |
|  | 6 | SPLICE BOOTS | EACH SPLICE LOCATION | 109 | EA | 50.00 | $54!$ |
|  |  |  |  |  |  |  | 1 |
|  |  |  | . . INSTALLATION COSTS |  |  |  | 178 41 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | TOTAL CIRCUIT COSTS | . |  |  | 676 0: |
|  |  |  | $\cdots$. . . |  |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | 1 | , |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | . $\cdot$ |  |  |  | T |

SUDSECT ___ COST ESTIMATE 10 но: 3469-00
FIBER OPTICS - ALTERNATIVE 3-CIRCUIT \$ SHEET NO: $\qquad$
De Leuwi Csther a Company
ADE BY_____DATE C____ CHECRED BY $\qquad$ DATE: Consuling Englnears and Plarwert

MADE EY -

$\qquad$ OF

De Leuw, Cather © Company Consulting Engineert and Plannere $\qquad$ DATE

| NO | $\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION | -. NOTES | quantity | UNIT | UNIT PRICE \$ | AN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | T-3 ENCODER (CODRC) | TRANSMIT END (ITT) | 59 | EA | 12,000 | 708. 16 |
|  | 2. | T-3 DECODER (CODEC) | PECEIVE END (ITT) | 59 | EA. | 9,000 | 531.6 |
|  | 3 | MULTIPLEXER | T-3 OPTICAL TERMINAL - TRANSMIT \& RECEIVE | 118 | EA | 8,720 1 | 0289 |
|  |  |  |  |  |  | . | 1 |
|  |  |  | . cotal material |  |  | 12 | 26719 |
|  |  |  | $\square$ - |  |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  | - | INSTALLATION |  |  |  | 1 |
|  | 1 | TRANSMIT ENCODER. | INSTALC e 24 HOURS GACH TERMINAL | 1416 | HRS | 23.70 | 3912 |
|  | 2 | RECEIVE DECODER | INSTALL © 24 HOURS ÉACH TERMINAL | 1416 | HRS | 27.70 | 3942 |
|  | 3 | T-3 MULTIPLEXER | INSTALL e 16 hours EACH TERMINAL | 1888 | HRS. | 27.70 | 52.2 |
|  |  | 1 |  | . |  |  |  |
|  |  |  | : TOTAL INSTALLATION |  |  |  | 13017 |
|  |  |  | 1 | : |  |  | 1 |
|  |  |  | TOTAL CCTV hardware |  |  | 2 | 39817 |
|  |  |  |  |  |  |  | 1 |
|  |  |  | . . |  |  |  | 1 |
|  |  |  |  |  |  |  | 1 |
|  |  |  |  | . |  |  | 1 |
|  |  |  | . . . | - |  |  | $\cdots$ |
|  |  |  | - |  |  |  | I |
|  |  |  | 1 | 1 |  |  | 1. |
|  |  |  |  |  |  |  | 1 |
|  |  |  |  |  |  |  | + |
|  |  |  | . $\cdot$ |  |  |  | 1 |





[^0]:    *Annual equivalent cost in 1982 dollars

[^1]:    * Installation costs of permanently mounted equipment are essentially equal for each alternative and are therefore not included.

[^2]:    1 See Table 3-8 in the Preliminary Operating Plan, WBS 13 DAA.

[^3]:    * The energy costs for the permanently installed radio equipment (control head, wicrophone, and speaker) are included vith the train PA system, are very low, are virtually identical for the 3 alternatives, and are therefore not considered here.
    **See Appendix D, Radio Service Data, Meeting Minutes vith General Electric, May 25, 1982.

    1
    Service contract with vendor includes all labor and spare parts costs, therefore, there are no spare parts show separately in the Radio Cost Analysis.

[^4]:    *Stands for private branch exchange; sometimes also referred to as PABX for private automatic branch exchange.

[^5]:    *Figures include an allowance for outside trunks of approximately $20 \%$ of the number of telephone lines connected exce

[^6]:    *See Appendix E, Telephone Service Data, for backup costs.

[^7]:    *See Appendix E, Telephone Service Data, for backup costs.

[^8]:    * See Appendix F, CCTV Backup Data, for more information.
    **Component costs were obtained Erom Panasonic CCTV Products and GE, with the Panasonic data used as the baseline. See Appendix F, CCTV Backup Data, for more information.

[^9]:    ${ }^{1}$ Two way eudiofvisual Taleconterencing modem-at a muen lower sarminal price than convantional AM SVsrem.
    ${ }^{2}$ Srandard Catel Audio Modulator: Demodulator.
    3Requices two csoinets
    4 Aeouires iwo spacers.

