

METRO RAIL TRANSIT CONSULTANTS DMJM/PBQD/KE/HWA

FOR
SOUTHERN CALIFORNIA RAPID TRANSIT DISTRICT

SUPPLEMENTAL CRITEEIA FOR SEISMIC DESIGN OF UNDERGROUND STRUCTURES

```
1OO.NGELES
```


SUPPIEMENTAI CRITERIA FOR SEISMIC DESIGN OF

UNDERGROUND STRUCTURES

JUNE 1984

Prepared by

TABLE OF CONTENTS

Page
LIST OF TABLES iii
LIST OF FIGURES iv
I. INTRODUCTION 1
A. Background 1
B. General Effects of Earthquakes 1
C. Effects on Underground Structures 3
II. ENVIRONMENTS 5
A. Design Parameters 5
B. Approach 6
C. Application 9
־こ. 10
SHAILOW, RECTANGULAR, FRAMED STRUCTURES
A. General Procedure 10
IV. DESIGN OF STATIONS AND OTEER SHALLOW, 17 RECTANGUTAR, FRAMED CONCRETE STRUCTURES
A. Static Loading Conditions 17
B. Dynamic Loading Conditions 17
C. Design Details 18
V. DESIGN OF STATIONS AND OTEER SEALLOW, 20
RECTANGULAR, FRAMED STEEI STRUCTURES
A. Static Loading Conditions 20
B. Dynamic Loading Conditions 20
C. Design Details 20
VI. DESIGN OF CIRCULAR RUNNING TUNNEES 22
A. Static Loading Conditions 22
B. Dynamic Loading Conditions 22
C. Steps in Design 22

TABLE OF CONTENTS (CONT'D)

Section Page
VII. CONNECTIONS AND OTHER SPECIAI CONSIDERATIONS 29
A. Station End Walls 29
B. Three-Dimensional Structures 29
C. Ductility 30
VIII. FAULT AND REIATED CROSSINGS, LANDSIIDES, 31AND IIQUEFACTION
REFERENCES 35

IIST OF TABLES

Table Page
II-1 Design Earthquake Pa=ameters 5
II-2 Shear Wave Seismic Velocities (For Use if 6Specific Data are Unavailable)
II-3 Selected Principal Effects of Earthquake 8 Generated Waves on Flexible Underground Structures

LIST OF FIGURES

Biguze

IIIー1 Horizontal Shear Deformation i.n 13 Various Geologic Units (Operating Design Earthquake)
III-2
Horizontal Shear Deformation in
Horizontal Shear Deformation in 14 14 Various Geologic Units (Maximum Design Earthquake)
III-3 Application of Imposed Earthquake 15Deformation
III-4 Structure Mechanisms for MDE 16
VI-1 Variation of Diameter Change
Coefficient with Flexibility27Ratio
VI-2 Variation of Approximate Diameter 28 Change with Elexibility Ratio for Loosening Load
VIII-I Distortion of Running Line from 33Fault Offset
VIII-2 Critical Dimensions of Standard 34Steel Lining Segments

I. INTRODUCTION

A. BACRGROUND

Except for the contents of structures, this document provides structural seismic design criteria for underground structures of the Southern California Rapid Transit District (SCRTD) Metro Rail Project. For the sake of clarity, this document was written as a complete criteria for the seismic design of underground structures and as such replaces Section 4.3 and subsection 4.4 .6 of Part II, Appendix A, Seismological Investigation \& Desion Criteria (Converse, 1983; hereinafter referred to as Appendix A). Portions of Appendix A are incorporated by reference.
 design conditions that apply to the underg=ound structures of the Metro Rail Project. It is recognized that special problems may arise for individual section design. Popresentative eramples of suci special problems are change of materials from "rock" to alluvium, fault crossings, and joints between tunnels and stations. Section designers are to review their site-specific conditions for these types of problems and identify those that cannot be solved by direct application of all applicable criteria and standard and disective drawings. Solutions to these remaining problems shall then be subject to further discussion between the section designer, SCRTD, and SCRTD's consultants.
B. GENERAI EFFECTS OF EARTRQUARES

The effects of earthcuakes on underground structures may be broadily grouped into two general classes -- shaking and faulting.

In response to earthquake motion of bedrock (shaking), the soil transmits energy by waves. Seismologists identíy various types of earthçuake waves; structural engineers are generally interested in the effects of shear waves, which Froduce a displacement of the ground transverse to the axis of wave propagation...-

The orientation of propagation is generally random with respect to any specific structure. Waves propagated parallel to the long axis of a linear structure, such as a subway tunnel, will tend to force a corresponding transverse distortion on the structure. Waves traveling at right angles to the structure will tend to move it back and forth longitudinally, and may tend to pull it loose at zones of abrupt traneitione in scii conciticns, where wave properties may vary. Diagonally impinging waves subject difierent parts of a linear structure to out-oE-phase displacements. This results in a longitudinal compression-rarefaction wave thet tzavais along the structure.

2. Faulting

Faulting generally represents primary shearing displacements of bedrock, which may pass through the overburden layer(s) to the ground suzEace. Such physical shearing of the rock or soil is generally limited to relatively narrow seismicaily active fault zones, which may be identified by geological and seismological surveys. From a structural viewpoint, Eaulting may evidence itself as major soil displacements, Eor example, liqueEaction or landslide.

In general, it is not zeasible to design structures to restrain major soil displacements. Use乏ul design measures a=e
limited to identifying and avoiding sensitive areas，or if this is not possible，accepting the displacement，localizing and minimizing damage，and providing means to facilitate repairs．

C．EFFECTS ON UNDERGROUND STRUCTURES

Past performance of underground structures during seismic events indicates that damage may result from primary or secondary effects of earthquakes，including the following：
－Strong ground motions
－Fault Iupture
－Regional tectonic movements
－Landsiides
－Liquefaction

Instances of complete tunnel closure were associated with combined primary and secondary effects of earthouakes，such as fault rup－ ture and slope failure．However，in general，tunnels are safer than aboveground structures for a given level of shaking．

A major contributor to defomations and corfesponding stresses in long linear structures，such as tunnels，is traveling wave ef－ fects，which can be accounted for by assuming that the tunnel and surrounding soil move together as the wave passes，and that motion from point to point along the route follows the wave pattern and diEsers from point to point only due to a time lag．

It is important that the designer recognize that the effect of an earthquake on undergfound structures is the imposition of a deEor－ mation which cannot be changed substantially by strengthening the stュacたuミe．Thereミore，the structural design solution is provision of sufficient cuctility to absorb the imposed defomation without
losing the capacity to carry static loads, rather than designing to resist inertial loads at a specified unit stress.

Nonetheless, it should also be recognized that although the absolute amplitude of earthcuake displacement may be large, this displacement is spread over a long length. The gradient of earthquake distortion is generally small, and often within the elastic deformation capacity of the structure. If it can be established that the maximum deformation imposed by the specified earthquake, when combined with other appropriate loading conditions, will not strain the structure beyond the elastic range, no further provisions are required. If certain parts of the structure are strained into the plastic range, the ductility of such parts should be investigated.

Plastic straining in conformance with shearing distortion of the oround may affect the elastic properties of the structure. If continuity of the structure has been assumed in the design for static loads, the effects of plastic distortions will recuire special consideration as outlined in these criteria.

In the following sections, the effects of shaking and faulting on underground structures are considered and methods of analyzing their impact on structural design are presented.
II. ENVIRONMENTS

This section provides criteria for the earthquake-related environment applicable to the design of underground structures on the Metro Rail Project. Except where specifically referenced, this section takes precedence over Section 4.3, Appendix A.
A. DESIGN PARAMETERS

Design ground motion values for the underground structures are given in Table II-1 (from Appendix A, Converse, 1983).

TABLE II-1
DESIGN EARTHQUARE PARAMETERS

Design Earthauake	Foundation Condition	DESIGN GROUND MOTION PARAMETERS					
		Acceleration$(\mathrm{max})(\mathrm{c})$		$\begin{aligned} & \text { Velocity }\left(\mathrm{V}_{\max }\right) \\ & \text { (Et/sec) } \end{aligned}$		$\begin{gathered} \text { Dispalcement } \\ (\equiv t) \\ \hline \end{gathered}$	
		HOI.	Vert.	EOT.	Vert.	EOE.	Vert.
ODE	Soil	0.30	0.20	1.4	1.0	1.6	1.0
	Rock	0.30	0.20	0.8	0.6	0.5	0.3
MDE	Soil	0.60	0.40	3.2	2.1	3.3	2.2
	Rock	0.60	0.40	1.9	1.3	1.0	0.7

The shearing distortion of the ground shall be detemined as given in Figures III-1 and III-2. (These figure are reproduced from part II of the Seismological Investigation, and are shown there as Figures 4-2 and 4-3. For the purposes of this report, curves have been added for New Alluvium.) Unless more site-speciEic data are available Erom dynamic laboratory or field tests, as given in the indiridual geotechnical report for each design section, the velocity of propagation of the earthcuake shear waves shall be taken Eor design purposes as shown in Table II-2.

SHEAR-WAVE SEISMIC VELOCITIES
(FOR USE IF SPECIFIC DATA ARE UNAVAILABLE)

Soil Classification
New Alluvium
Old Alluvium
"C" Units
Basalt

Shear Wave Seismic velocity, C_{s}
900 fps

1200 fps 1700 fps 5000 fps

Design for fault displacement is required only for maximum design earthquake ($M D E$) conditions. Where actual surface faulting may be expected to occur, at the Santa Monica and Hollywood faults, the MDE fault displacement shall be taken as 6.6 ft. and 4.9 ft., respectively, for these faults (Appendix A). The MDE Richter maritute is 7.0 for Santa Monica and 6.5 for Holiywood. Table A-3 of Appendix A contains additional details of fault đisplacements.

B. APPROACH

Table II-3 provides the recommended general value for strain to be used in design for earthquake inputs (line 3 , column 3); this table aiso gives representative values for Old Alluvium with a shear wave velocity of 1200 fps. Pseudostatic procedures may be used for the design of all underg=ound structures.

It is recognized that the use of the component of efiective shearwave velocity in the direction of the axis of the structure, as used in Table II-3 and in Annex A, is more conservative than the use 0 apparent wave velocity in the design of buried li太elines to zesist earthquake shaking motions. It is Eurther recognized that LiEeinnes are critical stractires whose survivai is desized in the inmediate postearthcuake period, especially for fighting Ei=es anc
maintaining safety. Fowever, in tems of potential loss of lives, an underground metro often presents a higher risk than failure of a typical lifeline system. Measured in terms of depth of burial relative, to diameter of opening, an underground metro is generally closer to the surface than other lifelines; for some conditions, this shallow relative depth can increase distress due to earthquake.

Therefore, the writers of these supplemental criteria adopted the more conservative approach. As noted in the brief study in Supplement F, this approach may produce strains in the structures approaching a factor of two higher than might be the actual case. nowever, given the inherent variability in properties of natural earth materials, the large combination of conditions that are expected to occur throughout the Metro Rail Project, and the lack of actual measurements in metro tunnels subjected to earthcuakes, the conservative approach is deomed 三re=opriate.

Using the assumption that the soil does not lose its integrity during the design earthquake, the basic concept governing the response of underground structures is that the soil is generally stiff when compared to the structure and, therefore, the earthquake deformation of the soil is imposed on the structure, which must conform to this deformation. Eor very soft soils, interaction between the soil and the structure may be considered, but for any reasonably competent soil this interaction may be neglected, and the structures should be desigred to conform to the free soil defomations. Ignoring interaction generally induces larger deEormation and strain; thus, it is conservative to neglect interaction.

The imposed deformations are of two types -- curvature and shearing. The Eomer represents the direct imposition of the soil currature or the stracture, which must have the capacit? to absorb

Wave Type	Propagation Direction Relative to Tunnel Axis (0)	Effect of Combined Waves Axial Strains Induced In Medium Reneral Representative Formula Numerical Value for Old Alluvium (in/fn)	$\begin{gathered} \text { Remarks } \\ \text { (See Annex B) } \end{gathered}$
Dilat lonal $(P-)$ Wave	0°	$\epsilon_{p}= \pm \frac{v_{\text {max }}}{c_{p e}} \quad \pm 0.0017 \mathrm{~b}, \mathrm{c}$	No curvature is induced for 0° incidence.
$\begin{aligned} & \text { Shear (S-) } \\ & \text { Wave } \end{aligned}$	45°	$E_{a}= \pm \frac{v_{\max }}{2 c_{s e}} \pm 0.7 R \frac{a_{\text {max }} g}{c_{a e}^{2}} \pm 0.0018^{b}$	$R=10^{\prime}$ (asaumed) $^{\text {d }}$
Recoumended Value	Shear Wave at 45°	$\bar{\epsilon}_{1} ¥ \pm \frac{v_{\max }}{2 c_{a e}} \pm 0.7 R \frac{\max ^{g}}{c_{s e}^{2}} \pm 0.0018^{b}$	$R=10^{\prime}$ (asasunied) $^{\text {d }}$

a Assunes a and $v_{\text {max }}$ are produced only by the wave considered and they occur aimultaneously which is phyalcally imposible but an acceptable conaervative approximation.
b
For Old Alluvium and MDE; $c_{s}=1200 \mathrm{fpa}$ and $\mathrm{C}_{\mathrm{se}}=0.8 \times 1200=960 \mathrm{fpa}$ (See Annex A)
$c_{p}=2 c_{\text {f }}$ for $u=1 / 3$; thia is a better approach for dieriving atrain in the boil than a meabured valited in saturated ${ }_{o} \mathrm{f}^{2}$ nearly saturated soil for which c_{p} approachea that for the water in the interaticea. For dry soila $c_{p} f_{s}$
d
Coefficient includes required trigonometric terms for'angle of incidence.
the resulting strains. The latter represents the displacement of the soil in response to a base acceleration imparted to it through the bedrock,
c. APPIICATION

Application of the design methods for underground station structures is discussed in sections III through V and for circular running tunnels in Section VI. Section VII contains design methods for structural connections and other special considerations. The special design cases for fault crossings, landslides, and liquefaction are presented in Section VIII. Section Designers are responsible for implementation of criteria in Sections III, IV, V, and VII. The General Architectural/Engineering Consultant (MRTC) will implement the criteria in Section VI. Section Designers shail identify the location(s) of special problems discussed in Section VIII; the resolution of these speciel conditions shali be agieed upon among SCRTD, MRTC, and the Section Designers.

III. EARTHQUARE DESIGN OF STATIONS AND OTHER SHAIIOW, RECTANGUIAR, FRAMED STRUCTURE

The effect of earthquake racking (see Section IV) on the structure requires that the structure conform to the free-field soil deformation. If it can be established that the maximum deformation imposed by the specified earthquake will not strain the structural frame beyond yield at any point, using the loads of Equation (Eq.) IV-2 or IV-3, no further provisions to resist the deformation are required. If certain joints are strained into the plastic range by the $M D E$, the structure shall be checked, and redesigned as necessary, to ensure that no plastic hinge combinations can be formed that are capable of leading to a collapse mechanism.

A. GENERAI PROCEDURE

1. Base initial size of members on static design, Eq. IV-1 or Eq. V-1, and appropriate strength requirements. Builiing code design methods shall be applied, recognizing that the structure is surrounded by geologic materials.
2. Impose earthquake deformation (racking) on the structure using data from Figures III-1 and III-2, following the concept shown in Figure III-3. These racking deformations induce moments and internal forces in the structure. These effects, treated as values of Q in Sections $I V$ and V, are to be added to those from the static analysis in accord with the complete equations defining demand, also in Sections IV and V. Follow ACI, Los Angeles City Building Code (IACBC), or Uni三om Euilding Code as appropriate for determining member stiEEnesses. Pseudohorizontal loads, to provide zacking deformations equal to that of Figure III-3a, may be applied at the floor levels (Figure III-3b) Eor analysis purposes. It
is essential that these loads be adjusted to account for the changes in member stiffness and the effect of the surrounding soil in limiting the racking of the structure.
3. Impose a dynamic soil-pressure increment on the structure (Appendix A, Converse, 1983; Seed and Whitman, 1970). These effects, treated as values of Q in Sections IV and V, are to be added to those from the static analysis in accord with the complete equations defining demand (Sections IV and V). Follow ACI, Uniform Building Code, or LACBC as appropriate for determining member stiffness.
4. Evaluate conditions in the structure applying Egs. IV-2 or IV-3 or Eqs. $V-2$ or $V-3$, and Steps 1 and 2 , and then 1 and 3. The more critical (Step 1 plus Step 2, or Step 1 plus Step 3) shall apply.
 context of the appropriate building code(s) exist at all points Eor static and ODE conditions. Design completed when ultimate conditions in the context of plastic design as hereinafter provided are not exceeded at any point for MDE conditions.
5. Evaluate possible mechanisms for MDE conditions (see Figune III-4). Conditions with only two hinges in any one member, such as illustrated in Figure III-4a, are acceptable because. a failure (collapse) mechanism has not formed. Conditions with four hinges, such as illustrated in figure III-4b, are acceptable because collapse is prevented by the surrounding material, even though such a structure would collapse if it were aboveground. However, formation of any of mechanisms such as $1,2,3,4$, or 5 in Figure III-4c, would lead to collapse and these mechanisms are, theresore, not acceptable. Similarly, if soils are susceptibie to
liguifaction, the conditions of Eigure III-4b could lead to collapse and are not acceptable.
6. Check the structure for strain in the: longitudinal direction resulting from frictional soil drag (see Appendix i). This strain from soil drag is the upper limit on strain in the longitudinal direction.
7. Modify the structure elements as necessary so that an acceptable design results.

GCRIZONTAI SEEAR DEEORMATION IN VARIOUS GEOLOGIC UNITS
（OPERATING DESIGN EARTHQUAZE）
Horizontal Shear Deformatior

Mceiミiec Erom Converse Consulaants（ミミニt II，1983）by aciction oミ
 change in tíles oE scaies，anc by aciing tabuiation oj seismic
ve＿cci＝ies．

GORIZONTAI SHEAR DEEORMATION IN VARIOUS GEOIOGIC UNETS
（MAXIMUM DESIGN EARTHOUAZE）
Horizontal Shear Deiomation

$$
\Delta_{r}-\left(1 \times 10^{-1} \approx t\right)
$$

Geclocic units
A1，a2－Nes Alluvium
A3，A4－Olc Alluvin
P－San Fecro Ionation
©－Eernaric Eomatice

Seismic veicci $=$ ！$C_{\text {E }}$＂

$$
\begin{aligned}
& \text { O } \\
& 1000 \text { =0 } 1500=5 \\
& 1000 \text { =0 } 1500 \text { 气㐅ss } \\
& \text { sinco to }
\end{aligned}
$$

McciEive Ezom Converse Consulannss（？aこち İ，1983）by acijaion c三

 reicc：こies．

```
"See こミمi^ ==-2
```

```
    FIGURE III-3
APOLECATION OF IMPOSED EARTHQGARE DEECRMATION
```


a．Inposed Eorizontal Deiomacion


```
                    FIGURE III-4
STRUCTURE MECEANISMS FOR MDE
```


a．Acceptable Condition－Two Hinges

b．Acceptaile Corcition－Four ：inces

c．Unacoeptiole Conditions－Three ：irges in Any Merver

A. STATIC IOADING CONDITIONS

Stations shall be designed for static loading conditions following the direction given in SCRTD Design Criteria and on directive drawings. Reinforced concrete design-shall follow ACI. 381-83, the commentary to ACI 318-83, the LACBC, Division 26, and the following:

$$
U=1.4 D+1.7 L+1.7 \mathrm{H}
$$

Eq. IV-1
where: $\quad U=$ Required strength to resist factored loads or reIatec internal momertts and forges,
$D=$ Dead loads due to soil, water in soil, structural components, or otier materiais; or reiated internai moments and forces

L $=$ Live loads or related internal moments and forces.
$H=$ Loads due to horizontal pressure of soil, water in soil or other materials, or related internal moments and forces.
B. DYNAMIC LOADING CONDITIONS

Station designs shall then be checked for dynamic loading conditions using ACI 318-83 and the following:

U = D + I + B + Q
Eq. IV-2
for the maximum design earthquake，and

$$
U=0.75[1.4 \mathrm{D}+1.7 \mathrm{~L}+1.7 \mathrm{H}+1.87 \mathrm{Q}]
$$

Eq．IV－3
Ecr the operating design earthquake（ODE）．
where：U, D, L, and H are as defined in IV．A，Q being the ef－ fects induced by the earthquake．

C．DESIGN DETAILS

1．Designer shall select the design tension steel percent－ age，p，to avoid brittle behavior．

2．Redistribution of moments in accordance with ACI 318－83， Section 8．4，is acceptable for ODE．

3．Consideration of plastic hinges is acceptable for $M D E$ and shall follow procedures such as given in Blume，et al （1961），Rosenblueth（1980），and Park and Pauiミy（：ミ7シ）． Stability considerations are applied at the ultimate－limit state and stiffnesses should be representative of this state． In lieu of more precise values，calculate EI following proce－ dures in Sections 10.10 and 10.11 （paragraph a）of the $A C=$ Commentary（1983），and Section 10．3．3 of ACI（1983）．

4．The earthquake design of underground structures shall consider the more critical of the following two conditions：
a．Applicable static loading conditions plus the rack－ ing effects described herein．
b．Applicable static loading conditions plus a dynamic soil－pressure increment（Appendix A and Seed and whit－ man，1970）．
5. Vertical loads from soil backfill, water in soil, structural components, or other'materials over cut-anc-cover structures shall be increased by 20 percent and 40 percent for operating design and maximum design earthquakes, respectively (Table II-1).
V. DESIGN OF STATIONS AND OTEER SHALLOW, RECTANGULAR, FRAMED STEEL STRUCTURES
A. STATIC LOADING CONDITIONS

Stations shall be designed for static loading conditions following the direction given in SCRTD Design Criteria and on directive drawings. Steel design shall follow AISC (1978), LACBC (Division 27), Uniform Building Code, Chapter 27 (1982), and the following:

$$
U=1.7(D+L+H)
$$

Eq. V-1
where the terms are as defined in Section IV.
E. STEENFC LOADING GONDTIUNS

Station designs shall then be checked for dynamic loading conditions using the Eollowing:

$$
U=D+L+H+Q
$$

Eq. $V-2$
Sor the maximum design earthquake, and

$$
U=1.3(D+L+G+Q)
$$

Eq. $V-3$
Eor the operating design earthquake.
C. DESIGN DETAIIS

1. Designer shall proportion steel structures uncer static loading conditions in accordance with provisions $0 \equiv$ AISC (1978), Section 2702 of the Uniform Building Coce (1982), and IACBC, Division 27.
2. Designer may proportion steel structures under dynamic loading conditions in accordance with provisions of Sections 2721 and 2722 of the Uniform Building Code, and Division 27, LACBC. Requirements for, Seismic zone 4 shall apply, with plastically designed members permitted.
3. The earthquake design of underground structures shall consider the more critical of the following two conditions:
a. Applicable static loading conditions plus the racking effects described herein.
b. Applicable static.loading conditions plus a dynamic soil-pressure increment (Appendix A; Seed and Whitman, 1980).
4. Vertical-loads f=cm soil backfill, watez in soil. struetural components, or other materials over cut-anc-cover structures shall be increased by 20 percent and 40 percent for operating design and maximum design earthquakes, respectively (Table II-1).

VI．DESIGN OF CIRCULAR RUNNING TUNNELS

A．STATIC LOADING CONDITIONS

The current specified concrete segments for circular running tun－ nels have been designed by MRTC（following O＇Rourke，1984）for static loading conditions existing at all soil or soft rock sites along the alignment．＊Linings for tunnel sections in the Topanga Formation will be designed by that section＇s designer．

B．DYNAMIC LOADING CONDITIONS

The adequacy of these designs to resist the possible static plus superimposed dynamic loading concitions must be checked Eoliowing the sseps given below．

The running tunnel structure is more Elexible than the surrounding me：inm with respect to distortions in pisnes perpendiouiar to tiee axis of the structure（Annex D and Appendix 1）．These distortions are，thus，the same as those of the surrouncing medium．Although the＝unning line structure is longitudinally stifier than the sur＝ounding medium，imposing the motions induced in the medium onto＝he structure is generally conservative．

C．STEPS IN DESIGN

1．Designer shall determine the applicable shear－wave ve－ locity，c_{s} ，for each segment of the running line consicering the approp＝iate geotechnical caia．I三 moze speci三ic data a＝e not available，use Table II－2．
＊Scil of soEt＝ock describes ail ground conditions exeept Ese Topanga Ecmation．
2. Define appropriate value of effective shear-wave velocity, $c_{\text {se, }}$ consistent with the strain level expected. In general, unless explicit data are available, $c_{\text {se }}$ shall be $0.9 c_{s}$ for $O D E$ and $0.8 c_{\text {se }}$ for MDE; however, in isolated cases where the line is within new alluvium, $c_{\text {se }}$ shall be $0.75 c_{s}$ for $O D E$ and $c_{\text {se }}=0.5 c_{s}$ for MDE (see Annex A).
3. Compute maximum induced longitudinal strains using "recommended value" from Table II-3 for the ODE and MDE. Frictional soil drag should be checked as in step 7 for the station. The maximum usable compressive strain for this case is 0.002 (Park and Paulay, 1975; Ford, et al, 1981 a, b, and c) .
4. Assess the longitudinal capabilities of the lining to provide for no adverse distress for ODE and no collapse for ME, explicitiy considering effects ane capaitiitios of a=ticulation (0^{\prime} Rourke, 1984). Ductile bolts shall be used ir all cases.
5. When necessayy, modify longitudinal =einEozeement, bolts, and/or joint filler details to ensure no adverse distress for $O D E$ conditions and no collapse for MDE conditions. The minimum reinforcing percentage for concrete segmental linings shall be 0.003 in either direction.
6. Check strains in plane pezpendicular to the axis of the tunnel produced by excavation using Figure VI-1 (Ranken et al, 1978, Figure 3.8) in combination with racking defomation (see Appendix 1). The strain due to racking deformation is that produced by a shear wave with principal distorion in the plane 0 Ethe tunnel which is perperdicular to the axis 0 E the tunnel.

The strains are approximately:

$$
\varepsilon_{r a c k}=\left(\frac{V_{s}}{c_{s e}}\right)\left[2\left(\frac{t}{R}\right)+\frac{3}{16}\left(\frac{E_{m}}{E_{Q}}\right)\left(\frac{R}{t}\right)\right] \quad \text { Eq. VI-1 }
$$

in compression, and

$$
\varepsilon_{\text {rack }}=2 \cdot\left(\frac{v_{s}}{c_{s e}}\right)\left(\frac{t}{R}\right)
$$

Eq. VI-2
in tension.
where:

$$
\begin{aligned}
& \mathrm{v}_{s}=\text { Peak particle velocity produced by earth } \\
& \text { quake (Table II-1). } \\
& c_{\text {se }}=\text { Effective shear-wave velocity for the value } \\
& \text { of } \mathrm{v}_{\mathrm{s}} \text { (see Grant and Brown, 1981). } \\
& \text { t. = Thickness of lining. } \\
& R \quad=\text { Mean radius of lining. } \\
& E_{\text {m }} \quad=\text { Modulus of elasticity of medium. } \\
& E_{2} \quad=\text { Modulus of elasticity of lining (cylinder). }
\end{aligned}
$$

The at-rest condition, $R_{0}=0.5$, shall be assumed. The average compression (average $K_{0}=0.5$ in Figure $V I-1$) produces a uniform strain of $\Delta D / D$. It is recommended for horizontal and vertical displacement that the average for no- and full-slipọage be assumed. The strain due to average compression should be superimposed on the strain due to horizontal or vertical displacement. Note that these last values of strain are due to flexure and that tie maximum strains are as follows:

$$
\begin{aligned}
& \varepsilon_{\theta_{\text {outside }}}=\frac{3}{2}\left(\frac{\Delta D}{D}\right)\left(\frac{t_{\text {outside }}}{R}\right) \\
& \varepsilon_{\theta_{\text {inside }}}=\frac{3}{2}\left(\frac{\Delta D}{D}\right)\left(\frac{t_{\text {inside }}}{R}\right) \\
& \varepsilon_{\text {outside }}=\text { Strain on the outside of the lining. } \\
& \varepsilon^{\text {inside }} \text { }=\text { Strain on the inside of the lining. } \\
& \Delta D / D \quad=\text { Appropriate value from Figure VI-1. } \\
& t_{\text {outside }}=\text { Distance from geometric axis to out- } \\
& \text { side of cylinder. } \\
& \text { "inside }=\text { Distance from geometric axis to inside } \\
& \text { of cylinder. } \\
& \text { R } \quad=\quad \text { Mean radius of cinder. }
\end{aligned}
$$

The maximum usable compressive strain, ε_{c}, for flexure shall be 0.004 (Ford et al, $1981 \mathrm{a}, \mathrm{b}$, and c).
7. Check strain due to loosening of medium above the strucEure in combination with racking distortions for lateral distortions (Appendix 1). The diameter change due to loosening load may be approximated from Figure VI-2. This change produces a flexural strain which is treated as above in Step 6.
8. Check strains for combination of out-of-round tolerance and sacking. The out-of-round tolerance shall not exceed 0.005 D .
9. Compare circumferential strains for Steps 6, 7, and 8 with allowable values. Modify reinforcement and joint details if necessary (0^{\prime} Rourke, 1984). In no case should the reinforcing ratio exceed three-fourths of the balanced reinforcing ratio.

VIR：ATEON OE DIAMETER CENGE COEEEICIENT WITE EIERISTITTY RET：O
（Erom Rarken，1977）

$E_{\text {In }}$＝

$\Delta D=$ Sizneter Fiarge oi Gili－cier

FIGURE VI－2
VARIATION OF APPROXIMATE DIAMETER CHANGE
WITH EIEXIBIITTY RATIO FOR LOOSENTNG IOAD

F

```
z = Flexcoilig}\mathrm{ Natio (See Seck et al (1972))
? = Intensi=% Oi Locsening joac, Assuned to be a Fmargular Oistmibu=icr
```



```
                E=3.j ミsi) (see ミigure ミ.15, \rrex \Xi)
```



```
ID = Dianetar Charge of Cflincer
J = Diareter of Srlinder
```

VII. CONNECTIONS AND OTHER SPECIAL CONSIDERATIONS

A. STATION END WALIS

For all cases, the erd walls shall be designed integrally with the wails, roof, and flocr but separate from the turnels. In developing the design, the section designer shall consider the following items:

1. End walls will behave generally as shear walls. They generally will not experience sidesway since they are stiff relative to the soil in resisting the imposed shear distortion of the soil.
2. Loading conditions described in Section III shail be

3. The standard design provides a reinforced concrete 太ouncation "approach span" transition where the tunnels enter the station to minimize the differential movements at that point. Polystyrene or other materials to accommodate shears shall be used.
4. TEREE-DIMENSIONAI UNDERGROUND STRUCTURES

The geometry 0 § some underground structures may recuize that they be considered three-dimensional rather than two-dimensional. When that is the case, designer shall apply the imposed racking deformations or incremental earth loadings consistent with those presented in Section III. The following cases and the efiects oE each must be evaluated:

```
i. One hundred percent in the first axial direction.
```

2. One hundred percent in the second axial direction.
3.; Seventy percent superimposed in each of the two axial directions simultaneously.
C. DUCTILITY

The prime consideration in earthquake design is to provide a structure capable of behaving in a ductile manner when subjected to several cycles of earthquake deformations. Thus, even more than in usual design, the ultimate success of the structure is dependent upon attention to details in both design and construction. This set of criteria cannot address all the considerations to be applied by the designer, who should be familiar with the available information for aboveground structures and apply appropriate procedures to the underground structures.

As a minimum, the designer shall follow the most stringent of the following:

- Steel - LACBC Specification, Part 2 (1978) or the LACBC, Division 26
- Concrete - ACI, Appendix A (1983) or the LACBC, Division 26

Other applicable references include: ACI 318-83 and Commentary, UBC, 1982; Housner and Jennings, 1982; Newmark and Rosenblueth, 1971; Park and Paulay, 1975; Wiegel, 1970; Blume, et al, 1961; Rosenblueth, 1980; and Newmark and Hall, 1982.

Design of systems that cross faults capable of offset，as expected
 problem．As already noted，it is virtually impossible to provide a structure that will impede fault or related abrupt lateral mo－ tion；thus，the structure must be capable of accommodating the motion without collapse．These design solutions are expensive and they become even more expensive if an abrupt fault exists but，as in this case，its exact location is unknown．

Use of the standard steel lining becomes a question primarily of the total length of steel lining required．In turn，this total
 angle change to accommodate conservatively that lateral displace－ ment（s）specified for the MDE（6．6 ft．）in Section II．The geome－
 the critical dimensions of the stancard steel lining in general terms are shown in Figure VIII－2（see also Annex B）．

In all soils（Nyman，1983）and in rock where the shear zore asso－ ciated with a fault is distributed over huncreds of feet，the lining will tend to conform to the distributed displacement of the medium．

Iandslides may develop only where alluvium with sufficient．sur＝ace slope and water content intersects the axis of a structure．MrTC has concucted a zeview of the City $0 \equiv$ Ios Angeles Planning Depart－ ment＇s Seismic Safety ミlement Report（1974）and thei＝P＝eliminazy Geciocic Maps（1964）．These documents idertiEy possible sibie areas in the City oE Los Angeles．Duニing this review no signiEi－ can：existing landslide areas or areas susceptible to lancsliees
from earthquakes were identified along the alignment of the SCRTD Metro Rail project. This preliminary finding, however, does not relieve the section designer of the responsibility of evaluating the potential of and providing mitigation against landsiide(s) along each specific section.

The final special design condition of potential concern is liquefaction. Current data regarding possible areas of liquefaction are presented in individual design unit geotechnical engineering reports. Where concern regarding liquefaction is expressed, the section designer shall assess the effects of such behavior on design and ensure that the structures are not adversely impacted.

FIGURE VIII－I

DISTORTION OF RUNNING LINE

FROM FAUTT OEESET

FIGURE VIII－2

CRITICAI DIMENSIONS OF STANDARD STEEL IINING SEGMENTS

ACI Committee 318 (1983), Building Code Requirements for Reinforced Concrete (ACI 318-83), American Concrete Institute, Detroit.

ACI Committee 318 (1983), Commentary on Building Code Recuirements for Reinforced Concrete (ACI 318-83), American Concrete Institute, Detroit.

AISC (1978), Specification for the Design, Fabrication \& Erection of Structural Steel for Buildings, American Institute of Steel Construction, New York.
 Regulations for Buildings. A Cooperative Effort with the Design Professions, Building Code Interests and the Research Commeity, "-Appiied Technology Councii Publication ATC 3-0.0, NBS Special Publication 510, NSF Publication 78-8.

31ume, J.A. et al (1961), Desion of Multistory Reinforced Concrete Buildincs for Earthcuake Mctions, Portland Cement Association, Chicago.

City of Los Angeles (1974), "Seismic Safety Element - Planning Department," J. H. Wiggins Company Technical Report 74-1199-1.

City $0 \equiv$ Los Angeles (1964) "Preliminary Geologic Maps - Santa Monica Mountains", Sheets 74, 93, 94, 95, 114, 115, 116, 136, 137, 158, 159, 181, 0, 2.

Converse Consultants (1983), Seismological Investigation \& Design Criteria, Southern California Rapid Transit District Metro Rail Project.

Ellingwood, B. et al. (1980), "Development of a Probability Based Load Criterion for. American National Standard A58," NBS Special Publication 577, Washington, DC.

Ford, J.S. et al. (1981a), "Behavior of Concrete Columns under Controlled Lateral Deformation," Journal of the American Concrete Institute, January-February 1981, No. 1, Proceedings v.78, pp. 3-20.

Ford, J.S. et al. (1981b), "Experimental and Analytical Modeling of Unbraced Multipanel Concrete Frames," Journal of the American Conczete Institute, January-February 1981, No. 1, Proceedinss V.78; pp. 21-35.

Ford, J.S. et al. (1981c), "Behavior of Unbraced Multipanel Con crete Frames," Jouznal of the American Concrete Institute, March-April 1981, No. 2, Proceedings $V .78$, pp. 99-115.

Grant; W.P. and Brown, F.R., Jr. (1981), "Dynamic Behavior of Soil Ezom Field and Laboratory Test," Proceedings, Inteznational Con三erence on Recent Advances in Geotechnical Earthcuake Engineering and Soil Dynamics, Univezsity of Missouri at Rolla, pp. 591-596.

Bognestad, E. (1951), "A Study of Combined Bending and Axial Ioad in Reinforced Concrete Members," University of Illinois Bulletin, Volume 49, Number 22, November 1951, Bulletin Sezies No. 399.

Housner，G．W．and Jennings，P．C．（1982），＂Earthquake Design Cri teria，＂Earthquake Engineering Research Institute，Volume Four of a series titled：Engineering Monographs on Earth－ quake Criteria，Structural Design，and Strong Motion Records．

Newmark，N．M．and Roserblueth，E．（1971），Fundamentals of Earth－ Guake Engineering，Prentice－iall，Englewood Cliffs，N．J．

Newmark，N．M．and Hall，W．J．（1982），＂Earthquake Spectra and De－ sign，＂Earth Engineering Research Institute，Berkeley， California．

Nyman，D．J．（198．3），Private Communication．

O＇Rourke，T．D．，editor（1984），＂Guidelines for Tunnel Lining De－ sign，＂Underground Teshrology Research Council，meriean Society of Cuvil Enginers，iv．Y．
？aこk，R．and Paulay，T．（1975），Reinsorced Concrete Structures， John Wiley \＆Sons，New York．

Zeck，R．B．et al．（1972），＂State of the Art o三 SoEt Grounc Tunnel－ ing，＂Finst Noェth American Rapid Excavation and Tunneing Corミe＝ence，ASCE－AIME，Chicago．

Ranken，R．E．et al（1978），＂Analysis of Ground－Iiner Interaction ミor Tunnels，＂U．S．Department of Transportation Report No． UMTA－IL－06－0043－78－3，Department of Civil Engineering，Uni－ versity of Illinois at Urbana－Champaign，Report No，UIEU－ENG－ 78－2021．

Scserblueth，E（1980），Design oミ Earthouake Resistart Structures， Jonn wiley \＆Sons，New York．

Roy, H.E.H. and Sozen, M.A. (1964), "Ductility of Concrete," Elexural Mechanics of Reinforced Concrete, Proceedings of the International Symposium, Miami, Florida, 10-12 November 1964, sponsored by ASCE//ACI, pp. 213-235.

Seed, H.B. and Whitman, R.V. (1970), "Design of Earth Retaining Structures for Dynamic Loads," presented at the 1970 Specialty Conference: Lateral Stresses in the Ground and Design of Earth-Retaining Structures, sponsored by ASCE, 22-24 June 1970 at Cornell University, Ithaca, N.Y., pp. 103-147.

Uniform Building Code (1982), International Conference of Building Officials, Whittier, California.

Wiegel, R.L. et al. (1970), Earthquake Encineering, Prentice Hall, Englewood Cliffs, N.J.

APPENDIX 1

DESIGN EXAMPLES

This appendix is provided for infomation only. It has no contractual implication, but provides numerical examples to illustrate the application of the supplemental criteria. Because the examples are illustrative and are focused on the problem at hand, the calculations have been kept as simple as possible.

Based upon the considerations reflected by these illustrations, it is expected that the greatest impact from earthquakes will occur for underground structures located totally or partially in New Alluvium. Nevertheless, each Section Designer is responsible for applying these criteria to his site specific conditions.

Design Examples

（All examples use numbers rounded to two significant figures．）

A．LONGITUDINAL STIFFNESS OF STATION

1．Compare longitudinal stiffnesses of station and replaced ground．For illustration，assume a structure 55 ft ．wide by 43 ft．high with 2 ft ．walls， 4 ft ．top and bottom，and 2 ft ． intermediate level．Assume effective modulus of elasticity of soil of 50,000 psi，representative $0 £ a 1 l u v i u m, ~ a n d ~ m o d u-~$ Hus of elasticity of concrete of 3.6×10^{6} psi．
$\frac{A E(\text { Station })}{A E(S o i l)}=\frac{(2 \times 55 f t . \times 4 f t .+55 f t . \times 2 f t .+2 \times 33 f t . \times 2 f t .) \times 144 i n^{2} / \mathrm{ft}^{2} \times 3.6 \times 10^{6} \mathrm{psi}}{55 \mathrm{ft} . \times 43 \mathrm{ft} \times 144 \mathrm{fn}^{2} / \mathrm{ft} .^{2} \times 50,000 \mathrm{psi}}=21$
 soil，so that the soil would be compressed more than the structure by a longitudinal wave．Thus，the structure would experience the full frictional drag exerted by the soil which tends to be the upper bound（see Annex B）．

2．Compute the stain resulting From Frictional diag．

The a＝－rest Pressure at the base 0 E the structure is：
30 Et．$x 120$ peE $\times(0.5=$ Ko $)=3000 \mathrm{ps}$ ．
（ R_{0} ，the at－rest coefficient，is taken equal to 0．5）．

3．Estimate the lencth of structure cues which to sim sエエains as cre－cuazさez the wave length．Assume tie Erecuercy

Of the earthcuake wave to be approximately thzee cycles／sec－ ond from $E 1$ centro records．Then wave length $=\frac{c_{s}}{3}=\frac{1000}{3}=$ 300 ft．，and the involved length of structuze 75 Et．

4．Calculate the indicated strain in the concrete at point A，using a conservative soil friction of tan 40° ：，

300 Dsf $x 1$ ft．$x 75$ ft．$x \tan 40^{\circ}=0.0002$ in．$/ \mathrm{in}$ ． 2 £t．x1ft．x144sc．in．／sq．ft．$\times 3.6 \times 10^{6} \mathrm{psi}$

5．Assume the allowable strain in tension is ten percent that in compression，and considering these to be axial． strains，the allowable strain is $0.10 \times 0.002=0.0002$ in．／in．
 the allowable and no provision Eor axiai strain need be mace in the design．

7．Designer shall analyze the actual stzuctures in light oE site－speci太ic conditions and properties．

3．ECRIZONTAL RACKING OF SEATIOW RECTANGURAR ERAMED STRUCTCRE

1．Maxe a preliminary design of tie structure．zoz inis example assume centerline dinensions anc member thicknesses aェe as Eollows：

2. Calculate the differential horizontal racking distortions from bottom to top of structure. Using Figure III-2 (assuming the top 50 ft. 0 E the curves for alluvium as an illustration), the racking deformation is estimated by taking the slope of the curve for Old Alluvium, approximately one in 400. Therefore, for the 38.7 ft . high structure the total racking is $\frac{38.7}{400}=0.097 \mathrm{ft}$. (say 0.1 ft).
3. Calculate the relative racking distortion of each floor of the structure:

$$
\begin{aligned}
& \text { Bottom floor }=\frac{21.7}{38.7} \times 0.1=0.056 \mathrm{ft} . \\
& \text { Top Elcor } \quad=\frac{17}{38.7} \times 0.1=0.044 \mathrm{ft} .
\end{aligned}
$$

4. Impose these horizontal racking distortions on the structure and bring the structure to ecuilibrium, cbtaining the following rounded mements (in in.-kips) at the Foints inEicated:

5. The above moments resulting from the dynamic racking shall then be combined with the static moments and thrusts defined previously to check the members. As an approximate check, calculate the approximate capacity at yield of the two-ft. thick section :
$M_{c a p}=0.9 \operatorname{pbd}^{2} f_{y}$ (ignoring for this illustration capacity
$=0.9(0.02)(12 \mathrm{in})(21 \mathrm{in} .)^{2} 60,000=5,720 \mathrm{in} \mathrm{kip}$
$\therefore U=5,720=(1.4 D+1.7 L+1.7$ ($)$ static

$$
U=1.0(1.0 D+1.0 L+1.0 H+1.0 Q) \text { dynamic }
$$

Obviously, the static loading can be no greater than 5,720/ $1.4=4,080$ in kip. Therefore the dynamic (MDE) loading is no greater than

$$
\mathrm{U}=4,080 \pm 1,880=5,960
$$

$0=$ approximately four percent over the static capacity.
6. Ohvinusig, for this example it agrears necessary to raise the section capacity slightly so that the addition of the dynamic racking does not impose a bending requirement in excess of the static section capacity. Before making such a change, the designer shall consiaer the redistribution of bending stresses brought about by the fomation of plastic hinges and compare with conditions shown in Figure III-4. If the resulting structural capacity still is less than the requirement, then the design shall be modified as required to satisEy the combined conditions.

The designer shall perform and complete such analyses for ail app=opriate conditions and combinations on a site-speci\#ic basis.
C. PLAN VIEW RACKING OF A GERE DIMENSIONAL STRUCTURE

1. Make a preliminary design of the structure. For this example assume centerline dimensions as follows (plan view):

2. Review geotechnical data to define soil classification(s) encountered for the reaches and depths under consideration. Assume for this example that the structure is located in "C" units.
3. From Table II.2, define seismic velocity, $c_{s}=1,700$ fps.
4. Define $C_{s e}$ from Annex A:

$$
\begin{aligned}
& \text { for ODE, } c_{\text {se }}=0.9 c_{s}=1,330 \text { fps } \\
& \text { Ec MDE, } c_{s e}=0.8 c_{s}=1,360 \text { Es }
\end{aligned}
$$

5. Estimate the racking strain by:
$Y=\frac{v}{c_{s}}$ where v is from Table II. 1

ECYODE, $v=1.4$ Ens,y $=\frac{1.4}{1,530}=0.00092$

Er MDE, $v=3.2$ Ens, $y=\frac{3.2}{1,360}=0.0024$
Eos illustこaticn, use the MDE.
6. Calculate the racking distortion in the first major direction:

7. Calculate the racking distortion in the second major direction:

8. Calculate 0.70 of the distortion in each major direction and superimpose:

$$
0.096 \times 0.7=0.07= \pm .
$$

$0.144 \times 0.7=0.50$
$= \pm$.
9. Impose these racking distortions (steps 6, 7, and 8) on the structure and bring the structure to eguilibrium under each, obtaining moments in each major structural member.
10. The moments and thrusts resulting from the dynamic racking shall then be combined (in turn if necessary, or using the maximum if obvious) with the static moments and thrusts defined previously to check the members.
11. Consider the redistribution of bending stresses brought about by the formation of plastic hinges. If the resulting structural capacity is less than the requirement, modify the static design to satisfy the requirement.
12. Perform and complete such analyses for all appropriate sonditions and combinations on a site-tpecifia basis.
D. EARTEQUARE RESPONSE OF RUNNING LINE IN HOMOGENEOUS MEDIA
(The Eollowing examples applies Steps 1 through 9 of Chapter VI.)

NOTE: FOr illustraticn only, it has been assumed nere that the data for the "C" units indicate a shear wave seismic velocity near the upper limit of the specified range or $c_{s}=1700 \mathrm{fps}$.

1. Review geotechnical data available to define soil classiEication(s) encountered for the reaches and depths under consideration. Assume for this example that all of the structure will be located in "C" units.
2. For Table II. 3 and Figs. III. 1 and III.2, deミine seismic velocity for "C" units:

$$
\dot{c}_{s}=1700 \text { fps (see above) }
$$

2.a Define $c_{s e}$:

From more complete data, including techniques used by Grant and Brown (1981), or, if more data are not available, Annex A (Annex A is used here):

$$
\text { FOr ODE, } c_{s e}=0.9 c_{s}=1,530 \mathrm{fps}
$$

For MDE, $c_{s e}=0.8 c_{s}=1,360$ fps
3. Compute axial strains induced:
From Table 3.1:

$$
s_{\max }= \pm \frac{v_{\max }}{2 c_{\text {se }}} \pm 0.7 p \frac{a_{\max }^{g}}{c_{\text {se }}^{2}}
$$

From Table II-3:

$$
\begin{aligned}
& \text { FOr ODE, } v_{\max }=1.4 \text { fps and } a_{\max }=0.3 \mathrm{~g} \\
& \text { For } M D E, v_{\max }=3.2 \text { fps and } a_{\max }=0.6 \mathrm{~g}
\end{aligned}
$$

Thus, for ODE:

$$
\varepsilon_{\max }= \pm \frac{1.4 \mathrm{Eps}}{2 \times 1,530 \mathrm{Eps}}=0.7 \times 10 \mathrm{ft} \cdot \frac{0.3 \mathrm{~g} \times 32.2 \frac{\mathrm{ft}}{\mathrm{sec}^{2}}}{(1,530 \mathrm{fps})^{2}}= \pm 0.000 \equiv
$$

$$
\text { (Assuned radius oE tinnel is } 10 \text { Et.) }
$$

If more complete data were available, the designer would now compare this strain with that assumed in Step 2a.. If they were not consistent, the computed value here would be used to define a new value of $c_{\text {se }}$. By iteration, the appropriate $c_{\text {se }}$ and corresponding $\varepsilon_{\max }$ would be defined.
For MDE,
$\varepsilon_{\max }= \pm \frac{3.2 \mathrm{fps}}{2 \times 1,360 \mathrm{fps}} \pm 0.7 \times 10 \mathrm{ft} \cdot \frac{0.6 \mathrm{~g} \times 32.2 \frac{\mathrm{ft} .}{\mathrm{sec}} \mathrm{f}^{2}}{(1,360) \mathrm{fps}^{2}}= \pm 0.0012$.

Again, if more data were available, the iterative process mentioned above would be used.
4. Compare with maximum usable strains:
$F O=O D E$ in compression, $\varepsilon_{a l l o w}=0.002$ since strain is nearly purely axial. Also since $0.0005<0.002$ 으.

Since $|-0.0005>|-0.0002|$, a plain concrete lining would crack in tension for the ODE; however, the segmented linings are reinforced and this tension strain (0.0005) is well below the minimum yield value of 0.0014 . Therefore, any small cracks that tend to open in the segments will be closed by the reinforcing steel. Thus ok.

For MDE in compression, $\varepsilon_{\text {allow }}=0.002$ since again strain is almost pusely axial. Also since $0.0012<0.002$ ok.

Since $|-0.0012>|-0.0002|$, a plain concrete lining would crack in tension for the MDE also; however, the segmented linings are reinforced and this tensile strain (0.0012) is still less than the minimum yiele value of 0.0014 . Thus ok.

Should a continuous liner be used for the tunnel passing through the basalt in the Hollywood Eills, it will require minimum reinforcement ($p=p^{\prime}=0.002$ as specified in Chapter VI). Such reinforcement will acequately distribute tension cracks induced by either the $O D E$ or MDE.
5. Since no adverse distress is induced, no modification is required.
6. According to Ranken et al. (1978), the average diameter change coefficient for an assumed $\mathrm{K}_{0}=0.5$, from Figure VI.1, is:

$$
\begin{aligned}
& \frac{(\Delta D)}{D} \frac{(\mathrm{~m})}{\gamma E}=0.08
\end{aligned}
$$

$$
\begin{aligned}
& \text { terest. Thus, } \\
& \frac{\Delta D}{D}=\varepsilon_{\theta}=0.08 \quad \frac{\gamma H}{E_{m}} \\
& \text { or } \\
& \varepsilon_{\theta}=0.08 \frac{120 \text { pcf } \times 50 \text { ft. }}{50,000 \text { psi } \times 144 \mathrm{in} .{ }^{2} / \mathrm{ft.}^{2}}=0.000067 \\
& \text { (shortening causes compression) for an average depth to } \\
& \text { springline of } 50 \mathrm{ft} \text {. }
\end{aligned}
$$

From the same figure, the varying component of diameter chanc̣e is approximately:

$$
\left(\frac{\Delta D}{D}\right) \frac{E}{\left(\frac{m}{\gamma H}\right)}=0.5 \text { (shortening of vertical diameter) }
$$

Thus, at the springline:

$$
\frac{\Delta D}{D}=0.5 \frac{120 \text { Def } \times 50 \mathrm{ft} .}{50,000 \mathrm{psi} \times 144 \mathrm{in} .^{2} / \mathrm{ft} .^{2}}=0.00042
$$

Since:
$\varepsilon_{\theta_{\text {var }}}=\frac{3}{2}\left(\frac{t}{R}\right)\left(\frac{\Delta D}{D}\right)^{*}=\frac{3}{2} \times \frac{8 \text { in. }}{10 \mathrm{ft.} \times 12 \text { in./ft. }} \times 0.00042=0.000042$
The maximum strain produced by excavation is obtained by summing ${ }^{E} \theta_{\text {ave }}$ and ${ }^{\varepsilon} \theta_{\text {var }}$
Thus:

$$
\varepsilon_{\max }=0.000067+0.000042=0.00011
$$

Similarly, the minimum strain is approximately (Figure VI.1) = $\frac{\Delta D}{D}=-0.3 \frac{120 \mathrm{DCf} \times 50 \mathrm{ft} .}{50,000 \mathrm{psi} \times 144 \mathrm{in} .^{2} / 5 t .^{2}}=-0.00025$ at the $c=0 \mathrm{wn}$
and invert.
$\varepsilon_{\theta_{\text {var }}}=\frac{3}{2}\left(\frac{t}{R}\right)\left(\frac{\Delta D}{D}\right)=\frac{3}{2} \times \frac{8 \text { in. }}{10 \mathrm{ft} . \times 12 \text { in. } / f t .} \times(-0.00025)=$ -0.000025 and $\varepsilon_{\text {min }}=0.000067-0.000025=0.000042$.

[^0]The racking de三ormation causing compressive strain for combination with strain reproduced by excavation is defined by Equation $B .17$ in Annex B; that causing tensile strain by Equation B.18. In both cases the Poisson's Ratio was assumed to be one-third. If better values exist, they should be used and the equations modified as indicated in Annex B.

$$
\begin{aligned}
& \varepsilon_{t o t}=\left(\frac{v_{s}}{c_{s e}}\right)\left[\begin{array}{l}
2 \\
\left.\left(\frac{t}{R}\right)+\frac{3}{16}\left(\frac{R}{t}\right)\left(\frac{E_{m}}{E_{l}}\right)\right] \\
\text { and } \bar{\varepsilon}_{\text {tot }}
\end{array}\right. \\
&=-2\left(\frac{t}{R}\right) \quad\left(\frac{v_{s}}{c_{s e}}\right)
\end{aligned}
$$

EG. B. 17

EG. B. 18

FOF ODE, max $=1.4$ fps and $c_{\text {se }}=1,530$ fps (see Steps 2 a and 3). Thus:

$\frac{50,000 \mathrm{psi}}{4.6 \times 10^{6} \mathrm{psi}}=0.00015$

$$
\varepsilon_{\text {tot }}=-2\left(\frac{8 \mathrm{in.}}{10 \mathrm{ft.} \times 12 \mathrm{in} . / \mathrm{ft} .}\right)\left(\frac{1.4 \mathrm{fos}}{1,530 \mathrm{fps}}\right)=-0.00012
$$

And the combination of strains due to excavation load and racking are:

$$
\begin{aligned}
& \left(\varepsilon_{\max }\right) \text { combined }=0.00011+0.00015=0.00026 \\
& \left(\varepsilon_{\min }\right) \text { combined }=0.000042-0.00012=-0.00008
\end{aligned}
$$

The maximun compressive strain of 0.00026 is well within the maximum allowable value $0 \equiv 0.004$ (tie allowable value $\equiv 0=$ majrly $=$ Iexune). The tensile sinain of 0.00008 is less than
that expected to cause cracking. Thus, no cracking is expected.

For the $M D E, v_{\text {max }}=3.2$ fps and $c_{\text {se }}=1,360$ fps (see steps $2 a$ and 3).

Thus:
$\varepsilon_{\text {tot }}=\left(\frac{3.2 \mathrm{fos}}{1,360 \mathrm{fps}}\right)\left[2\left(\frac{8 \mathrm{in} .}{10 \text { ft. } \times 12 \mathrm{in.} / \mathrm{ft} .}\right)+\frac{3}{16}\left(\frac{10 \mathrm{ft.} \times 12 \mathrm{in} . / \mathrm{ft.}}{8 \mathrm{in} .}\right)\right.$
$\left.\frac{50,000 \mathrm{psi}}{4.4 \times 10^{6} \mathrm{psi}}\right]=0.00039$
$\bar{\varepsilon}_{\text {tot }}=-2\left(\frac{8 \mathrm{in} .}{10 \mathrm{ft} . \times 12 \mathrm{in} . / \mathrm{ft} .}\right)\left(\frac{3.2 \mathrm{fps}}{1,360 \mathrm{fps}}\right)=-0.00031$
And the combination of strains due to excavation load and racking are:

$$
\begin{aligned}
& \left(\varepsilon_{\max }\right) \text { comined }=0.0001 i+0.00039=0.00050 \\
& \left(\varepsilon_{\min }\right) \text { combined }=0.000042-0.00031=-0.00027
\end{aligned}
$$

The maximum compressive strain of 0.00050 remains well within the allowable value of 0.004 . Although the tensile strain is slightly larger than that normally associated with cracking, it is still much less than that normally encountered in conventional reinforced concrete beams or slabs.
7. According to the approximate procedure given in Annex E, as re loosening load are computed as follows:

Compute properties of trans $\begin{gathered}\text { mmed section. (Because } 0 \text { the }\end{gathered}$ irregular section due to bolt pockets, it is probably satisfactory to ignore the presence of compression steel and use an aporoximate rectangular section with efミective deptin oE 7 in.) .

$$
\begin{aligned}
& k=\sqrt{2 p n-\overline{p n}^{2}-p n, p \doteq 0.005, f_{c}^{\prime}=6,500 \mathrm{psi}} \\
& n=\frac{29,000,000 \text { Dst }}{57,000 \sqrt{E_{c}^{\prime}}}=\frac{29,000,000}{57,000 \sqrt{6,500}}=6.3, \mathrm{pn}=0.005 \times 6.3= \\
& 0.032 \\
& k=0.22, k d=0.22 \times 7=1.5 i n ., I_{2}=\frac{b(k d)^{3}}{3}+n A_{s}(1-k)^{2} d^{2} \\
& \text { FOu } b=1 \text { in.: } \\
& I_{2}=\frac{1 \times(1.5)^{3}}{3}+6.3 \times 0.005 \times 1 \text { in. } \times 7 \text { in. }(1-0.22)^{2} \times 72 \\
& I_{\ell}=7.7 \mathrm{in} .^{4} / \mathrm{in} . \\
& E=\left(\frac{E_{m}}{E_{l}}\right)\left(\frac{a^{3}}{\sigma I_{2}}\right)\left(\frac{1-u_{\ell}^{2}}{1+u_{m}}\right) \text {, prom Peck, et al (1972), Annex D. }
\end{aligned}
$$

$F=\left(\frac{50,000 \mathrm{psi}}{4.6 \times 10^{6} \mathrm{psi}}\right) \quad\left[\frac{(10 \mathrm{ft.})^{3} \times(12 \mathrm{in} . / \mathrm{ft} /)^{3}}{6 \times 7.7 \mathrm{in} .^{4} / \mathrm{in} .}\right] \quad\left(\frac{1-0.2^{2}}{1+1 / 3}\right)$
$F=290$

Foo Figure VI. 2 for $F=290:$
$\frac{A D / D}{Z / E_{m}}=16$
P = average load intensity (see Annex E)
$P=$ Area $\times \frac{120 \text { Def }}{1,728 \text { in. }^{3} / f \text { E. }^{3}} \times \frac{1}{R \quad \sqrt{2}}$
Area $=\left(\sqrt{2}-\frac{\pi}{4}\right) R^{2}$ from Figure E. 3

$$
\begin{aligned}
& P=\left(\sqrt{2}-\frac{\pi}{4}\right) R^{2} \times \frac{1}{14.4} \times \frac{1}{R \sqrt{2}} \\
& \mathrm{P}=3.5 \mathrm{psi} \text { for } \mathrm{R}=120 \mathrm{in} . \text { (10.ft.) } \\
& \frac{\Delta D}{D}=16 \times \frac{3.7 \mathrm{psi}}{50,000 \mathrm{psi}}=0.0012 \\
& \varepsilon_{\theta_{\text {top }}}=\frac{3}{2}\left(\frac{\Delta D}{D}\right)\left(\frac{t}{R}\right) \text { (See above from transformer section) } t=k d \\
& =\frac{3}{2} \times 0.0012 \times \frac{0.22 \times 7 \text { in. }}{120 \text { in. }}=0.000023 \\
& \varepsilon_{\theta \text { bottom }}=-\frac{3}{2}\left(\frac{\Delta D}{D}\right)\left(\frac{(1-k) d}{R}\right) \\
& =-\frac{3}{2} \times 0.0012 \times \frac{(1-0.22) \times 7 \mathrm{in} .}{120 \mathrm{in} .}=-0.000082
\end{aligned}
$$

These retains are produced by the gravity load atone. since the calculations in Annex E assume linear elasticity, the effect of the vertical acceleration on the loosened material can be computed
 multiplying that number by the strain; thus,

FOr ODE: ($\mathrm{a}_{\text {max }}$) vert $=0.2 \mathrm{~g}$

Thus $\varepsilon_{100}=(1+0.2) \times$ computed strains $=0.000028$ and -0.000098

For MDE: ($a_{\max }$)vert $=0.4 \mathrm{~g}$

Thus: $\varepsilon_{200}=(1+0.4) \times$ computed strains $=0.000032$ and -0.00011 .

The strain due to racking is the same as that in the presceding step; thus,

$$
\begin{aligned}
& \overline{E O I}_{\text {ODE }} \varepsilon_{\text {tot }}=0.00015 \\
& \bar{\varepsilon}_{\text {tot }}=-0.00012
\end{aligned}
$$

And the combination of strains due to the loosening load and racking are:

$$
\begin{aligned}
& \left(\varepsilon_{\text {max }}\right) \text { combined }=0.00015+0.000028=0.00018 \\
& \left(\varepsilon_{\text {min }}\right) \text { combined }=-0.00012-0.000098=-0.00022
\end{aligned}
$$

The maximum compressive strain of 0.00018 remain well within the maximum allowable of 0.004 . The tensile strains are juse in excess of those associated with cracking, but much less than those normally encountered in beams or slabs.

For MDE: $\varepsilon_{\text {tot }}=0.00039$
$\bar{\varepsilon}_{\text {tot }}^{\text {tot }}=-0.00031$
And the combination of strains dua to the loosening loae and sacking are:

$$
\begin{aligned}
& \left(\varepsilon_{\text {max }}\right) \text { combined }=0.00039+0.000032=0.00042 \\
& \left(\varepsilon_{\text {min }}\right) \text { combined }=-0.00031-0.000011=-0.00042
\end{aligned}
$$

Although the compressive strain is obviously larger for MDE compared to ODE, the same conclusion applies. The tansile strain is above that nomally associated with cracking, but it is much less than that in normal reinforced beans or slabs.
8. If an out-of-round tolerance of $\Delta D / D$ greater than 0.0012 (value Erom Step 7) is allowed in the example, the strain ecuivalent to this tolerance will be greater than tina caused by loosening. Since this tolerance implies a value as small as:

$$
\Delta D=0.0012 \times 1 \times 10 \text { Et. } \times 12 \mathrm{in} . / \text { Et. }=0.29 \mathrm{in} .
$$

it is likely that out-of-round tolerance combined with racking may control. The steps for evaluating this case should be cbvious from the two preceding cases.
9. The comparison and allowables has already been made in the three preceding steps (steps 6, 7, and 8). Obviously, for the conditions assumed here, step 7 governs for compression; step 8 for tension unless a tolerance greater than 0.0012 is allowed.
E. EARTHQUAXE RESPONSE OF RUNNING IINE AT FAULT CROSSINGS

The required clear circle within the tunnel cross section is 17.5 ft.; simultaneously the chord length which must be maintained to clear the individual cars is 40 ft. The minimum radius of curve to accommodate the roling stock is 750 ft. All of these condiEions mis be considezea ir" aciztion to the requirement iliustrated by the example in Annex B.
'TGBIEE E. 1

Run Summary Mātrix

$\begin{aligned} & \text { Run } \\ & \text { Ho. } \end{aligned}$	Load Shape	$\begin{aligned} & V_{s} \text { soll } \\ & \text { ft. } / \mathrm{sec} \text {. } \end{aligned}$	$\begin{aligned} & y_{p} \text { sofl } \\ & \text { ft. } / \mathrm{sec} . \end{aligned}$	$\begin{aligned} & \text { E soll } \\ & \text { psil } \end{aligned}$	$\begin{aligned} & \text { vsolil } \\ & \text { psil } \end{aligned}$	$\begin{gathered} K \text { solf } \\ \text { psi } \end{gathered}$	$\begin{gathered} G \operatorname{son} \\ \text { pisi } \end{gathered}$	$\begin{aligned} & \text { E"loosened" } \\ & \text { zone-psi } \end{aligned}$	$\begin{aligned} & \text { G "Tnter- } \\ & \text { face"-psi } \end{aligned}$	$f_{c}-p s i$
1	Unif form	1,500	5,000	184,700	0.45	622.500	63,700	18,500	63,700	8,000
5	Triangular	1,500	5,000	184,700	0.45	622,500	63, 700	18,500	63,700	8,000
9	Trlangular	1,200	2,400	103,600	0.33	103,500	38,900	0.0	38,900	4,000
10	Triangular	1,200	5,000	114,200	0.47	621,600	38,900	0.0	38,900	4,000
$11^{\text {a }}$	Trlangular	1,200	2,400	103,600	0.33	103,500	38,900	0.0	38,900	4,000
13	Triangular	830	1,670	50,000	0.33	50,000	18,700	0.0	18,700	6,500
14	Triangular	830	1,670	50,000	$0.33{ }^{\text {b }}$	50,60	18,700	0.0	1,870	6,500
15	Triangular	830	1,670	50,000	$0.33{ }^{\text {c }}$	50,000	18,700	0.0	0.0	6,500
17	Triangular	830	1,670	50,000	0.33	50,000	18,700	5,000	1,870	6,500
$18{ }^{\text {d }}$	Triangular	830	1,670	50,000	0.33	50, 0.00	18,700	0.0	1,870	6,500

[^1]
TABLE E. 2

Comparison Between Time History Solution and Results Using Yeh's Expressions (Yeh 1974) for the Strain in the Tannel Wall

Results are presented for the maximum design earthquake (MDE) and the operating design earthouake (ODE) for the five material configurations of Table F.2. The term Yeh-strain is derived by utilizing Equations. 16 and 23 of Yeh (1974) with a radius of the tunnel equal to 9.5 feet and the local seismic velocities from Table F.I.

The $M D E$ and $O D E$ levels are defined as follow:

Tabiena - 島を	Verticai velucity Eorizontal Velocity Vertical Acceleration Horizontal Accleration	$\begin{aligned} & =2 . i \leq t . / \mathrm{sec} . \\ & =3.2 \mathrm{ft} . / \mathrm{sec} . \\ & =0.4 \mathrm{G}^{\prime} \mathrm{s} \\ & =0.6 \mathrm{G}^{\prime} \mathrm{s} \end{aligned}$
Table 2b - ODE:	Vertical Velocity	$=1.0 \mathrm{ft} . / \mathrm{sec}$
	Eorizontal Velocity	$=1.4 \mathrm{Et} /$.sec .
	Vertical Acceleration	$=0.2 \mathrm{GIs}$
	Eorizontal Accleration	0.3 G

METRO RAIL TRANSIT CONSULTANTS DMIM/PBQD/KE/HWA

FOR
SOUTHERN CALIFORNIA RAPID TRANSIT DISTRICT

INFORMATIONAL ANNEXES TO SUPPLEMENTAL CRITERIA FOR SEISMIC DESIGN OF UNDERGROUND STRUCTURES

These annexes are provided for information only. They have no contractual implication; as the title indicates, they provide general background for seismic design of underground structures. Because they are focused on the problem at hand, the derivations have been kept as simple as necessary to address the specific problems encountered. For more. general derivations, references have been provided at the end of each annex.

Although an effort has been made to build one annex on the data from preceding annexes, it was not always possible to do so. As a result, the orde Eoliows pzima=ily the neess for infomation developed during the preparation of the criteria themselves.
Annex A Derivation of Equations and Effective Seismic Velocity (For Simple Stress Waves Propagating in Continuous Media)
Annex B Distortion Requirements for Running Lines
Annex C Effects of Temporal Characteristics of Earthquake Generated waves on Underground Structures
Annex D Stiffness of Underground Structures
Annex E Tunnel Analyses for Loosening Load
Annex F Prediction of Strains in Selected Soil Columns Resulting from Earthquake Excitation - Time History Analysis

Page
B. 1 Selected Principal Effects of Earthquake-B-5 Generated Waves on Flexible Underground Structures
E. 1 Run Summary Matrix - E-14
E. 2

Definition of Symbols
E-15
E. 3 Shear Wave Velocities from SHAXE Computer Runs

E-16
E. 4
E. 5
E. 6

Results Sumary
E-19
E.7

Definition of Farameters $=-20$
E. 1

Definition of the Five Layered Geologies of This Study

Comes=iscn Eetween Time Eistory Solutien and Results Using Ven's Expressions (Yen, 1974 for the Strain in the Tunnel wall
F. 2a
M.D.E. Material Configuration
$\bar{F}-9$
E.2b
O.D.E. Material Cos_iguration
$E-10$
F. 3

Comparisons of Maxima by Yeh (1974) and

Figure		Page
A． 1	Shear－Wave Velocity Attenuation－Medium Stifit to Stiff Clay／Silt	A－6
A． 2	Shear－Wave Velocity Attenuation－Hard Clay／Silt	A－7
A． 3	```Normalized Shear Moduli - Medium Stiff to Stiff Clay/Silt```	A－8
A． 4	Normalized Shear Moduli－Eard Clay／Silt	A－9
3.1	Geometrical Parameters for Wave Intersecting a Structure at an Angle	B－18
B． 2	Shear Stress and Equivalent Direct Stresses on an Elastic Element with a Hole	B－19
B． 3	Distortion of Running Line from Fault ofiset	B－20
3.4	Critical Dimensions of Standard Steel Iining Sきgments	3－21
C． 1	Ground Acceleration，Velocity，and Displace－ ment，El Centro，CA，Earthquaxe of May 18， 1940，N－S Component	C－9
C． 2	```Plot of Digitized Accelerograms Recorded at Pacoima Dam```	C－10
C． 3	ÚSGS Accelerograms From Stations within 30 km of Fault Rupture of 1979 Earthquake Showing Peak Accelerations	C－11
C． 4	Effect of Rise Time of Load Pulse on Response 0 S Simple Elastic Oscillator	C－12
C． 5	Approximate Effect of Rise Time on Response of Simple Oscillator for a Damage－Pressure Level （ p_{m} / R_{y} ）of 1.0 ；Loads of Long Duration	C－13
C． 6	Approximate EfEect of Rise Time on Response of Simple Oscillator Eor a Ratio oミ Pulse Duzation to ？eziod of 2	C－14
C． 7	Gecmetry and Parameters Used by Paul（1963）	$c-6$
C． 3	E000 Stress at the Boundary due to an Incident Wave of Dilatation Using $n=0,1,2(\bar{v}=0)$	C－iミ

LIST OF FIGURES（CONTINUED）

Ficcre		Pase
C． 9	Hoop Stress at the Boundary due to an Incident wave of Dilatation Using $n=0,1,2(\bar{v}=1 / 3$ ）	C－16
C． 10	Hoop Stress at the Boundary due to an Incident Shear Wave Using $n=0,1,2(v=0)$	C－17
C． 11	noop Stress at the Boundary vs．Time due to an Incident Wave of Dilatation with 4,000 psi at the Front and Various Rates of Decay Behind the Front $\left(\bar{v}=1 / 3, \theta=0^{\circ}\right)$	C－18
C． 12	Hoop Stress at the Boundary vs．Time due to an Incident wave of Dilatation with 4,000 psi at the Front and Various Rates of Decay Behind the Front $\left(\bar{v}=1 / 3, \theta=90^{\circ}\right)$	C－19
E． 1	SATURN Grid	E－26
E． 2	Geometry and Loadinss	E－27
E． 3	Net Area Used to Compute Weight for the＂Ioosened＂ zone	E－28
ミ．${ }^{\text {i }}$	Gごさ Cf ミミーミセ．シepti ȯ Euエiai	E－29
E． 5	Material Zones	E－30
E． 6	Strain Determination	E－31
E．7a	F_{t}^{\prime} Versus Flexibility Ratio for $a=90^{\circ}$（ $j=1-5$ ）	E－32
E．7b	F_{t}^{\prime} Versus Flexibility Ratio for $a=90^{\circ}(j=6-13)$	E－33
E．8a	M_{f} Versus Flexibility Ratio．for $a=90^{\circ} \quad(j=1-3)$ at̃ 10－13）	E－34
E．8b	M_{f} Versus Flexibility Ratio for $a=90^{\circ}$（j＝4－9）	E－35
E．9a	M_{c} E Versus Elexibility Ratio for $\alpha^{\prime}=90^{\circ}$ ．$(j=1-6)$	ミ－36
E．9b	M_{c} E Versus Elexibility Ratio Eor $a=90^{\circ} \quad(j=7-13)$	E－37
2．10	Nomalized Thzust and Moments Erom Run 1 （Unifom Ioad）	E－38
E．11	Nomalized Thzrst and Moment Erom R：u： 5 （Triangular Lcad）	E－39

Ficure		Page
[E. 12	Normalized Thrust and Moment from Run 9 $\left(V_{p}=2,400 \mathrm{ft} . / \mathrm{sec}.\right)$	E-40
E. 13	Normalized Thrust and Moment from Run 10 $\left(V_{p}=5,000 \mathrm{ft} . / \mathrm{sec}.\right)$	E-41
E. 14	Approximate Maximum Moment due to"Loosening Load" as a Function of Assumed Stiffness of Loosened zone	E-42
E. 15	Variation of Approximate Diameter Change with Flexibility Ratio for Loosening Load	E-43
E. 16	- Variation of Vertical and Eorizontal Diameter Changes with Flexibility and Compressibility Ratios ($\left(\bar{v}=180^{\circ}\right)$	E-44
F. 1	1940 El Centro Earthquake Acceleration Records (Caltech, 1972)	F-12
E.2	El Centro Velocity Recores from Caltech (1972)	F-13
F. 3	Velocity Records Resulting from the Integration of the Acceleration Records of Figure F.I	E-14
F. 4	P-Wave Velocity Records at Various Depths for the Calculation 3.1	F-15
E. 5	S-Wave Velocity Records at Various Depths for the Calculation 3.2	E-16
F. 6	Suzface Velocity Records for the P-Wave Solutions of. Table F.1	F-17
F. 7	Surface Velocity Records for the S-Wave Solutions of Table F.l	F-18
E. 8	Material $\ddagger 1$ Strains at 75 ft. After Scaling P and S Surface Velocities to 2.1 and 3.2 Et./sec.	F-19
E. 9	Material $\# 1$ Strains at 150 ft. Atter Scaling P and S Surface Velocities to 2.1 and 3.2 ft. $/ \mathrm{sec}$.	E-20
E.:0	Material \#1 Strains at 175 ft. Aニter Scaling? anc S Surzace Velocities to 2.1 and 3.2 Et./sec.	E-21

Figure Page
F. 11 Material \#2 Strains at 150 ft. After Scaling P F-22 and S Surface Velocities to 2.1 and 3.2 ft./sec.
F. 12 Material \#3 Strains at 150 ft. After Scaling P F-23 and S Surface Velocities to 2.1 and 3.2 ft./sec.
F. 13 Material $\# 4$ Strains at 150 ft. After Scaling P F-24 and S Surface Velocities to 2.1 and 3.2 ft./sec.
F. 14 Material \#5 Strains at 150 ft. After Scaling P F-25and S Surface Velocities to 2.1 and 3.2 ft. $/ \mathrm{sec}$.

ANNEX A

```
    ANNEX A
    DERIVATION OF EQUATIONS AND EFFECTIVE SEISMIC VELOCITY
    (FOR SIMPLE STRESS WAVES PROPAGATING IN CONTINUOUS MEDIA)
```


For a Simple Wave Propacating in a Slencer Rod

wisin:

$$
\begin{aligned}
& 0=\text { mass density } \\
& A=\text { cross sectional area } \\
& Y=\text { stress } \\
& u=\text { displacement in x-direction } \\
& u=\frac{\partial^{2} u}{\partial t^{2}}=\text { acceleration in x-cirection }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Equilibrium requizes: } \\
& \sigma+o \ddot{u d x}=\left(\sigma+\frac{\partial \sigma}{\partial x} d x\right), \text { since A is common to all terms } \\
& o \ddot{u}=\frac{\partial \sigma}{\partial x} \\
& \text { and } \varepsilon_{x}=\frac{\partial u}{\partial x} \\
& \text { Eor elastic conditions: } \\
& \qquad \sigma=E \varepsilon x=\Xi \frac{\partial u}{\partial x} \text { anc } \frac{\partial \sigma}{\partial x}=\Xi \frac{\partial^{2} u}{\partial x^{2}}
\end{aligned}
$$

Thus: $\quad \ddot{\partial}=E \frac{\partial^{2} u}{\partial x^{2}}$
Define $C^{2}=\frac{E}{\rho}$ or $C=\sqrt{\frac{E}{D}}$, where C is the stress wave | Eq. 3 $\cdot \cdot \ddot{u}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}$

The general solution is $u=f(x-C t)+g(x+C t)$

If consideration is restricted to waves propagating only in the positive x-direction:

$$
\begin{array}{ll}
u=f(x-C t) & \text { Eq. } 1 \\
\varepsilon_{x}=\frac{\partial u}{\partial x}=f^{\prime}(x-C t) & \text { Eq. } 2 \\
\sigma_{x}=E_{x}=\rho C^{2} \varepsilon_{x}=\rho C^{2} f^{\prime}(x-C t) & \text { Eq. } 3 \\
\dot{u}=v e l o c i \tau y=\frac{\partial u}{\partial t}=-C f^{\prime}(x-C t)=-C \varepsilon_{x} & \text { Eq. } 4 \\
\ddot{u}=\frac{\partial^{2} u}{\partial t^{2}}=C^{2} f^{n}(x-C t) & \text { Eq. } 5 \\
\frac{\partial \varepsilon_{\dot{x}}}{\partial x}=\frac{\partial^{2} u}{\partial x^{2}}=f^{n}(x-C t)=\frac{1}{C^{2}} \ddot{u} \\
\left(f \text { rom }(3) \text { and }(4), \sigma_{x}=-\rho C \dot{u}\right) & \text { Eq. } 6
\end{array}
$$

Eq. 1
Eq. 2

Eq. 3
Eq. 4
Eg. 5

Eq. 6

For a Concave Downwazd Stress-Strain Curve

Equation A imposes no assumptions of stress-strain properties. If the condition is imposed that $S=$ instantaneous slope of stressstrain curve,

$$
s=\frac{\partial \sigma}{\partial \varepsilon_{x}}
$$

E=om Eunation A:

$$
\ddot{u}=\frac{30}{3 x}
$$

But:

$$
\varepsilon_{x}=\frac{\partial u}{\partial x} \cdot \cdot \quad \rho \ddot{u}=s \frac{\partial^{2} u}{\partial x^{2}}
$$

and the same solution as that given above results $i=$ we now define $\bar{C}=\sqrt{\frac{S}{P}}$ where S is the instantaneous slope ot the concave downward stress-strain curve and substitute \bar{C} for C. The results above can be generalized for a plane wave propagating in a continulum by use of the Lame relationships:

$$
\begin{aligned}
\sigma_{x} & =\lambda e+2 G \varepsilon x \\
\sigma_{y} & =\lambda e+2 G \varepsilon y \\
\sigma_{z} & =\lambda e+2 G \varepsilon z
\end{aligned}
$$

with $e=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}$ and $\lambda=\frac{u E}{(1+u)(1-2 v)}$
and

$$
G=\frac{E}{2(1+U)}
$$

where: λ and G are Lame constants and s and u are modulus of elasticity and Poisson's Ratio, =espectively.

But for plane strain:

$$
\begin{aligned}
\varepsilon_{y}=\varepsilon_{z}=0 . \cdot e=\varepsilon_{x} \text { and } \sigma_{x} & =(\lambda+2 G) \varepsilon_{x} \\
\sigma_{y} & =\lambda \varepsilon_{x} \\
\sigma_{z} & =\lambda \varepsilon_{x} \\
\frac{\sigma_{y}}{\sigma_{x}} & =\frac{\lambda \sigma_{z}}{\sigma_{x}}=\frac{\lambda}{\lambda+2 G}=\frac{u}{1-U}
\end{aligned}
$$

From similarity of Equations 3 and 7 , the solution in Equations 1 through 6 holds if we substitute C_{p} for C_{S}
where: $\quad C_{\underline{q}}=\sqrt{\frac{\lambda+2 G}{Q}}$

It can be shown that the governing equations are of the same form for a shear wave propagating in the x－direction with a（seismic） velocity

$$
C_{s}=\sqrt{\frac{G}{o}} \text { where } G=\text { modulus of rigidity }
$$

Thus，Eçuations 1 through 6 apply for a shear wave with appro－ priate changes in notation，such as $Y_{x y}$ substituted for ε_{x} and ${ }^{\top} x y$ for σ_{x} ．A more general derivation of all wave equations may be found in several references such as Ewing，et al（1957）and Rolsky （1963）．

The value of the instantaneous slope，S ，referred to above has been the subject of research Eor several years．An ofter used set ċ laboratory data for soils giving the effective shearmwave ve－ locity as a function of shear strain is seed and Idriss（1970）． An sinw in GIast and Brown（198i），either the lajoratory or EiEju むa $a ~ s e e m ~ m o r e ~ a p p r o p r i a t e ~ E o r ~ a p p r o x i m a t i n g ~ t h e ~ e ́ s e c t i v e ~ s h e a r-~-~$ wave velocity in the New Alluvium encountered in only limited segments of the routing tor the Los Angeles Metro Rail Pこoject， and even then only at relatively shallow depths．The Eield data are more appropriate for most of the aligrment，since Eor old AlIuviun or rock the laboratory data give signiEicantiy．iower eミ̇ective shear－wave velocities than the in situ Eield data determ mised by in situ impulse tests．

Figures A． 1 through A． 4 are taken directly from Grant and Brown （1981）where they apcear as Figures 5 through 8．Note that the
 ＂\＃ard Cİy／Silt＂is shear－wave seismic velocity $0=1000$ Ēs．As noted by Grant and Brown（1981），the labozatory values for eitier material type are quite similar；however，the field values are signizicartly higher than the laboratory velues for＂tazd Clay／ Siール．＂The notation＂（S－I）＂on Eiguses A． 3 and A． 4 a＝e curoes repcreed by seed and Idriss（1970）．In accori with the defini－
tions given above，the moculi of rigidity in figures A． 3 and A． 4 are cerived from：

$$
\frac{G}{G_{\max }}=\frac{C_{S}^{2}}{C_{S_{\max }^{2}}^{2}}
$$

where：
$\begin{aligned} G \quad= & \text { Effective modulus of rigidity at the strain of } \\ & \text { interest．}\end{aligned}$ $G_{\text {max }}=$ Modulus of rigiaity at small strain consistent with conventional methods of measuring seismic velocities．
$C_{5}=$ Shear－wave velocity at the value of strain of

$C_{s_{\text {max }}}=\quad$ Conventional shear wave seismic velocity（at Smax very low stzains of about 10^{-5}（I0

Since the strain levels induced by the postulated earthcuakes for Me＝こo Rail are in the range of $0.001\left(10^{-1}\right.$ percent）anc since most $0 \equiv$ the alignment is underlain by Old Alluvium or rock，the ex－ Eective seismic velocities are approximately 80 to 90 pezcent $0 \equiv$ the measured seismic velocities and the effective moduli of zigid－ ity aze approximately 60 to 80 percent of those values implied by旸 measuzed seismic velocities．The higher numbers apoly gerer－ ally $=0$ ODE；lower values generally to MDE．These values are taken directiy E＝om Figuzes A． 2 and A． 4 ．It is recommerded that the values within the ranges given above be used uniess other daca ミニe available which allows＝e三inement of the values zecommened ：seze．

```
Shear-Wave velocity Attenuation -
Medium Stizf to Stiff Clay/Sil=
    (from Grant and Brown, 1981)
```


FIGURE A． 2

Sheaz－Wave Velocity Attenuation－
Eard Clay／Silt
（from Grant and Brown，1981）


```
Normalized Shear Moduli－ Medium Stiff to Stiff Clay／Silt （from Grant and Brown，1981）
```


FIGURE A． 4

```
Nomalized Shea= Moduli -
    Eard Clay/Silt
(from Grant and Brown, 1981)
```


REFERENCES

A. 1 Ewing, W.M., Jardetzky, W.S. and Press, F. (1957), Elastic Waves in Layered Media, McGraw Hill, New York.
A. 2 Kolsky, H. (1963), Stress Waves in Solids, Dover, New York.
A. 3 Seed, H.B. and Idriss, I.M. (1970), Soil Moduli and Damping Factors for Dunamic Response Analysis, EERC 70-10, University of California, Earthquake Engineering Research Center, Berkeley.
A. 4 Grant, W.P. and Brown, F.R., Jr. (1981), "Dynamic Behavior of Soil from Field and Laboratory Tests," proceedincs, International Conference on Recent Advances in Geotechnical EarthGuake Engineering and Soil Dynamics; University of Missouri, Roila, pp. S91-596.

ANNEX B

ANNEX B
 DISTORTION REQUIREMENTS FOR RUNNING LINES

Shaking Motion

Following the procedures by Peck, et al (1972), the running lines are flexible relative to the media surrounding them; consequently, the shaking motion of these structures will be nearly identical to the shaking motion of the immediately surrounding soil or rock. In the following, therefore, only the motion in the ground (or in the volume of soil or rock displaced by the structure) is specifically considered. In this annex only the longitudinal and racking むistortions are considered. the "snaking" disrortion is discussen in Annex D.

If we define ε_{y} as the strain induced locally in the surrounding medium due oniy to curvature of the earthquake generated stress wave, we find from Newmark (1968) that the curvature is numerically equal to the acceleration divided by the square of seismic velocity. The associated strain is the product of this curvature and the radius of the cylinder of soil or rock displaced by the structure:

$$
\varepsilon_{k}-=R \frac{a g}{c^{2}}
$$

where:

$\varepsilon_{k}=\quad$| Strain induced by curvature of stress wave |
| :--- |
| motion. |

$\mathrm{R}=$	Internal radius of structure（or mean distance
	between geometric center of structure and
	point of maximum strain for a noncircular structure）．
$a=$	Component of local acceleration in g＇s．
$g=$	Acceleration of gravity．
$c=$	Propagation velocity for appropriate wave．

Also from Newmark（1968），the maximum value of local strain di－ rectly induced by a wave in the medium is：

$$
\varepsilon=\frac{v}{c}
$$

EG．B． 2

ッ！セニニッ：
$\varepsilon \quad=$ directiy induced component of strain
v ＝maximum local particle velocity
c＝propagation velocity for appropriate wave

For a dilitational or P－wave，the strain is in the direction of propagation of the wave．For a shear or S－wave，the shear strains are in any one of a group of planes perpendicular to the plan of the wave front；in turn，these shear strains produce a linear strain at 45° to the direction of propagation and its magnituce is one－half the shear strain．Thus，£or a shear wave：

$$
\varepsilon \quad=\frac{v}{2 c_{s e}}
$$

Eq．B． 2 a
where ε and v are as defined above and $c_{\text {se }}$ (see Annex A) is the shear wave propagation velocity consistent with the amplitude of the wave (typically less than the small amplitude shear wave seismic velocity).

The values of a and v are the values of acceleration and particle velocity induced by a single wave, which in the general case impinges on the structure at some angle, θ, as shown in figure B.1. As noted by Kuesel (1964 and 1969), Newmark (1968), Yeh (1974), ASCE (1983), and Nyman (1983), the maximum strain $\varepsilon_{\text {max }}$ induced in the structure is likely to occur for angles of incidence other than parallel or perpendicular to the longitudinal axis of the structure.

To account for the effect of angle of incidence, the procedure initially sugcested by Kuesel (1954) may be : 5 (dures cerived by Yeh (1974), Equations B.1 and B. 2 can be combined taking into account tie geometry specified in Figure B.1.
 gardless of its source, A sing is the component along the axis of the structure, A cose is the component perpendicular to the axis and $\frac{L}{\cos \theta}$ is the apparent length of the structure affect; thus $\frac{c}{\cos \theta}$ is the agparent wave velocity along the structure. In what Eollows, the peak amplitude, A, is treated for each wave (p or S) typically as either the maximum induced acceleration or the maximum induced particle velocity. Theoretically these maxima cannot occur at the same instant in time for any single wave, but the conservatism imposed by assuming that they are coincident in time may not be excessive; Euzthezmore, the temporal spreading of these Farameters is probably impossible to predict for any postulated Euture eartheruake. The results 0 三combining Equations 3.1 and 3.2 \therefore accord witi Eigure 3.1 and Yeh's solutions a=e shown in Tazie 3.1. The \quad ows 0 this table specify the single wave type assumed.

In each' case it' is also assumed for conservatism, even though it may be physically impossible, that the values of $v_{\max }$ and $a_{\max }$ are induced by this single wave type, and, as already noted, they occur simultaneously.

The second colum of Table B.l specifies the angle (θ) of direction of propagation of the assumed wave relative to the axis of the running line.

The third column gives the general formula used while the fourth column gives as a representative value, the strain for old Alluvium and the maximum design earthquake (MDE). The effective shear wave seismic velocity $c_{\text {se }}$ For Old Alluvium and MDE is assumed in the absence of better data to be $0.8 \times 1200 \mathrm{fps}=960$ fps (see Annex A). Similarly, for the operating design earthquake (ODE), the value is $0.9 \times 1200=1080$ fps. As noted in the footnote, the better approach for defining the effective seismic velocity for the P-wave in wet soil (c_{p}) is to define it from the S-wave velocity; the measured P-wave velocity in saturated soils is governed primarily by the wave propagating through the water in the interstices.

The recomeneded value, which is the same as the maximum for the S-wave at 45° angle of incidence, is shown in the last line $0:$ Table B.1. The result, even for the nearly worst case considered in Table B.I ($v_{\text {max }}=3.2$ fps and $a_{\text {max }}=0.6 g$ for the MDE), produces values of strain for the 0ld Alluvium ($c_{s}=960$ fps) which do not exceed the compressive strain capability of a reinfozced concrete lining. The joints in the segmented lining will mitigate uncue damage in the lining. However, if the effective seismic velocity is below 800 Eps it may be necessa=y to consider placing soミt spacers within the circumferential joints to accommodate the compressive strain.

For the operating cesign earthquake (ODE), the maximum particle velocity in alluvium is 1.4 fps and the maximum acceleration is 0.3 g . Use of the recommended value in Table $B .1$ gives a value of maximum strain in Old Alluvium (cse $=1080$ fps) of $0.00071 \mathrm{in} . / \mathrm{in}$. Such a value is well within the allowable range for compression in concrete. For such a strain in tension, of course, a solid lining would be cracked, but the joints in the segmented linings will mitigate this strain within the circumferential joints and the reinforcement will distribute any cracks which might develop between joints, so that servicability is maintained.

As noted at the outset in this annex, the structures are assumed to move with the surrounding soil during the shaking motion. As a result, no differential motion occurs and the shear which develops on the surfaces of the structure due to shaking are only those consistent with forcing the structural motion to conform to that
 ed in the strains considered above. Near bends in the structure, additional constraints generally will develop; however, the minimum radius of any curve must de iarge to accommodate the solings stock. The effect of these constraints will be much less than the induced conditions produced by lateral relative displacements of the type considered by Kennedy, et al (1977).

The effects must also be considered of relative displacement and strain induced by a wave over a finite length of the structure, such as b in Figare B.1. As stated by Newmark (1968), the following relations apply if:

$a_{m} \quad$	$=$ Maximum acceleration induced by a stzess wave.
$b \quad$	$=$ Distance between points 1 and 2.
$c \quad$	$=\frac{\text { Apparent }}{\text { tunnel. }}$

$\mathrm{u}_{\max 2}$		maximum displacement at point 2 along axis of structure.
$\mathrm{U}_{\max 1}$	=	Maximum displacement at point 1 along axis of structure.
$\delta^{b_{21}}$	=	Maximum change in distance between points 1 and 2 along axis of structure.
$\mathrm{u}_{\max 1,2}$	=	Maximum displacement of point 1 relative to point 2.
$\mathrm{u}_{\min 2,1}$	=	Minimum displacement of point 2 relative to point 1.
$\varepsilon_{\text {mas }}$	=	Maximum strain at any point between points 1 and 2.
${ }^{\max 2,1}$	=	Maximum induced particle velocity of point 2 relative to point 1 .
Y_{m}	$=$	Maximum amplituce of displacement perpendicular to axis of tunnel.
$\ddot{\mathrm{y}}_{\mathrm{m}}$	$=$	Maximum acceleration perpendicular to axis of tunnel.

Quoting directly from Newmark (1968) and changing only Equations 21 to 26 in the original to Equations B. 3 to $B .8$ here, produces the Eollowing:
"Other relationships are of importance in the case where the motions are caused by more general disturbances than a wave of nearly constant shape transmittec in one direction. For example, it is apparent that the maximun change in the distance between points

1 and 2 , δb_{21}, is related to the maximum displacements at points 2 and 1 in the following way:

$$
\delta b_{21} \geq u_{\max 2}-u_{\max 1}
$$

Eq. B. 3
In many instances, this relation may be trivial because the maximum displacements may be nearly equal, but since they do not occur at the same time, it is obvious that the maximum transient change in length must be greater than the difference in the maximum displacements. It is, however, true that the maximum change in length is less than the difference between the maximum displacement at either point 1 or point 2 , less the minimum displacement, or the displacement in the opposite direction, at the other point. The minimum displacement would of course be zero, if the displacements do not reverse in direction. This relation is expressed as follows:

$$
\tilde{u b}_{21} \doteq u_{\max , 2} \mathrm{u}_{\min 2,1}
$$

Eq. B. 4
"Similyr!y, the maximum shange in length between points a an 1 must be less than the maximum strain anywhere along the line connecting the two points, multiplied by the length, as given in the following relation:

$$
\delta b_{21} \leq \varepsilon \max ^{b}
$$

Eq. B.5a
"For the special case where the maximum strain is related to the maximum velocity by Equation 18,* corzesponding to a wave transmission situation, then one can derive from the preceding equation the following results:

$$
\delta b_{21} \leq \frac{b}{c} v_{\max 2,1}
$$

Eq. B.5b
*

$$
\varepsilon_{\text {max }}=\frac{v_{\text {max }}}{C}
$$

"For the special case where the deflection transverse to the line is give by an arc of a sine curve, as in the relation

$$
y=y_{m} \sin \pi x / b
$$

Eq. B. 6
then the curvature is obtained by the second derivative of this relation as follows:

$$
\text { curvature }\left.\right|_{\max }=\left.\frac{\partial^{2} v}{\partial x^{2}}\right|_{\max }=-\frac{\pi^{2}}{b^{2}} y_{m}=\frac{\ddot{y}_{m}}{c^{2}}
$$

Eq. B. 7

From this relation and Equation 19** one derives the following result:

$$
\begin{aligned}
& y_{m} \cong-\frac{b^{2}}{\pi^{2} c^{2}} a_{m} \quad \text { Eq. B. } 8
\end{aligned}
$$

consicered."
Enom the equations abova, it is obvious that if the dispiacements
defined by u with various subscripts are axial in nature, the
induced strain in the segment of lining are axial in nature and
these strains are

$$
\begin{equation*}
\varepsilon= \pm \frac{\delta b_{21}}{b} \tag{Eq. 3.9}
\end{equation*}
$$

with $0 b_{2 i}$ defined by Equation B. 4 taking appropriate account of signs of the displacements.
**

$$
\begin{array}{r}
\quad \frac{\partial^{2} v}{\partial x^{2}}=c^{2} \frac{\partial^{2} v}{\partial t^{2}}=c^{2} a m \text {. The aporoximate sign is need- } \\
\text { ec since Euation } 3.6 \text { does } \quad \text { not assume a stress wave with peak }
\end{array}
$$ acceleration of a_{m}.

If these axial displacements are accompanied by lateral displacements, Y_{m} Equations B.1, B.7, and B. 9 give a maximum strain in a finite length b of

$$
\begin{align*}
& \varepsilon_{\text {max }}= \pm \frac{\delta b_{21}}{b} \pm R \frac{\ddot{y}_{m} g}{c^{2}}, \text { or } \\
& \varepsilon_{\max }= \pm \frac{\delta b_{21}}{b} \mp R \frac{\pi^{2}}{b^{2}} y_{m}
\end{align*}
$$

Eq. B. 10b

If the displacements defined by u with various subscripts are lateral in nature, the maximum strain in a finite length b according to Equations 3.1 and B. 7 is

$$
\varepsilon_{\max }=R \frac{\pi^{2}}{b^{2}} \quad Y_{m}=R \frac{\pi^{2}}{b^{2}} \delta b_{21}
$$

Eg. B. 11
 all strains induced in a finite length are less than those recommended in Table B.l; it is proper to use the smaller value computed as defined above in Equations B.9 to B.11 if the length b is less than approximately 2,000 tt. The actual length depends on the eचfective shear-wave seismic velocity and the effective shear strength at the stmacture-medium interface. For distances less than this limit the stzucture must be capable of resisting the di太太Eerential shears (Erictional drag) which may develop along its lemgti (see Example 1 in Appendix 1), or the reduced strain noted immediately above whichever is greater. For lengths greater than approximately 2,000 ft., Table B.l prevails. (Soil drag is considered to produce an upper bound on axial strain as limited by interface friction or soil strength).

Racking Stzain

Racking stain is defined for the purpose of these criteria as that distortion induced in planes of the running line perpendicular to the axis and caused by a shear wave. Shear acting on an element of soil or rock, treated as an elastic medium, is the equivalent of a compression in one-direction and an equal tension in a direction perpendicular to that of the compression, see Figure B.2. For this case, the maximum displacement of the circular hole, for conditions of plane strain along the axis of the tunnel, occurs as indicated in the figure B. 2 and it is equal to:

$$
u= \pm 4 \frac{S R}{E_{m}}\left(1-u_{m}^{2}\right)
$$

EG. B. 12
where the notation is defined in Figure B.2. If ΔD is defined as the maximum change in diameter, $D(=2 a)$, then this last equation becomes:

$$
\frac{\Delta D}{D}= \pm 4 \frac{S}{E_{m}}\left(1-u_{m}^{2}\right)
$$

IE the hole is lined by a structure which distorts an amount equal to $\Delta D / D$, the strain in the structure, except for tine sizght difEerence in outside to mean diameter, caused by the zacking is:
$\varepsilon_{\theta b}= \pm \frac{3}{2}\left(\frac{t}{R}\right) \frac{(\Delta D)}{D}$ or $\varepsilon_{\theta b}= \pm 6{\underset{R}{R}}_{\left(\frac{t}{2}\right)}^{S_{m}}\left(1-u_{m}^{2}\right) \quad$ EG. B. 14

But:

$$
s=\frac{E_{m} v_{s}}{2\left(I+u_{m}\right) c_{s e}} \text { from Figure B. } 2
$$

Thus: $\quad \varepsilon_{e b}= \pm 3\left(\frac{t}{R}\right) \quad\left(\frac{v_{s}}{c_{s e}} \frac{\left(1-u_{m}^{2}\right)}{\left(1+u_{m}\right)}\right.$
cr: $\quad \varepsilon_{\theta \dot{D}}= \pm 3\left(\frac{t}{R}\right)\left(\frac{v_{s}}{c_{s e}}\right)\left(1-u_{m}\right)$
Eq. 3.15

If: $\quad u_{m}=\frac{1}{3}$:

$$
\left.\varepsilon_{\theta b}= \pm 2\left(\frac{t}{R}\right) \frac{v_{s}}{c_{s e}}\right)
$$

This is the bending component of strain induced in the lining. The distortion will. also produce thrust, or a uniform component of strain at least in compression. (Since only limited tensile strain can develop across the soil or rock surface to the outside of the structure, little or no added tension will develop). The added compressive strain induced in the structure, if the soil and structure colum and soil columns above and below it (the soil columns in Figure B.2) have the same stiffness, is

$$
\varepsilon_{\theta c}=\frac{S R}{2 t E_{\ell}}
$$

where E_{2} is the modulus of elasticity of the lining material. By superposition, the total maximum strain $\varepsilon_{\text {tot }}$ is

$$
\varepsilon_{\text {tot }}=2\left(\frac{t}{R}\right) \cdot\left(\frac{v_{s}}{c_{s e}}\right)+\left(\frac{E_{m} v_{s}}{4\left(1+u_{m}\right) c_{s e}}\right)\left(\frac{R}{t}\right)\left(\frac{1}{E_{i}}\right)
$$

Or: $\quad \varepsilon_{\text {tot }}=\left(\frac{v_{s}}{c_{s e}}\right) \quad\left[2\left(\frac{t}{R}\right)+\frac{3}{1 \sigma}\left(\frac{R}{t}\right)\left(\frac{E_{m}}{E_{2}}\right)\right]$
Eq. 3.17

If: $\quad u_{m}=1 / 3$.
The maximum tensile strain is:

$$
\left.\bar{\varepsilon}_{\text {tot }}=-2\left(\frac{\hbar}{R}\right) \frac{v_{s}}{c_{\text {se }}}\right)
$$

Ec. B.18

For: $\quad u_{\mathrm{m}}=1 / 3$.
A single calculation was completed using an elastic, finite alewent coal. The distortion shown in the upper figure in Figure 3.2 was imposed with $v_{s}=3.4$ fps and $c_{s e}=1,000$ fps. The structiane
used was an 8 in. thick concrete lining, 114 in. in radius. The maximum compressive strain calculated in the lining was 0.0009 . Use $0 \equiv$ the same parameters in Equation B. 17 and with $E_{m}=50,000$ psi and $E_{l}=4.6 \times 10^{6} \mathrm{psi}$ as were also used in the finite element calculation, yields:

$$
\varepsilon_{\text {tot }}=0.0006
$$

Certainly a single calculation cannot be used to qualify an approximate procedure; a series of calculations should be run, especially to measure the effect of relative stiffness of lining to medium. However, until such a set of calculations is completed, the approximation used in Equations $B .17$ and $B .18$ can be used directly, or if more conservative results are desired, the results of the equation can be multiplied by 1.5 (the ratio of the value Erom the single. calculation to that given by the equation). Whether or not this amplification is used, the compressive strain is well below the allowable of 0.004 . Even for very low values of effective shear wave velocity, $c_{\text {se, }}$ it is unlikely that the compressive strain will cause serious problems for flexible linings. of course, the racking strain must be added to strains caused by other loads, but even the combination does not appear to be severe (see example in Appendix) unless $c_{\text {se }}$ is low. As already noted, spacers in the longitudinal and circumferential joints may be required when $c_{\text {se }}$ is low.

The tensile strain due to racking will be generally larger than that which causes tension cracking. However, the strain will be generally signiEicantly less than that nomally allowed on the tensicn side of reinforced concrete beams (in the range of 0.001 even at design loads). The lining segmerts being doubly reinEorced, the reinEorcement is generally distributed across each Eace and in each direction. The reinforcement will acecuately distribute any cracks which might develop. Euzthemore, even though cracks caused by zacking may generaily extend through the
thickness, the two layers of steel. will maintain the flexural stzength at essentially the original value; thus, the section will adequately resist any return loadings (dead, live and earthquake). In similar fashion, the bolts fasteninglthe longitudinal joints may actually yield when subjected to the imposed racking but they will maintain their shear and flexural strength; thus no adverse situation should be expected from the tension.

Iateral Distortion

Some tendency toward abrupt lateral distortion may develop where the running line crosses clearly defined faults. Such a condition may develop at the Santa Monica Fault where the MDE fault displacement has been estimated as 6.6 ft. (Appendix A, Converse, 1983).
 3.3 in the logitudinal direction, it is impractical to provide a sufficient number of bolts to develop the yield strength of the skin plate. For example, with $4 \overline{8}$ boles iĀ35) in the sircumferertial joints and a minimum thickness of $3 / 8$ in. in the skin plate the stress in the plate is approximately:

		Approx. Stress
Bolt	Allow. Direct	in $3 / 8^{\prime \prime}$ Plate
Diameter	Tension on Bolt	for 48 A 325 Bolts
(in.)	(kips)	$(\mathrm{ksi}) \quad-$

3/4
17.7
1.3
1
31.4
2.3

With the gage (g) of 3.5^{*} in. and the edge distance (e) 2.5^{*} in. in Figure 3.4 and the Elange bent in double curgature, causing

[^2]compression over the edge distance e, a $1 / 2$ in. flange thickness $\left(t_{w}\right)$ will develop the forces in the 1 in. bolt indicated above at initial yielding of the flange. Although a smaller flange thickness could be used with $3 / 4$ in. tolts, it seems desizable to transmit the higher force indicated since, as shown below, a large length of lining must be mobilized in accommodating the distortion.

For the dimensions shown in Eigure B.4, the deflection (δ_{2}), conservatively ignoring stretching of the bolt, is:

$$
\delta_{2}=\frac{T x^{3}}{3 E I}+\frac{T x^{2}}{2 E I}(g-x)+\frac{T}{3 E I}(g-x)^{3}
$$

Eq. B. 19

If $x=k g:$

$$
\delta_{2}=\frac{T g^{3}}{E T}\left[\frac{1}{3}-k-\frac{3 k^{2}}{2}-\frac{k^{3}}{2}\right]
$$

Ec. B. 20

The term in brackets is:

k	Bracketed
$1 / 4$	0.169
$1 / 3$	0.148
$1 / 8$	0.143
$5 / 8$	0.146
$2 / 3$	0.172
$3 / 4$	0.185
	0.216

Since the smallest, δ_{2} is the conservative case, use

$$
\delta_{2}=\frac{T a^{3}}{T I I}
$$

Eq. 3.21

Although this deflection is less than halz that in single curva－ ture，

$$
\frac{T G^{3}}{3 E I},
$$

developing single curvature requires leaving the bolts loose；such a practice is hard to control to attain and maintain a specified looseness，but more importantly，it exacerbates any waterproo£ing problems．）

For the values of δ_{ℓ} in Equation $B .21$ and the geometry shown in Eigures B． 3 and B．4：

$$
\frac{\delta_{\ell}}{2}=2 \frac{R}{L} \cdot \frac{\delta}{I} \text { but } \leq 0.013 \mathrm{in} . / \mathrm{in} .
$$

Eq． 3.22

with $t_{w}=1 / 2$ in．and $g=3.5 \mathrm{in} ., \delta_{1} 0.024 \mathrm{in}$ ．The tension in
 double curvature is $1.2 \mathrm{k} / \mathrm{in}$ ．（The bolt Eorce is $2.1 \mathrm{k} / \mathrm{in}$ ．while the total compressive force on the edge distance e is $0.9 \mathrm{k} / \mathrm{in}$ ． assuming a linearly distributed bearing force ranging from zezo at the senter of the bolt to a maximum at the tip of the Elange）． Obviously δ_{ℓ} / ℓ for any practical value of ℓ is less than the imit （0．013 in．／in．）required to maintain the required minimum radius of curve．

İ Ereedcm to slip alonc the axis of the turnel can somehow be ミこovidec $=0$ allow mobilizing the number of steel seçments seeced ＝o develop the curratuze shown in Figure B．3，the length oz tunnel zecuired is：

The forces developed by such slip must remain significantly below the $2.1 \mathrm{k} / \mathrm{in}$. (of circumference) in the bolt since the axial tension is governed by the net force, allowing for compression of the toe. As incicated above this net force is $1.2 \mathrm{k} / \mathrm{in}$. but if the bolts should loosen for any reason the force could reach the full capacity of the bolt of $2.1 \mathrm{k} / \mathrm{in}$. Thus, shear failure in the interface must occur below $1.2 \mathrm{k} / i n$. even though the force capability of the lining may be as high as $2.1 \mathrm{k} / \mathrm{in}$.

The analysis given above is appropriate for the bolted stancard steel lining. The approach given by Kennedy et at. (1977) and reEined by Nyman (1983) is not considered appropriate for the curient case since this list method was developed for reiajiveiy small diameter uniform thickness pipe with fully (Eull penetration) welded joints.

[^3]Geometrical Parameters for Wave Intersecting
A Structure at an Angle

> Shear Stress and Equivalent Direct Stresses On an Elastic Element with a Eole (Exaggezated Distortion Shown Dashed)

$$
\begin{aligned}
& S=T \\
& S=\frac{G_{i n} v_{S}}{C_{s e}} \\
& S=\frac{E v_{s}}{2\left(i \div \cdot \frac{1}{\pi}\right) C_{s e}}
\end{aligned}
$$

Distortion of Running Line From Fault Offset

FIGURE 3.4

$$
\begin{gathered}
\text { Critical Dimensions of Standard } \\
\text { Steel Lining Segments }
\end{gathered}
$$

Incgitudinal wall section

REFERENCES

B. 1 Kuesel, T.R. (1964), "Earthquake, Design Criteria for Subways," Article 1906 of Design Criteria for Bay Area Rapid Transit (BART) System, San Francisco.
B. 2 Newmark, N.M. (1968), "Problems in Wave Propagation in Soil and Rock," Proceedings, International Symposium: Wave Propagation and Dynamic Properties of Earth Materials, Albuquerque.
B. 3 Kuesel, T.R. (1969), "Earthquake Design Criteria for Subways," Journal of Structural Division, Proceedings, ASCE, 95: ST6, New York (with Discussions by A.H. Eadjian (96: ST1) and A.A. Eremin (96: ST3).
B. 4 Eeck, $\bar{K} . \mathrm{B}_{\mathrm{H}}$, Hendron, Jr., A.J. and Mohraz, B. (1972), "State of the Art of Soft-Ground Tunneling," First North American Rapid Excavation and Tunneling Conference, ASCE-AIME, Chicago.
3.5 Yeh, Gordon C.K. (1974), "Seismic Analysis of Slendez Buzied Beams," Bulletin, Seismological Society of America, 64: 5, Oakland.
3. 6 Kennedy, R.P. Chow, A.W. and Williamson, R.A., (1977), "Fault Effects on Buried Oil Pipeline," Transportation Engineering Journal, ASCE, New York.
3.7 ASCE Commiたtee on Seismic Analysis, Structural Division Committee on Nuclear Stractures and Materials (1983), "Seismic Response of Pipes and Structural Components," New York.
3. 3 Nyman, D.J. (1983), Erivate Communication.

ANNEX C

EFFECTS OF TEMPORAL CEARACTERISTICS OF

EARTEQUARE-GENERATED WAVES ON UNDERGROUND STRUCTURES

ANNEX C

EFEECTS OF TEMPORAI CHARACTERISTICS OF EARTHQUARE-GENRATED WAVES

 ON UNDERGROUND STRUCTURESBecause earthquake shaking is a dynamic effect, it is often tempting to consider the detailed time-varying characteristics of the wäves: Such consideration is proper for above-ground structures, especially when non-linear response is allowed. Dynamic response is also appro-priate for elements mounted. on the interior of structures, regardess of their location relative to the ground surface. For the basic underground structural response, however, it appears that the time variations are not inportant. This annex b=ieEIY sumarizes the fundamental analyses winch sipport tine =onciusion that time variations of the siaxing motion are not important in the basic design of underground structures.
wumerous writers, each in many papers prepared over severai years, such as, in alphabetical order, Barton, Blume, Fung, Housner, Mohraz, Newmark, Roserblueth, Shah, Tung, and Veletsos, have considered the effects of temporal characteristics of earthquake motions, especially on shapes of response spectra. nowever, the random nature of these motions and complex paths over which they propagate for shock isolation have made generalizations difficult; they have been especially difficult when non-linear response is included with or without relatively higher percentages of critical camping. Most of these studies have considered zanges of periods OE structures from short to long. More importantly most have implicitly or explicitly addressed the response of above ground stzactures or shock isolation of equipment in uncergzound structures.

For the basic underground structures (running line or stations) encountered in subway systems, fundamental periods of response are short compared to those for typical above ground structures. For example, the fundamental period for the running line is of the order of 5 msec. (see Merritt and Newmark (1964); perioc is approximately radius divided by 1800 fps). The fundamental period for the station is in the range 0.1 to. 0.4 sec . (see Merritt and Newmark (1964);
period in seconds is at least $\frac{L^{2}}{\left(3,000 f_{p s}\right) d \sqrt{\phi}}$ with L and d in ft. and ϕ, the reinforcing ratio, in percent).

Figures C. 1 to C. 3 show earthquake records with amplitudes in the range of interest or even exceeding it. As already noted, earthquakes produce motions which tend to be random in nature. Nevertheîess, certain conditions of interest. can be deduced from counting zero crossings of the typical accelerogram. These crossings may reflect, in selected instances, points of inflexion in the velocity record; even then they reflect higher frequencies of zasponse. The number of zero crossings in the acceieroy=aim raflect very nearly twice the frequency of the velocity pulse. As seen in the Eigures, the number of crossings is in tie approximate range of 10 to 20 per second. Thus, the inherent Erequencies ${ }^{1}$ of velocity, which is proportional to strain and stress, are in the range of 5 to 10 hertz or the periods are. 0.1 to 0.2 sec . The rise time of these disturbances is in the range of one-fourth to one-halz the period; thus, the rise times of the velocities or

[^4]strains are in the range of 25 to 100 msec ．（It shoule be noted also that the durations of these pulses are comparable to the rise times．）For the running line，the ratio of rise time to period is in the range of 5 to 20 times the fundamental natural period；fo： the stations，one－fourth to one times the fundamental natural period．（The durations of the individual spikes of velocity or strain are approximately double the values．just given．）

Figures C． 4 to C． 6 are copies directly from Merritt and Newmark （1964）．Although they were generated for blast loads，they apply to individual spikes of stress or strain for earthquakes when the temporal characteristics are defined in terms of period as noted above．${ }^{2}$

The effect of rise－time of loading，as reflected by the velocity， is perhaps most clearly indicated by solutions for response of a
 cation oE the displacement of a simple oscillator wher subjected to step pulses of infinite duration（the worst case for a single pulsel with rise time measured in relation to the natural period of vibration．For a zero rise time，the ratio of the maximum de三lection $\left(Y_{m}\right)$ to the static deflection $\left(Y_{s}=Y_{m} / K\right.$ where Y_{m} is the amplitude of the load and K is the stifiness of the oscill－
${ }^{2}$ velocity pulses generated by earthquakes procuce a contin－ uous series of waves while in blast waves there is only a single pulse of primary concern；however，earthquake motions tend to be sandom，thus，resonance or near resonance with associated enhancement 0 E zesponse by the string of waves is minimal．
${ }^{3}$ Note that Eor elastic structures，modal response technicues allow consicieration of response of several simple oscillators and adding these separate mocal resporses to deミine tine total zesponse of multi－degree oミ Ezeedom systems．
ator) is 2. The amplification factor is identically unity for all =ise times which are integer multiples of the period. For all rise times greater than one times the period, the peak amplification factor is progressively smaller with the largest value of approximately 1.2 occurring for $t_{r} / T=1.5$; thus the maximum overshoot of the dynamic over static deflection is approximately 20 percent for an elastic oscillator subjected to a pulse of infinite duration. Since for the running lines, the ration of t_{r} to T is at.least 5, Eigure C.4 implies essentially no dynamic amplification. For the stations, the amplification could be as high as $1.4\left(t_{r} / T=3 / 4\right)$ according to Figure $C .4$, but the duration is much less than that assumed in this figure and some non-linear response is acceptable for at least the Maximum Design Earthquake (MDE).

For inelastic oscillators $\left(Y_{m}\right.$ greater than Y_{V}, the deflection at yielding), and/or for finite durations of loading, the results in Ezgant G. the ductility factor (ratio of maximum deflection to vield deflection) and not the amplification factor. When response is measured in terms of ductility factor, this parameter can be quite large for a step pulse of infinite duration as illustrated ioy the top curve in Figure C.5. Note, however, that this figure is constructed for a ratio of peak applied load (P_{m}) to the yield resistance (R_{y}) of 1.0 . Figure $C .6$ addresses the question parametrically in values of $\mathrm{P}_{\mathrm{m}} / \mathrm{R}_{\mathrm{y}}$ while holding the ratio of pulse duration (t_{d}) to period (T) constant at 2 (the value for the lowest curve in Figure C.5). Since the duration of earthquake loads relative to the period of the running line is at least 2 , the maximum ductility factor required would be at the most 3 (Figure C.j or C.6) witi a zero rise time, but the rise time is at least 5 times the period; thus, the required ductility factor is one and the zanning line remains elastic. Also from these figures, the maximum ductility factor requized for t_{r} / T equal to or greater than about 0.9 is 1.4 Eor any static design Eor $t_{d} / T \leq 2$ (i.e., a design $\underset{\sim}{ } \leq$ which the peak load is set equal to the yield resistance). Since
the maximum ratio $0 \equiv t_{d}$ to T is ≤ 2 for the stations, the maximum ductility factor required is 1.4 to allow a static design; since this is the worst case for a single pulse, little nor-linear response can be expected even for the $M D E$.

From the above, it is clear that the maximum overshoot is 1.2 (the dynamic response is 20 percent higher than the static response) for all elastic cases where the period of the mode of response being considered is less than the rise time of the spike of motion of primary concern in the earthquake shaking. Similarly for all inelastic cases, allowing a ductility factor of 1.4 (a maximum deflection of 1.4 times the yield deflection) will allow static designs for all modes with natural periods less than the rise time of the spike of motion of concern. More importantly, it is necessary to note that the "spike of motion of concern" is a postulated quantity and the associated time variation is also postulated;
 better known quantities than the principal parameter on which their definition must be based!

As noted by the footnote above, it is probable that stanciard seismographs may filter out frequencies of motion above 20 to 30 hertz as a result of their mechanical characteristics. As a result, it is desirable to investigate how buried structures inherently filter out higher frequencies of response. Behavior of lined and unlined tunnels in elastic media was considezed by Paul (1963), Yoshihara (1963), Ali-Akbarian (1967); inelastic response was considered by Belytschko (1978). The first three writers speciEically acdressed the stresses (and by inplication the strains) induced around lined or unlined tunnels subjected to either side-on loads (traveling perpendicular to the longitudinai axis) or encoon loads (traveling parallel to the longitiadinal axis) (see Eicuze C.7). The Eouzth writez mace a complete =eview of the blast-loading problem, and it was conciucec that blast
loads (primarily loads with a single ${ }^{4}$ important spike) may be treated as quasi-static; i.e., although there is a minor potential for dynamic amplification of response, its magnitude, if presert, has a smaller effect than the uncertainty in temporal and amplitude characteristics of the associated loading.

FIGURE C. 7

Geometry and Parameters Used by Paul (1963)
-Direction of Stress Wave Propagation

Circular Tunnel
(Note: a in above Figure is the radius, denoted by R elsewhere in these criteria.)
${ }^{4}$ As already noted, the random nature of the string of pulses in an earthouake minimizes the tendency toward resonance and associated major enhancement o§ response.

$$
\begin{aligned}
& \sigma= \text { peak amplitude of stress wave; in all cases tension } \\
& \text { is positive } \\
& n= \text { mode number } \\
& t= \text { time measures from time of first arrival at tunnel } \\
& c_{1}= v e l o c i t y ~ o f ~ w a v e ~ p r o p a g a t i o n ~ o f ~ p-W a v e ~ \\
& C_{2}= \text { velocity of wave propagation for s-Wave } \\
& \sigma_{\theta \theta}= \text { circumferentail stress at tunnel boundary } \\
& \bar{v}= \frac{v}{1-v}=\text { "plane strain" lateral stress coefficient in } \\
& " S t a t i c ~ v a l u e "=~ v a l u e ~ d e f i n e d ~ f o r ~ s t a t i c ~ c o n d i t i o n s ~
\end{aligned}
$$

To place this last assertion into context it is only necessary to refer to Figures C.8, C.9, C.10, C.11 and C.12 taken directly from paul (1963) (originally figures 6.1, 6.2, 6.12, 6.10 and 6.11 of the reference). The first figure shows the maximum stress produced for side-on conditions; with $\theta=0^{\circ}$ the point of initial
 tion. The solution assumes only elastic materials. The maximum overshoot over the static value occurs at 0°, and it is 29 perEent. Lhe next larger oversnoot occurs at $\theta=90^{\circ}$ and it is in percent. Similar results are shows for. a different Eoisson's ratio in Figure C.9, and for a pure shear wave in Figure C.10. The effect of an exponential decay (k is the coesficient of time as illustrated in the inset to Figure C.11) of the incident pulse is compared with the result for a step pulse in Figures C.Il and C.12. Although the increase in tensile stress (values above the origin) in Figure $C .11$ may be startiing for the decaying pulse (or Figure C. 10 for the shear wave), it must be remembered that these are theoretical stresses around an unlined tunnel in an elastic medium, and the proposed tunnels will be lined. At the same time, the lining will probably, not be strongly bonded to the surrounding medium, and most important of all, the lining will be articulated. All of these last conditions ameliorate the efiect of the tension in the surrounding medium, and for the joints in
the segmented linings, the effects of any tension may be accommodated. Thus, the result in Figure $C .12$ is the important one. It is seen there that a decay coefficient (as defined by Paul, 1983) of less than 100 . will eliminate the 10 percent overshoot of the peak stress compared to the static value for the step-pulse of infinite duration in Figure $C .9$ which is the solid curve in Figure C. 12 .

The above discussion indicates that a static treatment of the strain pulse, which is proportional to the stress or velocity pulse, will provide a solution which is entirely consistent with the degree of knowledge of the temporal characteristics of the postulated earthquake.

FIGURE C.I

Ground Acceleration, Velocity, anc Displacement,
El Certro, CA, Earticuake of May 18, 1940
$\mathrm{N}-\mathrm{S}$ Component
(from Blume et al, 1961)


```
Plot of Digi=ized Acccelerograms
    Recorced at Pacoima Dam
        (from NOAA, 1973)
```


USGS Accelerograms From Stations Within 30 km of Fault Rupture of 1979 Earthquake Showing Peak Accelerations. Solid Horizontal Lines are Zero Reference Traces. Poor Quality of Some Data Traces is due to Eigh-Frequency Eigh-Amplitude Motion Recorded on FhotoOptical Accelerographs (Ezom USGS, 1982).

sen

SRAWLEY ATMORT

matmeni nat orres

FIGURE C. 4

Effect of Rise Time of Load Pulse on Response of Simple Elastic Oscillator


```
    Approximate EEEect Of Rise Time on Response
of Simple Oscillator for a Damage-Pressure Level ( ( }\mp@subsup{P}{m}{\prime}/\mp@subsup{R}{Y}{} of 1．0；Loads of Long Duration．
```



```
    Approximate EfEect of Rise Time on Response of Simple Oscillator for a Ratio of Pulse Duration to Period of 2
```


FIGURE C. 8

Hoop Stress at the Boundary due to an Incident Wave of Dilation Using $n=0,1,2(\bar{v}=0)$ (from Paul, 1963)

EOOp Stress at the Boundary due to an Incident wave of Dilation Using $n=0,1,2(\bar{v}=1 / 3)$ (from Paul, 1963)

Hoop Stress at the Bouncary due to，an Incident Shear Wave Using $n=0,1,2(\bar{v}=0)$
$($ from Paul, 1963$)$

Hoop Stress at the Boundayy vs. Time due to an Incident Wave of Dilation with 4,000 psi at the Front and Various Rates $0 \equiv$ Decay Behind the Front ($\bar{v}=1 / 3, \theta=0^{\circ}$) (from Paul, 1963)

(Note: Ordinate nomalized by peak amplitude of incident stzess for cirect comparison with Figure C. 9 for $\theta=0^{\circ}$; in original document ordinate was in absolute value of stress.)

Hoop Stress at the Boundary vs. Time due to an Incident Wave 0 . Dilation with 4,000 psi at the Front and Various Rates of Decay Behind the Front $\left(\bar{v}=1 / 3, \theta=90^{\circ}\right)$

Note: Ordinate nomalized by peak amplitude of incident stress Eor direct comparison with Figure C. 9° Eor $\theta=90^{\circ}$; in original cocument ozdinate was in, absolute value of stress.)

REFERENCES

C. 1 Bluem, J.A., Newmark, N.M. and Corning, L.H. (1961), Design of Multistory Reinforced Concrete Buildings for Earthcuake Motions, PCA, Skokie.
C. 2 Paul, L.S. (1963), "Interaction of Plane Elastic Waves with a Cylindrical Cavity," Ph.D. Thesis, University of Illinois at Urbana-Champaign.
C. 3 Yoshihara, T. (1963), "Interaction of Plane Elastic waves with an Elastic Cylindrical Shell, ${ }^{\text {Ph.D. Thesis, University }}$ of Illinois at Urbana-Champaign.
C. 4 Merritt, J.I. and Newmark, N.M. (1964), Nuclear Geoplosics, Eart V, "Efミects on Underground Structures and Equipment," Report DASAl285(V), Washington.
C. 5 Ali-Akbarian, M. (1967), "Oblique Incidence of Plane Stress Waves on a Circular Tunnel," Ph.D. Thesis, Universizy oE Illinois at Urbana-Champaign.
C. 6 Belytschko, T. (1978), Private Communication.
C. 7 NOAA (1973), San Erancisco Earthquake of February 9, 1971, Vol III, Washington.
C. 8 USGS (1982), The Imperial Vallev, California, Earthcuake of October 15, 1979, Prof. Paper No. 1254, washisgton.

ANNEX D

STIFFNESS OF UNDERGROUND STRUCTURES

ANNEX D
 STIFENESS OF UNDERGROUND STRUCTURES

Tunnel Lining

The general approach taken in assessing either the static or dynamic behavior of a lined tunnel depends on the relative stiffness of the liner/soil system is conveniently considered as being divided into two separate and distinct types. The first is extensional stiffness, which is a measure of the equal ali-arounc uniform pressure necessary to cause a unit diametral strain of the liner with no change in shape. A measure of the extensional stifiness of the medium relative to that of the inner is aiver yy the compressibility ratio C (Peck, et al, 1972):

$$
C=\frac{E_{m}\left(1-v_{2}^{2}\right) I}{E_{2} t_{l}\left(1+u_{m}\right)\left(1-2 u_{m}\right)}
$$

ミ. D.1
where:

$$
\begin{aligned}
& E_{m}=\text { modulus of elasticity of medium } \\
& E_{2}=\text { moculus of elasticity of liner } \\
& R=\text { radius of liner } \\
& u_{m}=\text { Poisson's ratio of mecium } \\
& u_{2}=\text { Poisson's ratio of liner } \\
& t_{i}=\text { average thickness of liner per unit length. }
\end{aligned}
$$

Since the earticuake loadings involve shear waves which primarily charge tie shape of elements in the ground mass without significantly changing the average principal stress, the compressibility zatic of the tunnel has very little effect on the behavior of the tannel.

The second measure of stiffness is flexural stiffness, which is a measure of the magnitude of the nonuniform pressures necessary to cause a unit diametral change in shape or an ovalling of the liner.

The flexibility ratio is a measure of the flexural stiffness of the medium relative to that of the lining. The flexural stiffnesses of both the medium and the liner, as defined here, are essentially measures of the resistance of each to a change in shape under a state of pure shear. The flexibility ratio, F, is given by the following equation (Peck, et al, 1972):

$$
F=\frac{E_{m}\left(1-U_{1}^{2}\right) R^{3}}{6 E_{2} I_{2}\left(1+U_{m}\right)}
$$

Ghere: $\quad I_{2}=$ Moment of inertia of the liner cross-section per unit length along the axis of the tunnel.

Calculations of liner-medium interaction for various loading conditions, (Peck, et al, 1972, anc Mohraz, et al, 1973) show that a liner will behave essentially as a perfectly flexible structure if the flexibility ratio is larger than 20. That is, the liner will conform to the distortions imposed upon it by the medium and, therefore, the distortions experienced by the liner can be estimated by calculating the distortions for the free field. For the Met=o Rail Project, it is reasonable to assume that the most unfavorable soil conditions are in the alluvium where a representative (low) seismic velocity is 900 fps. The following material properties are then obtained for an 8 in. thick lining with a mean radius of 109 in . and an ultimate concrete strength of 6,500 psi.

$$
\begin{aligned}
G_{\text {seismic }} & =\quad \partial v_{s}^{2}=\frac{120 \mathrm{pcf}}{32.2 \mathrm{ft} \cdot / \mathrm{sec} .^{2}} \times \frac{(900)^{2 E t} .^{2}}{\sec .^{2}} \\
& =3.20 \times 10^{6} \mathrm{ps}=21,000 \mathrm{psi}
\end{aligned}
$$

$$
\begin{aligned}
G_{\text {effective }} & =(0.6 \text { to } 0.8) G_{\text {seismic }}=12,600 \text { to } 16,800 \mathrm{psi} \\
E_{\text {meffective }} & =2(1+u) G_{\text {effective }}=2.6 G_{\text {effective }} \\
& =32,750 \text { to } 43,700 \mathrm{psi} \\
R & =109 \mathrm{in} . \\
E_{\ell} & =57,000 \sqrt{f_{f}^{\prime}}=57,000 \sqrt{6,500} \\
I & =4.6 \times 10^{6} \text { psi } \\
I & =\frac{(8) 3}{12} \text { per inch of length }
\end{aligned}
$$

Therefore, the flexibility ratio for the precast concrete lining. is conculated to be

$$
\Sigma=\frac{(32,750 \text { to } 43,700)(1-0.22)(109)^{3}}{6\left(4.6 \times 10^{6}\right)}=30 \text { to } 40
$$

Thus since the flexibility ratio for the articulated liner under consideration is even larger than that indicated above, it is certainly above the 20 imposed by Peck, and the liner will behave as a flexible liner; as discussed above, the line will conEorm to the distortions imposed by the medium.

Snakinc Mode for Tunnel Linings and Stations

Flexibility of the subway structure in plan view, where the structure appears as a long narrow tube or "snake" subjected to the earthcuake ground wave motion, has not been defined mathematicaliy in the literature. However, it is recommerded that the structure be investigated by imposing on the stzucture the strains produced in the ground by the earthcuake (derived in Annex B) as a design
bound. This recommendation is based on the following considerations:
a. If the structure exhibits the same flexibility as the ground replaced, then assuming the structure strains are equal to the strains in the ground is the exact solution.
b. If the structure is more flexible than the ground (as preliminary calculations indicate), the structure will certainly follow exactly the ground motions so that once again assuming the structure strains equal to the strains in the ground is the exact solution.
c. If the structure is less flexible than the ground, it will attempt to move less than the ground moves in the free field. By moving less than the ground, the structure nec-Essミニ-iY is straimed less than the grounc. Therefore tife strains in the ground are an upper bound to the strains in the structure and imposing the strains in the ground on the structure is conservative.

Thus, for all cases of structural flexibility (less than, equal to, or greater than the replaced ground) the strain in the ground is either equal to or a bound of the strain in the structure, and imposing the strain in the ground on the structure is a conservative assumption.

Racking Mode for Stations

Preliminayy calculations incicate that the station may be less Elexible than the ground under racking motion. As discussed above, however, it is conservative to assume that the motion of the station structure is the same as that of the surrounding ground. Even. with the conservative assumption it is expected that the earthquake conditions will impose only minor, if any, modiEications to the static design (see Appendix 1).

ANNEX E

 TUNNEL ANALYSES FOR LOOSENING LOAD-•

ANNEX E

TUNNEL ANALYSES FOR LOOSENING LOAD

I．Introduction

The basic design of the precast concrete segments has been per－ formed by MRTC following the＂Guidelines for Tunnel Lining Design＂ （O＇Rouzke，1984）．It is recognized，however，that those guide－ lines are general in nature and address，for the most part，only static loading conditions．Under the dynamic loading conditions induced by a earthquake，the tunnel will be subjected to：
－Distortions which have been discussec elsewhere in these Anmexes：and
－Vertical accelezations．If，during construction，loosen－
 these vertical accelerations will increase the impact o三 this locsened load on the tunnel．This Frobiem has not been ad－ dressed fully in the literature．

Available infomation indicates the impact of this locsened load is ext＝emely sensitive to methods of construction anc to assump－ tions＝egarding the properties and condition of the tunnel lining and surrouncing materials．With the recognition of this sensitiv－ ity，a preliminafy investigation of the SCRTD tunnel liner section was zezEomed to provide estimates 0 the adecuacy 0 the section to Eesist＂gravity loading＂zesulting Ezom the weight of a zone o三 locsened matezial above the tunnel．The results aze presented in tems oi normalized thrust and bencing moment distributions around the tunnel cross－section．A parametric approach was adopted to derezmine the sensitivity o三 peak bending mcments to variation $0 \equiv$
key variabies．The problem was analyzed in a static，plane strain configuration with a vertical axis of symmetry．The SATURN pro－ gram（Sweet，1979）was used with the existing grid shown in Figure E．1．As discussed below，a grid with a shallower tunnel was latez used and the results agreed to the third significant figure．The liner was modeled as a continuous concrete cylinder containing 20 elements surrounded by a medium herein referred to as＂rock＂or ＂soil＂and composed of 280 elements．Both materials were modeled as linearly elastic．The boundary conditions used are as shown in Figure E．l．

Table E．l sumarizes the 11 problems analyzed to show the parame－ ters investigated．Symbols used in Table E．l are defined in Table E．2．Section II discusses the problems chosen for analysis and discusses the rationale for varying each parameter．Section III discusses the processing models used and the method of computing Wintit and thrust．Eection iv summarizes the resilts and diaws ： conclusions therefrom．Section V offers recommendations for more study．Section VI provides the detailed data from the calcula－ tions．

II．Assumptions for Problems Analvzed

Figure E． 2 illustrates the general configuration of all problems analyzed．The uniform load shown in（a）was used for Run 1 only； all other runs used the triangular load shown in（b）．All loads were apolied over the top 90° segment as shown，and the uniform and triangular load magnitudes were selected to result in the same total apolied load for all runs．Boundary conditions Eor the remaining 270° were varied as described below．The total applied load was the weight of a triangular＂loosened＂zone of rock $\sqrt{2}$ R in wicth anc h high，as shown in Figure E．3．The unit weight of zock was taken as $120 \mathrm{lb} . / \mathrm{ft} \mathrm{.}^{3}$ ．The ratio，h / R was taken as one． Table $E . \sigma$ shows peak moments at other h / R ratios Eor all runs．

A11 runs except Run 11 were modeled with a l40－ft．depth of burial to the tunnel springline．

The material properties used for the analysis were obtained from representative data used to approximate the layered geology an－ ticipated for the tunnel system．These data are shown in Table E． 3 and are those used for the new SHAKE computer runs reslected in Figures III－1 and III－2．

Runs 1 and 5 used identical material properties，differing only in the load shape which was uniform in Run 1 and triangular in Run 5. For these runs，the soil was considered representative of a soil below the water table at approximately 100 ft．with a shear－wave velocity of $1,500 \mathrm{ft} /$.sec ．and a P－wave velocity of $5,000 \mathrm{ft} . /$ sec．${ }^{\text {a }}$ The＂loosened zone＂above the tunnel section had elastic properties of one－tenth the insitu material．These reduced values
 better represent the actural behavior．The strength of the con－ crete was assumed as 8,000 psi in Runs 1 and 5.

The second series of runs varied the soil／liner stifiness charac－ teristics．The properties of Run 9 represent a dry soil with a shear－wave velocity of $1,200 \mathrm{ft} . / \mathrm{sec}$ ．and a p－wave velocity of 2,400 Et．／sec．A wet soil with a similar shear strength was used Sor comparison（ $V_{s}=1,200 \mathrm{ft} . / \mathrm{sec}$ ； $\mathrm{V}_{\mathrm{p}}=5,000 \mathrm{ft} / \mathrm{sec}$ ）．For these two runs a lower concrete strength was used（ $f_{c^{\prime}}=4,000$ psi）．In addition，the stiffness of the loosened zone was set to zero，thus eliminating any transfer of stress into this material． Run 11 was a repeat of Run 9 except the depth of burial was＝e－ duced to． 65 ft ．（Figure E．4）．

[^5]Runs 13 through 18 used a common set of soil and liner properties throughout but included slight variations in the loosened zone properties. These properties represent a dry soil near the surface and above the water table $\left(V_{s}=830\right.$ ft. $/ \mathrm{sec}$; $V_{p}=1,660$ ft./sec.). Also, material properties of the elements adjacent to the liner were varied as a means of approximating a slip condition or slip layer. The concrete strength was increased to the actual design value of 6,500 psi. Figure $E .5$ shows the materials within the grid.

Run 13, the control run, used properties of the slip layer the same as the surrounding soil in order to assess the effect of the new soil and concrete properties when compared to previous runs. Loosened zone stiffness was again zero, the same as Runs 9 to 11.

Run 14 differed from Run 13 in that a "slip layer" was approximate二 by reducing the shear modulus to one-terth that of the surrounding medium. In Run 15 , the slip laver shear modulus was reduced further, to zero.

In both Runs 17 and 18 , the slip layer was made the same as for Run 14, i.e., one-tenth the shear moduius of the surrounding medium. The loosened zone in Run 17 was given one-tenth the elastic properties of the in situ material.

Run 18 again used zero stifiness in the loosened zone, but employed two layers of "slip" elements in the slip layer with a 90 percent reduction in shear modulus.

IIE. Solution Method

The initial solution step was to define and set up the problem, including the element g=id geometry and the apolied loacing. The grids used have been previously described; symetry about the vertical tunnel axis was employed for computational eificiency.

Figure $E .3$ details the load geometry resulting from a tiangular loosened zone above the tunnel. For $a=9.5$ ft. and $h=a$, the net area is found to be $56.8 \mathrm{ft}^{2}$. With a unit weight of soil of 120 lb./ft. ${ }^{3}$ this gives a load of $6,810 \mathrm{lb}$. per foot of =unnel. The same total load was applied in the uniform loading aun 1) though the shape was different.

SATURN is a generalized three-dimensional finite element computer code with dynamic and nonlinear capability. All funs for these analyses were made with static loadings and linearly elastic materials. All grid elements were quadrilateral continuum elements in plane strain.

The nodal displacements obtained from SATURN were used to compute circumferential strains at the interior and exterior surface of each liner element. Figure E.6 details the strain calculation pronedure which was used. Avial and fiexural strains wers computeá irom:

$$
\text { Axial strain }=\varepsilon_{c}=\frac{\varepsilon_{0+}^{\varepsilon} i}{2}
$$

Eq. E.1

$$
\text { Flexural strain }=\varepsilon_{E}=\frac{\varepsilon_{0}-\varepsilon_{i}}{2}
$$

Eq. E. 2
in which ε_{i} and ε_{0} are the interior and exterior circumferential strains respectively. Thrust and moment were then computed assuming an elastic ring of uniform thickness:

$$
\begin{array}{ll}
\text { Thrust }=T=E t \varepsilon_{c} & \text { Eq. E.3 } \\
\text { Moment }=\Sigma=\frac{E t^{2} \varepsilon_{E}}{6} & \text { Eq. E.4 }
\end{array}
$$

where Ξ is the modulus of Elasticity and t is the linez thickness Eor a unit length.

Ranken et al (1978) provide solutions to various related problems which are useful for comparison. Since those solutions are normalized by the factors $P a$ for thrust and $P a^{2}$ for moment, these factors must be computed for the present analysis. P is the equivalent uniform load magnitude per unit tunnel leagth; that is, the total applied load divided by the loaded span. The tunnel radius is a.

For the present problem a is 114 in. giving a load span of a $\sqrt{2}=$ 161 in. The total load was computed earlier as 6,810 lb./ft. so that P is $(1 / 12)(6,810) / 161=3.520 \mathrm{lb} . / \mathrm{in}^{2}$. Pa is then 400 per inch of tunnel length and Pa^{2} is 45,750 per inch.

Pa was also used as a normalized factor for thrust computed from SATURN. Moments computed from SATURN were normalized with respect to ultimate moment capacity in view of the fact that moment conthens the design. This ultimate moment capacity was computec from $M_{u}=0.9 A_{s} f_{y} d . \quad A_{s}$ is $1 / 2$ percent, f_{y} is 40,000 psi and d is taken as 7 in. Using $A_{s} 0.005$ d gives $M_{u}=0.0045 \mathrm{f}_{\mathrm{Y}} \mathrm{d}^{2}=8,820$ in.-i上. in.

The values of C and F listed in Table E.4 can be used to enter plots of coefficients for the tems in Equations E. 7 and E. 8 and Equations 7.1 and 7.2 of Ranken to obtain nomalized thrusts and moments for comparison purposes. These results are tabulatec in Table E. 4.

IV. Results

The complete results of the finite element calculations aze presented in Section VI. These results are given in tems $0 \equiv$ thrust and moment as a function of angular position arounc the cincumEerence 0 f the liner. In this section influences $0 \equiv$ the various parameters are ciscussed. peak moments are summazized Eor ail man expressec in terms of a percentage of the ultinate moment
capacity of the section. These moment values, presented in Table E. 6 , are given for several values of h / r, where h is the height of the triangular "loosened" zone above the tunnel. The calculations were performed with an $h / r=1$. Other values were scaled in proportion to the change in weight of the icosened zone as a function of h . The last three columns in Table E. 6 related to values of maximum moment from Ranken for a tunnel and medium with the same flexibility and compressibility factors. A comparison. of these values will be discussed later.

Runs 1 and 5 investigated the effect of a uniform vs. a triangular load distribution on the liner. Results of these two calculations are presented in Figures E. 10 and E.ll in tems of nomalized thrust and moment around the liner. These normalizing factors are discussed in Section III. The two figures show that the triangular load distribution generates higher moments and less thrust
 for the triangular load.

The next series of runs looked at the variation in stiffness of the medium. In addition, a zero stiffness was assumed for the "loosened-zone" as a worst case assumption. Run g, using a "dry" material with $V_{s}=1,200$ ft.sec. and $V_{p}=2,400$ ft./sec., resulted in higher moments and thrust than the previous runs as shown in Eigure E.12. Figure E.13, a similar run (Run 10) with a wet material $\left(V_{s}=1,200\right.$ ft./sec.; $V_{p}=5,000$ ft./sec.) produced very little change. The difference between these two runs and Run 5 are attributed to the reduced shear stiffness of the medium (63,700 psi vs. 38,900 psi) and the zero stiffness of the loosened zone. Results of Run 11 showed the calculations to be relatively insensitive to burial depth (material properties held constant from Run 9).

The Einal series of calculations was concerned primarily with the effect of slip between tie concrete liner and the surzounding medium. Run 13 was a repeat of Run 9 with near sunEace soil and
the design strength concrete．Results indicate a 38 percent in－ crease in maximum bending moment for the weaker soil（no slip）． By incorporating a layer of elements with lower shear stizness （sifp layer）the calculated peak moment increased significantly to 62 percent of ultimate section capacity（Run 14）．By decreasing the shear stifiness to zero（Run l5）a full siip condition was approximated and the peak moment increased to 75 percent of ulti－ mate．It should be noted that for these runs，the elastic proper－ ties of the＂loosened＂zone are zero；thus，there are no forces acting between the loosened zone and the suryounding medium．

To assess the relative importance of＂loosened＂zone properties， Run 17 was performed with elastic properties of this zone at one tenth their in situ values．Comparing this run with Run 14 one sees a 33 percent reduction in peak moment in going from 0 to one－tenth the elastic properties．The last calculation（Run 19） was ä repeat of Run 14 only with 2 slip layers．This resulted in a slight increase in maximum moment of approximately 8 percent．

From the above cajculations it is evident that the wors＝－cese concitions are a zero stizfness（ $E=G=K=0$ ）＂loosenec＂zone combined with a full－slip condition（Run 15）．It appears that some slip resistance as well as some soil resistance in tise ＂locsened＂zone may be a more realistic assumption．Nevertheless， the worst－case（Run lis）assumptions result in a maximum bending resistance cf only 72 percent of the ultimate section capacity． By assuming some small amount of slip resistance between the liner and soil（Run 14），a maximum moment of 62 percent of ultimate is reached．Finally，by allowing some stress capability in the loosened zone（Run 17）the peak moment is recuced to only 42 per－ cert $0 \approx$ ultimate． 0 these three calculations，the second case （Run 14）proviそes a reasonably consezrative estimate of section capacity．The last case（Run 17）may overestimate the stress caミaílify of siee loosened zone by allowing some tensiie st＝esses to cevelop．

The last three columns in Table E. 6 provide a means of comparison between the method of analysis of "gravity loading" presented in Ranken and the preceding calculations; The first of these columss are for a uniform lcad with the same total weight of the assumed "loosened" zone distributed over a 90° arc of the lining. Both slip and liner separation from the ${ }^{n}$ loosened" zone are allowed. These values should be compared to the $h / r=1$ column. In the second of these colums, the peak moments are multiplied by a factor of 2 reflecting the difference between the peak load of the triangular distribution versus the uniform distribution. The last column represents the peak moment of the first column multiplied by the ratio of the peak moment of Run 5 (triangular) and Run 1 (uniform). This approximates the difference between the uniform load assumption of Ranken and the triangular load used for the present calculations. If one assumes this ratio (2.75), the peak moment given by Ranken is in good agreement with the worst case $\because \equiv!$ in zu most like that of Ranken.

V. Recommendation

Based on the preceding results, the assumed uniform ring appears adecuate to resists the assumed "gravity loading." More research is required to detemine the behavior of actual liners.

The problems reflected in Table E. 6 and Section VI have gaps; they certainly do not represent a complete parametric study. Nevertheless, as already noted, the approximate results indicate that the "loosening load" by itself is relatively benign. In fact it is perhaps so benign that even when combined with the racking distortion, which most likely would occur after any strain due to loosening load has developed, gives a total distortion which is not going to create any condition which approaches collapse unless the
effective shear-wave velocity in the surrounding soil is low. Because in New Alluvium this velocity may be low enough to create difficulty, the following approximate procedure is suggested.

The approximate procedure is generally based on the plots in Figure E.14. The open circles represent, for modulus of the loosened zone of 0 and 5,000 psi, Runs $13,14,15$, and 17 , from Table E. 6. The two open circles at a modulus of 16,700 psi are from new runs just completed. The curves drawn are best slopes interpolated or extrapolated from the data available. The square solid point represents a result using an entirely different finite element model, but otherwise using parameters essentially the same as for the run immediately above it. The models are so different that the results cannot be considered comparable; the comparison merely shows the results of two independent model formulations. (However; it is probably not entirely coincidental that the ratio 0 E the ordinate for the square and the circle immediately above it is nearly equal to the ratio of the total loads; the square assumes approximately a sinusoidal loading while the circle assumes approximately a triangular loading, each acting over one-iourth the circumEerence.)

Since the results described in detail in this annex are more conservative than earlier work (Ranken) they may be used for the current design efforts. To be reasonably sure that refinements are rot going to produce results which are worse (higher strains than those implied herel than those deduced from the following procedure, the data from Run 14 (stiffness of loosened zone 5,000 psi) are used to define conditions Eor using Ranken as the basis Eor accounting for variations in lining stiEzness.

The stiffness of the linings used in the preceding calculations is defined as that for an uncracked, homogeneous concrete ring with moculus of elasticity $0 \equiv 4.6 \times 10^{6} \mathrm{psi}$. The secmented linings, or the ctier hand, have a sti三nness more consistent with a cracked section. Since the moment coefincient is only 68 percent oミ ulEi-
mate and since the yield moment is essentially numerically equal ＝0 the ultimate moment，the strain in the steel is approximately ε ह percent of that corresponding to fnitial yielding of the steel． \therefore this level of strain in the steel，the concrete is still in its nearly linear range of behavior．Thus even for the case recommen－ ded，essentially elastic conditions are maintained．Since the solution used in this annex and that used by Ranken are Eor elas－ tic conditions，it is an acceptable approximation to use the com－ parison between uniform load and triangular load in Table E．6 （Runs 1 and 5）to define，on a consistent basis，the ratio $0 \equiv$ moments at the crown produced by a triangular and a unisorm load distribution．As already noted，this ratio is 2．75．At the same time it is noteworthy that Run 15 comes as close as possible to that used by Ranken．The detailed results．for this fun are con－ sistent with those of the model used by Ranken as generally in－ dicatec by the comparison in Table E．5．

3eラore this coe三Eiciert was appliea，however，otiner data hac to be developed from Ranken to provide data for a range of relative Elexibilities Eor the lining／medimm combinations．As noted ear－ İez，Ranken developed an approximate equation to＝epzesert his computer－gererated data for various distributions oE unijozily distributed loosening loads（distributions Exom 60°－ $180^{\circ} 0 \equiv$ included angle）．These are given above as Equations E．7 and E．8． Adcitionally，some dezivations were recuized．These aze given beiow．As already noted，the curvature（a）induced by bending in a unifom elastic ring is：

$$
\begin{aligned}
& a=-3\left(\frac{\Delta D}{\partial}\right)\left(\frac{1}{a}\right) \\
& \text { 3ut } a=-\frac{M}{\Xi_{2} I_{2}} \text { or } M=3\left(\frac{\Delta D}{D}\right)\left(\frac{E_{2} I_{2}}{a}\right) \\
& \text { モミ } 4 \text { is sealed by Pa2 as done うy Ranken: } \\
& \frac{u}{\sum_{a}^{2}}=3\left(\frac{\Delta D}{D}\right)\left(\frac{E_{2}}{\underline{2}}\right)\left(\frac{I_{2}}{a^{3}}\right)
\end{aligned}
$$

But Ranken also scales $\frac{\Delta D}{D}$ by $\frac{P}{E_{m}}$, therefore:

$$
\begin{aligned}
& \frac{M}{P a^{2}}=3\left(\frac{\Delta D / D}{P / E_{m}}\right)\left(\frac{E_{\ell} P}{P E_{m}}\right)\left(\frac{I_{\ell}}{a^{3}}\right) \text { or } \frac{M}{P a^{2}}=3\left(\frac{\Delta D / D}{P / E_{m}}\right)\left(\frac{E_{\ell}}{E_{m}}\right)\left(\frac{I_{\ell}}{a^{3}}\right) \\
& \text { and } \frac{\Delta D / D}{P / E_{m}}=\frac{1}{3}\left(\frac{M}{P a^{2}}\right)\left(\frac{E_{m}}{E_{\ell}}\right)\left(\frac{a^{3}}{I_{\ell}}\right)
\end{aligned}
$$

but F (Peck, et al, 1972) is:

$$
F=\frac{E_{m}}{E_{l}} \frac{a^{3}}{6 I_{l}} \frac{1-v_{\ell}^{2}}{1+v_{m}}
$$

Therefore:

$$
\frac{\Delta D / D}{\bar{\delta} / \overline{E_{m}}}=2 F\left(\frac{M}{\mathrm{~Pa}^{2}}\right) \quad\left(\frac{1+v_{\mathrm{m}}}{1-v_{e^{2}}^{2}}\right.
$$

Eg. R.II

Equation E.ll obviously can be used to plot the left hand term as a function of F if values of M/Pa² are know. They are know approximately from Equation E. 7 and E.8. The results are plotted in Figure E. 15 as an approximation to the diameter change (downard in the vertical direction and outward in the horizontal) for the loosening load.

Finally we address the significance of the 2.75 mentioned prior to the above derivation: To investigate the implications of the approximation in Figure E.15, and attempt was made to derive Figure 7.9 ($\frac{\Delta D / D}{P / E_{m}}$ vs. F) of Ranken from Figure 7.8 (M/Pa2 vs. F). This comparison is shown in Figure E.l6. To make the computations, a correction had to be included for the differences in load distribution between the computations given in this annex (triangular or sinusoidally distributed loads) and those in Ranken (uniEorm). (Encidentally, a sinusoidal distribution is inherent in Equation
E.10; also Equation E. 10 can be derived assuming a circle is deformed into an ellipse.) The 2.75 factor from Table E. 6 was used for this adjustment. The adjusted values agree approximately with Ranken over the range from $F=4$ to 500. A somewhat better fit would be given by:

$$
\frac{\Delta D / D}{P / E_{m}}=0.5 F\left(\frac{M}{P_{a}^{2}}\right)+1
$$

Although there is theoretical justification for a fit of this form, it required assuming a cracked section to define moment of inertia, $\left(I_{\ell}\right)$ and area $\left(A_{2}\right)$, rather than an uncracked section. Since an uncracked section was apparently assumed by Peck and carried forward to Ranken, there appears to be no current justification to use a cracked section to interpolate Ranken's data.
VI. SATURN Calculations;-Data

Tajie 三.i is repeated on page E-1i to sumanize tie io jamuki funs which were made. In subsequent pages, liner strains and forces are tabulated for all 20 iiner elements of each run. The colums tabulated are described in Table E.7.
'rable e. 1

Run Summary Matrix

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	Load Shape	$\begin{aligned} & V_{\mathrm{s}} \text { soll } \\ & \mathrm{ft} . / \mathrm{sec} \end{aligned}$	$\begin{aligned} & y_{p} \text { sofl } \\ & \text { ft. /sec } \end{aligned}$	$\begin{gathered} \text { E soll } \\ \text { psi } \end{gathered}$	$\begin{aligned} & \text { vsoll } \\ & \text { psil } \end{aligned}$	$\begin{gathered} k \leq 0 \pi \\ p \leq 1 \end{gathered}$	$\begin{gathered} \text { G soll } \\ \text { psi } \end{gathered}$	$\begin{aligned} & \text { E"loosened" } \\ & \text { zone-psi } \end{aligned}$	$\begin{aligned} & \text { G "nnter- } \\ & \text { face"-psi } \end{aligned}$	$\mathrm{f}_{\mathrm{c}} \mathrm{-psi}$
1	Unilform	1,500	5,000	184,700	0.45	622,300	63,700	18,500	63,700	8,000
5	Triangular	1,500	5,000	184,700	0.45	622,300	63,700	18,500	63,700	8,000
9	Triangular	1,200	2,400	103,600	0.33	103,500	38,900	0.0	38,900	4,000
10	Triangular	1,200	5,000	114,200	0.47	621,800	38,900	0.0	38,900	4,000
$11^{\text {a }}$	Triangular	1,200	2,400	103,600	0.33	103,500	38,900	0.0	38,900	4,000
13	Triangular	830	1,670	50,000	0.33	50,000	18,700	0.0	18,700	6,500
14	Triangular	830	1,670	50,000	$0.33{ }^{\text {b }}$	50,000	18,700	0.0	1,870	6,500
15	Triangular	830	1,670	50,000	$0.33{ }^{\text {c }}$	50,000	18,700	0.0	0.0	6,500
17	Triangular	830	1,670	50,000	0.33	50,000	18,700	5,000	1,870	6,500
$18{ }^{\text {d }}$	Triangular	830.	1,670	50,000	0.33	50,000	18,700	0.0	1,870	6,500

a Depth of Burial $=65 \mathrm{ft}$. in this case only, otherwise 140 ft .
b At interface $=0.48$
c At interfoce $=0.50$
d Two rings of interface elements

```
                TABLE E.2
                    Definition of Symbols
                    E - Modulus of esasticity (soil mass, loosened soil, or
                concrete)
                    v - Poisson's ration (soil mass, loosened soil, or concrete)
                    K - Bulk Modulus =
                    G - Shear modulus =}\frac{E}{2(1+v)
                            fcc - Concrete compressive strength (28-day)
                                    v
            V - P-wave velocity
```

TココニE E．3

Shea＝Wave Velocities Ercm SHAkE Computer Runs（ft．／sec．）

| SHAKE
 Run
 Denth | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 800 | 1200 | 1200 | 1200 | 1200 |
| 25 | $990 *$ | $1200 *$ | $1900 *$ | 1200 | 1200 |
| 50 | 1120 | 1900 | 1900 | 1900 | 1900 |
| 75 | 1300 | 1900 | 1900 | 1900 | 1900 |
| 100 | 1500 | 1900 | 2500 | $1900 *$ | 1900 |
| 130 | 2000 | 1900 | 1500 | 1900 | 1900 |
| 200 | 3000 | 4000 | 4000 | 4000 | $4000 *$ |

$V_{p}=2 V_{s}$ above water table；i．e．，$v=1 / 3$
$V_{p}=5,000$ ft．／ses．below water tabie
＊water table

Peak Moments and ThIrsts ADpzoximated from
Ranker，et al．，（1978）Equations
Run No $C \quad F$

$\frac{M}{M_{U l t}}-\% \quad \frac{2 M^{a}}{M_{U l t}}-\infty$
$1 \quad 3.297 \quad 124.7,0.644 \quad 0.0326$
16.9 33.8
$\begin{array}{llllll}5 & 3.297 & 124.7 & 0.644 & 0.0326\end{array}$
16.9
33.8
$\begin{array}{lllllll}9 & 0.855 & 107.8 & 0.663 & 0.0309 & 16.0 & 32.0\end{array}$
10
4.671176.
$0.646 \quad 0.0266$
13.8
27.6

11
4．671． 176.60 .6460 .0256
13.8
27.6

13
0.323
$40.7 \quad 0.538$
0.0551
28.6
57.2

14
0.323
$40.7 \quad 0.538$
0.0551
28.6
57.2

15
0.323
$40.7 \quad 0.538$
0.0551
28.6
57.2

17
0.323
40.7
0.538
0.0551
28.6
57.2

18
0.323
$40.7 \quad 0.538$
0.0551
28.6
57.2

C－Compressibility ratio $=\frac{\vec{E}_{m}}{E_{1}}\left(\frac{a}{t}\right)\left[\frac{\left(\dot{L}-v_{1} \bar{i}\right)}{\left(1+v_{m}\right)\left(\dot{1}-\hat{c}_{m}\right)}\right]$
$=-$ Flexibility ratio $=\frac{E_{m}}{E_{1}}\left(\frac{2}{t}\right)^{3}\left[\frac{2\left(1-v_{1}^{2}\right)}{\left(1+v_{m}\right)} j\right.$
$\frac{T^{\prime}}{P_{j}}=\left(B_{t}\right)_{i, j}\left(F_{t}^{\prime}\right)_{i, j}-M_{i} C^{1.11} \quad$（Ranker，et al．，1978，eq．7．1）${ }^{b}, 6(E .7)$

$\frac{M}{M_{U l t}}=\frac{M}{P_{a}^{2}} \cdot \frac{\rho_{a}^{2}}{M_{u l t}}=\frac{M}{P_{a}^{2}} \frac{45,750}{8,820}$
In C and F definitions above（Peck，et al．1972），＂a＂is the tunnel） radius and＂t＂is the liner thickness．The subscripts＂in＂and＂l＂ refer to the medium（soil？）and the liner respectively．

[^6]Base Values of the Thrust Coefincient Ecr use in Equation 7.1

j	$\begin{aligned} & \left(B_{f}\right)_{I, j} \\ & a=180^{\circ} \end{aligned}$	$\begin{aligned} & \left(B_{t}\right)_{2, j} \\ & \cdot a=120^{\circ} \end{aligned}$	$\begin{aligned} & \left(B_{t}\right)_{3, j} \\ & a=90^{\circ} \end{aligned}$	$\begin{aligned} & \left(B_{t}\right)_{4,1} \\ & c=60^{\circ} \end{aligned}$
1	． 540	． 540	． 520	． 440
2	． 582	． 582	． 563	． 483
3	． 712	． 712	． 700	． 621
4	． 872	． 872	． 849	． 671
5	1.015	． 997	． 873	． 653
E	1.068	． 989	． 833	． 653
7	1.084	． 964	． 817	． 619
8	1.083	． 960	． 815	． 615
9	1.080	． 957	． 814	． 614
10	1.079	． 957	． 813	． 613
11	1.078	． 957	． 812	． 613
12	1.077	． 957	． 811	． 613
13	1.076	． 957	． 810	． 613

（From panken et al（1973））

Results Sumazy

NRRUW NO	MAXIMLAM MONET POR MARIOUS AR WALUES（\％）									$\begin{array}{r} \text { Ref } 2 \\ 1.0 \end{array}$	$\begin{array}{r} 2 x \\ \operatorname{Ref}+2 \\ 1.0 \end{array}$	$\begin{array}{r} 2.75 \times \\ R e \div 2 \\ 1.0 \end{array}$
	0.2	0.4	0.6	0.8	1.0	1.5	2.0	2.5	3.0			
－1	． 04	2.97	3.53	4.94	6.37	9.95	13.53	16.53	20.78	16.90	33.30	46.48
5	1.76	5.70	9.69	13.58	17.52	27.36	37.21	46.26	56.90	16.90	33.30	46.48
9	3.44	11.12	18.90	26.48	34.16	53.36	72.56	90.22	110.95	16.00	32.00	44.90
10	3.34	10.81	18.37	25.73	33.20	51.35	70．5！	37.67	107.82	13.30	27.50	37.95
11	3.42	11.07	18.82	26.36	34.00	53.11	72.22	89.30	110.44	13.30	27.60	37.95
13	4.76	15.39	26.15	36.53	47.26	73.81	100.37	124.80	153.49	23.30	57.20	78.65
14	6.22	29.13	34.21	47.92	61.81	96.55	131.29	163.25	200.77	23.50	57.20	78.65
15	7.25	23.44	39.34	EE．31	72.50	112.46	：52．72	190.14	233.34	28.50	57． 28	73.65
$1 ?$	4.29	23.57	22.36	32.30	41.57	65.38	\％$\%$ ． 0	1： 17.34	10¢．	23． 0^{2}	57.24	\％ 3.5
18	6.74	21.30	37.04	51.39	66.74	104．56	142.18	176.79	217.42	29.60	57.20	78.55

ELEM－Element number， 1 at crown， 20 at invert
E－Exterior element strain－microstrain，＋compression$E_{i} \quad$－Interior element strain－microstrain，＋compressionEc－Axial element strain－microstrain，＋compression
E：－Flexural eiement strain－microstrain，．＋tension on inside fiber
Thrust－Axial force，K in Kips／in．，T_{f} nomalized to $P a$.
Moment－Flexural force，K in in．－Kips／in．，Mf，fraction of ultimate momentcapacity of 8,820 in．－kips／in．

RUN IUMGER：I

E134	EO	Ei		E6	Ef	k－thrust－Tf		k MOMENT－Mt	
1	17.3	－3．4		7.0	10.3	0.284	0.710	0.562	0.064
2	15.4	－0．7	1	7.3	8.0	0.299	0.748	0.438	0.050
3	11.9	4.7		8.3	3.6	0.337	0.843	0.195	0.022
4	9.2	12.1		10.6	－1．4	0.433	1.084	－0．078	－0．009
5	4.0	17.9		11.0	－6．9	0.448	1.119	－0．377	－0．043
6	0.9	19.6		10.2	－9．3	0.417	1.043	－0．508	－0．058
7	3.1	16.9		10.0	－6．9	0.408	1.020	－0．376	－0．043．
8	5.9	11.6		8.7	－2．9	0.356	0．89！	－0．157	－0．018
9	4.7	7.8		6.2	－1．5	0.254	0.636	－0．083	－0．009
10	5.4	7.7		6.5	－1．1	0.266	0.665	－0．062	－0．007
11	5.2	6.6		5.9	－0．7	0.239	0.599	－0．037	－0．004
12	0.7	0.9		0.8	－0．1	0.033	0.084	－0．006	－0．001
13	2.5	2.9		2.7	－0．2	0.111	0.277	－0．011	－0．001
14	4.6	4.2		4.4	0.2	0.181	0.451	0.010	0.001
15	0.6	0.6		0.6	0.0	0.025	0.062	0.000	0.000
16	3.7	1.5		2.6	1.1	0.105	0.262	0.059	0.007
17	－0．3	－1．7		－1．0	0.7	－0．042	－0．105	0.037	0.004
18	0.4	－1．5		－0．5	1.0	－0．022	－0．055	0.052	0.006
19	－0．6	－2．5		－1．6	0.9	－0．063	－0．159	0.050	0.006
20	2.2	0.2		1.2	1.0	0.049	0.122	0.056	0.00%

Ruru ivunezr： 5

EiEM	ミ0	Ei	Es	E\％	K－THRUST－Ti		K MCMEEVT－Mf	
1	37.6	－19．2	9.2	29.4	0.374	0．935	1.545	0.175
2	24.1	－3．9	10.1	14.0	0.413	1.032	0.763	0.087
3	7.6	15.4	11.5	－3．9	0.468	1.170	－0．212	－0．024
4	－2．3	29.8	13.7	－16．1	0.560	1．40：	－0．374	－0．099
三	－2．8	29.1	13.2	－16．0	0.537	1.343	－0．369	－0．099
¢	1.1	18.3	9.7	－8．6	0.396	0.991	－0．469	－0．053
7	6.9	13.5	10.2	－3．3	0.416	1.040	－0．179	－0．020
8	6.8	10.6	8.7	－1．9	0.356	0.389	－0．104	－0．012
\％	4.9	7.0	5.9	－1．0	0.243	0.607	－0．057	－9．00\％
10	5.4	7.2	0.3	－0．9	0.257	0.642	－0．050	－0．006
：	5.0	5.9	5.4	－0．4	0.222	0.555	－0．024	－9．003
： 2	0.5	0.0	0.6	－0．0	0.023	0.057	－0．002	－0．000
：3	2.6	2.7	2.7	－0．0	0.108	0.271	－0．002	－0．000
14	4.5	3.7	4.1	0.4	0.167	0.417	0.033	0.003
15	1.3	－0．4	0.4	0.8	0.018	0.045	0.045	0.005
：	2.4	1.7	2.1	0.4	0.084	0.210	0.019	0.102
17	－9．6	－2．0	－1．3	0.7	－0．054	－3．：30	0.038	0.004
！	0.1	－1． 5	－0．7	0.8	－0．030	－9．074	0.042	0.005
19	－9．5	－2．9	－：． 3	：． 1	－19．072	－9．：31	0.062	0.007
20	：． 3	－9． 3	0.7	1.0	0.030	0.075	0.055	1．006

RLiN itureen： 10

E134	Eo	Ei	Ec	E	K－THRUST－Ti		K MOMENT－Mf	
1	99.8	－52．7	23.5	76.3	0.678	1.694	2.928	0.332
2	60.4	－17．5	21．5	39.0	0.619	1.547	1.496	0.170
3	23.4	30.5	26.9	－3．5	0.775	1.938	－0．136	－0．015
4	－9．9	70.4	30.2	－40．1	0.871	2.178	－1．540	－0．175
5	－15．6	78.3	31.4	－46．9	0.903	2． 257	－1．802	－0．204
6	－3．7	50.5	26.4	－30．1	0.760	1.901	－1．155	－0．131
7	9.2	38.1	23.6	－1．4．4	0.680	1.701	－0．555	－0．063
3	13.8	25.0	19.4	－5．6	$0.5 \mathbb{7}$	1.394	－0．215	-0.024
9	11.7	17.0	14.3	－2．7	0.413	1.033	－0．103	－0．012
10	1：．5	13.8	12.6	－1．2	0.364	0.911	－0．045	－0．005
1.	9.9	10.6	10.2	－0．4	0.295	0.737	－0．015	－0．002
12	4.1	3.5	3.8	0.3	$0.1: 0$	0.274	$0.0: 3$	0.001
13	4.7	3.0	3.9	0.8	0.111	0.278	0.032	0.004
14	6．	2.9	4.3	1.3	0.137	0.343	0.071	0.008
！ 5	！． 7	－1．7	－0．0	1.7	－0．001	－0．002	0.065	0.007
：	2.4	－1．6	0.4	2.0	0.012	0.030	0.077	0.009
17	－0．3	－5．8	－3． 3	2.3	－0．095	－0． 238	0.095	0.011
：	－0．8	－5．7	－3．2	2.4	－0．094	－0． 234	0.093	$0.01:$
10	－1．3	－7．4	－4．6	2.3	－0．：33	－0．332	0.109	0．0：2
20	0.0	－3．0	－2．2	2.3	－9．063	－0．0． 59	0.108	1．0： 2

RUN NLMESR：

EiEM	E0	$E i$
1	100.1	-50.1
2	03.4	-20.5
3	24.5	29.0
4	-10.0	69.7
5	-18.2	80.2
6	-4.8	58.8
7	10.1	40.8
8	14.2	28.4
9	12.9	20.5
10	12.5	17.2
11	10.9	13.3
12	5.0	5.3
13	5.7	4.8
14	7.0	3.8
15	1.6	-1.9
16	2.6	-1.6
17	-1.0	-6.9
18	-0.7	-7.6
19	-2.2	-9.2
20	0.2	-7.0

Deミinition of Parameters

Ec	\cdots	K－THRUST－T		K MOMENT－M	
22.0	78.1	0.632	1.581	2.999	0.340
23.9	44.5	0.690	1．724	1.709	0.194
26． 8	－2．3	0.771	1.928	－0．087	－0．010
29.9	－39．8	0.860	2.150	－1．529	－0．173
31.0	－49．2	0.893	2.232	－1．888	－0．214
27.0	－31．8	0.777	1.943	－1．221	－0．138
25.5	－15．3	0.734	1.835	－0．589	－0．067
21.3	．．－7．1	0.614	1.534	－0．271	－0．031
16.7	－3．8	0.482	1.204	－0．147	－0．017
14.9	－2．4	0.429	1.071	－0．091	－0．010
12.1	－1．2	0.348	0.870	－0．046	－0．005
5.2	－0．2	0.149	0.372	－0．007	－0．001
5.2	0.4	0.150	0.376	0.017	0.002
5.4	1.6	0.155	0.389	0.061	0.007
－0．2	1.7	－0．005	－0．013	0.067	0.008
0.5	2.1	0.015	0.036	0.081	0.009
－3．9	2.9	－0．114	－0．284	0.113	0.013
－4．1	3.4	－0．119	－0．298	0.131	0.015
－5．7	3.5	－0．165	－0．412	0.134	0.015
－3．4	3.6	－0．097	－0．244	0.139	0.016

RLN NLMEER： 13

EiEM	E\％	Ei	E．	E	k－ Fi	ST－Ti	K MOMErT－Mt	
$!$	98.6	－71． 2	13.7	84.9	0.504	1.260	4.168	0.473
2	70.9	－40．4	15．3．	5 こ． 7	0.562	1.404	2.731	0.310
3	30.1	5.6	17.9	12.3	0.657	1． 642	0.603	0.068
4	－7． 3	48.9	20.3	－28．1	0.765	1.712	－1．378	－3． 150
5	－28．1	72.0	22.0	－50．0	0.809	2.021	－2．455	－3． 273
\％	－27．7	68.0	20.2	－47．9	0.743	1.356	－2．348	－1． 250
7	－13．4	53.7	20.2	－33．6	0.742	1.355	－1．640	－0．137
8	－2．2	36.3	17.1	－19．2	0.623	1．571	－0．944	－0．107
9	3.0	23.3	13.1	－10．2	0.484	1.210	－0．498	－0．056
10	6.5	17.4	11.9	－5．4	0.439	1.098	－0．250	－1．030
$1!$	7.7	12.4	10.0	－2．4	0.369	0.923	－0．116	－0．013
12	3.3	3.6	3.5	－3．1	0.130	0.324	－1． 003	－9． 0000
：3	5.4	3.4	4.4	1.0	0.161	0.402	0.047	0.000
14	7．＇	2.1	4.9	2.7	0.179	0.447	0.133	0.015
： 5	3.0	－3．4	0.3	3.7	0.011	0.027	0.179	－ 020
： 0	5．3	－3．5	1.1	\therefore－	$0.0 \div 2$	0.105	0.223	0.025
： 7	！． 5	－3．4	－3．5	E．0	－9． 128	－0．320	0.243	0.029
13	3.2	－9．2	－3．0	¢． 2	－3．1！！	－0． 277	0.304	1．034
！ 7	1.7	－10．？	－4．6	$\pm .3$	－9： 1.98	－1． 423	0.307	0.035
29	4.3	－3．7	－2．2	6． 5	－0．080	－．3． 199	$0.3: 3$	0.030

Déinition of ？コニコmeters
RUN NUMEER： 14

Em	E0	E	Ec	Ef	K－THRUST－Ti		K－MOMERT－Mf	
1	121．0	－101． 2	9.9	111．1	0.364	0.911	5． 452	0.618
2	90.3	－66．3	12.0	78.3	0.443	1.107	3.843	0.436
3	42.2	－13．3	14.5	27.8	0.533	1.332	1.362	0.154
4	－6．7	42.6	17.9	－24．7	0.660	1.650	-1.210	－0．137
5	－44．0	84.1	20.1	－64．1	0.739	1.847	－3．143	－0．356
6	－52．7	92.3	19.8	－72．5	0.728	1.819	－3．558	－0．403
7	－46．1	81.9	17.9	－64．0	0.660	1.649	－3．140	－0．356
8	－22．7	54.3	15.8	－38，5	0.580	1．451	－1．889	－0．214
9	－5．5	29.7	12.1	－17．6	0.445	1.114	－0．863	－0．098
10	7.7	17.4	12.5	－4．8	0.460	1.151	－0．238	－0．027
1：－	13.6	10.5	12.0	1.5	0.443	1.108	0.075	0.008
12	11.2	3.1	7.2	4.0	0.264	0.659	0.197	0.022
13	14.0	4.4	9.2	4.8	0.338	0.846	0.238	0.027
14	15.9	5.7	10.8	5.1	0.398	0.995	0.252	0.029
15	13．5	2.1	7.8	5.7	0.287	0.718	0.278	0.032
16	15.8	2.6	9.2	6.6	0.338	0.844	0.323	0.037
17	12.4	－1．6	5.4	7.0	0.199	0.498	0.344	0.039
18	14.4	－0．8	6.8	7.6	0.250	0.625	0.374	0.042
19	13.6	－2，7	3.4	8.1	0.200	0.500	0.399	0.045
20	10.3	－0．5	7.9	8.4	0.291	0.728	0.413	0.047

RUN IUUMEEE： 15

E1EM	Eo	Ei	Es	Ef	K－THRUST－Ti		$K \rightarrow M E N T-M f$	
$!$	136．6	－：22．3	7．1	129.4	0,263	0.057	6.350	0.720
2	103.0	－84．1	9.4	93.6	0.347	0.369	4.592	0.521
3	50：0	－25．2	12.4	37.6	0.456	1.140	1．843	0.209
4	－7．1	39.7	16.3	－23．4	10．600	1．500	－1．149	－0，130
5	－57．1	93.9	18.4	－75．5	0.6 .77	1．693	－3．706	－0．420
6	－69．3	110.0	20.1	－39．9	0.740	1．350	－4．411	－0．500
7	－63．3	99.7	13.2	－81．5	0.669	1.672	－3．998	－0．453
\bigcirc	－34．5	65.5	15.5	－50．0	0.570	1．424	－2．455	－－0．278
7	－9．0	34.8	12.9	－21．9	0.474	1.195	－1．074	－0．122
：0	9.2	18.2	13.7	－4， 5	0.505	1．261	－0．222	－0．025
： 1	17．9	10.5	14.2	3.7	0.524	1.310	0，152	0.021
： 2	： 5.7	3.6	10，2	6.7	0.377	0.942	1． 327	0.037
13	20.2	5.6	12.7	7.3	0.475	1．197	0.360	0．041
！ 4	22.0	3.5	15.2	6.7	门，501	1．402	0.329	0.037
！ 5	17.7	5.3	12.3	7.2	0.400	1． 1.50	0.351	0.040
15	22.2	6.3	14．5	7.7	0.534	1．335	0.379	0.043
$\therefore 7$	：9．5	3.5	11．5	5.0	0.422	1．055	0.393	0.045
： 3	2：．	4.0	！2． 9	3.7	0.469	1．173	0.429	0.049
： 7	二2．？	2.6	！！． 7	7.2	0． 432	1．081	0． 4.4	0．05：
20	23．${ }^{\text {a }}$	5.0	1．4．4	9.4	－ 5 こ9	1．324	0.40	0.052

E15M	Eo	Ei	Ec	Ef	K－T	ST－T ${ }_{\text {¢ }}$	$\mathrm{K} \rightarrow \mathrm{MO}$	ENT－Mt
1	80.5	－69．3	5.6	74.9	0.208	0.519	3.675	0.417
2	57.6	－43．1	7.2	50.4	0.266	0.664	2．471	0.280
3	24．1	．－5．2	9.5	14.7	0.348	0.870	0.721	0.082
4	－7．9	32.6	12.3	－20．2	0.454	1.136	-0.792	－0．112
5	－28．9	55.7	13.4	－42．3	0.493	1.232	－2．076	－0． 235
6	－34．3	58.0	11.9	－46．1	0.437	1.093	－2．264	－0．257．
7	－24．4	48.9	12.2	－36．7	0.449	1.123	－1．799	－0．204
8	－10．9	32.2	10.7	－21．6	0.392	0.980	－1．059	－0．120
9	－2．7	18.2	7.8	－10．5	0.285	0.714	－0．514	－0．058
10	5.0	12.8	8.9	－3．9	0.328	0.820	－0．192	－0．022
11	8.2	9.1	8.7	－0．4	0.319	0.797	－0．021	－0．002
12	5.5	3.1	4.3	1.2	0.158	0.396	0.057	0.006
13	8.1	4.2	6.2	1.9	0.228	0.569	0.096	0.011
14	11.3	5.6	8.4	2.9	0.310	0.775	0.140	0.016
15	8.3	2.4	5.3	3.0	0.197	0.492	0.146	0.017
16	11.1	2.8 ．	6.9	4.1	0.256	0.639	0.203	0.023
17	8.7	－1．2	3.8	4.9	0.139	0.347	0.242	0.027
18	9.5	－0．8	4.3	5.1	0.159	0.398	0.253	0.029
19	9.3	－2． 2	3.6	5.7	0.131	0.328	0.280	0.032
20	12.3	0.3	6.3	6.0	0.232	0.580	0.296	0.034

DeEinition 0＿Pョ＝ameteこs R！N N！MEER：！ 9

EIE4	Eo	Ei
1	129.5	-111.1
2	98.3	-76.1
3	50.2	-22.2
4	0.6	34.1
5	-36.9	76.1
6	-56.7	93.2
7	-54.8	92.4
8	-40.4	73.9
9	-24.6	50.4
10	-6.4	31.6
11	6.4	16.5
12	11.0	2.1
13	17.1	-2.0
14	22.1	-1.4
15	13.6	-5.6
16	19.9	-2.3
17	15.3	-5.5
13	15.3	-3.0
19	14.4	-3.3
20	10.3	-0.7

Et	E	K－THRUST－Ti	
9.2	120.3	0.338	0.845
1．1．1	87.2	0.408	1.020
14.0	36.2	0.516	1.290
17.4	－16．7	0.639	1.597
19.6	－56． 5	0.721	1.801
18.2	－75．0	0.670	1.675
18.8	－73．6	0.691	1.729
． 16.8	－57．1	0.617	1.542
12.9	－－37． 5	0.474	1.186
12.6	－19．0	0.462	1.156
11.4	－5．0	0.421	1.053
6.6	4.4	0.242	0.005
7.5	9.6	0.277	0.692
10.4	11.8	0.382	0.955
6.5	12.1	0.240	0.000
8.6	1．1．4	0.315	0.783
4.9	10.4	0.181	0.452
0.4	9.4	0.234	0．585
5.3	9.2	0.193	0．483
3.0	3.3	0.296	0.740

K HOMSTT－M4	
5.904	0.669
4.277	0.485
1．777	0.202
－0．822	－4．093
－2．773	－0．314
－3．678	－0．417
－3．612	－0．410
－2．803	－0．318
－1．841	－0．209
－4． .932	－0．100
－0．247	－0．029
0.217	0.025
0.469	0.053
0.577	0.065
0.593	0.067
1． 558	0.063
0.509	0.053
¢，－6：	0.052
0.450	0．05：
0.430	0.048

FIGURE E. 2

Geometry and Ioadings

Net Area Used To Compute Weight of the＂Loosened＂Zone

$$
\begin{aligned}
& \text { Gross Area }=1 / 2 \mathrm{~L}(\mathrm{~h}+\mathrm{R}) \\
& \text { Sector Area }=\frac{90}{360} \pi R^{2}=\frac{\pi R^{2}}{4} \\
& L=2 \sqrt{2} \\
& \text { Hel Ares }=\frac{\bar{Z} \sqrt{2}}{2}(h+R)-\frac{\pi R^{2}}{4} \\
& \text { for } n=\text {, } \text {, Vet Area }=\left(\sqrt{2}-\frac{\pi}{2}\right) k^{2}
\end{aligned}
$$

FIGURE E． 4

Gric for $65-f t$ ．Depth of Burial

Material Zones
1

$$
L_{0}=\sqrt{\left(x_{i+1}-x_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2}}
$$

$$
L^{\prime}=\sqrt{\left(x_{i+1}+\Delta x_{i+1}-x_{i}-\Delta x_{i}\right)+\left(y_{i+1}+\Delta y_{i+1}-y_{i}-\Delta y_{i}\right)}
$$

$$
\varepsilon_{e}=\frac{L^{\prime}-L^{0}}{R E} \text { where } \theta \text { is the central arigle in radians } \begin{aligned}
& \text { between } x_{i}, y_{i} \text { and } x_{i+1}, y_{i+1} .
\end{aligned}
$$

FIGURE E．7a

$$
\begin{gathered}
F_{t}^{\prime} \text { Vezsus Flexibility Ratio Eor a }=90^{\circ} \quad(j=1-5) \\
(\text { Erom Ranken et al } 1978)
\end{gathered}
$$

$$
\begin{gathered}
\text { Ft Versus Flexibility Ratio for } a=90^{\circ}(j=6-13) \\
(F \text { Eom Rarken et al } 1978)
\end{gathered}
$$

$\begin{aligned} & M_{f} \text { Versus Flexibility Ratio Eor } \approx=900(j=4-9) \\ &(\text { From Ranken et al } 1978)\end{aligned}$

FIGURE E.9a

$$
\begin{aligned}
& M_{c \approx} \text { Versus Elexibility Ratio Eov } a=90^{\circ}(j=7-13) \\
&(\text { Enom Ranken et al 1978) }
\end{aligned}
$$

Normaijzed Thrust and Moments fzom Run 1 （Uniミorm Load）

Nomalized Thrust anc Moment from Run $\overline{\text { G（Triangunar Load）}}$

EIGURE E：12

Nomaiized Thrust amd Moment Erom Run $9\left(V_{p}=2,400 E . / \mathrm{sec}\right)$

FIGURE E．13

Nomalized Thrust and Moment Ezom Run 10 （V）$=3,000$ Et．／sec．）

Approximate Maximum Moment due to＂Loosening Loac＂as a Function o三 Assumed Sti三fness of Locsened Zone

Variation of Approximate Diametez Change with Flexiblilty Ratio for Ioosening Load

$F=$ Fiexibility Ratio（See Peck et al（1972））
$P=$ Intensity of Loosening Load，Assumed to be a Triangular Distribution over a Central Angle of 90° ．（for $y=120$ pcfand $R=9.5 \mathrm{ft}$ ．， $p=3.5 \mathrm{psi})$
$E_{\mathrm{m}}=$ Modulus of Elasticity of Medium
$A D=$ Diameter Chançe of Cylincer
$D=$ Diameter of Cylinder

Variation of Vertical and Horizontal Diameter Changes with Flexibility and Compressibility Ratios（ $a=180^{\circ}$ ）

REFERENCES:

E.1 O,Rourke, T.D. editor (1984), "Guidelines for Tunnel Inning Design," Underground Technoiogy Research Council, American Society of Civil Engineers, N.Y.
E. 2 Peck, R.B., Hendron, A.J. and Mohraz, B. (1972), "State of the Art Soft Ground Tunneling," Proceedings, First North American Rapid Excavation and Tunneling Conference, Chicago, Vol. 1, pp. 259-286.
E. 3 Ranken, R.E., Ghabousii, J. and Eendron, A.J. (1978), "Analysis of Ground-Iiner Interaction for Tunnels," U.S: Department of Transportation Report No. UMTA-II-06-0043-78-3, University of Illinois at Urbana-Champaign, Oct.
E. 4 Sweet, J. (1979), "SATURN - A Multi-Dimensional Two-Thase Computer Program which Treats the Nonlinear Behavior of Continua Using the Finite Element Approach," Report No. JSA-79-016, Joel Sweet and Associates, September.

ANNEX F

PREDICTION OF STRAINS IN SELECTED SOIL COLUMNS

ANNEX F

PREDICTION OF STRAINS IN SELECTED SOIL COLUMNS RESULTING FROM EARTHQUAKE EXCITATION - TIME EISTORY ANAIYSIS

Introduction

The prediction of the stain in tunnel walls in an earthquake enviromment has been addressed by several authors with kuesel (1969) and Yeh (1974) being typical examples. The approach utilized in previous studies is to apply the theoretical solution for simple wave propagation configurations to a more general situation by superimposing individual wave-type solutions.

The complexity of this problem forces the engineer to make conservative assumptions when utilizing the approach of Kuesel and Yeh. Gowever, without a more detailed analysis, it is impossible to assess the degree of conservatism in the solution. The purpose 0 Ethis study is to investigate the inEluence o difierent layered geologic configurations as well as the influence of the use of actial earticuake time history records on the peak strain induced.

It is implicitly assumed here, as is the case throughout this set $0 \leq$ guidelines, that the tunnel walls experience the same strain as that in the immediately surrounding medium. As shown earlier in Annex D, this is generally a conservative assumption. It also simplizies the problem because it allows use c solutiors where the wave propagates only in the medium.

Problem Configuration

Assuming that the geologic material is defined by a single material characterized by its p-wave and S-wave velocities, Yeh (1974) presents equations for the prediction of stresses in tunnel walls due to both oblique shear and compressional waves. These equations (Equations 16 and 23 of Yeh) are. converted to strains and repeated as follows:

$$
\begin{array}{ll}
\text { S-wave strain }=\frac{\cos \theta_{s}}{c_{s}^{2}}\left(c_{s} v_{s} \sin \theta_{s}+R a_{s} \cos ^{2} \theta_{s}\right) & \text { Eq. F.1 } \\
\text { p-wave strain }=\frac{\cos ^{2} \theta_{p}}{c_{p}^{2}}\left(c_{p} v_{p}+R a_{p} \sin \theta_{p}\right) & \text { Eq. F. } 2
\end{array}
$$

where R is the radius of the tunnel (assumed to act like a slender beam!: e's are the seismic velocities, v's are the enothguak maximum velocity levels, a's are the earthquake maximum accelerations, and the subscripts p and s refer to the p-wave and S-wave terms. It is important to note that the equations of yeh (1974) have been generalized to include differences between the angle of incicence of the p-wave and S-wave excitations. These angles are influenced by the p-wave and S-wave seismic velocity configurations and thus should be considered independently (see Figure B.1).

Equations F.1 and F. 2 are derived by utilizing the fact that displacements transverse to the tunnel axis produce a bending strain and the displacements parallel to the tunnel axis produced axial strains. Also, it has been recognized that an oblique shear wave results in an apparent compressional wave of amplitude $A_{s} \sin \theta_{s}$ plus an apparent shear wave of amplitude $A_{s} \cos \theta_{s}$, both propagating with an apparent wave velocity of $c_{s} / \cos \theta_{s}$. similarly, an oblicue compressional wave is equivalent to an apparent compressional wave of amplitude $A_{p} \cos \theta_{p}$ plus an apparent shear wave 0 \#
'amplitude $A p \sin \theta_{p \prime}$, both propagating with an apparent wave velocity of $c_{p} / \cos \theta_{p}$. The terms A_{p} and A_{s} are the amplitudes of the compression and shear waves, respectively.

Since even for a single wave-type the maximum velocities and accelerations usually occur at different values of time for typical earthquakes, the superposition used in Equations F.I and F. 2 as well as the superposition of these equations can be overly conservative. Also, the influence of actual geologic layering has not been included. The approach used in this study has the objective of treating the superposition and geologic layering questions. These topics are treated by analyzing the earthquake motions in the time domain using typical soil geologic material configurations. The five configurations utilized here a=e illu* stratec in Table F.1.
 finite element mesh which represents the geologic layening configurations of Table F.I. To make the problem tractable, this probiem is assumed to be diviced into the p-wave and s-wave solutions.

These solutions, in turn, are derived by applying an acceleration recore at a depth of 200 feet to finite element mesh with a free suzEace boundary condition at 0 feet. The p-wave solution utilミzes the P-wave velocity of Table F.I and 1940 El Centro Earthquake (Caltech, 1972) vertical acceleration. The S-wave solution utilizes the S-wave velocities of Table F.l and El Centro EastWest acceieration record (see Figuzes F.1 through E.3). The SATURN Einite element program (Sweet, 1979) has been usec to gene=ate the time histcry solutions.

The approach defined above also has its inherent difinculties. Actial earthquake are, of course, much moze complicated than the supezosition of cre-cimensional p-wave ane s-wave solutions. It
is not suggested here that this approach represents actual ground motion environments. It must be remembered that the intention of this study is to investigate several of the assumptions utilized in the earlier approaches by assessing their degree of conservatism and represents the next step in theoretical sophistication.

The utilization of the P-wave and S-wave solutions to predict the strain environments closely follows the approach of Xuesel (1969) and Yeh (1975). Namely, these solutions are assumed to be appropriate for a zero angle of incident and solutions at oblique angles are defined by reducing the amplitudes of the signal and modifying the time scales according to the geometry represented by the angle of incidence. Thus, the p-wave solution produces both compressional and shear wave contributions of reduced amplitude. These solutions (defined by a spatial distribution of displacements) can then be used to define the strain environment due to Eoti axiai and jemaing contrizutions. The s-wave one-dimensional solution is similarly treated to produce its contribution to the time history prediction of the strain in the tunnel wall. The total strain is then defined as the sumation of the p-urive and S-wave solutions. Since the computations use time intervals which ane vezy small compared to the smallest periods inherent in the wave, the effective "sampling rate" assures picking of several values along each leg of each spike within the wave. Thus, the time histories represented by the superposition process are an accurate reflection of all temporal characteristics in the input waves.

Numerical Results

The approach outiined above has been applied to the five geologic conigurations of Table F.1. Velocity records as a function of depti for the P-wave solution, 3.1, and S-wave solution, 3.2, can be seen in Figuzes F.4 and F.5. Also, the sumace velocity rec-
ords for each of the P-wave and Swwave configurations defined in Table F.l are shown in Figures F. 6 and F.7.

The axial and bending strains at several depths resulting from these one-dimensional solutions are sumarized in Figures $F .8$ through F.l4. These solutions are the "zero angle of incidence" contributions and results from scaling the surface velocity records of Figures $F .6$ and $F .7$ to the maximum design earthquake (MDE) levels of 2.1 (P-wave) and 3.2 (S-wave) ft./sec. The supe=position of these time history solutions is governed by the p-wave and S-wave angles of incidence. Typical tabulated results for both the $M D E$ and operating design earthquake (ODE). are summarized in Tables $F .2 a$ and $b, ~ r e s p e c t i v e l y$.

Discussion

The resuits presented in Tabie F. $2 a$ and b are, for the most part, in agreement concerning several general behavioral trends. As an example both approaches are more sensitive to the maximum velocity rather than the maximum acceleration level as far as the prediction of.strain is concerned. Also, the relative effect of difierent seismic velocities is in general agreement. As an example, Material 3 has the largest S-wave velocities and both Yeh's equations and this time history analysis predict that the strain is minjmized for this configuration.

Yeh's equations predict that, similar to the seismic velocity distributions, the tunnel strain decreases with depth. The time history results, however, show an opposite trend for all cases except for Material \#1. Finally, the superposition approach from Kuesel (1969) and Yeh (1974) results in an over-prediction of the strain in the tunnel wall by a factor of generally 2 or more compared to the time history solution utilizing the El Centro recoris as shown in Table F.3.

It is obvious by studying Table $F .3$ that use of the "Yeh approach," as reflected in Table 3.1 of Annex B, produce strains for design which maybe conservative by a factor of approximately 2. Thus, even though no load factor or capacity reduction factor is used in the guidelines, the resulting design will be adequately conservative.

Definition of the Eive Layered Geclogies of This Study

The P－Wave velocities are defined as equal to two times the S－wave velocities above the water table and equal to j，000．ft．／sec．below the water table．

TABLE F. 2

Comparison Between Time Eistory Solution and Results Using Yeh's Expressions (Yeh (1974.)) for the Strain in the Tunnel Wall

Results are presented for the maximum design earthquake (MDE) and the operating design earthquake (ODE) for the five material configurations of Table F.2. The term Yeh-strain is derived by utilizing Equations 16 and 23 of Yeh (1974) with a radius of the tunnel equal to 9.5 feet and the local seismic velocities from Table F.1.

The $M D E$ and $O D E$ levels are defined as follow:

Table $2 \mathrm{a}=\mathrm{MD}$	Eorizontal veiocity Vertical Acceleration Eorizontal Accleration	$\begin{aligned} & =2.1 \mathrm{ft} . / \mathrm{sec} . \\ & =3.2 \mathrm{ft} . / \mathrm{sec} . \\ & =0.4 \mathrm{G} \mathrm{~s} \\ & =0.6 \mathrm{G} \mathrm{~s} \end{aligned}$
Table 2b-ODE:	Vertical Velocity	$=1.0 \mathrm{ft} . / \mathrm{sec}$.
	Eorizontal Velocity	$=1.4 \mathrm{ft} /$.sec .
	Vertical Acceleration	$=0.2 \mathrm{GIs}$
	Horizontal Accleration	$=0.3 \mathrm{Gis}$

TABLE F．2．a

DEPTH EQUALS ：5O．FEET－M．D．E．－MATERIAL CONFIGURATION NUMEEF

THETA－S	THETA－F	YEH－STRA IN	STRAIN－MAX	
DEGREES	DEGREES	FER CENT	FEF CENT	1
5.	5.	． 0602	．0129	1
5.	15.	． 0577	． 0117	
5.	30.	． 0501	． 0131	
5.	45.	． 0.396	． 0109	
5.	60.	． 0290	． 0102	
5.	75.	． 0213	． 0070	
Σ.	85.	． 0188	． 0069	
15.	5.	． 0959	． 0159	
15.	15.	． 0834	． 0195	
15.	30.	． 0758	． 0149	
15.	45.	．0655	． 0156	
15.	60.	． 0 － 47	． 0171	
15.	75.	． 0470	． 0149	
15.	85.	． 0445	． 0149	
\％	5.	． 1140	．0253	
30.	15.	． 1116	． 0277	
30.	30.	． 1039	． 0303	
30.	45.	． 0954	． 0273	
30.	60.	． 1829	． 0253	
F．	73.	． 075	． $22=$	
30.	ES．	． 0726	． 0260	
45.	5.	． 123	． 0.572	
45.	15.	． 1209	． 0 こe9	
45.	30.	．1．13	． $0: 3$ ？	
45.	45.	． 1023	－ $0 . J$ \％	
45.	60.	． 0922	． 0.565	
45.	75.	． 0945	． 0 こ52	
45.	35.	． 0819	． 0 ת5	
60.	E．	． 1116	． 048 ？	
60.	15.	． 1092	． 0500	
60.	30.	． 1015	． 0440	
60.	45.	． 0910	． 0454	
60.	60.	． 0805	． 0449	
60.	75.	． 0727	． 0421	
60.	85．	． 0702	． 0432	
75.	5.	． 0813	． 0437	
75.	15.	． 0794	． 0512	
75.	30.	． 071.3	．05こ5	
75.	45.	． 10615	． 04 ¢	
75.	60．	． 0507	．－5：0	
75.	75．	． 10429	． 0477	
75.	3 ．	． 0404	． 0471	
Es．	E．	．OEご	．0510	
ミ巳．	15.	．05ご	．0こaら	
こऽ．	－0．	．045́c	． 046	
こ¢．	45.	． 0.5 ：	． 046	
£ऽ．	0.	．0245	． 0501	
¢5．	75.	． 0157	． 0477	
こ¢．	ミ5．	．0：42	． $9 \rightarrow$ a	

Comparisons of Maxima by veh（1974）and Tine anc Space ：istcry Approaches

Maximum Design Earthquake				
$\begin{aligned} & \text { Mat'1 } \\ & \text { Config. } \end{aligned}$	$\begin{gathered} \text { Oepth } \\ \text { ft. } \end{gathered}$	$\begin{aligned} & \text { Max by } \\ & \text { Yeh }(1974) \end{aligned}$	Max．by current approach ：	$\begin{gathered} \text { Ratio: } \\ \text { Yeh: current } \end{gathered}$
1	75	0.17	0.09	1.9
1	150	0.12	0.05	2.4
1	175	0.12	0.06	2
2	75	0.13	0.03 ．	4.3
2	150	0.13	0.06	2.2
2	175	0.13	0.07	1.9
3	75	0.13	0.03	4.3
$\hat{3}$	150	0.11	0.03 …	3.7
3	！？	0.15	0.04	こ．
4	75	0.14	0.04	3.5
4	150	0.13	0.06	2.2
4	175	0.13	0.07	1.9
5	75	0.14	0.04	3.5
5	150	0.14	0.06	2.3
5	175	0.14	0.07	2
Operating Design Eartinquake				
i	75	0.08	0.04	2
$!$	150	0.06	0.02	3
1	175	0.06	0.03	2
2	75	0.06	0.01	6
2	150	0.06	0.03	2.
2	175	0.06	0.03	2
3	75	0.06	0.01	5
3	150	0.05	0.02	2.5
3	175	0.05	0.02	2.5
4	75	0.06	0.02	3
4	130	0.06	0.03	2
4	175	0.06	0.03	2
5	75	0.06	0.02	3
5	150	0.06	0.03	2
三	175	0.06	0.03	2

Figure f. 3
Velocity Records Resulting From 'Ihe Integration of the Acceleration Records of Figure F.1. These Records Are Indicative of the Velocity behavior of the Finite Element Mesh at 200 ft .

NORISI 5OIIH INIEGPRL (ACCEI FRAI ION)

FAST-MESI INIEGPSLINCTELERAIIOUI

PiN 3.2- DEPIJI: C FT

RIN 3.2 - DFFIII: 100 FT

PIN 3.1-0FPIII $=0$ FI

PiNI 3. \because-. CfPIH:-GFT

RTW 3. 3 - DFPII $=011$

FIGURE F. 7

Burface Velocity Records for the s-Wave Solutions of rable F.l

S Wivf hixim sitilin II! 's FI for wil ol

P-WHVE AXIRL SIRIIN AT ©S FI FOR NHI OI

S.AIME EENIING SIPIIN OT JS FT FOR MAI •I

P. Wive malf Shrain II 1% fI for hit wl

A WhIF GFN!ING STGAIN AI 1?! EI FOR MOI MI

P. HAJE AXIAI. SIFAIN AI ISO FI FOR MAI ©S

P.HAJE EFNDING SIGIAIN AT 1 Cn FI FOR MAI MS

F'lione: F .14 Material $\# 5$ sitrains at. 150 fe. After Scaling

REEERENCES

E. 1 Kuesel, T.R. (1969), "Earthcuake Design Criteria Eor Subways," J. Struct. Div. Am. Soc. Civil Eng., V. 95.
E. 2 Yer, G., (1974), "Seismic Analysis of Slender Buzied Beams," Bull. Seism. Soc. Am., V. 64,' No. 5.
E. 3 Caltech (1972), "Analysis of String Motion Earthcuake Records," Report EERI 72-80, August.
E. 4 Sweet, J., (1979), "SATURN - A Multi-Dimensional Two-phase Computer Program which Treat the Nonlinear Behavior of Continua Using the Finite Element Approach," joel Sweet and Associates Report No. JSA-79-016, September.

[^0]: $\varepsilon_{\theta_{v a r}}=\alpha \frac{\hbar}{2}$ or $\varepsilon_{\theta_{v a z}}=\frac{3}{2}\left(\frac{E}{R}\right)\left(\frac{A D}{D}\right)$

[^1]: a Depth of Burial $=65 \mathrm{ft}$. In this case only, otherwis: 140 ft .
 b At Interface $=0.48$
 c At interface $=0.50$
 d Two rings of interface elements

[^2]: Assumed values.

[^3]: a Assunes a and v are produced only by the wave considered and they occur simultaneously which is physically fapossible mat an acceptable conservative approximation.
 b For old Allivilum and MDE; $c_{s}=1200 \mathrm{fps}$ and $c_{\text {se }}=0.8 \times 1200=960$ fps (See Annex A)
 $c \quad c=2 c$ for $0=1 / 3$; this $1 s$ a betcer approach for deriving stialn in the soil than a measured valued in saturated of neariy saturated soll for which c_{p} approaches that for the water in the interstices. for dry solls $c_{p} 2 c_{s}$ d

 Cofficient lacludes regulred trigonometric terms for angle of lacidence.

[^4]: 'Although a standard seismograph is limited in the frequencies it can respond to, it will be shown later that even the highest frequencies cause only minor overshoot 0 It the dynamic zesponse over the static response.

[^5]: a Despite the recomencation in Appendix B that v_{p} be taken ecial to twice v_{s} ，it was necessaiv to use v_{p} for the wate＝ in sa＝urated cases in this annex because SATURN，the ccmpu＝ez progran used，has appropriately considered the e三Eec：ive stress in a saturated soミ1；it properly transEezs the stres－ ses jetween soil arc waউer．

[^6]: a factor of 2 used to adjust results from Ranken，et al．（10i3）to give the same total applied load．
 0 See Table E．5 which is Table 7.2 from Ranker for $a=90^{\circ} ; i=3$ and m＝0．028 from Table 7.1 of Rankin．
 7． 5 z and b，and 7.20 a and storm Ranker．

