GENERAL PLANNING CONSULTANT TECHNICAL MEMORANDUM 88.3.4 IMPLEMENTATION OF CAPACITY RESTRAINED PROCEDURE USING UOILM PROGRAM AND MULTIPATH TECHNIQUE Prepared for: Southern California Rapid Transit District Prepared by: Schimpeler Corradino Associates in association with Myra L. Frank & Associates Cordoba Corporation Manuel Padron The Planning Group, Inc. March 1988 ## 1. BACKGROUND #### 1.1 OBJECTIVE The objective of this memorandum is to document the results from the implementation of a new multipath limited capacity restrained transit assignment procedure. This procedure was developed by Dr. Joseph Prashka as part of the Work Area 3.3 subtask. The conceptual framework of this procedure was described in Technical Memorandum 87.3.4 titled Capacity Restrained Transit Assignment. A program (UOILM) was also written for this procedure. The description of this program was described in Technical Memorandum 88.3.3 titled Overload Identification and Line Manipulation program. This memorandum describes in detail the various jobs involved and documents the results from using such a procedure. #### 1.2 THE ALGORITHM The basic flowchart of the procedure is shown on the following page. It is an iterative process with portions of the travel demand assigned successively in each iteration. Initially, all the Home Based Nonwork and Non Home Based trips together with a percentage of Home Based Work trips are loaded onto the network. Then the overloaded lines as well as the trip interchanges encountering these overloaded lines are identified. These overloaded lines will be removed completely or changed into one directional lines depending on the overloading situation and a new reduced transit network is created. The remainder of the Home Based Work trips are then split into two parts, the first part consisting of O-D pairs using these overloaded lines in the path and the other part consisting of O-D pairs not using the overloaded lines in the path. In the subsequent iteration a portion of the remaining Home Based Work trips are loaded in two different sequences of steps. In the first sequence, the O-D pairs encountering overloaded lines are loaded to the reduced network while in the second sequence, the O-D pairs encountering overloaded lines are loaded onto the original network. After these additional trips are added onto the network new set of overloaded lines and the trip interchanges encountering these overloaded lines are identified again. This process of two-sequence loading, identifying the overloaded lines and corresponding trip interchanges, and the creation of the reduced transit network is carried out until all the Home Based Work trips are fully loaded to the network. The specific steps in the algorithm are listed below: - 1. Take X% of Home Based Work trips and 100% of Home Based Nonwork and Non Home Based trips. Prepare the input trip table. - 2. Assign these trips to the original network. - 3. Using the UOILM program, identify all overloaded lines and the corresponding overloaded stops. Create a reduced transit network in which all overloaded lines are either removed or changed into one directional lines. - 4. Use the overloaded stops and a USTOS/UMATRIX procedure to split a portion of the remaining Home Based Work trips - into O-D pairs encountering these overloaded stops (OVL) and the those not encountering overloaded stops (NML). - 5. Assign the OVL trips to the reduced network and the NML trips to the original network. - 6. Combine network loading results from Steps 2 and 5. If a further portion of the Home Based trip table remains to be assigned go back to Step 2. ## 2. TESTING OF THE TECHNIQUE The network chosen for study was COR3OS14 which is the MOS-2B operable segment of the CORE candidate alignment 6. The portion of the Home Based trip table assigned in the first iteration was 50%, assuming that 50% of Home Based Work and the entire portion of Home Based Nonwork and Non Home based trips did not exceed the capacity on transit lines significantly. The remaining 50% of the Home Based Work trips were loaded in two successive iterations, each with 25%. The detailed job-by-job description for implementing this procedure at SCRTD is described below: - 1. Run Mode-of-Arrival with 100% TT12 (output of mode choice non-work) and 50% TT14 (output of mode choice-work). This creates TT13 which is used as an input to the ELD3R program. - 2. Run ELD3R with TTl3 created in Job 1. This will create a loaded legs file for 50% HBWORK and 100% HOOOOW trips. Statistics regarding operating cost and other parameters such as peak vehicles, vehicle hours, vehicles miles and ridership are also produced in this step. A loadfile containing information on the load on each line is also produced from the ELD3R program. - 3. Run UOILM with the loadfile created in the above step. UOILM creates a new reduced lines file and a list of all overloaded stops which will be used as an input to the following USTOS step. - 4. Run USTOS on the original paths with the overloaded stops produced by UOILM. This USTOS run, in conjunction with the UMATRIX procedure splits the trip table into O-D pairs using overloaded stops (OVL) and O-D pairs not using these stops (NML). - 5. Run mode choice work with the NML portion of the trip table to create TT14. - 6. Run mode of arrival with TT14 from Job 5 and 0% of TT12 to create TT13. - 7. Run ULOAD3 with TT13 from Job 6 to create a loaded legs file for the NML trips. - 8. This step has seven jobs combined into a single submission. To begin, UNET is be run with the new reduced lines file to create a transit network. Then run the walk, park and ride and kiss and ride skims to create the corresponding paths. Then run UFARE, USTOS and AMSKMSUM to create FARE, ACCESS/EGRESS tables and AM17 tables. These files are input to the succeeding steps. - 9. Run mode choice work with the OVL trips produced in Job 4, and the AM17 and fare tables from Job 8 to create TT14. - 10. Run mode of arrival with 0% TT12 and TT14 from Job 9 to create TT13. - 11. This step has two jobs combined into a single submission. First run ULOAD3 with TT13 from Job 10 on the new reduced - paths to create a loaded legs file for the OVL trips. Then run the SORT program (Job 11A) to combine loaded legs from Steps 2, 7 and 11. This will create a loaded legs file for 75% HBWORK and 100% HOOOOW trips assigned. - 12. Using the combined loaded legs run ULOAD/UPRAS to create a loadfile for UOILM. Statistics in terms of estimates of operating cost for 75% HBWORK trips and 100% HOOOOW trips assigned are produced by URAP. - 13. Run UOILM with the original network to create a new reduced lines file and a new set of overloaded stops. - 14. Run USTOS with the original paths and the new set of overloaded stops to split the remaining 25% HBWORK trips into NML and OVL trips. - 15. Run mode choice work with the NML trip table to create TT14. - 16. Run mode of arrival with TT14 from above and 0% TT12 to create TT13. - 17. Run ULOAD3 to create a loaded legs file for the NML trips. - 18. This step is another set of seven jobs. First run UNET with the new lines file to create a transit network. Then run the path skims to create the path files. The next sequence of jobs are UFARE, USTOS and AMSKMSUM. These will create FARE, ACCESS/EGRESS tables and AM17 files which are used in the next two steps. - 19. Run mode choice work to create TT14 for OVL trips. - 20. Run mode of arrival with TT14 and 0% TT12 to create TT13. - 21. Run ULOAD3 with TTl3 to create loaded legs for OVL trips. - 22. Run SORT to combine the loaded legs from Steps 11, 17 and 21 to get loaded legs for 100% HBWORK and 100% HOOOOW trips. - 23. Run UPRAS with the 100% loaded legs on the original network to create a PRASOUT file. - 24. Finally, run URAP to get statistics on total costs, ridership, etc. These twenty four steps require the setup of thirty seven jobs (seven jobs for steps 8 and 18, and two jobs for step 11). The job names as well as the input/output file names for each job are documented in Appendix A.1 of this report. ### 3. RESULTS AND CONCLUSIONS ### 3.1 ANALYSIS OF RESULTS The results of the 50%-25%-25% stepwise trip loading process are tabulated in the following spreadsheet. This spreadsheet includes - a summary of the number of overloaded lines as well as the overloaded stops in each step of the sequential loading process, - 2. a summary of the number of predicted trips and transit shares in each step of loading the Home Based Work trips, - 3. a summary of the Home Based Nonwork and the Non Home Based trips loaded to the network in a single step, - 4. a summary of the transit boardings by mode during the A.M. peak period as well as the midday off-peak period, - 5. a summary of the peak hour vehicle requirements for SCRTD, - 6. a summary of the annualized vehicle-hour-traveled (VHT), vehicle-miles-traveled (VMT), and revenue passengers for SCRTD bus system, and - 7. a summary of the estimated annual bus operating cost for SCRTD. From these summaries, first of all we can see that Home Based Work trips represent 18.5% of the total regional daily trips in the region. Although majority of these Home Based Work trips are generally made in the peak and majority of the Home Based Non | COR3OS | 114 | UNRESTRA
SIMULA | INED | | | R | ESTRAINED S | IMULAT IO | N | | |------------------|---|--------------------|--------------|-------------------|-------------|-----------------|---|-------------|-------------|-----------| | % DEMA
ITERAT | ND ASSIGNED | | 100 | 50 | 25 NML
1 | 25 OVL
1 | 75 | 25 NML
2 | 25 OVL
2 | 100 | | LINES | BY 4 | | 222 | 222 | 222 | 211 | 222 | 222 | 200 | 222
78 | | MODE | 5 | | 78 | 78 | 78 | 61 | 78 | 78 | 60 | 78 | | | 0 7 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | BY 4
5
6
7
8 | | 212 | 212 | 212 | 212 | 0
212 | 0
212 | 0
212 | 0
212 | | | OF | |
 | | | | | | 28 | | OVERLO | ADED LINES | MODE 5 | 20 | 17 | | | 、 22
18 | | | 21 | | NUMBE | R OF | MODE 4 | 459 | 272 | | | 397 | | | 481 | | OVERLO: | ADED STOPS | MODE 5 | 527 | 399 | | | 473 | | | 510 | | HBWORK | AUTO DA | 664 |
3863 | 3321032 | 1230500 | | | 1122775 | 5/5391 | 4454011 | | | AUTO SR2 | 138 | 8103 | 694052 | 246245 | 102838 | 1043135 | 223918 | 126463 | 1303516 | | | AUTO SR3+ | 63 | 5447 | 317724 | 112052 | 47650 | 477426 | 101649 | 58582 | 637657 | | | AUTO DA
AUTO SR2
AUTO SR3+
TRN
TOTAL | 56
923 | 8122
4955 | 284061
4617478 | 68750 | 65145
651055 | 417956 | 57389 | 71523 | 546868 | | TOANCE | T SHARE (%) | : | | | | | | 1500752 | | 7234913 | | | | | | | 4.1 | 10.06 | | 3.9 | яо | | | | L+OVL | | | | 5.8 | 10.00 | | 5.6 | 0.7 | | | CUMUL | ATIVE | | 6.15 | 6.15 | 3.0 | | 6.03 | 310 | | 5.9 | | | AUTO(VEH) | 1608 | 2551 | 16082551 | | | • | | | | | | AUTO(PRSN) | 2492 | 8438 | 24928438 | | | | | | | | | TRN(PRSN) | 83 | 4621 | 834621 | | | | | | | | | AUTO(VEH)
AUTO(PRSN)
TRN(PRSN)
TOTAL(PRSN) | 2574 | 4944 | 25744944 | | | | | | | | 00 | AUTO(VEH)
AUTO(PRSN)
TRN(PRSN) | 615 | 0480 | 6150480 | | | | | | | | | AUTO(PRSN) | 1053 | 1836 | 10531836 | | | | | | | | | TRN(PRSN) | 16 | 3724 | 163724 | | | | | | | | | TOTAL (PRSN) | 1069 | 5989 | 10695989 | | | | | | | | OM | AUTO(VEH) | 251 | 3550 | | | | | | | | | | AUTO(PRSN)
TRN(PRSN) | 422 | 1737 | 4221737 | | | | | | | | | IRN(PRSN) | 9 | 1507 | 91507 | | | | | | | | | TOTAL (PRSN) | 431 | 3397 | 4313397 | | | | | | | | COR3OS14 | UNRESTRAINED
SIMULATION | | | | TRAINED SI | | | | |---|---|---|--------|--------|--|-------|---------------|--| | % DEMAND ASSIGNED
ITERATION NO: | 100 | 50 | 25 NML | 25 OVI | 75 | 25 NM | L 25 0VL
2 | 100 | | HOOOOW AUTO(VEH)
AUTO(PRSN)
TRN(PRSN) | 24746507
39681980
1089846
) 40754329 | 24746507
39681980
1089846
40754329 | | | | | | | | AM PRO MD4 BRDG
MD5 BRDG
MD6 BRDG
MD7 BRDG | 112907 | 77052
22747
18092
0 | | | 94693
28086
22150
0 | | | 111333
31457
25878
0
28762
197430 | | MD PPD MD4 RPDG | 67712 | 60321 | | | 60129
5453
8185
0
16098
89865 | | | 63599
5919
8631
0
16955
95104 | | DAILYRTD ONLY | | | | | | | | | | | 1698
1027 | | | | 1698
1027 | | | 1698
1027 | | LOADED PK VEH
OP VEH | 1930
1080 | 1382
981 | | | 1659
1041 | | | 1927
1091 | | NOMINAL PK VEH
OP VEH | 2066
1129 | 2065
1006 | | | 1822
1078 | | | 2054
1143 | | MODIFIED PK VEH OP VEH | 2066
1129 | 2065
1006 | | | 1822
1071 | | | 2054
1143 | | ANNUALIZED
RTDBUS: VHT | 8227096 | 6936172 | | | 7624980 | | | 8244430 | | COR30S14 | UNRESTRAINED
SIMULATION | | | R | ESTRAINED SI | MULATION | ł | | |---------------------------------|------------------------------------|-----------------------------------|-------------|-------------|------------------------------------|-------------|-------------|------------------------------------| | % DEMAND ASSIGNED ITERATION NO: | 100 | 50 | 25 NML
1 | 25 OVL
1 | 75 | 25 NML
2 | 25 OVL
2 | 100 | | VMT
PSGRS | 105229301
499671298 | 87951704
341493000 | | | 97578640
420240210 | | | 105440190
488596511 | | MRTRL: VHT
VMT
PSGRS | 43776
1021073
89042144 | 39186
913973
6313258 | | | 43776
1021073
77292784 | | | 43376
1021073
90301824 | | LRT: VHT
VMT
PSGRS | 0
0
0 | 0
0
0 | | | 0
0
0 | | | 0
0
0 | | REGIONAL: VHT
VMT
PSGRS | 10731488
135702261
697298638 | 9282182
118076533
486046373 | | | 10041928
128653902
592496163 | | | 10752158
137783442
688274212 | | ANNUAL BUS
OPERATING COST | \$539,942,849 | 468,577,784 | | \$ | 500,577,784 | | \$! | 539,013,752 | Work and Non Home Based trips made in the off-peak periods, when loading 50% of Home Based Work trips and 100% of Home Based Nonwork and Non Home Based trips in the begin of the process, we have in fact loaded 90.75% of regional trips to the network. Such an extensive loading proportion in the beginning of the process may result in a significant number of overloaded lines right after the initial loading. Indeed, looking at the numbers of overloaded lines and stops in the first part of the spreadsheet, we can see that with this initial loading 11 local lines and 17 express lines in the SCRTD bus system are overloaded. of 671 bus stops are overloaded either in one direction or in both directions. Further 25% of Home Based Work trips (i.e. 4.625% of regional trips) loaded to the network in the first iteration further overloaded 11 more local bus lines and 1 more express lines, which correspond to 125 additional overloaded local bus stops and 74 additional overloaded express bus stops. These results suggest that the portion of the Home Based Work trips in the initial loading may be reduced from 50% to 25% or even 10%. Secondly, from the second portion of the spreadsheet, we can see that the overloaded trip interchanges are occurred mainly in the areas where bus service is already extensive and high level of transit shares are already in existence. From this spreadsheet we can see that the transit share in the first 25% overloaded O-D pairs was 10.06%. And the transit share in the second 25% overloaded O-D paris was 8.9%. Both were higher than the 6% average of current Home Based Work trips. This means that even if the overloaded lines in the minimum path were removed, transit riders continue stay on transit mode using less convenient path found in the reduced network. Thus, we still observe high transit share in the overloaded trip interchanges where overloaded lines have been removed. However, overall speaking, removal of overloaded lines does reduce the regional transit share. From this spreadsheet, we can see that the transit share for Home Based Work trips has been reduced from 6.15% (a case without capacity restraint) to 5.92% (a case with capacity restraint). Thirdly, looking at the summary of transit boardings by mode and period we can obtain some interpretations. With the multipath capacity restraint procedure in place, mode 4 (RTD local bus) loses 1.4% of riders in the A.M. and 6.1% in the midday, mode 5 (RTD express bus) looses 4.7% of riders in the A.M. and gains 2.5% in the midday, mode 6 (RTD metro rail) gains 1.4% of riders in the A.M. and 2.0% in the midday. Ridership to the companies other than SCRTD will stay approximately constant. The overall effect to SCRTD ridership due to this capacity restraint process is 1.6% ridership reduction in the A.M., 4.6% reduction in the midday, and 2.6% reduction over the day. Fourthly, from the summary of peak hour vehicle requirements, annualized VHT, VMT, and revenue passengers in the spreadsheet we can see that the process of removing overloaded lines from the network does indeed reduce the vehicle requirements. The nominal peak vehicles were reduced from 2065 to 2054 vehicles per hour. However, since substantial portion of riders stay with transit mode even if the overloaded lines on the most direct route were removed. Overloading situation will be occurred in the lines of less efficient route due to the additional riders who switched path from the routes encountering overloaded lines. annualized VHT and VMT are both increased despite the reduction in annualized revenue passengers. Because annualized VHT and VMT are the two primary factors in estimating annualized operating costs of a bus system. Increased VMT and VHT may result in an bus system even more expensive than the original overloaded Such a counter-intuitive and unrealistic situation may happen if the percentage of trips applied in each step of the loading process is poorly designed. Ideally in each step the percentage of trips to be loaded should be as few as possible so that in each step few overloaded lines will be identified and removed immediately. With poorly designed loading steps (which uses large percentages such as 50%, 25%, 25% for instance), large number of lines on inefficient routes may be overloaded but not removed immediately. This would produce high level of VHT and VMT, and subsequently operating costs. As a conclusion of above discussions, loading 50%-25%-25% in three step provided all the results as expected --- less transit share, less revenue riders, and lower peak vehicle requirements. However, since the portion of trips in each step of loading was not small enough, the annualized VHT and VMT were increased. to these increase VHT and VMT the resultant SCRTD bus operating cost estimated from the capacity restraint system was less than a million dollars cheaper than the original unrestraint system. solve this problem the same capacity restraint procedure was repeated. Instead of 50%-25%-25% of trips loaded in each step, six trip loading steps (50%-10%-10%-10%-10%) were adopted. The results were tabulated in Table 2. As expected that both annualized VHT and VMT were reduced significantly and both are less than those in the unrestraint system. The resultant operating costs were reduced from \$540,000,000 the unrestraint system to \$534,000,000 for the restraint. # 3.2 RECOMMENDATIONS FOR FURTHER STUDY It is recommended that further testing of this technique should use a smaller initial assignment of the Home Based Work trips. A rough estimate of the percentage that should be used in the first iteration could be obtained from examining the results of the URAP program for 100% HBWORK and 100% HOOOOW trips assigned. One of the tables in this output lists the excess passenger demand for each line in the network. By calculating the ratio of excess demand to
capacity, the user can obtain a rough estimate of the CAPACITY RESTRAINT SIMULATION COR30S14 | | | RESTRAINED
MULATION | | | | RESTRAINED
SIMULATION | | | | | | | | | | | | | |------------------|---|---|--|----------------------------|----------------------------|--|----------------------------|----------------------------|--|----------------------------|----------------------------|---|----------------------------|----------------------------|--|----------------------------|----------------------------|---| | ITERA | AND ASSIGNED
TION NO: | 100 | 50 | 10 NML
1 | 10 OVL
1 | 60 | 10 NML
2 | . 10 ovL
2 | 70 | 10 NML
3 | 10 OVL | 80 | 10 NML | 10 OVL | 90 | 10 NML
5 | 10 OVL
5 | 100 | | LINES | | 222
78
1
0
212 | 222
78
1
0
212 | 222
78
1
0
212 | 211
61
1
0
212 | 222
78
1
0
212 | 222
78
1
0
212 | 207
59
1
0
212 | 222
78
1
0
212 | 222
78
1
0
212 | 206
59
1
0
212 | 222
78
1
0
212 | 222
78
1
0
212 | 204
58
1
0
212 | 222
78
1
0
212 | 222
78
1
0
212 | 202
58
1
0
212 | 222
78
1
0
212 | | NUMBEI
OVERLI | R OF
OADED LINES | 34
20 | 11
17 | | | 15
19 | | | 16
19 | | | 18
20 | | | 20
20 | | | 20
20 | | NUMBEI
OVERLO | R OF MODE 4 DADED STOPS MODE 5 | 459
527 | 272
399 | | | 321
422 | | | 366
445 | | | 404
469 | | | 443
484 | | | 466
491 | | HBWOR | K AUTO DA
AUTO SR2
AUTO SR3+
TRN
TOTAL | 6643863
1388103
635447
568122
9234955 | 3321932
694052
317724
284061
4617478 | 44821
27500 | 41135
19060
26058 | 3988277
833685
381605
537619
5540957 | 95886
43610
25470 | 43926
20343
27406 | 4655073
973497
445558
390495
6438954 | 93774
42630
24460 | 46258
21396
27611 | 5322382
1113529
509584
442566
7362456 | 91512
41609
23063 | 48645
22466
28591 | 5989957
1253686
573659
1494220
8285944 | 90229
41034
22143 | 50082
23116
28979 | 6657805
1393997
637809
545342
9209423 | | A
A | IT SHARE
WML/OVL
WML+OVL
JLATIVE | | 6.07 | 4.1 | 10
5.8 | 6.1 | 4.1 | 9.85
5.9 | 6.06 | 3.88 | 9.43
5.63 | 6 | | 9.3
5.6 | 5.96 | 3.65 | 9.16
5.55 | 5.92 | | НО | AUTO(VEH)
AUTO(PRSN)
TRN(PRSN)
TOTAL(PRSN) | 16082551
24928438
834621
25744944 | 16082551
24928438
834621
25744944 | • • • • • • • | | · • • • • | | | | | | | | | | | | • • • • • • • • • | | 00 | AUTO(VEH)
AUTO(PRSN)
JRN(PRSN)
Total(PRSN) | 6150480
10531836
163724
10695989 | 6150480
10531836
163724
10695989 | | | | | | | | | | | | | | | | | OW | AUTO(VEH)
AUTO(PRSN) | 2513550
4221737 | 2513550
4221737 | | | | | | | | | | | | | | | | | C O R 3 O S 1 4 | UNRESTRAINED | | | | 250724 | · Neo | | | | | | | | | |--|--|---|--------|---------------------------------------|---------------------|---|---|----------|-------------|---|---------------|--|----------------------|--| | ***** | SIMULATION | | | | RESTRA
SIMULA | | | | | | | | | | | % DEMAND ASSIGNED
ITERATION NO: | 100 | 50 | 10 NML | 10 OVL
1 | 50 10 NM
2 | L 10 OVL
2 | 70 | 10 NML 1 | 0 ovl.
3 | 80 | 10 NML 10 OVL | 90 | 10 NML 10 OVL
5 5 | 100 | | TRN(PRSN)
TOTAL(PRSN) | 91507
4 3133 97 | 91507
4313397 | | •••• | | • | | | | | | | | | | HOOOOW AUTO(VEH) AUTO(PRSN) TRN(PRSN) TOTAL(PRSN) | 24746507
39681980
1089846
40754329 | 24746507
39681980
1089846
40754329 | | | | | | | | | | | | | | AM PRD MD4 BRDG
MD5 BRDG
MD6 BRDG
MD7 BRDG
MD8 BRDG
TOTAL | 112907
33025
25517
0
28597
200046 | 77052
22747
18092
0
21575
139466 | | 840'
248
196
. 230'
1515' | 36
33
0
01 | | 90357
26509
20901
0
23843
161160 | | | 97164
27412
22358
0
25348
172282 | | 103878
28718
23792
0
26830
182918 | | 108300
29578
24661
0
27252
189791 | | MD PRD MD4 BRDG
MD5 BRDG
MD6 BRDG
MD7 BRDG
MD8 BRDG
TOTAL | 67712
5774
8461
0
16986
98933 | 60321
4918
7700
0
15417
88356 | | 580
510
79
156
861 | 53
12
0
56 | | 59301
5340
8087
0
15834
88562 | | | 60727
5552
8293
0
16182
90754 | | 62179
5785
8488
0
16516
92968 | | 63070
5921
8602
0
16634
94227 | | DAILYRTD ONLY | | • | | | | | | | | | | | | | | CODED PK VEH
OP VEH | 1698
1027 | 1698
1027 | | 16 ⁹ | _ | | 1698
1027 | | | 1698
1027 | | 1698
1027 | | 1698
1027 | | LOADEO PK VEH
OP VEH | 1930
1080 | 1382
981 | | 149
100 | | | 1581
1024 | | | 1694
1047 | | 1802
1073 | | 1893
1092 | | NOMINAL PK VEH
OP VEH | 2066
1129 | 2065
1006 | | 167
103 | | | 1752
1057 | | | 1846
1091 | | 1935
1115 | | 2020
1137 | | MODIFIED PK VEH | 2066
1129 | 2065
1006 | | 167
103 | | | 1752
1057 | | | 1846
1091 | | 1935
1115 | | 2020
1137 | | C O R 3 O S 1 4 | | | LA II | | | | | | | | | | | | | | |---------------------------------------|------------------------------------|-----------------------------------|-------------|-----------------------------------|--------|---|----------------------------|--------|--------|------------------------------------|--------|--------|-------------------------------|-------------|-------------|----------------------------------| | | UNRESTRAINED
SIMULATION | | | RESTRAINED
SIMULATION | | | | | | | | | | | | | | % DEMAND ASSIGNED ITERATION NO: | 100 | 50 | 10 NML
1 | 10 OVL 60
1 | 10 NML | . 10 OVL
2 | 70 | 10 NML | 10 OYL | . 80 | 10 NML | 10 OVL | 90 | 10 NML
5 | 10 OVL
5 | 100 | | ANNUAL I ZED | | ********** | | | | • | | | | | | | | | | | | RTDBUS: VHT
VMT
PSGRS | 8227096
105229301
499671298 | 6936172
87951704
341493000 | | 7217620
91855717
372757706 | | 717 | 206406
706765
311374 | | | 7720020
98244968
425897045 | | 101 | 7963920
1426837
3705709 | | | 8192570
04368358
71586760 | | MRTRL: VHT
VMT
PSGRS | 43776
1021073
89042144 | 39186
913973
6313258 | | 39186
913973
68614608 | | 9 | 39186
913973
934464 | | | 43776
1021073
78018624 | | | 43776
1021073
3022544 | | į | 43776
1021073
86055248 | | LRT: VHT
VMT
PSGRS | 0
0
0 | 0
0
0 | | 0
0
0 | | REGIONAL: VHT
VMT
PSGRS | 10731488
135702261
697298638 | 9282182
118076533
486046373 | | 9613312
122613757
528354559 | | 1254 | 334532
15147
97349 | | | 10164188
129739771
600164539 | | 133 |)433880
5286573
3696984 | | 13 | 10682202
36508223
61435777 | | ANNUAL BUS OPERATING COST (THOUSANDS) | \$539,943 | \$468,668 | | \$474,485 | | \$48 | 7,610 | | ****** | \$505,103 | | \$5 | 20,446 | | | \$533,936 | percentage that should be used in the first iteration so as to get a excess passenger demand to capacity ratio of less than 10% for most of the transit lines. This will increase the accuracy of the procedure. APPENDIX 1: INPUT / OUTPUT FILE DIRECTORY OF 50% , 25% AND 25% LOADING PROCESS | JOB NUMBER | JOB NAME | I/O FILES | |------------|----------|--| | 1 | JOB1MOA | <pre>I: MRP.COR30S14.TT14 MRP.COR30S14.TT12 MRP.FARE.COR30S14.AM.DATA MRP.Y20Z1628.H8 MRP.MOA.STATION.DATA(COR30S14) MRP.ZNTOSTA.MIN.COR30S14.DATA MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK1MOA) MRP.COR30S14.AM17 MRP.COR30S14.AE8 MRP.ZNTOSTA.HSK.CORE3.DATA 0: MRP.COR30S14.TT13.NML50</pre> | | 2 | JOB2ELD3 | <pre>I: MRP.COR30S14.TT13.NML50 MRP.TNET.COR30S14.AM1.DATA MRP.TNET.COR30S14.AM2.DATA MRP.TNET.COR30S14.AM3.DATA MRP.TNET.COR30S14.AM4.DATA MRP.TNET.COR30S14.AM5.DATA MRP.TNET.COR30S14.AM5.DATA</pre> O: MRP.LL.COR30S14.HAM.DATA.NML50 MRP.COR30S14.AM.LOADFILE.NML50 | | 3 | J3UOLM | <pre>I: MRP.NETWORK.COR30S14.DATA(LINES) MRP.COR30S14.AM.LOADFILE.NML50 MRPGP1.YOSSIE.FORT(USTSINPT) O: MRP.NETWORK.COR30S14.DATA(NEWLINE1) MRP.CAPRESTR.USTOSOUT.DATA(OS140VL1)</pre> | | 4 . | J4USTS | <pre>I: MRP.COR30S14.WPTH MRP.COR30S14.PPTH MRP.COR30S14.KPTH MRP.TT.Y00PA5.HBWORK.DATA O: MRP.TT.Y00PA5.HBWORK.DATA.TT251</pre> | | 5 | JOB5MCH | <pre>I: MRP.FARE.COR30S14.AM.DATA MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK1MOA) MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK2) MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK3) MRP.Y20Z1628.H8 MRP.TT.Y00PA5.HBWORK.DATA.TT251 MRP.COR30S14.AM17</pre> O: MRP.COR30S14.TT14.NML25.ITR1 | | 6 | JOB6MOA | <pre>I: MRP.COR30S14.TT14.NML25.ITR1 MRP.COR30S14.TT12 MRP.FARE.COR30S14.AM.DATA MRP.MOA.STATION.DATA(COR30S14) MRP.COR30S14.AE8 MRP.ZNTOSTA.MIN.COR30S14.DATA</pre> | | | | MRP.COR3OS14.AM17 | |---
---------|--| | | | MRP.TAZ.MCH.MOA.SCAGOOB.DATA | | | | O: MRP.COR3OS14.TT13.NML25.ITR1 | | 7 | JOB7ELD | I: MRP.COR3OS14.WPTH | | | | MRP.COR3OS14.PPTH | | | | MRP.COR3OS14.KPTH | | | | MRP.COR30S14.TT13.NML25.ITR1 | | | | 0: MRP.LL.COR30S14.HAM.DATA.NML25.ITR1 | | 8 | JSUNET | I: MRP.NETWORK.COR30S14.DATA(NEWLINE1) | | | | MRP.NETWORK.COR30S14.DATA(LINKS) | | | | MRP.COORD.CORE2.DATA | | | | O: MRP.TNET.OS140VL1.AM1.DATA | | | | MRP.TNET.OS140VL1.AM2.DATA | | | | MRP.TNET.OS140VL1.AM3.DATA | | | | MRP.TNET.OS140VL1.AM4.DATA | | | | MRP.TNET.OS140VL1.AM5.DATA | | 8 | J8Q | I: MRP.TNET.OS140VL1.AM1.DATA | | 8 | J8R | MRP.TNET.OS140VL1.AM2.DATA | | 8 | J8S | MRP.TNET.OS140VL1.AM3.DATA | | | | MRP.TNET.OS140VL1.AM4.DATA | | | | MRP.TNET.OS140VL1.AM5.DATA | | | | O: MRP.OS140VL1.WPTH | | | | MRP.OS140VL1.WNTL | | | | MRP.OS140VL1.WNTA | | | | MRP.OS140VL1.PPTH | | | | MRP.OS140VL1.PNTL | | | | MRP.OS140VL1.PNTA | | | | MRP.OS140VL1.KPTH | | | | MRP.OS140VL1.KNTA | | | | MRP.OS140VL1.KNTL | | | | MRP.OS140VL1.WK10 | | | | MRP.OS140VL1.PR10 | | | | MRP.OS140VL1.KR10 | | 8 | J8T | 'I: MRP.OS140VL1.WK10 | | | J8E | MRP.OS140VL1.PR10 | | | | MRP.OS140VL1.KR10 | | | | O: MRP.OS140VL1.AM17 | | | | MRP.FARE.OS140VL1.AM.DATA | | 8 | រនប | I: MRP.OS140VL1.WPTH | | | | MRP.OS140VL1.PPTH | | | | MRP.OS140VL1.KPTH | | | | 0: MRP.OS140VL1.AE8 | | 9 | ЈОВ9МСН | I: MRP.FARE.OS140VL1.AM.DATA | | | | MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK1MOA) | | | | MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK2) | | | | MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK3) | | | | MRP.Y20Z1628.H8 | MRP.COR30S14.AM17 | | | 0: | MRP.TT.Y00PA5.HBWORK.DATA.TT251
MRP.OS140VL1.AM17
MRP.OS140VL1.TT14.OVL25.ITR1 | |-----|----------|-----|---| | 10 | JOB10MOA | I: | MRP.OS140VL1.TT14.OVL25.ITR1 MRP.COR30S14.TT12 MRP.FARE.OS140VL1.AM.DATA MRP.Y20Z1628.H8 MRP.MOA.STATION.DATA(OS140VL1) MRP.OS140VL1.AE8 MRP.ZNTOSTA.MIN.OS140VL1.DATA MRP.OS140VL1.AM17 | | | | 0 : | MRP.OS140VL1.TT13.OVL25.ITR1 | | 11 | JOB11ELD | | MRP.OS140VL1.WPTH MRP.OS140VL1.WNTL MRP.OS140VL1.WNTA MRP.OS140VL1.PPTH MRP.OS140VL1.PNTL MRP.OS140VL1.PNTA MRP.OS140VL1.KPTH MRP.OS140VL1.KNTL MRP.OS140VL1.KNTL MRP.OS140VL1.KNTA MRP.OS140VL1.HAM.DATA.OVL25.ITR1 | | | | _ | | | 11A | SORT | | MRP.LL.COR30S14.HAM.DATA.NML25.ITR1 MRP.LL.COR30S14.HAM.DATA.NML50 MRP.LL.OS140VL1.HAM.DATA.OVL25.ITR1 MRP.LL.COR30S14.HAM.DATA.ALL75 | | 12 | J12ELD | | MRP.COR30S14.WPTH MRP.COR30S14.WNTL MRP.COR30S14.WNTA MRP.COR30S14.PPTH MRP.COR30S14.PNTL MRP.COR30S14.PNTA MRP.COR30S14.KPTH MRP.COR30S14.KNTL MRP.COR30S14.KNTL MRP.COR30S14.KNTA MRP.LL.COR30S14.HAM.DATA.ALL75 MRP.COR30S14.AM.LOADFILE.ALL75 MRP.COR30S14.AM.PRASOUT.ALL75 MRP.COR30S14.URAPOUT.ALL75 MRP.COR30S14.BUSCOST.ALL75 | | 13 | J13ULM | | MRP.COR30S14.AM.LOADFILE.ALL75 MRP.NETWORK.COR30S14.DATA(LINES) MRPGP1.YOSSIE.FORT(USTSINPT) MRP.NETWORK.COR30S14.DATA(NEWLINE2) MRP.CAPRESTR.USTOSOUT.DATA(OS140VL1) | | 14 | J14USTS | <pre>I: MRP.COR30S14.WPTH MRP.COR30S14.PPTH MRP.COR30S14.KPTH MRP.TT.Y00PA5.HBWORK.DATA O: MRP.TT.Y00PA5.HBWORK.DATA.TT252</pre> | |----|----------------------|--| | 15 | J15MCH | I: MRP.FARE.COR3OS14.AM.DATA MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK1MOA MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK2) MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK3) MRP.Y20Z1628.H8 MRP.TT.Y00PA5.HBWORK.DATA.TT252 O: MRP.COR3OS14.TT14.NML25.ITR2 | | 16 | J16M0A | I: MRP.COR30S14.TT14.NML25.ITR2 MRP.COR30S14.TT12 MRP.FARE.COR30S14.AM.DATA MRP.Y20Z1628.H8 MRP.MOA.STATION.DATA(COR30S14) MRP.COR30S14.AE8 MRP.ZNTOSTA.MIN.COR30S14.DATA MRP.COR30S14.AM17 MRP.TAZ.MCH.MOA.SCAG00B.DATA O: MRP.COR30S14.TT13.NML25.ITR2 | | 17 | J17ELD | I: MRP.COR30S14.WPTH MRP.COR30S14.WNTL MRP.COR30S14.WNTA MRP.COR30S14.PPTH MRP.COR30S14.PNTL MRP.COR30S14.PNTA MRP.COR30S14.KPTH MRP.COR30S14.KNTA MRP.COR30S14.KNTL MRP.COR30S14.TT13.NML25.ITR2 O: MRP.LL.COR30S14.HAM.DATA.NML25.ITR2 | | 18 | J18AUNET | <pre>I: MRP.NETWORK.COR30S14.DATA(NEWLINE2) MRP.COORD.CORE2.DATA MRP.NETWORK.COR30S14.DATA(LINKS) 0: MRP.TNET.OS140VL2.AM1.DATA</pre> | | 18 | J18Q
J18R
J18S | MRP.TNET.OS140VL2.AM2.DATA MRP.TNET.OS140VL2.AM3.DATA MRP.TNET.OS140VL2.AM4.DATA MRP.TNET.OS140VL2.AM5.DATA I: MRP.TNET.OS140VL2.AM1.DATA MRP.TNET.OS140VL2.AM2.DATA MRP.TNET.OS140VL2.AM3.DATA MRP.TNET.OS140VL2.AM3.DATA | | | | MRP.TNET.OS140VL2.AM5.DATA O: MRP.OS140VL2.WPTH MRP.OS140VL2.WNTL MRP.OS140VL2.WNTA MRP.OS140VL2.WK10 MRP.OS140VL2.PPTH MRP.OS140VL2.PNTL MRP.OS140VL2.PNTA MRP.OS140VL2.RP10 MRP.OS140VL2.KPTH MRP.OS140VL2.KNTL MRP.OS140VL2.KNTA MRP.OS140VL2.KNTA MRP.OS140VL2.KNTA | |----|--------------|--| | 18 | J18T
J18E | I: MRP.OS140VL2.WK10 MRP.OS140VL2.KR10 MRP.OS140VL2.PR10 O: MRP.OS140VL2.AM17 MRP.FARE.OS140VL2.AM.DATA | | 18 | J18U | I: MRP.OS140VL2.WK10
MRP.OS140VL2.PR10
MRP.OS140VL2.KR10
O: MRP.OS140VL2.AE8 | | 19 | J19MCH | <pre>I: MRP.FARE.OS140VL2.AM.DATA MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK1MOA) MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK2) MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK3) MRP.Y20Z1628.H8 MRP.TT.Y00PAS.HBWORK.DATA.TT252 MRP.OS140VL2.AM17 O: MRP.OS140VL2.TT14.OVL25.ITR2</pre> | | 20 | J20MOA | I: MRP.OS140VL2.TT14.OVL25.ITR2 MRP.COR30S14.TT12 MRP.FARE.OS140VL2.AM.DATA MRP.Y20Z1628.H8 MRP.MOA.STATION.DATA(OS140VL2) MRP.OS140VL2.AE8 MRP.ZNTOSTA.MIN.OS140VL2.DATA MRP.OS140VL2.AM17 MRP.TAZ.MCH.MOA.SCAGOOB.DATA(O: MRP.OS140VL2.TT13.OVL25.ITR2 | | 21 | J21ELD | I: MRP.OS140VL2.WPTH MRP.OS140VL2.WNTL MRP.OS140VL2.WNTA MRP.OS140VL2.PPTH MRP.OS140VL2.PNTL MRP.OS140VL2.PNTA MRP.OS140VL2.KPTH | | | | MRP.OS140VL2.KNTL
MRP.OS140VL2.KNTA
O: MRP.LL.OS140VL2.HAM.DATA.OVL25.ITR2 | |----|---------|--| | 22 | J22SORT | <pre>I: MRP.LL.OS140VL2.HAM.DATA.OVL25.ITR2 MRP.LL.COR30S14.HAM.DATA.ALL75 MRP.LL.COR30S14.HAM.DATA.NML25.ITR2 0: MRP.LL.COR30S14.HAM.DATA.SM100</pre> | | 23 | J23UPRS | <pre>I: MRP.COR30S14.KNTL MRP.COR30S14.KNTA MRP.LL.COR30S14.HAM.DATA.SM100 0: MRP.COR30S14.AM.PRASOUT.SM100</pre> | | 24 | J24URAP | <pre>I: MRP.COR30S14.AM.PRASOUT.SM100 MRP.COR30S14.MD.PRASOUT MRP.LL.COR30S14.HAM.DATA.SM100 MRP.LL.COR30S14.HBS.DATA 0: MRP.COR30S14.URAPOUT.SM100 MRP.COR30S14.BUSCOST.SM100</pre> | APPENDIX 2: INPUT / OUTPUT FILE DIRECTORY OF 50% , 10% 10% , 10% , 10% , 10% LOADING PROCESS | JOB NUMBER | JOB NAME | I/O FILES | |------------|----------|---| | 1 | JOB1MOA | <pre>I: MRP.COR30S14.TT14 MRP.COR30S14.TT12 MRP.FARE.COR30S14.AM.DATA MRP.Y20Z1628.H8 MRP.MOA.STATION.DATA(COR30S14) MRP.ZNTOSTA.MIN.COR30S14.DATA MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK1MOA) MRP.COR30S14.AM17 MRP.COR30S14.AE8 MRP.ZNTOSTA.HSK.CORE3.DATA O: MRP.COR30S14.TT13.NML50</pre> | | 2 | JOB2ELD3 | <pre>I: MRP.COR30S14.TT13.NML50 MRP.TNET.COR30S14.AM1.DATA MRP.TNET.COR30S14.AM2.DATA MRP.TNET.COR30S14.AM3.DATA MRP.TNET.COR30S14.AM4.DATA MRP.TNET.COR30S14.AM5.DATA MRP.TNET.COR30S14.AM5.DATA 0: MRP.LL.COR30S14.HAM.DATA.NML50 MRP.COR30S14.AM.LOADFILE.NML50</pre> | | 3 | J3UOLM | <pre>I: MRP.NETWORK.COR30S14.DATA(LINES) MRP.COR30S14.AM.LOADFILE.NML50 MRPGP1.YOSSIE.FORT(USTSINPT) O: MRP.NETWORK.COR30S14.DATA(LINE101) MRP.CAPRESTR.UST0SOUT.DATA(OS140L1)</pre> | | 4 | J4USTS | I: MRP.COR3OS14.WPTH MRP.COR3OS14.PPTH MRP.COR3OS14.KPTH MRP.TT.Y00PA5.HBWORK.DATA O: MRP.TT.Y00PA5.HBWORK.DATA.TT101 | | 5 | JOB5MCH | <pre>I: MRP.FARE.COR30S14.AM.DATA MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK1MOA) MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK2) MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK3) MRP.Y20Z1628.H8 MRP.TT.Y00PA5.HBWORK.DATA.TT101 MRP.COR30S14.AM17 O: MRP.COR30S14.TT14.NML10.ITR1</pre> | | 6 | JOB6MOA | <pre>I: MRP.COR30S14.TT14.NML10.ITR1 MRP.COR30S14.TT12 MRP.FARE.COR30S14.AM.DATA MRP.MOA.STATION.DATA(COR30S14) MRP.COR30S14.AE8 MRP.ZNTOSTA.MIN.COR30S14.DATA</pre> | | | | MRP.TAZ.MCH.MOA.SCAGOOB.DATA O: MRP.COR3OS14.TT13.NML10.ITR1 | |--------|----------|--| | 7 | 10D251 D | | | 7 | JOB7ELD | I: MRP.COR3OS14.WPTH | | | | MRP.COR3OS14.PPTH MRP.COR3OS14.KPTH | | | | MRP.CORSOS14.RFIR MRP.CORSOS14.TT13.NML10.ITR1 | | | | O: MRP.LL.COR30S14.HAM.DATA.NML10.ITR1 | | 8 | J8UNET | I: MRP.NETWORK.COR30S14.DATA(LINE101) | | | | MRP.NETWORK.COR3OS14.DATA(LINKS) | | | | MRP.COORD.CORE2.DATA | | | | O: MRP.TNET.OS140L1.AM1.DATA | | | | MRP.TNET.OS140L1.AM2.DATA | | | | MRP.TNET.OS140L1.AM3.DATA | | | | MRP.TNET.OS140L1.AM4.DATA | | 0 | 79.0 | MRP.TNET.OS140L1.AM5.DATA | | 8 | J8Q | I: MRP.TNET.OS140L1.AM1.DATA | | 8
8 | J8R | MRP.TNET.OS140L1.AM2.DATA MRP.TNET.OS140L1.AM3.DATA | | 0 | J8S | MRP.INET.OS140L1.AM4.DATA | | | | MRP.TNET.OS140L1.AM5.DATA | | | | O: MRP.OS140L1.WPTH | | | | MRP.OS140L1.WNTL | | | | MRP.OS140L1.WNTA | | | | MRP.OS140L1.PPTH | | | | MRP.OS140L1.PNTL | | | | MRP.OS140L1.PNTA | | | | MRP.OS140L1.KPTH | | | |
MRP.OS140L1.KNTA | | | | MRP.OS140L1.KNTL | | | | MRP.OS140L1.WK10 | | | | MRP.OS140L1.PR10 | | | | MRP.OS140L1.KR10 | | 8 | J8T | I: MRP.OS140L1.WK10 | | | J8E | MRP.OS140L1.PR10 | | | | MRP.OS140L1.KR10 | | | | 0: MRP.OS140L1.AM17 | | | | MRP.FARE.OS140L1.AM.DATA | | 8 | J8U | I: MRP.OS140L1.WPTH | | | | MRP.OS140L1.PPTH | | | | MRP.OS140L1.KPTH | | | | O: MRP.OS140L1.AE8 | | 9 | JOB9MCH | I: MRP.FARE.OS140L1.AM.DATA | | | | MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK1MOA) | | | | MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK2) | | | | MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK3) | | | | MRP.Y20Z1628.H8 | MRP.COR30S14.AM17 | | | | MRP.TT.Y00PA5.HBWORK.DATA.TT101
MRP.OS140L1.AM17 | |-----|----------|-----|---| | | | 0 : | MRP.OS140L1.TT14.OVL10.ITR1 | | 10 | JOB10M0A | I: | MRP. COP2061# TT12 | | | | * | MRP.COR3OS14.TT12 | | | | | MRP.FARE.OS140L1.AM.DATA | | | | | MRP.Y20Z1628.H8 MRP.MOA.STATION.DATA(OS140L1) | | | | | MRP.OS140L1.AE8 | | | | | MRP.ZNTOSTA.MIN.OS140L1.DATA | | | | | MRP.OS140L1.AM17 | | | | 0 : | MRP.OS140L1.TT13.OVL10.ITR1 | | 11 | JOB11ELD | I: | MRP.OS140L1.WPTH | | | | | MRP.OS140L1.WNTL | | | | | MRP.OS140L1.WNTA | | | | | MRP.OS140L1.PPTH | | | | | MRP.OS140L1.PNTL | | | | | MRP.OS140L1.PNTA | | | | | MRP.OS140L1.KPTH | | | | | MRP.OS140L1.KNTL
MRP.OS140L1.KNTA | | | | ο. | MRP.LL.OS140L1.HAM.DATA.OVL10.ITR1 | | | | 0. | MARY DELICISTADE FINANCIA DATA OVE FOR TIRE | | 11A | SORT | I: | MRP.LL.COR30S14.HAM.DATA.NML10.ITR1 | | | | | MRP.LL.COR3OS14.HAM.DATA.NML50 | | | | _ | MRP.LL.OS140L1.HAM.DATA.OVL10.ITR1 | | | | U: | MRP.LL.COR3OS14.HAM.DATA.ALL60 | | 12 | J12ELD | I: | MRP.COR30S14.WPTH | | | | | MRP.COR30S14.WNTL | | | | | MRP.COR3OS14.WNTA | | | | | MRP. COR3OS14. PPTH | | | | | MRP. COR3OS14. PNTL | | | | | MRP.COR30S14.PNTA
MRP.COR30S14.KPTH | | | | | MRP.COR30S14.KNTL | | | | | MRP.COR30S14.KNTA | | | | 0 : | MRP.LL.COR30S14.HAM.DATA.ALL60 | | | | _ | MRP.COR3OS14.AM.LOADFILE.ALL60 | | | | | MRP.COR30S14.AM.PRASOUT.ALL60 | | | | | MRP.COR30S14.URAPOUT.ALL60 | | | | | MRP.COR30S14.BUSCOST.ALL60 | | 13 | J13ULM | I: | MRP.COR30S14.AM.LOADFILE.ALL60 | | | | | MRP.NETWORK.COR30S14.DATA(LINES) | | | | 0 | MRPGP1.YOSSIE.FORT(USTSINPT) MRP.NETWORK.COR3OS14.DATA(LINE102) | | | | U: | — · | | | | | MRP.CAPRESTR.USTOSOUT.DATA(0S140L2) | | 14 | J14USTS | | MRP.COR30S14.WPTH MRP.COR30S14.PPTH MRP.COR30S14.KPTH MRP.TT.Y00PA5.HBWORK.DATA MRP.TT.Y00PA5.HBWORK.DATA.TT102 | |----|----------------------|----|--| | 15 | J15MCH | | MRP.FARE.COR30S14.AM.DATA MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK1MOA) MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK2) MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK3) MRP.Y20Z1628.H8 MRP.TT.Y00PA5.HBWORK.DATA.TT102 MRP.COR30S14.TT14.NML10.ITR2 | | 16 | J16MOA | | MRP.COR30S14.TT14.NML10.ITR2 MRP.COR30S14.TT12 MRP.FARE.COR30S14.AM.DATA MRP.Y20Z1628.H8 MRP.MOA.STATION.DATA(COR30S14) MRP.COR30S14.AE8 MRP.ZNTOSTA.MIN.COR30S14.DATA MRP.COR30S14.AM17 MRP.TAZ.MCH.MOA.SCAGOOB.DATA MRP.COR30S14.TT13.NML10.ITR2 | | 17 | J17ELD | | MRP.COR30S14.WPTH MRP.COR30S14.WNTL MRP.COR30S14.WNTA MRP.COR30S14.PPTH MRP.COR30S14.PNTL MRP.COR30S14.PNTA MRP.COR30S14.KPTH MRP.COR30S14.KNTA MRP.COR30S14.KNTA MRP.COR30S14.KNTL MRP.COR30S14.TT13.NML10.ITR2 MRP.LL.COR30S14.HAM.DATA.NML10.ITR2 | | 18 | J18AUNET | | MRP.NETWORK.COR30S14.DATA(LINE102) MRP.COORD.CORE2.DATA MRP.NETWORK.COR30S14.DATA(LINKS) MRP.TNET.OS140L2.AM1.DATA MRP.TNET.OS140L2.AM2.DATA MRP.TNET.OS140L2.AM3.DATA MRP.TNET.OS140L2.AM4.DATA | | 18 | J18Q
J18R
J18S | I: | MRP.TNET.OS140L2.AM5.DATA MRP.TNET.OS140L2.AM1.DATA MRP.TNET.OS140L2.AM2.DATA MRP.TNET.OS140L2.AM3.DATA MRP.TNET.OS140L2.AM4.DATA | | | | MRP.TNET.OS140L2.AM5.DATA | |----|--------|--| | | | O: MRP.OS140L2.WPTH | | | | MRP.OS140L2.WNTL | | | | MRP.OS140L2.WNTA | | | | MRP.OS140L2.WK10 | | | | MRP.OS140L2.PPTH | | | | MRP.OS140L2.PNTL | | | | MRP.OS140L2.PNTA | | | | MRP.OS140L2.PR10 | | | | MRP.OS140L2.KPTH | | | | MRP.OS140L2.KNTL | | | | MRP.OS140L2.KNTA | | | | MRP.0S140L2.KR10 | | 18 | J18T | I: MRP.OS140L2.WK10 | | | J18E | MRP.OS140L2.KR10 | | | | MRP.OS140L2.PR10 | | | | 0: MRP.OS140L2.AM17 | | | | MRP.FARE.OS140L2.AM.DATA | | 18 | J18U | I: MRP.OS140L2.WK10 | | | | MRP.OS140L2.PR10 | | | | MRP.OS140L2.KR10 | | | | 0: MRP.OS140L2.AE8 | | 19 | J19MCH | I: MRP.FARE.OS140L2.AM.DATA | | | | MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK1MOA) | | | | MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK2) | | | | MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK3) | | | | MRP.Y20Z1628.H8 | | | | MRP.TT.Y00PA5.HBWORK.DATA.TT102 | | | | MRP.0S140L2.AM17 | | | | 0: MRP.OS140L2.TT14.OVL10.ITR2 | | 20 | J20MOA | I: MRP.OS140L2.TT14.OVL10.ITR2 | | | | MRP.COR3OS14.TT12 | | | • | MRP.FARE.OS140L2.AM.DATA | | | | MRP.Y20Z1628.H8 | | | | MRP.MOA.STATION.DATA(COR30S14) | | | | MRP.OS140L2.AE8 | | | | MRP.ZNTOSTA.MIN.COR3OS14.DATA | | | | MRP.OS140L2.AM17 | | | | MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK1MOA) | | | | 0: MRP.OS140L2.TT13.OVL10.ITR2 | | 21 | J21ELD | I: MRP.OS140L2.WPTH | | | | MRP.OS140L2.WNTL | | | | MRP.OS140L2.WNTA | | | | MRP.OS140L2.PPTH | | | | MRP.OS140L2.PNTL | | | | MRP.OS140L2.PNTA | | | | MRP.0S140L2.KPTH | | | | | | | | MRP.OS140L2.KNTL
MRP.OS140L2.KNTA
O: MRP.LL.OS140L2.HAM.DATA.OVL10.ITR2 | |----|---------------|---| | 22 | J22SORT | <pre>I: MRP.LL.OS140L2.HAM.DATA.OVL10.ITR2 MRP.LL.COR30S14.HAM.DATA.ALL60 MRP.LL.COR30S14.HAM.DATA.NML10.ITR2 O: MRP.LL.COR30S14.HAM.DATA.ALL70</pre> | | 23 | J23UPRS | <pre>I: MRP.COR30S14.KNTL MRP.COR30S14.KNTA MRP.LL.COR30S14.HAM.DATA.ALL70 0: MRP.COR30S14.AM.PRASOUT.ALL70</pre> | | 24 | J24URAP | <pre>I: MRP.COR3OS14.AM.PRASOUT.ALL70 MRP.COR3OS14.MD.PRASOUT MRP.LL.COR3OS14.HAM.DATA.ALL70 MRP.LL.COR3OS14.HBS.DATA 0: MRP.COR3OS14.URAPOUT.ALL70 MRP.COR3OS14.BUSCOST.ALL70</pre> | | 25 | J25ULM | <pre>I: MRP.COR30S14.AM.LOADFILE.ALL70</pre> | | 26 | J26USTS | <pre>I: MRP.COR30S14.WPTH MRP.COR30S14.PPTH MRP.COR30S14.KPTH MRP.TT.Y00PA5.HBWORK.DATA 0: MRP.TT.Y00PA5.HBWORK.DATA.TT103</pre> | | 27 | J27мсн | I: MRP.FARE.COR30S14.AM.DATA MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK1MOA) MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK2) MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK3) MRP.Y20Z1628.H8 MRP.TT.Y00PA5.HBWORK.DATA.TT103 O: MRP.COR30S14.TT14.NML10.ITR3 | | 28 | J28M0A | <pre>I: MRP.COR30S14.TT14.NML10.ITR3 MRP.COR30S14.TT12 MRP.FARE.COR30S14.AM.DATA MRP.Y20Z1628.H8 MRP.MOA.STATION.DATA(COR30S14) MRP.COR30S14.AE8 MRP.ZNTOSTA.MIN.COR30S14.DATA MRP.COR30S14.AM17 MRP.TAZ.MCH.MOA.SCAG00B.DATA</pre> | | | 0: MRP.COR30S14.TT13.NML10.ITR3 | |--------------|--| | J29ELD | I: MRP.COR30S14.WPTH | | 3-17-12-1 | MRP.COR30S14.WNTL | | | MRP.COR30S14.WNTA | | | MRP.COR3OS14.PPTH | | | MRP.COR30S14.PNTL | | | MRP.COR30S14.PNTA | | | MRP.COR30S14.FNTA | | | MRP.COR30S14.KPTH | | | MRP.COR30S14.KNTL | | | | | | MRP.COR30S14.TT13.NML10.ITR3 | | | 0: MRP.LL.COR30S14.HAM.DATA.NML10.ITR3 | | J30AUNET | I: MRP.NETWORK.COR30S14.DATA(LINE103) | | | MRP.COORD.CORE2.DATA | | | MRP.NETWORK.COR30S14.DATA(LINKS) | | | O: MRP.TNET.OS140L3.AM1.DATA | | | MRP.TNET.OS140L3.AM2.DATA | | | MRP.TNET.OS140L3.AM3.DATA | | | MRP.TNET, OS140L3.AM4.DATA | | | MRP.TNET.OS140L3.AM5.DATA | | J30Q | I: MRP.TNET.OS140L3.AM1.DATA | | J30R | MRP.TNET.OS140L3.AM2.DATA | | J30S | MRP.TNET.OS140L3.AM3.DATA | | | MRP.TNET.OS140L3.AM4.DATA | | | MRP.TNET.OS140L3.AM5.DATA | | | O: MRP.OS140L3.WPTH | | | MRP.OS140L3.WNTL | | | MRP.OS140L3.WNTA | | | MRP.0S140L3.WK10 | | | MRP.OS140L3.PPTH | | | MRP.OS140L3.PNTL | | | MRP.OS140L3.PNTA | | | MRP.OS140L3.PR10 | | | MRP.OS140L3.KPTH | | | MRP.OS140L3.KNTL | | • | MRP.OS140L3.KNTA | | | MRP.OS140L3.KR10 | | J30T | I: MRP.OS140L3.WK10 | | | MRP.0S140L3.KR10 | | | MRP.OS140L3.PR10 | | | 0: MRP.OS140L3.AM17 | | | MRP.FARE.OS140L3.AM.DATA | | J30U | I: MRP.OS140L3.WK10 | | - | MRP.OS140L3.PR10 | | | MRP.OS140L3.KR10 | | | 0: MRP.OS140L3.AE8 | | | O. IMI.OBITOBO.REG | | | | | | J30Q
J30R
J30S | | | | MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK1MOA) MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK2) MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK3) MRP.Y20Z1628.H8 MRP.TT.Y00PA5.HBWORK.DATA.TT103 MRP.OS140L3.AM17 O: MRP.OS140L3.TT14.OVL10.ITR3 | |----|---------|--| | 32 | J32MOA | <pre>I: MRP.OS140L3.TT14.OVL10.ITR3 MRP.COR30S14.TT12 MRP.FARE.OS140L3.AM.DATA MRP.Y20Z1628.H8 MRP.MOA.STATION.DATA(COR30S14) MRP.OS140L3.AE8 MRP.ZNTOSTA.MIN.COR30S14.DATA MRP.OS140L3.AM17 MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK1MOA) O: MRP.OS140L3.TT13.OVL10.ITR3</pre> | | 33 | J33ELD | I: MRP.OS140L3.WPTH MRP.OS140L3.WNTL MRP.OS140L3.WNTA MRP.OS140L3.PPTH MRP.OS140L3.PNTL MRP.OS140L3.PNTA MRP.OS140L3.KPTH MRP.OS140L3.KNTL MRP.OS140L3.KNTL MRP.OS140L3.KNTA O: MRP.LL.OS140L3.HAM.DATA.OVL10.ITR3 | | 34 | J34SORT | <pre>I: MRP.LL.OS140L3.HAM.DATA.OVL10.ITR3 MRP.LL.COR30S14.HAM.DATA.ALL70 MRP.LL.COR30S14.HAM.DATA.NML10.ITR3 0: MRP.LL.COR30S14.HAM.DATA.ALL80</pre> | | 35 | J35UPRS | <pre>I: MRP.COR30S14.KNTL MRP.COR30S14.KNTA MRP.LL.COR30S14.HAM.DATA.ALL80 0: MRP.COR30S14.AM.PRASOUT.ALL80</pre> | | 36 | J36URAP | <pre>I: MRP.COR30S14.AM.PRASOUT.ALL80 MRP.COR30S14.MD.PRASOUT MRP.LL.COR30S14.HAM.DATA.ALL80 MRP.LL.COR30S14.HBS.DATA 0: MRP.COR30S14.URAPOUT.ALL80 MRP.COR30S14.BUSCOST.ALL80</pre> | |
37 | J37ULM | <pre>I: MRP.COR30S14.AM.LOADFILE.ALL80 MRP.NETWORK.COR30S14.DATA(LINES) MRPGP1.YOSSIE.FORT(USTSINPT)</pre> | | | | O: MRP.NETWORK.COR3OS14.DATA(LINE104) MRP.CAPRESTR.USTOSOUT.DATA(OS140L4) | |----|----------------|---| | 38 | J38USTS | <pre>I: MRP.COR30S14.WPTH MRP.COR30S14.PPTH MRP.COR30S14.KPTH MRP.TT.Y00PA5.HBWORK.DATA O: MRP.TT.Y00PA5.HBWORK.DATA.TT104</pre> | | 39 | Ј 39мсн | <pre>I: MRP.FARE.COR30S14.AM.DATA MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK1MOA) MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK2) MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK3) MRP.Y20Z1628.H8 MRP.TT.Y00PA5.HBWORK.DATA.TT104 0: MRP.COR30S14.TT14.NML10.ITR4</pre> | | 40 | J40MOA | <pre>I: MRP.COR30S14.TT14.NML10.ITR4 MRP.COR30S14.TT12 MRP.FARE.COR30S14.AM.DATA MRP.Y20Z1628.H8 MRP.MOA.STATION.DATA(COR30S14) MRP.COR30S14.AE8 MRP.ZNTOSTA.MIN.COR30S14.DATA MRP.COR30S14.AM17 MRP.TAZ.MCH.MOA.SCAG00B.DATA O: MRP.COR30S14.TT13.NML10.ITR4</pre> | | 41 | J41ELD | I: MRP.COR3OS14.WPTH MRP.COR3OS14.WNTL MRP.COR3OS14.WNTA MRP.COR3OS14.PPTH MRP.COR3OS14.PNTL MRP.COR3OS14.PNTA MRP.COR3OS14.KPTH MRP.COR3OS14.KNTA MRP.COR3OS14.KNTL MRP.COR3OS14.TT13.NML10.ITR4 O: MRP.LL.COR3OS14.HAM.DATA.NML10.ITR4 | | 42 | J42AUNET | I: MRP.NETWORK.COR3OS14.DATA(LINE104) MRP.COORD.CORE2.DATA MRP.NETWORK.COR3OS14.DATA(LINKS) O: MRP.TNET.OS14OL4.AM1.DATA MRP.TNET.OS14OL4.AM2.DATA MRP.TNET.OS14OL4.AM3.DATA MRP.TNET.OS14OL4.AM4.DATA | | 42 | J42Q
J42R | MRP.TNET.OS140L4.AM5.DATA I: MRP.TNET.OS140L4.AM1.DATA MRP.TNET.OS140L4.AM2.DATA | | | J42S | MRP.TNET.OS140L4.AM3.DATA MRP.TNET.OS140L4.AM4.DATA MRP.TNET.OS140L4.AM5.DATA O: MRP.OS140L4.WPTH MRP.OS140L4.WNTL MRP.OS140L4.WNTA MRP.OS140L4.WK10 MRP.OS140L4.PPTH MRP.OS140L4.PNTL MRP.OS140L4.PNTL MRP.OS140L4.PNTA MRP.OS140L4.RNTL MRP.OS140L4.KNTL MRP.OS140L4.KNTL MRP.OS140L4.KNTL | |----|---------------|--| | 42 | J42T
J42E | MRP.OS140L4.KR10 I: MRP.OS140L4.WK10 MRP.OS140L4.KR10 MRP.OS140L4.PR10 O: MRP.OS140L4.AM17 | | 42 | J42U | MRP.FARE.OS140L4.AM.DATA I: MRP.OS140L4.WK10 MRP.OS140L4.PR10 MRP.OS140L4.KR10 O: MRP.OS140L4.AE8 | | 43 | J43мсн | <pre>I: MRP.FARE.OS140L4.AM.DATA MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK1MOA) MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK2) MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK3) MRP.Y20Z1628.H8 MRP.TT.Y00PA5.HBWORK.DATA.TT104 MRP.OS140L4.AM17 O: MRP.OS140L4.TT14.OVL10.ITR4</pre> | | 44 | J44MOA | <pre>I: MRP.OS140L4.TT14.OVL10.ITR4 MRP.COR30S14.TT12 MRP.FARE.OS140L4.AM.DATA MRP.Y20Z1628.H8 MRP.MOA.STATION.DATA(COR30S14) MRP.OS140L4.AE8 MRP.ZNTOSTA.MIN.COR30S14.DATA MRP.OS140L4.AM17 MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK1MOA) 0: MRP.OS140L4.TT13.OVL10.ITR4</pre> | | 45 | J45ELD | I: MRP.OS140L4.WPTH MRP.OS140L4.WNTL MRP.OS140L4.WNTA MRP.OS140L4.PPTH MRP.OS140L4.PNTL | | | | MRP.OS140L4.PNTA MRP.OS140L4.KPTH MRP.OS140L4.KNTL MRP.OS140L4.KNTA O: MRP.LL.OS140L4.HAM.DATA.OVL10.ITR4 | |----|---------------|---| | 46 | J46SORT | <pre>I: MRP.LL.OS140L4.HAM.DATA.OVL10.ITR4 MRP.LL.COR30S14.HAM.DATA.ALL80 MRP.LL.COR30S14.HAM.DATA.NML10.ITR4 0: MRP.LL.COR30S14.HAM.DATA.ALL80</pre> | | 46 | J46UPRS | <pre>I: MRP.COR30S14.KNTL MRP.COR30S14.KNTA MRP.LL.COR30S14.HAM.DATA.ALL80 0: MRP.COR30S14.AM.PRASOUT.ALL90</pre> | | 46 | J46URAP | <pre>I: MRP.COR30S14.AM.PRASOUT.ALL90 MRP.COR30S14.MD.PRASOUT.ALL90 MRP.LL.COR30S14.HAM.DATA.ALL90 MRP.LL.COR30S14.HBS.DATA 0: MRP.COR30S14.URAPOUT.ALL90 MRP.COR30S14.BUSCOST.ALL90</pre> | | 47 | J47ULM | <pre>I: MRP.COR30S14.AM.LOADFILE.ALL90 MRP.NETWORK.COR30S14.DATA(LINES) MRPGP1.YOSSIE.FORT(USTSINPT) 0: MRP.NETWORK.COR30S14.DATA(LINE105) MRP.CAPRESTR.USTOSOUT.DATA(OS140L5)</pre> | | 48 | J48USTS | <pre>I: MRP.COR30S14.WPTH MRP.COR30S14.PPTH MRP.COR30S14.KPTH MRP.TT.Y00PA5.HBWORK.DATA O: MRP.TT.Y00PA5.HBWORK.DATA.TT105</pre> | | 49 | Ј49МСН | <pre>I: MRP.FARE.COR30S14.AM.DATA MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK1MOA) MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK2) MRP.TAZ.MCH.MOA.SCAG00B.DATA(WORK3) MRP.Y20Z1628.H8 MRP.TT.Y00PA5.HBWORK.DATA.TT105 0: MRP.COR30S14.TT14.NML10.ITR5</pre> | | 50 | J50MOA | <pre>I: MRP.COR30S14.TT14.NML10.ITR5 MRP.COR30S14.TT12 MRP.FARE.COR30S14.AM.DATA MRP.Y20Z1628.H8 MRP.MOA.STATION.DATA(COR30S14) MRP.COR30S14.AE8 MRP.ZNTOSTA.MIN.COR30S14.DATA</pre> | | | | MRP. CORSUS 14. AD117 | |-----|--------------|--| | | | MRP.TAZ.MCH.MOA.SCAGOOB.DATA | | | | O: MRP.COR30S14.TT13.NML10.ITR5 | | E 4 | IE4ELD | T. MDD COD20C1/I WDTU | | 51 | J51ELD | I: MRP.COR30S14.WPTH | | | | MRP. COR3OS14.WNTL | | | | MRP. COR3OS14. WNTA | | | | MRP.COR3OS14.PPTH | | | | MRP.COR3OS14.PNTL | | | | MRP.COR3OS14.PNTA | | | | MRP.COR3OS14.KPTH | | | | MRP.COR3OS14.KNTA | | | | MRP.COR3OS14.KNTL | | | | MRP.COR30S14.TT13.NML10.ITR5 | | | | 0: MRP.LL.COR30S14.HAM.DATA.NML10.ITR5 | | 52 | J52AUNET | I: MRP.NETWORK.COR30S14.DATA(LINE104) | | 0.2 | 0 - 21101101 | MRP.COORD.CORE2.DATA | | | | MRP.NETWORK.COR30S14.DATA(LINKS) | | | | O: MRP.TNET.OS140L5.AM1.DATA | | | | MRP.TNET.OS140L5.AM2.DATA | | | | MRP.TNET.OS140L5.AM3.DATA | | | | MRP.TNET.OS140L5.AM4.DATA | | | | MRP.TNET.OS140L5.AM5.DATA | | E 2 | TE30 | I: MRP.TNET.OS140L5.AM1.DATA | | 53 | J53Q | | | | J53R | MRP.TNET.OS140L5.AM2.DATA | | | J53S | MRP. TNET. OS140L5.AM3.DATA | | | | MRP.TNET.OS140L5.AM4.DATA | | | | MRP.TNET.OS140L5.AM5.DATA | | | | O: MRP.OS140L5.WPTH | | | | MRP.OS14OL5.WNTL | | | | MRP.OS140L5.WNTA | | | | MRP.OS140L5.WK10 | | | | MRP.OS140L5.PPTH | | | | MRP.OS140L5.PNTL | | | | MRP.OS140L5.PNTA | | | | MRP.OS140L5.PR10 | | | | MRP.OS140L5.KPTH | | | | MRP.OS140L5.KNTL | | | | MRP.OS140L5.KNTA | | | | MRP.OS140L5.KR10 | | 54 | J54T | I: MRP.OS140L5.WK10 | | | J54E | MRP.OS140L5.KR10 | | | | MRP.OS140L5.PR10 | | | | 0: MRP.OS140L5.AM17 | | | | MRP.FARE.OS140L5.AM.DATA | | 54 | J54U | I: MRP.OS140L5.WK10 | | | | MRP.OS140L5.PR10 | | | | MRP.OS140L5.KR10 | | | | 0: MRP.OS140L5.AE8 | | | | | MRP.COR3OS14.AM17 | 55 | J55MCH | MRP.FARE.OS140L5.AM.DATA MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK1MOA) MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK2) MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK3) MRP.Y20Z1628.H8 MRP.TT.Y00PA5.HBWORK.DATA.TT104 MRP.OS140L5.AM17 MRP.OS140L5.TT14.OVL10.ITR5 | |----|---------|---| | 56 | J56MOA | MRP.OS140L5.TT14.OVL10.ITR5 MRP.COR30S14.TT12 MRP.FARE.OS140L5.AM.DATA MRP.Y20Z1628.H8 MRP.MOA.STATION.DATA(COR30S14) MRP.OS140L5.AE8 MRP.ZNTOSTA.MIN.COR30S14.DATA MRP.OS140L5.AM17 MRP.TAZ.MCH.MOA.SCAGOOB.DATA(WORK1MOA) MRP.OS140L5.TT13.OVL10.ITR5 | | 57 | J57ELD | MRP.OS140L5.WPTH MRP.OS140L5.WNTL MRP.OS140L5.WNTA MRP.OS140L5.PPTH MRP.OS140L5.PNTL MRP.OS140L5.PNTA MRP.OS140L5.KPTH MRP.OS140L5.KNTL MRP.OS140L5.KNTA MRP.OS140L5.KNTA | | 57 | J57SORT | MRP.LL.OS140L5.HAM.DATA.OVL10.ITR5
MRP.LL.COR30S14.HAM.DATA.ALL90
MRP.LL.COR30S14.HAM.DATA.NML10.ITR5
MRP.LL.COR30S14.HAM.DATA.ALL100 | | 58 | J58UPRS | MRP.COR30S14.KNTL
MRP.COR30S14.KNTA
MRP.LL.COR30S14.HAM.DATA.ALL100
MRP.COR30S14.AM.PRASOUT.ALL100 | | 58 | J58URAP | MRP.COR30S14.AM.PRASOUT.ALL100 MRP.COR30S14.MD.PRASOUT.ALL100 MRP.LL.COR30S14.HAM.DATA.ALL100 MRP.LL.COR30S14.HBS.DATA MRP.COR30S14.URAPOUT.ALL100 MRP.COR30S14.BUSCOST.ALL100 |