Urban Mass Transportation Abstracts
Cumulative Bibliography 1974-1980
Volume 2: Index

Transportation Research Board
Urban Mass Transportation Research Information Service
2101 Constitution Avenue, N.W.
Washington, DC 20418

April 1982

This document is available to the public through the Transportation Research Board
The Transportation Research Board is an agency of the National Research Council, which serves the National Academy of Sciences and the National Academy of Engineering. The Board's purpose is to advise the federal government, the public, and others concerned with transportation; they serve without compensation. The program is supported by state transportation and highway departments, the modal administrations of the U.S. Department of Transportation, the Association of American Railroads, and other organizations and individuals interested in the development of transportation.

The National Research Council was established by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the academy's purposes of furthering knowledge and of advising the federal government. The Council operates in accordance with general policies determined by the Academy under the authority of its Congressional charter, which establishes the Academy as a private, nonprofit, self-governing membership corporation. The Council has been the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in the conduct of their services to the government, the public, and the scientific and engineering communities. It is administered jointly by both Academies and the Institute of Medicine.

The National Academy of Sciences was established in 1863 by Act of Congress as a private, nonprofit, self-governing membership corporation for the furtherance of science and technology, required to advise the federal government upon request within its fields of competence. Under its corporate charter, the Academy established the National Research Council in 1916, the National Academy of Engineering in 1964, and the Institute of Medicine in 1970.
<table>
<thead>
<tr>
<th>1. Report No.</th>
<th>UMTA-DC-06-0258-82-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Government Accession No.</td>
<td></td>
</tr>
<tr>
<td>3. Recipient's Catalog No.</td>
<td></td>
</tr>
<tr>
<td>4. Title and Subtitle</td>
<td>URBAN MASS TRANSPORTATION ABSTRACTS</td>
</tr>
<tr>
<td></td>
<td>CUMULATIVE BIBLIOGRAPHY, 1974-1980</td>
</tr>
<tr>
<td></td>
<td>Volume 2: Index</td>
</tr>
<tr>
<td>5. Report Date</td>
<td>April 1982</td>
</tr>
<tr>
<td>6. Performing Organization Code</td>
<td></td>
</tr>
<tr>
<td>7. Author(s)</td>
<td>UMTRIS 82S1</td>
</tr>
<tr>
<td>9. Performing Organization Name and Address</td>
<td>Urban Mass Transportation Research Information Service</td>
</tr>
<tr>
<td></td>
<td>Transportation Research Board</td>
</tr>
<tr>
<td></td>
<td>2101 Constitution Avenue, N.W.</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20418</td>
</tr>
<tr>
<td>10. Work Unit No. (TRAIS)</td>
<td></td>
</tr>
<tr>
<td>11. Contract or Grant No.</td>
<td>DTUM60-81-C-72063</td>
</tr>
<tr>
<td>12. Sponsoring Agency Name and Address</td>
<td>Information Services</td>
</tr>
<tr>
<td></td>
<td>Technical Assistance Program</td>
</tr>
<tr>
<td></td>
<td>Urban Mass Transportation Administration</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20590</td>
</tr>
<tr>
<td>13. Type of Report and Period Covered</td>
<td>Bibliography</td>
</tr>
<tr>
<td></td>
<td>1974-1980</td>
</tr>
<tr>
<td>14. Sponsoring Agency Code</td>
<td>URT-7</td>
</tr>
<tr>
<td>15. Supplementary Notes</td>
<td></td>
</tr>
<tr>
<td>16. Abstract</td>
<td>This Bibliography (in two volumes) contains 7064 abstracts and appropriate indexing for citations added to the Transportation Research Information Service (TRIS) data base between 1974 and 1980. These abstracts have been classified into 28 categories established for the Urban Mass Transportation Research Information Service (UMTRIS). Citations include technical reports, journal articles, handbooks, and other information sources from both U.S. and international sources. Along with classification, all the citations have been indexed with appropriate subject terms. <strong>Volume 1: Abstracts</strong> contains the citations arranged in the 28 categories. <strong>Volume 2: Index</strong> contains more than 3400 subject terms used for the indexing, along with appropriate cross references to citations in Volume 1.</td>
</tr>
<tr>
<td>17. Key Words</td>
<td>Urban Mass Transportation, Public Transit, Bus,</td>
</tr>
<tr>
<td></td>
<td>Rapid Transit, Light Rail Transit, Commuter Service,</td>
</tr>
<tr>
<td></td>
<td>Paratransit, Vanpool, Carpool, Taxicab</td>
</tr>
<tr>
<td>18. Distribution Statement</td>
<td>Publications Office</td>
</tr>
<tr>
<td></td>
<td>Transportation Research Board</td>
</tr>
<tr>
<td></td>
<td>2101 Constitution Avenue, N.W.</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20418</td>
</tr>
<tr>
<td>19. Security Classif. (of this report)</td>
<td>NA</td>
</tr>
<tr>
<td>20. Security Classif. (of this page)</td>
<td>NA</td>
</tr>
<tr>
<td>21. No. of Pages</td>
<td></td>
</tr>
<tr>
<td>22. Price</td>
<td></td>
</tr>
</tbody>
</table>
HOW TO USE THIS INDEX

This initial publication of the Urban Mass Transportation Research Information Service (UMTRIS) has been published in two volumes for the convenience of the user. Rather than including the Index with the Abstracts volume, the Index has been published separately as Volume 2 so that it can be placed beside the larger Volume 1 to simplify searching.

The two-digit prefixes in the document record numbers in this Index refer to the 28 categories into which Volume 1: Abstracts is divided. These categories are as follows:

11 Bus & Paratransit Vehicle Technology
12 Bus & Paratransit Operations Technology
13 Rail Vehicle Technology
14 Rail Operations Technology
15 Construction & Tunneling Technology
16 Maintenance & Rehabilitation Technology
17 New Systems & Automation Technology
21 Transit Operations Management
22 Transit Maintenance Management
23 Human Resources Management
24 Productivity & Efficiency
25 Fares & Pricing
26 Safety & Product Quality
27 Security
28 Marketing
29 Information Services
31 Conventional Transportation Services
32 Paratransit Systems & Services
33 Non-Urban & Low-Density Area Transportation
34 Transportation of Special User Groups
41 Socioeconomics of Passenger Services
42 Transit Planning, Policy & Programs
43 Transit Financing
44 Political Processes & Legal Affairs
45 Land Use
46 Center City Traffic Restraints
47 Urban Goods Movement
48 Energy & Environment

Methods for collecting and categorizing the 7065 abstracts in Volume 1 are explained in its Preface. In the course of the data processing of such material by the TRIS (Transportation Research Information Services) computer, various indexes can be prepared; only the Subject-Term Index with more than 3400 terms and 61000 postings is included here.

The subject terms are arranged alphabetically. Each term is followed by one or more eight-digit document record numbers, the basis for identifying pertinent abstracts in Volume 1. The first two digits of an eight-digit number identify one of the 28 UMTRIS categories in which the specific abstract appears, and the final six digits are the TRIS accession number — an arbitrary identification assigned in the course of entering the citation into the data base. Within any one category the citations are listed in ascending accession number order, although normally most of the numbers are not consecutive.

In this Index, the record numbers under any subject term are first grouped in the 28 UMTRIS categories and, like the entries in Volume 1, are then listed in ascending accession number order.

As an example of the use of this Index, suppose you are interested in references to the Advanced Concept Train, an UMTA-sponsored rapid-transit car development project of the early 1970s. Look for “Advanced Concept Train” in this Index (page 2) under which you will find 12 listings (see page iii). The first of these is “13 050056”. Turn now to Category 13, Rail Vehicle Technology, in Volume 1, as indicated by the initial two digits (13). Although Category 13 starts on page 57, the first entry for the Advanced Concept Train appears (in the course of ascending accession numbers) on page 99. Note that the entry has the entire document record number in front of it (13 050056), not just the accession number. The first reference then is “Propulsion Drive for Advanced Concept Train”. Additional references may be found by repeating this process.

UMTRIS Committee

George M. Smerk, Institute for Urban Transportation, Indiana University, Chairman
Lawrence N. Dallam, St. Paul Metropolitan Council
Marta V. Fernandez, Georgia Department of Transportation
Judith L. Genesen, Chicago Transit Authority
Tara A. Hamilton, District of Columbia Department of Transportation
Lyn Long, Institute of Transportation Studies, University of California

UMTRIS Staff

Paul E. Irick, Assistant Director, Special Technical Activities, Transportation Research Board
Fred N. Houser, Manager, UMTRIS

Jean M. Lucas, ATE Management and Service Co., Inc.
Norman G. Pauhus, Jr., Office of Technology Sharing, U.S. Department of Transportation
Mary L. Roy, Transportation Center Library, Northwestern University
Tandy Stevens, American Public Transit Association
Philip Hughes, UMTA Liaison Representative

Suzanne D. Crowther, Urban Transportation Information Specialist
Lenice Zickeloose, Abstractor/Indexer
Mary McMahon, Secretary
RAIL VEHICLE TECHNOLOGY

INDEX

13 048173 DESIGN REVOLUTION CUTS CAR CONSTRUCTION COSTS. Transit rolling stock throughout the world has been the design over the range of urban and fastering costs and ways.

13 049173 DYNAMIC RESPONSE OF A RAPID TRANSIT VEHICLE TO RANDOM GUIDEWAY ROUGHNESS. Measured roadway roughness data and the transfer function for a five-degree-of-freedom model of a rapid transit vehicle are used for determining vertical and lateral passenger motion of a rapid transit vehicle. Optimization studies are used for spring and damping parameters to minimize passenger discomfort for the input spectra associated with the sums and difference of the measured random individual wheel input profiles.


13 050056 PROPULSION DRIVE FOR ADVANCED CONCEPT TRAIN. Discussed are the requirements imposed on an optimized propulsion system for this type of service. These requirements are then implemented by utilizing an advanced concept regenerative drive coupled to a d-c shunt or series motor. A generalized approach is evolved. It is shown that close analogy exists between a-c and d-c systems intended to fulfill the same requirements. The approaches differ mostly in the method of implementation, i.e., induction machine versus synchronous machine--PWM versus AVJ power processor, etc. The paper thus projects the philosophy that advanced concepts and improved performance are not synonymous, as is often assumed, with the exercise of varying the method of implementation.


13 050060 KINETIC ENERGY STORAGE: A "NEW" PROPULSION ALTERNATIVE FOR MASS TRANSPORTATION. The increasing public awareness of the dual problems of air pollution and energy shortage has provided impetus for a search to find new vehicle propulsion alternatives which can alleviate the present dilemma. Recent studies have shown that the

13 050327 BART--FINALLY ON THE TRACKS. This article maintains that BART is an excellent ride and is a beautiful operation even though the Westinghouse-designed t-a control system is not performing properly.

2

13 048136 APPLICATIONS OF BART PROGRAM EXPERIENCE TO THE UMTA URBAN RAPID RAIL VEHICLE AND were considered during the ACT study and proposal efforts and are reflected in the specifications for the ACT-1 vehicles.


13 049136 RECOVERY OF SIMPLIFIED ANALYSIS OF BART ASSESSMENT STUDY EVALUATION OF THE BART PROJECT. The evaluation analysis of the BART project, for the advanced transit system, was conducted in May, 1973. It devoted considerable effort to the testing of the BART project.


13 048136 APPLICATIONS OF BART PROGRAM EXPERIENCE TO THE UMTA URBAN RAPID RAIL VEHICLE AND

13 049136 RECOVERY OF SIMPLIFIED ANALYSIS OF BART ASSESSMENT STUDY EVALUATION OF THE BART PROJECT. The evaluation analysis of the BART project, for the advanced transit system, was conducted in May, 1973. It devoted considerable effort to the testing of the BART project.


13 049173 DYNAMIC RESPONSE OF A RAPID TRANSIT VEHICLE TO RANDOM GUIDEWAY ROUGHNESS. Measured roadway roughness data and the transfer function for a five-degree-of-freedom model of a rapid transit vehicle are used for determining vertical and lateral passenger motion of a rapid transit vehicle. Optimization studies are used for spring and damping parameters to minimize passenger discomfort for the input spectra associated with the sums and difference of the measured random individual wheel input profiles.


13 050056 PROPULSION DRIVE FOR ADVANCED CONCEPT TRAIN. Discussed are the requirements imposed on an optimized propulsion system for this type of service. These requirements are then implemented by utilizing an advanced concept regenerative drive coupled to a d-c shunt or series motor. A generalized approach is evolved. It is shown that close analogy exists between a-c and d-c systems intended to fulfill the same requirements. The approaches differ mostly in the method of implementation, i.e., induction machine versus synchronous machine--PWM versus AVJ power processor, etc. The paper thus projects the philosophy that advanced concepts and improved performance are not synonymous, as is often assumed, with the exercise of varying the method of implementation.


13 050060 KINETIC ENERGY STORAGE: A "NEW" PROPULSION ALTERNATIVE FOR MASS TRANSPORTATION. The increasing public awareness of the dual problems of air pollution and energy shortage has provided impetus for a search to find new vehicle propulsion alternatives which can alleviate the present dilemma. Recent studies have shown that the

13 050327 BART--FINALLY ON THE TRACKS. This article maintains that BART is an excellent ride and is a beautiful operation even though the Westinghouse-designed t-a control system is not performing properly.
ELEVATED RAILROADS
ENABLING LEGISLATION
EMISSIONS
EMINENT DOMAIN
EMERGENCY SERVICES
EMERGENCY LIGHTS
EMERGENCY BRAKES
EMERGENCY EXITS
EMERGENCY LIGHTS
EMERGENCY MEDICAL SERVICES
EMERGENCY PROCEDURES
EMERGENCY SERVICES
EMERGENCY VEHICLES
EMERIT DOMIAN
ENERGY ABSORPTION
ENERGY ANALYSIS
ENERGY CONSERVATION
ENERGY CONSUMPTION
ENERGY STORAGE