Transportation Management Centers
Traveler Information Dissemination Strategies

February 1996
Transportation Management Centers
Traveler Information Dissemination Strategies

Final Report
February 1996

Prepared by
Shawn C. Alsop
Federal Highway Administration
400 Seventh Street SW
Washington DC 20590

Distributed in Cooperation with
Technology Sharing Program
Research and Special Programs Administration
US Department of Transportation
Washington DC 20590

DOT-T-96-21
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FOREWORD</strong></td>
<td>1</td>
</tr>
<tr>
<td><strong>1.0 INTRODUCTION</strong></td>
<td>1</td>
</tr>
<tr>
<td><strong>2.0 TRAVELER INFORMATION DISSEMINATION</strong></td>
<td>1</td>
</tr>
<tr>
<td>2.1 Cable Television</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Personal Computers / Modems</td>
<td>2</td>
</tr>
<tr>
<td>2.3 Information Kiosks</td>
<td>2</td>
</tr>
<tr>
<td>2.4 Telephone</td>
<td>2</td>
</tr>
<tr>
<td>2.5 Variable Message Signs</td>
<td>3</td>
</tr>
<tr>
<td>2.6 Highway Advisory Radio</td>
<td>3</td>
</tr>
<tr>
<td><strong>3.0 CONCLUSIONS</strong></td>
<td>3</td>
</tr>
<tr>
<td><strong>4.0 ACKNOWLEDGMENTS</strong></td>
<td>4</td>
</tr>
<tr>
<td><strong>SUMMARY TABLE</strong></td>
<td>5</td>
</tr>
<tr>
<td><strong>APPENDIX A - SURVEY RESULTS</strong></td>
<td></td>
</tr>
<tr>
<td>Phoenix, Arizona</td>
<td>A1</td>
</tr>
<tr>
<td>Anaheim, California</td>
<td>A3</td>
</tr>
<tr>
<td>Los Angeles, California (District 7 TMC)</td>
<td>A4</td>
</tr>
<tr>
<td>Oakland, California (San Francisco Bay Area TMC)</td>
<td>A6</td>
</tr>
<tr>
<td>Sacramento, California (District 3 TMC)</td>
<td>A7</td>
</tr>
<tr>
<td>San Diego, California</td>
<td>A9</td>
</tr>
<tr>
<td>Lakewood, Colorado</td>
<td>A12</td>
</tr>
<tr>
<td>Newington, Connecticut</td>
<td>A14</td>
</tr>
<tr>
<td>Daytona, Florida</td>
<td>A15</td>
</tr>
<tr>
<td>Miami, Florida (Golden Glades Interchange)</td>
<td>A16</td>
</tr>
<tr>
<td>Orlando, Florida (Interstate 4 Freeway Management Center)</td>
<td>A17</td>
</tr>
<tr>
<td>Atlanta, Georgia</td>
<td>A19</td>
</tr>
<tr>
<td>Honolulu, Hawaii</td>
<td>A21</td>
</tr>
<tr>
<td>Oak Park, Illinois (Chicago)</td>
<td>A22</td>
</tr>
<tr>
<td>Lexington, Kentucky</td>
<td>A23</td>
</tr>
<tr>
<td>Hanover, Maryland (Statewide Operations Center / CHART Operations)</td>
<td>A25</td>
</tr>
<tr>
<td>Rockville, Maryland (Montgomery County TMC)</td>
<td>A26</td>
</tr>
<tr>
<td>Detroit, Michigan</td>
<td>A27</td>
</tr>
<tr>
<td>Minneapolis, Minnesota</td>
<td>A28</td>
</tr>
<tr>
<td>Las Vegas, Nevada</td>
<td>A30</td>
</tr>
<tr>
<td>Jersey City, New Jersey (TRANSCOM)</td>
<td>A31</td>
</tr>
<tr>
<td>New Brunswick, New Jersey</td>
<td>A33</td>
</tr>
<tr>
<td>Long Island, New York (INFORM)</td>
<td>A34</td>
</tr>
<tr>
<td>Columbus, Ohio</td>
<td>A35</td>
</tr>
<tr>
<td>Portland, Oregon</td>
<td>A37</td>
</tr>
<tr>
<td>St. Davids, Pennsylvania (Philadelphia)</td>
<td>A38</td>
</tr>
<tr>
<td>San Antonio, Texas (TransGuide)</td>
<td>A40</td>
</tr>
<tr>
<td>Arlington, Virginia (Interstate 66 / Interstate 395 TMS)</td>
<td>A41</td>
</tr>
<tr>
<td>Virginia Beach, Virginia (Suffolk District TMS)</td>
<td>A42</td>
</tr>
<tr>
<td>Seattle, Washington</td>
<td>A43</td>
</tr>
<tr>
<td>Milwaukee, Wisconsin</td>
<td>A46</td>
</tr>
</tbody>
</table>

**APPENDIX B - TMC CONTACT PERSONS**
TRANSPORTATION MANAGEMENT CENTERS
TRAVELER INFORMATION DISSEMINATION STRATEGIES

Shawn C. Alsop
Federal Highway Administration
February 1996

FOREWORD
The Office of Traffic Management and Intelligent Transportation Systems Applications surveyed transportation management centers (TMCs) across the USA to form an inventory of the strategies currently being used for traveler information dissemination. The objective of this document is to quantify these strategies, and then make the information available to the public.

1.0 INTRODUCTION
The transportation management center is where information about the roadway system is collected, processed, and combined with other data. It can be the location where decisions about control strategies are made, coordinated with other agencies, and implemented. Research and experience have shown that travelers want and use real-time information. Types of traveler information which can be disseminated include: traffic conditions, alternative routes, adverse weather and driving conditions, construction and maintenance activities, special lane use and roadway control measures currently in operation, as well as multi-modal information. With current and accurate information, travelers are able to make more informed decisions regarding travel modes, departure times, and travel routes. A number of existing and emerging technologies are available to facilitate information dissemination to travelers.

Thirty-three written surveys were sent to TMCs across the country. As of February 1996, 31 surveys were completed and returned. Twenty follow-up telephone interviews were completed. The results of the written surveys and telephone interviews for the responding TMCs are included in this report.

2.0 TRAVELER INFORMATION DISSEMINATION
In order to be effective, dissemination of traveler information must be completed in an accurate and timely fashion to travelers. Information disseminated by TMCs can be classified as either pre-trip or en-route. Pre-trip travel information is generally accessed by potential roadway users from their homes, workplace, or other major traffic generators and is used to help plan travel routes, travel modes, and travel departure times. Pre-trip travel information dissemination strategies can include cable television (CATV), personal computers/modems, interactive information kiosks, and real-time-dial-in telephone systems. En-route travel information includes
all information received by travelers during their trips. En-route travel information dissemination strategies can include variable message signs (VMS), highway advisory radio (HAR), and radio broadcasts. The following paragraphs include a list of current traveler information dissemination strategies which were addressed in the survey. However, it should be noted that this is not an all inclusive list, since technologies are emerging.

2.1 Cable Television

Through public/private partnerships between transportation agencies and local cable companies, CATV is being used to broadcast live video from freeway surveillance cameras to travelers. This enables travelers to view real-time traffic conditions before they begin their trip. With this information, the travelers are able to make informed decisions as to what travel route to take, what travel mode to take, or whether or not they should change their departure time. In San Antonio, TransGuide purchased their own low power television station which provides vehicle and digital data to subscribers.

2.2 Personal Computers / Modems

Through the use of the Internet's World Wide Web, personal computers are being used as a method of disseminating traveler information. The information is sent out using text, graphics, and/or photographs. The information can include graphical representations of roadway networks depicting real-time speeds (different colors are used for various freeway segments showing varying speed/congestion levels), real-time "snapshots" of existing conditions taken from the closed circuit televisions cameras, real-time weather conditions, incident locations, and scheduled construction and maintenance roadway closures. Some TMCs even include multi-modal information. For example, Seattle's Web page includes bus and ferry schedules, while Oak Park (Chicago), Illinois includes public transit bulletins on its Web page.

2.3 Information Kiosks

A kiosk is a combination video monitor/computer mounted in a stand-alone cabinet which allows the public to interact and retrieve requested information via touch screens or keyboards/pads. Through improvements in communication mediums and computers, kiosks are capable of disseminating real-time traveler information that is location/freeway specific and on-demand traffic operations information. The information is provided in either a text format and/or a graphical format. The Los Angeles and Atlanta systems' kiosks provide mass transit information.

2.4 Telephone

Some agencies are using Highway Advisory Telephone (HAT) systems. This system consists of a dial-in telephone system which distributes static (pre-recorded) traveler information such as scheduled daily freeway lane closures due to construction/maintenance activities, and
transit information. Dissemination of real-time, location/freeway specific, on-demand traffic operations information via dial-in telephone systems is an emerging technology. For instance, the Seattle telephone system provides carpool information and the ferry schedules.

2.5 Variable Message Signs

Variable Message Signs (VMS) have been used to disseminate traveler information to travelers for over 30 years. They are used for warning, regulation, routing and traffic management purposes. The signs can be controlled locally (at the sign) or remotely (from a TMC). The displayed messages can either be pre-stored messages or custom made by the operator.

2.6 Highway Advisory Radio

Highway Advisory Radio (HAR), local-area radio broadcasts, are being used to disseminate advisories and information to the public through the use of AM radio stations. Roadside or overhead signs are used to instruct the travelers to tune to a specific radio station to obtain this information. Typically, HAR is used to disseminate information pertaining to special events, incidents, and construction/maintenance activities, but also can be used to provide mass transit information as in the Miami system. The Montgomery County (Maryland) TMC’s HAR consists of 12 sites which are all interconnected and synchronized so that all the sites broadcast the same information at the same time.

3.0 CONCLUSIONS

Presently traffic congestion on the roadway system is a major problem, and if methods are not implemented, it will be even worse in the future. Since building additional roadway capacity is no longer a feasible option due to economic, political, and environmental reasons, traffic management is becoming more important. Technologies have been and are being developed that monitor traffic conditions. Once this information is collected, it must be processed, and then disseminated to travelers in a quick and efficient manner, so that the travelers have adequate time to adjust their travel patterns and behaviors. Traffic management centers have been and are being implemented across the country to help alleviate the traffic problems.

Traffic management centers can create opportunities for the establishment of public/private partnerships. Some of the TMCs surveyed formed partnerships with the private sector for a variety of tasks. Some of these tasks include: developing the computer software, providing the equipment, and disseminating the traveler information provided by the TMCs.

Each of the TMCs is very unique. Some of the TMCs prefer certain information dissemination strategies over others, and it is difficult to conclude that one strategy is more beneficial than another. However, it can be concluded that a combination of pre-trip and en-route
traveler information dissemination strategies is needed for the greatest benefit.

4.0 ACKNOWLEDGMENTS

Acknowledgment and thanks needs to be given to The Urban Transportation Monitor for its support in giving contact persons for the TMCs. Additionally, thanks is given to everyone who responded to the survey that provided the prevailing information on traveler information dissemination strategies. The cover photo is of TransGuide in San Antonio courtesy of Kemp Davis Photography.

\(^1\)Balke, K., Ullman, J., Starr, T., Fenno, D., Carvell, J., Nowlin, L., and Fitzpatrick, K., Freeway Management Systems: A State-of-the-Practice Review, Texas Transportation Institute, Texas
Traveler Information Dissemination Strategies
Summary Table

<table>
<thead>
<tr>
<th>TMC</th>
<th>VMS</th>
<th>HAR</th>
<th>CATV</th>
<th>Internet</th>
<th>Kiosks</th>
<th>HAT</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phoenix, Arizona</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>Radio system</td>
</tr>
<tr>
<td>Anaheim, California</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Los Angeles, California (District 7 TMC)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>Fax</td>
</tr>
<tr>
<td>Oakland, California (San Francisco Bay Area)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>TravInfo</td>
</tr>
<tr>
<td>Sacramento, California (District 3 TMC)</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>Fax - SIGALERT</td>
</tr>
<tr>
<td>San Diego, California</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>Pagers and faxes</td>
</tr>
<tr>
<td>Lakewood, Colorado</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>N/A</td>
<td>✓</td>
<td>Radio and tv</td>
</tr>
<tr>
<td>Newington, Connecticut</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Daytona, Florida</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Miami, Florida (Golden Glades Interchange)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td>Print and commercials</td>
</tr>
<tr>
<td>Orlando, Florida (Interstate 4 Freeway Management Center)</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td>Metro traffic radio reports</td>
</tr>
<tr>
<td>Atlanta, Georgia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honolulu, Hawaii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Oak Park, Illinois (Chicago)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>Pager service</td>
</tr>
<tr>
<td>Lexington, Kentucky</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td>N/A</td>
<td>✓</td>
<td>Fax</td>
</tr>
<tr>
<td>Hanover, Maryland (Statewide Operations Center / CHART Operations)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>Broadcast fax, alpha pager, metro traffic / media</td>
</tr>
<tr>
<td>Rockville, Maryland (Montgomery County TMC)</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>Direct connection to tv stations</td>
</tr>
<tr>
<td>TMC</td>
<td>VMS</td>
<td>HAR</td>
<td>CATV</td>
<td>Internet</td>
<td>Kiosks</td>
<td>HAT</td>
<td>Others</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Detroit, Michigan</td>
<td>✔</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minneapolis, Minnesota</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>N/A</td>
<td></td>
<td>Commercial radio</td>
</tr>
<tr>
<td>Las Vegas, Nevada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jersey City, New Jersey (TRANSOM)</td>
<td>✔</td>
<td>✔</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
<td>Fax, media, pagers</td>
</tr>
<tr>
<td>New Brunswick, New Jersey</td>
<td>✔</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Long Island, New York (INFORM)</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td>✔</td>
<td>Fax, commercial radio</td>
</tr>
<tr>
<td>Columbus, Ohio</td>
<td></td>
<td>N/A</td>
<td>✔</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>Commercial radio</td>
</tr>
<tr>
<td>Portland, Oregon</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>St. Davids, Pennsylvania (Philadelphia)</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td>Commercial radio</td>
</tr>
<tr>
<td>San Antonio, Texas (TransGuide)</td>
<td>✔</td>
<td>N/A</td>
<td>✔</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia (I-66/I-395 TMS)</td>
<td>✔</td>
<td>N/A</td>
<td>✔</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia Beach, Virginia (Suffolk District TMS Center)</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td>✔</td>
<td>Pager system</td>
</tr>
<tr>
<td>Seattle, Washington</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Milwaukee, Wisconsin</td>
<td>✔</td>
<td></td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

### Table Legend

**VMS:** Variable Message Signs  
**HAR:** Highway Advisory Radio  
**CATV:** Cable Television  
**Internet:** World Wide Web Page  
**Kiosks:** Information Kiosks  
**HAT:** Highway Advisory Telephone  
✔ - currently operational  
気軽 - planned for future use  
N/A - Not Applicable
APPENDIX A
SURVEY RESULTS
| **TRAFFIC OPERATIONS CENTER**  
| Phoenix, Arizona |

**Variable Message Signs**
Currently operates 27 shuttered, fiber-optic VMS boards and 2 flip-disc boards; and additional 6 shuttered, fiber-optic boards will be added to the system during Phase II construction, which is presently underway.

**Highway Advisory Radio**
Capable for HAR in the future; However, will implement a pilot Radio Broadcast Data System (RBDS) in the very near future; the pilot program will broadcast traffic information as a sideband signal from a commercial FM radio station; the program has 2 components: (1) uses laptop computers along with GPS for use in vehicles, (2) uses a standard PC as a stationary, kiosk traffic information center; 12 vehicle units and 28 stationary, kiosk units; joint venture between several government agencies and private businesses.

**Cable Television**
Local television stations are receiving live pictures from the CCTV cameras installed at numerous locations along I-10 and I-17; the picture sent to the television stations is controlled by the operators at the Traffic Operations Center.

**Personal Computer/ Modem**
Capable of generating computer facilitated advisories and a World Wide Web (www.azfms.com) on Internet; use computer facilitated advisories for Emergency Response personnel, HazMat Response units, municipal agencies, Risk Management personnel, ADOT management, etc. via the Emergency Notification System (ENS) messages can be automatically sent to fax machines, numeric pages, alpha-numeric pagers, and other types of electronic devices which accept written data; currently pursuing development of computer generated voice messages and response; the World Wide Web provides general information about the system, camera images for all the currently active CCTVs (29) with a 10-minute delay in the picture, real-time graphics of speed along the 29-miles of freeway currently in the system, road closure reports for the Phoenix area (this will be expanded to include all of Arizona), weather for 10 locations in Arizona (updated twice daily), links with other states’ Freeway Management System sites, and local data such as from the Maricopa County Flood District; the Web site can be icon driven or text driven.

**Information Kiosks**
Will be incorporated into the system during Phase II construction; virtually the same capabilities as the RBDS except the individual businesses will have to provide their own PC.

**Telephone**
Currently, traffic information is provided via voice message over the telephone; a telephone number is available to the public through which road conditions are given for all State and Federal highways in the state of Arizona.

**Others**
800 MHZ radio - the system can communicate via radio with any ADOT organization, anywhere in Arizona, through a series of relay towers; the radio system is used to communicate with HazMat personnel, Risk Management personnel, etc.
The traffic flow is continuously monitored via CCTVs and with a graphics display which shows the data being reported by loop detectors throughout the system; both the CCTVs and the graphics display provide real time observation of the effectiveness of messages deployed on the VMS boards.

Utilization of the RBDS stationary, kiosk units will be recorded at location, collected, and then correlated; evaluation of the mobile, vehicle units will utilize at least one unit of a commercial fleet of vehicles which operate throughout the Metro Phoenix area; test unit(s) will be equipped with a transponder(s) to track its' (their) movements; several other units of the commercial fleet will also have transponders, but will not have the RBDS; a comparison of the travel times with RBDS and without RBDS vehicles will be analyzed to determine the impact of the RBDS test program.

Computer facilitated advisories are evaluated by how much improvement is seen in communicating with various individuals and agencies as they are tied into the system; this is a subjective evaluation type of evaluation and there is no firm data available for a “before” and “after” comparison.

World Wide Web utilization is evaluated by the number of inquiries and to some degree how much of the available data is reviewed; it is possible to evaluate the general geographical areas of the sites making the inquiries.

Evaluation of the effectiveness of the telephone is subjective and is based on the number of calls the operators have to answer when the pre-recorded message machine is out of service.

Evaluation of the effectiveness of the 800 MHZ radio is subjective and based on the number of local and statewide calls which have responded to by the operators; the number has been steadily increasing since the start-up of the TOC.

PHONE INTERVIEW

Contact Person:

Phil Carter
(602) 255-7754
Year the center opened: 1988

**ANAHEIM TRAFFIC MANAGEMENT SYSTEM**
Anaheim, California

<table>
<thead>
<tr>
<th><strong>Variable Message Signs</strong></th>
<th>5 VMS; 13 Trailblazers; LED; local/central control; composed message; automatically controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Highway Advisory Radio</strong></td>
<td>530 HZ, monopole; used almost daily; taped messages; special event information</td>
</tr>
<tr>
<td><strong>Cable Television</strong></td>
<td>1 station; updated every minute by graphics display; information of freeway/city occupancy</td>
</tr>
<tr>
<td><strong>Personal Computer/ Modem</strong></td>
<td>TRAVIEW; online service will display freeway/city traffic occupancy in graphics form</td>
</tr>
<tr>
<td><strong>Information Kiosks</strong></td>
<td>Touch screen monitors displayed at tourist area; 2 locations</td>
</tr>
<tr>
<td><strong>Telephone</strong></td>
<td>HAT; special events information service</td>
</tr>
<tr>
<td><strong>Others</strong></td>
<td>Internet, World Wide Web</td>
</tr>
<tr>
<td><strong>Formal Evaluation?</strong></td>
<td>Very little for VMS; use CCTV to evaluate; occasional surveys; no funding for evaluation purposes</td>
</tr>
</tbody>
</table>

**PHONE INTERVIEW**

<table>
<thead>
<tr>
<th><strong>Most effective strategy</strong></th>
<th>VMS used for parking management; cable television</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Least effective strategy</strong></td>
<td>HAR - the radius is not wide enough, therefore not enough coverage; also the operation and maintenance of the system is very cumbersome</td>
</tr>
<tr>
<td><strong>How current are the messages?</strong></td>
<td>Pretty poor, except for cable television which is relatively accurate</td>
</tr>
</tbody>
</table>

**VMS MESSAGE CHARACTERISTICS**

<table>
<thead>
<tr>
<th><strong>Length</strong></th>
<th>3 lines, 21 characters</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Colors</strong></td>
<td>Amber color only</td>
</tr>
<tr>
<td><strong>Text only?</strong></td>
<td>NO, capable of graphics but not used</td>
</tr>
<tr>
<td><strong>How were the messages developed?</strong></td>
<td>Based on research</td>
</tr>
<tr>
<td><strong>Advances for the future</strong></td>
<td>SCOOT - real-time signal system; SMART corridor</td>
</tr>
<tr>
<td><strong>Private sector involvement?</strong></td>
<td>YES, heavy reliance on consultants</td>
</tr>
<tr>
<td><strong>Feedback from the users</strong></td>
<td>Very little - no funding</td>
</tr>
<tr>
<td><strong>Major operational problems?</strong></td>
<td>Software sometimes does not work; maintenance of the communication lines is very cumbersome</td>
</tr>
</tbody>
</table>

**Contact Person:**
Yo Baba
(714) 254-5202
**LOS ANGELES DISTRICT 7 TMC**  
*Los Angeles, California*

<table>
<thead>
<tr>
<th>Variable Message Signs</th>
<th>85 current; 100 ultimate; matrix; 16 are locally controlled and the others are centrally controlled; messages are composed manually, provide traffic advisories and other traffic related information only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Advisory Radio</td>
<td>9 HARs; taped messages 530, 620, and 1610 AM; provide information on closures, detour information, and adverse weather conditions</td>
</tr>
<tr>
<td>Cable Television</td>
<td>1 station but it is available to others; Monday thru Friday - AM/PM periods of peak congestion; provides a map of the freeway system with graphical representation of speeds</td>
</tr>
<tr>
<td>Personal Computer/Modem</td>
<td>CALTRANS Internet Web Page, Maxwell labs puts Freeway Vision (same as what is on the cable television) on Internet</td>
</tr>
<tr>
<td>Information Kiosks</td>
<td>72 as a demonstration project; provide mass transit information and freeway conditions</td>
</tr>
<tr>
<td>Telephone</td>
<td>Dedicated phone lines/modems to various media services</td>
</tr>
<tr>
<td>Others</td>
<td>Fax - media receives faxes giving lane closures that will significantly impact traffic flow</td>
</tr>
</tbody>
</table>

**Formal Evaluation?**  
Evaluated by local universities - Cal Poly, San Luis Obispo, UC Berkeley, UC Irvine, UCLA, and USC

**PHONE INTERVIEW**

**Most effective strategy**  
Public media / radio - most people will tune in or else all ready are listening to the radio or watching television

**Least effective strategy**  
Highway Advisory Telephone (HAT) since it requires that people dial-in to hear about traffic conditions

**How current are the messages?**  
Real-time

**VMS MESSAGE CHARACTERISTICS**

<table>
<thead>
<tr>
<th>Length</th>
<th>4 lines, 16 characters per line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colors</td>
<td>Standard black and white</td>
</tr>
<tr>
<td>Text only?</td>
<td>YES</td>
</tr>
<tr>
<td>How were the messages developed?</td>
<td>Based on research and engineering experience (trial and error)</td>
</tr>
<tr>
<td>Advances for the future</td>
<td>350 cameras will be coming on line in the next couple of years; will upgrade the system so that when a problem occurs on the roadway system, the computer will detect the problem and locate it on the system and provide the operator with a response plan (presently the operator has to find where the problem is located in the system and then must dial-up the appropriate camera); Fiber optics will be implemented through out the system which will improve the communication links to the field equipment; New building for the TMC will be constructed</td>
</tr>
</tbody>
</table>
Private sector involvement?

Good degree - the private sector develops programs and software for the TMC

Feedback from the users

NO formal survey of the users

Major operational problems?

Telephone lines used to talk to the field elements are unreliable, hopefully will eliminate this problem through the use of fiber optics

Contact Person:

Samuel Esquenazi
(213) 897-4385
Year the center opened: 1991

SAN FRANCISCO BAY AREA TMC
Oakland, California

Variable Message Signs
30 in use; 35 under construction; 90 planned; local and central control, composed messages; automatically and manually controlled; positioned 1 to 3 miles ahead of major decision points; adverse condition ahead message - what- where- when to be cleared

Highway Advisory Radio
2 in use; 15 under construction; 10 planned; monopole; 530, 1610 or other available mid-band AM frequency; taped messages of more detailed adverse and/or construction roadway condition ahead; extinguishable message signs "traffic alert tune radio AM 1610" on when broadcasting and positioned 5 to 7 miles ahead of major decision points

Cable Television

Personal Computer/Modem

Information Kiosks

Telephone
1 in use statewide called "California Highway Information Network (CHIN)"; operated by Caltrans; an 800 phone number for callers inside the State using touch tone phone for recorded messages on road conditions by entering highway route numbers

Others

TravInfo (to be operational Spring 1996) - Traveler information system for all major modes of surface transportation; public access through regional telephone numbers with menu based automatic voice phone system; also digitized data available to partnerships with public agencies and private firms for both contributing and disseminating traveler information

Formal Evaluation?
Safety, operational, and incident management studies will be addressed on an on-going basis within the San Francisco-Oakland Bay region

PHONE INTERVIEW
N/A

VMS MESSAGE CHARACTERISTICS

Length
3-line, multi-page

Colors
incandescent bulb matrix

Contact Person:
Jim Spinello
(510) 286-4538
Year the center opened: 1991

CALTRANS DISTRICT 3 TMC
Sacramento, California

Variable Message Signs
10 VMS and 1 additional sign funded; California Model 500 type which are full matrix incandescent lamp signs; locally or remotely controlled using Signview software which runs on a PC platform; typically the signs are controlled via dial-up telephone lines from the communications office in Marysville and not the TMC in Sacramento; the sign controllers contain security software that prevents unauthorized access; stored messages are available and the operator can also enter a custom message; currently most signs are located on I-80 and US 50 - display current winter road conditions; once the proposed VMS's are placed in the metropolitan area they will be primarily used to give incident information and freeway to freeway detours; the signs will not suggest alternate routes using local surface streets.

Highway Advisory Radio
16 HARs in operation with 5 more planned; all use the 10 watt low power systems that operate on either 530kHz or 1610kHz on the AM band; most of the HARs have pre-recorded messages that can be selected with a touch-tone phone; the HARs located on I-80 and US 50 primarily give road condition reports in the winter and road construction information in the spring and summer; the HARs proposed in the metropolitan area will be used primarily for real-time traffic updates.

Cable Television
TMC is co-located with the California Highway Patrol (CHP) and they provide a Media Information Officer who broadcasts traffic reports on TV and radio stations during the morning commute; currently there are no plans to add a dedicated cable channel with updated traffic information from the TMC.

Personal Computer/ Modem
Currently the TMC does not maintain an electronic bulletin board system; however, the CHP does use a Computer Aided Dispatch (CAD) system which electronically dispatches CHP field units and traffic related information is available to the media via dial-up modem; currently a World Wide Web site called Smart Traveler that contains information on the State Highway System and there are plans to develop a special web site for District 3 through Caltrans Headquarters.

Information Kiosks
Planned for the future as part of the TransCal Field Operational Test (FOT), will provide real time traffic information as well as information regarding other modes of travel; TRW is the main partner in this FOT and they will be collecting the traffic information from numerous sources and disseminating it to the kiosks and other special notification devices.
**CALTRANS DISTRICT 3 TMC**  
Sacramento, California

**Telephone**  
Used to give the media additional information on incidents which may not be available on the CHP CAD; some smaller media stations that do not have CAD will request updates on traffic conditions; there is no automated phone message system specific for District 3, but there is one at the State Headquarters level; it contains information for all state routes and can be accessed using a touch-tone phone; the District 3 TMC can add messages to this system for major incidents (longer than 2 hours) so when a local caller accesses the system it will give them relevant incident information.

**Others**  
Fax - used to send out SIGALERT’s or significant lane closure incidents to a media outlet that then sends it to various media subscribers.

**Formal Evaluation?**  
NONE in place at this time; construction projects are in progress that will be installing monitoring stations which will be able to determine the effects of certain strategies; these monitoring stations will be able to measure vehicle volumes and speeds; CCTV will also be installed which will aid in the evaluation; do perform short critiques after major incidents to discuss the performance of the system.

**PHONE INTERVIEW**

**Most effective strategy**  
VMS and HAR

**Least effective strategy**  
Television reports since only can provide pre-trip information, can not provide en-route information

**How current are the messages?**  
Real-time

**VMS MESSAGE CHARACTERISTICS**

**Length**  
3 lines, 16 characters

**Colors**  
Incandescent

**Text only?**  
NO, but graphics not used

**How were the messages developed?**  
Engineering experience

**Advances for the future**  
New building for the TMC in the next couple of years; fiber optics for a Shared Resources Program; video image processing

**Private sector involvement?**  
Very little besides the TransCal project

**Feedback from the users**  
No formal survey, but positive feedback from the users

**Major operational problems?**  
No major problems

**Contact Person:**  
Brian Simi  
(916) 445-0059
### SAN DIEGO TRANSPORTATION MANAGEMENT CENTER
San Diego, California

#### Variable Message Signs
21 VMS and 23 portable VMS; mobile on 3/4 ton trucks and trailers, or else permanent fixed base installations; used in advance of major freeway junctions to warn motorists of unusual traffic congestion ahead or in advance of the end of a queue of vehicles; may indicate the route number that is experiencing the problem, cause of the problem, the condition of the route (e.g., a long delay), and possibly the location.

#### Highway Advisory Radio
5 HAR; either mobile on a trailer or else permanent fixed locations; the mobile unit is capable of transmitting on 1610 or 530Kc; information provided on alternative parking lots and shuttle buses; 530Kc can reach 1 or 2 miles; motorists are advised to turn to 530Kc by temporary signs along the approach routes.

#### Cable Television
Planned for the future.

#### Personal Computer/Modem
Traffic reports broadcast on the Internet at the following address:
Maxwell Home Page: [http://www.scubed.com](http://www.scubed.com) or [http://www.scubed.com/caltrans/sd/big_map.shtml](http://www.scubed.com/caltrans/sd/big_map.shtml); experiencing about 20,000+ pages viewed per day (almost 157,000 per month for the San Diego traffic information screens); the TMC San Diego Ramp Metering System (SDRMS) is supplying about 5 million units of raw data per day (over a T-1 dedicated line) which is being formatted by Maxwell Labs software to create the screens for the Internet; the screens closely replicate the TMC SDRMS screens.

#### Information Kiosks
NONE; planned installation in the future.

#### Telephone
Receive information from various sources by telephone; communicate with the field VMS truck units by cellular phone, pager, and/or by radio; information given to the electronic and print media; Multiple ports on the back of the SDRMS computer which in some cases are connected by dedicated phone lines to traffic reporting services. This gives the traffic reporting services the data screens seen in the TMC which show planned lane closures, lane speeds and volumes, and incidents. The TMC staff inputs information on the California Highway Information Network (CHIN) regarding incidents and lane closures. The public can access a particular route(s) by pressing the number of the route on a touch tone phone; 1-800-427-7623 (in state) or 916-445-7623 (out of state).
SAN DIEGO TRANSPORTATION MANAGEMENT CENTER
San Diego, California

Others
Use pagers and faxes, cellular phones, standard phones, Caltrans two-way radios, California Highway Patrol (CHP) radios (receive only for monitoring), co-location with CHP - a CHP officer works in the TMC using the CHP computer aided dispatch (CAD), the officer handles a majority of the SDRMS tasks for incidents, does live traffic report broadcasts, issues SIGALERTS (special radio frequency used to notify other command/dispatch centers of serious disruptions of traffic due to major incidents), handles media calls, sends out news releases, and handles law enforcement questions; also use the PC based LACC Bulletin Board (CHP software) to communicate with other statewide TMCs and commercial radio stations in Los Angeles to advise of major traffic blockages.

Formal Evaluation?
Statistics are being kept on the number of incidents, types of incidents, response times, length of facility closures, number of lanes affected, volume profiles, speed profiles, etc. Comparisons of "normal" vs. "incident" traffic flows are able to be developed from SDRMS. Additional work on analytical methods is underway.

PHONE INTERVIEW
Most effective strategy
Commercial broadcast radio - provides updated traffic conditions every 10 minutes during the peak periods.

Least effective strategy
HAR - since it is very time consuming to update the HAR unit compared to other methods of getting the message out, and it requires motorists to tune to a station to which they are not normally listening; the coverage area by HAR is significantly smaller compared to the coverage by the commercial radio stations.

How current are the messages?
Very current, for the most part are near real-time especially on speed, volume, and incident screens; and on the fixed and mobile (truck mounted) VMS; commercial radio traffic reporters keep up very well during peak hours with a desire for accuracy and credibility.

VMS MESSAGE CHARACTERISTICS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>3 lines, 18 characters</td>
</tr>
<tr>
<td>Colors</td>
<td>Incandescent with black background or flip disk on a black background</td>
</tr>
<tr>
<td>Text only?</td>
<td>YES</td>
</tr>
<tr>
<td>How were the messages developed?</td>
<td>Based on engineering judgement and experience</td>
</tr>
</tbody>
</table>

Advances for the future
New base-isolated building for the TMC expected to be opened by July 1996; this will be a collated facility which will bring together the regional 911 cellular call takers, dispatchers, public affairs and media officers, etc of the CHP Border Division; and the maintenance and construction dispatchers, operations transportation management staff, and emergency response staff, from Caltrans District 111, into one facility; these units are presently scattered over a 10-mile area of metropolitan San Diego.
SAN DIEGO TRANSPORTATION MANAGEMENT CENTER  
San Diego, California

<table>
<thead>
<tr>
<th>Private sector involvement?</th>
<th>Extensive involvement in the development of software and hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedback from the users</td>
<td>Received very positive feedback from the Internet users and the traffic reporters when a message was sent out asking if they used the system; large number of inquiries from the media by phone and by Internet users</td>
</tr>
<tr>
<td>Major operational problems?</td>
<td>HAR - signal in some areas is wiped out by stronger commercial stations and other HAR stations; old equipment that takes a limited closed-loop tape (short message) or takes 20-30 minutes to update the messages remotely; Problems with fixing and developing the software required by the system</td>
</tr>
</tbody>
</table>

**Contact Person:**
Tarbell C. Martin  
(619) 688-3104  
E-mail: tbtbell@trn.ts9.teale.ca.gov
**COLORADO TRAFFIC OPERATIONS CENTER**
Lakewood, Colorado

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Variable Message Signs</strong></td>
<td>27 signs operating; various types - flip-fiber, flip-disc, and LED; display road and weather information along with any incident, road closure, incident that will impact traffic; messages come from the TOC and are pre-stored</td>
</tr>
<tr>
<td><strong>Highway Advisory Radio</strong></td>
<td>12 in operation using 530 Hz; used for messages on road and weather conditions, incidents or other things that impact traffic; monopole style; most messages are cellular phoned in to the unit as needed now; a central computer unit is being installed where canned messages may be used</td>
</tr>
<tr>
<td><strong>Cable Television</strong></td>
<td>NONE; trying to set up a system for the “Traffic Channel” for road conditions</td>
</tr>
<tr>
<td><strong>Personal Computer/ Modem</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Information Kiosks</strong></td>
<td>NONE; ready to deploy 1 or 2 in January 1996; expand to 12 in 1996 if it works; will provide statewide road and weather conditions along with local information and likely advertising as part of the public/private partnership</td>
</tr>
<tr>
<td><strong>Telephone</strong></td>
<td>Menu-driven voice messaging system for statewide road and weather information; provides messages for 8 areas of the state on 50 phone lines simultaneously; does broadcast faxing, 16 at a time, to media, ski areas, ports-of-entry, commercial trucking firms, police, fire departments, and others</td>
</tr>
<tr>
<td><strong>Others</strong></td>
<td>Spot radio bits on incidents, are working with 4 television stations to share CCTV’s and get pictures of conditions out to viewers; will be installing a television station camera in the TOC for stand-up spots</td>
</tr>
<tr>
<td><strong>Formal Evaluation?</strong></td>
<td>NO, but one is planned for the future</td>
</tr>
<tr>
<td><strong>PHONE INTERVIEW</strong></td>
<td>VMS since it is visual and should only be used when necessary or else people will become oblivious to the messages if messages are displayed constantly</td>
</tr>
<tr>
<td><strong>Most effective strategy</strong></td>
<td>Traffic information that is sent to the media since there is no guarantee what the media will do with the information</td>
</tr>
<tr>
<td><strong>Least effective strategy</strong></td>
<td>Traffic information that is sent to the media since there is no guarantee what the media will do with the information</td>
</tr>
<tr>
<td><strong>How current are the messages?</strong></td>
<td>Real-time</td>
</tr>
</tbody>
</table>

**VMS MESSAGE CHARACTERISTICS**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>10 Flip-fiber signs - 3 lines of 18 characters, 18&quot; letters; 6 Flip-disc signs (out-to-bid for flip-fiber or fiber-shutter) - 3 lines of 20 characters, 18&quot; letters; 10 portable LED signs - 3 lines of 8 characters, 18&quot; letters; 1 LED sign uses 3 lines of 8 characters, 12&quot; letters; 8 of the portable LED signs are out-to-bid for fiber-shutter or flip-fiber signs of 3 lines of 15 characters, 18&quot; letters</td>
</tr>
<tr>
<td>Colors</td>
<td>Amber</td>
</tr>
<tr>
<td>Text only?</td>
<td>YES</td>
</tr>
</tbody>
</table>
**COLORADO TRAFFIC OPERATIONS CENTER**  
Lakewood, Colorado

**How were the messages developed?**  
Traffic engineering experience; also the maintenance staff out in the field provided information which they obtained from the users.

**Advances for the future**  
More expert systems; also want to set up the system so that all the equipment operates on a single platform (currently VMS from different companies run on different programs).

**Private sector involvement?**  
YES, just beginning to work with the private sector; jointly working with a television station to install cameras; private firms are developing software for the center.

**Feedback from the users**  
Surveyed the 250 agencies that the center faxes traffic information; received positive feedback.

**Major operational problems?**  
Some bugs with the new voice messaging system.

**Contact Person:**  
Lawrence Corcoran  
(303) 239-5807
**NEWINGTON OPERATIONS CENTER**  
Newington, Connecticut

<table>
<thead>
<tr>
<th>Variable Message Signs</th>
<th>31 flip-cube; 40 LED; full matrix; centrally controlled; provide information on daily construction, maintenance, incident management, and weather advisories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Advisory Radio</td>
<td>Operational test project underway to deploy HAR along a section of Interstate 95 in Bridgeport</td>
</tr>
<tr>
<td>Cable Television</td>
<td>N/A</td>
</tr>
<tr>
<td>Personal Computer/ Modem</td>
<td>N/A</td>
</tr>
<tr>
<td>Information Kiosks</td>
<td>N/A</td>
</tr>
<tr>
<td>Telephone</td>
<td>ATIS study currently in progress for statewide area</td>
</tr>
<tr>
<td>Others</td>
<td>N/A</td>
</tr>
<tr>
<td>Formal Evaluation?</td>
<td>YES, for certain aspects of the operations center, but not for the entire center; before-and-after studies were completed for the traffic signal systems</td>
</tr>
</tbody>
</table>

**PHONE INTERVIEW**

- **Most effective strategy**: VMS; ideally it would be VMS complimented with HAR
- **Least effective strategy**: NONE, anything is better than nothing
- **How current are the messages?**: Real-time, very effective

**VMS MESSAGE CHARACTERISTICS**

- **Length**: Full matrix
- **Colors**: Amber; capable of red and green, but not currently used
- **Text only?**: NO; capable of graphics but not used
- **How were the messages developed?**: Evolution process based on learning and practice since 1990
- **Advances for the future**: ATIS provided for subscribers and users who dial-in to the system; fiber optics; satellite HAR; regional architecture for communications; new VMS; cellular telephone applications
- **Private sector involvement?**: YES, the private sector operates the operations center in Bridgeport, Connecticut
- **Feedback from the users**: NO formal surveys; the VMS Committee effectively addresses the issues
- **Major operational problems?**: Multiple access to the computerized traffic signal system is a problem since the system was originally designed as a stand-alone system

**Contact Person:**  
James Mona  
(860) 594-3450
### Year the center opened:
1996

### TRANSPORTATION MANAGEMENT CENTER
**Daytona, Florida**

#### Variable Message Signs
Traffic Info (hybrid flip / LED): 4 Vultron - full matrix; part of the I-4 / I-95 Daytona Surveillance System; centrally controlled that provides information during incident management and special events, such as Daytona 500; Flip Trailer Mounted VMS - 3, 3 line matrix controlled by cellular phone (these can be supplemented by bringing in additional trailer mounted VMS from other FDOT maintenance facilities during special events).

#### Highway Advisory Radio
Borrow trailer mounted HAR for special events - messages include bus shuttle locations and best routes to parking and/or into event location.

#### Cable Television
None, checking into providing feed to county public cable access channel.

#### Personal Computer/Modem
N/A

#### Information Kiosks
N/A

#### Telephone
N/A

#### Others
N/A

#### Formal Evaluation?
N/A

### PHONE INTERVIEW
SEE INTERVIEW FROM ORLANDO, FLORIDA

#### Contact Person:
Jon Cheney
(904) 943-5322
E-mail: TO562JC@DOT1.MAIL.UFL.EDU
Year the center will open: End of 1996 (fully operational)

<table>
<thead>
<tr>
<th>Variable Message Signs</th>
<th>10 under construction (LED, fiber optic, LED reflective, fiber optic reflective); 30 fiber optic proposed for I-95; local and central control; canned and composed messages; automatic, semi-automatic, and manual controls; congestion and delay information, diversion routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Advisory Radio</td>
<td>Proposed leaky coax is likely; taped messages; multi-modal traffic and travel information; congestion hot spots, diversion routes, transit schedules, fares, and connectivity, park and ride options, emergency bulletins, and airport and seaport connections</td>
</tr>
<tr>
<td>Cable Television</td>
<td>Being discussed; channel has been offered by the county; provide information similar to HAR; method of updating - initially relaying the information similar to that on HAR, but live segments on &quot;Transportation/ITS Education&quot; are being considered</td>
</tr>
<tr>
<td>Personal Computer/ Modem</td>
<td>System capable of providing the information to PCS is under design</td>
</tr>
<tr>
<td>Information Kiosks</td>
<td>Planned; information similar to HAR; in addition &quot;individual&quot; connectivity</td>
</tr>
<tr>
<td>Telephone</td>
<td>System capable of providing the travel/traffic information via telephone is under design; information similar to HAR</td>
</tr>
<tr>
<td>Others</td>
<td>Print, Commercial, TV media; announcement of planned construction activities and closures, etc as it is commonly done</td>
</tr>
<tr>
<td>Formal Evaluation?</td>
<td>Too early to comment; a project is planned to find the effectiveness of the type of VMS technology</td>
</tr>
<tr>
<td>PHONE INTERVIEW</td>
<td>N/A</td>
</tr>
<tr>
<td>VMS MESSAGE CHARACTERISTICS</td>
<td>3 lines, 21 characters per line</td>
</tr>
<tr>
<td>Length</td>
<td>Amber, LED on black, white fiber optic on black</td>
</tr>
<tr>
<td>Colors</td>
<td>NO, full matrix</td>
</tr>
<tr>
<td>Text only?</td>
<td>To be expanded in 1997-98, will cover 17.5 miles of I-95 in Dade County</td>
</tr>
<tr>
<td>Private sector involvement?</td>
<td>NONE</td>
</tr>
<tr>
<td>Contact Person:</td>
<td>Dr. Arvind Kumbhojkar (305) 470-5341</td>
</tr>
</tbody>
</table>
Year the center opened: 1991

# I-4 Freeway Management Center

**Orlando, Florida**

## Variable Message Signs

Traffic Info (hybrid flip/LED) under central control: Vultron - 4, 3 line matrix and 12 full matrix; Ramp Destination (flip white on green): 2 Vultron - 2 line matrix; Supplemental Destination (flip white on green): 4 Lake - 3 line matrix under remote control.

## Highway Advisory Radio

Future corridor - US 441 to US 192: leaky coax, taped messages, current traffic information; Traffic Info Radio Network (TIRN); private firm hoping to partner with FDOT to provide tourist and traffic information, traffic information 30 second spot every 20 minutes and/or live if major incident; currently being handled by Public Information Personnel.

## Cable Television

NONE currently; preliminary talks with television networks to have video feeds from I-4 Surveillance System.

## Personal Computer/Modem

NONE currently; will evaluate home page for Internet during ITS Early Deployment Planning Study.

## Information Kiosks

NONE currently.

## Telephone

NO current 1-800 number on traffic or construction activities.

## Others

Metro Traffic Radio Report - operators consistently feeding information on traffic conditions along I-4 to private traffic radio network; Metro Traffic provides information to operators for incidents outside of the region.

## Formal Evaluation?

Consultant evaluated existing technology and previous experience with flip/fiber VMSs which led to discussion to use hybrid flip/LED; will be conducting a survey as part of the ITS EDP study to determine message effectiveness; HAR - consultants evaluated the existing technology and also considered public/private partnership and FHWA regulations.

## PHONE INTERVIEW

### Most effective strategy

Partnering with Metro traffic radio since they can supplement VMS messages; also since they feed information to 20 different radio stations.

### Least effective strategy

Not really a worst feature, but HAR is the least marketable since studies have shown only about 8% to 10% of the people would change their radio channels to listen to a report.

### How current are the messages?

Real-time.

## VMS Message Characteristics

### Length

3 lines - problem, location, and minute(s) of delay or lane(s) closed/open.

### Colors

Yellow amber high intensity LED; Yellow / Black; supplemental / ramp destination signs - white/green.

### Text only?

NO, capable of a limited number of special characters; the full matrix allows for graphics by using the manufacturer's software, but not currently used. May use it during the Olympics.
### I-4 Freeway Management Center
**Orlando, Florida**

<table>
<thead>
<tr>
<th><strong>How were the messages developed?</strong></th>
<th>FHWA reports used and the NTIS, VMS Guidelines handbook June 1992 edition used to develop the messages</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Advances for the future</strong></td>
<td>Extend the surveillance system past the current 39 miles; Multimodal Master Plan in development; additional VMS; HAR; Time Warner Interactive Television; Internet; continue discussions with television networks and county public television access channels</td>
</tr>
<tr>
<td><strong>Private sector involvement?</strong></td>
<td>YES, would like to increase the private sector involvement in the future either through public/private partnership with traveler information services or in the area of assisting CVO and tourist rental car fleet management</td>
</tr>
<tr>
<td><strong>Feedback from the users</strong></td>
<td>YES, but no formal survey; received a great deal of feedback from the users when the messages on the VMS were changed from using the common roadway names to the state road numbers; feedback also received from talk radio shows</td>
</tr>
<tr>
<td><strong>Major operational problems?</strong></td>
<td>Coordination of the system components, however, software interfaces are being developed to help alleviate this problem; currently a single operator must operate the 39 mile system</td>
</tr>
</tbody>
</table>
| **Contact Person:**                | Jon Cheney  
(904) 943-5322  
E-mail: TO562JC@DOT1.MAIL.UFL.EDU |
Year the center opened: 1996

<table>
<thead>
<tr>
<th><strong>GEORGIA DOT ADVANCED TRANSPORTATION MANAGEMENT SYSTEM</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Atlanta, Georgia</strong></td>
</tr>
<tr>
<td><em><strong>expected to be fully operational by summer 1996</strong></em></td>
</tr>
</tbody>
</table>

**Variable Message Signs**

2 types - one for general freeway traffic, and one for HOV traffic; 41 total; shuttered fiber optic; display information about accidents, roadwork, stalls, debris, congestion, alternate routes, and scheduled lane closures; messages are created automatically by ATMS system software, or in the case of an unusual situation, manually by an operator at the TMC.

**Highway Advisory Radio**

12, 10 watt transmitter sites; messages similar to VMS’ messages, except more detailed; messages created automatically by the ATMS system software or else manually at the TMC; motorists are advised to listen to the HAR by static signs located along the freeway (white letters on blue background); in the event of a serious traffic emergency, flashing yellow beacons illuminate, warning drivers of a special traffic advisory.

**Cable Television**

Still in the planning phase; would like to make available live traffic video, graphical displays of freeway conditions, and listings of ongoing incidents.

**Personal Computer/Modem**

Will provide a Bulletin Board System (BBS) for accessing information on local traffic conditions; initially only textual information; details that will be included about each incident will be: the roadway of occurrence, the location, the nature of the incident, the time of occurrence, and a suggested alternate route, if appropriate; 24 modems will make up the system initially; in the future, the system will expand to more modems and more information, including possible geographical maps of freeway conditions and video.

**Information Kiosks**

100+ kiosks throughout the metropolitan area; kiosk server located at the GeorgiaNet offices, will be connected to the TMC via a T1 line; the kiosk server will process ATMS data and distribute it to all the kiosks; will be located in high-traffic locations such as transit stations, stadiums, malls, and airports; will provide traffic information, transportation mode information, points of interest information, and special event information.

**Telephone**

Traffic Advisory Telephone System (TATS); provides callers with information about a particular route of choice; selections made using the keypad; information provided includes accident and congestion locations, roadwork and alternate routes, if available; users of the service will also be able to request a live operator if desired (to report an incident, for instance).

**Others**

N/A

**Formal Evaluation?**

None, since center still under construction.
GEORGIA DOT ADVANCED TRANSPORTATION MANAGEMENT SYSTEM
Atlanta, Georgia
***expected to be fully operational by summer 1996***

PHONE INTERVIEW

VMS MESSAGE CHARACTERISTICS

<table>
<thead>
<tr>
<th>Length</th>
<th>3 lines of text; 21 characters per line for the general freeway traffic VMS and 10 characters per line for the HOV VMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text only?</td>
<td>NO, 2 VMS will be full-matrix signs capable of displaying graphics such as arrows and symbols</td>
</tr>
<tr>
<td>Contact Person:</td>
<td>Jim Hullett OR Mark Demidovich</td>
</tr>
<tr>
<td></td>
<td>(404) 624-7814 OR (404) 624-7817</td>
</tr>
</tbody>
</table>
Year the center opened: 1986

<table>
<thead>
<tr>
<th><strong>HONOLULU TRAFFIC MANAGEMENT CENTER</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Honolulu, Hawaii</td>
</tr>
<tr>
<td><em><strong>Primary function is signal control</strong></em></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable Message Signs</th>
<th>NONE, but present designs are calling for VMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Advisory Radio</td>
<td>NONE, currently local radio stations carry traffic alerts</td>
</tr>
<tr>
<td>Cable Television</td>
<td>Presently setting up a traffic channel although local stations run traffic videos during peak hours</td>
</tr>
<tr>
<td>Personal Computer/ Modem</td>
<td>Some ongoing discussion</td>
</tr>
<tr>
<td>Information Kiosks</td>
<td>Planning to implement in 1996-1997</td>
</tr>
<tr>
<td>Telephone</td>
<td>NONE</td>
</tr>
<tr>
<td>Others</td>
<td>Honolulu is currently developing long-term plans to provide traffic information</td>
</tr>
<tr>
<td>Formal Evaluation?</td>
<td>What traffic information should be disseminated and consider the need, accuracy, significance, and speed and conveyance to public users</td>
</tr>
<tr>
<td><strong>PHONE INTERVIEW</strong></td>
<td>N/A</td>
</tr>
<tr>
<td>Contact Person:</td>
<td>Don Hamada</td>
</tr>
<tr>
<td></td>
<td>(808) 527-5004</td>
</tr>
</tbody>
</table>
Year the center opened: 1961 (surveillance began)

| **TRAFFIC SYSTEMS CENTER**  |  
|-----------------------------|---
| **Oak Park, Illinois**      |   

**Variable Message Signs**  
20 VMS; centrally controlled, automatic, and manual input; real-time traffic conditions; fiber optic enhanced, flip-disc displays

**Highway Advisory Radio**  
11 on/near freeway broadcast antennae @ 530/1610 kHz, using digitized voice for auto-updated travel time and congestion limits reports and taped voice for roadwork/incident messaging

**Cable Television**  
1 minute auto-updated freeway condition color graphics map/audio provided on 1 channel of NW suburban cable carrier

**Personal Computer/ Modem**  
A dial-up/leased-link network comprising commercial media, public agencies, state police, academia and the Internet accesses computerized freeway travel time and congestion information including incident and public transit bulletins

**Information Kiosks**  
Planned for future use - real-time graphics of freeway condition and travel time information as part of the Gary/Chicago/Milwaukee ITS Priority Corridor

**Telephone**  
A Call Distribution System is operated providing travel information similar to HAR

**Others**  
Pager Service - a private enterprise using the TMC’s media network RO feed provides freeway condition and travel time information to its customers subscribing to its customized services over the cellular network

**Formal Evaluation?**  
N/A

**PHONE INTERVIEW**  

**Contact Person:**  
Tony Cioffi  
(708) 524-2145
Year the center opened: 1982

**TRAFFIC MANAGEMENT CENTER**  
*Lexington, Kentucky*

<table>
<thead>
<tr>
<th>Variable Message Signs</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Advisory Radio</td>
<td>N/A</td>
</tr>
<tr>
<td>Cable Television</td>
<td>N/A</td>
</tr>
<tr>
<td>Personal Computer/ Modem</td>
<td>N/A</td>
</tr>
<tr>
<td>Information Kiosks</td>
<td>Being considered</td>
</tr>
</tbody>
</table>

**Telephone**

Traffic Hot Line provides up-to-date traffic conditions during the peak driving periods; the Traffic Information Network recently added a *311* number which provides a toll-free call for motorists with cellular telephones to access the most recent traffic information.

Also use the telephone to control the video surveillance pan, tilt, and zoom; the local cable services data line may be used to control the cameras pan, tilt and zoom in the near future.

Uses voice grade telephone lines to bring back video from remote sites that the local cable company cannot reach; this video is presented at a rate of 10 frames per second whereas regular video is 30 frames per second - it is still very useful for incident management activities.

Telephone lines are used for communication with the approximately 300 traffic signals in Fayette County; each second a coded command is sent and a coded response received to each of these signals to provide real-time control.

**Others**

Fax - traffic information faxed to 16 radio stations and 4 television stations during the morning and afternoon peak driving times.

**Formal Evaluation?**

YES for the incident management program - a study to analyze the efficiency of the program.

**PHONE INTERVIEW**

**Most effective strategy**

Media - the TMC faxes real-time traffic information to 16 radio stations and 4 television stations.

**Least effective strategy**

HAR possibly

**How current are the messages?**

Real-time

**VMS MESSAGE CHARACTERISTICS**

Not Applicable since the center does not directly operate the signs, the center only requests that messages be displayed on the signs when appropriate.

<table>
<thead>
<tr>
<th>Length</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colors</td>
<td>N/A</td>
</tr>
<tr>
<td>Text only?</td>
<td>N/A</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
</tr>
<tr>
<td>-------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>How were the messages developed?</td>
<td>N/A</td>
</tr>
<tr>
<td>Advances for the future</td>
<td>Fog and ice detection; Level of Service and speeds in a graphic format on a cable television station; information kiosks; develop a page on the Internet</td>
</tr>
<tr>
<td>Private sector involvement?</td>
<td>YES, local cellular telephone company provides a *311 number; Local telephone company provides the communication links between the center and the traffic signals; Local cable company links the cameras to the center</td>
</tr>
<tr>
<td>Feedback from the users</td>
<td>No formal surveys, but have received positive feedback through call-ins; The media likes the system, and depends on the system so that they can provide real-time traffic information</td>
</tr>
<tr>
<td>Major operational problems?</td>
<td>NO</td>
</tr>
<tr>
<td>Contact Person:</td>
<td>Ron Herrington</td>
</tr>
<tr>
<td></td>
<td>(606) 258-3480</td>
</tr>
</tbody>
</table>

**TRAFFIC MANAGEMENT CENTER**

*Lexington, Kentucky*
Year the center opened: 1995

STATEWIDE OPERATIONS CENTER / CHART OPERATIONS
Hanover, Maryland

Variable Message Signs
48 existing VMS - flipped disc with fiber optic and rotating drums; central and manual control; fixed and composed messages; 30 additional VMS planned for the future; portables used extensively

Traveler Advisory Radio (TAR)
25 existing TAR - monopole, frequencies 530, 1210, 1290, and 1610 AM; live and taped messages; 7 additional planned for the future; portables augment incidents and special events

Cable Television (CCTV)
21 existing fixed camera sites

Personal Computer/ Modem
TRA VIEW on-line graphics

Information Kiosks
NONE, 8 planned for the future

Telephone
1-800 Public Affairs Numbers

Others
Broadcast fax and alpha pager connectivity to Metro Traffic (METRO & SHADOW Traffic) in Washington and Baltimore

Formal Evaluation?
Currently being developed

PHONE INTERVIEW

Most effective strategy
Multi-agency coordination and teaming

Least effective strategy
TAR - AM frequencies are primary limitation

How current are the messages?
Real-time - regular updates as the situation changes

VMS MESSAGE CHARACTERISTICS

Length
Typical 21 characters, 3 lines, 2 pages

Colors
Amber / Yellow

Text only?
Yes

How were the messages developed?
Scripted for incidents; library for regular messages

Advances for the future
Work hand-in-hand with public affairs

Private sector involvement?
Consultant services / resource sharing

Feedback from the users
Northeast Corridor I-95 coalition

Major operational problems?
Software integration - state procurement limited flexibility

Contact Person:
Lee McMichael
(410) 582-5605
E-mail:
HTTP://WWW.INFORM.UMD.EDU/UMS+STATE/MD_RESOURCES/MDOT
Year the center opened: 1986

MONTGOMERY COUNTY TMC  
Rockville, Maryland

<table>
<thead>
<tr>
<th><strong>Variable Message Signs</strong></th>
<th>Planned for 1996 - 1997; will provide route guidance and parking information</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Highway Advisory Radio</strong></td>
<td>12 sites, all synchronized computerized operation; sites are interconnected</td>
</tr>
<tr>
<td><strong>Cable Television</strong></td>
<td>Daily broadcasts on cable television (video, text, graphics)</td>
</tr>
<tr>
<td><strong>Personal Computer/ Modem</strong></td>
<td>Web site on-line in spring 1996</td>
</tr>
<tr>
<td><strong>Information Kiosks</strong></td>
<td>Design stage; testing spring and summer 1996</td>
</tr>
<tr>
<td><strong>Telephone</strong></td>
<td>Transit information center plan to use a voice recognition system instead of a touch-tone system</td>
</tr>
<tr>
<td><strong>Others</strong></td>
<td>Direct connection to ABC, CBS, NBC, FOX, and News Cable 8 in Washington, D.C.; Transportation Information Network 1996</td>
</tr>
</tbody>
</table>

**Formal Evaluation?**  
Will do an evaluation when a more complete system is brought on-line

**PHONE INTERVIEW**

| **Most effective strategy** | HAR if it is set-up properly with a dedicated station and enough wattage to power the system; also cable television and the Internet |
| **Least effective strategy** | VMS since the impacts that they have can not justify the high cost of implementing |
| **How current are the messages?** | N/A - VMS still in the planning stage; will design based on the particular situation |

**VMS MESSAGE CHARACTERISTICS**  
N/A

| **Length**     | N/A |
| **Colors**     | N/A |
| **Text only?** | N/A |

| **How were the messages developed?** | N/A |

| **Advances for the future** | Increase the information gathering capabilities; looking into applying machine vision; enhance video surveillance system |
| **Private sector involvement?** | YES, varies; very willing to work with others |
| **Feedback from the users** | NO formal surveys because of the cost issue |
| **Major operational problems?** | The system is continually enhanced; test new technologies at a smaller scale, and then only implement once they are sure the technology works, therefore eliminates failures |

**Contact Person:**  
Gene Donaldson  
(301) 217-2182  
E-mail:  
GSD@MAILCENTER.DOT.CO.MONTGOMERY.MD.US
Year the center opened: 1991

<table>
<thead>
<tr>
<th><strong>Variable Message Signs</strong></th>
<th>14 flip-disc signs; with 43 additional planned for the future; information provided on accidents, construction, and freeway closures</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Highway Advisory Radio</strong></td>
<td>Planned</td>
</tr>
<tr>
<td><strong>Cable Television</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Personal Computer/Modem</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Information Kiosks</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Telephone</strong></td>
<td>Planned</td>
</tr>
<tr>
<td><strong>Others</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Formal Evaluation?</strong></td>
<td>NO</td>
</tr>
</tbody>
</table>

**PHONE INTERVIEW**

- **Most effective strategy**: VMS since it can be used on a point-by-point basis
- **Least effective strategy**: Only limited information can be provided by the VMS
- **How current are the messages?**: Depends on how quickly the information is received

**VMS MESSAGE CHARACTERISTICS**

<table>
<thead>
<tr>
<th><strong>Length</strong></th>
<th>3 lines, 18 characters</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Colors</strong></td>
<td>Yellow</td>
</tr>
<tr>
<td><strong>Text only?</strong></td>
<td>NO, capable of graphics but not used</td>
</tr>
<tr>
<td><strong>How were the messages developed?</strong></td>
<td>Policy was followed to develop the messages</td>
</tr>
<tr>
<td><strong>Advances for the future</strong></td>
<td>43 LED signs</td>
</tr>
<tr>
<td><strong>Private sector involvement?</strong></td>
<td>NO</td>
</tr>
<tr>
<td><strong>Feedback from the users</strong></td>
<td>Occasional call in, but no formal survey</td>
</tr>
<tr>
<td><strong>Major operational problems?</strong></td>
<td>NO</td>
</tr>
</tbody>
</table>

**Contact Person:** Ross Bremer  
(313) 256-9800
Year the center opened: 1972

**MN/DOT TRAFFIC MANAGEMENT CENTER**

*Minneapolis, Minnesota*

<table>
<thead>
<tr>
<th><strong>Variable Message Signs</strong></th>
<th>49 rotating drum (6-sided) type operational; currently installing 1 amber LED type and 7 more scheduled</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Highway Advisory Radio</strong></td>
<td>Radio traffic information on KBEM 88.5 FM throughout the metro area via a partnership with Minneapolis Public School System; broadcasts originate from the TMC Control Room from 6 to 9 AM and 3 to 7 PM weekdays; 2 to 3 minute traffic updates are presented every 10 minutes, when a major incident occurs, traffic information is broadcast continuously; include information on lane closures, road surface conditions, incident types and locations, anticipated delays, and recommendations on alternate routes; a few 10 watt HAR systems are used in support of construction or maintenance work zones</td>
</tr>
<tr>
<td><strong>Cable Television</strong></td>
<td>Been in operation for several years; available in several southwestern suburbs; goal to make it available on all television sets in the metro area; information telecasted include lane closures, incidents, graphics showing link speeds, and live CCTV coverage from any of the 160 cameras located along metro area freeways</td>
</tr>
<tr>
<td><strong>Personal Computer/Modem</strong></td>
<td>In the process of developing; format similar to the cable television traffic channel</td>
</tr>
<tr>
<td><strong>Information Kiosks</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Telephone</strong></td>
<td>Analyzing alternatives for the best system to provide the information</td>
</tr>
<tr>
<td><strong>Others</strong></td>
<td>2 operational tests evaluating innovative traffic information services; “Trilogy” is an operational test of vehicle dashboard displays and other methods for providing real-time traffic information to travelers en route; a range of user devices with varying capabilities will provide the end users with route-specific advisories on traffic conditions in the metro area; The “Genesis” project will provide end users with traffic information via hand held personal communication devices</td>
</tr>
<tr>
<td><strong>Formal Evaluation?</strong></td>
<td>Includes market research to determine usage, understanding, and attitude towards the various initiatives. In addition to the market research, the traffic information systems will be evaluated (in combination with the other traffic management initiatives) by measuring reductions in congestion and accidents; hard to evaluate since one initiative can not be singled out over another</td>
</tr>
<tr>
<td><strong>PHONE INTERVIEW</strong></td>
<td>Radio Station KBEM 88.5 FM - market research says that people like it; everyone has a radio; information is provided free of charge by the private sector; NOT a HAR (10 watt)</td>
</tr>
<tr>
<td><strong>Most effective strategy</strong></td>
<td>Kiosks- very few people use them since they are only available in buildings</td>
</tr>
<tr>
<td><strong>Least effective strategy</strong></td>
<td>Continuously</td>
</tr>
<tr>
<td><strong>How current are the messages?</strong></td>
<td>Continuously</td>
</tr>
</tbody>
</table>
**VMS MESSAGE CHARACTERISTICS**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Length</strong></td>
<td>3 lines, 18 characters</td>
</tr>
<tr>
<td><strong>Colors</strong></td>
<td>Yellow on black and amber on black</td>
</tr>
<tr>
<td><strong>Text only?</strong></td>
<td>YES</td>
</tr>
<tr>
<td><strong>How were the messages developed?</strong></td>
<td>Messages were developed based on experience, market research, and nationwide studies</td>
</tr>
</tbody>
</table>

**Advances for the future**
- Improve the cable television graphics; the “Trilogy” project; Internet; portable communication systems; provide telephone call-in services

**Private sector involvement?**
- YES, partnerships with radio stations; operational test, “Trilogy”, is partnership with Volvo

**Feedback from the users**
- YES, surveys

**Major operational problems?**
- NO major problems, just need time to upgrade the cable television graphics

**Contact Person:**
- Glen Carlson
- (612) 341-7500
Year the center opened: 1984

<table>
<thead>
<tr>
<th>LAS VEGAS AREA COMPUTER TRAFFIC SYSTEM (LVACTS)</th>
<th>Las Vegas, Nevada</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Variable Message Signs</strong></td>
<td>Proposed as part of an ITS feasibility study for the area</td>
</tr>
<tr>
<td><strong>Highway Advisory Radio</strong></td>
<td>Being considered as part of the ITS early deployment study</td>
</tr>
<tr>
<td><strong>Cable Television</strong></td>
<td>Being considered as part of the ITS early deployment study</td>
</tr>
<tr>
<td><strong>Personal Computer/ Modem</strong></td>
<td>Being considered as part of the ITS early deployment study</td>
</tr>
<tr>
<td><strong>Information Kiosks</strong></td>
<td>Being considered as part of the ITS early deployment study</td>
</tr>
<tr>
<td><strong>Telephone</strong></td>
<td>Information provided by console operator upon caller request; no organized or automated system now being used</td>
</tr>
<tr>
<td><strong>Others</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Formal Evaluation?</strong></td>
<td>NONE at present</td>
</tr>
<tr>
<td><strong>PHONE INTERVIEW</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Contact Person:</strong></td>
<td>Gerry de Camp</td>
</tr>
<tr>
<td></td>
<td>(702) 229-6611</td>
</tr>
</tbody>
</table>
Year the center opened: 1986

<table>
<thead>
<tr>
<th><strong>Variable Message Signs</strong></th>
<th>100+ variety of VMS types used; all are owned and operated by TRANSCOM agencies; construction, incident, and special event information provided</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Highway Advisory Radio</strong></td>
<td>TRANSCOM operates 2 systems on behalf of the member agencies and has access to 3 other systems; construction, incident, and special event information provided</td>
</tr>
<tr>
<td><strong>Cable Television</strong></td>
<td>Only used indirectly through media services</td>
</tr>
<tr>
<td><strong>Personal Computer/ Modem</strong></td>
<td>Weekly traffic and transit advisory is available via a dial-up bulletin board system to a small group of users</td>
</tr>
<tr>
<td><strong>Information Kiosks</strong></td>
<td>Service Area Transportation Interactive Network (SATIN) is being developed</td>
</tr>
<tr>
<td><strong>Telephone</strong></td>
<td>Primary device used to share information among agencies on incident and construction</td>
</tr>
<tr>
<td><strong>Others</strong></td>
<td>Fax, media, pagers</td>
</tr>
</tbody>
</table>

**Formal Evaluation?**

- NO formal evaluation methods; agency satisfaction and significant diversion is the primary measure; difficult to isolate the impact of individual strategies since a variety are used in most cases

**PHONE INTERVIEW**

- **Most effective strategy**
  - The number of agencies that TRANSCOM can reach - 3 states and 100+ agencies
- **Least effective strategy**
  - Each dissemination device has inherent advantages and disadvantages. The challenge is to know which systems to use based on the information you wish to communicate and who needs the information.
- **How current are the messages?**
  - Varies; HAR is updated whenever there is a significant change in the status of an incident, or hourly when no significant change has taken place

**VMS MESSAGE CHARACTERISTICS**

- Not Applicable since TRANSCOM does not actually operate the VMS

<table>
<thead>
<tr>
<th><strong>Length</strong></th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Colors</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Text only?</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>How were the messages developed?</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Advances for the future</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Private sector involvement?</strong></td>
<td>Yes; traffic reporting services and the media provide information</td>
</tr>
<tr>
<td><strong>Feedback from the users</strong></td>
<td>YES</td>
</tr>
</tbody>
</table>
TRANSCOM
Jersey City, New Jersey

Major operational problems?
TRANSCOM in most cases does not directly communicate with the public and problems can sometimes occur when information from TRANSCOM is forwarded incorrectly to the ultimate recipient.

Contact Person:
Bernie Wagenblast
(201) 963-4033
E-mail: 195BERNIE@AOL.COM
Year the center opened: 1976

### NEW JERSEY TURNPIKE AUTHORITY'S TRAFFIC OPERATIONS CENTER
New Brunswick, New Jersey

<table>
<thead>
<tr>
<th><strong>Variable Message Signs</strong></th>
<th>1 VMS presently; 19 additional VMS planned for the future; traffic congestion and regional diversion messages provided</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Highway Advisory Radio</strong></td>
<td>11 sites; updated 24 hours/day with Turnpike and regional traffic information</td>
</tr>
<tr>
<td><strong>Cable Television</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Personal Computer/ Modem</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Information Kiosks</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Telephone</strong></td>
<td>1-800-336-5875 Highway Advisory Telephone with access to recorded messages which are updated 24 hours/day on 3 sections of the Turnpike, South, Central, and North with a fourth option for information on special events and long term construction projects.</td>
</tr>
<tr>
<td><strong>Others</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Formal Evaluation?</strong></td>
<td>NO</td>
</tr>
</tbody>
</table>

#### PHONE INTERVIEW

- **Most effective strategy**: HAR since have several sites; 9 fixed sites and 2 portable sites
- **Least effective strategy**: VMS limited since only have 1 sign
- **How current are the messages?**: Very timely, would give an overall rating of a B+

#### VMS MESSAGE CHARACTERISTICS

- **Length**: 3 lines, 20 characters
- **Colors**: red LED
- **Text only?**: YES
- **How were the messages developed?**: Traffic engineers based design of messages on familiarity of motorists' knowledge

- **Advances for the future**: Amber LED; communications to signs will be updated
- **Private sector involvement?**: Somewhat
- **Feedback from the users**: Positive; no formal survey
- **Major operational problems?**: HAR’s maintainability

**Contact Person:** Robert Dale  
(908) 247-0900 ext. 5401
Year the center opened: 1987

**Variable Message Signs** 101 flip disc fiber optic enhanced; under central control; messages post both manually and automatically

**Highway Advisory Radio** 3 installations planned

**Cable Television** 1 cable television station uses INFORM's computer generated map and INFORM's live video via a microwave link

**Personal Computer/ Modem** Visual Traffic Information Project (VTIP) map of Long Island will show speeds and text about traffic conditions

**Information Kiosks** VTIP terminals will be at New York State Office Building, shopping mall, and others

**Telephone** 1-800-ROADWORK gives construction information

**Others** Fax, commercial radio

**Formal Evaluation?** Yes, performed by JHK & Associates a few years ago

**PHONE INTERVIEW**

**Most effective strategy** VMS since motorists will hopefully not miss them; does not require that the motorists seek for the information through the radio, computer, etc.

**Least effective strategy** Internet - believes that it is good to have it available, but does not believe that too many people are going to use it

**How current are the messages?** Real-time; traffic is monitored 24 hours/day and messages are continually updated

**VMS MESSAGE CHARACTERISTICS**

**Length** 3 lines, 16 characters typically

**Colors** Amber

**Text only?** YES

**How were the messages developed?** Existing research and experience

**Advances for the future** Video surveillance system that uses neural network technologies which enable the CCTVs to automatically judge the speed and volume of the vehicles

**Private sector involvement?** Somewhat through experimentation projects

**Feedback from the users** YES, the JHK evaluation

**Major operational problems?** Recently there are some design problems with the VMS since they are changing the technology from flip disc to fiber optic enhanced

**Contact Person:** Joe Contegni

(516) 952-6781
TRANSPORTATION MANAGEMENT CENTER
Columbus, Ohio

Variable Message Signs
4 VMS out for bid - 2 LED, 2 LED/flip disc hybrid; 35 VMS - ultimate build-out; fully programmable from the operator’s workstation; ability to select pre-programmed messages subject to timeouts (messages will be displayed for specific time periods then the operators will be notified) from other workstations in police radio room and suburban communities.

Highway Advisory Radio
N/A

Cable Television
Video feeds go to the commercial television stations and the community cable channel; using video since 1974

Personal Computer/Modem
NONE, planned for the immediate future; local Freenet is too difficult to access at peak times and maintaining a bulletin board is too expensive.

Information Kiosks
One will be installed as a prototype in a city-owned building; when more of the system is instrumented, anticipating interactive kiosk installation in the interstate rest areas approaching the metro area in cooperation with ODOT and the Ohio Department of Development.

Telephone
NONE, considered for the future; labor intensive operation and expensive if contracted.

Others
Commercial Radio Station Traffic Reporters; good relationship with the commercial radio stations; 1 full time and 1 peak hour traffic reporter for 2 different stations currently work in the TMC; fastest and most effective method currently installed of getting information out to the motorists.

Formal Evaluation?
Construction management group (Paving the Way...) Conducts an annual customer satisfaction survey and focus group session. These will be expanded to include the above information distribution strategies.

PHONE INTERVIEW

Most effective strategy
Radio traffic reporters since they inform the motorists directly in their vehicles.

Least effective strategy
Printed material / public media since not timely.

How current are the messages?
Real-time.

VMS MESSAGE CHARACTERISTICS
Length
8 characters, 3 lines.

Colors
Yellow/Green and Amber.

Text only?
YES.

How were the messages developed?
General philosophy followed.
<table>
<thead>
<tr>
<th><strong>TRANSPORTATION MANAGEMENT CENTER</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbus, Ohio</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Advances for the future</strong></td>
</tr>
<tr>
<td>Wide traffic surveillance; integrate</td>
</tr>
<tr>
<td>the freeway management system with</td>
</tr>
<tr>
<td>the traffic signal system; more VMS,</td>
</tr>
<tr>
<td>ramp metering, CCTV</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Private sector involvement?</strong></td>
</tr>
<tr>
<td>NO</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Feedback from the users</strong></td>
</tr>
<tr>
<td>Formal surveys by the construction</td>
</tr>
<tr>
<td>management group</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Major operational problems?</strong></td>
</tr>
<tr>
<td>To detect incidents real-time, but</td>
</tr>
<tr>
<td>the issue is being addressed</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Contact Person:</strong></td>
</tr>
<tr>
<td>Richard McGuinness</td>
</tr>
<tr>
<td>(614) 645-7792</td>
</tr>
</tbody>
</table>
Year the center will open: 1996

<table>
<thead>
<tr>
<th>Variable Message Signs</th>
<th>3 operating; 6 under construction; 3 additional signs planned; flip disc type; road information provided - closures, weather, construction, and detours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Advisory Radio</td>
<td>Planning to install one within the next 2 years; 2 additional ones planned; information similar to the VMS information</td>
</tr>
<tr>
<td>Cable Television</td>
<td>Planning to install a system of CCTVs using cable company lines; possibly will release the pictures to the public</td>
</tr>
<tr>
<td>Personal Computer/ Modem</td>
<td>Will be implemented in the near future</td>
</tr>
<tr>
<td>Information Kiosks</td>
<td>Will be implemented in the distant future</td>
</tr>
<tr>
<td>Telephone</td>
<td>3 types: Statewide Road Conditions - weather and construction; recorded message; Portland Road Condition - recorded message; Portland Area-Public Reporting Number - allows people to call in problems</td>
</tr>
<tr>
<td>Others</td>
<td>Information is coordinated and shared with a metropolitan traffic reporting group</td>
</tr>
<tr>
<td>Formal Evaluation?</td>
<td>No formal evaluation program but will have one once the system is further along in operation</td>
</tr>
</tbody>
</table>

**PHONE INTERVIEW**

| Most effective strategy | Satisfied with most of the equipment |
| Least effective strategy | Communication links between the telephone system; sometimes sporadic |
| How current are the messages? | Varies; at least daily |

**VMS MESSAGE CHARACTERISTICS**

| Length | 2 lines, 18 Characters |
| Colors | Amber and yellow on black |
| Text only? | NO, the newer signs have graphic capabilities |
| How were the messages developed? | Combination of policy and public awareness campaign; through the campaign they asked motorists if they did not understand the messages to call in |

| Advances for the future | CCTV for better detection and count information; Remote pick-up for data collection by computer/modem in order to more efficiently use the work hours |
| Private sector involvement? | Mixture; there is a 3-way agreement between the State of Oregon, City of Portland, and the Oregon Arena Corporation |
| Feedback from the users | Rely on call-ins; however a formal survey is planned in the next year to year and a half |
| Major operational problems? | Communication links between the telephone system; compatibility between the computer systems and programs |
| Contact Person: | Dorothy Upton (503) 731-8205 |
Year the center opened: 1993

**PennDOT DISTRICT 6-0 TRAFFIC CONTROL CENTER**
St. Davids, Pennsylvania

**Variable Message Signs**
4 VMS (2 LED and 2 fiber optic and shutter technology) are being used as part of the I-95 Traffic and Incident Management System that was deployed along a 12-mile stretch of Interstate 95 in the Philadelphia area by PennDOT Engineering District 6-0; locally and remotely controlled; manually operated; fixed and composed messages are used; incorporate automatic call back feature for enhanced security during log-in.

**Highway Advisory Radio**
NONE; proposed for the future

**Cable Television**
NONE; possibility in the future

**Personal Computer/ Modem**
NONE; possibility in the future

**Information Kiosks**
Proposed for Route 202 ITS project

**Telephone**
NONE; possibility in the future

**Others**
Traffic News Services (SHADOW, METRO) - Traffic Control Center provides up to the minute traffic information to the local new radio stations

**Formal Evaluation?**
Preliminary Agreement of Traffic and Incident Management Systems (TIMS) Benefits - a report dated May 3, 1995; qualitative and quantitative benefits of ITS operations in Philadelphia Year 1 (May 1995) and Year 2 (December 1995) Operations Reports - analysis of malfunction data of the last 2 years

**PHONE INTERVIEW**

**Most effective strategy**
Local news radio

**Least effective strategy**
HAR since studies show that the percentage of motorists who will tune to the station is low

**How current are the messages?**
Real-time

**VMS MESSAGE CHARACTERISTICS**

**Length**
3 lines, 18 characters

**Colors**
Amber

**Text only?**
NO, limited graphic capabilities

**How were the messages developed?**
Based on research, I-95 Corridor Coalition, and input from the Highway Patrol

**Advances for the future**
FHWA Demonstration Project - Satellite Project March 1996 - will compare Satellite communications with T1 telephone lines; Interstate 476 communications project - CCTV with T1 telephone lines and CCTV with fiber optic cables; 8 miles of loop detectors will send signals back to the control center via spread spectrum radio; Automated Vehicle Detection; 15 ramp meters will be installed

**Private sector involvement?**
Not very much
**PennDOT DISTRICT 6-0 TRAFFIC CONTROL CENTER**  
**St. Davids, Pennsylvania**

**Feedback from the users**  
Formal survey of the Highway Patrol, news media showed that they are very happy with the system and depend on VMS; I-95 Corridor Coalition surveyed the motorists.

**Major operational problems?**  
With new ITS technologies, making repairs has been a continuing learning experience; lack of adequate staffing; also need better coordination and cooperation between the road maintenance units and the control center.

**Contact Person:**  
Karl Ziemer  
(610) 989-9326
Year the center opened: 1995

### TRANSGUIDE

**San Antonio, Texas**

52 currently installed and operating; 43 under contract to be installed; approximately 300 VMS in San Antonio and 500 VMS in the TransGuide South Central Region are planned for the future.

<table>
<thead>
<tr>
<th>Variable Message Signs</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Advisory Radio</td>
<td>N/A</td>
</tr>
<tr>
<td>Cable Television</td>
<td>N/A</td>
</tr>
<tr>
<td>Personal Computer/ Modem</td>
<td>N/A</td>
</tr>
<tr>
<td>Information Kiosks</td>
<td>N/A</td>
</tr>
<tr>
<td>Telephone</td>
<td>N/A</td>
</tr>
<tr>
<td>Others</td>
<td>N/A</td>
</tr>
<tr>
<td>Formal Evaluation?</td>
<td>YES, will evaluate accidents, congestion, etc. for a 6-month period before and after the system was implemented</td>
</tr>
</tbody>
</table>

#### PHONE INTERVIEW

- **Most effective strategy**
- **Least effective strategy**
- **How current are the messages?**

<table>
<thead>
<tr>
<th>VMS MESSAGE CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
</tr>
<tr>
<td>Colors</td>
</tr>
<tr>
<td>Text only?</td>
</tr>
<tr>
<td>How were the messages developed?</td>
</tr>
<tr>
<td>Advances for the future</td>
</tr>
<tr>
<td>Private sector involvement?</td>
</tr>
<tr>
<td>Feedback from the users</td>
</tr>
<tr>
<td>Major operational problems?</td>
</tr>
</tbody>
</table>

**Contact Person:**

Patrick McGowan  
(210) 731-5247
INTERSTATE 66 / INTERSTATE 395 TMS  
Arlington, Virginia

Variable Message Signs: 100 VMS flip disc operating; Additional 100 VMS will be installed within next 2 years - a combination of flip-LED and LED; The signs will be used to inform the motorists about congestion, incidents, road work and also regulatory messages.

Highway Advisory Radio: None will be operated by the TMS; 3 or 4 are operated by the Traffic Operations Center in the Northern Virginia office.

Cable Television: Provide traffic videos to all local stations and one cable station.

Personal Computer/Modem: Some ongoing discussion; Right now testing with a company to send traffic video through Internet; Later will transmit traffic data information as well.

Information Kiosks: Planning

Telephone: None

Others: In planning stage use various means to send traffic data to the motorists such as the telephone, pagers, etc.

Formal Evaluation?: Was completed in 1985, 6 months after the system was implemented.

PHONE INTERVIEW:

Most effective strategy: VMS and traffic videos to television stations.

Least effective strategy: Information to the traffic reporters.

How current are the messages?: Update all the time.

VMS MESSAGE CHARACTERISTICS:

Length: 12 to 22 characters, some 2 lines; most are 3 lines.

Colors: flip disc - black and white; flip-LED - yellow disk and amber.

Text only?: NO, capable of graphics.

How were the messages developed?: Developed by consultant and added in accordance with new situations.

Advances for the future: Re-design the TMS software, testing radar sensors, video detection system.

Private sector involvement?: YES, will be a public/private partner operation.

Feedback from the users: Phone call or mail; Would like to set up a survey; Also depend on input from a user group.

Major operational problems?: No, too much need to upgrade the software.

Contact Person: Jimmy Chu  
(703) 521-5695
Year the center will open: Fall 1996 (Phase I of the full TMS)

VDOT SUFFOLK DISTRICT TMS CENTER
Virginia Beach, Virginia

Variable Message Signs
55 flipped disc type (central or local controlled), stored or
composed messages; automatically controlled with manual
override; used for point diversion, motorist advisory and
reversible roadway control; 4 solar powered, cellular controlled,
LED type display portable VMS used for incident management
response

Highway Advisory Radio
9 in the area (2 covering Coleman Bridge maintained / controlled
by TMS Center; 7 along I-64, Route 44 and Route 168 maintained
/ controlled by the Hampton Roads Bridge-Tunnel); system
currently being reviewed to be replaced by August 1996 with 2
Wide-Area HAR Systems (one on the Peninsula and the other on
the Southside); general traffic condition information and incident
information as needed

Cable Television
Agreement under consideration with local cable company and area
broadcast stations to initially multiplex 38 channels of raw CCTV
video at the control center and then have those entities package
and re-broadcast (actual delivery method and details still being
worked out)

Personal Computer/ Modem
32 line dial-up BBS; users will be remote long-ins to Windows
NT LAN System; initial users will be local agencies and media
representatives; World Wide Web site under development;
Graphical Roadway status map (statewide, regional, and local) /
incident information / statewide construction project information
types of information available on both systems

Information Kiosks
Prototype under development; plan to deploy at least 25 in
Hampton Roads area by Summer 1997 (located at malls, hotels,
truck stops, bases, beaches, etc.); information will be inclusive of
PC and Web site data along with general information on local sites
of interest, calendar of events, ridesharing information, etc.

Telephone
InfoLine (Southside 804-640-5555 ext 7874)
OneLine (Peninsula 804-928-1111 ext 7623)
Touch-Tone dial -up traffic condition updates administered and
updated by area tunnel/bridge personnel every 15-20 minutes

Others
Pager System - anticipate initiating agreements with local/regional
pager system providers to distribute roadway incident information

Formal Evaluation?
N/A

PHONE INTERVIEW

VMS MESSAGE CHARACTERISTICS

Length
3 lines, 13 characters

Colors
Amber

Text only?
YES, graphics limited to arrows only

Contact Person:
Dwayne Cook
(804) 424-9903
E-mail: DWAYNE@NORFOLK.INFI.NET
Year the center opened: 1966 (surveillance began with I-5 construction; CCTV and express lane operation, ramp meters in 1981)

TRAFFIC SYSTEMS MANAGEMENT CENTER (TSMC)
Seattle, Washington

Variable Message Signs
42 VMS; 29 additional VMS planned for the future; display information on accidents, incidents, construction and maintenance activities, reversible lane status, traction device requirements, and public information (limited); types used include the "hybrid fiber optic flip disc, flip disc with LED, and some without lighting; the fiber optic flip disc type are used to put different operator composed messages on the signs (i.e. ACCIDENT AHEAD, FLAMMABLE RESTRICTION); control of the VMS are either central-manual (for the operator composed messages) or local-automatic (for the fixed messages)

Highway Advisory Radio
7 HAR transmitters and 19 HAR signs in use; 6 additional HAR transmitters and 14 additional HAR signs are planned for future use; used to provide information on construction/maintenance activities, and traffic incidents or conditions; monopole type and use the radio frequency 530 AM or 1610 AM; by telephone, operators can record and change messages on the HAR transmitters and can turn on the flashing beacons (which signal the motorists to tune to 530 AM or 1610 AM) on the HAR signs as needed; in the process of implementing continuous traffic reports on the region’s HARs utilizing computer generated voice technology

Cable Television
Negotiations with local cities and cable television companies are underway to provide updated traffic information through local access television; one of the goals is to have TSMC’s Flow Map, a graphical representation of real time traffic flow around the Seattle area, viewed through television; information on current traffic conditions, construction updates and closures, and access to view real time traffic with TSMC’s closed circuit television cameras, are the goals of this strategy

Personal Computer/ Modem
Internet - “http://www.wsdot.wa.gov” - users can access WSDOT’s home page to receive traffic information; on line users can view the Flow Map for updated traffic conditions, receive information on construction updates and closures, ferry and bus schedules, and future expansion of the roadway infrastructure; information updated automatically every 5 minutes; users can receive updated information more quickly, every 2 minutes, by reloading the home page;
Software program - free program available to businesses meeting a required employee or fleet size; currently 84 on line subscribers to the free software program; the program displays the Flow Map giving information on real time traffic conditions, and construction updates and closures; updated every 3 to 5 minutes; local traffic reporters use the free software program to receive information for their reports; also used by the information kiosks
Information Kiosks

3 kiosks currently in use that specifically provide freeway traffic information; the kiosks are interactive touch-screen computers equipped with the TSMC software program to display the Flow Map which provides information on real time highway traffic conditions, construction updates and road closures; several more kiosks are planned for the region integrating multiple sources of transportation information; the kiosks are/will be placed at locations such as airports, ferry terminals, shopping malls, large businesses, and other locations with high pedestrian traffic to provide traffic information to potential drivers.

Telephone

The DOT-HIWAY (206-368-4499) telephone line is updated every 10 minutes to provide callers information on incidents, traffic reports, special traffic advisories, and express lanes status; information on construction, ferry schedules, and transit and carpool can also be accessed through this telephone line; callers using a cellular phone in the local area can access the phone line free of charge with a #800 number (this service is provided through a public/private partnership); for commuters outside the local area, the DOT-HIWAY line can be reached toll free through a 1-800-695-ROAD (only accessible within Washington state) number.

Others

N/A

Formal Evaluation?

SURVEYS - are performed to indicate how effective motorists felt the equipment was providing traffic information; questions on how often motorists tuned to 530 AM to listen to the HAR transmitter, or if they felt the information given to them on a VMS was important, and addressed

DIRECT CONTACT - direct response from the on-line users of WSDOT’s software program is done on a daily basis; more specifically, local traffic reporters keep in contact with the flow operators of the TSMC to verify information given on the Flow Map

PHONE LINE - available for people to call and request information regarding the WSDOT’s highway; information on the equipment used by the TSMC (VMS, HAR, Phone lines, etc.) can also be gathered through this line

EQUIPMENT FREQUENCY LINE - daily count data for the DOT-HIWAY line is available; the number of daily "hits" WSDOT’s home page receives can be collected; some data is also available for the usage frequency of VMS and HAR equipment

PHONE INTERVIEW

Most effective strategy

Traffic information provided over the phone lines which allow the motorists to dial in; also the VMS since it is visual; Cable television information

Least effective strategy

Internet at the present time since only a limited number of people have computers in their homes, but this will be a growing area as more people become connected

How current are the messages?

Real-time for the most part; Traffic Flow Map every 2 minutes; Telephone and VMS messages are fairly current; HAR is constantly updated
**TRAFFIC SYSTEMS MANAGEMENT CENTER (TSMC)**  
Seattle, Washington

**VMS MESSAGE CHARACTERISTICS**

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Varies; 2 lines of 22 characters, 18 characters, or 17 characters</td>
</tr>
<tr>
<td>Colors</td>
<td>Amber</td>
</tr>
<tr>
<td>Text only?</td>
<td>NO, some of the new signs have graphic capabilities</td>
</tr>
<tr>
<td>How were the messages developed?</td>
<td>Engineering experience; the messages are not that detailed since they are not used (except for bridge closures) to divert traffic to arterials</td>
</tr>
</tbody>
</table>

**Advances for the future**

- Provide real-time traffic information on the HAR using a computer generated voice that is updated automatically by the computer which would collect data from the operators and then send out the appropriate messages; Also, snap shots from the cameras will be placed on the Internet

**Private sector involvement?**

- YES, 3 of the 4 television stations have access (but no control) to the 180 surveillance cameras; Free software program which provides an updated traffic map is available to businesses; a cellular phone company provided the center with a free #800 number

**Feedback from the users**

- Working towards a formal survey of the users through the State DOT and the Universities

**Major operational problems?**

- Speciality maintenance is a problem since implementing new technologies, it is difficult to fix problems when they do occur; also resources are limited

**Contact Person:**

- Amir Rasaie  
  - (206) 440-4463  
  - E-mail: AMIRR@WSDOT.WA.GOV
Year the center opened: 1994

**MONITOR TRAFFIC OPERATIONS CENTER**  
Milwaukee, Wisconsin

<table>
<thead>
<tr>
<th><strong>Variable Message Signs</strong></th>
<th>11 on freeways, 3 on surface streets; 6 additional for the future</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Highway Advisory Radio</strong></td>
<td>2 portable units being procured in 1996 will operate through central, integrated ATIS software</td>
</tr>
<tr>
<td><strong>Cable Television</strong></td>
<td>FTMS CCTV shown with local broadcast radio</td>
</tr>
<tr>
<td><strong>Personal Computer/ Modem</strong></td>
<td>Control center fax server will distribute ATIS information to media and others through automated scheduled by 1996</td>
</tr>
<tr>
<td><strong>Information Kiosks</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Telephone</strong></td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Others</strong></td>
<td>Other HAR - existing HAR for airport and stadium traffic will be adopted for ATIS applications</td>
</tr>
<tr>
<td><strong>Formal Evaluation?</strong></td>
<td>SE Wisconsin Incident Management (SWIM) program under development will evaluate incident related benefits (reduced delays/congestion, etc.) of ATIS strategies. Have completed some evaluation of ramp metering benefits. Hope to complete more qualitative ATIS and system user survey; view evaluation as important to show the users the value of implementing the system</td>
</tr>
</tbody>
</table>

**PHONE INTERVIEW**

**Most effective strategy**
Good feedback from the television stations on the information received from the CCTV; Ultimately think that VMS will be the best, but the signs are still in the implementation phase

**Least effective strategy**
NONE - believes that anything would be of benefit

**How current are the messages?**
Updated continuously (real-time); the VMS only display messages on an as needed basis (25% of the time), the rest of the time (75%) the signs are blank (no messages); the goal is to have the signs on 50% of the time

**VMS MESSAGE CHARACTERISTICS**

<table>
<thead>
<tr>
<th><strong>Length</strong></th>
<th>3 lines, 17 characters</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Colors</strong></td>
<td>Amber on black</td>
</tr>
<tr>
<td><strong>Text only?</strong></td>
<td>NO, capable of graphics</td>
</tr>
<tr>
<td><strong>How were the messages developed?</strong></td>
<td>Messages developed based on consultant recommendations and by survey other states, evolving policy - the signs consist of the following 3 lines: problem, location, and action to take</td>
</tr>
<tr>
<td><strong>Advances for the future</strong></td>
<td>Test new signs; display travel time information and average travel speed information; expand the base system to full implementation</td>
</tr>
<tr>
<td><strong>Private sector involvement?</strong></td>
<td>Minimal but looking to work more with television stations and Metro Traffic</td>
</tr>
<tr>
<td><strong>Feedback from the users</strong></td>
<td>NO formal surveys due to funding problems</td>
</tr>
<tr>
<td>Major operational problems?</td>
<td>NO major problems besides the system is taking longer to implement than anticipated due to small problems such as “bugs” in the new software</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Contact Person:</td>
<td>Steve Young OR John Corbin</td>
</tr>
<tr>
<td></td>
<td>(414) 227-2160 OR (414) 227-2150</td>
</tr>
</tbody>
</table>
TRANSPORTATION MANAGEMENT CENTER
CONTACT PERSONS

Phil Carter
Arizona Department of Transportation
Traffic Operations Center
2302 W. Durango Street
Phoenix, Arizona 85009-6452
(602) 255-7754

Yo Baba
Traffic Engineering Division
City of Anaheim
200 South Anaheim Blvd.
P.O. Box 3222
Anaheim, CA 92803
(714) 254-5202

John Thai
Irvine Traffic Research and Control Center
P.O. Box 19575
Irvine, CA 92713
(714) 724-7311

Samuel Esquenazi
California Highway Patrol
TMC Southern Division
120 S. Spring Street
Los Angeles, CA 90012
(213) 897-4385

Jim Spinello
California Department of Transportation
Traffic Systems Branch
111 Grand Avenue
Room 6873
P.O. Box 23660
Oakland, CA 94623-0660
(510) 286-4538

Brian Simi
P.O. Box 942874
Mail Stop 41
Sacramento, CA 94274-0001
(916) 445-0059

Tarbell C. Martin, P.E.
California Department of Transportation
District 11
4120 Taylor Street
P.O. Box 85406
San Diego, CA 92186-5406
(619) 688-3104

Lawrence Corcoran
Colorado Department of Transportation
ITS Operations
700 Kipling Street, Suite 2500
Lakewood, Colorado 80215
(303) 239-5807

James Mona
Connecticut Department of Transportation
Highway Operations Center
P.O. Box 317546
Newington, CT 06131-7546
(203) 594-3450

Jon Cheney
Florida Department of Transportation
719 S. Woodland Blvd., M.S. 3-562
DeLand, FL 32720-6800
(904) 943-5322

Dr. Arvind Kumbhojkar
District-6
Traffic Operations
1000 NW 111th Ave.
Miami, FL 33172
(305) 470-5341

Jim Hullett
Georgia TMC
935 E. Confederate Avenue
Building 2
Atlanta, GA 30316
(404) 624-7814
Don Hamada  
Department of Transportation Services  
711 Kapiolani Blvd., Suite 310  
Honolulu, HI 96813  
(808) 527-5004

Tony Cioffi  
Traffic Systems Center  
445 W. Harrison  
Oak Park, IL 60304  
(708) 524-2145

Ron Herrington  
Lexington-Fayette Urban Co. Govt.  
Division of Traffic Engineering  
200 E. Main Street  
Lexington, KY 40507  
(606) 258-3480

Lee McMichael  
Maryland Department of Transportation-State Highway Administration  
7491 Connelley Drive  
Hanover, MD 21076  
(410) 582-5605

Gene Donaldson  
Division of Traffic and Parking Services Dept. Of Public Works and Transportation  
101 Monroe Street, 11th Floor  
Rockville, MD 20850  
(301) 217-2182

Ross. J. Bremer  
Michigan Department of Transportation  
1050 6th Street  
Detroit, MI 48221  
(313) 256-9800

Glen Carlson  
Freeway Operations Section  
Transportation Management Center  
1101 Fourth Avenue South  
Minneapolis, MN 55404-1022  
(612) 341-7500

Gerry de Camp  
Las Vegas Area Computer Traffic System  
416 North Eight Street  
Las Vegas, NV 89101  
(702) 229-6611

Bernie Wagenblast  
TRANSCOM  
111 Pavonia Avenue  
Jersey City, NJ 07310-1755  
(201) 963-4033

Robert F. Dale, P.E.  
Director of Operations  
New Jersey Turnpike Authority  
P.O. Box 1121  
New Brunswick, NJ 08903-1121  
(908) 247-0900 ext. 5401

Joe Contegni  
New York State Department of Transportation  
INFORM  
The State Office Building  
Veterans Memorial Highway  
Hauppauge, NY 11788  
(516) 952-6781

Richard McGuinness  
City of Columbus  
Division of Traffic Engineering & Parking  
Freeway Section  
109 N. Front Street, 2nd Floor  
Columbus, OH 43215-9024  
(614) 645-7792

Dorothy Upton  
Oregon Department of Transportation, Region 1  
123 NW Flanders  
Portland, OR 97209-4037  
(503) 731-8205
Karl Ziemer  
Pennsylvania Department of Transportation  
Traffic Control Center  
200 Radnor / Chester Road  
St. Davids, PA 19087  
(610) 989-9326

Douglas Wiersig  
Houston TranStar  
6922 Old Katie Road  
Houston, TX 77024  
(713) 881-3007

Patrick F. McGowan, P.E.  
TransGuide  
P.O. Box 29928  
San Antonio, TX 78284  
(210) 731-5247

Jimmy Chu  
Virginia Department of Transportation  
I66/I395 TMS  
1426 Columbia Pike  
Arlington, VA 22204  
(703) 521-5695

Dwayne Cook  
Virginia Department of Transportation  
TMS Center  
970 Reon Drive  
Virginia Beach, VA 23464  
(804) 424-9903

Amir Rasaie  
15700 Dayton Ave. N  
Seattle, WA 98133-5910  
(206) 440-4463

Steve Young  
Traffic Operations Center  
633 West Wisconsin Avenue  
Suite 1200  
Milwaukee, WI 53203-1918  
(414) 227-2160
NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse manufacturers or products. Trade names appear in the document only because they are essential to the content of the report.

This report is being distributed through the U.S. Department of Transportation's Technology Sharing Program.

DOT-T-96-21
Technology Sharing

A Program of the U.S. Department of Transportation