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Letter from the Editor-in-Chief

Dear JTS Readers,

With this issue, we complete our fifth volume of publication. We are (as aca-
demic journals are sometimes apt to do) a little behind in our publication sched-
ule, but we are working hard at returning to a regular thrice-yearly publication
frequency. We have had some turnover in the position of Editor-in-Chief, first
with the departure of David Banks and then the regrettably brief tenure of Mary
Lynn Tischer. I have now been responsible for the Journal for most of the past
year, and I am enjoying the intellectual stimulation of working with an excellent
staff, a first-rate Editorial Board, and creative, diligent contributors. Peg Young
is doing yeoman work as Associate Editor, Marsha Fenn continues to be the
glue that holds the staff (and the Journal) together as Managing Editor, and
Alpha Glass has joined us very helpfully as Editorial Assistant. My research ana-
lyst, Jennifer Brady, also now assists with the Journal’s work. Finally, there
would be no printed document without the proofreading and editing skills of
Martha Courtney and Darcy Herman and the accomplished desktop publishing
team of Dorinda Edmondson and Lorisa Smith.

I want to mention especially two members of our Editorial Board who were
honored recently. Genevieve Giuliano earlier this year became the Chairman
of the Executive Committee of the Transportation Research Board, and
Marty Wachs received the W.N. Carey, Jr., Distinguished Service Award at
TRB’s meetings in January. Our congratulations to them both.

I would like to call your attention to the enclosed Call for Papers for a special
JTS issue on forecasting, which is scheduled for publication in mid-2004.
Keith Ord and Peg Young will be co-editors. Articles are due by August 1. Ini-
tial responses have been excellent, and I expect the issue will be packed with
good articles.

We are also updating our subscribers list, so please return the enclosed card
asking you to reaffirm your interest in continuing to receive the Journal.
Please ask your colleagues who would like to receive the Journal to contact us.

The Bureau of Transportation Statistics continues to pursue its mission of
making the best possible transportation data available to improve the quality
of transportation decisionmaking. JTS authors play a key role in this process
by providing high-quality statistical analysis applied to transportation issues.
We are particularly interested in bringing our readers original ideas and arti-
cles that contribute to the field of transportation statistics, and we hope this
issue’s articles provide valuable information that you can use in your work. 

JOHN V. WELLS
Editor-in-Chief
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Household-Provided Transportation: An Extension of the 

Transportation Satellite Accounts

DUANJIE CHEN

BINGSONG FANG

XIAOLI HAN 

MacroSys Research 
and Technology

BRIAN W. SLOBODA

Bureau of Transportation Statistics
U.S. Department of Transportation

ABSTRACT

Currently, transportation statistics provide estimates
for household demand for transportation services.
Though important, there is a missing link to the
household supply of transportation services. Incor-
porating the household supply with household
demand provides a complete analytical model for
understanding the effects of household use of trans-
portation services. The household production of
transportation services is incorporated into the ana-
lytical framework of the Transportation Satellite
Accounts, which maintain strong ties to the U.S.
Input-Output Accounts and the National Income
and Product Accounts. Our results indicate that the
contribution of transportation activities to total
gross domestic product, including the household
sector, is 11.6% compared with 5.0% by the Trans-
portation Satellite Accounts and 3.1% by the U.S.
Input-Output Accounts. These results for house-
hold-provided transportation reveal the importance
of this sector in transportation services. 

INTRODUCTION

Transportation statistics often treat households as
users rather than producers of transportation services.
In reality, the household production of transportation

Brian W. Sloboda, Bureau of Transportation Statistics, U.S.
Department of Transportation, 400 7th Street, SW, Room
3430, Washington, DC 20590. Email: brian.sloboda@bts.gov.
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services (HPTS) is ubiquitous in our economy, as peo-
ple drive automobiles (including rental cars) to com-
mute to work or school, go shopping, or obtain
commercial and government services.1 Consequently,
households produce transportation services to meet
their transportation needs, which include their pur-
chase of for-hire transportation services such as
ground passenger transportation (including taxicab)
and railroad services. 

Without an adequate evaluation of household
production, or supply of transportation services, the
conventional statistics on household demand for
transportation services are not complete. Moreover,
HPTS has a strong tie not only to the for-hire trans-
portation industry (in both a complementary and
substitutive manner) but also to other transporta-
tion-related industries ranging from auto manufac-
turing to the entertainment sector (mostly in a
complementary manner). Therefore, a well-defined
HPTS industry and properly estimated economic
value of HPTS are critical to a better understanding
of the overall level of transportation activities and
their interaction with other sectors of the economy. 

Many efforts have been made to better under-
stand the true magnitude of overall transportation
production in the economy. For example, the Bureau
of Economic Analysis (BEA) in the U.S. Department
of Commerce publishes personal consumption
expenditures (PCEs) on user-operated transportation

through the National Income and Product Accounts
(NIPA)(USDOC BEA 2002, tables 2.4 and 2.5), and
the Bureau of Transportation Statistics of the U.S.
Department of Transportation publishes vehicle-
miles traveled (vmt) by passenger cars (USDOT BTS
2002, table 1-28). A concise presentation of major
measures of transportation’s economic importance
can be found in Han and Fang (2000). Unfortu-
nately, none of these statistics or measures looks at
households from a producer’s perspective. As such,
they do not provide an adequate measure for HPTS
that is consistent and hence comparable to the for-
hire transportation industries and other productive
components of our economy. 

Existing statistics either overlook the labor input
to household transportation activities (i.e., time
spent driving); make no distinction between house-
hold capital expenditures on automobiles such as
the purchase of vehicles, and household operation
and maintenance expenditures for automobiles such
as repairs, oil changes, and other related expendi-
tures; or provide no direct monetary value for com-
parison across economic sectors (e.g., vmt by
passenger cars do not imply the same economic
value across different type of motor vehicles). These
statistics, nevertheless, provide helpful ideas and
basic data for measuring HPTS as an “industry” so
as to make it comparable to transportation indus-
tries that are accounted for in the NIPA. By measur-
ing HPTS as an industry, we are able to extend the
existing Transportation Satellite Accounts (TSAs;
see box) to include another source of transportation
services—HPTS—which is a step further toward

1 In this paper, we focus on HPTS through automobiles
and ignore household production through private planes
and other household-operated transportation vehicles
such as boats, which should be included for a complete
estimate of HPTS.

Transportation Satellite Accounts

In general, satellite accounts are frameworks designed to expand the analytical capacity of the basic economic accounts
without overburdening them with details or interfering with their general-purpose orientation. Satellite accounts are
meant to supplement rather than to replace existing accounts and organize information in an internally consistent way
that suits a particular analytical focus, while maintaining links to the existing national accounts. They typically expand a
particular segment of existing accounts with more details and additional dimensions of information, including
nonmonetary information. They also may use definitions and classifications that differ from those in the existing
accounts. Depending on the analytical focus, the production boundary of the national accounts can be maintained or
modified (USDOT BTS 1999). The existing Transportation Satellite Accounts (TSAs), as a supplement to the U.S. Input-
Output (I-O) Accounts, are developed to cover both for-hire transportation services (identified as transportation
industries within the U.S. I-O Accounts) and in-house transportation services conducted by businesses for their own use
(not separately identified as transportation in the I-O Accounts). Therefore, compared with the U.S. I-O Accounts, the
existing TSAs provide a more comprehensive measure of transportation services provided by the business sector of our
economy. Hence, the household production of transportation services extends this measure to transportation services
by the nonbusiness sector of the economy, namely households.

In general, satellite accounts are frameworks designed
to expand the analytical capacity of the basic
economic accounts without overburdening them with
details or interfering with their general-purpose
orientation. Satellite accounts are meant to
supplement rather than to replace existing accounts
and organize information in an internally consistent
way that suits a particular analytical focus, while
maintaining links to the existing national accounts.
They typically expand a particular segment of existing
accounts with more details and additional dimensions
of information, including nonmonetary information.
They also may use definitions and classifications that
differ from those in the existing accounts. Depending
on the analytical focus, the production boundary of the
national accounts can be maintained or modified

(USDOT BTS 1999). The existing Transportation
Satellite Accounts (TSAs), as a supplement to the U.S.
Input-Output (I-O) Accounts, are developed to cover
both for-hire transportation services (identified as
transportation industries within the U.S. I-O Accounts)
and in-house transportation services conducted by
businesses for their own use (not separately identified
as transportation in the I-O Accounts). Therefore,
compared with the U.S. I-O Accounts, the existing
TSAs provide a more comprehensive measure of
transportation services provided by the business
sector of our economy. Hence, the household
production of transportation services extends this
measure to transportation services by the nonbusiness
sector of the economy, namely households.

Transportation Satellite Accounts
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estimating the true magnitude of overall transporta-
tion in our economy. In the present analysis, trans-
portation services in the form of driving by the
household sector are considered regardless of what
is transported (e.g., passengers or freight.) We then
estimate the economic value of the for-hire transpor-
tation industries that provide transportation services
either as intermediate inputs to other business sec-
tors or as a final product used by consumers. We
present the methodology for this estimation as well
as the results for measuring HPTS as an industry,
which is an extension of the existing TSAs. 

MEASURING HPTS AS AN INDUSTRY

Measuring HPTS as an industry expands the produc-
tion boundary. To count HPTS as an industry
requires an estimation of the labor and capital inputs,
which are likely to increase the total value added or
gross domestic product (GDP). More specifically,
households’ driving time that currently has no value
in the national accounts needs to be counted as labor
input to HPTS.2 Furthermore, household purchases
of automobiles, which are identified as PCEs in the
national accounts, need to be redefined as fixed capi-
tal expenditures to derive the capital input to HPTS.
While the capital input to HPTS may be estimated on
the basis of national wealth data, which mainly
involves a technical rearrangement, estimating labor
input requires major conceptual clarifications.

The following clarifications are aimed at answer-
ing two questions. First, why is household driving,
apart from general household traveling, considered
a productive activity? Second, how should this pro-
ductive activity be valued as a labor input to HPTS?

Using the third-person criterion. Horrigan et al.
(1999) define the third-person criterion as an activ-
ity deemed productive if it can be delegated to
another person and still achieve the desired result.
According to this criterion, driving is considered
productive and hence may be assigned values; in
contrast, riding as a passenger is not productive (i.e.,

it cannot be delegated to someone else) and hence
should not be valued. 

Using the input approach to estimate the value of
driving time. The two conventional approaches to
measuring nonmarket work are the input approach
and the output approach. The output approach
requires directly assigning a monetary value to an
output, based on the price at which the output can
be sold in the market. This approach is impractical
in our case because there is no obtainable price in
the market for HPTS; that is, transportation services
produced by households are for their own use, not
traded in the market. 

The input approach is simpler and requires only
an estimate of the amount of time a nonmarket
activity takes and the selection of an appropriate
wage for the specified activity. In our case, the driv-
ing time may be estimated on the basis of statistics
of average driving speed and the total vmt by house-
hold-operated automobiles. Such statistics are avail-
able from several government publications as
detailed in the appendix table A1.

Using a “generalist” wage as the wage rate. There
are three possible wage rates that can be used to esti-
mate the value of household driving time. They are:
1) the individual’s occupational wage rate (e.g., the
average wage rate for a lawyer, a secretary, or a con-
struction worker), 2) a specialist wage rate (e.g., a
racing car driver’s rate), and 3) a generalist wage rate
(e.g., a taxi driver’s rate). 

Out of the three types of wage rates, an individ-
ual’s occupational wage rate serves as the best mea-
sure of the driver’s true opportunity cost. However,
treating the individual’s occupational wage as his
true opportunity cost not only imposes a very strin-
gent data requirement but also implies strong
assumptions concerning optimality in the individ-
ual’s time allocation and the flexibility of market
demand for any type of working hours. In other
words, to use the individual’s wage rate, one has to
obtain a complete occupational profile of house-
hold drivers that is also classified by driving time.
Furthermore, this approach assumes that the indi-
vidual driver would desire to spend any time saved
from driving on making additional income at his/
her occupational wage rate (and that would be per-
mitted by a horizontal demand curve for each occu-
pation). Obviously, both the data requirements and

2 Similar treatment has been applied in national accounts
to certain forms of nonmarket household activities (e.g.,
imputing and counting the value of owner-occupied resi-
dences and farm products consumed on farms). In other
words, what we are doing for HPTS has a precedent in
existing national accounting practice.
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the stringency of the conceptual assumptions
required make this approach impractical. 

It should be noted that using a generalist wage
rate such as a taxi driver’s average hourly earning
poses a conceptual problem similar to the case of
using an individual’s occupational wage rate. That
is, it is not likely that time saved from individual
driving would be used to earn extra income at a
generalist wage rate. However, using a generalist
wage rate imposes far less difficulty in terms of data
requirements. It also makes our estimate of labor
input to HPTS relatively conservative since a taxi
driver’s average earnings are typically below average
earnings of nonfarm production workers.3 

Procedures for Estimating HPTS 

We took a two-step approach to the estimation
process. The first step estimates the intermediate
inputs and the second, the value added. All the
data sources used for our estimate are summarized
in the appendix.

Step 1. Estimating the Intermediate Inputs for
HPTS. Inputs for HPTS may be grouped into three
categories: capital inputs, labor inputs, and interme-
diate inputs. Capital inputs represent the deprecia-
tion of transportation equipment such as
household-owned automobiles. Labor inputs are
the value of the driver’s time. Finally, the intermedi-
ate inputs are the goods and services consumed in
the process of providing transportation services,
including PCEs on tires, accessories, and other
parts; repair, greasing, washing, parking, storage,
rental, and leasing; gasoline and oil; bridge, tunnel,
ferry, and road tolls; and insurance. In the national
Input-Output (I-O) Accounts, such PCE items are
considered part of final demand, reflecting the gen-
eral national income accounting practice that they
are purchases for the purpose of consumption
rather than production. In order to generate an
HPTS sector within the production boundary of the
national accounts, we must reclassify these PCE
items as intermediate inputs to the HPTS sector. 

Step 2. Estimating the Value-Added Inputs for
HPTS. Generally, value-added inputs include the

value of labor services, indirect taxes, and other
value added, mainly value of capital services. The
value of labor services is the compensation paid to
labor; the indirect taxes include any taxes paid dur-
ing the process of production, such as import tariffs
and license fees; and the value of capital services
consists mainly of two parts: capital depreciation
and the return to capital. 

The value added by labor services, as discussed
earlier, is estimated by applying the generalist wage
rate (e.g., taxi drivers’ average hourly earnings) to
driving time. The driving time component of HPTS
is estimated as the total household vmt divided by
the household vmt per hour, both of which are based
on data from the 1995 Nationwide Personal Trans-
portation Survey (see Hu and Young 1999) and
other highway statistics (e.g., vmt by type of vehicle). 

The indirect tax and nontax liabilities component
of HPTS (e.g., motor vehicle license fees) can be
obtained from the Personal Income and Outlays
data in the NIPA. However, it should be noted that,
in the I-O Accounts, indirect taxes such as license
fees related to HPTS are not presented explicitly but
are contained in the “compensation of employees”
by industry. Therefore, to avoid double counting,
the indirect taxes component of HPTS is set to zero. 

Finally, the return to capital is set to zero to rec-
ognize households as a nonprofit sector. This treat-
ment also ignores the time value (i.e., interest
income or cost) of money spent by the households
on their investment in motor vehicles. Therefore, the
value added through capital used for HPTS is
mainly the annual depreciation of household-owned
automobiles. This depreciation estimate is obtained
from BEA, and the exact source is provided in the
appendix.

TRENDS IN HPTS

Figure 1 illustrates the magnitude of HPTS in com-
parison with the business sector of highway trans-
portation (including both for-hire and in-house
industries). Figures 2 through 4 compare HPTS with
for-hire transportation industries in total output,
relative shares within the transportation sector, and
annual growth rate. For-hire transportation indus-
tries consist of railroads and related services, motor

3 Based on the Bureau of Labor Statistics (http://www.bls.
gov), in 2001, the average hourly earnings for the private
nonfarm industry were well above $14 while that for taxi
drivers and chauffeurs were well below $10. 
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freight and warehousing, water transportation, air
transportation, and pipelines and related services.
Figure 5 compares the annual growth rate of HPTS
with that of government capital stock in highways

and streets, educational buildings, hospitals, and
other government structures. Figure 6 compares the
annual growth rate of HPTS with selected catego-
ries of GDP.

Several interesting observations can be drawn
from these figures. First, HPTS accounted for a signif-
icant portion of total highway transportation services
in the economy. As figure 1 shows, in 1999 total vmt
by household-owned motor vehicles accounted for
over 85% of total vmt by all motor vehicles in opera-
tion (including trucks and buses).4 Figure 1 further
provides the split between the household and busi-
ness sectors in net automobile stock (in value terms),
fuel consumption, and the motor vehicle license fees
paid to governments. This comparison indicates a
significant household portion in overall highway
transportation activities. Further estimates in figures
2 and 3 show that the value of HPTS was about 1.9
times that of all for-hire transportation industries

Vehicle-miles  
   traveled 

        Fuel  
  consumption 
(in value terms)

   Motor  
  vehicle  
  license  
fees paid 
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FIGURE 1  Relative Shares of Household and 
Business Sector Vehicle-Miles Traveled 
and Some Related Statistics: 2000

1 Our estimate; see text for details.
2 Based on Industry and Wealth Data published by the Bureau of 
Economic Analysis.
3 For 1997, based on the 1997 Input-Output Accounts and 1996 
TSAs, excluding trade margins.
4 Based on NIPA tables 3.4 and 3.5.
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FIGURE 2  Total Transportation Services in
For-Hire Industries vs. Household 
Production: 1991–2000

4 The estimate of household vmt is based on the 1995
NPTS Summary of Travel Trends and the annual growth
rate of vmt by total passenger car, motorcycle, and other
2-axle, 4-wheel vehicles. Business vmt is the gap between
total vmt through motor vehicles and household vmt.
Caution should be taken in that vmt tells only a partial
story of transportation services through motor vehicles
and should not be taken as a summary measurement of
transportation services through motor vehicles. For exam-
ple, a given amount of vmt accomplished by a trucking
company would probably indicate a significantly higher
value of transportation services than that for a household
driver. 
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between 1991 and 2000. Obviously, ignoring HPTS
means a significant underestimate of the overall
transportation services produced and used in the
economy. 

Second, household-produced and for-hire trans-
portation services shared a similar growth pattern
(figure 4). Figure 4 shows that the growth rates
went up and down concurrently. However, the
growth rate of HPTS displayed more volatility in
comparison to the for-hire transportation sector,
especially after 1996. A plausible explanation is
that household-produced transportation is more of
a discretionary expenditure to the household and
more responsive to the ups and downs of the over-
all economy. On the other hand, for-hire transpor-
tation involves more freight movements that are
often necessities to the economy and less responsive
to the short-term (year-to-year) changes in the
growth rate of the economy.

Third, HPTS relies heavily on government invest-
ment in transportation infrastructure. To that extent,
HPTS is unique among other forms of household
production such as food preparation, childcare, and
entertainment, because these other forms of house-
hold production do not rely on a government sup-
plied infrastructure. It is obvious that HPTS directly
consumes the transportation infrastructure as a pub-
lic good. That is, without government investment in
highways and streets, the rapid growth in HPTS
would not be possible. Furthermore, HPTS is often

related to the household consumption of other
major public goods (e.g., schools, hospitals, electric
and gas facilities, transit systems, and police and fire
stations) through urban sprawl. In other words,
urban sprawl fostered the growing need for HPTS.
Urban sprawl and hence the need for HPTS might
not have grown so rapidly without the government
investment in major public goods other than roads
(e.g., water and sewer systems). As figure 5 shows,
the average annual growth rate in HPTS has closely
followed the annual growth rate in government cap-
ital stock in highways and streets, education, hospi-
tals, and other nonmilitary structures funded by the
government.

Finally, HPTS is one of a few forms of household
production that is solidly linked, backward and for-
ward, to many industries. It is obvious that HPTS
would not play such a significant role in average
people’s daily lives if our economy were not
equipped with a mature auto manufacturing indus-
try and an efficient system for gasoline distribution.
On the other hand, many commercial centers (e.g.,
clustered consumer centers grouping shopping and
recreational facilities) might not have emerged so
rapidly without a well-developed system of HPTS.
Figure 6 shows that the average annual growth rate
of HPTS has been in line with that of manu-
facturing, retail trade, hotels and other lodging
places, and amusement and recreation services.
Such illustrations are of course preliminary; a more
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precise estimate of the economic linkage between
HPTS and many industries requires the inclusion of
HPTS in the TSAs. As an I-O Account, TSAs facili-
tate a complete characterization of the interrelation-
ship between one sector and the rest of the
economy. To do that for HPTS, however, the TSAs
first have to be extended to include HPTS. The next
section delves into this.

EXTENSION OF THE TSAs INTO HPTS

As mentioned in the introduction, the existing TSAs,
as a supplement to the U.S. I-O Accounts, are devel-
oped to cover both for-hire transportation services
(identified as transportation industries within the
U.S. I-O Accounts) and in-house transportation ser-
vices conducted by businesses for their own use (not
separately identified as transportation in the I-O
Accounts). Therefore, compared with the U.S. I-O
Accounts, the existing TSAs provide a more compre-
hensive measure of transportation services provided
by the business sector of our economy.5 Extending
the existing TSAs to incorporate HPTS will allow
analysts to measure transportation services provided
not only by the business sector but also by the house-
hold sector of our economy. In other words, this

extension can be seen as a further step toward pro-
viding a comprehensive measure of transportation
services.

Due to the differences in methodology and data
sources between the I-O Accounts and the NIPA,6

certain technical procedures are necessary for the
integration of HPTS into the TSAs and for consis-
tency and comparability between the TSAs and the
U.S. I-O Accounts. (The details of these procedures
are presented in USDOT BTS (Forthcoming)). The
following illustrates the structural expansion of the
TSAs and the estimated HPTS as additions to each
of four TSA tables (i.e., Make, Use, Direct Require-
ments, and Total Requirements Tables).

Expansion of the TSAs: 
A Structural Illustration

As mentioned earlier, the inclusion of HPTS as an
industry in the TSAs will result in an expansion of the
production boundary in the sense that the total value
added will be greater than the official GDP. Diagram
1 illustrates such an expansion. The extended cover-
age of costs and benefits of transportation services
enables more accurate analyses of transportation’s
role in and its contribution to the economy. It also
makes it possible to directly link data sources and
analysis to the monetary accounting system of U.S.
national accounts, which will facilitate transportation
analyses in the context of the national economy.

Constructing an HPTS sector within the TSAs
follows some basic I-O accounting practices. The
overall industry and commodity classification sys-
tem and the special definitions and conventions in

5 See Fang et al. (1998), Fang et al. (2000), and USDOT
BTS (1999) for details.
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6 As stated in Yuskavage (2000), BEA relies on the income
and expenditure approach or the gross product originating
(GPO) approach for the NIPA. Although the GPO by
industry and value added from the I-O Accounts are con-
ceptually equivalent, “GPO is based primarily on BLS data
for labor income and on IRS data for capital income,
whereas I-O is based primarily on Census data. Differences
in the industry classifications among these major data
sources lead to inconsistencies. In addition, I-O value added
is a residual that is critically dependent on good data for
purchased goods and services by industry, which are lim-
ited. The GPO estimates of capital income depend on the
assumption that corporate profits and other company-
based income components can be allocated to the establish-
ment level by industry.”
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the I-O Accounts7 are used except that HPTS itself
forms a new industry and a new commodity cate-
gory in the TSAs. The general valuation conventions
used in constructing HPTS in the TSAs are consis-
tent with those in the I-O Accounts: all transactions
including both intermediate inputs and final uses are
valued in producers’ prices.

Diagrams 2 and 3 illustrate such a relationship
more intuitively. Diagram 2, with the shaded indus-

try row and commodity column, depicts the simple
fact that the inclusion of HPTS will slightly modify
the classification of the existing I-O Accounts. That
is, a new industry and a new commodity, both
named HPTS, are added to the existing TSAs.

Diagram 3, with further elaborations on how the
HPTS industry and commodity are created, shows
the expansion of the production boundary resulting
from the inclusion of HPTS. More specifically, the
user-operated transportation expenditures under PCE
in the I-O Accounts and existing TSAs are reclassified
from the final demand section to the intermediate
inputs section, and GDP is increased by the amount
of the total value added of the HPTS industry. For
PCE reclassification, user-operated transportation
expenditures are treated as either intermediate inputs
for the HPTS industry or additions to gross private
fixed investment (GPFI), depending on whether they
are durable or nondurable goods. 

7An example of the special definitions and conventions
used in the I-O Accounts, according to the Personal Con-
sumption Expenditures monograph (USDOC BEA 1990),
is “the accounting for imputed transactions,” which
“serves the purpose of keeping GDP, PCE, and other
NIPA aggregates invariant to whether 1) housing and
institutional structures and equipment are rented or
owned; 2) employees are paid in cash or in kind; 3) farm
products are sold or consumed on the farm; 4) saving,
lending, and borrowing are direct or are intermediated;
and 5) intermediated financial transactions involve an
explicit or implicit service charge.” More examples follow
later in this paper.

PRODUCTION

Intermediate inputs:

    Goods and services 
consumed by industries 
          in production

Value-added inputs:
Labor inputs to production
Indirect tax and nontax liabilities
Depreciation of capital and other value 
  added in production

Goods 
and 
services 
used by 
house- 
holds in 
user- 
operated 
transpor- 
tation 
services

L

T

D

             FINAL USES  
INCLUDING CONSUMPTION

Goods and services consumed by 
households (including nonprofit 
institutes) and for other final uses

Imputed value of labor input to HPTS

Taxes are set equal to zero for HPTS

  Depreciation of  
household-owned  
     automobiles

 DIAGRAM 1 Expansion of the Production Boundary Due to the 
Inclusion of HPTS in the TSAs: An Illustration within the 
Framework of the Input-Output Accounts Use Table

Notes:
1. The second and third vertical lines in this chart, 
dotted or solid, should be seen as an overlapped single 
line.
2. The thick solid line is the production boundary 
defined in the System of National Accounts (SNA).
3. The thinner solid line contains the final uses including 
personal consumption expenditures (PCE) in the U.S. 
Input-Output Accounts.
4. The dotted panel excluding the shaded part indicates 
the PCE on user-operated transportation to be 

reclassified as intermediate inputs to HPTS being 
constructed in the TSAs.
5. The shaded part reflects the value-added inputs to 
HPTS that present an addition to gross domestic 
product.
6. The area between the thick solid line and the dotted 
line (including both shaded and unshaded parts) 
reflects the expansion of the production boundary 
defined in the SNA.
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The change in GDP has two sources. First, the
value of labor input to HPTS is imputed as a new
value-added input. Second, the depreciation of house-
hold-owned motor vehicles used for HPTS, which is
not counted in the I-O Accounts but contained in the
industry and wealth data of the national accounts sys-
tem, is included as the value of capital services. We
discuss these procedures in more detail below.

Addition of HPTS to Each Component
of the TSAs

The structure of the TSAs is consistent with the U.S.
I-O Accounts. That is, both accounts are presented

in four tables: the Make (production) table, the Use
(consumption) table, the Direct Requirements table,
and the Industry-by-Commodity Total Require-
ments table. The addition of the HPTS industry and
commodity was made in each of these four tables as
one of the three major transportation sectors (i.e.,
for-hire, in-house, and HPTS). Table 1 provides an
overview of major components of the transporta-
tion industry and industry output used in the TSAs.

Diagram 2, a TSA Make table, has an additional
column for HPTS as a commodity and an additional
row for HPTS as an industry. See appendix table A2
where the cell value at the intersection of the

 DIAGRAM 2  The TSA Make Table of Commodities by Industries

 COMMODITIES TOTAL 
INDUSTRY 
OUTPUTINDUSTRIES Agriculture Mining Construction Manufacturing

Transportation—
business HPTS Trade Finance Services Other
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Manufacturing
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Total output of 
HPTS

Additional 
industry 
output

Trade
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Other 
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OUTPUT
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Increased by 
total output of 
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 DIAGRAM 3  The TSA Use Table of Commodities by Industries
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Total intermediate 
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Gross 
private fixed 
investment Other GDP
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OUTPUTCOMMODITIES
Goods-producing 

industries HPTS
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Increased by user-
operated 
transportation 
expenditures 
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purchases of autos
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intermediate inputs 
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Reduced by 
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expenditures
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new, used, 
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Reduced by 
total 
intermediate 
inputs for HPTS 
that were 
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of PCE on user-
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transportation

Household: HPTS Zero = total output of 
HPTS

= total output of 
HPTS

= total output of 
HPTS

Total intermediate 
inputs

Total intermediate 
inputs for HPTS

Increased by total 
intermediate inputs 
for HPTS

Value added by labor 
input, actual or 
imputed

Imputed value

Other value added Depreciation of 
household-owned 
motor vehicles

Total value added Total value added 
of HPTS

Increased by 
total value 
added of HPTS

TOTAL INDUSTRY 
OUTPUT

Total output of 
HPTS

Increased by 
total output of 
HPTS
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TABLE 1  Components of Transportation Industry and Industry Output

Industry Industry components Industry output
For-hire transportation 

industries
Railroads and related services; 

passenger ground transportation

Railroads, including AMTRAK
Switching and terminal companies
Freight car rental
Private local and suburban passenger 

transportation
Intercity, rural, and other bus services, 
   including charter and school buses
Bus terminal and service facilities
Taxicabs

Total operating revenues
Less: Rental receipts 

Motor freight transportation and 
warehousing

Trucking and courier services, except air
Public warehousing and storage
Trucking terminal facilities

Total operating revenues
Plus: Trucking receipts of construction firms

Warehousing revenues of wholesalers
Delivery and storage charges of 

retailers
Less: Merchandise sales

Rental receipts

Water transportation Deep sea and other water transportation of 
freight

Water transportation of passengers
Services incidental to water transportation,
   including marinas and other services

Total operating revenues
Plus: Docking, boat cleaning, and

   maintenance at retailers
Federal excise tax on cruise ship 

receipts
Less: Merchandise sales

Boat repair at marinas

Air transportation Domestic and international passenger and
   freight air transportation
Airport terminal services

Total operating revenues
Plus: Federal taxes on airfares, air freight,

   and air facilities
Aircraft storage and services by
   wholesaler and retailers

Less: Rental receipts
Flight training and instruction

Pipelines, freight forwarders, and 
related services

Refined petroleum pipelines
Other pipelines, including crude petroleum
   and natural gas
Arrangement of freight and passenger
   transportation, including freight forwarding
Miscellaneous services incidental to 

transportation

Total operating revenues
Plus: Pipeline receipts by wholesalers
Less: Rental receipts

State and local government 
passenger transit

State and local government passenger transit Total operating revenues
Less: Operating subsidies

In-house highway transportation Private trucking and bus operations in all
   nontransportation industries

Total operating expenses of highway motor 
vehicles and overhead expenses

Less: Expenses on advertising, depository    
institutions, security and commodity

   brokers, and other services
   unrelated to own-account
   transportation operations

Household production of 
transportation services

Household production of transportation 
services

Total personal consumption expenditures 
on user-operated transportation 

Less: PCE on new autos, net purchases of 
used autos and other motor 
vehicles

Plus: Imputed value added by household 
labor input corresponding to 
estimated driving time and annual 
total depreciation of motor 
vehicles owned by consumers
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column and row of HPTS, under the heading HPTS,
equals the total output of HPTS; all other cell entries
in the HPTS row and column are zero because no
other industries conduct HPTS and the HPTS indus-
try produces nothing but HPTS. The data shown in
other parts of the TSA Make table are the same as
those provided in the 1992 TSAs, which indicate
that the total output of HPTS is a pure addition to
the Make table of TSA accounts. 

Diagram 3, a TSA Use table, has an additional
row for HPTS as a commodity and an additional
column for HPTS as an industry (see also appendix
table A3, p. 16–18). The entries in the HPTS col-
umn are redefined or imputed intermediate and
value-added inputs for HPTS. While total interme-
diate inputs for HPTS are part of the original user-
operated transportation expenditures under PCE in
the I-O Accounts and TSAs, value-added inputs for
HPTS are our imputation as additions to GDP. In
this table, the use of the HPTS commodity is shown
in the HPTS row. Since the HPTS output is pro-
duced and consumed at the same time by house-
holds, it is not used by any industries including the
HPTS “industry.” Therefore, all the cell values in
the HPTS row are equal to zero except the one at
the intersection of the HPTS row and PCE column
in the final uses section.

Besides the additional row and column for
HPTS, Diagram 3 also differs from the Use table in
the existing TSAs and I-O Accounts in that the part
of PCE related to automobile purchases is put under
GPFI. Therefore, GPFI shown in Diagram 3 is
greater than its counterpart in the I-O Accounts and
the existing TSAs. This switch reduces total PCE
and increases total GPFI simultaneously and hence
does not affect the total output and GDP shown in
the I-O Accounts.

As a consequence of these additions to the TSA
Make and Use tables, the TSA Direct Require-
ments and Total Requirements tables also have an
additional row and columns for the HPTS com-
modity and industry. The TSA Direct Require-
ments table is derived from the TSA Use table by
dividing each industry’s commodity and value-
added inputs by that industry’s total output. This
table, however, does not include the final use sec-
tion of the Use table. In the table, each column
shows, for the industry named at the head of the
column, the input coefficients for the commodities

and the value-added components that an industry
directly requires to produce a dollar’s worth of its
output. 

The TSA Industry-by-Commodity Total Require-
ments table shows the total requirements for each
industry’s output that are directly and indirectly
required to deliver a dollar’s worth of goods and ser-
vices to consumers and other final users. Each col-
umn shows the commodity delivered to final users,
and each row shows the demand for an industry’s
output in response to a dollar increase in the final
demand for a commodity. The coefficients in the
table are referred to as industry-by-commodity total
requirement coefficients. This table is derived from
both the TSA Make and the TSA Use tables.

In summary, the redefined intermediate inputs for
HPTS are part of PCE in the existing TSAs and I-O
Accounts while the imputed value-added inputs for
HPTS are additions. The sum of the intermediate
and value-added inputs consumed by the HPTS
industry is the total output of the industry, which is
consumed by households and hence forms a new
category of PCE. As a result, the total output in the
expanded TSAs will be greater than the total output
of I-O Accounts by the amount of HPTS output
plus the in-house transportation industry output,
and the GDP in the expanded TSAs will be greater
than the GDP of I-O Accounts by the amount of
HPTS value added.

MAJOR FINDINGS

The expansion of the TSAs to include HPTS pro-
vides a different picture of the magnitude of trans-
portation activities in relation to the economy.
Based on the 1992 benchmark I-O Accounts and
the 1992 TSAs, three major findings concerning
HPTS can be summarized as follows. 

True Magnitude of Transportation
in the Economy

The magnitude of transportation in the economy
can be measured from two perspectives: as a share
of the total output of the economy and as a share in
GDP. GDP is the net output of the economy, while
total output represents the sum of GDP and all of its
intermediate inputs. The share in total output tells
more about the size of production, while the share
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in GDP tells more about its real contribution to the
national economy. 

The total output of HPTS in 1992 was approxi-
mately $710 billion, which is about 1.28 times the
total output of business transportation services,
including both the for-hire and in-house sectors.
Including HPTS in the TSAs would increase the esti-
mate of total output of our economy by about 6.5%
and GDP by 7.4%. And the share of transportation
(business plus HPTS) in the expanded GDP would
be 11.6%.

Use of Major Commodities by HPTS

Counting HPTS as an industry and commodity in
the TSAs helps improve the estimate of use of major
commodities and services by HPTS. For example,
the NIPA counts total PCE on automobiles as a
direct expenditure on user-operated transportation.
With HPTS treated as a separate industry, the capital
input to user-operated transportation can be counted
more precisely as the annual replacement portion, or
depreciation cost, of the household-owned auto
stock that includes current-year purchases. 

In the meantime, including all the commodities
and services as intermediate inputs to HPTS enables
a better understanding of the composition of trans-
portation services provided and consumed by
households. For example, within the existing I-O
Accounts and the NIPA, one cannot gain any under-
standing of the services of wholesale and retail trade
used by households to meet their needs for user-
operated transportation. With the formation of
HPTS, services provided by the wholesale and retail
trade sector can be shown to account clearly for
26% of total intermediate inputs to HPTS, thus
indicating the true significance of the wholesale and
retail trade sector in supporting HTPS.

Multiplier Effect of Major Commodities
on HPTS

The multipliers derived from the TSAs including
HPTS capture the direct and indirect dependence of
HPTS on the rest of the economy. For example, to

meet a $1 increase in the final demand for HPTS
would require an additional 17.6¢ in total manufac-
turing output. The next major items for supporting
a $1 increment in the final demand for HPTS are
services (17.3¢), wholesale and retail trade (10.9¢),
finance and insurance (7.7¢), and business transpor-
tation services including both for-hire and in-house
(3.0¢). These estimates come to light only when
HPTS as an industry and commodity is formed
within the TSAs. These estimates show a more accu-
rate picture of the household sector in relation to
the overall economy.
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Administration, Bureau of Economic Analysis (BEA), Benchmark 
Input-Output Accounts for the U.S. Economy, 1992; Input-Output 
Accounts for the U.S. Economy, 1996; detailed underlying data files 
for these accounts.

Transportation Satellite Accounts (TSAs), 
1992 and 1996

U.S. Department of Transportation (USDOT), Bureau of 
Transportation Statistics (BTS), Transportation Satellite Accounts: A 
New Way of Measuring Transportation in America, 1999; detailed 
underlying data files for the TSAs.

Gross output by industry USDOC, BEA, Gross Domestic Product by Industry data,
http://www.bea.doc.gov/bea/dn2/go7700.exe.

Gross domestic product by industry USDOC, BEA, Industry Accounts Data, http://www.bea.doc.gov/bea/
dn2/gpoc.htm.

Annual total depreciation of motor vehicles 
owned by consumers

USDOC, BEA, Fixed Asset tables, table 8.4 (and table 2.4 for private 
fixed assets by type).

Motor vehicle licenses USDOC, BEA, National Income and Product Accounts tables, tables 
3.4 and 3.5, http://www.bea.doc.gov/bea/dn/nipaweb.

Median earnings for taxicab drivers U.S. Department of Labor, Bureau of Labor Statistics, Division of 
Monthly Industry Employment Statistics, unpublished data. 
(202) 691-6555.

Vehicle-miles of travel (vmt) by type of 
vehicles and highway total 

USDOT, BTS for 1992, National Transportation Statistics 1998, 
chapter 1, table 1-9; for 1996–1997, National Transportation Statistics 
1999, table 1-28; and for 2000, USDOT, Federal Highway 
Administration, Highway Statistics, http://www.fhwa.dot.gov/ohim/
hs00/.

Household vmt (1995) Based on Hu and Young (1999), Summary of Travel Trends: 1995 
Nationwide Personal Transportation Survey, http://www-cta.ornl.gov/
npts/1995, table 1.

Average motor vehicle speed Based on Hu and Young (1999), Summary of Travel Trends: 1995 
Nationwide Personal Transportation Survey, http://www-cta.ornl.gov/
npts/1995, table 28.

Personal consumption expenditure on user-
operated transportation services excluding 
purchases for automobiles

USDOC, BEA, National Income and Product Accounts tables, table 
2.4: Personal Consumption Expenditures by Type of Expenditure, 
http://www.bea.doc.gov/bea/nipaweb.

APPENDIX 
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TABLE A2  The TSA Make Table of Commodities by Industries: 1992

Millions of dollars at producers’ prices

 TRANSPORTATION

    For-Hire

 Industry

Agriculture,
forestry, and

fisheries Mining Construction
Manu-

facturing

Railroad 
and 

passenger
ground

Motor 
freight 

and ware-
housing Water Air

Pipelines
and freight
forwarders

In-house
transpor-

tation

Agriculture, forestry, 
and fisheries 235,591 0 0 1,022 0 11 0 0 0 0

Mining 0 147,001 0 9,716 0 0 0 0 0 0

Construction 0 0 679,330 0 0 0 0 0 0 0

Manufacturing 0 561 0 2,879,654 0 0 0 0 0 0

Railroads and related 
services; passenger 
ground transportation 
except transit 0 0 0 0 55,576 174 0 0 0 0

Motor freight 
transportation and 
warehousing 0 0 0 0 0 155,590 0 0 0 0

Water transportation 0 0 0 0 0 0 32,440 0 0 0

Air transportation 0 0 0 0 0 0 0 94,141 0 0

Pipelines, freight 
forwarders, and 
related services 0 0 0 0 542 1,320 194 2,632 28,928 0

State and local 
passenger transit 0 0 0 0 5,876 0 0 0 0 0

In-house 
transportation 0 0 0 0 0 0 0 0 0 165,461

HPTS 0 0 0 0 0 0 0 0 0 0

Communications and 
utilities 0 0 0 0 0 0 0 0 0 0

Wholesale and retail 
trade 0 0 0 0 0 0 0 0 0 0

Finance, insurance, 
and real estate 0 0 0 0 0 0 0 0 0 0

Services 0 0 0 8 0 15 0 0 38 0

Other 0 0 0 37 64 0 1,713 2,046 0 0

Total commodity 
output 235,591 147,562 679,330 2,890,437 62,058 157,110 34,347 98,819 28,966 165,461

continues
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TABLE A2  The TSA Make Table of Commodities by Industries: 1992 (continued)
Millions of dollars at producers’ prices

 TRANSPORTATION  

 Industry HPTS
Communications 

and utilities
Wholesale 

and retail trade

Finance, 
insurance, and 

real estate Services Other 1
Total industry 

output

Agriculture, forestry, 
and fisheries 0 0 0 0 1,038 0 237,662

Mining 0 0 0 0 0 0 156,717

Construction 0 0 0 0 0 0 679,330

Manufacturing 0 43 0 0 69,509 1,536 2,951,303

Railroads and related 
services; passenger 
ground transportation 
except transit

 

0 0 0 0 0 4 55,754

Motor freight 
transportation and 
warehousing 0 11,363 0 0 0 0 166,953

Water transportation 0 0 0 0 0 0 32,440

Air transportation 0 0 0 0 0 0 94,141

Pipelines, freight 
forwarders, and 
related services 0 0 0 0 0 0 33,616

State and local 
passenger transit 0 0 0 0 0 0 5,876

In-house 
transportation 0 0 0 0 0 0 165,461

HPTS 709,962 0 0 0 0 0 709,962

Communications and 
utilities 0 491,312 0 0 28,838 538 520,688

Wholesale and retail 
trade 0 0 1,091,489 0 0 0 1,091,489

Finance, insurance, 
and real estate 0 0 0 1,629,618 25,114 0 1,654,732

Services 0 0 0 666 2,226,302 521 2,227,550

Other 0 48,012 3,659 9,132 3,301 846,432 914,396

Total commodity 
output 709,962 550,730 1,095,148 1,639,416 2,354,102 849,031 11,698,070

1 "Other" consists of government enterprise (except state and local government passenger transit) and other input-output special industries. 
See A.M. Lawson, "Benchmark Input-Output Accounts for the U.S. Economy, 1992: Make, Use, and Supplementary Tables,"Survey of Current 
Business 77:58–62, November 1997.
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TABLE  A3  The TSA Use Table of Commodities by Industries: 1992
Millions of dollars at producers’ prices

TRANSPORTATION

            For-Hire

 

Agriculture,
forestry, and

fisheries Mining Construction
Manu-

facturing

Railroad 
and

passenger
ground

Motor 
freight

and ware-
housing Water Air

Pipelines
and freight
forwarders

State and 
local

passenger
transitCommodity

Agriculture, forestry, and fisheries 55,569 43 4,027 123,104 1 3 6 1 0 2

Mining 298 25,985 5,445 94,010 0 0 9 0 83 0

Construction 2,877 2,655 552 18,050 2,465 736 30 239 574 1,664

Manufacturing 36,994 11,446 199,947 1,017,125 7,174 12,818 3,208 13,201 1,475 3,460

Railroads and related services; 
passenger ground transportation 
except transit 1,515 1,039 1,294 14,759 2,368 442 19 128 33 69

Motor freight transportation and 
warehousing 3,231 917 10,302 44,955 368 28,810 104 233 209 50

Water transportation 436 427 723 4,261 78 209 4,282 164 56 29

Air transportation 457 413 963 11,485 214 622 77 6,064 233 1

Pipelines, freight forwarders, and 
related services 81 14 4 4,788 442 4,966 1,407 7,820 763 24

In-house transportation 13,177 3,870 38,950 21,806 0 0 0 0 0 0

HPTS 0 0 0 0 0 0 0 0 0 0

Communications and utilities 3,954 7,218 4,343 74,295 596 5,499 192 1,636 1,444 643

Wholesale and retail trade 11,131 2,600 53,758 163,845 1,706 5,824 520 1,505 326 303

Finance, insurance, and real estate 15,528 19,183 11,224 48,672 1,849 6,108 1,990 3,157 1,769 116

Services 5,949 5,037 64,747 165,357 3,771 16,423 4,836 8,903 6,635 214

Other 156 1,172 696 24,581 332 1,122 2,964 8,924 392 4

Total intermediate inputs 151,352 82,021 396,974 1,831,093 21,364 83,582 19,644 51,975 13,992 6,579

Compensation of employees 25,870 27,777 219,347 688,213 23,458 55,533 7,140 32,761 10,710 9,018

Indirect business tax and nontax 
liability 5,206 8,164 3,246 37,864 1,006 2,615 583 5,696 993 0

Other value added 55,234 38,755 59,762 394,134 9,926 25,223 5,073 3,709 7,921 –9,721

Total value added 86,310 74,696 282,356 1,120,210 34,390 83,371 12,796 42,166 19,624 –703

Total industry output 237,662 156,717 679,330 2,951,303 55,754 166,953 32,440 94,141 33,616 5,876

continues
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TABLE  A3  The TSA Use Table of Commodities by Industries: 1992 (continued)
Millions of dollars at producers’ prices

TRANSPORTATION

 

In-house 
transporation HPTS

Communications 
and utilities

Wholesale 
and retail 

trade

Finance, 
insurance, 
and real 
estate Services Other 1

Total 
intermediate 

inputs

Personal 
consumption 
expendituresCommodity

Agriculture, forestry, and fisheries 0 0 61 894 6,714 6,861 315 197,601 27,054

Mining 0 0 54,440 30 6 32 2,688 183,026 107

Construction 680 0 30,084 7,246 52,996 19,287 19,484 159,618 0

Manufacturing 14,760 56,981 20,577 44,062 16,886 227,662 8,714 1,696,491 670,593

Railroads and related services; 
passenger ground transportation 
except transit 211 277 4,937 881 971 2,674 1,113 32,729 18,072

Motor freight transportation and 
warehousing 790 3,486 1,029 3,459 5,759 9,102 1,339 114,142 20,701

Water transportation 183 999 838 169 52 473 390 13,770 5,228

Air transportation 10 14 1,476 4,144 3,674 8,021 1,648 39,516 36,353

Pipelines, freight forwarders, and 
related services 112 585 523 311 67 1,212 11 23,129 2,889

In-house transportation 0 0 1,187 42,819 899 42,035 718 165,461 0

HPTS 0 0 0 0 0 0 0 0 709,962

Communications and utilities 4,503 0 55,863 33,509 28,152 53,421 8,506 283,773 221,574

Wholesale and retail trade 6,787 66,051 4,537 18,588 4,180 44,012 829 386,502 523,511

Finance, insurance, and real estate 1,323 28,598 13,890 71,101 229,746 153,929 4,560 612,743 931,480

Services 13,990 90,128 49,673 124,604 123,478 302,923 7,783 994,452 1,322,966

Other 582 2,282 7,823 11,064 16,653 19,311 2,593 100,651 1,147

Total intermediate inputs 43,931 249,401 246,938 362,881 490,234 890,954 60,690 .......... ..........

Compensation of employees 84,160 290,611 84,298 425,306 285,305 935,987 730,160 .......... ..........

Indirect business tax and nontax 
liability 3,870 0 31,844 173,188 182,984 48,332 – .......... ..........

Other value added 33,501 169,950 157,609 130,114 696,209 352,278 123,546 .......... ..........

Total value added 121,531 460,561 273,750 728,608 1,164,498 1,336,596 853,706 .......... ..........

Total industry output 165,461 709,962 520,688 1,091,489 1,654,732 2,227,550 914,396 .......... ..........

continues

Key: – = value too small to report.
1 "Other" consists of government enterprise (except state and local government passenger transit) and other input-output special industries. See A.M. Lawson, "Benchmark 
Input-Output Accounts for the U.S. Economy, 1992: Make, Use, and Supplementary Tables,"Survey of Current Business 77:58–62, November 1997.
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TABLE  A3  The TSA Use Table of Commodities by Industries: 1992 (continued)
Millions of dollars at producers’ prices

Gross private 
fixed 

investment

Change in 
business 

inventories
Exports of goods 

and services

Imports of 
goods and 
services

Government 
expenditures GDP

Total 
commodity 

outputCommodity

Agriculture, forestry, and fisheries 0 4,847 19,857 –14,601 833 37,990 235,591

Mining 73 –107 8,202 –43,527 –212 –35,464 147,562

Construction 360,278 0 77 0 159,357 519,712 679,330

Manufacturing 453,634 3,566 342,980 –485,599 208,772 1,193,946 2,890,437

Railroads and related services; 
passenger ground transportation 
except transit

2,112 135 3,973 –164 5,201 29,329 62,058

Motor freight transportation and 
warehousing 5,916 629 10,161 –2,059 7,620 42,968 157,110

Water transportation 40 36 9,695 3,530 2,048 20,577 34,347

Air transportation 1,576 137 23,317 –8,544 6,464 59,303 98,819

Pipelines, freight forwarders, and 
related services 0 8 2,700 0 240 5,837 28,966

In-house transportation 0 0 0 0 0 0 165,461

HPTS 0 0 0 0 0 709,962 709,962

Communications and utilities 5,065 11 4,476 –695 36,526 266,957 550,730

Wholesale and retail trade 102,856 2,658 44,746 18,317 16,558 708,646 1,095,148

Finance, insurance, and real estate 28,407 0 39,510 –1,412 28,688 1,026,673 1,639,416

Services 19,226 –37 19,530 –4,027 1,992 1,359,650 2,354,102

Other –10,550 –6,453 73,385 –92,856 783,707 748,380 849,031

Total intermediate inputs .......... .......... .......... .......... .......... .......... ..........

Compensation of employees .......... .......... .......... .......... .......... .......... ..........

Indirect business tax and nontax 
liability .......... .......... .......... .......... .......... .......... ..........

Other value added .......... .......... .......... .......... .......... .......... ..........

Total value added .......... .......... .......... .......... .......... 6,694,466 ..........

Total industry output .......... .......... .......... .......... .......... .......... 11,698,070
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ABSTRACT

This paper presents a nested logit model of activity
scheduling behavior that can be used to predict a
daily activity pattern for commuters. The behavioral
paradigm embodied in the model suggests a two-
stage decision process in which commuters first plan
or identify the nonwork activities that need to be
undertaken during the day, and second, schedule
these activities in relation to the work activity sched-
ule. Three possible scheduling periods are consid-
ered in the model: before work, at work, and after
work. Alternative nested logit model structures are
estimated on the 1996 San Francisco Bay Area
activity survey sample to identify a plausible and
statistically acceptable structure. Numerical exam-
ples are presented to show how the model, when
combined with a Monte Carlo simulation and sim-
ple heuristics, can be used to generate daily activity
schedules for commuters. 

INTRODUCTION

The conceptual deficiencies of the conventional
four-step trip-based travel demand modeling pro-
cedure, combined with the shift in transportation
planning and policy initiatives from transporta-
tion infrastructure development to transportation

Ram M. Pendyala, University of South Florida, ENB 118,
Department of Civil and Environmental Engineering, 4202
East Fowler Avenue, Tampa, FL 33620-5350. Email:
pendyala@eng.usf.edu.
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systems management, have led to the emergence
of activity-based approaches to modeling individ-
ual travel behavior (Jones et al. 1983; Kitamura
1988; Axhausen and Gärling 1992). Activity-
based analysis follows the premise that travel
demand is a derived demand and the resulting
travel demand models are applicable to a wider
range of situations than the conventional four-
step trip-based procedure (Ettema and Timmer-
mans 1997). The activity-based perspective of
travel can also reliably be used to evaluate travel
demand management policies, because it explic-
itly models activity patterns and considers these
patterns to be the fundamental influence on indi-
vidual travel decisions (Golob 1998; Kuppam and
Pendyala 2001). 

The activity-based approach has seen substantial
development in the past few years (Kitamura and
Fujii 1998). Bhat and Koppelman (1999) broadly
classified these developments into activity time allo-
cation studies and activity episode analysis studies.
Activity time allocation studies classify activities
into one of the several categories available and then
examine the time allocated to these activity types
based on socioeconomic and demographic charac-
teristics of individuals (Kitamura 1984). However,
these approaches ignore the context in which indi-
viduals pursue activities; that is, these approaches
do not consider the time of day of the activity per-
formance, the sequence in which activities are per-
formed in a continuous temporal domain, and the
location characteristics of activity participation
(Kitamura et al. 1997b). 

Activity episode analysis is closer to the original
theory behind activity-based approaches. This
approach analyzes activities and trips and their
associated spatial and temporal constraints in a
comprehensive model framework. These studies
describe in detail the sequence, context, and dura-
tion of activity participation, thus leading to more
detailed models of activity choice and travel behav-
ior. Many of the earlier activity episode analysis
studies focused on participation of individuals in
one or more activity episodes, along with one or
more accompanying characteristics of the episodes
such as duration, location, or time window of activ-
ity participation (Damm 1982; Hamed and Man-
nering 1993; Bhat 1996, 1998; Bhat et al. 1999). 

Over the last decade, several researchers have
developed models that attempt to microsimulate the
daily activity participation and trip schedules of
individuals (Chen et al. 1999). Examples include,
but are not limited to, STARCHILD (Recker et al.
1986), SCHEDULER (Gärling et al. 1994), and
AMOS (Kitamura et al. 1995; Pendyala et al. 1998).
The development of such models has been further
accelerated by the availability of data that capture
household activity scheduling behavior (Doherty
and Miller 2000). Development of tour-based
model frameworks is another line of research in
activity-based modeling, where “tours” are consid-
ered to be the basic unit of travel. These approaches
use a combination of multinomial logit and nested
logit models to simulate activity-travel patterns in
the context of tours (Bowman and Ben-Akiva 1997;
Wen and Koppelman 1999, 2000). 

Activity-based approaches are the foundation of
the next generation of travel demand models in the
United States and other countries. The objective of
this paper is to contribute to the operationalization
of the activity-based approach by proposing a sim-
ple analysis framework to generate weekday activity
engagement and trip scheduling patterns of com-
muters. Using data from the 1996 San Francisco
Bay Area activity survey, nested logit models of
activity scheduling behavior were developed and
estimated. The proposed nested logit models,
though not comprehensive or exhaustive, are practi-
cal, provide a plausible behavioral basis, and
present activity scheduling and travel behavior of
commuters in a simple model system. We believe
that the nested logit models of activity scheduling
behavior proposed in this paper can be effectively
combined with other models of activity behavior
(e.g., models of activity frequency and activity dura-
tion) and rule-based algorithms (e.g., Pendyala et al.
1998) to develop a full-fledged activity-based model
system.

The remainder of this paper is organized as fol-
lows. First, we provide a brief description of the sur-
vey sample. We then describe the overall modeling
approach and nested logit methodology, respec-
tively. Descriptions of the nested logit model specifi-
cation and estimation results follow. We then
present an example of how the nested logit model
can be used to predict a commuter’s activity pattern.
Conclusions are drawn in the final section.
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SAMPLE DESCRIPTION

This research paper utilizes activity and trip informa-
tion collected as part of the 1996 San Francisco Bay
Area activity survey. Gangrade et al. (2000) provide a
detailed description of the survey and sample charac-
teristics. Only a brief summary is provided here. A
two-day activity-based time-use and travel survey
was conducted in the nine counties of the San Fran-
cisco Bay Area in 1996. Detailed information on
both in-home and out-of-home activities and trips
undertaken by an individual were recorded.1 Infor-
mation was requested for all out-of-home activities
and trips but only in-home activities of 30 minutes or
more. However, many respondents provided detailed
information on all in-home activities regardless of
their duration. 

The original survey dataset includes a sample of
8,817 individuals residing in 3,919 households who
provided detailed activity and trip information over
a 48-hour period. After extensive data checking,
cleaning, and merging/organizing, the final dataset
obtained for use in this study included 7,982 indi-
viduals residing in 3,827 households. The dataset
identified 4,331 persons as commuters (3,651 per-
sons were noncommuters). 

Sample Profile

Table 1 presents the demographic characteristics of
households in the sample. The average household
size was 2.3 persons per household, while the aver-
age number of workers was 1.4 per household.
Forty percent of the households were single-worker
households, while another 43% were multiple-
worker households. 

The income variable, which categorized house-
holds into low (less than $30,000), medium
($30,000–$75,000), and high (greater than $75,000)
income groups, showed as expected that a large per-
centage of the households in the survey fell into the
medium income bracket. Average car ownership in
the sample was 1.9 vehicles per household, and 86%
of the households in the survey sample have vehicle
ownership levels greater than or equal to the total

number of commuters in the household. This is indic-
ative of a high level of commuter auto availability.

Person characteristics (provided separately for
commuters and noncommuters) of the sample are
also shown in table 1. Respondents were categorized
into young (29 years or less), middle (30–49 years),
and old (50 years or more) age groups. More than
50% of the commuter sample fell into the middle age
bracket, while over 50% of the noncommuter sam-
ples fell into the young age group (the noncommuter

1 The survey also collected data on Bay Bridge usage in
connection with a peak-period toll study; however, vari-
ables in the dataset related to this aspect of the study are
not used in this paper. 

TABLE 1  Household and Person Demographic 
Characteristics

Household attributes

Sample size 3,827
Household size 2.3

1 person 32.2%
2 persons 34.5%
3+ persons 33.3%

Income
Low (<30k) 19.6%
Medium (30k–75k) 43.3%

High (>75k) 22.5%
Vehicle ownership 1.9

0 car household 5.6%

1 car household 34.4%
2 cars household 39.4%
3+ cars household 20.5%

% vehicles ≥ commuters 86.4%
Number of workers 1.4

0 worker 16.5%

1 worker 40.4%
2 workers 37.0%
3+ workers 6.0%

Number of bicycles 1.3
Owning home of residence 63.0%
Years at current residence 4.7 
Person attributes Commuter Noncommuter

Sample size 4,331 3,651

Gender
Male
Female

54.4%
45.5%

42.8%
56.9%

Age (in years)
Young (≤29)
Middle (30–49)
Old (≥50)

41.5
18.8%
53.8%
27.4%

32.4
54.0%
14.5%
31.5%

Employment status
Full time
Part time

81.5%
12.1%

N/A
N/A

Licensed 95.3% 48.6%
Student 13.3% 44.8%

Note: Some percentages do not add to 100 due to missing data.
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group includes children). More than 80% of the
commuters were full-time workers. Also, as expected,
the percentage of licensed drivers in the commuter
sample was substantially higher than that in the non-
commuter sample (95% vs. 49%). 

Clearly, the noncommuter sample is quite different
from the commuter sample. In light of these differ-
ences, one would expect noncommuters to have sub-
stantially different activity and time-use patterns than
commuters. These differences call for the develop-
ment of separate models of activity scheduling behav-
ior for commuters and noncommuters. In this paper,
out-of-home nonwork activity engagement and trip
scheduling behavior is modeled only for the com-
muter sample, and thus the remainder of this paper
focuses exclusively on the commuter sample.

Activity Participation and Trip
Frequency Analysis

The original dataset had more than 30 categories of
activities broadly aggregated into 11 activity types in
order to study activity and trip frequencies by pur-
pose. Average frequencies (including both in-home
and out-of-home activities) for the commuter sample
are presented in table 2. As mentioned earlier, the Bay
Area travel survey was conducted over a 48-hour

time period. The activity and trip frequencies pre-
sented in the table are two-day averages. 

The average number of work and work-related
activities was 1.6 activity episodes per day for the
Bay Area commuter. This value is along expected
lines, because many commuters undertake two
work activity episodes in a day—one before lunch
and one immediately after lunch. 

As expected, eating/meal preparation (eat/meal),
in-home entertainment, personal care and childcare,
and sleep/nap activities averaged one or more activity
episodes per day. On the other hand, shopping and
personal business, out-of-home entertainment, and
out-of-home other activities averaged less than one
activity episode per day. 

With respect to travel, commuters, on average,
took 4.8 trips per day. Table 2 shows trip rates by
purpose for both commuter and noncommuter sam-
ples in the dataset. Work/work-related and return
home trips comprise almost 50% of the trips taken
by commuters over a day. The average trip fre-
quency for out-of-home shopping/personal busi-
ness, entertainment, and maintenance/other related
activities was found to be about 0.5 trips per day for
each purpose. The average trip frequency associated
with childcare was rather low at 0.1 trips per day. 

TABLE 2  Daily Activity and Trip Frequencies

Activity
Commuters
(N = 4,331)

Noncommuters
(N = 3,651)

Work/work-related 1.6 NA
Eating/meal preparation 1.7 2.0
Shopping/personal business 0.6 0.7
Out-of-home entertainment 0.5 0.6
In-home entertainment 1.2 1.8
Personal care and childcare 1.2 1.2
Sleep/nap 1.0 1.1
In-home maintenance/other 0.7 1.1
Out-of-home other 0.4 0.4
School 0.1 0.7
Travel (total trips) 4.8 3.5

Work/work-related 1.3 NA
Return home 1.6 1.3
Meal (out-of-home) 0.4 0.2
Shopping/personal business 0.5 0.6
Out-of-home entertainment 0.5 0.5
Childcare 0.1 0.1
Out-of-home other 0.4 0.4
School 0.1 0.4

Total activities and trips 13.9 13.1

Note: Averages for a 48-hour period.
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Overall, work activity was shown to be a major
part of a commuter’s daily activity and travel pat-
tern. In the case of commuters, one may conjecture
that other discretionary activities (e.g., shopping,
personal business, recreation, and childcare) are
scheduled and performed around relatively fixed
work schedules. This hypothesis, which is consistent
with the literature on activity-based approaches
(see, e.g., Damm 1982) forms the basis for the
nested logit model of activity scheduling developed
in this paper.

FRAMEWORK FOR ACTIVITY 
SCHEDULING BEHAVIOR

In this paper, nested logit models are formulated
with a view to predict activity and trip schedules of
commuters over a one-day period. This section pro-
vides the behavioral framework underlying the
specification of the nested logit models of commuter
activity scheduling behavior. 

There is increasing interest in applying microsim-
ulation approaches to forecast activity-based travel
demand (Kitamura et al. 1997a; Pendyala et al.
1998). In microsimulation approaches, the
researcher is often attempting to simulate, at the
level of the individual traveler, an entire activity
schedule and travel itinerary over the course of a
day. This involves modeling a series of choices that
travelers make, including those related to activity
type, duration, timing and scheduling, location and
destination, and path. Considering that many of
these choices are made under constrained situations,
the argument can be made that there are finite
spatio-temporal action spaces or space-time prisms
within which one can engage in activities and travel
(Pendyala et al. 2002). 

Space-time prisms provide a means of represent-
ing the spatial and temporal constraints that influ-
ence activity and travel patterns. For example, from
a spatial standpoint, one can conjecture that home
and work locations are potential anchors that con-
strain the potential range of destinations a person
can visit. Because of data limitations, this paper
does not consider the spatial aspect of commuter
activity scheduling behavior. 

From a temporal standpoint, several events in time
may constrain the range of activity-travel patterns
that an individual can pursue. These events and their

associated beginning and ending times can play an
important role in determining how individuals sched-
ule, sequence, and plan their activities and trips. Six
temporal events that might dictate how a commuter
schedules and plans activities are identified here.

1. Wake-up time
2. First time of departure from home
3. Work start time 
4. Work end time 
5. Final time of arrival at home
6. Sleep time
Gangrade et al. (2000) have provided detailed

descriptions of these temporal events for the com-
muter and noncommuter groups in the survey sam-
ple. These six events potentially define five temporal
prisms2 within which commuters schedule their
activities. For example, wake-up time and first time
of departure from home define an “initial at-home
prism.” Similarly, work start time and end time
define an “at-work prism.” In reality, these events
may not truly describe the temporal dimension of a
prism. The real vertices (or extremities) of a prism
are unobserved (e.g., earliest wake-up time, latest
possible work arrival time, earliest possible work
departure time, latest possible sleep time), and
therefore the observed events are used as surrogates
to represent the temporal dimensions of prisms. 

A commuter can engage in out-of-home activities
within prisms that lie between the first time of
departure from home and the final time of arrival at
home. Only in-home activities can be pursued prior
to the first home departure and following the last
home arrival. The period between the first home
departure and the final home arrival may be further
subdivided into:

� Before-work time period: This time period com-
prises time available between the first departure
from home and work start time. During this
period, a commuter may pursue activities on the
way to work and/or pursue activities and return
home prior to departing for work.

� During-work time period: This time period is
defined by the work start time and end time. On
average, work accounts for approximately 30% of

2 The term prisms, in the context of activity-based travel
behavior, has been widely used to represent the limited
time and spatial accessibility travelers typically have.
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a commuter’s day and 50% of the waking hours.
As such, this prism is likely to be an important
determinant of a commuter’s daily activity pattern.
Commuters are often temporally constrained by
their work schedules. Nonwork activity engage-
ment typically occurs during the lunch break
(about one hour for most commuters). 

� After-work time period: The time period avail-
able to a commuter after work ends and prior to
the final time of arrival at home constitutes the
after-work time period. During this time period,
a commuter may undertake nonwork activities
such as shopping, running errands, recreation,
etc., either on the way home from work or sepa-
rately after a temporary stop at home. The latter
choice of activity engagement would generate
another set of trips before the commuter finally
returns home.

Within the framework adopted in this paper, we
postulate that commuters choose to engage in out-
of-home nonwork activities within one or more of
these broad prisms. For example, a commuter may
choose to shop before work, during work, or after
work, including the possibility of multiple shopping
activities in the same or different time prisms. By
scheduling out-of-home nonwork activities in vari-
ous prisms (periods of the day), a commuter’s activ-
ity schedule can be identified.

For purposes of model development and estima-
tion, we aggregated the various out-of-home non-
work activities undertaken by commuters in the
1996 Bay Area survey sample broadly into eat/meal
preparation, shopping/personal business, and enter-
tainment/social recreation. In addition, in an
attempt to capture temporary trips home that occur
between the first home departure and last home
arrival, an additional activity category called
“return home” is included in the model formula-
tion. It should be noted, however, that return home
really represents in-home activity engagement by
commuters in the survey sample. Previous research
has clearly shown that there are significant tradeoffs
and complementarity between in-home and out-of-
home activity engagement (Kitamura 1984; Kup-
pam and Pendyala 2001). Within the model frame-
work of this paper, relationships between in-home
and out-of-home activities and the identification of

specific activities pursued during trips home are not
explicitly included. Future efforts will involve the
integration of such models with the model devel-
oped in this paper. However, the inclusion of return
trips home as an explicit category in the model
framework helps determine the activity sequencing
and trip chaining behavior of commuters (e.g., does
a commuter shop on the way home from work or
after returning home from work?). 

In summary, the behavioral framework adopted
in this paper takes the form of a two-stage process.
In the first stage, commuters choose among activi-
ties to be pursued (outside home and work) and in
the second stage, they choose when the activity will
occur. Such a two-step process may be conveniently
represented using nested logit model structures. For
example, in one postulated structure, the various
out-of-home nonwork activities pursued by individ-
uals, namely eat/meal preparation, shopping/per-
sonal business, entertainment/social recreation, and
return home comprise the upper level (composite)
alternatives. The three time periods available to pur-
sue these activities form the lower level (elemental)
alternatives available to an individual. Figure 1 pro-
vides a visual depiction of this postulated behavioral
structure.

It should be noted that the two-stage behavioral
paradigm suggested in this paper is not necessarily
the only factor motivating the adoption of a nested
logit modeling methodology. A nested logit model is
usually adopted when there is a potential for shared
unobservable attributes across alternatives, if these
attributes were to be arranged in a simple multi-
nomial structure. The potential for shared unob-
served attributes across alternatives, coupled with
the two-stage behavioral paradigm, motivated us to
adopt the nested logit methodology in this paper.

Because the behavioral framework adopted in
this paper does not include in-home vs. out-of-home
activity substitution, and instead uses an aggregate
activity-type categorization, it is not comprehensive
in its treatment of commuter activity and travel
behavior and thus simplifies the behavioral process
underlying activity and travel pattern formation.
Nevertheless, it provides a practical and convenient
way to extract activity schedules and sequences and
trip chains of commuters given standard socioeco-
nomic variables. 
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FIGURE 1  Activity Schedule Structure 1  

NESTED LOGIT MODELING 
METHODOLOGY

The nested logit model is a widely used form of the
discrete choice model and has been extensively pre-
sented and described in the literature (see e.g., Ben-
Akiva and Lerman 1985; Lerman 1984; Train
1986; Ortuzar and Willumsen 1994).  There are at
least two ways to express the nested logit structure,
namely, the Non-Normalized Nested Logit model
(NNNL, described by Daly 1987) and the Utility
Maximizing Nested Logit model (UMNL, described
by McFadden 1978). A detailed discussion of both
model structures is beyond the scope of this paper;
however, the merits and demerits of the two model
structures have recently been discussed in the litera-
ture (Koppelman and Wen 1998; Hensher and
Greene 2000).  

Despite the potentially more appealing nature of
the UMNL model, the NNNL model specification
is used in this research primarily because of the
availability of convenient software to estimate it
(e.g., LIMDEP).  Also, from a behavioral interpreta-
tion standpoint, it was considered sufficient to
adopt the NNNL modeling methodology.

The lower level choice in a nested logit model is a
multinomial logit choice and can be expressed as

where
P(k|i) is the probability of alternative k from subset

Di to be chosen on the condition that alter-
native i on the upper level has been chosen,

Di is the lower level choice set, which is associ-
ated with alternative i on the upper level,

Vik is the deterministic portion of the utility
associated with choice k in nest i, 
is a vector of model parameters,

x is a vector of exogenous variables.
An inclusive value Ii (or logsum) associated with

the upper level alternative i is defined as 
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The upper level choice probability is then expressed
as

where
P(i) is the probability of choosing alternative i,

is a vector of model parameters,
z is a vector of exogenous variables.

The parameter  is referred to as the inclusive
value parameter. The value of this parameter should
lie between zero and one. When the parameter
equals unity, the structure collapses to a multino-
mial logit model without a nested structure. The lev-
els are separated and present independent and
separate choice situations if the value of the parame-
ter is equal to zero.  If <0, an increase in the utility
of an alternative in the nest (which should increase
the probability of the nest being chosen), actually
diminishes the probability of selecting the nest.  In
virtually all choice modeling situations, this is
implausible.  If >1, an increase in the utility of an
alternative in the nest not only increases its selection
probability but also the selection probability of the
rest of the alternatives in the nest.  That is, improve-
ments in one alternative could increase not only the
probability of that alternative being chosen, but
some other alternatives would also gain a bigger
share (Ortuzar and Willumsen 1994).  While this
may be plausible under certain limited conditions, it
is generally not applicable to a wide variety of
choice modeling situations.  Therefore, the nesting
structure that provides inclusive value parameter
estimates between zero and one is generally adopted
as long as the structure offers a plausible behavioral
framework and interpretation. 

NESTED LOGIT MODEL ESTIMATION 
RESULTS

Several possible alternative nesting structures may
describe the activity scheduling behavior of com-
muters. This section discusses the alternative nested
logit model structures that were tested and presents
model estimation results for the structure that pro-
vided desirable statistical and plausible behavioral
indications.  

Figure 1 illustrates the nested logit model struc-
ture that is most consistent with the behavioral
framework postulated earlier in the paper.  This
structure suggests that a commuter, in formulating
an activity schedule, first chooses the out-of-home
nonwork activities to be pursued in a day.  The
choice of the appropriate time period in which to
undertake each of the chosen activities comprises
the second step in the choice process.  

Nested logit model estimation results for this
structure are found to offer plausible coefficient esti-
mates, except for those associated with the inclusive
value parameters. Because the model did not offer
acceptable inclusive value parameter coefficients, it
was not adopted, and therefore detailed model esti-
mation results and parameter estimates are not
included in the paper. The inclusive value parameter
estimate for the nest comprising eat/meal alterna-
tives was 1.45, while that for the nest comprising
shopping/personal business alternatives was 1.09
(significantly different from one). These two inclu-
sive value parameter estimates suggest that when
the probability of a commuter pursuing either an
eat/meal activity or a shopping/personal business
activity in one of the three time periods increases,
then the probability that the commuter undertakes
the same activity in a different time period (on the
same day) also increases simultaneously.  While this
result may hold true for a few commuters, it is not
likely to hold true across the sample. The inclusive
value parameter estimate for the nest comprising
entertainment/social recreation activities was 0.51.
This value indicates that a potential tradeoff is
involved when pursuing entertainment/social recre-
ation activities during different time periods in a
day.  This inclusive value is certainly behaviorally
intuitive as one would expect commuters to trade
off the pursuit of entertainment activities across dif-
ferent time periods.  

Because the nested structure shown in figure 1
provided counter-intuitive inclusive value coefficient
estimates for two nests, an alternative structure was
developed (shown in figure 2). This framework pro-
poses a bottom-up decisionmaking process where a
commuter first breaks up the day into various peri-
ods (prisms) and then chooses the activity (or activi-
ties) to be undertaken in each period.  In figure 2,
the before-work, at-work, and after-work time peri-
ods comprise the three composite alternatives
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placed at the upper level in the nest structure.  The
various out-of-home nonwork activities undertaken
by individuals (eat/meal, shopping/personal busi-
ness, and entertainment/social recreation) comprise
the elemental alternatives in each nest. However,
return home is still retained as an upper level choice
as this alternative pertains to the choice to return
home temporarily during the day. Because it was
considered appropriate to distinguish between out-
of-home activity scheduling (in the other three nests)
and trip scheduling (for in-home activities), return
home was retained in a manner similar to that in the
first nesting structure in figure 1.  

This model offered plausible coefficient estimates
and acceptable goodness-of-fit measures.  However,
similar to the first structure, the inclusive value
coefficient estimates for two nests significantly
exceeded one. For the nest comprising activities
undertaken before work, the inclusive value coeffi-
cient estimate was 1.40, while that for the nest com-
prising activities pursued after work was 1.29.
These inclusive values imply that commuters who
are likely to engage in a nonwork activity before
work or after work are also likely to simultaneously
engage in other activity types during the time period
under consideration.  

One could posit that these model results are plau-
sible, particularly in the context of the after-work
period.  During the after-work periods (typically in
the evenings), quite a few commuters engage in mul-
tiple activities, suggesting that elemental choice

alternatives in the after-work nest are not competing
but complementary in nature.  However, in the pres-
ence of household, work, and other institutional
and temporal constraints, it is unlikely that this will
apply across the entire sample.  Also, with respect to
the before-work period (typically in the morning), it
is very unlikely that commuters treat activities as
complementary to one another (with possibly a few
exceptions). If this is the case, then, the inclusive
value parameter estimate for the before-work nest
should be less than one, even if that for the after-
work period is acceptable. 

In addition, the inclusive value coefficient esti-
mate for the nest comprising activities undertaken
while at work was 1.03.  This was not significantly
different from one at the 95% confidence level, sug-
gesting that activities undertaken while at work are
independent of one another (no tradeoffs) and do
not belong in a nesting structure.  Similarly, the
inclusive value for the nest comprising return home
trips was also one, suggesting that various return-
home trips undertaken by commuters over a day are
independent of one another.  Again, neither of these
findings is consistent with behavioral expectations.
Even if the finding that activities undertaken while
at work are independent of one another is poten-
tially acceptable, the finding that return-home trips
are independent across time periods is behaviorally
inconsistent. For a commuter, work and other tem-
poral constraints would undoubtedly result in inter-
dependence (and therefore tradeoffs) among various

FIGURE 2 Activity Schedule Structure 2
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time periods for undertaking return-home trips.
This would call for the nest comprising return-home
trips to have an inclusive value coefficient estimate
of less than one. The behaviorally inconsistent inclu-
sive value coefficient estimates prompted us to reject
this structure and search for a structure that was
both behaviorally plausible as well as statistically
acceptable.

After an extensive exploratory analysis of com-
muter activity engagement patterns in the dataset,
we found that the most prevalent activity participa-
tion behavior included an eat/meal activity pursued
while at-work, shopping/personal business pursued
(in the evening) after work, and entertainment/
social recreation pursued after work. Other types of
activity participation behavior before work or while
at work occur less frequently in the sample possibly
because constraints do not allow the scheduling of
activities during those periods for most commuters
or simply because those activity patterns are less
preferred.  

This activity scheduling behavior of commuters
may be captured by placing the more prevalent
alternatives as separate and independent choices.
All of the less-prevalent activity scheduling alterna-
tives may be combined into a single nest to repre-
sent their rare nature and the fact that, if a
commuter does participate in one of these alterna-
tives, the likelihood of that person participating in
another less prevalent alternative (in the same nest)
is virtually none. Eat/meal activities while at work,

shopping/personal business activities (in the
evening) after work, and entertainment/social rec-
reation activities (in the evening) after work are the
more prevalent alternatives. They are all treated as
separate and independent choice alternatives. Once
again, as in the previous case, return-home trips
are placed in a separate nest to distinguish between
activities and trips. Figure 3 shows the nesting
structure for representing the activity scheduling
behavior of commuters.   

Variables used in this nested logit model are
defined in table 3.  They include a series of socioeco-
nomic variables describing the individual and the
household.  There are two inclusive value parame-
ters for this nesting structure, one associated with
the “less frequent” nest and the other associated
with the “return home” nest. Model estimation
results for the proposed structure are presented in
table 4. This model offered plausible and behavior-
ally sound coefficient estimates for the inclusive
value parameters.  In addition to this, it offered the
same level of goodness-of-fit as the prior two struc-
tures we considered and provided coefficient esti-
mates on all other explanatory variables according
to expectations.  Although several coefficients had
low t-statistics from a statistical standpoint, they
were retained in the model as they offered behavior-
ally plausible interpretation and sensitivity. This
model structure was finally chosen to represent
activity scheduling behavior of commuters in the
San Francisco survey sample. 

FIGURE 3 Trip Activity Schedule Structure 3
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The inclusive value coefficient estimate of the
nest comprising the less frequent activities was 0.80,
while that for the nest comprised of return home
trips was 0.72.  Both of these inclusive value param-
eter estimates were statistically significant at the
99% confidence level and significantly less than
one.  The inclusive value parameter estimate of 0.80
for the nest comprising rare and less frequent activi-
ties indicates that the activities in this nest share
unobservable attributes and considerable tradeoffs
are involved when pursuing these activities. The
inclusive value parameter estimate of 0.72 for the
nest comprising return home trips indicates that
these trips, typically undertaken over a day, share
unobserved attributes. If a commuter returns home
temporarily during a certain time period during the
day, then the same commuter would show less pref-

erence to again return home temporarily at some
other time period in the day.  This inclusive value is
consistent with behavioral expectations that com-
muters are temporally constrained and are rarely
inclined to make multiple return trips home during
the day. 

With respect to socioeconomic variables, the
model offers very consistent coefficient estimates.
In general, males in the sample were more likely to
engage in the eat/meal activity while at work. On
the other hand, females were more likely to engage
in shopping/personal business activities after work.
However, more males pursued entertainment and
other social recreation activities after work com-
pared with their female counterparts. These findings
are consistent with traditional gender-based differ-
ences in household roles and obligations. Strangely,
males also exhibited a greater tendency to return
home while at work, which clearly shows the
importance of integrating models of in-home activ-
ity engagement with models of out-of-home activity
engagement. Furthermore, the reasons for males’
return-home trips while at work merits further
investigation. 

Younger commuters in the sample were more
likely to eat while at work and undertake entertain-
ment/recreation activities after work. It appears that
they were more likely to undertake their after work
activities after a temporary trip home as indicated
by the positive coefficient associated with the return
home after work alternative.  Licensed individuals,
who presumably have access to an automobile,
were more likely to pursue shopping/personal busi-
ness activities during the day and more likely to
return home in the middle of the workday. As
expected, commuters employed full time were less
inclined to return home during the day, but were
more inclined to engage in an eat/meal activity while
at work. Students were more likely to participate in
activities in the period prior to work (they are more
often part-time workers who have the flexibility to
undertake before-work activities). 

Single people showed a greater propensity to
engage in entertainment/social recreation activities in
the after-work period than other household types.
Single parents were more likely to return home dur-
ing the day, presumably because of childcare or other
household obligations. Commuters in households
with children showed a negative propensity to engage

TABLE 3  Definition of Explanatory Variables

Variable Definition

Descriptive 
statistic

(N = 4,188)

Male 1 if male; 0 otherwise 54.3%
Young 18 ≤ age ≤ 29 18.8%
Middle 30 ≤ age ≤ 55 54.4%
License 1 if licensed; 0 otherwise 94.4%
Jbfull 1 if employed full time; 

0 otherwise
82.6%

Student 1 if student; 0 otherwise 13.4%
Single 1 if single; 0 otherwise 20.1%
SinPar 1 if single parent; 0 otherwise 4.3%
Couple 1 if couple with no children; 

0 otherwise
27.8%

Cwkid 1 if couple with children; 
0 otherwise

28.1%

Linc $5,000 ≤ income ≤ $29,999 19.6%
Minc $30,000 ≤ income ≤ $74,999 43.3%
Hinc Income ≥ $75,000 22.5%
Drvwk 1 if drive to work; 0 otherwise 67.4%
White 1 if white; 0 otherwise 69.2%
CGC 1 if no. cars ≥ no. commuters 

in hhld
86.4%

Const Constant
IV Inclusive value parameter for nest
Eat/meal Eat/meal activity
Shp/PB Shopping/personal business/serve child 

activity
Ent Entertainment/social recreation
Return home Return home trip
Before work Activity undertaken before work start
At work Activity undertaken during work
After work Activity undertaken after work end

Note: The descriptive statistics presented here are derived from a 
sample of 4,188 commuters who provided complete information 
on all variables included in the nested logit model. Therefore, the 
values presented here may differ from those in table 1, where 
person characteristics were derived from the full sample of 4,331 
commuters who responded to the survey.
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in recreation and other out-of-home nonwork activi-
ties during the day. This is presumably because they
devote much time in-home to childcare activities and
other household obligations. As expected, high
income commuters and commuters in households
with high car availability were more prone to partici-
pate in entertainment activities in the after-work
period (while these coefficients were not statistically
significant at the 95% confidence level, they were
retained because of their behaviorally intuitive inter-
pretation). Those who drive to work appeared to
have the flexibility and therefore positive propensity
to return home during the day (while at work) and
undertake shopping/personal business activities after
work (possibly on the way home from work). 

In summary, the final adopted model structure
provides model parameter estimates consistent with
behavioral and empirical expectations. Most of the
model coefficients are statistically significant at the
95% confidence interval. The inclusive value param-
eter estimates are also behaviorally plausible. There-
fore, we may conjecture that this nesting structure
provides a reasonable representation of activity
scheduling for commuters.  However, we draw this
conclusion with caution, because this nested logit
structure generated consistent inclusive value param-
eter estimates in the context of the 1996 San Fran-
cisco Bay Area survey sample. Alternate nesting
structures estimated on several different sample
datasets should be examined and tested before draw-
ing conclusions about the behavioral paradigm
underlying commuter activity scheduling behavior.  

NESTED LOGIT MODEL APPLICATION

The previous section described a nested logit model
structure intended to represent commuters’ activity
scheduling behavior.  In this section, a sample numer-

ical simulation is provided to show how the model
can be used to predict activity scheduling patterns of
commuters. 

For the purpose of this exercise, six hypothetical
individuals are considered. Their characteristics in
relation to the socioeconomic variables included in
the nested logit model are shown in table 5.  In gen-
eral, the six hypothetical individuals cover a range
of socioeconomic characteristics thus providing a
means of examining whether the model is truly sen-
sitive to differences among individuals.  Prior to the
application of the nested logit model of activity
scheduling behavior, the total number of out-of-
home nonwork activities (including temporary
return trips home) pursued by each commuter was
predicted using Poisson- and negative-binomial
regression-based activity frequency models similar
to those developed by Ma and Goulias (1999).
These activity frequency models provided a basis for
determining the number of activities that need to be
drawn and included in the commuters’ activity
schedules.  The predicted activity frequency for each
individual is shown in the last column of table 5.

The nested logit model includes a total of 12 dif-
ferent alternatives as shown in the first column of
table 6.  In this table, predicted probabilities associ-
ated with each alternative are shown for person
number 4 from table 5. This person is a young,
high-income female single parent. The predicted
probabilities for the 12 alternatives are shown in the
second column of table 6. In order to determine the
activities that need to be included in this person’s
schedule, a simple Monte Carlo simulation method
was adopted.  Using a random number generation
process, random numbers between 0 and 1 were
repeatedly drawn to determine the choices accord-
ing to the predicted probability distribution of the

TABLE 5  Characteristics of Six Hypothetical Individuals

Person 
number Male Female Young

Middle
age

Low 
income

High 
income Single

Single 
parent

Couple, 
no child

Activity

frequency1

1 1 1 1 1 2

2 1 1 1 1 5

3 1 1 1 1 3

4 1 1 1 1 6

5 1 1 1 1 3

6 1 1 1 1 6

1 Activity frequency refers to the number of out-of-home nonwork activities undertaken by an individual in a day including return trips home. 
These frequencies were obtained from a Poisson regression model of activity frequency not presented in this paper.
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alternatives for each individual. The number of
draws is equal to the predicted activity frequency as
provided by the Poisson- or negative-binomial
regression-based activity frequency model.

For this individual, the activities that were drawn
in the simulation included return home before
work, shop/personal business before work, enter-
tainment after work, eat/meal at work, eat/meal
after work, and shop/personal business after work.
In order to develop the pattern, we started at the
beginning of the day and assumed that the person is
at home (initial location).  According to the model,
this person undertakes shop/personal business
before work.  During the aggregation of activity
types, serve-child activities were combined with
shopping and personal business activities.  Because
this person is a single parent, we conjectured that
this must be a serve-child activity.  Also, the person
returns home before work.  Then, it appears that
this person drops off a child and then returns home
prior to work.  So far, the pattern is as follows:
home → child drop → (return) home.  

Next the individual goes to work. While at work,
the individual undertakes an eat/meal activity. No
other activities are undertaken while at work. The
individual presumably returns to work after the eat/
meal activity. The pattern thus far has become:
home → child drop → return home → work → eat/
meal → work.  

There are a total of three activities undertaken in
the after-work period. They are shopping/personal
business (presumably serve or pickup child), enter-

tainment, and eat/meal. There is no temporary
return home trip in the after-work period. Thus, it
appears that this individual undertakes all of these
activities after work prior to returning home. The
question then becomes: how are these three activi-
ties sequenced? Many factors influence the sequenc-
ing of activities and one would need richer
preference data and possibly rule-based heuristics to
determine activity sequencing (Pendyala et al.
1998). At this point in the model development, we
adopted a simplified heuristic rule to determine the
activity sequence. Using the values of predicted
probabilities in table 6 as an ordering mechanism,
the individual would first proceed to an entertain-
ment activity, then turn to an eat/meal activity, and
finally pick up the child (shop/personal business
after work) prior to returning home. The final pat-
tern then becomes: home → child drop → return
home → work → eat/meal → work → entertain-
ment → eat/meal → child pickup → home. 

Figure 4 shows the activity scheduling patterns
generated for the six hypothetical individuals con-
sidered in table 5. The model offers very plausible
and reasonable activity schedules. For example, per-
son number 2 is a high-income single male. Consis-
tent with expectations, this person undertakes
several after-work activities including eating out,
shopping/personal business, and entertainment/rec-
reation. On the other hand, person number 1, who
is a low-income single male, undertakes fewer activ-
ities and does not engage in out-of-home entertain-
ment.  Person number 3 is very similar to person
number 4, except she is a low-income individual.
The difference between their activity patterns
reflects their income difference: whereas person
number 4 eats out and pursues entertainment after
work, person number 3 does not.  

The model may predict activity scheduling pat-
terns that are not possible due to situational or insti-
tutional constraints (Kitamura et al. 2000).  For
example, an individual may be constrained to pick
up a child prior to engaging in other after-work
activities.  These aspects of activity pattern genera-
tion need to be incorporated by combining this
model with other models of activity behavior,
including rule-based, econometric, or behavioral
decision approaches. By combining this model with

TABLE 6  Predicted Activity Episode Probabilities and 
Simulation Draws for Person Number 4

Activity
Predicted
probability

Activity 
draws

Meal—before work 0.01

Meal—at work 0.11 X

Meal—after work 0.09 X
Shop/PB—before work 0.14 X

Shop/PB—at work 0.01

Shop/PB—after work 0.08 X

Entertain—before work 0.04

Entertain—at work 0.01

Entertain—after work 0.12 X

Return home—before work 0.32 X

Return home—at work 0.03
Return home—after work 0.05
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models of activity sequencing and prioritization,
activity duration, departure time choice, prism con-
straints, etc., realistic and plausible activity patterns
(with detailed time-of-day information) that do not
violate various constraints can be generated.

CONCLUSIONS AND FUTURE RESEARCH

This paper presents a simple and practical nested
logit model that can be used to predict the daily
activity schedule of a commuter. The model sched-
ules nonwork activities in relation to the work activ-
ity, thus explicitly recognizing the limited spatial
and temporal flexibility associated with the work
schedule. The model schedules various nonwork
out-of-home activities in three possible time periods
(or prisms), namely, before work, at work, and after
work.  In addition to scheduling out-of-home non-
work activities, the model includes the capability of
scheduling temporary return-home trips, thus facili-
tating the identification of both home-based and
work-based trip chains for commuters. 

The behavioral paradigm suggested in this paper
is that individuals first plan the nonwork activities
that they need to accomplish in a day and then
schedule these activities in relation to their work
activity. Several alternative nested logit structures

were estimated on the 1996 San Francisco Bay Area
activity survey sample dataset in an attempt to oper-
ationalize the behavioral paradigm. The two-stage
decision process embodied in the behavioral para-
digm was supported by the estimation results, albeit
with some modifications to account for the fact that
some activity scheduling patterns are far more prev-
alent than others.  

The paper includes a numerical example to illus-
trate how the model can be used to predict a daily
activity schedule for commuters. The model
includes the capability of scheduling return trips
home that may occur during the day, thus facilitat-
ing the identification of home-based trip chains (in
addition to work-based trip chains).  Six hypotheti-
cal individuals with different socioeconomic charac-
teristics were considered and their activity schedules
simulated using the nested logit model. This was
done by combining the application of the nested
logit model with a Monte Carlo simulation method
and simple heuristics that facilitated the identifica-
tion and sequencing of activities in the schedule. A
quick check in which predicted schedules were com-
pared against actual observed schedules of very sim-
ilar (but not always identical) individuals in the
dataset showed that the model predictions were vir-
tually identical to observed schedules.  

FIGURE 4 Predicted Trip Activity Patterns for Six Hypothetical Individuals

Home Work Eat/
meal Work

Shop/ 
PB Home

Home Work Eat/ 
meal Work Home Home

Home

Shop/ 
PB

HomeHome Work
Eat/
meal Work Home

Eat/
meal

Shop/ 
PB

Home Child 
drop

Work Child 
pickup Home

Entertain

EntertainHome Entertain Home Work
Eat/
meal Work Home Shop/ 

PB

Child 
pickup HomeHome Child 

drop
Home Work

Eat/
meal Work Entertain

Eat/ 
meal

1

2

3
Eat/
meal Work

4

5

6

Person 
number

Note: Shaded boxes represent activities predicted in the simulation.



34 JOURNAL OF TRANSPORTATION AND STATISTICS V5, N2/3 2002

The model presented in this paper is only a small
piece of an overall activity-based model system.
The model needs to be combined with other models
of activity behavior including activity sequencing,
activity frequency, activity duration, activity timing,
and in-home vs. out-of-home activity substitution/
complementarity to fully identify and describe an
individual’s activity-travel pattern. In addition,
appropriate rule-based heuristics need to be incor-
porated to ensure that the predicted pattern is plau-
sible, feasible, and satisfies all constraints.  

The nested logit model presented in this paper
may itself be improved in several ways both from an
empirical as well as a methodological standpoint. In
this effort, several activity purposes were aggregated
into composite categories (e.g., shopping/personal
business/serve child). However, it would be prefera-
ble to retain the differentiation among activity cate-
gories so that their unique characteristics may be
better reflected in the model and the identification
of specific activities in the pattern is easier. The
inclusion of accessibility variables would be another
important enhancement to the model, because activ-
ity generation and time-of-day scheduling are highly
influenced by spatio-temporal activity accessibility.
In addition, it would be helpful to test and estimate
alternative structures on different datasets to see
whether a more robust and unified theory of activity
scheduling behavior can be developed.  

The assumptions implicit in the nested logit
model (for example, that the Independence from
Irrelevant Alternatives (IIA) assumption holds at
each level of the nested structure) should be tested
to ensure that the nested logit modeling methodol-
ogy and the nested structure adopted are appropri-
ate for modeling activity scheduling behavior. Also,
the nested logit model structure proposed in this
paper does not accommodate multiple episodes of
the same activity type in one time period. Some indi-
viduals will pursue multiple episodes of the same
activity (say, shopping) in one time period (this was
found to be extremely rare in the San Francisco Bay
Area dataset, but nevertheless worthy of accommo-
dation in the model structure). Finally, another issue
that merits improvement concerns the use of the
nested logit model in the presence of interrelated
choice alternatives.  

From an application standpoint, the model
should be enhanced to incorporate the capability of
responding to a range of transportation policy sce-
narios. A major benefit of the activity-based
approach is that it offers a behaviorally robust
framework in which the impacts of transportation
policies on individual travel behavior can be
assessed (Pendyala et al. 1997).  Increases in conges-
tion, travel demand management strategies, trans-
portation control measures, or new transportation
investments (highway or transit expansion) may
lead to adjustments in daily activity schedules. In its
current form, the model is not wholly sensitive to
such variables.  Either the model needs to incorpo-
rate such variables so that it is sensitive to the
changes brought about by alternative transportation
policies or it needs to be combined with another
model capturing such sensitivities (e.g., a stated
preference model). The development of such models
would, however, also place greater demands on data
requirements.  
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ABSTRACT

The demand for travel on a network is usually rep-
resented by an origin-destination (OD) trip table or
matrix. OD trip tables are typically estimated with
synthetic techniques that use observed data from
the traffic system, such as link volume counts from
intelligent transportation systems (ITS), as input. A
potential problem with current estimation tech-
niques is that many ITS volume counters have a rel-
atively high error rate. The focus of this paper is on
the development of estimators explicitly designed
to be robust to outliers typically encountered in
ITS. Equally important, standard errors are devel-
oped so that the parameter reliability can be
quantified.

This paper first presents a constrained robust
method for estimating OD split proportions, which
are used to identify the trip table, for a network.
The proposed approach is based on a recently
developed statistical procedure known in the liter-
ature as the L2 error (L2E). Subsequently, a closed-
form solution for calculating the asymptotic
variance associated with the multivariate estimator
is derived. Because the solution is closed form, the
computation time is significantly reduced as com-
pared with computer-intensive standard error cal-
culation methods (e.g., bootstrap methods), and
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therefore confidence intervals for the estimators in
real time can be calculated. As a further extension,
the OD estimation model incorporates confirma-
tory factor analysis for imputing origin volume
data when these data are systematically missing for
particular ramps. The approach is demonstrated on
a corridor in Houston, Texas, that has been instru-
mented with ITS automatic vehicle identification
readers.

INTRODUCTION

The demand for travel on a network is usually rep-
resented by an origin-destination (OD) trip table or
matrix. A trip is a movement from one point to
another, and each cell, ODkj, in the table represents
the number of trips starting at origin k and ending
at destination j. An OD trip table is a required input
to most traffic operational models of transporta-
tion systems. In addition, demand estimates are
useful for real-time operation and management of
the system. While it would be possible to directly
measure the travel volume between two points, it is
a very expensive and time-consuming process to
identify the trip matrix for an entire network.
Consequently, OD trip volume tables are typically
estimated with synthetic techniques that use
observed data from the traffic system, such as link
volume counts from inductance loops, as input.
Over the past 20 years, numerous methodologies
have been proposed for estimating OD movements
within an urban environment (Bell 1991; McNeil
and Henderickson 1985; Cascetta 1984). A com-
mon approach for estimating OD volumes is based
on least squares (LS) regression where the
unknown parameters are estimated based on the
minimization of the Euclidean squared distance
between the observed link volumes and the esti-
mated link volumes. Deriving OD trip tables from
intelligent transportation systems (ITS) volume
data is the focus of this paper.

Nihan and Hamed (1992) demonstrated that
outlier data can have a significant impact on OD
estimate accuracy, but most OD estimation tech-
niques assume that the input data are reliable.
Furthermore, it has been shown that unless induc-
tance loops are maintained and calibrated at regu-
lar intervals, the data received from them are prone
to error rates of up to 41% (Turner et al. 1999).

Faulty volume counts can occur because of failures
in traffic monitoring equipment, communication
failure between the field and traffic management,
and failure in the traffic management archiving sys-
tem. The first two failure types may be difficult to
detect because they occur in isolated detectors.
Other detector problems include stuck sensors,
chattering, pulse breakup, hanging, and intermit-
tent malfunctioning. Consequently, there is a need
to account for the input error in the estimation
process. Historically, detector malfunctions have
been addressed by “cleaning” the datasets prior to
the estimation step. This is problematic for ITS
applications, because the data manipulation takes
time and the use of these techniques is limited in a
real-time environment. Even for off-line applica-
tions, cleaning the data is problematic, because it is
not always clear which data need to be cleaned and
how this can best be accomplished. This paper
examines a robust approach whereby the data
error associated with the faulty input data is
accounted for explicitly within the estimation of
the OD trip table.

The development of OD estimators that are
robust to detector malfunction has been largely
ignored in OD estimation research, with the excep-
tion of an approach proposed using a least absolute
norm (LAN) estimator (Sherali et al. 1997). LAN is
intuitively more robust to outliers than LS, because
the errors are not squared as they are in LS
(Cascetta 1984; Maher 1983; Robillard 1975), nor
are the data treated as constraints as they are in
many maximum entropy and information mini-
mization approaches (Cascetta and Nguyen 1988;
Van Zuylen 1980). This paper follows on their
work by using estimators explicitly designed to be
robust to outliers typically encountered in an ITS
environment. Equally important, standard errors
will be developed so that parameter reliability can
be quantified.

This paper first presents a constrained robust
method for estimating OD split proportions, which
are used to identify the trip table, for a network.
The traffic volumes are assumed to come from an
Advanced Traffic Management System (ATMS),
and the traditional assumption that the data are
“reliable” is relaxed to allow the possibility of
missing or faulty detector data. The proposed
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approach is based on a recently developed para-
metric statistical procedure known in the literature
as the L2 error (L2E).1 Subsequently, a closed-form
solution for calculating the asymptotic variance
associated with the multivariate estimator is
derived. Because the solution has a closed form, the
computation time is significantly reduced as com-
pared with the computer-intensive calculation of
the standard errors (e.g., bootstrap methods and
off-line methods based on the LS (Ashok 1996)),
and therefore confidence intervals for the estima-
tors in real time can be calculated. As a further
extension, the OD estimation model incorporates
confirmatory factor analysis (Park et al. 2002) for
imputing volume data when this information is sys-
tematically missing for particular ramps. 

While the techniques demonstrated here are
motivated using inductance loop data, they are eas-
ily generalized to other detectors, models, and data.
The approach is demonstrated on a corridor in
Houston, Texas, that has been instrumented with
automatic vehicle identification (AVI) readers. The
AVI volumes are used to estimate an AVI OD
matrix. The benefit to this test bed is that the actual
AVI OD table can be identified and, therefore, pro-
vides a unique opportunity for directly measuring
the accuracy of the different techniques. The OD
matrix can be obtained using a linear combination
of the split proportion matrix and the origin
(entrance) volume vector. 

It should be noted that because the input vol-
umes are dynamic, the estimated OD matrix is also
dynamic. However, because the split proportion is
assumed constant, the OD matrices by time slice
are linear functions of each other. 

Also note that while the method is acceptable for
freeway networks with relatively short trips
between interchanges, such as the example in this
paper, an application to a larger network would
raise the question as to when the trips began or
ended. Caution should be exercised when applying
this method to a large proportion of trips that begin
and end during different time periods.

THEORY

The objective of this paper is to estimate the OD
split proportion matrix and its associated distribu-
tion properties. The split proportion Pkj is defined
as the proportion of vehicles that exit the system at
destination ramp j given that they enter at origin
ramp k. While the split proportions are estimated
using only the volumes observed at the origins and
destinations, the approach can easily be extended
to the case where general lane volumes are
observed as well. Once the OD split proportion
matrix is identified, the OD table can be derived.
See the appendix for a notation list and all proofs
of the theorems.

Methodology

A desirable feature of an OD estimator is the abil-
ity to calculate a closed-form limiting distribution.
This is particularly important for ITS applications,
so that confidence intervals about the estimate can
be calculated in real time. The estimator will be
defined and distributional properties of the estima-
tor will be derived following the steps below. 

1. Define the multivariate constrained regres-
sion model and objective functions.

2. Obtain distributional properties.
a. Stack the variables to obtain a univariate

constrained regression model. 
b. Use the equality constraints to obtain a uni-

variate unconstrained regression model.
c. Apply asymptotic theory to derive the dis-

tributions of the estimated split propor-
tions for the LS and the L2E estimation
techniques.

d. Transform the model back to its original
form.

Step 1: Define the Model and 
Objective Functions

A traffic network can be represented by a directed
graph consisting of arcs (or links) representing
roadways and vertices (or nodes) representing
intersections. There are q origin (entrance) ramps
and p destination (exit) ramps, and the analysis
period is broken down into T time periods of equal
length t. Figure 1 shows an example of a traffic
system in Houston, Texas, along the inbound (east-

∆
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1 Basu et al. (1998) and Scott (1999) contributed the idea
to the parametric literature. L2 refers to the squared dis-
tance between two points. The L2E was originally used in
kernel density estimation (see, e.g., Terrell 1990).



bound) Interstate 10 (Katy Freeway) corridor and a

schematic diagram of the corridor. 

The underlying assumption of the OD model

developed here is that mass conservation holds. In

essence, it is assumed that the traffic entering the

system also exits the system within a specified time

period. This assumption is appropriate as long as

the time intervals are long and/or the traffic is in a

steady state. For time period t, t = 1, 2,…,T, Dtj

denotes the destination volume at destination ramp

j, j = 1,2,3,…,p and Otk denotes the origin volume

at origin ramp k, k = 1,2,3,…,q. 

The first assumption is that the split proportion

Pkj is constant over the entire analysis period. The

second assumption is that the number of vehicles

entering the system equals the number of vehicles

exiting the system so that the split proportions at

each origin during the period sum to 1 .

The expectation of the destination volumes during

each time period t is a linear combination of the

split proportions weighted by the origin volumes

The term is the error.
Intuitively, some of the split proportions are not

feasible (Pkj = 0) because of the structure of the traf-
fic network, and this needs to be incorporated in
the estimation process. Note that in some cases the
nonfeasible parameters may simply represent
unlikely cases. The zeros are exact in the applica-
tions presented later.

It is assumed in this paper that the errors in each
column are independently and identically distrib-
uted with mean zero and constant variance. This
means that the error associated with the volume
measurement at destination j is uncorrelated with
the volume measurement at destination j´. Note
that all assumptions will be checked in the applica-
tions section of the paper.

ε

Pkj
j

=∑ 1( )
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FIGURE 1 Eastbound Interstate 10 in Houston, Texas
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Because the OD problem structure is implicit
rather than explicit, and because it is also over-
specified, the synthetic approaches attempt to esti-
mate the split proportion matrix based on the
minimization of an objective function (Dixon
2000). The objective function in equation 2 is
based on an LS approach, which is a common way
to estimate the split proportions (Robillard 1975). 

Note that if is distributed normally then the LS
is equivalent to the maximum likelihood estimator.

The central hypothesis of this paper is that the LS
method is inappropriate for ITS applications
because of the high error rate of the measured vol-
umes. In contrast, the L2E objective function is
defined as the integrated squared difference between
the true probability density function and the esti-
mated density function. Therefore, it is theoretically
more robust, relative to the LS, when the data have
outliers such as those caused by detector malfunc-
tions. A more specific discussion of this follows.

As an example, consider a sample of size T. If the
goal is to estimate the location parameter, or the
central tendency, OtP0 (suppose P0 is the true
unknown split proportion, estimated with P), then
the minimization of the integrated squared error is
shown in equation 3 and derived in the appendix,

The normal distribution, ,

replaces resulting in the objective

function displayed as equation 4,

The L2E minimizes the sum of probability den-
sity functions (pdfs) while the MLE (or LS) mini-

mizes the negative product of pdfs. In the presence
of an outlier, the MLE objective function will mul-
tiply a zero and the L2E objective function would
add a zero. The relative effect of the outlier on the
objective function is much more severe in the case
of the MLE. This is because of the multiplicative
effect of the zeros on the MLE objective function.
Because ITS data often contain outliers, it is
hypothesized that the L2E objective function will
provide better estimates. For a more detailed dis-
cussion of the L2E properties, see Basu et al. (1998)
or Gajewski (2000). 

When calculating the L2E, an estimate of the
variance is required. In this paper, the estimate of
the variance is identified using a two-step process.
First is calculated using the median of the
squared residuals so that an initial estimate of the
standard deviation, , may be obtained by calcu-
lating the median absolute deviation (MAD) from
the set of estimated residuals, where the tth esti-
mated residual is . The median of the
squared residuals is used because it has been shown
to have a high breakdown point (Hampel et al.
1986). In general, the breakdown point is the per-
centage of outliers in the data at which the estima-
tor is no longer robust (Huber 1981). For example,
if the breakdown point is 50% then the estimator
is robust to datasets that contain less than 50%
outliers. 

Steps 2a–b: Stack and Define 
the Unconstrained Univariate 
Regression Model 

Through reparameterization, the split proportion
model shown in equation 1 can be translated into an
unconstrained univariate regression model. The first
step is to stack the split proportion matrix P, where 

Pv = vec(P).

For example,

 P
^

t= −tD Oε̂t
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The equality constraints are subsequently defined
relative to Pv using GPv = g, where the matrices

and

The matrix M (r by qp) maps the nonfeasible val-
ues of Pv to zero. The value r is the number of split
proportions equal to zero.

As an example, define 

where P11 = 0 and P21 = 0.

Therefore, the product of the M and Pv matrix
maps the nonfeasible elements to zero

where 

The first q rows of each G and g are used to nor-
malize the split proportions as shown in equation 5. 

Given the constraints defined above and the
stacked model, the reduced model may be obtained
by solving equation 5. Because G1 is trivially full
rank (q + r):

Equation 1 is placed in univariate form by defining
Y to be the stacked columns of D and at the same
time letting When equation 6 is sub-
stituted into the stacked model the unconstrained
model is obtained. The substitution is done with the
portion of the stacked model that corresponds to the

regression parameters. If

then 

and the new regression model, which describes in
univariate form the multivariate regression problem,
is defined in equation 7. 

where

Step 2c–d: Variance Estimates for 
the Reparameterized Model and
Distributions

These next steps produce distributions for the esti-

mators under the reparameterized model, in partic-

ular that both L2E and LS produce estimators that

consistently estimate the true (or ),

and that is asymptotically normally distributed,

under certain assumptions. The asymptotic normal-

ity directly produces variance estimates of .
The asymptotic properties follow directly from

the reparameterized model discussed in Steps 2a–b.
Then the asymptotic theorems from Huber (1981)
from the objective functions (or derivatives of them
called M-estimators) are applied, written in an
unconstrained form. 

The only additional assumptions for these
asymptotic results are that the errors in equation 1
have a mean of zero and a variance of and
are iid. This assumption encompasses many distri-
butions that include heavier tails then the normal
distribution. The specific calculations for the
asymptotic variances are 
and,

where and U are defined in the appendix.
One result of this is when the errors are normally

distributed the ratio of the variances of the L2E esti-
mator and the LS estimator of any element of 
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which says that the variance under the L2E estima-
tor is 1.54 times as high as the LS estimator.
Therefore, the L2E estimator is actually less effi-
cient than its LS estimator counterpart. However,
by applying a heavy-tailed distribution, the result
reverses and the L2E estimator is better than the LS
estimator. In the subsequent sections, a simulation
demonstrates this result.

Conclusion of Theory

The derivation of the asymptotic distributions has
shown that explicit closed-form variance estimates
exist and that associated standard errors of the split
proportions can be calculated in real time. Notice
that these theorems can be extended to other types
of M-estimators, in addition to the L2E, as long as
the assumptions are met. 

Note that if the assumptions to derive the closed-
form standard errors are not appropriate, then
bootstrap methods will be required. The bootstrap
is a computer-intensive procedure that uses resam-
ples of the original data to obtain properties such as
standard errors. One can use various algorithms to
do this, such as case resampling or model-based
resampling (Davison and Hinkley 1997).

APPLICATION

Test Bed

The test bed is an eastbound section of Interstate 10
(I-10) located in Houston, Texas, as shown in fig-
ure 1. This section of I-10 is monitored as a part of
the Houston Transtar Transportation Management
Center (TMC) (operated by the Texas Department
of Transportation), the Metropolitan Transit
Authority of Harris County (METRO), the City of
Houston, and Harris County. There are six auto-
matic vehicle identification readers located in the
test bed. As instrumented vehicles pass under an
AVI reader, a unique vehicle identification number
is recorded and sent to a central computer over
phone lines. From this information, the average
link travel time is calculated and presented to driv-
ers through various traveler information systems. It
may be seen in figure 1 that the I-10 test corridor is
made up of five AVI links consisting of six “ori-

gins” and six “destinations.” Note that each desti-
nation may consist of several destination ramps
and each origin may consist of several origin
ramps, because the AVI links are defined by the
location of the AVI readers and not the physical
geometry of the corridor.

The OD methodology developed in this paper
was motivated by the assumption that the TMC
has access to volume information obtained from
point detectors (i.e., inductance loops). However,
the models are tested using data obtained from an
AVI system because both AVI volumes and split
proportions can be identified. This provides a
unique opportunity for comparing the accuracy of
the OD estimates that are based on volumes
obtained at point sources with observed OD split
proportions. In this situation, the split proportions
are estimated using only the OD volumes from the
AVI data. 

Based on a preliminary analysis, 18 days in 1996
were used for the analysis (October 1, 2, 4, 5,
15–19, 22–26, 30, and November 1, 6, and 8).2

The AVI vehicles detected at the origin and destina-
tion ramps during the AM peak period (7 am to 9
am) were aggregated into 4 volume counts of 30-
minute duration. Therefore, the number of time
periods (T) is equal to 72, the number of destina-
tions (p) is 6, and the number of origins (q) is 6. The
AVI volumes were used as input to the LS and the
L2E estimators and the resulting estimates are pre-
sented in table 1.

The assumption that the split proportion matrix
was constant, which was used in the derivation of
the LS and the L2E estimators, was verified by
examining the observed AVI split proportion dif-
ferences across all days and all time periods of the
study. Because these observed split proportion dif-
ferences were within 0.1 for 95% of the estimates,
it was judged that the assumption was reasonable
for this test case. The observed mean AVI split pro-
portions for the AM peak are shown in table 1.

The correlation coefficients between the
observed mean AVI split proportions and the esti-
mated split proportions by the LS and the L2E esti-
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mators are 0.961 and 0.960, respectively. These
results indicate that both estimators are successful
at estimating the OD split proportions. However,
the mean absolute percent error (MAPE) between
the mean observed split proportion and the esti-
mated split proportions using the LS and the L2E
estimators were 44.5% and 51.3%, respectively.
These results indicate each method has an approx-
imate error of 50% with respect to individual OD
split proportion estimates. 

A further analysis of the absolute percent error
(APE) at the individual OD level showed that the
APE decreases as the size of the OD split propor-
tion increases. For example, the MAPE for OD
pairs that have observed split proportions in the
range of 0–0.10, 0.10–0.30, and greater than 0.48
are 78.1%, 31.2% and 11.9%, respectively, for the

LS estimator. The L2E analysis had similar results
in that the percentage error for cells that have split
proportions in the range of 0–0.10, 0.10–0.30, and
greater than 0.48 were 91.5%, 38.8%, and 6.3%,
respectively. As would be expected from their
objective functions, the estimators tend to have
more accurate results for the more “important”
OD pairs as measured by split proportion or rela-
tive volume. In general, these results are encourag-
ing because the estimates for the OD pairs that
have higher split proportions, which will in all like-
lihood be the more important ones for ITS applica-
tions, will tend to be more accurate. 

The asymptotic variance calculated using the
closed-form solutions developed in this paper and
variance estimators calculated using a bootstrap
technique are shown in table 2. The bootstrap esti-
mate of the standard error was calculated using
999 estimates of the split proportion. These esti-
mates were calculated from realizations produced
from resampling the rows of D and O (Davison
and Hinkley 1997). The APE between the asymp-
totic standard deviation and the bootstrap stan-
dard deviation ranged quite a bit. However, the
APE tended to be lower for the OD pairs with
higher observed OD split proportions, which was
similar to that of the previous analysis. 

For the L2E analysis, the APE between the
asymptotic standard deviation and the bootstrap
standard deviation also ranged quite a bit. Similar
to the LS analysis, the standard deviation of the
APE tended to decrease as the size of the observed
split proportion increased. In general the L2E
asymptotic standard deviation gave better results in
13 of the 21 parameters, as compared with the
bootstrap standard deviation the LS produced. The
asymptotic standard deviation for both the LS and
the L2E estimators were, on average, higher than
the bootstrap method and can therefore be used as
a conservative estimate of the standard deviation in
real-time applications.

Based on the estimated split proportions and the
variance shown in table 2, it can be shown that
there are no statistically significant differences
among the observed split proportion values and the
estimated values using either the L2E or the LS
methods when tested at the 95% level of confi-
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TABLE 1 Estimated Split Proportions by OD Pair 
for the Peak Period (7–9 a.m.)

ODkj Pkj

1-1 0.18 0.18 0.16
1-2 0.56 0.48 0.59
1-3 0.08 0.10 0.03
1-4 0.03 0.00 0.00
1-5 0.06 0.01 0.00
1-6 0.08 0.23 0.22
2-2 0.74 0.86 0.73
2-3 0.10 0.08 0.18
2-4 0.04 0.00 0.00
2-5 0.07 0.05 0.08
2-6 0.05 0.01 0.00
3-3 0.33 0.32 0.31
3-4 0.15 0.21 0.19
3-5 0.22 0.33 0.41
3-6 0.31 0.14 0.10
4-4 0.36 0.41 0.41
4-5 0.31 0.43 0.37
4-6 0.33 0.16 0.22
5-5 0.70 0.58 0.57
5-6 0.30 0.42 0.43
6-6 1.00 1.00 1.00

Key:
ODkj Vehicles depart from origin node k and arrive at destination node j

Pkj Observed split proportion matrix between origin node k and des-
tination node j

Estimated split proportion between origin node k and destination
node j using least squares estimator

Estimated split proportion between origin node k and destination
node j using the L2E estimator

Pkj
2

^L EPkj
^ LS

Pkj
^ LS

Pkj
2

^L E



dence. This result indicates that either method
would be appropriate for this dataset. It is impor-
tant to note, however, that the AVI volume data are
of very high quality with a low error rate, which is
not the case for inductance loop data. 

The standard deviations of the residuals for
columns 1 through 6 are 10.70, 11.92, 7.34, 10.43,
9.13, and 11.26, respectively, which are relatively
close. The residuals viewed using a normal probabil-
ity plot indicate that the hypothesis that the errors
are normal can be accepted. Lastly, the off-diago-
nals of the sample correlation matrix indicated a
small correlation between the columns of the resid-
uals. The average absolute value of the correlations
is 0.33. Based on these observations, the assump-
tion that the errors are independent and have the
same normal distribution (i.e., )
appears valid for this example.

Checking the assumptions allowed us to apply
the input-output model presented in this paper to
the Houston AVI data. While the AVI example
helped validate the methods developed in this
paper, it does not illustrate the robustness of the
L2E relative to the LS estimator because of the gen-
erally high quality of the AVI data. Therefore,
robustness is illustrated using a Monte Carlo simu-
lation study motivated from the AVI test bed exam-
ple. A binomial distribution, with probability
parameter H, which represents the proportion of
contamination, was used to sample the destination
volume matrix across the 72 time periods and 6
destinations. Two separate scenarios were exam-
ined. In the first scenario, the chosen cells are set to
zero, which mimics a detector failure. In the second
scenario, the chosen cells are inflated to mimic
chatter in the data. The inflated values were set to

( )ε σiid N I~ ,0 2
Tt
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TABLE 2 Standard Deviation of the LS and the L2E Estimators for the 
Peak Period (7–9 a.m.)

Absolute AbsoluteAsymptotic Bootstrap
percent

Asymptotic Bootstrap
percentSTD STD

error
STD STD

error
ODkj Pkj STD STD (APE) STD STD (APE)

1-1 0.18 0.01 0.01 0 0.01 0.01 0
1-2 0.56 0.05 0.07 29 0.06 0.07 14
1-3 0.08 0.08 0.11 27 0.10 0.11 9
1-4 0.03 0.06 0.04 50 0.07 0.04 75
1-5 0.06 0.08 0.06 33 0.10 0.04 150
1-6 0.08 0.08 0.05 60 0.09 0.05 80
2-2 0.74 0.06 0.01 500 0.07 0.00 0
2-3 0.10 0.08 0.01 700 0.10 0.04 150
2-4 0.04 0.10 0.08 25 0.12 0.13 8
2-5 0.07 0.07 0.06 17 0.09 0.09 0
2-6 0.05 0.06 0.02 200 0.08 0.01 700
3-3 0.32 0.11 0.07 57 0.13 0.09 44
3-4 0.15 0.10 0.08 25 0.12 0.12 0
3-5 0.23 0.08 0.05 60 0.10 0.06 67
3-6 0.30 0.08 0.05 60 0.10 0.08 25
4-4 0.37 0.06 0.04 50 0.08 0.05 60
4-5 0.31 0.11 0.01 1000 0.13 0.06 117
4-6 0.33 0.10 0.05 100 0.12 0.09 33
5-5 0.70 0.08 0.06 33 0.10 0.10 0
5-6 0.30 0.08 0.05 60 0.10 0.08 25
6-6 1.00 0.00 0.00 0 0.00 0.00 0

Key:
ODkj Number of vehicles departing from origin node k that arrive at destination node j

Pkj Observed split proportion matrix between origin node k and destination node j

STD Estimated standard error of split proportion between origin node k and destination node j using the
LS estimator

STD Estimated standard error of split proportion between origin node k and destination node j using the
L2E estimator

APE Difference between bootstrap STD and asymptotic STD divided by bootstrap STD

( )Pkj
2

^L E

( )Pkj
^ LS

( )Pkj
2

^L E( )Pkj
2

^L E( )Pkj
^ LS( )Pkj

^ LS



3,240 vehicles per half-hour, which is higher than
capacity and consequently the values are not feasi-
ble. A Monte Carlo experiment was performed 100
times for each scenario for levels of H ranging from
0 to 0.80 in increments of 0.1. 

The mean squared error (MSE) as a function of
the probability of destination detector failure for
both scenarios is shown in figure 2. It can be seen
that as proportion of contamination (H) increases,
the MSE for both estimators also increases under
each scenario. Note that for both scenarios the rate
of increase in MSE for the L2E estimator is much
lower than that of the LS estimator. For example,
when the percentage contamination is 20% the
MSE for the L2E estimator is approximately 0.1,
which is only 10% and 7% of the MSE for the LS
estimator under scenarios 1 and 2, respectively. It
can also be seen that while the L2E estimator is
more robust than the LS estimator for lower values
of H, after the probability of contamination
reaches a certain point both estimators are compa-
rably poor (or approximately flat due to Monte
Carlo error).

The sum of the MSE, which may be considered
a surrogate for the variance, was subsequently cal-
culated using the simulated data and the asymp-
totic equations using the uncontaminated data (i.e.,
H = 0). The sums of the MSE for the LS estimator
were 0.053 and 0.059 for the simulation and
asymptotic analyses, respectively. The sums of the
MSE for the L2E analyses were 0.088 and 0.090 for
the simulation and asymptotic analyses, respec-
tively. Thus, the values derived using the asymp-
totic theory approximately equal the values derived
from the simulation results and demonstrate the
theory derived earlier in this paper.

To study the effects of errors that are not as
severe as those in scenarios 1 and 2, and conse-
quently harder to detect, a second sensitivity analy-
sis was performed. In this case the percentage error
was varied between –75% and 75% and, as before,
a binomial distribution was used to perturb the des-
tination matrix volume measurements. A sensitiv-
ity analysis was performed on the percentage
contamination, which ranged from 0.1 to 0.6 in
increments of 0.1. As in the earlier experiments, the
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Monte Carlo simulation was carried out 100 times
for each simulation. The results are presented in
figure 3, which shows the ratio of the L2E estima-
tor MSE divided by the LS estimator MSE as a
function of the percentage of detectors experienc-
ing errors. For example, it can be seen that when
the detector error rate is 25% and the probability
of a given detector experiencing difficulty is 50%
(H = 0.5), the relative efficiency is 0.5. That is, the
L2E estimator MSE is approximately half of the LS
estimator MSE, indicating that the L2E estimator is
more robust to detect error for this scenario.

The second point to note about figure 3 is that
when there is no data contamination the MSE of
the L2E estimator is approximately 60% larger
than the MSE of the LS estimator. It can be seen
that as the detector percentage error grows, the effi-
ciency of the L2E estimator relative to LS estimator
rises at an increasing rate before it plateaus at
approximately an absolute value of 50%. In addi-
tion, the choice of when to use the L2E estimator is
a function of the expected contamination rate and
the expected percentage error in detector accuracy.

As shown in figure 3, whenever the relative effi-
ciency dips below 1.0 the L2E estimator would be
preferred. For this example, when the percentage
error of detector accuracy is less than approxi-
mately 15% the LS would be chosen. However,
when the detector percentage error is greater than
15%, it can be seen that the L2E estimator would
be preferred for all values of H less than 0.5.

At this point, it should be emphasized that the
L2E approach is a statistical technique that is not
limited to an input-output model but can be gener-
alized to any number of OD problem formulations.
In the case of this particular problem, other detec-
tors (main lanes with volume recorders that pro-
vide additional volume information) could be
accounted for by substituting the input-output
model with a general link volume model where the
output is modified to include mainline volumes. In
this way, the L2E estimator would be robust to mal-
functions in any of the detectors.

In addition, confirmatory factor analysis can be
used when other detectors in the system fail by
imputing the missing data (Park et al. 2002). The
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unknown volumes at each origin are mathemati-
cally equivalent to the unknown scores in confir-
matory factor analysis. Therefore, when a loop
failure occurs, some of the origin volumes are
observed and some are not. Therefore, confirma-
tory factor analysis and the models developed in
this paper can be combined to form a mixed
model. The observed destination volumes are con-
tained in  matrix D, the observed origin volumes
are in matrix O2, the unobserved origin volumes
are in matrix O1, and the split proportions are
placed in matrix P. The mixed model is thus

, where the split proportions are 

partitioned . 

For instance, consider the AVI example previ-
ously discussed. Suppose the volume counts at ori-
gin one or origin six cannot be observed because of
detector failure. Therefore, origins two through
five correspond to O2 and origins one and six cor-
respond to O1.

Under the notation described above, the least
squares objective function becomes

Next we solve for O1 and minimize the objective
function with respect to P. The unknown portion
of O is O1, thus .
Therefore the objective function is

Estimates from this objective function produce a
sequence that converges to the fixed but unknown
true parameter (Gajewski 2000). 

Remark: Confirmatory factor analysis occurs
when all of the regressors are unknown resulting in
P2 being empty. The objective function, similar to
confirmatory factor analysis, is

,

where

.

Ordinary least squares regression occurs when P1
is empty and 

In most cases, model identifiability of the param-

eters holds because of the number of nonfeasible

OD pairs. The biggest challenge is meeting the

assumption where is full rank, assuming 

is the matrix composed of the columns containing

the assigned zeros in the kth row with those

assigned zeros deleted. The nonfeasible OD pairs

arise from the fact that a vehicle cannot have cer-

tain origin or destination combinations. Details of

model identifiability and rank are found in Park et

al. (2002).

Note that the LS method is used to demonstrate

the approach, because the AVI data were found to

be well behaved. It should be noted that under the

conditions presented in the theory section of this

paper . That is, as T goes to infinity

the estimator under the mix model using least

squares converges to the true split proportions

(Gajewski 2000).
A test of the imputation technique on data from

the test bed was subsequently performed. It was
assumed that the volume from the first origin and
the last origin are missing and the techniques from
confirmatory factor analysis were used to impute
the missing origin volumes. Table 3 shows the
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results, and it can be seen that the average percent-
age error for origins one and six are –30% and 3%,
respectively. It can also be seen that the APE was
lowest for the origin ramps that had the highest
volume. 

The important feature of the above technique is
that it provides a consistent estimator for the split
proportions despite missing a portion of the input
information. While there are other imputation
techniques (Chin et al. 1999; Gold et al. 2001), it is
not clear if these techniques provide consistent esti-

mators. Therefore, the above algorithm can be used
when input information is missing or in situations
where the input information is known a priori to be
faulty. In this latter case, the faulty input volume
would be removed prior to the estimation of the
split proportions. 

Remark: The formulation derived in this paper
was presented in OD format. Alternatively, in the
data imputation format, the origins, O, can be
treated as output parameters and the model formu-
lated as This is a DO formulationO DP= + ε.
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TABLE 3 Estimated AM Peak Origin Ramp Volume Using Imputation Methodology

Origin 1 Origin 1 Origin 6 Origin 6
observed estimated Percentage observed estimated Percentage
volume volume error volume volume error

25 40 –61 197 175 11
23 26 –14 194 201 –4
42 48 –15 211 202 4
23 37 –62 193 194 0
77 85 –11 220 208 6
25 0 NA 173 169 2
29 38 –29 195 200 –2
29 34 –16 188 177 6
48 50 –4 182 162 11
36 22 40 185 182 2
31 41 –33 176 164 7
33 32 4 189 167 12
17 51 –203 200 181 9
17 20 –18 183 181 1
30 43 –44 209 206 1
21 31 –47 173 166 4
21 33 –57 211 212 0
28 30 –8 178 179 –1
13 15 –14 194 203 –5
22 36 –61 157 154 2
19 33 –73 210 192 9
26 36 –38 208 215 –3
14 13 9 216 198 8
27 42 –54 169 173 –2
28 55 –95 191 171 11
16 13 20 187 195 –4
19 29 –53 214 200 7
17 13 23 174 168 4
16 5 67 203 176 13
34 47 –39 217 198 9
15 12 21 198 195 2
16 24 –53 172 158 8
23 52 –125 193 161 17
17 23 –37 203 196 3
23 41 –78 185 178 4
14 7 51 192 196 –2
16 41 –158 215 189 12
24 28 –17 185 184 0
17 18 –6 200 205 –2
26 29 –12 183 192 –5

Continues



where the split proportion Pkj represents the pro-

portion of vehicles exiting at k and entering at j. 

The OD matrix was calculated for the full AVI

data under both formulations. The OD matrix,

under the DO formulation, was calculated using the

LS estimator. The correlation between the OD

matrix calculated from the DO model and the OD

matrix calculated from the OD model is 0.9018; the

correlation between the OD matrix calculated from

the DO model and the true OD matrix is 0.9514;

and the correlation between the OD matrix from

the OD model and the true OD matrix is 0.9293.

Therefore, the OD matrices from both formulations

were approximately equal for this test example.

CONCLUDING REMARKS

Origin-destination matrices are an integral compo-
nent of off-line traffic models and real-time
advanced traffic management centers. The recent
deployment of ITS technology has resulted in the
availability of a large amount of data that can be
used to develop OD estimates. However, these data
are subject to inaccuracies from a variety of sources.
In this situation, the data may be “cleaned” and
then used with existing OD estimators.
Alternatively, OD estimators may be developed that
are robust to the outliers characteristic of ITS data.
This latter approach was the focus of this paper.

A robust estimator based on the L2E theory was
first derived and compared with a traditional least
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TABLE 3 Estimated AM Peak Origin Ramp Volume Using Imputation Methodology 
(continued)

Origin 1 Origin 1 Origin 6 Origin 6
observed estimated Percentage observed estimated Percentage
volume volume error volume volume error

19 40 –109 160 128 20
28 33 –17 180 193 –7
26 35 –35 223 200 10
26 35 –34 175 180 –3
17 39 –130 195 170 13
24 32 –34 199 201 –1
27 32 –20 216 221 –2
18 7 60 192 209 –9
18 30 –68 184 192 –4
37 33 10 190 193 –2
22 16 26 196 184 6
21 37 –75 185 164 11
20 28 –42 213 181 15
22 18 18 204 204 0
31 58 –88 193 176 9
23 32 –39 187 179 4
36 21 43 226 226 0
23 27 –15 169 183 –8
67 65 3 244 257 –5
25 0 NA 207 200 3
21 63 –199 227 194 15
25 27 –9 188 187 1
25 34 –34 222 215 3
22 28 –26 204 197 4
16 40 –151 218 193 11
28 28 –1 214 211 1
24 28 –16 225 225 0
24 40 –68 200 192 4
29 39 –35 203 198 3
42 38 8 167 175 –5
43 51 –19 191 189 1
41 41 0 199 216 –9

Average error –30 Average error 3



squares estimator. In addition, closed-form asymp-
totic distributions for the variance were derived for
both estimators. This is an important contribution
because it allows variances, and therefore standard
errors, to be calculated for the estimates. It was
shown that while the L2E estimator was less effi-
cient than the LS estimator, it was more statistically
robust to bad data.

The models were applied to a corridor on
Interstate 10 in Houston, Texas. The test bed was
instrumented with AVI technology and therefore
both AVI volumes and split proportions are avail-
able. This test bed provides a unique opportunity
for comparing the estimators because an observed
OD matrix is available, which is extremely rare for
these types of studies. The asymptotic variance esti-
mates were found to be slightly conservative as
compared with the estimates derived using a boot-
strap method. It was shown that while the LS and
the L2E estimators had average mean absolute
error ratios of approximately 50%, both replicated
the observed OD at the 95% level of confidence. In
addition, the accuracy of the estimates was highest
for the OD pairs with higher relative volumes. 

A Monte Carlo simulation was carried out to
test the robustness of the techniques under different
error types and error rates. It was found that the
L2E estimator was much more robust than the LS
estimator to outliers. However, after a certain
threshold, which was 50% on the I-10 test net-
work, the models were found to perform equally
poorly. Lastly, a method for imputing missing ori-
gin data was developed and illustrated using the LS
estimator. 

It should be noted that the L2E approach is not
limited to the input-output model used in this
paper, but rather can be generalized to any number
of OD problem formulations. For example, infor-
mation from other detectors, such as those com-
monly found on main lanes, could also be added as
a dependent variable and a consistent OD estima-
tor could be formulated. In this way, the L2E esti-
mator would be robust to malfunctions in any of
the detectors. In addition, it was assumed in the
model derivation that there was no prior informa-
tion regarding the split proportion matrix. The
model can also be generalized to incorporate prior
information, which would help add “structure” to

the over-parameterized model and could poten-
tially reduce the percentage error of the estimates. 
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APPENDIX

Notation

The following notation serves as a reference guide
throughout this paper:

T Number of time periods. Each
time period is of duration t.

p Number of destinations in the
system.

q Number of origins in the system.

r Number of nonfeasible elements
of P.

O Matrix of observed volumes from
q origins over T time periods (T by
q).

D Matrix of observed volumes from
p destinations over T time periods
(T by p).

Ot Row vector of observed volumes
from q origins from the tth row, t
= 1,2,3,…,T.

Dt Row vector of observed volumes
from p destinations from the tth

row, t = 1,2,3,…,T.
Otk Element (t,k) of the matrix O, 

t = 1,2,3,…,T; k = 1,2,3,…, q.
P Split proportion matrix between q

origins and p destinations (q by p).
Pkj Proportion of vehicles that enter at

origin k and exit at destination
ramp j where k = 1,2,3,…,q, and 
j = 1,2,3,…,p.

Pj Column vector of q split propor-
tions from the jth destination, 
j = 1,2,3,…, p.
Matrix of random errors with n
rows and p columns.

Av Vectorization of matrix A. The
operator Av takes the columns of
A and stacks them on top of each
other. For example, 

Stacked version of .
Row vector of p elements from the
tth row of , t = 1,2,3,…,T.

Pv Stacked version of P.
M Matrix that maps the elements of

Pv that are nonfeasible to zero. M
is of size r � qp.

Ov Stacked version of the matrix O.
Kronecker product

.

X* The regressors used in the stacked
model, , X* is 
Tp � qp.

G Equality constraint matrix.

G = [G1G2] Partition of G into matrices G1 and

G2, where rank(G) = rank(G1) 

= q + r, and G1 is (q + r) � (q + r). 

G2 is (q + r) � (pq–q–r)

Note that G is permuted until G1
is full rank.

G
I

M
p q=
′ ⊗
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( )X I Op
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G1 The nonsingular portion of the
constraint matrix G.

G2 The “left over” portion of the con-
straint matrix G.

Partition of Pv such that the ele-
ments correspond to [G1G2]. The
size of and are r + q and
pq–r–q, respectively.

The portion of Pv that corresponds
to G1.

The portion of Pv that corresponds
to G2.

Partition of X* such that the ele-
ments correspond to [G1G2].

1q Column vector of q ones.

0r Column vector of r zeros.

g GPv = g, where 

Variance for each row of .

Y2 (Tp � 1).

Y2t The tth element of Y2.

W2

(Tp � (pq–q–r)).

W2t The tth row vector of W2.

Z (Tp � 1).

Zt The tth element of Z.

U (Tp � (pq–q–r)).

Ut The tth row vector of U.

W2tk The (t,k) element of W2.

(Tp � 1).

Estimated vector of using least
squares. 

Estimated vector of using L2E. 

Influence function (see Hampel et
al. 1986).

Normal distribution with mean 
and variance .

Detail Theory

Step 1

Condition 1. The split proportions (P) are posi-
tive for all feasible origin and destination combi-
nations and equal to zero for all nonfeasible com-
binations.

Therefore the general model is written alge-
braically as follows:

and

The detailed derivation of the L2E objective
function is 

Because the third component in the second line
of equation A1 does not have the optimization
parameter P (but only the true parameter P0), it can
be taken as a constant and ignored during opti-
mization. The empirical density function is used to
estimate the expectation in the second line of equa-
tion A1 (Scott 1999).

Details of the following results appear in Gajewski
(2000). The error structure for the reduced prob-
lem is shown in equation A2.
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Therefore, equation A3 provides the estimate of the
reduced regression parameters under LS, and it can
be seen that it is unbiased. 

The variance of this estimate is shown in equa-
tion A4.

Note that equations A3 and A4 are based on the
assumption that W2 is full rank. Lemma 1 relates
the rank of the origins, O, to that of the rank of W2.

Lemma 1: If O is full rank, then W2 is full rank.
(See Gajewski (2000) for proof.) 

Note that it is assumed that there will be multi-
ple days’ worth of data and multiple time periods
in each day. Therefore, the variation of volume
between days and within days causes O to be full
rank and therefore W2 is full rank.

Similar to the variance of the estimates in equa-
tion A4, the variance estimates for are pre-
sented in equations A5 and A6. 

The covariance between the estimates and

are shown in equation A6.

Notice that the reparameterization causes the
problem to be unconstrained except for the non-
negativity constraints. When deriving the asymp-
totic distributions of the estimators it is

assumed to be in the interior of the parameter
space. From a physical viewpoint, this means that
the true split proportion over the long term would
never lie on the boundary (i.e., be equal to zero) for
a feasible OD pair. It is assumed that this assump-
tion is valid on the highway networks where most
ITS traffic monitoring devices are located. In addi-
tion, if this assumption is violated, the origins and
destinations can be combined to alleviate the prob-
lem. Regardless, this assumption will need to be
checked when applying the model. 

The asymptotic distributions for the two estima-
tion methods are derived using properties of M-
estimators (Huber 1981). Equation A7 shows the
L2E model. As discussed, is estimated prior to
using equation A7. Let N(A,B2) be the normal
probability density function with a mean of A and
variance B2, then

with

A reparameterized model may be obtained by

using the variance to standardize the model. Let

and . Therefore, the repara-

meterized reduced model will be 

where and the objective

function, is shown below:

Because the L2E is an M-estimator, the distribu-
tion properties are straightforward to derive and
will be useful in the derivations of the distribution.
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Definition 1: (Huber 1981): For a sample

x1,x2,...,xT from the sample space F, the M-estimate

corresponding to is the “statistical function”

, that is, a solution VT of the equation:

The L2E estimator is an M-estimator because of
a calculation of the derivative of the objective
function.

Property 1: is an M-estimator (see

Gajewski (2000) for proof).

Huber (1981, p. 165) proves the asymptotic

properties for the reduced model of the form

. Note that this proof assumes 

and the three regularity conditions,

referred to as RC1 to RC3, are met. 
Property 2: Regularity conditions RC1 to RC3

hold for the OD problem (see Gajewski (2000) for
proof). 

Theorem 1 shows the distribution of the LS
estimator in a linear model setting is asymptotic
normal.

Theorem 1: (Huber 1981, p. 159)

If , then all the LS estimates

are asymptotically

normal.

Theorem 1 states that asymptotic normality
holds for both objective functions in this paper.
Therefore, the identification of the mean and vari-
ance define the asymptotic distribution. 

Using Theorem 1, the LS variance is calculated as
shown in equation A10.

Similarly, the variance for the L2E is shown in equa-
tion A11.

Note that, in order to use equation A11, the

errors need to be identified. For example, if it is

assumed that the error distribution is normal,

Property 3 shows the exact value of the ratio

.

Property 3: Suppose , then

and therefore 

(See Gajewski (2000) for proof.)
If the error distribution is non-normal then an

approximation is used, as shown in the Remark.
Remark: The nonparametric estimation of the

above equation is:

(See Gajewski (2000) for proof.)
The asymptotic distributions are stated in

Corollary 1 for completeness.
Corollary 1: Let a be a fixed vector. Under the

conditions of the above models and the regularity
conditions RC1–RC3, equations A12 and A13 are

[ ]
[ ]( )

E

E

ψ

ψ

2

2

8

3 3′
=

( )δ ~ ,N ITp0

[ ]
[ ]( )

E

E

ψ

ψ

2

2′

   α = = ′
=
∑
j

p

j j
v va P a P

1
2 2

LS LS^ ^^

h hi i= →ma 0x

( )δ i
iid
~ ,0 1

Z UPv= +2 δ

FL E2

( )ψ Ft

ψ

GAJEWSKI, RILETT, DIXON & SPIEGELMAN 55

( )ψ x Vt T
t

T

)
=
∑

1

A9, (
P

( ) ( )Var P U Uv )2
1 A10LS = ′ −^ (

( ) [ ]
[ ]( )

( )Var P
E

E
U Uv )2

2

2
1 A11L E2 =

′
′ −ψ

ψ
^ (

[ ] ( ) ( )a) E 2ψ ψ= =
1

3 3
1 3 32E / .

[ ]b) E ψ ′ =
1

2 2

[ ]
[ ]( )

E

E

T

T

Tt

T

t

T

t

T

t

ψ

ψ

ψ

ψ

ψ

ψ

2 2
2

2
1

1

2
1

′
=

′










=

′

=

=

=

=

∑

∑

∑/

/
1

2T

∑










i i

i i



the asymptotic distributions for the LS and L2E
objective functions, respectively:

(See Gajewski (2000) for proof.)
Based on the distributional properties shown in

Corollary 1, the L2E method is less efficient than
the LS method as shown in Corollary 2. 
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Corollary 2: When , then for
every b (fixed vector),

(See Gajewski (2000) for proof.)
Note that the nonparametric formula shown in the
Remark is preferred when the parametric distribu-
tion of the error is not known.
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with a Network Assignment Model: 

A Case Study for the Korean NW-SE Corridor

ILJOON CHANG

GANG-LEN CHANG

University of Maryland, College Park

ABSTRACT

This paper presents an innovative method for esti-
mating the value of time (VOT) for intercity travelers
with aggregate mode choice and origin-destination
distribution data. The proposed method employs a
network structure to capture the temporal and spatial
interrelations of daily intercity trips among compet-
ing transportation modes. It is grounded on the
assumption that the current trip and mode distribu-
tions in a regional corridor are close to a “user-opti-
mum” state, where all tripmakers have nearly perfect
information about the fares and schedules of all com-
peting transportation modes and mostly employ the
criterion of minimum total trip cost in their tripmak-
ing decision. One can thus compare the current mar-
ket share of each transportation mode with the
estimated results to identify the best-fit VOT distribu-
tion. To realistically capture the competing environ-
ment for intercity trip decisions, the proposed
method has incorporated not only the system perfor-
mance factors (e.g., speed, capacity, and fare) in the
modeling structure, but has also formulated the VOT
as a distribution rather than a constant value across
all system users. With the data from the northwest-
southeast corridor of Korea, we have demonstrated
that our proposed method has the potential to

Gang-Len Chang, Department of Civil Engineering, Uni-
versity of Maryland, College Park, MD 20742. Email:
gang@glue.umd.edu.
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circumvent the need to estimate time value with dis-
aggregate surveys.

INTRODUCTION

Despite the well-recognized role of value of time
(VOT) in tripmaking decisions (e.g., departure time,
route choice, and the selection of transportation
modes), finding a reliable method for estimating
VOT for a target population remains a challenging
task. Over the past several decades, a large body of
research has focused on this issue, mostly addressing
it in terms of tripmaking behavior (Bruzelius 1979;
Watson 1974; Moses and Williamson 1963; Hensher
1977; Earp et al. 1976) or from a microeconomic
perspective (Jara-Diaz 1998; Gonzalez 1997; Gronau
1976; Senna 1994; Stopher 1976). For instance, one
popular method for contending with this issue is to
use stated preference and/or revealed preference from
the disaggregate survey data. Such approaches,
although theoretically appealing, are difficult to put
in practice because of the high survey cost and poten-
tially significant sampling as well as nonsampling sur-
vey errors. The quality of behavior-related surveys is
difficult to control in developing countries due to low
response rates and sample sizes that are insufficient
for rigorous and unbiased analysis.

In contrast to the lack of data at a disaggregate
level, aggregate data such as trip origin-destination
(OD), fare, and travel time are mostly available from
the operating agency of each transportation mode.
For instance, we found in the study of high-speed rail
(HSR) in Korea that market share information for
each transportation mode for each OD is quite com-
plete and reliable at the aggregate level. Thus, to cir-
cumvent the difficulties and costs associated with
performing new disaggregate surveys, we developed
a network-based method that can take full advantage
of these valuable data for VOT estimation as well as
HSR market share prediction. This paper will focus
on our proposed network-based method for the cali-
bration of VOT for tripmakers in the northwest-
southeast (NW-SE) corridor of Korea.

BACKGROUND AND SYSTEM 
CHARACTERISTICS OF THE KOREAN 
TRANSPORTATION NETWORK

The NW-SE transportation network is in the most
populous region of Korea, which is to be served by

the new HSR system. As shown in figure 1, the NW-
SE corridor connects major cities in Korea, includ-
ing Seoul, Daejeon, Daegoo, and Busan. Between
each city pair along this corridor, both the highway
and the conventional rail networks are available.
The airline system, however, is available only
between Seoul, Daegoo, and Busan.  

As shown in table 1, the total length of the NW-
SE highway network along this corridor is 267.50
miles. Seoul and Daejeon are connected through a
95.25-mile-long highway. From Daejeon to Dae-
goo, a four-lane highway runs about 88 miles (table
2). The last segment, from Daegoo to Busan, is a
four-lane highway of 83.94 miles. The NW-SE rail-
way network is mostly parallel to the highway net-
work and has about the same trip distance.

All the aggregate datasets for the calibration of
time values are available including current market
share, fare, trip distance, capacity, and travel speed.
Each dataset is presented briefly below. For more
convenient comparison, table 3 converts the trip
segments into OD pair numbers, and figure 2 shows
the current weekday market shares of the airline,
highway, and conventional rail modes along the
NW-SE corridor for three OD pairs from Seoul.
Among those three OD pairs, we consider three dis-

FIGURE 1 Korean Transportation Network
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tances: short distance, middle distance, and long dis-
tance. The shortest distance trip from Seoul in the
network is OD pair 1. The long-distance trip is OD
pair 3, and the mid-distance trip is OD pair 2. Some
trips such as OD pairs 4 and 6 are shorter than OD
pair 1, but those trips are not considered in this
market share comparison for the moment. As can
be seen in figure 2, about the same percentage of
tripmakers use the highway and the conventional
rail modes for OD pair 1. As the trip distance
increases, travel by air becomes increasingly attrac-
tive to tripmakers. In contrast, for long-distance
trips (i.e., OD 3), tripmakers rarely use the highway
system, and about 78% of the total trips are by air.

The current fare for each transportation mode by
OD pair is shown in table 4 and in figure 3, which
show that the highway fare is about 31% of the fare
of the airline system, and the fare for conventional
rail is about 52% of that of the air mode for OD 3.
Although transportation system operators may
charge different fares according to travel times and
ages of travelers, this research focuses on the non-
discounted regular fare of each mode.

Table 5 summarizes travel time and daily capac-
ity of conventional rail and air by trip segment. The
capacity of the highway mode is assumed to be
2,200 passenger cars per hour per lane, and if one

assumes that the highway is in use 18 hours per day
from 6 am until midnight then the capacity is
39,600 passenger cars per day per lane. We further
assume, for convenient computation, that each car
carries one passenger. The capacity of the airline sys-
tem is based on its actual service schedules and the
available types of aircraft.

BASIC ASSUMPTIONS OF THE MODEL

This paper presents an innovative method for estimat-
ing VOT distribution among the competing transpor-
tation mode users along the NW-SE corridor of Korea.
We assumed several key factors in this new method:

� Every trip began at 6 am and finished by midnight.

� Those who could not finish their trips within a
one-day period were stored in a dummy city for
new trips on the following day.

� Time periods (or time intervals) were established
for every two-hour period, and a one-day trip
had a total of nine time periods.

� For the highway system, we assumed that all vehi-
cles were passenger cars and one passenger was in
each vehicle. Buses and other modes available
along the highway system were excluded in this
research but can be added in subsequent research.

� Highway mode users were only concerned about
their toll costs and ignored expenditures for fuel,
maintenance, and other costs in making their
modal choices. This assumption may distort the
estimation, but the main purpose of our research is
to introduce a new method to investigate VOT
distribution, not to investigate the actual VOT dis-

tribution among tripmakers in a proposed area.

TABLE 1  The Distribution of Highway Link Lengths Between Major Cities 
in the NW-SE Corridor of Korea (In miles)

Seoul Daejeon Daegoo Busan

Seoul — 95.25 183.56 267.50

Daejeon 95.25 — 88.31 172.25

Daegoo 183.56 88.31 — 83.94

Busan 267.50 172.25 83.94 —

TABLE 2  Distribution of Lanes of the NW-SE 
Highway Network

Number of lanes

Seoul to Daejeon 6

Daejeon to Daegoo 4

Daegoo to Busan 4

Note: All lanes are one direction only and the reverse directions 
have the same numbers of lanes.

TABLE 3  OD Pair Numbers and Trip Segment of the NW-SE Corridor

Trip 
segment

Seoul–
Daejeon

Seoul–
Daegoo

Seoul–
Busan

Daejeon–
Daegoo

Daejeon–
Busan

Daegoo–
Busan

OD OD 1 OD 2 OD 3 OD 4 OD 5 OD 6
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Although the assumptions above may hinder the
ability to accurately capture real modal choice deci-
sions on the proposed network, the purpose of our
research is rather to introduce a new method to esti-
mate VOT distribution of tripmakers. Once the net-
work-based model is established, however, it is very
easy to add or drop networks, transportation
modes, and other variables such as gas, tolls, insur-
ance, and maintenance costs. 

CALIBRATION OF VOT DISTRIBUTION FOR 
CURRENT MODE USERS 

Because VOT is one of the key unknown factors
that determine a tripmaker’s modal choice decision,
we developed a network-based method for VOT
calibration based on the current distribution of trips
among available transportation modes. 

Our method is based on the assumption that all
tripmakers intend to minimize their own travel
costs, which consist of both fares and travel times.
Thus, the current market distribution among avail-
able transportation modes for all OD demands can
be viewed as a “user-optimum” state similar to that
in a traffic assignment context. The method
described below employs the “user-equilibrium”
notion from traffic assignment but uses a time-space
network to capture temporal and spatial interac-
tions among different competing transportation
modes and OD demands. 

More specifically, our proposed model was devel-
oped to capture the following key features of a
regional corridor offering several competing trans-
portation modes for travelers making intercity trips:

� tradeoff between travel time and fare for each
transportation mode and among all competing
transportation modes;

� capacity and operational constraints of each trans-
portation mode in the model formulation;

� generalized trip costs, such as speed, access time,
and competition among the modes, based on the
performance level of all transportation modes;

� temporal and spatial relationships of trips depart-
ing at different origins at different times of a day;
and

� variation of the VOT across the population
rather than viewing it as a constant.

FIGURE 2 Current Weekday Market Share of the
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 Korean Network
TABLE 4  Fare (or Toll) of Each Transportation Mode 

by OD Pair (U.S. $/trip)

OD 1 OD 2 OD 3

Highway1 5.25 9.50 12.92

Air N/A 34.17 42.08

Conventional rail 8.25 16.17 21.92
1 The highway "fare" only includes tolls.  It does not include other 
highway costs such as fuel, insurance, depreciation etc.

Note: All fares are for one-way trips.
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A detailed discussion of the proposed method for
VOT calibration in the Korean NW-SE corridor is
presented below. 

Steps in Calibrating VOT Distributions

Step 1: Select the initial VOT parameters for the
target population.

Step 2: Construct a time-space operations model
within each transportation mode and
between competing transportation modes
to estimate the current trip distribution.

Step 3: Design a set of experimental scenarios with
a list of candidate VOT parameters.

Step 4: Estimate the user-optimum state of trip dis-
tribution among current transportation
modes with the existing software (T-2)

under each experimental scenario (see
appendix).

Step 5: Compute the VOT parameters for current
users, based on the discrepancies between
the projected and actual market shares of all
transportation modes over all OD pairs
under all experimental scenarios.

Selection of Initial VOT Parameters

Although it is fully recognized that VOT theoreti-
cally should be a marginal wage rate (Gonzalez
1997), there is no standard tool for its estimation
without a reliable representation of the total income
and budget for the entire economy. As an initial step
in determining the optimal mean VOT parameter,
we assumed that it must lie within the 10th and the
90th percentile range of the resident income distribu-
tion of the Korean residents in the NW-SE corridor.

Data from the Korean Statistics Bureau indicated
that the mean monthly income of the Korean popu-
lation along the NW-SE corridor was $2,248 in
1999, equivalent to an average income of 20¢ per
minute. The 10th percentile of resident income is
$563 per month, about 5¢ per minute, and the 90th

percentile of resident income is $5,295 per month,
or about 46¢ per minute. 

Construction of the Time-Space 
Operations Network

Based on the datasets illustrated earlier, this step
develops a time-space operations network of all
available transportation modes in the regional corri-
dor. As shown in figure 4, three transportation
modes (air, highway, and conventional rail) and
three airports (nodes 5, 6, and 7) are available in the
NW-SE corridor of Korea. Station nodes 5, 8, and
12 are located in the same city (Seoul), denoted as
city node 1 in the figure. 

FIGURE 3 Fare Comparison of Each Mode by 
Trip Segment
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TABLE 5  Air and Conventional Rail Travel Time and Daily Capacity by OD Pair

OD 1 OD 2 OD 3 OD 4 OD 5 OD 6

Conventional rail 91
(13,564)

182
(27,128)

250
(38,316)

90
(13,564)

158
(24,752)

66
(11,188)

Air N/A
(N/A)

55
(1,726)

65
(9,500)

N/A
(N/A)

N/A
(N/A)

N/A
(N/A)

Note: The top number in each cell is travel time in minutes.
The bottom number in parentheses in each cell is daily capacity (persons per day).
Air capacity is based on actual service schedules and types of aircraft.
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By incorporating the time-varying demand and
the capacity constraint for each transportation
mode over each link, it is possible to convert figure
4 into a time-space network that represents the
supply-demand relationships within each transpor-
tation mode and between competing modes. Note
that the demand constraints are based on the col-
lected trips for each OD pair and the link capacity
constraints are based on the capacity of each avail-
able transportation mode during each time interval.
The time-space network can be illustrated in a two-
dimensional plane where the x-axis stands for the
location and the y-axis for time. The core modeling
concepts of the time-space operations network are
summarized as follows:

� Nodes along the horizontal axis show different
locations of stations or cities in the network,
while the vertical axis shows the lapse of time.
Thus, connections along the horizontal axis rep-
resent the movements between different locations
within the same two-hour time period. Connec-
tions along the vertical axis illustrate the move-

ments between different time periods at the same
location. Connections in the diagonal direction
represent movements between different locations
and across different time periods.

� Access and main links are specified in the net-
work. Access links are used to connect trips from
origin cities to station cities, including waiting
times, and main links are used for connecting
trips between station nodes.

� Link cost is considered as the general cost (i.e.,
fare and travel time) of the transportation mode
on a main link and is computed as the sum of the
out-of-pocket cost and the travel time cost (see
equation 2 later in this paper). Cost of the access
links captures waiting time before departure.

� Link capacity reflects the physical capacity con-
straint of each transportation mode at different
time intervals and locations during its operation.

� Origin nodes capture those trips originating from
each city and terminating at a set of potential des-
tination cities over a time horizon.

FIGURE 4 Korean Transportation Network Configuration
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� Dummy nodes capture trips that cannot be fin-
ished within a one-day time period and serve as a
supplemental set of origin nodes for tripmakers
continuing their journeys the next day.

With these standard network formation con-
cepts, we constructed the time-space operational
relation between competing transportation modes.
An example of the time-space operations network
for the air mode for three time periods is presented
in figure 5. Node 1P1 stands for city node 1 (in
Seoul) at time period 1. Trips are generated from the
city node (i.e., 1P1), and waiting times in the air
mode are captured in the access link connecting city
node 1P1 and station node 5P1. The main link from

the station node in Seoul at time period 1 (5P1) to
the station node in Daegoo at time period 1 (6P1)
represents the trips from Seoul to Daegoo by air.
Since this service is scheduled and takes less than
two hours, all such trips can be finished within the
same time period. Tripmakers arriving at station
node 6 in time period 1 will finish their trips at city
node 3 (3P1) in the same time period.

Note that for the airline network, its time-space
interrelations are identical during all periods,
because all trips using this mode can be finished
within one two-hour time period. In this research,
each time period covers two hours (as stated ear-
lier), based on the available aggregation of the OD

FIGURE 5 Korean Airline System Time-Space Diagram for Three Time Periods
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demand data. Certainly, one can further divide the
time period into 30-minute segments, for instance, if
OD demand data are available for such short
intervals. 

Most trips via conventional rail cannot be com-
pleted within one time period due to this mode’s
slower travel speed; thus, its time-space operations
vary from one period to the next as shown in figure
6. Trips are generated from the city node in Seoul at
time period 1 (1P1). Just as in the air case, waiting
times are captured in the access link connecting 1P1
and 12P1, which is the conventional rail station
node in Seoul at time period 1. Because travel time
from Seoul to Daegoo (OD 2) by the rail mode

takes 182 minutes (as shown in table 5), the traveler
will end up in Daegoo at time period 2 (14P2). Trips
from Seoul to Busan take more than four hours, so
trips starting from Seoul in time period 1 will arrive
at Busan in time period 3 (15P3). One can follow
the same procedures to construct the time-space
operations network for the highway system as
shown in figure 7. 

All three sub-networks are then connected
through their common demand nodes, as illustrated
in figure 8, and constitute the entire operational net-
work for the three transportation modes. For conve-
nience, figure 8 only shows the demand from time
period 1 and location node 1. Combining those

FIGURE 6 Conventional Rail System Time-Space Diagram for Three Time Periods
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three sub-networks reflects the fact that travelers in
each OD pair can choose any of the three available
transportation modes. In brief, the time-space net-
work model is constructed with the following data:

� network topology;

� fare for each transportation mode;

� current trip demand between every OD pair;

� capacity of each transportation mode; and

� VOT probability density function (PDF) of the
current travelers.

Note that a normal PDF starts with its parameters
set to initial values, and these values are evaluated

and redefined through the calibrating process. Also
note that the demand node of figure 8 is an artificial
node that simply generates demands.

As mentioned previously, with our time-space net-
work relationship, current intercity trip distribution
among transportation modes can be viewed as simi-
lar to the user-optimum state in the context of urban
traffic assignment. Hence, similar algorithms for a
user-optimal solution can be employed to solve the
large time-space network and compute all estimated
market shares between all OD pairs and transporta-
tion modes. The objective function of the proposed
operational network is specified as follows:

FIGURE 7 Highway System Time-Space Diagram for Three Time Periods
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 (1)

It can further be expressed mathematically as

(2)

where x = x( );
= out-of-pocket cost (or fare) from origin r to

destination s using the path between i and j;

= VOT;
= travel time from origin r to destination s

using the path between i and j; and
= total number of trips from origin r to desti-

nation s using the path between i and j.
Note that each path in the time-space network actu-
ally represents the transportation mode selected by
tripmakers, the passage of time from one time
period to another, and the change in physical posi-
tion from their origin point to their destination.

The constraints of the objective function are as
follows:

FIGURE 8 Connection of Sub-networks for Time Period 1 and Location Node 1
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1) Non-negative flow conditions: 
2) [Trips on Link] ≤ [Total Outflow]: 
3) [Total Trips]

= [Trips over Each Link on the 

Designated Link Path]

4) Link Usage Condition: 
5) Continuity Conditions:

To ensure that the proposed model can realistically
capture intercity mode choice behavior, we further
tested the performance of our proposed model
against three hypotheses.

Hypotheses for Performance Tests

Based on the collected dataset for the NW-SE corri-
dor, it is expected that:

1. When mean VOT of the system users is high,
most tripmakers will take the faster but more
expensive transportation modes (e.g., air),
especially for long-distance trips.

2. When mean VOT of the system users is low,
most tripmakers will take the slowest but least
expensive transportation mode (i.e., highway). 

3. Mean VOT of tripmakers who prefer to take
the conventional rail system is expected to lie
between that of the air and the highway sys-
tem users, because the direct cost and travel
speed of the conventional rail system is
between those of air and highway.

The following experimental scenarios were used
to evaluate whether the proposed model’s perfor-
mance was consistent with those hypotheses. To test
the hypotheses, we used the initial VOT distribution
and a standard deviation of 0.02, which is currently
the standard deviation of resident income distribu-
tion in the target area.
Case 1: Mean VOT of the system users is 5¢/min

(the 10th percentile of the average resident
income in the proposed area) with a stan-
dard deviation of 0.02.

Case 2: Mean VOT of the system users is 10¢/min
with a standard deviation of 0.02.

Case 3: Mean VOT of the system users is 20¢/min
(the average resident income in the pro-
posed area) with a standard deviation of
0.02.

Case 4: Mean VOT of the system users is 25¢/min
with a standard deviation of 0.02.

Case 5: Mean VOT of the system users is 35¢/min
with a standard deviation of 0.02.

Case 6: Mean VOT of the system users is 40¢/min
with a standard deviation of 0.02.

Case 7: Mean VOT of the system users is 46¢/min
(the 90th percentile of the average resident
income in the proposed area) with a stan-
dard deviation of 0.02.

Note that VOT in all cases was assumed to be nor-
mally distributed with a standard deviation of 0.02,
based on the wage distribution in the target service
area.

Test Results

Using our proposed network model in the aforemen-
tioned scenarios, the results, as expected, indicated
that most tripmakers travel by air when their VOT is
assumed to be high (Cases 5, 6, and 7) for long-dis-
tance (OD 3) trips. On the other hand, tripmakers
use the highway mode when their VOT is assumed to
be relatively low (Cases 1 and 2). This is consistent
with our first hypothesis, and a graphical illustration
of such relationships is presented in figures 9 and 10.
In the case of conventional rail, figure 11 shows that
some tripmakers are using this mode for long-dis-
tance trips (OD 3) when their VOT is assumed to be
between 10¢/min (Case 2) and 20¢/min (Case 3). In
contrast, travelers on short-distance trips prefer to
take this mode when their VOT is assumed to be
between 20¢/min (Case 3) and 25¢/min (Case 4). The
results are also consistent with the second hypothesis;
that is, low-income travelers tend to select slow and
inexpensive transportation modes. 

ESTIMATION OF OPTIMAL PARAMETERS 
FOR VOT DISTRIBUTION

Note that with the same assumptions for trip choice
behavior and with identical system performance
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data (i.e., fare, travel speed, travel time, trip dis-
tance, and capacity), the scenario that yields the best
fit for the current demand distribution must best
capture the actual VOT distribution among trip-
makers. Thus, by employing the network-based
method presented in the previous section, we per-
formed the preliminary search of the optimal
parameters for the VOT distribution with those
well-selected experimental cases.

Selection Criterion

To identify the best-fit VOT, we employed the
weighted-average error of estimation as the criterion
to compute the discrepancy between the estimated
market and the current market shares. The com-
puted value allowed us to select the set of mean
VOT that best captured the current trip distribution
among all available transportation modes. It is
defined as follows: 

� weighted-average error for mode m on OD pair i
in scenario

(3)

where i = OD pair i;
m = transportation mode;

i, m = actual volume of transportation mode m
on OD pair i;

Vi, m = estimated volume of mode m on OD pair i
in scenario; and

ABS = absolute value.
As such, the total weighted-average error in the
scenario can be expressed as

(4)

FIGURE 9 Mean VOT vs. Number of Trips:
Airline System

Note: For Cases 1 and 2, the values are zero.
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FIGURE 10 Mean VOT vs. Number of Trips:
Highway

Note: For Cases 4-7, the values are zero.
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FIGURE 11 Mean VOT vs. Number of Trips:
Conventional Rail
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where  = total actual volume of the entire sys-
tem, denoted as

Experimental Results

As shown in figure 12, among all candidate para-
meters Case 4 (mean VOT equal to 25¢/min)
yielded the lowest weighted-average error of estima-
tion. To further identify the best-fit mean VOT, we
divided the range between Cases 3 (mean VOT =
20¢/min) and 4 (mean VOT = 25¢/min) into the fol-
lowing four additional cases:
Case 3-1: VOT is normally distributed with a mean

of 21¢/min and a standard deviation of
0.02.

Case 3-2: VOT is normally distributed with a mean
of 22¢/min and a standard deviation of
0.02.

Case 3-3: VOT is normally distributed with a mean
of 23¢/min and a standard deviation of
0.02.

Case 3-4: VOT is normally distributed with a mean
of 24¢/min and a standard deviation of
0.02.

With the same estimation procedures, we found
that Case 3-4 (mean VOT 24¢/min) yielded the low-

est estimation error, as presented in figure 13. Thus,
for the purpose of market share prediction, it seems
that a mean VOT of 24¢/min can reasonably repre-
sent the travel time value of transportation system
users in the NW-SE corridor of Korea.

Estimation of the Best-Fit 
Standard Deviation

Given the best-fit mean VOT of 24¢/min, this sec-
tion focuses on identifying the best-fit standard
deviation for system users along the NW-SE corri-
dor with five carefully identified cases: Cases A, B,

V

V Vi m,
i

∑
m
∑=

FIGURE 12 VOT vs. Weighted Error: Total

0

1.0

Weighted error

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8     

Mean VOT (¢/min)

Cas
e 

1

   
(5

¢)
Cas

e 
2

 (1
0¢

)
Cas

e 
3

 (2
0¢

)
Cas

e 
4

 (2
5¢

)
Cas

e 
5

 (3
5¢

)
Cas

e 
6

 (4
5¢

)
Cas

e 
7

(4
6¢

)

1.7253

1.6528

0.3670
0.2747

0.4352

0.4398

FIGURE 13 VOT vs. Weighted Error: Total

C
as

e 
1

(5
¢)

 

C
as

e 
2

(1
0¢

) 

C
as

e 
3

(2
0¢

) 

C
as

e 
3-

1
(2

1¢
)

C
as

e 
3-

2
(2

2¢
)

C
as

e 
3-

3
(2

3¢
)

C
as

e 
3-

4
(2

4¢
) C
as

e 
4

(2
5¢

) 

C
as

e 
5 

(3
5¢

) 

C
as

e 
6

(4
5¢

) 

C
as

e 
7 

(4
6¢

) 

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Weighted error

� � � � �

� ��
�

�
�

1.7253

1.6528

0.3670

0.3161 0.2896 0.2854 0.2746 0.2747
0.4352

0.4398

Mean VOT (¢/min)



70 JOURNAL OF TRANSPORTATION AND STATISTICS V5, N2/3 2002

C, D, and E summarized in table 6. The collected
dataset shows that the standard deviation of the res-
idential income of the proposed area is 0.02. Thus,
we chose 0.02 as an initial standard deviation, and
the upper bound becomes 0.25. As shown in table
6, Case A is the base case, with a standard deviation
of 0.02, which is identical to Case 3-4 in figure 13.
The estimation results of all five cases are illustrated
in figure 14. It is apparent that Case C (standard
deviation = 0.10), compared with the initial and
other cases, yields the lowest weighted-average error
of estimation for all system users.  

In light of the above exploration, we conclude
that tripmakers’ VOT along the NW-SE corridor of
the Korean transportation network is best approxi-
mated by a distribution with a mean of 24¢/min
(Case 3-4, figure 13) and standard deviation of 0.10
(Case C, table 6). The estimated trip distributions of
all transportation modes and OD pairs with the
best-fit VOT parameters along with their weighted-
average errors are presented in table 7.

Note that with the estimated VOT distribution,
one can now reconstruct the entire corridor net-
work with HSR and employ the same solution pro-
cedures to estimate the market share of HSR as well
as other existing transportation modes. The same
network relationship can also be employed to
explore the impact of various operating policies,
such as fare structure, on the potential market share
of all competing transportation modes.1 

CONCLUDING COMMENTS

This paper presents a network-based method for
estimating the VOT distribution for intercity trans-
portation users. The proposed method is unique in
its capability to take full advantage of available
aggregate market share data and in its flexibility to
incorporate all system performance factors as well
as the competing nature of available transportation
modes in the modeling structure. With such a

TABLE 6  VOT Distribution Tests with Different Standard Deviations

Case A1 Case B Case C Case D Case E

Mean VOT 24¢/min 24¢/min 24¢/min 24¢/min 24¢/min
Standard
deviation 0.02 0.05 0.10 0.20 0.25
1 Base case.

FIGURE 14 Standard Deviation vs.
Weighted-Average Error
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TABLE 7  Estimated Daily Trip Distribution and 
Weighted-Average Error with Best-Fit VOT

Air
Conventional 

rail Highway Total

OD 1 0
(0.000)

5,711
(0.2557)

1,369
(0.1267)

7,080

OD 2 6,794
(0.7387)

5,604
(0.1614)

2,970
(0.2698)

15,368

OD 3 26,496
(0.7081)

3,384
(0.0950)

7,157
(0.7644)

37,037

OD 4 0
(0.000)

1,176
(0.0409)

181
(0.0167)

1,357

OD 5 0
(0.000)

1,674
(0.1654)

401
(0.0405)

2,075

OD 6 0
(0.000)

4,443
(0.1464)

787
(0.0027)

5,230

Total 33,290
(0.1104)

21,992
(0.0292)

12,865
(0.3745)

68,147
(0.1212)

Note: Numbers in parentheses are the weighted-average error of 
estimation.

1 For a detailed presentation of this topic, see Chang 
(2000).
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method, it is possible to circumvent the need to per-
form costly disaggregate surveys at an individual
level. It is often quite difficult to maintain quality
control in such surveys, especially over the inevita-
ble nonsampling errors that result from a variety of
social and behavioral factors in developing coun-
tries. We expect that the proposed method will
enable researchers to explore the complex interac-
tions between all competing and/or new transporta-
tion modes from either a demand or system
performance perspective with relatively reliable and
available aggregate data.
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APPENDIX 

T-2 Traffic Assignment Model

The T-2 traffic assignment model consists of the fol-
lowing principal components:

1. minimum path assignment,

2. probability of taking the mode,
3. bicriterion equilibrium assignment, and
4. T-2 algorithm.
1. Minimum-Path Assignment. The primary

function of the model is to assign trips with a sto-
chastic VOT on a network for fixed link times and
costs.

Given:
trip matrix
network topology,

let
R+ = {positive real numbers}
N = {nodes in the network}
E = {links in the network}

Ground set:
A = ,

 ( ) = number of trips going from origin
node O to destination node D with a VOT , and

  ( ) = flow on link e of trips that originated
at origin node O with VOT .
Then, total flow on link of trips that originated
from every possible origin with VOT  is

Now, the feasible traffic assignment for a given trip
matrix is

(1)

Also, equation (1) is rewritten as

where  is the PDF of VOT  for trips
going from origin node O to destination node D.

2. Probability of Taking the Mode. The main pur-
pose of the module is to compute the probability of
taking one mode over all available transportation
modes in a network corridor. The first step is to
determine the range of the VOT parameter based on
all feasible paths and then to determine the probabil-
ity of taking each transportation mode, as follows:

VOT{ } R+⊆
vod a

a

xoe a

a

a

xe a( ) xoe a( )
o
∑=

vod a( ) xoe a( ) xoe a( )
e ie d={ }

∑–
e je d={ }

∑=

vod a( ) vod f• od a( )=

fod a( ) a

Prob m[ ] Prob L a U≤ ≤[ ]= fod a( ) ad
L

U∫=
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where
L = lower limit of VOT
U = upper limit of VOT and

  = PDF of VOT  of trips from origin to
destination.

3. Bicriterion Equilibrium Assignment. For a
given topology, VOT, PDF, and OD matrices, the
objective function is to minimize the total general-
ized cost function.
Objective:

The decision variable of the objective function is the
total number of trips using link e that originate at
node O, and is written as follows:

xe = trips using link e that originate at origin
node O

One needs the list of constraints to solve the
objective function, and those constraints are sum-
marized below.
Constraints:

1. 

2. 

3. 

4. 

5. 

6. 

7. 

The first constraint ensures the feasibility of the
assignment. The second constraint is to ensure that
the total trips on link e is the sum of all trips origi-
nating from different origins on the network but
that use the same link. The third, fifth, and seventh
constraints hold the positive trip numbers and travel
times. The total number of trips on link e is the inte-
gral of all trips under different VOT scenarios.
Lastly, constraint six shows that the travel time on
link e is the sum of travel times on the link from dif-
ferent origins.

4. T-2 Algorithm. The T-2 algorithm used to
determine the optimum mode choice and trip distri-
bution is presented below.

Step A. Initialization
Do a T-2 minimum-path assignment to obtain
 

Step B. Ascent direction
Fix all link costs and times

and perform a T-2 min-path assignment to obtain

Step C. Termination test
Let

If

Quit

 implies the e-approximate T-2 equilibrium

traffic assignment.

Otherwise, go to Step D.

Step D. Determining step size
Let 
If 

Step E. Improved solution
Update all  and ;

and return to Step B.
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ABSTRACT

The cost of providing nonemergency transporta-
tion to Medicaid and other transportation-eligible
people has escalated sharply in the United States.
In response, many states have reformed their
human services transportation delivery systems. In
this paper, we assess the results of Kentucky’s com-
prehensive reform of its transit system, including
the impact on the quality of transit service for
Medicaid-eligible users. With three sources of
data—financial and other service data, a sample of
Medicaid-eligible residents, and a sample of the
transit providers—we assess the effectiveness of the
new system. The data show that patronage levels
increased dramatically under the new process,
while unit costs declined substantially. Further,
despite measures taken to increase efficiency, pas-
sengers still expressed satisfaction with the service.
We attribute these positive results to an improved
structure of accountability. The conclusion con-
tains implications for future reforms. 

INTRODUCTION

Across the United States, there is a rising demand
for transportation services for the poor, disabled,
and elderly, many of whom live in rural areas not

Lenahan O’Connell, Kentucky Transportation Center,
University of Kentucky, 343 Waller Avenue, Ste. 300, Lex-
ington, KY 40504. Email: locon0@engr.uky.edu.
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served by fixed-route public transit (Bernier and
Seekins 1999). Medicaid transportation demand
and expenses, for example, have been escalating
sharply in recent years. As the population ages and
as welfare recipients are required to work, this
demand for transportation will grow apace. The
anticipated expansion in demand for transportation
services could exacerbate current financial and
other strains on the system. 

In response to this trend, many states have begun
to reform their transportation delivery systems,
especially those providing nonemergency medical
transportation, the most frequently provided type of
transportation (Raphael 1997; 2001). To be sure,
there is room for reform. Many states maintained
systems plagued with fraud and abuse as well as
poor organization and overlapping services of dif-
ferent agencies providing transportation (Raphael
2001; HCFA and NASMD 1998). But it is also pos-
sible that attempts to reform such systems will fail
to restrain costs or only do so by sacrificing the
quality of service.

In this paper, we evaluate the results of a wide-
ranging, 1998 reform of the transportation system
in Kentucky. One of our goals is to assess the possi-
bility that the reform effected cost savings through
reductions in service. The Kentucky reform package
combined two of the more popular strategies for
transportation reform—capitation and a broker sys-
tem—and did so in a uniquely comprehensive man-
ner designed to enhance the accountability of the
four main players in the system: the state, the bro-
kers, the transportation providers, and the riders.

This research assesses Kentucky’s comprehensive
approach to reform as a model for other states. Spe-
cifically, we address these questions:

1. Did reform reduce the unit cost of providing
services?

2. Did it maintain or raise the quality of service?
3. Did it reduce waste, fraud, and inefficiency?
If the reform succeeded in doing all three, then

Kentucky’s approach to building accountability into
its system may be of use to other states. We describe
the current approach to reform and then the specif-
ics of Kentucky’s transformation of its human ser-
vices transportation system. After assessing the
approach in terms of its impact on the ability of the
state to hold the providers of services accountable,
we describe the research design and data. Three pri-

mary sources of data were considered: a sample of
Medicaid-eligible Kentucky residents; a sample of
transportation providers; and financial and service
data on the number of passengers conveyed each
month, the average length of trips, and the average
cost. We also conducted interviews with 15 brokers. 

Recent Reforms

To reduce Medicaid transportation expenditures,
many states have turned to two reforms in particu-
lar—transportation brokerages and capitated rates.
These can take a variety of forms, may be combined
into one reform package, or may be applied across
an entire state or only in specific portions of it
(Raphael 2001).

Brokerages and systems of capitation have their
respective strengths and weaknesses. Under a bro-
kerage, one broker is given the responsibility of
assigning riders to providers. The broker is encour-
aged to select the most appropriate provider for a
particular rider. Brokers can monitor the providers
to eliminate waste and fraud, but their effectiveness
at doing so is dubious. Some brokers are paid a fee
for each ride they broker and some are paid a capi-
tated rate for all the potential riders in their area. 

Capitated rates are explicitly designed to encour-
age cost reduction. Brokers are given a set amount
of money for each person in a region who qualifies
for a specific type of transportation service, whether
or not the qualified person actually uses it. It seems
likely, therefore, that brokers under systems of capi-
tation will work harder to reduce costs than brokers
who are paid a fee.

Capitated rates may produce their own set of
problems. In most states, capitation is operated
through Medicaid health maintenance organiza-
tions (HMOs). As a condition of receiving a Medic-
aid contract, the HMO must provide transportation
services. This has the advantage of shifting the risk
of excessive cost to the HMO. It does, however,
present a problem associated with managed health-
care—reductions in quality or access to service.
Obviously, states do not want to reduce costs by
reducing either the quantity or quality of service. So
a means must be found to ensure that service pro-
viders continue to make appropriate, timely, and
comfortable transportation available to all who
need it.
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From the limited amount of research on some of
these reform efforts (Raphael 1997; 2001), the turn
to brokerages and capitated rates may be reducing
costs in the states. Logically, the reforms can save
money through three distinct means: 1) improve-
ments in the organization and delivery of services,
2) reductions in the amount of fraud, and 3) reduc-
tions in the quality of the service provided. 

TRANSIT DELIVERY BEFORE
AND AFTER REFORM

Kentucky’s set of state reforms is considered very
comprehensive. It divided the entire state into 16
mutually exclusive brokerages so that all transpor-
tation-eligible Kentuckians in all the state’s 120
counties had access to transportation for the first
time (Michels and Bogren 1998). It then devised a
capitation system based on the number of transpor-
tation-eligible citizens in each region. The capitated
rate per person, which varies from program to pro-
gram, is multiplied by a percentage of the potential
users to arrive at a lump sum, which is agreed on in
the contract with the broker. This places a limit on
the state’s financial liability, but it also places limits
on the broker’s capacity to pay the providers. To
remain solvent, the brokerage must avoid paying
the providers more money in total than it receives
from the state.

In addition to the Medicaid-eligible, the Human
Services Transportation Delivery Program (HSTDP)
covers most other programs with a transportation
component, including Temporary Assistance to
Needy Families (TANF), vocational rehabilitation,
and services for the blind. Each broker is allocated a
lump sum to provide transportation in its area. After
paying providers, the broker keeps the remainder.
Unlike other states with capitated rates, Kentucky
does not rely on HMOs to broker services.

The HSTDP is a significant departure from the
prior transportation delivery system. Previously,
transportation services were funded separately by
the various government transportation programs
affiliated with Medicaid, TANF, Vocational Reha-
bilitation, or the Department for the Blind. Most of
the actual transportation was provided by private
companies and in some cases by not-for-profit orga-
nizations such as Community Action Agencies. This
fragmented approach proved expensive; the cost of

providing nonemergency transportation in Ken-
tucky increased 270% between 1991 and 1998
(Planning and Technology Solutions Team 2000). 

 Before the broker program, the official policy
required a customer to access service by calling the
local Community-Based Service Office, which would
then provide a voucher to the recipient for a trip. In
reality, however, people needing transportation to a
doctor’s office, training center, hospital, or other legit-
imate destination often called a private transporta-
tion provider directly. The provider (e.g., a cab
company) determined eligibility and then conveyed
the recipient to his or her destination. Subsequently,
the provider was compensated by the state.

 By law, many other types of trips were not cov-
ered by Medicaid and other governmental pro-
grams, including those to the pharmacy and
supermarket. In general, Medicaid recipients were
allowed to obtain rides only to approved medical
facilities and TANF recipients only to approved
training facilities and work sites. For other types of
rides, riders had to pay out of pocket. It was diffi-
cult, however, for authorities to monitor the actual
services rendered, and it was feared that taxpayers
were paying for numerous unauthorized trips (e.g.,
to a pharmacy or hairdresser). 

Under the new HSTDP capitated-broker pro-
gram, the recipient calls the broker, who determines
eligibility and then assigns the rider to a transporta-
tion provider. Preauthorization is required for the
service rendered, and the broker pays the provider
for the specific service authorized. 

Under the new HSTDP broker program, it is in
the brokers’ monetary interest to keep the payments
to their transportation providers as small as possi-
ble. Cost control can be accomplished in a variety of
legitimate ways: 1) by reducing the incidence of pay-
ment for unauthorized rides, 2) by carrying more
than one rider on a specific trip, and 3) by reducing
the length of rides. The brokers are also rewarded
for minimizing payment to providers for trips to
unauthorized destinations, such as the drugstore
and supermarket.

These changes in the structure of financial incen-
tives, though in theory an improvement, also set up
some possible disincentives. Since the brokers receive
a lump sum payment, they may attempt to make
ends meet by limiting the number of legitimate trips
outright or by filling the vehicle, thus increasing pas-
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sengers’ ride time or time spent waiting to be picked
up while additional passengers are picked up. It is
therefore possible that financial savings may be pur-
chased at the price of rider satisfaction.

STRUCTURE OF ACCOUNTABILITY 

Most definitions of accountability focus on its
essential characteristic: answerability (Rosen 1998;
Miller 1991; O’Connell et al. 1990; Dwivedi and
Jabbra 1989; Caiden 1989; Romzek and Dubnick
1987; Frink and Ferris 1998). 

Building accountability into government institu-
tions is no easy task, as an individual or entity can
be answerable to more than one party and for more
than one task. All these can conflict in various ways.
For example, accountability to customers for the
quality of service can conflict with accountability to
taxpayers for cost-effectiveness.

Under the old system for transportation, there
appeared to be a breakdown in the structure of
accountability. Working from a variety of offices in
the state capital, state agencies were ill-positioned to
monitor and regulate the providers. As a result,
transportation providers seemed to be giving unau-
thorized rides to customers and/or charging for
more miles than necessary (Michels and Bogren
1998). Although the customers were happy with the
services paid for by the government, many of these
services were inappropriate.

The capitated broker system was designed to
increase accountability and alleviate these problems.
Under this system, each broker is responsible for
rides provided in a specific region. Presumably, to
keep expenditures below the lump sum established
by the system of capitated payments, brokers are
motivated to maximize the efficiency of service
delivery in their region. 

Accountability cannot be guaranteed, however.
There is always the possibility that the broker and
provider will cut corners in ways that lower the
quality of service. For that reason, Kentucky’s
reform also calls for a mechanism for transit users
to register complaints with their brokers and/or the
state. The state keeps a record of these complaints,
and they can lead to a loss of contract in future
years. Thus, the brokers can be held accountable by
the state for lapses in service. Figure 1 shows the

four principle players in the accountability struc-
ture: brokers, providers, riders, and the state. The
state holds brokers accountable through the con-
tract to broker all rides in a region in return for the
capitated payment. This motivates brokers to mini-
mize costs. Brokers in turn hold riders and providers
accountable by determining rider eligibility and
assigning riders to a provider. Brokers are motivated
to eliminate all forms of waste and fraud in order to
minimize their expenditures. With broker payments
limited to eligible trips only, providers will be moti-
vated to deny ineligible trips to riders. Riders, for
their part, will hold the state and the brokers
accountable by filing complaints about service qual-
ity, which will motivate brokers to maintain the
quality of service and access to care. 

In another phase of this research, the 15 active
HSTDP brokers were interviewed (a lawsuit over
which company would broker the 16th region
delayed its entry into the program). The brokers indi-
cated much concern for the needs of the users: several
reported a policy of routine spot checks of their pro-
viders to see that pickups were punctual; most
reported a policy of inspecting the providers’ vehicles
to see that they were up to the safety codes. Brokers
also indicated that the complaint system was work-
ing. Users of the services had access to both the state
and their regional broker should they have cause for
concerns regarding the system. The positive state-
ments of the brokers notwithstanding, there is still a
chance that the broker system may not be providing
satisfactory service. A complete assessment of the
new system requires, therefore, a dual focus: one on
costs; the other on customer satisfaction. 

Brokers

Providers

State

Riders

Complain 
  to state

Assign 
 riders 
  and 
monitor

Pays brokers a lump sum for service

Determine  
 eligibility

Complain to  
     broker

Keep passengers from taking ineligible trips

FIGURE 1 The Structure of Accountability Under 
the Capitated Broker System
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METHODS

To assess the ability of the new system to hold the
various parties accountable, several types of data
were needed: 1) before and after statistics on costs
and ridership, 2) surveys of transportation users,
and 3) surveys of transportation providers. Rider
assessments of the service after reform are critical.
Presumably, if riders are indeed satisfied with a ser-
vice after reform, the cost savings of that reform did
not come at the expense of quality service.

Our estimate of the reduction of fraud or waste is
necessarily indirect. Clearly, reform has the poten-
tial to reduce the income of some providers more
than others. Presumably, the brokers will shift busi-
ness to the more efficient providers when assigning
riders. The inefficiencies of the old system may be
most likely among for-profit providers who special-
ized in Medicaid transportation and were quite
small. If this was the case, we would expect to find
that, under the new system, brokers shift riders to
the larger providers, especially those providers that
can cluster rides. 

Financial, Mileage, and Usage Data

Financial, mileage, and usage data were examined
in order to compare conditions before and after
implementation of the HSTDP broker system. Data
representing “before” conditions were obtained
from the Kentucky Cabinet of Health Services. For
each month in federal fiscal year 1997 (October
1996–September 1997) and for each county, infor-
mation was provided on the total miles of service,
the number of trips, and the total amount of pay-
ment for Medicaid transportation. This period was
selected because it was the last full federal fiscal year
before onset of the reform. Individual county data
were then aggregated into totals based on the new
regions under control of a broker. Fiscal year totals
and monthly averages of miles, trips, and payments
were summarized and average monthly cost-per-
trip, cost-per-mile, and miles-per-trip indices were
calculated for each region. 

Data representing “after” conditions were
obtained from the Kentucky Transportation Cabinet
(KYTC). In order to assess the actual changes experi-
enced in the various indices of efficiency of perfor-
mance, broker data for 1999 were compared with
the comparable calendar months of federal fiscal year

1997. For each broker region, data were provided on
the amount paid to the broker by KYTC, the aggre-
gate amount paid to subcontractors by the broker,
total Medicaid transportation trips provided within
the region, and the total miles for these trips.

User Survey

The Urban Studies Institute at the University of Lou-
isville, with the assistance of the University of Ken-
tucky Transportation Center, developed a telephone
questionnaire of approximately 100 questions. The
survey instrument probed the experiences of Medic-
aid transportation clients with the services they
received before and after the start of the HSTDP. Sur-
vey participants were queried about their frequency
of usage of HSTDP transportation services, the type
of vehicle on which they are most often a passenger,
and their judgment of the transportation service in
terms of driver helpfulness and courtesy; trip safety,
timeliness, and dependability; and vehicle cleanliness,
comfort, and maintenance. 

The broker in each of the 15 participating
HSTDP regions supplied current lists of persons eli-
gible for Medicaid transportation service in that
region. Where telephone numbers were not included
on the lists, survey researchers at University of Lou-
isville attempted to find them using various tech-
niques. Next, the researchers randomly called users.
In order to obtain approximately 100 completed
surveys in each HSTDP region, the interviewers had
to place two telephone calls for each completed sur-
vey. Unfortunately, the University of Louisville Sur-
vey Research Center did not compute a true
response rate, because many of those calls were sec-
ond calls to the same phone number. Thus, the true
response rate, though unknown, was greater than
50 percent. Since we are concerned with before and
after comparisons across the entire state, we did not
adjust the sample for population size within regions.

Provider Survey

We sent a written survey to all the providers in the
state. Some were small, private sector companies,
some were nonprofits, and some were brokers who
also provided transportation. Since most of the pro-
viders were active in the previous system, the survey
instrument was designed to elicit assessments of
change. Specifically, we wanted to see if the providers
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were adding passengers on each run. We also wanted
to see if the brokers were referring riders to the small
companies, especially those without vans and buses.
We also asked about assessments of the fairness of
the brokers’ allocation of rides. Of 160 providers,
102 returned useable surveys. The taxi companies
were less likely to return a questionnaire—58% ver-
sus 69% of the other providers. The variables from
the provider survey and their wording are in table 1.

FINDINGS

Accountability for Costs

Did the new HSTDP capitated broker program cut
costs? The answer is an unequivocal yes. The before
and after comparisons summarized in table 2 show
that even though the average number of monthly

trips (i.e., the number of passengers conveyed) rose
to 94,615 from 59,904, an increase of almost 58%
in just 2 years, the average monthly mileage went
from 1,464,516 to 1,180,189, a decrease of 19.4%.
The average trip per passenger carried dropped
from 24.5 miles to 12.5 miles.

Table 2 also shows a marked decline in the
amount paid per trip, from $29.03 to $23.86, a
decrease in average cost of 17.8%. This, of course,
is proportionately less than the decline in mileage
per trip. One reason for this is the costs associated
with running the broker service. We estimate that
the statewide administrative cost of a typical broker
operation is $4.34 per trip, or approximately 18%
of the total cost per trip. A rise in the number of
trips was expected for several reasons: 1) prior to
the broker program, 12 of the 120 counties in Ken-
tucky had no transportation service, 2) the new pro-
gram was heavily advertised by the state, 3) demand
for Medicaid service was rising throughout the
1990s, and 4) the implementation of the program
coincided with the imposition of work requirements
under welfare reform.

How were costs reduced? There are several possi-
bilities. One is trip grouping. This can be inferred
when data show changes in miles-per-trip, which
was the case as mentioned at the beginning of this
section. Trip grouping can also be inferred from the
type of vehicle in which the survey respondent usu-
ally travels while receiving Medicaid transportation
service (car, taxi, 7 to 15 passenger van, or bus).
Table 3 shows a reduction in the use of automobiles
for Medicaid transportation service and an increase
in the use of vans and buses—a finding in line with
greater trip grouping. We put taxis and autos in one
category and buses and vans in the other to create a
2 by 2 contingency table. The shift from taxis and
autos to vans and buses after the onset of the broker
program is statistically significant (Chi-square =
6.55, d.f. 1, p < .05).  

TABLE 1  Variables and Related Questions from 
the Provider Survey

Group trips. “I have been able to group trips effectively with the 
new broker system.” Strongly agree = 5; agree = 4; neutral = 3; 
disagree = 2; strongly disagree = 1.

Quality. “The overall quality of service I provide to my Medicaid 
riders has improved under the new system.” Strongly
agree = 5; agree = 4; neutral = 3; disagree = 2; strongly 
disagree = 1.

Brokers are fair. “The broker has a fair procedure for 
allocating trips among all the providers in my region.” 
Strongly agree = 5; agree = 4; neutral = 3; disagree = 2; 
strongly disagree = 1.

More second riders. “My organization’s average number of 
second passengers (of all kinds) per trip under the broker 
system has:” increased = 3; remained the same = 2; 
decreased = 1.

Revenue change. “My organization’s revenue for Medicaid 
transportation services under the broker system has:” 
increased = 3; remained the same = 2; decreased = 1.

Share of trips are Medicaid. “What share of your trips is for 
Medicaid?” Nearly all = 4; three-fourths = 3; one-half = 2; 
one-fourth or less = 1.

Companies with vans and buses. All companies with vans or 
buses were coded 1; all others were coded 0.*

Small taxi companies with no vans and buses. All providers 
with 10 or fewer cabs and no vans or buses were coded 1; 
all others were coded 0.*

*The two variables about organization type and size were based on 
responses to this question: “How many of each type of vehicle do 
you have: buses, taxis, minivans, and other?” 

TABLE 2  Comparison of Monthly Financial Mileage Data Before and After the 
Start of the New HSTDP (Broker) Program

FY97 (before) FY99 (after) % change

$ paid per trip $29.03 $23.86 –17.8
Number of trips 59,904 94,615 57.9
Total monthly mileage 1,464,516 1,180,189 –19.4
Average mileage per trip 24.5 12.5 –49.0
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Accountability for Quality

This section addresses the possibility that the
observed reduction in cost per trip was gained at the
expense of user satisfaction. A series of questions in
the telephone survey of Medicaid-eligible individu-
als covered the degree of user satisfaction with the
HSTDP. For comparison with the previous pro-
gram, respondents were also asked to estimate their
level of satisfaction prior to the HSTDP. 

 Table 4 presents the wording of the questions
that concern quality and the percentage of respon-
dents answering “always” or “usually” to them
before and after the start of the broker program.
Survey respondents expressed the highest satisfac-
tion levels with drivers, vehicles, broker representa-
tives, and service punctuality in that order. Table 4
indicates that before and after declines in punctual-
ity of service and broker courtesy, although small,
are statistically significant.

The greatest decline was in punctuality of pickup.
Prior to the HSTDP, 91.5% of the survey respon-

dents reported that they always (or usually) were
picked up on time; now 83.6% say that. This
decline in punctuality could be a consequence of
increased trip grouping.

The key question then is this: are riders less satis-
fied with the new system? Although the before and
after differences are not great, they are statistically
significant, which suggests a decline in quality of
service. However, when asked if they had had a par-
ticularly bad experience with the old and new sys-
tems, 17 percent of respondents reported a bad
experience when discussing the new system and 18
percent when discussing the old.

Accountability for Efficient Allocation

The decrease in cost per ride suggests that the bro-
kers are allocating rides to the most efficient provid-
ers. Indicators of efficient allocation would be: more
trip grouping, an increase in revenue reported by
providers grouping rides, and a shift toward those
providers with vans and buses in their fleets.

The survey responses of the providers suggest
that all three have been occurring. Thirty-eight per-
cent of the providers say they have increased the
number of second passengers on vehicles. The corre-
lation matrix in table 5 shows that the transit pro-
viders indicating more second passengers per vehicle
are more likely to report they are receiving increased
revenues from Medicaid (r = .37, p < .01). Medicaid
revenues are also shown to have increased for those

TABLE 3  Type of Vehicle Used for Medicaid 
Transportation

Vehicle type Before HSTDP After HSTDP

Car 18.3% 10.6%
Taxi 35.1% 37.3%
Van 35.7% 40.7%
Bus 10.2% 10.9%
Did not recall 0.7% 0.4%
n = 1,036
Note: Columns do not necessarily sum to 100% due to rounding.

TABLE 4  User Satisfaction Before and After the Start of the New HSTDP Program 
(Percentage responding “Always” or “Usually”)

Question Before After % change
Significance 

level

Are the broker representatives 
helpful when you call?

90.8 87.8 –3.0 p <.05

Are the broker representatives 
courteous when you call?

92.3 88.9 –3.4 p <.01

Are you picked up on time? 91.5 83.6 –7.9 p <.01
Do you get to where you need to

go on time?
93.4 90.0 –3.4 p <.01

Are the drivers helpful? 93.1 93.0 –0.1 NS
Are the drivers courteous? 93.9 93.7 –0.2 NS
Do they drive safely? 94.8 94.5 –0.3 NS
Is the vehicle clean? 93.4 92.8 –0.6 NS
Is the vehicle comfortable? 92.8 94.2 1.4 NS
Does the vehicle seem to be well 

maintained?
92.7 93.8 1.1 NS

n = 1,036
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who report they have been able to group trips effec-
tively (r = .45, p < .01). As expected, the companies
with vans and buses in their fleets are more likely to
report an increase in second riders (r = .37, p < .01).
However, the relationship between having large
vehicles and revenue change is not significant. Simi-
larly, small taxi companies (those with 10 or fewer
vehicles and no vans and buses) are not more likely
than the other providers to report a decrease in
Medicaid revenues. However, the correlation
between small taxi companies and adding a second
passenger is negative (r = –.34, p < .01) and small
taxi companies are less likely to report success at
grouping passengers (r = –.28, p < .05). 

The correlation between small companies and
reliance on Medicaid for passengers (r = .20,
p < .05) implies that small taxi companies without
vans and buses will lose Medicaid revenue. Yet, the
correlation between change in Medicaid revenue
and small taxi companies is insignificant. 

We also asked about perceptions of the fairness
of allocation of riders by brokers. Providers with the
greatest dependence on Medicaid were less likely to
see the brokers’ assignments of riders as fair. Those
who said the procedures were fair were likely to say
they could group trips (r = .65, p < .01), had added
second riders (r = .40, p < .01), had increasing Med-
icaid revenue (r = .36, p < .01), and thought the
quality of service had gone up (r = .55, p < .01).
Smaller providers were less likely to say the brokers
were fair (r = –.27, p < .01) but not more likely to
see service quality as having declined.

DISCUSSION AND CONCLUSION

The reform appears to be successful. Despite the rise
in the number of riders, there has been a decrease in

total mileage, which seems to be due in part to a sig-
nificant increase in trip grouping. Overall, the unit
cost per trip dropped 18% and the length of the
average trip went down. Kentucky’s reform has pro-
duced a true rarity in government—an increase in
the quantity of service at lower cost per unit.

Under the new system of accountability, the bro-
ker is in a better position geographically to estimate
the appropriate mileage and to arrange trip group-
ing. As was the case before the broker system, trans-
portation providers are paid by the mile and the
number of passengers. However, now they are
watched more closely to ensure they do not drive
more miles than necessary. The finding that there
has been a 20% drop in the total miles reported
despite the large upsurge in riders is perhaps most
suggestive of less fraud and waste.

The interviews we conducted with the brokers
also support the above speculations. Brokers told us
they were tracking trip length, and they were con-
vinced that providers could no longer claim more
mileage or get paid for trips to unauthorized desti-
nations. A slight increase in the use of vans to trans-
port passengers (with a commensurate decrease in
the number of riders being transported in automo-
biles) is also consistent with the placing of more
than one passenger on many of the transit vehicles.

Because each of the four parties can be sanc-
tioned by one or more of the other parties, the struc-
ture of accountability is seamless. With the ability to
file complaints, Medicaid riders have the power to
sanction. Taken together, the findings imply that
region-based, capitated broker systems can reduce
costs. The implications for improving accountability
in transit seem clear: 1) give brokers a financial
incentive to economize by, for instance, the use of
lump sum capitated payments; 2) facilitate the mon-

TABLE 5  Pearson Correlation Coefficients

1 2 3 4 5 6 7

1. Revenue change
2. More second riders .37**
3. Group trips .45** .37**
4. Share of trips are Medicaid –.10 –.21* –.28*
5. Quality .43** .22* .58** –.35**
6. Small taxi companies and no vans and buses .15 –.34** –.28** .20* –.04
7. Companies with vans and buses .18 .39** .28 –.25 .17 –.38**
8. Brokers are fair .36** .40** .65** –.32** .55** –.27** .36**

*  p < .05
** p < .01
n = 102
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itoring of providers by keeping the region over
which each broker is responsible of manageable
size; 3) provide all customers with a means to report
poor quality of service to an outside party. The
likely result is more efficiency and less waste with
only a modest decline in rider satisfaction.

NOTE AND ACKNOWLEDGMENTS 

This is a substantially revised version of a paper pre-
sented at the Transportation Research Board
Annual Meetings, January 8, 2001, in Washington,
DC. We thank the editor and reviewers for their
helpful comments.

REFERENCES

Bernier, B. and T. Seekins. 1999. Rural Transportation Voucher
Program for People with Disabilities: Three Case Studies.
Journal of Transportation and Statistics 2(1):62–9. 

Caiden, G. 1989. The Problem of Ensuring the Public Account-
ability of Public Officials. Public Service Accountability.
Edited by J. Jabbra and O.P. Dwivedi. West Hartford, CT:
Kumerian Press. pp. 17–38.

Health Care Financing Administration (HCFA) and National
Association of State Medicaid Directors (NASMD). 1998.
Designing and Operating Cost-Effective Medicaid Non-
Emergency Transportation Programs. 

Dwivedi, O.P. and J. Jabbra. 1989. Public Service Responsibility
and Accountability. Public Service Accountability. Edited by
J. Jabbra and O.P. Dwivedi. West Hartford, CT: Kumerian
Press. pp.1–16

Frink, D.D. and G.R. Ferris. 1998. Accountability, Impression
Management, and Goal Setting in the Performance Evalua-
tion Process. Human Relations 51:1259–84.

Michels, T. and S. Bogren. 1998. Kentucky’s Great Experiment.
Community Transportation 16:6–10.

Miller, G. 1991. Government Financial Management Theory.
New York, NY: Marcel Dekker.

O’Connell, L., M. Betz, and J. Shepard. 1990. Social Control
and Legitimacy: The Contribution of Accountability Mecha-
nisms. Perspectives on Social Problems 2:261–77.

Planning and Technology Solutions Team. 2000. Evaluation of
Medicaid Transportation Service Delivery in Kentucky
Human Service Transportation Regions. Kentucky Transpor-
tation Center.

Raphael, D. 1997. Medicaid Transportation and Managed
Care. Community Transportation 15(5):7–16.

_____. 2001. Medicaid Transportation: Assuring Access to
Health Care. Washington, DC: Community Transportation
Association of America.

Romzek, B. and M. Dubnick. 1987. Accountability in the Public
Sector: Lessons from the Challenger Tragedy. Public Admin-
istration Review 47:227–38.

Rosen, B. 1998. Holding Government Bureaucracies Account-
able. Westport, CT: Praeger.



        



83

An Application for Measuring Vehicle Travel by Visitors

XUEHAO CHU

STEVEN E. POLZIN

University of South Florida

ABSTRACT

This paper develops a simple approach to estimat-
ing annual vehicle travel by visitors to individual
states. Domestic and foreign visitors are considered
separately. The approach uses local or national sur-
veys for domestic visitors but federal surveys for for-
eign visitors. The approach is applied to Florida for
the 15-year period from 1984 through 1998. Visi-
tors accounted for about 9.8% to 12.7% of all vehi-
cle travel in the state during this period. Variations
over time result from changes in the number of visi-
tors and their characteristics such as the length of
stay and party size. 

INTRODUCTION

Understanding visitor travel trends is important for
predicting future demands for transportation. Visi-
tor travel has different temporal and geographic dis-
tributions, and its growth pattern may differ from
resident or freight travel. These differences are rele-
vant to a discussion of how to fund transportation
infrastructure and service investments such as equity
issues. A good understanding of visitor travel has
implications for safety, traveler security, signage,
and other aspects of how transportation facilities
are designed and operated.
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One motivation for this paper is that visitor
travel is often not considered in the transportation
planning processes in this country. In recent years,
freight has increasingly been incorporated into plan-
ning, despite the fact that it may actually account
for a smaller proportion of total vehicle-miles of
travel. Between 1994 and 1998, heavy trucks
accounted for 7.3% to 8.2% of all vehicle travel on
freeways and arterials in Florida (CUTR 2001b).
The most recent study on tourism travel is a
National Cooperative Highway Research Program
project that examines the extent of cooperation
between state departments of transportation and
state travel offices (Frechtling et al. 1998). 

Our research was also motivated by a desire to
put the seemingly large numbers of visitors into per-
spective. For example, the estimated annual number
of visits to Florida by nonstate residents increased
from 29.9 million in 1984 to 52.7 million in 1998
(CUTR 2001a), a 76% increase during this 15-year
period. This tremendous increase in the number of
visitors is often cited as contributing to transporta-
tion problems in Florida. At face value, one might
quickly conclude that tourists must play a large role
in the state’s transportation problems. After all,
Florida’s population was no more than 15 million in
1998 and its increase since 1984 has been about
half as fast as that of its visitors (from 10.9 million
to 14.9 million) (BEBR 1985–1999). 

Finally, our research is motivated by a desire to
understand the potential negative impacts of visi-
tors. While tourism may have many positive
impacts on local economic development, tourism
can also result in many negative impacts on the
environment of the host areas. One of these negative
impacts is air pollution from automobile emissions.
Information on how much visitors drive contributes
to our understanding of the potential costs of tour-
ism on the local environment. Local decisionmakers
tend to focus on and emphasize the positive impacts
but ignore the negative ones.

This paper is divided into three sections: details
of the method being proposed for estimating vehi-
cle travel by visitors; application of this method to
Florida, including data sources used, and results,
and the applicability of the proposed approach to
other states; and conclusions. 

METHODS

The proposed approach measures annual vehicle
travel by visitors by their origin and mode of entry.
The estimations take advantage of annual surveys of
domestic visitors as they leave the state after a visit
and federal surveys of international travelers to indi-
vidual states.

Visitors are those persons who travel to Florida for
business or pleasure and stay at least one night but no
more than a certain number of nights. By origin,
domestic visitors are people who come from Canada
or other U.S. states, while foreign visitors are all other
visitors. Mode of entry includes those who come by
car, air, or other public modes (e.g., intercity bus).
The approach used here also separately considers
vehicle travel by visitors at their destinations and on
their way to and from the borders. Taking these fac-
tors into account, three types of visitors are consid-
ered: domestic air visitors, domestic auto visitors, and
foreign air visitors. Domestic visitors who come by
other public modes as well as foreign auto visitors are
not considered separately because data are not
readily available for them. According to the 1995
American Travel Survey, auto and air account for
97.7% of all visitors and intercity bus accounts for
1.6% (USDOT BTS 1997b). 

Domestic Air Visitors

For domestic air visitors, we used data on four of
their travel characteristics and an estimate of their
total numbers. Characteristics include the length of
stay at major destinations (L), party size (S), the
share traveling by car once they reached Florida (C),
and the average amount of daily driving per party
(D). For ease of reference, we use N to represent the
annual number of domestic air visitors. The estima-
tion for any given year is done in four steps:

1. Estimate the number of visitors who travel by
car at their destinations, which is given by
C*N. 

2. Estimate the number of parties among the visi-
tors who travel by car around their destina-
tions, given by (C*N)/S. This number also
represents the number of cars these domestic
air visitors drive while they are in the state.

3. Estimate the average amount each vehicle is
driven. This is given by L*D.
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4. Put these different pieces together to yield the
annual amount of driving by domestic air visi-
tors in Florida: (L*D)[(C*N)/S].

This method may slightly underestimate vehicle
travel in the state by domestic air visitors, because
those visitors who drive to a bordering state on their
way out are excluded in this measurement.

Domestic Auto Visitors

For domestic auto visitors, their driving on the
state’s highways consists of two components. One
component is driving at their destinations. All
domestic auto visitors are assumed to travel by car
at their destinations, that is, C = 1. The same proce-
dure used to measure this component is used for
those who come by air. 

The second component of those who come by car
is driving done on their way from the state’s border
to their destinations and back to the border. This
component is the product of the total number of
these cars by the average distance between their des-
tinations and the border. This average distance may
change from year to year because of changes in des-
tinations chosen by these visitors.

Foreign Visitors

The methodology used for domestic air visitors is
also applied to foreign visitors. The underlying
assumption is that foreign visitors to the state typi-
cally both arrive and leave the state by air. This
assumption may lead to underestimating the
amount of driving by foreign visitors for at least two
reasons. First, some foreign visitors may enter the
United States by air through another state and then
drive to Florida. Second, just as in the case for
domestic air visitors, some of them may drive to
other states and leave from there.

Comparison to State Total Travel

Once annual driving by each of these three groups is
estimated, the total is then compared with the total
amount of driving in the state. The total amount of
driving in the state reflects all vehicle travel in the
state on public roads, including those by visitors,
residents, and freight. While a better comparison
might be the total amount of passenger driving in
the state, data may not be available to separate pas-
senger and freight travel.

APPLICATION

We applied the simple approach proposed above to
Florida for the period from 1984 through 1998.
The data sources are presented first, followed by the
results and discussion of how the same approach
can be applied to other states.

Data Sources

For domestic visitors, data on L, S, C, and N are
from the annual Florida Visitor Study (Florida DOC
1984–1995; Florida FTIMC 1996–1998). This doc-
ument compiles data on the characteristics of Flor-
ida’s domestic visitors and estimates aggregate
statistics on the tourism industry in Florida. From
1984 to 1996, it was based on an annual survey
that involved personal interviews of visitors as they
completed their stay and left the state. It was pub-
lished by the Tourism Division of the Florida
Department of Commerce before 1996 and has
been published by the Florida Tourism Industry
Marketing Corporation since then. Both groups
used the same survey methodology consistently.
Since 1996, however, this document has been based
on the DIRECTIONS Travel Intelligence System
(DKS&A 2000). This system is a syndicated data-
base that tracks traveler behavior in the United
States, based on annual surveys of 540,000 travel-
ing households. 

For foreign visitors, data on L and S are available
from the annual Profile of Overseas Travelers to the
U.S. (USDOC ITA 1998), which is based on the
monthly Survey of International Air Travelers.
Unfortunately, data from earlier years were not
available for this paper. As a result, 1998 survey
data on the length of stay and party size for foreign
visitors were used for the entire estimation period.
While the survey asked what modes the respondents
used while visiting the United States, the questions
allow multiple modes to be chosen in the answer.
Because of this, the data were unusable for our
study. Instead, we assumed that C, the portion of
visitors who travel at their destinations in Florida by
car, is the same for foreign visitors as it is for domes-
tic air visitors. This assumption may overestimate
vehicle driving by foreign visitors if they are actually
less likely to drive than domestic air visitors.

For foreign visitors, data on N are available from
the annual Overseas Visitors to Select U.S. States



86 JOURNAL OF TRANSPORTATION AND STATISTICS V5, N2/3 2002

and Territories (USDOC ITA 1996–1995 and 1998–
1997). The data are derived from the INS I-94 form
that all noncitizens must complete to enter the
United States. The basis of the derivation is the first
intended address by these visitors. Because these visi-
tors may visit more than one state, a direct estimate
from the I-94 form will understate the total number
of international travelers that visited any given state.
This underestimate can be accounted for by using
the monthly survey of international travelers.1 Our
data on the number of foreign visitors to Florida
came from the abovementioned document for the
years after 1994. 

For the period before 1995, data on the annual
number of foreign visitors from the Florida Visitor
Study were adjusted to reflect differences between
these series. The series in the Florida Visitor Study
shows the direct count from form INS I-94 and
underestimates the total number of foreign visitors
to Florida. The numbers before 1995 were adjusted
up by a factor that is the ratio of the 1995 number
(5.345 million) from Overseas Visitors to Select
U.S. States and Territories to the 1995 number
(4.162 million) from the Florida Visitor Study. The
resulting adjustment factor is 1.284.

We did not have data to get a direct estimate of D
(average daily driving per party) for any of the three
visitor types, and the annual surveys do not contain
any information on how much a party of visitors
drove at their destinations. As a result, the estima-
tion relied on assumed values for D. We believe that
the average daily driving by Florida resident house-
holds provides a good point estimate for D. Most
domestic visitors come to Florida either for social
(visiting relatives or friends) or recreational pur-
poses. While both a typical household and a visitor
party would need travel for basic life maintenance
activities (shopping, eating), work-related driving by
a typical household is replaced by visitors driving for
social and recreational activities. The orientation of
activities to lodging provides additional confidence
as evidenced by accommodations adjacent to theme
parks and beach areas throughout Florida. We esti-
mated average daily driving by Florida resident
households with data from the Nationwide Personal
Transportation Survey (NPTS), which provides data

for daily travel of Americans in this country
(USDOT FHWA BTS 2003). The NPTS was con-
ducted five times: 1969, 1977, 1983, 1990, and
1995. Using the NPTS Table Wizard, we got an esti-
mate of about 52.65 daily vehicle-miles per Florida
household for 1995 (USDOT BTS 1997a).

In addition to an estimate of the amount of daily
driving by Florida households for a single year, we
also needed to know how the amount of daily driv-
ing by each domestic party may have changed over
time. For this, we examined the growth in the daily
amount of driving for social and recreational pur-
poses between 1983 and 1995 at the national level.
National statistics were used here because data spe-
cific to Florida were unavailable for 1983. We
found that the daily amount of per capita driving
for social and recreational purposes grew at about
2.52% annually from 1983 to 1995 at the national
level. Applying this growth rate to our 1995 esti-
mate of D, we got a growth pattern for D from
1984 through 1998.

We applied the estimate of D for domestic visi-
tors to foreign visitors simply because we did not
have any other better information. It is likely that
foreigners drive less while in their home countries.
However, we had no information on how much less
they drive as a group compared with U.S. residents.
In addition, foreign visitors may drive more once in
this country than they typically do at home. 

We used two sets of numbers to estimate the aver-
age distance between the northern Florida border
and the chosen destinations of domestic auto visitors.
One set of numbers provided the distances between
the border and each of the chosen destinations. These
distances between city pairs were obtained using a
Florida Department of Transportation’s online tool
(Florida DOT 2000). Because of the long border, we
used three border cities to represent it: Pensacola for
visitors entering the state on I-10 from the west, Jas-
per for those entering from I-75 in the middle, and
Jacksonville for those entering on I-95 from the east.
The largest city in each of the top 10 destination
areas was used in the online tool to represent the
area. For each destination area, the average of its dis-
tances to the three border cities was used.

The second set of numbers used is the distribu-
tion of these visitors by their chosen destinations
from the annual Florida Visitor Study. For 1984 to
1996, the question on destination choice solicited all

1More details about these are available from the source.
See references. 
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destinations a respondent visited in Florida. For
1997 and 1998, however, that question was limited
to the main destination of a respondent. As a result,
the top 10 destinations from 1984 through 1996
typically accounted for over 90% of all visitors who
came by car. For the last two years, they accounted
for about 67%.

Using these two sets of numbers, the average dis-
tance between Florida’s northern border and the
chosen destinations was estimated for each year.
From 1984 to 1996, this estimate of the average dis-
tance overstated the true value because some visitors
visited more than one destination. To account for
this overestimate, the distances were adjusted down
by a correction factor. To obtain this factor, we cal-
culated the percentage of all auto visitors who chose
the top 10 destinations for each year. For any given
year from 1984 to 1996, this factor was calculated
as the ratio of the total percentage in that year to the
total percentage in 1998.

For the annual amount of vehicle-miles traveled
(vmt) in the state, we used the data in Highway Sta-
tistics Summary to 1995 (USDOT FHWA 1996) for
data from 1984 through 1995 and the annual High-

way Statistics report (USDOT FHWA 1996–1998)
for the other years.

RESULTS

Table 1 summarizes our results of the estimated
amount of vmt by Florida’s visitors on its highways
and how this amount compares with the state’s total
vmt from 1984 through 1998. The annual vmt by
Florida’s visitors increased 86% from 8.4 billion in
1984 to 15.7 billion in 1998. Relative to total state
vmt, these vehicle-miles accounted for about 9.8%
at the beginning of this period and reached 12.7%
in the early 1990s. Their share later declined to
about 10.9% of the state total.

Among the three visitor types, the annual
amount of driving by foreign visitors grew the most
(figure 1). From 1984 to 1998, total vmt in the state
grew by 61%. For the same period, driving by
domestic air visitors grew by 40% and driving by
domestic auto visitors grew by 83%. However, driv-
ing by foreign visitors grew 356%. These differ-
ences in relative growth are also reflected in the
differences in the share of total state vmt contrib-
uted by visitor type as shown in table 1.

TABLE 1  Vehicle Travel by Florida’s Visitors and Share of State Total

Vehicle-miles traveled (millions) As a percentage of state total

Year
Domestic 

air
Domestic 

auto Foreign All visitors
Domestic 

air
Domestic 

auto Foreign All visitors

1984 2,699 5,184 524 8,406 3.2% 6.1% 0.6% 9.8%

1985 2,487 5,487 557 8,531 2.8% 5.8% 0.6% 9.2%

1986 2,853 5,435 675 8,963 3.3% 5.7% 0.8% 9.7%

1987 2,738 7,922 831 11,491 2.9% 7.8% 0.9% 11.7%

1988 3,514 8,707 1,084 13,306 3.3% 7.7% 1.0% 12.1%

1989 2,859 8,527 1,354 12,740 2.6% 7.3% 1.2% 11.2%

1990 2,929 8,415 1,469 12,813 2.7% 7.1% 1.3% 11.1%

1991 3,173 8,478 1,698 13,349 2.8% 6.9% 1.5% 11.2%

1992 3,370 9,407 1,968 14,744 2.8% 7.3% 1.6% 11.8%

1993 3,717 10,100 2,123 15,941 3.1% 7.8% 1.8% 12.7%

1994 3,775 9,186 1,913 14,874 3.1% 7.1% 1.6% 11.7%

1995 3,736 8,766 1,912 14,413 2.9% 6.4% 1.5% 10.8%

1996 3,912 8,309 2,138 14,359 3.0% 6.0% 1.6% 10.6%

1997 3,329 9,396 2,331 15,056 2.5% 6.5% 1.7% 10.7%

1998 3,775 9,489 2,387 15,652 2.7% 6.4% 1.7% 10.9%
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FIGURE 1  Growth in Vehicle-Miles Traveled: 
State Total and Visitor Types

Much of the differential growth trend in vmt
between domestic and foreign visitors results from
the differential growth trends in their numbers.
From 1984 to 1998, the number of foreign visitors
grew by 253%, compared with 33% for domestic
auto and 101% for domestic air visitors (figure 2).

However, increases in the number of visitors by
visitor type do not fully account for the differences in

the amount of driving by visitor type. For example,
while the number of domestic air visitors grew by
101%, the amount they drove only rose 40%. On
the other hand, the number of domestic auto visitors
grew by only 33%, while their vmt rose 83%. In
addition, the number of foreign visitors grew by
253%, compared to a 356% increase in their vmt.
The additional differences in driving by the visitor
types reflect a variety of factors that determine how
much they drive. These include the length of stay,
party size, share traveling by car at their destinations,
and the average amount of daily driving per party.
Figures 3 through 5 show the changes in these
parameters for domestic air visitors, domestic auto
visiors, and foreign visitors, respectively.

Changes in other factors explain the slower
growth in driving for domestic air visitors in com-
parison with the number of visitors. From 1984 to
1998, the length of stays decreased by 30%, the
share of domestic air visitors traveling by car at their
destinations decreased by about 10% and the num-
ber of people per party increased by about 30%. 

Domestic auto visitors data, in contrast to domes-
tic air visitors, show that the growth in their driving is
greater than the number of visitors. On the negative
side, the number of people per party slightly
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increased by about 4%. On the positive side, how-
ever, not only did the assumed growth in daily driv-
ing reinforce the growth in the number of visitors,
but the length of stays also increased slightly by 5%. 

Driving by foreign visitors also grew faster than
the number of these visitors. Even though the share
of these visitors traveling by car at their destinations
decreased, the assumed growth in daily driving
overcompensated for that decrease. In addition, we
assumed, due to lack of data, that both the length of
stays and the number of people per party of visitors
remained the same.

Applicability to Other States

The proposed approach may offer some guidance to
other states attempting to measure vehicle travel by
visitors. Applicability would be governed mainly by
two issues. First, the proposed approach to measur-
ing vehicle travel by visitors to a single state does
not take into account through travel. Excluding
through travel was intentional, because people who
travel through a state are technically not visitors to
that state. However, through travelers use infra-
structure and hence are of interest to planners.
While there is little through travel in Florida because
of its geography, many states have a lot of this traf-
fic and, thus, would find this far more relevant.

The other issue is the availability of similar data
sources in other states. Our approach relies primarily
on two datasets. One dataset has information on the
annual number of foreign visitors and their charac-
teristics, using federal data for estimating their driv-
ing. Since the federal data are available for every
state, this approach is applicable to other states for
measuring vehicle travel by foreign visitors. 

The other dataset has information on the
annual number of domestic visitors by entry mode
and characteristics. The data on domestic visitors
may come from different sources. The Florida
application used two sources. One is an annual
survey of these visitors as they complete their stay
and leave Florida. This survey is specific to Florida.
It is possible, however, that some other states have
similar surveys. The other data source is the
DIRECTIONS Travel Intelligence System men-
tioned earlier. This system is a syndicated database
that tracks travel behavior for the entire country
and is based on annual surveys of 540,000 travel-
ing households. Most states can get the data
needed for the proposed approach by using the
subsample for their states. 

In addition to those state-specific annual surveys
or the DIRECTIONS Travel Intelligence System,
individual states can also use the 2001 National
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Household Travel Survey (NHTS) (USDOT
FHWA BTS 2003). The 2001 NHTS was designed
to include both local and long-distance travel. For
each destination state, the survey data contain all
the necessary information for applying the pro-
posed approach. Specific information items from
the survey include destination cities, group size,
modes to and from destinations, modes used at
destinations, duration of stay to be derived from
information on departure and return dates, and the
total number of visitors. One advantage of the
2001 NHTS is that it also gives information on the
origin states of visitors. This information can
potentially be used to determine where visitors
may enter a destination state, which is particularly
important if there are many bordering states and
entering routes. Another advantage of the 2001
NHTS is that it provides a consistent source of
data for all states. One interesting exercise would
be to apply the proposed approach to individual
states with the 2001 NHTS to measure vehicle
travel by domestic visitors.

CONCLUSION

This paper proposes a simple approach to estimating
vehicle travel by visitors to individual states and
applies it to Florida for the 15-year period from 1984
through 1998. Our findings for this period show a
trend toward slower growth in driving by domestic
visitors entering Florida by air and higher growth in
driving for those visitors entering by auto and for for-
eign visitors. Changes in other factors—number of
visitors entering the state, their length of stay, and the
number of people traveling together in a party—
affect these trends. The proportion of vehicle travel
by visitors to a state can be significant and may
exceed that by freight trucks. Proportions appear to
be relatively stable over time with some variations
depending on not only changes in the number of visi-
tors but also changes in their characteristics. Esti-
mates of vehicle travel by visitors are likely to be
conservative, because several components of vehicle
travel by visitors are omitted due to lack of data.

This approach is applicable to individual states
that have access to information on domestic and for-
eign visitors, such as the number of visitors, their dis-
tribution among major destinations, average length

of stay, average party size, and the proportion travel-
ing at their destinations by car.
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