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Abstract

Demand responsive transit (DRT) systems provide flexible transportation

services where individual passengers request door-to-door rides by speci-

fying desired pick-up and drop-off locations and times. Multiple shuttles

service these requests in shared-ride mode without fixed routes and sched-

ules. In this report, we define the online cost-sharing problem in DRT

systems and describe typical cost-sharing mechanisms, focusing on propor-

tional and incremental cost sharing and some of their shortcomings in the

online setting, where knowledge of future arrivals of passengers is missing.

We then determine properties of cost-sharing mechanisms that we believe

make DRT systems attractive to both providers and passengers, namely

online fairness, immediate response, budget balance and ex-post incentive

compatibility. We propose a novel cost-sharing mechanism, called Propor-

tional Online Cost Sharing (POCS), and use an analogy involving water in

containers to motivate it. POCS provides passengers with upper bounds on

their fares immediately after their arrival, allowing the passengers to accept

or decline. Thus, passengers have no uncertainty about whether they can

be serviced or how high their fares will be at most, while the DRT systems

reduce their uncertainty about passengers dropping out and can thus pre-

pare better. Yet, they still retain some flexibility to optimize the routes

and schedules after future arrivals. The sum of the fares of all passengers

always equals the operating cost. Thus, no profit is made and no subsidies

are required. POCS provides incentives for passengers to arrive as early as

possible since the fares of passengers per mile of requested travel are never

higher than those of passengers who arrive after them (and, informally, also

since the likelihood of transportation capacity being available tends to de-

crease over time). Thus, the DRT systems have more time to prepare and



might also be able to offer subsequent passengers lower fares due to syner-

gies with the early ride requests, which might allow them to service more

passengers.
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1

Introduction

Demand responsive transit (DRT) systems provide flexible transportation services where

individual passengers request door-to-door rides by specifying desired pick-up and drop-

off locations and times. Multiple shuttles (or vans or small busses) service these requests

in shared-ride mode without fixed routes and schedules. DRT services are more flexible

and convenient for passengers than busses since they do not operate on fixed routes

and schedules, yet cheaper than taxis due to the higher utilization of transportation

capacity. In the United States, DRT services are commonly used to service the trans-

portation needs of disabled and elderly citizens and have experienced rapid growth

(4, 18), for example, in form of dial-a-ride paratransit services mandated under the

Americans with Disabilities Act. Furthermore, the National Transit Summaries and

Trends report for 2008 states that the average operating cost per passenger trip is $30.0

for DRT systems but only $3.3 for busses, the average operating cost per passenger mile

is $3.4 for DRT systems but only $0.8 for buses, and the revenue from fares covers less

then 10% of the operating costs of DRT systems. Hence, it is important to identify

opportunities for reductions in cost and improvements in efficiency (7, 18), especially

if one wants to expand DRT services to provide a transit option for urban populations

in general.

Two important research issues in the context of DRT systems are how to determine

the routes and schedules of the shuttles (including how to assign passengers to shuttles)

in the presence of conflicting objectives, such as maximizing the number of serviced

passengers, minimizing the operating cost or minimizing the passenger inconvenience,

and how much to charge the passengers. The first (optimization) problem has received
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considerable attention in the literature. The second (cost-sharing) problem, on the

other hand, has been neglected in the literature, which might be due to DRT providers

being highly subsidized and most passengers thus enjoying transportation services at

affordable fares, typically determined by flat rates within service zones that do not

cover the operating cost. Without subsidies, the fares would substantially increase

and passengers would then be more concerned about how the operating cost is shared

among them in a fair manner.

The optimization problem is often solved as vehicle routing problem in a central-

ized way (2, 5, 6, 10, 18, 20, 24). We, on the other hand, are interested in solving

it with versions of sequential single-item auctions in a decentralized way by exploiting

that shuttles can easily be equipped with general-purpose computers. Auctions are

promising distributed methods for teams of agents to assign and re-assign tasks among

themselves in time-constrained, dynamic and only partially known situations (13, 19).

In general, auction-based coordination systems can be efficient both in communica-

tion, as agents communicate only essential summary information, and in computation,

as agents compute their bids in parallel. Addressing the optimization problem with

auctions requires one to extend ideas from task-allocation problems in the context of

multi-agent routing to ones in the context of DRT systems.

During our project, we discovered quickly that the optimization and cost-sharing

problems are highly interrelated since the routes and schedules of the shuttles determine

the operating cost that needs to be shared, while the cost-sharing mechanism imposes

constraints on the routes and schedules that need to be optimized, for example, because

the fares of passengers should not exceed the fare quotes. How passengers should share

the operating cost is a non-trivial problem for the following reasons: Passengers do not

arrive (that is, submit their ride requests) at the same time but should be provided

with incentives to arrive as early as possible since, this way, the DRT systems have

more time to prepare and might also be able to offer subsequent passengers lower fares

due to synergies with the early ride requests, which might allow them to service more

passengers. Passengers have different pick-up and drop-off locations and times and

thus cause different amounts of inconvenience to the other passengers, which should be

reflected in the fares. Passengers should be quoted fares immediately after their arrival

because, this way, they have no uncertainty about whether they can be serviced or how

high their fares will be at most and the DRT systems reduce their uncertainty about
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passengers dropping out and can thus prepare better. This requires DRT systems to

make instantaneous and irreversible decisions despite having no knowledge of future

arrivals (3).

We therefore adapted the original project plan and focused our effort on the cost-

sharing mechanism. In this report, we define the online cost-sharing problem in DRT

systems and describe typical cost-sharing mechanisms, focusing on proportional and

incremental cost sharing and some of their shortcomings in the online setting. We then

determine properties of cost-sharing mechanisms that we believe make DRT systems at-

tractive to both providers and passengers, namely online fairness, immediate response,

budget balance and ex-post incentive compatibility. We propose a novel cost-sharing

mechanism, called Proportional Online Cost Sharing (POCS), and use an analogy in-

volving water in containers to motivate it. Finally, we show that POCS satisfies our

properties.
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2

Online Cost Sharing

In this chapter, we define the online cost-sharing problem for demand responsive transit

(DRT) systems, provide an example and discuss existing cost-sharing mechanisms and

some of their shortcomings in the online setting, and finally derive a list of desirable

properties for online cost-sharing mechanisms for DRT systems.

2.1 Problem Definition

DRT systems provide flexible transportation services where individual passengers re-

quest door-to-door rides. Multiple shuttles service these requests without fixed routes

and schedules. Passengers share shuttles. For example, after a passenger has been

picked up and before it is dropped off, other passengers can be picked up and dropped

off, resulting in a longer ride for the passenger. Passengers need to pay a share of the

operating cost. Passengers arrive (that is, submit their ride requests) one after the

other by specifying their desired pick-up and drop-off locations and time. The arrival

time of a passenger is the time when it submits its ride request. (In case the passenger

decides to delay its arrival, we distinguish its truthful arrival time, which is the earliest

possible arrival time, from its actual, perhaps delayed, arrival time.) We assume, for

simplification, that all passengers arrive before the shuttles start to service passengers.

We also assume, without loss of generality, that exactly one passenger arrives at each

time k = 1, . . . , t, namely that passenger π(k) arrives at time k under arrival order π,

where an arrival order is a function that maps arrival times to passengers.
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2.1 Problem Definition

Definition 1. For all times k with 1 ≤ k and all arrival orders π, the alpha value
απ(k) of passenger π(k) quantifies the demand of its request, that is, how much of the
transportation resources it requests. We assume that it is positive and independent of
the arrival time of the passenger.

These assumptions are, for example, satisfied for the shortest point-to-point travel

distance from the pick-up to the drop-off location of a passenger, which is the quantity

that we use in this report for its alpha value.

Definition 2. For all times t with 1 ≤ t and all arrival orders π, the total cost
totalcosttπ at time t under arrival order π is the operating cost required to service pas-
sengers π(1), . . . , π(t). We define totalcost0π := 0 and assume that 1) the total cost is
non-decreasing over time, that is, for all times t and t′ with t ≤ t′ and all arrival orders
π, totalcosttπ ≤ totalcostt

′
π ; and 2) the total cost at time t is independent of the arrival

order of passengers π(1), . . . , π(t), that is, for all times t with 1 ≤ t and all arrival
orders π and π′ with {π(1), . . . , π(t)} = {π′(1), . . . , π′(t)}, totalcosttπ = totalcosttπ′.

These assumptions are, for example, satisfied for the minimal operating cost, which

is the quantity that we use in this report for the total cost. The DRT system can

accommodate advanced features, such as operating times and capacities of shuttles and

time constraints of passengers, as long as it can determine total costs that satisfy the

assumptions. (The assumptions are typically not satisfied if passengers can arrive after

the shuttles have started to service passengers since the shuttle locations influence the

total cost.) We assume, for simplification, that the DRT system can easily calculate the

total cost at any given time although this could be NP-hard and thus time-consuming,

such as for the minimal operating cost.

Definition 3. For all times k with 1 ≤ k and all arrival orders π, the marginal cost
mcπ(k) of passenger π(k) under arrival order π is the increase in total cost due to its
arrival, that is, mcπ(k) := totalcostkπ − totalcostk−1

π .

Definition 4. For all times k and t with 1 ≤ k ≤ t and all arrival orders π, the shared
cost costtπ(k) of passenger π(k) at time t under arrival order π is its share of the total
cost at time t.

The DRT system provides a (myopic) fare quote to a passenger immediately after

its arrival. The fare quoted to passenger π(k) after its arrival at time k is costkπ(k). (A

fare quote of infinity means that the passenger cannot get serviced.) The passenger
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2.2 Demand Responsive Transit Example

𝑃2 𝑃1 

𝑃3 

2 2 2 2 

𝑃4 

𝐵 𝐴 𝐶 𝐷 𝐸 

Figure 2.1: DRT Example 1

k = 1 k = 2 k = 3 k = 4

π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

Alpha Value: απ(k) 2 2 4 2

Total Cost: totalcostk
π 20 60 60 80

Marginal Cost: mcπ(k) 20 40 0 20

Table 2.1: DRT Values

then accepts or declines. If it declines, the DRT system simply pretends that it never

arrived, which explains why we assume, without loss of generality, that all passengers

accept. If it accepts, it will get serviced. Its fare is costtπ(k) (which does not necessarily

equal the fare quote) if the shuttles start to service passengers after the arrival of

passenger π(t).

2.2 Demand Responsive Transit Example

We use the DRT example in Figure 2.1 to illustrate typical cost-sharing mechanisms.

There is one shuttle that can transport up to four passengers and starts at the star.

The shuttle incurs an operating cost of 10 for each unit of distance traveled and does

not need to return to its initial location. There are four passengers with arrival order

π(1) = P1, π(2) = P2, π(3) = P3 and π(4) = P4. For example, Passenger P3 requests

a ride from location B to location D, as shown in Figure 2.1. All passengers accept

all fare quotes. Table 2.1 shows the alpha value of each passenger, the total cost after

the arrival of each passenger and the marginal cost of each passenger. For example,

the alpha value of Passenger P3 is the point-to-point travel distance from its pick-up

location B to its drop-off location D. Thus, απ(3) = 4. The total cost at time 3, after the

arrival of Passenger P3, is 10 times the minimal travel distance of the shuttle required
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2.3 Typical Cost-Sharing Mechanisms

k = 1 k = 2 k = 3 k = 4

π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

t = 1 20

t = 2 30 30

t = 3 15 15 30

t = 4 16 16 32 16

Table 2.2: Shared Costs under Proportional Cost Sharing: costtπ(k)

to service Passengers P1, P2 and P3. Thus, totalcost3π = 60 since the shuttle has to

drive from location A (to pick up Passenger P1) via location B (to drop off Passenger

P1 and pick up Passenger P3) and location C (to pick up Passenger P2) to location D

(to drop off Passengers P2 and P3). The marginal cost of Passenger P3 is the increase

in total cost due to its arrival. Thus, mcπ(3) = totalcost3π − totalcost2π = 60 − 60 = 0

since the total cost remains 60.

2.3 Typical Cost-Sharing Mechanisms

Online cost-sharing mechanisms determine the shared costs in the online setting, where

knowledge of future arrivals of passengers is missing. We present typical cost-sharing

mechanisms and some of their shortcomings in the online setting, using the DRT ex-

ample in Section 2.2.

2.3.1 Proportional Cost Sharing

One commonly used cost-sharing mechanism is proportional cost sharing (26, 27), where

the total cost is distributed among all passengers proportionally to their alpha values,

which reflects that passengers with higher demands should contribute more toward the

total cost. Consequently, for all times k and t with 1 ≤ k ≤ t and all arrival orders π,

the shared cost of passenger π(k) at time t under arrival order π is

costtπ(k) := totalcosttπ
απ(k)∑t
j=1 απ(j)

.

Instead of distributing the total (operating) cost among all passengers, one could

also distribute the operating cost of each shuttle among all passengers serviced by that
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2.3 Typical Cost-Sharing Mechanisms

Truthful Arrival Delayed Arrival

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4 π(k) = P2 π(k) = P1 π(k) = P3 π(k) = P4

t = 1 20 60

t = 2 20 40 60 0

t = 3 20 40 0 60 0 0

t = 4 20 40 0 20 60 0 0 20

Table 2.3: Shared Costs under Incremental Cost Sharing: costtπ(k)

shuttle, which results in identical properties for the DRT example in Section 2.2 since

there is only one shuttle in the DRT example.

Table 2.2 shows the shared costs for the DRT example. For example, the total cost

at time 3 is 60. It is distributed among all passengers that have arrived at time 3,

namely Passengers P1, P2 and P3, proportionally to their alpha values, namely 2, 2

and 4, respectively. Consequently, the shared cost of Passenger P3 at time 3 and thus

the fare quoted to Passenger P3 after its arrival is cost3π(3) = 30. Similarly, the total

cost at time 4 is 80. It is distributed among all passengers that have arrived at time 4,

namely Passengers P1, P2, P3 and P4, proportionally to their alpha values, namely 2,

2, 4 and 2, respectively. Consequently, the shared cost of Passenger P3 at time 4 and

thus its fare is cost4π(3) = 32, implying that its fare is higher than its fare quote. This is

undesirable because Passenger P3 might agree with the fare quote but not the higher

fare, meaning that it will have to drop out shortly before receiving its ride and then

needs to search for a last-minute alternative to using the DRT system, which might be

pricy and is not guaranteed to exist. This is undesirable, which is why we suggest that

a fare quote should be an upper bound on the fare (immediate response property). We

also suggest that the upper bound should be reasonably low since passengers might

otherwise look for alternatives to using the DRT system after receiving a fare quote

that they do not agree with, commit to one and then drop out unnecessarily. Obtaining

reasonably low upper bounds can be difficult since the DRT system has no knowledge

of future arrivals.

2.3.2 Incremental Cost Sharing

Another commonly used cost-sharing mechanism is incremental cost sharing (16),

where the shared cost of each passenger is its marginal cost, which is the increase

8



2.3 Typical Cost-Sharing Mechanisms

in total cost due to its arrival. Consequently, for all times k and t with 1 ≤ k ≤ t and

all arrival orders π, the shared cost of passenger π(k) at time t under arrival order π is

costtπ(k) := mcπ(k).

Table 2.3 (left) shows the shared costs for the DRT example in Section 2.2. For

example, the marginal cost of Passenger P3 is 0. Consequently, the shared cost of

Passenger P3 from its arrival at time 3 on is 0, and thus both its fare quote and fare are

0 as well. In general, incremental cost sharing satisfies the immediate response property

since the marginal costs are independent of time. The fares of Passengers P1, P2 P3

and P4 are 20, 40, 0 and 20, respectively. Thus, Passenger P3 is a free rider, which is

undesirable in general and especially in the context of the DRT example since Passenger

P3 has the highest demand, which should be reflected in the fares. Proportional cost

sharing does not suffer from this problem. For the discussion below, notice that the

fare per alpha value of Passenger P1 is 10 and the one of Passenger P3 is 0 even though

Passenger P1 arrives before Passenger P3.

Table 2.3 (right) shows the shared costs for the DRT example in Section 2.2 if

Passenger P1 delays its arrival and the passengers arrive in order P2, P1, P3 and P4.

Now, the shared cost of Passenger P1 from its arrival at time 2 on is 0, and thus both

its fare quote and fare are 0 as well. Thus, Passenger P1 can reduce its fare from 20 to

0 by strategically delaying its arrival. This is undesirable because DRT systems have

more time to prepare the earlier passengers arrive, which is why we suggest to provide

incentives for passengers to arrive truthfully (that is, as early as possible), for example

by ensuring that the fares per alpha value of passengers are never higher than those of

passengers who arrive after them (online fairness property). Incremental cost sharing

does not satisfy this property as shown above. In general, we suggest to ensure that

the best strategy of every passenger is to arrive truthfully because it cannot decrease

its fare by delaying its arrival (incentive compatibility property).

2.3.3 Other Cost-Sharing Mechanisms

There has been a considerable amount of research on designing cost-sharing mechanisms

in the fields of cooperative game theory and multi-agent systems, mostly focusing on

the offline setting, see (9, 11, 21) for related work. Two cost-sharing mechanisms have

9



2.4 Desirable Properties

received a fair amount of attention in the mechanism design literature in addition to

proportional and incremental cost sharing, namely the value mechanism (22) and the

serial mechanism (15). However, these mechanisms for the offline setting encounter

similar problems as proportional cost sharing in the online setting. Online cost-sharing

mechanisms have been studied in (3) but without considering fairness.

Online fair division problems for cake cutting (25) and resource allocation (12) deal

with agents that arrive one after the other, just like the online cost-sharing problem

for DRT systems, but the available amount of cake and resources of those problems do

not depend on the requests of the agents, while the total cost of online cost-sharing

problems for DRT systems depends on the ride requests..

2.4 Desirable Properties

None of the cost-sharing mechanisms discussed so far are well-suited for the on-line

setting. Based on their shortcomings, we derive a list of desirable properties for online

cost-sharing mechanism. Our primary objective is to design online cost-sharing mech-

anisms that provide incentives for passengers to arrive truthfully while satisfying basic

properties of cost-sharing mechanism in general, such as fairness and budget balance.

• Online Fairness: The shared costs per alpha value of passengers are never higher

than those of passengers who arrive after them, that is, for all times k1, k2 and t

with 1 ≤ k1 ≤ k2 ≤ t and all arrival orders π,

costtπ(k1)

απ(k1)
≤

costtπ(k2)

απ(k2)
.

• Immediate Response: Passengers are provided at their arrival with (ideally

low) upper bounds on their shared costs at any future time, that is, for all times

k, t1 and t2 with 1 ≤ k ≤ t1 ≤ t2 and all arrival orders π,

costt1π(k) ≥ costt2π(k).

• Budget Balance: The total cost equals the sum of the shared costs of all pas-

sengers, that is, for all times 1 ≤ t and all arrival orders π,

t∑
j=1

costtπ(j) = totalcosttπ.

10



2.4 Desirable Properties

• Ex-Post Incentive Compatibility (EPIC):1 The best strategy of every pas-

senger is to arrive truthfully provided that all other passengers arrive truthfully

as well and do not change whether they accept or decline their fare quotes because

it then cannot decrease its shared cost by delaying its arrival, that is, for all times

k1, k2 and t with 1 ≤ k1 < k2 ≤ t and all arrival orders π and π′ with

π′(k) =


π(k + 1) if k1 ≤ k < k2

π(k1) if k = k2

π(k) otherwise,

costtπ(k1) ≤ costtπ′(k2).

The online fairness and ex-post incentive compatibility (EPIC) properties are simi-

lar but one does not imply the other. Basically, they provide incentives for passengers

to arrive truthfully. Thus, the DRT systems have more time to prepare and might

also be able to offer subsequent passengers lower fares due to synergies with the early

ride requests, which might allow them to service more passengers. The online fairness

property is also meant to ensure that passengers consider the fares to be fair (since they

understand that passengers need to be provided with incentives to arrive early since

their early arrivals often affect other passengers positively, yet often result in high fare

quotes for them since potential synergies with later ride requests are not yet known

at their arrival), although this still needs to be tested empirically. The immediate re-

sponse property enables DRT systems to provide fare quotes in form of upper bounds
1We would like the ex-post incentive compatibility property ideally to state that the best strategy of

every passenger is to arrive truthfully because it cannot decrease its shared cost by delaying its arrival.

However, we impose two conditions in this report that we hope to be able to relax in the future. The

first condition is that all other passengers arrive truthfully, which, for example, rules out collusion of

several passengers. In general, the literature on online mechanism design (17) distinguishes two types

of incentive compatibility, namely dominant-strategy incentive compatibility and ex-post incentive com-

patibility (EPIC). Dominant-strategy incentive compatibility does not require the first condition, while

ex-post incentive compatibility (EPIC) does. Dominant-strategy incentive compatibility is difficult to

achieve in the online setting, which is why we (and other researchers) are content with imposing the

first condition in this report. The second condition is that none of the other passengers change whether

they accept or decline their fare quotes, even though, for example, the delayed arrival of a passenger

could cause the fare quotes of subsequent passengers to increase, which might make them drop out.

The arrival orders with and without the delayed arrival are then difficult to relate, which is why we are

content with imposing the second condition in this report.

11



2.4 Desirable Properties

on the fares to passengers immediately after their arrival despite missing knowledge

of future arrivals. Thus, passengers have no uncertainty about whether they can be

serviced or how high their fares will be at most, while the DRT systems reduce their

uncertainty about passengers dropping out and can thus prepare better. Yet, they still

retain some flexibility to optimize the routes and schedules after future arrivals. The

budget balance property guarantees that the sum of the fares of all passengers always

equals the operating cost. Thus, no profit is made and no subsidies are required.

We stated sufficient rather than necessary conditions for the properties. For exam-

ple, the immediate response property could be weakened to state that passengers are

provided at their arrival with (ideally low) upper bounds on their shared costs after the

arrival of the last passenger since this implies that their fare quotes are upper bounds

on their fares. Similarly, the budget balance property could be weakened to state that

the total cost equals the sum of the shared costs of all passengers after the arrival

of the last passenger. Requiring the properties to hold at any time rather than only

after the arrival of the last passenger simplifies the development of online cost-sharing

mechanism since they do not know in advance at which time the last passenger arrives.
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3

Proportional Online Cost Sharing

Several online cost-sharing mechanisms might satisfy the properties listed in Section 2.4.

In this chapter, we describe a novel online cost-sharing mechanism, called Proportional

Online Cost Sharing (POCS), which satisfies the properties and is thus a very first

step toward addressing some of the problems raised by missing knowledge of future

arrivals. The idea behind POCS is the following: POCS partitions passengers into

coalitions, where coalitions contain all passengers that arrive within given time intervals

(rather than, for example, all passengers are served by the same shuttle). Initially, each

newly arriving passenger forms its own coalition. However, passengers can choose to

form coalitions with passengers that arrive directly after them to decrease their shared

costs per alpha value, which implies the online fairness, immediate response, and ex-

post incentive compatibility (EPIC) properties. For example, the immediate response

property holds because passengers add other passengers to their coalitions only when

this decreases their shared costs per alpha value and thus also their shared costs (since

the alpha values are positive). We prove in Chapter 4 that POCS indeed satisfies all

properties listed in Section 2.4.

3.1 Calculation of Shared Costs

We start by defining the coalition cost per alpha value to be able to describe formally

how POCS calculates the shared costs.

Definition 5. For all times k1, k2 and t with k1 ≤ k2 ≤ t and all arrival orders π,
the coalition cost per alpha value of passengers π(k1), . . . , π(k2) at time t under arrival

13



3.2 Relationship to Other Cost-Sharing Mechanisms

order π is

ccpaπ(k1,k2) :=

∑k2
j=k1

mcπ(j)∑k2
j=k1

απ(j)

.

We now describe how POCS calculates the shared costs.

Definition 6. For all times k and t with k ≤ t and all arrival orders π, the shared cost
of passenger π(k) at time t under arrival order π is

costtπ(k) := απ(k) min
k≤j≤t

max
1≤i≤j

ccpaπ(i,j).

3.2 Relationship to Other Cost-Sharing Mechanisms

We first define coalitions to be able to explain why POCS is a combination of propor-

tional and incremental cost sharing.

Definition 7. For all times k1, k2 and t with k1 ≤ k2 ≤ t and all arrival orders π, a
coalition (k1, k2) at time t is a group of passengers π(k1), . . . , π(k2) with

costtπ(k)

απ(k)
=

costtπ(k1)

απ(k1)
for all times k with k1 ≤ k ≤ k2

costtπ(k)

απ(k)
6=

costtπ(k1)

απ(k1)
for all times k with (k = k1 − 1 or k = k2 + 1) and 1 ≤ k ≤ t.

We now state a lemma that we prove as Lemma 3 in Chapter 4. It states that the

shared costs per alpha value of all passengers in any coalition are always identical and

equal to the coalition cost per alpha value of the coalition.

Lemma 1. The shared cost per alpha value of any passenger in any coalition at any
time equals the coalition cost per alpha value of the coalition, that is, for all times k1,
k, k2 and t with 1 ≤ k1 ≤ k ≤ k2 ≤ t such that (k1, k2) is a coalition at time t and all
arrival orders π,

costtπ(k)

απ(k)
= ccpaπ(k1,k2).

14



3.3 Illustration

Lemma 1 implies that POCS is a combination of proportional and incremental cost

sharing, for the following reasons:

• The sum of the marginal costs of all passengers in any coalition (“the total cost

of all passengers in the coalition”) at time t is distributed among all passengers in

the coalition proportionally to their alpha values since, for all times k1, k, k2 and

t with k1 ≤ k ≤ k2 ≤ t such that (k1, k2) is a coalition at time t and all arrival

orders π,

costtπ(k)
Lem.1= απ(k)ccpaπ(k1,k2)

Def.5
= απ(k)

∑k2
j=k1

mcπ(j)∑k2
j=k1

απ(j)

=

 k2∑
j=k1

mcπ(j)

 απ(k)∑k2
j=k1

απ(j)

,

which is similar to proportional cost sharing, where the total cost (of all passen-

gers) is distributed among all passengers proportionally to their alpha values.

• The sum of the shared costs of all passengers in any coalition (“the shared cost

of the coalition”) at time t equals the sum of the marginal costs of all passengers

in the coalition (“the marginal cost of the coalition”) at the same time since, for

all times k1, k2 and t with k1 ≤ k2 ≤ t such that (k1, k2) is a coalition at time t

and all arrival orders π,

k2∑
j=k1

costtπ(j)
Lem.1= ccpaπ(k1,k2)

k2∑
j=k1

απ(j)
Def.5
=

∑k2
j=k1

mcπ(j)∑k2
j=k1

απ(j)

k2∑
j=k1

απ(j) =
k2∑

j=k1

mcπ(j),

which is similar to incremental cost sharing. where the shared cost of a passenger

is its marginal cost. It also implies the budget balance property since summing

over all passengers in all coalitions is identical to summing over all passengers

and the sum of the marginal costs of all passengers equals the total cost.

3.3 Illustration

Table 3.1 shows the coalition costs per alpha value for the DRT example in Section 2.2.

The coalition costs per alpha value are used to calculate the shared costs, shown in

Table 3.2. The shared costs, in turn, are used to calculate the shared costs per alpha

15



3.4 Ex-Post Incentive Compatibility

k2 = 1 k2 = 2 k2 = 3 k2 = 4

π(k2) = P1 π(k2) = P2 π(k2) = P3 π(k2) = P4

k1 = 1 π(k1) = P1 10 15 7 1/2 8

k1 = 2 π(k1) = P2 20 6 2/3 7 1/2

k1 = 3 π(k1) = P3 0 3 2/3

k1 = 4 π(k1) = P4 10

Table 3.1: Coalition Costs per Alpha Value under POCS: ccpaπ(k1,k2)

k = 1 k = 2 k = 3 k = 4

π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

t = 1 20

t = 2 20 40

t = 3 15 15 30

t = 4 15 15 30 20

Table 3.2: Shared Costs under POCS: costtπ(k)

value, shown in Table 3.3, by dividing the shared costs by the alpha values, shown in

Table 2.1. For example, at time 4, Passengers P1, P2 and P3 form a coalition (since

their shared costs per alpha value are equal), and Passenger P4 forms a coalition by

itself. The sum of the marginal costs of the three passengers in the first coalition

(“the total cost of all passengers in the coalition”) is 60 and is distributed among all

passengers in the coalition proportionally to their alpha values, namely 2, 2 and 4,

respectively. Consequently, the shared cost of Passenger P3 at time 4 and thus its fare

is cost4π(3) = 30. Table 3.3 shows that the shared costs per alpha value in each row are

monotonically non-decreasing from left to right, corresponding to the online fairness

property. Table 3.2 shows that the shared costs in each column are monotonically non-

increasing from top to bottom (and consequently Table 3.3 shows that the shared costs

per alpha value have the same property), corresponding to the immediate response

property. Table 3.2 also shows that the sum of the shared costs in each row equals the

total cost at the corresponding time, corresponding to the budget balance property.

3.4 Ex-Post Incentive Compatibility

We use the DRT example in Figure 3.1 to illustrate that POCS does not satisfy the ex-

post incentive compatibility property if the second condition (namely that none of the

other passengers change whether they accept or decline their fare quotes) is removed.
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3.5 Water Analogy

k = 1 k = 2 k = 3 k = 4

π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

t = 1 10

t = 2 10 20

t = 3 7 1/2 7 1/2 7 1/2

t = 4 7 1/2 7 1/2 7 1/2 10

Table 3.3: Shared Costs per Alpha Value under POCS: costtπ(k)/απ(k)

𝑃3 𝑃1 

𝑃2 
2 

1 

1 𝐵 𝐴 

𝐶 

𝐷 

Figure 3.1: DRT Example 2

There is one shuttle that can transport up to four passengers and starts at the star.

The shuttle incurs an operating cost of 10 for each unit of distance traveled and does

not need to return to its initial location. There are three passengers. Passengers P1 and

P3 accept all fare quotes, while Passenger P2 accepts all fare quotes up to 27. Assume

that the passengers arrive in order P1, P2 and P3. First, Passenger P1 arrives, receives

a fare quote of 30 and accepts. Second, Passenger P2 arrives, receives a fare quote of

25 and accepts. Third, Passenger P3 arrives, receives a fare quote of 25 and accepts.

In the end, Passengers P1, P2 and P3 are serviced with fares of 12 1/2, 12 1/2 and

25, respectively. Now assume that Passenger P1 delays its arrival, and the passengers

arrive in order P2, P3 and P1. First, Passenger P2 arrives, receives a fare quote of 30

and drops out since the fare quote exceeds its limit of 27. Second, Passenger P3 arrives,

receives a fare quote of 20 and accepts. Third, Passenger P1 arrives, receives a fare

quote of 10 and accepts. In the end, Passengers P1 and P3 are serviced with fares of 10

and 20, respectively. Thus, Passenger P1 managed to decrease both its fare quote and

fare by delaying its arrival since this caused Passenger P2 to drop out.
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3.5 Water Analogy

1

2 2

20

2

40

2

(a) t = 2

1

2 2 4

30

4
15

2

(b) t = 3

Figure 3.2: Water Analogy

3.5 Water Analogy

The following analogy using water in containers provided the inspiration for POCS.

Every passenger is represented by a water container. The volume of water in the

container corresponds to the shared cost of the passenger, the cross-sectional area of the

container corresponds to the alpha value of the passenger, and the level of water in the

container thus corresponds to the shared cost per alpha value of the passenger. When

a new passenger arrives, it is allocated an empty container to the right of the existing

containers. A volume of water that corresponds to the marginal cost of the passenger is

poured into this new container, the new container is connected to the container of the

previously arriving passenger with a one-way valve that allows water to flow only into

the new container, and the water is allowed to settle and reach equilibrium. Afterwards,

the volume of water in all containers corresponds to the total cost, and the volume of

water in each container corresponds to the shared cost of the corresponding passenger.

We explain the water analogy in following for the DRT example in Section 2.2. Figure

3.2(a) (left) shows the water levels in equilibrium after Passenger P2 arrived and 40

units of water were poured into its container, and Figure 3.2(a) (right) shows the water

levels in equilibrium after Passenger P3 arrived and 0 units of water were poured into its

container. In general, in equilibrium, the water levels are monotonically nondecreasing

from left to right since water can flow only from left to right, corresponding to the

on-line fairness property. The water level and thus also the volume of water in each

container are monotonically non-increasing over time since water can flow only from

left to right, corresponding to the immediate response property. With the exception of

pouring water into new containers, water does not get added or removed, corresponding

to the budget balance property.
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4

Analysis of Properties

In this chapter, we prove that POCS satisfies all properties listed in Section 2.4, making

use of the following corollary to Definition 6.

Corollary 1. For all times k and t with 1 ≤ k ≤ t and all arrival orders π,

costtπ(k)

απ(k)
= min

k≤j≤t

costjπ(j)

απ(j)
.

Proof. Consider any times k and t with 1 ≤ k ≤ t and any arrival order π. Then,

costtπ(k)

απ(k)

Def.6
= min

k≤j≤t
max
1≤i≤j

ccpaπ(i,j)

= min
k≤j≤t

min
j≤j′≤j

max
1≤i≤j′

ccpaπ(i,j′)

Def.6
= min

k≤j≤t

costjπ(j)

απ(j)
,

which proves the corollary.

4.1 Online Fairness

In this section, we prove that POCS satisfies the online fairness property, namely that

the shared costs per alpha value of passengers are never higher than those of passengers

who arrive after them.
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4.2 Immediate Response

Theorem 1. POCS satisfies the online fairness property, that is, for all times k1, k2

and t with 1 ≤ k1 ≤ k2 ≤ t and all arrival orders π,

costtπ(k1)

απ(k1)
≤

costtπ(k2)

απ(k2)
.

Proof. Consider any times k1, k2 and t with 1 ≤ k1 ≤ k2 ≤ t and any arrival order π.
Then,

costtπ(k1)

απ(k1)

Cor.1= min
k1≤j≤t

costjπ(j)

απ(j)

k1≤k2

≤ min
k2≤j≤t

costjπ(j)

απ(j)

Cor.1=
costtπ(k2)

απ(k2)
,

which proves the theorem.

4.2 Immediate Response

In this section, we prove that POCS satisfies the immediate response property, namely

that passengers are provided at their arrival with upper bounds on their shared costs

at any future time because they are provided with their shared costs at their arrival

and their shared costs are monotonically non-increasing over time.

Theorem 2. POCS satisfies the immediate response property, that is, for all times k,
t1 and t2 with 1 ≤ k ≤ t1 ≤ t2 and all arrival orders π,

costt1π(k) ≥ costt2π(k).

Proof. Consider any times k, t1 and t2 with 1 ≤ k ≤ t1 ≤ t2 and any arrival order π.
Then,

costt1π(k)

Cor.1= απ(k) min
k≤j≤t1

costjπ(j)

απ(j)

t1≤t2
≥ απ(k) min

k≤j≤t2

costjπ(j)

απ(j)

Cor.1= costt2π(k),

which proves the theorem.

4.3 Budget Balance

In this section, we prove that POCS satisfies the budget balance property, namely that

the total cost equals the sum of the shared costs of all passengers. We first prove some
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4.3 Budget Balance

properties of coalitions and then that the sum of the marginal costs of all passengers

in any coalition (“the total cost of all passengers in the coalition”) equals the sum of

the shared costs of all passengers in it.

Lemma 2. The shared cost of the last passenger in any coalition at any time equals
its shared cost immediately after its arrival, that is, for all times k1, k2 and t with
1 ≤ k1 ≤ k2 ≤ t such that (k1, k2) is a coalition at time t and all arrival orders π,

costtπ(k2) = costk2

π(k2).

Proof. Consider any times k1, k2 and t with 1 ≤ k1 ≤ k2 ≤ t such that (k1, k2) is a
coalition at time t and any arrival order π. At time t = k2, the lemma trivially holds.
At time t > k2,

costtπ(k2)

απ(k2)

Th.1
<

costtπ(k2+1)

απ(k2+1)
(4.1)

since passengers π(k2) and π(k2 +1) are in different coalitions at time t and thus do not
have the same shared cost per alpha value at time t according to Definition 7. Thus,1

mink2≤j≤t
costj

π(j)

απ(j)

Cor.1=
costt

π(k2)

απ(k2)

Eq.4.1
<

costt
π(k2+1)

απ(k2+1)

Cor.1= mink2+1≤j≤t
costj

π(j)

απ(j)
(4.2)

costtπ(k2)
Cor.1= απ(k2) mink2≤j≤t

costj
π(j)

απ(j)

Eq.4.2∗
= απ(k2)

cost
k2
π(k2)

απ(k2)
= costk2

π(k2),

which proves the lemma.

Lemma 3. The shared cost per alpha value of any passenger in any coalition at any
time equals the coalition cost per alpha value of the coalition, that is, for all times k1,
k, k2 and t with 1 ≤ k1 ≤ k ≤ k2 ≤ t such that (k1, k2) is a coalition at time t and all
arrival orders π,

costtπ(k)

απ(k)
= ccpaπ(k1,k2).

Proof. Consider any times k1, k, k2 and t with 1 ≤ k1 ≤ k ≤ k2 ≤ t such that (k1, k2)
is a coalition at time t and any arrival order π. We prove the lemma for k = k2. It

1At the position marked with an asterisk, we use that mink2≤j≤t xj < mink2+1≤j≤t xj implies

mink2≤j≤t xj = xk2 .
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4.3 Budget Balance

then also holds for all k with k1 ≤ k ≤ k2 since all passengers in the same coalition at
time t have the same shared cost per alpha value at time t according to Definition 7.
We prove the lemma for k = k2 by contradiction by assuming that

costtπ(k2)

απ(k2)
6= ccpaπ(k1,k2). (4.3)

Then,

ccpaπ(k1,k2)

Eq.4.3

6=
costt

π(k2)

απ(k2)

Lem.2=
cost

k2
π(k2)

απ(k2)

Def.6
= max1≤j≤k2 ccpaπ(j,k2) (4.4)

ccpaπ(k1,k2)

Eq.4.4,1≤k1≤k2

< max1≤j≤k2 ccpaπ(j,k2). (4.5)

Thus, there exists a time k′ with 1 ≤ k′ < k2 such that

ccpaπ(k1,k2)

Eq.4.5
< max

1≤j≤k2

ccpaπ(j,k2) = ccpaπ(k′,k2). (4.6)

Assume without loss of generality that k′ is the earliest such time. Then, for all times
k′′ with 1 ≤ k′′ < k′,

ccpaπ(k′′,k2) < ccpaπ(k′,k2). (4.7)

We distinguish the following cases to prove that such a k′ does not exist. The cases are
exhaustive since 1 ≤ k′ < k2 and 1 ≤ k1 ≤ k2:

• Case 1 ≤ k′ < k1:
Let A :=

∑k1−1
j=k′ mcπ(j), B :=

∑k2
j=k1

mcπ(j), C :=
∑k1−1

j=k′ απ(j) and D :=
∑k2

j=k1
απ(j).

Then,

B
D

Def.5
= ccpaπ(k1,k2)

Eqs.4.6
< ccpaπ(k′,k2)

Def.5
= A+B

C+D (4.8)

BC
Eq.4.8,C>0,D>0

< AD (4.9)

ccpaπ(k′,k2)
Def.5
= A+B

C+D

Eq.4.9
< A

C

Def.5
= ccpaπ(k′,k1−1). (4.10)

Separately,

costtπ(k1−1)

απ(k1−1)

Th.1
<

costtπ(k1)

απ(k1)
(4.11)

since passengers π(k1− 1) and π(k1) are in different coalitions at time t and thus
do not have the same shared cost per alpha value at time t according to Definition
7. Thus,

min
k1−1≤j≤t

costjπ(j)

απ(j)

Cor.1=
costtπ(k1−1)

απ(k1−1)

Eq.4.11
<

costtπ(k1)

απ(k1)

Cor.1= min
k1≤j≤t

costjπ(j)

απ(j)
(4.12)
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and1

costk1−1
π(k1−1)

απ(k1−1)

Eq.4.12∗
< min

k1≤j≤t

costjπ(j)

απ(j)

k1≤k2

≤ min
k2≤j≤t

costjπ(j)

απ(j)

Cor.1=
costtπ(k2)

απ(k2)

Lem.2=
costk2

π(k2)

απ(k2)

Def.6
= max

1≤j≤k2

ccpaπ(j,k2)

Eq.4.6
= ccpaπ(k′,k2)

Eq.4.10
< ccpaπ(k′,k1−1)

1≤k′≤k1−1
≤ max

1≤j≤k1−1
ccpaπ(j,k1−1)

Def.6
=

costk1−1
π(k1−1)

απ(k1−1)
,

which is a contradiction since a value cannot be lower than itself.

• Case k′ = k1:
It holds that

ccpaπ(k′,k2)
k′=k1= ccpaπ(k1,k2)

Eq.4.5
< max

1≤j≤k2

ccpaπ(j,k2)
Eq.4.6

= ccpaπ(k′,k2),

which is a contradiction since a value cannot be lower than itself.

• Case k1 < k′ < k2:
Let A :=

∑k′−1
j=k′′ mcπ(j), B :=

∑k2
j=k′ mcπ(j), C :=

∑k′−1
j=k′′ απ(j) and D :=

∑k2
j=k′ απ(j).

Then, for all times k′′ with 1 ≤ k′′ < k′,

A+B
C+D

Def.5
= ccpaπ(k′′,k2)

Eq.4.7
< ccpaπ(k′,k2)

Def.5
= B

D (4.13)

AD
Eq.4.13,C>0,D>0

< BC (4.14)

ccpaπ(k′′,k′−1)
Def.5
= A

C

Eq.4.14
< B

D

Def.5
= ccpaπ(k′,k2). (4.15)

1At the position marked with an asterisk, we use that mink1−1≤j≤t xj < mink1≤j≤t xj implies

xk1−1 < mink1≤j≤t xj .
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Thus,1

costtπ(k1)

απ(k1)

Cor.1= min
k1≤j≤t

costjπ(j)

απ(j)

k1≤k′−1<t
≤

costk
′−1

π(k′−1)

απ(k′−1)

Def.6
= max

1≤j≤k′−1
ccpaπ(j,k′−1)

Eq.4.15∗
< ccpaπ(k′,k2)

Eq.4.6
= max

1≤j≤k2

ccpaπ(j, k2)

Def.6
=

costk2

π(k2)

απ(k2)

Lem.2=
costtπ(k2)

απ(k2)
,

which is a contradiction since passengers π(k1) and π(k2) are in the same coalition
at time t and thus have the same shared cost per alpha value at time t according
to Definition 7.

Theorem 3. POCS satisfies the budget balance property, that is, for all times 1 ≤ t

and all arrival orders π,
t∑

j=1

costtπ(j) = totalcosttπ.

Proof. Consider any times k1, k2 and t with 1 ≤ k1 ≤ k2 ≤ t such that (k1, k2) is a
coalition at time t and any arrival order π. Then,

k2∑
j=k1

costtπ(j)
Lem.3= ccpaπ(k1,k2)

k2∑
j=k1

απ(j)
Def.5
=

∑k2
j=k1

mcπ(j)∑k2
j=k1

απ(j)

k2∑
j=k1

απ(j) =
k2∑

j=k1

mcπ(j).(4.16)

Summing over all passengers in all coalitions is identical to summing over all passengers.
Thus,

t∑
j=1

costtπ(j)

Eq.4.16
=

t∑
j=1

mcπ(j)
Def.3
=

t∑
j=1

(
totalcosttπ − totalcostt−1

π

)
= totalcosttπ,

1At the position marked with an asterisk, we use that, for all k′′ with 1 ≤ k′′ < k′, xk′′ < y implies

max1≤k′′<k′ xk′′ < y.
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which proves the theorem.

4.4 Ex-Post Incentive Compatibility

In this section, we prove that POCS satisfies the ex-post incentive compatibility (EPIC)

property, namely that the best strategy for every passenger is to arrive truthfully

provided that all other passengers arrive truthfully as well and do not change whether

they accept or decline their fare quotes because it then cannot decrease its shared cost

by delaying its arrival.

Theorem 4. POCS satisfies the incentive compatibility (EPIC) property, that is, for
all times k1, k2 and t with 1 ≤ k1 < k2 ≤ t and all arrival orders π and π′ with

π′(k) =


π(k + 1) if k1 ≤ k < k2

π(k1) if k = k2

π(k) otherwise,

(4.17)

costtπ(k1) ≤ costtπ′(k2).

Proof. Consider any times k1, k2 and t with 1 ≤ k1 < k2 ≤ t and any arrival orders
π and π′ with π′(k) as given in Equation 4.17. π is the arrival order where every
passenger arrives truthfully and the passengers arrive in order π(1), π(2), . . . , π(k1 −
1), π(k1), π(k1 +1), . . . , π(k2− 1), π(k2), π(k2 +1), . . . , π(t), while π′ is the arrival order
where passenger π(k1) delays its arrival and the passengers arrive in order π(1), π(2), . . . , π(k1−
1), π(k1 + 1), . . . , π(k2 − 1), π(k2), π(k1), π(k2 + 1), . . . , π(t). We prove the theorem by
contradiction by assuming that

costtπ′(k2) < costtπ(k1). (4.18)

Then,

costtπ′(k2)

απ′(k2)

Eq.4.18
<

costtπ(k1)

απ(k1)
, (4.19)

since the alpha values do not depend on the arrival order according to Definition 1 and
thus απ′(k2) = απ(k1). Assume without loss of generality that t is the earliest such time.
Thus, if k2 < t,

costt−1
π′(k2)

απ′(k2)
≥

costt−1
π(k1)

απ(k1)
. (4.20)
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4.4 Ex-Post Incentive Compatibility

Separately,

t∑
j=1

costtπ′(j)
Th.3= totalcosttπ′ = totalcosttπ

Th.3=
t∑

j=1

costtπ(j) (4.21)

due to the budget balance property since the total cost at time t does not depend on
the arrival order according to Definition 2. Equations 4.20 and 4.21 together imply
that there exists a passenger π(m) with 1 ≤ m ≤ t and m 6= k1 such that the shared
cost of passenger π(m) at time t is higher under arrival order π′ than arrival order π

because the shared cost of passenger π(k1) at time t is lower under arrival order π′ than
arrival order π (Existence Property). We distinguish the following cases to prove
that such a passenger does not exist due to the online fairness and immediate response
properties. The cases are exhaustive since 1 ≤ m ≤ t, m 6= k1 and 1 ≤ k1 < k2 ≤ t:

• Case 1 ≤ m < k1:
In this case, π′(m)

Eq.4.17
= π(m). We distinguish the following subcases. They are

exhaustive since

costtπ(m)

απ(m)

Th.1
≤

costtπ(k1)

απ(k1)
.

– Sub-Case
costt

π(m)

απ(m)
<

costt
π(k1)

απ(k1)
:

It holds that

costtπ(m)

απ(m)

Cor.1= min
m≤j≤t

costjπ(j)

απ(j)

= min

(
min

m≤j≤k1−1

costjπ(j)

απ(j)
, min
k1≤j≤t

costjπ(j)

απ(j)

)
Cor.1= min

(
costk1−1

π(m)

απ(m)
,
costtπ(k1)

απ(k1)

)
(4.22)

Thus,1

costk−1
π(m)

απ(m)

Eq.4.22∗,subcase−assumption
=

costtπ(m)

απ(m)
. (4.23)

Put together,

costtπ′(m)

απ′(m)

Th.2
≤

costk1−1
π′(m)

απ′(m)

∀1≤k<k1
π(k)=π′(k)
=

costk1−1
π(m)

απ(m)

Eq.4.23
=

costtπ(m)

απ(m)
,

1At the position marked with an asterisk, we use that x < z and x = min(y, z) implies x = y.
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which contradicts the Existence Property, namely that there exists a pas-
senger π(m) = π′(m) with

costtπ′(m)

απ′(m)
>

costtπ(m)

απ(m)
.

– Sub-Case
costt

π(m)

απ(m)
=

costt
π(k1)

απ(k1)
:

It holds that

costtπ′(m)

απ′(m)

Th.1
≤

costtπ′(k2)

απ′(k2)

Eq.4.19
<

costtπ(k1)

απ(k1)

subcase−assumption
=

costtπ(m)

απ(m)
,

which contradicts the Existence Property, namely that there exists a pas-
senger π(m) = π′(m) with

costtπ′(m)

απ′(m)
>

costtπ(m)

απ(m)
.

• Case k1 < m ≤ k2:
In this case, π′(m− 1)

Eq.4.17
= π(m). It holds that

costtπ′(m−1)

απ′(m−1)

Th.1
≤

costtπ′(k2)

απ′(k2)

Eq.4.19
<

costtπ(k1)

απ(k1)

Th.1
≤

costtπ(m)

απ(m)
,

which contradicts the Existence Property, namely that there exists a passenger
π(m) = π′(m− 1) with

costtπ′(m−1)

απ′(m−1)
>

costtπ(m)

απ(m)
.

• Case k2 < m ≤ t:
In this case, π′(m)

Eq.4.17
= π(m). It holds that

min
k2≤j≤t

costjπ′(j)

απ′(j)

Cor.1=
costtπ′(k2)

απ′(k2)

Eq.4.19
<

costtπ(k1)

απ(k1)

Th.2
≤

costt−1
π(k1)

απ(k1)

Eq.4.20
≤

costt−1
π′(k2)

απ′(k2)

Cor.1= min
k2≤j≤t−1

costjπ′(j)

απ′(j)
(4.24)
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4.4 Ex-Post Incentive Compatibility

and thus1

costtπ′(t)

απ′(t)

Eq.4.24∗
< min

k2≤j≤t−1

costjπ′(j)

απ′(j)
. (4.25)

Therefore,2

costtπ′(m)

απ′(m)

Th.1
≤

costtπ′(t)

απ′(t)

Eq.4.25∗
= min

(
min

k2≤j≤t−1

costjπ′(j)

απ′(j)
,
costtπ′(t)

απ′(t)

)

= min
k2≤j≤t

costjπ′(j)

απ′(j)

Cor.1=
costtπ′(k2)

απ′(k2)

Eq.4.19
<

costtπ(k1)

απ(k1)

Th.1
≤

costtπ(m)

απ(m)
,

which contradicts the Existence Property, namely that there exists a passenger
π(m) = π′(m) with

costtπ′(m)

απ′(m)
>

costtπ(m)

απ(m)
.

1At the position marked with an asterisk, we use that mink2≤j≤t xj < mink2≤j≤t−1 xj implies

xt < mink2≤j≤t−1 xj .
2At the position marked with an asterisk, we use that x < y implies x = min(y, x).
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5

Conclusions

In this report, we determined properties of cost-sharing mechanisms that we believe

make demand responsive transit systems attractive to both providers and passengers,

namely online fairness, immediate response, budget balance and ex-post incentive com-

patibility. The online fairness property is meant to ensure that passengers consider the

fares to be fair although this still needs to be tested empirically. We then proposed a

novel cost-sharing mechanism, called Proportional Online Cost Sharing (POCS), and

used an analogy involving water in containers to motivate it. POCS provides passengers

with upper bounds on their fares immediately after their arrival, allowing the passen-

gers to accept or decline. Thus, passengers have no uncertainty about whether they

can be serviced or how high their fares will be at most, while the DRT systems reduce

their uncertainty about passengers dropping out and can thus prepare better. Yet, they

still retain some flexibility to optimize the routes and schedules after future arrivals.

The sum of the fares of all passengers always equals the operating cost. Thus, no profit

is made and no subsidies are required. POCS provides incentives for passengers to

arrive truthfully since the fares of passengers per mile of requested travel are never

higher than those of passengers who arrive after them. Thus, the DRT systems have

more time to prepare and might also be able to offer subsequent passengers lower fares

due to synergies with the early ride requests, which might allow them to service more

passengers. Passengers also have incentives to arrive truthfully since the likelihood of

transportation capacity being available tends to decrease over time, which alleviates

the issue that the best strategy of every passenger is to arrive truthfully only under

assumptions that are only approximately satisfied by POCS.
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Overall, POCS is a very first step toward addressing some of the problems raised

by missing knowledge of future arrivals, which differentiates our research from previ-

ous research (1, 8, 14, 23). However, lots of issues remain to be addressed by more

advanced online cost-sharing mechanisms, including integrating more complex models

of passengers, shuttles and transit environments. Our current simplifying assumptions

include, for example, that the availability of shuttles does not change unexpectedly,

that all passengers arrive before the shuttles start to service passengers, that fares de-

pend only on the ride requests and no other considerations (for example, that DRT

systems do not face competition), that all passengers evaluate their trips uniformly ac-

cording to the criteria quantified by the alpha values (for example, that all passengers

consider travel time to be equally important), that DRT systems provide fare quotes to

passengers without predicting future arrivals (for example, that DRT systems do not

reject hard-to-accommodate passengers even though they increase the shared costs of

subsequent passengers and might make subsequent passengers drop out), that passen-

gers try to decrease their fares only by delaying their arrival (rather than, for example,

by colluding with other passengers or entering fake ride requests under false names)

and that passengers honor their commitments (for example, that passengers do not

change ride requests, cancel them, show up late or do not show up at all). Finally, it is

future work to integrate POCS into auctions that determine the routes and schedules

of shuttles and ensure that the resulting operating costs satisfy our assumptions (or,

alternatively, relax the assumptions).
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