REPORT
T0
THE LOS ANGERES METROROLTAN TRANSIT AUTHORITY
ON
MONORATI RAFID TRANSIT

FOR

LOS ANGEDES

24RT II

MONORATE SYSTEM DESIGN ESTEMATES OF CONSTRUCTION COSTS

AND OF GPERAT NG EXPENSES

$$
\text { December 31, } 2953
$$

GIBBS \& HTLA - NC. ENGINEERS - CONSTRUCTORS
NEN TORK $=$ LOS ANGELISS

Gibis \& Hill, inc.

Consulting Engineers

Designers - Constructors

510 WEST SIXTH STREET
Pennsylvania Station
Los Angeles 14, Cal.
NEW YORK 1, N. Y.

December 31, 1953

Coverdale \& Colpitts
120 Wall Street
Hew York 5, New York
Gentlemen:
Transmitted herewith is our report on preliminary design as required for estimating purposes, estimates of construction cost and of maintenance and operating expenses of a monorail rapid-transit installation over both the longer and shorter routes in Los Angeles specified by you.

Attention is called to the fact that unit costs of operation and maintenance are favorable due to the high intensity of use resulting from the schedules proposed. High scheduled speed combined with dense train service over a long main line run results in low costs per train mile and per track mile. The figures given in the report have been derived from the records of similar and successful rapid transit operation adjusted for inherent differences in the two services.

While some structural modifications should be considered in case final design is undertaken the first cost figures based upon the preliminary design are adequate for the present economic study.

A few of the preliminary drawings have been included in the report for illustrative purposes and to indicate the care with which the estimates were prepared. The entire file of drawings is available to you at any time you wish.

We wish to express our appreciation of the wholehearted cooperation received from all members of your staff and the officials of the Metropolitan Transit Authority.

Page No.
SOPE 1
GUMMARY 1Full length of Line, Panorama to Long BeachEs"inated First Cost of LineEscimated First Cost of Equipment, etc.Contingency
Estimated Annual Cost of Meintenance and Operation
Shorter Line, North Hollywood to Compton
Estimated First Cost of Line
Estimated First Cost of Equipment, etc.
Contingency
Estimated Annual Cost of Maintenance and Operation
INTMODUCTION2
Subway
Eievated
Monorail
GBMERAL DFESCRTPTION OF LOS ANGHT.ES PROJECT 3
STRUUCTURES
Supports 4
Stations 6
Yards and Shops 7

TABLE OF CONTENTS
(Continued)
Page No.
GRR RQUTPMEMS 8
Cer bodies 8
Drive 9
POWER SUPELY SYSTEM 10
SIGMAL SEGTEM 11
SCATEULE MERTCRMANCE 12
ming of consthurion 12
MATMEDNLEE AND oqerating COST 13
EXHIbITS
WATMEXANCE AND OPERATING UNIT COSTS 14
put lemera or mine
Mstimated Cost of Construction 15
Estinated Cost of Equipment and Facilities 16
Moval Estimeted First cost 27
GHGREMS THETGM OF JINE
Fstmated Cost construction 18
Scinaeted Cost of Equipment and Facilities 19
Totel Estimated First Cost 20

Thder a contract consumated April 15, 1953 Gibbs \& Hill, Inc. has prepared the following estimates of a Monorail installation to provide mass rapii transit in Los Angeles, Celifornia:

1. The estimated cost of construction of a Monorail line along \& route locstion furnished by Coverdale \& Colpitts;
2. The estimated cost of equipment and appurtenances, stations, shops and inspection facilities, yerds, power supply, power transmission and distribution system, signals and cars;
3. The estimated cost of maintaining and operating the system based on desired overall speeds, frequency of service and passenger loans from information furnished by Coverdale \& Colpicts.

SUMMAR:
Whe study required has developed the following First Cost and Annual Meintenanoe and Operating cost figures:

1. For full length of line, Panorama to Long Beach:

2. Estimated First Cost of Line	\$82,904, 175
b. Estima ${ }^{\text {d }}$ First Cost of Equipment, etc.	44,262,290
c. Contingency	10,000,000
d. Estimated Annual Cost of Maintenance and Operation involving 23,750,000 car miles/year	
car miles/yeas	8,021,000

2. For the shorter line, North Hollywood to Compton:
a. Estimated First Cost of Line 65,146,855
b. Estimated First Cost of Equipment, etc. 36,170,6T7
c. Contingency

10,000,000
d. Estimated Annual Cost of Maintenance and Operation involving 17,540,000 car miles/year 5,928,520

INTRODUCHTOM

Monorail rapid transit was devised as a promising answer to the need, evident in many cormunities, of providing mass rapid transit in face of existing surfaceretraffic congestion and of the high costs of alternate forms of rapid transit, notably the subway. In most instances, high speed movement of true mass-transportation vehicles on the surface is impossible because of interference from other traffic using the same arteries. The cost usuaily involved for suitable private rights-of-way on the surface would be prohibitive. A subway, of course, provides the private right-of-way and eliminates the hindrance of movement from competing traffic. It is, therefore, an admirable solution in all respects, except that of cost. Very few, if any communities can support this burien even when the population served is very dense and riding relatively uniform throughout a large part of the day.

When both surface and sub-surfsce solutions are unavaileble, the only resort is to go above the surface. In the past this has involved the "elevated", an air-less, light-less, near-tunnel over a street cluttered by two or more rows of supporting structures and surrounded by a din of noise. The elevated did provide the desired private right-of-way and as a form of transportation could be satisfactory. Its cost was, relative to the subway, a step in the right direction.

Starting fro the elevated, the problew is to strip away ita objection able features and improve its better ones with the aid of modera technical progress. Monorail is the resulting answer.

The more or less conventional roadbed of the elevated, its ties, and rails, are reduced to a single longitudinal supporting member of strength and stiffness adequate to support the equipment, and within this limitation, of
the smallest dimensions possible. This member, being placed above the ssw, the normal clesrance above the ground surface is increased ten or twelve feet. This relationship in combination with the small amount of light at off ever by a "two track Line, restores the space below it to the out-ofodoors without. incressing appreciably the usual street noise. Both the single and double track arramgements of members require oniy a single row of culums presenting a Inmited surfsee obstruction. In fact, whatever obstruction is involved becomes almost negligible when colums are placed in the center diviston provided in most important new highways.

GENERAL DESCRIPIION OF LOS ANGELES PROJECI

The route for which cost studies have been prepared extends approximately 45 miles from a terminal station at the north end of Van Nuys Bovievard neax Roscoe Boulevgrit to similer station st the southern end on Anericar Boalevsrd at Brosdway in Long Beach. Short turnoaroun, Loop facilities extend beyond both terminai stations. The entire operation is above ground exeept for short tunnel, slightly over two miles in length, under Hill street in domatomo Los Angeles. Thrnmaround facilities are also provided at edther end of the turnel section, and sdjacent to North Hollywood and Compton.

Along Van Muys Boulevera, the swruttures ocexpy the center of the Wide troxoughfare, from which a turn is made onto private right-of-wey in tbe center of Chandler Bowievard. Leaving the Latter boulevard, the Iine mua cilong Vineland Avende to a second section of private right-of-way in the center of Cahuenga Pass Freeway. It lesves this right-of-way at a point winere freeway construction Interferes and passes via Highland Avenue to Sunset Boulevar. Located slong the previous two track street car route, the lire follows Sumet Boulevard to the vicinity of the old Hill Street intersection. At this point
the route swings across the Hollywood Freeway and into a tunnel extending under Hill Street to Washington Boulevard. Thence it cuts across to Broadway, running eventually into Main Street which is followed until the route turns onto Florence Avenue, across which it runs east to Pacifjc Boulevard. Running south on this thoroughfare, the line moves over to Long Beach Boulevard, which together with American Avenue provides the route into Long Beach.

STRTUCTURES

The structure is, in general, supported by a single row of columns located in the center of private right-of-way where available or alternately in the middie of streets. Each column, resting on a concrete foundation adequate to withstand the overturning moments imposed upon it, terminates at the upper end in a transverse double bracket member, supporting two longitudinal girders. Each longitudinal girder, provided with expansion joints at suitable intervais, forms a continuous rail support from one end of the line to the other.

A single running rail, for the form of monorail used as the basis for cost estimates, is fastened on top of the longitudinal girder, resting upon a resilient, sound-deadening material. At expansion joints in the supporting girder, mitre-joints in the rail are provided to preserve a smooth-running surface, free of usual rail-joint clicking. When actual design is undertaken certain alternate forms of construction should be examined. One of these, constituting a change in physical form, is to arrange the trucks and supporting girders so that the truck runs inside the girder, possibly on pneumatic tires. While this arrangement would probably increase the cost of supporting structures and girders approximately 15 per cent, it presents offsetting advantages in cost of subway installation and more convenient switching. Further investigation of the feasibility and economy of pre-stressed concrete structures is
also warranted.
Each of the two trucks supporting each car is provided with two double-flanged wheels. All propulsion motors and equipment are mounted in the: trucks, wihich ride above the running rail surface. The car body runs below the supporting girder and is supported by a nanger-arm from each truck in such a way that the center of gravity of the unit of rolling stock is directly below the rail.

Side clearances are provided to permit sway of the car body in passing around curves or due to transverse wind-loading. In the former ase, the car assumes a position of equilibrium between centrifugal and gravitational forces leading to the easiest passage around curves and to greater passenger confort. The maximum sway provided for, results from the extreme condition of a steady transverse wind loading on the side of the car equivalent to a sustained wind velocity of 70 miles per hour. Under this condition, the displacement of the car is $12^{\circ} 40^{\prime}$ from the vertical. Speed restrictions on curves are established, and enforced by automatic speed control, to keep the sway on curves within tris same limit of displacement.

All parts of the structure are designed to withstand earthquake shock of an acceleration equal to 0.2 g , or 20 per cent of the rate of acceleration due to gravity.

Due to the presence of the hanger arms between trucks and car bodies, track switches necessarily differ from conventional rail-line switches. For straight-through movement space between the tangent girder and that for the turn-off, must be provided for passage of the hanger arms. This is very simply accomplished by arranging a length of the girder support as a 180 degree rotating block turning around a longitudinal axis. In one position it places a
tangent mail in alignment with adjacent straight-through rails. When rotsted overs a curved rail on the opposite surface matches with one adjacent tangent rail and with the curved turnout rasi, so bridging the gap between stationsry supporting members. Movement is provided by dual motor driving mechanisms, so allowing for remote control analogous to conventional switch machines.

The vertical dimensions of the supporting structure provide 16 feet clear between the bottom of cars and the surface of streets or ground below. The under surface of the supporting girders are approximately ten and a half feet above the 16 foot clearance line or slightiy over 26 feet above a road surface. Being at such height and of relatively small dimensions, the girders cannot approach the effect of a nearly solid roadbed at a sixteen foot clear height in obstructing air and light above the street and in reflecting traffic noises, nor do they come nearly as close to structures on abutting property.

A number of varying station arrangements are possible, some of them making use of property adjacent to the street. Such solutions are, however, specimi cases, generally applicable in only a few locations. Since the line runs in general down the center of a street or private mightofoway, the least complication is involved by placing the stations in the same location.

Each station must provide space for a change booth, turnstiles and other general facilities, with convenient access to and from the street leyel and the train platform. In the case of ten stations, the latter is placed between the inbound and outbound routes by somewhat spreading the space between supporting girders. The fare collecting facilities are placed below the platform level as this arrangement avoids restricting space for free passenger movement on the platform and permits access to the platform by stairways leading outward toward the ends of the platform so resulting in convenient
passenger distribution. This mezzanine level can be supported on the same row of colums as the main structure, by increasing the usual girden height suf. ficiently to preserve the standard 16 foot cleargnoe from the mezanine to the street.

It appears undesirabie to provide access to the mezanine level from the center of the street due to the traffic hazard of concentrating pedestrian travel to and from sidewalks in the vicinity of stations. Instead, footmbridges arrosa the street at both ends of the mezzanine level and four stairways to sidewalk level are provided. Two of these stairways are equipped with moving stairs.

It is considered that both the profile and downtown traffic conditions, under which even a single row of supporting column would be undesirsiole, indi. cate a tunnel under approximately two miles of Hill Street, This tunnel section inciudes two stations, one serving the civic Center and one st Seventh Street. In these stations passenger platforms are provided outside the twomtrack area in order to facilitate convenient stairways to the surface without foreing the construction deeper into the ground as would be required by a mezanine level.

Adjacert to all except downtown stations, parining lot facisities gre provided for the convenience of patrons using their own cars, rather than feeder busea ox walking to reach the station.

Storage yards and shops for inspection and mainterance are providea at two locations, on the northern end just off Chandler Boulevard near Woodman Avenue and on the southern end just off Long Beach Boulevard between Compton Boulevard and San Antonio Drive. For the 45 mile instaliation each stosage yard has ten tracks each capable of storing 10 cars. Three additional tracks of thirteen car capacity are provided for car cleaning and light inspection. All
of these tracks are at a lower height than on the main line so providing easy aceess to car interiors from ground level. Each yard is provided with an anto. matic car washer through which cars will pass between cleaning and ilght inspeetion tracks and the storage area. F: the shorter instaliation, betweer North Hollywood and Compton the number of storage tracks and yard capacity are reduced in proportion to the number of cars required.

Both inspection and maintenance shops are provided with covered tracks long enough for three car trains. The southern shop, designated to handle perw iodic and beavy repairs has two tracks for such work and two more for heavy inspection and lubrication. These two tracks can also be used for heavy repairs if required. The northern shop is designed with two tracks for heavy inspection and one for light repairs. Both shops have office and repair shop areas for brake, arive, ana controi equipment repairs and for motor overbaul if this latter work is not bandled on contract basis by an outside service shop.

Entrance to and departure from the yards is provided to or from botin invound and outbound directions on the line. Track facilities required for this fegture may also be used for tarning trains short of the texminal stations when riding does not justify the full run.

CAR EQUIFMENTS

The caxs are to be Iightweight, double truck units, approximately 50 feet long and seating approximately 67 persons depending on the arrangement of seats finaliy sdopted. The body, of semi-monocoque constraction will have two large sliding doors on each side, near the quarterpoints of the car, to facilitate rapid loading and unloading. Inter-comunicating doors for emer: gency use are provided in the ends of the car. All cars are identical except
that a proportion of the total maner, to be usea as lead care, will bave a streamlined nose and be equipped with a control position for train operation and tife nacesmary automatic speed control apparatuw. Trailing care will be equpped with a modified control station for wanding in yards and switestng to make up trains.

Trains consisting of one lead car and one to seven trailing units can te operated. If consistent with estimstes of riding, semi-permanent coupling of cars in pairs is advantageous.

Eacis of tae two trucks per car will kave two 30-inch double-flanged wheele mowhted siagly on eact of the two axles. The axles will also carry a rigit augle gear box and a disc type brake and will run tn roller hearings supporting the ligktweight welded truck frame.

Esch truck frame will carry two propulsion motor assembiles, driving throng double universal joint propeller shafts, brake and control equipment and current collection devies. No prophlifion power frcuits or apparatus are located in the car body in the interest of maintaining simplicity and to ayoid eny insease in vertical dimensions which would in turn require proportionstely bigher supporting structure throughous the installatioa.

Eart of the four propuision motor aszembles per car consiata of a 100 borsepower tiree phase, alternating current squirrel-cage induction type motor, to wicis is rigidiy bolted a kydraulle torque-converter. This combinathou permits the induction motor to come up to speed very rapidiy becasse the converter does not exert its maximum drag on the motor until the latter reackee a speed within its desirable operating range, approximately 87.5 per cent of syncinronous speed and well above the point of breakdown torque. The net result of the combined characteristics is to provide an extremeiy smooth,
high rate of acceleration in vehicle speed practically up to rehicle balancing speed. It permits use of the very rugged squirrel-cage type of motor and complete elimination of alternating-to direct-current roadside conversion equipment and its corresponding investment.

The motor winding is arranged for full and half speed connections by means of a cam type group switch, which together with a main switch constitutes all the control equipment required. The half speed connection is used only for reduced speed running. Normal accelerations are made in the single high speed connection, thus eliminating "transitions" during acceleration. Because the lower, half-speed, shaft input speed to the converter also reduces the latter's torque multiplication factor, the resulting acceleration is also suitable for yasd and switching movements.

Reverse movement, also at a reduced rate of acceleration, is obtained Without gearing by reversal of the driving motor direction of rotation.

FOWER SUPPEY SYSTEM
Three-phase, 60-cycle, alternating current at 2300 volts is delivered to the cass by using a dual wire contact systan and the running rail as the thres phase conductors. Energy is supplied this distribution system from simple, stationary tramsformer unit-substations located in parking lots adjacent to passenger stations. To insure continuity of supply, each substation is fed over two independent supply lines by the utility in whose area the substation is located. The substation itself is provided with two step-down transformers. In case of outage of a supply line or a transformer, the remaining unit, with
 00013 me .

Whtin areas powtied or the coxigucation of atillty appiy somees,
 effect beccadary, line network with bla the aduatages of such a scherne.

STGAL SgTM

A reary complete and modern ajani and atometin apest control system

 the elgat aspect oy the ogentor filst briwing the tamin to a full stop.

In aveas menc speed mustrethions aze eatablimed. featwe will operats to mence twin spead to the allowhe mexturn if the operstor does not do so. On longer wadia curves, only a acrice beake
appliscation is involved; on curves of moderate radius, power is cut off and braking initiated. In the case of sharp curves, such as exist on terminal loops, the motor control will be prevented from operating the motors in any but the lower speed connection, suppiementary to braking action if required.

It is considered that the signal and speed control system provides maximum safety of operation, especially as it requires only features already proven in actual service.

SCHEDULE PERFORMANCE

The car equipments will have a scheduled speed, that is overail average speed including stop time at sixteen intermediate stations and reduced speed operation on severe curves, of 41 miles per hour. The running time from terminal to terminal over the 45 mile route is 66 minutes. The scheduled speed depends proincipally on the rates of acceleration and braking, which are the maximum consistent with availeble adhesion at the rail, and passenger comfort; and on the balancing, or freemuning speed, in this case, 60 miles per hour. With station stops averaging 2.8 miles apart, a substantially higher balancing speed would be iess economical as it would barely be attained before braking for the next station stop would commence. " Lower balancing speed would probably be an adyerse psycholcgicai factor in view of prevalent speeds on freeways.

ITME OF CONSTRUCTION

The construction schedule for the entire system is a function of several factors, the most important of which would be the time required for determination of concept, design, supply and fabrication of the steel shapes and plate and the construction of the subway section. It is felt that a period of six months will be required after award of contract to study the final routing, and crystallize
the design precepts. The actual design development would be accomplished in the ensuing year but mill orders for both Monorail and subway steel couid be placed in the interim so that construction might be started at the end of this period. Because higher speeds are contemplated for Los Angeles than experienced in any previous similar installation it is recomended an initial section one or one and a half miles long be installed for advance testing purposes before all details for the entire project are released for construction.

It is estimated that the construction of the subway section will require thirty months and that all work involved in the construction of the remainder of the Monorail system can be completed within this time. Construction would be performed simultaneously in the several sections in order to reduce the overall time requirements. It is anticipated that the entire system could be completed within four years after award of contract. '

MAINTENANCE AND OPERATING COSTS
The unit costs of maintenance, operating and power costs tabulated below, were estimated after careful comparison of the proposed service with an efficient, comparable operation. They are based upon an annual car mileage for the full length of the system of $23,750,000$, indicated by others, as required for the expected riding. It should be noted that the intensity of use of the proposed service is high, that is the miles per car per year, the annwal carmiles per track mile and the cars per hour per track mile all are high. Such figures are inherent in a fast and frequent service over a straight-away main line of considerable length.

E. H. Anson

Vice President

EXHIBITS

MAINTENANCE AND OPERATING TNITT COSTS

Meintensee Way s Structures - Annual Cost	$\$ 1,220,000$.
Per Car Mile	$5,14 \phi$
Maintensnce Equipment - Annual Cost	$\$ 1,750,000$.
Per Car Mile	7.37ϕ
Operating Expense - Annual Cost	$\$ 2,426,000$.
Per Car Mile	10.22ϕ
Ceneral Administrative Cost - Annual	$\$ 875,000$.
Per Car Mile	3.68ϕ
Power	$\$ 1,750,000$.
Per Car Mile	7.36ϕ
Total Maintenance, Operating, Power \&	$\$ 8,021,000$.
Administrative Costs - Annual	33.8ϕ

```
My.E Evere om ymm
TEwname womg Besch
```


	Suppoting sometwes wrewainog gerders and rail for Mosw Foute, Row Around and Temmon Loops (excmaste of lire Smighes, manel Gertion, Storm 	\$40,988,710.
30		14, $078,653$.
0.	Grosesugs	61.000.
	 	262,500.
cos	 ties oncer	$1,423,569$.
P。	The swather wath supporteg guractarea and Fomadamions	$736,405$.
5	Fstating	864,478.
88.	cocurams	1, 837,410.
		512,600.
		$124,850$.
s.		214,000.
	Toxtry Structuxa	21,800,000.
	T2\% 2	\$82,904,175.

FULL LENGTH OF IINE
Panorama to Long Beack
2. Estimated Cost of Equipment and Appurtenances, Stations, Shops and Inspection Facilities, Yards, Power Supply, Power Transmission and Distribution Systems, Signals and Cars
a. Passenger Stations (except subway)
b. Subway Stations (tunnel structure not included)
c. Scheduled Repalr Shop
c. Ruaxing Repair Shop
e. Parking Lots at Stations
f. Iand Acquisition for Parking Lots, Storage Yards (no provision for R/W property)
g. Soutaern Storage Yard
b. Northern Storage Yard

1. Power Supply
j. Electric system
k. Signals and Intercommaication Systems
2. Cars 231 (2) $\$ 80,000$. each
m. Maintenance Exnipment
3. Model Testing and Development
o. Engineering
p. Supervision during construction Field Engineers and Inspectors Fleld Survey Grews Procurement of material and equipment)
q. Insurance during construction
x. Expenses for procuring property
s. Furnisinings and equipment for Authority's general and administration offices
t. Placing equipment in operation and training personnel
$\$ 3,898,980$. $450,000$. $802,000$. $450,000$. $427,250$.
$2,833,780$ $2,499,666$. $2,329,345$. $2,534,520$ 2.772.730. $5,174,09$.
$10,480,000$.
$120,000$.
$250,000$. $3.500,000$. 5,000,000. 1,000,000. $400,000$. 100,000.
$250,000$.
$\$ 44,262,290$.
FULJ LENGIH OF ITHE
Panorama to Long Beach
4. Contingencies, (NOT including Escalation pro- $\$ 10,000,000$. tection, Value of R/W property, Property Taxes during construction, Legal expenses, Expense of Authority's personnel during construction)
5. Basis of Estimate: Labor and material estimatesare based upon prices as of December 1953 and theformer on tine basis of a 40 hour week at straight-time. As far as can be determined no royaltiesare payable on any part of the basic concept ofthe monorail
Total Estimated First Cost \$137,166,465.

SEORTER LENGTH OF LINE

North Hollywood to Compton

1. Estimated Cost of Construction

a. Supporting Structures including Girders and Rail for Main Route, Turn Arounds and Terminal Loops (exclusive of Line Switches, Tunnel Section, Storage Yard Access Trackage and Storage Yards)
b. Foundations and Anchor Bolts
\$28,782,669. 9,908,851. 49,000.
d. Retaining Walls, Drainage, Fencing, etc. for Turnaround at Washington Blvd.
e. Subway Section, Supporting Structures, Girders and Addition for Foundations - "Monorail Facilities ONLY" 1,467,044.
f. Line Switches with Supporiting Structures and Foundations
g. Paintiag
h. Traffic Islands in Streets for Protection of Columns

1. Elimiaation of Overhead Interferences
j. Elimination of Underground Interferences 85,950.
k. Sub-soil Investigations

139,000.

1. Subway Structure
$\$ 65,146,855$.

SEORTIER ZEMATH OF LINE

Nortin Follywood to Compton
2. Estimated Cost of Equipment and Appurteances, Stations, Shops and Inspection Facilities, Yarde, Fower Supply, Fower Transmission and Distribution Systems, Signeis and Cars
a. Passenger stations (except subway)
b. Subway stations (tunnel structare not inciuded)
c. Scheduled Repair Shop
d. Kunaing Repair shop
e. Parking lote at Stathons
f. Inad Acquisition for Parking Lots, Storage Yards and Suio Stations (no provision for R/W property)
g. Southern Storage Yard

1. Northern Storage Yard
2. Power Suppiy
j. Electric System
k. Signals and Incercommunication Systems
3. Cars 117 @ $\$ 80,000$. each
m. Maintenance Equipmeat
n. Moder Testing and Development
o. Engineering
p. Supervision during construction Field Engineers and Inspectors Field Survey Crews Procurement of material and equipment)
q. Insurance during construction
r. Expenses for procuring property
s. Furnishings and equipment for Authority's general and administration offices
t. Placing equipment in operation and training personnel

Total
\$ 2,243,200.
450,000.
802,000.
450,000.
262,000.

2,046,900.
2,457,666.
2,009,345.
$1,818,900$.
1,327,566.
$4,183,100$.
9,360,000.
$110,000$.
250,000.
3,000,000.

4,000,000.

750,000.
300,000.

100,000.
250,000.
$\$ 36,170,677$.

SHORTER LENGTH OF LINE
North Hollywood to Compton
3. Contingencies (Not including Escalation protection, Value of R / W property, Property tases during construction, Legal expenses, Expense of Authority's personnel during construction.)
4. Basis of Estimate: Labor and material estimates are based upon prices as of December 1953 and the former on the basis of a 40-hour week at straight time. As far as can be determined no royalties are payable on the basic concept of the Monorail.

Total Estimated First Cost
\$111,317,532.

CROSS-SECTION OF MINTMUM WIDTH STREET

TYPICAL STRUCTURAL SUPPORT

