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 (The purpose of this report is to assess the strengths and limitations of available sensor technologies and their corresponding processing algorithms. The 

performance of an incident detection system is determined on two levels: data collection technologies and data processing algorithms.   Variations in sensor-

and-algorithm schemes result in a variety of solutions for incident detection.  In this report, three categories (roadway-based, probe-based and driver-based) 

incident detection technologies and their corresponding algorithms are reviewed and evaluated. The capability, accuracy, reliability and cost of available 

sensor technologies are emphasized.  A variety of algorithms associated with these technologies are also investigated in terms of their performance and ease 

of implementation. Responses to a nationwide online survey of traffic management centers (TMCs) and traffic operations centers TOCs) across the U.S. 

provide first-hand information regarding experiences and problems of implementation. The report includes consideration of incident detection on arterial 

roads and the use of section-related data in incident detection. 
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A REVIEW OF INCIDENT DETECTION TECHNOLOGIES, 
ALGORITHMS AND THEIR DEPLOYMENTS: WHAT WORKS AND 

WHAT DOESN’T 

 

Abstract: The purpose of this report is to assess the strengths and limitations of available 
sensor technologies and their corresponding processing algorithms. The performance of 
an incident detection system is determined on two levels: data collection technologies and 
data processing algorithms.   Variations in sensor-and-algorithm schemes result in a variety 
of solutions for incident detection.  In this report, three categories (roadway-based, probe-
based and driver-based) incident detection technologies and their corresponding 
algorithms are reviewed and evaluated. The capability, accuracy, reliability and cost of 
available sensor technologies are emphasized.  A variety of algorithms associated with 
these technologies are also investigated in terms of their performance and ease of 
implementation. Responses to a nationwide online survey of traffic management centers 
(TMCs) and traffic operations centers (TOCs) across the U.S. provide first-hand 
information regarding experiences and problems of implementation. The report includes 
consideration of incident detection on arterial roads and the use of section-related data in 
incident detection.   
 
Keywords: Incident detection, incident management, traffic detection/sensor technology, 
incident detection algorithm 
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INTRODUCTION 

I.1  Problem Statement 

Roadway incidents refer to non-recurring events resulting in traffic congestion or 
disruption, including accidents, breakdowns, debris, spilled loads, inclement weather, 
unscheduled maintenance and construction activities, and other unusual or special events 
affecting roadways.  During an incident, the normal capacity of the roadway is restricted 
and queues and delays often result.  Incidents are major contributors to delay and have far-
reaching consequences for safety, congestion, pollution, and the cost of travel 
(Mahmassani et al., 1998).  Previous investigations indicate that incidents are one of the 
major causes of loss of time and increases in avoidable costs in transportation networks in 
the U.S.  For example, it was estimated that more than 60% of urban freeway congestion 
was caused by incidents and that this indicator will increase to 70% or higher by the year 
2005 (Lindley, 1987).  The Texas Transportation Institute (TTI) estimated that incidents 
accounted for between 52% and 58% of total delay at a cost of $68 billion in 75 urban 
areas (Schrank and Lomax, 2002).  Prompt and reliable incident detection is vital in 
reducing incident congestion, post-incident delay and the potential for additional incidents. 

Incident management is a crucial function in the design and deployment of Advanced 
Transportation Management Systems (ATMS) and Advanced Traveler Information 
Systems (ATIS).  It primarily includes incident detection, verification, response, and 
clearance.  Incident detection is a crucial step in incident management; it affects 
consequent actions and determines the reliability and efficiency of the whole system.  The 
procurement of real-time incident detection information is an integral element of and 
supports the realization of many other functions in traffic management.  Nevertheless, 
incident detection is one of the weakest links in implementing the advanced traffic control 
and management concepts that have surfaced over the last decade (Michalopoulos et al., 
1993a; Mahmassani and Hass, 2001). 

I.2   Motivation and Significance 

Considerable effort has been devoted to improving incident detection in past decades, 
including the deployment of many new detection/sensor technologies and the 
development of a variety of processing algorithms.  Most automatic incident detection 
algorithms were developed for freeways; only a few have been suggested for arterial 
systems.  At both levels, however, Automated Incident Detection systems have generally 
not performed well when actually implemented, in terms of the standard performance 
measures of detection rates (DR), false alarm rates (FAR) and mean time to detect 
(MTTD).  Currently, many traffic management centers have resorted to labor- and 
equipment-intensive video surveillance of their major roadways.  Others rely on screening 
cellular phone reports of accidents, assuming that two or three phone calls describing an 
incident at the same location means that an incident has indeed occurred. 

Recently, there has been a trend away from data processing algorithms based on 
traditional surveillance systems (e.g., loop detector systems) toward considering other 
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emerging traffic detection/sensor technologies, including vehicle-to-roadside 
communications (VRC) or automatic vehicle identification (AVI) (including toll 
transponders) and automatic vehicle location (e.g., GPS and cellular telephone geolocation 
systems).  The development of new sensor technologies has led to renewed interest in 
automatic incident detection, especially for arterials.  In this report, the capabilities and 
costs of new traffic detection/sensor technologies that have significant potential to 
improve the performance of incident detection are investigated. 

I.3  Incident Detection System Architecture 

The performance of an incident detection system is determined on two levels: data 
collection and data processing, as illustrated in Figure I-1.  Data collection refers to the 
detection/sense/surveillance technologies that are used to obtain traffic flow data.  Data 
processing refers to the algorithms used for detecting and classifying incidents through 
analyzing the traffic parameters from detectors or sensors for the purpose of alerting 
observers of the occurrence, severity, and location of an incident.  Combined, the two 
levels provide a technical platform on which a variety of algorithms can be designed and 
applied.  The “mixing and matching” of data collection technologies and data processing 
methodologies results in a variety of solutions for incident detection. 

Opportunities exist on both levels -- data collection technologies and data processing 
algorithms -- to improve the reliability and effectiveness of incident detection systems.  
Historically, most efforts were devoted to the development and improvement of 
algorithms.  Moreover, most algorithms were established based on the measurements from 
loop detectors or loop emulators, partially because loop detector systems have been the 
most widely used nationwide and are of relatively low cost compared to other detection 
technologies.  Numerous studies using loop detector data (generally flow and occupancy at 
one or two points in a detection section) resulted in many loop-based automatic incident 
detection (AID) algorithms.  Although these algorithms have varied data requirements, 
structural complexity and ease of implementation, few offer satisfactory performance in 
application and hence they seldom have been successfully implemented in a traffic 
management center (TMC) or traffic operations center (TOC). A nationwide survey  of 
TMC/TOC operators indicates that more than half of the respondents are not satisfied 
with their AID system because of frequent malfunctions, high false alarm rates, 
troublesome calibration and implementation, inconvenient installation and maintenance, 
performance instability, and/or long detection/verification time (see Chapter 2 for the 
details).  Most algorithms were developed (and calibrated) based on specific spatial and 
temporal traffic conditions (i.e., certain roadway segments and times of day).  The most 
widely recognized algorithms (e.g., the California algorithm series, the McMaster 
algorithm, the high occupancy or HIOCC algorithm, etc.), seem to be non-transferable; 
many have been shelved in favor of more manual procedures. The lack of success is 



 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I-1 Incident detection systems conceptually 

generally related to limited traffic information coverage and poor data reliability from loop 
detectors or loop-emulating surveillance systems. 

I.4  Objective 

This study focuses on the comparison and evaluation of available sensor technologies 
and their corresponding processing algorithms on both freeways and arterials.  The 
strengths and limitations of both conventional and newly developed algorithms are 
investigated and identified, based on a thorough literature review and a nationwide survey.  
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Recommendations for developing and implementing an incident detection system are 
given in terms of operational performance, data requirement, ease of implementation, ease 
of calibration, and implementation and maintenance cost. 

I.5  Principal Tasks 

The tasks of this project include reviewing existing freeway and arterial incident 
detection algorithms, collecting and analyzing information about the usage of these 
algorithms from traffic management centers (TMCs) and traffic operations centers (TOCs) 
across the country, assessing performance of the algorithms, reviewing potential new 
technologies, considering the costs of different sensors and different data types, identifying 
incident detection parameter calibration procedures, and recommending an appropriate 
approach or set of algorithms that can be used by a TMC or TOC.   

 



 

5

CHAPTER 1: REVIEW OF FREEWAY AND ARTERIAL INCIDENT 
DETECTION ALGORITHMS 

This chapter reviews the principles of incident detection algorithms; the performance of 
several of the most widely used algorithms is evaluated in Chapter 3.  Much effort in past 
decades has been put into developing and improving incident detection algorithms and 
systems to satisfy the demands of traffic and incident management systems under a variety 
of traffic conditions.  It was asserted more 15 years ago that incident detection algorithms 
that detect all congestion-producing incidents without generating a large number of false 
alarms had yet to be perfected (FHWA, 1985).  Although much progress has been made, this 
statement is still true. 

1.1  Overview of Incident Detection Algorithms 

Incident detection algorithms may be grouped into two categories: automatic and non-
automatic.  Automatic algorithms refer to those algorithms that automatically trigger an 
incident alarm when traffic condition data received from field sensors satisfy certain preset 
conditions; non-automatic algorithms or procedures are based on human witness reports 
(i.e., driver-based “sensors”) (refer to Chapter 4).  The former constitute the main part of the 
existing algorithms.  Experience shows that most automatic algorithms operate imperfectly 
in a real, in contrast to a simulated, traffic environment. (Refer to Chapter 2).  Recently, more 
attention has been paid to driver-based procedures, e.g. drivers’ wireless phone reports.  
These are capable of providing quick detection and identification, rich and interactive 
descriptions, and broad spatial and temporal coverage with less initial investment and 
operation and maintenance cost (Xie and Parkany, 2002). 

Using another classification system, incident detection algorithms may be divided into 
two functional categories: freeway algorithms and arterial algorithms.  Historically, most 
automatic algorithms were developed for use in freeway incident detection and few are 
readily transferable to arterial roadways.  Less effort has been devoted to incident detection 
on arterials. 

The incident detection literature contains many comparisons and evaluations of 
detection algorithms.  In addition, there are several independent literature reviews including 
a comprehensive evaluation of a variety of incident detection algorithms.  In this chapter, 
before reviewing a range of representative freeway and arterial incident detection algorithms, 
we first consider the contributions from previous literature reviews1.  Most of these reviews 
are focused on evaluations of freeway incident detection algorithms based on loop detector 
or loop-detector-like (emulated) data.  Therefore, since state-of-the-art reviews of fixed 
detector based algorithms have been well covered in these earlier studies, roadway-based 
algorithms are outlined only briefly in this study.  Then, probe-based and driver-based 
algorithms are discussed more fully in the subsequent two sections.  In the last section, 
arterial-specific algorithms are summarized. 

                                                                                          
1 The reported performance of the reviewed algorithms in these literature reviews are incorporated into Chapter 
3. 
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1.2  Previous Literature Reviews 

There are at least six comprehensive studies focusing on or containing a state-of-the-art 
literature review of existing incident detection algorithms (Subramaniam, 1991; Stephanedes 
et al., 1992; Balke, 1993; Mahmassani et al., 1998; Peterman, 1999; Black and Sreedevi, 20011).  
The conclusions of these reviews are summarized briefly in the following section.  The 
typical algorithm acronyms (such as California algorithm No. 7 and APID) are provided here 
in the summary.  The algorithms are described in more detail in Section 1.3.  Comparison of 
algorithms are provided in Section 3.2, Performance of Incident Detection Algorithms.  For 
more detailed information, readers are referred to the original articles and reviews. 

1.2.1  Subramaniam’s Review 

Subramaniam (1991) categorized incident detection algorithms, which were mostly 
developed in the 1970s and 1980s, into 5 types: 1) pattern recognition (including California 
algorithm No. 7 and APID algorithm), 2) statistical processing (including SND algorithm, 
Bayesian algorithm, ARIMA algorithm, smoothing algorithm, DES algorithm, HIOCC 
algorithm, filtering algorithm, and dynamic algorithm), 3) Catastrophe theory (or McMaster 
algorithm), 4) neural networks, 5) and video image processing (used in INVAID-TRISTAR 
System).  Their performances are compared in terms of their own reported measures of 
effectiveness (MOEs).  The data required to support these algorithms are derived from 
either inductive loop detectors (ILDs) or video image processors (VIPs). 

1.2.2  Stephanedes et al.’s Review 

Stephanedes et al. (1992) reports on a comparative performance evaluation of the most 
widely accepted conventional freeway automatic incident detection (AID) algorithms as well 
as a proposed low-pass filter (LPF) algorithm, the Minnesota algorithm.  Three types of AID 
algorithms were compared: comparative logic (i.e., the California algorithm series), statistical 
forecasting (i.e., standard normal deviation algorithm, double exponential algorithm, ARIMA 
algorithm, and HIOCC algorithm), and macroscopic traffic analysis (i.e., the McMaster 
algorithm, dynamic algorithm, and fictitious volume algorithm2).  These algorithms were 
found to suffer from certain limitations: 1) the unsatisfactory quality of raw data (i.e., 
inductive loop detector (ILD) data) and the use of raw data with only limited filtering; and 2) 
the lack of effectiveness in distinguishing incidents from bottleneck congestion or other 
incident-like traffic situations.  The best algorithms of the comparative logic and time series 
types were selected in terms of DR-FAR curves and compared to the Minnesota algorithm 
using a data set collected on Interstate 35 in Minneapolis, Minnesota. 

                                                                                          
1 Black (1997) initially conducted a literature review of automatic incident detection algorithms for the ITS 
Decision Database in PATH; then, Black and Sreedevi (2001) updated the content to reflect recent progress 
and added the sections of “Performance Index” and “Factors Affecting the Performance of Detection 
Algorithms”.  It is accessible at 
http://www.path.berkeley.edu/~leap/TTM/Incident_Manage/Detection/aida.html (June 2004). 
2 The algorithm name of “fictitious volume” is given by authors Stephanedes et al. to the algorithms, proposed 
by Cremer (1981) to improve detection performance by modeling the attenuation of the road capacity with an 
additional (fictitious) volume input at the location of the incident. 
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Based upon this evaluation, Stephanedes et al. (1992) concluded that raw detector (i.e., 
ILD) data are often inappropriate for incident detection if traffic noise cannot be filtered 
out.  This is a weakness characterizing comparative algorithms—when corrupted by noise, 
incident patterns in the traffic data may not be detected easily by a comparative algorithm.  
Similarly, fluctuations produced by noise sources are often detected as incidents.  As a result, 
the only traffic patterns easily identified are those occurring under severe incident conditions 
and satisfying every test of an algorithm.  Statistical forecasting algorithms employing 
filtering offer some improvement in this regard, however, their transferability is greatly 
limited.  The major weakness of all of these algorithms lies in their inability to distinguish 
incidents from similar traffic patterns. 

1.2.3  Balke’s Review 

Balke’s (1993) work on the evaluation of incident detection algorithms was focused on 
both theory and practice.  Algorithms were evaluated in terms of their reported 
performance, data requirements, ease of implementation, ease of calibration, and operational 
experience. 

In the first part of his research report, existing incident algorithms were reviewed in 
terms of their underlying theoretical basis. The five groups were: comparative algorithms 
(i.e., California basic, California No. 7, California No. 8, and APID algorithm), statistical 
algorithms (i.e., SND algorithm and Bayesian algorithm), time-series algorithms (i.e., ARIMA 
algorithm), smoothing or filtering algorithms (i.e., DES algorithm and LPF algorithm), and 
modeling algorithms (i.e., McMaster algorithm).  In the second part of the study, in-depth 
information about incident detection performance and implementation issues extracted from 
site visits to selected freeway management systems in North America was offered.  These 
freeway management systems were located in: Los Angeles, Seattle, Northern Virginia, Long 
Island, Minneapolis, Chicago, and Toronto.  At the time of these visits, four of the above 
sites (i.e., Los Angeles, Northern Virginia, Chicago and Toronto) were currently using 
automatic algorithms to detect incidents while the other management centers (i.e., Seattle, 
Long Island and Minneapolis) had all discontinued automatic algorithm usage.  The results 
from the theoretical evaluations and on-site investigations indicated that: 1) most of freeway 
management centers were using a modified version of the California algorithm except for 
Toronto where the McMaster algorithm was being employed; 2) generally, the operators did 
not depend heavily on the automatic algorithms to alert them to the presence of incidents; 3) 
for the most part, the operators relied on other mechanisms, such as radio reports or closed-
circuit television (CCTV) monitoring, to alert them to incidents on freeways; and 4) of those 
systems that have discontinued algorithm use, improper calibration appears to be the most 
prevalent reason why the algorithms generated a high number of false alarms.  Furthermore, 
it was believed that the algorithms could not be properly calibrated unless an incident 
occurred in every detection zone. 

A qualitative assessment was also provided to evaluate the ease with which each 
algorithm could be calibrated and implemented in the proposed design of the TxDOT 
surveillance and control system.  The assessment was conducted in terms of judgments 
relating to the complexity of the design and structure of the algorithm and the amount of 
processing required by each algorithm.  More of these results are presented in Chapter 3. 



 

8

1.2.4  Mahmassani et al.’s Review 

Mahmassani et al. (1999) investigated both incident detection technologies and 
algorithms.  The advantages and disadvantages of a variety of sensors, including video image 
processing (VIP), were identified and compared.  The potential use of cellular phones for 
incident detection was also proposed.  In the algorithm review, existing incident detection 
algorithms were classified into 5 main categories: 1) comparative algorithms; 2) statistical 
algorithms; 3) time-series algorithms; 4) theoretical algorithms; and 5) advanced algorithms.  
The relationships or trade-offs among performance measures for conventional incident 
detection algorithms were also identified.  Sensor fusion and algorithm fusion were proposed 
to enhance the reliability and performance of an incident detection system when data 
requirements cannot be fully satisfied. 

1.2.5  Peterman’s Review 

After reviewing a variety of incident detection algorithms, Peterman (1999) conducted a 
calibration and evaluation of three recognized fixed detector-based algorithms, including the 
California No. 8 algorithm, the McMaster algorithm, and the Minnesota algorithm and 
compared them to the Texas algorithm1, using a data set including traffic and incident data 
collected by TransGuide (San Antonio).  A Monte Carlo technique was applied to quickly 
calibrate all of the compared algorithms.  Peterman showed that an algorithm that 
outperforms others in the calibration process does not necessarily provide the best 
performance when applied to real data.     

1.2.6  Black and Sreedevi’s Review 

Black and Sreedevi (2001) summarized the following important aspects of automatic 
incident detection algorithms: 1) measures of effectiveness; 2) principles and operation 
theory; 3) data requirements; and 4) performance.  They proposed a performance index (PI) 
that combines the values of DR, FAR and MTTD in an integrated functional form.  A lower 
PI value indicates better performance.  In their classification, analogous to Mahmassani et 
al.’s taxonomy (1999), the existing algorithms fall into five groups: 1) comparative 
algorithms; 2) statistical algorithms; 3) time series algorithms; 4) traffic and theoretical 
algorithms; and 5) advanced algorithms.  Classification group provides the data requirements 
and reported performance for the algorithms. 

1.2.7  Summary 

Each of the above reviewers had slightly different evaluation scopes, classification 
schemes, and performance results.  Although the algorithms have different structural 
complexity, data requirements, and calibration and implementation methods, most of them 
function based on data from fixed in-road or roadside sensors on freeways and their 
performance is heavily affected by the raw data quality, which is a function of the detection 
accuracy and reliability of sensors. 

                                                                                          
1 Texas algorithm is a relatively simple algorithm based on an examination of 3-min aggregated detector 
occupancy data. 
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None of these reviews emphasizes either arterial-applicable algorithms or algorithms 
based on types of traffic sensors other than fixed-point detectors.  In addition, the 
evaluation studies for incident detection techniques carried out in the early 1990s did not 
cover the recent progress of newly developed algorithms.  Thus, although the 
comprehensive literature review on incident detection algorithms in this chapter will include 
brief descriptions of the classic roadway-based, fixed-sensor algorithms, it will focus on 
newly-developed algorithms, probe data-based algorithms, non-automatic algorithms (i.e., 
driver-based anecdotal reports), and algorithms applicable to arterials. 

1.3  Roadway-Based Algorithms 

Different algorithms have different data requirements, principles, and complexity.  Since 
the traffic and incident management community realized the importance of comparing and 
selecting these algorithms for further improvement and potential implementation, several 
state-of-the-art literature reviews on incident detection have been conducted and 
summarized above.  The traditional incident detection algorithms that have been commonly 
recognized are summarized in this section.  These algorithms are grouped into seven 
categories in terms of their principles: 1) comparative algorithms; 2) statistical algorithms; 3) 
time series algorithms; 4) filtering/smoothing algorithms; 5) traffic modeling algorithms; 6) 
artificial intelligence algorithms; and 7) image processing algorithms.  All of these algorithms 
use loop detector or loop-emulating data collected at points along the roadway and all are 
applied to freeways. 

1.3.1  Comparative Algorithms 

Comparative algorithms are designed to compare the value of measured traffic 
parameters (i.e., volume, occupancy or speed) to a pre-established threshold value.  An 
incident alarm is prompted when the measured traffic parameter exceeds an established 
threshold.  Comparative algorithms include the decision tree (DT) algorithms (Payne, 1976; 
Payne et al., 1976; Payne and Knobel, 1976; Tignor and Payne, 1977; Payne and Tignor, 
1978; Levin and Krause, 1979a, b), the pattern recognition (PATREG) algorithm (Collins et 
al., 1979), and the APID algorithm (Masters et al., 1991). 

The DT algorithms, or so-called California algorithms, are the most widely known 
comparative algorithms.  This type of algorithm is based on the principle that an incident is 
likely to cause a significant increase in upstream occupancy while simultaneously reducing 
occupancy downstream.  The following occupancy differences of two adjacent fixed detector 
locations in a decision tree structure are analyzed: 1) the absolute difference in occupancy 
between the upstream and downstream detectors; 2) the relative difference in occupancy 
between upstream and downstream detectors compared to the upstream occupancy; and 3) 
the relative difference in occupancy between upstream and downstream detectors compared 
to the downstream occupancy.  In the California algorithm family, the modified #7 and #8 
algorithms were shown to have the best performance (Payne and Tignor, 1978; Balke, 1993).  
California #7 replaces the temporal downstream occupancy difference in the above third test 
with the present downstream occupancy measurement.  California #8 has the most 
complicated form (it involves 21 individual tests) in that it incorporates refining functions to 
deal with compressive waves. 
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The PATREG algorithm was developed by the Transport and Road Research 
Laboratory (TRRL) as part of their Automatic Incident Detection (AID) system.  It works in 
conjunction with the HIOCC algorithm (discussed later in the section 1.3.3 Time Series 
Algorithms) to detect traffic disturbances following an incident.  The algorithm estimates 
vehicle speeds by tracing and measuring travel times of particular traffic patterns between 
detectors.  The algorithm compares these speed values to pre-established thresholds and 
triggers an alarm when they fall below the thresholds during a pre-set number of consecutive 
intervals. 

The All-Purpose Incident Detection (APID) algorithm was developed for use in the 
COMPASS advanced traffic management system implemented in Metropolitan Toronto.  It 
incorporates and expands the major elements of the California algorithms into a single 
structure.  The algorithm includes the following major parts: 1) a general incident detection 
algorithm for use under heavy traffic conditions; 2) a light volume incident detection 
algorithm; 3) a medium volume incident detection algorithm; 4) an incident termination 
detection routine; 5) a routine for testing for the presence of compression waves; and 6) a 
routine for testing for the persistence of incident conditions.  A primary feature of the 
algorithm, compared to the California algorithms, is that different algorithms are used under 
different traffic conditions. 

 

1.3.2  Statistical Algorithms 

The statistical algorithms use standard statistical techniques to determine whether 
observed detector data differ statistically from estimated or predicted traffic characteristics.  
The standard normal deviate (SND) algorithm (Dudek et al., 1974) and Bayesian algorithm 
(Levin and Krause, 1978; Tsai and Case, 1979) are two representative types of statistical 
incident detection algorithms. 

The SND algorithm was developed by the Texas Transportation Institute (TTI) in the 
early 1970s for use in the initial surveillance and control center in Houston, TX.  The 
algorithm computes the SND of the traffic control measure, which is the number of 
deviations a particular value of a variable deviates from the mean of that particular variable.  
Its working principle is based on the premise that a sudden change in a measured traffic 
variable suggests that an incident has occurred.  The algorithm compares 1-minute average 
occupancy measurements to archived occupancy values of the mean and SND that define 
thresholds for detecting incidents.  An SND value greater than the critical value indicates the 
presence of an incident.  Two successive intervals are used to make a consistency test. 

The Bayesian algorithm uses Bayesian statistical techniques to compute the likelihood 
that an incident signal is caused by a lane-blocking incident.  The algorithm makes use of the 
relative difference of the occupancies used in the California algorithms as the traffic 
measure, but computes the conditional probability using Bayesian statistics.  Bayesian theory 
assumes that frequency distributions of the upstream and downstream occupancies during 
incident and incident-free conditions can be developed.  Three databases are identified for 
satisfying the requirement of the Bayesian algorithm: 1) traffic occupancy and volume data 
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during incident conditions; 2) traffic occupancy and volume data during incident-free 
conditions; and 3) archived data on the type, location, and severity of incidents. 

1.3.3  Time Series Algorithms 

Time series algorithms assume that traffic normally follows a predictable pattern over 
time.  They employ time series models to predict normal traffic conditions and detect 
incidents when detector measurements deviate significantly from model outputs.  Several 
different techniques have been used to predict time-dependent traffic for incident detection, 
including the autoregressive integrated moving-average (ARIMA) model (Ahmed and Cook, 
1977, 1980, 1982) and high occupancy (HIOCC) algorithm (Collins et al., 1979). 

The ARIMA model assumes that differences in a traffic variable measured in the current 
time slice ( t ) and the same traffic variable in the previous time slice ( 1−t ) can be predicted 
by averaging the errors between the predicted and observed traffic variable from the past 
three time slices.  These errors are expected to follow a normal pattern under incident-free 
conditions while an abnormal error indicates a potential incident occurrence.  This model is 
used to develop short-term forecasts and confidence intervals of traffic variables.  Incidents 
are detected if the observed occupancy values fall outside the established confidence interval. 

The HIOCC algorithm also monitors detector data for changes over time, but relies on 
1-second occupancy data.  The algorithm is designed to examine the individual pulses from 
the detectors and seek several consecutive seconds of high detector occupancy in order to 
identify the presence of stationary or slow-moving vehicles over individual detectors.  A 
computer scans detector occupancy data every tenth of a second and several consecutive 
values of instantaneous occupancies are then examined to see if they exceed a predetermined 
threshold. 

1.3.4  Smoothing/Filtering Algorithms 

Smoothing and filtering techniques are designed to remove short-term noises or 
inhomogeneities from traffic data that cause false alarms and hence permit true traffic 
patterns to be more visible so as to more readily detect true incidents (Balke, 1993).  
Smoothing is a mathematical technique for producing a weighted average of a given traffic 
variable.  Filtering algorithms use a linear filter that allows the low-frequency components of 
the detector data to pass while removing the undesirable high-frequency portions of the 
detector data.  The representative smoothing/filtering algorithms consist of the double 
exponential smoothing (DES) algorithm (Cook and Cleveland, 1974), low-pass filter (LPF) 
algorithms (Stephanedes et al., 1992; Stephanedes and Chassiakos, 1993a, b; Chassiakos and 
Stephanedes, 1993), and the discrete wavelet transform and linear discriminant analysis 
(DWT-LDA) algorithm (Samant and Adeli, 2000; Adeli and Samant, 2000). 

The DES algorithm weights past and present volume, occupancy and speed observations 
for forecasting short-term traffic conditions that are expected to closely resemble true traffic 
conditions.  This algorithm is expressed mathematically as a double exponential smoothing 
function, with a smoothing constant, which weights past observations.  Incidents are 
detected using a tracking signal, which is the algebraic sum (to the present minute) of all the 
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previous errors between the predicted and observed traffic variable.  Under incident-free 
conditions, the tracking signal should dwell around zero since predicted and observed traffic 
conditions should be similar. 

The LPF algorithm series, which are widely known as the Minnesota algorithms or the 
DELOS (detector logic with smoothing) algorithms, remove sharp or high frequency 
fluctuations that are characteristic of noise in the data while allowing wide or low frequency 
fluctuations typically associated with incident conditions to pass through the pre-set filter.  
The algorithm is based on a simple comparison of the occupancy levels at two adjacent 
detector stations.  In these algorithms, two filters on two levels, respectively employing 3-
minute and 5-minute moving average occupancies (Stephanedes et al., 1992), using three 
types of smoothing techniques, i.e., statistical median occupancies (Stephanedes and 
Chassiakos, 1993a), or applying exponential smoothing occupancies (Stephanedes and 
Chassiakos, 1993b), were applied to better distinguish incident and bottleneck congestion 
and hence reduce the false alarm rate.  A more comprehensive discussion and evaluation on 
these smoothing algorithms can be found in Chassiakos and Stephanedes (1993). 

The DWT-LDA algorithm was designed to extract incident features from traffic patterns 
while eliminating false alarms.  The designers of this algorithm used it as a traffic 
preprocessor to provide better volume and occupancy inputs for an adaptive conjugate 
gradient neural network model for incident detection.  The DWT technique, which was 
originally developed in signal and image processing, is first applied to filter raw traffic data, 
and the finest resolution coefficients representing random fluctuations of traffic are 
discarded.  Then, the LDA component is used on the filtered signal for further feature 
extraction reducing the dimensionality of input data of the incident detection model and 
hence the computational processing effort. 

1.3.5  Traffic Modeling Algorithms 

Traffic modeling approaches for incident detection apply traffic flow theory to describe 
and predict traffic behavior under incident conditions.  Discrimination between incident and 
incident-free traffic by this type of model is based on the comparison between observed 
traffic parameters and parameter values estimated by the models.  The traffic modeling 
algorithms include the dynamic model (Willsky et al., 1980), the catastrophe theory model 
and modifications (Gall and Fall, 1989; Persaud and Hall, 1989; Persaud et al., 1990; Forbes 
and Hall, 1990; Forbes, 1992; Hall et al., 1993), and the low-volume (LV) incident detection 
algorithm (Fambro and Ritch, 1979; 1980). 

The dynamic model was developed to apply macroscopic traffic flow models to capture 
the dynamic nature of traffic.  The fundamental speed-density and flow-density relationships 
are used as the basic theory in this incident detection algorithm.  The algorithm uses two 
statistical hypothesis testing techniques to examine the flow-density relationships in observed 
traffic data: the Multiple Model (MM) method and the Generalized Likelihood Ratio (GLR) 
method.  The conditional probability of the validity of the observed data compatible with the 
flow-density model indicative of incident conditions is determined by the MM method.  The 
GLR method is also used to measure the likelihood that the observed flow-density pattern is 
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indicative of an incident condition.  In this algorithm, measured point detector data must be 
converted from a time-based average to a space-based average. 

The catastrophe theory model, or the so-called McMaster model, is based on a two-
dimensional analysis of traffic data.  Catastrophe theory takes its name from the sudden 
discrete changes that occur in one variable while other related variables exhibit smooth and 
continuous changes (Black and Sreedevi, 2001).  The McMaster algorithm is based on the 
premise that speed changes sharply when traffic changes between a congested state and an 
uncongested state, while flow and occupancy change smoothly.  The algorithm uses 
historical data to determine the flow-occupancy relationship and further identify different 
congested and uncongested traffic states with speed variation.  In the flow-occupancy 
template, four areas are identified representing different traffic profiles.  Two tests are 
applied to detect incidents.  The first test determines whether traffic at a detector station is 
congested.  If congestion is detected, the second test is used to identify the cause of the 
congestion through evaluating the traffic state at a downstream detector station. 

Most existing algorithms cannot deal with incident detection under low volume 
conditions very well, because incidents seldom cause severe or detectable congestion under 
these traffic conditions.  To address this problem, the LV algorithm was designed specifically 
for detecting incidents under low volume conditions, using an input-output analysis of 
individual vehicles on a section of roadway.  The algorithm predicts the departure time of an 
entering vehicle in terms of its speed and entering time.  Based on the projected and actual 
exiting time, vehicles can be classified into three accounting states: exiting count is less than 
the projected count (indicating an incident), exiting count is equal to the projected one 
(indicating no incident), and exiting count is more than the projected one (indicating an 
unknown situation). 

1.3.6  Artificial Intelligence Algorithms 

Artificial intelligence refers to a set of procedures that apply inexact or “black box” 
reasoning and uncertainty in complex decision-making and data-analysis processes.  The 
artificial intelligence techniques applied in automatic incident detection include neural 
networks (Ritchie and Cheu, 1993; Cheu and Ritchie, 1995; Stephanedes and Liu, 1995; Dia 
and Rose, 1997; Abdulhai and Ritchie, 1999; Adeli and Samant, 2000), fuzzy logic (Chang 
and Wang, 1994; Lin and Chang, 1998), and a combination of these two techniques (Hsiao et 
al., 1994; Ishak and Al-Deek, 1998). 

Neural networks are data processing structures used to simulate the thought process and 
reasoning of the human brain.  They consist of a number of simple processing elements 
(PEs) with parallel interconnections.  The PEs receive input information, weighted by the 
strength of associated connection values, then make computations using a transfer function, 
and finally send output to other connected PEs in the next layer.  The commonly used 
neural network algorithms for incident detection include multi-layer feed forward neural 
networks (MLF) and probabilistic neural networks (PNN).  The MLF-based algorithm has 
three fundamental layers: input layer, hidden layer, and output layer.  The inputs for PEs on 
the input layer generally include volume, occupancy, and/or speed at both upstream and 
downstream detectors.  The PNN-based algorithm has the capability of incorporating prior 
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probabilities of incident occurrence, road conditions, and misclassification cost for incident 
detection.  The neural network algorithms require substantial training through trial-and-error 
processes to optimize weights in order to identify uncongested and congested traffic, both 
recurring and nonrecurring.  In order to reduce the high dimensionality of a common neural 
network model and improve its computational efficiency, Adeli and Samant (2000) proposed 
using an adaptive conjugate gradient neural network (ACGNN) with a two-stage discrete 
wavelet transform and linear discriminant analysis preprocess (as described as the DWT-
LDA algorithm in this chapter) for incident detection to improve detection efficiency and 
performance. 

In addition, Ivan and his colleagues (Ivan et al., 1995; Ivan and Chen, 1997; Ivan, 1997; 
Ivan and Sethi, 1998) applied neural networks to fuse loop detector and probe vehicle data 
for arterial incident detection.  In these applications, neural networks are designed to work in 
two forms: 1) combining the raw traffic data; or 2) integrating incident the detection results 
(or incident occurrence probabilities) from a loop detector-based model and a probe vehicle-
based model. 

Fuzzy logic is another artificial intelligence technique used for incident detection.  It 
provides a mechanism for applying inexact or imprecise data to a set of rules.  It has been 
applied to eliminate strict decision thresholds and use membership functions to represent 
the degree of probability of the presence of an incident.  Decisions on incident or incident-
free states are allowed even though traffic data may be inexact or missing.  The ability to 
make decisions based on incomplete data has the potential to significantly improve the 
performance of incident detection algorithms. 

Fuzzy logic combined with neural networks (Hsiao et al., 1994) was applied to improve 
the performance of incident detection over either single technique.  Ishak and Al-Deek 
(1998) applied a fuzzy neural network, a clustering algorithm that maps a set of input 
patterns to a set of categories, to improve the performance of incident detection.  This 
method has the capability of overcoming the so-called stability-plasticity dilemma problem 
of the MLF-type neural networks.   

1.3.7  Image Processing Algorithms 

Two types of image processing algorithms have been used for incident detection.  In the 
first instance, the image-processing unit (consisting of a surveillance video camera and an 
image processing computer program) may be used as a loop detector or another fixed 
detector to provide traffic measures, such as volume, occupancy, speed, and/or queue 
length.  The image-processing program extracts traffic variables from video images.  In the 
second method, the image-processing program interprets the entire video image to find 
stationary or slow-moving vehicles, so as to detect incidents.  A representative algorithm is 
the Autoscope incident detection algorithm (AIDA) (Michalopoulos, 1991; Michalopoulos et 
al., 1993).   

The AIDA algorithm takes advantage of temporal variations of traffic characteristics in 
addition to spatial ones.  It looks for rapid traffic breakdowns, comparing speed and 
occupancy with the preset thresholds for determining congestion levels.  AIDA was later 
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improved to include ancillary information provided by video detection.  The information 
includes stopped vehicles and shock wave signature recognition.  One of advantages of the 
image processing-based incident detection technique is that a detected incident in the field of 
view of a video camera can be verified visually in a short time.  It is also capable of 
monitoring traffic and detecting incidents outside of through lanes, e.g., shoulders, 
intersections, or ramps, and under both low and high volume traffic conditions. 

Other categories of recently emerging incident detection methods/algorithms, e.g., 
probe-based algorithms, driver-based algorithms, and arterial incident detection algorithms, 
will be reviewed and discussed in the remaining part of this chapter. 

1.4  Probe-Based Algorithms 

As described in the last section, most traditional automated incident detection algorithms 
use roadway-based point data.  There are several disadvantages to using point data for 
incident detection.  The algorithms using loop data suffer from high rates of false alarms 
(Stephanedes et al., 1992; Petty et al., 1997; Mahmassani et al., 1998).  One disadvantage is the 
tendency of loop detectors to malfunction. Anecdotal evidence indicates that as many as half 
of the loop detectors in a system may be inoperable at any given time (Ygnace et al., 2000).  
An inherent disadvantage of point-based sensors (even the new loop-emulators such as 
video, radar or infrared) is that they collect only spot traffic data.  It may be difficult to 
ascertain true traffic conditions using data at only individual points on a roadway.  Besides 
the difficulties involved with implementing most point-based incident detection algorithms, 
there are specific problems with road-based systems: 1) the installation and maintenance 
interrupts traffic, and may even require road closure; 2) the placement of roadway detectors 
or the data collection frequency is critical to the accuracy and reliability of point data used 
for determining an incident, however, these settings are not readily determined. 

Probes, such as toll transponders and GPS receivers mounted on vehicles, are becoming 
increasingly prevalent for electronic toll collection, congestion pricing and fleet management 
applications.  Using travel times and other spatial traffic measures collected by probes, better 
information about traffic conditions with wider roadway coverage can be obtained.  In this 
section, recently developed algorithms based on probe data will be reviewed and discussed.  
Given that these probe-based algorithms were designed in accordance with the operation 
principles and data availability of their corresponding probe sensors, the sensor used will be 
identified prior to the description of each algorithm.  Detailed information on a variety of 
traffic probe technologies is provided in Chapter 4.  In the following, the probe-based 
algorithms are discussed in approximately the chronological order of development.  Table 1-1 
summarizes the operational features of the probe based incident detection algorithms.  With 
the exception of the ADVANCE algorithms developed in Chicago in the early ‘90s, these 
probe-based algorithms have been developed for freeway incident detection.  Reviews of 
these algorithms are not found in typical incident detection reviews such as the six presented  
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Table 1-1  Operational features of the probe-based incident detection algorithms 

Algorithm Name Probe Sensor 
Technology Penetration Rate Traffic 

Environment Experiment Type Data Requirement Detection 
Interval 

Headways algorithm Travel time and 
headway by lane 

Lane switches algorithm Lane switches MIT 

Lane-monitoring algorithm 

AVI/ETC 50% Freeway MITSIM-based 
simulation 

Volumes by lane 

≈ 0.8 min 

Travel time algorithm GPS or AVI 
30 or fewer 
probe reports 
per interval 

INTRAS-based 
simulation Travel time 7 min 

ADVANCE 

Dynamic measures algorithm GPS and map 
matching 

1 probe per 
interval 

Arterial 
Field in the suburbs 
of Chicago, IL 

Total travel time, 
running time, and 1-
sec position 

N/A 

TTI  Cellular probe 
system1 5-min headway Freeway Field in Houston, TX Travel time 15 min 

UCB  CDPD radio 7-min headway Freeway Field in Hayward, CA Speed and acceleration 0.5 min 

TRANSMIT  AVI/ETC 1-min headway2 Freeway Field in metropolitan 
NYC Travel time 15 min 

Confidence limit algorithm 

Speed and confidence limit 
algorithm Waterloo 

Dual confidence limit algorithm 

AVI/ETC 10% Freeway INTEGRATION-
based simulation Travel time ≈ 0.3 min 

                                                                                          
1 In this cellular probe system, drivers were asked to provide travel time through reporting their passed reference points via cellular phone calls.  It served as a prelude 
to the subsequent AVI system in Houston, TX. 
2 The average 1-min headway of probe vehicles in the TRANSMIT system is estimated by the authors in terms of the data provided by Niver et al. (2000). 
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at the beginning of the chapter.  More about performance measures including detection 
interval/time-to-detect related to these algorithms is found in Chapter 3. 

1.4.1  MIT Algorithms 

Parkany and Bernstein (1993; 1995) conducted an initial exploration of the use of 
electronic toll transponders (referred to as vehicle-to-roadside communication, or VRC, in 
their papers) to detect incidents.  They analyzed the capabilities of two types of toll 
transponders, i.e., “read-only” and “read-write,” for incident detection.  “Read-only” means 
a roadside reader can read information from probe transponders or tags while “read-write” 
allows both obtaining information from and writing information on transponders.  Three 
transponder-based incident detection logics (named headways algorithm, lane switches 
algorithm, and lane-monitoring algorithm) were proposed utilizing read-only transponders, 
however, it was posited that these algorithms “could be enhanced with read-write 
technology” (Parkany and Bernstein, 1995). 

In their study, the MITSIM simulator was used to simulate a three-lane highway and 
generate transponder data as well as comparable loop detector data.  It was assumed that 
50% of vehicles in the simulation were equipped with toll transponders.  The distance 
interval between two adjacent readers was set as 0.75 mile. 

The principle of the headways algorithm is that both temporal and spatial discrepancies 
of travel times and headways may be observed when traffic varies from incident-free to 
incident conditions.  It includes three sequential comparison tests.  The first two tests are 
temporal tests while the third makes a spatial comparison.  The first test determines if there 
is significant difference in travel time between two AVI readers, where slower travel time 
indicates a possibility of an incident.  The second test considers longer headways scanned by 
a downstream reader that may indicate an incident.  In the third test, different headways 
detected by different readers may suggest an incident in that headways are longer in the 
vicinity of an incident and then decrease downstream of the incident.  If all three tests 
exceed corresponding pre-set thresholds, an incident is declared.  One disadvantage of this 
algorithm is that it may be insensitive to incidents occurring close to reader locations. 

Being able to identify lane change information of probe vehicles using subsequent 
readers results in the lane switches algorithm.  It is based on the principle that a number of 
lane switch maneuvers detected from one reader to the next may indicate unstable traffic 
conditions caused by an incident.  The algorithm attempts to determine the percentage of 
probe vehicles switching lanes between readers using lane-specific, vehicle-specific data.  If 
this result exceeds a certain threshold, an incident is identified.  Here, the authors counted a 
lane switch when a vehicle is driven from one lane to another lane.  The authors suggested 
counting switches across two lanes as two switches rather than one may improve the 
algorithm performance. 

The lane-monitoring algorithm is designed to monitor vehicle passage on each lane at 
reader locations.  The principle behind this algorithm is that if fewer vehicles pass than 
expected on a certain lane and more vehicles pass than expected on any other lanes an 
incident may be indicated on the first lane.  This algorithm employs an average smoothing 
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technique over several detection intervals (e.g., 2 or 3 intervals) to eliminate traffic 
fluctuation and hence prevent false alarms. 

All of these proposed algorithms make use of vehicle identification to determine traffic 
pattern variations between roadside readers.  Their performances may be improved by a 
higher probe penetration rate and a smaller distance interval between neighboring 
transponder readers. 

1.4.2  ADVANCE Algorithms 

In the ADVANCE operational test, Sethi et al. (1995) and Sermons and Koppelman 
(1996) developed arterial incident detection algorithms based on probe positioning and 
timing data, using a discriminant analysis technique.  All of the algorithms are designed to 
eliminate false alarms while keeping detection rates at a high level.  In discriminant analysis, 
analogous to multiple-variable linear regression, a linear relationship of predictor variables 
describing traffic flow characteristics is developed to distinguish incident and incident-free 
conditions.  The result of discriminant analysis for incident detection is dependent on the 
measured traffic variables and the prior probability of an incident.  The prior probability 
needs to be specified in terms of prior data analysis, reflecting “the expected share of 
observations (detection periods on a link) during which an incident is likely to occur” (Sethi 
et al., 1995). 

The travel time algorithm proposed by Sethi et al. (1995) utilizes both the incident link 
and the adjacent upstream link travel time and average speed measures.  Common on-board 
location and communication devices, such as GPS, AVI or toll transponders, can satisfy this 
data requirement.  The two variables used are compared to historical averages for each link 
to infer if an incident occurs on this link.  It was found that traffic measures for the incident 
link were most useful for incidents located in the downstream portion of the link while 
traffic measures for the next upstream link worked well for incidents occurring in the 
upstream or middle portion of the link. 

Sermons and Koppelman (1996) made use of three categories of GPS measures in the 
dynamics measure algorithm: 1) total link travel time; 2) total time and running time; and 3) 
1-sec vehicle position (from which the coefficient of speed variation, acceleration noise or 
deviation, and Greenshield’s quality of flow measure (1955) can be derived).  These 
measures have different levels of measurement detail, increasing in turn from total travel 
time to 1-sec vehicle position data.  The principle behind these GPS data based algorithms is 
that probe vehicles passing an incident have higher total time, running time, and coefficient 
of speed variation.  In their study, single probe reports of the above dynamic measures were 
used independently for classification of traffic conditions, i.e., incident or incident-free 
conditions.  As expected, algorithm performance improves as the level of measurement 
detail increases. 

1.4.3  TTI Algorithm 

The Texas Transportation Institute (TTI), in conjunction with the Texas Department of 
Transportation, conducted a pilot study to test the feasibility of using probe vehicle travel 
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time to detect incidents on freeways (Balke et al., 1996).  Two hundred trained commuters 
equipped with cellular phones were asked to report their position as they passed reference 
locations to a communications center through a wireless phone call.1  Operators at the 
communications center entered the probe’s identification number and the report time, and 
then the travel progress of the probe vehicle was tracked and its travel time between two 
adjacent reference points was estimated.  The cellular probe system served as a prelude to 
the AVI system installed on freeway facilities in Houston. 

In this pilot study, average 5-min headway between probe vehicles was approximately 
generated through carefully selecting the probe drivers’ departure time.  Reference points 
were located at key interchanges evenly spaced in the network and the average distance 
between each reference location was approximately 5 mi.  Considering hourly variations in 
travel times, a 15-min time interval was used for monitoring probe vehicle travel time 
reports. 

The TTI incident detection algorithm is based on the premise that incidents cause travel 
time to increase significantly over the normal travel time under incident-free conditions at 
the same time of day and day of week.  Its function was developed using the statistical 
principle of standard normal deviates (SND), which indicates confidence intervals of travel 
time variation under incident-free conditions.  The algorithm tests if travel time is longer 
than the following threshold value determined by historical data: 

( )( )ii sSNDt +  (1.1)

where it  is the historical average travel time for a given time-of-day interval i and si 
represents the standard deviation of the average travel time in the same time interval.  If the 
reporting travel time derived from probe vehicles exceeds the predetermined threshold, an 
incident alarm is declared.  In their study, preliminary results showed that the TTI algorithm 
with a low penetration rate does worse than most of the common loop-based incident 
detection algorithms. 

1.4.4  UCB Algorithm 

Petty et al. (1997) proposed a probe-based algorithm using vehicle-equipped radio 
transponders that communicate with existing cellular phone base stations via the standard 
cellular digital packet data (CDPD) protocol.  This technology is currently used for fleet 
management, e.g., by taxi or logistics companies to track their individual vehicles’ location 
and to perform scheduling.  The CDPD radio is ubiquitous on most freeways and major 
arterials in the current roadway networks.  In this system, probe data transmitted to a base 
station and then forwarded to a TMC for traffic monitoring and incident detection. 

In their study, probe vehicle headways were estimated as approximately 6-8 minutes, 
which can be translated to probe penetration rates being approximately 0.08-0.1% of the 
vehicle population. 

                                                                                          
1 The commuters were also asked to report incidents occurring on their trips for the performance evaluation of 
the TTI algorithm. 
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The assumption behind this algorithm is that a vehicle may slow down when it passes an 
incident.  Vehicles upstream of an incident should be in a slow-moving queue and when they 
pass the incident they should speed up to normal driving speed or even free- flow speed.  It 
can also be observed that vehicles rapidly decelerate from normal driving speed or free-flow 
speed to stop-and-go traffic.  Therefore, this probe-based approach was designed to detect 
and locate an incident through monitoring speed and acceleration variations of the traffic 
stream. 

In order to distinguish traffic fluctuations from bottleneck congestion, a standard 
moving average filter of width of 20 sec is used to filter the probe measurements in this 
algorithm.  Then, the profiles of speed and acceleration are monitored.  If acceleration value 
falls above a certain threshold (a) through a certain speed (vt), an incident is detected, as 
explained in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1  Illustration of the basic principle of the UCB probe-based algorithm (Source: 
Petty et al., 1997) 

1.4.5  TRANSMIT Algorithm 

Mouskos et al. (1999) and Niver et al. (2000) discuss the performance of a probe-based 
incident detection algorithm using statistical travel time comparison between probe reports 
and continuously updated historical archives in TRANSCOM’s (New York and New Jersey) 
system for managing incidents and traffic (TRANSMIT).  In the TRANSMIT operational 
test, probe vehicles were equipped with E-ZPass electronic toll tags for traffic surveillance 
and incident detection.  This system was initially installed along a 22-mile section of the 
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Garden State Parkway in New Jersey and the New York State Thruway in New York and 
served more than 1.5 million vehicles equipped with E-ZPass tags. 

When an E-ZPass tag-equipped vehicle passes a roadside terminal or reader, the reader 
antenna radiates a signal to interrogate the tag and collects the tag identification number, 
location, lane position, and time information.  These roadside readers are distributed along 
the route at distance intervals of 0.5 to 2.1 mi.  The real-time information from each 
individual probe vehicles is then forwarded to the operations information center (OIC) 
located in Jersey City.  The vehicle travel times between successive readers are computed 
every 15 min and then are used for traffic monitoring and incident detection. 

The TRANSMIT algorithm is similar to the TTI algorithm discussed above in that it 
assumes that  vehicle travel times tend to be normally distributed under incident-free traffic 
conditions and that an incident alarm is triggered when multiple successive vehicles arrive 
later than the expected value at a downstream reader a specific link of the system.  For each 
detection zone during a certain time of day, the following travel time threshold THi is set, 

iii HSDMSDHTTH ×+=  (1.2)

where HTi represents historical average travel time for the time interval i, HSDi denotes the 
standard deviation of historical travel time, and MSD is a multiplier for HSDi that was set to 
3 in TRANSMIT algorithm.  In this algorithm, the probability of a false alarm (P(FAi,j)) from 
a vehicle j during the time interval i is defined as, 

( ) ( ) ( ) ( )iiiji LTNEEFA PPPP , ×+=  (1.3)

where P(Ei) is the probability that a probe vehicle exits the route before reaching the 
downstream reader and is missed by the reader, P(NEi) is the probability that a vehicle does 
not exit, and P(LTi) is the probability that a vehicle arriving later than the expected time is 
not delayed by an incident.  Once a probe vehicle’s travel time exceeds the threshold THi, 
the probability P(LTi) that this vehicle was not delayed by an incident is decreased from 1 to 
0.  Finally, the probability of an incident occurrence (P(INi)) during a time interval i is 
determined by all of the n probe vehicles reporting their travel times in the same time 
interval, which is expressed as, 
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=
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n
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1
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The evaluation results indicated that the TRANSMIT algorithm has a comparable 
performance to the common representative loop-based algorithms.  However, its 
performance varied in that detection rates decrease significantly at a few specific locations. 

1.4.6  Waterloo Algorithms 

Three automatic vehicle identification (AVI) or electronic toll transponder-based 
incident detection algorithms characterizing mean and variance of travel times, named the 
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confidence limit algorithm, speed and confidence limit algorithm, and dual confidence limit 
algorithm, were proposed and examined by Hellinga and Knapp (2000).  They employed the 
Integration simulator to model a 7.5-mi freeway section of Highway 401 in Toronto, Canada.  
On this route both eastbound and westbound directions were divided into 10 segments with 
AVI roadside antennas installed at both ends of each segment.  For all three algorithms, the 
individual AVI-based travel time data were aggregated over 20-sec time intervals so as to 
reflect the polling frequency of most loop-based surveillance systems. 

The basic idea behind the three incident detection algorithms using probe travel time 
data is that “the travel time experienced by vehicles over a section of roadway increases 
more rapidly as a result of a change in capacity (i.e., the reduction in capacity caused by an 
incident) than as a result of a change in demand” (Hellinga and Knapp, 2000).  When an 
incident occurs on a segment, the traffic situation and the resulted travel time on this 
segment change.  It is believed that travel times resulting from traffic conditions before and 
after an incident belong to two different populations.  Therefore, the proposed algorithms 
are designed to distinguish travel times on either side of the confidence limit or threshold 
associated with the current population, i.e., under incident or incident-free conditions.  
There are two apparent features of the Waterloo algorithm that are different from the TTI 
and TRANSMIT algorithms (which also make use of travel time means and variances to 
distinguish traffic conditions): 1) the individual travel times in each time interval are assumed 
to be log-normally distributed, rather than normally distributed; and 2) the confidence limit 
or threshold is established based on the travel times from the previous N intervals, or the so-
called “comparison window”, not the historical travel times at the same interval of day.  The 
log-normal mean ( iµ ) and variance ( 2

iσ ) during the time interval i can be expressed as the 
following in Equations 1.5 and 1.6, 

( ) 25.0ln iii t σµ −=  (1.5)
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where it  and ivar  represent travel time mean and variance from the comparison window.  
The upper confidence limit or threshold ( iUL ) for the time interval i following the 
comparison window is defined as, 

( )ii z
i eUL σµ +=  (1.7)

where z denotes a specified level of confidence. 

In the confidence limit algorithm, the mean travel time in each time interval is calculated 
and compared with the upper confidence limit of the corresponding comparison window.  If 
it exceeds the upper confidence limit, an incident can be stated with a specified confidence 
level (z). 
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The speed and confidence limit algorithm is similar to the confidence limit algorithm, 
but requires an additional speed test.  It is based on the premise that the decreased capacity 
caused by an incident is likely to create congestion upstream of the incident and reduce the 
flow downstream of the incident.  The downstream flow reduction may increase the speed 
of the downstream vehicle stream.  Thus, a downstream speed test is conducted using the 
same process as the travel time confidence limit test.  An incident alarm is initiated when the 
speed and confidence limit tests both exceed respective thresholds. 

The dual confidence limit algorithm is similar.  In order to reduce the false alarm rate, 
however, it attempts to exclude the travel times in the current time interval from the 
comparison window for the test in the next time interval when the mean time is greater than 
the confidence limit threshold.  Dual confidence limits, i.e., window limit and alarm limit, are 
established using different confidence level values (z), e.g., 1.5 and 3.5 respectively.  When a 
calculated travel time mean in the current interval exceeds the window limit, the comparison 
window is not moved forward one interval when the test in the next interval is conducted.  
An incident alarm is triggered only when travel time exceeds the alarm limit. 

Comparisons based on detection rate and false alarm rate showed that all three 
algorithms perform equally to or better than the loop-based McMaster algorithm under the 
assumed range of probe penetration rates. 

1.4.7  Summary 

Table 1-1 summarizes the operational features of all of the discussed probe-based 
algorithms.  Most of them make use of travel time to detect traffic variations in order to 
judge whether or not an incident has occurred.  

Most of the above probe-based incident detection algorithms are designed for freeway 
applications, although they may hold promise for detecting incidents on arterial streets, 
especially non-instrumented roadway segments.  Most proposed probe-based incident 
detection systems making use of existing AVI/ETC systems may only have been applied to 
freeways because of technical and institutional barriers.  However, there are some barriers to 
the implementation of probe-based incident detection systems for arterial streets.  Probe-
based algorithms need to have upstream and downstream data for individual vehicles; 
however, large numbers of probe vehicles may exit from an AVI-equipped route between 
the upstream and downstream readers due to the “open” geometric characteristic on 
arterials.  GPS-based incident detection scheme, may suffer from weakening or even 
blockage of the GPS satellite signals caused by high buildings in CBD areas.   

1.5  Driver-Based Algorithms 

Driver-based algorithms are designed to screen and identify drivers’ phone calls or other 
witness reports of incidents.  Unlike automatic incident detection algorithms (i.e., roadway-
based and vehicle-based algorithms), driver-based techniques deal with people’s responses to 
incidents, not to traffic measures converted from sensor signals.  Due to the complexity and 
inconsistency of report contents, the automatic process of witness reports and further 
incident detection and identification presents a great challenge to information processing 
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technology.  Driver-based data sources used for incident detection present inevitable 
problems, including incorrect or incomplete information from witness reports about an 
incident location and severity, and false or prank reports. 

Because of the characteristic of direct report and description in driver-based incident 
detection techniques, the focus (or the difficulty) of designing and implementing this type 
procedure is how to identify the location and characteristics of an incident.  The current 
methods of locating reported incidents include fixed phone position identification and 
mobile geolocation determination techniques, and roadside reference location signs.  To 
improve accuracy of driver-based incident detection (i.e., reduce false alarm rates), a general 
method is employed to trigger an incident alarm when more than a certain number of 
incident reports are received in a specified time interval.  These thresholds are pre-
determined based on local archival incident reports. 

Several pilot studies to evaluate the effectiveness of driver-based incident detection 
techniques were carried on in simulation environments (Mussa and Upchurch, 1999, 2000; 
Tavana et al., 1999) and on real roadways (Skabardonis et al., 1998; Walters et al., 1999).  
Improved performance of driver-based incident detection techniques are expected to be 
realized with the growing ownership of cellular phones and other personal communication 
devices and improved geolocationing technologies (refer to Chapter 4). 
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Figure 1-2  Example anecdotal incident detection algorithm configuration (Source: Bhandari 
et al., 1995) 

Driver-based incident detection procedures are still in the early development stage.  
However, as an example, the following driver-based incident detection algorithm (see Figure 
1-2), which was developed for and integrated in the ADVANCE incident detection system 
(Bhandari et al., 1995), may provide some initial ideas of how to construct an incident 
detection system to process anecdotal incident information.  In this system, two primary 
sources of incident witness reports are collected: 1) the Northwest Central Dispatch System 
(NWCD), a computer-aided emergency service dispatch agency; and 2) the *999 Center, 
which receives toll-free phone calls from cellular phone users voluntarily reporting roadway 
incidents and other problems.  This system was operated by the ADVANCE traffic 
information center (TIC). 

In this procedure, the initial anecdotal data source is obtained by the NWCD, which is 
then preprocessed at NWCD and transferred to TIC.  The NWCD preprocessor is used to 
distinguish new incidents from update reports, separate incidents of interest to ADVANCE, 
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maintain a list of active messages, and format messages for further processing.  Data from 
other anecdotal sources have an independent preprocessor and translation module.  
Moreover, a procedure for matching witness reports from different sources for the same 
incidents is required in this system.  The witness reports are received by the TIC/NWCD 
preprocessor and translation module that extract the characteristics from the reported 
information, e.g., information source, incident history number, location, type, severity and so 
on.  The following criteria are used to confirm incidents and determine clearance: 1) 
incidents will be confirmed 3 minutes after the first emergency responder arrives on the 
scene unless that unit reports clear; and 2) incidents will be reported clear 5 minutes after the 
last emergency unit leaves the scene.  Each incident is assigned with its characteristics with 
the conversion of link specific location.  The link-specific witness reports on confirmed and 
cleared incidents are then saved in the TIC.  The incident severity data may be used for 
estimating incident duration and traffic impacts.  The TIC operator is also able to enter 
anecdotal reports of incidents from phone calls into the TIC or other communication 
sources and match or bypass them with the results from the anecdotal algorithm. 

1.6  Sensor Fusion-Based Algorithms 

The performance of incident detection algorithms is highly dependent on the quality of 
collected traffic data.  It is reasonable to expect that using multiple data sources, e.g., fixed 
detectors (collecting point data) and probe vehicles (collecting spatial data), could enhance 
the input data reliability and completeness and hence improve the performance of an 
incident detection system. 

Several researchers, including Westman et al. (1996); Ivan et al. (1995), Ivan and Chen 
(1997), Ivan and Sethi (1998); Bhandari et al. (1995); and Thomas (1998), applied the data 
fusion concept to integrate multiple data sources for incident detection.  Within these, 
Westman et al. (1996) attempted to improve incident detection performance on freeways 
while the others applied a variety of data fusion techniques to address problems relevant to 
incident detection on surface streets/arterials. 

Westerman et al. (1996) attempted to integrate probe vehicle and loop detector data for 
travel time estimation and incident detection.  A parallel structure in the fusion process is 
employed, in which probe vehicle and loop detector algorithms perform independently but 
receive support from each other.  A two-step structure (see Figure 1-3) characterizes this 
compound algorithm: a trigger mechanism that indicates a suspicion of occurrence of an 
incident, and a verification mechanism in which this suspicion is automatically verified.  The 
probabilities of an incident occurrence from each algorithm (i.e., hybrid loop detector 
algorithm, probe vehicle algorithm, and local-related and section-related comparison 
algorithm) are combined to make a final decision in the verification mechanism, where a 
weight averaging fusion method is applied.  The number of performed verification steps 
determines the weight factor for each component. 
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Figure 1-3  A compound loop detector and probe vehicle incident detection system (Source: 
Westman et al., 1996) 

In the ADVANCE demonstration project, Ivan and his colleagues (1995, 1997, 1998) 
developed two data fusion methods, i.e., algorithm output fusion and integrated fusion, combining 
fixed detector and probe vehicle data for urban arterial incident detection.  The algorithm 
output fusion algorithm combines the incident likelihood scores estimated by two parallel and 
independent algorithms, i.e., a fixed detector algorithm and a probe vehicle algorithm, and 
then makes the final decision regarding the presence of an incident.  The fusion process 
combining the incident likelihood scores is realized using an MLF-type neural network.  In 
the integrated fusion algorithm, the single source processing algorithms and the fusion process 
are integrated in a neural network.  Volume and occupancy (from fixed detectors) and travel 
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Figure 1-4  Two neural network structures fusing fixed detector and probe vehicle data 
(Source: Ivan et al., 1995) 

time (from probe vehicles) are directly read by the fusion process.  The two data fusion 
algorithms are illustrated using neural network topology in Figure 1-4. 

A comparison of the performance results in the studies listed above, suggests that 
neither fusion architecture outperforms the other; one fusion process did not always 
perform better when different data sets were applied. 

Bhandari et al. (1995) also proposed an integrated arterial incident detection method in 
the ADVANCE project.  They employed three distinct data sources: fixed detector data, 
probe vehicle data, and anecdotal reports.  In their data fusion system, three independent 
modules pre-process the three data sources respectively: 1) the fixed detector algorithm uses 
the real-time and historical occupancy and the ratio of volume to occupancy provided by 
fixed detectors to classify traffic conditions on the detectorized streets; 2) the probe vehicle 
algorithm uses travel time reports by probe vehicles and historical travel times on these links 
to interpret traffic conditions as incident or non-incident; and 3) the anecdotal processing 
algorithm, as operated by the ADVANCE traffic information center (TIC), uses the 
information provided by emergency personnel and other motorists in the network to identify 
incidents, which includes the information collected by the Northwest Central Dispatch 
System (NWCD) and the *999 center.  The data fusion process operates in two steps: (1) to 
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Figure 1-5  Data fusion system integrating three distinct data sources (Source: Bhandari et 
al., 1995) 

fuse the fixed detector and probe vehicle-based results from the two automated data sources 
using discriminant analysis; and (2) to fuse the output from the automatic data fusion 
algorithm (i.e., step 1) and anecdotal algorithm, as shown in Figure 1-5. 

Thomas (1998) developed a multi-state and multi-sensor incident detection system for 
arterial streets.  The algorithm input generated from a modified INTRAS simulation includes 
probe travel times, number of probe reports, lane specific detector occupancies, and vehicle 
counts.  The starting point of her methodology has two aspects: 1) arterial traffic can be 
classified into multiple states depending on sensor type (fixed detectors and probe vehicles); 
and 2) the discrimination criterion of an incident is a multi-variable vector, not a scalar.  
Thus, the underlying principle of this approach is to utilize multivariate classifiers to 
differentiate between multiple traffic states on arterials.  The combination of Bayesian 
discrimination and multiple attribute decision-making techniques was used to formulate and 
power the system.  Two system configurations, Systems A and B, were proposed, as shown in 
Figure 1-6.  System A processes spot detector data and spatial travel times (on link the level) 

Fixed Detector 
Algorithm 

Probe Vehicle 
Algorithm 

Data from Both 
Sources? 

Data Fusion (Step 1) 

Automatic Incident 
Detection File 

Information 
Available from 
Both Sources? 

TIC Operator and 
Anecdotal Report File 

Anecdotal Algorithm 

Operator Incident Input Data Fusion (Step 2) 

Duration and Impacts 

Operator Review 

Bypass Fusion 

Bypass Fusion 



 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-6  Multi-state and multi-sensor arterial incident detection systems (Source: 
Thomas, 1998) 

while System B makes use of spatial data and probe data (on the link level).  Here, the spatial 
detector data is achieved by preprocessing spot detector data.  The evaluation results suggest 
that performance is enhanced compared to detector-based models with the incorporation of 
probe information. 

1.7  Arterial-Applicable Algorithms 

Due to disruptions from signal/sign control and other disturbances (e.g., pedestrian 
crossings, parking maneuvers, transit stops) on arterial streets, traffic varies more frequently 
and sharply with much greater complexity on arterials compared to freeways.  In addition to 
commonly defined incidents, there are arterial-specific events that result in non-recurrent 
congestion on urban arterial streets, e.g., traffic signal malfunction, illegal stopping and 
parking, blockage of intersection, sports events and concerts, or VIP visits and parades.  
Traffic measures derived from roadway-based traffic detectors do not readily distinguish 
incidents from all other traffic variations, sometimes because the recurrent congestion 
caused by traffic control and bus stopping may often conceal a real incident.  Moreover, 
traffic entering and leaving from side streets introduces discontinuities in the flow of traffic.  
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Since different traffic phenomena exist in freeway and arterial environments, most incident 
detection principles and algorithms applicable to freeways are not readily transferred to 
arterial cases. 

Compared to the freeway incident detection studies conducted for nearly three decades, 
incident detection for arterial streets has received significant attention from traffic operations 
and control personnel only in recent years.  Reviews of incident detection algorithms 
including ones described above are concerned with freeway algorithms not the arterial 
algorithms reviewed here.  Having realized the importance of reducing non-recurring delay 
and enhancing safety related to incidents occurring on principal arterial streets, and having 
received fruitful outcomes from development of ATIS and ATMS research and 
technologies, the Federal Highway Administration (FHWA) and the Oak Ridge National 
Laboratory (ORNL) sponsored and hosted the first international workshop on arterial 
incident detection in 1996 (FHWA and ORNL, 1996).  The objective of this workshop was 
to evaluate the state of research and development of arterial incident detection techniques 
and identify key research needs that lead to further development, testing, and evaluation of 
deployable arterial incident detection systems.  The concept and requirements of arterial 
incident detection were considered and it was concluded that arterial incident detection is 
one of the major functions/elements under integrated urban traffic management systems 
(Khan and Franzese, 1998). 

The following section provides a summary of a variety of incident detection algorithms 
developed for and applicable to arterial streets.  In this report, each of them is named with 
its corresponding employed technique/algorithm to signify its underlying principle and 
operational features. 

1.7.1  Pattern Matching Algorithms 

Pattern matching/pattern recognition/comparative algorithms for arterial incident 
detection are designed to track variations of traffic measures and identify corresponding 
traffic patterns in order to distinguish incident from non-incident traffic conditions. 

Thancanamootoo and Bell (1988) are credited with some of the earliest efforts to 
develop a pattern recognition algorithm in which a time-series technique was used to detect 
an incident through monitoring variations of detector volume and occupancy.  Their 
principle is based on the hypothesis that an incident may reduce traffic flow at detectors 
upstream and downstream of the incident while increasing occupancy at the upstream 
detector and reducing occupancy at the downstream detector.  If the measured flows and 
occupancies are much different from estimated values, an incident alarm should be triggered.  
The algorithm is formulated as the following three inequalities: 

( ) ( )tStFtF Fem 1)( α−<  (1.8)

( ) ( )tStOtO Oem 2)( α−>  (1.9)

( ) ( )tStOtO Oem 3)( α−<  (1.10)
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where ( )tFm , ( )tFe , and ( )tSF  denote measured volume, estimated volume, and estimated 
standard deviation of volume, similarly, ( )tOm , ( )tOe , and ( )tSO  represent measured 
occupancy, estimated occupancy, and estimated standard deviation of occupancy; and, 1α , 

2α , and 3α  are three pre-specified or calibrated constants.  The estimated values of these 
traffic variables and their standard deviations in a cycle t  are calculated from their measured 
and estimated values in the last cycle ( 1−t ) by exponential smoothing.  Equation 1.8 is used 
for monitoring both upstream and downstream volume, while Equations 1.9 and 1.10 are 
respectively applied for upstream and downstream occupancy.  If all four inequalities are 
satisfied in a cycle t , an incident is declared. 

This algorithm has a feature that enables it to maintain the continuity of a triggered 
alarm during an incident and detect the end of the incident.  It is achieved by stopping the 
calculation of the new “smoothed average and dispersion terms” (i.e., estimated traffic 
measures and their standard deviations) of volume and occupancy as soon as an incident is 
detected.  This is based on a simple assumption that traffic flow status before and after an 
incident should be comparable (i.e., Equations 1.8, 1.9 and 1.10 unsatisfied).  According to 
simulation and field results, some problems with this algorithm were identified: 1) the 
performance of this algorithm is partly dependent on the position of an incident with respect 
to the detectors; and 2) the performance of this algorithm is adversely affected by chronic 
congestion in that incidents and recurrent congestion were not easily distinguished. 

Han and May (1989) utilized another pattern recognition approach to identify unusual 
traffic operation problems on arterial streets, which includes system problems (e.g., detector 
malfunctions, signal malfunctions, and data communication problems), recurring congestion, 
and non-recurring congestion or incidents.  The volume and occupancy data were smoothed 
and first passed through a module to identify problems from detector malfunctions.  They 
built a detection algorithm based on traffic flow theory to detect operational problems.  The 
type of operational problems (e.g., lane blockage, approach blockage, or arterial blockage) 
was classified based on the operating condition of detectors in adjacent lanes.  The following 
simplified decision tree (see Figure 1-7) briefly shows the operation procedures of their 
algorithms.  Their study concluded that the thresholds to distinguish incident and non-
incident traffic status are highly location and time-dependent. 

Both of the above studies concluded that arterial incident detection techniques were 
more effective for those incidents occurring in close proximity to a detector. 

Rau and Tarko (2000) explored the use of the metering effect of arterial bottlenecks to 
estimate link capacities and detection of incidents on specific links.  The estimation process 
generally uses historical and real-time data such as detector traffic measures, probe travel 
times, and signal parameters.  They studied the relationship between (dynamic) link capacity 
and congestion considering the turning volumes at intersections (i.e., entering and exiting 
volumes) to then determine the congestion pattern.  In their congestion-oriented model, 
surveillance data, road geometry, and signal timings were considered for capacity estimation 
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Figure 1-7  Simplified decision tree prototype for arterial operational problem detection 
(Source: Han and May, 1989) 

and incident detection.  The complete model structure is shown as Figure 1-8, including three 
primary modules: congestion detection module, capacity estimation module, and incident 
detection module. 

A demonstration test using travel probe time reports from 20% of the vehicles generated 
by a NETSIM-based simulation was conducted.  The preliminary results indicated that this 
model does not successfully detect incidents when the congestion pattern does not 
significantly change, and that a change in the pattern of congestion may take considerable 
time, thus adding to the time required to detect an incident. 
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Figure 1-8  Congestion-oriented incident detection system (Source: Rau and Tarko, 2000) 

1.7.2  Kalman Filtering Algorithms 

Kalman filtering is a self-learning variable estimation/prediction mechanism that was 
derived from a solution to the Wiener problems (including prediction of random variables, 
separation of random signals from random noise, and detection of variables of known form 
in the presence of random noise), using the state-space model for dynamic and random 
processes.  This technique estimates the state variables iteratively as they vary over time, so 
that there is a recursive relationship between the states of the system in consecutive time 
periods.  At each time interval, the projected state of the system is adjusted to account for 
the observed values of various system parameters. 

Bell and Thancanamootoo (1986) proposed using Kalman filtering to test for significant 
deviations between the stop line profiles estimated from measures of upstream and 
downstream sensors and to determine traffic status with or without an incident.  More 
recently, Lee and Taylor (1999) applied Kalman filtering to arterial incident detection in 
another way.  They used a modified discrete linear Kalman filtering algorithm to recursively 
filter and update aggregate traffic flow and speed to estimate true values.  A comparison of 
measured traffic parameters with estimated values is used to trigger an incident alarm when a 
distinct difference is identified. 

Chen and Chang (1993) proposed a dynamic arterial incident detection algorithm 
integrating Kalman filtering and discriminant analysis techniques.  In their model, three 
major components are included: 1) a traffic prediction model based on Kalman filtering; 2) 
an incident identification model based on discriminant analysis; and 3) an incident 
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monitoring process to integrate the above two models.  In their proposed traffic prediction 
model, the time-space traffic dynamics using time-series upstream and downstream 
information are taken into account.  The disturbance of traffic is captured by incorporating 
the effects due to lane changes, spillback queues, bus stops, roadside/shoulder parking, 
illegal pedestrian crossings, signal control, and uncontrolled side-accesses.  The data 
aggregation time-step in their model is not pre-specified, but is a dynamic parameter 
determined by the upstream and downstream detector speed.  The traffic variables estimated 
by Kalman filtering include upstream and downstream speed, volume, and occupancy.  At 
the next step, a set of multivariable discriminant functions are established to detect and 
classify incidents and assess their severity.  The discriminant analysis algorithm is described 
in the following section. 

The Kalman filtering based algorithm provides good estimations of traffic state and 
hence performs well on incident capture in dynamic arterial environments.  However, the 
calibration procedure of this technique for incident detection is a relatively complex process. 

1.7.3  Discriminant Analysis Algorithms 

Linear discriminant analysis is a classification technique in which a linear combination of 
predictor variables describing traffic flow characteristics on links is used to classify cases into 
two or more mutually exclusive groups, such as incident and incident-free conditions in the 
incident detection application.  Classification using discriminant analysis depends on a 
discriminant score, which is a function of the measured variables and the so-called prior 
probability.  The prior probability of incidents is an incident sensitivity indicator that affects 
the trade-off between detection rate and false alarm rate. 

Sethi et al. (1995) applied discriminant analysis to detect arterial incidents using fixed 
detector and probe vehicle data independently.  Their algorithms work on two of the traffic 
flow perturbations an incident on a link is likely to cause: 1) an increase in occupancy, a 
reduction in speed (or an increase in travel time), and 2) a reduction in volume, upstream on 
the same link and on the adjacent link.  Both the fixed detector and probe vehicle algorithms 
take into account impacts on both the incident link and the adjacent upstream link. 

For the fixed detector algorithm, upstream and downstream volume, occupancy, and 
ratio of volume to occupancy from a single detector were taken into account to develop the 
discriminant analysis model.  The model using occupancy and ratio of volume to occupancy 
showed the most promise.  For the probe vehicle algorithm, link traverse time ratio, average 
speed ratio1, and speed deviation were included in the model.  In their experiments, 
approximately 30 probe reports on each link during a 7-minute aggregation period were 
generated.  The results suggested that using speed variables (either speed ratio or speed 
deviation) rather than travel time are preferable for better incident detection performance.  
For both of the applications, the prior probability was selected as 0.01, subject to pre-
judgment, to obtain a high detection rate with a false alarm rate close to 0.0%. 

Based on the above attempt to model arterial incident detection, Sermons and 
Koppelman (1996) also studied the use of probe vehicle positioning data with discriminant 
                                                                                          
1 These two ratio variables are the ratios of measured values during the current period to historic averages. 
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analysis algorithms.  Unlike the above probe vehicle algorithm only using macroscopic traffic 
measures, they incorporated both macroscopic traffic measures (e.g., traverse time, running 
time, average speed, and running speed) and microscopic traffic data (e.g., individual vehicle 
position) in their discriminant analysis algorithm.  A detailed review of their work can be 
found in Section 1.4.2 regarding the ADVANCE algorithms. 

      Discriminant analysis models need to be calibrated using cases whose group membership 
are known (i.e., incident or incident-free conditions); the success of such algorithms is 
dependent on calibration from a data set consisting of a large number of membership-
known cases with all traffic disturbance factors.  The results from the above studies showed 
that the mean time-to-detect of incidents using discriminant analysis is relatively slow, 
typically up to 10 minutes. 

1.7.4  Modular Neural Algorithm 

As noted in Section 1.3.6, several researchers have applied pattern recognition and 
classification using artificial neural networks to incident detection.  In contrast to the 
foregoing singular neural network models, Khan and Ritchie (1998) proposed using multiple 
neural networks in a modular architecture to detect arterial operational problems, including 
lane-blocking incidents, special on-street events, and detector malfunctioning.  A modular 
neural network architecture allows decomposition and assignment of complex tasks to 
several modules that are single neural networks, e.g., the commonly used multi-layer feed 
forward (MLF) neural networks.  The multiple modules decompose the problem into two or 
more subsystems, with each module solving a separate sub-task.  Neural networks 
comprising the modular architecture compete with each other and learn training patterns by 
partitioning the function into independent tasks and allocating a distinct network to learn 
each task.  Therefore, a modular architecture performs local generalization by learning the 
patterns of a particular region.  Moreover, the interaction between modules would cause 
some of the modules to be used for a subtask.  Khan and Ritchie applied an error function 
to encourage competition between modules using a gating network.  The gating network can 
make a stochastic decision about which single module to use on each occasion.  In their 
modular architecture, each module works as a MLF neural network and all modules receive 
the same input and have the same number of outputs.  The gating network is also a MLF 
network and typically shares the same input as the other modules (see Figure 1-9).  In this 
modular architecture, Y  is the overall output, that is the linear combination of the output iy  
from the thi  module and ig  is the weight assigned for the module output iy  by the gating 
network. 

In the training of this architecture model, one module may come closer to producing the 
desired output than the others for one training pattern.  If the performance of the model is 
improved significantly for a given training pattern (displaying the smallest error), the weights 
of the gating network are adjusted to make the output of the “winner” increase towards 1, 
and the outputs of the “losers” decrease towards 0. 
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Figure 1-9  Modular neural network-based arterial incident detection architecture (Source: 
Khan and Ritchie, 1998) 

Khan and Ritchie (1998) applied both field and simulated data to test the modular neural 
network-based algorithm, and compared it to several alternatives, including a single MLF 
model, discriminant analysis algorithm, and Bayesian algorithm.  They concluded that the 
modular neural classifiers outperformed the other classifiers. 

1.7.5  Fuzzy Logic Algorithm 

Lee et al. (1998) developed a fuzzy logic-based algorithm to detect incidents on a 
signalized diamond interchange, which was controlled by a real-time traffic adaptive control 
system.  Fuzzy logic is an effective solution technique for models that need to operate in 
real-time, require approximate reasoning, and exhibit uncertainty.  The algorithm was 
designed for the operation in sequence of four components: 1) normality inference module; 
2) incident location inference module; 3) incident severity assessment module; and 4) 
incident termination inference module.  The input for this algorithm included lane-by-lane 
volumes, queue length, occupancy, and speed derived from the video monitoring system.  
The algorithm evaluates these traffic measures as indications of abnormal traffic conditions 
by comparing the current (or most recent minute) measure values to the past 5-minute 
values. 

In this model, the normality inference module is designed to check queue length on each 
approach for abrupt changes that reflect the possibility of an incident.  Fuzzy logic acts as 
the inference engine in this module.  If the normality inference module detects an incident, 
the algorithm start up the incident location inference module to conduct an extended test on 
three traffic measures, i.e., queue length, occupancy, and speed, on all approaches of the 
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Figure 1-10  MSRPT-based arterial incident detection system architecture (Source: Sheu and 
Ritchie, 1998) 

interchange and to confirm the occurrence of this reported incident (by the normality 
inference module) and infer its location.  The location inference based on fuzzy logic works 
through comparing the resulting traffic measures against expected impact pattern and 
identifying the location associated with the best-matching pattern.  Then, the incident 
severity assessment module determines the severity of an occurred incident through a more 
detailed examination of selected traffic parameters.  The incident severity assessment module 
and the incident termination inference module are also operated based upon fuzzy logic. 

1.7.6  MSRPT Algorithm 

Sheu and Ritchie (1998) applied modified sequential probability ratio tests (MSRPT) for 
arterial incident detection.  In their incident detection system, three sequential procedures 
were developed: 1) symptom identification is a logical knowledge-based rule for identification of 
incident symptoms; 2) signal processing is used for raw traffic data (i.e., volume and occupancy) 
pre-processing and real-time prediction of incident-related lane traffic characteristics; and 3) 
pattern recognition conducts a decision-making process for incident recognition.  The system 
architecture can be referred to in Figure 1-10.  The pattern recognition-based MSRPT 
concept is the key logic in the pattern recognition procedure, in which the estimated lane-
changing fractions and queue lengths are utilized as inputs.  An important feature of this 
algorithm is that it allows the probabilities of either a false alarm or a miss in decision 
making to be predetermined.  The lane-changing fractions and queue length are generated in 
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the signal processing procedure through pre-processing raw traffic data.  The MSRPT algorithm 
consists of the following procedures: 1) first, initiate the system status, pre-specify the 
probabilities of a false alarm, a miss and a detection and specify the thresholds for sampling; 
2) estimate the current-time step lane-changing probability and the queue lengths in the lane 
which is identified as potential blocked lane by the signal processing procedure; 3) make a 
decision for both intersection and approach incident detection; and 4) enter the next data 
aggregation cycle and go to the symptom identification procedure. 

      Test results based on simulated and real data revealed several important factors affecting 
the performance of the current arterial incident detection algorithms: 1) abnormal lane-
changing behavior, which occurs during upstream link incidents; 2) the influence of turning 
movements on intersection incident detection; and 3) signal timing plans are an important 
factor influencing the time to detect intersection incidents. 

1.7.8  CUSUM Algorithm 

The cumulative sum (CUSUM) chart is a form of process control that has been 
developed by industrial engineers to monitor and detect any abrupt change that may 
contaminate the quality of a product.  This chart can detect small to moderate persistent 
shifts of statistical parameter by memorizing and accumulating past samples to determine the 
status of the process.  Sattayhatewa and Ran (1999) applied the CUSUM method to capture 
disruptive traffic changes or shifts that have a tendency to persist over time under non-
incident conditions.  Occupancy and volume data were selected as algorithm inputs and the 
data aggregation time interval were set as one signal cycle to minimize the impact of traffic 
signals on detection performance.  The CUSUM-based algorithms consists of three 
subsystems: Algorithm A, this test scans for differences between adjacent lanes; Algorithm B, 
this algorithm searches for a significant imbalance between adjacent lanes; Algorithm C is 
developed to supplement the two former tests, in order to address the problem that when an 
incident is too close to detectors, the variable imbalance caused by that incident may be too 
faint to be captured.  Algorithm C is designed to detect an incident through the impact on the 
occupancies that have been reported over time.  The three models can work independently 
for arterial incident detection.  The preliminary tests in the NETSIM simulation indicated 
that the three sub-models have the comparable performance while the combination of them 
can greatly improve the detection rate with only a slight increase of false alarm rate. 

1.7.9  Logit Algorithm 

Incident detection can be regarded as a discrete choice problem where incident and 
incident-free conditions are two definable choices.  Lee and Hwang (2001) attempted to 
apply a multinomial logit (MNL) model, which was originally developed in the econometrics 
area and widely used for discrete choice modeling and analysis, to model arterial incident 
detection problems.  An incident index, representing the probability of an incident 
occurrence, was expressed as the utility of the MNL model.  They incorporated detector 
occupancy and volume as the independent variables and assumed the error term followed a 
Gumbel distribution in the logit-based incident detection algorithm.  The proposed 
algorithm was evaluated by applying simulated data generated from the NETSIM model and 
compared with a modified California algorithm (applicable to surface streets) and a neural 
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network-based algorithm.  The test results indicated this logit-based arterial incident 
detection algorithm has a high efficiency and accuracy. 

 

1.7.10  Other Algorithms 

In addition, incident detection efforts for arterial streets also include models built on the 
data fusion concept.  In Section 1.6, arterial incident detection methodologies using neural 
networks (Ivan et al., 1995; Ivan and Chen, 1997; Ivan and Sethi, 1998) and Bayesian 
discrimination and multiple attribute decision-making (Thomas, 1998) are introduced.  Also, 
Bhandari et al. (1995) proposed integrating fixed detector, probe vehicle, and anecdotal 
report data to detect incidents in a suburban arterial network. 

1.7.11  Summary (Arterial Algorithms) 

It is worth noting here that the arterial incident detection algorithms reviewed above 
were proposed and designed in terms of the detector configurations or layouts in their 
respective street networks.  Some of them are appropriate only for their own sensor 
arrangements and geometric characteristics.  Readers are encouraged to refer to the original 
documents for more details to understand the inherent relationships between the algorithms 
and the corresponding detector configurations. 

Researchers have realized that traffic signals in either fixed or actuated mode have non-
negligible impact on the traffic prediction and incident detection performance.  One of ways 
to minimize this adverse effect is to select data aggregation time intervals with care or 
incorporate traffic signal control parameters, like cycle, red and green times, offset and so 
on, into incident detection algorithms, so that the algorithms may be able to distinguish 
recurring congestion caused by the signal from real incidents and hence reduce false alarm 
rates. 

Incidents occurring in a signalized arterial network can be divided two types, link 
incidents and intersection incidents, in terms of the geometric characteristics.  Arterial links 
and intersections, display varying traffic behavior and hence different incident detection 
mechanisms should be considered.  Incidents occurring in an intersection may have more 
intense adverse influence on the arterial network efficiency and safety.  Most arterial 
algorithms were designed for detecting incidents on arterial links; few of them are applicable 
to detect incidents in a signalized or non-signalized intersection. 
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CHAPTER 2: USE OF INCIDENT DETECTION ALGORITHMS AT A 
TMC OR TOC 

A nationwide Web-based survey was conducted at 29 transportation management 
centers (TMCs) and transportation operations centers (TOCs) in the summer of 2001. This 
survey was designed to obtain information about applications of incident detection 
technologies and algorithms.  The survey consisted of five parts: 1) responder’s information; 
2) TMC/TOC-related information; 3) implemented equipment and techniques; 4) algorithm 
application and evaluation; and 5) future plans and suggestions.  Please refer to Appendix A 
for details of the survey questionnaire. 

In the following, Section 2.1 describes the methodology used in designing and conducting 
this survey; Section 2.2 focuses on the qualitative and quantitative analysis of the survey data 
and the preliminary results, and Section 2.3 presents conclusions and recommendations. 

2.1  Methodology 

The online survey is built on and conducted through the ECS (Engineering Computing 
Service) server at University of Massachusetts, Amherst (accessible at 
http://www.ecs.umass.edu/cee/chixie/). Most of the technical questions in the survey are 
presented in the form of single or multiple choices, check-off and short reply; some 
questions are descriptive and ask for comments/opinions/suggestions at the end of survey, 
in hopes of obtaining additional information about the responders’ specific knowledge and 
experience. 

The first step of this survey was to collect contact information for TMCs/TOCs for the 
survey throughout the country.  Through a Web search and assistance provided by the I-95 
Coalition and various State DOTs (Departments of Transportation), 34 TMCs/TOCs in 21 
states were initially located.  Then, a contact e-mail was sent to each TMC/TOC to 
determine who would be interested in and capable of responding to the survey and to alert 
them to the survey goals.  Potential responders who confirmed that they would like to 
receive the survey were provided with a hyperlink to the online survey form.  Responses 
could be provided in three ways: 1) fill in the Web-based form and submit it online; 2) fill in 
the electronic form in the downloadable “*.doc” or “*.pdf” format file and send it back by e-
mail; and 3) fill in the downloadable “*.doc” or “*.pdf” format file and fax it back.  Of 29 
survey responses received, 22 responders choose the first method while 5 used e-mail and 2 
used fax for submission. 

There are 24 effective responses among the 29 received samples.  Five responses were 
discarded because of serious incompleteness and deficiency of data feedback.  The reasons 
are various: it was claimed that there is virtually no requirement for incident detection at 
their TMC/TOC due to the very low traffic volumes; the incident management function is 
now in the design progress or under construction; no traffic management is conducted 
except for simple traffic operations and safety inspection; or the survey is believed to be too 
technical to complete. 
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2.2 Data Analysis and Preliminary Results 

2.2.1  Overview of TMCs or TOCs 

Part 2 of the survey investigates TMC/TOC-related information.  A list of the 24 
TMCs/TOCs that responded with usable information is given in Table 2-1; their geographic 
location is indicated in Figure 2-1.  These TMCs/TOCs have been in operation from 
approximately 1 year to more than 30 years; most of them (19 out of 24) have an operating 
history of 1-10 years. 

Hours of Operation.  As may be seen in Figure 2-2, all of the centers operate for at least 8 hours 
per day.  Nine centers operate between 12 and 16 hours per day and 8 operate on a 24-hour 
per day basis. 

Operation by Roadway Class.  Figure 2-3 shows the distribution of operation by roadway class.  
As would be expected, almost all (22 of the 24) of the surveyed centers operate on Freeways.  
Perhaps less expected, 4 of the centers operate at the Collector level and 3 at the level of 
local streets.  The percentages in Figure 2-3 add up to more than 100% as many of the 
centers operate on several classes of roadways.  

Type of Operations.   Figure 2-4 shows the distribution of operations by type of operation.  Not 
surprisingly, almost all of the centers reported that they carry out Traffic Management, 
Incident Management, and Traffic Information functions.  Two centers report conducting 
Transit and/or HOV Lane functions.
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Table 2-1  Overview of the surveyed TMCs/TOCs 

Operating Agency Name of TMC/TOC Operating History (Years) Responder’s Title 

Arizona State DOT TOC of Arizona DOT 5-10 Transportation Engineering Specialist 

California State DOT Signal Central TMC of San Jose 5-10 Traffic Engineer 

Delaware State DOT TMC of Delaware DOT 1-5 TMC Manager 

Florida State DOT Sunguide Control Center of District 6 5-10 ITS Systems Engineer 

Illinois State Dot Traffic Systems Center of Illinois District 1 >30 Traffic Systems Center Manager 

TRW under Kentucky Cabinet and Ohio DOT ARTMIS Operations Control Center 5-10 Program Manager 

TRW under Kentucky Cabinet and Ohio DOT TRIMARC Interim TOC 5-10 TRW Project Manager 

Michigan State DOT MITSC 15-20 TMC Administrator 

Minnesota State DOT TMC of Minnesota DOT 20-30 Freeway Studies Engineer 

Missouri State DOT Discovery Center of Missouri District 8 5-10 Traffic Engineer 

New York State DOT Capital Region TMC 1-5 Operations Engineer 

North Carolina State DOT TOC of North Carolina DOT 1-5 Division Operations Engineer 

North Carolina State DOT Metrolina Regional TMC 1-5 Incident Management Engineer 

North Carolina State DOT Triangle TMC 1-5 Regional ITS Engineer 

Rhode Island State DOT TMC of Rhode Island DOT 1-5 TMC Manager 

Texas State DOT TOC of Austin District 1-5 Operations Engineer 

Texas State DOT DalTrans of Dallas District 1-5 Assistant Operations Director 

Texas State DOT DalTrans ITS Center 1-5 Freeway Management Engineer 

Texas State DOT TranStar 5-10 Operations Director 

Texas State DOT TransGuide 5-10 Traffic Management Engineer 

Texas State DOT TransVision 1-5 Incident Manager 

Virginia State DOT Smart Traffic Center 5-10 Operations Engineer 

Virginia State DOT STC of Virginia DOT 15-20 Transportation Engineer 

Washington State DOT Northwest Region TSMC 20-30 Transportation Engineer 
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Figure 2-1  Geographical locations of the surveyed TMCs/TOCs throughout the country 
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Figure 2-2  Daily operation hours of the surveyed TMCs/TOCs 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3  Proportions of TMCs/TOCs operating different roadway types 
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Figure 2-4  Proportions of TMCs/TOCs performing operation tasks 

 

2.2.2  Summary of Incident Management Technologies 

 The four principal categories of incident detection/verification methodologies identified 
as being used by survey respondents were: 1) AID (Automatic Incident Detection) system 
alert; 2) CCTV (Closed-Circuit Television) monitoring; 3) highway patrol/maintenance crew 
patrol; and 4) witness report/police report/cellular phone call.  AID, as the name suggests 
employs automated detection techniques; the remaining three approaches involve operator 
intervention to a lesser or greater degree.  Most of the surveyed centers employ a 
combination of two or more approaches for both detection and verification, as illustrated in 
Figure 2-5.    
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Figure 2-5  Proportions of incident detection and verification techniques 

Two general categories of sensors/detectors were identified in the survey: fixed detectors 
(i.e., roadside-installed) and mobile detectors (i.e., probe-based).  The fixed detectors 
primarily include traditional single ILD (inductive loop detector), double ILD, and VIP 
(video image processor).  ILD has been widely implemented for traffic monitoring and 
management for more than three decades; VIP has been increasingly applied in recent years.  
With the exception of side-fired radar detectors, the use of other new-type roadside 
sensors/detectors (as reviewed in Chapter 4) is not reported in this survey.  Figure 2-6 shows 
the proportion of TMCs/TOCs employing the three main types of sensors/detectors.  Side-
fire radar is applied in three TMCs/TOCs: Metrolina Regional TMC (North Carolina), 
ARTMIS Operations Control Center (Kentucky and Ohio) and TRIMARC Interim TOC 
(Kentucky and Ohio).   
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Figure 2-6  Single and combined usage of three primary types of detectors 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7  Usage of traffic parameters for incident detection and traffic management 

The use of various types of traffic data obtained from fixed sensors/detectors is shown 
in Figure 2-7.  Volume, occupancy and time mean speed play major roles.  Other traffic 
parameters used for incident detection or traffic management reported in this survey include 
space mean speed, density, headway, queue length, delay and travel time.  It is noted that a 
large number of TMCs/TOCs (19 out of 24) employ a combination of volume, occupancy 
and time mean speed as data sources while 5 TMCs/TOCs suggest that they use space mean 
speed or travel time instead of time mean speed in the above combination of data.  
However, it is not clear how they get true (non-point or very short section-based) space 
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mean speed or density with inductive loop detectors and video image processing.  Other 
traffic parameters are less used. 

Data communication media between detectors on site and TMCs/TOCs is another 
important technological concern.  As may be seen in Figure 2-8, fiber optic cable and phone 
lines are most widely applied for data transmission, with coaxial cable and wireless 
communication also used to some degree.  Fiber optic cable is increasingly used and has 
become the primary transmission media in the transportation industry due to its large 
capacity and high reliability.  In contrast, the most popular type of communication link 
several years ago was commercial phone lines, and most of the TMCs/TOCs were 
experimenting with or upgrading to fiber optic cable (Parkany and Shiffer, 1996).  In the 
survey, it was found that 9 TMCs/TOCs are using fiber optic cable for nearly 100% of their 
communications.  Moreover, more than half of TMCs/TOCs make use of hybrid or 
integrated communication approaches, such as fiber optic cable/phone line, or fiber optic 
cable/wireless.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8  Usage of data communication media among the surveyed TMCs/TOCs 
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percentage of transponder-equipped vehicles ranges from 5% to 10% in these three areas, 
somewhat lower than the percentage (10-30%) reported in other metropolitan areas in North 
America and some cities in California.  All three TMCs/TOCs reported that traffic data can 
be extracted from 100% of the transponders in their area.   

Half of the responders are satisfied with implemented sensors or systems for incident 
detection and half of them not.  Various reasons are reported for this dissatisfaction, 
including frequent malfunction, low accuracy, troublesome installation, inconvenient 
maintenance, performance instability, and long detection/verification time.   

Other reported problems included: 1) installation and maintenance of pavement-
imbedded detectors  disturb or interrupt traffic, which may increase the potential for 
accidents/incidents; 2) currently, most incident detection/verification work relies on CCTV 
monitoring, highway patrol and maintenance crew patrols, and witness reports (including 
cellular phone calls and police reports) because automatic incident detection still suffers 
from low accuracy, reliability and stability; 3) the existing equipment cannot satisfy the 
demands of an increasingly large amount of data processing and transmission work. 

2.2.3  Evaluation of Incident Detection Algorithms 

In this section, some representative on-shelf or in-practice incident detection algorithms 
are listed.  These include algorithms widely implemented in existing incident management 
facilities (e.g., California algorithm series) or under active investigation by transportation 
researchers (e.g., neural network algorithms), as well as others developed for specific 
demands of individual TMCs/TOCs.  (see Appendix A for details).  These algorithms refer to 
analytical or statistical models for AID alerts.  Table 2-2 lists the algorithms as well as their 
advantages and disadvantages reported by TMCs/TOCs.  Surveyed TMCs/TOCs, other 
than those listed here, do not apply an AID algorithm for incident detection and hence are 
not included in this table. 

 

2.3 Findings  

● CCTV and witness reports are the principal means of incident detection/verification-- 
Generalized algorithms do not appear to work very well because of poor transferability—
some of TMCs/TOCs prefer to develop and use their own algorithms for local traffic 
conditions.  There is little connection between algorithms found described in the literature 
and those algorithms actually implemented and used. 

● Some TMCs/TOCs claimed that they had to discard a previously used AID algorithm 
due to high false alarm rates and long detection delays and resort to CCTV monitoring and 
witness reports. 

● AID systems are effective principally for major incidents or for incidents that occur in 
the immediate vicinity of a sensor.  Generally, the incident is reported from other (non-
automatic) sources first. 
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Table 2-2  Advantages and disadvantages of the algorithms reported by TMCs/TOCs  

Algorithm Operator Advantage Disadvantage Overall 
Reliability 

California 
Algorithm 
Series 

TOC of 
Arizona DOT; 
ARTMIS 
Operations 
Control Center; 
STC of Virginia 
DOT; Metrolina 
Regional TMC 

High detection rate; 
Ease in 
implementation 

Difficulty in 
calibration and 
implementation; 
low detection rate 
of <50%; high 
false alarm rate; 
too long time to 
detection 

Sometimes 
reliable, 
sometimes 
unreliable 

APID 
Algorithm 

Smart Traffic 
Center; 
TRIMARC 
Interim TOC 

Ease in 
implementation; 
high detection rate 
of 95-98%; short 
time to detection of 
2-3 minutes 

- Fairly 
reliable 

McMaster 
Algorithm 

ARTMIS 
Operations 
Control Center 

- 
Difficulty in 
implementation; 
too costly 

- 

HIOCC 
Algorithm 

Traffic Systems 
Center of 
Illinois District 
1 

Ease in 
implementation; 
high detection rate 
of 85-90% 

Difficulty in 
calibration 
(continuous 
calibration 
needed); high false 
alarm rate of 20-
30%; long time to 
detection of 5-10 
minutes 

- 

Exponential 
Smoothing 
Algorithm 

Capital Region 
TMC - Long time to 

detection 
Less 
reliable 

Comparison 
Algorithm1 MITSC - Time-consuming 

work in calibration 
Fairly 
reliable 

 

 

                                                                                          
1 The name of “Comparison Algorithm” is given by the authors to the incident detection algorithm comparing 
current and historical traffic conditions used in MITSC of the Michigan State Department of Transportation. 
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Sunguide 
Algorithm1 

Sunguide 
Control Center 

High detection rate 
of 90-95%; short 
detection time of 
<0.5 minutes 

Difficulty in 
calibration and 
implementation 

Fairly 
reliable 

TxDOT 
LCU/SCU 
Algorithm 

TOC of Austin 
District - 

Difficulty in 
calibration and 
implementation in 
that it may not 
apply well in all 
areas 

Fairly 
reliable 

Data Fusion 
Algorithm2 

ARTMIS 
Operations 
Control Center 

Ease in 
implementation and 
calibration; high 
detection rate of 95-
98%; short time to 
detection of 2-3 
minutes 

- Fairly 
reliable 

TransGuide 
Specific 
Algorithm 

TransGuide 
Operations 
Center 

Ease in 
implementation and 
calibration; high 
detection rate of 95-
98%; short time to 
detection of 2-3 
minutes 

High false alarm 
rate  

Single 
Station/Time 
of Day 
Algorithm 

TRIMARC 
Interim TOC 

Ease in 
implementation and 
calibration; high 
detection rate of 95-
98%; short time to 
detection of 2-3 
minutes 

- Fairly 
reliable 

AVL or AVI 
Algorithm 

Houston 
TranStar - - - 

 

 

                                                                                          
1 The name of “Sunguide Algorithm” is given by the authors to the algorithm developed by Kimley-Horn & 
Associates. 
2 The name of “Data Fusion Algorithm” is given by the authors to an incident detection algorithm employing 
multiple data fusion used in ARTMIS Operations Control Center, TRW under contract to Kentucky 
Transportation Cabinet and Ohio State DOT. 
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CHAPTER 3: PERFORMANCE OF ALGORITHMS 

This chapter discusses common measures used to evaluate incident detection 
performance.  The performance of the principal algorithms as applied in both the laboratory 
and in the field is also reported. 

3.1  Performance Measures 

The following measures are used in this study for evaluating the performance of several 
common types of algorithms: detection rate (DR), false alarm rate (FAR), time to detect 
(TTD), and information details and adequacy (IDA).  An ideal algorithm would maximize 
DR and minimize FAR and TTD and provide correct and comprehensive IDA information.  
In practice, however, this ideal is never attained due to limitations in incident detection 
techniques and the complexity of the traffic and roadway environment all existing algorithms 
seek to stake a balance among the several objectives.  The relationships among these 
performance measures are discussed in below. 

3.1.1  Definitions of Performance Measures 

Detection rate (DR) is defined as a ratio or percentage of the number of detected 
incidents to the total number of actual incidents during a given time period.  It has the 
simple form shown below. 

%
identsactual inc of No.Total 

 incidentsdetected of No.DR 100×=  (3.1)

False alarms are counted when an algorithm triggers an incident alarm but no actual 
incident has occurred.  False alarm rate (FAR) has different definitions for different 
applications.  The commonly used FAR is defined as the ratio of the number of false alarms 
to the total number of algorithm applications, as shown by FAR1, below.  Alternatively, 
FAR may be defined as a fraction of the number of false alarms to the total number of 
declared incident alarms, including all correct and false alarms, as shown FAR2, below.  A 
third FAR, FAR3 may be defined as the number of false alarms per day or per hour.  This 
measure is used to reflect traffic operators’ workload.  In this chapter, the first definition is 
applied. 

%
nsapplicatio algorithm of No.Total 

alarms false of No.FAR1 100×=  (3.2)

%
alarms incident declared ofNo.Total 

alarms false of No.FAR2 100×=  (3.3)

period Time
alarms false of No.FAR3 =  (3.4)
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Time to detect (TTD) is used to evaluate the ability of an incident detection algorithm 
to identify an incident in a timely fashion.  It is defined as the time spent from the moment 
an incident occurs until the time that the algorithm declares this incident.  It is often 
expressed in units of minutes.  Generally, the average time to detect (ATTD) is employed to 
give an average score of the reaction speed of an algorithm, as expressed below. 

( )∑
=

−=
n

i

ii tt
n 1

1
occurrencedetectionATTD  (3.5)

Information details and adequacy (IDA) is not a numeric performance measure, but an 
indicator reflecting the reporting capability of an algorithm when it reports an unusual 
congestion problem.  It incorporates incident-related information, such as incident location, 
type, severity, number of vehicles involved, etc.  High IDA reporting capability can greatly 
facilitate incident confirmation and response.  In a large-scale roadway network, when 
multiple incidents are identified, IDA information can be especially helpful in prioritizing 
these incidents for assigning action teams and other sources.  The first three quantitative 
parameters have been used widely by traffic researchers and engineers.  The IDA, as a 
qualitative measure, is increasingly being paid attention to and becoming an important 
consideration when transportation professionals assess the effectiveness of an incident 
detection and management system. 

3.1.2  Relationships of Performance Measures 

Weil et al. (1998) summarized a variety of factors affecting the performance of automatic 
incident detection algorithms.  These factors include, but are not limited to: 1) operating 
traffic conditions (e.g., heavy, medium, light, at capacity, and well below capacity); 2) 
geometric factors (e.g., grade, lane drops, and ramps); 3) environmental factors (e.g., dry, 
wet, snow, ice, and fog); 4) incident duration; 5) incident severity; 6) detector spacing; 7) 
incident location (relative to detector station); and 8) heterogeneity of vehicle fleet.  These 
factors are so complex that they cannot all be readily accounted for in a single algorithm, 
especially in an arterial environment.  None of the existing algorithms has been tailored to 
consider all of these factors.  Thus, they cannot be expected to succeed in all traffic 
environments.  Al-Deek et al. (1996) studied the impacts and effectiveness of incident 
detection algorithms related to two of the above factors: geometry and incident 
characteristics.  The result shows that the detection rate (DR) and mean time to detect 
(MTTD) are affected significantly when testing selected California algorithms (i.e., No. 7, 
No. 8 and No. 10) and negative impacts cannot be readily avoided. 

3.2  Performance of Incident Detection Algorithms 

A comparative performance analysis of several standard algorithms by Peterman (1999) 
resulted in different rankings at the model calibration and testing stages.  In the calibration 
stage, the California No. 8 algorithm was superior for all incident detection while the 
Minnesota algorithm gave the best detection results for accident and stall detection.  In 
testing, the McMaster algorithm performed best in detecting all incidents while the California 
No. 8 outperformed the others when detecting only accidents and stalls.  From these 
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experiments, it was concluded that the three algorithms showed a similar incident detection 
performance and that each performed better than the Texas algorithm. 

3.2.1  Subramaniam’s Investigation 

Subramaniam (1991) categorized incident detection algorithms developed prior to 1991 
into 5 types: pattern recognition, statistical processing, catastrophe theory, neural networks, 
and video image processing.  Their performances are compared, in terms of their own 
reported measures of effectiveness (MOEs), in Table 3-1.  The data required to support these 
algorithms are derived from either inductive loop detectors (ILDs) or video image 
processors (VIPs).  These numbers clearly illustrate the tradeoffs between the three 
performance parameters:  detection rate, false alarm rate, and time-to-detect.   

3.2.2  Stephanedes et al.’s Investigation 

Stephanedes et al. (1992) evaluated the performance using sensitivity analysis of the most 
widely accepted conventional freeway automatic incident detection (AID) algorithms as well 
as the proposed Minnesota algorithm.  Three types of AID algorithms were compared 
qualitatively and quantitatively: comparative logic (i.e., California algorithm series), statistical 
forecasting (i.e., standard normal deviation algorithm, double exponential algorithm, ARIMA 
algorithm, and HIOCC algorithm), and macroscopic traffic analysis (i.e., McMaster 
algorithm, dynamic algorithm, and fictitious volume algorithm1).  They found that these 
algorithms suffered from certain limitations stemming from: 1) the unsatisfactory quality of 
raw data (i.e., ILD data) and the use of raw data with only limited filtering; and 2) the 
inability to distinguish incidents from bottleneck congestion or other incident-like traffic 
situations.  The best algorithms in the types of comparative logic and time series were 
selected in terms of DR-FAR curves and compared to the Minnesota algorithm using a data 
set collected on Interstate 35 in Minneapolis, Minnesota.  The performance comparison 
figures, the DR-FAR curve and TTD histogram respectively, are shown in Figure 3-1 and 
Figure 3-2.  As explained in the footnote to Figure 3-2, the negative TTD values are due to “0” 
being the time that the operator determines that an incident has occurred.  However, if the 
operator has determined this, then an automatic detection algorithm which takes longer is 
not needed. 

                                                                                          
1 The algorithm name of “fictitious volume” is given by the authors, which was proposed by Cremer (1981) to 
improve the detection performance by modeling the attenuation of the road capacity with an additional 
(fictitious) volume input at the location of the incident. 
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Table 3-1  Performance comparison of incident detection algorithms based on ILD and VIP 
sensors (Source: Subramaniam, 1991) 

Type Algorithm Detection 
Rate 

False Alarm 
Rate 

Mean Time 
to Detect 

California Algorithm #7 67% 0.13% 2.91 min 
Pattern 
Recognition 

APID Algorithm 86% 0.05% 2.55 min 

SND Model 92% 1.3% 1.10 min 

Bayesian Algorithm 100% 0% 3.90 min 

ARIMA Model 100% 1.4%-2.6% 0.39 min 

Smoothing Model 92% 1.87% 0.74 min 

DES Model 82% 0.28% 5.05 min 

HIOCC Algorithm 96%   

Filtering Model 95% 1.5% 0.67 min 

Time Series or 
Statistical 
Processing 

Dynamic Model  Prob. < 
0.02% Short 

Catastrophe 
Theory McMaster Algorithm 100% 0.04% 1.5 min 

Artificial 
Intelligence ANN Model 97% 0.21% 2.83 min 

Video Image 
Processing 

INVAID-TRISTAR 
System 90% 1 every 3 

hours 0.33 min 
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Figure 3-1  DR-FAR performance comparison of the representative algorithms (Source: 
Stephanedes et al., 1992) 

Based upon these evaluations, Stephanedes et al. concluded that raw detector (i.e., ILD) 
data are often inappropriate for incident detection if traffic noise cannot be filtered out 
before use.  In particular, this is a weakness characterizing comparative algorithms—when 
corrupted by noise, incident patterns in the traffic data may not be detected easily by a 
comparative algorithm.  Similarly, fluctuations produced by noise sources can be mistaken 
for incidents.  As a result, the only traffic patterns easily identified are those occurring under 
severe incident conditions and satisfying every test of an algorithm.  As for statistical 
forecasting algorithms, they employ filtering as dictated by their design specifications, so that 
their transferability is greatly limited.  The major weakness of these algorithms lies in their 
inability to distinguish incidents from similar traffic patterns. 
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Figure 3-2  TTD performance comparison of the representative algorithms1 (Source: 
Stephanedes et al., 1992) 

3.2.3  Balke’s Investigation 

Balke (1993) evaluated a variety of common incident detection algorithms on the basis of 
both theory and practice.  The algorithms were evaluated in terms of their reported 
performance, data requirements, ease of implementation, ease of calibration, and operational 
experience.  The algorithms were placed into one of five groups: comparative algorithms, 
statistical algorithms, time-series algorithms, smoothing or filtering algorithms, and modeling 
algorithms.  The results of the theoretical evaluations and on-site investigations indicated 
that [repeated from Section 1.2.3]: 1) most freeway management centers were using a 
modified version of the California algorithm, except for Toronto, where the McMaster 
algorithm was  employed [This contrasts a bit with our 2001 results shown in Table 2-2.]; 2) 
generally,  operators did not depend heavily on  automatic algorithms to alert them to the 
presence of incidents; 3) for the most part, the operators relied on other mechanisms, such 
as radio reports or closed-circuit television (CCTV) monitoring, to alert them to incidents on 
freeways; and 4) of those systems that have discontinued algorithm use, improper calibration 
appears to the most prevalent reason why the algorithms generated a high number of false 
alarms.  Furthermore, it was believed that the algorithms could not be properly calibrated 
unless an incident affects every detection zone. 

                                                                                          
1 Note that the negative time-to-detect values in the figure result from the fact that time of incident is the 
instant when the operator identifies that incident, usually a few minutes after its occurrence. 
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According to the theoretical and empirical evaluation described above, the following 
three tables respectively summarize the reported best performance, data requirements, and 
difficulty of implementation.  

Among the three primary performance measures, i.e., DR, FAR and MTTD, MTTD is 
influenced significantly by the structure or procedure of a particular algorithm.  Some 
algorithms (e.g., California No. 7, California No. 8 and low-pass filter algorithms) use special 
tests (e.g., persistence test or compression wave test) to extend the detection confidence and, 
hence, to reduce FAR.  This feature, however, adds to the overall detection time.  In cases 
where algorithms include persistence test and comprehensive wave test, it is logical for these 
algorithms to have higher detection times (Balke, 1993). 

Table 3-2  The reported best performance of existing ILD data-based incident detection 
algorithms (Source: Balke, 1993) 

Type Algorithm Detection 
Rate 

False Alarm 
Rate 

Mean Time to 
Detect 

California Basic 82% 1.73% 0.85 min 

California No. 7 67% 0.134% 2.91 min 

California No. 8 68% 0.177% 3.04 min 
Comparative 

APID 86% 0.05% 2.5 min 

SND 92% 1.3% 1.1 min 
Statistical 

Bayesian 100% 0% 3.9 min 

Time Series ARIMA 100% 1.5% 0.4 min 

DES 92% 1.87% 0.7 min Smoothing or 
Filtering LPF 80% 0.3% 4.0 min 

Traffic Modeling McMaster 68% 0.0018% 2.2 min 

 

The comparison of data requirements in Table 3-3 shows that occupancy (or a derivative 
of occupancy) is the most commonly used control measure to detect incidents. 
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Table 3-3  Traffic parameters used as control variables of existing ILD data-based incident 
detection algorithms (Source: Balke, 1993) 

Type Algorithm Occupancy Volume Speed Other 

California Basic √    

California No. 7 √    

California No. 8 √    

APID √ √ √1  

Comparative 

PATREG √    

SND √ √  Energy2 
Statistical 

Bayesian √    

ARIMA √ √   
Time Series 

HIOCC √    

DES √   Station3 
DiscontinuitySmoothing or 

Filtering 
LPF √    

Dynamic √ √   Traffic 
Modeling McMaster √ √ √4  

 

Balke (1993) provided a rough qualitative assessment of the ease with which each 
algorithm could be implemented in the proposed design of the TxDOT surveillance and 
control system.  The assessment is based on judgments relating to the complexity of the 
design and structure of the algorithm and the amount of processing required by each 
algorithm, as shown in Table 3-4. 

                                                                                          
1 Derived from occupancy and volume 
2 Derived as the square of volume divided by occupancy 
3 Comparison of kinetic energy of individual lanes 
4 Optional parameter 
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Table 3-4  Time interval and update cycle of traffic parameters used in existing ILD data-
based incident detection algorithms (Source: Balke, 1993) 

Type Algorithm Degree of Complexity Ease of Integration 

California Basic Low Easy 

California No. 7 Moderate Easy 

California No. 8 Moderate Easy 

APID Moderate Easy 

Comparative 

PATREG Low Difficult 

SND Low Easy 
Statistical 

Bayesian High Moderate 

ARIMA High Difficult 
Time Series 

HIOCC Low Difficult 

DES Moderate Moderate Smoothing or 
Filtering LPF Moderate Easy 

Dynamic Extremely High Extremely Difficult Traffic 
Modeling McMaster Moderate Moderate 

 

3.2.7  Conclusion 

It must be recognized that the design of each algorithm determines its own application 
environment, as the performance of the same algorithm can differ considerably in different 
environments.  Environmental factors include geometric characteristics, sensor type, sensor 
configuration, data type, data aggregation period, as well as traffic disturbance factors.  
Although it is desirable to evaluate all types of algorithms in consistent environments, that is 
usually infeasible. 

The presented results are taken from the literature that is comprised of comparison 
studies of freeway incident detection algorithms using inductive loop data.  However, the 
performance measures can be applied to probe or section-based algorithms as well as arterial 
algorithms.  We imagine that driver-based reports have the highest IDA:  information details 
and adequacy. 
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CHAPTER 4: REVIEW OF DETECTION/SENSOR TECHNOLOGIES 

Incident detection involves both data collection and data processing.  The collection of 
useful data, in turn, depends on the reliability and accuracy of the detection/sensor 
technology employed.  Improvements in sensor technologies can yield significant 
improvements in traffic operations and incident detection.  In this chapter, we focus on 
classifying, reviewing, and comparing the capabilities and characteristics of different types 
of sensors used for incident detection.  A distinction is made here between point-based 
sensors, which measure traffic characteristics at a single point on the roadway, and section-
type sensors, which provide information regarding the characteristics of traffic over a 
section of roadway.  The strengths and limitations of these technologies are compared. 

A variety of detection/sensor technologies are used in detecting and providing real-
time traffic information for incident detection.  These technologies can be divided into 
three categories: roadway-based, probe-based, and driver-based. 

Roadway-based sensors can be regarded as part of the roadway infrastructure system.  
Roadway-based sensors commonly involve the use of inductive loop detectors (ILD) and 
loop emulators.  According to Underwood (1990), these sensors fall into three types in 
terms of their detection means: magnetic sensing (i.e., ILDs and magnetic sensors), range 
sensing (i.e., microwave sensors, infrared sensors, ultrasonic sensors, and acoustic sensors), 
and image sensing (i.e., video image processors (VIPs)).  Roadway-based sensors are 
embedded in the pavement, installed roadside or mounted on a gantry over the road.  They 
actively or passively “scan” the traffic where they are located (i.e., the detection zone) and 
provide fixed-point or short-section traffic information extracted from vehicles passing the 
detection zone.   

Probe-based sensors are mobile in use.  This type of technology makes use of sensors 
carried by vehicles operating in the traffic stream to obtain traffic information.  They 
commonly feature in Automatic Vehicle Identification (AVI) applications associated with 
Electronic Toll and Traffic Management (ETTM) and Automatic Vehicle Location (AVL) 
systems used in vehicle positioning and navigation.  Compared to roadway-based sensors, 
they are able to probe traffic flow variation over space.  They report point-to-point or 
section measurements of traffic information.  However, due to the limitation of current 
market penetration rate, traffic flow information is only derived from a portion of vehicles 
running on roads.   

Driver-based technology involves reports of incidents from drivers and/or service 
patrol crews.  Unlike the two former technologies, it provides manual, rather than 
automatic detection of incidents.  Driver-based technology includes wireless phone reports 
(to 9-1-1 emergency centers or to a dedicated call-in number at a TMC), in-vehicle 
personal communication systems (PCS), police on-road cruisers, freeway service patrol 
(FSP), roadside call boxes, and others.  Closed-circuit television (CCTV) monitoring, while 
not a probe vehicle form of sensing, also involves manual, as contrasted with automatic, 
incident detection. 
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The point needs to be made that the term sensor used here refers to the hardware and 
incorporated processing software that detects vehicles and converts the information into 
traffic flow characteristic data.  The processing software can be located in the sensor 
hardware module, roadside cabinet, or at the traffic management center (TMC) or traffic 
operations center (TOC).  This software exacts raw data from the detected electronic 
signals, typically as vehicle passage, vehicle presence, or successive traffic images.  These 
processing algorithms may also provide processed data such as headway, individual vehicle 
speed and time-averaged values of various traffic parameters (Nelson, 2000).  However, 
such algorithms are part of sensors and are distinct from the incident detection algorithms. 

4.1  Roadway-Based Sensors 

Roadway-based sensors refer to inductive loop detectors and loop emulators.  The 
inductive loop detector (ILD), which was the earliest large-scale application of sensor 
technology for traffic surveillance and monitoring, remains the primary component of 
traffic management and incident detection systems.  However, the information supplied by 
loops is usually limited to one or two short sections along a road, so that they generally do 
not represent comprehensive roadway conditions.  Especially, on urban arterial roads, the 
spatial variation of traffic flow is complex, so it is difficult for such fixed-point or short-
section sensors to measure traffic information for a whole link or a long segment of 
roadway.  This type of sensor traditionally measures spot time-average traffic parameters, 
such as volume, occupancy, spot speed, as well as vehicle passage and presence and vehicle 
classification.  Recently, vehicle identification techniques based on a pair of ILDs (Sun et 
al., 1998; Coifman, 1998, 2000), VIPs (Washburn and Nihan, 1999; Shuldiner and 
Upchurch, 2001) or laser sensors (Abramson and Chenoweth, 2000) to measure section-
related traffic information, i.e., travel time, have been developed, which may generate 
promising new approaches to using fixed-point sensor technology to detect incidents. 

4.1.1  Inductive Loop Detectors 

ILDs are the most commonly used sensors in traffic surveillance and management 
applications.  Currently, most incident detection systems and algorithms use traffic data 
derived from ILDs. 

The standard ILD is a length of insulated wire bent into a closed shape, traditionally a 
square or a rectangle, and connected to a power source/sensor on both sides of the wire.  
The wire loops are embedded in a shallow cutout in the pavement.  A lead-in cable runs 
from a roadside pull box to the controller cabinet to an electronics unit located in the 
controller cabinet.  When a vehicle stops on or passes over the loop, the inductance of the 
loop decreases, which in turn, increases the oscillation frequency and causes the electronics 
unit to send a pulse to the controller, indicating the passage of a vehicle and registering its 
presence in its detection zone.  New versions of ILDs use higher frequencies to identify 
specific metal components of vehicles, which can be used to classify vehicles (Nelson, 
2000). 

The sensitivity of an ILD is adjustable and can be tuned for a variety of different 
locations and environments.  In operation, ILDs tends to go out of “tune” over time and 
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requires readjustment (Berka and Lall, 1998).  The received presence information can be 
used to calculate volume and occupancy.  Occupancy is computed by taking the ratio of 
time the detector registers the presence of vehicles in its detection zone to the total sample 
time.  However, ILDs have a tendency to double-count trucks (Labell and May, 1990).  
Due to the vehicle’s structure, trucks as well as other long vehicles often are regarded as 
two passenger cars by an ILD.  Tractor-trailer units often have concentrations of metal far 
enough above the loop so that the detector electronics cannot detect them, resulting in 
detection gaps. 

ILD systems still suffer from poor reliability, related to causes such as inclement 
weather, improper connections made in pull boxes, and in the application of sealants over 
the cutout.  These problems are accentuated when ILDs are installed in poor pavement or 
in areas where utilities frequently disturb the roadbed.  Most cities with mature systems 
report that 25 to 30 percent of their detectors are not operating properly at any given time 
(Underwood, 1990).  Moreover, the installation and maintenance of ILDs require lane 
closures to dig grooves in the road, causing traffic disturbances.  In addition, the precise 
nature of an incident detected by ILDs cannot be ascertained, and ILDs perform less 
effectively for incident detection in low volume conditions. 

4.1.2  Magnetic Sensors 

Magnetic sensors work on the principle that the presence of a vehicle distorts the 
magnetic field which shrouds the earth.  Although different in appearance and specific 
technology, they operate on a similar principle to ILDs.  Magnetic sensors are often 
installed in place of loops on bridge decks, and in heavily reinforced pavement, where steel 
adversely affects loop performance (Nelson, 2000).  ILDs and magnetic sensors each have 
their respective applications and tend to complement one another. 

There are two types of magnetic sensors for traffic flow parameter measurement: 
active devices, such as magnetometers; and passive devices.  The first type, two-axis 
fluxgate magnetometers, are active devices, excited by an electrical current in windings 
around a magnetic core material.  They detect changes in the vertical and horizontal 
components of the earth’s magnetic field.  They can measure the passage of a vehicle when 
operated in the pulse output mode, yielding count data, and provide a continuous output 
as long as a vehicle occupies the detection zone when operated in the presence output 
mode.  The Self-Powered Vehicle Detector (SPVD), a type of magnetometer developed 
with FHWA support, is powered by a self-contained battery, with a limited expected life, 
say 1 to 2 years. It is connected to a remotely located controller cabinet via a radio link.  
Thus, no direct connection is required.  

A magnetometer presents installation and maintenance problems similar to ILDs.  To 
install and repair a magnetometer, traffic needs to be disrupted for a sufficiently long 
period for removing the sensor and reinserting it in a borehole.  Compared to an ILD, this 
device, though road-embedded, shortens lane closure time for each repair, but increases 
the frequency of lane closures for such repairs, especially in the case of SPVD (Labell and 
May, 1990). 
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The second type, passive magnetic detectors, sense perturbations in the earth’s 
magnetic flux produced when a moving vehicle passes over the detection zone.  These 
magnetic sensors are induction magnetometers.  Most require some minimum vehicle 
speed for producing an output signal, usually 3 to 5 mph; hence, they cannot detect 
stopped vehicles nor provide presence measurements (Klein and Kelley, 1996; Klein, 
2001). 

Magnetic detectors are easier to install and more maintainable than ILDs for a similar 
price (Coutellier, 2000).  They can come pre-installed in tubing.  Compared to ILDs, 
magnetic detectors can sustain greater stresses and break down less often.  Alternative 
installation procedures may further improve their reliability.  The biggest disadvantage of 
magnetic detectors is that they cannot measure occupancy.  Speed may be calculated by 
installing two magnetic detectors in a close succession, and from speed and flow 
measurements, occupancy can be calculated.  However, if two magnetic detectors are 
placed too closely together, they may interfere with each other (Labell and May, 1990). 

4.1.3  Microwave Sensors 

Microwave sensors currently used in traffic surveillance fall into two types in terms of 
their working waveforms: constant-frequency waveform (CW) and frequency-modulated 
waveform (FMCW), as illustrated in Figure 4-1. 

The first type, which is termed the continuous microwave detector, makes use of the 
Doppler principle to compute vehicle speed from CW microwave radar that transmits 
electromagnetic energy at a constant frequency.  Because only moving vehicles are 
detected by CW Doppler radar, vehicle presence cannot be measured with this waveform 
and hence this type of microwave sensor is not suitable for incident detection. 

The second type is termed the pulse microwave detector.  These detectors transmit 
electromagnetic energy in frequency bands between 2.5 to 24.0 GHz.  They are capable of 
counting vehicles, measuring speeds and detecting vehicle presence.  Pulse microwave 
detectors can also classify vehicles by measuring the vertical profile of a vehicle (Black and 
Loukakos, 2000). 
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Figure 4-1  Two kinds of waveforms used with microwave traffic sensors (Source: Klein, 
2001) 

Microwave sensors provide a cost-effective alternative to ILDs for vehicle presence 
detection and hence for incident detection.  They are relatively smaller, lighter in weight 
and easier to install than ILDs and magnetic sensors, and they can detect multilane traffic 
and cover a longer range (say 100 meters to 1000 meters), as shown in Figure 4-2.  Their 
small size, low cost and low power consumption makes them suitable for traffic 
surveillance both at intersections and on highways.  However, it needs to be noted that 
that a newly installed microwave sensor may interfere with other similar microwave-based 
devices in its vicinity. 
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Figure 4-2  Illustration of the typical coverage of a microwave sensor for incident 
detection (Source: Lion and Roussel, 1995) 

4.1.4  Infrared Sensors 

The infrared sensors referred to here are non-image infrared devices.  Infrared sensors 
can operate in active or passive modes.  Similar to microwave sensors, infrared sensors are 
mounted overhead or in a side-looking configuration. 

In the active mode, a detection zone is illuminated with infrared energy transmitted 
from laser diodes operating in the near infrared spectrum.  A portion of the transmitted 
energy is reflected back to the sensor by vehicles traveling through the detection zone.  An 
infrared-sensitive element converts the reflected energy into electrical signals that are 
analyzed in real time.  Infrared sensors can measure presence, speed, volume, occupancy, 
and vehicle classification.  Active infrared detectors are vulnerable to weather conditions 
such as fog, clouds, shadows, mist, rain, and snow, which scatter and attenuate wave 
energy.  High cost is cited as one of the reasons that they are not more widely used in 
traffic surveillance.  Active sensors are more expensive than passive ones. 

Passive infrared detectors measure the same traffic parameters as active detectors 
except for speed.  They do not transmit their own energy but use an energy-sensitive 
element to measure the thermal energy (i.e., temperature) emitted by vehicles (which 
differs from the energy emitted from the road) in the field of view of the detector.  When 
a vehicle enters the field of view, the change in emitted energy from the scene is sensed.  
Passive infrared sensors have difficulty measuring speed because the extended nature of 
the vehicle distorts the infrared signature, making velocity less clear.  On the other hand, 
multi-zone passive infrared sensors can measure speed and vehicle length as well as the 
more conventional vehicle count and lane occupancy (Klein, 2001).  Inclement weather, 
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such as fog, snow, and precipitation that scatter energy, and changes in light, may have 
adverse effects on performance. 

4.1.5  Ultrasonic Sensors 

Ultrasonic sensors transmit pressure waves of sound energy at frequencies between 25 
and 50 KHz (Labell and May, 1990; Nelson, 2000).  They fall into two types: pulse-
waveform ultrasonic sensors and constant-frequency ultrasonic sensors.  Most ultrasonic 
sensors operate with pulse waveforms; only this type is discussed here.  Pulse waveforms 
are used to measure distances to the road surface and the vehicle surface by detecting the 
portion of the transmitted energy that is reflected back towards the sensor.  When a 
distance other than that to the background road surface is measured, the sensor interprets 
that measurement as the presence of a vehicle.  The received ultrasonic signal is converted 
into electrical energy that is analyzed by signal processing electronics.  This technique is 
similar to that used by pulse microwave sensors. 

Ultrasonic sensors can measure speed, occupancy, presence, and in some 
configurations, queue length.  Moreover, vehicle profiling can be achieved by installing a 
pulse ultrasonic detector above the roadway; excellent classification performance can be 
achieved for most vehicle types (Black and Loukakos, 2000).  Ultrasonic sensors have no 
moving parts so they tend to be reliable, durable and require little maintenance.  They are 
also small and can be sited permanently or used as a portable unit.  However, air 
turbulence and temperature adversely affect operational performance. 

4.1.6  Acoustic Sensors 

Acoustic sensors are operated in a passive mode, and are usually configured as a two-
dimensional dipole array of microphones that are sensitive to the acoustic energy (i.e., 
audible sounds) produced by approaching vehicles.  The time delay between the arrival of 
sound at the upper and lower microphones changes with time as the vehicle emitting the 
sound passes under it.  When a vehicle passes through the detection zone, an increase in 
sound energy is detected by the signal processing algorithm and a vehicle presence signal is 
generated.  When the vehicle leaves the detection zone, the sound energy level drops 
below the detection threshold and the vehicle presence signal is terminated.  Vehicles are 
tracked using cross-correlation between microphones.  Best results are achieved when the 
data is filtered to a bandwidth of 50-2000 Hz (Black and Loukakos, 2000).  For this type of 
acoustic sensor, the preferred mounting is at a 10- to 30-degree angle from the vertical.  
This sensor can count vehicles and measure presence, speed, volume and occupancy.  
Interference between the noises of multiple vehicles is a limitation to acoustic technology.  
Its performance is also affected by low temperature and by snow, and dense fog that may 
muffle sound and lead to undercounting. 

A second type of acoustic sensor uses a fully populated microphone array and adaptive 
spatial processing to form multiple detection zones.  This sensor can monitor as many as 
six to seven lanes when mounted over the center of the roadway.  Mounting heights range 
from 20 and 40 feet. 
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4.1.7  Laser Sensors 

Laser sensors have been used for traffic surveillance and management for only a few 
years.  They operate in the active mode and work on the same principle as microwave 
radar sensors, using light frequencies.  Laser sensors can offer high-speed measurement 
accuracy and measure all the vehicle characteristics needed for traffic surveillance and 
incident detection (Abramson and Chenoweth, 2000).  A vehicle detection and 
classification system utilizing laser sensors has been deployed on I-4 in Orlando, Florida, 
for obtaining data needed for incident detection. 

Generally, laser sensors are mounted on a gantry over the highway; each unit can 
provide coverage for two adjacent lanes.  A wireless modem connected with the sensor 
transmits the information between the sensor and a control and processing computer.  
Almost all traffic parameters, such as presence, classification, speed, volume, occupancy 
and so on can be measured by laser sensors.  Moreover, they provide the detailed vehicle 
shape characteristics needed to uniquely identify vehicles.  This capability can be used to 
measure travel times between two locations on highways, which offers the possibility to 
develop incident detection schemes based on variations in travel time like the ones that 
utilize probe-based data. 

4.1.8  Video Image Processors 

Video Image Processors (VIP) employ machine vision techniques to automatically 
analyze traffic data collected with Closed Circuit Television (CCTV) systems or other 
video cameras.  A VIP system consists of one or more video cameras, a microprocessor-
based computer for digitizing and processing the video imagery, and software for 
interpreting the images and converting them into traffic flow data.  The image processing 
algorithms in the computer analyze the variation of groups of pixels contained in the video 
image frames.  By analyzing successive video frames, the VIP is capable of calculating 
traffic flow information. 

VIP systems fall into one of three classes: tripline, closed-loop tracking, and data 
association tracking (Nelson, 2000).  Tripline systems operate by allowing the user to 
define a limited number of detection zones in the field of view of video cameras.  These 
systems are the most common and are essentially expensive loop emulators.  Closed-loop 
tracking systems permit vehicle detection along larger roadway sections, which provide 
additional traffic flow information such as lane-to-lane vehicle movements.  Data 
association tracking systems can identify and track a specific vehicle or group of vehicles as 
they pass through the field of view of the camera, in which the unique connected areas of 
pixels are searched, identified and tracked from frame-to-frame to produce tracking data 
for a selected vehicle or vehicle group.  This technique has the potential to provide link 
travel time and origin-destination pair information (Washburn and Nihan, 1999).   

One of the primary advantages of using VIP for incident detection is that incidents are 
not blocked by the resultant traffic queues if the surveillance video camera is installed so as 
to provide upstream viewing (Nelson, 2000).  Some VIP systems are able to exact a wide 
range of traffic parameters, including density, queuing length and speed profiles.  Other 
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advantages of using VIP for incident detection also include possibly short detection time, 
quick identification, as well as recognition of the incident type (using human operators), 
multilane surveillance by one sensor and easy installation.  The performance of VIP 
systems, however, is affected by variations of light and climate, so the installation position 
and the calibration of image processing algorithms need to be adjusted accurately.  In 
addition, the transmission of video images requires more bandwidth than transmission of 
voice and data, which increases the cost of transmission.  There appear to be no 
technological barriers, given the technical maturity of VIPs, to the implementation of 
incident detection systems; the main challenge lies in refining its corresponding automatic 
incident detection algorithms (Loukakos, 2000). 

4.2 Probe-Based Sensors 

Probe-based sensors refer to vehicle-mounted sensors that have positioning or 
identification functions and have the capability of transmitting real-time individual probe 
data to roadside readers or to a remote base station through wireless communication.  The 
sensors move in the traffic stream and report an individual vehicle’s movement 
parameters, i.e., position and velocity with time tag, with a pre-selected frequency or as 
they pass reader locations.  The information, which includes point data, point-to-point 
data and/or section data, is then transmitted to the traffic management center (TMC) or 
traffic operations center (TOC), and aggregated and processed for traffic surveillance and 
incident detection.  Compared to roadway-based sensors, this type of sensor is mobile and 
hence can sense the spatial variation of traffic flow over a wide area.  With the increase in 
the penetration rate of vehicles equipped with sensors in a traffic network, the collected 
traffic information from probe-based sensors can better reflect actual traffic conditions.  
Ideally, if each vehicle acts as probe vehicle, we could measure traffic stream conditions 
temporally and spatially on the finest level. 

Emerging probe-based sensor technologies that have potential for incident detection 
include automatic vehicle location/global positioning systems (AVL/GPS), 
signpost/beacon systems, cellular locationing systems, and automatic vehicle identification 
(AVI).  The first three sensor technologies all belong to automatic positioning and 
navigation techniques, while AVI was initially designed for electronic toll collection (ETC) 
or electronic congestion pricing (ECP). 

4.2.1  Automatic Vehicle Location/Global Positioning System 

Automatic vehicle location (AVL) systems are designed to determine the location of a 
particular vehicle (typically using long-range communications) at a particular point in time.  
The most widely used AVL technology is the global positioning system (GPS), which is 
operated and maintained by the U.S. Department of Defense (DOD).  GPS is a satellite-
based radio positioning and time transfer system, which is used in every mode of 
transportation.  Other satellite-based positioning systems used for AVL include Global 
Navigation Satellite System (GNSS), Geo-stationary Earth Orbit (GEO), Low Earth Orbit 
(LEO), and Medium Earth Orbit (MEO) (Krakiwsky, 1996). 
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A horizontal positioning accuracy of 5 meters 95% of time can be realized by GPS 
techniques in traffic measurement.  This accuracy greatly enhances the reliability of using 
GPS to collect real-time congestion information and detect incidents.  Using geographic 
information system (GIS) and map matching techniques, an in-vehicle unit can possibly 
locate an individual vehicle’s position on a road accurately along with speed and time 
parameters.  Sermons and Koppelman (1996) applied traffic dynamic measures using GPS 
positioning data to detect incidents in an arterial environment.  More recent efforts (Du 
and Aultman-Hall, 2004) describe the difficulties in map matching GPS signals to specific 
roadways. 

Another disadvantage of GPS technology is its inability to handle obstructions.  
Because GPS signals are transmitted via high-frequency microwave (i.e., short wavelength 
of 19-24 cm), they are incapable of passing through most objects.  Therefore, GPS may 
suffer from signal blockage in the central business district (CBD) of a city, and in tunnels 
or under bridges.  Other positioning techniques, such as dead reckoning (DR), have been 
incorporated into GPS systems or combined with GPS receivers in order to improve 
operating reliability.  (Sweeney and Loughmiller, 1993; Levine and McCasland, 1994). 

4.2.2  Signpost/Beacon System 

Signposts/beacons are infrared, microwave, or radio frequency (RF) devices mounted 
on the sides of the roadway or existing cellular base stations (Nelson, 2000; Garg and 
Wilkes, 1996).  These devices are capable of transmitting and receiving data from vehicles 
equipped with transceivers when these vehicles pass in close to proximity to the 
signpost/beacon.  These systems can be either self-positioning or remote positioning.  In 
the first case, a tag in the vehicle picks up a signal from the beacon.  In the second case, 
the beacon senses a tag on the vehicle.  The basic configuration includes antennas, 
transmitter electronics, and receiver electronics.  Radio frequency beacon systems are 
becoming more common for applications in traffic surveillance and parking management.  
Petty et al. (1997) proposed a preliminary incident detection algorithm using probe vehicles 
equipped with radio transponders, in which the performance, infrastructure requirements, 
and feasibility of radio frequency beacon systems were discussed. 

4.2.3  Cellular Geolocation System 

ITS applications of cellular geolocation technology are currently being explored by 
researchers and practitioners.  The Federal Communications Commission (FCC), as part of 
its requirements for the E911 system, has directed the cellular telephone industry to 
implement a system that is able to locate two-thirds of all mobile 911 callers within 125 
meters of accuracy.  This requirement enhances applications using cellular phone calls 
from and to motorists as mobile traffic sensors.  Several tests of vehicle location and 
speed-estimation using telemetry data from cellular phone receivers have been conducted 
(Sakagami et al., 1992; Transportation Studies Center, 1997; Lovell, 2001; Smith et al., 2001; 
U.S. Wireless, 2001). 

According to U.S. Wireless (2001), pattern recognition using radio frequency (RF) 
signals transmitted from a cellular phone is the fundamental means used by this system to 
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determine location.  The system can identify a “signature” based on the RF pattern (i.e., 
multi-path phase amplitude characteristics) of an operating cellular phone.  It then 
compares the RF pattern signature to a database of previously identified RF signatures and 
their corresponding geographic locations within the calibrated network.  By matching the 
signature pattern of a caller’s signal with the database containing known signature patterns, 
the caller’s location can identified.  The available raw data from the cellular location system 
include: 1) the mobile identification number (MIN) of a call—during a call, all other 
parameters may change, but the call’s MIN is unique and unchanging; 2) the longitude and 
latitude of the call location; 3) instantaneous speed; 4) heading—the current compass 
heading of the call’s mobile device; and 5) time stamp—the moment the location entry is 
received by the system.  Other common techniques include signal strength, angle of arrival 
(AOA), and the difference of arrival (TDOA). 

This sensor technology used for traffic surveillance has several advantages (Drane and 
Rizo, 1997).  It makes use of an existing infrastructure, and requires no alteration to the 
base station or subscriber handsets and hence significantly reduces the cost of service 
establishment.  Cellular phones already have a spectrum allocation and a large installed 
user base.  They also can potentially be used as vehicle probes in much the same way toll 
tags in AVI are currently used.  Moreover, cell phone systems have been proven to work 
especially well in complex environments such as dense urban zones and hilly or 
mountainous areas.  In 1998, the national average market penetration rate of wireless 
phones was estimated at 17 percent (Sutton, 1998).  Current increases are estimated to be 
33,000 new subscribers per day, with industry analysts predicting more than 100 million 
users in 2001.  This would mean approximately one-third of all drivers nationwide might 
be expected to be cellular phone subscribers (Walters et al., 1999).  Wireless technologies 
offer tremendous possibilities for cost savings with the potential to work with 
implemented hardwired systems in the ITS domain.  However, the US Wireless efforts are 
now (2004) defunct and there are no known current efforts to track cell phone signatures 
for traffic purposes. 

4.2.4  Automatic Vehicle Identification 

Automatic Vehicle Identification (AVI) is designed to identify (typically using short-
range communications) a vehicle that is situated at a specific location at a specific time.  
AVI systems have two primary components, the in-vehicle unit (i.e., tag or transponder) 
and the roadside unit (i.e., reader), and a wireless communications link between them 
(Bernstein and Kanaan, 1993).  Most AVI systems transmit information through 
microwave, infrared or radio frequency (RF).  Under good conditions, the reported 
accuracy of an AVI system is usually in the 99.5% to 99.9% range.  However, their 
accuracy may be reduced by adverse weather conditions and interference from other 
radiation sources. AVI technology is applied principally for electronic toll collection 
(ETC), electronic congestion pricing (ECP), and fleet control. 

The capability of multiple-purpose usage makes AVI a promising sensor technology 
for incident detection, as long as the percentage of the transponder-equipped vehicles in 
the market reaches a certain level.  Hallenbeck (1992), Parkany and Bernstein (1995), and 
Hellinga and Knapp (2000) studied the capabilities and performance of AVI for incident 
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detection in simulation environments.  An operational test conducted in Houston by TTI 
in conjunction with TxDOT assessed the feasibility of using probe-based travel time 
information to detect incidents on freeways and a major arterial by means of a manual 
cellular-phone-reporting form (Balke et al., 1996).  In the New York City metropolitan 
area, the feasibility of using the vehicles equipped with E-ZPass tags as traffic probes for 
incident detection was evaluated using TRANSCOM’s system for managing incidents and 
traffic (TRANSMIT) (Mouskos et al., 1998; Niver et al., 2000). 

4.3 Driver-Based Sensors 

Driver-based “sensors” involve the reporting of incidents directly by road users or 
other human observers.  The advantage of this type of incident detection is that the 
location, type, and severity of an incident can be described clearly.  Generally,  incidents 
are reported by means of cellular phones  (to 911 or to a dedicated call-in number at a 
TMC), CCTV monitoring, service patrol vehicles, police cruisers, roadside call boxes, and 
calls by public entity personnel, i.e., roadway maintenance crews, transit operators, fire 
departments, etc. 

4.3.1  Highway Service Patrol 

Typically, service patrol vehicles, police in highway cruisers and CCTV monitoring by 
operators serve as the main sources of information for incident detection.  Service patrol 
vehicles are intended to monitor and assist vehicles and they generally operate on freeways 
at a specified frequency.  The advantage of this approach is that service patrols can detect 
and verify incidents at the same time and respond to accidents and other incidents quickly, 
which greatly reduces verification, response, and clearance time. 

The cost of service patrols is not inconsequential.  For example, the California Freeway 
Service Patrol (FSP) program is implemented along more than 900 mi of freeway in fifteen 
counties, with 250 tow trucks patrolling for almost 600 hours per day across the state.  The 
estimated annual cost is approximately $22 million (Bertini et al., 1997).  With limited 
patrol vehicles and staff and hence limited dispatch frequency, the time to detect is 
relatively long; e.g., in the above limited service period it was reported that the average 
responding time to an incident is approximately 8 to 11 minutes.  With the limited daily 
service duration (e.g., generally 8 hour patrol period per day), the temporal coverage 
cannot satisfy the demand of monitoring incidents for the whole day.  Police patrols suffer 
from similar limitations. 

4.3.2  Remote CCTV Monitoring 

Video technology is widely used in most of TMCs/TOCs responding to our survey for 
traffic monitoring and surveillance.  It provides direct and continuous on-site images in 
real-time.  In comparison, other sensors/detectors only provide limited traffic parameters.  
Most of the current applications at TMCs/TOCs are for incident verification when an 
incident alarm is triggered or reported from other data sources.  With advances in video 
image processor (VIP) technology, traffic movement in the video captured by a CCTV 
system could be converted into point-based traffic parameters.  Integrating VIP with 
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CCTV monitoring might provide a promising method for more reliable incident detection 
in which automatic and non-automatic detection techniques work under a hybrid or fused 
mode sharing the same set of equipment. 

4.3.3  Cellular Phone Reports 

Due to ever expanding coverage of cellular phones and low investment and operating 
cost, the potential for using cellular phone reports for incident detection has been widely 
recognized by many transportation agencies.  TxDOT plans to use cellular incident 
detection via information sharing with the local 911 Public Safety Answering Points 
(PSAPs) in the Dallas District.  It is expected that this combination will result in faster and 
more cost-effective deployment  (i.e., 2 years and $2 million) and more extensive coverage 
of the freeway system, compared to the previously planned loop detector system with 
conduit and fiber optic cables (10 years and $23 million) (Walters et al., 1999).  Cellular 
phone reports provide broader monitoring coverage and more mobility than other existing 
surveillance system.  They have the potential to cover both major roads and minor roads.  
Current penetration rates are much higher than that of any existing probe AVL or AVI 
transponder system and are increasing rapidly. 

Several operational experiments have been carried out by the Massachusetts State 
Police (Kennedy, 1991), and in Chicago, Illinois (McLean, 1991), Portland, Oregon 
(McCourt, 1993), Denver, Colorado (Hattan et al., 1993), Houston, Texas (Levine, 1993), 
San Francisco Bay Area, California (Skabardonis et al., 1998) and Dallas, Texas (Walters et 
al., 1999).  These studies indicate that wireless phone calls responding to emergency 
services, i.e., 911 or dedicated call-in number to a TMC, can provide valuable and timely 
information for incident detection, with detection times in the order of one minute.  
However, these studies also reveal low detection rates.  Hence, previous recommendations 
were that cellular phone-based incident reporting systems must be operated in conjunction 
with traditional traffic surveillance systems.  Nevertheless, given the rate of increase of the 
penetration rate of cellular phones in the driving population, the frequency and 
promptness of driver-reported incidents are expected to increase.  With the same set of 
equipment, cellular phone calls can work together with the automatic geolocation function 
of the wireless network, as discussed in the last section, providing both quantitative and 
descriptive data for traffic monitoring and incident detection. 

Several theoretical and applied studies have evaluated the effectiveness of using cellular 
phone reports for incident detection (Tavana et al., 1999; Mussa and Upchurch, 2000; 
Skabardonis et al., 1998; Walters et al., 1999).  These studies suggest that overall accuracy is 
based on the prevailing traffic flow, penetration of wireless phone ownership across the 
driving population, drivers’ willingness to report an incident, and the number of erroneous 
calls.  The fraction of motorists with wireless phones onboard is closely related to the 
market penetration of wireless phones in an area.  Given that the cost of purchasing and 
using wireless phones need not be included in the cost of deploying such systems, broad 
coverage may be attained without much public investment.  The cost for the “sensors” 
does not need to be considered.  However, other factors—drivers’ willingness to report 
and their capability to provide an accurate report—heavily affects the report’s utility.  
Thus, it is reasonable to include the educational and promotional costs of increasing the 
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driving public’s awareness and sense of responsibility as a part of the investment for an 
incident detection and management system.  Moreover, it is suggested that reference 
location signs should be installed on roadsides at frequent intervals to provide drivers with 
more accurate location information (Walters et al., 1999).  On the other hand, no algorithm 
or parameter calibration work is involved.  According to the nationwide survey of 
TMCs/TOCs, it is known that they face time-consuming, difficult calibration and 
validation efforts when implementing an algorithm.  Since calibration is not an issue with 
cell phone systems, procedures developed in one area may be more readily transferable. 
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CHAPTER 5: EVALUATE COSTS OF DATA COLLECTION AND 
PROCESSING VERSUS DATA ACCURACY 

The appropriate selection of incident detection and analysis systems depends on a variety 
of factors including the anticipated effectiveness of alternative systems and their cost, both 
initial and continuing.  Decisions are almost invariably site specific and constrained by the 
availability of funds.  This chapter is intended to supplement the discussion of 
sensor/detector technologies provided in the previous chapter by providing information 
regarding data quality and costs associated with different types of incident detection and 
analysis systems.  

5.1  Factors and Costs Related to Sensor Data Accuracy 

Errors affecting the accuracy of traffic sensors derive from a combination of three 
sources: 1) sensor measurement; 2) deterministic or systematic error associated with 
computing the estimator for the control parameter; and 3) random variations that corrupt 
the estimate of the control parameter (Klein, 2001).  A typical standard for a 5-minute 
collection interval and a 30-second monitoring interval assumes that data accuracy will satisfy 
the requirement that vehicle detection is realized within ±1 vehicle for 90% of all 5-minute 
intervals; occupancy should measured within ±1% at 25% occupancy, volume within ±1 
veh/min at 2,000 veh/h and speed within ±2-4mph 95% of the time (Klein, 2001; 
Robertson et al., 1994). 

5.1.1  Accuracy Issues of Roadway-Based Sensors 

Most roadway-based traffic sensors can provide traffic parameter measurements on a 
satisfactory level for the above requirements.  For example, a typical accuracy of speed 
measurement provided by magnetic or radar sensors is 2 km/h (Coutellier, 2000; Lion and 
Roussel, 1995).  However, due to the difficulty of proper installation and calibration and the 
external influence of vehicle-induced pavement vibration and inclement weather, the 
accuracy of a sensor may be much lower.  Accuracy is heavily dependent on a sensor’s 
stability and reliability within a specific environment. 

Although the reliability of ILDs has improved over the years, their performance is often 
compromised by inappropriate installation and maintenance procedures.  Contributing 
factors are poor connections in the pull boxes; failure to twist wire pairs properly, leading to 
crosstalk; and faulty sawcut sealant application procedures (Klein, 2001).  These problems 
are exacerbated when ILDs are installed in poor pavement or in areas where utilities 
frequently dig up the roadbed.  Maintenance and replacement are an important 
consideration.  It is reported that loop replacement costs in an intersection varied from $107 
to $628 (Middleton and Parker, 2000). 

Along with unit installation costs, the number of sensors required in a given application 
needs to be taken into account in evaluating their cost-effectiveness.  The required distance 
between adjacent stations is directly related to the time required to detect an incident (Payne 
and Thompson, 1997).  Thomas’ research (1999) regarding the relationship between detector 
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location and travel characteristics indicated that the traditional placement of detectors at a 
0.5- or 1-mile interval is inadequate to detect incidents quickly.  In certain applications, wide-
area detection sensors, e.g., VIP, which may be more expensive per unit, may be a better 
choice.  For example, a typical urban intersection may require as many as 12 to 16 ILDs, the 
cost of which becomes comparable to that of a VIP (Klein, 2001).  Furthermore, the 
installation and maintenance cost of the traditional ILD system may turn out to be much 
higher than that of a VIP system; and, the additional traffic data and visual information from 
the VIP system may yield greater benefits in terms of traffic monitoring and management. 

Table 5-1 summarizes the findings of an evaluation of several detector technologies in a 
typical detection application (i.e., signalized intersection) conducted by the Texas 
Transportation Institute.  The cost and accuracy of each technology is summarized.  Traffic 
disruption costs should be included along with installation and maintenance costs when 
evaluating ILDs.  The Texas Transportation Institute estimates that the total installation cost 
for placing three micro-loops under a typical two-lane state highway is $9,000 (Middleton, et 
al., 1999).  These costs include installation and the influence on the road traffic.  As a 
potential alternative, multi-detection zone presence-detecting radar sensors have purchase 
costs significantly less than this amount with a lower installation cost. 

 

Table 5-1  Quantitative evaluation of sensors at a typical detection zone (i.e., signalized 
intersection) (Source: Middleton et al., 1999) 

Detection Accuracy 
Sensor Cost for a single 

detection zone1 In-Pavement or Overhead Roadside 

ILD $3,278 98% - 

Infrared (Active) $14,5202 97%3 - 

Infrared (Passive) $8,051 97% - 

Microwave Radar $3,590 95% 90% 

Microwave Doppler $6,496 - - 

Ultrasonic $6,350 - - 

VIP $3,370 95% 82% 

 

 
                                                                                          
1 Four by four intersection with single left-turn lane. 
2 Assuming that four poles with mast arm are needed. 
3 Dropped to 77% in inclement weather. 
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5.1.2  Accuracy Issues of Probe-Based Sensors 

Probe-based sensor systems are inherently less sensitive to individual sensor malfunction 
than are roadway systems in that the traffic variables are obtained through the aggregation of 
data from many probe sensors.  The traffic measurement accuracy of a probe-based traffic 
surveillance system is mainly determined by two conditions: 1) the measurement accuracy of 
an individual probe sensor; and 2) the market penetration rate of probes in the traffic stream.  
Errors due to imprecision of individual probe sensors are unlikely to affect the accuracy of 
measured traffic variables (i.e., travel time) because relative differences in successive 
measurements tend to be consistent.   

Figure 5-1 shows the relationship between the accuracy of average speed measurements 
and the percentage of GPS-equipped probes in the traffic stream in an arterial environment.  
The data were generated by means of an Integration-based simulation (Van Aerde, 1998).  In 
this figure, the 2-RMSE (i.e., root mean square error) curve represents the speed accuracy at 
the 95% confidence level.  It indicates that measurement errors of arterial link journey speed 
or travel time diminishes with an increase in the proportion of probe vehicles (i.e., the 
increase of investment) in the traffic stream and that the accuracy levels off at a probe 
proportion of approximately 15% to 18%.  Measurement errors in travel time reflect the 
performance of incident detection algorithms based on travel time to some degree.  This 
suggests that further investment in probe-equipped sensors and communication 
infrastructure would yield only marginal improvements in the performance of traffic 
surveillance and incident detections. 

 

 

 

 

 

 

 

 

 

 

Figure 5-1  RMSE (Root Mean Square Error) of average link speed from probe vehicles 
versus proportion of probe vehicles (Source: Cheu et al., 2000) 
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Hellinga and Knapp (2000) studied the relationship between AVI-based incident detection 
results and probe penetration rate on freeways.  Figure 5-2 illustrates the relationship between 
mean DR, FAR, and MTTD and probe penetration for a particular travel time-based 
incident detection algorithm (i.e., the so-called Speed and Confidence Limit algorithm, see 
Chapter 1 for details).  These performance measures indicate outcomes very similar to those 
shown in Figure 5-1.  Incident detection performance can be improved by increasing the 
probe percentage when the penetration level is below approximately 20%; beyond that point, 
system performance increases only slightly, if at all. 
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(2) False alarm rate versus probe penetration rate 

 

 

 

 

 

 

 

 

 

 

 

(3) Mean time to detect versus probe penetration rate 

Figure 5.2  Relationship of incident detection performance and probe penetration rate 
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5.1.3  Accuracy of Driver-Based Sensors 

As described in Section 4.3.3, the accuracy of driver-based incident detection techniques 
(e.g., wireless phone) depends on the prevailing traffic flow, penetration of wireless phone 
ownership across the driving population, drivers’ willingness to report an incident, and the 
number of erroneous calls.  The fraction of motorists with wireless phones onboard is 
closely related to the market penetration of wireless phones in the area.  Since the cost of 
purchasing and using wireless phones does not fall upon the public agency and is essentially 
unrelated to the use of cell phones to report incidents, this cost need not be considered 
when evaluating this approach to incident detection.  However, other factors— drivers’ 
willingness to report and their ability to provide a correct report—heavily affect the 
timeliness and accuracy of those events that are reported.  It may, therefore, prove to be 
cost-effective for public agencies to invest in educational and advertising programs designed 
to increase the driving public’s awareness of the service that they can provide as a part of the 
investment in incident detection and management systems. 

5.2 Sensor Unit and System Cost Evaluation and Comparison 

 A meaningful cost-effectiveness comparison between various sensor technologies can 
only be made in the context of a specific application. 

Typical costs and other characteristics of sensor units and systems are reviewed below.  
Table 5-2 summarizes the principal strengths and weaknesses of various roadway-based 
sensor technologies; Tables 5-3 and 5-4 list the types of data provided by each type of sensor 
along with communication bandwidth requirements, unit costs, and other data.   
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Table 5-2: Strengths and weaknesses of commercially available sensor technologies (Klein, 
2001) 
 

Technology  Strengths  Weaknesses  
Inductive Loop  Flexible design to satisfy large variety of 

applications.  Mature, well-understood 
technology.  Large experience base.  
Provides basic traffic parameters (e.g., 
volume, presence, occupancy, speed, 
headway, and gap).  Insensitive to 
inclement weather such as rain, fog, and 
snow.  Provides best accuracy for count 
data as compared with other commonly 
used techniques.  Common standard for 
obtaining accurate occupancy 
measurements.  High frequency excitation 
models provide classification data.   

Installation requires pavement cut.  
Improper installation decreases 
pavement life.  Installation and 
maintenance require lane closure.  Wire 
loops subject to stresses of traffic and 
temperature.  Multiple detectors usually 
required to monitor a location.  
Detection accuracy may decrease when 
design requires detection of a large 
variety of vehicle classes.   

Magnetometer 
(Two-axis 
fluxgate 
magnetometer)  

Less susceptible than loops to stresses of 
traffic.  Insensitive to inclement weather 
such as snow, rain, and fog.  Some models 
transmit data over wireless RF link.   

Installation requires pavement cut.  
Improper installation decreases 
pavement life.  Installation and 
maintenance require lane closure.  
Models with small detection zones 
require multiple units for full lane 
detection.   

Magnetic 
(Induction or 
search coil 
magnetometer)  

Can be used where loops are not feasible 
(e.g., bridge decks).  Some models are 
installed under roadway without need for 
pavement cuts.  However, boring under 
roadway is required.  Insensitive to 
inclement weather such as snow, rain, and 
fog.  Less susceptible than loops to 
stresses of traffic.   

Installation requires pavement cut or 
tunneling under roadway.  Cannot 
detect stopped vehicles unless special 
sensor layouts and signal processing 
software are used.   

Microwave 
Radar  

Typically insensitive to inclement weather 
at the relatively short ranges encountered 
in traffic management applications.  Direct 
measurement of speed.  Multiple lane 
operation available.   

CW Doppler sensors cannot detect 
stopped vehicles.   

Active Infrared 
(Laser radar)  

Transmits multiple beams for accurate 
measurement of vehicle position, speed, 
and class.  Multiple lane operation 
available.   

Operation may be affected by fog when 
visibility is less than 20 ft (6 m) or 
blowing snow is present.  Installation 
and maintenance, including periodic 
lens cleaning, require lane closure.   
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Technology  Strengths  Weaknesses  
Passive Infrared  Multizone passive sensors measure speed. Passive sensor may have reduced 

vehicle sensitivity in heavy rain, snow & 
dense fog.  Some models not 
recommended for presence detection.   

Ultrasonic  Multiple lane operation available.  Capable 
of overheight vehicle detection.  Large 
Japanese experience base.   

Environmental conditions such as 
temperature change and extreme air 
turbulence can affect performance.  
Temperature compensation is built into 
some models.  Large pulse repetition 
periods may degrade occupancy 
measurement on freeways with vehicles 
traveling at moderate to high speeds.   

Acoustic  Passive detection.  Insensitive to 
precipitation.  Multiple lane operation 
available in some models.   

Cold temperatures may affect vehicle 
count accuracy.  Specific models are 
not recommended with slow moving 
vehicles in stop-and-go traffic.   

Video Image 
Processor  

Monitors multiple lanes and multiple 
detection zones/lane.  Easy to add and 
modify detection zones.  Rich array of data 
available.  Provides wide-area detection 
when information gathered at one camera 
location can be linked to another.   

Installation and maintenance, including 
periodic lens cleaning, require lane 
closure when camera is mounted over 
roadway (lane closure may not be 
required when camera is mounted at 
side of roadway) Performance affected 
by inclement weather such as fog, rain, 
and snow; vehicle shadows; vehicle 
projection into adjacent lanes; 
occlusion; day-to-night transition; 
vehicle/road contrast; and water, salt 
grime, icicles, and cobwebs on camera 
lens.  Requires 50- to 70-ft (15- to 21-m) 
camera mounting height (in a side-
mounting configuration) for optimum 
presence detection and speed 
measurement.  Some models 
susceptible to camera motion caused by 
strong winds or vibration of camera 
mounting structure.  Generally cost-
effective when many detection zones 
within the camera field-of-view or 
specialized data are required.   
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Table 5-3 Types of data, needed bandwidth, and costs of roadway-based sensors (Klein, 2001) 

Sensor 
Technology 

Count Presence Speed
Output Data 
Occupancy 

Classification

Multiple 
Lane, 

Multiple 
Detection 
zone data 

Communication 
Bandwidth 

Sensor 
Purchase 

Cost (each in 
1999 US $) 

Inductive Loop       Low to Moderate Low ($500-
$800) 

Magnetometer 
(two axis 
fluxgate) 

      Low Moderate 
($900-$6,300)

Magnetic 
Induction Coil       Low 

Low to 
Moderate 

($385-$2,000)

Microwave 
Radar       Moderate 

Low to 
Moderate 

($700-$2,000)

Active Infrared       Low to Moderate 
Moderate to 

High ($6,500-
$3,300) 

Passive Infrared       Low to Moderate 
Low to 

Moderate 
($700-$1,200)
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Ultrasonic       Low 

Low to 
Moderate 

(Pulse Model: 
$600) 

Acoustic Array       Low to Moderate 
Moderate 
($3,100-
$8,100) 

Video Image 
Processor       Low to High 

Moderate to 
High ($5,000-

$26,000) 
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Table 5-4  Unit cost overview of roadway-based sensors (Source: Middleton and Parker, 
2000; Berka and Lall, 1998) 

Sensor Mode Unit Cost Coverage 

ILD Passive $370 Single Lane 

Magnetic Passive $8751 Single Lane 

Microwave Radar Active $3,5001 Multiple Lanes 

Microwave Doppler Active $1,0001 Multiple Lanes 

Infrared Active $4,5001 Multiple Lanes 

Infrared Passive $1,500 Multiple Lanes 

Ultrasonic Active $5601 Single Lane 

Acoustic Passive $485 Single Lane 

Laser Active N/A Double Lanes 

VIP Passive $3480 Multiple Lanes 

 

Typical data reflecting the unit costs and current penetration rate of probe-based sensors 
are listed in Table 5-5. 

                                                                                          
1 Prices are up-to-date as of June 1996. 
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Table 5-5  Unit cost overview of probe-based sensors (Source: Sutton, 1998; Walters et al., 
1998; Klein, 2001) 

Sensor Functions Unit Cost Penetration Rate 

GPS Receiver Positioning, route guidance, 
fleet management $200-500 1%-5%1 

AVI Transponder ETC/ETTM, ECP $15, 100-2502 10%-30%3 

Cellular Phone Personal communication $0 17%-36% 

 

When viewing these tables, the following should be kept in mind: 1) the cost as well as 
the penetration rate indicated in the above tables are based on the corresponding cases and 
can be influenced by local conditions and particular configurations; 2) the data collected in 
the past five years may not reflect the latest information; and 3) many of these technologies 
are constantly being improved and hence their accuracy may increase and their price may 
decrease over time. 

A more site-specific set of cost comparisons including capital (hardware and installation) 
and annual (maintenance and operations) costs is provided in Table 5-6.  This table is 
abstracted from a report prepared for TRANSMIT (Transportation Operations 
Coordinating Committee’s System for Managing Incidents and Traffic) by Mouskos et al. 
(1999) and Niver et al. (2000).  It shows cost comparisons of 4 types of sensors for an 
incident and traffic management system along a 6-lane highway.  The hardware capital costs 
include field components of a typical detection site installed along the system as well as the 
ancillary equipment.  The system installation cost covers the field installation of hardware, 
cabinet and foundation, cables, and so forth.  The maintenance costs for a detection site 
include on-site hardware and software support and personnel expenses.  Operations costs 
involve costs for leased telephone lines and utilities expenses. 

                                                                                          
1 Typical data currently reflected in some U.S. main metropolitan areas. 
2 Different types of transponders (i.e., IVR, toll, or beam) have dramatically different prices. 
3 Typical data currently reflected in Toronto, Dallas, Houston, Oklahoma, San Diego, San Antonio metropoli-
tans and some counties in California 
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Table 5-6  Comparative costs of incident detection systems per detection site (Source: 
Mouskos et al., 1998) 

Cost Item ILD VIP MRD1 AVI 

Hardware $ 4,100 $ 24,500 $ 26,500 $ 14,700 

Installation $ 50,560 $ 45,100 $ 25,200 $ 21,700 Capital Cost 

Total $ 54,660 $ 69,600 $ 51,700 $ 36,400 

Maintenance $ 7,950 $ 3,300 $ 2,900 $ 2,900 

Operations $ 2,040 $ 2,040 $ 2,040 $ 2,040 Annual Cost 

Total $ 9,990 $ 5,340 $ 4,940 $ 4,940 

Year-One Total Cost $ 64,650 $ 74,940 $ 56,640 $ 41,340 

 

The results show that ILD and VIP systems have the highest installation and capital costs.  
The maintenance cost used for ILD system is much higher (i.e., 2-3 times) than other sensor 
systems. 

                                                                                          
1 MRD stands for microwave radar detection system in the TRANSMIT project. 
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CHAPTER 6: REVIEW PROCEDURES FOR CALIBRATING 
INCIDENT DETECTION ALGORITHMS AND PARAMETERS 

Incident detection algorithms and procedures need to be calibrated at at least three different 
levels:  the sensors used to collect traffic data need to be calibrated or adjusted to obtain the 
most accurate information, the data need to be pre-processed before they are used in 
detection algorithms or procedures, and all three types of incident detection methods --  
roadway-based, probe-based, and driver-based -- need algorithm- or procedure-specific 
calibration. 
 
6.1 Sensor-Based Calibration 
 

As described in Chapters 4 and 5, most of the sensors used to acquire data for incident 
detection require calibration or at least adjustment to obtain the most accurate data.  In fact, 
poor performance of incident detection methods can generally be linked to poor initial data 
quality and lack of or poor calibration of installed sensors.  This calibration affects the 
performance of different types of sensors whether they are used on freeways or arterials. 

 
6.1.1  Calibration of Roadway-Based Sensors 
 
 The most widely used roadway-based sensors are Inductive Loop Detectors (ILD).  
The spotty performance of these sensors is well known.  Installation of inductive loops, as 
described in Chapter 4, may result in data problems due to improper connections in pull 
boxes, sealants being applied poorly, sporadic communication with controller or central 
traffic management center, etc.  Each individual sensor must be calibrated so that vehicle 
presence and occupancy may be standardized along a roadway.  Pairs of loop detectors 
providing speed measures need further calibration for accurate speed measurements 
 Other types of roadway-based sensors such as magnetic, infrared, ultrasonic, etc. 
need as much or more site-specific calibration before data is acquired.  Side and overhead-
mounted detectors and video processing systems may also get “jilted” or moved in severe 
weather or in a crash requiring calibration before data can be again used from the sensor. 
  
6.1.2 Calibration of Probe-Based Sensors 
 

In contrast to the roadway-based sensors, most probe-based sensors are not likely to 
need calibration.  However, modified point-based sensors that are used to re-identify 
vehicles at different points along the roadway (mentioned in Section 4.1) require a great deal 
of calibration. 

 
6.1.3 Calibration of Driver-Based “Sensors” 
 

The system recommended in the next chapter relies heavily on what we have 
referred to as driver-based “sensors” including individual cell phone reports of crashes and 
other incidents along the roadway.  Professionals, including freeway service patrols and 
police patrols, are generally able to identify clearly to traffic management center (TMC) 
personnel the location, severity, and immediate impacts of an incident.  However, incident 
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reports from citizens, no matter how well intentioned, may not provide desired information 
to TMC personnel.  Thus, such reports need to be calibrated in order to best determine 
existing traffic conditions—and to filter out false alarms. 
 
6.2 Data Pre-Processing 
 

Before data is used in a detection algorithm or procedure, it should be pre-processed 
for false alarms and erroneous data.  Pre-processing also includes aggregation of raw data 
into formats used in the algorithms and procedures.  For example, the raw data of most 
roadway-based sensors are aggregated into 30-second or 1-minute intervals for use in 
algorithms.  Longer aggregation periods are more likely to smooth anomalous or “noisy” 
data, but longer aggregation periods lead to a longer time-to-detect if an incident occurs.  
Similarly, largely due to the limited availability (small penetration rate) of probe-based 
sensors, aggregation periods tend to be longer—even up to 15 minutes, as described in 
Chapter 1.  One recommendation is to use longer aggregation periods only on lower volume 
roadways (and possibly on roadways with lower percentages of vehicles with transponders 
and other probes).  Shorter periods, such as five minutes or less, can be used on roadways 
with greater percentages of probe vehicles (over 20%, as indicated in the Figures in Chapter 
5) and/or during peak periods.   

 
 
6.2 Algorithm or Procedure-Specific Calibration 
 

Much of the literature focused on algorithm-specific calibration of roadway-based 
sensor (inductive loop-based) algorithms. Algorithm performance depends in part on 
calibrating detection parameters for each roadway section.  Using incident data, one needs to 
determine the best combination of parameters that maximizes detection rate and minimizes 
false alarm rate and time-to-detect, as described in Chapter 3.  One study reports that 
algorithms cannot be properly calibrated unless an incident occurs in every detection zone 
(Balke, 1993).  This is likely too extreme a requirement, but the few calibration efforts 
reported in the literature do describe calibration of algorithm parameters in every detection 
zone (between every set of detectors).  Algorithms with more parameters, such as the 
McMaster algorithm (with ten parameters requiring calibration), make the process and 
accurate reporting of incidents difficult.  One can argue that more parameters leads to better 
results, but smaller numbers of parameters are likely to aid in transferability of different 
algorithms and procedures and ease of implementation, as reported in Chapter 3. 

Even “self-calibrating” algorithms or learning processes such as neural networks and 
genetic algorithms require extensive training with real incident data and subsequent testing 
with additional incident data.  Difficulties with calibration and the general lack of success 
with automatic algorithms reported by traffic management centers, as well as the increasing 
availability of cell phone reports, leads us to the conclusion that interest in the exclusive use 
of automatic algorithms is waning in favor of some combination of roadway-based detection 
systems and driver-reported information. 
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PART 7: RECOMMEND AN INCIDENT DETECTION APPROACH  

 
Much space in this report has been given to the traditional roadway-based automatic 

algorithms and their performance.  But despite years of modifications by many researchers 
and individual traffic management centers adopting their own automatic incident detection 
algorithms, staying with a traditional roadway-based automatic incident detection system 
does not seem appropriate given the new types of sensors and even more glaringly, the 
preponderance of cellular phones and the ability to almost-instantaneously report crashes 
with high accuracy in terms of location.  The system that we propose here is to use driver-
based phone reports with some supplements. 
 
7.1  Driver-Based Cell Phone Reports 
 

Cell phone use is ubiquitous.  Over two-thirds of Americans own a cell phone, many 
of which are used in vehicles (American Demographics, 2002).  Americans cite “security and 
safety” as reasons to have a cell phone and thus they are likely to think of them to report a 
crash that they are involved in or that they are affected by.  A major advantage to cell phone 
reports is that all roadway types, including minor roads (not just freeways or major arterials), 
are covered.  As more and more cell phones are adopted and their use increases, the 
potential exists for a large percentage of crashes and incidents to be reported instantly.  
Compared to roadway-based and probe-based incident detection systems, cell-phone reports 
are “rich” in terms of specific incident location, number of vehicles directly affected, 
whether the incident is in a traffic lane and can be easily moved out of a traffic lane, etc.  As 
described in Chapter 4, drawbacks to using cell phone reports for incident detection include 
drivers’ willingness to report crashes and their ability to relate accurately crash location, 
severity, effect on traffic, etc.  Here we suggest some ways to improve reporting and ease 
operator work in identifying appropriate callers, and discuss elements that can be used to 
supplement cell phone reports. 
 

Chapter 4 provides a review of the literature concerning the use of cell phone reports 
for incident detection.  A 1999 TxDOT study (Walters et al., 1999) suggests that managing 
a cell phone incident detection system requires 10% of the costs of a loop detector system 
that employs a fiber-optic network.  Both systems require operators at a traffic management 
center, but there are no field hardware requirements with a cell phone system, especially if 
E911 technology can be utilized to pinpoint callers’ locations.   
 

Using cell phone reports requires a trade-off between encouraging only affected 
vehicles to call in with a crash report (thus, it may take longer for crashes involving vehicles 
without a cell phone in them to be reported) and receiving many phone calls about “atypical 
congestion” from frustrated motorists.  Too many phone calls places an undue burden on 
traffic operations center personnel, who need to quickly identify pertinent information about 
the incident and then manage the incident rather than field additional phone calls.  But 
discouraging phone calls from motorists not directly affected in an incident may result in a 
longer time to detect an anomaly if directly affected motorists do not have a cell phone or do 
not quickly report the mishap. 
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Anecdotal reports suggest that some traffic management centers consider the 

occurrence of an incident to have been confirmed only after three phone reports are 
received.  Multiple callers are likely to provide slightly different versions of the crash.  Some 
callers may be better than others at quickly providing pertinent incident details.  Without 
multiple-caller information, the traffic management center can use police or freeway service 
patrols or video camera systems to confirm that a crash has occurred and that traffic 
management is needed.  While several hundred miles of freeways are monitored by freeway 
service patrols during peak hours, video surveillance systems only operate on limited freeway 
sections.  Waiting for on-scene verification may add unduly to the incident detection time 
and delay appropriate traffic mitigation measures.  Thus, we suggest a system using multiple 
cell phone reports to confirm that an incident worthy of further attention has occurred.  
Further, operators need to be trained to prompt callers for desired information and how to 
detect a possible erroneous phone call.  Operators need to determine whether the current 
caller can provide necessary information or whether it is better to listen to another caller. 
 

A basic cell phone reporting system should have two components:  signage and 
driver education.  A more sophisticated system may use a recording for heavy call times.  All 
systems can be supplemented as described below. 
 

The most effective systems include roadway signage providing a call-in number for 
incident reporting (*99, 911), etc.  The signs should include text such as “Report observed 
crashes to *99”, or “Dial *99 if you are involved in a crash.”  Many road users are likely to 
remember the appropriate number through subsequent use of the roadway, but new (non-
local) users are likely to also pay attention to the signs. 

 
If the Traffic Management Center is not able to utilized E911 technology that 

pinpoints the location of emergency callers, then mileage markers (every mile and 1/10 of a 
mile) are needed on major roadways to help identify the caller’s location.  Many callers are 
not able to describe clearly the distance they are from a freeway exit but this information is 
likely to be needed by TMC personnel.  On arterial streets, mileage markers are less useful 
because callers are more likely to report the cross-streets of adjacent intersections.  
Currently, GPS chips are available in many cell phones.  If the cell phone user subscribes to 
certain networks and services, the phones can be tracked (and location pinpointed) when the 
cell phone is on with free-domain software.  Carriers are required to include GPS-chips as a 
standard feature on phones by the end of 2005.  It is not clear that all phones will be 
“trackable” immediately, but the emphasis on locating E911 callers should have great benefit 
to traffic management and information centers. 

 
Signage can educate drivers about an incident-reporting system, but billboards, 

public service announcements, messages with drivers license renewals and driver education 
training are likely to be as effective or more effective in encouraging drivers to accept their 
responsibility to report an incident from a given class of roadway, and what information to 
provide. 
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Many traffic management centers work with 911 operators, who speak to affected 
drivers and then pass appropriate information on to the TMC.  Working in conjunction with 
911 systems and operators has the advantage of available position location systems and using 
the 911 operators to talk with individuals while TMC personnel obtain only traffic-important 
information.  Another advantage may be the reduction in false alarms as most of the public 
is unlikely to falsely call 911.  A disadvantage may be a slight delay in obtaining necessary 
location and traffic information, but the advantages are likely to counteract this.  Working 
with the 911 system is likely the best option for smaller traffic management facilities. 
 

A recorded-message phone system may alleviate TMC/TOC operator workload 
during peak hours or during incidents.  After multiple phone calls have been received about 
an incident, further calls within a specified time period (20 minutes, say, or until clearance of 
the incident) can be initially answered with a recording, ideally modified with the 
introduction “We are aware of the crash/incident/accident reported at _________ location 
and Center personnel are working to manage congestion related to this incident.”  Callers 
who are either directly involved in the incident or who want to report an additional incident 
are then instructed to push a specified number to provide new information.  Ideally, all 
callers should get information during the phone call about who should be reporting incident 
information and, ideally, be directed to a 511 system that would provide traffic information 
that will help reduce their delays. 
 
7.2 Supplements to the Driver-Based Phone System 
 

As described above, existing driver-based surveillance elements such as police 
patrols, freeway service patrols, and video monitoring systems, can be used to verify that an 
incident has occurred and to call for appropriate actions by transportation management 
center personnel to alleviate congestion.  As shown in Figure 2-5, the TMCs and TOCs that 
were surveyed utilize closed circuit TV monitoring, highway and maintenance patrols and 
phone reports to verify incidents. 
 

Here we propose also to use new sensors including travel times of probe vehicles to 
confirm that an incident has occurred and to help with post-incident traffic management 
plans.  With more and more drivers acquiring electronic transponders for electronic toll 
payments, determining travel times on all kinds of roadways requires a system of readers that 
recognize that the same vehicle has passed different reader locations.  Readers may be placed 
on freeways and on arterials and other roadways.  Similar information can be obtained with 
license plate reader systems, but toll tag reading technology and matching can be 
piggybacked on existing electronic toll systems and, thus, will likely prove to be more cost-
effective.  Chapter 1 described automatic algorithms that reported incident occurrence when 
travel times did not match historic times.  These automatic algorithms seem to be imperfect 
as a primary detection system as described in Chapter 3, but as a supplemental and/or 
confirmation system, they should be valuable to a traffic management system. 
 

Using non-driver based sensors require algorithms (matching algorithms, for 
example) and calibration (at least of appropriate aggregation periods).  Some of the pitfalls 
described in Chapter 6 apply.  But the goal of most traffic management systems should be to 
utilize available traffic information.  Cell phone reports are available with a minimum of 
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signage and education.  Some of the new sensors such as toll transponders with better 
section/travel time traffic information are becoming more commonly available.  A combined 
system is likely to be most appropriate for current traffic management centers.  A subset of 
these combinations can be used by smaller and new facilities. 
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APPENDIX A: THE COVER LETTER AND QUESTIONNAIRE OF 
THE SURVEY – “INCIDENT DETECTION ALGORITHMS AND 
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