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Executive Summary 
 
 

This paper presents two different learning methods applied to the task of driver activity 
monitoring. The goal of the methods is to detect periods of driver activity that are not 
safe, such as talking on a cellular telephone, eating, or adjusting the dashboard radio 
system. The system presented here uses a side-mounted camera looking at a driver's 
profile and utilizes the silhouette appearance obtained from skin-color segmentation for 
detecting the activities. The unsupervised method uses agglomerative clustering to 
succinctly represent driver activities throughout a sequence, while the supervised learning 
method uses a Bayesian eigen-image classifier to distinguish between activities. 
The results of the two learning methods applied to driving sequences on three different 
subjects are presented and extensively discussed. 
 



CHAPTER 1 INTRODUCTION 
 

Overview 

The goal of this project is to develop a camera-based system for monitoring the 

activities of automobile drivers. As in any system deployed for monitoring driver 

activities, the primary goal is to distinguish between safe and unsafe driving actions. 

There is no fixed list of actions that qualify as unsafe driving behaviors. In general, an 

activity or an action that reduces a driver's alertness or awareness of their surroundings 

should be classified as unsafe driving behavior. Some examples of unsafe driving 

behavior include driver fatigue, talking on a cellular telephone, eating, and adjusting the 

controls of the dashboard stereo while driving. 

In this work, we present methods for summarizing and recognizing the activities 

of a driver, using the appearance of the driver's pose as fundamental cues. The position of 

the hands, arms and the head vary across different activities, and vary among individual 

drivers. While there is a lot of work in driver activity monitoring through head and eye 

tracking [1], [9], [10], [13], [17], [20], there is very little work that makes use of the 

changes in the appearance resulting from the motion of the driver inside the automobile. 

The skin-tone regions of the input video are used as the features in the classifiers.  

In the unsupervised method, binary skin-tone masks are agglomerated across an entire 

action sequence to assign a probability of observing skin tones for each pixel in the 

image during the action. Action sequences are separated from one another by detecting 

substantial movements in the image, signified by large differences between the skin-tone 

masks of sequential frames.  In the supervised method, key frames corresponding to safe 

driving actions and unsafe driving actions are specified by the user.  These key frames 

are used for obtaining the subspace densities corresponding to an individual action.  In 

this work, talking on a cellular telephone is classified as an unsafe action.  A Bayesian 

eigen-image method is used for classifying the activities. 

 

Related Work 

Most of the work on driver activity monitoring is focused on the detection of 

driver alertness through monitoring eyes [9], [10], [17], face, head, or facial expressions 
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[1], [13], [20].  In order to deal with the varying illumination, methods such as [21] use 

infrared imaging in addition to normal cameras.  Learning-based methods such as [2], 

[19] exist for detecting driver alertness and gaze directions.  In our work, both learning 

methods make use of the silhouette of the subjects for detection of activity.  Several 

silhouette-based activity recognition methods exist in the literature such as the motion 

history image method by [6], the W4 system by [8], and the Pfinder system by [18].  The 

supervised learning or the Bayesian eigen-image method is based on the face recognition 

work of [11].  This method basically seeks a low-dimensional representation of the data 

for classification. Several dimensionality reduction techniques exist, such as [3], [4], 

[15], and the manifold learning methods in [5], [12].  An example of an unsupervised 

method for learning human behaviors is presented in [14], where a maximum likelihood 

method is used to learn the structure of a triangulated graph of feature point-based human 

motions.  In [7], the general segment of the body region where significant motion takes 

place is detected, and this information is used as a cue for matching activities. 
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CHAPTER 2 UNSUPERVISED CLUSTERING OF DRIVING 
BEHAVIORS 
 
 

The most basic cue about a driver's actions is his pose.  However, tracking a 

driver's articulated motion in an environment with rapidly varying illumination and many 

potential self-occlusions is prohibitive both in terms of computational resources (for 

model-based tracking) and since the initialization of an articulated model is non-trivial in 

an automatic fashion.  Our approach does not depend on an estimation of a driver's pose, 

but on the observation that periods of safe driving are periods of little motion of the 

driver's body.  Of course, a driver does not move much while talking on a cellular 

telephone (an unsafe driving behavior), so the need arises to classify periods of minimal 

motion into safe-driving periods and unsafe-driving periods. 

Detecting motion in a moving car's interior is complicated since the illumination 

of the interior can change very rapidly.  Furthermore, the outdoor environment is visible 

through the car's windows, so motion will be always detected in the image regions 

corresponding to the car's windows.  To address this problem, we only detect motion of 

skin-like regions, for example a driver's face and hands.  This approach is advantageous 

since skin color detection can be fairly robust to various illumination conditions.  Skin 

tones are also unlikely to appear in the window regions, so motion in the outside 

environment is unlikely to be detected.  Portions of the car's interior that are misclassified 

as skin are static and will contribute nothing to the detected motion, so such regions are 

not problematic as well. 

 
Skin Color Detection 

We perform the classification of color pixels into skin tones and non-skin tones 

by working in the normalized RGB space.  The normalization is effective against varying 

illumination conditions, and can also be motivated by the fact that human skin tones have 

very similar chromatic properties regardless of race [16]. 

An RGB triplet (r, g, b) with values for each primary color between 0 and 255 is 

normalized into the triplet (r', g', b') using the relationships: 
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Figure 2.1   Skin color detection (bottom row) on various images (top). Skin color is indicated in black. 
The results are post-processed by a sequence of morphological erosions and dilations. 

 bgr
bb

bgr
gg

bgr
rr

++
⋅

=
++
⋅

=
++
⋅

=
255',255',255'

 (1) 

 

We classify a normalized color (r', g', b') as a skin color if it lies within the region 

of normalized RGB space described by the following rules (found in [16]): 

  20',45',95' >>> bgr

 { } { } 15',','min',','max >− bgrbgr  (2) 

 '',15'' brgr >>−  
 

Figure 2.1 shows the results of the skin color detection for various subjects and 

lighting conditions.  It should be noted that other skin-tone detection methods can be 

used without affecting the rest of the algorithm.  We tried using a non-parametric 

Bayesian skin probability map as an alternative approach, but its results were of 

unsatisfactory quality as the number of training images used to create the map was small 

and the images themselves were obtained under radically different lighting conditions 

than those during our driver monitoring experiments.  However, if a better skin-color 

detection method is available, it can be substituted in favor for the rule-based one. 
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Detecting Changes in Behavior 

Since our goal is to detect and classify relatively motion-free periods, we use 

inter-frame differencing to decide when a period starts and ends.  If the change between 

two consecutive skin-color masks obtained by the color classification step is significant, 

the current low-motion period terminates.  When the interframe difference drops, we start 

accumulating data about a new low-motion period. 

 Given the image region R, the change between two consecutive binary skin-color 

masks It-1 : R → {0, 1} and It : R → {0, 1} is described by the total number of pixels 

whose classification changed: 

 
( ) ( ) ( )∑

∈
−−=

Rp
tt pIpItc 1

 (3) 

Whenever c(t) is large, a transition in driver behavior is detected. A global 

threshold cannot be used to determine whether the change c(t) is significant or not, since 

different low-motion actions differ in the typical amount of “natural” motion that occurs 

throughout the action.  Additionally, the amount of noise in the skin classification masks 

may differ from one run of the algorithm to another.  Finally, the significance of a change 

c(t) depends on how much of a driver's skin is exposed.  For these reasons, we chose to 

have a relative threshold for c(t)'s significance that depends on the observed variation in 

c(t) over a period of time. 

Assuming that a low-motion period started at time t1, we consider the change at 

time tn significant if c(tn) is more than 2 standard deviations away from the mean of the 

changes c(tn-w), c(tn-w+1), …, c(tn-1), where w is the history window size (set to 900 

frames, which corresponds to 30 seconds of past activity).  Both the mean and standard 

deviations are computed incrementally.  Since we start recording data for a new action 

immediately during the onset of the significant change, the deviation in the first few 

samples (i.e. c(t1), c(t2), …) is larger, which limits the number of spurious short periods 

identified by the algorithm.  This is advantageous since the sequence of images leading to 

a low-motion action will contribute to the action model and thus will allow us to 

distinguish between otherwise similar low-motion periods based on information about the 

high-motion events that preceded them. 
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Figure 2.2  Skin probability maps for several action clusters (representing more than 80% of the driver's 
activity).  Darker regions indicate higher probability of observing skin tones. 
 

Action Models 

The change in the binary skin tone masks indicates the need to start recording an 

action model.  Each action model is simply a probability map that describes the 

expectation of observing a skin-color at every location in the input images.  Given the 

binary skin masks  for a low-motion action with duration from time t
nttt III ...,,,

21 1 until 

time tn, the probability map P is defined by: 

 ∑
=

=
nt

tt
tI

n
P

1

1
 (4) 

Sample probability maps for several actions are shown in Figure 2.2.  Individual 

actions that are determined to be similar are merged together into clusters.  The goal of 

the clustering is to produce clusters that correspond to a single type of behavior (safe or 

unsafe).  Such clustering facilitates further analysis of a driver's activities as it reduces 

tremendously the amount of data that needs to be analyzed (thousands of video frames 

versus tens of activity models).  The similarity between an action model P and an action 

model Q is defined as: 

 ( )
( ) ( )

( )( ) ( )( )∑∑
∑

∈∈

∈=
RiRi

Ri

iQiP

iQiP
QPd ,  (5) 

The measure is the Bhattacharya coefficient for two normalized histograms, and 

ranges from 0 to 1.  A high similarity measure corresponds to similar action models, 
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while a low measure corresponds to dissimilar models.  A model is compared to the 

means of all clusters and merged with the most similar one if the similarity measure 

exceeds a certain threshold.  Since we cluster according to the distance to the mean rather 

than the mean distance, each cluster can be represented by a single action model. The 

model P is merged into a cluster represented by the model Q according to: 

 ( ) ( ) ( )iQ
mn

miP
mn

niQ
+

+
+

← , (6) 

where n and m are the number of video frames represented in P and Q, respectively. 
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CHAPTER 3 BAYESIAN EIGEN-IMAGE ACTIVITY 
CLASSIFICATION 
 

For a side-mounted camera, the 

significant observable motion is the motion of 

the driver's hands in the image.  However, one 

important issue with using hand motions is the 

problem of self-occlusion for extended 

periods of time and the resulting pose 

ambiguity.  This problem precludes the use of 

region-based hand-trackers to detect hand 

motion and position.  Instead, a snapshot repres

the classification feature. 

 
Training Method 

The goal of training is to find a represe

Essentially, we want to find a low-dimensiona

methods such as the Karhunen-Loéve Transfor

eigen-images exist for computing the low-dimen

image method originally proposed by [15] for fa

[11].  The method's robustness to illumination

achieved by using multiple suitable training imag

F
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Figure 3.1.  Input image for training. 
entative of a particular action is used as 

ntation for the images of a given class.  

l representation for the data.  Several 

m, Principal Component Analysis, and 

sional representation.  We use the eigen-

ce recognition and extended later on by 

 variations and self-occlusions can be 

es. 
 
(a)  Largest eigenvector for drive activity 

 
(b) Largest eigenvector for talk activity 

igure 3.2.  Largest eigenvectors for drive and talk class. 



 For a given set of images 

corresponding to a given class, the largest 

eigenvalues and eigenvectors represent the 

distribution of the data along the most 

significant component direction.  This is the 

basis of this method. For the given set of 

images,  belonging to a class CK
ii II ...,,1

i, an 

eigenvalue decomposition is performed to 

obtain Σi, the eigenvectors for the class Ci.  

This operation is performed off-line for each 

class of images. 

Figure 3.3.  Distribution of the two classes 
under three largest principal components 
(starting from the second highest). The safe 
driving class is represented by circles and the 
unsafe driving class is represented by 
crosses. 
 
 

Figure 3.4.  The results of classification for 
the training images of the unsafe driving 
class. 
 
 

Figure 3.5.  Classification results for the safe 
driving class on the training set. 
 

Figure 3.2 shows the second largest 

principal eigen-image for the talk and drive 

actions.  A typical image used for training is 

shown in Figure 3.1.  As shown in Figure 3.1, 

only the skin portions of the image are chosen 

for training.  The skin regions are detected 

automatically using the method described 

earlier in Chapter 2.  This removes irrelevant 

portions of the image from consideration 

during training.  Further, since only the skin 

portions corresponding to the hands and face 

are significant for the two classes, any skin 

segments around the leg regions are masked.  

This step helps reduce the dimensionality of 

the data, thereby improving the accuracy of 

the training with fewer training samples. 

Figure 3.4 shows the effect of the 

number of training samples on the accuracy of 

classification for all samples belonging to the 
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talk action.  The number of correctly classified and misclassified images for different 

training sample size is shown in Figure 3.4.  Based on Figure 3.4, we chose a sample size 

of 40 where the number of correctly classified samples is maximized and the number of 

incorrectly classified samples is minimized. 

Figure 3.5 shows the results of classification for samples containing the driving 

action for different sample sizes.  Finally, Figure 3.3 shows the distribution of the two 

classes along the three principal components.  The largest eigenvalues and eigenvectors 

capture the largest variation within a class.  However, given the small training data size 

compared to the dimensionality of the data, the errors in skin segmentation are also 

modeled.  Hence, we take the eigenvalues and eigenvectors starting with the second 

highest principal component for classification. 

 
Activity Classification 

The activity in each frame is evaluated by computing its similarity with the set of 

training images for each activity class.  A probabilistic measure of similarity is used 

instead of the usual Euclidean metric.  Given a candidate image , its similarity to an 

image  from class  is computed by projecting the difference of the two images, 

 onto the principal eigenvectors of class .  This can be represented as, 

xI

j
iI iC

j
ix II −=µ iC

 ( )
( ) 212

2
1

2
|

i
di

i
T

eCP
Σ

=
Σ−

π
µ

µµ

, (7) 

where  contains the largest eigenvectors for class  and d is the dimensionality of the 

data.  This operation is repeated over all member images of a class until a maximum 

score is found.  For recognizing the activity, this operation needs to be performed over all 

the training images in all the classes.  This computation can be very expensive as the 

number of classes and the number of images increases.  To reduce the computational 

burden, an off-line whitening transformation is performed as described in [11].  Each of 

the  images in class  are transformed using the eigenvalues and eigenvectors: 

iΣ iC

K
ii II ...,,1

iC

 j
iii

j
i ISDim 2

1
−

= , (8) 
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where  and  are the eigenvalues and eigenvectors computed for the class .  Given 

these pre-computed transformations, the match for a new image  is computed as: 

iD iS iC

xI

 ( )
( ) 212

2
1

2
|

2

i
d

imim

i

j
ixeCP

Σ
=

−−

π
µ , (9) 

where  is the transformed image of  computed from the eigenvectors and 

eigenvalues of  as in Equation (8).  The activity in a frame is classified as safe driving 

or talking based on the relative values of 

xim xI

iC

( )DrivingP |µ  and ( )TalkingP |µ .  Activities 

having almost equal probabilities for both classes are rejected and not classified as 

belonging to either class.  That occurs when the probability of association is in the range 

from 0.45 to 0.55. 
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CHAPTER 4 RESULTS AND DISCUSSION 
 

Experimental Setup 

Test data for the methods 

is comprised of three example 

videos of individuals pretending 

to drive a stationary automobile.  

The video camera used to record the vide

passenger-side window viewing the drive

individual sitting in the car pretending t

represented.  The lighting conditions vary

outdoor parking lot.  Each of the three vid

and 11,000 frames), full-color, and at full 7

Su

During the course of each video,

normally and performing distracting actio

cellular telephone, adjusting the controls 

soda can.  These actions were chosen as th

very common. 

 

Activity Clustering 

The goal of the clustering metho

possible, while not merging together saf

activities are merged together, the subse

unsafe activities will introduce errors.  If to

have failed its goal to summarize a driv

different settings for the similarity thresh

clustering using a threshold value of 0.85

the number of distinct activities recognized

that contain only one action model—such

motion indicative of transitions between di

 

Table 4.1.  Unsupervised method results. 
bjec
t 

Frames Clusters 
(Singletons) 

Confusio
n 

1 10,231 33 (24) 4.54% 
2 10,110 38 (23) 16.8% 
3 10,380 16 (8) 11.1% 
os was placed on a tripod directly outside the 

r in profile.  Each video features a different 

o drive; different ethnicities and genders are 

 throughout the videos as the car was in an 

eos is about six minutes long (between 10,500 

20 × 480 resolution. 

 the driver goes through periods of driving 

ns.  Distracting actions include talking on a 

of the dashboard radio, and drinking from a 

e unsafe behaviors to test for because they are 

d is to produce as few activity clusters as 

e and unsafe activities.  If safe and unsafe 

quent classification of clusters into safe and 

o many clusters are created, the method would 

er's activities.  We tested the method using 

old.  Table 4.1 shows the performance of the 

.  The total number of clusters corresponds to 

 by the method.  Singleton clusters are clusters 

 clusters usually reflect short periods of high 

fferent actions. 
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Each sequence was manually segmented into safe driving periods and unsafe 

driving periods.  Since the goal of the clustering method is to group activities for further 

analysis, it must not group together activities from the two different classes.  The 

proportion of incorrectly merged frames is indicated in the last column of Table 4.1. 

The majority of the incorrectly clustered action models represents failures of the 

skin-color segmentation.  For subject 1, the forearm was not segmented properly on 

several occasions.  Subject 2 has no experience driving and was constantly in motion 

during the whole sequence.  The head pose for subject 2 varied significantly during both 

safe driving and unsafe driving periods, which contributes to the higher confusion.  

Finally, subject 3's results suffer from under-segmentation, but improve significantly if 

the similarity threshold is increased.  We suspect that this is due to the fact that subject 

3's skin-color masks had fewer skin pixels as compared to the other subjects, primarily 

due to skin segmentation failures.  Our future work on the unsupervised method will 

concentrate on making the similarity threshold relative rather than absolute and on 

improving the skin-color segmentation further. 

 

Activity Classification 

The supervised Bayesian eigen-image method was tested on the same subjects 

and sequences as the unsupervised method.  Training images were free of noise in 

segmentation, and irrelevant parts of the scene were masked out.  The test sets were used 

as is.  Some of the training images had the leg portions masked out for improving the 

accuracy of the training.  Training images were excluded from the test sequences.  For 

training, 20 examples of safe driving and 40 examples of unsafe driving were used.  The 

test set was comprised of 963 test samples. 

The system correctly classified 95.84% of the safe driving activity, and 73.91% of 

the unsafe driving activity frames.  1.6% of samples in the safe driving activity class 

were misclassified as unsafe activity and 14.35% of samples in the unsafe activity were 

misclassified as a safe driving activity.  11.74% of samples in unsafe activity were 

detected in both classes, as were 3.16% of the samples in the drive activity.  The main 

causes of misclassification were: 
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(a)  Bad skin-tone segmentation 

 
(b) Pose ambiguity due to self-occlusion 

gure 4.1.  Bad segmentation and self-occlusions can affect the accuracy of classification. 
• Noise in the segmentation of the test frames. 

• Ambiguous posture of the subjects in either class. 

Noise in segmentation of the skin portions of drivers resulted mostly from 

treme saturation of the color image due to very bright illumination and in some cases, 

e coloration of the driver's clothing.  An example of a poorly segmented image is 

own in Figure 4.1 where the subject's hands were under-segmented resulting in poor 

assification.  Another source of misclassification was the result of ambiguous posture of 

e driver.  For example, a driver leaning too close to the window was misclassified.  

nother case was when only one of the hands was visible due to self occlusion.  In this 

se, the safe driving activity was confused with the unsafe activity where only one hand 

 in contact with the steering wheel.  An example is shown in Figure 4.1 where the 

stem detected the driver to be in either safe or unsafe driving states. 

While the supervised learning method obtains high classification accuracy, its 

ain drawback is that it is unsuitable for real-time driver activity classification.  The 

pervised learning method includes using two distinct classes and across different 

bjects to account for the variability in the appearance of the hands and arms with 

bjects.  However, training for only two classes limits the performance of the system 

hen applied to detect activities such as adjusting the dashboard radio controls. 

In this work, our main focus was in distinguishing safe versus unsafe driving 

tivities in general.  One extension would be to detect different subsets under each class 

 activities, in particular the unsafe driving class.  Instead of using only one camera and 

e appearance cue, we would like to extend this work to using multiple cues obtained 

om multiple cameras, charting such observations as eye gaze and head motion. 
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Although the two learning methods are employed separately, one extension would 

be to use the two methods together.  In other words, the supervised learning method can 

be used to classify the clusters generated by the unsupervised method.  This would allow 

the system to collect information about a driver's activities in an online fashion, since 

individual clusters are produced or updated only when a change in behavior is detected. 

 

Conclusions 

We have presented two different methods for monitoring driving activities under 

challenging imaging conditions.  The results obtained validate the advantages of using 

driver appearance obtained from skin-color segmentation for classification and clustering 

purposes.  Specific advantages of this approach are the increased robustness to 

illumination variations and elimination of the need for tracking and pose determination. 
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