
HUMAN-CENTERED TECHNOLOGY TO ENHANCE SAFETY AND MOBILITY

Quantification of Uncertainty in
Transportation Infrastructure Projects

Final Report

Prepared by:
Ryan G. Rosandich
Santiago Erquicia

Department of Mechanical and Industrial Engineering
University of Minnesota, Duluth

CTS 05-06

Technical Report Documentation Page
1. Report No. 2. 3. Recipients Accession No.
CTS 05-06
4. Title and Subtitle 5. Report Date

June 2005
6.

Quantification of Uncertainty in Transportation Infrastructure
Projects

7. Author(s) 8. Performing Organization Report No.
Ryan G. Rosandich and Santiago Erquicia
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

CTS Project Number 2004022
11. Contract (C) or Grant (G) No.

Northland Advanced Transportation Systems Research
Department of Mechanical and Industrial Engineering
University of Minnesota Duluth
105 Voss-Kovach Hall, 1305 Ordean Court
Duluth, MN 55812

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered
Final Report
14. Sponsoring Agency Code

Intelligent Transportation Systems Institute
Center for Transportation Studies
University of Minnesota
511 Washington Avenue SE, Suite 200
Minneapolis, MN 55455

15. Supplementary Notes
http://www.cts.umn.edu/pdf/CTS-05-06.pdf
16. Abstract (Limit: 200 words)

Monte Carlo simulation is the currently accepted method for quantifying uncertainty in projects. It
was the goal of the research presented in this report to develop a purely computational technique, based
on traditional probability theory, for quantifying project uncertainty with accuracy equal to or greater
than that of Monte Carlo simulation. Series and parallel operators were developed for combining
independent task uncertainties in project networks. The operators were used to compute overall project
uncertainty given individual task uncertainty, and to calculate slack and the degree of criticality for each
task. Additional techniques were developed to deal with networks where the series and parallel operator
were not enough, specifically those with path dependencies. Results equal or exceed the accuracy of
Monte Carlo simulation, but computational times exceed those of Monte Carlo simulation for networks
with many dependencies.
17. Document Analysis/Descriptors 18. Availability Statement
Simulation
Monte Carlo
Schedule

Budget
Quantification
Negate Operator

No restrictions. Document available from:
National Technical Information Services,
Springfield, Virginia 22161

19. Security Class (this report) 20. Security Class (this page) 21. No. of Pages 22. Price
Classified Classified 42

Quantification of Uncertainty in Transportation
Infrastructure Projects

Final Report

Prepared by:
Ryan G. Rosandich
Santiago Erquicia

Department of Mechanical and Industrial Engineering

University of Minnesota Duluth

June 2005

Intelligent Transportation Systems Institute

University of Minnesota

CTS 05-06

Acknowledgements

This research was generously supported by a grant from the Northland Advanced Transportation
Systems Research Laboratory, a cooperative research and education initiative of the Minnesota
Department of Transportation, the University of Minnesota Center for Transportation Studies
and its Intelligent Transportation Systems Institute, and the College of Science and Engineering
at the University of Minnesota Duluth.

Table of Contents

Chapter 1: Introduction ..1

Chapter 2: Project Networks and Uncertainty ...3

Chapter 3: Quantification of Uncertainty ..4

Chapter 4: Computation of Uncertainty with Dependencies ...12

Chapter 5: Conclusions ..17

References..18

Appendix A: Computer Program Listing (Python Language).. A-1

List of Tables
Table 3.1 Example Series Computation...5

Table 3.2 Results of Series Computation...5

Table 3.3 Example Parallel Computation ..5

Table 3.4 Results of Parallel Computation ..6

Table 3.5 Minimum, Most Likely (ML) and Maximum Values for Tasks Used in Example ...9

Table 3.6 Comparison between Calculated and Simulated Results...10

Table 4.1 Minimum, Most Likely (ML) and Maximum Values for Tasks Used in Example .15

List of Figures
Figure 2.1 Project Network Structure ..3

Figure 3.1 Example Project Network...4

Figure 3.2 Illustration of Network Uncertainty Computation ...7

Figure 3.3 Illustration of Slack Computation ..8

Figure 3.4 Calculated and Simulated Results of Project Duration Uncertainty10

Figure 3.5 Calculated and Simulated Results of Slack for Task B..11

Figure 3.6 Criticality Results for All Network Tasks ..11

Figure 4.1 Project Network with Path Dependencies ..12

Figure 4.2 Result of Task Replication ...13

Figure 4.3 Calculated and Simulated Results for Project Duration ...14

Figure 4.4 Complex Example Network ...14

Figure 4.5 Complex Example Network with Replica Tasks Inserted......................................15

Figure 4.6 Calculated and Simulated Results for Complex Project Duration16

Executive Summary

Dealing with the uncertainty inherent in future events is a challenging aspect of project
management. A project manager’s job is to plan and carry out a complex sequence of tasks, and
to do so on schedule and within budget. The schedule and budget are based on estimates of how
long tasks will take to accomplish and how much various materials will cost, and include a great
deal of uncertainty. In addition to those uncertainties, project managers face external or
environmental causes of uncertainty such as limited resources, unpredictable weather, and
variable funding, to name a few. The management of project uncertainty is further complicated
by the fact that the risks are not independent. A variation in the schedule, for example, will often
have an effect on resources and cost.

A popular approach to the quantification of uncertainty in projects utilizes Monte-Carlo
simulation. With this approach the expected values of duration and cost for each task are
replaced with probability distributions that reflect the uncertainty in those estimates, and the
project is executed repeatedly in simulated time to determine the effect of the task uncertainties
on project outcomes.

Simulation-based methods are widely used in project planning, and most risk management
software packages rely on Monte-Carlo simulation. Simulations can involve thousands of
iterations of thousands of calculations, however, so they are complex and time consuming to
perform. For this reason they are used primarily in the planning and decision making stages of a
project, and not during actual project execution. It is desirable to develop a method of
calculating project uncertainty that is computationally simpler, so it could be integrated with
project management software and used in all phases of project management.

Given probability distributions that represent uncertain task durations, for example, it is
desirable to combine those individual uncertain durations in some way to compute the overall
project duration, and the uncertainty therein. Two operators, a series operator and a parallel
operator, were developed to help accomplish this. A procedure was developed that applies the
series and parallel operators repeatedly to a network to compute the overall project duration and
uncertainty.

The computation of uncertainty in task slack times was also addressed. In an uncertain
network the computation of slack becomes very complex. There may be many possible critical
paths in an uncertain network, each with some probability of being critical. In order to calculate
the slack for a particular task, its uncertain duration must be compared with all other possible
parallel paths through the network. To accomplish this, one more operator, the negate operator,
was required. This operator essentially reverses the time direction of a task duration and its
uncertainty, so uncertain durations can be ‘subtracted’ in series as well as added.

Because slack is the difference between two uncertain task durations it can take on both
positive and negative values. Tasks with completely negative slack are always critical, and tasks
with completely positive slack are never critical. Tasks with slack on both sides of zero have
some probability of being critical, and some probability of being non-critical. The area beneath
the negative portion of the slack curve is defined as criticality, the probability of the task being
critical.

A major limitation of the computational method is the fact that it requires that the project
network be completely simplified using the series and parallel operators. Although this is
possible for many practical networks, there are also many networks for which simplification is
not possible due to path dependencies.

An enhancement to the computational method that deals with path dependencies was
developed. The enhancement involves replicating tasks that participate in more than one path,
and handling the durations of the replica tasks as if they were fixed. This avoids the
dependencies, but introduces a great deal of additional computation when two or more tasks
must be replicated.

The original and enhanced computational techniques were tested against Monte Carlo
simulation. The methods were tested on many networks, and used to calculate many uncertain
quantities including task start times, task end times, task slack and criticality, and overall project
duration. The results of these computations were compared to the simulation results for the same
networks.

The only practical limitation on the computational methods presented is the fact that once the
replication of tasks becomes necessary, the computation time required becomes exponential in
the number of replicated tasks. For example, if the computation time with no replicated tasks is
about a second, with one replicated task it will be a few seconds, and with two replicated tasks
somewhat over a minute. Further investigation demonstrated that networks requiring three tasks
to be replicated were computed in about 45 minutes, and if four tasks were to be replicated the
computation would take on the order of a day, and five replicated tasks would take on the order
of a month to compute. In comparison, very good results can be achieved using Monte Carlo
simulation with about 200,000 iterations, and this requires a few minutes of computing time on
the networks investigated in this research. It is likely that a hybrid technique that uses the serial
and parallel operators to simplify the project network as much as possible, and then employs
Monte Carlo simulation on the simplified network would be the most efficient approach to
computing overall project duration uncertainty.

The conclusions based on the evaluation of the computational methodology presented in this
report can be summarized as follows:

• The method accurately computes the effect of uncertainties in individual task durations on

the overall project duration in project networks.
• The method accurately computes the uncertainty distributions in task slack times, and the

resulting task criticality.
• Task criticality is in fact the area beneath the negative portion of the slack time

distribution.
• Slack time distributions for tasks in series are identical.
• Criticality divides among parallel paths
• The total criticality for the project, as computed at the Start and End nodes, is 100%.
• The method requires exponential computational time on project networks with path

dependencies, but can be used to partially simplify those networks to facilitate more rapid
Monte Carlo simulation.

1

Chapter 1
Introduction

There are no facts about the future. This simple statement seems obvious, yet engineers and
managers are always trying to predict or manipulate the future in some way. In a typical
engineering management program, for example, courses are taught with topics like forecasting,
operations management, and project management in which predicting, planning, and even
controlling future events are discussed.

Dealing with the uncertainty inherent in future events is especially challenging in the field of
project management. A project manager’s job is to plan and carry out a complex sequence of
tasks, and to do so on schedule and within budget. The schedule and budget are based on
estimates of how long tasks will take to accomplish and how much various materials will cost,
and include a great deal of uncertainty.

In addition to those uncertainties, project managers face external or environmental causes of
uncertainty such as limited resources, unpredictable weather, and variable funding, to name a
few. The management of project uncertainty is further complicated by the fact that the risks are
not independent. A variation in the schedule, for example, will often have an effect on resources
and cost.

The management of the unknowns and/or uncertainties involved with project management is
known as project risk management (PRM), and it is currently one of the main areas of interest in
the project management community [1]. The Project Management Institute (PMI), the largest
professional organization in the world dedicated to project management, has identified risk
management as one of the eight main areas of the Project Management Body of Knowledge [2],
and one of the most active PMI Specific Interest Groups (SIG) is the one dedicated to risk
management. The Risk Management SIG lists 108 risk management software tools on its website
[3], and a recent survey of research on risk management [4] identified 241 references.

Risk management experts Chapman and Ward have recently argued that the term ‘risk’ should
be replaced with ‘uncertainty’ in project management [5]. They argue that risk management is
too narrowly focused on events, and that risk always has a negative connotation. They contend
that replacing PRM with the broader project uncertainty management (PUM) will allow project
managers to better understand the sources of uncertainty in projects, and to take advantage of the
opportunities related to uncertainty as well as dealing with the threats.

There is great interest in improving PUM by quantifying the effect of uncertainty on project
outcomes. Projects could be managed more effectively if knowledge of uncertainty could be
incorporated into the project planning, monitoring, and control processes.

A popular approach to the quantification of uncertainty utilizes Monte-Carlo simulation.
With this approach the expected values of duration and cost for each task are replaced with
probability distributions that reflect the uncertainty in those estimates, and the project is executed
repeatedly in simulated time to determine the effect of the task uncertainties on project
outcomes.

After many simulations probability distributions can be determined for outcomes like total
project cost and project duration. Those distributions reflect the level of uncertainty in the entire
project, and represent a far more realistic predictor of actual project outcomes.

Simulation-based methods are widely used in project planning, and most risk management
software packages rely on Monte-Carlo simulation. Simulations can involve thousands of

2

iterations of thousands of calculations, however, so they are complex and time consuming to
perform. For this reason they are used primarily in the planning and decision making stages of a
project, and not during actual project execution. It is desirable to develop a method of
calculating project uncertainty that is computationally simpler, so it could be integrated with
project management software and used in all phases of project management.

Applications to Transportation. Transportation infrastructure projects involve a high
degree of uncertainty. The usual sources of uncertainty are present in the technical, schedule,
and budget aspects of a project, and the uncertainty due to weather, funding issues, and resource
availability compound the problem. The current Minnesota funding shortages can cause project
delays that affect budgets and schedules. To make things worse, northern transportation projects
are done outdoors during a relatively short construction season, so inclement weather and
competition for finite contract labor and construction equipment can wreak havoc with schedules
and budgets.

Project uncertainty management, if effectively applied to transportation infrastructure
projects, could improve decision making and project execution. Better decisions based on a full
knowledge of uncertainties and their impact on eventual project outcomes will result in a greater
likelihood that the best project and alternatives are chosen. With more detailed information
about the sources of uncertainty, risks can be identified, assessed, and reduced. Continuously
updating uncertainty information as a project executes will enable better management of the
budget, schedule, and resources.

3

Chapter 2
Project Networks and Uncertainty

Project managers have traditionally relied upon network methods like the Program Evaluation

and Review Technique (PERT) and the Critical Path Method (CPM) for planning and managing
projects. Many books on project management present the PERT/CPM techniques [e.g. 6, 7, 8, 9,
10], and virtually all project management software packages implement some form of
PERT/CPM. These techniques rely on estimates of the expected duration and expected cost of
each project task as input, and generate project schedules and budgets based on the logical
predecessor/successor relationships between the tasks.

Network structure. Formally, a PERT/CPM project network consists of a set of tasks (nodes)
connected by predecessor-successor relationships usually represented as arrows. A project
network has two unique nodes, a Start (initial) node that has no predecessors and one or more
successors, and an End (terminal) node that has one or more predecessors and no successors. All
of the other nodes in a project network are called internal nodes and they represent tasks. Each
task must have at least one predecessor (no spontaneous tasks) and one successor (no dead ends).
Each internal node is usually assigned a value or weight. In the case of a project network, the
node value is the task duration.

Start Task
A

Task
B

Task
C

Task
D

EndTask
E

Loop-Back Relationship

Redundant Relationship

Figure 2.1. Project Network Structure

A path is said to exist between two nodes A and B if node B can be reached from node A by
following predecessor-successor relationships. In the example network shown in Figure 2.1, two
paths exist between the Start and End nodes (Start-A-C-D-E-End and Start-A-B-E-End). The
length of a path is the sum of the durations of each of the tasks encountered as the path is
traversed. In a project network, the longest path from the Start to the End node is called the
critical path.

A legitimate PERT/CPM network is also acyclic and compact [11]. In an acyclic network,
no path exists that passes through any task more than once. This eliminates the possibility of
loop-backs. In Figure 2.1, the link from task D to task A is not allowed because it is a loop-back
relationship that creates a cycle.

A compact network contains no redundant relationships. This means that only immediate
predecessors are shown in a project network. In Figure 2.1 the link from task A to task D is not
allowed because it represents a redundant relationship.

4

Chapter 3
Quantification of Uncertainty

 Probability distributions are usually used to represent uncertain task durations. In this
research uncertain task durations were represented by discrete random variables with a minimum
duration, a maximum duration, and several duration increments between the minimum and
maximum values. The number of duration increments is determined by a value defined as the
precision. The probability of each possible duration occurring is determined by a probability
distribution that is assigned to the particular task, and as usual the total probability of all possible
outcomes must be 1. The triangle distribution was used to represent task duration uncertainty in
this research, but any finite distribution could be used.
 It is often desirable to compute the effects of individual task uncertainties on the overall
project outcome. For example, given triangle probability distributions that represent uncertain
task durations, it is desirable to combine those individual uncertain durations in some way to
compute the overall project duration, and the uncertainty therein. Two operators, a series
operator and a parallel operator, were developed to help accomplish this.

Two tasks are defined as being in series if the first task has the second task as its only
successor, and the second task has the first task as its only predecessor. For example, tasks E
and F in Figure 3.1 are in series.

Start B

A

E F

C D

G

End

Figure 3.1. Example Project Network

 When task durations are certain, the series result can be determined by simply adding the
two durations. When durations are represented by discrete random variables, however, all
possible outcomes must be determined, along with the probability of each. The possible
outcomes are determined by adding all of the possible combinations, while the joint probabilities
of each of the combinations are determined by multiplying the marginal probabilities for each
task.
 A simplified example is shown in Table 3.1. Task E has possible durations of 10, 11, and
12 days with the marginal probabilities shown, and task F has possible durations of 9, 10, and 11
days, each with the probabilities shown. The resulting series outcomes, along with the
probability of each, are shown in the table. Note that some outcomes (e.g. 20, 21, and 22) occur
more than once, so the total probability of those outcomes must be determined by adding.

5

Table 3.1. Example Series Computation

E \ F 9
(.30)

10
(.40)

11
(.30)

10
(.20)

19
(.06)

20
(.08)

21
(.06)

11
(.50)

20
(.15)

21
(.20)

22
(.15)

12
(.30)

21
(.09)

22
(.12)

23
(.09)

All possible outcomes, and their probabilities, are shown in Table 3.2. This represents the
total duration of the series combination of tasks A and B, and the uncertainty therein.

Table 3.2. Results of Series Computation

Duration Probability
19 .06
20 .23
21 .35
22 .27
23 .09

 Two tasks are defined as being in parallel if they have identical predecessors and
successors. For example, tasks A and B in Figure 3.1 are in parallel.
 When task durations are certain, the parallel result can be determined by simply taking
the maximum of the two durations. As in the series case, however, all possible outcomes must
be determined when durations are represented by discrete random variables, along with the
probability of each. The possible outcomes are determined by taking the maximum of all of the
possible combinations, while the joint probabilities are determined once again by multiplying the
marginal probabilities for each task.

Table 3.3. Example Parallel Computation

A \ B 9
(.30)

10
(.40)

11
(.30)

10
(.20)

10
(.06)

10
(.08)

11
(.06)

11
(.50)

11
(.15)

11
(.20)

11
(.15)

12
(.30)

12
(.09)

12
(.12)

12
(.09)

6

A simplified example is shown in Table 3.3. Task A has possible durations of 10, 11, and 12
days with the marginal probabilities shown, and task B has possible durations of 9, 10, and 11
days, each with the probabilities shown. The resulting parallel outcomes, along with the
probability of each, are shown in the table. As before, the probabilities of outcomes that occur
more than once are determined by adding.

All possible outcomes, and their probabilities, are shown in Table 3.4. This represents the
total duration of the parallel combination of tasks A and B, and the uncertainty therein.

Table 3.4. Results of Parallel Computation

Duration Probability
10 .14
11 .56
12 .30

 A procedure was developed that applies the series and parallel operators repeatedly to a
network to compute the overall project duration and uncertainty. The procedure first searches
for a series relationship between two tasks, and computes the result if one is found. The network
is then searched for a parallel relationship between two tasks, and again the result is computed if
such a relationship is found. The procedure is repeated until neither a series nor parallel
relationship is found.
 The result of applying the procedure to the network in Figure 3.1 is shown in Figure 3.2.
Note that tasks are combined in serial and/or parallel until the network is reduced to a single task.
The duration of this task is the overall project duration, and the uncertainty in this task represents
the overall uncertainty in the project duration.
 Computation of slack times. In a project network without uncertainty, slack is defined
as the difference in duration between the critical path and a given path. Tasks on the critical path
have zero slack, while all others have positive slack. In an uncertain network the computation of
slack becomes far more complex. There may be many possible critical paths in an uncertain
network, each with some probability of being critical.
 In order to calculate the slack for a particular task, its uncertain duration must be
compared with all other possible parallel paths through the network. To accomplish this, one
more operator, the negate operator, was required. This operator essentially reverses the time
direction of a task duration and its uncertainty, so uncertain durations can be subtracted in series
as well as added.
 Consider, for example, the calculation of slack for task B in the project network shown in
Figure 3.1. This task can be compared with task A to see the probability that task B will be
critical or have slack, but the effect of the uncertainties in the other tasks (C, D, E, F, and G)
must also be considered. This is accomplished by first combining tasks E, F, and G in series, and
then combining the result in series with the negation of tasks D and C. The resultant task is then
effectively in parallel with task A, so they can be combined using the parallel operator. The
result can then be compared with task B, again using the negation operator, to determine the
slack for task B. This process is illustrated graphically in Figure 3.3.

7

Start B

A

E F

C D

G

End

Start AB

EF

C D

G

End

Series, Parallel

Start

EF

ABC D

G

End

Start

EF

ABCD

G

End

Start

EFG

ABCD End

Series

Series

Series

Parallel

Start ABCDEFG End

Figure 3.2. Illustration of Network Uncertainty Computation

8

Start B

A

E F

C D

G

End

Series Combination

Start

AEFGD’C’

B End

Series Combination

Series, Negate

Parallel Combination

Series, Negate

Start Slack B End

Start B

A

EFG

C D End

Start B

A

EFG

CD End

Start B

A

EFGD’C’

End

Figure 3.3. Illustration of Slack Computation

9

 Because slack is the difference between two uncertain task durations it can take on both
positive and negative values. Tasks with completely negative slack are always critical, and tasks
with completely positive slack are never critical. Tasks with slack on both sides of zero have
some probability of being critical, and some probability of being non-critical. The area beneath
the negative portion of the slack curve is defined as criticality, the probability of the task being
critical.

Evaluation of the computational methodology. The computational technique described
above was tested against Monte Carlo simulation. The method was tested on many networks,
and used to calculate many uncertain quantities including task start times, task end times, task
slack and criticality, and overall project duration. The results of these computations were
compared to the simulation results for the same networks.

Results. The results of applying the computational method to the example network shown in
Figure 3.1 are discussed next. These results are representative of the results achieved with the
many other network configurations that were tested.
 Triangle probability distributions were used to represent the uncertainties in the task
durations. The minimum duration, maximum duration, and most likely duration for each task are
shown in Table 3.5.

Table 3.5. Minimum, Most Likely (ML) and Maximum Values for Tasks Used in Example

Task Min. ML Max.
A 5 6 8
B 4 5 7
C 4 5 7
D 4 5 7
E 4 5 7
F 4 5 7
G 5 6 8

The overall duration of the project and its uncertainty were calculated using the series and
parallel operators as previously shown in Figure 3.2. The calculated results were then compared
to the results of three Monte Carlo simulations, with 1000, 10000, and 100000 iterations. The
results of this comparison are shown graphically in Figure 3.4.

The mean absolute differences between each of the simulated results and the calculated results
were also generated, and they are shown in Table 3.6. Note that the results agree more closely,
and the differences become smaller, as the number of iterations in the simulation increases. This
would suggest that the calculated result, generated in a single pass, is more accurate than the
Monte Carlo simulation with many iterations. It would also suggest that, as the number of
iterations becomes very large, the simulation results in fact approach the calculated result as a
limit.

10

0.00

0.01

0.02

0.03

0.04

0.05

0.06

13 14 15 16 17 18 19 20 21 22

Sim 1K Sim 10K Sim 100K Calc.

Figure 3.4. Calculated and Simulated Results of Project Duration Uncertainty

Table 3.6. Comparison between Calculated and Simulated Results

Iterations Mean Absolute
Difference

1,000 .001722
10,000 .000515

100,000 .000194

The uncertain slack times, and their related criticalities, were calculated using the series,
parallel, and negate operators as previously illustrated in Figure 3.3. The calculated results for
task B were then compared to the results of a Monte Carlo simulation with 10000 iterations. The
results of this comparison for the task B slack computation and simulation are shown graphically
in Figure 3.5.

11

0

0.01

0.02

0.03

0.04

0.05

-2 -1 0 1 2 3 4 5 6 7 8 9 10

Calc Sim(10000)

Figure 3.5. Calculated and Simulated Results of Slack for Task B

The computed slack results for each of the tasks were also examined in order to determine the
effects of the series and parallel relationships on slack times. The results indicated that, for tasks
in series, slack times and criticalities are identical.

The results also indicated that when tasks are in parallel, criticality divides among the various
parallel paths. This fact is demonstrated in Figure 3.6, where the criticality results for all of the
tasks in the network are shown. Note also that the total criticality at the Start and End nodes
sums to 100%.

Start B
6.1%

A
45.4%

E
48.5%

F
48.5%

C
51.5%

D
51.5%

G
48.5%

End

Figure 3.6. Criticality Results for All Network Tasks

 Limitations. A major limitation of the computational method described so far is the fact
that the method requires that the project network be completely simplified using the series and
parallel operators. Although this is possible for many practical networks, there are also many
networks for which simplification is not possible due to path dependencies. An enhancement to
the computational method that deals with path dependencies is discussed in the following
chapter.

12

Chapter 4
Computation of Uncertainty with Dependencies

A seemingly simple change to a project network can introduce dependencies that make the
computation of uncertainty difficult. Figure 4.1 shows the example project network that was
used in Chapter 3 with one additional relationship added from task C to task G. Note that the
network can only be partially simplified with the series and parallel operators, because task G
participates in two paths. Task G could be replicated (one copy in parallel with D and one in
series with EF) and the resulting network could apparently be simplified, but when the final
parallel combination was performed it would be between two dependent paths (both contain the
uncertainty in task G), and the series and parallel operators assume independence. At this point
a different technique must be used to determine the overall uncertainty in the partially simplified
network.

Start B

A

E F

C D

G

End

Start

EF

ABC D

G

End

Simplify

Figure 4.1. Project Network with Path Dependencies

Replicating a Task. As previously mentioned, the first step in solving a network that has
path dependencies is to replicate tasks that participate in two or more paths. Once the original
network has been simplified as far as possible using the series and parallel operators, the
simplified network is searched to find tasks that need to be replicated. The method used is to
simply find any task that has multiple predecessors, and create a replica for each predecessor.
This search-and-replicate procedure is repeated until no tasks with multiple predecessors are
found. This guarantees that the resulting network, with the replica tasks inserted, can be
completely simplified using the series and parallel operators. The result of applying this

13

procedure to the example network is shown in Figure 4.2. The resulting network can clearly be
simplified using the series and parallel operators, if the dependences between tasks G1 and G2
can be avoided.

Start

EF

ABC D

G

End

Replicate

Start

EF

ABC D

G2

End

G1

Figure 4.2. Result of Task Replication

When a task is replicated, the original task is placed in a list of replicated tasks, complete with
its uncertain duration. One replica of the original task is then generated for each predecessor,
and inserted into the network. The replica tasks each have one predecessor, and have the same
successors as the original task. Their names are generated by concatenating a serial number onto
the original task name. The replicas differ from the original in one other respect – they have no
uncertainty. They are allowed to take on only one certain (fixed) duration at any given time.
This avoids the problem of dependence between parallel paths.

In order to simplify a network that contains replica tasks, the series and parallel operators
were modified slightly so they could accurately deal with any combination of certain and
uncertain durations. The uncertainty in the project duration was then computed by compiling the
results of the simplifications for each possible value of the replicated tasks, and combining them
considering the probability of each occurrence.

In the example above, replica tasks G1 and G2 were inserted into the network. They were
then each assigned the same certain duration value, drawn from the possible duration values for
the original task G. The network was then simplified and the resulting uncertain duration
generated. The results were then modified considering the probability of that particular duration
of task G occurring. This procedure was repeated for every possible duration value for task G,
from the minimum to the maximum with the task precision determining the step size. All of the
results were then combined to determine the overall project duration uncertainty. The result of

14

this computation is shown in Figure 4.3, and compared to Monte Carlo simulation results for the
original network after 50,000 iterations.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

14 15 16 17 18 19 20 21 22 23

Calculated Simulated

Figure 4.3. Calculated and Simulated Results for Project Duration

Replicating Multiple Tasks. A more complex example is now presented to illustrate the
situation in which more than one task needs to be replicated. The network that will be analyzed
is shown in Figure 4.4. This has a very complex structure with multiple dependencies, and it has
been extensively studied in the literature [e.g. 11, 12, 13]. Note that the original network cannot
be simplified at all using the series and parallel operators.

EndStart

A

B

C D

G

E F

H J

I

Figure 4.4. Complex Example Network

15

 As before, triangle probability distributions were used to represent the uncertainties in the
task durations in this network. The minimum duration, maximum duration, and most likely
duration for each task are shown in Table 4.1.

Table 4.1. Minimum, Most Likely (ML) and Maximum Values for Tasks Used in Example

Task Min. ML Max.
A 9 10 12
B 29 30 32
C 9 10 12
D 18 19 21
E 9 10 12
F 9 10 12
G 9 10 12
H 19 20 22
I 29 30 32
J 8 9 11

Although this network appears to contain many dependencies, only two tasks, task D and task

J, have multiple predecessors and need to be replicated. When the search-and-replicate
procedure described previously is applied, tasks D and J are added to the list of replicated tasks,
while their replicas are inserted into the network as necessary. The network with the replica
tasks inserted is shown in Figure 4.5

EndStart

A

B

C D1

G

E F

H

J3I

D2

J1

J2

Figure 4.5. Complex Example Network with Replica Tasks Inserted

16

As can be seen in Figure 4.5, the network can be fully simplified by repeatedly applying the
series and parallel operators. As before, however, the replica tasks must be assigned fixed values
drawn from the duration distributions of the original tasks to avoid dependencies. To accomplish
this, all possible combinations of the durations of tasks D and J must be generated, and the
resulting network simplified each time. As before, the results of the many simplifications must
be combined, considering the joint probability of each combination occurring, to compute the
final overall project duration uncertainty. The result of this computation is shown in Figure 4.6,
and compared to Monte Carlo simulation results for the original network after 50,000 iterations.

0

0.01

0.02

0.03

0.04

0.05

0.06

38 39 40 41 42 43 44 45 46 47

Calculated Simulated

Figure 4.6. Calculated and Simulated Results for Complex Project Duration

Limitations. The only practical limitation on the method presented here is the fact that once

the replication of tasks becomes necessary, the computation time required becomes exponential
in the number of replicated tasks. For the examples presented here, the computation time with
no replicated tasks (Figure 3.4) is about a second, with one replicated task (Figure 4.3) a few
seconds, and with two replicated tasks (Figure 4.6) somewhat over a minute. Further
investigation demonstrated that networks requiring three tasks to be replicated were computed in
about 45 minutes, and if four tasks were to be replicated the computation would take on the order
of a day, and five replicated tasks would take on the order of a month to compute.

Very good results can be achieved using Monte Carlo simulation with about 200,000
iterations, and this requires a few minutes of computing time on the example networks presented
here. It is likely that a hybrid technique that uses the serial and parallel operators to simplify the
project network as much as possible, and then employs Monte Carlo simulation on the simplified
network would be the most efficient approach to computing overall project duration uncertainty.

17

Chapter 5
Conclusions

The conclusions based on the evaluation of the computational methodology presented in this

report can be summarized as follows:

• The method accurately computes the effect of uncertainties in individual task durations on

the overall project duration in project networks.
• The method accurately computes the uncertainty distributions in task slack times, and the

resulting task criticality.
• Task criticality is in fact the area beneath the negative portion of the slack time

distribution.
• Slack time distributions for tasks in series are identical.
• Criticality divides among parallel paths
• The total criticality for the project, as computed at the Start and End nodes, is 100%.
• The method requires exponential computational time on project networks with path

dependencies, but can be used to partially simplify those networks to facilitate more rapid
Monte Carlo simulation.

18

References

1. Raz, T. and E. Michael, “Use and Benefits of Tools for Project Risk Management,”
International Journal of Project Management, Vol. 19 (2001), 9-17.

2. PMI, A Guide to the Project Management Body of Knowledge (Project Management Institute,
2000).

3. Risk Specific Interest Group (RiskSIG) of the Project Management Institute (Internet), Risk
Management Tools (cited Feb. 2003), http://www.risksig.com/resource/index.htm.

4. Williams, T. M., “A Classified Bibliography of Recent Research Relating to Project Risk
Management,” European Journal of Operational Research, Vol. 85 (1995), 18-38.

5. Ward, S. and C. Chapman, “Transforming Project Risk Management into Project Uncertainty
Management,” International Journal of Project Management, Vol. 21 (2003), 97-105.

6. Cleland, D. I. and W. R. King (eds.), Project Management Handbook, second edition (Van
Nostrand Reinhold, 1988).

7. Kerzner, H. (ed.), Project Management - A Systems Approach to Planning, Scheduling, and
Controlling, seventh edition (John Wiley and Sons, 2001).

8. Meridith, Jack R. and Samuel J. Mantel Jr., Project Management - A Managerial Approach,
fourth edition (John Wiley and Sons, 2000).

9. Rosenau, Milton D., Successful Project Management - A Step-by-Step Approach with
Practical Examples, second edition (Van Nostrand Reinhold, 1992).

10. Stuckenbruck, Linn C. (ed.), The Implementation of Project Management: The Professional's
Handbook (Addison-Wesley, 1981).

11. Nasution, S. H., “Fuzzy Critical Path Method,” IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 24 (1994), 48-57.

12. Dubois, D. J. and Prade, H., Fuzzy Sets and Systems: Theory and Applications (New York:
Academic Press, 1980).

13. Dubois, D. J. and Prade, H., Possibility Theory: An Approach to Computerized Processing of
Uncertainty (New York: Plenum, 1988).

Appendix A

Computer Program Listing
(Python Language)

A-1

Program Project1

import random
from random import random
Classes
class U_time:
 def __init__(self):
 self.min=0.0
 self.max=0.0
 self.prec=0.1
 self.pdf=[]

 def print_me(self):
 total=0.0
 for val in self.pdf:
 total=total+val
 print '%6.4f'%(val)
 print 'Total:',total

 def write_me(self,file_name):
 file_name=file_name+'.csv'
 outfile=open(file_name,'w')
 dur=self.min
 for val in self.pdf:
 tempstr='%8.4f'%dur
 tempstr=tempstr+','+'%12.8f'%val+'\n'
 outfile.write(tempstr)
 dur=dur+self.prec
 outfile.close()
 print 'File ',file_name,' written and closed'

 def triangle(self,a,b,c,p):
 self.min=a
 self.max=c
 self.prec=p
 x=a
 val=0.0
 inc=(2.0*p)/((b-a)*(c-a))
 while x<(b-0.5*p):
 self.pdf.append(val*p)
 val=val+inc
 x=x+p
 val=2.0/(c-a)
 self.pdf.append(val*p)
 inc=(-2.0*p)/((c-b)*(c-a))
 val=val+inc
 x=b+p
 while x<(c-0.5*p):
 self.pdf.append(val*p)
 val=val+inc
 x=x+p
 val=0.0

A-2

 self.pdf.append(val*p)

 def simulate(self):
 pct=float(int(random()*10000.0+0.5))/10000.0
 cum=0.0
 n=0
 while cum<pct:
 cum=cum+self.pdf[n]
 n=n+1
 return self.min+self.prec*(n-1)

 def rtriangle(self,a,c,m,p):
 self.min=a
 self.max=c
 self.prec=p
 x=a
 val=(2.0*m)/(c-a)
 self.pdf.append(val*p)
 inc=(-2.0*p*m)/((c-a)*(c-a))
 val=val+inc
 x=a+p
 while x<(c-0.5*p):
 self.pdf.append(val*p)
 val=val+inc
 x=x+p
 val=0.0
 self.pdf.append(val*p)

 def dummy(self,a,x,p):
 self.min=a
 self.max=a
 self.prec=p
 self.pdf.append(x)

class Project:
 def __init__(self,nm,p):
 self.proj_name=nm
 self.prec=p
 self.net=Network(self.prec)

 def print_me(self,n):
 print '\nProject: ',self.proj_name
 if n==1:
 for taskX in self.net.tasks:
 print '\nTask ',taskX.task_name
 print 'Predecessors:'
 for taskY in taskX.pred:
 print taskY.task_name
 print 'Successors:'
 for taskY in taskX.succ:
 print taskY.task_name
 else:

A-3

 for taskX in self.netsimp.tasks:
 print '\nTask ',taskX.task_name
 print 'Predecessors:'
 for taskY in taskX.pred:
 print taskY.task_name
 print 'Successors:'
 for taskY in taskX.succ:
 print taskY.task_name

 def simulate(self,iter):
 self.sdur=self.net.sim_dur(iter)

 def simplify(self,netin,dur):
 #dur should be an empty U_time
 netcpy=Network(self.prec)
 #copy the network
 #first insert copies of tasks
 n=2
 while n<len(netin.tasks):
 taskX=netin.tasks[n]
 taskY=Task(taskX.task_name,0,0,0,taskX.duration.prec)
 taskY.duration.min=taskX.duration.min
 taskY.duration.max=taskX.duration.max
 for val in taskX.duration.pdf:
 taskY.duration.pdf.append(val)
 taskY.id=len(netcpy.tasks)
 netcpy.tasks.append(taskY)
 n=n+1
 #then create links
 n=0
 while n<len(netin.tasks):
 for succ_t in netin.tasks[n].succ:
 netcpy.add_link(n,netin.tasks.index(succ_t))
 n=n+1
 #simplify the copied network
 found=1
 while found==1:
 found=0
 n=0
 while (found==0)&(n<len(netcpy.tasks)):
 taskX=netcpy.tasks[n]
 #check for serial relationships
 for taskY in taskX.succ:
 if inSeries(taskX,taskY)>0:
 found=1
 netcpy.comb_ser(taskX.id,taskY.id)
 if found==0:
 #check for parallel relationships
 i=taskX.id+1
 while (found==0)&(i<len(netcpy.tasks)):
 taskY=netcpy.tasks[i]
 if inParallel(taskX,taskY)>0:

A-4

 found=1
 netcpy.comb_par(taskX.id,taskY.id)
 i=i+1
 n=n+1
 #end scan
 #end rescans
 taskno=len(netcpy.tasks)-2
 if taskno==1:
 #duration is known
 dur.max=netcpy.tasks[2].duration.max
 dur.min=netcpy.tasks[2].duration.min
 #empty the pdf
 while len(dur.pdf)>0: del dur.pdf[0]
 for val in netcpy.tasks[2].duration.pdf:

dur.pdf.append(val)
 else:
 #create a simplified network out of thin air
 self.netsimp=Network(self.prec)
 #copy the network
 #first insert copies of tasks
 n=2
 while n<len(netcpy.tasks):
 taskX=netcpy.tasks[n]
 taskY=Task(taskX.task_name,0,0,0,taskX.duration.prec)
 taskY.duration.min=taskX.duration.min
 taskY.duration.max=taskX.duration.max
 for val in taskX.duration.pdf:

taskY.duration.pdf.append(val)
 taskY.id=len(self.netsimp.tasks)
 self.netsimp.tasks.append(taskY)
 n=n+1
 #then create links
 n=0
 while n<len(netcpy.tasks):
 for succ_t in netcpy.tasks[n].succ:

 self.netsimp.add_link(n,netcpy.tasks.index(succ_t))
 n=n+1
 del netcpy
 return taskno

 def calc_dur(self):
 dur=U_time()
 dur.prec=self.prec
 taskno=self.simplify(self.net,dur)
 if taskno==1:
 #network fully simplified
 self.cdur=dur
 else:
 del dur
 #task duplication required
 #initialize the duration and pdf
 self.cdur=U_time()

A-5

 self.cdur.prec=self.prec
 self.cdur.max=self.netsimp.tasks[1].get_max()
 self.cdur.min=self.netsimp.tasks[1].get_min()
 #build empty pdf
 nmax=(int)((self.cdur.max-self.cdur.min+

self.cdur.prec*0.5)/self.cdur.prec)
 n=0
 while n<=nmax:
 self.cdur.pdf.append(0.0)
 n=n+1
 #build list of tasks for joint solver
 duplist=[]
 found=1
 while found==1:
 found=0
 n=2
 while (n<len(self.netsimp.tasks))&(found==0):
 if len(self.netsimp.tasks[n].pred)>1:
 #duplicate this task
 found=1
 taskA=self.netsimp.tasks[n]
 #check if task is a duplicate
 if len(taskA.duration.pdf)<2:
 #duplicating a duplicate
 print 'Duplicating duplicate task',

taskA.task_name
 #find original in duplist
 for task1 in duplist:
 for task2 in task1.dup:
 if task2.task_name==

taskA.task_name: taskD=task1
 m=1
 #duplicate the duplicate as necessary
 for pred_t in taskA.pred:
 nm=taskA.task_name+str(m)
 taskC=Task(nm,0,0,0)
 #fix current predecessor
 pred_t.succ.remove(taskA)
 pred_t.succ.append(taskC)
 taskC.pred.append(pred_t)
 #correct successors
 for succ_t in taskA.succ:
 succ_t.pred.append(taskC)
 taskC.succ.append(succ_t)
 # add combined task to project
 self.netsimp.tasks.append(taskC)
 taskD.dup.append(taskC)
 m=m+1
 #remove duplicate successors
 for succ_t in taskA.succ:

succ_t.pred.remove(taskA)

A-6

 # remove duplicated task
 self.netsimp.tasks.remove(taskA)
 # renumber task ids
 i=0
 while i<len(self.netsimp.tasks):
 self.netsimp.tasks[i].id=i
 i=i+1
 #end renumbering
 #end if duplicate
 else:
 #not a duplicate
 print 'Duplicating task ',taskA.task_name
 duplist.append(taskA)
 m=1
 for pred_t in taskA.pred:
 nm=taskA.task_name+str(m)
 taskC=Task(nm,0,0,0,self.prec)
 taskC.duration.pdf.append(0.0)
 #fix current predecessor
 pred_t.succ.remove(taskA)
 pred_t.succ.append(taskC)
 taskC.pred.append(pred_t)
 #correct successors
 for succ_t in taskA.succ:
 succ_t.pred.append(taskC)
 taskC.succ.append(succ_t)
 # add combined task to project
 self.netsimp.tasks.append(taskC)
 taskA.dup.append(taskC)
 m=m+1
 #remove duplicate successors
 for succ_t in taskA.succ:

succ_t.pred.remove(taskA)
 # remove duplicated task
 self.netsimp.tasks.remove(taskA)
 # renumber task ids
 i=0
 while i<len(self.netsimp.tasks):
 self.netsimp.tasks[i].id=i
 i=i+1
 #end renumbering
 #end if not duplicate
 #end if multiple preds
 n=n+1
 #end scan
 #end rescans
 #print the duplicates list
 print '\nDuplicate task list:'
 for taskX in duplist:
 print 'Duplicated task: ',taskX.task_name
 for taskY in taskX.dup:
 print ' Duplicate: ',taskY.task_name

A-7

 #joint prob solver
 if len(duplist)>3: print 'Too many duplicate tasks.'
 elif len(duplist)>2:
 print 'Three duplicated tasks'
 #do three loops
 #outer loop
 dur0=duplist[0].duration.min
 for val0 in duplist[0].duration.pdf:
 #assign duplicates their values
 for dup0 in duplist[0].dup:
 dup0.duration.min=dur0
 dup0.duration.max=dur0
 dup0.duration.pdf[0]=1.0
 dur0=dur0+duplist[0].duration.prec
 #next loop
 dur1=duplist[1].duration.min
 for val1 in duplist[1].duration.pdf:
 #assign duplicates their values
 for dup1 in duplist[1].dup:
 dup1.duration.min=dur1
 dup1.duration.max=dur1
 dup1.duration.pdf[0]=1.0
 dur1=dur1+duplist[1].duration.prec
 #inner loop
 dur2=duplist[2].duration.min
 for val2 in duplist[2].duration.pdf:
 #assign duplicates their values
 for dup2 in duplist[2].dup:
 dup2.duration.min=dur2
 dup2.duration.max=dur2
 dup2.duration.pdf[0]=1.0
 dur2=dur2+duplist[2].duration.prec
 #add this iteration to total
 durX=U_time()
 taskno=self.simplify(self.netsimp,durX)
 if taskno==1:
 ofs=int((durX.min-self.cdur.min+

self.prec*0.5)/self.prec)
 for val in durX.pdf:

self.cdur.pdf[ofs]=
self.cdur.pdf[ofs]+
val*val0*val1*val2)

 ofs=ofs+1
 else:
 print 'Network not simplified,

taskno is ',taskno
 del durX
 elif len(duplist)>1:
 print 'Two duplicated tasks'
 #do two loops
 #outer loop
 dur0=duplist[0].duration.min

A-8

 for val0 in duplist[0].duration.pdf:
 #assign duplicates their values
 for dup0 in duplist[0].dup:
 dup0.duration.min=dur0
 dup0.duration.max=dur0
 dup0.duration.pdf[0]=1.0
 dur0=dur0+duplist[0].duration.prec
 #inner loop
 dur1=duplist[1].duration.min
 for val1 in duplist[1].duration.pdf:
 #assign duplicates their values
 for dup1 in duplist[1].dup:
 dup1.duration.min=dur1
 dup1.duration.max=dur1
 dup1.duration.pdf[0]=1.0
 dur1=dur1+duplist[1].duration.prec
 #add this iteration to the total
 durX=U_time()
 taskno=self.simplify(self.netsimp,durX)
 if taskno==1:
 ofs=int((durX.min-self.cdur.min+

self.prec*0.5)/self.prec)
 for val in durX.pdf:
 self.cdur.pdf[ofs]=

 self.cdur.pdf[ofs]+(val*val0*val1)
 ofs=ofs+1
 else:
 print 'Network not simplified,

taskno is ',taskno
 del durX
 else:
 print 'One duplicated task'
 #do one loop
 #outer loop
 dur0=duplist[0].duration.min
 for val0 in duplist[0].duration.pdf:
 #assign duplicates their values
 for dup0 in duplist[0].dup:
 dup0.duration.min=dur0
 dup0.duration.max=dur0
 dup0.duration.pdf[0]=1.0
 dur0=dur0+duplist[0].duration.prec
 #add this iteration to the total
 durX=U_time()
 taskno=self.simplify(self.netsimp,durX)
 if taskno==1:
 ofs=int((durX.min-self.cdur.min+

self.prec*0.5)/self.prec)
 for val in durX.pdf:
 self.cdur.pdf[ofs]=

self.cdur.pdf[ofs]+(val*val0)
 ofs=ofs+1

A-9

 else: print 'Network not simplified,
taskno is ',taskno

 del durX

class Network:
 def __init__(self,p):
 self.tasks=[]
 self.prec=p
 self.add_task('START',0,0,0)
 self.add_task('END',0,0,0)

 def add_task(self,nm,a,b,c):
 taskA=Task(nm,a,b,c,self.prec)
 taskA.id=len(self.tasks)
 self.tasks.append(taskA)

 def add_link(self,pred_id,succ_id):
 self.tasks[pred_id].add_succ(self.tasks[succ_id])
 self.tasks[succ_id].add_pred(self.tasks[pred_id])

 def comb_ser(self,idA,idB):
 taskA=self.tasks[idA]
 taskB=self.tasks[idB]
 nmC=self.tasks[idA].task_name+self.tasks[idB].task_name
 taskC=Task(nmC,0,0,0,self.prec)
 taskC.duration=series(taskA.duration,taskB.duration)
 # fix predecessors
 for pred_t in taskA.pred:
 pred_t.succ.remove(taskA)
 pred_t.succ.append(taskC)
 taskC.pred.append(pred_t)
 # fix successors
 for succ_t in taskB.succ:
 succ_t.pred.remove(taskB)
 succ_t.pred.append(taskC)
 taskC.succ.append(succ_t)
 # add combined task to project
 self.tasks.append(taskC)
 # remove old tasks
 self.tasks.remove(taskA)
 self.tasks.remove(taskB)
 # renumber task ids
 n=0
 while n<len(self.tasks):
 self.tasks[n].id=n
 n=n+1

 def comb_par(self,idA,idB):
 taskA=self.tasks[idA]
 taskB=self.tasks[idB]
 nmC=self.tasks[idA].task_name+self.tasks[idB].task_name
 taskC=Task(nmC,0,0,0,self.prec)

A-10

 taskC.duration=parallel(taskA.duration,taskB.duration)
 # fix predecessors
 for pred_t in taskA.pred:
 pred_t.succ.remove(taskA)
 pred_t.succ.remove(taskB)
 pred_t.succ.append(taskC)
 taskC.pred.append(pred_t)
 # fix successors
 for succ_t in taskA.succ:
 succ_t.pred.remove(taskA)
 succ_t.pred.remove(taskB)
 succ_t.pred.append(taskC)
 taskC.succ.append(succ_t)
 # add combined task to project
 self.tasks.append(taskC)
 # remove old tasks
 self.tasks.remove(taskA)
 self.tasks.remove(taskB)
 # renumber task ids
 n=0
 while n<len(self.tasks):
 self.tasks[n].id=n
 n=n+1

 def sim_dur(self,iter):
 sdur=U_time()
 #calculate max and min
 sdur.max=self.tasks[1].get_max()
 sdur.min=self.tasks[1].get_min()
 sdur.prec=self.prec
 #build empty pdf
 nmax=(int)((sdur.max-sdur.min+sdur.prec*0.5)/sdur.prec)
 n=0
 while n<=nmax:
 sdur.pdf.append(0.0)
 n=n+1
 #perform the simulations
 i=0
 while i<iter:
 for t in self.tasks: t.simval()
 val=self.tasks[1].resolve()
 ind=int((val-sdur.min+0.05)/sdur.prec)
 sdur.pdf[ind]=sdur.pdf[ind]+1.0/float(iter)
 i=i+1
 return sdur

class Task:
 def __init__(self,nm,a,b,c,p):
 self.task_name=nm
 self.duration=U_time()
 self.duration.prec=p

A-11

 if a != 0 or b != 0 or c != 0:
self.duration.triangle(a,b,c,self.duration.prec)

 self.pred=[]
 self.succ=[]
 self.dup=[]
 self.id=0
 self.simdur=0.0
 def add_pred(self,t):
 self.pred.append(t)
 def add_succ(self,t):
 self.succ.append(t)
 def get_max(self):
 mymax=self.duration.max
 if self.pred[0].id==0: return mymax
 else:
 predmax=0.0
 for taskX in self.pred:
 maxval=taskX.get_max()
 if maxval>predmax: predmax=maxval
 return mymax+predmax
 def get_min(self):
 mymin=self.duration.min
 if self.pred[0].id==0: return mymin
 else:
 predmin=0.0
 for taskX in self.pred:
 minval=taskX.get_min()
 if minval>predmin: predmin=minval
 return mymin+predmin

 def simval(self):
 if self.id>1: self.simdur=self.duration.simulate()

 def resolve(self):
 if self.pred[0].id==0:
 return self.simdur
 elif len(self.pred)==1:
 return self.simdur+self.pred[0].resolve()
 else:
 p1=max(self.pred[0].resolve(),self.pred[1].resolve())
 n=2
 while n<len(self.pred):
 p1=max(p1,self.pred[n].resolve())
 n=n+1
 if self.id==1: return p1
 else: return self.simdur+p1

Global funtions
def max(a,b):
 if a>b:
 return a

A-12

 else:
 return b

def series(ta,tb):
 tc=U_time()
 tc.min=ta.min+tb.min
 tc.max=ta.max+tb.max
 tc.prec=ta.prec
 if len(ta.pdf)==1:
 for val in tb.pdf:
 tc.pdf.append(val)
 elif len(tb.pdf)==1:
 for val in ta.pdf:
 tc.pdf.append(val)
 else:
 nmax=(int)((tc.max-tc.min+tc.prec*0.5)/tc.prec)
 n=0
 while n<=nmax:
 tc.pdf.append(0.0)
 n=n+1
 dura=ta.min
 for vala in ta.pdf:
 durb=tb.min
 for valb in tb.pdf:
 durc=dura+durb
 indc=(int)((durc-tc.min+tc.prec*0.5)/tc.prec)
 tc.pdf[indc]=tc.pdf[indc]+vala*valb
 durb=durb+tb.prec
 dura=dura+ta.prec
 return tc

def parallel(ta,tb):
 tc=U_time()
 if ta.min>=tb.max:
 tc.min=ta.min
 tc.max=ta.max
 tc.prec=ta.prec
 for val in ta.pdf:
 tc.pdf.append(val)
 elif tb.min>=ta.max:
 tc.min=tb.min
 tc.max=tb.max
 tc.prec=tb.prec
 for val in tb.pdf:
 tc.pdf.append(val)
 else:
 tc.min=max(ta.min,tb.min)
 tc.max=max(ta.max,tb.max)
 tc.prec=ta.prec
 nmax=(int)((tc.max-tc.min+tc.prec*0.5)/tc.prec)
 n=0
 while n<=nmax:

A-13

 tc.pdf.append(0.0)
 n=n+1
 dura=ta.min
 for vala in ta.pdf:
 durb=tb.min
 for valb in tb.pdf:
 durc=max(dura,durb)
 indc=(int)((durc-tc.min+tc.prec*0.5)/tc.prec)
 tc.pdf[indc]=tc.pdf[indc]+(vala*valb)
 durb=durb+tb.prec
 dura=dura+ta.prec
 return tc

def negate(ta):
 tn=U_time()
 tn.max=-1.0*ta.min
 tn.min=-1.0*ta.max
 tn.prec=ta.prec
 for val in ta.pdf:
 tn.pdf.insert(0,val)
 return tn

def inSeries(taskA,taskB):
 found=0
 if (taskA.id!=0)&(taskB.id!=1):
 if len(taskA.succ)==1:
 if len(taskA.succ[0].pred)==1:
 found=1
 return found

def inParallel(taskA,taskB):
 found=0
 if (len(taskA.pred)==len(taskB.pred))&(len(taskA.succ)==

len(taskB.succ)):
 # check the predecessors
 mismatch=0
 for taskX in taskA.pred:
 if taskB.pred.count(taskX)<1: mismatch=mismatch+1
 if mismatch==0:
 # check the successors
 for taskX in taskA.succ:
 if taskB.succ.count(taskX)<1: mismatch=mismatch+1
 if mismatch==0:
 found=1
 return found

Main function
def main():
 proj=1
 if proj>0:
 # create the project task list - START and END are id0 and id1
 test_prj=Project('Test1',0.1)

A-14

 test_prj.net.add_task('A',5,6,8) #id2
 test_prj.net.add_task('B',4,5,7) #id3
 test_prj.net.add_task('C',4,5,7) #id4
 test_prj.net.add_task('D',4,5,7) #id5
 test_prj.net.add_task('E',4,5,7) #id6
 test_prj.net.add_task('F',4,5,7) #id7
 test_prj.net.add_task('G',5,6,8) #id8
 #test_prj.net.add_task('H',19,20,22) #id9
 #test_prj.net.add_task('I',29,30,32) #id10
 #test_prj.net.add_task('J',8,9,11) #id11
 #test_prj.net.add_task('K',8,9,11) #id12
 # add links
 test_prj.net.add_link(0,2)
 test_prj.net.add_link(0,3)
 test_prj.net.add_link(0,6)
 test_prj.net.add_link(2,4)
 test_prj.net.add_link(3,4)
 test_prj.net.add_link(4,5)
 test_prj.net.add_link(5,1)
 test_prj.net.add_link(6,7)
 test_prj.net.add_link(7,8)
 test_prj.net.add_link(8,1)
 test_prj.net.add_link(4,8)

 # simplify project
 print 'Original project:'
 test_prj.print_me(1)
 test_prj.simulate(50000)
 test_prj.sdur.write_me('ProjSim')
 test_prj.calc_dur()
 print 'Simplified project:'
 test_prj.print_me(2)
 test_prj.cdur.write_me('ProjCalc')

 else:
 timeA=U_time()
 timeB=U_time()
 timeA.triangle(4,5,7,0.1)
 timeB.triangle(5,6,8,0.1)
 histA=[]
 histB=[]
 for val in timeA.pdf: histA.append(0.0)
 for val in timeB.pdf: histB.append(0.0)

 iter=100000
 i=0
 while i<iter:
 valA=timeA.simulate()
 indA=int((valA-timeA.min+0.05)/timeA.prec)
 histA[indA]=histA[indA]+1.0/float(iter)
 valB=timeB.simulate()
 indB=int((valB-timeB.min+0.05)/timeB.prec)

A-15

 histB[indB]=histB[indB]+1.0/float(iter)
 i=i+1
 outfile=open('HistA.csv','w')
 dur=timeA.min
 for val in histA:
 tempstr='%8.4f'%dur
 tempstr=tempstr+','+'%12.8f'%val+'\n'
 outfile.write(tempstr)
 dur=dur+timeA.prec
 outfile.close()
 print 'File HistA.csv written and closed'
 outfile=open('HistB.csv','w')
 dur=timeB.min
 for val in histB:
 tempstr='%8.4f'%dur
 tempstr=tempstr+','+'%12.8f'%val+'\n'
 outfile.write(tempstr)
 dur=dur+timeB.prec
 outfile.close()
 print 'File HistB.csv written and closed'

 timeA.write_me('TimeA')
 timeB.write_me('TimeB')

Program startup
if __name__ == '__main__':
 main()

