
1992 Congestion Management Program For Los Angeles County

COMMISSIONERS AND ALTERNATES

MICHAEL D. ANTONOVICH Chair/Supervisor

Los Angeles County NICK PATSAOURAS, Alt.

RICHARD ALATORRE

Vice-Chair/Councilman City of Los Angeles HON. MICHAEL WOO, Alt.

RAY GRABINSKI

Councilman City of Long Beach HON. DORIS TOPSY-ELVORD, Alt.

EDMUND D. EDELMAN Supervisor Los Angeles County MARVIN HOLEN, Alt.

GLORIA MOLINA

Supervisor Los Angeles County GERRY HERTZBERG, Alt.

KENNETH HAHN

Supervisor Los Angeles County MAS FUKAI, Alt. **DEANE DANA**

Supervisor Los Angeles County DON KNABE, Alt.

TOM BRADLEY Mayor City of Los Angeles RAY REMY, Alt.

JUDITH HATHAWAY-FRANCIS

Councilmember City of La Habra Heights HON. ROBERT J. ARTHUR, Alt.

JACKI BACHARACH Councilmember City of Rancho Palos Verdes HON. HAROLD CROYTS, Alt.

JAMES L. TOLBERT Citizen Representative City of Los Angeles

JERRY BAXTER Ex-Officio Member State of California

- ·

NEIL PETERSON

Executive Director Los Angeles County Transportation Commission

CONGESTION MANAGEMENT PROGRAM

Adopted November 1992

LOS ANGELES COUNTY TRANSPORTATION COMMISSION

Neil Peterson Executive Director

Judy Wilson Deputy Executive Director

READERS NOTE

REORGANIZATION TO THE METROPOLITAN TRANSPORTATION AUTHORITY

Assembly Bill 152, signed by Governor Pete Wilson on May 19, 1992, merges the Los Angeles County Transportation Commission (LACTC) and Southern California Rapid Transit District (SCRTD) into the new Los Angeles County Metropolitan Transportation Authority (MTA), effective February 1, 1993.

In preparation for merger of the two agencies into the new MTA a joint seven member Merger Steering Committee comprised of board members from the LACTC and SCRTD has been meeting since June 1992. The Committee has been developing recommendations for consideration by the newly created MTA Board. The Committee is drafting an MTA Mission Statement which sets forth guiding principles maintaining that the MTA is primarily responsible for providing transportationrelated services to the traveling public of Los Angeles County. The MTA organization will be, above all, customer driven, and the structure will emphasize service.

LACTC, as the Congestion Management Agency for Los Angeles County, is responsible for adopting a Congestion Management Plan (CMP) by December 1, 1992. Effective February 1, 1993 the new MTA will assume responsibility for all programs and services currently provided by LACTC and SCRTD. Among these will be the responsibilities of the Congestion Management Agency and the implementation and administration of the CMP.

Because the new MTA will be responsible for implementing CMP responsibilities identified in this document, this Final Draft CMP refers where appropriate to the new Metropolitan Transportation Authority in lieu of LACTC and SCRTD.

Ĵ

TABLE OF CONTENTS

TABLE	OF EXHIBITS iii
LIST OI	F ABBREVIATIONS
ACKNO	wledgements vii
FOREW	ORDix
CHAPTI	ER 1 - OVERVIEW 1
1.1 1.2	CMP Requirements 1 Amendments to CMP Statute 3
1.3 1.4 1.5	Relationship with the 30-Year Integrated Transportation Plan and CongestedCorridor Action Plan4Relationship with the Regional Mobility Plan5CMP Development and Consultation Process5
1.5	Looking Ahead
CHAPTI	ER 2 - POLICY STATEMENTS 9
CHAPTI	ER 3 - ROLES AND RESPONSIBILITIES
CHAPTI	ER 4 - HIGHWAY AND ROADWAY SYSTEM 15
4.1 4.2 4.3 4.4	Introduction15Network Definition15Level of Service Standards21Level of Service Methodology24
СНАРТЕ	ER 5 - TRANSIT ANALYSIS 25
5.1 5.2 5.3 5.4	Introduction25CMP Transit Monitoring Network26Minimum CMP Transit Standards29Transit Coordination in Local Jurisdiction Land Use Review29

CHAPT	ER 6 - TRANSPORTATION DEMAND MANAGEMENT ELEMENT	33
6.1 6.2 6.3 6.4 6.5	Introduction Existing TDM Programs Ordinance Development Process Minimum TDM Strategies TDM Ordinance Implementation Guidance	33 34 35 35 38
СНАРТ	ER 7 - LAND USE ANALYSIS PROGRAM	41
7.1 7.2 7.3	Introduction	41 42 45
CHAPT	ER 8 - CAPITAL IMPROVEMENT PROGRAM	47
CHAPT	ER 9 - COUNTYWIDE TRANSPORTATION MODEL DEVELOPMENT	51
9.1 9.2 9.3	Introduction	51 51 52
СНАРТ	ER 10 - LOCAL JURISDICTION CONFORMANCE PROCEDURES	53
10.1 10.2	Introduction	53 53

APPENDICES

Appendix A	Guidelines for CMP Highway Monitoring
Appendix B	CMP Transit Route List and Monitoring Form
Appendix C	Model CMP TDM Ordinance
Appendix D	Guidelines for CMP Transportation Impact Analysis
Appendix E	1993 CMP Conformance Checklist
Appendix F	Glossary

SUPPLEMENT

.

.

Supplement 1	Congestion Management Program Government Code Sections
Supplement 2	Development Agreement Statutes
Supplement 3	Optional TDM Measures
Supplement 4	SCAG Regional Consistency Compatibility Criteria for CMP's
	CIP Candidate List

.

TABLE OF EXHIBITS

Exhibit 1	Levels of Service for Freeway Segments
Exhibit 2	Levels of Service for Intersections
Exhibit 3	CMP Highway System (Map) 19
Exhibit 4	CMP Highway System (Chart) 20
Exhibit 5	AM Peak Levels of Service
Exhibit 6	PM Peak Levels of Service
Exhibit 7	CMP Transit Monitoring Network 28
Exhibit 8	CMP Transit Routing and Frequency Standards
Exhibit 9	CMP TDM Ordinance Requirements 39
Exhibit 10	CMP Capital Improvement Program Listing
Exhibit 11	CMP Conformance Procedure Timeline

LIST OF ABBREVIATIONS

Air Quality Management Plan
Average Vehicle Ridership
California Department of Transportation
Congested Corridor Action Plan
Califórnia Environmental Quality Act
Capital Improvement Program
Congestion Management Agency
Congestion Management Program
Environmental Impact Report
Flexible Congestion Relief[Funding Program]
High Occupancy Vehicle [Lane]
Institute of Transportation Engineers
Los Angeles County Transportation Commission
Level of Service
Metropolitan Transportation Authority
Notice of Preparation
Regional Mobility Plan
Regional Transportation Improvement Program
Southern California Association of Governments
South Coast Air Quality Management District
Southern California Rapid Transit District
Short Range Transit Plan
State Transportation Improvement Program
Transportation Demand Management
Transportation Impact Analysis
Transportation Improvement Program
Transportation Management Association
Traffic Systems Management [Funding Program]

ACKNOWLEDGEMENTS

The 1992 Congestion Management Program has been developed over a two year period with the assistance and input of numerous individuals representing a wide range of organizations and interests. Because of this input, the CMP has evolved into a stronger program. The Los Angeles County Transportation Commission greatly appreciates the significant time and effort of these individuals. They are listed below:

CMP Policy Advisory Committee

Current Members & Alternates

Hon. Ruth Aldaco, City of Commerce Lew Bedolla, Caltrans Hon. Hal Bernson, City of Los Angeles Carl Blum, Los Angeles County Department of Public Works Alan T. Bowser, Automobile Club of Southern California Hon. Louis Byrd, City of Lynwood Jess Carbajal, City of Bell Ted Cox, Watt Industries Martha Cox-Nitikman, Bidg. Owners & Managers Assoc. Serop Der-Boghossian, City of Pasadena Bart Doyle, Building Industry Association Claudia Elliot, Sierra Club Geoffrey Ely, Bidg. Owners & Managers Association Norman Emerson, Emerson & Associates Zahi Faranesh, Caltrans Michael Fitts, Natural Resources Defense Council Delpha Hacker Flad, City of Los Angeles Keith Gilbert, Automobile Club of Southern California Gail Gordon, Pillsbury, Madison & Sutro Jim Gosnell, Southern California Association of Governments Hon. Jan Heidt, City of Santa Clarita Hon. John Heilman, City of West Hollywood Michael Herlot, City of Lynwood Jeff Hill, Coalition for Clean Air Samuel Johnson, City of Commerce Larry J. Kosmont, Kosmont & Associates Ron Lamb, Los Angeles Area Chamber of Commerce

Hon. Bea LaPisto-Kirtley, City of Bradbury Jeff Long, City of Lancaster Mark Malone, Long Beach Transis Jene McKnight, Los Angeles County Regional Planning Kathleen Meyers, El Segundo Employers Association Hon. Henry Morgan, South Coast Air Quality Mgmt. District Robert J. Paternoster, City of Long Beach Ken Putnam, City of El Segundo Hon. Carl Raggio, City of Glendale Al Reyes, City of Los Angeles Hon. Mark Ridley-Thomas, City of Los Angeles Hon. Les Robbins, City of Long Beach Becky Roberts, Los Angeles County Board of Real Estate Al Rodriguez, City of Rosemead Ed Rowe, Los Angeles Department of Transpariation Maria Rychlicki, City of Beverty Hills Jerry Saunders, Continental Development Corporation Joel Schwartz, Coalition for Clean Air Jim Sims, Commuter Transportation Services Jack Smart, California State University Hon. Jozelle Smith, Culver City Hon. Nell Soto, City of Pomona Gary Spivack, Southern California Rapid Transis District John Tunney, Cloverleaf Group Hon. Rita Walters, City of Los Angeles Hon. Alan West, City of El Segundo Mark Winogrond, Culver City

CMP Policy Advisory Committee Past Members & Alternates

Hon. James Castañeda, City of San Gabriel Hon. Robert Farrell, City of Los Angeles Hon. John Ferraro, City of Los Angeles Hon. Ruth Galanter, City of Los Angeles Charles Gomez, City of Lynwood Richard Gonzales, City of Commerce Stephanie Griffin, Santa Monica Municipal Bus Lines Edric Guise, Building Industry Association Hon. Louis Heine, City of Lynwood

Hon. Robert Henning, City of Lynwood Tom La Bonge, City of Los Angeles Tim Little, Coalition for Clean Air Hon. Raymond Mattlngly, City of Palos Verdes Gilbert Ray, O'Meiveny & Myers Jerome Williams, City of Los Angeles Hon. Mark Wirth, City of Torrance Hon. Zev Yaroslavsky, City of Los Angeles Robert Zarrilli, City of Commerce In addition to the CMP Policy Advisory Committee, LACTC would like to acknowledge the individuals who participated through the groups listed below. While the names are too numerous to include here, we appreciate those who participated in the following groups.

CMP Technical Forum

CMP Highway Working Group

CMP Modeling Working Group

CMP Transportation Demand Management Working Group

Bus Operations Subcommittee Working Group

Finally, LACTC would like to express appreciation to all of the individuals and organizations not mentioned above but who participated by attending meetings or providing comments.

• • • • •

CMP Staff

Bradford W. McAllester CMP Administrator

Gordon Bagby	
Stewart Chesler	. Program Manager, Modeling
Jody Feerst Govern	ment & Public Affairs Manager
Edric Guise	Private Sector Liaison
Deng-Bang Lee	. Program Manager, Modeling
Judy Littleton	Secretary
Kendra Morries	5
Cosette Polena Program Manager, Transp	portation Demand Management
Carlos Rodriguez	Administrative Assistant
Ed Shikada	. Program Manager, Highways

FOREWORD

The 1992 Congestion Management Program (CMP) for Los Angeles County has been developed to meet the requirements of Section 65089 of the California Government Code. As this program is the first CMP developed for the Los Angeles region, new ground has been forged in linking transportation, land use, and air quality decisions for one of the largest and most complex urban areas in the country.

Because of its complexity, development of the CMP has been an evolutionary process. As this program affects many community interests, the CMP has been developed in an open and participatory manner. A wide range of individuals and organizations in both the public and private sector have provided invaluable assistance on the CMP Technical Forum and Policy Advisory Committee, as well as through individual and group discussions with the agency. The high degree of interest and involvement shown by so many is appreciated.

The CMP document has been organized into three parts for easier reading and reference. The first section contains chapters one through ten that are devoted to the different facets and components of the CMP program itself. These chapters contain specific information about the program, its requirements, and implementation responsibilities. The second section, the Appendices, contains material related to the CMP program that provide additional technical guidance and assistance for local jurisdictions. The last section, the Supplement, contains material that provides overall background to the CMP, including state statutes and other related CMP information.

Over the next year, work will continue with the Countywide Congestion Study which should be complete in Spring 1993. The deficiency plan process for the CMP will be developed based on the results of this study. Deficiency plan guidelines will be presented to the MTA Board for inclusion into the 1993 CMP Update.

Local jurisdictions will not be responsible for deficiency plan requirements until MTA adopts deficiency plan procedures which determine how deficiencies are identified and addressed. Staff will work closely with local jurisdictions to ensure smooth implementation of these CMP responsibilities.

The CMP process will continue to evolve over the next several years. The continuing assistance of all interested parties is needed to meet the challenge of effectively meeting the mobility needs of Los Angeles County.

Staff appreciates the input of those who have been involved in the development of the CMP, particularly the CMP Policy Advisory Committee, Technical Forum and working groups. The advice that has been received from these groups has been invaluable in moving forward with the evolution of the CMP.

OVERVIEW

The CMP is a new program enacted by the State Legislature with the passage of Assembly Bill 471 (1989), as amended by Assembly Bill 1791 (1990) and Assembly Bill 3093 (1992). The requirements for the CMP became effective with voter approval of Proposition 111 in June, 1990 (see Supplement). Proposition 111 provided for a nine cent increase in the state gas tax over a five year period.

In passing CMP statute, the legislature noted increasing concern that urban congestion was impacting the economic vitality of the state and diminishing the quality of life in many communities. The legislature also noted that the current planning process was not well suited to addressing congestion relief. As a new approach to addressing congestion concerns, the CMP was created for the following purposes:

- 1. To link land use, transportation, and air quality decisions;
- 2. To develop a partnership among transportation decision makers on devising appropriate transportation solutions that include all modes of travel; and
- 3. To propose transportation projects which are eligible to compete for state gas tax funds.

Los Angeles County is one of thirty-two urbanized counties across the state that are required to develop a CMP. Los Angeles is a large, urbanized county with a diverse and growing population, which according to the 1990 census has over 8.8 million residents and is projected to approach 10 million by the year 2010. Additionally, the county currently contains over 3.1 million housing units and occupies over 4,000 square miles. The county is at the heart of the Southern California regional economy, one of the largest in the world.

Among the effects of this enormous scale of economic activity are serious problems with traffic congestion and air quality. Many of the county's roads experience heavy congestion lasting many hours daily. Since automobiles produce over half the air pollution in the South Coast Air Basin, traffic congestion further aggravates air quality.

1.1 CMP REQUIREMENTS

A Congestion Management Agency was designated in each county that includes an urbanized area. LACTC was designated the Congestion Management Agency (CMA) for Los Angeles County by 78 of 88 cities and the County of Los Angeles, and this authority will

transfer to the Metropolitan Transportation Authority (MTA) on February 1, 1993. MTA will prepare and update the CMP in 1993 and biennially thereafter.

As required by statute, the CMP has the following five elements:

- 1. A system of highways and roadways with minimum level of service performance standards designated for highway segments and key roadway intersections on this system.
- 2. Transit standards for frequency and routing of transit service and coordination between transit operators.
- 3. A trip reduction and travel demand management element promoting alternative transportation methods during peak travel periods.
- 4. A program to analyze the impacts of local land use decisions on the regional transportation system, including an estimate of the costs of mitigating those impacts.
- 5. A seven-year capital improvement program of projects that benefit the CMP system.

Statute also requires development of a data base and countywide computer model to evaluate traffic congestion and recommend relief strategies and actions. The CMP data base and countywide model must be consistent with the Southern California Association of Governments' (SCAG) data base and modeling methodology. Local transportation models that are used for CMP analysis purposes must be found consistent with the CMP model and data base.

Once prepared, the CMP is submitted to SCAG for review. SCAG is responsible for finding that the CMP is consistent with the region's transportation plan, called the Regional Mobility Plan (RMP). SCAG will also review the countywide data base and model for consistency with the regional data base and model.

While many levels of government are involved in developing and implementing the CMP, local jurisdictions have significant implementation responsibilities. These responsibilities include assisting in monitoring the CMP system; adopting and implementing a trip reduction and travel demand ordinance; analyzing the impacts of local land use decisions on the regional transportation system; and participating in the development of the deficiency plan process through the Countywide Congestion Study currently underway, for portions of the CMP system where levels of service standards are not maintained.

MTA will annually review the performance of local jurisdictions to verify that they are conforming to CMP requirements. After notice and a correction period, MTA must report to the state controller those agencies which are not complying. The state controller will then withhold a portion of their state gas tax funds.

For more information on agency responsibilities refer to Chapters 2 and 10.

1.2 AMENDMENTS TO CMP STATUTE

Several legislative changes were recently enacted which modify CMP statute. These changes are described below.

Assembly Bill 3093 was signed into law in August 1992 and includes the following changes to the CMP statute:

- Provides that the CMP be updated on a biennial rather than annual basis. The biennial CMP must be adopted before December 1 of odd-numbered years.
- Until June 1, 1995, exempts from CMP requirements the rebuilding of structures damaged or destroyed in Los Angeles County as a result of civil unrest.
- Directs regional transportation agencies (e.g., SCAG) covering more than one county to resolve inconsistencies and mediate interagency disputes related to CMPs for their area.
- Exempts for CMP purposes any traffic generated by high density residential development and mixed use development located within 1/4 mile of a fixed rail passenger station.
- States that any transportation funds withheld from a city or county for reasons of nonconformance shall be released to the city or county if the State Controller is notified within 12 months that the city or county is now in conformance. After the 12 month grace period, funds withheld from cities in non-conformance will be reallocated to MTA for use in implementing CMP Capital Improvement Program or Deficiency Plan projects of regional significance.
- Authorizes MTA to facilitate a statewide CMP Steering Committee to examine unresolved issues and modifications related to CMP statute. The committee will be comprised of representatives from state, regional and local agencies, as well as members of the private sector and environmental interests. Statute requires discussion of various topics including: improving coordination of the CMP with state and federal clean air acts, examining mobility measures for air quality conformance purposes and other issues which are raised by CMAs statewide.

Senate Bill 1435 was signed into law in September 1992. While this legislation primarily is state enabling legislation to implement the programming of federal funds under the federal Intermodal Transportation Act (ISTEA), it affects the CMP as follows:

- Regional agencies (e.g., SCAG) are prohibited from programming federal Surface Transportation Program Funds and Congestion Mitigation and Air Quality Funds in a county that has not adopted a CMP by December 31, 1992.
- No Surface Transportation Funds or Congestion Mitigation and Air Quality Funds shall be programmed for a project in a jurisdiction that has been found to be in

Assembly Bill 2109 also amends CMP statute to allow the consideration of parking cash-out programs as TDM Element or Deficiency Plan strategies.

1.3 RELATIONSHIP WITH THE 30-YEAR INTEGRATED TRANSPORTATION PLAN AND CONGESTED CORRIDOR ACTION PLAN

The CMP, along with MTA's 30-Year Integrated Transportation Plan (30-Year Plan) and Congested Corridor Action Plan (CCAP), work together to improve mobility in Los Angeles County. The integration of these plans is described below.

The 30-Year Integrated Transportation Plan is a strategic document that serves as a framework for analyzing multi-modal alternatives for meeting the mobility needs of Los Angeles County. The 30-Year Plan shows how various programs and projects can be implemented within projected revenues, providing long range guidance to the MTA in establishing priorities and understanding financial tradeoffs. The 30-Year Plan will be updated to reflect MTA action on individual projects. The 30-Year Plan helps to articulate regional strategies, as well as evaluate the financial impact of the various programs and actions of the CCAP.

The Congested Corridor Action Plan defines specific actions and projects for eleven of the most heavily travelled corridors in the county. The CCAP can be considered the work plan for pursuing goals and mandates of both the 30-Year Plan and the CMP. Corridor-specific and countywide actions are identified for immediate, short, and long term implementation.

The CCAP ensures a balanced approach to meeting transportation needs identified through the CMP and assists the 30-Year Plan in identifying and implementing programs throughout the county.

The Congestion Management Program is a state-mandated program intended as the analytical basis for transportation decisions made through the State Transportation Improvement Program (STIP) process. Projects identified in the CMP are eligible to be included in the local Transportation Improvement Program (TIP) and the Regional Transportation Improvement Program (RTIP), and are ultimately eligible for state funding. The local TIP is prepared biennially in odd-numbered years by MTA. The CMP will assist in determining the congestion relief benefit of candidate TIP projects. Upon adoption by the MTA, the local TIP is submitted to SCAG for inclusion in the five-county RTIP. The RTIP is adopted by SCAG in November of odd-numbered years. RTIP projects are eligible to compete for state funding approved by the California Transportation Commission in the STIP. The STIP is approved in April of even-numbered years. Additionally, the new federal transportation act requires development of a Congestion Management System (CMS) and allows the CMP process to meet federal CMS responsibilities. Federal guidelines for the CMS process are under development and anticipated to be released by the end of 1992.

While the 30-Year Plan and the CCAP are policy documents, the CMP is linked to both State and federal statute and is an important mechanism for implementing projects that compete for State and Federal funding. The monitoring of the CMP Highway and Transit Networks, evaluation of CMP TDM efforts, and long-range CMP transportation modeling analysis allow MTA to measure the success of the countywide transportation program and

CMP monitoring will also lead to identification of transportation concerns at a county or sub-area level that warrant closer scrutiny. The CCAP will be an important planning tool in examining transportation issues at the corridor level which will allow more detailed analysis of transportation problems and specific recommendations for programs and actions. These recommendations will feed back into both the 30-Year Plan and the CMP.

1.4 RELATIONSHIP WITH THE REGIONAL MOBILITY PLAN

to recommend additional promising transportation solutions for the future.

State and federal law mandate the preparation of a twenty year transportation plan for metropolitan areas. SCAG is responsible for preparation of this Regional Mobility Plan (RMP), as the designated regional transportation planning agency for the metropolitan area including Los Angeles, Orange, San Bernardino, Ventura, Riverside and Imperial counties. The RMP forecasts long-range transportation demands in the region and sets forth goals and strategies for meeting these demands.

CMP statute requires the CMP to be developed consistent with the RMP and that the CMP be incorporated into the RMP. The RMP assists in the development of the CMP by establishing the magnitude of congestion problems that face the region and the types of solutions that will be necessary to maintain mobility. The CMP, in turn, assists in revising the RMP by relating these long-term goals to specific actions at the county and local level, confronting implementation issues, and monitoring the effectiveness of transportation improvements.

1.5 CMP DEVELOPMENT AND CONSULTATION PROCESS

The CMP development process began several years ago with a series of issue papers on various CMP requirements and evolved through three previous draft programs. Numerous written and verbal comments have been received at all stages of CMP development. This final draft CMP is the cumulative result of this effort.

In 1991, a CMP Policy Advisory Committee and a Technical Forum were created to assist in CMP development. The 37 member Policy Advisory Committee consists of representatives reflecting a cross-section of local jurisdictions countywide, representatives of regional and state agencies (Caltrans, SCAG, RTD, Commuter Transportation Service, and SCAQMD), as well as representatives of the environmental and business communities. The Technical Forum does not have formal membership but serves as an open forum for technical staff of local jurisdictions. Two contacts for each jurisdiction receive notices and materials for upcoming Technical Forum meetings. Both committees have met monthly since their creation. Ad hoc technical committees have also been formed to deal with special CMP issues such as highway analysis, transit, TDM, traffic impact analysis, and private sector issues. As the CMP reflects the efforts of many, MTA is indebted to those that have been so active in contributing time and effort to development of the CMP.

In addition to the above committees, a variety of other mechanisms have been used for public outreach and consultation. A monthly newsletter, *Up to Speed*, is mailed to over 1600 people and provides a regular update of the status of CMP development, document review periods, and key meetings. A telephone hotline also provides up-to-date information on CMP issues and meetings and serves a mechanism for people to request CMP documents. CMP staff have also been active in presenting the CMP in a wide range of forums and to a wide range of interests, including local jurisdictions, Chambers of Commerce, business and development groups, and environmental groups.

In addition to coordination with jurisdictions within the County, staff have been active in consulting with neighboring counties on inter-county CMP issues. Such coordination will be an important continuing effort as CMP implementation begins in Los Angeles County. One important forum for coordination with our adjacent counties is the Southern California Inter-County Congestion Management Agency Working Group. This group is facilitated by SCAG as a forum for discussing inter-county CMP issues and meets on a quarterly basis.

MTA is also a leader in consulting with Congestion Management Agencies statewide. MTA has hosted two annual statewide Congestion Management Agency Workshops to foster coordination and information sharing between agencies. MTA has also participated in bimonthly statewide CMA Forums that have been hosted by Caltrans. Finally, MTA has been authorized by statute to facilitate a statewide steering committee to examine unresolved CMP issues and develop recommendations that could lead to further improvements in the CMP process.

1.6 LOOKING AHEAD

In the August 1991 draft CMP, a countywide mitigation fee was discussed as a mechanism to meet the land use analysis requirement and address the deficiency plan process. In early 1992, action was taken to not further pursue a countywide mitigation fee, but to instead conduct a Countywide Congestion Study that will develop a countywide approach to meet deficiency plan requirements.

The Countywide Congestion Study, to be completed by Spring 1993, will evaluate future congestion on the CMP highway system and recommend effective countywide strategies to address this congestion. In addition, staff will develop an incentive and credit program to encourage local land use decisions that are supportive of development in proximity to transit centers and along major transportation corridors. Throughout the study, staff will be

working with the CMP Policy Advisory Committee and Technical Forum to develop a program that maximizes effectiveness and ease of implementation.

It is important to note that adoption of a deficiency plan process is not required as part of the first-year CMP. Local jurisdictions will only be responsible for meeting deficiency plan responsibilities upon MTA Board adoption of countywide deficiency plan guidelines that define how to measure deficiencies and address local responsibilities. These components will be evaluated as part of the Countywide Congestion Study and presented to the MTA Board as part of the 1993 CMP update.

POLICY STATEMENTS

As the CMP is a significant and complex new program, the following statements underline the guiding policies for implementing CMP requirements:

- The first year CMP has focused on defining a basic, core program, consistent with statutory requirements. As this program must be biennially updated, MTA will build on this core program as implementation experience is gained.
- Local land use authority remains the responsibility of local jurisdictions. MTA is not responsible for directing the land use decisions of local jurisdictions. Rather, the CMP process is a tool to assist local jurisdictions in making land use decisions that consider and enhance countywide mobility.
- The CMP gives local jurisdictions flexibility in meeting CMP responsibilities through existing local procedures rather than creating new CMP processes.
- MTA will work closely with local jurisdictions in implementing the CMP to ensure local conformance with CMP requirements and continued allocation of state gas tax funds.
- The CMP implementation process is a tool for increasing coordination between:
 - transportation providers responsible for implementing the best mix of transportation solutions;
 - land use and transportation programs; and
 - neighboring cities and counties.
- The CMP will be a focal point for ensuring consistency, compatibility, and integration of other MTA transportation studies.
- The CMP will serve as an important resource in the current update of the SCAG Regional Mobility Plan (RMP). MTA will work closely with SCAG in the update of the RMP, providing input based on what MTA has learned through the CMP process. This will enable SCAG to incorporate relevant CMP information into the RMP and the regional planning process.
- Equity with respect to cost of service, quality of service, and access to service will be considered in programming decisions made by MTA in the implementation of the CMP.

In addition, equity considerations will be incorporated in ongoing area-specific needs assessment and service distribution studies.

- Economic development opportunities will be aggressively pursued in high-volume transit corridors. MTA will also develop programs for other areas to facilitate economic development in conjunction with transit improvements with the objective of maximizing the overall benefit of the community.
- The CMP is being developed to be sensitive of the general economy of Los Angeles County. While increased mobility and reduced congestion serve attainment of this goal, CMP policies and procedures are being developed to minimize cost and provide certainty and predictability to the public and private sector alike.

ROLES AND RESPONSIBILITIES

This chapter summarizes responsibilities of the various entities involved in the congestion management process. Some of these responsibilities are specifically identified in statute and others have been developed to implement broad statutory requirements. More specific details are discussed throughout the body of the CMP.

Los Angeles County Metropolitan Transportation Authority:

Preparing and Adopting the CMP. As the Congestion Management Agency, MTA will be responsible for preparing and updating the CMP for Los Angeles County. The first year CMP places special emphasis on providing simplified implementation guidance to local jurisdictions for meeting statutory CMP responsibilities.

The CMP is to be prepared in consultation with a variety of agencies including: the Southern California Association of Governments (SCAG), the South Coast Air Quality Management District (SCAQMD), regional transportation providers, local governments, and Caltrans. The CMP and accompanying Environmental Impact Report (EIR) will be adopted and certified at a noticed public hearing.

Modeling Requirements. MTA is responsible for development of a data base and countywide transportation model for use in CMP analysis, consistent with the regional model and database. Over the last year, significant progress has been made toward developing this model. The necessary hardware and software have been acquired and data from Caltrans and SCAG have aided in the development of the countywide model. The model is being developed in consultation with both regional agencies and local jurisdictions. For more information on CMP model development refer to Chapter 9.

MTA is responsible for approving the computer models of local jurisdictions that use computer models for CMP analysis purposes. Such local models must be consistent with the countywide model.

- Developing a Deficiency Plan Process. MTA is responsible for developing a deficiency plan process. Deficiency plan procedures will be developed based on the results of the Countywide Congestion Study currently underway. These will be presented to the MTA Board for inclusion in the 1993 CMP Update.
- Monitoring CMP Implementation. MTA is also responsible for monitoring the implementation of the CMP. Annually, MTA is required to determine if the county and local jurisdictions are conforming to the CMP (see Chapter 10 for more details).

LOCAL JURISDICTIONS:

- Local Consultation. Local input will be sought in the continuing development and review of the CMP. Input will be sought in various ways, including: participation on the CMP Technical Forum and Policy Advisory Committee, special working groups, Area Team Cities Issues meetings, and meetings with individual local jurisdictions.
- Data Collection. Local assistance will be sought in collecting traffic data. Such information will be useful in maintaining an updated database for a countywide model and for monitoring the attainment of level of service standards for highways and roadways. Local jurisdictions were specifically asked to monitor key intersections in 1992 to help determine current level of service. (For more information refer to Chapter 4 and Appendix A.) It is the intent of MTA to utilize existing data collected by local jurisdictions whenever possible.
- Local CMP Implementation Responsibilities. Local jurisdictions are responsible for conforming to the CMP. These responsibilities include:
 - Monitoring the attainment of level of service standards and the collection of traffic data for CMP routes.
 - Adopting and implementing a Transportation Demand Management (TDM) ordinance.
 - Municipal transit operators submitting data for CMP transit monitoring.
 - ▶ Adopting and implementing a program to analyze the impacts of land use decisions.
- Consultation with Transit Operators. Local jurisdictions are required to consult with and include transit operators in their land use process. This is intended to (1) encourage the use of transit as a method to mitigate roadway congestion and, (2) ensure through the CEQA process that consideration is given to impacts on transit services. Specific procedures are discussed in Chapter 6.
- Preparation of Deficiency Plans. Deficiency plan procedures will be developed based on the results of the Countywide Congestion Study currently underway. Local jurisdictions must participate in the deficiency plan process to address portions of the CMP Highway System that do not meet level of service standards.

For more detailed information on local responsibilities refer to Chapter 10.

TRANSIT OPERATORS:

- Transit Consultation. Transit operators will be consulted during development and implementation of the CMP.
- Data Transmittal. Transit operators will submit data required to monitor the effectiveness of transit service in meeting congestion reduction goals and attaining performance standards. Specific reporting and monitoring requirements are discussed in Chapter 5.
- Coordination in Local Jurisdiction Land Use Review. Local jurisdictions are required to consult with and include transit operators in their EIR approval process.

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT:

- Air Quality Consultation. As the Air Quality Management District for the South Coast Air Basin, SCAQMD will be consulted to ensure that the CMP is developed in accordance with the region's air quality goals. The CMP provides an opportunity for coordinating Transportation Control Measures identified in the Air Quality Management Plan with the CMP.
- Participation in Deficiency Plan Process. SCAQMD is responsible for establishing and periodically revising a list of approved facilities, programs, and actions which measurably enhance level of service on the CMP system and contribute to significant improvement in air quality.

SOUTHERN CALIFORNIA ASSOCIATION OF GOVERNMENTS (SCAG):

- Regional Coordination: As the Regional Transportation Planning Agency for Southern California, SCAG will be consulted in CMP development regarding regional issues, in particular, to ensure that the CMP is developed consistent with the Regional Mobility Plan (RMP) and SCAG's regional planning process. MTA will closely coordinate with SCAG to ensure that projects proposed through the CMP will be found in conformance with the Air Quality Management Plan when incorporated into the regional planning and programming process.
- Regional Consistency Finding. SCAG is responsible for reviewing the CMP prepared by MTA to evaluate consistency between the CMP and the current RMP adopted in 1989. SCAG is also responsible for evaluating consistency and compatibility of the CMPs of the counties within the SCAG region. Included in the Supplement is SCAG's regional consistency criteria.

Data Base and Model Consistency. SCAG is responsible for finding that the CMP model and data base are consistent with the regional model and data base. SCAG will make this finding as part of the regional consistency review.

CALTRANS:

- State Transportation System Coordination. Caltrans will be consulted in the development of the CMP regarding its impacts on the State transportation system. Since congestion relief projects on the state highway system must first be identified in the CMP for further state programming consideration, MTA will coordinate closely with Caltrans in identifying appropriate congestion strategies.
- Data Collection. Caltrans is a resource for data on the state highway system. MTA will coordinate with Caltrans to ensure that adequate information is available in monitoring the impact of congestion on the state highway system and in measuring levels of service.

LOCAL DEVELOPERS:

• Local Development Review. Through the local development review process local jurisdictions will be responsible for analyzing the impact of development on the CMP system. Local developers should be aware that new development projects preparing EIR's will need to consider the development's impact on the CMP system and how that impact can be mitigated.

HIGHWAY AND ROADWAY SYSTEM

4.1 INTRODUCTION

4.1.1 Statutory Requirement. CMP statute requires designation of a system of highways and roadways, including all state highways and principal arterials. Once designated as part of the CMP system no highway or roadway can be removed from the system.

Statute also requires establishment of level of service standards to measure congestion on the system. Levels of service (LOS) range from A to F, with LOS A representing free-flow conditions and LOS F representing a high level of congestion. Exhibits 1 and 2 describe LOS designations for freeway segments and arterial signalized intersections, respectively.

Level of service standards can be set no lower than LOS E, or the current level if worse than E. Three methods of measuring level of service are allowed by statute, for selection by the Congestion Management Agency: (1) Circular 212, (2) the 1985 Highway Capacity Manual, or (3) an alternative method determined by the regional agency to be consistent with the Highway Capacity Manual.

4.1.2 Purpose. Primary reasons for defining and monitoring a CMP highway system are:

- to allow local jurisdictions to measure their success at minimizing traffic congestion, and provide "before & after" data for evaluating congestion mitigation measures;
- to provide quantitative input into programming (funding) decisions, with consistent countywide data on current levels of traffic congestion; and,
- to provide data for validating and updating the countywide model.

4.2 NETWORK DEFINITION

Defining the highway system is the first step in developing the CMP. Other CMP elements largely focus on maintaining levels of service on this network. As stated previously, statute requires inclusion of all state highways and principal arterials; however, there is no standard definition of a principal arterial.

The CMP highway system has therefore been discussed extensively, weighing the benefits and costs of increased network size. This issue is important for the following reasons:

• The CMP Capital Improvement Program is one of the first steps in the state funding process. Projects need not be located directly on the CMP highway system, but must benefit the system.

EXHIBIT 1

LEVELS OF SERVICE FOR FREEWAY SEGMENTS

LEVEL OF SERVICE	TECHNICAL DESCRIPTORS			
		OPERATING SPEED	DELAY	SERVICE
	Highest quality of service. Free traffic flow, low volumes and densities. Little or no restriction on maneuverability or speed.	55+	None	Good
	Stable traffic flow, speed be- coming slightly restricted. Low restriction on maneuverability.	50	None	Good
	Stable traffic flow, but less freedom to select speed, change lanes, or pass. Density increasing.	45	Minimal	Adequate
	Approaching unstable flow. Speeds tolerable but subject to sudden and considerable variation. Less maneuverability and driver comfort.	40	Minimal	Adequate
	Unstable traffic flow with rapidly fluctuating speeds and flow rates. Short headways, low maneuverability and low driver comfort.	35	Significant	Poor
	Forced traffic flow. Speed and flow may drop to zero with high densities.	<20	Considerable	Poor

.

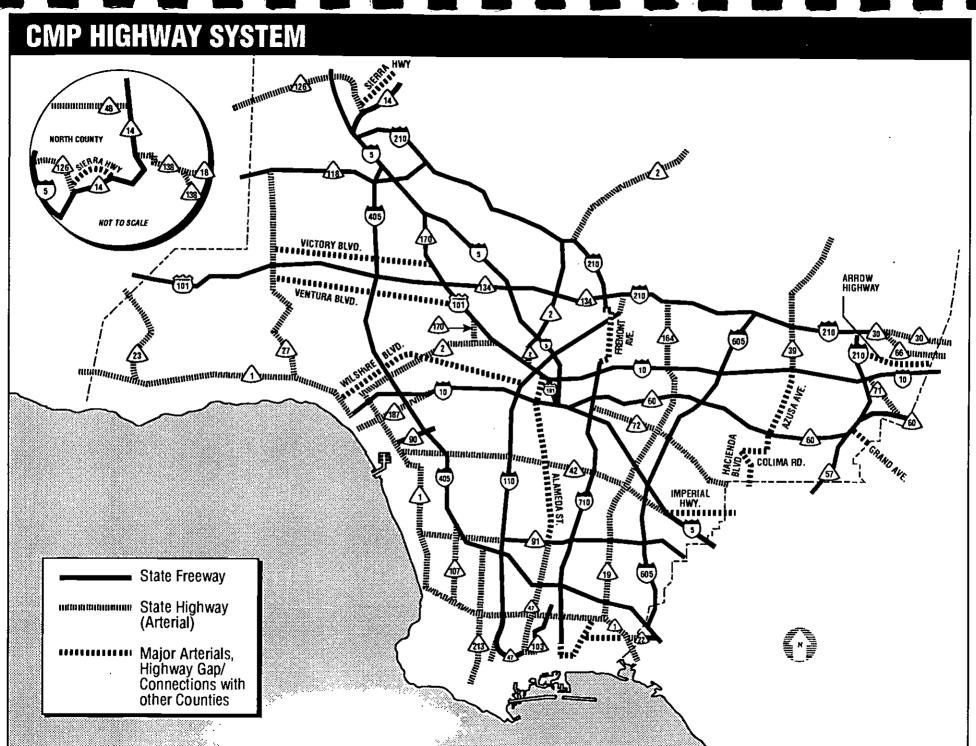
EXHIBIT 2

LEVELS OF SERVICE FOR INTERSECTIONS

LEVEL OF SERVICE	VOLUME-TO CAPACITY (V/C) RATIO	OPERATING CONDITIONS
A	0.00 - 0.60	At level of service A there are no cycles which are fully loaded, and few are even close to loaded. No approach phase is fully utilized by traffic and no vehicle waits longer than one red indication. Typically the approach appears quite open, turning movements are easily made, and nearly all drivers find freedom of operation.
В	> 0.60 - 0.70	Level of service B represents stable operation. An occasional approach phase is fully utilized and a substantial number are approaching full use. Many drivers begin to feel somewhat restricted within platoons of vehicles.
С	> 0.70 - 0.80	In level of service C stable operation continues. Full signal cycle loading is still intermittent, but more frequent. Occasionally drivers may have to wait through more than one red signal indication, and back-ups may develop behind turning vehicles.
D	> 0.80 - 0.90	Level of service D encompasses a zone of increasing restriction approaching instability. Delays to approaching vehicles may be substantial during short peaks within the peak period, but enough cycles with lower demand occur to permit periodic clearance of developing queues, thus preventing excessive back-ups.
E	> 0.90 - 1.00	Level of service E represents the most vehicles that any particular intersection approach can accommodate. At capacity (V/C = 1.00) there may be long queues of vehicles waiting upstream of the intersection and delays may be great (up to several signal cycles).
F	> 1.00	Level of service F represents jammed conditions. Back- ups from locations downstream or on the cross street may restrict or prevent movement of vehicles out of the approach under consideration; hence, volumes carried are not predictable. V/C values are highly variable, because full utilization of the approach may be prevented by outside conditions.

CMP-069/12-92

- Caltrans and local jurisdictions are responsible for monitoring levels of service, including the cost of data collection and analysis. The more extensive the network the greater its monitoring costs.
- Local jurisdictions are responsible for assessing the impacts of new development on the CMP system. The larger the system the greater the scope of such analyses.
- Once designated, routes cannot be deleted from the network and are therefore permanently subject to CMP requirements.


4.2.1 Los Angeles County CMP Highway System. Exhibit 3 identifies the CMP highway system for Los Angeles County. This system extends more than 1,000 miles, including approximately 500 miles of freeways, 400 miles of state-maintained arterials, and 100 miles of locally-maintained arterials. The CMP highway system includes routes that meet the following criteria:

- All existing state highways (both freeways and arterials).
- Principal arterials, defined as:
 - ▶ routes that complete gaps in the state highway system;
 - ▶ routes providing connectivity with the CMP systems in adjacent counties; or
 - routes along major inter-jurisdictional travel corridors, providing primary, high volume or multi-modal transportation.

Exhibit 4 lists the specific routes and limits included in the CMP highway system. While this CMP system makes up less than five percent of the roadway mileage in Los Angeles County, travel statistics indicate that this network carries over fifty percent of the automobile travel in the county.

4.2.2 Interim CMP Routes. New state highways will be added to the CMP system when completed and operational. In such cases, CMP route designation will then shift from existing temporary routes to the permanent facility. MTA will then review the interim route in consultation with affected jurisdictions, and the route will no longer be part of the CMP system unless specifically added at that time. The following arterials are interim CMP routes:

- Manchester/Firestone Boulevard will be superseded by the Glenn Anderson Freeway (Route 105) upon completion.
- Alameda Street will be replaced by a new alignment when the federal demonstration project is completed.
- Hacienda Boulevard is an interim route for Fullerton Road, which is being upgraded to a major arterial.

CMP HIGHWAY SYSTEM

State Route	Freeway/Arterial Name
1	Pacific Coast Highway, Palisades Beach Road, Lincoln Boulevard, Sepulveda Boulevard
2	Lincoln Boulevard, Santa Monica Boulevard, Alvarado Street, Glendale Boulevard, GLENDALE FREEWAY, Angeles Crest Highway
5	SANTA ANA FREEWAY, GOLDEN STATE FREEWAY
10	SANTA MONICA FREEWAY, SAN BERNARDINO FREEWAY
14	ANTELOPE VALLEY FREEWAY
18	Pearblossom Highway
19/164	Lakewood Boulevard, Rosemead Boulevard
22	7th Street, GARDEN GROVE FREEWAY
23	Decker Canyon Road
27	Topanga Canyon Boulevard
30	FOOTHILL FREEWAY, Baseline Road, Williams Avenue, College Way
39	Azusa Avenue, San Gabriel Canyon Road
42/105	Manchester Boulevard, Firestone Boulevard
47	Vincent Thomas Bridge, Henry Ford Avenue, Alameda Street
48	Neenach Road, Avenue D
57	ORANGE FREEWAY
60	POMONA FREEWAY
66	Foothill Boulevard
71	Corona Expressway
72	Whittier Boulevard
90	Marina Expressway, MARINA FREEWAY
91	Artesia Boulevard, GARDENA FREEWAY, ARTESIA FREEWAY
101	SANTA ANA FREEWAY (SPUR), HOLLYWOOD FREEWAY, VENTURA FREEWAY
103	TERMINAL ISLAND FREEWAY
107	Hawthome Boulevard
110	Gaffey Street, HARBOR FREEWAY, PASADENA FREEWAY, Arroyo Parkway
118	SIMI VALLEY FREEWAY, SAN FERNANDO VALLEY FREEWAY
126	Henry Mayo Drive, Magic Mountain Parkway, San Fernando Road

State Route	- Freeway/Arterial I	Vame	
134	VENTURA FREEW		
138	Neenach Road, Palmdale Boulevard, 47th Street East, Fort Tejon Road, Pearblossom Highway, Antelope Highway		
170	Highland Avenue,	HOLLYWOOD FREEWAY	
187	Venice Boulevard		
210	FOOTHILL FREEW	/AY	
213	Western Avenue		
405	SAN DIEGO FREE	WAY	•
605	SAN GABRIEL RIVER FREEWAY		
710	LONG BEACH FREEWAY, Pasadena Avenue, St. John Avenue		
HIGHWA Street	AY GAPS/CONNECT	ORS WITH OTHER COUNTIES	
Street Arrow Highway		Route 210 to San Bernardino County	
Azusa Avenue		Colima Road to Route 10	
Colima f	Road	Hacienda Boulevard to Azusa Avenue	
Fremont Avenue		Valley Boulevard to Columbia Street	
Grand Avenue		Route 57 to San Bernardino County	
Haclenda	a Boulevard	Orange County to Colima Road	
Imperial	Highway	Route 5 to Orange County	•
Vailey Bo	oulevard	Route 710 to Fremont Avenue	
MAJOR	ARTERIALS		
Street		Limits	
Alameda	Street	Port of Los Angeles to Route 101	
Alamitos	Avenue	Ocean Boulevard to Pacific Coast Highway	
Seventh Street		Alamitos Avenue to Pacific Coast Highway	
Sierra Hi	ghway	Route 126 to Route 14 (at Red Rover Mine Road)	
Shoreline	e Drive	Route 710 to Ocean Boulevard	
Ventura I	Boulevard	Topanga Canyon Boulevard to Lankershim Boulev	ard
Victory B	Soulevard	Topanga Canyon Boulevard to Route 170	
Wilshire	Boulevard	Ocean Boulevard to Route 110	12/11/9

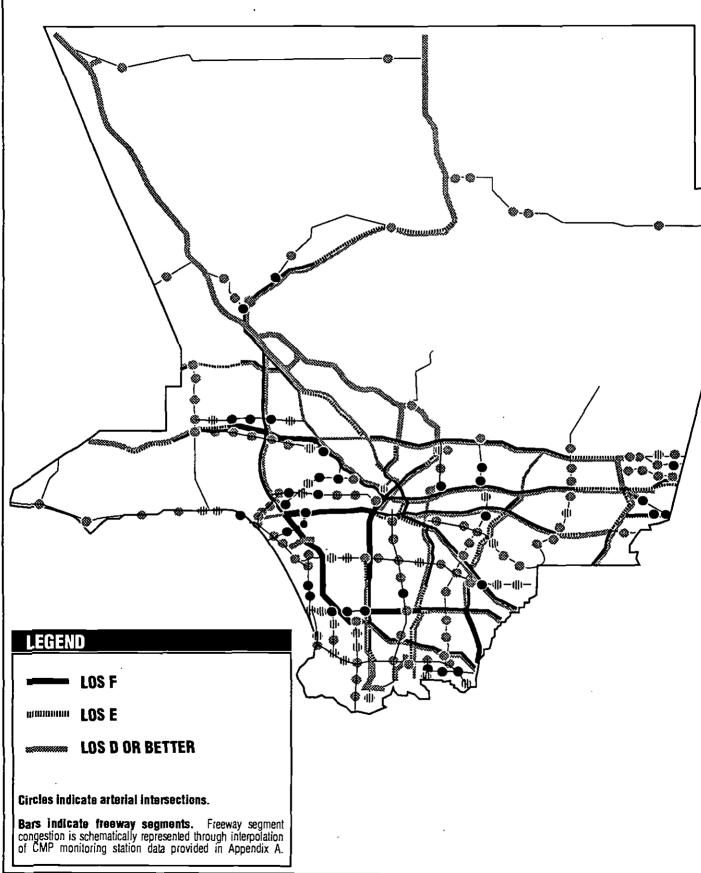
- Valley Boulevard and Fremont Avenue will be replaced by the 710 Freeway upon completion.
- Magic Mountain Parkway/San Fernando Road is an interim route for the future alignment of Route 126 between Routes 5 and 14.
- Baseline Road is an interim route for the future alignment of Route 30.

4.2.3 Process for Adding CMP Routes. As travel conditions throughout the county change and experience is gained through the CMP, additional routes may be added to the CMP highway system. The following basic process will be applied:

- Either local jurisdictions or MTA may initiate a proposal to add CMP routes, for consideration as part of the biennial CMP review and update.
- MTA will consult with affected jurisdictions to review relevant characteristics of the route, such as traffic volumes, transit services and regional significance.
- If determined to warrant inclusion, following public comment, MTA will adopt the revised highway system.

4.3 LEVEL OF SERVICE STANDARDS

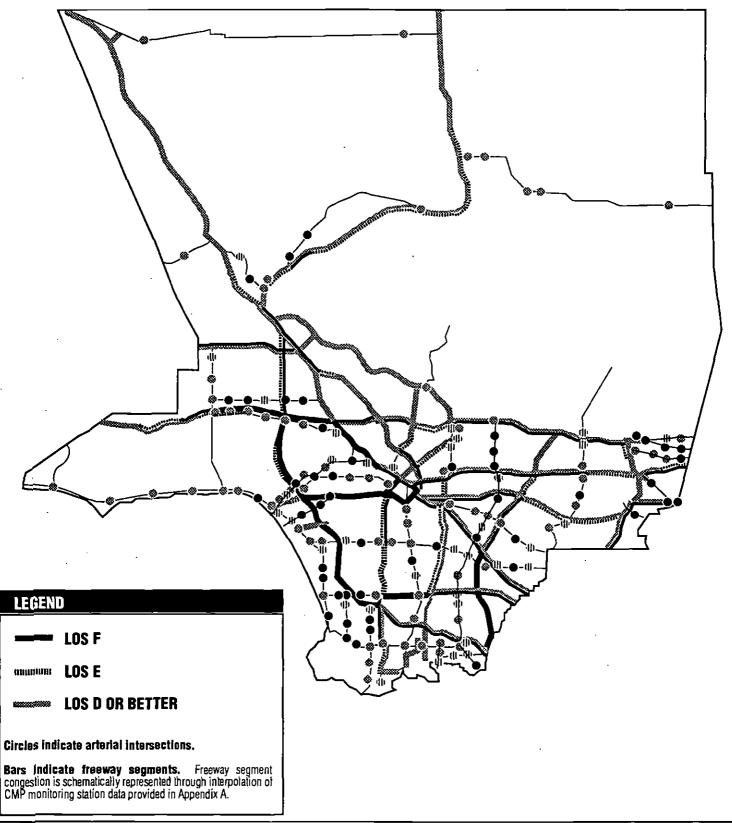
4.3.1 Los Angeles County LOS Standard. The level of service (LOS) standard in Los Angeles County is LOS E, except where base year LOS is worse than E. In such cases the base year level of service will be the standard. A 1992 base year has been established and Caltrans and local jurisdictions have conducted traffic counts at designated monitoring locations along the system. Levels of service based on these counts are shown in Exhibits 5 and 6; more detailed data is provided in Appendix A.


4.3.2 CMP Monitoring Requirements. The CMP system must be monitored annually and levels of service on specific CMP routes will be included in each CMP update. Appendix A discusses traffic count and analysis requirements in detail.

Arterial monitoring is accomplished by measuring the levels of service at key intersections, spaced roughly two miles apart, which reflect the primary capacity constraints on these arterials. Spacing is sometimes greater on rural highways where there are fewer constraining intersections. A total of 160 intersections have been identified for monitoring across the county. This list will be reviewed each year in consultation with Caltrans and local jurisdictions.

Freeway monitoring locations have been selected on 70 key segments within the county to quantify freeway system operation. Caltrans provides freeway monitoring results.

EXHIBIT 5


1992 CMP HIGHWAY SYSTEM AM PEAK HOUR LEVELS OF SERVICE

CMP-069/12-92

EXHIBIT 6

1992 CMP HIGHWAY SYSTEM PM PEAK HOUR LEVELS OF SERVICE

IP-069/12-92

4.4 LEVEL OF SERVICE METHODOLOGY

CMP level of service computations are intended for system-wide planning and problem area identification rather than for detailed operational or design analysis. The following sections describe the technical methodologies used for CMP level of service calculations.

4.4.1 Freeway Level of Service. Caltrans measures level of service as a function of travel speed and duration of congestion, consistent with the Highway Capacity Manual methodology.

4.4.2 Arterial Level of Service. One objective of arterial LOS calculation is annual monitoring with minimal burden to local jurisdictions. During development of the CMP available methodologies were discussed with local traffic engineering representatives through a highway working group, who confirmed that a variety of methods are currently used around the county. These include Circular 212, Highway Capacity Manual (HCM), and Intersection Capacity Utilization (ICU) methods, based on local agency experience and studies specific to each community.

However, the need for consistent CMP monitoring across the county necessitated the selection of one method. The ICU method has been selected with consensus of the highway working group, given its wide usage, straightforwardness, and ease of conversion from other methods. The ICU method has also been determined by SCAG to be consistent with the HCM for CMP purposes. Appendix A provides the format for ICU calculations.

4.4.3 Relationship to Other Locally-Preferred Methodologies. Establishment of a uniform LOS method is necessary for CMP monitoring purposes in order to assess congestion countywide using a consistent basis of measurement. This does not preclude use of different methodologies for local studies or any other purposes outside the CMP.

4.4.4 Adjustment for Exempted Trip Types. Statute provides that for the purpose of determining deficiencies a number of factors must be exempted from the calculation of levels of service. Statutory exemptions will be addressed as part of the Countywide Congestion Study, which will also be the basis for developing deficiency plan procedures. Prior to the identification of deficiencies, MTA will finalize the technical elements of statutory exemptions and their effect on individual jurisdictions. Since the deficiency plan component will be defined through recommendations of the study and incorporated in the 1993 CMP update, the effects of these exemptions do not apply to this first-year CMP.

TRANSIT ANALYSIS

5.1 INTRODUCTION

5.1.1 Statutory Requirement. CMP statute requires that transit standards be established for frequency and routing of transit services, and for coordination of services provided by various operators.

While Los Angeles County is known for its extensive highway and roadway system, there is also a comprehensive public transportation system provided by many transit operators. This system includes:

- Fixed route bus service. Southern California Rapid Transit District (SCRTD) is the largest regional transit provider, providing extensive service to Los Angeles County. SCRTD operates approximately 1,850 peak buses and has over 400 million boardings annually. In addition to SCRTD, there are twelve fixed-route operators that receive regional formula funding. These operators are Antelope Valley Transit, Commerce, Culver City, Foothill Transit, Gardena, Long Beach, Los Angeles, Montebello, Norwalk, Santa Monica, Santa Clarita and Torrance. Furthermore, over 50 cities provide community and shuttle services. Together, on an average weekday, these systems provide service to over 1.5 million passengers on over 250 separate routes.
- Rail Service. A 400-mile rail system is currently being developed for Los Angeles County. This system will include a combination of light rail, subway and commuter rail services. The Metro Blue Line is the first operational segment of this system, providing light-rail service to over 30,000 daily passengers between Downtown Los Angeles and Long Beach.
- Paratransit service. Paratransit services provide demand responsive, door-to-door service, generally requiring a minimum advance notice. Seventy operators currently provide service either to the general public or specialized paratransit services (i.e., service to elderly and handicapped persons).

5.1.2 Purpose. The purpose of the transit element is to make the most effective use of transit services as an alternative to the automobile, thereby alleviating congestion on the CMP highway system and improving countywide mobility. As CMP statute requires the development of transit standards, a CMP transit monitoring network has been developed as a planning tool. The transit monitoring network is not a transit funding network, but rather an analysis mechanism to assist in:

Quantifying transit service currently available in broad transportation corridors.

- Monitoring changes in transit availability in countywide corridors and identify future needs for transit service in those corridors. These corridors are based on the Congested Corridor Action Plan.
- Identifying future transit needs to enhance mobility on the CMP highway system.

While CMP statute focuses on how transit can help alleviate congestion on the highway system, Assembly Bill 3093 authorizes MTA to lead a statewide steering committee to examine a range of CMP issues. One issue the steering committee will examine is how to supplement highway level of service standards with other countywide mobility measures. The recommendations of this study may lead to new multi-modal mobility measures that may relate to transit analysis in future CMP updates. MTA will coordinate with Los Angeles County transit operators as this issue is discussed.

5.1.3 Importance of Transit Analysis. One of the purposes of the CMP is to identify multimodal transportation needs. CMP transit monitoring will provide information regarding the functioning of transit services and where additional transit needs occur. This information will be considered as one factor in making MTA funding recommendations.

Transit operators will also be able to use results of this corridor analysis in developing recommended mitigation measures to address impacts of development projects on transit services. Chapter 6 discusses in detail the requirement that affected transit operators must be consulted regarding potential impacts of development projects on transit services through the California Environmental Quality Act (CEQA) process.

Transit services that address the following objectives will be particularly beneficial in improving CMP related transit service:

- Routing Objectives. Transit service that supplements existing service which (1) shows greater opportunity of utilizing transit as a viable alternative to the automobile on CMP corridors, (2) improves time competitiveness of transit relative to the automobile.
- Frequency Objectives. Transit services that have frequencies meeting demand and are effective in reducing congestion along CMP corridors. This could be determined by reviewing headways and boarding statistics during the peak periods.
- Coordination Objectives. Transit service which does not duplicate existing service and integrates with the current system.

5.2 CMP TRANSIT MONITORING NETWORK

5.2.1 Reason For Transit Network. There are a wide range of transit services in Los Angeles County providing a mixture of local, regional, and special service transportation. However, for CMP analysis, a subset of transit services which can be effectively monitored and directly linked to traffic congestion on the CMP highway system has been identified.

CMP statute requires the analysis of transit as a mechanism for reducing congestion on the CMP highway system. Therefore, a CMP transit network has been identified which includes routes that are within the corridors of the Congested Corridor Action Plan and provide service parallel to the CMP highway system for five miles or greater. This subset of transit services is referred to as the CMP transit monitoring network, shown in Exhibit 7 and listed in Appendix B.

Ninety bus routes are included in the CMP transit monitoring network. Also included are the Metro Blue Line and several bus routes to Metro Blue Line stations. There are additional rail services currently under development that will be in operation in the next several years. As these services become operational they will also be incorporated into the network. MTA staff will also examine the appropriateness of adding inter-county commuter services (e.g., Amtrak commuter rail, Metrolink, and Orange and San Bernardino County Express Bus services) in future CMP updates.

The purpose of monitoring the transit network is to gauge the effectiveness of transit in relieving traffic congestion in congested travel corridors. Transit monitoring efforts will provide important information on the routing, frequency, capacity and time competitiveness of existing services relative to the automobile. The transit monitoring network can also serve as a planning tool to identify potential gaps in the current transit service as well as opportunities to make transit a more effective traffic mitigation strategy.

The transit network will be reviewed as part of the biennial CMP update. Modifications may be necessary to reflect new transit routes, route changes, or deletions. A review will also be conducted upon changes to the CMP highway system.

5.2.2 CMP Transit Network Reporting And Monitoring Requirements. To effectively monitor the CMP transit network, MTA will require the collection of transit service and ridership data for each transit line on the CMP transit system. The information will be requested through the annual Short Range Transit Plan (SRTP) process. The information required can be derived from data that operators currently collect.

Descriptive line information on current service routing, hours and days of operation, frequency and ridership is necessary for CMP transit analysis. Passenger miles and average speed will help quantify transit's role in relieving congestion on the CMP highway system by assessing the time competitiveness of transit relative to the automobile.

Operators will receive the information request form contained in Appendix B as part of MTA instructions for the SRTP. Definitions for each statistic will be included in the SRTP instructions to ensure consistency. Data must be submitted only for transit routes on the CMP transit network. For first year reporting, operators must utilize their fiscal year 1992 actual line by line analysis data. In subsequent years, operators will submit annual updates in their SRTP using their most recent data. This information will be used to measure the region's success at maintaining these transit standards.

CMP TRANSIT MONITORING NETWORK

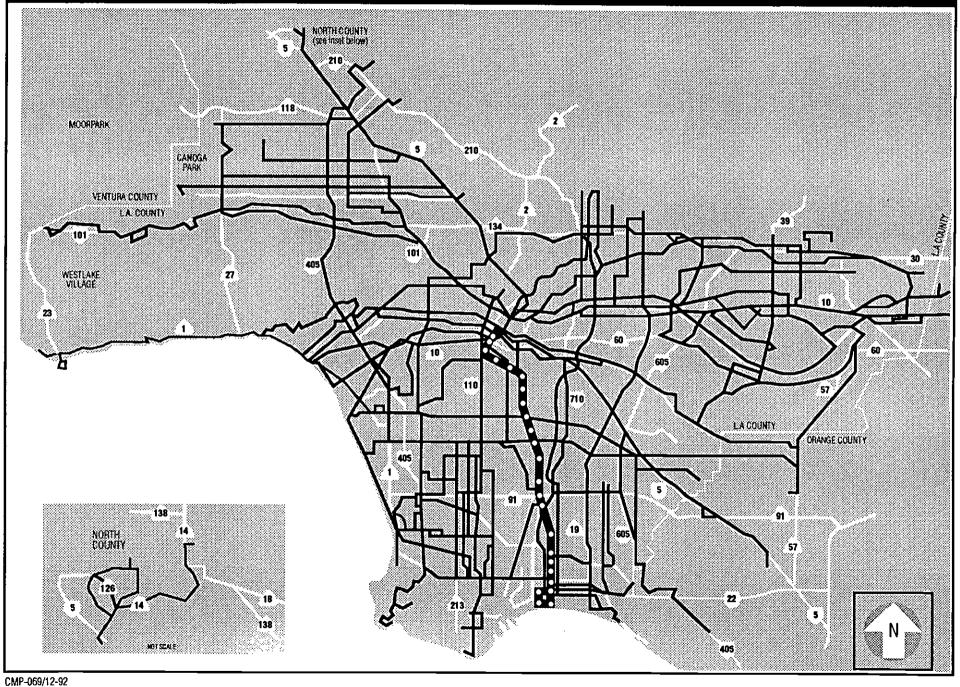


EXHIBIT 7

It may be appropriate in future years to monitor transit route segments as opposed to the entire route. The intent of monitoring route segments will be to focus attention on transit services more directly related to the CMP highway system. The triennial audit may be a useful resource for such monitoring efforts.

5.3 MINIMUM CMP TRANSIT STANDARDS

CMP statute requires establishment of transit standards. The CMP transit standards are as follows:

5.3.1 CMP Transit Routing and Frequency Standards. Exhibit 8 shows minimum routing and frequency standards by corridor for the first year CMP. A routing index which measures passenger throughput (i.e., passenger miles per vehicle service mile times average speed) is used as the routing standard. The average number of transit trips in a peak period (i.e., trips made in the 6-9 a.m. and 3-6 p.m. peak periods divided by two) is used as the frequency standard. 1990 service levels for CMP Transit Network routes have been utilized to develop the routing and frequency standards, by corridor, for CMP monitoring purposes. MTA will review the data submitted and determine whether transit services, by corridor, fall below minimum CMP transit routing and frequency standards. If corridor measures fall below the transit standards, MTA will evaluate and recommend strategies for improving service in that corridor.

5.3.2 Coordination Standards. Transit coordination standards for all transit funding recipients have already been established through Proposition A Local Return Guidelines. These standards are now reaffirmed through the CMP as well. CMP coordination standards for all transit operators include:

- 1. Issue and accept interagency transfers.
- 2. Participate in the Computerized Customer Information System which provides information on all transit routes and fares through a toll-free telephone service.
- 3. Circulate new service proposals to potentially affected transit operators and avoid implementation of services which duplicate those provided by other operators.

5.4 TRANSIT COORDINATION IN LOCAL JURISDICTION LAND USE REVIEW

Chapter 6 discusses in detail the requirement, incorporated in the model Transportation Demand Management Ordinance, that affected transit operators must be consulted regarding the potential impacts of development projects on transit services. All development projects/programs for which an Environmental Impact Report (EIR) will be prepared shall be required to consult with affected transit operators through the CEQA process. This responsibility strengthens the existing CEQA link between the development .

process and transportation planning. This requirement must be incorporated into the local jurisdiction's land use process and implemented by April 1, 1993.

In addition, it is encouraged that existing transit friendly design standards available from such sources as MTA, Orange County Transit District, and the American Public Transit Association, be consulted in the early design stages. See Appendix D for a resource list.

CMP TRANSIT ROUTING AND FREQUENCY STANDARDS

Routing Index: Passengers miles traveled per vehicle service mile times average speed in identified corridors.

Frequency Index: Total 6-9 a.m. peak trips and 3-6 p.m. peak trips in identified corridors divided by two.

Performance standards which follow are based on 1990 service levels for those routes included in the CMP Transit Monitoring Network. These standards will be reviewed pending completion of the first transit reporting cycle.

	ST	ANDARDS
	ROUTING INDEX	FREQUENCY AVG TRIPS/PEAK
1A SANTA MONICA FREEWAY	299	284
1B SAN BERNARDINO/POMONA/ORANGE FREEWAYS	458	214
2 SAN FERNANDO VALLEY/DOWNTOWN LOS ANGELES	471	113
3 HARBOR FREEWAY	255	74
4 SAN DIEGO FREEWAY	419	165
5 VENTURA/FOOTHILL FWYS/W.SAN GABRIEL VALLEY	480	118
6 SANTA ANA FREEWAY	513	102
7 SAN GABRIEL RIVER FREEWAY	734	6
8 ARTESIA FREEWAY	857	30
9 NORTH COUNTY	221	20
10 LONG BEACH FREEWAY	320	176

TRANSPORTATION DEMAND MANAGEMENT ELEMENT

6.1 INTRODUCTION

6.1.1 Statutory Requirement. CMP statute requires development of a trip reduction and travel demand management element that promotes alternative transportation methods. Examples of these methods include carpools, vanpools, transit, bicycles, improvements in the balance between jobs and housing, and other strategies such as flexible work hours and parking management. Specifically, statute requires that local jurisdictions adopt a trip reduction ordinance.

6.1.2 Purpose. Because of the magnitude of congestion problems within Los Angeles County, transportation demand management (TDM) strategies are a key element of a countywide transportation program. Such strategies are an important part of the Regional Mobility Plan and the Air Quality Management Plan. Strategies that are identified in this chapter are supportive of both documents and work toward attainment of regional mobility and air quality goals.

A model TDM Ordinance has been developed to assist local jurisdictions in implementing this responsibility. This model ordinance identifies the minimum TDM effort necessary to be found in CMP conformance and identifies ordinance language to ease ordinance development and adoption by local jurisdictions.

The TDM Ordinance focuses on designing "TDM-friendly" facilities as part of new development. TDM-friendly facilities refer to elements of building design that encourage use of travel modes other than driving alone. Examples include: bicycle parking, preferred parking for carpools and vanpools, direct building access from the street for pedestrians, and safe and convenient transit waiting areas near the building.

The TDM Ordinance also addresses the importance of the transit system by requiring that transit system operators be incorporated into the development process. By linking this communication to existing California Environmental Quality Act (CEQA) processes, transit concerns can be addressed without lengthening or interrupting the local jurisdiction's land use review process.

The TDM development strategies were designed as a first step in getting local jurisdictions involved in trip reduction strategies. These features are not designed to attain a specific performance target. Such features, however, encourage ridesharing and transit use, and can also increase the desirability of a new facility for tenants. TDM-friendly facilities will also complement other TDM approaches that are required such as the South Coast Air Quality Management Districts' (SCAQMD) Regulation XV which requires employers of 100 or more employees to prepare and implement incentive programs to encourage use of

alternative transportation modes. Many employers do not have control over the site that they occupy and are unable to install physical improvements such as bicycle parking and preferential carpool and/or vanpool parking. The basic requirements of the model TDM Ordinance make these facilities available to these employers, as well as smaller employers that are not required to comply with Regulation XV. TDM design standards are the first step in broadening the options travellers have in getting to and from places.

6.2 EXISTING TDM PROGRAMS

A wide range of transportation demand management strategies, programs, and services are currently available in Los Angeles County. They include:

- Regulation XV Requirements. Employers of 100 or more employees are required to prepare trip-reduction plans for approval by SCAQMD. These plans must attain specified Average Vehicle Ridership (AVR) standards set by SCAQMD. Although no methods are stipulated for meeting AVR, each employer is required to annually update its plan. Annual surveys are required to monitor success in attaining AVR. Local jurisdictions may implement Regulation XV requirements in lieu of SCAQMD if a local program is adopted which is more stringent than Regulation XV requirements.
- Local TDM Ordinances. While CMP requirements for local adoption and implementation of trip reduction ordinances will be a new effort for most jurisdictions, a few jurisdictions already have adopted local ordinances. Some local ordinances are tied to specific plan areas rather than entire jurisdictions. Local jurisdictions that currently have trip reduction ordinances will only need to ensure that these existing ordinances are jurisdiction-wide and conform to the minimum standards of the CMP model trip reduction ordinance.
- Local Development Review Process. Many jurisdictions require TDM strategies to mitigate the impact of development on the local transportation system. This is often addressed during the CEQA project review process.
- Transit Service. Encouraging ridership on transit is an important TDM strategy in improving AVR. Services that have the following characteristics are particularly useful for TDM purposes because they increase the potential for commuters to ride transit:
 - Direct transit service to major commuter destinations (radial express service to downtown or suburb to suburb express service).
 - Frequent transit service during peak periods along high-demand routes and corridors.
 - Feeder bus service to rail lines.
 - Development of transit centers to facilitate transfer between modes and different transit systems.

- Effective public communication and ease of transit coordination (information systems, transit passes, ease of transfer, etc.).
- Vanpool Initiative and Programs. Vanpool initiatives or programs have been undertaken in recent years by several entities such as Caltrans and the City of Los Angeles.
- Transportation Management Associations/Organizations. A Transportation Management Association (TMA) is a consortium of private and public agencies devoted to increasing AVR and solving transportation problems in a particular employment area. There are fourteen operating TMA's in Los Angeles County.
- TDM Support. Commuter Transportation Services (CTS) is a non-profit organization supported by funding from Caltrans, MTA, and other transportation entities in neighboring counties to offer TDM-related services to area employers. CTS processes survey data to calculate employer AVR's for Regulation XV and to provide carpool/vanpool matchlists. It also markets TDM strategies and advises employers on incentives to include in trip reduction programs.
- MTA TDM Actions. To complement the efforts of local jurisdictions, MTA is committed to TDM as an integral component of its countywide mobility strategy. This commitment is being implemented through a number of programs, such as the TDM Immediate Action Pilot Program, as well as countywide master plans for high occupancy vehicle (HOV), park-and-ride, and bicycle facilities.

6.3 ORDINANCE DEVELOPMENT PROCESS

The development of the model CMP TDM Ordinance involved the participation of many different viewpoints. The ordinance underwent several revisions and incorporated the work of a TDM Working Group.

A revised draft of the CMP TDM Ordinance was sent to local jurisdictions, environmental groups, business interests and transit operators in March 1992. Staff received several letters expressing a wide range of concerns. To assist staff in resolving these issues, a TDM Working Group was convened consisting of city/County staff, transit agency employees and business representatives. The group held three sessions and recommended extensive changes to the revised draft. Staff presented the group's recommendations to the CMP Policy Advisory Committee (PAC) for review. The final CMP TDM Ordinance reflects the TDM Working Group's suggestions, as well as a few additional changes recommended by the CMP PAC.

6.4 MINIMUM TDM STRATEGIES

The following describes the minimum CMP TDM standards. These standards are included in the model Trip Reduction Ordinance in Appendix C.

6.4.1 Review for Transit Impacts Resulting From New Development.

Projects Subject to Transit Operator Review: All development projects/programs for which an Environmental Impact Report (EIR) will be prepared must consult with affected transit operators.

Projects for which a Notice of Preparation (NOP) has been released pursuant to the provisions of CEQA and prior to local jurisdiction adoption of the TDM Ordinance are exempted.

Phased development projects, or development projects requiring subsequent approvals, need not repeat this process as long as no significant changes are made to the project. It shall remain the discretion of the lead agency to determine when a project is substantially the same and thus covered by a previously certified EIR.

Transit Review Process: For EIR projects, local jurisdictions shall request comment from regional and municipal fixed-route transit operators by notifying the operator through the NOP process. The NOP shall include the "Transit Impact Review Worksheet", contained in Appendix D or equivalent, completed by the local jurisdiction. The NOP shall be sent to local fixed route bus operator(s) within 1 mile of the project and express bus and rail transit operators within 2 miles of the project.

Transit operators comments could include a determination of whether the project will impact current transit service, recommendations for transit service or capital improvements necessary as a result of the project, and recommendations for mitigation measures which minimize automobile trips on the CMP system. While transit operators are not required to comment, this process ensures that the opportunity is available during the NOP comment period.

Impacts and recommended mitigation measures submitted by the transit operator must be included and evaluated in the draft EIR. Selection of final mitigation measures shall remain the discretion of the lead agency. Once a mitigation program is selected, the jurisdiction self-monitors implementation through the existing mitigation monitoring requirements of CEQA.

6.4.2 Requirements for New Non-Residential Development. Each local jurisdiction's TDM ordinance shall include minimum TDM requirements for new non-residential development projects. The following describes the applicability and minimum standards required to conform with the CMP TDM Ordinance:

Applicability of Requirements: This requirement applies to all new non-residential development as described below. This requirement does not apply to: projects for which

a development application has been deemed "complete" by the local jurisdiction pursuant to Government Code Section 65943; projects for which a Notice of Preparation for a DEIR has been circulated; projects for which an application for a building permit has been received, prior to the effective date of the TDM Ordinance.

Development Standards: The following standards must be incorporated into the development project based on the gross square footage thresholds listed below. Projects exceeding each threshold must include the elements required at lower thresholds in their design. The standards must be provided to the satisfaction of the city or the County.

(1) New Non-Residential Developments of 25,000 square feet or more must provide:

• A Transportation Information Area: The information may consist of a bulletin board, display case or kiosk featuring transportation information. The types of information that must be included are transit route maps, bicycle route maps, information numbers for local transit operators and the regional ridesharing agency, as well as a list of alternative transportation amenities at the site.

(2) New Non-Residential Developments of 50,000 square feet or more must provide the above item plus the following facilities:

- Preferential Parking for Carpools and Vanpools: No less than 10% of all employee parking shall be set aside for carpools and vanpools. The preferential parking spaces must be provided upon request. An employee parking calculation methodology is included in the model ordinance for local jurisdictions who do not currently have an employee parking method.
- Access for Vanpool Vehicles in Parking Areas: Vanpool parking areas must be designed to admit vanpool vehicles. A minimum interior clearance for parking structures of 7'2" is included in the model ordinance. (Local jurisdictions should also be aware of existing California Uniform Building Code Title 24 and federal Americans with Disabilities Act (ADA) requirements which specify an interior clearance for handicap parking spaces. Therefore, local jurisdictions may wish to coordinate the CMP vanpool, Title 24 and ADA interior clearance standards as part of their TDM ordinance. Local jurisdictions are advised to consult with local legal counsel regarding coordination of these requirements.)
- Bicycle Parking Facilities: Bicycle parking facilities may include bicycle racks, bicycle lockers or locked storage rooms.

(3) New Non-Residential Developments of 100,000 square feet or more must provide the above items and the following facilities:

• Carpool and Vanpool Loading Zone: A safe and convenient area for carpool and vanpool passengers to wait for, board, and disembark from their ridesharing arrangement.

- Direct Access for Pedestrians: A pedestrian system which allows direct and convenient access to the development.
- Bus Stop Improvements: If appropriate, improvements must be made to bus stop areas of bus routes impacted by the proposed development. Consultation with local bus service providers shall be required.
- Direct Access to Bicycle Parking from Street: Safe and convenient access to development bicycle parking from the external street system for bicycle riders.

Exhibit 9 presents the TDM Ordinance requirements, as well.

6.4.3 TDM Monitoring. Each local jurisdiction must monitor the implementation of TDM requirements. Local jurisdictions may use existing methods utilized for monitoring compliance with development standards. It is left to the discretion of the city and the County to determine the method best suited for monitoring purposes. Examples of common monitoring methods used by local jurisdictions include:

- Site monitoring prior to the issuance of a certificate of occupancy or business license.
- Other building site reports/surveys which the local jurisdiction may deem appropriate.

6.4.4 TDM Enforcement. Local jurisdictions must establish enforcement provisions for the TDM standards. Local jurisdictions may use existing methods utilized for enforcing compliance with development standards. The enforcement methods selected are left to the discretion of the city and the County. An example of a common enforcement method used by local jurisdictions is referencing existing enforcement and compliance provisions in a jurisdiction's zoning code.

6.5 TDM ORDINANCE IMPLEMENTATION GUIDANCE

Each local jurisdiction is responsible for adopting and implementing a TDM Ordinance meeting the minimum standards identified below. Local jurisdictions are encouraged to adopt the model TDM Ordinance. Those jurisdictions which adopt the model TDM Ordinance without modification will receive automatic approval without further MTA review. The following procedures should be followed by local jurisdictions in preparing a TDM Ordinance:

1. Local jurisdictions are responsible for adopting and implementing a local TDM Ordinance conforming to the model TDM Ordinance by April 1, 1993. Local jurisdictions are encouraged to begin the development and adoption of this ordinance as soon as possible, to ensure that implementation begins by April 1, 1993. Each jurisdiction must designate an ordinance contact person and notify CMP staff. EXHIBIT 9

CMP TDM ORDINANCE REQUIREMENTS

0

TDM REQUIREMENTS	NEW NON-RESIDENTIAL DEVELOPMENT		
	25,000+ Square Feet	50,000+ Square Feet	100,000+ Square Feet
Transportation Information Area	*	*	*
Preferential Carpool/Vanpool Parking		*	*
Parking Designed to Admit Vanpools		*	*
Bicycle Parking		*	*
Carpool/Vanpool Loading Zones			*
Efficient Pedestrian Access			*
Bus Stop Improvements			*
Safe Bike Access from Street to Bike Parking			. *
Transit Review	For All Residential and Non- Residential Projects Subject to EIR		

- 2. Local jurisdictions may reformat the model ordinance to fit a standardized ordinance format typically used by the jurisdiction.
- 3. At the discretion of the local jurisdiction, variances to the minimum ordinance requirements for individual projects may be considered if:
 - (A) a TDM strategy required by Section 3 of the ordinance will not be applicable due to special circumstances relating to the project, including, but not limited to, the location or configuration of the project, the availability of existing TDM strategies, or other specific factors which will make infeasible or reduce the effectiveness of a TDM strategy required by Section 3 of the ordinance, and
 - (B) alternative TDM strategies commensurate with the nature and trip generating characteristics of the proposed facility are feasible.

Any variance from the requirements of Section 3 of the ordinance must be conditioned upon the substitution of an alternative TDM strategy.

- 4. Local jurisdictions must consult with LACTC regarding any proposed content changes to the TDM Ordinance prior to local adoption of the TDM Ordinance. Alternative TDM measures may be substituted for minimum TDM requirements if they are found, after consultation with LACTC staff, to have equal or greater ability to reduce trips. This can be demonstrated by presenting the target market and case study experience for the proposed TDM measure. Such review will be done on a case-by-case basis. It is recommended that local jurisdictions submit draft ordinances that differ from the Model Ordinance to LACTC for review by December 1992 to ensure that such ordinances meet the minimum TDM standards. LACTC will facilitate such review to assist local jurisdictions in implementing their ordinances by April 1, 1993.
- 5. All jurisdictions must submit their TDM Ordinances to MTA in April 1993. Future modifications of the jurisdiction's TDM Ordinance must also be submitted to MTA prior to local adoption. These ordinances will be kept on file as documentation of local CMP implementation.

In addition to the minimum standards discussed in this chapter, the Supplement identifies more TDM strategies.

LAND USE ANALYSIS PROGRAM

7.1 INTRODUCTION

7.1.1 Background. In the August 1991 draft CMP, a countywide mitigation fee was discussed as a mechanism to meet the land use analysis requirement and address the deficiency plan process. Action was taken in early 1992 not to further pursue a countywide mitigation fee but to instead conduct a Countywide Congestion Study to develop an alternative approach to meet deficiency plan requirements. As a result of these changes, the Land Use Analysis Program focuses solely on what local governments must do to comply with CMP land use analysis requirements.

7.1.2 Statutory Requirement. Statute requires that the CMP require local jurisdiction adoption of a program to analyze the impacts of land use decisions on the regional transportation system, including an estimate of the cost of mitigating associated impacts. The cost of mitigating the impact of inter-regional trips (trips with both their origin and destination outside the county) is excluded from this analysis. The land use program is also required to provide credit for public and private contributions for improvements to the regional transportation system.

It should be noted that adoption of a deficiency plan process is not a part of the first-year CMP. This component will be evaluated in the Countywide Congestion Study and presented for MTA Board adoption in 1993. Local jurisdictions will not be responsible for deficiency plan requirements until the Countywide Study is completed and deficiency plan procedures are adopted. Also to be evaluated through the Countywide Congestion Study will be how to create and encourage a program of incentives for local land use decisions that reduce trips and that are supportive of development in proximity to transit centers and along major transit corridors.

7.1.3 Purpose. The purpose of the CMP Land Use Analysis Program is to ensure that local jurisdictions consider the regional transportation impact of new development through the land use approval process. While local jurisdictions routinely examine and mitigate transportation impacts on the local street network, this does not always extend to the regional transportation system.

It should be stressed that the authority for local land use decisions remains the responsibility of local jurisdictions. However, CMP statute highlights the responsibility of local jurisdictions to consider the impact of new development on the regional system as part of the local land use decision-making process. 7.1.4 Objectives. The Land Use Analysis Program is designed to build on the existing California Environmental Quality Act (CEQA) process in identifying the impact of development on the CMP system. This approach is designed to provide consistent information to local decision-makers and interested parties through the CEQA process. This program is intended as an information sharing program to improve communication regarding the impact of new development on the CMP system. Many local jurisdictions have expressed concern that there is a need for greater coordination between jurisdictions in resolving inter-jurisdictional impacts. While CMP statute does not give MTA the responsibility of settling land use disputes between jurisdictions, the CMP Land Use Analysis Program will assist jurisdictions by providing a consistent methodology for examining regional impacts in an Environmental Impact Report (EIR). This will enhance the level of dialogue and aid a local jurisdiction in determining when mitigation is necessary, and what mitigation strategies are most appropriate. Consistent with CMP statute the Land Use Analysis Program has the following objectives:

- Reaffirming the responsibility of the lead agency as the decision making authority.
- Establishing a program which can be integrated into existing local review processes, with minimal additional burden placed on public and private entities.
- Promoting increased inter-jurisdictional coordination in evaluating and mitigating land use impacts.
- Encouraging consistent analysis of regional impacts and the sharing of this information through the CEQA process.

7.2 LAND USE ANALYSIS PROGRAM

7.2.1 Integration With CEQA. The Land Use Analysis Program relies upon the procedural guidelines already established by CEQA. The Land Use Analysis Program will assist local jurisdictions in addressing CEQA's existing requirement that EIR's analyze a project's impacts on the regional transportation system. CEQA further requires that lead agencies consult with other affected agencies regarding a project's impact on regional transportation facilities.

Except as modified herein, all existing CEQA requirements for EIR's related to the Notice of Preparation (NOP) and consultation with other agencies, scope and content of an EIR, determinations of significant effect, time limits, public hearings, etc., shall continue to be the responsibility of the local jurisdiction. While distribution of the NOP to MTA is a CMP requirement, the role of MTA will be limited to that of a "responsible agency" as defined by CEQA.

7.2.2 Projects Subject to the Land Use Analysis Program. All development projects required to prepare an EIR based on a local determination shall be subject to the Land Use

Analysis Program and shall incorporate into the EIR a CMP Transportation Impact Analysis (TIA).

Exemptions to CMP TIA requirements include:

- Projects that entered into a development agreement with a local jurisdiction prior to July 10, 1989. Development agreements are obligations entered into on the part of a developer and a jurisdiction as specified under Section 65864 of the California Government Code (See Supplement).
- Traffic generated by low and very low income housing. Definitions of low and very low income housing are provided by the California Department of Housing and Community Development as follows:

Low-Income: equal to or less than 80% of the median income, with adjustments for family size.

Very Low-Income: equal to or less than 50% of the median income, with adjustments for family size.

- Until June 1, 1995, buildings and structures damaged or destroyed in Los Angeles County as a result of civil unrest during the state of emergency declared by the Governor on April 29, 1992.
- High density residential development located within 1/4 mile of a fixed rail passenger station. State statute defines "high density" as equal to or greater than 120 percent of the maximum residential density allowed under the local general plan and zoning ordinance.
- Mixed use development located within 1/4 mile of a fixed rail passenger station, if more than half of the land area, or floor area, of the mixed use development is used for high density residential housing, as determined by the agency. Mixed use development is defined by statute as development which integrates compatible commercial or retail uses, or both, with residential uses, and which, due to the proximity of job locations, shopping opportunities, and residences, will minimize new trip generation.
- Projects for which an NOP was prepared and distributed pursuant to CEQA prior to the local jurisdiction's adoption of the Land Use Analysis Program.

Phased development projects, or development projects requiring subsequent approvals, need not repeat this process as long as no significant changes are made to the project. It shall remain the discretion of the lead agency to determine when a project is substantially the same and thus covered by a previously certified EIR. 7.2.3 CMP Transportation Impact Analysis. The objective of this process is to identify sitespecific impacts and mitigation within the immediate vicinity of major projects. This analysis shall be documented within the project EIR. Appendix D contains the specific TIA guidelines required to be followed. Briefly, the steps involved are:

- Local jurisdiction determines that an EIR is necessary for a proposed project and notifies MTA through the NOP process. In addition, area transit operators are consulted regarding potential project impacts to the transit system. (See Chapter 6).
- Existing traffic volumes and levels of service (LOS) on the CMP highway system within the study area must be documented.
- Traffic generation estimates are made, conforming to the procedures of the current edition of *Trip Generation* by the Institute of Transportation Engineers (ITE).
- Trip distribution by manual/assignment are made using the generalized trip distribution factors contained in Appendix D.
- An analysis of the project's traffic impacts is conducted utilizing the guidelines contained in Appendix D.
- The TIA is conducted examining the following minimum geographic area:
 - All CMP arterial monitoring intersections, including freeway on -or off-ramps, where the proposed project will add 50 or more trips during either the AM or PM weekday peak hours.
 - Mainline freeway monitoring locations where the project will add 150 or more trips, in either direction, during either the AM or PM weekday peak hours.
 - NOTE: If, based on this criteria, no CMP facilities for study are identified, no further transportation analysis is required. However, projects are still required to consult with transit operators as discussed in Section 7.2.4 and Chapter 6.
- Determine if significant impacts occur on the CMP system as a result of the project. For purposes of the CMP, a significant impact occurs when the proposed project increases traffic demand on a CMP facility by 2% of capacity ($V/C \ge 0.02$) causing or worsening LOS F (V/C > 1.00). The lead agency may apply a more stringent criteria if desired.
- Investigate measures which will mitigate significant CMP system impacts identified in the TIA. Such mitigation measures must consider significant impacts of the proposed development on neighboring jurisdictions.

- Develop cost estimates, including the fair share costs to mitigate impacts of the proposed project, and indicate the responsible agency.
- Selection of final mitigation measures remains at the discretion of the local jurisdiction. Once a mitigation program is selected the jurisdiction self-monitors implementation through the existing mitigation monitoring requirements of CEQA.

7.2.4 Transit Operator Consultation. Chapter 6 discusses in detail the requirement, contained in the model Transportation Demand Management Ordinance, that all projects preparing an EIR shall consult with affected transit operators with regard to the potential impacts of the project on transit services.

Exempted from this requirement are projects for which an NOP was prepared and distributed pursuant to CEQA and prior to the local jurisdiction's adoption of the model Transportation Demand Management Ordinance contained in Chapter 6.

Phased development projects, or development projects requiring subsequent approvals, need not repeat this process as long as no significant changes are made to the project. It shall remain the discretion of the lead agency to determine when a project is substantially the same and thus covered by a previously certified EIR.

7.2.5 Relationship to Localized Impact Analysis and Mitigation. The Land Use Analysis Program provides for analysis and mitigation of the regional impacts of development; it does not replace the need for localized impact review. Moreover, this program does not change the existing prerogative of local jurisdictions to require additional analysis of projects not addressed herein. Furthermore, the need for physical mitigation to provide adequate project access, including, but not limited to, arterial turn lanes, signalization and freeway/arterial interchange improvements, remains the responsibility of local jurisdictions above and beyond the analysis described by this program.

7.3 LOCAL CONFORMANCE

Statute requires that each jurisdiction adopt and implement a land use analysis program. Local jurisdictions must adopt and implement the Land Use Analysis Program by April 1, 1993. The method by which local jurisdictions incorporate and implement the Land Use Analysis Program is left to the discretion of the jurisdiction. Suggested methods include adoption of a related resolution or ordinance, or adoption of environmental (CEQA) guidelines.

The MTA is required to assess the adequacy of local programs and determine their conformance with CMP requirements. The determination of adequacy of a local land use program will rely on documentation submitted to MTA in April 1993, that meets the following minimum criteria:

 Formal incorporation of the program into the local land use process as evidenced by an adopted resolution or ordinance, written CEQA implementation guidelines, department operations manual, etc. The adopted local program must contain Transportation Impact Analysis guidelines that are consistent with those outlined in Appendix D.

These documents will be kept on file as evidence of local CMP implementation.

CAPITAL IMPROVEMENT PROGRAM

Statute requires the CMP to include a seven year Capital Improvement Program (CIP) to maintain or improve the level of service on the CMP highway system and transit performance standards, and to mitigate regional transportation impacts identified through the CMP land use analysis program.

State programming statutes require that projects competing for state Flexible Congestion Relief (FCR) funds be included in the CMP, and that projects competing for Traffic System Management (TSM) funds be consistent with the CMP. In Spring 1991, it was requested that Caltrans and local jurisdictions nominate projects for FCR and TSM funds. In response to this request, staff received nearly one thousand project proposals totalling \$22 billion. A candidate pool of eligible projects is identified in the Supplement.

Because these two funding sources are the primary state funding sources for urban highway and roadway projects, the following brief descriptions are provided:

Flexible Congestion Relief (FCR): FCR funds can be used for highway, local streets and roads, or urban and commuter rail projects that reduce or avoid congestion on the CMP system. FCR projects are first identified in the CIP, and then programmed through the local Transportation Improvement Program (TIP), the Regional Transportation Improvement Program, and the State Transportation Improvement Program (STIP). Proposition 111 provides \$3 billion of FCR funds statewide over a ten year period. In 1997-98 and 1998-99, Los Angeles County was awarded \$300 million (FY 1998-99 dollars) of FCR funds by the California Transportation Commission.

Traffic Systems Management (TSM): The intent of the TSM program is to provide for lowcost operational improvements to the highway system without substantively increasing physical capacity. Local implementing agencies and Caltrans are eligible to propose TSM projects for consideration in the development of Caltrans' annual state-wide TSM Plan. \$1 billion of TSM funds are available across the state over a ten year period. The California Transportation Commission is responsible for funding projects from Caltrans' list in priority order.

From the submitted candidate projects list, a subset of projects which were likely to be the most competitive for available funds were selected in consultation with local jurisdictions and forwarded to the California Transportation Commission. This short list represents the CMP Capital Improvement Program project list, and is shown in Exhibit 10. Projects previously programmed in the STIP are presumed to be consistent with the CMP.

For the future, MTA will be examining ways to improve integration of the CMP Capital Improvement Program into these and other funding programs such as Los Angeles County's Proposition C and new federal sources.

FUNDING SOURCE	LEAD AGENCY	PROJECT DESCRIPTION	PROGRAM COST (millions)
FCR	Caltrans	Rte 110 Transitway, Construction Cost Increase	\$1.4
FCR	Caltrans	Rte 110 Transitway, Right of Way Cost Increase	\$11.0
FCR	Caltrans	Rte 210 at Fair Oaks Ave, Construct Interchange Cost Increase	\$1.1
FCR	Caltrans	Rte 105/710 Interchange, Construct Pump Plant Cost Increase	\$9.6
FCR	Caltrans	Rte 105 at Monroe Ave, Construct Storm Drain Cost Increase	\$2.7
FCR	Caltrans	Rte 105 from Mona Bl to State St, Realign Imperial Hwy Cost Increase	\$10.5
FCR	Caltrans	Rte 30 at Foothill Blvd, Construct Interchange	\$19.5
FCR	Caltrans	Rte 30 from Padua to San Bernardino County Line, Construct 6 Lane Fwy+2 Carpool Lanes	\$37.7
FCR	Caltrans	Rte 30 from Towne to Padua, Construct 6 Lane Fwy+2 Carpool Lanes	\$68.9
FCR	City of LA	Imperial Hwy at Wilmington Ave, Construct Rail/Highway Grade Separation	\$9.2
FCR	LACTC	Chatsworth Commuter Rail Station, Construct Access Road	\$0.7
FCR	Hawthorne	Rosecrans/Aviation, Widen Intersection	\$0.7
FCR	Commerce	Atlantic Blvd at Rte 5, Modify "Mixmaster" intersection and Fwy Ramps	\$8.0
FCR	Carson	Del Amo Blvd at Rte 405, Construct Overcrossing	\$10.2
FCR	LA County	Valley Blvd from Rte 710 to Santa Anita, Widen Intersections and Roadway at Selected Locations	\$7.5
FCR	Caltrans	Rte 138 from Avenue T to Longview Rd, Widen to 4 Lanes	\$40.8
FCR	Caltrans	Rte 405 at Arbor Vitae, Construct Southern Portion of Interchange	\$20.7
FCR	Caltrans	Rte 138 from 10th St West to 30th St East, Widen to 6 Lanes	\$1.0

.

FUNDING SOURCE	LEAD AGENCY	PROJECT DESCRIPTION	PROGRAM COST (millions)
TSM	Caltrans	Rte 60 at Reservoir St, install ramp meter, HOV bypass	\$0.240
TSM	Caltrans	Rte 10 at Arlington Ave Westbound collector/distributor, restripe auxiliary lane	\$0,200
TSM	Caltrans	Traffic Operations Center, upgrade (phase I)	\$3.500
TSM	Caltrans	Rte 2 WB from Verdugo Bl to Rte 5 SB/Riverside Dr, install ramp metering, HOV bypass	\$ 0.970
TSM	Caltrans	Traffic Operations Center, SMART corridor direct ATSAC link	\$0.280
TSM	Caltrans	Rte 57/Rte 210 from Sunset Crossing Rd to Allen Ave, install ramp metering, HOV bypass (phase I)	\$1.860
TSM	Caltrans	Rte 105, 110, 405, 605 & 710 at various locations, install Closed Circuit TV	\$1.50
TSM	Caltrans	Rte 10 WB at Frazier St Interchange, restripe auxiliary lane	\$0.150
TSM	Caltrans	LA County Freeway System, at various locations, install Changeable Message Signs	\$5.792
TSM	Rosemead	San Gabriel Bl from Rte 60 to Rte 10, signal coordination	\$0.017
TSM	Culver City	Washington Bl along Santa Monica Fwy (Rte 10), SMART street project	\$2.200
TSM	Caltrans	Rte 210 from Rte 134 to Rte 30, widen ramps, intersection improvements (phase II)	\$2.030
TSM	City of LA	Hollywood Fwy Corridor, install ATSAC area control system (stage I)	\$2.954
TSM	LA County	Hawthorne Bl, from Imperial Hwy to Manhattan Beach and 244th St to Palos Verde Dr W, upgrade signals & intersections	\$0.610
TSM	City of LA	Victory Corridor East, ATSAC area control system (stage I)	\$2.974
TSM	City of LA	Hollywood Fwy Corridor, ATSAC area control system (stage III)	\$2.278
TSM	LA County	Huntington/Foothill/Alosta, Michillinda-Baseline, upgrade signals & interconnect	\$1.970

Note: FCR costs in escalated 1997-99 dollars, TSM costs in 1992-93 dollars.

COUNTYWIDE TRANSPORTATION MODEL DEVELOPMENT

9.1 INTRODUCTION

CMP statute requires the development of a countywide transportation model and database to quantify the impacts of congestion on the CMP system. The model will be used for countywide planning to look at how various highway, transit, and TDM improvements will assist in addressing countywide congestion. The model will also enable MTA to conduct air quality analysis on recommended projects, to ensure that MTA is recommending a package of projects in local TIP development that works toward air quality goals. This analysis will assist SCAG, which must make a region-wide determination that the TIP is in conformance with the Air Quality Management Plan.

9.2 MODEL DEVELOPMENT

Model development began in late 1990 to establish a more detailed county-level model than is available from existing regional models. The first task was the acquisition of necessary hardware and software. This work was completed early in 1991 with the purchase of an IBM RS6000 work station system and TRANPLAN modeling software. Thereafter, the countywide model has been actively developed. Staff have been actively consulting with Caltrans and SCAG in developing the model's highway network for the 1990 base year and the 2010 forecast year. Staff have also been reviewing the transit network for both bus routes and rail services expected to be in place by 2010. Additionally, socio-economic census data and forecasts have been provided by SCAG. Staff is working closely with SCAG on model and database issues, as the Countywide Model and database must be developed consistent with the regional model and database.

As a result of the significant progress made in model development over the past year, the model is now functional and has been used to illustrate preliminary results of future congestion over the 20 year period for Countywide Congestion Study. However, before the model is considered fully operational, its results will be tested against 1990 travel counts--a process known as validation of model results. This process will be conducted this fall. The model will also be examined by SCAG this fall as part of their regional consistency review. Upon completion of these two activities, the model will be available for CMP analysis purposes.

9.3 WORK AHEAD

The following activities will be significant in CMP model development over the next year:

- Development of Model Consistency Criteria: Statute requires that local models used for CMP analysis purposes be found consistent with the countywide model. Now that the work on developing the countywide model is far along, work will begin with local jurisdictions to develop such criteria, with the assistance of the CMP Modeling Working Group. This working group, consisting of local jurisdiction and regional agency representatives active in computer modeling, has been meeting bimonthly since February 1992 to strengthen the tie between local and countywide modeling efforts. It proposed to complete local consistency criteria, with this group's assistance, by the year's end.
- Countywide Congestion Study: The CMP Countywide Model will be the analytical backbone of the Countywide Congestion Study to identify future congestion on the CMP system and the congestion relief benefit of various congestion relief strategies. As this study will also examine the benefits of alternative land use scenarios that minimize congestion, the model will also assist in land use analysis as well.
- Model Refinement: Work is continuing in refining the model to provide the county level detail and analysis capabilities necessary for CMP purposes, including the following:
 - Disaggregating analysis zones: Staff will be disaggregating existing traffic impact analysis zones developed for regional purposes to smaller census level zones more appropriate for county-level analysis. This increased level of detail will provide a clearer picture of travel patterns in various portions of the county.
 - Air quality analysis: The Caltrans DTIM model has been acquired to assist in air quality analysis of countywide transportation alternatives.
 - ► TDM Analysis: A TDM modeling package has been acquired to assist in examining the trip reduction benefits of various TDM strategies.

All of these refinements will create a powerful county modeling tool capable of (1) determining future congestion on the CMP network; (2) modeling multi-modal transportation alternatives that will alleviate congestion; (3) analyzing air quality impacts of countywide transportation alternatives; and (4) evaluating land use options that local jurisdictions may wish to consider in order to minimize congestion impacts.

LOCAL JURISDICTION CONFORMANCE PROCEDURES

10.1 INTRODUCTION

The CMP statute requires that MTA annually monitor and determine that local jurisdictions are in conformance with local CMP responsibilities. If a jurisdiction is found in nonconformance with the CMP, then MTA must notify the State Controller.

Upon notification of nonconformance, the Controller will withhold from that jurisdiction its allocation of the state gas tax increase enacted with the passage of Proposition 111 in June 1990 (Streets and Highways Code, Section 2105 funds). In order to receive the withheld gas tax funds, jurisdictions must achieve CMP conformance within twelve months. Otherwise the Controller will reallocate the jurisdiction's withheld funds to MTA for regionally significant projects. Additionally, CMP statute prohibits the programming of federal Surface Transportation Program or Congestion Mitigation and Air Quality funds in jurisdictions in non-conformance with the CMP unless MTA finds that the project is of regional significance. Finally, since the CMP process is the first step in developing a local transportation improvement program (TIP), local jurisdictions in nonconformance may not compete favorably in the local TIP process.

Because local jurisdictions are subject to a loss of funding for nonconformance with the CMP, MTA will make every effort to assist jurisdictions and smoothly transition into the new CMP requirements. In 1992 local jurisdictions completed their first CMP implementation responsibility by conducting local traffic counts at assigned monitoring locations. MTA is pleased with the cooperation shown by local jurisdictions in implementing these counts and the success of this process. All local jurisdictions completed their count responsibility.

10.2 CONFORMANCE PROCEDURE

The purpose of the conformance procedure is to establish the annual process that MTA will use in determining conformance with local CMP responsibilities. A self-certification process is established to simplify this process for both local jurisdictions and MTA.

CMP conformance will be based on meeting the following major program responsibilities:

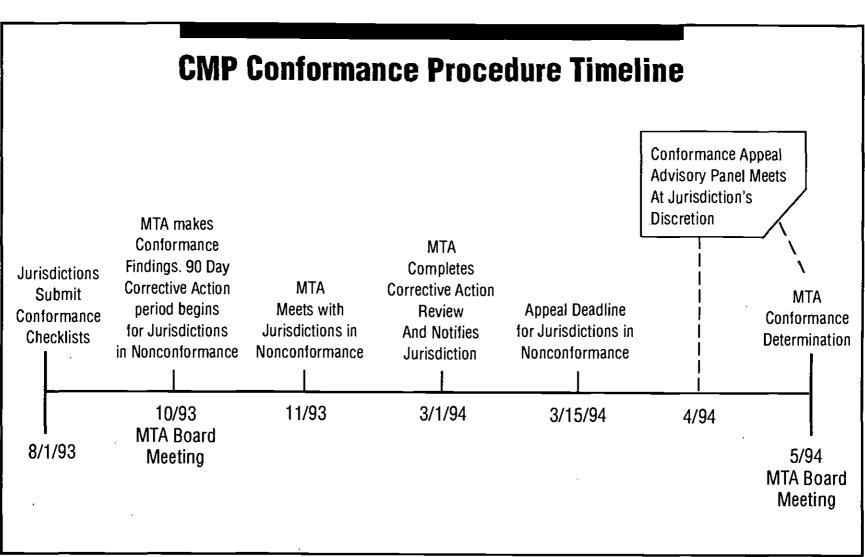
 Conducting annual traffic counts and calculating levels of service by June 15, 1993, for selected arterial intersections, as specified in the traffic monitoring procedures found in the CMP Highway and Roadway System (Chapter 4).

- Adoption and implementation of a transportation demand management ordinance by April 1, 1993. The TDM ordinance must be consistent with the minimum standards identified in the CMP TDM Element (Chapter 6) and submitted to MTA upon local adoption.
- Adoption and implementation by April 1, 1993 of a land use program to analyze the impacts of new development on the CMP system and the associated mitigation costs. The land use program must be consistent with the minimum standards identified in the CMP Land Use Analysis Program (Chapter 7) and submitted to MTA upon local adoption.

Local jurisdiction adoption of a deficiency plan process and guidelines is not a part of the first year CMP or a determinant of conformance. These components will be evaluated in the Countywide Congestion Study and presented for MTA Board adoption in the 1993 CMP update.

As CMP statute does not give MTA the responsibility of settling land use disputes between jurisdictions, the conformance procedure will be used only for intra-jurisdictional review of the above listed responsibilities.

Exhibit 11 places the CMP Conformance Procedure in the context of a timeline.


10.2.1 Self-Certification Conformance Checklist

Local jurisdictions will annually self-certify that they are in conformance with the major local CMP responsibilities listed in section 10.2 above. Use of the self-certification process will simplify the conformance procedure by focusing on major local responsibilities through a streamlined review process.

The self-certification process involves completion of the Conformance Checklist found in Appendix E and approval of the Checklist at a public hearing of the local jurisdiction's governing body. The approved checklist must be transmitted to MTA by August 1, 1993.

When MTA annually reviews local jurisdiction conformance with the CMP, an approved Conformance Checklist will play a key role. The Checklist will be the primary mechanism for determining jurisdictions' adherence to CMP responsibilities. In addition to reviewing the submitted Checklist, MTA will, on an exception basis, review local CMP implementation as a means to assist jurisdictions in meeting CMP requirements.

If MTA's review finds that a jurisdiction is not in conformance (e.g., a Checklist is not complete), MTA will work with the jurisdiction to determine actions necessary to attain conformance.

CMP-069/12-92

10.2.2 Conformance Review Process

Listed below are the steps which comprise the CMP Conformance Review Process. Note that the Process is designed to provide nonconforming jurisdictions with an opportunity to resolve outstanding problems, return to conformance with the CMP, and thereby avoid the loss of transportation monies.

- 1. Local jurisdictions self-certify and submit to MTA their Conformance Checklists by August 1, 1993.
- 2. MTA staff reviews self-certification findings and makes a conformance recommendation. (Copies of TDM ordinances and land use programs are transmitted to MTA upon local adoption. MTA will verify receipt of TDM ordinances, land use programs and CMP traffic counts.) At its October 1993 meeting, the MTA Board will make determinations following a public hearing.
- 3. If the MTA Board makes a nonconformance determination, MTA will notify the jurisdiction in writing of the nonconformance finding and the reason for this finding.
- 4. MTA staff will immediately schedule a meeting with the local jurisdiction to mutually agree upon a schedule of actions that will enable the jurisdiction to come into conformance within the ninety day period provided by statute. This meeting will take place in November 1993.
- 5. After the end of the ninety day period, MTA staff will assess whether a jurisdiction has implemented those corrective actions agreed upon and required in order to attain conformance. By March 1, 1994 MTA staff will report their conformance recommendation to the affected jurisdiction.
- 6. In the event that a jurisdiction wishes to appeal the staff recommendation, the jurisdiction must notify MTA staff by March 15, 1994. The Conformance Appeal Advisory Panel ("Advisory Panel") will meet during April 1994. The Advisory Panel will review the jurisdiction's appeal of MTA staff's nonconformance recommendation, and make an independent finding for consideration by the MTA Board.
- 7. At the MTA meeting in May 1994, MTA will take action after consideration of the staff and Advisory Panel recommendations.
- 8. If MTA finds a jurisdiction is in nonconformance with the CMP, then MTA will immediately submit the finding to the jurisdiction and California Transportation Commission, and will direct the State Controller to withhold the jurisdiction's state gas tax subvention funds.
- 9. The jurisdiction may request reconsideration of the MTA nonconformance finding when the jurisdiction believes it has taken corrective action and is now in conformance. MTA will expedite its review and, if the jurisdiction demonstrates that it is in conformance, will take action at the next scheduled MTA Board meeting. If

a finding of conformance is made, MTA will notify the State Controller to restore the jurisdiction's gas tax funds.

10. If after a twelve month period a jurisdiction remains in nonconformance, the gas tax subvention funds withheld from the jurisdiction will be provided to MTA for use on regionally significant transportation projects.

10.2.3 Conformance Appeal Advisory Panel

The Conformance Appeal Advisory Panel is used by the CMP conformance procedure as an impartial body for review, upon appeal, of MTA staff conformance recommendations. Inclusion of an impartial panel in the conformance procedure is in response to requests from local jurisdictions for an appeals process. This appeals process is advisory in that statute puts ultimate responsibility for conformance decisions with MTA.

The Advisory Panel is comprised of government and private sector representatives as follows:

- 1-6. A city representative from each of MTA's six area team boundaries.
- 7. County of Los Angeles.
- 8. Southern California Association of Governments.
- 9. South Coast Air Quality Management District.
- 10. California Department of Transportation.
- 11. A recognized environmental organization.
- 12. A recognized business organization.

Advisory Panel members will be drawn from MTA's CMP Policy Advisory Committee. After MTA staff solicits applicants from the Policy Advisory Committee, MTA Board will finalize all Advisory Panel appointments.

Each representative on the Advisory Panel will have an alternate. When an Advisory Panel member can not attend a meeting, an alternate will attend in place of the absent member. No Advisory Panel member may vote on a conformance issue relating to the member's jurisdiction.

CONGESTION MANAGEMENT PROGRAM

.

Adopted November 1992

APPENDICES

GUIDELINES FOR HIGHWAY MONITORING

These instructions are intended to assist local agencies in conducting and submitting annual monitoring of the CMP highway system to LACTC. These guidelines will be reviewed annually and adjustments made as appropriate.

A.1 SUBMITTAL REQUIREMENTS

The following information must be transmitted to LACTC as part of annual monitoring of CMP arterials. Each of these elements is described in detail below. An example submittal is included as Exhibit A-1.

- (a) Letter of Transmittal including a summary of results and contact person;
- (b) Peak Period Traffic Volumes turning movements in 15-minute increments;
- (c) Physical Description including lane configurations and signal phasing; and,
- (d) Level of Service Worksheets.

A.2 ANNUAL HIGHWAY MONITORING SCHEDULE

- June 15 Deadline for submittal of monitoring results from local agencies, covering the preceding 12 months.
- September Completion of Final CMP by LACTC staff, including LOS for each CMP route.
- November Adoption of CMP by LACTC.

A.3 MONITORING LOCATIONS AND RESPONSIBLE AGENCIES

Exhibit A-2 provides a list of locations (stations) to be monitored, as well as agencies responsible for conducting annual monitoring. These stations will be reviewed annually.

Any proposed revision to the list of monitoring stations must be consistent with the following criteria:

(a) Intersections of two (or more) CMP arterials will be monitored.

- (b) Monitoring locations should be capacity-constraining (e.g., "bottleneck") intersections with major cross streets such as major arterials, secondary arterials or freeway ramps.
- (c) A maximum spacing of roughly two miles must be maintained between stations. For rural highways, spacing may be increased if traffic volumes and capacity are consistent over greater distances.

Redesignation of the responsible agency will only be accepted if recommended to LACTC by the agency assuming responsibility.

A.4 TRAFFIC COUNT REQUIREMENTS

:

Counts must be less than one year old as of May 31 of each year, and collected within the following parameters.

- (a) Counts must be taken on at least two weekdays (not necessarily consecutive), and not on Mondays or Fridays;
- (b) not on holidays, the first weekday before or after, or other periods that local schools or colleges are not in session;
- (c) not during days of poor weather or other atypical conditions (e.g., road construction, detours, or major traffic incidents); and,
- (d) unless indicated by local conditions, peak period counts must include at a minimum, 7-9 AM and 4-6 PM.

The local agency must contact LACTC if current conditions prevent the collection of representative count data during the entire period available (for example, due to major construction lasting over a year). Local agencies are also encouraged to plan for future counts during the same period of year, or where appropriate, include counts at CMP stations within the scope of other ongoing studies (see Appendix D).

A.5 PHYSICAL DESCRIPTIONS

Existing lane configurations and signal phasing must be indicated. Simple schematic diagrams are adequate, but agencies may provide traffic signal or signing & striping plans if desired. Aerial photographs, if used, must clearly indicate the permitted movements for each lane. $8-1/2^{\circ} \times 11^{\circ}$ sheets are preferred.

If commute-period parking prohibition, turn restrictions, or other peak period operational controls are used to increase traffic capacity, the hours and days of the restrictions must be indicated.

A.6 INTERSECTION LEVEL OF SERVICE CALCULATIONS

The CMP for Los Angeles County requires use of the Intersection Capacity Utilization (ICU) method to calculate volume-to-capacity (V/C) ratios and levels of service (LOS). The parameters include:

Capacity: 1600 vehicles/lane for all through and turn lanes 2880 total for dual turn lanes

Clearance: 0.10 (no phasing adjustment)

Adjustments for exclusive + optional turn lanes, right-turns on red, and other factors are left to the discretion of local agencies to reflect observed operations; however, these adjustments must be applied consistently each year. For uniformity and to expedite review, Exhibit A-3 provides the preferred format for submission of ICU calculations. Levels of service must be assigned based on overall intersection V/C ratios, as follows:

V/C Ratio	LOS
0.00 - 0.60	Α
> 0.60 - 0.70	В
> 0.70 - 0.80	С
> 0.80 - 0.90	, D
> 0.90 - 1.00	. E
> 1.00	F

Agencies computing intersection LOS using the Circular 212 (Critical Movement Analysis) method may report calculations using the following conversion:

- 1. For dual turn lanes, calculations should indicate that 55% of the turning volume is assigned to the heavier lane for establishing the critical volume.
- 2. Intersection V/C should be calculated by dividing the Sum of Critical Volumes by 1600, and adding 0.10.
- 3. Intersection LOS should be determined using the table above.

Agencies who prefer to use HCS or other 1985 Highway Capacity Manual software packages may submit output, modified to reflect the following sequence of calculations (or equivalent):

1. INPUT WORKSHEET: Counted peak hour volumes should be entered; set all peak hour factors (PHF) = 1.00.

- 2. VOLUME ADJUSTMENT WORKSHEET: Lane Utilization Factors (Column 9: U) must be set = 1.00.
- 3. SATURATION FLOW ADJUSTMENT WORKSHEET: For each lane group, set the Adjusted Saturation Flow Rates (Column 13: s) = 1600 x No. of Lanes, or 2880 for dual LT lanes.
- 4. CAPACITY ANALYSIS WORKSHEET: Sum CRITICAL Flow Ratios (Column 5: v/s), divide by 1600 and add 0.10. Intersection LOS should be determined using the table above.

A.7 ACCEPTABLE VARIATION OF RESULTS

V/C computations resulting from the two days of counts should not vary by more than 0.08 between days for either the AM or PM peak hour; the average will be used to establish the current LOS. A third count must be conducted if the resulting V/C ratios vary by more than 0.08 AND either V/C ratio is greater than 0.90.

The final LOS reported may either average the three days or exclude the deviant day. A third count is not required if the variation is greater than 0.08 but both V/C ratios are lower than 0.90. However, local agencies are nonetheless responsible for reviewing the accuracy of the count data.

Exhibit A-4 summarizes the results of 1992 highway monitoring.

EXHIBIT A-1 EXAMPLE SUBMITTAL

See following sheets.

April 15, 1992

Brad McAllester, CMP Administrator Los Angeles County Transportation Commission 818 W. 7th Street Los Angeles, CA 90017

Dear Mr. McAllester:

The City of Example hereby transmits results of our annual highway monitoring, collected in accordance with the requirements of the Congestion Management Program. The enclosed Level of Service calculations are summarized as follow:

Intersection		<u>Date</u>	<u>Peak Hour</u>	<u>V/C Ratio</u>	LOS
First Street & Second Avenue	a		7:45-8:45 AM 7:45-8:45 AM Hour Average	0.99 <u>0.94</u> 0.96	E E E
·			5:00-6:00 PM 4:45-5:45 PM Hour Average	1.03 <u>1.06</u> 1.05	F F F

Please contact Mr. John Smith, our City Traffic Engineer, at (213) 555-1234 if you have any questions.

Sincerely,

Lynn Jones Director of Public Works

enclosure

MANUAL TRAFFIC COUNT SUMMARY

AGENCY:		City	of Example										
N/S STREET:	:	First	Street							DATE:		10-1-9	1
E/W STREET:	:	Secon	d Avenue							DAY OF WEEK:		Tuesda	Y
COUNTED BY:	:	RT/A\$								TIME OF DAY:		7:00 -	9:00 AM
WEATHER:		Clear										4:00 -	6:00 PM
PERIOD -	NOF	атн во	 UND	sou	тн во 	ND	EA	ST BOUN	1D	••••₩ES	т воц	IND	
BEGIN	LŤ	THRŲ	RT	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	TOTAL
07:00	8	211	26	31	199	0	 19	110	9	49	40	17	719
07:15	12	270	46	41	255	6	17	121	15	65	64	30	942
07:30	17	273	24	39	274	4	21	149	10	79	71	57	1018
07:45	16	336	16	62	298	15	47	189	9	131	122	59	1300
08:00	23	36\$	20	55	241	6	28	157	20	95	116	66	1192
08:15	31	368	33	76	269	12	40	193	13	85	102	53	1275
08:30	35	364	23	45	256	8	33	221	15	69	103	54	1226
08:45	28	340	30	47	266	11	25	163	18	78	108	56	1170
PEAK HOUR:		•				• • • • • • • • • •		•					
C	07:45	TO	08:45										
		1433			1064	41		760	57		443	232	4993
			 UND	sou				ST BOUN		•WEs			
BEGIN	LT	THRŲ	RT	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	TOTAL
16:00	53	344	 19	53	346	22	44	206	6	82	118	37	1330
16:15	44	377	27	44	365	15	43	184	12	78	147	73	1409
- 16:30	64	329	29	64	· 339	14	34	179	8	122	151	62	- 1395
16:45	61	348	18	61	341	17	29	173	9	101	180	74	1412
17:00	74	355	20	74	369	15	26	189	19	110	163	44	1458
17:15	42	399	21	42	372	9	28	199	13	129	187	59	1500
17:30	61	375	24	61	367	9	49	155	15	117	162	70	1465
17:45	74	342	33	74	363	21	41	152	13	140	180	40	1473
			• • • • • • • • • • • • •	• • • • • • • •				• • • • • • •			• • • • •		
PEAK HOUR:													
	7:00	TO	18:00										

Ì,

į

F

MANUAL TRAFFIC COUNT SUMMARY

AGENCY: City of Example													
N/S STREET:	N/S STREET: First Street		treet							OATE:		10-9-9	1
E/W STREET: Second Avenue COUNTED BY: RT/AS		Avenue							DAY OF WEEK:		Wednesday		
		RT/AS					TIME OF DAY:				7:00 - 9:00 AM		
WEATHER:		Clear										4:00 -	6:00 PM
PERIOD ·	NOR	TH BOUN	10	sou	TH BOUN	10	EA	ST BOUN	10	₩E	ST BOU	JNO	
BEGIN	LŤ	THRU	RT	LT	THRU	RT	LŤ	THRU	RT	LT	T HRU	RT	TOTA
07:00	8	205	25	 29	189	0		107	9	48	39	16	
07:15	12	262	45	39	242	6	16	117	15	63	62	29	90
07:30	16	265	23	37	260	4	20	145	10	77	69	55	98
07:45	16	326	16	59	253	14	46	153	9	87	98	57	113
08:00	22	354	19	52	229	6	27	152	19	92	113	64	114
08:15	30	357	32	72	256	11	39	187	13	82	99	51	122
08:30	34	353	22	43	243	8	32	214	15	67	100	52	118
08:45	27	330	29	45	253	10	24	158	17	76	105	54	112

PEAK HOUR:

.

07:45 TO 08:45

	102	1390	89	226	981	39	144.		56	328	410	224	4695
PERIOD	NOR	TH BOU			TH BOU		EA	ST BOUN			ST BOU		
BEGIN	LT	THRU	RT	LŤ	THRU	RT	LT	THRU	RT	LŤ	THRU	RT	TOTAL
16:00	56	361	20	55	360	23	46	216	6	79	113	36	1371
16:15	46	396	28	46	380	16	45	193	13	75	141	70	1449
16:30	67	345	30	67	353	15	36	188	8	117	145	60	1431
16:45	64	385	19	63	375	18	30	192	9	97	193	71	1516
17:00	78	373	21	77	384	16	27	198	20	106	156	42	1498
17:15	44	419	22	44	387	9	29	209	14	124	180	57	1538
17:30	64	394	25	63	382	9	51	163	16	112	156	67	1502
17:45	78	359	35	77	378	22	43	160	14	134	173	38	1511
PEAK HOUR:	:												
	16:45	TO	17:45							-			
	250	1571	87	247	1528	52	137	762	59	439	685	237	6054

DATE: /C		DRAW			<u> </u>
^ 1			N DT: <u>23</u>		
1	t				
		FIRST 4	5r.		
		114	A14	27	0
Ave] 4 *	T T		270-61	4-F
•	•				
EGND	<u>ب</u>	· · ·	5		
U U					
NP 7a	-6pm -				
••••	M-F				
		- <u>SI</u>	GNAL PHASING		
	Functions as separate tur lane though not striped	n 🖡	∽ [₽] ⊥	° • [↑] ←	-
	No Parking during specific hours	5	L, 1	· ·	_ ▶

Intersection:	
---------------	--

First Street / Second Avenue

Count Date:

October 1, 1991

ES

Peak Hr: 7:45 - 8:45 AM

F

n/a

Analyst:

Į

Agency: City of Example

		No. of	Capacity		Critical				
Movement	Volume	Lanes	[1]	V/C Ratio	V/C	Total			
NB Left	105	1	1600	0.066					
NB Thru	1433	2	3200	0.448	<==				
NB Right	92	1	1600	0.058					
SB Left	238	1	1600	0.149	<==				
SB Thru	1064	2	3200	0.333					
SB Right	41	1	1600	0.026					
EB Left	. 148	1	1600	0.093					
EB Thru	760	3	4800	0.158]<==				
EB Right	57	1	1600	0.036					
WB Left	380	2	2880	0.132	<==				
WB Thru	443	3	4800	0.141					
WB Right	232	0	0						
Sum of Critical	V/C Ratios	_				0.887			
Adjustment for	Adjustment for Lost Time								
Intersection Ca	Intersection Capacity Utilization (ICU)								
Level of Service	e (LOS) - R	efer to tab	le below			E			

		Maximum
NOTES	LOS	V/C
1. Per-lane Capacity = 1600 vehicles/hour;	A	0.60
dual turn lane capacity = 2880 vph.	В	0.70
	С	0.80
	D	0.90
	E	1.00

10/11/91

Intersection:	First Street / Second Avenue									
Count Date:	October !	9, 1991		Peak Hr:	7:45 - 8:4	5 AM				
Analyst:	ES			Agency:	City of Ex	ample				
Movement	Volume	No. of Lanes	Capacity [1]	V/C Ratio	Critical V/C	Total				
NB Left	102	1	1600	0.064						
NB Thru	1390	2	3200	0.434	<==					
NB Right	89	1	1600	0.056						
SB Left	226	1	1600	0.141	<==					
SB Thru	981	2	3200	0.307						
SB Right	39	1	1600	0.024	<u> </u>					
EB Left	144	1	1600	0.090		1				
EB Thru	706	3	4800	0.147	<==					
EB Right	56	1	1600	0.035						
WB Left	328	2	2880	0.114	<==					
WB Thru	410	3	4800	0.132],					
WB Right	224	0	0							
Sum of Critical	V/C Ratios					0.836				
Adjustment for	Lost Time					0.100				
Intersection Ca	Intersection Capacity Utilization (ICU)									
Level of Service	e (LOS) – R	efer to tab	le below			E				

		Maximum
NOTES	LOS	V/C
1. Per-lane Capacity = 1600 vehicles/hour;	<u>A</u>	0.60
dual turn lane capacity = 2880 vph.	В	0.70
	С	0.80
	D	0.90
	E	1.00
	F	n/a

10/11/91

•

Intersection:	First Stre	et / Secon	d Avenue	,					
Count Date:	October	1, 1991		Peak Hr:	5:00 - 6:0	00 PM			
Analyst:	ES			Agency:	City of Ex	ample			
		No. of	Coopeitu	-	Critical				
Movement	Volume	Lanes	Capacity [1]	V/C Ratio	V/C	Total			
NB Left	251	1	1600	0.157	<==				
NB Thru	1471	2	3200	0.460					
NB Right	98	1	1600	0.061					
SB Left	251	1	1600	0.157		1			
SB Thru	1471	2	3200	0.460	<==				
SB Right	54	1	1600	0.034					
EB Left	. 144	1	1600	0.090					
EB Thru	695	3	4800	0.145]<==				
EB Right	60	1	1600	0.038					
WB Left	496	2	2880	0.172	<==				
WB Thru	692	3	4800	0.189					
WB Right	213	0	0						
Sum of Critical	V/C Ratios					0.934			
Adjustment for	Lost Time		-			0.100			
Intersection Ca	Intersection Capacity Utilization (ICU)								
Level of Service	Level of Service (LOS) – Refer to table below								

		Maximum
NOTES	LOS	V/C
1. Per-lane Capacity = 1600 vehicles/hour;	A	0.60
dual turn lane capacity = 2880 vph.	В	0.70
	С	0.80
	D	0.90
	E	1.00
	F	n/a

10/11/91

Intersection:	First Stre	et / Secon	d Avenue						
Count Date:	October \$	9, 1991		Peak Hr:	4:45 - 5:4	5 PM			
Analyst:	ES			Agency:	City of Ex	ample			
		No. of	Capacity		Critical				
Movement	Volume	Lanes	[1]	V/C Ratio	V/C	Total			
NB Left	250	1	1600	0.156					
NB Thru	1571	2	3200	0.491]<==				
NB Right	87	1	1600	0.054					
SB Left	247	1	1600	0.154	<==				
SB Thru	1528	2	3200	0.478					
SB Right	52	1	1600	0.033					
EB Left	137	1	1600	0.086					
EB Thru	762	3	4800	0.159	<==				
EB Right	59	1	1600	0.037	<u> </u>				
WB Left	439	2	2880	0.152	<==				
WB Thru	685	З	4800	0.192					
WB Right	237	0	0						
Sum of Critical	V/C Ratios					0.956			
Adjustment for	Adjustment for Lost Time								
Intersection Ca	Intersection Capacity Utilization (ICU)								
Level of Service	Level of Service (LOS) - Refer to table below								

		Maximum
NOTES	LOS	V/C
1. Per-lane Capacity = 1600 vehicles/hour;	A	0.60
dual turn lane capacity = 2880 vph.	В	0.70
	С	0.80
	D	0.90
	E	1.00
	F	n/a

10/11/91

I

ć

EXHIBIT A-2 MONITORING STATIONS BY RESPONSIBLE AGENCY

See following sheets.

Congestion Management Program

CMP ARTERIAL MONITORING LOCATIONS SORTED BY RESPONSIBLE AGENCY

ĺ

1

.

	RTED BY RESPONSIB			·		
	RESPONSIBLE		0000			
	AGENCY		CROSS STREET			
•	ALHAMBRA	* FREMONT AV	VALLEY BL			
	AZUSA	AZUSA/SAN GABRIEL AV		CALTRANS		
	BELLFLOWER	LAKEWOOD BL	ARTESIA BL	CALTRANS		
	BELLFLOWER	LAKEWOOD BL	ROSECRANS AV	CALTRANS	DOWNEY	
	BEVERLY HILLS	* SANTA MONICA BL	WILSHIRE BL	CALTRANS	DOWNET	
	BEVERLY HILLS	WILSHIRE BL	LA CIENEGA			
_	CARSON	ALAMEDA ST	CARSON ST			
	CLAREMONT	ARROW HWY	INDIAN HILL BL			
	CLAREMONT	BASE LINE RD	INDIAN HILL BL	CALTRANS		
-	CLAREMONT	COLLEGE WY	WILLIAMS AV		CALTRANS	
	CLAREMONT	FOOTHILL BL	INDIAN HILL BL	CALTRANS	CALIMANS	
	COMPTON	ALAMEDA ST	COMPTON BL			
	COMPTON	ALAMEDA ST	RTE 91 EB RAMPS	CALTRANS		
			ARROW HWY	AZUSA		
		AZUSA AV VENICE BL		LOS ANG CITY	LOS ANG COUNTY	CALTRANS
			OVERLAND AV	LUS ANG CITY	CALTRANS	
			DIAMOND BAR BL			
	DOWNEY	FIRESTONE BL	OLD RIVER SCHL RD			
	DOWNEY	LAKEWOOD BL	FIRESTONE BL		0.41 70 4 400	
	DOWNEY		TELEGRAPH RD	PICO RIVERA	CALTRANS	
	EL SEGUNDO	SEPULVEDA BL	EL SEGUNDO BL			
	GARDENA		VERMONT AV	LOS ANG CITY	CALTRANS	
	HERMOSA BCH	* PACIFIC COAST HWY	ARTESIA BL/GOULD	MANHATTAN BCH	CALTRANS	
	HUNTINGTON PK	ALAMEDA ST	SLAUSON AV	VERNON	LOS ANG CITY	
	INGLEWOOD	MANCHESTER AV	CRENSHAW BL	CALTRANS		
	INGLEWOOD	MANCHESTER AV	LA BREA AV	CALTRANS		
	LA CANADA-FLINT	ANGELES CREST HWY	RTE 210 WB OFF RMP	CALTRANS		
	LA MIRADA	IMPERIAL HWY	LA MIRADA BL			
	LA PUENTE		MAIN ST	INDUSTRY	LOS ANG COUNTY	
	LA VERNE	ARROW HWY	E ST			
	LA VERNE	* BASE LINE RD	FOOTHILL BL	CALTRANS		
	LA VERNE	FOOTHILL BL	DAMIEN AV	CALTRANS		
32	LAKEWOOD	LAKEWOOD BL	SOUTH ST	CALTRANS		
33	LONG BEACH	* ALAMITOS AV	OCEAN BL			
	LONG BEACH	LAKEWOOD BL	CARSON ST	LAKEWOOD	CALTRANS	
35	LONG BEACH	LAKEWOOD BL	WILLOW ST	CALTRANS		
	LONG BEACH	* PACIFIC COAST HWY	7TH ST	CALTRANS		
	LONG BEACH	* PACIFIC COAST HWY	ALAMITOS AV	CALTRANS		
38	LONG BEACH	PACIFIC COAST HWY	SANTA FE AV	CALTRANS		
39	LONG BEACH	PACIFIC COAST HWY	WESTMINSTER AV	CALTRANS		
40	LONG BEACH	PACIFIC COAST HWY	XIMENO AV	CALTRANS		
41	LONG BEACH	* SEVENTH ST	ALAMITOS AV			
42	LONG BEACH	SEVENTH ST	REDONDO AV			
43	LOS ANG CITY	ALAMEDA ST	WASHINGTON BL			
44	LOS ANG CITY	ALVARADO ST	SUNSET BL	CALTRANS		
45	LOS ANG CITY	GAFFEY ST	9TH ST	CALTRANS		
46	LOS ANG CITY	* LINCOLN	MANCHESTER	CALTRANS		
	LOS ANG CITY	* LINCOLN	MARINA EXPY	CALTRANS		
	LOS ANG CITY	* LINCOLN	VENICE BL	CALTRANS		
	LOS ANG CITY	MANCHESTER AV	AVALON BL	CALTRANS		
	LOS ANG CITY	MANCHESTER AV	SEPULVEDA BL	CALTRANS		
	LOS ANG CITY	MANCHESTER AV	VERMONT AV	CALTRANS		
	LOS ANG CITY	* PACIFIC COAST HWY	ALAMEDA ST	CALTRANS		
	LOS ANG CITY					
- 33		PACIFIC COAST HWY	CHAUTAUQUA BL	CALTRANS		
E #	LOS ANG CITY	PACIFIC COAST HWY	FIGUEROA ST	CALTRANS		

CMP ARTERIAL MONITORING LOCATIONS SORTED BY RESPONSIBLE AGENCY

× í

<u> 30H</u>	TED BY RESPONSIBL	EAGENUT		
	RESPONSIBLE AGENCY	HIGHWAY NAME	CROSS STREET	OTHER JURISDICTIONS
	AGENCT		CRUGG STREET	
55	LOS ANG CITY	PACIFIC COAST HWY	SUNSET BL	CALTRANS
	LOS ANG CITY	* PACIFIC COAST HWY	WESTERN AV	CALTRANS
	LOS ANG CITY	SANTA MONICA BL	BUNDY DR	CALTRANS
	LOS ANG CITY	* SANTA MONICA BL	HIGHLAND AV	CALTRANS
	LOS ANG CITY	SANTA MONICA BL	WESTERN AV	CALTRANS
	LOS ANG CITY	SANTA MONICA BL	WESTWOOD BL	CALTRANS
	LOS ANG CITY	SEPULVEDA BL	LINCOLN BL	CALTRANS
	LOS ANG CITY	TOPANGA CYN BL	DEVONSHIRE ST	CALTRANS
	LOS ANG CITY	TOPANGA CYN BL	ROSCOE BL	CALTRANS
	LOS ANG CITY	TOPANGA CYN BL	RTE 118 WB RAMPS	LOS ANG COUNTY CALTRANS
	LOS ANG CITY	* TOPANGA CYN BL	VENTURA BL	CALTRANS
	LOS ANG CITY	* TOPANGA CYN BL	VICTORY BL	CALTRANS
	LOS ANG CITY	VALLEY BL	RTE 710 NB OFF-RAM	ALHAMBRA CALTRANS
	LOS ANG CITY	VENICE BL	CENTINELA BL	CALTRANS
	LOS ANG CITY	VENICE BL		
	LOS ANG CITY	VENTURA BL	BALBOA BL	
	LOS ANG CITY	VENTURA BL	LANKERSHIM BL	
	LOS ANG CITY	VENTURA BL	LAUREL CYN BL	
	LOS ANG CITY	VENTURA BL	RESEDA BL	
	LOS ANG CITY	VENTURA BL	SEPULVEDA BL	
	LOS ANG CITY	VENTURA BL	WINNETKA AV	
	LOS ANG CITY	VENTURA BL	WOODMAN AV	
	LOS ANG CITY	VICTORY BL	BALBOA BL	
	LOS ANG CITY	VICTORY BL	RESEDA BL	·
	LOS ANG CITY	VICTORY BL	SEPULVEDA BL	
	LOS ANG CITY			
	LOS ANG CITY	VICTORY BL	WOODMAN AV	
	LOS ANG CITY	WESTERN AV	9TH ST	CALTRANS
	LOS ANG CITY	WILSHIRE BL WILSHIRE BL	ALVARADO BL BEVERLY GLEN BL	
	LOS ANG CITY LOS ANG CITY	WILSHIRE BL		
	LOS ANG CITY	WILSHIRE BL	SEPULVEDA BL	LOS ANG COUNTY
	LOS ANG CITY	WILSHIRE BL	WESTERN AV	
	LOS ANG COUNTY	AVENUE D	60TH ST WEST	CALTRANS
	LOS ANG COUNTY	* AZUSA AV	COLIMA RD	INDUSTRY
	LOS ANG COUNTY	* COLIMA RD	HACIENDA BL	
	LOS ANG COUNTY	HENRY MAYO DR	CHIQUITO CYN RD	CALTRANS
	LOS ANG COUNTY	IMPERIAL HWY	CARMENITA RD	SANTA FE SPRINGS
	LOS ANG COUNTY	LANCASTER RD	300TH ST WEST	CALTRANS
		* PACIFIC COAST HWY	TOPANGA CYN BL	CALTRANS
		PEARBLOSSOM HWY	82ND ST E	CALTRANS
	LOS ANG COUNTY LOS ANG COUNTY	* PEARBLOSSOM HWY	ANTELOPE HWY	CALTRANS
	LOS ANG COUNTY	ROSEMEAD BL	HUNTINGTON DR	CALTRANS
				CALTRANS
	LOS ANG COUNTY	ROSEMEAD BL	SAN GABRIEL BL	
	LOS ANG COUNTY	SIERRA HWY	RTE 14 (FLINTHILL DR)	CALTRANS
	LOS ANG COUNTY		SAND CYN RD	
	LOS ANG COUNTY			
	LYNWOOD		IMPERIAL HWY	LOS ANG COUNTY
	MALIBU	* PACIFIC COAST HWY	DECKER RD	
	MALIBU	PACIFIC COAST HWY	KANAN DUME RD	
	MALIBU	PACIFIC COAST HWY	LAS FLORES CYN RD	CALTRANS
	MALIBU	PACIFIC COAST HWY	MALIBU CYN RD	CALTRANS
	MANHATTAN BCH	SEPULVEDA BL	ROSECRANS AV	EL SEGUNDO CALTRANS
108	MONTEBELLO	WHITTIER BL	GARFIELD	CALTRANS

CMP ARTERIAL MONITORING LOCATIONS SORTED BY RESPONSIBLE AGENCY

SOF	RTED BY RESPONSIBI				
	RESPONSIBLE				
	AGENCY		CROSS STREET	OTHER JURISDICTI	ONS
109	MONTEBELLO	WHITTIER BL	MONTEBELLO BL	CALTRANS	
110	NORWALK	FIRESTONE BL	IMPERIAL HWY	CALTRANS	
111	NORWALK	IMPERIAL HWY	NORWALK BL		
112	PALMDALE	FORT TEJON RD	PEARBLOSSOM HWY	LOS ANG COUNTY	CALTRANS
113	PALMDALE	PALMDALE BL	30TH ST E	CALTRANS	
114	PALMDALE	PALMDALE BL	SIERRA HWY	CALTRANS	
115	PASADENA	ARROYO PKWY	CALIFORNIA BL	CALTRANS	
116	PASADENA	PASADENA/ST.JOHN AV	CALIFORNIA BL	CALTRANS	
117	PASADENA	ROSEMEAD BL	FOOTHILL BL	LOS ANG COUNTY	CALTRANS
118	PICO RIVERA	ROSEMEAD BL	WASHINGTON BL	CALTRANS	
119	PICO RIVERA	* ROSEMEAD BL	WHITTIER BL	CALTRANS	
120	POMONA	ARROW HWY	GAREY AV		
121	POMONA	CORONA EXPY	GAREY AV	CALTRANS	
122	POMONA	CORONA EXPY	MISSION BL	CALTRANS	
123	POMONA	FOOTHILL BL	GAREY AV	CALTRANS	
124	RANCHO PV	WESTERN AV	TOSCANINI DR	CALTRANS	
125	REDONDO BCH	ARTESIA BL	INGLEWOOD AV	LAWNDALE	CALTRANS
126	REDONDO BCH	PACIFIC COAST HWY	TORRANCE BL	CALTRANS	
127	ROSEMEAD	ROSEMEAD BL	VALLEY BL	CALTRANS	
128	SAN DIMAS	ARROW HWY	SAN DIMAS AV		
129	SANTA CLARITA	MAGIC MTN PKWY	VALENCIA BL	CALTRANS	
130	SANTA CLARITA	SAN FERNANDO RD	LYONS AV	CALTRANS	
131	SANTA CLARITA	* SAN FERNANDO RD	SIERRA HWY	CALTRANS	
132	SANTA CLARITA	SIERRA HWY	PLACERITA CYN, RD		
133	SANTA CLARITA	SIERRA HWY	SOLEDAD CYN RD		
134	SANTA MONICA	LINCOLN	PICO BL	CALTRANS	
135	SANTA MONICA	SANTA MONICA BL	CLOVERFIELD BL	CALTRANS	
136	SANTA MONICA	* SANTA MONICA BL	LINCOLN BL	CALTRANS	
137	SANTA MONICA	WILSHIRE BL	26TH ST		
138	SOUTH EL MONTE	ROSEMEAD BL	GARVEY AV	CALTRANS	
139	SOUTH GATE	* ALAMEDA ST	FIRESTONE BL	LOS ANG CITY	CALTRANS
140	SOUTH GATE	FIRESTONE BL	ATLANTIC AV	CALTRANS	
141	SOUTH PASADENA	FREMONT AV	HUNTINGTON DR		
142	TEMPLE CITY	ROSEMEAD BL	LAS TUNAS DR	CALTRANS	
143	TORRANCE	ARTESIA BL	CRENSHAW BL	CALTRANS	
144	TORRANCE	* ARTESIA BL	HAWTHORNE BL	REDONDO BCH	CALTRANS
145	TORRANCE	HAWTHORNE BL	190TH ST	REDONDO BCH	CALTRANS
146	TORRANCE	HAWTHORNE BL	SEPULVEDA BL	CALTRANS	
147	TORRANCE	PACIFIC COAST HWY	CRENSHAW BL	CALTRANS	
	TORRANCE	* PACIFIC COAST HWY	HAWTHORNE	CALTRANS	
149	TORRANCE	PACIFIC COAST HWY	PALOS VERDES BL	REDONDO BCH	CALTRANS
	TORRANCE	WESTERN AV	190TH ST	LOS ANG CITY	CALTRANS
151	TORRANCE	WESTERN AV	CARSON ST	LOS ANG CITY	CALTRANS

SEPULVEDA BL

CAMERON AV

WORKMAN AV

LA CIENEGA BL

DOHENY DR

COLIMA RD

NORWALK BL

PAINTER AV

AMAR RD

LOS ANG CITY

CALTRANS

CALTRANS

CALTRANS

BEVERLY HILLS

LOS ANG COUNTY

LOS ANG CITY

LOS ANG COUNTY

CALTRANS

CALTRANS

CALTRANS

CALTRANS

02-Sep-92

* Indicates intersection of two CMP arterials.

WESTERN AV

AZUSA AV

AZUSA AV

AZUSA AV

WHITTIER BL

WHITTIER BL

WHITTIER BL

SANTA MONICA BL

SANTA MONICA BL

152 TORRANCE

153 W.COVINA

154 W.COVINA

155 W.COVINA

158 WHITTIER

159 WHITTIER

160 WHITTIER

156 W.HOLLYWOOD

157 W.HOLLYWOOD

EXHIBIT A-3 SUBMITTAL FORMS (OPTIONAL)

See following sheets.

Congestion Management Program

INTE	RSECTION DESCRIPTION	
	(N/S) &	(E/V
DATE:	DRAWN BY:	
^		
I NORTH		
	I	
	SIGNAL PHASING	
 V Functions as separate tu V lane though not striped 	ILU	
NP X am - X pm No Parking during specific hours		

}

ļ

4

Ì

Y

Y

Ĵ

0

Intersection:			(N/S)			(E	E/W)
Count Date:				Peak Hr:			
Analyst:				Agency:			
		No. of	Capacity		Critical		
Movement	Volume	Lanes	[1]	V/C Ratio	V/C	 	<u>Fotal</u>
NB Left							
NB Thru							
NB Right							
SB Left							
SB Thru							
SB Right							
EB Left							
EB Thru							
EB Right							
WB Left							
WB Thru							
WB Right							
Sum of Critical	V/C Ratios						
Adjustment for	Lost Time						0.10
Intersection Ca	apacity Utiliz	ation (ICU)					
Level of Servic	e (LOS) – R	efer to table	below				

NOTES	
1. Per-lane Capacity = 1600 vehicles/hour;	
dual turn lane capacity = 2880 vph.	

	Maximum
LOS	V/C
A	0.60
В	0.70
С	0.80
D	0.90
E	1.00
F	n/a
	09/24/92

- +

EXHIBIT A-4 1992 LEVEL OF SERVICE RESULTS

See following sheets.

1992 LEVELS OF SERVICE AT CMP ARTERIAL MONITORING STATIONS SORTED BY RESPONSIBLE AGENCY

		 -	• •		•••	_	•••		_
CN	IP	RE	ESI	20	N	SIE	3L	E	

СМР	RESPONSIBLE			AM P	k Hour	PM Pi	(Hou	r
Station	AGENCY	HIGHWAY NAME	CROSS STREET	V/C	LOS	V/C	LOS	3
	ALHAMBRA	* FREMONT AV	VALLEY BL	1.18	F	1.01	F	
	AZUSA	AZUSA/SAN GABRIEL AV		0.63	В	0.92	Е	
	BELLFLOWER	LAKEWOOD BL	ARTESIA BL	0.97	E	0.95	Е	
	BELLFLOWER	LAKEWOOD BL	ROSECRANS AV	0.79	С	0.81	D	
	BEVERLY HILLS	* SANTA MONICA BL	WILSHIRE BL	1.20	F	1.10	F	
	BEVERLY HILLS		LA CIENEGA	1.09	F	1.18	F	
	CARSON	ALAMEDA ST	CARSON ST	0.40	Α	0.55	Α	
	CLAREMONT	ARROW HWY	INDIAN HILL BL	0.88	D	1.03	F	
9	CLAREMONT	BASE LINE RD	INDIAN HILL BL	0.77	С	0.71	С	
10	CLAREMONT	COLLEGE WY	WILLIAMS AV	0.95	Е	0.91	Е	
11	CLAREMONT	FOOTHILL BL	INDIAN HILL BL	1.10	F	1.05	F	
12	COMPTON	ALAMEDA ST	COMPTON BL	0.78	С	0.96	Е	
13	COMPTON	ALAMEDA ST	RTE 91 EB RAMPS	0.47	Α	0.61	в	
14	COVINA	AZUSA AV	ARROW HWY	0.73	С	0.95	Е	
	CULVER CITY		OVERLAND AV	1.31	F	1.25	F	
	DIAMOND BAR	GRAND AV	DIAMOND BAR BL	0.90	D	1.08	F	
	DOWNEY	FIRESTONE BL	OLD RIVER SCHL RD	0.86	D	0.93	Ē	
	DOWNEY	* LAKEWOOD BL	FIRESTONE BL	0.84	D	0.98	Ē	
	DOWNEY	ROSEMEAD BL	TELEGRAPH RD	0.77	c	1.07	F	
	EL SEGUNDO	SEPULVEDA BL	EL SEGUNDO BL	1.03	F	1.07	F	
	GARDENA	ARTESIA BL	VERMONT AV	0.99	Ē	0.86	D	
	HERMOSA BCH	* PACIFIC COAST HWY	ARTESIA BL/GOULD	1.00	E	0.89	D	
	HUNTINGTON PK							
			SLAUSON AV	0.62	B	0.69	В	
	INGLEWOOD	MANCHESTER AV	CRENSHAW BL	0.96	E	1.09	F	
	INGLEWOOD	MANCHESTER AV		0.95	E	0.94	E	
	LA CANADA-FLINT	ANGELES CREST HWY	RTE 210 WB OFF RMP	0.64	В	0.60	A	
	LA MIRADA		LA MIRADA BL	0.99	E	0.94	E	
	LA PUENTE	AZUSA AV	MAIN ST	0.79	С	0.80	С	
		ARROW HWY	E ST	0.62	В	0.68	В	
	LA VERNE	* BASE LINE RD	FOOTHILL BL	0.65	В	1.14	F	
	LA VERNE	FOOTHILL BL	DAMIEN AV	0.84	D	1.04	F	
32	LAKEWOOD	LAKEWOOD BL	SOUTH ST	0.68	В	0.94	Е	
33	LONG BEACH	* ALAMITOS AV	OCEAN BL	0.97	Е	0.99	Е	
34	LONG BEACH	LAKEWOOD BL	CARSON ST	0.71	С	0.83	D	
35	LONG BEACH	LAKEWOOD BL	WILLOW ST	0.89	D	0.96	Е	
36	LONG BEACH	PACIFIC COAST HWY	7TH ST	1.07	F	1.00	Е	
37	LONG BEACH	* PACIFIC COAST HWY	ALAMITOS AV	0.78	С	0.83	D	
38	LONG BEACH	PACIFIC COAST HWY	SANTA FE AV	0.64	B	0.68	В	
39	LONG BEACH	PACIFIC COAST HWY	WESTMINSTER AV	1.00	Е	1.07	F	
40	LONG BEACH	PACIFIC COAST HWY	XIMENO AV	0.69	в	0.77	С	
41	LONG BEACH	* SEVENTH ST	ALAMITOS AV	1.14	F	0.86	D	
42	LONG BEACH	SEVENTH ST	REDONDO AV	1.01	F	0.99	Е	
	LOS ANG CITY	ALAMEDA ST	WASHINGTON BL	0.63	в	0.72	С	
	LOS ANG CITY	ALVARADO ST	SUNSET BL	0.99	E	0.99	Ē	
	LOS ANG CITY	GAFFEY ST	9TH ST	0.93	E	0.95	E	
	LOS ANG CITY	* LINCOLN	MANCHESTER	0.85	D	0.79	c	
	LOS ANG CITY	* LINCOLN	MARINA EXPY	0.70	В	0.79	В	
	LOS ANG CITY	* LINCOLN	VENICE BL	0.89	D	0.89	E	
	LOS ANG CITY	MANCHESTER AV	AVALON BL	0.65	В	0.72	C	
	LOS ANG CITY	MANCHESTER AV	SEPULVEDA BL	0.90	E	0.87	D	
	LOS ANG CITY	MANCHESTER AV	VERMONT AV	0.75	С	0.77	С	
	LOS ANG CITY	* PACIFIC COAST HWY	ALAMEDA ST	0.56	Α	0.65	В	
	LOS ANG CITY	PACIFIC COAST HWY	CHAUTAUQUA BL	1.09	F	1.41	F	
	LOS ANG CITY	PACIFIC COAST HWY	FIGUEROA ST	0.80	D	0.72	С	

.

1992 LEVELS OF SERVICE AT CMP ARTERIAL MONITORING STATIONS SORTED BY RESPONSIBLE AGENCY CMP RESPONSIBLE

.

CMP	RESPONSIBLE				k Hour	PM Pk	Hour	
	AGENCY	HIGHWAY NAME	CROSS STREET	V/C	LOS	V/C	LOS	
						-		
55	LOS ANG CITY	PACIFIC COAST HWY	SUNSET BL	0.91	Е	0.88	D	
	LOS ANG CITY	* PACIFIC COAST HWY	WESTERN AV	0.77	С	0.83	D	
	LOS ANG CITY	SANTA MONICA BL	BUNDY DR	0.54	Ā	0.67	В	
	LOS ANG CITY	* SANTA MONICA BL	HIGHLAND AV	1.01	F	1.09	F	
	LOS ANG CITY	SANTA MONICA BL	WESTERN AV	0.86	D	0.96	Ē	
			WESTWOOD BL	0.82	D	0.88	D	
	LOS ANG CITY	SANTA MONICA BL					E	
	LOS ANG CITY	SEPULVEDA BL		0.89	D	0.94		
	LOS ANG CITY	TOPANGA CYN BL	DEVONSHIRE ST	0.81	D	0.91	E	
	LOS ANG CITY	TOPANGA CYN BL	ROSCOE BL	0.83	D	0.82	D	
	LOS ANG CITY	TOPANGA CYN BL	RTE 118 WB RAMPS	0.80	D	0.88	D	
65	LOS ANG CITY	* TOPANGA CYN BL	VENTURA BL	0.88	D	0.87	D	
	LOS ANG CITY	* TOPANGA CYN BL	VICTORY BL	0.81	D	0.89	D	
67	LOS ANG CITY	VALLEY BL	RTE 710 NB OFF-RAM	0.68	В	0.71	С	
68	LOS ANG CITY	VENICE BL	CENTINELA BL	1.05	F	1.07	F	
69	LOS ANG CITY	VENICE BL	LA CIENEGA	1.01	F	1.03	F	
70	LOS ANG CITY	VENTURA BL	BALBOA BL	0.85	D	0.74	С	
71	LOS ANG CITY	VENTURA BL	LANKERSHIM BL	1.08	F	0.95	Ε	
	LOS ANG CITY	VENTURA BL	LAUREL CYN BL	0.95	Е	1.03	F	
	LOS ANG CITY	VENTURA BL	RESEDA BL	0.72	С	0.80	D	
	LOS ANG CITY	VENTURA BL	SEPULVEDA BL	0.88	D	0.85	D	
	LOS ANG CITY	VENTURA BL	WINNETKA AV	0.77	c	0.76	c	
	LOS ANG CITY	VENTURA BL	WOODMAN AV	0.78	č	0.87	D	
		VICTORY BL	BALBOA BL	1.01	F	0.98	E	
	LOS ANG CITY				F	1.16	F	
	LOS ANG CITY		RESEDA BL	1.03	F		F	
	LOS ANG CITY		SEPULVEDA BL	1.02		1.04		
	LOS ANG CITY	VICTORY BL	WINNETKA AV	0.97	E	1.01	F	
	LOS ANG CITY	VICTORY BL	WOODMAN AV	0.97	E	1.02	F	
	LOS ANG CITY	WESTERN AV	9TH ST	0.59	Α	0.72	С	
	LOS ANG CITY	WILSHIRE BL	ALVARADO BL	0.53	Α	0.68	В	+
84	LOS ANG CITY	WILSHIRE BL	BEVERLY GLEN BL	0.84	D	0.87	D	
85	LOS ANG CITY	WILSHIRE BL	LA BRÉA AV	0.82	D	0.83	D	
86	LOS ANG CITY	WILSHIRE BL	SEPULVEDA BL	0.95	Е	1.01	F	
87	LOS ANG CITY	WILSHIRE BL	WESTERN AV	0.65	В	0.81	D	+
88	LOS ANG COUNTY	AVENUE D	60TH ST WEST	0.22	Α	0.23	Α	
89	LOS ANG COUNTY	• AZUSA AV	COLIMA RD	0.76	С	0.91	Е	
90	LOS ANG COUNTY	* COLIMA RD	HACIENDA BL	0.89	D	0.84	D	
	LOS ANG COUNTY	HENRY MAYO DR	CHIQUITO CYN RD	0.51	Α	0.49	Α	
	LOS ANG COUNTY	IMPERIAL HWY	CARMENITA RD	0.95	Ė	1.31	F	
-	LOS ANG COUNTY	LANCASTER RD	300TH ST WEST	0.17	Α	0.18	Α	
	LOS ANG COUNTY	* PACIFIC COAST HWY	TOPANGA CYN BL	0.96	Е	0.75	С	
	LOS ANG COUNTY	PEARBLOSSOM HWY	82ND ST E	0.46	Ā	0.52	Ā	
	LOS ANG COUNTY	* PEARBLOSSOM HWY	ANTELOPE HWY	0.33	A	0.32	A	
	LOS ANG COUNTY		HUNTINGTON DR	0.96	E	1.07	F	
		ROSEMEAD BL	SAN GABRIEL BL	1.02	F	1.07	F	
-	LOS ANG COUNTY	ROSEMEAD BL				0.71	ċ	
	LOS ANG COUNTY	SIERRA HWY	RTE 14 (FLINTHILL DR)	0.69	В			
	LOS ANG COUNTY	SIERRA HWY	SAND CYN RD	0.86	D	1.04	F	
	LOS ANG COUNTY	WHITTIER BL	ATLANTIC BL	0.68	В	0.77	С	
	LYNWOOD	ALAMEDA ST	IMPERIAL HWY	1.02	F	1.04	F	
103	MALIBU	* PACIFIC COAST HWY	DECKER RD	0.29	A	0.35	Α	
104	MALIBU	PACIFIC COAST HWY	KANAN DUME RD	0.50	Α	0.48	Α	
105	MALIBU	PACIFIC COAST HWY	LAS FLORES CYN RD	0.74	С	0.79	С	
	MALIBU	PACIFIC COAST HWY	MALIBU CYN RD	0.57	Α	0.65	В	
	MANHATTAN BCH	SEPULVEDA BL	ROSECRANS AV	1.22	F	1.22	F	
	MONTEBELLO	WHITTIER BL	GARFIELD	0.00	Α	0.00	Α	+
,		1						

10/28

1992 LEVELS OF SERVICE AT CMP ARTERIAL MONITORING STATIONS

•

CMP	RESPONSIBLE				k Hour		k Hour
Station	AGENCY	HIGHWAY NAME	CROSS STREET	V/C	LOS	V/C	LOS
109	MONTEBELLO	WHITTIER BL	MONTEBELLO BL	0.75	С	0.79	с
	NORWALK	FIRESTONE BL	IMPERIAL HWY	0.92	E	0.86	D
111		IMPERIAL HWY	NORWALK BL	0.84	D	0.95	E
	PALMDALE	FORT TEJON RD	PEARBLOSSOM HWY	0.52	Ā	0.55	Ā
	PALMDALE	PALMDALE BL	30TH ST E	0.42	Â	0.69	B
	PALMDALE	PALMDALE BL	SIERRA HWY	0.48	Â	0.03	c
	PASADENA	ARROYO PKWY	CALIFORNIA BL	0.40	D	0.92	E
	PASADENA	PASADENA/ST.JOHN AV	CALIFORNIA BL	0.95	E	0.92	E
	PASADENA	ROSEMEAD BL	FOOTHILL BL	0.70	В	0.95	D
	PICO RIVERA	ROSEMEAD BL	WASHINGTON BL	0.88	D	0.94	E
	PICO RIVERA	* ROSEMEAD BL	WHITTIER BL	0.00	c	0.89	D
	POMONA	ARROW HWY	GAREY AV	0.63	В	0.85	D
	POMONA	CORONA EXPY	GAREY AV	1.10	F	1.10	F
	POMONA	CORONA EXPY	MISSION BL		F		
	POMONA	FOOTHILL BL	GAREY AV	1.10	Г С	1.10	F F
	RANCHO PV	WESTERN AV		0.80		1.06	
	REDONDO BCH	ARTESIA BL	TOSCANINI DR	0.69	B	0.73	C
	REDONDO BCH	i		0.98	E	1.16	F
		PACIFIC COAST HWY	TORRANCE BL	0.94	E	1.09	F
	ROSEMEAD	ROSEMEAD BL	VALLEY BL	1.02	F	1.05	F
	SAN DIMAS	ARROW HWY	SAN DIMAS AV	0.47	A	0.67	В
	SANTA CLARITA	MAGIC MTN PKWY	VALENCIA BL	0.77	С	0.91	Е
	SANTA CLARITA	SAN FERNANDO RD	LYONS AV	0.85	D	1.06	F
	SANTA CLARITA	* SAN FERNANDO RD	SIERRA HWY	1.04	F	0.88	D
	SANTA CLARITA	SIERRA HWY	PLACERITA CYN RD	0.69	В	0.67	В
	SANTA CLARITA	SIERRA HWY	SOLEDAD CYN RD	1.06	F	1.13	F
	SANTA MONICA	LINCOLN	PICO BL	0.93	E	0.91	Е
	SANTA MONICA	SANTA MONICA BL	CLOVERFIELD BL	0.68 ·	В	0.80	С
	SANTA MONICA	* SANTA MONICA BL	LINCOLN BL	0.63	В	0.86	D
	SANTA MONICA	WILSHIRE BL	26TH ST	0.81	D	0.95	Е
	SOUTH EL MONTE	ROSEMEAD BL	GARVEY AV	0.85	D	0.97	Е
	SOUTH GATE	* ALAMEDA ST	FIRESTONE BL	0.69	В	0.86	D
140	SOUTH GATE	FIRESTONE BL	ATLANTIC AV	0.91	Е	1.11	F
141	SOUTH PASADENA	FREMONT AV	HUNTINGTON DR	0.86	D	0.96	Е
142	TEMPLE CITY	ROSEMEAD BL	LAS TUNAS DR	1.05	F	1.05	F
143	TORRANCE	ARTESIA BL	CRENSHAW BL	1.11	F	1.11	F
144	TORRANCE	* ARTESIA BL	HAWTHORNE BL	1.09	F	1.01	F
145	TORRANCE	HAWTHORNE BL	190TH ST	0.99	E	0.94	Е
146	TORRANCE	HAWTHORNE BL	SEPULVEDA BL	0.83	D	1.05	F
147	TORRANCE	PACIFIC COAST HWY	CRENSHAW BL	0.99	Е	1.09	F
148	TORRANCE	* PACIFIC COAST HWY	HAWTHORNE	1.00	Е	1.03	F
149	TORRANCE	PACIFIC COAST HWY	PALOS VERDES BL	0.76	С	0.96	Е
150	TORRANCE	WESTERN AV	190TH ST	0.86	D	0.95	Е
151	TORRANCE	WESTERN AV	CARSON ST	0.95	E	1.04	F
	TORRANCE	WESTERN AV	SEPULVEDA BL	0.99	Ē	1.10	F
	W.COVINA	AZUSA AV	AMAR RD	0.96	E	1.25	F
	W.COVINA	AZUSA AV	CAMERON AV	0.69	В	0.77	c
	W.COVINA	AZUSA AV	WORKMAN AV	0.62	B	0.71	c
	W.HOLLYWOOD	SANTA MONICA BL	DOHENY DR	0.02	E	0.82	D
	W.HOLLYWOOD	SANTA MONICA BL			F		
			LA CIENEGA BL	1.09		0.94	E
			COLIMA RD	0.85	D	0.96	E
	WHITTIER		NORWALK BL	0.92	E	0.81	D
160	WHITTIER	WHITTIER BL	PAINTER AV	0.84	<u>D</u>	1.14	F

* Indicates intersection of two CMP arterials.

+ Affected by Construction

:

1992 LEVELS OF SERVICE AT CMP FREEWAY MONITORING STATIONS

• •

.

					N	orthbo	und/Ea	stbound					Sc	outhbo	und/We	stbound			
СМР	Fwy	Post		AN	l Peak H	our		PM	Peak H	our		AN	I Peak H	our			Peak H	our	
Station	Rte	Mile	Location	Demnd	Сар	D/C	LOS	Demnd	Сар	D/C	LOS	Demnd	Сар	D/C	LOS	Demnd	Сар	D/C	LOS
1001	2	R17.00	Verdugo Rd	3924	8000	0.49	в	7852	8000	0.98	Е	10080	8000	1.26	F1	3668	8000	0.46	в
1002	5	8.27	Lakewood Blvd	11200	8000	1.40	F2	7433	8000	0.93	D	6873	8000	0.86	D	10330	8000	1.29	F 1
1003	5	15.14	Caizona St	12578	10000	1.26	F1 '	9178	10000	0.92	D	9608	10000	0.96	Е	13323	10000	1.33	F1
1004	5	21.80	Stadium Way	8892	10000	0.89	D	12720	10000	1.27	F1	10360	10000	1.04	F0	8956	10000	0.90	D
1005	5	25.78	Colorado St Ext	4968	8000	0.62	С	6398	8000	0.80	D	6310	8000	0.79	D	5288	8000	0.66	С
1006	5	29.27	Burbank Blvd	5108	8000	0.64	С	6996	8000	0.87	D	7812	8000	0.98	Е	5044	8000	0.63	С
1007	5	37.55	Osborne St	7912	10000	0.79	D	12920	10000	1.29	F1	13050	10000	1.31	F1	8148	10000	0.81	D
1008	5	R42.65	Roxford St	7187	10000	0.72	С	11763	10000	1.18	F0	11219	10000	1.12	F0	7676	10000	0.77	С
1009	5	R50.33	Lyons Ave	6003	8000	0.75	С	7900	8000	0.99	Е	7315	8000	0.91	D	6052	8000	0.76	С
1010	10	R2.17	Lincoln Blvd	7052	8000	0.88	D	6248	8000	0.78	D	6708	8000	0.84	D	6348	8000	0.79	D
1011	10	R6.40	Overland Ave	12700	10000	1.27	F 1	13650	10000	1.37	F2	11760	10000	1.18	F0	12948	10000	1.29	F 1
1012	10	10.53	La Brea Ave	13000	10000	1.30	F1	12240	10000	1.22	F0	12960	10000	1.30	F1	14850	10000	1.49	F3
1013	10	15.91	Los Angeles St	9614	10000	0.96	Е	14158	10000	1.42	F2	11286	10000	1.13	F0	13800	10000	1.38	F2
1014	10	19.66	Soto St	7083	9000	0.79	D	10560	9000	1.17	F0	11608	9000	1.29	F1	7692	9000	0.85	D
1015	10	23.38	Atlantic Blvd	5944	8000	0.74	С	12200	8000	1.53	F3	11450	8000	1.43	F2	7188	8000	0.90	D
1016	10	26.94	Rosemead Blvd	5620	8000	0.70	С	10970	8000	1.37	F2	10860	8000	1.36	F2	5820	8000	0.73	С
1017	10	32.22	Baldwin Park Blvd	6488	8000	0.81	D	10850	8000	1.36	F2	10850	8000	1.36	F2	6532	8000	0.82	D
1018	10	38.48	Grand Ave	6240	8000	0.78	D	7788	8000	0.97	Е	7764	8000	0.97	Е	6256	8000	0.78	D
1019	10	43.66	Fairplex Dr	6558	8000	0.82	D	10450	8000	1.31	F1	8015	8000	1.00	F0	6266	8000	0.78	D
1020	10	47.87	Indian Hill	7612	8000	0.95	Е	10050	8000	1.26	F1	10060	8000	1.26	F1	8020	8000	1.00	F0
1021	14	B27.05	San Fernando Rd	2620	8000	0.33	Α	7380	8000	0.92	D	8284	8000	1.04	F0	3512	8000	0.44	В
1022	14	33.42		1260	4000	0.32	Α	5210	4000	1.30	F1	5040	4000	1.26	F1	1890	4000	0.47	В
1023	14	39.85	Aqua Dulce Canyon Rd	1615	4000	0.40	В	3950	4000	0.99	Е	3990	4000	1.00	Е	2521	4000	0.63	С
1024	14	R52.17		1560	4000	0.39	В	3800	4000	0.95	Е	3984	4000	1.00	Е	2436	4000	0.61	С
1025	14	R59.80	Palmdale Blvd	1466	`4000	0.37	в	3800	4000	0.95	Е	3170	4000	0.79	D	1584	4000	0.40	В
1026	22	1.14	Studebaker Rd	2432	3000	0.81	D	2748	3000	0.92	D	2452	3000	0.82	D	2144	3000	0.71	С
1027	57	R 3.17	Pathfinder Rd	6400	8000	0.80	D	10260	8000	1.28	F1	9600	8000	1.20	F0	7040	8000	0.88	D
1028	57		Campus (n/o Valley)	5719	8000	0.71	c	7049	8000	0.88	D	7581	8000	0.95	E	6251	8000	0.78	D
1029	60	2.05	Indiana St	6024	8000	0.75	с	8940	8000	1.12	F0	10430	8000	1.30	F1	5448	8000	0.68	С
1030	60	9.46	Rosemead Blvd	5164	8000	0.65	С	11680	8000	1.46	F3	13800	10000	1.38	F2	6428	10000	0. 64	С
1031	60		Hacienda Blvd	5132	8000	0.64	Ċ	7532	8000	0.94	E	10130	8000	1.27	F1	6500	8000	0.81	D

1992 LEVELS OF SERVICE AT CMP FREEWAY MONITORING STATIONS

7 4

					N	lorthbo	und/Ea	stbound					S	outhbo	und/We	estbound			
CMP	Fwy	Post		AM	i Peak H	our		PN	l Peak H	our		AN	l Peak H	our		PN	l Peak H	our	
Station	Rte	Mile	Location	Demnd	Сар	D/C	LOS	Demnd	Cap	D/C	LOS	Demnd	Cap	D/C	LOS	Demnd	Cap	D/C	LOS
1032	60	20.43	Nogales St	5900	8000	0.74	с	7576	8000	0. 9 5	Е	7376	8000	0.92	D	7040	8000	0.88	D
1033	60	R24.45	Grand Ave	6244	10000	0.62	С	13780	10000	1.38	F2	9367	10000	0.94	E	7025	10000	0.70	
1034	60	R29.39	Corona Expressway	4480	6000	0.75	С	8720	6000	1.45	F3	8280	6000	1.38	F2	5468	6000	0.91	
1035	91	R10.31	Alameda St	8184	8000	1.02	F0	11680	8000	1.46	F3	11080	8000	1.39	F2	8720	8000	1.09	F0
1036	91	R14.59	Lakewood Bivd	6150	8000	0.77	С	11110	8000	1.39	F2	11340	8000	1.42	F2	5586	8000	0.70	C
1037	91	R18.09	Pioneer Blvd	5292	8000	0.66	С	8650	8000	1.08	F0	10410	8000	1.30	F1	6063	8000	0.76	-
1038	101	0.82	Los Angeles St *	10550	8000	1.32	F1	6423	8000	0.80	D	6388	8000	0.80	D	11840	8000	1.48	F3
1039	101	5.90	Western Ave *	5996	8000	0.75	C.	7412	8000	0.93	D	8720	8000	1.09	F0	6328	8000	0.79	D
1040	101	13.98	Coldwater Canyon Ave *	11150	8000	1.39	F2	11340	8000	1.42	F2	10150	8000	1.27	F1	9850	8000	1.23	F0
1041	101	20.34	White Oak Ave *	9650	8000	1.21	F0	9650	8000	1.21	F0	12200	8000	1.53	F3	10650	8000	1.33	F1
1042	101	27.51	Long Viy/Mulholland Dr *	6364	8000	0.80	D	8063	8000	1.01	F0	9130	8000	1.14	F0	6499	8000	0.81	D
1043	101	35.04	Kanan Rol *	4362	9000	0.48	В	8213	9000	0.91	D	7000	9000	0.78	D	5256	9000	0.58	С
1044	110	7.02	Carson St	9685	8000	1.21	F0	5960	8000	0.75	С	5215	8000	0.65	С	8940	8000	1.12	F0
1045	110	11.89	Rosecrans Ave	8415	8000	1.05	F0	7650	8000	0.96	E	6885	8000	0.86	D	7650	8000	0.96	E
1046	110	17.98	Slauson Ave	11680	8000	1.46	F3	10240	8000	1.28	F1	10240	8000	1.28	F1	7748	8000	0.97	
1047	110	22.12	Olympic Blvd	8520	6000	1.42	F2	8880	6000	1.48	F3	11800	8000	1.48	F3	8680	8000	1.09	F0
1048	110	24.46	Stadium Way	4047	6000	0.67	С	9120	6000	1.52	F3	8380	6000	1.40	F2	4152	6000	0.69	С
1049	110	28.76	Avenue 60	3270	6000	0.55	С	5995	6000	1.00	Е	7480	6000	1.25	F0	4905	6000	0.82	D
1050	118	1.87	Topanga Canyon Blvd	6340	6000	1.06	F0	3416	6000	0.57	С	2732	6000	0.46	в	7120	6000	1.19	F0
1051	118	R7.73	Balboa Bivd	8220	10000	0.82	D	6800	10000	0.68	С	10270	10000	1.03	F0	12800	10000	1.28	F1
1052	118	R12.40	San Fernando Rd	3972	8000	0.50	B	5124	8000	0.64	С	4540	8000	0.57	С	3768	8000	0.47	B
1053	134	3.04	Buena Vista St	6792	8000	0.85	D	6792	8000	0.85	D	6204	8000	0.78	D	10160	8000	1.27	F1
1054	134	7.41	Brand/Central Ave	6920	8000	0.87	D	9140	8000	1.14	F0	8957	8000	1.12	-	5812	8000	0.73	
1055	134	R11.52	Figueroa St	6804	8000	0.85	D	7620	8000	0.95	E	10080	8000	1.26	F1	6692	8000	0.84	
1056	170	R17.53	Magnolia Blvd	4564	8000	0.57	С	6608	8000	0.83	D	7216	8000	0.90	D	4925	8000	0.62	С
1057	210	R4.95	Polk St	4380	6000	0.73	С	3692	6000	0.62	С	1436	6000	0.24	A	3692	6000	0.62	С
1058	210	R7.19	Osborne St	5844	8000	0.73	С	3484	8000	0.44	B	3448	8000	0.43	в	5776	8000	0.72	
1059	210	R22.64	Arroyo Blvd	6636	9000	0.74	С	4064	9000	0.45	В	4356	9000	0.48	B	6476	9000	0.72	
1060	210	R29.72	Rosemead Blvd	6390	9000	0.71	С	12850	9000	1.43	F2	11880	9000	1.32	- F1	6447	9000	0.72	-
1061	210	37.86	Irwindale Ave	7400	9000	0.82	D	11520	9000	1.28	F1	10080	9000	1.12	FO	7208	9000	0.80	
1062	210	R45.42	Arrow Highway	5988	8000	0.75	С	5452	8000	0.68	С	5384	8000	0.67	C	6584	8000	0.82	

.

i i stati i st

 \mathcal{D}

10/28

1992 LEVELS OF SERVICE AT CMP FREEWAY MONITORING STATIONS

					N	lorthbo	und/Ea	stbound					S	outhbo	und/We	estbound			
CMP	Fwy	Post		AN	Peak H	our		PN	l Peak H	our		AN	Peak H	our		PN	l Peak H	our	
Station	Rte	Mile	Location	Demnd	Сар	D/C	LOS	Demnd	Сар	D/C	LOS	Demnd	Cap	D/C	LOS	Demnd	Сар	D/C	LOS
1063	405	0.55	Studebaker Rd	10340	8000	1.29	F1	7380	8000	0.92	D	7296	8000	0.91	D	11680	8000	1.46	F3
1064	405	5.99	Atlantic Ave	13165	10000	1.32	F1	7200	10000	0.72	С	9135	10000	0.91	D	13570	10000	1.36	F2
1065	405	11.32	Avalon Blvd	12100	10000	1.21	F0	9300	10000	0.93	D	8400	10000	0.84	D	14600	10000	1.46	F3
1066	405	16.66	Artesia Blvd	11500	8000	1.44	F2	9440	8000	1.18	F0	8528	8000	1.07	F0	12340	8000	1.54	F3
1067	405	22.22	Century Blvd	11533	8000	1.44	F2	10010	8000	1.25	F1	8668	8000	1.08	F0	10150	8000	1.27	F1
1068	405	27.81	Venice Blvd	12595	10000	1.26	F1	12595	10000	1.26	F1	10305	10000	1.03	F0	10305	10000	1.03	F0
1069	405	33.00	Sunset Boulvard	8604	10000	0.86	D	14600	10000	1.46	F3	11480	9000	1.28	F1	9073	9000	1.01	F0
1070	405	43.87	Roscoe Blvd	6004	8000	0.75	С	8164	8000	1.02	F0	9577	8000	1.20	F0	7536	8000	0.94	Е
1071	605	R3.68	South St	8164	8000	1.02	F0	8643	8000	1.08	F0	8797	8000	1.10	F0	9150	8000	1.14	F0
1072	605	R8.40	Firestone Blvd	11130	8000	1.39	F2	11590	8000	1.45	F2	7891	9000	0.88	D	12420	9000	1.38	F2
1073	605	R13.48	Whittier Blvd	5024	8000	0.63	С	10130	8000	1.27	F1	8036	8000	1.00	F0	7044	8000	0.88	D
1074	605	R19.39	Valley Blvd	5435	8000	0.68	С	7956	8000	0.99	Е	8200	8000	1.03	F0	6243	8000	0.78	D
1075	605	23.96	Arrow Highway	4000	8000	0.50	В	5598	8000	0.70	С	6425	8000	0.80	D	4809	8000	0.60	С
1076	710	7.89	Willow St	4860	6000	0.81	D	5400	6000	0.90	D	5940	6000	0.99	Е	5400	6000	0.90	D
1077	710	12.01	Long Beach Blvd	7148	11000	0.65	С	7300	11000	0.66	С	9428	10000	0.94	Е	10056	10000	1.01	F0
1078	710	18.42	Firestone Blvd	8910	8000	1.11	F0	6884	8000	0.86	D	5760	8000	0.72	С	7920	8000	0.99	Е
1079	710	23.50	Olympic Blvd	7380	9000	0.82	D	7380	9000	0.82	D	7095	9000	0.79	D	11430	9000	1.27	F1

.

* Rte 101 travels north/south

+ Affected by Construction

10/26

APPENDIX

B

TRANSIT ROUTE LIST AND MONITORING FORM

TR. Operator EWAY CORRIDOR	ANSIT MONITORING NI Line	•								
	Line									
EWAY CORRIDOR		Route								
SCRTD	4/304	Santa Monica Blvd								
SCRTD	20/320	Wilshire								
SCRTD	28/27/328	Olympic								
SCRTD	33/333	Venice								
SCRTD	200	Alvarado								
SCRTD	212	La Brea								
Santa Monica	1	Santa Monica Blvd								
Santa Monica	2	Wilshire								
Santa Monica	3	Lincoln								
Culver City	6	Sepulveda								
SCRTD	434	Rte 10 PCH Exp								
SCRTD	436	Venice Rte 10 Exp								
SCRTD	439	Rte 10 Exp								
Santa Monica	10	Rte 10 Exp								
LADOT	430	Rte 10 Exp								
LADOT	431	Rte 10 Exp								
LADOT	437	Rte 10 Exp								
LADOT	438	Rte 10 Exp								
MONA/ORANGE FREEW	AY CORRIDOR									
SCRTD	18	Whittier								
SCRTD	70	Garvey								
SCRTD	76	Valley								
Foothill	280	Azusa								
SCRTD	484	Valley Blvd. Exp								
SCRTD	488	Rte 10 Exp								
SCRTD	490	Rte 57 Rte 10 Exp								
SCRTD	497	Rte 10 Exp								
Foothill	480	Rie 10 Exp								
Foothill	481	Rte 10 Exp								
Foothill	482	(Rte 60) Rte 10 Exp								
Foothill	486	Rte 10 Exp								
Foothill	492	Rte 10 Arrow Exp								
Foothill	494	Foothill Rte 10 Exp								
		Rte 60 Exp								
	,	Rte 10 Exp								
	SCRTD SCRTD SCRTD SCRTD SCRTD Santa Monica Santa Monica Santa Monica Culver City SCRTD SCR	SCRTD 28/27/328 SCRTD 33/333 SCRTD 200 SCRTD 212 Santa Monica 1 Santa Monica 2 Santa Monica 3 Culver City 6 SCRTD 434 SCRTD 436 SCRTD 436 SCRTD 439 Santa Monica 10 LADOT 431 LADOT 433 LADOT 438 DMONA/ORANGE FREEWAY CORRIDOR 18 SCRTD 70 SCRTD 76 Foothill 280 SCRTD 484 SCRTD 488 SCRTD 490 SCRTD 497 Foothill 480 Foothill 482 Foothill 482 Foothill 486 Foothill 492 Foothill 494 Foothill 494								

CONGESTED	TRA	NSIT MONITORING NET	WORK
CORRIDORS & STATE HIGHWAYS	Operator	Line	Route
SAN FERNANDO VALI	EY/DOWNTOWN L.A. COR	RIDOR	·
State Hwys 5, 27, 101,	SCRTD	161	Rtc 101
170	SCRTD	165	Victory
	SCRTD	245	Topanga
	SCRTD	418	Rte 5 Exp
	SCRTD	420	Rtc 101 Exp
	SCRTD	424	Ventura Exp
	SCRTD	426	Topanga Ric 5 Exp
	SCRTD	427	Rte 101 Exp
	LADOT	413	Rte 5 Exp
	LADOT	419	Devonshire Exp
	LADOT	423	Rte 101 Exp
3 HARBOR FREEWAY C	ORRIDOR		<u> </u>
State Hwys 47, 110, 213	SCRTD	81	Figueroa
• · · ·	Gardena	2	Western
	SCRTD	443	Rte 110 Exp
	SCRTD	445	Rte 110 Exp
	SCRTD	446	Rte 110 Exp
	Torrance	1	Rte 110 Exp
	Torrance	2	Rte 110 Exp
	Gardena	1	Rtc 110 Exp
	LADOT	448	Rte 110 Exp
SAN DIEGO FREEWAY	CORRIDOR	-	·
State Hwys 1, 22, 107,	SCRTD	40	Hawthorne
405	SCRTD	232	Pacific Coast Hwy
	SCRTD	234	Sepulveda
	Torrance	3	Pacific Coast Hwy
	Torrance	7	Sepulveda
	Torrance	8	Hawthorne
	Long Beach	90	7th Street
	SCRTD	442	Hawthorne Exp
	SCRTD	444	Hawthorne Exp
	SCRTD	560	Sepulveda Exp
VENTURA/FOOTHILL	FREEWAY/WEST SAN GAB	RIEL VALLEY CORRIDO	DR
State Hwys 2, 110, 134,	SCRTD	78/79/379	Huntington
210	SCRTD	180/181	Colorado
	Foothill	187	Foothill
	SCRTD	401	Rte 110 Exp
	SCRTD	483	Rte 10 Exp
	SCRTD	487	Rte 10 Exp
	Foothill	690	Rte 210 Exp

ROUTES	INCLUDED IN CMP TH	RANSIT MONITORI	NG NETWORK
CONGESTED CORRIDORS & STATE	TR	ANSIT MONITORING N	ETWORK
HIGHWAYS	Operator	Line	Route
6 SANTA ANA FREEWA	Y CORRIDOR		• • • • • • • • • • • • • • • • • • •
State Hwys 5, 72	SCRTD	6 6	E. Olympic
	Montebello	10	Whittier
	SCRTD	460	Rte 5 Exp
	SCRTD	462	Rte 5 Exp
	SCRTD	466	Rte 5 Exp
	SCRTD	470	Whittier
7 SAN GABRIEL RIVER	FREEWAY CORRIDOR		
State Hwys 19, 164, 605	SCRTD	266	Rosemead
• • •	SCRTD	270	Peck/Myrtie
8 ARTESIA FREEWAY (CORRIDOR		·
State Hwys 42 (105), 91	SCRTD	115	Firestone
	SCRTD	120	Imperial
9 NORTH COUNTY COR	RIDOR		
State Hwys 14, 48, 118,	Santa Clarita	50	Sicrra Highway
138	Santa Clarita	799	Rte 5 Rte 126 Exp
	Antelope Valley	785	Rte 5 Rte 14 Exp
<u> . </u>	Antelope Valley		Rtc 5 Rtc 14 Exp
10 LONG BEACH FREEV	VAY CORRIDOR		
State Hwys 47, 103, 710	SCRTD	55	Alameda
	SCRTD	60/360	Feeder
	SCRTD	260	Atlantic
	Long Beach	40	Feeder
	Long Beach	50	Feeder
	Long Beach	60	Atlantic
	METRO	Blue Line	Light Rail
	SCRTD	457	Rte 710 Exp

CMP ANNUAL T	RANSIT SERVICES MONI	TORING FORM
Agency:		
Fiscal Year:	Date Pre	pared:
Line Number:	Branch/F	Route Numbers:
Type of Service (Check One):		
Local Rail Feeder	□ Local	□ Local-Limited
Peak-Only Express	□ All-Day Express	
Commuter Rail	Light Rail	Heavy Rail

DAYS OF OPE	RATION		HOURS OF OPERATION									
	Number of Days	Begin Service	AM Peak	Base	PM Peak	End of Service						
Weekdays												
Weekend Days												

AVERAGE WEEKDAY STATISTICS	AM Peak	Base	PM Peak	Total
Passenger Miles				
Vehicle Service Hours				
Vehicle Service Miles				
Number of Weekday Trips				
Unlinked Passengers				
Linked Passengers				
Average Weekday Headways (Min.)				
One-way Route Miles				
One-way Trip Time (Scheduled)				

Preparer: _____ Phone Number:

PAGE B

-S		PL	.Е-
----	--	----	-----

CMP ANNUAL TR	ANSIT SERVICES MON	NITORING FORM
Agency: EXAMPLE BUS 1	INES	
Fiscal Year:	Date Pr	epared:10/1/92
Line Number:99	Branch/	Route Numbers: <u>N/A</u>
Type of Service (Check One):		
Local Rail Feeder	🛛 Local	Local-Limited
Peak-Only Express	All-Day Express	
□ Commuter Rail	Light Rail	Heavy Rail

DAYS OF OPERATION		HOURS OF OPERATION					
	Number of Days	Begin Service	AM Peak	Base	PM Peak	End of Service	
Weekdays	5	5:50 AM	6-9 AM	9AM-3PM		8:19 PM	
Weekend Days	1	7:14 AM	N/A	N/A	<u>_N/</u> A	5:37 PM	

AVERAGE WEEKDAY STATISTICS	AM Peak	Base	PM Peak	Total
Passenger Miles				79,917
Vehicle Service Hours	23.3	62.3	23.3	108.9
Vehicle Service Miles	427.8	855.6	570.4	1853.8
Number of Weekday Trips	6	12	8 -	26
Unlinked Passengers	1,029			4,801
Linked Passengers				3,015
Average Weekday Headways (Min.)	30 min.	30 min.	20 min.	
One-way Route Miles				27.6
One-way Trip Time (Scheduled)	23 min.		23 min.	
Preparer: Pat Johnson	Pho	ne Number:	(213) 62	23-1194

MODEL CMP TDM ORDINANCE

MODEL ORDINANCE FOR LOCAL GOVERNMENT COMPLIANCE WITH THE REQUIREMENTS OF THE CONGESTION MANAGEMENT PROGRAM RELATING TO TRIP REDUCTION AND TRAVEL DEMAND MEASURES

ORDINANCE NO.

AN ORDINANCE OF THE CITY OF [COUNTY OF LOS ANGELES] ADOPTING TRIP REDUCTION AND TRAVEL DEMAND MEASURES IN ACCORDANCE WITH STATE GOVERNMENT CODE SECTIONS 65089 AND 65089.3

WHEREAS, the Legislature of the State of California has found that the lack of an integrated transportation system and the increase in the number of vehicles are causing traffic congestion that each day results in hundreds of thousands of hours lost in traffic, tons of pollutants released into the air and millions of dollars of added costs to the motoring public; and

WHEREAS, the Legislature has adopted legislation requiring the preparation and implementation of a Congestion Management Program ("CMP") by county transportation commissions or other public agencies of every county that includes an urbanized area; and

WHEREAS, the Metropolitan Transportation Authority ("MTA") is responsible for the preparation of the CMP for Los Angeles County ("County"); and

WHEREAS, the CMP must contain a trip reduction and travel demand management element that promotes alternative transportation methods, such as carpools, vanpools, transit, bicycles, walking and park-and-ride lots, improvement in the balance between jobs and housing, and other strategies, including flexible work hours, telecommuting and parking management programs; and

WHEREAS, the County and every city within the County is required by state law to adopt and implement a Transportation Demand Management (TDM) ordinance as an important element of the Congestion Management Program to improve both congestion and air quality; and WHEREAS, MTA must determine annually whether the County and cities within the County are conforming to the CMP, including the requirement to adopt and implement a TDM ordinance; and

WHEREAS, because the CMP is an evolving program which will be developed incrementally, as experience is gained through its implementation, this TDM ordinance may be amended or superseded from time to time, as necessary to meet congestion and air quality goals;

WHEREAS, the State Clean Air Act requires regions to attain a 1.5 vehicle occupancy during the commute period by the year 1999;

WHEREAS, this ordinance is intended to comply with the CMP's requirements for a TDM ordinance. The requirements of South Coast Air Quality Management District ("District") Regulation XV, are separate from this ordinance, and administrated by the Air District. Nothing herein is intended, nor shall it be construed, to limit or otherwise preclude employers from offering or providing additional inducements to use alternatives to single-occupant vehicles to their employees necessary to meet Regulation XV requirements; and

WHEREAS, in order to use the existing and planned transportation infrastructure more efficiently, maintain or improve traffic levels of service, and lower motor vehicle emissions, it is the policy of the City of _____ [County of Los Angeles] to minimize the number of peak period vehicle trips generated by additional development, promote the use of alternative transportation, improve air quality and participate in regional and countywide efforts to improve transportation demand management;

NOW THEREFORE, the City Council of the City of _____ [Board of Supervisors of the County of Los Angeles] does ordain as follows:

SECTION 1. DEFINITIONS

The following words or phrases shall have the following meanings when used in this ordinance:

- A. "Alternative Transportation" means the use of modes of transportation other than the single passenger motor Vehicle, including but not limited to Carpools, Vanpools, Buspools, public transit, walking and bicycling.
- B. "Applicable Development" means any development project that is determined to meet or exceed the project size threshold criteria contained in Section 3 of this ordinance.
- C. "Buspool" means a Vehicle carrying sixteen or more passengers commuting on a regular basis to and from work with a fixed route, according to a fixed schedule.

- D. "Carpool" means a Vehicle carrying two to six persons commuting together to and from work on a regular basis.
- E. "The California Environmental Quality Act (CEQA)," a statute that requires all jurisdictions in the State of California to evaluate the extent of environmental degradation posed by proposed development.
- F. "Developer" shall mean the builder who is responsible for the planning, design and construction of an applicable development project. A developer may be responsible for implementing the provisions of this Ordinance as determined by the property owner.
- G. "Development" means the construction or addition of new building square footage. Additions to buildings which existed prior to the adoption of this ordinance and which exceed the thresholds defined in Section 3 shall comply with the applicable requirements but shall not be added cumulatively with existing square footage; existing square footage shall be exempt from these requirements. All calculations shall be based on gross square footage.
- H. "Employee Parking Area" means the portion of total required parking at a development used by onsite employees. Unless specified in the city/County Zoning/Building Code, employee parking shall be calculated as follows:

Type of Use	Percent of Total Required Parking Devoted to Employees		
Commercial	30%		
Office/Professional	. 85%		
Industrial/Manufacturing	90%		

- I. "Preferential Parking" means parking spaces designated or assigned, through use of a sign or painted space markings for Carpool and Vanpool Vehicles carrying commute passengers on a regular basis that are provided in a location more convenient to a place of employment than parking spaces provided for single occupant vehicles.
- J. "Property Owner" means the legal owner of a Development who serves as the lessor to a tenant. The Property Owner shall be responsible for complying with the provisions of the ordinance either directly or by delegating such responsibility as appropriate to a tenant and/or his agent.
- K. "South Coast Air Quality Management District" (SCAQMD) is the regional authority appointed by the California State Legislature to meet federal standards and otherwise improve air quality in the South Coast Air Basin (the non-desert portions of Los Angeles, Orange, Riverside, and San Bernardino Counties).

- L. "Tenant" means the lessee of facility space at an applicable development project.
- M. "Transportation Demand Management (TDM)" means the alteration of travel behavior -- usually on the part of commuters -- through programs of incentives, services, and policies. TDM addresses alternatives to single occupant vehicles such as carpooling and vanpooling, and changes in work schedules that move trips out of the peak period or eliminate them altogether (as is the case in telecommuting or compressed work weeks).
- N. "Trip Reduction" means reduction in the number of work-related trips made by single occupant vehicles.
- O. "Vanpool" means a Vehicle carrying seven or more persons commuting together to and from work on a regular basis, usually in a vehicle with a seating arrangement designed to carry seven to fifteen adult passengers, and on a prepaid subscription basis.
- P. "Vehicle" means any motorized form of transportation, including but not limited to automobiles, vans, buses and motorcycles.

SECTION 2. REVIEW OF TRANSIT IMPACTS

Prior to approval of any development project for which an Environmental Impact Report (EIR) will be prepared pursuant to the requirements of the California Environmental Quality Act (CEQA) or based on a local determination, regional and municipal fixed-route transit operators providing service to the project shall be identified and consulted with. Projects for which a Notice of Preparation (NOP) for a Draft EIR has been circulated pursuant to the provisions of CEQA prior to the effective date of this ordinance shall be exempted from its provisions. The "Transit Impact Review Worksheet", contained in the Los Angeles County Congestion Management Program Manual, or similar worksheets, shall be used in assessing impacts. Pursuant to the provisions of CEQA, transit operators shall be sent a NOP for all contemplated EIR's and shall, as part of the NOP process, be given opportunity to comment on the impacts of the project, to identify recommended transit service or capital improvements which may be required as a result of the project, and to recommend mitigation measures which minimize automobile trips on the CMP network. Impacts and recommended mitigation measures identified by the transit operator shall be evaluated in the Draft Environmental Impact Report prepared for the project. Related mitigation measures adopted shall be monitored through the mitigation monitoring requirements of CEQA.

Phased development projects, development projects subject to a development agreement, or development projects requiring subsequent approvals, need not repeat this process as long as no significant changes are made to the project. It shall remain the discretion of the lead agency to determine when a project is substantially the same and therefore covered by a previously certified EIR.

SECTION 3. TRANSPORTATION DEMAND AND TRIP REDUCTION MEASURES

A. APPLICABILITY OF REQUIREMENTS

Prior to approval of any development project, the applicant shall make provision for, as a minimum, all of the following applicable transportation demand management and trip reduction measures.

This ordinance shall not apply to projects for which a development application has been deemed "complete" by the City (County) pursuant to Government Code Section 65943, or for which a Notice of Preparation for a DEIR has been circulated or for which an application for a building permit has been received, prior to the effective date of this ordinance.

All facilities and improvements constructed or otherwise required shall be maintained in a state of good repair.

B. DEVELOPMENT STANDARDS

(1) Non-Residential development of 25,000 square feet or more shall provide the following to the satisfaction of the City [County]:

- A. A bulletin board, display case, or kiosk displaying transportation information located where the greatest number of employees are likely to see it. Information in the area shall include, but is not limited to, the following:
 - 1. Current maps, routes and schedules for public transit routes serving the site;
 - 2. Telephone numbers for referrals on transportation information including numbers for the regional ridesharing agency and local transit operators;
 - 3. Ridesharing promotional material supplied by commuter-oriented organizations;
 - 4. Bicycle route and facility information, including regional/local bicycle maps and bicycle safety information;
 - 5. A listing of facilities available for carpoolers, vanpoolers, bicyclists, transit riders and pedestrians at the site.

(2) Non-Residential development of 50,000 square feet or more shall comply with Section 3.B(1) above and shall provide all of the following measures to the satisfaction of the City [County]:

A. Not less than 10% of employee parking area, shall be located as close as is practical to the employee entrance(s), and shall be reserved for use by potential

carpool/vanpool vehicles, without displacing handicapped and customer parking needs. This preferential carpool/vanpool parking area shall be identified on the site plan upon application for building permit, to the satisfaction of City [County]. A statement that preferential carpool/vanpool spaces for employees are available and a description of the method for obtaining such spaces must be included on the required transportation information board. Spaces will be signed/striped as demand warrants; provided that at all times at least one space for projects of 50,000 square feet to 100,000 square feet and two spaces for projects over 100,000 square feet will be signed/striped for carpool/vanpool vehicles.

- B. Preferential parking spaces reserved for vanpools must be accessible to vanpool vehicles. When located within a parking structure, a minimum vertical interior clearance of 7'2" shall be provided for those spaces and accessways to be used by such vehicles. Adequate turning radii and parking space dimensions shall also be included in vanpool parking areas.
- C. Bicycle racks or other secure bicycle parking shall be provided to accommodate 4 bicycles per the first 50,000 square feet of non-residential development and 1 bicycle per each additional 50,000 square feet of non-residential development. Calculations which result in a fraction of 0.5 or higher shall be rounded up to the nearest whole number. A bicycle parking facility may also be a fully enclosed space or locker accessible only to the owner or operator of the bicycle, which protects the bike from inclement weather. Specific facilities and location (e.g., provision of racks, lockers, or locked room) shall be to the satisfaction of the City [County].

(3) Non-Residential development of 100,000 square feet or more shall comply with Sections 3.B(1) and 3.B(2) above, and shall provide all of the following measures to the satisfaction of the City [County]:

- A. A safe and convenient zone in which vanpool and carpool vehicles may deliver or board their passengers.
- B. Sidewalks or other designated pathways following direct and safe routes from the external pedestrian circulation system to each building in the development.
- C. If determined necessary by the City [County] to mitigate the project impact, bus stop improvements must be provided. The City [County] will consult with the local bus service providers in determining appropriate improvements. When locating bus stops and/or planning building entrances, entrances must be designed to provide safe and efficient access to nearby transit stations/stops.
- D. Safe and convenient access from the external circulation system to bicycle parking facilities onsite.

SECTION 4. MONITORING

[THE ORDINANCE SHALL INCORPORATE APPROPRIATE PROVISIONS FOR MONITORING PROJECT COMPLIANCE WITH THE STANDARDS REQUIRED HEREIN. THE SELECTION OF MONITORING METHODS IS LEFT TO THE DISCRETION OF THE CITY [COUNTY]. EXAMPLES OF RECOMMENDED MONITORING INCLUDE SITE MONITORING PRIOR TO THE ISSUANCE OF A CERTIFICATE OF OCCUPANCY OR BUSINESS LICENSE.]

SECTION 5. ENFORCEMENT

[THE ORDINANCE SHALL INCORPORATE APPROPRIATE PROVISIONS FOR ENFORCEMENT OF THE STANDARDS REQUIRED HEREIN. THE SELECTION OF ENFORCEMENT METHODS IS LEFT TO THE DISCRETION OF THE CITY [COUNTY]. EXAMPLES OF RECOMMENDED ENFORCEMENT METHODS INCLUDE REFERENCING EXISTING ENFORCEMENT AND COMPLIANCE PROVISIONS IN A JURISDICTIONS ZONING CODE.]

SECTION 6. This ordinance shall take effect upon the expiration of 30 days from the date of its publication.

INTRODUCED AND FIRST READ at a duly called meeting of the City Council [Board of Supervisors] held on

PASSED, APPROVED AND ADOPTED this _____ day of _____ by the following vote:

AYES:

NOES:

Mayor [Chairman, Board of Supervisors]

ATTEST:

APPROVED AS TO FORM:

APPENDIX

D

GUIDELINES FOR CMP TRANSPORTATION IMPACT ANALYSIS

Important Notice to User: This section provides detailed travel statistics for the Los Angeles area which will be updated on an ongoing basis. Updates will be distributed to all local jurisdictions when available. In order to ensure that impact analyses reflect the best available information, lead agencies may also contact MTA at the time of study initiation. Please call the CMP Hotline at (213) 244-6599 to request the most recent release of "Baseline Travel Data for CMP TIA's."

D.1 OBJECTIVE OF GUIDELINES

The following guidelines are intended to assist local agencies in evaluating impacts of land use decisions on the Congestion Management Program (CMP) system, through preparation of a regional transportation impact analysis (TIA). The following are the basic objectives of these guidelines:

- Promote consistency in the studies conducted by different jurisdictions, while maintaining flexibility for the variety of project types which could be affected by these guidelines.
- Establish procedures which can be implemented within existing project review processes, and without ongoing review by MTA.
- Provide guidelines which can be implemented immediately, with the full intention of subsequent review and possible revision.

These guidelines are based on specific requirements of the Congestion Management Program, and travel data sources available specifically for Los Angeles County. Basic references are listed in Section D.10 which provide additional information on possible methodologies and resources for conducting TIAs.

D.2 GENERAL PROVISIONS

CMP TIA requirements should be fulfilled within existing processes for environmental review, by extending local traffic impact studies presently being conducted to the regional system. In order to monitor activities affected by these requirements, Notices of Preparation (NOPs) must be submitted to MTA as a responsible agency. Formal MTA approval of individual TIAs is not required.

The following sections describe CMP TIA requirements in detail. In general, the competing objectives of consistency & flexibility have been addressed by specifying standard, or

minimum, requirements and requiring documentation when a TIA varies from these standards.

D.3 PROJECTS SUBJECT TO ANALYSIS

In general a CMP TIA is required for all projects required to prepare an Environmental Impact Report based on local determination. Please refer to Chapter 7 for more detailed information.

D.4 STUDY AREA

The geographic area examined in the TIA must include the following, at a minimum:

- ► All CMP arterial monitoring intersections, including freeway on- or off-ramp intersections, where the proposed project will add 50 or more trips during either the AM or PM weekday peak hours (of adjacent street traffic).
- Mainline freeway monitoring locations where the project will add 150 or more trips, in either direction, during either the AM or PM weekday peak hours.
- Caltrans must also be consulted through the Notice of Preparation (NOP) process to identify other specific locations to be analyzed on the state highway system.

If, based on these criteria, the TIA identifies no facilities for study, no further traffic analysis is required. However, projects must still consider transit impacts (Section D.8.3).

D.5 BACKGROUND TRAFFIC CONDITIONS

The following sections describe the procedures for documenting and estimating background, or non-project related, traffic conditions. Note that for the purpose of a TIA, these background estimates must include traffic from all sources without regard to the exemptions specified in CMP statute (e.g., traffic generated by the provision of low and very low income housing, or trips originating outside Los Angeles County).

D.5.1 Existing Traffic Conditions. Existing traffic volumes and levels of service (LOS) on the CMP highway system within the study area must be documented. Traffic counts must be less than one year old at the time the study is initiated, and collected in accordance with CMP highway monitoring requirements (see Appendix A). Section D.8.1 describes TIA LOS calculation requirements in greater detail. Freeway traffic volume and LOS data provided by Caltrans is also provided in Appendix A.

D.5.2 Selection of Horizon Year and Background Traffic Growth. Horizon year(s) selection is left to the lead agency, based on individual characteristics of the project being analyzed. In general, the horizon year should reflect a realistic estimate of the project completion date. For large developments phased over several years, review of intermediate milestones prior to buildout should also be considered.

At a minimum, horizon year background traffic growth estimates must use the generalized growth factors shown in Exhibit D-1. These growth factors are based on regional modeling efforts, and estimate the general effect of cumulative development and other socioeconomic changes on traffic throughout the region. Beyond this minimum, selection among the various methodologies available to estimate horizon year background traffic in greater detail is left to the lead agency. Suggested approaches include consultation with the jurisdiction in which the intersection under study is located, in order to obtain more detailed traffic estimates based on ongoing development in the vicinity.

D.6 PROPOSED PROJECT TRAFFIC GENERATION

Traffic generation estimates must conform to the procedures of the current edition of <u>Trip</u> <u>Generation</u>, by the Institute of Transportation Engineers (ITE). If an alternative methodology is used, the basis for this methodology must be fully documented.

Increases in site traffic generation may be reduced for existing land uses to be removed, if the existing use was operating during the year the traffic counts were collected. Current traffic generation should be substantiated by actual driveway counts; however, if infeasible, traffic may be estimated based on a methodology consistent with that used for the proposed use.

Regional transportation impact analysis also requires consideration of trip lengths. Total site traffic generation must therefore be divided into work and nonwork-related trip purposes in order to reflect observed trip length differences. Exhibit D-2 provides factors which indicate trip purpose breakdowns for various land use types.

D.7 TRIP DISTRIBUTION

For trip distribution by direct/manual assignment, generalized trip distribution factors are provided in Exhibit D-3, based on regional modeling efforts. These factors indicate Regional Statistical Area (RSA)-level tripmaking for work and non-work trip purposes. These RSAs are illustrated in Exhibit D-4. For locations where it is difficult to determine the project site RSA, census tract/RSA correspondence tables are available from MTA.

Exhibit D-5 describes a general approach to applying the preceding factors. Project trip distribution must be consistent with these trip distribution and purpose factors; the basis for variation must be documented.

Local agency travel demand models disaggregated from the SCAG regional model are presumed to conform to this requirement, as long as the trip distribution functions are consistent with the regional distribution patterns. Development of more specific consistency criteria is being considered by MTA.

For retail commercial developments, alternative trip distribution factors may be appropriate based on the market area for the specific planned use. Such market area analysis must clearly identify the basis for the trip distribution pattern expected.

D.8 IMPACT ANALYSIS

D.8.1 Intersection Level of Service Analysis. The LA County CMP recognizes that individual jurisdictions have wide ranging experience with LOS analysis, reflecting the variety of community characteristics, traffic controls and street standards throughout the County. As a result, the CMP acknowledges the possibility that no single set of assumptions should be mandated for all TIAs within the county.

However, in order to promote consistency in the TIAs prepared by different jurisdictions, CMP TIAs must conduct intersection LOS calculations using either of the following methods:

- (a) The Intersection Capacity Utilization (ICU) method as specified for CMP highway monitoring (see Appendix A); or
- (b) The Critical Movement Analysis (CMA) / Circular 212 method.

Variation from the standard assumptions under either of these methods for circumstances at particular intersections must be fully documented.

TIAs using the 1985 Highway Capacity Manual (HCM) operational analysis must provide converted volume-to-capacity based LOS values, as specified for CMP highway monitoring in Appendix A.

D.8.2 Freeway Segment (Mainline) Analysis. For the purpose of CMP TIAs, a simplified analysis of freeway impacts is required. This analysis consists of a demand-to-capacity calculation for the affected segments, and is indicated in Exhibit D-6.

D.8.3 Transit Impact Review. As discussed in Chapter 6 of the CMP, projects which conduct an EIR must consult with transit operators regarding possible impact to transit services. The optional worksheets of Exhibit D-7 can facilitate this consultation.

A local jurisdiction or project proponent completes Part A of the worksheets (or equivalent), then transmits the worksheets along with the NOP to local fixed route bus operators within 1 mile and express bus and rail transit operators within 2 miles of the project. Completion of Part B of the worksheet and returning the completed worksheets during the NOP comment period is optional for the transit operator. Appropriate incorporation of transit operator responses within the EIR is then the responsibility of the lead agency.

D.9 IDENTIFICATION AND EVALUATION OF MITIGATION

D.9.1 Criteria for Determining a Significant Impact. For the purpose of a CMP TIA, a significant project impact occurs when the proposed project increases traffic demand on a CMP facility by 2% of capacity ($V/C \ge 0.02$), causing or worsening LOS F (V/C > 1.00). The lead agency may apply more stringent criteria if desired.

D.9.2 Identification of Mitigation. Once the project has been determined to cause a significant impact, the lead agency must investigate measures which will mitigate the impact of the project. Mitigation measures proposed must clearly indicate the following:

- (a) Cost estimates, indicating the fair share costs to mitigate the impact of the proposed project. If the improvement from a proposed mitigation measure will exceed the impact of the project, the TIA must indicate the proportion of total mitigation costs which is attributable to the project. This fulfills the statutory requirement to exclude the costs of mitigating inter-regional trips.
- (b) Implementation responsibilities. Where the agency responsible for implementing mitigation is not the lead agency, the TIA must document consultation with the implementing agency regarding project impacts, mitigation feasibility and responsibility.

Final selection of mitigation measures remains at the discretion of the lead agency. The TIA must, however, provide a summary of impacts and mitigation measures. Once a mitigation program is selected, the jurisdiction self-monitors implementation through the mitigation monitoring requirements contained in CEQA.

D.9.3 Project Contribution to Planned Regional Improvements. If the TIA concludes that project impacts will be mitigated by anticipated regional transportation improvements, such as rail transit or high occupancy vehicle facilities, the TIA must document:

- (a) Any project contribution to the improvement, and
- (b) The means by which trips generated at the site will access the regional facility.

D.9.4 Transportation Demand Management (TDM). If the TIA concludes or assumes that project impacts will be reduced through the implementation of TDM measures, the TIA must document specific actions to be implemented by the project which substantiate these conclusions.

D.10 REFERENCES

- 1. Traffic Access and Impact Studies for Site Development: A Recommended Practice, Institute of Transportation Engineers, 1991.
- 2. Trip Generation, 5th Edition, Institute of Transportation Engineers, 1991.
- 3. Travel Forecast Summary: 1987 Base Model Los Angeles Regional Transportation Study (LARTS), California State Department of Transportation (Caltrans), February 1990.
- 4. Traffic Study Guidelines, City of Los Angeles Department of Transportation (LADOT), July 1991.
- 5. Traffic/Access Guidelines, County of Los Angeles Department of Public Works.
- 6. Building Better Communities, Sourcebook, Coordinating Land Use and Transit Planning, American Public Transit Association.
- 7. Design Guidelines for Bus Facilities, Orange County Transit District, 2nd Edition, November 1987.
- 8. Coordination of Transit and Project Development, Orange County Transit District, 1988.
- 9. Encouraging Public Transportation Through Effective Land Use Actions, Municipality of Metropolitan Seattle, May 1987.

GENERAL TRAFFIC VOLUME GROWTH FACTORS

Area	<u>1992</u>	<u>1995</u>	<u>2000</u>	<u>2005</u>	<u>2010</u>
North County	1.000	1.045	1.097	1.133	1.162
San Fernando Vly	1.000	1.036	1.077	1.106	1.128
Westside	1.000	1.032	1.069	1.095	1.116
Central	1.000	1.030	1.064	1.089	1.108
San Gabriel Vly	1.000	1.053	1.113	1.155	1.188
South Bay	1.000	1.027	1.058	1.080	1.097
Southeast	1.000	1.041	1.089	1.122	1.148

÷

DAILY TRIP PURPOSE BREAKDOWNS BY LAND USE TYPE

Land Use	Work	Non-Work	Total
Single family Residential	25%	75%	100%
Multi-family Residential	30%	70%	100%
Shopping Center	20%	80%	100%
Office	65%	35%	100%
Government Office	37%	63%	100%
Medical Office	30%	70%	100%
Hotel	25%	75%	100%
Industrial/Manufacturing	75%	25%	100%
College	30%	70%	100%
Restaurant	15%	85%	100%

REGIONAL DAILY TRIP DISTRIBUTION FACTORS

See following sheets

Congestion Management Program

7 Area Generally Bounded By: Agoura Hills, Calabasas, Hidden Hills

1990 TRIP DISTRIBUTION PERCENTAGES

Project	•	Agoura			Palmdle	-		Burbank	Sylmar					PVerdes	
	Purpose	7	8	9	10	1.1	12	13	14	15	16	17	18	19	
Resider	ntial														
	Work	32.9%	0.2%	0.0%	0.0%	0.0%	29.8%	2.6%	1.2%	2.4%	4.4%	5.7%	1.4%	0.4%	
	NonWork	47.6%	0.1%	0.0%	0.0%	0.1%	20.7%	1.2%	0.6%	1.7%	2.8%	3.1%	0.7%	0.3%	
Non-Re	esidential														
	Work	31.2%	0.5%	0.2%	0.3%	0.0%	14.6%	0.8%	1.0%	2.8%	1.5%	0.9%	0.3%	0.1%	
	NonWork	55.8%	0.2%	0.1%	0.1%	0.0%	9.6%	0.2%	0.3%	1.2%	0.8%	0.2%	0.1%	0.1%	
		LongBch	Vernon	Downey	DntnLA	Glendle i	Pasadna	WCovina	Pomona						
	Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Resider															
	Work	0.2%	1.3%	0.3%	1.3%	1.1%	0.8%	0.2%	0.0%	13.6%	0.2%	0.0%	0.0%	0.1%	100.0%
	NonWork	0.2%	0.9%	0.3%	0.4%	0.8%	0.6%	0.2%	0.0%	17.0%		•			100.0%
Non-Re	esidential														
	Work	0.1%	0.2%	0.1%	0.1%	0.4%	0.3%	0.1%	0.0%	44.3%	0.2%	0.1%	0.0%	0.1%	100.0%
		0.0%	0.1%	0.1%	0.0%	0.1%	0.1%	0.1%	0.0%	30.2%					100.0%
	NonWork	2010 TRIF													
Project		2010 TRIF		UTION PE		ES		Burbank	Sylmar			WCntlLA	Bch.LAX	PVerdes	
		2010 TRIF	P DISTRIB	UTION PE	RCENTAG	ES		· ·	Sylmar 14	Malibu 15	SMonica 16	WCntlLA 17	Bch.LAX 18	PVerdes	
	Type Purpose	2010 TRIF Agoura 7	P DISTRIB SClarita 8	UTION PE Lancstr 9	RCENTAG Paimdie 10	ES AngFrst 11	W.SFV 12	Burbank 13	14	15	16	17	18	19	
RSA Resider	Type Purpose	2010 TRIF Agoura	P DISTRIB SClarita 8 0.4%	UTION PE Lancstr 9 0.0%	RCENTAG Paimdie 10 0.0%	ES AngFrst 11 0.0%	W.SFV 12 30.6%	Burbank 13	<u> </u>		16 6.6%	<u> </u>	18 9 2.6%	<u> </u>	
RSA Resider	Type Purpose ntial	2010 TRIF Agoura 7	P DISTRIB SClarita 8	UTION PE Lancstr 9	RCENTAG Paimdie 10	ES AngFrst 11	W.SFV 12	Burbank 13	14	15	16 6.6%	<u> </u>	18 9 2.6%	<u> </u>	
Resider 7	Type Purpose ntial Work	2010 TRIF Agoura 7 21.2%	P DISTRIB SClarita 8 0.4%	UTION PE Lancstr 9 0.0%	RCENTAG Paimdie 10 0.0%	ES AngFrst 11 0.0%	W.SFV 12 30.6%	Burbank 13 3.7%	<u> </u>	15 0.9%	16 6.6% 4.4%	7.7% 3.2%	18 9 2.6%	<u> </u>	
Resider 7	Type Purpose ntial Work NonWork	2010 TRIF Agoura 7 21.2% 44.6% 29.7%	DISTRIB SClarita 8 0.4% 0.2% 0.4%	UTION PE Lancstr 9 0.0% 0.0%	RCENTAG Palmdle 10 0.0% 0.0%	ES AngFrst 11 0.0% 0.0%	W.SFV 12 30.6% 20.5% 15.9%	Burbank 13 3.7% 1.1% 0.6%	14 1.1% 0.6% 0.8%	15 0.9% 1.0% 3.4%	16 6.6% 4.4% 1.2%	17 7.7% 3.2% 0.7%	18 2.6% 0.6%	19 0.5% 0.3% 0.1%	
Resider 7	Type Purpose ntial Work NonWork esidential	2010 TRIF Agoura 7 21.2% 44.6% 29.7%	DISTRIB SClarita 8 0.4% 0.2%	UTION PE Lancstr 9 0.0% 0.0%	RCENTAG Paimdie 10 0.0% 0.0%	ES AngFrst 11 0.0% 0.0%	W.SFV 12 30.6% 20.5%	Burbank 13 3.7% 1.1% 0.6%	14 1.1% 0.6%	15 0.9% 1.0%	16 6.6% 4.4% 1.2%	17 7.7% 3.2% 0.7%	18 2.6% 0.6%	19 0.5% 0.3% 0.1%	
Resider 7	Type Purpose ntial Work NonWork esidential Work NonWork	2010 TRIF Agoura 7 21.2% 44.6% 29.7% 52.8%	P DISTRIB SCIarita 8 0.4% 0.2% 0.4% 0.2%	UTION PE Lancstr 9 0.0% 0.0% 0.3% 0.1%	RCENTAG Paimdle 10 0.0% 0.0% 0.2% 0.1%	ES AngFrst 11 0.0% 0.0% 0.0%	W.SFV 12 30.6% 20.5% 15.9% 10.5%	Burbank 13 3.7% 1.1% 0.6% 0.2%	14 1.1% 0.6% 0.8% 0.3%	15 0.9% 1.0% 3.4%	16 6.6% 4.4% 1.2%	17 7.7% 3.2% 0.7%	18 2.6% 0.6%	19 0.5% 0.3% 0.1%	
Resider 7	Type Purpose ntial Work NonWork esidential Work NonWork	2010 TRIF Agoura 7 21.2% 44.6% 29.7% 52.8% LongBch	DISTRIBI SClarita 0.4% 0.2% 0.4% 0.2% Vernon	UTION PE Lancstr 9 0.0% 0.0% 0.3% 0.1% Downey	RCENTAG Palmdle 10 0.0% 0.0% 0.2% 0.1%	ES AngFrst 11 0.0% 0.0% 0.0% Glendle 1	W.SFV 12 30.6% 20.5% 15.9% 10.5% Pasadna	Burbank 13 3.7% 1.1% 0.6% 0.2% WCovina	14 1.1% 0.6% 0.8% 0.3%	15 0.9% 1.0% 3.4% 1.5%	16 6.6% 4.4% 1.2% 0.9%	17 7.7% 3.2% 0.7% 0.3%	18 2.6% 0.6%	19 0.5% 0.3% 0.1% 0.1%	TOTAL
RSA Resider 7 Non-Re	Type Purpose ntial Work NonWork esidential Work NonWork Purpose	2010 TRIF Agoura 7 21.2% 44.6% 29.7% 52.8%	P DISTRIB SCIarita 8 0.4% 0.2% 0.4% 0.2%	UTION PE Lancstr 9 0.0% 0.0% 0.3% 0.1%	RCENTAG Paimdle 10 0.0% 0.0% 0.2% 0.1%	ES AngFrst 11 0.0% 0.0% 0.0%	W.SFV 12 30.6% 20.5% 15.9% 10.5%	Burbank 13 3.7% 1.1% 0.6% 0.2%	14 1.1% 0.6% 0.8% 0.3% Pomona	15 0.9% 1.0% 3.4%	16 6.6% 4.4% 1.2%	17 7.7% 3.2% 0.7%	18 2.6% 0.6% 0.2% 0.1%	19 0.5% 0.3% 0.1%	TOTAL
Resider 7	Type Purpose ntial Work NonWork esidential Work NonWork Purpose ntial	2010 TRIF Agoura 7 21.2% 44.6% 29.7% 52.8% LongBch 20	DISTRIBI SClarita 0.4% 0.2% 0.4% 0.2% Vernon	UTION PE Lancstr 9 0.0% 0.0% 0.3% 0.1% Downey 22	RCENTAG Palmdle 10 0.0% 0.0% 0.2% 0.1%	ES AngFrst 11 0.0% 0.0% 0.0% Glendle 1	W.SFV 12 30.6% 20.5% 15.9% 10.5% Pasadna	Burbank 13 3.7% 1.1% 0.6% 0.2% WCovina	14 1.1% 0.6% 0.8% 0.3% Pomona	15 0.9% 1.0% 3.4% 1.5%	16 6.6% 4.4% 1.2% 0.9% Ora	17 7.7% 3.2% 0.7% 0.3% SB	18 2.6% 0.6% 0.2% 0.1% Riv	19 0.5% 0.3% 0.1% 0.1% Ker	
RSA Resider 7 Non-Re	Type Purpose ntial Work NonWork esidential Work NonWork Purpose	2010 TRIF Agoura 7 21.2% 44.6% 29.7% 52.8% LongBch 20 0.2%	DISTRIB SClarita 8 0.4% 0.2% 0.4% 0.2% Vernon 21	UTION PE Lancstr 9 0.0% 0.0% 0.3% 0.1% Downey	RCENTAG Palmdle 10 0.0% 0.0% 0.2% 0.1% . DntnLA 23	ES AngFrst 11 0.0% 0.0% 0.0% Glendle 1 24	W.SFV 12 30.6% 20.5% 15.9% 10.5% Pasadna 25	Burbank 13 3.7% 1.1% 0.6% 0.2% WCovina 26 0.2%	14 1.1% 0.6% 0.8% 0.3% Pomona 27	15 0.9% 1.0% 3.4% 1.5% Ven	16 6.6% 4.4% 1.2% 0.9% Ora 0.2%	17 7.7% 3.2% 0.7% 0.3% SB 0.0%	18 2.6% 0.6% 0.2% 0.1% Riv 0.0%	19 0.5% 0.3% 0.1% Ker 0.1%	100.0%
RSA Resider 7 Non-Re	Type Purpose ntial Work NonWork esidential Work NonWork Purpose ntial Work	2010 TRIF Agoura 7 21.2% 44.6% 29.7% 52.8% LongBch 20 0.2%	P DISTRIB SClarita 8 0.4% 0.2% 0.4% 0.2% Vernon 21 1.7%	UTION PE Lancstr 9 0.0% 0.0% 0.3% 0.1% Downey 22 0.3%	RCENTAG Palmdle 10 0.0% 0.0% 0.2% 0.1% . DntnLA 23 2.1%	ES AngFrst 11 0.0% 0.0% 0.0% Glendle 1 24 1.7%	W.SFV 12 30.6% 20.5% 15.9% 10.5% Pasadna 25 0.9%	Burbank 13 3.7% 1.1% 0.6% 0.2% WCovina 26 0.2%	14 1.1% 0.6% 0.8% 0.3% Pomona 27 0.0%	15 0.9% 1.0% 3.4% 1.5% Ven 17.1%	16 6.6% 4.4% 1.2% 0.9% Ora 0.2%	17 7.7% 3.2% 0.7% 0.3% SB 0.0%	18 2.6% 0.6% 0.2% 0.1% Riv 0.0%	19 0.5% 0.3% 0.1% Ker 0.1%	100.0%
RSA Resider 7 Non-Re	Type Purpose ntial Work NonWork esidential Work Purpose ntial Work NonWork	2010 TRIF Agoura 7 21.2% 44.6% 29.7% 52.8% LongBch 20 0.2%	P DISTRIB SClarita 8 0.4% 0.2% 0.4% 0.2% Vernon 21 1.7%	UTION PE Lancstr 9 0.0% 0.0% 0.3% 0.1% Downey 22 0.3%	RCENTAG Palmdle 10 0.0% 0.0% 0.2% 0.1% . DntnLA 23 2.1%	ES AngFrst 11 0.0% 0.0% 0.0% Glendle 1 24 1.7%	W.SFV 12 30.6% 20.5% 15.9% 10.5% Pasadna 25 0.9%	Burbank 13 3.7% 1.1% 0.6% 0.2% WCovina 26 0.2% 0.2%	14 1.1% 0.6% 0.8% 0.3% Pomona 27 0.0%	15 0.9% 1.0% 3.4% 1.5% Ven 17.1%	16 6.6% 4.4% 1.2% 0.9% Ora 0.2% 0.5%	17 7.7% 3.2% 0.7% 0.3% SB 0.0% 0.1%	18 2.6% 0.6% 0.2% 0.1% Riv 0.0% 0.0%	19 0.5% 0.3% 0.1% 0.1% Ker 0.1% 0.1%	TOTAL 100.0% 100.0% 100.0%

PROJECT RSA: 8 Area Generally Bounded By: Santa Clarita, Castaic

1990 TRIP DISTRIBUTION PERCENTAGES

Project Type Agoura SClarita Lancstr Palmdle AngFrst W.SFV Burbank Sylmar Mallbu SMonica WCntlLA Bch.LAX PVerdes Purpose 7 8 9 10 11 12 13 14 15 16 17 18 19 Residential Work 0.2% 51.3% 0.2% 0.5% 0.2% 12.8% 5.8% 5.8% 10.0% 0.1% 2.0% 1.2% 0.4% 77.3% NonWork 0.1% 0.4% 0.6% 0.1% 4.0% 1.9% 5.0% 0.0% 0.9% 2.9% 0.6% 0.2% Non-Residential Work 76.2% 2.9% 3.9% 0.1% 0.0% 3.4% 1.1% 4.8% 0.0% 0.3% 0.6% 0.2% 0.1% NonWork 92.2% 0.3% 0.8% 0.1% 0.0% 1.0% 0.3% 2.0% 0.0% 0.1% 0.2% 0.1% 0.0% LongBch Vernon Downey DntnLA Glendle Pasadna WCovina Pomona Purpose 20 21 22 23 24 25 26 Ora SB 27 Ven Riv Ker TOTAL Residential Work 0.2% 1.7% 0.4% 1.7% 2.2% 1.4% 0.3% 0.0% 0.3% 0.0% 0.0% 0.9% 0.4% 100.0% NonWork 0.2% 0.3% 0.5% 1.1% 1.1% 0.8% 0.2% 0.0% 0.7% 0.5% 0.1% 0.0% 0.4% 100.0% Non-Residential Work 0.0% 0.2% 0.1% 0.1% 0.5% 0.4% 0.2% 0.0% 0.2% 4.0% 0.1% 0.0% 0.6% 100.0% NonWork 0.0% 0.1% 0.1% 0.0% 0.1% 0.1% 0.1% 0.0% 1.4% 0.2% 0.2% 0.1% 0.5% 100.0%

2010 TRIP DISTRIBUTION PERCENTAGES

Project	Туре	Agoura	SClarita	Lancstr	Palmdie	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntlLA	Bch.LAX	PVerdes
RSA	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19
Reside	ntial													
8	Work	0.1%	65.1%	0.1%	0.5%	0.0%	8.5%	4.8%	5.8%	0.0%	1.8%	4.3%	1.2%	0.3%
	NonWork	0.1%	84.9%	0.2%	0.8%	0.1%	2.8%	1.1%	3.2%	0.0%	0.9%	5 1.8%	0.3%	0.2%
Non-R	esidential								•					
	Work	0.2%	76.0%	4.1%	3.3%	0.0%	3.6%	0.9%	4.4%	0.1%	0.3%	6 0.5%	0.1%	0.1%
	NonWork	0.1%	92.0%	0.5%	0.7%	0.0%	1.0%	0.3%	2.1%	0.0%	0.1%	6 0.2%	0.1%	0.0%

.

	LongBcn	vernon	Downey	DININLA	Giendie	Pasaona	wCovina	Pomona						
Purpose	20	· 21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Residential														
Work	0.1%	1.3%	0.2%	1.6%	1.9%	b 1.0%	0.2%	0.0%	0.6%	0.2%	0.0%	0.0%	0.5%	100.0%
NonWork	c 0.1%	0.6%	0.2%	0.3%	0.6%	6 0.5%	0.1%	0.0%	0.4%	0.3%	0.1%	0.0%	0.5%	100.0%
Non-Residential					-									
Work	0.0%	0.1%	0.1%	0.1%	0.4%	6 0.3%	0.1 %	0.1%	4.4%	0.2%	0.2%	0.0%	0.5%	100.0%
NonWork	c 0.0%	0.1%	0.0%	0.0%	0.1%	6 0.1%	0.1 %	0.0%	1.5%	0.2%	0.2%	0.1%	0.5%	100.0%

. ·

9 Area Generally Bounded By: Lancaster, Gorman

1990 TRIP DISTRIBUTION PERCENTAGES

0.0%

0.0%

0.0%

0.0%

Work

NonWork

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.2%

0.0%

0.0%

0.4%

0.3%

0.0%

0.1%

Project		-	SCIarita		Palmdle	-		Burbank	Sylmar					PVerdes	
	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Reside															
	Work	0.1%					3.0%			0.0%					
	NonWork	0.0%	0.3%	86.8%	6. <u></u> 3%	0.1%	0.5%	0.3%	0.3%	0.0%	o 0.2%	0.6%	<u> </u>	6 0.1%	
Non-R	esidential								•	•					
	Work	0.0%					0.0%	6 0.0%	0.0%	0.0%	0.0%	0.0%			
	NonWork	0.0%	0.4%	87.4%	8.6%	0.0%	0.1%	0.0%	0.1%	0.0%	o.0%	b 0.0%	<u>6</u> 0.0%	6 0.0%	
		LongBch	Vernon	Downey	DntnLA	Glendle	Pasadna	WCovina	Pomona						
	Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Reside															
	Work	0.3%	1.7%	0.5%	1.3%	1.3%	1.9%	0.4%	0.1%	0.3%	0.2%	0.7 %	6 0.1%	6 2.1%	100.0%
	NonWork						0.3%		0.0%	0.1%					100.0%
Non-R	esidential			•••••				• • • • • •					<u> </u>		
	Work	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	6 0.0%	0.0%	0.1%	0.0%	0.3%	6 0.0%	6 2.8%	100.0%
	NonWork						0.0%		0.0%	0.3%					100.0%
Project		A	SClarita	Lenostr	Delmdia	An official		Burbank	Sylmar	Mallbu				PVerdes	
-	Purpose	Agoura 7	SCiarita 8	Lancstr 9	Palmdle 10	Angrisi 11	12	Burbank 13	3y imar 14	Mail00	Smonica 16	17	18	F Verues 19	
Reside		/	0	9	10		12	10		15	10	17	10	19	
	Work	0.1%	3.1%	54.4%	22.3%	0.0%	2.4%	1.5%	1.1%	0.0%	5 1.0%	5 2.7%	6 0.8%	6 0.2%	
3	NonWork						0.5%		0.2%	0.0%					
Non-R	esidential	0.070	0.470	00.070	0.5%	0.0 %	0.5%			0.07	0.27	0.4%	0.17	0 0.170	
NUI-N	Work	0.0%	0.2%	89.4%	7.4%	0.0%	0.0%	6 0.0%	0.0%	0.0%	0.0%	0.0 %	6 0.0%	6 0.0%	
	NonWork					0.0%	0.1%		0.0%	0.0%					
	NULLAUK	0.070	0.270	30.370	0.3%	0.0%	0.17	0.070	0.070	0.07	0.07	0.0%	0.07	0.0%	
		LongBch	Vernon	Downey	. DntnLA	Glendle	Pasadna	WCovina	Pomona						
	Purpose	20	· 21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Reside	ntial														
	Work	0.2%	1.7%	0.4%	1.6%	1.4%	1.7%	6 0.4%	0.1%	0.2%	0.1%	0.8%	6 0.1%	6 1.5%	100.0%
	NonWork	0.1%	0.2%	0.1%	0.1%	0.2%	0.3%	6 0.1%	0.0%	0.1%	0.1%	0.2%	6 0.0%	6 1.4%	100.0%
Non-R	esidential														-

10/06/92

2.4% 100.0%

1.4% 100.0%

10 Area Generally Bounded By: Palmdale, Agua Duice

1990 TRIP DISTRIBUTION PERCENTAGES

Agoura	SClarita	Lancstr	Paimdie	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntILA	Bch.LAX	PVerdes	
7	8	9	10	11	12	13	14	15	16	17	18	19	
0.2%	3.9%	11.4%	48.3%	0.1%	5.8%	5 2.7%	3.4%	0.1%	1.4%	4.6%	1.2%	0.5%	
0.0%	1.0%	11.4%	76.3%	0.3%	1.1%	0.6%	0.6%	0.0%	0.6%	1.9%	0.3%	0.1%	
								•					
0.0%	1.1%	22.0%	73.5%	0.0%	0.2%	0.1%	0.2%	0.0%	0.0%	0.1%	6 0.0%	0.0%	
0.0%	1.0%	9.5%	86.7%	0.0%	0.1%	0.0%	0.1%	0.0%	0.0%	6 0.0%	60.0%	0.0%	
LongBch	Vernon	Downey	DntnLA	Glendle	Pasadna	WCovina	Pomona						
20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
									-				
0.6%	2.9%	0.9%	2.2%	2.6%	3.6%	0.7%	0.1%	0.5%	0.5%	0.7%	6 0.2%	1.1%	100.0%
0.1%	0.8%	0.2%	0.4%	0.7%	0.8%	0.2%	0.0%	0.2%	0.5%	0.5%	6 0.1%	1.1%	100.0%
		_											
0.0%	0.0%	0.0%	0.0%	0.1%	0,1%	0.0%	0.0%	0.2%	0.0%	6 0.5%	6 0.1%	6 1.7%	100.0%
0.0 /0													
	7 0.2% 0.0% 0.0% 0.0% LongBch 20 0.6% 0.1%	7 8 0.2% 3.9% 0.0% 1.0% 0.0% 1.1% 0.0% 1.0% LongBch Vernon 20 21 0.6% 2.9% 0.1% 0.8%	7 8 9 0.2% 3.9% 11.4% 0.0% 1.0% 11.4% 0.0% 1.0% 11.4% 0.0% 1.0% 9.5% LongBch Vernon Downey 20 21 22 0.6% 2.9% 0.9% 0.1% 0.8% 0.2%	7 8 9 10 0.2% 3.9% 11.4% 48.3% 0.0% 1.0% 11.4% 76.3% 0.0% 1.0% 11.4% 76.3% 0.0% 1.0% 11.4% 76.3% 0.0% 1.0% 9.5% 86.7% LongBch Vernon Downey DntnLA 20 21 22 23 0.6% 2.9% 0.9% 2.2% 0.1% 0.8% 0.2% 0.4%	7 8 9 10 11 0.2% 3.9% 11.4% 48.3% 0.1% 0.0% 1.0% 11.4% 76.3% 0.3% 0.0% 1.0% 11.4% 76.3% 0.3% 0.0% 1.0% 11.4% 76.3% 0.3% 0.0% 1.0% 9.5% 86.7% 0.0% 0.0% 1.0% 9.5% 86.7% 0.0% LongBch Vernon Downey DntnLA Glendie 20 21 22 23 24 0.6% 2.9% 0.9% 2.2% 2.6% 0.1% 0.8% 0.2% 0.4% 0.7%	7 8 9 10 11 12 0.2% 3.9% 11.4% 48.3% 0.1% 5.8% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.0% 1.0% 9.5% 86.7% 0.0% 0.1% LongBch Vernon Downey DntnLA Glendie Pasadna 20 21 22 23 24 25 0.6% 2.9% 0.9% 2.2% 2.6% 3.6% 0.1% 0.8% 0.2% 0.4% 0.7% 0.8%	7 8 9 10 11 12 13 0.2% 3.9% 11.4% 48.3% 0.1% 5.8% 2.7% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.6% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.6% 0.0% 1.0% 11.4% 76.3% 0.0% 0.2% 0.1% 0.0% 1.0% 11.4% 76.3% 0.0% 0.2% 0.1% 0.0% 1.0% 9.5% 86.7% 0.0% 0.1% 0.0% LongBch Vernon Downey DntnLA Glendle Pasadna WCovina 20 21 22 23 24 25 26 0.6% 2.9% 0.9% 2.2% 2.6% 3.6% 0.7% 0.1% 0.8% 0.2% 0.4% 0.7% 0.8% 0.2%	7 8 9 10 11 12 13 14 0.2% 3.9% 11.4% 48.3% 0.1% 5.8% 2.7% 3.4% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.6% 0.6% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.6% 0.6% 0.0% 1.0% 11.4% 76.3% 0.0% 0.2% 0.1% 0.6% 0.0% 1.0% 11.4% 76.3% 0.0% 0.2% 0.1% 0.6% 0.0% 1.0% 9.5% 86.7% 0.0% 0.1% 0.0% 0.1% LongBch Vernon Downey DntnLA Glendie Pasadna WCovina Pomona 20 21 22 23 24 25 26 27 0.6% 2.9% 0.9% 2.2% 2.6% 3.6% 0.7% 0.1% 0.1% 0.8% 0.2% 0.4%	7 8 9 10 11 12 13 14 15 0.2% 3.9% 11.4% 48.3% 0.1% 5.8% 2.7% 3.4% 0.1% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.6% 0.6% 0.0% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.6% 0.6% 0.0% 0.0% 1.0% 11.4% 76.3% 0.0% 0.2% 0.1% 0.0% 0.0% 1.0% 11.4% 76.3% 0.0% 0.2% 0.1% 0.0% 0.0% 1.1% 22.0% 73.5% 0.0% 0.2% 0.1% 0.2% 0.0% 0.0% 1.0% 9.5% 86.7% 0.0% 0.1% 0.0% 0.1% 0.0% LongBch Vernon Downey DntnLA Glendle Pasadna WCovina Pornona 20 21 22 23 24 25 26<	7 8 9 10 11 12 13 14 15 16 0.2% 3.9% 11.4% 48.3% 0.1% 5.8% 2.7% 3.4% 0.1% 1.4% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.6% 0.6% 0.0% 0.9% 0.6% 0.0% 0.	7 8 9 10 11 12 13 14 15 16 17 0.2% 3.9% 11.4% 48.3% 0.1% 5.8% 2.7% 3.4% 0.1% 1.4% 4.6% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.6% 0.6% 0.0% 0.6% 1.4% 4.6% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.6% 0.6% 0.0% 0.6% 1.9% 0.0% 1.1% 22.0% 73.5% 0.0% 0.2% 0.1% 0.0% 0.1% 0.0% 0.1% 0.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.1% 0.0% </td <td>7 8 9 10 11 12 13 14 15 16 17 18 0.2% 3.9% 11.4% 48.3% 0.1% 5.8% 2.7% 3.4% 0.1% 1.4% 4.6% 1.2% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.6% 0.6% 0.0% 0.6% 1.9% 0.3% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.6% 0.6% 0.0% 0.9% 0.3% 0.3% 0.0% 1.0% 11.4% 76.3% 0.3% 0.1% 0.6% 0.6% 0.0% 0.3% 0.3% 0.0% 1.0% 1.4% 76.3% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.3% 0.3% 0.0% 1.0% 9.5% 86.7% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%</td> <td>7 8 9 10 11 12 13 14 15 16 17 18 19 0.2% 3.9% 11.4% 48.3% 0.1% 5.8% 2.7% 3.4% 0.1% 1.4% 4.6% 1.2% 0.5% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.6% 0.6% 0.0% 0.6% 1.9% 0.3% 0.1% 0.0% 1.1% 0.6% 0.6% 0.0% 0.6% 0.9% 0.3% 0.1% 0.2% 0.0% 0.6% 0.0% 0.6% 0.9% 0.3% 0.1% 0.0% 1.1% 0.2% 0.1% 0.2% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.9% 0.1% 0.0%</td>	7 8 9 10 11 12 13 14 15 16 17 18 0.2% 3.9% 11.4% 48.3% 0.1% 5.8% 2.7% 3.4% 0.1% 1.4% 4.6% 1.2% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.6% 0.6% 0.0% 0.6% 1.9% 0.3% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.6% 0.6% 0.0% 0.9% 0.3% 0.3% 0.0% 1.0% 11.4% 76.3% 0.3% 0.1% 0.6% 0.6% 0.0% 0.3% 0.3% 0.0% 1.0% 1.4% 76.3% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.3% 0.3% 0.0% 1.0% 9.5% 86.7% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	7 8 9 10 11 12 13 14 15 16 17 18 19 0.2% 3.9% 11.4% 48.3% 0.1% 5.8% 2.7% 3.4% 0.1% 1.4% 4.6% 1.2% 0.5% 0.0% 1.0% 11.4% 76.3% 0.3% 1.1% 0.6% 0.6% 0.0% 0.6% 1.9% 0.3% 0.1% 0.0% 1.1% 0.6% 0.6% 0.0% 0.6% 0.9% 0.3% 0.1% 0.2% 0.0% 0.6% 0.0% 0.6% 0.9% 0.3% 0.1% 0.0% 1.1% 0.2% 0.1% 0.2% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.9% 0.1% 0.0%

2010 TRIP DISTRIBUTION PERCENTAGES

Project	Турө	Agoura	SClarita	Lancstr	Palmdle	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntlLA	Bch.LAX	PVerdes
RSA	Purpose	· 7	8	9	10	11	12	13	14	15	16	17	18	19
Reside	ntial													
10	Work	0.1%	3.9%	7.0%	64.9%	0.0%	3.3%	2.0%	1.7%	0.0%	1.2%	6 3.1%	5 1.0%	0.4%
	NonWork	0.0%	0.9%	11.2%	79.3%	0.1%	0.9%	0.5%	0.4%	0.0%	0.7%	6 1.5%	6 0.2%	0.1%
Non-R	sidential								•			_		
	Work	0.0%	0.7%	33.9%	62.9%	0.0%	0.2%	0.0%	0.1%	0.0%	0.0%	6 0.0%	6 0.0%	0.0%
	NonWork	0.0%	1.1%	11.5%	84.6%	0.0%	0,1%	0.0%	0,1%	0.0%	0.0%	6 0.0%	6 0.0%	0.0%

	LongBch	Vernon	Downey	DntnLA	Glendle	Pasadna	WCovina	Pomona						
Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Residential														
Work	0.3%	1.9%	0.5%	1.8%	1.9%	6 2.1%	0.4%	0.1%	0.3%	0.3%	0.7%	0.1%	1.0%	100.0%
NonWor	k 0.1%	0.5%	0.2%	0.3%	0.5%	6 0.6%	0.1%	0.0%	0.1%	0.3%	0.2%	0.1%	1.0%	100.0%
Non-Residential					_									
Work	0.0%	0.0%	0.0%	0.0%	0.0%	6 0.1%	0.0%	0.0%	0.1%	0.0%	0.6%	0.1%	1.0%	100.0%
NonWor	k 0.0%	0.0%	0.0%	0.0%	0.0%	6 0.0%	0.0%	0.0%	0.3%	0.1%	0.5%	0.2%	1.1%	100.0%

11 Area Generally Bounded By: Angeles National Forest

.

1990 TRIP DISTRIBUTION PERCENTAGES

Project	Туре	Agoura	SClarita	Lancstr	Palmdle	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntlLA	Bch.LAX	PVerdes	
	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Reside	ntial														
	Work	0.2%	1.0%	0.1%	0.2%	10. 6%	8.3%	7.8%	16.8%	0.1%	1.3%	6.2%	1.4%	0.8%	
	NonWork	0.1%	0.5%	0.2%	0.2%	45.7%	4.5%	3.9%	18.7%	0.1%	0.9%	3.8%	0.8%	0.5%	
Non-Re	esidential														
	Work	0.4%	5.0%	1.8%	2.7%	10.9%	10.1%	5.8%	28.9%	0.1%	0.7%	2.7%	0.5%	0.4%	
	NonWork	0.5%	2.9%	2.6%	3.7%	20.7%	4.1%	2.3%	21.5%	0.2%	0.6%	5 1.4%	0.7%	0.8%	
		LongBch	Vernon	Downey	DntnLA	Glendle	Pasadna	WCovina	Pomona						
	Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Reside	ntial														
	Work	1.1%	5.5%	2.4%	3.6%	7.1%	12.5%	8.3%	1.0%	0.4%	2.2%	0.7%	0.1%	0.2%	100.0%
	NonWork	0.5%	2.5%	1.0%	1.0%	3.7%	4.9%	3.2%	0.4%	0.3%	1.8%	0.5%	0.2%	0.2%	100.0%
Non-Re	esidential														
	Work	0.2%	1.4%	0.9%	0.5%	4.8%	6.2%	5.3%	1.3%	4.0%	1.6%	2.8%	0.8%	0.2%	100.0%
	NonWork	0.7%	1.3%	1.5%	0.2%	3.4%	5.7%	6.6%	1.7 <u>%</u>	4.4%	<u> </u>	5.9%	2.9%	0.1%	100.0%
		2010 TRIF	P DISTRIB	UTION PE	RCENTAG	ies									
Project	Туре	Agoura	SClarita	Lancstr	Palmdie	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntILA	Bch.LAX	PVerdes	
RSA	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Reside	ntial														
11	Work	0.2%	1.4%	0.2%	0.6%	7.5%	8.1%	9.2%	13.4%	0.0%) 1. 7 %	6.9%	b 1.9%	1.0%	
	NonWork	0.1%	0.8%	0.2%	0.3%	36.6%	5.4%	4.1%	17.5%	0.1%	o 1.9%	5.3%	b 1.0%	0.7%	
Non-R	esidential								•						
	Work	0.5%	3.8%	2.2%	2.3%	12.9%	10.1%	5,1%	22.7%	0.2%	1.0%	2.4%	0.8%	0.3%	
	NonWork	0.5%	2.2%	2.0%	2.5%	20.0%	4.3%	2.3%	21.6%	0.3%	0.5%	1.4%	0.7%	0.7%	
		LongBch	Vernon	Downey	DntnLA	Glendle	Pasadna	WCovina	Pomona						
	Purpose	20	· 21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL

Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Residential														
Work	0.9%	6.2%	2.3%	5.0%	8.4%	12.7%	6.9%	1.1%	0.4%	2.0%	1.1%	0.2%	0.8%	100.0%
NonWork	0.7%	3.2%	1.6%	1.4%	4.2%	5.9%	4.0%	0.6%	0.3%	2.5%	0.7%	0.2%	1.0%	100.0%
Non-Residential														
Work	0.3%	1.9%	1.5%	0.6%	4.7%	7.2%	5.7%	1.5%	4.1%	2.8%	3.4%	0.8%	1.3%	100.0%
NonWork	0.6%	1.2%	1.3%	0.2%	3.4%	5.2%	5.4%	1.5%	5.8%	3.5%	7.6%	4.6%	0.5%	100.0%

12 Area Generally Bounded By: Woodland Hills, Sherman Oaks, Sepulveda, Porter Ranch

1990 TRIP DISTRIBUTION PERCENTAGES

Agoura SClarita Lancstr Palmdle AngFrst W.SFV Burbank Project Type Sylmar Malibu SMonica WCntlLA Bch.LAX PVerdes Purpose 8 7 9 10 11 12 13 15 16 14 17 18 19 Residential Work 1.4% 0.5% 0.0% 0.0% 0.1% 64.8% 8.3% 5.6% 0.2% 2.9% 7.3% 0.3% 1.2% NonWork 0.7% 0.2% 0.0% 0.0% 0.0% 77.5% 7.7% 6.0% 0.0% 3.1% 1.1% 0.3% 0.1% Non-Residential Work 2.6% 2.4% 0.5% 0.7% 0.0% 60.6% 6.5% 9.7% 0.3% 1.6% 2.7% 0.5% 0.2% NonWork 1.8% 0.8% 0.1% 0.2% 0.0% 75.0% 0.6% 6.0% 9.2% 0.1% 1.0% 0.2% 0.1% Vernon Downey LongBch DntnLA Glendle Pasadna WCovina Pomona Purpose 20 22 23 21 24 25 26 27 Ven Ora SB Riv Ker TOTAL Residential Work 0.2% 1.3% 0.2% 1.6% 1.8% 1.0% 0.2% 0.0% 0.9% 0.2% 0.0% 0.0% 0.1% 100.0% NonWork 0.1% 0.5% 0.1% 0.3% 0.9% 0.3% 0.0% 0.5% 0.1% 0.2% 0.0% 0.0% 0.1% 100.0% Non-Residential Work 0.1% 0.4% 0.2% 0.2% 0.9% 0.3% 0.3% 1.4% 0.1% 7.2% 0.2% 0.1% 0.1% 100.0% NonWork 0.0% 0.1% 0.1% 0.0% 0.5% 0.3% 0.0% 3.2% 0.1% 0.2% 0.2% 0.1% 0.1% 100.0%

2010 TRIP DISTRIBUTION PERCENTAGES

Project	Туре	Agoura	SClarita	Lancstr	Palmdle	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntILA	Bch.LAX	PVerdes	
RSA	Purpose	7	8	9	10	11	12	13	- 14	15	16	17	18	19	
Reside	ntial														
12	Work	1.0%	0.8%	0.0%	0.0%	0.0%	61.7%	9.2%	5.0%	0.1%	3.7%	5 7.7%	5 1.7%	0.3%	
	NonWork	0.8%	0.2%	0.0%	0.0%	0.0%	78.3%	6.7%	5.9%	0.0%	1.6%	3.0%	0.3%	0.1%	
Non-R	esidential							_							
	Work	2.7%	2.2%	0.7%	0.6%	0.0%	62.0%	5.4%	9.4%	0.5%	1.5%	5 2.2%	0.4%	0.2%	
	NonWork	1.8%	0.7%	0.2%	0.2%	0.0%	74.6%	5.8%	9.0%	0.1%	0.6%	5 <u>1.0%</u>	0.2%	0.1%	
		LongBch	Vernon	Downey	DntnLA	Giendie i	Pasadna	WCovina	Pomona						
	Purpose	20	· 21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Reside	ntial														
	Work	0.1%	1.5%	0.2%	2.2%	2.3%	1.0%	0.1%	0.0%	1.0%	0.1%	5 0.0%	5 0.0%	0.2%	100.0%
	NonWork	0.1%	0.4%	0.1%	0.3%	0.8%	0.3%	0.1%	0.0%	0.5%	0.2%	0.0%	0.0%	0.2%	100.0%
Non-R	esidential		_												
	Work	0.1%	0.3%	0.2%	0.2%	1.1%	0.8%	0.3%	0.1%	8.2%	0.4%	6 0.3%	0.1%	0.2%	100.0%
	NonWork	0.0%	0.1%	0.1%	0.1%	0.5%	0.2%	0.1%	0.0%	4.0%	0.2%	6 0.3%	6 0.2%	0.1%	100.0%

13 Area Generally Bounded By: Burbank, Sun Valley, North Hollywood

1990 TRIP DISTRIBUTION PERCENTAGES

Project	Туре	Agoura	SClarita	Lancstr	Palmdle	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntlLA	Bch.LAX	PVerdes	
	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Resider	ntial														
	Work	0.2%	0.3%	0.0%	0.0%	0.1%	15.3%	39.3%	6.0%	0.0%	5 1.6%	6 13.6%	6 0.9%	6 0.3%	
	NonWork	0.0%	0.1%	0.0%	0.0%	0.1%	13.9%	54.9%	5.6%	0.0%	6 0.5%	6 10.4%	6 0.2%	6 0.1%	
Non-Re	esidential									•					
•	Work	0.5%	2.3%	0.5%	0.7%	0.1%	16.5%	35.6%	10.9%	0.1%	5 1.0%	6 8.1%	6 0.5%	6 0.3%	
	NonWork	0.2%	0.9%	0.1%	0.2%	0.0%	16.5%	52.4%	9.9%	0.0%	<u> </u>	5.6%	6 0.2%	6 0.1%	
		LongBch	Vernon	Downey	DntnLA	Glendie	Pasadna	WCovina	Pomona						
	Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Resider	ntial														
	Work	0.3%	3.5%	0.5%	4.6%	9.7%	3.0%	0.3%	0.0%	0.2%	6 0.3%	6 0.0%	6 0.0%	6 0.1%	100.0%
	NonWork	0.1%	1.3%	0.2%	1.4%	9.6%	1.2%	0.1%	0.0%	0.1%	6 0.2%	6 0.0%	6 0.0%	6 0.1%	100.0%
Non-Re	esidential														
	Work	0.2%	1.5%	0.6%	0.8%	10.3%	4.1%	0.9%	0.3%	2.4%	b 0.9%	6 0.6%	6 0.2%	0.1%	100.0%
	NonWork	0.1%	0.5%	0.2%	0.3%	8.3%	1.5%	0.3%	0.1%	1.1%	6 0.3%	6 0.3%	6 0.2%	0.1%	100.0%

2010 TRIP DISTRIBUTION PERCENTAGES

Project	t Type	Agoura	SClarita	Lancstr	Palmdle	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntILÁ	Bch.LAX	PVerdes	
RSA	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Reside	ontial														
13	Work	0.1%	0.5%	0.0%	0.0%	0.0%	12.9%	41.4%	4.5%	0.0%	1.7%	13.3%	1.0%	0.3%	
	NonWork	0.0%	0.2%	0.0%	0.0%	0.0%	15.3%	53.6%	5.1%	0.0%	0.7%	10.5%	0.2%	0.1%	
Non-R	lesidential														
	Work	0.6%	2.3%	0.9%	0.7%	0.1%	17.6%	32.9%	10.6%	0.2%	1.1%	8.1%	0.5%	0.3%	
	NonWork	0.2%	0.7%	0.2%	0.2%	0.0%	16.4%	<u> </u>	9.3%	0.1%	0.3%	5.5%	0.2%	0.1%	
		LongBch	Vernon	Downey	DntnLA	Glendle	Pasadna	WCovina	Pomona						
	Purpose	20	· 21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Reside	ontial														
	Work	0.2%	3.5%	0.4%	5.5%	11.1%	2.6%	0.3%	0.0%	0.2%	0.2%	0.0%	0.0%	0.2%	100.0%
	NonWork	0.1%	1.2%	0.2%	1.3%	9.6%	1.3%	0.1%	0.0%	0.1%	0.2%	0.0%	0.0%	0.2%	100.0%
Non-R	lesidential														
	Work	0.3%	1.5%	0.7%	0.9%	9.7%	4.1%	1.0%	0.3%	3.1%	1.2%	0.8%	0.4%	0.1%	100.0%
	NonWork	0.1%	0.5%	0.2%	0.4%	8.7%	1.4%	0.3%	0.1%	1.5%	0.4%	0.6%	0.4%	0.2%	100.0%

.

14 Area Generally Bounded By: San Fernando, Granada Hills, Sylmar, Tujunga

.

1990 TRIP DISTRIBUTION PERCENTAGES

10/06/92

Project Type	Agoura	SClarita	Lancstr	Palmdle	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntILA	Bch.LAX	PVerdes	
Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Residential											-			
Work	0.2%	1.7%	0.0%	0.0%	0.5%	26.7%	14.1%	32.8%	0.0%	1.8%	6.3%	b 1.0%	0.3%	
NonWork	c 0.1%	0.8%	0.0%	0.0%	0.6%	22.7%	5 11.1%	53.5%	0.0%	0.6%	6 2.4%	b 0.3%	0.1%	
Non-Residential														
Work	0.4%	6.9%	1.0%	1.6%	0.4%	19.5%	9.4%	43.9%	0.1%	0.7%	6 2.0%	6 0.3%	0.2%	
NonWork	0.2%	3.0%	0.1%	0.2%	0.3%	17.2%	<u> </u>	63.5 <u>%</u>	0.0%	0.2%	b 0.5%	<u>6 0.1%</u>	0.1%	
	LongBch	Vernon	Downey	DntnLA	Glendie	Pasadna	WCovina	Pomona						
Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Residential														
Work	0.2%	2.2%	0.4%	2.3%	4.9%	3.0%	6 0.3%	0.0%	0.7%	0.3%	6 0.0%	ь 0.0%	0.2%	100.0%
NonWork	c 0.1%	0.8%	0.2%	0.5%	3.9%	1.4%	6.1%	0.0%	0.4%	0.3%	6 0.1%	6 0.0%	0.2%	100.0%
Non-Residential														
Work	0.1%	0.6%	0.3%	0.2%	3.7%	2.2%	0.5%	0.2%	4.6%	0.5%	6 0.4%	6 0.1%	0.2%	100.0%
NonWork	c 0.1%	0.2%	0.1%	0.1%	2.6%	0.9%	0.2%	0.1%	2.4%	0.2%	6 0.3%	6 0.1%	6 0.2%	100.0%

2010 TRIP DISTRIBUTION PERCENTAGES

Project	Туре	Agoura	SClarita	Lancstr	Palmdie	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntILA	Bch.LAX	PVerdes	
RSA	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Reside	ntial														
14	Work	0.1%	2.8%	0.0%	0.1%	0.2%	27.0%	16.0%	26.5%	0.0%	2.3%	6.8%	1.4%	0.3%	
	NonWork	0.1%	1.3%	0.0%	0.0%	0.4%	25.2%	10.1%	51.0%	0.0%	0.9%	2.5%	0.3%	0.1%	
Non-R	esidential								•						
	Work	0.5%	6.7%	1.5%	1.4%	0.3%	22.5%	8.4%	41.5%	0.1%	0.7%	5 1. 7%	0.3%	0.2%	
	NonWork	0.2%	2.8%	0.2%	0.2%	0.2%	19.1%	6.5%	61.8%	0.1%	0.2%	0.5%	0.1%	0.1%	
		LongBch	Vernon	Downey	DntnLA	Glendle	Pasadna	WCovina	Pomona						
	Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Reside	ntial							_							
	Work	0.2%	2.4%	0.4%	3.1%	5.6%	3.1%	0.3%	0.0%	0.7%	0.2%	6 0.1%	0.0%	0.2%	100.0%
	NonWork	0.1%	0.7%	0.2%	0.4%	4.0%	1.5%	0.2%	0.0%	0.3%	0.3%	6 0.1%	0.0%	0.2%	100.0%
Non-R	esidential									-					
	Work	0.1%	0.5%	0.3%	0.2%	3.1%	2.0%	0.5%	0.2%	5.7%	0.6%	6.5%	0.2%	0.4%	100.0%
	NonWork	0.1%	0.2%	0.1%	0.1%	2.5%	0.8%	0.2%	0.1%	3.1%	0.3%	0.4%	0.2%	0.3%	100.0%

PROJECT RSA: 15 Area Generally Bounded By: Malibu

1990 TRIP DISTRIBUTION PERCENTAGES

	Туре	Agoura			Palmdle	-		Burbank	Sylmar			WCntILA			
	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Residen			-												
	Work	7.9%	0.2%	0.0%	0.0%	0.0%	11.0%		0.8%	47.4%			2.7%	0.8%	
	NonWork	2.6%	0.1%	0.1%	0.0%	0.1%	2.6%	0.7%	0.4%	75.9%	5.6%	3.7%	o 1.1%	0.4%	
Non-Re	sidential														
	Work	8.2%	0.4%	0.2%	0.3%	0.0%	5.8%	0.6%	0.7%	58.8%	5.2%	1.6%	0.6%	0.2%	
	NonWork	4.9%	0.3%	0.1%	0.1%	0.0%	1.5%	0.1%	0.2%	79.1%	6.3%	0.5%	0.3%	0.2%	
		LongBch	Vernon	Downey	DntnLA	Glendle I	Pasadna	WCovina	Pomona						
	Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Biv	Ker	TOTAL
Residen															
	Work	0.4%	1.7%	0.4%	1.5%	0.9%	0.7%	0.2%	0.0%	4.1%	0.3%	0.0%	0.0%	6 0.0%	100.0%
	NonWork	0.3%	1.2%	0.3%	0.5%	0.7%	0.6%		0.0%	1.8%		-			100.0%
	sidential						-								
	Work	0.2%	0.4%	0.2%	0.1%	0.3%	0.3%	0.2%	0.0%	15.3%	0.3%	0.0%	0.0%	0.0%	100.0%
	NonWork		0.2%	0.1%	0.0%	0.1%	0.2%	0.2%	0.0%	4.6%	0.4%	0.2%	0.1%	6 0.0%	100.0%
Project 1	Туре	Agoura	SCIarita	Lancstr	Paimdie	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntILA	Bch.LAX	PVerdes	
-	Type Purpose	Agoura 7	SClarita 8	Lancstr 9	Paimdie 10	AngFrst 11	W.SFV 12	Burbank 13	Sylmar 14	Malibu 15	SMonica 16	WCntILA 17	Bch.LAX 18	PVerdes 19	
RSA	Purpose	-				-			-						
RSA Residen	Purpose	-				-		13	-		16	17	18	19	
RSA Residen 15	Purpose itial	7 6.7%	8	9	10	11	12	13 3.0%	14	15	16 15.2%	17 12.8%	18 5.6%	19 b 1.2%	
RSA Residen 15	Purpose Itial Work	7 6.7%	8 0.4%	9 0.0%	10 0.0%	11 0.0%	12 14.9%	13 3.0%	14 1.0%	15 19.2%	16 15.2%	17 12.8%	18 5.6%	19 b 1.2%	
RSA Residen 15 Non-Re	Purpose tial Work NonWork	7 6.7%	8 0.4%	9 0.0%	10 0.0%	11 0.0%	12 14.9%	13 3.0% 0.9%	14 1.0%	15 19.2%	16 15.2% 11.3%	17 12.8% 6.3%	18 5.6% 5.5%	19 6 1.2% 6 0.7%	
RSA Residen 15 Non-Re	Purpose Itial Work NonWork sidential	7 6.7% 3.6% 7.5%	8 0.4% 0.3%	9 0.0% 0.1%	10 0.0% 0.1%	11 0.0% 0.1%	12 14.9% 3.9%	13 3.0% 0.9% 0.4%	14 1.0% 0.5%	15 19.2% 57.1%	16 15.2% 11.3% 4.1%	17 12.8% 6.3%	18 5.6% 1.5%	19 b 1.2% b 0.7% b 0.2%	
RSA Residen 15 Non-Re	Purpose tial Work NonWork sidential Work NonWork	7 6.7% 3.6% 7.5% 3.8%	8 0.4% 0.3% 0.3% 0.2%	9 0.0% 0.1% 0.2% 0.1%	10 0.0% 0.1% 0.1% 0.1%	11 0.0% 0.1% 0.0%	12 14.9% 3.9% 5.3% 1.3%	13 3.0% 0.9% 0.4% 0.1%	14 1.0% 0.5% 0.6% 0.2%	15 19.2% 57.1% 60.9%	16 15.2% 11.3% 4.1%	17 12.8% 6.3%	18 5.6% 1.5%	19 b 1.2% b 0.7% b 0.2%	
RSA Residen 15 Non-Re	Purpose tial Work NonWork sidential Work NonWork	7 6.7% 3.6% 7.5% 3.8% LongBch	8 0.4% 0.3% 0.3% 0.2% Vernon	9 0.0% 0.1% 0.2% 0.1% Downey	10 0.0% 0.1% 0.1% 0.1%	11 0.0% 0.1% 0.0% Glendle I	12 14.9% 3.9% 5.3% 1.3% Pasadna	13 3.0% 0.9% 0.4% 0.1% WCovina	14 1.0% 0.5% 0.6% 0.2% Pomona	15 19.2% 57.1% 60.9% 83.0%	16 15.2% 11.3% 4.1% 3.5%	17 12.8% 6.3% 1.4% 0.5%	18 5.6% 1.5%	19 b 1.2% b 0.7% b 0.2% b 0.1%	TOTAL
RSA Residen 15 Non-Re	Purpose tial Work NonWork sidential Work NonWork Purpose	7 6.7% 3.6% 7.5% 3.8%	8 0.4% 0.3% 0.3% 0.2%	9 0.0% 0.1% 0.2% 0.1%	10 0.0% 0.1% 0.1% 0.1%	11 0.0% 0.1% 0.0%	12 14.9% 3.9% 5.3% 1.3%	13 3.0% 0.9% 0.4% 0.1%	14 1.0% 0.5% 0.6% 0.2%	15 19.2% 57.1% 60.9%	16 15.2% 11.3% 4.1%	17 12.8% 6.3%	18 5.6% 1.5% 0.5% 0.2%	19 b 1.2% b 0.7% b 0.2%	TOTAL
RSA Residen 15 Non-Re	Purpose tial Work NonWork sidential Work NonWork Purpose	7 6.7% 3.6% 7.5% 3.8% LongBch 20	8 0.4% 0.3% 0.3% 0.2% Vernon 21	9 0.0% 0.1% 0.2% 0.1% Downey 22	10 0.0% 0.1% 0.1% 0.1% DntnLA 23	11 0.0% 0.1% 0.0% Glendle I	12 14.9% 3.9% 5.3% 1.3% Pasadna	13 3.0% 0.9% 0.4% 0.1% WCovina 26	14 1.0% 0.5% 0.6% 0.2% Pomona	15 19.2% 57.1% 60.9% 83.0%	16 15.2% 11.3% 4.1% 3.5% Ora	17 12.8% 6.3% 1.4% 0.5%	18 5.6% 1.5% 0.5% 0.2% Riv	19 1.2% 0.7% 0.2% 0.1% Ker	
RSA Residen 15 Non-Re	Purpose tial Work NonWork sidential Work NonWork Purpose tial	7 6.7% 3.6% 7.5% 3.8% LongBch 20 0.5%	8 0.4% 0.3% 0.3% 0.2% Vernon	9 0.0% 0.1% 0.2% 0.1% Downey 22 0.5%	10 0.0% 0.1% 0.1% 0.1%	11 0.0% 0.1% 0.0% 0.0% Glendle 1 24	12 14.9% 3.9% 5.3% 1.3% Pasadna 25	13 3.0% 0.9% 0.4% 0.1% WCovina 26 0.3%	14 1.0% 0.5% 0.6% 0.2% Pomona 27	15 19.2% 57.1% 60.9% 83.0% Ven	16 15.2% 11.3% 4.1% 3.5% Ora 0.4%	17 12.8% 6.3% 1.4% 0.5% SB	18 5.6% 5.6% 5.6% 5.6% 5.6% 5.6% 5.6% 5.6%	19 1.2% 0.7% 0.2% 0.1% Ker 0.0%	TOTAL 100.0% 100.0%
RSA Residen 15 Non-Re	Purpose tial Work NonWork sidential Work NonWork Purpose tilal Work	7 6.7% 3.6% 7.5% 3.8% LongBch 20 0.5%	8 0.4% 0.3% 0.2% Vernon 21 2.8%	9 0.0% 0.1% 0.2% 0.1% Downey 22	10 0.0% 0.1% 0.1% 0.1% DntnLA 23 3.2%	11 0.0% 0.1% 0.0% 0.0% Glendle 1 24	12 14.9% 3.9% 5.3% 1.3% Pasadna 25 1.1%	13 3.0% 0.9% 0.4% 0.1% WCovina 26 0.3%	14 1.0% 0.5% 0.6% 0.2% Pomona 27 0.0%	15 19.2% 57.1% 60.9% 83.0% Ven 9.6%	16 15.2% 11.3% 4.1% 3.5% Ora 0.4%	17 12.8% 6.3% 1.4% 0.5% SB	18 5.6% 5.6% 5.6% 5.6% 5.6% 5.6% 5.6% 5.6%	19 1.2% 0.7% 0.2% 0.1% Ker 0.0%	100.0%
RSA Residen 15 Non-Re Residen	Purpose Itial Work NonWork sidential Work NonWork Purpose Itial Work NonWork	7 6.7% 3.6% 7.5% 3.8% LongBch 20 0.5%	8 0.4% 0.3% 0.2% Vernon 21 2.8%	9 0.0% 0.1% 0.2% 0.1% Downey 22 0.5%	10 0.0% 0.1% 0.1% 0.1% DntnLA 23 3.2%	11 0.0% 0.1% 0.0% 0.0% Glendle 1 24	12 14.9% 3.9% 5.3% 1.3% Pasadna 25 1.1%	13 3.0% 0.9% 0.4% 0.1% WCovina 26 0.3% 0.3%	14 1.0% 0.5% 0.6% 0.2% Pomona 27 0.0%	15 19.2% 57.1% 60.9% 83.0% Ven 9.6%	16 15.2% 11.3% 4.1% 3.5% Ora 0.4% 1.2%	17 12.8% 6.3% 1.4% 0.5% SB 0.0% 0.1%	18 5.6% 1.5% 0.5% 0.2% Riv 0.0% 5.0%	19 1.2% 0.7% 0.2% 0.1% Ker 0.0% 0.0%	100.0%

16 Area Generally Bounded By: Santa Monica, Bel Air, Palisades, Marina Del Rey

1990 TRIP DISTRIBUTION PERCENTAGES

Project Type	Agour	a SClarita	Lancstr	Palmdle	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntlLA	Bch.LAX	PVerdes	
Purpo	S0	78	9	10	11	12	13	14	15	16	17	18	19	
Residential														
Work	0.3	% 0.1%	6 0.0%	0.0%	0.0%	3.3%	1.0%	0.4%	0.3%	45.9%	30.6%	8.8%	1.2%	
NonW	ork 0.1	<u>% 0.0%</u>	6 0.0%	0.0%	0.0%	1.2%	0.3%	0.1%	0.4%	65.9%	5 24.3%	4.5%	0.3%	
Non-Resident	ial													
Work	0.8	% 0.8%	6 0.3%	0.4%	0.0%	6.0%	1.5%	1.5%	0.7%	48.3%	5 20.5%	7.4%	1.6%	
NonW	ork 0.5	% 0.4%	<u>6 0.1</u> %	0.2%	0.0%	2.3%	0.4%	0.5%	0.4%	67.4%	16.8%	6.0%	0.6%	
	LongBc	h Vernon	Downey	DntnLA	Glendle	Pasadna	WCovina	Pomona						
Purpo	se 2	0 21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Residential														
Work	0.5	% 2.6%	6 0.4%	2.7%	0.7%	0.6%	0.1%	0.0%	0.1%	0.3%	6 0.0%	0.0%	0.0%	100.0%
NonW	ork 0.1	% 0.9%	6 0.1%	0.6%	0.3%	0.2%	0.1%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%	100.0%
Non-Resident	ial							· · · ·						
Work	0.6	% 1.7%	6 0.7%	0.6%	1.1%	1.1%	0.6%	0.1%	1.7%	1.4%	6 0.4%	0.2%	0.0%	100.0%
NonW	ork 0.2	% 0.6 %	6 <u>0.</u> 3%	0.2%	0.3%	0.4%	0.2%	0.1%	1.0%	0.5%	0.4%	0.2%	0.0%	100.0%
	2010 T	RIP DISTRIE	BUTION PE	RCENTAG	ies									
Project Type	Agour	a SCIarita	Lancstr	Palmdie	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntILA	Bch.LAX	PVerdes	
RSA Purpo	SÐ	78		10	11	12	13	14	15	16	17	18	19	
Residential														
16 Work	0.1	% 0.1%	ь 0.0%	0.0%	0.0%	2.9%	1.1%	0.3%	0.1%	48.0%	5 27.0%	10.9%	1.1%	
	ork 0.1	% 0.0%	6 0.0%	0.0%	0.0%	1.1%	0.3%	0.1%	0.2%	69.4%	5 22.7%	3.7%	0.2%	

Work	1.1%	0.8%	0.6%	0.4%	0.0%	6.8%	1.3%	1.5%	0.9%	46.2%	19.6%	7.4%	1.7%
NonWork	0.7%	0.4%	<u>0</u> .1%	0.2%	0.0%	2.9%	0.5%	0.6%	0.7%	63.4%	17.2%	6.5%	0.6%

	LongBCh	Vernon	Downey	, DntnLA	Glendle	Pasadna	WCovina	Pomona						
Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Residential														
Work	0.4%	2.6%	0.4%	3.2%	0.8%	6 0.5%	0.1%	0.0%	0.1%	0.3%	0.0%	0.0%	0.1%	100.0%
NonWork	c 0.1%	0.6%	0.1%	0.5%	0.2%	6 0.2%	0.1%	0.0%	0.0%	0.2%	0.0%	0.0%	0.1%	100.0%
Non-Residential														
Work	0.8%	1.8%	0.9%	0.6%	0.9%	6 1.1%	0.6%	0.1%	2.1%	2.0%	0.5%	0.3%	0.1%	100.0%
NonWork	c 0.2%	0.7%	0.3%	0.2%	0.4%	6 0.4%	0.3%	0.1%	1.7%	0.7%	0.6%	0.5%	0.1%	100.0%

17 Area Generally Bounded By: Westwood, Beverly Glen, Los Feliz, Hyde Park, Culver City

1990 TRIP DISTRIBUTION PERCENTAGES

Project		Agoura			Paimdle			Burbank	Sylmar					PVerdes	
	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Resider														,	
	Work	0.1%	0.1%	0.0%	0.0%	0.0%	2.0%		0.4%	0.0%					
	NonWork	0.0%	0.0%	0.0%	0.0%	0.0%	0.8%	1.9%	0.1%	0.0%	5.9%	68.4%	<u>4.3%</u>	6 0.3%	
Non-Re	esidential														
	Work	0.3%	0.7%	0.3%	0.4%	0.0%	4.5%		1.5%	0.2%					
	NonWork	0.2%	0.4%	0.1%	0.2%	0.0%	1.9%	3.0%	0.6%	0.1%	7.8%	61.1%	5.3%	6 0.9%	
		LongBch	Vernon	Downey	DntnLA	Glendle I	Pasadna	WCovina	Pomona						
	Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Resider															
	Work	0.6%	8.6%	0.7%	11.6%	3.2%	1.5%	0.3%	0.0%	0.0%	0.4%	0.0%	6 0.0%	6 0.0%	100.0%
	NonWork	0.1%	6.7%	0.2%	7.0%	3.3%	0.6%	0.1%	0.0%	0.0%	0.2%	0.0%	6 0.0%	6 0.0%	100.0%
Non-Re	esidential														
	Work	0.7%	5.3%	1.3%	3.2%	4.6%	2.9%	1.1%	0.2%	1.2%	1.7%	0.7%	0.4%	6 0.0%	100.0%
	NonWork	0.4%	5.5%	0.6%	3.3%	4.4%	1.4%	0.5%	0.1%	0.8%	0.7%	0.5%	6 0.3%	6 0.0%	100.0%
		2010 TRIF	PDISTRIB	UTION PE	RCENTAG	ES									
Project		2010 TRIF	P DISTRIBI SClarita	UTION PE		ES AngFrst		Burbank	Sylmar		SMonica	WCntlLA	Bch.LAX	PVerdes	
•		2010 TRIF					W.SFV 12	Burbank 13	Sylmar 14	Malibu 15	SMonica 16	WCntlLA	Bch.LAX 18	PVerdes	
RSA Resider	Type Purpose ntial	2010 TRIF Agoura	SClarita	Lancstr 9	Palmdle	AngFrst 11	12	13	14		16	17			
RSA Resider	Type Purpose	2010 TRIF Agoura	SClarita	Lancstr	Palmdle	AngFrst		13 3.2%			16 8.1%	17	18	19	
RSA Resider	Type Purpose ntial	2010 TRIF Agoura 7 0.0%	SCIarita 8	Lancstr 9	Palmdie 10	AngFrst 11	12	13 3.2%	14	15	16 8.1%	17	18 5 7.0%	<u>19</u> 6 1.1%	
RSA Resider 17	Type Purpose ntial Work	2010 TRIF Agoura 7 0.0%	SClarita 8 0.1%	Lancstr 9 0.0% 0.0%	Palmdle 10 0.0%	AngFrst 11 0.0% 0.0%	12 1.7% 0.8%	13 3.2% 1.8%	14 0.3% 0.1%	15 0.0% 0.0%	16 8.1% 7.5%	<u>17</u> 50.9% 67.7%	18 5 7.0% 5 4.0%	<u>19</u> 6 1.1%	
RSA Resider 17	Type Purpose ntial Work NonWork	2010 TRIF Agoura 7 0.0%	SClarita 8 0.1% 0.0% 0.8%	Lancstr 9 0.0% 0.0%	Palmdie 10 0.0% 0.0% 0.4%	AngFrst 11 0.0%	<u>12</u> 1.7%	13 3.2% 1.8% 3.8%	14 0.3% 0.1% 1.6%	15 0.0%	16 8.1% 7.5% 9.7%	<u> </u>	18 5 7.0% 5 4.0%	19 6 1.1% 6 0.4% 6 1.5%	
RSA Resider 17	Type Purpose ntial Work NonWork esidential	2010 TRIF Agoura 7 0.0% 0.0%	SClarita 8 0.1% 0.0%	Lancstr 9 0.0% 0.0%	Palmdie 10 0.0% 0.0%	AngFrst 11 0.0% 0.0%	12 1.7% 0.8%	13 3.2% 1.8% 3.8%	14 0.3% 0.1%	15 0.0% 0.0%	16 8.1% 7.5% 9.7%	<u> </u>	18 5 7.0% 5 4.0%	19 6 1.1% 6 0.4% 6 1.5%	
RSA Resider 17	Type Purpose ntial Work NonWork esidential Work NonWork	2010 TRIF Agoura 7 0.0% 0.0% 0.5% 0.2%	SClarita 8 0.1% 0.0% 0.8% 0.3%	Lancstr 9 0.0% 0.0% 0.6% 0.1%	Palmdie 10 0.0% 0.0% 0.4% 0.2%	AngFrst 11 0.0% 0.0% 0.0%	12 1.7% 0.8% 5.3% 2.1%	13 3.2% 1.8% 3.8% 2.9%	14 0.3% 0.1% 1.6% 0.6%	15 0.0% 0.0% 0.3%	16 8.1% 7.5% 9.7%	<u> </u>	18 5 7.0% 5 4.0%	19 6 1.1% 6 0.4% 6 1.5%	
RSA Resider 17	Type Purpose ntial Work NonWork esidential Work NonWork	2010 TRIF Agoura 7 0.0% 0.0% 0.5% 0.2% LongBch	SCIarita 8 0.1% 0.0% 0.8% 0.3% Vernon	Lancstr 9 0.0% 0.0% 0.6% 0.1% Downey	Palmdie 10 0.0% 0.0% 0.4% 0.2%	AngFrst 11 0.0% 0.0% 0.0% Glendle I	12 1.7% 0.8% 5.3% 2.1% Pasadna	13 3.2% 1.8% 3.8% 2.9% WCovina	14 0.3% 0.1% 1.6% 0.6% Pornona	15 0.0% 0.0% 0.3% 0.1%	16 8.1% 7.5% 9.7% 8.1%	17 50.9% 67.7% 45.9% 60.5%	18 5 7.0% 5 4.0% 5 4.7% 5 5.5%	19 1.1% 0.4% 1.5% 0.7%	TOTAL
RSA Resider 17 Non-Re	Type Purpose ntial Work NonWork esidential Work NonWork Purpose	2010 TRIF Agoura 7 0.0% 0.0% 0.5% 0.2%	SClarita 8 0.1% 0.0% 0.8% 0.3%	Lancstr 9 0.0% 0.0% 0.6% 0.1%	Palmdie 10 0.0% 0.0% 0.4% 0.2%	AngFrst 11 0.0% 0.0% 0.0%	12 1.7% 0.8% 5.3% 2.1%	13 3.2% 1.8% 3.8% 2.9%	14 0.3% 0.1% 1.6% 0.6%	15 0.0% 0.0% 0.3%	16 8.1% 7.5% 9.7%	<u> </u>	18 5 7.0% 5 4.0%	19 6 1.1% 6 0.4% 6 1.5%	TOTAL
RSA Resider 17	Type Purpose ntial Work NonWork esidential Work NonWork Purpose ntial	2010 TRIF Agoura 7 0.0% 0.0% 0.5% 0.2% LongBch 20	SClarita 8 0.1% 0.0% 0.8% 0.3% Vernon 21	Lancstr 9 0.0% 0.0% 0.6% 0.1% Downey 22	Palmdie 10 0.0% 0.0% 0.4% 0.2% DntnLA 23	AngFrst 11 0.0% 0.0% 0.0% Glendle I 24	12 1.7% 0.8% 5.3% 2.1% Pasadna 25	13 3.2% 1.8% 3.8% 2.9% WCovina 26	14 0.3% 0.1% 1.6% 0.6% Pomona 27	15 0.0% 0.0% 0.3% 0.1%	16 8.1% 7.5% 9.7% 8.1% Ora	17 50.9% 67.7% 45.9% 60.5% SB	18 5 7.0% 5 4.0% 5 5.5% Riv	19 1.1% 0.4% 1.5% 0.7% Ker	
RSA Resider 17 Non-Re	Type Purpose ntial Work NonWork esidential Work NonWork Purpose ntial Work	2010 TRIF Agoura 7 0.0% 0.0% 0.5% 0.2% LongBch 20 0.4%	SClarita 8 0.1% 0.0% 0.8% 0.3% Vernon 21 7.9%	Lancstr 9 0.0% 0.0% 0.6% Downey 22 0.6%	Palmdie 10 0.0% 0.0% 0.4% 0.2% DntnLA 23 13.4%	AngFrst 11 0.0% 0.0% 0.0% Glendle I 24 3.3%	12 1.7% 0.8% 5.3% 2.1% Pasadna 25 1.3%	13 3.2% 1.8% 3.8% 2.9% WCovina 26 0.2%	14 0.3% 0.1% 1.6% 0.6% Pornona	15 0.0% 0.0% 0.3% 0.1% Ven	16 9.8.1% 9.7% 9.7% 9.7% 8.1% Ora 0.3%	17 50.9% 67.7% 45.9% 60.5% SB 0.0%	18 5 7.0% 5 4.0% 5 5.5% Riv 5 0.0%	19 1.1% 0.4% 1.5% 0.7% Ker 0.1%	100.0%
RSA Resider 17 Non-Re	Type Purpose ntial Work NonWork esidential Work NonWork Purpose ntial	2010 TRIF Agoura 7 0.0% 0.0% 0.5% 0.2% LongBch 20 0.4%	SClarita 8 0.1% 0.0% 0.8% 0.3% Vernon 21	Lancstr 9 0.0% 0.0% 0.6% Downey 22 0.6%	Palmdie 10 0.0% 0.0% 0.4% 0.2% DntnLA 23	AngFrst 11 0.0% 0.0% 0.0% Glendle I 24	12 1.7% 0.8% 5.3% 2.1% Pasadna 25	13 3.2% 1.8% 3.8% 2.9% WCovina 26 0.2%	14 0.3% 0.1% 1.6% 0.6% Pomona 27 0.0%	15 0.0% 0.3% 0.1% Ven 0.0%	16 9.8.1% 9.7% 9.7% 9.7% 8.1% Ora 0.3%	17 50.9% 67.7% 45.9% 60.5% SB 0.0%	18 5 7.0% 5 4.0% 5 5.5% Riv 5 0.0%	19 1.1% 0.4% 1.5% 0.7% Ker 0.1%	100.0%
RSA Resider 17 Non-Re	Type Purpose ntial Work NonWork esidential Work NonWork Purpose ntial Work NonWork	2010 TRIF Agoura 7 0.0% 0.0% 0.5% 0.2% LongBch 20 0.4%	SClarita 8 0.1% 0.0% 0.8% 0.3% Vernon 21 7.9%	Lancstr 9 0.0% 0.6% 0.1% Downey 22 0.6% 0.3%	Palmdie 10 0.0% 0.0% 0.4% 0.2% DntnLA 23 13.4%	AngFrst 11 0.0% 0.0% 0.0% Glendle I 24 3.3%	12 1.7% 0.8% 5.3% 2.1% Pasadna 25 1.3%	13 3.2% 1.8% 3.8% 2.9% WCovina 26 0.2% 0.1%	14 0.3% 0.1% 1.6% 0.6% Pomona 27 0.0%	15 0.0% 0.3% 0.1% Ven 0.0%	16 8.1% 7.5% 9.7% 8.1% 0.3% 0.3%	17 50.9% 67.7% 45.9% 60.5% SB 0.0%	18 5 7.0% 5 4.0% 5 5.5% Riv 6 0.0% 5 0.0%	19 1.1% 0.4% 1.5% 0.7% Ker Ker 0.1% 0.1%	TOTAL 100.0% 100.0% 100.0%

7

Project Type

Purpose

18 Area Generally Bounded By: Westchester, Redondo Bch, Gardena, Inglewood

1990 TRIP DISTRIBUTION PERCENTAGES

8

Agoura SClarita Lancstr Palmdie AngFrst

9

10

11

Malibu SMonica WCntlLA Bch.LAX PVerdes W.SFV Burbank Sylmar 13 14 15 16 17 18 19

10/06/92

		-												
ntial			•					-			-			
Work	0.0%	0.0%	0.0%	0.0%	0.0%	0.7%	0.3%	0.1%	0.0%	4.7%	11.4%	51.0%	13.5%	
NonWork	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	0.1%	0.1%	0.0%	3.9%	11.1%	63.5%	10.8%	
sidential									-					
Work	0.2%	0.3%	0.1%	0.2%	0.0%	1.4%	0.5%	0.4%	0.1%	5.3%	10.6%	46.0%	13.2%	
NonWork	0.1%	0.2%	0.0%	0.1%	0.0%	0.4%	0.1%	0.2%	0.0%	3.1%	8.2%	64.7%	12.7%	
	LongBch	Vernon	Downey	DntnLA	Glendle	Pasadna W	Covina	Pomona						
Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
ntial														
Work	3.0%	8.7%	1.4%	2.8%	0.6%	0.6%	0.2%	0.0%	0.0%	1.0%	. 0.0%	0.0%	0.0%	100.0%
NonWork	1.1%	6.5%	0.5%	0.9%	0.3%	0.2%	0.1%	0.0%	0.0%	0.5%	0.0%	0.0%	0.0%	100.0%
esidential														
Work	3.4%	6.8%	2.3%	0.6%	0.8%	1.0%	0.6%	0.1%	0.6%	4.4%	0.4%	0.6%	0.0%	100.0%
NonWork	1.5%	4.9%	0.8%	0.2%	0.3%	0.3%	0.2%	0.1%	0.5%	1.0%	0.3%	0.3%	0.0%	100.0%
	tial Work NonWork sidential Work <u>Purpose</u> tial Work NonWork sidential Work	tial Work 0.0% NonWork 0.0% sidential Work 0.2% NonWork 0.1% LongBch Purpose 20 tial Work 3.0% NonWork 1.1% sidential Work 3.4%	tial Work 0.0% 0.0% NonWork 0.0% 0.0% sidential Work 0.2% 0.3% NonWork 0.1% 0.2% LongBch Vernon Purpose 20 21 tial Work 3.0% 8.7% NonWork 1.1% 6.5% sidential Work 3.4% 6.8%	tial Work 0.0% 0.0% 0.0% NonWork 0.0% 0.0% 0.0% sidential Work 0.2% 0.3% 0.1% NonWork 0.1% 0.2% 0.0% LongBch Vernon Downey Purpose 20 21 22 tial Work 3.0% 8.7% 1.4% NonWork 1.1% 6.5% 0.5% sidential Work 3.4% 6.8% 2.3%	tial Work 0.0% 0.0% 0.0% 0.0% NonWork 0.0% 0.0% 0.0% sidential Work 0.2% 0.3% 0.1% 0.2% NonWork 0.1% 0.2% 0.0% 0.1% LongBch Vernon Downey DntnLA Purpose 20 21 22 23 tial Work 3.0% 8.7% 1.4% 2.8% NonWork 1.1% 6.5% 0.5% 0.9% sidential Work 3.4% 6.8% 2.3% 0.6%	tial Work 0.0% 0.0% 0.0% 0.0% 0.0% NonWork 0.0% 0.0% 0.0% 0.0% sidential Work 0.2% 0.3% 0.1% 0.2% 0.0% NonWork 0.1% 0.2% 0.0% 0.1% 0.0% LongBch Vernon Downey DntnLA Glendle Purpose 20 21 22 23 24 tial Work 3.0% 8.7% 1.4% 2.8% 0.6% NonWork 1.1% 6.5% 0.5% 0.9% 0.3% sidential Work 3.4% 6.8% 2.3% 0.6% 0.8%	tial Work 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% NonWork 0.0% 0.0% 0.0% 0.0% 0.2% sidential Work 0.2% 0.3% 0.1% 0.2% 0.0% 1.4% NonWork 0.1% 0.2% 0.0% 0.1% 0.0% 0.4% LongBch Vernon Downey DntnLA Glendle Pasadna W Purpose 20 21 22 23 24 25 tial Work 3.0% 8.7% 1.4% 2.8% 0.6% 0.6% 0.6% NonWork 1.1% 6.5% 0.5% 0.9% 0.3% 0.2% sidential Work 3.4% 6.8% 2.3% 0.6% 0.8% 1.0%	tial Work 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.3% NonWork 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% sidential Work 0.2% 0.3% 0.1% 0.2% 0.0% 1.4% 0.5% NonWork 0.1% 0.2% 0.0% 0.1% 0.0% 0.4% 0.1% LongBch Vernon Downey DntnLA Glendle Pasadna WCovina Purpose 20 21 22 23 24 25 26 tial Work 3.0% 8.7% 1.4% 2.8% 0.6% 0.6% 0.2% NonWork 1.1% 6.5% 0.5% 0.9% 0.3% 0.2% 0.1% sidential Work 3.4% 6.8% 2.3% 0.6% 0.8% 1.0% 0.6%	tial Work 0.0% 0.0% 0.0% 0.0% 0.7% 0.3% 0.1% NonWork 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% sidential Work 0.2% 0.3% 0.1% 0.2% 0.0% 1.4% 0.5% 0.4% NonWork 0.1% 0.2% 0.0% 0.1% 0.0% 0.4% 0.1% 0.2% Work 0.1% 0.2% 0.0% 0.1% 0.0% 0.4% 0.1% 0.2% LongBch Vernon Downey DntnLA Glendle Pasadna WCovina Pomona Purpose 20 21 22 23 24 25 26 27 tial Work 3.0% 8.7% 1.4% 2.8% 0.6% 0.6% 0.2% 0.0% NonWork 1.1% 6.5% 0.5% 0.9% 0.3% 0.2% 0.1% 0.0% sidential Work 3.4% 6.8% 2.3% 0.6% 0.8% 1.0% 0.6% 0.1% <td>tial Work 0.0% 0.0% 0.0% 0.7% 0.3% 0.1% 0.0% NonWork 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.0% sidential Work 0.2% 0.3% 0.1% 0.2% 0.1% 0.1% 0.0% Work 0.2% 0.3% 0.1% 0.2% 0.0% 1.4% 0.5% 0.4% 0.1% NonWork 0.1% 0.2% 0.0% 0.4% 0.1% 0.2% 0.0% NonWork 0.1% 0.2% 0.0% 0.4% 0.1% 0.2% 0.0% LongBch Vernon Downey DntnLA Glendle Pasadna WCovina Pomona Purpose 20 21 22 23 24 25 26 27 Ven tial Work 3.0% 8.7% 1.4% 2.8% 0.6% 0.6% 0.2% 0.0% 0.0% NonWork 1.1% 6.5% 0.5% 0.9% 0.3% 0.2% 0.1% 0.0% 0</td> <td>tial Work 0.0% 0.0% 0.0% 0.7% 0.3% 0.1% 0.0% 4.7% NonWork 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.0% 3.9% sidential work 0.2% 0.3% 0.1% 0.0% 3.9% work 0.2% 0.3% 0.1% 0.2% 0.1% 0.1% 0.0% 3.9% work 0.2% 0.3% 0.1% 0.2% 0.0% 1.4% 0.5% 0.4% 0.1% 5.3% NonWork 0.1% 0.2% 0.0% 0.4% 0.1% 0.2% 0.0% 3.1% LongBch Vernon Downey DntnLA Glendle Pasadna WCovina Pomona Purpose 20 21 22 23 24 25 26 27 Ven Ora tial Work 3.0% 8.7% 1.4% 2.8% 0.6% 0.6% 0.0% 0.0% 0.0% 0.5% NonWork 1.1% 6.5% 0.5% 0.9% 0.3%<</td> <td>tial Work 0.0% 0.0% 0.0% 0.7% 0.3% 0.1% 0.0% 4.7% 11.4% NonWork 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.0% 3.9% 11.1% sidential </td> <td>tial Work 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.3% 0.1% 0.0% 4.7% 11.4% 51.0% NonWork 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.0% 3.9% 11.1% 63.5% sidential Work 0.2% 0.3% 0.1% 0.2% 0.0% 1.4% 0.5% 0.4% 0.1% 5.3% 10.6% 46.0% NonWork 0.1% 0.2% 0.0% 0.1% 0.0% 0.4% 0.1% 0.2% 0.0% 3.1% 8.2% 64.7% LongBch Vernon Downey DntnLA Glendle Pasadna WCovina Pomona Purpose 20 21 22 23 24 25 26 27 Ven Ora SB Riv tial Work 3.0% 8.7% 1.4% 2.8% 0.6% 0.6% 0.2% 0.0% 0.0% 1.0% 0.0% 0.0% NonWork 1.1% 6.5% 0.5% 0.9% 0.3% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% NonWork 1.1% 6.5% 0.5% 0.9% 0.3% 0.2% 0.1% 0.0% 0.0% 0.5% 0.0% 0.0% NonWork 3.4% 6.8% 2.3% 0.6% 0.8% 1.0% 0.6% 0.1% 0.6% 4.4% 0.4% 0.6%</td> <td>tial Work 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.3% 0.1% 0.0% 4.7% 11.4% 51.0% 13.5% NonWork 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.0% 3.9% 11.1% 63.5% 10.8% sidential Work 0.2% 0.3% 0.1% 0.2% 0.0% 1.4% 0.5% 0.4% 0.1% 5.3% 10.6% 46.0% 13.2% NonWork 0.1% 0.2% 0.0% 0.1% 0.0% 0.4% 0.1% 0.2% 0.0% 3.1% 8.2% 64.7% 12.7% LongBch Vernon Downey DntnLA Giendle Pasadna WCovina Pomona Purpose 20 21 22 23 24 25 26 27 Ven Ora SB Riv Ker tial Work 3.0% 8.7% 1.4% 2.8% 0.6% 0.6% 0.2% 0.0% 0.0% 1.0% 0.0% 0.0% 0.0% NonWork 1.1% 6.5% 0.5% 0.9% 0.3% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% NonWork 1.1% 6.5% 0.5% 0.9% 0.3% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NonWork 3.4% 6.8% 2.3% 0.6% 0.8% 1.0% 0.6% 0.1% 0.6% 4.4% 0.4% 0.6% 0.0%</td>	tial Work 0.0% 0.0% 0.0% 0.7% 0.3% 0.1% 0.0% NonWork 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.0% sidential Work 0.2% 0.3% 0.1% 0.2% 0.1% 0.1% 0.0% Work 0.2% 0.3% 0.1% 0.2% 0.0% 1.4% 0.5% 0.4% 0.1% NonWork 0.1% 0.2% 0.0% 0.4% 0.1% 0.2% 0.0% NonWork 0.1% 0.2% 0.0% 0.4% 0.1% 0.2% 0.0% LongBch Vernon Downey DntnLA Glendle Pasadna WCovina Pomona Purpose 20 21 22 23 24 25 26 27 Ven tial Work 3.0% 8.7% 1.4% 2.8% 0.6% 0.6% 0.2% 0.0% 0.0% NonWork 1.1% 6.5% 0.5% 0.9% 0.3% 0.2% 0.1% 0.0% 0	tial Work 0.0% 0.0% 0.0% 0.7% 0.3% 0.1% 0.0% 4.7% NonWork 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.0% 3.9% sidential work 0.2% 0.3% 0.1% 0.0% 3.9% work 0.2% 0.3% 0.1% 0.2% 0.1% 0.1% 0.0% 3.9% work 0.2% 0.3% 0.1% 0.2% 0.0% 1.4% 0.5% 0.4% 0.1% 5.3% NonWork 0.1% 0.2% 0.0% 0.4% 0.1% 0.2% 0.0% 3.1% LongBch Vernon Downey DntnLA Glendle Pasadna WCovina Pomona Purpose 20 21 22 23 24 25 26 27 Ven Ora tial Work 3.0% 8.7% 1.4% 2.8% 0.6% 0.6% 0.0% 0.0% 0.0% 0.5% NonWork 1.1% 6.5% 0.5% 0.9% 0.3%<	tial Work 0.0% 0.0% 0.0% 0.7% 0.3% 0.1% 0.0% 4.7% 11.4% NonWork 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.0% 3.9% 11.1% sidential	tial Work 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.3% 0.1% 0.0% 4.7% 11.4% 51.0% NonWork 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.0% 3.9% 11.1% 63.5% sidential Work 0.2% 0.3% 0.1% 0.2% 0.0% 1.4% 0.5% 0.4% 0.1% 5.3% 10.6% 46.0% NonWork 0.1% 0.2% 0.0% 0.1% 0.0% 0.4% 0.1% 0.2% 0.0% 3.1% 8.2% 64.7% LongBch Vernon Downey DntnLA Glendle Pasadna WCovina Pomona Purpose 20 21 22 23 24 25 26 27 Ven Ora SB Riv tial Work 3.0% 8.7% 1.4% 2.8% 0.6% 0.6% 0.2% 0.0% 0.0% 1.0% 0.0% 0.0% NonWork 1.1% 6.5% 0.5% 0.9% 0.3% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% NonWork 1.1% 6.5% 0.5% 0.9% 0.3% 0.2% 0.1% 0.0% 0.0% 0.5% 0.0% 0.0% NonWork 3.4% 6.8% 2.3% 0.6% 0.8% 1.0% 0.6% 0.1% 0.6% 4.4% 0.4% 0.6%	tial Work 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.3% 0.1% 0.0% 4.7% 11.4% 51.0% 13.5% NonWork 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.0% 3.9% 11.1% 63.5% 10.8% sidential Work 0.2% 0.3% 0.1% 0.2% 0.0% 1.4% 0.5% 0.4% 0.1% 5.3% 10.6% 46.0% 13.2% NonWork 0.1% 0.2% 0.0% 0.1% 0.0% 0.4% 0.1% 0.2% 0.0% 3.1% 8.2% 64.7% 12.7% LongBch Vernon Downey DntnLA Giendle Pasadna WCovina Pomona Purpose 20 21 22 23 24 25 26 27 Ven Ora SB Riv Ker tial Work 3.0% 8.7% 1.4% 2.8% 0.6% 0.6% 0.2% 0.0% 0.0% 1.0% 0.0% 0.0% 0.0% NonWork 1.1% 6.5% 0.5% 0.9% 0.3% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% NonWork 1.1% 6.5% 0.5% 0.9% 0.3% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NonWork 3.4% 6.8% 2.3% 0.6% 0.8% 1.0% 0.6% 0.1% 0.6% 4.4% 0.4% 0.6% 0.0%

12

2010 TRIP DISTRIBUTION PERCENTAGES

Agoura SClarita Lancstr Palmdle AngFrst W.SFV Burbank Project Type Sylmar Malibu SMonica WCntlLA Bch.LAX PVerdes **RSA** Purpose 7 8 9 10 11 12 13 14 15 16 17 18 19 Residential 0.0% 18 Work 0.0% 0.0% 0.0% 0.0% 0.5% 0.3% 0.0% 0.1% 5.3% 9.2% 56.3% 11.5% 0.0% 0.0% 0.0% NonWork 0.0% 0.0% 0.2% 0.0% 0.0% 0.1% 5.1% 11.2% 60.9% 11.5% Non-Residential Work 0.2% 0.3% 0.3% 0.2% 0.0% 1.8% 0.4% 0.5% 0.2% 5.9% 9.5% 43.3% 12.2% NonWork 0.1% 0.1% 0.0% 0.1% 0.0% 0.4% 0.1% 0.2% 0.1% 2.8% 7.6% 64.6% 12.3%

•	LongBch	Vernon	Downey	DntnLA	Glendle	Pasadna W	/Covina	Pomona						
Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Residential														
Work	2.0%	7.9%	1.3%	3.3%	0.6%	0.5%	0.2%	0.0%	0.0%	0.8%	0.0%	0.0%	0.1%	100.0%
NonWork	(1.2%)	6.5%	0.8%	1.0%	0.3%	0.2%	0.1%	0.0%	0.0%	0.5%	0.0%	0.0%	0.1%	100.0%
Non-Residential														
Work	3.8%	6.7%	3.2%	0.6%	0.8%	1.1%	0.9%	0.2%	0.8%	5.9%	0.6%	0.6%	0.1%	100.0%
NonWork	(<u>1.4%</u>	5.3%	1.0%	0.3%	0.3%	0.3%	0.2%	0.1%	0.6%	1.1%	0.4%	0.5%	0.1%	100.0%

PROJECT RSA: 19 Area Generally Bounded By: Torrance, Palos Verdes, Carson

1990 TRIP DISTRIBUTION PERCENTAGES

Project Type Agoura SCiarita Lancstr Paimole AngFrst W.SFV Burbank Svimar Malibu SMonica WCntlLA Bch.LAX PVerdes Purpose 7 8 9 10 12 11 13 14 15 16 17 18 19 Residential 0.0% 0.0% 0.3% Work 0.0% 0.0% 0.0% 0.2% 0.1% 0.0% 1.2% 3.8% 17.8% 51.0% NonWork 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.5% 2.1% 14.7% 67.9% Non-Residential 0.1% 0.2% 2.6% Work 0.1% 0.0% 0.5% 0.2% 0.0% 0.9% 0.1% 0.1% 15.3% 47.9% NonWork 0.0% 0.1% 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.0% 0.2% 0.7% 13.4% 71.5% LongBch Vernon Downey DntnLA Glendle Pasadna WCovina Pomona Purpose 20 21 22 23 24 25 26 27 Ven Ora SB Riv Ker TOTAL Residential Work 9.8% 8.0% 2.3% 1.9% 0.5% 0.6% 0.2% 0.0% 0.0% 2.1% 0.0% 0.0% 0.0% 100.0% NonWork 6.1% 4.9% 1.1% 0.5% 0.3% 0.3% 0.1% 0.0% 0.0% 1.2% 0.0% 0.0% 0.0% 100.0% Non-Residential 10.2% 6.2% 3.9% 0.3% 0.5% 0.9% 0.7% 0.1% 0.2% 7.7% 0.5% Work 0.7% 0.0% 100.0% NonWork 6.5% 2.9% 1.2% 0.1% 0.1% 0.2% 0.2% 0.0% 0.3% 1.5% 0.3% 0.3% 0.0% 100.0% 2010 TRIP DISTRIBUTION PERCENTAGES Project Type Agoura SCIarita Lancstr Paimdle AngFrst W.SFV Burbank Sylmar Malibu SMonica WCntlLA Bch.LAX PVerdes **RSA** Purpose 7 8 9 10 11 12 13 14 15 16 17 18 19 Residential 19 Work 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.3% 0.1% 0.0% 1.5% 3.7% 19.8% 50.6% 0.0% 0.1% 0.0% 0.0% 0.6% NonWork . 0.0% 0.0% 0.0% 0.0% 0.1% 1.7% 13.6% 69.7% Non-Residential 0.0% 0.5% 0.2% 0.2% 0.9% 2.2% Work 0.1% 0.1% 0.1% 0.1% 0.1% 13.1% 46.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.8% NonWork 0.0% 0.1% 0.1% 0.1% 0.2% 13.7% 70.6% Vernon Downey DntnLA Glendle Pasadna WCovina Pomona LongBch 20 22 23 24 25 26 27 Ven SB TOTAL 21 Ora Riv Ker Purpose Residential 0.5% 0.6% 0.2% 0.0% 1.7% 0.0% 100.0% Work 8.5% 2.4% 0.0% 0.0% 0.1% 7.8% 1.9% NonWork 6.7% 4.1% 1.1% 0.4% 0.2% 0.2% 0.1% 0.0% 0.0% 1.1% 0.0% 0.0% 0.1% 100.0% Non-Residential Work 12.2% 5.7% 4.4% 0.3% 0.5% 0.9% 0.8% 0.2% 0.3% 9.9% 0.6% 0.8% 0.0% 100.0% 3.0% 1.2% 0.1% 0.1% 0.2% 0.2% 0.1% 0.3% 1.6% 0.4% 0.5% 0.1% 100.0% NonWork 6.4%

20 Area Generally Bounded By: Long Beach, Lakewood

1990 TRIP DISTRIBUTION PERCENTAGES

Project	Туре	Agoura	SClarita	Lancstr	Palmdle	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntlLA	Bch.LAX	PVerdes	
	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Resider	ntial						_								
	Work	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	0.2%	0.1%	0.0%	0.4%	6 1. 8%	4.3%	10.4%	
	NonWork	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.1%	0.0%	0.0%	0.2%	0.9%	6 1.7%	6.1%	
Non-Re	esidential									•					
	Work	ዐ.ዐ%	D.1%	D.1%	D.1%	D.D%	0.2%	b D.1%	b 0.1%b	0.0%	6 0.3%	6 1.1%	6 2.8%	5 7.7%	
	NonWork	0.0%	0.1%	0.0%	0.0%	0.0%	0.1%	6 0.0%	0.1%	0.0%	6 0.1%	<u>6 0.3%</u>	6 <u>1.49</u>	6.2%	
		LongBch	Vernon	Downey	DntnLA	Glendle	Pasadna	WCovina	Pomona						
	Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Reside	ntial														
	Work	52.4%	8.0%	9.2%	1.2%	0.4%	1.0%	6 0.5%	6 0.0%	0.0%	b 9.7%	6 0.0%	6 0.0%	6 0.0%	100.0%
	NonWork	62.5%	6.2%	11.6%	0.2%	0.2%	0.4%	6 0.2%	6 0.0%	0.0%	b 9.4%	6 0.0%	6 0.0%	6 0.0%	100.0%
Non-Re	esidential												-		
	Work	42.8%	4.5%	10.0%	0.2%	0.4%	1.1%	6 1.1%	6 0.2%	0.1%	b 25.1%	6 0.8%	6 1.1%	6 0.0%	100.0%
	NonWork	65.2%	3.8%	10.4%	0.0%	0.1%	0.3%	6 0.3%	6 0.1%	0.2%	6 10.4%	6 0.3%	6 0.4%	ь 0.0%	100.0%

2010 TRIP DISTRIBUTION PERCENTAGES

Project	Тура	Agoura	SClarita	Lancstr	Palmdle	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntlLA	Bch.LAX	PVerdes	
RSA	Purpose	7	8	9	10	11	12	13	- 14	15	16	17	18	19	
Reside	ntial														
20	Work	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	0.3%	0.0%	0.0%	0.7%	b 2.1%	6.1%	13.2%	
	NonWork	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.1%	0.0%	0.0%	0.2%	0.7%	1.5%	6.2%	
Non-R	esidential								*						
	Work	0.0%	0.1%	0.1%	0.1%	0.0%	0.2%	0.1%	0.1%	0.0%	0.3%	0.9%	2.4%	8.0%	
	NonWork	0.0%	0.1%	0.0%	0.0%	0.0%	0.1%	0.1%	0.1%	0.0%	0.1%	0.3%	1.4%	<u>6.5%</u>	
		LongBch	Vernon	Downey	DntnLA	Glendle	Pasadna	WCovina	Pomona						
	Purpose	20	· 21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Reside	ntial														
	Work	45.8%	9.1%	8.5%	1.7%	0.6%	1.2%	0.5%	0.0%	0.0%	9.7%	0.1%	0.0%	0.1%	100.0%
	NonWork	65.3%	5.2%	10.6%	0.2%	0.2%	0.4%	0.2%	0.0%	0.0%	9.0%	0.0%	0.0%	0.1%	100.0%
Non-R	esidential														
	Work	43.6%	4.1%	9.2%	0.2%	0.3%	1.0%	1.1%	0.2%	0.1%	26.1%	6 0.7%	b 1.0%	0.1%	100.0%
	NonWork	64.5%	3.5%	9.6%	0.0%	0.1%	0.4%	0.4%	0.1%	0.2%	11.2%	0.6%	6 0.8%	0.1%	100.0%

10/06/92

• :

.

21 Area Generally Bounded By: Boyle Heights, Montebello, Compton, Willowbrook

1990 TRIP DISTRIBUTION PERCENTAGES

Project		-	SClarita	Lancstr		AngFrst		Burbank	Sylmar		SMonica				
Reside	Purpose	7	8	<u>9</u>	10	11	12	13	14	15	16	17	18	19	
Heside	Work	0.0%	0.0%	0.0%	0.0%	0.0%	0.5%	0.8%	0.2%	0.0%	0.9%	8.9%	6.1%	6 4.3%	
	NonWork		0.0%	0.0%	0.0%	0.0%	0.1%		0.1%	0.0%					
Non-B	esidential	0.0 /0	0.0 /0	0.070	0.0 /0	0.0 /0	0.170	0.070	0.170	0.0 /	0.07		0.07		
	Work	0.1%	0.3%	0.2%	0.3%	0.0%	1.0%	1.2%	0.6%	0.0%	1.0%	9.4%	6 5.0%	6 3.8%	
	NonWork		0.2%		0.1%	0.0%	0.4%		0.3%	0.0%					
		LongBch	Vernon	Downey	DntnLA	Glendle I	Pasadna	WCovina	Pomona						
	Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Reside	ntial														
	Work	3.8%	43.4%	7.5%	11.8%	3.3%	5.6%	1.0%	0.1%	0.0%	1.6%	6 0.1%	6 0.0%	6 0.0%	100.0%
	NonWork	2.4%	60.1%	6.2%	6.0%	3.7%	4.8%	0.4%	0.0%	0.0%	6 0.7%	6 0.0%	6 0.0%	6 0.0%	100.0%
Non-R	esidential														
	Work	4.0%	31.5%	10.4%	3.7%	5.3%	8.9%	3.4%	0.6%	0.4%	6.2%	5 1.5%	6 1.0%	b 0.0%	100.0%
	NonWork	3.5%	49.3%	10.0%	2.6%	4.7%	7.9%	1.5%	0.2%	0.4%	5 1.7%	6 0.7%	6 0.5%	6 0.0%	100.0%
Project	Туре	Agoura	SClarita	Lancstr	Paimdie	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntiLA	Bch.LAX	PVerdes	
RSA	Purpose	7	8	9	10	11	12	13_	14	15	16	17	18	19	
Reside	Intial														
21	Work	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.9%	0.1%	0.0%			6 7.6%	6 4.4%	
	NonWork	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	0.3%	0.1%	0.0%	6 0.5%	<u> </u>	6 4.3%	6 2.1%	
Non-R	lesidential														
	Work	0.1%	0.3%		0.3%	0.0%	1.2%		0.7%	0.1%					
	NonWork	0.1%	0.1%	0.1%	0.1%	0.0%	0.4%	0.5%	0.3%	0.1%	5 0.3%	5 7.6%	6 4.7%	6 2.5%	
				_		.			_						
		LongBch	Vernon	-				WCovina			•				
	Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Reside		0.404	40.004	0.004		0.004	E 404	1.00/	0.104	0.00		0.10		0.10	100.004
	Work	3.1%			14.1%		5.4%		0.1%	0.0% 0.0%					100.0% 100.0%
Non D	NonWork	2.7%	56.2%	7.8%	7.1%	3.7%	5.2%	0.5%	0.0%	0.0%	0.0%	0.0%	0.0%	6 0.1%	100.0%
NON-H	lesidential Work	4.5%	28.0%	11.1%	3.9%	5.2%	9.1%	3.8%	0.6%	0.6%	8.0%	6 1.7%	6 1.19	6 0.1%	100.0%
	NonWork					5.2% 4.8%	9.1% 8.4%		0.0%	0.6%					100.0%

22 Area Generally Bounded By: Paramount, Hawaiian Gardens, Pico Rivera, La Habra Heights

10/06/92

1990 TRIP DISTRIBUTION PERCENTAGES

Project Type Agoura SCIarita Lancstr Paimdle AngFrst W.SFV Burbank Malibu SMonica WCntlLA Bch.LAX PVerdes Sylmar Purpose 7 8 9 10 11 12 13 14 15 16 17 18 19 Residential Work 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 2.3% 3.1% 0.4% 0.1% 0.4% 2.5% 0.0% NonWork 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.8% 0.1% 0.0% 1.1% 0.7% Non-Residential . 0.0% 0.1% Work 0.1% 0.1% 0.0% 0.3% 0.3% 1.7% 0.2% 0.0% 0.2% 1.2% 1.3% 0.0% 0.0% 0.0% NonWork 0.1% 0.0% 0.1% 0.1% 0.1% 0.0% 0.1% 0.3% 0.5% 0.9%

	LongBch	Vernon	Downey	DntnLA	Glendle	Pasadna	WCovina	Pomona						
Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Residential														
Work	9.6%	16.2%	40.3%	2.7%	1.1%	4.4%	3.4%	0.2%	0.0%	12.9%	0.2%	0.1%	0.0%	100.0%
NonWork	c 7.3%	13.2%	58.2%	0.6%	0.6%	2.5%	2.3%	0.1%	0.0%	12.0%	0.1%	0.0%	0.0%	100.0%
Non-Residential														
Work	7.2%	8.5%	40.7%	0.3%	0.8%	4.0%	5.6%	0.7%	0.1%	22.9%	1.8%	1.6%	0.0%	100.0%
NonWork	c <u>9.0%</u>	7.0%	61.5%	0.1%	0.3%	1.9%	3.1%	0.2%	0.2%	13.2%	0.6%	0.6%	0.0%	100.0%

2010 TRIP DISTRIBUTION PERCENTAGES

. .

...

Project	Туре	Agoura	SClarita	Lancstr	Palmdle	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntILA	Bch.LAX	PVerdes	
RSA	Purpose	- 7	8	9	10	11	12	13	14	15	16	17	18	19	
Reside	ontial														
22	Work	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.5%	0.1%	0.0%	0.7%	2.9%	4.0%	3.7%	
	NonWork	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.1%	0.0%	0.0%	0.2%	1.0%	0.8%	0.9%	
Non-R	esidential								•						
	Work	0.0%	0.1%	0.2%	0.1%	0.0%	0.3%	0.2%	0.2%	0.0%	0.3%	5 1.1%	5 1.3%	1.5%	
	NonWork	0.0%	0.1%	0.0%	0.0%	0.0%	0.1%	0.1%	0.1%	0.0%	0.1%	0.4%	5 0.7%	0.8%	
		LongBch	Vernon	Downey	DntnLA	Giendie I	Pasadna	WCovina	Pomona						
	Purpose	20	21	22	23	24	25	26	27	Vən	Ora	SB	Riv	Ker	TOTAL
Reside	ntial														
	Work	7.5%	17.6%	37.2%	3.4%	1.4%	4.4%	3.3%	0.2%	0.0%	12.4%	6 0.2%	0.1%	0.1%	100.0%
	NonWork	7.3%	12.7%	59.0%	0.5%	0.5%	2.2%	2.4%	0.1%	0.0%	12.0%	0.1%	0.0%	0.1%	100.0%
Non-R	lesidential														
	Work	6.9%	7.8%	38.8%	0.3%	0.7%	4.0%	5.9%	0.7%	0.2%	25.7%	5 1.9%	1.6%	0.1%	100.0%
	NonWork	7.9%	7.8%	58.9%	0.1%	0.3%	2.2%	3.5%	0.2%	0.3%	13.9%	5 1.1%	5 1.1%	0.1%	100.0%

23 Area Generally Bounded By: Downtown Los Angeles, Exposition Park, McArthur Park

1990 TRIP DISTRIBUTION PERCENTAGES

Project	Туре	Agoura	SClarita	Lancstr	Palmdle	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntlLA	Bch.LAX	PVerdes	
	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Reside	ntial														
	Work	0.0%	0.0%	0.0%	0.0%	0.0%	0.8%	1.6%	0.3%	0.0%	1.2%	20.4%	2.0%	0.9%	
	NonWork	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.9%	0.1%	0.0%	0.6%	30.2%	0.9%	0.3%	
Non-R	esidential														
	Work	0.2%	0.5%	0.3%	0.4%	0.0%	2.2%	2.9%	1.2%	0.1%	1.9%	22.6%	3.0%	1.6%	
	NonWork	0.1%	0.3%	0.1%	0.2%	0.0%	1.0%	1.8%	0.6%	0.1%	1.0%	29.6%	2.0%	0.9%	
		LongBch	Vernon	Downey	DntnLA	Glendia	Pasadna	WCovina	Domona						
	Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Reside		20	<u> </u>		20			20		4011	Via		<u> </u>	1/01	TOTAL
192108	Work	0.5%	19.3%	1.1%	40.4%	7.1%	3.3%	0.5%	0.0%	0.0%	0.4%	0.0%	0.0%	0.1%	100.0%
	NonWork		18.1%	0.4%		11.3%	2.0%		0.0%	0.0%					100.0%
Non-P	esidential	0.170	10.170	0.470	U-1.2 70	11.070	2.070	0.270	0.070	0.0%	, V.Z.7	. 0.0%	<u> </u>	0.170	100.070
HUI-N	Work	1.0%	15.3%	3.1%	13.7%	12.5%	9.0%	2.6%	0.5%	0.7%	2.8%	1.3%	0.7%	0.0%	100.0%
	NonWork		17.4%	1.5%		16.0%	5.7%		0.2%	0.6%					
Project	Туре	Agoura	SClarita	Lancstr	Palmdle	AngFrst	w.SFV	Burbank	Sylmar	Malibu	SMonica	WCntILA	Bch.LAX	PVerdes	
	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Reside															
	Work	0.0%	0.0%	0.0%	0.0%	0.0%	0.6%	1.7%	0.2%	0.0%	1.2%	18.5%	2.3%	0.8%	
	NonWork		0.0%	0.0%	0.0%	0.0%	0.3%	0.9%	0.1%	0.0%	0.8%	27.7%	1.0%	0.3%	
Non-R	esidential								-						
	Work	0.2%	0.5%	0.6%	0.4%	0.0%	2.6%	2.7%	1.3%	0.1%	2.0%	21.1%	3.0%	1.7%	
	NonWork	0.1%	0.2%	0.1%	0.2%	0.0 <u>%</u>	0.9%	1.6%	0.5%	0.1%	0.7%	28.6%	<u>2.1</u> %	0.7%	
		LongRob	Varaaa	Doumou	Dotal A	Clandla	Decedee	WCovina	Domono		·				
		LongBch	Vernon 21	Downey 22	23	24	25 rasauna	26	27	Ven	0	SB	Riv	Kor	TOTAL
Reside	Purpose	20	21	22	20		20	20		Ven	Ora	30		Ker	TOTAL
Reside	Work	0.4%	18.1%	0.9%	44.8%	6.9%	2.7%	0.3%	0.0%	0.0%	0.3%	0.0%	0.0%	0.2%	100.0%
	NonWork		18.1%			10.9%	2.2%		0.0%	0.0%					100.0%
Non-D	esidential	0.2%	10.170	0.370	00.470	10.370	2.270	0.270	0.070	0.0%	0.27	, 0.0%	. 0.0 %	0.070	100.070
NUL-U	Work	1.2%	14.4%	3.2%	14.5%	11.3%	8.8%	2.9%	0.6%	1.0%	3.7%	1.5%	0.8%	0.1%	100.0%
	NonWork		17.9%			15.3%	5.2%		0.2%	0.8%					
	HOITHOIK	0.470	11.370	1.270	13.3 70	10.0 /0	J.2 7	. 0.070	U.L /0	0.0 /	<u>. 0.0 A</u>	<u> </u>	. 0.17		100.070

24 Area Generally Bounded By: Glendale, Echo Park, El Sereno

1990 TRIP DISTRIBUTION PERCENTAGES

Project	Туре	Agoura	SClarita	Lancstr	Palmdle	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntILA	Bch.LAX	PVerdes	
	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Reside	ntial					_									
	Work	0.1%	0.1%	0.0%	0.0%	0.1%	2.5%	8.7%	1.8%	0.0%	0.9%	12.5%	6 1.2%	0.6%	
	NonWork	0.0%	0.0%	0.0%	0.0%	0.1%	0.8%	6.4%	1.5%	0.0%	0.3%				
Non-R	esidential									•					
	Work	0.2%	0.9%	0.5%	0.7%	0.1%	3.8%	8.9%	3.8%	0.1%	0.7%	9.3%	6 0.9%	0.6%	
	NonWork	0.1%	0.4%	0.1%	0.2%	0.0%	1.4%	7.1%	2.7%	0.0%	6 0.3%	7.7%	6 0.4%	0.3%	
		LongBch	Vernon	Downey	DninLA	Giendie	Pasadna	WCovina	Pomona						
	Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Reside			<u> </u>			27			L 1		Uia				
,,	Work	0.5%	12.0%	1.2%	15.7%	27.5%	13.0%	0.8%	0.1%	0.1%	6 0.5%	0.1%	6 0.0%	6 0.1%	100.0%
	NonWork		8.9%			48.6%	11.8%			0.0%					100.0%
Non-R	esidential	,8		0.470		401070		0.070	0.078	0.0 /	<u> </u>		<u> </u>	0.170	100.074
-	Work	0.6%	6.5%	1.8%	3.6%	33.1%	16.0%	2.4%	0.6%	1.1%	6 1. 9%	5 1.2 %	6 0.5%	6 0.1%	100.0%
	NonWork					49.7%	15.8%			0.7%					100.0%
Project	Туре	Agoura	SClarita	Lancstr	Palmdie	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntILA	Bch.LAX	PVerdes	
RSA	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Reside	ntial														
24	Work	0.0%	0.2%	0.0%	0.0%	0.0%	2.0%	9.4%	1.3%	0.0%	6 0.9%	11.6%	6 1.4%	6 0.6%	
	NonWork	0.0%	0.1%	0.0%	0.0%	0.0%	0.9%	6.6%	1.4%	0.0%	0.4%	<u>6 1</u> 0.7%	6 0.3%	6 0.2%	
Non-R	esidential														
	Work	0.3%					4.5%			0.1%					
	NonWork	0.1%	0.3%	0.1%	0.2%	0.0%	1.4%	<u>7.4%</u>	2.9%	0.1%	6 0.2%	6 <u>7.7%</u>	60.5%	6 0.3%	
				_		_			_						
	D	LongBch	Vernon	Downey				WCovina			-				
Deelde	Purpose	20	· 21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Reside	Work	0 404	11 004	1 004	17 604	20 00/	14 50/	0 704		0 404	L 0.404	0.40		L 0404	100.004
	NonWork	0.4% 0.2%	11.9% 8.6%				11.5% 12.8%			0.1% 0.0%					100.0% 100.0%
Non-P	esidential	V.270	0.070	0.3%	J. 170	47.070	12.07	0.0%	0.0%		0.3%	0.07	0.07		100.0%
	Work	0.7%	6.5%	2.1%	3.6%	30.2%	15.7%	2.8%	0.7%	1.5%	b 2.6%	1.6%	6 0.7%	6 0.1%	100.0%
									/u					/-	100.070
	NonWork	0.2%	5.8%	0.7%	3.6%	49.5%	14.7%	0.8%	0.2%	0.9%	6 0.7%	6 0.9%	6 0.6%	6 0.1%	100.0%

25 Area Generally Bounded By: La Canada Flint., Pasadena, Monterey Pk, S.El Monte, Duarte

1990 TRIP DISTRIBUTION PERCENTAGES

Project	Туре	Agoura	SCIarita	Lancstr	Paimdle	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntlLA	Bch.LAX	PVerdes	
	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Reside	ntial												-		
	Work	0.0%	0.1%	0.0%	0.0%	0.0%	1.0%	2.1%	0.6%	0.0%	0.6%	4.7%	0.9%	0.6%	
	NonWork	0.0%	0.0%	0.0%	0.0%	0.1%	0.3%	0.7%	0.3%	0.0%	0.2%	2.1%	0.2%	0.1%	
Non-R	esidential									•					
	Work	0.1%	0.3%	0.4%	0.5%	0.1%	1.0%	1.4%	1.2%	0.0%	0.3%	2.2%	0.5%	0.4%	
	NonWork	0.1%	0.2%	0.1%	0.1%	0.0%	0.3%	0.5%	0.6%	0.0%	0.1%	0.8%	0.2%	0.2%	
				_					_	•					
		LongBch		Downey	DntnLA			WCovina			-		-		
D	Purpose	20	21	22	23	24	25	26	27	<u> </u>	Ora	SB	Riv	Ker	TOTAL
Reside				• •••	a ==.				• •••			.			
	Work	0.9%	11.9%	3.4%	6.7%	7.9%	49.0%		0.4%	0.0%		-			100.0%
No. D	NonWork	0.2%	8.9%	1.6%	1.9%	9.2%	67.8%	5.5%	0.2%	0.0%	0.5%	0.1%	0.0%	0.0%	100.0%
Non-H	esidential	0 70/	E 00/	0.00/	0.00/	0.00/	50.00/	10.44	0.004					• • • •	
	Work	0.7%	5.6%	3.9%	0.9%	8.0%	50.8%		2.0%	0.4%					100.0%
	NonWork	0.3%	4.6%	2.2%	0.3%	7.2%	70.0%	8.8%	0.7%	0.4%	0.8%	1.0%	<u> </u>	0.1%	100.0%
Project	Type	Agoura	SClarita	Lancstr	Palmdie	AnaFrst	W.SFV	Burbank	Svimar	Malibu	SMonica	WCntlLA	BchLAX	PVerdes	
Project RSA		Agoura 7	SCIarita 8	Lancstr 9		AngFrst 11		Burbank 13	Sylmar 14				Bch.LAX 18		
+	Purpose	-		Lancstr 9	Palmdie 10	AngFrst 11	W.SFV 12	Burbank 13	Sylmar 14	Malibu 15	SMonica 16	WCntILA 17	Bch.LAX 18	PVerdes 19	
RSA Resider	Purpose	7				11	12	13	14	15	16	17	18	19	
RSA Resider	Purpose ntial	-	8	9	10	•		13 2.4%	•	15 0.0%	16 0.7%	<u> </u>	18 1.2%	<u>19</u>	
RSA Resider 25	Purpose ntial Work	7 0.0%	<u>8</u> 0.1%	<u>9</u> 0.0%	10 0.0%	11 0.0%	<u>12</u> 0.8%	13 2.4%	<u>14</u> 0.5%	15	16 0.7%	<u> </u>	18 1.2%	<u>19</u>	
RSA Resider 25	Purpose ntial Work NonWork	7 0.0%	<u>8</u> 0.1%	<u>9</u> 0.0%	10 0.0%	11 0.0%	<u>12</u> 0.8%	13 2.4% 0.6%	<u>14</u> 0.5%	15 0.0%	0.7% 0.3%	17 4.9% 1.9%	18 1.2% 0_0.2%	0.7% 0.1%	
RSA Resider 25	Purpose ntial Work NonWork esidential	7 0.0% 0.0% 0.1%	8 0.1% 0.0%	9 0.0% 0.0%	10 0.0% 0.0%	11 0.0% 0.0%	12 0.8% 0.3%	13 2.4% 0.6% 1.3%	14 0.5% 0.3%	15 0.0% 0.0%	16 0.7% 0.3% 0.3%	17 4.9% 1.9% 2.0%	18 1.2% 0.2% 0.4%	19 0.7% 0.1% 0.4%	
RSA Resider 25	Purpose ntial Work NonWork esidential Work NonWork	7 0.0% 0.0% 0.1% 0.1%	8 0.1% 0.0% 0.3% 0.1%	9 0.0% 0.0% 0.6% 0.1%	10 0.0% 0.0% 0.5% 0.1%	11 0.0% 0.0% 0.1% 0.0%	12 0.8% 0.3% 1.2% 0.4%	13 2.4% 0.6% 1.3% 0.5%	14 0.5% 0.3% 1.3% 0.6%	15 0.0% 0.0% 0.0%	16 0.7% 0.3% 0.3%	17 4.9% 1.9% 2.0%	18 1.2% 0.2% 0.4%	19 0.7% 0.1% 0.4%	
RSA Resider 25	Purpose ntial Work NonWork esidential Work NonWork	7 0.0% 0.0% 0.1% 0.1% LongBch	8 0.1% 0.0% 0.3% 0.1% Vernon	9 0.0% 0.0% 0.6% 0.1% Downey	10 0.0% 0.0% 0.5% 0.1% . DntnLA	11 0.0% 0.0% 0.1% 0.0% Glendle	12 0.8% 0.3% 1.2% 0.4% Pasadna	13 2.4% 0.6% 1.3% 0.5% WCovina	14 0.5% 0.3% 1.3% 0.6%	15 0.0% 0.0% 0.0%	16 0.7% 0.3% 0.3% 0.1%	17 4.9% 1.9% 2.0% 0.8%	18 1.2% 0.2% 0.4%	19 0.7% 0.1% 0.4%	
RSA Resider 25 Non-Re	Purpose ntial Work NonWork esidential Work NonWork Purpose	7 0.0% 0.0% 0.1% 0.1%	8 0.1% 0.0% 0.3% 0.1%	9 0.0% 0.0% 0.6% 0.1%	10 0.0% 0.0% 0.5% 0.1%	11 0.0% 0.0% 0.1% 0.0%	12 0.8% 0.3% 1.2% 0.4%	13 2.4% 0.6% 1.3% 0.5%	14 0.5% 0.3% 1.3% 0.6%	15 0.0% 0.0% 0.0%	16 0.7% 0.3% 0.3%	17 4.9% 1.9% 2.0%	18 1.2% 0.2% 0.4%	19 0.7% 0.1% 0.4%	TOTAL
RSA Resider 25	Purpose ntial Work NonWork esidential Work NonWork Purpose ntial	7 0.0% 0.0% 0.1% 0.1% LongBch 20	8 0.1% 0.0% 0.3% 0.1% Vernon 21	9 0.0% 0.0% 0.6% 0.1% Downey 22	10 0.0% 0.0% 0.5% 0.1% . DntnLA 23	11 0.0% 0.0% 0.1% 0.0% Glendle 24	12 0.8% 0.3% 1.2% 0.4% Pasadna 25	13 2.4% 0.6% 1.3% 0.5% WCovina 26	14 0.5% 0.3% 1.3% 0.6% Pomona 27	15 0.0% 0.0% 0.0% 0.0% Ven	16 0.7% 0.3% 0.3% 0.1% Ora	17 0 4.9% 0 1.9% 0 2.0% 0 0.8% SB	18 1.2% 0.2% 0.4% 0.2% Riv	19 0.7% 0.1% 0.4% 0.2% Ker	
RSA Resider 25 Non-Re	Purpose ntial Work NonWork esidential Work NonWork Purpose ntial Work	7 0.0% 0.0% 0.1% 0.1% LongBch 20 0.7%	8 0.1% 0.0% 0.3% 0.1% Vernon 21 12.6%	9 0.0% 0.0% 0.6% 0.1% Downey 22 3.3%	10 0.0% 0.0% 0.5% 0.1% DntnLA 23 8.2%	11 0.0% 0.0% 0.1% 0.0% Glendle 24 9.0%	12 0.8% 0.3% 1.2% 0.4% Pasadna 25 45.4%	13 2.4% 0.6% 1.3% 0.5% WCovina 26 7.4%	14 0.5% 0.3% 1.3% 0.6% Pomona 27 0.5%	15 0.0% 0.0% 0.0% Ven	16 0.7% 0.3% 0.3% 0.1% Ora	17 4.9% 1.9% 2.0% 0.8% SB 0.4%	18 1.2% 0.2% 0.4% 0.2% Riv 0.1%	19 0.7% 0.1% 0.4% 0.2% Ker 0.1%	100.0%
RSA Resider 25 Non-Re	Purpose ntial Work NonWork esidential Work Purpose ntial Work NonWork	7 0.0% 0.0% 0.1% 0.1% LongBch 20	8 0.1% 0.0% 0.3% 0.1% Vernon 21	9 0.0% 0.0% 0.6% 0.1% Downey 22	10 0.0% 0.0% 0.5% 0.1% . DntnLA 23	11 0.0% 0.0% 0.1% 0.0% Glendle 24	12 0.8% 0.3% 1.2% 0.4% Pasadna 25	13 2.4% 0.6% 1.3% 0.5% WCovina 26 7.4%	14 0.5% 0.3% 1.3% 0.6% Pomona 27	15 0.0% 0.0% 0.0% 0.0% Ven	16 0.7% 0.3% 0.3% 0.1% Ora	17 4.9% 1.9% 2.0% 0.8% SB 0.4%	18 1.2% 0.2% 0.4% 0.2% Riv 0.1%	19 0.7% 0.1% 0.4% 0.2% Ker 0.1%	
RSA Resider 25 Non-Re	Purpose ntial Work NonWork esidential Work Purpose ntial Work NonWork esidential	7 0.0% 0.1% 0.1% LongBch 20 0.7% 0.2%	8 0.1% 0.0% 0.3% 0.1% Vernon 21 12.6% 8.9%	9 0.0% 0.6% 0.1% Downey 22 3.3% 1.9%	10 0.0% 0.0% 0.5% 0.1% DntnLA 23 8.2% 1.8%	11 0.0% 0.0% 0.1% 0.0% Glendle 24 9.0% 8.2%	12 0.8% 0.3% 1.2% 0.4% Pasadna 25 45.4% 68.4%	13 2.4% 0.6% 1.3% 0.5% WCovina 26 7.4% 5.6%	14 0.5% 0.3% 1.3% 0.6% Pomona 27 0.5% 0.2%	15 0.0% 0.0% 0.0% Ven 0.0%	16 0.7% 0.3% 0.3% 0.1% Ora 1.0% 0.6%	17 4.9% 1.9% 2.0% 0.8% SB 0.4% 0.1%	18 0.2% 0.2% 0.4% 0.2% Riv 0.1% 0.0%	19 0.7% 0.1% 0.4% 0.2% Ker 0.1% 0.1%	100.0% 100.0%
RSA Resider 25 Non-Re	Purpose ntial Work NonWork esidential Work Purpose ntial Work NonWork	7 0.0% 0.1% 0.1% LongBch 20 0.7% 0.2%	8 0.1% 0.0% 0.3% 0.1% Vernon 21 12.6%	9 0.0% 0.0% 0.6% 0.1% Downey 22 3.3%	10 0.0% 0.0% 0.5% 0.1% DntnLA 23 8.2%	11 0.0% 0.0% 0.1% 0.0% Glendle 24 9.0%	12 0.8% 0.3% 1.2% 0.4% Pasadna 25 45.4%	13 2.4% 0.6% 1.3% 0.5% WCovina 26 7.4% 5.6%	14 0.5% 0.3% 1.3% 0.6% Pomona 27 0.5%	15 0.0% 0.0% 0.0% Ven	16 0.7% 0.3% 0.3% 0.1% Ora 1.0% 0.6% 3.7%	17 4.9% 1.9% 2.0% 0.8% SB 0.4% 0.1%	18 1.2% 0.2% 0.4% 0.2% Riv 0.1% 0.0% 1.5%	19 0.7% 0.1% 0.4% 0.2% Ker 0.1% 0.1%	100.0%

26 Area Generally Bounded By: Azusa, Glendora, Diamond Bar, Hacinda Heights

1990 TRIP DISTRIBUTION PERCENTAGES

10/06/92

Project Type	Agoura	SCiarita	Lancstr	Palmdle	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntlLA	Bch.LAX	PVerdes	
Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19	
Residential														
Work	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.6%	0.2%	0.0%	0.4%	5 2.3%	6 0.6%	0.6%	
NonWork	0.0%	0.0%	0.0%	0.0%	0.1%	0.1%	0.2%	0.1%	0.0%	0.1%	6 0.9%	6 0.2%	6 0.1%	
Non-Residential									•					
Work	0.0%	0.1%	0.1%	0.1%	0.1%	0.2%	0.2%	0.2%	0.0%	0.1%	6 0.5%	6 0.2%	6 0.2%	
NonWork	0.0%	0.1%	0.0%	0.0%	0.0%	0.1%	<u>0.1%</u>	0.1%	0.0%	0.0%	6 0.2%	60.1%	6 0.1%	
	LongBch	Vernon	Downey	DntnLA	Glendle	Pasadna	WCovina	Pomona	•					
Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Residential											-			
Work	1.2%	5.9%	6.1%	2.5%	1.5%	15.1%	47.0%	5.0%	0.0%	5 7.7%	6 2.4%	6 0.2%	ь 0.0%	100.0%
NonWork	0.3%	2.1%	3.2%	0.4%	0.6%	10.6%	5 70.6%	4.7%	0.0%	3.8%	6 1.7%	6 0.1%	6 0.0%	100.0%
Non-Residential														
Work	0.5%	1.5%	4.2%	0.2%	0.7%	10.9%	52.4%	8.3%	0.1%	6.9%	6 <u>9</u> .5%	6 2.8%	ь 0.0%	100.0%
NonWork	0.2%	0.5%	2.7%	0.0%	0.2%	7.2%	5 74.0%	6.8%	0.2%	2.6%	6 3.9%	6 0.9%	6 0.0%	100.0%

2010 TRIP DISTRIBUTION PERCENTAGES

. .

Project	Туре	Agoura	SClarita	Lancstr	Paimdle	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntlLA	Bch.LAX	PVerdes
RSA	Purpose	7	8	9	10	11	12	13	14	15	16	17	18	19
Reside	ntial													
26	Work	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.8%	0.2%	0.0%	0.5%	5 2.6%	o 1.2%	0.8%
	NonWork	0.0%	0.0%	0.0%	0.0%	0.1%	0.1%	0.1%	0.1%	0.0%	0.2%	6 0.8%	0.2%	0.2%
Non-Re	esidential													
	Work	0.0%	0.1%	0.2%	0.1%	0.1%	0.2%	0.2%	0.2%	0.0%	0.1%	5 0.5%	0.2%	0.2%
	NonWork	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.1%	0.1%	0.0%	0.0%	6 0.2%	0.1%	0.1%

Purpose	20	21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOTAL
Residential														
Work	1.0%	6.6%	6.2%	3.3%	2.0%	14.7%	42.9%	6.0%	0.0%	6.8%	3.6%	0.3%	0.1%	100.0%
NonWork	0.3%	2.0%	3.7%	0.3%	0.5%	9.6%	70.9%	5.1%	0.0%	3.8%	1.6%	0.1%	0.1%	100.0%
Non-Residential														
Work	0.5%	1.3%	4.3%	0.2%	0.6%	10.9%	50.5%	8.5%	0.1%	7.6%	10.2%	3.2%	0.1%	100.0%
NonWork	0.2%	0.5%	2.5%	0.0%	0.2%	6.7%	70.9%	7.5%	0.2%	2.7%	6.0%	1.7%	0.1%	100.0%

27 Area Generally Bounded By: San Dimas, Pomona, Claremont

1990 TRIP DISTRIBUTION PERCENTAGES

Agoura SCIarita Lancstr Palmdle AngFrst Project Type W.SFV Burbank Sylmar Malibu SMonica WCntlLA Bch.LAX PVerdes Purpose 7 8 9 10 11 12 13 15 14 16 17 18 19 Residential Work 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 0.5% 0.2% 0.4% 0.0% 0.2% 1.5% 0.4% NonWork 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.0% 0.1% 0.6% 0.2% 0.1% Non-Residential 0.0% 0.1% 0.0% Work 0.0% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.1% 0.0% 0.1% NonWork 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% DntnLA Glendle Pasadna WCovina Pomona LongBch Vernon Downey Purpose 20 21 22 23 24 25 26 27 Ven Ora SB Riv Ker TOTAL Residential Work 0.7% 2.9% 2.3% 1.4% 1.1% 7.5% 22.3% 35.1% 0.0% 6.7% 15.5% 0.6% 0.0% 100.0% NonWork 0.2% 0.8% 0.6% 0.2% 0.4% 2.5% 19.5% 55.5% 0.0% 2.3% 16.2% 0.3% 0.0% 100.0% Non-Residential 1.8% 16.9% 39.5% 0.0% 3.5% 31.9% Work 0.1% 0.3% 0.6% 0.0% 0.2% 0.1% 100.0% 4.4% NonWork 0.0% 0.2% 0.0% 0.1% 0.7% 14.7% 57.7% 0.9% 24.0% 1.2% 0.0% 100.0% 0.1% 0.1%

2010 TRIP DISTRIBUTION PERCENTAGES

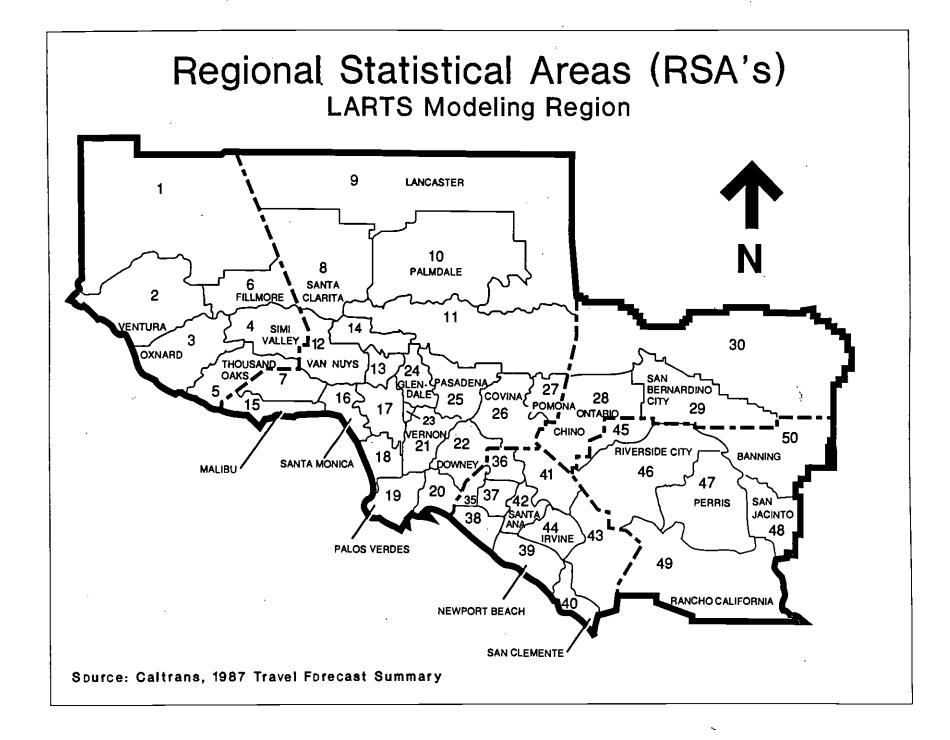
Project	Туре	Agoura	SClarita	Lancstr	Palmdie	AngFrst	W.SFV	Burbank	Sylmar	Malibu	SMonica	WCntlLA	Bch.LAX	PVerdes	
RSA	Purpose	7	8	9	10	11_	12	13	14	15	16	17	18	19	
Resider	ntial														
27	Work	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.6%	0.1%	0.0%	0.3%	1.5%	0.7%	0.4%	
	NonWork	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.1%	0.1%	0.0%	0.2%	0.5%	0.1%	0.1%	
Non-Re	esidential														
	Work	0.0%	0.0%	0.1%	0.1%	0.0%	0.1%	0.1%	0.1%	0.0%	0.0%	0.1%	0.0%	0.1%	
	NonWork	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
		LongBch	Vernon	Downey		Glendle	Pasadna	WCovina	Pomona						
	Purpose	20	- 21	22	23	24	25	26	27	Ven	Ora	SB	Riv	Ker	TOT/

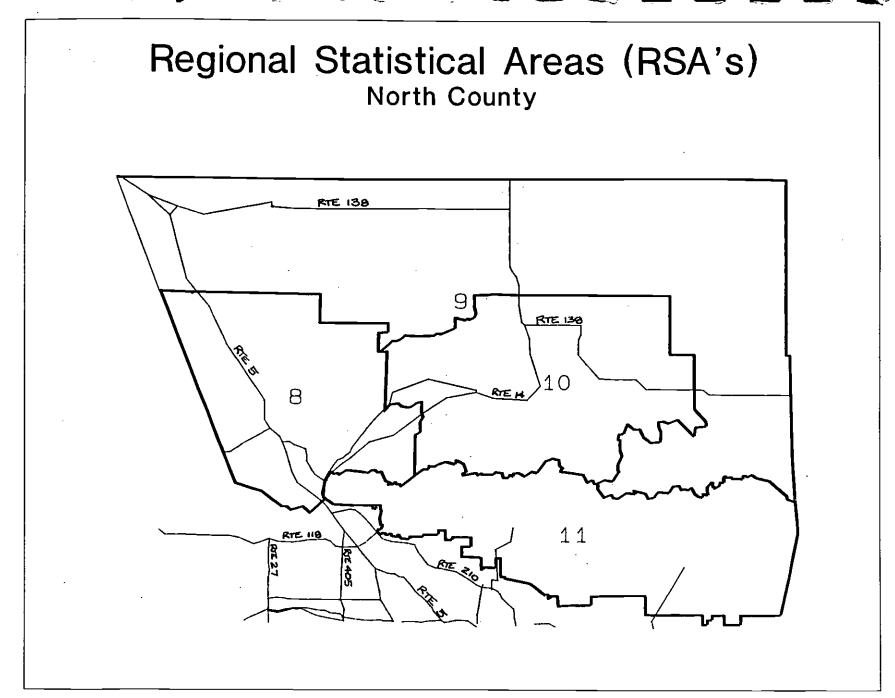
Residential	I														
Wo	ork	0.5%	2.9%	2.0%	1.7%	1.3%	6.7%	18.7%	36.0%	0.0%	5.6%	19.7%	0.9%	0.1%	100.0%
No	nWork	0.2%	0.7%	0.6%	0.2%	0.3%	2.3%	19.9%	55.1%	0.0%	2.2%	16.9%	0.3%	0.1%	100.0%
Non-Resid	lential														
Wo	ork	0.1%	0.2%	0.6%	0.0%	0.1%	1.5%	16.2%	37.2%	0.0%	4.7%	33.2%	5.3%	0.1%	100.0%
No	nWork	0.0%	0.1%	0.2%	0.0%	0.1%	0.6%	13.2%	53.4%	0.1%	1.0%	28.9%	2.0%	0.1%	100.0%

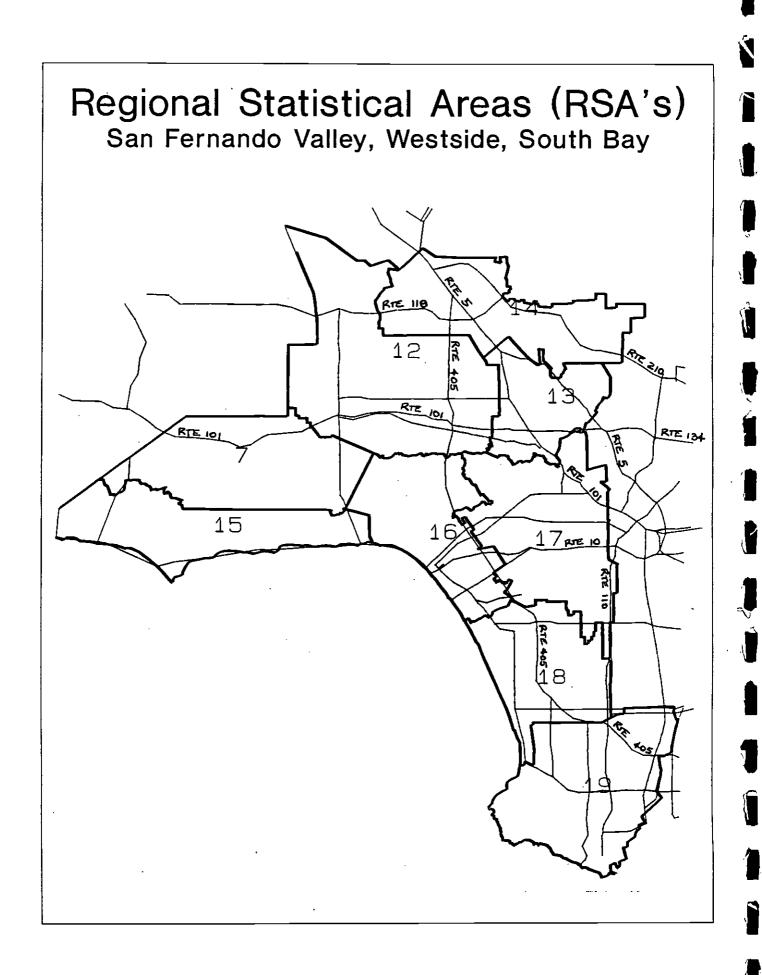
· S – I

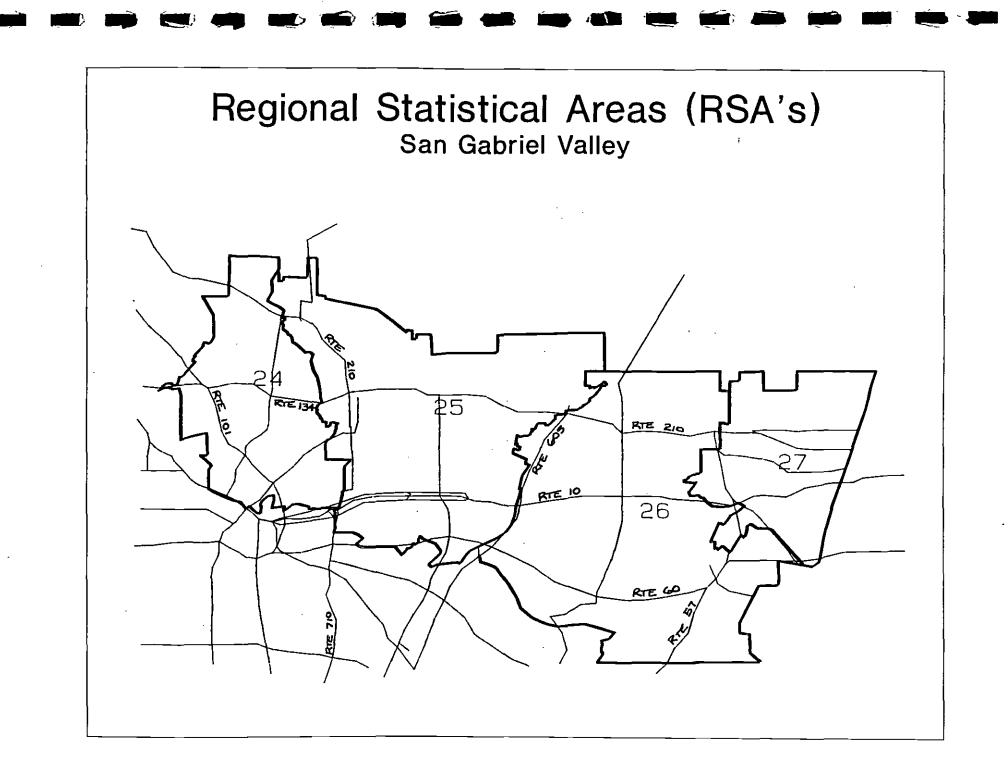
.

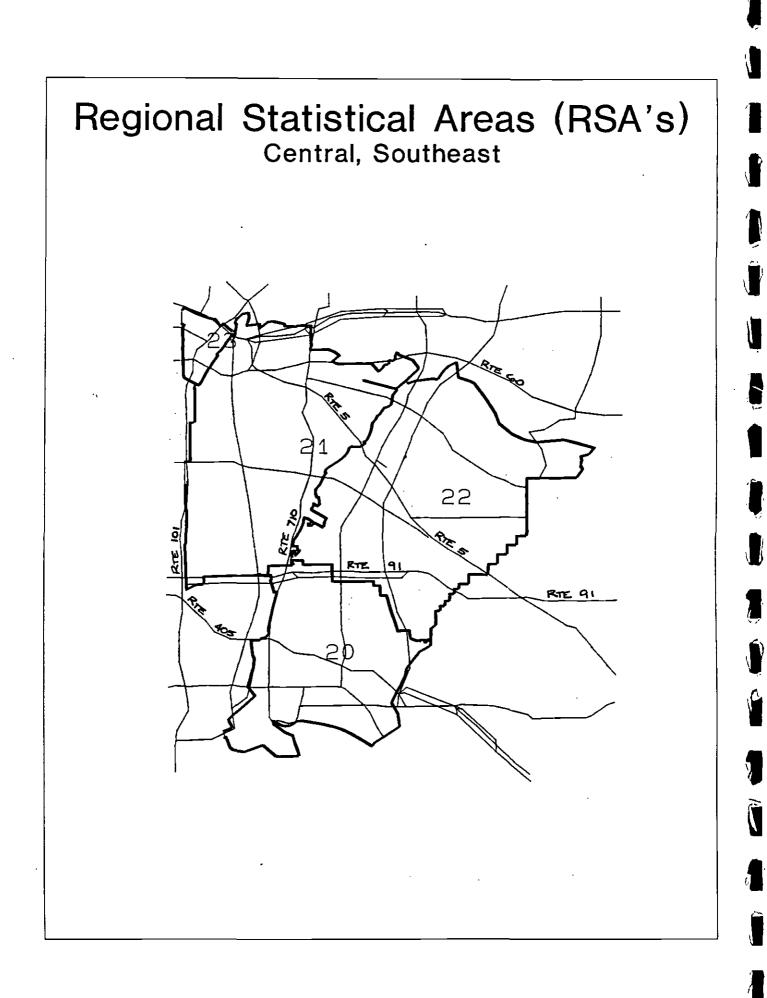
EXHIBIT D-4


11,


1.1


REGIONAL STATISTICAL AREAS


See following sheets


RSA	AREA GENERALLY BOUNDED BY				
7	Agoura Hills, Calabasas, Hidden Hills				
8	Santa Clarita, Castaic				
9	Lancaster, Gorman				
10	Palmdale, Agua Dulce				
11	Angeles National Forest				
12	Woodland Hills, Sherman Oaks, Sepulveda, Porter Ranch				
13	Burbank, Sun Valley, North Hollywood				
14	San Fernando, Granada Hills, Sylmar, Tujunga				
15	Malibu				
16	Santa Monica, Bel Air, Palisades, Marina Del Rey				
17	Westwood, Beverly Glen, Los Feliz, Hyde Park, Culver City				
18	Westchester, Redondo Beach, Gardena, Inglewood				
19	Torrance, Palos Verdes, Carson				
20	Long Beach, Lakewood				
21	Boyle Heights, Montebello, Compton, Willowbrook				
22	Paramount, Hawaiian Gardens, Pico Rivera, La Habra Heights				
23	Downtown Los Angeles, Exposition Park, McArthur Park				
24	Glendale, Echo Park, El Sereno				
25	La Canada-Flintridge, Pasadena, Monterey Park, South El Monte, Duarte				
26	Azusa, Glendora, Diamond Bar, Hacienda Heights				
27	San Dimas, Pomona, Claremont				

GENERAL PROCEDURE FOR CALCULATING TRIP DISTRIBUTION

- 1. Using Exhibit D-2 as guidance, determine the proportion of project trip generation which is work versus non-work. Assumptions and sources, if applicable, for land uses not listed in Exhibit D-2 must be documented.
- 2. Using Exhibit D-4, determine the RSA in which the project is located (the "project RSA").
- 3. Using Exhibit D-3, determine the RSA-level work and non-work trip distributions for the project. Any basis for variation from these travel patterns must be documented.
- 4. While specific characteristics of the project and study area must be considered, traffic assignment should be conducted according to the following guidelines:
 - a. Trips internal to the project RSA may be primarily assigned to non-CMP routes;
 - b. Trips from the project RSA to immediately adjacent RSAs should be primarily assigned to CMP arterials or freeways, if present; and
 - c. Trips from the project RSA to RSAs not adjacent to the project RSA should be primarily assigned to freeways, if present.

GENERAL PROCEDURE FOR FREEWAY SEGMENT (MAINLINE) ANALYSIS

1. Existing traffic conditions at CMP freeway monitoring stations are provided in Appendix A. Included are AM and PM peak hour traffic demands, capacity, and level of service (LOS) designations. Freeway mainline LOS is estimated through calculation of the demand-to-capacity (D/C) ratio and associated LOS according to the following table:

D/C Ratio	LOS	D/C Ratio	LOS
0.00 - 0.35 > 0.35 - 0.54 > 0.54 - 0.77 > 0.77 - 0.93 > 0.93 - 1.00	A B C D E	> 1.00 - 1.25 > 1.25 - 1.35 > 1.35 - 1.45 > 1.45	F(0) F(1) F(2) F(3)

Calculation of LOS based on D/C ratios is a surrogate for the speed-based LOS used by Caltrans for traffic operational analysis. LOS F(1) through F(3) designations are assigned where severely congested (less than 25 mph) conditions prevail for more than one hour, converted to an estimate of peak hour demand in the table above. Note that calculated LOS F traffic demands may therefore be greater than observed traffic volumes.

2. At a minimum, estimate horizon year(s) traffic volumes by applying the traffic growth factors in Exhibit D-1. More refined traffic estimates may be obtained through consultation with Caltrans, or through consistent subarea modelling.

Determine horizon year LOS using the table above. Any assumptions regarding future improvements to be operational by the horizon year must be fully documented, including consultation with the responsible agency(ies).

- 3. Calculate the impact of the project during AM and PM peak hours. This is defined by:
 - A) <u>Incremental Effect</u> The increase in D/C ratio due to the proposed project [project traffic demand / horizon year capacity].
 - B) <u>Resulting LOS</u> The LOS due to the total of horizon year and proposed project traffic [(horizon year traffic demand + project traffic demand) / horizon year capacity], and using the table above.

Section D.9.1 defines the criteria for a significant impact. Mitigation measures and associated cost estimates should focus on mitigating the incremental effect calculated above.

TRANSIT IMPACT REVIEW WORKSHEET

EIR NOP COMMENT AND WORKSHEET COMPLETION DEADLINE:

Part A is completed and submitted to the transit operator upon the start of the EIR NOP comment period. If the transit operator comments on the project, they may use Part B of this worksheet to indicate responses. Comments are submitted to the person identified under Part A below by the end of the NOP comment period.

PART A: To be completed by Developer or Local Jurisdiction.

Name of Person Completing PART A.

Jurisdiction/Company Name

Address

Telephone Number

PART B: To be completed by Transit Operator.

Name of Person Completing PART B.

Jurisdiction/Company Name

Address

Telephone Number

NOTE: The CMP requires consultation with transit operators through the Notice of Preparation (NOP) when a project prepares an EIR. Use of these worksheets, or similar, is suggested as a means to facilitate this communication.

PART A: To Be Completed by Developer or Local Jurisdiction.

DEVELOPMENT PROJECT DESCRIPTION

Local Jurisdiction _____ Development Project Name _____ 1. Provide map of Development Project showing specific location and major streets. 2. Indicate development project type(s). Check more than one for mixed use projects. □ Commercial Single-Family Residential □ Hotel Multi-Family Residential □ Industrial Retail Other: _____ □ Office 3. Indicate size for each use identified above:

 Property Acreage or Square Feet
 Dwelling Units

 Building Gross Square Feet (excluding parking structures/areas)

 Other:

4. Provide trip generation and mode assignment information by time of day (if available).

	AM PEAK HOUR Specify	PM PEAK HOUR Specify	DAILY
Total Trips Generated			
Trips Assigned to Transit			

PART A: To Be Completed by Developer or Local Jurisdiction (continued)

5. What assumptions/analyses were used to determine the number/percent of trips assigned to transit (as indicated in Question 4)? Attach any working papers/CEQA documents, if available, to document approach.

6. Will the development project include any facilities and/or programs to encourage public transit use?

 \Box Yes \Box No

•

If yes, provide a complete listing below. Be sure to include not only the local jurisdiction's TDM Ordinance measures but also include other project specific (e.g., condition of approval) measures. Attach additional information as needed.

7. Submit Worksheet (with Part A complete) to local fixed route bus operator(s) within 1 mile of the project and express bus and rail transit operators within 2 miles.

Transit Operator

Date Sent

Congestion Management Program

November 1992

PART B: To Be Completed by Transit Operator(s)

TRANSIT OPERATOR REVIEW

1. Is proposed project transit use (Part A, questions 4 and 5), given measures encouraging transit use (Part A, question 6), consistent with current transit ridership in the area?

□ Yes □ No □ No Opinion

2. Is project assigning trips to transit?

 \Box Yes \Box No

If Yes, then complete Tables B-1 and B-2 and return Worksheet to Part A contact by the deadline date. Do not complete Table B-2 if there are no suggested improvements.

If No, and the question 1 response is yes, then <u>do not</u> complete Tables B-1 and B-2 and return Worksheet to Part A contact by the deadline date.

Table B-1 Instructions. Complete Table B-1 below for current and planned transit services. Include local fixed-route bus service within a 1/4 mile radius and express bus and rail services within a 2 mile radius of the proposed development. You may identify services beyond the specified radii if you demonstrate that such services will be affected by the development. Make copies of this Table as needed for providing information on additional Lines/Routes.

Table B-1 TRANSIT SERVICE MATRIX			
	Line/Route No.	Line/Route No.	Line/Route No.
New Trips Assigned AM Peak PM Peak Base			
Additional Capacity Needed AM Peak PM Peak Base			

November 1992

Table B-2TRANSIT IMPROVEMENTS

Improvements for Line/Route _____

Local Jurisdiction

Route is: \Box Local fixed-route bus within 1/4 mile radius of development project.

Express bus route within 2 mile radius of development project.

□ Rail service within 2 mile radius of development project.

Transit operator may identify improvements for services beyond the specified radii if the operator can demonstrate that such services will be affected by the development. Make copies of this Table as needed for providing information on additional Lines/Routes.

Identify potential/desirable improvements below by filling in the improvement column and completing adjacent columns. Provide map of improvement location as needed.

Improvement (Fill in blanks below as needed.)	Priority	Estimated Cost (\$000)	Is Improvement Already Planned?		Have Funds Been Allocated for Improvement?		
			Yes	No	Yes	No	
_							
-							

-SUGGESTED IMPROVEMENTS-

1993 CMP CONFORMANCE CHECKLIST

This checklist must be submitted to LACTC by August 1, 1993. The address for submittal of the checklist follows:

Los Angeles County Transportation Commission CMP Conformance Checklist (MS-2200) 818 West Seventh Street, Suite 1100 Los Angeles, California 90017

This checklist is for the City [County] of:

A check mark in the box adjacent to each statement below confirms that the City [County] is in conformance with the statement.

Attached is a resolution, adopted by the city [county] governing board at a public hearing, approving the transmittal of this checklist to LACTC. The resolution serves as evidence that the city [county] is in conformance with the CMP and each statement found on this checklist.

By June 15, 1993, the city [county] has conducted annual traffic counts and calculated levels of service for selected arterial intersections, as specified in the traffic monitoring procedures found in the CMP Highway and Roadway System Chapter. Cities which the CMP does not require to perform this step should write "NA" (i.e., not applicable) in the box adjacent to this statement.

The city [county] has adopted and implemented a transportation demand management ordinance. The TDM ordinance is consistent with the minimum standards identified in the CMP's TDM Element, was adopted by the city [county] governing board by April 1, 1993 and submitted to LACTC upon adoption.

The city [county] has adopted and implemented a land use program to analyze the impacts of new development on the CMP system and the associated mitigation costs. The program is consistent with the standards identified in the CMP's Land Use Analysis Program Chapter. This program was adopted by the city [county] governing board by April 1, 1993 and submitted to LACTC upon adoption.

GLOSSARY

Air Quality Management Plan (AQMP): The plan for attaining state air quality as required by the California Clean Air Act of 1988. It is adopted by air quality districts and subject to approval by the California Air Resources Board.

Air Quality Management District (AQMD): A regional agency which adopts and enforces regulations to achieve and maintain state and federal air quality standards.

Average Daily Traffic (ADT): The average number of vehicles passing a specified point during a 24-hour period.

California Department of Transportation (Caltrans): As the owner/operator of the state highway system, state agency responsible for its safe operation and maintenance. Proposes projects for intercity rail, interregional roads, and sound walls in the PSTIP. Also responsible for the HSOPP, Toll Bridge, and Aeronautics programs. The TSM and State/Local Partnership Programs are administered by Caltrans. Caltrans is the implementing agency for most state highway projects, regardless of program, and for the Intercity Rail program.

California Transportation Commission (CTC): A body appointed by the Governor and confirmed by the legislature that reviews Regional Transportation Improvement Programs (RTIPs) and the PSTIP. This qualifies the projects for state funding. The CTC also has financial oversight over the major programs authorized by Propositions 111 and 108.

Capital Improvement Program (CIP): As used in this document, a seven-year program of projects to maintain or improve the traffic level of service and transit performance standards developed and to mitigate regional transportation impacts identified by the CMP Land Use Analysis Program, which conforms to transportation-related vehicle emissions air quality mitigation measures.

Congestion Management Agency (CMA): The agency responsible for developing the Congestion Management Program and coordinating and monitoring its implementation.

Congestion Management Program (CMP): A legislatively required county-wide program which addresses congestion problems.

Flexible Congestion Relief Program (FCR): One of the state funding programs for local or regional transportation projects that will reduce congestion. State highway projects, local roads, and rail guideway projects are all eligible for FCR funds.

Highway Capacity Manual (HCM): Revised in 1985 by the Transportation Research Board of the National Research Council, the HCM presents various methodologies for analyzing the operation (see Level of Service) of transportation systems as freeways, arterials, transit, and pedestrian facilities.

High Occupancy Vehicle Lane (HOV): A lane of freeway reserved for the use of vehicles with more than a preset number of occupants; such vehicles often include buses, taxis, and carpools.

Intersection Capacity Utilization (ICU): A method for calculating the level of traffic congestion (see Level of Service) at an intersection.

Level of Service (LOS): A qualitative measure describing operational conditions within a traffic stream; generally described in terms of such factors as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience, and safety.

Metropolitan Planning Organization (MPO): According to U.S. Code, the organization designated by the governor and local elected officials as responsible, together with the state, for transportation planning in an urbanized area. It serves as the forum for cooperative decision making by principal elected officials of general local government.

Model: (1) A mathematical or conceptual presentation of relationships and actions within a system. It is used for analysis of the system or its evaluation under various conditions; (2) A mathematical description of a real-life situation that uses data on past and present conditions to make a projection about the future.

Model, Land Use: A model used to predict the future spatial allocation of urban activities (land use), given total regional growth, the future transportation system, and other factors.

Model, Mode Choice: A model used to forecast the proportion of total person trips on each of the available transportation modes.

Model, Traffic: A mathematical equation or graphic technique used to simulate traffic movements, particularly those in urban areas or on a freeway.

Peak (Peak Period, Rush Hours): (1) The period during which the maximum amount of travel occurs. It may be specified as the morning (a.m.) or afternoon or evening (p.m.) peak. (2) The period when demand for transportation service is the heaviest.

Proposed State Transportation Improvement Program: This seven-year program is based on the adopted STIP and the most recent Delivery. It is developed by Caltrans for CTC includes projects developed through the IRRS, Intercity Rail, Sound Wall, Toll Bridge, and Aeronautics programs. Public Transportation: Transportation service to the public on a regular basis using vehicles that transport more than one person for compensation, usually but not exclusively over a set route or routes from one fixed point to another. Routes and schedules may be determined through a cooperative arrangement. Subcategories include public transit service, and paratransit services that are available to the general public.

Regional Transportation Improvement Program (RTIP): A list of proposed transportation projects submitted to the CTC by the regional transportation planning agency, as a request for state funding through the FCR and Urban and Commuter Rail Programs. The individual projects are first proposed by local jurisdictions (CMAs in urbanized counties), then evaluated and prioritized by the RTPA for submission to the CTC. The RTIP has a seven year planning horizon, and is updated every two years.

Regional Transportation Plan (RTP): A comprehensive 20 year plan for the region, updated every two years by the regional transportation planning agency. The RTP includes goals, objectives, and policies, and recommends specific transportation improvements.

Regional Transportation Planning Agency (RTPA): The agency responsible for the preparation of RTPs and RTIPs and designated by the State Business Transportation and Housing Agency to allocate transit funds. RTPAs can be local transportation commissions, COGs MPOs, or statutorily created agencies. In the Los Angeles area, SCAG is the RTPA.

Ridesharing: Two or more persons traveling by any mode, including but not limited to, automobile, vanpool, bus, taxi, jitney, and public transit.

Short Range Transit Program (SRTP): A five year comprehensive plan required by UMTA for all transit operators receiving federal funds. The plans establish the operator's goals, policies, and objectives, analyze current and past performance, and describe short term operational and capital improvement plans.

State Transportation Improvement Program (STIP): A list of transportation projects, proposed in RTIPs and the PSTIP, which are approved for funding by the CTC.

Transportation Control Measure (TCM): A measure intended to reduce pollutant emissions from motor vehicles. Examples of TCMs include programs to encourage ridesharing or public transit usage, city or county trip reduction ordinances, and the use of cleaner burning fuels in motor vehicles.

Transportation Demand Management (TDM): Demand based techniques for reducing traffic congestion, such as ridesharing programs and flexible work schedules enabling employees to commute to and from work outside of peak hours.

Transportation System Management (TSM): That part of the urban transportation process undertaken to improve the efficiency of the existing transportation system. The intent is to make better use of the existing transportation system by using short-term, low capital transportation improvements that generally cost less and can be implemented more quickly than system development actions.

Traffic Systems Management Program (TSM Program): A state-wide program intended to provide effective traffic management systems in urbanized areas. To be eligible for TSM Program funding, projects must be designed to increase the number of person-trips which can be carried on the highway system in a peak period without significantly increasing the designed capacity of the highway system. Projects are selected by the CTC from a list of projects developed by Caltrans. Projects may be proposed by Caltrans or by local public agencies through the CMP.

Urban Transportation Planning System (UTPS): A tool for multimodal transportation planning developed by the Urban Mass Transportation Administration and the Federal Highway Administration. It is used for both long and short-range planning, particularly system analysis and covers both computerized and manual planning methods. UTPS consists of computer programs, attendant documentation, user guides, and manuals that cover one or more of five analytical categories: highway network analysis, transit network analysis, demand estimation, data capture and manipulation, and sketch planning.Vehicle Miles of Travel (VMT): (1) On highways, a measurement of the total miles traveled in all vehicles in the area for a specified time period. It is calculated by the number of vehicles multiplied by the miles traveled in a given area or on a given highway during the time period. (2) In transit, the number of vehicle miles operated on a given route or line or network during a specified time period.

Vehicle Occupancy: The number of people aboard a vehicle at a given time; also known as auto or automobile occupancy when the reference is to automobile travel only.

Vehicle Trip: A one-way movement of a vehicle between two points.

CONGESTION MANAGEMENT PROGRAM

Adopted November 1992

SUPPLEMENT

TABLE OF CONTENTS

Congestion Management Program Government Code Sections	S1
Development Agreement Statutes	S2
Optional TDM Measures	S 3
SCAG's Regional Consistency & Compatibility Criteria	S 4
Capital Improvement Program Candidate List	S 5

SUPPLEMENT

CONGESTION MANAGEMENT PROGRAM GOVERNMENT CODE SECTIONS

The following State of California Government Code sections represent the current state of CMP law as of October 6, 1992. These Government Code sections provide the framework for development of CMPs throughout the state.

Some of the following text was approved by the legislature and Governor in 1992 legislation (i.e., SB 1435 (Kopp), AB 3093 (Katz) and AB 2109 (Katz)). This new text is underlined.

Chapter 2.3 Long-Range Transportation Planning

Section 65070. [No Title.] 65072. [No Title.]

§ 65070. [No Title.]

(A) The Legislature finds and declares, consistent with Section 65088, that it is in the interest of the State of California to have an integrated state and regional transportation planning process. It further finds that federal law mandates the development of a state and regional long-range transportation plan as a prerequisite for receipt of federal transportation funds. It is the intent of the Legislature that the preparation of these plans shall be a cooperative process involving local and regional government, transit operators, congestion management agencies, and the goods movement industry and that the process be a continuation of activities performed by each entity and be performed without any additional cost.

(C) The Legislature further finds and declares that the Transportation Blueprint for the Twenty-First Century (Chapters 105 and 106 of the Statutes of 1989) is a long-range state transportation plan that includes a financial plan and a continuing planning process through the preparation of congestion management plans and regional transportation plans, and identifies major interregional road networks and passenger rail corridors for the State.

§ 65072. [No Title.]

The California Transportation Plan shall include all of the following:

(A) A policy element that describes the state's transportation policies and system performance objectives. These policies and objectives shall be consistent with legislative intent described in Sections 14000, 14000.5, and 65088. For the plan to be submitted in December 1993, the policy element shall address any opportunities for changes or additions to state legislative policy direction or statute.

Chapter 2.5 Transportation Planning and Programming

Section

65081.	Contents of plan.
65082.	Seven-year regional transportation improvement program.

§ 65081. Contents of plan.

The regional transportation plan shall include:

(b) An action element that describes the programs and actions necessary to implement the plan and assigns implementation responsibilities. The action element shall also include a program for developing intracity and intercity bicycle programs. The action element shall include all congestion management programs adopted pursuant to Chapter 2.6 (commencing with Section 65088).

§ 65082. Seven-year regional transportation improvement program.

(b) Congestion Management Programs adopted pursuant to Section 65089 shall be incorporated into the regional transportation improvement program submitted to the commission by December 1, 1991, and every two years thereafter.

(c) The incorporation of the Congestion Management Program into the regional transportation improvement program required to be submitted to the commission by December 1, 1991, may be delayed for a period not to exceed one year if an environmental impact report is required to be prepared for the congestion management program pursuant to Division 13 (commencing with Section 21000) of the Public Resources Code, and the following conditions are met:

(1) The agency, as defined by Section 65088.1, adopts written findings that the congestion management program cannot be incorporated into the regional transportation improvement program by December 1, 1991, due to the time required to prepare an environmental impact report pursuant to Division 13 (commencing with Section 21000) of the Public Resources Code.

(2) The agency adopts a schedule for development of the congestion management program that will result in its adoption no later than December 1, 1992, and submits a report to the Legislature by July 1, 1992, on the progress of complying with this section.

(3) The agency, county, and cities take every action necessary to assure that the congestion management program will be adopted by December 1, 1992.

(d) If the incorporation of the congestion management program into the regional transportation improvement program is delayed pursuant to subdivision (c), both of the following shall apply:

(1) Any project included in the state transportation improvement program or the traffic systems management program prior to December 1, 1992, which is otherwise required to be included in the congestion management program, pursuant to subdivision (e), but which is not included in the congestion management program to be incorporated into the regional transportation improvement program pursuant to subdivision (b), shall be deleted from the state transportation improvement program or the traffic systems management program.

(2) Local projects which are otherwise required to be included in the congestion management program, pursuant to subdivision (e), may be included in the regional transportation improvement program to be submitted to the California Transportation Commission by December 1, 1991. Any local project which is included in the regional transportation improvement program after December 1, 1991, but prior to December 1, 1992, which is otherwise required to be included in the congestion management program, but which is not included in the congestion management program to be incorporated into the regional transportation improvement program pursuant to subdivision (b), shall be deleted from the regional transportation improvement program.

(e) Local projects not included in a congestion management program shall not be included in the regional transportation improvement program. Projects and programs adopted pursuant to subdivision (a) shall be consistent with the seven-year capital improvement program adopted pursuant to paragraph (5) of subdivision (b) of Section 65089, and the guidelines adopted pursuant to Section 14530.1.

Chapter 2.6 Congestion Management

Section

- 65088. Legislative findings.
- 65088.1 Definitions.
- 65089. Program; contents; uniform data base on traffic impacts.
- 65089.2 Program; evaluation of regional agency.
- 65089.3 Agency monitoring of program.
- 65089.4 Nonconformance to program; withholding funds.
- 65089.5 Failure to complete or implement a program.
- 65089.6 Application of chapter to agreements entered into prior to July 10, 1989.
- 65089.7 [No title.]

§ 65088. Legislative findings

The Legislature finds and declares all of the following:

(a) Although California's economy is critically dependent upon transportation, its current transportation system relies primarily upon a street and highway system designed to accommodate far fewer vehicles than are currently using the system.

(b) California's transportation system is characterized by fragmented planning, both among jurisdictions involved and among the means of available transport.

(c) The lack of an integrated system and the increase in the number of vehicles are causing traffic congestion that each day results in 400,000 hours lost in traffic, 200 tons of pollutants released into the air we breathe, and three million one hundred thousand dollars (\$3,100,000) added costs to the motoring public.

(d) To keep California moving, all methods and means of transport between major destinations must be coordinated to connect our vital economic and population centers.

(e) In order to develop the California economy to its full potential, it is intended that federal, state, and local agencies join with transit districts, business, private and environmental interests to develop and implement comprehensive strategies needed to develop appropriate responses to transportation needs.

§ 65088.1 Definitions

As used in this chapter the following terms have the following meanings:

(a) Unless the context requires otherwise, "regional agency" means the agency responsible for preparation of the regional transportation improvement program.

(b) Unless the context requires otherwise, "agency" means the agency responsible for the preparation and adoption of the congestion management program.

(c) "City" includes a city and county.

(d) "Commission" means the California Transportation Commission.

(e) "Department" means the Department of Transportation.

(f) "Parking cash-out program" means an employer-funded program under which an employer offers to provide a cash allowance to an employee equivalent to the parking subsidy that the employer would otherwise pay to provide the employee with a parking space. "Parking subsidy" means the difference between the out-of-pocket amount paid by an employer on a regular basis in order to secure the availability of an employee parking space not owned by the employer and the price, if any, charged to an employee for use of that space. A parking cash-out program may include a requirement that employee participants certify that they will comply with guidelines established by the employer designed to avoid neighborhood parking problems, with a provision that employees not complying with the guidelines will no longer be eligible for the parking cash-out program.

(g) "Urbanized area" has the same meaning as is defined in the 1990 federal census for urbanized areas of more than 50,000 population.

(h) "Interregional travel" means trips that have neither origin nor destination within the boundary of the congestion management program.

§ 65089. Program; contents; uniform data base on traffic impacts

(a) A congestion management program shall be developed, adopted, and updated <u>biennially, consistent with the schedule for adopting and updating the regional transportation</u> <u>improvement program</u>, for every county that includes an urbanized area, and shall include every city and the county. The program shall be adopted at a noticed public hearing of the agency. The program shall be developed in consultation with, and with the cooperation of, the transportation planning agency, regional transportation providers, local governments, the department, and the air pollution control district or the air quality management district, either by the county transportation commission, or by another public agency, as designated by resolutions adopted by the county board of supervisor's and the city council of a majority of the population in the incorporated area of the county.

(b) The program shall contain all of the following elements:

(1)(A) Traffic level of service standards established for a system of highways and roadways designated by the agency. The system shall include at a minimum all state highways and principal arterials. No highway or roadway designated as a part of the system shall be removed from the system. All new state highways and principal arterials shall be

designated as part of the system. Level of service (LOS) shall be measured by Circular 212, (or by the most recent version of the Highway Capacity Manual), or by a uniform methodology adopted by the agency which is consistent with the Highway Capacity Manual. The determination as to whether an alternative method is consistent with the Highway Capacity Manual shall be made by the regional agency, except that the department shall make this determination instead if either (i) the regional agency is also the agency, as those terms are defined in Section 65088.1, or (ii) the department is responsible for preparing the regional transportation improvement plan for the county.

(B) In no case shall the LOS standards established be below the level of service E or the current level, whichever is farthest from level of service A, except where a segment or intersection has been designated as deficient and a deficiency plan has been adopted pursuant to Section 65089.3.

(2) Standards established for the frequency and routing of public transit, and for the coordination of transit service provided by separate operators.

(3) A trip reduction and travel demand element that promotes alternative transportation methods, such as carpools, vanpools, transit, bicycles, and park-and-ride lots; improvements in the balance between jobs and housing; and other strategies, including flexible work hours and parking management programs. <u>The agency shall consider parking cash-out programs</u> during the development and annual update of the trip reduction and travel demand element.

(4) A program to analyze the impacts of land use decisions made by local jurisdictions on regional transportation systems, including an estimate of the costs associated with mitigating those impacts. In no case shall the program include an estimate of the costs of mitigating the impacts of interregional travel. The program shall provide credit for local public and private contributions to improvements to regional transportation systems. However, in the case of toll road facilities, credit shall only be allowed for local public and private contributions which are unreimbursed from toll revenues or other state or federal sources. The agency shall calculate the amount of the credit to be provided.

(5) A seven-year capital improvement program to maintain or improve the traffic level of service and transit performance standards developed pursuant to paragraphs (1) and (2), and to mitigate regional transportation impacts identified pursuant to paragraph (4), which conforms to transportation-related vehicle emissions air quality mitigation measures.

(c) The agency, in consultation with the regional agency, cities, and the county, shall develop a uniform data base on traffic impacts for use in a countywide transportation computer model and shall approve transportation computer models of specific areas within the county that will be used by local jurisdictions to determine the quantitative impacts of development on the circulation system that are based on the countywide model and standardized modeling assumptions and conventions. The computer models shall be consistent with the modeling methodology adopted by the regional planning agency. The data bases used in the models shall be consistent with the data bases used by the regional planning agency. Where the regional agency has jurisdiction over two or more counties, the

data bases used by the agency shall be consistent with the data bases used by the regional agency.

(d)(1) The city or county in which a commercial development will implement a parking cash-out program which is included in a congestion management program pursuant to subdivision (b), or a deficiency plan pursuant to Section 65089.3, shall grant to that development an appropriate reduction in the parking requirements otherwise in effect for new commercial development.

(2) At the request of an existing commercial development that has implemented a parking cash-out program, the city or county shall grant an appropriate reduction in the parking requirements otherwise applicable based on the demonstrated reduced need for parking, and the space no longer needed for parking purposes may be used for other appropriate purposes.

§ 65089.2 Program; evaluation by regional agency

(a) Congestion management programs shall be submitted to the regional agency. The regional agency shall evaluate the consistency between the program and the regional transportation plans required pursuant to Section 65080. In the case of a multicounty regional transportation planning agency, that agency shall evaluate the consistency and compatibility of the programs within the region.

(b) The regional agency, upon finding that the program is consistent, shall incorporate the program into the regional transportation improvement program as provided for in Section 65082. If the regional agency finds the program is inconsistent, it may exclude any project in the congestion management program from inclusion in the regional transportation improvement program.

(c)(1) The regional agency shall not program any surface transportation program funds and congestion mitigation and air quality funds pursuant to Section 182.6 and 192.7 of the Streets and Highways Code in a county unless a congestion management program has been adopted by December 31, 1992, as required pursuant to Section 65089. No surface transportation program funds or congestion mitigation and air quality funds shall be programmed for a project in a jurisdiction that has been found to be in nonconformance with a congestion management program pursuant to Section 65089.4 unless the agency finds that the project is of regional significance.

(2) Notwithstanding any other provision of law, upon the designation of an urbanized area, pursuant to the 1990 federal census or a subsequent federal census, within a county which previously did not include an urbanized area, a congestion management program as required pursuant to Section 65089 shall be adopted within a period of 18 months after designation by the Governor.

(d)(1) It is the intent of the Legislature that the regional agency, when its boundaries include areas in more than one county, should resolve inconsistencies and mediate disputes which arise between agencies related to the congestion management programs adopted for those areas.

(2) It is the further intent of the Legislature that disputes which may arise between regional agencies, or agencies which are not within the boundaries of a multicounty regional transportation planning agency, should be mediated and resolved by the Secretary of the Business, Housing and Transportation Agency, or an employee of that agency designated by that secretary, in consultation with the air pollution control district or air quality management district within whose boundaries the regional agency or agencies are located.

§ 65089.3 Agency monitoring of program

(a) The agency shall monitor the implementation of all elements of the congestion management program. Annually, the agency shall determine if the county and cities are conforming to the congestion management program, including, but not limited to, all of the following:

(1) Consistency with levels of service and performance standards, except as provided in subdivisions (b) and (c).

(2) Adoption and implementation of a trip reduction and travel demand ordinance.

(3) Adoption and implementation of a program to analyze the impacts of land use decisions, including the estimate of the costs associated with mitigating these impacts.

(b)(1) A city or county may designate individual deficient segments or intersections which do not meet the established level of service standards if, prior to the designation, at a noticed public hearing, the city or county has adopted a deficiency plan which shall include all of the following:

(A) An analysis of the cause of deficiency.

(B) A list of improvements necessary for the deficient segment or intersection to maintain the minimum level of service otherwise required and the estimated costs of the improvements.

(C) A list of improvements, programs, or actions, and estimates of costs, that will (i) measurably improve the level of service of the system, as defined in subdivision (b) of Section 65089, and (ii) contribute to significant improvements in air quality, such as improved public transit service and facilities, improved nonmotorized transportation facilities, high occupancy vehicle facilities, <u>parking cash-out programs</u>, and transportation control measures. The air quality management district or the air pollution control district shall establish and periodically revise a list of approved improvements, programs, and

actions which meet the scope of this paragraph. If an improvement, program, or action is on the approved list and has not yet been fully implemented, it shall be deemed to contribute to significant improvements in air quality. If an improvement, program, or action is not on the approved list, it shall not be implemented unless approved by the local air quality management district or air pollution control district.

(D) An action plan, consistent with the provisions of Chapter 5 (commencing with Section 66000) of Division 1 of Title 7, that shall be implemented, consisting of improvements identified in paragraph (B), or improvements, programs, or actions identified in paragraph (C), that are found by the agency to be in the interest of the public's health, safety and welfare. The action plan shall include a specific implementation schedule.

(2) A city or county shall forward its adopted deficiency plan to the agency. The agency shall hold a noticed public hearing within 60 days of receiving the deficiency plan. Following the hearing, the agency shall either accept or reject the deficiency plan in its entirety, but the agency may not modify the deficiency plan. If the agency rejects the plan, it shall notify the city or county of the reasons for that rejection.

(c) The agency, after consultation with the regional agency, the department, and the local air quality management district or air pollution control district, shall exclude from the determination of conformance with level of service standards, the impacts of any of the following:

(1) Interregional travel.

(2) Construction, rehabilitation, or maintenance of facilities that impact the system.

(3) Freeway ramp metering.

(4) Traffic signal coordination by the state or multijurisdictional agencies.

(5) Traffic generated by the provision of low and very low income housing.

(6)(A) Traffic generated by high density residential development located within one-fourth mile of a fixed rail passenger station.

(B) Traffic generated by any mixed use development located within one-fourth mile of a fixed rail passenger station, if more than half of the land area, or floor area, of the mixed use development is used for high density residential housing, as determined by the agency.

(C) For the purposes of this section, the following terms have the following meanings:

(I) "High Density" means residential density which is equal to or greater than 120 percent of the maximum residential density allowed under the local general plan and zoning ordinance.

(II) "Mixed Use Development" means development which integrates compatible commercial or retail uses, or both, with residential uses, and which, due to the proximity of job locations, shopping opportunities, and residences, will discourage new trip generation.

(d) For the purpose of this chapter, the impacts of a trip which originates in one county and which terminates in another county shall be included in the determination of conformance with level of service standards with respect to the originating county only. A roundtrip shall be considered to consist of two individual trips.

(e) It is the intent of the legislature that a deficiency plan be prepared and adopted by the city or county, and approved by the agency, prior to the occurrence of a deficiency.

§ 65089.4. Nonconformance to program; withholding funds

(a) If, pursuant to the annual monitoring provided for in Section 65089.3, the agency determines, following a noticed public hearing, that a city or county is not conforming with the requirements of the congestion management program, the agency shall notify the city or county in writing of the specific areas of nonconformance. If, within 90 days of the receipt of the written notice of nonconformance, the city or county has not come into conformance with the congestion management program, the governing body of the agency shall make a finding of nonconformance and shall submit the finding to the commission and to the Controller.

(b)(1) Upon receiving notice from the agency of nonconformance, the Controller shall withhold apportionments of funds required to be apportioned to that nonconforming city or county by Section 2105 of the Streets and Highways Code, until the Controller is notified by the agency that the city or county is in conformance.

(2) If, within the 12-month period following the receipt of a notice of nonconformance, the Controller is notified by the agency that the city or county is in conformance, the Controller shall allocate the apportionments withheld pursuant to this section to the city or county.

(3) If the Controller is not notified by the agency that the city or county is in conformance pursuant to paragraph (2), the Controller shall allocate the apportionments withheld pursuant to this section to the agency.

(c) The agency shall use funds apportioned under this section for projects of regional significance which are included in the capital improvement program required by paragraph (5) of subdivision (b) of Section 65089, or in a deficiency plan which has been adopted by the agency. The agency shall not use these funds for administration or planning purposes.

§ 65089.5 Failure to complete or implement a program

Failure to complete or implement a congestion management program shall not give rise to a cause of action against a city or county for failing to conform with its general plan, unless the city or county incorporates the congestion management program into the transportation element of its general plan.

§ 65089.6 Application of chapter to agreements entered into prior to July 10, 1989

A proposed development specified in a development agreement entered into prior to July 10, 1989, shall not be subject to any action taken to comply with this chapter, except actions required to be taken with respect to the trip reduction and travel demand element of a congestion management program pursuant to paragraph (3) of subdivision (b) of Section 65089.

§ 65089.7 [No title]

(a) Buildings and structures that were damaged or destroyed in Los Angeles County as a result of the civil unrest during the state of emergency declared by the Governor on April 29, 1992, are not subject to the requirements of this chapter when permission is sought to repair or rebuild. This section does not exempt buildings or structures from any other requirement of the local jurisdiction otherwise applicable.

(b) This section shall become inoperative on June 1, 1995, and as of January 1, 1996, is repealed, unless a later enacted statute, which becomes effective on or before January 1, 1996, delete or extends the dates on which it becomes inoperative and is repealed.

Section 6 of AB 3093, Statewide Study on CMP/Air Quality Coordination.

(a) The Los Angeles County Metropolitan Transportation Authority may, in cooperation with other interested public and private entities, conduct a study of the requirements of the congestion management program prescribed by Chapter 2.6 (commencing with Section 65088) of Title 7 of Division 1 of the Government Code, with the objective of recommending modifications, if any, to the program which reduce or eliminate any inconsistency with the requirements of the California Clean Air Act of 1988 (Chapter 1568 of the Statutes of 1988) and the federal Clean Air Act Amendments of 1990 (P.L. 101-549). The elements of the study shall include both of the following:

(1) Comparison of the effectiveness of the use of level of service standards with other measurable standards, including, but not limited to, vehicle miles traveled and average vehicle ridership, for both determining mobility and achieving the reductions in motor vehicle emissions required under state and federal law.

(2) Consideration of the most efficient, simple, and cost-effective institutional structure and roles necessary to implement any recommendations, including, but not limited to, a review of existing requirements to implement transportation control measures pursuant to state and federal air quality requirements.

(b) The authority may accept public and private contributions to fund the study.

(c) If a study is conducted, a study steering committee shall be selected by the executive director of the authority, that includes all of the following:

(1) A representative of a national environmental organization.

(2) Two persons representing air quality management or pollution control districts, one of which shall be the South Coast Air Quality Management District.

(3) A representative of the California Building Industry Association.

(4) A representative of Californians for Better Transportation.

(5) Two persons representing multicounty regional transportation planning agencies, one of which is located in southern California and one of which is located in northern California.

(6) A person representing cities.

(7) A person representing counties.

(8) A person representing transit operators.

(9) Two persons representing agencies designated to develop a congestion management program, including one representative of an agency in northern California, and one representative of an agency in southern California.

(10) A representative of the Department of Transportation designated by the Governor.

(11) A representative of the Governor's Office of Planning and Research designated by the Governor.

(12) A representative of the State Air Resources Board designated by the Governor.

DEVELOPMENT AGREEMENT STATUTES

Policy

65864. The Legislature finds and declares that:

(a) The lack of certainty in the approval of development projects can result in a waste of resources, escalate the cost of housing and other development to the consumer, and discourage investment in and commitment to comprehensive planning which would make maximum efficient utilization of resources at the least economic cost to the public.

(b) Assurance to the applicant for a development project that upon approval of the project, the applicant may proceed with the project in accordance with existing policies, rules and regulations, and subject to conditions of approval, will strengthen the public planning process, encourage private participation in comprehensive planning, and reduce the economic costs of development.

(c) The lack of public facilities, including, but not limited to, streets, sewerage, transportation, drinking water, school, and utility facilities, is a serious impediment to the development of new housing. Whenever possible, applicants and local governments may include provisions in agreements whereby applicants are reimbursed over time for financing public facilities.

(Amended by Stats. 1984, Ch. 143.)

65865. (a) Any city, county, or city and county, may enter into a development agreement with any person having a legal or equitable interest in real property for the property for the development of the property as provided in this article.

(b) Any city may enter into a development agreement with any person having a legal or equitable interest in real property in unincorporated territory within that city's sphere of influence for the development of the property as provided in this article. However, the agreement shall not become operative unless annexation proceedings annexing the property to the city are completed within the period of time specified by the agreement.

Authority to enter into an agreement If the annexation is not completed within the time specified in the agreement or any extension of the agreement, the agreement is null and void.

(c) Every city, county, or city and county, shall, upon request of an applicant, by resolution or ordinance, establish procedures and requirements for the consideration of development agreements upon application by, or on behalf of, the property owner or other person having a legal or equitable interest in the property.

(d) A city, county, or city and county may recover from applicants the direct costs associated with adopting a resolution or ordinance to establish procedures and requirements for the consideration of development agreements.

(Amended by Stats. 1984, Ch. 751; Amended by Stats. 1986, Ch. 857.)

65865.1. Procedures established pursuant to Section 65865 shall include provisions requiring periodic review at least every 12 months, at which time the applicant, or successor in interest thereto, shall be required to demonstrate good faith compliance with the terms of the agreement. If, as a result of such periodic review, the local agency finds and determines, on the basis of substantial evidence, that the applicant or successor in interest thereto has not complied in good faith with terms or conditions of the agreement, the local agency may terminate or modify the agreement.

(Added by Stats. 1979, Ch. 934.) 65865.2.

Agreement contents Agreement contents development agreement shall specify the duration of the agreement, the permitted uses of the property, the density or intensity of use, the maximum height and size of proposed buildings, and provisions for reservation or dedication of land for public purposes. The development agreement may include conditions, terms, restrictions, and requirements for subsequent discretionary actions, terms, restrictions, and requirements for subsequent development of the land for the uses and to the density or intensity of development set forth in the agreement. The agreement may provide that construction shall be commenced within a specified time and that the project or any

Demonstration of good faith compliance phase thereof be completed within a specified time. The agreement may also include terms and conditions relating to applicant financing of necessary public facilities and subsequent reimbursement over time.

(Amended by Stats. 1984, Ch. 143.)

Development agreements

65865.3. (a) Except as otherwise provided in subdivision (b), Section 65868, or Section 65869.5, notwithstanding any other law, if a newly incorporated city comprises territory that was formerly unincorporated, any development agreement entered into by the county prior to the effective date of the incorporation shall remain valid within the newly incorporated city for the duration of the agreement, or eight years from the effective date of the incorporation, whichever is earlier. The holder of the development agreement and the newly incorporated city may agree that the development agreement shall remain valid for more than eight years, provided that the longer period shall not exceed 15 years from the effective date of the incorporation. The holder of the development agreement and the newly incorporated city shall have the same rights and obligations with respect to each other as if the property had remained in the unincorporated territory of the county.

(b) The newly incorporated city may modify or suspend the provisions of the development agreement if the city determines that the failure of the city to do so would place the residents of the territory subject to the development agreement, or the residents of the city, or both, in a condition dangerous to their health or safety, or both.

(c) Except as otherwise provided in subdivision (d), this section applies to any development agreement which meets both of the following requirements:

(1) The application for the agreement is submitted to the county prior to the date that the first signature was affixed to the petition for incorporation pursuant to Section 56704 or the adoption of the resolution pursuant to Section 56800, whichever comes first.

(2) The county enters into the agreement with the applicant prior to the date of the election on the question of incorporation.

(d) This section does not apply to any territory subject to a development agreement if that territory is incorporated and the effective date of the incorporation is prior to January 1, 1987.

(Added by Stats. 1986, Ch. 857.) Note: Stats. 1986, Ch. 857 also.

Sec.4. The Legislature declares that the amendment to Section 65865.3 of the Government Code limiting the period of time that a development agreement shall remain valid in a newly incorporated city shall not be construed as an indication by the Legislature as to the appropriate duration of other development agreements.

65865.4. Unless amended or canceled pursuant to Section 65868, or modified or suspended pursuant to Section 65869.5, and except as otherwise provided in subdivision (b) of Section 65865.3, a development agreement shall be enforceable by any party thereto notwithstanding any change in any applicable general or specific plan, zoning, subdivision, or building regulation adopted by the city, county, or city and county entering the agreement, which alters or amends the rules, regulations, or policies specified in Section 65866.

(Added by Stats. 1979, Ch. 934; Amended by Stats. 1986, Ch. 857.)

Regulations effecting 65866. Unless otherwise provided by the development agreement, rules, regulations, and official policies governing permitted uses of the land, governing density, and governing improvement, and construction standards design. and specifications, applicable to development of the property subject to a development agreement, shall be those rules, regulations, and official policies in force at the time of execution of the agreement. A development agreement shall not prevent a city, county, or city and county, in subsequent actions applicable to the property, from applying new rules, regulations, and policies which do not conflict with those rules, regulations, and policies applicable to the property as set forth herein, nor shall a development agreement prevent a city, county, or city and county from denying or conditionally approving any subsequent development project rules, regulations, and policies.

(Added by Stats. 1979, Ch. 934.)

Enforceability

Uncodified Policy

Hearings

65867. A public hearing on an application for a development agreement shall be held by the planning agency and by the legislative body. Notice of intention to consider adoption of a development agreement shall be given as provided in Sections 65090 and 65091 in addition to any other notice required by law for other actions to be considered concurrently with the development agreement.

(Amended by Stats. 1984, Ch. 1009.)

Findings of consistency

65867.5. A development agreement is a legislative act which shall be approved by ordinance and is subject to referendum. A development agreement shall not be approved unless the legislative body finds that the provisions of the agreement are consistent with the general plan and any applicable specific plan.

(Added by Stats. 1979, Ch. 934.)

Amendment

65868. A development agreement may be amended, or canceled in whole or in part, by mutual consent of the parties to the agreement or their successors in interest. Notice of intention to amend or cancel any portion of the agreement shall be given in the manner provided by Section 65867. An amendment to an agreement shall be subject to the provision of Section 65867.5.

(Added by Stats. 1979, Ch. 934.)

Recordation

65868.5. No later than 10 days after a city, county or city and county enters into a development agreement, the clerk of the legislative body shall record with the county recorder a copy of the agreement, which shall describe the land subject thereto. From and after the time of such recordation, the agreement shall impart such notice thereof to all persons as is afforded by the recording laws of this state. The burdens of the agreement shall be binding upon, and the benefits of the agreement shall inure to, all successors in interest to the parties to the agreement.

(Added by Stats. 1979, Ch. 934.)

Exemption

65869. A development agreement shall not be applicable to any development project located in an area for which a local coastal program is required to be prepared and certified pursuant to the requirements of Division 20 (commencing with Section 30000) of the Public Resources Code, unless:

(1) the required local coastal program has been certified as required by such provisions prior to the date on which the development agreement is entered into, or (2) in the event that the required local coastal program has not been certified, the California Coastal Commission approves such development agreement by formal commission action.

(Added by Stats. 1979, Ch. 934.)

Modification/ suspension 65869.5. In the event that state or federal laws or regulations, enacted after a development agreement has been entered into, prevent or preclude compliance with one or more provisions of the development agreement, such provisions of the agreement shall be modified or suspended as may be necessary to comply with such state or federal laws or regulations.

(Added by Stats. 1979, Ch. 934.)

OPTIONAL TDM MEASURES

Local jurisdictions are encouraged to adopt and implement the CMP Model TDM Ordinance to meet CMP TDM responsibilities. Those jurisdictions that adopt the Model TDM Ordinance without modification, will receive automatic approval without further review.

However, some local jurisdictions may wish to implement additional TDM strategies they feel will be successful and go beyond the minimum ordinance required for CMP purposes. Following is a list of TDM strategies that these jurisdictions may wish to consider. An asterisk (*) placed next to a strategy indicates that it is included in the Air Quality Management Plan (AQMP). The last TDM actions list are additional strategies listed in the AQMP. It should be noted, however, that these options are not required as part of the minimum CMP TDM ordinance, but are provided to assist local jurisdictions interested in further TDM strategies.

Optional Measures for Existing/New Development

- *1. Implement of trip reduction plans for projects generating 100+ employees.
- *2. Provide child-care services on site, with priority given to tenant employees who use alternative transportation.
- *3. Provide shuttles between activity centers and trains or transit centers.
- *4. Allow tenants through their lease agreements to lease variable amounts of parking so that they may reduce spaces as rideshare rates increase.
- 5. Assist major employers in providing vanpool vehicles to employees.
- *6. Provide clothes locker and shower facilities for bicycle and pedestrian commuters in non-residential developments over 100,000 sq. ft.
- *7. Provide telecommuting equipment or establish telecommuting center(s) in large residential area(s).
- *8. Establish parking fee surcharges, with a portion of the revenues from such parking fees used for transit operation.
- *9. Major employment centers to provide services such as dry cleaners, grocery, shoe repair, gift shop, ATM and eating establishments, subsidizing if necessary. If infeasible to provide these services on-site, publicize nearby services to building tenants to reduce the need for midday trips.

- 10. Provide tenants with transportation information as part of move-in materials.
- *11. Establish employer parking cash out programs allowing employees to use parking subsidies for ridesharing.

Optional Measures for Institutional Worksites

- 1. Require health care facilities to schedule non-patient services (e.g., physical plant maintenance) for off-peak travel periods.
- 2. Require health care facilities to schedule nonessential patient services for offpeak travel periods.
- 3. Allow fleet vehicles to be utilized for ridesharing purposes.
- *4. Require preferential carpool parking for existing institutional worksites.
- *5. Require the provision of transportation services for employees, clients and/or students living within a short distance of the facility.

Optional Measures Applicable only to Residential Developments of Thirty Units or More

- 1. Require residential developments to provide ridesharing (e.g., ridematching applications) and public transportation information as part of move-in materials.
- 2. Require provision of transit stops, shelters and amenities as appropriate.
- 3. Require provision of transportation information centers in common areas.
- 4. Require provision of bicycle amenities, such as storage areas and bicycle lanes, paths or routes.

• Optional Citywide or Sub-Area Measures

- *1. Revise parking codes to limit the single occupant parking supplied by new developments, and other parking measures.
- *2. Impose restrictions on truck traffic.
- *3. Apply TDM measures to special event traffic through an ordinance.
- *4. Arrange with local bus service providers to increase service levels.

- *5. Create park-and-ride lots or telecommuting centers.
- *6. Build transit centers.
- *7. Require all employers that provide free parking to employees to subsidize transit passes, either partially or fully.

Additional Measures Included in the AQMP Applicable to Local Jurisdiction TDM Ordinance Implementation*

- 1. Adopt a telecommuting, alternative work weeks and non-motorized transportation program for local jurisdiction employees to reduce motor vehicle person work trips by 12%.
- 2. Adopt an ordinance requiring local employers to establish telecommuting, alternative work weeks and non-motorized transportation programs to reduce motor vehicle person work trips by 12%.
- 3. Adopt non-work trip reduction ordinance for large retail establishments.
- 4. Include bicycle routes in their General Plan.
- 5. Encourage formation of Transportation Management Associations.
- 6. Adopt an ordinance requiring trip reduction plans from employer of 25+ employees.
- 7. Impose employee transportation allowances or TDM benefits for employers of 100+.
- 8. Increase daytime parking fees.
- 9. Eliminate peak-period on-street parking.
- 10. Eliminate 100% employer subsidized parking.
- 11. Require employer-sponsored preferential parking for ridesharers.
- 12. Establish residential parking permit programs in all areas adjacent to congested commercial activity centers.
- 13. Strengthen parking enforcement operations.
- 14. Establish cap on total number of parking spaces.
- 15. Provide data, monitor progress, and effectiveness of ordinance.

- 16. Implement market incentives.
- 17. Establish park-n-ride lots.
- 18. Adopt an Air Quality Element into the local jurisdiction's General Plan requiring local event centers to reduce trips through operating park-n-ride and off-site facility lots, requiring auto free zones, requiring street closure during peak periods, and enhancing transit performance.
- 19. Revise and update General Plans to reflect VMT reduction objectives.

SCAG'S REGIONAL CONSISTENCY COMPATIBILITY CRITERIA FOR CMPS

FINAL • APRIL 4, 1991

Changes to the Government Code, enacted with the passage of Proposition 111 in June 1990, require SCAG to perform the following evaluations for the Congestion Management Programs (CMPs) developed within the region:

- consistency between the countywide model/databases and SCAG's regional model and databases;
- consistency with the regional transportation plans;
- compatibility with the other CMPs developed within the region; and
- incorporation of the CMP into the Regional Transportation Improvement Program (RTIP) and the action element of the regional transportation plan, SCAG's Regional Mobility Plan or RMP.

According to the California Government Code, Section 11349, "consistency means being in harmony with, and not in conflict with or contradictory to, existing statutes, court decisions, or other provisions of law." For purposes of this document, consistency would be applied as it relates to the regional transportation plans and regional model databases.

The Evaluation Process

The CMP must be evaluated to determine that it is consistent with the Regional Mobility Plan (RMP). Since the RMP incorporates elements of the Regional Growth Management Plan (GMP) and the Air Quality Management Plans (AQMP) for each air basin in the region, these elements must also be included in this evaluation.

It should be noted that this process needs to acknowledge the air quality conformity requirements for the RTIP. Each county transportation commission is responsible for evaluating their respective county TIP using the appropriate conformity procedures for projects, programs, and plans. SCAG, as the designated metropolitan planning organization (MPO), is responsible for the full conformity finding in the RTIP.

The evaluation consists of three parts:

Part 1: The CMP must be consistent with the actions and programs pertaining to growth management, transportation demand management, transportation systems management, and facilities development contained in the RMP and the appropriate AQMP.

<u>Note</u>: In the case that the Congestion Management Agency (CMA) is not an implementing $agency^1$ for an RMP action, the following apply:

- 1) CMP guidelines must support and encourage adoption of these measures by the appropriate agencies, and
- 2) the CMP database/modeling must be consistent with SCAG's regional model and database (see Part 2).
- Part 2: The CMP must demonstrate progress toward the regional mobility targets contained in the RMP. To satisfy this requirement, the countywide modeling for the CMP must be consistent with SCAG's <u>CMP planning horizon forecasts</u> for the following indicators:
 - a) Vehicle miles of travel, average trip length, and vehicle hours of travel must be maintained or reduced.
 - b) Transit trips and average vehicle occupancy must be maintained or increased.
 - c) Total person trips and total vehicle trips both within and between counties.

These CMP planning horizon targets will be developed by SCAG cooperatively with the CMAs and other interested agencies and will incorporate other applicable state and federal requirements. If a discrepancy is identified between SCAG's forecast for the CMP planning horizon and the forecast provided by the CMA, SCAG's Regional Modeling Task Force and Regional Information Task Force will be consulted regarding the reason for the discrepancy. Task force recommendations will be integrated into the consistency evaluation provided to SCAG's policy committees and Executive Committee for approval.

¹ "Implementing Agency," as applied in this context, refers to the agency identified in the Regional Mobility Plan or the appropriate AQMP as having a role in an action or measure contained in these plans, including planning, programming, administration, finance, construction, operation, maintenance, or monitoring.

The CMAs may rely on travel demand forecasts produced by SCAG to develop the CMP. The following criteria apply when a separate model run and/or database are used to develop the CMP and evaluate traffic impacts of land use decisions on the CMP highway system:

<u>Database</u>

The CMA must cooperatively develop the CMP planning horizon forecasts of population, housing and employment with local jurisdictions. These forecasts must be consistent with local General Plans. SCAG will evaluate the CMA forecast for consistency. Staff recommendations to align the forecasts will need the approval of SCAG's policy committees and ultimately the Executive Committee. If necessary, a process for reconciling the databases will be undertaken between SCAG staff and staff representatives of the CMA and will produce a forecast that will be the basis of planning applications for both SCAG and the CMA.

Modeling

The CMA must participate in an ongoing regional model and database program through SCAG's Regional Modeling Task Force. This program is designed to improve consistency between regional and county-level model development in the region. To support this cooperative process, the CMA must meet the following requirements:

- a. The CMP planning horizon must be consistent with that agreed upon within the region.
- b. CMP traffic analysis zones must be compatible with census tracts or SCAG's traffic analysis zones.
- c. The CMP model must produce, at minimum, a vehicle trip production and attraction table by at least three trip types (home-based work, home-based nonwork, and nonhome-based).
- d. The CMP modeling network must contain, at minimum, the SCAG's System of Regional Significance which is contained in the RMP.

- 9

- Part 3: To ensure compatibility between the CMPs within the region in evaluating the impacts of land use decisions on the CMP highway system and for monitoring level of service, the CMP must meet the following requirements:
 - a. The CMP transportation system must connect to the system designated in (the) adjacent counties(y).
 - b. Traffic level of service must be assessed using either Circular 212, the 1985 Highway Capacity Manual, or a method that SCAG has found consistent with the 1985 Highway Capacity Manual.

RMP Amendments

Because the CMP process is intended to provide greater detail in the short-range action element of the RMP, differences may arise. The RMP amendment process² provides some flexibility to the CMAs in addressing the CMP requirements. This process would be used to evaluate a project or a program to determine whether the project or program is a refinement, (i.e., an addendum), to the RMP, or would be treated as an RMP amendment. Before an RMP amendment can be adopted by SCAG, the project or program must satisfy these requirements.

² See Appendix A [in SCAG's document] for a more detailed description of the RMP Amendment Process.

SUPPLEMENT

5

CAPITAL IMPROVEMENT PROGRAM CANDIDATE LIST

	Agency	Proj No.	Project Location & Description	Total Cost (\$ 1000)
1	Agoura Hills	1	Rte 101/NE Kanan Road Off Ramp modification	\$8,811
2	Agoura Hills	2	Rte 101-Reyes Adobe Rd overcrossing	\$2,600
3	Agoura Hilis	3	Rte 101-Reyes Adobe Rd SW Off Ramp modifications	\$2,800
4	Aihambra	1	Lane widening and Sig. Coor, Valley Bl Elm St. to WCL	\$1,739
5	Aihambra	2	Lane widening and Sig. Coor. Fremont Av Mission Rd. to Alhambra Rd.	\$7,172
6	Arcadia	3	Signal Master Computer Upgrade (City Wide)	\$100
7	Baidwin Park	4	Commuter Rail Corridor (S/O 10 Way) - San Bern to L.A.	\$800
8	Baldwin Park	5	605 Fwy. at Ramona Blvd. Interchange	\$2,200
9	Baldwin Park	6	Baldwin Park Blvd 10 Fwy/Live Oak	\$120
10	Bell	1	Bridge-Atlantic/LA River-widen, improve	\$18,600
11	Bell	2	Bridge-Florence Ave/LA River-widen	\$18,600
12	Beverly Hills	1	ATSAC comp. sig controllers: Olympic Bl, Heath - Robertson	\$280
13	Beverty Hills	2	ATSAC comp. sig controllers: Sunset Bi, Ladera - Doheny	\$260
14	Beverty Hills	3	ATSAC comp. equip & controllers: Wilshire BI, Whittier - San Vicente	\$1,400
15	Beverly Hills	4	ATSAC comp. monitor system for citywide use	\$1,175
16	Burbank	4	Commuter Rail Station	\$4,459
17	Burbank	5	Multimodal Station	\$4,649
18	Burbank	6	Winona Ave Improvements	\$20,000
19	Calabasas	1	101-Mureau O/C improvements	\$2,800
20	Calabasas	4	101-Pkwy Calabasas I/C improvements	\$18,100
21	Calabasas	5	Las Virgines Rd corridor - I/S widen, rechannel, sig mod	\$390
22	Calabasas	6	101-Lost Hills Rd - bridge widen, ramp const/mod, sig mod	\$8,700
23	Caltrans	2	Metening & HOV Bypass: Various Locations	\$30,000
24	Caltrans	8	Rte 1 0.0/2.0(Ora Co/22): Widen & Flyovers	\$20,250
25	Caltrans	9	Rte 1 R34.6/40.8(10/27): Widen & Flyovers	\$47,100
26	Caltrans	21	Rte 10 14.8/18.4(110/5): HOV	\$258,790
27	Caltrans	18	Rte 10 27.9/31.1 (Baldwin Av/Rte 605): Extend Busway, Stage 1	\$48,800
28	Caltrans	19	Rte 10 31.1/33.3 (Rte 605/Puente Av): Extend Busway, Stage 2	\$53,400
29	Caltrans	20	Rte 10 33.3/37.4 (Puente Av/Citrus Av): Extend Busway, Stage 3	\$63,300
30	Caltrans	25	Rte 10 37.4/48.3(Citrus Ave/SBD Co): Widen - Transitway	\$344,250
31	Caltrans	26	Rte 10 42.4/45.7(57/Garey): Widen - Restripe (+2 Ln)	\$18,680
32	Caltrans	20	Rte 10 5.8/14.8(405/110): HOV	\$209,250
33	Caltrans	40	Rte 101 0.0/1.6(10 Spur/110): HOV	\$256,500
34	Caltrans	41	Rte 101 0.3/1.0(St/Vignes St): Realign fwy & rev. ramps	\$20,000
35	Caltrans	43	Rte 101 11.7/17.2(170/405): Constr Transitway or HOV	\$464,400
36	Caltrans		Rte 101 17.2/25.3(405/27): HOV	\$303,750
37	Caltrans		Rte 101 1.6/11.8(110/170): HOV	\$877,500

PAGE S5-2

	Agency	Proj No.	Project Location & Description	Total Cost (\$1000)
38	Caltrans	45	Rte 101 25.3/38.2(27/405): HOV	\$101,250
39	Caltrans	46	Rte 101 50.0/51.3(5/LACBD): Constr Transitway	\$27,000
40	Caltrans	5	Rte 105 R10.3/R10.9 (Mona Bl/State St): Realign Imperial Hwy	\$10,500
41	Caltrans	3	Rte 105 R13.6 (at 105/710 IC): Construct Pump Plant	\$9,600
42	Caltrans	4	Rte 105 R15.9/R16.6 (Monroe Av/Rte 105): Construct Monroe Drain	\$2,700
43	Caltrans	50	Rte 105 R17.8(605/Studebaker Rd): Park/Ride Lot, realign ramp	\$5,400
44	Caltrans	52	Rte 110 11.3/11.5(Redondo Av/149th St): Const RR Br, OC Pump Plant, Widen Fwy	\$6,013
45	Caltrans	53	Rte 110 11.9/12.1 (Figueroa St/Vermont): Storm Drain System	\$600
46	Caltrans	54	Rte 110 19.9/20.5(37th St/30th St): Ret.Wall,OC,UC,Widen Fwy & TMP	\$31,600
47	Caltrans	51	Rte 110 4.1/20.0(PCH/Exposition): Transit Station facilities	\$11,055
48	Caltrans	1	Rte 110 Construction cost increase	\$1,400
49	Caltrans	0	Rte 110 HOV	\$40,000
50	Caltrans	2	Rte 110 Right-of-way cost increase	\$11,000
51	Caltrans	0	Rte 118 0.0/11.5 (Ven Co/Rte 5): Widen, HOV	\$39,600
52	Caltrans	56	Rte 126 7.9/8.4(Valencia Bi/Bouquet Cyn Rd): Widen to 4 Ln	\$1,044
53	Caltrans	57	Rte 126 R5.84/13.6(5/14): Const New Expressway	\$370,000
54	Caltrans	58	Rte 134 0.0/5.3(170/5): HOV	\$10,800
55	Caltrans	59	Rte 134 5.3/13.3(5/210): HOV	\$40,500
56	Caltrans	60	Rte 138 43.4/51.4(14/Ave T): Widen to 6 Lns	\$8,100
57	Caltrans	17	Rte 138 51.4/69.4(Ave T/Rte 18): Widen to 4 Lanes	\$120,000
58	Caltrans	27	Rte 14 24.8/26.9(5/San Fernando Rd): HOV	\$6,750
59	Caltrans	11	Rte 14 35.9/54.5 (Shadow Pines Bl/Pearblossom Hwy): widen (+2 Lanes)	\$61,200
60	Caltrans	15	Rte 14 54.8/60.7 (Pearblossom Hwy/Ave P-8): Widen (+2 Ln)	\$26,400
61	Caltrans	62	Rte 170 10.6/R20.6(101/5): Widen - HOV	\$14,850
62	Caltrans	10	Rte 2 14.2/R18.8(Glendale Bi/134): Widen - HOV	\$95,850
63	Caltrans	0	Rte 27 18.1/20.0 (Lassen/Rte 118): HOV	\$554
64	Caltrans	31	Rte 30 0.0/2.6(210/Foothill(66)): HOV	\$13,500
65	Caltrans	12	Rte 30 R2.5/R8.3 (Rte 66/SBD Co): Constr 6 Ln Fwy+R/W	\$167,500
66	Caltrans	6	Rte 405 20.7/26.0 (120th St/Rte 90): HOV	\$32,760
67	Caltrans	65	Rte 405 26.0/29.5(90/10): Widen - HOV	\$75,600
68	Caltrans	66	Rte 405 29.5/39.5(10/101): Widen - HOV	\$79,650
69	Caltrans	67	Rte 405 39.5/46.8(101/118): Widen - HOV	\$40,500
70	Caltrans	68	Rte 405 46.8/48.6(118/5): Widen - HOV	\$4,700
71	Caltrans	7	Rte 405 7.6/13.0 (Rte 710/Rte 110): Widen - HOV	\$36,000
72	Caltrans	11	Rte 5 0.0/6.8(Ora Co/605): Widen - HOV	\$697,250
73	Caltrans	13	Rte 5 13.8/16.9(710/101-60-10): Constr. Transitway	\$310,500
74	Caltrans	14	Rts 5 16.9/18.4(101-60-10/10): HOV	\$170,800
75	Caltrans	15	Rte 5 18.4/20.4(10/110): HOV	\$170,800
76	Caltrans	4	Rte 5 20.4/22.6(110/2): HOV	\$2,700
77	Caltrans	17	Rte 5 22.6/26.7(2/134): HOV	\$185,500
78	Caltrans		Rte 5 26.7/36.4(134/170): HOV	\$21,460
79	Caltrans		Rte 5 36.4/R45.6(170/14): Widen - HOV	\$40,500

1 ·

. . . .

	Agency	Proj No.	Project Location & Description	Total Con (\$1000)
80	Caltrans	12	Rte 5 6.8/13.8(605/710): Widen - transitway	\$675,0
81	Caltrans	10	Rte 57 R0.0/R4.5 (Ora Co/Rte 60): Widen - HOV	\$17,5
82	Caltrans	34	Rte 57 R4.5/7.3(60N/10): Widen - HOV	\$8,6
83	Caltrans	9	Rte 60 R /R30.5 (Brea Cyn Rd/SBD Co): HOV	\$40,0
84	Caltrans	35	Rte 60 R0.5/R21.5(5/Fairway Dr); Widen - HOV	\$334,0
85	Caltrans	16	Rte 605 0.0/ (Ora Co/Rte 105): HOV	\$15,4
86	Caltrans	73	Rte 605 17.4/20.2(60/10): HOV	\$8,5
87	Caltrans	74	Rte 605 20.2/25.8(10/210): HOV	\$8,2
88	Caltrans	70	Rte 605 5.1/8.4(91/105): Widen - HOV	\$5,4
89	Caltrans	71	Rte 605 8.4/9.6(105/5): Widen - HOV	\$1,7
90	Caltrans	72	Rte 605 9.6/17.4(5/60): Widen - HOV	\$8,3
91	Celtrans	14	Rte 71 R1.4/4.5 (Holt-Valley/Rte 60): Constr 6 Lane Fwy	\$220,0
92	Caltrans	76	Rte 710 18.4/23.3(105/5): Widen - +2 in	\$211,7
93	Caltrans	77	Rte 710 26.5/T30.6(10/110): Const New Fwy 6 Ln + HOV	\$486,2
94	Caltrans	75	Rte 710 4.7/6.8(Ocean Bl/1): Constr 6 Ln Fwy	\$27,0
95	Caltrans	13	Rte 710 T30.6/R32.7 (Rte 10/Rte 210): Const New Fwy 6 Ln + HOV+ R/W	\$643,0
96	Caltrans	8	Rte 91 R16.9/20.7 (Rte 605/Ora Co): HOV	\$10,0
97	Caltrans	38	Rte 91 R6.4/16.9(110/605): HOV	\$3,8
98	Caltrans	3	TOS 1: (Traffic Operations System) 5,10,101	\$34,0
99	Caltrans	4	TOS 2: 101,105,405	\$39,0
100	Caltrans	5	TOS 3: 210,605,710	\$42,0
101	Caltrans	6	TOS 4: 2,60,91,118,134	\$36,0
102	Caltrans	7	TOS 5: 14,57,110,170	\$35,0
103	Caltrans	1	Traffic Operations Center (TOC)	\$30,0
104	Carson	1	Sepulveda Blvd (Wilmington-Alameda)	\$33,0
105	Carson	2	Del Arno Bivd (Bridge-rt 405/Dominguez Ch)	\$15,0
106	Carson	3	Increase capacity-Rt 91: Central, Wilmington	\$1,5
107	Commerce	3	Atlantic Blvd underpass widening: Eastern to Telegraph (also County)	\$12,2
108	Commerce	4	Washington Boulevard TSM Improvements	\$4
109	Compton	5	Compton Bivd. at Alameda Railroad-widen	54
110	Compton	6	Compton Bivd. at Willowbrook Ave East, right and left turn bays	\$3
111	Compton	7	Compton Artesia & Alameda Connector Road; New Traffic Signal	5
112	Compton	8	Compton Greenleaf & Willowbrook New Traffic Signal	\$
113	Compton	9	Compton Replace Computer & Upgrade Software in Local Controllers	\$
114	Compton	10	Compton Atlantic & Alondra Bivd. Add Protected Left Turn bays	\$
115	Covina	7	Rail Station - L.A. to San Bern. Commute Line	\$1
116	Cudahy	11	Bridge-Florence Ave/LA River-widen	\$18,6
117	Culver City	5	Interchange improvements on Marina Freeway at Siauson Ave.	\$5,0
118	Culver City	6	Reconstruction of Culver Blvd. from city limit to Elenda Street	\$4,1
_	Culver City		Reconstruction of National Blvd. from Jefferson Blvd. to Washington Blvd.	\$4,1
_	Culver City		Reconstruction of Culver Blvd. from Duquesne Ave. to City Limit	\$4,1
	Culver City	+ +	Widening of Overland Ave. from Washington Blvd. to Venice Blvd.	\$2,0

	Agency	Proj No.	Project Location & Description	Total Cost (\$1000)
122	Culver City	10	Washington Blvd. Smart Corridor from Fairfax Ave. to 1405	\$2,000
123	Culver City	11	H405 to West City limit	\$1,100
124	Culver City	12	Connector Rd Jefferson Blvd./Sepulveda	\$1,507
125	Culver City	13	Intersection Improvements - Slauson/La Clenga	\$1,000
126	Culver City	14	Intersection Improvements - Jefferson/1405	\$1,000
127	Culver City	15	Intersection Improvements - Sepulveda/1405	\$500
128	Culver City	16	Intersection Improvements - Vencie/Sawtelle	\$500
129	Diamond Bar	1	Pathfinder @ Rte 57: widen bridge, 2 slg mod, 1 new sig (also County)	\$2,200
130	Downey	12	Lakewood Blvd/Firestone Blvd. Intersection Improvements	\$550
131	Downey	13	Lakewood Blvd. at S.P.R.R. Railroad Grade Separation	\$7,000
132	El Monte	9	Commuter Rail Station	\$2,000
133	El Monte	10	Garvey - ECL to WCL - Bus Turnouts	\$902
134	El Monte	11	Valley - WCL to ECL - Bus Turnouts	\$1,200
135	El Monte	12	Lower Azuza - WCL to ECL - Bus Turnouts	\$250
136	El Monte	13	Valley - Santa Anita to Granada - Widen	\$505
137	El Monte	14	Valley - Center to Tyler - Widen	\$315
138	El Monte	15	Valley - Tyler to Ramona - Widen	\$1,345
139	El Monte	16	Santa Anita & Garvey - Right-Turn Lanes	\$490
140	El Monte	17	Santa Anita - Right-Turn Lane - Ramona & RTD	\$260
141	El Monte	18	Ramona - ECL to WCL - Bus Turnouts	\$730
142	El Monte	19	Santa Anita - NCL to SCL - Bus Turnouts	\$655
143	El Segundo	1	Widen Sepulveda (between Grand/Rosecrans)	\$8,500
144	El Segundo	4	Traffic synchrononization-Rosecrans	\$128
145	El Segundo	5	Intersection Improvement-Aviation/Rosecrans	\$9,100
146	El Segundo	6	Widen Aviation (between Imperial/Rosecrans)	\$4,200
147	El Segundo	8	Douglas/Nash one-way couplet	\$2,500
148	El Segundo	9	Douglas Street Extension	\$8,370
149	El Segundo	10	Park/Ride Lot-Mariposa Station-Green Line	\$550
150	El Segundo	11	Traffic signal synchrononization-El Segundo Bivd	\$380
_	Gardena	_	Signal Preemption System	\$147
152	Gardena	13	Traffic Signals (Rosecrans-Western/Van Ness)	\$117
153	Gardena	14	Traffic Signals (Western-132nd/166th)	\$117
154	Gardena	15	Traffic Signals (Vermont-135th/168th)	\$117
155	Gardena	16	Traffic Signals (Normandie-132nd/166th)	\$117
156	Gardena	17	Traffic Signals (Van Ness-132nd/Marine)	\$117
157	Gardena	18	Traffic Signals (Van Ness-154th/Redondo Bch Bivd)	\$117
158	Glendale	7	Grand Central Commuter Station	\$2,000
159	Giendale		Transportation Center	\$17,000
_	Glendale		Traffic Signal System	\$600
_	Hawthorne	1	Widen Ints'n Rosecrans and Aviation	\$10,560
_	Hawthome		Widen Aviation: 33rd St. to Marine Ave.	\$647
_	Hawthome	3	Widen Rosecrans Av: Inglewood to 405	
100				\$500

SUPPLEMENT 5 - CAPITAL IMPROVEMENT PROGRAM CANDIDATE LIST

	Agency	Proj No.	Project Location & Description	Total Com (\$1000)
164	Hawthome	4	Signal Synch: Rosecrans Av	\$20
165	Hawthome	5	Signal Synch: Aviation Bl	\$10
166	Hawthome	6	Turn/Transition lanes Marine/Aviation	\$43
167	Hawthome	7	50 Signal Monitors	\$20
168	Hawthome	8	Signal Synch: Imperial Hwy	\$1
169	Hawthorne	9	Signal Synch: Hawthome Bl	\$20
170	Hawthome	10	Signal Synch: Marine Av	\$i
171	Hawthorne	11	Turn lanes: Inglewood Av/Rosecrans Av	\$15
172	Hawthome	12	Lane improvements Marine Av/Inglewood Av	\$17
173	Huntington Park	0	Signal mod @ var, locations - Phase III	\$9
174	Inglewood	2	La Brea Ave/Market St: Downtown couplet	\$3,9
175	Inglewood	19	Widen Arbor St, improve traffic signals	\$5,4
176	LA Cnty/City/LACTC	2	Grade separation on Imperial Highway at Wilmington Ave.	\$20,31
177	LA Cnty/Commerce	0	Grade sep. @ 6-leg inters. "Mixmaster": Atlantic, nr Rte 5	\$20,00
178	LACTC		Park/Ride Lots TBD County-wide	\$73,50
179	LACTC	2	Westside Commuter Bikeway Project	\$30,0
180	LACTC/CTS	3	Countywide TDM Capital Equipment	
181	Lancaster	10	Overpass-Ave L	\$10,00
182	Lancaster	11	Overpass-Ave H	\$9,0
183	Lancaster	12	Widen overpass-Ave H	\$6,0
184	Lancaster	13	Widen overpass-Ave M	\$6,00
185	Lancaster	14	Widen overpass-Ave G	\$6,0
186	Lancaster	15	Widen overpase-Ave L	\$6,00
187	Lancaster	16	Widen 10th St	\$1,00
188	Lancaster	17	Widen 10 St	\$50
189	Lancaster	18	Widen Sierra Hwy	\$1,00
190	Lancaster	19	Widen Sierra Hwy	\$2,00
191	Lancaster	20	Widen 10th St	\$1,0
192	Lancaster	21	Widen Sierra Hwy	\$2,00
193	Lancaster	22	Widen Ave I	\$1,00
194	Lancaster	23	Intersection-Sierra Hwy/Ave K	\$3,00
195	Lancaster	24	Intersection-10th St/Ave K	\$6,00
196	Lancaster	25	Intersection-10th St/Ave L	\$1,00
197	Lancaster	26	Intersection-Sierra/Ave I	\$4,00
198	Lancaster	27	Intersection-20th St/Ave J	\$1,00
199	Lancaster	28	Intersection-15th St/Ave K	\$1,00
200	Lancaster	29	Intersection-Sierra/Ave J	\$3,00
201	Lancaster	30	Intersection-Ave L/20th St	\$1,00
202	Lancaster		Intersection-Ave M/20th St	\$1,00
203	Lancaster		Intersection-Ave J/10th St	\$1,00
204	Lancaster		Intersection-Ave K/20th St	\$1,00
205	Lancaster		Intersection-Ave J/20th St	\$1,00

	Agency	Proj No.	Project Location & Description	Total Cost (\$1000)
206	Lancaster	35	Intersection-Ave M/Sierra	\$1,000
207	Lancaster	36	Park/Ride Lots (3)	\$4,500
208	Lancaster	37	Community Service Van Pool	\$260
209	Lancaster	38	Traffic Signal Coordination	\$450
210	Lancaster	39	Bike Lanes	\$129
211	Lancaster	40	Parking Restrictions	\$ 64
212	Lancaster	41	Medians	\$200
213	Lancaster	42	Traffic Operations Center	\$880
214	Lancaster	43	Bus Tumouts	\$120
215	Lancaster	44	Transit Vehicle Accomodations	\$200
216	Lancaster	45	Off Ramp-Rte 14/20th St	\$2,000
217	Lancaster	46	Off Ramp-Rte14/Ave H	\$2,000
218	Lancaster	47	Off Ramp-Rte 14/Ave I	\$2,000
219	Lancaster	48	Off Ramp-Rte 14/Ave J	\$2,000
220	Lancaster	49	Off Ramp-Rte 14/Ave K	\$2,000
221	Lancaster	50	Off Ramp-Rte 14/Ave L	\$2,000
222	Lancaster	51	Off Ramp-Rte 14/Ave M	\$2,000
223	Lancaster	52	Off Ramp-Rte 14/J-8	\$2,000
224	Lawndale	21	Left turn lanes (Hawthome Bl/Manhattan Bch Blvd)	\$150
225	Lawndale	22	Widen Inglewood Ave (at 1-405 railroad crossing)	\$600
226	Lawndale	23	Bus tumouts (Hawthorne Blvd)	\$50
227	Lawndale	24	Widen Hawthome Blvd	\$3,500
228	Long Beach	25	Grade separated intersection	\$36,000
229	Long Beach	26	Widen bridge-Seventh St	\$3,150
230	Long Beach	27		\$100,000
231	Long Beach	28	Widen Alamitos Ave, Ocean Blvd	\$4,000
232	Long Beach	29	Widen Alamitos Ave, 7th to PCH	\$4,700
233	Long Beach	30	Grade separation at Ocean/Alamitos	\$14,000
	Long Beach	31	Two off ramps from Ocean Blvd	\$15,000
235	Los Ang City	0	Valley Circle Blvd	\$1,000
	Los Ang City	1	8th/9th One-Way Couplet, Wilton PI to Harbor Fwy	\$1,000
237	Los Ang City	2	8th/9th one-way couplet, Kohler to Santee	\$200
	Los Ang City	3	1st, 4th St electronic reversible lane operation	\$3,800
239	Los Ang City	4	Seputveda Bi, Mulholland Dr to Santa Monica Bi, peak hour reversible lanes	\$3,000
	Los Ang City	5	6th/7th one-way, Harbor Fwy to Western, Western to Valencia	\$1,000
_	Los Ang City	6	Hollywood Bowl operational improvements	\$400
	Los Ang City	7	Maple/Los Angeles one-way, 5th to 21st	\$600
_	Los Ang City	8	N. Main & N. Spring one-way couplet, Sunset/Macy Sts. to College St	\$3,000
244	Los Ang City	9	Hope St one-way operation, Venice to Wilshire	\$1,000
245	Los Ang City	10	Cahuenga Bi W, Cahuenga/Wilcox one-way couplet to Barham Bi	\$2,500
245 246	Los Ang City	11	Broadway/Hill one-way couplet, 11th/12th to 39th	\$600
		 		
247	Los Ang City	12	One Way 3rd, 4th, 5th, 6th, 7th St One Way.	\$20,000

bs Ang City bs An	16 17 18 19 20 21 22 23 24 25	Olive/Grand one-way, 21st to Washington, 18th to 21st College/Alpine one-way couplet, Alameda to Figueroa Terrace 6th St, Kingsley to Oxford Broadway & Figueroa off-center operation, 39th to Manchester Smart Corridor (Santa Monica Fwy) Hollywood 1 ATSAC Victory Corridor West ATSAC Ventura Corridor 2B ATSAC Victory Corridor East ATSAC Wilshire-West ATSAC	\$60 \$20 \$30 \$60 4,20 6,60 4,70 9,56 5,40 10,50
bes Ang City bes Ang City be	15 16 17 18 19 20 21 22 23 24 25	6th St, Kingsley to Oxford Broadway & Figueroa off-center operation, 39th to Manchester Smart Corridor (Santa Monica Fwy) Hollywood 1 ATSAC Victory Corridor West ATSAC Hollywood 2 ATSAC Ventura Corridor 2B ATSAC Victory Corridor East ATSAC Witshire-West ATSAC	\$30 \$60 4,20 6,60 4,70 9,56 5,40 10,50
bs Ang City bs An	16 17 18 19 20 21 22 23 24 25	Broadway & Figueroa off-center operation, 39th to Manchester Smart Corridor (Santa Monica Fwy) Hollywood 1 ATSAC Victory Corridor West ATSAC Hollywood 2 ATSAC Ventura Corridor 2B ATSAC Victory Corridor East ATSAC Wilshire-West ATSAC	\$60 4,20 6,60 4,70 9,56 5,40 10,50
bes Ang City	17 18 19 20 21 22 23 24 25	Smart Corridor (Santa Monica Fwy) Hollywood 1 ATSAC Victory Corridor West ATSAC Hollywood 2 ATSAC Ventura Corridor 2B ATSAC Victory Corridor East ATSAC Wilshire-West ATSAC	4,20 6,60 4,70 9,56 5,40 10,50
bs Ang City bs Ang City	18 19 20 21 22 23 24 25	Hollywood 1 ATSAC Victory Corridor West ATSAC Hollywood 2 ATSAC Ventura Corridor 2B ATSAC Victory Corridor East ATSAC Wilshire-West ATSAC	6,60 4,70 9,56 5,40 10,50
bs Ang City bs Ang City	19 20 21 22 23 24 25	Victory Corridor West ATSAC Hollywood 2 ATSAC Ventura Corridor 2B ATSAC Victory Corridor East ATSAC Wilshire-West ATSAC	6,60 4,70 9,56 5,40 10,50
bs Ang City bs Ang City	20 21 22 23 24 25	Hollywood 2 ATSAC Ventura Corridor 2B ATSAC Victory Corridor East ATSAC Wilshire-West ATSAC	4,70 9,56 5,40 10,50
bs Ang City bs Ang City	21 22 23 24 25	Ventura Corridor 2B ATSAC Victory Corridor East ATSAC Wilshire-West ATSAC	9,56 5,40 10,50
bs Ang City bs Ang City bs Ang City bs Ang City bs Ang City bs Ang City bs Ang City	22 23 24 25	Victory Corridor East ATSAC Wilshire-West ATSAC	5,40
os Ang City os Ang City os Ang City os Ang City os Ang City os Ang City	23 24 25	Wilshire-West ATSAC	10,50
os Ang City os Ang City os Ang City os Ang City	24 25		
os Ang City os Ang City os Ang City	25	Wilshire-East ATSAC	
os Ang City os Ang City			9,40
a Ang City		Mid-Wilshire ATSAC	9,70
	26	Central City East ATSAC	11,61
os Ang City	27	Mar Vista ATSAC	7,45
	28	Los Feliz/Silverlake ATSAC	3,31
s Ang City	29	San Diego Fwy corridor ATSAC	8,75
os Ang City	30	Harbor ATSAC	5,92
s Ang City	31	North Hollywood ATSAC	7,43
os Ang City	32	Reseda-Canoga ATSAC	5,41
os Ang City	33	West Adams ATSAC	5,26
os Ang City	34	Coliseum2 ATSAC	3,02
os Ang City	35	Slauson-Florence1 ATSAC	7,55
os Ang City	36	Harbor-Gateway1 ATSAC	6,01
os Ang City	37	Harbor-Gateway2 ATSAC	3,81
os Ang City	38	Slauson-Florence2 ATSAC	6,43
os Ang City	39	Mid Valley ATSAC	3,64
os Ang City	40	Huntington Dr ATSAC	3,59
		Eagle Rock ATSAC	6,81
os Ang City	42	118 Freeway Corridor ATSAC	5,23
			5,39
			4,95
			2,65
as Ang City			I
os Ang City			<u> </u>
			4,00
			1,60
			4,10
			10,20
	<u> </u>		80 60
	s Ang City s Ang City	s Ang City30s Ang City31s Ang City31s Ang City32s Ang City33s Ang City34s Ang City34s Ang City35s Ang City36s Ang City36s Ang City37s Ang City38s Ang City39s Ang City39s Ang City40s Ang City41s Ang City41s Ang City42s Ang City43s Ang City44s Ang City45s Ang City46s Ang City47s Ang City48s Ang City49a Ang City50s Ang City51s Ang City51s Ang City52s Ang City53	a Ang City 30 Harbor ATSAC a Ang City 31 North Hollywood ATSAC a Ang City 32 Reseda-Canoga ATSAC s Ang City 33 West Adams ATSAC s Ang City 34 Collseum2 ATSAC s Ang City 35 Slauson-Fiorence1 ATSAC s Ang City 36 Harbor-Gateway1 ATSAC s Ang City 36 Harbor-Gateway1 ATSAC s Ang City 37 Harbor-Gateway2 ATSAC s Ang City 38 Slauson-Florence2 ATSAC s Ang City 38 Slauson-Florence2 ATSAC s Ang City 39 Mid Valley ATSAC s Ang City 39 Mid Valley ATSAC s Ang City 40 Huntington Dr ATSAC s Ang City 41 Eagle Rock ATSAC s Ang City 42 118 Freeway Corridor ATSAC s Ang City 42 118 Freeway Corridor ATSAC s Ang City 43 Northeast Valley ATSAC s Ang City 44 Platt Ranch ATSAC s Ang City 45 Sunset ATSAC s Ang City 46 Centra

ч

ł

	Agency	Proj No.	Project Location & Description	Total Cost (\$1000)
290	Los Ang City	55	Expand Commuter Buses CBD	1,100
291	Los Ang City	56	Union Station, Bus Plaza	700
292	Los Ang City	57	Additional funds for Valtrans	260
293	Los Ang City	58	Commuter Express Expansion outside of Downtown	3,100
294	Los Ang City	59	Dash/Valley	900
295	Los Ang City	60	DASH/Boyle Heights	1,000
296	Los Ang City	61	Victory BI commuter express buses	2,000
297	Los Ang City	62	Expand Commuter Buses CCW	39,100
298	Los Ang City	63	Flyaway remote passenger terminals/Park & Ride to LAX	5,000
299	Los Ang City	64	Union Station, El Monte Busway access	10,000
300	Los Ang City	65	DASH/Echo Park	1,000
301	Los Ang City	66	DASH/North East L.A.	1,000
302	Los Ang City	67	DASH/Wilmington	1,000
303	Los Ang City	68	Owensmouth Av transit way	150
304	Los Ang City	69	Highland Avenue HOV Lane	4,000
305	Los Ang City	70	Glendale Bi reversible HOV lanes	1,000
306	Los Ang City	71	S-M BI, BH city limit to Sepulveda BI, 1-way couplet median for HOV lane	27,800
307	Los Ang City	72	Los Angeles Transit and HOV Pref. Signalization	10,000
308	Los Ang City	73	Hill-Olive St HOV Lanes	200
309	Los Ang City	74	Terminal Island Container Transfer Facility	16,744
310	Los Ang City	75	PIER 300 ICTF & rall improvements	24,500
311	Los Ang City	76	Airport multimodal transportation center/People Mover system	200,000
312	Los Ang City	77	Bixel/Wilshire Station	
313	Los Ang City	78	LRT-Biue Line Downtown Connector	
314	Los Ang City	79	LRT-Coliseum/USC extension	
315	Los Ang City	80	LRT-Rail/Transitway on Exposition	
316	Los Ang City	81	Metro 7th ST & Bixel	117,600
317	Los Ang City	82	Metro Rail-Bixel/Witshire Station	
318	Los Ang City	83	Red Line 4th St. Extension	
319	Los Ang City	64	Giendale/LA extension LRT	
320	Los Ang City	85	Union Station, Metro Rail portal improvement and passenger tunnel	
321	Los Ang City	86	Union Station/Commercial St bridge connection for LRT & commuter rail	
322	Los Ang City	87	CBD-Union Station-Dodger Stadium, transit/trolley connection	
323	Los Ang City	88	Rail/Transitway on Exposition LRT	
324	Los Ang City		Pasadena/LA Line LRT	
325	Los Ang City	_	Sylmar Multimodal Station	6,000
326	Los Ang City	91	Van Nuys Multimodal Station	6,000
327	Los Ang City	92	LRT-Pasadena/LA line	_
	Los Ang City	93	Metro Rail-MOS II	
329	Los Ang City	94		-+
320	Los Ang City	95	Metro Rail-Red line 4th St Extension	
	<u> </u>	_		6 000
331	Los Ang City	96	Simi Valley Multmodal Station	6,000

PAGE	S5-9
------	------

	Agency	Ртој No.	Project Location & Description	Total Cos (\$1000)
332	Los Ang City	97	Blue Line Downtown Connector LRT	
333	Los Ang City	98	LRT-Glendale/LA extension (reconfigured)	-
334	Los Ang City	99	Chatsworth Multimodal Station	6,00
335	Los Ang City	100	Union Station & approaches, Commuter rail/AMTRAK/LRT trackwork	
336	Los Ang City	101	Union Station, commuter rail/LRT concourse & platform improvements	
337	Los Ang City	102	Coliseum/USC ext. LRT	
338	Los Ang City	103	Victory BI Light Rail Transit	1
339	Los Ang City	104	Ridestar	
340	Los Ang City	105	Smartcard	
341	Los Ang City	106	Guaranteed Ride Home Program	
342	Los Ang City	107	Sylmar Park and Ride Lot Acquisition	3,0
343	Los Ang City	108	Marina Park and Ride Lot Acquisition	3,0
344	Los Ang City	109	Encino Park and Ride Lot Expansion	3,0
345	Los Ang City	110	Veteran Administration (West LA), acquisition of park & ride lot	3,0
346	Los Ang City	111	Interim Lincoln BI improvement, 6 lanes with 100-space parking structure	8,7
347	Los Ang City	112	CCW Transit way Mall (Emerald to 1st St)	9,7
348	Los Ang City	113	CCW Transit way RTE 101 to 1st St	32,4
349	Los Ang City	114	El Monte Busway HOV Lane Connection	70,0
350	Los Ang City	115	El Monte Busway HOV lanes (to Hollywood Fwy HOV lanes, buses into CBD)	65,0
351	Los Ang City	116	CCW Transit way 7th St to 23rd St	72,2
352	Los Ang City	117	San Diego Fwy, Venice BI to Ventura BI, provide HOV lanes	800,0
353	Los Ang City	118	Santa Ana Fwy, HOV lanes	900,0
354	Los Ang City	119	Golden State Fwy	900,0
355	Los Ang City	120	Ventura Fwy HOV Lanes, 1405 to Wamer Center, add HOV lanes & ramps	800,0
356	Los Ang City	121	Glendale Fwy HOV lanes	300,00
357	Los Ang City	122	Hollywood Freeway HOV Lanes	900,0
358	Los Ang City	123	Long Beach Fwy, HOV lanes	800,00
359	Los Ang City	124	Pomona Fwy HOV Lanes	1,500,0
360	Los Ang City	125	Union Station-LAX HOV lanes	
361	Los Ang City	126	Arbor Vitae St interchange on I-405	36,84
362	Los Ang City	127	Ate 110 8th St Ramps	24,10
363	Los Ang City	128	Ventura Fwy & Canoga Av interchange improvements	14,00
364	Los Ang City	129	Ate 110 4th St Ramps	9,10
365	Los Ang City	130	Golden State Fwy, +5/San Bernardino interchange	30,00
366	Los Ang City	131	Pite 110 7th St ramps	21,1
367	Los Ang City	132	Ventura Fwy & DeSoto Av interchange improvements	13,0
368	Los Ang City	133	Santa Monica Fwy, Hoover St	6,00
	Los Ang City		Ventura Fwy & Topanga Cyn Bl, interchange upgradings	15,0
	Los Ang City		Rte 110 Improve S/B 110 Fwy 2nd St off-ramp	13,5
	Los Ang City	_	Rte 110 Olympic Bl Ramps	7,5
	Los Ang City		Rte 110 2nd St ramp improvements	13,50
	Los Ang City		Rte 110 5th St bridge	7,20

2.1

.

	Agency	Proj No.	Project Location & Description	Total Cost {\$1000}
374	Los Ang City	139	Rte 110 6th St ramp modifications	5,300
375	Los Ang City	140	Ventura Fwy & Fallbrook Av interchange improvements	14,000
376	Los Ang City	141	Rte 110 Beaudry ramps	1,100
377	Los Ang City	142	Rte 110 Wilshire Bl. Ramp Mod	8,400
378	Los Ang City	143	Rte 101 1-5 to Pasadena Fwy ramp improvements	15,000
379	Los Ang City	144	Rte 110/101 add 1/2 diamond ramp & add s/b to w/b connector	6,000
380	Los Ang City	145	Rte 110 9th St off-ramp widening	1,100
381	Los Ang City	146	East LA Interchange Ramp Modification	90,000
382	Los Ang City	147	Rte 101 Fwy, Alameda St 10 10 Fwy, modify ramps, extend frontage roads	17,000
383	Los Ang City	148	Simi Valley Fwy interchange improvements at Winnetka Av	6,000
384	Los Ang City	149	I-10 Hoover St & Union Av ramps	500
385	Los Ang City	150	Simi Valley Fwy interchange improvements at Balboa Bl	7,000
386	Los Ang City	151	Simi Valley Fwy interchange improvements at Desoto Av	7,000
387	Los Ang City	152	Simi Valley Fwy interchange improvements at Tampa Av	6,000
388	Los Ang City	153	Pasadena Fwy +5/110 ALameda Corridor	90,000
389	Los Ang City	154	Santa Ana Fwy, East LA interchange	130,000
390	Los Ang City	155	Hollywood Fwy, 101/Beaudry ramps	4,000
391	Los Ang City	156	Simi Valley Fwy interchange improvements at Reseda Bl	13,000
392	Los Ang City	157	H405 N/B ramps at Centinela Av	12,750
393	Los Ang City	158	Olympic BI/I-10 ramps	7,000
394	Los Ang City	159	Barham BI S/B Hollywood Fwy ramps, rebuilding	7,000
395	Los Ang City	160	Reconstruct 11th St/Blaine St S/B 110 Fwy on-ramp	5,300
396	Los Ang City	161	Pasadena Fwy I-5/110 Interchange	30,000
397	Los Ang City	162	Long Beach Fwy, Route 710 gap closure	3,000,000
398	Los Ang City	163	Rte 101 Add one lane each dir from Vermont Av to 4-level I/C	20,200
399	Los Ang City	164	Ventura Fwy, E/O Topanga Cyn, widen to 5 lanes in both directions	800,000
	Los Ang City	165	Ventura Fwy, W/O Topanga Cyn widen to 4 lanes in both directions	700,000
401	Los Ang City		Hollywood Fwy, Cahuenga Pass widening	\$20,000
	Los Ang City		Marina Fwy, extend from Culver Bi to Lincoln Bi	\$18,000
403	Los Ang City		Simi Valley Fwy E/B, Tampa Av to Reseda Bł, add auxiliary lane	\$700,000
404	Los Ang City	<u> </u>	Badger Av bridge rehab	\$22,932
405	Los Ang City		Imperial Highway/Wilmington Av grade separation	\$20,319
406	Los Ang City		96th St/Sepulveda Bl overcrossing	\$12,865
407	Los Ang City	\leftarrow	Sepulveda Bl & Wilshire Bl separate grade crossing	\$11,000
408	Los Ang City			\$11,000
		-		
	Los Ang City		Culver Bl Bridge over Ballona Creek	\$6,044
410	Los Ang City		New Dock St grade separation	\$10,736
411	Los Ang City		Roscoe Bi grade separation east of Balboa Bi	\$11,000
	Los Ang City		Redondo Junction Grade Separation	\$11,000
	Los Ang City		New Connector Bridge, Cahuenga BI E to Cahuenga BI	\$6,000
414	Los Ang City	179	Highland & Franklin - improve intersection	\$1,200
415	Los Ang City	180	Venice Bl improvement at Lincoln Bl	\$7,000

	Agency	Proj No.	Project Location & Description	Total Con (\$1000)
416	Los Ang City	181	Venice BI & Robertson BI Intersection improvement	\$4,5
417	Los Ang City	182	Alameda St & 1st St intersection improvement	\$4,5
418	Los Ang City	. 183	Alameda St & Temple St intersection improvement	\$4,5
419	Los Ang City	184	Balboa BI Bridge widening at LA River	\$1,7
420	Los Ang City	185	Avenue of the Stars/Santa Monica BI Intersection improvement	\$4,5
421	Los Ang City	186	Sepulveda BI/Lincoln BI grade separation	\$10,0
422	Los Ang City	187	Olympic BI/Beverly Glen BI intersection improvement	\$4,5
423	Los Ang City	188	Westwood BI & Olympic BI intersection improvement	\$4,5
424	Los Ang City	189	Centinela Av/Short Av intersection	\$5
425	Los Ang City	190	Santa Monica BI/Beverly Glen BI intersection improvement	\$4,5
426	Los Ang City	191	Sepulveda Bl & Olympic Bl Improvement	\$4,5
427	Los Ang City	192	Culver BI/Walsh Av and /Westlawn Av intersections	\$5
428	Los Ang City	193	Lincoln BI, Marina Expwy to North of Bali Wy	\$4,5
429	Los Ang City	194	Rinaldi St & Balboa Bl improvements	\$4,5
430	Los Ang City	195	Robertson BI/Olympic BI intersection improvement	\$4,5
431	Los Ang City	196	Balboa Bi at Sesnon Bi improvement	\$4,5
432	Los Ang City	197	Yarnell St at Foothill Fwy improvements	\$4,5
433	Los Ang City	198	Desoto Av widenings	\$4,5
434	Los Ang City	199	Rinaldi St & De Soto Av improvements	\$4,5
435	Los Ang City	200	Washington BI improvement at Lincoln BI	\$4,5
436	Los Ang City	201	Wilshire BI & San Vicente BI intersection improvement	\$4,5
437	Los Ang City	202	Fairfax Av & 3rd St intersection improvement	\$4,5
438	Los Ang City	203	Tampa Av & Parthenia St, separate W/B RT lane	\$4,5
A39	Los Ang City	204	Pico Bl & Overland Av intersection improvement	\$4,5
440	Los Ang City	205	Barham BI Bridge widening at Hollywood Fwy	\$6,4
441	Los Ang City	206	Wilshire Bi & Falrfax Av intersection improvement	\$4,5
442	Los Ang City	207	Robertson BI/Pico BI Intersection improvement	\$4,5
443	Los Ang City	208	Winnetka Av & Corbin Av, signalization	\$4,5
444	Los Ang City	209	Winnetka Av & Simi Valley Fwy, signalization	\$4,50
445	Los Ang City	210	Tampa Av & Devonshire St, intersection improvements	\$4,5
446	Los Ang City	211	Canoga Av at Ventura Bl improvements	\$4,50
447	Los Ang City	212	Fairfax Av & 6th St intersection improvement	\$4,50
48	Los Ang City	213	Wilshire Bi & Ogden Av Intersection improvement	\$4,50
49	Los Ang City	214	La Cienega Bi & Rodeo Rd Intersection improvement	\$4,5
50	Los Ang City	215	Wilshire Bi & Crescent Heights BI intersection improvement	\$4,5
151	Los Ang City	216	Chatsworth St and De Soto Av	\$4,5
52	Los Ang City	217	Rinaldi St & Zelzah Av improvements	\$4,50
53	Los Ang City	218	Chatsworth St and Reseda Bl	\$4,50
54	Los Ang City	219	Jefferson Bl & Rodeo Rd/Higuera St intersection improvement	\$4,5
155	Los Ang City	220	Canoga Avenue/Oxnard Bl improvements	\$4,5
56	Los Ang City	221	Devonshire St and De Soto Av	\$4,50
57	Los Ang City	222	Jefferson BI & National BI intersection improvement	\$4,50

۰, r

...

	Agency	Proj No.	Project Location & Description	Total Cost (\$1000)
458	Los Ang City	223	Balboa Bridge widening over Golden State Fwy improvement	\$5,000
459	Los Ang City	224	Chatsworth St and Tampa Av	\$4,500
460	Los Ang City	225	Sesnon Bi and Balboa Bi	\$4,500
461	Los Ang City	226	Devonshire St and Mason Av	\$4,500
462	Los Ang City	227	San Vicente Bl & La Cienega Bl Intersection Improvement	\$4,500
463	Los Ang City	228	Alameda/N. Main triangle, Alameda/N. Main to Vignes, improvements	\$4,500
464	Los Ang City	229	Arbor Vitae St, widen to 6 lanes from Airport BI to new I-405 interchange	\$6,222
465	Los Ang City	230	Culver BI, widen to 6 lanes from Marina Fwy to Sepulveda BI	\$43,419
466	Los Ang City	231	Rinaldi St & Reseda Bl improvements	\$4,500
467	Los Ang City	232	Mulholiand Dr & Remerton Dr, intersection improvement	\$4,500
468	Los Ang City	233	Rinaldi St & Wilbur Av improvements	\$4,500
469	Los Ang City	234	Reconstruct Culver BI/Lincoln BI interchange	\$11,564
470	Los Ang City	235	Tampa Av & Rinaldi St, intersection improvements	\$4,500
471	Los Ang City	236	Foothill Bi/Yarnell St improvements	\$4,500
472	Los Ang City	237	San Vicente BI & Fairfax Av & 3rd St intersection improvement	\$4,500
473	Los Ang City	238	Chatsworth St and Mason Av	\$4,500
474	Los Ang City	239	Chatsworth St and Canoga Av	\$4,500
475	Los Ang City	240	Alameda Consolidated Corridor Interchange Improvements	\$40,000
476	Los Ang City	241	Alameda Consolidated Corridor Grade Seperation @ATSFRR	\$40,000
477	Los Ang City	-	Alameda St, Rt 91 to Laurel Park Rd, widening & grade separation	\$40,000
478	Los Ang City		Alameda CBD Bypass Art Widening	\$12,000
479	Los Ang City	244	Alameda/South CBD Connection	\$12,000
480	Los Ang City	245	Union Station, Alameda St pedestrian grade separation	\$2,000
481	Los Ang City		Children's Museum to Olvera St, 101 Fwy pedestrian grade separation	\$2,000
482	Los Ang City		Marchessault St, N. Main St to Sunset BI, pedestrian St	\$2,000
483	Los Ang City	+	Pedestrian connection across Harbor Fwy at Maryland St	\$2,000
484	Los Ang City		Overland widening: Washington to Regent	\$3,660
485	Los Ang City		Overland widening: Regent to Palms	\$3,976
486	Los Ang City	-	Vermont, Monroe to Oakwood	\$2,500
487	Los Ang City	252	Venice BI, Lincoln BI to Pacific Av	\$10,808
488	Los Ang City	253	Imperial Hwy S/S, Mona to Croesus	\$250
489	Los Ang City	254	Devonshire St, Zelzah to Reseda	\$600
	Los Ang City	255	Sepulveda Tunnel Capacity Improvements	\$90,000
491	Los Ang City	256	Lincoln Bl, widen to 8 lanes from Marina Fwy to Venice Bl	\$3,903
492	Los Ang City	257		\$6,966
493	Los Ang City	258	DeSoto Bridge widening, LA River	\$1,800
	Los Ang City	259	Westwood BI, Mississippi to Pico	\$1,100
495	Los Ang City	260	Westwood Bl, Santa Monica Bl to Mississippi	\$1,500
496	Los Ang City	260	Alameda St, Arcadia St to College St, reconstruction	
490		201 262		\$4,500
498	Los Ang City		Victory BI, high flow arterial	\$8,000
_			Westchester Pkwy, widen to 6 lanes from Sepulveda Westway to E/O Sep E'way	\$3,160
499	Los Ang City	264	Imperial Hwy, widen to 6 lanes from Sepulveda Bi to Pershing Dr.	\$3,068

-

. . . .

	Agency	Proj No.	Project Location & Description	Total Cos (\$1000)
500	Los Ang City	265	Alameda St, 25th to 41st	\$1,50
501	Los Ang City	266	La Brea Av. Btwn Franklin and Sunset	\$7,00
502	Los Ang City	267	Reseda Bl Bridge widening at LA River	\$1,0
503	Los Ang City	268	Temple St & Seventh St, improve to modified secondary highway standards	\$7,0
504	Los Ang City	269	Olympic Blvd, Jog Elimination	\$25,0
505	Los Ang City	270	Lincoln BI, Marina Fwy to Maxella	\$3
506	Los Ang City	271	Pico Bl, Av of the Stars to Fox Hills Dr route improvement	\$7,0
507	Los Ang City	272	Highland Bi from Franklin Av to Melrose Av Widening	\$30,0
508	Los Ang City	273	4th St & 5th St-Witmer St to Fwy, improve to 1-way 2ary hwy standards	\$13,0
509	Los Ang City	274	Admiralty Wy, extend 4-lane secondary hwy from Jefferson BI to Lincoln BI	\$2,9
510	Los Ang City	275	Alameda St/N Spring, Elmyra to Arcadia	\$3,0
511	Los Ang City	276	Ventura BI specific plan improvements	\$167,1
512	Los Ang City	277	La Cienega, widen to 6 lanes from Imperial Hwy to Arbor Vitae St	\$1,79
513	Los Ang City	278	Topanga Cyn Bl, high flow arterial	\$3,00
514	Los Ang City	279	96th St-Bellanca Av, improve to secondary hwy status	\$4,6
515	Los Ang City	280	Westchester Pkwy and related improvements	\$28,3
516	Los Ang City	281	Olympic BI, Albany to LA River	\$11,0
517	Los Ang City	282	Valley Circle, Mulholland, Ventura Bi	\$1,0
	Los Ang City		Lincoln BI, widen to 6 lanes from Venice BI to Santa Monica city limits	\$9,4
519	Los Ang City	284	Lincoln BI, widen to 8 lanes from Westchester Pkwy to Hughes Wy	\$9,70
520	Los Ang City	285	De Soto Av from ex. term. to wiy sp. plan bndry	\$20,00
521	Los Ang City		DE Soto Av from Ventura Fwy to Simi Valley Fwy	\$20,00
522	Los Ang City	-+	Figueroa St, 21st St to 11th St	\$7,00
523	Los Ang City	-	Vignes St, 101 Fwy to Macy St, realignment, improvement	\$6,0
524	Los Ang City	-	Centinela Av widening, Washington Bi-Short Av	\$2,2
525	Los Ang City	_	N Spring St viaduct, repair bridge	\$1,20
	Los Ang City		Winnetka Av, improve to secondary	\$7,0
_	Los Ang City	_	Century Bi, Alameda to Wilmington	\$7,90
	Los Ang City		Temple St, widen N/S Alameda St to Vignes St	\$60
	Los Ang City	-+	Interim Lincoln Bl improvement, 6 lanes with 100-space parking structure	\$8,78
	Los Ang City	_	Sta Monica Bi, Hollywood Fwy to La Brea Av	\$90,00
531	Los Ang City		Topanga Cyn Bl critical elements/surface widenings	\$17,00
	Los Ang City	_	Topanga Cyn Bi Devonshire St to Sirni Valley Fwy	\$17,00
533	Los Ang City		Macy St, widen from Vignes St to Ramirez St	\$80
	Los Ang City		Westside High Flow Arterial on Vermont	\$18,00
	Los Ang City		Beverly BI/First St & Second St, improve to modified major hwy standards	\$12,00
536	Los Ang City		Session Bi bridge over Aliso Canyon	\$12,00
530 537	Los Ang City		Bay St bridge over Ballona Creek	
				\$4,83
	Los Ang City	+ +	Cahuenga Frontage Road	\$3,00
	Los Ang City		Centinela Av, widen to 6 lanes from Sepulveda BI to National BI	\$27,37
540	Los Ang City	-++	Francisco St improvement	\$3,00
541	Los Ang City	306	Canoga Av, widen from 4 to 6 lanes	\$19,0

	Agency	Proj No.	Project Location & Description	Total Cost {\$1000}
542	Los Ang City	307	Barham Bl, Cahuenga Bl to Forest Lawn Dr, widening	\$30,000
543	Los Ang City	308	La Tijera, widen to 6 lanes from Airport BI to La Cienega BI	\$2,579
544	Los Ang City	309	Corbin Av & Lassen St improvements	\$4,500
545	Los Ang City	310	Overland Av, N/O Santa Monica Fwy to S/O Santa Monica Fwy improvement	\$12,000
546	Los Ang City	311	Burbank BI, widen W/B lane from 2 to 3 lanes	\$12,000
547	Los Ang City	312	Realignment of "B" St	\$18,000
548	Los Ang City	313	Santa Fe/Center St, 4th St to Vignes St, Eastside Corridor	\$7,000
549	Los Ang City	314	Aviation BI, widen to 6 lanes from Arbor Vitae St to Imperial Hwy	\$8,256
550	Los Ang City	315	Los Angeles St at Alameda St, realignment	\$18,000
551	Los Ang City	316	Rinaldi St, Simi Valley Fwy to De Soto Av, new roadway segments	\$18,000
552	Los Ang City	317	3rd & 6th-Witmer to Harbor Fwy, improve to 1-way mod. 2ary hwy standards	\$7,000
553	Los Ang City	318	Witmer St/Hartford Av S/O Wilshire BI/Blaine Av, 3rd to 12th, improvements	\$8,000
554	Los Ang City	319	N. Main St. Bridge, reconstruction	\$5,000
555	Los Ang City	320	Alrport Bl, extend south of Century Bl under LAX runways to Imperial Hwy	\$119,508
556	Los Ang City	321	Sepulveda BI, Mulholland Dr to National BI, widening	\$18,000
557	Los Ang City	322	Vanowen St, widen from 2 to 3 lanes in the E/B direction	\$7,000
558	Los Ang City	323	Sesnon BI extension W/O Tampa Av	\$30,000
559	Los Ang City	324	Glendale BI, Hollywood Fwy to First St, improve to mod. major hwy standards	\$18,000
560	Los Ang City	325	World Way West widening	\$4,365
561	Los Ang City	326	N. Spring St, College St to I-5, widening & reconstruction	\$18,000
562	Los Ang City	327	Mission Rd. Macy to 4th St. Widen to 6 Lanes	\$12,000
563	Los Ang City	328	Corbin Av, N/O Devonshire St to Sly boundary of PR specific plan area	\$45,000
564	Los Ang City	329	Mission Rd. 4th St. to 7th St.	\$12,000
565	Los Ang City	330	Beaudry Av, improve to 6 lane major bet Sunset Bl & its new terminus at 4th	\$24,800
566	Los Ang City	331	Beaudry Av, Sunset BI to Fourth St, improvements	\$12,000
567	Los Ang City	332	8th St & 9th S-Witmer to Harbor Fwy, improve to 1-way, 2ary hwy standards	\$7,000
568	Los Ang City	333	East/West Internal Commercial St extension, Mason Av to De Soto Av	\$12,000
569	Los Ang City	334	Oxnard St, widen from 4 to 6 lanes	\$20,000
570	Los Ang City	335	Foothill BI, Yarnell St to Balboa BI, widening	\$18,000
571	Los Ang City	336	Lucas Av, improve to 6-lane 2-way major 1st-6th, modified major 6th-7th	\$12,400
572	Los Ang City	337	Winnetka Av, construct from Sesnon BI to the Simi BI Fwy	\$90,000
573	Los Ang City	338	Bixel St, Crown Hill to Wilshire BI, improvements	\$8,000
574	Los Ang City	339	Bixel St, First St to Second St, improve to secondary highway standards	\$9,000
575	Los Ang City	340	Bixel St, Wilshire BI to Eighth St, improve to major highway standards	\$9,000
576	Los Ang City	341	Victory BI critical elements/surface widenings	\$23,000
577	Los Ang City	342	Winnetka Av, Sesnon BI to Simi Valley Fwy	\$90,000
578	Los Ang City	343	Arcadia St, N. Main St to Los Angeles St, widening for bus access	\$7,000
579	Los Ang City	344	Broadway, N. Spring direct connection	\$12,000
	Los Ang City	345	Angelena St, improved to collector street standards	\$7,000
_	Los Ang City	346	Connector Road(s), Balboa Bi to San Fernando Rd, improvement	\$4,000
582	Los Ang City	347	Cahuenga Bl. Franklin to Sunset	\$12,000
583		348	Boylston St, Colton St to First St, to be vacated	\$3,000

.

	Agency	Proj No.	Project Location & Description	Total Cos (\$1000)
584	Los Ang City	349	Mason Av extension N/O Simi Valley Fwy	\$40,00
585	Los Ang City	350	Additonal Bridge LA River (Temple or 4th ST.)	\$60,0
586	Los Ang City	351	Boylston St, 6-lane major 1st-7th, extension to Wilshire & new fwy ramps	\$12,4
587	Los Ang City	352	Aliso Cyn Bridge, Sesnon Bl bet Balboa Bl & Reseda Bl	\$20,0
588	Los Ang County	0	Widen Santa Monica Blvd. (405 to Beverly Hills City Limit)	\$30,0
589	Los Ang County	0	Valley Bivd. (710 to Santa Anita)	\$6,6
590	Los Ang County	1	Sig Synch: Rosecrans Ave. (Highland Ave. to Beach Blvd.)	\$9
591	Los Ang County	1	Extend Marina Expressway (Lincoln Blvd. to Washington Street)	\$35,0
592	Los Ang County	1	Widen bridge: Peck Road at 605 Freeway	\$3,6
593	Los Ang County	1	Widen and improve Valley and Fremont Ave. intersection	\$4,0
594	Los Ang County	2	Widen bridge and build Park-n-ride lot: Pathfinder Rd, at 57 Freeway	\$2,0
595	Los Ang County	2	Sig Synchronization on Beliflower (Lakewood Blvd, to 7th St.)	\$1,0
596	Los Ang County	3	Sig Synch: Main St, Las Tunas Dr, Live Oak Av, Arrow Hwy (Huntington to Mills)	\$2,1
597	Los Ang County	3	Grade separation at Siauson Ave. at Alameda St. (over rali)	\$15,3
598	Los Ang County	3.05	Grade separation over rail - Florence Ave. at Alameda St.	\$13,7
599	Los Ang County	3.06	Grade separation on El Segundo Bivd. (over rall)	\$10,7
600	Los Ang County	3.07	Realign and widen Hacienda Blvd. (South Glenmark to Orange County Line)	\$19,0
601	Los Ang County	3.08	Widen Santa Fe and Alameda (Artesia Freeway to Del Arno)	\$3,2
602	Los Ang County	3.09	Widen Santa Fe and Alameda (Del Amo to 405 Freeway)	\$5,8
603	Los Ang County	3.10	Widen Santa Fe and Alameda (405 to Lomita)	\$4,3
604	Los Ang County	3.11	Grade separation on Gage Ave. (over rail)	\$10,0
605	Los Ang County	3.12	Grade separation on Nadeau St. (over rail)	\$10,0
606	Los Ang County	3.13	Grade separation on 92nd St. (over rall)	\$10,0
607	Los Ang County	3.14	Widen and Reconstruct Western Ave. (Del Arno to Carson)	\$2,2
608	Los Ang County	3.15	Widen Admirality Way (Via Maria to Fiji Way)	\$4,3
609	Los Ang County	3.16	Widen Norwalk Blvd. (Coolhurst to Choisser)	\$3,6
610	Los Ang County	3.17	Realign and Reconstruct Stocker St. (West of Fairfax to La Brea)	\$3,5
611	Los Ang County	3.18	Grade separation on Stocker St. over La Clenega	\$3,3
612	Los Ang County	3.19	Realign and Reconstruct Stocker St. (Freshman to La Cienega)	\$5,9
613	Los Ang County	3.20	Park-&-Ride lot Nogales St (unincorportated area)	\$5,04
614	Los Ang County	3.21	Park-&-Ride lot Foothill and Baseline-City of La Verne	\$3,00
615	Los Ang County	3.22	Park-&-Ride lot Crossroads Pky-City of Industry	\$4,4
616	Los Ang County	3.23	Widen Del Arno Bivd. (Normandie Ave. to Vermont Ave.)	\$6,00
617	Los Ang County	3.24	Garvey Channelization: Atlantic to New (also Monterey Pk)	\$1,10
618	Los Ang County	3.25	Widen and Reconstruct Beverly Blvd. (Maple to Montebello)	\$2,2
619	Los Ang County	4	Grade separation on Slauson Ave. at Long Beach Ave. (under rall)	\$14,64
620	Los Ang County		Sig Synch - Huntington Dr, Foothill Bl, Alosta Av (Sunset - Base Line)	\$1,9
621	Los Ang County	4.13	Sig Synch: Paramount Blvd. (Beverty to Carson)	\$6
	Los Ang County	++	Sig Synch: South St. (Atlantic Ave. to Carmenita Rd.)	\$7!
	Los Ang County		Sig Synch: Sepulveda BI, Willow St. (Palos Verdes BI - Studebaker Rd)	\$3
	Los Ang County		Sig Synch Ramona BI, Badillo St, and Covina BI (Valley BI to Rte 210)	\$70
625	Los Ang County		Sig Synch Hawthorne Bl: 104th to Manhattan - Beach Bl, 244th-Palos Verdes Dr	\$6

. :

	Agency	Proj No.	Project Location & Description	Total Cost {\$1000}
626	Los Ang County	4.18	Sig Synch Gage Av: Hooper Av-Siauson Ave	\$820
627	Los Ang County	4.19	Sig Synch: Redondo Bch Bl, Somerset Bl & Compton Bl (Freeman Av to Woodruff Av)	\$560
628	Los Ang County	4.20	Sig Synchronization on Baldwin Ave. (Foothill Blvd. to 10 Fwy.)	\$790
629	Los Ang County	4.21	Sig Synchronization on Irwindale Ave. (Foothill Blvd. to Badillo St.)	\$160
630	Los Ang County	4.22	Sig Synch: Avalon BI (El Segundo BI to Sepulveda BI)	\$170
631	Los Ang County	4.23	Sig Synchronization on Aviation (118th St. to Prospect Ave.)	\$304
632	Los Ang County	5	Sig Synch: Los Robles, Atlantic BI, Atlantic Av (N/O Huntington to Mills)	\$3,070
633	Los Ang County	6	Countywide Traffic Signal Synchronization	\$500,000
634	Los Ang County	7	Countywide Traffic Signal Synch-Secretariat/PE	\$800
635	Los Ang County	8	Sig Synch: Carson St (E/O Hawthome Bl-Alameda St,Paramount Bl-Pioneer Bl)	\$1,240
636	Los Ang County	9	Sig Synch: Imperial Hwy (405 - Vermont Av, W/O Alameda St to Orange Cnty)	\$1,370
637	Los Ang County	10	Sig Synch Truman St: Hubbard St-Wolfskill St, San Fernando Rd: Alameda St-Glendale Bi	\$910
638	Los Ang County	11	Sig Synch Garfield Av, Cherry Av - Huntington Dr-Ocean Bl	\$2,250
639	Los Ang County	12	Sig Synch: Alondra Blvd. (Normandie Ave. to La Mirada Blvd.)	\$1,280
640	Manhattan Bh.	39	Widen Sepulveda Blvd (at Artesia Blvd)	\$135
641	Manhattan Bh.	40	Widen Sepulveda Bivd (at Manhattan Bch Bivd)	\$168
642	Manhattan Bh.	41	Left tum lanes-Artesia/Aviation	\$473
643	Maywood	14	Bridge-Atlantic/LA River-widen, improve	\$18,600
644	Montebelio	15	Widening on Whittier Blvd. (Wilcox to Montebelio)	\$3,000
645	Montebello	16	Widening on Whittier Blvd. (Montebelio to ECL)	\$2,200
646	Montebello	17	Widen Beverty BI: Maple to Montebello (also LA County)	\$2,750
647	Montebello	18.	Widen Beverly Bivd. (Montebello to ECL)	\$3,800
648	Montebello	19	Widening Garfield Ave. (Ma Campo to Beverly)	\$4,500
649	Montebello	20	Widening Garfield Ave. (Beverly to Whittier)	\$3,000
650	Montebello	21	Widening on Wilcox Ave. (Lincoln to Beverly)	\$800
651	Montebello	22	Widening on Wilcox Ave. (Via Corona to Whittier)	\$1,600
652	Monterey Park	30	Garvey Av channelization: Atlantic BI to New Av	\$2,310
653	Monterey Park	20	Floral & Collegian Traffic Signal	\$100
654	Monterey Park	21	Garvey Signal Improv, Signal Coordination	\$50
655	Monterey Park	22	Atlantic Signal Improvements & Coord	\$120
656	Monterey Park	23	Garfield Traffic Signal Improvements & Coord	\$190
657	Monterey Park	24	Ramona Bi & Luminarias Rd Signal & Channelize	\$150
658	Monterey Park	25	Traffic Signal On-Street Master Control System	\$120
659	Monterey Park	26	Ramona Blvd, and Centre Plaza Dr. Traffic Sig	\$100
660	Monterey Park	27	Corporate Center & I-710 Off-Ramp Traffic Sig	\$100
661	Monterey Park	28	Ramona Blvd. & I-10 Off-Ramp Traffic Signal	\$100
662	Monterey Park	<u> </u>	Atlantic Widening - Riggin to 60 Fwy.	\$1,430
663	Monterey Park	31	Widen N Atlantic Bl - Hellman to Harding	\$15,400
	Monterey Park		Widening Garfield - Newmark to Heilman	\$14,610
	Monterey Park		Widening Atlantic - Harding/Brightwood	\$3,300
	Norwalk	0	Multi-Modal Transit Center	\$6,123

	Agency	Proj No.	Project Location & Description	Total Cost (\$1000)
667	Norwalk	23	Imperial Hwy. (Volunteer to Hoxie) Various Improvements	\$2,00
668	Norwalk	24	Imperial Hwy. (Fairford to Hoxie) Widening.	\$80
669	Norwalk	25	Studebaker Rd. (I-105 off ramp to Imperial) Widening.	\$19
670	Norwalk	26	Firestone Bivd. (I-605 to Imperial Hwy.) Coordinate Traffic Signals	\$15
671	Norwalk	27	Imperial Hwy. (Curtis & King Rd. to ECL) Coordinate Traffic signals	\$16
672	Norwalk	28	Firestone Blvd. (Imperial Hwy. to Woods St.) Widening	\$20
673	Norwalk	29	Bloomfield Ave. (Rosectans to Rexton) Engineering Study	\$30
674	Norwalk	30	Norwalk Blvd. (F5/Norwalk Interchange) Engineering study	\$10
675	Palmdale	53	Rte 138 Grade sep bet 5-10th Sts E.	\$16,00
676	Palmdale	54	Paimdale BI/Rte 138 widening: 10th St W to 30th St E	\$95
677	Palmdale	55	Traffic signals-Rte 138	\$21
678	Palmdale	56	Traffic signals-Rte 138	\$13
679	Paramount	31	Paramount Blvd. (Rosecrans to Century) Street Reconstruction	\$2,10
680	Paramount	32	Paramount Blvd. (Adams to Alondra) Street Reconstruction	\$1,27
681	Paramount	33	Paramount Blvd. (Jackson to 70th) Street Reconstruction	\$84
682	Paramount	34	Somerset Blvd. (I-710 to Orange) Reconstruction and Widening	\$2,27
683	Paramount	35	Somerset Blvd. (Orange to Garfield) Street Reconstruction	\$90
684	Paramount	36	Somerset Blvd. (Garfield to Colorado) Street Reconstruction	\$75
685	Paramount	37	Somerset Blvd. (California to Indiana) Street Reconstruction	\$50
686	Paramount	38	Alondra Blvd. (Atlantic to Orange) Street Reconstruction	\$72
687	Paramount		Alondra Bivd. (Orange to Garfield) Street Reconstruction	\$84
688	Paramount	40	Alondra Bivd. (Garfield to Paramount) Railroad Grade Separation	\$4,47
689	Paramount	41	Alondra Blvd. (Paramount to Downey) Street Reconstruction	\$84
690	Paramount	42	Alondra Blvd. (Downey to Hayter) Street Reconstruction	\$40
691	Paramount	43	Rosecrans Ave. (West City Limit to Orange) Street Reconstruction	\$9
692	Paramount	44	Rosecrans Ave. (Orange to Garfield) Street Reconstruction	\$84
693	Paramount	45	Rosecrans Ave. (Garfield to Paramount) Street Reconstruction	\$30
694	Paramount	+ -	Rosecrans Ave. (Paramount to Anderson) Street Reconstruction	\$20
695	Paramount		Garfield Ave. (Flower to Alondra) Street Reconstructionton	\$84
_	Paramount		Orange Ave. (South City Limit to Somerset) Street Reconstruction	\$1,70
697	Paramount	47	Garfield Ave. (Alondra to Rosecrans) Street Reconstruction	\$1,80
698	Paramount	48	Orange Ave. (Somerset to Rosecrans) Street Reconstruction	\$60
	Paramount		Downey Ave. (South City Limit to Alondra) Steet Reconstruction	\$1,40
	Paramount	-	Downey Ave. (Alondra to Somerset) Street Reconstruction	\$60
	Paramount		Downey Ave. (Rosecrans to Gardendale) Street Reconstruction	\$1,20
702	Pasadena		Walnut Street widening: Hudson Av to Mentor Av	\$1,03
	Pasadena		Advanced Driver Information System - Citywide	\$25
	Pasadena	2	Traffic Management System - City Wide	\$1,10
	Pasadena	4	Establish Smart Comdor along Rte 210 in Pasadena	\$50
	Pasadena		Allen Ave widening: Locust Street to S/O Walnut St	\$1,12
	Pasadena	+	Kinneloa Av extension: Colorado Bl/Foothill Bl, Maple St: Kinneloa to Sierra	\$2,43

PAGE \$5-18

	Agency	Proj No.	Project Location & Description	Total Cost (\$1000)
708	Pasadena	7	Fair Oaks Av widening: Maple St to Mountain St	\$7,536
709	Pomona	40	Widen Rt 71 (Holt Ave-Rio Rancho)	\$32,000
710	Pomona	41	Overpass at Mission Blvd/Rt 71	\$12,000
711	Pomona	42	RR Grade Separation - Temple Av/Valley Bl)	\$21,273
712	Pomona	43	Railroad Grade Separation(Garey Ave/Santa Fe)	\$8,509
713	Pomona	44	Holt Ave Signal Interconnect	\$300
714	Pomona	45	Towne Ave Right Turn Lane	\$50
715	Port of LA/LB	32	Redondo Junction, Railroad Grade Separation	\$86,000
716	Port of LA/LB	33	Widen Alameda St (Rt 91-Laurel Park Rd)	\$24,185
717	Port of LA/LB	34	Widen Alameda St (Rt 91-105)	\$33,800
718	Port of LA/LB	35	Terminal Island Fwy Ramps-HFord Ave	\$6,700
719	Port of LA/LB	36	Henry Ford Ave Underpass	\$14,900
720	Port of LA/LB	37	Ocean Blvd/Terminal Island Interchange	\$23,300
721	Port of LA/LB	38	Construction-Bridge-Dominguez Channel	\$18,000
722	Redondo Beach	48	Left turn lanes-Artesia Blvd/Aviation	\$473
723	Redondo Beach	49	Left turn lanes-Artesia/Inglewood Ave	\$258
724	Redondo Beach	50	Left turn protection, Right turn only	\$125
725	Redondo Beach	51	New northbound lane	\$545
726	Rosemead	46	Reconfigure ramps Walnut Grove Av10	\$430
727	Rosemead	47	Del Mar. Ave. @ Hellman Ave - Tum Pocket	
728	Rosemead	48	Temple City Bl @ Loftus St - Signal	\$125
729	Rosemead	49	San Gabriel BI (Pornona Fwy/San B Fwy) Sig Coor	\$17
730	Rosemead	50	Walnut Grove Ave. @ Marshall St - Signal	\$33
731	Rosemead	51	Rosemead Bivd. @ Glendon Way - Traffic Signal	\$215
732	Rosemead	52	Rosemead Blvd. @ Marshall Street - Traffic Sig	\$125
733	Santa Clarita	57	Widen bridge/road-Rte 126	\$8,000
734	Santa Clarita	58	Commuter Rail Station-Soleded Cyn	\$4,500
735	Santa Clarita	59	Widen bridge-Soledad Cyn	\$2,000
736	Santa Clarita	60	Widen bridge-Newhall Ranch Rd	\$1,450
	Santa Clarita	+	Widen road-Sierra Hwy	\$310
738	Santa Clarita	62	Widen bridge-Sierra Hwy	\$325
739	Santa Clarita	63	Master Traffic Control System	<u> </u>
740	Santa Clarita	64	Widen bridge-Rte 14	\$1,900
741	Santa Clarita		New road-Rte 14 to Soledad Cyn	\$40,400
742	Santa Clarita	66	New road-Boquet Cyn to Rte 14	\$57,700
743	Santa Clarita		Widen bridge, road-Magic Mtn Pkwy	\$2,000
	Santa Clarita	68	Widen bridge, road-Val. Blvd	\$1,800
	Santa Clarita		Widen road-Pite 126 to Val.Bivd	\$30,500
	Santa Clarita	4	Park/Ride-San Fernando Rd	\$3,125
	Santa Clarita		Park/Ride-Calgrove Blvd	\$5,000
_	Santa Clarita	72	New road-Rte 14 to +5	\$120,000
		<u> </u>		\$120,000
749	Santa Clarita	73	Widen bridge, road-Wiley Cyn Rd	\$

,

	Agency	Proj No.	Project Location & Description	Total Cost (\$1000)
750	Santa Clarita	74	Widen bridge, road-Sand Cyn Rd	\$6,25
751	Santa Fe Springs	51	Carmenita Road Overcrossing widening at Route 5	\$7,75
752	Santa Fe Springs	52	Carmenita Road widening: Foster Road to Imperial Highway	\$1,40
753	Santa Fe Springs	53	Valley View Signal Coordination and Upgrade	\$33
754	Santa Monica	0	Cloverfield BI widening: n/o Route 10 to Broadway	\$5,00
755	Santa Monica	17	Widening of Olympic Blvd. from Lincoln to E. City Limits	\$15,00
756	Santa Monica	18	Widening of Cloverfield Blvd. from Broadway to Santa Monica Blvd.	\$5,00
757	Santa Monica	19	Eastbound On-Ramp and Westbound Off-Ramp, Rte. 10 at 20th Street	\$25,00
758	Santa Monica	20	Widening of Lincoln Blvd. westbound from Olympic Blvd. to Broadway	\$10,00
759	Santa Monica	22	Improvements for On/Off Ramps - EB & WB at Cloverfield Blvd./Rte.10	\$1,00
760	Santa Monica	23	Lincoln BivdBroadway to Santa Monica Blvd.	\$1
761	Santa Monica	24	Lincoln Blvd Route 10 to South City Limits	\$7
762	Santa Monica	25	Wilshire Blvd Lincoln Blvd. to East City Limits	\$12
763	Santa Monica	26	Santa Monica Blvd, - Harvard St. to East City Limits	\$2
764	Santa Monica	27	Cloverfield Blvd Pico Blvd. to Santa Monica Blvd.	\$80
765	Santa Monica	28	Olympic Blvd Lincoln to East City Limits	\$50
766	Santa Monica	29	Ocean Park Blvd Ocean Ave. to East City Limits'	\$60
767	South Gate	54	Firestone Ave. & I-710 Interchange - Various Improvements	\$10,00
768	Torrance	52	Signal Modification (PCH/Anza Ave)	\$8
769	Torrance	53	Intersection improvement (Prairie/Artesia)	\$25
770	Torrance	54	Arterial capacity improvement	\$1,48
771	Torrance	55	Right tum lane	\$10
772	Torrance	56	Signal Interconnect	\$1,48
773	Torrance	57	Widen 190th St (west of Van Ness)	\$25
774	Torrance	58	Improve Crenshaw/PCH Intersection	\$30
775	Torrance	59	Right turn Sepulveda/Hawthorne	\$47
776	Torrance	60	Traffic Signal Preemption System	\$75
π	Torrance	61	Lane Expansion-Crenshaw Blvd (182-Artesia)	\$7
778	Torrance	62	New Freeway Ramp-Crenshaw/182nd	\$1,80
779	Torrance	63	Lane Expansion-Prairie (182nd/Redondo Bch Blvd)	\$7
780	Torrance	64	Right turn lane-Sepulveda/Arlington	\$10
781	Torrance	65	Widen Intersection-Sepulveda/Anza	\$40
762	Torrance	66	Right turn lane-Torrance/Hawthome	\$90
783	Torrance	67	Traffic Signal-Skypark/Hawthome	\$15
784	Torrance	68	Extend Del Amo to Crenshaw	\$15,00
785	Torrance	69	Improve Intersection-PCH/Calle Mayor	\$3
786	Torrance	70	Right turn lane-PCH/Hawthome	\$10
787	Torrance	71	Arterial relief-Plaza del Amo/223rd	\$1,50
768	Torrance	72	Intersect. ImprovTomance Blvd (Sartori/Western)	\$1,70
789	Torrance	73	Traffic Signal Interconnect (PCH/Rolling Hills)	\$34
790	Torrance	74	Traffic Signal Interconnect (Torrance/Sepulveda)	\$30
791	Torrance	75	Western Av widen & reconstr: Del Amo to Carson (also LA County)	\$1,64

ì

	Agency	Proj No.	Project Location & Description	Total Cost (\$ 1000)
792	Torrance	76	Palos Verdes Bikeway (Miramar-South City Boundary)	\$200
793	Vernon	0	Rte 710 (PM 21.04): construct Slauson interchange	\$31,000
794	Vernon	2	Bridge-Atlantic/LA River-widen, improve	\$18,600
795	W.Covina	0	Amar & Azuza Intersection Improvement	\$1,000
796	W.Covina	54	Traffic Operations Ctr Sunset, Vincent - Glendora Aves. & West Covina Pky	\$75
797	W.Covina	55	System Detectors & CCTV Azuza Ave, Amar Rd	\$50
798	W.Covina	56	System Detectors & CCTV Citrus, Barranca	\$120
799	W.Hollywood	30	West Hollywood - City Boundaries	\$2,000
800	W.Hollywood	31	West Hollywood - Ped/Vehicle Actuation	\$900
801	W.Hoilywood	32	LRT Feasibility Study	\$500
802	W.Hollywood	33	HOV/Bus Lane Feasibility Study	\$30
803	W.Hollywood	34	Bicycle Transportation Study	\$20
804	W.Hollywood	35	Santa Monica Blvd La Brea through Doheny	\$300
805	W.Hollywood	36	Melrose, Doheny, and Santa Moncia Blvd.	\$610
806	W.Hollywood	37	Robertson and Melrose	\$155
807	W.Hollywood	36	San Vicente	\$58
808	W.Hollywood	39	Hancock/Holloway	\$153
809	W.Hollywood	40	W.H. LRT	\$1,000,000