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Letter from the Director of the 
Bureau of Transportation Statistics

Dear Readers,

This issue of the Journal of Transportation and Statistics closes out the sec-
ond year of publication for the U.S. Department of Transportation’s (DOT’s)
only peer-reviewed journal.  In this letter, I’d like to share my thoughts with
you about the future direction of the journal.  When I joined the Bureau of
Transportation Statistics in November of 1998, one of my goals was to
strengthen the journal’s statistical component.  We have instituted terms for
members of the Editorial Board, and thus, in January 2000, the original
Editorial Board will begin to change.  Some of the board will be replaced by
members from the statistical community.  There will also be some changes
among our DOT modal representatives.

To encourage more statistical paper submissions, we will accept LATEX files
and in the near future will have a LATEX template available for authors.  We
will also continue to accept files in Word, WordPerfect, and Excel.

In 2000, we plan to release three issues.  A special issue on motor vehicle
emissions will have a guest editor—Tim Coburn from the Department of
Mathematics and Computer Science at Abilene Christian University in
Abilene, Texas.  The other two issues will contain a broad mix of articles.

I am pleased to report that the number and quality of paper submissions has
risen.  I am committed to ensuring that the journal becomes a recognized
source of information for the transportation community.  On reviewing the
original goals of the journal, I think they will continue to provide an excel-
lent direction for authors wishing to submit papers.  The goals are to: 

� measure transportation activity and the performance of transportation
systems,

� measure and analyze the importance of transportation and its conse-
quences,

� measure and analyze transportation trends, and

� advance the science of acquiring, validating, managing, and disseminat-
ing transportation information.



vi

This year we welcome David Banks of BTS as our Deputy Editor-in-Chief.
David is a mathematical statistician, with a degree from Virginia Polytechnic
Institute.  He was a post-doctoral fellow at the University of California at
Berkeley, a visiting lecturer at the University of Cambridge, and an associate
Professor at Carnegie Mellon University.  He comes to BTS from the
National Institute of Standards and Technology. His research areas include
random graphs, high-dimensional nonparametric regression, and Bayesian
metrology.

In 2001, David Banks will take over from our current Editor-in-Chief, David
Greene of Oak Ridge National Laboratory. Starting anything, particularly
an academic journal, requires a high level of skill and dedication, and David
Greene has done a wonderful job putting the journal on sound footing in
only two years.  I have no doubt that by the time he steps down, JTS will
become a leading transportation journal.

ASHISH K. SEN

Director

Bureau of Transportation Statistics
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ABSTRACT

Most studies indicate that public transit systems
operate under increasing returns to capital stock
utilization and are significantly overcapitalized.
Existing flexible form time series analyses, however,
fail to correct for serial correlation. In this paper,
evidence is presented to show that ignoring multiple
serial correlation can have important policy impli-
cations. Based on monthly time series data from the
Indianapolis Public Transit Corporation, the results
indicate that failure to correct for serial correlation
significantly affects economies of capital utilization
estimates and has potentially important implica-
tions for optimal size of the transit fleet. 

INTRODUCTION

Since the 1960s, when most U.S. transit systems
were privately owned and operated and received
no public financial assistance, subsidies have
increased rapidly. Government financial support
for public transport has grown, while operating
losses and investment needs have also been increas-
ing. The total operating subsidy from all levels of
government (local, state, and federal) rose from
$318 million in 1970 to $9.27 billion in 1990, a
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near thirtyfold increase in 20 years (Pucher 1995).
Similarly, the total capital subsidy from all levels of
government rose from $200 million in 1970 to
$5.56 billion in 1990, nearly 28 times higher
(Pucher 1995). In spite of some evidence that subsi-
dies have led to mild increases in ridership (Cervero
1984, Bly and Oldfield 1986), there is a general
consensus that subsidies have had a degrading
effect on system efficiency and productivity and
have increased operating costs.1 (Obeng 1985, Kim
and Spiegel 1987, Bly and Oldfield 1986).

Several analyses have identified two related
effects of continuing capital subsidies on public
transit operations. First, public transit systems
have an incentive to prematurely replace their cap-
ital stock (Frankena 1987). Second, by lowering
the unit price of rolling stock, public transit capital
subsidies provide public transit managers with an
incentive to overcapitalize their systems. Although
sparse, the evidence on overcapitalization in public
transit is not only consistent with this hypothesis
but also indicates that the extent of overcapitaliza-
tion may be large. Viton (1981), for example,
found that public transit systems were overcapital-
ized by as much as 57%. De Rus (1990) and
Obeng (1984, 1985) also found that actual fleet
sizes for transit systems are much larger than nec-
essary to produce the current levels of output. 

Claiming that their bus fleets are not excessive
but rather needed for peak period demands, public
transit managers generally argue against the empir-
ical evidence that their systems are overcapitalized.
This raises an interesting question. Do public tran-
sit agencies routinely overcapitalize their systems
by as much as 50%, as existing empirical evidence
suggests? Or, are existing empirical models defi-
cient in some way that, if corrected, would produce
results on the economic structure that are more
consistent with observed behavior? 

Of the studies that have analyzed public transit
costs, all have used either panel data or time series
data. However, although some authors have recog-
nized that serial correlation may be present and
could affect the study’s results, none of these stud-

ies adjusted for serial correlation.2 As is well
known, the presence of serial correlation produces
unbiased, consistent, but inefficient parameter esti-
mates; further, variance estimates are biased and
inconsistent,  thereby invalidating hypothesis tests.
The question addressed here is whether the pres-
ence of uncorrected, serially correlated errors in a
flexible form cost function affects the model’s
implications on a public transit firm’s production
technology. To explore this, we developed and esti-
mated a translog cost function model for the city of
Indianapolis for a 60-month period, from January
1991 through December 1995. The next section,
Methodology, identifies the model and summarizes
the data used for the analysis, and the third section
presents the estimation results. The final section
provides concluding comments.

METHODOLOGY

Assuming one output y (vehicle-miles), three variable
inputs zi (labor, fuel, and maintenance), and one fixed
input k (number of buses), equation (1) identifies a
public transit firm’s short-run translog cost function:
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1 In a cross-country comparative analysis of public transit
systems and subsidies, Pucher (1995) notes “In virtually
no other country have transit subsidies been as ineffective
as in the United States.” (p. 401)

2 Berechman and Giuliano (1984), for example, identified
second-order autocorrelation in their quarterly time series
analysis of AC Transit in Alameda County, California.
However, there was no attempt to correct for the problem.
De Borger (1984), Berechman (1987), and Colburn and
Talley (1992) also estimated time series models, but nei-
ther tested nor corrected for serial correlation. Outside of
the public transit literature, Braeutigam et al. (1984) cor-
rected for first-order serial correlation in a study on rail-
road costs using monthly time series data. While monthly
time series data could potentially suffer from first- to
twelfth-order serial correlation, the authors did not report
the results of the model without correction for autocorre-
lation or whether they tested for higher order autocorre-
lation. As a result, it is not possible to assess how seriously
autocorrelation affected their results. 



where VC is the variable cost of production, pi is
the price of variable input factor zi(i = 1, 2, 3), u is
the disturbance term, and �0 , �y, �i (i = 1, 2, 3), 
�k, and �ij (i, j = 1, 2, 3, y, k) are parameters to be
estimated. According to equation (1), a transit
firm’s fleet size is fixed in the short run, implying
that the level of variable inputs the firm employs at
any given set of prices or output will depend on the
level of rolling stock available to the system. The
associated share equations (using Shephard’s
lemma) are: 

where si (i = 1, 2, 3) is the share of input i, and ui

(i = 1, 2, 3) is the error term for share equation i.
Equations (1) and (2) constitute a multivariate
equation system that can be written more general-
ly as (Berndt 1991):

Yt = Xt b + ut (3)

where Yt is the (n � 1) vector of dependent vari-
ables, Xt is the (n � m) vector of independent
variables, b is the (m � 1) coefficient vector, t
denotes a given time period, and ut is an (n � 1)
vector of random disturbances. If ut has a first-
order stationary univariate autoregressive struc-
ture, then 

ut = Rut–1 + �t

t = 1, … , T (4)

where R is an (n � n) autocovariance matrix, and
�t is a vector of disturbances with mean zero and
constant variance. Combining (4) and (5) results
in an equation with uncorrelated disturbances:

Yt = RYt–1 + (Xi RXt–1)b + �t

t = 1, … , T (5)

The usual maximum likelihood estimation
methods could be applied to equation (5). How-
ever, only J–1 equations are independent, due to
the constraint that the shares at each observation
sum to unity (Berndt and Savin 1975). 

Because the J disturbances must sum to zero at
each observation, the (J � J) disturbance covari-
ance matrices are singular, and this singularity con-
dition imposes restrictions on the autoregressive
process. Violation of these restrictions implies that
the maximum likelihood estimates, and associated
likelihood ratio test statistics, depend on which
share equation is deleted from the system. 

In order for the parameter estimates of the mul-
tivariate equation system in equation (5) to be
invariant to the share equation deleted, the matrix
R has to be diagonal, and all the diagonal elements
must be equal (Berndt and Savin 1975). Moreover,
the autoregressive multivariate system in equation
(5) can be generalized to account for higher order
autoregressive processes. In particular, for an Mth-
order autoregressive process, 

ut = R1ut–1 + R2ut–2 +  + RMut–M + t
t = 1, … , M (6)

where each Ri (i = 1, … , M) is a diagonal matrix
whose elements must all be equal for the coefficient
estimates to satisfy the invariance property (Berndt
and Savin 1975).

ESTIMATION RESULTS

Model Estimation

Data for the analysis come from monthly obser-
vations for the city of Indianapolis over a five-
year period, January 1991 through December
1995.3 Table 1 reports the translog estimation
results for the uncorrected model and for the
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3 The Indianapolis transit system, operated as a public
enterprise since 1972, is a medium-sized system that, for
the period under study, served an average population of
950,000 with an average fleet of 247 buses. Although the
Indianapolis Public Transportation Corporation primarily
provides fixed route, fixed schedule services, the data also
reflect some demand-responsive services that the city
offers. Since demand-responsive services account for less
than 3% of the total, their inclusion is not expected to sig-
nificantly affect the results.
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TABLE 1   Short-Run Translog Cost Functionsa

(a) (b)
Dependent Variable: Short-Run Costs (106) Uncorrected model Corrected model

Variable Parameter Estimate b (t-statistic) Estimate b (t-statistic)

Constant term �o 14.135 (1,084.80) 14.106 (280.80)
Output (vehicle-miles, units of 105)c �y 0.571 (2.78) 1.145 (5.39)
Price of labor ($/hour)d �l 0.648 (201.50) 0.574 (15.40)
Price of maintenance ($/hour)d �m 0.295 (104.30) 0.350 (11.60)
Number of buses e �k 0.380 (1.38) 0.191 (0.59)
(Price of labor) . (price of labor) �ll 0.175 (6.76) 0.167 (8.14)
(Price of maintenance) . (price of maintenance) �mm 0.177 (12.40) 0.189 (16.50)
(Number of buses) . (number of buses) �kk 10.280 (1.54) 1.813 (0.63)
(Output coefficient) . (output coefficient) �yy –3.019 (–0.76) –0.683 (–0.50)
(Price of labor) . (price of maintenance) �ml –0.157 (–8.88) –0.161 (–11.20)
(Price of labor) . (number of buses) �lk –0.067 (–0.87) 0.042 (0.45)
(Price of maintenance) . (number of buses) �mk 0.051 (0.74) –0.054 (–0.64)
Price of labor output �ly 0.050 (0.92) 0.355 (4.91)
Price of maintenance output �my –0.066 (–1.32) –0.355 (5.67)
Number of buses output �ky 10.326 (1.88) 2.701 (1.22)
Dummy for 1st quarter dq1 0.043 (2.76) 0.017 (2.03)
Dummy for 2nd quarter dq2 0.030 (2.71) 0.015 (2.21)
1st-order autocorrelation, cost equation arc1 — — 0.551 (5.06)
2nd-order autocorrelation, cost equation arc2 — — 0.346 3.14)
1st-order autocorrelation, share equations arsh1 — — 0.659 (6.74)
2nd-order autocorrelation, share equations arsh2 — — 0.386 (3.98)
6th-order autocorrelation, share equations arsh6 — — –0.058 (–1.39)

R̃2 (system R2)                                                                                   0.985                             0.991
a Full information maximum likelihood estimates are invariant to share equation deleted (Berndt 1991, p. 463). The estimation results
presented in table 1 normalize on the price of fuel.
b The data were collected from the Indianapolis Public Transit Corporation accounting, maintenance, and operations reports for fiscal
years 1991–1995. The system’s total monthly operating cost, excluding depreciation and amortization of intangibles, measures short-run
operating costs. To capture the possibility that the system faces systematic differences in its operating environment during different
months, preliminary runs of the model included peak-base vehicle ratio, average speed of service, and age of fleet. In each case, we could
not reject the null hypothesis of no effect. We also included a time trend in earlier model runs, but the coefficients for the first- and sec-
ond-order time trends were not significant. Moreover, the model with time trend variables violated the concavity requirements at two
points in the sample. As a result, we excluded the time trend in the final model specification.
c Total vehicle-miles provided was selected as the output measure since bus operations are the primary determinant of costs in a transit
system (Savage 1997). The output measure also includes “deadhead” miles, that is, miles traveled by revenue vehicles when not in rev-
enue service (not available for passengers). These are a small portion of the total and typically include miles traveled to and from storage
and maintenance facilities as well as some training mileage. 
d As is common in many translog cost function models for public transit, well-defined measures for the input prices do not exist. In this
study, similar to methodology of others (e.g., Berechman and Giuliano 1984, Applebaum and Berechman 1993, and Talley and Colburn
1993), we allocate monthly expenses to the various input categories (i.e., labor and maintenance) and then divide the expenses by paid
monthly labor hours per category. The monthly price of labor, for example, was estimated by dividing the total labor expenses (includ-
ing wages, fringe benefits, and pension payments to operators and administrative employees) by the paid labor hours to operators and
administrative employees. A similar procedure was followed to determine the price of maintenance. For the price of fuel, we used actual
prices since these were available from the monthly reports. 
e Bus fleet size is the number of buses the system owns and operates during a given month. 
f In earlier model runs, a full complement of monthly dummy variables was included, but likelihood ratio tests could not reject the null
hypothesis that the monthly dummy variables in a quarter were equal.



model corrected for multiple serial correlation.4

From column (a) in table 1, the system R2 indi-
cates that the model fits the data well. 98.5% of
the generalized variance in the dependent variable
is “explained” by the variation in the explanato-
ry variables in the system of equations.5 Further,
the estimated function satisfies the necessary neo-
classical conditions that the cost function be lin-
ear, homogeneous, nondecreasing, and concave in
input prices.6 While linear homogeneity is
imposed on the model’s parameters (see footnote
4), the estimation results must be checked ex post
facto to determine whether the function is nonde-
creasing and concave in input prices. At every
point in the sample, the estimated cost function
satisfies each of these latter two conditions.

Indianapolis’ mean behavior during the five-year
period reveals that the coefficients for price of labor
(�l) and price of maintenance (�m), respectively,
estimate the share of costs attributed to labor and
maintenance at mean production. Although the
share equation for fuel was dropped in order to esti-
mate the model, the linear homogeneity conditions
identified in footnote 4 imply that the coefficient for
price of fuel is �f  = 1 – �l – �m

The interpretation of the coefficient for output,
�y, is somewhat ambiguous. Public transit firms
operate with a given amount of rolling capital (e.g.,

buses) and over a fixed (at least in the short run)
network. With data on both rolling stock and net-
work size, the coefficient for output would provide
information on economies of traffic density. That
is, the coefficient would identify the impact that an
increase in output would have on the cost of using
a fixed rolling stock over a given network.
However, for this model, there were no data avail-
able on whether Indianapolis’ network size signifi-
cantly changed over the five-year period. If, in fact,
there was little change in network size, then the
coefficient for output in table 1 reflects economies
of traffic density for a given rolling stock. On the
other hand, if there were large changes to the net-
work between 1991 and 1995, the coefficient for
output would more appropriately reflect
economies of capital utilization. Since in either case
rolling stock is held fixed, we shall interpret �y as
a measure of economies of rolling stock utilization
but bear in mind that it may also reflect economies
of traffic density to the extent that Indianapolis’
network underwent little change during the sample
period.7

In general, the estimation results are consistent
with expectations. First, the price coefficients are
positive and strongly significant. At mean produc-
tion, labor and maintenance account for 64.8%
and 29.5% of costs. From the linear homogeneity
conditions, fuel accounts for 5.7% of costs. Also,
relative to the latter part of a year, the results indi-
cate that the transit system experiences higher costs
during the winter and spring quarters.8

The coefficient for output indicates that the
Indianapolis mass transit system operates under
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4 To ensure homogeneity of degree one in variable input
prices, given the fixed factor k and output y, the following
restrictions are imposed on the parameters:

5 The system R2 reported in the table is computed as
(Berndt 1991) 

where |EE�| is the determinant of the residual cross-prod-
uct matrix of the full model, and |y�y| is the determinant
of the residual cross-product matrix of a model in which
all slope parameters are simultaneously set to zero. See
Berndt (1991) for a discussion of this measure.
6 The cost function is nondecreasing in input prices if the
fitted factor shares are positive at each observation and is
concave in input prices if the Hessian matrix based on the
fitted factor shares is negative semidefinite.
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7 An issue of interest is whether output is endogeneously
determined. That is, do increases in output cause changes
in cost, or are both variables endogenously determined?
To check for this, we used Granger’s (1969) causality test.
By running two sets of two regressions, we rejected the
hypothesis that “x (output) Granger causes y (cost)” and
accepted the hypothesis that “y does not Granger cause x”
(both F-tests were evaluated at the five percent signifi-
cance level). As a result, we can say that output “Granger
causes cost.” In this context, the finding that output is
exogenous is not surprising since political motivations, in
addition to market forces, often play a large role in the
transit services actually provided. 
8 In earlier model runs, a full complement of monthly
dummy variables were included, but likelihood ratio tests
could not reject the null hypothesis that the monthly
dummy variables in a quarter were equal.



increasing returns to rolling stock utilization at
mean production level. Holding all else constant,
including the size of bus fleet, a 10% increase in
output increases short-run variable costs 5.7%.9 In
addition to operating under increasing returns to
capital utilization, we see in column (a) of table 1
that the coefficient for number of buses is positive
and significant at a 0.10 level (one tail test). A 1%
increase in rolling stock raises operating costs
0.38%. As discussed more fully in the final section,
this finding suggests that Indianapolis’ system is
overcapitalized, since a necessary condition for
cost minimization is that the coefficient on capital
stock be negative. 10

Column (b) in table 1 provides parameter esti-
mates when the model is adjusted for serial corre-
lation, and we see that this has improved the
overall fit of the model.11 The system R̃2 increases
from 98.5% to 99.1%.12 Adjusting for first- and
second-order autocorrelation in the cost function
and first-, second-, and sixth-order autocorrelation
in the share equations provided the best model fit.
It is important to recall that the autocorrelation
coefficients for the share equations (arsh1, arsh2,
arsh6) are restricted to being equal across share

equations to satisfy the diagonality requirement of
the Ri matrices. The estimated pattern of the auto-
correlation coefficients indicates a positive first-
and second-order correlation and a mild sixth-
order correlation for the share equations. 

We again see that the price variables have their
expected positive signs and are strongly significant.
However, there are two interesting differences
between columns (a) and (b). First, whereas
Indianapolis was estimated to be operating under
increasing returns to capital utilization when serial
correlation is ignored, we see in column (b) that,
when adjusted for serial correlation, Indianapolis’
transit system is estimated to be operating under
mildly decreasing returns to utilization. However,
at normal levels of significance we cannot reject the
null hypothesis of constant returns to utilization,
suggesting that Indianapolis may be an efficient
short-run producer of vehicle-miles.13

A second difference relates to the coefficient of
the fixed factor, number of buses. Although still
positive, the estimated coefficient �k is lower and,
more importantly, not statistically significant at
any reasonable level of significance. 

Comparative Analysis of the Models

Table 2 presents test results for two restrictive pro-
duction technologies, homotheticity (i.e., output
changes can be met with constant input ratios),
and Cobb-Douglas production technologies
(homotheticity plus constant unitary elasticities of
substitution between inputs) for the uncorrected
model and the model adjusted for serial correla-
tion.14 Consistent with other studies, a Cobb-
Douglas production technology is strongly rejected
in each case.15 However, when serial correlation is
present but not corrected, the model accepts the
null hypothesis of homotheticity, while the correct-

118 JOURNAL OF TRANSPORTATION AND STATISTICS DECEMBER 1999

9 De Borger (1984) found a similar result using annual
time series data from Belgium.
10 If the coefficient on capital stock is negative, then an
increase in a transit system’s rolling capital stock will gen-
erate savings in variable costs in excess of the unit bus
price. A bus system is overcapitalized if the variable cost
savings is either less than the unit bus price or actually
increases. As noted previously, Frankena (1987) found
that capital subsidies increase bus turnover. This suggests
that public transit systems that overcapitalize, i.e., ineffi-
ciently invest in capital, will have an inefficiently low
average fleet age and higher unit operating costs relative
to optimal capital investment, which could produce a pos-
itive correlation between increased capital and operating
expenses in a well-specified model. This does not appear
to characterize Indianapolis’ system, whose 16–18 year
average age of fleet (over the five-year period) is a bit
older than the industry average. 
11 To test for serial correlation, the model was initially
estimated under the constraint that the Ri matrices (from
equation 6) equal zero and then was re-estimated with Ri
not equal to zero. The usual likelihood ratio test is based
on the sample maximized log-likelihood functions
obtained from the previous models (Berndt 1991). The
null hypothesis of no autocorrelation was rejected at the
0.01 level.
12 When adjusted for serial correlation, the cost function
was also found to be nondecreasing and concave in input
prices at each point in the sample.

13 The t-statistic for the hypothesis that �y = 1 is 0.68.
14 Testing for homotheticity is equivalent to testing the
null hypothesis that �iy = 0 (i = labor, maintenance) versus
the alternative hypothesis that at least one of these para-
meters is nonzero.
15 A Cobb-Douglas technology characterizes the produc-
tion of transit trips if we can accept the null hypothesis
that �yy = �ij = �iy = 0 i. Viton (1981) and Obeng (1984)
reject a Cobb-Douglas technology in short-run analyses,
while Williams and Hall (1981), Berechman and Giuliano
(1984), and de Rus (1990) reject a Cobb-Douglas tech-
nolgoy in long-run analyses.

A



ed model rejects the hypothesis, implying that the
cost function is not separable in output and that
changes in a factor’s price will not only affect input
demand ratios but also the cost elasticity with
respect to output.16

Table 3 presents the own price (eii) and Allen
elasticities of substitution (�ij) evaluated at the
sample mean and by year for both models. As
expected, the own price elasticities have the correct
negative sign. In both models and consistent with
other studies, the elasticities are small for labor and
maintenance, while fuel appears to be more elastic
when the estimated model corrects for autocorre-
lation. It is interesting to note that while the own
price elasticity of labor and maintenance has
remained fairly constant over the period, the
demand for fuel has demonstrated a tendency to
become more inelastic with the passage of time.
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TABLE 2   Test Statistics for Homotheticity and Cobb-Douglas Production Technologies

Null hypothesis –2(lnLR–lnLU) a # Restrictions (n) 	2
.01(n) Result

Model with no correction for autocorrelation
Cobb-Douglas 192.22 10 23.21 Rejected
Homotheticity 6.26 2 9.21 Not rejected

Model with correction for autocorrelation
Cobb-Douglas 227.54 10 23.21 Rejected
Homotheticity 67.73 2 9.21 Rejected
a ln LU is the sample maximized log-likelihood value without restrictions, and lnLR is the sample maximized log-likelihood with

restrictions.

TABLE 3   Short-Run Own Factor Demand Elasticities and Elasticities of Substitution 

Price elasticitya

Period ell eff emm �lf
b �lm �mf

Model without correction for autocorrelation

Mean –0.081 –0.267 –0.103 0.515 0.178 –0.224
1991 –0.074 –0.352 –0.078 0.591 0.131 –0.133
1992 –0.073 –0.291 –0.077 0.541 0.136 –0.254
1993 –0.084 –0.275 –0.098 0.514 0.173 –0.196
1994 –0.075 –0.198 –0.093 0.468 0.172 –0.382
1995 –0.091 –0.149 –0.124 0.407 0.222 –0.337

Model with correction for autocorrelation
Mean –0.092 –0.354 –0.053 0.854 0.141 –0.068
1991 –0.095 –0.436 –0.048 0.877 0.119 –0.046
1992 –0.087 –0.389 –0.039 0.865 0.119 –0.065
1993 –0.094 –0.373 –0.051 0.858 0.139 –0.062
1994 –0.087 –0.308 –0.051 0.844 0.144 –0.085
1995 –0.099 –0.266 –0.076 0.828 0.185 –0.084
a e: own price elasticity of demand, �: Allen partial elasticity of substitution; where: l = labor, f = fuel, m = maintenance.
b Elasticities of substitution are symmetric.

16 Berechman and Giuliano (1984), de Borger (1984),
Berechman (1987), and de Rus (1990) also found a non-
homothetic production structure. However, and similar to
the model without correction for autocorrelation,
Williams and Dalal (1981), Williams and Hall (1981), and
Berechman (1983) could not reject the null hypothesis of
a homothetic production structure.



The Allen elasticity results indicate that labor
and maintenance and labor and fuel are substitutes
for each other, while maintenance and fuel are
complements. Further, there is a significant change
in the Allen elasticity between maintenance and
fuel when the model is corrected for autocorrela-
tion, rising from –0.224 (evaluated at the mean) in
the uncorrected model to –0.046 in the corrected
model. The latter indicates that maintenance and
fuel are weakly complementary.

DISCUSSION AND CONCLUDING COMMENTS

Although the deficiencies of models that suffer
from uncorrected multiple serial correlation are
recognized in the public transit cost literature,
existing translog cost results have failed to account
for serial correlation. Policy implications based on
such models are accordingly suspect. When serial
correlation is ignored, the translog cost function
results for a medium-sized public transit system are
consistent with existing literature. However, when
corrected for the presence of serial correlation, the
estimation results have significantly different impli-
cations with respect to a transit system’s produc-
tion technology and possibly its optimal fleet size. 

This raises three questions that await further
research. First, what are the sources of serial corre-
lation? Consistent with other monthly time series
data, the data for this analysis exhibit seasonal and
cyclical effects that will generate autocorrelated
errors. By testing for various orders of monthly
related serial correlation and ultimately adjusting
for first- and second-order serial correlation in the
cost function and first-, second-, and sixth-order
serial correlation in share equations, we find that
the models presented likely capture much of the
seasonally generated autocorrelation. In particular,
the sixth-order correlation coincides with the sea-
sonality of demand for bus services, which is lower
during the summer and higher during the winter
months (Berechman and Giuliano 1984).   

An additional source of autocorrelation is miss-
ing information, that is, omitted variables that are
serially correlated. The lack of data on network
changes, for example, over the five-year period
shows up in the error terms. If there were system-
atic changes in network size (e.g., continual
increases) over the 60-month period of this analy-

sis, errors that are serially correlated in the model
would be generated.17

A final source of serially correlated errors could
reflect an adaptive expectations framework in
which changes in short-run costs are based on
changes in the expected or desired level of the
explanatory variables. This produces an empirical
specification that is formally identical to a Koyck
distributed lag model, which is characterized by
serial correlation (Pindyck and Rubinfeld 1976).18

Second, we noted above that these findings may
have implications for a system’s optimal fleet size.
Recall the findings reported in table 1 for the
model that was not corrected for serial correlation.
The coefficient on number of buses, the fixed fac-
tor, was positive and significant at a 0.10 level.
This finding is consistent with other analyses of
public transit costs and suggests that the transit
system is overcapitalized. On the other hand, when
corrected for serial correlation, the coefficient on
number of buses was positive but with a t-statistic
well below 1.0, implying that Indianapolis’ system
is operating efficiently. To illustrate the potential
importance of correctly specifying the model, the
mean fleet size for the sample period was 227
buses. When uncorrected for serial correlation,
optimal fleet size was estimated as 171 buses, indi-
cating substantial (35%) overcapitalization. How-
ever, when corrected for serial correlation, optimal
fleet size increased to 214 buses, implying consid-
erably less (6%) overcapitalization in the system.19

The importance of this finding is its implication of
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17 To obtain desirable properties of the estimates by
adjusting for serial correlation in this instance assumes
that the omitted variables and included variables are
uncorrelated (Maddala 1977).
18 The authors would like to thank an anonymous referee
for suggesting this.
19 To obtain the optimal level of the fixed factor, we solved
the following equation 

where the subscript F refers to the fixed
factor (optimal number of buses), CV is
short-run total cost, pF is unit price of the

fixed factor, and xF is the optimal level of the fixed factor.
Unfortunately, it is impossible to find a closed form solu-
tion for xF, since the equation yields an equation involv-
ing both xF and its logarithm. Using the modified Nelson
(1972) approach (Berechman and Giuliano 1984), we cal-
culated a price for pF and solved for the optimal level of
rolling stock through a numerical procedure.

= – p
F


CV

x

F
*



the need for further research to determine more
accurately the extent of overcapitalization of cur-
rent systems. 

Last, the vehicle-miles supplied is the output
measure used for this analysis and may be overly
restrictive. A more general approach would entail
a multiple output (e.g., passenger-miles as well as
vehicle-miles) translog cost model enabling the esti-
mation of  short-run economies of scope as well as
economies of capital stock utilization. 

Public policy toward deregulation, privatization,
and subsidization is only useful when we have accu-
rate information on the underlying structure of
transit firms’ production and costs. The significant
differences identified in this paper imply that ignor-
ing statistical problems such as multiple serial cor-
relation in translog cost function models may have
important consequences for public transit policy. 
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ABSTRACT

Incidents on freeways frequently cause long, unan-
ticipated delays, increasing the economic cost of
travel to motorists. This paper provides a simple
model for estimating the mean and variance of
time lost due to incidents on freeways. It also
reviews methods for assigning a monetary value to
the variability that such incidents introduce into
daily travel. The paper offers an easy-to-implement
approach to measuring the performance of freeway
incident reduction strategies, an approach that
should be useful in early project selection exercises
where a sketch planning process is used to identify
promising actions. 

INTRODUCTION

From the perspective of economic theory, avoid-
able time spent traveling is a nonproductive activi-
ty against which there is an opportunity cost. For
example, work time may be lost due to delays in
the daily commute. A common approach to plac-
ing a cost on this extra time spent in travel is to
assess the value of such time in terms of the hours
lost multiplied by some fraction of the gross hourly
wage, including Worker’s Compensation and other
fringe benefits paid for by employers (Hensher
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1997). Alternatively, numerous travel behavior
studies have used consumer choice models to
derive the value of time spent in travel, for both
work and nonwork purposes. The most popular
approach has been to estimate logit models of
mode or route choice. In these models, the choices
made by a sample of travelers are related to the dif-
ferences these individuals face in terms of in-vehi-
cle and out-of-vehicle travel times and also in terms
of the various monetary costs associated with each
mode or route alternative. The ratio of the result-
ing parameter values assigned to the travel time
versus travel cost variables in these models is then
used to derive a monetary value of time savings
(Hensher 1997). 

Most of these time valuation studies have based
their findings on estimated traveler responses to
changes in averaged or, more usually, representa-
tive daily travel times. However, a number of
empirical studies have demonstrated the impor-
tance of also considering travel time variability in
the derivation of traveler cost functions (for exam-
ple, Jackson and Jucker 1982, Polak 1987, Black
and Towriss 1993, Senna 1994, Abdel-Aty et al.
1995, Noland and Small 1995, Small et al. 1995,
1997). These studies indicate that under the right
circumstances, notably during congested peak peri-
od travel, reducing the variability, and hence the
uncertainty, associated with trip times can offer
significant traveler benefits. This is important
because it is usual for travel time savings to domi-
nate the benefits assigned to major transportation
improvement projects (USDOT FHWA 1996). 

Empirical evidence confirms that a major cause
of day-to-day variability in trip times is the occur-
rence of traffic incidents, including major accidents
that block traffic lanes for extended periods and
many minor incidents, such as vehicle breakdowns
(see Lindley 1987, Giuliano 1989, Schrank et al.
1993). In the following section, a model is
described for estimating both the mean and vari-
ance in the time lost due to such traffic incidents
along freeways. The model is fitted to data on a
number of different incident types, for two-, 
three-, and four-lane freeways, and for a range of
congestion levels. 

In the third section of the paper, methods are
reviewed for assigning a monetary value to the
variability that such incidents introduce into daily
travel. A high level of daily variability in the time it
takes to complete a specific trip implies a less-than-
reliable transportation system. Such variability is
likely to result in one of two outcomes, either a) the
traveler arrives late or b) the traveler makes an ear-
lier departure than desired, with the possibility on
any given day of arriving earlier than necessary.
Either way, time is lost or at least used in a less than
optimal fashion. If travelers attach a high value to
on-time arrivals, then a high level of variability in
daily travel times represents a significant disbenefit
that needs to be accounted for in project assess-
ments. Recent research, discussed below, indicates
that this is the case. In particular, a number of stud-
ies were found to have used stated preference (SP)
surveys to capture and quantify traveler perceptions
about the day-to-day reliability of their travel
options. While numerical results from these studies
vary a good deal, they indicate that travelers
involved in repetitive trip-making are likely to place
a significant premium on consistency in day-to-day
trip times. Based on this literature, two different val-
uation methods were selected and linked to the inci-
dent delay model described in the second section of
the paper. The two methods are used to demonstrate
the importance of incorporating the costs of either
travel time variability or the congestion that pro-
duces it into project benefit-cost analyses. 

The results of the modeling also suggest that real
time incident management (IM) systems, based on
rapid and accurate incident detection and clear-
ance, are promising components of regional
Intelligent Transportation System (ITS) strategies.
In this context, freeway-based IM systems appear
to be especially good candidates for further analy-
sis since they deal with the redirection or control of
potentially large traffic volumes. The following
analysis offers an easy-to-implement approach to
measuring the performance of freeway incident
reduction strategies, an approach that should be
useful in early project selection exercises where a
sketch planning process is used to identify likely
project candidates.
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MEASURING TRAVEL TIME VARIABILITY:

AN INCIDENT ANALYSIS PROCEDURE

In this section, a model is presented for estimating
the mean and variance of delays due to freeway
incidents as a function of volume-to-capacity (V/C)
ratio. Results of fitting the model to data on the
magnitude, frequency, and duration of incidents
are also presented. 

The model provides estimates of delays due to
accidents, debris, and vehicle breakdowns. It does
not include the effects of delays due to day-to-day
variations in traffic volume, weather conditions, or
roadwork. Taking these effects into account could
significantly increase our estimates of day-to-day
variations in travel times. However, delays due to
variations in traffic volume, weather conditions, and
roadwork are more easily anticipated by motorists
than delays due to accidents and vehicle break-
downs. Issues regarding the valuation of different
types of delays are discussed further in the third
section. 

The following variables are used in the model
description:
� V = average volume on the freeway (in vehicles

per hour). This is the rate at which vehicles
arrive at the back of the queue after an incident
occurs and a queue forms.

� C = the capacity (Level of Service E) of the free-
way prior to the occurrence of the incident (in
vehicles per hour). 

� r = capacity reduction factor due to the incident.
The quantity rC is the rate at which vehicles
pass the incident before it is cleared. If r = 0, the
freeway is completely blocked by the incident. 

� g = average “getaway” volume from the queue
after the incident is cleared, expressed as a frac-
tion of C. 

� Ti = incident duration (in hours).
� Tg = duration of the getaway period during

which the queue is dissipating (in hours).
� Q = maximum queue length (in vehicles).
� Di = total delay incurred by all vehicles during

the incident (in vehicle-hours).
� Dg = total delay incurred by all vehicles during

the getaway period (in vehicle-hours).
� D = total delay incurred as a result of the inci-

dent (in vehicle-hours).

The model calculates D as a function of V, C, r, g,
and Ti.

An incident will cause a queue if the freeway
volume V is greater than the available freeway
capacity during the incident (i.e., if V>rC). The
queue will grow in length until the incident is cleared
(Ti hours after the incident occurred). The queue
growth rate during the incident (in vehicles per
hour) is equal to the rate at which vehicles arrive at
the end of the queue (V) minus the rate at which
they get past the incident (rC). The maximum queue
length, which occurs at that point in time when the
queue is cleared, is calculated as follows

Q = (V– rC) Ti (1.1)

Because the queue grows from a length of zero
(when the incident occurs) to a length of Q (when
the incident is cleared), the average length of the
queue during the incident is Q/2. Hence, the delay
incurred by vehicles during the incident is calculat-
ed as follows:

Di = (1/2) Q Ti = (1/2)(V–r C) Ti
2 (1.2)

After the incident is cleared, the queue will gradu-
ally dissipate, at a rate dependent on the getaway
capacity and the volume:

Tg = Q/(gC-V) (1.3)

Hence, the delay incurred by vehicles while the
queue is dissipating is calculated as follows: 

Dg = (1/2) Q Tg = (1/2) Q2/(gC–V) = 
(1/2) (V–r C)2 Ti

2 /(gC–V) (1.4)

Total delay due to the incident is then calculated as
follows:

D = Di + Dg = 
(1/2) C Ti

2 (V/C–r) (g–r)/(g–V/C) (1.5)

An important implication of this simple model is
that the total delay due to an incident varies with
the square of incident duration. For example, if the
duration of incidents is reduced by 10%, then the
total delay caused by the incident is reduced by
19% (1–0.92). This is because reducing incident
duration by 10% means that 10% fewer vehicles
will be caught in the queue caused by the incident,
and each vehicle caught in the queue will spend
10% less time in the queue.
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Equation (1.5) provides an estimate of total
delay to all vehicles due to an incident. To estimate
the mean and variance of incident-related delays
experienced by individual motorists, we make the
following assumptions for each class of incident (k)
to be examined:
� The occurrence of incidents on a highway sec-

tion is governed by a Poisson process such that
the expected number of incidents is equal to
�kVL, where �k is the incident rate, V is vol-
ume, and L is section length.

� Incident durations follow a Gamma distribu-
tion1 with mean mk and variance sk

2.
� Not all motorists affected by an incident experi-

ence the same amount of delay. In particular, we
assumed that delays experienced by motorists
during a given incident would follow a uniform
distribution ranging from zero to twice the ex-
pected delay for the incident.
Using these assumptions, we can calculate the

mean and variance of a motorist’s delay per vehi-
cle-mile for each class of incidents as follows:

�dk = �k (1/2) C (mk
2+sk

2) (V/C–rk) 
(g–rk)/(g–V/C) (1.6)

�dk
2 = (4/3)�dk mk (1–rk/(V/C))(sk

2 + mk
2/2)/ 

(sk
2 + mk

2)–�dk
2 (1.7)

where

� �dk is the mean delay (in hours per vehicle-mile)
due to the class of incidents.

� �dk
2 is the variance of delay due to the class of

incidents.
� Other variables are as defined above.

In deriving equations (1.6) and (1.7), we used the
fact that the expected value of the square of any
random variable is equal to the sum of its variance
and the square of its mean. We also used the fact
that if the probability density function of a random
variable t is uniform between 0 and 2T, then the
expected value of t2 is equal to 4T2/3.

A spreadsheet was developed to apply these
equations to estimate the mean and variance of

delays due to incidents as a function of volume-to-
capacity ratio. In the spreadsheet, incidents were
classified by type (abandoned vehicle, accident,
debris, mechanical/electrical, stalled vehicle, flat
tire, and other) and severity (shoulder, one, two,
three, or four lanes blocked). For each class of inci-
dent, data from Sullivan et al. (1995) were used to
estimate mk, sk

2, �k, and rk, and runs of the traffic
microsimulation model FRESIM2 performed by
Margiotta et al. (1997) were used to estimate g. 

With the above equations for �dk and �dk
2, esti-

mates of the mean and variance of delays due to
each class of incident were developed for volume-
to-capacity ratios ranging from 0.05 to 1.0 for
freeways with 2, 3, and 4 lanes in each direction.3

The means and variances for individual incident
classes were then summed to produce the mean
and variance of all delays due to incidents as a
function of number of lanes and volume-to-capac-
ity ratio.4 The results, shown in figures 1 and 2,
were a set of smooth curves to which the following
equations5 were fit.

� Freeways with two lanes in each direction:

�d = 0.0154(V/C)18.7 + 0.00446(V/C)3.93 (1.8)

�d
2 = 0.00408(V/C)21.2 + 0.00199(V/C)4.07 (1.9)

� Freeways with three lanes in each direction:

�d = 0.0127(V/C)22.3 + 0.00474(V/C)5.01 (1.10)

�d
2 = 0.00288(V/C)23.2 + 0.00166(V/C)5.06 (1.11)
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1 Golob et al. (1987) and Giuliano (1989) found incident
durations to fit a log-normal distribution. However, this
distribution presents some analytically intractable prob-
lems. The Gamma distribution offers an approximation
that is easier to work with. 

2 FRESIM is a traffic microsimulation model. Simulation
runs were required to estimate the value of the parameter
g. The other variables are derived directly from the data
provided by Sullivan et al. (1995).
3 In estimating the mean and variance of incident delays
for a given V/C ratio, we assume that the volume of traf-
fic does not vary over time, since our focus is on develop-
ing simple relationships for sketch planning. For more
detailed applications, Sullivan et al. (1995) developed a
computer program named IMPACT for estimating inci-
dent delays with time-varying traffic. 
4 Under the assumptions presented earlier in this section,
delays for the different incident classes constitute a set of
independent random variables. For independent random
variables, the mean of their sum is equal to the sum of
their means, and the variance of their sum is equal to the
sum of their variances (see Drake 1967, 107–108).
5 Equations are not applicable when V/C > 1.0, i.e., when
demand volume exceeds capacity so that queuing occurs
even if there are no incidents.



� Freeways with four or more lanes in each direc-
tion:

�d = 0.00715(V/C)32.2 + 0.00653(V/C)7.05 (1.12)

�d
2 = 0.00229(V/C)22.2 + 0.00124(V/C)5.27 (1.13)

where

� �d is the average delay experienced by a
motorist due to all incidents in hours per vehi-
cle-mile.

� �d
2 is the variance of delay experienced by a

motorist due to all incidents in hours squared
per vehicle-mile.

� V is volume in vehicles per hour.
� C is capacity in vehicles per hour.

The equations presented above closely fit the re-
sults presented in figures 1 and 2. In all cases, the
adjusted R-squared values exceeded 0.99.

VALUATION METHODS: BENEFITS

OF MORE RELIABLE TRAVEL TIMES

In this section, two different approaches to assign-
ing a user benefit (cost) to more (less) reliable trav-
el times are linked to the above model of delays
due to incidents. In each case the method is based
on recently reported empirical analyses in which
traveler cost models have been fitted to data from
SP surveys designed to explore traveler responses
to variability in day-to-day travel times. In the first

approach, an additional cost of travel is assigned
directly to a measure of trip time variability. In the
second approach, an additional cost of travel is
assigned instead to that part of a trip in which delays
caused by congestion occur. The objective in both
instances is to provide a method for quantifying the
benefits associated with improved system reliability
that can also make use of data that can be routinely
collected with the deployment of real time regional
traffic monitoring systems.

The first of these trip cost models (model 1) has
the form:

Uc = a1*T + a2*V(T) + a3*M (2.1)

where Uc equals the expected cost of the daily trip
(e.g., the commute), and a1, a2, and a3 are para-
meters that reflect travelers’ relative dislike of,
respectively, trip time T, a measure of trip time
variability V(T), and a monetary travel cost, M. In
recent years, a number of researchers have
attempted to derive the parameters for this and
more elaborate travel cost models by using SP sur-
veys. In such surveys, a sample of travelers is asked
to choose between a number of hypothetical trip-
making options that offer different trade-offs
between trip time, trip time variability, and trip
costs (see Jackson and Jucker 1982, Black and
Towriss 1993, Small et al. 1997). The resulting
ratio of a2/a1 in equation (2.1) provides a useful

COHEN & SOUTHWORTH   127

0

0.005

0.01

0.015

0.02

2 Lanes

3 Lanes

4 Lanes

0.10 0.2 0.3 0.4 0.5
Volume-to-capacity ratio

0.6 0.7 0.8 0.9 1.0

Delay (hours per vehicle-mile)

FIGURE 1   Expected Delay Due to Incidents on 
Two-, Three-, and Four-Lane Freeways

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.10 0.2 0.3 0.4 0.5
Volume-to-capacity ratio

0.6 0.7 0.8 0.9 1.0

2 Lanes

3 Lanes

4 Lanes

Variance (hours squared per vehicle-mile)

FIGURE 2   Variance of Delay Due to Incidents on
Two-, Three-, and Four-Lane Freeways



measure of the relative importance of changes in
travel time variability versus changes in total trip
time. The ratio of a2/a3 also allows a monetary cost
to be assigned to the importance of such variabili-
ty.

In their London study of travel time reliability,
Black and Towriss (1993) used such a model to
obtain a value of 0.55 for the ratio of a2/a1 (quot-
ed in Small et al. 1995, 54). They define V(T) in
their model as the standard deviation of travel
time. This indicates that changes in the standard
deviation of trip time is significant, at a little more
than half the value of an equivalent increase in trip
duration itself. A similar ratio of 0.35 was ob-
tained by the SP-based study of morning com-
muters route choice in Los Angeles, carried out by
Abdel-Aty et al. (1995). In this case, their model
leaves out the monetary costs of commuting. A
more recent study by Small et al. (1997) also used
a stated preference survey of morning peak period
commuters in southern California. They estimated
a number of different binary logit choice models,
including a version of equation (2.1) above, with
V(T) also set equal to the standard deviation of
travel time. They obtained much higher values on
this variability term than previous studies. In their
case, an additional increase of 1 minute in the stan-
dard deviation of travel time was valued at 1.31
times that of an additional minute of total time
savings per se, where this latter was taken to be
50% of the median wage rate in their sample. A
similar result, with a2/a1 producing a ratio of 1.27,
was also obtained by Small et al. (1995), using a
different SP survey of Los Angeles commuters and
a model that left out the monetary cost variable M
in equation (2.1) above. 

The significant differences in the values associ-
ated with variability (reliability) across these and
related studies appear to result to a large degree
from differences in study intent as well as survey
design. However, the empirical work discussed by
Senna (1994), Small et al. (1995, 1997), Noland et
al. (1997), and Bates (1997) also demonstrates that
we should expect some significant differences in
value of time use parameters based on trip purpose
(notably work-related versus commuting versus
noncommuting activities), socioeconomic status
(such as income and family structure), and based

on differences in traveler attitudes towards sched-
ule compliance (e.g., risk-prone versus risk-averse
types). Scheduling constraints imposed by the
inflexibility and importance of fixed working hours
are also likely to differentially influence travelers’
responses to uncertain trip times. It is also possible,
though currently unclear, that the underlying level
of recurrent congestion may affect such valuations.
Small et al. (1995, 54) quotes a British study (MVA
Consultancy 1992) as suggesting a plausible value
for the ratio of a2/a1 between 1.1 and 2.2, but this
is based on very limited empirical evidence. More
work is obviously warranted on this topic, with the
probable conclusion that the effects of travel time
reliability ought to be evaluated on a market-sector
and context-sensitive basis.

Model 1 is one of the simplest traveler cost
models to incorporate travel time variability
impacts. Polak (1987), Senna (1994), and Noland
et al. (1997) offer others. In particular, the recent
work by Small et al. (1997) provides a more direct
empirical link between commuting costs, travel
time variability, and travelers’ valuation of early as
well as late arrivals. An important finding of their
work is that model 1, with V(T) defined as the
standard deviation of travel time, appears to be a
useful surrogate for their more elaborate travel
(commuting) cost equations, in which the effects of
scheduling delays are captured by the use of explic-
it early and late arrival penalties. This suggests that
we can use equation (2.1) to capture most of the
time-use benefits resulting for incident-induced
delays, without having to go into more elaborate
schedule-impact modeling, at least for the purpos-
es of sketch planning studies.

A second approach (model 2) to assigning a val-
uation to system reliability is to assign a cost direct-
ly to congestion. This has the practical advantage of
linking directly computable measures of the loca-
tion and duration of congestion (using in-vehicle
and along-the-highway sensor systems) to a suitable
valuation of travelers’ dissatisfaction with unex-
pected en route delays. There is a limited body of
empirical evidence to indicate that congested travel
time is assigned a comparatively high cost by trav-
elers, although once again the values reported cover
quite a wide range. The most recent empirical work
on this topic is reported by Small et al. (1997), who
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estimated binary logit travel choice models using
travel cost functions of the following general form,
again using data from their SP survey of southern
California morning commuters in 1995:

Uc = a1*T + a2*ƒ [Tc] + a3*M (2.2)

where T=total expected travel time, ƒ (Tc) = a func-
tion of the time spent in traffic congestion,
M=monetary cost of travel, and a1, a2,a3 are again
the estimated model parameters. They use two
specifications for ƒ (Tc). The first of these sets
ƒ (Tc) equal to the percentage of the trip time spent
in congestion, while the second model uses the
number of minutes spent in congestion directly.
The authors also introduce income effects into their
more elaborate model formulations. As a set, their
results indicate a considerable aversion to conges-
tion among their respondents. Their results imply
that, for the study’s median trip length of 26 min-
utes, a shift from 1 minute of uncongested to con-
gested travel time was valued at almost 3 times the
value of the time itself, which in turn implies that the
value of congested time is about 4 times the value of
uncongested time. Their results also suggest that this
ratio may vary a good deal by trip length, with val-
ues ranging from about 2 times higher for 60-minute
trips to six times higher for 15-minute trips. Past lit-
erature suggests that their results are on the high
side. This is probably due to the congestion focus of
the study and to the high levels of congestion their
respondents are used to. Again, results to date are
likely to be model-formulation as well as context
and market-sector sensitive. 

Table 1 summarizes high and low values sug-
gested by the literature for models 1 and 2 in rela-
tion to the value of travel time under uncongested
conditions.

LINKING INCIDENT DELAY MODELS

AND VALUATION METHODS

In this section, we demonstrate the implications of
linking the valuation methods in the third section
with the incident delay models in the second.

Our first hypothetical case for this demonstra-
tion is a 20-mile commuter trip on a 3-lane free-
way with a typical volume to capacity ratio of
0.90. These circumstances are typical of those
experienced by the California commuters surveyed
by Small et al. We also assume that when traffic is
not affected by incidents, the average speed is 55
miles per hour and the cost of travel time under
uncongested conditions for commuters is $10 per
vehicle-hour.

For this hypothetical case, the average delay due
to incidents is:

(20 miles)(0.0127(0.90)22.3 + 0.00474 
(0.90)5.01) = 0.080 hours

and the standard deviation of trip time is: 

((20 miles)(0.00288(0.90)23.2 + 0.00166 
(0.90)5.06))0.5 = 0.156 hours

Table 2 shows the results of applying models 1 and
2 with high and low values.

Our second hypothetical case for this demon-
stration is a 5-mile commuter trip on a 2-lane free-
way with a typical volume to capacity ratio of
0.80. We also assume that when traffic is not
affected by incidents, the average speed is 60 miles
per hour and the cost of travel time under uncon-
gested conditions is $10 per hour.

For this hypothetical case, the average delay due
to incidents is:

(5 miles)(0.0154(0.80)18.7 + 0.00446 (0.80)3.93)
= 0.010 hours
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TABLE 1   

Model 1 Model 2

Value of travel time under 
uncongested conditions V V

Value of incident-related 
delay V 2V to 6V

Value of standard 
deviation of trip time 0.3V to 1.3 V —

TABLE 2   

Cost components Model 1 Model 2

Travel time under 
uncongested conditions 3.64 3.64

Incident-related delay 0.80 1.60 to 4.81
Standard deviation 

of trip time 0.47 to 2.03 —
Total 4.91 to 6.47 5.24 to 8.45



and the standard deviation of trip time is 

((5 miles)(0.00408(0.80)21.2 + 0.00199
(0.80)4.07))0.5 = 0.065 hours

Table 3 shows the results of applying models 1 and
2 with high and low values. 

Model 2 produces somewhat higher costs for
our hypothetical case with a 20-mile trip, and
model 1 produces somewhat higher costs for our
hypothetical case with a 5-mile trip. The principal
reason for this difference is that model 2 is based
on incident delay only, whereas model 1 is based
on both incident delay and the standard deviation
of trip time. Expected incident delay increases in
direct proportion to trip distance. The standard
deviation of trip time increases in proportion to the
square root of trip distance. Hence, model 1 will
produce higher costs for short trips, and model 2
will produce higher costs for long trips, other
things being equal. The difference between these
two models highlights the need for more research
to determine the most appropriate model form for
valuation of delays due to incidents.

SUMMARY

In summary, a model of traffic incident-based
delays was formulated and estimated for freeways
of different capacities, for a range of traffic con-
gestion levels up to ideal roadway capacities. This
yielded equations for both the mean and variance
of such delays, on a per vehicle-mile basis. These
results were used to demonstrate the potentially
significant time-use benefits that could occur from
reducing such variances. To do this, the literature
on valuing travel time reliability was surveyed for
appropriate models and parameter values. Two
simple models were chosen to demonstrate the size
of the potential time-use benefits involved. The re-

sults mirror similar conclusions reached by Wilson
(1989) and by Noland and Small (1995). If the
results implied by the above approach are reflective
of actual traffic conditions, then policies to reduce
variability in commuting times, such as rapid
response incident clearance systems, may prove
cost-effective, even if average trip times change lit-
tle or not at all. Such systems may perhaps offer a
cost effective alternative to relatively expensive
capacity expansion projects that focus on reducing
average commuting times per se. Given the limited
amount of empirical work on both the valuation
and nature of traveler responses to highly variable
travel conditions, more work in this area is war-
ranted in support of more accurate benefit-cost
analyses.
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ABSTRACT

Most states tax the value of residents’ motor vehi-
cles. In recent political debates over the future of
these levies, the relative effects of these taxes on dif-
ferent socioeconomic groups have been a promi-
nent question. By linking data from the Nationwide
Personal Transportation Survey with estimates of
vehicle values from consumer vehicle pricing
guides, the socioeconomic and demographic inci-
dence of California’s Vehicle License Fee is exam-
ined. After the effects of state and federal income
tax deductions are taken into account, the fee is
found to be as regressive as the state’s sales tax.

INTRODUCTION

Value-based assessments on motor vehicles, includ-
ing personal property taxes and vehicle license fees,
have emerged as a key focus of state-level tax-cut-
ting efforts nationwide. This paper examines the
incidence of one such tax, California’s Vehicle
License Fee (VLF), which has been assessed on all
privately owned, registered vehicles in the state
since 1935. It is a uniform, statewide property tax
that was set, until recently, at 2% of a vehicle’s
value, based on its most recent purchase price and
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a fixed depreciation schedule. If the VLF had re-
mained unchanged, it would have raised approxi-
mately $3.9 billion in the 1998–99 fiscal year
(State of California 1998).

Around the nation, concerns about equity have
been at the center of many of the debates surround-
ing these tax cuts. In California, where a budgetary
surplus led legislators to reduce the VLF by 25% last
year, little information was available on how the ben-
efits of this action would be distributed across the
population. Because of this gap, the Senate Office of
Research asked the California Policy Research
Center and the Institute of Urban and Regional
Development at the University of California,
Berkeley, to prepare an analysis of the incidence of
the fee. This paper grew from that research effort.

The VLF and its equivalents elsewhere pose
interesting questions because they are distinct from
other transportation-related taxes. Unlike many
other taxes, the VLF bears no relationship to costs
or benefits from use of the transportation system.
Some transportation-related taxes seek to recap-
ture some external benefits by taxing actual system
use (crossing a bridge or tunnel, consuming gaso-
line) or by taxing the wealth derived from the sys-
tem (real property, since local streets confer the
property with value by providing access). Other
taxes are assessed in some rough proportion to the
impacts that a user places on the system, simply by
participating (e.g., registering a vehicle) or by im-
posing specific externalities (e.g., causing road
damage from excessive axle weight, driving during
rush hour, etc.).

The VLF does not fit any of these categories;
instead, it is loosely related to individuals’ ability-
to-pay. But unlike other levies that rely on current
expenditures to reveal ability-to-pay, such as the
vehicle sales/transfer tax or the general sales tax,
the VLF targets a portion of wealth that is derived
from past expenditures.

Another unique characteristic is that the VLF is
typically not earmarked for transportation-related
expenditures. Because of its origins as a local tax
on personal property, it continues to be used as a
source of local general revenue. As a result, it is not
easy to determine how VLF revenues are spent. For
this reason, we focus more narrowly on the inci-
dence of the tax burden imposed by the VLF.

Finally, because it is not based directly on expen-
ditures in the marketplace or on easily observable
characteristics of vehicles or travelers, the VLF is
difficult to measure. As a result, the implications of
this tax are not as well understood as those of other
taxes, despite the tax’s magnitude in many states.

METHODOLOGY

The methodology and assumptions used in this
research are outlined briefly here and described in
detail in the appendix. Before the 1998 tax cut, the
California Department of Motor Vehicles (DMV)
charged the VLF annually for each vehicle, using
the following formula (equation 1) and a deprecia-
tion schedule (table 1):

VLF = 0.02 � initial vehicle value (rounded to
nearest $100) � depreciation factor (1)

Therefore, two pieces of information on each
household vehicle are needed to calculate the VLF:
1) purchase price (or reported value) of the vehicle
when it was first registered by the current owner,
and 2) initial year of vehicle registration by the cur-
rent owner, which determines the depreciation fac-
tor. While the DMV collects the VLF, it does not
gather data on household income or demographic
characteristics needed for an incidence analysis.
Moreover, raw DMV data on vehicle registrations
were not available for this study.

Instead, we relied on an alternative source, the
1995 Nationwide Personal Transportation Survey
(NPTS). The NPTS sample includes 2,262 house-
holds in California, which collectively have over
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TABLE 1   VLF Depreciation Schedule

Year of Depreciation
registration factor (autos)

1 100%
2 90%
3 80%
4 70%
5 60%
6 50%
7 40%
8 30%
9 25%

10 20%
11 and later 15%



4,200 vehicles available for regular use. Using the
NPTS required a number of assumptions for initial
value and year of acquisition. Where the acquisi-
tion year of vehicles was not known, we assumed
that: 1) new vehicles were acquired the same year
as the model year and 2) used vehicles were
acquired halfway between the model year and the
year of the survey. Based on these estimated pur-
chase dates, plus vehicle make and model informa-
tion from the NPTS, we estimated vehicle purchase
values using standard vehicle pricing guides. 

FINDINGS

How Do VLF Payments Vary with Income?

In 1996, the average California household paid
$247 in VLFs. Total household VLFs ranged from
$55 for households with annual incomes under
$10,000 to $599 for households with incomes over
$100,0001 (see figure 1). The 25% reduction in the
VLF will save the households with the lowest

incomes an average of $13.75. The average house-
hold will save $61.75, and households in the high-
est income group will save nearly $150.

Approximately 5.7% of California households
do not own or lease any vehicles and, therefore, do
not pay the VLF. These households will not benefit
from the tax cut, unless they purchase or lease a
vehicle in the future. More than one-third of
households with incomes less than $10,000 do not
own or lease vehicles; excluding these households,
the average total VLF payment for this income
group is $88 per year. 

VLFs increase with income because wealthier
households tend to own more vehicles, and the
vehicles they own tend to be newer and more
expensive (see figure 2). The average number of
vehicles per household levels off at about 2.25 for
the highest income households, but the value of
each vehicle continues to increase.

Figure 3 shows the range of total VLF paid by
different income groups. The median is the 50th
percentile: half of the households pay more than
that amount, and half pay less. The 90th percentile
line represents the total VLF below which 90% of
the households in an income category pay; 10% of
the households in that income category pay more
than that amount. Similarly, the 10th percentile
line represents the amount of VLF below which the
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1 In figure 1, the total VLF appears to rise sharply for
households in the highest two income categories.
However, note that the highest two income categories
($80,000–99,999 and $100,000 and above) are broader
than the other categories, which are in $10,000 incre-
ments. This difference in increment is due to the data
source and makes the increase in the VLF appear sharper
than it should.
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lowest 10% of households in that income group
pay. Therefore, 80% of the households pay a total
VLF within the range between the 10th and 90th
percentile lines. 

Is the VLF Equitable?

Discussions of equity in transportation finance
usually focus on measures of horizontal equity

(fairness across different user groups, demograph-
ic groups, or geographic areas) and/or vertical
equity (fairness across different income groups). In
both cases, the net benefits to each group are of
primary importance. However, because the rev-
enues from the VLF tend not to be targeted for
transportation expenditures, it is not possible to
compare the costs and benefits. We, therefore,
focus exclusively on the cost side of the equation.
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On average, the California VLF consumes
0.61% of annual household income. The VLF’s
impact relative to household income declines as
income rises (see figure 4), indicating that this is a
regressive tax. Overall, the poorest households pay
an average of 1.05% of their income in VLFs; this
value rises to 1.68% for low-income households
that own vehicles. For vehicle-owning households
with incomes less than $10,000, the 25% cut in the
VLF will be most noticeable: on average, it will
save them nearly 0.5% of their annual incomes.

The regressivity of the VLF is heightened when
interactions with other taxes are taken into
account. Households can significantly reduce
their net VLF payments by deducting personal
property taxes (including the VLF) from their tax-
able income. The vast majority of the benefits of
this tax rule accrue to upper income households
(see figure 5). There are two reasons for this:
higher income taxpayers tend to be more likely to
itemize deductions, and they benefit more from
doing so, since they have higher marginal tax
rates. Most families (84%) do not claim a deduc-
tion for the VLF. However, including the majori-
ty who do not claim this deduction, the average
household at the highest income levels wins back
one-quarter of its VLF bill when it pays income
taxes. The average household at the lowest

income levels saves only 2% of its VLF payments
through tax deductions.

A different perspective on equity can be seen by
comparing the percentage of the total fee paid by a
certain group with the percentage of the total pop-
ulation that group represents. This analysis is
shown in figure 6. Households with incomes below
$10,000 pay under 2% of the total VLF collected,
while they represent over 7% of the households in
California. The transition appears to occur near
$40,000: households above this level pay 55.7% of
the VLF, while representing only 39.8% of the
population. Any proportional reduction in the tax
rate will have a greater absolute benefit for these
higher income households.

How Does the VLF Compare with Other Taxes?

As discussed earlier, license fees based on vehicle
values are only one of many different taxes and
fees that vehicle owners pay. Other types of assess-
ments include registration fees, vehicle sales and
transfer taxes, gasoline taxes, wheel taxes, weight
taxes, title fees, emissions charges, and special
interest or personalized license plate fees.

Some predictions can be made concerning the
relative regressivity of various tax options. In gen-
eral, taxes that target discretionary expenditures
will be less regressive than those that target essen-
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tial expenditures. In California, the regressivity of
the sales tax is alleviated somewhat because the
least discretionary expenditures—food, utilities,
and some health-related products and services—
are exempt from the tax. This is not the case for
the gas tax, which remains highly regressive
because a high proportion of the state’s poor pop-
ulation is automobile dependent.

The VLF is expected to be less regressive than
these other taxes. The choice of vehicle is highly
discretionary: the age, value, and number of vehi-
cles a family owns is strongly influenced by family
income. However, unlike sales and gasoline taxes,
the VLF is deductible from state and federal
income taxes, a policy that disproportionately ben-
efits higher income groups.
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One way of comparing the relative incidence of
different taxes is to plot the aggregate percentage
of the tax burden against the aggregate percentage
of total income. Figure 7 compares the VLF results
with data on the incidence of gasoline and sales
taxes (Citizens for Tax Justice 1996). The results
confirm the expectations described above: the gas
tax is the most regressive, followed by the sales tax,
and ultimately by the VLF. After the tax deductibil-
ity of the VLF is taken into account, the VLF is
extremely similar to the sales tax.

These relationships can be quantified using the
S-Index (Suits 1977), which relates the area under
the tax incidence curve to the area under the line
representing income neutrality. The S-Index ranges
from +1 (extreme progressivity) to –1 (extreme
regressivity), with a value of 0 indicating a tax bur-
den equitably distributed across incomes. The
index has been applied before to the analysis of
transportation taxes, based on data from the
Consumer Expenditures Survey (Rock 1982,
1990). It has also been used to evaluate the inci-
dence of vehicle emissions taxes, based on data
from the NPTS (Walls and Hanson 1996).

The relative regressivity of various transporta-
tion-related taxes and fees in California is shown in
figure 8.2 Values for VLFs, before and after tax
deductions, are based on data produced in this
study. Values for the flat registration and driver’s
license fees were derived from the NPTS database
by multiplying a flat fee by the number of vehicles
and the number of drivers in each household,
respectively. Values for the sales and gasoline taxes
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2 Household income quintiles were used to calculate the
values in figure 8. Because the tax incidence curve is con-
cave, the use of coarse income categories underestimates
the area under the curve and thus understates the actual
regressivity of the taxes. Although richer detail is available
for each of the taxes examined here, the income ranges are
not compatible across data sources, and quintiles must be
used to ensure comparability.



were derived from a study that estimated the dis-
tribution of payments of these taxes in California
in 1995, based on the Consumer Expenditures
Survey (Citizens for Tax Justice 1996). Values for
the vehicle sales/transfer tax were derived directly
from 1994/95 Consumer Expenditures Survey data
for the western United States (USDOL 1994–
1995).

Of these tax options, the vehicle sales/transfer
tax is the only one more progressive than the VLF.
This is consistent with the theoretical predictions
outlined above since households have greater dis-
cretion in their decisions to purchase vehicles than
they do in their decisions to own vehicles. Lower
income households tend to make these purchases
less frequently because they hold on to their cars
for longer periods of time.

How Do VLF Payments Vary with

Household Location and Demographics?

The average household VLF was compared across
several demographic variables, including race and
ethnicity, family life cycle category, age, and loca-
tion. For example, figure 9 displays the results of
an analysis of how the VLF as a percentage of
household income varies by family life cycle cate-

gory. There are three noteworthy patterns in these
results: 1) households comprised of two or more
adults pay greater VLF in comparison to their
incomes, 2) nonretired households without chil-
dren pay more (probably because they are able to
devote more of their resources to automobile pur-
chases), and 3) households with older teens pay
more (probably because their ownership of an
extra car is not fully compensated by the salary
that a teenager can earn). A key question is
whether the VLF places a disproportionate eco-
nomic burden on retirees, given their relatively low
fixed incomes. Figure 9 suggests that retired fami-
lies do not bear higher costs relative to their means.

Table 2 shows the total household VLF for
households of different races and Hispanic ethnic-
ity, along with factors that directly influence VLF
payments: the number of vehicles per household,
the initial value of the vehicle, and the number of
years household vehicles were registered.3 Asian
households pay the highest average VLF, while
African-American and Hispanic households pay a
lower average VLF. Households in the San
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or one of the persons who owns or rents the home. 



Francisco metropolitan statistical area (MSA) pay
the lowest average VLF of the state’s MSAs ($206),
while Orange County MSA residents pay the high-
est ($306), as shown in figure 10. 

The differences in VLF payments by life cycle,
race, and region are of interest to political deci-
sionmakers when evaluating tax-cut proposals.
However, a regression analysis demonstrates that
many of the differences in VLF payments between
households disappear after controlling for income
and the number of vehicles or drivers per house-
hold. Table 3 shows the results of a stepwise, least
squares linear regression model with total house-
hold VLF payments as the dependent variable
(model 1).

As expected, households with higher incomes
and more vehicles pay greater VLFs. Additional
significant variables include white households and
the San Francisco and Oakland MSAs. The signif-

icance of the latter two variables suggests that
urban form or the existence of a regional rail sys-
tem may enable some households to defer expen-
ditures on vehicles. However, as noted at the
bottom of the table, the adjusted r2 for a model
with only income and number of vehicles as inde-
pendent variables is identical to the model with the
additional variables.

Models 2, 3, and 4 employ three different de-
pendent variables: the number of household vehi-
cles, the average initial value of the household
vehicles, and the average length of vehicle registra-
tion in years, respectively. As described earlier,
total household VLF payments were calculated
directly from the initial vehicle value and the length
of registration for each household vehicle, applying
equation 1. Therefore, any relationship between
household characteristics and VLF payments
enters through one or more of the three dependent
variables shown in models 2–4. 

Several factors are significant when estimating
vehicle ownership (model 2). For example, senior
households have fewer vehicles, as do African-
American, Hispanic, and San Francisco house-
holds. However, these additional variables do little
to explain vehicle ownership beyond income and
the number of drivers. The adjusted r2 for the com-
plete model is 0.47, compared with 0.46 for a
reduced model with only income and number of
drivers as variables.

Model 3 shows that, even after accounting for
income, some household characteristics may have
an impact on the purchase price of vehicles. For
example, having more children in a household cor-
relates with lower value cars, indicating that
households with children may divert income from
vehicle purchases to other expenses. Asian house-
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TABLE 2   VLF Payments by Race and Ethnicity

Total VLF per Vehicles per Initial value of Length of vehicle
household household vehicle registration (years)

Asian $297 2.02 $13,500 6.1
White $252 1.85 $12,110 7.0
African-American $210 1.46 $11,970 6.8
Other $227 1.82 $10,290 6.4

Non-Hispanic $257 1.85 $12,410 6.9
Hispanic $205 1.72 $ 9,780 6.4
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TABLE 3   Ordinary Least Squares Regression Models

Total Number of Average inital Average length of vehicle
Dependent variable household VLF household vehicles vehicle value registration (years)

Relationship to VLF Positive Positive Negative

Constant –18.82 0.32*** 9,219.16*** 6.69***
(–1.32) (6.42) (33.58) (23.16)

Household income ($1,000) 1.55*** 0.002*** 49.5*** –0.006***
(16.74) (6.22) (18.02) (–3.86)

Number of vehicles 116.70*** n.a. 0.53***
(22.42) (4.24)

Number of drivers 0.84*** –0.65***
(33.20) (–3.71)

Number of children –377.30*
(–2.53)

Teen in household (1 = yes) –0.16** –0.52a

(–2.90) (–1.78)

Senior household (average age 70) –0.18** 2.58***
(–3.04) (7.91)

White head of household –30.66*
(–2.50)

Asian head of household 1,418.47*
(2.16)

African-American head of household –0.25**
(–3.42)

Hispanic head of household –0.15** –1,702.05**
(–2.63) (–3.21)

Urbanized area (1 = yes) 0.15**
(3.26)

San Francisco MSA –44.10* –0.14* 1.04**
(–2.14) (–2.00) (2.74)

Oakland MSA –53.06** 0.73*
(–2.96) (2.23)

Orange County MSA 1,834.79**
(3.23)

Los Angeles-Long Beach MSA 895.76*
(2.26)

Adjusted r2 0.38 0.47 0.18 0.07
N 1,807 1,864 1,708 1,708

Adjusted r2 for model with only 0.38 0.09 0.17 0.01
income and number of vehicles as (Income only)
independent variables

Adjusted r2 for model with only 0.29 0.46 0.17 0.02
income and number of drivers as 
independent variables

Key: *p < 0.05;  **p < 0.01;  ***p < 0.001;  ap = 0.075.

Note: Variables excluded from all models—San Jose, Sacramento, San Diego, and Riverside-San Bernardino MSAs, and number of adults.

Model 1 Model 2 Model 3 Model 4



holds and households in Los Angeles-Long Beach
and Orange County spend more on vehicles, even
after controlling for income. However, as with
model 2, these additional variables add little to
explain the model beyond the income variable. The
adjusted r2 for the full model is 0.18, compared
with 0.17 for a reduced model with only income
and the number of vehicles or drivers as variables. 

The average length of time a vehicle has been
registered determines the depreciation factor used
to calculate the VLF. The estimated coefficients
(model 4) confirm expectations: a negative rela-
tionship between income and length of registration
and a positive relationship between the number of
vehicles in the household and length of registra-
tion. In addition, senior households hold on to
their vehicles longer, as do residents of the San
Francisco and Oakland MSAs. These last two vari-
ables carry through to total household VLF pay-
ments (model 1), where San Francisco and
Oakland households are seen to pay lower VLFs.
Overall, however, the variables in model 4 explain
less than 10% of the variation in the data (adjust-
ed r2 = 0.07). In contrast to models 1–3, the income
and number of drivers or vehicles variables do not
account for a large portion of the explanatory
power of Model 4.

APPLICABILITY TO OTHER STATES

The taxation of the value of motor vehicles is not
unique to California. At the beginning of 1998, 31
states had some form of value-based vehicle license
fee (Mackey and Rafool 1998). These taxes have
been receiving increased political attention in
recent years. Indiana started the trend, cutting its
vehicle taxes by up to 50%. Soon afterwards,
James Gilmore III was elected Governor of
Virginia, after making elimination of the state’s
“car tax” a centerpiece of his campaign. His victo-
ry helped to catapult the issue into the national
spotlight. By the end of 1998, at least seven other
states (Arizona, California, Nebraska, Rhode
Island, Utah, Virginia, and Washington) had
reduced, restructured, or eliminated their VLFs,
and voters in Kentucky had amended their state
constitution to enable the repeal of their VLFs. In
1999, expanding state budget surpluses are contin-
uing to fuel calls for VLF cuts.

The magnitude of these taxes varies significant-
ly around the country: in 1998, rates ranged from
1% of vehicle value in Iowa to 7.68% of vehicle
value in Rhode Island (Lopez 1998). Sixteen states
set uniform rates, with taxes collected either by
local governments or the state, in which case rev-
enues are usually recycled back to local govern-
ments. Tax rates are set by local jurisdictions in 12
states, and 3 states have hybrid systems. Among
the states with uniform rates, the median annual
tax rate was 1.8% of assessed vehicle value
(Mackey and Rafool 1998). 

The method of determining the value of vehicles
subject to taxation also varies significantly among
the states. Four broad methods are used to estab-
lish these values (Mackey and Rafool 1998):
� Most recent purchase price (California and

Indiana). In these states, a fixed schedule is used
to determine the depreciated value of the vehicle
in subsequent years.

� Manufacturer’s standard retail price (Arizona,
Colorado, Maine, Massachusetts, Michigan,
Minnesota, Montana, Nebraska, Nevada, New
Hampshire, Oklahoma, Washington, and Wyo-
ming). This is also used with a fixed deprecia-
tion schedule.

� Market value, determined by a standard pricing
guide, local assessor, or state commission (Ala-
bama, Alaska, Arkansas, Connecticut, Georgia,
Kansas, Kentucky, Mississippi, Missouri, North
Carolina, Rhode Island, South Carolina, Texas,
Utah, Virginia, and West Virginia). Depreciation
occurs naturally according to market demand.

� Vehicle vintage (Alaska, Utah).4 This is only a
very rough proxy for vehicle value.
Although each state has a unique method for

assessing its vehicle property taxes, the general
approach outlined in this paper should be applica-
ble elsewhere. In most states, the tax basis is sim-
ply determined by the list price and purchase year,
purchase year alone, or fair market value. These
can be determined from consumer pricing guides,
the method most often used by the state govern-
ments. However, since most transportation surveys
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4 Local jurisdictions in Alaska may choose between assess-
ing a property tax and a vintage-based registration tax.
Utah shifted from a market value-based property tax to a
vintage-based user fee in 1998.



do not provide enough information to pinpoint
either list price or market value exactly, some price
averaging within a model family will still be neces-
sary.

License fees in California and Indiana are more
difficult to model because they are based on actual
purchase price and year, neither of which are
included in the NPTS. As a result, purchase year
and price had to be estimated on the basis of data
that the NPTS provides. We estimated the values of
vehicles purchased new from the list price. The val-
ues of vehicles purchased used were estimated from
the market value in the year they were estimated to
have been purchased (see the appendix for a full
discussion of our methodology).

The limited size of the NPTS sample in any sin-
gle state may be overcome by pooling data from
several nearby states. The finding that regional dif-
ferences were significant in predicting VLF pay-
ments—even after income and number of drivers
were taken into account—suggests that urban
form factors merit particular attention when
assembling a sample.

CONCLUSIONS

Annual taxes or fees based on the value of motor
vehicles are a significant source of income to state
and local governments. They have recently
received a great deal of public attention as states
consider their financial futures and as public offi-
cials and candidates propose major changes in the
ways in which these charges are levied. We found
surprisingly few studies of the mechanisms by
which the VLF is levied, of the uses to which the
proceeds of the fees are put, or of the incidence of
the fees according to spatial, demographic, or eco-
nomic characteristics of the population. 

This study found that VLF payments increase
substantially with income because car ownership
and the value of vehicles both increase with
income. Although upper income citizens of Cali-
fornia pay much more through their VLF pay-
ments than do poorer people, the VLF is a
regressive tax in that it takes from households a
declining proportion of income as income rises.
When the income tax deductibility of the VLF is
taken into consideration, regressivity increases.
The analysis showed some interesting differences

in VLF payments by ethnicity and area of resi-
dence, but most of this variability could be
explained by differences in income and number of
drivers in households.

This study examined the incidence of VLFs levied
against light-duty motor vehicles held by California
households. We did not look into the economic or
fiscal issues related to the VLF paid by California’s
commercial vehicle fleet, which includes medium-
and heavy-duty trucks and light-duty vehicles
owned and operated by fleets, as well as rental vehi-
cles. Since fleet vehicles tend to be newer than vehi-
cles held by households and fees are based on vehicle
value, it is reasonable to conclude that fleet vehicles
are responsible for a higher proportion of VLF rev-
enues than their simple proportion of the fleet
would suggest. Examination of the incidence of fleet
and commercial VLFs would be a logical extension
of this study and would require a substantial invest-
ment in data collection and analysis.

APPENDIX: METHODOLOGY FOR

ESTIMATING VLF INCIDENCE

The evaluation of VLF payments by households
requires a database that combines household
demographic characteristics (income, race, life
cycle characteristics, etc.) with detailed informa-
tion on household vehicles (i.e., purchase year and
purchase price). We used the 1995 NPTS sample of
2,260 households in California (USDOT 1997a,
1997b). For each vehicle in a household, respon-
dents provided information on the vehicle make
(e.g., Ford), model (e.g., Taurus), model year, and
whether the vehicle was acquired new or used. The
survey includes all vehicles that the household
owned or had available for regular use, including
home-based vehicles that are actually owned by
businesses.

Methodology

Two pieces of information on each vehicle owned
by a household are needed to calculate the amount
of VLF paid: 1) purchase price (or reported value)
of the vehicle when it was first registered by the
current owner and 2) initial year of vehicle regis-
tration by the current owner. Purchase price was
not collected in the NPTS survey, and the date of
acquisition was collected only for vehicles acquired
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in the most recent 12 months. Therefore, both
pieces of information had to be estimated.

1. Estimate of Vehicle Purchase Year 

For vehicles purchased during the previous 12
months, the exact month and year of purchase
were recorded. Where this information was not
recorded, the following assumptions were used to
estimate the vehicle purchase year:
� Vehicles acquired new were assumed to have

been acquired in the vehicle’s model year. While
some of these vehicles were purchased when
new models were introduced the previous sum-
mer or fall (e.g., a 1997 car bought in late 1996)
and some new models are purchased the follow-
ing year (e.g., a new 1996 car bought in 1997),
this simplifying assumption is adequate for this
level of analysis.

� Vehicles acquired used. The year of acquisition
was estimated as the midpoint between the
model year and the survey year. That is, a
respondent owning a 1975 vehicle (purchased
used) in the 1995 survey year was assumed to
have purchased it in 1985. 

2. Estimate of Vehicle Purchase Price 

Initial purchase prices were estimated using the Kelley
Blue Book 1975–95 for automobiles, vans, pickup
trucks, and sport utility vehicles, and the National
Automotive Dealers Association’s NADA Motorcycle
Appraisal Guide 1975–95 for motorcycles. The fol-
lowing assumptions were used in this analysis:
� Vehicles acquired new were assumed to have

been purchased at list price.
� Vehicles acquired used. The wholesale and retail

prices were obtained from the January issue of
the appropriate Blue Book or NADA Guide for
the estimated year of acquisition. Wholesale
prices are what dealerships pay to purchase
vehicles; retail prices are what consumers pay to
purchase vehicles from a dealership. Vehicles
sold between two private parties are typically
sold at a price halfway between the wholesale
and retail prices. Assuming that half of all used
vehicles are sold by dealerships and half are sold
directly by their owners, the purchase price of
used vehicles was estimated to be:

1⁄2 (retail + 1⁄2 (retail + wholesale)) (2)

� “Average” model prices. The NPTS defines vehi-
cle models more broadly than the Blue Book.
For example, the NPTS may identify a vehicle
only as a Ford Taurus, whereas the Blue Book
provides separate prices for the Taurus GL Sedan
and Wagon, SE Sedan, LX Sedan and Wagon,
and SHO Sedan. In these cases, prices were esti-
mated as the average of the high and low values
for all submodels within a model family.

� “Typical” options packages. The Blue Book
prices are based on standard packages of
options, determined by the vehicle’s class and
model year. All vehicles in this analysis were
assumed to have this typical package of options.
Using this methodology, we obtained initial

vehicle values for over 90% of the vehicles from
the NPTS California sample. Missing values were
most often due to missing data, such as incomplete
make or model information. In addition, we
excluded recreational vehicles and medium- and
heavy-duty trucks from the analysis because no
price guide was available for these vehicles (there
were fewer than 30 of these in the California sam-
ple). Finally, we excluded model years 1918
through 1964 because NPTS assigned all of these
to model year 1955 (there were fewer than 50 of
these in the California sample), preventing mean-
ingful value estimates.

The estimated purchase prices were compared
with findings published by the State of California’s
Legislative Analyst’s Office (1998). This compari-
son is shown in table 4. Overall, the data from the
NPTS-based estimation are consistent with the
Legislative Analyst’s report. The estimation based
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TABLE 4   Comparison of Initial Purchase
Price Estimates

Estimates Legislative
Purchase from NPTS Analyst’s
price & Blue Book Office (1998)

Less then $5,000 23% 27%
$5,000–9,999 23% 23%
$10,000–14,999 23% 19%
$15,000–19,999 18% 15%
$20,000–24,999 8% 8%
$25,000–29,999 2% 4%
$30,000–34,999 1% 2%
$35,000 and above 2% 2%



on the NPTS data has slightly fewer vehicles valued
at less than $5,000 and more vehicles valued
between $10,000 and $19,999. With the estimated
acquisition year and vehicle value, the 1996 VLF
for each vehicle was estimated using equation (1)
and the depreciation schedule in table 1.

The average VLF per automobile (including cars,
pickup trucks, vans, and sport utility vehicles) esti-
mated from the NPTS data was $136 in 1996. The
average for motorcycles was $55. The Legislative
Analyst’s report estimated the average automobile
VLF in 1997 as $171 and the average motorcycle
VLF as $57 (State of California 1998). The differ-
ence in the average automobile VLF may be due to
the fact that the NPTS data include only household
vehicles. The DMV data used for the Legislative
Analyst’s estimate include vehicles owned by busi-
nesses, including rental-car and other fleets. These
vehicles are likely to be newer, i.e., registered for
fewer years, and would incur a higher VLF. For
example, we estimated that the average VLF for
rental vehicles is $349 (Dill et al. 1999).

3. Estimate of Income Tax Deductions

Although the VLF is deductible from state and fed-
eral income taxes, relatively few taxpayers claim
this deduction. Nonetheless, because the tendency
to itemize tax deductions varies with income, it is
appropriate to estimate how this affects the actual
incidence of the tax.

Data supplied by the California Franchise Tax
Board (FTB) were used for this part of the analysis.
Based on the FTB’s weighted sample of 100,000
California tax returns, average marginal tax rates
and percentage of households itemizing deductions
for personal property tax payments were estimated
for each income group and filing status category.
This involved the following assumptions:
� Households vs. taxpayers. The data from the

FTB are a sample of taxpayers, not households.
This creates potential problems if we wish to
apply statistics from this sample to the house-
holds in our sample from the NPTS. First, some
households with more than one adult (e.g., non-
family households or married couples filing sep-
arately) may be overrepresented. In addition,
businesses filing tax returns are included in the
sample. Small businesses may comprise a large
proportion of the returns at lower income levels,

since low-income families are not required to
file if they do not owe taxes.

� Filing status. Average marginal tax rates vary
with the filing status (single, married filing joint-
ly, etc.) of the taxpayer. Because the NPTS does
not provide information on tax filing status,
household life cycle categories were used as a
proxy. Households with two or more adults
were assumed to file taxes as “married couples
filing jointly;” households with one adult and
no children were assumed to file as “single” tax-
payers; and households with one adult and one
or more children were assumed to file as “head
of household” taxpayers.

� Personal property tax deductions. Taxpayers
may deduct state “personal property taxes” on
their federal tax forms. For California residents,
the VLF is the most significant of these taxes.
We have assumed that all California taxpayers
itemizing deductions for personal property taxes
(about 16% of all filers) from their federal in-
come taxes included the VLF in the amount that
they deducted.
Based on these assumptions, the estimates for

average marginal tax rates and percentage of
households deducting personal property taxes
were applied to each household on the basis of
income and family life cycle. The estimated VLF
was adjusted as follows:

VLFadjusted = VLF � (1 – (% deducting VLF) �
(average marginal tax rate)) (3)

Potential Sources of Error

Systematic errors in our analysis may potentially
originate with the data themselves or with the
assumptions that we applied in using the data.
� Vehicle purchase dates. The assumption that

used vehicles were purchased halfway between
their model year and the survey year may sys-
tematically underestimate VLF charges for older
vehicles. Since cars built in the early 1970s were
all assumed to have been purchased more than
10 years prior to the survey date, they were all
assigned to the lowest VLF fee categories (15%
to 20%), whereas in reality, some of these vehi-
cles would have been purchased more recently.

� Used-vehicle values. The assumption that used-
vehicle values are a function of the Kelley Blue

146 JOURNAL OF TRANSPORTATION AND STATISTICS DECEMBER 1999



Book retail and wholesale values may systemati-
cally overestimate actual reported vehicle values.
This is because many used vehicles are not in the
“excellent” condition that corresponds to the
Blue Book prices and because some purchasers
of used vehicles may underreport vehicle sale
prices to evade the state sales tax and the VLF.

� New-vehicle values. The assumption that new
vehicles were purchased at list price may overes-
timate actual new vehicle values because some
dealerships may sell below list price. It also
masks price variations among vehicle submodels
and options packages.

� Tax deductions. Some taxpayers running busi-
nesses may deduct the VLF as a business expense
rather than as a personal property tax. These
deductions are not counted in our analysis.

� Company vehicles. An unknown percentage of
the vehicles in the sample are owned or leased
by an entity other than the household, such as
an employer. In many of these cases, the house-
hold does not pay the VLF directly or indirectly.
Therefore, VLF may be overestimated for high-
er income households that are more likely to use
company-owned vehicles.
The most important net effect of these errors is

expected to be the combination of assumptions
about vehicle purchase dates and vehicle values. In
each case, the use of “average” values is likely to
mask significant underlying income effects, leading
to more level (and therefore more regressive) esti-
mates of the relationship between income and VLF
than actually exist.
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ABSTRACT

Considerably less research has been done on mod-
eling freight demand with disaggregate discrete
models than on modeling passenger demand. The
principal reason for this imbalance is the lack of
freight demand data. Freight demand characteris-
tics are expensive to obtain and are sometimes con-
fidential. This paper analyzes the freight demand
characteristics that drive modal choice by means of
a large-scale, national, disaggregate revealed pref-
erence database for shippers in France in 1988,
using a nested logit. Particular attention is given to
private transportation (own account transporta-
tion) and combined public and private transporta-
tion. After aggregation and validation of discrete
choice models, the influence of demand character-
istics on freight modal choice is analyzed. The
maximum probability of choosing public road
transportation takes place at approximately 700
kilometers, while that of choosing rail transporta-
tion take place at 1,300 kilometers.
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INTRODUCTION

In France, freight is increasingly transported by
road, which results in a variety of negative, exter-
nal effects such as congestion, pollution, and acci-
dents. This has led public authorities to attempt to
reduce its predominance. One area of interest is
intercity freight modal choice and the competition
between rail and road. The French Ministry of
Transport, in cooperation with other French trans-
portation research organizations, the National
College of Bridge and Roads (ENPC) and the
French National Research Institutes for Transport
and Safety (INRETS), has for the first time devel-
oped a freight analysis system that emphasizes the
modeling of freight mode choice.

These discrete-choice models permit the con-
struction of a very general utility function incorpo-
rating many freight demand characteristics and
transportation service attributes. Freight modal
choice depends on transportation demand and
infrastructure as well as service supply characteris-
tics. It thus embodies a trade off between general-
ized transportation costs and shippers’ logistical
costs. On the supply side, the principal explanato-
ry variables that have been included in previous
disaggregate models are alternative-specific trans-
portation service variables, such as transportation
cost and transit time, frequency, and damage rates
(Daugherty 1979, Van Es 1982, Gary 1982,
Fowkes and Tweddle 1988, Widlert and Bradley
1992). However, on the demand side, few studies
have attempted to systematically establish a rela-
tionship between mode choice and freight demand
characteristics. The chief reason for the absence of
freight demand analysis is the difficulty in collect-
ing the necessary data, due to the great hetero-
geneity of firms and to questions of confidentiality
and reliability of data (Ortuzar and Willumsen
1994). Thus, the influence of demand characteris-
tics on freight mode choice has not been sufficient-
ly understood.

In fact, demand characteristics, such as the
attributes of the shipper, the attributes of the goods
to be transported, and the spatial attributes of
shipments, strongly influence modal choice. Any
change in these characteristics can make shippers’
demands for transportation service change consid-
erably, often leading to the choice of a new trans-

portation mode. In order to provide a quantitative
evaluation of freight demand characteristics,
INRETS carried out a shippers’ survey in 1988 for its
freight research and development program. The sur-
vey was carried out by professional investigators
who interviewed the logistics managers of industrial
and commercial enterprises. The first step they took
was a presurvey aimed at finding a suitable method-
ology for the quantification of transportation
demand. The second step, the principal survey, pro-
ceeded according to a sample design that ensured
representation at the national level. Selected by activ-
ities, size, and other characteristics, 1,742 industrial
and commercial firms distributed in 21 regions and
20 economic sectors were requested to provide infor-
mation on three shipments. The principal survey thus
included 5,110 shipments. The questionnaire was
comprised of three parts that dealt with 1) the char-
acteristics of the firms, either shippers or receivers, 2)
the physical characteristics of the shipment, such as
type of goods, size, cost, and packaging, and 3) infor-
mation about the linkages and itinerary of the ship-
ment. The resulting database covers 51 quantitative
and qualitative characteristic variables. Transporta-
tion service attributes, such as transportation time
and cost, were also requested, but, unfortunately,
very few shippers answered the questions for reasons
of confidentiality and lack of knowledge about ser-
vice attributes (Gouvernal and Hanappe 1986,
Bredeloup et al. 1989). At present, the INRETS sur-
vey is the only national disaggregate revealed prefer-
ence database for freight transportation in France.
For this reason, this paper concentrates only on
freight demand characteristics.

The purpose of this paper is to analyze how
freight demand characteristics relate to and influ-
ence shippers’ modal choice, using a nested logit
model as an analytical tool. The contents of the
paper are as follows: the second section describes
the transportation mode and demand characteris-
tic variables considered. The third section presents
the results of estimating the nested logit models of
modal choice. The fourth sections aggregates the
results of the models, and the fifth section validates
the aggregated results. The sixth section examines
the marginal effects of demand characteristics and
transportation services on mode choice. The final
section presents our conclusions.
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TRANSPORTATION MODES AND FREIGHT

DEMAND CHARACTERISTICS

The various modes covered by the INRETS ship-
pers’ survey can be grouped into two transporta-
tion modes: private road transportation (i.e., own
account transportation) and public (purchased)
transportation. Public transportation includes rail,
road, inland waterways, air transportation, mar-
itime, pipelines, and intermodal transportation.
Private transportation has long been regarded as a
means of transporting goods over short distances
but not as competitive with the other transporta-
tion modes over long distances. However, with the
development of integrated logistic systems, public
transportation modes must compete with private
transportation to create added value for shippers in
the movement of goods. In this new system, ship-
pers can opt for private transportation even for
long distance shipments, leading to an additional
increase in road traffic. In view of the importance
of the private versus public transportation choice,
this paper will first deal with the modal choice
between private and public transportation and
then with the choice between rail, road, and com-
bined transportation. Figure 1 represents this
process. 

Two situations were considered rail transporta-
tion: when the departure or arrival point is a rail
branch line and when there is road plus rail with
passage through railway stations. Only the rail-
road traffic through CNC or Novatrans (two com-
bined transportation companies in France) loading
yards were considered. In total, the data used
include 3,473 observations, which can be broken
down as follows: 1,421 observations for private
transportation; 2,052 observations for public
transportation, of which 1,866 observations relate
to road transportation, 123 are rail transportation,
and 63 are combined transportation.

We can divide available freight demand charac-
teristics into three types: a firm’s (shipper’s or
receiver’s) characteristics, goods’ physical attribut-
es, and the spatial and flow characteristics of ship-
ments. A firm’s characteristics include the nature of
the firm, such that in this category we find type of
firm (for example, factories, shopping centers, or
warehouses); the firm’s structure (small, nation-

wide, or worldwide); the firm’s location (for exam-
ple, the accessibility to rail branch lines and high-
ways); and the firm’s size, represented by the
number of employees. A firm’s own transportation
facilities closely relate to its transportation demand
and are also an important factor in its modal
choice. In addition, a firm’s information system
strongly influences its logistic practices and plays
an increasingly important role in its transportation
decisions. All of these characteristics are represent-
ed by dummy variables and are taken as long term
factors for modal choice because changes in these
characteristics will be made at the strategic, long
term level, rather than at the day-to-day decision-
making level.

The next type of demand characteristic is the
attributes of the goods to be transported, such as
type of product, weight, value, and packaging. The
type of product includes a wide range of categories,
for example, foodstuffs and fodder, machines and
metal articles, transportation and agricultural
materials. Packaging is generally either parcels and
pallets or tanks, containers, and cases.

Finally, frequency, distance, origin, and destina-
tion of a shipment are its spatial distribution and
physical flow attributes. Transportation distance
was calculated from the 1988 Information System
for Freight Transport (SITRAM) database of the
French Ministry of Transport. Destinations include
all French regions and many European countries,
such as Italy, Spain, Belgium, Switzerland,
Germany, and the Netherlands. Since these charac-
teristics can change in a short time according to
market demand, they are taken to be short term
factors for modal choice.

The various long and short term characteristics
can be summarized as follows:
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� Long term factors: the firm’s nature, size, loca-
tion, information system, structure, and trucks
owned by the firm

� Short term factors: physical attributes of goods,
physical flow attributes, and the spatial distrib-
ution characteristics of shipments.

MODEL SPECIFICATION AND EMPIRICAL

FINDINGS

The multinomial logit model (MNL) has often
been used to model freight modal choice. However,
because the unobserved attributes of road, rail, and
combined transportation modes viewed as public
transportation are likely to be correlated, the inde-
pendent and identically distributed (IID) assump-
tion of the multinomial logit model will likely not
be satisfied if we define the choice set as private
transportation, road, railway, and combined trans-
portation. It is probably more accurate to represent
the decisionmaking process of modal choice for
shippers with a nested MNL model: the higher
level modal choice is between private and public
transportation, and the choice among road, rail-
way, and combined transportation is within the
public mode.

First Level: The Choice Between Road, Rail

and Combined Transportation

where
Vroad and Vcomb are utility functions for road trans-
portation and combined transportation.

Second Level: the Choice Between Private

and Public Transportation

where
� p represents public transportation.
� �p is the scale parameter for public transporta-

tion.
� Vpublic is utility function for public transporta-

tion.

� V�p represents the log-sum variable of the nest-
ed logit model and can be written as:

V�p = ln[exp(Vroad) + exp(Vcomb) + 1]. (1.3)

Hence, the modal choice probability for public
road transportation compared with private trans-
portation is :

Estimation results on the first level of choice
between road, rail, and combined transportation
are presented in table 1, where the referenced alter-
native is rail transportation. The t statistics in
parentheses indicate that most of the variables are
statistically significant, although for the choice
between road and rail, variables such as shipment
size, shipment frequency, and shipment to Paris,
they are less significant, and for the choice between
combined transportation and railway, the variables
such as warehouse and shipment in barrels-tank
are less significant. The signs of variables indicate
shippers’ preferences for mode choice. We note
that long distance transportation, shippers and
receivers located on rail branch lines, large firms,
shippers with their own smaller sized trucks, and
shipments from Paris are favorable for rail trans-
portation. Conversely, shippers who package in
pallets and shippers with information systems pre-
fer other modes to rail transportation. For com-
bined transportation, there are positive effects for
long distance transportation, shipments to Paris,
large firms, and shippers with rail branch lines.
However, for large size shipments, shipments to
foreign countries, and shippers near highways, less
combined transportation tends to be favored. On
the other hand, for short distance transportation,
shippers with information systems such as EDI,
near highways, or with shipments packaged in pal-
lets and in tanks favor road transportation. In con-
trast, large companies, shippers and receivers near
rail branch lines, and shippers with their own small
trucks tend to favor transportation by road less.
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Pn (y=road)= 
exp(Vroad)

1 + exp(Vroad) + exp(Vcomb)
(1.1)

Pn (y=public)= 
exp(Vpublic + V�p *    p)

1 + exp(Vpublic) + V�p *    p)
(1.2)

Pn (y=road)= 
exp(Vroad)

1 + exp(Vroad) + exp(Vcomb)

(1.4)

*

exp(Vpublic + V�p *    p)

1 + exp(Vpublic) + V�p *    p)



Estimation results on the second level of choice
between private (in house) and public (purchased)
transportation are presented in table 2 where the
referenced alternative is private transportation. All
of the variables are significant as indicated by their
t-statistics. In addition, the scale parameter of the
log-sum term is equal to 0.272 and is therefore
between 0 and 1. This confirms that a nested logit
model should be used for this case and that a sim-
ple MNL formulation would be incorrect. As for
the shippers’ preference for mode choice, the signs
of variables indicate that for long distance trans-
portation, high frequency shipments, both shipper
and receiver located on a rail branch line, shipment
in parcel, worldwide companies, manufacturing
products, and metal industries public, transporta-

tion is preferred. On the other hand, for warehouse
receivers, shipment in a circuit, small companies,
shippers with own truck, food, and agricultural
products, private transportation tends to be favored.

We further discuss the importance of demand
characteristics for mode choice in a later section by
analyzing the marginal effects of demand charac-
teristics.

Aggregation of the Results

The ultimate objective of modeling is to forecast
and measure the sensitivity of transportation
demand to transportation policy and economic
conditions. However, for purposes of government
policy-making, aggregate behavior is of greater
interest than the behavior of any individual firm.
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TABLE 1   Modeling Results for the First Level Choice

Explanatory variable Road vs. rail 1 Combined vs. rail

Constancy for road 4.76 (16.4)
Constancy for combined 

transport –1.22 (–2.4)
Distance –0.0017 (–5.3) 0.003 (5.0)
Shipment size 0.00000319 (–1.2) 0 (–2.8)
Shipment frequency 0.00000445 (–1.7)
Number of employees –0.0005 (–3.6)

Warehouse –1.3 (–3.8) –1.26 (–1.7)
Shopping center –0.832 (–2.8)
Shipper with information 

system 1.82 (2.8) 1.65 (1.9)
Shipper near highway –0.995 (–2.6)
Shipper with rail branch line –0.52 (–2.5)
Receiver with rail branch line –1.2 (–4.9) –0.977 (–2.0)

Package in barrels–tank 2.25 (2.5) 1.96 (1.4)
Package in tank container 1.46 (2.7)
Pallets 0.799 (2.6) 1.14 (2.5)
Shipment in a circuit 2.02 (2.0)

Shipment to foreign country –4.6 (–3.7)
Shipment to Paris –0.445 (–1.6) 0.786 (1.9)
Shipment from Paris –0.842 (–3.3) –0.9 (–1.8)

Shipper with own wagon –0.0282 (–2.5)
Shipper with own truck(<3t) –0.945 (–3.7) –0.873 (–2.1)
Shipper with own truck (3–6t) –1.14 (–4.1) –0.884 (–1.8)

Log-likelihood of complete model –585.99
Log-likelihood of restraint model –742.93
McFadden’s pseudo-R2 0.21
Percentage of correct prediction 85.76
1 Numbers in parentheses represent t-statistics



Therefore, the aggregation of disaggregate fore-
casts from discrete models is indispensable. The
simplest method is direct aggregation or the naïve
method. In this case, the average values for all
explanatory variables are calculated, and then the
aggregated choice probabilities are estimated with
these average values. This approach is prone to
aggregation bias when applied to nonlinear mod-
els. For this reason, researchers have developed
approximate methods, such as the TALVITIE
method and the market segmentation method, in
order to find the best combination of calculation
cost and precision of results (Ben-Akiva and
Lerman 1985).

The TALVITIE method constructs the second
order Taylor expansion of a choice probability func-
tion as an approximation of the exact choice proba-
bility. This expression is then used to compute the
aggregate choice probabilities at the mean value of

the explanatory variables. The result of the TALVI-
TIE method is equivalent to the result of the naïve
method, plus an error term, which depends jointly
on the sample and the result of naïve method.
Unfortunately, it is not clear that the TALVITIE
method provides more precise results than the naïve
method with an appropriate error term.

The market segmentation method is a logical
extension of the naïve method. It divides the given
market into several homogeneous groups so that
error variance is minimized in each group and is
maximized between groups. Then the direct (naïve)
method is applied to each defined segment. The
aggregate result is finally obtained by taking the
average value of probabilities for each market seg-
ment, weighted by the market shares of each given
market segment. This method reduces the aggrega-
tion bias produced by the use of average values,
due to the fact that the data’s characteristics in each
segment are not significantly different.

Each of these methods has been used in passen-
ger transportation modal choice analyses. For the
aggregation of freight transportation demand,
there have been no special methods developed, and
few case studies exist. From existing empirical
applications for passenger transportation, it
appears that the most commonly used methods are
sample enumeration and market segmentation.
Other methods, such as the TALVITIE and the
naïve methods, are very seldom used. Assuming
that commodities’ logistical families determine
their transportation demand, we believe that mar-
ket segmentation is a satisfactory method for the
aggregation of freight forecasting results

The first stage of the market segmentation
method is to select variables that can explain ship-
pers’ behavior and to determine the number of cat-
egories to be created for each selected variable in
order to minimize the variability of representative
utility (i.e., the bias of aggregation). Clearly, there
is a trade off between the reduction of bias and the
complexity of segmentation. Additionally, prefer-
ence is given to segments corresponding to existing
aggregate information so that the forecast results
can be compared with observed data.

In France, SITRAM and the Database for Road
Freight Transportation (TRM) are the govern-
ment’s two databases for freight transportation.
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TABLE 2   Modeling Results for the Second Level
Choice

Variable Public vs. private1

Constancy –1.498 (–6.3)

Distance 0.005 (20.3)
Shipment frequency 0.00000915 (5.1)

Receiver is a warehouse –0.431 (3.0)
Shipper with rail branch line 0.533 (4.5)
Receiver with rail branch line 0.605 (4.1)

Parcel 0.761 (7.1)
Shipment in a circuit –2.45 (–12.6)

Small firm –0.413 (–2.9)
Worldwide company 0.676 (5.1)

Shipper with own truck (6–17t) –1.825 (–12.6)
Shipper with own truck (>17t) –1.983 (–16.1)

Manufacturing products 0.338 (2.9)
Foods –0.295 (–2.0)
Metal 0.642 (2.0)
Agricultural products –0.565 (–2.0)

V�p 0.272 (5.4)

Log-likelihood –1,363.725
Numbers of observation

for public transport (1) 1,967
Number of observation

for private transport (2) 1,317
1 Numbers in parentheses represent t-statistics



Important variables for segmenting the market
include the type of goods (Nomenclature pour les
Statistique de Transport (NST) classification), dis-
tance, and packaging. Using the SITRAM database,
we calculated the average transportation distance
and the modal share for each type of product. In
general, only products transported over long dis-
tances (more than 150 kilometers) with a relatively
low rail share have been thought to have the poten-
tial for shifting from road to rail in France. The fol-
lowing products make up 65% of total traffic:
� Foodstuffs and fodder (NST 1)
� Basic chemical products (NST 8)
� Transportation and agricultural material (NST

9A)
� Machines and metal articles (NST 9B)
� Other manufactured products (NST 9C)

THE VALIDATION OF MODELS

The logical step following model development is
model validation. Model validation has been defined
as the process that assures that a model describing a
phenomenon does so adequately for the model’s
intended use (Miser 1993). Three types of validation
have been distinguished: technical, operational, and
dynamic (Gass 1983). Technical validation refers to
the use of the correct kind of data, assumptions, and
relations in the model, along with method. This is
also referred to as internal validation (Taylor 1983).
Operational validation concerns the assessment of
the kind and the importance of errors produced by
the model in comparison with reality (i.e., how the
model represents reality). Finally, dynamic validation
is concerned with determining how well the model
predicts over different time periods. Operational and
dynamic validation are also referred to as external
validation (Taylor 1983).

In this paper we test the operational validity of
the model. Operational validation provides infor-
mation about the practicality of the model and
shows the difference between reality and the results
of the model. This requires a database that describes
an actual situation. The database used here is
SITRAM; in it the modal shares are represented by
tons or tons-kilometers. But, the forecasted proba-
bilities or modal shares obtained from our models
are expressed in terms of the number of shipments.
Therefore, in order to compare the forecasted results

with actual results, the first step is to transform the
modal shares in numbers of shipments to the modal
shares in tons or ton-kilometers. To do this, we have
used the following formulas:
where

� P(i)T is choice probability in tons for mode i.
� P(i)TKM is choice probability in ton-kilometers

for mode i.
� P(i)E is choice probability expressed in percent-

age of shipments for mode i.
� W(i) is average weight of shipment for mode i,

and
� D(i) is average distance for mode i.

The average weights and average distances are
obtained from SITRAM. The aggregated shipment
shares are predicted by our models. By combining
them, we obtain mode share in tons and ton-kilo-
meters for each segment, which can then be com-
pared with actual statistics. Table 3 presents the
comparison of mode share in tons. The forecast
error for foodstuffs and fodder and for chemical
products is the largest, most likely because there
are fewer observations of these types of goods in
the sample. In general, we found that the forecast
results for each segment obtained this way are
more precise than those derived by the direct
aggregate method.

MARGINAL EFFECTS OF DEMAND 

CHARACTERISTICS

The marginal effects of the explanatory variables
on modal choice behavior for dummy variables
have means that are fractions.

The elasticities of choice probabilities between
road, rail, and combined transportation with
respect to explanatory variables shown in table 4
enable us to analyze the role of demand character-
istics in mode choice. For the choice between road
and rail transportation, transportation distance,
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company size, information system, rail branch line,
use of pallets, and shippers owning trucks play the
most important roles. Among these factors, only
information system and pallets show preference for
road transportation. For the choice of combined
transportation, transportation distance, shipment
size, shipment to a foreign country, shipper prox-
imity to a highway, shipment to Paris, company
size, and rail branch line are very important factors.
For long distance shipments and shipments to Paris,
combined transportation is especially preferred.

To analyze shippers’ modal choice behavior
among private transportation, road, rail, and com-
bined transportation, the partial derivatives of
probability with respect to the explanatory vari-
ables must be calculated. It can be expressed in the
following formula (Liao 1994).

Using equation 3.1, we can estimate elasticities,
and the results are found in table 5. Because com-
panies generally use their own trucks for the deliv-
eries of goods and call on public transportation for
the supply of goods for production, the shipper’s
own large trucks play an important role for the ini-
tial choice between private and public transporta-
tion. Furthermore, companies owning trucks of
more than 17 tons strongly prefer private trans-
portation, although this tendency is diminished for
long distance transportation.

We also found that transportation distance,
shipment in parcel or in a circuit, and the accessi-
bility of railways’ infrastructure strongly influence
the choice between private and public transporta-

tion. For example, long distance shipments or
shipments packaged in parcels are more likely to be
shipped by public transportation, but shipments in
a circuit rely heavily on private transportation.
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TABLE 4   Elasticities of the Choices Between
Road, Rail, and Combined Transpor-
tation (at means)

Variable Road Combined Rail

Distance –0.038 1.807 0.619
Shipment size 0.004 –0.596 0.025
Shipment frequency –0.002 0.048 0.048
Number of employees –0.007 0.154 0.154
Warehouse –0.002 –0.00019 0.059
Shopping center –0.002 0.050 0.050
Shipper with 

information system 0.005 –0.009 –0.141
Shipper near highway 0.003 –0.293 0.003
Shipper with rail 

branch line –0.006 0.146 0.146
Receiver with rail 

branch line –0.007 0.028 0.181
Package in barrels–

tank 0.003 –0.008 –0.079
Package in tank 

container 0.003 –0.074 –0.074
Pallets 0.005 0.076 –0.161
Shipment in a circuit 0.003 –0.073 –0.073
Shipment to foreign 

country 0.003 –0.380 0.003
Shipment to Paris –0.004 0.194 0.068
Shipment from Paris –0.004 –0.012 0.113
Shipper with own 

wagon –0.001 0.014 0.014
Shipper with own 

truck(<3t) –0.006 0.007 0.172
Shipper with own 

truck (3–6t) –0.004 0.022 0.114

 P
2/1 

+ +
�P

1

�x

�P
1

�x

�P
2/1 

�x

�P
2/1
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TABLE 3   Comparison of Forecasted and Actual Results (percent)

Segments Estimation SITRAM Error Estimation SITRAM Error 

Foodstuffs and fodder 68.17 61.73 6.44 29.18 33.51 –4.33

Chemical products 31.66 31.81 –0.15 65.16 59.30 5.86

Other manufactured products 37.27 37.44 –0.17 53.35 52.53 0.82

Agricultural and transportation material 48.03 47.12 0.91 51.11 51.59 –0.48

Machines and metal articles 33.43 34.10 –0.67 63.82 60.75 3.07

TOTAL 56.25 59.33 –3.08 38.12 34.90 3.22

Private transport Public road



Finally, we considered the changes in choice
probabilities as functions of continuous variables,
such as transportation distance, shipment size, and
shipment frequency. In general, an increase in
transportation distance and shipment frequency
tends to raise the shares for rail and combined
transportation. However, with increasing shipment
size, the probability of choosing combined trans-
portation diminishes, while that of rail transporta-
tion increases.

Transportation distance is a very important factor
in mode choice. Figure 2 shows the evolution of
choice probability for transportation distances
between 100 and 3,000 kilometers. For short distance
transportation, road transportation is the dominant
mode and has little competition from other modes.
On the other hand, the shares of rail, road, and com-

bined transportation depend strongly on transporta-
tion distance at distances longer than 1,000 kilo-
meters. For example, if the distance is less than 300
kilometers, the traffic is shared between private truck
transportation and public road transportation. The
maximum probability of choosing public road trans-
portation takes place at approximately 700 kilome-
ters, but that of choosing rail transportation occurs at
1,300 kilometers. Combined transportation becomes
dominant if transportation distance is more than
1,400 kilometers.

We can also examine the joint effects of trans-
portation distance and shipment destination.
Figure 3 shows the probability of choosing com-
bined transportation versus railway with respect to
transportation distance for an international or
national shipment. We can see that for long dis-
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TABLE 5   Elasticities of the Choice of Four Modes Considered (at means)

Variable Private Road Combined Rail

Distance –0.995 0.449 1.782 0.924
Shipment frequency –0.068 0.030 0.079 0.079
Receiver is a warehouse 0.033 –0.016 –0.016 –0.016
Shipper with rail branch line –0.098 0.040 0.205 0.205
Receiver with rail branch line –0.056 0.020 0.056 0.216
Parcel –0.243 0.116 0.116 0.116
Shipment in a circuit 0.221 –0.103 –0.159 –0.159
Small firm 0.039 –0.019 –0.019 –0.019
Worldwide company –0.090 0.043 0.043 0.043
Shipper with own truck (6–17t) 0.169 –0.081 –0.081 –0.081
Shipper with own truck (>17t) 0.304 –0.145 –0.145 –0.145
Manufacturing products –0.060 0.029 0.029 0.029
Foods 0.028 –0.013 –0.013 –0.013
Metal –0.012 0.006 0.006 0.006
Agricultural products 0.013 –0.006 –0.006 –0.006
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tance international shipments, rail plays a more
important role than for long distance intranational
shipments. Furthermore, if the shipment distance is
less than 1,500 kilometers, international shipments
tend not to use combined transportation.

CONCLUSION

In this study, we used French freight demand survey
data to estimate a disaggregate, discrete choice
model. Using elasticities of choice probabilities, we
analyzed how demand characteristics influence the
choice between transportation on a shipper’s own
account versus purchased road, rail, and combined
transportation. We found that transportation dis-
tance, the shipper’s accessibility to transportation
infrastructure, the shipper’s own transportation
facilities, and shipment packaging (pallets and par-
cel) are the critical determinants of the demand for
rail and combined transportation. For long distance
nationwide transportation, combined transporta-
tion may be an important mode, but for long dis-
tance international transportation, the existing
quality of service of combined transportation
apparently fails to satisfy shippers’ needs, and con-
ventional rail transportation plays a significant role.

This study’s results point to the need for care-
ful and systematic analysis of the changes in
firms’ logistical systems for predicting traffic
mode split and for evaluation of the effects of
transportation infrastructure decisions on the
modal structure of freight traffic. Much greater
detail is needed concerning the interactions
between firms’ logistical decisions, their shipment
demands, and the characteristics of alternative
transportation modes. We hope that this study
provides a starting point for these issues and their
influence on freight modal choice.
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ABSTRACT

In order to examine national developments in traf-
fic safety, crash statistics from several of the more
developed countries are compared with those of the
United States. Data obtained from the Fatality
Analysis Reporting System (FARS) and the
International Road Traffic and Accident Database
(IRTAD) are analyzed. Trend analysis results for
the countries included, the United States, the
European Community, Canada, Japan, New
Zealand, and Australia, show that all regions have
experienced decreases over time in the fatality rate
per 100,000 population as well as the fatality rate
per 100,000 registered vehicles. Fatality data are
partitioned by age group, travel type, and roadway
type. A variety of problems in collecting and ana-
lyzing international data is presented with some
recommendations for further improvement.

INTRODUCTION

Traffic crashes and their attendant injuries and
fatalities are a worldwide public health problem.
To address national developments in the area of
traffic safety more accurately, it is advantageous to
view traffic crashes in an international context. As
such, the German Federal Ministries of Transport,
Building and Housing, and the Federal Highway
Research Institute (BASt) established an Inter-
national Road Traffic and Accident Database
(IRTAD) in the mid-1980s. Since 1990, that data-

base has been operated within the framework of
the Road Transport Research Programme within
the Organization for Economic Co-operation and
Development (OECD) in Paris, France and includes
aggregate data from all OECD countries, with
BASt acting as the administrator of the database.
The purpose of this database is to provide interna-
tional comparative traffic safety statistics for its
members. IRTAD is the only international database
that attempts to provide historical consistency and
international comparability for traffic crash data.
However, IRTAD does not address risk in terms of
different vehicle types or roadways.

This paper examines the safety statistics of some
of the more developed nations around the world that
participate in this database. The regions included in
this paper are the Unites States, the European
Community (Austria, Belgium, Denmark, Finland,
Germany, Greece, France, Ireland, Italy, Luxem-
bourg, Netherlands, Portugal, Spain, Sweden, and
the United Kingdom), Canada, Japan, and the
Pacific Region (New Zealand and Australia).

The data used in this report came from the annu-
al reports on traffic crashes, injuries, and fatalities
issued by the respective countries and submitted, in
a uniform format, to the IRTAD from 1980 to
1996. The U.S. fatality data came from the Fatality
Analysis Reporting System (FARS). Meeting the
exacting requirements of IRTAD, the U.S. injury
crash data are the sums of counts of police-report-
ed injury crashes collected by the individual states
and submitted to the Federal Highway Administra-
tion, rather than the National Highway Traffic
Safety Administration (NHTSA) General Estimates
System (GES) estimates derived from a sample of
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approximately 50,000 crashes. This uniform data
collection and reporting procedure is followed by
each participating nation and provides the most
comparable data for international analysis.

IRTAD provides the following data for all of the
nations included in this paper:
1. Number of injury accidents classified by road

types,
2. Fatality figures with a breakdown by vehicle

type, age groups, and road type,
3. Population data, and
4. Vehicle registration data.

Two measures of traffic safety were used: the
number of fatalities and the number of injury
crashes by year. Data for these two variables were
generally available for the countries included in
this paper. The exception was the number of injury
crashes for Australia, which was not available.

FATALITIES

A traffic crash-related fatality is defined by the
Vienna Convention as an individual who dies at
the scene of the crash or within 30 days following
the crash (Pozuelo and Izarzugaza 1996). This def-
inition is consistent with the definition used by
NHTSA, with the imposition of a further restric-
tion, that the traffic crash must occur on a road-
way customarily open to the public. Although
there is an international standard definition, it is
not used by all OECD countries. Not all countries
follow the 30-day time frame. To address the prob-
lem of comparing fatalities across international
lines, the fatality data were adjusted by IRTAD to
approximate the international definition. IRTAD
applied the following internationally-agreed on
adjustment factors to the fatality data submitted by
each nation. The number in parentheses indicates
each country’s standard time frame for a fatality’s
inclusion in a crash report.
� Austria: (3 days) 1980 to 1982 +15%, 1983 to

1991 +12%
� France: (6 days) 1980 to 1992 +9%, since 1993

+5.7%
� Greece: (3 days) before 1996 +15%
� Italy: (7 days) +8%
� Japan: (24 hours) before 1993 +30%
� Portugal: (less than 24 hours) +30%
� Spain: (24 hours) before 1993 +30%

Lack of a single international definition of a
traffic fatality used by all of the OECD countries is
perhaps the most serious problem in the analysis of
international fatality crash data. Additionally, in
virtually all OECD countries, some traffic deaths
are missed and not included in the national statis-
tics. Matthijs J. Koornstra, President of the IRTAD
Management Bureau of the Steering Committee
for the Road Transport Research Programme of
the OECD, pointed out in the forward of A.
Mónica Colás Pozuelo and J. Izarzugaza’s report
(1996) that: “The nonregistered road fatalities and
inaccurateness in the reporting of road fatalities is
a problem in every country, even if this is officially
denied.” Hence, the fatality data within this paper
must be considered best estimates with associated
errors rather than actual counts.

Trends for fatalities and injury crashes are pre-
sented for 1980 to 1996. Fatality data for Greece
and Luxembourg were not available for 1996;
1995 data were used as proxies. Injury crashes
include fatal crashes. Tables 1 and 2 show the
numbers of fatalities and injuries for each geo-
graphical area by year Figure 1 shows the yearly
fatality trends for each geographical area. Figure 2
shows the percentage change in fatalities measured
from 1980. The European Community and the
United States dominate other geographical areas in
numbers of fatalities. Although the European
Community had 13,000 more fatalities than did
the United States in 1980, its lead had decreased to
less than 2,000 by 1996. Canada has experienced
the largest percentage decrease in fatalities, over
40%, from 1980 to 1996. Japan is the only area
where the fatalities have increased over time.

CRASHES

Henrik Hvoslef (1994) points out that there is a
serious problem of under-reporting traffic crashes.
Susanne Berns (1998, 20) states that

The registration of injured accident victims consti-
tutes a large problem. The under-reporting of traffic
accidents depends very much on the type of accident.
In general, serious injuries are more often reported to
the police than slight injuries. The level of under-
reporting depends on a number of factors. It can also
vary from one country to another due to national
factors: how accidents are defined, how serious the
least reportable injury is, etc. Differences in the local
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tradition for reporting accidents to the police and
how the recording procedure is organized are other
important factors explaining differences between
countries.

At the personal level, there are also several rea-
sons for the under-reporting of crashes. Ignorance
of the legal obligation, forgetting, that the injury
only becomes obvious after the crash, and fear of
prosecution for being engaged in unlawful or crim-
inal activities are among the reasons given. Injury
crash reporting also varies with the inclusion of

crash victims treated on a hospital out-patient
basis only and/or pedalcyclists injured in the crash.

The rate of reporting crashes also varies over
time. Norway, though not a member of the
European Community and therefore not included
in this paper, provides an excellent example of how
increased public awareness combined with im-
proved reporting routines by the police resulted in
an increase in reported injury crashes. The rate at
which crashes are reported can also vary within a
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TABLE 1   Number of Fatalities by Year

Year U.S. E.C. Canada Japan Pacific

1980 51,091 64,199 5,461 11,388 3,871
1981 49,301 61,530 5,383 11,335 3,989
1982 43,945 60,135 4,169 11,795 3,926
1983 42,589 59,698 4,216 12,376 3,399
1984 44,257 56,817 4,120 12,041 3,491
1985 43,825 52,644 4,364 12,039 3,687
1986 46,056 54,736 4,068 12,112 3,654
1987 46,390 52,705 4,286 12,151 3,571
1988 47,087 55,046 4,154 13,447 3,615
1989 45,582 55,972 4,246 14,412 3,563
1990 44,529 56,374 3,960 14,595 3,060
1991 41,462 55,960 3,691 14,436 2,763
1992 39,235 52,729 3,501 14,886 2,627
1993 40,150 48,211 3,615 13,269 2,553
1994 40,716 46,479 3,263 12,768 2,517
1995 41,798 46,047 3,347 12,670 2,598
1996 41,907 43,828 3,082 11,674 2,487

TABLE 2   Number of Reported Injury Crashes

Year U.S. E.C. Canada Japan N.Z.

1980 2,074,257 1,400,085 184,302 476,677 10,728
1981 2,062,285 1,367,989 183,643 485,578 10,659
1982 2,007,687 1,356,587 160,376 502,261 11,256
1983 2,043,414 1,352,762 160,623 526,362 11,511
1984 2,176,716 1,333,123 168,801 518,642 12,561
1985 2,257,695 1,277,991 183,478 552,788 13,548
1986 2,294,762 1,296,881 187,563 579,190 13,465
1987 2,335,438 1,274,772 196,966 590,723 13,362
1988 2,344,629 1,331,515 193,704 614,481 12,561
1989 2,425,077 1,348,675 196,246 661,363 12,004
1990 2,540,946 1,342,844 181,960 643,097 12,818
1991 2,227,053 1,301,398 173,921 662,388 12,163
1992 2,251,173 1,291,028 172,713 695,345 11,639
1993 2,216,092 1,236,472 171,205 724,675 10,994
1994 2,128,223 1,258,191 169,622 729,457 11,876
1995 2,371,844 1,268,847 167,038 761,789 12,220
1996 2,448,145 1,250,963 167,038 771,084 10,564



country or a district and between rural and urban
areas. Also, the rate is often a function of the dis-
tance to the nearest hospital or emergency facility.
Koornstra goes so far as to state “One at least
ought to question the validity of any international
comparisons on general road safety, if it is not
based on fatalities only”(qtd. in Hvoslef 1994, for-
ward). Hvoslef (1994, 4) further reports:

It is commonly known that not all traffic accidents
with personal injury are reported to the police, even
if they are supposed to be so by law. Research done
in several countries by matching data from hospitals
with police records, both of in-patients and out-
patients, reveals that the police are receiving infor-
mation on about 30–60% of all the personal injury
accidents they are supposed to know about.

Not only is there a problem of under-reporting,
there is also a problem of under-recording. Again,
Hvoslef states (1994, 5–6)

Another problem is under-recording, a problem con-
nected to the way the recording by police is orga-
nized, procedures for filling out forms, etc. Some
casualties recorded in paper reports do not appear in
the computer files, most likely due to clerical errors.
In some cases, casualties treated in hospitals occurred
in accidents recorded by the police as “damage-only”
accidents. In many cases, this is connected to injuries
being reported to the police some days after the acci-
dent, often the case for whiplash injuries. A third rea-
son for under-recording occurs when there is a lack
of detailed information about the injured person. A
study in Greater Manchester (Hopkin et al. 1993)
revealed that under-recording occurred in 12% of the
cases treated in hospitals when an injury was diag-
nosed and in 20% of the casualties where informa-
tion about the accident was reported to the police.

With all of the caveats listed above, table 2 and
figures 3 and 4 provide the number of reported
injury crashes by year, 1980–1996. Due to the
problems with injury crashes identified above, the
data for injury crashes are limited to these three
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examples. Australia does not report the number of
injury crashes; therefore, data are reported only for
New Zealand. As noted above, the procedures for
reporting injury-related crashes in the countries
under study vary considerably. In table 1, we see
that the number of U.S. fatalities is always less than
the number of fatalities in the European Com-
munity. However, the United States reports almost
twice the number of injury crashes as does the
European Community.

With the large differences in reporting standards,
it is inappropriate to compare total reported crashes
across regions. However, we can examine the change
in reported injury crashes within each geographical
area. The United States, the European Community,
Canada, and New Zealand are within 20% of the
levels reported in 1980. The number of reported
injury crashes in the United States increased approx-
imately 18%. The European Community, Canada,
and New Zealand reported decreases in injury crash-
es of 11%, 9%, and 2%, respectively. Japan report-
ed that injury crashes rose 62% (see figure 4). The
number of injury crashes was not available for
Greece, Luxembourg, or Canada for 1996. The
1995 data were used in their place.

FATALITY RATES

Although most of the crash fatalities are reported
and accepted correction factors are applied, com-
parisons of the absolute number of fatalities across
geographical areas are not very useful. The various
geographical areas have different populations,
mixes of road structures, traffic compositions, and
usage patterns. A better approach is to compare
fatality rates adjusted for some amount of relevant
exposure. The need for these exposure measures is
clear. However, there are no internationally agreed
on standards.

The number of vehicle-miles traveled is one of
the most popular measures of exposure within the
United States. The corresponding international
measure of exposure, number of vehicle-kilometers
traveled, is collected and reported to BASt by many
of the countries within the European Community
but not by all. Therefore, any attempt to report the
European Community’s data in this manner would
be so highly flawed that all such references have
intentionally been omitted.

Figure 5 reports fatality rates per 100,000 pop-
ulation. In 1980, Canada had the highest rate of
fatalities per 100,000 residents (22.71 fatalities per
100,000 residents). Canada also experienced the
greatest reduction in the fatality rate per 100,000
residents between 1980 and 1996, when it had the
second lowest rate of any geographical area: 10.29
fatalities per 100,000 residents in 1996. Japan
reported the smallest decline in fatalities per
100,000 residents between 1980 and 1996, 5%.
However, for all years of the study, Japan had the
lowest fatality rates.

Figure 6 reports the fatality rates per 100,000 reg-
istered vehicles. Since 1980, all geographical areas
have experienced substantial drops in the rate of
fatalities per 100,000 registered vehicles. The rates
have dropped by approximately 35% for the United
States, 40% for Japan, and 55% for the European
Community, Canada, and the Pacific Region.
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A serious mistake can be made in interpreting
these data, namely, to assume a direct cause and
effect relationship between the increase in the pop-
ulation or number of registered vehicles and the
decrease in fatality rate, adjusted by population or
by the number of registered vehicles. (This same
phenomenon is noticed with vehicle-kilometers
traveled in the denominator). Although at first
glance it appears that this relationship may exist,
the actual situation is more complex. There are
several other “lurking” variables that contribute to
the reduction in rates.

The observed reduction in rates spans several
years. The time period of interest for this paper is
1980 to 1996. Over this period, several factors
have contributed to the rate reduction. A short list
of these factors includes: increased use of seat belts,
reductions in drinking and driving, installation of
daytime running lamps, introduction of anti-lock
brakes, use of center high mounted stop lamps, air-
bags, safety education programs, stricter alcohol/
driving laws, improvements in roadway construc-
tion, improvements in emergency medical service,
and improved medical care. The available data do
not have the fidelity to estimate the effects of these
variables, but they exist nonetheless. The point is
that the reduction in the fatality rate is due to the
effects of these and similar variables, not the
increase in population or number of registered
vehicles.

Nilsson (1997, 17) points out that “compar-
isons of fatality rates and injury rates must be done
for homogeneous environments and road user
groups, not for whole countries and all road user
groups.” Figures 7 to 10 attempt to address this
concern. The distributions of fatalities by age
group are similar for the United States, the
European Community, and Canada. The Japanese
have a larger portion of their fatalities in the 65
and older category, over 30%. The Pacific Region
has almost 30% of their fatalities in the 15–24 year
old category, higher than any other region (see fig-
ure 7). There were no 1996 data available for
Greece, Canada, or Italy; data from 1995 were
used for both Greece and Canada; data from 1994
were used for Italy.

Figure 8 presents information on the fatality
rates by age group for the geographic areas. The

United States and the European Community have
similar patterns. However, the European
Community’s fatality rates are slightly lower than
those of the United States for all age groups.
Japan’s fatality rates are the lowest for all age
groups, with the exception of 65 and older age
group. Only the United States’ fatality rate for the
65 and older age group exceeds Japan’s fatality
rate for the same group.

Fatalities can be classified into four categories of
travel type: pedestrians; bicyclists; riders of motor-
ized two-wheel vehicles, including motorcycles and
motor scooters; and occupants of passenger cars
and station wagons. Light trucks, sport utility vehi-
cles, and vans are not addressed in these data.
Figure 9 shows that the United States, the Euro-
pean Community, Canada, and the Pacific Region
have somewhat similar distributions of fatalities by
travel type. Japan has a larger proportion of pedes-
trian and bicycle fatalities and correspondingly
fewer passenger car fatalities. Canadian data for
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motorized two-wheel vehicles and passenger cars
in 1996 were missing; 1995 data were used in their
place. The 1996 data from Greece and Italy were
also missing. Similar data from 1995 and 1994,
respectively, were used as surrogate data. Data
were not available from Australia for riders of
motorized two-wheel vehicles and passenger cars.
The data were estimated using the total fatalities
for Australia and the proportions from New
Zealand.

Roadway type has been divided into three cate-
gories: limited access, city, and country. Limited
access roads include both urban and rural limited
access roads. City roads consist of all public,
urban, nonlimited access roads. Country roads are
public, rural, nonlimited access roads. Japan does
not provide information on country road fatalities.
The United States, the European Community, and
Canada have similar patterns of fatalities for road-
way type (see figure 10). The Pacific countries have
almost equal numbers of fatalities on both city and
country roads. Data for 1996 were not available
for Italy, Canada, or Australia. Data from 1995
were used for Italy and Canada, and 1992 data
were used for Australia. The limited access data for
Denmark were from 1995, while the country data
came from 1994. Both the city and country data
for Luxembourg were from 1994. Data for limited
access and country roads were not available for
Greece and have been set to zero. This slightly
underestimates the fatalities for limited access and
country roads for the European Community.

OBSERVATIONS

This paper has presented traffic crash data for
some of the more developed nations around the
world. Although progress has been made in
improving the comparability of international safe-
ty data, much more work remains. There remain
many differences in the data reported by various
countries. A variety of jurisdictions, some local,
others regional or national, have been involved in
the collection and aggregation of the data. Each
jurisdiction has applied its own set of criteria for
data collection and dissemination. Although
briefly mentioned within this report, ways to
resolve these differences have not been thoroughly
addressed and are beyond the scope of this note.

Nonetheless, areas for further improvement
include:
� Standardizing definitions of crash data and the

associated data collection methods and report-
ing thresholds so that data can be compared
across international boundaries;

� Until standard collection and reporting methods
have been adopted, developing a set of adjust-
ment factors for each country to account more
accurately for the number of traffic crashes at all
levels;

� Creating an annual forum for the exchange of
analysis techniques;

� Investigating procedures to link hospital data to
crash data and implementing them where
appropriate;
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� Developing a uniform, verified, hierarchical
database that documents crashes at the crash,
vehicle/driver, and person levels. It may be pos-
sible to collect detailed data for all fatal crashes
and a representative sample of injury crashes.
On the positive side, there is universal good

news in the international statistics, in that every
geographical region made progress in reducing
fatalities over the past decade.
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