APPENDIX E.2 Previous Laboratory Test Results

GEOTECHNICAL DIVISION ENGINEERING 2000 NOV -8 AMII: 17

CITY OF LOS ANGELES DEPARTMENT OF GENERAL SERVICES STANDARDS DIVISION

> AVE. 45 - ARROYO DR. RELIEF SEWER

> > LAB NO. 140-4997

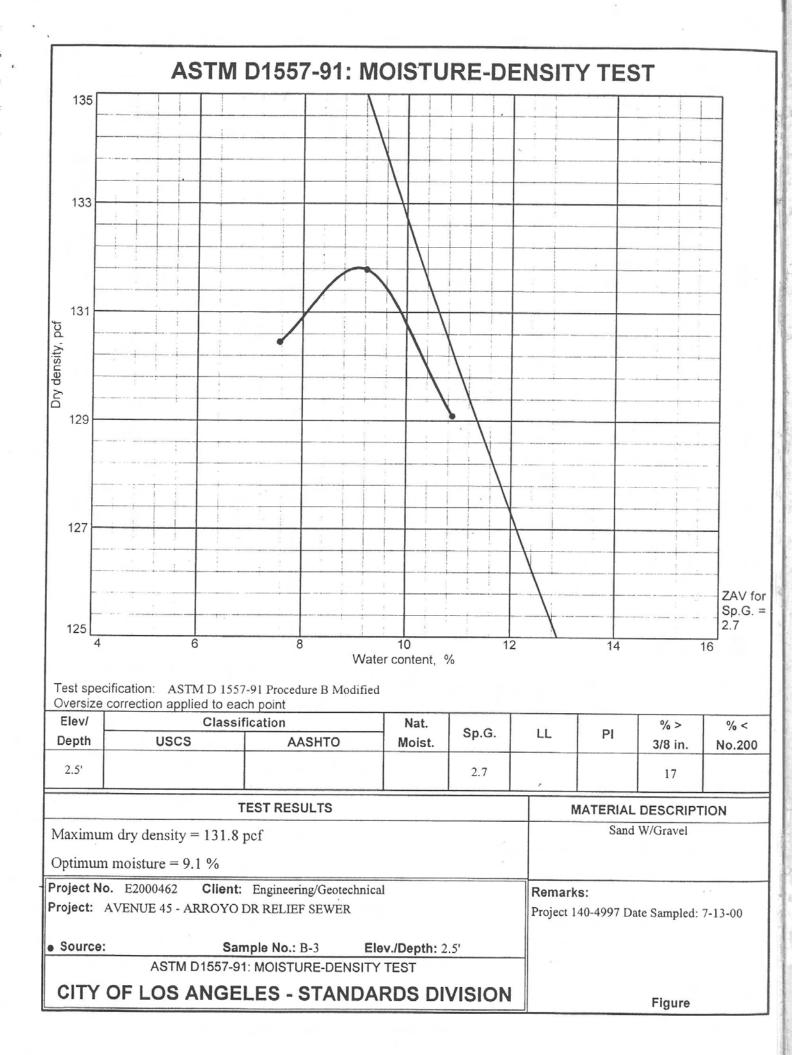
NBO'E; SO'SE > getorop 20' W/0 B-28

W.O. NO. E2000462

NOVEMBER 2000

GEOTECHNICAL SERVICES FILE: 00-072

Lab. No. 140-4997


CITY OF LOS ANGELES DEPARTMENT OF GENERAL SERVICES STANDARDS DIVISION 2319 DORRIS PLACE LOS ANGELES, CA 90031 (213) 485-2242

SHEAR DIAGRAM

Job Title: AVE. 45 - ARROYO DR. RELIEF SEWER W.O. No.: E2000462 MOISTURE, % DEPTH IN-PLACE DRY TEST NOTES: DENSITY LEGEND BORING NO. (feet) START END (pcf) NOTE: Hollow symbols as shown in the LEGEND are shear stress values at the final strain reading of 0.200 inch. Peak shear stress values are represented by solid symbols, for example: •. SYMBOLS ADJACENT TO EACH OTHER DENOTE SAME NORMAL LOAD. 0 B-9A 2-1/2 94 23.9 28.2 20 B-9A 99 24.2 26.7 Δ B-18A 10 102 3.8 13.5 5 square foot per 34 3 (kips STRESS 14.5 2 Æ 8 \oplus SHEAR Ð Æ 1 1111111111 0 2 5 3 Δ

NORMAL LOAD (kips per square foot)

Sheet 3 of 3

Lab. No.: 140-4997 Sheet 1 of 2		DEPART	CITY OF L MENT OF STANDAR 2319 DOI 2319 DOI 2319 DOI 2330 DOI 2137	CITY OF LOS ANGELES DEPARTMENT OF GENERAL STANDARDS DIVISION 2319 DORRS PLACE LOS ANGELES, CA 20031 (213) 485-242	SERVICES		Report	No.: 21-000020-01 21-000023, 21-000056-01	0-01 to 02 3, 6-01 to 04	
			CHEMI	CHEMICAL DATA	A					
Job Title: AVE. 45 - AR	ARROYO DR.	R. RELIEF	EF SEWER	R			W.О.		E2000462	
Test Boring No. Sample Depth, ft.	B-3 20	B-5 15	B-6A 10	B-7 20	B-8B 20	B-9A 25	B-18A 20	EPA Method No.	Reporting Limit	
Water Analysis pH	8.2	7.9	8.4	8 . 4	7.8		8.0	150.1	N / D * *	
Chlorides, ppm	6.1	6.2	6.2	5.6	7.6	•	9.1	00.	0.2	
Sulfates, ppm	115	336	14	12	238	131	17	300.0	T	
Acidity*, mg as CaCO_/L Conductance, µmhos/cm	330	703	115	131	566	310	57	305.1 120.1	1 N/A**	
pH le	is 7	or less								
A 1:5 soil to water ratio of the sampl analyzed in accordance with EPA Method	of th€ th EPA		es were s for tl	e leached fo the Chemical	for cal	hours lysis	The f Wat	24-hour leachates er and Wastes, 19	tes were 1983.	

Lab. No.: 140-4997 Sheet 2 of 2

CITY OF LOS ANGELES DEPARTMENT OF GENERAL SERVICES STANDARDS DIVISION 2319 DORRIS PLACE LOS ANGELES, CA 30031 (213) 485-2242

Report No.: 21-000015, 21-000029

CHEMICAL DATA

Job Title: AVE. 45 - ARROYO DR. RELIEF SEWER

W.O. No.: E2000462

Test Boring No.	B-4	B-18		EPA	Reporting
Sample Depth, ft.	20	20 25		Method No.	Limit
Water Analysis					
pH		6.9 7.2			N/A**
Chlorides, ppm	01	115		300.0	0.2
Sulfates, ppm		226	226	300.0	
Total Dissolved Solids, mg/L	808	896		808 896 160.1 1	Ъ
Conductance, µmhos/cm				120.1	N/A**

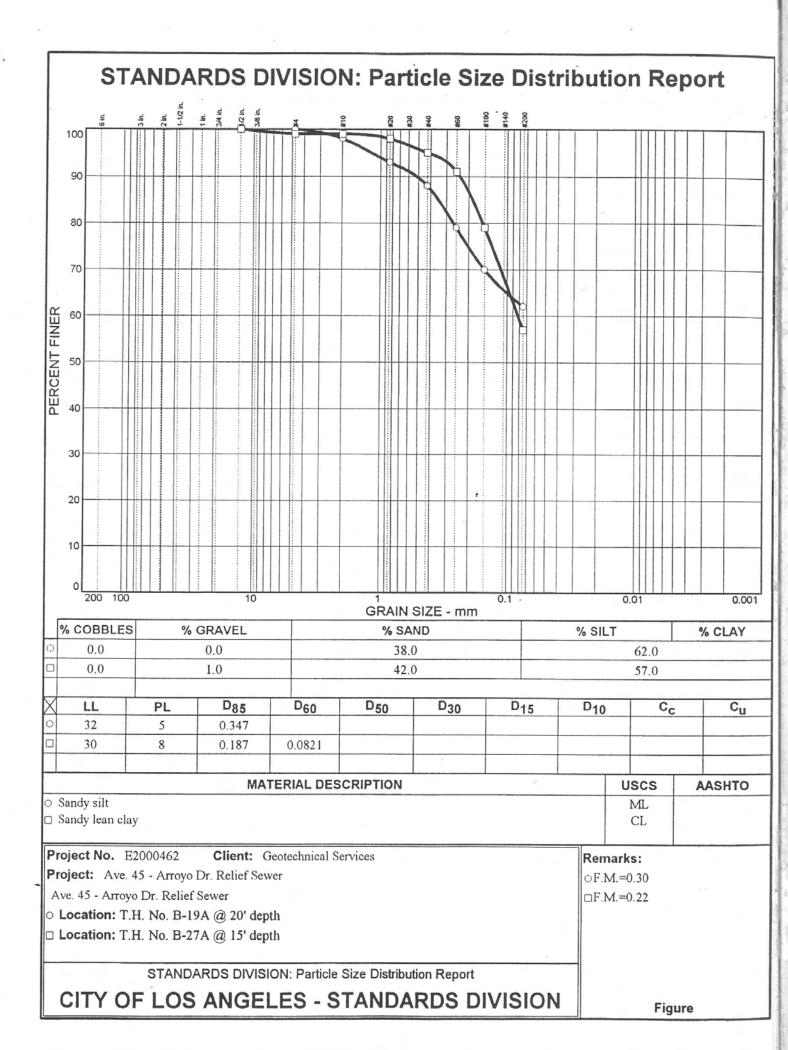
* - Determined only if pH is 7 or less. **- N/A - Not Applicable Water/liquid samples were analyzed in accordance with EPA Methods for the Chemical Analysis of Water and Wastes, 1983 specified above.

· · · · · · · · · · · · · · · · · · ·																							90000		
10		52		25	121	11.9																			
Sheet 1 of		E2000462		20	1.49	7.4			*																
Ω		No.:	B-4	15	124	5.1		- 	* * * * * * * * * * * * * *			•				*	•								
		W.O.		10	115	4.1						• • • • • • • • • • • • • • • • • • •	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					<u>.</u>				
				5	112	1.9	•							2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								· · · · ·			
RVICES				25	118	12.4																			
ANGELES ENERAL SI 5 DIVISION 18 PLACE 5, CA 90031 5-2242	VG DATA			20	*	*								2						N/P	0				
CITY OF LOS ANGELES DEPARTMENT OF GENERAL SERVICES STANDARDS DIVISION 2319 DORRIS PLACE LOS ANGELES, CA 90031 (213) 485-2242	TEST BORING DATA	r SEWER	B-3	15	139	6.6																			
DEPARTN	F	. RELIEF		5	118	5.6					86	71	62	53	44	36	27	18		N/P	0				handling
		ARROYO DR.		2-1/2	123	2.5	131	9.1	94																during han
Lab. No.: 140-4997		Job Title: AVE. 45 - ARF	Test Boring No.	t.	In Place Dry Density, pcf	Field Maisture, %	Lab. Max. Dry Density, pcf	Lab. Optimum Moisture, %	Relative Compaction, %	Mechanical Analysis (% Passing)	3/4"	No. 4	No. 10	No. 20	No. 40	No. 60	No. 100	No. 200	5 μ (Micron), %	Liquid Limit	Plasticity Index	Sand Equivalent	Expansion Index	Unconfined Compression	* - sample was damaged dur

Lab. No.: '140-4997		DEPARI	DEPARTMENT OF GENERAL STANDARDS DIVISION 2319 DORRIS PLACE LOS ANGELES, CA 20031 (213) 485-2242		SEKVICES			01	Sheet 9 of	10
			TEST BOR	TEST BORING DATA						
Job Title: AVE, 45 - AR	ARROYO DR.	. RELIEF	F SEWER				W.O.	No.:	E2000462	62
Test Boring No.		B-	-18A		B-19A	9A		B-	-23	
Sample Depth, ft.	5		20	25	20	25	2-1/2	5	10	15
In Place Dry Density, pcf	94	102	110	122	95	102				
	6.8	3.8	23.1	13.7	30.5	25.2	1.2	1.8	2.8	1.8
Lab. Max. Dry Density, pcf				-					1	
Lab. Optimum Moisture, %										*****
Relative Compaction, %										
Mechanical Analysis (% Passing)										
3/4"										
No. 4					100					
No. 10	100				98					
No. 20	66			p.	93					
No. 40	95				88		- - - - - - - - - - - - - - - - - - -			****
No. 60	76				79					****
No. 100	44				70					
No. 200	20						/ - - - - - - - - - - - - -			
5 μ (Micron), %										
Liquid Limit					32					
Plasticity Index					ъ					
Sand Equivalent										
Expansion Index			_				9 2 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		*****	
Unconfined Compression										

Lab. No.: 140-4997

CITY OF LOS ANGELES DEPARTMENT OF GENERAL SERVICES STANDARDS DIVISION 2319 DORUS FLACE LOS ANGELES, CA 20031 (213) 485-2242


Sheet 10 of 10

TEST BORING DATA

Job Title: AVE. 45 - ARROYO DR. RELIEF SEWER

W.O. No.: E2000462

Sample Depth, ft.							
	20	25	20	2-1/2	10	15	20
In Place Dry Density, pcf				119	132	101	123
Field Moisture, %	3.0	2.3	18.2	5.5	1.4	21.9	3.4
Lab. Max. Dry Density, pcf							
Lab. Optimum Moisture, %							
Relative Compaction, \$							
Mechanical Analysis (% Passing)							
3/4"						100	***
No. 4						66	****
No. 10						66	
No. 20			ţ			98	
No. 40						95	9
No. 60						16	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
No. 100						79	
No. 200						57	
5 μ (Micron), %					-		
Liquid Limit						30	
Plasticity Index						œ	
Sand Equivalent							
Expansion, Index							
Unconfined Compression							

City of Los Angeles, 2001

Summary of Laboratory Tests and Index Properties Continued City of Los Angeles/Northeast Interceptor Sewer Tunnel Los Angeles, California Table B-1

ution		% Fines	28.9	25.6	ł	21.0	1	ł	1	ł	ł	1	1	1	ł	;	1	1	10.8	8.3	20.3	29.2	1	ł		1	1	1	1	3.2	6.6	3.7	49.8
Grain Size Distribution		% Sand	:	1	ł	79.0	1	1	1	1	1	1	1	1	1	1	I	1	55.3	61.0	52.8	70.8	1	1	1	1	ł	;	:	55.0	93.4	64.2	1
Grain S		% Gravel	1	ł	1	0.0	1	ł	1	1	1	ł	ł	ł	ł	1	ł	1	33.7	30.7	27.0	0.0	;	;	ł	ł	ł	ł	1	41.8	0.0	32.2	I
nits	Plasticity	Index		ł	38		1	ł	1	;	1		ł	ł	ł	ł	ł	1	-	1	;	ł	1	1	ł	1	:	1	1		ł	ł	ł
Atterberg Limits	Plastic	Limit	1	ł	23	1	1	1	ł	1	ł	1	1	1	1	ł	ł	-	1	ł	1	1	I	I	:	1	ł	1	-	1	;	ł	ł
At	Liquid	Limit	:	ł	61	ł	1	ł	1	1	ł	;	ł	1	ł	ł	ł	1		1	ł	ł	ł	ł	ł	ł	1	I	ł	ł	ł	ł	1
Dz	Density	(kN/m ³)	1	1	ł	:	;	ł	ł	1	1	ł	1	;	ł	I	ł	1	18.0	18.5	18.9	17.3	ł	1	1	ł	1	ł	ł	16.4	16.5	19.2	ł
Natural	Water	Content (%)	÷	;	ł		1	ł	ł	ł	1	ł	1	ł	ł	;	I	ł	2.5	5.5	12.4	18.0	ł	I	ł	1	I	ł	1	1.4	3.2	3.0	ł
	Test	Type	-200	-200	AL,Corr	MA	NCS,PLI	PLI	NCS	PLI	PLI	UCS,PLI	CAI	ncs	ITS	UCS,PA	PLI	PLI	MA	MA	MA	MA,Hyd,DS	D,UCS	PLI	D,UCS	D,UCS,CAI,PA	D,UCS,CAI,PA	PLI	D,UCS	MA	MA,DS	MA	-200
USCS	Classification /	Rock Type	Sandstone	Sandstone	Claystone (CH)	Sandstone	Sandstone	Siltstone	Siltstone	Siltstone	Sandstone	Siltstone	SP-SM	SP-SM	SM	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Siltstone	SP	SP-SM	SP	SM						
	Depth	E)	19.8	21.3	22.9	. 30.5	18.1	19.9	20.3	22.3	24.7	31.8	33.7	37.3	39.1	44.0	47.3	48.1	2.9	5.9	9.0	18.1	19.9	25.9	28.3	28.7	32.5	33.2	35.1	3.0	6.1	9.1	10.7
	Sample	No.	13	4	15	24	11	13	13	4	16	20	22	24	25	28	32	32	5	4	9	12	14	18	19	19	22	22	24	2	4	9	7
	Boring	No.	B-81				B-81A												B-82											B-83			

9/14/01 2569-32806-NEIS Phase II NEIS Lab Summary.xls

Page 15 of 27 See Page 1 of Table B-1 for Legend

Table B-1Summary of Laboratory Tests and Index Properties ContinuedCity of Los Angeles/Northeast Interceptor Sewer TunnelLos Angeles, California

1948	1	6																		_												
oution		% Fines	3.7	23.6	25.1	1	ł	1	ł	1	1	1	1	7.0	6.4	6.5	9.7	10.0	1	20.7	18.6	4.6	11.5	3.4	4.2	10.5	3.8	7.7	92.2	8.6	7.6	6.5
Grain Size Distribution		% Sand	96.2	ł	ł	ł	1	ł	:	:	ł	ł	1	68.3	61.0	73.8	62.8	83.7	ł	79.3	76.2	89.2	ł	66.8	45.5	:	62.4	74.0	7.8	80.3	70.6	65.2
Grain Si		% Gravel % Sand % Fines	0.1	1	ł	1	ł	ł	ł	:	ł	1	-	24.7	32.3	19.7	27.5	6.3	1	0.0	5.2	6.2	1	28.7	50.3	1	33.8	18.3	0.0	11.1	21.8	28.3
nits	Plastic Plasticity	Index	;	;	;	:	ł	1	1	1	ł	:	:	:	:	ł	ł	:	I	1	1	ł	ł	ł	ł	:	:	ł	21	ł	:	ł
Atterberg Limits	Plastic	Limit	1	1	• 1	ł	ł	1	1	!	1	ł	ł	1	1	;	ł	ł	ł	ł	1	1	ł	ł	ł	ł	1	1	24	1	ł	
Âti	Liquid	Limit	;	1	ł	ł	1	1	ł	;	;	1	1	:	1	1	1	:	1	1	:	:	1	1	1	1	1	1	45	ł	1	;
δ	Density	(kN/m ³)	19.3	1	ł	1	1	ł	ł	1	ł	ł	1	ł	18.8	ł	;	18.2	1	1	16.5	17.5	1	19.2	21.9	1	20.4	20.3	1	1	1	20.3
Natural		Content (%)	11.5	I	ł	ł	ł	ł	I .	1	1	ł	1	1	2.8	ł	ł	15.7	ł	-	2.9	3.0	5.1	3.1	7.2	8.4	6.7	10.4	37.2	12.9	9.2	7.8
	Test	Type	Chem,MA,DS	-200	-200	PLI	D,UCS	D,UCS	D,UCS	D'NCS	PA,ITS	D,UCS,CAI	D,UCS	MA	MA	MA	MA	MA	UCS,PLI	MA	MA	MA,DS	-200	MA	MA	-200,Chem	MA,DS	MA	AL .	MA	MA	MA,DS
USCS	Classification /	Rock.Type	Р	SM	SM	Sandstone	Sandstone	Siltstone	Siltstone	Sandstone	Sandstone	Sandstone	Sandstone	SP-SM	SP-SM	SW-SM	SP-SM	Sandstone	Sandstone	Sandstone	SM	SP	SW-SM	с С С	GP	SW-SM	SW	SW-SM	сL	SW-SM	SW-SM	SW-SM
	Depth	(Ľ)	12.2	16.8	19.8	25.2	25.9	29.9	30.2	35.4	38.3	38.4	39.5	4.4	5.9	10.5	13.6	18.1	30.3	36.6	3.0	6.1	7.6	9.1	15.2	16.8	18.3	21.3	22.9	25.9	28.2	30.5
	Sample	No.	œ	1	13	17	18	21	22	25	27	27	28	ę	4	7	თ	12	19	24	2	4	5	9	9	1	12	4	15	17	19	22
	Boring	No.	B-83			-								B-84							B-85											

9/14/01 2569-32806-NEIS Phase II NEIS Lab Summary.xis

Page 16 of 27 See Page 1 of Table B-1 for Legend

.

Table B-1 Summany of Lab

Summary of Laboratory Tests and Index Properties Continued City of Los Angeles/Northeast Interceptor Sewer Tunnel Los Angeles, California

	S S									<u>a-</u>				_						Τ					~	~						
oution	% Fines	6.5	1	1	!	1	1	99.2	1	50.8	13.1	6.6	9.5	10.0	1		1	1	1	!	8.7	9.9	!	1	93.2	11.9	1	1	1	!	1	1
Grain Size Distribution	% Sand	69.1	ł	ł	ł	ł	1	0.8	1	49.1	78.5	52.1	86.6	82.8	1	ł	1	ł	1	ł	88.6	91.2	1	1	6.8	ł	1	1	I	1	1	I
Grain Si	% Gravel	24.4	ł	ł	1	ł	1	0.0	1	0.1	8.4	38.0	3.9	7.2	;	ł	1	ł	ł	1	2.7	2.2	ł	ł	0.0	ł	1	1	1		l	1
nits	Plasticity Index		ł	1	ł	ł	;	21	I	1	I	ł	1	ł	ł	:	I .	ł	ł	1	: 1	1	ł	ł	13.0	ł	ł	!	ł	1	11	24
Atterberg Limits	Plastic Limit	-	1	ł	ł	ł	;	26	1	1	1	ł	1	1	ł	1	ł	1	ł	1	1	ł	;	;	24.0	ł	1	1	ł	-	24	26
At	Liquid	1	1	ł	1	1	ł	47	ł	ł	ł	ł	ì	ł	1	ł	ł	ł	1	;	1	1	1	ł	37.0	ł	ł	1	ł	1	35	50
Dry	Density (kN/m ³)		1	1	ł	ł	;	1	ł	1		ł	ł	ł	1	ł	ł	;	ł	1	1	ļ	19.3	I	14.8	I	I	I	I	I		ł
Natural	Water Content (%)		1	ł	ł	1	;	ł	ł	1	ł	ł	1	ł	;	I	ł	ł	I	ł	4.0	4.5	7.6	11.0	29.6	14.6	1	ł	1	1	;	1
	Test Type	MA	ncs	UCS, PLI	PLI	PLI	PLI	AL,MA,Hyd	UCS, PLI	MA,Hyd	MA	MA	MA	MA	PLI	UCS .	PA	UCS,PLI	PLI	PLI	MA	MA	Chem	Chem	MA,AL,DS	-200	ITS	PLI	UCS,PLI	UCS, PLI	AL	AL
USCS	Classification / Rock Type	SW-SC	Sandstone	Claystone	Claystone	Claystone	Sandstone	Claystone	Sandstone	ML	SM	SW-SM	SW-SM	SW-SM	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	WS-WS	SP-SM	SW-SM	SM	പ	SW-SM	Sandstone	Sandstone	Sandstone	Sandstone	ML	CH
	Depth (m)	32.0	33.3	33.7	34.1	36.3	37.2	39.0	40.9	4.0	11.6	13.1	17.7	24.4	32.3	33.3	35.8	36.0	37.4	38.6	46	10.7	12.2	16.8	18.3	19.8	30.0	30.3	31.7	35.5	1.4	2.9
	Sample No.	24	24	25	25	26	27	28	29	с	ω	თ	12	16	24	25	27	27	28	28	с	7	8	11	12	13	21	21	22	25	F	2
	Boring No.	B-85								B-86											B-87										B-88	

9/14/01 2569-32806-NEIS Phase II NEIS Lab Summary.xls

> Page 17 of 27 See Page 1 of Table B-1 for Legend

> > GDM Camp Dresser & McKee Inc.

Table B-1

Summary of Laboratory Tests and Index Properties Continued City of Los Angeles/Northeast Interceptor Sewer Tunnel Los Angeles, California

tion		% Fines	6.7	1	6.3	11.7	14.4	1	1	:	1	28.5	8.9	26.4	87.0	12.9	1	9.2		1		1		1	7.0	57.5	10.8	58.5	10.9	8.2	8.5	6.9	8.9
Grain Size Distribution		% Sand ¹	92.1	1	55.5	57.6	84.5	1	1	1	ł	71.5	83.6	72.4	13.0	64.4	1	80.0		1	1	1	1	:	92.3	42.5	1	40.3	82.2	:	91.3	91.0	79.4
Grain Siz		% Gravel	1.2	1	38.2	30.7	1.1	1	;	1	;	0.0	7.5	1.2	0.0	22.7	ł	10.8	1	1	ł	1	;	:	0.7	0.0	1	1.2	6.9	1	0.2	2.1	11.7
nits	Plasticity	Index	1	44	1	ł	ł	ł	ł	1	ł	1	ł	, I	1	ł	9	ł	I	1	;	ł	ł	40	1	1	1	4	ł	ł	ł	ł	1
Atterberg Limits	Plastic	Limit	;	27	1	1	1	1	1	1	1	1	1	I	1	I	26	ł	1	1	1	ţ	1	29	1	1	1	21	ł	ł	ł	ł	!
Att	Liquid	Limit	;	71	1	ł	1	1	1	:	ł	:	1	ł	ł	1	32	ł	ł	1	1	:	1	69	1	1	1	25	ł	ł	1	ł	ł
δ	Density	(kN/m ³)		1	1	1	19.2	1	ł	1	ł	14.3	1	18.5	ł	ł	ł	18.9	ł	ł	ł	1	1	12.7	1	18.0	I	17.7	18.2	ľ	1	17.3	ł
Natural	Water	Content (%)	I	ł	ţ	9.7	10.8	ł	1	1	1	6.9	7.7	8.6	47.7	11.6	33.4	12.3	1	1	ł	1	ţ	42.4	1	15.5	ł	21.6	12.7	1	1	16.3	-
	Test	Type	MA	AL	MA	MA	MA,DS	PLI	ncs	ncs	ncs	MA	MA	MA	MA	MA	AL	MA, DS	PA	PLI,UCS	CAI	ncs	UCS, PLI	AL	MA	MA,DS	-200	AL,MA,Hyd	MA,DS	-200	MA	MA,DS	MA
uscs	Classification /	Rock Type	SW-SM	CH	SP-SM	SW-SM	SM	Sandstone	Sandstone	Sandstone	Sandstone	SM	SW-SM	SM	ML	SM	ML	SW-SM	Siltstone	Siltstone	Sandstone	Sandstone	Sandstone	CH	SP-SM	ML	SP-SM	CL-ML	SP-SM	SP-SM	SP-SM	SW-SM	SW-SM
	Depth	(m)	5.8	10.5	11.9	18.0	21.2	28.0	33.0	35.4	38.2	3.0	4.6	6.1	7.6	13.7	16.8	21.3	27.3	27.6	30.7	33.4	37.6	3.0	4.6	6.1	7.6	9.1	19.8	21.3	24.4	25.9	28.2
	Sample	No.	4	7	8	12	14	21	25	28	30	2	ო	4	5	6	11	14	17	18	20 ·	21	24	2	ო	4	5	9	13	14	16	17	20
	Boring	No.	B-88									B-89												B-90		- 1						-	

9/14/01 2569-32806-NEIS Phase II NEIS Lab Summary.xls

> Page 18 of 27 See Page 1 of Table B-1 for Legend

•

Table B-1Summary of Laboratory Tests and Index Properties ContinuedCity of Los Angeles/Northeast Interceptor Sewer TunnelLos Angeles, California

ution	% Fines	14.6	36.2	ł	1	:	9.9	14.8	8.9	6.7	2.8	7.4	69.4	1	1	ł		1	1	1	ł	1	13.2	14.9	8.4	9.3	61.5	37.2	61.3	94.1	78.3	1
Grain Size Distribution	% Sand	78.2	63.8	1	1	1	89.4	85.2	78.1	85.5	73.6	77.9	1	1	I	ł	ł	I	ł	ł	1	1	1	63.6	91.6	44.4	1	62.8	I	5.9	21.7	;
Grain Si	% Gravel	7.2	0.0	ł	ł	1	0.7	0.0	13.0	7.8	23.6	14.7	ł	ł	1	ł	1	1	}	1	ł	1	1	21.6	0.0	45.8	1	0.0	1	0.0	0.0	-
nits	Plasticity Index		ł	ł	ł	:	1	ł	ł	ł	I	ł	1	ł	ł	ł	ł	1	;	ł	ł	1	ł	1	1	ł	ł	ł	ł	ł	ł	1
Atterberg Limits	Plastic Limit	1	ł	1	;	-	1	;	;	;	1	1	ł	1	1	I	1	I	1	ł	1	1	:	ł	ł	ł	ł	1	ł	1	ł	1
Ât	Liquid Limit	1	1	1	ł	1	:	I	ł	1	ł	ł	ł	1	1	ł	1	1	ł	ł	1	1	1	1	ł	ł	1	I	1	1	1	1
Dry	Density (kN/m ³)	19.8	ł	ł	ł	1	17.3	15.1	1	ł	19.4	20.4	ł	ł	1	1	1	1	ł	ł	ł	ł	18.9	1	17.3	21.6	19.0	19.2	. I	17.6	16.9	1
Natural	Water Content (%)	12.1	ł	I	I	1	6.4	12.8	6.1	14.8	12.2	6.4	18.2	ł	1	ł	ł	1	ł	ł	1	ł	7.4	I	3.0	7.5	11.9	12.1	I	16.5	16.8	1
	Test Type	MA	MA	ЫЦ	ITS	UCS,PLI	MA	MA	MA	MA	MA	MA,DS	-200	ncs	NCS	PA	NCS	Chem	PLI	ncs	ncs	PA	MA	MA	MA,DS	MA	-200	MA,DS	MA,Hyd	MA, Hyd, DS	MA,Hyd	PLI
USCS	Classification / Rock Type	SM	SM	Siltstone	Sandstone	Siltstone	SP-SM	SM	SW-SM	SW-SM	Ъ	SW-SM	Siltstone	Sandstone	Siltstone	Sandstone	Sandstone	Siltstone	Sandstone	Sandstone	Sandstone	Sandstone	SM	SM	SW-SM	GP-GM	Siltstone	Sandstone	Siltstone	Siltstone	Siltstone	Siltstone
	Deptn (m)	29.0	29.7	33.4	35.7	36.1	3.0	6.1	9.1	10.7	12.2	15.2	19.8	27.2	28.0	30.2	30.3	30.8	31.7	32.8	35.1	35.4	2.9	4.4	5.9	12.0	15.1	18.1	19.7	24.2	25.6	26.3
	Sample No.	21	22	29	31	31	5	4	9	7	ω	5	13	18	19	20	20	21	21	22	24	24	7	ო	4	∞	9	12	13	16	17	18
	Boring No.	B-90					B-91																B-92									

9/14/01 2569-32806-NEIS Phase II NEIS Lab Summary.xls

> Page 19 of 27 See Page 1 of Table B-1 for Legend

 Table B-1

 Summary of Laboratory Tests and Index Properties Continued

 City of Los Angeles/Northeast Interceptor Sewer Tunnel

 Los Angeles, California

ution	% Fines	1	ł	1	1	1		ł	ł	1	1	1	74.0	8.6	4.2	1	1		;	1	1		40.5	9.9	14.6	1	5.3	2.1	12.9	1	1	1
Grain Size Distribution	% Sand	1	ł	1	1	ł	ł	ł	I	1	ł	ł	26.0	91.4	95.3	ł	1	I	ł	1	ł	1	1	90.1	85.2	1	79.9	94.0	52.7	1	ł	:
Grain S	% Gravel	1	I	I	ł	I	I	ł	:	I	ł	1	0.0	0.0	0.5	1	ł	1	:	1	1	1	1	0.0	0.2	ł	14.8	3.9	34.4	1	1	1
nits	Plasticity	:	:	:	1	:	ł	ł	ł	ł	1	ł	16	1	ł	ł	ł	1	ł	ł	1	1	1	:	;	7	I	:	ł	1	1	1
Atterberg Limits	Plastic Plasticity Limit Index	1	ł	ł	ł	1	1	ł	ł	 ,	ł	ł	20	1	ł	1	ł	;	ł	ł	ł	1		ł	1	23	ł	ł	ł	I	1	1
Át	Limit	:	1	;	ł	1	ł	ł	ł	ł	1	1	36	1	;	1	1	;	;	ł	ł	ł	;	ł	ł	8	ł	;	1	I	1	-
ΡŊ	Density (kN/m ³)	:	1	ł	1	;	ł	ł	ł	1	1	1	ł	1	16.6	18.9	17.5	ł	;	ł	ł	1	14.6	15.4	15.7	ł	1	18.0	20.4	ł	1	1
Natural	Water Content (%)		ł	ł	ł	I	I	ł	ł	1	ł	:	1	4.2	2.6	12.0	16.6	ł	ł	ł	1	1	0.6	6.4	6.8	19.0	10.9	9.2	10.4	ł	I	ł
	Test Type	PLI	PLI,CAI,D,UCS	PLI	PLI	CAI,PA	CAI	PLI,CAI	PLI	PLI,D,UCS	PLI	CAI	AL,MA,Hyd	MA	MA,DS	Chem	Chem	РЦ	PLI	ITS	PLI	PLI	-200	MA	MA	AL	MA	MA,DS	MA	PLI	PA	PLI
USCS	Classification / Rock Type	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Siltstone	Siltstone	Siltstone	Siltstone	Siltstone	Claystone	SP-SM	Ъ	SW	Siltstone	Siltstone	Siltstone	Siltstone	Siltstone	Siltstone	SM	SP-SM	SM	С	SW-SM	PS	SM	Siltstone	Siltstone	Siltstone
	Depth (m)	29.0	31.7	32.0	32.5	33.5	34.5	35.3	36.4	36.8	37.1	37.3	38.1	4.6	6.1	12.2	21.3	26.1	26.7	29.2	31.3	32.8	3.0	6.1	9.1	10.7	13.7	15.2	18.3	27.9	28.0	28.5
	Sample No.	20	22	23	23	24	24	25	25	26	26	26	27	n	4	ω	14	19	19	21	22	24	2	4	9	7	ი	9	12	19	19	19
	Boring No.	B-92												B-93									B-94									

9/14/01 2569-32806-NEIS Phase II NEIS Lab Summary.xls

Page 20 of 27 See Page 1 of Table B-1 for Legend

Table B-1 Summarv of L

Summary of Laboratory Tests and Index Properties Continued City of Los Angeles/Northeast Interceptor Sewer Tunnel Los Angeles, California

ution	% Fines	1	1	1	1	1	1	40.8	1	49.5	12.9	8.5	ł	5.9	8.8	1	13.8	24.6	ł	ł	1	ł	1	1	1	19.5	7.6	1	12.9	8.8	1	4.5
Grain Size Distribution	% Sand	:	1	1	1	1	1	38.9	1	47.4	87.1	86.0	ł	57.5	90.5	ł	86.2	75.4	ł	ł	1	ł	ł	ł	1	80.5	70.7	1	78.9	73.9	1	92.4
Grain Si	% Gravel	1	1	1	ł	1	1	20.3	1	3.1	0.0	5.5	ł	36.6	0.7	ł	0.0	0.0	ł	1	1	ł	1	1	1	0.0	21.7	ł	8.2	17.3	1	3.1
nits	Plasticity Index	1	ł	ł	ł	1	21	18	23	ł	ł	;	19	;	ł	24	ł	ł	ł	;	ł	ł	ł	ł	1		ł	ł	1	ł	12	:
Atterberg Limits	Plastic Limit	1	1	1	ł	1	35	16	18	1	1	;	22	;	1	15	ł	ł	ł	ł	1	ł	ł	i	1	1	ł	1	ł	1	29	1
	Liquid	ł	ł	ł	ł	1	99	34	41	I	I	I	41	I	:	39	ł	ł	ł	ł	ł	1	1	1	1	1	ł	ł	1	ł	4	1
λ. Δ	Density (kN/m ³)	1	:	1	ł	;	1	16:2	:	15.9	14.8	1	ł	19.0	ł	I	17.3	ł	I	1	ł	ł	ł	1	ł	16.2	ł	1	1	19.3	1	1
Natural	Water Content (%)		1	ł	ł	ł	1	17.1	;	20.9	8.4	ł	1	11.9	ł	ł	14.7	۱	ł	ł	ł	ł	ł	:	ł	8.3	3.4	8.2	10.5	13.1	41.6	15.5
	Test Type	PLI	UCS,ITS	Chem	ncs	РЦ	AL	MA,AL	AL	MA	MA,DS	MA	AL	MA,DS	MA	AL	MA	MA	PLI	ncs	UCS,PLI	. PLI	UCS,PLI	ncs	UCS,PLI	MA	MA	Chem	MA	MA,DS	AL	MA
ÚSĊS	Classification / Rock Type	Sandstone	Sandstone	Siltstone	Sandstone	Siltstone	MH	сГ	СГ	SM	SM	SW-SM	с	SP-SM	SP-SM	С	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Siltstone	Sandstone	Sandstone	Sandstone	SM	SW-SM	GP-GM	SM	SW-SM	ML	SP
	Depth (m)	29.7	30.3	30.8	31.9	33.9	4.1	2.9	4.4	5.9	9.0	10.5	13.6	15.1	16.6	19.7	21.2	25.8	29.2	30.0	31.4	34.3	37.1	38.3	39.0	3.0	7.6	10.7	13.7	15.2	22.9	25.9
	Sample No.	20	20	21	21	23	-		ო	4	9	7	თ	10	1	13	4	17	20	20	21	23	28	29	30	2	5	7	თ	10	15	17
	Boring No.	B-94					B-95																			B-96						

9/14/01 2569-32806-NEIS Phase II NEIS Lab Summary.xls

> Page 21 of 27 See Page 1 of Table B-1 for Legend

.

•

Table B-1Summary of Laboratory Tests and Index Properties ContinuedCity of Los Angeles/Northeast Interceptor Sewer TunnelLos Angeles, California

		—																														
oŭtion	% Fines	10.2	12.5	14.2	21.2	11.7	19.0	1	1	1	I	ł	ł	1	1	1	1	;	1	I	1	36.2	9.2	1.6	22.5	21.0	7.8	16.7	37.4	12.7	4.3	98.5
Grain Size Distribution	% Sand	45.4	:	79.2	77.6	86.4	80.7	1	1	ł	I	1	ł	ł	I	:	ł	ł	I	1	1	1	83.3	76.4	6.99	78.8	92.2	78.1	62.6	75.7	45.5	1.5
Grain Si	% Gravel	44.4	ł	6.6	1.2	1.9	0.3	1	ł	ł	1	I	1	1	1	1	!	1	1	ł	1	1	7.5	22.0	10.6	0.2	0.0	5.2	0.0	11.6	50.2	0.0
nits	Plasticity Index	1	1	ł	:	ł	ł	1	I	1	ł	ł	1	ł	I	1	ł	ł	ł	ł	ł	1	ł	ł	;	1	1	ł	ł	ł	ł	:
Atterberg Limits	Plastic Plasticity Limit Index	1	1	;	1	ł	:	:	1	1	ł	;	1	;	ŀ	ł	ł	;	ł	ł	1	:	1	1	1	:	ł	ł	1	ł	!	ł
AH	Liquid		1	1	.	1	1	;	<mark>ا</mark> .	1	1	ł	1	ł	;	1	1	;	1	;	1	;	1	ł	ł	:	ł	ł	ł	1	ł	-
Dry	Density (kN/m ³)	20.8	1	20.0	18.2	1	17.2	1	I	ł	1	1	ł	ł	ł	1	I	ł	1	ł	ł	1	1	18.0	17.7	1	17.4	1	17.8	17.6	ł	!
Natural	Water Content (%)	9.5	10.0	11.1	16.5	15.2	21.3	ł	ł	1	I	1	1	ł	;	I	1		1	1	;	13.6	4.0	2.2	4.8	3.2	16.9	11.3	18.6	17.9	;	-
	Test Type	MA	-200	MA,DS	MA,DS	MA	MA	ITS	ncs	PLI,PA	CAI	ncs	PLI	PLI	ncs	PA	PLI	PLI	ncs	ncs	PLI	-200	MA	MA	MA	MA	MA,DS	MA	MA,DS	MA	MA	MA,Hyd
USCS	Classification / Rock Type	SP-SM	SM	SM	SM	Ъ	SM	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Siltstone	Siltstone	Sandstone	Siltstone	Sandstone	Sandstone	Sandstone	Siltstone	SW-SM	SW-SM	SP	SM	SM	SP-SM	SM	SM	SM	GP	ML
	Depth (m)	27.4	28.2	31.2	32.8	35.1	35.8	31.5	32.2	32.8	32.9	34.0	34.7	35.1	38.3	38.7	40.7	43.1	43.6	46.7	47.4	4.7	5.0	6.1	9.1	16.8	19.8	22.1 -	25.1	26.7	29.7	35.1
	Sample No.	18	19	23	25	28	29	19	20	20	20	21	21	22	24	24	25	27	27	29	30	3A	3B	4	9	1	14	17	21	23	27	31
	Boring No.	B-96						B-97														B-98										

9/14/01 2569-32806-NEIS Phase II NEIS Lab Summary.xls

Page 22 of 27 See Page 1 of Table B-1 for Legend

Table B-1

Summary of Laboratory Tests and Index Properties Continued City of Los Angeles/Northeast Interceptor Sewer Tunnel Los Angeles, California

	S S										_				-												_		_			
oution	% Fines	1	1	1	I	1	1	1	1	1	24.9	1	4.8	4.9	2.7	2.6	5.2	11.8	20.8	7.0	8.8	1	2.9	36.4	3.4	77.6	44.0	!	11.0	6 [.] 6	1	1
Grain Size Distribution	% Sand	;	1	1	1	:	:	1	-	1	I	:	51.1	76.6	96.5	97.0	83.6	88.2	79.2	92.5	89.0	ł	79.8	60.0	95.5	1	56.0	1	79.7	73.0	ł	1
Grain S	% Gravel	1	ł	;	I	ł	1	;	1	1	ł	ł	44.1	18.5	0.8	0 .4	11.2	0.0	0.0	0.5	2.2	ł	17.3	3.6	1.1	•	0.0	1	9.3	17.1	:	1
nits	Plasticity	1	ł	1	ł	1	1	1	1	27	I	œ	ł	:	1	1	ł	ł	;	ł	1	21.0	:	1	1	4	1	23	ł	ł	I	1
Atterberg Limits	Plastic Limit	1	1	1	;	1	ł	1	1	28	ł	30	1	1	1	1	1	1	1	I	1	30.0	ł	ł	ł	26	ł	23	:	I	ł	ł
At	Liquid	1	ł	;	ł	!	1	ł	1	55	ł	38	ł	1	1	1	1	1		I	1	51.0	I	ł	1	30	ł	46	ł	1	ł	1
Dry	Density (kN/m ³)	1	1	1	:	;	1	1	1	:	ł	1	ł	ł	1	1	1	1	:	1	1	ł	1	1	1	1	:	1	1	1	I	1
C P 16 V C Straine Straine	Water Content (%)	1	1	ł	8	ł	ł	ł	-	41.6	19.2	43.3	8.2	14.9	15.6	18.0	11.3	18.2	3.8	2.9	3.8	39.1	12.8	17.1	18.6	25.6	11.8	37.4	13.9	13.0	ł	ł
	Test	ncs	PLI,UCS	PLI,CAI	UCS,PA	PLI	PLI	PLI,ITS	PLI	AL	-200	AL	MA	MA	MA	MA	MA	MA	MA	MA	MA	AL	MA	MA	MA	AL,-200	MA	AL	MA	MA	UCS,PA	PLI
USCS	Classification / Rock Type	Sandstone	Sandstone	Sandstone	Siltstone	Siltstone	Siltstone	Sandstone	Siltstone	СН	SM	ML	SP	SW	с С	SP	SW-SM	SP-SM	SM	SP-SM	SW-SM	MH	с С	SM	SP	ML	SM	СГ	SP-SM	SP-SM	Sandstone	Sandstone
	Depth (m)	32.5	35.1	35.7	36.9	37.7	39.0	39.9	40.4	3.0	6.1	12.2	13.7	18.3	19.8	24.4	25.9	27.4	3.0	4.6	9.1	10.7	16.8	18.3	19.8	3.0	4.6	9.1	15.5	18.3	28.4	33.8
	Sample No.	18	20	20	22	22	23	24	24	2	4	ø	6	12	13	16	17	18	2	ო	9	7	1	12	13	2	ო	9	10	12	19	24
	Boring No.	B-101								B-102						-			B-103							B-104						

9/14/01 2569-32806-NEIS Phase II NEIS Lab Summary.xls

> Page 24 of 27 See Page 1 of Table B-1 for Legend

.

Table B-1Summary of Laboratory Tests and Index Properties ContinuedCity of Los Angeles/Northeast Interceptor Sewer TunnelLos Angeles, California

	No. Contraction	% Fines	:	;	10.3		7.2	101	; ;	;	;	1	1		 ;					:			;	1	87.7	33.7	22.6	1	66.0	-	1	1
A set of the set of th		% Sand	1	1	89.7	1	92.5	89.8	;	1	1	1		1	.		-		:	1	;				-	66.3	77.4	1	34.0	;	;	
		% Gravel	1	1	0.0	1	0.3	0.1	1	1	1	1	1	1	:	;	;				ł	;			:	0.0	0.0	1	0.0	1	1	;
Atterberg Limits	Plasticity		1	i	1	24	1	;	1	1	1	1	1	:	1		-	1	;	;	!		1		1	;	1	22	1	27	23	1
terberg Lit	Plastic	Section 2	1	!	1	25	1	ł	;	1	;	1	1	-	{	1	1	;	1	;	1	!	;		1	;	1	81	: 8	3 6	3	;
	Carl Au	e e	1	-	: :	49	1	1	1	!	1	1	:	-	1	;	;	;		;	1	1	1	-	1	;	1	2		90	 }	
N O	Density (kN/m ³)				1	1	ł	1	;			:			ł	;		1	1	1	!	:	1			ļ		;		1	;	
Natural	Content (%)		1	6 A	20 E	20.0 4 4 0	17.0			1			;					!	-		1		1 1	24.0	2.1	0.1	26.4	16.6	19.5	27.2	ł	
	Type	UCS	PLI	MA	A	MA	MA	- Id	PLI.CAI	PLI	UCS	PLI	PLI	UCS	ncs	ITS	L L	ncs	ncs	PA	A	ncs	PLI	-200	MA	MA	AL	MA	AL	AL	PLI	ncs
USCS Classification /	Rock Type	Siltstone	Sandstone	SP-SM	cr	SP-SM	SP-SM	Siltstone	Sandstone	Sandstone	Siltstone	Siltstone	Siltstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	ML	SM	SM	Ъ	Siltstone	Claystone	Claystone	Siltstone	Sandstone
Denth	(m)	35.2	36.5	3.0	9.1	16.8	22.9	28.3	30.5	33.2	36.1	36.4	38.6	20.7	23.6	28.4	30.5	32.2	37.7	38.4	39.9	41.2	42.1	1.5	3.0	9.1	13.7	21.3	24.4	25.9	34.0	34.4
Sample	No.	25	56	~	o	=	15	20	52	26	30	8	32		4	-	10	11	15	16	17	19	19	-	~	9		14	16	7	47 K	56
Boring	No.	B-104		B-105								_		B-106										B-107								

2569-32806-NEIS Phase II NEIS Lab Summary.xls

9/14/01

ł

Page 25 of 27 See Page 1 of Table B-1 for Legend

CDM Camp Dresser & McKee Inc.

Table B-1

Summary of Laboratory Tests and Index Properties Continued City of Los Angeles/Northeast Interceptor Sewer Tunnel Los Angeles, California

			_		-			_							_																			
oution		% Fines	1	I	10.3	-	1 5	7.7	1.01	ł	1	1	1	1	1	:	:	1	1	1	. I		1	:	I	1 10	1.70	0.00 0.00	Q.77	: .	00.0	!	1	1 1
Grain Size Distribution		% Sand	1	ł	89.7		1 6	000	02.0	ł	ł	1	:	:	1	•	;	:	1	1	ł	;	ł	:	1	:	- 33	2.00	4	1 2). to	1	ł	
Grain S		% Gravel	!	1	0.0			, ,		ł	1	I.	:	1	1	1	I	1	1	1	ł	 !	-	}	1				0.0		0.0		1	
mits	Plasticity	Index	1	 		24	i I		}	1		I	!	1	:	1	I	1	1		ł	ł	1	ł					5	4 1	76	3:5	3. i	I.
Atterberg Limits	Plastic	Limit	:	;	!	25		ł					•	1		1	1	I	1	1	ł	1	;	;	ł		ł	;	81	2 1	23	3.8	3 1	1
At	Liquid	Limit	1	I	:	49	1	1	1	1	I	1				1	1	1	1	ł	1	1	1	1	1	,	;	ł	40	2 1	50	46	2 1	;
Dry	Density	(kN/m [°])	1	1	1	1	ł	1	1	1	1	ł		1		1	۱.	-	;	ł	1	ł	1	;	1	;	1	1	:	1	:		1	1
Natural	Water	Content (%)	1	1	6.9	30.5	17.8	17.0	. 1	ł	:	1	1	1		1 1			ł	1	ł	ł	•1	1	ł	24.0	7.5	14.9	26.4	16.6	19.5	27.2	1	ł.
	Test	lype	ncs	۲L	MA	AL	MA	MA	PLI	PLI,CAI	PLI	ncs	PLI	PLI	1178	ncs	ITS					PA	PA	- NCS	PLI	-200	MA	MA	AL	MA	AL	AL	PLI	ucs
nscs	Classification /	KOCK I YPE	Siltstone	Sandstone	SP-SM	ರ	SP-SM	SP-SM	Siltstone	Sandstone	Sandstone	Siltstone	Siltstone	Siltstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandetone	Conditione	odiusione	Sandstone	Sandstone	Sandstone	Sandstone	ML	SM	SM	с С	Siltstone	Claystone	Claystone	Siltstone	Siltstone
:	Uepth (m)	(111)	35.2	0.00	3.0	9.1	16.8	22.9	28.3	30.5	33.2	36.1	36.4	38.6	20.7	23.6	28.4	30.5	32.2	37.7		38.4	39.9	41.2	42.1	1.5	3.0	9.1	13.7	21.3	24.4	25.9	34.0	34.4
-	Sample	2	47 47			ø	11	15	20	22	26	30	30	32	-	4	7	10		. t	2 4	<u>0</u>	17	19	19		7	9	<u></u> б	14	16	17	25	26
			-104		CUL-9										B-106					. <u> </u>						B-107						<u> </u>		

9/14/01 2569-32806-NEIS Phase II NEIS Lab Summary xls

> Page 25 of 27 See Page 1 of Table B-1 for Legend

	•
Σ	
e	
ā	
Та	(

Summary of Laboratory Tests and Index Properties Continued City of Los Angeles/Northeast Interceptor Sewer Tunnel Los Angeles, California

							1				
		SOSU		Natural	Ŋ	At	Atterbera Limits	mits	Grain S	Grain Siza Nistribution	ution .
	Depth	Classification /	Test	Water	Density	Liquid	Plastic	Plasticity			
	(m)	Rock Type	Type	Content (%)	(kN/m ³)	Limit	Limit	Index	% Gravel	% Sand	% Fines
	35.2	Siltstone	· UCS	1	1	:	:				
	35.6	Sandstone	PA	ł	1	ł	:	1		ł .	ł
	39.7	Sandstone	PA	1	ł	ł		1	I	:	1
	41.2	Sandstone	PLI	1	1	· 1	1	l	ł	1	1
	23.1	Siltstone	PLI	.1		;					•
	25.0	Siltstone	PLI	I	ł	1		1	ł	1	ł
	26.1	Sandstone	ncs	ł	1			1	I	ł	1
, ·	26.7	Siltstone	PLI	ł	:	1	ł		1	1	1
	29.2	Sandstone	UCS, PA	ł	ļ	ł	;			1	1
	31.9	Sandstone	PLI,ITS	1	ł	;	ł			1	1
	32.9	Sandstone	PLI	1	1	1	ł	1		1	;
	34.0	Sandstone	ncs	ł	1	1	;	1		:	1
	34.7	Siltstone	PLI	ł	· 1	1	;			1	Į
_	34.8	Siltstone	PA	I	1	1	ł	·¦		l	:
	37.9	Sandstone	PLI	ł	1	1	1			I	:
	38.0	Sandstone	ncs	I	1	;	1	ł		1	1
	38.9	Sandstone	ncs	I	1	:	:	I			1
	40.9	Siltstone	PLI,UCS	1	:	1	;		1		
	1.5	CL	AL	18.5	17.3	38	16	22			
	10.7	ML	MA,Hyd	16.8	I	1	1		4 2	28.9	ee a
	13.7	SM	MA	14.0	 	;	ł	ł	19.2	67.4	13.4
	16.8	SM	DS	12.9	19.6	1	ł	ł		5	
	22.9	С	AL,UU	23.5	16.2	49	25	24	1	1	
	29.0	С	۲ ۹۲	25.9	15.5	41	24	17	1	;	
_	33.5	CL	AL,Hyd,UU	24.0	15.1	42	25	17	ł	13	08 7
	4.7	บี	AL,MA	10.0	17.0	31	12	19	6.8	65.9	25.2
	9.1	SP-SM	MA	1	1	;	:	1	5.9	83.3	10.8
_	12.2	SM	DS,MA	21.1	17.4		I		7.2	72.2	20.6
	13.7	ָר ָ	AL,UU	18.9	14.5	31	12	19			
	16.8	ರ	AL,MA,UU	17.2	18.1	33	15	18	4.4	46.5	52.1
_	36.1	ML	Ŋ	19.8	16.3	!	ł	ł			

Page 26 of 27 See Page 1 of Table B-1 for Legend

,

.

CDM Camp Dresser & McKee Inc.

 Table B-1

 Summary of Laboratory Tests and Index Properties Continued

 City of Los Angeles/Northeast Interceptor Sewer Tunnel

 Los Angeles, California

									_		_						-			_							_	_	
ution	% Fines	1	7.3	8.3	11.2	10.7	1	21.0	8.4	ł	1	10.8	1	26.8	10.4	12.9	97.1	6.5	1	85.8	5.9	13.5	74.0	6.3	11.4	10.9	12.7	2.2	12.4
Grain Size Distribution	% Sand	:	42.6	91.1	61.7	83.3	;	70.3	68.2	1	1	89.2	:	73.2	57.9	53.1	2.9	66.2	ł	14.1	91.7	56.0	19.4	48.0	47.4	71.2	86.8	29.6	55.5
Grain Si	% Gravel		50.1	0.6	27.1	6.0	I	8.7	23.4	ł	:	0.0	ł	0.0	31.7	34.0	0.0	27.3	I	0.1	2.4	30.5	6.6	45.7	41.2	17.9	0.5	68.2	32.1
nits	Plasticity Index	19	1	I	I,	1	+		1	38	21	1	44	1	1	;	26	1	50	16	;	1	27	1	-	ł	1	1	ł
Atterberg Limits	Plastic Plasticity Limit Index	27	1	I	1	1	21	ł	1	15	4	ł	23	ł	;	ł	21	1	20	20	1	1	19	:	-	1	;	1	1
	Liquid	46	1	1	1	ł	32	ł	:	53	35	1	67	ł	ł	1	47	1	20	36	ł	I	46	1	ł	1	1	1	1
ρŋ	Density (kN/m ³)	1	ł	ł	1	ł	ł	ł	-	ł	1	1	1	I	1	I	I	ł	ł	1	ł	1	ł	1	1	1	1	1	ł
Natural	Vater Content (%)	39.0	7.8	6.5	11.5	12.4	27.0	15.1	2.8	24.8	20.6	23.3	33.9	18.1	8.8	12.2	23.1	10.8	29.5	26.1	18.0	9.6	19.5	6.6	9.2	2.1	23.8	- 2.1	4.5
	Test Type	AL	MA	MA	MA	MA	AL	MA	MA	AL	AL	MA	AL	MA	MA	MA	AL, Hyd	MA	AL	AL, Hyd	MA	MA	AL, Hyd	MA	MA	MA	MA	MA	MA
uscs –	Classification / Rock Type	ML	GP-GM	SW-SM	SP-SM	SP-SM	сг	SM	SW-SM	СН	СГ	SP-SM	CH	SM	SP-SM	SM	С	SW-SM	CH	cr	SP-SM	SP-SM	СГ	SP-SM	SP-SM	SP-SM	SM	GP	SM
	Depth (m)	3.0	7.6	9.1	12.2	18.3	19.8	21.3	4.6	7.6	9.1	12.2	15.2	18.3	22.9	25.9	35.8	9.1	15.2	18.3	24.4	29.0	35.8	7.6	10.0	3.0	7.6	3.0	6.1
	Sample No.	2	ъ	Q	8	12	13	14	ო	S	9	ω	10	12	15	17	26	9	10	12	16	19	23	5	7	2	5	2	4
	Boring. No.	B-115							B-116									B-117						B-118		B-119		B-120	

9/14/01 2569-32806-NEIS Phase II NEIS Lab Summary.xls

Page 27 of 27 See Page 1 of Table B-1 for Legend

ц Ц
Table

Summary of Direct Shear Test Results City of Los Angeles/Northeast Interceptor Sewer Tunnel Los Angeles, California

aramenters	Friction Angle (degrees)	38	28	37	28	32	32	39	39	49	46	36	46	38	. 35	43	37	44	38	38	32	27	46	33	43	39	8 8	37	37	44	35
Shear Strength Paramenters	Apparent Cohesion (KPa)	51.4	126.9	24.0	61.0	47.7	13.4	45.3	7.8	50.0	2.9	20.1	0.0	43.1	5.6	2.6	5.9	15.3	12.0	39.2	47.7	28.0	0.0	13.5	12.8	63.8	34.1	19.9	7.9	6.1	36.0
1 20 10 10 10 10 10 10 10 10 10 10 10 10 10	% Passing No. 200 Sieve (fines)	28.6	93.0	31.0	53.3	29.2	6.6	3.7	4.6	3.8	6.5	93.2	14.4	9.2	57.5	10.9	6.9	7.4	8.4	37.2	94.1	4.2	2.1	12.9	8.8	14.2	21.2	8.7	37.4	1	20.6
Index Properties	Dry Density (KN/m ³)	18.6	16.5	17.3	16.6	17.3	16.5	19.3	17.5	20.4	20.3	14.8	19.2	18.9	18.0	18.2	17.3	20.4	17.3	19.2	17.6	16.6	18.0	14.8	19.3	20.0	18.2	17.4	17.8	19.6	17.4
pul	Natural Water Content (%)	9.6	19.6	18.7	18.4	18.0	3.2	11.5	3.0	6.7	7.8	29.6	10.8	12.3	15.5	12.7	16.3	6.4	3.0	12.1	16.5	2.6	9.2	8.4	13.1	11.1	16.5	16.9	18.6	12.9	21.1
	USCS Classification / Rock Type	Sandstone	Siltstone	Sandstone	Siltstone	Sandstone	SP-SM	SP	РS	SW	SW-SM	CL	SM	SW-SM	ML	SP-SM	SW-SM	SW-SM	SW-SM	Sandstone	Siltstone	SP	SP	SM	WS-WS	SM	SM	SP-SM	SM	SM	SM
Sample Identification	Depth.(m)	37.3	30.5	32.0	12.2	18.1	6.1	12.2	6.1	18.3	30.5	18.3	21.2	21.3	6.1	19.8	25.9	15.2	5.9	18.1	24.2	6.1	15.2	9.0	15.2	31.2	32.8	19.8	25.1	16.8	12.2
Sample	Sample	30	20	22	8	12	4	8	4	12	22	12	14	14	4	13	17	10	4	12	16	4	10	9	10	23	25	14	21	9	8
	Boring	B-79	B-80		B-81	B-82	B-83		B-85			B-87	B-88	B-89	B-90			B-91	B-92	,		B-93	B-94	B-95	B-96			B-98		B-110	B-111

9/14/01 2569-32806-NEIS Phase II NEIS Strength Tests.xls

Page 3 of 3

CDM Camp Dresser & McKee Inc.

Table B-5	Summary of Point Load Index Testing	City of Los Angeles/Northeast Interceptor Sewer Tunnel	Los Angeles, California
Tab	Sur	<u>city</u>	Los

Fallure Mode	ი ი	n v	s	s	s	S	s	S		•		•	S	
Loading with respect to Fracture	N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		1		ı	N/A	
Compressive Strength (KPa)	4,833 45,472	6,545	19,151	5,368	44,127	7,377	73,439	6,777	710	3,316	3,110	310	49,884	
	22.7 22.9	22.8	22.8	20.4	22.9	23.1	22.8	22.7	,	•	'	•	24.9	
ls(50)	0.213 1 986	0.287	0.840	0.263	1.927	0.319	3.221	0.299	,	•		•	2.003	
L.	0.0	0.0	0.9	1.0	0.9	1.0	0.9	1.0	•	,		1	1.0	
	0.237 1 986	0.319	0.933	0.263	2.141	0.319	3.579	0.299			,	I	2.003	
S. 4	371.1 4175.2	556.7	1391.7	556.7	4175.2	742.3	6030.8	649.5		,	1	•	6030.8	
Gauge Fallure Load (kPa)	275.8 3102 6	413.7	1034.2	413.7	3102.6	551.6	4481.6	482.6	1	•	,	•	4481.6	
De ² (mm ²)	1568.7 2102 6	1745.5	1491.2	2115.5	1950.1	2324.2	1685.1	2175.3	•	•	-	•	3010.3	
Diameter (mm)	49.0 50.0	49.2	49.6	36.3	50.1	50.8	49.5	49.1	1	•	•		60.8	
Length (mm)	25.1 33.0	27.9	23.6	45.7	30.5	35.9	26.7	34.8	•	•		•	38.9	
Test Type	Axial Axial	Axial	Axial	Irr. Lump	Axial	Axial	Axial	Axial	1	•			Axial	
Depth	35.1 40.6	18.1	19.9	22.3	24.7	31.8	47.3	48.1	25.9	33.2	25.2	38.4	30.3	
Sample No:	24 27	11	13	4	16	20	32	32	18	22	17	27	19	
Boring No	B-22A B-22A	B-81A	B-81A	B-81A	B-81A	B-81A	B-81A	B-81A	B-82	B-82	B-83	B-83	B-84	Notes:

L - Sample Length.

D - Sample Diameter.

 De^{2} - Exquivalent Diameter = 4*L*D/ π .

Piston Area $(in^2) = 2.07$.

Failure Modes:

FR - Fracture Controlled.

S - Substance Controlled.

S/FR - Combination Substance & Fracture.

P = Gauge Failure Load * Piston area.

F - Size Correction Factor to 2.0 in = $(De/2.0)^{0.45}$ Is - Point Load Index Strength = P/De².

ls(50) - Size Corrected Index Strength = F* ls. C - Factor to Estimate Compressive Strength Related to Core Diameter.

Compressive Strength in kpa = C * Is(50).

Irr. Lump - Irregular Lump Test.

- Data not available.

Data summarized from results presented by Colorado School of Mines (2000) and Advanced Terra Testing (2001)

CDM Camp Dresser & McKee Inc.

Page 1 of 4

9/14/01

2569-32806-NEIS Phase II NEIS Point Load Testing.xls

Failuro	Mode	S	S	S	S	S/FR	S	S/FR	S	s	S	S	S	s	S	S	S/FR	S	S	s	,	1	,	۱	ı	ı	ı	ı	•	S	S/FR	S
Loading with	1.1.18	N/A	N/A	N/A	N/A	Parallel	N/A	Parallel	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Prependicular	Prependicular	V/N	N/A	-	•	•	ı	ł	1	ı	5	•	N/A	Parallel	N/A
Compressive	(kPa)	7,824	13,771	14,472	25,161	8,064	16,137	4,324	5,315	4,871	203,739	4,694	5,026	15,689	86,515	56,018	19,488	15,667	10,903	5,402	296	296	462	310	152	448	159	317	324	8,664	20,887	9.307
	်ပ	24.9	23.7	24.9	24.9	24.8	22.9	23.1	22.9	23.1	23	22.9	23	24.9	23	23	25.3	25.3	22.9	22.9		ı	,	,	ı	,	1	1	•	19.7	24.9	22.8
	ls(50)	0.314	0.581	0.581	1.010	0.325	0.705	0.187	0.232	0.211	8.858	0.205	0.219	0.630	3.762	2.436	0.770	0.619	0.476	0.236	•	ı	ı	1	ı	•	1	1	•	0.440	0.839	0.408
	Ľ	1.0	1.0	1.0	0.9	1.0	0.9	1.0	0.9	0.9	6 [.] 0	0.9	1.0	6 ^{.0}	<u>6</u> .0	1.0	1.0	0.9	6.0	0.9	,	ı	ł	,	'	ı	'	1	,	1.0	1.0	+
, .	(Nmm ²)	0.314	0.581	0.581	1.123	0.325	0.783	0.187	0.258	0.234	9.842	0.228	0.219	0.700	4.179	2.436	0.770	0.688	0.529	0.262		,	ı	,	,	ı	•	,	•	0.440	0.839	0371
D	S.	927.8	1391.7	1391.7	1855.6	927.8	1391.7	463.9	463.9	463.9	16700.7	463.9	463.9	1391.7	8350.3	5103.0	2319.5	1391.7	927.8	463.9	1	ı	ı	. ,	ı	ı	١.	ı	,	927.8	1855.6	1301 7
Gauge Failure	(kPa)	689.5	1034.2	1034.2	1379.0	689.5	1034.2	344.7	344.7	344.7	12410.6	344.7	344.7	1034.2	6205.3	3792.1	1723.7	1034.2	689.5	344.7	,	,	1	ı	,	ı	ı	,	ı	689.5	1379.0	1034.2
5 6	(um ³)	2952.8	2395.1	2394.6	1652.7	2853.4	1777.5	2478.3	1799.0	1980.0	1696.8	2036.8	2123.0	1987.9	1998.0	2095.2	3011.3	2022.7	1753.8	1770.0	•	•	1	ı	1	•	•	•	,	2109.7	2212.2	2750 1
Diamoter	(mm)	61.0	54.2	61.0	60.8	60.4	49.8	50.8	50.1	50.8	50.5	50.0	50.3	61.0	50.6	50.5	62.8	62.9	49.7	50.1		•	ı	ı	ı	,		•	ı	32.7	60.5	40 K
	(mm)	38.0	34.7	30.8	21.3	37.1	28.0	38.3	28.2	30.6	26.4	32.0	33.1	25.6	31.0	32.6	37.6	25.2	27.7	27.7		1	1	1	,	1	1	•	1	50.6	28.7	207
	TestType	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	1	,	,	ı	,	•	•	ı	1	Irr. Lump	Axial	Irr Lumb
Poort Poort	n E	33.7	34.1	36.3	37.2	40.9	32.3	36.0	37.4	38.6	30.3	31.7	35.5	28.0	27.6	37.6	33.4	36.1	28.3	31.7	26.3	29.0	31.7	32.0	32.5	35.3	36.4	36.8	37.1	26.1	26.7	313
	Ň	25	25	26	27	29	24	27	28	28	21	22	25	21	18	24	29	32	19	21	18	20	22	23	23	25	25	26	26	19	19	22
	Sull of	B-85	B-85	B-85	B-85	B-85	B-86	B-86	B-86	B-86	B-87	B-87	B-87	B-88	B-89	B-89	B-90	B-90	B-91	B-91	B-92	B-93	B-93	R_03								

Table B-5Summary of Point Load Index TestingCity of Los Angeles/Northeast Interceptor Sewer TunnelLos Angeles, California

Page 2 of 4

CDM Camp Dresser & McKee Inc.

9/14/01 2569-32806-NEIS Phase II NEIS Point Load Testing.xls

							_		_	_		_			_				_		_			_				_			
Failure Mode	S	S	S	S	S	s	S	S/FR	ა	S	s	თ	ი	ა	ა	S	S	S	S	S	S	S	თ	S	S	S	S	ა	s	S	ა
	N/A	N/A	N/A	N/A	N/A	N/A	N/A.	Parallel	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Compressive Strength (kPa)	4,907	72,520	5,069	7,762	6,600	3,379	3,887	7,808	3,952	159,578	147,604	5,004	5,648	7,772	14,826	12,522	37,974	81,949	5,250	6,526	9,260	7,761	6,561	15,611	5,988	50,083	2,751	12,985	10,233	4,643	6.022
ပ	23.1	23.1	22.9	20.9	23.1	25	24.9	24.9	24.9	25	23	22.9	22.8	18.3	22.9	19.2	25	25	25.1	24.6	24.6	19.1	24.9	24.5	24.8	25	21.8	24.6	24.7	25	25
ls(50)	0.212	3.139	0.221	0.371	0.286	0.135	0.156	0.314	0.159	6.383	6.418	0.219	0.248	0.425	0.647	0.652	1.519	3.278	0.209	0.265	0.376	0.406	0.264	0.637	0.241	2.003	0.126	0.528	0.414	0.186	0 241
	<u>6</u> .0	0.9	1.0	1.0	0.9	1.1	1.1	0.9	1.0	1.0	0.9	1.0	0.9	0.9	0.9	0.9	1.0	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0		, 	1.0	1.0	1.0	+ +
ls (N/mm ³)	0.236	3.488	0.221	0.371	0.317	0.123	0.142	0.348	0.159	6.383	7.131	0.219	0.275	0.472	0.719	0.725	1.519	2.980	0.209	0.265	0.376	0.406	0.264	0.637	0.241	1.821	0.115	0.528	0.414	0.186	0 219
đ Ŝ	463.9	6958.6	463.9	927.8	463.9	463.9	463.9	696.1	463.9	18556.3	11597.7	463.9	371.1	742.3	1391.7	1391.7	3711.3	10206.0	556.7	556.7	927.8	927.8	649.5	1670.1	742.3	6494.7	371.1	1484.5	1113.4	556.7	2 6 7 4 2 3
Gauge Failure Load (KPa)	344.7	5171.1	344.7	689.5	344.7	344.7	344.7	517.1	344.7	13789.5	8618.4	344.7	275.8	551.6	1034.2	1034.2	2757.9	7584.2	413.7	413.7	689.5	689.5	482.6	1241.1	551.6	4826.3	275.8	1103.2	827.4	413.7	551 G
De ² (mm ³)	1965.3	1994.9	2095.7	2498.2	1461.2	3775.4	3268.8	1997.9	2923.2	2907.1	1626.5	2123.1	1348.3	1572.9	1934.7	1920.5	2443.3	3424.8	2661.6	2098.4	2464.9	2283.5	2464.7	2621.1	3074.3	3566.2	3234.6	2812.3	2687.4	2997.8	3380 8
Diameter (mm)	51.3	51.1	49.7	39.0	51.0	61.4	60.9	60.8	61.0	61.0	50.3	49.7	49.6	25.0	49.9	30.1	61.3	61.1	61.6	59.3	59.3	29.5	60.5	58.6	60.1	61.3	43.9	59.2	59.5	61.5	R1 2
Length (mm)	30.1	30.7	33.1	50.3	22.5	48.2	42.2	25.8	37.6	37.4	25.4	33.5	21.3	49.4	30.4	50.1	31.3	44.0	33.9	27.8	32.6	60.7	32.0	35.1	40.2	45.7	57.8	37.3	35.4	38.3	121
TestType	Axial	Axial	Axial	Irr. Lump	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Irr. Lump	Axial	Irr. Lump	Axial	Axial	Axial	Axial	Axial	Irr. Lump	Axial	Axial	Axial	Axial	Irr. Lump	Axial	Axial	Axial	
Depth	27.9	28.5	29.7	32.8	33.9	29.2	31.4	34.3	37.1	39.0	32.8	34.7	35.1	40.7	43.1	47.4	35.1	35.7	37.7	39.0	39.9	40.4	33.8	36.5	28.3	30.5	33.2	36.4	38.6	30.5	101
Sample No.	19	19	20	22	23	20	21	23	28	30	20	21	22	25	27	30	20	20	52	23	24	24	24	26	20	22	26	30	32	10	0
Boring No.	B-94	B-94	B-94	B-94	B-94	B-95	B-95	B-95	B-95	B-95	· B-97	B-97	B-97	B-97	B-97	B-97	B-101	B-101	B-101	B-101	B-101	B-101	B-104	B-104	B-105	B-105	B-105	B-105	B-105	B-106	a.106

Table B-5Summary of Point Load Index TestingCity of Los Angeles/Northeast Interceptor Sewer TunnelLos Angeles, California

Page 3 of 4

.

ငံတက Camp Dresser လဲ McKee Inc.

9/14/01 2569-32806-NEIS Phase II NEIS Point Load Testing.xls

.

A CONTRACTOR		_								
Failure	S	s	s	S	s	S	S	S	S	ω
Loading with respect to Fracture	N/A	N/A	N/A	N/A	A/A	A/A	N/A	N/A	N/A	N/A
Compressive Strength (KPa)	4,150	21,122	4,775	3,358	2,420	5,930	4,809	7,539	65,811	6,435
·	20.4	24.7	25.2	25	25	25	25	25	19.3	25.1
(S0)	0.203	0.855	0.189	0.134	0.097	0.237	0.192	0.302	3.410	0.256
i L	0.1	1.0	1.0	1.0	1.0	1.1	1.0	1.0	1.0	1.0
Is (N/mm ²)	0.203	0.855	0.189	0.134	0.097	0.216	0.192	0.302	3.410	0.256
¢ \$	463.9	2412.3	556.7	278.3	278.3	742.3	556.7	927.8	7422.5	649.5
Gauge Failure Load (KPa)	344.7	1792.6	413.7	206.8	206.8	551.6	413.7	689.5	5515.8	482.6
De ² (mm ³)	2280.6	2820.9	2938.2	2072.1	2876.0	3441.9	2893.9	3076.8	2176.8	2533.5
Diameter (mm)	36.6	59.9	62.3	61.3	61.5	61.4	61.5	61.5	30.6	61.8
Length (mm)	48.9	37.0	37.0	26.5	36.7	44.0	37.0	39.3	55.8	32.2
Test Type	Irr. Lump	Axial	Irr. Lump	Axial						
Depth	34.0	41.2	23.1	25.0	26.7	31.9	32.9	34.7	37.9	.40.9
Sample No.	25	31	2	4	2	œ	თ	11	13	15
Boring No:	B-107	B-107	B-108	B-108						

9/14/01 2569-32806-NEIS Phase II NEIS Point Load Testing.xls

Page 4 of 4

CDM Camp Dresser & McKee Inc.

Table B-6 Summary of Splitting Tensile Strength (Brazilian Disk Method) Testing City of Los Angeles (Nertheast Intersector Source Tunnel)

City of Los Angeles/Northeast Interceptor Sewer Tunnel Los Angeles, California

Boring No.	Sample No.	Depth (m)	Diameter (mm)	Length.(mm)	Mass (grams)	Wet Density. (kN/m³)	Failure Load (N)	Splitting Tensile Strength (kPa)
B-81A	25	39.1	50.3	36.4	159.3	21.6	3,362	1,169
B-83	27	38.2						310
B-87	21	29.9	50.4	33.5	171.3	25.1	18,713	7,047
B-90	31	35.7	61.2	49.2	300.5	20.4	1,008	213
B-93	21	29.2	58.5	47.8	275.1	21.0	2,017	459
B-94	20	30.3	50.6	36.7	157.7	21.0	560	192
B-97	19	31.5	50.3	36.5	150.3	20.3	672	233
B-101	24	39.9	59.2	42.9	246.5	20.5	1,748	438
B-106	7	28.4	61.3	42.6	281.2	21.9	740	180
B-108	9	31.9	61.4	31.3	187.5	19.8	852	282

Notes:

Data summarized from results presented by Colorado School of Mines (2000) and Advanced Terra Testing (2001). Splitting Tensile Strength = $2P/\pi LD$.

4

P - Failure Load.

D - Sample Diameter.

L - Sample Length.

-- Data not available.

Table B-7Summary of Unconfined Compressive Strength TestingCity of Los Angeles/Northeast Interceptor Sewer TunnelLos Angeles, California

Poisson's	Ratio		1	1	1	1		1	•		•		•	•		1	1				1	1			1		1		
Young's Modulus	(kPa x 10 ⁶)		1	1	1	1	1	1		-		1		•	1	1	,	1						1	ı		1		ı
Wet Density Failure Load Compressive Strength	(kPa)	2,068	173,000	2,137	3,378	4,344 *	827	1,655	1,448	3,585 *	3,378 *	6,619	5,240	3,447	62,466 *	1,999	50,814	6,757 *	10,411	6,757	9,860	2,482	32,474	3,799	11,025	2,068	689 *	1,172 *	2,551 *
Failure Load	(N)	3,922	•	6,163	9,525	12,886	1,681	3,362	2,913	7,172	6,947	19,498	15,239	9,861	128,863	3,922	102,306	21,515	20,842	13,222	19,722	4,706	64,992			4,034	1,345	3,586	7,620
Wet Density	(kN/m ³)	20.4	25.5	20.9	21.4	20.7	19.7	20.5	20.9	21.2	20.7	21.6	21.7	21.8	25.2	21.1	24.2	20.8	23.5	21.6	23.5	21.7	24.0	21.9	21.9	21.3	21.4	20.6	21.7
Mass	(grams)	405.1	1	784.4	810.5	692.1	443.6	506.2	446.2	350.0	375.1	822.2	846.3	777.8	442.6	421.3	506.7	768.1	516.6	499.8	505.1	475.6	501.6	'	1	461.2	430.1	712.6	745.3
Length	(mm)	102.7		128.4	134.1	111.9	112.2	119.4	104.8	83.0	88.2	128.1	131.5	122.1	86.0	101.3	103.0	115.5	108.8	116.2	106.7	113.1	103.4		ı	109.5	98.3	114.3	115.8
Diameter	(mm)	49.2	1	60.5	59.4	61.1	50.1	50.8	50.4	49.9	50.7	60.9	60.8	60.4	50.5	49.7	50.4	63.2	50.2	49.8	50.2	49.3	50.3	1	ı	49.7	50.5	61.5	61.0
Depth	(m)	38.3	24.4	33.3	33.7	40.9	33.3	36.0	38.6	31.7	35.5	33.0	35.4	38.2	27.6	33.4	37.6	36.1	27.2	28.0	30.3	32.8	35.1	31.7	36.8	30.3	31.9	30.0	31.4
Boring	No.	B-22A	B-54	B-85	B-85	B-85	B-86	B-86	B-86	B-87	B-87	B-88	B-88	B-88	B-89	B-89	B-89	B-90	B-91	B-91	B-91	B-91	B-91	B-92	B-92	B-94	B-94	B-95	B-95

9/14/01 2569-32806-NEIS Phase II Unconfined.xls

Page 1 of 3

CDM Camp Dresser & McKee Inc.

9/14/01 2569-32806-NEIS Phase II Unconfined.xls

Page 2 of 3

CDM Camp Dresser & McKee Inc.

Poisson's	Ratio		1			•	•	•	1	•	1	•		•	0.441		0.264	0.340				0.480	0.096	•	0.621**	•		,	,
Young's Modulus	(kPa x 10 ⁶)		1	1		ı	ı	1	1	1	1	1		ı	0.48		1.24	1.10	1	1	1	0.14	16.89		0.07	1	1	ı	
Wet Density Failure Load Compressive Strength	(kPa)	3,378	60,536	52,952	81,496	3,723	3,585	9,860 *	9,446 *	93	73	15	3,861	7,860	4,137	38,473	13,927	4,482	1,034	896	1,931 *	1,241	45,230	483 *	345 *	1,517	2,758	75,842	× 200 C
Failure Load	(N)	9,861	177,047	157,998	164,721	7,284	7,284	19,610	19,049	-			11,385	23,209	12,147	113,243	40,788	12,326	2,954	2,757	5,979	3,698	134,466	1,524	955	4,384	8,081	223,254	0 GGO
Wet Density	(kN/m ³)	21.6	24.9	24.9	24.8	21.0	20.6	21.3	18.7	18.9	18.5	17.9	21.1	23.9	20.0	24.2	21.2	21.3	21.9	21.7	21.4	22.2	24.5	21.0	21.5	20.9	20.6	25.0	1 1
Mass	(grams)	934.6	959.8	1024.2	537.3	428.6	450.4	425.5	361.8				867.5	950.5	753.3	883.5	828.2	804.0	846.3	863.5	750.4	920.3	972.2	565.2	730.0	775.1	805.4	1033.7	2002
Length	(mm)	145.5	130.6	136.5	106.0	102.6	106.4	99.8	92.6		,	•	138.2	133.4	126.9	122.8	132.0	135.8	129.8	130.1	114.8	135.7	131.9	89.7	114.1	124.2	133.1	139.0	07.4
Diameter	(mm)	61.0	60.8	61.4	50.5	49.9	50.7	50.0	50.2	71.1	71.1	71.1	60.9	61.1	61.0	61.0	60.8	58.9	61.0	61.8	61.8	61.7	61.3	61.2	61.0	61.1	60.5	61.0	81 B
Depth	(m)	37.1	38.3	39.0	32.2	34.0	38.3	43.6	46.7	27.6	33.7	36.3	32.5	35.1	36.9	28.4	35.2	36.1	20.7	23.6	37.7	32.2	41.2	35.2	34.4	29.2	34.0	38.0	40.0
Boring	No.	B-95	B-95	B-95	B-97	B-97	B-97	B-97	B-97	B-99	B-99	B-99	B-101	B-101	B-101	B-104	B-104	B-105	B-106	B-106	B-106	B-106	B-106	B-107	B-107	B-108	B-108	B-108	B-108

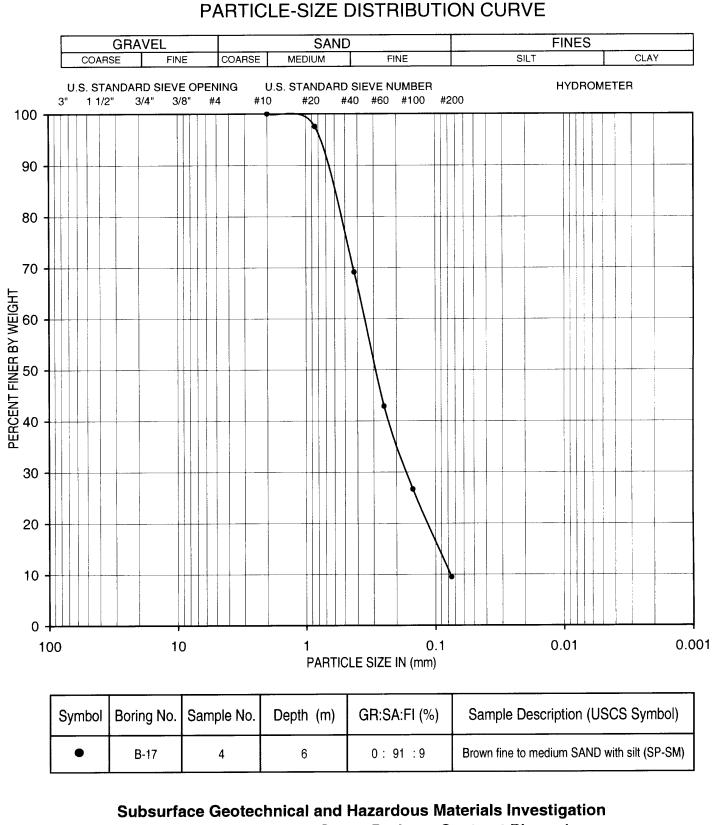
Table B-7Summary of Unconfined Compressive Strength TestingCity of Los Angeles/Northeast Interceptor Sewer TunnelLos Angeles, California

Table B-7Summary of Unconfined Compressive Strength TestingCity of Los Angeles/Northeast Interceptor Sewer TunnelLos Angeles, California

Poisson's	0.816**
Ratio	0.516**
Young's Modulus (kPa x 10 ⁶)	0.07 0.35
Wet Density Failure Load Compressive Strength (kN/m ³) (N) (kPa)	483 2,896
Failure Load	1,345
(N)	8,673
Wet Density	21.3
(kN/m ³)	20.5
Mass	890.1
(grams)	826.2
Length	139.5
(mm)	134.3
Diameter	61.2
(mm)	61.3
Depth	26.1
(m)	38.9
Boring	B-108
No.	B-108

9/14/01 2569-32806-NEIS Phase II Unconfined.xls

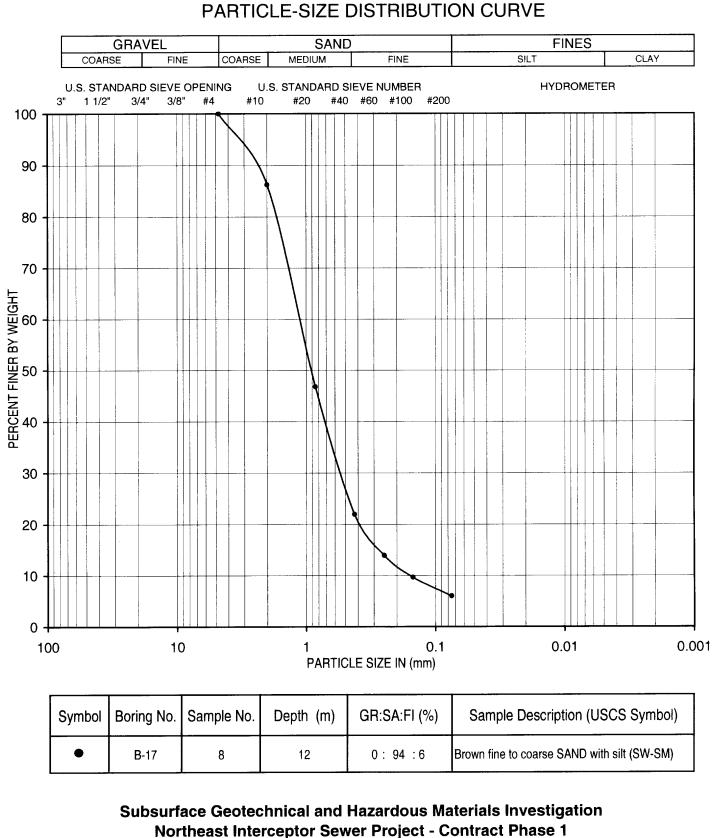
Table B-8


Summary of Cerchar Abrasivity Index Testing

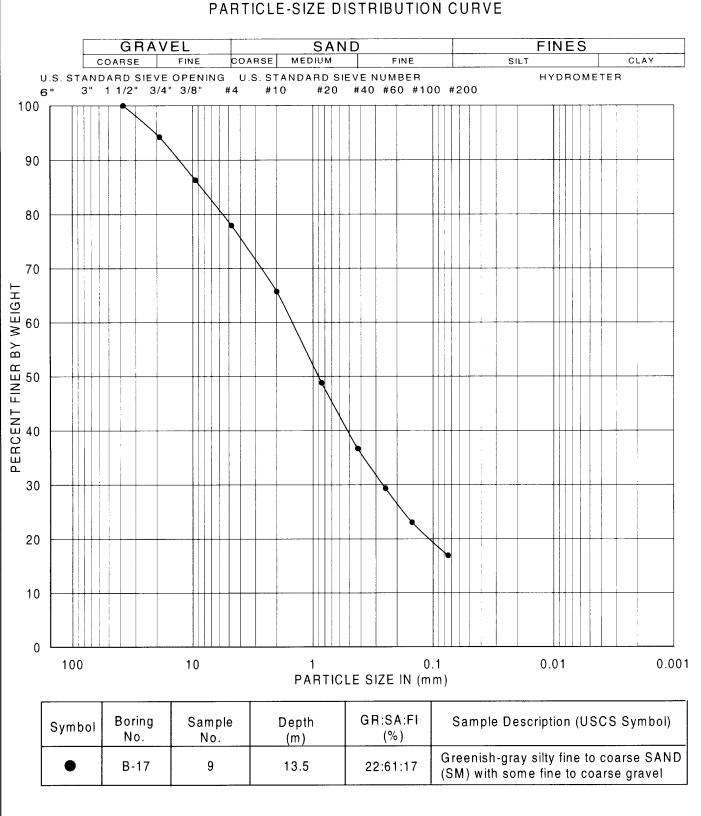
City of Los Angeles/Northeast Interceptor Sewer Tunnel Los Angeles, California

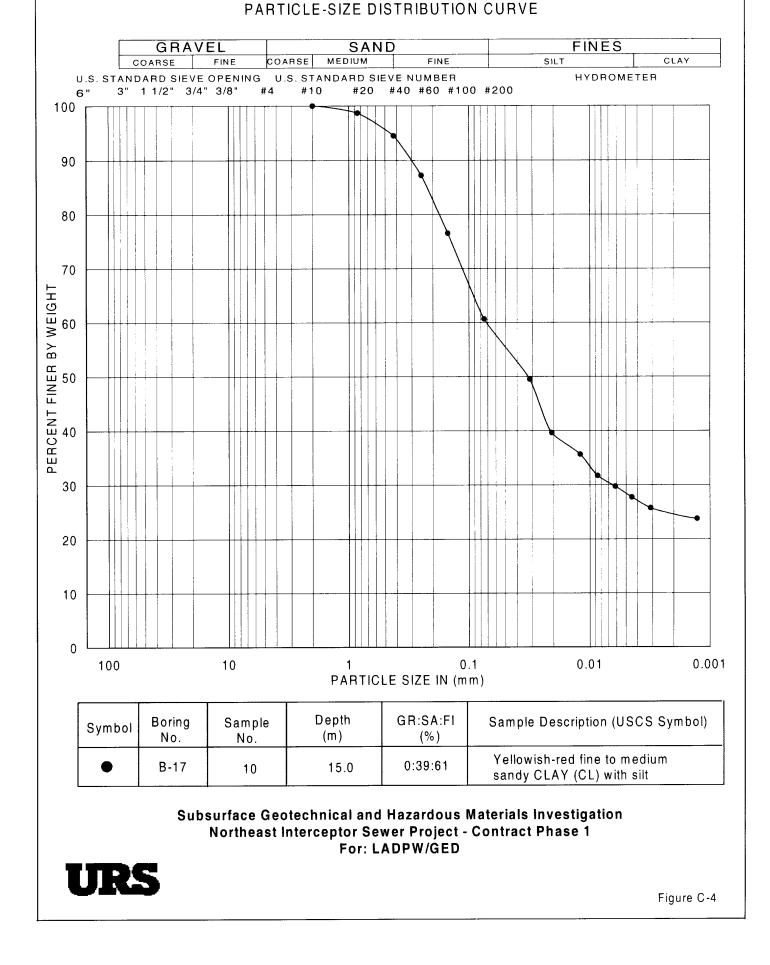
Boring No.	Sample Number	Depth (m)	Rock Type	Cerchar Abrasivity	Remarks
B-81A	22	33.7	Siltstone	1.4	Normal Wear, Flat
B-82	19	28.7	Sandstone	0.7 .	None
B-82	22	32.5	Sandstone	3.3	None
B-83	27	38.5	Sandstone	1.4	None
B-89	20	30.7	Sandstone	1.1	Normal Wear, Flat
B-92	22	31.7	Sandstone	1.0	None
B-92	24	33.5	Sandstone	0.8	None
B-92	24	34.5	Sandstone	1.0	None
B-92	25	35.3	Siltstone	1.6	None
B-92	26	37.3	Siltstone	1.0	None
B-97	20	32.9	Sandstone	3.5	Normal Wear, Flat
B-101	20	35.7	Sandstone	1.6	Normal Wear, Flat
B-105	22	30.5	Sandstone	1.4 ·	Normal Wear, Flat

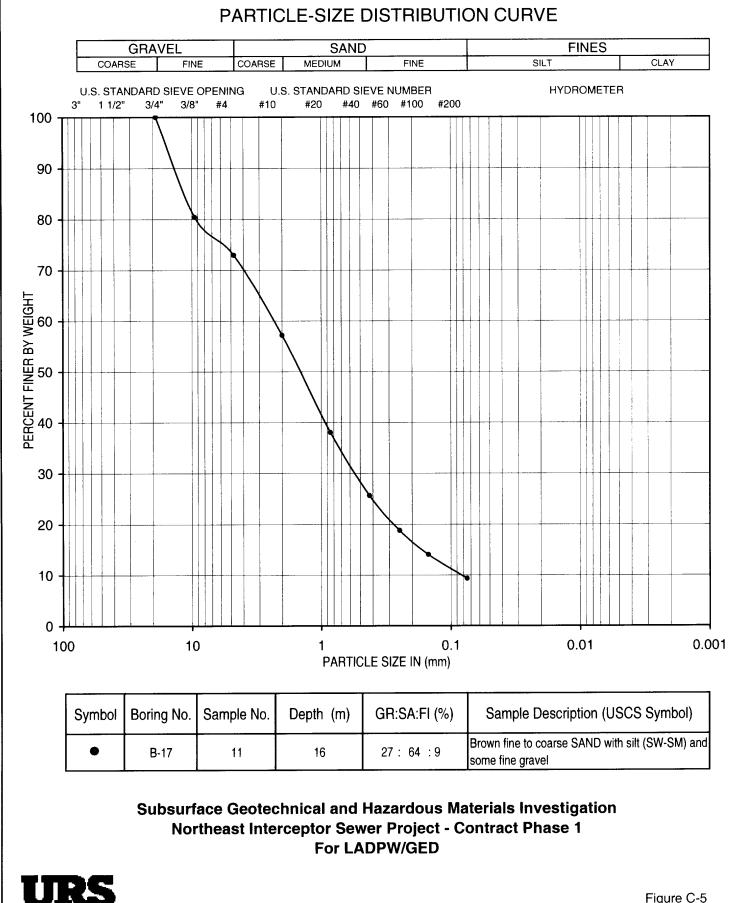
Note:

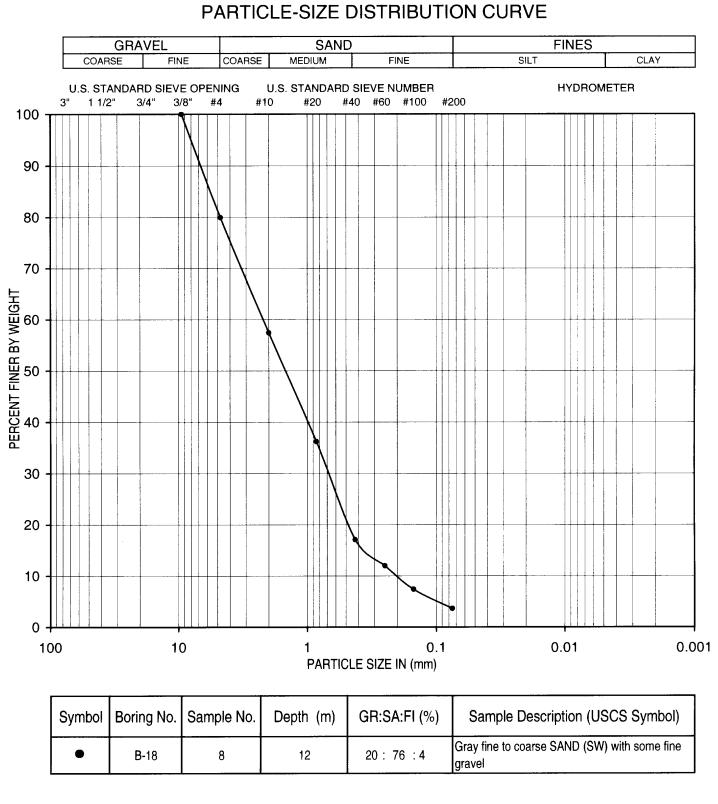

Data summarized from results presented by Colorado School of Mines (2000) and Advanced Terra Testing (2001).

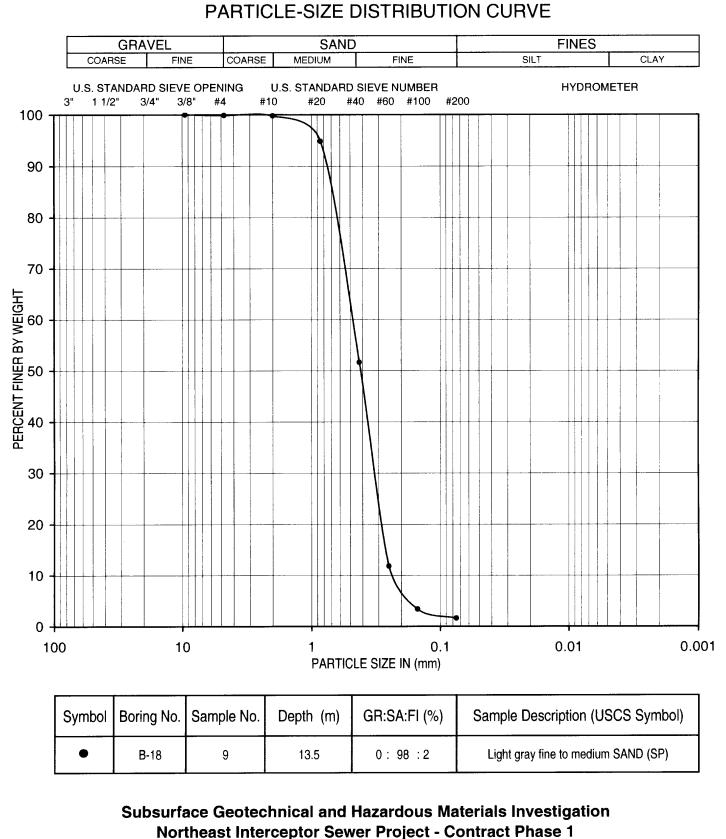
Subsurface Geotechnical and Hazardous Materials Investigation Northeast Interceptor Sewer Project - Contract Phase 1 For LADPW/GED

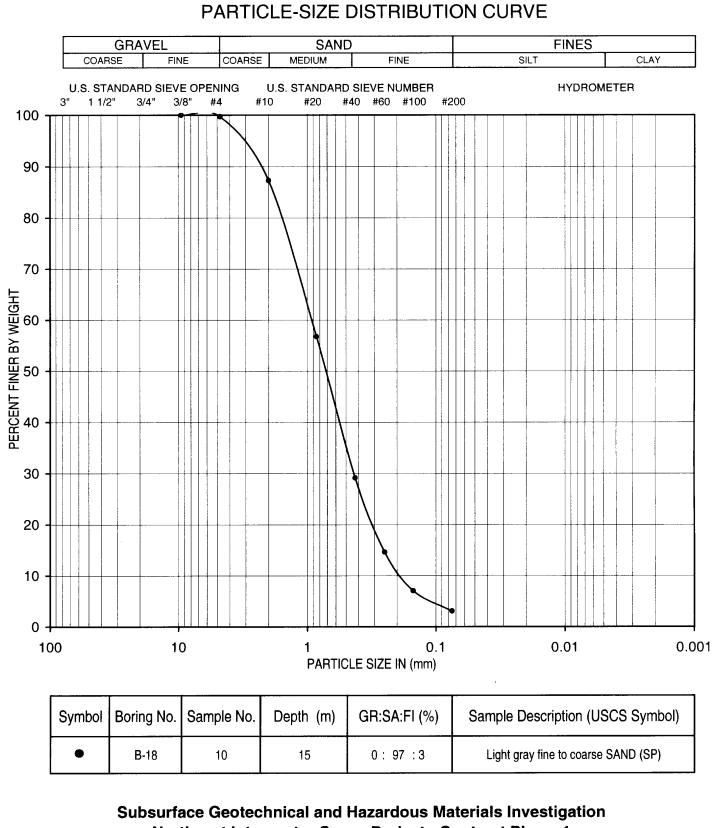

Figure C-1

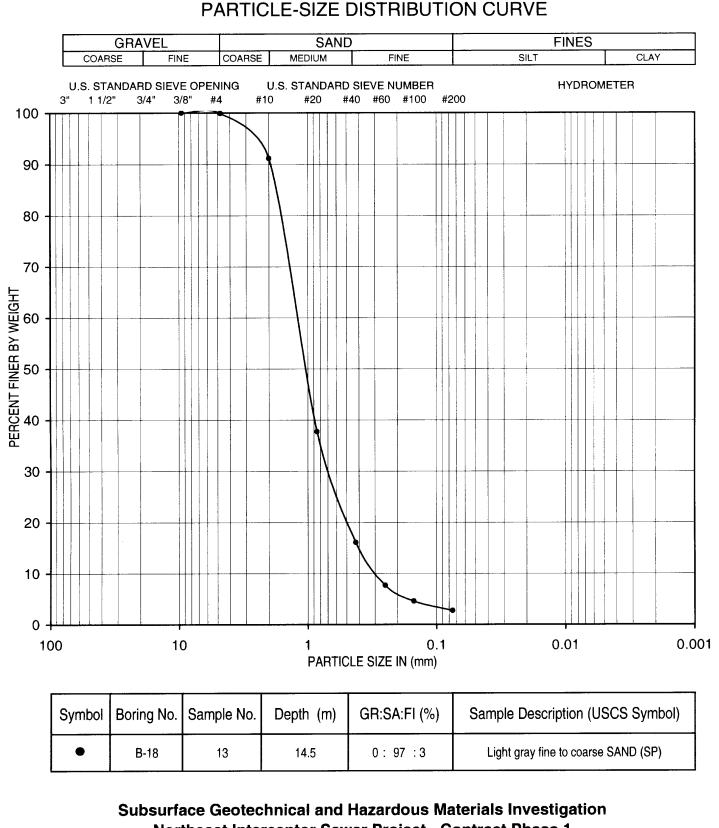

For LADPW/GED


URS

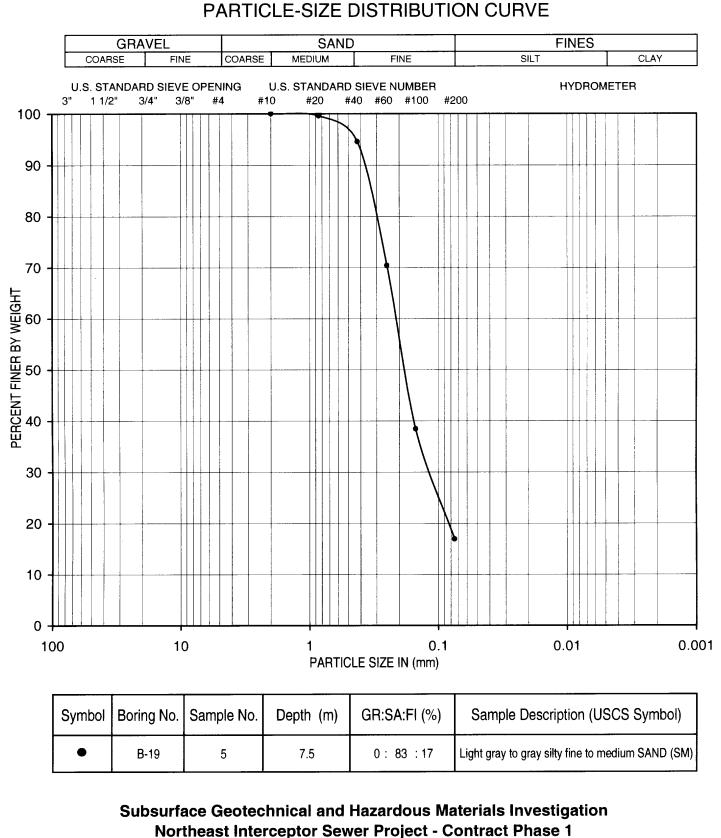

Figure C-2

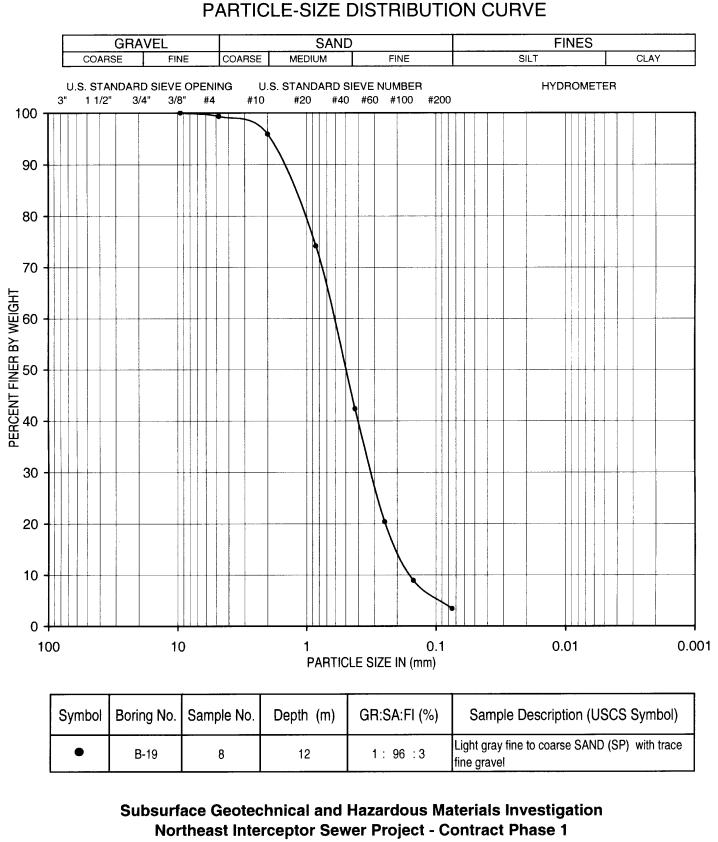


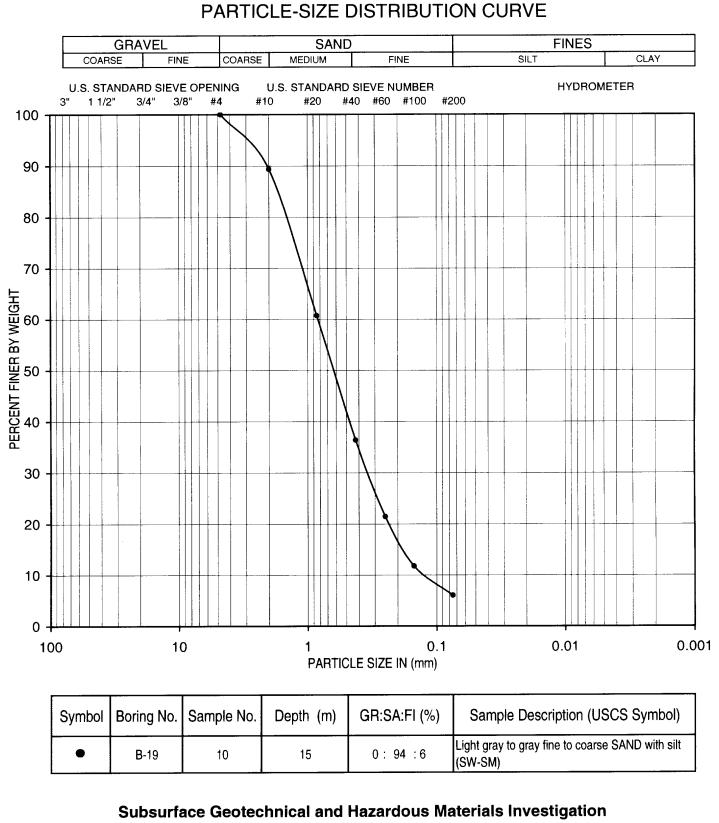


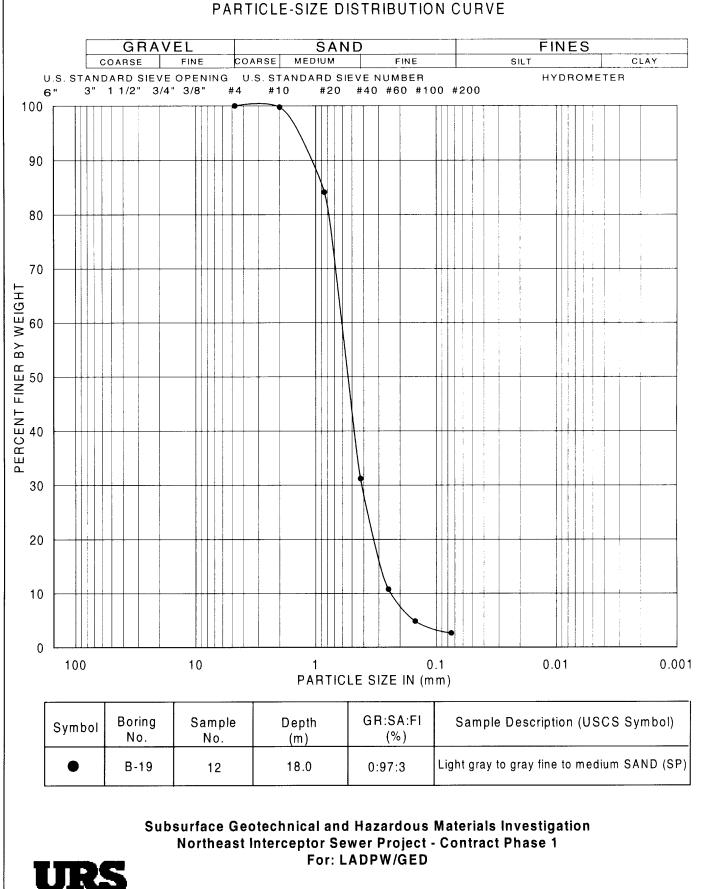


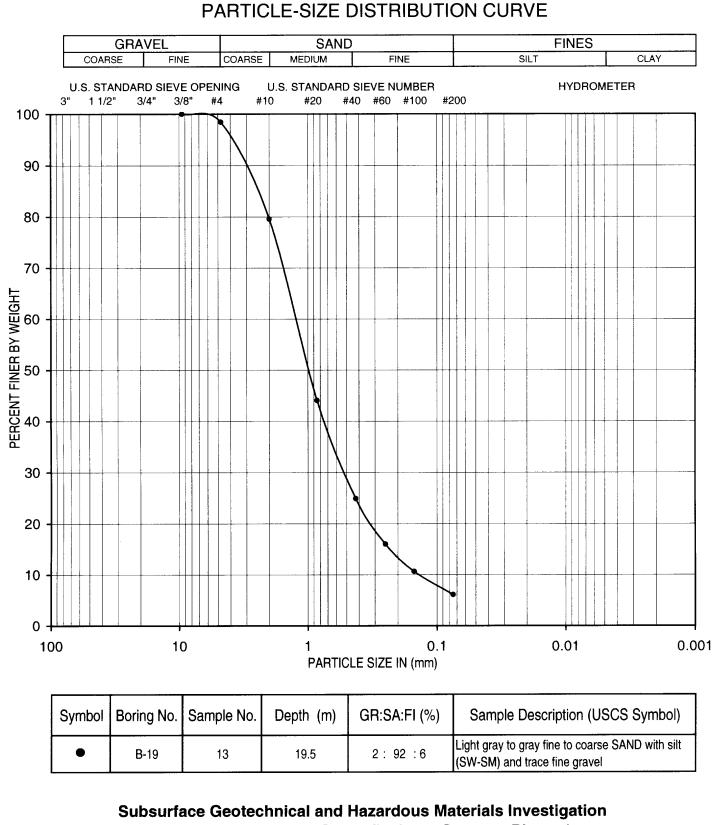
For LADPW/GED

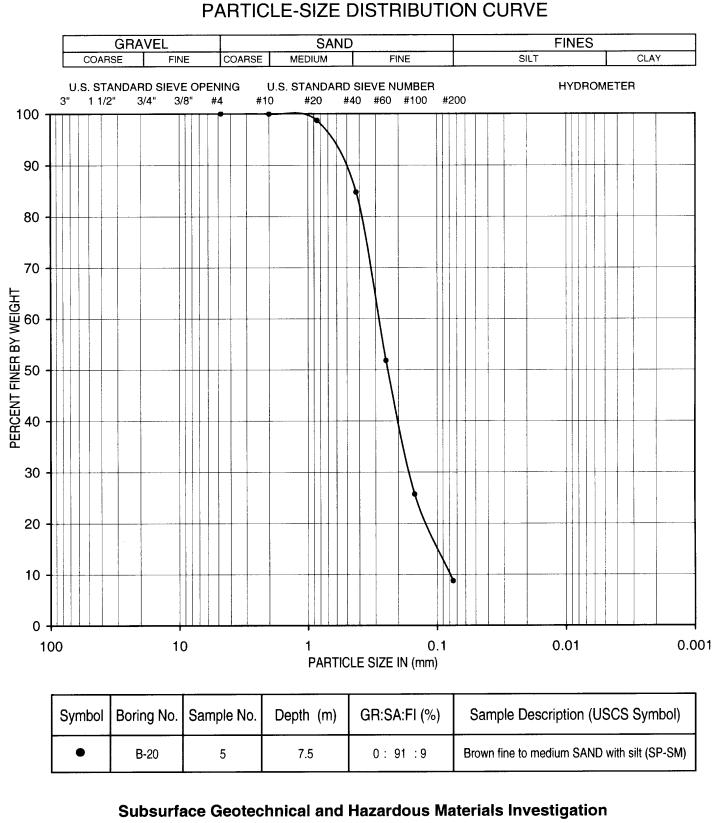


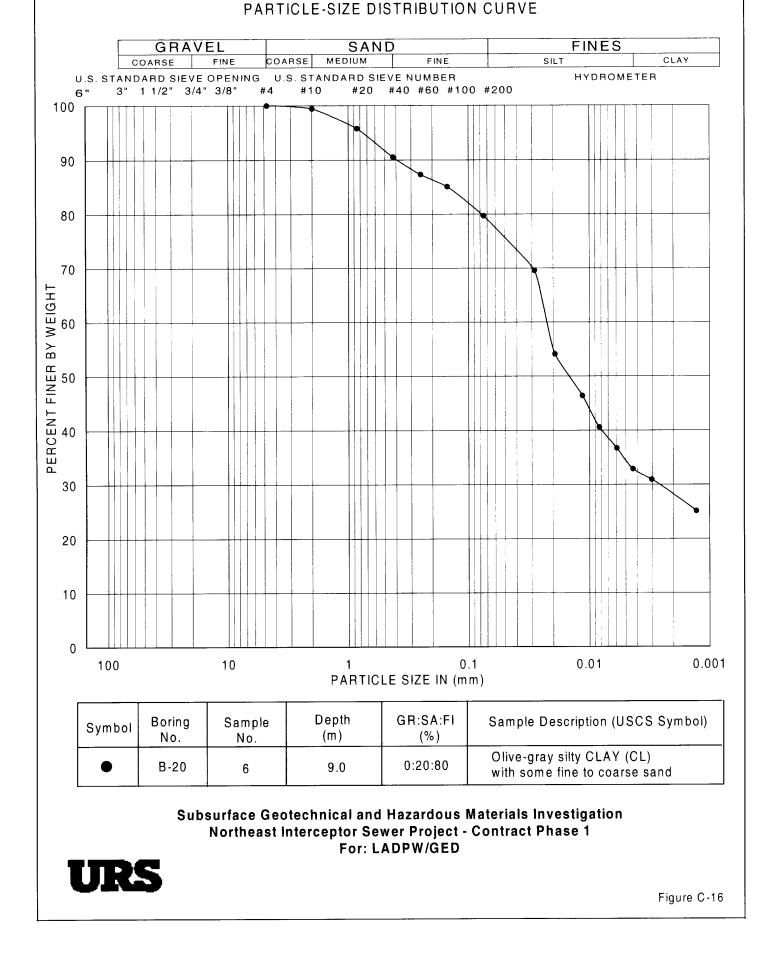

Northeast Interceptor Sewer Project - Contract Phase 1 For LADPW/GED

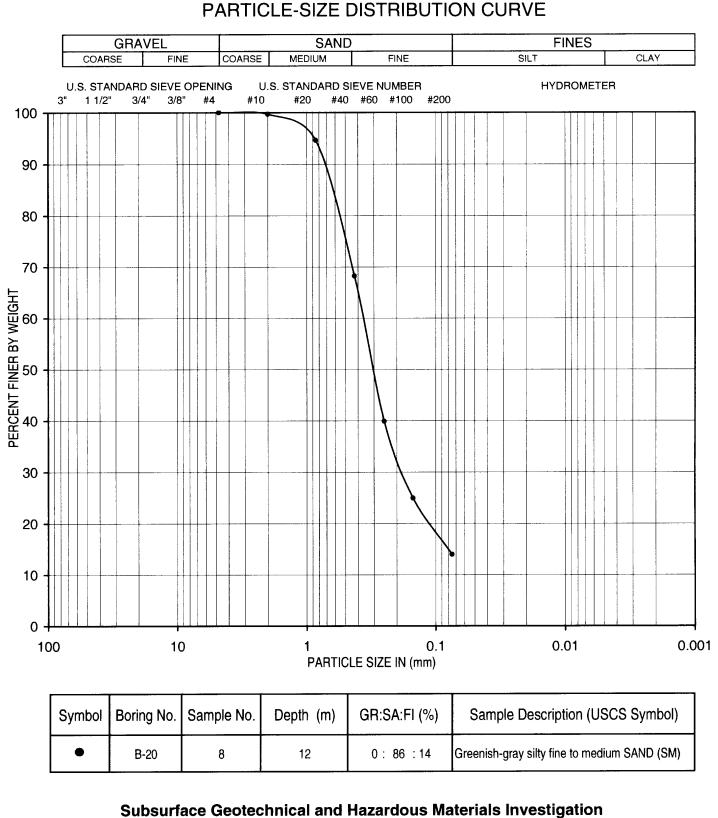

For LADPW/GED

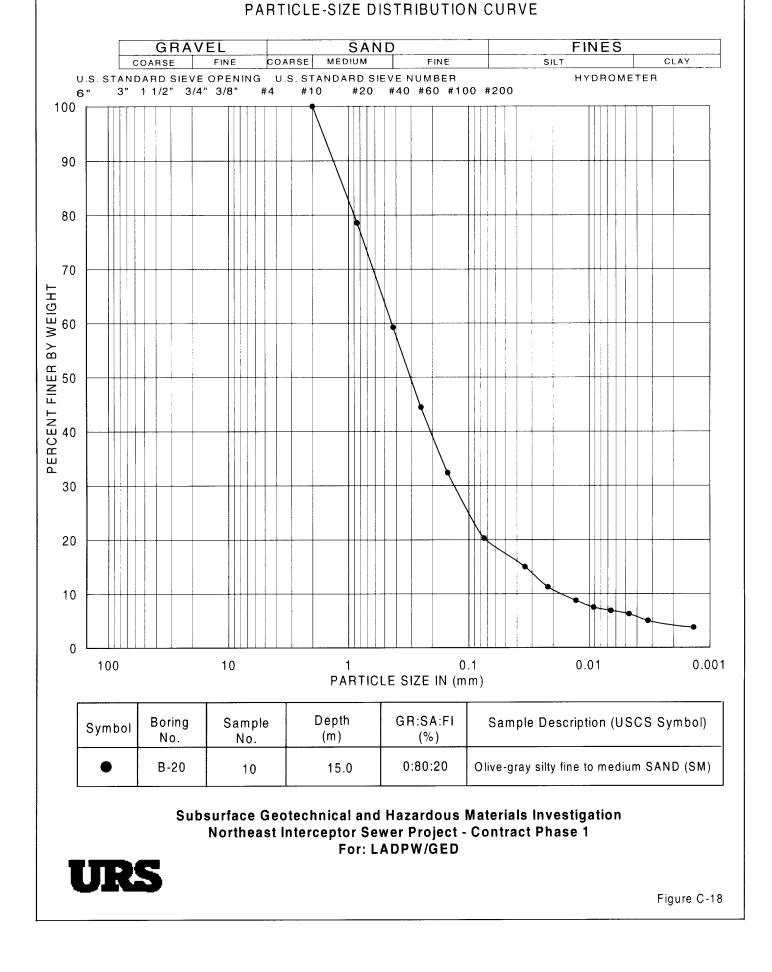


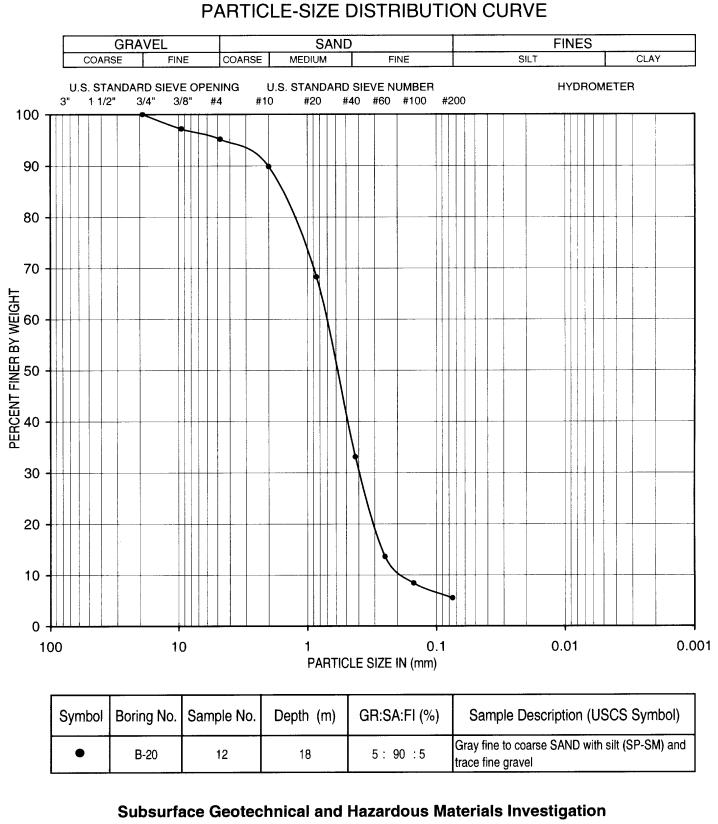

For LADPW/GED

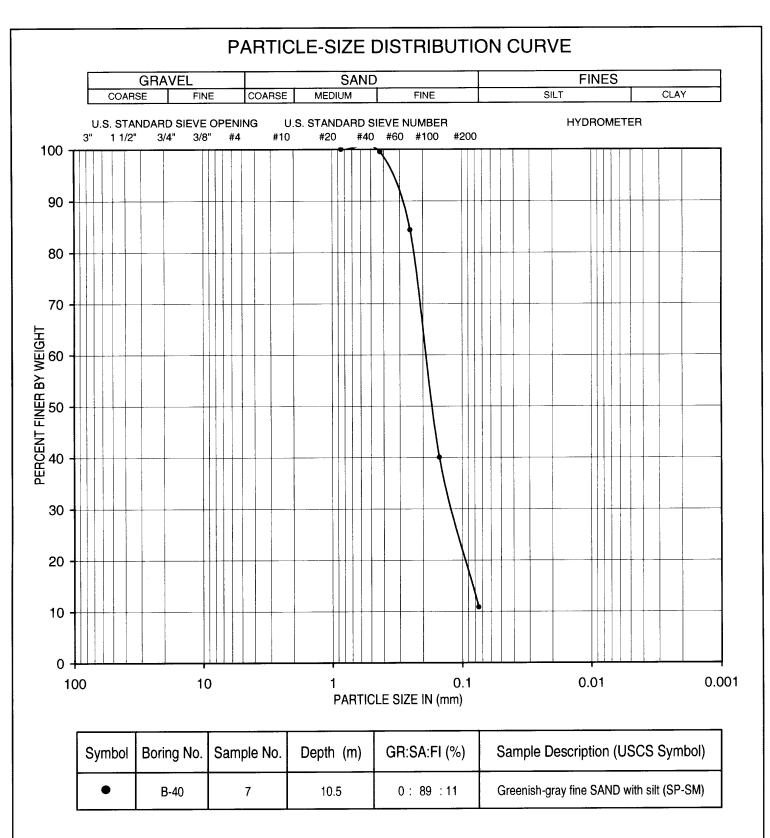




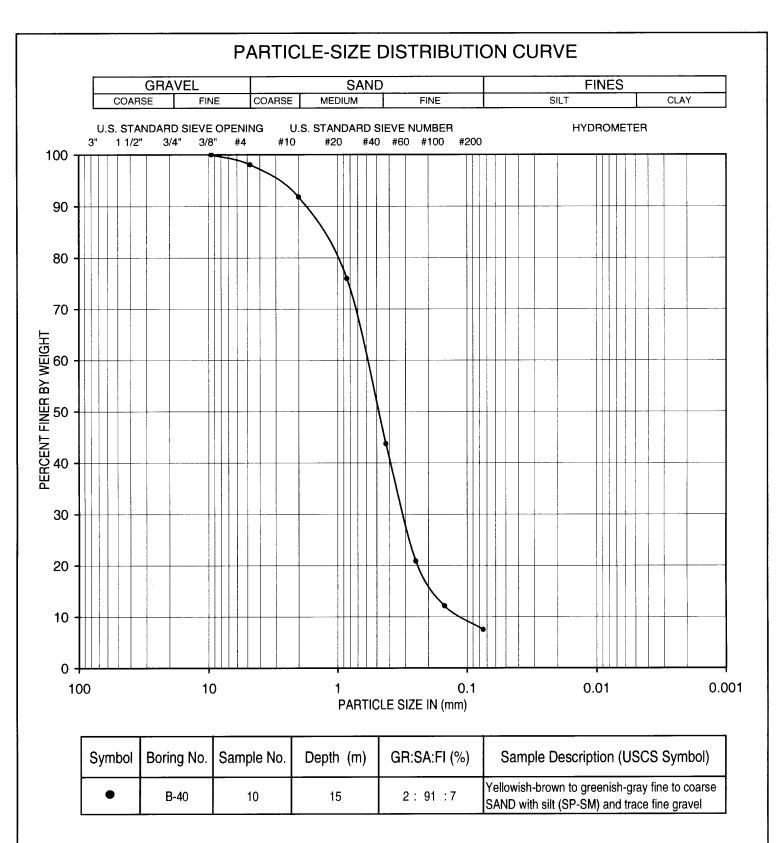


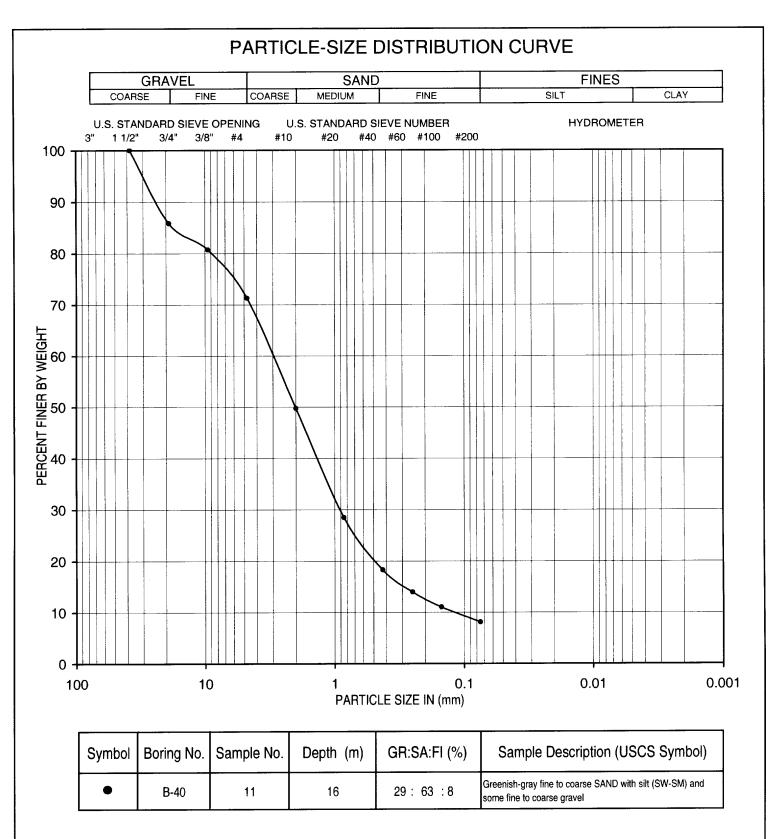


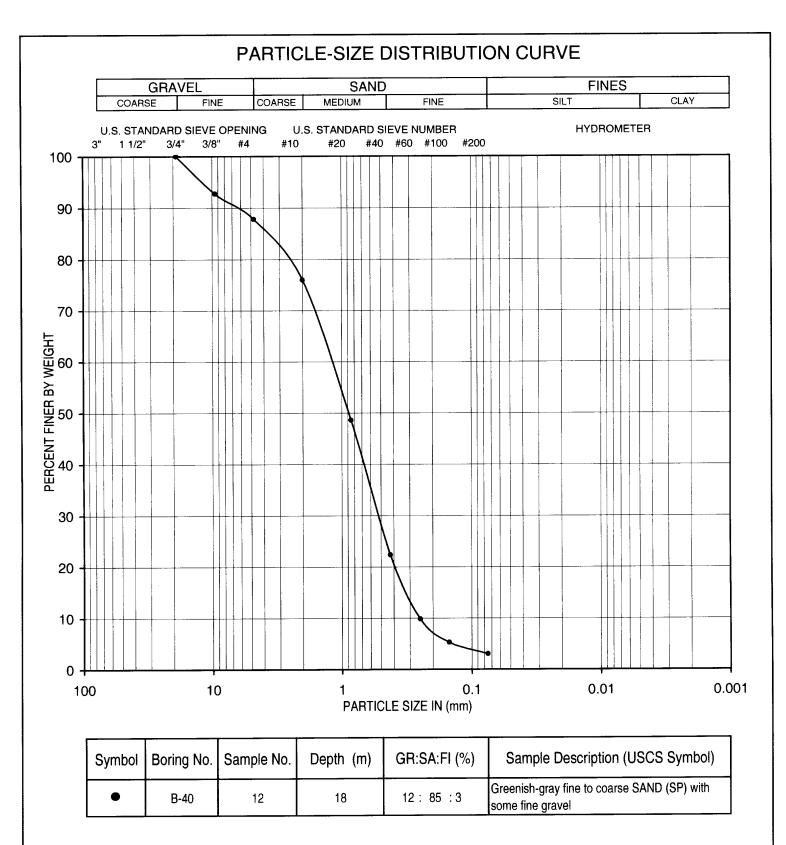


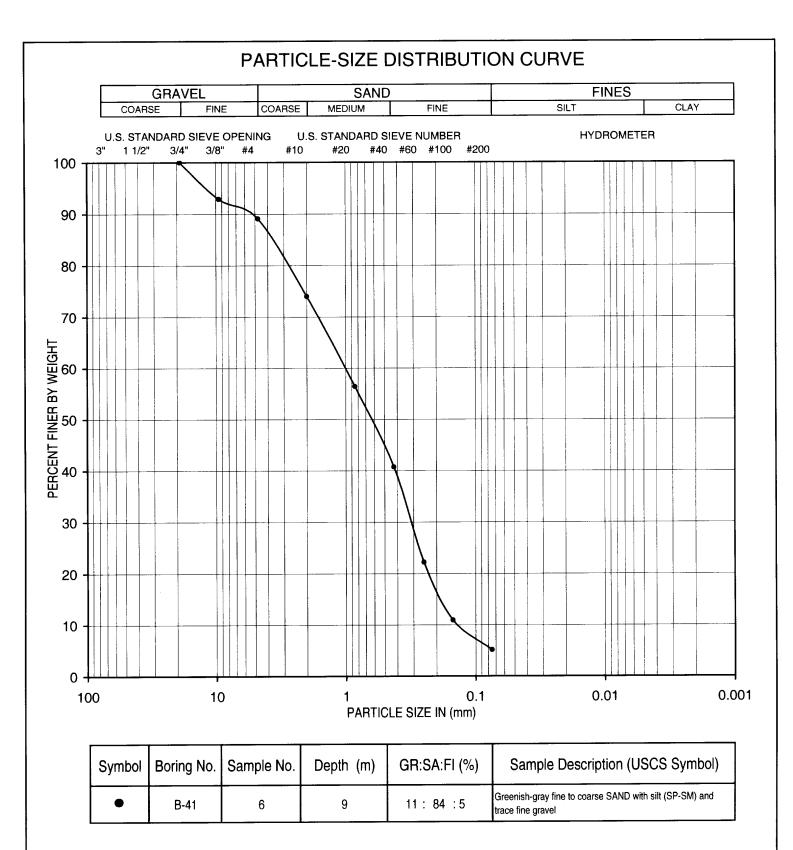


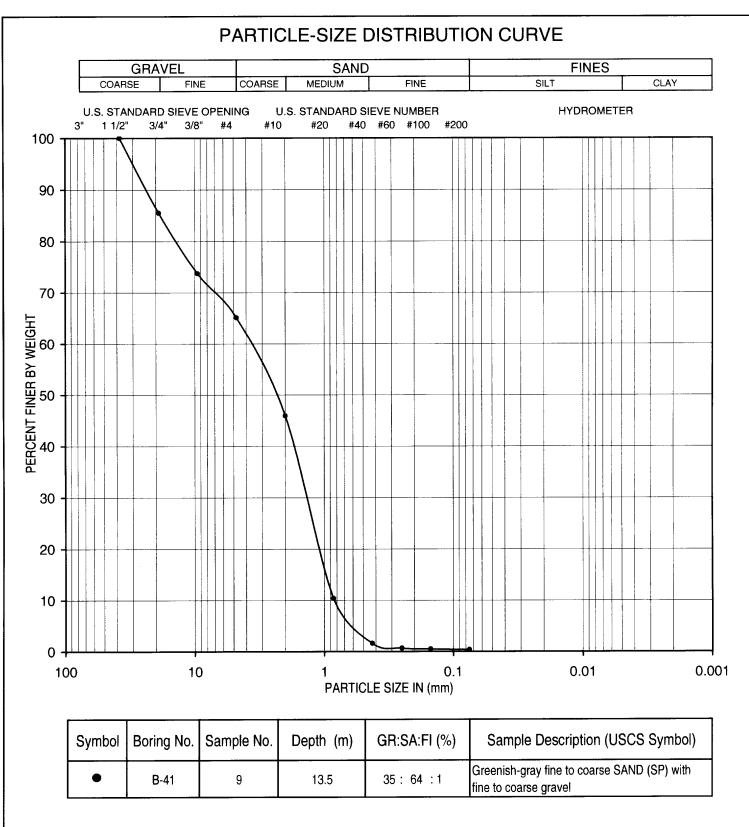
URS

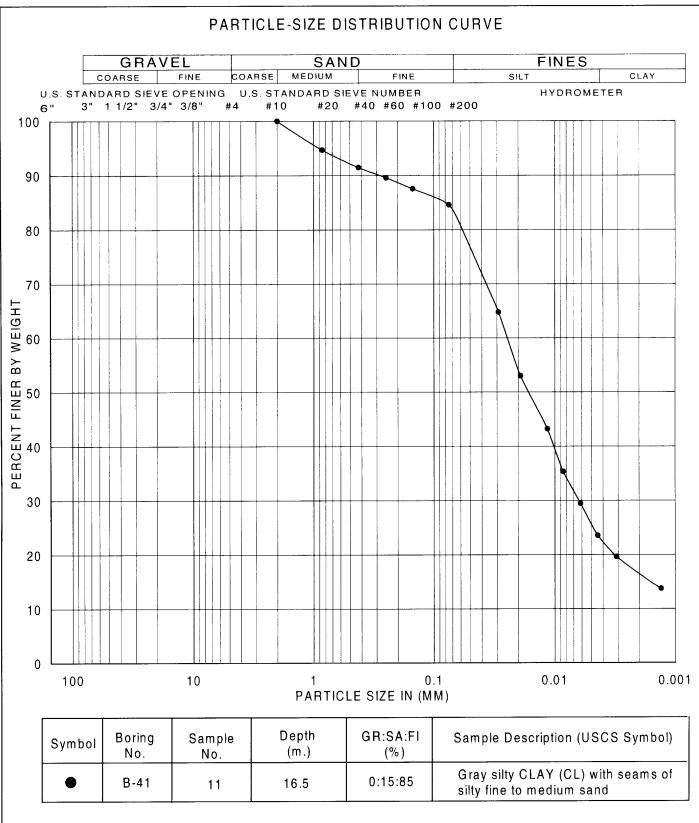


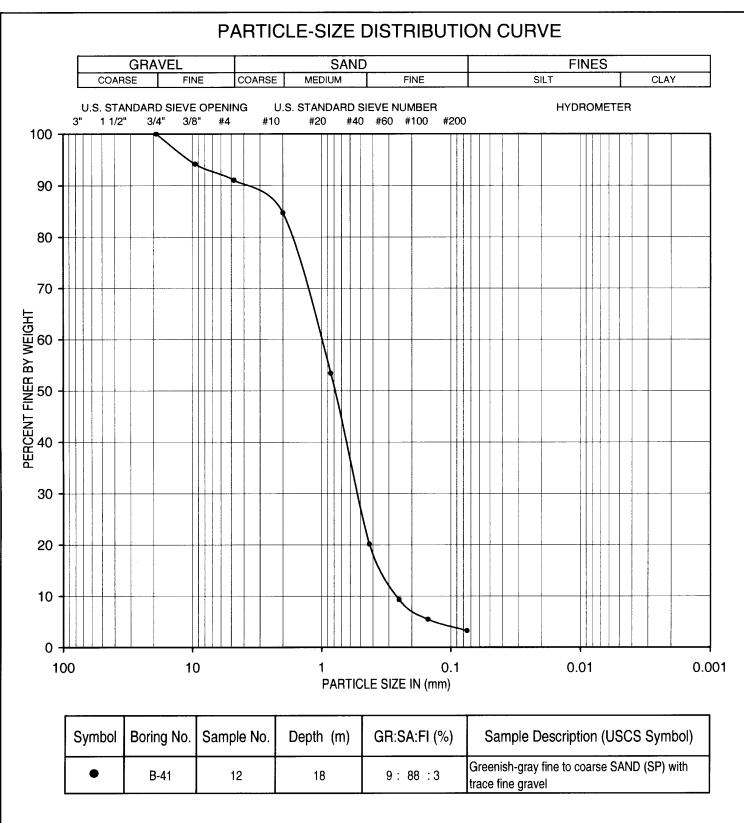


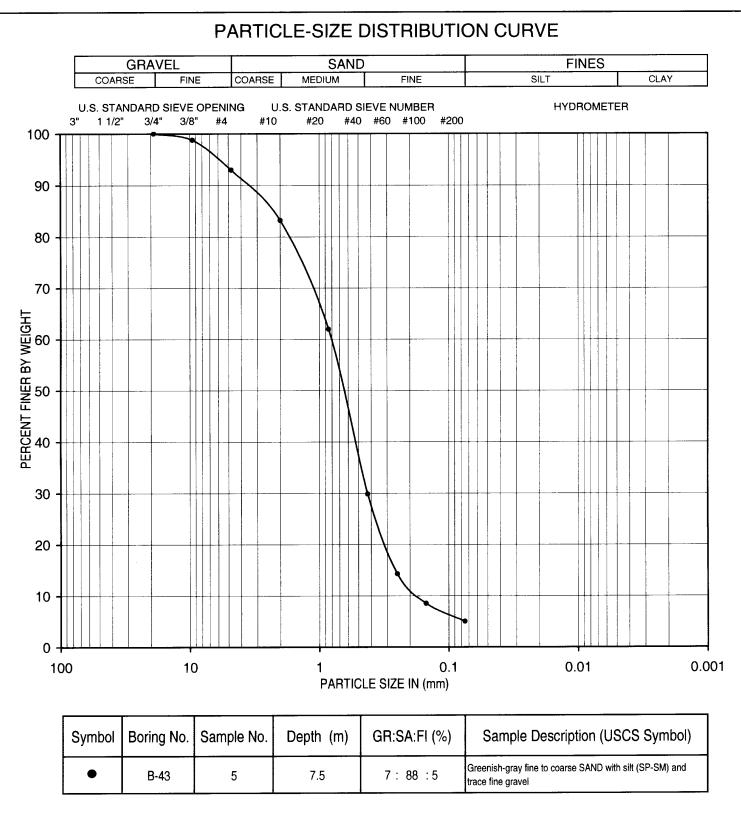


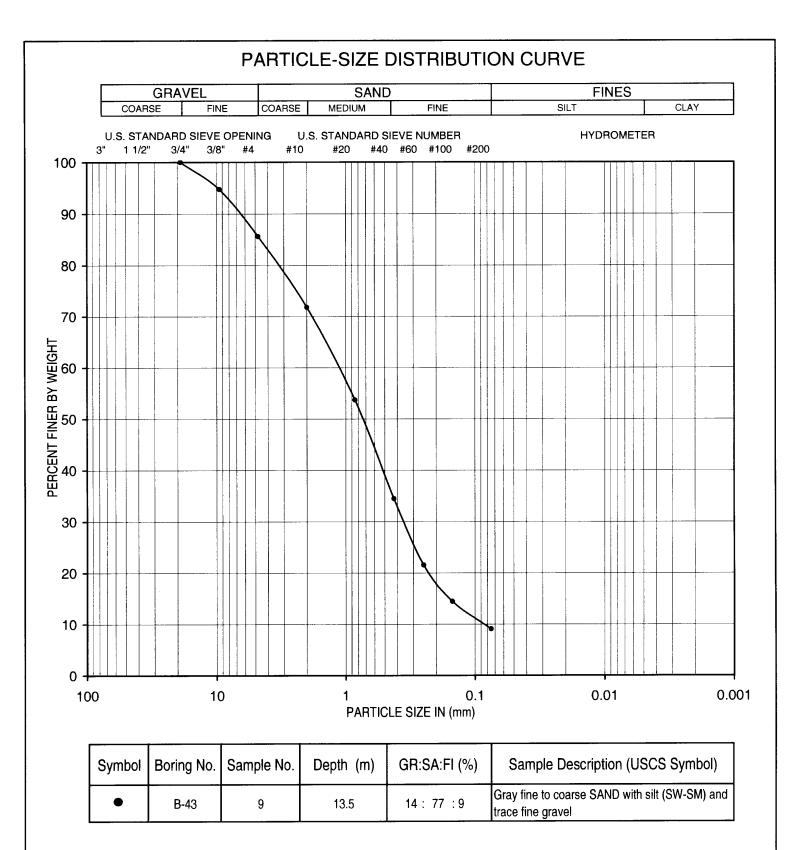


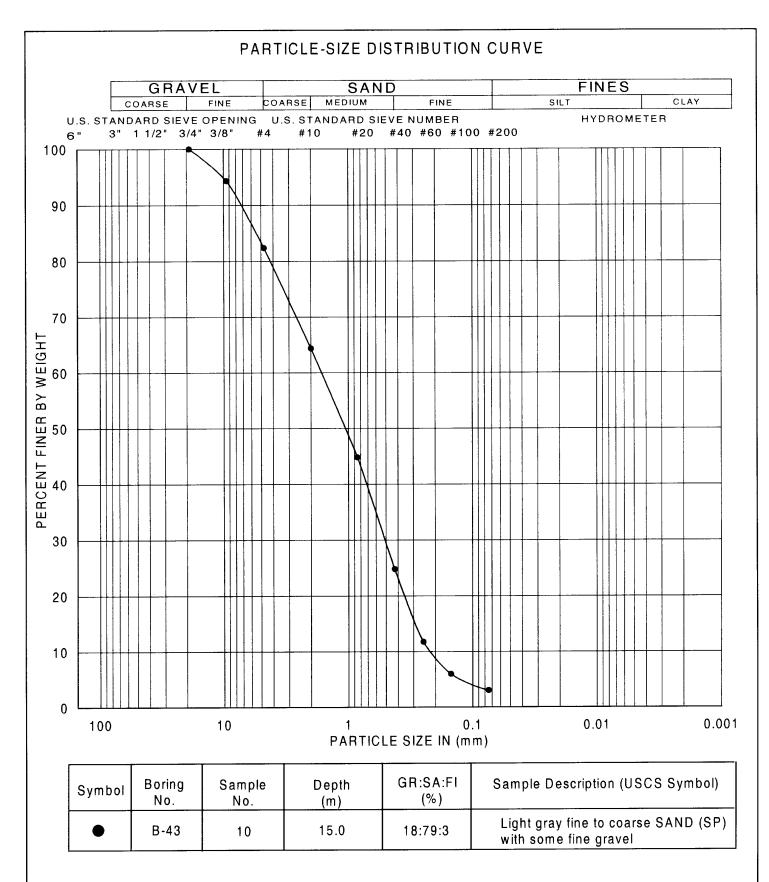


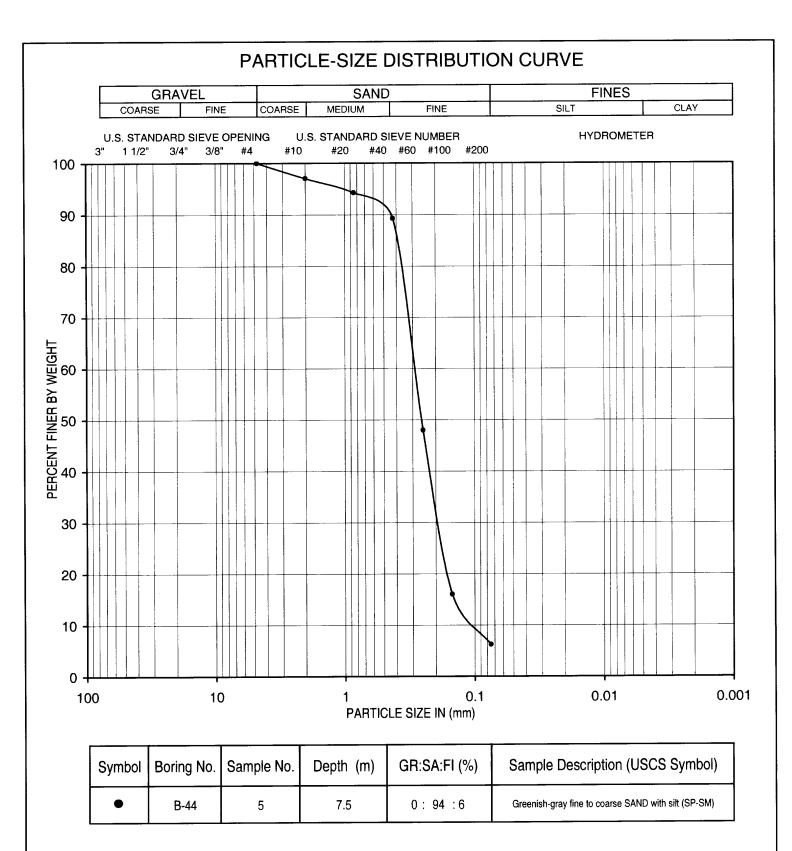


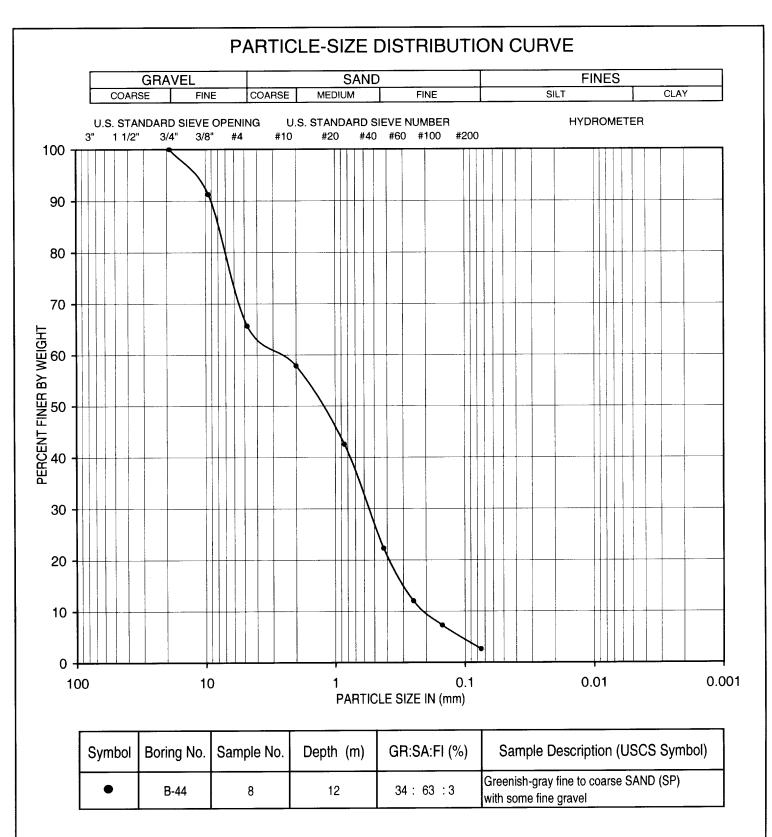


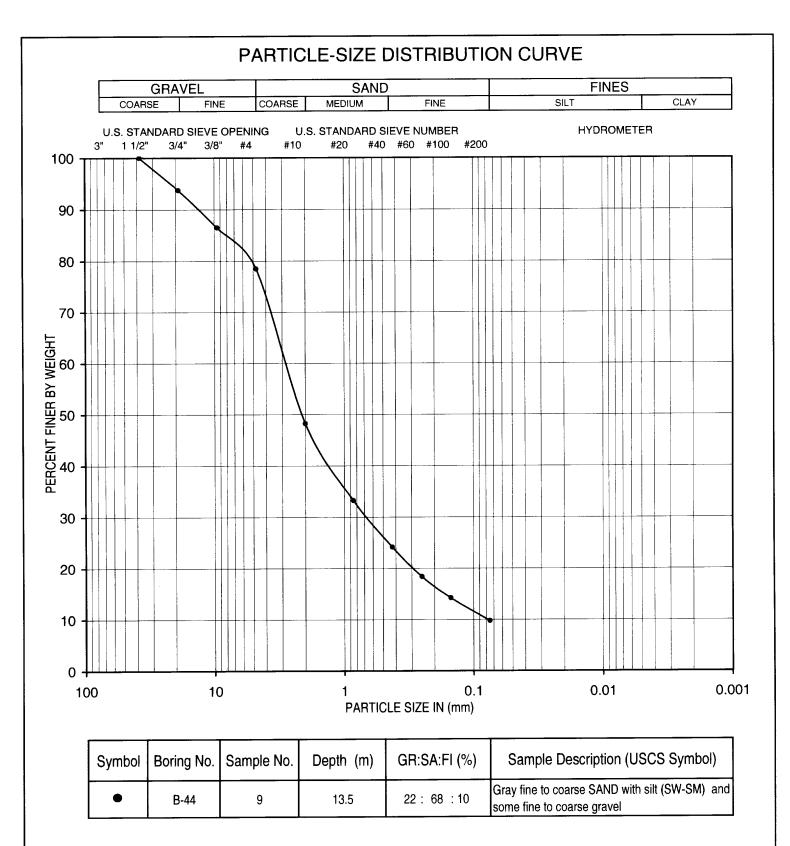


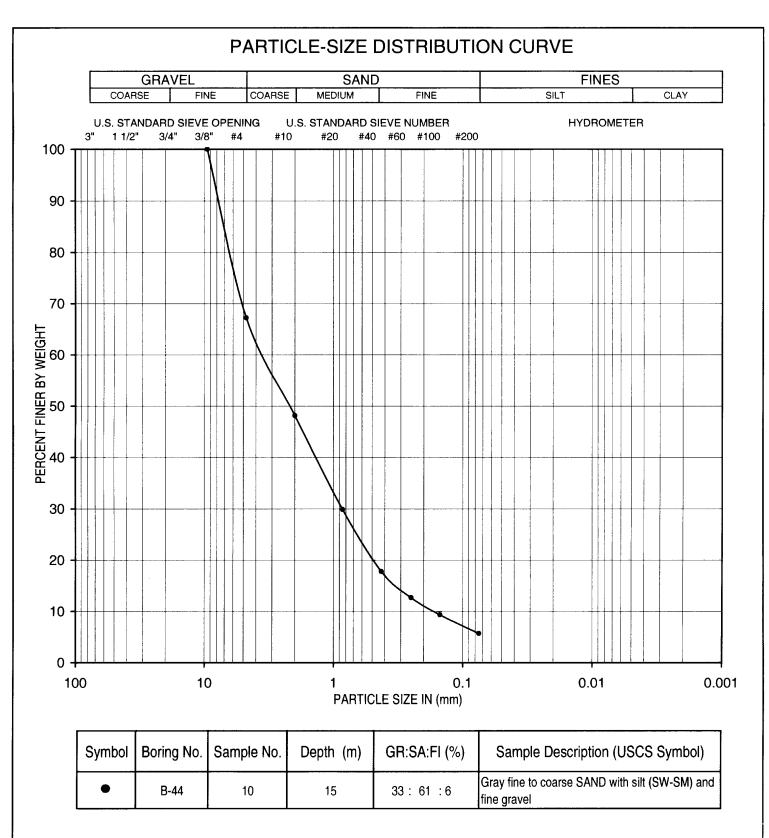


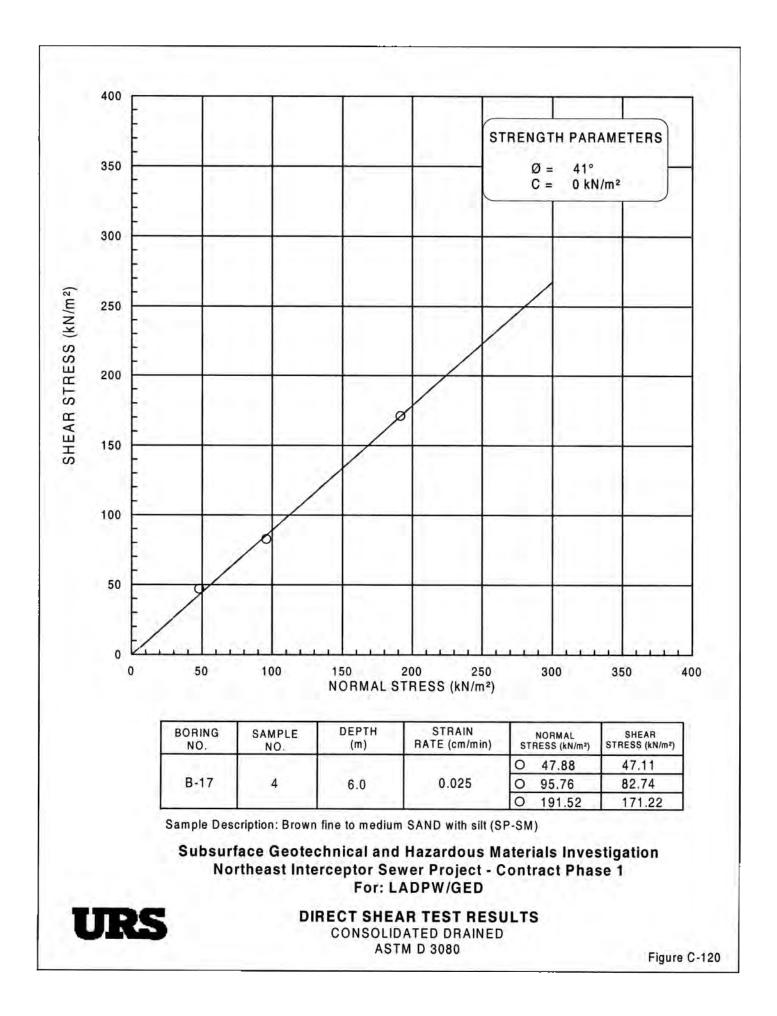


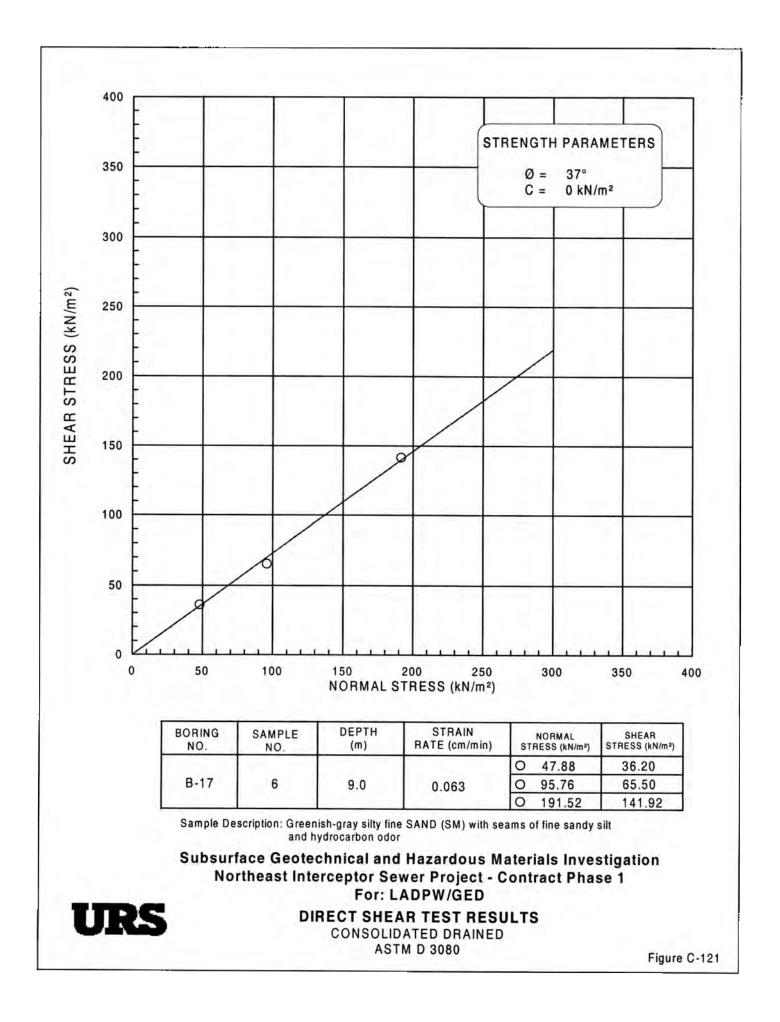


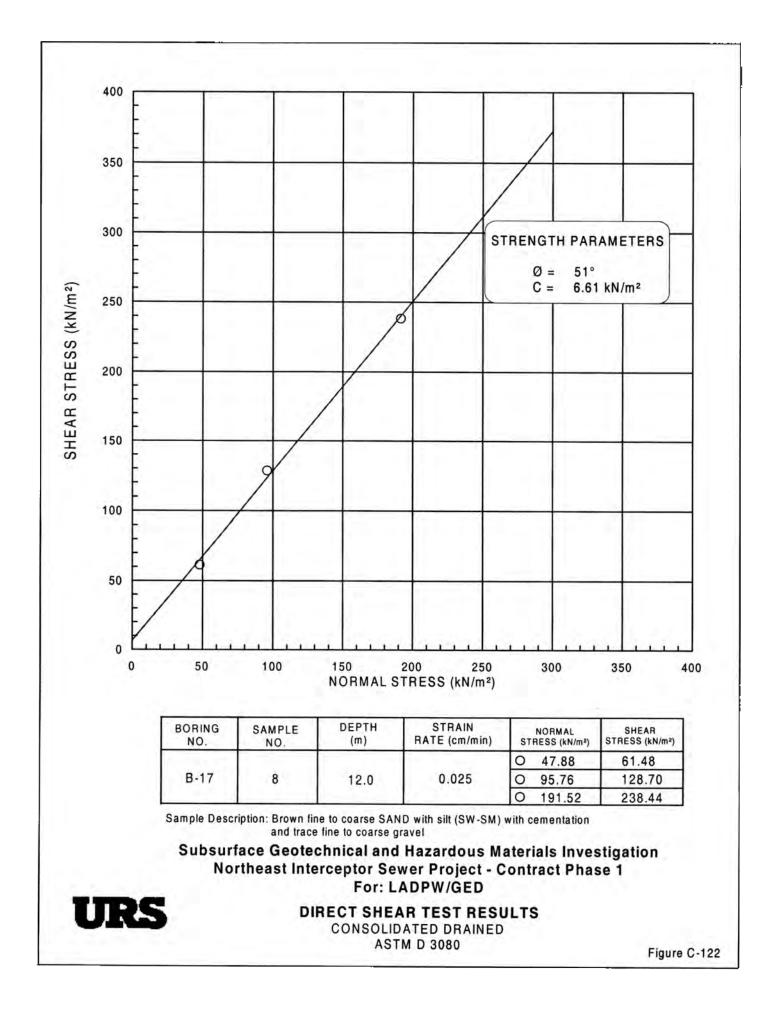


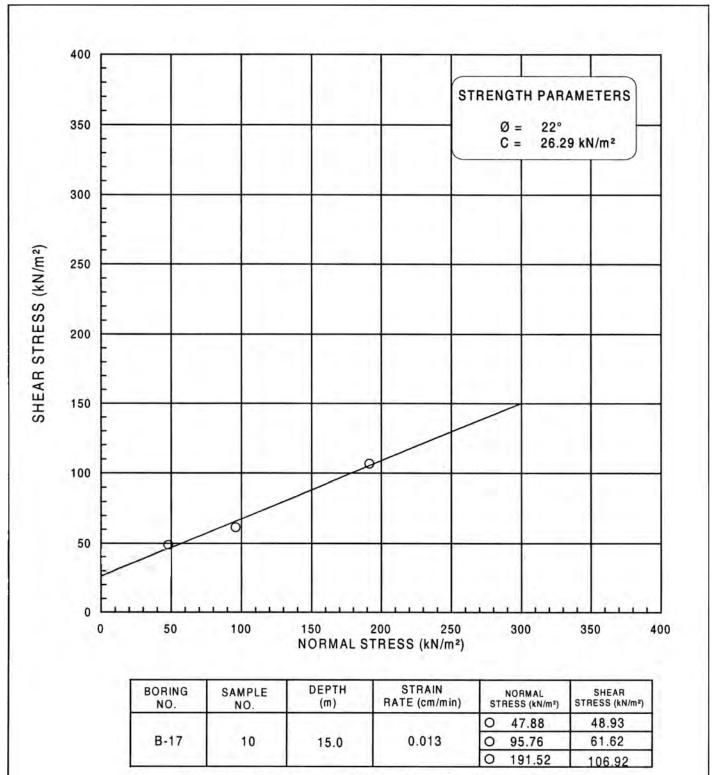




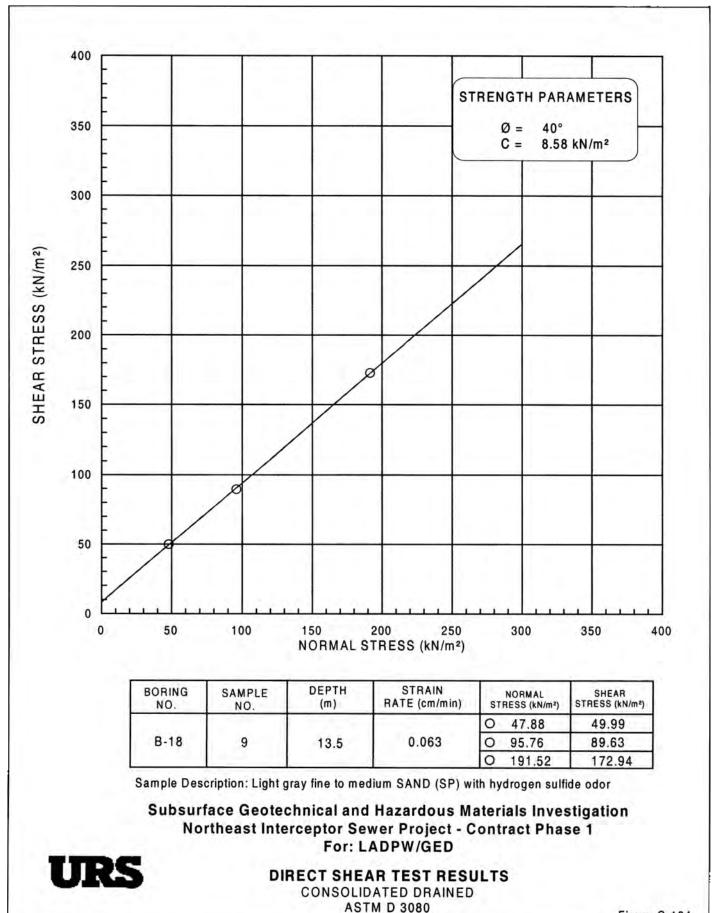


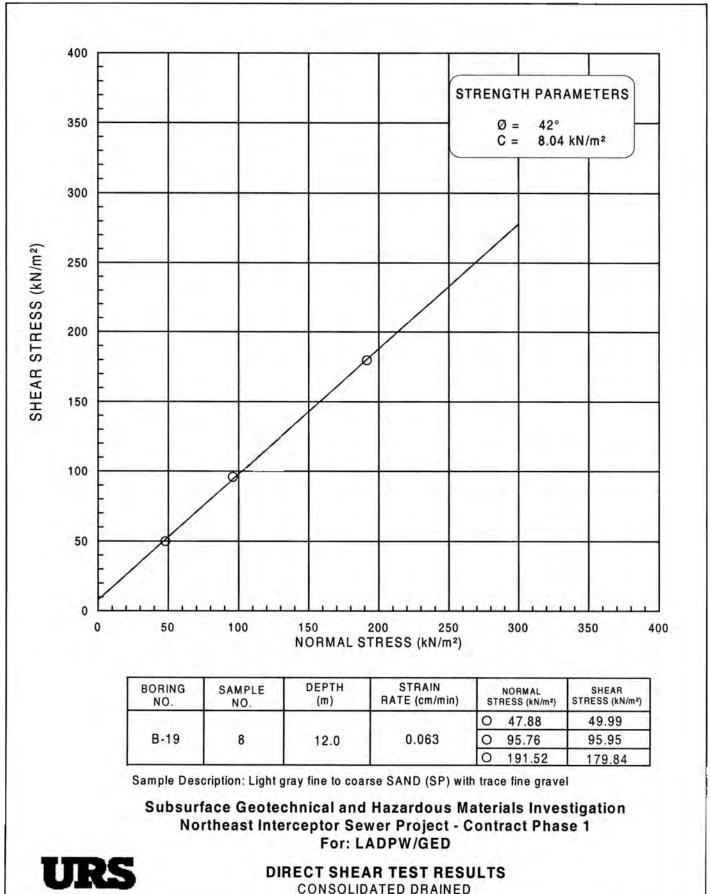




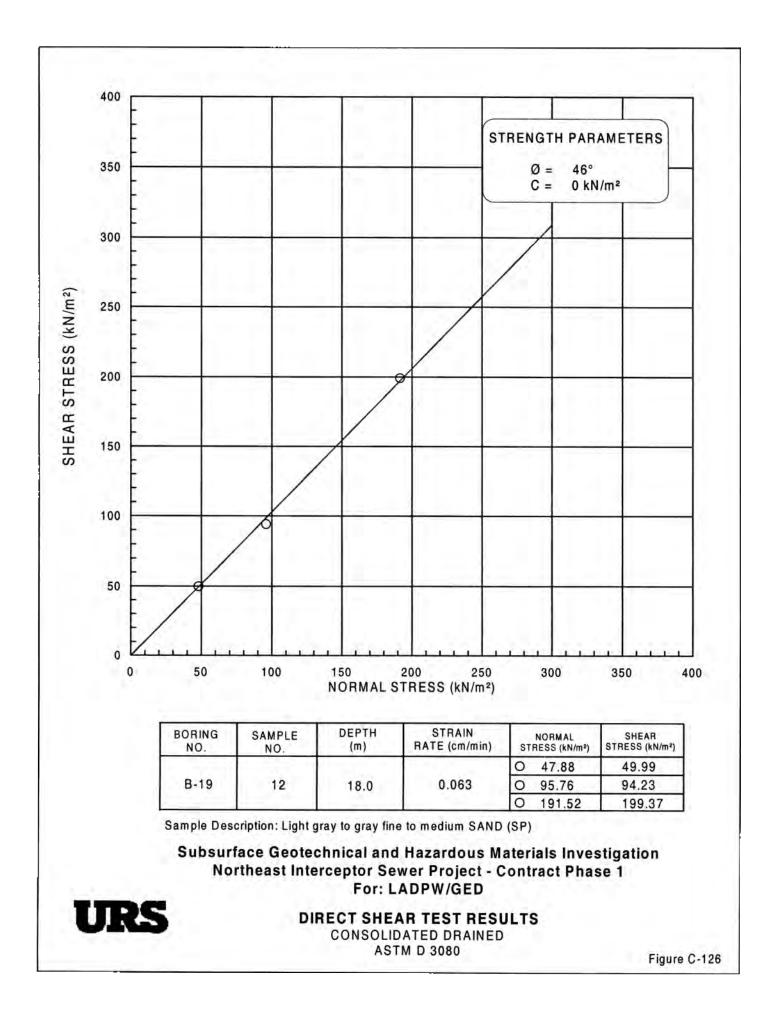

FIGURES C-120 THROUGH C-189

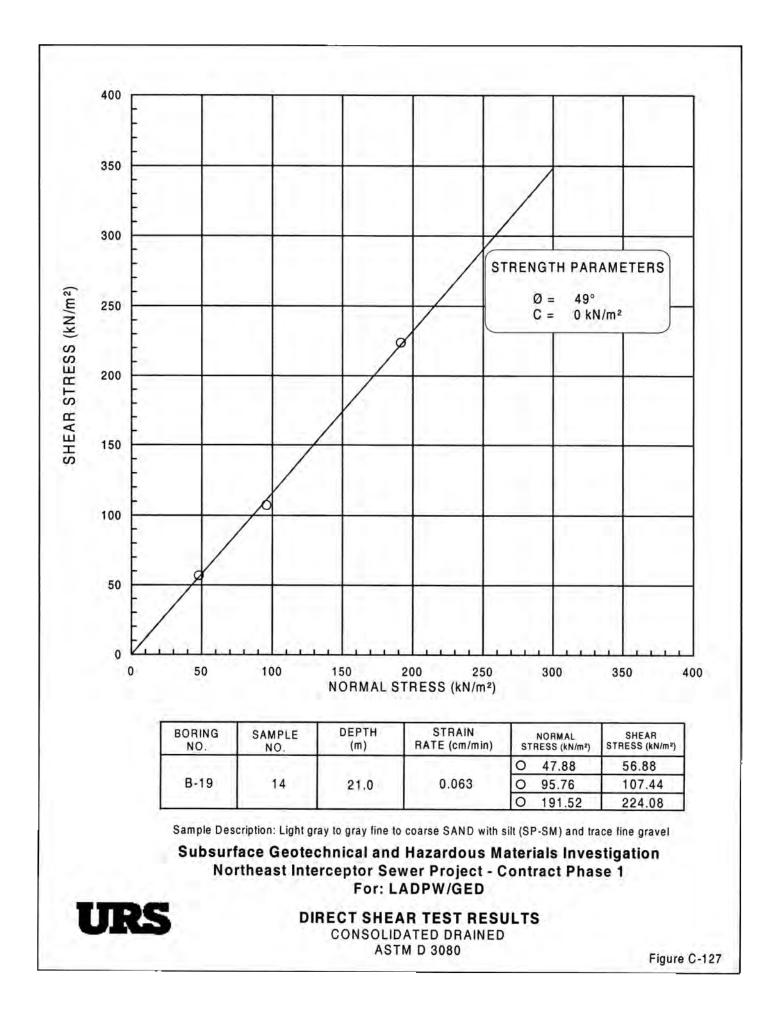
DIRECT SHEAR INDIVIDUAL TEST PLOTS




Sample Description: Yellowish-red silty CLAY (CL) with fine to medium sand

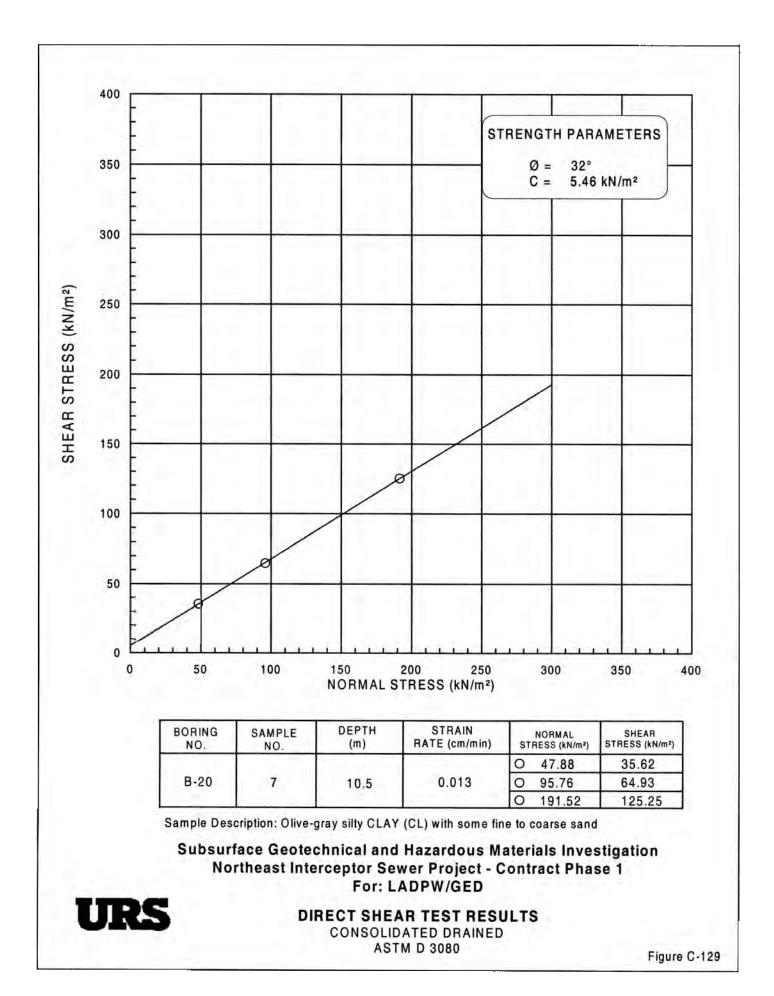
Subsurface Geotechnical and Hazardous Materials Investigation Northeast Interceptor Sewer Project - Contract Phase 1 For: LADPW/GED

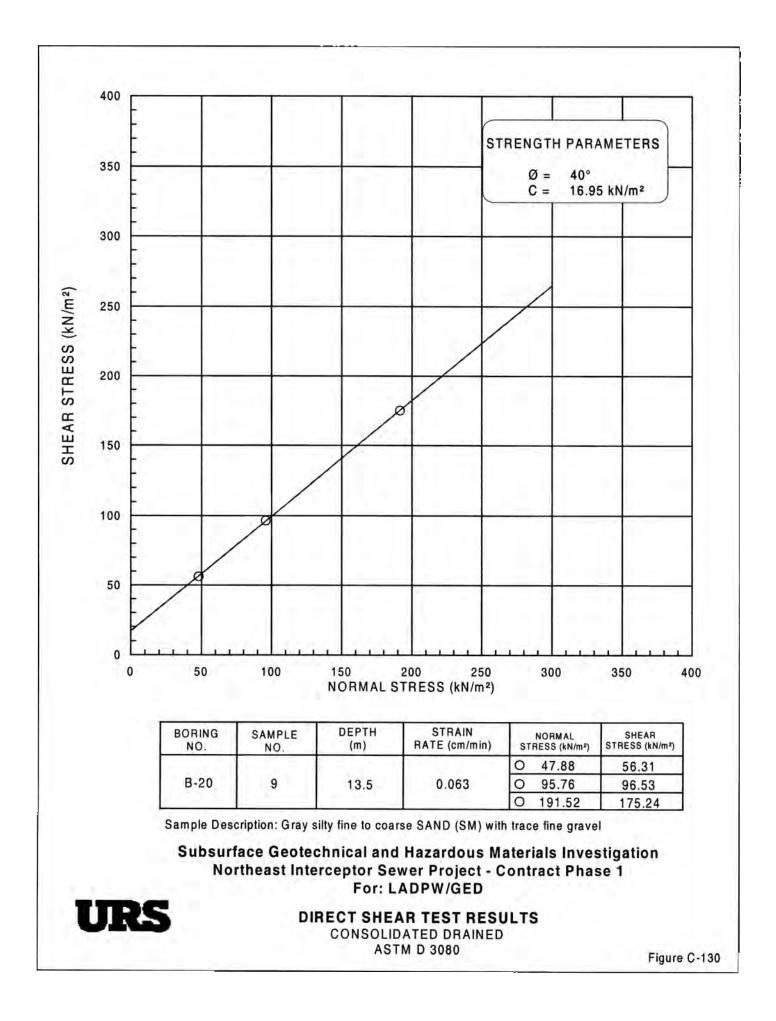


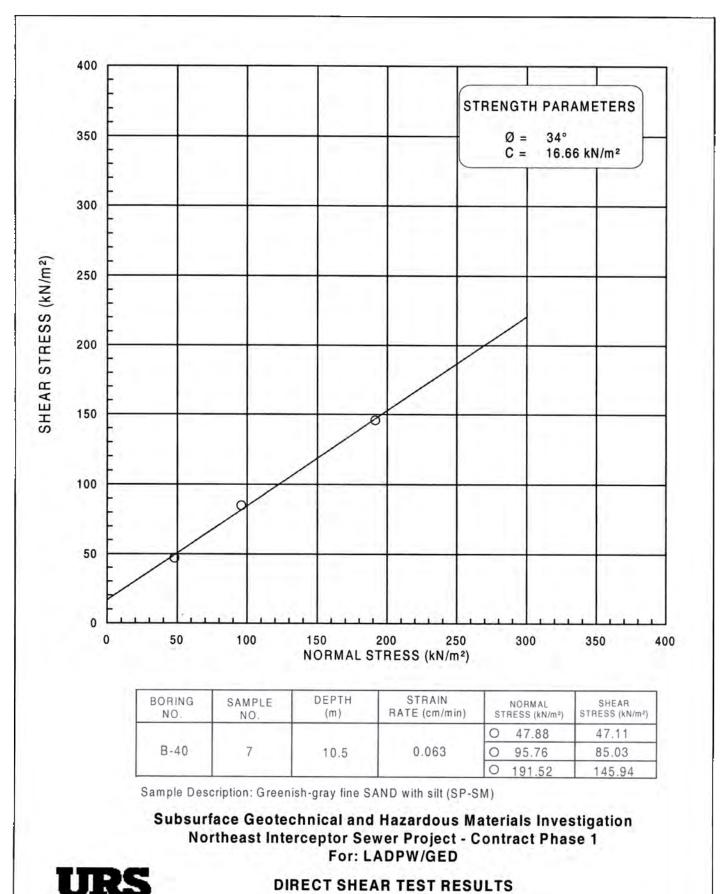

DIRECT SHEAR TEST RESULTS CONSOLIDATED DRAINED ASTM D 3080

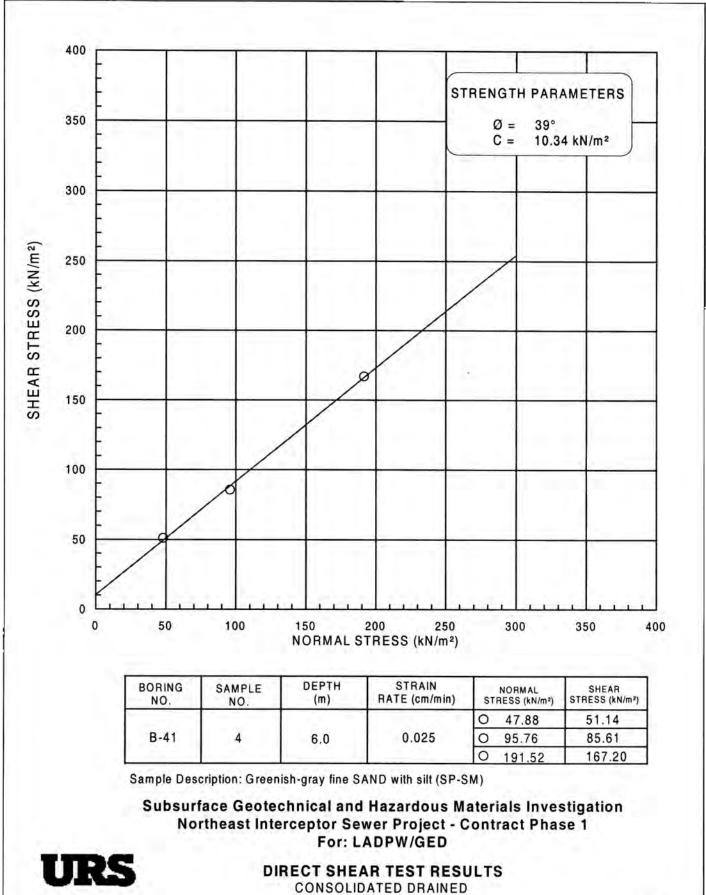


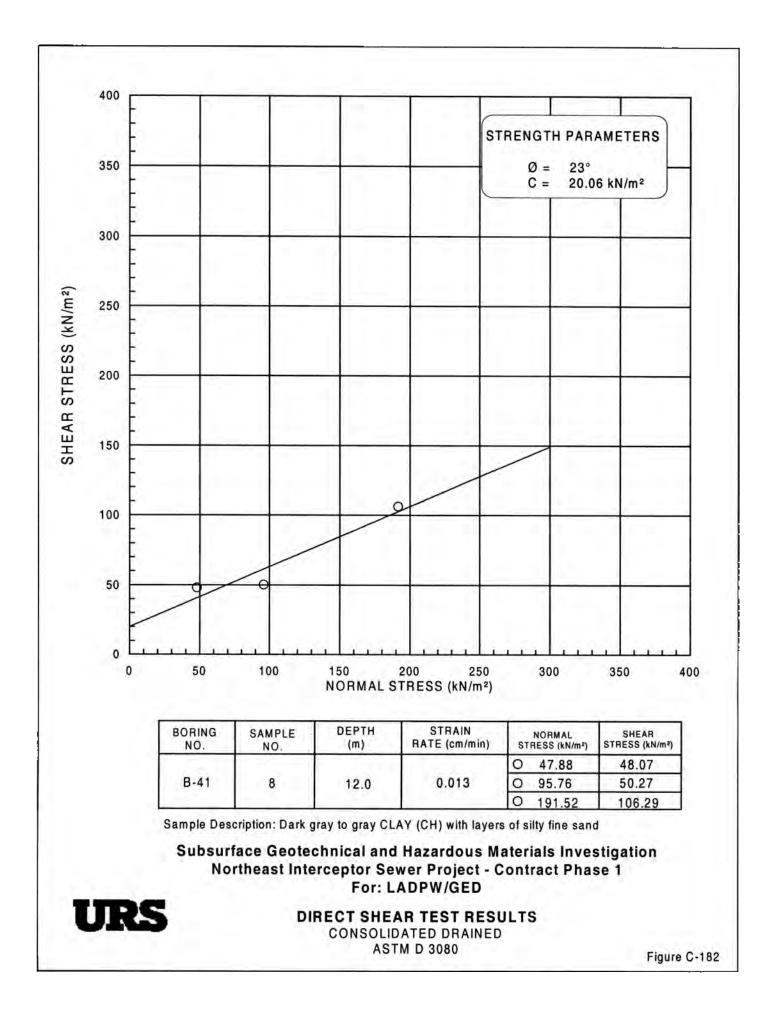
ASTM D 3080

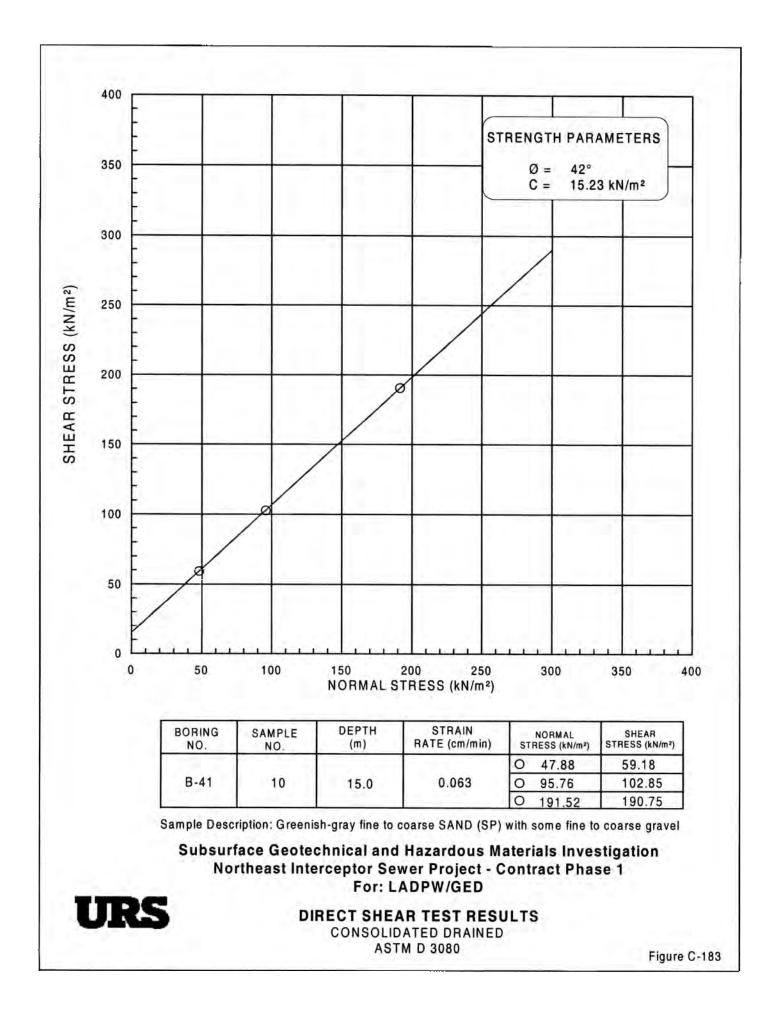


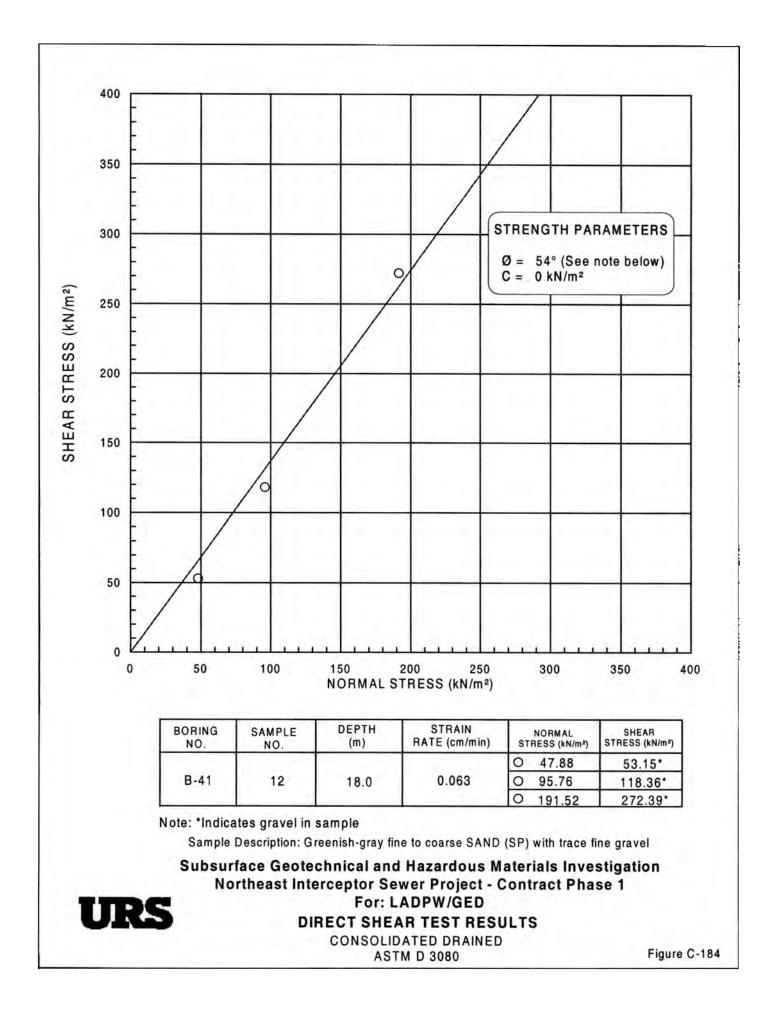


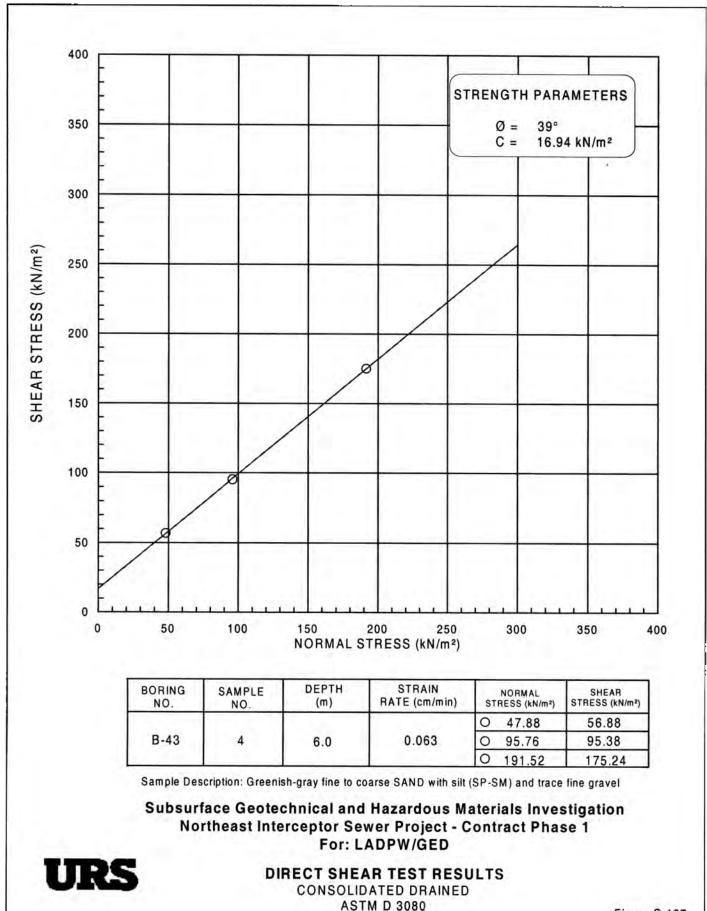

Northeast Interceptor Sewer Project - Contract Phase 1 For: LADPW/GED

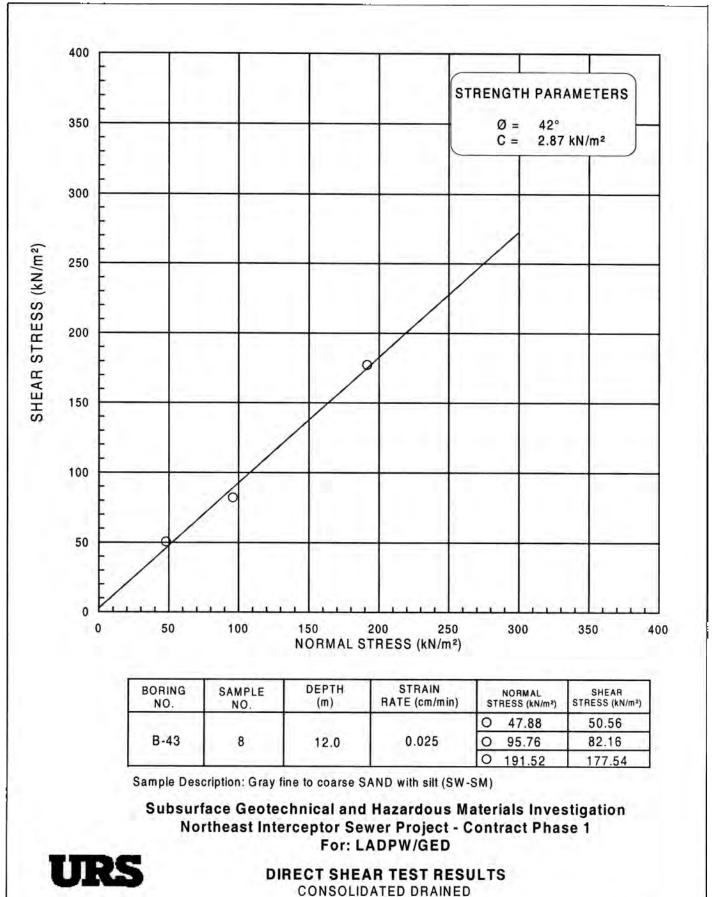

DIRECT SHEAR TEST RESULTS CONSOLIDATED DRAINED ASTM D 3080

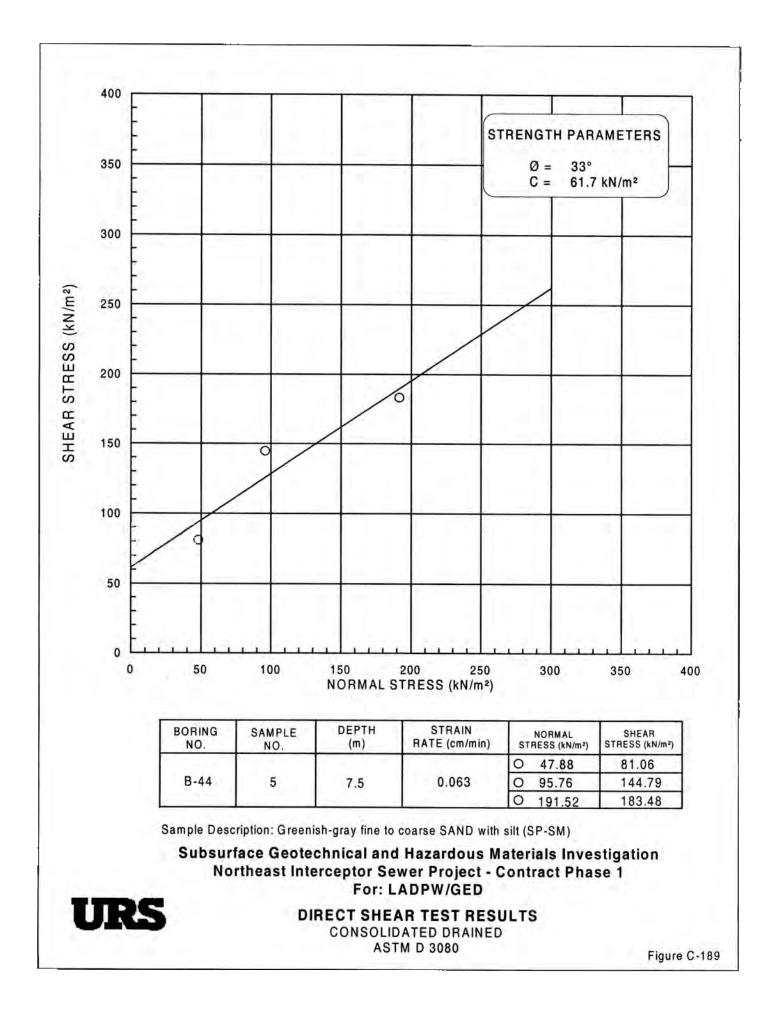





DIRECT SHEAR TEST RESULTS CONSOLIDATED DRAINED ASTM D 3080




ASTM D 3080



ASTM D 3080

CITY OF LOS ANGELES DEPARTMENT OF GENERAL SERVICES STANDARDS DIVISION

AVENUE 45 – ARROYO DRIVE RELIEF SEWER

2006

File

AH 8: 26

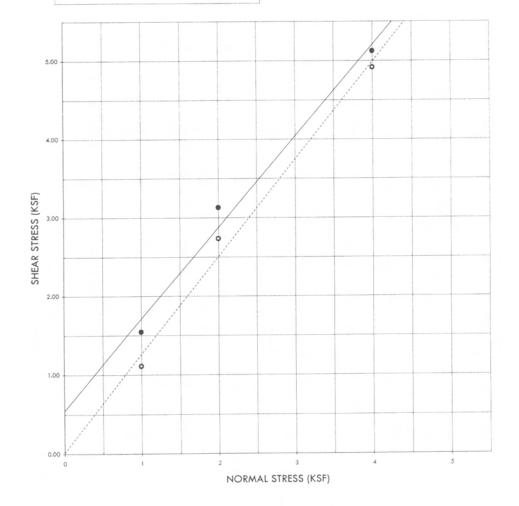
LAB NO. 140-5498

W.O NO. E2000462 FEBRUARY 2006

GEOTECHNICAL SERVICES FILE: 00-072

CITY OF LOS ANGELES DEPARTMENT OF GENERAL SERVICES STANDARDS DIVISION, SOILS TESTING LAB

2319 DORRIS PLACE, LOS ANGELES, CA 90031 (213) 485-2242

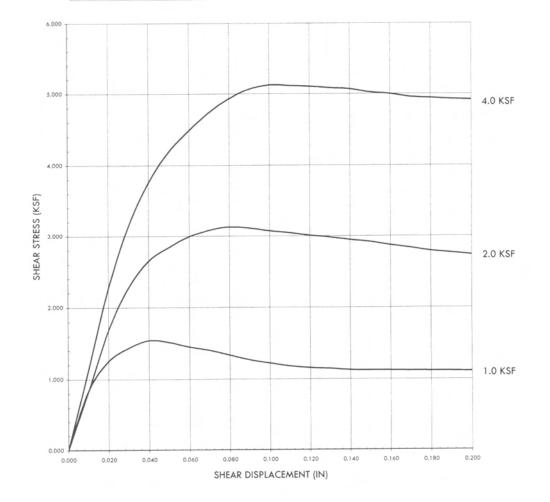

DIRECT SHEAR TEST REPORT (ASTM D 3080)

Project No.: WO No.: Project Title: Boring No.: Depth, feet: Date Sampled: Diameter, in: Soil Description: Disp. Rate, in/min: Dry Density, PCF:

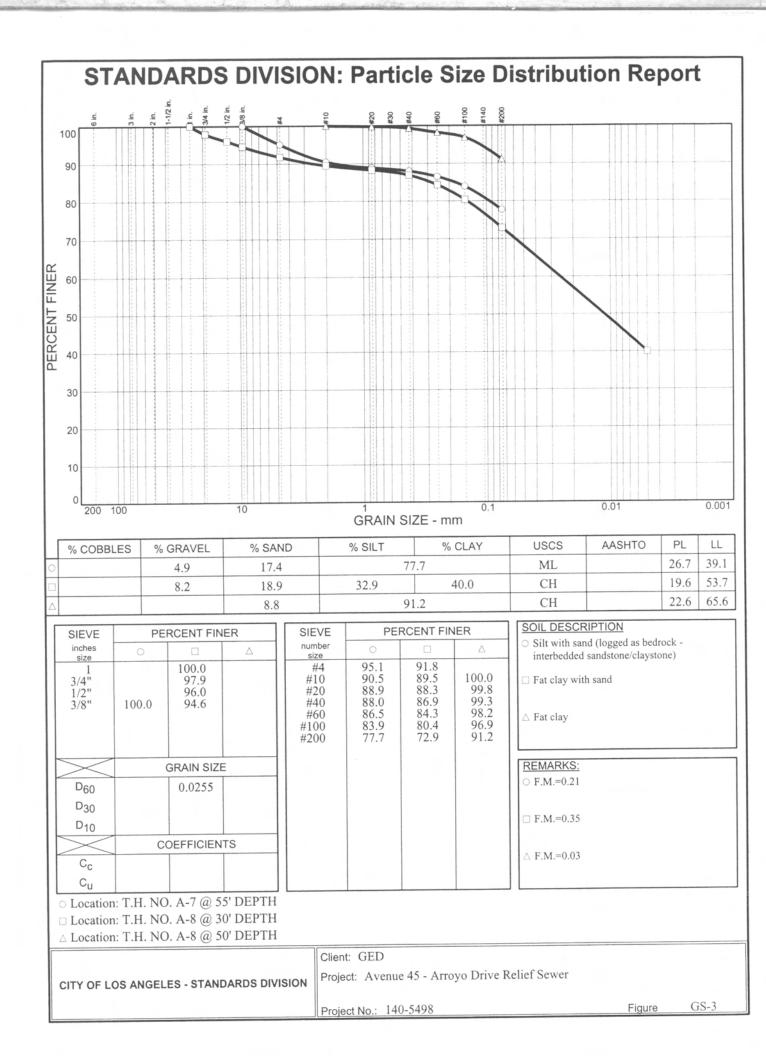
Disp. Rate, in/min: Dry Density, PCF: Initial Moisture, %: Final Moisture, %: Test By: Remarks:

	198
E20004	462
AVENU	E 45 - ARROYO DR. RELIEF SEWER
A-7	
55'	
12/7/2	2006
2.847	
Dark g bedroc	ray interbedded sandstone/claystone k
0.002	
112.2	
15.2%	
15.2% 18.7%	

legend:			
NORMAL STRESS, KSF	MAX. SHEAR STRESS, KSF	FINAL SHEAR STRESS, KSF	
1	1.54	1.11	
2	3.13	2.73	
4	5.12	4.92	
C =	0.54 ksf	0.02 ksf	
tan φ =	1.17	1.24	
Φ=	49.4°	51.2°	



CITY OF LOS ANGELES DEPARTMENT OF GENERAL SERVICES


STANDARDS DIVISION, SOILS TESTING LAB 2319 DORRIS PLACE, LOS ANGELES, CA 90031 (213) 485-2242

140-5498 Project No.: WO No.: E2000462 AVENUE 45 - ARROYO DR. RELIEF SEWER Project Title: Boring No.: A-7 55' Depth, feet: 12/7/2006 Date Sampled: Diameter, in: 2.847 Dark gray interbedded sandstone/claystone Soil Description: bedrock 0.002 Disp. Rate, in/min: Dry Density, PCF: 112.2 15.2% Initial Moisture, %: 18.7% Final Moisture, %: SJ Test By: Remarks:

NORMAL STRESS, KSF	MAX. SHEAR STRESS, KSF	FINAL SHEAR STRESS, KSF
1	1.54	1.11
2	3.13	2.73
4	5.12	4.92
		1
C =	0.54 ksf	0.02 ksf
tan Φ =	1.17	1.24
Φ=	49.4°	51.2°

Lab. No.: 140- 5498

CITY OF LOS ANGELES

DEPARTMENT OF GENERAL SERVICES

Sheet 1 of 8

STANDARDS DIVISION

2319 DORRIS PLACE LOS ANGELES, CA 90031

(213) 485-2242

TEST BORING DATA

Job Title: AVENUE 45 - ARROYO DR. RELIEF SEWER

Work Order No: E2000462

Test Boring No.				A-1			
Sample Depth, ft.	5	10	15	17.5	20	22.5	27.5
In Place Dry Density, pcf	99.3	127.9	120.2	127	123	124.9	134.9
Field Moisture, %	3.2	1.1	3.8	4.5	3.6	5.4	9.2
Lab. Max. Dry Density, pcf			-			il cal	
Lab. Optimum Moisture, %							A STATE OF A
Jnconfined Compression, psf							
Mechanical Analysis (% Passing)							
3/4"						60.2	75.8
No. 4						43.4	63.7
No. 10						34.8	57.6
No. 20						24.1	47.2
No. 40						15.5	33.2
No. 60						10.5	23.5
No. 100						7.3	17.2
No. 200						4.4	10.8
5 μ (Micron), %							
Liquid Limit						N/P	N/P
Plasticity Index						N/P	N/P

Lab. No. 140- 5498		DEPA	o RTMENT STAN	DEPARTMENT OF GENERAL SERVICES STANDARDS DIVISION 2319 DORRIS PLACE	s AL SERV SION	ICES			Sheet 4 of	ω
			ΓΟ	LOS ANGELES. CA 90031 (213) 485-2242	5					
		ΤE	ST	BORING	5 DATA	A				
Job Title:	AVENUE 45 - ARROYO DR. RELIEF SEWER	- ARROYO E	R. RELIEF S	SEWER			Work Order No:	der No:		
Test Boring No.					A	A-7				
Sample Depth, ft.	10	15	25	30	32.5	35	37.5	40	42.5	55
In Place Dry Density, pcf	117.3			104.7	103.4	101.3		92.9	94.5	112.2
Field Moisture, %	2.1	1.1	16.0	15.1	14.8	16.7	16.9	18.7	20.9	15.2
Lab. Max. Dry Density, pcf										
Lab. Optimum Moisture, %										and the first state of the
Unconfined Compression, psf										a second and a second as
Mechanical Analysis (% Passing)										
3/4"										100.0
No. 4										95.1
No. 10										90.5
No. 20										88.9
No. 40										88.0
No. 60										86.5
No. 100										83.9
No. 200										77.7
5 μ (Micron), %										
Liquid Limit										39.1
Plasticity Index										12.4

TECHNICAL DATA REPORT FOR THE PROPOSED 710 FREEWAY TUNNELS FEASIBILITY

TASK 3.1 - SOIL BORING PROGRAM

Prepared For:

Parsons Brinckerhoff Quade & Douglas, Inc. 444 South Flower Street, Suite 3700 Los Angeles, CA 90071

Prepared By:

Earth Mechanics, Inc. 17660 Newhope Street, Suite E Fountain Valley, California 92708

March 20, 2006

EMI Project No. 05-109

Boring No.	Sample No.	Depth (ft)	Predominant Soil Type	рН	Sulfate Content (ppm)	Chloride Content (ppm)	Minimum Resistivity (ohm-cm)
06-1	S-16	140	CL	7.25	200	130	1000
06-2	S-11	110	CL	7.85	50	150	1500
06-3	S-6	60	SP	7.51	50	155	2600
06-3	S-6a	60	SP	7.59	90	165	2300

 Table D-1.
 Soil Corrosivity Test Results

Table D-2.Washing #200 Sieve Test Results

	Boring	Sample	Depth	Predominant Soil Type	F	Percentage of	
	No.	No.	(ft)		Gravel	Sand	Fines
-	06-1	S-6	60	SM	4	69	27
	06-2	S-9A	90	SM	0	52	48
	06-3	S-5	50	SM	1	63	36

Table D-3.Direct Shear Test Results

			-	Pe	eak	Ulti	mate
Boring No.	Sample No.	Depth (ft)	Predominant - Soil Type	Friction Angle (deg)	Strength Intercept (ksf)	Friction Angle (deg)	Strength Intercept (ksf)
06-1	D-11A	110.5	SC	33.2	1.37	29.0	0.97
06-1	D-15A	135	CL	29.9	1.03	30.8	0.25
06-2	D-8B	80.5	SM	33.1	2.05	31.2	0.57
06-3	D-4	40	SP	44.2	0.37	36.5	0.02

Boring	Sample	Depth			Percentage c	of
No.	No.	(ft)	Predominant Soil Type	Liquid Limit	Plastic Limit	Plasticity Index
06-1	D-11A	110.5	CL	34	16	18
06-1	D-13B	125	CL	36	21	15
06-1	D-15A	135	CL	36	20	16
06-2	S-11	110	CL	34	21	13

Table D-4.	Atterberg	Limit	Test	Results
------------	-----------	-------	------	---------

Table D-5. Unconfined Compressive Strength Test Results

Boring No.	Sample / Run No.	Depth (ft)	Soil / Rock Type	Sample / Core Diameter (in)	Unconfined Compressive Strength (psi)	Axial Strain Level at Failure
06-1	D-13A	125	Lean Clay with Sand	2.415	69	10.09
06-1	D-15B	135	Lean Clay with Sand	2.413	45	11.03
06-1	15	198-199	Claystone / Siltstone	2.166	291*	3.6
06-2	D-10	100	Lean Clay with Sand	2.412	42	1.70
06-2	10	144.6- 145.2	Altered Volcanic	1.754	1,426	-
06-2	10	147-148	Altered Volcanic	1.76	1,386*	2.37
06-2	12	155.8- 156.5	Diorite	1.765	177*	6.15
06-2	17	177-178	Diorite	1.769	159	-
06-2	21	197.65- 198.25	Diorite	1.767	366*	8.62
06-3	3	84.9-85.0	Weathered Conglomerate	1.763	8,488	-
06-3	20	168.75- 169.25	Bedded Siltstone	1.768	2,753*	11.4
06-3	30	202.5- 203.2	Fresh Conglomerate	1.762	2,101*	11.7

Notes:

1. * Monotonic stress-strain curve data to failure was recorded and is shown in this Appendix.

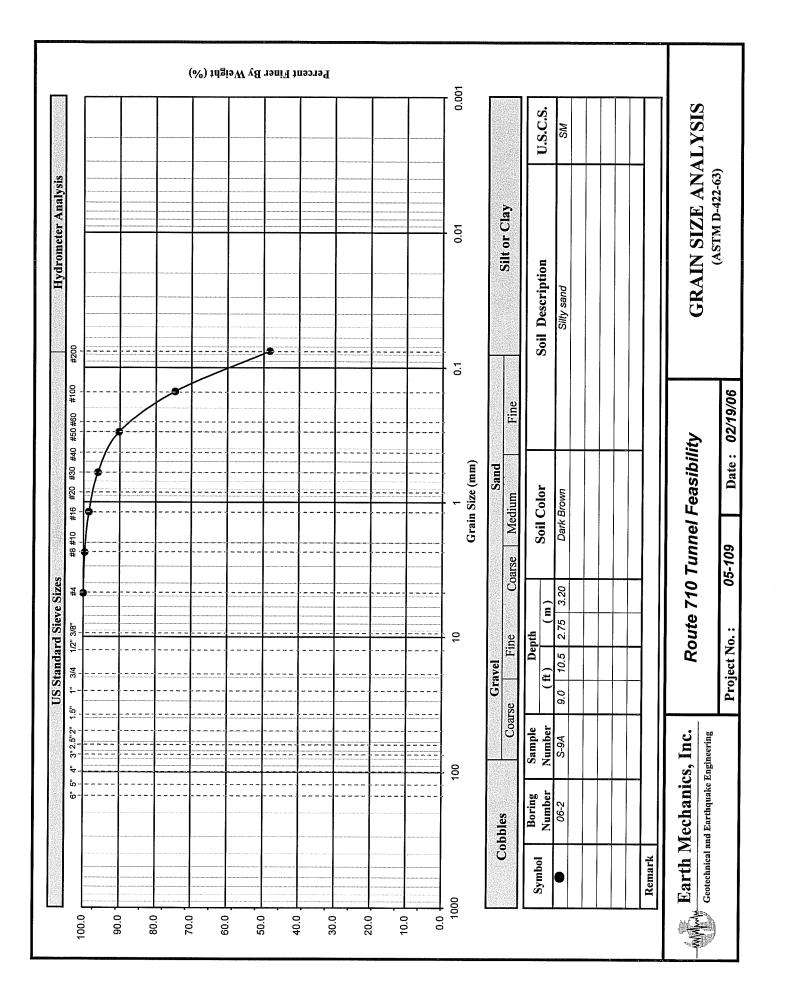
2. Other details including rate of loading, core density and moisture, and failure mode are shown in later this Appendix.

Boring No.	Sample Depth (ft)	Sample Length (ft)	Sample Dia. (ft)	Pressure @ Failure (psi)	Unconf. Comp. Strength (psi)	Sample Description
06-2	174.0	24	45	100 ⁽¹⁾	1,170	Valid test; broke straight across. Topanga Fm, coarse sandstone breccia of diorite pebbles and cobbles; weath'd, mod. hard to soft.
06-2	186.8	21	45	100	1,170	Valid test, broke across with very little pressure. Moist. Typical weath'd Topanga sandstone/conglomerate; mod. soft to mod. hard sandstone, weath'd, oxidized and altered; pebbles harder than sandstone matrix and only slightly weathered.
06-2	189.8	15	45	100	1,170	Invalid test. Same rock with same characteristics, but fracture had dark oxidation indicating preexisting incipient joint with rough, stepped surface. Another joint at top of sample has strong striae @ 30° rake.
06-2	197.3	17	45	175	2,047	Valid test, broke straight across. Same rock as above, moist.
06-3	200.0	20	45	175	2,047	Invalid test, broke partly along existing joints Rock is diorite, moist, mod. hard, mod. weath'd, slight ring when struck but can break by hand with light pressure. End of sample has joint with striae @ 45° rake.
06-3	85.3	19	45	700	8,189	Valid test; broke through both diorite pebbles and matrix. Topanga Fm conglomerate in coarse (2-3 mm) sandstone matrix; black and white diorite pebbles (8- and 10-cm) within light yellowish-brown sandstone matrix; dry, mod. weath'd, soft to mod. hard matrix, mod. hard to hard pebbles. ⁽²⁾
06-3	106.5	32	45	250	2,925	Valid test, broke straight across, no preexisting joints. Topanga conglomerate: pebbles (2-3 cm) in coarse sand matrix; soft to mod. soft; mod. weath'd sandstone matrix, exterior of feldspar grains are altered to white powder; oxidized to light yellowish-brown. Pebbles are harder, less weath'd, and light gray. ⁽²⁾
06-3	118.3	12	45	650	7,604	Invalid test, broke along 60o angle on incipient but rough, stepped joint; broke around grains. Augite-diorite cobble (23cm) of Topanga conglomerate. Unweath'd to slightly weath'd black and white speckled rock with sphene (?)
06-3	139.1	12	45	2700	31,585	Valid test, broke straight across. Light-colored granite cobble within Topanga conglomerate; un weath'd, very hard.
06-3	197.2	12	45	1500	17,547	Valid test, broke straight across. This is biotite-diorite cobble within Topanga Fm; crystal size 1-2 mm, unweath'd, hard, no oxidation.
06-3	202.2	8	45	450	5,264	Valid test, broke straight across. Sandstone of Topanga Fm, gray, no oxidation, dry, mod. hard, slightly to mod. weath'd. Feldspar grains on fracture are opaque, white, and powdery suggesting alteration due to weathering.
<u>Notes</u>	:					
4 14	•					

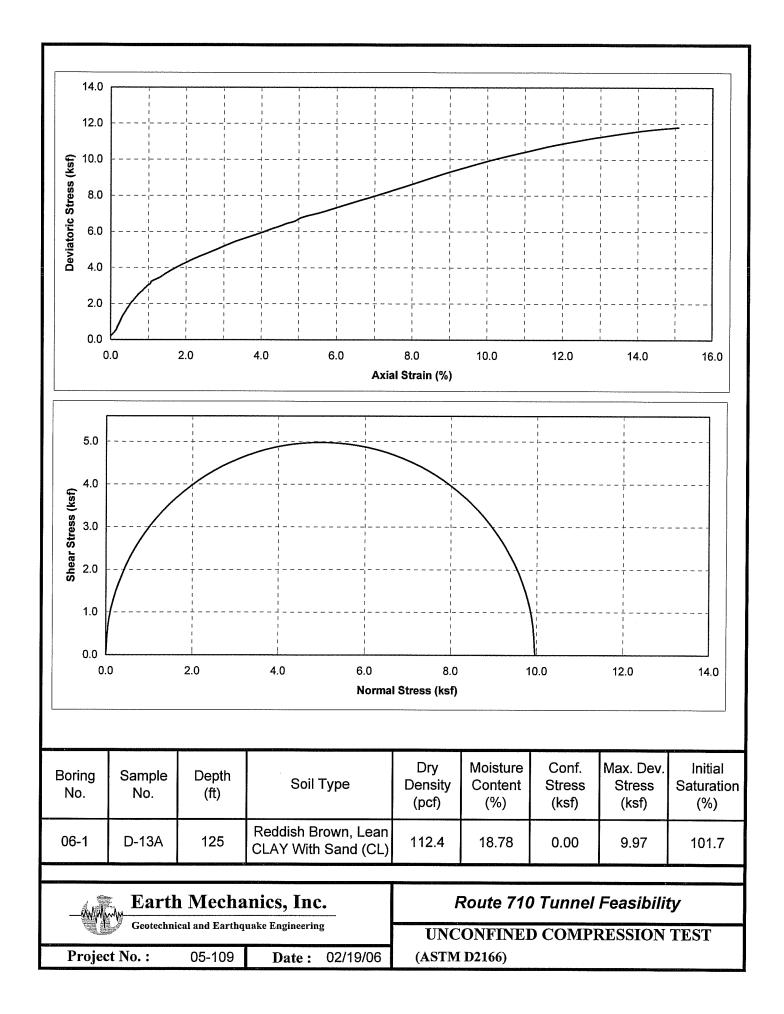
Table D-6.Point Load Test Results

1. Maximum pressure measured.

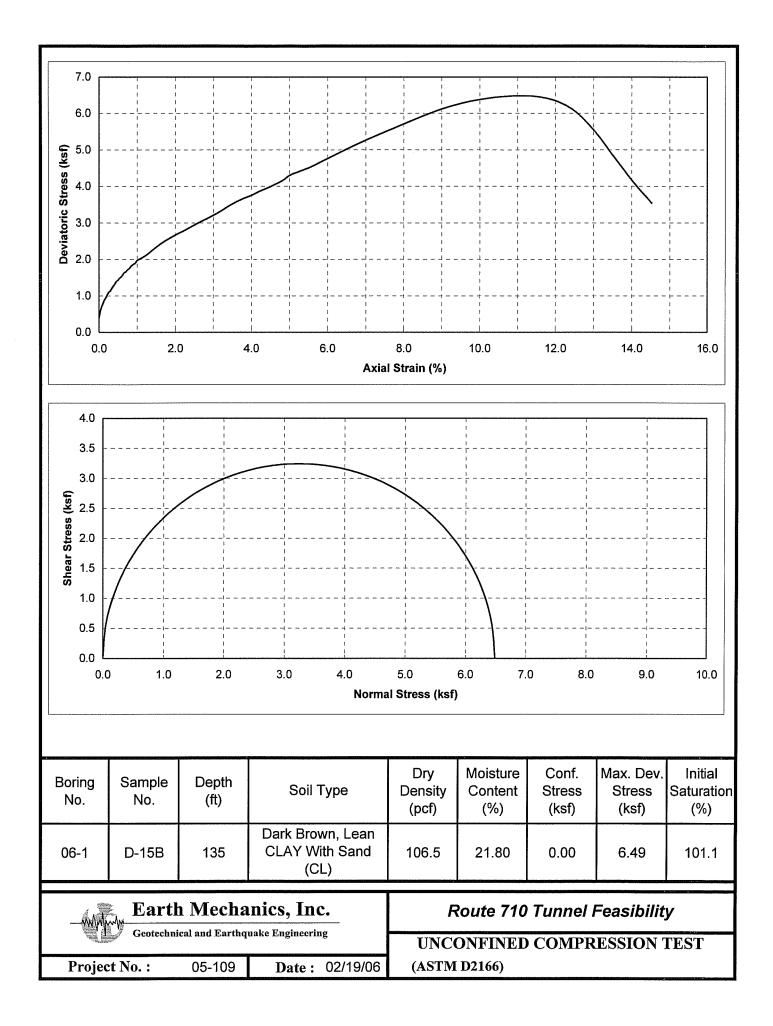
2. See sample photographs shown on next page.

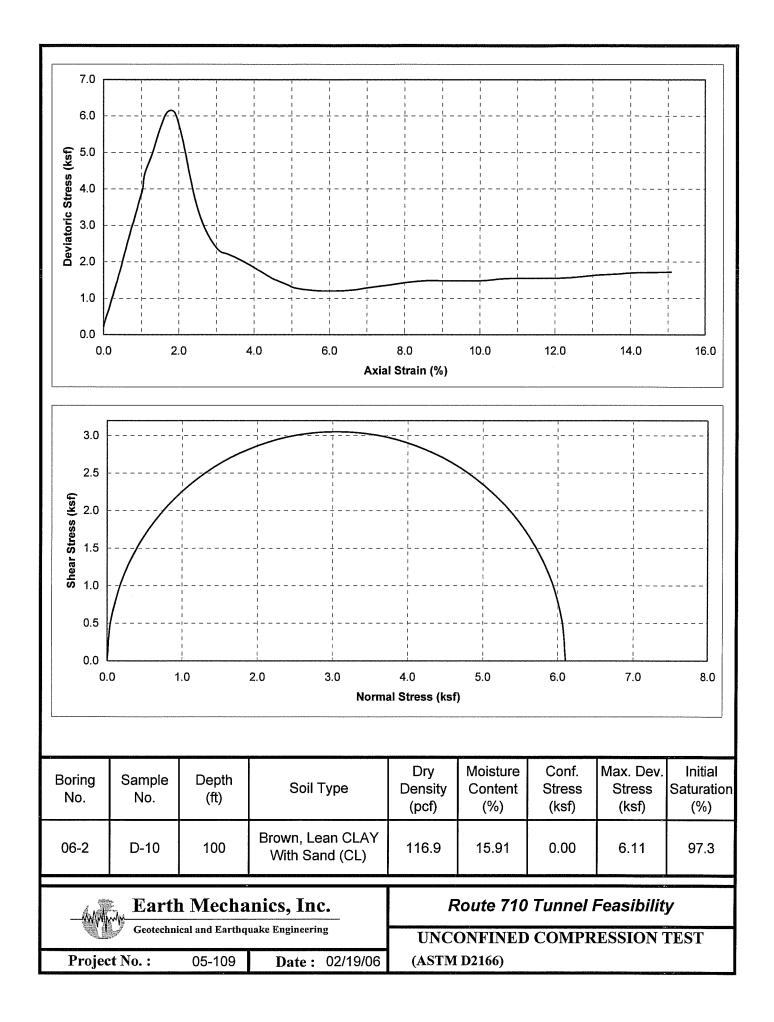


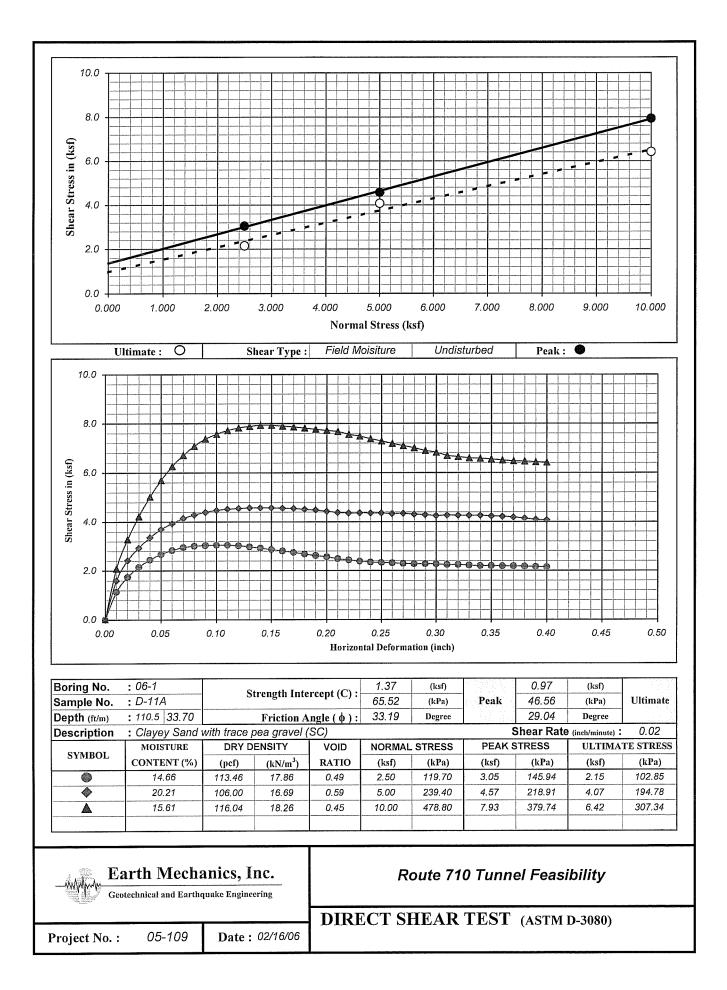
Failed core from 06-3, 106.5 ft depth



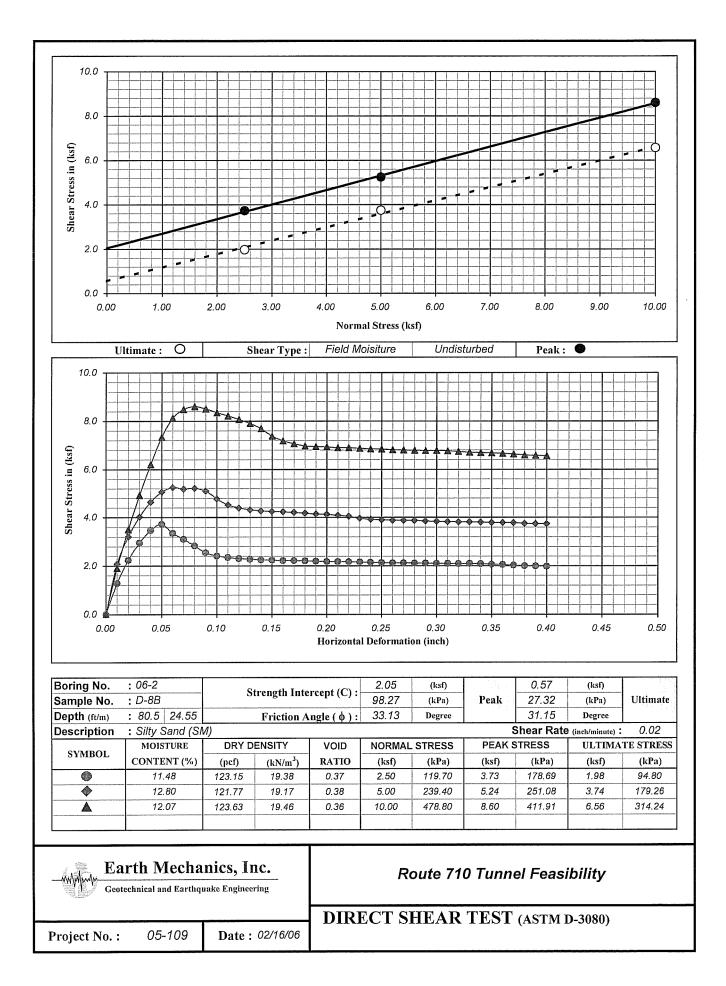
Core from 06-3, 85.3 ft depth

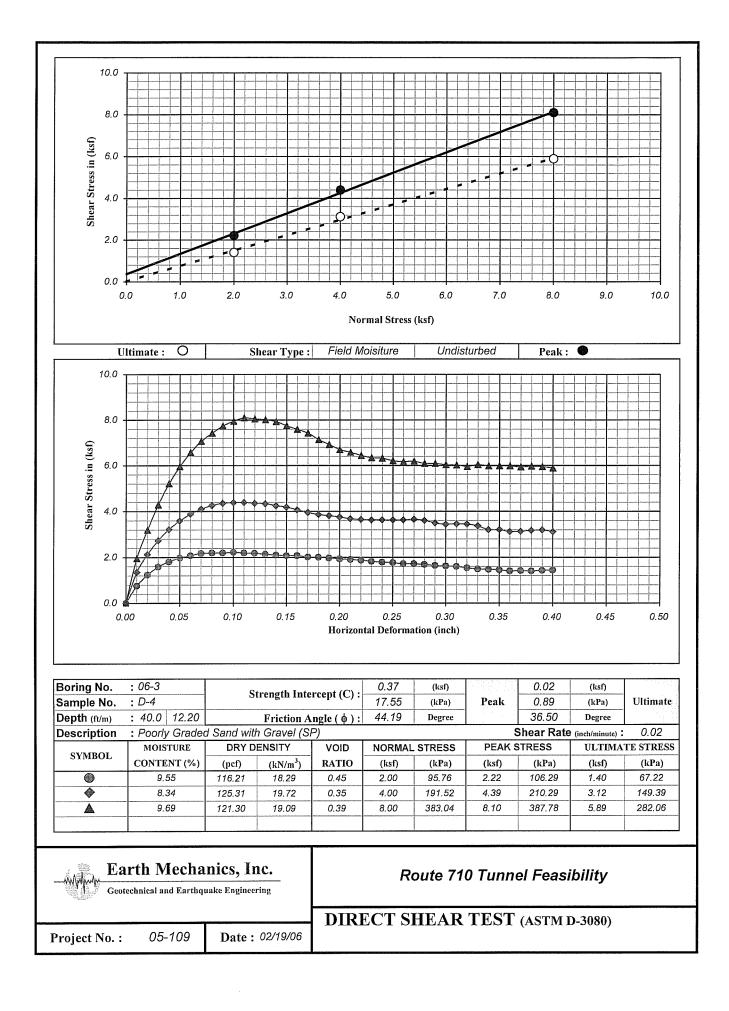

Sample Cores Tested in PLT Device


UNCONFINED COMPRESSION TEST							
			А	STM D2166			
Project Name:	Route 710) Tunnel Fe	asibility			Project No:	05-109
Boring No.:				Tested by:	R.J.	Date:	02/19/06
Depth (ft):	125		-	Checked by:		Date:	
Sample No.	D-13A		-	Sample Type: R			
Sample Descri	ption:	Reddish B	rown, Lean	CLAY With Sand	d (CL)		
	1	2	3				<u>, , , , , , , , , , , , , , , , , , , </u>
Diameter (in.):	2.415	2.415	2.416	Average:	2.415		
Height (in.):	4.983	4.977	4.950	Average:	4.970		
		1				<u> </u>	
Moisture Content (Calculatior)		SKETCH / PI	HOTO AFTER	TEST:	
Wt. Wet Sample + C	Container (c	jms):	238.22	PHOTO FILE N		\05-109 710 Tunnel\100_;	2649.JPG
Wt. Dry Sample + C	ontainer (g	ims):	209.64	e trate ar proved			
Container (gms)	No.	16	57.42				
Moisture Content (%	ώ)		18.8				
Density and Satura	ation						
Wt. Wet Sample + C	Container (c	jms)	1028.01				
Container (gms)			228.94				K. 113.
Wet Density (pcf)			133.6				
Dry Density (pcf)			112.4	iker space			
Void Ratio 0.			0.498				
% Saturation 101.7			101.7				
Assume Gs=2.70							
Test Data Filename:	: 05109061d13a.trx						
Shear				1			
Rate of Deformation	ı (% strain /	/ min) =	1	At Failure			
Confining Stress (ksf):			0.00	Deviator Stree	ss (ksf)	9.9	97
Failure Criterion:		2 is used		Eff. Minor Princ		f)= 0.0	D O
1. the maximum de			5% strain	Eff. Major Princ	pipal Stress (ks	f)= 9.9	97
2. the stress at 10% strain for no peak stress.				Axial Strain (9	%)=	10.	.09
Geotechnical and Earthquake Engineering							



	UN	CONFI		MPRESSIO	N TEST	ala manana mangan kata kata kata kata kata kata kata ka	<u>yanta ana amin'ny amin'</u>
Project Name:	Route 710) Tunnel Fea			на страна 1	Project No: 0	05-109
Boring No.:		6-1		Tested by:	R.J.	···· · · · · · · · · · · · · · · · · ·	2/19/06
Depth (ft):	135			hecked by:	en de la companya de En esta de la companya	Date:	
Sample No.	D-′	15B		mple Type:	R		
Sample Descrip	otion:	Dark Brow	/n, Lean CL	AY With Sand (C	:L)		
	1	2	3				
Diameter (in.):	2.412	2.413	2.413	Average:	2.413		
Height (in.):	4.980	4.965	4.952	Average:	4.966	-	
						-	
Moisture Content C				-1	OTO AFTER TE	EST:	
Wt. Wet Sample + C	ontainer (g	jms):	218.08	PHOTO FILE N/	AME: D:\05-1	09 710 Tunnel\100_2650.	JPG
Wt. Dry Sample + Co	ontainer (gr	ms):	189.46				
Container (gms)	No.	19	58.19				
Moisture Content (%	ə)		21.8				i interestadores de la constante de la constan
Density and Satura	ation						
Wt. Wet Sample + C	ontainer (g	jms)	1002.44	the survey of th			
Container (gms)			228.94				
Wet Density (pcf)			129.7				
Dry Density (pcf)			106.5				
Void Ratio		1	0.582	T artistication of the second			
% Saturation			101.1		1		
Assume Gs=2.70					1	02	
Test Data Filename:	051	109061d15b	o.trx				
Shear				1			
Rate of Deformation	/% strain /	/ min) =	1	At Failure			
Confining Stress (ks	•	,	0.00	Deviator Stress	s (ksf)	6.49	<u></u>
	<u>criterion</u> 1	1 i <u>s used</u>	<u></u>	Eff. Minor Princip			
1. the maximum de			5% strain	Eff. Major Princip			
2. the stress at 10%	% strain for	no peak st	ress.	Axial Strain (%		11.03	
		WWW		anics, Inc. quake Engineering			


UNCONFINED COMPRESSION TEST							
			А	STM D2166			
Project Name:	Route 710 Tunnel Feasibility				Project No:	05-109	
Boring No.:	06-2			Tested by:	J. Date:	02/19/06	
Depth (ft):	100		Cł	hecked by:	Date:		
Sample No.	D-	·10	Sar	nple Type: R		<u></u>	
Sample Descrip	tion:	Brown, Le	an CLAY W	/ith Sand (CL)			
	1	2	3				
Diameter (in.):	2.412	2.411	2.412	Average: 2.4	12		
Height (in.):	5.002	5.003	4.987	Average: 4.99	97		
			L]			
Moisture Content C	alculation			SKETCH / PHOTO A	AFTER TEST:		
Wt. Wet Sample + C	ontainer (g	ms):	229.64	PHOTO FILE NAME:	D:\05-109 710 Tunnel\100_2	651.JPG	
Wt. Dry Sample + Co	ontainer (gr	ms):	206.09				
Container (gms)	Container (gms) No. 36						
			15.9				
				A CALLER AND A C		13	
Density and Satura	tion						
Wt. Wet Sample + C	ontainer (g	ms)	1041.35	-ATR			
Container (gms)			228.94	Bi debrook and operation and the second		and the second s	
Wet Density (pcf) 135.			135.5	Anna anna an An			
Dry Density (pcf)			116.9	Considerant System () and ()			
Void Ratio 0.442			0.442	Commission Carriers -			
% Saturation 97.3			97.3				
Assume Gs=2.70							
Test Data Filename:	05109062d10.trx			ri)		- 02/	
						OPERITOR TO A CONTRACT OF A CONT	
Shear							
Rate of Deformation (% strain / min) =			1	At Failure			
Confining Stress (ksf):			0.00	Deviator Stress (ksf)	6.1	11	
Failure Criterion: <u>criterion 1 is used</u>				Eff. Minor Principal Stre	ess (ksf)= 0.0)0	
1. the maximum deviator stress within 15% strain				Eff. Major Principal Stre	ess (ksf)= 6.1	11	
2. the stress at 10% strain for no peak stress.				Axial Strain (%)=	1.7	70	
Geotechnical and Earthquake Engineering							



		nics, Inc.	Route 710 Tunnel Feasibility
			DIRECT SHEAR TEST (ASTM D-3080)
Project No. :	05-109	Date : 02/16/06	

PRC	DJECT NO.	:	EMI#	05-109				DATE :	16-Feb-	06
PRC	DJECT NAM	ИЕ: <u>710</u>	TUNNEL	S FEASIB	ILITY			TESTED BY :	R	NC
BOF	RING NO. :	: 	06-1	SAN	IPLE NO. / DEP	TH :1	98' TO 19	99'		
SAN	IPLE DESC	CRIPTION	S / CLAS	SIFICATI	ON : DK. GR	AYISH BRO	OWN CLA	YSTONE/SILTSTONE (CL/	ML)	
<u>soi</u>	L SPECME	N MEASU	REMENT	<u>S :</u>						
DIAN	METER,D _o (ln.):	2.166		WET WEIGHT,(G	Sms.): 448	.33	VOLUME,(Ft. ³) :	0.00)905
INIT	ITAL AREA,	A _o (Ft. ²) :	0.0256		DRY WEIGHT,(G	ms.): <u>364</u>	.8	DRY DENSITY, (Pcf.):	88	3.9
INIT	IAL LENGTI	H,L _o (In.):	4.24		MOISTURE CON	T.,%: <u>22</u>	.9	L/D RATIO :	1.9	96
	VERTICAL			AXIAL	UNCONFINED	STRA	N RATE :	0.05 (IN./MIN.)1	.18 (9	%/MIN.)
(MIN.)	DIAL RDG (IN.)	ε (%)	AREA (FT. ²)	LOAD (LBS.)	COMPRESSIVE STRENGTH(PSI)	350				
	0.02	0.47	0.0257	105.00		350				
	0.03	0.71	0.0258	169.00						
	0.04	0.94	0.0258	232.00	62	300				
	0.05	1.18	0.0259	306.00	82					9
	0.06	1.41	0.0260	389.00	104					
	0.07	1.65	0.0260	476.00	127	250			0	
	0.08	1.89	0.0261	562.00	150					
	0.09	2.12	0.0261	658.00	175	÷		·····		
	0.10	2.36	0.0262	751.00	199	AXIAL STRESS (PSI) 120		Ø		
	0.11	2.59	0.0263	844.00	223	IRES				•
	0.12	2.83	0.0263	922.00	243	AL S1				Ö
	0.13 0.14	3.06 3.30	0.0264 0.0265	981.00 1052.00	258 276	150 XX		0		
	0.14	3.54	0.0205	1102.00				9		
	0.1528	3.60	0.0265	1111.00		100		ø		
	0.16	3.77	0.0266	641.00	167					
						50		3		
						0 (0.5	1 1.5 2 2.5	3	3.5 4
-	-						5 0.0		5	3.5 4
								AXIAL STRAIN, E (%)		
						Г		SPECIMEN SKETCH AFTER F	AILURE	
Unconfir	ed Compr	essive St	trength,q _u	(psi) =	291					
REMARKS	S :									
					4 da					
						L		T		
		ZEISE	R KLI	NG CO	ONSULTAI	NTS, IN	C.	UNCONFINED C		
			-		; Santa Ana, CA	92705		STRENGTH		ILS
		1ei: (714)	/>>-1355	; Fax: (71	4) 755-1366	****		(ASTM D21	66 - 00)	

PROJECT NO. :	EMI#	05-109			DATE : 15-Feb-06
PROJECT NAME : 710					TESTED BY : RMC
BORING NO. :				ΓH · 144 6' ΤΟ 14	
					SILTSTONE AS MARKED
SOIL SPECMEN MEASU					SILTSTONE AS MARKED
			WET WEIGHT,(G	ims.): 334.6	VOLUME,(Ft. ³) :0.00494
INITITAL AREA,A _o (Ft. ²):					DRY DENSITY,(Pcf.): 136.9
INITIAL LENGTH,L _o (In.):	3.533		MOISTURE CON	T.,%: <u>9.04</u>	L / D RATIO : 2.01
SPECIMEN NO.	AREA	AXIAL LOAD (LBS.)	COMPRESSIVE STRENGTH (PSI)	STRAIN RATE :	0.05 (IN./MIN.) 1.42 (%/MIN.)
1	0.0168	3449.0			
· · · · · · · · · · · · · · · · · · ·				SPECI	MEN SKETCH AFTER FAILURE
2					
3					
	AVEF	RAGE	1426		
	4				
1		<u></u>		SPECI	MEN SKETCH AFTER FAILURE
2					
3					
	AVEF	RAGE			
	L		I		
1 .					
2				<u>SPECII</u>	MEN SKETCH AFTER FAILURE
3					
	AVEF	RAGE			L]
REMARKS :					
1221 E. D	yer Road,	Suite 105	DNSULTA ; Santa Ana, CA 4) 755-1366	-	UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMEN (ASTM D2938 - 95)
En Contraction Contraction			#-1		

PRO	JECT NO.	: <u> </u>	EMI#05-10	9					DATE :	1	4-Feb-06
PRO	JECT NAM	/IE : <u>710</u>	TUNNEL	S FEASIBI	LITY				TESTED	BY :	RMC
BOR	ING NO. :		06-2	SAN	IPLE NO. / DEPT	ГН : _	14	7' TO 14	8'		
SAM	PLE DESC	RIPTION	S / CLAS	SIFICATIO	DN :ROC	к со	RE / D	EFORME	ED, ALTERED AS MA	RKED	
<u>SOIL</u>	SPECME	N MEASU	REMENTS	<u> </u>							
DIAM	IETER,D _o (I	n.):	1.76		WET WEIGHT,(G	ims.): _	345.	21	VOLUME,(Ft. ³)	:	0.00501
רודואו	TAL AREA,	A _o (Ft. ²) :	0.0169		DRY WEIGHT,(G	ms.): _	326.	59	DRY DENSITY,(Pcf.):	143.9
INITIA	AL LENGTH	H,L₀(In.):	3.555		MOISTURE CON	T.,%: _	5.7		L/D RATIO :		2.02
	DIAL RDG (IN.) 0.01 0.02	ε (%) 0.28 0.56	AREA	LOAD (LBS.) 655.00 1018.00	COMPRESSIVE STRENGTH(PSI) 269 418		1600 1400		0.08 (IN./MIN.)2.25	
	0.03	0.84		1415.00			1400				
	0.04 0.05	1.13 1.41		1825.00 2346.00						o	
	0.05	1.69		2764.00			1200				
	0.07	1.97		3051.00						3	
	0.08	2.25		3265.00	1342		1000				
	0.0842	2.37		3372.00	1386	(ISd)					
Unconfine	-		rrength,q _u		296	AXIAL STRESS (PSI)	800 600 400 200 0		0 0 5 1 1.5 AXIAL STRAIN		2.5 3
		1221 E. D	yer Road,	Suite 105	DNSULTA ; Santa Ana, CA 4) 755-1366		-	С.	UNCONFINE STRENG (AST		F SOILS

PROJECT	NO. :	EMI#05-109)					DATE :	14-Feb-06
PROJECT	NAME : 710	TUNNELS	FEASIB	ILITY_				TESTED BY :	RMC
BORING N	D. :	06-2	SAN	IPLE NO. / DEP	ГН:_	155	5.8' to 15	6.5'	
SAMPLE D	ESCRIPTION	S / CLAS	SIFICATI	ON :	RC	оск с	ORE / DI	ORITE AS MARKED	
SOIL SPEC	MEN MEASL	REMENTS	<u>:</u>						
DIAMETER,I	D _o (In.):	1.765		WET WEIGHT,(G	ims.):	348	.5	· VOLUME,(Ft. ³) :	0.00494
INITITAL AF	EA,A _o (Ft. ²):	0.0170		DRY WEIGHT,(G	ms.): _	338	.0	DRY DENSITY,(Pcf.):	151.0
INITIAL LEN	GTH,L _o (In.):	3.486		MOISTURE CON	T.,%: _	3.1	<u> </u>	L/D RATIO : _	1.98
ELAPSED VERTION TIME DIAL F (MIN.) (IN.	DG ε) (%)	AREA	LOAD (LBS.)	UNCONFINED COMPRESSIVE STRENGTH(PSI)		200 -	N RATE :	0.05(IN./MIN.)1.4	3 (%/MIN.)
0.0	5 <u>1.43</u> 5 1.72		29.50 42.70	12 17					
0.0			55.40	23		180			- A
0.08			69.50	28		160 -			Ø
0.09	2.58		88.30	36		100			
0.10) 2.87		110.40	45		140		Ó	
0.1	3.16		140.20	57				ϕ	
0.12			175.50	72	();;	120		<u> </u>	
0.13			218.20	89	ss (Ps			Ø	
0.14			265.50 280.40	109 115	TRES	100 -			<u> </u>
0.16			302.10		AXIAL STRESS (PSI)			·····	
0.1			322.40		Â	80 -			
0.18	5.16		356.40	146				ϕ	
0.19	5.45		393.20	161		60			
0.20			400.40			40			
0.2			426.60 433.20	174 177		40 -		<u> </u>	
0.212			290.30	117		20 -		0	
0.24			238.40	97				0 0	
						0 (
-) 1	2 3 4 5	6 7 8
								AXIAL STRAIN, E (%)	
						Г		SPECIMEN SKETCH AFTER FA	ILLIRE
Unconfined Col REMARKS :	npressive S	trength,q _u	(psi) =	177					
						L		<u> </u>	
	1221 E. D)yer Road,	Suite 105	DNSULTA ; Santa Ana, CA 4) 755-1366			с.	UNCONFINED CO STRENGTH O (ASTM D216	F SOILS

PROJECT NO. :	EMI#()5-109			DATE :	15-Feb-06
PROJECT NAME : 710	TUNNELS	S FEASIB	ILITY		TESTED BY :	RMC
BORING NO. :	06-2	SAM	IPLE NO. / DEPT	"H:177' TO 178	8'	
LITHOLOGIC DECRIPTI	ON OF TH	E ROCK		ROCK CORE / DIC	ORITE AS MARKED	
SOIL SPECMEN MEASL	REMENTS	<u>S :</u>				
DIAMETER,D _o (In.):	1.769		WET WEIGHT,(G	ms.): <u>350.63</u>	VOLUME,(Ft. ³) :	0.00517
INITITAL AREA,A _o (Ft. ²):	0.0171		DRY WEIGHT,(G	ms.): <u>333.6</u>	DRY DENSITY,(Pcf.):	142.3
INITIAL LENGTH,L _o (In.):	3.633		MOISTURE CON	T.,%: <u>5.1</u>	L/D RATIO :	2.05
SPECIMEN NO.	AREA (FT. ²)	AXIAL LOAD	STRENGTH	STRAIN RATE :	0.05 (IN./MIN.)	1.38 (%/MIN.)
		(LBS.)	(PSI)			
1	0.0171	392.2	159	SPECI	MEN SKETCH AFTER F	AILURE
2					\square	
3						
	AVEF	RAGE	159	· · ·		
1				SPECI	MEN SKETCH AFTER F	AILURE
2						
3						
	AVEF	RAGE				
	.		II			
1				SPECI	MEN SKETCH AFTER F	
2						<u>MEONE</u>
3						
	AVEF	RAGE				
	[<u> </u>			
REMARKS :						
	Т.Т.Т.Т.Т.Т.Т.Т.Т.Т.Т.Т.Т.Т.Т.Т.Т.Т.Т					
1221 Е. Г)yer Road,	Suite 105	DNSULTA ; Santa Ana, CA 4) 755-1366	-	UNCONFINED COMPR OF INTACT ROCK (ASTM D29	CORE SPECIMEN
		, ι ⁻ αλ. (/1				900 - 90j

PRC	JECT NO.	:E	EMI#05-10	9							DA	ATE :		14-F	eb-06	
PRC	JECT NAM	/IE : <u>710</u>	TUNNEL	S FEASIB	LITY						TE	STED	BY :	6	RMC	
BOR	ING NO. :		06-2	SAN	IPLE NO. / DEP	TH : _	197	7.65'	- 198	.25'						
SAM	IPLE DESC	RIPTION	S / CLAS	SIFICATIO	ON :	RC	оск с	OR	E / DI	ORITE A	S MAI	RKED				
SOIL	SPECME	N MEASU	REMENTS	<u>S :</u>												
					WET WEIGHT,(G	Gms.): _	371	.36	_	V	OLUME	E,(Ft. ³)	:	(0.0051	9
INITI	TAL AREA,	A _o (Ft. ²) :	0.0170		DRY WEIGHT,(G	ms.): _	359	.15	-	D	RY DEI	NSITY,(Pcf.):		152.6	
INITI	AL LENGTH	H,L _o (In.):	3.655		MOISTURE CON	T.,%:_	3.	4	-	L	D RA	TIO :			2.07	
ELAPSED TIME (MIN.)	VERTICAL DIAL RDG (IN.)	З	AREA		UNCONFINED COMPRESSIVE STRENGTH(PSI)		STRA		ATE :	0.05		N./MIN.)1	.37	(%/N	lin.)
	0.05	1.37		18.90	8											
	0.10	2.74		81.20	33										0	
	0.15	4.10		256.60	105		350							P /		
	0.18	4.92		452.50	185									ø		
	0.20	5.47		564.10	230		300				_		ø			>
	0.22	6.02		652.30	266											
	0.24	6.57 7.11		735.00 798.40	300 326		250									
	0.28	7.66		856.40	349	(ISc	200					6				
	0.315	8.62		898.60	366	AXIAL STRESS (PSI)						\square				
	0.33	9.03		755.20	308	STRE	200	-								
						XIAL										
	-					A	150					1-				
							100				6					
							100									
							50									
							0	<u> </u>	0							
								0		2	4		6		8	10
											AXIAL	STRAIN	, E (%)			
							Г]
									2	SPECIME	N SKE	TCH A	-IER F	AILUH	<u> </u>	
											R]				
Unconfin	ed Compr	essive St	rength,q _u	(psi) =	366							$\backslash /$				
REMARKS																
		1221 E. D	yer Road,	Suite 105	DNSULTA I ; Santa Ana, CA		-	C.			STR	ENG	τH	OF \$	SOIL	SSIVE S
		Tel: (714)	755-1355	; Fax: (71	4) 755-1366		,					(ASTN	/I D21	66 - (00)	

PROJECT NO. :	EM1#	05 100		<u>1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999</u>	
					DATE : <u>15-Feb-06</u>
PROJECT NAME : 710					TESTED BY :RMC
BORING NO. :					
			ROCK	CORE / WEATHERE	D CONGLOMERATE AS MARKED
SOIL SPECMEN MEASU					
		•			VOLUME,(Ft. ³) : 0.00515
INITITAL AREA, A_o (Ft. ²):		•			DRY DENSITY,(Pcf.): 156.0
INITIAL LENGTH,L _o (In.):	3.649	-			L/D RATIO : 2.07
SPECIMEN NO.	AREA	AXIAL LOAD	COMPRESSIVE STRENGTH	STRAIN RATE :	<u>0.05</u> (IN./MIN.) <u>1.37</u> (%/MIN.)
	(FT. ²)	(LBS.)	(PSI)		
1	0.0170	20779.0	8488	SDECI	MEN SKETCH AFTER FAILURE
2					
3					
		L			
	AVE	RAGE	8488		
1					
				SPECI	MEN SKETCH AFTER FAILURE
2					
3					
	AVEF	RAGE			
1					
- -				SPECI	MEN SKETCH AFTER FAILURE
2					
		-			
3					
	AVEF	RAGE			
REMARKS :					
	D 777 -				
Contraction of the second second			DNSULTAN		UNCONFINED COMPRESSIVE STRENGTH
Control Andrews and Andrews	-		; Santa Ana, CA 4) 755-1366	92700	OF INTACT ROCK CORE SPECIMEN (ASTM D2938 - 95)
			,		

PRO	JECT NO.	: E	EMI#05-10	9				DATE : 15-Feb-06
	JECT NAM				LITY			TESTED BY : RMC
					IPLE NO. / DEP [*]	тн∙	168 7	
						_		BEDDED SILTSTONE AS MARKED
	SPECME					011.00		
					WET WEIGHT,(G	Sms.):	353.3	.39VOLUME,(Ft. ³) :0.00503
	TAL AREA,							2.7 DRY DENSITY,(Pcf.): 150.4
INITI	AL LENGTI	H,L _o (In.):	3.537		MOISTURE CON	T.,%:	3.1	1 L / D RATIO : 2.00
ELAPSED TIME (MIN.)	VERTICAL DIAL RDG (IN.)		AREA	AXIAL LOAD (LBS.)	UNCONFINED COMPRESSIVE STRENGTH(PSI)		STRAII 3000	N RATE :0.05(IN./MIN.)1.41(%/MIN.)
0	0.02	0.57		30.2	12			
	0.04	1.13		64.3	26			
	0.06	1.70 2.26		136.2 313.0	55		2500	
	0.08	2.26		540.0	127 220			
	0.10	3.39		775.0	316			
	0.14	3.96		1009.0	411		2000	
	0.16	4.52		1256.0	512	_		o
	0.18	5.09		1525.0	621	(ISJ)		
	0.20	5.65		1835.0	747	AXIAL STRESS (PSI)	1500	Ö
	0.22	6.22		2191.00	892	AL ST		<u> </u>
	0.24	6.79		2596.00	1057	AXIA		Ø
	0.26	7.35 7.92		3045.00 3512.00	1240 1431		1000	Ø
	0.20	8.48		3990.00	1625		1000	······································
	0.32	9.05		4505.00	1835			Ø
	0.34	9.61		5040.00	2053			<u> </u>
	0.36	10.18		5612.00	2286		500	
	0.38	10.74		6450.00	2627			
	0.4033	11.40		6758.00	2753			
	0.41	11.59		2089.00	851			
								AXIAL STRAIN, E (%)
							Γ	SPECIMEN SKETCH AFTER FAILURE
Unconfin	ed Compr	essive St	rength,q _u	(psi) =	2753			
REMARKS	:							
		1221 E. D	yer Road,	Suite 105	DNSULTA ; Santa Ana, CA 4) 755-1366			C. UNCONFINED COMPRESSIVE STRENGTH OF SOILS (ASTM D2166 - 00)

PRO	JECT NO.	.: <u> </u>	EMI#05-10	9						DATE :	15-Fe	eb-06
PRO	JECT NAM	ME : <u>710</u>	TUNNEL	S FEASIBI	ILITY					TESTED BY	:	RMC
BOR	RING NO.		06-3	SAM	IPLE NO. / DEP	TH : _	202.5	5' TO 20	03.2'			
					ROCK C					TE AS MARKE	ED	
SOIL	SPECME	N MEASU	REMENT	<u>S :</u>								
DIAM	IETER,D₀ (In.):	1.762		WET WEIGHT,(G	Sms.): _	342.9	98	VOL	UME,(Ft. ³) :	0	.00498
		A _o (Ft. ²) :			DRY WEIGHT,(G							
INITI	AL LENGTI	H,L₀(In.):	3.530		MOISTURE CON	T.,%: _	1.63	3	L/C	RATIO :		2.00
	DIAL RDG	STRAIN ε (%)	AREA	AXIAL LOAD (LBS.)	UNCONFINED COMPRESSIVE STRENGTH(PSI)		2500 -	RATE :	0.05	(IN./MIN.)	1.42	(%/MIN.)
	0.02	0.57		4.1	2		2000					
	0.04	1.13		19.9	8							
	0.06	1.70		53.5	22							
	0.08	2.27		116.2	48		2000 -				Ó	
	0.10	2.83		276.0	113							
	0.12	3.40		507.0	208						Ø	
	0.14	3.97		736.0	302						ø	
	0.16 0.18	4.53 5.10		966.0 1201.0	396 493	SI)	1500 -				0	
	0.18	5.67		1455.0	493 597	AXIAL STRESS (PSI)						
	0.20	6.23		1740.0	714	STRE				1		
	0.24	6.80		2050.0	841	(IAL S				Ó		
	0.26	7.37		2380.0	976	A	1000 -			0		
	0.28	7.93		2762.0	1133					ø		
	0.30	8.50		3165.0	1298					ø		0
	0.32	9.07		3580.0	1468					- 0		
	0.34	9.63		3990.0	1636		500 -			Ø		
	0.36	10.20		4405.0	1807							
	0.38	10.76		4860.0	1993				o			
	0.40 0.413	11.42 11.70		5081.0 5123.0	2084 2101		. .	5000	o o			
	0.413	11.90		1830.0	750			ـــــــــــــــــــــــــــــــــــــ		6 8	10	12 14
	<u> </u>				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Ļ	XIAL STRAIN, E	(%)	
								2	SPECIMEN	SKETCH AFTE	K FAILURI	≡
										$\overline{7}$		
Unconfin REMARKS		ressive St	rength,q _u	(psi) =	2101							
		1221 E. D	yer Road,	Suite 105	DNSULTA ; Santa Ana, CA 4) 755-1366		•	C.		ONFINED TRENGT	H OF S	

APPENDIX E

PETROGRAPHIC TESTING

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V1M 3S3 PHONE: 604-888-1323 • FAX: 604-888-3642 email: vanpetro@vanpetro.com Website: www.vanpetro.com

Report for: Bruce A. Schell, Consulting Geologist 3775 Carmel Ave., IRVINE, California 92606 U.S.A.

Report 060204

March 17, 2006

SAMPLES:

A suite of 7 rock samples from the San Gabriel Basin (Project 24-129-1), as numbered below, was submitted for sectioning and petrographic description. Typical portions of each sample were prepared as standard thin sections.

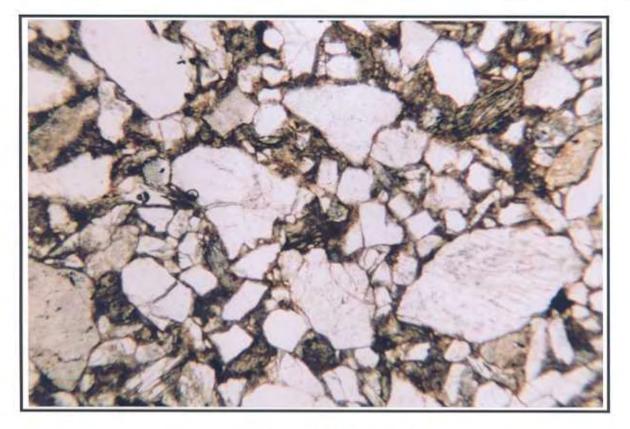
Sample	Bore Hole	Depth (ft)
1	06-2	121.0
2	06-2	125.5-126.0
2 3 4	06-2	138.6-139.0
4	06-2	144.0-144.3
5	06-2	198.2-198.5
6	06-3	173.5
7	06-3	200.4-200.8

SUMMARY:

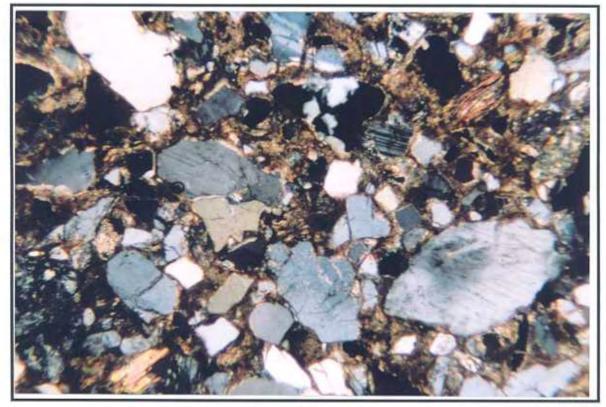
Samples 1 and 6 are arkosic sandstones, composed of angular mineral grains and minor lithic fragments in a dominant size range of 50 - 500 microns. The principal mineral constituents in both samples are plagioclase and guartz, with biotite as a minor accessory. Sample 1 is distinctive in that it also has a high content of carbonate, which forms a cement to the sand grains and also occurs as cross-cutting veinlets. In Sample 6 there is no carbonate; the sand grains occur in close contact, and the only apparent cement is a minor interstital silt component.

Samples 3 and 7 are coarser sediments, rich in lithic fragments and classifiable as arkosic conglomerates. They are similar to the sandstones (Samples 1 and 6) in overall mineralogy and the dominance of angular clasts, but contain, in addition, pebbles ranging up to 1 cm or more in size. Most of these coarser clasts are recognizable as typical quartz diorite, and the finer sandy/silty component as a product of disaggregation of that rock type. Minor accessory proportions of volcanic clasts of probable andesitic composition are also present. These rocks are silt-cemented and devoid of carbonate.

Samples 2 and 5 are mineralogically similar to the sandstones and conglomerates, but their textures suggest that they are not of sedimentary origin. Sample 5, in particular, has the features of a fresh, intrusive-type granodiorite composed of a medium-grained intergrowth of plagioclase and quartz with accessory biotite and hornblende; it is cut by a network of thin fractures and zones of microbrecciation. The texture of Sample 2 somewhat resembles that of the conglomerates, but is believed to represent the result of cataclastic deformation of quartz diorite. It shows a crude foliation defined by zones of resistant remnants, which grade to intervening areas of more or less finely comminuted material.


These two samples could represent the parent material from which the arkosic sediments of the suite were derived.

Sample 4 is of quite different mineralogy from the others, being a fine-grained, sparsely porphyritic igneous rock of volcanic or subvolcanic origin. It shows intersertal texture, and is of andesite to basalt composition. Somewhat similar rocks are represented as occasional clasts in the sandstones and conglomerates of the suite.


Individual sample descriptions and a suite of illustrative photomicrographs are attached.

J.F. Harris Ph.D.

Plane Polarized

Cross Polarized Figure E-1. Photomicrograph of Sample 1: Boring 06-2, 121 Feet

SAMPLE 1: 06-2 121 ft CARBONATE-CEMENTED ARKOSIC SANDSTONE

Estimated mode

Clasts

Ma

	Quartz	22	
	Plagioclase	35	
	Chert/Felsite	2	
	Biotite	2	
	Carbonate	2	
trix			
	Carbonate	30	
	Limonite	trace	

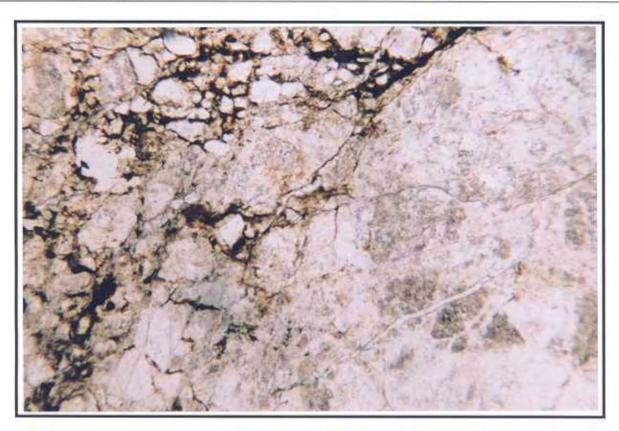
Veinlets

Car	bon	a	te	7
Li	mor	i	te	trace

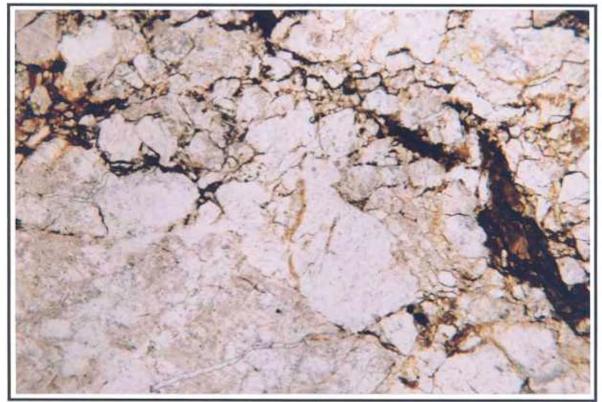
The macroscopic appearance of this rock (see off-cut) is that of an arenaceous sediment.

Thin section examination shows that the constituent clasts consist of mineral grains of quartz and plagioclase plus minor carbonate, minor biotite, and lithic fragments. They range in size from 1 mm down to 50 microns or so, and are mostly sharply angular in shape.

The freshness of most of the plagioclase clasts is a striking feature.


The clasts are mainly equidimensional, and there is no recognizable oriented fabric. This random orientation is true also of the scattered flakes of biotite which are a minor accessory.

A few of the coarser clasts are polygranular, and are recognizable as fragments of apparent quartz diorite. Other lithic clasts include minutely microgranular rocks of felsitic character, and carbonate rocks.


The various clasts typically show rather loose packing, and are seldom seen in contact. They are now cemented by an abundant matrix of fine-grained, brownish carbonate. There is some evidence of marginal replacement of clasts by the carbonate cement.

The sectioned area is traversed by multi-directional veinlets of carbonate, ranging in thickness from 0.1 - 1.5 mm. A few of these are coated with films of limonite, which also occurs as a localized, faint, diffuse staining in the body of the rock

The carbonate veinlets are strongly reactive to 10% HCl, indicating calcitic composition. Reaction with the carbonate clasts and cement is more subdued, and these may include a component of dolomite or ankerite.

Plane Polarized

Plane Polarized Figure E-2. Photomicrograph of Sample 2: Boring 06-2, 125 Feet

Plagioclase	58	
Quartz	25	
Biotite	5	
Carbonate	12	
Limonite	trace	

The off-cut corresponding to the sectioned portion of this sample differs strongly in macroscopic appearance from that of Sample 1. It is more heterogenous; the average clast size is larger; and there is a perceptible foliation. The latter is apparently defined by the parallel orientation of coarser clasts or aggregates thereof, alternating with finer material.

Thin section examination confirms the textural heterogeneity, and suggests that this rock may be of cataclastic rather than clastic character, representing a strongly crushed and brecciated granitoid rock of quartz diorite composition. The degree of crushing shows small-scale variations, with relatively coherent protolithic remnants up to 1 cm or so in size, occurring within finely granulated material of grain size ranging down to 10 - 100 microns (see photos).


An alternate interpretation would be that this is a form of conglomerate, with coarse pebbles cemented by a finer wacke-like component. However, the outlines of the coarser lithic remnants show an apparent partial gradation to the finer material which seems less consistent with a conglomerate character than with the crushed quartz diorite model (compare photos with those of Samples 3 and 7).

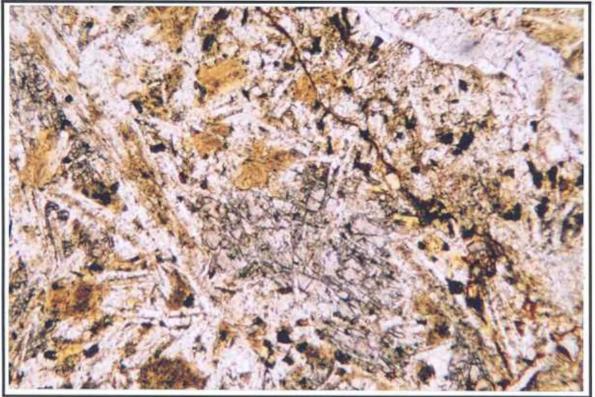
The more finely comminuted areas have a matrix/interstitial phase which apparently consists of a mixture of minutely foliaceous biotite and earthy limonite.

Carbonate is abundant in some areas of the rock. It occurs as small, random pockets in the finer areas, and as swarms of veinlets cutting some of the coarser, clast-like remnants. In addition, one corner of the slide incorporates an irregular segregation of finely granular carbonate which may be of replacement origin (incorporating what appear to be pseudomorphed clasts). This segregation includes open vugs fringed by sparry carbonate.

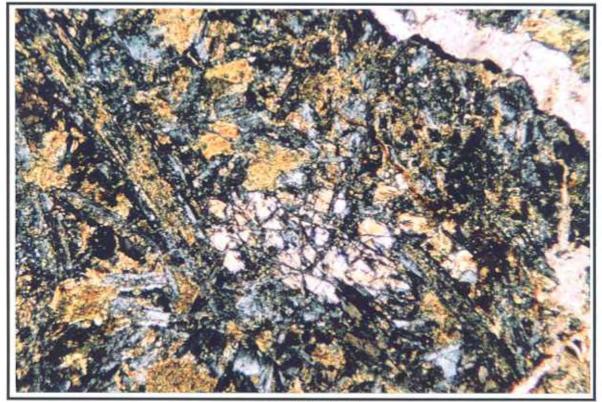
Plane Polarized

Cross Polarized Figure E-3. Photomicrograph of Sample 3: Boring 06-2, 139 Feet

Quartz 35 Plagioclase 57 Sericite 3 Biotite 5 Carbonate trace Limonite trace


The macroscopic appearance of the off-cut of this sample is intermediate between that of Sample 1 and Sample 2. It has the look of a poorly sorted clastic rock, though with a wider size range and greater mean clast size than Sample 1. It lacks the oriented fabric and altered look of Sample 2.

Thin section examination shows that clasts are much better defined than in Sample 2, and appear to represent sub-rounded pebbles, ranging in size from 1 - 8 mm or so, set in a finer sandy/silty clastic matrix of grain size 10 - 500 microns (see photos).


The coarser pebbles are clearly recognizable as typical intrusivetype quartz diorite, consisting essentially of an anhedral intergrowth of mildly sericitized plagioclase and quartz on a scale of 0.2 - 2.0 mm. Brown biotite is a minor accessory, and there is sometimes a little carbonate as hairline veinlets and intergranular pockets.

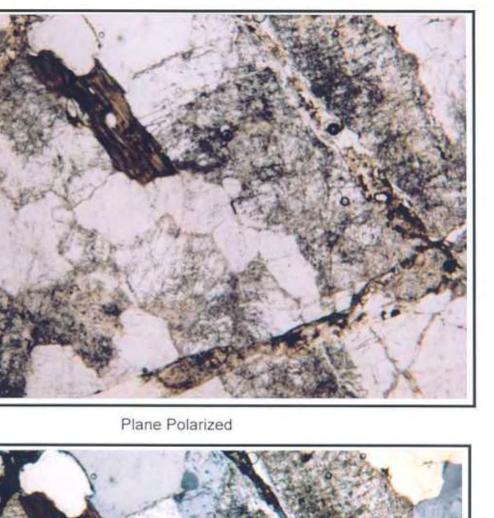
The fine matrix phase appears to show similar mineral proportions, consistent with a finely disaggregated quartz diorite. It is devoid of the carbonate cement which is a prominent constituent in Sample 1.

A little limonite delineates pebble outlines and fills hairline fractures.

Plane Polarized

Cross Polarized Figure E-4. Photomicrograph of Sample 4: Boring 06-2, 144 Feet

Pla	agioclase	50
	Sericite	trace
	Pyroxene	7
Alter	ed glass	38
Carbonate	veinlets	5
	Limonite	trace


The macroscopic appearance of this sample (see off-cut) is that of a soft, altered rock lacking recognizable clastic or fragmental character,

Thin section examination confirms that it is something quite different from the other rocks of the suite. It consists of a meshwork intergrowth of slender laths of plagioclase, 50 - 100 microns in length, and a brown interstitial phase having the appearance of altered mafic glass. The latter is mainly cryptocrystalline, but locally shows a minutely felted texture.

Small granular clumps of pale brown pyroxene are a widespread minor accessory. There are also sparsely scattered, coarser phenocrystic bodies of partially sericitized plagioclase, pyroxene, and what was probably once hornblende.

The sectioned area is traversed by multidirectional veinlets of sparry carbonate, 0.1 - 1.0 mm in thickness. These are often more or less strongly stained by limonite.

The mineralogy, and the intersertal, sparsely porphyritic texture of this rock clearly indicate that it is a mafic igneous rock of dioritic to basaltic composition.

Cross Polarized Figure E-5. Photomicrograph of Sample 5: Boring 06-2, 198 Feet

Quartz 28 Plagioclase 65 Sericite 3 Biotite 3 Hornblende 1 Epidote trace Limonite trace

The off-cut corresponding to the sectioned area of this sample shows extensive pitting, suggesting altered, poorly coherent character.

The thin section examination contradicts this impression, revealing that the sample is actually a rather fresh granitoid igneous rock of typical intrusive textural aspect, having the composition of quartz diorite.

It consists essentially of an anhedral intergrowth of quartz and mildly sericitized plagioclase, on a scale of 0.2 - 3.0 mm. Minor mafic accessories are biotite (somewhat altered) and lesser hornblende (generally fresh).

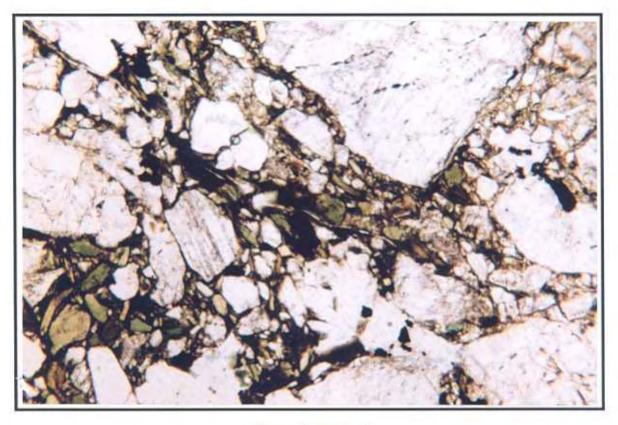
The rock is cut by a network of sharply defined, thin fractures sometimes filled with finely brecciated material, and/or coated by limonite. This feature is probably the cause of the blocky incoherence and pitting observed in the off-cut.

Plane Polarized

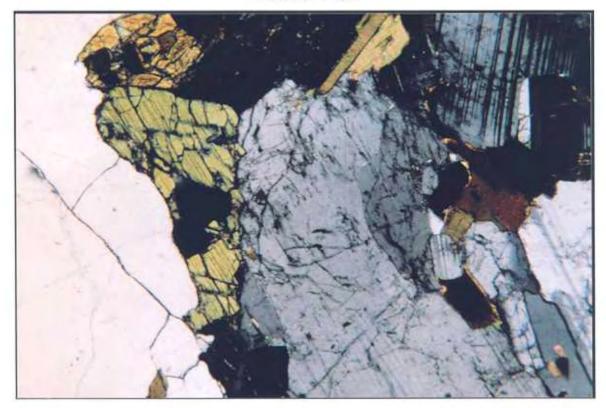
Cross Polarized Figure E-6. Photomicrograph of Sample 6: Boring 06-3, 173.5 Feet

Quartz 24 Plagioclase 60 Sericite 2 Biotite 10 Hornblende 2 Epidote trace Siltstone) 2 Felsite)

The off-cut of this sample closely resembles that of Sample 1.


Thin section examination reveals that, it is an arkosic sandstone or wacke of similar overall grain size to Sample 1. However, it differs from that sample in that it is devoid of carbonate cement (and carbonate clasts). The constituent sand grains occur in close contact - the only recognizable cementing phase being minor local development of silt-sized material.

The overall composition also differs somewhat from Sample 1. The ratio of quartz to plagioclase is lower, and the proportion of biotite substantially higher. In addition, a minor component of hornblende is recognizable in the present sample


The bulk of the clasts are silt to fine sand grains in the 50 - 500 micron size range. However, there are also scattered coarser clasts (plagioclase crystal fragments, and lithic fragments of quartz diorite) up to 2.0 mm in size. As in Sample 1, grain shapes are typically sharply angular to sub-angular.

The plagioclase grains range from fresh to partially sericitized. The accessory mafics are typically fresh.

The accessory biotite in this rock exhibits a very weak preferred orientation.

Plane Polarized

Cross Polarized Figure E-7. Photomicrograph of Sample 7: Boring 06-3, 200.5 Feet

Plagioclase	52
Quartz	22
Biotite	13
Hornblende	7
Sericite	1
Andesitic clasts	5

It is clear from the macroscopic features of the off-cut that this sample is a coarse-grained clastic rock. About 50% of the sectioned area is occupied by part of a large clast of quartz diorite >3.5 cm in size. In the remainder of the slide, the clasts show a wide size range from 8 mm down to about 0.02 m (20 microns).

The fragments making up this rock mostly show partial rounding, and their mineralogy suggests that the majority represent various degrees of disaggregation of the quartz dioritic lithotype exemplified by the coarsest clast.

The latter consists essentially of an anhedral intergrowth of quartz and fresh plagioclase in a grain size range of 0.2 - 5.0 mm. Biotite and hornblende, closely associated as clumps and grains up to 1.5 mm in size, are the principal accessories. Opaque (Fe/Ti) oxides and traces of apatite are the remaining constituents. All minerals are markedly fresh.

The smaller clasts in this rock are intergrowths of the above minerals or disaggregated mineral grains therefrom. The rock is tightly self-cemented, with progressively finer material, down to the finest silt, packed interstitially between the gravel and coarse sand-sized clasts.

A minor proportion of the clasts are recognizable as fragments of felsitic volcanic material. One example in the sectioned area is a relatively large (1 cm) pebble of a microlitic andesite containing small phenocrysts of biotite and hornblende. This is of similar general composition to the lithotype represented by Sample 4.

APPENDIX F

SLAKE DURABILITY TESTING

Slake Durability Test for Weak Rock (in accordance with ASTM D4644)

Test Equipment

The samples are reduced to the required size using a hammer and anvil or a point load tester. The samples are weighed with a PC2200 Mettler precision scale, and the samples are dried in an Imperial III Lab Line oven. The slake durability test apparatus was built by GTU following the specifications in the ASTM test procedure.

Test Procedure

The rock sample is first broken down into pieces with weights between 40 and 60 grams. Then 10 of these pieces are collected resulting in a total sample weight of 450-550 g. A photograph is then taken to record the initial appearance of the sample.

The slake apparatus drum is weighed and the sample is added to the drum to obtain a collective weight. The sample is dried in the drum for greater than 16 hr, and then reweighed to obtain the initial water content and the initial dry weight of the sample.

The drum is placed in the drive apparatus and water added to the appropriate level (0.8 inches from the drum axis). Then the drum is rotated at a rate of 20 rpm for a period of ten minutes. The drum is removed and dried in the oven for greater than 16 hr. to obtain the first cycle dry weight of the sample.

The sample and drum is reinstalled in the drive apparatus and the process repeated. After the second drying and weighing, the final condition of the sample is recorded with a photograph.

The classification of the material (Type I being a relatively unaltered material, Type II being a sample which has degraded somewhat leaving both large sample pieces and small chips, or Type III being a sample which has slaked to the extent that no large pieces remain) is determined after the second cycle. The slake durability index is calculated as the dry weight following the second abrasion cycle divided by the initial dry weight (times 100).

Boring No.	Run No.	Depth (ft)	Rock Type	Slake Durability Index (%)
06-1	6	160 to 161	Weak, laminated (cemented) Siltstone	2.5
06-1	15	199 to 199.9	Siltstone-Claystone	26.7
Note: See photographs on next two pages showing rock samples prior to and after testing.				

Table E-1.	Slake Durability Test Results
------------	-------------------------------

DATA SHEET Slake Durability Test (ASTM D4644)

Date: 3/7 - 10/01Technician: A, B coClient : Earth : #218 - 710 Tunnels Feasibility Job Sample ID: 06-1-160 (Boring 16-1) Sample Depth: 160-161 grayish tan laminated siltstona Sample Description: // ...+ - alternatively could be classified , comented Very weekla weakly came ted wilt. Friable and easy to Greak wit e Finger Sample Description Following the Test: <u>Gre media Site roundad</u> second small \$14" disc shaped chips (TYPEII) pieces plus : 1503.58 Empty Drum Weight # 2 Initial Wet Sample Weight (w/drum) : 2023.7 V Initial Dry Sample Weight (16hr@110C) : 1900.20 Weight of water : 123.5 Water content : 31,1% RUN 1 RUN 2 RUN 3 Water Temperature 27° 30 before (C): after (C): 26 27" Dry Sample Weight 1557.0 1513,6 (w/drum after 10 min of tumbling @20 rpm) Initial dry weight (W_i): <u>396.7</u>

Final dry weight (W_i) : 3.42.7Final dry weight (W_i) : 10.1Slake Durability Index $(I_d = W_f/W_i \ge 100)$: 2.5%

DATA SHEET Slake Durability Test (ASTM D4644)

Client : Earth Mechanics Job : #2/8 -7/0 Tunnels Feesibility Sample ID: 06-1-199 (Boring 06-1) Sample Depth: 199-199.9 Sample Description: Dar's gray layered clayer Siltstone Strenge than 06-1-160, but you can still brank it by hand, Sample Description Following the Test: Mast pieces remained interest Cast Rough with several smaller reduced in volume. broke-off pieces, (YPEI) : 1534.9 8 : 2071.2 8 Empty Drum Weight #3 Initial Wet Sample Weight (w/drum) Initial Dry Sample Weight (16hr@110C) Water content 22,5% RUN 2 RUN 1 RUN 3 Water Temperature before (C): 270 after (C): Dry Sample Weight (w/drum after 10 min of tumbling @20 rpm)

Initial dry weight (W_i) : <u>437.8</u> Final dry weight (W_f) : <u>1/(...8</u> Slake Durability Index $(I_d=W_f/W_i \ge 100)$: <u>26.7%</u>

LAW/CRANDALL, INC.

geotechnical, environmental & construction materials consultants

VOLUME 2

DRAFT REPORT

GEOTECHNICAL INVESTIGATION

PROPOSED METRO PASADENA LINE

UNION STATION IN LOS ANGELES TO EAST OF

SIERRA MADRE VILLA AVENUE IN PASADENA, CALIFORNIA

FOR THE

LOS ANGELES COUNTY TRANSPORTATION COMMISSION

(LACTC)

(L92045.AE4)

FEBRUARY 26, 1993

APPENDIX B LABORATORY TESTING PROGRAM

<u>GENERAL</u>

÷ :

The laboratory testing program was directed toward a quantitative determination of the physical properties of the soils and bedrock materials encountered along the proposed alignment. Each principal geologic unit was investigated to determine the significant properties of the materials. With the exception of the corrosivity testing and water chemical testing, the testing was performed within the Law/Crandall laboratory in Los Angeles. California.

The laboratory program included testing of undisturbed samples and recovered disturbed samples, as well as tests on bulk materials. The undisturbed samples in brass rings were placed in plastic bags in the field and stored in sealed cans. The recovered disturbed samples and bulk samples were stored in plastic bags.

The test procedures used for the various tests followed ASTM standards or accepted practice. The laboratory test procedures are discussed below.

MOISTURE CONTENT

Moisture contents of the undisturbed soil samples were determined in accordance with ASTM Designation D2216-90. Samples were tested shortly after they arrived at the laboratory. The results of the tests are shown to the right of the boring logs in Appendix A.

DRY DENSITY

The dry density of selected undisturbed samples was obtained by carefully weighing a sample of known volume after oven drying, and dividing the dry weight by the volume of the sample. The results of the tests are shown to the right of the boring logs in Appendix A.

DIRECT SHEAR TESTS

Direct shear tests were performed on selected undisturbed samples. The testing procedure was in accordance with ASTM Designation D3080-90. The tests were performed at field and increased moisture contents and at surcharge pressures equal to the existing overburden pressures. Selected samples were tested at an increased surcharge pressure to provide more complete data. Remolded samples, compacted to 90% at optimum moisture content, were prepared for direct shear tests; these samples were tested at optimum and increased moisture contents and at different surcharge pressures. Several of the bedrock samples were soaked for 3 days and purposely cut along the shear plane prior to testing. All of the samples were tested at a constant strain of 0.05 inches per minute. The yield-point values determined from the direct shear tests are presented on Plates B-1.1 through B-1.9. Direct Shear Test Data.

TRIAXIAL SHEAR TESTS

Unconsolidated, undrained triaxial compression (UU) tests were performed on selected undisturbed samples. The testing procedure was in accordance with ASTM Designation D4767-88, with some modification of the loading sequence for a majority of the samples tested. The samples were tested, under a given confining pressure, and a cyclic sequence of loading and unloading was made on each sample prior to failure to better define the stress-strain properties of the sample. All samples were tested at field moisture content and at a strain rate of about 0.02 inch per minute. The results of the triaxial compression tests are presented on Plates B-1.10 through B-1.13, Triaxial Shear Test Data.

CONSOLIDATION TESTS

One-dimensional consolidation tests were performed on selected undisturbed samples to determine the consolidation characteristics of the soils. The tests were performed in accordance with ASTM Designation D2435-80. Vertical loads were instantaneously applied in increments, and the rate of vertical consolidation was measured for each increment. Each load was allowed to consolidate the sample for at least 12 hours before

a new increment was added. Water was added to selected samples during the tests to illustrate the effect of moisture on the compressibility; the other samples were tested at field moisture content. Remolded samples (compacted to 90% at optimum moisture content) were also tested. The results of the consolidation tests are presented on Plates B-2.1 through B-2.47, Consolidation Test Data.

COMPACTION AND CALIFORNIA BEARING RATIO TESTS

The optimum moisture content and maximum dry density of the on-site soils and bedrock materials were determined by performing compaction tests on selected bulk samples. The tests were performed in accordance with ASTM Designation D1557-78. This method of compaction uses a 1/30 cubic-foot mold, in which each of five layers of soil is compacted by 25 blows of a 10-pound hammer falling 18 inches.

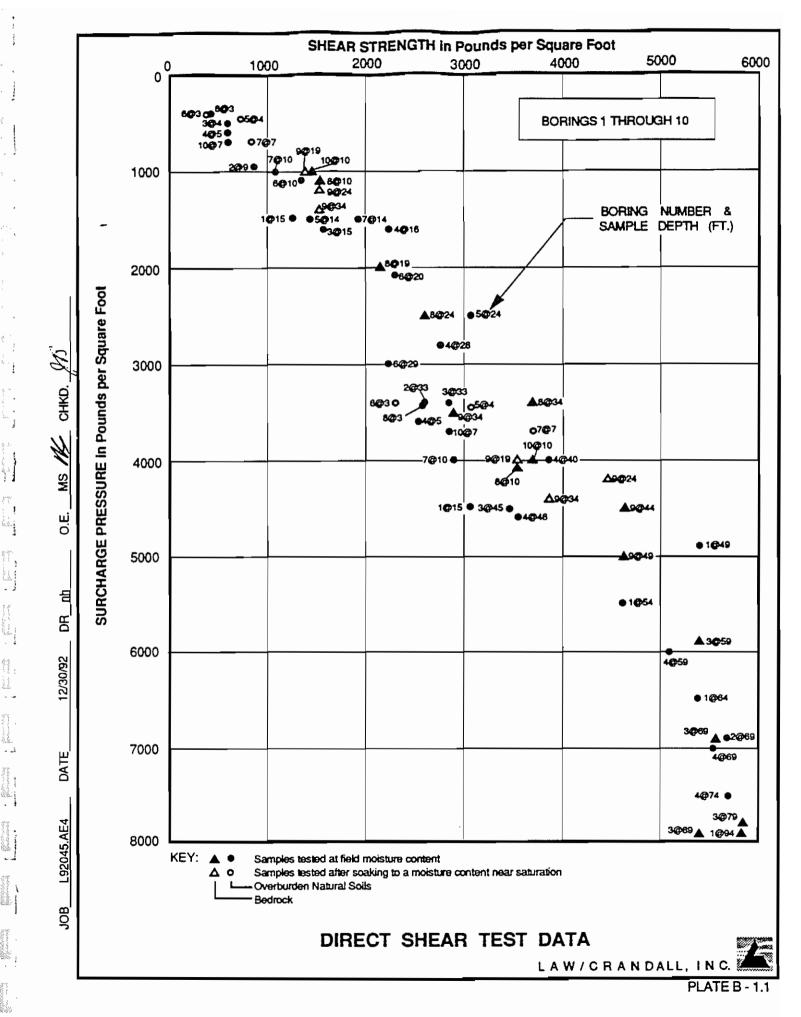
After completion of the compaction tests, California Bearing Ratio tests were performed on 13 of the samples in accordance with the ASTM Designation D1883-73 method. The results of the compaction and California Bearing Ratio tests are presented on Plates B-3.1 through B-3.6, Compaction Test Data, and on Plates B-4.1 through B-4.5, Compaction and C.B.R. Test Data.

EXPANSION INDEX TESTS

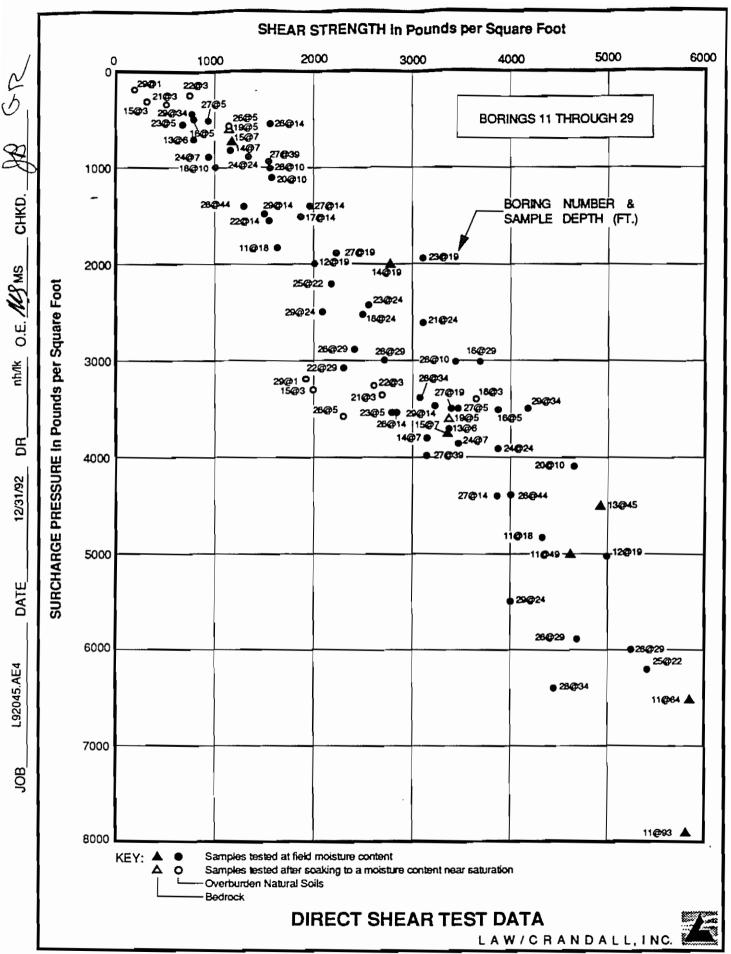
The Expansion Index of the on-site soils and bedrock materials was determined on selected samples in accordance with the ASTM Designation D4829-88 method. The results of the tests are shown on Plate B-5.1 through B-5.3, Expansion Index Test Data.

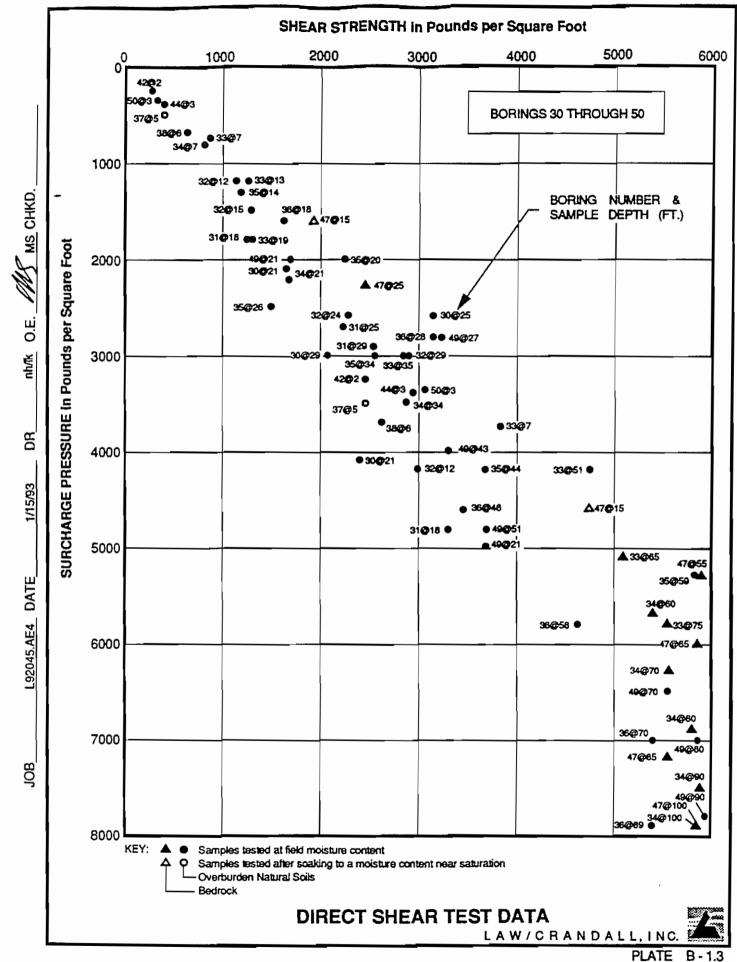
PARTICLE SIZE DISTRIBUTION

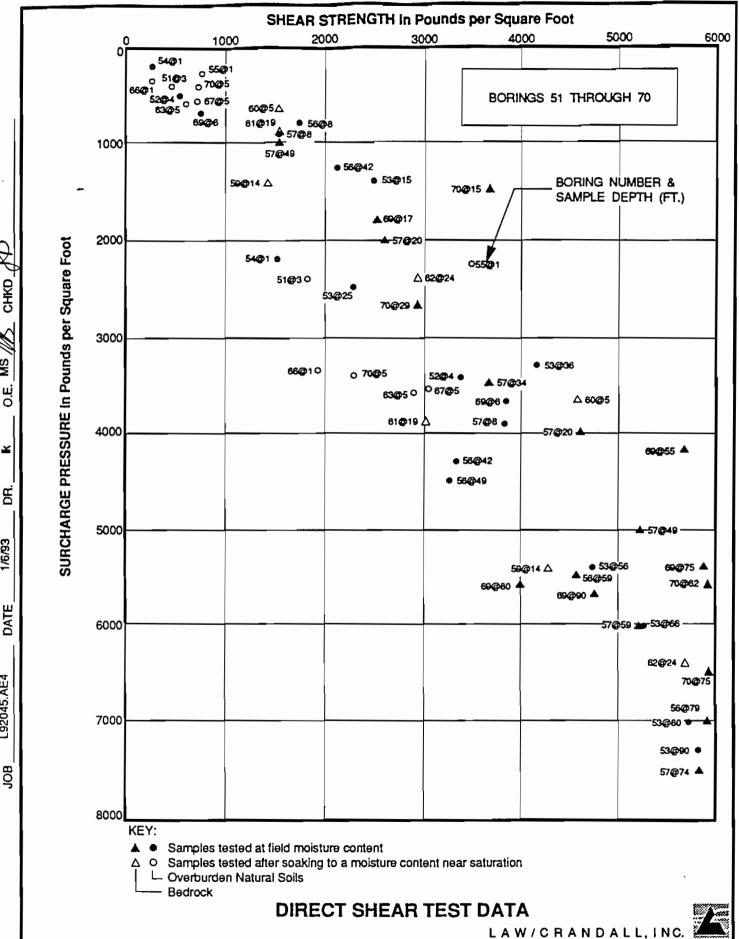
Tests were performed to determine the particle-size characteristics and assist in classification of soils. Sieve analyses were conducted in accordance with ASTM Designation D422-63 on a portion of a sample retained on the No. 200 sieve. Hydrometer tests were performed in accordance with the ASTM procedure on a portion of samples containing a large percentage of soil particles that passed the No. 200 sieve.

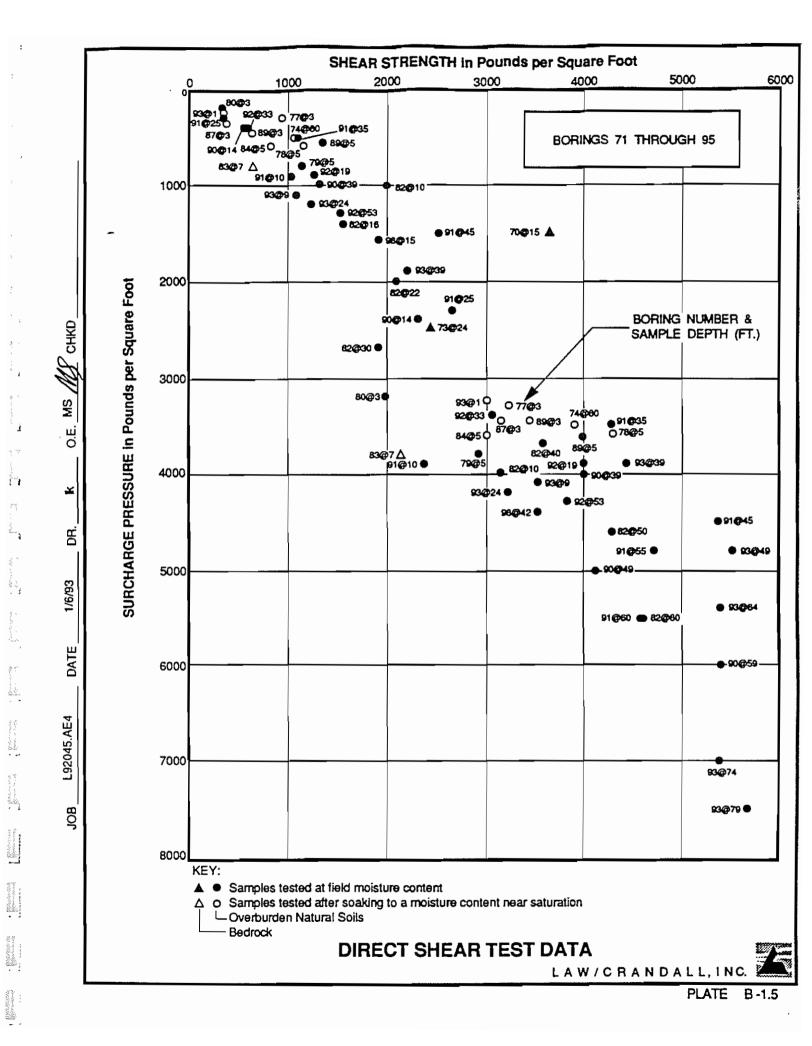

The results of these analyses are presented in the form of particle size distribution curves on Plates B-6.1 through B-6.11. Particle Size Distribution. and on Plate B-6.12. Percent Passing No. 200 Sieve.

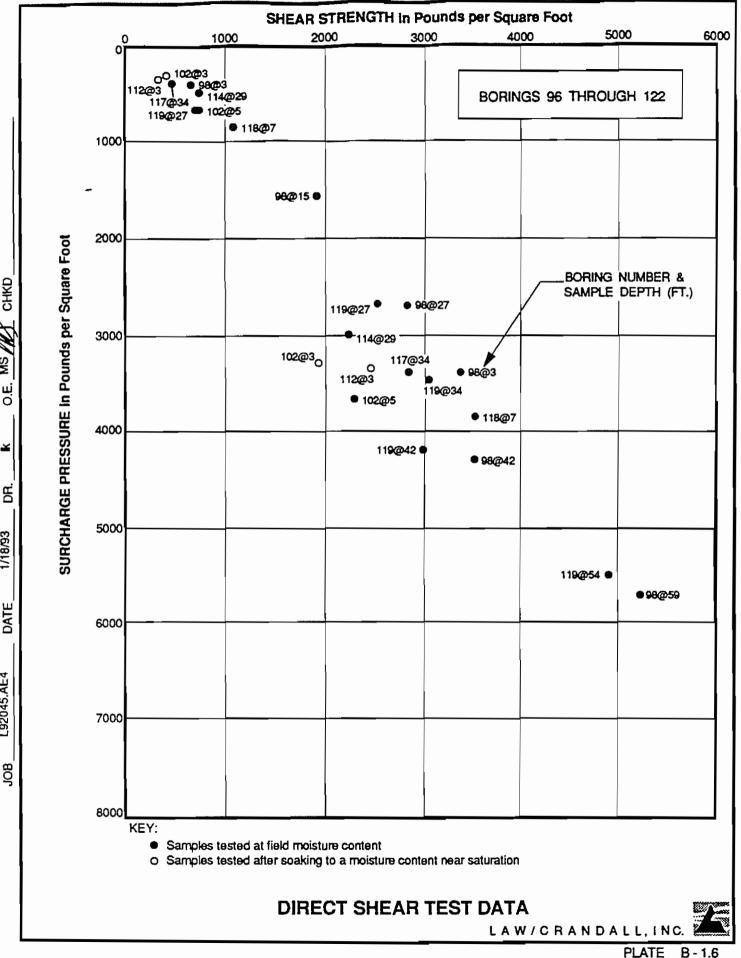
ATTERBERG LIMITS TESTS

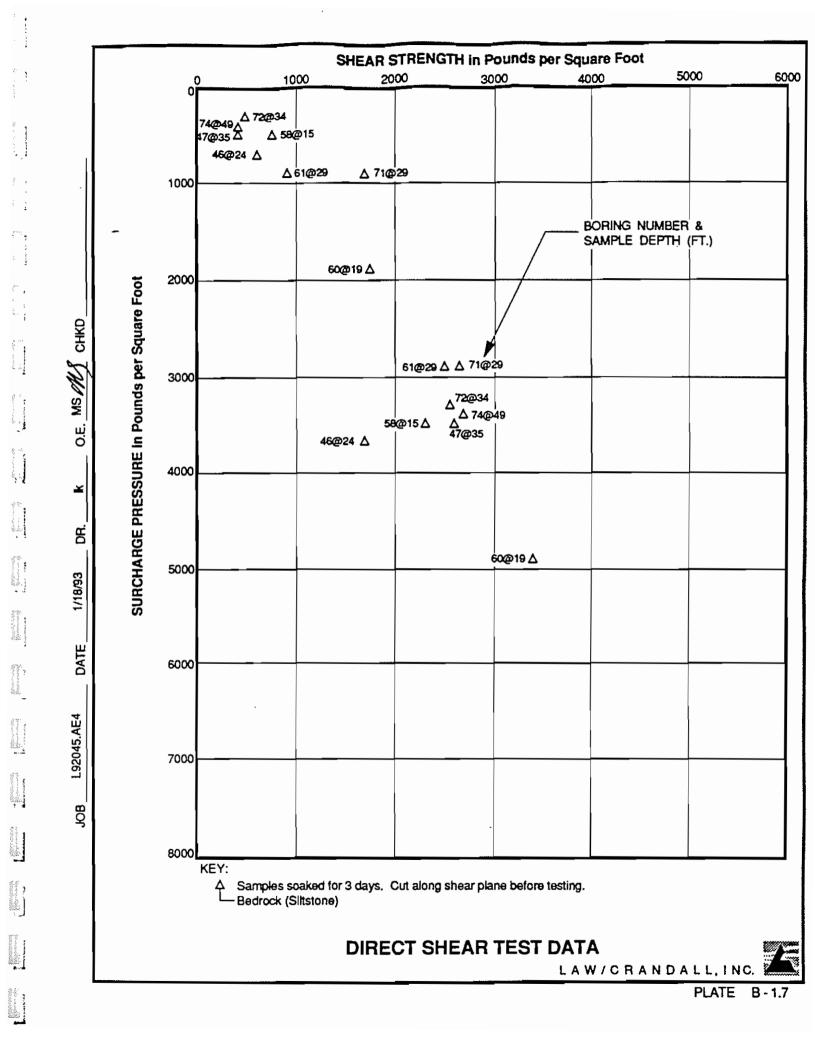

To aid in classification of the soils and to define the plasticity characteristics of the materials, Atterberg Limits tests were performed to determine the liquid limit and plastic limit of selected samples. The testing procedure was in accordance with ASTM Designation D4318-83. The results of the tests are shown on the boring logs in Appendix A.

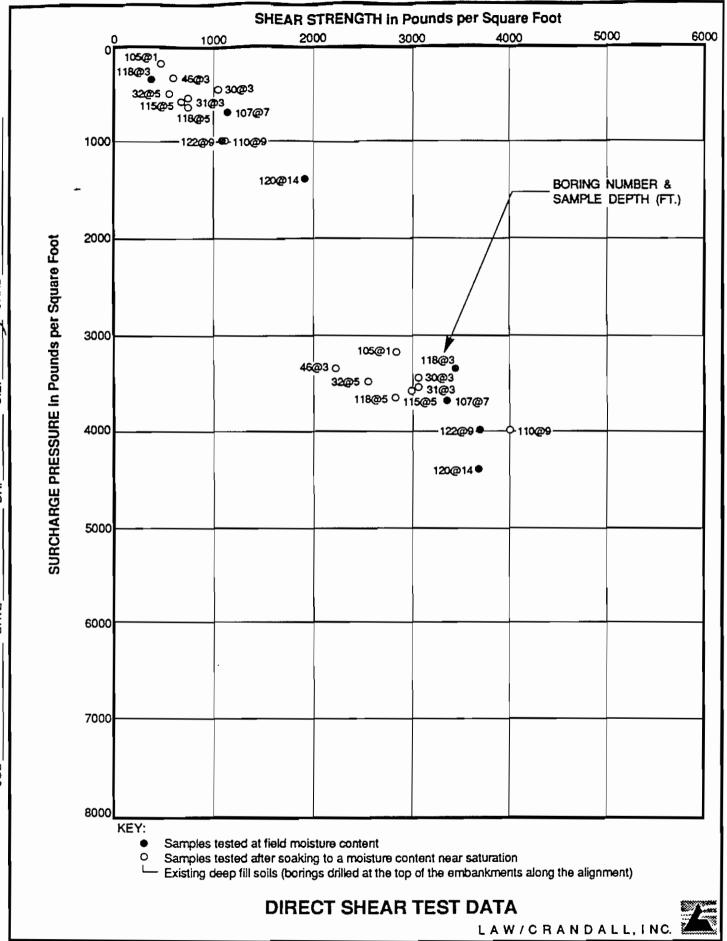





Barris and alerer -Service and أسر م




50 C

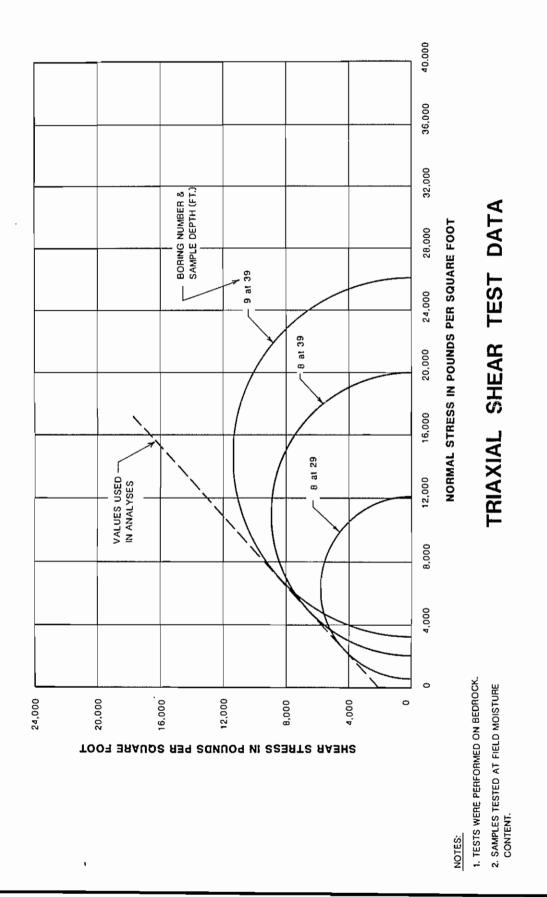


O.E. MS CHKD ¥ Ц Н 1/18/93 DATE L92045.AE4

JOB L92045. AE4 DATE 1/18/93 DR. k O.E. MS AC CHKD

PLATE B-1.8

÷.,

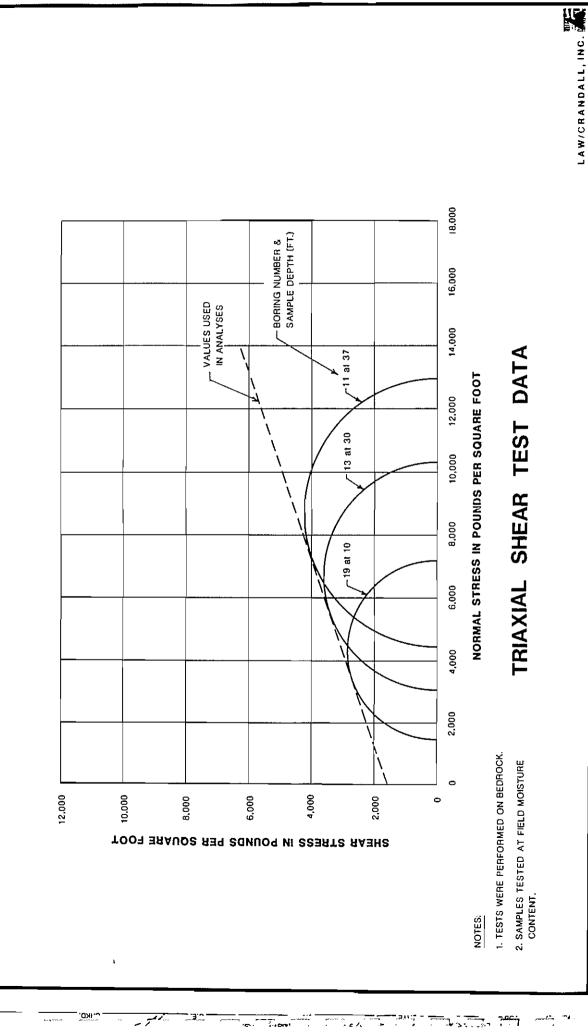

₫¥.

~ .

PLATE

LAW/CRANDALL, INC.

IKO


, Gi

.....

.

..

à, $\langle \hat{\gamma} \rangle$ ŝà den mult Maria - 12 V Particular Solution

, ...

and the second

Second and second

Autoria da Maria Autoria da Maria

Same and

All and the second

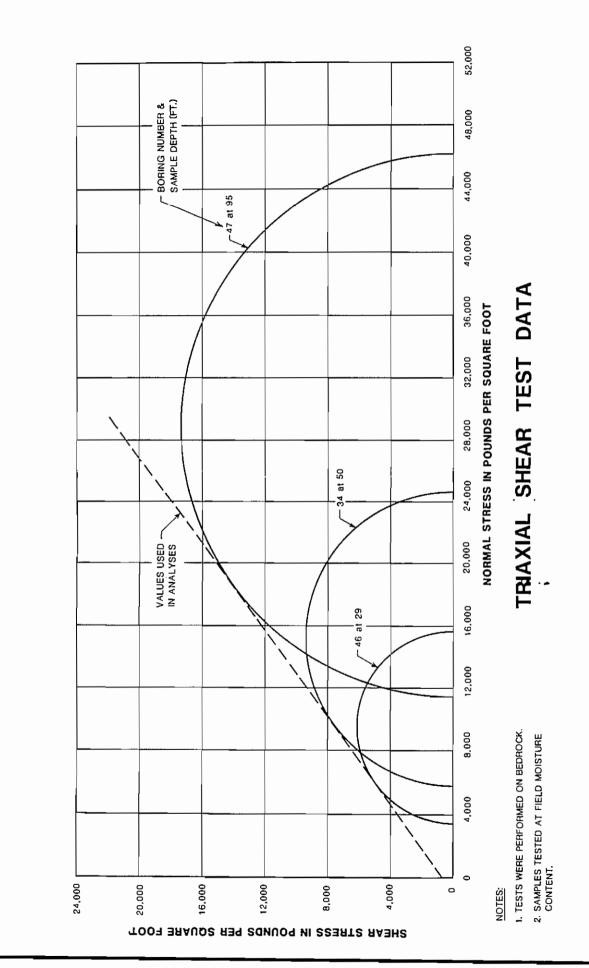
a., 4.000.00

<u>. аж</u>...

- 7

PLATE B-1.11

PLATE B-1.12


LAW/CRANDALL, INC.

100

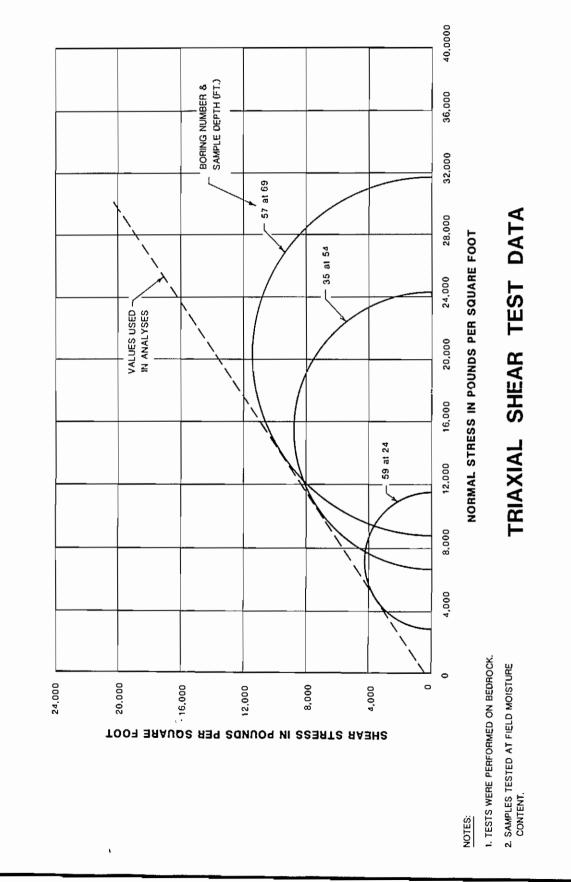
⊒l¥î ----

HU - -----

7. ----

CHKD'

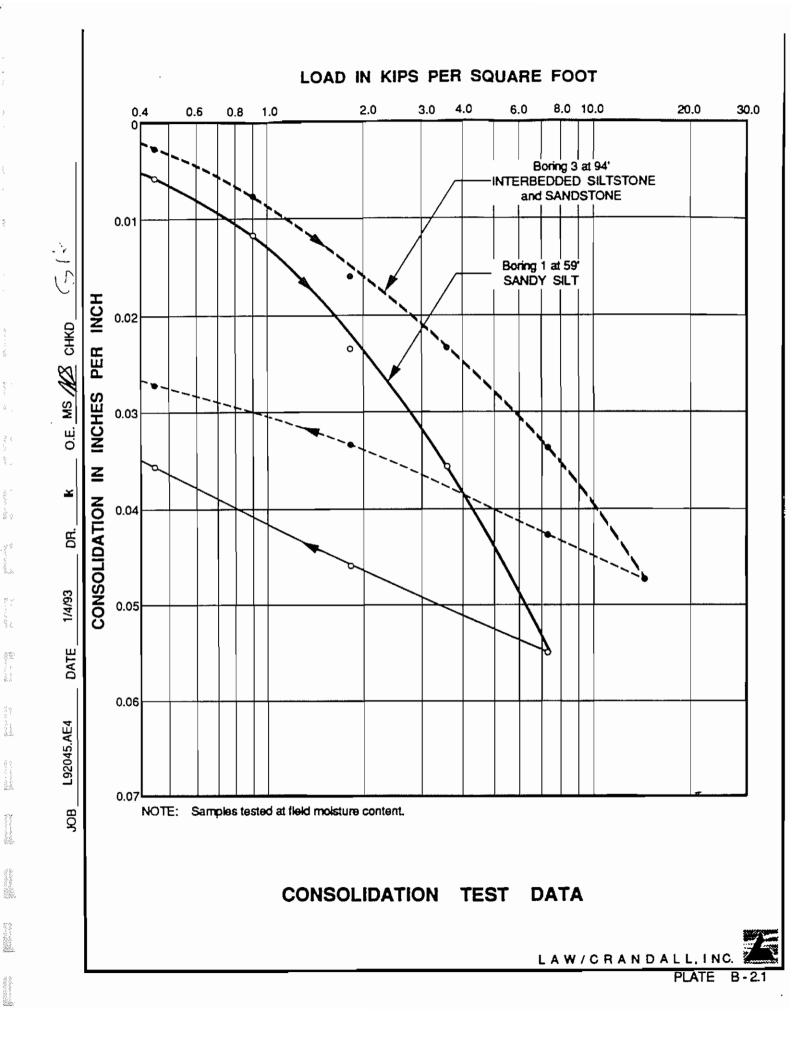
511

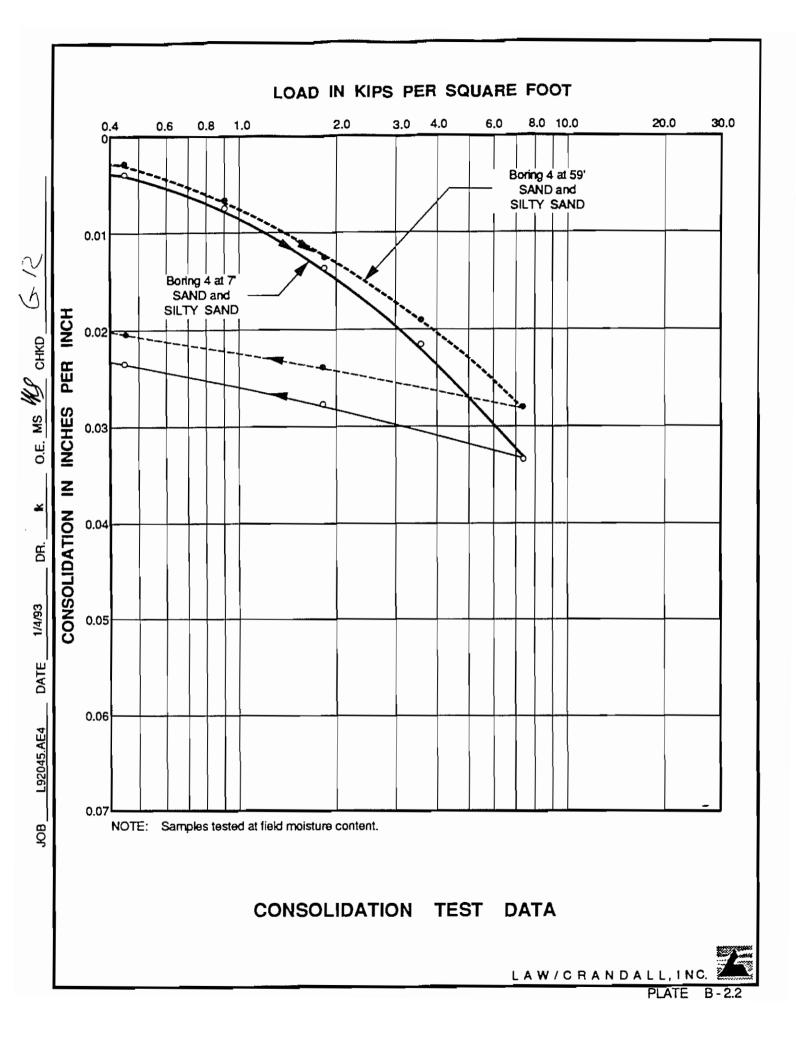

ΩΈ

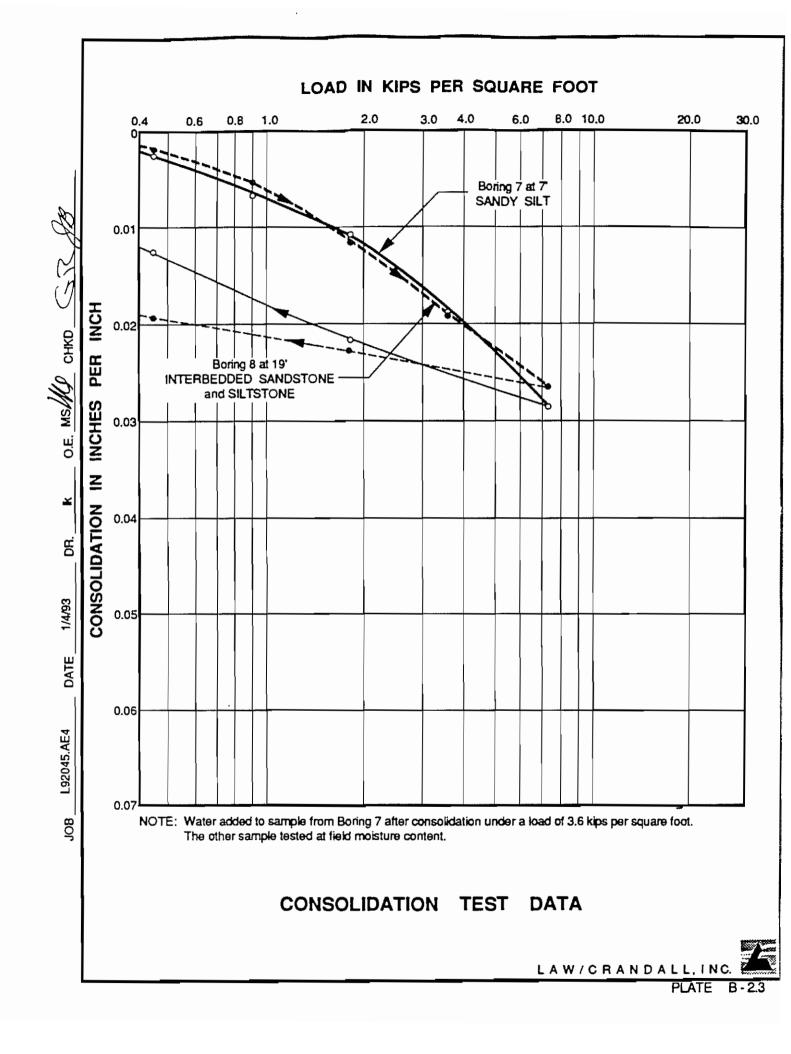
And the second State of the second Moundary Color Converte Converte

-1---- ;

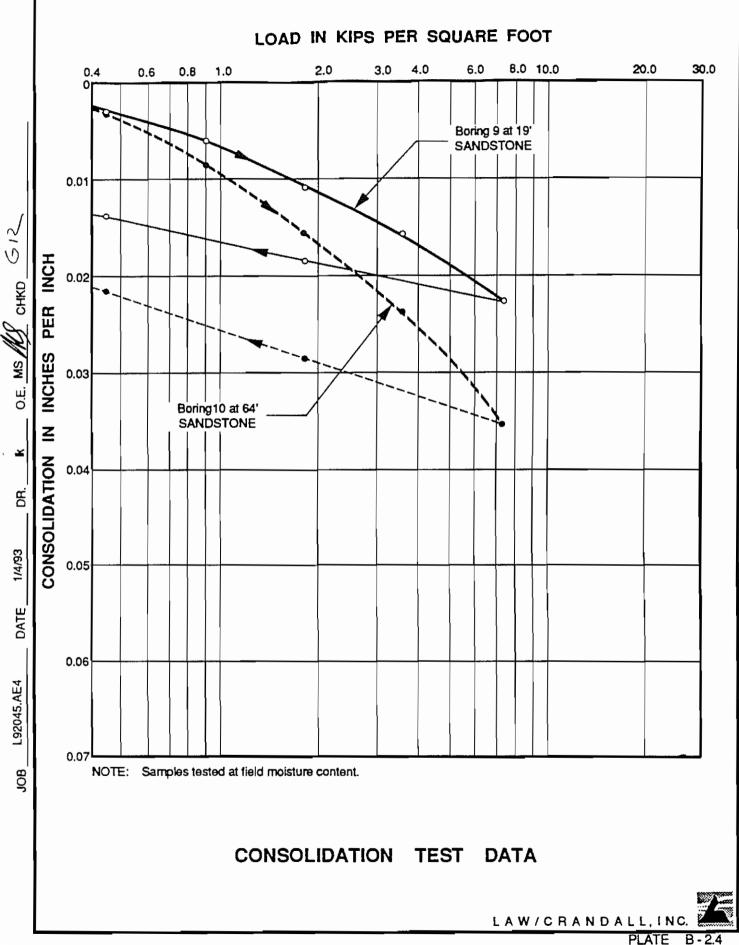
2

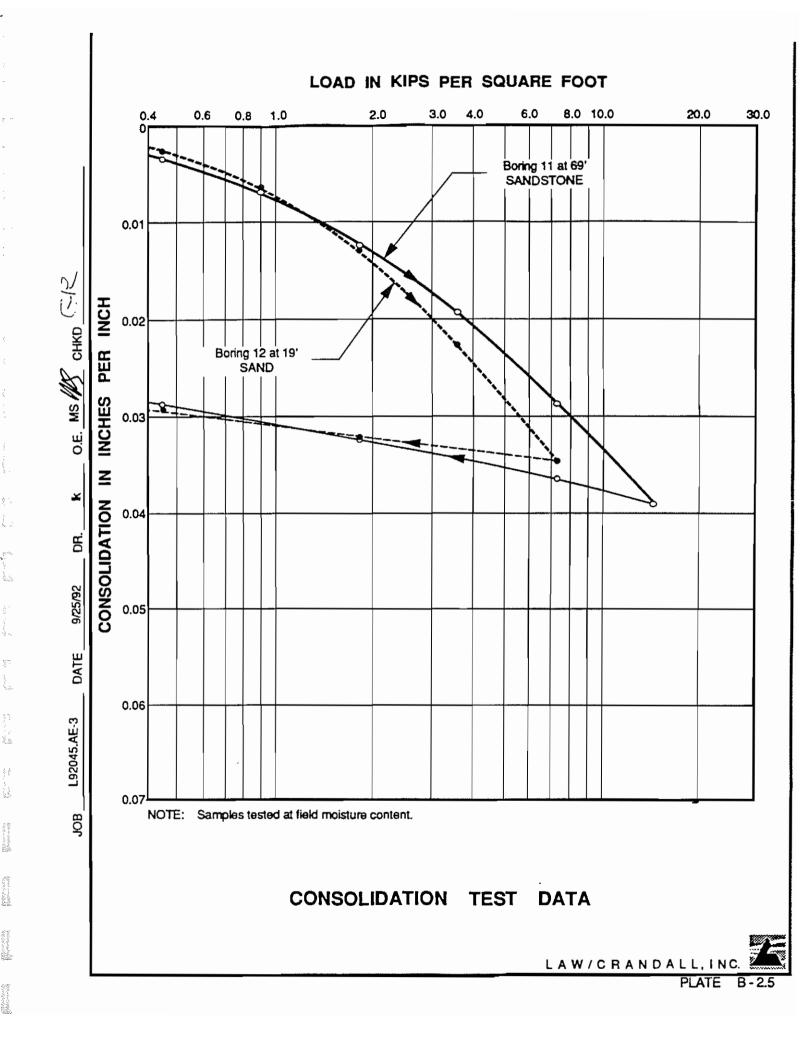

è.

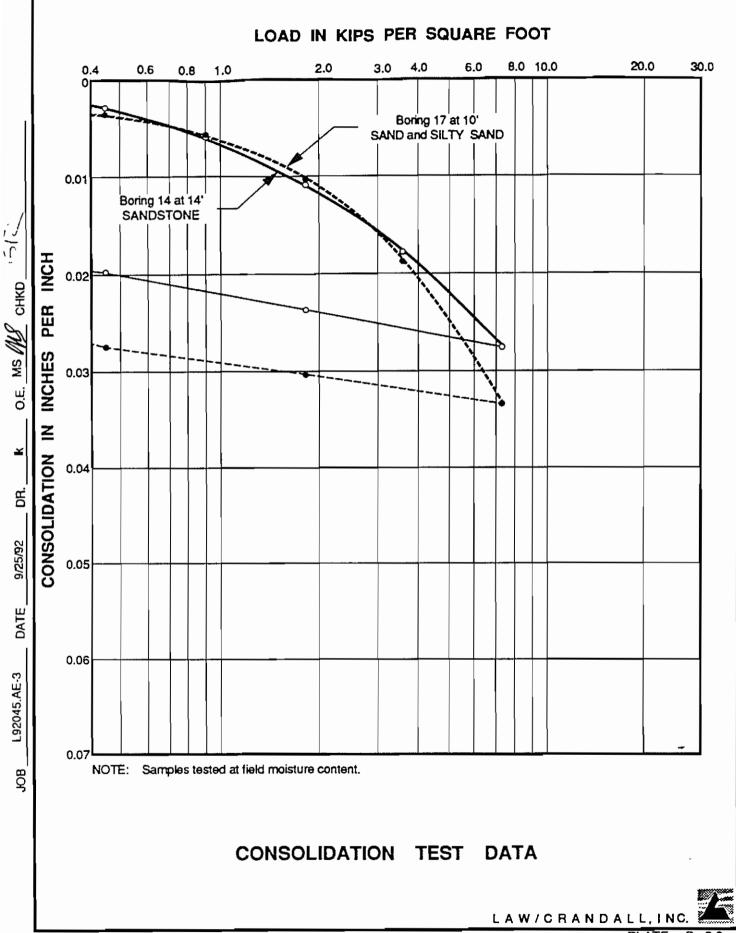

State a gal

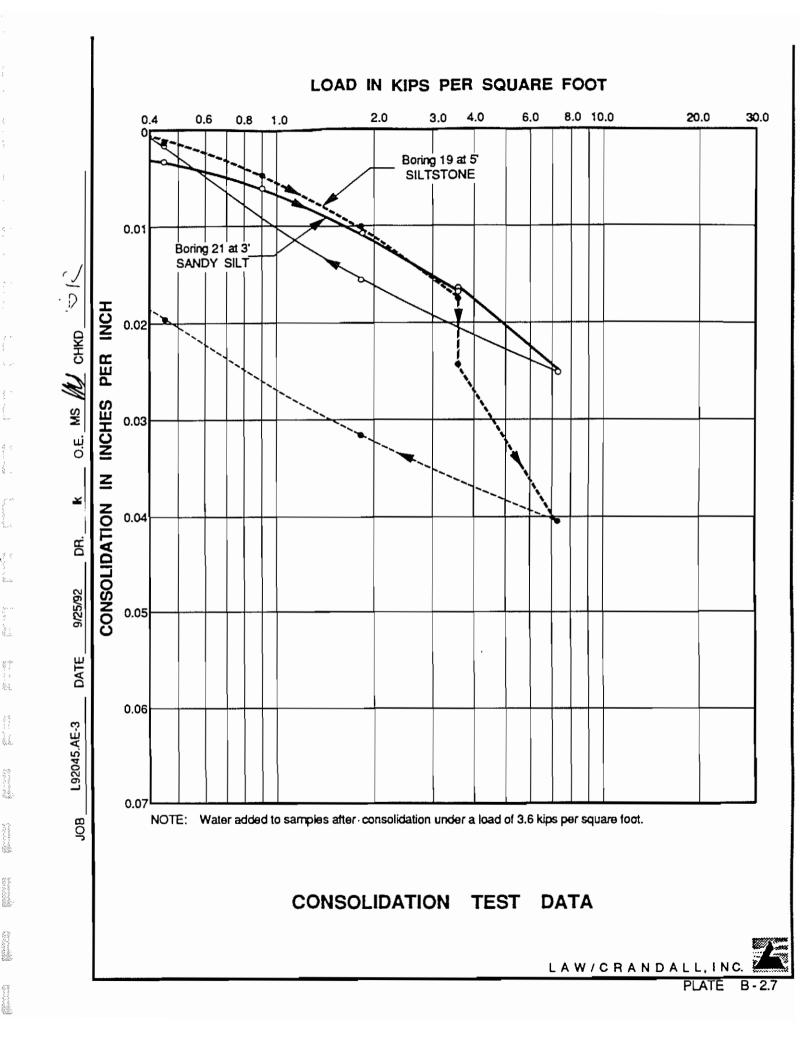

North Contraction

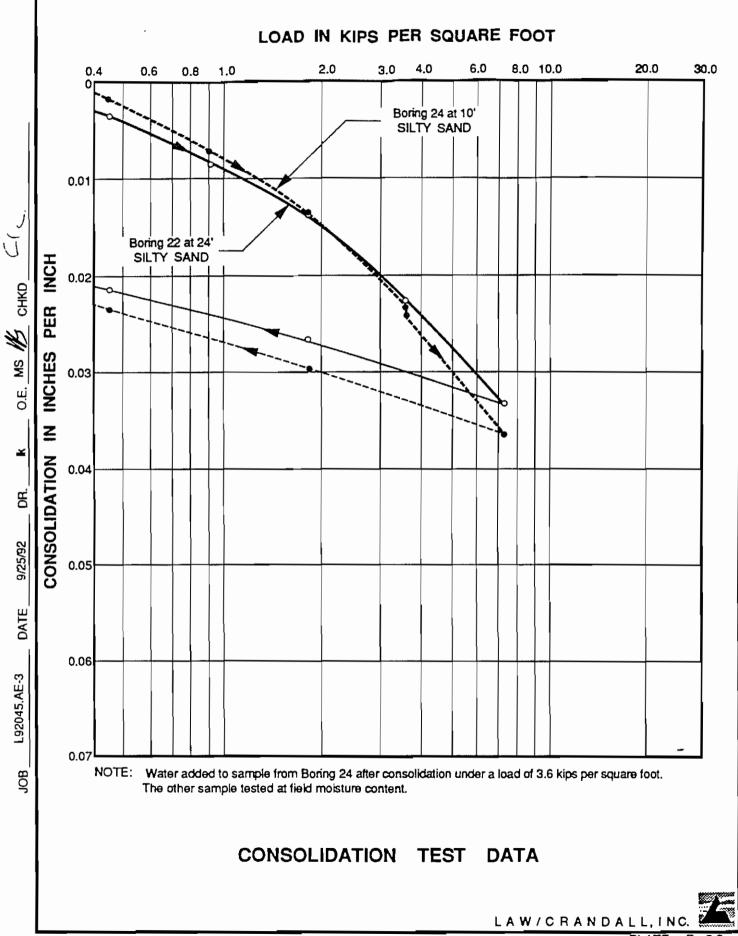
hurd-taffit

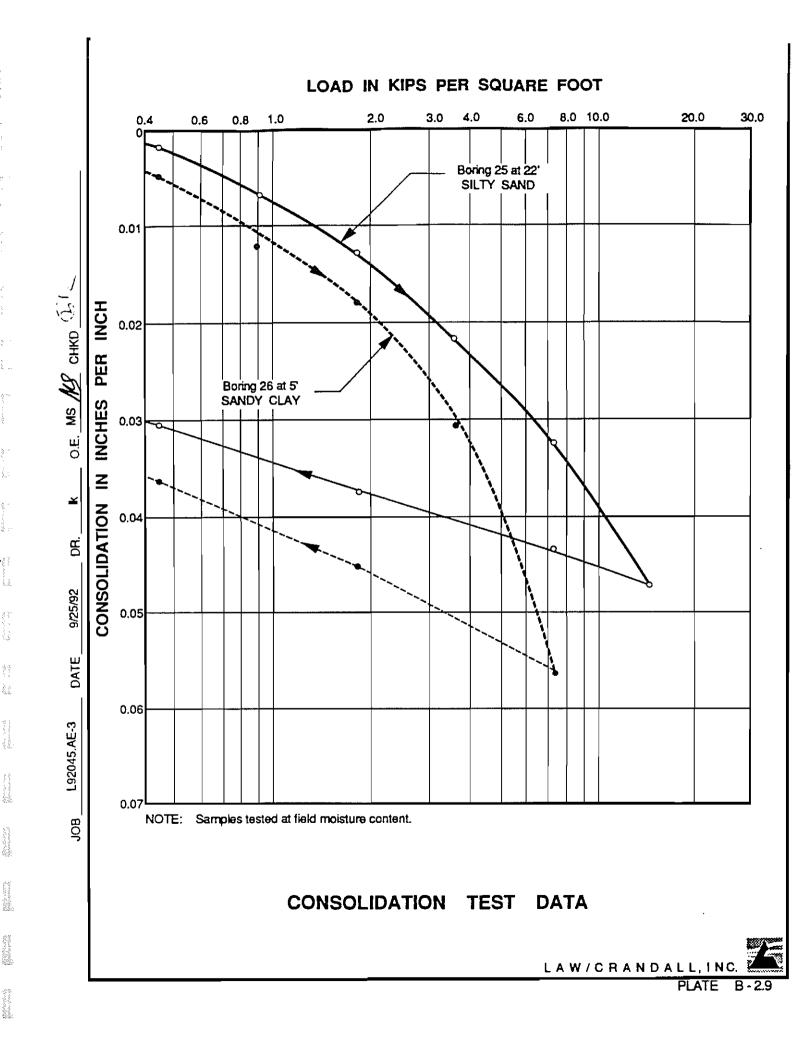

States - -

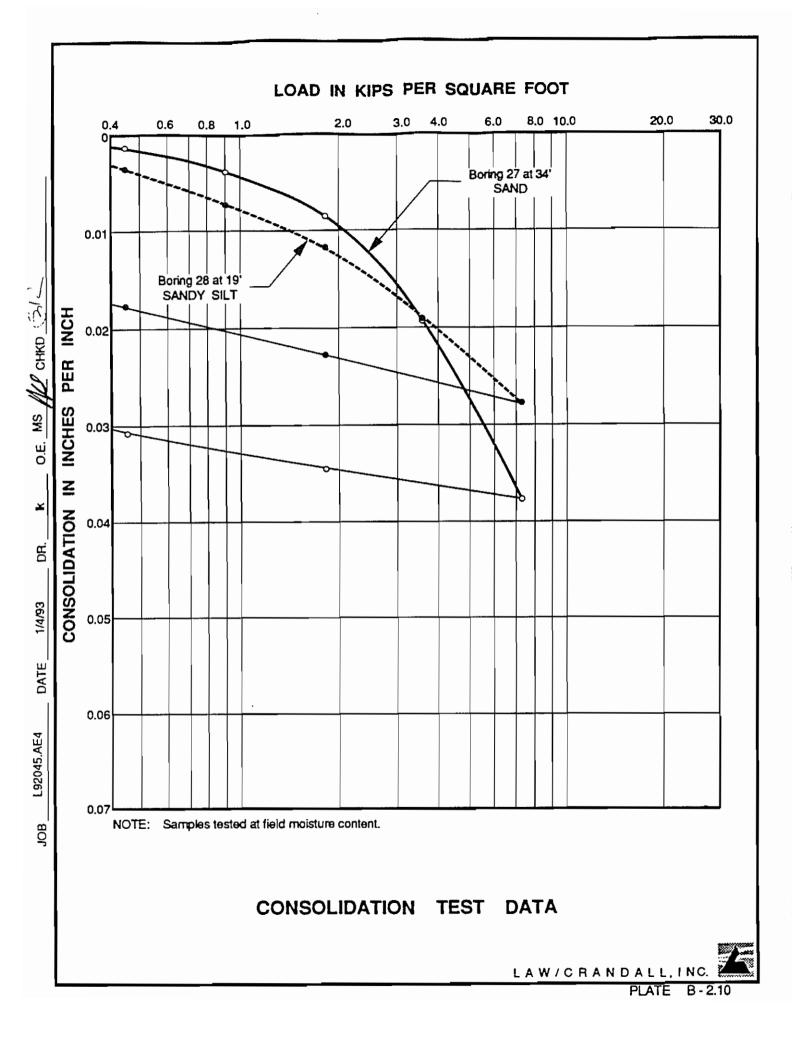


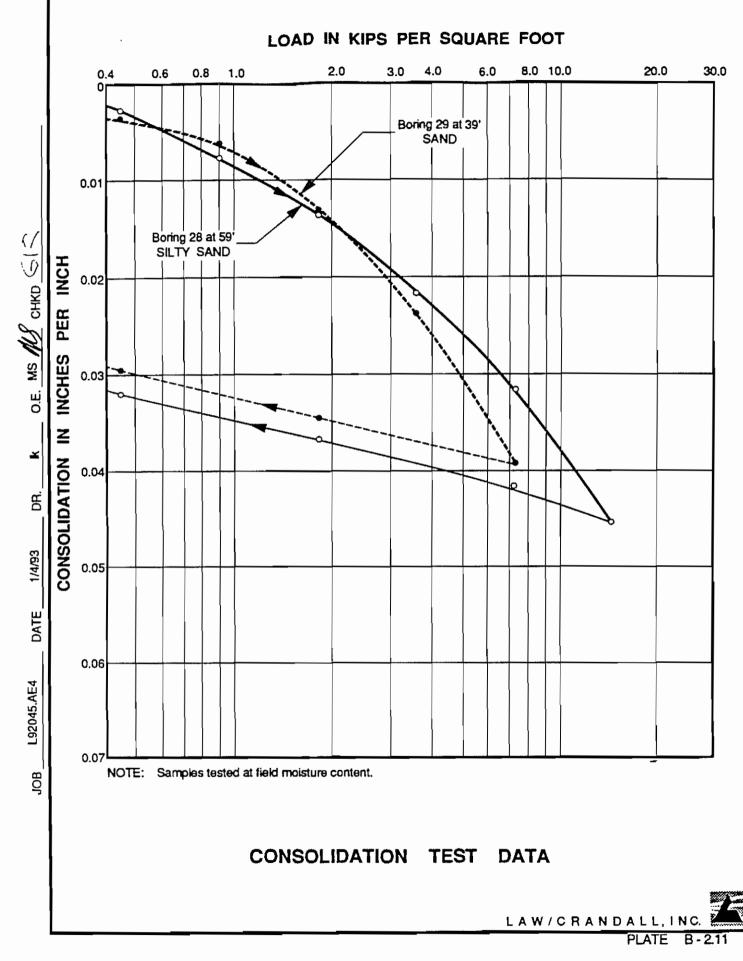





10.00







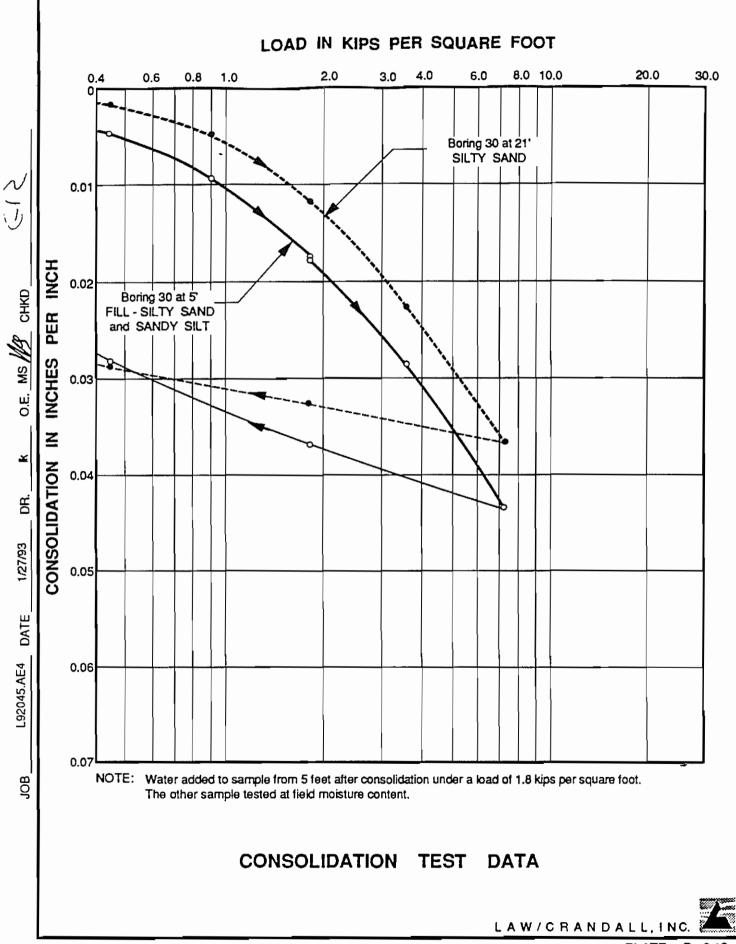
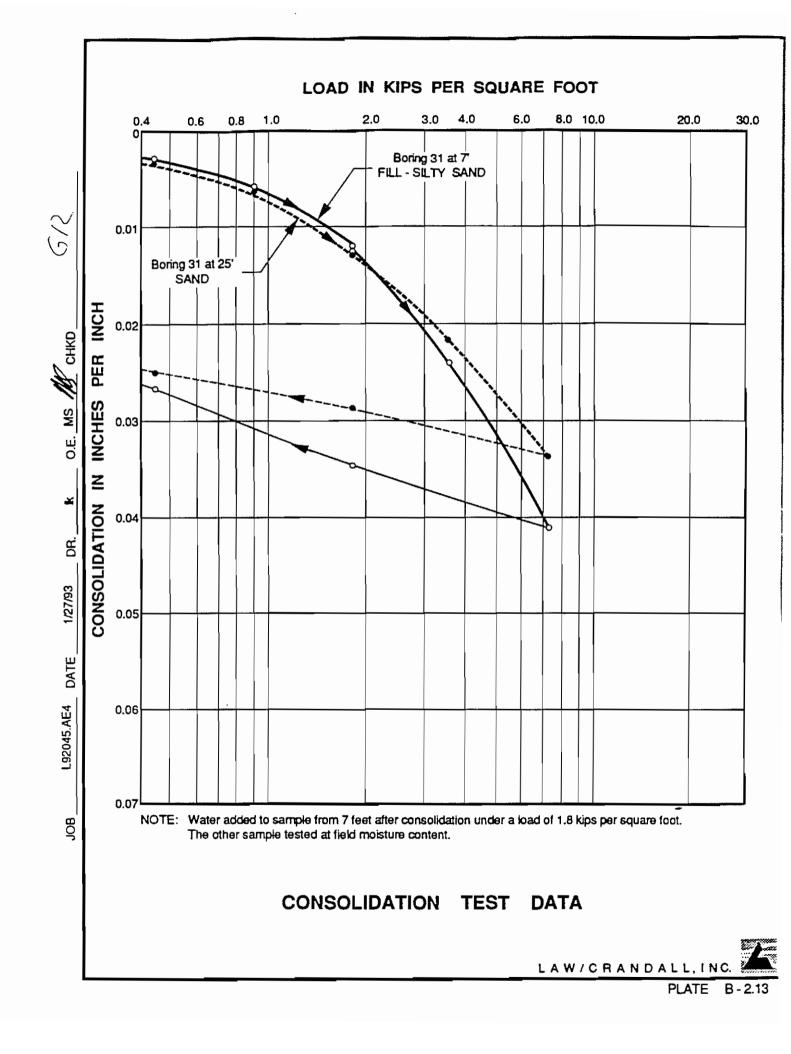
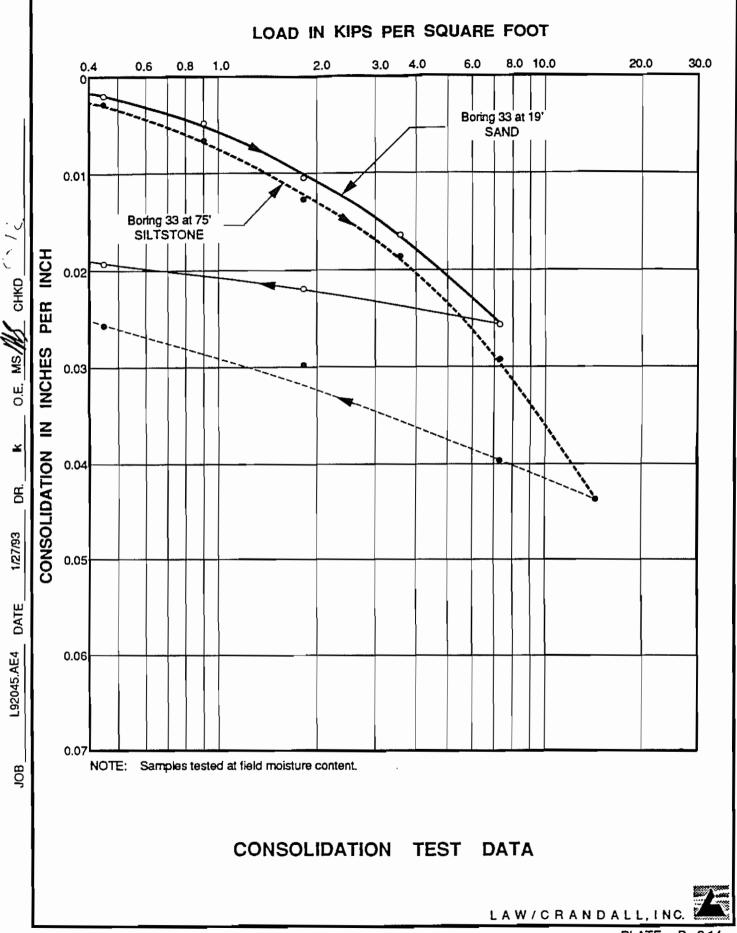
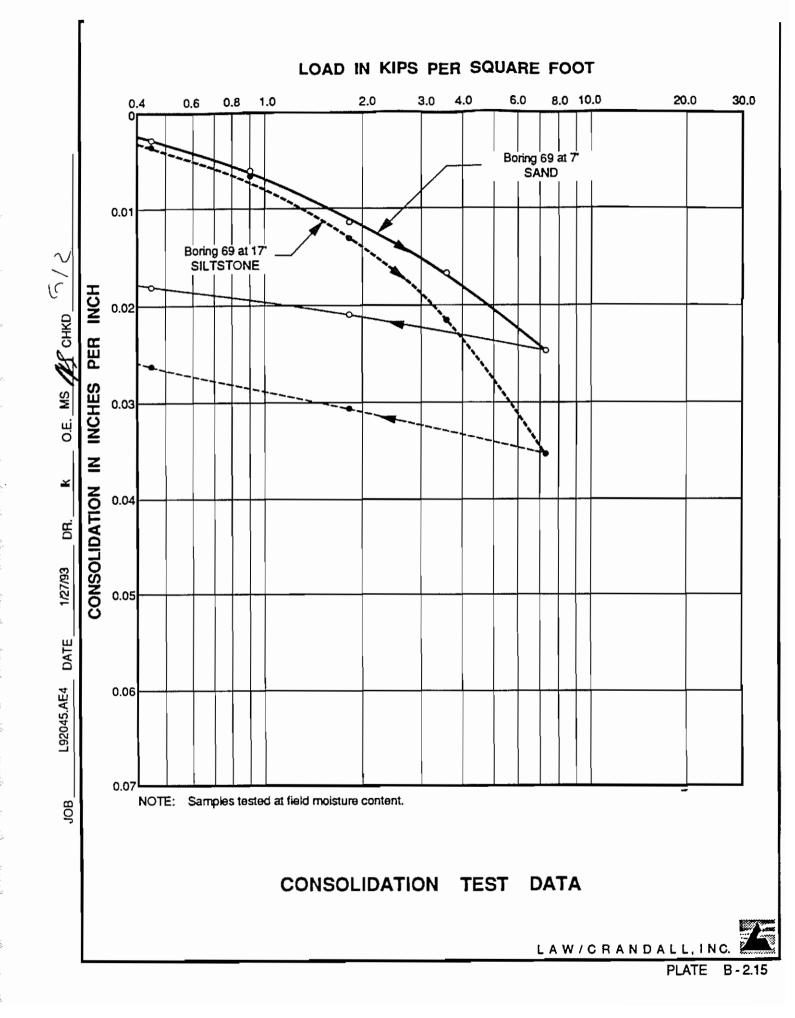
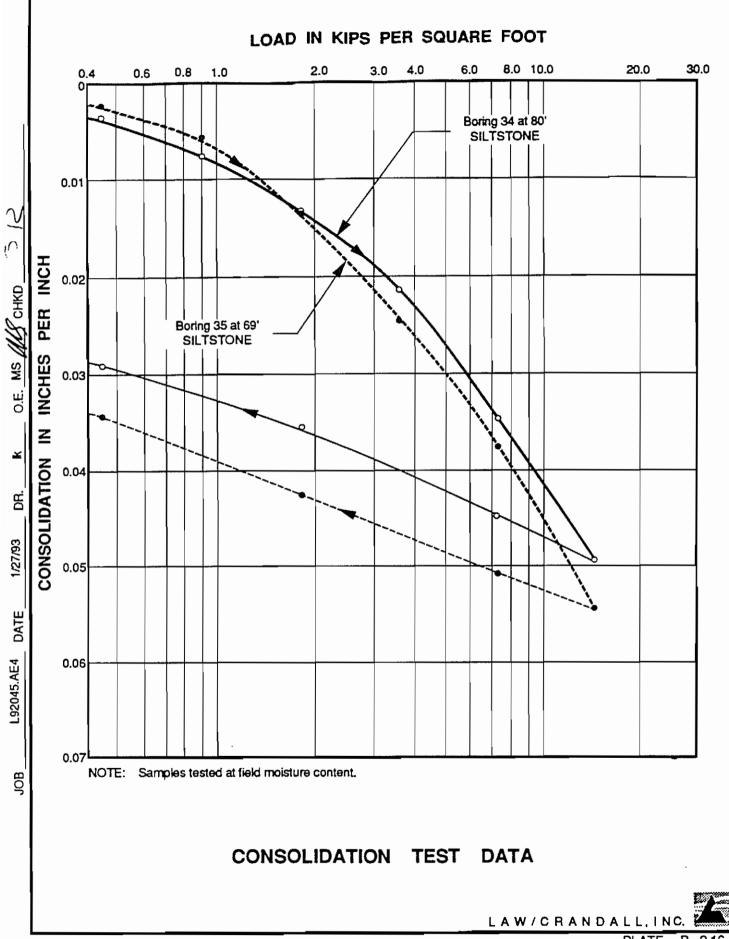
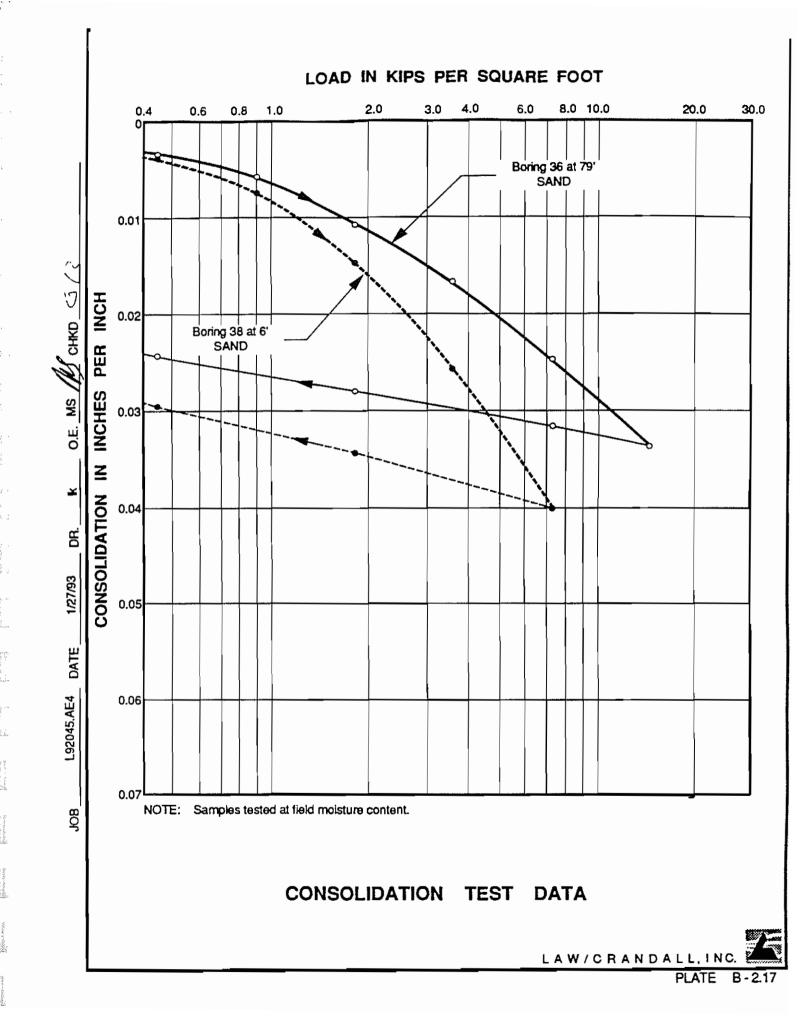
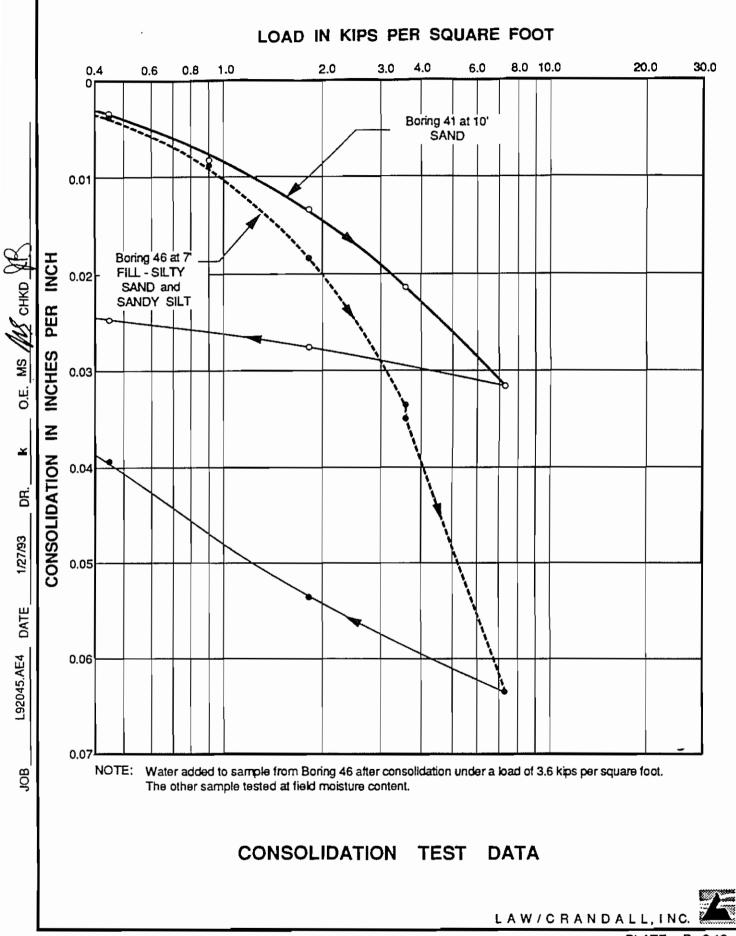
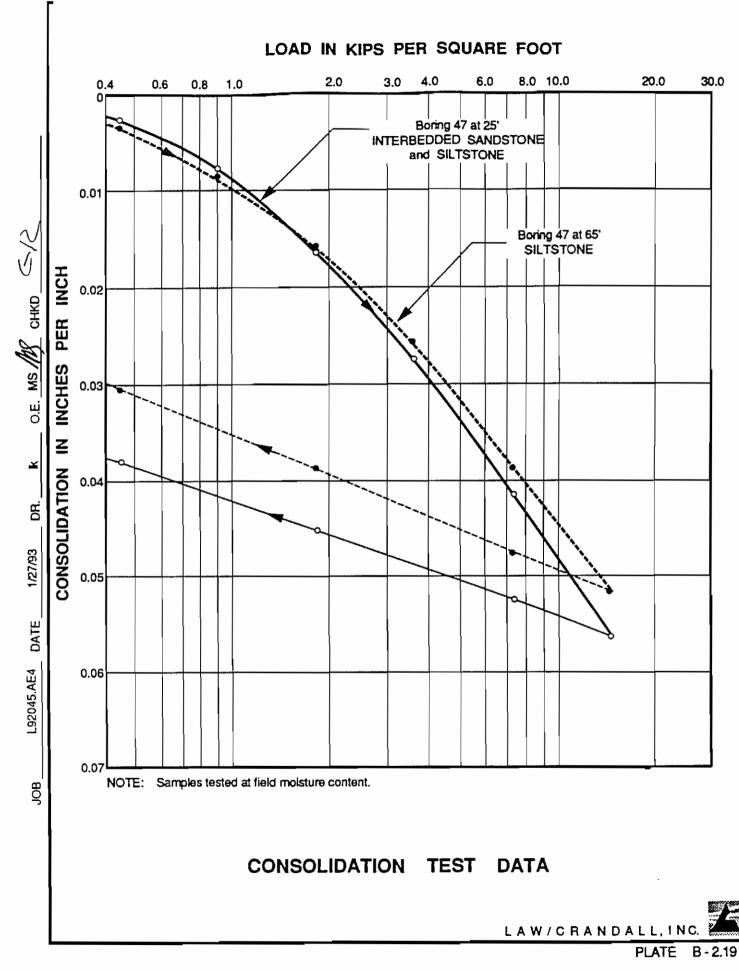
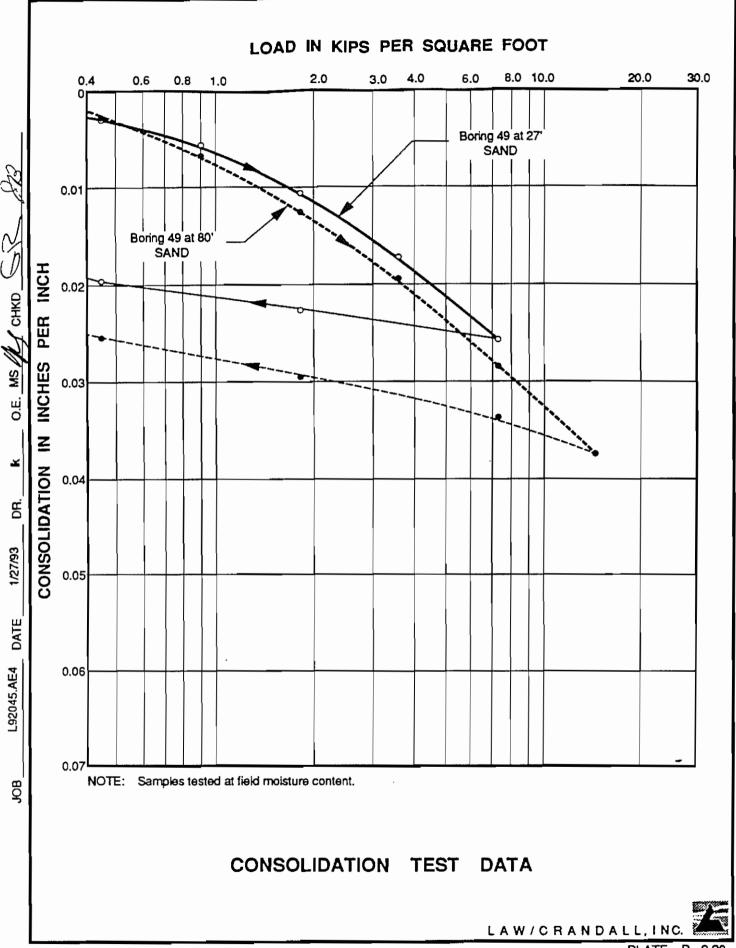
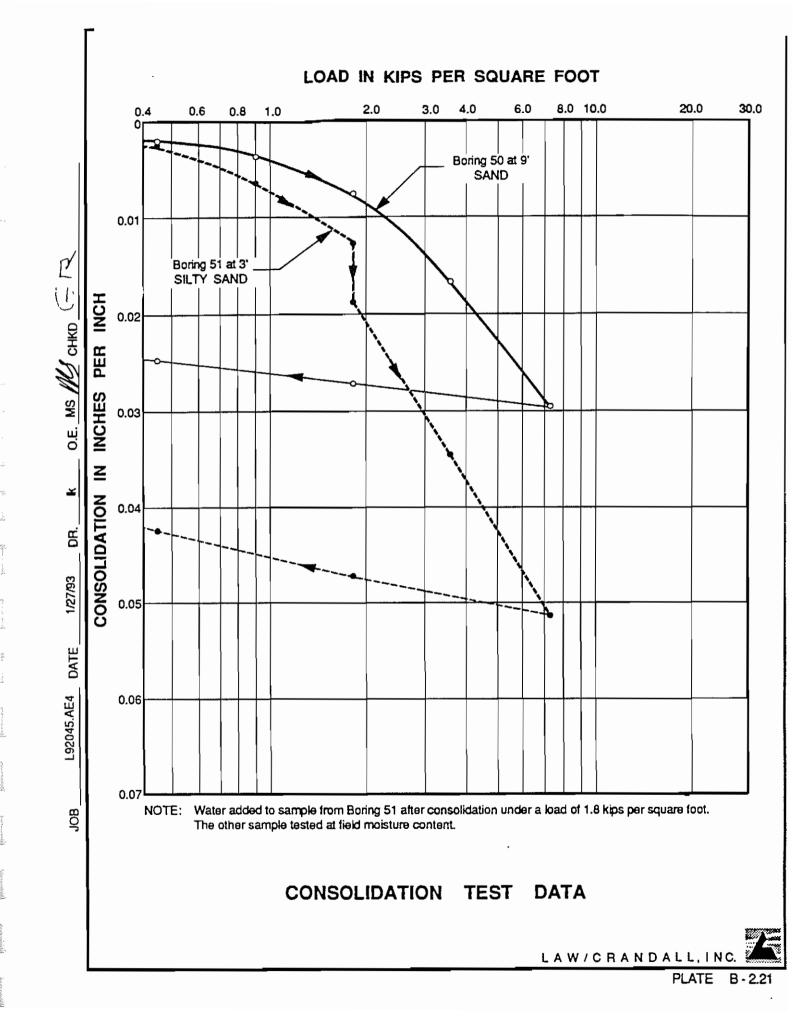
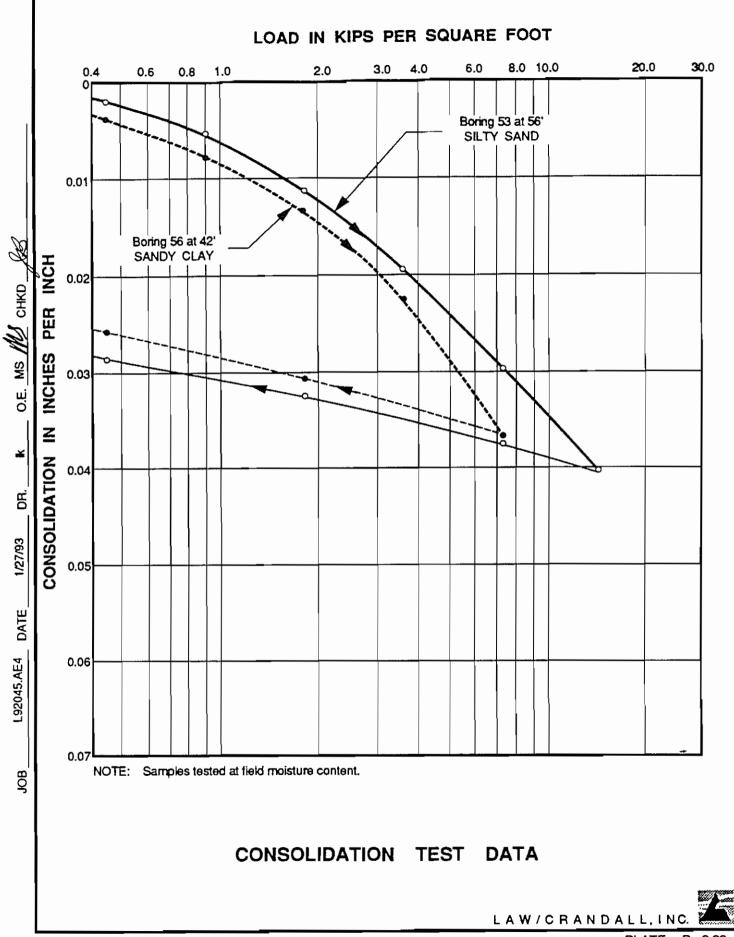





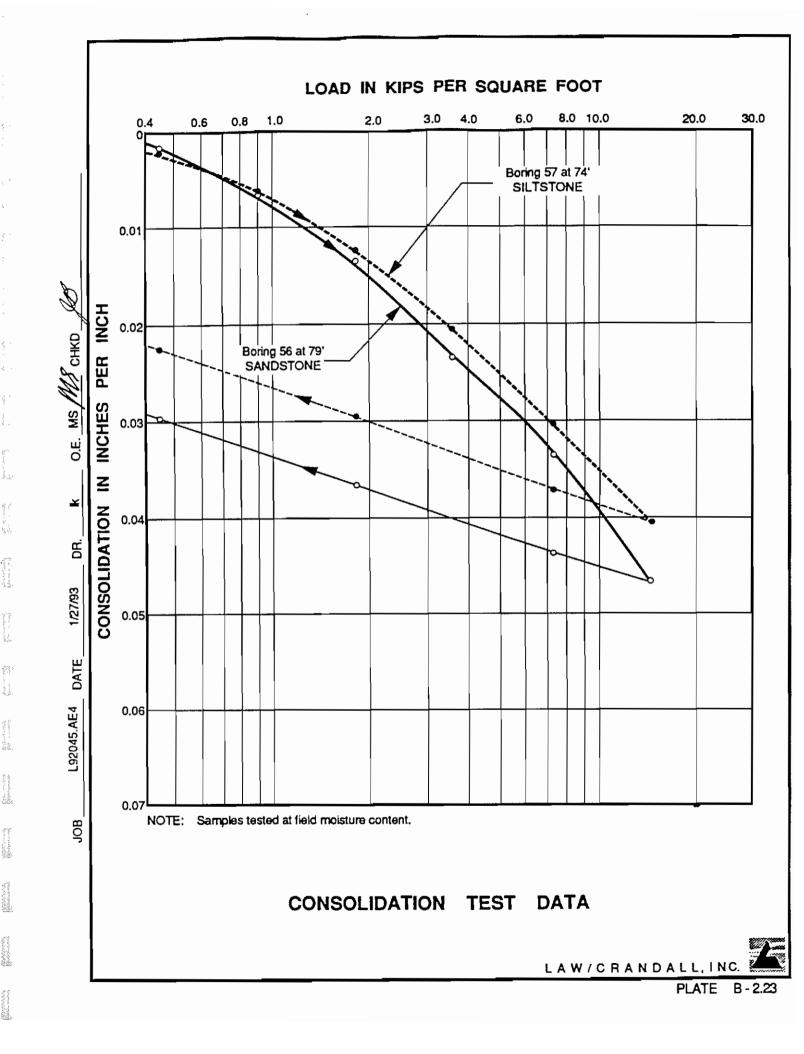
PLATE B-2.12

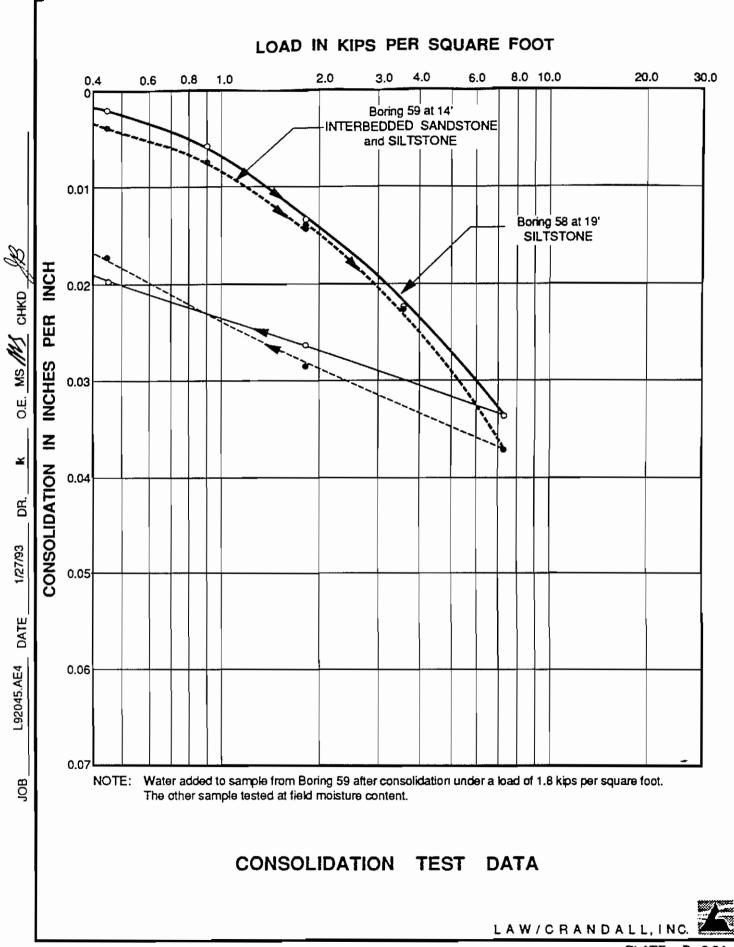
(and a state of the state of

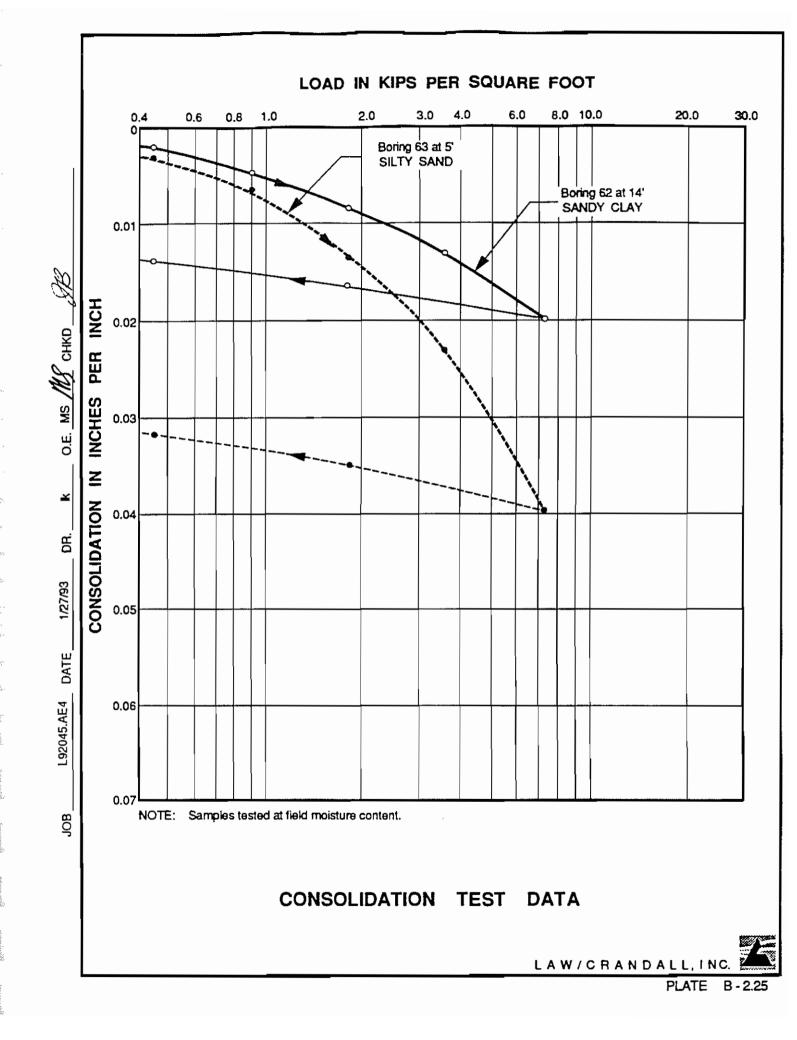







PLATE B-2.16

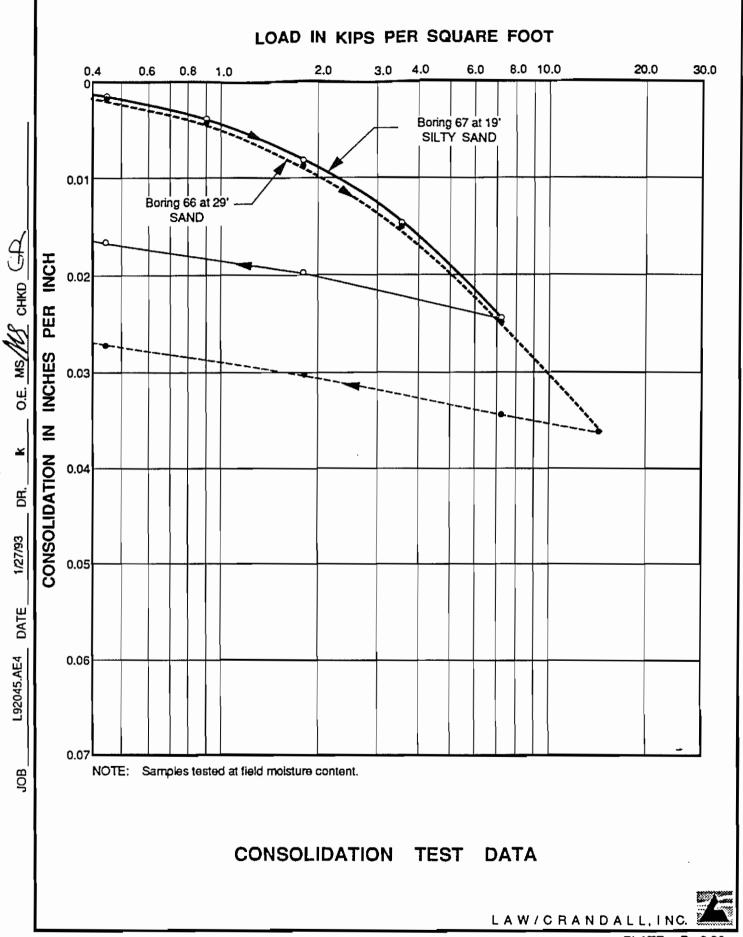


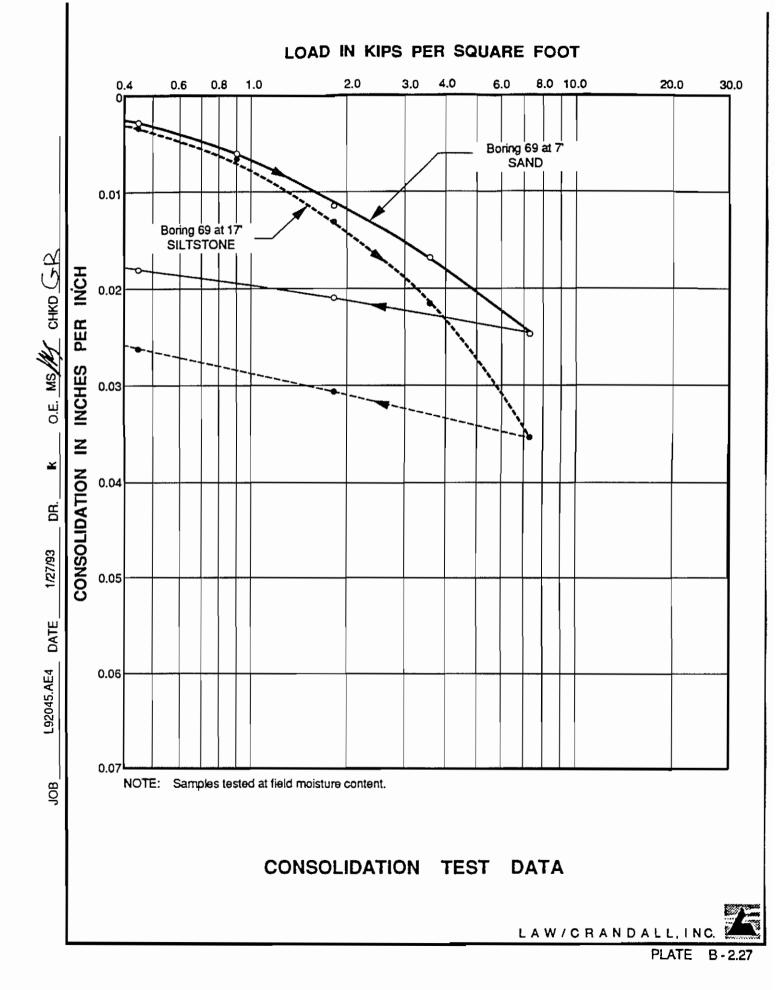


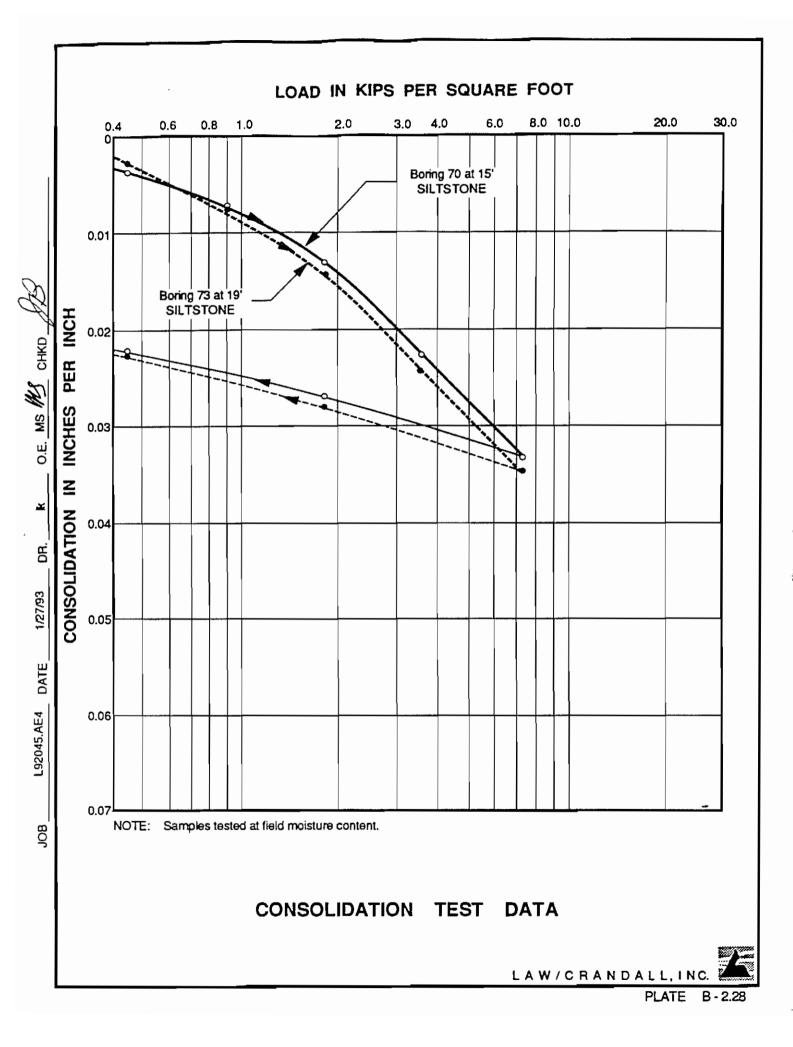


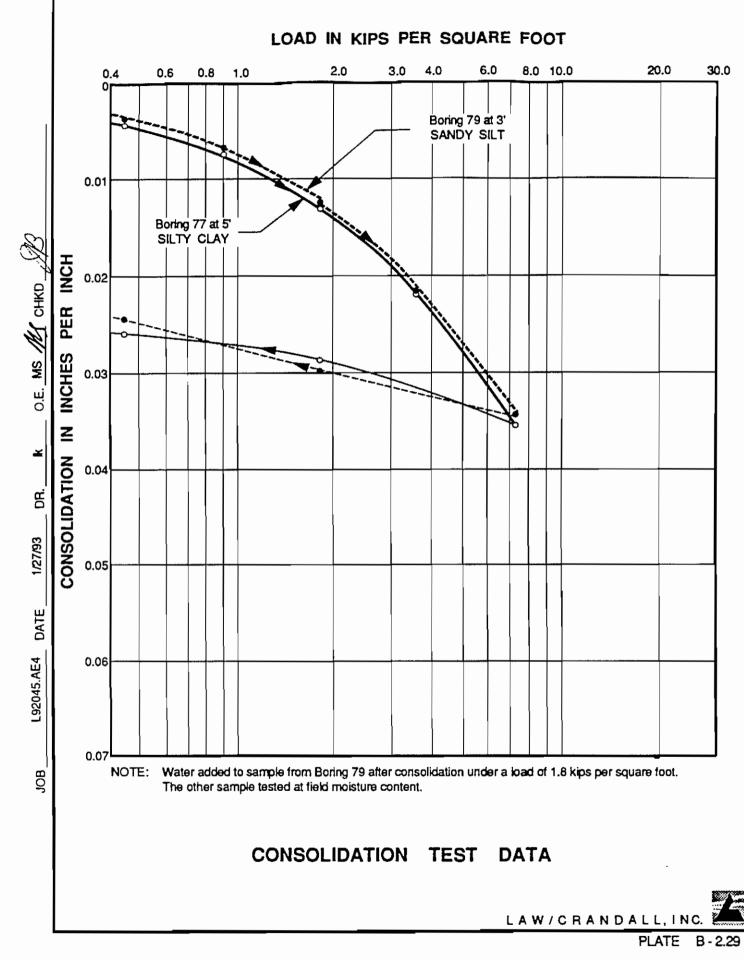


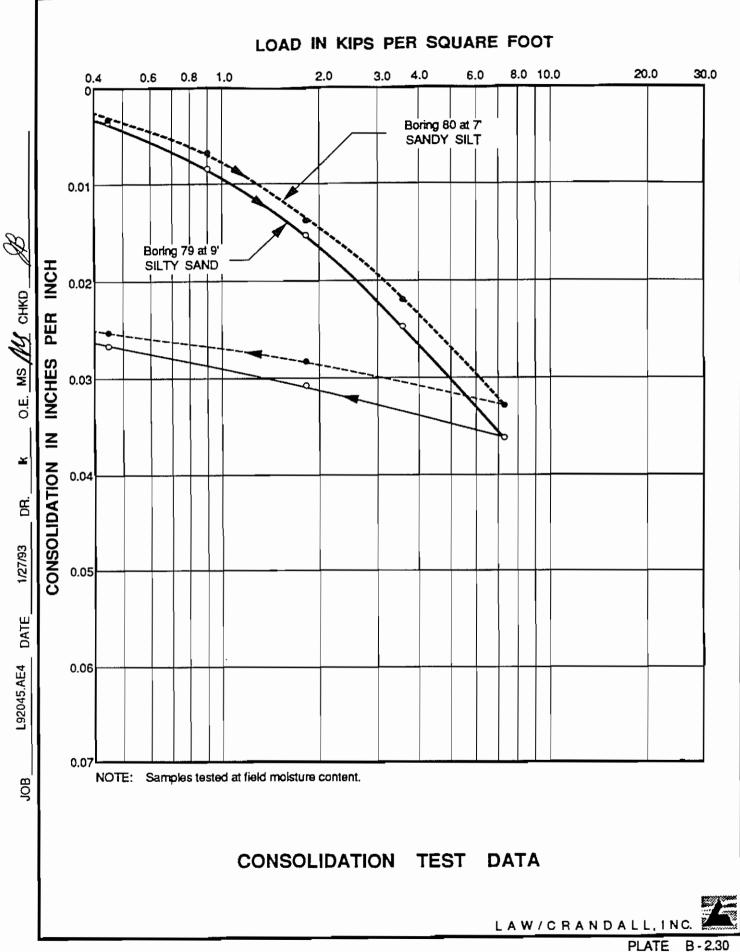
and the second s

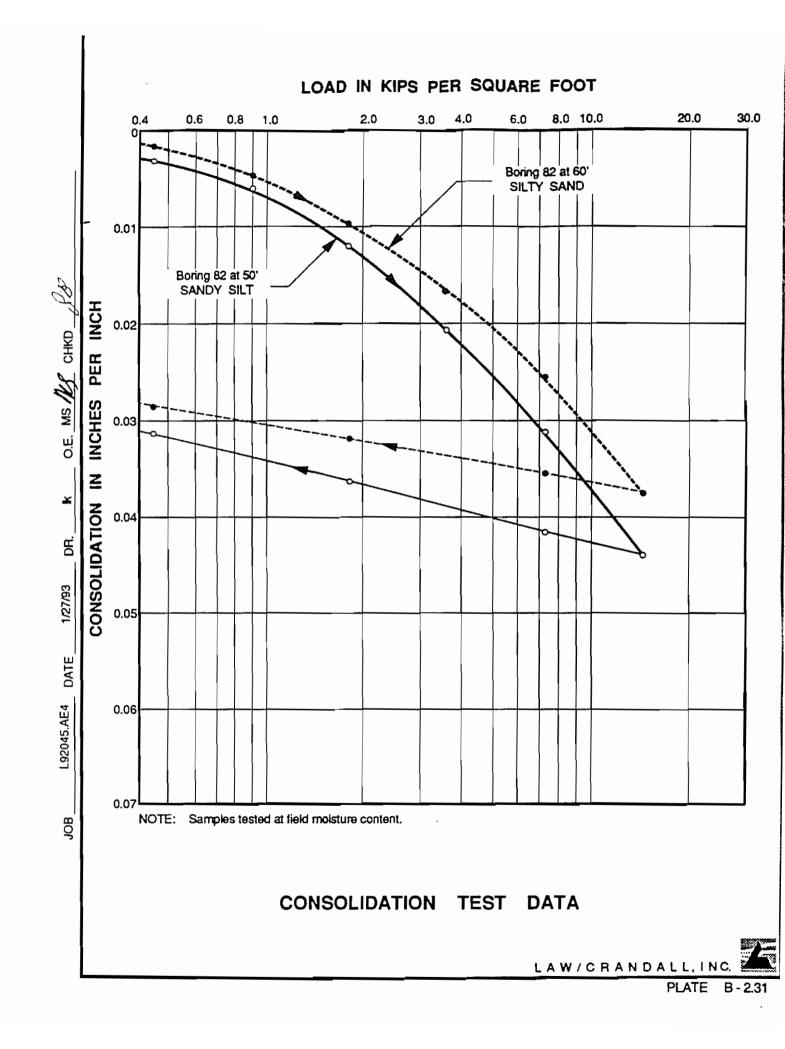




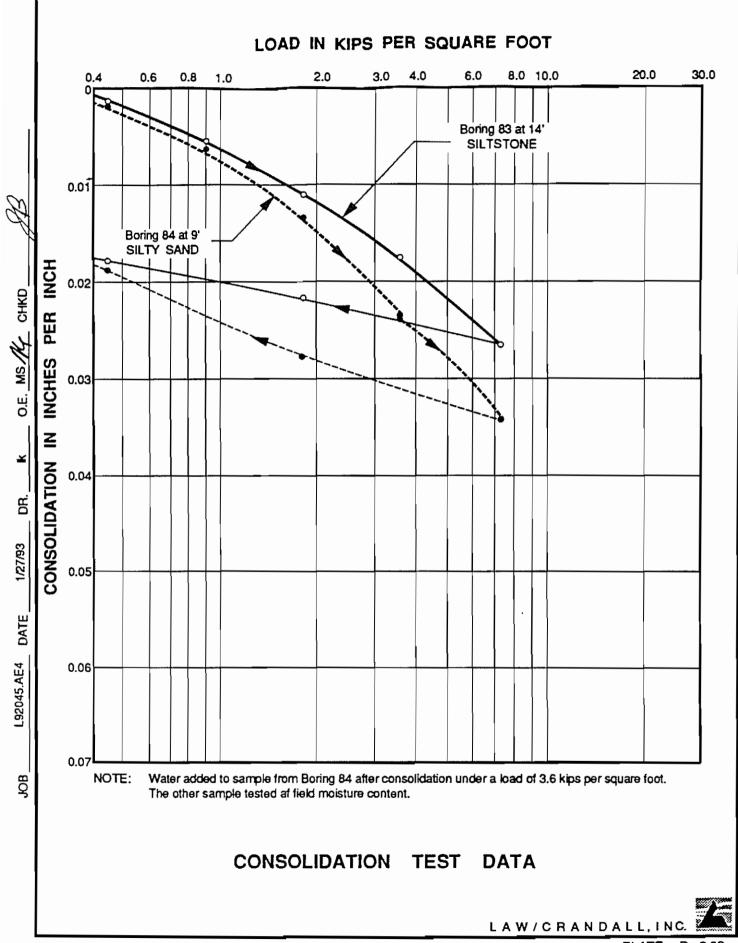


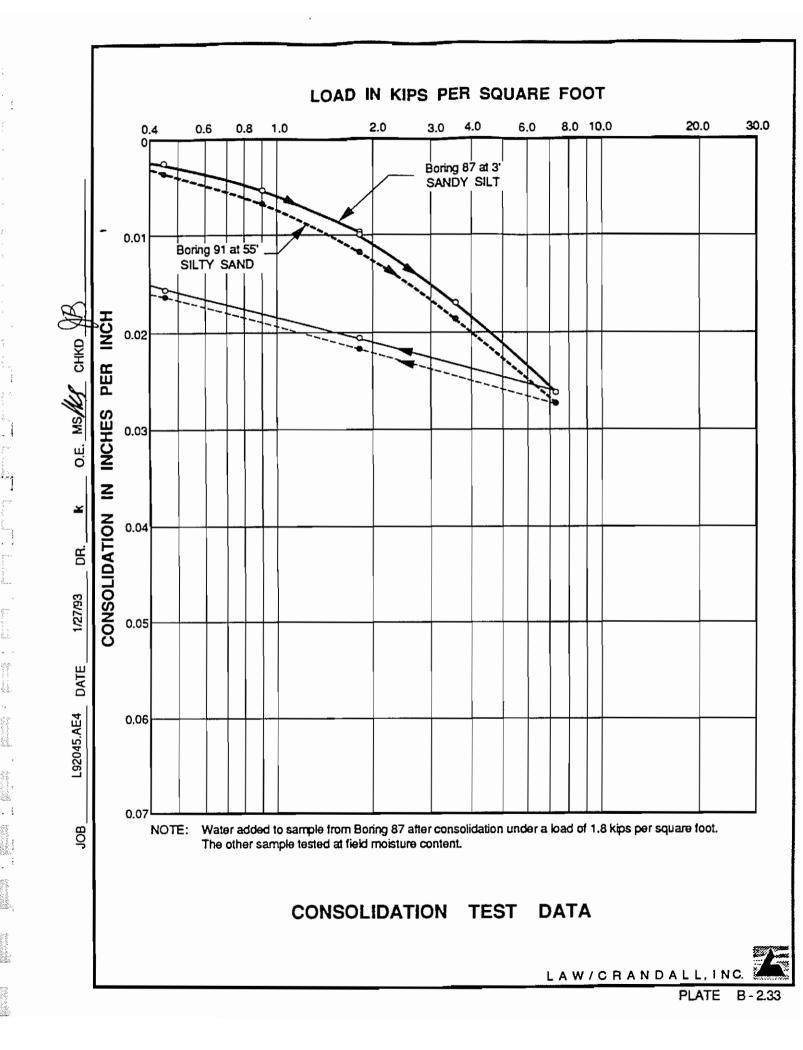

é s

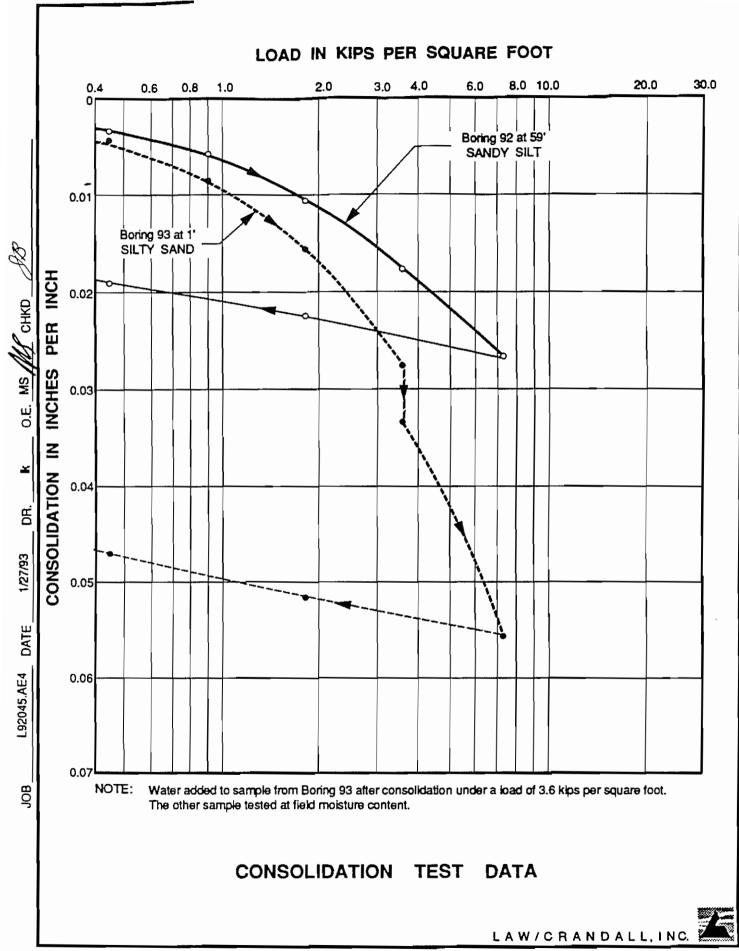


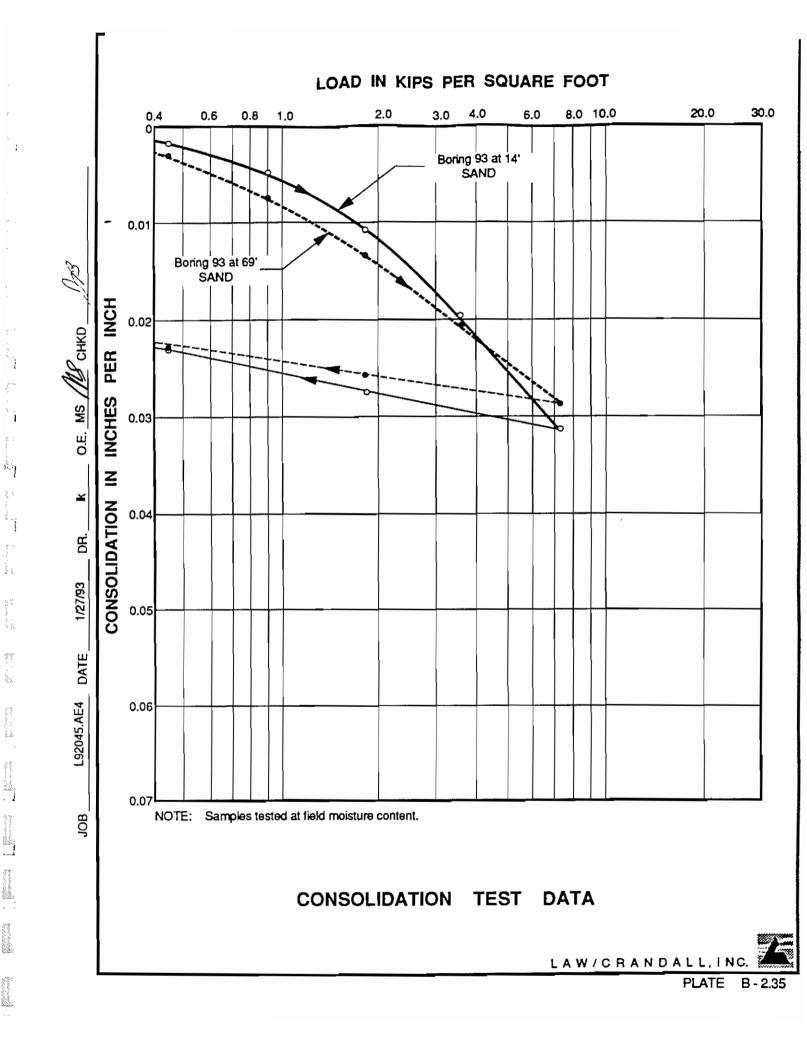


Allow And Allow

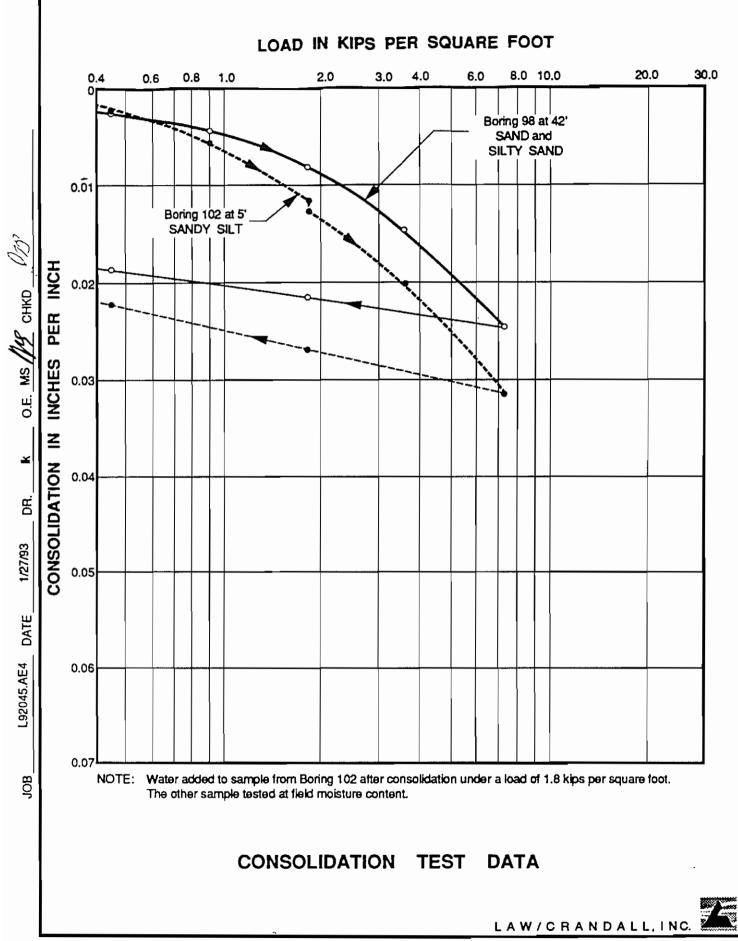


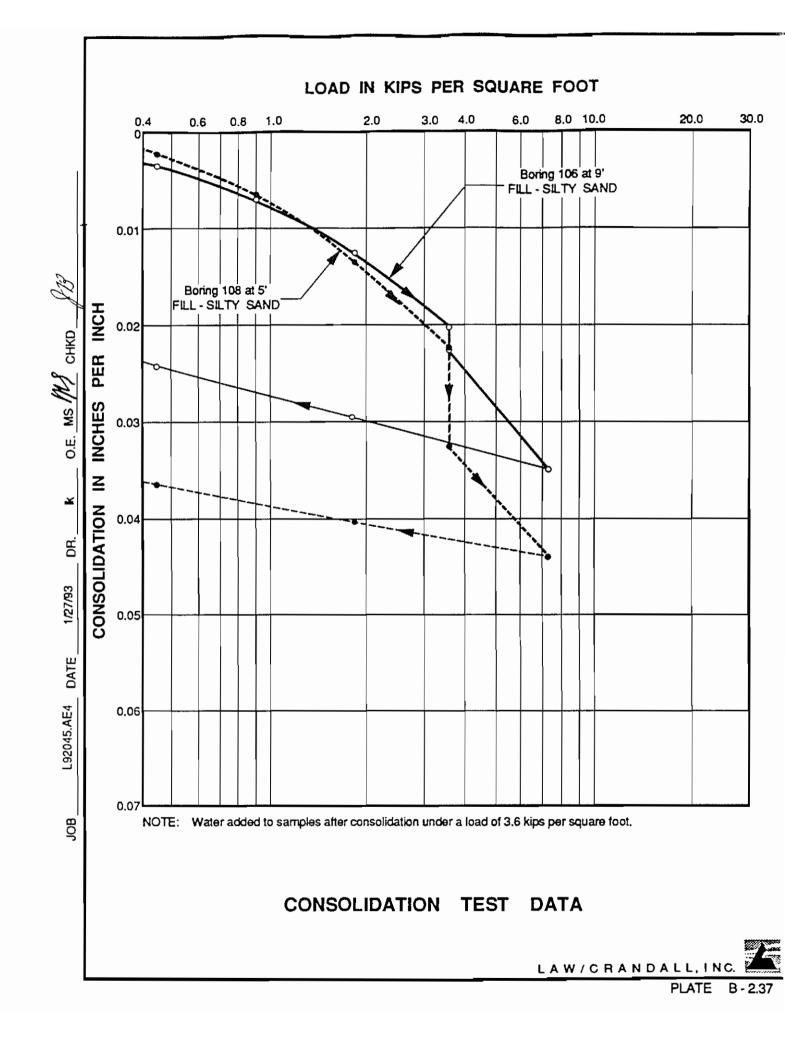

 $\left\{ \beta \right\}$

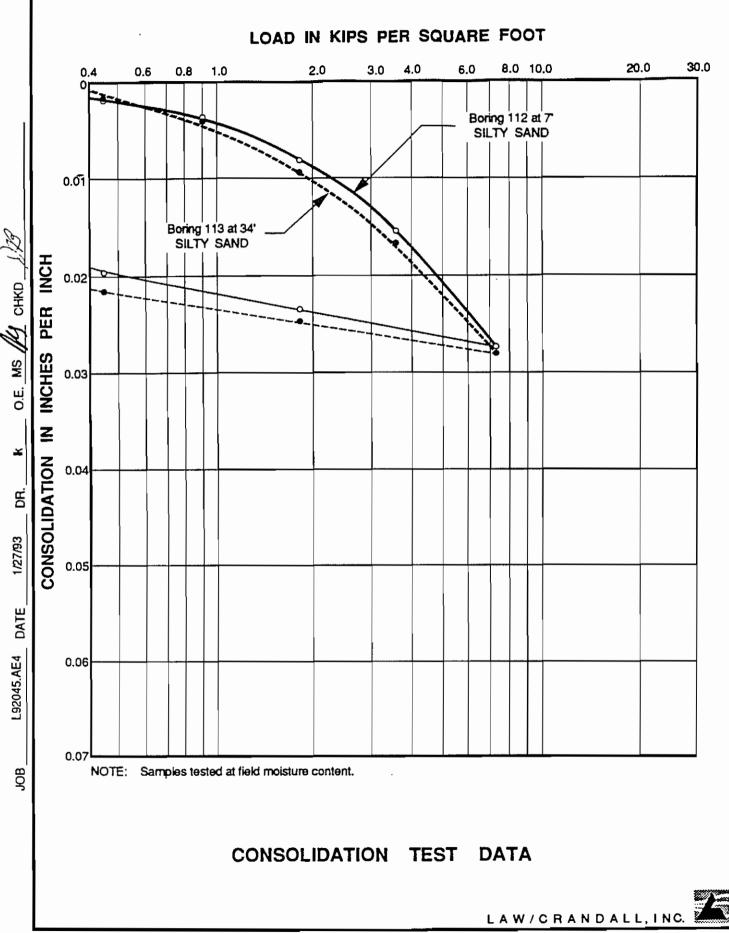

Stratter and

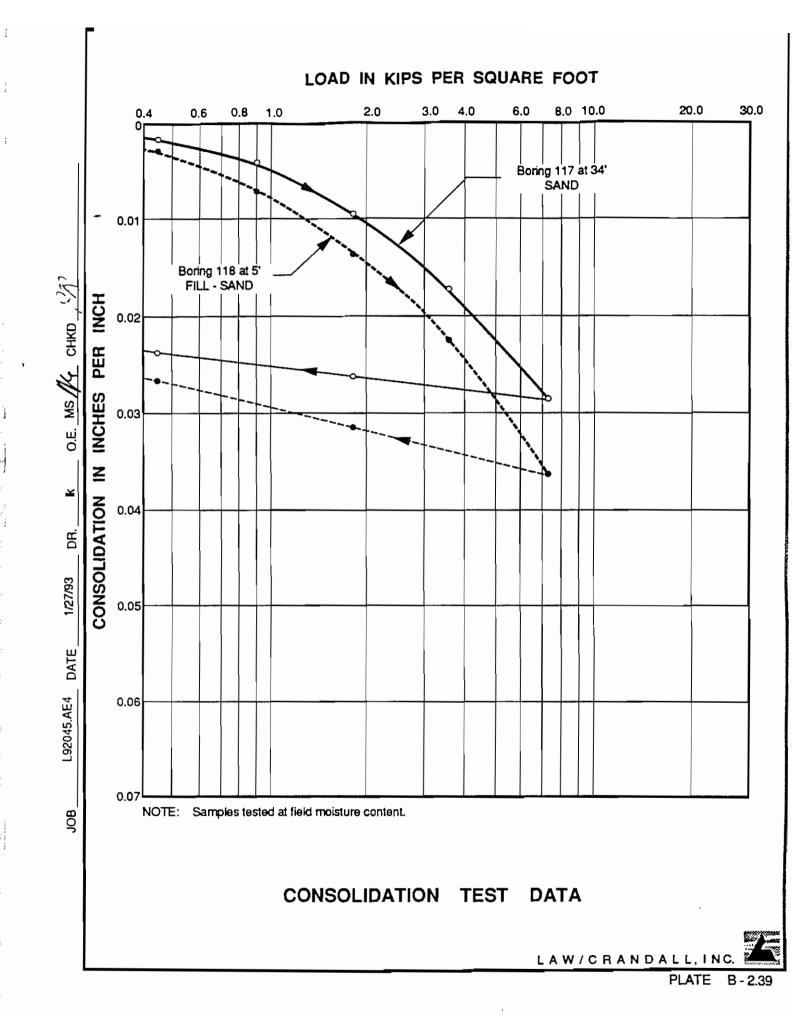

Profession Products

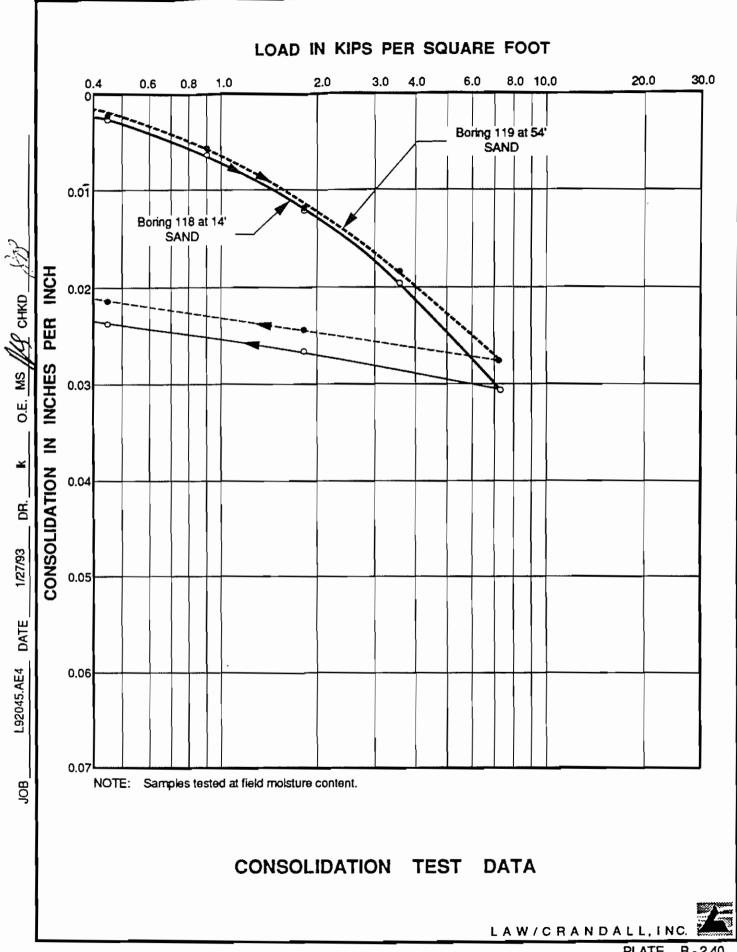
Per contra

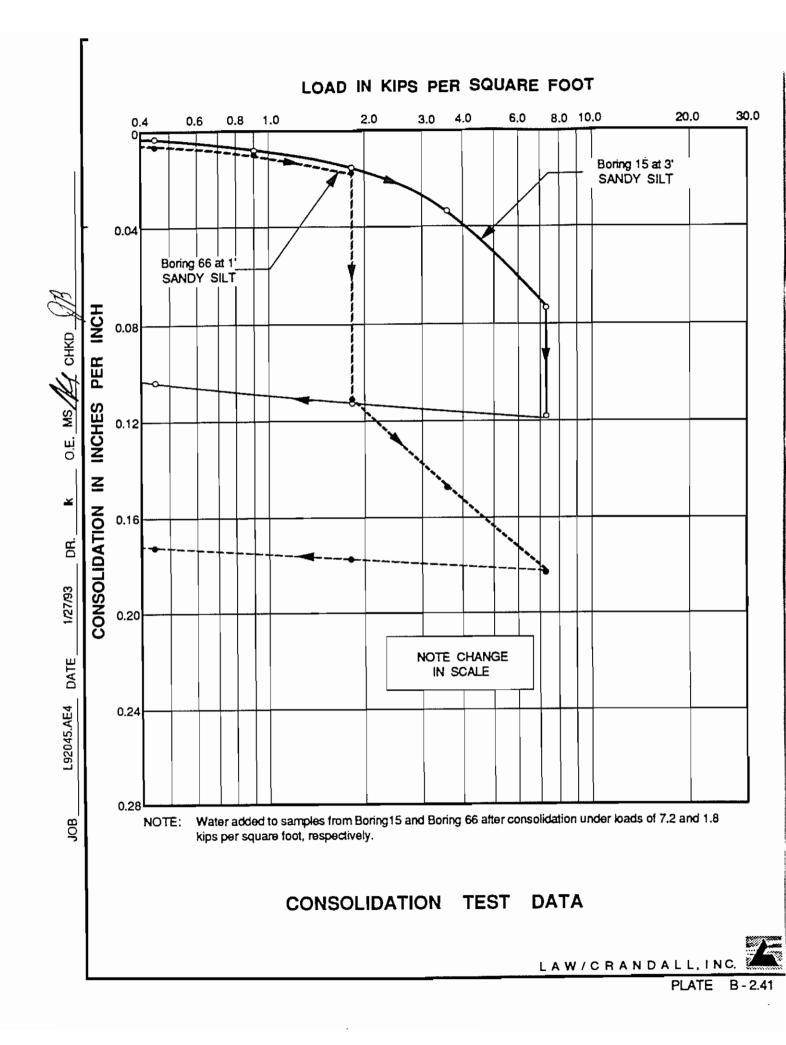


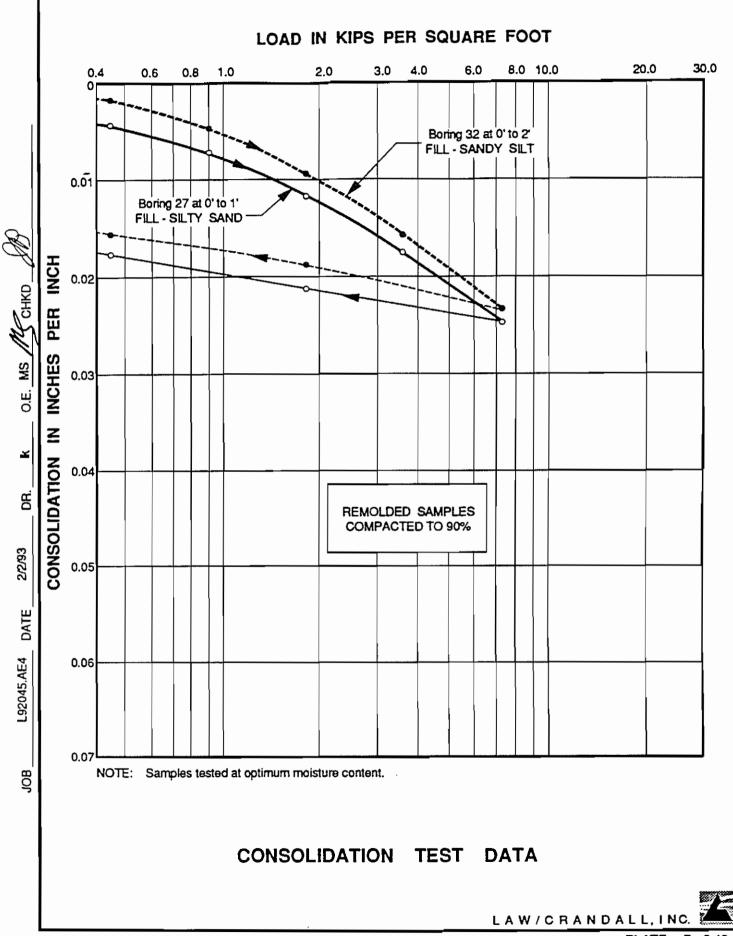


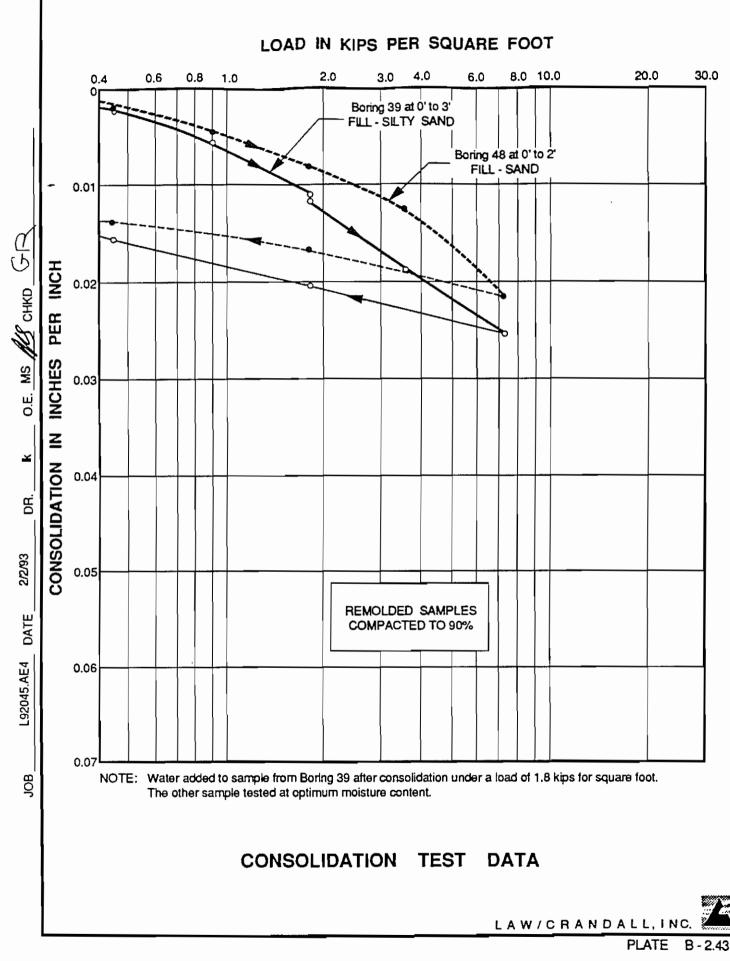

ŝ. şş 14 1000

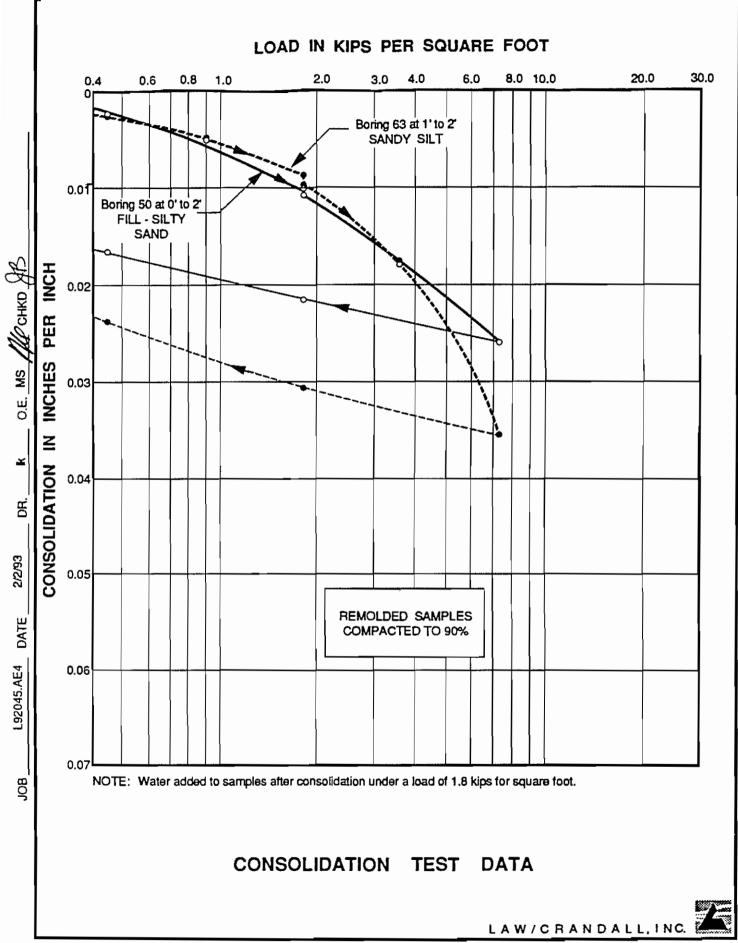


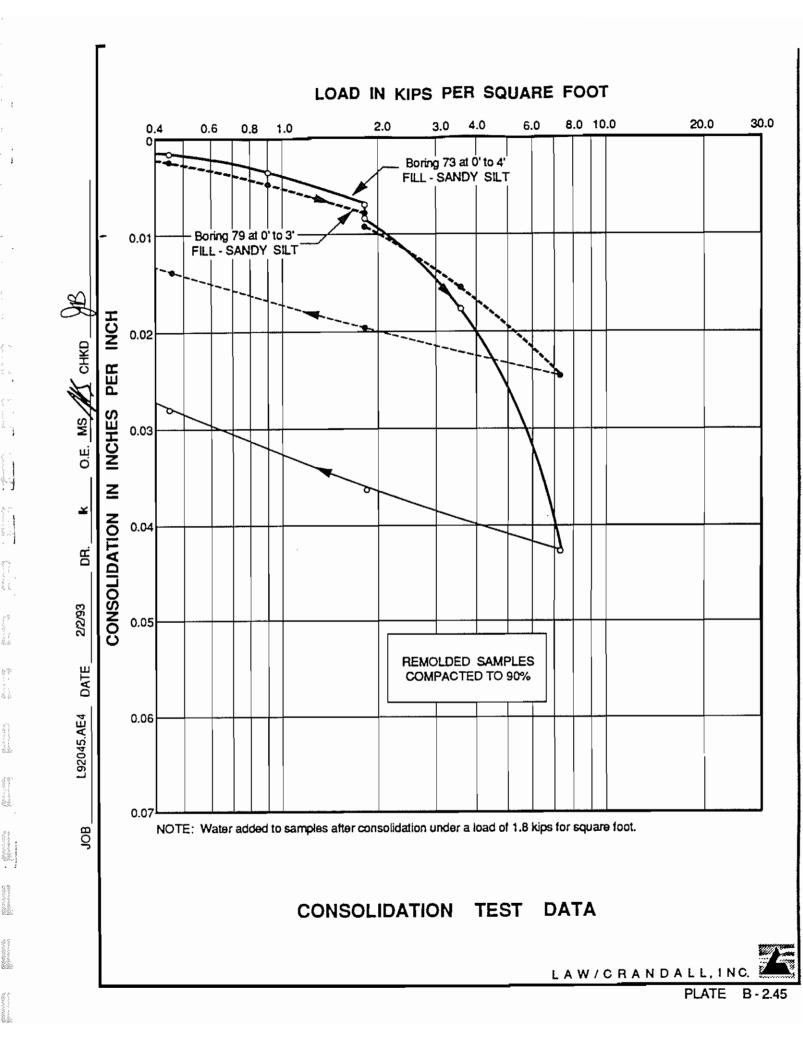

Aller and aller

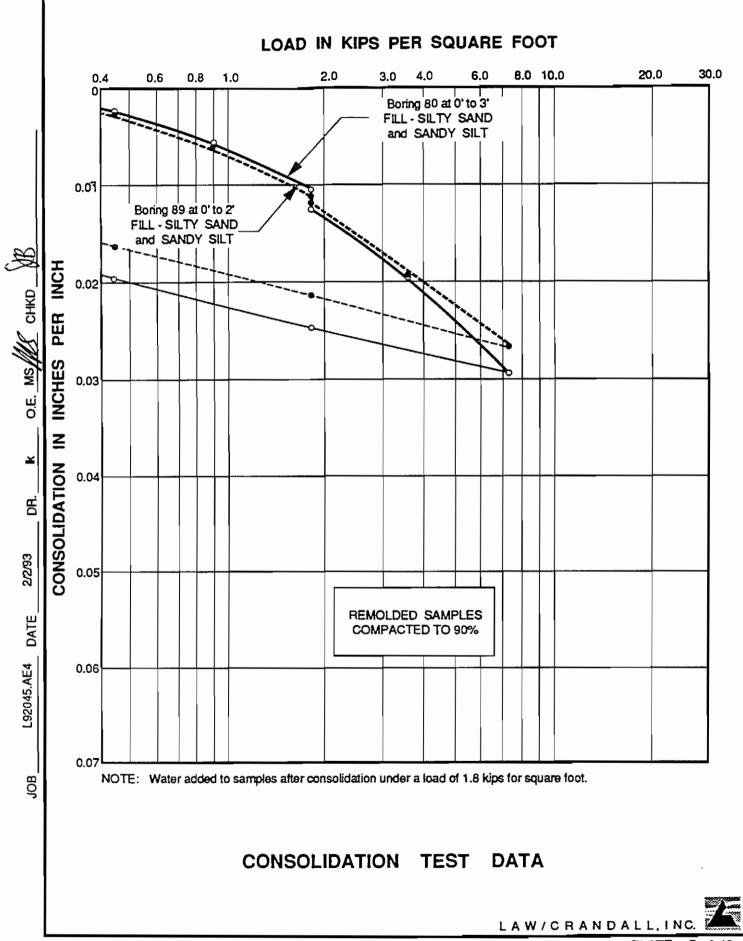

N-Serrito

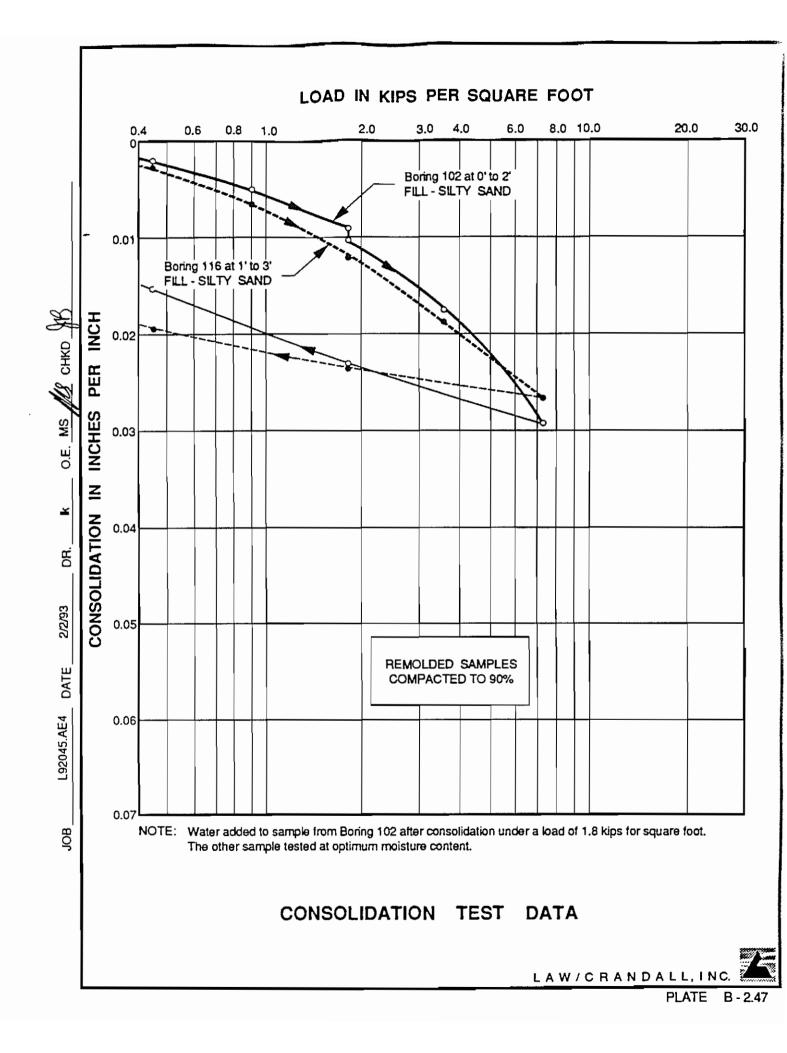



na national states and a state state states and a state state states and a state state state state state states and a state state state state state states and a state stat




กรณ์ และการเล่ารถอยู่ได้ รับกระสารกรณ์เชื่อได้ ที่สุดตรรณรรณร์เป็นได้





æ

BORING NUMBER 7 at 1' to 5' 9 at 0* to 5* AND SAMPLE DEPTH: 14 at 0' to 3' FILL - SILTY SAND FILL - SILTY SAND SOIL TYPE : SANDY SILT and SANDY SILT and SANDY SILT MAXIMUM DRY DENSITY : 133 132 132 (lbs./cu.ft.) OPTIMUM MOISTURE CONTENT : 9 8 9 (% of dry wt.)

TEST METHOD: ASTM Designation D1557 - 78

COMPACTION TEST DATA

	BORING NUMBER AND SAMPLE DEPTH:	16 at 1' to 2'	20 at ()' to 3'	26 at 4' to 5'		
	SOIL TYPE :	SANDY SILT		TY SAND DY SILT	SANDY CLAY		
	MAXIMUM DRY DENSITY : (lbs./cu.ft.)	130	12	2	127		
	OPTIMUM MOISTURE CONTENT (% of dry)	9	1:	2	11		
TEST METHOD: ASTM Designation D1557 - 78							
	COMP	ACTION	TEST DA	ATA			
			L	. AW/CR	ANDALL, INC.		
					PLATE E		

O.E. MAS CHKD G.R. W.P. nh DATE 1/4/93 JOB 1.92045.AE4

and the second

10 M 10 M

r' Ly

Same and

Same and

Start and start

Advantation of the

Same and Same

Martine and the

LATE B-3.2

BORING NUMBER 27 at 0' to 1' 62 at 0' to 4' 48 at 0 to 2 AND SAMPLE DEPTH: FILL - SILTY SAND FILL - SAND SILTY SAND SOIL TYPE : and SANDY SILT 107 129 132 MAXIMUM DRY DENSITY : (lbs./cu.ft.) 18 9 8 OPTIMUM MOISTURE CONTENT : (% of dry)

O.E. MANS CHKD

Ξ

W.P.

1/4/93

DATE

192045.AE4

90

TEST METHOD: ASTM Designation D1557 - 78

COMPACTION TEST DATA

BORING NUMBER 68 at 1' to 2' 73 at 0' to 4' 74 at 3' to 6' AND SAMPLE DEPTH : SANDY SILT FILL - SANDY SILT SANDSTONE SOIL TYPE: and SANDY CLAY MAXIMUM DRY DENSITY : 122 120 131 (lbs./cu.ft.) 12 10 OPTIMUM MOISTURE CONTENT : 13 (% of dry wt.) TEST METHOD: ASTM Designation D1557 - 78 COMPACTION TEST DATA LAW/CRANDALL, INC. PLATE B-3.4

O.E. MS /// CHKD ¥ щ 2/4/93 DATE L92045.AE4 BO

1

à. s

gen e

Challen Walter

BORING NUMBER AND SAMPLE DEPTH :	80 at 0° to 3°	100 at 5° to 7°	103 at 1' to 3'				
SOIL TYPE:	FILL - SILTY SAND and SANDY SILT	FILL - SILTY SAND and SANDY SILT	FILL - SILTY SAND				
MAXIMUM DRY DENSITY : (lbs./cu.ft.)	128	122	132				
OPTIMUM MOISTURE CONTE (% of dry wt.)	NT: 9	13	9				
TEST METHOD: ASTM Designation D1557 - 78							
COMPACTION TEST DATA							
		LAW/CRAN	DALL, INC.				

O.E. MS// CHKD_

¥

DR.

DATE 2/4/93

JOB L92045.AE4

ŝ

BORING NUMBER 120 at 10' to 13' 113 at 5 to 7 116 at 1' to 3' AND SAMPLE DEPTH : FILL - SILTY SAND FILL - SILTY SAND FILL - SILTY SAND SOIL TYPE : -128 MAXIMUM DRY DENSITY : 131 131 (lbs./cu.ft.) 9 8 9 OPTIMUM MOISTURE CONTENT : (% of dry wt.) TEST METHOD: ASTM Designation D1557 - 78 COMPACTION TEST DATA LAW/CRANDALL, INC. PLATE B-3.6

CHKD

O.E. MS //

¥

Ы.

2/4/93

DATE

L92045.AE4

JOB

1.2

The second

3

Anna ta sulta

Alleria andra ella

NPGSCO-CEN

BORING NUMBER AND SAMPLE DEPTH:	31 at 0° to 4'	32 at 0° to 2°	39 at 1' to 3'				
SOIL TYPE :	FILL - SILTY SAND and SANDY SILT	FILL - SILTY SAND	FILL - SILTY SAND				
MAXIMUM DRY DENSITY*: (lbs./cu.ft.)	122	130	130				
OPTIMUM MOISTURE CONTENT (% of dry wt.)	r•: 11	9	8				
EXPANSION (%): (From optimum to saturated moisture content)	1.3	0.1	O				
C. B. R. ** (% of standard)							
AT 90% COMPACTIO	N: 17	24	38				
AT 95% COMPACTIO	DN: 36	55	84				
* TEST METHOD: ASTM Designation D1557 - 78							
** TEST METHOD: ASTM Designation D1883-73							
COMPACTION AND C.B.R. TEST DATA							

LAW/CRANDALL, INC. PLATE B-4.1

-	BORING NUMBER AND SAMPLE DEPTH:	44 at 0' to 2'	50 at 1' to 2'	55 at 1' to 2'
	SOIL TYPE :	FILL - SILTY SAND	FILL - SILTY SAND and SANDY SILT	SILTY CLAY
	MAXIMUM DRY DENSITY*: (lbs./cu.ft.)	131	128	127
	OPTIMUM MOISTURE CONTENT *: (% of dry wt.)	9	9	11
	EXPANSION (%): (From optimum to saturated moisture content)	0	0.1	1.1
	C. B. R. ** (% of standard)			
	AT 90% COMPACTION :	28	14	7
	AT 95% COMPACTION :	81	46	16
	•TEST METHO	D: ASTM Desig	nation D1557 - 78	
	** TEST METHO	D: ASTM Desig	nation D1883-73	
	COMPACTION A	AND C.B.	R. TEST DATA	
				DALL, INC.
				PLATE B

A 3 - 4.2

Contraction of the second s

:

O.E. MS MS CHKD 3

¥

DR.

DATE 2/4/93

JOB L92045.AE4

BORING NUMBER ÁND SAMPLE DEPTH:	63 at 0° to 2°	79 at 0° to 3°	87 at 1' to 4'				
SOIL TYPE:	SANDY SILT	FILL - SILTY SAND and SANDY SILT	SILTY SAND				
MAXIMUM DRY DENSITY *: (lbs./cu.ft.)	130	129	124				
OPTIMUM MOISTURE CONTENT*: (% of dry wt.)	10	10	11				
EXPANSION (%): (From optimum to saturated moisture content)	0.8	0.3	0.1				
C. B. R. ** (% of standard)							
AT 90% COMPACTION :	17	23	23				
AT 95% COMPACTION :	32	69	52				
•TEST METHO	DD: ASTM Desig	nation D1557 - 78					
TEST METHO	DD: ASTM Design	nation D1883 - 73					
COMPACTION AND C.B.R. TEST DATA							
		LAW/CRAN	DALL, INC. PLATE B-4.3				

-	BORING NUMBER AND SAMPLE DEPTH:	89 at 0' to 2'	102 at 0' to 2'	106 at1'to3'
	SOIL TYPE:	FILL - SILTY SAND	FILL - SILTY SAND and SANDY SILT	FILL - SILTY SAND
	MAXIMUM DRY DENSITY *: (lbs./cu.ft.)	123	127	134
	OPTIMUM MOISTURE CONTENT *: (% of dry wt.)	11	10	8
	EXPANSION (%): (From optimum to saturated moisture content)	0.1	0.9	0.2
	C. B. R. ** (% of standard)			
	AT 90% COMPACTION :	26	15	22
	AT 95% COMPACTION :	66	31	47
	•TEST METHO	D: ASTM Desig	nation D1557 - 78	
	** TEST METHO	D: ASTM Desig	nation D1883 - 73	
	COMPACTION	AND C.B.	R. TEST DATA	
			LAW/CRAN	PLATE B-4

O.E. MS MY CHKD 3 ¥ DH. DATE 2/4/93 JOB L92045.AE4

Constant of the second

n na Na

Summer and

an an an an an the second s

Same and

Martin and a straight for an and a straight for a s

Contractor and Aller

The second s

4.4

BORING NUMBER 112 at 1' to 3' AND SAMPLE DEPTH: FLL-SILTY SAND and SOIL TYPE: SANDY SILT 129 MAXIMUM DRY DENSITY*: (lbs./cu.ft.) 9 OPTIMUM MOISTURE CONTENT *: (% of dry wt.) 0.5 EXPANSION (%): (From optimum to saturated moisture content) C. B. R. ** (% of standard) 10 AT 90% COMPACTION : 47 AT 95% COMPACTION : *TEST METHOD: ASTM Designation D1557-78 ** TEST METHOD: ASTM Designation D1883 - 73 COMPACTION AND C. B. R. TEST DATA

LAW/CRANDALL, INC.

BORING NUMBER AND SAMPLE DEPTH :	21 at 5 to 7	26 at 4' to 5'	32 at 0° to 2°							
SOIL TYPE :	SANDY CLAY	SANDY CLAY	FILL - SANDY SILT and SILTSTONE FRAGMENTS							
CONFINING PRESSURE : (lbs./sq. ft.)	144	144	144							
INITIAL MOISTURE CONTENT: (% of dry wt.)	12.0	9.0	8.9							
FINAL MOISTURE CONTENT: (% of dry wt.)	27.1	13.6	12.8							
DRY DENSITY: (bs./cu. ft.)	103	113	118							
EXPANSION INDEX :	36	3	1							
TEST MET	TEST METHOD: Uniform Building Code Standard No. 29-2, Expansion Index Test									
EXPANSIO	ON INDEX T	EST DATA								
		LAW/CRA	N D A L L, I NC. PLATE B-5.1							

and the second sec

Andrew Andrew

Same and Same

an increased and a second s

2

aller and

Ŕ

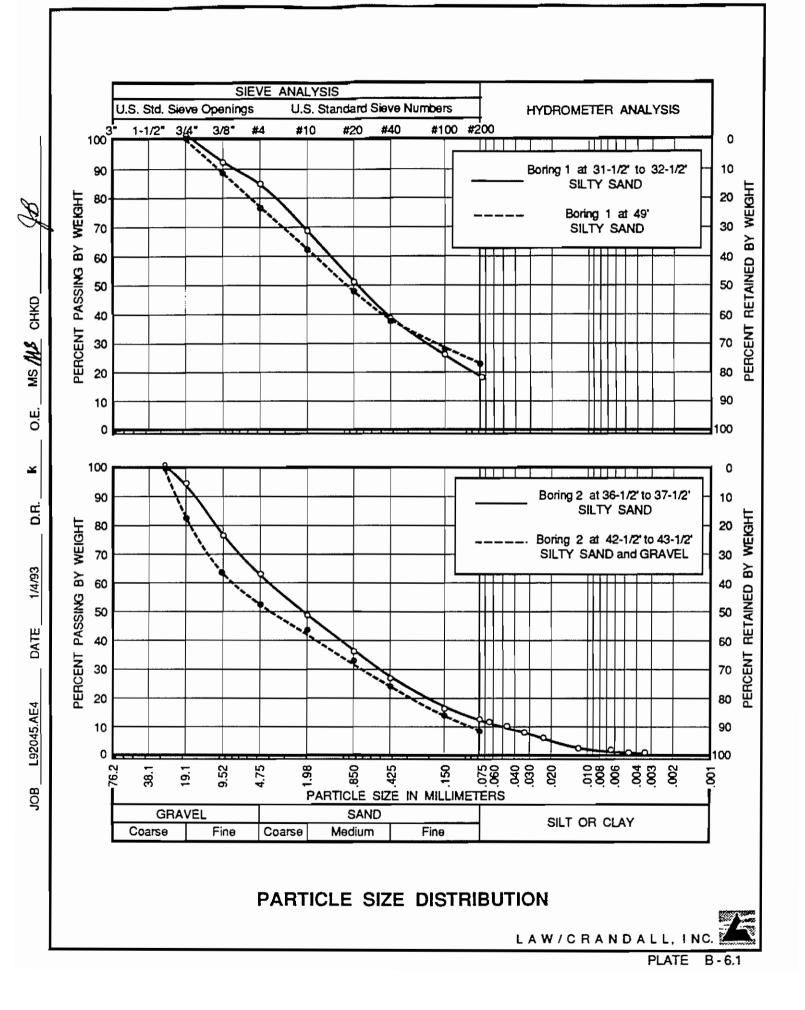
O.E. MS MS CHKD

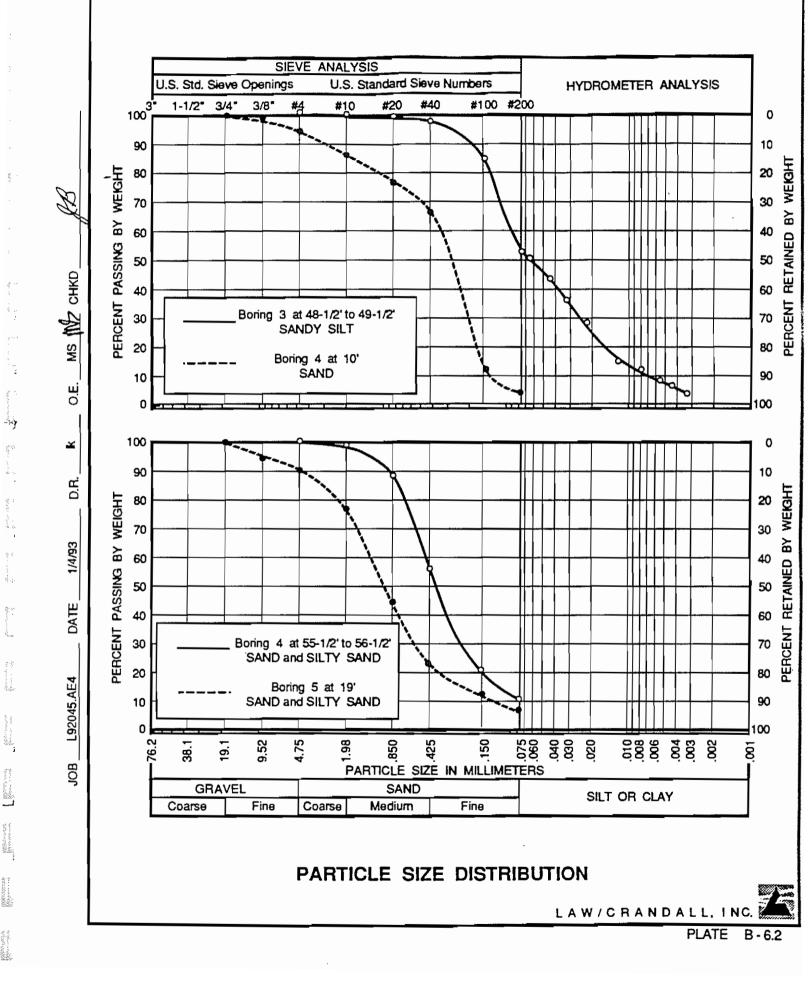
I

W.P. ab

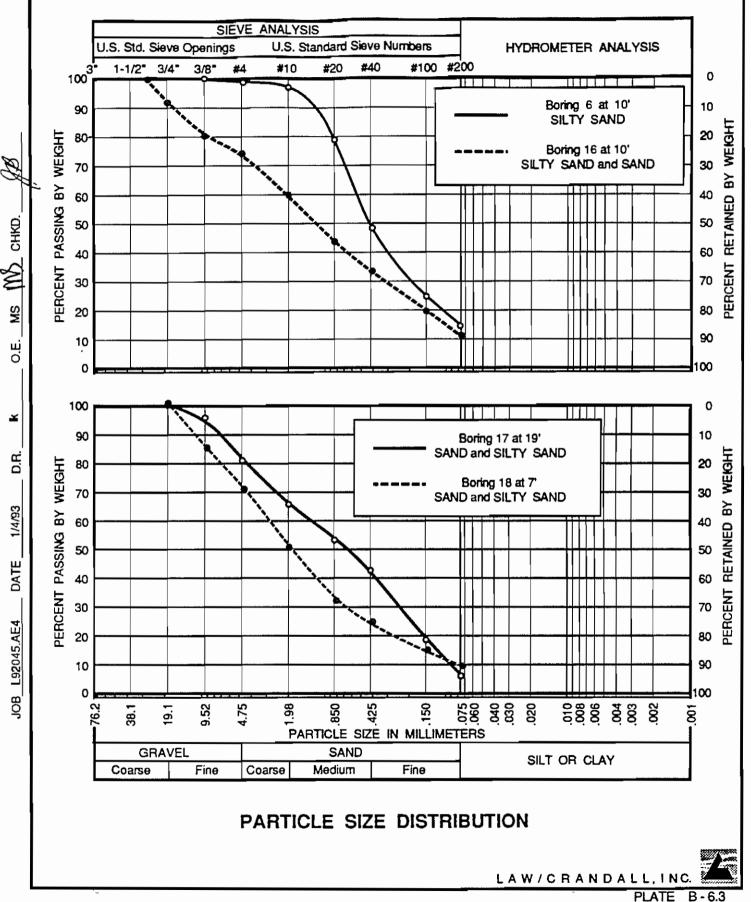
DATE 1/4/93

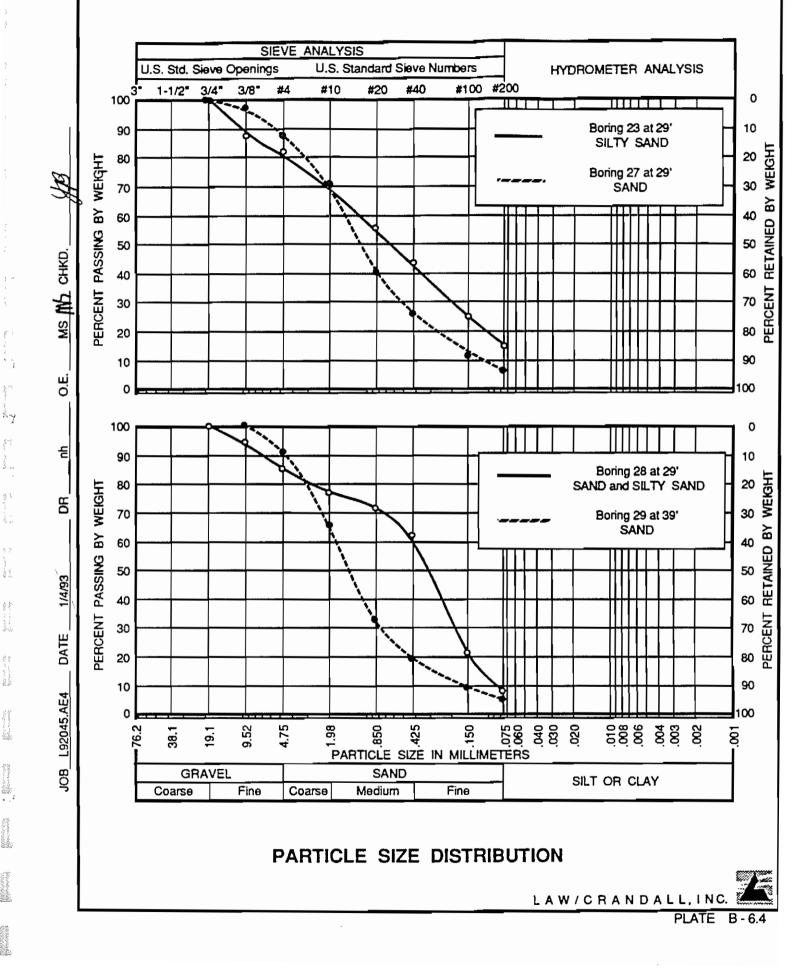
JOB 192045.AE4

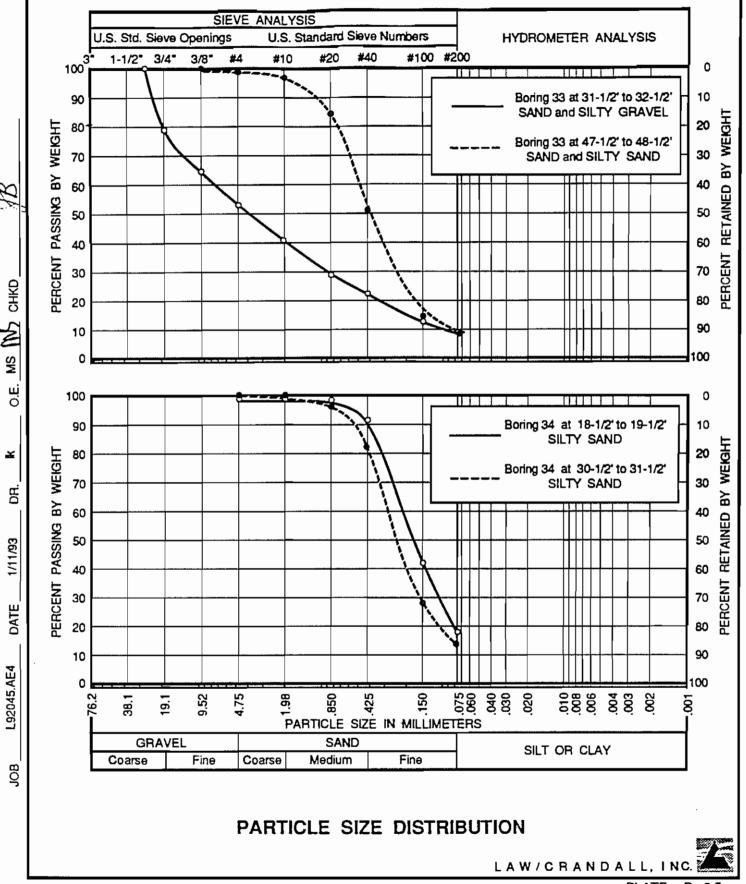

BORING NUMBER AND SAMPLE DEPTH :	55 at 1' to 2'	61 at 1' to 5'	78 at 4' to 6'						
SOIL TYPE :	SILTY CLAY	CLAYEY SILT	SILTY CLAY						
CONFINING PRESSURE : (lbs./sq. ft.)	144	144	144						
INITIAL MOISTURE CONTENT: (% of dry wt.)	9.5	14.8	13.1						
FINAL MOISTURE CONTENT: (% of dry wt.)	19.4	27.8	28.5						
DRY DENSITY: (1bs./cu. ft.)	110	90	99						
EXPANSION INDEX :	25	63	54						
TEST METHOD: Uniform Building Code Standard No. 29-2, Expansion Index Test									
EXPANSIC	N INDEX T	EST DATA							
		LAW/CRAI	NDALL, INC.						


2

		·	
		BORING NUMBER AND SAMPLE DEPTH :	87 at 5" to 8"
	-	SOIL TYPE:	SILTY CLAY
Z		CONFINING PRESSURE : (lbs./sq. ft.)	144
снкр //		INITIAL MOISTURE CONTENT: (% of dry wt.)	18.3
O.E. MS /#5		FINAL MOISTURE CONTENT: (% of dry wt.)	32.7
		DRY DENSITY: (lbs./cu. ft.)	97
. W.Р.		EXPANSION INDEX :	40
DATE1/4/93		TEST METHOD: Uniform Buildir No. 29-2, Exp	ng Code Standard bansion Index Test
JOB		EXPANSION INDEX TE	EST DATA
JOB			
			LAW/CRANDALL, INC.
			PLATE B-5.

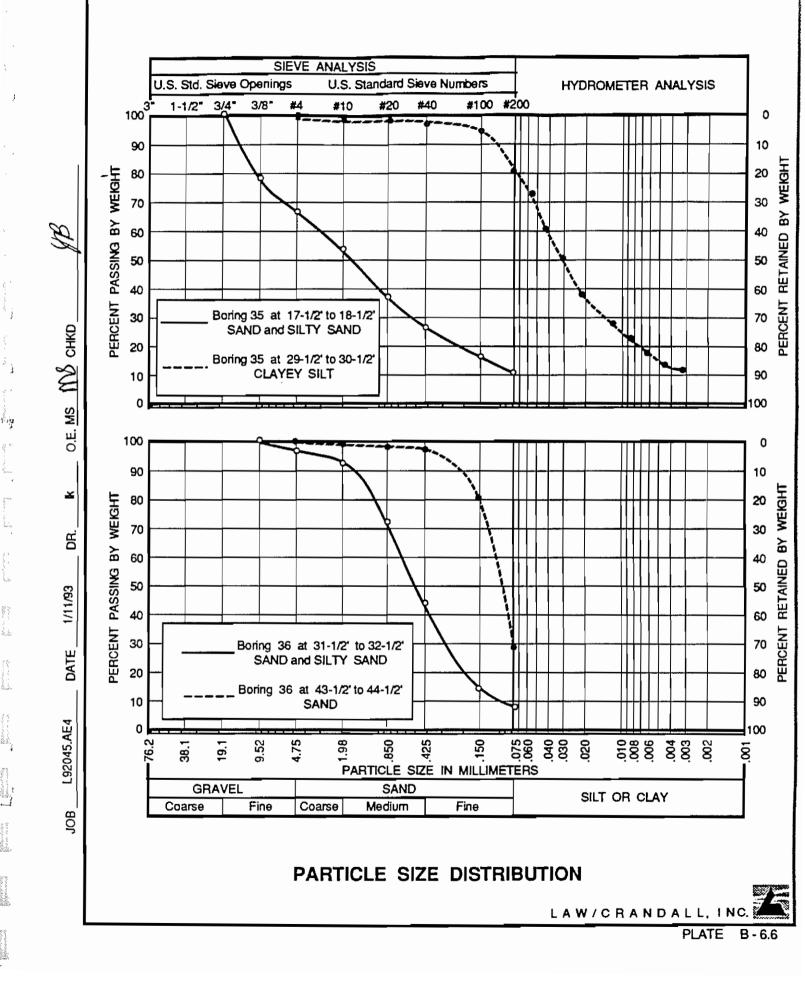

Sourcesser


5.3



-34 10000

։ ԽՈԾԵՐՈւՈւթինը՝ ԾԱՅՈւմություն միջությունը։ ԾԱՅՈւտուները հետությունը։ - Հայ


R

МS

¥

1/11/93

L92045.AE4

2. A.

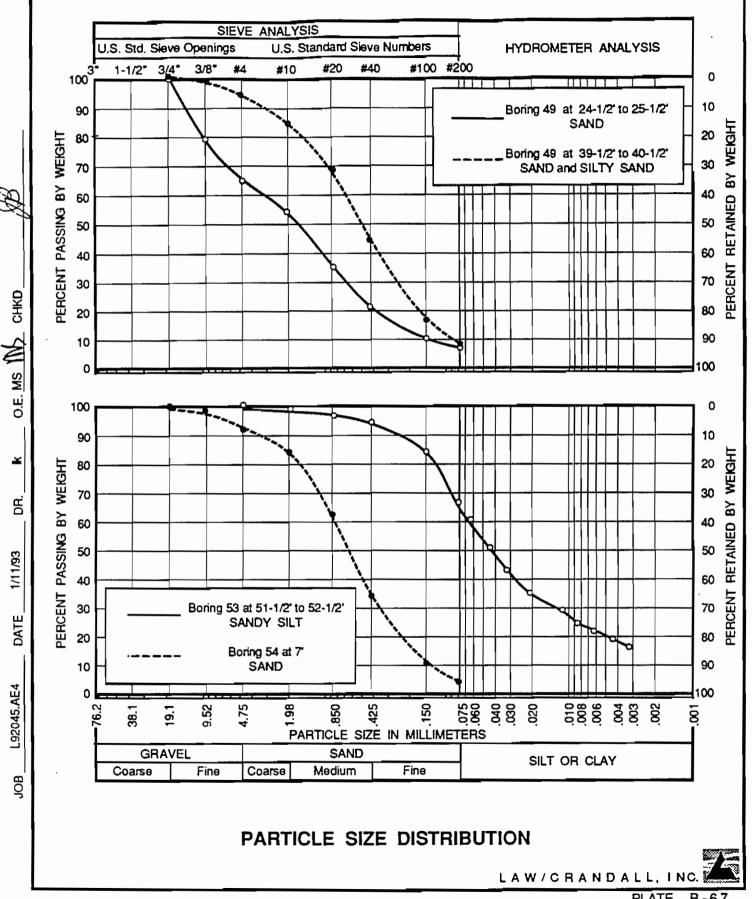
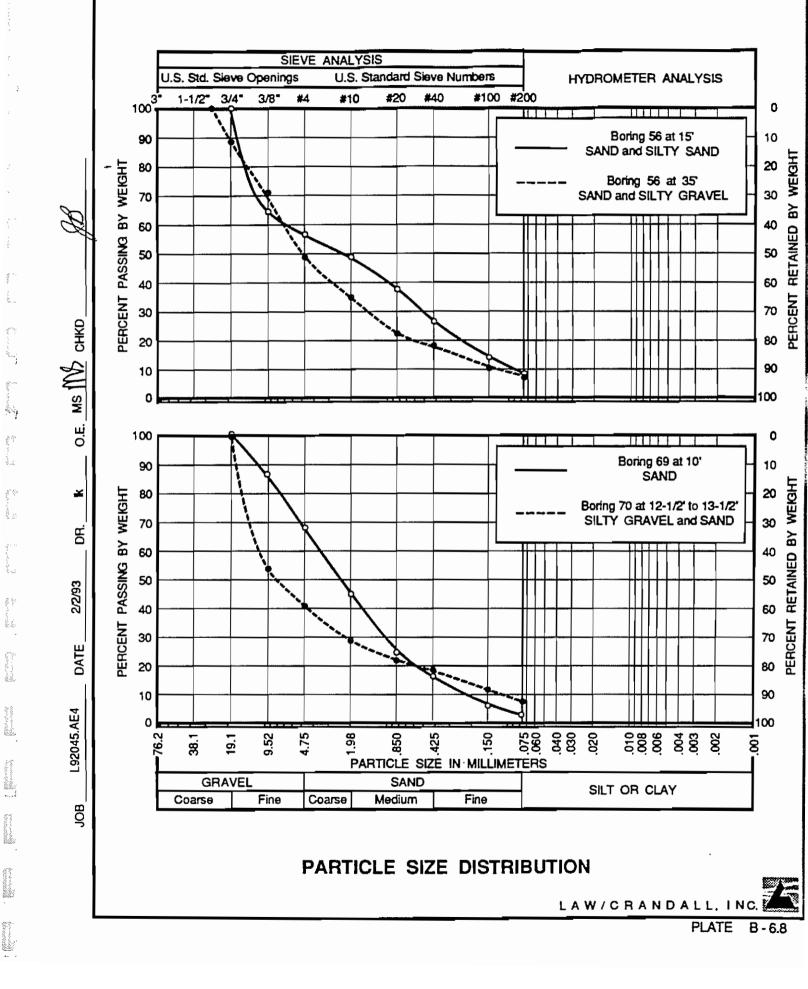
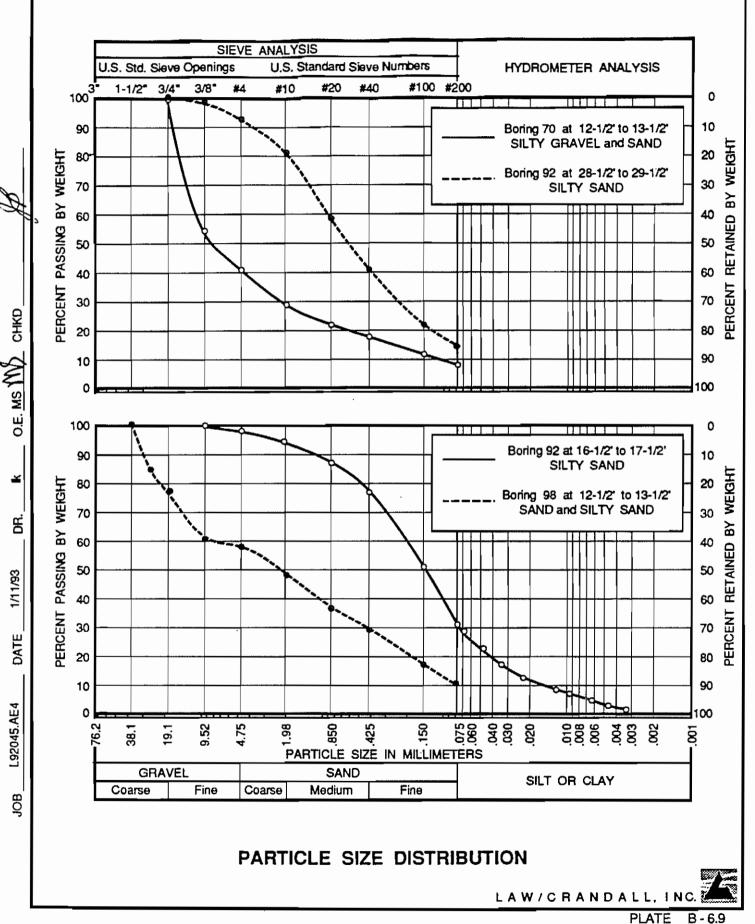
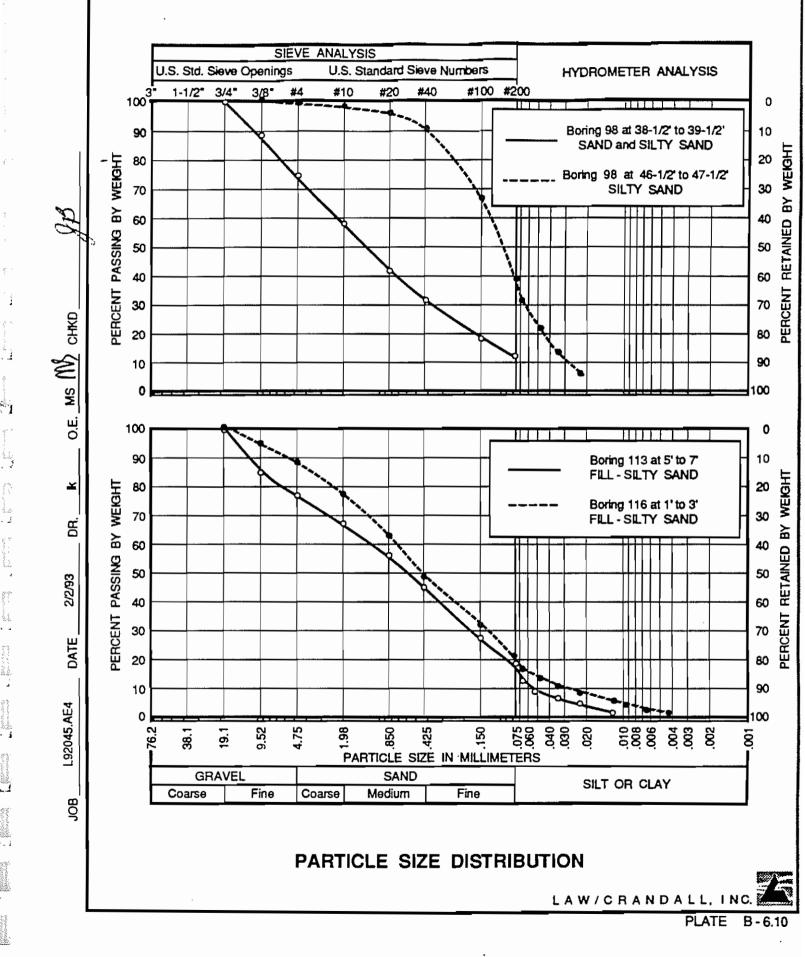
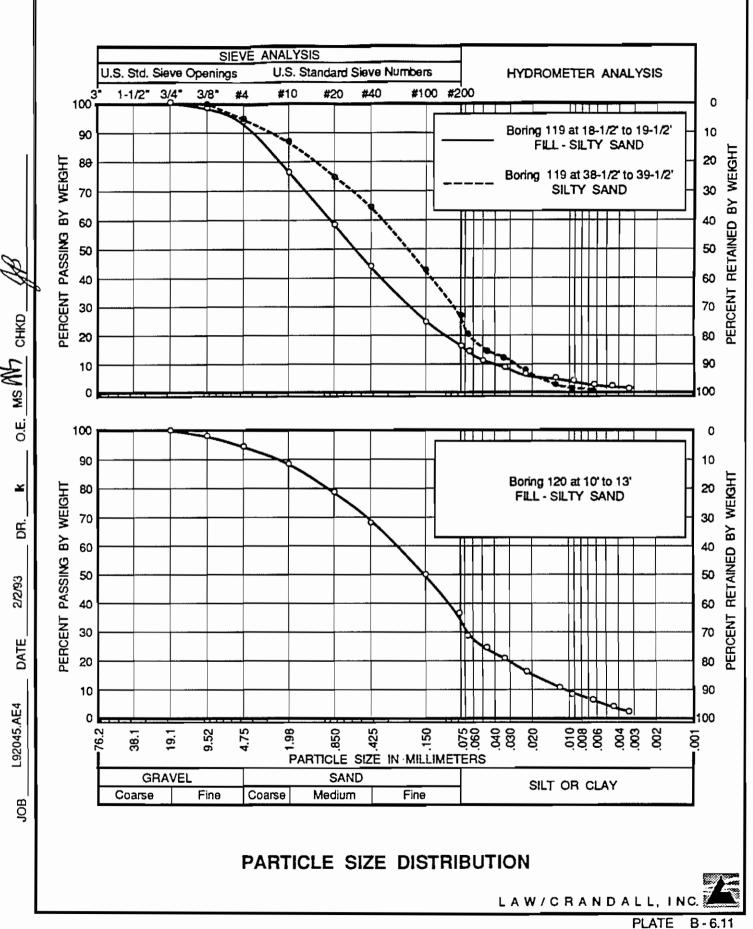





PLATE B-6.7



., 58

1 E. AUTO-DARAGE

e - I are generative generative generative generative generative generative generative generative generative g		BORING NUM AND SAMPLE DE		PERCENT PASSING NC 200 SIEVE		<u>SOI</u>
an sa an	Jel .	- 16 at 24' 18 at 24'		8		SAND a
	CHKD	20 at 14'		6		SAND a
• 1000 - 10 1	M, MS	22 at 10'		45		SI
	0.E. <u> </u>	28 at 49'		3		
Georgeologica	nh/lk	29 at 10'		20		SI
	w.P.	58 at 9'		10		SAND a
		64 at 14'		7		SAND a
	2/8/93	79 at 14'		20		SI
	DATE	84 at 3'		49		SI
	I.	93 at 59'		14		SI
	L92045.AE4	9 6 at 3'		45		SI
and a second sec	BOL	112 at 7		28		SI
Sector and the sector	د-					
eren er en son er en son er			PERCENT	PASSING	NO. 200	SIEVE
an a					L	_ A W / C F

LAW/CRANDALL, INC

SOIL TYPE

SAND and SILTY SAND

SAND

SAND and SILTY SAND

SILTY SAND

SAND

SILTY SAND

SAND and SILTY SAND

SAND and SILTY SAND

SILTY SAND

SILTY SAND

SILTY SAND

SILTY SAND

SILTY SAND

PHASE II GEOTECHNICAL FEASIBILITY OF THE PROPOSED INTERSTATE 710 FREEWAY EXTENSION THROUGH THE MONTEREY HILLS LOS ANGELES COUNTY, CALIFORNIA CONTRACT NO. 07A0406, TASK ORDER NO. 2

PREPARED FOR:

Robert Bein, William Frost & Associates 14725 Alton Parkway Irvine, California 92619-7057

PREPARED BY:

Ninyo & Moore Geotechnical and Environmental Sciences Consultants 9272 Jeronimo Road, Suite 123A Irvine, California 92618

> March 25, 1999 Project No. 201769-01

9272 Jeronimo Road • Suite 123A • Irvine, California 92618-1914 • Phone (949) 472-5444 • Fax (949) 472-5445

APPENDIX B

LABORATORY TESTING

Classification

Soils were visually and texturally classified in accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D 2488-93. Soil classifications are indicated on the logs of the exploratory excavations in Appendix A.

Moisture Content

The moisture content of samples obtained from the exploratory excavations was evaluated in accordance with ASTM D 2216-92. The test results are presented on the logs of the exploratory excavations in Appendix A.

In-Place Moisture and Density Tests

The moisture content and dry density of relatively undisturbed samples obtained from the exploratory excavations were evaluated in general accordance with ASTM D 2937-94. The test results are presented on the logs of the exploratory excavations in Appendix A.

Gradation Analysis

Gradation analysis tests were performed on selected representative soil samples in general accordance with ASTM D 422-63. The grain-size distribution curves are shown on Figures B-1 through B-4. These test results were utilized in evaluating the soil classifications in accordance with the Unified Soil Classification System.

Atterberg Limits

Tests were performed on selected representative fine-grained soil samples to evaluate the liquid limit, plastic limit, and plasticity index in general accordance with ASTM D 4318-95. These test results were utilized to evaluate the soil classification in accordance with the Unified Soil Classification System. The test results and classifications are shown on Figure B-5.

Direct Shear Tests

Direct shear tests were performed on undisturbed (and remolded) samples in general accordance with ASTM D 3080-90 to evaluate the shear strength characteristics of selected materials. The samples were inundated during shearing to represent adverse field conditions. The results are shown on Figures B-6 through B-12.

Expansion Index Tests

The expansion index of selected materials was evaluated in general accordance with U.B.C. Standard No. 18-2. Specimens were molded under a specified compactive energy at approximately 50 percent saturation (plus or minus 1 percent). The prepared 1-inch thick by 4-inch diameter specimens were loaded with a surcharge of 144 pounds per square foot and were inundated with tap water. Readings of volumetric swell were made for a period of 24 hours. The results of these tests are presented on Figure B-13.

Maximum Dry Density and Optimum Moisture Content Tests

The maximum dry density and optimum moisture content of selected representative soil samples were evaluated in general accordance with ASTM D 1557-91. The results of these tests are summarized on Figure B-14.

Soil Corrosivity Tests

Soil pH, and minimum resistivity tests were performed on representative samples in general accordance with California Test (CT) 643. The chloride content of selected samples was evaluated in general accordance with CT 422. The sulfate content of selected samples was evaluated in general accordance with CT 417. The test results are presented on Figure B-15.

Sand Equivalent

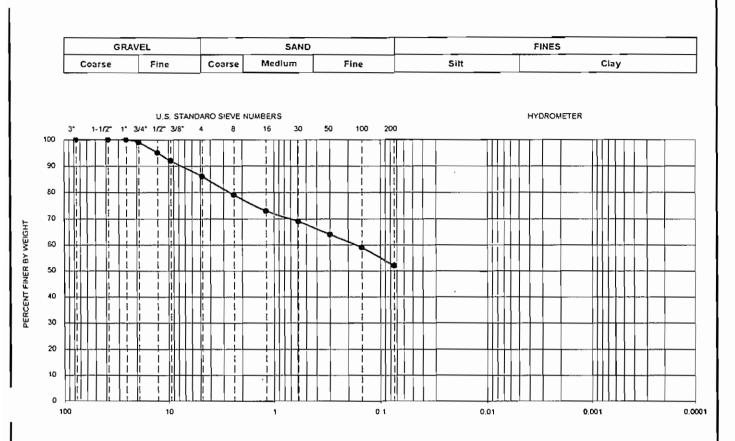
Sand equivalent (SE) tests were performed on selected representative samples in general accordance with ASTM D 2419-95. The SE value reported on Figure B-16 is the ratio of the coarse- to fine-grained particles in the selected samples.

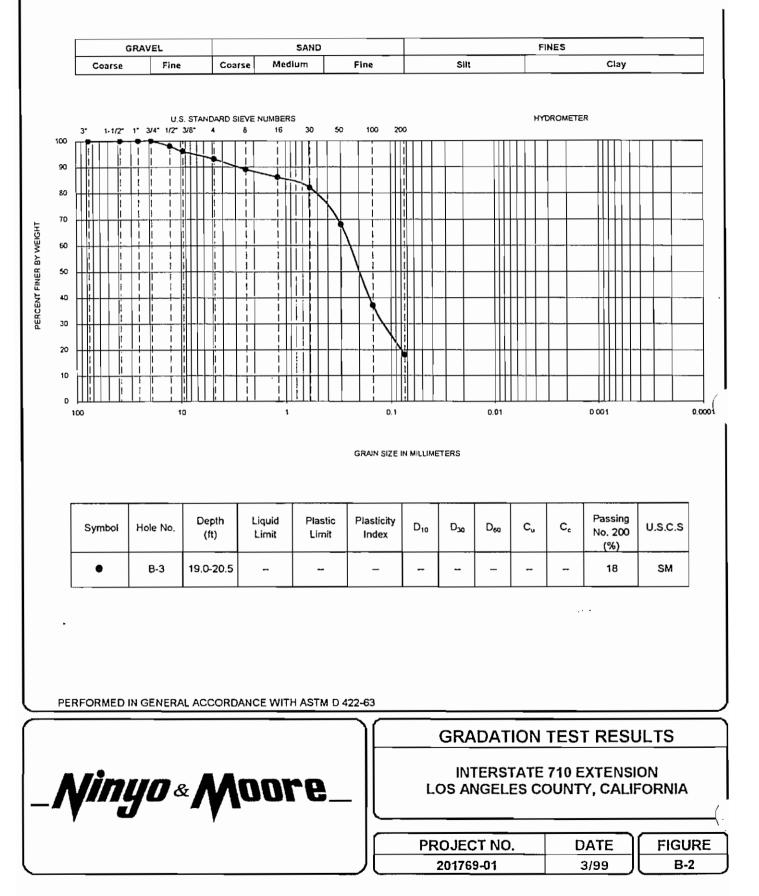
Ninyo « Moore

PROJECT NO.	DATE	FIGURE
201769-01	3/99	B-1

INTERSTATE 710 EXTENSION LOS ANGELES COUNTY, CALIFORNIA

GRADATION TEST RESULTS


.....


PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422-63

*Ninyo* «Moore

Symbol	Hole No.	Depth (ft)	Liquid Limit	Plastic Limit	Plasticity Index	D ₁₀	D30	D ₆₀	C,	C,	Passing No. 200 (%)	U.S.C.S
•	B-1	3.0-5.0	42	21	21	-	-	-	-	-	52	CL

GRAIN SIZE IN MILLIMETERS

GRADATION TEST RESULTS

INTERSTATE 710 EXTENSION LOS ANGELES COUNTY, CALIFORNIA

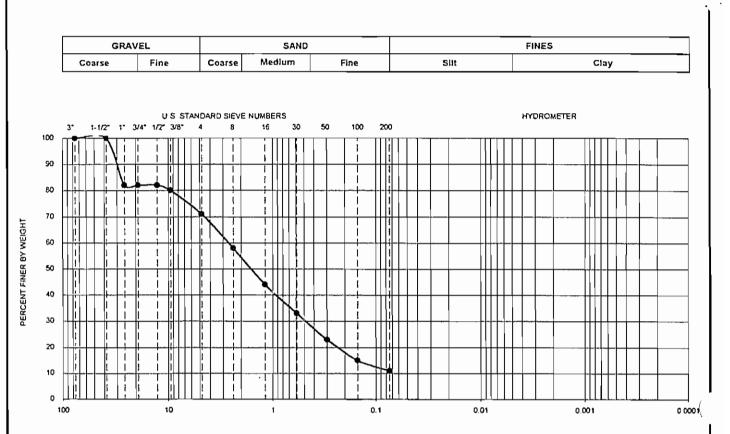
PROJECT NO.	DATE	FIGURE
201769-01	3/99	B-3

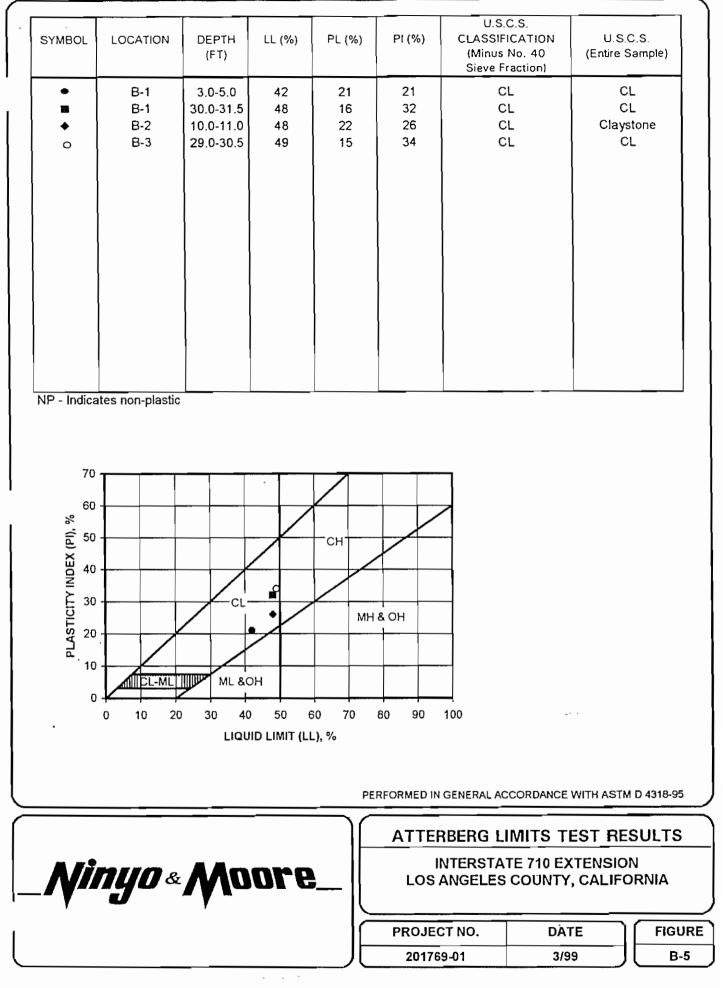
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422-63

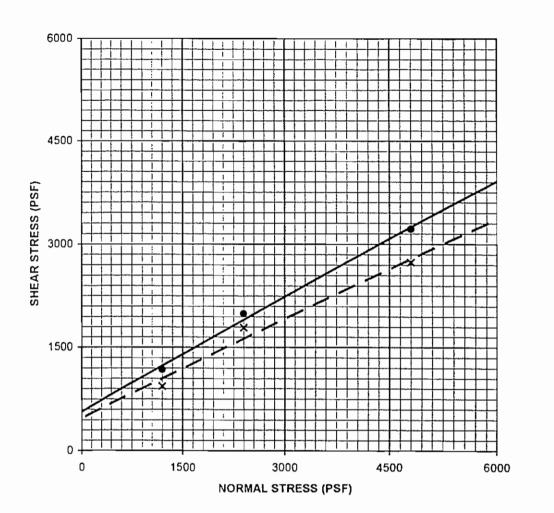
Symbol	Hole No.	Depth (ft)	Liguid Limit	Plastic Limit	Plasticity Index	D ₁₀	D ₃₀	D ₆₀	C,	C,	Passing No. 200 (%)	U.S.C.S
٠	B-4	19.0-20.5		-		0.08	0.18	0.30	4.0	1.4	10	SP-SM

GRAIN SIZE IN MILLIMETERS

V <i>inyo</i> «Moore_	INTERSTATE LOS ANGELES CO			
	PROJECT NO. 201769-01	DATE 3/99	FIGURE B-4	

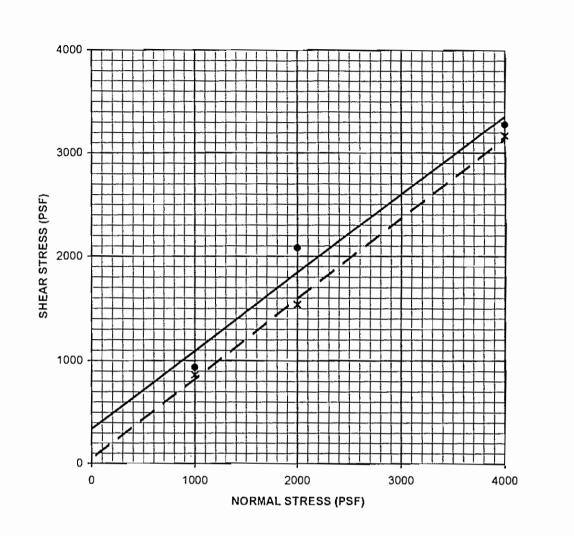

PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422-63


Symbol	Hole No.	Depth (ft)	Liquid Līmit	Plastic Limit	Plasticity Index	D ₁₀	D30	D ₆₀	C,	C,	Passing No. 200 (%)	U.S.C.S
8	в-4	30.0-33.0	-	-	-	0.06	0.50	2.50	41.7	1.7	11	SW-SM



.. ·

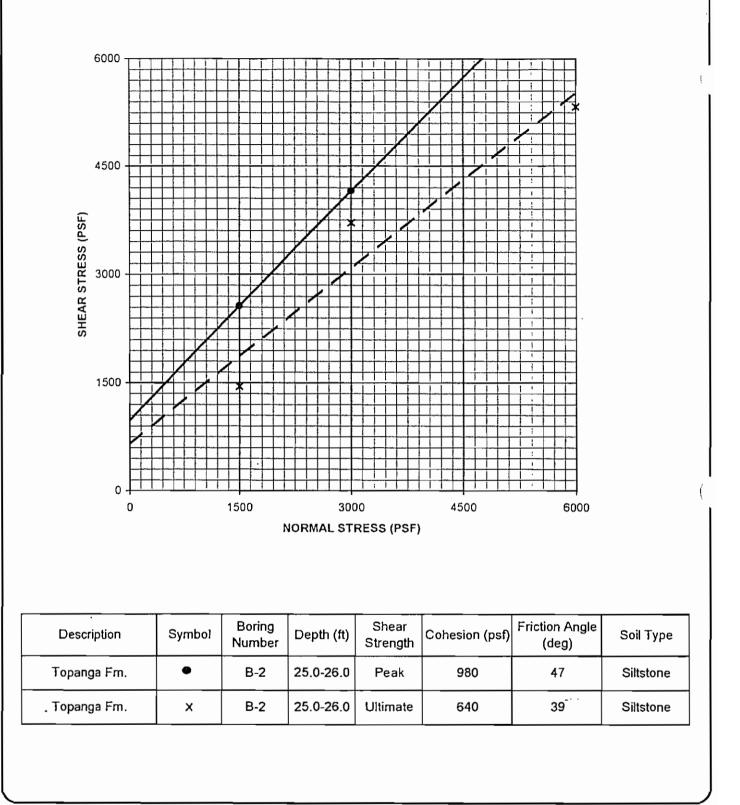
GRADATION TEST RESULTS



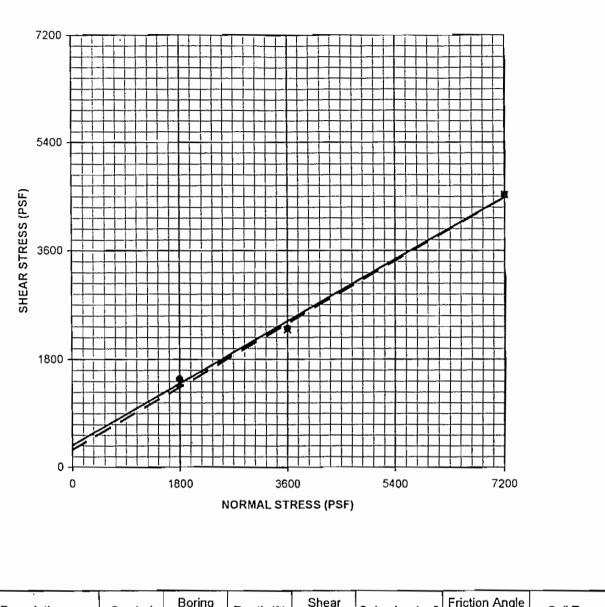
Description	Symbol	Boring Number	Depth (ft)	Shear Strength	Cohesion (psf)	Friction Angle (deg)	Soil Type
Sandy Clay	•	B-1	20.0-21.5	Peak	560	29	CL
. Sandy Clay	×	B-1	20.0-21.5	Ultimate	460	26	CL

_ <i>Ninyo</i> & Moore _

PROJECT NO.	DATE	FIGURE
201769-01	3/99	B-6

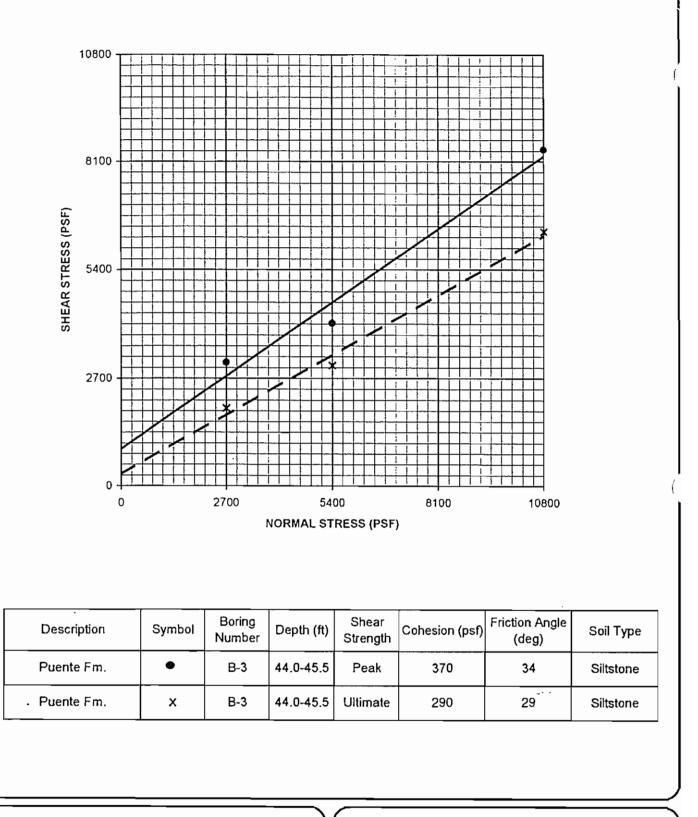

Description	Symbol	Boring Number	Depth (ft)	Shear Strength	Cohesion (psf)	Friction Angle (deg)	Soil Type
Topanga Fm.*	•	B-2	8.0-9.0	Peak	340	37	Siltstone to Claystone
, Topanga Fm.*	×	B-2	8.0-9.0	Ultimate	50	38	Siltstone to Claystone

*Remolded to 90% relative compaction


DIRECT SHEAR TEST RESULTS

PROJECT NO.	DATE	FIGURE
201769-01	3/99	B-7

PROJECT NO.	DATE	FIGURE
201769-01	3/99	B-8


Description	Symbol	Boring Number	Depth (ft)	Shear Strength	Cohesion (psf)	Friction Angle (deg)	Soil Type
Sandy Clay	•	B-3	29.0-30.5	Peak	370	30	CL
. Sandy Clay	×	B-3	29.0-30.5	Ultimate	290	30	CL

INTERSTATE 710 EXTENSION LOS ANGELES COUNTY, CALIFORNIA

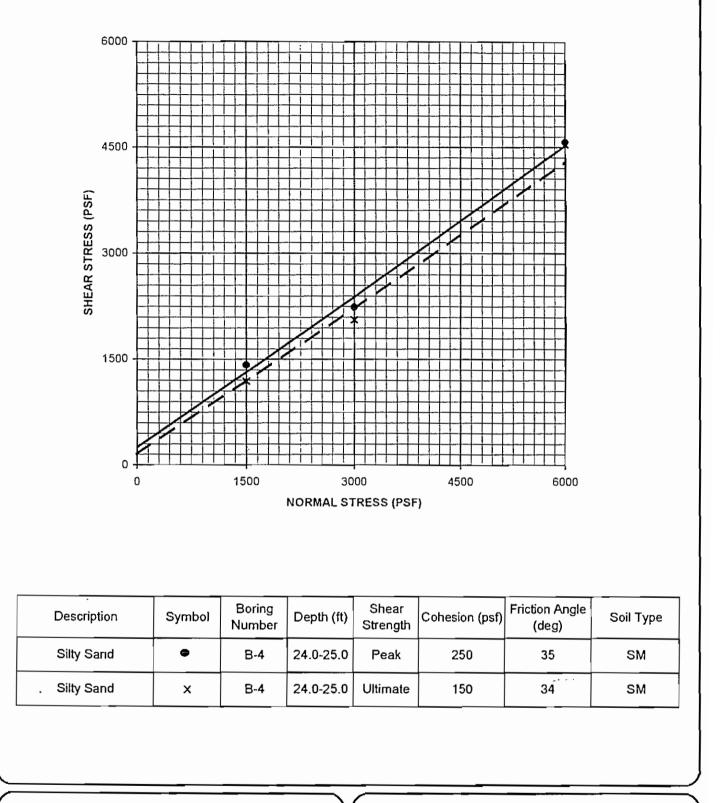
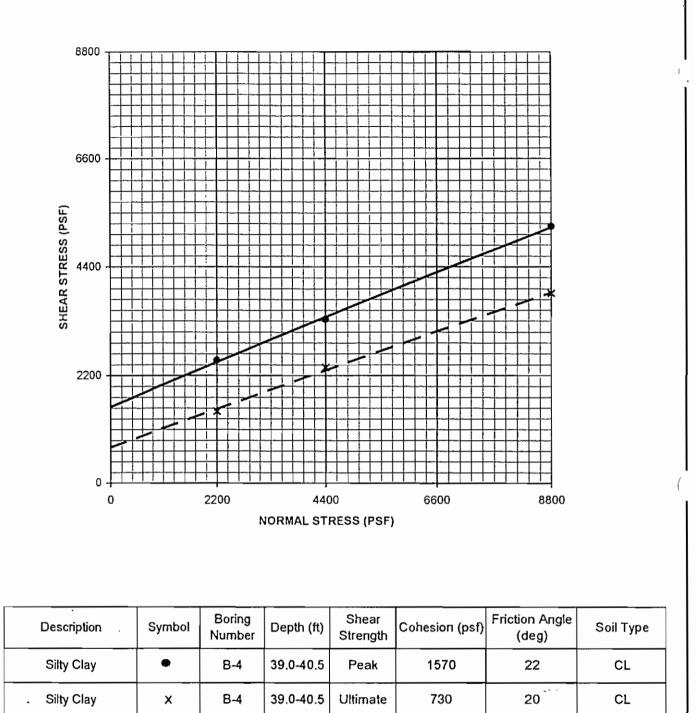
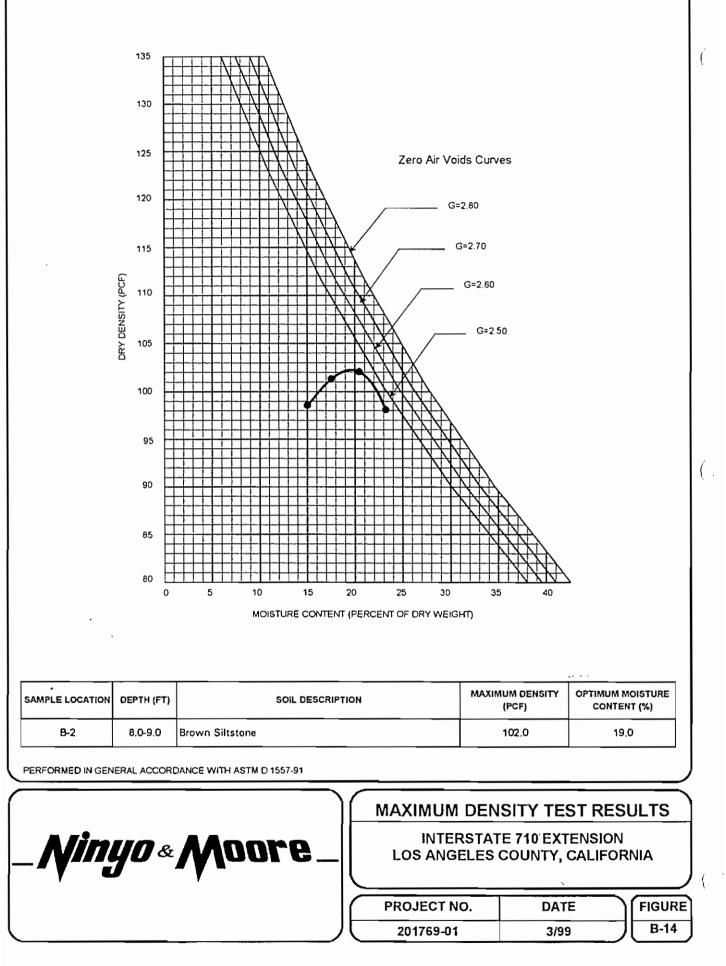

PROJECT NO. DATE 201769-01 3/99

FIGURE B-9



Ρ	ROJECT NO.	DATE	FIGURE
	201769-01	3/99	B-10

PROJECT NO. DATE FIGURE B-11 201769-01 3/99


1 1	DIR
_ <i>Ninyo</i> & Moore	LOS
	PROJE
	2017

INTERSTATE 710 EXTENSION LOS ANGELES COUNTY, CALIFORNIA

		=1
PROJECT NO.	DATE	FIGURE
201769-01	3/99	B-12

ſ

LOGATION DEPTH MOISTURE DRY DENSITY MOISTURE SWELL INDEX POTENT B-2 8.0-8.0 18.9 97.5 32.6 0.0001 0 Very L B-4 5.0-7.0 15.7 91.0 33.4 0.0641 S4 Meedu VERFORMED IN GENERAL ACCORDANCE WITH UBC STANDARD 18-2 <th></th> <th></th> <th>EXPA</th> <th>NSION INE</th> <th>EX TEST</th> <th>RESULTS</th> <th></th> <th></th>			EXPA	NSION INE	EX TEST	RESULTS		
B-4 5.0-7.0 15.7 91.0 33.4 0.0641 64 Mediu PERFORMED IN GENERAL ACCORDANCE WITH UBC STANDARD 18-2 PERFORMED IN GENERAL ACCORDANCE WITH UBC STANDARD 18-2 EXPANSION INDEX TEST RESULT INTERSTATE 710 EXTENSION LOS ANGELES COUNTY, CALIFORNIA		DEPTH	MOISTURE	DRY DENSITY	MOISTURE	SWELL		EXPANSION POTENTIAL
PERFORMED IN GENERAL ACCORDANCE WITH UBC STANDARD 18-2	B-2	8.0-9.0	18.9	97.5	32.6	0.0001	0	Very Low
Ningo & Moore Nongo & Moore Expansion index test result Interstate 710 extension Los angeles county, california	B-4	5.0-7.0	15.7	91.0	33.4	0.0641	64	Medium
Ningo & Moore Nongo & Moore Expansion index test result Interstate 710 extension Los angeles county, california								
Ningo & Moore Nongo & Moore Expansion index test result Interstate 710 extension Los angeles county, california								
Ningo & Moore Los Angeles county, california	PERFORMED II	N GENERAL A	CCORDANCE W	ITH UBC STANDARE) 18-2			
Ningo & Moore							<u></u> .	
	A / 3-					INTERSTAT	E 710 EXTENSI	ON
II PROJECT NO. DATE I FIG		YU ®	Mu	nl6 [—]				
								FIGUR

CORROSIVITY TEST RESULTS

SAMPLE LOCATION	SAMPLE DEPTH (FT)	рН⁵	RESISTIVITY • (ohm-cm)	WATER-SOLUBLE SULFATE CONTENT IN SOIL ** (ppm)	CHLORIDE CONTENT *** (ppm)
B-1	20.0-22.0	7.3	1,450	20	100
B-2	8.0-9.0	7.9	2,510	10	25
B-4	49.0-50.5	7.7	1,320	10	40

* PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 643

** PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 417

*** PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 422

	CORROSIVI	TY TEST R
_ <i>Ninyo</i> «Moore_	INTERSTA LOS ANGELES	TE 710 EXTE COUNTY, C
1 [°]		DATE

RESULTS

NSION ALIFORNIA

	PROJECT NO.	DATE	FIGURE
J	201769-01	3/99	B-15

SAND EQUIVALENT VALUE

SAMPLE LOCATION	SAMPLE DEPTH (FT)	SOIL TYPE	SAND EQUIVALE	NT
B-3	5.0-6.5	SM	11	
B-3	24.0-25.5	SP	52	
				(
PERFORMED IN GENERAL A	CCORDANCE WITH ASTM D 2	2419-91		
			EQUIVALENT VAI	_UE
_ Ninyo ®	Moore		RSTATE 710 EXTENSION ELES COUNTY, CALIF	
		PROJECT N 201769-01		FIGURE B-16

GEOTECHNICAL DATA REPORT AVENUE 45 – ARROYO DRIVE RELIEF SEWER LOS ANGELES, CALIFORNIA FOR LADPW/GED

URS JOB NO. 29401785 FEBRUARY 28, 2006

APPENDIX A

SOIL TESTING

GENERAL

Laboratory tests were performed on selected representative samples as an aid in classifying the soils/rocks and to evaluate the physical properties of the soils/rocks affecting tunnel design and construction procedures. Tests performed are indicated on the Logs of Borings. A description of the laboratory testing program is presented below.

MOISTURE AND DENSITY TESTS

Moisture content and density tests were performed on a number of samples recovered from the borings. The results of these tests were used to compute existing soil overburden pressures, to correlate strength and compressibility data from tested samples with those not tested, and to aid in evaluating soil properties. The tests were performed in accordance with ASTM Test Methods D-2937 and D-2216, respectively. The results of these tests are presented on the Logs of Borings and Table 1.

SIEVE ANALYSIS

Sieve analyses were performed on selected samples of soils encountered at the site. These tests were performed to evaluate the gradation characteristics of the soils and to aid in their classification. The tests were performed in accordance with ASTM Test Method D-422. The results are presented on the Logs of Borings and in Figures A-1 through A-6.

ATTERBERG LIMITS

Atterberg limits tests were performed to aid in soil classification and to evaluate the plasticity characteristics of the fine-grained materials. The tests were performed in accordance with ASTM Test Method D-4318. The results of these tests are shown on the Logs of Borings and presented in Figures A-7 through A-9.

UNCONFINED COMPRESSIVE STRENGTH

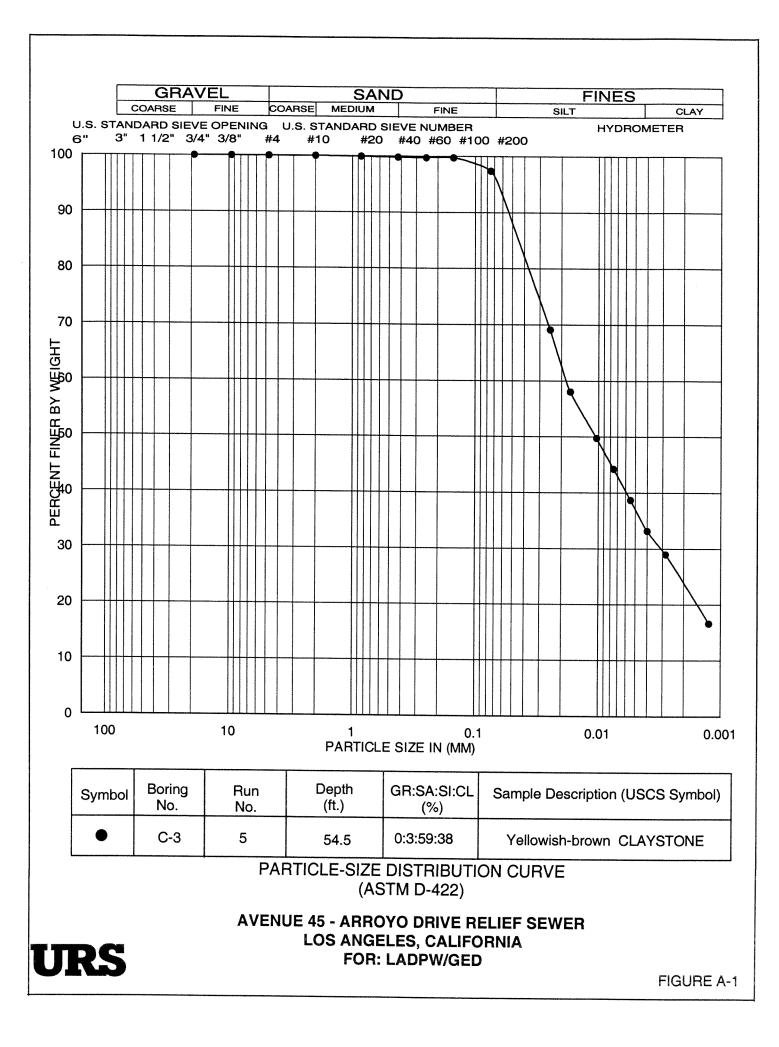
Unconfined compressive strength tests were performed to evaluate the unconfined compressive strength of the soft rocks. The tests were performed in accordance with ASTM Test Method D-2166. The results of these tests are presented in Figures A-10 and A-11

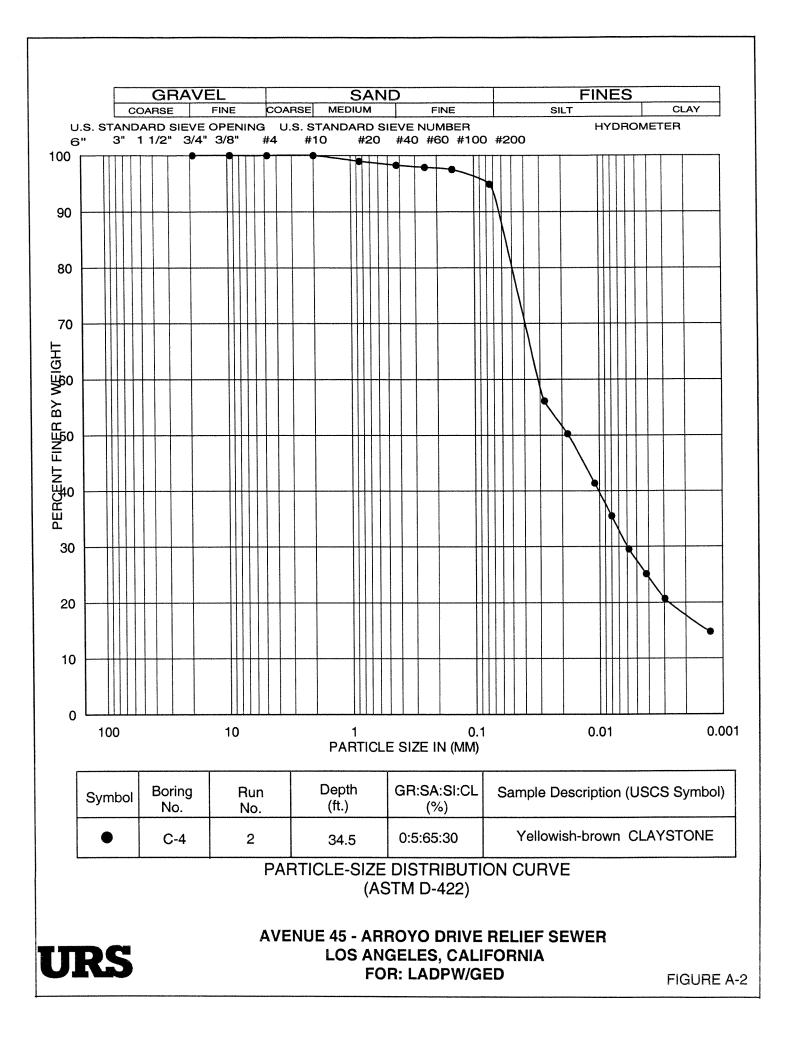
UNCONFINED COMPRESSIVE STRENGTH ON HARD ROCKS

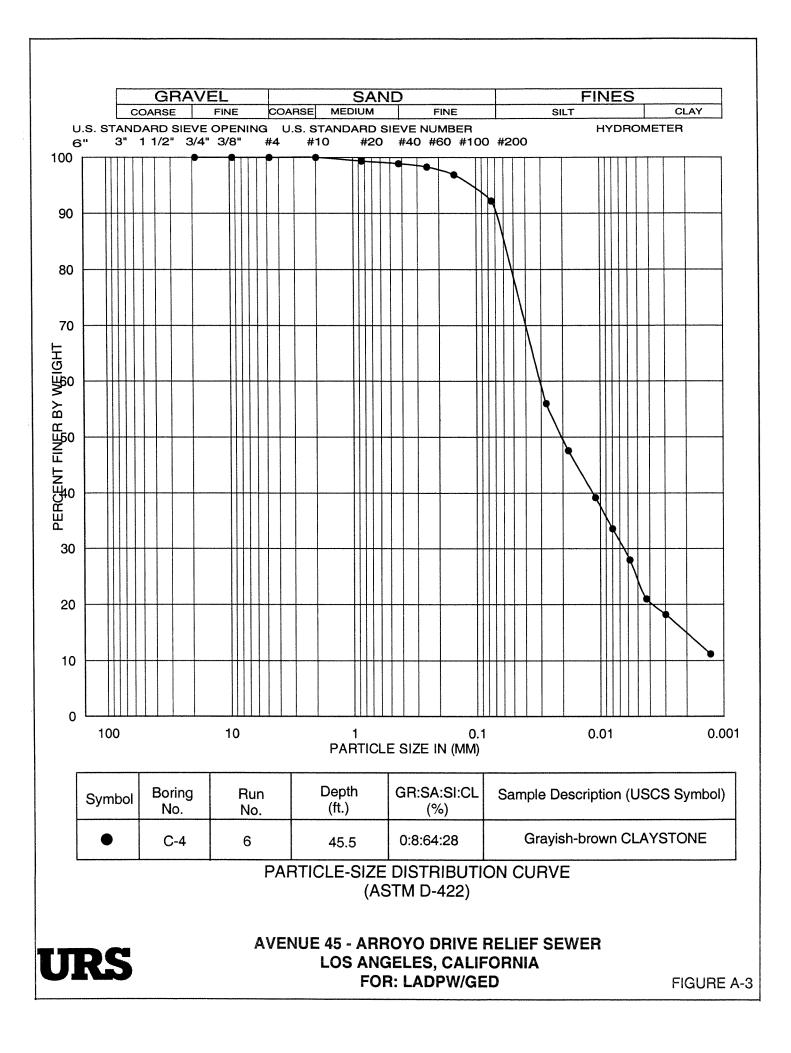
Unconfined compressive strength tests were performed to evaluate the unconfined compressive strength of the rocks. The tests were performed in accordance with ASTM Test Method D-2938. The results of these tests are presented in Figures A-12 through A-31

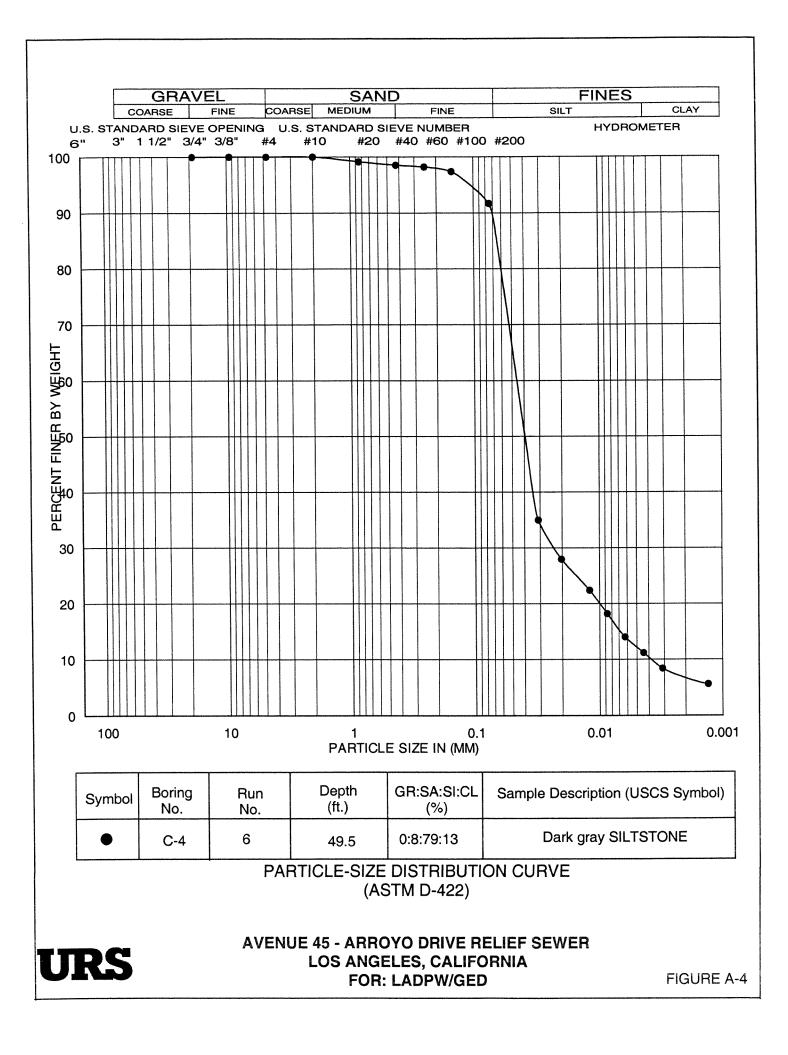
CORROSIVITY TESTING

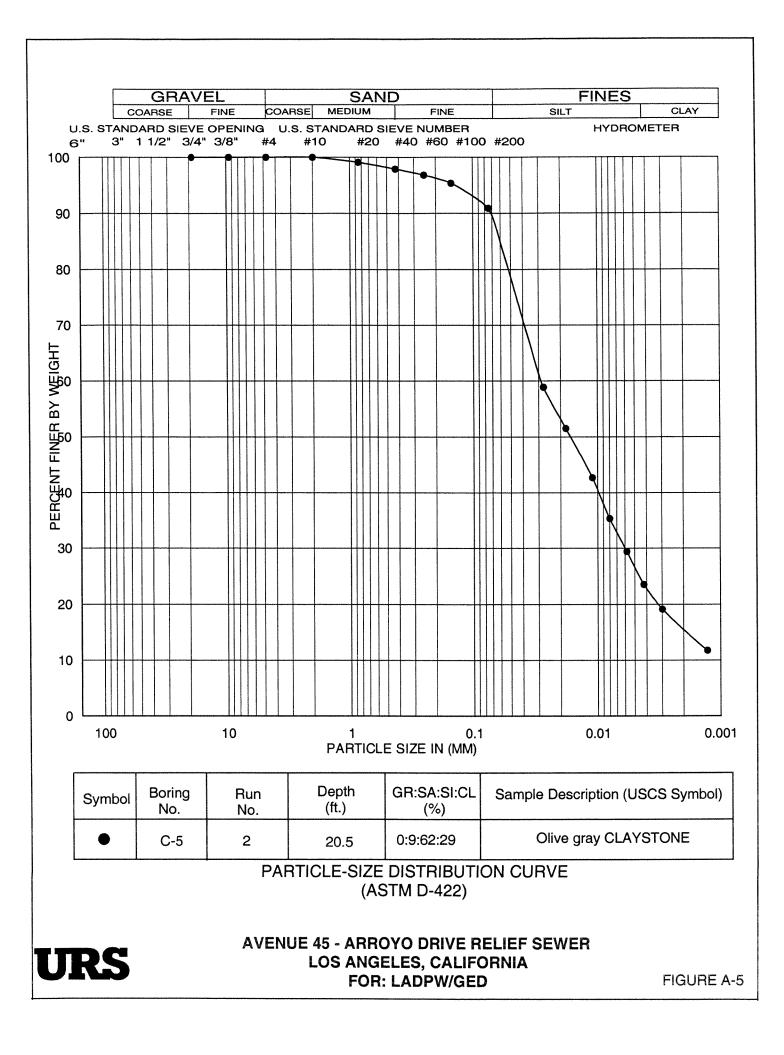
A selected representative soil sample was tested in order to assess corrosivity parameters including chloride content, resistivity, pH, and sulfate contents. The tests were conducted in accordance with appropriate California Test Methods. The test results are presented in Table A-1.


URS


TABLE A-1 CORROSIVITY TEST RESULTS


Resistivity Test and PH: California Test Methods 532 and 643 Sulfate Content: California Test Method 417 Chloride Content: California Test Method 422


Project Name :	<u>Avenue 45 - Arrovo Drive Relief Sewer</u>	Location:	Los Angeles, CA
'roject No.	<u>29401785.1</u>	Tested By :	MF
Date:	12/2/2005	Data Input By:	MF


Boring No.	Run No.	Soll Description	Depth	Resistivity	PH	Sulfate Content	Chloride Content
			(ft.)	(ohm-cm)		(ppm)	(ppm)
C-3	1	Yellowish-brown CLAYSTONE	32.5	490	8.2	429	120
C-4	2	Yellowish-brown CLAYSTONE	34.5	920	8.4	143	60

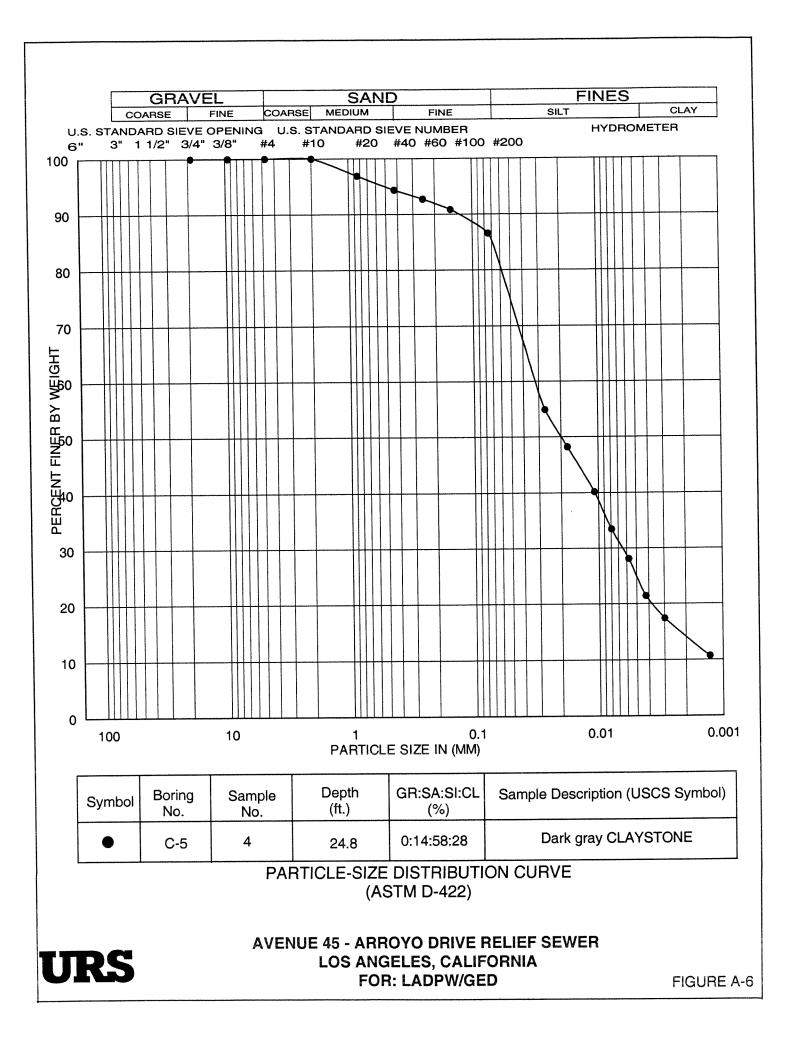


FIGURE A-7

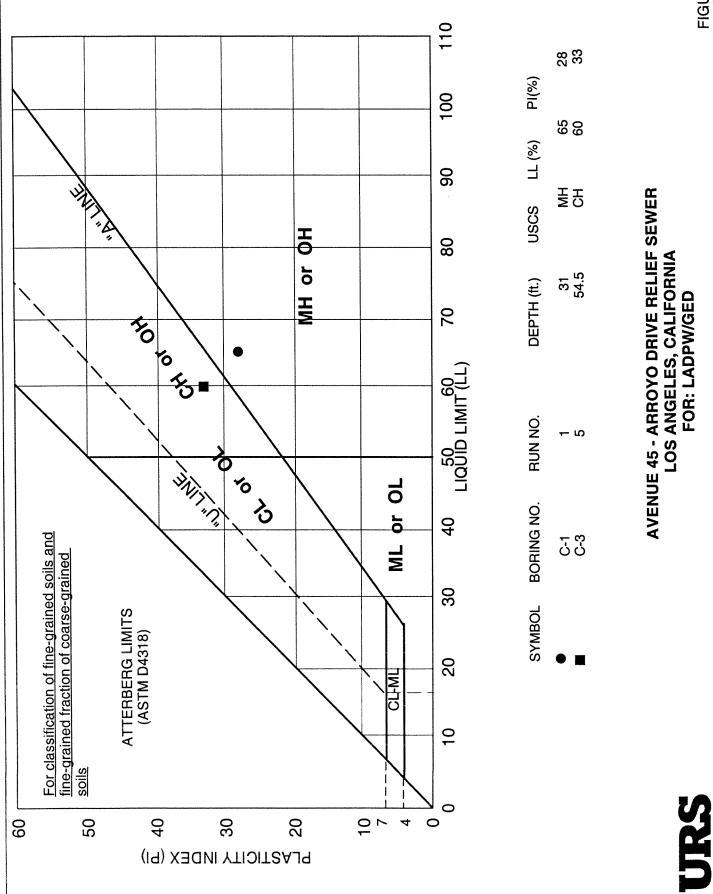


FIGURE A-8 20 28 28 47 48 56 김복요 AVENUE 45 - ARROYO DRIVE RELIEF SEWER LOS ANGELES, CALIFORNIA FOR: LADPW/GED 45.5 49.5 34.5 500 $\begin{array}{c} 0 \\ 4 \\ 4 \\ 4 \\ 4 \end{array}$

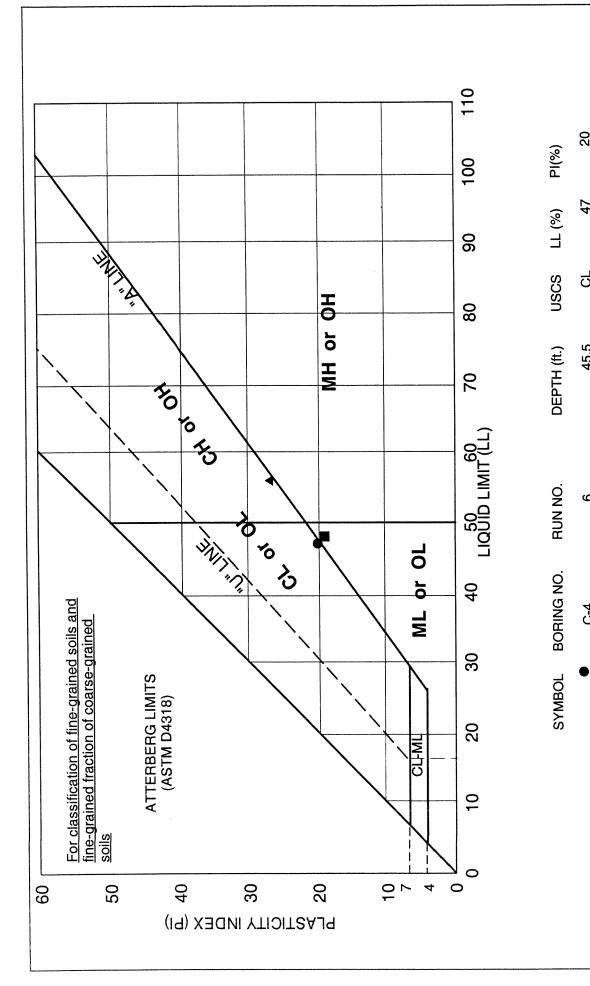
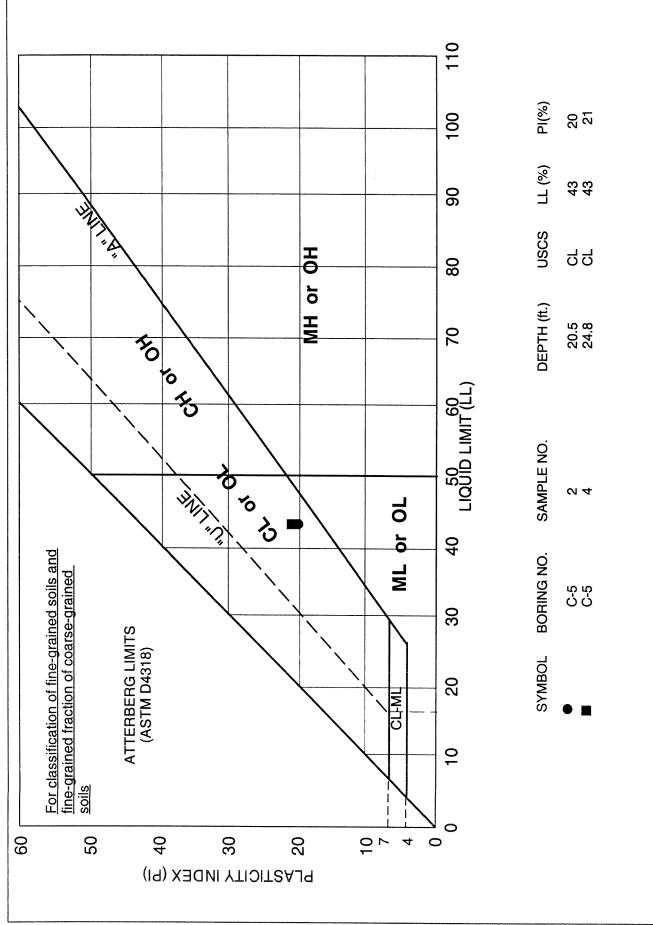
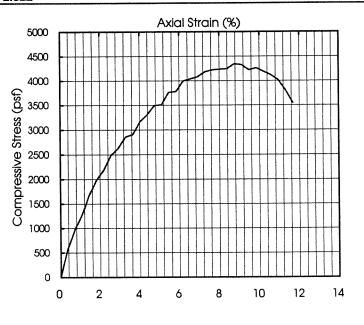



FIGURE A-9

AVENUE 45 - ARROYO DRIVE RELIEF SEWER LOS ANGELES, CALIFORNIA FOR: LADPW/GED

URS

UNCONFINED COMPRESSIVE STRENGTH OF


COHESIVE SOIL

TEST PROCEDURE NO. ASTM D 2166-91

Project Name:	AVENUE 45 - ARROYO DRIVE RELIEF SEWER	Project No:	<u>29401785</u>
Boring No.:	<u>C-3</u>	Run No.:	<u>3</u>
Depth (ft.) :	<u>43</u>	Sample Type:	<u>Core</u>
Sample Description:	Yellowish-brown CLAYSTONE	Date :	12/02/05

Sample Wt. + Ring W	't. (gm)	950.80	
Ring Wt.	(gm)	0.00	
Sample Wt.	(gm)	<u>950.80</u>	
Diameter (in)		2.428	
Height (in)		<u>6.852</u>	
Height : Diameter Ra	tio	2.822	

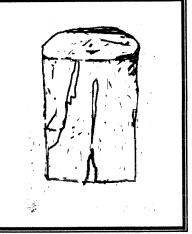
Area (in²) 4.630					
Moisture Content (%)	28.3				
Wt. Wet Sample + Container (gms)	226.21				
Wt. Dry Sample + Container (gms)	188.14				
Wt. Container (gms)	<u>53.41</u>				
Density and Saturation					
Specific Gravity (assumed)	2.70				
Wet Density (pcf)	114.2				
Dry Density (pcf)	<u>89.0</u>				
Void Ratio	0.894				
Total Porosity	0.472				
Pore Volume (cc.)	245.3				
% Saturation	<u>85</u>				

UNCONFINED STRESS ANALYSIS

Rate of Deformation (in/min)=

Failure Criterion:

Condition at which maximum stress occurs

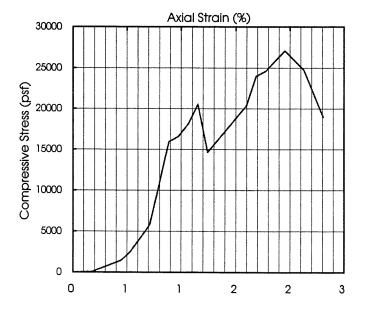

At Failure

Maximum Unconfined Compressive Stress (psf) =

Axial Strain (%) =

0.048

UNCONFINED COMPRESSIVE STRENGTH OF


COHESIVE SOIL

TEST PROCEDURE NO. ASTM D 2166-91

Project Name:	AVENUE 45 - ARROYO DRIVE RELIEF SEWER	Project No:	29401785
Boring No.:	<u>C-7</u>	Run No.:	4
Depth (ft.) :	40.5	Sample Type:	Core
Sample Description:	Olive-gray SILTSTONE	Date :	12/02/05

Sample Wt. + Ring	Wt. (gm)	916.90	
Ring Wt.	(gm)	0.00	
Sample Wt.	(gm)	<u>916.90</u>	
Diameter (in)		2.425	
Height (in)		<u>5.635</u>	
Height : Diameter F	Ratio	2.324	

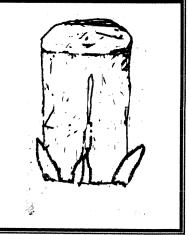
Area (in²)	4.619			
Moisture Content (%)	<u>12.4</u>			
Wt. Wet Sample + Container (gms)	185.01			
Wt. Dry Sample + Container (gms)	170.06			
Wt. Container (gms)	49.62			
Density and Saturation				
Specific Gravity (assumed)	2.70			
Wet Density (pcf)	134.2			
Dry Density (pcf)	119.4			
Void Ratio	0.412			
Total Porosity	0.292			
Pore Volume (cc.)	124.4			
% Saturation	<u>81</u>			

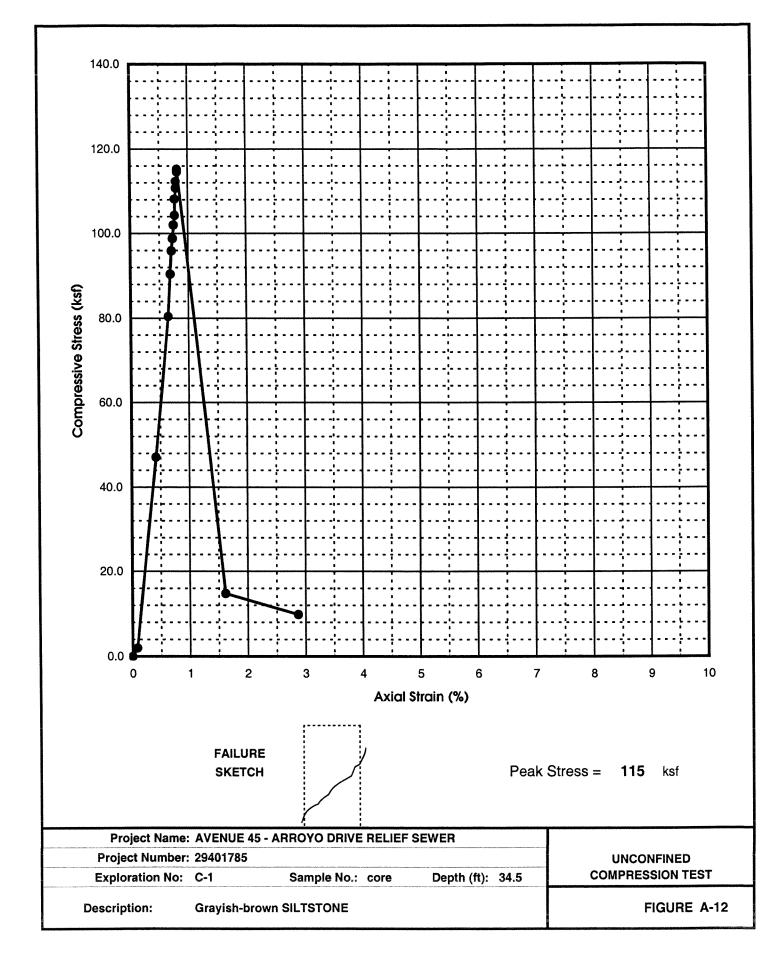
UNCONFINED STRESS ANALYSIS

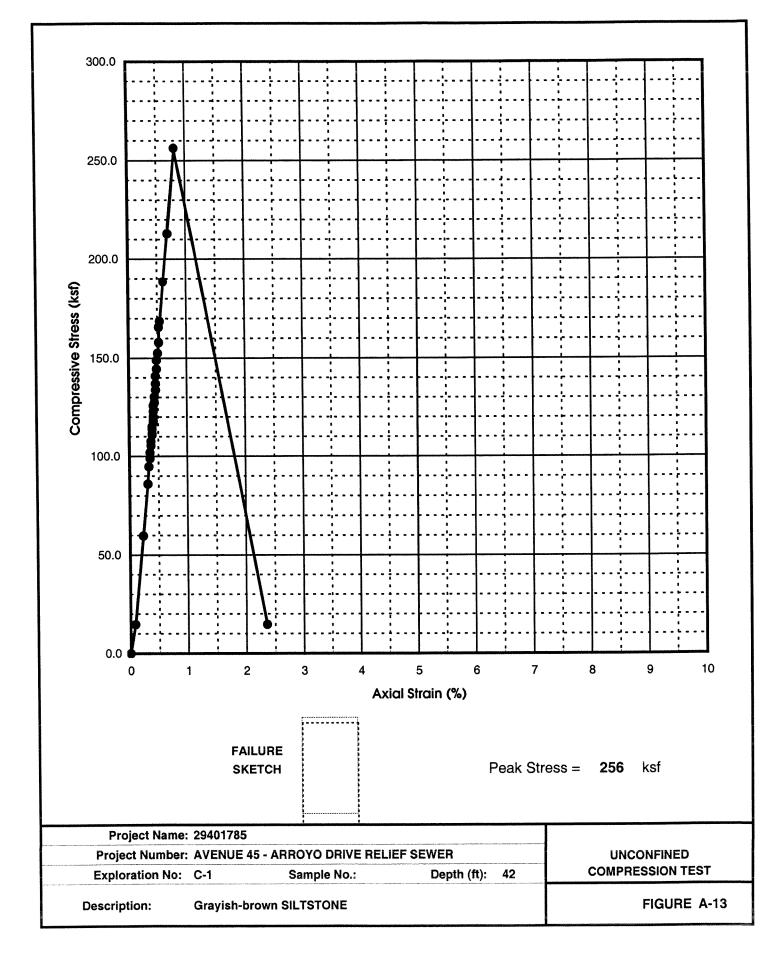
Rate of Deformation (in/min)=

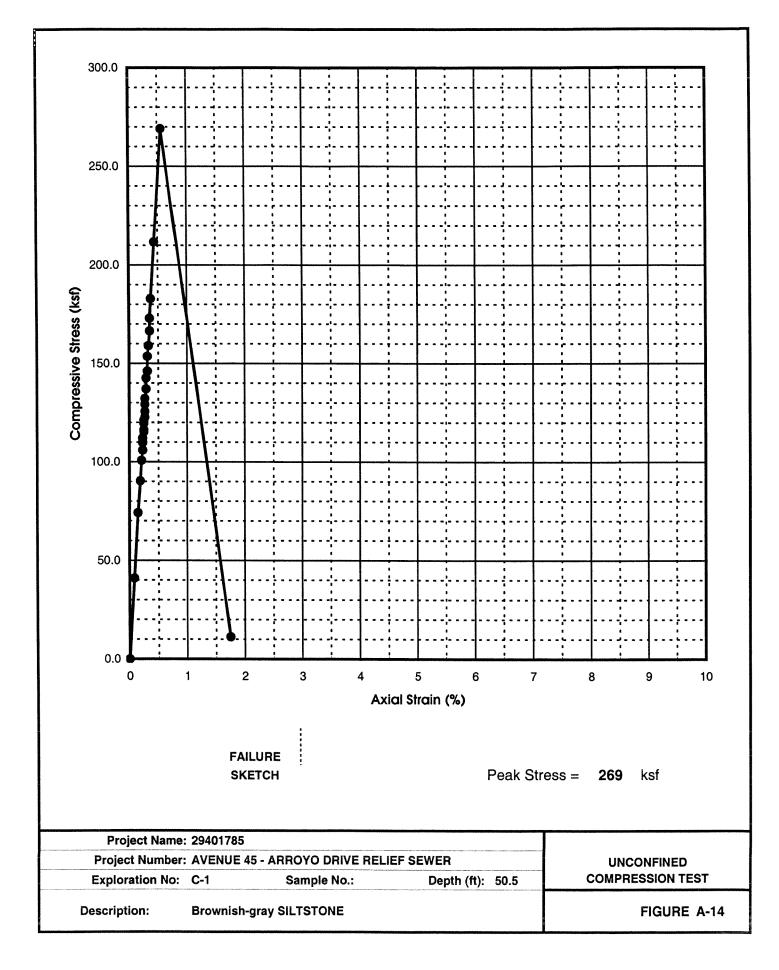
Failure Criterion:

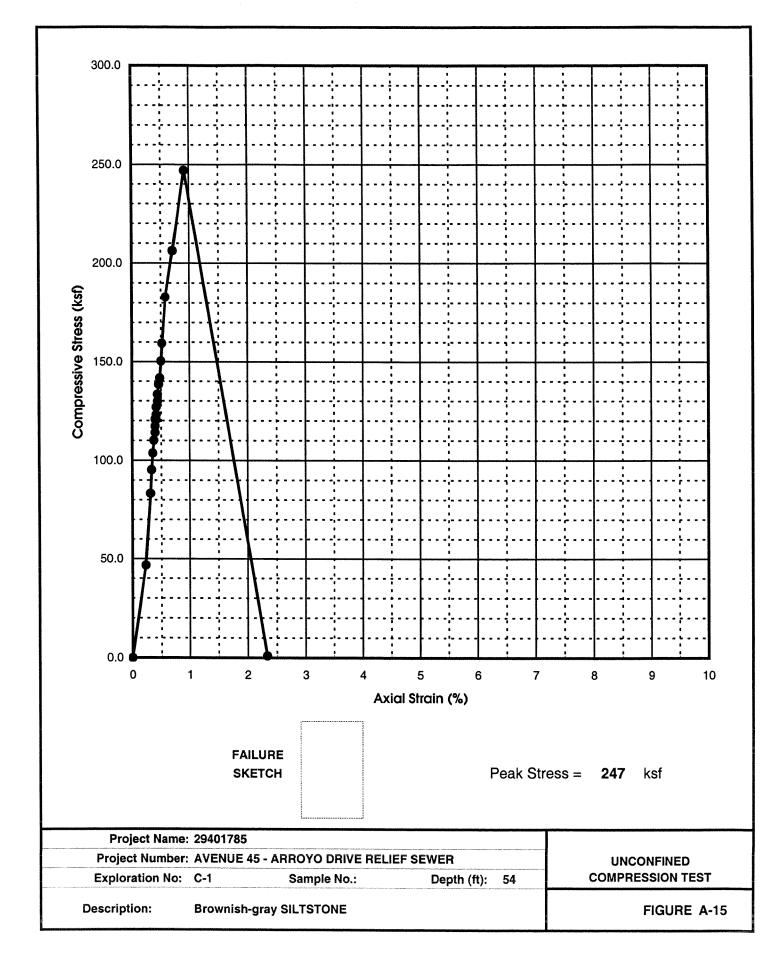
Condition at which maximum stress occurs

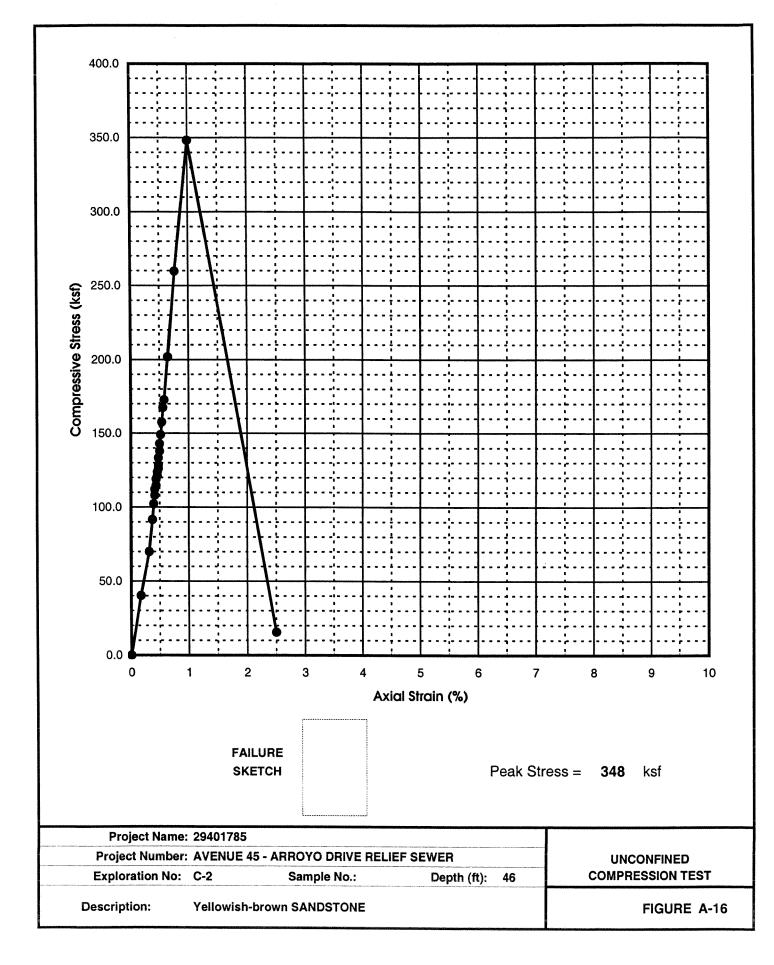

At Failure

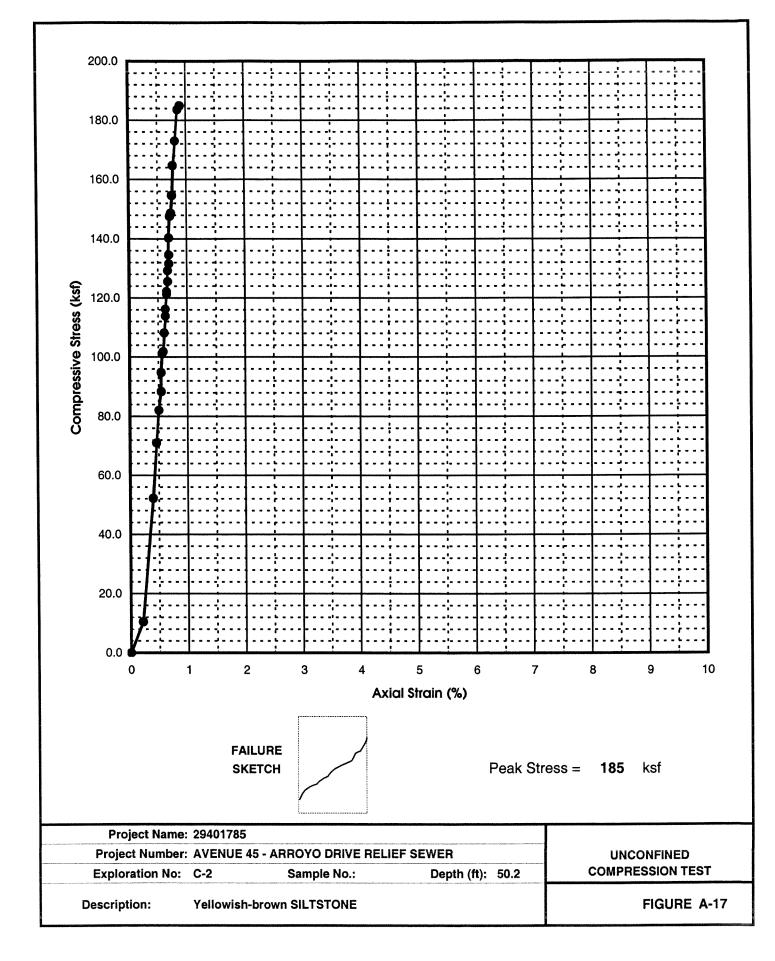

Maximum Unconfined Compressive Stress (psf) =

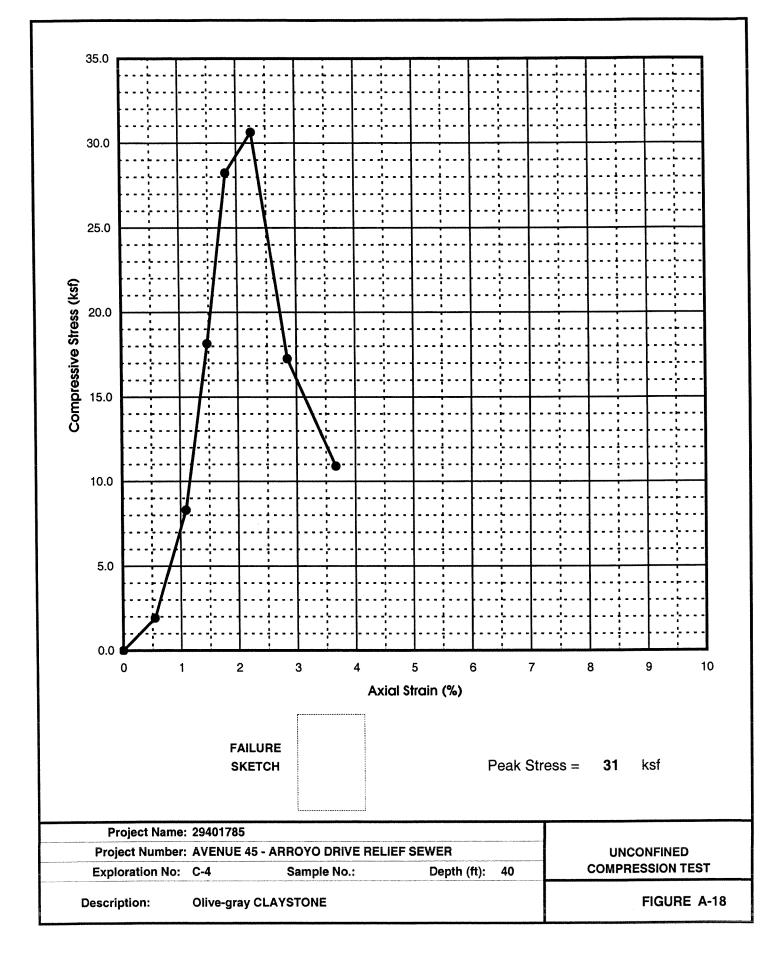

Axial Strain (%) =

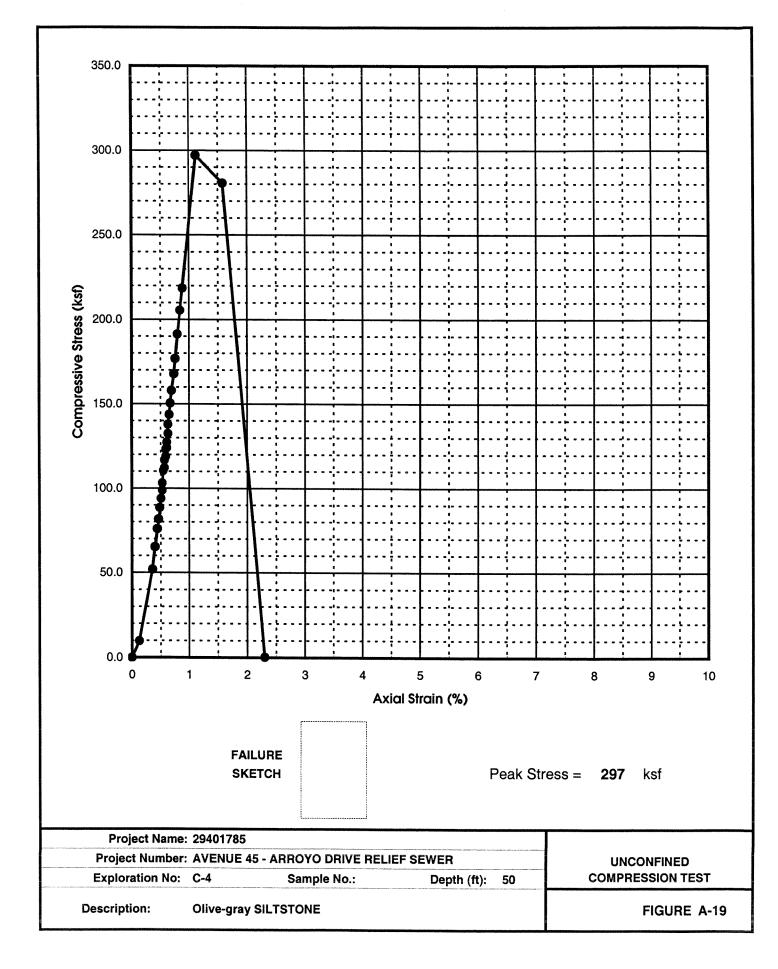


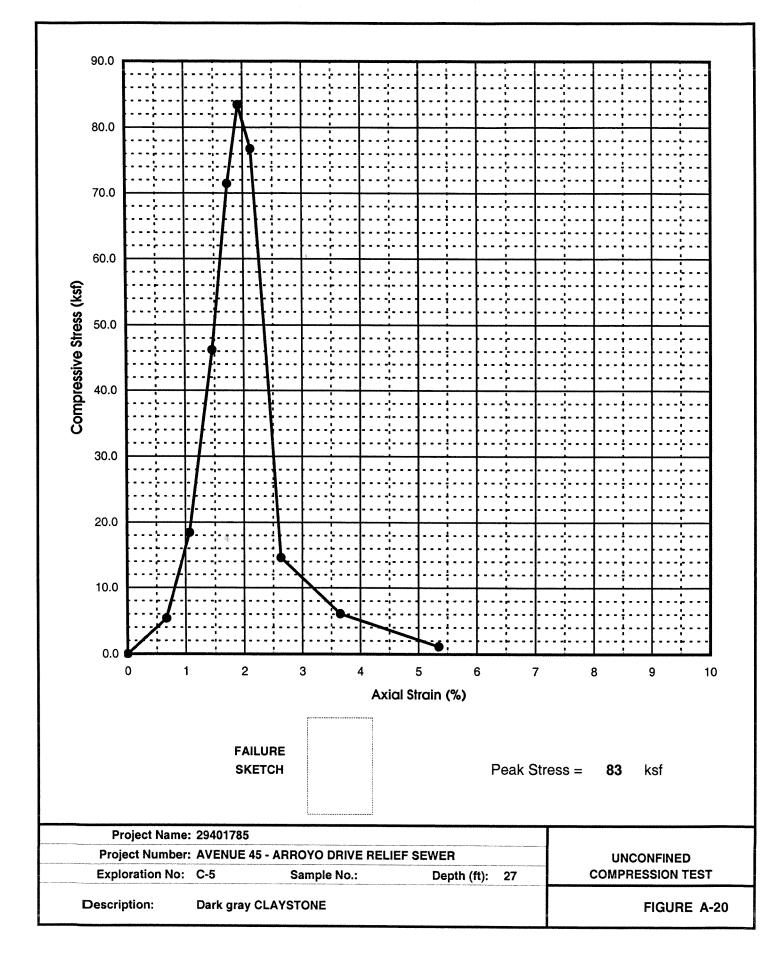

0.048

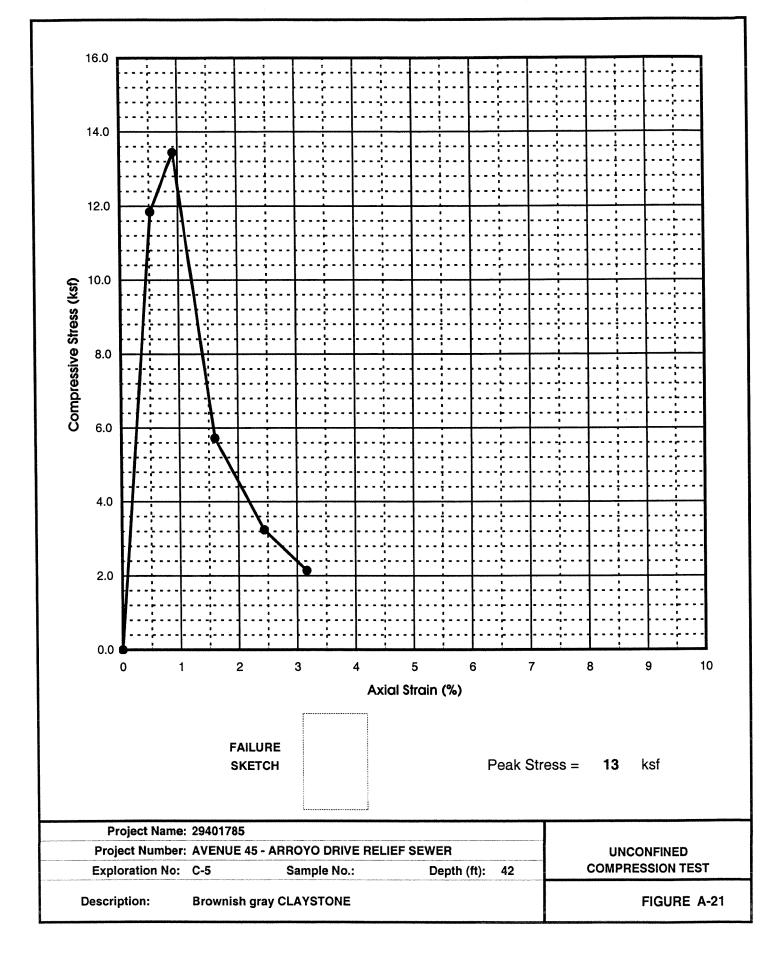


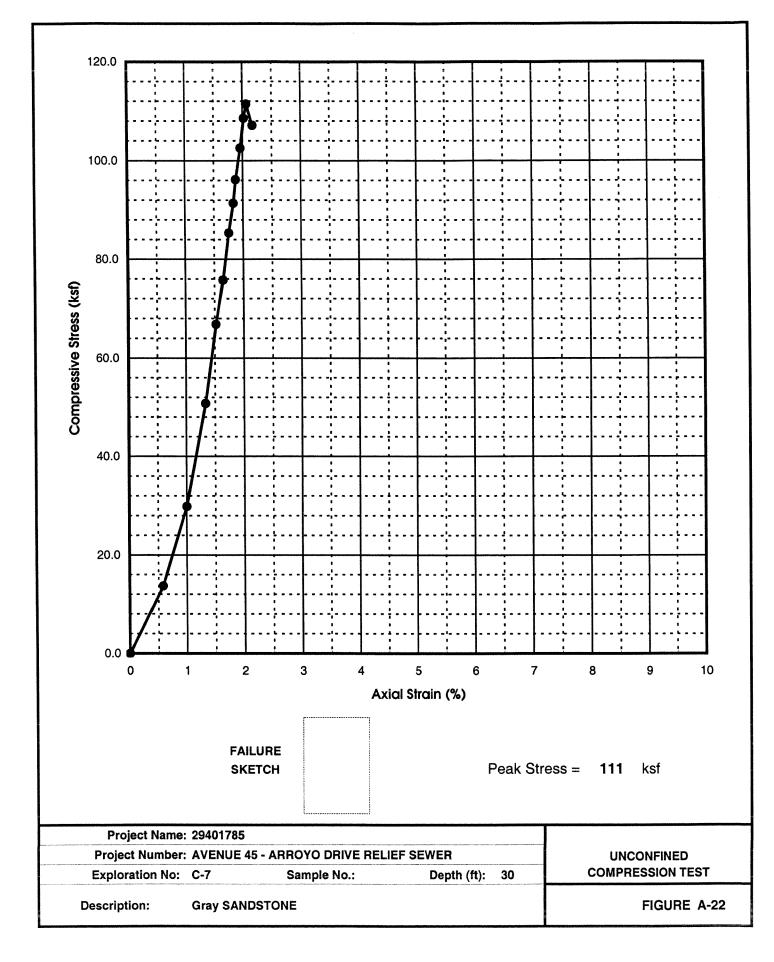


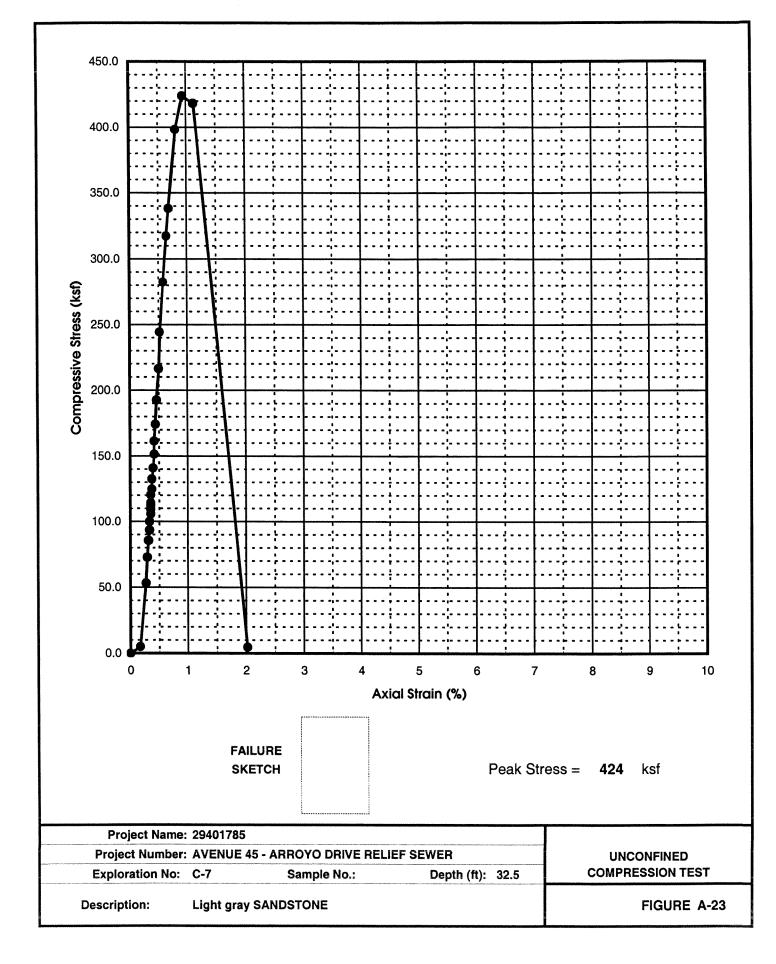


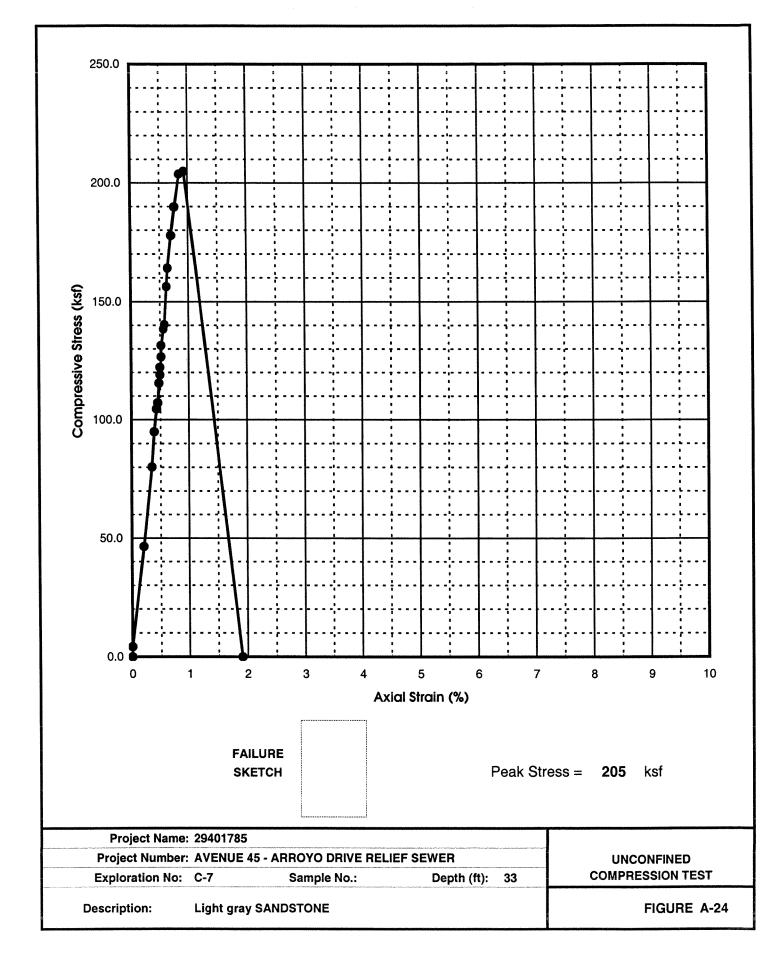


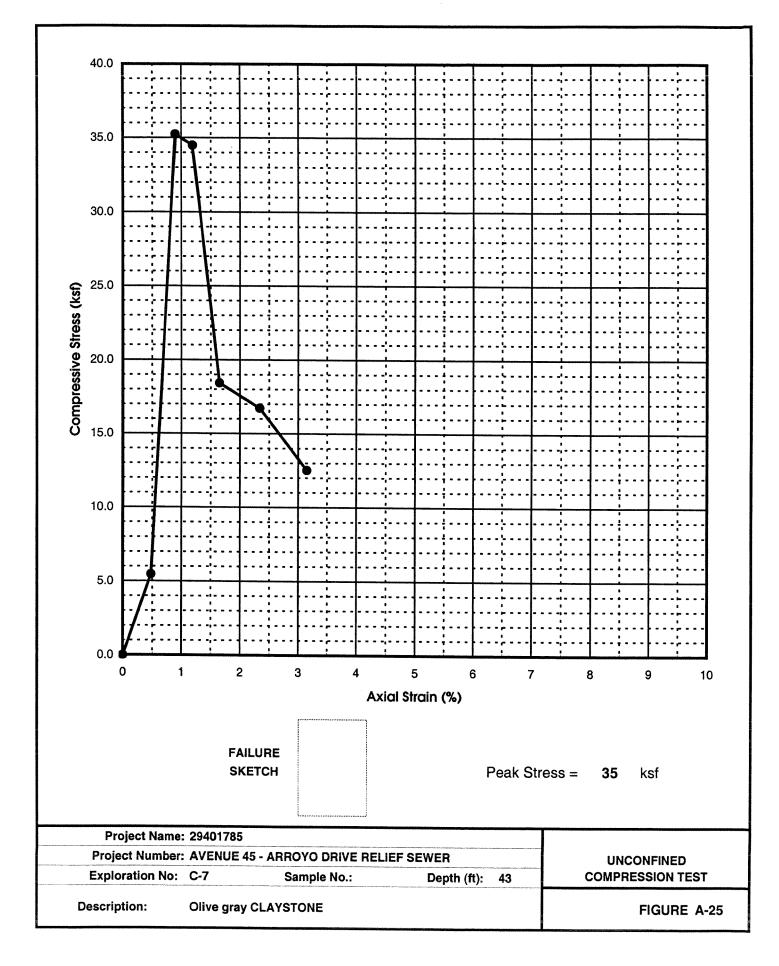


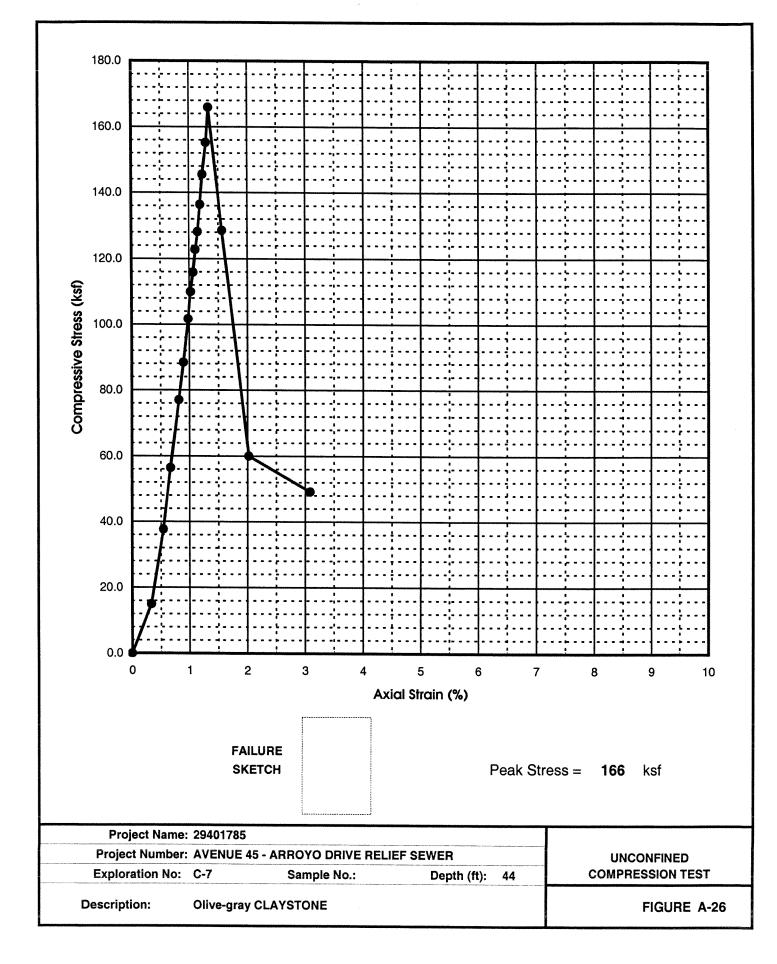


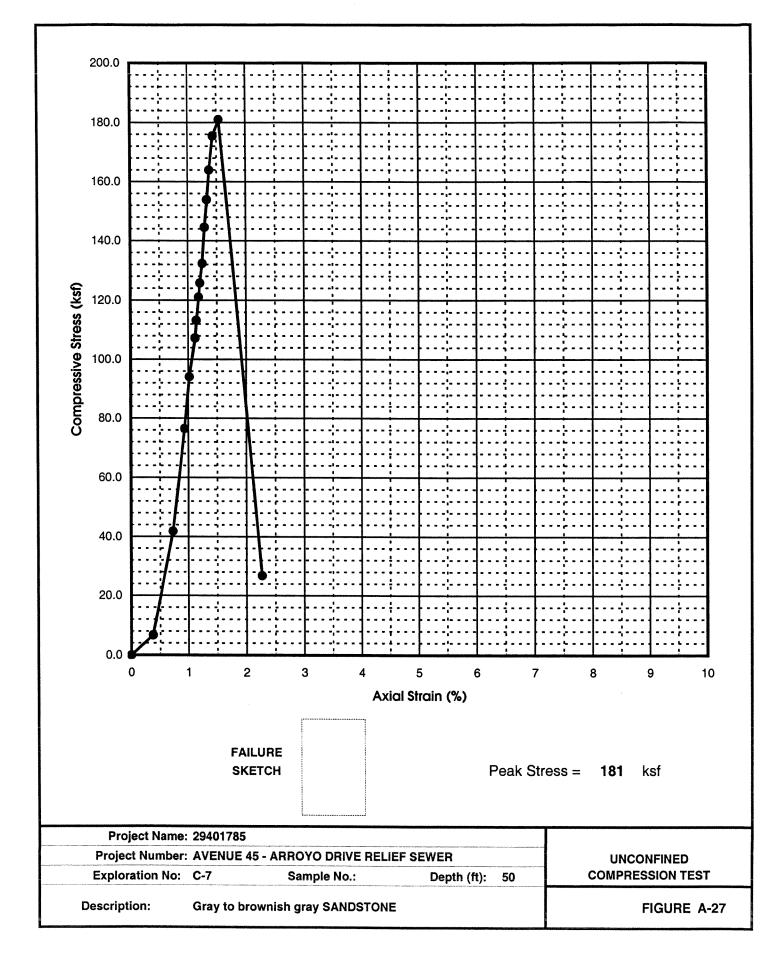


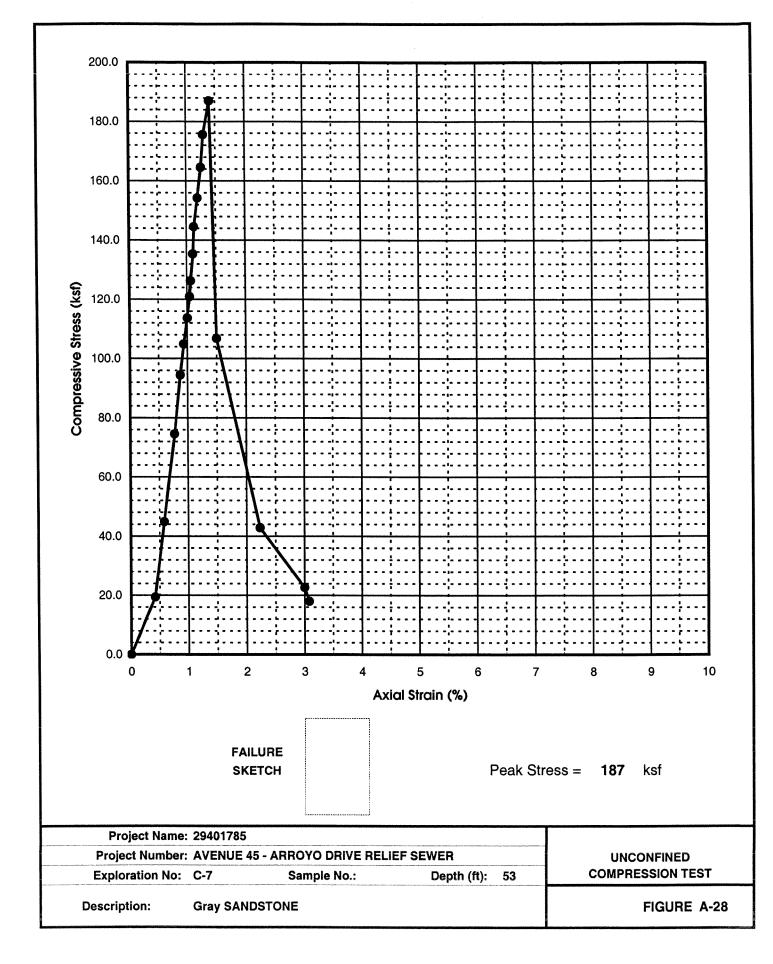


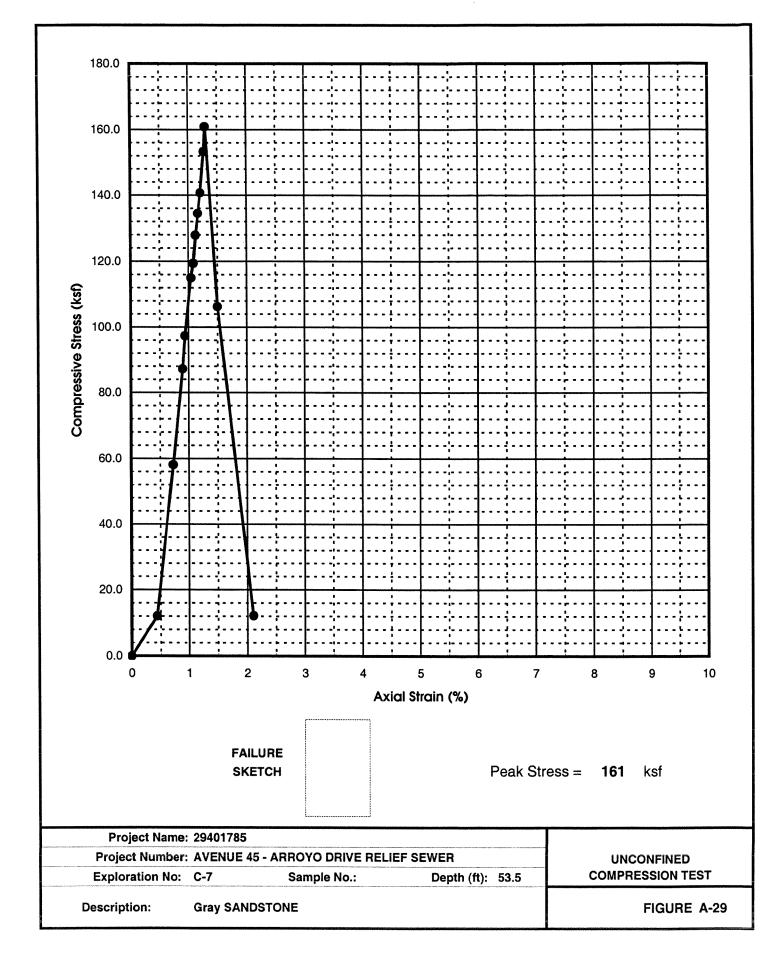


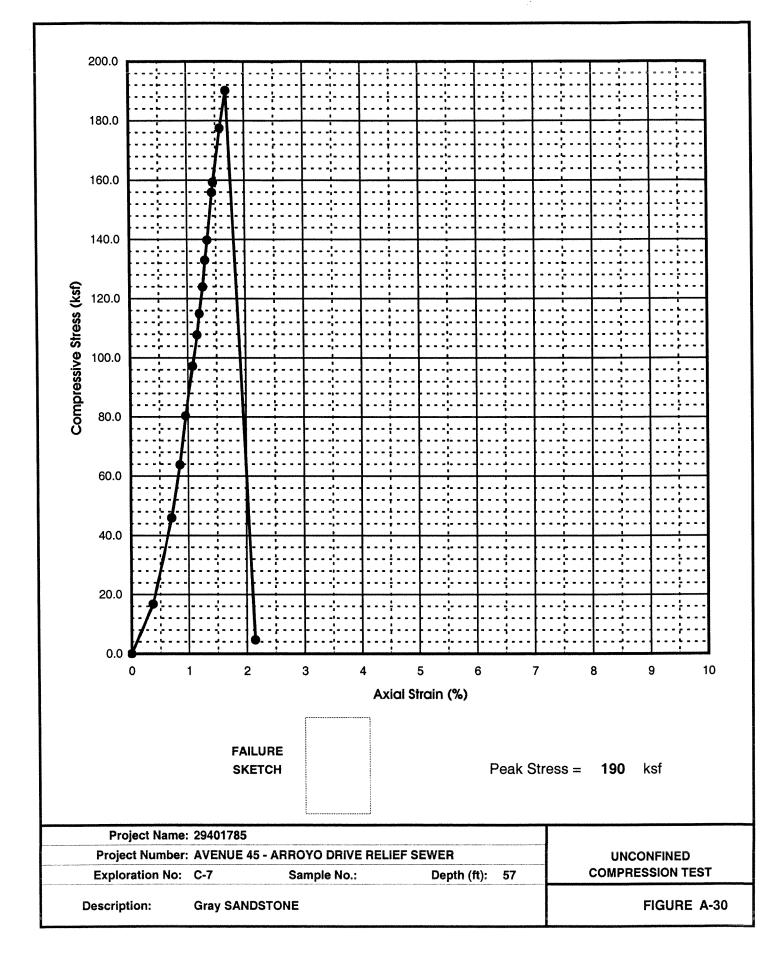


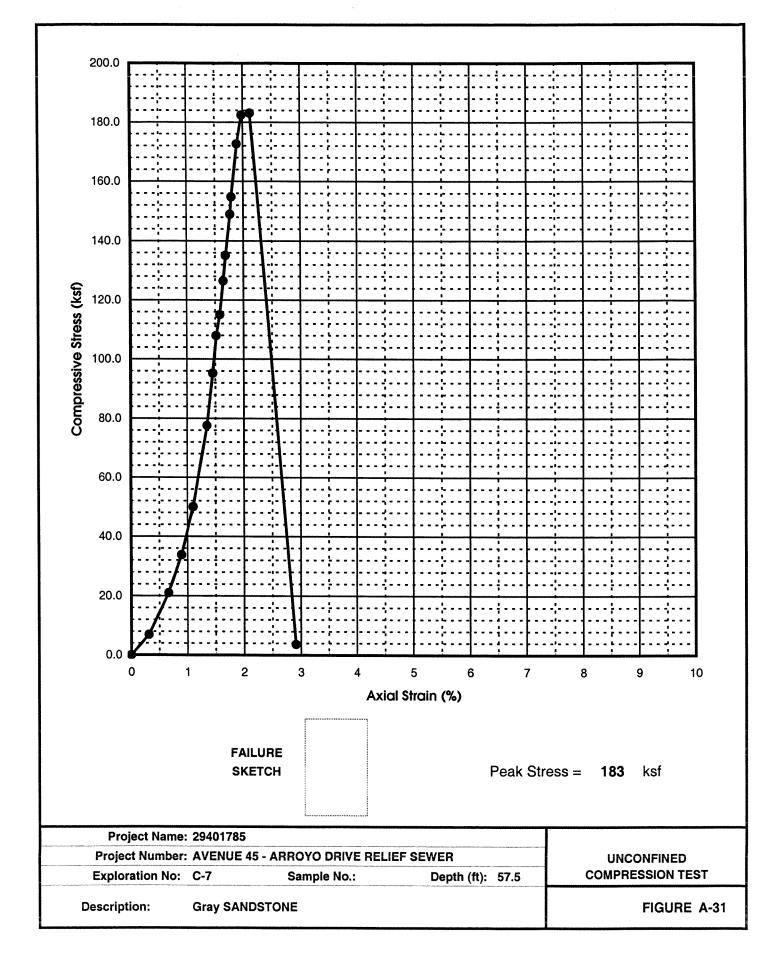












Miles Industrial Mineral Research 1244 Columbine Street Denver, CO 80206 Tel: (303) 355-5568 Fax: (303) 355-0422 w_miles@hotmail.com

December 8, 2005

Hamid Nazeri, Ph.D. Advanced Terra Testing Inc. 833 Parfet Street, Unit A Lakewood, CO 80215 Tel: 303-232-8308 hnazeri@terratesting.com

Re: Thin Section Petrography -4 Rock Samples

Dear Hamid:

Four rock cuttings were received for thin section petrographic analysis. These samples have been evaluated and the results are reported in this letter.

Thin Section Petrography:

A portion of each sample was cut into a 4 cm by 2.5 cm by 1 cm block and a portion cemented to a glass slide. After hardening, a thin section of each sample was cut from the block for analysis.

Each thin section was then examined by petrographic microscopy and a representative micro-photo was made to illustrate the sandstone or siltstone structures. In all of the samples a smectite clay mineral is present in less than 2 micrometer grains. The smectite clays were formed by weathering and alteration of igneous minerals. Quartz and feldspar grains are of igneous origin, and range from 5 micrometers to 50 micrometers in grain size. Dolomite is detrital or is precipitated within two of these sedimentary structures.

The mineralogy was determined by grain shape, strain features, twinning of feldspars, and index of refraction results. Table 1 summarizes the mineralogy. Table 2 describes the grain size, primary and secondary features, structures and alteration features.

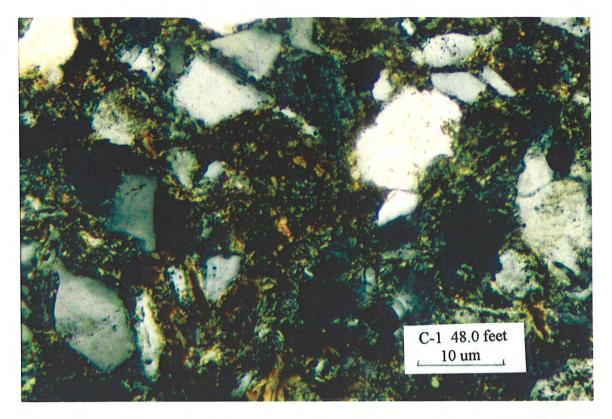
Sincerely yours,

Miles

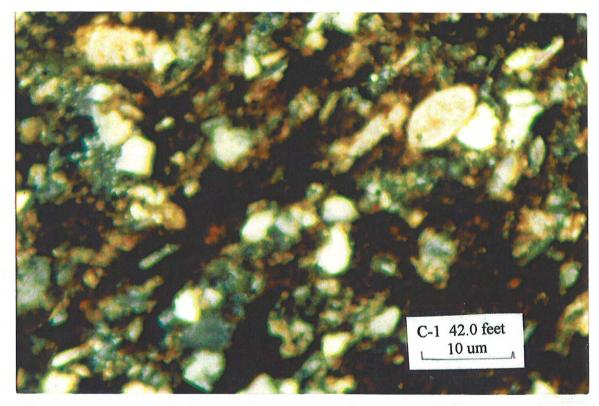
William J. Miles, Ph.D.

12/8/05

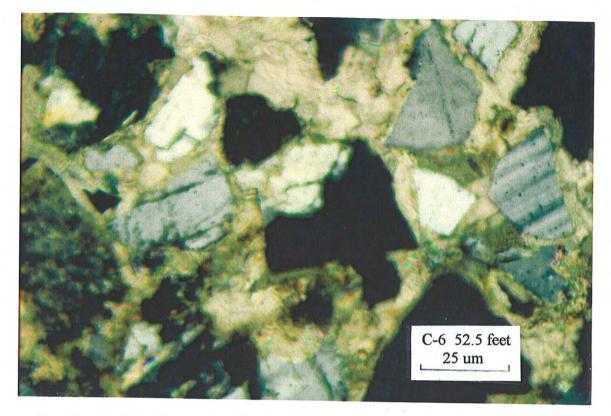
Miles Industrial Mineral Research 1244 Columbine Street Denver, CO 80206


Table 1

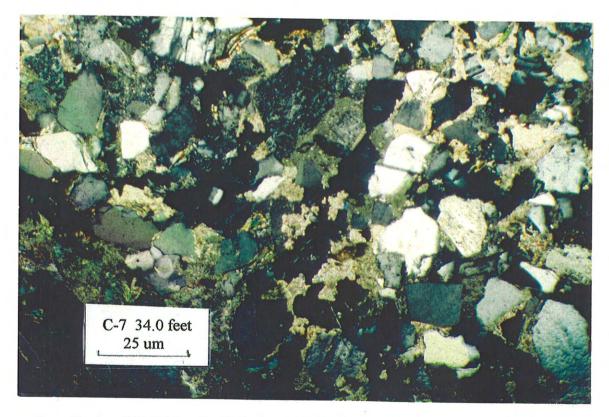
Advanced Terra Testing Inc. Aineralogy of Petrographic Thin Sections


aphic Thin Sections	C-6 C-7 set 52.5 feet 34.0 feet	10% 25% 20% e 20% 10% 15% 25% 30% 35% 30% 40% 40% 0% 0%
Mineralogy of Petrographic Thin Sections	C-1 C-1 42.0 feet 48.0 feet	25% trace 5% trace 30% trace
	Sample Depth (feet)	Smectite clay Muscovite Quartz Plagioclase feldspar Dolomite

Petrographic estimates were made in 5% units.



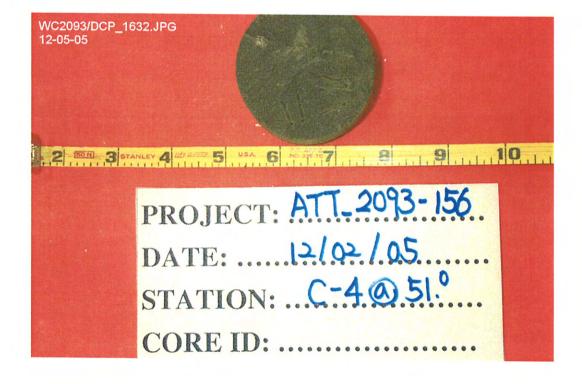
(Smectite clay: 25%, Muscovite: 5%, Quartz: 30%, Plagioclase feldspar: 40%, Dolomite: trace)



(Smectite clay: 10%, Muscovite: trace, Quartz: 15%, Plagioclase feldspar: 35%, Dolomite: 40%)

Advanced Terra Testing Inc. Mineralogy of Petrographic Thin Sections

(Smectite clay: 25%, Muscovite: 20%, Quartz: 25%, Plagioclase feldspar: 30%, Dolomite: 0%)



(Smectite clay: 20%, Muscovite: 10%, Quartz: 30%, Plagioclase feldspar: 40%, Dolomite: 0%)

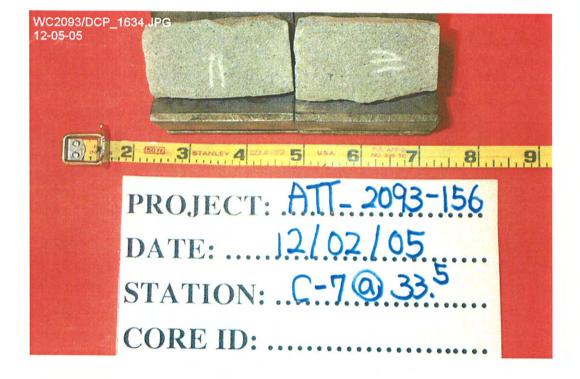

Advanced Terra Testing Inc. Mineralogy of Petrographic Thin Sections

Table 2 Advanced Terra Testing Inc. Results of Petrographic Thin Section Analysis	Detrital compacted sediment composed of quartz and feldspar grains surrounded by clay. Quartz and feldspar grains are 5 to 10 microns, muscovite <5 microns, with smectite clay <2 micron. Larger quartz, feldspar and muscovite are igneous, surrounded by sedimentary clay Quartz and feldspar occurs in sedimentary lineaments within the clay Clay minerals have interbedded around the larger quartz and feldspar grains. Shows fine grained quartz and feldspar grains surrounded by clay.	Detrital compacted sediment composed predominantly of quartz grains. Dolomite, quartz and feldspar grains are 5 to 10 microns, muscovite <5 microns, with < 2 micron clay. Larger quartz, feldspar and muscovite are igneous, surrounded by sedimentary clay minerals. Dolomite, quartz and feldspar occur uniformly within the sandstone, with minor linearnents. Sandstone results from compaction or cementing of igneous mineral grains with clay minerals. Dolomite has washed into or precipitated within the sandstone structure. Shows fine grained dolomite, quartz and feldspar grains surrounded by clay.	Detrital compacted sediment composed predominantly of quartz grains. Quartz and feldspar grains are 20 to 50 microns, muscovite <5 microns, with sedimentary clay <2 micron. Larger quartz, feldspar and muscovite are igneous, surrounded by sedimentary grains. Sedimentary clay fills in the space between quartz and feldspar grains. Smectite clay results from alteration of igneous minerals by weathering. Shows coarse grained quartz and feldspar grains surrounded by clay.	Detrital compacted sediment composed predominantly of quartz grains. Quartz and feldspar grains are 5 to 30 microns, muscovite <5 microns, with <2 micron sedimentary clay. Larger quartz, feldspar and muscovite are igneous, surrounded by sedimentary grains. Sedimentary particles fill in the space between quartz and feldspar grains. Igneous minerals weathered and altered to clay minerals. Shows coarse grained quartz and feldspar grains surrounded by clay.
Ac Results of P	Detrital compact Quartz and felds Larger quartz, fe Quartz and felds Clay minerals he Shows fine grain	Detrital compact Dolomite, quartz, fe Larger quartz, fe Dolomite, quartz Sandstone result Dolomite has wa Shows fine grain	Detrital compact Quartz and felds Larger quartz, fe Sedimentary clar Smectite clay rei Shows coarse gr	Detrital compact Quartz and felds Larger quartz, fe Sedimentary par Igneous minerals Shows coarse gr
	C-1 42.0 feet siltstone Grain Size: Primary and secondary Features: Structures: Alteration features; Microscope picture:	C-1 48.0 feet Sandstone Grain Size: Primary and secondary Features: Structures: Alteration features: Microscope picture:	C-6 52.5 feet sandstone Grain Size: Primary and secondary Features: Structures: Alteration features: Microscope picture:	C-6 34.0 feet Sandstone Grain Size: Primary and secondary Features: Structures: Alteration features: Microscope picture:

Earth Mechanics Institute Project : ATT_2093-156 Location: N/A	A CONTRACTOR OF THE PARTY OF TH	Colorado School of Mines Mining Engineering Department
Client : Advanced Terra Testing, Inc.	COLORADO	
Date: 12/02/2005		Cerchar
Sample	Rock Type	Abrasivity
D		Index
C-4@51.0	N/A	0.4
C-6@48.0	N/A	2.7
C-7@33.5	A'N	1.5

SPLITTING TENSILE STRENGTH By Method of Brazilian Disk ASTM D 3967

SPLITTING TENSILE STRENGTH By Method of Brazilian Disk ASTM D 3967

CLIENT: URS

JOB NO.: 2093-156

12/4/05 HN

DATE TESTED:

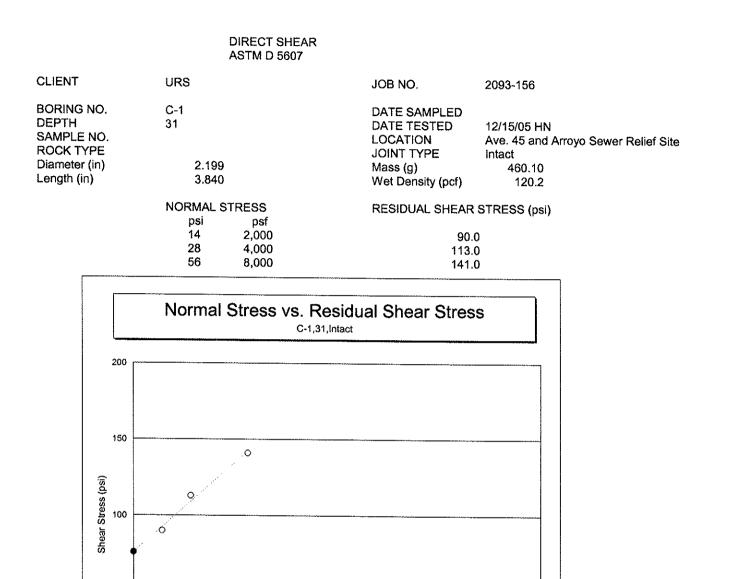
LOCATION: Ave 45 and Arroyo Seco Sewer Relief Site

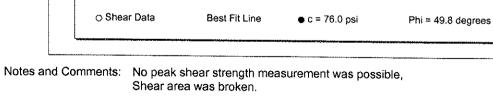
PROJECT: 29401785.00001

Specimen Diameter Length Mass Wet Failure Failure Splitting ID (in.) (in.) (gms) Density Load **Tensile Strength** Туре Boring, Depth(ft.) (pcf) (lb) (psi) C-7, 33.5 2.398 1.234 214.30 1,640 Μ 146.5 350 C-4, 51.0 2.389 1.212 180.50 126.6 1,103 M 240

Notes and Comments:

Splitting Tensile Strength=2P/piLD. P=Failure Load pi = 3.1415926..., D = Sample Diameter L = Sample Length

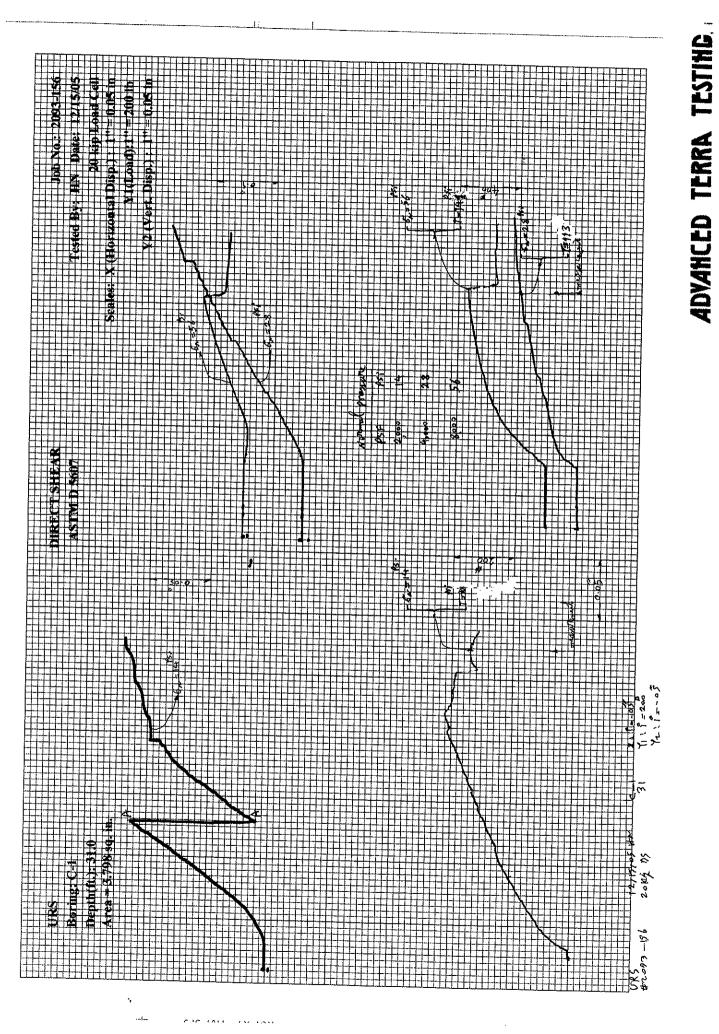

* Failure Type: S: Single Failure Plane, M: Multiple Failure Planes


Data Entered By: Data Checked By: Filename:

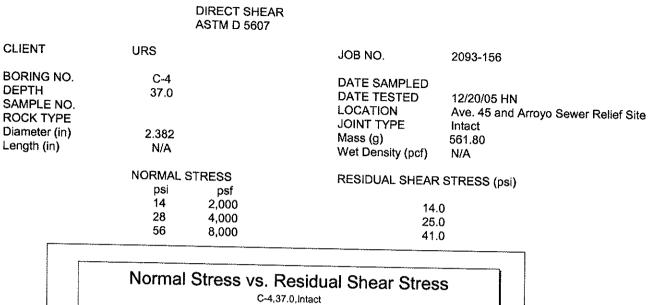
HN Date: <u>C</u> Date: WCBRAZCP 12/06/2005 12/06/05

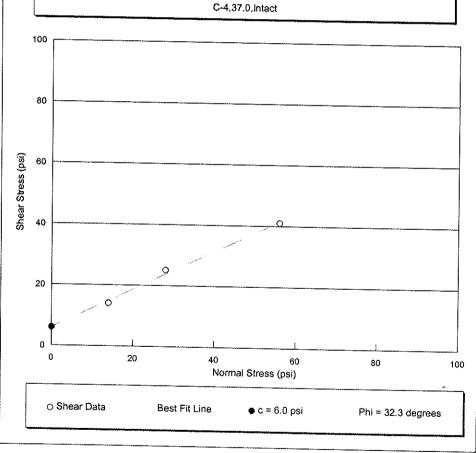
ADVANCED TERRA TESTING, Inc.

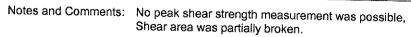
DIRECT SHEAR ASTM D 5607


Normal Stress (psi)

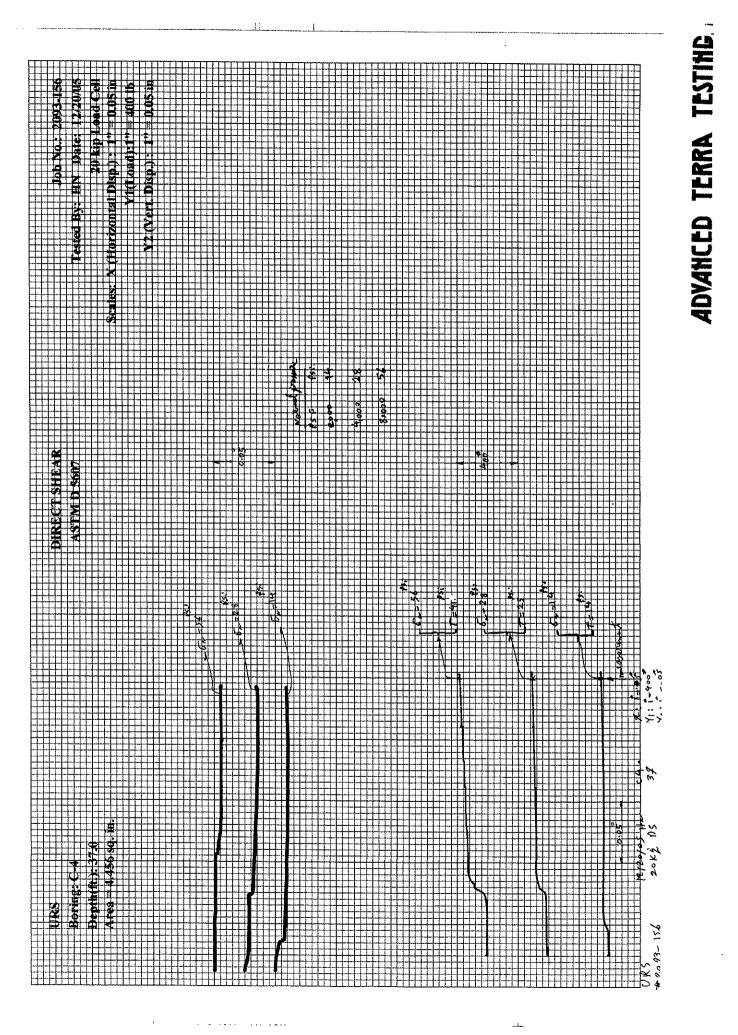
Data entered by:	HN	Date:	12/16/2005
Data checked by:		Date:	
File Name:	WCRDNO	РЕ	


0 L

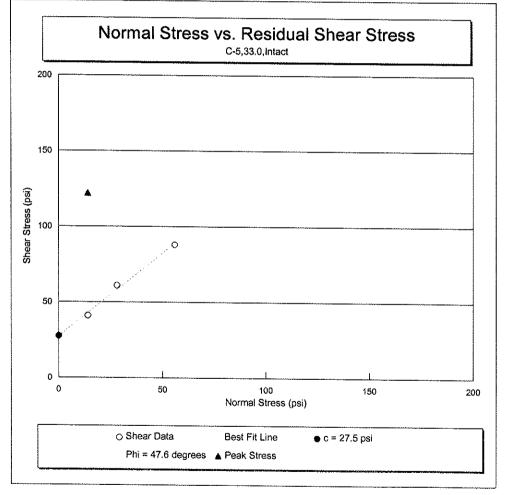

ADVANCED TERRA TESTING, inc.



CIC INT. IN LON


 Data entered by:
 HN
 Date:
 12/21/2005

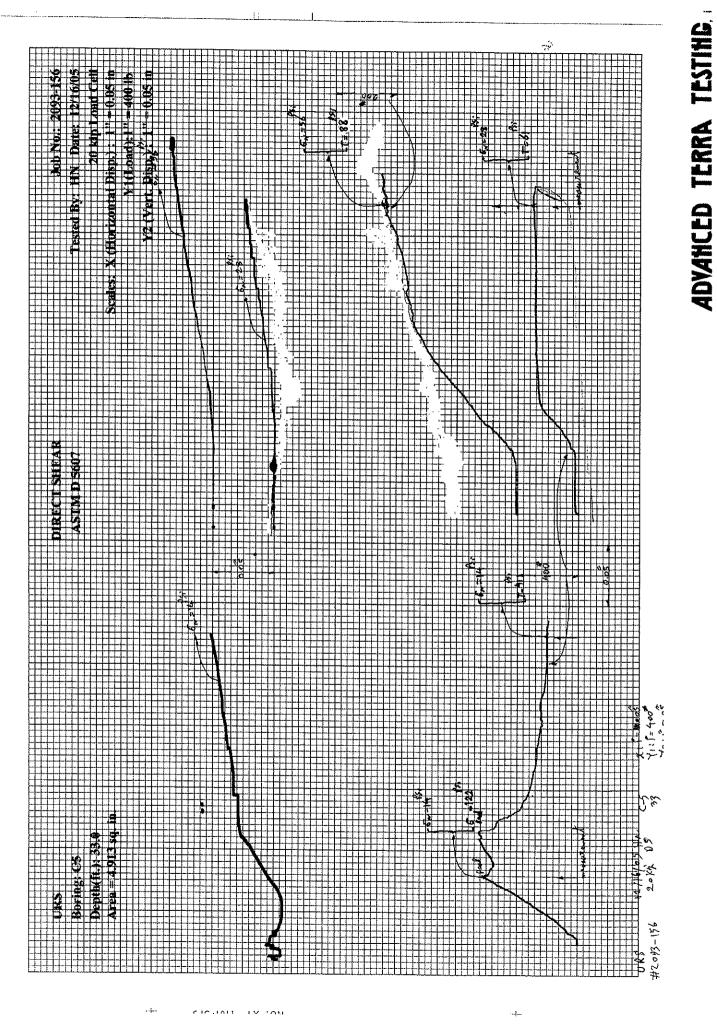
 Data checked by:
 ①
 Date:
 12/21/205


 File Name:
 WCRDNOP1

ADVANCED TERRA TESTING, Inc.

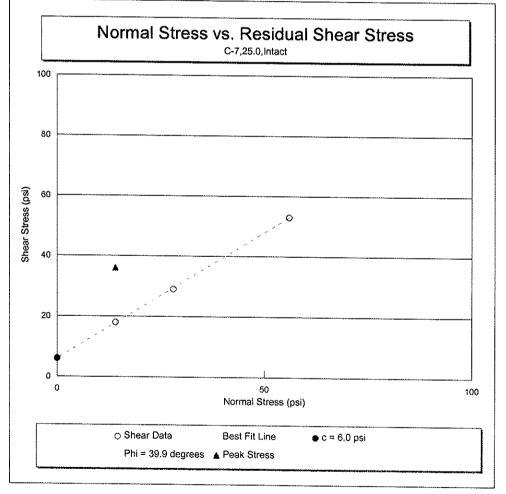
		DIRECT ASTM D	SHEAR 5607		
CLIENT	URS			JOB NO.	2093-156
BORING N DEPTH SAMPLE N ROCK TYP Diameter (ii Length (in)	33.0 O. E	2.501		DATE SAMPLED DATE TESTED LOCATION JOINT TYPE Mass (g) Wet Density (pcf)	12/16/05 HN Ave. 45 and Arroyo Sewer Relief Site Intact 713.2 N/A
	NORMAL STRESS (psi) 14 28	PEAK S STRES		RESIDU STRESS 41.0 61.0)
	56			88.0)

Notes and Comments: Very uneven shear area.


 Data entered by:
 WCRDPEA4
 Date:
 12/18/2005

 Data checked by:
 Q
 Date:
 12/19/05

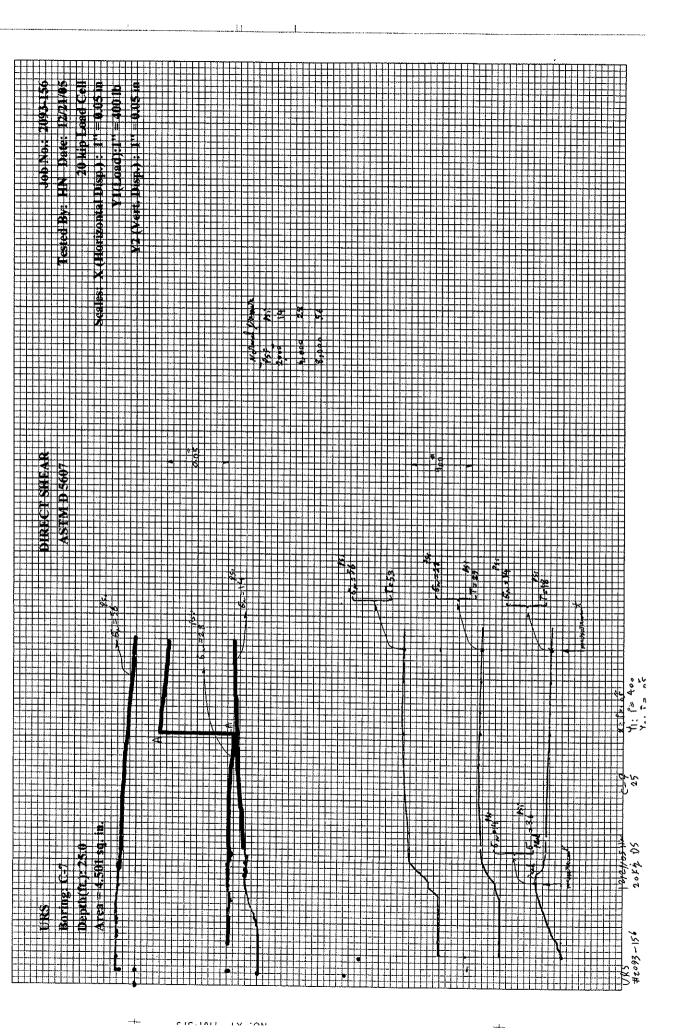
 File Name:
 File Name:
 Date:
 12/19/05


ADVANCED TERRA TESTING, Inc.

CICLINIT IN TON

		DIRECT SHEAR ASTM D 5607		
CLIENT	URS		JOB NO.	2093-156
BORING NO. DEPTH SAMPLE NO. ROCK TYPE Diameter (in) Length (in)	C-7 25.0 2.394 3.563		DATE SAMPLED DATE TESTED LOCATION JOINT TYPE Mass (g) Wet Density (pcf)	12/21/05 HN Ave. 45 and Arroyo Sewer Relief Site Intact 557.00 132.3
NOR	MAL STRESS (psi)	PEAK SHEAR STRESS (psi)		UAL SHEAR SS (psi)
	14 28 56	36	18. 29. 53.	.0

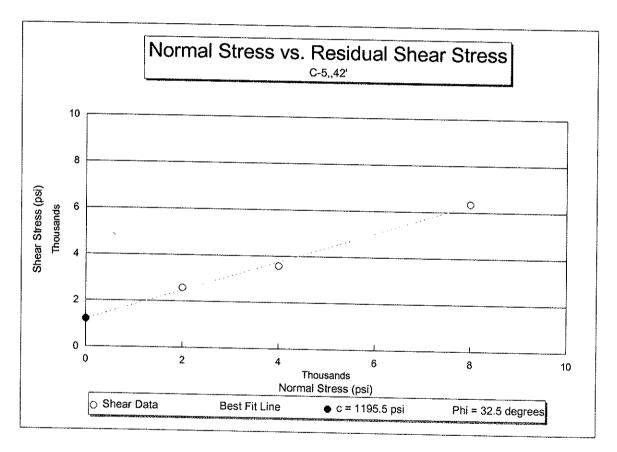
Notes and Comments: Uneven shear area.


 Data entered by:
 WCRDPEA5
 Date:
 12/21/2005

 Data checked by:
 Cu
 Date:
 12/21/05

 File Name:
 State:
 12/21/05

ADVANCED TERRA TESTING, Inc.



CICLIAR IN TOM

JOINT DIRECT SHEAR Modified COE Method

JOINT DIRECT SHEAR Modified COE Method

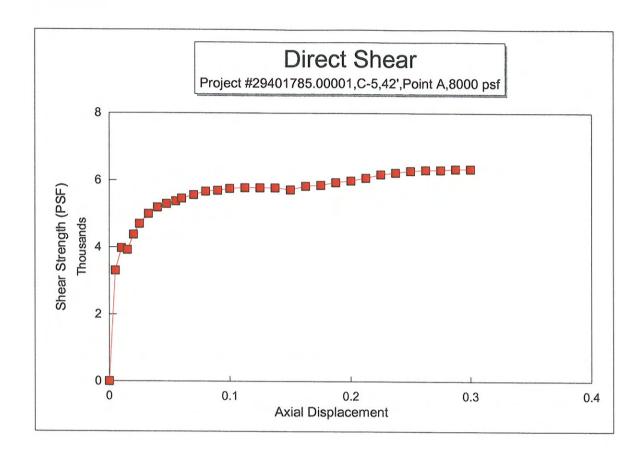
CLIENT	URS Corporation	JOB NO.	2093-156	
BORING NO. DEPTH SAMPLE NO. ROCK TYPE	C-5 42' Shale	DATE SAMPLED DATE TESTED LOCATION JOINT TYPE	12/29/05 DPM/KB Ave 45 and Arroyo Seco Sewer Relief Open Bedding Plane	
	NORMAL STRESS (psi)	RESIDUAL SHEAR STRESS (psi)		
	2000 4000 8000	2579 3573 6340		

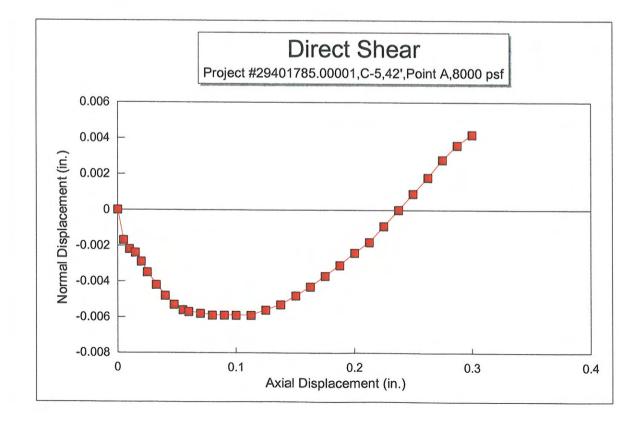
Notes and Comments:

Data entered by:RSDate:12/29/2005Data checked by:Date:12/29/2005File Name:WCDSC542

ADVANCED TERRA TESTING, inc.

DIRECT SHEAR TEST DATA ASTM D3080


Client:	URS Corporation	Job Number:	2093-156
Boring:	C-5	Date Tested:	12/29/05 DPM/KB
Sample Number: Depth: Location:	Project #29401785.00001 42' Ave 45 and Arroyo Seco Sewer Relief	Soil Description: Point: Normal Load Peak Strength	Open Bedding Plane A 8000 PSF 6340 PSF


Shear Displacement (inches)	Shear Load (lbs.)	Shear Load (PSF)	Normal Displacement (inches)
0.0000	0.0	0	0.0000
0.0050	123.0	3304	-0.0017
0.0100	148.0	3976	-0.0022
0.0150	146.0	3922	
0.0200	163.0	4379	-0.0024
0.0250	175.0	4701	-0.0029
0.0325	186.0	4997	-0.0035
0.0400	193.0	5185	-0.0042
0.0475	197.0	5293	-0.0048
0.0550	200.0	5373	-0.0053
0.0600	203.0	5454	-0.0056
0.0700	207.0	5561	-0.0057
0.0800	211.0	5669	-0.0058
0.0900	212.0	5696	-0.0059
0.1000	214.0		-0.0059
0.1125	215.0	5749	-0.0059
0.1250	215.0	5776	-0.0059
0.1375	215.0	5776	-0.0056
0.1500	213.0	5776	-0.0053
0.1625	217.0	5722	-0.0048
0.1750	218.0	5830	-0.0043
0.1875	221.0	5857	~0.0037
0.2000	223.0	5937	-0.0031
0.2125	226.0	5991	-0.0024
0.2250	230.0	6072	-0.0018
0.2375	232.0	6179	-0.0009
0.2500	234.0	6233	0.0000
0.2625	235.0	6287	0.0009
0.2750	235.0	6313	0.0018
0.2875	236.0	6313	0.0028
0.3000	236.0	6340	0.0036
	200.0	6340	0.0042

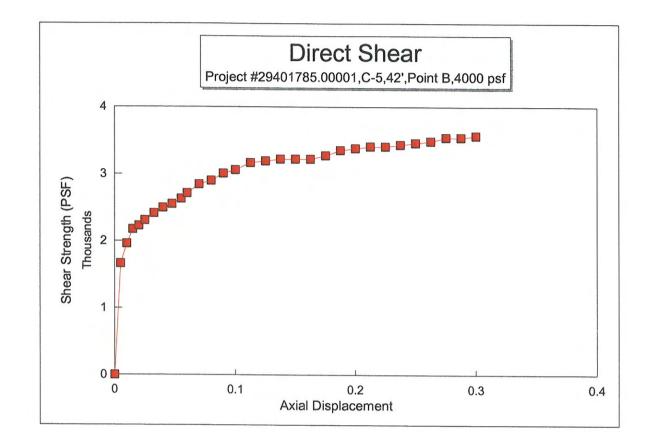
Data entry by: RS Checked by: <u>PP-1</u> FileName: WCDSC5A

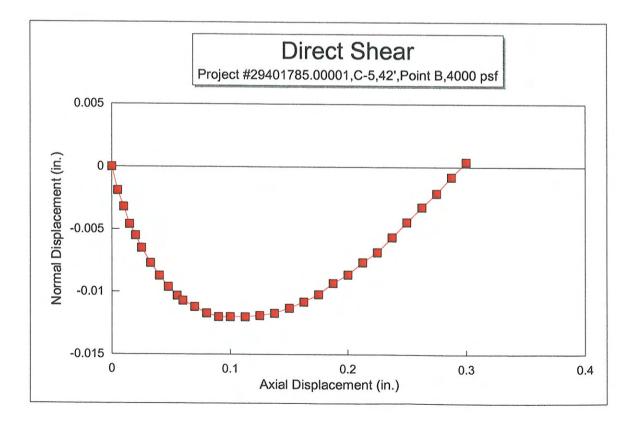
Date: 12/29/2005 Date: 12/29/2005

ADVANCED TERRA TESTING, INC

DIRECT SHEAR TEST DATA ASTM D3080

Client:	URS Corporation	Job Number: Date Tested:	2093-156 12/29/05 DPM/KB
Boring: Sample Number:	C-5 Project #29401785.00001	Soil Description:	Open Bedding Plane
Depth: Location:	42' Ave 45 and Arroyo Seco Sewer Relief	Point: Normal Load Peak Strength	B 4000 PSF 3573 PSF


			Normal
Shear Displacement	Shear Load	Shear Load	Displacement
(inches)	(lbs.)	(PSF)	(inches)
0.0000	0.0	0	0.0000
0.0050	62.0	1666	-0.0019
0.0100	73.0	1961	-0.0032
0.0150	81.0	2176	-0.0046
0.0200	83.0	2230	-0.0055
0.0250	86.0	2310	-0.0065
0.0325	90.0	2418	-0.0077
0.0400	93.0	2499	-0.0087
0.0475	95.0	2552	-0.0096
0.0550	98.0	2633	-0.0103
0.0600	101.0	2713	-0.0107
0.0700	106.0	2848	-0.0112
0.0800	108.0	2901	-0.0117
0.0900	112.0	3009	-0.0120
0.1000	114.0	3063	-0.0120
0.1125	118.0	3170	-0.0120
0.1250	119.0	3197	-0.0119
0.1375	120.0	3224	-0.0117
0.1500	120.0	3224	-0.0113
0.1625	120.0	3224	-0.0108
0.1750	122.0	3278	-0.0102
0.1875	125.0	3358	-0.0093
0.2000	126.0	3385	-0.0086
0.2125	127.0	3412	-0.0076
0.2250	127.0	3412	-0.0068
0.2375	128.0	3439	-0.0056
0.2500	129.0	3466	-0.0044
0.2625	130.0	3493	-0.0032
0.2750	132.0	3546	-0.0021
0.2875	132.0	3546	-0.0008
0.3000	133.0	3573	0.0004
		-	

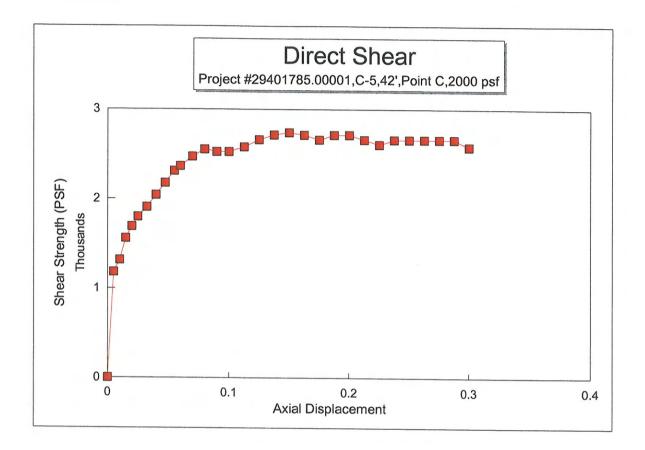

Data entry by: RS Checked by: <u>)///y</u> FileName: WCDSC5B

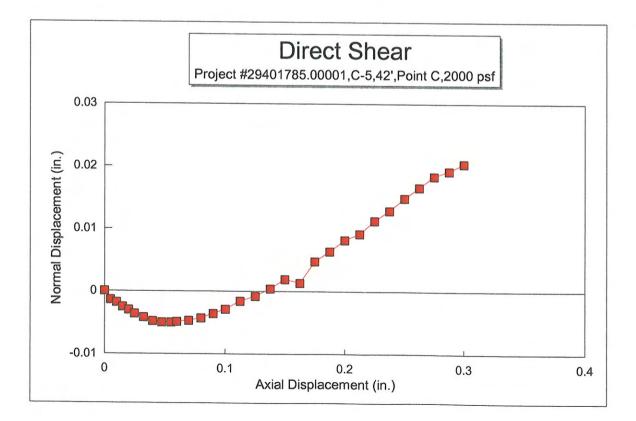
Date: 12/29/2005 Date: 12/29/2005

ADVANCED TERRA TESTING, INC

Normal

DIRECT SHEAR TEST DATA ASTM D3080


Client:	URS Corporation	Job Number: Date Tested:	2093-156 12/29/05 DPM
Boring:	C-5		
Sample Number:	Project #29401785.00001	Soil Description:	Open Bedding Plane
Depth:	42'	Point:	С
Location:	Ave 45 and Arroyo Seco Sewer Relief	Normal Load	2000 PSF
		Peak Strength	2740 PSF
		-	


Shear Displacement (inches)	Shear Load (lbs.)	Shear Load (PSF)	Normal Displacement (inches)
0.0000	0.0	0	0.0000
0.0050	44.0	1182	-0.0014
0.0100	49.0	1316	-0.0018
0.0150	58.0	1558	-0.0025
0.0200	63.0	1693	-0.0030
0.0250	67.0	1800	-0.0036
0.0325	71.0	1907	-0.0042
0.0400	76.0	2042	-0.0048
0.0475	81.0	2176	-0.0050
0.0550	86.0	2310	-0.0050
0.0600	88.0	2364	-0.0049
0.0700	92.0	2472	-0.0047
0.0800	95.0	2552	-0.0043
0.0900	94.0	2525	-0.0036
0.1000	94.0	2525	-0.0029
0.1125	96.0	2579	-0.0016
0.1250	99.0	2660	-0.0008
0.1375	101.0	2713	0.0004
0.1500	102.0	2740	0.0019
0.1625	101.0	2713	0.0013
0.1750	99.0	2660	0.0048
0.1875	101.0	2713	0.0064
0.2000	101.0	2713	0.0082
0.2125	99.0	2660	0.0092
0.2250	97.0	2606	0.0113
0.2375	99.0	2660	0.0129
0.2500	99.0	2660	0.0149
0.2625	99.0	2660	0.0166
0.2750	99.0	2660	0.0184
0.2875	99.0	2660	0.0192
0.3000	96.0	2579	0.0204

Data entry by: RS Checked by: <u>PM</u> FileName: WCDSC5B

Date: 12/29/2005 Date: 12/29/2005

ADVANCED TERRA TESTING, INC

Environmental Geotechnology Laboratory, Inc.

December 23, 2005

URS Group Inc. 911 Wilshire Blvd., Suite 800 Los Angeles, CA 90017

Attn: Mr. Nesa Nesarajah

RE: LABORATORY TEST RESULTS/REPORT Project Name: Ave. 45 and Arroyo Seco Sewer Relif Project No.: 29401785.00001 EGL Job No.: 05-008-028

Dear Mr. Nesa Nesarajah,

We have completed the testing program conducted on samples from the above project. The tests were performed in accordance with testing procedures as follows:

TEST	METHOD		
Triaxial Permeability	ASTM D5084		

Enclosed is the Summary of Laboratory Test Results.

We appreciate the opportunity to provide testing services to URS Corporation. Should you have any questions, please call the undersigned.

Sincerely yours,

Environmental Geotechnology Laboratory, Inc.

Hank Jong, PE, GE Manager

Enclosure

SUMMARY OF PERMEABILITY TEST RESULTS

PROJECT NAME: Ave. 45 and Arroyo Seco Sewer Relif EGL JC

EGL JOB NO.: 05-008-028

PROJECT NO.: 29401785.00001

CLIENT: URS

DATE: 12-19-05

SUMMARIZED BY: VW

BORING	SAMPLE	DEPTH	MOISTURE	DRY	EFFECTIVE	SATURATED
ID	NO		CONTENT	DENSITY	CONFINED	HYDRAULIC
			ASTM	ASTM	PRESSURE	CONDUCTIVITY
			D2216	D2937		ASTM
						D5084
		(ft)	(%)	(pcf)	(psi)	(cm/sec)
	1		1			
C-3	N/A	33	27.9	95.2	18.6	1.9E-008
C-6	N/A	39	12.0	124.4	27.7	1.8E-007