Electric Railway Journal

DAILY EDITION

I'ublished at the Anmual Conventions of the American Street \& Interurban Railway Association and Its Affiliated Associations

Published daidy by the
 McGraw Publishing Company
 J. M. Wakeman, ist Vice-presiden C. Whittlesey, Sec. and Treas.
 ```Ilenry W. Blake, Editor. \\ stern Wditor. Gtodney Hitt, Assoclate Editor. \\ Frederic Nicholas, Assoclate Edltor. \\ NEW YORK, 239 West Thirty-ninth Street \\ ATLANTIC ClTY, Mlllion-dollar Pier. \\ Chicago: Old Colony Bullding. \\ PhiladelpifiA: Real Estate Trust Rullding \\ Clevklind: Scbofield Bullding. \\ LonDON: llastligs llouse, Norfolk St., Strand. \\ Cable Address. Stryjourn, New York: Stryjourn, London-Lieber's \\ Copyright, 1908, by the Mc(raw Publlsbing Company.```

TERMS OF SUBSCRIPTION

Subscription incinding regular weekly issues and speciai daily editions published from time to time in New York city or eisewhere, postage prepald:
nited States. IIamall, Forto Rlco, Phllippines
Cuba, Mexico and Canall Zone..................s..nn a year

To above Countries other than those mentioned
Single Copies 10 a vear
Application made at the Post Office at New York for entry as mall matter of the second class.

Of this issue of the Electric Railmay Journal, Daily Edition, 12,500 copies are printed.

The Busiest Day

Yesterday was the busiest day of the week, as all six of the associations represented at Atlantic City held meetings. In the morning all four of the affiliated associations were at work. The accountants began their convention, the claim agents concluded theirs, and the engineers and transportation and traffic officers were half way through their respective programs. In the afternoon the engineers met again, the American association held its second session and the manufacturers gathered together for the single meeting which they hold during the year. It was the peak load of the most successful convention which the American Street \& Interurban Railway Association has ever held.

Data Sheets

Most of the committees report that only a small number of the member companies replied fully to the inquiries sent out on the data shects. The members of the different committees make a great many sacrifices in time and comfort during the year in the preparation of their reports and should receive all of the co-operation possible. It is a handicap to them as well as to the association if they are obliged to work without exact information as to the technical conditions under which companies in other parts of the country carry on their scrvice. Each company which fills out a data sheet is benefiting itself as well as every other company in the association and greater attention to the requirements of the committees in this respect would add materially to the value of the work which they can accomplish.

Committee Reports

In spite of the handicap from the lack, in many cases, of very much material to work from, the committees brought in splendid papers, and now that this condition is recognized it will doubtless be remedied next year. All of the associations have evidently eome to recognize that committee work can be of a value with which no other part of the programs is exactly comparable. This is due to the fact that the report of a committee represents the different, sometimes conflicting, standpoints of a number of individuals. The committees in several insfances have smpplemented the knowledge possessed by their own members with information obtained by corresponding with outside companies. An individual. no matter with what pains he may have prepared a paper containing valuable material and presenting opinions that have been studied with care, cannot well bring to besi ih? same different standpoints which are presented in committ c work. W. Caryl Ely referred, in his address to the Tran כortation \& Traffic Association on Tuesday, to the need of comparative analyses of the operating resulte of various con oanies. Such analytical work the committees, not only of the: new association, but of the other associations, will do well to continue.

Report of the Committee on Standards

The report of the Committee on Standards of the Engineering Association this year takes up only couplers, bumpers, steps and platforms, but after a careful review of the field by the executive committee, these subjects were considered the most important to standardize. The large table of dimensions which accompanies the report of the committee shows a wide variety in the dimensions of these parts of the car equipment. In a few cases where a number of roads are controlled by the same interests, an attempt has been made to adopt certain heights of couplers and bumpers, but there has been no concerted attempt in most parts of the country to bring about uniformity in this particular. To the isolated line, an effort to stand. ardize these parts may seem hardly worth the expense but the lapse of a few years may witness the inclusion of such a road in a chain of propertics and the operation of interurban cars over its tracks. The matter will then become of vital importance.

When analyzed, the report of the committec, so far as heights are concerned, will be found to comprise two principal recommendations: one relates to the height of couplers for city ears, the other specifies the height of couplers for interurban ears. The other dimensions, such as those for bumpers depend directly upon these. The height being settled, the type of the coupler remained to be determined. For interurban cars, the logical design is that which will automatically couple with the standard steam car coupler, but which will be provided with such additional attachments as may be necessary to keep the couplers from opening when on the short radius curves and sharp
changes in grade which are common on the a rerage electric line. According to the report of the committee, such couplers are, or will soon be, available for use in a variety of forms.

On many lines, the question of the standardization of the height or form of the coupler possesses but little present interest. Outside of their occasional use for hauling disabled cars, the companies do not require couplers and under these conditions would probably not care to go to any great expense to install new couplers or to adopt the other recommendations of the committee so far as their existing rolling stock is concerned. The committee liardly expects this, but the present cars camot last forever and there will be a distinct advantage in incorporating the proposed standards in any new cars ordered, as they will then not only be able to couple with those of other roads which have adopted the standard dimensions, but will possess a value for sale as second-hamd equipment, which they would not otherwise have.

Report of the Committee on Education

The suggestion made by Prof. Norris last year of the need for the establishment of apprenticeship courses on electric railways led to the appointment by President Goodrich of the committee whose report was presented by Prof. Norris yesterday. Similar committees, it might be said, ha $;$, been appointed by other technical organizations, and are doing excellent work, notably in the case of the Institute of Electrical Engineers and on the steam roads. Althongr the committee had no definite plan to propose yesterday, vidence of its work during the time since its appointment was shown by the statistics compiled of the apprenticeshi, courses in the steam railroad, gas and electric lighting industries. As the report clearly indicates, there has been a revolution in the opinion of those in charge of engineering enterprises of the value of the techmical graduate. Part of this is due to the growing necessity for a knowledge of science and engineering in most large business enterprises of the present day, part is due to the fact that as there is a constantly increasing number of technical graduates in places of responsibility there is better appreciation of the instruction which is being given in the technical schools, and part of it is undoubtedly due to the schools themselves in better fitting their graduates for the requirements of business.

The large electrical manufacturing companies, whose work necessarily requires a high grade of scientific employees, have long been aware that the technical schools could provide them with a most desirable class of men, and in many universities the selection of the works of one or another of these large companies for "post-graduate" work has been considered for years as a mattex of course after graduation from the electrical engineering course. Some of these men have finally found their places among the operating electric railway companies, but there seems to be no valid reason why they should not be invited directly into railway work, to the advantage both of the companies and the students. A similar plan, as indicated by Prof. Norris, is followed in the steam railway industry, and has been commenced in a modest way by two electric railway companies. The benefits of the system apply not only to the engineering department, but to other portions of the railway work as well. There is no reason why a knowledge of engineering should disqualify anyone from proficiency in those branches whose primary demands are for administrative ability rather than for a training in engineering. On the contrary, the mental training acquired by
scientific study and in solving analytical problems and the confidence which usually accompanies knowledge, should be of equal benefit in managerial as in engineering work.

We have not touched upon the other features of the work of education mentioned in the report, that is the instruction in engineering theory given to those who have devoted themselves to the practical side of the work. This naturally accompanies the instruction in practice to the technical graduate, for a comprehensive plan on educational work should include both phases of the subject. Instances of the practice of the New York, Brooklyn and Boston Edison Companies are very instructive in this connection, and according to the testimony of those in charge, have been followed by satisfactory results.

Discussion or the Program ?

Many of those who have atiended the meetings of the Transportation \& Traffic association have remarked on the interesting and full discussion which has taken place after the reading of all papers and committee reports presented before that body. This discussion has been so general and extended that it has obliged the officials to depart from the regular published program in several important respects. The interesting features of this progran, however, will not be abandoned. They are simply postponed and carried out in regular order at the varions sessions. It is always a question with a presiding officer whether the better plan is to carry out each day the program that was outlined before the session began or to permit such discussion to be heard as may be suggested by the opinions and facts brought out. If the Transportation \& Traffic association had adhered to the program prepared in advance some of the most valuable discussions that have taken place at the meetings this year would have been lost. Next year it may be thought advisable to allow more time on the program for the discussions. It is certain that such time will be needed if the reports and papers in 1909 do not fall below the high standard set this rear.

The Exhibits as Seen by an Outsider

A shrewd observer commenting on the exhibits, remarked in conversation yesterday, that while the general public is evidently interested as it strolls around from booth to booth of this fine exhibit, there is practically nothing that makes an appeal for direct purchase. An electrical exhibition, pure and simple, brings to notice more and more each year things that the consumer is solicited to buy directly and personally -even lamps. The growth of the central station industry is based partly on that co-operation of the public in the purchase of apparatus. But in the traction industry it is fundamentally different. The private individual is unknown who buys himself a trolley car. The public enjoys and realizes the service of the entire apparatus through the agency of a public utility corporation; and it is to those men-except engineers, managers, specialists-that the argument must be made. Possibly indirect pressure can be brought to bear by public opinion aroused in favor of some specific device, but it is a negligible quantity. The manufacturer who makes good in the electric railway field undergoes a fire of critical searching judgment unequaled in any other electrical art, and that alone sets a seal of emphatic approval. This may be one reason why the field is so seldom swept by crazes and fads, which sometimes invade the mechanical world quite dangerously.

Conventionalities

"The strenuous life." Seven mectings in one day. Whew!
Mr. W. M. McFarland, vice-president of the Westinghouse Electric \& Manufacturing Company and a member of the Executive Committee of the Mamufacturers' Association, who attended the first two days of the convention, returned home Wednesday.
The Stone \& Webster linginecring Corporation, of Boston, Mass., is represented by 1). P. Robinson, president; F. R. Coates, F. N. Buslnell, I. II. Parker, Mark Lowd, manager Southwestern office, aud E. C. Fugland, all stopping at the Hotel Brighton.

Alanson P. Lathrop, vice-president and treasurer of the American Light \& Traction Company, of New York, is a shrewd, practical student of the exhibit on the Pier. This holding company operates traction properties at San Antonio, Tex., and Muskegon, Mich.

The Roller Chair Committee has arranged to have roller chairs stationed at the entrances of the Marlborough-Blenheim, Traymore and the Chalfonte Hotels to-night, between the hours of $7: 30$ and 9 p.m., for the use of delegates and guests attending the theatre parties of the evening.

Genial H. L. Shippy, the Roebling salesmanager, decided to come to the convention when he learned that the Sheibourne grill was still open. Otherwise his duties in New York would have been far too pressing and onerous. With him to grect a host of friends and customers were Messrs. Cockey and Bowman, of New York and Cleveland, respectively.

One of the "old timers" has asked us to request all other veterans of the electric railway business to meet at the Electric Ramway Journal Booth at $3: 30$ p.m. on Thursday to have a group photograph taken. The invitation is especially addressed to Messrs. Smith, of Omaha; Goodrich, of Hartford; Akarman, of Newark, and Major Evans; but anyone who has been allied with the electric railway industry for an equal length of time is eligible.

Alex. Dow, immediate past president of the Association of Edison Llluminating Companies, came on to Atlantic City with Mrs. Dow, to reenperate from the fatigue of the recent highly successful convention at Lenox, in the Berkshire Hills. They are staying at the Marlborough-Blenheim. Mr. Dow is president of the Edison lighting interests at Detroit, and a distinguished leader in that branch of the art with which he has been so long and so closely identified. He has a host of friends in the traction field.

An entertainment for the ladies of the convention will be given on Thursday afternoon from 4 to 5 , in the Solarium of the Marlborough-Blenheim, when Miss Amy Grant, who enjoys an enviable reputation as an accomplished artiste, will give a series of musical readings, i. e. recitations with music. The intcllectual pleasure of the performance is quite unusual, and those who have never heard Miss Grant should not let this excellent opportunity slip. The admission will be by official badge.

An authentic rumor credits John G. Buehler with an intention of becoming a balloonist or aeroplanist. Ever since the two American aeronauts fell from 2000 feet up, last Sunday, the sport of "air climbing" has appealed to him irresistibly. That same day and hour he underwent the mortification of being towed in by MeGowan after his auto broke down; and he and Vanderbilt have firmly decided no longer to chase the "bubble" reputation for speeding and
scorching. Mr. Buehler's movements are shrouded in mystery, but it is understood he will leave Atlantic City by water, and sell his auto for use as a roller chair on the Boardwalk.
"It cuts dirt," is the phrase describing a picce of vacum cleaning apparatus shown in the General Electric pergola. "Seems to me I'm in that class"' said a railway president mournfully as he looked at the device and remembered the scom and contumely he had endured of late because he had been trying to build up the community in which he lives and works. Taken as a body, there are no men in the country more devoted to the upbuilding of their local interests, than the railway managers-and in return they have often, too often, to "eat dirt."

Daniel M. Brady, of the Brady Brass Company, is a visitor to Atlantic City, as he inakes it a positive rule never to let a railroad convention go by without being present. This principle applies both to steam and electric railway conventions, at both of which he has many friends. Mr. Brady is being accompanied to this convention by John W. Gamon, who is a son of Frank S. Gannon, formerly general manager of the New York City Railway. Mr. Gannon, Jr., is commected with the Brady Brass Company. Mr. Brady has with him a few boxes of his well-known pencils.
The theatre parties organized by the Entertainment Committce for Thursday night will be most delightful affairs. Two houses have been taken for the affair, the Savoy and the Apollo, and tastes both grave and gay will be gratified. At the Apollo Robert Edeson will perform in "The Call of the North," and at the Savoy, the light musical comedy will be given of "Gay New York," by a regular metropolitan company. Admission in both instances will be by offcial badge only, and there will be no reserved seats, except for the officers of the Railway Associations, who will occupy the boxes. Both performances begin at $8: 30$.

Elmer P. Morris is trying to get Stedman to write a dranatic poem around his fender dummies. None of the elements of a great tragedy are lacking. The amount of human intelligence infused into those dummies by Elmer is simply marvellous. It is said that one of them is beginning to talk, and it is whispered that when the Claim Agents opened their session the other morning, a dummy was found seated in the presidential chair, with a wistful look on its expressive face, as though burdened with a tale of woe and wrong. Stedman admits it is a great chance, but says that the trouble is that his tragic verse is to often mistaken for humorous.
H. M. Edwards, head of the accounting staff of the New York Edison Company, is here as a special conference committee on accounting from the National Electric Light Association, over whose accounting section he presided at the Chicago convention last May. Mr. Edwards is a strong believer in joint consideration and disposal of the financial methods, forms, etc., involved in the requirements of the various Public Service Commissions. He holds that the underlying questions are very much the same, and that a united front on the part of the public utilities will smooth away difficulties both for the corporations and for the commissions.
The afternoon tea at the Country Club, for the ladies, provided by the Entertainment Committee, was another of the distinct successes of this notable convention. Nearly 150 ladies went out on the touring automobiles provided, and found the ride very pleasant through the rural part
of Atlantic City, the existence of which many had not even suspected. During the afternoon there was clock golf, and a concert was given by a first-class team of Italian musicians. The links looked their best, as did the quaint little club house, with the gathering of women in gay garments, against the backgrounds of rich foliage. An early return was made to town on account of the shorter day, but the smnset was a magnificent finale to all.

Ray D. Lillibridge and wife were the guests of F. J. Baird, of Cleveland, touring from New York to the Marl-borongh-Blenheim in Mr. Baird's new Packard automobile.
R. D. Coombs, structural engineer of the Pennsylvania Tunnel \& Terminal Company, was seen "walking the planks" on Tuesday under the ciceronage of W. D. Archbold, of the Archbold-Brady Company.
W. B. Cleveland, president of the Electric Railway Improvement Company, Cleveland, O., was unable to attend the convention this year. He had planned to be among those present but was detained at the last moment by business.

Ernst F. Hartmann of the Carbolineum Wood Preserving Company, decided at the last moment to come down with an exhibit. It is located on the south side of the pier near the Aquarium. Samples of treated cross arms are on exhibition.

The committee which has charge of the chair transportation upon the Boardwalk is so zealous that "pushers-in" are stationed at the various lotels to see that the members of the associations take full advantage of the chances to look like invalids. Many delegates fail to learn that these chairs are neither "pay-as-you-enter" nor "pay-as-you-leave."
J. K. Forrest, who has been visiting this eomntry from England, came down to the exhibit on Monday with C. G. Young, of J. G. White \& Company, and sailed for home Tuesday on the "Lusitania," saying that even in that brief inspection he felt he had put himself abreast of the best American practice. Mr. Forrest was, until recently, in charge of rolling stock and the overhead and feedcr system of the Capitol \& Buenos Aires Grand National Tramways, Argentine Republic. His headquaricrs are now in London.

William O. Hay, president of the Montgomery Traction Company, general manager of the Easton \& Washington Traction Company and secretary of the Northampton Traction Company, of Easton, Pa., is at the Marlborough-Blenheim with Mrs. Hay. He is accompanied by D. I. Beaulieu, superintendent and purchasing agent of the Northampton Traction, and several other employes of the three companies mentioned. Mr. Hay's brother, Thomas A. H. Hay, president of the Northampton Traction Company, is expected on Wednesday. It is an interesting fact that the May brothers have been prosperous shoe merchants at Easton for many years, in fact they sold so many shoes that to reduce the undue consumption of their product they went into electric railroading, so they are sure to make money either way.

Roller chairs are, as usual, furnished free to all delegates and guests of the convention wearing official badges, for use between the hours of $9 \mathrm{a} . \mathrm{m}$. and $6.30 \mathrm{p} . \mathrm{m}$.; except Wednesday and Thursday, when the evening hour is 9 o'clock. The garage stations are at the main entrance to the Million Dollar Pier, the Marlborough-Blenheim and the boardwalk opposite the Chalfonte. In addition, details of the service cover reduced rates for special and private chairs, as set forth in the official programs. The entertainment committee has a roller chair sub-committee, of which R. F. Hayes is chairman; and a regular roster has been scheduled by which he and other members of the entertainment committee supervise the whole service and "check the checkers" at given hours.

AMERICAN ASSOCIATION-WEDNESDAY

Vice-president Shaw called the meeting to order at 2:15 o'clock. The first business was the report of the Committee 0:: Education, which was presented by Prof. A. S. Richey, in the absence of Chairman Norris. This report is published elsewhere in this issue.

Prof. D. C. Jackson, of the Massachusetts Institute of Technology, sent a written contribution discussing the report. He said that but a few electric railway corporations had shops and construction organizations of such magnitude as to make it desirable to establish an apprentice organization, but that there were doubtless some companies who could carry on such a system. On the other hand, there are many componies which employ a large number of men who are without an advanced technical training. Such companies would find it well worth while to establish courses like those conducted by Prof. Sydney W. Ashe, for the purpose of stirring the employees' enthusiasm. He also believed that a plan similar to the Trustees Gas Educational Fund might give excellent results if adopted by a number of the electric railway companies, provided it was placed under wise and adequate management. But he wished to protest against the infercnce which the committees' report might leave on some, namely, that either of these two types of educational effort can serve to improve the usefulness of graduates of adequate engineering courses. It is possible that these processes might make such graduates more effective operatives, but it is mainifest that they would do little more for them, and thus would cause a waste of time if applied to such an end. On the other hand, he expressed himself as a hearty believer in the cadel system of the United Gas Improvement Company, and he presumed the cadet work of the Rochester Railway Company and the Public Service Company was equally effective. It seemed likely that an extension of this eadet system amongsi the various electric railway companies would lead to an ultimate enlargement of the body of competent and able engineering and executive officers which the companies have to draw from. To the development of the cadet work, the engineering schools ought to offer every assistance. To the development of apprenticeship systems the enginecring schools can only offer advice and encouragement, because such arrangements belong to the production of skilled mechanics and operatives, and are outside of their normal and appropriate sphere of education leading to engineering in a broader and deeper sense.
C. H. Hile, Boston Elevated Railway Company, gave it as his opinion that through a co-operation of the railway companies with the technical schools and industrial schools the former could expect much help. He referred to the practice on the Boston Elevated system, which is to put a boy in one of the various departments of the company for a certain number of months to learn the business, a specified time in one place and a specified time in another. The boys keep shifting around but in the meantime are progressing and gradually advanced to higher positions, and eventually are selected to fill more or less important vacancies in the company's force. Some of them finally reach the higher positions. He thought that in the matter of industrial schools there was a great deal of help which could be given by night courses, and that the company should encourage the boys in attendance upon the night courses, and also should allow the boys to attend other courses, if necessary, permitting them to take a leave of absence of several weeks or months, at certain times of the year, so that they might progress in their studies. He thought that if these students
should specialize at all, it should be ve. near the end of the course, because they will have to learn many of the minor details when they stare in business. They must start at the foot of the ladder, and with the development of their mental faculties they conld take up special lines of work. He believed that the electric railway companies did not appreciate the importance, fully, of co-operation in these matters.

Howard I. Grant, Seattle, described the system employcal by Stone \& Webstor, who had established some years aso what is called the "Sindent course." Stome \& Webster, however, do not go into the matter of training shop men, or into any system of slıop apprentices. They take from the technical schools, though "arelul selection aided by the professors of the classes, young men whor have been at the schools for fonr or five years, a cortan ummber of them each year. They are usally the merit men of the various colleges and techmical schools who desire to lake servire with the firm. 'These young men are taken into the Boston office, where all the detai's of the varions companies, some 30 in number, operated flnonghout the United Siates, are carod for. The young men are given an opportmity to learn the systems of reports and other details of operation of the firm. They are also given some engineering studies to work up. The usual pay to begin with is $\$ 60$ a month, which is sufficient to enable the young men to live in a proper manner. These young men are sent to the rarions companies controlled by the firm. Some are put to work in the power stations, some in the sub-stations and some take up electrical engineering or mechanical engineering, while still others may go into the transportation department. The speaker believed that from the large number of men they take each year it is possible to discover those who have the requisite qualifications in engineering and cau be marle managers of one of the companies. There are four students who entered the service of the firm not to exceed six years ago, who are now handling small companies. All engineers do not have qualifications for business management, and such as lack this facully are allowed to develop their talent along engineering lines in the various departments of railway work. The speaker believed it was absolutely necessary for the manufacturing concerns of the country as well as the street railway companies to foster technical and industrial schools to the fullest possible extent so that there might noi be a dearth of capab!e men for the places to be filled.
L. S. Stor's, of Boston, remarked that Mr. Grant had substantially corered the points he had in mind. He endorsed Nr. Grant's statement that there was a dearth of prop erly trained teclmical men in many of the positions in the street railway companies and he also believed that the greatest possible assistance should be lent to the technical and industrial schoo's.

Mr. Ely then delivered an address on the subject "How can the American Street and Intermrban Railway Associatinn and iis Affiliated Associations be made of the sreatest valne to the Nember Companies?" Arr. Ely said that the work which the affiliated associations had to do wis of great magnitude, and he believed that the different classes of worts shond be subdivided an 1 committed to the care of varions committers so that ample cime could in that way be hat to provide for the proper investigation of any sabject which was pending before the associations. That the worli done by the commitlees of the assoviation up to the present time had been splendidly done has been evidenced by the resnt:s of the committe reports at the present meeting. Ite believed that all the companies that are members of the association should take a most active interest in its affairs and
thereby secture the very greal results whech would follow from shoth conceried action, which would be of motnal advantage both to the publice and the eompanies.

Arthur W. Beady, Anderson, lud., then presented a commancation from the Electric Railway Jourmal, that publicalion offering to compile and publish, free of any cost to the assoriation, an electric railway dictionary, but requesting the association to name ant editing combittee, this committee to be an adrisory committee on the publicadion of the dicionary. On motion, the propesition was appooted by the association and the chairman appointed the following erent emen as the calitug conmittee: H. H. Adams, New Youk; Panl Winsor, Poston; Richard McCulloch, St. Lonis.

On motion of Mr. Buady, He constitution and by-laws of the American Street \& Interwhan Railway Transportation and 'iraffic Association wexe approved.

A communciation from the J. G. Brill Company was reed, in which it offered a prize to students in the technical schools of the comntry fer the best thesis on city and interwban cars, and requested the aproointment of a jadoe to act in conjunction with S. M. Cuwem and II. IV. Blake, in awating the pri\%e fur these papers. The association voted to anthorize the incoming president to make this appointment.

The chairman appointed the following gentlemen as a committee on Resolutions: W. E. Harrington, chairman, Pottsville, Pa.; P. P. Clafts, Clinton, Iowa; H. C. Page, Springfield, Mass.; also the following gentlemen as a committee on nominations: Howard F. Grant, Seattle, Wash.; W. A. Smith, Omaha, Neb.; Albion E. Lang, Toledo.

The meeting adjourncd until 2:30 o'elock sharp on Thursday afternoon.

ACCOUNTANTS' ASSOCIATION - WEDNESDAY

The twelfth amnal meeting of the American Street \& Interurban Railway Accountants' Association was called to order at the Chalfonte Hotel at 10:00 A. M., by R. N. Wallis, the acting presdent.

After approval of the records of the last meeting Mr. Wallis read the anmual address of the president. This adaress is printed elsewhere.

Acting Secretary II. E. Weeks (Tri-City Railway Company), read the report of the execntive committee, setting forth the work done by the committee and recommending an amendment to Section 1 of the By-Laws, as follows: "All pest presidents of the American Street \& Intermohan Railway Accountants' Association, and its preclecessor, the S'rect Railway Aecomotants' Association of America, shall be honorary members of the executive committee, without the right to rote." The appointment of a committee upon interline accounts wis also recommended.

Presilent Wallis, in speaking of the recommentation that a committe be appointed upon interine arounts 10 represent this assuciation on any problems which may accur in connection with interline acounting of freight and passenger traffe, asked W゙. Il. Forse, Jı. (Indian:ı C'nion Traction Company), to explain the reason for the recommendation.

Mr. Forse said that the Central Electric Aecounting Conference, an informal association, composed of lhis alconntants of varions electric rallways in the Central Stales, was organizerl in order that the acconntants minht eret forether and disenss matters of mutnal interest at more froquent intervals than the meetings of a national assuciation
permitted. At a meeting held some months ago a committee of members of that confcrence was appointed to outline a system of interline accounting, and plan a set of forms. That committee had not come to a final decision or made its report, but it is expected to make a report at a meeting in Ohio in November. At a meeting in Indianapolis about 10 days ago the subject was brought up and it was suggested that the American association be asked to act in the matter so that it would be broader in its scope and not only affect the railways in the Central States, but all the electric railways in the country that are interested in interline accomnting. Action would be appropriate now because the Interstate Commerce Commission is promulgating rules of various descriptions regulating the business of interstate carriers, and held that a good many interurban railroads are interstate carricrs. This commission has recently issucd a bulletin on the subject of a uniform bill of lading, which conflicts with one of the Indiana statutes. This subject, when it does affect the interurban railways at all, affects them scriously, and the accounting feature is much simplified if the railways can agree upon a plan of freight and passenger accounting. The matter had been brought before the executive committee for such action as this association desires to take. If the national association wonld take action, it would be the means of drawing more closely together the interests of all these railways.

The chair was directed to appoint a committce of five to act on the subject.

Mr. Wecks then read the report of the treasurer, showing expenditures during the fiscal year of $\$ 1,794.66$. Standard classifications sold during the year yielded $\$ 119.50$.
F. W. Sweney, special examiner, Interstate Commerce Commission, was then introduced by Mr. Wallis. He said the commission had issued three classifications which will become effective on January 1, and he had the promise of copies before the convention is over. In connection with these classifications he would like to state that it had been the practice of the commission with other classifications which they have issued for rail carriers, to develop the classifications through questions which are brought up and through rulings issued by the commission, and if any were interested in the way the classification had been developed, he had a few copies of bulletins and circulars which had been issued, and would illustrate this method. He was satisfied that if there are any points in which the classifications, which are to go into effect on January 1 are not clear, they can be developed in the same manner, and he knew that the commission would be glad at any time to receive suggestions or to have questions in regard to any points which are not plain.
The paper on the "Organization of the Accounting Department of an Electric Railway and Light Company" was then read by A. R. Patterson, general auditor Stone \& Webster Mamagement Association, Boston, Mass. This paper is published elsewhere.
H. S. Swift (Toledo Railways \& Light Company) said that in a general way Mr. Patterson had outlined methods corresponding to his, but he wanted to ask regarding one point. He noticed that one clerk apparently took care of 4,000 enstomers.

Mr. Patterson asked if the daily reading basis was followed.

Mr. Swift said it was; that the bills were divided into three sections, so that the meters were read continuously.

Mr. Patterson said that an average of somewhere between 250 and 300 bills a day were prepared by one clerk. A good
deal depended upon the rates. If they were based on the right demand or sliding scale, naturally more assistance would be required.
P. V. Bruington (Columbus Railway \& Light Company) said he had about 10,000 customers, and it took a force of abont 12, including the cashier, to take care of that business.
H. T. Bunn (Knoxville Railway \& Light Company) said that Mr. Patterson's organization was similar to that of his company, with the exception that he had about 3000 customers, with one cashier and one meter reader.

Frank Dabney (Seattle Electric Company) asked if any of the members had had any experience with loose-leaf ledgers for lighting customers.

Mr. Weeks said that when the Tri-City Railway \& Light Company took over the property in the tri-cities, loose-leaf ledgers were used by one of the companies.
The gas and electric acounts were divided, separate ledgers being used for gas, electric, coke, tar and sundries. This was found to be so cumbersome that it was changed to what is known as the Boston ledger, which is a loose-leaf ledger, but lias 20 or 30 names to a page. This was found very satisfactory. The customer's' entire bills for gas, electricity, coke, har, or whatever else he purchased were placed on the page of the ledger opposite the folio number which contains the account. The single page was in fact, so cumbersome that it was too expensive to handle.
S. C. Rogers (Youngstown-Sharon Railway \& Light Company), said that he had nsed the loose-leaf ledger during the past four or five years, having about 5,000 gas and electric accounts. The system was a little different from that followed by Mr. Patterson in that the accounting department issned the order for the installation and removal of all meters. The contract was given to the accounting department by the contract department, and then issued the order, indicating on the order the tag number or customer's number on the meter, and attaching a brass tag bearing that number on each meter. The meter readers, in reporting to the office, which they did on a separate, individual slip for each customer, took the tag number which indicated the page in the ledger in which the account is carried. The ledger leaf would hold a customer's account for four years, including both sides of the sheet. The account was kept with the individual, and no attention was paid to the location. If Jonh Smith was represented by tag number 100, his account in the ledger was page 100. If he moved to another location his number followed him. No meters were installed until that order had been issued.
Mr. Rogers said he also had a plan of keeping track of the mingled accounts by means of an extra stub on the electric light and gas bill, which was called a "bookkeeper's coupon." It was attached before the bill was mailed and immediately after the tenth of the month, which was the discomnt day, all the bookkeeper's coupons representing accounts that had been paid were eliminated, and the rest of the bills were furned immediately to the collection department. This obviated the necessity of waiting until the accounts werereturned.

Answering questions, Mr. Rogers said that he carried a scparate ledger for each account, and made a separate bill for each account. The ledgers were so arranged that each ledger was practically an independent unit and was balanced by itself.

Mr. Weeks had found that it was considerable work to handle so many different bills for one customer, and that in collections it made trouble because all the bills for one
customer were not secured at the time he came in to pay the company. Did not people who were disposed to delay payment on their bills take advantage in some instances of that circumstance, pay one bill and allow the others to go?

Mr. Rogers had not formd this condition. By means of this extra stub on the bill the man who was a consumer of both gras and electric light, which sometimes oceurred, but was not the usual condition, was represented by gas and electric light roupons, both of whieh were turned over to the collection department at the same time.

Mr. Dabney asked if the same reader took both the gas and the electric light.

Mr. Weeks said that was the practice in his company. The meter cards were arranged in lockbooks. The meter reader took the book and read both the gas and the electric meter at the same time and the bills were made together from the meter book, and then the readings fiom the meter book were copied in the ledger. The ledger was then totaled and the bills compared with the ledger in order to assur the accuracy of the entry. But in handling 20,000 meters it was found to be more satisfactory with the Boston ledger.

Mr. Patterson asked Mr. Weeks if he did not find sometimes that including three or four items in one bill let the customer take advantage of an excuse for delaying the entire bill for a petty item, such as a gas mantel.

Mr. Weeks said that in one of the cities a discount was not allowed. It was necessary to send out collectors to make the collections. In the other cities, where there were discounts, boys delivered the bills.
P. S. Young (Public Service Railway) asked Mr. Patterson in reference to the statement: "One man has read in one day 200 gas meters and, in addition, collected 25 per cent of these bills." Mr. Young wanted to know whether that was a record performance or an average performance.

Mr. Patterson said that in the way a record performance was meant, he should say no. As a matter of fact several men in the company had read 200 meters in six or seven hours and collected anywhere from 10 to 25 per cent, but it was in a mill community, in tenement districts, where meters were congested and could be read in a short space of time.
W. J. Tharp (Little Rock Railway \& Electric Company), said the ledger he was using had some features different from those he had used heretofore. The ledger is a loose-leaf ledger, with 20 accounts to the page. 'lhere was nothing on the page except the customer's name and address. The ledger contained two short sheets which take care of the year's business. The object of having only the name and the address on this long sheet is that at the end of the year it would not be necessary to get up a new ledger. Two more short sheets could be inserted and the ledger continued for another year.

President Wallis introduced H. M. Edwards, representative of the National Electric Light Association and auditor of the New York Edison Company, and asked him to enter into the discussion.

Mr. Edwards said the discussion confirmed previous knowledge he had that possibly in rendering customers' accounts there is a greater lack of uniformity than in almost any other branch of the business. He had about started, among' some of the largel electric light companies of the country, a method of comparison. In the New York Edison Company the system was elaborate; it must be, because it had now 80,000 customers connected. Up to the beginning of this year it was adding at the rate of about 20 per cent a year. During the last year there had been a little lull, and he had had time to look over the methods, etc., and see how they could be improved. A customer's meter record was started from
the connection slip. The meter record showed simply the details of the meter as to type, size, wire, constant, etc., and gave the reading, and on the margin of the index the total amount of eonsumption was entorsed. This was then sent to the ledger clerk who entered the facts on the ledger; then to the billing clerk, who made ont the bill. The ledger clerk in the meantime had calculated the bill; it was brought to lim and a comparison made. I'his system was adopted because the rates were complicater, the calculations involved, and it was found necessary to check the footing of the various meters on the bill as well as the calculation of the rate. After the bill was made out and compared by the ledger clerk and checked by him as having been compared with the original entry in the ledger, it was sent to a tabulating machine, and all the total results, etc., were obtained on the tabulator.

Mr. Edwards said the company used a bound ledger. The ledger lasted three years. It was blocked out as well as possible at the beginning of the three years, but naturally the customers' names got out of the geographical layout as originally designed. Therefore, he had an index (ard giving the name and address of the customer and his ledger folio.

Mr. Edwards said he was partial to a loose-leaf ledger, but it had not the elements of security from an auditing standpoint. He wanted one bound record which would always fill the same place and be in the same position, so that in after years he could go back over past years ${ }^{\text {? }}$ work, check and audit any account and prove up the work that had been done. Aside from the ledger, however, he wanted subsidiary loose records. The bills were made out with a billing coupon. When bills were mailed the coupons were clipped off, assorted in collection routes, and sent to the collection bureau.

All the bills were mailed, Mr. Edwards said. There was one weak point in the system, and in fact, in all electric systems. The company lacked a slot meter. The Consolidated Gas Company of New York City had Mr. Edwards thought, between 40,000 and 50,000 slot meters in existence. The New York Edison Company had 5,000 weekly customers. Of these 5,000 weekly customers, 40 per cent. waited for the cut-off man.

Mr. Weeks said that Mr. Edwards' talk had suggested a system which he used. He had a form of bill which was suggested to him by the form of billing by railroads for freight. He used a carbon sheet and made a carbon copy of the original bill on a stub. This stub was perforated. The bills were taken out by the collectors, and if the bill was not collected on the back of the stub the collector recorded the reason for not making the collection. The stubs were returned to the office. If the bill had been paid the stubs were accumulated and totaled on the adding machine and the collector had to account for the money called for by the stubs. If the bills were not paid the collector turned in the balance of the stubs to the credit clerk, who filed them in folio order, which was also the collection order, and the collector, after the entire route had been gone over once, took out the stubs, and if by the second time the bill had not been paid, he made a note.

Mr. Edwards said that of all the money taken in by his company, 65 per cent. was received through the mails, 25 per cent. through collectors and 10 per cent. paid over the counter.

Mr. Ham said his company had an arrangement with 12 banks in the city of Washington, where customers could pay their bills.

Will Browne of (Utah Light \& Railway Company), said
he la:d found it very advantageous to save the customer's account on a card. He had found in making comparison of tha clerical force necessary to emduct this sysiem, that apparently there was some saving in it.

Mr. Wallis read a letter from Frank R. Menry expressing regret at his inability to be present, and wishing the association continated prosperity.

President Wallis appointed the following committees:
Nominating-F. E. Snith, II. S. Swift, lrank Dabney, W. II. Burooghs and C. L. Wight.

Resolntions: H. T. Bumn, S. I. Reichert and George A. Harris.

ENGINEERING ASSOCIATION-WEDRESDAY

President Simmons alled the meeting to ardor at 9.30 d. M. and stated that Mr. Adams had s, mething to say.
II. II. Adxms, New York, suid that he wished to move a wote of thanks to the Committee on Maintenance of Electrical Equipment whose reports were presented on Tucsd:y: He rom-idered the two reports that this Committee had presented to the association were among the mest valuable that had ever ben received, and thought that the essociation shonld put itself on record. Mr. Olds secorded the motion which wes manino sly earried.

The president then called for the report of the Committee on Standardization. Mr. Adams presented the report, which was rear by the sectelary.

discussion on hefort on standaridization

Mr. Adams referred to the recommendation in regard to bampers and sugeested that Mr. Doyle had been giving special attention to this subject.

Mr. Doyle gave an accomnt of the steel bamper with which the stbway cans in New York are equipped and which has been destribed in this paper. It is a sicel easting wi h a ng tudinal corrugations which engage when two trains collide and prevent them telessoping. It has proved is: mactical worth in service.

A r. Doyle said that he understood an application had been inade for a patent, but that he wess not personally interested in the derice.
The president asked for a fu!l discussion on the report of the Standardization Committec.

Mr. O'ds commended the work of the committec. He considered the matter of auto:natic couplers as important as anything with which the companies have to contend to-day. He was interested in Mr. Doyle's device. His company had had a few collisions, but none had been serious. He did not see how the idea of a corrugated buffer coald be patented and thought the devire had been brought out some years ago. He thonght that the type of antonatic couplers is recommended by the committee, designed to couple witis the cars of steam roads desirable. He also approved of the commitiee's recommendation of 35 in . in height for intertaben rals.
IV. J. Harvie, Utira, said he was interested in the arrangement for preventing internban cars from riding over tho platforms of city cars. The distance between bottom of the iuterurban bumper and the top of the city bumper was 12 in. and he asked what fym of top casting for the eity cars the committee lied in mind.
II. W. Blake replied that the committee had derided npon mo special drsign except that the ens ing shond have a pocket to permit the compling of city and interurban cars.

Mr. Dovle explained that with the corrugated buffer des: ribed by him the casting was placed on the ends of
the sills and the construction of the car permitted the interlocking of the sills at their emds. It is then impussible for the car to teleseope. If in the ordinary city car, which has a platferm tical up, to the main sills the interlocking derice is provided, the ralue of the device is only at sach how spects: :s the strength of the platform will resist. The company lad the device on a car of that construction. The device resisted the impact somewhat, the platforms were Enockal down and the car bodies batted out, but there was only a slight movement toward telescoping. He did not believe it possible to generate speed that would desiroy the atignment of long sills. The force would then go sideways or up and then the superstructure would break at the peint of attachment to the sills, so that if eastings were provided in the structure there should be some suitable material between the rasting and the end of the sills to wffer such resistance is is employed in couplers of freight ears. There should be a dampening suring, or other scheme for abzorbing shock, otherwise passengers sitting in two stcel eals coming together and stopping suddenly would be severely shaken up.
E. T. Runger, Chicago, spoke of a device used on the cars of the Hudson thmel in New York which he thought would be nseful in this commetion and which he thought wes not patented. He thought the question of height of seps an important one from the standpoint of the public, both dity and interurban, as high steps are dificult for some people to sarmount.
M. V. Ayres, Boston \& Worcester Street Railway, called attention to the fact that the heights from top rail to bottom of bumper were 51 in . and 31 in ., respectively for interurban and city cars. This would require a casting on the city car of 20 in . in height on the city car to reach to the top of the bumper and not to the bottom of the bumper of the intermban car. He thought this a formidable proposition. It should be a heary steel casting with a bracket sticking up 20 in , above the floor timbers, in which it is bolted, in the eity car. This would be a pretty secure thing to receive a heavy blow. The plan of providing timbers with interlocking ridges should have been atopted long ago. Where two flat bumpers, of almost the same height, strike each other, one of the cars will slide over the other and some interlocking device which will prevent that should be used. It had occurred to him that a simple way of doing that might be to use a good channel iron, bending it aroand the front end of the car, from sill to sill, with the flanges betwcen, using the channel iron for a wide bumper and the flanges to prevent climbing. An I-beam could be used ins.ert of the chamel iron. The speaker said thare were good arguments for all the recommendations of the connittee, and if he came from Ohio or Indiana he would aprrove them all without hesitation. In Massachusets there was little interchange of cars between steam and electric roads. Jlis company had adopted a type of intermban car which was intermediate between the two tapes recommended by the report. It is a little higher than the ordinary city car, because the motors, contactors and proper arrangements for braking, etc., seem to require more room, but is not quile as high a car as the usual intermban. The cars also have wider platforms than most interurban cars. These cars do a great deal of city and suburban service, where there are very frequent stops and it would be impracticable to use many steps. For this service the sort of car used is better

The President sairl he understood that J. F. H. Wyse, engineer of the Ontario Railway \& Mmicipal Board was present and wished to be heard on the height of car stef:s.
Mr. Wyse read the following statement:

Weery street and interurban railway man must realize the great importance of this subjet. Adopt proper standards, and rapital, expenditure will be greatly reduced, and the cost of repairs infinitely cut down. Your data shect sent to the companios of the Association doos not seen to have met with any replies from my section, and with relation to one feature, namely, car steps, which your committee has under consideration, I desire to say a few words.

This feature of the subject of standardization is of especial interest to us in Toronto at the present time, as there is now before onr Ontanio Railway and Manicipal Board an application to lower the seps of "ity cars.

It may be pertinent to explain that ihe Ontario Railway and Mnincipal Board has jurisdiction within the province of Ontario of a somewhat similar character to that of your state railway commissions here. In this application a namber of our most prominent physirians have come forvard, and stated under oath that the eomed ion of hioh steps on the cars of the Cily of Toronto was injorious, if not dangerors. Some of these doctors hold important chairs or professorships in the University of Toronto, one of them is an ex-preside th of the British Modical Ass riatim, and now Dean of the Faculty of Medicine in the University of Toronto. Their evidence is very strong, and cannot be ignored.

The height of seps, regarding which this application is made, is practically the same your committea proposes to adopt is a standard. Taking this into account and giving due consideration to the evidence now before our Board, and the structural difficulties to be met wi h, it seems to me if postponing the adoption of your proposod standards, as to car s'eps, and going further into the ques'iou resalled is secmring a lower standard than 17 in . for the first step on the city cars, the public's best interes's world be served and an immense amonnt of expense to the operatinc companies will be avoided, and a canse removed whi h promises to be a source of great irritation between the eivic authorities and the railway companies.

After the conclusion of these remarks President Si moms said he would read on, and while the subicet of the height of car steps addressed to him as President of the Asssciation by Howard A. Kelley, who is a very prominent physician of Baltimore, Maryland. The letter follows:
"To the President:
Dear Sir: I note that one recommentation to be made at your Congress is that the height fom top of rail to top of tread of first s'ep 17 in . May I enter a protest as a doctor ag?inst the height which militates against the safety and comfort of women, little children and the aged. A lower height would not only be a courteous conession on your part, but lessen the delays by expediting exit and ingress for those for whom I put in a word. I am, dear sir, faithfully yours,

"Howard 1. Kelley, M.D."

James Leach, of Toronto, chairman of the Ontario Boart expressed his thanks and those of his associates for the cpportunity of being present at the meeting.

Mr. Bloke explained that the Street Railway Association of the State of New York had gone very earefally into the subject of car steps three or four yenrs ago. A special committee was appointed on the sabject, consisting of oprorating men and engineers and they renehed the sme conclusions es to beights of steps is the Committee on Standards. The latter committee, howevar, realizat that all street railway companies might not be prepared to adopt these step dimensions, henee did not sugesi then as standards, but is "good practice." Those who are interested in looking on the arguments in favor of these heights will find them in the proceedings of the Now York State asceciation.

Mr. Adram thought it well to state bricfly sone of the limitations on this step-beight grestion, pritiedply with the city ears. In the majority of the Enstern cities the comprnies are limited in the width that they ean boild their borlies; hence are limited in the width across the sills,
which is the vital point. Eight feet would be a good width, but that is not often practicable, and the fact that the width over sills is limited, limits the radiation of the wheels of donble irects.

Mr. Olds sail that in Milwaluce a city ordinance provides that the height of the de. trolley wire most be 18 feet from the rail to the bottom of the irolley wire. With single phase intermban en's and a trolley b 'se insulated for a.c. 3330 volls, the clearances are about as follows: Whels 36 in ., with the clearance for the flange below the bottom of the floor, 4 in., thickness of floor is 2 in . The sills do not go below the floor of the car, except in the center; so that the wheels come out moder the side sill. By. so doing a height is secured of 42 in . from the rail to the top of the car floor. The height suggested by the Committee brings the floor of the interurban car 51 in , or 9 in . more than in Milwatuke. The Milwankee Company is also working to get the platform of the city car down to not exeeeding to in., porsibly 38 in.

In regned to the height of steps on city cars, all know, that some streets are not paved, and at tines the surface of the ground to the top of the rail will be from 2 in . to 3 in ., and pessibly 4 in., which will increase the height of this bottom step to 22 in . or 24 in ., and Mr. Olds s id he fully agreed with the doctor that this is too high. In Minueapuis they are using cars in city service without a drop platform and prove very satisfactory. The Chicago City Railway is also endeavoring to rednce the height of the first step.

Mr. Winsor said that the report did mot state whether the mensurements are taken with a car light or loader. He presumed they were with the car equipped but without any load. That means they are the maximum height. After the surings settle and the car gets out of adjustment the step will be less than 17 in . With the car loaded the beight would be still lower. He thonght the report should be amended to say when the measurements are taken; wherwise sone people might not understand them. The also thought the di nensions should read "not to exceed."

Mr. Doyle suggested that with the steel car it might be possible to reduce the height of the platform by the dimensions of the main sills throngh utilizing that portion of the side of the car below the window sill as a triss, supplemented by the heater panels as sills. His company had worked up a desion of car of that character.

Mr. Roberts, in reply to Mr. Wyse from Toronto, said his company had overcome the difficulty as to the danger between the modern built interurban car and the open style old city car by having on its new cars a drop steel front sill which takes care of all fear of teles:oping between the interurban and the ordinary city car. His company is now practically getting around to the more modern type of converible ear. He believed in a low first step.

Mr. Olds mentioned the (fnestion of thoors and sait he thought the compsition foom is a step in the ripht direction. This is being used on the inemmban cars in Milwaukes.

Nr. Winsor made the morion that after the daree foms. "height of top rail to step," the words be added "hat to exceed."

I'r. Blake said that the committee felt handicapped in presenting the report owing to the absence of Chaman Evans. The fignes mesented are not all reemmended standards, and all to some extent depend upon areh oher: The first thine necessary was to start with the height of couller; and for the intermban car it secmed advisab'e to make it samered M. C. B. height. which for passenger cals is defined ats as
in. loaded or light. With freight cars a specificd variation is allowed. The height from top of rail to center of coupler for the city car was then made as low as possible, 20 in . From these, the next four dimensions naturally follow, that is the height of the top of the platform in each case, giving a width of buffer which was considered strong enough for the service. The first five dimensions in the list are really all that it is necessary to specify. These are the only dimensions which are necessary to standardize in order to interchange cars. The following dimensions (those for steps) are optional with any company. The steam railroads do not standardize these dimensions. Some steam cars may have three steps, others five and there is no trouble as to the interchange of cars. If the first step is made not so high, the heights of the others will have to be increased to get the 20 in . for the coupler on city cars, and the 35 in . for the height of coupler on the interurban cars, unless another step is added, which of course can be done.
The president put the question on Mr. Winsor's motion, which was carried.
Mr. McAloney, Denver, moved the committee be extended a vote of thanks and the report accepted as amended. (Motion carried.) [The report is published elsewhere in this issue as amended.-Eds.]

POWER GENERATION

The president then called for the report of the Committee on Power Generation, G. H. Kelsay, Chairman. Mr. Kelsay presented the report.

Charles Hewitt, Philadelphia Rapid Transit Company said that the company which he represented has seven different designs of turbines of varions sizes, made by three different manufacturers, and there is a wide variation in economy in the pounds of coal per k. w. hour in the different turbines, due to the difference in size, the difference in design and the difference in conditions. Hence it was difficult to submit a categorical reply to a question as to the efficiency of a turbine. This condition affects more or less all the questions on turbines. He believed the greatest economy could be secured with an exhaust steam turbine in connection with a well-designed reciprocating engine greater than that of any straight turbine plant that could be built. He understood one of the large trans-Atlantic companies is designing, or has put into service, a steam vessel built on these lines.

Mr. Roberts said that much of the information was obtained from well known authorities on the topies treated, but that their persnalities could not be made known from business reasons.

Further, the committee was necessarily somewhat handicapped in certain replies, especially the use of turbines and reciprocating engines in the same plant, by the fact that the turbines are in almost every instance confined to a smaller part of the operation of plants than the reciprocating units. His own plant contains a 500 kw . and a 2,000 kw. d.c. turbine and a 1,500 a.e. turbine. On the other hand, the company has reciprocating units possibly four times as powerful as all the turbine units placed together, so that while it has been making observation on the operation of the turbines, he couldn't compare exactly reciprocating units and turbines of the same size. He was impressed, however, with the overload capacity of a steam turbine in good condition, with a good head of steam and a reasonable amount of superheat. There seems to be almost no range of power within the possibility of the strength of the material of which the turbine is constructed at which the turbine will not work.
R. H. Rice, General Electric Company, Schenectady, N. Y., expressed his hearty appreciation of the great value of the study which the committee had given to the practical operation of steam lurbines as compared with reciprocating engines in power stations. Information of the kind contained in the report is of the utmost value from the manufacturers' standpoint. It is only from the people who are operating the apparatus that they can derive the necessary information for the improvement of the apparatus. Far from feeling that criticism is detrimental to business, they believe it to be of inestimable value. In getting the information the committee has been brought face to face with almost insuperable difficulties. Unless two plants are compared which are giving the same output and which are entirely separate, it is almost impossible to obtain data in steam consumption which will be of very great value. Obviously most street railway plants are not so situated that this comparative information can be obtained. On the whole, however, the consensus of opinion seems to be favorable to the steam turbine, and the speaker believed that future reports of the committee would be still more favorable to the turbine because some of the units reported on were among the first shipped. Certain types of steam turbines, particularly the impulse type, give an increased efficiency under overload and the best economy of such a turbine is at the maximum load. It is to the advantage of users of this type of turbine to put on it all the load which the generator can carry without overheating. The General Electric Company has recognized this fact by establishing a maximum turbine by which the user will know the maximum and by operating under those conditions get the most economical result. The rating of an engine is different in that it is necessary so to proportion the cylinders that maximum economy is obtained at some point not at the ultimate capacity of the engines. Comsiderable work is going forward at the present time in the direction of simplifying auxiliary apparatus, a matter of the utinost importance to the success of the steam turbine.

Mr. Thomas, Baltimore, said that on occasions, in his station, when the reciprocating engines dropped out, the load was so great on those remaining that the turbine took practically all the load, and he thought it is very important that engineers should give greater protection to the mechanical strain on the coil supports and the coils. With a reciprocating engine generator this is not so necessary.

STEAM METERS

It the snggestion of the president the subject of steam meters was then takeu up.

Mr. Kelsay said the committee had obtained the information on steam meters contained in the report from the manufacturers and by asking them where the steam meters were located. They may be subject to some error because the committee had been able to get information of only those locations where they have been satisfactory.
Mr. Harvie said it seemed odd, when an electric power station is so fully equipped with electrical measuring instruments, that there is such a large gap of unknown conditions between the electrical side of the generator and the coal pile and the water fed to the boilers. If steam meters had been in more general use during the past few years, the data on the economy with reciprocating engines and turbines would be much more full. There are many places in a modern steam plant where it would be desirable to have steam meters in continuous operation. They cannot be considered as taking the place of an indicator on an engine. Their object is quite different. He thought
if power station opcrators would only show any interest and desire to use the instrments there would be a very great development in them within a very short time.
flue gas analysis
The president asked if any delegates wished to take up the question of flue gas analysis.

Mr. Windsor said in his stations they weighed the coal and recorded the electrical output, but between the two had almost nothing to work from. They need methods of knowing how they are burning the coal, what the boiler is doing and what the various mits are doing. The paper under discussion shows that a start has been made by the manufacturers in that direction, and that the companies are interested; and he hoped that the work of this cominittee would be carried forward next year.

Mr. Kelsay said two of the leading mamfacturers of instruments for the determination of flue gas had furnished him equiponents for test preparatory for this report, but it was absolutely impossible to get the information in time to go in the report. He had found some valuable things, one of which was that in his operating condition the air supply is entirely too large. It was a condition which he did not expect.

Mr. Hewitt said he had had two flue analyzers in scrvice some little time, and while willing to admit that the results have been beneficial on the whole, he had to confess that they had been somewhat inconsistent. He learned very early that it made a very considerable difference as to where the sample of gas was taken out. In the report he thought the conclusion was reached that it is satisfactory to take the sample ont from the stack or near the stack. His own conclusion was diametrically opposite to that. In a battery of five boilers, for instance, working on one stack, no indication can be had of any individual boiler by taking the gas from the stack. As a general principle the nearer one approaches the stack the less CO_{2} he gets. That is borne out by the tests of the National Fuel Committee at St. Louis. The speaker had found that the only reliable indication which he could get was by taking the sample of gas from about the middle of the combustion chamber. They had tried various means of abstracting it, and had finally settled on a T-shaped idea. A pipe is run down the clamber and then completely across it, and the pipe is perforated with holes, so an average sample all the way across the combustion chamber is obtained. He had also found that the banking of a boiler in one bank very materially affects the gas in the flue, and in some cases he had found that the banking of one boiler affects the other, although it may not be banked. A possible reason for this is the infiltration of air from the banking of the boiler through the party wall. He had had instances in Philadelphia where the party wall, so far as was known. was perfect, yct if the sample of gas was taken near the chamber or near the flue, the banking of a boiler adjacent to another boiler will affect the CO_{2} of these results. He also discovered, somewhat to his surprise, that the fireman on a flat fire had very little to do with the CO_{2}. That may not be true with soft coal fires, but with anthracite buckwheat it does not seem to be possible for the fireman to make very much difference in the CO_{2}. Of course, if he leares the fire doms open the air rushes in and will affect it. He had tried every method of firing that could be thought of, but they appeared to make very little difference in the CO_{2}. He had succeeded in reducing the amount of CO_{2} at the time of cleaning fires, but with that exception there las been no marked change. The two principal things which the CO_{2} recorder has revealed to them are the exces-
sive infiltation of air between the stack and the combustion chamber, and the apparent lack of air passing through the coal bed.

Upon motion of Mr. Doyle the report of the committee was adopted, and a role of thanks was tendered to this committec for its report. The subject was also referred to the incoming committee for action.

WEDNESDAY $A F^{\prime}$ TERNOON SESSION

President Simmons called the association to order and asked for the report of the Committee for Control. This report is published elsewhere in this issuc. Owing to its length the report was not read.

discussion on report of comaiftee on control

Mr. Winsor, in opening the diseussion, called attention to a slight error in the printed copy of Mr. Case's paper. [The correction is made in the paper as printed in this issue-Eds.] He then referred to the diagram of current feeding shown in the paper, which he said was very interesting to him, because his company, during the last year or so, had changed the resistance steps on all of its equipments. Even then it could not get so smooth diagram as shown. As a result of the change the motormen can handle their cars very much better than before. The authors had mentioned $3 \mathrm{~m} . \mathrm{p} . \mathrm{h} . \mathrm{p}$. s. as possible accelcration and Mr. Cooper might be inferred as saying that the acceleration could be $5 \mathrm{~m} . \mathrm{p} . \mathrm{h} . \mathrm{p}$. s. Mr. Winsor did not think such acceleration possible, but his company was trying to get a greater acceleration. He believed strongly in the automatic fcatures of control, but thought improvements yet possible. With autnmatic control the company is now getting about 1.5 m. p. h. p. s. aceleration on the level, but less with a heavily loaded car and on a grade. He said he was glad to see improved platform controllers on exhibition and thought a platform controller preferable where it conld be used. The Boston Elevated has also been experimenting, in connection with acceleration, with the alarm bell system of the General Electric Company. In this a relay closes a little bell circuit when the current rises beyond the maximum which should be used. That is, if the motor ought to take 75 amp ., as a starting current, the relay can be set at 120 , and if the motorman fecds up too fast he will get a buzzer or bell that will warn him. The conductor and anybody on the car that is interested. also knows that he does not feed correctly. The system has not been in use long enough yet to determine its real value, but the indications are that there is something in it.
Mr. Doyle said that on the Interborough it had been found there was a difference of from 30 to 35 per cent in the amount of current used by different motormen in operating under similar conditions, as nearly as they conld be measured. He thought if controller designers could get up something that would indicate the extent of coasting of trains and the character of the acceleration it would reduce the fnel expenditure. The company's method of making these determinations was to insert an ordinary time clock in such a way as to measure the coasting time; that is, the time after the motorman has shut off his controller. When the controller was shut off this clock would start to operate and stop when the controller was opened. The coasting time, as stated, varied from 30 to 35 per cent among different motormen operating under similar conditions. He moved that the Committee on Control or Maintenance shonld give the subject consideration.

The molion was seeonded by Mr. Adams and eariried.

Hr. Nhnger and his practice in reducing the paks of the different pints of the controller, wes to place an ammeter in citcuit with the motors. This is done when the car hess ben overhauled and is about read to be placed in service. Tle car is taken out on the track by a comple of shopmen and a direct reading 500 amp. anneter is placed in cirmit. Ore man handles the car while the other watch se the ammeter to see that each point is of equal strength at the peak. If the car does not notely up satisfactorile, it is taken back to the shop and the resistance is adjasted until the car will accelerate perfectly. In this way the performane ef every car is uniform on the pints. His company for about a year had been msing "coasting boards." Theore are usefal in keeping down the constmption of current. He was a firm believer in the merits of automatic accelleration. His company operates about 1,700 trains a day, a large mojority of which have only one car, yet the reports of failures of the controller to moteh up property are rare. Even these, when sifted down, will us:ally b fombl to be not founded on any fant of the controller.

Nr: Case in replying to questions said that occasional sticking of the dash-pot has been due to the condensing of mois.une in dash-pots and its subsequent freezing when the rar is laid mp. As the clearance between the phanger and the gravity is so small it requires only a small amount of moisture to do that. His company has recently made up a relay which will entirely orerome this trouble because when the relay is at rest there is no space within the dishlyot and consequently there is no moisture to be precipitated and freeze. The elearance of the phanger in the dash-pot has also been increased.

Wm. Cooper referred to Mr. Winsor's remark that a certain rate of acceleration was only possible when running down lill. He thonght it conld be easily attained on almost any part of the Boston Elevated becauss the co-efficient of friction of the wheels on the rail is quite sufficient. It would be very difficult to attain, howerer, without a more perfect control, but it would be possible. He made some braking tests recently in which he got decelcration of five miles an hour per second without any uncomf rrtable jolting.

Mr. Winsor (Boston Elevated) said that relays in both controls was what caused trouble. If the time limit is desired it must be obtained in another way. The cylinders of the Westinghonse apparatus are operated by compressed air, and one way to get a time limit is to throttle the air as it is admitted to the cylinder. The valves can be made smaller to do this, but he also has a special time limit relay which is used in some cases. There are other ways, however, of determining the proper regulation current so that it will be possible to landle trains of cars on heavy grades as well as on a level. In some cases where there are only a few light grades ou a line but a number of heavy steep grades, it is not desirable to set the current limits so that the car will accelerate rapidly on the maximum grades. He had alss installed two current limits in some instances, the second limit of which can be brought into action whea desired. The practice of the Boston Elevated is excep'ional on account of getting ont of the grades in the tumels; in most cases where train control and automatic acceleration is employed, one set of current limits is sufficient to cover all normal conditions. He called attention to the fact that perfect acceleration can only be secured by something like a water rheostat control or by a control with an infinite number of steps. Λ certain minimum number of fifty-seven steps should be used for the sake of simplicity, and no more than is necessary to keep the flnctation in acceleration down to what is comfortable.
E. 'T. Afunger' (Detropolitan IVest Side Elevated, Chicago) said that he nsed an ammeter and stop watell together in ardjusting limit relays. He adjnsted the rate of acceleration be the stop watch but tried to adjust the resistance so that every tooth and peak is the same. The point at which the curent is ent in is prearranged by the weight of the relay :rmathe. The aim was to make the peak reach the same place exory time on cacll motor and then to adjust the weight of the relay amature to the cmrent limiting relay so as to set a certain acceleration, which on his road was fixed at 11 seconds, starting from the time the current is turned on mutil the last point or the peak of the notch is reached. The curent runs anywhere from 210 to 220 amp . for each motor. When they are in series it is 210 to 220 amp ., and in maltiple it is double that. The relays are adjusted withir ? amp. on those peaks. Mjustments of that kind are made erery 60,000 miles.
W. J. Harvie asked whether any companies operating multiple-mit control equipment had any difficulties with snow, and if so, what has been the most effective means of preventing such trouble? The tronble he had had was due to snow sacking in behind the forward plate of the contact box and behind the middle of the contact device, and depositing enough moisture on the contact to at times put the erfuipment out of service. He expected to havea good deal of such trouble this winter.
On motion the report of the Committee was accepted.
The president appointed the nominating committee: E. T. Munger, (chairman), Charles Hewitt, J. M. Larned, Ayres and W. J. Harvie. This committee is to report on Friday aftemoon.

COMAItTEE ox power mstribution

IV. J Harvie, chairman of the committce, presented the report.
R. D. Combs (Pennsylvania Railroad), presented a writthe disenssion on heary catenary construction.
G. W. Palmer, Jr. (Boston \& Northern), referred to the committee's statement that for low tension feeders, the standard practice is to uss paper insulated cables. He asked if the committee had given any attention to the use of varmished cambric for low tension eable insulation. In some respects he thought it promised better results than paper insulation, particularly where the sheaths are subject to electrolys:s, in which case the cambric insulation is not as liable to fail as paper. He had found a crying need for something in the way of a strain insulator which conld be used in commection with potentials of 13,000 volts and over. 'To date he had not fonnd an insulator which could be nsed in the ordinary way of entting the insulator in on the line.

James Heywood (Philadelphia Rapid Transit Company) did not think that varnished cambrie had yet come into very general use for underground work. The value of varnished cambric in a lead-covered cable is rather doubtful. Paper insulation is much cheaper and hass sufficient dialectie strength for the work. He doubted whether varnished cambric would resset the influences which act on the insulation when the sleath is punctured much better than saturated paper. One company has discarded lead covering on moderground cables and is using rubber insulation withont lead, depending oniirely on the insulation to resst water.

Wm. Roberts (Northem Ohio Traction \& Light Company) asked if any steps had been taken to ascertain the bearing of State laws on the height of the trolley wire. He had ascertained that the Ohio law required a height of trolley wire of 21 ft .6 in . He suggested that this might be a mat-
ter for the committee to take up at some future time in order to have a definite reeord of the requirements of the various state laws.
W. J. Harvie replied to Mr, Roberts by saying that the commitlee found that it could not lope to influence in any way the height of trolley in special cases like railroad crossings, bridges and eulverts. As a rule steun railways require a height of 22 fl . at crossings. The standard of 19 ft . was suggested in oprder not to have too great a differcnce between the maximum height and the lowest point to which the trolley would have to go.

Secretary Corning repliced to Mr. Heywool's request for information as to the use of nou-leaded cable, by saving that the Boston Elevated has had some non-leaded cable, rubber insulated with three triple grades, in use for two or three years Exeept for some trouble due to bodly made joints where the cable lay in wet ducts he had had absolntely no trouble with it. Much depends on the quality of the insulation, as to how long that cable will last in the ducts and be of service. In Springfield, Mass., some of this cable luss been in for abont five years and has caused no trouble whatever.
Mr. Reed said he did not know of any eables laid for railroad purposes without the lead sheath except a little a long time ago in Washington and Brooklyu. Lead is used prineipally on rubber corered cable for mechanical protection. He did not see why a protection eannot be obtained with a proper wrapping of either cotton, or in the shape of braid, or a wrapping of jute if it should be saturated with some preservative componnd.

Mr. Ayres doubted the value of catenary eomstruction. 11 seemed to him to introduce more hard points to be hammered by the trolley wheel or bow, bat if used, a steel conduetor, as on the New Haren, is better than eopper. He favored a sliding contact of iron against iron, and an auxilliary conductor looped over an uppor horizontal messenger, as in some European catenary work

lead sheathed cables

A disenssion then followed on the subject of lead sheathed cables, in which Mir. Windsor, Mr. Thomas, Mr. Reel and Mr. Heyward joined.
Mr. Windsor said his reason for objecting to a eable with a lead sheath was that in case of a bad short on a cable the trouble did not stop there. Other cables were afferted, sometimes at the same time, but generally a few days or even weeks later.

Secretary Corning satid that to guard against such eases of delayed burn-out they had instituted the practice of cutting the lead sheath in each manhole, taking a ring out of the sheath about $1 / 4-$ iu. Wide and filling the space in with rubber tape, and heating it. This makes what is ealled a rubber joint at that point. The sheath is made continuons again by a short eopper wire around the juint to take care of the return eurrent on the sheath, so that if the cable burns out the small wire is fused. This limits the bad section, and naturally prevents a heavy flow of eurrent to adjacent eables.

Mr. Palmer believed that if the lead sheath could be dme a) Way with, a great many of the troubles on fecters would be avoided. Lead is gencrally thought necessary, however, to maintan the integrity of the insolation, putienlorly where satmated paper is used for insmation. He s.id that eanbric rable is being employed more extensively than perhaps some of the members of the assocition are aware. A number of large orders for this cable have been placed lately:

HEIGH'S OE TROLLEY WIRE

A discussion then followed on the height of trolley wire. Mr. Kelsay sath his extremes were 14 and 22 ft .

Mr. Heyward thought a State law which regured that the wire be maintained at 22 ft , at the erossings. introduced an dement of danger rather than eliminated one, as the pole is liable to come off the wire. He did not see why a trolley wire need be any higher than the clearance allowed under a bridere.

Others expressed the same opinion.
Mr. Minger moved that the paper be aecepted and the committee given a rote of thanks. The motion was seconded and carried.

The meeting then adjonmed mutil $9: 30$ a.m. Friday

Aceording to the "Electrical Engineer"' the London and North-Western Railway has been conducting some experiments with regard to the electric lighting of trains. In the ease of five trains (amounting to 20 coaches with 480 eells) which run between Euston and Wolverhampton on day and night services, and on which the coathes are ahways lighted owning to seseral tumels, not one cell had to be removed from the batteries during the twelve months that the cells were in nse. Stone's sistem was in nise. Lead-ar-noured rable is gencrally used for all the underneath and roof work. The mains on the roof are usually outside all covering, and tappings made to the compartments through junction boxes, which are filled in with bitumen. The lamps are fixed singly in the roof in different positions, or else in brackets at the baek of the seats, so as to get maximum light to the part Where the traveller sits. Carbon-filament lamps have been used of 8 candle-power, 10 candle-power, and 12 eandlepower. These are of special strength, and little trouble is caused by broken filaments. Recently Osram lamps have been introduced for the purpose with marked suceess. For dining, sleeping, and other special saloons, distributing swithboards are nsed, giving control over the various compartments. On "corridor" coaches switehes are fixed in the end of the coach, whieh ean be operated inside the eorridor by a train attendant when traveling, or from ontside by the station staff. A "non-eoridor"' vehicle is fitted with a switch at the end of the coach, which is operate with a bar from either side of the vehicle, similar to the method of turning "on" and "olf" gascocks. When the storage eells of railway coach electric lighting plant fail, their elinef defeets are found to be: short-circuiting of plates, due to pieces of paste falling away; abmormally sulphated, eaused byy over-discharging and buckled plates from overcharging; and leakage to the lead lining of the eases.

According to the "Electrician'" the Interlaken-Lanter-brunnen-Wengern Alp-Grindelwald rack-and-pinion railway, which is at present worked by steam, is in process of conrersion to clectrie traction, and it is stated that the sistem to be adopted is the orerlead trolley with cominuons emrrent. The line is abont 15 miles long and rises to a height of $6 \pi 00$ feet above sea level. The conversion to electrical working is being made largely with a wiew to fuel cenomy, since ample water 1 wwer is available for the generation of electrical power.

The amateur theatrieals of the Brooklyn Rapid Transit Company's employees held at the East New Fork clubhouse form the subject of an interesting article in the "New York Press" of Oct. 11.

TRAFFIC AND TRANSPORTATION ASSOCIATIONWEDNESDAY

President Allen in the chair, called for a discussion on the carrying of U. S. mail.

General Harries, of Washington, said he felt very strongly like congratulating Boston upon its philanthropy in dealing with the government.

In common with all railroads the post office administration desires to drive a good bargain with respect to mail service; to get an improved service for, if possible, a lesser amount than was expended on wagon service. In the post-office eye, steam and elcetric service were precisely alike. There was no distinction above a 20 -mile line between an electric carricr and the steam carrier; and the only distinction below the 20 -mile road was, that the electric carriers received even less than the steam.

There was but one mail car rumning in Washington and that was not operated by any of General Harries' companies.

Action by Congress would not be taken so long as companies could be found that would carry mail at the existing rates. The responsibility for the present situation was on the carrier who insisted on doing business without profit. The situation would never be bettered so long as companies accepted contracts that did not pay. There never could be any reason why the government should not pay as a customer.
M_{1}. Hippee said that his company, the Des Moines City Railway, carried U. S. mail in pouches, and also carried mail boxes on the cars. The mail carriers also were carried and the road was paid for all it did. The mail carriers' fare was at about the same rate that anybody else paid on the cars. The government bonght transportation for them. A theoretical appropriation was made by the Postmaster every year, and when that was used up the postmen walked. The last Congress made an appropriation that paid for the mail boxes. Every car in Des Moines was equipped with two mail boxes, and carried and colleeted U. S. mail. It is taken from the cars at the main station by the govermment mail carricrs. Pouch mail was earried to the sulb-stations and to the East city. It was put on the cars by the representative of the post office department and taken off by the post office, and the company has an understanding with the postmaster that a car shall carry say three or four ponches, no more than that, thrown on the front platform, and on the road does not allow passengers to ride on the front platform. If there is an extra heavy lot of mail it is divided among the different cars.

Arthur Prady (Anderson, Ind.), said that his company (the Indiana Trion Traction Company) had had no experience in the handling of mail on city lines; but that it had had a limited experience in handling mail on interurban lines.

He had found that if they extended the service, no matter whether the amount of mail carried was double and the responsibility was increased to that extent, yet they received nothing for the adritional service that would be rendered.
D. A. Hegarty (little Rock, Ark.) said his eompany handled mail from the depot to the post office in bulk. The only advantage he could see in handling U. S. mail was the protection given in the case of strikes.

Mr. Ross said that the Montreal Street Railway had had no experience with handling mail.

Mr. Hile, of Boston spoke as follows:
It would appear from what General Harries has said that the burden of proof falls on the Boston Elevated, from the
fact that we are doing a great deal of business. In studying this subject, I was surprised at the general lack of unity in what ought to be done, and in the feeling towards this matter. There is a large amonnt of sentimental feeling as to its value, some, perhaps, in the benefit that would accrme to the community in doing something that benefits everybody, and a great many others on the advantage that might acerue in case of labor troubles. I rather observed that those who had labor troubles could see no value; those who had not, did think there might be some value, and my observation and eonclusion was that that was absolutely a sentimental idea, and it perhaps was the fundamental idea that made the railroad go wrong in the start-off in this business. Now, as to what conld be done: Taking our own case, our road has all along seriously thought-and it is a big institution in the community and undoubtedly means considerable disadvantage and ineommoding of the people, and it is persistently hoped that we might be also able to have convinced the post office people that reasonable renumeration could be given by the government, and that the roads could continue to give this service, which is undoubtedly a great advantage to a community.

As brought ont here, the carrying of the mail is considered in some cases an operation without any additional cost. That may be an accommodation to the community but, so long as the roads view that proposition as we are doing it, it is a help; but it is wrong-your business is to sell transportation, and there are a great many roads doing that which are entirely indifferent to the question. There again is where the railroads do not seem to get together and impress their feelings upon the post office people of what they have a right to have, and it seems to me there is a reneral lack of getting together in the investigations that are going on. I believe there is an investigation now under way on this subject of trying to get at what is reasonable compensation, and the problem will come up, I presume, at the next session of the legislature. All the reports in reply to my inquiries, which I went over, of the different railroads, gave me the impression that a large burden rests with the railroads to get together.

James Anderson, Sandwich, Windsor \& Amherstburg Railway, speakine of conditions in Canada, said that the post office department was operated at a profit. In the Trited States the postal department was operated at a loss. The postal department in the United States was perhaps a little more economical than in Canada. He was perfeetly satisfied that in Canada the postal department was prepared to pay a fair price for good service. His arrangement with the post office department was very satisfactory.
A. L. Eastman then read the report of the committee on Freight and Express. The report was supplemented, before the discussion, by a paper entitled: "Progress to Date in Carrying Freight and Express Matter by Eleetrie RoadsSome Mistakes That Have Been Made, and Their Remedy," by C. V. Wood. As Mr. Wood had been ealled away from the convention, the report was read by G. W. Parker.
[This paper is printed elsewhere in this issue.-Eds.]
The president called for a discussion on the subject of Freight and Express. F. H. Hyman, Cleveland, thought that the question of freight and express was entirely one of local conditions, depending wholly upon the territory through which the electric line ran. Advoeates of express business had always maintained that there is no money in the freight business; that the rates were too low and that the roads had to earry too much tonnage to make any monev. Exponents of the freight situation, on the other hand, said that although the express rates were high, that the delivery serviee was expensive, and that the delivery service itself ate up a great deal of the price. Mr. Ityman felt that either the freight or the express bnsiness, but not both, eould be made to earn monev.
He thought that a line running through a very populous territory with large cities for terminals, or that served a territory that had a large number of manufaeturing towns
along the roal, should have an exdusive express business with a delivery. The express rate in most cases is about 300 per cent higher than the freight rate, and when one got that rate he could certainly afford to pay a little more for the wagon service in order to get the inereased rate.

The nain thing, after deciding whether the business was freight or express, was to charge against earnings of cither freight or express the actual expenses incurred in earrying that freight or express. For some years past very few roads had eharged any of the legitimate expenses-or very few of them-against the earnings. There ought to be separate rouchers or a separate company, so that the owners might know just exactly what the eamings were. Until that was done, it would be a serions question whether any of the roads would know if they were making money.

Mr. Ilyman thonght that a road that operated freight would find it very adrantageons to enter into a eoutract with some old line express company on a pereentage basis of the gross receipts for carrying express.

An old line express company, operating on a line, would not confliet with freight earried at the same rate as by steam railroads. If a contract is entered into with old line express companies, he suggested that a minimum amount per year or per month be inserted into the contract. There is usually no objection, in fact it is often an advantage, to make a contract with an old line express company for carrying on a tonnage basis the shipments on that line-prohibiting the express company, however, from doing any local business which would conflicf with the package freight basiness. There is an agreement among express companies dividing the business at the point of origin. The business they obtain for 10,000 or 15,000 offices through the contract with the electric line more than repays them for the amounts they pay out.
B. E. Wilson (Rochester Railway Company) said that in general the basis of rates or the arrangement by which an electrie company should handle express is entirely loeal. If a road has terminal facilities such that it can handle ear load lots; if it has sidings that will hold trains of four and five cars, then only car load business is practicable, and should be figured on; but where a road has only short sidings and is not allowed to move ordinary bor cars into a eity, it is out of the question to consider ear load business. The Roehester \& Eastern Rapid Railway, and the Rochester \& Sodus Bay Rapid Railway do not do any strictly freight business. Their business is divided into Class A and Class B express. Class 1 includes piek up and delivery in Rochester and outlying villages; Class B is equivalent to the ordinary straight freight of other companies. Rates are considerably higher than the parallel steam road rates to the same stations. There is a demand on the part of the merehants in the towns reached by these electrie lines, however, to patronize the trolley roads, for the reason that they ean get quieker service by express, and they are willing to pay a higher rate for that service. The Rochester \& Eastern Rapid Railway formerly handled forcign cars at two interchange stations. Some time ago it withdrew from that business, berause the company did not wish to be under the juristiction of the Interstate Commerce Commission.
H. A. Nicholl (Indiana Union 'Traction Company), said that the recommentations made in the report of the Committee on Freight and Express coincided closely with his ideas and resembled the inetlods atopted on his line. The company handles gencral merchandise in less than carlond lots and in very few instances handled carloads of horses, live stock, ete. All of the freight cars are operated as extra trains. No attempt is made to schertule these trains. Dinst
of the freight trains are operated at mght so as to avoid congestion of the road during the business hours of the day. At the larger ferminals the company has its own freight houses, with ample side tracks in charge of sataried freight agents; at the smaller stations the freight and passenger business were handled jointly. The freight department is well organized, with a genetal freight agent and two division freight agents. These men not only solicit business. but take care of the filing of tariffs and have general oversight over the whole freight business. There is no interchange of freight with the steam roads, but such interrhange is made with electric roads, and in some instances through trains are operated over other clectrie lines. The earnings per car per day average about $\$ 60$. The freight business represents 8 per cent of the gross receipts. To the freight account is charged about erery conceivable expense that is thought to belong to the freight departinent. The company operates also what is termed a merchants' dispatch, which resembles the express businuss on most lines. For this service the charge is one and onc-half times the first-class freeight rate. No delivery business is done. It was felt that the express business can be operated jointly with the freight traffie. One does not interfere with the other in the least, as all the express is handled from passenger cars. A proper contract with an old line express company might be more profitable than the direct handing of the espress matter, but such a contract would have to be made according to conditions that eould be negotiated with the express companies, and he did not know whether it would be better to handle express in this way on the basis of perrentage of receipts or by tomnage.
Mr. Hile asked whether in charging against the freight account a percentage on the power plant investment was included.
Mr. Nicholl satid the cost of the power was eharged, in.t the cost of the investment.
P. P. Crafts (Iow:a \& Illinois Railway), said that his company has a contract with the American Express Company on a tomnage basis, to haul all of the express originating on the Chicagn \& Northwestern Railway and billed via Clinton throngh to Dasenport, Rock Island and Moline, but the American Express Company is not permitted to do any local business between the terminals of the electrie road. A eompensation of 20 cents pee hundred pounds earried is paid. He would not advise any road having the same conditions to enter into a contract of that charaeter again, because the railway ambany does not receive sufficiout compensation for handing such articles as are earried in the messengers' safes, nor for curreney handled. The express companies usually get a very high rate for such commoditics. He thought a pereentage rate would be more satisfactory. There is one feature in keeping the old line express company from doing local business over the electrie lines that he is trying to eliminate. If an American Express driver calls at some place in Davemport to receive a package for Now York City, there may be also a package at that place for Clinton. The driver camot accept that package fon Clinton and the shipper may refuse to send either package by the American Express Company, He is now endeavoring to make an arangement with the Imerican Expess Company by which if will be permitted to handle local shipments to any point on the I. \& T., but must pay the same rate as is received for any other haul of the saine mileage. His freight rates are based on the Iowal distane tariff and elassifications.

His company handles about 31031 (an loads of 1 c. c. 1 .
freight per day, abont 30 per cent. of which is local, the balance being through shipments, which go West on the Chicago \& Northwestern from Clinton. It has no carload lot interchange arrangement with the steam road and has always received a rebuff whenever that matter has been brought up. The electric road ean give a quicker delivery than any other road out of Davemport to points on the Northwestern, and mbell of its tomage is secured on the hasis of time alone. On l. c. l. interline freight the cleetric rood receeves 80 per eent. of the whole rate to proints within the State and straight division of through local rates to points outside the State. This is a very prolitable business, earning, with the American Express incone, neanly $\$ 20,000$ per year. Deducting from that all operating expenses, charging in porer, track maintenance, car maintenance, and 3 per cent, of the gross freight earmings for accidents and damages; and also including a proportion which is paid to the city railway company for the privilege of operating ower its tracks: the net income is $\$ 9,500$.

To accomodate a shipper who is in a hury, his company takes whatever wan be handted on any passenger coach. Each motor coach has a small baggage room about a ft. long, but baggage invariably takes precedence even over American Express matter. The motor handles all of the local moniness, piek up and delivery. A trailer car attached to a passenger coach, landles nothing but throngh business. Me believed, in conclusion, that any line built on a private right of way, which has a profitable passenger busimess, can operate a freight business or an express business at a profit.
J. II. P'ardee (J. G. White \& Cos, New York City), reforred to a point brought out in the report of the committes on freight and express of the Street Railway Assoriation of the State of Now York, that it was absolutely impossibl. to olbain a miform rate all over even one State which would be fair and equitable to all

IT. F. Ross (Montreal Street R-blway) asked for information on restrictions which eities plese on handing freiont, and whether any companies pay a tax or percentage en their carmings?
C. W. Parker (Detroit United) expland the conditions in Detreit, which are very peculiar. When the present syetem of rales was inangurated in Delroit, an ordinance was enacted for the operation of cars in and ont of the dity which required (1) that no cars otber than these si inilar to passenger caus can be operated; (2) that cars canbot be spratated going in the same direction, exeepting one every two hous; (3) for every car moming into and out of Detroit, the company is compelled to pas a tax of 50 eonts or $\$ 1$ per ear per romul trip. The two-hour schednle requirement is up to 8 orlock pron., after which time ears can be oppated at any interval. The fine for violating the ordinane is $\$ 250$ for each offence.

Mr. Potter (Seatle Electric Railway Commany) leseribeal the opration of cars between seatle and Tacoma. Under the monge of the State authorities this line is the sme as a stean roat, and the tariffs and the regulations are identically the same as for steam roads. In Seatile, which is distinctly a city system, his company operates individual freight ears. Certain commodities classified as first, second, third and fourth class, are handled under a varying tariff from station to station. The company does not do any delivery. Freight is delivered to it at terminals; and it is delivered at terminals or at stations or platforms alone the line which the shippers provide. It also does considerable car load basiness between

7 p.m. and 6 a.m, In addition to that it does a switching service from the yards of the various steam lines entering Seatile to sidings which are provided by the shipper. That is done at a nominal price per car. The argument advanced at the begimning of the disenssion is particularly applicable in the case of this company. The rates received are wholly determined by the peculiar conditions in Seattle. Express business, that is, receiving the goods of the consignee and delivering them to the consignor has not been entered into. The policy has been to encourage every one to bring the goods to the terminals.

"the possibilittes of a well conducted publicity department"

A. W. Warnock (Twin City Rapid Transit Company) opened the discussion on "The Possibilities of a Well Conducted Publicity Department," referring to the relations of clectrir street and interurban railways to the public press. He thought that too much emphasis cannot be placed on the need for cordial relations to be established between public service corporations and the daily press. The clamor for cleap rates is in the air; the muck-raker is abroad. The muck-raker" is only the illegitinate child of the "public-bedamned" policy. That policy is not common today. The newsymper men, too often, have been abased or have been patronized; there has been too much evasion of facts. The spirit of today is to be perfectly frank and confidential. Too much stress camot be laid upon the point that the most friemdly relations shonld always be established with the press.

The man to represent the company in dealing with the press should be constituted to properly represent his company as far as the press is concerned, should be a man of character, a man of ability and a man of diplomacy. Sueh men do not come to the office and fill out application blanks. They are men who can enjoy and who get good salaries. They are now in the motormen class; and usually they have come from a long traning in the newspaper field. A newspaper man has a supreme contmopt for a snob, and very little respect for the so-called great man. He does not tremble in his shoes before a millionaire any more than he trembles in his shoes betore the begear on the streat. He is usually a grool jurge of people. The inclination has been in the past to patronize the reporter. The publicity man cannot patronize him today, or think he can be bought off with a five-cent digar.

A publicity man shou'd be an editorial agent. The average of crating man does not know the value of words. The werage newspaper man handes words the way a carpenter handles mails.

Charles E. Flagg of the department of publicity of the Inland Empire Sistem of Spokane, then read the first paper on the subjeet of Publicity. This will be found in another column. He was followed by J. H. Pardee, who read the paper prepared by B. R. Stephens, general traffic manager, Illinois Traction System.

Vice-President Warnock, then announced that the other papers on the program would be read Thursday morning begiming at 9.30 o'clock.

The appointment of a nominating committee, consisting of R. E. Hunt (Chairman), Utah Light \& Railway Co., Salt Lake City, Utalı; C. D. Emmons, Fort Wayne \& Wabash Valley Railway Co., Fort Wayne, Indiana; R. E. Danfortl, Public Service Railway Co., Newark, N. J., was announced, after which the meeting adjourned mitil Thursday morning at 9.30.

ORGANIZATION OF THE ACCOUNTING DEPARTMENT OF AN ELECTRIC RAILWAY AND LIGHT COMPANY*

By A. R. PATTERSON, AUDITNG DEPABTMENT, STONE \& WEDSTER management assoclation, boston, mass.

Throngl my connedion with the anditing department of the Stone of Wehster Management Assaciation, an assoeiation which has the general managenent of electric light, power and railway companies of varling sizes, in differemt parts of the comitry, it has been possible for me to chonse, for the purposes of this paper, a company which, in my judgment, reflects the regurements of the grealest number.

A brief outline of the company to be treated with is as follows:
Ammal gross earnings, railway department. $\$ 450,000.00$ Ammal gross earnings, light aid power department 351),000.00

Total annual gross earnings
$. \$ 800,000.00$
Population served $\quad 70,000$
Miles of sing!e track
「0,000
Cars operated
Light and power eustomers.
4,000
Number of employees 300
Length of time company has operated.
10 years
The man in active charge of the acounting department is herein given the title of assistant treasurer, in recognition of the fact that the freasu*e is usually a man of larger responsibilities in the financial world, and in addition to his interest in the railway and light company, is probably identified with other enterprises in the city, and, therefore, can give little time to detail work. With this explanation, the following plan of organization is submitted, the figures representing the monthly rate of salary:
Assistant treasurer $\$ 200.00$
Chief clerk 100.00
Storekeeper 45.00
Line order and billing clerk, light and power de- partment 75.00
Customers' ledger clerk, light and power department. 75.00
Two collect
One at 75.00
One at 6.5 .00
Voucher and payroll clerk 70.00
Two meter readers, each. 6.5 .00
Cashuer, ${ }^{\text {n'ht and power dep }}$
Conductors' hip-sheet clerk 80.00
Railway ershier. 60.00
Car rewister reader, etc. ..
Transfer and ticket checker. 30.00
Stenographer 55.00
15.00
Office boy

A summary of the above office force will give at total payroll of $\$ 1,289$ a month, a tritte under 2 per cent of the gross carnings.

Ilaving given tifles to the varions offecemployees, it is now in order to describe the principal work allotted to each one.

ASSISTANT TREASURER

A salary of $\$ 200$ per montly should attract a man whose make-up should inclute the following quatifications; Integrity, respectability, cordiality, ability to intelligently onen up or close a general set of books, espectially in connection with a consolidation or reorgalization of companies; impartial trealment of capable elerlss and a desire to apply

[^0]civil service rules, encouraging each clerk, in a proper way, to learn the work of the man next above lim. To do this, the assistant treasurer must educate each man to voluntarily come do lim for other worts when his regnlar duties are done, and cach clerk should be made to see the advantage to be gained by gladly underdaking any line of work which he may be asked to do, whelher his regular work may be fimished or not.

Sucli an assistant treasurer should command the respect of all, especially the general manager. Hearty co-operation between these officials is frequently the means of bringing about incrases in earnings and reductions in expenditures. Conferences cuterd into, in the right spirit, between the general manager and the assistant treasurer become a habit. Then it is easy to atrange for conferences at stated periods, say twice each week, or more frequently, if neeessary. It such times the assistant treasurer will give the results of his studies along the following principal lines:
Comparison of daily annlysis of rallway earnings. This will sometimes furnish a barometer indicating a leakage on certain rontes to which two or more conductors are assigued. Sometimes, through a transfer of men on a certain run, a new man turns in each day several dollars more than the ald man, or possibly several dollars less. The comparison is of interest either way.

In the eustomers' ledger it may be noticed that certain large light or power customers show decreases in their monthly charge. This may be altributable to meters rumning slow.

In the miscellancous accounts receivable ledger it may be noted that no bill has been made against the junk man for two or three months. Possibly the scrap copper, brass, etc., may have got into the wrong channel .

An examination of supplies issued or returned slips may reveal the fact that too many car brasses are being used, or that linemen are taking out a supply of copper wire and not accounting for the unused portion.

In approving vouchers, the attached invoices may suggest extravagant methods of purchasing, either through buying at exorbitant prices, or in quantities too large or too small. The assistant treasurer should realize, possibly more than any official, that his approval is not a mere formality; neither should prior approvals reliese him of his sense of responsibility. His signature in his official capacity means dollars to the company, even though checks and vouchers require a countersignature.
The right assistant treasurer can, without assuming a disagreeable manner, guestion the merit of any bill which may have been approved for payment by the general manacer.

A study of the cash book and careful estimate of the receipts and expenditures may indicate that there will not be enorgh money on hand two or three menths hence to mee! bond interest, a dividend or a mote if the companas s^{2}
 paid, not with the simple idea of grlling them rut of the way, but with the phitusoply of taking the fill lenoth of caedit due the empany. Aftere considering thense iuvalving a cash cliscount, thase rangiug from $\$ 10$ (o) \$jo cach can be disposed of. The comparative few that are left can be given mone mature consideration.

The assistant treasure can also make himself more valuable to the general manager by elosely following the monthly results of operation. To do this it is essential that he should make the postings to the general ledger. ITe should also prepare the first copy of the monthly financial
report. This monthly report should show, among other things, the following:

Earnings and expenses, monthly and cumulative, current year and previous year, segregated according to standard alassification.

Balance sheet, current month and previous month.
Condensed statement of cash receipts and disbursements.
Detail of suspense and accrual accounts.
Brief remarks relating to abnormal increases and deereases in earnings and expenses.

Detail, by requisition number, of charges to property account. (No charges may be made to property account unless supported by an approved requisition, authorizing the expenditure.

The finished preliminary report furnishes food for *hought for both the assistant treasurer and the general manager, and after the general manager has listened to the assistant treasurer's intelligent explanations of increases and decreases in the various accounts, he is encouraged to talk about the interesting events which have ocurred in the perating department for the month.
The conference ends with the two officials made mentally stronger and of greater value to the company, through *his matual exchange of knowledge.

Hefore leaving the subject of finameial report it might be well to state that with the information suggested above, the financial report has all the elements of a trial balance, and the assistant treasurer can determine from the figmes which the has entered upon it whether or not his general ledger is in balance. The accounts in the general ledger, incidentally, should be opened up practically in the same order as they appear in the financial report.

It seems more logical, in treating with the other members of the force, to recognize the work from its inception to its completion, and with that idea in mind we will take up, first, the
line order and billing clerk, light and power
The principal duties of this clerk are as follows:
Daily recording, on customers' cards, of "cut-in" and "cut-out" advices received from the contract department.
The advices should be progressively numbered in two series, one for "cut-ins" and the other for "cut-onts," in order that missing advices may be readily located.

The eustomers' cards should be of different colors to represent the various classes of service; such as power, light, fans, etc., and so ruled as to provide for the following information: Customer's name and address; ledger reference number; type of meter, with adequate space for dates of, say, six possible changes of meters. The remaining space is allotted to cumulative monthly readings, net readings, rate and gross amount of bill for a period of 12 months. The back of the card may be printed in a similar manner, thus giving a life of two years.

This clerk also enters, on these same cards, meter readings received from the meter readers and the consequent computations representing the charge against the customer.

It may be well to state that another set of cards is on file in the contract department, giving such information as connected load, class of business, date of "cut-in," life of contract, etc.

The balance of the line-order clerk's time, under normal conditions, is devoted to the making of customers' bills.

METER READERS

The title is self-explanatory, and with the daily reading system, two men would be occupied with 4000 customers.

We are experimenting in one of our gas companies with a patent system for the reading of meters, arranged by the Albree Self-Figuring System Company, of Boston, Mass., whose business it is to eliminate detail figuring and recopying of figures in mills, factories, etc., obtaining immediate results by the punching of patented cards, etc.
The system, as arranged, consists of a meter card which records the rarious readings of the meter in connection with a folded bill made up of three parts; the bill proper, the cashier's compon and the auditor's coupon. The bill and the meter card are addressed by machine. The meter card is placed in a certain position on the bill and a hole punched on a number corresponging to the reading of the meter. The punch is provided witl a small battery lamp. The auditor's comon is then detached and returned, with the meter card, to the office for record and information, where it is possible to arrange it into a card-ledger system.

The charge for electricity or gas used, and also the charge less the cash discount, and the number of kilowatts or number of feet consumed having been automatically figured and recorded on the bill, it is handed to the consumer.
One man has read in one day 200 gas meters, and, in addition, collected 25 per cent of these bills.

By this system the bill reaches the consumer at the time of the meter reading: it saves all copring of readings; it figures the amounts and sares all expense in the delivery of bill to consumer.
This is simply an outline. The Albree Company would undoubtedly be pleased to answer letters from interested parties asking for full details.

CUSTOMERS' LEDGER CLERK

The 4000 eustomers are taken care of in two bound ledgers, with sufficient capacity to take care of development during the life of, say, 18 months. Each page is ruled for 30 customers, and so interleaved as to cover a period of 18 months. Columns ire provided for power, light, cash payments, rebates, etc.

The ledger clerk makes the original entry from the customer's bill, which has been figured twice. The entry is then checked against the entry made by the line-order clerk on the customer's card.
This clerk is also responsible for keeping the customers ${ }^{\circ}$ ledgers in balance with the balance account in the general ledger. For this purpose a recapitulation book, made from spare leaves provided for at the time of ordering the ledgers, is used for taking off ledger page totals each month to obviate the necessity of cumulative totals in the ledgers.

The rest of the ledger clerk's time is spent each month in preparing a delinquent list and in studying the condition of all unpaid accounts.

It is a good plan to arrange for opening up new ledgers at some time other than the close of the fiscal or calendar year, in order that the task of transferring may not come with a congestion of other work. Of course, by the use of loose-leaf ledgers the work of transferring is materially reduced. There are many advantages in connection with loose-leaf ledgers, and some disadvantages. For the purpose of this article, however, the bound book was selected.

CASHIER, LIGHTING DEPARTMENT
Having selected for this important position a person with the necessary qualifications, such as integrity, courtesy, etc., it is well to have him fully understand that the company is charging for something which it has really delivered to the customer. From some points of view current
is so intangible that an inexperienced rashier is ready to agree with a enstomer when he tells him the bill is not right, as the method of preparing it is as much of a myth to him as it is to the customer. If the cashier can only muderstand that current equals plant investment plus salaries, labor and material, he is better equipped to hamdle the arerage minor eomplaints which are brought to him. The more serious eases should be reforred to the contract department for adjustment.

For this reason it is wise to have the cashier's cage near the contract department and away from the rest of the office foree, and on the street floor, if possible.

The eashier records his collections in a subsidiary eash book, properly ruled to show eash reerived and discounts allowed, the daily totals being transferred to the general cash book. Rebates and discomnts other than for prompt payment should be recorded in a separate book, the reasons for the allowance being entered against eath item. The journal entry at the elose of the month can be more intelligently approved if it is supported br such a reeord.

The cashier should have some spare time, which can be devoted to odd jobs, sueh as figuring payrolls, inroices, ete.

COLLECTORS

Light Department.-The assistant treasurer, with the aid of his delinquent list, ean map ont each day the more inportant calls to be made by the collectors the following day. The collectors should be required to make a notation against eaeh item on these lists furnisherl them by the assistant treasurer, concerning the altitule of the delinquents in the event of non-eollection.

The collector will be given to understand that he must use his own good jurgment in his dails work: that is, if he feels that he ean collect an account not on the list he should understand that he has the authority to do it, providing it does not eonflict with the work of another employee.

Meter Department.-The employees of this department were not ineluded in this organization as ther report to the operating department. There is a close relation to the aceounting department, however, due to the fact that the meter department keeps the meter history cards which deseribe the style, size, constant, company number, date of last test and location of every meter owned by the company. These eards should be aecessible at all times to the assistant treasurer, in order that he may compare with his own records, to verify constants, ete., and to see that meter tests are made with reasonable frequeney, especially in eonnection with large power customers. In line with this eheek there should also be considered the advisability of a yearly eheck of the eompany's eomncetcel load; the result to be compared with the customers' cards, that reasonable assurance may be had that all parties connected to the company's lines are being eharged for the enrent used.

CASHIER, RAILWAY DEPARTMENT

This man is stationed at the car barn and acts in the dual eapacity of cashier and night barn foreman.
The conductors turn in their casle colleetions to this man, together with a deposit slip. The money is coonted and ehecked against the deposit slip, in the conductor's presence.

During the quieter hours of the night the cashier prepares a statement of his receipts and also gets the cash into shape for bank deposit. Everything is enclosed in a locked hox and taken to the assistant treasurer each morn-
ing, together with another locked box containing trip, sheets and transfers. The eashier does mot have access for the trip slieets.

TRIP-SheET CLERK

The tirst work of this cletk each day comsists of a superficial examination of the trip sheets and the preparation of a statement showing the eash collections. This statement is referved to the assistant treasurer, who emmpares it with the statement thrned in bey the ralway casher. The differences are peminter out to the trip-sheet clerk who adjust throngh the medium of an over and short fund. These adjustments are the basis of the first entries on the daily wer and short report.

The railway cash is now ready for depsil, together with the lighting department collections for the previons day. Thes daily deposit, as reflected by the bank passbook, should be in agreement with the total collections as shown by the general cash book. To accomplish this the assistant treanurer should have a petty cash fund of from $\$ 200$ to $\$ 500$ for the payment of trivial charges against the company. Invoices in excess of $\$ 2$ or $\$ 3$ shonld be paid by cherdi.

After the bank deposit has been made, the trip-sheet (lerk makes a complete audit of the trij) sheets, reconting differences on the orem-and-shme report and notifynue all eonductors affected concerning their errors. Daily adjustments by conductors should be insisted upon,

This clerk spends the balance of the day in proparine the analysis of railway earnings and the condensed daily report of earmings in comparison with the same day of the previous year. He also tabulates car mileage statistics, etc.

TICKET AND TRANSFER CLERK

The work of counting and checking transfers is all done by one girl, except at times when a complete eheck of transfers is made.

REGISTER READER

This man is located at the bam and prepares the dails list of register readings, and comnts and lists the number of envelopes containing transfers deposited each half trip by the conductors in the car boxes. He also does some work for the operating department.

The revenue braneh of this organization seems fairly mosy, and we, therefore, can give attention to the disbursing and general brauch.

STOREKEEPER AND ASSISTANT

In an organization diagram eovering the whole company there would be lines from the accounting department to the purelasing agent and store keeper, but the accounting deprartment does not have jurisdiction over the purchasing department, and sometimes no authority over the storekeeper. The advantages of giving the accounting department anthority over the storekeeper outweigh the objections. The storekeeper, by one interpretation, is a cashics who reeeives and issues converted dollars, and the assistant treasurer camot be said to hold a good receipt for the expenditure until he gets a supply issue receipt. properly signed, stating that the material has been nsed in operation or eonstruction.

So much diffieulty has been experienced in attempting to keep a proper record of supplies on hand that some officials have concluded that it is absolutely necessary to install an elaborate system of aecomating. Really the chief aim is to have a systematic and conscientious man in charge of the supplies, to whom the neeessity of having a well-arranged storeroom will appeal. Λ storeroom equipped with shelves
and bins for the reception of the several classes of supplies is one requirement, and it should be the duty of the storekeeper to certify all invoices for material received by him. The invoices should be stampod "Charge Stock, Approval No..........08.', The invoices are then returned to the accounting department and after the necessary approvals have been secured, are passed through the voncher register to the debit of supplies.

It the elase of the month the storekeeper should forward a statement to the assistant treasurer, giving the approval mumbers, names and amoments of all bills assumed by him, in order that the same may be checked, to determine whether ar not all bills have been received which have been thas approved. He will then be given eredit for the amoments of the numerous requisitions which he has honored from day to day, based on the invoice prices as shown by his price-list and the difference between the aggregate amount of the invoices and the requisitions should approximately represent the value of supplies on hand.

In order that there may be no great disparity between the book value and the actual value of material on hand, periodical inventories, superintended by the assistant treasurer, should be made.

If it does not seem wise to refer the invoices to the storekeeper, a special blank could be sabstituted for his use and the pricing done in the accomting department.

It is rare to find a man capable of issaing supplies in a thoroughly intelligent manner and at the same time competent to keep a complieated system of stock accounts. If a storekeepr is capable and anxious to adopt an accounting system it might be advisable to allow him to do it, but under ordinary circumstances the accounting system, such as cards, should be limited to a few classes of material.

voUCHER AND PAYROLL CLERK

This man makes up and classifies all the vouchers from information appearing on the invoices. (The company would average about 1.50 rouchers each month.)

He also prepares and later classifies the payrolls for all employees, excepting the general-office payroll, and devotes the balance of his time to classifying stock issue and return slips, which are turned in by the storekeeper.

Stenographer

Letter writing, filing correspondence, statement work and balance of time on clerical work.

OFEICE BOE

Scting up names and addresses on addressing machine for customers bills, ruming crrands and other duties of this general nature.

CHIEF CLERK

The chiof elerk has been mentioned practically last, as the work of all s.mordinates is refered to hin, and having been persed upa bo him is, in hm, submitted to the assistant treasurer for final disexsition.

This man stould, of comse, have a complete knowledge of the detai! work of the office and spend a geo deal of this time in keepine in Lonch with the work of every man in the department, lemeng a hand where necessary and seeing that each day takes care of its fair share of the month's work, rather than postponing such things as elassification of stock slips until the last of the month, when time is sorely neaded in closing the accounts for the month.

The chief clerk should keep the general cash book, voucher register, miscellaneous accounts receivable ledger,
subsidiary construction ledger, and all miscellaneous journal cutries.
In connection with journal entries, it might be said that a good deal of work can be saved and uniformly secured, by the preparing of a blanket journal entry covering all the stereotyped entries for the month, such as gross earnings, bond interest, taxes, etc. The draft of this entry could be made by the stenographer, who wonld make four or more copies at one operation, thus furnishing material for as many months. Journal entries prepared on the typewriter usually contain more information than those written in longhand.

The chief clerk should be a man witl a suffeient ambition, and should be given the opportunity to fit himself for the position of assistant treasurer.

This sems to be a fairly complete summary of the prineipal work to be eared for by an acounting department of a combined railway and light company.
It is, of course, understood that practically all of the men mentioned should be bonded and their work subject to a periodical examination by an outside auditor.

CONVENTION PROGRAM FOR TO-DAY

Transportation and Traffic Association
 (Greek temple)

9:30 А. M. to $12: 30 \mathrm{P}$. M.

Paper-" "The Operation of Multiple Car Trains on Interurban Roads," by D. F. Carver, Receiver, Trenton \& New Brunswick Railroad Co., Trenton, N. J.
Report of Committee on Prssenger Traffic.
Report of Committec on Rules for City Operation.
General Business.
Report of Nominating Committee.
Election of Officers.
Installation of Officers.
Adjournment.

Accountants' Association

(aquaridur court hall) 9:30 A. M. to $12: 30 \mathrm{P}$. M.
Paper-"Interline Accomting of Intermban Railwars," by IV. II. Forse, Jr,, Secretary and Treasurer, Lıdiana Union Traction Company, Anderson, Ind.
Paper-"Accounting N'elhods of a Holding. Company." by P. S. Young, Comptroller, Public Service Railway Company, Newark, N. J.
Report of Committee on "Standard Classification of Acconnts and Form of Report."
Repart of Committec on "International Standard Form of Report:"
Appointment of Nominating Commiltee.

Eneineering Association

$$
9: 30 \mathrm{~A} . \mathrm{M} . \text { to } 12: 30 \mathrm{P} . \mathrm{M} .
$$

Inspection of Exhibils.
2:00 P. M. to 5:00 P. M.
Inspection of Exhibits.

American Association

(greek temple)
2:00 P. M. to 5:00 P. M. (Executive Session.)
Reports of Committees.
(a) Insurance.
(b) Welfare of Emplorees.
(c) N'micipal Oxnership and Public Relations.
(1) Nominations.

Election of Officers.
Installation of Olficers.
Resolutions.
Unfinished Business.
Adjournment.

PROGRESS TO DATE IN CARRYING FREIGHT AND EXPRESS MATTER BY ELECTRIC ROADS-SOME MISTAKES THAT HAVE BEEN MADE AND THEIR REMEDY*

bi c. v. WOOD, GENERAL FREIGLIT AND PASSENGER AGENT', NEW ENGLAND INVESTMENT \& SECURITY CO., BOSTON, MASS.

The electric railways have now before them the problem of mecting a demand for transportation facilities, which is simply one more step toward the advancement of civilization and the creation of increased facilities, an object that is ever present in some form or other.

Some years ago the strect railways answered this call in a feeble way, and we note its growth from the carriage of a small parcel of merchandise handed on to a car and ihrown off at some house or store, as verbally directed by the sender, to the various and variegated methods of the present time, some of which are verv good, others ill-conceived and badly executed.

TIIE TON MILE

No one can deny the lack of uniform action and unity of purpose in this line. Some of the roads follow steam xailroad freight practice, simply warehouse receipt and delivery; others, the system of old-line express companies, entailing horse and wagon pick-up and delivery; while in many cases there is a mixture of both plans operated on the same linc. Owing to the method of accounting, it is udifficult to analyze and arrive at an intelligent understanding of comparisons between different lines, the average gross earnings per car mile ranging from a ridiculously low figure to one abnormally high. Right here we should consider the value of the car mile as a unit of operating earnings and expenses. This is something that is subject to a great variey of modifying conditions, greatly limiting its uscfulness. Except for some few items of information we could abolish it as the unit. The capacity of cars used on some roads is totally unlike that of those used on others; in fact, few lines operate all cars of one standard; hence there can be practically nothing in common as between the car of one type and that of another. The ton mile unit, meaning one ton of freight moved one mile, is one that is probably as staple and uniform as anything we can use for the unit of freight transportation. This mit, however, requires close study and analysis to enable us to arrive at an intelligent understanding of results.
cosT
In the cost of freight transportation, the terminal handling being a fixed expense to the ton, it will apply as a decreasing expense to the ton milc, with each added mile of haul. Only so long as the volume of business remains the same can we estimate what proportion of the haul affects the expense values to the average ton mile. This terminal expense per ton mile will range from 5 to 50 per cent of the direct cost of moving a ton of freight one mile, in accordance with the length of haul. The cost for labor in handling merchandise and parcel freight is from 7 cents to 40 cents per ton, according to the conditions of labor, facilities, etc.

The question is often raised as to the possibilities of an clectric line handling frcight in an expensive car, with a train crew of two men to each car, constituting a train unit

[^1]of one car, as against stcam roads with a train unit of 25 to 50 ears, each of which represents a much smaller investment than the clectric car. In considering this phase of the question we should not overlook the fact that the steam railroad figures are given as a whole based on all the commodities handled, and that a certain proportion of their freight is high class, taking a rate much higher than that of the low class commodities, varving, of comrse, with the territory in which operated.

Taking as extreme examples, let us refer to the annual report of a steam railroad 600 miles in length in the Middle West; also one in the Eastern States, which shows as follows:

	Western P'er cent	EASTERN Per cent
Products of agriculture	2.42	6.50
Products of animals	0.33	1.00
Products of mines	70.36	2.30
Products of forests	1.90	10.00
Manufacturers	18.77	19.50
Merchandise	6.22	60.50

The Western grain earrying railroads will, of course, make an entirely different showing.
The first mentioned line operated in a zone of umsually low prevailing rates, the avcrage revenue received for each ton handled being 50 cents, and per ton mile, 5 mills; the second, $\$ 1.29$ for each ton haudled and $11 / 2$ cents per tor mile. At first glance one would say that, inasmuch as the first territory produced in comparison such a small percentage of commodities other than mine products, there would be no necessity or call for electric railway express and freight transportation. As a matter of fact, it is quite to the contrary, because it matters not so much what the local industries are, wherever man's activities create a business of any considerable volume the people are there to be fed, clothed and housed and their transportation needs are ever present. Electric railway carriage not only affects the present rail carriage, but goes still further in the opening of new territory herctofore not having access to modern means of transportation, replacing ancient horse and wagon haulage, which in importance can fairly be compared to the substitution of rail transportation for stage.

Bullctin No. 49 issued by the United States Dcpartment of Agriculture, showing the cost of hanling farm products to shipping points, gives a summary for the United States with the averages for 23 products ranging from 15 to 31 cents per ton mile.

A large percentage of this cost could be saved to the farmer by electric haulage, and still leave ample profit ou the transaction. Wherever this new high-speed, motordriven tool of business has been put into systematic usc, the wholesalers and retailers have not been slow in adjusting their business to the new conditions.

The lack of general interest and study on the part of financiers, as well as executive and general officers of street railways, is to be wondered at, in view of the great future before them. This, I would say, is the first of some mistakes that have been made. It has appeared to some to be an entirely new thing, impossible of analysis, with no beaten trail to follow, when, as a matter of fact, it is only a changed condition confronting us-another necessity to be supplied and an extcnded facility demanded. Some of the railways have recognized this, and have met the demand in the organization of a service which has been put upon a remuncrative basis. I will venture to say that in each case where this has been done with due diligence and intelli-
gently modeled, in so far ats is possible, on the system of older transportation companies, not only is a satisfactory business now being done, but the prospects for the future are bright. On the other hand, companies which have just permitted or suffered this kind of traffic cannot see anything in it. Imagine, if you can, one of our large commercial industries placing a certain line of their manufactured product in the hands of their employees, with the understanding that in case of an occasional demand for that particular article they were to dispose of it at a guess

Progress in Carrying Freight-Form No. 1, Shipping Receipt
rate, and ring it up on the register irresper tive of the cosi of manufacture, or what the commodity would bear. This is just what some of us have been doing and still contemplate continning.

Electric railways were conceived and constructed primarily for the handling of passenger business, but this is no reason why it should continue. It is often said that electric lines are not in a position to handle a large amount of freight business. This is true, if we use as a comparison the freight ratio of steam roads. However, we need never
out the comitry requires a more rapid handing. Heretofore this has been impossible, as the close margin between cost and selling price does not permit the high express charge necessary to insure this quick movement : hence slow freight has been a neressity.

THE QUESVION OF RATVS

In considering the rate question, it is, of course, well miderstood that all rates must be founded on economical laws, or what the article will bear: rates must be such as

M
ORGGINA.
M 190
DR. TO TIIE EUECTRIC EXPRESS CO.

Recerved payment 190
Progress in Carrying Freight-Form No. 3, Expre.s Bill as Rendered
to stimulate trade, as well as being generally remunerative to the carrier. We must not lose sight of the fact that the electric railways have already made their initial investment. The first thought is that every use served shonld be charged at once with an equal proportion of all the outlay, however remote. In securing this new traffic we must ir a sense go on the theory that every ton of fieight hanled. is so much money earned. Paradoxical as it may seem, this is largely true. Some of the money was spent long before the transaction. We have but to reimburse our-

Origigal	N0 19	THE ELECTFIC EXPRESS COMPANY.															
		WE:GHT	advance cmange	oun cmarge	Foial Charee-collect	PaEPalo		-comect									
		date	consionee														

Progress in Carrying Freight-Form No. 2, Small Way Bill

fear that the steam road ratio of freight to passenger will ever obtain on electric railways, as there is a large class of freight that, owing to the rates, etc., will always be handled on private right-of-way lines.

With certain exceptions, such as switching car loads, etc., and the straight steam railroad business conducted by a few electric lines, the electric railways should look principally to the carriage of the high-class commodities. A good percentage of the short-hanl merchandise distributed through-
selves for the direct cost of handling this particular business, which is a cost that would not otherwise have been incurred, and we are even on the transaction, and this cost being so small a part of the great bulk of the expense that our ratc can be very low before that point has been passed.

As to the question of express as against freight rates: The so-called old-line express companies could ill afford to maintain horse and wagon pick-up and delivery, even at their-
light rates, were their business purely local. This expense is minimized as to matio on aceomb of long hauls on which a large rate is obtained. As a matter of fact, the American Express Company, operating throughom a large part of the United States, pays out for operaling' expenses 97.5 cents for every 100 eents taken in, handing $\$ 1$ worth of business for 2.5 cents profit. Applying this to electric ralways, it
no - The Elicturc express company.
ABSTRACT OF WAY-Bills.

Progress in Carrying Freight--Form No. 4, Abstract of Way Bills Forwarded
would seem umprofitable to enter into this scheme of handling. Freight rates covering car transportation alone, while much lower than express rates, ordinarily show a better return. They bring ont the maximum volume, which it is improssible to do with high rates. Hence it is the difference between a full car as against an empty one at the same operating cost per car mile. It is probably unnecessary to show specific instances of this, as all of us have had access

THE ELECTRIC EXPRESS COMPANY remittances to treasurer

Receiving Tellel will, on receipt. acknowledge by officlal stamp in above space or note errots and return.
If Agent desiles to retain a copy of this remittance he should take a press copy.
Progress in Carrying Freight-F'orm No. 6, Remittance Slip
to detailed reports published in the railway journals, showing the splendid results of some of the companies on the Pacific Coast, in the North and Middle West, as well as the Hiastern States.

INTERCHANGE

Some day electric railways will be called on to handle an interchange bnsiness, not only between themselves, but with all others transacting public carriage. Should we not profit by the experience of steam railroads, in their many years of effort to perfect their carriage system, in substituting for a local billing, accounting and re-handling scheme the
through interchange idea? While there is a limit to which electric railways may go in this direction, I believe it to be far beyond anthing we have realized up to this time. Therefore, it cannot be ton strongly urged that at least a uniform basis be adopted by all electric lines, differing only insofar as it covers local conditions, and in this way, when the time comes for an enlarged and extended business all will not be
亏MTEMENT UF WAY-BILLS.

Progress in Carrying Freight-Form No. 5, Statement of Way Bills Received
chaos, as wonld be the case with conditions as existing to-day.

A few years ago I had come under my personal observa(ion a line that was handling a purely local express business, laving some 50 head of horses and many drivers and freight handlers, express cars, etc. Their business was being operated at a loss of approximately $\$ 300$ per day. The horses and wagons were disposed of and a straight freight business

THE ELECTRIC EXPRESS COMPANY
AGENT'S ERLANCE SHEET

I hereby certify that the above is a true statement of my aceount with The Electric Express Company. for the time specificd, as shown by the books of this station, and that the articles of freight mentioned in the arcompanying statement of
uncolfected bills are actually in my possessioa, or have been delivered to eonsignee only upon order of the Sumernetendent.

This report must be signed by the Agent pgusonaliz, and not by bis clerk or any other pernong agert. to the Auditor at close of businese解

Progress in Carrying Freight-Form No. 7, Agent's

 Balance Sheetinaugurated. In less than one year this company was earning at a rate of 18 per cent on the capital invested. The results on slightly higher than steam road freight rates were as follows:
Earnings car mile. 62.58 per cent
Lxpenses car mile. 53.57 per cent
Amount received per $100 \mathrm{lb}$.
Average cost. $12 . \overline{\text {. }}$ cents

Recertly, also, in a business that was being operated, as was the former, at a loss of $\$ 800$ to $\$ 1,000$ per month, the same action was taken as with the first mentioned, with the result that after the first 15 daris' operation as a straight

```
        c.0. wo. --
```

THE ELECTRIC EXPRESS COMPANY.

freight proposition a small net operating profit was shown; this has continued to increase, and the business is now on a substantial paying basis. In inaugurating an ordinary freight and express business on electric railways we should start at the very foundation, and, if found to be desirable

issued by

No cash th to be refurded whothout one of these receipts being taken and - duplicate thereof
reat to whe Auditor.
Agents must not make fefunds whithout taking up or endorsing the originsl peid fremght bill.

Progress in Carrying Freight-Form No. 9, Receipt for Charges Refunded

and profitable, take up side issues, such as store delivery, etc., letting this be an extension to the original groundwork.

> ORGANIZATION

When necessary, franchise rights must be secured, and, unfortunately for the business community, this is brought about frequently only after much delay and often "with much difficulty. However, public necessity and convenience are bringing about a right understanding of the subject, which should have its effect. The next step is to study the territory, its population by districts, and its needs, the
distribution of manufactured products (whether local or otherwise), the farmer and his requirements, also possible comnections and arrangements with other electric railways, boat lines and delivery men, all of which leads up to a

THE ELECTRIC EXPRISG fos.

Form No. 10. correct conception of the demand we are to undertake to satisfy.

The next in order is an operating arrangement, whether a separate organization or handled jointly with the other general business. Wherever a large system exists, serving, with slight competition, an extended territory, I would favor the departmental organization, owing to the saving in taxes, joint employees, etc. When the territory is served by a number of small lines, in order that the business may be conducted uniformly and extended to its greatest possible limit, a separate company for the handling of express seems to best serve the requirements. In either case, the express department or company should be charged a fixed equitable amount. This should not be the car mile rate, the varying quality of which we have already discussed, and found to be one that should not be considered in this case, if its value is to be measured by a passenger car mile, as one is rumning continuously, making the maximum number of miles, while the other makes long stops

Progress in Carrying Freight-Form No. 11, Auditor's Correction Sheet

for loading and unloading. Neither should it be the tonmile unit, as the long and short haul, together with the heavy and light load element, enters too extensively into its make-up. In the percentage basis of gross earnings I believe we have the most equitable factor for a fixed charge. If this is not used, then a direct charge should be made for equipment, power, track, maintenance, labor, etc., and not too much on account of first cost of present plant.

This brings us to the equipment stage. It depends entirely on the plan of organization as to who is to furnish this. It is needless to say that it should be, modern and
adapted to the work required of it and conveniently arranged and provided with sufficient power to handle the maximum load and keep ont of the way of passenger cars.

In the natural order we now should consider blank forms. Please remember that while the freight business of the electric railways should be in system not unlike the steam railroads, insofar as its foundation is concerned, it handles that class of business which must be given quick dispateh, hence only a few of their many forms and slow methods can be followed. It is surprising to find how few of them are actually necessary. The business handled should be surrounded with proper records for tracing lost shipments, accurate accomting secured, and a stop made right there. Too much "red tape" will reduce the quick movement of shipments to the slow freight time. loss and damage claims should be promplly investigated and paid or declined within 30 days from time of filing-a contrast to what is now being done that will be appreciated by the public.

FREIGHT AND EXPRESS FORMS

I have seen a freight business amounting to $\$ 1.00,000$ yearly handed successfully with the use of the abbreviated forms described and illustrated below:

Form No. 1, Shipping Receipt.-This is in duplicate, and is put up in book form. It is to be filled out by shipper. showing the consignor, consignee and the articles contained in the shipment. This is signed by the receiving clerk and the duplicate receipt turned over to the billing clerk. who then makes out the waybill.

Form No. 2, Snall Way Bill.-These are in duplicate and cover shipment to but one consignee. They should be put up in pads and used with carbou slicet or carbon back paper. The original is turned over to the loading clerk or messenger who checks the freight into the car: This way bill accompanies the shipment to its destination and is diecked by the receiving agent, and, on delivers the signature of the consignee is taken thereon. After being entered on the "Received" report it is filed, and is a record of the slipment and a receipt therefor. The duplicate way bill is retained by the billing clerk and forwarded reports are made therefrom, after which they are filed as a record of the transaction.

Form No. 3, Express Bill.-This is in duplicate and is put up in pads. It is a customer's bill and receipt for money paid the company for freight charges. The original can be used in a loose-leaf ledger and will represent bills collectible. The duplicate is turned over to the collector, and, when paid, transferred to a file. In this way the outstanding bills are at all times represented in the above-mentioned ledger.

Form No. 4, Abstract of Way Bills Forwarded.-This shows the station, the date and number of way bill, station consigned to, weight, advance charges. company charges, total to collect, and amount prepaid.

Form No. 5, Statement of Way Bills Received.-This shows the same information as in Form No. 4, and is made up at the receiving station. These two forms are then used in preparing the agent's balance sheet and are sent to the auditor for checking.

Form No. 6, Remittance Slip.-This is a receipt for cash to treasurer.

Form No. 7, Agent's Palance Sheet.-This shows the exact financial situation of the station.

Form No. 8, Agent's Correction Sheet.-This is used in correcting erroneous rates, ete.

Form No. 9, Receipt for Charges Refunded.-This receipt is used on accoment of overcharges, ete.

Form No. 10, Conductors' Time Slip.-Conductors are required to make out this report at the end of the last trip each day, and to leave it at the office.

Form No. 11, Auditor's Correction Sleet.-This is used for making changes on way bills on accomnt of errors detected in andit office.

In addition to the above forms, agents require a cash book, ledger and e. o. d. record. The audit office, of course, will have voucher form blank and necessary record books.

In closing, I cannot refrain from alluding again to the importance of a uniform system, from which basis electric railways as a whole should start to build up and extend their freight business. This basis I believe to be car transportation alone. A delivery man, owning his own team, can perform this service cheaper than you can, owing to the fact of personal ownership and supervision. This also holds true when a number of teams are employed. You must bear the maintenance of a horse and wagon equipment sufficiently large to handle promptly your maximum business. Another factor entering into this is the many customers operating their own teams; the additional cost to them of calling for their shipments often is figured to be nil. However, these are but side issues that should not sland in the way or prevent the electric railways from getting together on some common ground of procedure, in laying the foundation for a system of cheap and speedy hansportation of merchandise that will prove of universal benefit to civilization for all time to come.

ADDRESS OF ACTING PRESIDENT WALLIS TO THE ACCOUNTANTS' ASSOCIATION

The past year has been an eventful one for electric railWily accountants. We Ieft Allantic City a year ago quite satistied with the assurance that we had formulated a rerised classification of accoments which, while not wholly satisfactory to us, was still reasonably consistent with the fundamental principles whicl we had regarded for many yous as our guide posis. It wats a classification which seemed also to meet the demands which the modern prinrinle of govermmental regulation required.

We were soon mulely anakencd, howerer, by having thrust npon us for our consideration a classification which ignored the rery fundamental principles which had proven their sability bre yeas of rritical use. Many of us believed the propesed scheclule to be quite untitied for onr use. It Was a time of much fearsome worry for all of us. But we found that our reasons for protest were so cogent and conchisive that thase who have the power to enforce upon us a system of accounts were satisfied that the proposed classification was mensitable. Your Classification Committee was called into consulition, as its report will show yon, and a schedule was drawn up which, if followed, will be reasonably agrecable to those principles which we have believed to be fundamental and fixed by the nature of our business.

The work of the Accomntants' Association aud its larger comrade, the American Association, has been of great value to the electric railway industry, to every electric railway company, in emphasizing the necessity of filting the coat of accounting to the body of electric railway practice. The sound theories whicla underlie our division of arcounts would seem to be firmly establishect.
I cannot but speak with praise of the work of your Classification Committee, whose fairness, firmness and diplomacy have accomplished a great deal. This committee has put a large amount of time and effort into the part of our work which has fallen within their province this year and the results they have brought to you should compel your commendation.

As electric railway accomtants, we may well pause and consider a rapidly growing tendeney of the times which seems likely to rur to an extreme. Λ committee of prominent railroad executives of the American Railway Association has just issued a circular in which it refers prominently to "the
refinements of accounting," a phrase which has also appeared in some discussions of electrie railway accounting during the past year. This I interpret to mean accounting complicated to a degree which becomes umecessarily burdensome upon the corporation which is compelled to pay the bills.

The figures which we accountants collect, compile and interpret are of value only in proportion to their use. We may gather and file stacks of forms, filled with interesting figures, but if the information so acquired is of no use then the labor is wasted. We should compile in convenient form and have ready for immediate reference such data as our superiors may require. Beyond the storing and supplying of such needful information or drawing required deductions from it our efforts are wasteful. We are uneconomical whenever we fail to reduce this work to its simplest possible terms. So sure as the straight line is the shortest distance between two points, just so sure is the accomitant unsuccessful if he does not produce the desired information in the shortest and simplest manner possible. Insofar as we fail to eliminate the unnecessary our work becomes useless.

Thasmuch as we are public service corporations it is a recognized principle that the public is privileged to have such accounting information concerning us as will permit it 10 see that its rights are being protected. But the public has no privilege to require of us more detail of information than will reasonably secme it in its rights. I believe that information which informs is more readily obtainable from simplicity than from complexity of accounting.

The value of the figures furnished by us to the public lies in their use by that public. Their availability amounts to mothing unless they are used. To require information or statistics merely to salisfy the possible whim of some aimless investigator into interesting conclusions of little or doubtful value is indefensible. Moreover, the average seeker for ficcts in official reports is not expert enough to avoid having his view clouded in the haze of complicated accounting. The fundamental, larger principles in which the whole public is interested are much more easily obtainable from simple accurate, apparent statistics, and conclusions so drawn are more intelligent and just.

I feel, therefore, that we may question whether the tendency of the times is not to an extreme in demanding an umreasonable division of accounts and detail of information in onr busilless. If we believe so, we accountants should stearfastly point the way back to a more reasonable accounting, wherein simplicity should be the fundamental rule. This modern tendency leads us to produce figures and statisties Which are not neressally: it leads others to require of us facts and figures which, when receiverl, are of no practical asc. It makes us divide the simple accounts which furnish ample information into many subdivisions which, while interesting, have not a value comparable to the labor involved in their preparation. It makes us hand to our laborer, to our mechanic, to our foreman a bewildering multitude of blanks for their use. Insofar as this labor fails to furnish information which is actually and urgently useful it is economically wasteful.

Moroover, to be uscful, statistical information must be arcurate from its source to its conclusion. The farther we wander from simplicity the less liable we are to obtain accuracy, especially from those whose training in accounting is of the simplest and does not stand the strain of complexity. Such is the condition among those upon whom, for the most part. we railway afcountants are dependent for the sources of our information.

We, therefore, as accountants shonld discomrage, whether within onrselses or within or withont onr corporation, any tendency to compile statisties, figures, information which we not entirely essential. Let ns endeavor to avoid, and to have those whom our figures serve avoid, complication of accomnting which leads to inaceuracy. Let us have always :m "pen eye to the "simple life" of accounting.

It was with great regret that I received notice from the president whom you selected last year, Frank R. Henry, that hecause lo was learing the railway field he would no longer act as president. Mr. Henry has been aetive in this association since its start, and has done much good work for it. You had brought him into deserved recognition when you chose him for this high office. Mr. Henry had served through the trying times of last winter, and had largely mapped out the plans for this convention when circumstances forced him to retire. He had prepared a pratt of his address to you, and this, with due credit, I inanprate herewith, as follows:
"For 16 years prior to the formation of the Accomntants' association, the managers of the street railways of (lue United States were associated together as a national organization, and were giving little or no attention to accounting problems. A few of the far-sighted accounting officers realized that if the accounting departments of the street railways were going to keep up with the rapid growth and development of the business, it would be necessary to form an independent mational organization, embracing the accounting offiecers exclusively. The preliminary meeting for the formation of such an organization was held in Cleveland, Ohio, in March, 1897, and since that time, meetings have been held ammally at the same time and place as the parent body.
"The constitution and by-laws of this association state the purpose of the organization as follows: 'To object of this association shall be to bring together those engaged in the accounting department of street and interurban railway companies, for the interchange of ideas, to promote the adoption of a miform system of accounts, and to improve the work of the accounting depariment.'
"Eleven years have passed since its formation, and problems have confronted the individnal members and the assoriation which were not dreamed of prion to that time. It has been found that in most things the old lines proved too 1anrow, and things in the past that were all right for that time, would not do for (o-dia. This means progress; it means persons, plans, institutions, administrations-all these things are growing. With the phenomenal develolmont of electric railway business in the past few years, you are all familiar. These things all being trme, has your orcounting department kept np with the progress?
"'Let well enongh alone' has never been the motto of clectric ralluay business in the past, nor do you believe it the motto of the future. Through co-operation, fellowship and investigation, the American Street \& Interurban liailway Accountants. Assinciation offers all of the op*ntunties for keeping up with the new developments. By co-operation, it has been possible to have a standard classification of accounts and form of report adopted by the State commissions, the United States census bureau, and by the electric railroads.
"It has been said that only a few railroads use the standard classification. This may be true, but it is safe Io say that there are bery few but what have used the standard classification as a basis for the classification of their accounts and for the form of their reports. To kcep u_{j} with the progress and development of the business, a
new rlassification was snbmitted at the last convention, and a new standard classification will eventually be adopted along the lines therein defined.
"This is not all there is to show for the 11 yeats of work. Every phase of the arcomnting field, as applying to electric ralway accounting departments, is gradually being covered, and reference to the indexes of subjects on which papers have been prepared, reports of committees which have been submitted, will show to what extent the work has, thus far, been waried. In this commection, the fact must not be lost sight of, that the dismession of the papers and reports is very frequently just as prolitable and instructive as the papers and reports.
"Blanks and forms covering every department of the business have been collected by the secretary, indexed and arranged in convenient form in loose-leaf books. These books are exhibited at the amual conventions. extra copies heing kept on file for the use of the members, which can be obtained uron request by a member of this association. This offers an adrantage which camot be obtained in any other way, and the study of this collection will save your company boih time and moner.
"The ammal meetings offer many opportunities for increasing the usefulness and efficieney of yom accounting officers: broaden their views and sympathies, encourage and strengthen them in their efforts. The friendships formed will bring more cheerfnl response to inquiries for information from a fellow accountant. One of the true assets of life is friends, and you cannot have too many of them; and in these ammal meetings you find many original friends.
"1t is said there are few original geninses in the world, but there is a genims of amother order that is quite as good. It may be called assimilative or appropriating genius. It consists of the ability to use wise and timely suggestions coming from whatever source. The anoual meeting is a good place to develop this genius. One possessing this genius will attend the ammal conventions and go home full of enthusiasm over the new ideas gathered, and this, coupled with the skill neeessary to apply them, will derive the greatest amount of good from these meetings.
"You should be willing to contribute and do your part in the education feature of the work by giving your ideas, opinions and suggestions.
"No better evidence of the interest manifested in the Accountants' assoriation could be produced than the record of attendance at the last meeting held in Atlantic City. This meeting was in cery sense, the most successful and important meeting the Accomutants' association has ever held, and careful reading of the proceedings will convince the accounting officers of the street railways that the objects as set forth in this constitution ate being realized."
the adrantages of the collection of blanks. forms, referred to byy l'resident Henry. depend upon its being kept (1) 10 tate. With this in mind, an entirely new collection has beow made and propared this yen with rery sucecesful results. The collection and its arrangement reflect great aredia men Professor Swenson s office.
The new collection is here and from now on is arailabie fon the members. This collection represents now the iatest ineas in the framework of electric ralway areounting ami is well worth some of your time and allention.

As the assoctiation grows older, the selection of topies for disenssion becones anore dilficult, withont coveringe exactly some of the gromed covered in previous papers and dis-cus-ions. Of course, new dopies and new phases are continually coming up and the old conditions change in the light of the progress of onr industry, but the fact remains

Hat there is not the virgin field of topies to be disenssed that existect in the early days of the association.
There always remains (and this makes more prominent) in the work of the assoctation at these conventions, what we have chosen to call this year the "get together" spinit. And as the membership grows this becomes more important, because with a few members universal arguaintance was practically conpmlsory: with the large membership of to-day it is diffienth. Yan you will find you get more from the informal, chase range exchange of opinion with those whom you meet here, if fou go about it in the right way, than from any eut and dried featme of the program, no matier how good.

Do not imagine that the other fellow, no matter how big a property he represents. or how long he has been in the association, is not as anxions as you are to further this spirit. Take my: word for if, he is. In and of this spirit, a luncheon has beren arranged at the Marlborough-Blemhein to be held at the close of this session, and an attempt will be made to have this spirit prevail.

During his aetive work in the office of President, Mr. Hemry resigned forn the Commitice on the Standard Classitication and apperinted $\mathrm{W}^{\boldsymbol{V}}$. B3. Brorkway in his place. Later, IV. G. MeDule, of Cleveland, resigned from the same committec, and I apmointed W. H. Forse. Jr., which gave the so-called "interwhan group" of railways a reserved place bipon this committee.

We are entifled to three representatives at the convention of the National Association of Railway Commissioners, and I appointed as this year's delegates, W. F. Ham, of Washington; C. N. Duffy, of Milwaukee, and C. I. S. Tuiglev. of Pliiladelphia.

I wish to thank wom for sour selection of me as your first vice-president, an office which this year has assumed more importance than ustal. I wish also to thank the Executive and Classification Committees for their support in the work and those who have prepared papers and the many others who have rendered valuable assistance in earrying on the work during the past year.

ANNUAL RECEPTION

Nothing could have been more successful, or handled with more care and smooth precision, than the reception on Thesday evening in the Solarium of the Marlborough-Blenheim. It began at 9 oclock, when a receiving line was formed by officers of the railway associations and their wives: and the presentations were made thick and fast. By the time the castern wing of the hotel had apparently reached its capacily. the musical program began with Margare Keyes and Oley Speaks as rocal soloists. After an hour of excellent mosic, refreshments were served, and then dancing began, the card providing fifteen dances, although that was not the limit. Nearly six lomded larlies are attending the convention, and as almost all were present in rich and fashionable toileties, the scene throughout the evening was one of notable brilliance. The gencral comment was that the Association had never had a more suceessful affair of the kind. Chairman Berry, of the Fntertainment Committee, supervised all the details personally, and most members of the committee were present to lend their active assistance; while their ladies also contributed in no small degree to the success by their co-operation in presiding at the refreshment tables and in other appropriate and decorative ways. It was not mutil early morning that the finction came to a close.

REPORT OF THE COMMITTEE ON EDUCATION*

BY H. H. NORRIS, CHAIRMAN, A. S. RICHEY, R. E. DANFORTH

On August 1, 1908, this committee was appointed tc study and report upon such educational matters as might be considered as coming within the scope of the Association's work. The committec immediately outlined a plan of work which has been carried out as far as possible in the limited time. The committee will aim to inform the members upon the best practice in training present and prospective employees, and will formulate plans intended to increase the efficiency of employees.

In this report no definite plan is proposed. At the last convention, October, 1907, a plan for an apprentice course was tentatively suggested by a member of the present committee. \dagger This plan was favorably received, although no official action was taken regarding it. Such propositions will naturally form a part of the work of this committee. For the present, however, the work is of a preparatory nature. A few general statements will prepare the way for the details of the report.
(1) The training of emplosees for more efficient service is incumbent upon employers.
(2) Such training will pay in financial returns, as well as in less tangible ways.
(3) The training should include employees of all grades of previous education and experience.
(4) The training is most effective for young employees and when closely related to the previous education and experience.
(5) The evidence of the foregoing statements is found in the successful experiments which have been tried by members of this and other associations, both individually and collectively.

The whole matter of training men for electric railway work falls under two general heads:
(1) Training preparatory to employment.
(2) Training during employment.

EDUCATION PREPARATORT TO EMPLOYMENT

Undoubtedly a certain amount of special preparatory training is desirable. This must be furnished largely by regular and special courses in the technical schools. Prof. Richey has prepared the following report upon this part of the subject. In securing data he addressed the following letfer to the proper depatments of a large number of schools:

Kindly give us information as requested below, same to be incorporated in a report of the Committee on Education to be submitted to the Atlantic City convention of the American Street and Interurban Railway Association.

1. Have you a specific course in Electrical Railway Engineering, or is such instruction given as a part of your regular Electrical Engineering Course?
2. When was snch course established?
3. Give an outline of such course, showing number of hours devoted to electrical engineering subjects, as well as to strictly electric railway subjects, in junior, senior and graduate vears.
4. What laboratory or other practical facilities have you available to supplement such courses?

5 . What percentage of your electrical engineering students elect the railway course?
6. How many of your graduates are employed in electric railway work? What percentage of electrical engineering graduates?

[^2]7. In your opinion, in what way can the American Street and Interurban Railway Association best co-operate with the technical schools of the country, to their mutual advantage?

The replies to these questions were not definite enough to permit of a tabular compilation, but they indicate a great interest in the subject and a desire to co-operate with the Association. The correspondents requested information as to how the Association literature can be made available in the schools, and one or two wrote regarding railway apprentice courses.

ELECTRIC RAILWAY INṢTRUCTION IN THE TECHNICAL SCHOOLS
The splendid system of technical schools in this country is the development of the past 40 years. Therc are to-day at least 40 colleges in the United States offering courses designed to fit their graduates for engineering professions. The growth of these schools, in numbers and importance, compared with the "classical schools," has been in step with the growth of the relative importance of the engineering profession. The building up of the great steam railway systems, the development of our mining resources and manufacturing industries, and finally the growth of our electrical industries, have each contributed to the call for the engincer. The combination of the last and first, that is, the application of electricity to transportation, has opened still further fields for the exercise of the engineer's abilities.

At the beginning of the period of extensive steam railroad development, this call for engineers resulted in the establishment of courses in railroad engineering, civil and mechanical engineering. Together with the development of large manufacturing industries, these calls resulted in the further development of such courses, and the foundation of the purcly technical school, giving courses in engineering alone.
Graduates from such engineering courses, for many years, had difficulty in competing with men who liad "worked up in the business"'-the men "with no technical education, but lots of horse-sense, sir', -but they have gradually overcome the prejudice against the college graduate, until at present it is the rule, not the exception, to find college graduates at the head of work requiring engineering ability. The colleges have year by year bettered their courses, by benefit of experience, and better facilities have been given the graduate to secure practical experience after the completion of his college course, which practical experience, it may be remarked, he realizes to-day, better than ever before, is needed to round out his education before he is fitted for an enginecring profession.

The development of the application of electricity has had much to do with the call for the engincer and the technical graduate. From the first the elcetrical engineering, manufacturing and construction companies have used technical graduates, as the raw material from which to develop their directing heads. As the development of the elcetrical industries has been to such a great extent due to the marvelous growth of the electric railway, the electric railway may be credited with a considerable part in the call for the technical graduate, resulting in the development and growth of the technical schools.

Geographically, the distribution of 40 representative technical schools or colleges giving instruction in engincering courses is as follows: New England, 8; Eastern States, 16 ; Central, 7 ; Southern, 3; Western, 6.

Instruction in the technical schools is generally so planned as to supply in as large a measure as possible the benefits of a liberal education. While this is not usually possible
to the same extent as in a college of liberal arts, it has been found practicable to include the essentials without encroachment on the time devoled to purely professional studies. Indeed, the so-called liberal studies are generally believed to be at the very fomdation of professional, as well as liberal training. Such studies as are found to be common in all engineering comses comprise English, the modern languages, mathematies, chemistry, physies, ceonomics and political science.

While it has not been possible, in the brief time alloted for the preparation of this report, to secure outlines of the courses in electrical engineering from all of the varions technical schools, the following extract from the rataloge of one of these institutions is fairly representative:

The four-year undergraduate course in elertrical engincering is arranged to provide instruction along the broad and fundamental lines necessary for a young man who proposes to make engineering his life work. With this object in view, the subjects of the first year of the course are common with those of the other departments, and include work in mathematics, modern languages, chemistry, shopwork and drawing. The electrical engineer must be thoroughly trained in mechanical engineering subjects and, throughout the second and thind years of the coursc, the students in mechanical and clectrical engineering follow nearly the same curriculum. The principal difference between these two contses for the sophomore and junior years is a reduction of time devoted to shopwork by the electrical engineering student, which permits him to include in his course a larger amount of time for physics, chemistry, mathematics and electrical engineering. During the last two years of the undergraduate course, a large proportion of the time is devoted to the courses offered by the electrical engineering department, but required work is included in economics, vector analysis, kinematics, mechanics, sleam enginecring. thermodynamics and mechanical engineering laboratory work; and opportunity is given for electives in civil engineering. machine design, chemistry or hydraulies. In the senior and graduate years, extended courses are offered in the theory and technical applications of electricity, in laboratory work, in electric railway engineering and in electrical engincering design. Work in electric railway engincering, in fair proportion, is offered in the regular undergraduate course in electrical engineering and, in the graduate year, sery thorough courses in this subject are available. Visits of inspection are made each year, not only to local points of interest, but also to important installations and manufacturing establishments at a distance. Frequent addresses by alumni or other practicing engineers and scientists increase the scope and valne of the work.

Very few of the technical schools have established specific complete courses in electric railway engineering. but nearly all give such a course as a part of the general electrical crigineering course. In such cases a student may, by a proper choice of elective studies, especially in the graduate year, select a course which will fit him to enter electric railway engineering as a profession.

Opinions and practice differ somewhat as to the use of the laboratory in connection with electrical engineering instruction. In a few cases the instruction is entirely by text-book and lectures. In most cases, however, these are supplemented by the use of more or less complete shop and laboratory facilities. Nearly all of the technical schools now give some sort of actual training in wood-working, pat-tern-making, molding and casting, machine-tool work and surveying in the lower classes. This is ustally followed, in the electrical engineering courses, by laboratory practice in operating and testing electrical apparatus, some of the colleges having very complete equipment for such work. For example, one institution las available, in its "service plant," three engines direct-connected to generators, and aggregating 600 hp at normal rating, and in its laboratory
some 50 generators and motors, ranging in capacity from a $300-\mathrm{hp}$ motor and $200-\mathrm{kw}$ generator down to machines of 1-kw caparity, the aggregate capacity being not less than 1500 kw . The transformer equipment mubers over 40, including the regular commercial types and several of special design. Among the latter are one giving 500,000 volts and two others of 200,000 volts and $100-\mathrm{kw}$ capacity sach. The collection of are and other electric lamps is very complete, and contains lamps of wide varicty of type by the varions makers. The list of instruments for eledrie measurments is: very large and includes examples of the best ixpes to the number of over 200 . The storage-hattery room contains batteries of several different makers. including one of $160 \quad 10$ -amp-hour cells and another of 60120 -loour cells. There are also many pieces of special apparatus for work of instructhon or investigation, including curve tracers, dynamometers, both electrical and mechanical, condensers, mercury-are converters, recording inst ruments, issellographs, ete. The railway equipment of this laboratory includes a large intermban car and track connedions with a latge city and interuban railway system, a dymmometer electric car testing stand, various types of braking, controlling, lightitg, heating and signaling apparatus, so mounted that efficience, reliability and operating tests and experiments may be made. besides several standard railway motors for test and expriment.
The laboratory cited, with its equipment and building, represents an investment of about a quarter of a million dollars, and is probably the most extensive college laboratory, for clectrical enginecring and electric railway engineering. in the country. As has been said, however, nearly all of the technical schools give some laboratory experience in the handling and testing of electrical apparatus, and supplement this by more or less frequent visits of inspection to manufacturing and operating electrical plants. Practical problems in design and estimating are also gencrally important features of the course.

The graduate, then, is familiar with the principles and theory of his chosen profession, and usually has had more ar less experience with practical problems. No matter how thoronght las been his training in these matters, howerer, he needs, in addition, the training which comes from aetua! contact with commercial work in his chosen line: contact with men engaged in the work; contact with things that are doing: actual experience in making one dollar do the work of two. Many graduates take advantage of the apprenticeship courses offered by some of the large manufacturing and operating companies, a few have had the requisite expericnce before and during their college course, while many get it by hard knocks and push with manufacturing and operating rompanies which make no effort to differentiate between the terhnical graduate and the uneducated laborer by his side.

EDUCATION DURING EAPLOYAENT

Much can be learned along the line of training employees by a study of the experience of steam railway, lighting and other companies and associations.
As typical of these, the committee has selected the following:
(1) New York Central Aprrentice Work.
(2) Master Mechanics Association Report on Apprentice Systems.
(3) Administration of the Trusteres Gas Educational Finnd.
(-t) Edison Companies Instruction Courses.

Altention is also called to the Cadet Corps of the Rochenter Railway Company and of the Public Service Railway Company:
(1) the new yomk oentral apphentice system*

The New York Central Lines have developed a complete apprentice system apparently well adapted to steam railway needs. This is in charge of C. W. Cross, whose office is in the Gramd Central Station, New York. Mr. Cross is a snecessful ralway man, laving been a shop superintendent and master mechanie, and he has also the requisites of a successful teacher. He is assisted by W. B. Russell, a graduate of the Massachusetts Institute of Technology. Mr. Cross has furnished information from which the folL,wing compilation has been made for this report:

Elements of the System

Brielly, the systen adopted may be summed, up under the following three heads:

1. It provides for the close supervision and instruction of the apprentices in the shop by an apprentice instructor.
2. A school is conducted by the company during working hours, the apprentice being paid for attendance, at which mechanical drawing is taught in a practiral way.
3. A course of problems, carefully arranged to suit the needs of the apprentices, hats been prepared, which they are expected to work out on their own time.

While the system differs radically in many respects from anything that has been done in this comitry, it follows bore or less closely the general principles governing the educational system of the British Adminalty, which has been in operation more than 60 vears, and, areording to Sir William 11. White, has produced the majority of the men who are now ocenpying the most proninent positions in the shiphilding industries of Great Britain. In an article published in the Jannary, 190t, issue of "Techmies," he says of it: "It has given to private shipbuilders its leaders, who have risen from the ranks, while it has produced men holding many important and influmtial positions in all parts of the world."

The only system that has been maried out on a large scale in this country, which at all approaches the methods used on the New York Central Lines, is the Cieneral Electric Company's appremiee selool at Lym, Mass., whieh was described in a paper on "A Plan to Provide for a Supply of Skilled Workmen,' , resented by Magnus W. Alexander at the December, 1906, meeting of the American Society of Mechanical Engineers.

A special shop hats been fitited up at Comn, known as the "Apprentice Training School." and for the first $11 / 2$ or $21 / 2$ vears' course, the boys work in this shop under the direction of competent instructors. The production of this department is of commercial value. The latter part of the eourse is spent on regular work in the shops. I school is conducted during working homs at the expense of the company, each apmentice receiving six hours' instruction a week.

Chider the New Vork Central sistem the boys come into contact with the actual shop conditions from the very first.

Historical Notes

J. F. Deems, when the became general superintendent of motive power of the New York Central Lines, had under consideration the establishment of an adequate system of apprenticeship on that system, but the apprentice depart-

[^3]ment was not inaugurated until March 1, 1906. On May 7, 1906, the first appentice class, under this new plan, was started at West Albany Shop; it was, of course, realized that while there wonld be some advantages whieh would be almost immediately apparent, the most important results would not be noticeable for a number of rears, and, therefore, before starting the organization, steps were taken to insure its permanency for a period of sufficient length to enable the results to be clearly demonstrated.

Although at the inauguration of the new plan there were 12 shops on the system, earll of which had from 20 to 74 apprentices, apprentice schools of some kind had been carried on previonsly by the local managements at only four points, Elkhart, Ind., Jaekson, Mich., Oswego, N. Y., and Mokees Rocks, Pa.
Abont 35 years ago an apprentice school was started at the Elkhart shops on the Lake Shore \& Michigan Southern Railway. The sessions were held in the evening, and the school was intended primarily for the apprentices, although anyone in the employ of the company was eligible for membership. This schoo! was continued with more or less success, and in 1901, under the direction of Mr. Cross, the master mech:mic, attendance was made compulsory for apprentices, and what was known as the "Apprentice Association" was nganized. This association held meetings every two weeks, at which reports were made by committees who had visited other shops, or addresses were made by persons skilled in different classes of work. While membership was not eompulsory, the greater number of the apprentices belonged to it and the meetings were well attended,

On July 28, 1886, evening class work for the apprentices was started at the Jackson shops of the Michigan Central Railroad. For the first few months the classes were held from 7 to 9 p . m ., but this did not prove satisfactory and was changed to $5: 15$ to $7: 15 \mathrm{p}$. m. Each class met one night a week from November 1 to April 30. Attendane of apprentiees was made compulsory.

In Jannary, 1904, an apprentice sehool was organized at the Oswego shops of the New York Central \& Hudson River Railroad under the direction of W. O. Thompson, division superintendent of motive power. This class met for two ho, one day of each week. Attendanee was compulsory for the apprentices and they were paid for their time in the class. thus making it passible to enforer a somewhat more rigid discipline.

About two years: :gu an weming school was organized at the MeKees Rocks shops of the Pittsburg \& Lake Erie Railroad, under the direction of L. H. Tmrner, superintendent of motice power, and W. P. Richardsm, mechanical engincer. These elasses met twiee a week, and attendance of the apprentices was made compulsory.

Meclanical drawing was tanght at these four schools, the method being the same as that ordinarily followed, inchuding practice in lettering, geonetrieal exercises, projections, copying of drawings and blue-prints, making drawings of locomotive parts and making tracings.
Details of the New York Central Plan

The central organization deals witlo the general problems affecting the apprentice work, outlines the different courses. looks after the educational work, organizes new schools and keeps in close touch with all of the schools.

At each of the larger shops there are two instrnctors, a drawing instructor, who in most cases is the shop draftsman and who has charge of the school work, and a shop, instruetor who gives lis entire time to instructing the ap-
prentices in their slop, work and to seeing that they receive the proper shop experience. Both of these men report direetly to the loeal officers of the road, who keep in close touch with the appentice department. The apprentices are instructed in drawing and in shop problems by a man already in the service of the company, on the shop property, during working hours and while noder pay. They are instructed in the trade in the shop by a special instructor, who gives the whole or part of his time to this work, and who is responsible to the local shop mangement. The instruction in the grade is given in the shop on the regnlar tools and in the regular run of shop, work. Apprentiee schedules are tollowed, insuring a thorongh traming in the rrade and giving the necessary variety and work.

The drawing and problem conrses are arranged to allow fach apprentice to progress as mapidly as he desires, but so as to enable a single instructor to handle the classes with als many as 24 students in a dass. The character of the conrses is such as to fit the standards of the road, to read in the language of the shop and to suit the special conditions existing locally.

The method of instruction differs radically from the ordinary methods of teaching in the following points:

Text-books are not an essential part of the plan.
There is no subdivision into subjects.
All the principles are clothed in problem form.
There is no arbitrary standard of the amomet of ground to be covered.

No examinations are held.
The progress and the marls of the apprentice are based on the close personal touch mantained between the instronetors and the apprentices.

Night Schools

The men in the shops, both foremen and workmen, have evinced considerable interest in the apprentice sehools, and there has been a demand for preming schools to give them the same advantages. In response to this, evening selooks have been started at a number of places, including Mckees Rocks, October. 1906; Elkhart, November, 1906: Jackson, November, 1906; West Albanỵ, November, 1906: Brightwood, December, 1906; Oswego, January, 1907, and Collinwood, February, 1907. These classes are open to all of the employees at all of the points: exepht Elkhart and MeKees Rocks, they meet for an hour and a half or two boms directly after the shop whistle blows in the erening. At Elkhant the classes meet from \bar{i} to 9 , and at McKees Rocks from 7.30 to 9.30 p. in. The men are more regnlar in altendance and take a keener interest in the work when the meeting is held directly after the shop, 'loses. In many (ases the men live a considerable distance from the shop). and it would not be convenient for them to return after Going home to their dimers.

The makeup of these classes is very interesting and will give some idea of the extent to which this work has been carried. It several of the schools where there is a cull fuota of appentices and a waiting list the boys take places as holpers motil there is an opening for them in the apprentioe department. These boys nswally enton in the evening dasses. Bors who have finished their apprentioceship also follow mp their stodies in eonnection with the erening classes. These classes are diseontimed for three or four months during the smmmer. The men who attend them take the same course as the apprentices, but if they desire maty skip the easier portions. As a rule. they prefer to take all of the work, periewing that pate with which they

We familian: They furnish all of their own material and pay the instructor (the apprentien sehool drawing instruc(or.) for his dime. The eost of tuition amounts to about \$1.2. per month, which ordinarily includes nine lessons. The classes are held in the apprentice school room, the company fintushing this, with light and hat, free. Only the draning work is done in class, the poblems being worked matside.

Theme clases give the newe ambitions men an opportunity for becoming more proficient and to fit themselves for better positions. They are especially raluable for foremen and for assisalnt foremen who desire 1 " "lnmsh up" their l.nowleflge of drawing and mathematios. As a result of the Classes, the shop men are becoming more familiar with the company standards and are being drawn into closer tonch will the shop draftsmen.

Results of the Apprentice Work

White ouly two or three of the sehonls have been in "pration for as long as two years, a mumber of practical adrantages have become apparent. With the greater opportumities that are being offered. a better class of bors is being secured. Formerly it was difficult to keep up the full quota of apprentices at most of the shops. Now there is a waiting list for some of the trades at several shops and apprentices are being secured for trades formerly withont them. In many instances high-school graduates have enrolled as apprentices. It shops where there is a waiting list it is not unusual for the boys to take places as helpers or wipers and enter the evening classes until an opening "ecols in the apprentice department. This service is a sort of probation period and those who are unsatisfactory re sifted ont.

The boys take a greater interest in their work in the shop. and because of the principles learmed in comection with their educational work, are better able to understand the instructions given to them and to carry them out intelligently. Their eaming power is thus increased.

The work of the shop instructor is especially productive of immediate returns. When the aprentice is shifted to a new class of work the instructor stays right with him until he understands it thoronghly. Under the old system the foreman was supposed to instruct the apprentice. He would amost invariably be interrupted a number of times and wonld mobably hurry off after he had half instructed the boys. expectiug to retmon shortly. The chances were that he would forget all about it and the boy would be left to shift for himself. As one shop tersely put it-under the cld system a boy after working for two or three weeks might get to a point where he could produce one-half of a mechanic's mutput-now he can, on an average, turn out seren eighthis of a mechanie's output after three or four days. When a workman does not report for duty an apprenties ean be put on the job under the direction of the instructor and the ontput does mot suffer to any gereat extent. The inerease in the apprentien's ontpat dne to the albove "atuses more that offseta the loss of time due to class work, which amomis, on an arerage, to 40 minutes per day for cacla boy.

The amont of spoiled work has been pery greatly redued be the adyent of the shop instruetm:

The brighter boys after they have worked fom several monthes in the drawing couses are ned to considerable adrant:ge for making rough sketches or simple drawings, either of a broken part, for transmission to the mechanical cugineres office or in comection with the shop practices.
(2) Work of the master meghanics' association

A special committee of the Master Mechanics' Association has just presented a report dealing with the present situation in the training of young men in the trades necessary for steam railway work. Their committee summarizes the following' conclusions under the title "Principles." They are suggestive as being applicable to electric, as well as steam railway conditions.*

Principles

To assure the success of the apmrenticeship system, the following principles seem to be vital, whether the organization is large or small:

First: To develop, from the ranks in the shortest possible time carefully selected young men for the purpose of supplying leading workmen for future needs, with the expectation that those capable of adrancement will reveal their ability and take the places in the organization for which they are qualified.

Second: A competent person must be given the responsibility of the apprenticeship scheme. He must be given adequate authority, and he must have sufficient attention from the head of the department. He should conduct thorough shop training of the apprentices, and, in close connection therewith, should develop a scheme of mental training, having necessary assistance in both. The mental training should be compulsory and conducted during working hours at the expense of the company.

Third: Apprentices should be accepted after careful examination by the apprentice instructor:
Fourth: There should be a probationary period before apmentices are finally accepted; this period to apply to the apprentice term if the candidate is accepted. The scheme should provide for those candidates for apprenticeship who may be better prepared as to education and experience than is expected of the usual candidate.
Fiftl: Suitable records should be kept of the work and slanding of apprentives.

Sixtly: Certificates or diplomas should be awarded to those successfully completing the apprentice course. The entire scheme should be planned and administered to give these diplomas the highest possible value.

Seventh: Rewards in the form of additional education, both manual and mental, should be given apprentices of the highest standing.

Eighth: It is of the greatest possible importance that those in charge of apprentices should be most carefully selected. . They have the responsibility of preparing the men on whom the roads are to rely in the future. They must be men possessing the necessary ability, coupled with appreciation of their responsibilities.

Ninth: Interest in the scheme must begin at the top, and it must be enthusiastically supported by the management.

Tenth: Apprenticeship should be considered as a recruiting srstem, and greatest care should be taken to retain graduated apprentices in the service of the company.

Eleventh: Organization should be such as graduated apprentices can afford to enter for their lifework.
(3) the trustees' gas educational fund

A most successful work is being carried on by A. E. Forstall, a practical gas engineer, for the benefit of gas company employees. Similar work might well be carried

[^4](1) b: the American Street \& Anterurban Railway Association for the benefit of the young men coming up in the ranks. Such work could be carried on under the direction of the secretary, if saitable financial provision coald be made. Mr. Forstall has prepared for your con nittee the following suggestive summary of the plan:
The starting of the work was due to Walton Clark, third vice-president of the United Gas Improvement Company, of Pliiladelphia, who, in his address as president of the American Gas Light Λ ssociation at its meeting in 1895, recommended to the association the appointment of a committee which should prepare and carry out a scheme for the establishing of a course of instruction in gas engineering for the bencfit of the employees of gas companies who had not received an advanced education. This committee was appointed, M. Clark being made its chairman, and a class was formed and carried on by him during the years 1896 and 1897. At the beginning of 1898 Mr. Clark found himself unable to keep up the work, and the class was suspended until the committee in charge of it had secured subscriptions from gas companies and individuals interested in the gas business of a sufficient amount to enable them to employ a competent person to take clarge of the class work. This fund, which has amounted to between $\$ 4,000$ and $\$ 4,500$ a year for the last 10 years, has been administered by a board of trustees composed partly of permanent and partly of exofficio members. The permanent members now number four, and although they were originally appointed by the American Gas Light Association, are self-perpetuating and are responsible only to the subscribers to the fund. The ex-officio members are the president and junior past president of the American Gas Institute, this having succeeded the American Gas Light Association in 1906, up to which time the exofficio members were the president and junior past president of that association.
The average number of subscribers to the fund has been ahout 100, and the subscriptions have been from $\$ 1$ to $\$ 1,000$, the average being between $\$ 40$ and $\$ 45$ per year.

The subscriptions have been made for periods of five years, the second of which has just expired and the work of securing' a renewal of the subscriptions for another five years is now under way. During the 10 years the expenses have run somewhat below the amount subscribed and there is now a surplus fund of about $\$ 8,000$, which is available tor supplementing the subscriptions, shonld these fall below the expenses in any one year.

The work of the class is carried on entirely by correspondence, the questions being sent out four times a year and the students having two months in which to prepare the answers to each set of questions. These answers of the students are gone over carefully by the secretary of the trustees, who has clarge of the class work, and criticised in a personal letter written to the student. This criticism is mailed to the student, together with a copy of the trustees' answers to the questions when the next set of questions is sent him.
Under the conditions which exist, it is impossible to take care of a class of more than a certain number, and, therefore, no attempt has been made to advertise the work, but in spite of this an average membership of 100 has been maintained. Beginning with the enrollment, Oct. 2, 1899, and adding the number who have been added to the class each year since that tine, the total number of students who have belonged to the class for a greater or less time has been 901 . Of these 125 finished the three years' course, and probably 30 more finished all of the course except the last two series of questions for their sections.
It has not been possible for the secretary to keep in touch with all of the men who have graduated from the class, so that it is impossible to tell just how much each one of them has been aided by the work of the class, but in looking over the lists of graduates given in the annual reports \bar{I} have noticed the names of a dozen men who, starting in somewhat subordinate positions at the time they entered the class, are now holding much more important positions in their companies, seven of them being managers, although the plants which they manage are not very large, and others being either superintendents of the works or holding equivalent positions in the distribution department. All of these men say that if it had not been for the assistance given them
by their membership in the class they wonld not have been able to qualify themselves for the positions which they now hold．

The following sample set of duestions will give a concrete idea of the practical nature of the work．

Question 1．A net ton of one of two gas coals that are arailable for use yidels 9200 cu．fit of gas， 750 lb ．of roke for sale， 10.5 gal．of tar and 4.5 lb ．of pure ammonia，while a net fom of the other rields 9700 con ．f＇t of gas， 850 lb ．of coke for sale， 15 gal．of tar and 5 ll ．of pure ammonia．The average make per retort per et hours is 8300 cm ． ft ．With
 retort house labor costs 出4 1 er ench six retorts per 24 homrs， and the prices for the products are：Ges．\＄1：5 net per 1000 cu．ft．；coke，ψt per net ton ；tar， 3 cents per gallom，and am－ monia， 5 cents per pomel．The first coal costs $\$ 2.50$ per net ton．What is the equivalent price of the second？

Question 2．Describe brieliy and generally some method of charging and drawing gals ieplonts in whith hand ！ab：n is assisted by mechanical appliances s：arranged as to render the work easier and to enable it to be done by fewer men．

Question 3．Give a description，illustrated by skethese of some form of hand pmomp used for pumping the drijs on the inlet and outlet pipes of the gas hodlens in lorick tanks．
－Question 4．In the mannfactme of carlonetted water gas it has been found that with the ordinaty methede of comdens－ ing and tar extracting，some rapors remain in the gas mat the purifiers are reached and are then depmsited in the puri－ fying material with the effect of shortening its life．What has been found to be an elfirient way of remoning these vapors before the puritiers are reached？
Question 5．What is meant belectrolysis as applicel to gas mains and what is its chief cause？

Question 6．What are the respective adrantages amo dis－ adrantages of cast and wrought－iron pipes for use as gas mains？
Question 7．Give a description，illustrated with sketches， of some form of recording pressure aage used for taking strect main pressures？
Question 8．How should persons overome by gas be treated？

Question 9．In putting in gas piping that will be exposed to extreme cold，such as the risers in street lamp－pesto or the portions of mains on bridges，what method would yon adopt to guard against the obstruction of the pipe by frost？

Question 10．What is the＂Principle of the Conservation of Energy．＂and how would you apply it to check up the claims made as to the results to be obtaned from a new process for making gas？
Question 11．Describe the rycle or series of operations and the method of governing employed in each of the fol－ lowing gas engines：Otto，Westinglonse and Korting．

Question 12．Should the lining in the generator of a carburetted water－gas apparatus be made single or double？ Give the reasons for yont answer：
（4）edicathonal work of the nett rork，brooklyn and boston edison companies
The three Edison rompanies mentioned have demonstra－ tion courses in electrical engineering for the benefit of their employees．The lectures are at present given by Prof．S．W． Ashe，of Brooklyn．A comprehensive series of practical Iece tures has been given for several seasoms in New York，and is now to be extended to Boston．1＇rof．Ashe states as fol－ lows regarding this work：＊

In 1803 this work was started for the Brooklyn Rapid Transit Company，under the anspices of the Young Men＇s Christian Λ ssociation．The work was more primitive than the extensive courses now being given for the Edison com－ panies and was only continned for one rear．Three years ago the Brooklyn Edison Company started this work on a comprehensive plan，and this fall will be their third season． Last year the New York Edison Compary undertook similar work，expanding npon the Brooklyn Edison course by giving afternoon as well as evening lectures，and next fall will be their second season of activity．This spring the Boston Edi－
＊See also Electrical World，May 16，1908，for a full account of this course．
son（＇ompany arranged to have similar work modertaken for them next year，their titsi seensm．

The objer of these comses is to reate self－development in the men．As you are mutombedly a ware，there is much in a rollege couse that can be tanght to practical men who have only a limited knowledge of mathematios．The seleme which has been followed is to lay out a general，edementary course of 20 lectures．The lectures are all experimental in mature，use being made of a sperial projecting lantern，pro－ jecting ammeters，roltmeters，watheters，etc．，to pertion ex－ perments on a large seale．By this mems it is possible to per－ form on the sereen almost any experiment which can be done in the laboratory．Ordinary talks，lantern－slide lectures，or demonstrations of apparatus do mot seem to mantain interest． but a delinite comse of experimental lectures presented in an interesting，practimal mamer seems to be the happy solution of＇the pioblem．＇There is nolling compulsory about the lectures，earli individual being a free agent．The courses are free in most cases，and where a fee is chargen it is nsually small（ が：3 ），and this is done principally to limit at－ teudance to thase really interested．
The men attending the lectures are encouraged to supplement them by axilian reading，and by attending evening comses in techuical institutions．The men are adrised to carry on stsicmatic study and to join the engineering societies．In tade everything is done to draw the techmeal institutions and the companies closer tosether，as it is mutnally benetierial to both．Ry froperty arosing the enthasiasm of the men the cousen have been made to accomplish their purpose
APPURNTIC OR CADET WORK BY TUE IGOCIESATER RAILWAY COM－ PANY ANH THE PUBLIC SERVTCF RAILWAY COMPANY
An indication of the importance of work for employees is the attention now being paid to the matter by the mem－ bers of this Association．R．M．Searle，of the Rochester Kailway Company，writes：

It has been our practiee every year to put on a number of catet engineers at，say，$\$ 50$ or $\$ 60$ a montlo．the idea being tor give them a salary that would clothe and board them，and let them maintain sufficient self－respeet to take np，that which fin two years is ordinarily a post－graduate comse．

Abont two men out of tive stick or succeed along the chan－ ne＇s we lay ont．They are given everything to do from shov－ cling coal to actual executive work，and one of the chief things we teach them now is the necessity of having tact，not only with the men under them，but with the public．

The fact that we are continually approached by outside companies for our cadets after training is a gratification to us，and indicates that the lines we are following approach good practice．We have found that the average college grad－ uate in true commercial lines at the outset of graduation is alnost useless and hopeless，leaning too much on what he las learned at college and not using it to his advantage．It takes him at least two years to reach his equilibrium，and then if he has an initiative left he manifests to his colleagues or competitors the superior benefits of his technical edu－ cation．

Mr．Searle＇s experience will undoubtedly be corroborated by others and it is hoped that an increasing number of lailways will engage in similar work．

The Public Service Railway Company has for some time been engaged in training its employees，first，in the gas department，later in the railway department．H．D．Whit－ comb，Jr．，general manager of the gas department，states as follows：

In addition to the instruction of our employees through the Trustees＇Gas Educational Fund，the Public Service has fol－ lowed out the line of the United Gas Improvement Company in taking on each year a number of college graduates and starting them at the bottom in this work and training them up for the position of smperintendent and engineer．All of the men in the employ of the gas departments in responsible positions have been through this course of training，including myself．

The general idea is to start them in the lowest possible position in the gas works and to give them a sufficient length of time，of from one to three or four months，in the actual making of gas on the machines and operating the various
other parts of the apparatus, working them finally into the position of foreman or assistant foreman at the works.

Our plan then contemplates taking them to the street department and going through exactly the same performance, making them actually lay mains and services and set consumer's' meter's, so that when they are finished with this course they are practically competent to handle any part of the business.

In the railway department of the same company a schedule for the cadets has been worked out and put in operation. The following statement of Mr. Danforth gives the principles and practice of the plan.

Prior to the formation of the Public Service Corporation, 18 railways covered the territory, each having its own organization. The various officials and heads of departments were probably well qualified to fill their respective positions, but when the properties were consolidated, few were cousidered capable of taking on greater responsibility and consequently the country was searched for men trained in the management of larger properties and in the work of consolidating into one large organization a number of smaller ones.

It is found that large systems produce specialists, while small systems often produce all-round men who frequently lack value to larger properties because of fanty training or ignorance of systematic methods.

Attempts have been made to train men in the various departments so as to have them available for promotion when vacancies occurred. This has been only partially successful, and for various reasons. Among the number of young men thus taken on as apprentices were college graduates. Prejudice against them being prevalent among a certain class of employees, disconraged some; others obtained more attractive positions with manufacturing conecrms, but more proved to be unfitted for the business and dropped out.

Applications from graduates of technical schools have been regularly coming in for vears, and as specially trained college graduates were being successfully employed as apprentices or cadets by the gas department of the Public Scrvice Corporation, the management of the railway authorized the cmployment, and education along systematic lines, of a number of carle engineers.

It has been found that college graduates having natural mechanical instinct, or being naturally inclined toward the railroad business, and with ambition, learn the rudiments of the road with great ease and rapidity and that after weedmg out the constitutionally unfit, the remainder drop into positions in the organization where they become valuable to their superiors by reason of their loyalty, cagerness to learn, and to do well their various tasks. In order to make it unnecessary for the company to look outside for foremen, superintendents and other employees having the administration of the company's affairs in hand, an effort is being made to have in training an understudy for each foreman or head of department and to gradually work into the organization as many well-trained men as possible, so that eventually the leading positions of trust and responsibility shall be held, as far as possible, by those capable of further advancement.

The education of young men is now being carried on under two heads, "Apprentices'" and "Cadets." The former are employed by the varions departments and remain in such departments. The latter are given work in each branch of the busincss according to a fixed schedule, after completing which they may be used where they can be of the greatest service to the company. This work in the various departments gives them a broader field than that open to other employees and they may thereafter be moved from department to department as seems best.

Cadet engineers are at present working according to the following schedule:

Maintenance of cars and cquipment. 6 months, as follows: Gencral repair shop.................... 5 months Car house pits............................. . 1 month
Maintenance of way............... 4 months, as follows:
Timekeeper and inspcctor. 1 month
Sub-foreman of track gang.............. 3 months
Maintenance of overhead line..... 2 months, as follows:
Repair wagon................................ 1 month
Bond testing car........................... 1 month

summary and conclusions

(1) The examples of the very recent and successful progress being made by the railway and lighting industries int the training of employees indicates the importance of such work.
(2) This Association is the natural center of information and interest regurding the development of employees.
(3) Some form of cadet or apprentice plan seems necessary to the best development of emplovees, but the plan must be adapted to local condtions.
(4) The question and answer system of the Trustees' Gas Educational Fund might prove useful to the members of this Association, if similarly adapted.

GENERAL REPORT OF BRITISH THIRD-RAIL ACCIDENTS IN 1907

The general report of the British Board of Trade upon arcidents that have occurred upon the railways of the United Kingdom during the vear 1907 states that contact with the live rails of clectric railways caused the death of one employec and injury to 13 in 1907. In addition to employees of the company three persons have been killed and four injured during 1907 through trespassing on elec-trically-equipped track, making the total accidents for the year four killed and 17 injured. The details of these are as follows: Charing Cross, Euston \& Hampstead Railway, one employee injured; Great Northern \& City Railway, one employee injured; Lancashire \& Yorkshire Railway, three employees and one trespasser: London \& South Western Railway, one employee injured; Mcrsey Railway, one employee injured; Metropolitan Railway, two employecs injured; Metropolitan \& Great Central Joint Railway, one employee killed: Metropolitan \& Great Western Joint Railway, one employee injured; Metropolitan \& Metropolitan District Joint Railway, one employee injured; Metropolitan District Railway, one employec injured: Northeastern Railway, one employee injured, three trespassers killed, and three trespassers injured. In 1906 four persons were lislled and 21 injured in this way, in 1905 two were killed and 18 injured, and in 1904, when only three of the above lailways were using electric traction, cight persons were killed and 20 injured.

FIRST SINGLE-PHASE RALLWAY in NORWAY

The first railway line in Norway to be converted to single-phase working is that from Thamshavn, on Orkedals Fiord, to the Lokken mines, a distance of about 17 miles inland, and was opened for public traffic on July 15 last. The line skirts the river Orkla for some considerable distance and then rises rapidly to Lokken. Power from a hydro-electric plant is supplied at 15,000 volts, 3 -phase 50 eycles. The trolley potential is 6600 volts and the frequency 25 cycles. The rolling stock consists of three 20 -ton locomotives and a motor car. The electrical equipment and catenary suspension were supplied by the British Westinghouse Company.

THE POSSIBILITIES OF A WELL-CONDUCTED DEPARTMENT OF PUBLICITY-SECOND PAPER*

By B. R. STEPHENS, TRAFHIC MANAGER, ILLINOTS TRACTION SYSTEM, SPRINGFIELD, ILL.

The possibilities of a well-conducted publicity department for interurban railways should occupy the attention of all owners and operators of such properties.

The producer of any commodity, either a necessity of life, or an item of luxury, or an article filling a long felt want, ean hardly hope to dispose of such a product unless those who need it are led to know of its existence through some avenue of publicity; it does not follow that the mere production of a certain superior article will dispose of it to the consumer, bat the prospertive consumer must be advised of its existence, led to know of its superior quality, not ouly by its being superior, but often must be made to beheve, by publicity, that such an article is an absolute necessity to his existence and the reasou for such necessity forced to his attention.
This same practice must ako be followed in ubtainiug business for an interuban, particularly so with interurban roads which generally are builf in territory long occupied by steam roads which have, through years of mere operation, installed into the minds of the patems that then line is the one to use between certain points.

The publicity of an iuterwban railway first commences with the conception of the idea of construction. The local newspapers are interested as a news item, they write up fully the proposed route, the methods of finance, the granting of the franchises, the material to be used in construction, the progress of construction, the kind of cars which have been ordered, their length, furnishings, speed, frequencey of operation, the probable rates of fare and the opening of the line, all of which must be judiciously given to the newspapers which are anxious for items of interest to their subscribers and to the public in general; and don't neglect the opportunity of enlisting the good will of the newspapers, as they are your best friends; they will publish the number of passengers carried on your first day of operation and on your legal holidays, when the large crowds are always on the move for a day's outiug, and as your operation progresses still keep the friendship of the newspapers. Other matters of interest may attempt to overshadow your importance to the public, but you have changes of schedule, new service, new cars, made necessary by the enormous increase of traffic, new parks opened, new excursion rates, new methods of safe operation, all of which are of iuterest to the publie and wre matters of publicity and continually calling attention to your property; no matter how large the city, how great the circulation of its newspapers, there is alwars a way fo interest the railroad editor or reporter in your property and keep it on the frout page, and this is due your property, if the best results are to be obtained.
In nearly every instance the editor or reproter of the railroad department will be exceedingly glad to co-operate with you if you are his friend. He is only endeavoring to publish a paper of interest to its readers and they are interested in your project, if you make them believe they are. You have a solid foundation for such interest in that you are operating a new and advanced method of transportation, one of the most vital integral parts of the growth

[^5]of the nation; yon cannot help but be in the light of publicity, through this avenue, if you will but meet the opportunity half way, and this avenue is so essential it must always be given first place in the list of publicity items. If we think of the things which sway our individual ideas iv all matters of interest, we must recognize that we form our opinions, to a great extent, on the publication of an article in some newspaper; other people are not different from us in this business, but merely have a different point of view, that is, they look mon their own business from the point of familiarity and on ours, the interurban, as something about which they want and need information. The newspaper is the aveme of such information and whatevery they read they accept, in a large measure, as the truth, and form their opinions accordingly. I do not mean by this that it is possible, in any manner, to receive the support and co-operation of any newspaper without a foundation of merit in the institution you represent.
Newspaper men are as wise as any people on earth and necessarily better generally informed, but having, as we do, the best, cleanest, most convenient and cheapest method of transportation, we are in a position to enlist the good offices of the newspapers and should we fail to do so, it is merely through lack of business judgment or diplomacy.

Again, it has become customary, in nearly all localities, to consult the newspapers for the time-cards of all railroads. We have yet to find any daily or weekly newspaper of general or special trade circulation which is not glad to publish our time-card on the basis of exchange of mileage ou a regular raluation contract. The rulings of the Interstate Commerce Commission on this subject has, to some extent, curtailed such a practice, but wherever it is possible to follow this rule of carrying the local time-card in the local newspaper we lave found it brings exceedingly good results, not only in the direct information to prospective patrons, but in making a friend of the newspaper publisher and, in fact, eulisting his services as a representative, to recommend your service personally, particularly so since the steam roads have almost entirely discontinued the practice.

FOLDERS

Early in our history, when we had but 65 miles in operation, we commenced the publication of a regular folder of four pages which gave only the local time-cards in detail and information as to passenger tariffs and special Sunday excursion rates: these were gotten out in the ratio of about one for every ten of the population we served at intervals of sixty days, and were distribnted in stores and residences in the towns and cities into which we were in operation. We had the idea that if we continued this practice, of placiug directly in the hand of the people interested the knowledge of the time of our cars and the rates we charged, that we would, in the course of time, entirely obliterate from their minds the fact than any other method of transportation was in existence in our territory and when they desired to travel to any point we reached they rould think of no other ronte, and I firmly beliere that we have succeeded in our efforts. We have continued the practice of issuing this folder every sixty days, now distributing 65,000 each issue, 22 pages each, and giving the local time-card of each division, through time-card of all through limited trains and their connections, information as to through rates, sleeper service, Sunday excursions and not forgetting to call attention to our express service.

It has always seemed strange to me that, without exception, steam roads have advertised and exploited, by every
conceivable device and method, their passeuger service, which generally represents about 10 per cent of their earnings, and are entirely silent on the subject of their freight service, although they claim that there are no net earnings in passenger business and they live entirely on the proceeds of the freight handled. I am aware of innumerable exceptionally fast freight schedules on different steam roads between important cities and liave yet to' see a single advertiscment of such service. I believe that in this there is a failure to avail themselves of an opportunity, and so far as our company is concerned we intend to follow the method of advertising such service to as great, if not a greater, extent than our passenger service. We have done this and during the past year, while all steam roads have been suffering from decreases, our freight and express business has shown a 30 per cent increase on lines which have been in operation for five years and a much larger per cent of increase on the newer operating lines. In this folder there i:s ne other advertisement.

We are absolute believers in individual advertising in such pablications and have discontinued all advertisements in opera house programs, school graduation papers, chureh programs, wall cards, hotel registers, etc., which are merely golten out for the benefit of the person selling the space, and with this idea in view we have sent ont neat frames, with our monogram on, to all hotels and public places, containing our time-cards on a single sheet and change these as the time-cards are altered. We issue a calendar showing the map of Illinois and our lines distinctly marked with the cities and towns we reach to the absolute exclusion of any other malroad. We issue a series of posteards with cuts of our cars and scenes of interest along our lines and with ilhstrations of public, State and county buildings, a series for cach large city, and distribute them gratis through our tickel offices. We issue special bills, 7 in . by 16 in ., often in varied eolored inks for special attractions, giving a separate issue for each individual attraction and a speeial distribution in the locality and among the particular people liable to be interested. We do this for circuses, Chattauquas, county fairs, for special Sundays at parks, poltical meetings, etc., and the distribution of such advertising, or I might say all advertising matter, is one of the most essential portions of publicity and one which is most liable to be neglected.
We have had a varied experience in our endeavors to reach the people with the advertising matter we have had printed and, although we tried the employment of distributing agencies and bill posters, licensed and otherwise, we frequently found that not one-tenth of the matter which we paid to have distributed had been put out to the public. We endeavored to remedy this fault by withdrawal of patronage and by reporting such delinquency of licensed advertisers to the secretary of their association, and although we have been repaid, in some instances, for the advertising matter wasted, we still could not be repaid for the loss of business occasioned by the breach of contract. We found the matter becoming so serious that we finally resorted to the employment of a man to devote his entire time to the distribution of advertising matter, a man who had been in the business for some years, and demonstrated to us that he, at least, was conscientious in his work, and who employs such help as is necessary to get out the advertising printed and stays with his men until the work is done and by this method we do reach the people. Looking back now over our former methods we wonder how much money we have spent for paper and printers' ink for no other pur-
pose than to start fires or fill back lots or ash barrels. This is really an important item and one which should have scrious consideration and attention, and every advertiser would do well to know whether or not the matter which he plans and pays to have printed is actually serving a legitimate purpose to the people he desires to reach.

Billboard advertising is used quite extensively by a number of interurbans and to very good advantage, particularly in the larger cities, and in this, as is true of almost all advertising, it is necessary to have your advertisement of a sufficiently striking and attractive nature to arrest attention and sufficiently plain and comprehensive to be read at a glance. Nearly all billboards are placed to catch the cye of the traveler and he must read the message you have for him at a glance. Probably 90 per cent of the people you reach by this method are the same, day after day, as about that percentage of travelers on street cars are regular patrons, using the same route daily, and by this medium, if you have attracted their attention and hold it, you are pursuing a method of education to produce, if you already have not done so, the result of eliminating the thought of any other method of transportation to the points you reach.

Diversion from daily routine is an essential part of existence and in this diversion the opera house occupies a prominent place. To encourage such attendance and travel from towns contiguous to large cities it is, of course, necessary that the opera house advertise along your line. In this the interests are identical and in consequence is it not fair, if the opera house furnishes the advertising matter and places it before the public, that you furnish its representative with transportation over your lines? This is practiced by a large number of interurban lines, and while it is a diversion from the general practice of transportation companies prior to the advent of the interurban system, it has proved itself a factor in the revenue obtained. This is true of picnics, circuses, Labor Day celebrations, lodge visits, political meetings and innumerable other attractions which are an excitement and a diversion for the people, occurrences in which they are interested and which you desire that they patronize from the viewpoint of revenue.

PARKS

The operation of parks by individuals or by the comfany interested is one through which a great diversity of results have been obtained. A public park, with attractions and amusements for its patrons, to be a paying investment to those operating the interurban, must be so situated as to be within reach of a sufficient population of a temperament desiring diversion, to pay the cost of park operation from the proceeds of its privileges. It is undoubtedly necessary for an interurban to make a low fare to any park to encourage attendance, and with this fact and the further nccessity of advertising this rate of fare and the liability of personal injury to passengers, necessity of extra cars and additional expense in all departments of their operation, the interurban cannot afford, in addition, to bear any part of the expense of the operation of the park. The method of identical operation and of separate operation have both been tried, with the consensus of opinion in favor of the latter. That there must be co-operationthere can be no question, and only by this can satisfactory results be obtained. Parks are beneficial not only in therevenue derived immediately from their operation, but from the fact that you are still pursuing the policy of education to travel to all points on your line via no other route.

Baseball games between teams representing cities and:
towns located on your line are a great incentive to travel. Not only is this true of the leagues composed of teams representing cities from different States and of national interest, but exccedingly gratifying results may be obtained from the formation of a trolley league, made np of representatives from towns located within a short distance of each other and between which towns and their representatives there is more or less friendly rivalry. It is the purpose of your publicity departnent to excite this rivalry and keep it alive, as it not only brings results in this direction, but in the formation of friendly attacluments between the residents of such towns and the consequent visits and trips via your line.

Your publicity department must not allow any town or city on your line to fall into a comatose condition. It must be kept alive and made to attract people from the surrounding territory; not only that territory reached by your road, but from the territory in opposite directions. The towns on your lines must be mate energetic, attractive and progressive. If the citizens are not of the natural disposition to do so, they must be made to see the necessity of giving Fourth of July and Labor Day celebrations, street fairs, earnivals, band concerts and various other amusements to attract the people from the surrominding country. Other towns and cities not fortunate enough to be served by your line must be made to see its benefits, to be drilled into the habit of coming to some city or town on your line for their diversion, and to make such a city or town their starting point, via your line, for whatever destination they desire to reach.

EXPENDITURE

On steam roads, as a general rule, an allowance is made in the operating expense of 2 per cent of the gross passenger earnings for publicity purposes, and on the interurban roads it would appear that, approximately, one-fourth of this amount, or one-half of 1 per cent, is the allowance made for this purpose. This practice may be brought about from the fact that it is generally presumed that an interurban will handle, between any two given points, eight times as many passengers as were formerly landled by the steam road operating between those same two points, and as the steam road rates were formerly 3 cents per mile and the interurban usually $11 / 2$ cents per mile, the interurban is earning four times as much gross from its passenger business, and in consequence the one-fourth allowance is the same amount net in both iustances. While this is true, it would not appear that the allowance given the publicity department of an interurban was sufficient. The interurban as yet is a new proposition, and while it is undoubtedly more than acceptable to the general public and fills a longfelt want, is a better, cleaner, more comfortable, and more convenient method of travel, it must, in a large measure, create $871 / 2$ per cent of its business. It must make this business; it must excite the people living along its lines to an extent that they travel because it is so convenient, and it must induce the people to spend in fares on its cars that portion of their earnings which everyone has for the purpose of diversion. This is no easy task, but requires constant thought, acquaintance with almost the individual disposition of your contiguous population, quick action in taking advantage of every opportunity arising which may induce that population to travel, and the entire elimination of the thought of any other method of transportation. These essential points are the ones by which the desired results may be obtained, and to produce them a sufficient allowance should be made to cover the cost.

THE POSSIBILITIES OF A WELL-CONDUCTED DEPARTMENT OF PUBLICITY*
by Charles E. FlagG, advertising agent, inland empire sYSTEM, SPOKANE, WASH.

The possibilities of a railway's department of publicity, it seens to me, depend largely upon the natural environments and resoures of the city or tervitory to be exploited. Given a city like Spokane, Washr, in the heart of the richest agricultural belt of the Pacific Northwest, with the great Cour d' Alene and Boundary mining districts near by, with its vast lumber interests in eastern Washingtom and northem Idaho and an outing region that comprises 30 magnificent mountain lakes and rivers, and it would be hard to imagine a more ideal field than that which the Tuland Empire System's and the Idaho \& Washington Northern Railroad's departments of publicity are endeatoring to bring fo the publie's notice.

The Spokane country, or the "Inland Empire," as it is known locally, extends from the Rocky Momatains on the dast to the Cascade Mountains on the west, Spokane being the only eity of importance between Butte, Mont., and Seattle, Wash., a distance of 800 miles. The area of Spokane's territory, extending over eastern Washington, northeastern Oregon, northern Tlaho and southern British Columbia, is greater than all of New England, with New Jersey and Delaware thrown in. This Spokane country in 1907 produced upward of $\$ 100,000,000$ worth of ores, timber and agricultural products, and its natural resourees are as yet hardly touched. People that migrate to the Spokane country seldom ever send home for money.
The city of Spokane has something over 100,000 population, five transcontinental railroads, $10 \pm$ miles of city traction lines and 200 miles of intermban electrie railroads. The Inland Empire System, which now has 20.5 miles in operation, began less than five years ago as the Spokane Traction Company, eity lines, and the Cour d'Alene \mathbb{E} Spokane Railway, intcrurban between Spokane, Wash., and Cœur d'Alene, Idaho.
The Spokane Traction division, which now has 36 miles of tracks in Spokane, reaches all the city's principal parks, including the Interstate Fair Grounds, and owns the Northwestern League Base Ball Park and franchise.
The Cour d'Alene division of 50 miles furnishes easy access to the city's nearby lakes and also provides the inain thoroughfare to the famous Cour d'Alene mining district, connecting at Cour d'Alene City, Jdaho, with the "Red Collar" steamers. The "Red Collar" line traverses Lake Cœur d'Alene and the highest navigable slream in the world, the beautiful, shadowy St. Joe River, one of the delights of the tomists to the Northwest.

The Spokane \& Inland division is operated by the Westinghouse single-phase alternating curent system and was one of the first successfully operated alternating-curvent roads to be built capable of hanling heary freight. This division has gained considerable pulblicity from the fact that representatives of five different foreign governments have been in Spokane to inspect its operation. The Inland Empire system handles heary fright by electric power from its own power plant on the Spokane River and has traffic arrangements covering both freight and passenger business with the Great Northern Railway, freight business with

[^6]the Spokane \& International and passenger business with the Northern lacifie.

So, in briefo, the Inland Empire System and the Idaho \mathbb{E} Washington Northern are reaching ont northward to the great timber belt and lakes, eastward to the mining country and more of Spokane's beantiful lake resorts, to the south to Colfax, Wash., and Moscow. Idaho, across the great Palouse wheat country, and wow the latter is looking westward toward the Big Bend wheat belt and the upper Colmmbia River basin, and in so doing these lines provide every possibility that eould be desired for the successful operation ot a department of publicity.

means of publicity

Take in the order of expenditures, we utilize, tirst, the daily newspapers: second, illustrated folders, official timetables and maps: then eularget photgs, billboards, street cars, posteards, sonvenirs and any other means that appeal to us as opportune and likely to bring results.

NEWSPAPER ADVERTISING

Practical experience on newspapers in Eastern and Westem States hats proven to us that no two commmities are sinserptible to exactly the same style of adrertising. for the reason that the newspapers vary in their typographical make-mp. Spokane is just as fortumate in the way of newspapers as in other assets, our dailies being motels, from al typographical standpoint. We have found if most practicable to nse gond-sized display spares in the evening "Chonicle" and reading notices in the morning "Spokesman Review. " Nine times out of ten an adrertiser"s idea is to fill his space with all the eopy that can be jammed between the rules, in order to get his money's worth. We do not see it that way, however, for in our summer resore and excursion advertising we state as briefly as possible facts about our trips, begiming with a seasomable, catchy headline or illustration and leaving a good white margin, which brings out our annonncement, in strong contrast to the other elisplays in the paper. In advertising onr lake and river exenrsions we use a line cut of a steamer which is particularly noticeable when used in an inland city like Spokane. Onr reading notices are also written with a catchy leadline and are set in body type of the paper on a local news page. Agate liners are out of the question, as they are too small to be readily seen.

In each suburban town throngh which our lines pass we run a small display in the weekly newspaper, consistito. of local timetable, varring this with amonements reanding excursion and colonist rates to and from the Eiss.

folders and maps

It is our belief that the first impressions of our selena gained by the traveling public are most lasting, and all literature shonld, therefore, be strictly high grade and compare farorably with the excellent train service maintained. We often hear criticisms abont the expensive literature issued, hat we insist that, one folder that is artistie enough to be kept and shown or mailed to ohhers covers more ground and makes a greater impression than twenty "ommon, ordinary leaflets which are generally glanced over and thrown away: We have never yet seen one of our folders discanded on the floor of our cars or depots.

A year ago I had the good fortune to attend the convention in this city and on returning west traveled several hundred miles by electric lines. Upon arriving at one of the principal trolley centers in the Middle. West I was surprised to find there was no official time-table of the various
lines available. In Spokane we have the official time-table folder, which contains all electric train time-tables, with those of comecting steancr lines as well as the time-tables of all stean roads; the foder also contains a skeleton map of all railroads radiating from Spokane, so that a tourist has all the information he may desire in concise form. This alone is, I believe, one of the strongest inducements for the tourist to stop over in Spokane and see the surrounding country rial our lines.

Good color majs are very important, especially in a new country and where a system is continually making extensions. Nothing will put the traveling public straight so quickly as a map showing the principal points reached, distances and comertions with other lines.

The cover of our official time-table folder is designed with border of clectric trains in sillonette on background of "Beu Day" marline ruing, which, with the red display lines, makes practically a three-color cover with only two press runs. The oval halftone inserts on either side are changed monthly and give opportunity to feature terminals, trains, etc.

The past season the Inland Empire System issued a landsome color map, made by the well-known "Complete Press," of Buffalo: the map is in folder form, the reverse sitc being utilized for good-sized halftones of lake resorts and hotels, with brief exphatory lines under cach. The same map printed on heary plate paper we have also had framed for our depots and leading hotels.

Another mapr idea we are using is a mere skeleton of one: lines, showing the principal towns and lakes reached, making it possible for patrons to understand at a glance onr contire system. This we have framed and placed in the front end of each suburban coach at the right of the dowe on a level with the eye.

In the preparation of our folders, lake, hotel and tarn booklets, we travel on the theory that first of all the cover design should be of such an original and attractive nature as will catel the eye and force the prospective patron to pick it up as something umsually iuteresting. It is the cover that makes the tirst impression and if vacation time is near, pictures of camp seches, lakes, rivers, momntains and pine trees are sure to interest and suggest. Our "Hayden Lake" folder this season had the reproduction of an original photograph of pine trees on the covers and was mailed out with fresh pine needles in the envelopes to carr the balsam of the forests direet to the recipient and add to the effectiveness of the lake and forest views. We never issue a folder or booket with a blank back ever, as we belicre one corer is practically as valuable as the other: We avoid, as far as possible, any retonching of onr riews, sticking closely to the reproduction of the original photograph. The pine tree cover desigul of our "Bozanta Tasem' folder is merely a pholograph of the actual forest trees, as is also the vellow pine tree trunk of our "Idaho \& Washington Northern" folder, the pine cones on our "Pend Oreille" picture and the rope design of our "Red Collar Line" folder.

Gur object in the preparation of folder copy is to rm our illustrations as large as possible and our type matter as hoief and concise as we can. To crowd several pictures into a group is sure to lose the effectiveness of the entire lot. One grood clear full page of halftone, with a line or two of descriptive matter, is worth ten pages of groups and as many pages of reading matter. The public will not stop to reat. In my own experience I do not recall ever having read through a single page of the descriptive matter
so profnsely used in the many booklets that have come to my notice. One thing lingers with us, and that is pictures that are above the ordmary, "specially beantiful views of nature. When either the Inoner \& Kio Grande or the Canadian Pacific Railways are mentioned, one (ammot help) but think of He Grand Canyon of the Colorado and the Canadian Rockies, which have been so hambanmely picemed by these roads.

PICRURE ADVERTISING

Now, while 1 an mot selling cameras or dereloping papers, I am adrocating picture alvertising as the quickest and most convincing means of publicity. This may be parly due to the fact that there are such grand possibilities in Spokane's lake region for obtaining munsually beantiful views. Onr lakes are piotnesturely set in the rugged monntain ranges and our rivers and trout sheams have swift waters and riffles that gladrlen the hearts of sportsmen. We have photographers, 100 , hlat calr do justice to our scenery, as a glance at our albums will prove. Every summer our official photographers obtain a fresh supply of lake and river views for no the following season, and to secure the proper material it is found necessary for the publicity man to accompany them on fishing and canping trips, one of the pleasant features of publicity work.

Our chief argument in favor of pictme advertising is no matter how busy or ignoratul the person, a photograph can be read and the impression gained instantly. If the press of to-day conld afford to use paper that would reproduce fine halftones, it is safe to sily hat the Inland Empire System and Idalo \& Washington Northern would devote all of their newspaper publicity to the reprodnetion of riews from along their lines.

We select our best views for enlarging and have them framed and hung in our depots and in good locations in public buildings. We also have complete photo albuns in our general passenger and publicity departinents, as well as on our parlor cars. with the idea of entertaining and educating the public.

Photography is also playing an important part in onr claim department, showing as it does the relative position of the cars, crossings, ete., when accidents oremr.

In the distribntion of nur literathere wo whime mainge lists of all clubs, fraternal onders and special lists compiled by our agents. We are parlicular to supply all hotels with folders and to keep rlecks well informed regarding our excursions and resorts, as they undonbtedly are able to steer a great deal of transient trade our way. Clerks in sporting goods stores are also kept posted regarding our fishing and lunting resorts. The transeontinental lines also help, us in distributing literatme in the east when receiving inquiries about the Spokane country.

BILLBOARD PUBLICITY

Onr billboard posters this year are 16 sheets, containing only 24 words and reprodnction of excursion steamer Idaho and one of our four-an electric trains, brevity being our aim. Sinall cards of the same wording and design are also used for tacking. With these posters we adrertise onf 200-mile daily and Sumlay excursions to the beantiful, shadowy St. Joe River, via our Caur d'Alene Division and connecting Red Collar stemmers. The round trip of 200 miles is made in one day at a fare on week days of $\$ 4$ and on Sundays of $\$ 2.50$. Ont advertising "ar, which lias a 16-sheet space on either side, is used on our main streets during the noon lome and evenings, to advertise exembsions, ball games, etc.

Sill other means of publicity used are placards in street (ars and various souvenirs, such as grip) tags, drinking enps, ete. Onf l'end Oreille River exemsions we advertise bỵ giving a beantiful color panel of Gand Viow Canvon to each exemrsomist.

THE DEPARTMENT ITSELF

The Inland Empire Sistem's depardment of publicity is located in the Electric 'lerminal; its walls are completely covered with pietures of our equipment, lakes ant rivers. Albums of views dating back to the inangutation of service on onr several lines are open to the publir at all times. There are days when the phblieity man must needs spend his entire time entertaining and answering telephone queries about excursions, camping and fishing trips, and cvenings when he can do his regular work.

To inject the proprer amoment of enthusias.n into my 'outing dope'" I find il necessary to spend some time, principrally Sundars, eamping and fishing. Then it is that we get our best pictmes, for nothing appeals quite so strongly as views of campers and sportsmen actually enjoying their outings, boating, bathing, bishing and cating. It is also necessary to be roady at all times to tell just as good a fish story as ayy cheerful liar that may bob up.

Still amother and rery imporant feature of publicity Work is putting the reporters stratght. The average railroad man steers clear of the sersation monger, but when treated with some degree of consideration, the reporter is not such a bat fellow. He slould, I believe, have some technical knowledge of the run he is covering, for this would very often prevent needless misstatements and wrong impressions creeping into loadlines. I have in mind an aceident that oceurred on the Cxur d'Alene Division two rears ago. A man had endeavored to whip up his horse and rass in front of our Shoshone Flyer, but just failed to make it, his horse roming into the door of the bageage compartment of onr No. 1 motor. It was such an umusual thing for a rig to rmm into a train rather than vice vers: that it was 11.09 p . m . of the same day before I could convince the reporter of the facts in the case and then not until he was shown the indentation of the horse's tecth in the baggage car door. As a result, the story appeared in the paper correctly, laying the blame where it belonged rather than on the motorman as it otherwise would hare been.

The possibilities of a department of publicity in the Pacific Nothwest are almost limitless. The growth and development of the great Spokane eomotry, in a large measure, depend upon publicits, and as the Indand Empire Sistem and the Idaho \& Washington Notheril extend their lines nortly, east, south and west to help, develop and ho share in the rich resourees nature has stoced there, the possibilitios and responsibilities of the publirity department we constantly increasing.

The members of the Aecountants" Association had a "Get Together" luncheon on Wrednesday at the Marlborough-Blenheim. President R. N. Wallis called on a nmmber of those present to make short talks. Remarks were made by the following: F. E. Smith, W. F. Ham, C. N. Dulfy, IV. G. Ross, 11. C. Mackay, II. M. Edwards, Frederic Nicholas, F. IV. Sweney, IV. E. Hamingion, C. R. Cockle, Will Browne, 1. I」, Liun, Jri., F. Dabney, and IV. H. Forse, Jr.

The Stome \& Wrebster Enginecring Corporation is lareely represented by Mr. Potter, of Texas.

REPORT OF THE COMMITTEE ON POWER DISTRIBUTION*

by w. J. harvie, chairman, James heywood, J. p. boyden, G. D. NICOLL, W. H. MATHEWS.'

As this is a new committee, it has seemed best to formulate a general plan or outline which might be followed by this and future committees, and to fill in portions of the out line with such deductions as the committee has made this year. In order to assist in the work, sets of questions covering a considerable portion of the outline submitted, were prepared and sent to member companies. These questions were responded to very promptly and by a large proportion of the members. Some companies, especially, have gone to considerable trouble in providing the committee with data, specifications and blue prints, all of which have been of valuable assistance to it in the preparation of this report.

It is respect fully suggested that the future work of this committee be carried on in accordance with the general outline here submitted, with such additions or further subdivisions as may seem advisable.

In the discussions of the committee it has developed that there is a large field for standardization of material and practice in the power distribution department of electric railway work, and some effort has been made along these lines by the present committee. It believes that the association will be benefited by continuing the consideration and recommendation of standards by this committee.

The outline submitted by the committee is as follows:

fEEDERS

I. higit tension.
(a) Undersround.
(b) Overhead.
(c) Lightning protection.
II. LOW TENSION.
(a) Underground.
(b) Overhead.
(c) Lightning protection.

WORKING CONDUCTORS
I. ordinary trolley.
(a) Conductor.
(b) Ears and clips.
(c) Insulators and hangers.
(d) Supports.
(e) Lightning protection.
II. THIRD-RAIL.
(a) Conductor.
(b) Insulators.
(c) Supports.
(d) Protection of conductor rail.
III. Catenary.
(a) Condnetor.
(b) Suspenders and clips.
(c) Messenger cable.
(d) Insulators.
(e) Supports.
(f) Lightning protection.

JV. UNDERGROUND TROLLEY.
V. CONTACT SYSTEM.

RETURN SYSTEM
I. Bonds.
II. supplementary copper.
III. ELECTROLXSIS,

CONDUIT SYSTEM
I. DUCT AND CONDUTT CONSTRUCTION.
II. Manholes.
III. ventilation and drainage.

[^7]The attention of the present committee was confined largely to the following items in the above outline.

FEEDERS-II. LOW TENSION

(a) Underground-It seems to be standard practice to use saturated, paper-insulated, lead-incased cables foi underground work, the paper being $5 / 32 \mathrm{in}$. in thickness and the lead from $1 / 8$ in. to $5 / 32 \mathrm{in}$. in thickness. Replies to inquiries show that one large company is using $5 / 32-\mathrm{in}$. rubber insulation with triple-braid cover, without the lead sheath. This company seems to indorse this method without hesitation. As this practice has been in use only about three years, the committee does not care either to condemn or to recommend it. Λ full discussion of the subject, however, is urgently invited.

It seems to be the general opinion that some kind of fireproof protection is needed on the outside of the lead cable sheath in manholes. Some roads are using asbestos, saturated with a solution of silicate of soda. A split-tile protection is recommended by one of the large roads. This is undoubtedly a superior protection and is advisable if local conditions permit its use. It is only fair to say in this connection, however, that the road referred to offers the above suggestion only as a proposed improvement, and has not yet installed the tile on its own property. The committee, however, agrees that the practice suggested is a good one, but realizes that it would probably not be practical to use it on systems already in service without rebuilding its manholes.

WORKING CONDUCTORS-I. ORDINARY TROLLEY

(a) Conductor.-The majority of reports received by the committee indicate the use of No. 00 round wire on city and interurban work. A number of companies, however, are using No. 0000 wire on interurban work and for renewals on city work. In view of the heavicr equipments which are now being operated, the tendency toward the heavier wire is a natural consequence.

The matter of whether round or special shapes should be used, is, however, largely a matter for future experience to determine. The committee believes, however, that the so called "figure eight", wire should not be considered.

It is not the intention to discuss here the use of special alloys of copper wire for especially congested districts, as these cases form special problems for the engineer of each individual company to work out.

Regarding a standard height for trolley wire, the committee believes it good practice, and recommends, that the height of trolley wire above top of rail be standardized at 19 ft .
(b) Ears and Clips.-The majority of roads reporting show the use of elinch ears on work now in service. Some roads, however, on which grooved trolley wire is used, are using mechanical clips, but they find that when these mechanical clips are to be replaced it is usually necessary to substitute for them the clinch ear. This fact may in time influence electric railway companies in the determination of the type of wire to be used, as referred to above, and this has, therefore, been left for future committees to investigate.
(c) Insulators and Hangers.-It appears that electric railway companies are using all types of straight-line hangers and insulators with the round-top bell type predominating. This committee believes that further investigation shonld be made by our successors before making definite recommendations on this matter.

In strain insulators the use of wood is being favorably
cousidered by a large number of companies. This type oin insulation has certain very marked advantages, principal among which are: low first cost, freedom from short-cireuits and the fact that defects can easily be detected bo visual inspection.
(d) Supports.-It is the experience of clectric railway companies that both wood and iron poles are subject to exeessive deterioration at the ground line. Many companies have begun the practice of using so-called wood meservatives for wood poles, but up to the present time none of these has been able to show definite results.

For iron poles the committee caln, however, recommend withont gualification the nse of an iron sleeve shrmen on all iron poles at the ground line. This sleeve should be 2 ft . in length and so placed on the butt section as to lave the middle point of the protecting sleeve at the gromed line when the pole is set in place. It is good practice in reclaiming corroding iron poles to pace a protecting slecte like the above and 1 in . larger in diameter than the pole at this point, over the butt section at the gronnd lines, and then fill the space remaning with some self-hardening fluid which will effectually keep ont moisture and restore the original strength of the pole. Sour committee recommends that iron poles be purchased complete with this protecting sleeve.

if. TIIIRD-RAII,

(a) Conductor- - Six roads have reported on thiderail construction. Three of these are using the over-muning type and three the under-rmming type of thind-rail. One type of over-ruming only is deseribed. This consists of the A. S. C. E. section weighing, in one instance, 85 lb . per yard and in the others 100 lb . per yard. Two types of under-ruming rail have been described: the ShragneWilgus type and the Farnham type. The former is the well-known bull-head type weighing 70 lb . per yard, and the latter is a U-slaped section, varying in weight from 55 lb . to 80 lb . per yard.
(b) Insulators.-Three kinds of insulation are used with the over-running type of rail: wood, reconstructed granite and composition. Four kinds of insulation are used in the under-running type: wood, porcelain, semi-porcelain and composition. The breakage of insulators for the over-running types reported is 2.76 per cent ner year. The breakage on the under-ruming type is 3.36 per cent per year, based on the information now in the hands of the committee.
(c) Supporis.-The spacing of third-rail supports varies without respect to the type of rail. The spacing most used is that of 10 ft ., with a maximum in some instances of 11 ft. and a minimum of from 5 ft . to 6 ft . These locations are apparently governed by the lengths of third-rail and the standard tie spacing in use. The weights of brackets varies between 9 lb . with the over-running rail and 13 lb . to 20 lb . for the under-ruming rail.

The commitlee can see no reason for such great diversity in spacing of supports, and would recommend that a spareing of 10 ft . be used on all third-rail constrnetion where 30 ft . conductor rail is used, and 11 ft . where $33-\mathrm{ft}$. conductor rail is used.

In all cases but one, the support for the bracket is an extended tie, which is also a part of the track structure. In the one case referred to it is entirely independent of the track structure. It might be well in this connection to note that the road referved to reports an absolute lack of insulator breakage, undoubtedly aceomted for by the above condition of supports independent of track strmeture. The completed structure is illustrated in Fig. 1 for the benefit
of those who are in a position to nse this method of installation.
(d) Protection of Conductor Rail.-Nome of the companios reporting oser-rmming third-ral type of constraction has protection installed throughont, while the miderrumning type is protected by wood or fibre. The committer feels that in thideral installation it is lest pactice, and it recommends, that protection be installed thronghont. where clearances permit, irrespective of whother it be for nse on surface, subway or clevated work.

1H. CATENARY

The committee was instructed to give sperial attention
 ont these instractions, information has been obatined from combaties which have this form of eonstruction ahredy installed. A valuable proer on the "Application of the Thecry of the ("vemary 1o Roilway W"urk," wieh stombt be ef service to me nbers of the Asseriation, hess alse been secmed. This paper forms a pert of the reoort and yome committee takes this opportunity to acknowletge its indebreducss to the anthor, R. L. Allen, Enginecr, Arehibald

Fir. 1.-Power Distribution-Third-Rail Construction in Subway of the Philadelohia Rapid Transit Company

Breds Comproy, Svracuse, N. Y. [This paper will be fomm elsowhere.-Eds.]
(a) Conductor.-The majority of companiss rementing shew the tise of No. 0000 grooved trolley wire for catenary work, which size and shape the con mittee recommends. There has reently been adopted by the manafactures of wire a stomded section known as the "Anerican Standard." After salficient experienee shall have been had with this section, it shombd either be adopted or montifiod by the proper committee, and passed npon by the Nascotiation fore use as a standard.
(b) Suspenders and Clips-All companies show the ase of the mechanieal elip and there seems to be no donbt but that this will contime to be modern practice.

A rigid form of suspender is recommended by the rommittee. The question as to whether the suspended should clanp the eatenary is still an open one. In this comection
attention is ealled to Mr. Allen's paper in which he refer: to a method adopted in Eurem. designed to prowide a sliding feature by means of an addiíonal horizontal cable parallel to. and a few inches above the troller wire and salporting the irolley wire by sliding clips. This seems to be : step it the right direction alld the eommittee insites a thorongh diseussion on this matter at the comvention.

The present practiee in suspender spacing varies from 1010 ti feet. Mr. Allen's deductions are in faror of a spacing of tron 20 to 30 teed. The eommitter would also like to hase this subject further disensed in the consemtion.
(e) Messenger Cable.- Amonge the lines insalled there is a wide disergence in sizes amd ghality of eable nsed. The committere recommends the the of the highest strength cable that rou be whaned, in order to derelop the full adrantege ef the catenary type of ronstruction. The eable should be double galvanized and the eommittee submits the following specifirations for gatranizing.

The galvanizing on the wires composing the cable shall consist of a coating of zince erenly and uniformly applied. The zine shatl he so applied that if will adhere firmly to the surface of the steel wircs. The talvanizing shall be capable

Fig. 2.--Power Distribution-Showing Light Type of Steel Bridye Sunports Used in Catenary Construction
of the following test: The sample shall be immersed in a stablard solntion of "opper sulphate for one mimnte and then renomed, immediately wa shed in water horonghly, and wiped dry. This process shall be repeated. If, after the foirth immersion, there shou!d be a coppre colored deposit on the sample, or the zine should have been removed, the lot from whith the sample was taken shatl be rejegeted.

The standard solution of copper sulphate shall consist of a solution of commercial copper sulphate erystals in water. This solution slath have a specific gravity of 1.185 at seventy deemes Fizhe. While a sample is being tested, the temperatue of the standard solution at ho lime shath be less than sixty deveres F: hn'. now more than ciohly degrees Fahr.
(d) Insubators.-The subperet of insalating supports for the messenger cable on hioh tension semice resolves itself into the use of porcelan chtirely: the shape of insulators deperding lagely mon the voltage used.

Stran insulators for heaw strains should also be made of porectain. For steady strein- and pull-offs, the nise of wood is permissible where monlerate voltases are used, and \therefore combination of wood and porcelain for higher voltages.
(e) Suppots.-The more reent developments in supproting devers for catentry work indicate the nese of stractural steel bridges rather than poles. thas deriving the full benefit of the catemary t?pe of construction in the inat
ter of long spans. Fig. 2 shows the light type, as used on ordinary electric interurban service.

The opinion of the committere is that a bridge form of construction thould receive very carefnl consideration at the hamds of companies contemplating the installation of catemary before final decision is reached on the type of supports to be used. This is made an especially important comsideration in view of the recent experience in high mainlenance costs. due to exeessive deterioration of wood pole lines.

APPLICATION OF THE THEORY OF THE CATENARY TO ELECTRIC RAILWAY WORK*

B' R. L. ALLEN, ENGINEER, ARCHBALH-BRADY COMPANY, SYRACUSE, N. Y.

The term "catenary construction" has been applied to a tuethod of stspending the trolley wire by hangers from a mossenger cable. As this cmables the use of a steel messenger cable having a mit working strength of over three times that of hard drawn eopper we can have longer drans. fewer supports and a eontact wire which is practically level. But to obtain these advantages the design must be carefully worked out in every detail as the strains. are greater and the construction more complieated. In many respects an overhead contact wire may be considered is a track, the same qualities being desired and similar troubles met with as in the track work. The moving load is, of conrse the mpard pressure on the construction exerted by the trolley wheel or pantagraph. As in a track, it is desirable to have the contare wire slightly elastic in aler to enshion the effects of the moving load. To obtain this cushioming effect mitarmly all all proints is one of the dificultios :net with; the other is to take care of the expansion and contraction of the copper trolley wire due to change in temperature. These same points apply to the adinary spall wire comstruction. The stame due to wind and sleet are the least of the difticulties encountered, and ram be readily taken "are at with the materials at hand. Thi this respect it may be moter that while a span of abont :300 ft. between supports is the linit at the present time, it is possible to nse much grealor spans without exeeeding the safe working strength of stopl "able. The question of the lateral swaying of the trolley is wot so important as it looks on paper and may be taken care of by pull-offs. The supports may be wooden or steel poles, span wires, or steel bridges, each of which has its adsantages and disadrantages, depending to a certain extent on local conditions. In general the use of long spans is desirable, especially When a ligh voltage is used on the trolley, reducing the momber of insulators to be taken care of. This point aphes where a steam traffic is to be mantained on the same 1 radks, as the exhonst is liable to amse trouble with the insulators. Where the foundations are in soft ground, bridges have the adrantage in that each structure is stable in itself owing to the wide base. On the other hand, there are ploces where the ase of lorackets may be necessary becallse of obstructions on one side of the right of way. Where more than fomr tracks are to be crossed a span wire is probably the best solntion, althongh this involves either a gayed pole or very heary fombations. In certain parts (if the comutry where good wooden poles are eheap and

[^8]readily obtamable，they will be fomme to rednee the limst rost，althongh the saring is not a rery large per cent of the total cost of the werlhead ronstruction．

It is shegested that there may be arlvantages jut the nse of long spants throngh city streets where flere are nsually great objections to frequent poles．The writer seres un reason why spans of 300 ft ．or even more may not be nsed， especially where the line is straight．I eonst metion of this kind would present a handsome appearance and would not be so liable to be ant in case of lire．＇There cost sbondrl not
 as the rast of steel poles does not incrase in propertion to their strength．

The loads to be considered in preparing designs，are the dead weight，sleet and wind load．Sleet is genemally as－ shmed at $1 / 2$ in．thick on all eables．The wind maty be assumed at 1 lb ．per rambing foot of cable，as being well on the sale side．With these loarls the structure should be so designed that the sate workinge stress is not ex－ reeded．This should be abont for－thiteds of the rlastre limit for steel，one－fourth of tha ultimate strenght for woed．In the witer＂s jutgment，hatd drawt eopmer mat be stressed up to ab：nat 30,00 ）lb．per sy．in．maler these conditions and an exeessive load will ratnse it to stretcla in－ stead of breaking．

In stringing the messenger cable it is desibable for aljust it for sag before the weight of the trolley and hangers is pht on．In order to do this the elasticity of the eable must be taken into comsideration．The calronations are rather romplex，involving a long enbice equation ame，in order fo obtain a quick method for practical we．the writer has worked out the graphice solution shown in the ilhastation．

This is not original．being based to a certain extent on methods stogested by H．W．Buck，of the Nixgmad Falls Power Compons，and also by Harold lemer．l＇li．l．．in the ＂Electrical Wor！a．＂

By this methed we fimt the true mastrexsed lemoth of the rable b：（on maring two curres，one of whisl expresses the

By sulbstutine in this the werght of a symare inch of material one font long，we obtan，for steel cable the stress per splate incht．

$$
\begin{equation*}
\mathrm{P}=\frac{1 a^{3}}{2.3: 1}, \tag{0}
\end{equation*}
$$

alid lom（on！per

$$
\begin{align*}
& \mathrm{P}^{\prime}=13^{3} \tag{i3}\\
& 2.08 \mathrm{f}
\end{align*}
$$

The stretels is

$$
\begin{equation*}
S^{M} \tag{f}
\end{equation*}
$$

 In its own weight is

$$
\begin{align*}
& N=1.3 \tag{i}\\
& \frac{3.35 \mathrm{M}}{2}
\end{align*}
$$

and lur（ロ！！er able

$$
\begin{equation*}
\frac{s=13}{2.08 \mathrm{MM}} \tag{6}
\end{equation*}
$$

bquations（．i）and（ 6 ）are chase appoximations．
The length of a parabolir remve for a span＂ L_{4}＂is

$$
1+8 \mathrm{~d} z
$$

3 L
：und the difference betwern the chord athe the rome in

$$
\Delta \mathrm{l}=8 \mathrm{~d}:
$$

31
In the erore sheet shown the sag is plotted on the rea－ lical and the stretch on the horizontal seale．The straight line represents changes in lemeth dae to temperature．The print where the rarves cress is that at which the cable will

Theory of the Catenary－Carves for 300－Ft．Span of Catenery Ccnstruction
stretell of the erble under its own weigh for rabious sugs： the ofter，the difference in length botween the trate parabola and the chotd between the points of xypurt．The comes for stretrh are derived as follows：

The renter strain in any shspended rable is．

$$
\frac{W \mathrm{I}^{2}}{8 \mathrm{~d}}
$$

Where il equals lation in th．per rumaine font．

1. s span in feet．
and d＂．say infeet．
 spall．The corves shaw that a stece rable 300 flo longe． strong between supple 300 ft．aprot，will sag down 3 fi．10122 in．mider its＂wh weight．The horizontal dist：an＂ between the curves reperents the difference betwern the matressed langth of the rable and the ehond between the

 all ：dhlitional loit is pat on the ebble．as．for instance．1he

tiple of the weight of the cable itself and the stretch will be increased in proportion. In the case of a certain single catenary the messenger supports a dead load of $31 / 2$ times its own weight and has a net sag of 6 ft .6 in . By plotting a new curve for stretch from the original, which may be doue by the dividers or by direct multiplication of the abscissae at two or three points, we can obtain the new pesition of the cable since the horizontal distance "a" between the curves will remain constant-in this case at 0.09 ft .

For instance, if it were desired to string a messenger so that it would have a sag of 6 ft .6 in . with an aditional load of $21 / 2$ times its own weight, it should be strung to a sag of 4 ft . $91 / 2 \mathrm{in}$. In a similar way the effects of temperature may be ascertained. Since any rariation in temperature affects the true length of the cable, we must add or substract this from the distance " Λ " and then find the point between the two "wres to which it corresponds. If, in the example above, it were desired to obtain the effect of a drop in temperature of say 50 degrees, we find this will shorten the cable to 0.10 ft . The algebraic sum of -+0.09 ft . and -0.10 ft . is -0.01 ft . and we find the curves are -0.01 ft . apart at 5 ft .10 in . sag. It will be noted that the elasticity of the cable tends to reduce the effect of the aditional load and of the change in temperature. In the former case the fact that th load is multiplid by $31 / 2$ does not increase the strain in proportion and in the latter case the sag does not vary as mucly $:$ s might be experted.

As the stretch is a direct function of the strain per sq. in., this can be determined also by reading the scale at the top. The normal stress per' square inch in the example given above at a sag of 6 ft . 6 in . would be 20.500 lb .

Th preparing these "arves the value of " 17 " for steel is taken at 22×10^{6}. The value commonly used is 29×10^{6}, which is no doubt correct for a steel bar but it does not take into consideration the fact that in a stranded cable there is a tendency for the wires to draw together under stress, which causes the cable to increase in length more than would a solid har of like cross section. The modulus 22×10^{6} is derived from several tests of steel cable, the stretch being measwred on a length of 100 ft . in order to reduce the probability of error. The pull was measured by a dynamometer which was checked before and after the tests by lifting a pile of steel beams of known weight.

As regards the raising of the contact wire from the upward pressure of the trolley, some observations taken from a catenary trolley of 300 ft . span may be of interest.

The net sag of the messenger cable at that time (in winter) was 5 ft .8 in ., the contact wire being cambered 10 in. a1 the center, and was very tight ; the langers were spaced 10 ft apart. A scale was applied to the trolley at 5 ft . intervals along the span and lifted until it registered 25 lb . The net rise of the trolley was then measwred. This increased gradually from $1 / 2 \mathrm{in}$. under the bridges to $23_{4} \mathrm{in}$. at the center of the span. It may be noted that there was practically no difference between the stiffness of the trolley at the hangers and at a point uidway between them.

The change in length of copper due to changes in temperature is one of the greatest difficulties in the maintenance of overhead work. A drop of 100 degrees in temperature will cause a copper bar to contract approximately 1 in . for everv 100 ft . of length. If it be restrained at the ends this will mean an additional stress of $2,500 \mathrm{lb}$. in a No. 0000 trolley. In span wire construction this is partially taken care of by the variation in sag of the trolley wire. In catenary construction where the trolley is supported at
short intervals there is no chance for the trolley to take up the slack by sagging, consequently it is liable to become very slack in warm weather. For this reason the writer believes that unless there is some counterweight devised for maintaining a constant tension on the trolley, the hangers should be spaced not closer than 20 ft . A system has been developed on the continent consisting of a single catenary with an auxiliary messenger which is parallel with the trolley and about 3 in . or 4 in . above it. This secondary messenger is lung at intervals of about 30 ft . by hangers from the supporting cable, and supports the contact wire by sliding clips located about 10 ft . on centers. The trolley wire is kept at a constant tension by counterweights located at long intervals. This construction also provides a practically uniform cushioning effect, as the trolley clips are very light and slide up and down on the secondary messenger.

It remains to be seen whether this complication is necessary and whether practically the same results canot be obtained by a development of the single catenary system on the lines suggested above, as follows:
(a) The use of a light plow steel messenger cable strung to a small sag. This will allow full advantage of the elasticity of the material.
(b) The hangers themselves should be as light and flexible as is consistent with strengith and durability. This will tend fo prevent sparking at the points of support.
(c) The hangers should be spaced 20 ft . or 30 ft . apart to lake care of the expansion and contraction.
(d) There is no reason why spans of 300 ft . or more cannot be used.

NEW APPARATUS OF INTEREST

The Westinghouse Electric \& Manufacturing Company is showing two new interpole railway motors. The larger one is rated at 160 lp 550 volts, or 175 hp 600 volts. Several laundred of these motors are now in use on the Boston Elevated Railway. The smaller motor is rated at 50 hp 500 volts, or 60 hp 600 volts.

The purpose of the double rating is that the operator may not be misled in the selection of his equipment, $500-550$ volts having been the usual standard railway voltages. At the same tine, it permits of roads which can obtain approximately a 600 -volt average taking full advantage of the saving in conductor and equipment cost made possible by the ligher voltage. Great claims are made for the efficiency, overload capacity and commutation ability of this class of motor, of which the Westinghouse Electric \& Manufacturing Company is manufacturing a full line.

The same company is also showing a large single phase motor of the same type and size as now used on a number of roads throughout the country. A very satisfactory condition is reported in the operation of this single phase system, especially in connection with heavy railway work. The New - York, New Haven \& Hartford Railroad is using more than 40 locomotives equipped with this system with success, both as regards operation and maintenance. Other successful heavy service installations have been made by the Grand Trunk Railroad Company for the operation of trains through Sarnia tunnel, by the Spokane and Inland Railroad Company, and by the Erie Railroad Company, on its Rochester and Southern division. The latest road to put in operation this system is the Chicago, Lake Shore \& South Bend Railway Company, operating between South Chicago and South Bend, Indiana. One of the cars to be used on this line is now being exhibited on the track space by the Niles Car Company.

SPRAGUE-GENERAL ELECTRIC AUTOMATIC CONTROL*

by f. E. CASE, ENGINEER OF RAILWAY EQUIPMENT, GENERAL ELEC'TRIC COMPANY, SCHENECTADY, N. Y.

When Mr. F. J. Sprague first suggested the use of several motor cars in a train, all controlled by means of pilot wires from the head car, he urged the adoption of antomatic acceleration; that is, means for maintaining a definite amount of current input to the motors. In the first commercial installation of multiple unit control, on the South Side Elevated Railway of Chicago, each car was provided with a current limit relay for automatically governing the motor current, independent of the other cars in the train.

The form of multiple unit controller in universal use, both in this country and abroad, comprises separately actuated switeh units, or eontactors, each one having the function of a controller finger and its acconpanying cylinder segment. The contactor manufactured by the General Eleetric Company is directly operated by an elec-tro-magnet which derives a small amount of line current through the master controller.

The eontactor type of controller has many advantages over the eylinder form, ineluding the ability to provide a powerful individual magnetic blow-out for promptly extinguishing each are, the isolation of the contacts, and the rapidity of making and breaking the cireuit. As each contactor is a complete element, it has the further advantage of great flexibility in arrangement and grouping for obtaining various motor and resistance combinations to suit different conditions of operation and caparities of equipment.

Type M (contactor) control manufactured by the General Electric Company has already been made for use with motors ranging from only a few hp to the enormons size of $6,000 \mathrm{hp}$ used in steel rolling mills.

For railway serviee the contactors may be grouped in a single box and located below the car floor, or, if on a locomotive, disposed about the eab in convenient places without using valuable space. When new conditions arise which require special circuit comnections, there is little difficulty in arranging the contactors to suit.

In all the latest K type drum controllers the transition from the series to parallel connection of motors is accomplished by quickly inserting a portion of the original starting resistance in series with the two motors, and then shunting one of the latter. This shunting motor is then open circuited and connected in parallel with the other other motor and in series with the resistance, which is afterward cut ont in several steps.

One of the important improvements in the operation of railway motors, first put into general nso with eontactor control a few years after its adoption, was the "bridge" method of motor and resistance eomnections for making the transfer from series to parallel. The exact method of accomplishing this will be deseribed later and illustrated by a diagram.

Many of the type M , or contactor control, equipments furnished by the General Electric Company are of the hand or non-automatic type, in which the master controller is provided with definite points, the same as an ordinary street car controller, and the motorman notches up step by step in a similar manner. This form of control is the simplest in circuit eonnections due to the absence of automatic parts.

[^9]At the present time there are approximately 500 Sprague General Electric type M coutrol equipments in operation in this comtry and other parts of the world, of which number approximately 30 per cent are of the autonatic type, in which the current input to the motors is governed by a linit relay.
The automatic form of control has been fom desirable by different railways for the following reasons:
First, to prevent the abuse of the motors and equipment due to too rapid controller "feeding,"
Second, to obtain an efficient and uniform acceleration.
Thind, to insure the maximum comfort to passengers during this period.

It takes out of the hands of an indifferent motorman the ability to make a very jerky and disagrecable acceleration, and he can coneentrate his attention to the track ahead.

Last year, in the report of Committee on Eleetrical Equipment, 42.6 per cent of motor eommutator and brush holder troubles were attributed to fast feeding of controllers. It was recommended that automatic deviees be used for limiting to a fixed maximum the amount of current the motors might receive. There appears to be no doubt about the injurious effects on motors when they are rompelled to take an exeessive amount of current during acceleration. Not only do the commutator and brushes not provided with commutating poles suffer, but also the gears and pinions, as a destruetive hamer blow is imparted to them. Some roads have put time limiting derices on K type controllers for accomplishing the result in a different manner, depending entirely on delaying the motement of the controller cylinder, but this does not entirely accomplish the desired results.
The rate of aceeleration of an ordinary street car may be alything up to the slipping point of the wheels. With the best eondition of track and when the total weight is on the driving wheels a rate of 3 miles per hour per second may be reached for a brief period, but this is not comfortable to passengers if produced suddenly. In most instanees where automatie eontrol is used, the maximum acce! aration is about $11 / 2$ miles per hour per second under normal conditions. It is obviously necessary to set the current limit so that under the varied conditions of load. grade and traek adhesion an average acceleration will be secured which relieves the motors of excessive strains and yet produces a satisfactory acceleration.
However, under some conditions, it is imporsible to set the current limit relay of the plain automatic control to take care of all the variables. For example, if the limit relay is set for an amount of eurrent which will give the car the desired rate of aceeleration when empty, on a level track, this amount may not be sufficient to start the car when heavily loaded, on a sharp curve or steep hill.
To overcome this obstacle several means have been employed. One is a switch for shunting the eurrent limit relay and compelling the control to take additional steps irrespective of the current. A second method is to use two current relays having different settings. With this latter arrangement ean be used either a master eontroller provided with extra positions, in which the current limit of higher setting will be cut into circuit, or a separate switch for accomplishing the same result.
With either of the latter two schemes the ear or train will be normally accelerated with the relay having the low current setting, but with a heavy load on a curve or grade, where conditions require it, the second relay can be put in.

As another means for overcoming the objection to a single
"ument setting, equipments have been furnished with eurrent limit relays provided with dashpots for prodncing a definite fime lag. 'The principle of operation is that the far will aceelerate or colt out all the resistanee in a eertain minimum fime mader arerage conditions, the emrent sething of the relay being placed at a higher amount than will bo reached during this nomal aceleration. If the car is hemily loaded or other eonditions rectuire the motors to take a much heavier eurrent to accelerate the car', the current limit relay will come into action and prevent an abnormal amount of emrent being taken.

Fig. 1 shows a ifpical cument record of a lightly loaded con, equipper with four 75 -hy motors, starling on a level

Fig. 1.-Automatic Control-Current Record of Lisht Car Starting on Level
track. The emrent obtained on each ste] in this case was below the setting of the current limit relay, and the notches were seented by a slight time element in the dashot of the relay.
Fig. 2 shows a current record of the same car, loaded. while aceelerating on a grade. In this instance the current limit relay came into action and prevented the maximum curent from execoling a sate amome for the motors.

As this is a fom motor equipant there are two gromss of motors, the motors in each being comnected permanently in parallel, and each gromp is treated as a single motor in making the series parallel comections. The emrent rerard is the amonnt taken by one pair of motors.

Nine prints are shown, on the first five the motors being in maies and the last fons in parallel. The switehing point

Fig. 2.-Automatic Control-Current Record of Heavy Car Starting on Grade
in series dous not appem, this point being passad over quuclily when eperating antomatioally.

It will be seen that practically a mifit ran corent is mainbaned on the motors thronghout the range of acealeration and that in pessing from saries to parallel, full torghe is exerterl.

The question of aeceleating with definite maximum entrent is one remuiring considerable thought, as it ran be readily seen that. if the torque required of the motor shond vary owey a wide range with the different conditions of service there mast be some method of compensating for the fixed emrent value of the limit relas. Otherwise the wheel will slip or the arreleration be too violent mader con-
ditions of lightest load and the motor's will mot be able to start the car with heary load on a grade.

I will now show how the various motor and resistance edmeetions are ohtained with the atomatie tye of con1rol.

In Fig. 3 are shown the motor and resistance circuits, in a simplified diagrammatic form, of a representative series parallel contactor control giving the "bridge" connections. In the key below the diagram the varions connections effected by the contactors may easily be traced ont. The crosses in the diagram represent the location of contactors and the letters and numerals identify them.

The cap plate of the master controller is provided with two series and two parallel points. When turning to the first point the reverser is llurown for the corresponding direction of rir movement, if it has not previously been moved to it, and contactors $L-1, L-4$ and S are energized for giving the series connection of motors with all resistance in circuit. Interlocks prevent the motors laking current unless the reverser is in the correct position.

On the second point of the master controller the resistance is cut out in several steps. RR-4 contactor is first closed, cutting out the three sections of resistance adjacent to No. 2 mo1or: On the sncceeding series steps, the sections of resistance adjacent to No. 1 motor are ent ont separately. This ar-

Eig. 3.-Automatic Control-Control Circuits
rancement of reristance steps permits maintaining a very wiform maximum rmoent in passing from step to step. After the last series position has been reached, all of the resistance being" short circuited, the "bridge" contactor B is next closed and antomatically the series contactor S and the resistance contactors are opened.

On the third point of the master controller contactors M-1 and M-2 are closed, connecting the motors in parallel, the resistance for No. 1 motor being commeted to ground by M-1 rontactor, and the resistance for No. 2 notor being connecied to trolley by $\mathrm{M}-2$ contactor. With properly balanced resistance, the "bridge" contactor acts merely as a balance for the slifferene in current of the t wo motors and practically no (mrrent passes throngh it.

The "bridge" contactor, having completed its function of transferring the motors from series to parallel, is opened as soon as the transfer is made. This transition is effected automatically, with no interruption in the scquence, and interlock contacts on the contactors prevent any change in the order being prodnced accidentally. It will be seen from the diagram that, should contactors M-1, S and M-2 be closed simuliancously, a short cirenit from trolley to ground would occur throngh them, but the antomatic interlocking prevents the three switches from being closed at the same time and no incorrect ojeration can oceur.

On the fourth point of master controller the resistance is again cut out in sereral steps. In operation the controller landle may be turned to fomrth point immediately and the contactors will elose in the proper order for first producing series and then parallel connection of motors.

It will be noted than the diagram and key show six steps in series and four in parallel, but the first step in series is of high resistance and intended merely for slow ar movement required in switchige and eompling and the current is of such low value that the eament limit relay will not. operate.
The general seheme of opreation is that as each resistance contactor closes it transfers its operating coil from a lifting to a hokling cirnit and also comerts in the operating coil of the contactor for the sueceding step. At the same time that the resistanee contactor is closed the emmrent limit relay, which is provilent with a lifting enil in the contactor cirenit, raises and intermpts the lifting cirenit to prevent further progression of the contactors matil it again drops. If the motor enrent flowing through the series coil is suffieiently high the relay will not immediately drop, and in this mamme the antomatio emrent limiting featne is semed.

Fig. 4 shows the contwol wirait pomberions from the master controller to the contacters and intertocks in a simple diagrammatic matmere The small domble "iroles in

Fig. 4.-Automatic Control-Motor Circuits between Controllers, Contactors and Interlocks
the circuit represent resistances which have an appoximate value equal to that of the combactor coil. These cirenits operate the necessary contamors for fonnecting the motors in series with all the starting resistance in. The line reloy is closed as it is comected artoss the motoms.

When it is desired to moteh up show than the natmal tate the master controtler hande is brought to the first point and the car stowly shartact. Th sepmee a slight increase in speed the handla is thred to the seembl point and returned quickly to the tirst. This operation will lift the curvent limit relay and the contactor for the second step, but, as it ents off the lifting eirenit, no more contactors will be closmathtil the movement is repeated. This method of operation ran br followed matil all resistance contactors are closed and full series is reathed.
If desired to cut ont the resistance slowly in parallel, also, the controller handle is them bromght to the thired point and the motors will be eomected in paratlel with all resistance in. By turning to the fontly point and back quickly to the third, a smitar operation to that in series will result.

REPORT OF COMMITTEE ON EXPRESS AND FREIGHT TRAFFIC*

 1. LATHARO, I. L. EASTMAN.

In $\lambda_{p r i l}$ 1908, blanks contaming 32 questions relative to express and freight trallic were sent by your comatitee
 some valuable and interesting data bearing upon this subject. Of these, 1 " 28 comp:mirs faild d th make reply; 77 companies refmed the blanks, stating that they were not engaged in express or frecight traffic; and 9.5 companies answered the questions. stating they were handing freight ., express, or both.

These answers were, in must eases, very incomplete, showing cither that many of the companies engaged in handing express and freight did not care to give the information, (1) that their recorde were sirk that the data desired was not atailable. The elatacter of the answers reweded, together with the fact that on few companies replied, leads fome committe to believe that the majority of the empanies mogaged in handing express and freight do so in comection with their passenger traffie and keep ho separate remods. Som comanilter deems it very important to keep siparate records of the express and freight departments. showing gress eamings, operating expenses and net eamangs derited from these deparments, as in this wave only is it prasible to ascertan whether or not the handing of express :and freight is prolitable.

The following is a smmary of the information received:

ENPRESS

(2. 1. Do you handle express ? Q. 2. If so, is your express business handled in connection with one of the old line express compranies? Q. 3. Do you operate your nwn ©xpres compaus? Q. \pm. Do you make wagon delivery?

We find 61 companies choged in the express business, 22 (wnmanies in emnetion with the old line express companies and :39 companies onerating their own express. While 39 compruies claim to be doing an express husiness, only four maintain a wagon pick-up and delivery. Just what wonld be consideved an expess service withont wagon piek-np and delivery is rather confusing and we believe that this question rombla not have bern thmonghly understond by the rompmics so answering.

Q $\quad \therefore$. Do you find it moflable to hamdle express in conusertion with the old line exprests companies?
Twentrone empranies find it profitable. while four companies find it moprofitable.
Q. 6. Do you consider it profitable to operate your own "xpress rompany?

Thinty-cight companies find it profitoble. Six companies find it umpofitable.
Q. - What per eent of your gross receipls are obtained from your express depurtment?
The pereentage of gitw receipts reparted by 19 companies bemting their own express compans are as follows: 0.02, $13.05,10.5,1.0,1.5,2.0,2.1,2.1,3.0,3.5,3.7,4.0,5.1,5,5,5.83$, (6.2.), 6.3, $\overline{5} 5$, and 8.0. The pereutage of gross receipts reporterl by 8 companies operating with wh line express compamies as follows: 0.05, 0.22, 0.t. 1.0, 1.8, 2.0, 2.5, and 13.6.
$1 t$ is the apinion of hise rommittee that, as a general proposition, willa few expeptions. it is preferable to lease Hor exprese privilege to all obld line experss cempany on a pereentage basis. Wo do mot believe that a tomuge besis is a fair and equitable besis for an expers contract. Om reasons for remmending a comber with an old line ex. press company are as follows:

[^10](1) The old line companies are well established and recognized as carriers of express matter, reaching many more points than can be reached by an electrie line or a combination of electric lines.
(2) The old line express companies have the proper equipment, such as experienced employees, wagons for pickup and delivery and a complete and well organized businessgetting system, extending the world orer.
(3) Such a contract shond be drawn to relieve the electric eompany of all liability for loss or damage to shipments or injury to employes of the express company. In ease of an arrangement whereby a railway employee acts also as an express company employee, the contract should at least provide that the express company should be jointly liable for injury to such employee.
(4) When such express matter is handled on regular. trains we believe that the electrif railway will find it productive of more revenue than if handled by then own eompany.

This opinion is not concurred in by the whole committee, the exception taken is that there are cases when it is more profitable for an electric malway to comburt its own express department.

FREIGHT

Q. 8. Do yon handle freight?

We find 56 companies handling fieight, 43 in carload lots and $\overline{5} 1$ in less carlouds.
() 9. What motive power do you nse to handle freight?

We find 54 comprnies nsing electric power and two companies ising steam locomotives.
Q. 19. Do you use clectric locomotives for landling carloads, or do you handle carloads in express ear's?

Twentr-nine companies use eleetric locomotives and 30 companics use express motor ears to haul carlond bnsiness.
Q. 11. D) yon maintain agents at all stations?

Twentr-four rompanies maintain agents at principal stations. Eighteen companies are conducting a freight busihess withont agents.
Q. 12. Please state fully the orgamization of yom freight dep riment.

After a carefol perusal of reports subnitied the committee believes thas it is de nomstrated that a momber of rompanies are handling freight and express without having a promer organization therefor, and we recommend that this question shonld have very earefal consideration on the part of the management of those roads attempting to handle freioht or express traffoc.
Q. 13, 14, 15 and 16. P'uticipation in joint rates and divisions with steam road eommeetions.

We find 12 compmies are barticipating with steam lines in interstate traffic, 10 companies participating in joint rates and divisions with steam roads as follows: 15-2-5-1-4-2-2-3-3-4. Seren eompranies li:nve been refused joint through rates.
Relative to joint rates between steam and electrie railways we deem it arlvisable for all electric railways 10 join all possible connering steam and electric railwass in throngh rontes and division of rates, thens enabling the electric line fo handle a larger volume of business to a greater number of points.
Q. 17 and 18 . Fund for securing proper recognition by steam lines.

We recommend that no such action be taken at the present time, believing that this question will solve itself to the satisfaction of all parties in less time than would be consmmed in attempting to force such reeognition. The Interstate Commarce Commission now has the anthority moder the Aet to Regnlate Commerce, after a hearing on a romplaint, to establish throngh routes and joint rates and to prescribe the divisions when the earriers complained of have refused or negleeted to voluntarily establish such through rontes and joint rates, provided no reasonable or satisfactory throngh route exists. This will eventually result in general recognition.
Q. 19. Ale your rates and classifications made by your state railway commission?

We find only 12 companies using rates and classifications marle by state railway commissions.
Q. 21. What is vour average rate per ton-mile?

Answers to this question were received from 11 companies giving the average rate in cents per ton-mile as follows: $1.0,1.5,2.0,4.5,7.0,7.1,7.5,10.0,11.0,13.33$, and 30.0 .
Q. 22. What is your average gross revenue per ton-mile?

Answers to this question were received from 10 companies giving the revenue per ton-mile from 5 cents to 95 cents. We are of the opinion that some of the answers must be wrong owing to the great variation in the figures.
Q. 23. What are your average net receipts per ton-mile?

So few answers were given to this question that we have not given figures.
Q. 24. What is your average haul?

Twentr-four companies answered this question, giving average haul, in miles, as follows: $2.5,3,4,6.66,7,8.25,10$, $10,10,12,15,16.18 .3,20,20,20,23.25,24.16,25,26,26,40$, and 60.
Q. 25. What per cent of your gross receipts are obtained from rour freight department?

Thirty-one eompranies give the following figures: $0.3,1.5$, $2.0,2.5,3.0,4.3,4.6,5.0,5.0,5.5,5.5,6.0,6.3,7.0,7.8,9.0,12$, $12,14,15,15,15,16.6,17,18,19,20,24,25,27$, and 30 .
Q. 26. Do you maintain a regular scledule for freight trains and are they shown on time cards?

Twenty-four eompanies maintain a regular schedule for freight trains.
Q. 27. Do you consider the landling of freight on your lines profitable?

Fortr-fom commanies eonsider it profitable. Ten consider it unmrofitable. Twenty-one companies do not answer the question.
Q. 28. What facilities have you in the way of terminals, rards, freight houses, etc.?

We find 20 eompanies doing a freight business without terminals, 11 eompanies failed to answer, 18 companies have freight honses, 21 companies have freight houses and sidings, 5 companies have fieight honses, sidings and team tracks, and 2 compmies have freioht houses, sidings and team trocks and stork vards.
Q. 29, 30,31 and 32 . After a eareful perusal of the onswers received to the supplementary questions we believe we roice the opinion of a majority of the managers of companies engaged in the freight traffie, when we say that electric railways should adopt the classification and rates in use by the steam roads in the territory in which the electric line operates and that it is not practicable to attempt to secure a ligher rate notwithstanding that electrie railway service is usually better than the service offered by the steam lines.

We believe in offering every inducement possible with a view to securing industries on electric railways.

We believe in pivate right of way in so far as possible, as the operation through the streets neeessarily restricts the volmene of freight business which can be handled.

THE CARBON TRANSIT COMPANY

The Carbon Transit Company, Mauch Chunk, Pa., was recently purehased by a syndicate eomposed of the following gentlemen: J. M. Wolf, of Waynesboro, Pa.; J. F. Geyser, Waynesboro, Pa.; L. H. Mountney, Manch Chunk, Pa., and C. H. Latter, of Bethlehem, Pa.
On Sept. 22 the Transit Company was organized with the following officers: Mr. Van Smith, of Waynesboro, president ; C. H. Latter, vice-president; J. M. Wolf, treasurer; J. F. Geyser, secretary and general manager ; L. H. Mountney, general superintendent. Directors, Horace Lentz, Mauch Chonk: J. Dolan; C. H. Latter: J. M. Wolf; J. F. Geyser and L. H. Mountney. The property will be put in first class condition, new rolling stock bought, storage battery system installed and Flag Staff Park will be improved.

REPORT OF THE COMMITTEE ON POWER GENERATION*

by G: h. KELSAY, ChaIRMAN, WM. ROBERTS, GEO. B. DUSINBERRE, G. A. HARVEY, R. A. DEER, JR., C. F. BANCROFT.

The snbjeets given partiendar consideration by this committce were:
(a) The Practical Operation of Steam Trubines.
(b) Steam Meters.
(c) Flue Gas Analyzers.

At a committee meeting held at Buffalo, Junc 17, certain questions were prepared which were regarded as essential to submit to member companies and associate members of the association on the subjects muder consideration. From the total of about $23 \pm$ inquiries sent to member companies we received 32 replies bearing on the subject of steam turbines, 2 replying to the subject of steam heaters and 14 on the subject of flue gas analyzers.

(a) practical operation of steadi turbines

It was the aim, while investigating this subject, to obtain information as to the relative merits of the two types of prime movers from member companies which have had turbines in operation for some time, and which have also had experience with reciprocating mits, in addition to obtaining replies to a few questions applying only to the turbines.

Of the total of 30 questions on the data sheet sent out on this subject we have tabulated for comparison replies on the more important questions asked, so as to give this information in full, as nearly as possible.

Of the companies receiviug the data shects, 32 responded in whole or in part. In the compilation of the information thus received, each company replying has been given a distinguishing number which is the same for all of its answers on the subject of stean turbines, thereby enabling one to connect the several answers of any one rompany. The compilation is as follows:

[^11]
What is the difference between turbine plant and reciprocating engine plant in fnel consumption per kw -hour nuder like condithons

1. About 25 per cent saving with turbine at 50 per cent load factor,
\because With high racuum and variable loid
2. With high vacum and variable load the turbines will do from
\%. Finel consumption the sime invbine ruming.
. Fuel consumption the sime, turbine running condensing under 26 in. vacuum and engine running condensing
3. Gencral results for above period are in favor of turblnes.
4. In turtine plant total cost oi power is about 75 per cent of cost in cross compound condensing Colliss plant huilt 6 yr. ago, both plants being equipped practically the same, excepi engine plant has smaller units.
5. About the same.
6. In a well designed plant in favor of turbiue.
7. Alout 15 per cent in lavor of turbine.
8. With good firstetass reciprocating engines, condensing economy in operation is approximately the same.
9. They are about the same, taking auxiliaries into consideration. 'Turbine under similar load ahout 6 per cent in favor of engines. About the same.
T'nrbine 19.35 lb, steam per kw-hour. Engine 30.96 lb. steam
10. Corliss require about 25 per cent more coal per kw. All depends where turbines required 15 per cent more coal have had tests where turbines required 1 per cent more coal thau the en-
11. very little, all tonditions bein
superheat. takiner into being equal as regards vacuun and superfeat; taking into acconnt auxiliaries in both cases wonld
12. All things being equal, there is a slight difference in favor of
13. The turbine has an advantage due to high efficiency on a high range of varying load.
14. Engines a litite more economical with us.
15. Cannot find any difference.
16. Turbine uses about 10 per cent more steam than the engine.
32 . I'ractically equal.
17. I'ractically equal.

18. les, particularly Engines have adran- Opencd for inspection
 cousca hy the gland walor is removed. and turbinc clearance taktul.
2s. Yes..............Engines have advan-No.
29 yes Easicr to start engines asior to start engines
than turbines with than turbia
auxiliaries.
19.

Every 6 months.
Ex a mine clearance abont every three months: inspect about once a year. brout once a year.
32. Yes.............. Turlnino has arlvantage wo intend to make min lime. spection every six months.
Does forn exproime indicate that the erosion of turbine blades is going to be a material factor in their maintenance:

1. Cannot see any erosion in our blades.
2. At this time camot state: no perecptible wear.
3. Had no trouble from this source.

क. loon or steel hades, res; bonze no.
4. and A. No
(1. No and particularly if smperheated steam is used.
11. Cannot say: with three yoars' experienec no tronble of that kind has derelojied.
$15,16,17$ and $18 . \quad$ No.
. Have not had suffiejent experience
. No.
II e have not hat :my crosion of blades.
Not had suffienent lime 10 determine.
No.
Experionce too limited.
No.
No.
We expect to remove several rows dmring Oetoher:
under favorable conditions.
at all serious.

1. No.

Considering the flecreased efliciency ol the turbine muder oveload. to what extent is the use of the overlond capacily justificd in carrying the daily peaks of railway service?

1. Would fignre on $2-5$ per cent overluad for railway peaks.
2. Full overload capacity can be carried on one honv*s time to better advantage than putting in another unit.
3. Use reciprocating engine for peak louds.
\%. Alont sis per cent.
4. Wonld carry reasonable overloars at peak. but not to inrite interrupticins.
5. To abont 50 per cent oferload
6. Chardeter of load and station conditions must determine this.
1.- Inder our conditions, 100 per cent overload.
7. Twenty five to .30 per cent.
8. Thirty to 40 per cent for peak loads of ordinary duration.
9. For smburban practice. io per cent account character of load.
10. I do not consider there is any decreased efficiency on overload.
11. Have not amforty gone into the matter; depends largely on
12. We find the overoad capacity more economical than reciprocating nnits
13. It is very imporiant with us to have the overload features, as we frequently have an iverage load of 1100 kw per 1000 kw unit. Load is frequently 100 per cent over normal.
14. Forty per rent: we find litile decrease in economy.
15. We use overload capacity only for breakdown service
16. We consiner the turbine far superior to reciprocating engine to carry a peak on a temporary overload; when an overload of from so to 100 per cent is suddenly encountered it is hardly noticcable to one in the turbine plant.
20 and \because - Fifty per rent.
17. In plant of this size, fully justified.
18. To the maximmm possilile extent. Rnt, not economy when the peaks slow down the machine from oveload.
19. Do not believe in overloading at any time except for emergency 32 . If overload can be carried withont starting another unit.

Replies to the first three questions reveal that the period of observation extends in some cases over font years, the average being fwo years and three months. They show that our replies come from those who have had experience with reciprocating, direct-connected engines and also the older types of belt-driven units, ranging from 2700 kw down to 200 kw , and with turbines from 5000 kw down to 75 kw , showing a wide range over a satisfactory period of time.

With the above experience with turbine units operating: in railway service it is ennclusively shown, with very little evidence to the eontrary. that the cost of repairs and maintenance and labor cost of operation is favorable to the turbine plant. Replies that do not confirm this are from one or two cases where apparently the turbine has been operated under some adverse eonditions. We have observed that the economy of labor, cost of operation of the turbine over the engine, is hardly apparent on plants of less than 1000 kw , but on larger plants it seems to be an important faetor. In one plant of good size this was given as 0.059
cent for turbines and 0.108 cemt for engines. The sameplant save cosi of repairs and maintenance as 0.0303 eent for turbines and 0.040 cent for engines. Thase comparisons were made where both engines and turbines were of about the sane size. Ther were the only exact figures which our inquiries elicited and. therefore, camot safely be assmmed as typical.

The difference between turbine bants and reciprocating angine plants in fuel consump, ion per kw-hour, under like condition of load seems to be latorable to the turbine.

The reliability of a prime mover in railway operation is one of the essential elements in its service, as a railway unit often has to endure extreme variation in the load impressed on it, and at occasional intervals while under adverse pressme conditions. Twenty ont of 27 replies indieate that the turbine is considered equal to or preferable to the reciprocating engine on the score of reliability, while but five prefer reciprocating angines. For operation madru rarying steam pressure, the replies are not so deriderlly favorable to the turbine, there being five of the 24 replies favoring the reciprocating engine.

Even though the turbine is a much simpler and possibly more reliable mit than the reciproating type, the improtance of high vacuum and superheat necessary to its mist economical operation necessarily adds nore complirated and less reliable equipment to both boiler and engine room. It is probably on accoment of this essential auxiliary equipment that a great many replies from users of the turbine are not more favorable to the turbine.

Steam-driven anxiliary equipment is preferred under must all cireumstances, and especially so where the exhanst is needed to heat the feed water. From a few replies, enginears preferred electrically-driven exciter units and eirculating pumps.

The condensers preferred by companies replying were necessarily of varions types, as local conditions and quality and quanity of water available govern their choiee.

The racuum as obtained by railway eompanies operating turbines varies from 26 in . to $283 / 4 \mathrm{in}$., and one eompany reported operating as high as 29 in ., and another at $291 / 4 \mathrm{in}$.

From 31 replies only mine companies reported that they do not superleat steam.
One of the earlier claims was that a turbine, on aeeount of its simplicity, could be started much sooner than the reciprocating engine, but replies to onr question do not prove this. Practically all users of turbines report it equally necessary to heat the turbine and a few report favorably to the engine on account of the complicated auxiliary equipment of the turbine.
Replies to the questions, "Do you inspect your turbines systenatically by opening?", and "To what extent and at what intervals?" the answers are with but three exeeptions that they are inspected systematically, but as to the extent of inspection there is a varicty of practice. Some inspect externally once each day. while some companies inspect thoroughly, externally and internally, once every three or four months; the internal inspection being for the purpose of examining blade clearance and removing any scale formation.

At one time there was a feeling in some quarters that the erosion of turbine blades and buckets might be a material factor in the maintenance and also affect the eeonomy, but if the experience of those who have replied on these points can be considered as representative of what may be expected, there seems to be little cause for uneasiness on this score. We note that those who have had turbines in
bise lomgest report no erosion. It seems necessary, however, to provide proper means for separating entrained moistme from the stemm in all cases. One interesting possibility is pointed ont in two replies, in the formation of seale on the blades, whide is sulficient to affect the ecomomy. It wonld be interesting to know if this may not have come under the olservation of others and what slegs might be laken to correct it.

The replies on the question of overlond indicate a wide range of practice, it being quite common to take full advantage of the overlond possibilities of the mits for peak loads as being deemed more eromomical than starting addifional units.

STEAM METERS

In undertaking to offer a report on the snbject "Steam Meters,' your committee realized that reliable data on experience with these instruments would be difionlt to obtain of account of the comparatively small number of plants using them. Inquiries were sant by the commiltee to all member companies of the association, but only two direct replies showing experience with stem meters were received, and the mamufacturer list of sales show that very few meters are in the hands of the electric railway companies.

A number of indnstrial concerns kindly fumbined reports of their experience, however, and the tabulated data slrowa in this report was derived largely in this manner.

In the compilation which follows, each of the 20 users replying has been given a distinguishing number whieh is the same for all of the answers on steam meters. The tabulation does not contain information obtained from the manufacturers of such meters.

The meters that have been in use for more than a few months are mostly of small capacity, and are employed for measuring steam sold to small nsers, for determining amounts of steam consumed by varions departments of mannfacturing establislments, and for testing steam-plant anxiliaries. There are many "condensation meters" in use, but these are not regarded as coming within the scope of this report.
Data on Experignce with stean meters
Number and Type

Gutinuouslo shot Periods

1. short periods only, in
2. Short periods only, in Reliable
3. Short periods ouly, in
testing Ixxtrmely reliable
4. ContinnonslyNot to be depended upon.
\pm Continuonsly Reliable.
\therefore Continnous nse since
190: Entilely reliahle.
Continuously Verv roliable.
5. Continuously Reriinhle.

Continuonsly Frairly at reliable per cont load.
6. Continuonsly Frairly reliable; no exhaustive tests made, however:
7. Slort periods........Tested hy condensing and weighing the stoam and found meter from \because per cent
8. Both nvorliable cent
9. Short periods......................... nirly reliable
10. For testing only....... Korsonably reliable.
11. Continuonsly C'nreliable.
12. St. John continuonsly

Dodge for tests..... lieliable, qualifiedly
17. Continnously Salisiactory
17. Continnonsly
18. Short periods.........leadings are consistent and apparently correct: will give results as aceurate as claborate condensation tests.
19. Shor periods usually.. Yes. when pressure quantity of moisture 20. Continnously Yes.

Effect of Moisture

1. No exprrieuce but think rorrection required

- No specife tests biil...... ence points to accuracy with-
. Tendency to rust delicate parms.

4. No cffect. . No effect noticed................
5. Inappreciable iu practical op-

- elation

7. No information as to effect

S. Or'inarily no effect. A larme flow of water might affect it. Does not measure entrained moisture
a. No definite information: separator should be placed ahead of meter.
8. Bad

None of the meters we have seen take account of moisture Considerable meisture 0 effect
15. Affects value of recold.
15. Affects value of record......
16. No information
19. Correction of formula requirection of formula re-

Effect of Superheat
No exporionce but think correction required.
No information.
No information.
No effect
© information
Correctiou mast be applied.
Boilers superheat about 180 deg. Joes not effect mechanical operation, but don't know its effect upon accuracy.
No experience.
\qquad
No information.
No information,

No effect
Correction required.
Correction renuired
Not noticed in St. Tohn meter.
Errection of formula required. slight.

Effect of pressure variation

1. Has to be obscrred by recording gage and correetion applied.
2. Same as above.
3. Very little.
4. Same as No. 1 ahove.
5. No effect for slight fluctnations above and below normal, but meter should be ealinated for normal pressure on which it is to be used or eorrection must be applied.
6. Within 5 lb . variation, no effect; fol gleater variation meter records high for low pressure and low for high pressure.
7. Orcinarily no effect. Correction required for great variations, Recording nressure gige required also.
8. Slight effect for moderate variation.
9. No effect noticed.
10. Sargent meter accounts satisfactorily for difference of pressure
11. Effect not marked: diffieult to detect.
12. Causes slight error.
variation not material ; correction required for great variation.
13. No effect on meters of proper design.
14. A slight variation is not material.

Following are the mannfacturers' descriptions of what appear to be the meters most generally known in this conntry:

ST. JOHN METER

These ineters are made in varions sizes for measuring steam for :ill purposes up to 1000 hp at 200 lb . gage pressure; they are built for contimous use. An extra heavy type is made for mensuring superheated steam, compressed air and gases. They indicate on a dial, and also by a continuous curve plotted on a moving paper chart, the instantancous values in boiler and rate, in weight of steam, per hour; the curve can be integrated by planimeter to give total steam consumption for a given period. The chart moves at the rate of $1 / 2 \mathrm{in}$. per homr. In taking instantaneous readings of the meter, the
height in inches of the curve above the zero line is multiplied by a constant to give the rate in pounds per hour; this constant must have proper correction factors applied if the steam being measured varies materially in pressure from 100 lb . gage, or if it contains superheat. Ten per cent moisture, by weight, in the steam nakes the reading of meter 0.05 of 1 per cent high. The meter operates on either live or exhaust steam, and at pressures above or below atmospheric. A recording steam gage is required in conjunction with the meter if it is to be used on pressures varying materially from that for which it is calibrated. Each instrument is calibrated at the factory to within $\underline{\underline{2} \text { per cent of accuracy by condensing }}$ and weighing the steam that has passed through it; a separafor is connected ahead of the meter when calibrating. Sevcral hundred meters have been in use for 10 years; calibration every two years is recommended. The principle on which the meter operates is that with a uniform difference of pressure on two sides of an orifice through which steam is flowing and a constant initial pressure, the quantity of steam passing bears a direct relation to the size of the orifice. The size of the orifice in the meter is regulated by a tapered plug-shaped valve, which rises (opens) in proportion to the sream usea; a difference of about 2 lb . in pressure is required to operate the valve. The motion of the valve is communicated directly to the indicating pencil.

SARGENT METER

These meters are made for indicating directly the rate of flow in horse-power per hour, irrespective of pressure, of steam used for any purpose and up to any capacity that can be handled by a 6 -in. pipe. The meter is intended for continuous service, but does not record or integrate. Each meter is calibrated separately on commercially dry steam to within 2 per cent of accuracy; very wet steam camot derange the working parts, and moisture does not appreciably affect the accuracy of indications, but it is better to install meter as near as possible to the boilers to avoid condensation water and obtain a steady flow of steam. Superheat in steam introduces errors. The principle on which the meter operates is similar to that of the St. John meter in that the steam passes through an opening varying in size with the volume of steam used; the indicating needle is actuated vertically by the movement which varies the steam orifice, and it is also influenced by a Bourdon spring according to the steam pressure, so that the readings of the meter do not have to be corrected for variations of pressure.

DODGE FLOW METER

The General Electric Company has recently developed a meter showing the amount of stean or air flowing. through a pipe, whatever the pressure or temperature. The meter is portable, and calibrated for any pipe diameter from 1 in . to 36 in . For steady flow one meter may, therefore, be used on any pipe line in a plant. For fluctuating flow this may be done provided the proper calibration curve is used. The meter is as well suited mechanically to the measurement of periodically intermittent steam flow, such as occurs when operating reciprocating engines, as it is for steady flow, such as occurs when steam is used for turbines, manufacturing purposes, heating, etc. The calibration for these two conditions is not the same. For engine use a special calibration is usually necessary after the ineter has been installed unless the meter is sufficiently remote from the engine. The meter has been found to be accurate within 2 per cent under all conditions of pressure and temperature; 2 per cent of moisture does not affect readings.

The operation of the meter is based upon the action of the varying velocity of the fluid impinging on a modified Pitot tube. A plug containing funnels of desirable cross-section and form is serewed into the pipe in which the flow is to be measured. One funnel faces against the flow of fluid, and the pressure therein is equal to the static pressure in the pipe, plus the pressure due to the velocity head. The other funnel faces in the direction of flow and the pressure in this is accordingly less than the static pressure by an amount dependent upon the velocity of flow. The area taken up by the plug is not sufficient to cause an appreciable drop in pressure in the pipe.

Indicating Type.-This meter consists essentially of a Utube of glass filled for part of its beight with mercury and connected in a suitable manner to the above-mentioned fun-
nels. The difference in pressure in the two funnels is transmitted to the connecting tubes and causes a difference in level in the two legs of the mercury column. This difference in level must always be the same for a given condition of pressure, temperature and flow. The inclination of the tubes from horizontal ($10^{\circ}, 20^{\circ}$, ete.) is fixed by means of a level. The difference of level is read directly in flow per hour per square inch of cross-sectional area of pipe on a cylinder under the mercury tubes. This cylinder is quickly adjustable for any size of pipe from $11 / 2$ in. to 18 in ., for any desirable temperature range, and for any pressure from 75 lb . to 225 lb . gage.
Recording type.--The recording meter consists fundamentally of two main parts, viz: The moving member and the stationary member. The moving member is made up of two hollow cylindrical cups which are connected at theiv lower extremities. They connect at their upper extremities with passages in a block, which is supported upon knife edges. These passages are connected to the funnels by means of helically-wound flexible coils. Supported by the block is a scale beam upon which runs a weight which carries the recording pen. This weight is moved back and forth by a helical screw, which is rotated by a small electric motor fastened to one end of the beam. The motor is driven in either direction in such a way as to always keep the beam in a horizontal position. The stationary member consists of a suitable base upon which is fastened the supporting frame for the knife edges and the upper terminals of the flexible coils. The recording chart and clock are also fastened to the base and to the casing of the meter.
This type of meter has been used on turbines as large as 8000 kw suplied with steam through a $14-\mathrm{in}$. pipe.

SARCO METER.
The Sarco Fuel Saving \& Engineering Company is about to introduce in the American market a set of indicating and recording steam meters which have been tried out carefully abroad. Their operation is based on the standard formulas of Zeuner and Napier, relating to the flow of steam from one vessel to another and the drop in pressure which is thereby occasioned, and which bears a certain relationship to the quantity of steam passing. These meters are easy to install, as all that is required to be inserted into the steam pipe is a disk having an opening through it slightly smaller than the inside of the pipe; this disk is placed between ordinary flanges that may be already conveniently located on the pipe. These meters are mentioned as showing that the development is being carried to such conditions that large volumes of steam can be measured at high pressure.

general conditions

The use of steam meters has so far been confined mostly to industrial plants where the steam consumption is comparatively small. The results have been fairly satisfactory. There are many purposes to which large power stations can apply reliable steam meters with advantage. Now that their use on heayy duty has commenced, the development will probably be rapid, and far better results will be obtained where they are under the skilled attention of power-plant engineers, who, as a rule, are of higher class than those connected with factories, etc.
It has long been considered advisable to keep accurate detailed record of fuel and water consumption and electrical output of power plants. Records of intermediate conditions, such as steam consumption by various units, have been scarce, largely on account of the difficulty of obtaining them. The steam records are also valuable, and it is to be expected that more will be seen of them in the near future.
Some of the benefits that may be easily derived from the use of steam meters are:
(1) Obtaining water rates of power units.
(2) Obtaining equal duty from various boilers.
(3) Dividing steam charges to various sections of a general power system, such as railway, lighting, power, heating, manufacturing, where these are all operated from the same power plant.
(4) Detecting leakage through traps, pumps, flanges, etc., and loss by excessive condensation.
In addition to the tabulated answers included in this report, the same users of meters seem to agree that they have already found the instruments valuable for testing; for meas-
uring acenrately small quantities of steam, and getting approximate divisions of steam used for various processes. Some eomplain of the high cost of the meters and the sinall variety of uses to which a given meter can be applied. They think, howerer, that there is a large fied for a salisfactory instroment.

(c) fide gas analyzers

In taking 1μ the subject of flue gas analyzers, your committee has endeavored to sechre such facts in regard to the application and operation of instrmments in use as would give a basis for ascertaning their practical value as a part of the usual railway power station equipment.

The result of the work we have been able to do indieates that these instruments are of unquestionable value and the records, when properly taken and interpreted, offer a means of detecting defects, both in the construction and operation of boiler finmaces which might not otherwise be exposed. Where only oceasional ousemations are mede, the resmlts may be as beneficial is the oceasional indication of the steam engine and possibly to a greater degree; and where continuous

records are maintaned they offer a valuable indiention of the character of the fireroom operation. In fact, smme prominent engineers go so far is to smogest the practicathility of aletermining acomately the efficieney of the boiley by means of the CO., recorder, flue temperatmes amo conal analysis.

Aecompanyine omres shony the genmal way in which sereral factors lary with ratialion in per (e)ll ot (0). ('ures

 No, 2and No, - are taken from the rejont by l'rot. lo. I' Preckemodere on the Sl. Iomis boiler tes's. ('mave No. 3 is the combination of No. 1 and No. 2 . ITe app reciate that the came No. 3 cannot be considered as acentate, and is only given to indicate the general comblions exisines and that there is a point in mactical operation where furlher reduetion of the air supply may aet to decease the eeonomy.

Theoretically an exees of exen a small per cent of air ower that necessary to fmmsh oxymen for all the combustible slon!d result in no loss by incomplete combustion, but pratetically it is not possible to secure the thorough distribution
of the air neressary to bring this abont, and probably curve No. 2 more nearly represents the actual conditions existing. It is proper to point ont that no set of curves of this characfor could be applicable in any specific case on account of the mumerous factors which are peculiar to each finmace and kind of coal used. We have also plolted on this chart other data from tests by lrof. Preckentidge at the Unisersity of llimois showing the actual excess ar (cure No. 6) and the actual evaporation (curve No. 7), from and at 212 Fahr. per pound of ewh free, dry eoal. These two emwes are related as being marle from the same tesis and there were variations between individual tes's due to differences in the composition of the coal used, the flate-ges temperatures and other items. They scem, howerer, to be sutticiently miform to indicate a definite form and direction, and to corwoborate the points we lase endeavored to bring out.

A unmber of questions relafing for boiler plants were sent to the member companies, with. however, but comparatively tew replies. Some of these questions and replies we give in tabn!ar form and others are coverel in our comments.

In the compilation which follows, showing the expervence of raious rompanics with flue-gas analyzers, the companies replying have heen designated by specife numbers which do not, howerer, corres ond to the serial numbers indicating the companies in the compilations previonsly shown on the subjects of "Sleam Turbines" and "Steam Meters."

Find a Daily
Corresponitnce

Land Firing or Stokers

1-Murphy and
ant liand fit
and land lit-
2-lioney striliers fin ner cent ing 3.5
cent
3-lland firing. .ies. when recorder is on-
erating prop-

6-Muphy and inive not as yet mollil chain tested this out.

s-In:mid firine.................. 1
 11-ciain gratus fres

1.4-Itand tivine to
limitad extent
stokers
Loss on Acerunt of Insuffient Ai: or Lxecess Air
1-Excess.
\cap

Mrikn rons Inalreis? What is the Anvlysis?

 conl fixel rarbont ys. per pren

 thancite screeninges approximate b. t. u. $0,0 \cup 0$ to

3-Greater loss seemed to bo from racess ais, IIand dampers wero ofion othly ahont Er prorernt area aftro reco! or was in use, without beduciug capacity. rent velatile 11,00U.

2-Excess.

 11,data on expermence with flue gas analyzers-Continued

12-Not for individual boilers, 13-Recold of individual banks of boilers are kept.
14-Each boiler.

In the Event of Finding That Recordel Tmucates Tnsatisfactory
Conditions, What Steps IIave Yon Taken to Improve Results?

1-Stop leaks.
3-Clean soot from gas conneetions pipes and stop air leaks if any. Also stop any all iettings.
4-Watch condition of fires, coal 4- \quad and hoiler settings. stop hre, using care to stop holes.

6-Stopped air leaks in settings and maintained letter fires.
7- Cxperimenting with different methods of firing; ire thieknesses, grate speed. etc. ; chance in furnace settings, nating leaks in settings.
8-Regulate air supply. Generally too much air will
9-Look for irregular fires. See if draft ovel fire is good To correct thick fires and legnlate air supply under
11- Watcl fire closor, give usual
attention more often.

12-Showed more ail necessary for anthracite buckwheat and large inflitration.
13 -Investigate eause and proceed accordingly.
14-See some treatise on combnstion.

4-Ies, 14,200 b. t. u.- 8 per cent ash. 2 per cent moist ure

6 -Yes, $12,800 \mathrm{~b}$. t. u. average moisture 4 per cent, asb 10 per cent.
7-Yes, b. t. u. 10,200 -moisture 14 to 17 per cent. ash 14 to $\because 0$ per cent.
8-les, b. t. u. comm. 11388 moisture 4.59 per cent, asl 17.97 per cent, average for ${ }_{6}$ mos. No. 2 Buck.
-Moisture, 250
polatile matter. 40.50 .
Fixed carbon, 48.45.
Ash. 8.55.
11-Yes.
$12-12,000$ b. t. u. ash 18 to 19 per cent.
13-Moisture, 1.78 per cent ; rolatile, 30.27 per cent ; fixed callon, $1.64 .3 \ddot{5}$ sulphur, 1.65 : ash, 11.98.
$14-12,600$ b. t. n. ; moistnre, 6.5 per rent; ash, 11 per cent volatile, 29 per cent ; fixed carbon. 5.5 per cent ; sulpliti, 1.5 per cent.

Io Yol Find 'Tbat Yomr Dimpers kequire murn More Frequent heguation Than briore the installation of the CO_{2} Recorder?

1-Have not observen any.
2 -Indicators on each boiler.
3 -Hand damper should be given more attention.

4 -Not since operators have berome aecustomed to proper appearance of fres.
$\frac{6}{\mathbf{T}-V}$ Very little more.

8 - We use an automatic damper.
11 - Des. Draft gages and damper" easy to adjust are vala-12-No. ${ }^{\text {able. }}$

13-Yes.
14-No.
Can Conditions of Firing Pe So Regulated as to Give food Results IVith IVigh l'er Cent of CO_{F} in Flue Gases From Only You Remard it Essential That sou Recenird it Essential That to Obtain leest Results a CO_{2}
iecorder Should Be Constantly Indieating the Per Cent of CO. in Flue Gases?
1-Yes.
Host satisfactory informafion can be gotten from paratus.

4 - Constantly indieating seems best.
5-Wither method is satisfactory, bnt a continuous record is obviously better.
6- -
7 -Best results obtained with constantiy indicating and recording instrument.
\&-Record should be continuous.

0-Record should be continuons.

11-Continuous methods good to teach firemen: afterwards an ard kep him up day should keep him up
12 -Have not been able to make any improvements by meth-
19 od of firing.
18-Continuous record necessary.

1

Has Maintenance of CO Recorder in Service and Operating Ac-
1-No.
2 -Very difficult to keep in operating condition.

3 -No.

IIas Exeessive Attention Been Lue to Struetural Defects Laek of Proper S
1-1rincipally acct. instrument
;-I'rincipal attention required is in preventing and repairing air leaks in connections.
4-No, slight.
6-No expense.
7- Required some time from a technical person, no factor in expense.
$8-\mathrm{No}$
$\frac{4-}{6}=$

S-Delicacy of adjustment. Trouble of flue vibration. 11-Only trouble caused by movto plaee.
11- Young man who samples eoa attends.

12-No expense, attention trifling.
15-['racticaliy nothing.
12 -
14 - $\$ 2.00$ per montb per recorder. 14 -Both causes.
In but one case were we able to secure data showing any definite results as to coal per kw-hour before and after using the recorder. This showed a reduction from 4 lb . to 3.5 lb . per kw-hour, and from other comments it seems evident that the use of it has generally been considered beneficial. In two cases the coal since using the recorder was given as 2.92 ll . and 2.9 lb . kw-hour.

While many improvements have been made in the design and construction of these instruments in the past few years, and while the reports do not indicate that the maintenance is a serions item, nevertheless it is hoped that further effort will be made on the part of the manufacturers to simplify them and make them less a laboratory instrument, so that they will feel more at lome in the fireroom.
In order to get the most accurate indication of the action of the furmace itself, the gas collector should be as near as possible in the line of circulation to the point where combustion ceases. Tests should be made oreasionally of the gas at this point to check against the record taken from the flue to indicate the air leaknge, if any, between these points. The location for the collector usually seems to be preferred in the flue between the elamper and the boiler tubes and placed so as to be in a flow of gas of average quality. The gas collector which seems to give best results is of $3 / 4$-in. or 1 -in. pipe with $1 / 8-\mathrm{in}$. holes bored at frequent intervals throughont its length, and the end capped. Care should be taken that the total area of all the holes is less than the area of the pipe, otherwise more gas will be taken throngh the holes near the exit than through those at the onter end.

The consensus of opinion seems to be that the best results can be secured with a recording analyzer in the main flue, supplemented by an indicating instrment connected into the breeching of each boiler and the instrument placed so that the firemen can casily see the indieation for each boilet.

It had been suggested to us that in order to improve the economy of a plant it would be a feasible plan to pay a bonus to firemen based on the $\mathrm{CO}=$ record, but we were not able to find any one who had actually tried this out. One reply indicated that they encomaged their men to get good records by a system of promotion.

It is easier to maintain a high CO_{2} record with stoker than with hand firing owing to the unnecessary air admitted through the doors when stoking. The most common error in method of operation of furnaces, which the recorder shows, is the admission of too much excess air, and by watching the recorder and regulating the air supply or condition of the fire more frequently, a higher ceonomy of operation may be secured.

In one reply only was the opinion expressed that a record of other gases than CO_{2} was desirable as far as ordinary
operation is concerned. It can be imagined that for an exhanstive test on a boiler or on a particular coal it might be desirable to have a record of CO and O , but in ordinary operation it is felt that the record of $\mathrm{CO}=$ gives all the information that is necessary to secure a high economy. Ouly three replies indicated that the recorders were regularly tested. This stoould undoubtediy be done, as there is possibility of errors due to condition of receiving pipes, as well as in the solutions nsed and the instrument itself. recommendations for future worik
The investigations of your committee have brought foreibly to its attention the apparently indifferent methods of operation practised in many power stations, and particularly in the boiler room. We believe that there is far too little attention given to economy in the boiler room and think that a careful and systematic use of apparatus available would result in a great saving.

We believe that the work of a Committee on Power Generation should be continued, and that further reports should be expected next year on the subject of CO_{2} recorders in addition to an investigation into the use and merits of draft gages, pyrometers and systems of damper control. We also think that an investigation as to the merit of buying coal on a basis of analysis should at some date receive attention by such a committee, together with an investigation as to methods of making analytical tests of coal and the use of calorimeters.

CLAIM AGENTS' MEETING-WEDNESDAY

The closing session of the Claim Agents' Association epened at $9.30 \mathrm{a} . \mathrm{m}$. President Goshorn who presided stated that the amendments to the by-laws and constitution proposed by the executive committee had been considered by the executive committee of the parent organization and a decision reached to refer them for action to the 1909 executive committee of the Claim Agents' Association.
The question box was taken up, but as the questions had been fully answered by letter and the answers printed, there was no discussion. A discussion of the "Medical Side of the Prevention of Accidents' had to be omitted, owing to the fact that Dr. Fairchild, of Iowa, and P. P. Crafts, who were expected to lead in the discussion, were not present. Under the head of general business, President Goshorn spoke in detail of the working of the index system in his office.

As reported yesterday, the nominating committee handed in the following nominations: President, C. Wr. Hardin, St. Louis; first vice-president, E. C. Carpenter; second vicepresident, Julius S. Harrison, Jacksonville, Fla.; third vice-president, Dr. F. J. Ryan, Syracuse; secretary and treasurer, D. B. Davis, Columbus, Ohio. The secretary was then instructed to cast a unanimons vote for the officers as nominated by the committee.

President ILardin, after a short address, stated that in appointing the executive committee he would give sperial preference to New York as a geographical centre, and accordingly would appoint James R. Pratt, of Baltimore; John J. Reynolds, Boston; Mr. Brown, of Newark, and E. R. Roberts, of Knoxville, Temn. The president appointed, as a committee on employinent, H. R. Goshorn, of Philadelphia, chairman; T. B. Domnelly, of Comnellsville, Pa., and J. E. Joyce, of Rochester, N. Y. As a committee on ways and means, the president appointed William Tichenor, of Indianapolis, Ind., chairman; S. W. Gunsalus, of Webb City, Mo.; R. II. Shonen, of Allentown, Pa., and S. W. Baldwin, of Fitchburg, Mass.

A rising vote of thanks was then tendered to the retiring president and also a vote of thanks to F. W. Johnson, for his work in preparing the entertaiment and smoker of the previons evening, and to the secretary and treasurer.

SECOND ANNUAL DINNER OF SOUTHERN RAILWAY AND SUPPLY MEN

Last year the supplymen traveling south conceived the happy idea of entertaining during the convention then being held the representatives of Southern electrie railways in attendance. The dinner given was a great suceess, and it was decided to make the event annual. On Tucsday evening the second annual dinner was given at 7.30 in the Chevy Chase room of the Marlborough-Blenhein, where the tables were arranged in the shape of a horseshoe magnet, in whose field of force all the clements of mutual attraction were strongly and immediately developed. A most admirable dimner was served, to the arcompaniment of Sauterne and champagne, and then fragrant clonds of smoke from the Southern weed enwrapped the gathering as it indulged in the Southern gitt of oratory. There were 37 present, and 36 eloquent speeches were marle, all tinged with the spirit of fraternity and neighborliness. Optimism, too, pervaded the frequent references mate to the outlook in the South for brighter days and a returning prosperity.

The list of the hosis and gnests follows:
T. IV. P'assalaigue, toastmaster, superintendent Charleston (S.C.) Consolidated Railway, Gas \& Electric Company; J. B. Meclary, The Sheffield Company, Sheffield, Aha.; Geo. H. Harris, manager, and C. A. Avant, claim agent, Birmingham Railway, Light \& Power Company; C. M. Cory, auditor, Birmingham Railway Light \& Power Company; H. N. Hunt, superintendent, and IV. T. Calquitt, general counsel, Georgia Railway \& Electric Company. Atlania; W. H. Burroughs, sectetary and treasurer, Memphis Street Railway; S. A. Retding, electrical engineer, and Harry Flynn, auditor, Georgia Ralway \& Electric Company, Allanta; E. A. Longmire, master merhanic, Norfolk \& Porlsmonth Traction Company, Norfolk, Va.; Geo. E. Willis, Sterling-Meaker Company; D. A. Hegaty, general manager, Little Rock Light \& Railway Company; H. M. Bengler, Ford, Bacon \& Davis, Birmingham, Ala.; C, R. Caskle, secretary, Nashville Interurban Railway, Nashville, Tenn.; C. B. Buchanan, general superintendent railways, and C. C. Johnson, purchasing agent, Virginia Passenger \& Power Company, Richmond, Va.: W. A. McWhorter, Galena Signal Oil Company, Birminghan, Ala.: Jas. R. League, general manager, Au-gusta-Aiken Railway Company. Augusta, Ga.: Chas T. Docrr, purchasing agent, Birmingham Railway, Light \& \& Power Company, Birmingham, Ala.; Jack L. Thurston, Mildreth Varnish Company ; Percy Warner, president, Nashville Railway \& Lioht Company Nashville; F. H. Coalidge, American Brake Shoe \& Foundry Company, Atlanta; Sid Wales, National Brake \& Electric Company; A. MI. Moore, master mechanic, Georgia Railway \& Electric Company, Atlanta; S. C. Watkins. Atlanta Car Whee \& Manufarturing Company, Atlanta; Ross F. Hayes. Curtain Supply Company: D. A. Proctor, chief engineer, Nashville Interurban Railway; D. C. Frost, superintendent, Lyncliburg Traction Compmy; Thos. B. Gay, secretary and purchasing agent, Norfolk \& Portsmouth Traction Company; J. E. Slimp, Ohio Brass Company, Allanta; IV. II. Glemn, vice president and general manager railways, Georgia Railway \& Electric Company, Atlanta; Geo. B. Morton, Galena Signal Oil: A. B. Skelding, general manager, T'idewater Power Company, Wilmington. N. C.; F. L. Markham, J. G. Brill Company, Atlanta; S. G. T'urner, Atlanta Car Wheel \& Manufacturing Company; W. M. Bisel, National Brake \& Electric Company.

During the evening a good flash-photo was secured, of which F. L. Markham, chairman of the dinner committee, will be glad to send a copy to every one present, as a sonvenir of a very happy and auspicions oceasion.

REPORT OF COMMITTEE ON STANDARDIZATION*

by w. h. EVANS, Chairman, H. A. Benedict, r. C. TAylor, h. H. AdAMS, M. O'briEn, J. M. LARNED, II. W. BLAKE, C. b. FAIRCIILD, JR., L. E. GOULD.

At a meeting of the Executive Committee of the American Street and Interurban Railway Engincering Association, held in New York City, on Jan. 30, 1908, a canvas 3 was made of the sabjects to be taken up for standardization this year, but your commitce found that the topics suggested were entirely too numerous to consider in the intervening time. It was therefore decided to select those which appeared to be the most important and apparently demanded the earliest consideration. The committee finally chose for discussion this year the following sulbjects, all of which have a close relation with each other in comection with the establishment of a standard height of car equipment above the level of the rail:
(a) Standard Height of Couplers for Cily and Interurban Cars.
(b) Standard Automatic Complers for Interurban Cars and Radial Draft Rigging.
(c) Standard Height of Platforms.
(d) Standard Height of Car Steps.
(e) Standard Height of Bumpers and such other minor subjects as the committee might see fit to take up for eonsideration.

LAST YEAR'S REPORT

Your committee is pleased to be able to state that it has no recommendations nor suggestions for changes to be made in the standards already adopted by the Association as the result of the report of this committee at the convention at Atlantic City in 1907. These standards seem to have met with a very general approval, and it is gratifying to this eommittee to be able to report that the standards then adopted are being serionsly considered by varions electrie railway companies and rapidly adopted by others throughout the country. This applies particularly to (1) axles, journal bearings and jomrnal boxes: (2) brake shoes, brake shoe heads and keys, and (3) standard section of tread and flange of wheels.
It is gratifying to note also that they are not only being adopted by the operating companies, but by ear builders and manufacturers generally. Four commitiee takes this opportmity to express its apprectation of the eordial support of manafacturers and commereial concerns generally in bringing about the use of these common standards in electrie railway equipment.

meetings during year

For the purpose of thoronghly considering the subjects taken up for standardiz, tion this year, the committee held meelines at Pittsbirg, Pa., on MLay 7 and S, and at Niagara Falls, Ont., on June 29 and 30 , the latter meating being held in conjunction with the 23 th anmal cravention of the Stree Railway Association of the State of New York. At this time the committee was favored with quite an extensive exhibit by the varions mannfacturers of those parts of the equipment which were under consideration for standardization, especially of automatic conplers for interuban cars. Another meeting was held in New York City, on Aug. 21, for the purpose of finally considering and drafting this report.

[^12]Your committee recognized that the establishment of slandard heights was a most important matter and that it would not be advisable to proceed withont full information in regard to the latest practice ant any standards whieh had been adopted by individnal roads thronghout the comntry. A data sheet was eonsequently sent to all member cermpanies of the association, and the information thus secured was tabulated and considered before deciding upon the recommended standards, which are herewith submitted. A copy of the data sheet sent out is appended to this report, together with the eompiled information and an index of the companies which replied.
At each of the meetings of this committee representatives of the varions manufacturers of the equipments were present and materially assisted the committec in arriving at the reeommendations embodied in this report. Abstraets of the discussions at these meetings have been printed and widely circmlated, with the result that the progress of the work of the committee from time to time has been reported to the public generally and, so far as the committee is advised, the recomnendations have not met with any decided unfavorable comment.
(a) standard heigit of couplers for city and interurban Calis-interurban
The consideration of the question of a standard height of couplers for interuban ears disclosed the fact that there is no general accepted practice in this respect at present. The heights vary from that ordinarily used on city cars, say, 20 in ., to somewhat above the standard for steam railroad equipment. The development of the interurban railway business, particularly throughout the Middle West, has demonstrated that it will be most desirable to make the height of eouplers for interurban cars the same as that which has served as standard for steam railroads for a long period of years. This will permit the two classes of cars to couple automatically, an important consideration.

Your commitiee, therefore, recommends that the standard height of couplers for interurban ears, from the top of the rail to the center of the coupler, should be 3.5 in . This is the standard adopted for all steam railroad passenger cars.

The committee's investigation also developed that there had been little, if any, effort to standardize the height of complers for electrie cans in eity service, there being a great variation in the height between cars of early and of recent construction. This is objectionable, beeanse it is frequently necessary to comple them together, especially in cases of disabled ears, in order to clear the line. A standard height is also necessary so that proper eonnecting bars or enupling arrangements can be provided between the high interurban cars and the lower city cars.

Yow committee recommends that the standard height of couplers for city cars from the top of the rail to the center of the compler be 2) in.

In considering the type of coupler to be recommended as standard for eity cars, your committee finds that the most cemmon form is a bar and pocket pin conpling, of practieally the link and pin type, largely becanse there has been a vere wide variation in the height of complers on city cars. A mumber of antomatic couplers of the link and pin type have heen devised, however, and some of them have given good satisfaction in city serviec. Your eommittee believes that an antomatie coupler of some trpe could be used and would often be desirable for city cars as well as for interwban ears, and if the height of eity eouplers was stand-
ardized much less trouble would be experienced in obtaining such a conpler than has been the ease in the past. It las been suggested that a coupler similar to that reconsmended for interurban cars, but rednced to one-half or three-quarter size, conld be so used and would be of a design and type that had been thoroughly tested both as to strength and the necessary operating mechanism. Your committee, however, does not fecl that couplers for city cars lave been sufficiently developed at this time to allow it to make a pesitive recommendation as to a standard for "ity cars, and recommends that this swject be contimed for consideration for at least another year, or until a coupler has been developed of sufficient merit to meet with general approval and suitable for adoption as standard. It should further be menderstood that it is uot within the province of this committee to recommend for adoption by this Assoriation a type of compler whose manufacture is restricted by patent rights.
(b) Standard autumatic couplers for interurban cars and radial draft rigging
In selecting a proper type or pattern of compter for interurban cars, your committee has been consilerably handieapped from the fact that as yet no form of autonatic coupler and attachment has been developed in practical service by which interub:an cars can be compled together and can also be directy coupled to standard steam railegad cars. The chief diffienliy has been caused by shom radius enves in eity streets wer which the interurban cars have (1) operate. A number of desigus of couplers whech claim t. overcome this difienly have been subnitted to the committee; some of them were favorably considered, but it is the opinion of the comruittee that the design of at coupler for interurban electic railway conditions his not progressed sufficiently yet to warrant you committee in recom nending a partienlar type or pattern as standard. Your committee, however, does recommend that for interurban service, in-

The committee believes and has been assured by a number of manufacturers that such a coupler ean be developed, and, if possible, samples will be exhibited by various manufacturers at this convention.
Your committee, therefore, recommends the adoption as standard for interurban railways of a coupler of a vertical plane type which will have the same contonr lines of knuckle and guard arm and will automatically comple with standard steam railroad couplers.
The drafi rigging and drawbir supports for these couplers should also be such that, with sudden changes in the grade,

Standardization-Diagram Accompanying Data Sheet
the vertical displacement of the couplers with reference to each other will not be sufficient to canse the knuckles to become disengaged.
In regand to the length of a radial coupler, taking into consideration the varions types of cars at present in service, fonr committer recommends that the distance from the center af the porket pin to the pulling face of compler be 54 in . This length will apply equally as well for cars in eity service.

Your committee als: recommends that on city cars where the bumper arrangenent will permit, a pocket easting shouta be placed on the top of the bumper. the eenter of the pocket to be 35 in . above the top of the rail, and the casting to be of ample strength and properly braced, so that by

Standardication-Diagram Showing Standard Dimensions for City and Iaterurban Cars as Recommendzd by the Engineering Asscciation Siandardization Committee of 1007-1908
cluding baggage, express and freight cars, a type of coupler head should be adopted which will have the same contonlines of knuckle and guard arm and will comple autonatically with steam railroad couplers of the vertical piane type, but of some improved design or with some attachment which will prevent the complars from "buckling out" when heary infermban cars are pmished around shont radius enves.
means of a s at"ble bar eity eats can be compled on a level with the antomatio complets which will be standard for interuban cars.
For this purse it wond appear that at the present time at least it wonld be advisable to maintain a link slot and coupling pin hole in the knuckle of the automatic couplers feommended ass standard by the commuttee.
(c) PLATFORMS

Your committee recommends that the standard height of platforms for interurban cars from the top of rail to the top of platform floor be 51 in ., and that the height for city cars from the top of rail to the top of platform floor be 31 in . These dimensions appear to correspond closely with those generally adopted in the most approved designs of recently built equipment, and accord with the dimensions recommended for couplers, draft riggings, bumpers, car steps and other portions of the car which directly affect the height of platform above the top of the rail.

(d) Car steps

The heights of car steps are controlled almost entirely by a number of different factors connected with the equipment of the car, such as the diameter of the wheels, the character of the motor equipment and the kind and height of the draft rigging, ete. Your committee has found that many roads have individually given the matter careful consideration, from the standpoint of having their cars as easy and convenient of entrance and exit as the conditions existing at the time when the cars were designed would permit, but that, on account of the differences both in equipment and conditions, there is wide variation in dimensions. In view of these facts, your committee does not consider it advisable at present to go farther in this respect than to recommend what it considers good practice as regards heights of car steps.

With this limitation, your committee suggests the following as recommended practice for interurban ears:

Height from top of rail to top of tread of first step, 17 in.; height from top of rail to top of tread of second step, 29 in .; height from top of rail to top of tread of third step, 40 in.; height from top of rail to top of platform floor, 51 in .

Your committce makes similar recommendations for the heights of steps on city cars an follows: Height from top of rail to top of tirst step, 17 in .; height from top of rail to top of second step, 31 in ; height of riser from top of vestibule floor to floor of city ear, 10 in .

> (e) standard heigit of bumpers

This subject is believed by your committee to demand much greater consideration than apparently has been given it in the past, as frequently lampers of cars ou the same or connected roads differ so greatly in height as to permit the passing of one bumper over another. The height of the bumper also vitally affeets the height of couplers, steps and other attachments. Your committee recommends that the bnmper arrangement on internban cars generally be made as solid and substantial as the design of the equipment will permit, and, if possible, some suitable arrangement shonld be provided which will prevent the bumpers of interurban cars from passing over the bumpers of the lower city cars,
The committee recommends that the standard height for bumpers on interurban cars from the top of rail to the top of bumper shall be 51 in., and the leight from the top of rail to the botfom of bumper shall be 43 in .
The committee further recommends that the standard height from the top of rail to the top of bumper on city cars slatl be 31 in., and the width of bmmer for city cars shall be 6 in.
The committee also recommends that where possible the top of the bumper on city cars be reinforced with a bumper casting of suitable design, which will engage the bumper of the intermban cars as well as provide a wider surface, thins preventing the binmers from passing over and the cars from telescoping in case of collision between city and interurban cars. This bumper easting conld be designed to include the porket easting already recommended for compling city cars to interurban cars.
diagrant and table
The committee subaits a diagram and tabulated statement of the dimensions recommended above for adoption for standard, or suggested as recommended practice, for interurban and city cars, for ready reference:
TABLE SHOWING RECOMMENDED HEIGHTS OF COUPLERS, PLATFORMS, CAR STEPS AND BUMPERS.

Interurban City
Height from top of rail to center of coupler $\quad \begin{array}{lll} & \text { in. } & \text { in. } \\ 20\end{array}$
$\begin{array}{lll}\text { Height from top of rail to center of coupler } \\ \text { Height from top of rail to bottom of bumper } &43 & 43 \\ 25\end{array}$
Height from top of rail to top of bumper 51
Width of bumper 8
Length of radial conpler from center of pocketpin to pulling face of compler. 54
Height from top of rail to top of tread of first step not to exceed

17
Height from top of rail to top of tread of second step not to exceed
Height from top of rail to top of third step not to exceed40

Height from top of rail to vestibule floor not to exceed
Height of raise from vestibule platform to floor of car not to exceed

APPENDIX

A copy of the data sheet sent out by the committee is appended herewith, accompanied by a talle slowing the replies received. In this table the large letters $A, \mathrm{~B}, \mathrm{C}, \mathrm{D}$, ete., at the heads of columns correspond with letters on the data sheet, the city dimensions being given under the letter C, and the interurban dimensions under the letter I. L. P. stands for "latest practice," and R. S. for "recommended standard." All dimensions are in inches.

An index of the companies replying, with their key numbers, as shown in the large table, is presented below. The

Data Shect No. 31
THE AMERICAN STRFBG \& INTERGIRAN RAYLWAY ENGINEERING ASSOCLATION
committer on standardization
Stindiled Couphers, Dhaft Rigging, Bumpers, Platforms and Car Sters
Report of.
. Railway Company
City.
\qquad
\qquad
.....................
City Cars Operated: Single Truck?........ Double Truck?....... . . .
Interurban Cars Operated : Passenger ?. . . . Freight?............... . .
To what extent do you operate two or more Cars together in tralns in City Service? ..
In Interurban Service?
Number of Cars with Automatic Couplers?
Link and I'in T'ype: City?.... Interurban?.... Total?....
M C. B. Type: City?.... Interurban?.... Total?....
Are there any State or Municipal Laws affecting your lines regulating any of the dimensions called for in this Data Sheet?
In the answers to the questions which follow kindly give all dimenSions in inches and indicate what is your latest or most approved practice, thate the as the general standard.

Height from top of rail to the center
Incight from top of rail to the bottom
Heigbt from top of rail to the top of bumper?
Vidth of humpei?
Meight from top of rail to bottom of Height sills? fon of rail to floor of
Helght to the center of bumper
pocket coupler casting?
istance that coupler extends beyond bumper?
Distance from truck center to end of bumper:
The length of radial coupler from the pockel pin to the face of the
Icight from top of rail to the top of platform floor?................. eight from top of rail to the top of tread on irst step?
Height from top of rail to the top of
Ieight from top of rail to the top of
third step?. form to the floor of car?
length of step trearls?.
Width of step treads?
Width of door or opening, from step to platform?
ength of overhang between the center of step treads and end of bumper?
Height of motorman's step above rail?
Height of motorman's step to platform of car?
Height from top of rail to the boum
of pilot board or life guard? of pilot board or life guard?.... beyond bumper?
-

Your Latest Iractice	Your Recommen- dations for General Standards
IA. . . CA. . . IA. . . CA. . .	

*Not shown on drawing of city car. Indicates if more than one step is used.
The committee will very much apprectate any drawings, cuts, photographs. suggestions or any information whatever bearing on the abore subjects, as well as any information as to the style of couplers and of bumpers which you ase, and any arrangement you have for a connecting bar between interurban and city cars of unequal height of drawhars also $^{\text {any }}$ suggestions which you have to make of means to prevent interurbai cars from telescoping or passing over cars with lower bumpers. This remark can be placed on the last page of this sheet.
names of the rompanies are given in the order in which the replies were received:
INDEX SHOWING NAME OF COMPANY CORRISSPONDING WITH Number on inset table.

[^13]COMPANY NAME AND NUMBER-Continued

```
16 Gardner, Westminster & F'itchburg Street
```



```
Columbus Ninlway & Light Co............(Columbis, Ohio
Boston Elevated himilW:ly Co............Bnstcn. Mass.
Milwaukte L`lectric liailway & Light Co... Silwatkee. Nis.
Sprongleeld watlwaly Co. .. ............... Poston, Mass,
```



```
rries Mamufactaring & Power Co........ Winsion Salem, N. C.
```



```
baluth Street lamiload ro................ Daluth, Minn.
lowa & llinois Lailw:y Co..................linton, Iowa.
Utica & Mobawk I alley Railway Co...... Utica,N V Y
Southwest Missouri Kailroad Co................bb City,Mo.
New Jersey & IHudson Liver Lialway &
    M, Mdgewater. N. J
Lousville & Southern Indimal Iraction Co.New Nlbanv, Ind.
Lonlsville & Lastern limiload Co. . . . . .Lonisville, Ky.
Allo. nil & Login Vialley lolectric Railway
```



```
Bridgeton & Millville lracion}\mathrm{ Co...............idgeton. N. J.
Chicago & Ioliet Electric Raliway Co......Igliet. III.
Fonda Johnslown & Gloversville Liailroad
```



```
    Twin City rapid Tr`ansit Co......................\immapoll=, Minm.
```



```
    Hheemng Traction Co.................. Wheeling. IV. Va.
International Railway Co............... Bnffalo, N. Y.
```



```
The Ohio Nlectric Viailwav Co...........olumbus, Ohio.
```



```
Svractse liapid 'Tramsit lialreav Co.....Srracase N. y
ivachinmon laltimole & Ammapolis Elec-
        tric IRy. Co.... ...................... Baltimore, Md.
        Portlamd Pollway, I jwht &% Power Co.....Iortland, Ore.
Portland Lailway. Light & Power Co., Int.
    D'v. ................................lortlind, Ore.
W:albingtnn wiqtor luwer Co.............Spokane, Wash.
C.be !reton Geetrec Co., Limited. . . . . . . S"ducr. Noval seutia.
```



```
Charleston (ons. Railway. Gas & Electric
```



```
Wect IPnn Vai`wave Co................'(onmellevillar I'i
```


MEETING OF THE MANUFACTURERS' ASSOCIATION

The regular ammal meeting of the American Street \& Interurban Railway Mamufacturers* Association was held is the Greek Temple on the Million Dollar Pier, between 5:30 and $6: 30$ p.m. yesterday. President Ellicolt opened the meeting with appeciative remarks regarding the successful eshibis. The secretary then read the roll call, which was answered by exactly 100 representatives. The treasurer's report ending nom, Oct. It, showed a balance from 1907, inchding interest, of \$5.569.34, which, with the receints made a total of $\$ 34,8.54 .94$. The total disbursments for the fistal year were estimated at $\$ 27,918.33$, leaving a surplus of $\$ 6,936.61$.

After resolutions of thanks were patsed to the various committees and officers, the sectetary reed a letter from Jom N. Revnold, secretaly of the hoad \& Track Supply Association, Chicago, inviting the Manufacturers' Association to participate in the exhibits to be held in the Coliseum at the convention of the Amerie:n Railway Enginering \& Maintename of Way Association, Mar. 15 to Mar. 201909.
The secretary also read the Executive Committee's notice that the official closing of the exhibits will be 6 p.m., Friday, Oct. 16, and members were requested not to dismantle anything before that time. A resolution was passed that ballots be mailed to members asking them whether they wonld approve an initiation fee of $\$ 15$ for new or re-instated members.

President Ellicott then appointed a nominating committee to nominate five new members of the excentive oemmittee to serve three years, to take the places of the five members whose terms had expired, and also to nominate one member to fill one racant unexpired term of
one year. The nominating committee consisted of W. H. Heulings, of the J. G. Brill Company; Damiel M. Brady, of the Prady Brass Company; Arthur S. Partridge, of the Arthur S. Partridge Company; A. H. Sisson, of the St. Bouis Car Company; and C. K. King, of the Ohio irass Company.

The nominating committee proposed the following, who ware unanimansly elected: J. R. Ellicott, Westinghouse Air irrake Company, (. C. Castle, Hildreth Varnish Company; Jumes 3l. Mervaw, MeGraw Publishing Company; W. K. Por!s, Electric Service Supplies Company; Cornell S. Hawley, Consolidated Car Heating Company-all for there years: sud K. D. Hequembourg, of the Walker \& Lennctl Manufacturng Company, for the one year term.

SMOKER OF THE A. S. \& I. R. CLAIM AGENTS' ASSOCIATION

"Smile! Damn you, smile!" was the gentle watchword for Thestay evening, Each man's coat lapel bore the legend, and each man's face the falfillnent of the command. It was a jolly half hundred that gathered at the Atlantic City Yacht Club Honse to attend the snoker of the Claim Agents' Association. Special conveyances were provided at the Hot, l Traymore, and the start was made shortly after 8 o'clock. The early evening was devoted to general introductions among those present, after which a "handsome sprerd" was provided.

The meal wis interrupted by music-popular, of course, accompanied by an orchestra of five pieces. Short speeches, also pupular-decidedly so for that reason-were made by several members during the evening, and the affair was rendered still more enjoyable by a number of vandeville acts from Keith's circuit. C. B. Hardin, the new president of the association, gave an enthusiastic resume of conditions in the claim agent field; and the entertainment was brought to a close shortly after midnight be the singing en masse of Auld Lang Syne. No casualties were reported after the affair:

The entertamment committee was composed of F . W. Johnson, chairman: l'eter C. Niehel. James R. Pratt and 11. V. Drown.

ROLLER CHAIR ANNOUNCEMENT

The Roller Chair Committee wishes to again call to the attention of de'egates and guests of the convention that a large number of chairs have been provided for their exclusive use and wres everyone to take full advantage of the opportunity to see the Boardwalk sights or to use them at any time as a matter of convenience in getting from place to place.

A BADGE SONG

> "Give me a badge," the newcomer said, "Glen or blue, yellow or red. "If l can't get pink, maroon will do, "For only a badge will put me through. "I'm ready to tram with any new tribe; "Ready with any old gang to imbi'se, "But a badge I must have or inss the Show "So fix me up on the whole rainbow."

T'ennyson Swinhune Stedman.

RAILWAY MOTOR CONTROL*

hy Whaham cooper, engineer, whetingitotee electiric \& manumacturing co., piltsburg, pa.

The desideratmon of electrie motor contrel is to make the rate of change of pressure dring acemeration aboblutely constant. There are but few devices of praction applicafion that fulfill this comdition. A water rheostat ns d in comection with a dired enrent motor and an ind action potential regulator in connection with an alternating cmrent motor might be said to fulfill this condition.

In practically all the apparatus nsed to emtrol railway motors the voltage is changed in steps or increments. Since it is necessury to inerease the impressed voltage in steps or increments, the valne of and the rate of application of these inerements constitutes the problen of control in any given ease. From the control standpoint it is desirable to make the first application of enrent is large as possible as well as each saceeding step. The average rate of acceleration that ean be maintained withoat discomfort to passengers depends very largely upon the flnctiations. An aecelcration of $5 \mathrm{~m} . \mathrm{p} . \mathrm{h} . \mathrm{p}$.s. can be mantaincd withont discomfort to the passengers, provided the rate is constant or nearly so. As it is manifestly impossible to keep the rate constant with a control apparatus in which the change in impressed voltage on the motors is made in steps, the problem is to escertain the limit of fhetnation allowable. This limit seens to be more a matter of change of rate than a question of average rate-that is, a certain change in rate will canse an uncomfortable jerk, no matter what the average rate may be. If the rate of acceleration is $3 \mathrm{~m} . \mathrm{p}$. h.p.s. and it is instantly changed to t m.p.h.p.s. there will be an uncomfortable jerk. In designing a control for any given case, this is the first point to be comsidered and the total number of steps in the aparatus adjusted accordingly: As a general proposition the number of steps must be such that the change in rate of ace leration when changing from point to point will mot be greater than 0.6 m.p.h.p.s. for passenger service.

Having determined the allowable fluctuations of current in the motors and from this the total mmber of steps in the whole sequence of acceleration, the next consideration is the method of obtaining these steps.

In making a determination of the increments of voltoge to be impressed upon the motors dnring the period of acceleration the natme of the service has a very important bearing on the subject. As stated, if it is for passenger service a certain change in rate of acecleration is allowable. This same variation is not at all allowable in freight service or where the question of adhesion or enpacity of motors enters into the problem. In freight service the rate of acceleration is usually quite low. This is allowable, as the time consmed in aeceleration is but a small part of the total time, for the reason that the full speed is low. Under freight hanlage conditions the change in rate of acceleration must be measured in pereentage of tot $2 l_{\text {drawbar }}$ pull rather than in miles per honr per secom. The fluctuations of drawbar pall should not be more than 1.5 per eat. and if it is desirable to get the maximm pulling powe it must be even less.

Thus it is seen that in the use of electric motors for any kind of railway work some kind of control apparatus musi

[^14]be nsed to rexglote the impresed voltage on the motors, the nature and refineanent of whiols depends upon the kind of servier.
'The mumber of different kinds of control apparatus used is even gredter fle?n the dilferent kimels of motors. There are fira distimet tupes that cover practionlly the entire liceld, remmmonly known as the dram type and the unit swilch lope.

In dasiguing a controller for elimet enment work there are (wo gencral medrods followed-1h of plain theostatie control amd that af series paralleling the motors. 'Ilue first armagement must of neecssity le nsed when only one motor is emploped and ean bo nsed when mone than one is emploged by eommerting them in rither serics or parallel permanently. If the control is to be pain rheostatie the main consideration is the mmber of steps to be used. This point is often entsidered mote form the point of simplicity of constmetion of the combloller than from perfection of

Since the fultillment of both of these ronditions is obvionsly impassible a comphomise mast be made. The mumber of steps uscal simbld be regulated by the sarviee conditions, but is usmally mide abont the same for all kinde of servire It is salfe fo suy hatf the mamber used is alNo!!s less than desirable.

When f wo ar more motas are nised on d. e. work, it is desimble for armge the motors, in some kind of sories parallel coabination. There are several wast of ehanging the moter commedions fiom series to paralled while the motors are in motion. There are three that have been med extensively. They are known as the shmed motor, open cirenit and bidging systems. The last system is the only one that finlitls the condition of contimons torgue on the motors. on in other words, is the only perfeed ststem.

In the bridering sstem. a cirenit is mantainerl throngh each motor flroughont the whole period of acceleration and the forque of the armatures is kept practically constant. Thin result is accomplishod be arralumge the motors first in scrics and in serjes will a dertain amomet of resistance amd then retting the resistance ont leaving the motors in series across the line. The resistance is then arranged in two groups and ronneded directly aroses the line with the middle point comaeded betweat the motors. This cetablishes two pathes, one throngh the motors and one through the resist?nere with a point of equal follage of the two *ombered lowether. If the value of the resistances is suth that the coment flowing throngh tho resistance is equal to
 between the motors and resisiane a:an be broken withent making any ehande in amontme rarren. This sistem ot "incet-curent rontrel is - fon suburito to any other that it is the ambe one that shonld be wiven remsideratiom. This is not ohls ltue with fwo motor equip nemts bat is equally bue when nsing Pour. The nse di this statem in connerelion
 taincl by ̈ny other known sotem.

Combolfers with an insulticiont momber of steas have
 ferent eqtipments that the users hato conne fo believe that the conditions they impose are a neqesnity. As before staterl the desion mas be a compromise bat let the eompromise be s:ed! that the rombleted mathan will re"son bly fulthll the condibions. The design of the resistanee for dineet comrrent operation plays as important a prom as the number of steps. If the resistance is not properly designed goud
operation camnot be secured no matter how many steps there are in the controllers.

ALTERNATING CURRENT CONTROL

In the control of alternating current motors, the controller designer is not hampered by many of the limiting conditions of a direct current motor. There must, however, be a limit to the increase of current in the motor per step. This condition is not, however, nearly as exacting as in d.c. operation, owing to what is commonly known as "rubber" in the cireuit. There are two points to consider in regard to the arrangement of the motors. Arranging the motors in series reduces the volume of emrrent to be handled as compared with the parallel arrangement but, inereases the voltage. The advaniage of the smaller current is a reduction in size of all current carrying parts, which is more a matier of first cost and weight than one of maintenance or operation. On the other hand, the motor circuits as well as the control apparatus must be subjected to the higher voltage. Also the higher voltage eurrent is more diffienlt to handle on the circuit making and breaking devices. This part of the problem is quite different from d.c. control. In d.c. work the motor and control voltage is fixed by the line while in a.c. work the motor voltage is independent of the line and may be made anything that makes the best design.

The question of selecting the proper voltages for the different steps of the control is governed by the same limitations as in the d.c. The increments of current per step must be kept within certain limits and should be the same for each step. There are three things that affeet the increase of voltage per step to give an equal increase in current: the resistance of the circuit, the counter electromotive force and the inductive voltage. The resistance and counter electromotive force represents the energy or inelastic portion of the circuit, while the inductive voltage represents the elastic and non-energy portion. The combination of the two tends to keep down an increase of current due to an increase in impressed voltage. The energy component of the voltage and the inductive component are at right angles. That is, there are two forces acting at right angles, the result being that they are effective in resisting the impressed voltage in an indirect proportion to their value.

The apparatus used in making the combinations and connections of circuits is in all essential details the same for both a.c. and d.c. operation. There are, however, some characteristies of the two currents that are quite radically different, the principal one being the magnetic field produced. An alternating current produces, of course, an alternating magnetic field. This alternating magnetic ficld bas the peculiar characteristics of inducing local currents in any piece of metal that may happen to be within its range. The value of these local currents is very largely controlled by the extent of this metal and are very materially reduced by dividing the metal into small paris.

In rupturing the circuit the magnetic blowont is useful in both a.c. and d.c. It is not, however, quite as effective on a.c. as on d.c., owing to the local currents in the metal parts of the circuit, which tend to throw the magnetic flux out of time with the current.

Alternating currents, as the name implies, reverses its direction and of necessity passes through zero. This characteristic assists very materially in breaking the circuit.

AUTOMATIC ACCELERATION

As the principal function of a control apparatus is to graduate the application of the voltage to the motors in such
a mamer as to maintain the current within certain limits it follows that it must be actuated at certain fixed intervals. This can be done automatieally with far greater precision than is possible manually even by the best trained operators.

The maintenance of rolling stock is directly affected by the manner in which the propelling power is applied. The current in the motors regulates the tractive effort and this determines the mechanical strains put upon the driving mechanism. In addition to this the current in the motors determines the heating and deterioration. For any given service there is only one rate of acceleration and time of eurrent on the motors that gives the minimum heating effeet in the motors.
On ordinary hand controllers, many so-called auto-motoneers have beeu applied. All these devices are operated on a time basis, that is, a certain time must be used in changing the controller from one step to another. This method, in itself, is a step in the right direction as it certainly limits the current input into the motors under certain conditions.
Automatic acceleration can be secured properly only by a current limiting device. There are no such devices applied to drum controllers. It may be possible to design sueh a device, but attempts in that direction have not thus far met with success. In the use of unit switehes, that are separately power-operated, automatic acceleration can be secured by connecting the operating circuits through small contact making devices which are actuated by the main switches in closing and opening. By this arrangement the closing of some certain switches sets the actuating circuits for certain other switches, but these cannot close until the current limiting device says the eurrent does not exceed the proper value. After the current has fallen to the proper value the current limiting device closes the eircuit to switches and certain other switches will close, increasing the impressed voltage on the motors and increasing the current. This acts to lift the current limit and stop the progression of the switches until the current again falls to the proper predetermined value. This produces a uniformity of action of the switches and a smoothness of operation that no operator can reproduce manually, no matter what his skill may be.

There are several modifications of this method of control that are adapted to certain special conditions.
There is a method of connecting the current limit that is of considerable value in connection with d.c. roads, having a limited supply of power. If the current limit is conneeted in the trolley circuit, the acceleration will be a constant current from the line irrespective of whether the motors are in series or parallel. It is necessary with this arrangement to accelerate with a larger current per motor with the motors in series than when using constant motor current. That is, it is necessary to push the aceeleration with the motors in series in order to give the same average. The advantage of this arrangement is that the fluctuations of power on the line are very much reduced. When using constant enrrent per motor the demand on the line is, of course, twice as great when the motors are in parallel as when in series. By using constant line current the maximum demand on the line can be reduced from twenty-five to thirty-five per cent. This point is of more importance than it may appear at first sight.

The advantage of automatic acceleration as applied to d.e. operation are equally as great as applied to a.c. operation, although the question of fluctuation of line eurrent does not enter into the consideration to the same extent. Some equipments are in operation on a.c. using two current limits, one to limit the motor current up to a certain value of line current and then limiting by the line current.

Of all the different functions and characteristics of rail-
way motor control, the ability to handle a number of different power units simultaneously is of vastly more importance than any other. It makes possible the fulfillment of service conditions that would be impossible without it. If the supply of electric power is sufficient, the only limit to the length of such a train is the number of cars at hand or the length of the railroad.

There have been a great many different schemes proposed for accomplisling this result, but only a few have ever been put into operation. There are certain conditions that must be fulfilled or the apparatus will fail. First, the question of safety must be as absolute as possible. There must be no possibility of false operations of the control apparatus, such that a train will start unintended, and the ability to cut the power off at will must be equally as certain.

To fulfill these conditions, the apparatus must have certain characteristics. A failure of any part to perform its proper function must be negative in its results rather than positive. This is a condition that is well recognized (or at least should be) by all designers of automatic machinery. It is safe to say that "what can happen will happen." This is appreciated by no one more fully than by one who has been connected with the development of a system of multiple-unit train control. As the operation of the appartus on each car must be controlled by electric circuits carried from car to car, the integrity of these circuits must be maintained.

In developing apparatus to meet the requirements of multiple control and automatic acceleration as set forth above, the engineers of the company with which the writer is connected have followed consistently and continuously certain well defined lines.

First.- The operation of the control apparatus is entirely independent of the main power circuit.

Second.-Maintaining relatively high pressure on all switch contacts.

Third.-Low voltage non-grounded circuits from car to car.

Fourth.-Automatic acceleration.
Fifth.-All d.c. car equipments operated on the bridging system of control.

These features have been maintained in all the apparatus put into operation and as the term of service increases the value of them becomes more and more pronounced.

The value and advantage of operating the control apparatus independently of the main power circuit consists in being unaffected by any variations of line voltage and ability to operate control apparatus when the power is off. One of the advantages of this is that the motors may be "bucked" in case of an emergency. Also the control apparatus can be operated for inspection without power on, thus removing any possible chance of accident. These advantages and some others not mentioned, more than offset the trouble and disadvantage of maintaining the small storage battery used for the control circuits.

The question of switch pressure contact is under perfect control, as compressed air is used to operate the switches, thus making it easy to get any pressure required. That this is a matter of considerable importance is shown by the accompanying curves.

When it is remembered that these temperatures are the result of changing only the pressure on the contact, all the other losses being the same, the real value of the increased pressure is more fully appreciated. Also it is to be understood that these curves were plotted from actnal tests and each point was secured by allowing the temperature to become consiant. As is seen from the cnrves, the compara-
tive heating with low pressure is excessive and often causes a welding together of the switch contacts. The principal advantage of the ability to get high contact pressures is that the switch can be made much narrower and a magnetic field of proper strength for blowout purposes can be more readily secured. With this construction, it is possible to make single switches of several thousand amperes capacity for d.c. operation. For a.c. operation the capacity of a single switch has another limitation, that of secondary currents in the metal parts of the switel exposed to the action of the magnetic ficld used to blow out the are.

The use of low voltage non-gromed circuits for the train line has two very great advantages over a high voltage train line: immunity from short circuits and

Railway Motor Control-Temperatures of Unit Switch
grounds, and the absence of sparking or burning at the master controller or interlock contacts; also, from an inspection standpoint, there is no danger of getting a shock from handling the current carrying parts.

For the reason previously stated, automatic acceleration has been used on all d.c. and most a.c. car equipments. This has been an inflexible rule. As it. is considered that the best methods of control available are none too good, nothing but the bridging system on d.e. and an equivalent system on a.c. has been used. The specific construction of the apparatus used to produce these results has become quite genrally known and need not be mentioned here.

The New York Switch \& Crossing Company, Hoboken, N. J., has at its booth in Building No. 2 a number of switches, frogs and crossings taken from stock to illustrate the variety as well as the class of work done at its plant. The exhibit includes anti-straddling switches, switches with hard steel, manganese and hammered steel centers and switches and crossings for both electric and steam railway use. Information relative to the serviceability of this company's products is being dispensed at the booth by W. C. Wood, H. R. Sherman, W. B. Phillips and E. Armerding.

Arnong the Exhibits

H. Sanbern Suith, general s les agent, and C. R. Robinsom, the now Chieago district sales agent of the Lackawanna Steel Company, arrived in Allantic City on Wednesday to altend the convention.

The automatic feature of the Jones stoker, which is distinetive of this method of mechanical stoking, renders it particularly applicable for service where loids are fluctuating in character. A full deseription of the Cole automatie attachment referved to will be found in the new edition of the Pocket Catalog being distributed by the Under-Feed Stoker Company of America at its exhibit, space 860.

The new features of the extribit of the I'nited States Electric Sigual Company, consist of a signal providing for a multiplicity of cans in a block al a time. This system has all the safety features of this company's former type (i-1, mamely those of anticipating grounds, crossing of wires, ete., and all line troubles to which a signal is subject. There is also shown a new trolley switch, the operating parts of which are mede light and so constructed that the action is very slight, thus eliminating inertia. The exhibit is wired up to show how the signals work when in achal operation.

A large line of ticket punches of all types is shown in Space 821 by the Bommey-Vehslage Tool Company, New York. A punch made especially for streat railway service differs from the vasal type of puncl, in that the tool steel die is set into the main part of the frame and the plunger is made of malleable iron. In other punches this method of construction is usually reversed.

The American Locomotive Company, New York, is locaterl in Machinery Hall. Its space is arranged as a reception booth where Messrs. William Wampler, Wr. E. Woodard and Raymond II. Baker, the representatives of the company. are greeting delegates. The company's exhibit consists of large framed photographis of some of the electric locomotives, snow plows and trudk manufactured by it.

The Falk Company, of Milwankee. seldom misses representation at a convention of electric railway men. This year IV. Frank Carr, chief engineer, is in attendance, and is presenting lis acquaintances with an attractive souvenir pamphlet illastrating the products of the Falk Company, which include gears, pinions, sperial track work and all manner of steel (astings.

The Verona seamless trolley pole, which is being exhibited by the manufacturers, the Pittsburg Pole \& Forge Company, in spaces 608-614, main building, is made from selected seamless fubing. The ontside diameter at the tip is 1 in , and as the ented is tapered for 3 ft . of its length any liarp can be made to fit. The butt is $1 \frac{1}{2} \mathrm{in}$. in diameter and is reinfored for 20 in . with the same material as the pole itself, making a light weight trolley pole which has high strength and which will stand up under hard service.

Few exhibits in the line of specialies for interurban ears are attracting more attention than the Jamey radial coupler exhibited by The McConway \& Torley Company, Pittsburg, Pa., in spaces 707-715, Marine Hall. The device is ingenious and simple and seems to meet the peculiar requirements of electric and intermban service.

In the exhibit of the Columbia Maehine \& Malleable Iron Company, is a turnstile designed for pay-as-you-enter cars. It was invented and patented by C. S. Banghart, Superintendent of the New York \& Queens County Railway Company. It consists of an upper and a lower set of arms fastened to a hinge attached to the center pole. These arms automatically fold or drop as soon as the passenger has entered, only two arms extending out in a horizontal pasition at a time. The turnstile is designed to take up little space on the platform of the car. In view of the interest at present manifested in pay-as-you-enter cars and methods of fare collection used on them, it would pay delegates to examine this exhibit.

Considerable interest has been shown since the convention opened in the demonstrations of the Millionaire calculating machine. This remarkable meehanism can multiply and divide any sums with surprising rapidity and absolute accuracy, and is a marvel to all who call to see it in operation. It is said that no machine on the market is its efpual for figmring cests, earnings and expenses per car mile or car hour, discounts, etc., and all those interested are invited to visit booth 424 where Messrs. William \& (ienge Musselianser are prepared to demonstrate and show the maceline.

The exhilit of the Gould Storage Battery Company, New York, at spaces 818-819, includes sample cells of the various types used for railway regulating and line batteries. The type V-1541 cell is of interest as an example of the type of installation used where the demands for power are large, this cell, having a capacity of 4800 ampere hours at the 8 -hour rating. The "Couple type" exhibited is used for signal, telegraph and similar installations. The Gould Storage Battery Company is distributing to users of storage batteries, temperature correction charts, showing the variation in gravity readings ransed by temperature changes and affords a simple and convenient means for accurately determining the condition of charge in cells by means of the ordinary lydrometer.

The Jewett Car Company, Newark, O., is showing on the exhibition trestle, adjoining the Main Building, one of an order of ten intermban cars bilt for the Indianapolis, New Castle \& Toledo Railway. The design of this car is out of the ordinary in several respects. It is 62 ft . long and its front end is parabolice in shale. This departure from the ordinary design is intented to reduce the head-end air friction of the ear while it is in motion. The car is of musually sulstantial construction and is built to withstand the strains incident to ruming at a speed of 70 miles an hour. The interior is finished in malogany and is equipped with the latest types and designs of fixtures, among whiel are the Jewedt antomatic window fixtures and nickel lamp sockets. The car is equipped with a motor generator set and is sowired that either 550 volts or 110 volts may be used on thelighting cirenit. The car body is momed on Baldwin trucks which will be equipped with Allis-Chalmers motors. The car came to Atlantic City from Newark on its own whee's. It was built from designs and specifications prepared by the Electrical Installation Company, Chicago. which is acting as engineer for the railway company. The company is also showing a section of its semi-eonvertible car.
(. E. Sawtelle is attending the convention in the interests of the 'Tool Sicel Hotor Gear, de l'mion Coandany, Cincinnati, Ohio. He rep.oris some good orters received liom a number of the larger railwaly companies.

The Rail doint Company, of New Vork, has establisite a branch sales office in the Call bailding, San Hranciseo, Cal. James A. Gireer, of the sales department in New lork City, wial represent the company.

The Quride car seats and the (ouride silent gears shown by the Ifome Ilide Company, Syricuse, N. Y., are altraceing athention. 'The representatites are being kept busy explaining the merits of (Quride.

The Union Electric Company, Pillsburgh, l'a, is repre sented by 'T. MI. Cluley and Geo. W. Drowest. The many triends of dohn P' Provest will hear wi.h regret that he was unable to atlend the convention this year.

The National Brake Company, of Buttalo, is distributing a rhyme of the dollars writen in the sayle of the ten little black boys, except that, one by one, ten bags of alividends disappear because a railway company does not use peacock brakes.

The Russell Car \& Snow Plow Company, Ridgway, P'i., is represented by M. S. Kline, presadent. Mr. Klme reports an encouraging improvement in basiness coldations. His Company has already booked a namber of adrance orders fur snow plows.

Star Brass Works, Kalamazoo, Maich., is shewing, in addition to their regular line of trolley wheels and harps. a new torm of 6 -in. Wheel with a 3 -in. hub and a harp alesigned especially for this wheel. The exhibit is located in space 814 , Building No. 3.

Barbour \& Stockwell Company, Cambridgeport, Díass, as has been their custom for a number of years, have no eshibit, but the interesis of the company are being well taken eare of by the representatives present, F. F'. Stockwell, Wm. W. Iield and II. R. Luther.

The exhibit of the Electric Railway Tmprovement Company, Cleveland, O., which is located in buiding No. 2 , is athrating even greater attention amongr ralway men than it did at the convention last year. Many demmostrations of the brazing of copper bands to steel rails by one of the company's welding and braxing cans were made yesterday and more will be made during the week.

The I, K. Elliott Electric Company, successors to the Elloot Bros. Electric Company and to L. K. Elliott, Cleveland, O., is represented at the convention by C. I'. Billings. This company has recenty fincreased the capacily of its plant to facilitate the mantifacture and repair of field and armature coils. The representatives clatim the combpany now has one of the best equipped plants in the Maddle WVest for doing this work.

An interesting exhibit is shown at space 607 by G. M. Gest. Besides a number of types of Camp duct for under-
gromed ronduit ronstruction, a novel and ingenions method of reintoring cormach iron poles is shown. The reinforcement is fut in the fote from the inside withon disiturbing the sidewatk or the werlemat eonsimetion. A reinforced age of (aibbou sied lwisied bats is dropped into the top of pole and roncrete is torncel in by means of compressed air. After the rome rete seas, the jole is prationally undesiructible.

I number of interesting appliances are exhibited by the 1). \& W. Fuse Company, of Provilence, R. 1. Both the black ant white finish oleltabeston magnet wire is shown, also setviee swithl boxes with inclused fuses for d. c. and muliph:se ctrvenis; matin line and branch boses; motor and thimbrat shoe fise boxes; a line of hightension eutonis is also exhibited.

At the demonstration of rail wedding by the Thermit procass on Tucsiay afternoon, a number of disimouished guests were 1 resent to witness this interes'ing operation. luchuded among them were Air. Katsura, engineer of the South Nianchuria Railway; C. O. Holmes, U. S. Steel l'rolncis Export Comprany; Jimes B. Sirong, Famapo Lron Worlis. and W. 11. Harton, J1., enoinecr maintenance of way, South Corington \& Cincinnati Street Railway Company. The demoustrafion will be rel cated again to-day at 4 p.m. on the pier between Marine Hall and the Amex Building.

The Trolley Supply Company, Canton, Ohio, is showing in its booth in Building No. 3 , its new l'eerless roller bearing wolley base. This base, it is claimed, is alnost frictionless. lis springs and bearings are entirely enclosed in dist and mosture-proof casings. The company is alsu showing its new Peerless and Ideal trolley eatchens, which are attracting attention. The Trolley Supply Company is also the manafacturer of the well-known Knutson tholley retrierer which is now rased by more than 400 railway com1 anies. Other devices exhibited inchade the Starare and mcandescent headligh's which are interchangeable with any other type of light.

The General Storage Battory Company, Boonton, N. J., is showing a compleie line of is "Bijni" plante plates as well es two tyles of the well-known Bijur balanced booster regulator at spaces F20-731. Dijur storace batlery fates are , hasterzed by their freedom from buckling, hish durabibly, superior diffusion of electrolyte and partiontarly by the patented treatment of the newative called "promanizing," which causcs the negative plate to sstan its mpaeity in use. 'The exhibit consis's of two $1+00$-amp. ln. cetls, complete! y instalied a fflon-id. h. unit, similar fo the cells in the Cambria steel Company's new battery, and a numher of smaller rells, giving a comprelensive itleat of the Bijur line of stationary vells, from the larges sige down to (6) h. couplas. The plates of the General storage Battery Companys are 1 erfectly interchaneable with those of other makers and any standard battery can be renewed with them. Photomraphe of several instablations are shown and the motor diven end rell switches. in which severai marhed improvements hare been emborlied, have evoked much interest. The addition to the companyo plant at lumaton is now in full operation and is of such si\%e that this eonmpany now ranks as the second latgest battery manufacturers in the country.

THE MILBURN ACETYLENE LIGHT

The Milburn acetylene light, manufactured by Alexander Milburn Company, Baltimore, Md., is being exhibited on the pier alongside of Colonel

Milburn Light Young's residence, which at night is ablaze with incandescent lamps. No better position could have been secured for demonstrating, by comparison, the intense power of the acetylene flame used in this lamp. The lamp is intended especially for use on night construction or repair work, to which all street railway companies frequently have to resort. The accompanying illustration shows a cross section through the acetylene generator and the burner reflector. No pump, gages, valves or moving parts are employed. The pressure of the gas is maintained by a water column which supplies the water used in the generator. The tank is 12 in . - square by 36 in . high, and the lamp is mounted on it with a standard, which revolves freely in a water seal in the tank. The carbide is placed in trays in an inner cylinder of the tank. A wide-angle reflector is used to distribute the light and at the time intensifies it sufficiently so as to project the rays 1000 ft . or more in front of the lamp. The light is claimed to be perfectly safe because all joint are water-sealed. The lamp is said to give 5000 cp with a consumption of $21 / 2 \mathrm{lb}$. of calcium carbide per hour, costing $31 / 2$ cents a pound. These lights are in use by a large number of street and steam railways, contractors, and by the United States Government.
M. M. Ely, of The Garford Company, Elyria, Ohio, is attending the convention in the interest of Shelby "Standard A" trolley poles for which this company is sole agent. An exhibit of these poles is being made in the booth of the Wallace Supply Company.

The National Carbon Company is distributing a small booklet on carbon brushes entitled "Operation vs. Quality," covering the selection of the proper brushes, the qualities necessary to meet certain conditions, the causes of many brush troubles, the remedy, etc. Every railway representative can secure copies at this company's exhibit booth, space 812 .

The Lima Brake Shoe Company, Lima, O., is showing samples of its composition brake shoe, which are attracting considerable notice. Some of these brake shoes have been in use on several of the large interurban and steam roads in the Middle West and the company states that they are. giving entire satisfaction. C. H. Doebler is in attendance at space 600, and is prepared to give any information which may be asked for.

John M. High of the Pantasote Company, New York, reports haring received some very large orders for Agosote, the new waterproof fiber board used for head linings in car construction. Agosote is a foreign product, extensively used abroad in passenger car construction. It has been on the market in the United States less than a year. The following is a partial list of recent car orders on which Agosote has been specified: Chicago Railways Company, 600 cars; Northwestern Elevated Railroad Company, Chicago, 20 cars; Third Avenue Railroad, New York, 150 cars; Metropolitan Street Railway Company, New York, 125 cars; Yonkers (N. Y.) Railroad Company, 16 cars; Boston \& Maine, 30 cars; Pennsylvania Lines West, 10 cars; Pullman Company, 14 sleeping cars. This product is now being used in the construction of a total of more than 1200 passenger cars of all types. Up to the present time it has been manufactured abroad and imported; arrangements have been completed, however, for its manufacture in the United States by the Pantasote Company.

The Samson Cordage Works, Boston, Mass., is issuing a clever reminder of its product in the shape of a pencil with a celluloid holder made to represent the well-known Samson Spot Cord. It will be sent to any electric railway officer who writes.

The Northwestern Elevated Railroad of Chicago has recently ordered from the American Mason Safety Company 2300 Mason safety step treads for use on station steps and platforms and has also specified that these treads shall be used on the new cars now building at the works of the Pullman Company. Among other orders placed for these treads are an order for 1200 from the Pullman Company for its own cars and an order from the Hudson Companies for equipping all of the stairways of the tunnel stations in New York.

The vacuum impregnating system is being extensively adopted by leading manufacturers for impregnating armature and field coils, and the Standard Paint Company's compounds for this purpose are having a large sale. A visit to space 735 will repay itself, if only for a quiet chat on this subject with the company's representatives, and incidentally to obtain one of the new catalogs of insulating varnishes and compounds. This book is not only a catalog of the well-known line of P. \& B. insulating varnishes and compounds, but also contains much practical information about insulation and methods of applying it.

The Lord Electric Company, New York, in addition to its numerous other specialties, is exhibiting the Cosper "Controlator" (controller regulator). This device is designed to insure smooth acceleration accompanied by a material saving in maintenance cost for equipment repairs and in electrical energy. It is bolted to the top of the K type controller usually used. Also, it is designed so that it may be applied to other controllers for series-parallel service. With regard to the design of the "controlator," it is said that it is built very compactly, is strong and therefore durable, and also is unaffected by atmospheric conditions. The regulator effects, by means of a predetermined time-element feature, any desired rate of feeding. With each equipment a templet is furnished to facilitate installation. One commendable point in this device is that when the reverse lever is thrown again into the forward position, the controlator automatically puts itself into service.

THE CURTIS MOTOR TRUCK

The Curtis type CI-158-72 motor trmek with motors inside the axles is on exhibition in Building No. 3, Spaces 851-53-55. It is designed for city and sububan service, and ean be used in services that are usually thonght to require trucks with motors ontside hmog, beenuse it will pass all curves that are considered good practiee. With its motors earried in the center, the strains dure to the overhang of the motor load carried on the end sill are not enconntered. Supporting the motors in the center is the 'natural place for them in a radial truck and the power of motors ean be better applied than when motors are ontside the axles. This type alco carries the car borly lower than most trucks of the same eapacity and eharacteristies and is especially suited to cars with large overhanging platforms. Carrying its loed in the center, the weight of the

The (f. Droure Company, of Bringeport, Comn., was a litile late in arriving, but William V. Dee, its gencral manager, is now hore amd has a space near Aquarium Hall, where a neat model of the Lowell window operator and seclions of Anti-l'lnvins skylight are exhibited.

One of the exhibits of the Natiomal Lock Washer Company, Newark, N. J., at its booth, spaces 216-220, comprises a number of full-sized car windows showing in practical operation the rompany's ear window fixtures. On aceount of their simplicity, small number of parts and ease with which they ean be applied and maintained, these devices have been sold in large quantities to steam and electric railwass. 'The sash locks shown on these models ean be nsed with or without the National sash balanee. It holds and positively locks the sash at any leight. Furthermore, it prevents rattling, and by its use the window can be

The Curtis Forged Steel Motor Truck for City Service
car is centralized and the traction is greater than with other types of trucks.

The truck has the Curtis all-forged steel pedestals and four coil springs. Each lower corner of the journal box is a heavy lug cast to form the seats of the pedestal coil springs that give relief to the shoeks of the wheels on meeting inequalities of the track, so that they do not vibrate back and forth through the frame and ear body.

The bolster is of the true swinging type, being of snch design and construction that it swings freely with the shifting" car body. There is no limiting device to stop its natural swing, yet it never strikes the side frames, but maintains a true central position when at rest.

The Curtis transom construction is nsed. 'This truck is equipped with the Curtis balanced non-ehattering brake rigging. This rigging is designed to give powerful brake application with the least wear of shoes.

It is built of open-hearth steel forgings throughont. All castings are eliminated exeept journal boxes, brake heards and eenter plates. All parts are standard and interehangeable.

Don't forget that you intend to call to-day on the representatives of the Speer Carbon Company in space 611 and balk over your brush trombles. They have some new improvements on their products worth looking into.
framed loose enough to be easily raised and lowered. The window eannot fall when equipped with this device, as the jar, instead of loosening it, locks it more securely.

The Coleman fare box is attracting much attention from operating officers in attendance at the convention. The companies whieh have the device in use on their pay-as-youenter type cars are strong in their praises of its efficiency in collecting all the niekels. Its mechanical construction is simple and strong and not easily deranged by rough usage or by bent or defective coins. George H. Dreybus, manager of the Coleman Fare Box Company of Buffalo, who was formerly connceted with the International Railway Company, is demonstrating the operation of the Coleman system of fare collection in space 304 in the main building and is distributing a little booklet containing information worth real money.

The atuto-seope advertising devjee displayed in building 3 , spaces $836-838$, by the National Advertising Company of America, is designed to bring every card shown in the advertising rack of an electric car directly in view of all the passengers on the car. The cards are constantly slifted and thus attract attention. Added to this is the fact that the device allows twice as many cards to be displayed in cach car as has heretofore been possible.

THE PAY-WITHIN CAR

The "pay-within" car, designed by F. H. Lincoln, assistant general manager, Pliladelphia Rapid Transit Company, is being exhibited on the trestle north of the pier by the Electric Service Supplies Companv, which has seeured the selling rights from the Par-Within Car Com-

Rear Platform of Pay-Within Cor

pany, which owns the patents. The ear exhibited is one which has recently been rebuilt from a standard doubletruck car in the shops of the Philodelphia Rapid Transit Company. A full deseription of the pay-within principle and the method of reconstructing the Philadelphia Rapid Transit Company's cars to use this system was given in the Electric Railfay Journal of Sept. 23. One or two minor improvements have been ineorporated since the deseription appeared, the chief of which is in the form of pillar containing the door-operating valves and which separates the entrance and exit passage ways in the rear vestibule. The principle claim made for the pay-within type of car over any other prepayment plon is the additional protection afforded against accident. The rear phtform is entirely enclosed by pheumatically operated sliding doors controlled with a valse eonveniently placed in front of the conductor as he stands in his proper position. The platform slep folds up when the door is closed and there are no grab handles on the outside of the car. It is

Philadelphia Pay-Within Crr
impossible, therefore, for anyone to attempt to board the car after the door is closed and the step is up. The simplicity of comsering a standard car into one of the paywithin type is also an important advantage claimed.

The Le Valley Vitae Carbon Bruslı Company, New York, has no exhihit, but the company's interes's are looked after by M. W. Robertson, its general manager.

BRILL CENTER-BEARING MAXIMUM TRACTION TRUCK

The Brill exhibit includes a center-bearing maximum traction trinek which is shown for the first time. The truck can be inspacted in the Biill scetion on the pier and can also be seen under the P'dy- Λ s-K'ou-Enter ear of the Third Avenue Railrond Company on the exhibition trestle. It is designated as No. 39E and differs from the Brill "Earcka" maximum traction truck, in that it has a bolster with a center bearing. The bolster is supported on semi-clliptic springs which extend lengthwise of the truck and rest in links suspended from the side frames. The side frames are each solid forged in a single piece, and the entire frame is well designed with a view of reducing the weight of the truck to the minimum. Differential brake levers proportion the amount of press me on the wheels according to the load which they earry-the lowd on the large whecls being 75 per cent. Four hundred and fifty of these trucks are now being bailt for New York.

The Philedelphia Electric \& Manufacturing Company reprits a constantly increasing demand for its Antirust for preserving iron and steel work of all kinds. This product is cons:dered by many of the largest manufacturers to be even superior to galvanizing in some respects. It is applied in the same manner as paint, and it is all that the name implies. This company hes closed contracts receutly for a large number of i's absolute cut-outs, mast arms and malleable line material.

The Rooke hand register is making rapid progress. About 2000 of them are now in use in six states. It is interesting to note that 20 of these regisiers are used on pay-as-youenter cars in Des Moines, Ia.

The pay-as-you-en'er cars, which are shown on the exhibition track trest!e, are proring of sperial in erest to delegates. One of these cars was manufacturerl by the Cincinnati Car Company and the other by the J. G. Brill Company, and they were designed after the plons and manufactured under the license of the Pay-As-You-Enter Car Company, New York. The car built by the Cincinnati Car Company is one of an order built for the Municipal Traction Company, Cle:eland, while the one built by the Brill Company is one of an order of 1.50 cars for the Third Arenue Railroad, New York. The Pay-As-You-Enter Car Company is represented at the convention by D. McDonald and T. W. Casey.

The J. P. Derine Company, Buffalo, is represented at the convention by J. P. Warfel. This romponv is s:le manufacture for the U'niterl States of the Passbarg vachum impregnating and droing apparatus. He states that the company has met with great success in installing this apparatus in clectrical manufacturing and repair shops.

The Dittrick \& Jordan Electric Company, Cleveland, is represented at the convention by Λ. R. Dittrick, who is stopping at the Chalfonte.

The B-dœer Fire Extinguisher Compauv, of Boston, Mass, has been requestrd bo the manngement of the conrention to lord the two 40 -oיnlon chemiend treck firm pngines and be prepord in e-se of fire among the culhibits for quick action. This comprnv's exbibit, besides the emgines mentioned sbove, ennsisting of a full line of hand tire extinguishers, is attracting due interest.

[^0]: *I'aper read before the American Strect and Informedan Ratilway Accountants* Association, Atlantic City, N. J., October 12, 13, 14, 15 and 16, 1908.

[^1]: *Read before the American Street and Interurban Rallway Transportation and Traffic Assoclation, Atlantic Clty, N. J., October 12, 13, 14, 15 and 16, 1908.

[^2]: *Read before the American Street and Interurban Rallway Association, Atlantic City, N. J., October 12, 13, 14, 15 and 16, 1908.
 \dagger Proceedings A. S. I. R. A., Vol. I, 1907, p. 107.

[^3]: *For complete information see "American Engineer and Railroad Journal." Jume. July. Sept., Oct. and Nov., 1907. Also Report C. W. Cross, 190 s , to N. I. State Board of Lahor Statistics.

[^4]: *For the full report see the Proceedings of the 1908 Convention Master Mechanics' Association.

[^5]: *Read before the American Street and Interurban Rallway Transportation and Traffic Association, Atlantic City, N. J., October 12. $13,14,15$ and $16,1908$.

[^6]: *Read before the Amerlcan Street and Interurban Railway Transportation and Traffic Assoclation, Atlantic City, N. J., October 12, $13,14,15$ and $16,1908$.

[^7]: *Read before the American Street and Interurban Rallway Engineering Association, Atlantic City, N. J., October 12, 13, 14, 15 and 16, 1908.

[^8]: *1resented as a part of the report of the Committee on Power Distribution of the American Street and Interurban Engineering Association. Atlantic City, N. J., October 12. 13, 14, 15 and 16, 1908.

[^9]: *Abstract of paper read before the American Street and Interurban Railway Engineering Association, at Atlantic City. N. J., Oct. 12, 13, 14, 15 and 16,1908 , as a part of the Report of the Committee on Control.

[^10]: *Rad before the Americem stent and Interurban Ratiway Tramsportation and Tramic Association. .dtantic cily, N. J. Oeteler 12.

[^11]: *Abstract of report read before the American Strect and Interurhan Rallway Engincering Association, at Atlantlc City, N. J., Oct. $12,13,14,15$ and 16,1908 .

[^12]: *liead before the American Street and Interurian Railmay Enginepring Association, Athantic City, N. J., Oct. 12, 13, 14, 15 and 16 , 1908.

[^13]: No. Milford \& $\begin{gathered}\text { Name of Company }\end{gathered}$
 Milford \& Ubridge Street Rallway Co... Milford, Mass. Lynchburg Tractlon \& Light Co........... Lvnchburg, Va. Meridian Light \& Railway Co............. Meridian, iliss Fort Wayne \& Wabash Valley Traction Co. Fort Wayne, Ind Pensacola Electric Co....................... Pensacola, Fla. Public Service Railway Co.................. Newark, N. J. Trxas Traction Colnpanyllas, Texas
 Denver city Tramway Co................... Denver. Colo. Knoxville Railway \& Light co............ Knoxville, Tenn. Wast Shore \& Ruburhan Railway Co... . . Richmond, Cal.
 Washington Railway \& Flectic Co..... Washington. D. Capital Tractron Co................................ Washington, D. Northern Ohio Traction \& iaght Co........ . . Akron, Ohlo.

[^14]: *Abstract of paper read before the American Street and Interurban Kailway Enpineering Association, at Atlantic City, N. J., Oct. 12. 13, 14. 15 and 16, 1908, as a part of the Report of the Committer on Control.

