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Optimal Headways and Slack Times

at Multiple-Route Timed-Transfer Terminals
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Schedule synchronization may significantly reduce transfer delays at terminals where

various transit routes interconnect. Since vehicle arrivals are stochastic, slack times in the vehicle

schedules may be desirable to reduce the probability of missed connections, even at the cost of

some additional waiting times for vehicles, drivers, and some non-transferring passengers. Total

system costs are formulated to assess the effectiveness of coordinated operations under various

demand and traffic conditions. Numerical integration is used to compute transfer delays due to

probabilistic vehicle arrival distributions. Afterwards, a newly developed headway clustering

algorithm is used to jointly optimize headways and slack times for all coordinated routes. The

results show that as demand decreases, increased coordination is desirable. They also show the

value of coordination with integer-ratio headways rather than a single cornmon headway for routes

with widely differing characteristics. The results from sensitivity analysis also show that

coordination is not wonh attempting, even in low demand and high headway cases, if arrival

randomness becomes excessive.
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In transit networks with multiple interconnected routes, delays may be considerably

reduced if the arrivals of vehicles from different routes at transfer terminals can be synchronized. at

least to some extent. Complete synchronization may be greatly hindered by the network

configuration even if vehicle arrivals at transfer terminals could be deterministic. Since arrivals are

actually stochastic, due to variable demand, driver and traffic characteristics, synchronization may

be quite difficult to achieve. To reduce the probability of missed connections, it may be desirable

to include slack times in the vehicle schedules even at the cost of some additional waiting times for

vehicles, drivers, and some non-transferring passengers.

Three options are considered here for operating multiple routes through a transfer terminal.

These are (1) uncoordinated operation of multiple routes whose headways are only optimized

independe~tly for each route, (2) coordinated operation of multiple routes with a common

headway, and (3) coordinated operation of multiple routes with integer-ratio headways. For

analyzing such transportation systems, the total system cost may be classified into two major

categories: Non-transfer cost includes vehicle running cost, user waiting cost in origin terminals

and user in-vehicle cost. Transfer cost is the waiting cost of vehicles and passengers in transfer

terminals.

Schedule coordination implies that the headways on various routes should either be equal to a

common headway "cycle" or be integer multiples of that cycle. This reduces overall costs although

non-transfer costs may increase. When demand is high, such as in peak periods, service headways

should be short and transfer cost are typically dominated by other costs. Therefore, uncoordinated

option will be preferable. Conversely, coordinated operation will be preferred when demand is

low, such as in off-peak periods. The threshold in the passenger volume between uncoordinated

operation and coordinated operation will be determined by the trade-offs between the non-transfer

cost and transfer cost. The main objectives of this study are to identify which option is preferable

under what circumstances and to optimize headways and slack times for each route if the

coordinated operation is preferred.



Some descriptive studies of timed transfer systems, without formal optimization, have been

published. Vuchic (1983) provided detailed descriptions and a systematic classification of timed

transfer systems, without mathematical models to optimize system characteristics. Bakker, Calkin,

and Sylvester (1990) provided an interesting discussion of the concepts and considerations

involved in designing a timed transfer network for the bus system in Austin, Texas. In that analysis

slack times (and other imponant vanables, such as headways) were set judgmentally rather than

optimized mathematically.

When timed transfers are optimized with deterministic models, slack times to allow for

uncertain vehicle arrivals cannot be eQdogenously optimized. Therefore, deterministic models tend

to focus on schedule synchronization in a transit network. Purely deterministic models to schedule

connections and minimize delays were proposed by Rapp and Gehner (1976) and by Salzborn

(1980). Kwan (1988) introduced an interactive heuristic approach embedded in a computer system

called JillIff forcoordinating joint headways. Keudel (1988) developed algorithms for computer-

aided network design (DIANA) and minimization of transfer times in networks (FABIAN) to

optimize the transit systems. DIANA is used to generate a network with minimum operating costs,

while FABIAN is used to minimize sigr:tal delays by optimizing the signal settings within a

signalized street network. Klemt and Stemme (1988) used computer aided scheduling to minimize

the total transfer waiting times in a schedule synchronization problem. They presented a simple and

intelligible heuristic approach to reduce the computation time significantly. Daganzo (1990)

examined the implications of scheduling in various ways the inbound and outbound vehicle routes

serving a transportation terminal. The results from a small example with ten inbound routes and

two outbound routes showed that solutions with all the headways equal often minimize the total

logistic cost.

Several probabilistic distributions have been considered for vehicle arrivals at transit

stations. Turnquist (1978) suggested that the distribution of bus arrival times at a point along a

route is lognormal. A limited empirical study produced results consistent with such theoretical

expectations. Talley and Becker (1987) and Hall (1985) used exponential distributions to compute

the probability that buses will be more than x minutes early and more than y minutes late.



Guenthner and Hamat (1990) showed that adjusted bus arrival times follow a gamma distribution,

but the proposed gamma distribution does not fit at all times since buses in the morning and

evening peaks tend to arrive late but the midday buses tend to arrive early.

A few researchers have developed probabilistic models that account for the stochastic

nature of passenger demand and vehicle travel times, but typically at the expense of analytic

features such as optimization, realistic networks or realistic objective functions. For instance, Hall

(1985) developed what seems to be the best analytic optimization model· found to date for timed

transfer systems. Its main weaknesses seem to be the use of exponential distributions for vehicle

arrivals and the neglect of costs in an objective function which simply minimized wait time for

transferring passengers. Exponential arrival time distributions seem unrealistic for transit operation

but their use makes Hall's model analytically tractable. Lu (1990) formulated an analytic model for

two routes to optimize slack time with stochastic arrivals. The formulation did not consider the

joint probability of stochastic arrivals on the two routes. Bookbinder and Desilets (1992) combined

a simulation procedure with an optimization model to determine the optimal departure time of buses

in a transit network with decentralized transfers. That approach may consider both deterministic

and stochastic bus travel times when the scheduled headways are treated as fixed on each line. The

results exhibited the problems of optimizing transfers with a deterministic bus-travel-time

assumption, if travel times are in fact stochastic. Lee and Schonfeld (1991) developed a numerical

model for optimizing slack times for simple systems with transfers between one bus route and one

rail line which can work with any arrival distributions (including irregular empirical distributions).

Some analytic results were derived for empirical discrete and Gumbel distributions of bus arrival

time. The sensitivity of optimal slack times to various factors was analyzed using normally

distributed arrivals. The results showed that the optimal slack times become zero when service

headways are small and/or when standard deviations of arrivals exceed certain levels.

A review of the above studies indicates that deterministic models for optimizing time

transfer in transit systems have received considerable attention. However, no stochastic models for

time transfer optimization among multiple routes have been found. The present paper seeks to fill

this void.



The system modelled consists of multiple transit routes interconnected at one transfer

terminal (as shown in Figure 1). Bus routes, rail transit routes and various other kinds of transit

routes may be included in any combination.

For uncoordinated operation, only a separate headway is optimized independently for each

route. For coordinated operation, the headways and slack times for each route are jointly

optimized. Coordination requires either one common headway for all routes or integer multiples of

a basic headway cycle on each route, although the optimal slack times for different routes are

unrestricted.

In transfer terminals, passengers typically walk between the vehicle loading positions. The

required dwell times for vehicles may depend on expected inflows and outflows, door

characteristics, and the distance between the stopped vehicles, but not on pre-planned headways

and slack times in the schedule. Therefore, costs for dwell time would drop out of the objective

function when wand H are optimized. Lee and Schonfeld (1991) analyzed the a transfer process

with a time-space diagram which justifies focusing on scheduled departure times and neglecting the

minimum required dwell times in the present model.

Finally, it is assumed here that delays on any route are independent from those on the other

routes (although speeds and delay distributions may still vary over time). This assumption greatly

simplifies the treatment of joint probabilities and is reasonable when routes operate independently

in different environments. This assumption may be relaxed if delays are correlated due to traffic

conditions, demand characteristics, or control actions.



Based on the system definition, models for uncoordinated and coordinated operations are

developed. All variables are defmed in Table 1. The total system costs for each type of operation

are formulated below :

where

Cu= -total system cost of uncoordinated operation ($/min.)

CN= non-transfer cost ($/min.)

CF= transfer cost ($/min.)

The non-transfer cost includes vehicle running cost, user waiting cost in origin terminals,

and user in-vehicle cost:

Co= vehicle running cost ($/min.)

Cw=user waiting cost in origin terminals ($/min.)

Cy= user in-vehicle cost ($/min.)
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vehicle operating cost ($/veh.min.) 0.667
total system cost for coordinated operation ($/min.)
waiting cost of transfer passengers from early to late vehicles ($/min.)
total transfer cost ($/min.)
missed connection cost ($/min.)
total non-transfer cost ($/min.)
vehicle running cost ($/min.)
inter-eycle transfer delay cost due to unequal integer-ratio
headways ($/min.)
slack delay cost due to slack time ($/min.)
total system cost of uncoordinated operation ($/min.)
user in vehicle cost ($/min.)
user waiting cost ($/min.)
length of route i (miles)
average passenger travel distance along route i (miles)
expected value of a random variable x
probability density function for the vehicle arrival time on route i
vehicle headway of route i (minutes/veh.)

independently optimized headway for route i (mins/veh.)
route index
index for route to which passengers transfer
positive integer multiples of a basic headway cycle
number of routes
fleet size for route i (vehicles)
total transfer passengers of route i (pass./min.)
total passenger demand of route i (pass./min.)
transfer passenger volume from route i to route j (pass./min.)
vehicle size (seats/veh.)
average wait time of randomly arriving passengers for transferring
to route i. (minutes)
vehicle arrival time of route i (minutes)
time value of passenger waiting time ($/pass.min.) 0.2
variance of a qmdom variable x
average speed on route i (mile/min.)
value of passenger in-vehicle time ($/pass.min.) 0.1
slack time on route i (minutes)
basic headway "cycle" (minutes)
average transfer delays from route i to route j with integer-ratio headways
(minutes)
superscript indicating optimal value



The vehicle running cost of each route is the product of the required fleet size Ni and vehicle

operating cost Bi.The total vehicle running cost for all routes Co is the sum of the vehicle running

costs for each route:

n n
C =~ N· B·=~ [2D.B·}(V.H.)]o~ 11~ 1111

i=l i=l

Bi = vehicle operating cost on route i ($/vehicle minute)

~ = vehicle headway on route i (minute/vehicle)

Ni = fleet size for route i (vehicles)

14 = length of route i (miles)

Vi = average speed on route i (mile/min.)

According to our system definition, the user waiting cost Cw only includes waiting time

before the initial boarding. The user waiting cost in transfer terminals will be included in the

passenger transfer cost Assuming that passengers arrive at the origin terminal uniformly over time

and that vehicle capacity is adequate, the average wait time for the initial boarding may be

approximated as half the service headway on that route. The resulting user waiting cost in origin

terminals can be formulated as

n
Cw=L qi u (O.5~)

i=l

where

u = value of passenger waiting time ($/pass.min.)

qi = total passenger volume on route i (pass./min.)



n

cv=2. 2~ClivNi
i=l

v = time value of passenger in in-vehicle time ($/pass.min.)

di = average travel distance of boarding passengers of route i (miles/pass.)

n

c~ I [2DiBy'(ViHi)+O.5QiuHi+ 2vQidjNi ]
i=l

In such uncoordinated operation, the passengers arrive randomly at transfer terminals with

respect to the scheduled departure times of their next (pick-up) vehicles. The pick-up vehicles

arrive according to a probability distribution whose mean is the scheduled arrive time and whose

variance can be determined empirically. In such a situation, the average wait time for the pick-up

vehicle may be estimated (Osuna and Newell, 1972) as

ri= average wait time for randomly arriving passengers for transferring to route i. (minutes)

E<Ht)=expected value of the headway on route i.

V<Ht)=variance of the headway on route i.



terminal for all transfer passengers. This total waiting cost CF is the product of the average waiting

cost and the total number of transfer passengers.

n n
CF=I. I. Qij u ri

i=l j=l

CF = total transfer cost ($/min.)

<4j = the transfer passengers from route i to route j (pass./min.)

Eqs. 6 and 8 can be substituted into Eq. 1 to obtain the total system cost for an

uncoordinated operation.

The non-transfer cost for a coordinated operation is the same as that for an uncoordinated

operation (Eq.2-6). The total transfer cost function includes all costs components that are sensitive

to the slack time and headway. Three such components can be identified. These are (1) the slack

delay cost of vehicles and passengers (due to holding the vehicles, their drivers, and non-

transferring passengers for a scheduled slack time w), (2) the missed connection cost of transfer

passengers (i.e., the value of the time spent waiting for the next suitable vehicle), and (3) the

waiting cost of transfer passengers from early to late vehicles (Le. the value of time spent by

passengers in waiting for transfers from early to late vehicles).

The total transfer cost for a coordinated operation with a common headway is formulated as

follows:



Cs = slack delay cost ($/min.)

Cm= missed connection cost for transfer passengers ($/min.)

CtF connection cost of transfer passengers from early to late vehicles ($/min.)

It should be noted that according to our terminology "delay" can occur when successful

connections (Le., connections between the intended vehicles) are made. "Missed connection" costs

result from "unsuccessful" connections (Le., in connections to the next arriving vehicle on the

intended route). The slack delay cost Cs includes the user time for Qi passengers per minute and

the supplier cost for 1~ vehicles per minute subjected to the added slack time Wi for each route .:

n
C = L (Q·u+B·fH·)w.s 1 1 1 1

i=l
where

OJ =total transfer passengers of route i (passengers/min)

Only o_nedispatching strategy whereby vehicles do not wait for other vehicles that arrive

behind schedule is considered here for pre-planned scheduling. The missed connection cost for

transfer passengers Cm is determined from the joint probability distributions for vehicle arrivals on

any coordinated pair of routes. Since vehicles arrivals were assumed to vary independently from

other vehicle arrivals in our system definition, the joint probabilities of arrivals may be obtained by

simply multiplying the probabilities obtained separately from the two vehicle arrival distributions.

The probability of missed connections must include the following two cases regarding the two

vehicles involved in a connection: (1) the delivering vehicle i arrives late while the pick-up vehicle

j is not late (2) both vehicles are late, but the delivering vehicle i arrives after the pick-up vehicle j

leaves. The missed connection cost Cm is then :

n n Hj Wj Hj lj -Wi+ Wj

C = L L ().·uH· [J f(t,) dt· J f(t·) dt· + J f(t.) dt, J f(t·) dt·]
m '<1J J " J J " J J

i=l j=1 Wi -Hj Wi Wj



where

Wj= slack time of route j at the transfer terminal (minutes)

t;. = vehicle arrival time on route i (minutes)

f(~)= probability density function for the vehicle arrival time on route i

lj = vehicle arrival time on route j (minutes)

f(t,j)=probability density function for the vehicle arrival time on route j

Figure 2 shows the joint probability of missed connections for transfer passengers on some

pair of routes. In Figure 2, A is marked as the probability that the delivering vehicle i arrives late,

B is the probability that the pick-up vehicle j is not late, C is the probability that the delivering

vehicle i arrives late and after the pick-up vehicle j when j is also late, and D is the probability that

the pick-up vehicle j arrives late but still earlier than the delivering vehicle i.

The connection cost Cd in Eq. 12 accounts for delays to vehicles and their passengers when

connections are successfully made but the pick-up vehicle arrives behind schedule. The probability

of that connection delay must include the following two cases regarding the two vehicles involved

in a connection: (1) the delivering vehicle i arrives early while the pick-up vehicle j is late (2) both

vehicles are late but the delivering vehicle i arrives before the pick-up vehicle j. This dispatching

delay cost is expressed as follows :

n n Wi ~ Hj ~

C<t=LL <JijU[ J f(li) dli f (lj-Wj) f(1) d1 +J f(li) dli J (tj -Wj +Wt~) f(tj)dtj ] (12)

i=l j=1 -Hj Wj Wi lj -wi+ Wj

Figure 3 shows the joint probability of the dispatching delay incurred by transfer

passengers on each pair of routes. In Figure 3, E is marked as the probability that the delivering

vehicle i arrives early, F is the probability that the pick-up vehicle j is late, G is the probability that

the delivering vehicle i arrives late but before the pick-up vehicle j, and H is the probability that

the pick-up vehicle j arrives late and after the delivering vehicle i when i is also late.



Eqs.lQ-12 obtained above can be substituted into Eq. 9 to determine the total transfer cost.

In this case, the non-transfer cost is the same as in the uncoordinated system (Eqs.2-6).One

more cost component, the inter-cycle transfer delay cost Cp' is included in the total transfer cost, as

there will be some fraction of transfer passengers who must wait for one or more additional cycles

because the scheduled vehicle arrivals on their delivery and pick-up routes do not coincide:

where
Cp= transfer cost between cycles due to unequal integer-ratio headways ($/min.)

In this model, each route maintains its optimized slack time at the same value through all

cycles. In later versions that slack time may change, depending on which routes connect in a given

cycle. The present model also assumes that vehicle loads on any route are QjHj• Le. the volume

multiplied by the headway. This implies that passenger boardings on anyone vehicle are not

affected by the scheduled connections in the transfer terminal. Later model versions may use more

elaborate demand models to reflect passenger preference for and knowledge of immediate

connections. The missed connection cost and the dispatching delay cost for transfer passengers

from early to late vehicles Cm and Cd (Eqs. 11-12) are modified as follows:

n n ~ w· ~ t· -w-+ w·

Cm= L L <Jiju y [f f(~) d~ J f(tj) dtj + f f(~) d~ f ~(t/dtj] (1Ia)
j=l j=l Wi -Hj Wi Wj

n n Wi Hj ~ Hj

CcFL L<JijU y /Hj [f f(~) d4 f (tfWj) f(l) dtj + f f(~) d~ f (tj -Wj +wr~ ) f(tj)dtj] (l2a)
j=l j=l -R w· w· I· -w,+ w·

1 J 1 1 1 J



basic cycle y is small enough to be negligible. The slack delay cost Csand the dispatching delay

cost Cd are the same as in the common headway case (Eq. 9-11). The cost of transferring between

cycles Cp can be formulated as

n n

~=L L U~jZjj
i=l j=l

Zjj= average waiting time for passengers transfering from route i to route j .at the transfer

terminal, given integer-ratio headways (mins.)

For integer-ratio headways, the Zij may be easily estimated by assuming that the volumes of

passenger arrivals on incoming vehicles do not depend on transfer delays. Otherwise, (Le. if

passengers favor schedules with immediate connections) some more complex demand models

should be applied. Figure 4 shows how Zij may be determined. For example, when the integer

ratio of two headways is I to 2 (e.g. H/Hj=ly/2y=I/2), Zji should be zero and ~j should be O.Sy

(half the passengers arriving at the transfer terminal wait y minutes). If the integer ratio of two

headways is I to 3 (e.g. H/Hj=ly/3y=I/3), Zji should be zero and Zjj should be y (one-third of the

transfer passengers wait 2y and another one-third wait y minutes). If the integer ratio of two

headways is 2 to 3 (e.g: H/Hj=2y/3y=2/3), Zji should be O.Sy (half the passengers arriving at the

transfer terminal wait y minutes) and Zij should be y (one-third of the passengers arriving at the

transfer terminal wait 2y and another one-third wait y minutes).

In the general case, Zij may be formulated as

~j= g y [(H/2gy)-O.S]

g= the greatest common factor of H/y and H/y

y= the basic headway cycle

Hj= headway of ro~te j



Eqs. 1O,11a,12a and 14 can be substituted into Eq. 13 to obtain the total transfer cost for a
coordinated operation with integer-ratio headways.

After formulating the components of total cost C as functions of the headways Hi and

slack times wi' the optimal values of Hi and Wi can be sought numerically, since the probability

distributions are too complex for analytic integration. Thus, numerical integration of interacting

probabilistic vehicle arrival distributions is used to compute transfer delays. Such numerical

integration is much faster and more precise than simulation. Afterwards, the following newly

developed algorithm is used to jointly optimize headways and slack times for all coordinated

routes. The algorithm determines whether the optimal solution is a single common headway or

integer-ratio headways.

routes according to their independently optimal headways, and grouping them into initial clusters

with headways "nearest" to the integer multiples of the cycle y, where y itself is an optimizable

variable. "Nearest" is based on relative rather than absolute distance. Thus if y is the basic cycle

and m is any positive integer, an independently optimal headway hi* would be initially grouped

.j (m-l)m y < hi* ~ .j m(m+l) y

The above inequality thus determines the boundaries between route clusters whose headways are

integer multiples of the cycle y.

The clustering process adjusts headways, without changing the initial route rankings based

on independently optimized headways. Such ranking inversions or "swaps" invariably worsen the



objective function, unless the rankings are already equal (in which case swaps are meaningless) or

cenain route pairs exchange disproportionate fractions of passengers. The stability of rankings is a

special feature of this problem which can be exploited to greatly reduce the computations in the

clustering process.

The independently optimal headways hi* which separately minimize the total cost for each

route can be obtained with the following well known "Square Root Formula" :

h·* = -V 2 D· B· / (q. uy. )
1 1 1 1 1

This result can be obtained by analytically minimizing a total cost function, such as an expand~

Eq. 1, with respect to each headway hi'

For an initial "round" cycle y (e.g. 0.5, 1, 1.5,2, ... , 12, 15, 20, 30 minutes, obtained as 60

minutes are divided by an integer number of hourly departures), the proposed procedure starts with

an initial solution and seeks improvements by shifting the boundaries between clusters by one

route at a time until no further improvement can be obtained for that cycle. Then, the slack times

are optimized for the optimal headways obtained. Finally, the process is repeated for a new round

cycle y until no further improvement is obtainable by increasing or decreasing the cycle .

. The iterative search procedures for the optimal cycle and slack times can be described as

follows:

1. Determine the independently optimal headways for each route hi* with Eq. 17.

2. Rank the routes by sorting them in the order of increasing headway hi*.

3. Start with an initial cycle y below the smallest hi*.

4. Determine the boundaries between the clusters with headways my according to Eq. 16 and

group the routes accordingly.



5. Assume zero slack times for each route (wt =0) and compute the total system cost for the

initial combination of headways from step 4.

6. Increase or decrease the first boundary (between route with headways 1y and 2y), while

other boundaries are fIxed, as long as the total system cost can be reduced.

7. Repeat step 6 one boundary at a time for every boundary as long as the total system cost

can be reduced. After considerring all boundaries from 1 to (m-1), additional iterations are run as

long as signifIcant further improvements are obtained.

8. Apply a multidimensional optimization algorithm such as the IMSL routine UMIMF

(1987) to determine the optimal slack times (wt) for each route, given the optimized integer-ratio

head ways from step 7.

9. Repeat steps 6-7 with wt to determine the best new integer-ratio headways.

10. If the new solution (with wi*) is different from the old one(with wi=O), repeat

alternatively step 8 with the new head ways to determine new wi * and then step 9 to optimize

headways until no signifIcant further improvement is obtained.

11. Repeat steps 4-10 by increasing or decreasing the "round" cycle y until no significant

further improvement is obtained.

The resulting objective function, although convex on a macroscopic level, may have slight

steps as routes are reassigned to different clusters. The search in step 11 must proceed far enough

to overcome the effects of such minor local optima.

At the conclusion of step II, the results include the optimal cycle~ the optimal headway for

each route as an integer multiple of that cycle, and the optimal slack time for each route.



optimal slack times and head ways to various factors such as the passenger time value, passenger

transfer volumes, vehicle operation cost, and standard deviations of vehicle arrival times.

in which the mean and mode are 0, and the standard deviation is s. Although a normal distribution

is analytically umractable for deriving closed-form solutions, it can be used here to compute the

results numerically.

A multidimensional optimization method, the IMSL routine UMINF (1987), which uses a

Quasi-Newton method with a finite-difference gradient to find the minimum of a function f(X) of n

variables is used here to optimize the slack times for each route.

Two numerical examples are considered. The first is a three-route operation through a

transfer terminal. The purpose of this simple example is to explore the relations among variables

and particular parameters through sensitivity analysis. The second example is a ten-route operation

through a transfer terminal. This more complex example is used to show that many routes may be

coordinated and jointly optimized.

The baseline parameter values shown in Table I were selected for the· numerical analysis,

because they seemed reasonable and typical. The total passenger volume and transfer passenger

volume for each route in the three-route and ten-route examples are shown in Tables 2 and 3.

With the above baseline values. the comparison of the optimal results for each option in the

three-route example is shown in Table 4. It shows that coordinated operation with a common

headway is preferable in this case. The optimal slack times for the three routes are computed to be

0.032, 0.056,0.99 minutes, respectively, and the common headway is 10.6minutes. For practical



application, the "round" headway closest the optimum is 10 minutes, for which slack times are

optimized at 0.028,0.051, and 0.96 minutes. The threshold demand between coordinated and

uncoordinated operation for the three-route example is illustrated in Figure 5. In this case,

coordination is preferable at demand levels up to 1.09 times the baseline demand and

uncoordinated operation is preferable at higher demand levels. Figures 6 and 7 show the relations

among the total cost, common headway, and optimal slack time. In Figure 6, the optimal slack

times are zero when the headways are small and increase at a decreasing rate beyond certain critical

headways (7.5 minutes for route 3 and 10 minutes for routes 1 and 2). It should be remembered

that Figure 6 is computed for normally distributed vehicle arrivals with a baseline standard

deviation for each route. Baseline values are also used for other parameters. In Figure 7, the total

cost function C is U-shaped with respect to the headway and reaches a minimum when H=1O.6

minutes. The total cost may be reduced if other decision variables (in this case, the slack times wi)

can be reoptimized. The relations between the slack time and the cost components of the transfer

cost funct~on are shown in Figure 8. This figure clearly shows that the optimal slack time

represents a tradeoff between the missed connection cost Cm and the dispatching delay cost Cd'

both of which decrease with w, and the slack delay cost Cs' which increases with w. At high -

values of w, Cm and Cd approach zero while Cs still increases. That limits to a finite value of the

magnitude of the optimal value of w.

Figure 9a shows how the passenger time value u influences the optimal slack time w*, in

this case after headways are reoptimized, as shown in Figure 9b. The optimal slack times wi * start

increasing above zero beyond a critical value of passenger time. The wt first increases as the

passengers time value u increases. Then, since the higher u favors lower headways, the combined

effect of smaller headway and higher passenger time value reduces slack times wi* until they reach

zero. The optimal slack time for route 3 is significantly greater than for routes 1 and 2, since route

3 has a lower demand and higher variance of arrival times. Figure 9b shows how the optimal

common headway decreases as the time value of passengers increases.



optimal headways. For example, w3* decreases as transfer volumes from route 3, Q3j' increase.

The w3* curves for different value of transfer volumes to route 3, Qi3' tend to converge to zero as

~j increases. That is because the tradeoffs in the transfer cost function which yield w3* are

increasingly dominated by Q3j and the optimal headways become too small to justify coordination,

while Qi3 and the vehicle operating cost B become relatively negligible. Figure 11 shows the

relations between the transfer passenger volume and optimal slack time without re-optimizing the

common headway, which remains 10.6 minutes. When both the passenger volumes ~j from

route 3 to other routes and the volumes ~3 from other routes to route 3 are very low, the optimal

slack time for route 3 is zero. As Q3j increases while Qi3 stays very small (e.g. Qi3=O.2

passengers per minute), w 3* increases at a decreasing rate since the common headway stays the

same. As Q3j increases while Qi3 is high (e.g. Qi3=1.0 or 1.5 passengers per minute), w3*

decreases at a decreasing rate. The w3* curves for different Qi3 values tend to converge to a

positive value instead of zero as the Qj3 volumes increase due to the constant headways.

The effect of the vehicle operating cost on the optimal slack time w* is shown in Figure 12. It

is reasonable that for a given passenger volume, w* should decrease at a decreasing rate as the cost

of delaying vehicles and the optimal headway increases. Figures 13 shows the effects of standard

deviations of arrival times on optimal slack times. The slopes of the w* curves are determined by

the slopes of the normal distributions and by the re-optimization of headways as standard

deviations change. Thus, in Figure 13, w* first increases as the standard deviation increases. At

first, the additional uncertainty provides economic justification for a larger safety factor, i.e. slack

time. However, as the standard deviation approaches a significant fraction of the headway, it

becomes preferable to reduce slack time, and allow a higher probability of missed connections in

the "tail" of the vehicle arrivals distribution. Beyond a cenain critical standard deviation, the

optimal slack time w* should be zero, implying that as vehicle arrivals become more uncertain and

headway magnitudes do not produce excessive missed connection costs, it becomes uneconomical

to leave any safety factors in a schedule. Conversely. slack time is most feasible and desirable

when arrival uncertainties are low and headways are large. The intersection of the WI * and w2*



curves has no particular significance. It occurs due to the combined effects of the demand and the

standard deviation on the optimal slack time (the demand on route 1 is higher and the standard

deviation of vehicle arrivals on route 1 is also larger than on route 2).

The comparison of the optimal results with and without coordination for the ten-route

example is shown in Table 5. The results show that if the headways for various routes are

relatively large and similar (i.e. if the variance of headways among routes is small), a coordinated

operation with a common headway is preferred. A coordinated operation with integer-ratio

headways is preferable when the headways are relatively large and quite different (Le. with a large

variance of headways among routes). Coordinated operation with integer-ratio headways is

preferable in the ten route example since the optimal headways for all routes are large and the

variance of headways is also large.

Whether coordinated operation is advantageous in transit operation depends mainly on the

passenger demand. If demand is high, the optimal headways are too small to make coordinated

operation wonhwhile. Conversely, at low demand coordinated operation is preferable, even at the

expense of slack times in schedules. In a coordinated operation, a single optimal common

headway H * is a compro~ise among the optimal headways for each route. That compromise may

be considerably alleviated, at the expense of some increased transfer delays, if integer-ratio

headways are used. The optimal scheduled slack time w* for vehicles interchanging passengers at

a transfer terminal is the result of tradeoffs among several supplier cost and user cost components

expressed in the total transfer cost functions (Eqs. 8, 9, 10, and 11). As w increases, the slack

delay cost to vehicles and passengers increases while missed connection costs and dispatching

del~y costs decrease. The values of H * and w* for each route can be determined with the proposed

algorithm.



1. Uncoordinated operation is preferred when the demand is sufficiently high to keep the

independently optimal headways hi* low.

2. Coordinated operation with a common headway is preferred when the headways hi* are

relatively large and their variance is small.

3. Coordinated operation with integer-ratio headways is preferred when at least some ht are-

relatively large and their variance is large.

The results show some interesting but reasonable ways in which the optimal slack times

for vehicles vary with such variables as headways, vehicle arrival time variances, transfer

volumes, passenger time values and vehicle operating costs. In particular, the results show that as

vehicle arrival variances increase (Fig. 13), optimal slack times eventually drop back to zero. This

implies that coordination is not worth attempting, even in low demand and high headway cases, if

arrival randomness becomes excessive.

The proposed numerical approach and the iterative search algorithm can efficiently solve

an apparently large combinatorial problem with many interconnecting routes by exploiting the

special structure of this problem (i.e. that the headway rankings based on independent headway

optimization are not significantly changed by the clustering process).

The following extensions to this work seem worth pursuing:

1. Use real data, including empirical discrete arrival distributions, in the numerical

analysis.

2. Optimize a schedule that varies with demand over time, in which head ways are mostly

uncoordinated during higher demand periods and coordination increases as demand decreases

(possibly one route at a time).

3. Adapt for other types of transportation terminals such as airline hubs and container



4. Optimize real-time dispatching decisions based on predicted vehicle arrival delays.

5. Consider the effects of demand elasticity on maximum profit or welfare objectives.

6. Consider networks with mUltiple transfer terminals.



Route Demand Distance Speed Standard Deviation
(pass./min. ) (miles) (mph) (minutes)

-------------------------------------------------------------------------------------------------
1 2.0 7.5 20 2.5

2 2.5 10.0 20 3.0

3 1.5 12.5 20 3.5

------- ..... - ................. ----.- ........ _ ..._ ...... _.--_ ...... _._._------
Route Demand Distance Speed Standard Deviation

(pass./min.) (miles) (mph) (minutes)
-------------------------------------------------------------------------------------------------

1 2.42 10.0 20 2.0

2 1.68 10.0 20 1.5

3 1.21 10.0 20 1.5

4 0.77 10.0 20 2.0

5 0.49 10.0 20 2.5

6 0.37 10.0 20 2.5

7 0.23 10.0 20 3.0

8 0.18 10.0 20 3.5

9 0.15 10.0 20 3.0

10 0.12 10.0 20 3.0



Table 3a Transfer Passenger Volumes for Three-Route Example
'- .(passengers/minute)

o
1.5

0.5

1.5

o
1.0

0.5
1.0

o

Table 3b Transfer Passenger Volumes for Ten-Route Example

(passengers/minute)

----------------------------------------------------------------------------------------------------
From\To 1 2 3 4 5 6 7 8 9 10
----------------------------------------------------------------------------------------------------
1 0.00 0.78 0.56 0.36 0.23 0.17 0.11 0.08 0.07 0.06.

2 0.68 0.00 0.34 0.22 0.14 0.10 0.07 0.05 0.04 0.03

3 0.46 0.32 0.00 0.15 0.09 0.07 0.04 0.03 0.03 0.02

4 0.27 0.19 0.14 0.00 0.06 0.04 0.03 0.02 0.02 0.01

5 0.17 0.12 0.08 0.05 0.00 0.03 0.02 0.01 0.01 0.01

6 0.12 0.09 0.06 0.04 0.03 0.00 0.01 0.01 0.01 0.01

7 0.08 0.05 0.04 0.02 0.02 0.01 0.00 0.01 0.00 0.00

8 0.06 0.04 0.03 0.02 0.01 0.01 0.01 0.00 0.00 0.00

9 0.05 0.03 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00

10 0.04 0.03 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00

---------------------------------------------------------------------------------------------------



Table 4. Comparison of Uncoordinated and Coordinated
Operation for Three-Route Example

Co
Cw
Cy

CN
Csem
Cd
CF
C

Uncoordinated
Operation

Headway Slack Time

8.66
8.95
12.91

11.812

5.906
35.25

52.968

6.444
59.412

Coordinated
Operation

Headway Slack Time

10.56
10.56
10.56

0.032
0.056
0.991

11.326

6.360
35.25
52.936
0.237
4.021
1.876
6.134
59.070



Table 5. Comparison of Uncoordinated and Coordinated
Operation for Ten-Route Example

Uncoordinated
Operation

Headway SlacJcTime

Coordinated
Operation

Headway Slack Time

1 9.09 18.00 0.96
2 10.91 18.00 0.99
3 12.86 18.00 1.14

4 16.12 18.00 1.39
5 20.21 18.00 1.88

6 23.26 18.00 2.16
7 29.50 36.00 2.36
8 33.34 36.00 2.75
9 36.52 36.00 3.03
-10 40.84 36.00 3.75

Co
Cw
Cy

eN
Cs
Cm
Cd
Cp
CF
C

17.265
13.843
45.720
76.828

16.731
93.559

17.787
14.940
45.720
78.447
1.546
6.837
3.577
1.431
13.391
91.837



Figure 1 : Transportation Network With Multiple Routes
Connecting at a Transfer Terminal



Key:
R.L.: Reference Line

(scheduled departure time)
wi: Slack Time for Route i
wj: SlackTime for Route j
Hi: Headay for Route i
Hj: Headay for Route j
ti: Vehicle Arrival Time on Route i
tj: Vehicle Arrival Time on Route j
f(ti): Probability for ti
f(tj): Probability for tj

-Hi 0 WJ Routej t·
+ J

R.L. Hi
R.L.

Uti)

Figure 2: The Joint Probability of Missed Connections
for Passengers Transferring from Route i to Route j



Key:

f(t) R. R.L. R.L.: Reference Line
Hi (scheduled depanure time)

wi: Slack Time for Route i
wj: SlackTime for Route j
Hi: Headay for Route i
Hj: Headay for Route j
ti: Vehicle Arrival Time on Route i
tj: Vehicle Arrival Time on Route j
f(ti): Probability for ti
f(t]): Probability for tj

-Hi 0 wi Hi Route i t

I
I
I
I
I
I
I
I
I
I

-Hi 0 WJ Hj Routej+
f(t)

R.L. R.L.
Hi

wi

Figure 3:The Joint Probability of Dispatching Delays
for Passengers Transferring from Route i to Route j



Zji=(1 *0)=0
Zij= 1/3(0)+ 1/3(2y)+ 113(y)=y

I I
f(t) I I

I Hj=3y Hj=3y I
I I
I I
I I
I I
I I
I I
I I
I I
I

Hi=2y

Zji=1(2(y)+ 1/2(0)=1/2(y)
Zij= 1/3(0)+ 1/3(2y)+ 113(y)=y

Figure 4: The Inter-Cycle Transfer Delays for Passengers
Transferring Between Routes with Integer-Ratio Headways
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Figure 5 The Demand Threshold Between Coordinated and
Uncoordinated Operation in the Three-Route Example
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~ CF =total transfer cost

0 Cs =slack delay cost

• Cm =missed connection cost
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Figure 8 The Relations Between Slack Time and the Components
of Transfer Cost for the Three-Route Example
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