Link Union Station

 $\mathsf{DRAFT}-\mathsf{Air}\ \mathsf{Quality}/\mathsf{Climate}\ \mathsf{Change}\ \mathsf{and}\ \mathsf{Health}\ \mathsf{Risk}\ \mathsf{Assessment}$

January 2019

CONTENTS

ES.0	Execut	ive Summary	. ix
	ES.1	Construction	ix
	ES.2	Operations	
	ES.3	Health Risk Assessment	
	ES.4	Carbon Monoxide	
	ES.5	Naturally Occurring Asbestos	
	ES.6	Greenhouse Gas Emissions	xi
1.0	Introdu	ıction	
	1.1	Project Background	
	1.2	Proposed Project Overview	
	1.3	Build Alternative Overview	
	1.4	Report Background	4
2.0	Purpos	e and Approach	9
3.0	Regula	tory Setting	11
	3.1	Federal Clean Air Act	11
	3.2	California Clean Air Act	
	3.3	California State Implementation Plan	
	3.4	South Coast Air Quality Management District	
		3.4.1 Air Quality Management Plan	
	3.5	Climate Change	
		3.5.1 State Regulations	
		3.5.2 Local Regulations	
4.0		g Conditions	
	4.1	Climate	
	4.2	Monitored Air Quality Pollutants	
		4.2.1 Carbon Monoxide	
		4.2.2 Ozone4.2.3 Nitrogen Dioxide	
		4.2.3 Nitrogen Dioxide4.2.4 Sulfur Oxides	
		4.2.4 Sulla Oxides 4.2.5 Coarse Particulate Matter	
		4.2.6 Fine Particulate Matter	
		4.2.7 Volatile Organic Compounds or Reactive Organic Gases	
	4.3	Sensitive Receptors	
5.0	Thresh	olds of Significance	35
6.0	Metho	ds and Significance Thresholds	37
	6.1	South Coast Air Quality Management District Guidelines	
	•••	6.1.1 Localized Significance Thresholds	
		6.1.2 Local Carbon Monoxide Concentrations	
		6.1.3 Greenhouse Gas Emission Threshold	40
		6.1.4 Incremental Health Risk Significance Threshold	41
7.0	Impact	S	43
	7.1	Air Quality	
		7.1.1 Construction	43

		7.1.2 Operations	52
	7.2	Health Risk Analysis	
		7.2.1 Construction	
		7.2.2 Operations	74
		7.2.3 Naturally Occurring Asbestos	
	7.3	Climate Change	
		7.3.1 Climate Change after Mitigation	
8.0	Mitigati	ion Measures	95
	8.1	Construction	95
	8.2	Operation	96
	8.3	Level of Significance after Mitigation	
9.0	Referen	ces	99

TABLES

Table 3-1. Federal and State Criteria Air Pollutant Standards, Effects, and Sources
Table 3-2. Global Warming Potential of Greenhouse Gases 19
Table 4-1. Ambient Air Quality Monitoring Concentrations 29
Table 6-1. South Coast Air Quality Management District Air Quality Thresholds of Significance
Table 6-2. South Coast Air Quality Management District Localized Significance Thresholds
Table 7-1. Daily Construction Emissions – Proposed Project with Above-Grade PassengerConcourse with New Expanded Passageway
Table 7-2. Daily Construction Emissions – Build Alternative with At-Grade Passenger Concourse
Table 7-3. Annual Construction Emissions – Proposed Project with Above-Grade PassengerConcourse with New Expanded Passageway
Table 7-4. Annual Construction Emissions – Build Alternative with At-Grade Passenger Concourse
Table 7-5. Summary of On-Site Construction Emissions, Localized Significance – ProposedProject with Above-Grade Concourse
Table 7-6. Summary of On-Site Construction Emissions, Localized Significance – BuildAlternative with At-Grade Concourse47
Table 7-7. Daily Construction Emissions After Mitigation – Proposed Project with Above-GradePassenger Concourse with New Expanded Passageway48
Table 7-8. Daily Construction Emissions After Mitigation – Build Alternative with At-Grade Concourse
Table 7-9. Annual Construction Emissions After Mitigation – Proposed Project withAbove-Grade Passenger Concourse with New Expanded Passageway49
Table 7-10. Annual Construction Emissions After Mitigation – Build Alternative with At-Grade Concourse

Table 7-11. Summary of On-Site Construction Emissions After Mitigation, Localized Significance – Proposed Project with Above-Grade Passenger Concourse with New	
Expanded Passageway	50
Table 7-12. Summary of On-Site Construction Emissions After Mitigation, Localized Significance – Build Alternative with At-Grade Concourse	51
Table 7-13. Daily Operational Emissions (2031)	52
Table 7-14. Annual Operational Emissions (2031)	53
Table 7-15. Daily Operational Emissions (2040)	53
Table 7-16. Annual Operational Emissions (2040)	54
Table 7-17. Daily Rail Emissions within the Study Area	56
Table 7-18. Annual Rail Emissions within the Study Area	57
Table 7-19. Daily Operational Emissions (2026)	58
Table 7-20. Daily Operational Emissions (2031)	58
Table 7-21. Daily Operational Emissions (2040)	59
Table 7-22. Annual Operational Emissions (2026)	59
Table 7-23. Annual Operational Emissions (2031)	60
Table 7-24. Annual Operational Emissions (2040)	60
Table 7-25. Summary of On-Site Operational Emissions, Localized Significance (2026)	61
Table 7-26. Summary of On-Site Operational Emissions, Localized Significance (2031)	61
Table 7-27. Summary of On-Site Operational Emissions, Localized Significance (2040)	62
Table 7-28. Daily Operational Emissions (2026) - Mitigated	63
Table 7-29. Daily Operational Emissions (2031) - Mitigated	63
Table 7-30. Daily Operational Emissions (2040) - Mitigated	64
Table 7-31. Annual Operational Emissions (2026) - Mitigated	64
Table 7-32. Annual Operational Emissions (2031) - Mitigated	
Table 7-33. Annual Operational Emissions (2040) - Mitigated	65
Table 7-34. Summary of On-Site Operational Emissions, Localized Significance	
(2026) - Mitigated	66
Table 7-35.Summary of On-Site Operational Emissions, Localized Significance(2031) - Mitigated	66
Table 7-36.Summary of On-Site Operational Emissions, Localized Significance(2040) - Mitigated	67
Table 7-37. Modeled Cancer Risks During Construction – Proposed Project with Above-Grade	
Passenger Concourse with New Expanded Passageway (per million)	70
Table 7-38. Modeled Cancer Risks During Construction – Build Alternative with At-Grade Passenger Concourse (per million)	71

Table 7-39. Modeled Cancer Risks – Proposed Project with Above-Grade Passenger Concourse	
with New Expanded Passageway - Mitigated (per million)	72
Table 7-40. Modeled Cancer Risks – Build Alternative with At-Grade Passenger Concourse - Mitigated (per million)	. 73
Table 7-41. Chronic Hazard Index	73
Table 7-42. Summary of Operational Particles of 10 micrometers and Smaller Emissions by Source	74
Table 7-43. Summary of the Existing Cancer Risks at Specific Receptors	
Table 7-44. Summary of 2026 No Project Cancer Risks at Specific Receptors Table 7-45. Summary of 2026 No Project Cancer Risks at Specific Receptors	
Table 7-45. Summary of 2026 with Project Cancer Risks at Specific Receptors	
Table 7-46. Summary of 2031 No Project Cancer Risks at Specific Receptors	78
Table 7-47. Summary of 2031 with Project Cancer Risks at Specific Receptors	.79
Table 7-48. Summary of 2040 No Project Cancer Risks at Specific Receptors	80
Table 7-49. Summary of 2040 with Project Cancer Risks at Specific Receptors	81
Table 7-50. Chronic Hazard Index	82
Table 7-51. Greenhouse Gas Emissions – Proposed Project with Above-Grade Passenger Concourse with New Expanded Passageway (2040)	. 85
Table 7-52. Greenhouse Gas Emissions – Build Alternative with At-Grade Passenger Concourse (2040)	86
Table 7-53. Greenhouse Gas Emissions from Transportation by County	87
Table 7-54. Cumulative Greenhouse Gas Emissions – Proposed Project with Above-Grade Passenger Concourse with New Expanded Passageway (2040) - Mitigated	. 88
Table 7-55. Cumulative Greenhouse Gas Emissions – Build Alternative with At-Grade Concourse (2040) - Mitigated	89
Table 7-56. Consistency with Regional Transportation Plan/Sustainable Communities Strategy Goals	90

FIGURES

Figure 1-1.Project Location and Regional Vicinity	5
Figure 1-2. Project Study Area	7
Figure 4-1. Sensitive Receptors	3

APPENDICES

Appendix A Rail Planning Technical Memorandum Appendix B Construction and Operational Assumptions Appendix C Construction Emission Calculations Appendix D Operational Emission Calculations Appendix E Health Risk Assessment Appendix F Carbon Monoxide Hot-Spot Analysis

ACRONYMS

µg/m³	micrograms per cubic meter
AB	Assembly Bill
ARB	Air Resources Board
BAU	business as usual
CAAQS	California Ambient Air Quality Standards
CCAA	California Clean Air Act
CEQA	California Environmental Quality Act
СО	carbon monoxide
CO ₂	carbon dioxide
CO ₂ e	carbon dioxide equivalents
DPM	diesel particulate matter
EO	Executive Order
EPA	Environmental Protection Agency
FCAA	Federal Clean Air Act
GHG	greenhouse gas
GWP	global warming potential
HRA	health risk assessment
HSR	High-Speed Rail
LAUS	Los Angeles Union Station
lb	pound
LCFS	low carbon fuel standard
Link US	Link Union Station
LST	localized significance threshold
Metro	Los Angeles County Metropolitan Transportation Authority
MT	metric tons
NA	not applicable
NAAQS	National Ambient Air Quality Standards
N ₂ O	nitrous oxide
NO ₂	nitrogen dioxide
NOx	oxides of nitrogen
O3	ozone
ΟΕΗΗΑ	Office of Environmental Health Hazard Assessment
Pb	lead
PM10	particles of 10 micrometers and smaller
PM2.5	particles of 2.5 micrometers and smaller
ppb	parts per billion
ррт	parts per million
REL	reference exposure level
ROG	reactive organic gases
RPS	renewable portfolio standard

RTP	regional transportation plan
SB	Senate Bill
SCAB	South Coast Air Basin
SCAG	Southern California Association of Governments
SCAQMD	South Coast Air Quality Management District
SCORE	Southern California Optimized Rail Expansion
SCS	sustainable communities strategy
SF ₆	sulfur hexafluoride
SIP	state implementation plan
SO ₂	sulfur dioxide
SOx	sulfur oxides
ТАС	toxic air contaminant
U.S.	United States
VOC	volatile organic compound
VMT	vehicle miles traveled

ES.0 Executive Summary

This report identifies the physical setting of the project study area and regulatory framework relative to air quality and greenhouse gas (GHG) emissions, provides data on existing air quality, and includes an analysis of potential air quality impacts associated with construction and operation of the proposed project or the build alternative. For air quality and GHG emissions, the passenger concourse associated with the proposed project or the build alternative is the key infrastructure element that has variations in terms of the construction-related air quality and GHG analysis and associated impacts. For operations, the project-related capacity enhancements associated with the proposed project or the build alternative could facilitate a future increase in train movements through Los Angeles Union Station (LAUS) within the project study area are required to realize substantial increases in service and associated train movement through LAUS, this report includes a conservative evaluation of localized air quality impacts and GHG emissions resulting from increased train movements through LAUS that could occur as a result of project-related capacity enhancements.

ES.1 Construction

Construction of the proposed project or the build alternative would result in emissions of criteria air pollutants (pollutant concentrations) that exceed the South Coast Air Quality Management District's (SCAQMD) short-term construction thresholds.

For the proposed project or the build alternative, Mitigation Measure AQ-1 (described in Section 8.0) is proposed that would require regular watering or other dust preventive measures to be implemented in accordance with SCAQMD Rule 403. Mitigation Measure AQ-2 (described in Section 8.0) is also proposed that would require all off-road equipment to meet or exceed United States (U.S.) Environmental Protection Agency's (EPA) Tier 4 Final emission standards and be fueled using 100 percent renewable diesel. Upon implementation of AQ-1 and AQ2, construction-related air quality impacts would remain significant and unavoidable under California Environmental Quality Act (CEQA).

ES.2 Operations

Long-term air quality impacts are those associated with stationary sources and mobile sources that may occur from project-related capacity enhancements. Because the proposed project or the build alternative would have the same land uses, passenger trips, and rail operations, the proposed project and the build alternative would have similar long-term operational air quality impacts from localized increases in train activity, mobile source emissions associated with vehicular trips in the project study area, and stationary source emissions from on-site energy consumption.

The long-term on-road, stationary source, and rail emissions criteria air pollutants associated with the proposed project or the build alternative would exceed the SCAQMD's long-term localized significance

thresholds (LST) for oxides of nitrogen (NOx), particles of 10 micrometers and smaller (PM_{10}), and particles of 2.5 micrometers and smaller ($PM_{2.5}$).

For the proposed project and the build alternative, Mitigation Measure AQ-3 (described in Section 8.0) is proposed and would require implementation of emerging technologies to reduce the CO, NOx, ROG, PM10, and PM2.5 exhaust emissions by 10, 10, 5, 30, and 30 percent, respectively. Mitigation Measure AQ-3 also requires an adaptive air quality mitigation plan to be implemented, in conjunction with replacement of the rail fleet with zero- or low-emission locomotives consistent with *2018 California State Rail Plan*, to achieve a reduction of pollutant concentrations below a level that would not exceed SCAQMD's 10 in 1 million cancer risk threshold at any of the residential uses in the project study area. Upon implementation of Mitigation Measure AQ-3, the significant operational impacts associated with the proposed project or build alternative would be reduced to a level less than significant.

ES.3 Health Risk Assessment

Construction Health Risks

Pollutant concentrations from diesel-powered construction equipment and on-site diesel-powered trucks would result in cancer risks exceeding the SCAQMD's threshold of 10 in 1 million. This is considered a significant impact.

Upon implementation of Mitigation Measures AQ-1 and AQ-2, the cancer risk associated with construction of the proposed project would be below the SCAQMD's 10 in a million threshold, and impacts would be reduced to a level less than significant. For the build alternative, the cancer risk at the Mosaic Apartments would remain above the threshold at 13.6 in 1 million. The build alternative would result in greater impacts than the proposed project due to the increased amount of truck trips associated with a greater level of excavation expected from the build alternative. As such, the impacts on sensitive receptors during construction of the build alternative would remain significant and unavoidable.

Operational Health Risks

When compared the no project condition, the increase in pollutant concentrations associated with additional train movements through LAUS would result in cancer risks exceeding the SCAQMD's threshold of 10 in 1 million. This is considered a significant impact.

Implementation of Mitigation Measure AQ-3 (described in Section 8.0), if fully implemented, would achieve reductions of average pollutant concentrations by 51 percent in 2031 and 56 percent in 2040. To achieve service levels anticipated in 2031, Mitigation Measure AQ-3 would be required to reduce the average pollutant concentrations by 51 percent. To achieve service levels anticipated in 2040, Mitigation Measure AQ-3 would be required to reduce the average pollutant concentrations by 51 percent. To achieve service levels anticipated in 2040, Mitigation Measure AQ-3 would be required to reduce the average pollutant concentrations by 56 percent.

Upon implementation of Mitigation Measure AQ-3, the health risks throughout operations would be reduced to level less than significant.

ES.4 Carbon Monoxide

Historical air quality data identifies that existing carbon monoxide (CO) levels for the project study area and the general vicinity do not exceed either the state or federal ambient air quality standards. The project is located in an attainment/maintenance area for federal CO standards. Using the Transportation Project-Level Carbon Monoxide Protocol (California Department of Transportation 1997), a screening CO hot spot analysis was conducted to determine whether the proposed project or the build alternative would result in any CO hot spots. It was determined that the proposed project or the build alternative would not result in any exceedances of the 1-hour or 8-hour CO standards.

ES.5 Naturally Occurring Asbestos

The project is located in Los Angeles County, which is among the counties listed as containing serpentine and ultramafic rock. However, the portion of the County in which the project lies is not known to contain serpentine or ultramafic rock. Therefore, the impact from naturally occurring asbestos during construction would be minimal to none.

ES.6 Greenhouse Gas Emissions

The impact on GHGs and global climate change resulting from the proposed project or the build alternative was determined to be beneficial because a substantial reduction of regional GHG emissions is anticipated to occur.

In parallel with project implementation, the Southern California Regional Rail Authority is currently developing the Southern California Optimized Rail Expansion (SCORE) Program, a \$10 billion plan that identifies the need for substantial investments in rail infrastructure in the Southern California region to upgrade the Metrolink system and meet the current and future needs of the traveling public. The project is a critical component of the SCORE Program, providing capacity enhancements to fulfill the program objectives. Between 2026 and 2078, project-related estimated contribution to the vehicle miles traveled (VMT) and GHG reductions are 898 million miles and 13.5 million metric tons (MT) of carbon dioxide (CO2) equivalents (CO2e), respectively. The project-related capacity enhancements and improvements at LAUS are critical to achieving 26 percent, or 3.5 million MT of CO2e, of the regional GHG emission reduction estimated from implementation of the SCORE Program. These reductions would offset the project-related annual GHG emissions for the Southern California region.

By providing increased station capacity for regional/intercity rail trains and accommodating the planned High-Speed Rail (HSR) system, the proposed project or the build alternative would indirectly reduce the number of vehicles on the road and indirectly alter regional on-road motor vehicle travel. Therefore, the proposed project or the build alternative are integral to achieving region-wide GHG reduction goals in 2040 as projected in the 2016 Regional Transportation Plan (RTP)/Sustainable Communities Strategy (SCS)

and statewide GHG reduction goals in accordance with the *California Transportation Plan 2040* and *2018 California State Rail Plan* (Caltrans 2018). Implementation of emerging technologies would further achieve regional and statewide GHG reduction goals.

1.0 Introduction

The Los Angeles County Metropolitan Transportation Authority (Metro) is proposing the Link Union Station project to transform LAUS from a "stub-end tracks station" into a "run-through tracks station" with a new passenger concourse that would improve the efficiency of the station and accommodate future growth and transportation demands in the region.

1.1 Project Background

LAUS is located at 800 Alameda Street in the City of Los Angeles, California. LAUS is bounded by US-101 to the south, Alameda Street to the west, Cesar Chavez Avenue to the north, and Vignes Street to the east. Figure 1-1 depicts the regional location and general vicinity of LAUS.

Figure 1-2 depicts the project study area, which encompasses the extent of environmental study associated with potential direct, indirect, and cumulative impacts from implementation of the project. The project study area includes three main segments (Segment 1: Throat Segment, Segment 2: Concourse Segment, and Segment 3: Run-Through Segment). The existing conditions within each segment are summarized north to south below.

- Segment 1: Throat Segment This segment, known as the LAUS throat, includes the area north of the platforms, from Main Street at the north to Cesar Chavez Avenue at the south. In the throat segment, all arriving and departing trains traverse five lead tracks into and out of the rail yard, except for one location near the Vignes Street Bridge where the tracks reduce to four lead tracks. Currently, special track work consisting of multiple turnouts and double-slip switches are used in the throat to direct trains into and out of the appropriate assigned terminal platform tracks.
- Segment 2: Concourse Segment This segment is between Cesar Chavez Avenue and US-101 and includes LAUS, the rail yard, the Garden Tracks (stub-end tracks where private train cars are currently stored, just north of the platforms and adjacent to the existing Gold Line aerial guideway), the East Portal building, the baggage handling building with aboveground parking areas and access roads, the ticketing/waiting halls, and the pedestrian passageway with connecting ramps and stairways below the rail yard.
- Segment 3: Run-Through Segment This segment is south of LAUS and extends east/west from Alameda Street to the west bank of the Los Angeles River and north/south from Keller Yard to Control Point Olympic. This segment includes US-101, the Commercial Street/Ducommun Street corridor, Metro Red and Purple Lines Maintenance Yard (Division 20 Rail Yard), BNSF West Bank Yard, Keller Yard, the main line tracks on the west bank of the Los Angeles River, from Keller Yard to Control Point Olympic, and the "Amtrak Lead Track" connecting the main line tracks with Amtrak's Los Angeles Maintenance Facility. Businesses within the run-through segment are primarily industrial and manufacturing related.

Link Union Station Draft Air Quality/Climate Change and Health Risk Assessment

The project study area has a dense street network ranging from major highways to local city streets. The roadways within the project study area include the El Monte Busway, US-101, Bolero Lane, Leroy Street, Bloom Street, Cesar Chavez Avenue, Commercial Street, Ducommun Street, Jackson Street, East Temple Street, Banning Street, First Street, Alameda Street, Garey Street, Vignes Street, Main Street, Aliso Street, Avila Street, Bauchet Street, and Center Street.

1.2 Proposed Project Overview

The proposed project components are summarized north to south below.

- Throat and Elevated Rail Yard The proposed project includes subgrade and structural improvements in Segment 1 of the project study area (throat segment) to increase the elevation of the tracks leading to the rail yard. The proposed project includes the addition of one new lead track in the throat segment for a total of six lead tracks to facilitate enhanced operations for regional/intercity rail service providers (Metrolink/Amtrak) and accommodate the planned High-Speed Rail (HSR) system within a shared track alignment. Regional/intercity and HSR trains would share the two western lead tracks in the throat segment. The rail yard would be elevated approximately 15 feet. New passenger platforms with individualized canopies would be constructed on the elevated rail yard, with an underlying assumption that the platform infrastructure and associated vertical circulation elements (stairs, escalators, and elevators) would be modified at a later date to accommodate the planned HSR system. The existing railroad bridges in the throat segment at Vignes Street and Cesar Chavez Avenue would also be reconstructed. North of Control Point Chavez, the proposed project also includes safety improvements at the Main Street public at-grade crossing on the west bank of the Los Angeles River (medians, restriping, signals, and pedestrian and vehicular gate systems) to facilitate future implementation of a quiet zone by the City of Los Angeles.
- Above-Grade Passenger Concourse with New Expanded Passageway The proposed project • includes an above-grade passenger concourse with new expanded passageway in Segment 2 of the project study area (concourse segment). The above-grade passenger concourse with new expanded passageway would include space dedicated for passenger circulation, waiting areas, ancillary support functions (back-of-house uses, baggage handling, etc.), transit-serving retail, office/commercial uses, and open spaces and terraces. The new passenger concourse would create an opportunity for an outdoor, community-oriented space and enhance Americans with Disabilities Act accessibility at LAUS. The elevated portion of the above-grade passenger concourse would be located above the rail yard, approximately 90 feet above the existing grade with new plazas east and west of the elevated rail yard (East and West Plazas). The new expanded passageway would be located below the rail yard to provide additional passenger travel-path convenience and options. Amtrak ticketing and baggage check-in services would occur at two locations at the east and west ends of LAUS, and new carousels would be constructed within the new expanded passageway. The above-grade passenger concourse includes a canopy over the West Plaza up to 70 feet in height, with individual canopies that would extend up to 25 feet over each platform. New vertical circulation elements would also be constructed throughout the concourse to enhance passenger movements

throughout LAUS while meeting Americans with Disabilities Act and National Fire Protection Association platform egress code requirements.

• **Run-Through Tracks** – The proposed project includes up to 10 new run-through tracks (including a new loop track) south of LAUS in Segment 3 of the project study area (run-through segment). The run-through tracks would facilitate connections for regional/intercity rail trains and HSR trains from LAUS to the main line tracks on the west bank of the Los Angeles River. A "common" viaduct/deck over US-101 and embankment south of US-101, from Vignes Street to Center Street, would be constructed wide enough to support regional/intercity rail run-through service, and future run-through service for the planned HSR system.

The proposed project would also require modifications to US-101 and local streets (including potential street closures and geometric modifications); railroad signal, positive train control, and communications-related improvements; modifications to the Gold Line light rail platform and tracks; modifications to the main line tracks on the west bank of the Los Angeles River; modifications to Keller Yard and BNSF West Bank Yard (First Street Yard); modifications to the Amtrak lead track; new access roadways to the railroad right-of-way; additional right-of-way; new utilities; utility relocations, replacements, and abandonments; and new drainage facilities/water quality improvements.

1.3 Build Alternative Overview

The primary differences between the proposed project and the build alternative are related to the lead tracks north of LAUS and the new passenger concourse. Compared to the proposed project, the build alternative includes the following:

- Dedicated Lead Tracks North of LAUS The build alternative includes reconstruction of the throat, with two new lead tracks that would be located outside of the existing railroad right-of-way, facilitating a dedicated track alignment, with a total of seven lead tracks. Reconfiguration of Bolero Lane and Leroy Street would also be required.
- At-Grade Passenger Concourse The build alternative includes an at-grade passenger concourse below the rail yard.

All other infrastructure elements are similar to the proposed project. The components of the build alternative are described north to south below.

• Throat and Elevated Rail Yard – The build alternative accommodates future HSR trains on dedicated lead tracks in the throat segment. The build alternative includes the addition of two new lead tracks for a total of seven lead tracks in the throat segment (with future HSR trains and some express/intercity services using the two western dedicated lead tracks and most regional/intercity trains using the five eastern lead tracks). The rail yard would be elevated approximately 15 feet. New passenger platforms with a grand canopy covering the elevated rail yard would be constructed, with an underlying assumption that the platform infrastructure and associated vertical circulation elements (stairs, escalators, and elevators) would be modified at a later date to accommodate the

planned HSR system. The existing railroad bridges in the throat segment at Vignes Street and Cesar Chavez Avenue would also be reconstructed under the build alternative. North of Control Point Chavez, the build alternative also includes safety improvements at the Main Street public at-grade crossing on the west bank of the Los Angeles River (medians, restriping, signals, and pedestrian and vehicular gate systems) to facilitate future implementation of a quiet zone by the City of Los Angeles.

- At-Grade Passenger Concourse The build alternative includes a new at-grade passenger concourse that would include space dedicated for passenger circulation, waiting areas, ancillary support functions (back-of-house uses, baggage handling, etc.), transit-serving retail, office/commercial uses, and open spaces and terraces. The at-grade passenger concourse would also create an opportunity for an outdoor, community-oriented space and enhanced Americans with Disabilities Act accessibility. The at-grade passenger concourse would be constructed below the elevated rail yard. Amtrak ticketing and baggage check-in services would occur at a centralized location where new carousels would be constructed at the concourse level. The at-grade passenger concourse also includes new plazas east and west of the elevated rail yard (East and West Plazas), and a grand canopy that would extend up to 70 feet above the elevated rail yard and West Plaza. New vertical circulation elements would also be constructed throughout the concourse to enhance passenger movements throughout LAUS while meeting Americans with Disabilities Act and National Fire Protection Association platform egress code requirements.
- **Run-Through Tracks** The build alternative includes up to 10 new run-through tracks (including a new loop track) in the run-through segment. All infrastructure south of LAUS is the same as described above for the proposed project.

The build alternative would also require modifications to US-101 and local streets (including potential street closures and geometric modifications); railroad signal, positive train control, and communications-related improvements; modifications to the Gold Line light rail platform and tracks; modifications to the main line tracks on the west bank of the Los Angeles River; modifications to Keller Yard and BNSF West Bank Yard (First Street Yard); modifications to the Amtrak lead track; new access roadways to the railroad right-of-way; additional right-of-way; new utilities; utility relocations, replacements, and abandonments; and new drainage facilities/water quality improvements.

1.4 Report Background

This air quality/climate change and HRA provides a discussion of the proposed project and the build alternative, the physical setting of the project study area, and the regulatory framework for air quality, health risk, and global climate change. This assessment provides data on existing air quality and evaluates potential air quality, health risk, and global climate change impacts associated with the short-term construction and long-term operational emissions.

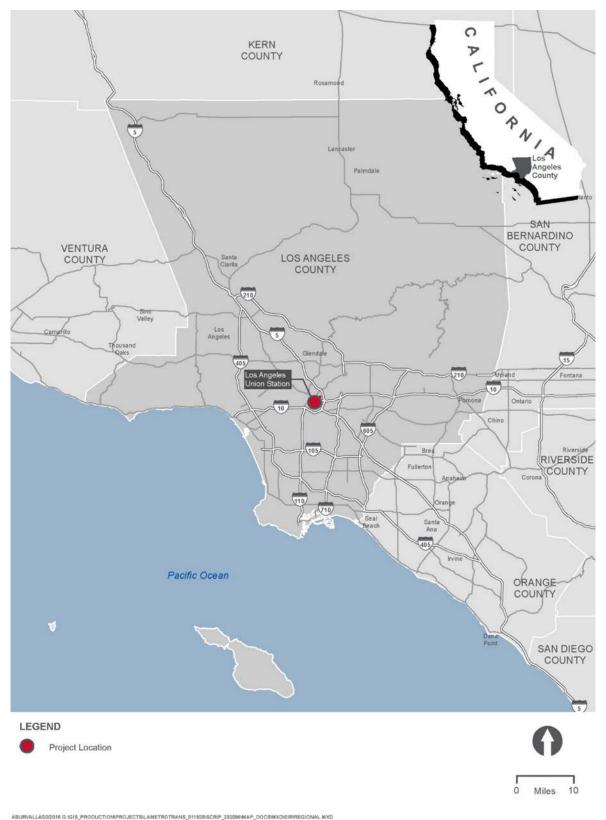
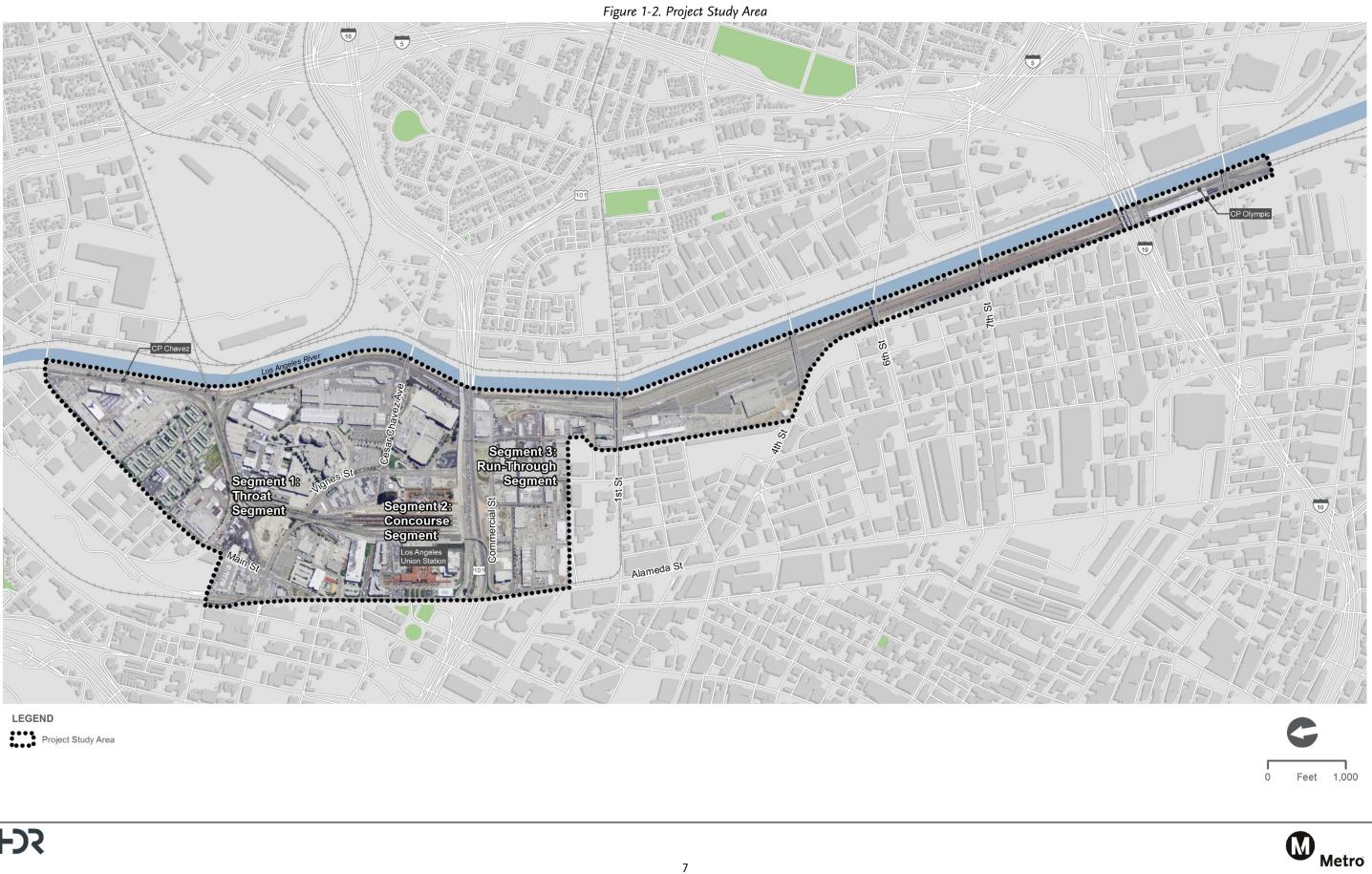



Figure 1-1. Project Location and Regional Vicinity

2.0 Purpose and Approach

The purpose of this report is to:

- A. Describe the physical setting of the project study area, the regulatory framework for air quality, and existing air quality conditions
- B. Determine the short-term construction and long-term operational air quality, health risk, and global climate change impacts based on applied thresholds
- C. Identify feasible mitigation measures to be implemented to reduce significant impacts, where identified

To address the purpose, the following approach was taken to:

- Establish the federal, state, and local regulatory guidelines that govern air quality emissions in the project study area
- Establish the affected environment in the project study area, including the existing climate conditions, meteorology, and air pollution concentrations
- Identify the significance criteria against for which impacts would be compared to
- Calculate the air quality, health risk, and GHG emissions resulting from the proposed project and the build alternative in comparison to applied thresholds
- Identify feasible mitigation and minimization measures to reduce project-related impacts, where identified

3.0 Regulatory Setting

3.1 Federal Clean Air Act

The Federal Clean Air Act (FCAA), as amended, is the primary federal law that governs air quality. These laws, and related regulations by the U.S. EPA and California Air Resources Board (ARB), set standards for the concentration of pollutants in the air. At the federal level, these standards are called National Ambient Air Quality Standards (NAAQS). NAAQS standards have been established for six transportation-related criteria pollutants that have been linked to potential health concerns:

- CO
- Nitrogen dioxide (NO₂)
- Ozone (O₃)
- Particulate matter, which is broken down for regulatory purposes into PM10 and PM2.5
- Sulfur dioxide (SO₂)
- Lead (Pb)

The NAAQS standards are set at levels that protect public health with a margin of safety, and are subject to periodic review and revision. TACs are covered, as well.

Federal air quality standards and regulations provide the basic scheme for project-level air quality analysis.

The FCAA requires U.S. EPA to designate areas as attainment, nonattainment, or maintenance (previously nonattainment and currently attainment) for each criteria pollutant based on whether the NAAQS have been achieved. The federal standards are summarized in Table 3-1. The U.S. EPA has classified all or portions of the South Coast Air Basin (SCAB) as attainment for SO₂, attainment/maintenance for CO, PM₁₀, and NO₂, and nonattainment for O₃, PM_{2.5}, and Pb.

Pollutant	Averaging Time	State Standard [®]	Federal Standard ⁹	Principal Health and Atmospheric Effects	Typical Sources	SCAB Attainment Status
O ₃ ²	1 hour 8 hours	0.09 parts per million (ppm) 0.070 ppm	— 0.070 ppm⁴ (4th highest in 3 years)	High concentrations irritate lungs. Long-term exposure may cause lung tissue damage and cancer. Long-term exposure damages plant materials and reduces crop productivity. Precursor organic compounds include many known TACs. Biogenic VOC may also contribute.	Low-altitude O ₃ is almost entirely formed from ROG or VOC and NOx in the presence of sunlight and heat. Major sources include motor vehicles and other mobile sources, solvent evaporation, and industrial and other combustion processes.	Federal: Extreme Nonattainment (8-hour) State: Nonattainment (1-hour and 8-hour)
СО	1 hour 8 hours 8 hours (Lake Tahoe)	20 ppm 9.0 ppm ¹ 6 ppm	35 ppm 9 ppm —	CO interferes with the transfer of oxygen to the blood and deprives sensitive tissues of oxygen. CO also is a minor precursor for photochemical O ₃ .	Combustion sources, especially gasoline-powered engines and motor vehicles. CO is the traditional signature pollutant for on-road mobile sources at the local and neighborhood scale.	Federal: Attainment/ Maintenance State: Attainment
Respirable Particulate Matter (PM10) ²	24 hours Annual	50 μg/m³ 20 μg/m³	150 μg/m ³ ² (expected number of days above standard < or equal to 1)	Irritates eyes and respiratory tract. Decreases lung capacity. Associated with increased cancer and mortality. Contributes to haze and reduced visibility. Includes some TACs. Many aerosol and solid compounds are part of PM ₁₀ .	Dust- and fume-producing industrial and agricultural operations; combustion smoke and vehicle exhaust; atmospheric chemical reactions; construction and other dust-producing activities; unpaved road dust and re-entrained paved road dust; natural sources.	Federal: Attainment/ Maintenance State: Nonattainment

Pollutant	Averaging Time	State Standard [®]	Federal Standard ⁹	Principal Health and Atmospheric Effects	Typical Sources	SCAB Attainment Status
Fine Particulate Matter (PM2.5) ²	24 hours Annual Secondary Standard (annual)	— 12 μg/m³ 	35 μg/m ³ 12.0 μg/m ³ 15 μg/m ³ (98 th percentile over3 years)	Increases respiratory disease, lung damage, cancer, and premature death. Reduces visibility and produces surface soiling. Most DPM – a TAC – is in the PM2.5 size range. Many toxic and other aerosol and solid compounds are part of PM2.5.	Combustion including motor vehicles, other mobile sources, and industrial activities; residential and agricultural burning; also formed through atmospheric chemical (including photochemical) reactions involving other pollutants including NOx, SOx, ammonia, and ROG.	Federal: Nonattainment State: Nonattainment
NO2	1 hour Annual	0.18 ppm 0.030 ppm	100 ppb ⁶ (98 th percentile over 3 years) 0.053 ppm	Irritating to eyes and respiratory tract. Colors atmosphere reddish-brown. Contributes to acid rain. Part of the "NOx" group of O3 precursors.	Motor vehicles and other mobile sources; refineries; industrial operations.	Federal: Attainment/ Maintenance State: Attainment
SO2	1 hour 3 hours 24 hours Annual Arithmetic Mean	0.25 ppm 0.04 ppm 	 75 ppb⁷ (99th percentile over 3 years) 0.5 ppm⁹ 0.14 ppm 0.03 ppm 	Irritates respiratory tract; injures lung tissue. Can yellow plant leaves. Destructive to marble, iron, steel. Contributes to acid rain. Limits visibility.	Fuel combustion (especially coal and high-sulfur oil), chemical plants, sulfur recovery plants, metal processing; some natural sources like active volcanoes. Limited contribution possible from heavy-duty diesel vehicles if ultra-low sulfur fuel not used.	Federal: Attainment/ Unclassified State: Attainment/ Unclassified

	Averaging State Federal Principal Health and SCAB Attain						
Pollutant	Time	Standard ⁸	Standard ⁹	Atmospheric Effects	Typical Sources	Status	
РЬ ³	Monthly Calendar Quarter Rolling 3-month average	1.5 μg/m³ — —	— 1.5 μg/m³ 0.15 μg/m³10	Disturbs gastrointestinal system. Causes anemia, kidney disease, and neuromuscular and neurological dysfunction. Also a TAC and water pollutant.	Pb-based industrial processes like battery production and smelters. Pb paint, leaded gasoline. Aerially deposited Pb from gasoline may exist in soils along major roads.	Federal: Nonattainment (Los Angeles County only) State: Attainment	
Sulfate	24 hours	25 μg/m³	-	Premature mortality and respiratory effects. Contributes to acid rain. Some TACs attach to sulfate aerosol particles.	Industrial processes, refineries and oil fields, mines, natural sources like volcanic areas, salt-covered dry lakes, and large sulfide rock areas.	Federal: NA State: Attainment/ Unclassified	
Hydrogen Sulfide	1 hour	0.03 ppm	_	Colorless, flammable, poisonous. Respiratory irritant. Neurological damage and premature death. Headache, nausea.	Industrial processes such as: refineries and oil fields, asphalt plants, livestock operations, sewage treatment plants, and mines. Some natural sources like volcanic areas and hot springs.	Federal: NA State: Attainment/ Unclassified	
Visibility Reducing Particles	8 hours	Visibility of 10 miles or more (Tahoe: 30 miles) at relative humidity less than 70 percent	_	Reduces visibility. Produces haze. Note: not related to the Regional Haze program under the FCAA, which is oriented primarily toward visibility issues in National Parks and other "Class I" areas.	See particulate matter above.	Federal: NA State: Attainment/ Unclassified	

Table 3-1. Federal and State Criteria Air Pollutant Standards, Effects, and Sources								
Pollutant	Averaging Time	State Standard ⁸	Federal Standard ⁹	Principal Health and Atmospheric Effects	Typical Sources	SCAB Attainment Status		
Vinyl Chloride ³	24 hours	0.01 ppm	_	Neurological effects, liver damage, cancer. Also considered a TAC.	Industrial processes	Federal: NA State: Attainment/ Unclassified		

Notes:

¹ Rounding to an integer value is not allowed for the state 8-hour CO standard. Violation occurs at or above 9.05 ppm.

² Annual PM₁₀ NAAQS revoked October 2006; was 50 µg/m³. 24-hour. PM₂₅ NAAQS tightened October 2006; was 65 µg/m³. Annual PM₂₅ NAAQS tightened from 15 µg/m³ to 12 µg/m³ December 2012, and secondary standard set at 15 µg/m³.

³ The ARB has identified vinyl chloride and the particulate matter fraction of DPM as TACs. DPM is part of PM₁₀ and, in larger proportion, PM₂₅. Both the ARB and the U.S. EPA have identified Pb and various organic compounds that are precursors to O₃ and PM₂₅ as TACs. There are no exposure criteria for substantial health effects because of TACs, and control requirements may apply at ambient concentrations below any criteria levels specified above for these pollutants or the general categories of pollutants to which they belong.

⁴ Prior to June 2005, the 1-hour NAAQS was 0.12 ppm. Emission budgets for 1-hour O₃ are still in use in some areas where 8-hour O₃ emission budgets have not been developed, such as the San Francisco Bay Area. On October 1, 2015, the national 8-hour O₃ primary and secondary standards were lowered from 0.075 to 0.070 ppm.

⁵ The 0.08 ppm 1997 O₃ standard is revoked FOR CONFORMITY PURPOSES ONLY when area designations for the 2008 0.75 ppm standard become effective for conformity use (July 20, 2013). Conformity requirements apply for all NAAQS, including revoked NAAQS, until emission budgets for newer NAAQS are found adequate, SIP amendments for the newer NAAQS are approved with an emission budget, U.S. EPA specifically revokes conformity requirements for an older standard, or the area becomes attainment/unclassified. SIP-approved emission budgets remain in force indefinitely unless explicitly replaced or eliminated by a subsequent approved SIP amendment. During the "Interim" period prior to availability of emission budgets, conformity tests may include some combination of build versus no build, build versus baseline, or compliance with prior emission budgets for the same pollutant.

⁶ Final 1-hour NO₂ NAAQS published in the Federal Register on February 9, 2010, effective March 9, 2010. Initial area designation for California (2012) was attainment/unclassifiable throughout. Project-level hot-spot analysis requirements do not currently exist. Near-road monitoring starting in 2013 may cause redesignation to nonattainment in some areas after 2016.

⁷ The U.S. EPA finalized a 1-hour SO₂ standard of 75 ppb in June 2010. Nonattainment areas have not yet been designated as of September 2012.

⁸ California standards for O₃, CO (except 8-hour Lake Tahoe), SO₂ (1 and 24 hour), NO₂, and particulate matter (PM₁₀, PM₂₅, and visibility reducing particles), are values that are not to be exceeded. All others are not to be equaled or exceeded. CAAQS are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.

⁹ National standards (other than O₃, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The O₃ standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over 3 years, is equal to or less than the standard. For PM₁₀, the 24-hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 µg/m³ is equal to or less than one. For PM_{2.5}, the 24-hour standard is attained when 98 percent of the daily concentrations, averaged over 3 years, are equal to or less than the U.S. EPA for further clarification and current national policies.

¹⁰ Lead NAAQS are not considered in Transportation Conformity analysis.

µg/m³= micrograms per cubic meter; ARB=Air Resources Board; CAAQS=California Ambient Air Quality Standards; CO=carbon monoxide; DPM=diesel particulate matter; FCAA=Federal Clean Air Act; NA=not applicable; NAAQS=National Ambient Air Quality Standards; NO₂ = nitrogen dioxide; NO_x=oxides of nitrogen; O₃=ozone; Pb = lead; PM_{2.5}=particles of 2.5 micrometers and smaller; PM₁₀=particles of 10 micrometers and smaller; ppb=parts per billion; ppm = parts per million; ROG=reactive organic gas; SCAB=South Coast Air Basin; SIP=state implementation plan; SO₂=sulfur dioxide; TAC=toxic air contaminant; U.S. EPA=United States Environmental Protection Agency; VOC=volatile organic compound

3.2 California Clean Air Act

In California, the California Clean Air Act (CCAA) is administered by the Air Resources Board (ARB) at the state level and by the air quality management districts and air pollution control districts at the regional and local levels. The ARB, which became part of the California EPA in 1991, is responsible for meeting the state requirements of the FCAA, administering the CCAA, and establishing the California Ambient Air Quality Standards (CAAQS). The CCAA, as amended in 1992, requires all air districts in the state to endeavor to achieve and maintain the CAAQS. CAAQS are generally more stringent than the corresponding federal standards and incorporate additional standards for sulfates, hydrogen sulfide, vinyl chloride, and visibility-reducing particles.

ARB regulates mobile air pollution sources, such as motor vehicles. ARB is responsible for setting emission standards for vehicles sold in California and for other emission sources, such as consumer products and certain off-road equipment. ARB established passenger vehicle fuel specifications, which became effective in March 1996. ARB oversees the functions of local air pollution control districts and air quality management districts, which, in turn, administer air quality activities at the regional and county levels.

The state standards are summarized in Table 3-1. The CCAA requires ARB to designate areas within California as either attainment or nonattainment for each criteria pollutant based on whether the CAAQS have been achieved. Under the CCAA, areas are designated as nonattainment for a pollutant if air quality data shows that a state standard for the pollutant was violated at least once during the previous 3 calendar years. Exceedances that are affected by highly irregular or infrequent events are not considered violations of a state standard and are not used as a basis for designating areas as nonattainment. Under the CCAA, the SCAB is designated as a nonattainment area for O₃, PM_{2.5}, and PM₁₀. The Los Angeles County portion of the SCAB is in attainment for Pb.

3.3 California State Implementation Plan

The 1990 amendments to the FCAA set new deadlines for attainment based on the severity of the pollution problem and launched a comprehensive planning process for attaining the NAAQS. The promulgation of the national 8-hour O₃ standard and the fine particulate matter (PM_{2.5}) standards in 1997 resulted in additional statewide air quality planning efforts. In response to new federal regulations, state implementation plans (SIP) also began to address ways to improve visibility in national parks and wilderness areas. SIPs are not single documents, but rather a compilation of new and previously submitted plans, programs, district rules, state regulations, and federal controls.

Many of California's SIPs rely on the same core set of control strategies, including emission standards for cars and heavy trucks, fuel regulations, and limits on emissions from consumer products. State law makes ARB the lead agency for all purposes related to the SIP. Local air districts and other agencies prepare SIP elements and submit them to ARB for review and approval. ARB then forwards SIP revisions to the U.S. EPA for approval and publication in the *Federal Register*. Code of Federal Regulations, Title 40, Chapter I, Part 52, Subpart F, Section 52.220 lists all of the items which are included in the California SIP.

3.4 South Coast Air Quality Management District

The 1977 Lewis Air Quality Management Act created SCAQMD to coordinate air quality planning efforts throughout Southern California. This Act merged four county air pollution control agencies into one regional district to better address the issue of improving air quality in Southern California. Under the Act, renamed the Lewis-Presley Air Quality Management Act in 1988, the SCAQMD is the agency principally responsible for comprehensive air pollution control in the region. Specifically, the SCAQMD is responsible for monitoring air quality, as well as planning, implementing, and enforcing programs designed to attain and maintain state and federal ambient air quality standards in the district. Programs that were developed include air quality rules and regulations that regulate stationary sources, area sources, point sources, and certain mobile source emissions. The SCAQMD is also responsible for establishing stationary source permitting requirements and for ensuring that new, modified, or relocated stationary sources do not create net emission increases.

3.4.1 Air Quality Management Plan

All areas designated as nonattainment under the CCAA are required to prepare plans showing how the area would meet the CAAQS by its attainment dates. The air quality management plan (AQMP) is the SCAQMD plan for improving regional air quality. It addresses CCAA requirements and demonstrates attainment with state and federal ambient air quality standards. The AQMP is prepared by SCAQMD and SCAG. The AQMP provides policies and control measures that reduce emissions to attain both state and federal ambient air quality standards. Environmental review of individual projects within the SCAB must demonstrate that daily construction and operational emissions thresholds, as established by the SCAQMD, would not be exceeded. The environmental review must also demonstrate that individual projects would not increase the number or severity of existing air quality violations.

The AQMP (SCAQMD 2016) was adopted by the SCAQMD Governing Board on March 3, 2017. It incorporates the latest scientific and technological information and planning assumptions, including the 2016 RTP/SCS and updated emission inventory methodologies for various source categories. The 2016 AQMP includes the integrated strategies and measures needed to meet the NAAQS.

3.5 Climate Change

Climate change refers to long-term changes in temperature, precipitation, wind patterns, and other elements of the earth's climate system. An ever-increasing body of scientific research attributes these climatological changes to GHG emissions, particularly those generated from the production and use of fossil fuels.

While climate change has been a concern for several decades, the establishment of the Intergovernmental Panel on Climate Change by the United Nations and World Meteorological Organization in 1988 has led to increased efforts devoted to GHG emissions reduction and climate change research and policy. These efforts are primarily concerned with the emissions of GHGs generated by human activity including

Link Union Station Draft Air Quality/Climate Change and Health Risk Assessment

CO₂, methane (CH₄), nitrous oxide (N₂O), tetrafluoromethane, hexafluoroethane, sulfur hexafluoride (SF₆), fluoroform, 1,1,1,2-tetrafluoroethane, and 1,1-difluoroethane.

In the U.S., the main source of GHG emissions is electricity generation, followed by transportation. In California, however, transportation sources (including passenger cars, light-duty trucks, other trucks, buses, and motorcycles) make up the largest source of GHG-emitting sources. The dominant GHG emitted is CO₂, mostly from fossil fuel combustion.

There are typically two terms used when discussing the impacts of climate change: "GHG Mitigation" and "Adaptation." GHG Mitigation is a term for reducing GHG emissions to reduce or "mitigate" the impacts of climate change. Adaptation refers to the effort of planning for and adapting to impacts resulting from climate change (such as adjusting transportation design standards to withstand more intense storms and higher sea levels).

There are four primary strategies for reducing GHG emissions from transportation sources: 1) improving the transportation system and operational efficiencies, 2) reducing travel activity, 3) transitioning to lower GHG-emitting fuels, and 4) improving vehicle technologies/efficiency. To be most effective, all four strategies should be pursued cooperatively.

GHGs vary considerably in terms of global warming potential (GWP), which is a concept developed to compare the ability of each GHG to trap heat in the atmosphere relative to another gas. The GWP is based on several factors, including the relative effectiveness of a gas to absorb infrared radiation and length of time that the gas remains in the atmosphere ("atmospheric lifetime"). The GWP of each gas is estimated in terms of its expected effects at a particular time horizon (e.g., 100 years from present) relative to CO₂, the most abundant GHG. The definition of GWP for a particular GHG is the ratio of heat trapped by 1 unit mass of the GHG to the ratio of heat trapped by 1 unit mass of CO₂ over a specified time period. GHG emissions are typically measured in terms of pounds or tons of CO₂e. Table 3-2 shows the GWPs for each type of GHG. For example, SF₆ is 23,900 times more potent at contributing to global warming than CO₂.

Table 3-2. Global Warming Potential of Greenhouse Gases			
Gas	Atmospheric Lifetime (Years)	GWP (100-year Time Horizon)	
CO ₂	50–200	1	
Methane (CH4)	12	28	
N ₂ O	114	265	
Fluoroform (CHF3)	270	12,400	
1,1,1, 2-tetrafluoroethane	14	1,300	
1,1-difluoroethane	1.4	138	

Table 3-2. Global Warming Potential of Greenhouse Gases			
Gas	Atmospheric Lifetime (Years)	GWP (100-year Time Horizon)	
Perfluorocarbon Tetrafluoromethane	50,000	6,630	
Perfluorocarbon Hexafluoromethane	10,000	11,100	
SF ₆	3,200	23,500	

Source: Intergovernmental Panel on Climate Change 2014

Notes:

CO2=carbon dioxide; GWP=global warming potential; N2O=nitrous oxide; SF6=sulfur hexafluoride

3.5.1 State Regulations

Executive Order S-3-05 - Statewide Greenhouse Gas Emission Targets

On June 1, 2005, the Governor issued Executive Order (EO) S-3-05, which set the following GHG emission reduction targets:

- By 2010, reduce GHG emissions to 2000 levels
- By 2020, reduce GHG emissions to 1990 levels
- By 2050, reduce GHG emissions to 80 percent below 1990 levels

This EO also directed the secretary of the California EPA to oversee the efforts made to reach these targets, and to prepare biannual reports on the progress made toward meeting the targets and on the impacts on California related to global warming. The first such Climate Action Team Assessment Report was produced in March 2006 and has been updated every 2 years thereafter.

California Global Warming Solutions Act (Assembly Bill 32)

In 2006, the California State Legislature enacted the California Global Warming Solutions Act of 2006, also known as Assembly Bill (AB) 32. AB 32 focuses on reducing GHG emissions in California. GHGs, as defined under AB 32, include CO₂, CH₄, N₂O, hydrofluorocarbons, perfluorinated compounds, and SF₆. AB 32 requires that GHGs emitted in California be reduced to 1990 levels by the year 2020. ARB is the state agency charged with monitoring and regulating sources of emissions of GHGs that cause global warming in order to reduce emissions of GHGs. AB 32 also requires that by January 1, 2008, the ARB must determine what the statewide GHG emissions level was in 1990, and it must approve a statewide GHG emissions limit so it may be applied to the 2020 benchmark. ARB approved a 1990 GHG emissions level of 427 million MT of CO₂e, on December 6, 2007 in its Staff Report. Therefore, in 2020, emissions in California are required to be at or below 427 million MT of CO₂e.

Under the "business as usual" (BAU) scenario established in 2008, statewide emissions were increasing at a rate of approximately 1 percent per year as noted below. It was estimated that the 2020 estimated BAU of 596 million MT of CO₂e would have required a 28 percent reduction to reach the 1990 level of 427 million MT of CO₂e.

Executive Order B-30-15

On April 20, 2015, Governor Edmund G. Brown Jr. signed EO B-30-15 to establish a California GHG reduction target of 40 percent below 1990 levels by 2030. The Governor's EO aligns California's GHG reduction targets with those of leading international governments such as the 28-nation European Union which adopted the same target in October 2014. California is on track to meet or exceed its legislated target of reducing GHG emissions to 1990 levels by 2020, as established in the California Global Warming Solutions Act of 2006 (AB 32, summarized above).

California's new emission reduction target of 40 percent below 1990 levels by 2030 will make it possible to reach the ultimate goal of reducing emissions 80 percent below 1990 levels by 2050. This is in line with the scientifically established levels needed in the U.S. to limit global warming below 2 degrees Celsius, the warming threshold at which there will likely be major climate disruptions such as super droughts and rising sea levels. The targets stated in EO B-30-15 have not been adopted by the state legislature.

Senate Bill 32

Senate Bill 32 (SB) 32 was signed into law on September 8, 2016 and expands upon AB 32 to reduce GHG emissions. SB 32 sets into law the mandated GHG emissions target of 40 percent below 1990 levels by 2030 written into EO B-30-15.

Climate Change Scoping Plan

The Scoping Plan released by ARB in 2008 outlined the state's strategy to achieve the AB32 goals. This Scoping Plan, developed by ARB in coordination with the Climate Action Team, proposed a comprehensive set of actions designed to reduce overall GHG emissions in California, improve the environment, reduce dependence on oil, diversify our energy sources, save energy, create new jobs, and enhance public health. It was adopted by ARB at its meeting in December 2008. According to the Scoping Plan, the 2020 target of 427 million MT of CO₂e requires the reduction of 169 million MT of CO₂e, or approximately 28.3 percent, from the state's projected 2020 BAU emissions level of 596 million MT of CO₂e.

However, in August 2011, the Scoping Plan was re-approved by the Board and includes the Final Supplement to the Scoping Plan Functional Equivalent Document. This document includes expanded analysis of project alternatives, as well as updates the 2020 emission projections in light of the current economic forecasts. Considering the updated 2020 BAU estimate of 507 million MT of CO₂e, only a 16 percent reduction below the estimated new BAU levels would be necessary to return to 1990 levels by 2020. The Scoping Plan (ARB 2011) expands the list of 9 Early Action Measures into a list of 39 Recommended Actions.

Link Union Station Draft Air Quality/Climate Change and Health Risk Assessment

However, in May 2014, ARB developed, in collaboration with the Climate Action Team, the First Update to California's Climate Change Scoping Plan (Update), which shows that California is on track to meet the near-term 2020 GHG limit and is well positioned to maintain and continue reductions beyond 2020 as required by AB32. In accordance with the United Nations Framework Convention on Climate Change, ARB is beginning to transition to the use of the AR4's 100-year GWPs in its climate change programs. ARB has recalculated the 1990 GHG emissions level with the AR4 GWPs to be 431 million MT of CO₂e, therefore the 2020 GHG emissions limit established in response to AB32 is now slightly higher than the 427 million MT of CO₂e in the initial Scoping Plan.

In 2016, the Legislature passed SB 32, which codifies a 2030 GHG emissions reduction target of 40 percent below 1990 levels. With SB 32, the Legislature passed companion legislation AB 197, which provides additional direction for developing the Scoping Plan. ARB is moving forward with a second update to the Scoping Plan to reflect the 2030 target set by EO B-30-15 and codified by SB 32. According to the 2017 Scoping Plan, the 2030 target of 260 million MT of CO₂e requires the reduction of 129 million MT of CO₂e, or approximately 33.2 percent, from the state's projected 2030 BAU emissions level of 389 million MT of CO₂e.

Assembly Bill 1493 – Light-Duty Vehicle Greenhouse Gas Emissions Standards

AB 1493 (Pavley) requires the ARB to develop and adopt regulations that achieve "the maximum feasible reduction of GHGs emitted by passenger vehicles and light-duty truck and other vehicles determined by ARB to be vehicles whose primary use is noncommercial personal transportation in the state."

On September 24, 2009, ARB adopted amendments to the Pavley regulations that intend to reduce GHG emissions in new passenger vehicles from 2009 through 2016. The amendments bind California's enforcement of AB 1493 (starting in 2009), while providing vehicle manufacturers with new compliance flexibility. The amendments also prepare California to merge its rules with the federal Corporate Average Fuel Economy rules for passenger vehicles. In January 2012, ARB approved a new emissions-control program for model years 2017 through 2025. The program combines the control of smog, soot, and global warming gases and requirements for greater numbers of zero-emission vehicles into a single packet of standards called Advanced Clean Cars.

Executive Order S-01-07

This EO, signed by Governor Schwarzenegger on January 18, 2007, directs that a statewide goal be established to reduce the carbon intensity of California's transportation fuels by at least 10 percent by the year 2020. It orders that a low carbon fuel standard (LCFS) for transportation fuels be established for California and directs ARB to determine whether a LCFS can be adopted as a discrete early action measure pursuant to AB 32.

ARB approved the LCFS as a discrete early action item with a regulation adopted and implemented in April 2010. On December 29, 2011, District Judge Lawrence O'Neill in the Eastern District of California issued a preliminary injunction blocking ARB from implementing LCFS for the remainder of the *Rocky Mountain*

Farmers Union litigation. The injunction was lifted in April 2012 so that ARB can continue enforcing the LCFS pending ARB's appeal of the federal district court ruling.

Renewable Portfolio Standard

The renewable portfolio standard (RPS) promotes diversification of the state's electricity supply and decreased reliance on fossil fuel energy sources. Originally adopted in 2002 with a goal to achieve a 20 percent renewable energy mix by 2020 (referred to as the initial RPS), the goals have been accelerated and increased by EOs S-14-08 and S-21-09 to a goal of 33 percent by 2020.

In April 2011, the Governor signed SB 2 (1X) codifying California's 33 percent RPS goal; Section 399.19 requires the California Public Utilities Commission, in consultation with the California Energy Commission, to report to the Legislature on the progress and status of RPS procurement and other benchmarks. The purpose of the RPS upon full implementation is to provide 33 percent of the state's electricity needs through renewable energy sources. Renewable energy includes (but is not limited to) wind, solar, geothermal, small hydroelectric, biomass, anaerobic digestion, and landfill gas.

The RPS is included in ARB's Scoping Plan list of GHG reduction measures to reduce energy sector emissions. It is designed to accelerate the transformation of the electricity sector through such means as investment in the energy transmission infrastructure and systems to allow integration of large quantities of intermittent wind and solar generation. Increased use of renewables would decrease California's reliance on fossil fuels, thus reducing emissions of GHGs from the electricity sector. In 2008, as part of the Scoping Plan original estimates, ARB estimated that full achievement of the RPS would decrease statewide GHG emissions by 21.3 million MT of CO₂e. In 2010, ARB revised this number upwards to 24.0 million MT of CO₂e.

Senate Bill 375 – Regional Emissions Targets

SB 375 was signed into law in September 2008 and requires ARB to set regional targets for reducing passenger vehicle GHG emissions in accordance with the Scoping Plan. The purpose of SB 375 is to align regional transportation planning efforts, regional GHG reduction targets, and fair-share housing allocations under state housing law. SB 375 requires Metropolitan Planning Organizations to adopt an SCS or Alternative Planning Strategy to address GHG reduction targets from cars and light-duty trucks in the context of that Metropolitan Planning Organization's RTP.

Senate Bill 97 – CEQA Greenhouse Gas Amendments

SB 97 acknowledges that climate change is a prominent environmental issue that requires analysis under CEQA. The California Natural Resources Agency adopted amendments to the CEQA Guidelines to address GHG emissions, consistent with the Legislature's directive in Public Resources Code section 21083.05.

State of California Building Energy Efficiency Standards (Title 24, Part 6)

California's Energy Efficiency Standards for Residential and Nonresidential Buildings (24 California Code of Regulations Part 6) were first established in 1978 in response to a legislative mandate to reduce

Link Union Station Draft Air Quality/Climate Change and Health Risk Assessment

California's energy consumption. The standards are updated periodically to allow consideration and possible incorporation of new energy efficiency technologies and methods. The premise for the standards is that energy efficient buildings require less electricity, natural gas, and other fuels. Electricity production from fossil fuels and on-site fuel combustion (typically for space and water heating) results in GHG emissions.

The California Energy Commission adopted new 2013 Building Energy Efficiency Standards effective July 1, 2014. The 2013 Standards improve upon the 2008 Standards for new construction of, and additions and alterations to, residential and nonresidential buildings. The 2008 standards were updated for a number of reasons, including:

- To respond to AB 32, the Global Warming Solutions Act of 2006
- To pursue California energy policy that will establish energy efficiency as the resource of first choice for meeting California's energy needs
- To act on the findings of California's Integrated Energy Policy Report that indicates standards in general (as opposed to incentives or other mechanisms) are the most cost- effective means to achieve energy efficiency
- To meet California's commitment to include aggressive energy efficiency measures in updates of state building codes
- To meet California's commitment to improve the energy efficiency of nonresidential buildings through aggressive standards

Senate Bill 350

SB 350 was signed into law in September 2015. SB 350 establishes tiered increases to the RPS of 40 percent by 2024, 45 percent by 2027, and 50 percent by 2030. SB 350 also set a new goal to double the energy efficiency savings in electricity and natural gas through energy efficiency and conservation measures.

Short-Lived Climate Pollutant Reduction Strategy

This final proposed Short-Lived Climate Pollutant Reduction Strategy was developed pursuant to SB 605 and SB 1383 and lays out a range of options to accelerate short-lived climate pollutant emission reductions in California, including regulations, incentives, and other market-supporting activities.

Achievable Goals through implementation of the Short-Lived Climate Pollutant Reduction Strategy include:

- The following reductions by 2030 (from 2013 levels):
 - o 50 percent for anthropogenic Black Carbon
 - o 40 percent for methane
 - o 40 percent for hydrofluorocarbons

- Convert manure and organic wastes into valuable energy and soil amendment products
- Reduce disposal of edible foods by diverting them to food banks and other outlets
- Reduce harmful emissions from residential wood stoves
- Accelerate the reduction of the fastest growing source of GHG emissions by building on global hydrofluorocarbon phasedown agreements

California Green Building Code

The California Green Building Standards Code (2016), referred to as CalGreen, took effect on January 1, 2017, and instituted mandatory minimum environmental performance standards for all ground-up new construction of commercial and low-rise residential buildings, state-owned buildings, schools, and hospitals.

3.5.2 Local Regulations

Regional Transportation Plan/Sustainable Communities Strategy

On April 7, 2016, SCAG's Regional Council adopted the 2016 RTP/SCS. The 2016 RTP/SCS is a long-range visioning plan that balances future mobility and housing needs with economic, environmental and public health goals. It charts a course for closely integrating land use and transportation – so that the region can grow smartly and sustainably. It outlines more than \$556.5 billion in transportation system investments through 2040.

The State of California has set targets for the SCAG region to reduce GHG emissions from passenger vehicles by 8 percent per capita by 2020 and 13 percent by 2035 (compared with a 2005 baseline). Reductions outlined in the 2016 RTP/SCS are projected to reach 13.6 percent by 2020 and 27.9 percent by 2040.

The LAUS improvements are included in the 2016 RTP under the following listing:

Project ID LAOG1051: Extend several of the stub-end tracks in Union Station to connect with existing main line tracks. The project would serve the existing Metrolink, Amtrak, and new High Speed Rail train project in the corridor. It would include the preparation of an updated environmental report and clearance, preparation of the P/E documentation, preparation of final plans, specifications, and estimates, and the construction of the project.

Los Angeles County Metropolitan Transportation Authority's Climate Action and Adaptation Plan

Metro's Climate Action and Adaptation Plan (2012) establishes the framework for Metro to both reduce GHG emissions and prepare for the impacts of climate change. Emissions from 2010 are used as a baseline in the Climate Action and Adaptation Plan because at the time it was prepared, 2010 emissions data was the most up to date and complete data set available.

In 2010, Metro emitted 476,000 MT of CO₂e from its operations, or roughly 1.04 MTCO₂e per thousand passenger boardings. For comparison, these emissions account for roughly 1.9 percent of the GHG emissions from all road- and rail-based passenger transportation in Los Angeles County. Metro's transit service accounts for almost 90 percent of the agency's emissions; facilities and non-transit vehicles account for the remainder.

By removing private vehicles from the road, the agency also prevents GHG emissions from entering the atmosphere. In 2010, Metro saved approximately 411,000 MTCO₂e from being emitted by displacing vehicle driving. As a result, Metro's net GHG emissions in 2010 were only 65,000 MTCO₂e.

By 2020, Metro's internal emissions will increase by 34,733 MT, or 7 percent, to 511,220 MTCO₂e. In 2020, annual boardings are expected to increase to 516 million, up 12 percent from 2010, and GHG emissions per boarding will fall 4.4 percent, from 1.04 MTCO₂e per thousand boardings to 0.99 MTCO₂e per thousand boardings.

Los Angeles County Metropolitan Transportation Authority's Green Construction Policy

Metro implemented a Green Construction Policy in 2011 to commit to using emission-reducing construction equipment and vehicles, where feasible, and implementing best practices to reduce harmful diesel emissions on all Metro construction projects performed on Metro properties and rights-of-way. The policy includes limitations on construction equipment to be used, idling time restrictions, best management practices, and outlines implementation and enforcement activities. All contractors will be required to comply with the Green Construction Policy.

4.0 Existing Conditions

4.1 Climate

The project is located in Los Angeles County, an area within the SCAB, which includes Orange County and the non-desert portions of Los Angeles, Riverside, and San Bernardino Counties. Air quality regulation in the SCAB is administered by SCAQMD, a regional agency created for the SCAB.

The SCAB climate is determined by its terrain and geographical location. The SCAB is a coastal plain with connecting broad valleys and low hills. The Pacific Ocean forms the southwestern boundary, and high mountains surround the rest of the SCAB. The region lies in the semipermanent high pressure zone of the eastern Pacific. The resulting climate is mild and tempered by cool ocean breezes. This climatological pattern is rarely interrupted. However, periods of extremely hot weather, winter storms, and Santa Ana wind conditions do occur.

The annual average temperature varies little throughout the SCAB, ranging from the low to middle 60s, measured in degrees Fahrenheit. With a more pronounced oceanic influence, coastal areas show less variability in annual minimum and maximum temperatures than inland areas. The annual average maximum temperature recorded at the Los Angeles Downtown University of Southern California Campus Station, the closest climatological station to the project study area, is 74.0 degrees Fahrenheit and the annual average minimum is 55.8 degrees Fahrenheit. January is typically the coldest month in this area of the SCAB (Western Regional Climate Center 2018).

The majority of annual rainfall in the SCAB occurs between November and April. Summer rainfall is minimal and generally limited to scattered thundershowers in coastal regions and slightly heavier showers in the eastern part of the SCAB along the coastal side of the mountains. Average monthly rainfall measured at the Los Angeles Downtown University of Southern California Campus Station varies from 3.38 inches in February to 0.27 inches or less between May and September, with an average annual total of 14.77 inches. (WRCC, 2018)

The SCAB experiences a persistent temperature inversion (increasing temperature with increasing altitude) as a result of the Pacific high. This inversion limits the vertical dispersion of air contaminants, holding them relatively near the ground. As the sun warms the ground and the lower air layer, the temperature of the lower air layer approaches the temperature of the base of the inversion (upper) layer until the inversion layer finally breaks, allowing vertical mixing with the lower layer. This phenomenon is observed from midafternoon to late afternoon on hot summer days, when the smog appears to clear up suddenly. Winter inversions frequently break by midmorning.

Inversion layers are essential in determining O₃ formation. O₃ and its precursors will mix and react to produce higher concentrations under an inversion. The inversion will also trap and hold directly emitted pollutants such as CO. PM₁₀ is both directly emitted and created indirectly in the atmosphere as a result of chemical reactions. Concentration levels are directly related to inversion layers because of the limitation of mixing space.

Link Union Station Draft Air Quality/Climate Change and Health Risk Assessment

Surface or radiation inversions are formed when the ground surface becomes cooler than the air above it during the night. The earth's surface goes through a radiative process on clear nights, when heat energy is transferred from the ground to a cooler night sky. As the earth's surface cools during the evening hours, the air directly above it also cools, while air higher up remains relatively warm. The inversion is destroyed when heat from the sun warms the ground, which in turn heats the lower layers of air; this heating stimulates the ground level air to float up through the inversion layer.

The combination of stagnant wind conditions and low inversions produces the greatest concentration of pollutants. On days of no inversion or high wind speeds, ambient air pollutant concentrations are the lowest. During periods of low inversions and low wind speeds, air pollutants generated in urbanized areas are transported predominantly onshore and east into Riverside and San Bernardino Counties. In the winter, the greatest pollution problems are from CO and NOx because of extremely low inversions and air stagnation during the night and early morning hours. In the summer, the longer daylight hours and the brighter sunshine combine to cause a reaction between hydrocarbons and NOx to form photochemical smog.

4.2 Monitored Air Quality Pollutants

SCAQMD monitors air quality conditions at 37 locations throughout the SCAB. The closest monitoring station to the project study area is the Los Angeles North Main Street Station. This station monitors all criteria pollutants (O₃, CO, PM₁₀, PM_{2.5}, SO₂, and NO₂). Table 4-1 shows pollutant levels, the state and federal standards, and the number of exceedances recorded at this station from 2015 to 2017.

4.2.1 Carbon Monoxide

CO is a colorless and odorless gas formed by the incomplete combustion of fossil fuels. CO is emitted almost exclusively from motor vehicles, power plants, refineries, industrial boilers, ships, aircraft, and trains. CO is a non-reactive air pollutant that dissipates relatively quickly, so ambient CO concentrations generally follow the spatial and temporal distributions of vehicular traffic. CO concentrations are influenced by local meteorological conditions; primarily wind speed, topography, and atmospheric stability. As identified in Table 4-1, the CO concentrations in the project area have not exceeded the federal or state standards in the past 3 years.

Table 4-1. Ambient Air Quality Monitoring Concentrations							
		Maxin	Maximum Concentration				
Pollutant	Pollutant Concentration and Standard	2015	2016	2017			
СО	Maximum 1-hour concentration (ppm)	3.2	1.9	2.0			
	Days> 20 ppm (state 1-hour standard)	0	0	0			
	Days> 35 ppm (federal 1-hour standard)	0	0	0			
	Maximum 8-hour concentration (ppm)	1.8	1.4	1.8			
	Days> 9 ppm (state 8-hour standard)	0	0	0			
	Days> 9 ppm (federal 8-hour standard)	0	0	0			
O ₃	Maximum 1-hour concentration (ppm)	0.104	0.103	0.116			
	Days> 0.09 ppm (state 1-hour standard)	2	2	6			
	Maximum 8-hour concentration (ppm)	0.074	0.078	0.086			
	Days> 0.070 ppm (state 8-hour standard)	6	4	14			
	Days> 0.070 ppm (federal 8-hour standard)	6	4	14			
NO ₂	Maximum 1-hour concentration (ppm)	0.079	0.065	0.081			
	Days> 0.18 ppm (state 1-hour standard)	0	0	0			
	Days> 0.10 ppm (federal 1-hour standard)	0	0	0			
	Annual arithmetic mean (ppm)	0.022	0.021	0.021			
	Exceed 0.030 ppm? (state annual standard)	No	No	No			
	Exceed 0.053 ppm? (federal annual standard)	No	No	No			

		Maxin	Maximum Concentration				
Pollutant	Pollutant Concentration and Standard	2015	2016	2017			
SO ₂	Maximum 1-hour concentration (ppb)	12.6	13.4	5.7			
	Days> 250 ppb (state 1-hour standard)	0	0	0			
	Days> 75 ppb (federal 1-hour standard)	0	0	0			
	Maximum 24-hour concentration (ppb)	1.1	1.8	NA			
	Days> 40 ppb (state 24-hour standard)	0	0	NA			
Coarse Particulate Matter	Maximum 24-hour concentration (µg/m³)	73.0	64.0	64.6			
(PM10)	Days> 50 µg/m³ (state 24-hour standard)	30	21	40			
	Days> 150 μg/m³ (federal 24-hour standard)	0	0	0			
	Annual arithmetic mean (μg/m³)	27.1	25.8	25.7			
	Exceed 20 µg/m³? (state annual standard)	Yes	Yes	Yes			
Fine Particulate Matter	Maximum 24-hour concentration (µg/m³)	56.4	44.3	54.9			
(PM _{2.5})	Days> 35 µg/m³ (federal 24-hour standard)	7	2	6			
	Annual arithmetic mean (µg/m³)	12.3	11.7	12.0			
	Exceed 12 µg/m³? (state annual standard)	Yes	No	No			
	Exceed 12 µg/m³? (federal annual standard)	Yes	No	No			

µg/m³=micrograms per cubic meter; CO= carbon monoxide; NA = Not Available; NO₂=nitrogen dioxide; O₃=ozone; PM_{2.5}=particles of 2.5micrometers and smaller; PM₁₀=particles of 10 micrometers and smaller; ppb=parts per billion; ppm=parts per million; SO₂= sulfur dioxide

4.2.2 Ozone

O₃ is a colorless gas that is formed in the atmosphere when reactive organic gases (ROG), which includes volatile organic compounds (VOC), and NOx react in the presence of ultraviolet sunlight. O₃ is not a primary pollutant; it is a secondary pollutant formed by complex interactions of two pollutants directly emitted into the atmosphere. The primary sources of ROG and NOx, the components of O₃, are automobile exhaust and industrial sources. Meteorology and terrain play major roles in O₃ formation. Ideal conditions occur during summer and early autumn, on days with low wind speeds or stagnant air, warm temperatures, and cloudless skies.

The greatest source of smog-producing gases is the automobile. Short-term exposure (lasting for a few hours) to O₃ at levels typically observed in Southern California can result in breathing pattern changes,

Link Union Station Draft Air Quality/Climate Change and Health Risk Assessment

reduction of breathing capacity, increased susceptibility to infections, inflammation of the lung tissue, and some immunological changes. As identified in Table 4-1, the state 1-hour O₃ standard was exceeded twice in 2015 and 2016 and 6 times in 2017. The state and federal 8-hour O₃ standards were exceeded 6 times in 2015, 4 times in 2016, and 14 times in 2017.

4.2.3 Nitrogen Dioxide

NO₂, like O₃, is not directly emitted into the atmosphere but is formed by an atmospheric chemical reaction between nitric oxide and atmospheric oxygen. Nitric oxide and NO₂ are collectively referred to as NO_x and are major contributors to O₃ formation. NO₂ also contributes to the formation of PM₁₀. High concentrations of NO₂ can result in a brownish-red cast to the atmosphere with reduced visibility and can cause breathing difficulties. As identified in Table 4-1, the NO₂ concentrations in the project area have not exceeded the federal or state standards in the past 3 years.

4.2.4 Sulfur Oxides

SO₂ is a colorless, pungent gas formed primarily by the combustion of sulfur-containing fossil fuels. Main sources of SO₂ are coal and oil used in power plants and industries. Generally, the highest levels of SO₂ are found near large industrial complexes. In recent years, SO₂ concentrations have been reduced by the increasingly stringent controls placed on stationary source emissions of SO₂ and limits on the sulfur content of fuels. SO₂ is an irritant gas that attacks the throat and lungs. It can cause acute respiratory symptoms and diminished ventilator function in children. As identified in Table 4-1, the SO₂ concentrations in the project area have not exceeded the federal or state standards in the past 3 years.

4.2.5 Coarse Particulate Matter

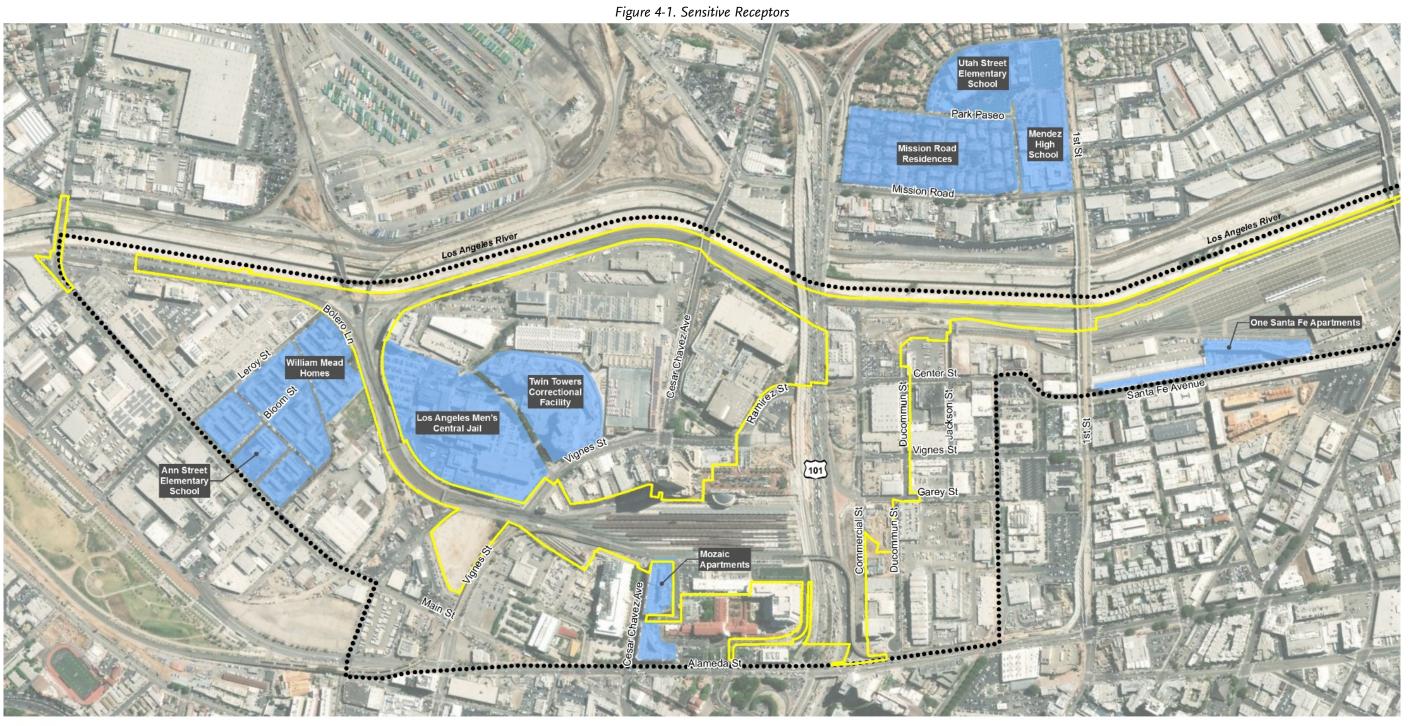
Particulate matter pollution consists of very small liquid and solid particles floating in the air, which can include smoke, soot, dust, salts, acids, and metals. Particulate matter also forms when gases emitted from industries and motor vehicles undergo chemical reactions in the atmosphere. Inhalable particulate matter, or PM10, is about 1/7 the thickness of a human hair. Major sources of PM10 include crushing or grinding operations; dust stirred up by vehicles traveling on roads; wood burning stoves and fireplaces; dust from construction, landfills, and agriculture; wildfires and brush/waste burning; industrial sources; windblown dust from open lands; and atmospheric chemical and photochemical reactions. When inhaled, PM10 particles can penetrate the human respiratory system's natural defenses and damage the respiratory tract. PM10 can increase the number and severity of asthma attacks, cause or aggravate bronchitis and other lung diseases, and reduce the body's ability to fight infections. As identified in Table 4-1, the state PM10 standards were exceeded in each of the past 3 years. The federal standards were not exceeded in the in the last 3 years.

4.2.6 Fine Particulate Matter

Fine particulate matter, or PM_{2.5}, is roughly 1/28 the diameter of a human hair. PM_{2.5} results from fuel combustion (e.g., motor vehicles, power generation, and industrial facilities), residential fireplaces, and wood stoves. In addition, PM_{2.5} can be formed in the atmosphere from gases such as SO₂, NO_x, and VOC.

Very small particles of substances, such as Pb, sulfates, and nitrates can cause lung damage directly. These substances can be absorbed into the blood stream and cause damage elsewhere in the body. These substances can transport absorbed gases, such as chlorides or ammonium, into the lungs and cause injury. Whereas PM10 tends to collect in the upper portion of the respiratory system, PM2.5 is so tiny that it can penetrate deeper into the lungs and damage lung tissues. Suspended particulates also damage and discolor surfaces on which they settle, as well as produce haze and reduce regional visibility. As identified in Table 4-1, the federal 24-hour PM2.5 standard was exceeded in each of the past 3 years. The state and federal annual PM2.5 standards were exceeded in 2015.

4.2.7 Volatile Organic Compounds or Reactive Organic Gases


VOCs are carbon-containing compounds that evaporate into the air. VOCs contribute to the formation of smog and/or may be toxic. VOCs often have an odor, and examples include gasoline, alcohol, and the solvents used in paints. The SCAQMD does not directly monitor VOCs. There are no specific state or federal VOC thresholds, as they are regulated by individual air districts as O₃ precursors.

4.3 Sensitive Receptors

Sensitive populations are more susceptible to the effects of air pollution than the general population. Sensitive populations (sensitive receptors) that are in proximity to localized sources of toxics, particulate matter, and CO are of particular concern. Land uses considered sensitive receptors include residences, schools, playgrounds, childcare centers, athletic facilities, long-term health care facilities, rehabilitation centers, convalescent centers, and retirement homes. The majority of the sensitive receptors within or adjacent to the project study area are residential uses. The nearby sensitive receptors within or adjacent to the project study area are summarized below and depicted on Figure 4-1:

- William Mead Homes
- Mozaic Apartments
- Utah Street Elementary School
- Twin Towers Correctional Facility
- Los Angeles Men's Central Jail
- One Santa Fe Apartments
- Metro Offices
- Ann Street Elementary School
- Terminal Annex
- Mission Road Residences
- Mendez High School

LEGEND

(THIS PAGE INTENTIONALLY LEFT BLANK)

5.0 Thresholds of Significance

For the purposes of this air quality analysis, the proposed project or the build alternative would have a significant impact on air quality or global climate change if it would:

- A. Conflict with or obstruct implementation of the applicable air quality plan
- B. Violate any air quality standard or contribute substantially to an existing or projected air quality violation
- C. Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for O₃ precursors)
- D. Expose sensitive receptors to substantial pollutant concentrations
- E. Create objectionable odors affecting a substantial number of people
- F. Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment
- G. Conflict with applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs

(THIS PAGE INTENTIONALLY LEFT BLANK)

6.0 Methods and Significance Thresholds

The proposed project accommodates the planned HSR system within the limits of the project footprint. Indirect emissions associated with the operation of the planned HSR system are not included in this analysis and are addressed separately in the environmental document(s) being prepared by the California High-Speed Rail Authority for the Burbank to Los Angeles and Los Angeles to Anaheim Project Sections. The following provides a summary of the methodology and significance thresholds used to determine project-related impacts.

- No Project By 2040, all of the trains operating at LAUS are assumed to meet Tier 4 emission standards; therefore, a large reduction in emissions between 2016 and 2040 is anticipated to occur resulting from the No Project alternative. The reduction in emissions between the existing (2016) and future No Project conditions is incorporated into this impact assessment methodology.
- Construction The passenger concourse associated with the proposed project or the build alternative is the key infrastructure element that has variations in terms of the construction-related air quality and GHG analysis and associated impacts. The construction emissions reflect the additional haul truck trips, earth movement, and material handling required for the build alternative with the at-grade passenger concourse.
- Operations The project-related capacity enhancements associated with the proposed project or the build alternative could facilitate a future increase in train movements through LAUS within the project study area. Although significant investments in non-project related infrastructure outside of the project study area are required to realize substantial increases in service and associated train movement through LAUS, this report includes a conservative evaluation of localized air quality impacts and GHG emissions resulting from increased train movements through LAUS that could occur as a result of project-related capacity enhancements. It should be noted that other non-project related capacity enhancements are required as part of the SCORE Program to realize the maximum train movements through LAUS considered in this evaluation.

Within the limits of the project study area, a localized air quality impact analysis was conducted based on the project-related capacity enhancements and associated increases in train movements through LAUS for 2026, 2031, and 2040. Impacts are presented without taking into consideration reductions in regional VMT because any reductions in VMT and associated GHG emissions are considered cumulative benefits.

• Cumulative Impacts – Increases in service that occur regionally are considered cumulative impacts, and for the purposes of this report, are evaluated for the 2040 horizon year. Future service scenarios will depend on ongoing negotiations between the railroad operators, available infrastructure (corridors, maintenance facilities, etc.) throughout the Metrolink system and beyond, and available operating funding from the Metrolink JPA member agencies including but not limited to Amtrak, the LOSSAN Rail Corridor Agency and Metro. Implementation of off-site infrastructure to implement future increases in service is the responsibility of the service operators or JPA member

agencies; including the evaluation of related air quality impacts that may occur from off-site rail infrastructure improvements.

Cumulative benefits for the region, including a regional reduction of GHG emissions and VMT are considered in the 2016 RTP/SCS Program Environmental Impact Report (SCAG 2015) through 2040, which is incorporated by reference.

Criteria Air Pollutants. Emissions of criteria air pollutants were estimated using existing conditions information, detailed construction scenarios prepared for the proposed project and the build alternative, estimates for future train movements through LAUS identified in Appendix A, as well as a combination of emission factors from the following sources.

- ARB modeling software EMFAC2017 and SCAQMD's Off-Road Mobile Source Emission Factors for estimating exhaust emissions from off-road construction equipment and on-road motor vehicles
- U.S. EPA re-entrained paved road dust methodology
- U.S. EPA locomotive emission factors for locomotives and associated methodology
- CalEEMod (Version 2016.3.1) emission calculation methodologies for calculating the long-term mobile, energy, and area source emissions

HRA. Since diesel-related exhaust, specifically diesel particulate matter (DPM), is considered a TAC by the ARB, a HRA was conducted to assess the risk to human health associated with the proposed project or the build alternative. An HRA consists of three parts: (1) a TAC emissions inventory, (2) air dispersion modeling to evaluate off-site pollutant concentrations of TAC emissions, and (3) assessment of risks associated with predicted pollutant concentrations. The HRA was conducted using the guidelines provided by the California Office of Environmental Health Hazard Assessment (OEHHA) for the Air Toxics Hot Spots Program and the HRA guidelines developed by the California Air Pollution Control Officers Association.

Quantification of GHGs. For the purposes of determining whether or not GHG emissions from affected projects are significant, SCAQMD specifies that project emissions must include direct, indirect, and, to the extent information is available, life cycle emissions during construction and operation. Based on this direction, construction emissions were amortized over the life of the project (defined as 30 years) added to the operational emissions, and compared with the applicable GHG significance thresholds.

6.1 South Coast Air Quality Management District Guidelines

Specific criteria for determining whether the potential air quality impacts of a project are significant are set forth in the SCAQMD's *CEQA Air Quality Handbook*. Table 6-1 lists the daily thresholds for construction and operational emissions that have been established by the SCAQMD and would be used in the analysis of air quality impacts for the project to determine significance.

Table 6-1. South Coast Air Quality Management District Air Quality Thresholds of Significance						
Pollutant	Construction (lb/day)	Operation (lb/day)				
NOx	100	55				
VOC	75	55				
ΡΜιο	150	150				
PM2.5	55	55				
SOx	150	150				
со	550	550				

Source: SCAQMD 1993

Notes:

CO=carbon monoxide; lb=pound; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; SOx=sulfur oxides; VOC=volatile organic compound

6.1.1 Localized Significance Thresholds

The SCAQMD has developed LST methodology and mass rate look-up tables by source receptor area that can be used by public agencies to determine whether or not a project may generate significant adverse localized air quality impacts. LSTs represent the maximum emissions from a project that will not cause or contribute to an exceedance of the most stringent applicable federal or state ambient air quality standard, and are developed based on the ambient concentrations of that pollutant for each source receptor area.

LSTs are developed based on the ambient concentrations of four criteria pollutants within each defined source receptor area and distance to the nearest sensitive receptor. LSTs are derived based on the location of the activity (i.e., the source receptor area); the emission rates of NOx, CO, PM_{2.5}, and PM₁₀; the size of the project study area, and the distance to the nearest exposed individual. The project study area is located within Source Receptor Area No. 1 (Central Los Angeles). As LAUS and the surrounding tracks must continue to operate throughout the construction period, the area of disturbance each day within each segment (throat, concourse, and run-through) would not exceed 5 acres. Table 6-2 lists the LST emission rates for a 5-acre site located within 25 meters (the shortest distance with a LST) of a sensitive use.

Table 6-2. South Coast Air Quality Management District Localized Significance Thresholds						
Pollutant	Construction (lb/day)	Operation (lb/day)				
NOx	161	161				
PM10	16	4				
PM2.5	8	2				
со	1,861	1,861				

Source: SCAQMD 1993

Notes:

CO=carbon monoxide; lb=pound; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller

6.1.2 Local Carbon Monoxide Concentrations

The significance of localized project impacts under CEQA depends on whether ambient CO levels in the vicinity of the project are above or below state and federal CO standards. If ambient levels are below the standards, a project is considered to have a significant impact if project emissions result in an exceedance of one or more of these standards. If ambient levels already exceed a state or federal standard, project emissions are considered significant if they increase 1-hour CO concentrations by 1.0 part per million (ppm) or more or 8-hour CO concentrations by 0.45 ppm or more. The following are applicable local emission concentration standards for CO:

- California State 1-hour CO standard of 20.0 ppm
- California State 8-hour CO standard of 9.0 ppm

6.1.3 Greenhouse Gas Emission Threshold

The SCAQMD's Interim Thresholds for commercial, residential, mixed use and industrial development projects are as follows:

- Industrial projects 10,000 MT of CO2e per year
- Residential, commercial, and mixed use projects (including parks, warehouses, etc.) 3,000 MT CO2e per year

The project is a transportation use that does not fit into the industrial, commercial, or residential project categories. The SCAQMD has not proposed or adopted a threshold level for transportation projects. For purposes of this analysis, both direct and indirect GHG emissions from the project are discussed in the context of the 3,000 MT threshold levels. In accordance with scientific consensus regarding the cumulative nature of GHGs, the analysis herein analyzes the cumulative contribution of project-related GHG emissions; therefore, effects are analyzed with respect to 2040 cumulative emissions only.

6.1.4 Incremental Health Risk Significance Threshold

The SCAQMD *CEQA Air Quality Handbook* (1993) lists significance thresholds for TACs. TACs refer to a diverse group of air pollutants that are capable of causing chronic and acute adverse effects on human health. They include both organic and inorganic chemical substances that may be emitted from a variety of common sources including gasoline stations, motor vehicles, dry cleaners, and painting operations that may use substances such as ammonia, asbestos, benzene, cadmium, Pb, and trichloroethylene. The SCAQMD's TAC thresholds are as follows:

- Maximum Incremental Cancer Risk \geq 10 in 1 million
- Cancer Burden > 0.5 excess cancer cases
- Chronic & Acute Hazard Index \geq 1.0

Cancer risks are typically calculated for all carcinogenic TACs and summed to calculate the overall increase in cancer risk to an individual. The calculation procedure assumes that cancer risk is proportional to concentrations at any level of exposure and that risks from various TACs are additive. This is generally considered a conservative assumption at low doses and is consistent with the current OEHHA-recommended approach.

Non-cancer health impact of an inhaled TAC is measured by the hazard quotient, which is the ratio of the ambient concentration of a TAC in units of $\mu g/m^3$ divided by the reference exposure level (REL), also in units of $\mu g/m^3$. The inhalation REL is the concentration at or below which no adverse health effects are anticipated. The REL is typically based on health effects on a particular target organ system, such as the respiratory system, liver, or central nervous system. Hazard quotients are then summed for each target organ system to obtain a hazard index.

To estimate the ambient pollutant concentrations resulting from construction activities and operations at nearby sensitive receptors, a dispersion modeling analysis was performed using the Lakes Environmental AERMOD-View air quality dispersion model, Version 9.6.5 (Lakes Environmental 2018), which uses the U.S. EPA's AERMOD model, adding a user friendly interface to allow more flexibility for formatting input and reporting.

The cancer risk calculations were performed by multiplying the predicted annual DPM concentrations from AERMOD by the appropriate risk values. The exposure and risk equations that are used to calculate the cancer risk at residential, recreation, and school receptors are taken from the *Air Toxics Hot Spots Program Guidance Manual* (OEHHA 2015).

Link Union Station Draft Air Quality/Climate Change and Health Risk Assessment

The potential exposure pathway for DPM includes inhalation only. Cancer risks were evaluated using the inhalation Cancer Potency Factor published by the OEHHA. The cancer risks were calculated using the "derived (adjusted)" approach in the OEHHA risk assessment manual. The cancer potency factor for DPM is 1.1 per milligram per kilogram of body weight per day. The potential exposure through other pathways (e.g., ingestion) requires substance and site-specific data, and the specific parameters for DPM are not known for these pathways.

The following equations were used to calculate the cancer risk because of inhalation using the modeled DPM concentrations:

Risk = Inhalation potency factor * Dose Inhalation

where: Inhalation potency factor = 1.1 per milligram per kilogram of body weight per day for DPM

and: Dose Inhalation = Cair*DBR*A*EF*ED*10-6 / AT

where: Cair = concentration of DPM in micrograms per cubic meter ($\mu g/m^3$)

DBR = breathing rate in liter per kilogram of body weight per day

A = inhalation absorption factor (1 for DPM)

EF = exposure frequency in days per year

ED = exposure duration in years

AT = averaging time period over which exposure is averaged in days (25,550 days for 70 years)

7.0 Impacts

This section includes a discussion of project-related air quality, health risk, and climate change impacts based on the significance criteria identified in Section 6.0.

THRESHOLD Violate Air Quality Standards

7.1 Air Quality

7.1.1 Construction

Construction activities associated implementation of the proposed project or the build alternative have the potential to create air quality impacts through the use of heavy-duty construction equipment, construction worker vehicle trips, material delivery trips, and heavy-duty haul truck trips generated from construction activities. In addition, earthwork activities would result in fugitive dust emissions and paving operations and would also release ROGs from off-gassing. Construction emissions can vary substantially from day to day, depending on the level of activity, the specific type of operation, and, for dust, the prevailing weather conditions. The assessment of construction air quality impacts considers each of these potential sources.

Construction activities produce combustion emissions from various sources such as utility engines, on-site heavy-duty construction vehicles, equipment hauling materials to and from the site, and motor vehicles transporting the construction crew. Exhaust emissions from these sources would vary daily as construction progresses. The use of construction equipment on site would result in localized exhaust emissions. Construction-related effects can also occur because of relocated emissions from traffic on temporarily relocated or diverted tracks. While the actual amount of emissions may not increase if traffic volumes and operating conditions do not change, the effect of emissions may increase if they are moved closer to sensitive receptors or if traffic temporarily increases in the vicinity of sensitive receptor locations.

Two separate design options are being considered for the passenger concourse; an above-grade passenger concourse with new expanded passageway that corresponds to the proposed project, and an at-grade passenger concourse that corresponds to the build alternative. The construction air-quality analysis varies substantially based on the passenger concourse options considered, with negligible variations based on the track alignment (shared or dedicated tracks). The impact evaluation includes a conservative evaluation of potential air quality impacts for the proposed project and the build alternative, with each respective passenger concourse.

This air quality impact evaluation is conservative, and adequately addresses any potential impacts that could occur for the interim condition because the detailed construction scenario prepared to support the environmental impact evaluation assumes all major project elements would be constructed concurrently. If run-through track infrastructure south of LAUS is constructed prior to the elevated rail yard and new passenger concourse, fewer construction related air quality and GHG impacts (based on fewer truck trips) are anticipated than reported herein because fewer emissions would be generated at once. The greatest

amount of potential impacts are addressed within this air quality analysis for both construction and operational scenarios.

Equipment Exhaust and Related Construction Activities

The construction equipment hours, haul truck trips, and employee commute trips required to build the proposed project or the build alternative were estimated (HDR 2018). The construction equipment estimates are included in Appendix B. The construction emissions for the proposed project and the build alternative were calculated using the equipment list contained in Appendix A, Appendix B, and U.S. EPA and SCAQMD emission rates. The total exhaust emissions generated during the entire construction period are listed in Table 7-1 and Table 7-2 for the proposed project and the build alternative, respectively. The construction emission estimates are also detailed in Appendix C.

As identified in Table 7-1 and Table 7-2 the daily construction emissions for the proposed project and the build alternative would exceed the SCAQMD's daily thresholds for NOx, PM10, and PM2.5.

Table 7-1. Daily Construction Emissions – Proposed Project with Above-Grade Passenger Concourse with New Expanded Passageway								
Source	СО	ROG	NOx	PM 10	PM 2.5	CO2e		
Off-Road Equipment (lb)	211,520	30,234	200,783	15,418	11,073	58,493,453		
On-Road Equipment (lb)	15,259	1,227	57,020	6,147	2,488	24,650,247		
Fugitive Dust (lb)	—	—	—	450,000	94,500	—		
Total (lb)	226,780	31,460	257,803	471,564	108,061	83,143,700		
Average Day (lb/day)	151.2	21.0	171.9	314.4	72.0	55,429.1		
SCAQMD Thresholds	550	75	100	150	55	NA		
Exceedance	No	No	Yes	Yes	Yes	—		

Notes:

CO = carbon monoxide; CO₂e = carbon dioxide equivalents; lb = pound; NA=not applicable; NO_x = oxides of nitrogen;

PM2.5 = particles of 2.5 micrometers and smaller; PM10 = particles of 10 micrometers and smaller; ROG = reactive organic gas; SCAQMD = South Coast Air Quality Management District

January	2019
---------	------

Table 7-2. Daily Construction Emissions – Build Alternative with At-Grade Passenger Concourse								
Source	со	ROG	NOx	PM 10	PM 2.5	CO ₂ e		
Off-Road Equipment (lb)	313,419	48,753	318,352	21,206	16,012	95,487,445		
On-Road Equipment (Ib)	20,577	1,671	77,800	8,339	3,376	33,557,056		
Fugitive Dust (lb)	—	—	—	450,000	94,500	—		
Total (lb)	333,996	50,424	396,151	479,545	113,888	129,044,501		
Average Day (lb/day)	222.7	33.6	264.1	319.7	75.9	86,029.7		
SCAQMD Thresholds	550	75	100	150	55	NA		
Exceedance	No	No	Yes	Yes	Yes	—		

 $CO = carbon monoxide; CO_{2e} = carbon dioxide equivalents; lb = pound; NA=not applicable; NOx = oxides of nitrogen; PM_{2.5} = particles of 2.5 micrometers and smaller; PM_{10} = particles of 10 micrometers and smaller; ROG = reactive organic gas; SCAQMD=South Coast Air Quality Management District$

The annual construction emissions generated during the average construction year are listed in Table 7-3 and Table 7-4 for the proposed project and the build alternative.

Table 7-3. Annual Construction Emissions – Proposed Project with Above-Grade PassengerConcourse with New Expanded Passageway(tons)							
Source	со	ROG	NOx	PM 10	PM2.5	CO2e	
Off-Road Equipment	105.8	15.1	100.4	7.7	5.5	29,246.7	
On-Road Equipment	7.6	0.6	28.5	3.1	1.2	12,325.1	
Fugitive Dust	—	—	—	225.0	47.3	—	
Total	113.4	15.7	128.9	235.8	54.0	41,571.8	
Average Year	18.9	2.6	21.5	39.3	9.0	6,928.6	

Notes:

 $CO = carbon monoxide; CO_{2e} = carbon dioxide equivalents; NOx = oxides of nitrogen; PM_{2.5} = particles of 2.5 micrometers and smaller; PM_{10}=particles of 10 micrometers and smaller; ROG = reactive organic gas$

Table 7-4. Annual Construction Emissions – Build Alternative with At-Grade Passenger Concourse							
(tons)							
Source	со	ROG	NOx	PM 10	PM 2.5	CO ₂ e	
Off-Road Equipment	156.7	24.4	159.2	10.6	8.0	47,743.7	
On-Road Equipment	10.3	0.8	38.9	4.2	1.7	16,778.5	
Fugitive Dust	—	—	—	225.0	47.3	—	
Total	167.0	25.2	198.1	239.8	56.9	64,522.3	
Average Year	27.8	4.2	33.0	40.0	9.5	10,753.7	

CO=carbon monoxide; CO₂e=carbon dioxide equivalents; NO_x=oxides of nitrogen; PM_{2.5}=particles of 2.5 micrometers and smaller; PM₁₀=particles of 10 micrometers and smaller; ROG=reactive organic gas

Fugitive Dust

Fugitive dust emissions are generally associated with land clearing, exposure, and cut-and-fill operations. Dust generated daily during construction would vary substantially, depending on the level of activity, the specific operations, and weather conditions. Nearby sensitive receptors and on-site workers may be exposed to blowing dust, depending upon prevailing wind conditions. Fugitive dust also would be generated as construction equipment or trucks travel on unpaved areas of the construction site.

PM_{2.5} and PM₁₀ emissions from construction activities were calculated using the total acreage that would be disturbed during each construction phase and are included in the emissions listed in Table 7-1 through Table 7-4. SCAQMD has established Rule 403 for reducing fugitive dust emissions through the use of best available control measures. As identified in Table 7-1 and Table 7-2, the proposed project or the build alternative would exceed the SCAQMD's significance thresholds for PM₁₀ emissions. These estimates do not assume compliance with SCAQMD Rule 403.

LST Analysis

Table 7-5 and Table 7-6 show the construction-related emissions of CO, NOx, PM₁₀, and PM_{2.5} compared with the LSTs for the Central Los Angeles area at a distance of 25 m for the proposed project and build alternative. As required by the SCAQMD's LST Methodology (SCAQMD 2008), only the on-site construction emissions are included in Table 7-5 and Table 7-6. As identified in Table 7-5, the calculated emissions rates for on-site construction activities associated with the proposed project would exceed the LSTs for PM₁₀ and PM_{2.5}. As identified in Table 7-6, calculated emission rates for the build alternative would exceed the LSTs for NOx, PM₁₀, and PM_{2.5}.

 Table 7-5. Summary of On-Site Construction Emissions, Localized Significance – Proposed Project

 with Above-Grade Concourse

	Emissions				
	со	NOx	PM 10	PM 2.5	
Total (lb)	212,283.3	203,633.6	465,725.1	105,697.8	
Daily (lb)	141.5	135.8	310.5	70.5	
SCAQMD Thresholds	1,861	161	16	8	
Exceeds Daily SCAQMD Threshold?	No	No	Yes	Yes	

Notes:

CO=carbon monoxide; Ib=pound; NOx=oxides of nitrogen; PM2.3=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; SCAQMD=South Coast Air Quality Management District

 Table 7-6. Summary of On-Site Construction Emissions, Localized Significance – Build Alternative with At-Grade Concourse

	Emissions					
	со	NOx	PM 10	PM 2.5		
Total (lb)	314,447.4	322,241.9	471,622.5	110,681.2		
Daily (lb)	209.6	214.8	314.4	73.8		
SCAQMD Thresholds	1,861	161	16	8		
Exceeds Daily SCAQMD Threshold?	No	Yes	Yes	Yes		

Notes:

CO=carbon monoxide; lb=pound; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; SCAQMD=South Coast Air Quality Management District

Based on the results of the construction air quality analysis, impacts would be significant upon implementation of the proposed project or the build alternative. Mitigation Measures AQ-1 and AQ-2, (described in Section 8.0), would reduce the exhaust and fugitive dust emissions (CO, NOx, ROG, PM10, and PM2.5) generated on site during construction.

- Mitigation Measure AQ-1 (described in Section 8.0) requires compliance with the SCAQMD's Rule 403 (fugitive dust control measures) and would reduce on-site fugitive dust emissions by 50 percent.
- Mitigation Measure AQ-2 (described in Section 8.0) requires all on-site construction equipment to meet or exceed U.S. EPA's Tier 4 Final emission standards and for all off-road construction equipment to be fueled using 100 percent renewable diesel. This measure would reduce the on-site exhaust emissions by up to 95 percent when compared with the average construction fleet for the SCAB.

Construction Emissions after Mitigation

Table 7-7 and Table 7-8 identify the mitigated construction emission levels for the peak day for the proposed project and the build alternative, respectively. As identified in Table 7-7 and Table 7-8, after mitigation the peak daily construction emissions for the proposed project or the build alternative would still exceed the SCAQMD's PM₁₀ threshold.

Table 7-9 and Table 7-10 identify the annual mitigated construction emission levels for the proposed project and the build alternative, respectively.

Table 7-7. Daily Construction Emissions After Mitigation – Proposed Project with Above-Grade Passenger Concourse with New Expanded Passageway								
Source	со	ROG	NOx	PM 10	PM2.5	CO ₂ e		
Off-Road Equipment (lb)	57,593	11,316	32,029	5,449	2,569	37,924,387		
On-Road Equipment (lb)	15,259	1,227	57,020	6,147	2,488	24,650,247		
Fugitive Dust (lb)	—	—	—	225,000	47,250	—		
Total (lb)	72,852	12,543	89,049	236,596	52,307	62,574,634		
Average Day (lb/day)	48.6	8.4	59.4	157.7	34.9	41,716.4		
SCAQMD Thresholds	550	75	100	150	55	NA		
Exceedance	No	No	No	Yes	No	—		

Notes:

CO=carbon monoxide; CO2e=carbon dioxide equivalents; lb=pound; NA=not applicable; NOx=oxides of nitrogen;

PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SCAQMD=South Coast Air Quality Management District

Table 7-8. Daily C	Table 7-8. Daily Construction Emissions After Mitigation – Build Alternative with At-Grade Concourse									
Source	со	ROG	NOx	PM 10	PM 2.5	CO ₂ e				
Off-Road Equipment (lb)	70,192	19,008	49,296	6,763	3,370	58,849,564				
On-Road Equipment (lb)	20,577	1,671	77,800	8,339	3,376	33,557,056				
Fugitive Dust (lb)	—	—	—	225,000	47,250	_				
Total (lb)	90,769	20,679	127,096	240,102	53,996	92,406,620				
Average Day (lb/day)	60.5	13.8	84.7	160.1	36.0	61,604.4				
SCAQMD Thresholds	550	75	100	150	55	NA				
Exceedance	No	No	No	Yes	No	—				

CO=carbon monoxide; CO₂e=carbon dioxide equivalents; NA=not applicable; NO_x=oxides of nitrogen;

PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SCAQMD=South Coast Air Quality Management District

Table 7-9. Annual Construction Emissions After Mitigation – Proposed Project with Above-Grade Passenger Concourse with New Expanded Passageway

(t		

()						
Source	со	ROG	NOx	PM 10	PM 2.5	CO ₂ e
Off-Road Equipment	28.8	5.7	16.0	2.7	1.3	18,962.2
On-Road Equipment	7.6	0.6	28.5	3.1	1.2	12,325.1
Fugitive Dust	—	—	—	112.5	23.6	—
Total	36.4	6.3	44.5	5.8	2.5	31,287.3
Average Year	6.1	1.0	7.4	1.0	0.4	5,214.5

Notes:

CO = carbon monoxide; CO₂e = carbon dioxide equivalents; NOx = oxides of nitrogen; PM₂⁵ = particles of 2.5 micrometers and smaller; PM₁₀ = particles of 10 micrometers and smaller; ROG = reactive organic gas

Table 7-10. Annual Construction Emissions After Mitigation – Build Alternative with At-Grade Concourse (tons)								
Source	со	ROG	NOx	PM 10	PM 2.5	CO2e		
Off-Road Equipment	35.1	9.5	24.6	3.4	1.7	29,424.8		
On-Road Equipment	10.3	0.8	38.9	4.2	1.7	16,778.5		
Fugitive Dust	—	—	—	112.5	23.6	—		
Total	45.4	10.3	63.5	7.6	3.4	46,203.3		
Average Year	7.6	1.7	10.6	1.3	0.6	7,700.5		

CO=carbon monoxide; CO2e=carbon dioxide equivalents; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas

Table 7-11 and Table 7-12 identify the on-site construction emissions after implementing Mitigation Measures AQ-1 and AQ-2 for the proposed project and the build alternative, respectively. As shown, after implementation of mitigation, the calculated emissions rates for the on-site construction activities associated with the proposed project or the build alternative would continue to exceed the LSTs for PM10 and PM2.5.

 Table 7-11. Summary of On-Site Construction Emissions After Mitigation, Localized Significance –

 Proposed Project with Above-Grade Passenger Concourse with New Expanded Passageway

			U	· •
	Emissions			
	со	NOx	PM 10	PM 2.5
Total (Ib)	58,355.8	34,879.6	230,756.7	49,943.0
Daily (lb)	38.9	23.3	153.8	33.3
SCAQMD Thresholds	1,861	161	16	8
Exceeds Daily SCAQMD Threshold?	No	No	Yes	Yes

Notes:

CO=carbon monoxide; Ib=pound; NOx=oxides of nitrogen; PM2.s=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; SCAQM =South Coast Air Quality Management District

Build Alternative with At-Grade Concourse								
		Emis	ssions					
	со	NOx	PM 10	PM 2.5				
Total (lb)	71,220.9	53,186.1	232,179.9	50,789.0				
Daily (lb)	47.5	35.5	154.8	33.9				
SCAQMD Thresholds	1,861	161	16	8				
Exceeds Daily SCAQMD Threshold?	No	No	Yes	Yes				

CO=carbon monoxide; Ib=pound; NOx=oxides of nitrogen; PM2.s=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; SCAQMD=South Coast Air Quality Management District

Based on these results, after implementation of proposed mitigation, construction-related emissions resulting from the proposed project or the build alternative would continue to exceed the localized SCAQMD significance thresholds; therefore, after mitigation the impacts would remain significant and unavoidable. As discussed in Table 3-1, particulate matter emissions can contribute to localized health effects. Specific effects include, but are not limited to, irritated eyes and respiratory tract, decreased lung capacity, and increased cancer and mortality. While it is common practice to analyze the correlation between an individual facility's TAC emissions and expected localized human health impacts, a similar analysis is not feasible for criteria pollutants. Instead, potential human health impacts associated with criteria air pollutants are evaluated on a regional level based on the NAAQS established by the EPA. Available modeling tools are not equipped to provide a meaningful analysis of the correlation between an individual project's air emissions and specific human health impacts.

Attempting to identify a change in background pollutant concentrations that can be attributed to a single project would be a theoretical exercise. A single project's emissions constitute only a miniscule portion of the immense volume of air contained in a regional air basin. Additionally, background concentrations of regional pollutants are not temporally or geographically uniform throughout an air basin and are constantly fluctuating based on meteorology and other environmental factors. An analysis attempting to take "tons per year" regional mass emissions data and translate that into precise pollutant concentrations, and project-specific health effects, would not be practical or meaningful.

For the same reason, even if a model were developed to accurately ascertain local increases in concentrations of criteria pollutants, it would remain impossible to correlate that increase in concentration to a specific health impact. Such models are designed to determine regional, population-wide health impacts, and are not accurate when applied at the local level. Please refer to Section 7.2 for an evaluation of the project's health risks associate with DPM emissions prepared pursuant to OEHHA guidelines.

7.1.2 Operations

Long-term air pollutant emission impacts are those associated with stationary sources and mobile sources that may occur from project-related capacity enhancements. Because the proposed project or the build alternative would have the same land uses, passenger trips, and rail operations, the proposed project and the build alternative would have similar long-term operational air quality impacts from localized increases in train activity, mobile source emissions associated with vehicular trips in the project study area, and stationary source emissions from on-site energy consumption.

On-Road, Energy, and Area Source Emissions

According to the *Link US Impact Assessment*, there would be 1,428 daily trips associated with the proposed expansion of the passenger concourse. The CalEEMod model (version 2016.3.2) was used to calculate the operational emissions associated with the proposed project and the build alternative.

- Table 7-13 and Table 7-14 identify the 2031 peak daily and annual emissions from operation of the proposed project or the build alternative.
- Table 7-15 and Table 7-16 identify the 2040 peak daily and annual emissions from operation of the proposed project or the build alternative.
- Table 7-13 through Table 7-16 identify the area source (architectural coatings, consumer products, and landscaping), energy source (electricity and natural gas), and mobile source (increased traffic) emissions associated with the new passenger concourse. The proposed retail areas in the new passenger concourse are anticipated to use a small amount of consumer products (cleaning supplies, hair spray, perfume, etc.), would have minimal landscaping, and would require minor amounts of architectural coating after construction. Utilizing these assumptions, the area source emissions associated with the new passenger concourse are negligible. The CalEEMod emission calculations are included in Appendix D.

Table 7-13. Daily Operational Emissions (2031) (Ib/day)								
Source	со	NOx	ROG	SOx	PM 10	PM 2.5		
Area	0.1	0.0	13.4	0.0	0.0	0.0		
Energy	0.3	0.3	0.0	0.0	0.0	0.0		
Mobile	13.1	6.5	1.3	0.1	6.0	1.6		
Total	13.4	6.9	14.7	0.1	6.0	1.7		

Notes:

Columns may not add up because of rounding.

CO=carbon monoxide; lb=pound; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SOx = sulfur oxides

Table 7-14. Annual Operational Emissions (2031) (tons/year)								
Source	со	NOx	ROG	SOx	PM 10	PM 2.5		
Area	0.0	0.0	2.4	0.0	0.0	0.0		
Energy	0.1	0.1	0.0	0.0	0.0	0.0		
Mobile	2.1	1.1	0.2	0.0	1.0	0.3		
Total	2.1	1.2	2.6	0.0	1.0	0.3		

Columns may not add up because of rounding.

CO=carbon monoxide; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SOx = sulfur oxides

Table 7-15. Daily Operational Emissions (2040) (Ib/day)								
Source	со	NOx	ROG	SOx	PM 10	PM2.5		
Area	0.1	0.0	13.4	0.0	0.0	0.0		
Energy	0.3	0.3	0.0	0.0	0.0	0.0		
Mobile	10.3	6.5	0.9	0.1	6.0	1.6		
Total	10.6	6.8	14.4	0.1	6.0	1.6		

Notes:

Columns may not add up because of rounding.

CO=carbon monoxide; Ib=pound; NOx=oxides of nitrogen; PM_{2.5}=particles of 2.5 micrometers and smaller; PM₁₀=particles of 10 micrometers and smaller; ROG=reactive organic gas; SOx=sulfur oxides

Table 7-16. Annual Operational Emissions (2040) (tons/year)								
Source	со	NOx	ROG	SOx	PM 10	PM 2.5		
Area	0.0	0.0	2.4	0.0	0.0	0.0		
Energy	0.0	0.1	0.0	0.0	0.0	0.0		
Mobile	1.6	1.1	0.1	0.0	1.0	0.3		
Total	1.7	1.1	2.6	0.0	1.0	0.3		

Columns may not add up because of rounding.

CO=carbon monoxide; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SOx=sulfur oxides

Local Rail Emissions

Operational Benefits from Project-Related Capacity Enhancements

In parallel with project implementation, the Southern California Regional Rail Authority is currently developing the SCORE Program, a \$10 billion plan that identifies the need for substantial investments in rail infrastructure in the Southern California region to upgrade the Metrolink system and meet the current and future needs of the traveling public. The project is a critical component of the SCORE Program, providing capacity enhancements to fulfill the program objectives.

The proposed project and the build alternative would increase the capacity of LAUS by adding new run-though tracks over US-101. This additional capacity would reduce the duration of time it takes trains to clear track segments in the throat. Additionally, the run-through tracks could reduce train dwell times by eliminating the need for crews to change operating ends before departing the station. With the addition of the run-through tracks, train operators could offer "one seat" through train services along certain routes, potentially attracting additional customers through new service offerings throughout the region.

Along with the run-through tracks, the integration of a loop track connecting the regional/intercity rail run-through tracks to the main line tracks to the north would add additional operational flexibility within LAUS. This additional track would allow southbound trains to loop through LAUS and travel northbound toward Antelope Valley, Ventura County, or the Central Maintenance Facility. Based on the proposed track improvements, train operations would realize not only an increase in capacity within the rail yard, but should also experience improved on-time performance.

Tier 4 Equipment Assumptions - No Project

As discussed above in Section 6.0, Methodology, by 2040, all of the trains operating at LAUS are anticipated to meet Tier 4 emission standards; therefore, a gradual reduction in emissions between the existing condition (2016) and future No Project conditions is assumed in this analysis, and presented accordingly to correspond to the reduction in emissions between 2016 and 2040 resulting from continued implementation of Tier 4 technology.

Localized Air Quality Analysis

Impacts resulting from project-related infrastructure improvements and forecasted increases in train movements at LAUS are evaluated in this air quality analysis equally for the proposed project and the build alternative. The operational scenarios for 2026, 2031, and 2040 as presented in the Appendix A would apply to the proposed project or the build alternative, and are influenced by statewide and regional plans for service increases and other required off-site infrastructure (i.e., SCORE Program). The operational scenarios represent a conservative estimate of the greatest potential impacts based on forecasted increases in regional/intercity rail and HSR train movements that could occur through LAUS and are therefore incorporated into this impact evaluation.

The emissions from train operations were calculated by multiplying the 2016, 2026, 2031, and 2040 emission factors listed in U.S. EPA's *Emission Factors for Locomotives* (U.S. EPA 2009) to the inverse of mileage of the train as derived from the most recent information provided by the Bureau of Transportation Statistics (Bureau of Transportation Statistics 2017). Table 7-17 and Table 7-18 list daily and annual rail emissions generated within the project study area for Years 2016 (Existing Condition), 2026, 2031, and 2040. The data is presented for the "With Project" condition, relative to the "No Project" condition because the operational impact analysis does not vary between the proposed project and the build alternative.

The increase between the two conditions in 2026, 2031, and 2040 is because of the localized project-related capacity enhancements at LAUS and within the project study area. The train emission calculations are included in Appendix D. It should be noted that the increase in emissions listed in Table 7-17 and Table 7-18 for 2026, 2031, and 2040 do not take into consideration the associated regional VMT reductions anticipated from increased ridership. As identified in Table 3.3.4-1 of the 2016 RTP/SCS Program Environmental Impact Report, under the with Plan conditions (which include region wide transit and rail improvements) the regional criteria pollutant emissions are substantially lower than under the existing conditions. VMT reductions are considered cumulative benefits.

Table 7-17. Daily Rail Emissions within the Study Area (Ib/day)							
Year	со	NOx	ROG	SOx	PM 10	PM2.5	
Existing (2016)	113.6	508.3	23.4	0.4	13.2	12.8	
2026 No Project	113.6	273.4	8.1	0.4	5.1	5.0	
Increase from Existing	0.0	-234.9	-15.3	0.0	-8.1	-7.9	
2026 with Project	105.5	253.8	7.5	0.4	4.8	4.6	
Increase from Existing	-8.1	-254.5	-15.9	0.0	-8.5	-8.2	
Increase from No Project	-8.1	-19.6	-0.6	0.0	-0.4	-0.4	
2031 No Project	113.6	196.5	5.0	0.4	3.0	2.9	
Increase from Existing	0.0	-311.8	-18.5	0.0	-10.3	-9.9	
2031 with Project	173.8	300.6	7.6	0.6	4.6	4.4	
Increase from Existing	60.2	-207.7	-15.8	0.2	-8.7	-8.4	
Increase from No Project	60.2	104.1	2.6	0.2	1.6	1.5	
2040 No Project	113.6	98.2	2.3	0.4	1.3	1.2	
Increase from Existing	0.0	-410.0	-21.1	0.0	-12.0	-11.6	
2040 with Project	190.0	164.2	3.8	0.7	2.1	2.1	
Increase from Existing	76.3	-344.0	-19.6	0.3	-11.1	-10.8	
Increase from No Project	76.3	66.0	1.5	0.3	0.9	0.8	

CO=carbon monoxide; lb=pound; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SOx=sulfur oxides

Table 7-18. Annual Rail Emissions within the Study Area (tons/year)							
Year	со	NOx	ROG	SOx	PM 10	PM 2.5	
Existing (2016)	17.0	75.8	3.5	0.1	2.0	1.9	
2026 No Project	17.0	40.8	1.2	0.1	0.8	0.7	
Increase from Existing	0.0	-35.1	-2.3	0.0	-1.2	-1.2	
2026 (with Project)	15.7	37.9	1.1	0.1	0.7	0.7	
Increase from Existing	-1.2	-38.0	-2.4	0.0	-1.3	-1.2	
Increase from No Project	-1.2	-2.9	-0.1	0.0	-0.1	-0.1	
2031 No Project	17.0	29.3	0.7	0.1	0.4	0.4	
Increase from Existing	0.0	-46.5	-2.8	0.0	-1.5	-1.5	
2031 with Project	25.9	44.8	1.1	0.1	0.7	0.7	
Increase from Existing	9.0	-31.0	-2.4	0.0	-1.3	-1.3	
Increase from No Project	9.0	15.5	0.4	0.0	0.2	0.2	
2040 No Project	17.0	14.7	0.3	0.1	0.2	0.2	
Increase from Existing	0.0	-61.2	-3.2	0.0	-1.8	-1.7	
2040 with Project	28.3	24.5	0.6	0.1	0.3	0.3	
Increase from Existing	11.4	-51.3	-2.9	0.0	-1.7	-1.6	
Increase from No Project	11.4	9.8	0.2	0.0	0.1	0.1	

CO=carbon monoxide; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SOx=sulfur oxides

Total Combined Emissions

An indicator of the project's regional operational impact is the net influence on emissions for a future year, relative to the emissions for the same year under the No Project condition. The calculated results of the daily train cruising, train idling, on-road, and operational emissions are presented in Table 7-19, Table 7-20, and Table 7-21 for the 2026, 2031, and 2040 conditions, respectively. In addition, the annual emissions are presented in Table 7-22, Table 7-23, and Table 7-24 for the 2026, 2031, and 2040 conditions, respectively. As shown in Table 7-19 and Table 7-22, the daily and annual rail emissions decrease with the proposed project. This reduction is due to the small increase in rail operations being offset by the reduced dwell and travel times.

Link Union Station Draft Air Quality/Climate Change and Health Risk Assessment

As identified in Table 7-20 and Table 7-21, the net increase in daily emissions would exceed the SCAQMD threshold for NOx. Impacts would be significant. Mitigation Measure AQ-3 (described in Section 8.0) would reduce the rail exhaust emissions (CO, NOx, ROG, PM10, and PM2.5).

Table 7-19. Daily Operational Emissions (2026)									
	Pollutant Emissions (lb/day)								
Source	СО	NOx	ROG	SOx	PM 10	PM _{2.5}			
Rail Emissions No Project	113.6	273.4	8.1	0.4	5.1	5.0			
Rail Emissions with Project	105.5	253.8	7.5	0.4	4.8	4.6			
Total Project Emissions	105.5	253.8	7.5	0.4	4.8	4.6			
Net Increase	-8.1	-19.6	-0.6	0.0	-0.4	-0.4			
SCAQMD Threshold	550	55	55	150	150	55			
Exceedance	No	No	No	No	No	No			

Notes:

The new passenger concourse would not be constructed by 2026; therefore, no operational emissions generated by on-site uses and vehicle trips are included.

CO=carbon monoxide; Ib=pound; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SCAQMD=South Coast Air Quality Management District; SOx=sulfur oxides

Table 7-20. Daily Operational Emissions (2031)									
	Pollutant Emissions (lb/day)								
Source	со	NOx	ROG	SOx	PM 10	PM 2.5			
Rail Emissions No Project	113.6	196.5	5.0	0.4	3.0	2.9			
Rail Emissions with Project	173.8	300.6	7.6	0.6	4.6	4.4			
Operational Emissions with Project	13.4	6.9	14.7	0.1	6.0	1.7			
Total Project Emissions	187.2	307.5	22.3	0.7	10.6	6.1			
Net Increase	73.6	111.0	17.3	0.3	7.6	3.2			
SCAQMD Threshold	550	55	55	150	150	55			
Exceedance	No	Yes	No	No	No	No			

Notes:

CO=carbon monoxide; lb=pound; NOx=oxides of nitrogen; PM2.5= particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SCAQMD=South Coast Air Quality Management District; SOx=sulfur oxides

Table 7-21. Daily Operational Emissi	Table 7-21. Daily Operational Emissions (2040)							
		Pollutant Emissions (lb/day)						
Source	со	NOx	ROG	SOx	PM 10	PM2.5		
Rail Emissions No Project	113.6	98.2	2.3	0.4	1.3	1.2		
Rail Emissions with Project	190.0	164.2	3.8	0.7	2.1	2.1		
Operational Emissions with Project	10.6	6.8	14.4	0.1	6.0	1.6		
Total Project Emissions	200.6	171.0	18.2	0.8	8.1	3.7		
Net Increase	86.9	72.8	15.9	0.4	6.9	2.4		
SCAQMD Threshold	550	55	55	150	150	55		
Exceedance	No	Yes	No	No	No	No		

CO=carbon monoxide; lb=pound; NOx=oxides of nitrogen; PM2.s=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SCAQMD=South Coast Air Quality Management District; SOx=sulfur oxides

Table 7-22. Annual Operational Emiss	sions (202	26)				
	li internet interne		Pollutant Er	missions (to	ns)	
Source	СО	NOx	ROG	SOx	PM 10	PM _{2.5}
Rail Emissions – No Project	17.0	40.8	1.2	0.1	0.8	0.7
Rail Emissions with Project	15.7	37.9	1.1	0.1	0.7	0.7
Total Project Emissions	15.7	37.9	1.1	0.1	0.7	0.7
Net Increase	-1.2	-2.9	-0.1	0.0	-0.1	-0.1

Notes:

The new passenger concourse would not be constructed by 2026; therefore, no operational emissions generated by on-site uses and vehicle trips are included.

CO=carbon monoxide; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SOx=sulfur oxides

Table 7-23. Annual Operational Emi	ssions (203	1)						
		Pollutant Emissions (tons)						
Source	со	NOx	ROG	SOx	PM 10	PM 2.5		
Rail Emissions – No Project	17.0	29.3	0.7	0.1	0.4	0.4		
Rail Emissions with Project	25.9	44.8	1.1	0.1	0.7	0.7		
Operational Emissions with Project	2.1	1.2	2.6	0.0	1.0	0.3		
Total Project Emissions	28.0	46.0	3.7	0.1	1.7	1.0		
Net Increase	11.1	16.7	3.0	0.0	1.2	0.5		

CO=carbon monoxide; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SOx=sulfur oxides

Table 7-24. Annual Operational Emissions (2040)						
			Pollutant E	missions (to	ns)	
Source	СО	NOx	ROG	SOx	PM 10	PM 2.5
Rail Emissions – No Project	17.0	14.7	0.3	0.1	0.2	0.2
Rail Emissions with Project	28.3	24.5	0.6	0.1	0.3	0.3
Operational Emissions with Project	1.7	1.1	2.6	0.0	1.0	0.3
Total Project Emissions	30.0	25.6	3.2	0.1	1.3	0.6
Net Increase	13.1	10.9	2.8	0.0	1.1	0.4

Notes:

CO=carbon monoxide; NOx =oxides of nitrogen; PM25=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SOx=sulfur oxides

LST Analysis

Table 7-25, Table 7-26, and Table 7-27 identify the operational emissions of CO, NOx, PM₁₀, and PM_{2.5} compared with the LSTs for the Central Los Angeles area at a distance of 25 m for the 2026, 2031 and 2040 conditions, respectively. As required by the SCAQMD's LST Methodology (SCAQMD 2008), only the on-site emissions are included in Table 7-25, Table 7-26, and Table 7-27. Table 7-25, Table 7-26, and Table 7-27 include all of the net increase in rail operation emissions generated within the project study area, all of the area source and energy source emissions, and 5 percent of the on-road emissions.

As shown in Table 7-25, Table 7-26, and Table 7-27, the calculated emissions rates for proposed on-site operational activities would not exceed the LSTs.

Table 7-25. Summary of On-Site Operational Emissions, Localized Significance (2026)							
	Emission Rates (lbs/day)						
Source	СО	NOx	PM 10	PM 2.5			
Rail Operations	-8.1	-19.6	-0.4	-0.4			
SCAQMD Thresholds	1,861	161	4	2			
Exceeds Daily SCAQMD Threshold?	No	No	No	No			

The new passenger concourse would not be constructed by 2026; therefore, no operational emissions generated by on-site uses and vehicle trips are included.

CO=carbon monoxide; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; SCAQMD=South Coast Air Quality Management District

		Emission Rates (lbs/day)							
Source	со	NOx	PM 10	PM 2.5					
Rail Operations	60.2	104.1	1.6	1.5					
Area, Energy, and On-Road	1.1	0.6	0.3	0.1					
Total	61.2	104.7	1.9	1.6					
SCAQMD Thresholds	1,861	161	4	2					
Exceeds Daily SCAQMD Threshold?	No	No	No	No					

Notes:

CO=carbon monoxide; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; SCAQMD=South Coast Air Quality Management District

Table 7-27. Summary of On-Site Operational Emissions, Localized Significance (2040)								
		Emission Rates (lbs/day)						
Source	со	CO NOx PM10 PM						
Rail Operations	76.3	66.0	0.9	0.8				
Area, Energy, and On-Road	0.9	0.6	0.3	0.1				
Total	77.2	66.6	1.2	0.9				
SCAQMD Thresholds	1,861	161	4	2				
Exceeds Daily SCAQMD Threshold?	No	No	No	No				

CO=carbon monoxide; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; SCAQMD=South Coast Air Quality Management District

Operational Emissions after Mitigation

Based on the results of the operational air quality analysis, impacts would be significant upon implementation of the proposed project or the build alternative. Mitigation Measure AQ-3, (described in Section 8.0), would require implementation of emerging technologies to reduce the CO, NOx, ROG, PM10, and PM2.5 exhaust emissions by 10, 10, 5, 30, and 30 percent, respectively. Mitigation Measure AQ-3 also requires an adaptive air quality mitigation plan to be implemented, in conjunction with replacement of the rail fleet with zero- or low-emission locomotives consistent with *2018 California State Rail Plan*, to achieve a reduction of pollutant concentrations below a level that would not exceed SCAQMD's 10 in 1 million cancer risk threshold at any of the residential uses in the project study area. Requiring the use of emerging technologies to reduce pollutant concentrations below a level that would not exceed SCAQMD health risk thresholds would further reduce the 2031 emissions by 30 percent and the 2040 emissions by 37 percent.

The mitigated results of the daily operational emissions are presented in Table 7-28, Table 7-29, and Table 7-30 for the 2026, 2031, and 2040 conditions, respectively. In addition, the mitigated annual emissions are presented in Table 7-31, Table 7-32, and Table 7-33 for the 2026, 2031, and 2040 conditions, respectively. As identified in Table 7-28, Table 7-29, and Table 7-30, the net increase in daily emissions would be reduced to below the SCAQMD thresholds after mitigation.

Table 7-28. Daily Operational Err	nissions (2026)	Pollutant Emissions (lb/day)						
Source	со	NOx	ROG	SOx	PM 10	PM2.5		
Rail Emissions No Project	113.6	273.4	8.1	0.4	5.1	5.0		
Rail Emissions with Project	94.9	228.4	7.2	0.4	3.3	3.2		
Total Project Emissions	94.9	228.4	7.2	0.4	3.3	3.2		
Net Increase	-18.7	-45.0	-0.9	0.0	-1.8	-1.8		
SCAQMD Threshold	550	55	55	150	150	55		
Exceedance	No	No	No	No	No	No		

The new passenger concourse would not be constructed by 2026; therefore, no operational emissions generated by on-site uses and vehicle trips are included.

CO=carbon monoxide; Ib=pound; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SCAQMD=South Coast Air Quality Management District; SOx=sulfur oxides

		Pollutant Emissions (lb/day)					
Source	СО	NOx	ROG	SOx	PM 10	PM 2.5	
Rail Emissions No Project	113.6	196.5	5.0	0.4	3.0	2.9	
Rail Emissions with Project	123.8	214.0	5.7	0.5	2.5	2.5	
Operational Emissions with Project	13.4	6.9	14.7	0.1	6.0	1.7	
Total Project Emissions	137.2	220.9	20.4	0.6	8.5	4.2	
Net Increase	23.6	24.4	15.4	0.2	5.5	1.3	
SCAQMD Threshold	550	55	55	150	150	55	
Exceedance	No	No	No	No	No	No	

Notes:

CO=carbon monoxide; lb=pound; NOx=oxides of nitrogen; PM2.5= particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SCAQMD=South Coast Air Quality Management District; SOx=sulfur oxides

Table 7-30. Daily Operational Emissions (2040) - Mitigated								
		Pollutant Emissions (lb/day)						
Source	со	NOx	ROG	SOx	PM 10	PM 2.5		
Rail Emissions No Project	113.6	98.2	2.3	0.4	1.3	1.2		
Rail Emissions with Project	126.9	109.7	2.7	0.5	1.1	1.1		
Operational Emissions with Project	10.6	6.8	14.4	0.1	6.0	1.6		
Total Project Emissions	137.5	116.5	17.1	0.6	7.1	2.7		
Net Increase	23.9	18.3	14.8	0.2	5.8	1.5		
SCAQMD Threshold	550	55	55	150	150	55		
Exceedance	No	No	No	No	No	No		

CO=carbon monoxide; Ib=pound; NOx=oxides of nitrogen; PM2.s=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SCAQMD=South Coast Air Quality Management District; SOx=sulfur oxides

Table 7-31. Annual Operational Emissions (2026) - Mitigated						
			Pollutant E	missions (to	ns)	
Source	СО	NOx	ROG	SOx	PM 10	PM2.5
Rail Emissions – No Project	17.0	40.8	1.2	0.1	0.8	0.7
Rail Emissions with Project	14.2	34.1	1.1	0.1	0.5	0.5
Total Project Emissions	14.2	34.1	1.1	0.1	0.5	0.5
Net Increase	-2.8	-6.7	-0.1	0.0	-0.3	-0.2

Notes:

The new passenger concourse would not be constructed by 2026; therefore, no operational emissions generated by on-site uses and vehicle trips are included.

CO=carbon monoxide; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SOx=sulfur oxides

		Pollutant Emissions (tons)					
Source	со	NOx	ROG	SOx	PM 10	PM 2.5	
Rail Emissions – No Project	17.0	29.3	0.7	0.1	0.4	0.4	
Rail Emissions with Project	18.5	31.9	0.9	0.1	0.4	0.4	
Operational Emissions with Project	2.1	1.2	2.6	0.0	1.0	0.3	
Total Project Emissions	20.6	33.1	3.5	0.1	1.4	0.7	
Net Increase	3.6	3.8	2.8	0.0	1.0	0.3	

CO=carbon monoxide; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SOx=sulfur oxides

Table 7-33. Annual Operational Emissions (2040) - Mitigated							
		Pollutant Emissions (tons)					
Source	СО	NOx	ROG	SOx	PM 10	PM2.5	
Rail Emissions – No Project	17.0	14.7	0.3	0.1	0.2	0.2	
Rail Emissions with Project	18.9	16.4	0.4	0.1	0.2	0.2	
Operational Emissions with Project	1.7	1.1	2.6	0.0	1.0	0.3	
Total Project Emissions	20.6	17.5	3.0	0.1	1.2	0.5	
Net Increase	3.6	2.8	2.7	0.0	1.0	0.3	

Notes:

CO=carbon monoxide; NOx =oxides of nitrogen; PM25=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; ROG=reactive organic gas; SOx=sulfur oxides

Table 7-34, Table 7-35, and Table 7-36 identify the mitigated operational emissions of CO, NO_x, PM₁₀, and PM_{2.5} compared with the LSTs for the Central Los Angeles area at a distance of 25 m for the 2026, 2031 and 2040 conditions, respectively.

As shown in Table 7-34, Table 7-35, and Table 7-36, the calculated emissions rates for proposed on-site operational activities would not exceed the LSTs after implementation of proposed mitigation.

Table 7-34. Summary of On-Site Operational Emissions, Localized Significance (2026) - Mitigated					
	Emission Rates (lbs/day)				
Source	СО	NOx	PM 10	PM 2.5	
Rail Operations	-18.7	-45.0	-1.8	-1.8	
SCAQMD Thresholds	1,861	161	4	2	
Exceeds Daily SCAQMD Threshold?	No	No	No	No	

CO=carbon monoxide; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; SCAQMD=South Coast Air Quality Management District

Table 7-35. Summary of On-Site Operational Emissions, Localized Significance (2031) - Mitigated					
	Emission Rates (lbs/day)				
Source	со	NOx	PM 10	PM 2.5	
Rail Operations	-2.8	-6.7	-0.3	-0.2	
Area, Energy, and On-Road	1.1	0.6	0.3	0.1	
Total	-1.7	-6.1	0.0	-0.1	
SCAQMD Thresholds	1,861	161	4	2	
Exceeds Daily SCAQMD Threshold?	No	No	No	No	

Notes:

CO=carbon monoxide; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; SCAQMD=South Coast Air Quality Management District

Table 7-36. Summary of On-Site Operational Emissions, Localized Significance (2040) - Mitigated				
	Emission Rates (lbs/day)			
Source	со	NOx	PM 10	PM 2.5
Rail Operations	13.3	11.5	-0.2	-0.1
Area, Energy, and On-Road	0.9	0.6	0.3	0.1
Total	14.2	12.1	0.1	0.0
SCAQMD Thresholds	1,861	161	4	2
Exceeds Daily SCAQMD Threshold?	No	No	No	No

CO=carbon monoxide; NOx=oxides of nitrogen; PM2.5=particles of 2.5 micrometers and smaller; PM10=particles of 10 micrometers and smaller; SCAQMD=South Coast Air Quality Management District

Carbon Monoxide Screening Analysis

The methodology required for a CO local analysis is summarized in the Transportation Project-Level Carbon Monoxide Protocol (California Department of Transportation 1997), Section 3 (Determination of Project Requirements), and Section 4 (Local Analysis).

Section 4 contains Figure 3 (Local CO Analysis [included in Appendix F of this report]). This flowchart is used to determine the type of CO analysis required for the proposed project or the build alternative. Below is a step-by-step explanation of the flowchart. Each level cited is followed by a response, which in turn, determines the next applicable level of the flowchart for the build alternatives. The flowchart begins at Level 1:

• Level 1. Is the Project in a CO non-attainment area? Response: No.

The project site is located in an area that has demonstrated attainment with the federal CO standards and is in attainment for the state standards.

- Level 1 (cont.). Was the area redesignated as "attainment" after the 1990 Clean Air Act? Response: Yes.
- Level 1 (cont.). Has "continued attainment" been verified with the local Air District, if appropriate? Response: Yes.

The SCAB was designated as attainment/maintenance by the U.S. EPA on June 11, 2007. (Proceed to Level 7.)

• Level 7. Does the Project worsen air quality? Response: No.

As the project does not meet any of the following criteria that would worsen air quality:

a. The project significantly increases the percentage of vehicles operating in cold start mode. Increasing the number of vehicles operating in cold start mode by as little as 2 percent should be considered potentially significant.

No additional parking is contemplated as part of this project. The trips associated with Metrolink and Amtrak are considered transit-oriented in nature and are not expected to result in additional vehicular trips because they would be arriving/departing LAUS as pedestrians. The additional vehicle trips associated with this retail space will be limited to vendors, deliveries, and employees required to serve the transit riders at this retail space. Therefore, the percentage of vehicles operating in cold start mode is the same or lower for the intersection under study compared with those used for the intersection in the attainment plan. It is assumed that all vehicles are in a fully warmed-up mode. Therefore, this criterion is not met.

b. The project significantly increases traffic volumes. Increases in traffic volumes in excess of 5 percent should be considered potentially significant. Increasing the traffic volume by less than 5 percent may still be potentially significant if there is also a reduction in average speeds.

Based on the *Link US Traffic Impact Assessment* (Appendix E of this EIR), the project's contribution to the local intersection volumes is less than 5 percent of the total. Figures 7-2, 7-3, 7-30, and 7-31 from the *Link US Traffic Impact Assessment* (included in Appendix F of this report) show the 2031 and 2040 with and without project AM and PM peak hour traffic volumes in the project study area.

c. The project worsens traffic flow. For uninterrupted roadway segments, a reduction in average speeds (within a range of 3 to 50 mph) should be regarded as worsening traffic flow. For intersection segments, a reduction in average speed or an increase in average delay should be considered as worsening traffic flow.

As identified in Table 12-1 of the *Link US Traffic Impact Assessment* (included in Appendix F of this report), there are two intersections where the project would result in significant changes in delay (Intersection #2 Garey Street and Commercial Street and Intersection #4 Center Street and Commercial Street). With implementation of Mitigation Measure TR-2, the LOS at Intersection #4 would operate at acceptable LOS B (AM and PM Peak Hours) under the 2031 and 2040 with project conditions. Implementation of Mitigation Measure TR-2 would improve operations at Intersection #4 to better than pre project conditions, and would minimize the operational traffic delay at Intersection #4; thereby reducing the operational traffic impact at Intersection #4 to a level less than significant. No additional feasible mitigation measures would minimize the operational traffic delay at Intersection #2 under the 2031 and 2040 with project conditions. The project-related increased delays would continue to exceed LADOT guidelines for Intersection #2. Therefore, this criterion is not met.

The proposed project or the build alternative are not expected to result in any concentrations exceeding the 1-hour or 8-hour CO standards. Therefore, a detailed CALINE4 CO hot-spot analysis is not required. Impacts are considered less than significant.

7.2 Health Risk Analysis

7.2.1 Construction

Project construction would result in emissions of DPM from heavy-duty construction equipment and trucks operating in the project study area (e.g., water trucks and haul trucks). DPM is characterized as a TAC by ARB. The OEHHA has identified carcinogenic and chronic noncarcinogenic effects from long-term (chronic) exposure, but it has not identified health effects because of short-term (acute) exposure to DPM.

Cancer risk is defined as the increase in lifetime probability (chance) of an individual developing cancer because of exposure to a carcinogenic compound, typically expressed as the increased probability in 1 million. The cancer risk from inhalation of a TAC is estimated by calculating the inhalation dose in units of milligrams/kilogram body weight per day based on an ambient concentration in $\mu g/m^3$, breathing rate, and exposure period, and multiplying the dose by the inhalation cancer potency factor, expressed as (milligrams/kilogram body weight per day). Typically, cancer risks for residential receptors and similar sensitive receptors are estimated based on a lifetime (30 years) of continuous exposure; however, for the purposes of this analysis, a 6-year exposure scenario, corresponding to the approximate construction period for the proposed project or the build alternative was evaluated. To be conservative, this exposure scenario was applied to the proposed project and the build alternative. In addition, 100 percent of the PM₁₀ exhaust from diesel equipment is assumed to be DPM.

The DPM (PM10) emissions for all emission sources, during the construction period were compiled and added together to represent worst-case emission source for DPM. Because of the long-term nature of health risks, the modeling used the average day emissions instead of the peak day emissions. The equipment and vehicles included in this total are:

Proposed Project with Above-Grade Passenger Concourse with New Expanded Passageway

- Off-road vehicles and equipment: 5.78 lbs/day PM10
- Haul Trucks (Assume last mile on site): 0.10 lbs/day PM10
 - o Total DPM (PM10): 5.88 lbs/day PM10

Build Alternative with At-Grade Passenger Concourse

- Off-road vehicles and equipment: 8.85 lbs/day PM10
- Haul Trucks (Assume last mile on -site): 0.13 lbs/day PM10
 - o Total DPM (PM10): 8.98 lbs/day PM10

The DPM emissions from diesel-powered construction equipment and on-site diesel-powered trucks that would be used during construction are provided in Appendix C (Construction Emission Calculations). Total emissions of construction-related exhaust PM10, as a surrogate for DPM, during the overall construction period were calculated and then converted to grams per second for use in the AERMOD model. Table 7-37 and Table 7-38 identify the modeled annual average DPM concentration, and the associated cancer risks, at the closest land uses to the proposed project and the build alternative. The complete results are included in Appendix E. As shown, the peak cancer risks during construction would exceed the SCAQMD's threshold of 10 in 1 million. This impact is considered significant.

Passenger Concourse with New Expanded Passageway (per million)						
Receptor	Land Use Type	Modeled Annual Concentrations (μg/m³)	Cancer Risks			
William Mead Homes	Residential	0.045	16.5			
William Mead Homes	Residential	0.040	14.8			
Mozaic Apartments	Residential	0.231	85.0			
Mission Road Residences	Residential	0.016	5.9			
Mission Road Residences	Residential	0.013	4.9			
One Santa Fe Apartments	Residential	0.002	0.7			
Utah Street Elementary School	School	0.009	0.1			
Mendez High School	School	0.010	0.2			
Ann Street Elementary School	School	0.061	0.9			
Twin Towers Correctional Facility	Commercial Worker	0.161	1.8			
Los Angeles Men's Central Jail	Commercial Worker	0.102	1.1			
Metro Offices	Commercial Worker	0.491	5.4			
Terminal Annex	Commercial Worker	0.171	1.9			

Table 7-37. Modeled Cancer Risks During Construction – Proposed Project with Above-Grade Passenger Concourse with New Expanded Passageway (per million)

Source: ZM Associates Environmental Corporation 2018

Notes:

µg/m³= micrograms per cubic meter; Metro=Los Angeles County Metropolitan Transportation Authority

Та	able 7-38. Modeled Cancer Risks During Construction – Build Alternative with At-Grade Passenger
С	oncourse (per million)

		Modeled Annual	
Receptor	Land Use Type	Concentrations (µg/m ³)	Cancer Risks
William Mead Homes	Residential	0.068	25.2
William Mead Homes	Residential	0.061	22.6
Mozaic Apartments	Residential	0.353	129.8
Mission Road Residences	Residential	0.024	9.0
Mission Road Residences	Residential	0.020	7.4
One Santa Fe Apartments	Residential	0.003	1.0
Utah Street Elementary School	School	0.014	0.2
Mendez High School	School	0.016	0.2
Ann Street Elementary School	School	0.093	1.4
Twin Towers Correctional Facility	Commercial Worker	0.247	2.7
Los Angeles Men's Central Jail	Commercial Worker	0.156	1.7
Metro Offices	Commercial Worker	0.750	8.2
Terminal Annex	Commercial Worker	0.260	2.8

Notes:

µg/m³= micrograms per cubic meter; Metro=Los Angeles County Metropolitan Transportation Authority

After implementing Mitigation Measure AQ-2 (described in Section 8.0), requiring all off-road equipment to meet or exceed U.S. EPA's Tier 4 Final emission standards and fueled using 100 percent renewable diesel, the DPM emissions associated with the equipment and vehicles are:

Proposed Project with Above-Grade Passenger Concourse with New Expanded Passageway

- Off-road vehicles and equipment: 0.48 lbs/day PM10
- Haul Trucks (Assume last mile on-site): 0.10 lbs/day PM10
- Total DPM (PM10): 0.58 lbs/day PM10

Build Alternative with At-Grade Passenger Concourse

- Off-road vehicles and equipment: .81 lbs/day PM10
- Haul Trucks (Assume last mile on-site): 0.13 lbs/day PM10

• Total DPM (PM10): 0.94 lbs/day PM10

Table 7-39 and Table 7-40 identify the modeled annual average DPM concentration, and the associated cancer risks, at the closest land uses to the project footprint for the proposed project and the build alternative. The complete results are included in Appendix E. As shown, the peak cancer risks would continue to exceed the SCAQMD's threshold of 10 in 1 million at the Mozaic Apartments under the build alternative. This impact is considered significant.

New Expanded Passageway - Mitigated (per million)						
Receptor	Land Use Type	Modeled Annual Concentrations (µg/m³)	Cancer Risks			
William Mead Homes	Residential	0.004	1.6			
William Mead Homes	Residential	0.004	1.5			
Mozaic Apartments	Residential	0.023	8.4			
Mission Road Residences	Residential	0.002	0.6			
Mission Road Residences	Residential	0.001	0.5			
One Santa Fe Apartments	Residential	0.000	0.1			
Utah Street Elementary School	School	0.001	0.0			
Mendez High School	School	0.001	0.0			
Ann Street Elementary School	School	0.006	0.1			
Twin Towers Correctional Facility	Commercial Worker	0.016	0.2			
Los Angeles Men's Central Jail	Commercial Worker	0.010	0.1			
Metro Offices	Commercial Worker	0.048	0.5			
Terminal Annex	Commercial Worker	0.017	0.2			

Table 7-39. Modeled Cancer Risks – Proposed Project with Above-Grade Passenger Concourse with New Expanded Passageway - Mitigated (per million)

Source: ZM Associates Environmental Corporation 2018

Notes:

µg/m³= micrograms per cubic meter; Metro=Los Angeles County Metropolitan Transportation Authority

Table 7-40. Modeled Cancer Risks – Build Alternative with At-Grade Passenger Concourse - Mitigated (per million)

Receptor	Land Use Type	Modeled Annual Concentrations (µg/m³)	Cancer Risks
William Mead Homes	Residential	0.007	2.6
William Mead Homes	Residential	0.006	2.4
Mozaic Apartments	Residential	0.037	13.6
Mission Road Residences	Residential	0.003	0.9
Mission Road Residences	Residential	0.002	0.8
One Santa Fe Apartments	Residential	0.000	0.1
Utah Street Elementary School	School	0.001	0.0
Mendez High School	School	0.002	0.0
Ann Street Elementary School	School	0.010	0.2
Twin Towers Correctional Facility	Commercial Worker	0.026	0.3
Los Angeles Men's Central Jail	Commercial Worker	0.016	0.2
Metro Offices	Commercial Worker	0.079	0.9
Terminal Annex	Commercial Worker	0.027	0.3

Source: ZM Associates Environmental Corporation 2018

Notes:

μg/m³= micrograms per cubic meter; Metro=Los Angeles County Metropolitan Transportation Authority

Table 7-41 identifies the chronic hazard index for the maximally exposed individual under the unmitigated and mitigated conditions. A chronic hazard index is calculated by dividing the annual average concentration of a toxic pollutant by the chronic REL for that pollutant. For DPM the chronic REL is 5.0. As shown, the chronic hazard index at this location is lower than the SCAQMD significance threshold of less than 1.0.

Table 7-41. Chronic Hazard Index					
	Chronic Ha	zard Index			
Receptor	Unmitigated	Mitigated			
Maximally Exposed Individual – Proposed Project	0.046	0.005			
Maximally Exposed Individual – Build Alternative	0.071	0.007			

Source: ZM Associates Environmental Corporation 2018

Link Union Station Draft Air Quality/Climate Change and Health Risk Assessment

In summary, after implementation of mitigation, the anticipated cancer risk associated with construction of the proposed project would be below the SCAQMD's 10 in a million threshold, and impacts would be reduced to a level less than significant. However, at the Mozaic Apartments under the build alternative the risk would remain above the threshold at 13.6 in 1 million, and impacts would remain significant and unavoidable. As such, the exposure of project-related TAC emission impacts on sensitive receptors during construction would be considered a significant impact.

7.2.2 Operations

Implementation of the proposed project or the build alternative would alter the flow of train movements within the project study area. In addition, the proposed project and the build alternative would facilitate an increase in rail operations through LAUS. The number of train movements through LAUS would increase through 2040. Because of the flexibility provided by the new run-through tracks, the future daily operations on a track by track basis are unknown. Therefore, for the purpose of the DPM risk analysis, the project study area was modeled as point sources for idling within the station and as line sources for the rail operations within the project study area. Table 7-42 identifies the PM10 emissions, in pounds per day, generated for the existing, 2026, 2031, and 2040 conditions. As the number of trains operating at LAUS is the same for both alternatives, the data in Table 7-42 is representative of both the proposed project and the build alternative.

Table 7-42. Summary of Operational Particles of 10 micrometers and Smaller Emissions by Source (Ib/day)							y Source
Source	Existing	2026 No Project	2026 with Project	2031 No Project	2031 with Project	2040 No Project	2040 with Project
Train Idling	6.43	2.49	1.94	1.45	1.39	0.62	0.65
Train Operations	6.81	2.64	2.82	1.54	3.18	0.66	1.49

Notes: lb=pound

Table 7-43 through Table 7-49 list the peak cancer risks at 13 locations within the project study area for the Existing, 2026 No Project, 2026 with Project, 2031 No Project, 2031 with Project, 2040 No Project, and 2040 with Project condition, respectively.

The cancer risks at the residential land uses were calculated using a 30-year exposure while the school and office uses were calculated using 9 and 25-year exposures, respectively. As shown, when compared with conditions without the project, the project-related increase in cancer risk would exceed the SCAQMD's threshold of 10 in 1 million. However, when compared to the existing (2016) conditions, the cancer risks would be substantially lower at all of the receptor locations.

Table 7-43. Summary of the Existing Cancer Risks at Specific Receptors (per million)						
Receptor	Land Use Type	Modeled Annual Concentrations (µg/m³)	Cancer Risks			
William Mead Homes	Residential	1.537	910.3			
William Mead Homes	Residential	1.174	695.5			
Mozaic Apartments	Residential	1.446	856.5			
Mission Road Residences	Residential	0.360	213.3			
Mission Road Residences	Residential	0.339	200.5			
One Santa Fe Apartments	Residential	0.151	89.7			
Utah Street Elementary School	School	0.322	7.2			
Mendez High School	School	0.326	7.3			
Ann Street Elementary School	School	1.481	33.3			
Twin Towers Correctional Facility	Commercial Worker	0.838	38.1			
Los Angeles Men's Central Jail	Commercial Worker	0.946	42.9			
Metro Offices	Commercial Worker	1.119	50.8			
Terminal Annex	Commercial Worker	1.059	48.1			

Notes:

 $\mu g/m^3 = micrograms \ per \ cubic \ meter; \ Metro=Los \ Angeles \ County \ Metropolitan \ Transportation \ Authority$

Table 7-44. Summary of 2026 No Project Cancer Risks at Specific Receptors (per million)								
Receptor	Land Use Type	Modeled Annual Concentrations (µg/m3)	Cancer Risks	Increase from Existing Conditions				
William Mead Homes	Residential	0.596	352.9	-557.4				
William Mead Homes	Residential	0.455	269.6	-425.8				
Mozaic Apartments	Residential	0.561	332.3	-524.1				
Mission Road Residences	Residential	0.140	82.7	-130.6				
Mission Road Residences	Residential	0.131	77.8	-122.8				
One Santa Fe Apartments	Residential	0.059	34.8	-54.9				
Utah Street Elementary School	School	0.125	2.8	-4.4				
Mendez High School	School	0.126	2.8	-4.5				
Ann Street Elementary School	School	0.574	12.9	-20.4				
Twin Tower Correctional Facility	Commercial Worker	0.325	14.8	-23.3				
Los Angeles Men's Central Jail	Commercial Worker	0.367	16.6	-26.3				
Metro Offices	Commercial Worker	0.434	19.7	-31.1				
Terminal Annex	Commercial Worker	0.411	18.6	-29.4				

Notes:

 $\mu g/m^3 = micrograms \ per \ cubic \ meter; \ Metro=Los \ Angeles \ County \ Metropolitan \ Transportation \ Authority$

Table 7-45. Summary of 2026 with Project Cancer Risks at Specific Receptors (per million)								
Receptor	Land Use Type	Modeled Annual Concentrations (µg/m³)	Cancer Risks	Increase from Existing Conditions	Increase from No Project Conditions			
William Mead Homes	Residential	0.507	300.3	-610.1	-52.7			
William Mead Homes	Residential	0.384	227.2	-468.3	-42.4			
Mzsaic Apartments	Residential	0.406	240.6	-615.8	-91.7			
Mission Road Residences	Residential	0.204	120.7	-92.6	37.9			
Mission Road Residences	Residential	0.186	110.2	-90.3	32.4			
One Santa Fe Apartments	Residential	0.058	34.1	-55.6	-0.7			
Utah Street Elementary School	School	0.148	3.3	-3.9	0.5			
Mendez High School	School	0.163	3.7	-3.7	0.8			
Ann Street Elementary School	School	0.532	12.0	-21.4	-1.0			
Twin Towers Correctional Facility	Commercial Worker	0.252	11.4	-26.6	-3.3			
Los Angeles Men's Central Jail	Commercial Worker	0.271	12.3	-30.6	-4.3			
Metro Offices	Commercial Worker	0.349	15.8	-35.0	-3.9			
Terminal Annex	Commercial Worker	0.290	13.2	-34.9	-5.5			

Notes:

µg/m³=micrograms per cubic meter; Metro=Los Angeles County Metropolitan Transportation Authority

Table 7-46. Summary of 2031 No Project Cancer Risks at Specific Receptors (per million)							
Receptor	Land Use Type	Modeled Annual Concentrations (μg/m³)	Cancer Risks	Increase from Existing Conditions			
William Mead Homes	Residential	0.348	205.8	-704.5			
William Mead Homes	Residential	0.265	157.2	-538.2			
Mozaic Apartments	Residential	0.327	193.4	-663.1			
Mission Road Residences	Residential	0.081	48.2	-165.1			
Mission Road Residences	Residential	0.077	45.3	-155.2			
One Santa Fe Apartments	Residential	0.034	20.3	-69.4			
Utah Street Elementary School	School	0.073	1.6	-5.6			
Mendez High School	School	0.074	1.7	-5.7			
Ann Street Elementary School	School	0.335	7.5	-25.8			
Twin Towers Correctional Facility	Commercial Worker	0.189	8.6	-29.5			
Los Angeles Men's Central Jail	Commercial Worker	0.214	9.7	-33.2			
Metro Offices	Commercial Worker	0.253	11.5	-39.3			
Terminal Annex	Commercial Worker	0.239	10.9	-37.2			

Notes:

µg/m³=micrograms per cubic meter; Metro=Los Angeles County Metropolitan Transportation Authority

Table 7-47. Summary of 2031 with Project Cancer Risks at Specific Receptors (per million)								
Receptor	Land Use Type	Modeled Annual Concentrations (µg/m³)	Cancer Risks	Increase from Existing Conditions	Increase from No Project Conditions			
William Mead Homes	Residential	0.563	333.6	-576.7	127.8			
William Mead Homes	Residential	0.425	251.6	-418.8	94.3			
Mozaic Apartments	Residential	0.330	195.6	-1.3	2.2			
Mission Road Residences	Residential	0.220	130.1	-17.8	81.8			
Mission Road Residences	Residential	0.201	119.3	-25.3	74.0			
One Santa Fe Apartments	Residential	0.061	35.9	-30.8	15.6			
Utah Street Elementary School	School	0.161	3.6	-22.7	2.0			
Mendez High School	School	0.177	4.0	-371.4	2.3			
Ann Street Elementary School	School	0.591	13.3	-13.8	5.8			
Twin Towers Correctional Facility	Commercial Worker	0.237	10.8	-24.2	2.2			
Los Angeles Men's Central Jail	Commercial Worker	0.279	12.7	-5.9	3.0			
Metro Offices	Commercial Worker	0.329	15.0	-10.7	3.5			
Terminal Annex	Commercial Worker	0.245	11.1	-1.0	0.3			

Notes:

µg/m³=micrograms per cubic meter; Metro=Los Angeles County Metropolitan Transportation Authority

Table 7-48. Summary of 2040 No Project Cancer Risks at Specific Receptors (per million)								
Receptor	Land Use Type	Modeled Annual Concentrations (µg/m³)	Cancer Risks	Increase from Existing Conditions				
William Mead Homes	Residential	0.149	88.2	-822.1				
William Mead Homes	Residential	0.114	67.4	-628.1				
Mozaic Apartments	Residential	0.140	82.9	-773.6				
Mission Road Residences	Residential	0.035	20.7	-192.6				
Mission Road Residences	Residential	0.033	19.4	-181.1				
One Santa Fe Apartments	Residential	0.015	8.7	-81.0				
Utah Street Elementary School	School	0.031	0.7	-6.5				
Mendez High School	School	0.032	0.7	-6.6				
Ann Street Elementary School	School	0.143	3.2	-30.1				
Twin Towers Correctional Facility	Commercial Worker	0.081	3.7	-34.4				
Los Angeles Men's Central Jail	Commercial Worker	0.092	4.2	-38.8				
Metro Offices	Commercial Worker	0.108	4.9	-45.9				
Terminal Annex	Commercial Worker	0.102	4.7	-43.4				

Notes:

 $\mu g/m^3 = micrograms \ per \ cubic \ meter; \ Metro=Los \ Angeles \ County \ Metropolitan \ Transportation \ Authority$

Table 7-49. Summary of 2040 with Project Cancer Risks at Specific Receptors (per million)								
Receptor	Land Use Type	Modeled Annual Concentrations (µg/m³)	Cancer Risks	Increase from Existing Conditions	Increase from No Project Conditions			
William Mead Homes	Residential	0.264	156.3	-754.0	68.1			
William Mead Homes	Residential	0.199	117.9	-577.6	50.5			
Mozaic Apartments	Residential	0.155	91.6	-764.9	8.7			
Mission Road Residences	Residential	0.103	60.9	-152.4	40.3			
Mission Road Residences	Residential	0.094	55.9	-144.6	36.5			
One Santa Fe Apartments	Residential	0.028	16.8	-72.9	8.1			
Utah Street Elementary School	School	0.075	1.7	-5.5	1.0			
Mendez High School	School	0.083	1.9	-5.5	1.2			
Ann Street Elementary School	School	0.277	6.2	-27.1	3.0			
Twin Towers Correctional Facility	Commercial Worker	0.111	5.0	-33.0	1.4			
Los Angeles Men's Central Jail	Commercial Worker	0.131	5.9	-37.0	1.8			
Metro Offices	Commercial Worker	0.154	7.0	-43.8	2.1			
Terminal Annex	Commercial Worker	0.115	5.2	-42.8	0.6			

µg/m³= micrograms per cubic meter; Metro=Los Angeles County Metropolitan Transportation Authority

Table 7-50 shows the chronic hazard index for the maximally exposed individual for the existing, 2026, 2031, and 2040 conditions (with and without the project). As shown, the chronic hazard index is lower than the SCAQMD significance threshold of less than 1.0.

Iaximally Exposed Individual	Chronic Hazard Index
xisting Conditions	0.31
026 No Project	0.12
026 with Project	0.10
031 No Project	0.07
31 with Project	0.11
0 No Project	0.03
40 with Project	0.05
AQMD Threshold	1.0

SCAQMD=South Coast Air Quality Management District

In summary, when compared to the no project conditions, the sensitive land uses within the project study area would be exposed to an increased cancer risk of more than 10 in 1 million. When compared to the existing (2016) conditions the proposed project or the build alternative would result in lower health risks at all of the land uses in the project area.

Operational Health Risks after Mitigation

Implementation of Mitigation Measure AQ-3 (described in Section 8.0) would reduce the DPM concentrations in the project area. Implementation of Mitigation Measure AQ-3 would achieve reductions of average pollutant concentrations by 51 percent in 2031 and 56 percent in 2040.

- To achieve service levels anticipated in 2031, Mitigation Measure AQ-3 would be required to reduce the average pollutant concentrations by up to 51 percent.
- To achieve service levels anticipated in 2040, Mitigation Measure AQ-3 (described in Section 8.0) would be required to reduce the average pollutant concentrations by up to56 percent.

Upon implementation of Mitigation Measure AQ-3, the operational health risk impacts would be reduced to a level less than significant.

7.2.3 Naturally Occurring Asbestos

All project construction is located in Los Angeles County, which is among the counties listed as containing serpentine and ultramafic rock. However, the project study area is not contained in regions of the County that has been identified as containing serpentine or ultramafic rock (A General Location Guide for Ultramafic Rocks in California—Areas More Likely to Contain Naturally Occurring Asbestos, Department of Conservation, Division of Mines and Geology, August 2000). Therefore, the impact from naturally occurring asbestos during project construction would be minimal to none. No impact would result.

THRESHOLD Generate GHG

7.3 Climate Change

GHG emissions for transportation projects can be divided into those generated during construction and those generated during operations. Construction GHG emissions include emissions generated as a result of material processing, emissions produced by on-site construction equipment, and emissions arising from traffic delays because of construction. These emissions would be generated at different levels throughout the construction phase; their frequency and occurrence can be reduced through contractor means and methods, and implementation of innovations in plans and specifications for better traffic management during construction phases.

Table 7-51 and Table 7-52 list the annual GHG emissions that would be generated during construction of the proposed project with an above-grade passenger concourse with new expanded passageway, and the build alternative with an at-grade passenger concourse, respectively.

Up to 41,570 tons of CO₂e would be generated during the 6-year construction period for the proposed project; this is equivalent to 37,705 MT of CO₂e. Amortized over a 30-year period, the approximate life of the project, the yearly contribution to GHG from the construction of the proposed project would be 1,256.9 MT of CO₂e per year.

Up to 64,520 tons of CO₂e would be generated during 6-year construction period for the build alternative; this is equivalent to 58,520 MT of CO₂e. Amortized over a 30-year period, the approximate life of the project, the yearly contribution to GHG from the construction of the build alternative would be 1,950.7 MT of CO₂e per year.

The following activities associated with project operations could directly or indirectly contribute to the generation of GHG emissions:

- Gas, Electricity, and Water Use Natural gas use results in the emissions of two GHGs: CH₄ (the major component of natural gas) and CO₂ from the combustion of natural gas. Electricity use can result in GHG production if the electricity is generated by combusting fossil fuel.
- Solid Waste Disposal Solid waste generated could contribute to GHG emissions in a variety of ways. Landfilling and other methods of disposal use energy for transporting and managing the

waste, and they produce additional GHGs to varying degrees. Landfilling, the most common waste management practice, results in the release of CH₄ from the anaerobic decomposition of organic materials. CH₄ is 21 times more potent a GHG than CO₂. However, landfill CH₄ can also be a source of energy. In addition, many materials in landfills do not decompose fully, and the carbon that remains is sequestered in the landfill and not released into the atmosphere.

- Motor Vehicle Use Vehicular traffic would result in GHG emissions from the combustion of fossil fuels. According to the traffic analysis conducted for the project, total project generated daily traffic throughout operation is estimated to be 1,428 trips per day from the on-site office and retail uses
- Train Emissions As discussed above and in Appendix A, Metro estimates the project-related capacity enhancements to reduce dwell time at LAUS and contribute to other cumulative benefits for the region, including a regional reduction of GHG emissions and VMT. Future service scenarios will depend on ongoing negotiations between the railroad operators, available infrastructure (corridor, maintenance facility, etc.) throughout the Metrolink system and beyond, and available operating funding. The project, by itself, does not enable regional/intercity rail providers to meet the objectives of the SCORE Program, nor does it enable CHSRA to meet their service goals, primarily because other infrastructure improvements on the entire system are required to meet the forecasted service levels by 2040. Therefore, the GHG emissions analysis provided herein only considers the change in localized idling emissions and not the system wide change in rail emissions.

The projected GHG emissions for the proposed project and the build alternative would be the summation of the individual sources identified above.

As identified in Table 7-51, for the proposed project with an above-grade passenger concourse with new expanded passageway, the total annual GHG emissions from construction of the proposed project and operation would be approximately 11,230 MT of CO₂e per year, which exceeds the SCAQMD's 3,000 MT CO₂e interim significance threshold for commercial, residential, and mixed use projects.

As identified in Table 7-52, for the build alternative with an at-grade concourse, the total annual GHG emissions from construction and operation would be approximately 11,925 MT of CO₂e per year, which exceeds the SCAQMD's 3,000 MT CO₂e interim threshold for commercial, residential, and mixed use projects.

Table 7-51. Greenhouse Gas Emissions – Proposed Project with Above-Grade Passenger Concourse with New Expanded Passageway (2040)

	(=••••)								
	Pollutant Emissions (MT/year)								
Source	Bio-CO ₂	NBio-CO ₂	CO2	CH₄	N ₂ O	CO ₂ e			
Construction Emissions Amortized over 30 Years	0.0	1,255.7	1,255.7	0.1	0.0	1,256.9			
Operational Emissions									
Area Sources	0.0	0.0	0.0	0.0	0.0	0.0			
Energy Sources	0.0	4,272.0	4,272.0	0.11	0.023	4,281.7			
Mobile Sources	0.0	843.2	843.2	0.03	0.0	844.0			
Waste Sources	127.2	0.0	127.2	7.51	0.0	315.0			
Water Usage	15.1	485.5	500.6	1.56	0.039	551.3			
Total Operational Emissions	142.3	5,600.6	5,742.9	9.22	0.06	5,992.0			
Rail Emissions									
No Project	0.0	6,168.2	6,168.2	0.0	0.0	6,168.2			
Proposed Project	0.0	10,149.0	10,149.0	0.0	0.0	10,149.0			
Net Increase	0.0	3,980.8	3,980.8	0.0	0.0	3,980.8			
Total Operational Emissions	142.3	9,581.4	9,723.7	9.2	0.1	9,972.8			
Total Emissions with Construction	142.3	10,837.1	10,979.4	9.3	0.1	11,229.7			

Notes:

CO₂-carbon dioxide; CO₂e=carbon dioxide equivalents; MT=metric tons; N₂O=nitrous oxide

January 2019

 Table 7-52. Greenhouse Gas Emissions – Build Alternative with At-Grade Passenger Concourse

 (2040)

(2040)									
	Pollutant Emissions (MT/year)								
Source	Bio-CO ₂	NBio-CO ₂	CO ₂	CH₄	N ₂ O	CO ₂ e			
Construction Emissions Amortized over 30 Years	0.0	1,949.0	1,949.0	0.1	0.0	1,950.7			
Operational Emissions									
Area Sources	0.0	0.0	0.0	0.0	0.0	0.0			
Energy Sources	0.0	4,272.0	4,272.0	0.11	0.023	4,281.7			
Mobile Sources	0.0	843.2	843.2	0.03	0.0	844.0			
Waste Sources	127.2	0.0	127.2	7.51	0.0	315.0			
Water Usage	15.1	485.5	500.6	1.56	0.039	551.3			
Total Operational Emissions	142.3	5,600.6	5,742.9	9.22	0.06	5,992.0			
Rail Emissions									
No Project	0.0	6,168.2	6,168.2	0.0	0.0	6,168.2			
Build Alternative	0.0	10,149.0	10,149.0	0.0	0.0	10,149.0			
Net Increase	0.0	3,980.8	3,980.8	0.0	0.0	3,980.8			
Total Operational Emissions	142.3	9,581.4	9,723.7	9.2	0.1	9,972.8			
Total Emissions with Construction	142.3	11,530.4	11,672.7	9.3	0.1	11,923.5			

Notes:

CO2=carbon dioxide; CO2e=carbon dioxide equivalents; MT=metric tons; N2O=nitrous oxide

As discussed above, this analysis evaluates the localized emissions associated with the regional/intercity rail operations within the LAUS. Therefore, this analysis does not evaluate the system wide change in rail emissions or the associated change in regional VMT.

In 2015, Metro emitted 457,400 MT of CO₂e from its operations. By removing private vehicles from the road, the agency also prevents GHG emissions from entering the atmosphere. During the same period, Metro saved approximately 464,493 MT of CO₂e from being emitted by displacing vehicle driving. As a result, Metro's GHG emissions in 2015 were a net reduction of 7,093 MT of CO₂e. The addition of 5,992 MT of CO₂e from the operation of LAUS would increase Metro's operation emissions to approximately 463,400 MT. Therefore, Metro would continue to offset over 100 percent of its operating GHG emissions through regional VMT reductions.

Link Union Station Draft Air Quality/Climate Change and Health Risk Assessment

As discussed above, Metrolink is currently developing the SCORE Program, which will upgrade the regional rail system to meet the current and future needs of the traveling public. By adding tracks, grade separations and upgrading signal systems across the entire Metrolink system, trains will operate more frequently and reliably, making regional travel by train easier and creating an even more appealing alternative to driving. Between 2026 and 2078 the estimated contribution to the VMT and GHG reductions are 898 million miles and 13.5 million MT of CO₂e, respectively. The project-related capacity enhancements and improvements at LAUS are critical to achieving 26 percent, or 3.5 million MT of CO₂e, of the GHG emission reduction. These reductions would easily offset the project-related annual GHG emissions of 11,230 to 11,925 MT of CO₂e.

Further and from a regional perspective, by providing increased station capacity for regional/intercity rail, Metro rail and bus, and accommodation of the planned HSR system, the proposed project and the build alternative would indirectly reduce the number of vehicles on the road and indirectly alter regional on-road motor vehicle travel. Therefore, the project is a key component to achieving the RTP/SCS (2016) GHG reduction goals for the SCAG region as listed in Table 7-53 in addition to statewide GHG reduction targets. The 2016 RTP/SCS would achieve GHG emission reductions of up to 35 percent for Los Angeles County in 2040 and up to 24 percent for the SCAG region as a whole. In this context, the reductions in GHGs in 2040 as facilitated by the proposed project or the build alternative would be considered a beneficial impact.

Table 7-53. Greenhouse Gas Emissions from Transportation by County									
County	2005	2012 Base Year	2020 Plan	2040 Plan	2040 Plan vs. 2012 Base Year (%)				
Imperial	3,806.6	3,500.7	3,809.5	4,683.4	34				
Los Angeles	133,629.0	120,929.1	106,253.9	78,830.9	-35				
Orange	40,202.9	38,664.1	34,199.4	24,082.5	-38				
Riverside	32,937.6	33,447.2	33,593.3	32,489.4	-3				
San Bernardino	36,397.3	36,690.1	35,595.0	39,019.9	6				
Ventura	10,416.1	9,920.4	8,813.9	6,413.2	-35				
SCAG Total	257,389.5	243,151.7	222,265.0	185,519.2	-24				

Source: SCAG 2016

Notes:

SCAG=Southern California Association of Governments

7.3.1 Climate Change after Mitigation

Although not required for the project's climate change impacts, Mitigation Measures AQ-2 through AQ-3 (described in Section 8.0) would reduce the construction and operational GHG emissions of the proposed project and build alternative. Mitigation Measure AQ-2 would reduce the off-road GHG emissions by 30 percent. Mitigation Measure AQ-3 would reduce the locomotive emissions by 51 percent in 2031 and by 56 percent in 2040. Table 7-54 and Table 7-55 identify the mitigated GHG emissions for the proposed project and build alternative, respectively. With the addition of the SCORE Program benefits, the GHG emissions for the proposed project and build alternative would be reduced to less than zero.

Concourse with New Expanded Passageway (2040) - Mitigated									
	Pollutant Emissions (MT/year)								
Source	Bio-CO ₂	NBio-CO ₂	CO2	CH₄	N ₂ O	CO ₂ e			
Construction Emissions Amortized over 30 Years	0.0	944.8	944.8	0.1	0.0	945.9			
Operational Emissions									
Area Sources	0.0	0.0	0.0	0.0	0.0	0.0			
Energy Sources	0.0	4,272.0	4,272.0	0.11	0.023	4,281.7			
Mobile Sources	0.0	843.2	843.2	0.03	0.0	844.0			
Waste Sources	127.2	0.0	127.2	7.51	0.0	315.0			
Water Usage	15.1	485.5	500.6	1.56	0.039	551.3			
Total Operational Emissions	142.3	5,600.6	5,742.9	9.22	0.06	5,992.0			
Rail Emissions									
No Project	0.0	6,168.2	6,168.2	0.0	0.0	6,168.2			
Proposed Project	0.0	6,082.9	6,082.9	0.0	0.0	6,082.9			
Net Increase	0.0	-85.3	-85.3	0.0	0.0	-85.3			
Total Operational Emissions	142.3	5,515.3	5,657.6	9.2	0.1	5,906.7			
Total Emissions with Construction	142.3	6,460.1	6,602.4	9.3	0.1	6,852.6			

Table 7-54. Cumulative Greenhouse Gas Emissions – Proposed Project with Above-Grade Passenger Concourse with New Expanded Passageway (2040) - Mitigated

Notes:

CO2-carbon dioxide; CO2e=carbon dioxide equivalents; MT=metric tons; N2O=nitrous oxide

 Table 7-55. Cumulative Greenhouse Gas Emissions – Build Alternative with At-Grade Concourse

 (2040) - Mitigated

	Pollutant Emissions (MT/year)								
Source	Bio-CO ₂	NBio-CO ₂	CO ₂	CH₄	N ₂ O	CO ₂ e			
Construction Emissions Amortized over 30 Years	0.0	1,395.1	1,395.1	0.1	0.0	1,396.9			
Operational Emissions									
Area Sources	0.0	0.0	0.0	0.0	0.0	0.0			
Energy Sources	0.0	4,272.0	4,272.0	0.11	0.023	4,281.7			
Mobile Sources	0.0	843.2	843.2	0.03	0.0	844.0			
Waste Sources	127.2	0.0	127.2	7.51	0.0	315.0			
Water Usage	15.1	485.5	500.6	1.56	0.039	551.3			
Total Operational Emissions	142.3	5,600.6	5,742.9	9.22	0.06	5,992.0			
Rail Emissions									
No Project	0.0	6,168.2	6,168.2	0.0	0.0	6,168.2			
Build Alternative	0.0	6,082.9	6,082.9	0.0	0.0	6,082.9			
Net Increase	0.0	-85.3	-85.3	0.0	0.0	-85.3			
Total Operational Emissions	142.3	5,515.3	5,657.6	9.2	0.1	5,906.7			
Total Emissions with Construction	142.3	6,910.4	7,052.7	9.3	0.1	7,303.6			

Notes:

CO₂=carbon dioxide; CO₂e=carbon dioxide equivalents; MT=metric tons; N₂O=nitrous oxide

THRESHOLD Conflict with an Air Quality Plan

An AQMP describes air pollution control strategies to be taken by counties or regions classified as nonattainment areas. The AQMP's main purpose is to bring the area into compliance with the requirements of federal and state air quality standards. The AQMP uses the assumptions and projections by local planning agencies to determine control strategies for regional compliance status. Therefore, any projects causing a significant impact on air quality would impede the progress of the AQMP.

Air quality models are used to demonstrate a project's emissions would not contribute to the deterioration or impede the progress of air quality goals stated in the local AQMPs. The air quality models use project-specific data to estimate the quantity of pollutants generated from the implementation of a project.

As discussed in Section 7.1.2, by providing increased station capacity for regional/intercity rail and accommodating the planned HSR system, the proposed project and the build alternative would indirectly

reduce the number of vehicles on the road and indirectly alter regional on-road motor vehicle travel. The proposed project and the build alternative would also indirectly contribute to other cumulative benefits for the region, including a regional reduction of GHG emissions and VMT. Therefore, the increased emissions from rail operations identified in Table 7-17 and Table 7-18 would be offset by reductions in VMT in 2026, 2031, and 2040. For this reason, it is reasonable to conclude that the proposed project and the build alternative would not exceed SCAQMD's thresholds and would more than likely contribute to net reductions. In addition, as identified in Table 7-30, Table 7-31, and Table 7-32, after implementing Mitigation Measure AQ-3, the net increase in daily emissions would be reduced to below the SCAQMD thresholds. Therefore, the proposed project and the build alternative is considered consistent with the objectives of the AQMPs and would not affect implementation of the AQMPs. A less than significant impact would result.

RTP/SCS (2016). The project is included in the 2016 RTP/SCS as a financially constrained project. Table 7-56 demonstrates the project's consistency with the nine goals established as part of the 2016 RTP/SCS. Based on the project's consistency with the regional goals and policies of the 2016 RTP/SCS, a less than significant impact would result. The project and the build alternative are evaluated in Table 7-56 collectively as the project.

Table 7-56. Consistency with Regional Transportation Plan/Sustainable Communities Strategy Goals		
RTP/SCS Goal	Link Union Station Consistency Analysis	
G1: Align the plan investments and policies with improving regional economic development and competitiveness	Not applicable.	
G2: Maximize mobility and accessibility for all people and goods in the region	Consistent. By increasing capacity the project is maximizing intermodal connections and improving mobility. The project is also leveraging and integrating existing transit systems and infrastructure into multi-modal improvements. Although the project does not directly increase train service, the improvements facilitate future increases in service to the levels forecasted in the 2016 RTP/SCS because other infrastructure improvements on the regional rail system, including LOSSAN Corridor are required to meet the forecasted rail increases.	
G3: Ensure travel safety and reliability for all people and goods in the region	Consistent. By providing increased station capacity for regional/intercity rail and accommodation of HSR, the project would indirectly reduce the number of vehicles on the road and indirectly alter regional on-road motor vehicle travel. In addition, the project will promote ease of access and enhance safety features for non-motorized transportation.	

Table 7-56. Consistency with Regional Transportation Plan/Sustainable Communities Strategy Goals		
RTP/SCS Goal	Link Union Station Consistency Analysis	
G4: Preserve and ensure a sustainable regional transportation system	Consistent. Construction of the project would improve the efficiency through and around LAUS by providing infrastructure to support potential one-seat rides to key destinations in Southern California.	
G5: Maximize the productivity of our transportation system	Consistent. The elimination of the stub-end tracks at LAUS would increase the productivity/efficiency of the transportation system in the project study area and Southern California as a whole. Reduced train idling times would result in shortened wait times for passengers.	
G6: Protect the environment and health of our residents by improving air quality and encouraging active transportation (e.g., bicycling and walking)	Consistent. The project would reduce train idling times at LAUS by anywhere from 5 to 25 minutes through improved operating efficiencies, which will significantly reduce local diesel emissions and improve air quality. In addition, the project will improve active transportation by improving pedestrian linkages within one quarter mile and through the addition of bike infrastructure/hubs, racks, and lockers.	
G7: Actively encourage and create incentives for energy efficiency, where possible	Consistent. The proposed passenger concourse (above-grade or at-grade) is being designed to meet Leadership in Energy and Environmental Design Silver requirements. By introducing high efficiency lighting the project can reduce energy consumption. LED technology, dimmer driver, or designs for lights would minimize light pollution.	
G8: Encourage land use and growth patterns that facilitate transit and active transportation	Consistent. The project enhances transit options at LAUS and has the potential to stimulate transit-related land use and growth patterns. The project facilitates and does not preclude active transportation projects in the vicinity of LAUS.	
G9: Maximize the security of the regional transportation system through improved system monitoring, rapid recovery planning, and coordination with other security agencies	Consistent. The proposed passenger concourse is being designed to meet applicable security requirements.	

HSR=High-Speed Rail; LAUS=Los Angeles Union Station; RTP=regional transportation plan; SCS=sustainable communities strategy

THRESHOLD Create objectionable odors affecting a substantial number of people

Construction of the proposed project or the build alternative could result in emission of odors from construction equipment and vehicles (e.g., diesel exhaust). It is anticipated that these odors would be short-term, limited in extent at any given time, and distributed throughout the project study area during the duration of construction, and, therefore, would not affect a substantial number of individuals. This impact is considered less than significant.

THRESHOLD	Result in a cumulatively considerable net increase of any criteria pollutant for which
	the project region is nonattainment under an applicable federal or state ambient air
	quality standard (including release emissions which exceed quantitative thresholds
	for O ₃ precursors)

Cumulative projects include local development, as well as general growth within the project area. However, as with most development, the greatest source of emissions is from vehicular traffic that can travel well out of the local area. Therefore, from an air quality standpoint, the cumulative analysis would extend beyond any local projects and, when wind patterns are considered, would cover an even larger area. Accordingly, the cumulative analysis for a project's air quality analysis must be regional by nature.

Construction and operation of cumulative projects would further degrade the local air quality, as well as the air quality of the SCAB. Air quality would be temporarily degraded during construction activities that occur separately or simultaneously. Construction of the following projects could occur concurrently with the construction of the proposed project or the build alternative:

- Emergency Security Operations Center Project
- El Monte Busway Station at LAUS
- Bus Maintenance and Compressed Natural Gas Facility
- California High-Speed Train Project
- LAUS Forecourt and Esplanade Improvements Project
- Los Angeles County Central Men's Jail
- Los Angeles River Master Plan
- Park 101 Project
- Purple Line Extension Project Sections 1, 2 and 3
- Division 20 Portal Widening and Turnback Tracks
- West Santa Ana Branch Line Project
- Channel 35 Studio Relocation Project

- College Station Project
- Blossom Plaza
- 1101 N Main Condos
- Metropolitan Transportation Authority CNG Bus Maintenance Facility
- Los Angeles Civic Center Office
- 700 W Cesar Chavez Ave Mixed Use
- 963 E 4th Street Mixed Use
- Metro Operations Control Center
- La Plaza Cultura Village Project
- 520 S Mateo Street Mixed Use
- 1115 S Boyle Ave Office
- 2051 E 7th Street Mixed Use
- 2030 E 7th Street Mixed Use

However, the greatest potential for a cumulative impact on the regional air quality would be the incremental addition of pollutants from increased traffic from residential, commercial, and industrial development and the use of heavy equipment and trucks associated with construction of these projects.

With respect to emissions that may contribute to regional impacts, although the proposed project and the build alternative results in increased regional criteria pollutant and GHG emissions, the analysis does not take into consideration the associated regional VMT reductions that can be expected from the increased ridership. As identified in Table 3.3.4-1 of the 2016 RTP/SCS *Program Environmental Impact Report*, under the plan conditions (which include region wide transit and rail improvements) the regional criteria pollutant emissions are substantially lower than under the existing conditions. Therefore, the proposed project or the build alternative would not present a long-term significant cumulative impact.

(THIS PAGE INTENTIONALLY LEFT BLANK)

8.0 Mitigation Measures

8.1 Construction

The following measures would be implemented during construction activities:

- AQ-1 Fugitive Dust Control: In compliance with South Coast Air Quality Management District (SCAQMD) Rule 403, during clearing, grading, earthmoving, or excavation operations, fugitive dust emissions shall be controlled by regular watering or other dust preventive measures using the following procedures, as specified in SCAQMD Rule 403:
 - Minimize land disturbed by clearing, grading, and earth moving, or excavation operations to prevent excessive amounts of dust
 - Provide an operational water truck on-site at all times; use watering trucks to minimize dust; watering should be sufficient to confine dust plumes to the project work areas; watering shall occur at least twice daily with complete coverage, preferably in the late morning and after work is done
 - Suspend grading and earth moving when wind gusts exceed 25 miles per hour unless the soil is wet enough to prevent dust plumes
 - Securely cover trucks when hauling materials on- or off-site
 - Stabilize the surface of dirt piles if not removed immediately
 - Limit vehicular paths and limit speeds to 15 miles per hour on unpaved surfaces and stabilize any temporary roads
 - Minimize unnecessary vehicular and machinery activities
 - Sweep paved streets at least once per day where there is evidence of dirt that has been carried on to the roadway
 - Revegetate or stabilize disturbed land, including vehicular paths created during construction to avoid future off-road vehicular activities

The following measures shall also be implemented to reduce construction emissions:

- The construction contractor shall prepare a comprehensive inventory list of all heavy-duty off-road (portable and mobile) equipment (50 horsepower and greater) (i.e., make, model, engine year, horsepower, emission rates) that could be used an aggregate of 40 or more hours throughout the duration of construction to demonstrate how the construction fleet is consistent with the requirements of Metro's Green Construction Policy
- Ensure that all construction equipment is properly tuned and maintained

- Minimize idling time to 5 minutes, whenever feasible, which saves fuel and reduces emissions
- Utilize existing power sources (e.g., power poles) or clean fuel generators rather than temporary power generators, whenever feasible
- The construction contractor shall arrange for appropriate consultations with the ARB or the SCAQMD to determine registration and permitting requirements prior to equipment operation at the site, and obtain ARB Portable Equipment Registration with the state or a local district permit for portable engines and portable engine-driven equipment units used at the project work site, with the exception of on-road and off-road motor vehicles, as applicable

These control techniques shall be included in project specifications, and shall be implemented by the construction contractor.

AQ-2 Compliance with EPA's Tier 4 Exhaust Emission Standards and Renewable Diesel Fuel for Off-Road Equipment: In compliance with Metro's Green Construction Policy, all off-road diesel powered construction equipment greater than 50 horsepower shall comply with EPA's Tier 4 Final exhaust emission standards (40 CFR Part 1039). In addition, if not already supplied with a factory-equipped diesel particulate filter, all construction equipment shall be outfitted with Best Available Control Technology (BACT) devices certified by the California Air Resources Board (CARB). Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.

In addition to the use of Tier 4 equipment, all off-road construction equipment shall be fueled using 100 percent renewable diesel.

8.2 Operation

The following measures would be implemented during operation:

AQ-3 Adaptive Air Quality Mitigation Plan: Prior to implementation of regional/intercity rail run-through service, an Adaptive Air Quality Mitigation Plan shall be prepared by Metro, in coordination with the SCRRA, as the operator of the commuter rail service in Southern California and the program manager and grant recipient of the SCORE Program, Amtrak, and the LOSSAN Rail Corridor Agency. The Plan shall identify the methodology and requirements for annual emission inventories to be prepared by Metro, based on actual/current train movements and corresponding pollutant concentrations through the Year 2040.

Mitigation Plan Requirements: Upon implementation of regional/intercity run-through service, and on an annual basis, Metro shall compile and summarize the current Metrolink, Pacific Surfliner, and Amtrak long-distance train schedules to determine the actual level of daily and

peak-period train movements (including non-revenue train movements) that operate through LAUS.

On an annual basis, Metro shall retain the services of an air quality specialist to conduct an annual emissions inventory to determine if actual train movements through LAUS are forecasted to increase criteria pollutant emissions to a level that would exceed the SCAQMD significance thresholds or diesel pollutant concentrations to a level that would exceed the SCAQMD's 10 in a million threshold at any residential land use in the project study area. An annual report shall be prepared by Metro that summarizes the quantitative results of pollutant emissions and diesel pollutant concentrations in the project study area. If pollutant emissions or diesel pollutant concentrations in the project study area. If pollutant emissions or diesel pollutant concentrations with Metro and CalSTA, shall either implement rail fleet emerging technologies consistent with 2018 California State Rail Plan Goal 6: Practice Environmental Stewardship, Policy 4: Transform to a Clean and Energy Efficient Transportation System (Caltrans 2018a, pg. 10 and 110), or reduce the train movements through LAUS to lower the criteria pollutant emissions below the SCAQMD significance thresholds and the diesel pollutant concentrations below the SCAQMD thresholds in the project study area.

After implementation of emerging technologies, Metro shall continue to prepare an emissions inventory in coordination with SCRRA, Amtrak, and the LOSSAN Rail Corridor Agency annually to report the quantitative results of criteria pollutant emissions and diesel pollutant concentrations in the project study area. The annual report shall include an analysis of the actual (current) and proposed changes in train schedules relative to criteria pollutant emissions and diesel pollutant concentration levels in the project study area. The report shall be prepared annually by December 31 of each year, beginning the calendar year after implementation of regional/intercity rail run-through service through 2040 and shall include results of the emissions inventory and effectiveness of the measures implemented.

Rail Fleet Emerging Technologies. To achieve a reduction of criteria pollutant emissions below the SCAQMD thresholds and diesel pollutant concentrations below a level that would not exceed SCAQMD thresholds, the regional and intercity rail operators may replace, retrofit, or supplement some or all of their existing fleet with zero or low-emission features. The types of emerging technologies that can be implemented, include, but are not limited to the following:

- Electric multiple unit systems
- Diesel multiple units
- Battery-hybrid multiple units
- Renewable diesel and other alternative fuels

Metro shall coordinate with regional rail/intercity rail operators to incorporate these emerging technologies into existing and/or future funding and/or operating agreements to reduce locomotive exhaust emissions in the project study area.

8.3 Level of Significance after Mitigation

The construction emissions associated with the proposed project would continue to exceed the SCAQMD's daily criteria pollutant and localized significance thresholds after implementing Mitigation Measures AQ-1 and AQ-2. Impacts would remain significant and unavoidable.

The construction emissions associated with the build alternative would continue to exceed the SCAQMD's daily criteria pollutant, localized significance, and health risk thresholds after implementing Mitigation Measures AQ-1 and AQ-2. Impacts would remain significant and unavoidable.

The operational emissions associated with the proposed project or the build alternative would be reduced to below the SCAQMD's daily criteria pollutant, localized significance, and health risk thresholds. In addition, the long-term GHG emissions would be reduced to less than zero. Impacts would be less than significant after mitigation.

9.0 References

- California Air Resources Board (ARB). 2011. AB 32 Climate Change Scoping Plan Document. Bureau of Transportation. 2017. *National Transportation Statistics.* <u>https://www.bts.gov/archive/publications/national_transportation_statistics/index</u>
- California Department of Transportation. 1997. Transportation Project-Level Carbon Monoxide Protocol. <u>http://www.dot.ca.gov/env/air/co-protocol.html</u>
- Intergovernmental Panel on Climate Change. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Avery K.B., Tignor M., and Miller H.L. (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Los Angeles County Metropolitan Transportation Authority (Metro). 2012. Climate Action and Adaption Plan.

https://www.epa.gov/sites/production/files/2015-09/documents/sspp2012_adaptationplan_508. pdf

- Office of Environmental Health Hazard Assessment (OEHHA). 2015. Air Toxics Hot Spots Program Guidance Manual. <u>https://oehha.ca.gov/media/downloads/crnr/2015guidancemanual.pdf</u>
- Southern California Association of Governments (SCAG). 2015. *Draft Program Environmental Impact Report*. December 2015.
- ——— 2016. 2016–2040 Regional Transportation Plan/Sustainable Communities Strategy. <u>http://scagrtpscs.net/Pages/FINAL2016RTPSCS.aspx</u>
- South Coast Air Quality Management District (SCAQMD). 1993. CEQA Air Quality Handbook. <u>http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook. Accessed April 2018.</u>
- ——— 2008. Localized Significance Threshold Methodology. Final. June 2003; Revised July 2008. <u>http://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/fina</u> <u>l-lst-methodology-document.pdf</u>
- 2016. Air Quality Management Plan. Final.
 <u>http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwiYkbeL5r</u>
 <u>DbAhVLS60KHYjKBDwQFggsMAE&url=http%3A%2F%2Fwww.aqmd.gov%2Fdocs%2Fdefault-s</u>
 <u>ource%2Fclean-air-plans%2Fair-quality-management-plans%2F2016-air-quality-management-plans%2Final-2016-aqmp%2Ffinal2016aqmp.pdf&usg=AOvVaw0DU1QjsT6fWuo-dkg_hcln</u>
- United States (U.S.) Environmental Protection Agency (EPA). 2009. Emission Factors for Locomotives. <u>https://nepis.epa.gov/Exe/tiff2png.cgi/P100500B.PNG?-r+75+-g+7+D%3A%5CZYFILES%5CIND</u> <u>EX%20DATA%5C06THRU10%5CTIFF%5C00000524%5CP100500B.TIF</u>

Western Regional Climate Center. 2018. Climate Data Summary. https://wrcc.dri.edu/

ZMassociates Environmental Corporation. 2018. Health Risk Assessment Calculations.

Appendix A: Rail Planning Technical Memorandum

Link Union Station

Rail Planning Technical Memorandum January 2019

CONTENTS

1.0	Intro	Introduction1				
	1.1	Project Background and Concurrent Operational Analysis	1			
	1.2	Project Location and Study Area	3			
	1.3	Project Components	9			
	1.4	Build Alternatives and Design Options				
2.0	Obje	ctive of the Memorandum	15			
3.0	Existi	Existing Rail Operating Conditions and Characteristics				
	3.1	Existing Metrolink Trains	17			
	3.2	Existing Amtrak Trains	18			
4.0	Futur	Future Service Planning Assumptions and Data Sources				
 0	4.1	Metrolink	20			
		4.1.1 Equipment Turn Time	20			
		4.1.2 Dwell Time	21			
		4.1.3 Service Hours by Train Line	21			
	4.2	Pacific Surfliner and Amtrak				
		4.2.1 Equipment Turn Time and Dwell Time	21			
	4.3	California High-Speed Rail Authority	22			
		4.3.1 Service Hours	22			
		4.3.2 Equipment Turn Time and Dwell Time	22			
	4.4	Train Consists	22			
		4.4.1 Emerging Train Consist Technology	23			
5.0	Futur	re Daily Train Movements at Los Angeles Union Station	25			
6.0	Conc	lusion	27			
7.0	References					

FIGURES

Figure 1-1. Project Study Area	. 5
Figure 1-2. Existing Los Angeles Union Station Track and Platform Layout	. 7
Figure 1-3. Major Project Components 1	11

TABLES

Table 4-1. Train Consist by Operator	23
Table 5-1. Existing (2016) and Future Daily Train Movements	25

APPENDICES

Appendix A: Existing Metrolink and Amtrak Train Schedules

Appendix B: Metrolink and Amtrak Forecast – Daily and for 6-Hour AM/PM Peak for 2026, 2031, and 2040

ACRONYMS

Caltrans	California Department of Transportation
CHSRA	California High-Speed Rail Authority
FRA	Federal Railroad Administration
HSR	High-Speed Rail
LAUS	Los Angeles Union Station
Link US	Link Union Station
LOSSAN	Los Angeles-San Diego-San Luis Obispo
Metro	Los Angeles County Metropolitan Transportation Authority
project	Link Union Station project
SCORE	Southern California Optimized Rail Expansion
SCRRA	Southern California Regional Rail Authority
TIRCP	Transit and Intercity Rail Capital Program

1.0 Introduction

The Federal Railroad Administration (FRA) and the Los Angeles County Metropolitan Transportation Authority (Metro) are proposing the Link Union Station project (Link US or project) to transform Los Angeles Union Station (LAUS) from a "stub-end tracks station" into a "run-through tracks station" with a new passenger concourse that would improve the efficiency of the station and accommodate future growth and transportation demands in the region.

The purpose of this memorandum is to provide an estimate of daily train movements (i.e., train counts) for all Metrolink, Pacific Surfliner, Amtrak, and High-Speed Rail (HSR) trains that are planned to pass through LAUS for 2016 and future horizon years anticipated to be considered in the Link US environmental documentation (2026¹, 2031, and 2040). Improvements to the Gold Line and/or Regional Connector are not considered in this memorandum. Although both Gold Line and the Regional Connector light rail trains will use LAUS, all operational aspects and train movements through LAUS are addressed through separate Metro documentation². The information contained within this memorandum was prepared solely to provide a conservative estimate of the number of trains planned to pass through LAUS to facilitate evaluation of potential localized traffic, air quality and noise and vibration impacts that may result from project-related capacity enhancements proposed at LAUS and in the surrounding area in the Link US environmental documentation. The environmental impacts resulting from increased train activity at LAUS is addressed in the Link US Draft Environmental Impact Report (HDR 2019).

The information contained within this memorandum represents an estimate of future train movements through LAUS to provide a basis for the environmental evaluation only, and is not intended in any way to indicate future rail operational scenarios or stakeholder consensus on future service levels for shared train operations at LAUS. The findings from ongoing operational analyses, if significantly different from the estimated service levels described in this memorandum, could be incorporated into the environmental documentation at a later date at the discretion of the lead agencies.

1.1 Project Background and Concurrent Operational Analysis

1.1.1 Project Background

In parallel with project implementation, the Southern California Regional Rail Authority (SCRRA) is currently developing the Southern California Optimized Rail Expansion (SCORE) Program, a \$10 billion plan that identifies the need for substantial investments in rail infrastructure in the Southern California region to upgrade the Metrolink system and meet the current and future needs of the traveling public. The project is

¹ The 2026 horizon year was added to reflect Metrolink's growth plans under Phase 1 of the Transit and Intercity Rail Capital Program; although the ability of LAUS to accommodate increased off-peak services during construction has not been tested.

² Regional Connector Transit Corridor, Final Environmental Impact Statement/Environmental Impact Report, Metro 2012

a critical component of the SCORE Program, providing capacity enhancements to fulfill the program objectives.

Localized environmental impacts resulting from project-related infrastructure improvements and forecasted increases in train movements at LAUS will be evaluated in the Link US environmental documentation. The Link US project operational scenarios for 2026, 2031, and 2040 are influenced by statewide and regional plans for service increases and other required off-site infrastructure (i.e., SCORE program). The operational scenarios represent a conservative estimate of the forecasted increases in regional/intercity rail trips and new HSR train trips that could occur at LAUS.

Infrastructure improvements outside of the project study area that are required to implement system-wide efficiencies and changes in regional/intercity operations from implementation of the SCORE Program are not part of the project, and are the responsibility of Southern California Regional Rail Authority and other agency partners. Furthermore, the operational aspects of the planned HSR system and the associated environmental impacts are not evaluated in the Link US environmental documentation because operation of the planned HSR system and the associated impacts are addressed separately in the environmental documentation being prepared by the FRA and California High-Speed Rail Authority for the Burbank to Los Angeles and Los Angeles to Anaheim Project Sections.

1.1.2 Concurrent Operational Analysis

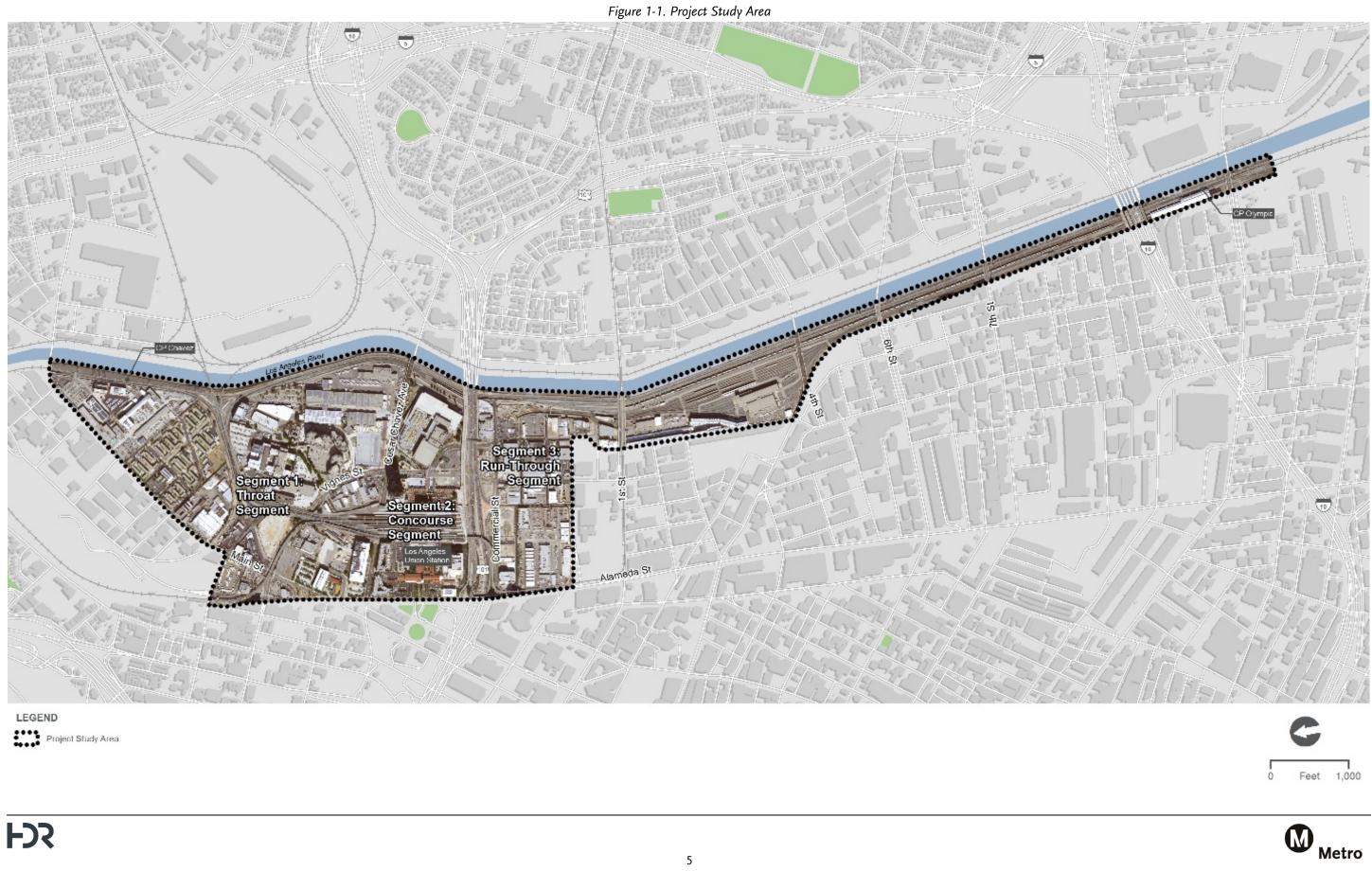
Although general operational planning information and background data are presented in this memorandum, this document is not intended to be a detailed rail operations technical memorandum.

The reader should note that there are ongoing rail operations modeling activities concurrently underway by the California High-Speed Rail Authority (CHSRA).

In addition to CHSRA's work, Metrolink is currently in the process of creating a comprehensive operations plan to help independently analyze the optimal infrastructure design and service plan for the LAUS terminal, with or without the project, which is necessary for the successful implementation of the SCORE Program. Lastly, Metro's project team will continue to perform operational analyses of LAUS infrastructure and service alternatives.

1.2 Project Location and Study Area

LAUS is located at 800 Alameda Street in the City of Los Angeles, California. LAUS is bounded by US-101 to the south, Alameda Street to the west, Cesar Chavez Avenue to the north, and Vignes Street to the east. The project study area, as depicted on Figure 1-1, encompasses the extent of environmental study associated with potential direct, indirect, and cumulative impacts from implementation of the project and includes three main segments (Segment 1: Throat Segment, Segment 2: Concourse Segment, and Segment 3: Run-Through Segment). The existing conditions within each segment are summarized below, from north to south.


- Segment 1: Throat Segment This segment, known as the LAUS throat, includes the area north of the platforms, from Control Point Chavez and Mission Tower at the north to Cesar Chavez Avenue at the south. In the throat segment, all arriving and departing trains traverse five lead tracks into and out of the rail yard, except for one location near the Vignes Street Bridge where the tracks reduce to four lead tracks. Currently, special track work consisting of multiple turnouts and double-slip switches are used in the throat to direct trains into and out of the appropriate assigned terminal platform tracks.
- Segment 2: Concourse Segment This segment is between Cesar Chavez Avenue and US-101; and includes LAUS, the rail yard, the Garden Tracks, the East Portal Building, the baggage handling building with aboveground parking areas and access roads, the ticketing/waiting halls, and the pedestrian passageway with connecting ramps and stairways below the rail yard.
- Segment 3: Run-Through Segment This segment is south of LAUS and extends east/west from Alameda Street to the west bank of the Los Angeles River and north/south from Keller Yard to Control Point Olympic. This segment includes US-101, the Commercial Street/Ducommun Street corridor, Metro Red and Purple Lines Maintenance Yard (Division 20 Rail Yard), BNSF West Bank Yard, Keller Yard, the main line tracks on the west bank of the Los Angeles River, from Keller Yard to Control Point Olympic, and the "Amtrak Lead Track" connecting the main line tracks with Amtrak's Los Angeles Maintenance Facility. Businesses within the run-through segment are primarily industrial and manufacturing related.

The project study area has a dense street network ranging from major highways to local city streets. The roadways within the project study area include the El Monte Busway, US-101, Bolero Lane, Leroy Street, Bloom Street, Cesar Chavez Avenue, Commercial Street, Ducommun Street, Jackson Street, East Temple Street, Banning Street, First Street, Alameda Street, Garey Street, Vignes Street, Aliso Street, Avila Street, Bauchet Street, and Center Street.

Figure 1-2 depicts the existing LAUS track and platform layout as well as other key facilities in and around LAUS.

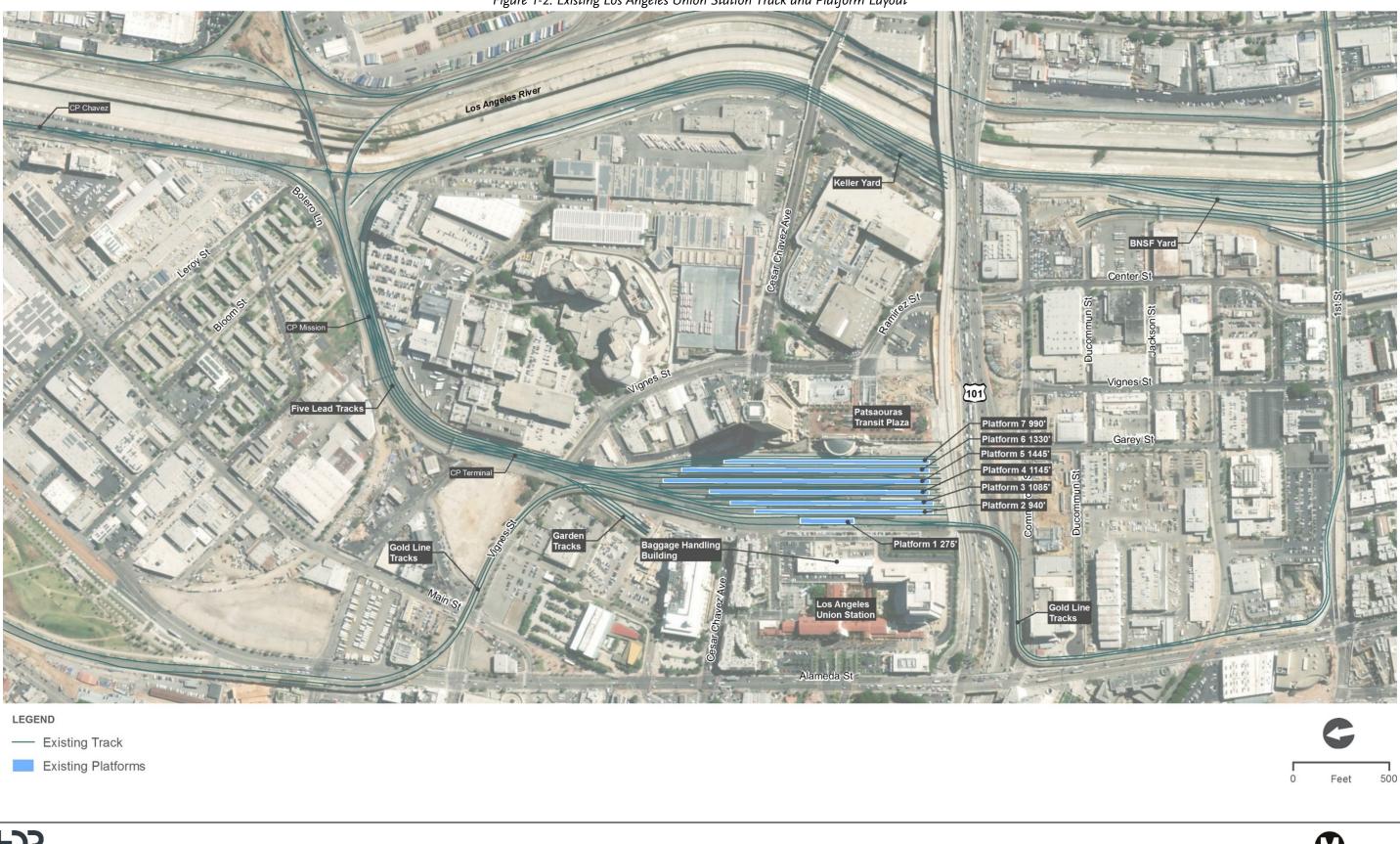
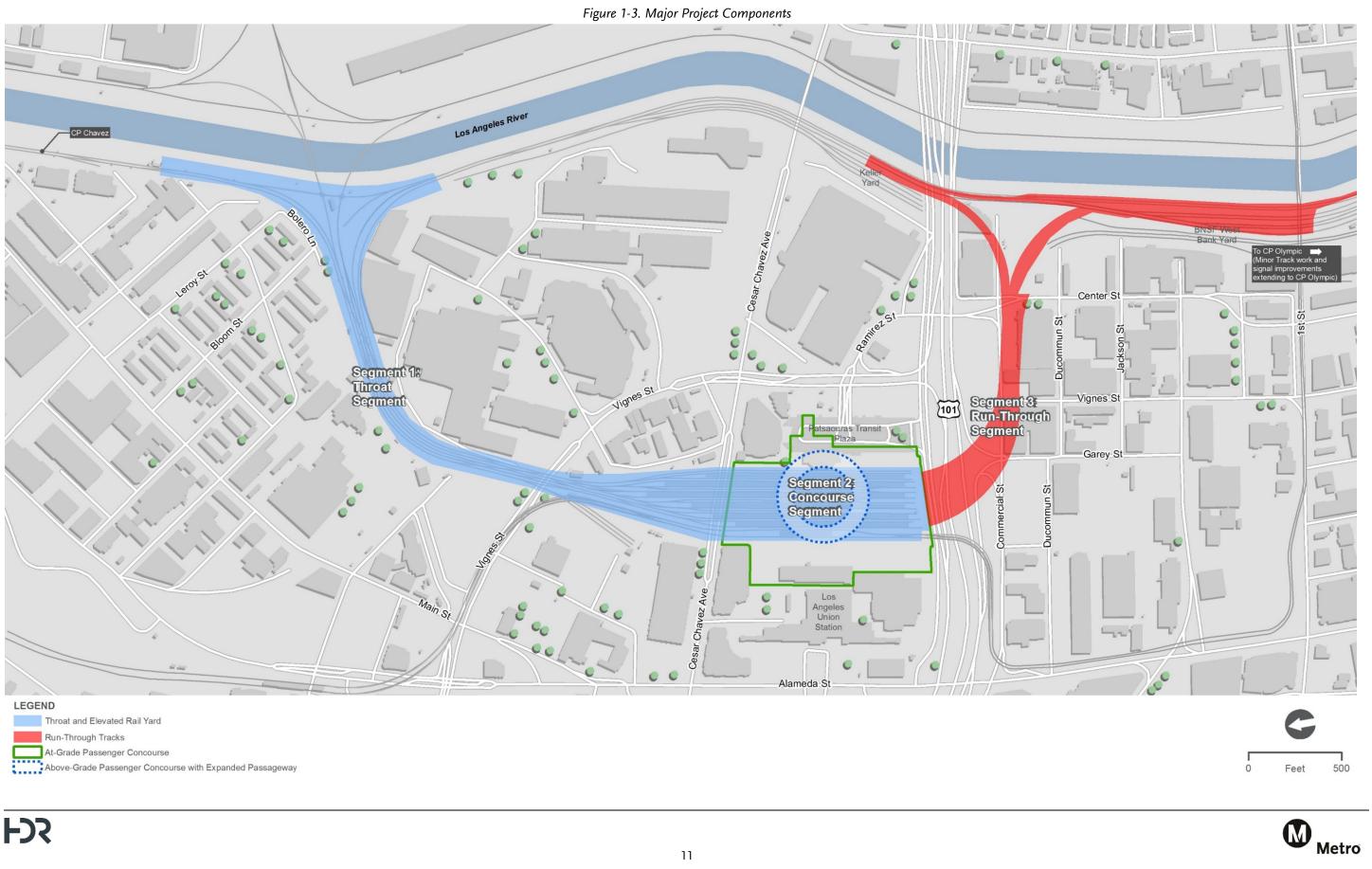


Figure 1-2. Existing Los Angeles Union Station Track and Platform Layout

1.3 Project Components


The project includes the following major components, as depicted on Figure 1-3 and summarized below, from north to south.

- Throat and Elevated Rail Yard The project includes subgrade, signal, and structural improvements in the throat segment (Segment 1) to increase the elevation of the tracks leading to the rail yard in the concourse segment (Segment 2). The throat would be reconstructed with up to seven lead tracks north of LAUS to facilitate enhanced operations for regional/intercity rail service providers (Metrolink/Amtrak) and an entrance to LAUS for the planned HSR system. The project also includes new passenger platforms and canopies on the elevated rail yard.
- New Passenger Concourse The project includes a new passenger concourse in Segment 2 that would include space dedicated for passenger circulation and waiting areas with ancillary support functions (back-of-house uses, baggage handling, etc.), transit-serving retail, office/commercial uses, and open spaces and terraces. The new passenger concourse would create an opportunity for an outdoor, community-oriented space and enhance Americans with Disabilities Act accessibility at LAUS with new vertical circulation elements, such as stairs, escalators, and elevators. The new passenger concourse would be constructed below or above the elevated rail yard.
- **Run-Through Tracks** The project includes up to 10 new run-through tracks south of US-101 (including the possibility of a loop track) under US-101 to facilitate connections for regional/intercity rail trains and HSR trains to the main line tracks on the west bank of the Los Angeles River in Segment 3. As early as 2026, regional/intercity rail run-through track infrastructure would be constructed, including a "common" viaduct/deck over US-101 and embankment south of US-101 from Vignes Street to Center Street that would be built wide enough to support future run-through track infrastructure for the planned HSR system. The remaining run-through track infrastructure for the planned HSR system could be constructed as early as 2033.

The project would also require modifications to two existing bridges at Vignes Street and Cesar Chavez Avenue for new elevated tracks; modifications to US-101 and local streets (including potential street closures, geometric modifications, and parking improvements); railroad signal, positive train control, and communications-related improvements; modifications to the Gold Line light rail platforms and tracks; modifications to the Amtrak lead track between LAUS and Amtrak's Los Angeles Maintenance Facility; new access roadways to the railroad right-of-way; additional right-of-way; new utilities; utility relocations, replacements, and abandonments; and new drainage facilities/water quality improvements. The project will be constructed in phases to facilitate the continued operation of rail services at LAUS with minimal impacts on service.

1.4 Build Alternatives and Design Options

Based on the results of the Alternatives Analysis Report, the Link US environmental documentation will include an evaluation of two track alignment Build Alternatives. Build Alternative 1 includes up to 10 new run-through tracks and accommodates future HSR trains on shared lead tracks in the throat segment (Segment 1). Build Alternative 2 includes up to 10 new run-through tracks and accommodates future HSR trains on dedicated lead tracks in the throat segment. Based on the results of the Concourse Study (appendix to the Alternatives Analysis Report), the Link US environmental documentation also includes an evaluation of two passenger concourse design options: Design Option A (At-Grade Passenger Concourse) and Design Option B (Above-Grade Passenger Concourse with New Expanded Passageway). Both track alignment alternatives and passenger concourse design options are being environmentally cleared because either concourse could be implemented with either Build Alternative.

The two Build Alternatives include the infrastructure associated with the maximum planned capacity of the rail yard, concourse, and run-through track infrastructure south of US-101 to serve future regional/intercity rail trains (Metrolink/Amtrak) and HSR trains at LAUS. The two Build Alternatives are summarized below to provide context for project-related capacity enhancements described in this memorandum.

- Alternative 1 (Up to 10 Run-Through Tracks Shared Tracks) Alternative 1 includes the addition of 1 new lead track for a total of 6 lead tracks in the throat north of LAUS (with regional/intercity and HSR trains sharing the 2 western lead tracks), multiple track and platform configuration options in the rail yard, and up to 10 run-through tracks that would extend south of LAUS over US-101, and connect to the main line tracks on the west bank of the Los Angeles River.
- Alternative 2 (Up to 10 Run-Through Tracks Dedicated Tracks) Alternative 2 includes the addition of 2 new lead tracks for a total of 7 lead tracks in the throat north of LAUS (with future HSR trains and some express/intercity services using the 2 western dedicated lead tracks and most regional/intercity trains using the 5 eastern lead tracks), multiple track and platform configuration options in the rail yard, and up to 10 run-through tracks that would extend south of LAUS over US-101 and connect to the main line tracks on the west bank of the Los Angeles River.

The new passenger concourse would facilitate enhanced passenger flow through LAUS while meeting Americans with Disabilities Act requirements and the forecasted increase in passengers. The two design options are described below.

- Design Option A (At-Grade Passenger Concourse) This design option includes placement of the new passenger concourse below the elevated rail yard, with new plazas east and west of the elevated rail yard (East and West Plazas). Amtrak ticketing and baggage check-in services would occur at a centralized location at the concourse level. This design option also includes a grand canopy that would extend approximately up to 70 feet above the elevated rail yard and West Plaza.
- Design Option B (Above-Grade Passenger Concourse with New Expanded Passageway) This design option includes placement of the new passenger concourse above the elevated rail yard, with new plazas east and west of the elevated rail yard (East and West Plazas). Amtrak ticketing and baggage check-in service would occur at two locations at the east and west ends of LAUS. This design option includes a canopy over the West Plaza up to 70 feet in height, with individual canopies over each platform. The new expanded passageway would be located below the rail yard to provide additional passenger travel-path convenience and options.

2.0 Objective of the Memorandum

The objective of this memorandum is to document the existing rail operating conditions and characteristics at LAUS (2016 baseline condition for National Environmental Policy Act Notice of Intent/California Environmental Quality Act Notice of Preparation) and estimate future train movements through LAUS for three horizon years (2026, 2031 and 2040) with appropriate service planning assumptions to facilitate the environmental evaluation of the project-related impacts of capacity enhancements in the Link US environmental documentation. The 2026 and 2031 years correspond to the two major phases of project implementation (interim condition and full build-out condition). 2040 corresponds to the horizon years and corresponding service goals and objectives of multiple statewide plans and mandates:

- 2026: Two new regional/intercity rail run-through tracks from Platform 4 at LAUS (interim condition)
- 2031: Construction of all regional/intercity rail improvements at LAUS including the reconstructed throat, elevated rail yard and new passenger concourse (full build-out condition)
- 2040: Full operation of HSR service at LAUS

Available estimates and projections from applicable agencies and stakeholders were used to estimate the future train movements. This memorandum will be utilized to prepare applicable environmental technical studies (i.e., traffic, air quality, noise, and vibration) in support of the Link US environmental documentation.

The service planning and operating characteristics considered in this memorandum include the following:

- Total number of train movements into and out of LAUS per day, revenue, and deadhead (2016, 2026, 2031, and 2040). Each inbound and outbound train movement counts as a separate movement. A run-though train, for example, would count as two train movements one inbound and one outbound movement.
- Total number of train movements during the two 3-hour AM and PM peak operating periods (2016, 2026, 2031, and 2040)
- Train "consist" size, frequency of service, types of locomotives and dwell time for each carrier

The project-related capacity enhancements are required to enable Metrolink and Amtrak to meet regional/intercity rail growth projections and to facilitate CHSRA's implementation of the planned HSR system at LAUS.

3.0 Existing Rail Operating Conditions and Characteristics

LAUS is the focal point of passenger rail travel in Southern California, serving Metrolink commuter trains; Amtrak Pacific Surfliner intercity and long-distance trains; and Metro Red, Purple, and Gold Line trains³. In addition to revenue trains, there are numerous non-revenue train movements at the LAUS terminal to service passenger train equipment and position equipment at the station platforms for revenue service. For Metrolink, non-revenue train movements occur between LAUS and the Central Maintenance Facility. For Amtrak, through trains and non-revenue train movements occur for Pacific Surfliner and Amtrak Long-Distance trains (Southwest Chief, Sunset Limited/Texas Eagle, Coast Starlight) between LAUS and Amtrak's Los Angeles Maintenance Facility.

Consistent with the existing year used for the Link US environmental documentation, available 2016 schedules for Metrolink and Amtrak Pacific Surfliner and long-distance trains, existing rail operating characteristics at LAUS were determined by counting the total number of existing train movements per day and number of train movements at LAUS during the two 3-hour AM and PM peak operating periods (6:00 AM to 9:00 AM and 3:00 PM to 6:00 PM). For both Metrolink and Amtrak, a comparison between the 2016 and 2018 schedules showed no substantial addition to train movements at LAUS. The comparison revealed 1 additional round trip Pacific Surfliner train between LAUS and San Diego, as well as 1 additional Metrolink round trip between LAUS and Burbank Airport.

The following schedules were reviewed to determine the existing rail operating characteristics and are provided as Appendix A:

- Metrolink All Lines Timetable, dated June 6, 2016
- Amtrak Pacific Surfliner Schedules, effective June 6, 2016
- Amtrak Coast Starlight Schedule, effective June 6, 2016
- Amtrak Southwest Chief Schedule, effective June 9, 2014
- Amtrak Sunset Limited Schedule, effective June 9, 2014

3.1 Existing Metrolink Trains

LAUS is the hub for Metrolink operations and provides connections between the following Metrolink lines:

- 91/Perris Valley Line
- Antelope Valley Line
- Orange County Line
- Riverside Line

³ For the purpose of this memorandum, Metro trains are not considered because Metro's light rail and heavy rail operations are not anticipated to substantially affect other regional/intercity operations or operation of the planned HSR system.

- San Bernardino Line
- Ventura County Line

As of April 2016, Metrolink operates 139 revenue trains per weekday into and out of LAUS on several train lines, including the Ventura County Line (31 trains per weekday), Antelope Valley Line (30), San Bernardino Line (38), Riverside Line (12), 91/Perris Valley Line (9), and Orange County Line (19). Metrolink also operates 46 non-revenue trains between LAUS and the Central Maintenance Facility. During the two 3-hour AM and PM peak operating periods (AM and PM combined), 80 Metrolink trains (39 in the AM and 41 in the PM) pass through LAUS.

3.2 Existing Amtrak Trains

As of April 2016, Amtrak operates 28 revenue trains per weekday into and out of LAUS, which includes 14 Pacific Surfliner trains originating or terminating at LAUS; 9 Pacific Surfliner "through trains" that travel the entire extent of the Pacific Surfliner route (Los Angeles – San Diego – San Luis Obispo, or LOSSAN corridor) north and south of LAUS (counted as 18 total trains in Table 5-1 below); and an average of 5 long-distance trains including the Coast Starlight (2 trains daily), the Southwest Chief (2 trains daily), and the Texas Eagle/Sunset Limited, which is a combined train that operates 3 times per week. Amtrak / LOSSAN also operate 11 non-revenue trains between LAUS and Amtrak's Los Angeles Maintenance Facility (6 Pacific Surfliner and 5 Amtrak long-distance trains). During the two 3-hour AM and PM peak operating periods (AM and PM combined), 13 (6 in the AM and 7 in the PM) Amtrak / LOSSAN revenue and non-revenue train movements pass through LAUS.

4.0 Future Service Planning Assumptions and Data Sources

The project would accommodate a substantial increase in rail operational capacity for the region, reducing train idling (dwell) time and improving on-time performance for trains using LAUS. The estimate of train movements that could occur through LAUS aligns with the service goals, horizon years, and corresponding goals and objectives of multiple statewide plans and mandates as described below.

California Transportation Plan

The *California Transportation Plan 2040* Vision calls for a transportation system that is safe, sustainable, universally accessible, and globally competitive while meeting the State's greenhouse gas emission reduction goals. The project-related capacity enhancements would allow for future train operations to address this vision.

2018 California State Rail Plan (Caltrans 2018)

For the purpose of this memorandum, future train movements for Metrolink and Amtrak trains are based on the 2018 California State Rail Plan.

- For Metrolink, in late 2017, future service plans were developed consistent with the 2018 California State Rail Plan (see Section 4.1 below).
- For Amtrak, the *2018 California State Rail Plan* (Caltrans 2018) was referenced to determine future train counts for Pacific Surfliner trains (see Section 4.2 below).

The estimated train movements and resulting benefits correlate with the service goals and improvements for the Los Angeles Urban Mobility Corridor, and coincides with the 2027 mid-term plan statewide goals. The 2018 California State Rail Plan calls for the following service enhancements for Metrolink:

- By 2028
 - o Provide run-through service at LAUS as part of Link US
 - o Half-hourly all-day service on the San Bernardino Line between Los Angeles and San Bernardino, and
 - o Half-hourly peak-rail service on the 91/Perris Valley Line.
- By 2040
 - o Very frequent service between LAUS and Burbank
 - o On the Ventura County Line, half-hourly express service between LAUS and Oxnard, and halfhourly local service between LAUS and Chatsworth
 - o Half-hourly local service between LAUS and Santa Clarita

- o Very frequent service between LAUS and Fullerton
- o Half-hourly express rail services connecting Riverside, San Bernardino, and Ontario with Los Angeles

2018 Business Plan (CHSRA 2018)

Future HSR train movements into and out of LAUS (revenue and non-revenue train movements) was provided by CHSRA for inclusion in this memorandum, and are consistent with the goals of the 2018 *California State Rail Plan*, the service levels in the 2018 Business Plan (CHSRA 2018), and the ridership and revenue forecasting methodology⁴ and technical supporting documents⁵.

2016 Regional Transportation Plan/Sustainable Communities Strategy (SCAG 2016)

The 2016 Regional Transportation Plan/Sustainable Communities Strategy was prepared pursuant to Senate Bill 375, to reduce GHG emissions from vehicles through better-integrated regional transportation, land use, and housing planning strategies to provide more access to jobs, services, public transit and active transportation options. The project would indirectly contribute to cumulative benefits for the region, including a regional reduction of greenhouse gas emissions and vehicle miles traveled, as demonstrated by the operational analysis provided in the 2016 Regional Transportation Plan/Sustainable Communities Strategy (Program EIR Table 3.3.4-4) (Southern California Association of Governments 2016).

4.1 Metrolink

In October 2018, Metrolink provided daily train counts for the 2031 and 2040 horizon years (full Metrolink SCORE Program operations consistent with the *2018 California State Rail Plan*), but not for the 2026 horizon year. In the absence of 2026 service plans that correlate to the SCORE Program, Metrolink's Transit and Intercity Rail Capital Program Funding Application was used to estimate the number of trains anticipated to pass through LAUS, including non-revenue train movements for the 2026 horizon year. A breakdown of the 2026, 2031, and 2040 forecasts of Metrolink trains by train line is provided in Appendix B and information is summarized in Table 5-1.

4.1.1 Equipment Turn Time

An equipment turn is the act of changing the train's operating end and allowing the train to move in the reverse direction. Operational experience to date indicates that Metrolink crews can turn revenue trains at terminals, including changing of operating ends, checking the train consist for passengers and initialization of positive train control, within 15 minutes. Although it is possible that technology improvements may allow for a future reduction in equipment turn times, the rail operators agreed that for the purposes of this analysis a 15-minute turnaround is assumed for all Metrolink trains requiring a change of operating ends at LAUS.

⁴ http://www.hsr.ca.gov/docs/about/business_plans/2018_Business_Plan_Ridership_Revenue_Forecasting.pdf

⁵ http://www.hsr.ca.gov/docs/about/business_plans/2018_Business_Plan_Service_Plan_Methodology.pdf

4.1.2 Dwell Time

Dwell time is defined as the amount of time a particular train is scheduled to be stationary at a station platform to accommodate passenger entraining and detraining, baggage handling, train servicing, crew changes, etc. For purposes of this analysis, the following dwell times are assumed:

- Year: 2026: 7 minutes
- Years 2031 and 2040: 5 minutes

4.1.3 Service Hours by Train Line

Scheduling details of the proposed service hours for each train line serving LAUS were not included in the Metrolink Transit and Intercity Rail Capital Program application. In the absence of this information, existing service hours were used in the development of future operational scenarios at 30-minute frequencies throughout the day with service extended during evening hours to at least 10:00 PM.

4.2 Pacific Surfliner and Amtrak

The 2018 California State Rail Plan (Caltrans 2018) was referenced to determine future train counts for Pacific Surfliner trains. FRA, Caltrans, and the Riverside County Transportation Commission are analyzing the feasibility of operating regional rail service between LAUS and the Coachella Valley. The study is ongoing but includes a concept of two daily round trips between LAUS and Indio or Coachella. This potential new service was added to the 2026, 2031, and 2040 Pacific Surfliner train counts. A breakdown of the 2026, 2031, and 2040 forecasts of Amtrak trains is provided in Appendix B, and information is summarized in Table 5-1.

Amtrak has no current plans to alter existing long-distance trains currently serving LAUS.

4.2.1 Equipment Turn Time and Dwell Time

Currently, the operating practice for a Pacific Surfliner through train involves a crew change at LAUS as well as a change in train operating ends. The amount of time in the schedule varies from 15 to 33 minutes. In addition, trains often arrive before their scheduled arrival time, extending the amount of time the train dwells at a platform by as much as 15 minutes. With the construction of run-through tracks, it is anticipated that the time required to change operating ends will no longer be necessary, but that adequate time will still be needed for detraining and entraining passengers and baggage as well as the crew change. Based upon feedback from LOSSAN and participating agencies, a dwell time of 10 minutes will be used.

For Amtrak long-distance trains, entraining or detraining passengers, along with baggage handling, takes much longer than it does for a typical Pacific Surfliner train. In addition, Amtrak may keep the train at the station for as long as 3 hours, based more upon operational convenience (yard crew availability) than necessity. Amtrak recognizes that a significant reduction in long-distance station dwell time will be needed to facilitate platform capacity enhancements and service expansion at LAUS. For the purposes of this analysis, a dwell time of 30 minutes will be used.

4.3 California High-Speed Rail Authority

4.3.1 Service Hours

HSR service would operate at LAUS from 6:00 AM though midnight, 7 days per week.

4.3.2 Equipment Turn Time and Dwell Time

Per CHSRA, dwell time for trains operating through LAUS is estimated to be 5 minutes. For trainsets that are turning at LAUS, it is estimated that 20 minutes will be required for detraining, sweeping the train, changing operating ends, entraining, and departure. This time would be reduced to 5-minute dwells each upon arrival and departure if a proposed HSR turn facility south of LAUS is constructed.

4.4 Train Consists

Train consist (cars and locomotives) data was gathered from Metrolink and Amtrak and are presented in Table 4-1. A hypothetical HSR consist is also included in Table 4-1 but may be subject to change based upon final design of the planned HSR system.

Table 4-1. Train Consist by Operator								
Operator	Number of Cars	Number of Locomotives	Locomotive Types Used Per Service (manufacturer)					
Metrolink								
Metrolink 4-Car Set (18 in daily service)	4	1	F59 PH (EMD)					
			F59 PHI (EMD)					
Metrolink 5-Car Set (9 in daily service)	5	1	F40PH (EMD)					
Metrolink 6-Car Set (6 in daily service)	6	1	MP36 PH-C (Motive Power Industries)					
			All horizon year consists will use EMD F-125 Spirit locomotives, which started to enter service in 2018.					
Amtrak - Pacific Surfliner								
6-Car Set (bi-level)	6	1	F59 PH (EMD)					
7-Car Set (single-level)	7	1	P42DC (General Electric)					
			All horizon year consists will use Siemens Charger locomotives, which started entering service in 2017.					
Amtrak - Long Distance Trains								
Southwest Chief	10	2	P42DC (General Electric)					
Sunset Limited	9	2	P32-8BWH (General Electric)					
Coast Starlight	11	2	All horizon year consists will use Siemens Charger locomotives.					
CHSRA - High Speed Train (2033)								
AGV High-Speed Trainset (France)*	6	2	Power cars in integrated trainset					

Sources: Metrolink, Amtrak: SCRRA 2012

Notes:

*This is a hypothetical trainset. The actual trainsets used for CHSRA service have not yet been procured.

CHSRA=California High-Speed Rail Authority

4.4.1 Emerging Train Consist Technology

The 2040 Vision in the 2018 California State Rail Plan calls for the use of "greener" technology for locomotives and train consists as the technology becomes commercially available, and includes a recommendation for electrifying/deploying zero-emission vehicle technologies on as much of the passenger rail network as possible, and specifically calls out electrified electric multiple unit (EMU) systems,

diesel multiple units (DMUs), battery-hybrid multiple units, renewable diesel, and other alternative fuels (pgs. 10 and 110)

- Goal 6: Practice Environmental Stewardship, Policy 1: Integrate Environmental Considerations in All Stages of Planning indicates The Rail Plan provides a program-level platform from which more detailed service and environmental analysis must be conducted by the State and rail operators as the 2040 Vision is implemented.
- Goal 6: Practice Environmental Stewardship, Policy 4: Transform to a Clean and Energy Efficient Transportation System indicates The intent of the 2040 Vision is to accommodate additional demand for trips, and grow the rail network in a manner that incorporates substantial electrification of the state network, with improvements possible on additional corridors where there is support to do so... These include more stringent standards for remanufactured locomotives; and a Tier 5 standard for new locomotives that would require capability for zero-emission operation in designated areas, such as disadvantaged and high-traffic regions, to better protect the health of those residents.

Although these emerging technologies exist today, for the purposes of this analysis which is to document train counts/movements, this Rail Planning Technical Memorandum focuses on the use of existing equipment/technology and the most currently known and available information relating to future equipment/technology.

5.0 Future Daily Train Movements at Los Angeles Union Station

Based upon available data, as well as valuable input from the rail operators, Table 5-1 summarizes the estimated total daily train movements (revenue and non-revenue) through LAUS and the total trips during the two 3-hour AM and PM peak operating periods for 2016 and future horizon years 2026, 2031, and 2040. Revenue trains operating through LAUS, such as existing Pacific Surfliner and future Metrolink run-through trains, count as two movements - one inbound and one outbound.

Table 5-1. Existing (20	016) and Future Daily Train Mo	vements			
Transit Operator	Frequency	2016	2026	2031	2040
Metrolink (Regional Rail)	Total Daily	185	410	690	690
Kallj	Revenue Trains	139	370	678	678
	Non-Revenue Trains ¹	46	40	12	12
	6-hour peak	80	144	250	250
Amtrak / LOSSAN	Total Daily ²	48	68	80	140
	Pacific Surfliner	32	48	56	112
	Long-Distance Trains	5	5	5	5
	Non-Revenue Trains ³	11	15	19	23
	6-hour peak	13	21	21	39
CHSRA	Total Daily	—	—	—	272
	Non-Revenue Trains⁴	—	—	—	50
	6-hour peak	_	_	_	132

Source: Appendix A (Existing Condition); Caltrans 2018 California State Rail Plan (Amtrak and Pacific Surfliner), Metrolink SCORE Application (Regional Rail) and CHSRA-provided data (HSR).

Notes:

¹ This includes all deadhead equipment movements between LAUS and the Central Maintenance Facility

² This includes through trains on the Los Angeles – San Diego – San Luis Obispo corridor as well as proposed Coachella Valley Service starting in 2026

³ This includes deadhead equipment movements for Pacific Surfliner and Amtrak Long Distance-trains (Southwest Chief, Sunset Limited/Texas Eagle, Coast Starlight) between LAUS and Amtrak Los Angeles Maintenance Facility

⁴ This includes deadhead equipment movements for HSR trains between LAUS and HSR Los Angeles Maintenance Facility

HSR = High-Speed Rail, LAUS=Los Angeles Union Station , LOSSAN= Los Angeles – San Diego – San Luis Obispo

While the project would provide the largest possible "operating envelope" to increase capacity within the existing station footprint, considering the environmental and constructability constraints, actual operational scenarios and service levels at LAUS are dependent on future service plans, negotiations between the service operators, and available operating funding.

A summary of the projected train movements for the 2026, 2031, and 2040 horizon years is provided below by rail operator:

Metrolink

For 2026, it is estimated that Metrolink would operate 410 train movements per day (inclusive of 40 non-revenue train movements) between LAUS and the Central Maintenance Facility. During the two 3-hour AM and PM peak operating periods, 144 total train movements (72 each in the AM and PM) are anticipated to operate within LAUS. As stated earlier, the ability of LAUS to accommodate the higher Metrolink service levels during phases of construction has not been tested or validated. For 2031, Metrolink estimates that 690 train movements would occur per day. It is assumed that Metrolink's 2031 SCORE service plan would represent a full build-out of Metrolink services for the foreseeable future, so the train counts remain the same for 2040.

Amtrak and LOSSAN

For 2026, it is estimated that Amtrak / LOSSAN would operate 68 train movements per day within LAUS. During the two 3-hour AM and PM peak operating periods, 21 total train movements are anticipated to operate within LAUS. For 2031 and 2040, daily train movements would increase to 80 and 140 movements, respectively. Non-revenue movements for 2026, 2031, and 2040 are rough estimates, as future equipment cycles to support LOSSAN growth plans have not yet been developed.

High-Speed Rail

CHSRA is anticipated to commence operation of the planned HSR system as early as 2033, and plan to operate 272 train movements per day at LAUS by 2040. Of these, 148 would originate from or terminate at LAUS, and 74 would operate through LAUS to-and-from Anaheim. There would also be 50 daily deadhead equipment movements. During the two 3-hour peak AM and PM operating periods, CHSRA would operate 132 train movements. Of these, 88 would originate from or terminate at LAUS, and 44 would operate through LAUS to-and-from Anaheim.

6.0 Conclusion

Metro estimates the project-related capacity enhancements would reduce dwell time at LAUS and contribute to other cumulative benefits for the region, including a regional reduction of greenhouse gas emissions and vehicle miles traveled. Future service scenarios will depend on ongoing negotiations between the railroad operators, available infrastructure (corridor, maintenance facility, etc.), and available operating funding. The project, by itself, does not enable regional/intercity rail providers to meet their service goals, primarily because other infrastructure improvements on the entire system are required to meet the forecasted service levels by 2040.

Based on the results of this memorandum, the Link US environmental documentation will be prepared to include an analysis of potential environmental impacts associated with implementation of the two Build Alternatives, in consideration of the existing and future train movements through LAUS that could occur as a result of the project-related capacity enhancements.

(THIS PAGE INTENTIONALLY LEFT BLANK)

7.0 References

- California Department of Transportation (Caltrans). 2018. 2018 California State Rail Plan. <u>http://www.dot.ca.gov/californiarail/docs/CSRP_Final.pdf</u>
- Southern California Association of Governments. 2016. 2016 Regional Transportation Plan/Sustainable Communities Strategy. <u>http://scagrtpscs.net/Documents/2016/final/f2016RTPSCS.pdf</u>.
- Southern California Regional Rail Authority. 2012. *Metrolink Fleet Plan 2012-2017*. <u>http://metrolink.granicus.com/DocumentViewer.php?file=metrolink_0e45aa65088f01bf84c11a7c</u> <u>b31dab4b.pdf&view=1</u>
- ——— 2018a. Metrolink Transit and Intercity Rail Capital Program 2018 Funding Application.
- 2018b. Email exchange with HDR. October 2018.

(THIS PAGE INTENTIONALLY LEFT BLANK)

Appendix A: Existing Metrolink and Amtrak Train Schedules

EFFECTIVE JUNE 6 2016

metrolinktrains.com

VENTURA COUNTY LINE • 100 & 900 SERIES

MONDAY THROUGH FRIDAY

								MA								
Metrolink Service No.	100	900	102	104	106	902	108	A768	110	112	116	904	906	150	118	910
Ventura - East			5:25	6:03	6:42											
Oxnard ★			5:39	6:17	6:56			7:43								
Camarillo ★			5:49	6:27	7:06			7:54								
Moorpark ★	5:04		6:00	6:38	7:17			8:08	8:25		2:18				4:57	
Simi Valley ★	5:17		6:13	6:51	7:30			8:23	8:38		2:31				5:10	
Chatsworth ★	5:28		6:24	7:02	7:41		8:25	8:40	8:49	10:50	2:42			4:40	5:27	
Northridge	5:33		6:29	7:07	7:46		8:30	8:46	8:54	10:55	2:47			4:45	5:32	
Van Nuys ★	5:41		6:37	7:15	7:54		8:38	8:56	9:02	11:03	2:55			4:53	5:45	
Burbank/Bob Hope Airport ★	5:49	6:13	6:45	7:23	8:02	8:35	8:46	9:04	9:10	11:11	3:03	3:37	4:15	5:05	5:53	8:30
Burbank - Downtown	5:55	6:17	6:52	7:30	8:08	8:39	8:52	9:09	9:16	11:17	3:09	3:41	4:19	5:10	5:59	8:35
Glendale ★	6:02	6:23	6:59	7:37	8:15	8:45	8:59	9:16	9:23	11:26	3:16	3:47	4:25	5:16	6:06	8:40
L.A. Union Station ★	6:15	6:38	7:14	7:50	8:30	9:02	9:17	9:35	9:42	11:40	3:33	4:00	4:40	5:30	6:20	8:55

MONDAY THROUGH FRIDAY

				MA													
Metrolink Service No.	901	101	103	A761	903	905	907	107	109	909	155	115	117	119	121	123	911
L.A. Union Station ★	5:38	6:52	7:15	7:35	8:00	8:30	8:55	9:50	12:43	2:50	3:15	3:35	4:33	5:10	5:55	6:40	7:45
Glendale ★	5:48	7:01	7:25	7:48	8:10	8:40	9:05	10:00	12:53	3:00	3:25	3:45	4:43	5:20	6:05	6:50	7:55
Burbank - Downtown	5:54	7:07	7:31	\downarrow	8:16	8:46	9:11	10:06	12:59	3:06	3:31	3:51	4:49	5:26	6:11	6:56	8:01
Burbank/Bob Hope Airport ★	6:01	7:12	7:36	8:00	8:25	8:55	9:20	10:11	1:04	3:15	3:36	3:56	4:54	5:31	6:16	7:01	8:10
Van Nuys ★		7:23	7:43	8:10				10:19	1:11		3:43	4:03	5:01	5:38	6:23	7:08	
Northridge		7:31	8:00	8:19				10:28	1:19		3:51	4:11	5:09	5:46	6:31	7:16	
Chatsworth ★		7:38	8:10	8:32				10:35	1:26		4:05	4:18	5:16	5:53	6:38	7:23	
🕈 Simi Valley ★		7:52		8:45					1:38			4:30	5:28	6:05	6:50	7:35	
Moorpark ★		8:10		8:57					1:58			4:47	5:40	6:17	7:08	7:47	
Camarillo ★				9:10									5:51	6:28		7:58	
Oxnard ★				9:21									6:01	6:38		8:14	
Ventura - East													6:20	6:57		8:37	

AM times PM times

9

NOTES: See page 3

L.A. to Ventura

VENTURA COUNTY LINE • 100 & 900 SERIES

VENTURA COUNTY LINE • AMTRAK SERVICE OXNORD to L.A.

L.A. to Oxnard

ΔΙΙΥ

All Metrolink ticket holders (including One-Way, Round-Trip, 7-Day or Monthly Pass) may, within the origin and destination of their ticket or pass, ride ANY Amtrak Pacific Surfliner train between Los Angeles and Burbank/Bob Hope Airport at no additional cost as part of the Rail 2 Rail® program. Holiday blackout dates may apply, and schedules subject to

change. For details, please visit metrolinktrains.com/rail2rail

8

.. . . . * A768 a ٨

* A/68 sto	ps at Northridge
and Burl	ank - Downtown
Monday	Friday only.
AM times	PM times

			D	AIL	. Y		
Amtrak Service No.	A768*	A774	A784	A790	A1790	A796	
Ventura - East							L.A
Oxnard ★	7:43	10:18	2:57	5:07	5:35	7:51	Gle
Camarillo ★	7:54	10:35	3:08	↓	↓	8:02	Bur
Moorpark ★	8:08	\downarrow	3:20	5:36	6:04	\downarrow	Bur
Simi Valley ★	8:23	11:02	3:35	5:54	6:20	8:38	Var
Chatsworth ★	8:40	11:14	3:52	6:12	6:33	8:50	No
Northridge	8:46	\downarrow	\downarrow	↓	↓	\downarrow	Cho
Van Nuys ★	8:56	11:28	4:14	6:31	6:45	9:06	Sim
Burbank/Bob Hope Airport ★	9:04	11:35	4:22	6:39	6:53	9:13	Мо
Burbank - Downtown	9:09	\downarrow	\downarrow	↓	↓	\downarrow	Car
Glendale ★	9:16	11:45	4:32	6:50	7:04	9:23	0xi
L.A. Union Station ★	9:35	12:15	4:50	7:10	7:20	9:45	Ver
AMTRAK TRAINS FOR				M-F	Sa-Su		AM
MONTHLY PASS HOLDERS ON	ILY						MO

			~	~ • •		
Amtrak Service No.	A761	A1761	A763	A769	A777	A785
L.A. Union Station ★	7:35	7:50	9:20	12:30	3:05	7:15
Glendale ★	7:48	8:02	9:32	12:42	3:17	7:27
Burbank - Downtown	\downarrow	↓	\downarrow	\downarrow	\downarrow	\downarrow
Burbank/Bob Hope Airport ★	8:00	8:12	9:42	12:52	3:27	7:37
Van Nuys ★	8:10	8:21	9:52	1:02	3:37	7:47
Northridge	8:19	↓↓	\downarrow	↓	\downarrow	\downarrow
Chatsworth ★	8:32	8:33	10:04	1:14	3:49	7:59
Simi Valley ★	8:45	8:45	10:16	1:26	4:01	8:11
Moorpark ★	8:57	8:57	\downarrow	1:39	\downarrow	\downarrow
Camarillo ★	9:10	9:10	10:40	1:54	4:27	8:35
Oxnard ★	9:21	9:21	10:53	2:05	4:38	8:46
Ventura - East						
AMTRAK TRAINS FOR	M-F	Sa-Su				

ITHLY PASS HOLDERS ONLY

ANTELOPE VALLEY LINE • 200 SERIES

MONDAY THROUGH FRIDAY

	Metrolink Service No.	200	202	204	282	206	208		210	212		214	216	218	220		222		224	226
Lar	ıcaster	3:58	4:55	5:20		6:10	6:52			9:00			11:35		1:40					6:05
Pal	mdale	4:07	5:04	5:29	6:07	6:19	7:01	7:50		9:09	10:30		11:44		1:49	2:00		4:00		6:15
Vin	cent Grade/Acton	4:18	5:15	5:40		6:30	7:12			9:20			11:55		2:00					\downarrow
Via	Princessa	4:50	5:49	6:14	V	7:04	7:46		9:03	9:54		11:25	12:29	1:45	2:34		3:15			7:12
Sar	ıta Clarita	4:56	5:55	6:20	6:53	7:10	7:52	Ļ	9:09	10:00	\downarrow	11:31	12:35	1:51	2:40	\downarrow	3:21	\downarrow	5:05	7:18
Nev	vhall	5:03	6:02	6:27	\downarrow	7:17	7:59	8:40 :	► 9:16	10:08	11:20>	11:38	12:42	1:57	2:47	2:50	► 3:28	4:50	► 5:13	7:25
🕽 Syl	mar/San Fernando	5:16	6:16	6:41	7:12	7:32	8:13		9:30	10:23		11:57	12:57	2:11	3:02		3:42		5:27	7:39
Sur	ı Valley	5:23	6:23	6:57	↓	7:40	8:20		9:37	10:31		12:04	1:10	2:21	3:14		3:49		5:34	7:46
Bui	bank - Downtown	5:30	6:31	7:03	7:25	7:48	8:27		9:45	10:38		12:11	1:17	2:28	3:22		3:56		5:41	7:54
Gle	ndale ★	5:37	6:38	7:09	Ļ	7:55	8:33		9:54	10:44		12:17	1:24	2:34	3:29		4:02		5:48	8:00
L.A	. Union Station ★	5:53	6:55	7:26	7:42	8:15	8:55		10:11	11:05		12:40	1:45	2:50	3:50		4:20		6:10	8:25

Research County TRANSporter bus service.

MONDAY THROUGH FRIDAY

Metrolink Service No.	201	203		205	207		209	211	213		215	217		219	285	221	223	225	227
L.A. Union Station ★	6:30	7:30		8:25	9:40		11:15	12:00	1:55		3:40	4:00		4:45	5:35	5:50	6:30	7:40	9:25
Glendale ★	6:41	7:40		8:36	9:50		11:25	12:11	2:05		3:50	4:10		4:55	\downarrow	6:00	6:40	7:50	9:35
Burbank - Downtown	6:47	7:46		8:42	9:56		11:31	12:17	2:11		3:56	4:16		5:01	5:49	6:06	6:46	7:56	9:41
Sun Valley	6:52	7:52		8:48	10:02		11:37	12:23	2:17		4:02	4:22		5:07	\downarrow	6:12	6:52	8:02	9:47
Sylmar/San Fernando	6:59	8:00		8:56	10:10		11:45	12:32	2:25		4:11	4:30		5:15	6:02	6:20	7:00	8:10	9:55
Newhall	7:18	8:17 >	► 8:50	9:10	10:23 >	-10:35	11:59	12:45	2:38 >	- 2:50	4:24	4:43 >	- 5:00	5:34	\downarrow	6:33	7:13	8:23	10:08
Santa Clarita	7:25	8:24		9:18	10:31		12:07	12:52	2:45		4:31	4:55		5:41	6:22	6:41	7:20	8:31	10:15
Via Princessa	7:31	8:43		9:24	10:50		12:14	1:06	3:00		4:37			5:48		6:47	7:26	8:37	10:21
Vincent Grade/Acton	8:10		\downarrow	10:05		Ļ	12:52			\downarrow	5:14		\downarrow	6:25	\downarrow	7:21	8:03	9:12	10:58
Palmdale	8:20		9:40	10:15		11:25	1:02			3:40	5:25		5:50	6:35	7:08	7:32	8:13	9:21	11:08
Lancaster	8:40			10:45			1:20				5:50			6:55		8:00	8:32	9:40	11:25

Rorth County TRANSporter bus service. Northbound TRANSporter bus stops at the Vincent Grade/Acton Metrolink station by request only.

AM times PM times

NOTES: See page 3

L.A. to Lancaster

ANTELOPE VALLEY LINE • 200 SERIES

ANTELOPE VALLEY LINE

Lancaster to L.A.

L.A. to Lancaster

SATURDAY AND SUNDAY

Metrolink Service No.	260	262	26 4	266	268	270
Lancaster	6:25	8:55	11:10	12:40	2:25	6:15
Palmdale	6:34	9:05	11:19	12:49	2:34	6:24
Vincent Grade/Acton	6:45	9:16	11:30	12:59	2:45	6:35
Via Princessa	7:19	9:53	12:04	1:32	3:19	7:12
Santa Clarita	7:25	10:00	12:10	1:38	3:25	7:18
Newhall	7:32	10:07	12:17	1:45	3:32	7:25
Sylmar/San Fernando	7:46	10:21	12:34	1:59	3:46	7:39
Sun Valley	7:53	10:28	12:41	2:06	3:53	7:46
Burbank - Downtown	8:00	10:35	12:48	2:13	3:59	7:53
Glendale ★	8:07	10:42	12:55	2:20	4:05	8:00
L.A. Union Station ★	8:25	11:00	1:15	2:40	4:30	8:20

SATURDAY AND SUNDAY

Metrolink Service No.	261	263	265	267	269	271
L.A. Union Station ★	8:45	11:40	2:15	3:50	5:25	8:55
Glendale ★	8:55	11:50	2:25	4:00	5:35	9:05
Burbank - Downtown	9:02	11:57	2:32	4:07	5:42	9:12
Sun Valley	9:08	12:03	2:38	4:13	5:48	9:18
Sylmar/San Fernando	9:16	12:11	2:46	4:21	5:56	9:26
Newhall	9:30	12:25	3:00	4:35	6:10	9:40
Santa Clarita	9:38	12:33	3:08	4:43	6:18	9:48
Via Princessa	9:44	12:39	3:13	4:49	6:24	9:54
Vincent Grade/Acton	10:25	1:23	3:52	5:27	7:02	10:32
Palmdale	10:36	1:33	4:01	5:38	7:14	10:43
Lancaster	10:55	1:50	4:20	5:55	7:25	11:00

SAN BERNARDINO LINE • 300 SERIES

San Bernardino to L.A.

MONDAY THROUGH FRIDAY

Metrolink Service No.	301	303	305	307	309	311	313	315	317	319	321	323	325	327	329	331	333	335	337
San Bernardino	3:48	4:21	4:40	5:12	5:38	6:00	6:28	6:53	7:59	8:49	9:59	11:33	12:28	1:35	3:12	4:00	5:16	6:14	7:49
Rialto	3:59	4:32	4:50	5:23	5:49	6:11	6:38	7:04	8:10	9:01	10:09	11:44	12:38	1:45	3:22	4:10	5:27	6:25	8:00
Fontana	4:06	4:38	4:57	5:30	5:56	6:17	6:45	7:11	8:17	9:06	10:16	11:53	12:47	1:52	3:31	4:17	5:34	6:34	8:06
Rancho Cucamonga	4:14	4:47	5:06	5:38	6:04	6:26	6:54	7:19	8:25	9:17	10:25	12:02	12:56	2:01	3:40	4:26	5:43	6:54	8:15
Upland	4:22	4:54	5:13	5:46	6:12	6:34	7:01	7:27	8:33	9:24	10:33	12:09	1:03	2:09	3:47	4:33	5:51	7:02	8:23
Montclair	4:28	5:00	5:19	5:52	6:18	6:39	7:07	7:33	8:39	9:30	10:39	12:15	1:09	2:15	3:53	4:39	5:57	7:08	8:28
Claremont	4:31	5:04	5:23	5:55	6:21	6:43	7:11	7:36	8:42	9:33	10:43	12:18	1:13	2:19	3:56	4:42	6:01	7:11	8:32
Pomona - North	4:36	5:09	5:28	6:00	6:26	6:48	7:15	7:41	8:47	9:38	10:47	12:23	1:17	2:23	4:01	4:49	6:11	7:17	8:37
Covina	4:47	5:20	5:39	6:11	6:37	6:59	7:27	7:52	8:58	9:49	10:58	12:34	1:29	2:35	4:12	5:00	6:23	7:28	8:48
Baldwin Park	4:54	5:27	5:46	6:18	6:44	7:06	7:34	7:59	9:05	9:56	11:05	12:41	1:35	2:41	4:19	5:12	6:30	7:35	8:55
El Monte	5:04	5:37	5:56	6:28	6:54	7:16	7:43	8:09	9:15	10:06	11:15	12:51	1:45	2:51	4:32	5:22	6:48	7:52	9:05
Cal State L.A.	5:15	5:48	6:08	6:39	7:05	7:27	7:56	8:20	9:28	10:17	11:28	1:04	1:57	3:03	4:45	5:35	6:59	8:03	9:17
L.A. Union Station ★	5:26	5:59	6:19	6:50	7:16	7:38	8:07	8:31	9:39	10:28	11:39	1:15	2:07	3:13	4:55	5:47	7:10	8:14	9:27

6

NOTES: See page 3

MONDAY THROUGH FRIDAY

Metrolink Service No.	300	302	304	306	308	310	312	314	316	318	320	322	324	326	328	330	332	334	336
L.A. Union Station ★	5:46	7:34	9:05	10:17	11:05	12:41	1:55	3:01	3:33	3:55	4:22	4:58	5:12	5:35	6:05	6:24	7:28	8:39	9:46
Cal State L.A.	5:59	7:48	9:18	10:30	11:19	12:55	2:08	3:15	3:47	4:09	4:35	5:11	5:25	5:52	6:19	6:37	7:41	8:52	10:00
El Monte	6:16	8:07	9:35	10:41	11:36	1:11	2:20	3:26	3:58	4:20	4:52	5:22	5:42	6:03	6:30	6:48	7:52	9:04	10:11
Baldwin Park	6:29	8:19	9:45	10:51	11:46	1:22	2:30	3:36	4:08	4:30	5:02	5:32	5:52	6:13	6:40	6:58	8:02	9:14	10:21
Covina	6:36	8:26	9:53	10:59	11:53	1:29	2:37	3:43	4:15	4:37	5:10	5:40	6:00	6:22	6:48	7:06	8:10	9:21	10:28
Pomona - North	6:50	8:40	10:06	11:12	12:06	1:42	2:50	3:56	4:29	4:50	5:23	5:53	6:13	6:35	7:01	7:19	8:23	9:34	10:42
Claremont	6:55	8:45	10:11	11:17	12:11	1:47	2:55	4:01	4:34	4:56	5:28	5:58	6:18	6:40	7:06	7:24	8:28	9:39	10:47
Montclair	7:06	8:49	10:15	11:21	12:15	1:51	2:59	4:05	4:38	5:00	5:32	6:02	6:22	6:44	7:10	7:28	8:32	9:43	10:51
Upland	7:12	8:54	10:21	11:27	12:21	1:57	3:05	4:11	4:43	5:05	5:38	6:08	6:28	6:50	7:16	7:34	8:38	9:49	10:56
Rancho Cucamonga	7:19	9:02	10:28	11:34	12:28	2:04	3:12	4:25	4:51	5:12	5:45	6:15	6:35	6:57	7:23	7:41	8:45	9:56	11:04
Fontana	7:31	9:17	10:39	11:45	12:39	2:15	3:23	4:36	5:01	5:23	5:55	6:26	6:46	7:07	7:33	7:52	8:56	10:07	11:14
Rialto	7:39	9:23	10:45	11:51	12:45	2:21	3:29	4:42	5:07	5:34	6:02	6:32	6:52	7:14	7:40	8:05	9:02	10:13	11:21
San Bernardino	7:48	9:32	10:54	12:00	12:54	2:30	3:38	4:51	5:16	5:43	6:11	6:41	7:01	7:23	7:49	8:14	9:11	10:22	11:29

AM times PM times

NOTES: See page 3

L.A. to San Bernardino

SAN BERNARDINO LINE • 300 SERIES

SAN BERNARDINO LINE • 300 SERIES

San Bernardino to L.A.

SATURDAY

Metrolink Service No.	351	353	357	359	363	367	369	373	377	379
San Bernardino	7:00	8:25	9:50	11:30	1:05	2:07	3:35	4:55	6:30	9:15
Rialto	7:07	8:32	9:57	11:37	1:12	2:14	3:42	5:02	6:37	9:22
Fontana	7:12	8:37	10:02	11:42	1:17	2:19	3:47	5:07	6:42	9:27
Rancho Cucamonga	7:21	8:46	10:11	11:50	1:26	2:28	3:56	5:16	6:51	9:36
Upland	7:28	8:53	10:20	11:59	1:35	2:36	4:04	5:25	7:00	9:45
Montclair	7:34	8:59	10:26	12:05	1:41	2:42	4:10	5:31	7:06	9:51
Claremont	7:37	9:02	10:29	12:08	1:44	2:45	4:13	5:34	7:09	9:56
Pomona - North	7:41	9:06	10:34	12:13	1:49	2:49	4:18	5:39	7:14	10:00
Covina	7:51	9:16	10:44	12:23	1:59	2:59	4:28	5:49	7:24	10:10
Baldwin Park	7:57	9:21	10:50	12:29	2:05	3:05	4:39	5:55	7:30	10:16
El Monte	8:07	9:35	11:01	12:43	2:19	3:14	4:49	6:09	7:44	10:30
Cal State L.A.	8:19	9:48	11:14	12:55	2:32	3:27	5:01	6:22	7:56	10:42
L.A. Union Station ★	8:35	10:05	11:30	1:15	2:50	3:40	5:15	6:40	8:15	10:55

		3 U	NV	AI		
351	357	359	361	367	369	377
7:00	9:50	11:30	12:30	2:07	3:35	6:30
7:07	9:57	11:37	12:36	2:14	3:42	6:37
7:12	10:02	11:42	12:41	2:19	3:47	6:42
7:21	10:11	11:50	12:49	2:28	3:56	6:51
7:28	10:20	11:59	12:56	2:36	4:04	7:00
7:34	10:26	12:05	1:01	2:42	4:10	7:06
7:37	10:29	12:08	1:04	2:45	4:13	7:09
7:41	10:34	12:13	1:08	2:49	4:18	7:14
7:51	10:44	12:23	1:17	2:59	4:28	7:24
7:57	10:50	12:29	1:23	3:05	4:39	7:30
8:07	11:01	12:43	1:32	3:14	4:49	7:44
8:19	11:14	12:55	1:43	3:27	5:01	7:56
8:35	11:30	1:15	2:00	3:40	5:15	8:15

AM times PM times

NOTES: See page 3

SATURDAY

Metrolink Service No.	352	354	358	362	364	366	368	372	376	378
L.A. Union Station ★	6:15	9:00	10:35	12:10	1:45	4:00	5:35	7:10	9:00	11:30
Cal State L.A.	6:25	9:10	10:46	12:21	1:56	4:11	5:46	7:21	9:10	11:40
El Monte	6:35	9:20	10:57	12:32	2:07	4:21	5:57	7:32	9:21	11:50
Baldwin Park	6:43	9:30	11:07	12:42	2:17	4:29	6:07	7:42	9:31	11:58
Covina	6:51	9:38	11:15	12:50	2:25	4:38	6:15	7:50	9:39	12:05
Pomona - North	7:02	9:50	11:27	1:02	2:36	4:49	6:27	8:02	9:50	12:16
Claremont	7:06	9:54	11:31	1:06	2:40	4:54	6:31	8:06	9:54	12:20
Montclair	7:10	9:58	11:35	1:10	2:44	4:58	6:35	8:10	9:58	12:24
Upland	7:15	10:03	11:40	1:15	2:50	5:04	6:40	8:16	10:04	12:29
Rancho Cucamonga	7:24	10:14	11:51	1:26	2:58	5:15	6:51	8:23	10:11	12:36
Fontana	7:33	10:23	12:00	1:35	3:07	5:24	7:00	8:32	10:20	12:45
Rialto	7:39	10:29	12:06	1:41	3:13	5:30	7:06	8:38	10:26	12:51
San Bernardino	7:54	10:45	12:22	2:00	3:30	5:45	7:22	8:54	10:40	1:05

SUNDAY

	354	356	362	364	366	368	376
Ī	9:00	10:10	12:10	1:45	4:00	5:35	9:00
Ĩ	9:10	10:21	12:21	1:56	4:11	5:46	9:10
	9:20	10:31	12:32	2:07	4:21	5:57	9:21
	9:30	10:40	12:42	2:17	4:29	6:07	9:31
	9:38	10:48	12:50	2:25	4:38	6:15	9:39
	9:50	10:59	1:02	2:36	4:49	6:27	9:50
	9:54	11:03	1:06	2:40	4:54	6:31	9:54
	9:58	11:07	1:10	2:44	4:58	6:35	9:58
	10:03	11:12	1:15	2:50	5:04	6:40	10:04
	10:14	11:19	1:26	2:58	5:15	6:51	10:11
	10:23	11:28	1:35	3:07	5:24	7:00	10:20
	10:29	11:40	1:41	3:13	5:30	7:06	10:26
	10:45	11:52	2:00	3:30	5:45	7:22	10:40

AM times PM times

0

NOTES: See page 3

SAN BERNARDINO LINE • 300 SERIES

L.A. to San Bernardino

RIVERSIDE LINE

Riverside to L.A.

L.A. to Riverside

MONDAY THROUGH FRIDAY

Metrolink Service No.	401	403	405	407	409	411
Riverside - Downtown	4:47	5:42	6:15	6:50	8:10	3:07
Pedley	4:58	5:53	6:26	7:01	8:21	3:18
Ontario - East	5:08	6:03	6:36	7:11	8:31	3:28
Pomona - Downtown	5:20	6:15	6:48	7:23	8:43	3:40
Industry	5:29	6:24	6:57	7:32	8:52	3:49
Montebello/Commerce	5:47	6:42	7:15	7:50	9:10	4:07
L.A. Union Station ★	6:10	7:07	7:35	8:15	9:35	4:35

MONDAY THROUGH FRIDAY

Metrolink Service No.	402	404	406	408	410	412
L.A. Union Station ★	1:20	4:15	5:00	5:30	6:00	6:30
Montebello/Commerce	1:37	4:32	5:17	5:47	6:17	6:47
Industry	1:55	4:50	5:35	6:05	6:35	7:05
Pomona - Downtown	2:04	4:59	5:44	6:14	6:44	7:14
Ontario - East	2:16	5:12	5:56	6:26	6:56	7:26
Pedley	2:28	5:24	6:08	6:38	7:08	7:38
Riverside - Downtown	2:48	5:42	6:27	6:58	7:25	7:57

Check 91 Line schedule for additional trains to Riverside - Downtown via Fullerton.

8

91/PERRIS VALLEY LINE

Perris to L.A.

L.A. to Perris

MONDAY THROUGH FRIDAY

Metrolink Service No.	701	703	705	731	733	735	707
Perris - South	4:37	5:06	5:42	7:45	11:30	2:45	
Perris - Downtown	4:45	5:13	5:50	7:51	11:36	2:51	
Moreno Valley/March Field	4:58	5:25	6:03	8:08	11:53	3:08	
Riverside - Hunter Park/UCR	5:09	5:36	6:14	8:23	12:08	3:23	
Riverside - Downtown	5:27	5:56	6:32	8:35	12:20	3:35	6:07
Riverside - La Sierra	5:37	6:04	6:42				6:17
Corona - North Main	5:45	6:12	6:50				6:25
Corona - West	5:51	6:18	6:56				6:31
Fullerton ★	6:16	6:43	7:21				6:54
Buena Park	6:23	6:50	7:29				7:00
Norwalk/Santa Fe Springs	6:31	6:58	7:36				7:06
L.A. Union Station ★	7:05	7:32	8:10				7:45

MONDAY THROUGH FRIDAY

Metrolink Service No.	700	732	734	736	702	704	706	708
L.A. Union Station ★	5:45				3:35	4:20	5:30	6:50
Norwalk/Santa Fe Springs	6:06				3:56	4:41	5:51	7:11
Buena Park	6:12				4:03	4:47	5:57	7:17
Fullerton ★	6:19				4:09	4:54	6:04	7:24
Corona - West	6:43				4:35	5:18	6:28	7:48
Corona - North Main	6:50				4:41	5:25	6:35	7:55
Riverside - La Sierra	6:59				4:50	5:34	6:44	8:04
Riverside - Downtown	7:15	9:10	1:00	4:30	5:03	5:45	6:55	8:25
Riverside - Hunter Park/UCR		9:23	1:13	4:43	5:16	5:58	7:08	
Moreno Valley/March Field		9:36	1:26	4:57	5:29	6:11	7:16	
Perris - Downtown		9:55	1:45	5:16	5:48	6:30	7:35	
Perris - South		10:05	1:55	5:25	6:00	6:40	7:50	

Check Orange County Line and Inland Empire-Orange County Line schedules for additional trains along this corridor. Check Riverside Line schedule for additional trains to Riverside-Downtown.

R

SATURDAY AND SUNDAY

Metrolink Service No.	751	753
Riverside - Downtown	7:50	9:00
Riverside - La Sierra	8:00	9:10
Corona - North Main	8:08	9:18
Corona - West	8:14	9:24
Fullerton ★	8:39	9:49
Buena Park	8:46	9:56
Norwalk/Santa Fe Springs	8:54	10:04
L.A. Union Station ★	9:30	10:40

SATURDAY AND SUNDAY

Metrolink Service No.	752	754
L.A. Union Station ★	3:15	7:12
Norwalk/Santa Fe Springs	3:36	7:33
Buena Park	3:42	7:39
Fullerton ★	3:49	7:46
Corona - West	4:13	8:10
Corona - North Main	4:20	8:17
Riverside - La Sierra	4:29	8:26
Riverside - Downtown	4:52	8:52

Check Orange County Line and Inland Empire-Orange County Line schedules for additional trains along this corridor.

AM times PM times

NOTES: See page 3

L.A. to Riverside

91/PERRIS VALLEY LINE Riverside to L.A.

ORANGE COUNTY LINE • 600 SERIES

Oceanside to L.A.

MONDAY THROUGH FRIDAY

Metrolink Service No.	681	601	603	605	683	607	685	687	633	635	641	609	689	643	707	645	
Oceanside ★		4:43	5:16	5:42		6:34					2:59	3:26					
San Clemente Pier ★		\downarrow	\downarrow	\downarrow		\downarrow					\downarrow	\downarrow					
San Clemente		5:06	5:38	6:04		6:56					3:21	3:48					
San Juan Capistrano ★		5:15	5:47	6:13		7:05					3:31	3:57					
Laguna Niguel/Mission Viejo	4:05	5:22	5:53	6:19		7:11	8:03	8:43	8:58	11:30	3:39	4:04		5:55		8:50	
Irvine ★	4:15	5:32	6:03	6:29	7:10	7:22	8:13	8:54	9:08	11:40	3:50	4:15	5:17	6:05		9:00	
• Tustin	4:21	5:38	6:09	6:36	7:16	7:28	8:19	9:00	9:14	11:46	3:57	4:22	5:23	6:11		9:06	
Santa Ana ★	4:27	5:44	6:16	6:43	7:22	7:34	8:25	9:06	9:20	11:52	4:04	4:29	5:29	6:17		9:12	
Orange	4:32	5:52	6:21	6:49	7:27	7:39	8:30	9:11	9:25	11:57	4:09	4:34	5:34	6:22		9:17	
Anaheim ★	4:36	5:57	6:26	6:55	7:32	7:44	8:35	9:16	9:29	12:01	4:14	4:39	5:39	6:27		9:22	
Fullerton ★	4:43	6:04	6:35	7:02	7:41	7:51	8:42	9:25	9:41	12:15	4:24	4:46	5:46	6:40>	6:54	9:35	
Buena Park	4:49	6:10	6:41	7:08	7:47	7:57	8:48	9:30				4:52	5:52		7:00		
Norwalk/Santa Fe Springs	4:57	6:18	6:49	7:16	7:55	8:05	8:56	9:37				5:00	6:00		7:06		
Commerce	\downarrow	\downarrow	7:00	7:26	\downarrow	8:19	9:08	\downarrow				\downarrow	\downarrow		\downarrow		
L.A. Union Station ★	5:25	6:45	7:20	7:45	8:19	8:40	9:26	10:04				5:26	6:27		7:45		

Check 91 Line and Inland Empire-Orange County Line schedules for additional trains along this corridor.

AM times PM times

NOTES: See page 3

MONDAY THROUGH FRIDAY

Metrolink Service No.	682	600	632	634	684	602	686	640	604	688	606	608	708	642	644
L.A. Union Station ★	6:50	7:58			2:11	3:19	3:47		4:30	4:50	5:46	6:40	6:50		
Commerce	\downarrow	Ļ			\downarrow	3:33	4:01		4:44	↓	6:00	\downarrow	↓		
Norwalk/Santa Fe Springs	7:12	8:20			2:33	3:43	4:12		4:55	5:12	6:10	7:03	7:11		
Buena Park	7:19	8:27			2:40	3:50	4:19		5:03	5:19	6:17	7:10	7:17		
Fullerton ★	7:25	8:33	10:00	1:40	2:46	3:56	4:25	4:55	5:10	5:25	6:23	7:16	7:24	≻7:35	10:10
Anaheim ★	7:32	8:40	10:07	1:47	2:54	4:03	4:33	5:02	5:17	5:33	6:31	7:23		7:43	10:18
Orange	7:38	8:45	10:12	1:52	2:59	4:08	4:38	5:07	5:22	5:39	6:37	7:28		7:47	10:23
🖇 Santa Ana ★	7:44	8:50	10:17	1:57	3:05	4:13	4:43	5:12	5:27	5:45	6:42	7:33		7:52	10:27
Tustin	7:51	8:56	10:23	2:03	3:12	4:19	4:49	5:18	5:33	5:52	6:48	7:39		7:58	10:33
Irvine ★	8:00	9:04	10:31	2:11	3:21	4:27	5:02	5:26	5:41	6:01	6:56	7:47		8:05	10:41
Laguna Niguel/Mission Viejo	8:15	9:14	10:44	2:25	3:36	4:40		5:40	5:51	6:15	7:06	7:58		8:20	10:51
San Juan Capistrano ★		9:20				4:46			5:57		7:12	8:04			10:58
San Clemente		9:30				4:59			6:06		7:22	8:17			11:07
San Clemente Pier ★		\downarrow				\downarrow			\downarrow		\downarrow	\downarrow			\downarrow
Oceanside ★		10:01				5:28			6:37		7:54	8:46			11:35

Train 644 may be held for special events in Anaheim. Please visit metrolinktrains.com for details.

Check 91 Line and Inland Empire-Orange County Line schedules for additional trains along this corridor.

AM times PM times

NOTES: See page 3

L.A. to Oceanside

ORANGE COUNTY LINE • 600 SERIES

8

ORANGE COUNTY LINE L.A. to Oceanside

SATURDAY AND SUNDAY

Metrolink Service No.	660	662	664	666
L.A. Union Station ★	8:40	10:50	2:00	4:40
Commerce	\downarrow	\downarrow	\downarrow	\downarrow
Norwalk/Santa Fe Springs	9:02	11:12	2:22	5:02
Buena Park	9:09	11:19	2:29	5:09
Fullerton ★	9:15	11:25	2:35	5:15
Anaheim ★	9:22	11:32	2:42	5:22
Orange	9:27	11:37	2:47	5:27
Santa Ana ★	9:32	11:42	2:52	5:32
Tustin	9:38	11:48	2:58	5:38
Irvine ★	9:46	11:56	3:06	5:46
Laguna Niguel/Mission Viejo	9:56	12:06	3:16	5:56
San Juan Capistrano ★	10:01	12:13	3:21	6:01
San Clemente	10:12	12:25	3:34	6:15
San Clemente Pier ★	10:15	12:28	3:36	6:18
Oceanside ★	10:52	1:00	4:15	6:55

SATURDAY AND SUNDAY

Metrolink Service No.	661	663	665	667
Oceanside ★	8:15	11:24	1:24	5:36
San Clemente Pier ★	8:35	11:48	1:43	5:55
San Clemente	8:38	11:50	1:46	5:58
San Juan Capistrano ★	8:50	12:00	2:00	6:11
Laguna Niguel/Mission Viejo	8:58	12:08	2:07	6:19
Irvine ★	9:08	12:19	2:17	6:29
Tustin	9:14	12:25	2:23	6:35
Santa Ana ★	9:20	12:31	2:29	6:41
Orange	9:25	12:36	2:34	6:46
Anaheim ★	9:30	12:41	2:39	6:51
Fullerton ★	9:37	12:48	2:46	6:58
Buena Park	9:43	12:54	2:52	7:04
Norwalk/Santa Fe Springs	9:51	1:02	3:00	7:12
Commerce	\downarrow	Ļ	Ļ	↓
L.A. Union Station ★	10:30	1:37	3:39	7:56

AM times PM times

Oceanside to L.A.

AMTRAK SCHEDULE - 2014/2016

PACIFIC SURFLINER® SAN LUIS OBISPO - LOS ANGELES - SAN DIEGO

Effective June 6, 2016

SAN LUIS OBISPO - SANTA BARBARA VENTURA - LOS ANGELES ORANGE COUNTY - SAN DIEGO

and intermediate stations

CALIFORNIA COASTAL SERVICES

connecting
NORTHERN AND SOUTHERN CALIFORNIA

Includes: Summer Service for Del Mar Also: New Transit Transfer Program

Visit PacificSurfliner.com

www.amtrak.com

Amtrak is a registered service mark of the National Railroad Passenger Corporation. National Railroad Passenger Corporation, Washington Union Station, 60 Massachusetts Ave. N.E., Washington, DC 20002.

NRPC Form W31–50M–6/6/16 Stock#02-3313R. Schedules subject to change without notice.

page 2

PACIFIC SURFLINER-Southbound

				,		,	,				
Train Number ►				5804	5818	562	564	1566	566	768	768
Normal Days of Operation 🕨				Daily	Daily	Daily	Daily	SaSuHo	Mo-Fr	SaSu	Daily
Will Also Operate >								9/5,11/24, 12/26,1/2		*See Note	
Will Not Operate >									9/5,11/24, 12/26,1/2		*See Note
On Board Service >						B ☑ ഥ⊡ 🗟 🚴	B 🖸 亡 🗟 🚴	B 🖸 亡 🗟 🚴	B 🖸 亡 🗟 🚴	B 🖸 亡 🗟 🚴	B ☑ ഥ⊡ ≝ 🚴
	Mile	Symbol	-								
SAN LUIS OBISPO, CA -Cal Poly -Amtrak Station Grover Beach, CA Santa Maria, CA-IHOP Guadalupe-Santa Maria, CA Lompoc-Surf Station, CA Lompoc, CA-Visitors Center Solvang, CA Buellton, CA-Opposite Burger King Goleta, CA SANTA BARBARA, CA Carpinteria, CA Ventura, CA Oxnard, CA Camarillo, CA Moorpark, CA Simi Valley, CA Chatsworth, CA Van Nuys, CA-Amtrak Station	0 12 244 25 51 67 68 72 110 119 129 145 155 165 175 186 194 203	• b, qr ○ b, qr	Ar Dp						44 44 44 44 44 44	#2 30A #2 40A #2 40A #3 30A #3 30A #3 30A #3 30A #3 30A #3 30A #4 5 20A #4 5 7	₩3 40A ₩3 50A ₩3 50A ₩4 15A ₩4 40A ₩4 40A ₩4 55 ₩55 15A ₩55 20A 6 35A ₩636 30A ₩636 30A
Burbank-Bob Hope Airport, CA 🛧 Glendale, CA	209 216	ાર્ક લ					44		44	skepung 7 48A 7 58A 7 58A	9 04A 9 16A
	222	●৬.QT ●৬.QT	Ar Dp	₩90R12 55A	90R2 30A	血6 08A	44 血7 25A	<u> </u>	44 血8 41A		o sóa 10 35A
Fullerton, CA Anaheim, CA (Disneyland®) Santa Ana, CA Irvine, CA	248 253 258 268			₩D1 30A ₩1 45A	₩D3 05A ₩D3 20A ₩D3 40A	6 39A 6 48A 6 58A 7 11A	曲7 56A 8 04A 8 13A 8 26A	曲8 50A 曲8 58A 曲9 07A 9 18A	曲9 12A 曲9 20A 曲9 29A 9 40A	3 10 15A 10 15A 10 15A 10 15A 10 15A	2 <u>m10 26A</u> mte <u>m10 34A</u> <u>m10 43A</u> <u>10 54A</u>
San Juan Capistrano, CA San Clemente Pier, CA Oceanside, CA (LEGOLAND) 🗟	280 288 309				₩D3 55A	7 26A 8 05A	8 42A 9 16A	9 31A 9 48A ش10 19A	9 54A 10 11A ш10 38A	u 10 35A 10 54A u 11 26A	11 09A 11 22A 11 47A
Carlsbad (Village), CA Carlsbad (Poinsettia), CA Encinitas, CA Solana Beach, CA	312 316 321 325	0 0 •६ <i>ण</i>			₩ D 4 50A	8 21A	9 34A	10 38A	10 56A	n operates	LON soop u 12 08P
Sorrento Valley, CA San Diego (Old Town), CA SAN DIEGO, CA ★ (Tijuana)	332 347 350	্ েদ্র <i>ত্বে</i> ●ঙ্র <i>ত্বে</i>	Ar		₩5 15A	血8 58A	D 10 08A 血10 16A	D 11 10A ش11 18A	D 11 27A 血11 35A	*This train D15 31b Turner train Turner train	This trail #15 This trail #12 49P

Service on Pacific Surfliner®

Coaches: Unreserved.

- R Reserved.
- Pacific Business class: Reserved seat service with complimentary beverages, light snacks and newspaper. Amtrak Metropolitan Lounge is available in Los Angeles for Pacific Business class passengers.
- Café: Sandwiches, snacks and beverages.
- Checked baggage at select stations; size restriction for carry on luggage is 28" x 22" x 11". Consult Amtrak.com for latest baggage policies.
- Wi-Fi available.
- Connection between Thruway bus and train at Los Angeles.
- 43 Connection between Thruway bus and train at Santa Barbara.
- 44 Metrolink commuter train connection available. Separate ticket required. Call Metrolink at (800) 371-LINK for exact departure times.
- EGOLAND is located 8 miles from Oceanside station. Transfers may be made by taxi at passenger's expense.
- Checked baggage service at this location available on weekends only.
- Thruway bus connection at San Luis Obispo Amtrak Station arrives Atascadero at 9:05 p.m. and Paso Robles at 9:25 p.m.

- Connection between Thruway bus and train at San Luis Obispo Amtrak Station.
- Thruway bus connects to San Joaquin trains at Bakersfield.
- Travel on this bus is reserved and must be part of an itinerary involving a train trip in one direction or the other. Also, the Los Angeles ticket office is open 30 minutes ahead of departure for night buses 5804 and 5818.
- I Travel on this bus is reserved and must be part of an itinerary involving a train trip in one direction or the other. Since most stations are unstaffed at the hours the buses operate, advance reservations can be made and tickets purchased online at Amtrak.com, at Metrolink Ticket Vending Machines or Amtrak Quik-Trak kiosks located at most stations. Reserved, ticketed customers have priority seating. Unreserved, ticketed passengers are carried on a spaceavailable basis. The ticket office is open at Los Angeles, San Diego and Oceanside 30 minutes before the departure of the bus.

Smoking is prohibited on trains and only permitted in designated areas at stations.

Bicycles: Most Pacific Surfliner trains have racks for seven bicycles located in the cab car, at the opposite end of the train from the locomotive. These slots are available by reservation only and are offered without charge. Passengers must properly secure their bicycles in the racks. For some train departures and on Thruway buses, reservations are not available and only a limited number of bicvcles can be carried. When space is available, unboxed bicycles may be put in the baggage bin under connecting Thruway buses. Amtrak disclaims liability for loss or damage. Passengers connecting to Trains 2, 4 and 14 must send their bicycles as checked baggage. There is a \$10 fee, and the bicycle must be boxed; if needed, a bicycle box can be purchased from Amtrak for \$15.

PACIFIC SURFLINER SCHEDULES EFFECTIVE 6/6/16

SYMBOLS KEY

- A Time Symbol for A.M.
- P Time Symbol for P.M.
- N Time Symbol for Noon.
 D Stops only to discharge passengers; train may
- leave before time shown. R Stops only to receive passengers.
- M Meal stop
- Thruway Bus stop
- ★ Airport connection
- **QT** Quik-Trak self-serve ticketing kiosk
- Unstaffed stationStaffed Station with
- ticket office; may or may not be open for all train departures.
- Station wheelchair accessible; no barriers between station and train.
- Station wheelchair accessible; not all station facilities accessible.

PACIFIC SURFLINER-Southbound

Train Number >					572	572	774	580	582	784	790	1790	796
Normal Days of Operation 🕨					SaSu	Daily	Daily	Daily	Daily	Daily	Mo-Fr	SaSuHol	Daily
Will Also Operate >				*	See Note							9/5,11/24, 12/26,1/2	
Will Not Operate ►				Γ		*See Note					9/5,11/24, 12/26,1/2		
On Board Service ►					B 🗘 1 🗟 🙈	B 🖵 亡 🗟 🚴	₿ 🖸 ഥ⊡ 🗟 🚴	₿ 🖸 ഥ⊡ 🗟 🚴	B ⊉ ⊡ ≧ 🚴	₿ 🖸 ф 🗟 🚴	₿ 🖸 © ী 🗟 🚴	₿ 🖸 ഥ⊡ 🗟 🚴	₿₽ ₫₿ ₼
	Mile	Symbol	-	1									
SAN LUIS OBISPO, CA -Cal Poly -Amtrak Station Grover Beach, CA	0		Dp	- i		nber 5.	<u> </u>			₩10 10A ₩±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±	₩6612 50P 1 35P 1 55P	₩661 10P 112 00P 2 20P	₩3 15P ₩ <u>13 40P</u> ₩4 10P
Santa Maria, CA–IHOP Guadalupe-Santa Maria, CA	24 25	ા ાર્		September		September	7 31A			₩ R 11 20A	2 11P	2 36P	₩4 35P
Lompoc-Surf Station, CA Lompoc, CA-Visitors Center	51 67 68	୍ର ୦୫ ୦		and Sep		4, nor 5	8 05A			₩R12 05P	2 51P	3 16P	
Solvang, CA Buellton, CA–Opposite Burger King Goleta, CA	72	े िह्य <i>वा</i>		4		-	9 13A			R12 35P	3 57P	4 22P	₩5 10P ₩5 15P 6 45P
SANTA BARBARA, CA	119	●े	Ar Dp	September		September	血9 24A 血9 27A		₩90R12 55P	₩43m1 45P m2 04P	曲4 09P 曲4 12P	血4 37P 曲4 40P	₩43m6 40P m6 59P
Carpinteria, CA Ventura, CA	129 145	ાહ ા ાહ				rough	9 42A 10 04A			2 19P 2 41P	4 27P 4 49P	4 55P 5 21P	7 15P 7 37P
Oxnard, CA Camarillo, CA	155 165	●હ્ં 0 ⊖હ		through		16 th	曲10 18A 10 35A		90R1 50P	112 57P 3 08P	ш́5 07Р	₫5 35P	血7 51P 8 02P
Moorpark, CA Simi Valley, CA Chatsworth, CA	175 186 194	0 & 0 & 0 &		ly 16		ylut ,	11 02A 11 14A			3 20P 3 35P 3 52P	5 36P 5 54P 6 12P	6 04P 6 20P 6 33P	8 38P 8 50P
Van Nuys, CA–Amtrak Station Burbank-Bob Hope Airport, CA 🖈	203	্র ● ৬. থা ় ে ৬. থা		Sundays, July		Sundays,	<u>11 14A</u> <u>11 28A</u> 11 35A			3 52P 114 14P 4 22P	0 12P 116 31P 6 39P	6 53P 116 45P 6 53P	000P
Glendale, CA	216	ંદ્ર ઉદ્ય ઉદ્ય	Ar			s or Su	11 45A		₩373 35P	4 32P	6 50P	7 04P	9 23P
Fullerton, CA	248	●६.07	Dp		<u> </u>	бер ш11 20А ш11 51А	±12 33P ±11 04P	112 58P 113 29P	血4 08P 血4 39P	血5 10P 血5 42P	血7 31P 血8 02P	血7 40P 血8 11P	<u> <u> </u> <u></u></u>
Anaheim, CA (Disneyland®) Santa Ana, CA	253 258	●& .QT ●& .QT		- ×	曲11 50A 曲 12 05P	tes <u>11 59A</u> <u>11 59A</u>	曲1 12P 曲1 21P	曲3 37P 3 46P	ش4 47P 4 56P	±±5 51P 6 00P	曲8 10P 曲8 19P	曲8 19P 曲8 28P	血10 49P 血10 58P
Irvine, CA San Juan Capistrano, CA	268 280	●ঙ্ <i>য</i> ●ঙ্ <i>য</i>		5	12 23P 12 46P	0 12 21P 12 39P	1 34P 1 49P	3 59P 4 14P	5 09P 5 24P	6 13P 6 27P	8 32P 8 47P	8 39P 8 54P	11 09P 11 24P
San Clemente Pier, CA Oceanside, CA (LEGOLAND) 55	288 309 312			s only	₫1 24P	do <u>1113P</u>	ش 2 24P	4 52P	6 01P	₫7 03P 7 08P	血9 20P 9 25P	血9 27P 9 32P	血 11 57P 12 03A
Carlsbad (Village), CA Carlsbad (Poinsettia), CA Encinitas, CA	312 316 321	0		operates						7 08P 7 14P 7 23P	9 25P 9 32P 9 40P	9 32P 9 39P 9 48P	12 03A 12 12A 12 19A
Solana Beach, CA Sorrento Valley, CA	325	●ঙ্ <i>য</i> ○		train op	1 50P	1 29P	2 43P	5 13P	6 20P	7 29P 7 39P	9 47P 9 57P	9 55P 10 06P	12 13A 12 26A 12 36A
San Diego (Old Town), CA SAN DIEGO, CA ★ (Tijuana)	347 350	্রি <i>য়া</i> ●ঙ্র <i>য়া</i>	Ar	*This tr	D2 29P m2 37P	11 203P	D3 17P ش3 25P	D5 42P m5 50P	D6 54P m7 02P	D8 01P m8 09P	D10 19P 10 30P	D10 27P 10 39P	D12 58A 血1 06A

Pacific Surfliner Thruway Bus Connections

Fullerton • Palm Springs • Indio

Daytime train

768/572/769	784/785			Connecting Train Number	769/572	785/784		
4968	4984		Thruway Number 4969				4985	
Daily	Daily		-	Days of Operation		Daily	Daily	
12 05P	6 25P	D)p	Fullerton, CA-Trans. Ctr.	A	١r	11 15A	5 25P
D12 55P	D7 10P			Riverside, CA–Metrolink Station			R 10 20A	R4 25P
D1 35P	D7 50P			Cabazon, CA-Morongo Casino			R 9 30A	R3 35P
				Palm Springs, CA				
D2 00P	D8 20P			-Downtown SunLine Transit			R 9 00A	R3 10P
2 10P	D8 25P			Palm Springs, CA–Airport 🛧			R 8 55A	3 05P
	D8 55P		7	Palm Desert, CA–SunLine Transit			R 8 25A	
	D9 05P			La Quinta, CA-SunLine Transit			R 8 10A	
	9 15P	F	Ar Indio, CA–Hwy. 111 at Monroe Dp				8 00A	

NOTE—All *Pacific Surfliner* Thruway Bus Connections above require reservations.

SHADING KEY

Thruway and connecting services

See page 4 for Connecting Transit Services, page 5 for Airport Connections, and page 8 for Route Map.

Connecting train

PACIFIC SURFLINER SCHEDULES EFFECTIVE 6/6/16

See in San Diego

How to get there from San Diego's Santa Fe Depot & Old Town Transit Center

Balboa Park and San Diego Zoo: MTS Rapid Bus Route 215 from Kettner Blvd. adjacent to Santa Fe Depot

SeaWorld San Diego: From Old Town take

MTS Route 9 (west side of station); From Santa Fe Depot take Green Line to Old Town and transfer to MTS Bus Route 9

International Border at San Ysidro (for Tijuana): From Santa Fe Depot cross Kettner Blvd. to America Plaza Station to MTS Blue Line Trolley

Petco Park: MTS Green Line Trolley from Santa Fe Depot (or Old Town) to Gaslamp Quarter (headsign will read "Imperial")

Qualcomm Stadium: MTS Green Line Trolley from Old Town (or Santa Fe Depot) to Qualcomm Stadium (headsign may read "Santee")

San Diego Cruise Terminal/International Airport: MTS Route 992 bus runs from the Santa Fe Depot to the airport every 15 minutes during the weekday and every 30 minutes on the weekend. Board on the corner of Broadway and Kettner (near Starbucks). The trip to the airport takes only 10 minutes. Exact change one-way fare is \$2.25. The Cruise Terminal is also served by Route 992, but is only a three block walk from Santa Fe Depot.

This Service is financed primarily through funds made available by the LOSSAN Agency through the California Department of Transportation

page 3

page 4

PACIFIC SURFLINER-Northbound

				5004	5044	764	4764	762	FCF	4507	507	700	F72
Train Number >				5801	5811	761	1761	763	565	1567	567	769	573
Normal Days of Operation >				Daily	Daily	Mo-Fr	SaSuHo	Daily	Daily	SaSuHo	Mo-Fr	Daily	Daily
Will Also Operate >							9/5,11/24, 12/26,1/2			9/5,11/24, 12/26,1/2			
Will Not Operate 🕨						9/5,11/24, 12/26,1/2					9/5,11/24, 12/26,1/2		
On Board Service >				R	R	B 🖸 止 🗟 🚴	₿₽ ₫₿₯	B ⊉ ⊡ ≧ &	₿₽ ©	B 🖵 亡 🗟 🕭	₿₽ ₫₿ ₯	B ⊉ ≞ ≧ &	₿ 🖸 ф 🗟 🚴
	Mile	Symbol	-	1				i — —					
SAN DIEGO, CA 🛧 (Tijuana)	0	●હ <i>्</i> 07	Dp					ഥ6 07A	血6 56A	血8 05A	血8 23A	血9 20A	血10 41A
San Diego (Old Town), CA	3	েদ্র 0						R 6 14A	R 7 03A	R 8 12A	R 8 30A	R 9 27A	R 10 48A
Sorrento Valley, CA	19	0								8 34A	8 54A		11 11A
Solana Beach, CA	26	●હ. <i>Q</i> 7						6 45A	7 36A	8 43A	9 03A	9 58A	11 22A
Encinitas, CA	30	0								8 50A	9 09A		11 30A
Carlsbad (Poinsettia), CA	34	0								8 57A	9 15A		11 36A
Carlsbad (Village), CA	38	0								9 04A	9 23A		11 42A
Oceanside, CA (LEGOLAND) 55	41	●ेद्ध्						血7 03A	血7 55A	9 11A	9 29A	血10 15A	11 50A
San Clemente Pier, CA	63	0											
San Juan Capistrano, CA	70	●હ. Q 7						7 36A	8 27A	9 45A	10 07A	10 47A	12 22P
Irvine, CA	83	●હ. Q 7						7 54A	8 42A	10 01A	10 22A	11 01A	12 37P
Santa Ana, CA	92	●હ. Q 7		📟 🧐 1 45A	📟 🗐 3 45A	🕽 91 R5 25A	🕶 🖻 R5 25A	曲8 05A	曲8 54A	10 12A	10 33A	血11 12A	12 48P
Anaheim, CA (Disneyland®)	97	●હ. Q 7						曲8 14A	曲9 03A	10 21A	10 42A	曲11 22A	12 57P
Fullerton, CA	102	●હ. Q T		📟 912 05A		₩ 91 R5 50A		曲8 22A	血9 11A		血10 50A	血11 30A	ш1 05P
LOS ANGELES, CA 🛧	128	●ક્ર <i>Q</i> 7	Ar Dp	₩912 45A ₩912 55A	₩914 45A ₩914 55A	₩376 35A		血8 57A	曲9 46A	曲11 04A	血11 25A	血12 05P 血12 30P	ш <u>1 40</u> Р
Glendale, CA	134	ંદ	Dp	912 55A	₩914 55A	<u></u>	曲7 50A 8 02A	<u></u> 119 20A 9 32A				12 30P	
Burbank-Bob Hope Airport, CA	142	्र ्र		₩76913 25A		8 00A	8 12A	9 32A 9 42A				12 42P	
Van Nuys, CA–Amtrak Station	142	્લ ્ /				也 10A 10A	<u>ش</u> 8 21A	<u> </u>				± 12 52P	
Chatsworth, CA	157	OE				8 32A	8 33A	10 04A				1 14P	
Simi Valley, CA	164	0 E				8 45A	8 45A	10 04A				1 14P	
Moorpark, CA	175	0 E				8 57A	8 57A					1 39P	
Camarillo, CA	186	୍ରା				9 10A	9 10A	10 40A				1 54P	
Oxnard, CA	195	●&.QT				血9 21A	血9 21A	<u>شا10 53A</u>				±1041	
Ventura, CA	205	્ર ાહ્ય		-		9 35A	9 35A	11 09A				2 19P	
Carpinteria, CA	221	ેક .વ				10 06A	10 06A	11 31A				2 131 2 47P	
SANTA BARBARA, CA	232	●ुद्ध्य	Ar			血10 00A	血10 00A	±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±				شD3 05P	
SANTA DANDANA, CA	202	•0.4.	Dp			血10 13A 血10 22A	血10 13A 血10 22A					₩±±43R3 10P	
Goleta, CA	241	ेह ्र				10 34A	10 34A	12 08P				3 18P	
Solvang, CA	267	୍ରାଙ୍କ				1001/1	1000	₩12 45P				₩D4 00P	
Buellton, CA–Opposite Burger King	271	0						₩12 50P				₩D4 05P	
Lompoc, CA–Visitors Center	284	ંદ										₩D4 30P	
Lompoc-Surf Station, CA	300	0		1		11 40A	11 40A						
Guadalupe-Santa Maria, CA	326	्र ग				12 16P	12 16P					₩D5 05P	
Santa Maria, CA–IHOP	327	ંદ						₩1 30P				₩4 35P	
Grover Beach, CA	338	ંદ્ર વ				12 35P	12 35P	₩1 55P				₩D5 30P	
SAN LUIS OBISPO, CA -Amtrak Station	350	●६.वा	Ar			血1 00P	血1 00P	₩ŵ2 25P				₩±15 15P	
-Cal Poly		0	Ar	1		🕶 🚳 1 15P	🛛 🔫 🚳 1 15P	₩2 35P					

Connecting Transit Services in Southern California

Metrolink provides commuter rail service radiating from Los Angeles Union Station to the Antelope Valley, downtown Burbank, Oxnard, Riverside, San Bernardino and Orange County. It supplements *Pacific Surfliner* service between Oxnard and Oceanside. (800) 371-5465; metrolinktrains. com. *Rail 2 Rail:* The Rail 2 Rail program offers *Pacific Surfliner* monthly pass holders access to Metrolink and COASTER commuter trains within the station limits of their pass.

Los Angeles County Metropolitan Transportation Authority provides bus, subway, and light rail services in the Los Angeles area; Metro's Red, Purple and Gold lines originate at Union Station and provide rail connections to Hollywood, Universal City and Pasadena. 323.GO.METRO; metro.net

North County Transit District operates the COASTER commuter rail service which supplements *Pacific Surfliner* service between San Diego and Oceanside including additional stops at Sorrento Valley, Solana Beach, Encinitas and Carlsbad. The Sprinter operates frequent rail service between Oceanside, Vista, San Marcos and Escondido. The Breeze also provides bus service at many *Pacific Surfliner* stations. (760) 966-6500; www.gontd.com.

San Diego Metropolitan Transit System operates bus and the San Diego Trolley service. Direct service to San Diego's Santa Fe Depot and Old Town stations. (619) 233-3004; sdmts.com.

Orange County Transportation Authority provides bus transit service throughout Orange County including *Pacific Surfliner* stations in Fullerton, Anaheim, Santa Ana, Irvine, San Juan Capistrano and San Clemente. (714) 636-7433; www.octa.net.

Santa Barbara Metropolitan Transit District provides bus transit service in Santa Barbara County, including connections to the Downtown and Waterfront shuttles serving State Street, the Santa Barbara Zoo and Santa Barbara Harbor. (805) 963-3366; sbmtd.gov.

Anaheim Resort Transit provides convenient bus connections from the Anaheim station to the Disneyland Resort and Anaheim Convention Center. (888) 364-2787; www.rideart.org

For a complete list of connecting public transit providers, visit PacificSurfliner.com

PACIFIC SURFLINER SCHEDULES EFFECTIVE 6/6/16

NEW! Transit Transfer Program

The Pacific Surfliner Transit Transfer Program provides free transfers to connecting transit providers at most stations. Simply show your Amtrak Pacific Surfliner paper ticket or e-Ticket when you board the bus or shuttle. You can also purchase a discounted one-day transit pass for Metro (Los Angeles) and MTS (San Diego) in the Café car. Visit PacificSurfliner.com for details.

SHADING KEY

Daytime train Connecting train

Thruway and connecting services

See pages 2-3 for Services, Symbols and Reference Marks; and page 8 for Route Map.

PACIFIC SURFLINER-Northbound

Train Number >				777	579	583	583	785	591	591	595	5809
Normal Days of Operation 🕨				Daily	Daily	Daily	SaSu	Daily	Daily	SaSu	Daily	Daily
Will Also Operate 🕨				1			*See Note			*See Note		
Will Not Operate >						*See Note			*See Note			
On Board Service >			₿ 🖵 亡 🗟 🚴	B 🖸 市区 🔈	₿ 🖵 ഥ⊡ 🗟 🚴	₿ 🖸 ш் 🔮 🚴	₿ <u>₽</u> ш ⊌ а	B 🖸 til 🖢 🚴	B 🖵 ப் 🖳 🚴	₿₽ ₫₿₼	76	
	Mile	Symbol	-									
SAN DIEGO, CA 🛧	0	●ेद्ध्या	Dp	₫11 57A	₫1 36P	ທີ່ 🕮 47P	ທ່ 🖽 305P	ش3 58P	ທີ່ 🕮 6 50P		ш́8 59Р	₩919 45P
San Diego (Old Town), CA	3	॒ह्र ग				R2 54P	R3 12P	R4 05P	R6 57P	R6 57P	R9 06P	
Sorrento Valley, CA	19	0				9	ter		E		9 28P	
Solana Beach, CA	26	●હે.QT		12 32P	2 11P	3 28P	a 3 50P	4 36P	ਰ 7 28P	7 33P	9 39P	📟 🧐 10 15P
Encinitas, CA	30	0					d S		r S		9 45P	
Carlsbad (Poinsettia), CA	34	0				nor	and		nor	and	9 51P	
Carlsbad (Village), CA	38	0				4	4,		4,	4	9 57P	
Oceanside, CA (LEGOLAND) 55	41	●હે.QT		血12 47P	2 27P	a 🖄 🖄 🖄	ja 📫 🕹 🕹	ش4 53P	a 7 44P	7 49P	10 03P	📟 🧐 10 45P
San Clemente Pier, CA	63	0				4 07P 4 07P 4 22P 4 38P	E 4 30P		E			
San Juan Capistrano, CA	70	●ेद्र्		1 19P	2 59P	4 22P	4 51P	5 34P	8 17P	8 22P	10 35P	📟 🧐 11 20P
Irvine, CA	83	●હે.QT		1 33P	3 14P	4 38P	S 09P	5 49P	8 32P		10 49P	₩ 91 11 35P
Santa Ana, CA	92	●હે.QT		ش1 44P	3 25P		ළ <u>∰5 24</u> P		등 8 43P		11 01P	₩ 91 11 55P
Anaheim, CA (Disneyland®)	97	●હ ્ q		ش1 53P	3 34P	2 mb5 01P	2 m5 36P		8 52P		11 10P	
Fullerton, CA	102	●હે.QT		±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±	ш3 42P	46000000000000000000000000000000000000	도 m5 48P	±16 20P	4 m9 00P		血11 18P	📟 🧐 12 15A
LOS ANGELES, CA 🛧	128	●ક્ષQT	Ar	±±±	ш4 17P	9 m 5 45P	9 m6 28P	±±10 ±55 ±	9 m 35P	÷ +	±±±	🐨 911 00A
	1.20		Dp	±13 05P	44			±15P	> #37 R9 50P			📟 🧐 1 15A
Glendale, CA	134	ં		3 17P	44	n 44	ylut	7 27P				₩1 30A
Burbank-Bob Hope Airport, CA 🛧	142	ાર્ક ગ		3 27P	44	5 44		7 37P	Ś	s'		76911 45A
Van Nuys, CA–Amtrak Station	147	●.k.QT		ш3 37P	44	A a a	lay	血7 47P	g ₩10 30P	R ₩10 50P		
Chatsworth, CA	157	OE		3 49P	44	Sundays, July	Sundays,	7 59P	S ₩D10 50P			
Simi Valley, CA	164	ାଳ		4 01P	44			8 11P	∽ ₩D11 10P	₩D11 30P		
Moorpark, CA	175	OL			44	0 44	and		o ∰D11 25P			
Camarillo, CA	186	ିଜ		4 27P	44	ays 	- e	8 35P	a ∰D11 35P			
Oxnard, CA	195	● <u></u>		±±1	44	<u>p</u>	lays	±18 46P	E #D11 45P	₩D12 05A		
Ventura, CA	205	ંદ્ર વ		4 57P		Saturdays or	<u>n</u>	9 00P	₩D11 59P	₩D12 20A		
Carpinteria, CA	221	ંદ્ર વ		5 21P		is	Saturd	9 22P	₩D12 15A			
SANTA BARBARA, CA	232	●&QT	Ar	ش5 40P		ы Б	uo	شD9 50P	₩D12 35A			
JANTA DANDANA, CA	1 202	•0.4	Dp	±15 43P		ate	2	43R9 55P	ate ate			
Goleta, CA	241	<u>ि</u> ह्य ग		5 55P		operate	only	10 03P	8 ₩12 50A	-A 5 ∰1 10A		
Solvang, CA	267	୍ରା						₩D10 40P	0			
Buellton, CA–Opposite Burger King	271	0				NOT	operates	₩D10 45P	10	operates		
Lompoc, CA–Visitors Center	284	ંદ				ž	- Je		ż —	† §		
Lompoc-Surf Station, CA	300	0		7 01P		does			oes	12		
Guadalupe-Santa Maria, CA	326	ંદ્ર ળ		7 37P			train		P	train		
Santa Maria, CA–IHOP	327	ିଟ୍ୟ				air	t.	₩D11 25P	air	15		
Grover Beach, CA	338	୍ର କ ଦ		7 54P		12	*This	₩11 50P	- -	* This		
SAN LUIS OBISPO, CA -Amtrak Station -Cal Poly	350	• &a	Ar Ar	ш́8 35Р		*This train	· · ·	₩12 15A ₩12 30A	*This			

Pacific Surfliner Thruway Bus Connections

Los Angeles • Long Beach • San Pedro

573/774	777	583/784	591/796/ 11		Connecting Train Number		566/761/ 1761	572/769	777	580/785
5702	5712	5714	5716		Thruway Number		5713	5715	5717	5703
Daily	Daily	Daily	Daily	-	Days of Operation		Daily	Daily	Daily	Daily
2 50P	4 35P	6 50P	10 00P	Dp	Los Angeles, CA–Union Station 🛧	Ar	7 20A	10 25A	12 45P	2 45P
D3 45P	D5 30P	D7 45P	D10 55P	Ar	Long Beach, CA–Transit Gallery	Dp	R 6 00A	R 9 20A	R 11 45A	R1 45P
D4 00P	D5 45P	D8 00P	D11 10P		San Pedro, CA–Catalina Terminal		R 5 45A	R 9 05A	R 11 30A	R1 30P
4 15P	6 00P	8 15P	11 25P	Ar	–Library	Dp	5 35A	8 55A	11 20A	1 20P

NOTE—All Pacific Surfliner Thruway Bus Connections above require reservations.

Airport Connections

Los Angeles International Airport

FlyAway bus service operates directly from Los Angeles Union Station to all terminals of Los Angeles International Airport. Buses depart on the half-hour from 5:00 a.m.-1:00 a.m., then at 2:00 a.m., 3:00 a.m. and 4:00 a.m. Travel time is 40-45 minutes. Reservations are not required. Tickets are available on board buses departing throughout the day from berth 9 of the Patsaouras Transit Plaza on the east side of Union Station. Credit and debit cards only are accepted, no cash. For further information, including purchasing tickets online, limited service from Van Nuys and Westwood (UCLA), etc., go to lawa.org/flyaway or call (866) 435-9529.

Burbank-Bob Hope Airport

The Burbank-Bob Hope Airport train station/Thruway bus stop is one short block from the main air terminal. Shuttle service between the rail station and airport terminal is available on call from the courtesy telephone on the sidewalk by the Empire Avenue crosswalk. Rental car agencies are located between the rail station and airport.

PACIFIC SURFLINER SCHEDULES EFFECTIVE 6/6/16

Bicycle reservations

are required on all

Pacific Surfliner trains. Reservations are complimentary and can be obtained on-line at Amtrak.com (click the "Add Bike to Trip" tab after selecting your departure and class of service), at Quik-Trak kiosks, from station ticket agents, or by calling 1-800-USA-RAIL. Bike reservations are required for each travel segment and must accompany a valid Amtrak ticket. Amtrak Multi-Ride Ticket holders (10-trip or Monthly Pass) may obtain bike reservations only through station ticket agents or by calling 1-800-USA-RAIL. Passengers are required to properly secure bicycles in bike racks. Book early, as bike space is limited and may not be available on all trains or departures.

page 5

page 6

CALIFORNIA COASTAL ROUTES-Southbound

				Constant	Constant		Constant	Constant	Const	Constant	Constant	
				Capitol Corridor	Capitol Corridor	Pacific	Capitol Corridor	Capitol Corridor	Coast Starlight	Capitol Corridor	Capitol Corridor	Capitol
Train Name 🕨 🚳 🚳				Pacific	Pacific	Surfliner	Pacific	Pacific	Pacific	Pacific	Pacific	Corridor
				Surfliner	Surfliner		Surfliner	Surfliner	Surfliner	Surfliner	Surfliner	
Train Number 🕨				549/768	749/768	784	523/790	723/1790	11/796	527/796	727/796	537/737
Normal Days of Operation >				Mo-Fr ₇₄	SaSuHo 74	Daily	Mo-Fr	SaSuHo	Daily	Mo-Fr	SaSuHo	Daily
On Board Service >				B 🖸	BD	BD	B 🖸	BD	Rш	BD	BD	🖵 🗟 🚴
				ш 🗟 🚴	Ш 🗄 🕭	ш 🗄 🕭	ட் 불 🕭	ம் 🖢 🕭	⊁ ⊇ ゐ	ட் 불 🕭	ட் 🛃 🕭	
	Mile	Symbol	-									
SACRAMENTO, CA	0	●હ. <i>Q</i> 7	Dp	6 55P	7 35P		5 30A	6 10A	i⊞6 35A	7 00A	8 10A	12 10P
Davis, CA	13	●ঙ. 0 7		7 10P	7 50P		5 45A	6 25A	岱6 50A	7 15A	8 25A	12 25P
Suisun-Fairfield, CA Martinez, CA	40 57			7 34P 7 54P	8 14P 8 34P		6 09A 6 29A	6 49A 7 09A	血7 34A	7 39A 7 59A	8 49A 9 09A	12 49P 1 09P
Richmond, CA	76	े दि <i>प</i>		8 20P	9 00P		6 55A	7 09A 7 35A	ш7 34A	8 25A	9 09A 9 35A	1 35P
Berkeley, CA	82	<u>ि</u> क्ष ग		8 28P	9 08P		7 03A	7 43A		8 33A	9 43A	1 43P
Emeryville, CA	84	●હ, <i>0</i> 7		8 35P	9 15P	🕶 🕮 🛱 6 05 A	7 10A	7 50A	曲8 20A	8 40A	9 50A	1 50P
OAKLAND, CA	89	●⊾्रि	Ar	D8 51P	9 33P		897 21A	898 01A	8 35A	898 51A	8910 01A	2 01P
_Jack London Square		01.07	Dp	₩10 00P	₩10 00P	₩ ⊞ 15 55A	₩曲7 10A	₩±17 40A	ш18 50A	₩±±19 55A	₩±±19 55A	2 03P
Oakland Coliseum, CA. San Francisco, CA-Transbay Term.	94	_હ⊾ 0 7 ●હ⊾ 0 7	┝╋	₩±±±±±	₩±±10 45P	₩ @ R 6 35A	7 32A ₩ ⊞ 17 40A	8 12A ₩ ⊞ 10A		9 02A ₩±±10 30A	10 12A ₩ ⊞ 10 30A	2 12P
Hayward, CA	102	<u>्</u> र्द्र ग		₩UIU 45P	₩Ш10 45P	muino 35A	7 43A	8 23A		9 13A	10 23A	2 23P
Fremont-Centerville, CA	114	<u>ि</u> द्ध <i>व</i>					7 59A	8 39A		9 29A	10 20/1	2 39P
Santa Clara, CA-Great America	125	े हि व					8 16A	8 56A		9 46A	10 56A	2 56P
Santa Clara, CA-University Station	128	0					8 24A	9 04A		9 54A	11 04A	3 04P
SAN JOSE, CA	132	●હ <i>.q</i> 7	Ar	₩11 55P	₩11 55P	₩7 30A	8 38A	9 18A	9 55A	10 13A	11 18A	3 18P
Salinas CA	203	● <u></u>	Dp	₩11 59P	₩11 59P	₩±17 35A	₩曲9 05A	₩曲9 25A ₩曲10 30A	曲10 07A	₩±±11 35A	₩±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±	₩3 25P
Salinas, CA King City, CA–McDonald's	203	୍କା		₩1 15A ₩M2 10A	₩1 15A ₩M2 10A	₩8 45A ₩9 40A	₩±±10 10A ₩M11 15A	₩10 30A ₩M11 35A	血11 48A	₩±12 40P ₩M1 40P	₩12 40P	₩4 40P ₩MD5 35P
Paso Robles, CA	300	୍ରଟ		₩3 10A	#3 10A	68 🕶 10 40A	₩12 15P	#12 35P	1 38P	#2 40P	#2 40P	₩D6 20P
Atascadero, CA-Transit Center	310	0								₩2 55P	₩2 55P	
San Luis Obispo, CA–Cal Poly	334	0		📟3 40A	📟3 40A	₩ R 10 10A	₩12 50P	₩1 10P		₩3 15P	₩3 15P	₩D6 55P
SAN LUIS OBISPO, CA	335	●ક્ર <i>0</i> 7	Ar	₩3 50A	₩3 50A	₩±±10 25A	₩±±110P	₩±±1 30P	3 07P	₩ŵ3 30P	₩±13 30P	₩7 00P
		0.1.00	Dp	#3 50A	₩3 50A	₩±10 30A	<u>ش1 35P</u>	±12 00P	ш 3 20Р	₩±±13 40P	₩±13 40P	₩7 10P
Grover Beach, CA Santa Maria, CA–IHOP	348 360	ાર્ ભાગ છે. ભાગ ભાગ ભાગ ભાગ ભાગ ભાગ ભાગ ભાગ ભાગ ભાગ		₩4 15A	₩4 15A ₩4 40A	₩10 55A	1 55P	2 20P		₩4 10P ₩4 35P	₩4 10P ₩4 35P	₩D7 30P ₩D7 55P
Guadalupe-Santa Maria, CA	361	୍ର ଅ ୍ୟ ସେ		774 40A		••••••1120A	2 11P	2 36P		774 JJF		
Lompoc-Surf Station, CA	388	0					2 51P	3 16P				
Lompoc, CA-Visitors Center	404	୍ୟ				₩R12 05P						
Solvang, CA–Solvang Park	436	୍ୟ		₩5 15A	₩5 15A	₩R12 35P				₩5 10P	₩5 10P	₩D8 30P
Buellton, CA-Opposite Burger King		0		₩5 20A	₩5 20A	₩R12 40P		6.005		₩5 15P	₩5 15P	₩D8 35P
Goleta, CA	447	্র বি		6 35A	6 35A ₩1116 30A	1 50P ₩±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±	3 57P	4 22P		6 45P ₩1116 40P	6 45P ₩1106 40P	₩9 30P
SANTA BARBARA, CA	456	●ुद्ध्य	Ar Dp	₩血6 30A 血6 49A	₩Ш6 30A ш6 49A	₩Ш1 45P ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±	血4 09P 血4 12P	血4 37P 血4 40P	血5 55P 血6 02P	₩116 40P 116 59P	₩1116 40P 1116 59P	##9 30P
Carpinteria, CA	466	ः ८६ ० ७		7 04A	7 04A	2 19P	4 27P	4 55P		7 15P	7 15P	
Ventura, CA	482	ંદ્ર વ		7 29A	7 29A	2 41P	4 49P	5 21P		7 37P	7 37P	
Oxnard, CA	492	●હ <i>.Q</i> 7		岱7 43A	曲7 43A	ш 2 57Р	ш 5 07Р	ш́5 35Р	ш́D7 05Р	ش7 51P	ш́7 51Р	
Camarillo, CA	502	୍ୟ		7 54A	7 54A	3 08P				8 02P	8 02P	
Moorpark, CA	512	OE		8 08A	8 08A	3 20P	5 36P	6 04P	D7 40D	0.000	0.005	
Simi Valley, CA Chatsworth, CA	523 531	<u>୍</u> ଟିକ୍ଟ ଜ୍ୟ		8 23A 8 40A	8 23A 8 40A	3 35P 3 52P	5 54P 6 12P	6 20P 6 33P	D7 48P	8 38P 8 50P	8 38P 8 50P	
Van Nuys, CA–Amtrak Station	540			也8 40A 此8 56A		<u>م 3 52P</u> ش4 14P	±12F		ш D8 22 Р	±19 06P	۵ 50P ش9 06P	
Burbank-Bob Hope Airport, CA	546			9 04A		4 22P	6 39P		D8 31P	9 13P	9 13P	
Glendale, CA	553	ିକ		9 16A	9 16A	4 32P	6 50P	7 04P		9 23P	9 23P	
LOS ANGELES, CA 🛧	559	●હ <i>.q</i> 7	Ar	曲9 35A	ش9 35A	ш 4 50Р	ш̂7 10Р	ш7 20Р	ш 9 00Р	ش9 45P	ش9 45P	
			Dp	血9 55A	血9 55A	ش5 10P	ш̂7 31Р	ш7 40Р	<u>10 10P</u>	<u>₫10 10P</u>	<u> 10 10P</u>	
Fullerton, CA	585	●.ह. <i>Q</i> 7		曲10 26A	血10 26A	±±5 42P	±10P	±10P	m10 41P	±10 41P	m10 41P	
Anaheim, CA (Disneyland [®]) Santa Ana, CA	590 595	ક્ ક્	╞╋╋	血10 34A 血10 43A	血10 34A 血10 43A	血5 51P 6 00P	血8 10P 血8 19P	血8 19P 血8 28P	血10 49P 血10 58P	血10 49P 血10 58P	血10 49P 血10 58P	
Irvine, CA	605	•&		10 54A	10 54A	6 13P	8 32P	8 39P	11 09P	11 09P	11 09P	
San Juan Capistrano, CA	617	•હ		11 09A	11 09A	6 27P	8 47P	8 54P	11 24P	11 24P	11 24P	
San Clemente Pier, CA	625	0		11 22A	11 22A							
Oceanside, CA (LEGOLAND)	646	●ঙ্⊄ি		曲11 47A	岱11 47A	ш 7 03 Р	ш 9 20 Р	ш 9 27Р	ш11 57P	ш11 57P	ш11 57P	
Carlsbad (Village), CA	649	0				7 08P	9 25P	9 32P	12 03A	12 03A	12 03A	
Carlsbad (Poinsettia), CA	653	0				7 14P	9 32P 9 40P	9 39P	12 12A	12 12A	12 12A	
Encinitas, CA Solana Beach, CA	658 662	 ●ढ़ <i>वा</i>	╎╢	12 08P	12 08P	7 23P 7 29P	9 40P 9 47P	9 48P 9 55P	12 19A 12 26A	12 19A 12 26A	12 19A 12 26A	
Sorrento Valley, CA	669	0	t 🚽	12 00F	12 00F	7 29P	9 57P	10 06P	12 20A	12 20A	12 20A	
San Diego (Old Town), CA	684	्र ा		D12 41P	D12 41P	D8 01P	D10 19P	D10 27P	D12 58A	D12 58A	D 12 58A	
SAN DIÈGO, CA 🛧	687	●હ, <i>Q</i> 7	Ar	ش12 49P		ш 8 09 Р	ш10 30P	ш10 39P	血1 06A	血1 06A	血1 06A	
						CA	PITOL CORRIDO	R SCHEDULES EFI	FECTIVE 8/22/16.	PACIFIC SURFLIN	ER SCHEDULES E	FFECTIVE 6/6/16.

Modified Summer Weekend Schedule for Overnight Coastal Servic

The Amtrak Thruway buses for trains 749/768 and 549/768 operate 70 minutes earlier from Oakland to Santa Barbara on Friday and Saturday nights between July 15 and September 3, as well as Sunday night September 4. For Train 768 (*Pacific Surfliner*) schedule on those nights, see page 2. *Capitol Corridor* train schedule does not change.

See page 4 for Connecting Transit Services. See page 5 for Airport Connections. See page 8 for Route Map.

CALIFORNIA COASTAL ROUTES-Northbound

Train Name → B B B Capitol Corridor Capitol Corridor Pacific Capitol Corridor Pacific Capitol Corridor Pacific Capitol Capitol Corridor Pacific Capitol Capitol Corridor Pacific Capitol Capitol Corridor Pacific Capitol Capitol Corridor Pacific Capitol Capitol Corridor Pacific Capitol Capitol Corridor Pacific Capitol Capitol Corridor Pacific Capitol Capitol Corridor Pacific Capitol Corridor Pacific Capitol Capitol Corridor Pacific Capitol Corridor Pacific Capitol Corridor Pacific Capitol Corridor Pacific Capitol Corridor Pacific Capitol Corridor Pacific Capitol Corridor Pacific Capitol Corridor Pacific Capitol Corridor Capitol Capitol Corridor Capitol Capitol Corridor Capitol Capitol Corridor Capitol Capitol Corridor Capitol Capitol Corridor Capitol Capitol Corridor Capitol Capitol Corridor Capitol Capitol Corridor Capitol Capitol Corridor Capitol Capitol Capitol Carridor Capitol Capitol Carridor Capitol Capitol Carridor Capitol Carridor Capitol Carridor </th
Irain Name Y (B) (B) (B) Corridor Capitol Corridor Capitol Corridor Capitol Corridor Capitol Corridor Capitol Stallpilling Capitol Corridor
Corridor
Train Number > 732 538 761/546 1761/742 763/548 763/548 763/548 763/748 769 777 785/522 785/722 Normal Days of Operation > SaSuHo Mo-Fr Mo-Fr SaSuHo Mo-Fr Daily Daily Daily Daily Daily Mo-Fr SaSuHo On Board Service > Dis Bir
Normal Days of Operation → SaSuHo Mo-Fr Mo-Fr SaSuHo Mo-Fr Daily SaSuHo Daily Daily Mo-Fr SaSuHo On Board Service → □ ■ □ □ ■ □
On Board Service > D B → D ⇒ D ⇒
On Board Service > □2 @ @ b □2 @ @ b □2 @ @ b □ @ b □ □ @ b □ □ @ b □ □ @ b □ □ @ b □ □ @ b □ □ @ b □ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mile Symbol Image Mile
SAN DIEGO, CA ± 0 6.67 Dp m6 67A
San Diego (Old Town), CA 3 ○Sion R4 05P R5 05P R5 05A R5 05A R5 05A R5 05A R5 05A R5 05A R6 14A R4 112A R1 14P R5 14A R4 05P R4 05P R5 05A R5 05A R6 14A R4 05P R4 05P R4 05P R4 05P R4 05P R4 05P R4 05P R4 05P
Solana Beach, CA 26 •. Or 6.45A 6.45A 6.45A 6.45A 6.45A 0.5A 112.22P 4.36P 4.35P Oceanside, CA (LEGOLAND) 41 •. Or
Oceanside, CA (LEGOLAND) 41 6.67 10 <th< td=""></th<>
San Clemente Pier, CA 63 O 519P 51 San Juan Capistrano, CA 70 • 8. 736A 736A 736A 736A 1101A 1139P 534P 53 San Juan Capistrano, CA 70 • 8. 92 • 1 934P 54 754A 710A 1134P 549P 54 Santa Ana, CA 92 • 1 92 • 1 9255A 955A 106 05A 108 05A 1011A 133P 549P 54 Anaheim, CA (Oisneyland') 97 • 1 102 • 6.07 102 • 6.07 102 • 6.07 102 • 6.07 102 • 6.07 102 0.05 106 55P 106 52P 106 20P 106 20P 106 20P 106 20P 106 20P 107 15P 177 17P
San Juan Capistrano, CA 70 6. 70 6. 70 6. 70
invine; CA 83 ●h P 7 54A 7 54A 7 54A 11 10A 1 33P 5 49P 5 4 Santa Ana, CA 92 ●h Image: CA Image: CA </td
Santa Ana, CA 92 ●A Image: Santa Ana, CA 92 ●A Image: Santa Ana, CA 1mage: SantA
Anaheim, CA (Disneyland') 97 ●6. ●6.07 ●8.07 ●9.07 ●9.07 ●9.07 ●9.07 ●9.07 ●9.07 ●9.07 ●9.07 ●9.07 ●9.07 ●9.07 ●9.07 ●7.27 ●7.27 ●7.27 ●7.77 ●7.77 ●7.77 ●7.77 ●7.77 ●7.77 ●7.77 ●7.77 ●7.75 ●7.7
Fullerton, CA 102 6.67 7 985 50A 985 50A 985 50A 982 2A 182 22A 182 22A 113 0A 112 05P 116 20P 117 27P 727 727 727 727 737 737 7P 77 77 737 737 7P 77 77 737 737 77 7P 77 77 737 737 7P 77 77 737 737 7P 77 77 737 737 737 7P 77 77 737 737 7P 77 77 737 737 7P 77 77 737 737 737 7P 77 77 <th< td=""></th<>
LOS ANGELES, CA ★ 128 ● A(P) Ar mmodel and an analysis and
Dp m7 35A m7 50A m9 20A m1 10A mp 20A m1 12 30P m3 65P m7 15P m7 7 7 2 Burbank-Bob Hope Airport, CA & 142 0.6.07 8 00A 8 12A 9 32A 12 42P 3 17P 7 27P 7 2 Van Nuys, CA-Amtrak Station 147 6.607 800A 8 12A 9 92A m10 29A 9 42A 12 52P 3 27P 7 37P 7 37 7 3 Van Nuys, CA-Amtrak Station 147 6.607 808A 83A 10 04A m9 52A m10 12P m3 37P m7 47P m7 4 Chatsworth, CA 157 05 8 8 83A 10 04A 1100A 134P 3 49P 7 59P 7 57 Camarillo, CA 156 05 8 57A 8 57A 10 104A 10 40A 154P 4 27P 8 35P 8 33 Camarillo, CA 186 0-5 9 35A 9 35A 11 04A 1104A 1104A 1109A 219P 4 57P 9 00P 9 00P 9 00P 9 00
Glendale, CA 134 O.b. T <tht< th=""> T T</tht<>
Van Nuys, CA-Amtrak Station 147 ●&Ø ●
Chatsworth, CA 157 Object 8 32A 8 33A 10 04A 10 04A 1 14P 3 49P 7 59P 7 55 Simi Valley, CA 164 Object 8 45A 8 45A 10 16A R11 11A 10 16A 1 26P 4 01P 8 11P
Simi Valley, CA 164 OB 845A 845A 1016A R1111A 1016A 126P 401P 811P 811P Moorpark, CA 175 OB 857A 857A 139P Camarillo, CA 186 OA 910A 910A 1040A 1040A 154P 427P 835P 833 Oxnard, CA 195 Image: Compark, CA 105 Image: Compark, CA 1040A 1040A 154P 427P 835P 833 Oxnard, CA 195 Image: Compark, CA 105 Image: Compark, CA 1040A 1040A 1040A 154P 427P 835P 833 Oxnard, CA 105 Image: Compark, CA 1144A Image: Compark, CA 109P 457P 900P 90P 90P 1006A 1131A 1131A 1131A 1131A 1131A 1131A 1131A 1131A 1131A 1134A
Moorpark, CA 175 ○風 857A 857A 104 139P Camarillo, CA Camarillo, CA 186 ○A 910A 910A 1040A 1040A 154P 427P 835P 833 Oxnard, CA 195 ● & Qr ① ①910A 1040A 1040A 154P 427P 835P 833 Oxnard, CA 195 ● & Qr ① ①910A 1040A 1040A 154P 427P 835P 833 Carpinteria, CA 205 ○ & Qr ○ 1006A 1006A 1114A 1103A 21P 92P
Camarillo, CA 186 O.S. 9 10A 9 10A 10 40A 10 40A 1 54P 4 27P 8 35P 8 33 Oxnard, CA 195 Isk Or Imp 21A Imp 21A Imp 21A Imp 10 53A Imp 20P
Oxnard, CA 195 ●点々 前921A 前921A 前1053A 前1144A 前1053A 前205P 前438P 前846P 前84 Ventura, CA 205 ○点々 935A 935A 1109A 1109A 219P 457P 900P 900 Carpinteria, CA 221 ○点々 A 1006A 1006A 1131A 1131A 247P 521P 922P 922 SANTA BARBARA, CA 232 ●点々 Ar 前1019A 前1019A 前115A 前123P 前115A 1131A 247P 521P 922P 922 927 SaNTA BARBARA, CA 232 ●点々 Ar ①106A 1003A ①102A ①12AP @1123P @11155A @123P @155P @150P @1095P @150P
Ventura, CA 205 0 & qr 9 35A 9 35A 9 35A 11 09A 11 09A 2 19P 4 57P 9 00P 9 00P 9 00 Carpinteria, CA 221 0 & qr 10 06A 10 06A 11 01A 11 31A 2 19P 4 57P 9 00P 9 00P </td
Carpinteria, CA 221 0 & 07 Image: Constraint of the state o
SANTA BARBARA, CA 232 eb.qr Ar mito 19A mito 12A mito 19A
Dp 映e 154 映e 10022A 使用1205P 使用1007 使用1007 使用1205P 使用1205P 使用1205P 使用1007 使用1007 使用1007 使用1007 使用1007 使用1205P 使用1007 使用1007 使用1007 使用1007 使用1007 使用1007 使用1007 使用1007
Goleta, CA 241 〇氏ダ7 1 10 34A 10 34A 12 08P 12 08P 3 18P 5 55P 10 03P 10 03 Solvang, CA-Solvang Park 279 ○も 4 6 第12 45P
Solvang, CA-Solvang Park 279 ○点 ○
Lompoc, CA-Visitors Center 288 ○≜ Image: Content of the state of the stat
Lompoc Surf Station, CA 300 〇 11 40A 11 40A 〇 7 01P 〇 Guadalupe-Santa Maria, CA 326 〇৬.07 12 16P 12 16P 〒05 05P 7 37P 12 16P <
Guadalupe-Santa Maria, CA 326 O&0 T< T <tht< th=""> <t< td=""></t<></tht<>
Santa Maria, CA-IHOP 327 0.6 97 30A 99 25A 97 12 30P 971 20 971 21 150 971 20 971 21 150 971 21 150 971 21 150 971 21 150 971 21 150 971 150
Grover Beach, CA 338 ○&ダ マ 研8 00A 研9 55A 12 35P 12 35P 研1 55P 研1 55P 研2 50P 7 54P 研1 150 研1 150 SAN LUIS OBISPO, CA 350 ●&ダ Ar 研8 20A 研10 15A 位1 00P 位1 00P 研加2 20P 3 22P 研加2 20P 研加2 30P 7 54P 댓12 15A 댓12 15A
SAN LUIS OBISPO, CA 350
SAN LUIS OBISPO, CA 350 • 607 AF #8 20A #10 15A 1000 1000 #1000 #102 200 3 22P #112 20P #112 15A #12 15A #12 15A 1000 1000 #112 200 3 22P #112 20P
San Luis Obispo, CA-Cal Poly 351 O 📕 🤫 8 30A 🤫 10 25A 쩆 1 15P 쩆 1 15P 쩆 2 35P 쩆 2 35P 쩆 5 30P 쩆 D8 45P 쩆 12 30A 쩆 12 3
Atascadero, CA-Transit Center 375 O
Paso Robles, CA 385 O.\$ 99 05A 99 11 00A 99 11 40P 99 14 40P 99 3 05P 4 37P 99 3 05P 99 25P 99 25P 99 25A 99 12 55A
King City, CA-McDonald's 🛛 🕹 🔰 🕬 M10 10A 🥽 M12 05P 🖏 M2 50P 🖏 M2 50P 🦏 M4 15P 🖏 M4 15P 🖏 M6 55P 🖏 M2 05A 🥰 M2 05A
Salinas, CA 483 🗉 🔻 🐺 11 15A 🐺 1 10P 🐺 ش3 50P 🐺 ش5 51P ش6 28P 🐺 ش5 15P 🐺 7 55P 🐺 3 05A 🐺 3 05
SAN JOSE, CA 554 ●& ダ Ar 〒12 50P 〒24 25 P 〒105 05P □105 05P 05 05P □105 05P 05 05P 05 05P 05 05P 05 05P 05 05P
Dp 1 05P 3 10P 5 50P 5 10P 7 15P m8 23P 9 10P 🔫 4 20A 🔫 4 20A
Santa Clara, CA-University Station 561 O 111P 3 16P 5 56P 5 16P 7 21P 9 16P
Santa Clara, CA-Great America 564 OSO7 1 19P 3 24P 6 04P 5 24P 7 29P 9 24P
Fremont-Centerville, CA 573 O LG 07 1 36P 3 43P 6 21P 5 41P 9 41P Hannand CA 575 O LG 07 1 56P 6 20P 5 56P 6 40P 9 56P
Hayward, CA 585 ○ & ダ 1 51P 3 59P 6 36P 5 56P 8 01P 9 56P 9 56P San Francisco, CA-Transbay Term. ● & ダ ✓ ● ● Ø Ø D5 35A ♥ D5 35A ♥ D5 35A ♥ D5 35A ♥ D5 35A
San Francisco, CA-Fransoay Term. ● G @
OAKLAND, CA – Jack London Square 598 ● 昼 ダ Ar 2 08P 4 18P 完価6 45P 完価6 45P 完価2 10P 9 24P 完価2 10 45P 完価0 45P 完価6 05A 完6 02 10 15P 6 25A 余 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OAKLAND, CA 598 CA 2 08P 4 18P wittile 45P
_Jack London Square Dp 210P 420P 655P 620P 820P mp 33P 1015P 625A 81
−Jack London Square Dp 2 10P 4 20P 6 55P 6 20P 8 20P ش9 39P 10 15P 6 25A 8 19 Emeryville, CA 603 ●& qr 2 20P 4 30P 7 05P 6 30P 8 30P 110 04P 10 25P 55P 6 35A 8 22
_Jack London Square Dp 2 10P 4 20P 6 55P 6 20P 8 20P 10 39P 10 15P 6 25A 8 12 Emeryville, CA 603 ● 6 07 2 20P 4 30P 7 05P 6 30P 8 30P 10 125P ₩D10 55P 6 35A 8 22 Berkeley, CA 604 ○ 6 07 2 24P 4 34P 7 09P 6 34P 8 34P 10 29P 6 33A 8 22 Berkeley, CA 610 ○ 507 2 22P 4 34P 7 17P 6 42P 8 34P 10 29P 6 347 8 24 Martinez, CA 630 ● 607 2 32P 4 42P 7 17P 6 42P 8 42P 10 37P 6 47A 8 24 Martinez, CA 630 ● 607 2 59P 5 09P 7 44P 7 09P 9 09P 11 0 4P 7 14A 9 0
Jack London Square Dp 2 10P 4 20P 6 55P 6 20P 8 20P th 3 39P 10 15P 6 25A 8 11 Emeryville, CA 603 • & 07 2 20P 4 30P 7 05P 6 30P 8 30P th 10 04P 10 25P \$
_Jack London Square Dp 2 10P 4 20P 6 55P 6 20P 8 20P 10 39P 10 15P 6 25A 8 12 Emeryville, CA 603 ● 6 07 2 20P 4 30P 7 05P 6 30P 8 30P 10 10 2P 6 35A 8 22 Berkeley, CA 604 ○ 6 07 2 24P 4 34P 7 09P 6 34P 8 34P 10 29P 6 33A 8 22 Berkeley, CA 610 ○ 507 2 22P 4 34P 7 17P 6 42P 8 34P 10 29P 6 34A 8 2P Martinez, CA 630 ● 607 2 32P 4 42P 7 17P 6 42P 8 42P 10 37P 6 47A 8 2P

Service on California Coastal Routes

- M Meal stop.
- Bus 4784 operates express service to Santa Barbara via San Luis Obispo.
- For detailed service information for the *Capitol Corridor* between Reno and San Jose, please refer to our corresponding timetable folder (W34).
- For detailed service information for the *Pacific Surfliner* between San Luis Obispo and San Diego, please refer to pages 2-5.
- For detailed service information for the Coast Starlight between Seattle and Los Angeles, please refer to our corresponding timetable folder (P11).
- refer to our corresponding timetable folder (P11).
 Train departs Oakland two minutes after arrival and makes connection with southbound coastal bus at San Jose.

Smoking is prohibited on trains and only permitted in designated areas at stations.

See pages 2-3 for Services, Symbols and Reference Marks.

CAPITOL CORRIDOR SCHEDULES EFFECTIVE 8/22/16. PACIFIC SURFLINER SCHEDULES EFFECTIVE 6/6/16.

SHADI	NG KEY							
Daytime train	Overnight train							
Thruway and connecting services								

page 7

Enjoy the journey.

Call 1-800-USA-RAIL

SOUTHWEST CHIEF®

CHICAGO — and — LOS ANGELES

CHICAGO - KANSAS CITY - TOPEKA Dodge City - Raton - Lamy (Santa Fe) Albuquerque - Flagstaff - Los Angeles

and intermediate stations

NRPC Form P3-200M-6/9/14 Stock #02-3618 Schedules subject to change without notice. Amtrak is a registered service mark of the National Railroad Passenger Corp. National Railroad Passenger Corporation Washington Union Station, 60 Massachusetts Ave. N.E., Washington, DC 20002.

SOUTHWEST CHIEF

3						4
Daily			Normal Days of Operation	•		Daily
ℝ₽¥ ়⊉ւ⊡			♦ On Board Service ▶			▣₽¥ ়⊉ᡥ
Read Down	Mile	_		Symbol		Read Up
m3 00P	0	Dp	Chicago, IL–Union Station (CT)	●ुद्ध्य	Ar	m3 15P
	U	Dp	Readison—see back	U G Q	AI	ш3 15Р
R3 35P	28		Naperville, IL	●⊾्		D2 42P
4 24P	83		Mendota, IL	OŁ		1 19P
4 46P	104		Princeton, IL	OŁ		12 58P
ش5 38P	162		Galesburg, IL-S. Seminary St. 77	●હ. <i>Q</i> 7		血12 08P
ш 6 42 Р	220		Fort Madison, IA (Keokuk)	● ह ्य		血11 09A
7 51P	298		La Plata, MO (Kirksville)	OE		9 55A
ш10 11P	437	Ar	Kansas City, MO	●હ્રQT	Dp	岱7 43A
ш10 45P		Dp			Ar	岱7 24A
11 52P	477		Lawrence, KS	OE		5 47A
血12 29A	503		Topeka, KS	€ક		血5 18A
岱2 45A	638		Newton, KS (Wichita)	€		血2 59A
3 20A	671		Hutchinson, KS	୍ୟ		2 19A
5 25A	791		Dodge City, KS	OŁ		12 27A
6 21A	841		Garden City, KS (CT)	€		11 17P
6 59A	941		Lamar, CO (MT)	୍ୟ		8 40P
血8 15A	993	Ar	La Junta, CO	●₹	Dp	₫7 41P
ш8 30A		Dp			Ar	曲7 31P
9 50A	1074		Trinidad, CO	OE		5 49P
10 56A	1098		Raton, NM	OL		4 50P
			Renver—see back		_	
12 38P			Las Vegas, NM	<u>ि</u> ह्य ग		3 03P
₫2 24P			Lamy, NM Santa Fe—see back	€		₾1 17P
ш3 55P	1341	Ar	Albuquerque, NM	● <u>E</u> , QT	Dp	±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±
ш 4 45 Р		Dp			Ar	血11 42A
7 08P			Gallup, NM (MT)	OŁ		8 21A
697 50P			Winslow, AZ (MST)	OŁ		695 39A
69曲8 51P	1699	Ar	Flagstaff, AZ	●હ∖ <i>Q</i> 7	Dp	69曲4 41A
圖曲8 57P		Dp	Scand Canyon, Phoenix—		Ar	@血4 36A
53699 33P	1730		Williams Jct., AZ (Grand Can. Ry.)	ં લ ચ		53693 50A
6911 46P	1873		Kingman, AZ (MST)	OŁ		691 33A
			R Laughlin, Las Vegas— see back			
12 49A	1940		Needles, CA (PT)	୍ୟ		12 23A
3 39A			Barstow, CA	OŁ		9 56P
4 18A			Victorville, CA	ିକ		9 10P
5 32A			San Bernardino, CA	িদ্ধ		7 59P
5 53A			Riverside, CA	୍ରଜ		7 33P
血 D 6 34A			Fullerton, CA	●ક. <i>Q</i> 7		©R6 50P
±15A		Ar	Los Angeles, CA 🛧 (PT)	●⊾QT	Dp	±16 001
	_200	/ 1	Eas Vegas—see back, below		56	

Executive Transportation operates Thruway van service from Springfield, IL for connections from Train 22 to Trains 3 and 5 at Galesburg, IL and from Galesburg, IL for connections from Trains 4 and 6 to Train 21 at Springfield, IL. Passengers with disabilities must provide advance notification of needs. For additional information call (217) 523-5466.

8 10A 10 10A 11 10A 12 10P 2 10P 4 10P 6 10P

outhwest Chief Other Amtrak Train Routes А Time Symbol for A.M. Airport connection Time Symbol for P.M. QT Quik-Trak self-serve ticketing kiosk D Stops only to discharge passengers; Unstaffed station \cap train may leave before time shown. 0 Attended station R Stops only to receive passengers. Staffed ticket office; may or may not Central time be open for all train departures CT MT Mountain time Station wheelchair accessible; no MST Mountain Standard time barriers between station and train Ċ. Station wheelchair accessible; not PT Pacific time Bus stop all stations facilities accessible

Service on the Southwest Chief®

- R Coaches: Reservations required.
 A Sleeping cars: Superliner sleeping accommodations.
 - Amtrak Metropolitan Lounge available in Chicago and Los Angeles for Sleeping car passengers.
- X Dining: Full meal service.
- Sightseer Lounge: Sandwiches, snacks and beverages.
- D Checked baggage at select stations.
- Free shuttle service between Williams Grand Canyon Railway station and Williams Junction Amtrak station. Reservations required.
- This location does not observe Daylight Saving Time. Schedule times at this station will be ONE HOUR LATER beginning with the Fall time change on November 2, 2014.

Dp 7 00A

0

9 00A 11 00A 12 00N 1 00P

Smoking is prohibited.

Trails and Rails Program: In cooperation with the National Park Service, volunteer rangers from Bent's Old Fort National Historic Site provide narrative between La Junta and Albuquerque on Train 3 Friday and Sunday and on Train 4 Saturday and Monday, May 4 through September 1; volunteers from Texas A&M University provide narrative between Chicago and La Plata on Train 3 Tuesday and Thursday and Train 4 Wednesday and Friday, May 13 through September 15 and November 11 through January 1. Seasonal programs are subject to change. Visit nps.gov/trailsandrails and amtraktoparks.com.

Thruway Bus Connections

Flagstaff • Phoenix (Arizona Shuttle)							NOTE—In addition to the same-day train connections at Flagstaff shown on the next page, this service offers overnight connections for travel between Phoenix and the Grand Canyon or points east of Flagstaff.															
8561	8563	8553	8557	8559	8565	8567	8581	8569			Thruway Number			8560	8554	8562	8576	8556	8558	8564	8566	8568
Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily	Mile	•	Days of Operation	Symbol		Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily
5 00A	7 00A	8 00A	9 00A	11 00A	1 00P	3 00P	5 00P	7 00P	0	Dp	Flagstaff, AZ (MST) –Amtrak Station	•	Ar	10 20A	12 20P	2 20P	3 20P	4 20P	6 20P	8 20P	10 20P	12 20A
6 00A	8 00A	9 00A	10 00A	12 00N	2 00P	4 00P	6 00P	8 00P	50	Dp	Camp Verde, AZ	0	Dp	9 00A	11 00A	1 00P	2 00P	3 00P	5 00P	7 00P	9 00P	11 00P
7 50A	9 50A	10 50A	11 50A	1 50P	3 50P	5 50P	7 50P	9 50P	143		Phoenix, AZ –Metro Center Transportation Ctr.	0	Dp	7 30A	9 30A	11 30A	12 30P	1 30P	3 30P	5 45P	7 30P	9 30P

NOTE—Additional service: Bus 8579 departs Flagstaff 2:00 p.m., arriving Camp Verde 3:00 p.m., Phoenix Metro Center 4:50 p.m. and Sky Harbor Airport 5:10 p.m. Bus 8580 departs Sky Harbor Airport 6:00 p.m., Metro Center 6:30 p.m. and Camp Verde 8:00 p.m., arriving Flagstaff 9:20 p.m.

–Sky Harbor (MST) Airport

Los Angeles • Las Vegas (Greyhound Lines) NOTE—Greyhound schedules subject to change.

8 10P 10 00P 145 Ar

8534	8536	Thruway Number							
Daily	Daily	Mile	-	Days of Operation		Daily			
10 45A	3 10P	0	Dp	Los Angeles, CA 🛧 – Union Station (PT)	●. 	Ar	3 15P		
4 55P	8 20P	271	Ar	Las Vegas, NV–Greyhound Station (PT)	0	Dp	9 05A		

Shading Key							
Long-distance train							
Thruway and connecting services							

3 00P

5 00P

7 00P

9 00P

SOUTHWEST CHIEF ROUTE MAP and SYMBOLS

Thruway Bus Connections

Madison • Rockford • Chicago

(Van Galder-en route transfers may be necessary)

8964	Mile	-	Thruway Number	Symbol		8965
			Madison, WI (CT)			
10 00A	0	Dp	-Univ. of Wisconsin/Chazen Museum	0	Ar	8 35P
10 15A	6		–Dutchmill Park & Ride	0		8 20P
11 00A	35		Janesville, WI	0		7 30P
11 25A	48		South Beloit, IL	0		7 10P
11 50A	65	Dp	Rockford, IL	0	Ar	6 50P
1 45P	140	Ar	Chicago, IL–Union Station (CT)	•	Dp	5 00P

Denver • Colorado Springs • Pueblo • Raton

(Greyhound Lines)

3 Connecting Train Number								
8603	Mile	Thruway Number Symbol						
5 30A		Dp	Denver, CO–Amtrak Station	(MT)	●દ	Ar	9 10P	
7 10A		Ar	Colorado Springs, CO		0	Dp	7 40P	
8 10A		Ar	Pueblo, CO		0	Dp	6 45P	
10 20A		Ar	Raton, NM – Amtrak Station	(MT)	0	Dp	5 05P	

Lamy • Santa Fe (Lamy Shuttle)

Lamy Shuttle Service van meets Trains 3 and 4 daily. From Lamy to Santa Fe, advance reservations required; call 1-800-USA-RAIL. From Santa Fe to Lamy, shuttle will pick up at your hotel; call (505) 982-8829 the day prior to departure to arrange pickup.

Grand Canyon • Williams (Grand Canyon Railway)

7903		7904				
Daily	Mile	•	Days of Operation	Symbol		Daily
3 30P	0	Dp	Grand Canyon, AZ (MST) –Grand Canyon Railway Station	୍ୟ	Ar	11 45A
			–Grand Canyon Railway Station			
5 45P	64	Ar	Williams, AZ (MST)	୦୫	Dp	9 30A
			-Grand Canyon Railway Station			

NOTE—The Grand Canyon Railway station at the Grand Canyon is located near the Canyon rim, across the road from the El Tovar Hotel. Please visit www.thetrain.com/schedule for any updates to 2014 train schedule.

Williams • Williams Junction

(Shuttle service provided by Grand Canyon Railway)

3			Connecting Train Number			4		
6903	6903 Thruway Number							
Daily	Mile	Mile 🚽 Days of Operation Symbol 🔺						
699 10P	0	Dp	Williams, AZ (MST) –Grand Canyon Railway Station	୦ଝ	Ar	694 10A		
699 20P	3	Ar	Williams Junction, AZ (MST) –Amtrak Station	0 U	Dp	694 00A		
6803		-	Thruway Number			6804		
69 9 40P	0	Dp	Williams Junction, AZ (MST) –Amtrak Station	OŁ	Ar	693 40A		
699 50P	3	Ar	Williams, AZ (MST) –Grand Canyon Railway Station	িন্দ	Dp	693 30A		

Kingman • Laughlin • Las Vegas (Commuter Services)

8003	Mile		Thruway Number	Symbol		8004
69 11 50P	0	Dp	Kingman, AZ–Amtrak Station (MST)	0	Ar	69 1 00A
12 50A	33	Ar	Laughlin, NV–Tropicana Express (PT)	0	Dp	12 01A
3 10A	128	Ar	Las Vegas, NV (PT)	0	Dp	9 30P
			–McCarran International Airport			

Flagstaff • Phoenix (Greyhound Lines)

3	3 Connecting Train Number						
8703	8703 Thruway Number						
Daily	Mile	•	Days of Operation	Symbol		Daily	
69 10 10P	0	Dp	Flagstaff, AZ–KP Transport. (MST)	0	Ar	69 2 20A	
691240A	145	Ar	Phoenix, AZ–Greyhound Sta. (MST)	0	Dp	69 11 40P	

Rail Runner Commuter Rail Service

Belen–Albuquerque–Santa Fe

For information call (866) 795-7245 or visit www.nmrailrunner.com.

See other side for Shading Key, Route Map and Symbols.

Enjoy the journey."

Call 1-800-USA-RAIL

SUNSET LIMITED®

NEW ORLEANS - and --LOS ANGELES

NEW ORLEANS - HOUSTON San Antonio - Tucson Maricopa - Los Angeles

and intermediate stations

NRPC Form P1–125M-6/9/14 Stock #02-3608 Schedules subject to change without notice. Amtrak is a registered service mark of the National Railroad Passenger Corp. National Railroad Passenger Corporation Washington Union Station, 60 Massachusetts Ave. N.E., Washington, DC 20002.

SUNSET LIMITED

1 [20]						2 20		
As indicated in column			♦ Normal Days of Operation ▶			As indicated in column		
R₽¥ ♡ഥ						R ₽ ¥ 고 ഥ		
Read Down	Mile	Mile 🔶 Symbol 🔺		Read Up				
曲9 00A MoWeSa	0	Dp	New Orleans, LA (CT)	●હે.QT	Ar	ṁ9 40P TuFrSu		
*10 30A MoWeSa	56		Schriever, LA (Houma/Thibodaux)	OŁ		₩7 03P TuFrSu		
*11 56A MoWeSa	127		New Iberia, LA	OŁ		**5 41P TuFrSu		
12 24P MoWeSa	145		Lafayette, LA	0 E		5 15P TuFrSu		
1 55P MoWeSa	219		Lake Charles, LA	0 E		3 29P TuFrSu		
3 48P MoWeSa	281		Beaumont, TX (Port Arthur)	0 E		2 05P TuFrSu		
m6 18P MoWeSa	363	Ar	Houston, TX	€	Dp	12 10P TuFrSu 112 100 100 100 100 100 100 100 100 100		
m6 55P MoWeSa		Dp	🖶 Galveston—see below		Ar	ttlithtlithtlithtlithtlithtlithtlithtli		
ttill 12 05A TuThSu	573	Ar	San Antonio, TX	●હ. <i>Q</i> 7	Dp	ttlift@16 25A TuFrSu		
山2 45A TuThSu		Dp			Ar	ttl:⊈td: tu⊈the diagram dia		
5 49A TuThSu	742		Del Rio, TX	OŁ		1 02A TuFrSu		
★8 24A TuThSu	868		Sanderson, TX	0		*10 36P MoThSa		
10 38A TuThSu	959		Alpine, TX (Big Bend Nat'l Park) (CT)	O		8 45P MoThSa		
₫1 22P TuThSu	1178	Ar	El Paso, TX (MT)	●હ. <i>Q</i> 7	Dp	13 35P MoThSa		
ш 1 47Р TuThSu		Dp	(Ciudad Juarez, Mexico)		Ar	10P MoThSa		
*3 18P TuThSu	1264		Deming, NM	OŁ		*1 10P MoThSa		
★4 13P TuThSu	1325		Lordsburg, NM (MT)	O		*12 15P MoThSa		
69 * 5 18P TuThSu	1443		Benson, AZ (MST)	O		⁶⁹ ★9 15A MoThSa		
69曲6 45P TuThSu	1493	Ar	Tucson, AZ	●ह्येव्	Dp	邮曲8 15A MoThSa		
69曲7 35P TuThSu		Dp			År	69曲7 28A MoThSa		
69曲8 52P TuThSu	1579	Ar	Maricopa, AZ (Phoenix)	ی	Dp	回曲5 40A MoThSa		
69曲9 02P TuThSu		Dp			Ar	回曲5 30A MoThSa		
6911 49P TuThSu	1744		Yuma, AZ (MST)	୦୫		692 47A MoThSa		
2 02A WeFrMo	1890		Palm Springs, CA (PT)	୦୫		12 36A MoThSa		
D3 54A WeFrMo	1957		Ontario, CA	୍ୟ		10 54P SuWeFr		
D4 04A WeFrMo	1964		Pomona, CA	OE		10 41P SuWeFr		
曲5 35A WeFrMo	1995	Ar	Los Angeles, CA 🛧 (PT)	●৻⊾৹ঢ়	Dp	10 00P SuWeFr		

ROUTE MAP and SYMBOLS Other Amtrak Train Routes Time Symbol for A.M. σ Quik-Trak self-serve Δ ticketing kiosk Time Symbol for P.M. D Stops only to discharge 0 Unstaffed station passengers; train may Staffed ticket office; leave before time may or may not be open shown. for all train departures ст Central time Station wheelchair accessible: no barriers Eastern time ET MT Mountain time between station and MST Mountain Standard time train ė. Station wheelchair РТ Pacific time * Bus stop accessible; not all stations facilities Flag stop

accessible

SUNSET LIMITED

- Service on the Sunset Limited®
- R Coaches: Reservations required.
- Sleeping cars: Superliner sleeping accommodations. æ
 - Magnolia Room is available in New Orleans and Amtrak Metropolitan Lounge in Los Angeles for Sleeping car passengers.
 - Sleeping car passengers arriving at Los Angeles are welcome to occupy their accommodations until 6:30 a.m.
- X Dining: Full meal service.
- D Sightseer Lounge: Sandwiches, snacks and beverages.
- D Checked baggage at select stations.
- Train stops only when passengers are present, either on the train or station platform, and ticketed to and/or from this station. Reservations are required. Boarding passengers must reserve as far in advance as possible.
- This location does not observe Daylight Saving Time. Schedule times at 69 this station will be ONE HOUR LATER beginning with the Fall time change on November 2, 2014.

Smoking is prohibited.

Trails and Rails Program: In cooperation with the National Park Service, volunteer rangers from the New Orleans Jazz National Historical Park provide a narrative on Train 1, Monday and Saturday, and Train 2, Tuesday and Sunday, between New Orleans and Beaumont, May 22 through September 2. Seasonal programs are subject to change. Visit nps.gov/trailsandrails and amtraktoparks.com.

Scenic Highlights

Gulf Coast

I on

- Mexican border
- Bayou Country · Southwestern desert

Modified Amtrak Service for the Sunset Limited

20 The Sunset Limited service between Orlando and New Orleans has been suspended. Future service has not been determined.

	Shac	ling Key
ng-distance train		Thruway and connecti

Thruway Bus Connections

Airport connection

Galveston • Houston (Lone Star Coach)

Ρ

6022		Thruway Number							
Daily	Mile	•	Days of Operation	Symbol		Daily			
11 30A	0	Dp	Galveston, TX –123 Rosenberg	(CT)	0	Ar	2 45P		
ш1 05P	47	Ar	Houston, TX-Amtrak Station	(CT)	€	Dp	1 15P		

New Orleans • Baton Rouge (Greyhound Lines)

8059		Thruway Number						
Daily	Mile	•	Days of Operation	Symbol		Daily		
6 10P	0	Dp	New Orleans, LA –Union Passenger Terminal	(CT)	•	Ar	7 00A	
7 55P	80	Ar	Baton Rouge, LA	(CT)	0	Dp	5 15A	

Discover NEW HORIZONS.

For reservations and information visit Amtrak.com or call 1-800-USA-RAIL.

ing services

n efecto a pantin del 9 DE JUNIO DE 2014

Distrute del viaje

Llame al 1 - 8 0 0 - U S A - R A I L

NEW ORLEANS ーyー Los Angeles

SUNSET LIMITED®

NEW ORLEANS - HOUSTON San Antonio - Tucson Maricopa – Los Angeles

y estaciones intermedias

Formulario de NRPC P1–125M–6/9/14 Artículo #02-3608 Los itinerarios están sujetos a cambios sin previo aviso. Amtrak es una marca registrada de servicio de National Railroad Passenger Corp. **National Railroad Passenger Corporation** Washington Union Station, 60 Massachusetts Ave. N.E., Washington, DC 20002.

Visite AMTRAK.COM

SUNSET LIMITED

1 20			♦ Número de tren		2 20	
Como se indica en la columna			♦ Días de operación			Como se indica en la columna
R₽¥ Dùi			∢ Servicio a bordo ኑ			R₽¥ ©≞
Leer hacia abajo	Milla	-		Símbolo		Leer hacia arriba
曲9 00A LMiS	0	Dp	New Orleans, LA (CT) Real Baton Rouge—ver la derecha	●હ. <i>Q</i> 7	Ar	119 40P MVD
*10 30A LMiS	56		Schriever, LA (Houma/Thibodaux)	OŁ		*7 03P MVD
*11 56A LMiS	127		New Iberia, LA	OL		★5 41P MVD
12 24P LMiS	145		Lafayette, LA	OŁ		5 15P MVD
1 55P LMiS	219		Lake Charles, LA	OŁ		3 29P MVD
3 48P LMiS	281		Beaumont, TX (Port Arthur)	OŁ		2 05P MVD
18P LMiS	363	Ar	Houston, TX	€.	Dp	₫12 10P MVD
₫6 55P LMiS		Dp	🖶 Galveston—ver la derecha		Ar	曲11 10A MVD
₫12 05A MJD	573	Ar	San Antonio, TX	●હ. <i>વ</i>	Dp	曲6 25A MVD
血2 45A MJD		Dp			Ar	血4 50A MVD
5 49A MJD	742		Del Rio, TX	OL		1 02A MVD
*8 24A MJD	868		Sanderson, TX	0		*10 36P LJS
10 38A MJD	959		Alpine, TX (Big Bend Nat'l Park) (CT)	OL		8 45P LJS
ш 1 22Р MJD	1178	Ar	El Paso, TX (MT)	●હ. <i>Q</i> 7	Dp	m3 35P LJS
<u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>		Dp	(Ciudad Juarez, Mexico)		Ar	<u>m3 10P LJS</u>
*3 18P MJD	1264		Deming, NM	ા		*1 10P LJS
*4 13P MJD	1325		Lordsburg, NM (MT)	OŁ		*12 15P LJS
69 * 5 18P MJD	1443		Benson, AZ (MST)	OŁ		☆ 9 15A LJS
69曲6 45P MJD	1493	Ar	Tucson, AZ	●⊾्	Dp	69曲8 15A LJS
69曲7 35P MJD		Dp			Ar	69曲7 28A LJS
69曲8 52P MJD	1579	Ar	Maricopa, AZ (Phoenix)	€	Dp	69曲5 40A LJS
颐 曲 9 02P MJD		Dp	(2.20)		Ar	69曲5 30A LJS
6911 49P MJD	1744		Yuma, AZ (MST)	୍ରନ		692 47A LJS
2 02A MiVL	1890		Palm Springs, CA (PT)	୍ରନ		12 36A LJS
D 3 54A MiVL	1957		Ontario, CA	୍ରନ		10 54P DMiV
D 4 04A MiVL	1964		Pomona, CA	OŁ		10 41P DMiV
曲5 35A MiVL	1995	Ar	Los Angeles, CA 🛧 (PT)	●હ. <i>Q</i> 7	Dp	10 00P DMiV

Conexión de Thruway Bus

Galveston • Houston (Lone Star Coach)

6022		Número de Thruway							
Diariamente	Milla	•	Días de operación	Símbolo		Diariamente			
11 30A	0	Dp	Galveston, TX (CT) -123 Rosenberg	0	Ar	2 45P			
ш1 05P	47	Ar	Houston, TX–Estación de Amtrak(CT)	€	Dp	1 15P			

New Orleans • Baton Rouge (Greyhound Lines)

8059		Número de Thruway								
Diariamente	Milla	-	Días de operación		Diariamente					
6 10P	0	Dp	New Orleans, LA –Union Passenger Terminal	(CT)	•	Ar	7 00A			
7 55P	80	Ar	Baton Rouge, LA	(CT)	0	Dp	5 15A			

Convenciones del sombreado Tren de larga distancia Thruway y servicios de conexión

Servicio Amtrak modificado para Sunset Limited

20 El servicio de *Sunset Limited* entre Orlando y New Orleans ha sido suspendido. No se ha determinado cuándo iniciará el servicio futuro.

Descargue los podcast de **Sunset Limited** en www.AmtrakRailGuide.com <http://www.AmtrakRailGuide.com/>.

Servicio en el Sunset Limited®

- Clase económica: se requiere reservación.
 - Cabinas dormitorio: Dormitorios en Superliner.
 El Salón Magnolia está disponible en Nueva Orleans y el Salón Metropolitan en Los Ángeles para los
 - pasajeros con servicio de coche-cama. - Los pasajeros con servicio de coche-cama que lleguen a Los Ángeles pueden ocupar sus lugares hasta las 6:30 a.m.
- Comedor: servicio de comida completo.
- Lounge Sightseer: sándwiches, refrigerios y bebidas.
- Equipaje facturado en estaciones selectas.
 El tren se detiene en una estación sólo cuando hay pasajeros en el tren con boleto hasta dicha estación o en la plataforma de la misma con boleto para salir desde allí. Es necesario hacer reservaciones. Los pasajeros que se van a embarcar deben reservar con la mayor anticipación posible.
- Esta úbicación no respeta el horario de verano. Los horarios programados para esta estación se RETRASARÁN UNA HORA a partir del cambio de horario de otoño que comenzará a regir el 2 de noviembre de 2014.

Está prohibido fumar.

Programa Trails and Rails: en cooperación con el Servicio de Parques Nacionales, los guardaparques voluntarios del Parque Histórico Nacional de Jazz de Nueva Orleans realizarán una narración en el tren 1, los lunes y los sábados, y en el tren 2, los martes y los domingos, entre Nueva Orleans y Beaumont, desde el 22 de mayo hasta el 2 de septiembre. Los programas de temporada están sujetos a modificación. Visite nps.gov/ trailsandrails y amtraktoparks.com.

SUNSET LIMITED MAPA DE LA RUTA Y SÍMBOLOS

- A Símbolo de tiempo para A.M.
 N Símbolo de tiempo para mediodía.
- P Símbolo de tiempo para P.M.
 D Sólo se detiene para bajar
- pasajeros; el tren puede partir antes de la hora que se muestra.
 CT Hora del Centro
- ET Hora del Este
- MT Hora de la Montaña
- MST Hora estándar de la Montaña
- PT Símbolo de tiempo para P.M.
- Rarada de autobús

- Parada a petición del pasajero
- Conexión al aeropuerto
 Quiosco Quik-Trak, venta de boletos
- Quiosco Quik-Trak, venta de poletos autoservicio
 Estación no provista de personal
- Oficina de boletos provista de personal; puede no estar abierta en todos los horarios de salida
- Estación con acceso para silla de ruedas; no hay obstáculos entre la estación y el tren.
- Estación con acceso para silla de ruedas; no todas las instalaciones de la estación son accesibles

(THIS PAGE INTENTIONALLY LEFT BLANK)

Appendix B: Metrolink and Amtrak Forecast – Daily and for 6-Hour AM/PM Peak for 2026, 2031, and 2040

(THIS PAGE INTENTIONALLY LEFT BLANK)

Table B-1. 2026 Metrolink		
	Breakdown by Metrolink Line	
	Total Daily ^a	70
Ventura County Line	6-hour peak ^b	24
	LAUS-CMF	0
	Total Daily ^a	74
Orange County Line	6-hour peak⁵	26
	LAUS-CMF	0
	Total Daily ^a	81
Antelope Valley Line	6-hour peak ^₅	32
	LAUS-CM	10
	Total Daily ^a	62
San Bernardino Line	6-hour peak ^₅	28
	LAUS-CMF	10
	Total Daily ^a	12
Riverside Line	6-hour peak⁵	9
	LAUS-CMF	10
	Total Daily ^a	71
91/Perris Valley Line	6-hour peak⁵	25
	LAUS-CMF	10
	Total Daily	410
	# of Rev Trains	370
	# of dead head equipment moves*	40
	Total 6-hour Peak (AM and PM combined)	144

Source: Source: SCRRA 2018a

Notes:

^a Includes deadhead moves between LAUS and CMF

^b Inbound/Outbound 6:00-9:00 AM; 3:00-6:00 PM

Service frequencies assumed at 30-minutes based on direction from Metrolink

2026 15 Minute Peak:

AM: 6:00 - 6:15; 7:00 - 7:15; 7:30 - 7:45;

PM: 4:30 - 4:45; 5:00 - 5:15; 5:30 - 5:45;

Table B-2	2. 15-min p	oeak break	down – AN	1									
	Time												
Line	6:00	6:15	6:30	6:45	7:00	7:15	7:30	7:45	8:00	8:15	8:30	8:45	TOTAL
VCL	2	0	2	0	2	0	2	0	2	0	2	0	12
OCL	1	1	1	1	1	1	1	1	1	1	1	2	13
AVL	2	1	2	0	2	1	2	0	2	1	2	1	16
SBL	2	0	2	1	2	0	2	1	2	0	2	1	15
Riv	1	—	—	—	1	—	1	—	—	1	—	—	4
91/Perris	1	0	1	1	1	1	1	1	1	1	1	2	12
TOTAL	9	2	8	3	9	3	9	3	8	4	8	6	72

Table B-3	8. 15-min p	oeak break	down – PN	Λ									
						Ti	me						
Line	15:00	15:15	15:30	15:45	16:00	16:15	16:30	16:45	17:00	17:15	17:30	17:45	TOTAL
VCL	2	0	2	0	2	0	2	0	2	0	2	0	12
OCL	1	1	1	1	1	1	1	1	1	1	1	2	13
AVL	2	1	2	0	2	1	2	0	2	1	2	1	16
SBL	1	0	2	1	1	0	2	1	2	0	2	1	13
Riv	—	—	—	—	—	1	1	—	1	—	1	1	5
91/Perris	1	1	1	1	1	1	1	1	1	1	1	2	13
TOTAL	7	3	8	3	7	5	9	3	9	4	8	6	72

Source: SCRRA 2018a

B	reakdown by Metrolink Line	
Ventura – Orange County Line	Total Daily ^a	304
	VC-OC High Frequency Local ^c	288
	Ventura County Express	16
	6-hour peak ^b	112
	LAUS-CMF	0
Antelope Valley Line - Perris Valley Line	Total Daily ^a	276
	Antelope Valley/91-Perris Valley Regional •	132
	Santa Clarita High-Frequency Local	144
	6-hour peak ^b	92
	LAUS-CMF	0
San Bernardino Line	Total Daily ^a	86
	San Bernardino Regional	78
	San Bernardino Express	8
	6-hour peak ^b	34
	LAUS-CMF	0
Riverside Line	Total Daily ^a	24
	6-hour peak ^b	12
	LAUS-CMF	12
	Total Daily	690
	# of Rev Trains	678
	<i>#</i> of dead head equipment moves *	12
	Total 6-hour Peak (AM and PM combined)	250

Source: SCRRA 2018b

Notes:

^a Includes deadhead moves between LAUS and CMF

^b Inbound/Outbound 6:00-9:00 AM; 3:00-6:00 PM

^c Run-through trains are counted as separate moves and hence doubled

Calculations based off 2028 Service Levels – 2018 TIRCP Application Assumptions

AM: 7:00 - 6:15; 7:30 - 7:45; 8:00 - 8:15; 8:30 - 8:45

PM: 4:00 - 4:15; 4:30 - 4:45; 5:00 - 5:15; 5:30 - 5:45

Table B-5. 1	5-min pe	ak breakc	lown – Al	М									
	Time												
Line	6:00	6:15	6:30	6:45	7:00	7:15	7:30	7:45	8:00	8:15	8:30	8:45	TOTAL
VCL/OCL	4	4	4	5	5	5	5	5	5	5	5	4	56
AVL/PVL	3	3	4	4	4	4	4	4	4	4	4	4	46
SBL	2	1	1	1	2	1	2	1	2	1	2	1	17
Riv	1	0	1	0	1	0	1	0	1	0	1	0	6
TOTAL	10	8	10	10	12	10	12	10	12	10	12	9	125

Table B-6. 1	5-min pe	ak breakd	own – PN	1									
	Time												
Line	15:00	15:15	15:30	15:45	16:00	16:15	16:30	16:45	17:00	17:15	17:30	17:45	TOTAL
VCL/OCL	4	4	4	5	5	5	5	5	5	5	5	4	56
AVL/PVL	3	3	4	4	4	4	4	4	4	4	4	4	46
SBL	2	1	1	1	2	1	2	1	2	1	2	1	17
Riv	1	0	1	0	1	0	1	0	1	0	1	0	6
TOTAL	10	8	10	10	12	10	12	10	12	10	12	9	125

Source: SCRRA 2018b

Table B-7. 2026 Amtra	Table B-7. 2026 Amtrak Projection (Pacific Surfliner and Amtrak Long Distance)										
		6 hour peak		Daily Total							
	LOSSAN	Long Distance	TOTAL	LOSSAN	Long Distance	TOTAL					
Revenue Trains	19	1	20	48	5	53					
Non-Revenue Trains	0	1	1	10	5	15					
Total	19	2	21	58	10	68					

Source: SCRRA 2018a

Notes: Assumptions: 7 LAUS to north of LAUS Round Trips 15 LAUS to San Diego Round Trips 2 LAUS to Coachella/Indio Round Trips Equipment in LAUS: 4 Pacific Surfliner (LOSSAN), 1 Coachella No Future Growth on Amtrak Long Distance

Table B-8. 2031 Amtrak Projection (Pacific Surfliner and Amtrak Long Distance)											
		6 hour peak		Daily Total							
	LOSSAN	Long Distance	TOTAL	LOSSAN	Long Distance	TOTAL					
Revenue Trains	19	1	20	56	5	61					
Non-Revenue Trains	0	1	1	14	5	19					
Total	19	2	21	70	10	80					

Source: SCRRA 2018b

Notes: Assumptions: 18-hour Service Day 8 LAUS to north of LAUS Round Trips Hourly service between LAUS and San Diego 2 LAUS to Coachella/Indio Round Trips Equipment in LAUS: 6 Pacific Surfliner (LOSSAN), 1 Coachella No Future Growth on Amtrak Long Distance

Table B-9. 2040 Amtra	Table B-9. 2040 Amtrak Projection (Pacific Surfliner and Amtrak Long Distance)										
		6 hour peak		Daily Total							
	LOSSAN	Long Distance	TOTAL	LOSSAN	Long Distance	TOTAL					
Revenue Trains	37	1	38	112	5	117					
Non-Revenue Trains	0	1	1	18	5	23					
Total	37	2	39	130	10	140					

Source: SCRRA 2018b

Notes:

Assumptions:

18-hour Service Day

Hourly service between LAUS and north of LAUS

30-minutes service between LAUS and San Diego

2 LAUS to Coachella/Indio Round Trips

Equipment in LAUS: 8 Pacific Surfliner (LOSSAN), 1 Coachella

No Future Growth on Amtrak Long Distance

Appendix B: Construction and Operational Assumptions

(THIS PAGE INTENTIONALLY LEFT BLANK)

Biditem/ Category	Activity/ Resource	Description	Quantity	Unit	Rn Pcs %		Outside Equipment	EOE	Other	Total
8APPV020		Asphalt Paver, CAT 1055D								
*** 8APPV0		Asphalt Paver, CAT 1055D	82.53			12,468		9,118		21,586
8APPV200		Asphalt Paver, CAT 200B								
*** 8APPV2	00B	Asphalt Paver, CAT 200B	156.00			11,982				11,982
8BH		***Backhoe***								
*** 8BH		***Backhoe***	41.20				5,601			5,601
8BH336		Crawler Hoe 40T (Cat 336)	12.27			590		252		041
*** 8BH336 8BH416		Crawler Hoe 40T (Cat 336)	12.27			589		352		941
8BH410 *** 8BH416		Tractor Backhoe, CAT 416	2,674.67			39,572		46,641		86,213
		Tractor Backhoe, CAT 416	2,0/4.0/			 39,372		40,041		80,215
8BH430		Tractor Backhoe, CAT 430	2 252 92			50.925		72 146		122.071
*** 8BH430	1.500	Tractor Backhoe, CAT 430	3,253.82			 59,825		73,146		132,971
8BHAHA		Attach, Hammer, 1500 flb	75 (2)			0.40		10.5		1.226
*** 8BHAHA	AM1500	Attach, Hammer, 1500 flb	75.62			840		495		1,336
8CA2CL		Exc Clam Shall 1.5CY								
*** 8CA2CL	,	Exc Clam Shall 1.5CY	1,334.08			26,148				26,148
8CC150		Crane 4000 175T								
*** 8CC150		Crane 4000 175T	41.20			2,636		1,912		4,548
8CMP018:	-	Air Compressor, 185 cfm, Ds								
*** 8CMP01		Air Compressor, 185 cfm, Ds	1,311.64			 4,769		14,192		18,961
8CMP037:		Air Compressor, 375 cfm, Ds								
*** 8CMP03		Air Compressor, 375 cfm, Ds	5,523.14			38,413		91,353		129,766
8COECP0		Cellular Concrete Pump/Mixe								
*** 8COECP		Cellular Concrete Pump/Mixer	5,710.49			1,142,098		285,525	1	,427,623
8COEPU1		Conc.Pump Trlr Mtd.100 cy/	Hr							
*** 8COEPU		Conc.Pump Trlr Mtd.100 cy/Hr	5.47			178		255		433
8COEWB	090	Work Bridge, 90 ft								
*** 8COEWI	B090	Work Bridge, 90 ft	1,217.99			9,190		9,459		18,649
8COPFIN8	80	Paving Roller/Finisher, 80'								
*** 8COPFIN		Paving Roller/Finisher, 80'	1,217.99			17,716		18,708		36,424
8CRNCR1	.00	Crane, 100 Ton Crawler(222)								
*** 8CRNCF	R100	Crane, 100 Ton Crawler(222)	2,907.43			297,945		252,481		550,426
8CRNCR2	200	Crane 200 Ton Crawler(777)								
*** 8CRNCF	R200	Crane 200 Ton Crawler(777)	77,136.15			13,411,200	10,	853,829	24	,265,028
8CRNRT3	5	R.T. Crane, 35 Ton								
*** 8CRNR1	F35	R.T. Crane, 35 Ton	1,242.61			61,876		65,377		127,253
8CRNRT5	50	R.T. Crane, 50 Ton								
*** 8CRNR1		R.T. Crane, 50 Ton	169.26			 9,078		11,305		20,383
8CRNTK1	40	Crane, Hy Trk, 140 Ton (238)	4)			 				
*** 8CRNTK	K140	Crane, Hy Trk, 140 Ton (238A)	300.00			37,534		36,008		73,542
8DSCMHI		Bauer BG 18, 75'/5'								
*** 8DSCMI		Bauer BG 18, 75'/5'	1,789.66			192,469		169,898		362,367
8DSCMHI		Bauer BG 28, 100'/7'						-		
*** 8DSCMI		Bauer BG 28, 100//7'	8,020.50			1,433,119	1.1	259,820	2	,692,939
8DSCMH		Bauer BG 36, 200'/10'	.,			 ,,,		,-=•	2	, , , , , , , , , , , , , , , , , , ,
*** 8DSCMI		Bauer BG 36, 200/10'	33,295.43			7,447,588	6.1	208,765	13	,656,354
8DSCMH		Bauer BG 40, 300'/12'	-,			 ., .,			10	, -,
*** 8DSCMI		Bauer BG 40, 300'/12'	17,575.80			4,019,269	3.	498,428	7	,517,697
8DSGRAE		Hartfuss Ball Grab				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,	, · ,~ / /
*** 8DSGRA		Hartfuss Ball Grab	60,647.39			609,203	1	516,185	2	,125,388
8DZ06		CAT D6 T, 185 hp	00,017.39			 007,205	1,	210,102	2	,120,000
8DZ06 *** 8DZ06		CAT D6 T, 185 hp	627.44			30,459		31,910		62,369
		8 Ton Crane	027.44			50,459		51,910		02,309
8EL100 *** 8EL100			1,837.99			148,510		27 570		176.070
		8 Ton Crane	1,837.99			148,510		27,570		176,079
8EL110 *** 8EL110		10 Ton Crane	0.00			010		100		020
		10 Ton Crane	8.00			819		120		939

Biditem/ Category	Activity/ Resource	Description	Quantity	Unit	Rnt %	EOE Inside % Equipment	Outside Equipment EO	E Other	Total
8EL200		40' Telescopic Boom Lift w/							
*** 8EL200		40' Telescopic Boom Lift w/	444.78			37,691	6,6	72	44,362
8EX307		CAT 307 Exc - 0.43 cy							
*** 8EX307		CAT 307 Exc - 0.43 cy	12.82			277	2:	56	533
8EX321		CAT 321D Exc,1.18 cy,21 tn							
*** 8EX321		CAT 321D Exc,1.18 cy,21 tn	5,253.53			207,278	222,64	15	429,923
8EX324		CAT 324E L Exc,1.74 cy,24							
*** 8EX324		CAT 324E L Exc,1.74 cy,24 tn	132.77			5,824	6,88	33	12,707
8EX330		CAT 330 Exc - 2.0 cy				100			100
*** 8EX330		CAT 330 Exc - 2.0 cy	1.33			180			180
8EX336		CAT 336D L Exc,1.56 cy,36							
*** 8EX336		CAT 336D L Exc,1.56 cy,36 tn	14,529.38			812,657	960,68	33 1	1,773,340
8EX345		CAT 345 Exc,2.36 cy,45 tn							
*** 8EX345		CAT 345 Exc,2.36 cy,45 tn	1,959.74			143,463	175,20	50	318,722
8EXACM		Attach, Compact, 24"							
*** 8EXACM		Attach, Compact, 24"	10.85			36		23	59
8EXAHAN		Attach, Hammer, 2500 flb							
*** 8EXAHA	AM2500	Attach, Hammer, 2500 flb	489.24			6,504	4,97	71	11,475
8EXAHAN	M7500	Attach, Hammer, 7500 flb							
*** 8EXAHA	AM7500	Attach, Hammer, 7500 flb	913.86			31,964	21,02	28	52,992
8FLTELE	10	RT Fork Lift, CAT TL-1055							
*** 8FLTELI	E10	RT Fork Lift, CAT TL-1055	25,210.29			690,409	679,11	15 1	1,369,524
8GEN005		Generator, 5Kw							
*** 8GEN00	5	Generator, 5Kw	51,081.19			39,486	210,80	53	250,349
8GENLPL		Light Tower, 6000 Watt	,			,	,		,
*** 8GENLP		Light Tower, 6000 Watt							
8GR14	-	Grader, CAT 14							
*** 8GR14		Grader, CAT 14	3,867.88			230,491	217,99	94	448,485
8LD210		Loader, Deere 210, 1.0 cy	5,007100			200,101	==,,,,,	•	
*** 8LD210		Loader, Deere 210, 1.0 cy	1,344.00			109	22,3	10	22,419
8LD950		Loader, Whl, CAT 950, 4.0 c				107	22,5	10	22,419
*** 8LD950		Loader, Whl, CAT 950, 4.0 cy	1,293.42			29,866	38,40	56	68,333
8LD956		Loader, Whl, CAT 956, 4.0 cy				29,800	50,40	00	08,333
*** 8LD966		, , , ,	2			4.696.402	6 220 5	0 10	0,926,961
			125,237.37			4,090,402	6,230,55	9 IU	0,920,901
8LD980		Loader, Whl, CAT 980, 7.5 c	2			51 105			106.042
*** 8LD980		Loader, Whl, CAT 980, 7.5 cy	913.86			51,197	55,74	45	106,943
8LDIT62		Loader, IT, CAT IT62 w/For							
*** 8LDIT62	2	Loader, IT, CAT IT62 w/Forks	33,538.36			1,143,356	1,217,94	16 2	2,361,302
8LDT963		loader, Trk, CAT 963, 3.0 cy							
*** 8LDT963	3	loader, Trk, CAT 963, 3.0 cy	7,232.82			445,968	421,78	32	867,750
8LRSTR		Skid Steer Loader Tracked							
*** 8LRSTR		Skid Steer Loader Tracked	487.91			5,988	2,64	14	8,633
8MIBROC		Pavement Broom							
*** 8MIBRO		Pavement Broom	12,480.00			761	208,04	42	208,803
8MISNDB		Sand Blaster - 300 lb, Air							
*** 8MISND	BL300	Sand Blaster - 300 lb, Air	1,302.04			1,746	7:	55	2,501
8MISRT		Forktruck 10K Telehandler			 _				
*** 8MISRT		Forktruck 10K Telehandler	2,377.16		 	42,682	25,60)2	68,284
8MITCMF	λ	Mortar Mixer							
*** 8MITCN		Mortar Mixer	2,377.16			23,772	11,88	36	35,657
8MITMK		Telescopic Man Lift, 40 Ft					,,		
*** 8MITMK	ζ	Telescopic Man Lift, 40 Ft	13,434.25			177,399	147,25	53	324,652
8MITML		Telescopic Man Lift, 80 Ft	-,			,->>	/,=		,
CTATE TATE									
*** 8MITMI			1,124,70			33 613	23 30	99	57.012
*** 8MITML		Telescopic Man Lift, 80 Ft	1,124.70			33,613	23,39	99	57,012
*** 8MITML 8PEHV20 *** 8PEHV2	0				 	33,613	23,39		57,012 328,359

Biditem/ Category	Activity/ Resource	Description	Quantity	Unit	Pcs	Rnt %	EOE %		Outside Equipment	EOE	Other	Total
8PUSUB0	-	Pump, 3" Sub Elect. 3.0Hp	10.000.47					22.040		20.104		10.014
*** 8PUSUE	303	Pump, 3" Sub Elect. 3.0Hp	12,938.47					22,060		20,184		42,244
8R02 *** 8R02		TRUCK - PICKUP	4 1 4 9 1 2					22.202		12 007		(()70
		TRUCK - PICKUP	4,148.13					22,392		43,887		66,279
8R06 *** 8R06		TRUCK - MATERIAL HAN TRUCK - MATERIAL HANDLER	DLEK 1,416.48					58,792		92,680		151,473
8RCDDS6	57	Compact,DD Smooth, CAT (,					56,792		92,080		151,475
*** 8RCDDS		Compact,DD Smooth, CAT CB54	156.00					5,705		4,207		9,912
8RCDDS		Compact,DD Smooth, CAT C						5,705		4,207		9,912
*** 8RCDD		Compact,DD Smooth, CAT CB64	165.03					8,454		5,413		13,867
8RCPAD6		Compact,SD Padfoot, CAT 4						0,101		0,110		10,007
*** 8RCPAI	-	Compact,SD Padfoot, CAT 433	3.74					63		83		147
8RCPAD8		Compact,SD Padfoot, CAT C										
*** 8RCPAI		Compact,SD Padfoot, CAT CP56	971.42					27,001		33,490		60,490
8RCPNU9		Compact, Pnumatic, CAT PS						,		,		,
*** 8RCPNU		Compact, Pnumatic, CAT PS360	238.53					10,902		5,614		16,516
8RCSDS6	6	Compact,SD Smooth, CAT C	CS423									
*** 8RCSDS	566	Compact,SD Smooth, CAT CS423	4,481.74					75,679		98,733		174,411
8RCVIBE	r	Hand Tamp, Vibro Plate/Wac	ker					i				
*** 8RCVIB		Hand Tamp, Vibro Plate/Wacker	9,461.68					32,898		33,305		66,203
8RCWAL	K	Walk Behind Roller										
*** 8RCWA	LK	Walk Behind Roller	5,094.56					22,926		23,888		46,814
8SCR6150	2	Scraper, CAT 615 EL,14 cy										
*** 8SCR61	5C	Scraper, CAT 615 EL,14 cy	50.00					27		4,796		4,822
8SLD226		CAT Skid Steer 226										
*** 8SLD22	6	CAT Skid Steer 226	60,650.59					720,893		836,250	1,	557,143
8SLD246		CAT Skid Steer 246										
*** 8SLD24	6	CAT Skid Steer 246	12,958.31					168,160		204,392		372,551
8TK14		Dump Truck, 14 Cy										
*** 8TK14		Dump Truck, 14 Cy	82.40					1,391		1,496		2,886
8TK600		Rack Truck 11000 GVW										
*** 8TK600		Rack Truck 11000 GVW	12,480.00					86,149		81,744		167,893
8TKDMP	10	Trk, End Dump, 10 cy										
*** 8TKDM	P10	Trk, End Dump, 10 cy	35,096.45					583,092	1,	542,489	2,	125,581
8TKDMP	15	Trk, End Dump, 15 cy										
*** 8TKDM			130,928.66					3,169,128	6,	885,538	10,	054,667
8TKFB10		Trk, Flatbed/Dump 10 Ton										
*** 8TKFB1	0	Trk, Flatbed/Dump 10 Ton	86,337.30					529,766	1,	357,222	1,	886,988
8TKFB2		Flatbed/Dump 2 Ton										
*** 8TKFB2		Flatbed/Dump 2 Ton	156.00					2,785				2,785
8TKFB20		Trk, Flatbed/Dump 20 Ton										
*** 8TKFB2		Trk, Flatbed/Dump 20 Ton	25,145.44					257,163		590,163		847,326
8TKMCH		Mechanics Truck, 1Ton										
*** 8TKMC	H	Mechanics Truck, 1Ton	3,120.00					42,544		34,320		76,864
8TKOIL		Oil Distributer Truck										
*** 8TKOIL	r	Oil Distributer Truck	213.53					2,912		2,349		5,261
8TKPU2		Pickup, 1/2 Ton, 2X4						1 005 550		101.007		
*** 8TKPU2	2	÷	327,237.00					1,085,772	2,	424,826	3,	510,599
8TKPU4		Pickup, 3/4 Ton, 4X4	242 772 00					1 404 400	~	(77.005		1(2,202
*** 8TKPU4	ł	÷	343,772.09					1,484,408	2,	677,985	4,	162,393
8TKTRA	、	Trk, Tractor, 6 X 4, 45K	6 200 00					07 107		<u></u>		220 520
*** 8TKTRA		Trk, Tractor, 6 X 4, 45K	6,280.00					97,196		233,333		330,529
8TKWAT		Trk, Water, 4000 G	51 441 00					070 102		555 246	~	424 540
*** 8TKWA		Trk, Water,4000 G	51,441.90					879,193	I,	555,346	2,	434,540
8TLFLT4		Trailer, Float, 40 ft	6 200 00					22 200		21 951		67 252
*** 8TLFLT	1 0	Trailer, Float, 40 ft	6,280.00					32,399		34,854		67,253

Biditem/ Category	Activity/ Resource	Description	Quantity	Unit	Pcs	Rnt %	EOI %	E Inside Equipment Equ	Outside uipment EOE	Other Total	
8WM350		Welding Machine, 350 Amp									
*** 8WM35	0	Welding Machine, 350 Amp	5,106.97					8,590	21,679	30,269	
8WM8PE	,	Weld Machine,8 Pack 200 Au	np								
*** 8WM8P	Е	Weld Machine,8 Pack 200 Amp	7,118.69					4,855	40,349	45,204	
		REPORT TOTALS						47,475,042	5,601 54,507,470	101,988,113	

"*" indicates non-additive item

EQUIPMENT USE BY EQUIPMENT - Proposed Project

Biditem/ Category	Activity/ Resource	Description	Quantity	Unit	Pcs	Rnt %	EOE %	Inside Equipment	Outside Equipment	EOE	Other	Total
8APPV02		Asphalt Paver, CAT 1055D	25.00					2 777		2.542		(520
*** 8APPV0		Asphalt Paver, CAT 1055D	25.00					3,777		2,762		6,539
8APPV20 *** 8APPV2		Asphalt Paver, CAT 200B Asphalt Paver, CAT 200B	156.00					11,982				11,982
8BH	00B	***Backhoe***	130.00					11,962				11,982
8BH *** 8BH		***Backhoe***	41.20						5,601			5,601
8BH416		Tractor Backhoe, CAT 416	71.20						5,001			5,001
*** 8BH416		Tractor Backhoe, CAT 416	1,958.37					28,974		34,150		63,124
8BH430		Tractor Backhoe, CAT 430	1,750.57					20,774		54,150		05,124
*** 8BH430		Tractor Backhoe, CAT 430	3,178.20					58,434		71,446		129,880
8CA2CL		Exc Clam Shall 1.5CY	5,170.20					50,151		/1,110		129,000
*** 8CA2CL		Exc Clam Shall 1.5CY	1,334.08					26,148				26,148
8CC150	,	Crane 4000 175T	1,554.00					20,140				20,140
*** 8CC150		Crane 4000 1751 Crane 4000 175T	41.20					2,636		1,912		4,548
8CMP018	5D	Air Compressor, 185 cfm, Ds	71.20					2,050		1,712		טדכ,ד
*** 8CMP018		Air Compressor, 185 cfm, Ds	779.66					2,835		8,436		11,271
			//9.00					2,033		0,430		11,4/1
8CMP037 *** 8CMP03		Air Compressor, 375 cfm, Ds Air Compressor, 375 cfm, Ds	5 202 02					26 012		87 511		124 355
			5,292.83					36,812		87,544		124,355
8COECP0	-	Cellular Concrete Pump/Mixe						1 010 242		254 507		272 029
*** 8COECF		Cellular Concrete Pump/Mixer	5,091.71					1,018,342		254,586	1	,272,928
8COEWB		Work Bridge, 90 ft	070.00					(() (6 000		12.446
*** 8COEW		Work Bridge, 90 ft	878.22					6,626		6,820		13,446
8COPFIN		Paving Roller/Finisher, 80'										
*** 8COPFI		Paving Roller/Finisher, 80'	878.22					12,774		13,490		26,263
8CRNCR1		Crane, 100 Ton Crawler(222)										
*** 8CRNCE		Crane, 100 Ton Crawler(222)	2,196.23					225,063		190,721		415,784
8CRNCR2	200	Crane 200 Ton Crawler(777)										
*** 8CRNCF		Crane 200 Ton Crawler(777)	40,200.93					6,989,495	5	,656,674	12	,646,168
8CRNRT3		R.T. Crane, 35 Ton										
*** 8CRNR1	Г35	R.T. Crane, 35 Ton	1,242.61					61,876		65,377		127,253
8CRNRT5	50	R.T. Crane, 50 Ton										
*** 8CRNR7	Г50	R.T. Crane, 50 Ton	148.19					7,948		9,898		17,846
8CRNTK1	40	Crane, Hy Trk, 140 Ton (238A	.)									
*** 8CRNT#	K140	Crane, Hy Trk, 140 Ton (238A)	3,810.05					476,691		457,301		933,992
8DSCMH	D075	Bauer BG 18, 75'/5'										
*** 8DSCMI	HD075	Bauer BG 18, 75'/5'	2,965.33					318,906		281,508		600,414
8DSCMH	D100	Bauer BG 28, 100'/7'										
*** 8DSCMI		Bauer BG 28, 100'/7'	4,875.27					871,123		765,783	1	,636,906
8DSCMH		Bauer BG 36, 200'/10'										
*** 8DSCMI		Bauer BG 36, 200'/10'	2,575.06					575,995		480,184	1	,056,179
8DSCMH		Bauer BG 40, 300'/12'										
*** 8DSCM		,	14,878.60					3,402,468	2	,961,556	6	,364,024
8DSGRAF		Hartfuss Ball Grab										
*** 8DSGRA			25,294.26					254,081		632,357		886,437
8DZ06		CAT D6 T, 185 hp	.,					,001		,		, /
*** 8DZ06		CAT D6 T, 185 hp	307.44					14,925		15,636		30,560
3EL100		8 Ton Crane						,, 20		,000		
*** 8EL100		8 Ton Crane	99.50					8,040		1,493		9,532
3EL110		10 Ton Crane	,,					3,040		1,775		,,,,,,
*** 8EL110		10 Ton Crane	8.00					819		120		939
8EL200		40' Telescopic Boom Lift w/	0.00					019		120		737
		40' Telescopic Boom Lift w/	48.44					4,105		727		4,831
*** 8EL200		-	40.44					4,103		121		7,031
8EX307		CAT 307 Exc - 0.43 cy	10.00					277		251		522
*** 8EX307		CAT 307 Exc - 0.43 cy	12.82					277		256		533
8EX321		CAT 321D Exc,1.18 cy,21 tn	2 20 4 25					100.077		120 (02		260.560
*** 8EX321		CAT 321D Exc,1.18 cy,21 tn	3,294.05					129,967		139,602		269,569

EQUIPMENT USE BY EQUIPMENT - Proposed Project

Biditem/ Category	Activity/ Resource	Description	Quantity	Unit	Pcs	Rnt %	EOE %		Outside Equipment	EOE	Other To	tal
8EX324		CAT 324E L Exc, 1.74 cy, 24						5 904		(992	12.5	107
*** 8EX324		CAT 324E L Exc, 1.74 cy, 24 tn	132.77					5,824		6,883	12,7	07
8EX330 *** 8EX330		CAT 330 Exc - 2.0 cy CAT 330 Exc - 2.0 cy	1.33					180			1	80
8EX336		CAT 336D L Exc,1.56 cy,36						100				80
*** 8EX336		CAT 336D L Exc,1.56 cy,36 th	6,068.81					339,441		401,270	740,7	'10
8EX345		CAT 345 Exc,2.36 cy,45 tn	-,					,		. ,	, .	
*** 8EX345		CAT 345 Exc,2.36 cy,45 tn	1,229.10					89,976		109,918	199,8	95
8EXACM	P24	Attach, Compact, 24"										
*** 8EXAC	MP24	Attach, Compact, 24"	10.85					36		23		59
8EXAHA	M2500	Attach, Hammer, 2500 flb										
*** 8EXAH		Attach, Hammer, 2500 flb	1.33					18		14		31
8EXAHA		Attach, Hammer, 7500 flb										
*** 8EXAH		Attach, Hammer, 7500 flb	671.13					23,474		15,443	38,9	17
8FLTELE		RT Fork Lift, CAT TL-1055										
*** 8FLTEL		RT Fork Lift, CAT TL-1055	21,394.17					585,901		576,317	1,162,2	.17
8GEN005		Generator, 5Kw										
*** 8GEN00		Generator, 5Kw	24,535.00					18,965		101,280	120,2	.46
8GENLPI		Light Tower, 6000 Watt										
*** 8GENLI	PL	Light Tower, 6000 Watt										
8GR14		Grader, CAT 14	2 741 02					1(2,240		154 494	217.0	24
*** 8GR14		Grader, CAT 14	2,741.02					163,340		154,484	317,8	524
8LD210 *** 8LD210		Loader, Deere 210, 1.0 cy Loader, Deere 210, 1.0 cy	1,344.00					109		22,310	22,4	10
8LD950		Loader, Whl, CAT 950, 4.0 c	,					109		22,310	22,5	-19
*** 8LD950		Loader, Whl, CAT 950, 4.0 c Loader, Whl, CAT 950, 4.0 cy	y 1,244.77					28,743		37,019	65,7	167
8LD966		Loader, Whl, CAT 966, 5.5 c						20,745		57,017	05,1	02
*** 8LD966		Loader, Whl, CAT 966, 5.5 cy	97,888.04					3,670,802	4	,869,930	8,540,7	32
8LD980		Loader, Whl, CAT 980, 7.5 c						-,-,-,		,,.	0,2 10,1	
*** 8LD980		Loader, Whl, CAT 980, 7.5 cy	671.13					37,599		40,939	78,5	38
8LDIT62		Loader, IT, CAT IT62 w/Forl						,			,	
*** 8LDIT62	2	Loader, IT, CAT IT62 w/Forks	27,284.59					930,159		990,840	1,920,9	99
8LDT963		loader, Trk, CAT 963, 3.0 cy										
*** 8LDT96	63	loader, Trk, CAT 963, 3.0 cy	1,259.78					77,677		73,464	151,1	41
8MIBRO	DM	Pavement Broom										
*** 8MIBR0		Pavement Broom	12,480.00					761		208,042	208,8	03
8MISNDE	3L300	Sand Blaster - 300 lb, Air										
*** 8MISNI	DBL300	Sand Blaster - 300 lb, Air	770.06					1,033		447	1,4	79
8MITMK		Telescopic Man Lift, 40 Ft										
*** 8MITM	K	Telescopic Man Lift, 40 Ft	9,109.04					120,285		99,844	220,1	29
8MITML		Telescopic Man Lift, 80 Ft										
*** 8MITM		Telescopic Man Lift, 80 Ft	4,695.76					140,337		97,695	238,0	33
8PEHV20		Vib Hammer, APD 200, 200t/1										
*** 8PEHV2		Vib Hammer, APD 200, 200t/150t	3,810.05					193,966		400,505	594,4	-71
8PUSUB(Pump, 3" Sub Elect. 3.0Hp	6 000 51					10.245		0 272	10 /	10
*** 8PUSUE	803	Pump, 3" Sub Elect. 3.0Hp	6,008.51					10,245		9,373	19,6	018
8R02 *** 8R02		TRUCK - PICKUP TRUCK - PICKUP	3 602 74					10 440		38 117	57 5	65
$\frac{1}{8R06}$		TRUCK - MATERIAL HAN	3,602.74					19,448		38,117	57,5	-05
8R06 *** 8R06		TRUCK - MATERIAL HANDLER	DLEK 1,416.48					58,792		92,680	151,4	.73
8RCDDS	57	Compact,DD Smooth, CAT C	,					30,192		72,000	151,4	15
*** 8RCDD		Compact,DD Smooth, CAT CB54	156.00					5,705		4,207	9,9	12
8RCDDS		Compact,DD Smooth, CAT C						5,705		1,207	,,,	
*** 8RCDD		Compact,DD Smooth, CAT CB64	50.00					2,561		1,640	4,2	01
8RCPAD		Compact,SD Padfoot, CAT 4						_,001		.,		
*** 8RCPAI		Compact,SD Padfoot, CAT 433	3.74					63		83	1	47
		1 , , ,								~~		

EQUIPMENT USE BY EQUIPMENT - Proposed Project

Biditem/ Category	Activity/ Resource	Description	Quantity	Unit	Pcs	Rnt %	EOE % E	Inside quipment	Outside Equipment	EOE	Other	Total
8RCPAD8	34	Compact,SD Padfoot, CAT C	CP56									
*** 8RCPAI	D84	Compact,SD Padfoot, CAT CP56	971.42					27,001		33,490	6	60,490
8RCPNU9	90	Compact, Pnumatic, CAT PS	360									
*** 8RCPNI	J90	Compact, Pnumatic, CAT PS360	181.00					8,273		4,260	1	2,532
8RCSDS6	6	Compact,SD Smooth, CAT C	S423									
*** 8RCSDS	566	Compact,SD Smooth, CAT CS423	3,206.39					54,143		70,637	12	24,780
8RCVIBE	, /	Hand Tamp, Vibro Plate/Wac	ker									
*** 8RCVIB		Hand Tamp, Vibro Plate/Wacker	7,817.39					27,181		27,517	4	54,698
8RCWAL	K	Walk Behind Roller										
*** 8RCWA		Walk Behind Roller	3,498.93					15,745		16,407	3	32,152
8SCR6150		Scraper, CAT 615 EL,14 cy	,					,		,		,
*** 8SCR61		Scraper, CAT 615 EL,14 cy	50.00					27		4,796		4,822
8SLD226		CAT Skid Steer 226	20100					21		.,,,,,		.,022
*** 8SLD220	6	CAT Skid Steer 226	25,297.46					300,686		348,801	64	19,487
8SLD246	•	CAT Skid Steer 246	25,277.70					500,000		5 10,001	0-	, 107
*** 8SLD240	6	CAT Skid Steer 246	6,028.35					78 220		95,085	17	2 215
87K14	0		0,028.33					78,230		95,085	1.	73,315
		Dump Truck, 14 Cy	02.40					1 201		1 407		2 007
*** 8TK14		Dump Truck, 14 Cy	82.40					1,391		1,496		2,886
8TK600		Rack Truck 11000 GVW	10 100 00					0 < 1 10				
*** 8TK600		Rack Truck 11000 GVW	12,480.00					86,149		81,744	16	57,893
8TKDMP		Trk, End Dump, 10 cy										
*** 8TKDM		Trk, End Dump, 10 cy	12,417.92					206,311		545,768	75	52,079
8TKDMP		Trk, End Dump, 15 cy										
*** 8TKDM	P15	1 2	117,949.40					2,854,965	6	,202,959	9,05	57,924
8TKFB10		Trk, Flatbed/Dump 10 Ton										
*** 8TKFB1	.0	Trk, Flatbed/Dump 10 Ton	50,338.98					308,880		791,329	1,10	00,209
8TKFB2		Flatbed/Dump 2 Ton										
*** 8TKFB2	2	Flatbed/Dump 2 Ton	156.00					2,785				2,785
8TKFB20		Trk, Flatbed/Dump 20 Ton										
*** 8TKFB2	20	Trk, Flatbed/Dump 20 Ton	21,109.43					215,886		495,438	71	1,325
8TKMCH		Mechanics Truck, 1Ton										
*** 8TKMC	Н	Mechanics Truck, 1Ton	3,120.00					42,544		34,320	7	6,864
8TKOIL		Oil Distributer Truck	-,)-		-)		-)
*** 8TKOIL		Oil Distributer Truck	156.00					2,127		1,716		3,843
8TKPU2		Pickup, 1/2 Ton, 2X4	100.00					2,127		1,710		-,
*** 8TKPU2	,	1	320,041.01					1,061,896	2	,371,504	3 43	3,400
8TKPU4	-	Pickup, 3/4 Ton, 4X4						1,001,070	2	,2 / 1,207	5,42	
*** 8TKPU4	1	-	251,424.11					1,085,649	1	,958,594	3.0/	4,244
8TKTRA	•	Trk, Tractor, 6 X 4, 45K	231,424.11					1,085,049	1	,950,594	5,0-	14,244
*** 8TKTRA	•	Trk, Tractor, 6 X 4, 45K	6,280.00					97,196		233,333	22	30,529
			0,280.00					97,190		233,333	53	50,529
8TKWAT		Trk, Water, 4000 G	27 472 (2					640 462	1	122 015	1.77	דדא כו
*** 8TKWA		Trk, Water,4000 G	37,473.62					640,462	1	,133,015	1,//	/3,477
8TLFLT4		Trailer, Float, 40 ft	(0 00 00					22.202		24.074		
*** 8TLFLT	40	Trailer, Float, 40 ft	6,280.00					32,399		34,854	(57,253
8WM350		Welding Machine, 350 Amp										
*** 8WM35		Welding Machine, 350 Amp	2,739.55					4,608		11,629	1	6,237
8WM8PE		Weld Machine,8 Pack 200 Ar	1									
*** 8WM8P	E	Weld Machine,8 Pack 200 Amp	3,263.66					2,226		18,498	2	20,724
		REPORT TOTALS					2	8,233,313	5,601	35,010,293	63,24	19,206

"*" indicates non-additive item

(THIS PAGE INTENTIONALLY LEFT BLANK)

Appendix C: Construction Emission Calculations

(THIS PAGE INTENTIONALLY LEFT BLANK)

Unmitigated Emissions - Above Grade

Off-Road			(lb/hr)				Emiss	ions (lbs)											
Equipment	HP Rating	Hours	ROG	CO	NOX	SOX	PM10	PM2.5	CO2	CH4	ROG	СО	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e
Asphalt Paver	224	25	0.096219	0.306812	0.823589	0.001376	0.029997	0.029098	122.2913	0.008682	2.4	7.7	20.6	0.0	0.7	0.7	3057.3	0.2	3061.8
Asphalt Paver	35	156	0.082099	0.269557	0.216492	0.000309	0.018532	0.017976	23.92655	0.007408	12.8	42.1	33.8	0.0	2.9	2.8	3732.5	1.2	3756.8
Backhoe	50	41	0.051274	0.364663	0.333077	0.000775	0.018901	0.018334	66.79721	0.004626	2.1	15.0	13.7	0.0	0.8	0.8	2738.7	0.2	2742.7
Tractor Backhoe	62	1958	0.049709	0.283857	0.234245	0.000392	0.012081	0.011719	30.3471	0.004485	97.3	555.8	458.7	0.8	23.7	22.9	59419.6	8.8	59604.0
Tractor Backhoe	98	3178	0.043487	0.342622	0.29366	0.000607	0.018357	0.017807	51.72802	0.003924	138.2	1088.9	933.3	1.9	58.3	56.6	164391.7	12.5	164653.5
Excavator	120	1334	0.069294	0.501744	0.442525	0.000864	0.028931	0.028063	73.62307	0.006252	92.4	669.3	590.3	1.2	38.6	37.4	98213.2	8.3	98388.3
8T Crane	50	100	0.064589	0.252711	0.201938	0.0003	0.01513	0.014676	23.1867	0.005828	6.5	25.3	20.2	0.0	1.5	1.5	2318.7	0.6	2330.9
10T Crane	120	8	0.063871	0.34863	0.38575	0.000588	0.030642	0.029722	50.14797	0.005763	0.5	2.8	3.1	0.0	0.2	0.2	401.2	0.0	402.2
35T Crane	175	1242	0.075221	0.476621	0.502915	0.000904	0.028272	0.027424	80.3446	0.006787	93.4	592.0	624.6	1.1	35.1	34.1	99788.0	8.4	99965.0
50T Crane	250	148	0.07866	0.252136	0.616831	0.001262	0.021189				11.6	37.3	91.3	0.2	3.1	3.0	16599.5	1.1	16621.6
100T Crane	500	2196	0.120161	0.408545	0.874849	0.001768	0.031732	0.03078	180.1013	0.010842	263.9	897.2	1921.2	3.9	69.7	67.6	395502.4	23.8	396002.4
140T Crane	550	3810	0.140979	0.478129	1.037114	0.002088	0.037402	0.03628	210.8371	0.01272	537.1	1821.7	3951.4	8.0	142.5	138.2	803289.4	48.5	804307.2
175T Crane	600	41	0.161797	0.547713	1.199378	0.002407	0.043072	0.04178	241.573	0.014599	6.6	22.5	49.2	0.1	1.8	1.7	9904.5	0.6	9917.1
200T Crane	750	40200	0.203433	0.686882	1.523907	0.003047	0.054413	0.052781	303.0447	0.018355	8178.0	27612.7	61261.1	122.5	2187.4	2121.8	12182395.8	737.9	12197891.4
Air Compressor	49	780	0.051782	0.214174	0.184788	0.000288	0.013056	0.012664	22.27126	0.004672	40.4	167.1	144.1	0.2	10.2	9.9	17371.6	3.6	17448.1
Air Compressor	120	5293			0.393537						307.9	1656.8	2083.0	3.8	130.4	126.5	336673.5	27.8	337256.8
Concrete Mixer	20	5092	0.008662	0.041629	0.053759	0.000109	0.002193	0.002127	7.248148	0.000782	44.1	212.0	273.7	0.6	11.2	10.8	36907.6	4.0	36991.1
Roller	120	878	0.068263	0.388482	0.448478	0.00077	0.029074	0.028202	67.04405	0.006159	59.9	341.1	393.8	0.7	25.5	24.8	58864.7	5.4	58978.2
Drill Rig	249	2965	0.053756	0.342582	0.249932	0.002116	0.006828	0.006624	188.1019	0.00485	159.4	1015.8	741.0	6.3	20.2	19.6	557722.1	14.4	558024.1
Drill Rig	474	4875			0.403468					0.008	432.3	2686.9	1966.9	14.9	54.6	53.0	1517629.6	39.0	1518448.7
Drill Rig	580	2575			0.602858		0.016706				340.1	2111.8	1552.4	11.9	43.0	41.7	1192742.2	30.7	1193386.6
Drill Rig	580	14878			0.602858					0.011916	1964.9	12201.6	8969.3	68.7	248.5	241.1	6891502.4	177.3	6895225.4
D6 Tractor	215	307			1.043014					0.012028	40.9	128.3	320.2	0.6	11.8	11.5	51002.4	3.7	51079.9
Boom Lift	65	48			0.201938	0.0003		0.014676		0.005828	3.1	12.1	9.7	0.0	0.7	0.7	1113.0	0.3	1118.8
Excavator CAT307	54	13			0.200215						0.6	3.3	2.6	0.0	0.1	0.1	325.2	0.1	326.4
Excavator CAT321	148	3294			0.442525			0.028063			228.3	1652.7	1457.7	2.8	95.3	92.4	242514.4	20.6	242946.9
Excavator CAT324	190	133			0.506902					0.007434	11.0	88.3	67.4	0.2	3.5	3.4	14925.5	1.0	14946.2
Excavator CAT330	235	2	0.09333		0.598381			0.019595			0.2	0.7	1.2	0.0	0.0	0.0	317.4	0.0	317.7
Excavator CAT336	266	6069	0.09333		0.598381						566.4	2017.0	3631.6	10.8	122.6	118.9	963045.8	51.1	964119.1
Excavator CAT345	345	1230			0.693245						139.7	492.8	852.7	2.5	29.9	29.0	241337.2	12.6	241601.9
Forklift CAT TL-1055	125	21395			0.174533						566.4	4530.6	3734.1	7.8	231.1	224.2	668057.1	51.1	669130.2
Generator 5kW	15				0.085235					0.001106	300.8	1579.7	2091.2	3.9	105.3	102.1	250444.9	27.1	251015.0
Grader CAT14	180				0.700188						290.3	1999.3	1919.2	3.8	105.5	102.3	339668.9	26.2	340219.0
Loader Deere 210	78	1344			0.259094						99.8	429.8	348.2	0.5	23.5	22.7	41865.2	9.0	42054.2
Loader CAT950	130	1245			0.412143						82.1	499.9	513.1	0.9	38.2	37.1	73347.3	7.4	73502.9
Loader CAT963	150	1260			0.412143						83.1	506.0	519.3	0.9	38.7	37.5	74231.0	7.5	74388.5
Loader CAT966	170	97888			0.590182						8691.1	60953.6	57771.7	117.1	3165.1	3070.1	10406982.2	784.2	10423450.1
Loader CAT IT62	207				0.652182						2501.9	12911.2	17794.8	39.2	773.3	750.1	3482819.8	225.7	3487560.3
Loader CAT980	355	-			0.714183						63.6	217.5	479.9	1.1	16.4	15.9	100112.3	5.7	100232.8
Pavement Broom	74	12480			0.216492						1024.6	3364.1	2701.8	3.9	231.3	224.3	298603.4	92.4	300544.8
Manlift 40ft	50	9110			0.152478						306.4	1372.0	1389.1	2.3	84.3	81.8	178672.2	27.7	179252.8
Manlift 80ft	74	4696			0.204503		0.013102				155.7	898.1	960.3	1.6	61.5	59.7	135443.4	14.1	135738.5
Compactor CAT CB54	130				0.486882						12.6	59.4	76.0	0.1	6.2	6.1	8501.9	1.1	8525.7
Compactor CAT CB64	130				0.486882						4.0	19.0	24.3	0.0	2.0	1.9	2725.0	0.4	2732.6
Compactor CAT 433	100				0.486882						0.3	1.5	1.9	0.0	0.2	0.2	218.0	0.0	218.6
Compactor CAT CP56	145				0.486882						78.3	370.2	473.2	0.6	38.9	37.7	52973.4	7.1	53121.7
Compactor CAT PS360	130	181			0.486882						14.6	68.9	88.1	0.1	7.2	7.0	9864.4	1.3	9892.0
Compactor CAT CS423	80	3207			0.216492						263.3	864.5	694.3	1.0	59.4 2 F	57.7	76732.5	23.8	77231.3
Scraper CAT 615	250				1.355816					0.015378	8.5	26.6 5147.4	67.8	0.1	2.5 164.6	2.4	10473.5	0.8	10489.7
Skid Steer CAT 226	58	25298		0.203471			0.006505			0.002375	665.9		4520.5	8.3 1 E	164.6	159.6 27 9	645583.8	60.1	646845.5
Skid Steer CAT 246	80	6029			0.098489						74.7	807.9	593.8	1.5	28.6	27.8	128905.5	6.7	129047.2
Rack Truck		12480			0.279642					0.003261	69.5	461.9	3489.9	12.6	284.6	115.4	1359892.1	40.7	1360746.7
Mechanics Truck		3120	0.001204	0.075044	0.007394	0.000220	0.010474	0.004215	22.21013	0.00034	3.8	234.1	23.1	0.7	32.7	13.1	70256.6	1.1	70278.9

		156	0.001204	0 075044	0 00720/	0 000226	0 010474	0 00/215	22 21812	0.00034	0.2	11.7	1.2	0.0	1.6	0.7	3512.8	0.1	3513.9		
Oil dist Truck Pickup 1/2T			0.001204								655.5	33978.6	3293.9	67.4	3368.0	1363.6	6699681.4	166.9	6703187.1		
Pickup 3/4T			0.002048								302.8	18868.0	1859.0	56.8	2633.4	1059.7	5661599.2	85.5	5663394.2		
Tractor 6x4			0.013788			0.001278				0.00064	86.6	348.3	2636.0	8.0	147.1	61.8	841081.3	4.0	841165.8		
Water truck			0.001204							0.00034	45.1	2812.2	277.1	8.5	392.5	157.9	843844.5	12.7	844112.1		
		0, 1, 1	0.001201	0.070011	0.007.001	0.000220	01020171	01001210	22.01010	total	30,234	211,520	200,783	613	15,418	11,073	58,431,840	2,934	58,493,453		
											, -	,	,		-, -	,	, - ,	,	,,		
On-Road			(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)				Emiss	ions (lbs)						
Equipment		Hours	ROG	СО	NOX	SOX	PM10	PM2.5	CO2	CH4	ROG	СО	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e		
Dump Truck		82				0.001008			108.9657		0.5	3.0	22.9	0.1	1.9	0.8	8935.2	0.3	8940.8		
End Dump 10CY		12418				0.001008			108.9657		69.2	459.6	3472.6	12.5	283.2	114.9	1353136.2	40.5	1353986.6		
End Dump 15CY		117949				0.001008			108.9657		657.0	4365.2	32983.4	118.9	2689.5	1091.1	12852397.1	384.6	12860473.8		
Flatbed 10T		50340				0.001008			108.9657		280.4	1863.1	14077.2	50.7	1147.9	465.7	5485334.1	164.1	5488781.2		
Flatbed 2T		156				0.001008			108.9657		0.9	5.8	43.6	0.2	3.6	1.4	16998.7	0.5	17009.3		
Flatbed 20T		21110				0.001008			108.9657		117.6	781.3	5903.2	21.3	481.4	195.3	2300266.2	68.8	2301711.8		
Employee Commutes		147062.1	0.000689	0.052913	0.003519	0.000178	0.010467	0.004209	17.80674		101.4	7781.5	517.5	26.2	1539.3	618.9	2618697.6	30.8	2619343.5		
										total	1,227	15,259	57,020	230	6,147	2,488	24,635,765	690	24,650,247		
								lb/acre							Daily	Emissions	(lbs)			Total Emissio	ns (lhs)
		Daily Acres	:					PM							PM10	PM2.5	(105)				PM2.5
	Fugitive Dust	15						20							300.0	63.0				450000	94500
												CO	NOX	SOX	PM10	PM2.5	CO2				
											ROG	CO	110/1				COZ	CH4	CO2e		
										Total (lb)	ROG 31,460	226,780	257,803	842	471,564	108,061	83,067,605	CH4 3,624	CO2e 83,143,700		
										Total (lb) Daily (lb)						108,061					
											31,460	226,780	257,803	842	471,564	108,061 72.0	83,067,605	3,624	83,143,700		
										Daily (lb)	31,460 21.0	226,780 151.2	257,803 171.9	842 0.6	471,564 314.4	108,061 72.0	83,067,605 55,378.4	3,624 2.4	83,143,700 55,429.1		
										Daily (lb)	31,460 21.0	226,780 151.2	257,803 171.9	842 0.6	471,564 314.4	108,061 72.0	83,067,605 55,378.4	3,624 2.4	83,143,700 55,429.1		
										Daily (lb) Annual (T)	31,460 21.0	226,780 151.2	257,803 171.9	842 0.6	471,564 314.4	108,061 72.0	83,067,605 55,378.4	3,624 2.4	83,143,700 55,429.1		
										Daily (lb)	31,460 21.0 2.6	226,780 151.2 18.9	257,803 171.9 21.5	842 0.6 0.1	471,564 314.4 39.3	108,061 72.0 9.0	83,067,605 55,378.4 6,922.3	3,624 2.4 0.3	83,143,700 55,429.1 6,928.6		
										Daily (lb) Annual (T) On-site Emissions	31,460 21.0 2.6 ROG	226,780 151.2 18.9 CO	257,803 171.9 21.5 NOX	842 0.6 0.1 SOX	471,564 314.4 39.3 PM10	108,061 72.0 9.0 PM2.5	83,067,605 55,378.4 6,922.3 CO2	3,624 2.4 0.3 CH4	83,143,700 55,429.1 6,928.6 CO2e		
										Daily (lb) Annual (T) On-site Emissions Total (lb)	31,460 21.0 2.6 ROG 30294.9	226,780 151.2 18.9 CO 212283.3	257,803 171.9 21.5 NOX 203633.6	842 0.6 0.1 SOX 624.1	471,564 314.4 39.3 PM10 465725.1	108,061 72.0 9.0 PM2.5 105697.8	83,067,605 55,378.4 6,922.3 CO2 59663628.7	3,624 2.4 0.3 CH4 2968.4	83,143,700 55,429.1 6,928.6 CO2e 59725965.2		
										Daily (lb) Annual (T) On-site Emissions Total (lb) Daily (lb)	31,460 21.0 2.6 ROG 30294.9 20.19657	226,780 151.2 18.9 CO 212283.3 141.5222	257,803 171.9 21.5 NOX 203633.6 135.7557	842 0.6 0.1 SOX 624.1 0.416071	471,564 314.4 39.3 PM10 465725.1 310.4834	108,061 72.0 9.0 PM2.5 105697.8 70.46518	83,067,605 55,378.4 6,922.3 CO2 59663628.7 39775.75244	3,624 2.4 0.3 CH4 2968.4 1.978939	83,143,700 55,429.1 6,928.6 CO2e 59725965.2 39817.31015		
										Daily (lb) Annual (T) On-site Emissions Total (lb)	31,460 21.0 2.6 ROG 30294.9 20.19657	226,780 151.2 18.9 CO 212283.3 141.5222	257,803 171.9 21.5 NOX 203633.6 135.7557	842 0.6 0.1 SOX 624.1 0.416071	471,564 314.4 39.3 PM10 465725.1 310.4834	108,061 72.0 9.0 PM2.5 105697.8 70.46518	83,067,605 55,378.4 6,922.3 CO2 59663628.7	3,624 2.4 0.3 CH4 2968.4 1.978939	83,143,700 55,429.1 6,928.6 CO2e 59725965.2		
										Daily (lb) Annual (T) On-site Emissions Total (lb) Daily (lb)	31,460 21.0 2.6 ROG 30294.9 20.19657	226,780 151.2 18.9 CO 212283.3 141.5222	257,803 171.9 21.5 NOX 203633.6 135.7557	842 0.6 0.1 SOX 624.1 0.416071	471,564 314.4 39.3 PM10 465725.1 310.4834	108,061 72.0 9.0 PM2.5 105697.8 70.46518	83,067,605 55,378.4 6,922.3 CO2 59663628.7 39775.75244	3,624 2.4 0.3 CH4 2968.4 1.978939	83,143,700 55,429.1 6,928.6 CO2e 59725965.2 39817.31015		
										Daily (lb) Annual (T) On-site Emissions Total (lb) Daily (lb)	31,460 21.0 2.6 ROG 30294.9 20.19657	226,780 151.2 18.9 CO 212283.3 141.5222	257,803 171.9 21.5 NOX 203633.6 135.7557	842 0.6 0.1 SOX 624.1 0.416071	471,564 314.4 39.3 PM10 465725.1 310.4834	108,061 72.0 9.0 PM2.5 105697.8 70.46518	83,067,605 55,378.4 6,922.3 CO2 59663628.7 39775.75244	3,624 2.4 0.3 CH4 2968.4 1.978939	83,143,700 55,429.1 6,928.6 CO2e 59725965.2 39817.31015		
										Daily (lb) Annual (T) On-site Emissions Total (lb) Daily (lb) Annual (T)	31,460 21.0 2.6 ROG 30294.9 20.19657 2.524572	226,780 151.2 18.9 CO 212283.3 141.5222 17.69027	257,803 171.9 21.5 NOX 203633.6 135.7557 16.96947	842 0.6 0.1 SOX 624.1 0.416071 0.052009	471,564 314.4 39.3 PM10 465725.1 310.4834 38.81042	108,061 72.0 9.0 PM2.5 105697.8 70.46518 8.808148	83,067,605 55,378.4 6,922.3 CO2 59663628.7 39775.75244 4971.969055	3,624 2.4 0.3 CH4 2968.4 1.978939 0.247367	83,143,700 55,429.1 6,928.6 CO2e 59725965.2 39817.31015 4977.163768		
										Daily (Ib) Annual (T) On-site Emissions Total (Ib) Daily (Ib) Annual (T) Total Emissions (tons)	31,460 21.0 2.6 ROG 30294.9 20.19657 2.524572 ROG	226,780 151.2 18.9 CO 212283.3 141.5222 17.69027 CO	257,803 171.9 21.5 NOX 203633.6 135.7557 16.96947 NOX	842 0.6 0.1 \$ SOX 624.1 0.416071 0.052009 \$ SOX	471,564 314.4 39.3 PM10 465725.1 310.4834 38.81042 PM10	108,061 72.0 9.0 PM2.5 105697.8 70.46518 8.808148	83,067,605 55,378.4 6,922.3 CO2 59663628.7 39775.75244 4971.969055	3,624 2.4 0.3 CH4 2968.4 1.978939 0.247367 CH4	83,143,700 55,429.1 6,928.6 CO2e 59725965.2 39817.31015 4977.163768 CO2e		
										Daily (lb) Annual (T) On-site Emissions Total (lb) Daily (lb) Annual (T) Total Emissions (tons) Off-road	31,460 21.0 2.6 ROG 30294.9 20.19657 2.524572 ROG 15.1 0.6	226,780 151.2 18.9 CO 212283.3 141.5222 17.69027 CO 105.8 7.6	257,803 171.9 21.5 NOX 203633.6 135.7557 16.96947 NOX 100.4 28.5	842 0.6 0.1 SOX 624.1 0.416071 0.052009 SOX 0.3 0.1	471,564 314.4 39.3 PM10 465725.1 310.4834 38.81042 PM10 7.7 3.1 225.0	108,061 72.0 9.0 PM2.5 105697.8 70.46518 8.808148 PM2.5 5.5	83,067,605 55,378.4 6,922.3 CO2 59663628.7 39775.75244 4971.969055 CO2 29,215.9	3,624 2.4 0.3 CH4 2968.4 1.978939 0.247367 CH4 1.5 0.3	83,143,700 55,429.1 6,928.6 CO2e 59725965.2 39817.31015 4977.163768 CO2e 29,246.7 12,325.1		
										Daily (Ib) Annual (T) On-site Emissions Total (Ib) Daily (Ib) Annual (T) Total Emissions (tons) Off-road On-Road Fugitive Dust Total	31,460 21.0 2.6 ROG 30294.9 20.19657 2.524572 ROG 15.1 0.6 15.7	226,780 151.2 18.9 CO 212283.3 141.5222 17.69027 CO 105.8 7.6 113.4	257,803 171.9 21.5 NOX 203633.6 135.7557 16.96947 NOX 100.4 28.5 128.9	842 0.6 0.1 SOX 624.1 0.416071 0.052009 SOX 0.3 0.1 0.4	471,564 314.4 39.3 PM10 465725.1 310.4834 38.81042 PM10 7.7 3.1 225.0 235.8	108,061 72.0 9.0 PM2.5 105697.8 70.46518 8.808148 PM2.5 5.5 1.2 47.3 54.0	83,067,605 55,378.4 6,922.3 CO2 59663628.7 39775.75244 4971.969055 CO2 29,215.9 12,317.9 41,533.8	3,624 2.4 0.3 CH4 2968.4 1.978939 0.247367 CH4 1.5 0.3 1.8	83,143,700 55,429.1 6,928.6 CO2e 59725965.2 39817.31015 4977.163768 CO2e 29,246.7 12,325.1 41,571.8		
										Daily (lb) Annual (T) On-site Emissions Total (lb) Daily (lb) Annual (T) Total Emissions (tons) Off-road On-Road Fugitive Dust	31,460 21.0 2.6 ROG 30294.9 20.19657 2.524572 ROG 15.1 0.6	226,780 151.2 18.9 CO 212283.3 141.5222 17.69027 CO 105.8 7.6	257,803 171.9 21.5 NOX 203633.6 135.7557 16.96947 NOX 100.4 28.5	842 0.6 0.1 SOX 624.1 0.416071 0.052009 SOX 0.3 0.1	471,564 314.4 39.3 PM10 465725.1 310.4834 38.81042 PM10 7.7 3.1 225.0	108,061 72.0 9.0 PM2.5 105697.8 70.46518 8.808148 PM2.5 5.5 1.2 47.3	83,067,605 55,378.4 6,922.3 CO2 59663628.7 39775.75244 4971.969055 CO2 29,215.9 12,317.9	3,624 2.4 0.3 CH4 2968.4 1.978939 0.247367 CH4 1.5 0.3	83,143,700 55,429.1 6,928.6 CO2e 59725965.2 39817.31015 4977.163768 CO2e 29,246.7 12,325.1		

	Daily Acres	PM
ugitive Dust	15	20

0.00034	0.2	11.7	1.2	0.0	1.6	0.7	3512.8	0.1	3513.9	
0.000522	655.5	33978.6	3293.9	67.4	3368.0	1363.6	6699681.4	166.9	6703187.1	
0.00034	302.8	18868.0	1859.0	56.8	2633.4	1059.7	5661599.2	85.5	5663394.2	
0.00064	86.6	348.3	2636.0	8.0	147.1	61.8	841081.3	4.0	841165.8	
0.00034	45.1	2812.2	277.1	8.5	392.5	157.9	843844.5	12.7	844112.1	
total	30,234	211,520	200,783	613	15,418	11,073	58,431,840	2,934	58,493,453	
(lb/hr)				Emiss	ions (lbs)					
CH4	ROG	со	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e	
0.003261	0.5	3.0	22.9	0.1	1.9	0.8	8935.2	0.3	8940.8	
0.003261	69.2	459.6	3472.6	12.5	283.2	114.9	1353136.2	40.5	1353986.6	
0.003261	657.0	4365.2	32983.4	118.9	2689.5	1091.1	12852397.1	384.6	12860473.8	
0.003261	280.4	1863.1	14077.2	50.7	1147.9	465.7	5485334.1	164.1	5488781.2	
0.003261	0.9	5.8	43.6	0.2	3.6	1.4	16998.7	0.5	17009.3	
0.003261	117.6	781.3	5903.2	21.3	481.4	195.3	2300266.2	68.8	2301711.8	
0.000209	101.4	7781.5	517.5	26.2	1539.3	618.9	2618697.6	30.8	2619343.5	
total	1,227	15,259	57,020	230	6,147	2,488	24,635,765	690	24,650,247	
					-	Emissions	(lbs)			Total Emissions (I
					PM10 300.0	PM2.5 63.0				PM10 PM2 450000 94
	ROG	со	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e	
Fotal (lb)	31,460	226,780	257,803	842		108,061	83,067,605	3,624	83,143,700	
Daily (lb)	21.0	151.2	171.9	0.6	314.4	72.0	55,378.4		55,429.1	
Annual (T)	2.6	18.9	21.5	0.1	39.3	9.0	6,922.3	0.3	6,928.6	
	2.0	10.5	21.5	0.1	55.5	5.0	0,522.3	0.5	0,520.0	
On-site Emissions										
	ROG	СО	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e	
Total (lb)	30294.9	212283.3	203633.6	624.1	465725.1	105697.8	59663628.7	2968.4	59725965.2	
Daily (lb)	20.19657	141.5222	135.7557	0.416071	310.4834	70.46518	39775.75244	1.978939	39817.31015	
Annual (T)	2.524572	17.69027	16.96947	0.052009	38.81042	8.808148	4971.969055	0.247367	4977.163768	
Fotal Emissions (tons)	ROG	со	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e	
Off-road	15.1	105.8	100.4	0.3	7.7	5.5	29,215.9	1.5	29,246.7	
On-Road	0.6	7.6	28.5	0.1	3.1	1.2	12,317.9	0.3	12,325.1	
ugitive Dust					225.0	47.3	-		-	
Гotal	15.7	113.4	128.9	0.4	235.8	54.0	41,533.8	1.8	41,571.8	
Annual	2.6	18.9	21.5	0.1	39.3	9.0	6,922.3	0.3	6,928.6	

3	0.00034	0.2	11.7	1.2	0.0	1.6	0.7	3512.8	0.1	3513.9	
2	0.000522	655.5	33978.6	3293.9	67.4	3368.0	1363.6	6699681.4	166.9	6703187.1	
3	0.00034	302.8	18868.0	1859.0	56.8	2633.4	1059.7	5661599.2	85.5	5663394.2	
1	0.00064	86.6	348.3	2636.0	8.0	147.1	61.8	841081.3	4.0	841165.8	
3	0.00034	45.1	2812.2	277.1	8.5	392.5	157.9	843844.5	12.7	844112.1	
	total	30,234	211,520	200,783	613	15,418	11,073	58,431,840	2,934	58,493,453	
	(lb/hr)				Fmiss	ions (lbs)					
	CH4	ROG	со	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e	
7	0.003261	0.5	3.0	22.9	0.1	1.9	0.8	8935.2	0.3	8940.8	
	0.003261	69.2	459.6	3472.6	12.5	283.2	114.9	1353136.2	40.5	1353986.6	
	0.003261	657.0	4365.2	32983.4	118.9	2689.5	1091.1	12852397.1	384.6	12860473.8	
	0.003261	280.4	1863.1	14077.2	50.7	1147.9	465.7	5485334.1	164.1	5488781.2	
	0.003261	0.9	5.8	43.6	0.2	3.6	1.4	16998.7	0.5	17009.3	
	0.003261	117.6	781.3	5903.2	21.3	481.4	195.3	2300266.2	68.8	2301711.8	
	0.000209	101.4	7781.5	517.5	26.2	1539.3	618.9	2618697.6	30.8	2619343.5	
	total	1,227	15,259	57,020	230	6,147	2,488	24,635,765	690	24,650,247	
		-	-			-	·				
						Daily	emissions	(lbs)			Total Emissions (I
						PM10	PM2.5				PM10 PM2
						300.0	63.0				450000 94
		ROG	со	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e	
	Total (lb)	31,460	226,780	257,803	842	471,564	108,061	83,067,605	3,624	83,143,700	
	Daily (lb)	21.0	151.2	171.9	0.6	314.4	72.0	55,378.4	2.4	55,429.1	
	Annual (T)	2.6	18.9	21.5	0.1	39.3	9.0	6,922.3	0.3	6,928.6	
	On-site Emissions										
		ROG	CO	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e	
	Total (lb)		212283.3			465725.1		59663628.7	2968.4	59725965.2	
	Daily (lb)							39775.75244		39817.31015	
	Annual (T)	2.524572	17.69027	16.96947	0.052009	38.81042	8.808148	4971.969055	0.247367	4977.163768	
	Total Emissions (tons)	ROG	со	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e	
	Off-road	15.1	105.8	100.4	0.3	7.7	5.5	29,215.9	1.5	29,246.7	
	On-Road	0.6	7.6	28.5	0.1	3.1	1.2	12,317.9	0.3	12,325.1	
	Fugitive Dust					225.0	47.3	-		-	
	Total	15.7	113.4	128.9	0.4	235.8	54.0	41,533.8	1.8	41,571.8	
	Annual	2.6	18.9	21.5	0.1	39.3	9.0	6,922.3	0.3	6,928.6	

Mitigated Emissions - Above Grade

Mitigated Emissions - Abov	ve Grade									DD reduction	0.05	0.0	0.0	1	0.7	0.7	0.9		
Off-Road			(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	RD reduction (lb/hr)	0.95	0.9	0.9	L Emissions	0.7 (Ibs)	0.7	0.8		
Equipment	HP Rating	Hours	ROG	CO	NOX	SOX	PM10	PM2.5	CO2	CH4	ROG	со	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e
Asphalt Paver	224	25	0.040774	0.028648	0.084842	0.00153	0.003483	0.003378	120.8164	0.008682	1.0	0.6	1.9	0.0	0.1	0.1	2416.3	0.2	2420.9
Asphalt Paver	35	156	0.006189	0.004348	0.012878	0.000232	0.000529	0.000513	18.3382	0.007408	0.9	0.6	1.8	0.0	0.1	0.1	2288.6	1.2	2312.9
Backhoe	50	41	0.006826	0.004796	0.014203	0.000256	0.000583	0.000566	20.22595	0.004626	0.3	0.2	0.5	0.0	0.0	0.0	663.4	0.2	667.4
Tractor Backhoe	62	1958	0.008464	0.005947	0.017612	0.000318	0.000723	0.000701	25.08018	0.004485	15.7	10.5	31.0	0.6	1.0	1.0	39285.6	8.8	39470.0
Tractor Backhoe	98	3178	0.013379	0.0094	0.027839	0.000502	0.001143	0.001109	39.64287	0.003924	40.4	26.9	79.6	1.6	2.5	2.5	100788.0	12.5	101049.9
Excavator	120	1334	0.020434	0.012377	0.042519	0.000767	0.001745	0.001693	60.54737	0.006252	25.9	14.9	51.0	1.0	1.6	1.6	64616.2	8.3	64791.3
8T Crane	50	100	0.006312	0.004282				0.000523			0.6	0.4	1.2	0.0	0.0	0.0	1496.3	0.6	1508.5
10T Crane	120	-	0.015149					0.001255			0.1	0.1	0.2	0.0	0.0	0.0	287.3	0.0	288.3
35T Crane	175		0.022093					0.001831			26.1	16.8	51.4	1.0	1.6	1.6	65043.5	8.4	65220.6
50T Crane	250	-	0.031561					0.002615			4.4	2.9	8.7	0.2	0.3	0.3	11072.5	1.1	11094.6
100T Crane	500				0.131343				187.0357		131.7	84.6	259.6	5.2	8.3	8.0	328584.3	23.8	329084.3
140T Crane	550							0.005753 0.006276			251.3	161.5	495.4	9.9	15.8	15.3	627093.3	48.5	628111.0
175T Crane 200T Crane	600 750	40200			0.157612 0.197015			0.006276	-		3.0 3616.0	1.9 2323.9	5.8 7128.0	0.1 142.8	0.2 227.6	0.2 220.8	7361.7 9022601.6	0.6 737.9	7374.3 9038097.3
Air Compressor	49		0.094084		0.014368				20.46083		5010.0	3.4	10.1	0.2	0.3	0.3	12767.6	3.6	12844.1
Air Compressor	120		0.000303	0.00	0.0014308				5.010817		8.5	5.7	16.8	0.2	0.5	0.5	21217.8	27.8	21801.1
Concrete Mixer	20		0.002818					0.000234			13.6	9.1	26.9	0.5	0.9	0.8	34020.1	4.0	34103.7
Roller	120		0.020258		0.042152			0.001679			16.9	11.2	33.3	0.7	1.1	1.0	42161.8	5.4	42275.4
Drill Rig	249		0.031435		0.065409			0.002605		0.00485	88.5	50.8	174.5	3.5	5.6	5.4	220937.0	14.4	221239.0
Drill Rig	474	4875	0.05984					0.004958		0.008	277.1	159.0	546.3	10.9	17.4	16.9	691508.3	39.0	692327.4
Drill Rig	580	2575	0.073222					0.006067			179.1	102.8	353.1	7.1	11.3	10.9	446940.5	30.7	447584.8
Drill Rig	580	14878	0.073222	0.04435	0.152358	0.002748	0.006255	0.006067	216.9614	0.011916	1034.9	593.9	2040.1	40.9	65.1	63.2	2582361.4	177.3	2586084.4
D6 Tractor	215	307	0.037242	0.025264	0.077493	0.001398	0.003181	0.003086	110.3511	0.012028	10.9	7.0	21.4	0.4	0.7	0.7	27102.2	3.7	27179.8
Boom Lift	65	48	0.009065	0.006369	0.018862	0.00034	0.000774	0.000751	26.85919	0.005828	0.4	0.3	0.8	0.0	0.0	0.0	1031.4	0.3	1037.3
Excavator CAT307	54	13	0.009195	0.00557	0.019133	0.000345	0.000785	0.000762	27.24632	0.004223	0.1	0.1	0.2	0.0	0.0	0.0	283.4	0.1	284.5
Excavator CAT321	148	3294	0.025202	0.015265	0.05244	0.000946	0.002153	0.002088	74.67509	0.006252	78.9	45.3	155.5	3.1	5.0	4.8	196783.8	20.6	197216.3
Excavator CAT324	190	133	0.032354	0.019597	0.067321	0.001214	0.002764	0.002681	95.86666	0.007434	4.1	2.3	8.1	0.2	0.3	0.2	10200.2	1.0	10221.0
Excavator CAT330	235	2	0.040017	0.024238							0.1	0.0	0.1	0.0	0.0	0.0	253.9	0.0	254.2
Excavator CAT336	266		0.045296					0.003753			261.2	149.9	514.8	10.3	16.4	15.9	651632.6	51.1	652705.8
Excavator CAT345	345							0.004868			68.6	39.4	135.3	2.7	4.3	4.2	171288.5	12.6	171553.3
Forklift CAT TL-1055	125							0.001444		0.002389	354.3	235.8	698.4	14.0	22.3	21.6	884080.7	51.1	885153.9
Generator 5kW	15				0.073706				9.656261		76.0	88.9	1627.5	3.0	9.6	9.3	189533.1	27.1	190103.1
Grader CAT14	180				0.063228			0.002518			79.1	45.4	156.0	3.1	5.0	4.8	197435.6	26.2	197985.6
Loader Deere 210 Loader CAT950	78 130		0.010649 0.017748			0.0004		0.000882 0.001471			13.6 21.0	9.0 14.0	26.8 41.4	0.5 0.8	0.9 1.3	0.8 1.3	33925.2 52377.1	9.0 7.4	34114.3 52532.7
Loader CAT950	150		0.017748					0.001471			21.0	14.0 16.3	41.4	0.8 1.0	1.5 1.5	1.5	61163.3	7.4 7.5	61320.8
Loader CAT966	130							0.001037			24.5	1436.6	4254.5	85.3	135.8	131.8	5385268.2	7.5	5401736.1
Loader CAT IT62	207	27285						0.001323			732.5	487.6	1444.0	28.9	46.1	44.7	1827777.3	225.7	1832517.8
Loader CAT980	355				0.100844			0.004016			30.9	20.6	61.0	1.2	1.9	1.9	77201.7	5.7	77322.1
Pavement Broom	74	12480						0.000855			122.4	81.4	241.2	4.8	7.7	7.5	305292.4	92.4	307233.8
Manlift 40ft	50							0.000578			60.3	40.2	119.0	2.4	3.8	3.7	150576.8	27.7	151157.4
Manlift 80ft	74	4696	0.01032	0.007251	0.021473	0.000387	0.000882	0.000855	30.57816	0.002992	46.0	30.6	90.8	1.8	2.9	2.8	114876.0	14.1	115171.1
Compactor CAT CB54	130	156	0.021946	0.015419	0.045665	0.000824	0.001875	0.001818	65.02752	0.007268	3.3	2.2	6.4	0.1	0.2	0.2	8115.4	1.1	8139.2
Compactor CAT CB64	130	50	0.021946	0.015419	0.045665	0.000824	0.001875	0.001818	65.02752	0.007268	1.0	0.7	2.1	0.0	0.1	0.1	2601.1	0.4	2608.7
Compactor CAT 433	100	4	0.016882	0.011861	0.035127	0.000634	0.001442	0.001399	50.02117	0.007268	0.1	0.0	0.1	0.0	0.0	0.0	160.1	0.0	160.7
Compactor CAT CP56	145	972	0.024478	0.017199	0.050934	0.000919	0.002091	0.002028	72.5307	0.007268	22.6	15.0	44.6	0.9	1.4	1.4	56399.9	7.1	56548.2
Compactor CAT PS360	130	181	0.021946	0.015419	0.045665	0.000824	0.001875	0.001818	65.02752	0.007268	3.8	2.5	7.4	0.1	0.2	0.2	9416.0	1.3	9443.6
Compactor CAT CS423	80	3207	0.013505	0.009489	0.028101	0.000507	0.001154	0.001119	40.01694	0.007408	41.1	27.4	81.1	1.6	2.6	2.5	102667.5	23.8	103166.3
Scraper CAT 615	250							0.003497			2.0	1.2	4.0	0.1	0.1	0.1	5002.1	0.8	5018.3
Skid Steer CAT 226	58							0.000656		0.002375	190.3	126.7	375.1	7.5	12.0	11.6	474835.5	60.1	476097.2
Skid Steer CAT 246	80							0.000905			62.6	41.6	123.3	2.5	3.9	3.8	156086.1	6.7	156227.7
Rack Truck		12480			0.279642				108.9657		66.0	415.7	3140.9	12.6	199.2	80.8	1087913.7	40.7	1088768.3
Mechanics Truck								0.004215			3.6	210.7	20.8	0.7	22.9	9.2	56205.3	1.1	56227.5
Oil dist Truck								0.004215		0.00034	0.2	10.5	1.0	0.0	1.1	0.5	2810.3	0.1	2811.4
Pickup 1/2T		320041	0.002048	0.106169	0.010292	0.000211	0.010524	0.004261	20.93382	0.000522	622.8	30580.7	2964.5	67.4	2357.6	954.5	5359745.1	166.9	5363250.8

Pickup 3/4T		251424	0.001204	0.075044	0.007394	0.000226	0.010474	0.004215	22.51813	0.00034		287.6	16981.2	1673.1	56.8	1843.4	741.8	4529279.4	85.5	4531074.3	
Tractor 6x4		6280	0.013788	0.05546	0.419738	0.001278	0.023416	0.009838	133.9301	0.00064		82.3	313.5	2372.4	8.0	102.9	43.2	672865.0	4.0	672949.5	
Water truck		37474	0.001204	0.075044	0.007394	0.000226	0.010474	0.004215	22.51813	0.00034		42.9	2531.0	249.4	8.5	274.7	110.6	675075.6	12.7	675343.2	
											total	11,316	57,593	32,029	557	5,449	2,569	37,862,774	2,934	37,924,387	
																0.6					
On-Road			(lb/hr)					Emission	ıs (Ibs)												
Equipment		Hours	ROG	СО	NOX	SOX	PM10	PM2.5	CO2	CH4		ROG	со	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e	
Dump Truck		82	0.00557	0.037009	0.279642	0.001008	0.022802	0.00925	108.9657	0.003261		0.5	3.0	22.9	0.1	1.9	0.8	8935.2	0.3	8940.8	
End Dump 10CY		12418	0.00557	0.037009	0.279642	0.001008	0.022802	0.00925	108.9657	0.003261		69.2	459.6	3472.6	12.5	283.2	114.9	1353136.2	40.5	1353986.6	
End Dump 15CY		117949	0.00557	0.037009	0.279642	0.001008	0.022802	0.00925	108.9657	0.003261		657.0	4365.2	32983.4	118.9	2689.5	1091.1	12852397.1	384.6	12860473.8	
Flatbed 10T		50340	0.00557	0.037009	0.279642	0.001008	0.022802	0.00925	108.9657	0.003261		280.4	1863.1	14077.2	50.7	1147.9	465.7	5485334.1	164.1	5488781.2	
Flatbed 2T		156	0.00557	0.037009	0.279642	0.001008	0.022802	0.00925	108.9657	0.003261		0.9	5.8	43.6	0.2	3.6	1.4	16998.7	0.5	17009.3	
Flatbed 20T		21110	0.00557	0.037009	0.279642	0.001008	0.022802	0.00925	108.9657	0.003261		117.6	781.3	5903.2	21.3	481.4	195.3	2300266.2	68.8	2301711.8	
Employee Commutes		147062.1	0.000689	0.052913	0.003519	0.000178	0.010467	0.004209	17.80674	0.000209		101.4	7781.5	517.5	26.2	1539.3	618.9	2618697.6	30.8	2619343.5	
. ,											total	1,227	15,259	57,020	230	6,147	2,488	24,635,765	690	24,650,247	
								lb/acre								Daily Em	nissions (Ibs	5)			Total Emi
		Daily Acres						PM								PM10	PM2.5				PM10
	Fugitive Dust	15						10								150.0	31.5				225000

	ROG	СО	
Total (lb)	12,543	72,852	
Daily (lb)	8.4	48.6	
Annual (T)	1.0	6.1	

On-site Emissions									
	ROG	со	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e
Total (lb)	11377.7	58355.8	34879.6	568.9	230756.7	49943.0	39094562.7	2968.4	39156899.2
Daily (lb)	7.6	38.9	23.3	0.4	153.8	33.3	26063.0	2.0	26104.6
Annual (T)	0.9	4.9	2.9	0.0	19.2	4.2	3257.9	0.2	3263.1
Total Emissions (tons)	ROG	СО	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e
Off-road	5.7	28.8	16.0	0.3	2.7	1.3	18,931.4	1.5	18,962.2
On-Road	0.6	7.6	28.5	0.1	3.1	1.2	12,317.9	0.3	12,325.1
Fugitive Dust					112.5	23.6			
Total	6.3	36.4	44.5	0.4	118.3	26.2	31,249.3	1.8	31,287.3
Annual	1.0	6.1	7.4	0.1	19.7	4.4	5,208.2	0.3	5,214.6

lb/acre PM 10		Daily Emissions (lbs) PM10 PM2.5 150.0 31.5									Total Emiss PM10 225000	sions (lbs) PM2.5 47250
		ROG	со	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e		
	Total (lb)	12,543	72,852	89,049	787	236,596	52,307	62,498,539	3,624	62,574,634		
	Daily (lb)	8.4	48.6	59.4	0.5	157.7	34.9	41,665.7	2.4	41,716.4		
	Annual (T)	1.0	6.1	7.4	0.1	19.7	4.4	5,208.2	0.3	5,214.6		

SCAB Fleet Average Emission Factors (Diesel)

Road Emission Rates

Air Basin SC

		(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Equipment	MaxHP	ROG	CO	NOX	SOX	PM	CO2	CH4
Aerial Lifts	15	0.0101	0.0528	0.0631	0.0001	0.0025	8.7	0.0009
	25	0.0143	0.0468	0.0865	0.0001	0.0039	11.0	0.0013
	50	0.0336	0.1506	0.1525	0.0003	0.0093	19.6	0.0030
	120	0.0327	0.2319	0.2565	0.0004	0.0170	38.1	0.0029
	500	0.0840	0.3899	0.8852	0.0021	0.0270	213	0.0076
	750	0.1545	0.7049	1.6423	0.0039	0.0494	385	0.0139
Aerial Lifts Compo		0.0322	0.1740	0.2152	0.0004	0.0119	34.7	0.0029
Air Compressors	15	0.0098	0.0456	0.0608	0.0001	0.0033	7.2	0.0009
	25	0.0207	0.0645	0.1187	0.0002	0.0060	14.4	0.0019
	50	0.0518	0.2142	0.1848	0.0003	0.0131	22.3	0.0047
	120	0.0504	0.3097	0.3370	0.0006	0.0255	47.0	0.0045
	175	0.0685	0.4994	0.5069	0.0010	0.0268	88.5	0.0062
	250	0.0747	0.2653	0.6529	0.0015	0.0206	131	0.0067
	500	0.1262	0.4504	1.0161	0.0023	0.0345	232	0.0114
	750	0.1960	0.6961	1.6134	0.0036	0.0540	358	0.0177
	1000	0.2958	1.0416	3.7257	0.0049	0.0965	486	0.0267
Air Compressors C	1	0.0582	0.3130	0.3935	0.0007	0.0246	63.6	0.0052
Bore/Drill Rigs	15	0.0120	0.0632	0.0754	0.0002	0.0029	10.3	0.0011
	25 50	0.0193	0.0658	0.1219	0.0002	0.0046	16.0	0.0017
	50	0.0204	0.2211	0.1897	0.0004	0.0034	31.0	0.0018
	120	0.0308	0.4665	0.2710	0.0009	0.0072	77.1	0.0028
	175	0.0475	0.7542	0.2910	0.0016	0.0092	141	0.0043
	250	0.0538	0.3426	0.2499	0.0021	0.0068	188	0.0049
	500	0.0887	0.5512	0.4035	0.0031	0.0112	311	0.0080
	750	0.1755	1.0891	0.8022	0.0062	0.0222	615	0.0158
	1000	0.2789	1.6441	4.2095	0.0093	0.0723	928	0.0252
Bore/Drill Rigs Cor		0.0539	0.5011	0.4175	0.0017	0.0099	165	0.0049
Cement and Morta	r 15 25	0.0074 0.0232	0.0386 0.0754	0.0461 0.1391	0.0001 0.0002	0.0018 0.0064	6.3 17.6	0.0007 0.0021
Cement and Morta		0.0232	0.0734	0.0538	0.0002	0.0004	7.2	0.0021
Concrete/Industria		0.0199	0.0678	0.1256	0.0001	0.0047	16.5	0.0018
	50	0.0549	0.2534	0.2388	0.0004	0.0148	30.2	0.0050
	120	0.0650	0.4661	0.4898	0.0009	0.0335	74.1	0.0059
	175	0.1012	0.8661	0.8304	0.0018	0.0410	160	0.0091
Concrete/Industria		0.0605	0.3850	0.3959	0.0007	0.0261	58.5	0.0055
Cranes	50	0.0646	0.2527	0.2019	0.0003	0.0151	23.2	0.0058
	120	0.0639	0.3486	0.3857	0.0006	0.0306	50.1	0.0058
	175	0.0752	0.4766	0.5029	0.0009	0.0283	80.3	0.0068
	250	0.0787	0.2521	0.6168	0.0013	0.0212	112	0.0071
	500	0.1202	0.4085	0.8748	0.0018	0.0317	180	0.0108
	750	0.2034	0.6869	1.5239	0.0030	0.0544	303	0.0184
	9999	0.7422	2.3933	7.8338	0.0098	0.2146	971	0.0670
Cranes Composite		0.1012	0.4060	0.7908	0.0014	0.0318	129	0.0091
Crawler Tractors	50	0.0813	0.2884	0.2240	0.0003	0.0181	24.9	0.0073
	120	0.0945	0.4679	0.5589	0.0008	0.0448	65.8	0.0085
	175	0.1270	0.7327	0.8534	0.0014	0.0479	121	0.0115
	250	0.1333	0.4179	1.0430	0.0019	0.0385	166	0.0120
	500	0.1959	0.7202	1.4625	0.0025	0.0554	259	0.0177
	750	0.3529	1.2889	2.6916	0.0047	0.1006	465	0.0318
	1000	0.5380	2.0171	5.7362	0.0066	0.1663	658	0.0485
Crawler Tractors C		0.1185	0.5387	0.7960	0.0013	0.0457	114	0.0107
Crushing/Proc. Eq		0.0949	0.4230	0.3607	0.0006	0.0241	44.0	0.0086
	120	0.0849	0.5506	0.5679	0.0010	0.0416	83.1	0.0077
	175	0.1258	0.9520	0.8975	0.0019	0.0475	167	0.0113
	250	0.1386	0.4932	1.1284	0.0028	0.0359	245	0.0125
	500	0.2037	0.7231	1.5205	0.0037	0.0524	374	0.0184
		0.0400	4 4 9 0 0	0 4 4 4 4	0.0050	0.0004	E00	0 0000
	750 9999	0.3193 0.8312	1.1368 2.7569	2.4441 9.5902	0.0059 0.0131	0.0824 0.2467	589 1,308	0.0288 0.0750

Crushing/Proc. Equ	ipment Compo	0.1109	0.6328	0.7330	0.0015	0.0412	132	0.0100
Dumpers/Tenders	25	0.0092	0.0314	0.0584	0.0001	0.0023	7.6	0.0008
Dumpers/Tenders C	Composite	0.0092	0.0314	0.0584	0.0001	0.0023	7.6	0.0008
Excavators	25	0.0198	0.0677	0.1253	0.0002	0.0047	16.4	0.0018
	50	0.0468	0.2521	0.2002	0.0003	0.0111	25.0	0.0042
	120	0.0693	0.5017	0.4425	0.0009	0.0289	73.6	0.0063
	175	0.0824	0.6641	0.5069	0.0013	0.0264	112	0.0074
	250	0.0933	0.3323	0.5984	0.0018	0.0202	159	0.0084
	500	0.1339	0.4689	0.7881	0.0023	0.0284	234	0.0121
	750	0.2224	0.7769	1.3381	0.0039	0.0476	387	0.0201
Excavators Compos	site	0.0848	0.5160	0.5181	0.0013	0.0249	120	0.0077
Forklifts	50	0.0229	0.1440	0.1180	0.0002	0.0058	14.7	0.0021
	120	0.0265	0.2118	0.1745	0.0004	0.0108	31.2	0.0024
	175	0.0394	0.3322	0.2328	0.0006	0.0125	56.1	0.0036
	250	0.0440	0.1559	0.2594	0.0009	0.0089	77.1	0.0040
	500	0.0623	0.2131	0.3432	0.0011	0.0125	111	0.0056
Forklifts Composite		0.0372	0.2173	0.2186	0.0006	0.0101	54.4	0.0034
Generator Sets	15	0.0123	0.0644	0.0852	0.0002	0.0043	10.2	0.0011
	25	0.0231	0.0788	0.1449	0.0002	0.0070	17.6	0.0021
	50	0.0491	0.2265	0.2357	0.0004	0.0138	30.6	0.0044
	120	0.0642	0.4694	0.5181	0.0009	0.0333	77.9	0.0058
	175	0.0808	0.7324	0.7528	0.0016	0.0337	142	0.0073
	250	0.0857	0.3931	0.9756	0.0024	0.0274	213	0.0077
	500	0.1264	0.6113	1.3836	0.0033	0.0415	337	0.0114
	750	0.2080	0.9868	2.2918	0.0055	0.0679	544	0.0188
0	9999	0.5230	2.0948	7.5356	0.0105	0.1778	1,049	0.0472
Generator Sets Con		0.0477	0.2786	0.3759	0.0007	0.0192	61.0	0.0043
Graders	50	0.0676	0.2868	0.2305	0.0004	0.0157	27.5	0.0061
	120 175	0.0860 0.1059	0.5138 0.7294	0.5323 0.7002	0.0009 0.0014	0.0398	75.0 124	0.0078 0.0096
	250	0.1059	0.7294 0.3778	0.7002	0.0014	0.0385 0.0287	124	0.0096
	230 500	0.1115	0.5194	0.8409	0.0019	0.0287	229	0.0101
	500 750	0.1420	1.0988	2.1820	0.0023	0.0359	486	0.0128
Graders Composite		0.3024	0.5812	0.7217	0.0049	0.0355	133	0.0095
Off-Highway Tracto		0.1640	0.6879	0.9427	0.0011	0.0000	93.7	0.0000
On Flighway Fladio	175	0.1614	0.8085	1.1191	0.0015	0.0632	130	0.0146
	250	0.1275	0.3861	1.0244	0.0015	0.0411	130	0.0115
	750	0.5173	2.0914	4.1264	0.0057	0.1633	568	0.0467
	1000	0.7842	3.2770	8.0820	0.0082	0.2526	814	0.0708
Off-Highway Tractor		0.1631	0.6762	1.2293	0.0017	0.0579	151	0.0147
Off-Highway Trucks		0.0983	0.7542	0.5947	0.0014	0.0314	125	0.0089
<u> </u>	250	0.1042	0.3572	0.6660	0.0019	0.0225	167	0.0094
	500	0.1656	0.5578	0.9706	0.0027	0.0351	272	0.0149
	750	0.2693	0.9044	1.6152	0.0044	0.0577	442	0.0243
	1000	0.4058	1.3339	4.3394	0.0063	0.1110	625	0.0366
Off-Highway Trucks	Composite	0.1613	0.5634	1.0525	0.0027	0.0360	260	0.0146
Other Construction		0.0118	0.0617	0.0737	0.0002	0.0029	10.1	0.0011
	25	0.0159	0.0544	0.1008	0.0002	0.0038	13.2	0.0014
	50	0.0412	0.2342	0.2102	0.0004	0.0108	28.0	0.0037
	120	0.0604	0.5116	0.4573	0.0009	0.0279	80.9	0.0054
	175	0.0608	0.5859	0.4478	0.0012	0.0218	107	0.0055
	500	0.1122	0.4743	0.8004	0.0025	0.0275	254	0.0101
Other Construction		0.0633	0.3542	0.4478	0.0013	0.0181	123	0.0057
Other General Indu		0.0066	0.0391	0.0466	0.0001	0.0018	6.4	0.0006
	25 50	0.0185	0.0632	0.1170	0.0002	0.0044	15.3	0.0017
	50	0.0548	0.2314	0.1869	0.0003	0.0134	21.7	0.0049
	120	0.0732	0.4277	0.4544	0.0007	0.0350	62.0 05.0	0.0066
	175 250	0.0835	0.5664	0.5608	0.0011	0.0307	95.9 136	0.0075
	250 500	0.0884	0.2862	0.6866	0.0015	0.0221	136	0.0080
	500 750	0.1664	0.5336	1.1846	0.0026	0.0412	265 437	0.0150
	750 1000	0.2755	0.8795	2.0057	0.0044	0.0689	437 560	0.0249
Other General Indus		0.3866	1.2370 0.4591	4.3716 0.8242	0.0056 0.0016	0.1169 0.0336	560 152	0.0349 0.0100
Other Material Han		0.0758	0.4591	0.8242	0.0016	0.0336	30.3	0.0100
	50 120	0.0758	0.3192	0.2598	0.0004	0.0186	30.3 60.7	0.0068
	120	0.0709	0.4162	0.4437 0.7125	0.0007 0.0014	0.0341	122	0.0064
	250	0.0934	0.3046	0.7336	0.0014	0.0303	145	0.0035
	200	0.0004	0.00-0	0.1000	0.0010	0.0201	1 10	0.0004

	500	0.1186	0.3838	0.8543	0.0019	0.0297	192	0.0107
Othern Material Harris	9999	0.5386	1.6331	5.7822	0.0073	0.1543	741	0.0486
Other Material Hand		0.1050	0.4495	0.8053	0.0015	0.0324	141	0.0095
Pavers	25 50	0.0226	0.0769	0.1434	0.0002	0.0057	18.7	0.0020
	50 120	0.0968 0.1030	0.3188 0.4862	0.2539 0.6205	0.0004 0.0008	0.0217 0.0506	28.0	0.0087 0.0093
			0.4662				69.2	
	175 250	0.1365 0.1574	0.7632	0.9644 1.3162	0.0014 0.0022	0.0539 0.0490	128 194	0.0123 0.0142
	250 500	0.1374	0.5000	1.4189	0.0022	0.0490	233	0.0142
Pavers Composite	500	0.1703	0.5017	0.6241	0.0023	0.0339	77.9	0.0101
Paving Equipment	25	0.0152	0.0520	0.0241	0.0009	0.0419	12.6	0.0014
Faving Equipment	23 50	0.0132	0.0520	0.0903	0.0002	0.0030	23.9	0.0074
	120	0.0821	0.2090	0.2103	0.0003	0.0400	23.9 54.5	0.0074
	175	0.0005	0.5809	0.4809	0.0000	0.0400	101	0.0096
	250	0.1002	0.3068	0.8236	0.0011	0.0424	122	0.0087
Paving Equipment 0		0.0902	0.3008	0.5558	0.0014	0.0300	68.9	0.0077
Plate Compactors	15	0.0050	0.4130	0.0314	0.0008	0.0012	4.3	0.0005
Plate Compactors C		0.0050	0.0263	0.0314	0.0001	0.0012	4.3	0.0005
Pressure Washers	15	0.0059	0.0308	0.0408	0.0001	0.0012	4.9	0.0005
	25	0.0094	0.0300	0.0400	0.0001	0.0028	7.1	0.0008
	23 50	0.0094	0.0319	0.0387	0.0001	0.0028	14.3	0.0008
	120	0.0170	0.0895	0.1059	0.0002	0.0054	24.1	0.0015
Pressure Washers		0.0107	0.0562	0.1328	0.0003	0.0036	9.4	0.0009
Pumps	15	0.0101	0.0362	0.0703	0.0001	0.0030	7.4	0.0009
, ampo	25	0.0101	0.0400	0.0623	0.0001	0.0034	19.5	0.0009
	25 50	0.0279	0.0671	0.1601	0.0002	0.0080	34.3	0.0025
	120	0.0535	0.2070	0.5260	0.0004	0.0350	77.9	0.0061
	175	0.0845	0.7338	0.7548	0.0016	0.0350	140	0.0076
	250	0.0866	0.3786	0.9399	0.0010	0.0271	201	0.0078
	500	0.1387	0.6343	1.4367	0.0034	0.0442	345	0.0125
	750	0.2330	1.0487	2.4376	0.0057	0.0741	571	0.0210
	9999	0.7050	2.7434	9.8509	0.0136	0.2358	1,355	0.0636
Pumps Composite	0000	0.0458	0.2722	0.3306	0.0006	0.0189	49.6	0.0041
Rollers	15	0.0074	0.0386	0.0461	0.0001	0.0018	6.3	0.0007
	25	0.0161	0.0549	0.1017	0.0002	0.0038	13.3	0.0015
	50	0.0662	0.2547	0.2171	0.0003	0.0158	26.0	0.0060
	120	0.0680	0.3919	0.4411	0.0007	0.0341	59.0	0.0061
	175	0.0897	0.6130	0.6569	0.0012	0.0356	108	0.0081
	250	0.0934	0.3306	0.8164	0.0017	0.0274	153	0.0084
	500	0.1262	0.4902	1.0345	0.0022	0.0365	219	0.0114
Rollers Composite		0.0683	0.3885	0.4485	0.0008	0.0291	67.0	0.0062
Rough Terrain Fork	50	0.0655	0.3294	0.2744	0.0004	0.0166	33.9	0.0059
	120	0.0596	0.4179	0.3967	0.0007	0.0273	62.4	0.0054
	175	0.0911	0.7231	0.6072	0.0014	0.0322	125	0.0082
	250	0.0988	0.3504	0.7075	0.0019	0.0237	171	0.0089
	500	0.1441	0.5029	0.9468	0.0025	0.0341	257	0.0130
Rough Terrain Fork		0.0638	0.4499	0.4219	0.0008	0.0277	70.3	0.0058
Rubber Tired Dozer	175	0.1676	0.8191	1.1443	0.0015	0.0646	129	0.0151
	250	0.1890	0.5640	1.4879	0.0021	0.0605	183	0.0171
	500	0.2531	1.0338	1.9476	0.0026	0.0787	265	0.0228
	750	0.3821	1.5520	2.9917	0.0040	0.1195	399	0.0345
	1000	0.5986	2.5082	6.0072	0.0060	0.1906	592	0.0540
Rubber Tired Dozer		0.0040	0.0040	1.8194	0.0025	0.0737	239	0.0211
		0.2343	0.8819					
Rubber Tired Loade	25	0.2343	0.0697	0.1291	0.0002	0.0048	16.9	0.0018
		0.0204 0.0742			0.0002 0.0004	0.0048 0.0174	31.1	0.0067
	25 50 120	0.0204 0.0742 0.0660	0.0697 0.3198 0.4016	0.1291 0.2591 0.4121	0.0002 0.0004 0.0007	0.0174 0.0307	31.1 58.9	0.0067 0.0060
	25 50 120 175	0.0204 0.0742 0.0660 0.0888	0.0697 0.3198 0.4016 0.6227	0.1291 0.2591 0.4121 0.5902	0.0002 0.0004 0.0007 0.0012	0.0174 0.0307 0.0323	31.1 58.9 106	0.0067 0.0060 0.0080
	25 50 120 175 250	0.0204 0.0742 0.0660 0.0888 0.0946	0.0697 0.3198 0.4016 0.6227 0.3237	0.1291 0.2591 0.4121 0.5902 0.7142	0.0002 0.0004 0.0007 0.0012 0.0017	0.0174 0.0307 0.0323 0.0244	31.1 58.9 106 149	0.0067 0.0060 0.0080 0.0085
	25 50 120 175	0.0204 0.0742 0.0660 0.0888	0.0697 0.3198 0.4016 0.6227	0.1291 0.2591 0.4121 0.5902	0.0002 0.0004 0.0007 0.0012	0.0174 0.0307 0.0323	31.1 58.9 106	0.0067 0.0060 0.0080
	25 50 120 175 250 500 750	0.0204 0.0742 0.0660 0.0888 0.0946	0.0697 0.3198 0.4016 0.6227 0.3237 0.5256 1.0762	0.1291 0.2591 0.4121 0.5902 0.7142 1.0103 2.1374	0.0002 0.0004 0.0007 0.0012 0.0017	0.0174 0.0307 0.0323 0.0244	31.1 58.9 106 149	0.0067 0.0060 0.0080 0.0085
Rubber Tired Loade	25 50 120 175 250 500 750 1000	0.0204 0.0742 0.0660 0.0888 0.0946 0.1440	0.0697 0.3198 0.4016 0.6227 0.3237 0.5256	0.1291 0.2591 0.4121 0.5902 0.7142 1.0103	0.0002 0.0004 0.0007 0.0012 0.0017 0.0023	0.0174 0.0307 0.0323 0.0244 0.0363	31.1 58.9 106 149 237	0.0067 0.0060 0.0080 0.0085 0.0130
Rubber Tired Loade	25 50 120 175 250 500 750 1000 rs Composite	0.0204 0.0742 0.0660 0.0888 0.0946 0.1440 0.2966 0.3912 0.0861	0.0697 0.3198 0.4016 0.6227 0.3237 0.5256 1.0762 1.4170 0.4470	0.1291 0.2591 0.4121 0.5902 0.7142 1.0103 2.1374	0.0002 0.0004 0.0007 0.0012 0.0017 0.0023 0.0049 0.0060 0.0012	0.0174 0.0307 0.0323 0.0244 0.0363 0.0758	31.1 58.9 106 149 237 486 594 109	0.0067 0.0060 0.0080 0.0085 0.0130 0.0268 0.0353 0.0078
Rubber Tired Loade Rubber Tired Loade	25 50 120 175 250 500 750 1000 rs Composite 120	0.0204 0.0742 0.0660 0.0888 0.0946 0.1440 0.2966 0.3912 0.0861 0.1382	0.0697 0.3198 0.4016 0.6227 0.3237 0.5256 1.0762 1.4170 0.4470 0.6686	0.1291 0.2591 0.4121 0.5902 0.7142 1.0103 2.1374 4.4558 0.5831 0.8165	0.0002 0.0004 0.0007 0.0012 0.0017 0.0023 0.0049 0.0060 0.0012 0.0011	0.0174 0.0307 0.0323 0.0244 0.0363 0.0758 0.1188 0.0300 0.0661	31.1 58.9 106 149 237 486 594 109 93.9	0.0067 0.0060 0.0080 0.0085 0.0130 0.0268 0.0353 0.0078 0.0125
	25 50 120 175 250 500 750 1000 rs Composite 120 175	0.0204 0.0742 0.0660 0.0888 0.0946 0.1440 0.2966 0.3912 0.0861 0.1382 0.1579	0.0697 0.3198 0.4016 0.6227 0.3237 0.5256 1.0762 1.4170 0.4470 0.6686 0.8954	0.1291 0.2591 0.4121 0.5902 0.7142 1.0103 2.1374 4.4558 0.5831 0.8165 1.0712	0.0002 0.0004 0.0007 0.0012 0.0017 0.0023 0.0049 0.0060 0.0012 0.0011 0.0017	0.0174 0.0307 0.0323 0.0244 0.0363 0.0758 0.1188 0.0300 0.0661 0.0603	31.1 58.9 106 149 237 486 594 109 93.9 148	0.0067 0.0060 0.0080 0.0130 0.0268 0.0353 0.0078 0.0125 0.0142
Rubber Tired Loade Rubber Tired Loade	25 50 120 250 500 750 1000 rs Composite 120 175 250	0.0204 0.0742 0.0660 0.0888 0.0946 0.1440 0.2966 0.3912 0.0861 0.1382 0.1579 0.1704	0.0697 0.3198 0.4016 0.6227 0.3237 0.5256 1.0762 1.4170 0.4470 0.6686 0.8954 0.5324	0.1291 0.2591 0.4121 0.5902 0.7142 1.0103 2.1374 4.4558 0.5831 0.8165 1.0712 1.3558	0.0002 0.0004 0.0007 0.0012 0.0017 0.0023 0.0049 0.0060 0.0012 0.0011 0.0017 0.0024	0.0174 0.0307 0.0323 0.0244 0.0363 0.0758 0.1188 0.0300 0.0661 0.0603 0.0501	31.1 58.9 106 149 237 486 594 109 93.9 148 209	0.0067 0.0060 0.0080 0.0085 0.0130 0.0268 0.0353 0.0078 0.0125 0.0142 0.0154
Rubber Tired Loade Rubber Tired Loade	25 50 120 175 250 500 750 1000 rs Composite 120 175	0.0204 0.0742 0.0660 0.0888 0.0946 0.1440 0.2966 0.3912 0.0861 0.1382 0.1579	0.0697 0.3198 0.4016 0.6227 0.3237 0.5256 1.0762 1.4170 0.4470 0.6686 0.8954	0.1291 0.2591 0.4121 0.5902 0.7142 1.0103 2.1374 4.4558 0.5831 0.8165 1.0712	0.0002 0.0004 0.0007 0.0012 0.0017 0.0023 0.0049 0.0060 0.0012 0.0011 0.0017	0.0174 0.0307 0.0323 0.0244 0.0363 0.0758 0.1188 0.0300 0.0661 0.0603	31.1 58.9 106 149 237 486 594 109 93.9 148	0.0067 0.0060 0.0080 0.0130 0.0268 0.0353 0.0078 0.0125 0.0142

Signal Boards 16 0.0072 0.0377 0.0460 0.0001 0.0118 6.2 0.0069 120 0.0695 0.4999 0.5256 0.0009 0.0172 36.2 0.0069 120 0.0695 0.8276 0.7968 0.0007 0.0336 80.2 0.0063 Signal Boards 0.0114 0.4877 1.1306 0.0023 0.0337 255 0.0104 Skid Steer Loaders 25 0.0176 0.0582 0.181 0.0002 0.0048 13.8 0.0074 Skid Steer Loaders 25 0.0176 0.0552 0.1787 0.0002 0.0074 30.3 0.0023 Sufacing Equipme 50 0.0253 0.2146 0.1799 0.0004 0.0074 30.3 0.0023 Sufacing Equipme 50 0.0317 0.1242 0.4667 0.0001 0.0257 85.8 0.0068 20 0.0633 0.2858 0.7013 0.0016 0.0230 1141 0.0022 0.0334	Scrapers Composite	2	0.2135	0.8418	1.6042	0.0027	0.0653	262	0.0193
50 0.0649 0.2966 0.2820 0.0005 0.0172 36.2 0.0063 175 0.0655 0.4999 0.5256 0.0007 0.0336 155 0.0063 Signal Boards Composite 0.0143 0.0916 0.1029 0.0002 0.00307 16.7 0.0013 Skid Steer Loaders 25 0.0176 0.0582 0.1081 0.0002 0.0065 16.7 0.0013 Skid Steer Loaders 25 0.0244 0.2680 0.1970 0.0005 0.0095 42.8 0.0022 Skid Steer Loaders Composite 0.0248 0.2460 0.1970 0.0000 0.0077 14.1 0.0023 Surfacing Equipme 50 0.0317 0.1422 0.1139 0.0001 0.02257 85.8 0.0986 250 0.0733 0.2858 0.7911 1.6685 0.0025 0.0350 221 0.0111 Sweepers/Scrubbe 15 0.0172 0.6864 0.0021 0.0236 1466 0.0023									
120 0.0685 0.4999 0.5256 0.0009 0.0365 80.2 0.0086 Signal Boards Composite 0.0143 0.0916 0.1029 0.0022 0.0337 255 0.0104 Signal Boards Composite 0.0143 0.0916 0.1029 0.0002 0.0026 1.67 0.0014 Skid Steer Loaders 25 0.0176 0.0523 0.11767 0.0003 0.0065 2.5.5 0.0022 Skid Steer Loaders Composite 0.0253 0.2146 0.1799 0.0004 0.0077 4.4.8 0.0025 Suffacing Equipme 50 0.0337 0.1467 0.4651 0.0007 0.0334 63.8 0.0068 Suffacing Equipme 500 0.0733 0.2858 0.7013 0.0015 0.0230 135 0.0068 Suffacing Equipment Composite 0.0923 0.4187 0.6843 0.0007 0.0334 63.8 0.0061 Suffacing Equipment Composite 0.0923 0.4187 0.6843 0.00017 0.02291 166	e.g.u. Bourdo								
175 0.0955 0.8276 0.7968 0.0017 0.0385 155 0.0013 Signal Boards Composite 0.01143 0.0916 0.1029 0.0022 0.0084 1.8.7 0.0013 Skid Steer Loaders 25 0.0176 0.0582 0.1081 0.0002 0.0084 1.8.8 0.0017 Skid Steer Loaders 0.0248 0.2680 0.1970 0.0005 0.0095 4.2.8 0.0022 Suffacing Equipme 50 0.0248 0.2680 0.1970 0.0005 0.00077 14.1 0.0023 Suffacing Equipme 50 0.0317 0.4677 0.5682 0.0011 0.0237 85.8 0.0058 120 0.0668 0.4072 0.4617 0.5062 0.0011 0.0237 135 0.0668 500 0.1782 0.7911 1.6685 0.0035 0.0558 347 0.0111 50 0.622 0.2917 1.0316 0.0022 1.0316 0.0291 75.0 0.0683									
250 0.1151 0.4857 1.1305 0.0029 0.0337 255 0.01013 Signal Boards Composite 0.0143 0.0916 0.1029 0.0002 0.0040 16.7 0.0013 Skid Steer Loaders 25 0.0176 0.0582 0.1081 0.0005 2.5.5 0.0024 Skid Steer Loaders Composite 0.0253 0.2146 0.1797 0.0004 0.0077 42.8 0.0025 Suffacing Equipme 50 0.0317 0.1242 0.1139 0.0002 0.0077 14.1 0.0025 Suffacing Equipme 50 0.0317 0.1242 0.1139 0.0002 0.0335 2.214 0.0161 175 0.0668 0.4072 0.4651 0.0007 0.0336 2.21 0.0111 750 0.1782 0.7911 1.6685 0.0035 0.258 3.47 0.0161 Suffacing Equipment Composite 0.0923 0.4187 0.8043 0.0017 0.0291 166 0.0021 0.0034 11.9									
Signal Boards Composite 0.0143 0.0916 0.1029 0.0002 0.00050 16.7 0.00150 Skid Steer Loaders 25 0.0176 0.0582 0.1081 0.0002 0.0068 13.8 0.0016 Skid Steer Loaders 0.0223 0.1787 0.0003 0.0065 42.8 0.0023 Surfacing Equipme 50 0.0317 0.1242 0.1139 0.0002 0.0077 14.1 0.0023 Surfacing Equipme 50 0.0317 0.4677 0.5082 0.0010 0.0257 85.8 0.0068 175 0.0637 0.4677 0.5082 0.0010 0.0257 85.8 0.0068 500 0.1120 0.5047 1.0316 0.0022 0.350 221 0.0101 Surfacing Equipment Composite 0.0023 0.4177 0.8080 0.4047 0.483 0.0017 0.0291 75.0 0.0052 Sweepers/Scrubbe 15 0.0124 0.0274 0.2539 0.0004 0.0137 31.6									
Skid Steer Loaders 25 0.0176 0.0582 0.1081 0.0002 0.0048 13.8 0.0016 Skid Steer Loaders Composite 0.0248 0.2280 0.1787 0.0003 0.0065 25.5 0.0024 Skid Steer Loaders Composite 0.0263 0.2146 0.1799 0.0004 0.0074 30.3 0.0023 Surfacing Equipme 50 0.0317 0.1242 0.1139 0.00002 0.0077 14.1 0.0029 175 0.0668 0.4072 0.4651 0.0015 0.0230 135 0.0066 500 0.1722 0.713 0.0015 0.0220 135 0.0066 Sweepers/Scrubbe 15 0.01742 0.7279 0.0870 0.0002 0.0034 119 0.0011 120 0.0647 0.4983 0.4442 0.00002 0.0034 119 0.0011 Sweepers/Scrubbe 15 0.0124 0.7279 0.0870 0.0002 0.0035 116 0.0021 <td>Signal Boards Com</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Signal Boards Com								
50 0.0263 0.2035 0.1787 0.0003 0.0065 22.5 0.0024 Skid Steer Loaders Composite 0.0223 0.2146 0.1799 0.0004 0.0074 30.3 0.0022 Surfacing Equipme 50 0.0317 0.1242 0.0139 0.0002 0.0077 14.1 0.0029 120 0.0668 0.4072 0.4661 0.0007 0.0334 63.8 0.0068 175 0.0637 0.4677 0.5082 0.0010 0.0257 85.8 0.0066 500 0.1120 0.5047 1.0316 0.0022 0.0350 221 0.0161 Surfacing Equipment Composite 0.0232 0.4187 0.8043 0.0017 0.023 1.19 0.0161 Surfacing Equipment Composite 0.0232 0.4187 0.8043 0.0017 0.023 1.19 0.0011 50 0.0522 0.274 0.2539 0.0004 0.0137 31.6 0.0021 50 0.0647 0.4983									
120 0.0248 0.2800 0.1970 0.0005 0.0095 42.8 0.0022 Skid Steer Loaders Composite 0.0253 0.2146 0.1799 0.0004 0.0074 30.3 0.0023 Surfacing Equipme 50 0.0317 0.1242 0.1139 0.00002 0.0077 14.1 0.0026 120 0.0668 0.4072 0.4651 0.0015 0.0231 15.6 0.0058 250 0.0733 0.2858 0.7013 0.0015 0.0230 135 0.0068 500 0.1120 0.5047 1.0316 0.0022 0.0350 221 0.0111 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0064 1.9 0.0011 120 0.0647 0.4983 0.4442 0.0002 0.0056 1.66 0.0021 120 0.0647 0.4983 0.6273 0.0016 0.0337 139 0.0087 120 0.0647 0.4983 0.4442									
Skid Steer Loaders Composite 0.0253 0.2146 0.1799 0.0004 0.0074 30.3 0.0023 Surfacing Equipme 50 0.0317 0.1242 0.1139 0.0007 0.0334 63.8 0.0060 120 0.0668 0.4072 0.4651 0.0007 0.0334 63.8 0.0060 175 0.0637 0.4677 0.5082 0.0015 0.0223 63.8 0.0066 500 0.1120 0.5047 1.0316 0.0022 0.0350 221 0.0101 Surfacing Equipment Composite 0.0123 0.4187 0.8043 0.0017 0.0291 166 0.0083 Sweepers/Scrubbe 15 0.0124 0.0729 0.8043 0.0002 0.0034 11.9 0.0011 50 0.0522 0.2974 0.2539 0.0004 0.0137 31.6 0.0041 120 0.0647 0.4983 0.4442 0.0009 0.0251 78.5 0.0061 120 0.0437 0.2839 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Surfacing Equipme 50 0.0317 0.1242 0.1139 0.0007 0.0334 63.8 0.0029 120 0.06637 0.4677 0.5082 0.0010 0.0257 85.8 0.0058 250 0.0733 0.2858 0.7013 0.0012 0.0230 135 0.0058 500 0.1782 0.7911 1.6685 0.0035 0.0588 347 0.0161 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0011 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0041 120 0.0647 0.4983 0.4442 0.0099 0.0221 75.0 0.0058 175 0.0966 0.8030 0.6280 0.0014 0.0221 778.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 10021 10.3 0.0045 120 0.0435	Skid Steer Loaders	-							
120 0.0668 0.4072 0.4651 0.0007 0.0334 63.8 0.0068 175 0.0637 0.4677 0.5082 0.0010 0.0257 85.8 0.0066 500 0.1120 0.5047 1.0316 0.00220 1.35 0.0066 500 0.1182 0.7911 1.6685 0.0035 0.258 347 0.0161 Surfacing Equipment Composite 0.0923 0.4187 0.8043 0.00017 0.0291 166 0.0083 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0011 50 0.0522 0.2974 0.2539 0.0004 0.0137 31.6 0.0041 175 0.9666 0.8030 0.6280 0.0018 0.0241 162 0.0081 17actors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0044 15.9 0.0017 Tractors/Loaders/Backhoes Composite 0.0681 0.4264 0									
175 0.0637 0.4677 0.5082 0.0015 0.0257 85.8 0.0058 250 0.0733 0.2858 0.7013 0.0015 0.0230 135 0.0065 500 0.1120 0.5047 1.0316 0.0022 0.0350 221 0.0101 Surfacing Equipment Composite 0.0923 0.4187 0.8043 0.0017 0.0291 166 0.0083 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0011 50 0.6522 0.2974 0.2539 0.0004 0.0137 31.6 0.0047 120 0.0647 0.4983 0.4442 0.0009 0.0291 75.0 0.0058 175 0.0964 0.3218 0.6073 0.011 0.0204 162 0.0081 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0024 162 0.0081 120 0.0435 0.3426 0.2337 0.0006									
250 0.0733 0.2858 0.7013 0.0015 0.0230 135 0.0066 500 0.1120 0.5047 1.0316 0.0022 0.0350 221 0.0161 Surfacing Equipment Composite 0.0923 0.4187 0.8043 0.0017 0.0231 166 0.0083 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0017 120 0.0647 0.4983 0.4442 0.0009 0.0291 75.0 0.0058 175 0.0966 0.8030 0.6280 0.0016 0.0337 139 0.0087 175 0.0966 0.4308 0.0009 0.021 78.5 0.0061 Sweepers/Scrubbers Composite 0.0681 0.4442 0.0009 0.0221 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0024 16.9 0.0017 Tractors/Loaders/Backhoes Comp 0.6814 0.42937 0.0004 0.0121									
500 0.1120 0.5047 1.0316 0.0022 0.0350 221 0.0101 Surfacing Equipment Composite 0.0923 0.4187 0.8043 0.0017 0.0291 166 0.0035 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0011 50 0.0522 0.2974 0.2893 0.0404 0.0137 31.6 0.0021 50 0.0522 0.2974 0.2890 0.0004 0.0137 31.6 0.0047 120 0.0647 0.4983 0.4442 0.0009 0.0291 75.0 0.0058 175 0.0966 0.8030 0.6280 0.0016 0.0337 139 0.0087 250 0.0894 0.4946 0.4308 0.0009 0.0251 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0663 0.1211 0.0002 0.0046 15.9 0.0171 120 0.0435 0.3426 0.2937									
750 0.1782 0.7911 1.6685 0.0035 0.0558 347 0.0161 Surfacing Equipment Composite 0.0923 0.4187 0.8043 0.0017 0.0291 166 0.0083 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0036 11.9 0.0011 50 0.0522 0.2974 0.2539 0.0004 0.0137 31.6 0.0047 120 0.0647 0.4983 0.4442 0.0009 0.0291 75.0 0.0086 175 0.0696 0.8030 0.6280 0.0016 0.0337 139 0.0087 Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0009 0.0211 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 120 0.0435 0.3426 0.2337 0.006 0.1184 51.7 0.038 120 0.0435 0.3426									
Surfacing Equipment Composite 0.0923 0.4187 0.8043 0.0017 0.0291 166 0.0083 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0014 25 0.0237 0.0808 0.1495 0.0002 0.0056 19.6 0.0021 50 0.0522 0.2974 0.2539 0.0004 0.0137 31.6 0.0047 120 0.0647 0.4983 0.4442 0.0009 0.0211 75.0 0.0087 175 0.0966 0.8030 0.6280 0.0016 0.0337 139 0.0087 Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0009 0.0251 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 120 0.4335 0.3242 0.0004 0.0112 30.3 0.0046 250 0.0914 0.3483 0.4264 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Sweepers/Scrubbet 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0011 25 0.0237 0.0808 0.1495 0.0002 0.0056 19.6 0.0021 50 0.0522 0.2974 0.2539 0.0004 0.0137 31.6 0.0047 120 0.0667 0.4983 0.4442 0.0009 0.0291 75.0 0.0058 250 0.0894 0.3218 0.6073 0.0018 0.0204 162 0.0081 Sweepers/Scrubbers Composite 0.0661 0.4946 0.4308 0.0009 0.0221 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 120 0.0497 0.2839 0.2342 0.0014 0.0121 30.3 0.0045 175 0.0669 0.5845 0.4264 0.011 0.0218 101 0.0060 250 0.01788 0.6771 1.0736 <td>Surfacing Equipmen</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Surfacing Equipmen								
25 0.0237 0.0808 0.1495 0.0002 0.0056 19.6 0.0021 50 0.0522 0.2974 0.2539 0.0004 0.0137 31.6 0.0041 120 0.0667 0.4983 0.4442 0.0009 0.0291 75.0 0.0058 175 0.0966 0.8030 0.6280 0.0016 0.0337 139 0.0087 Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0002 0.0046 15.9 0.0017 Tractors/Loaders/B 25 0.0914 0.3426 0.2937 0.0006 0.0121 30.3 0.0045 120 0.0435 0.3426 0.2937 0.0004 0.0114 50.7 0.0082 175 0.0669 0.5845 0.4264 0.0011 0.0218 101 0.0062 250 0.914 0.3483 0.5964 0.0019 0.2020 172 0.0821 Tractors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331									
50 0.0522 0.2974 0.2539 0.0004 0.0137 31.6 0.0047 120 0.0647 0.4983 0.4442 0.0009 0.0291 75.0 0.0058 175 0.0966 0.8030 0.6280 0.0016 0.0337 139 0.0087 Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0009 0.0251 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 50 0.0497 0.2339 0.2342 0.0004 0.0121 30.3 0.0045 120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0082 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0756 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0058 <									
120 0.0647 0.4983 0.4442 0.0099 0.0291 75.0 0.0058 175 0.0966 0.8030 0.6280 0.0016 0.0337 139 0.0087 Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0009 0.0251 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 50 0.0497 0.2839 0.2342 0.0004 0.0121 30.3 0.0045 120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0082 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0736 0.0385 345 0.0416 750 0.2691 1.0154 1.6525 0.0058 0.0585 517 0.0243 Trenchers 15 0.0099 0.0517 0.0617 0.0001									
175 0.0966 0.8030 0.6280 0.0016 0.0337 139 0.0087 Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0009 0.0251 78.5 0.0001 Tractors/Loaders/B 25 0.0191 0.0663 0.1211 0.0002 0.0446 15.9 0.0015 120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0039 175 0.0669 0.5845 0.4264 0.0011 0.0218 101 0.0060 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0085 500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0088 0.0585 517 0.0243 Trenchers 15 0.0099 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 120 0.03959 0.4498 0.5899									
250 0.0894 0.3218 0.6073 0.0018 0.0204 162 0.0081 Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0009 0.0251 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0039 175 0.0669 0.5845 0.4264 0.0011 0.0218 101 0.0060 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0084 500 0.1788 0.6771 1.0736 0.0039 0.385 345 0.0161 750 0.2691 1.0154 1.6525 0.0038 0.0189 66.8 0.0009 17ectors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331 0.0004 0.0224 8.5 0.0039 17ectors/Loaders/Backhoes Comp 0.0517 0.617									
Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0009 0.0251 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 50 0.0497 0.2839 0.2342 0.0004 0.0121 30.3 0.0045 120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0039 175 0.0669 0.5845 0.4264 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0058 0.0585 517 0.024 Tractors/Loaders/Backhoes Comp 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 1ca 0.0999 0.4498 0.5899 0.0004 0.0255 32.9 0.0036 120 0.0959 0.4498 0.5899 0.0004									
Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 50 0.0497 0.2839 0.2342 0.0004 0.0121 30.3 0.0045 120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0039 175 0.0669 0.5845 0.4264 0.0011 0.0218 101 0.0060 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0088 0.0189 66.8 0.0046 Tractors/Loaders/Backhoes Comp 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 176 0.0397 0.1355 0.2509 0.0044 0.0255 32.9 0.0103 120 0.0959 0.4498 0.5899 0.00048 0.0477	Sweepers/Scrubber								
50 0.0497 0.2839 0.2342 0.0004 0.0121 30.3 0.0045 120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0039 175 0.0669 0.5845 0.4264 0.0011 0.0218 101 0.0060 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0058 0.0585 517 0.0241 Tractors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331 0.0008 0.0189 66.8 0.0096 750 0.2112 0.3647 0.2331 0.0004 0.0225 32.9 0.0103 120 0.0959 0.4498 0.5899 0.0004 0.0255 32.9 0.0103 120 0.0959 0.4498 0.5823 1.5446 0.0025 0.582<									
120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0039 175 0.0669 0.5845 0.4264 0.0011 0.0218 101 0.0060 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0058 0.0585 517 0.0243 Tractors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331 0.0008 0.0189 66.8 0.0094 Trenchers 15 0.0099 0.0517 0.0617 0.0001 0.0024 8.5 0.00036 50 0.1142 0.3647 0.2965 0.0004 0.0255 32.9 0.0037 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 250 0.1783 0.5823 1.5446 0.0025 0.05	1100010/ E000013/ D								
175 0.0669 0.5845 0.4264 0.0011 0.0218 101 0.0060 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0058 0.0189 66.8 0.0044 Tractors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331 0.0004 0.0024 8.5 0.0099 25 0.0397 0.1355 0.2509 0.0004 0.0024 8.5 0.0087 120 0.0959 0.4498 0.5899 0.0008 0.4477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.06607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311									
250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0058 0.0585 517 0.0243 Tractors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331 0.0008 0.0189 66.8 0.0046 Trenchers 15 0.0099 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 50 0.1142 0.3647 0.2965 0.0004 0.0954 32.9 0.0036 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740									
500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0058 0.0585 517 0.0243 Tractors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331 0.0008 0.0189 66.8 0.0046 Trenchers 15 0.0099 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 50 0.1142 0.3647 0.2965 0.0004 0.0944 32.9 0.0036 50 0.1142 0.3647 0.2965 0.0004 0.0255 32.9 0.0103 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0667 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740									
750 0.2691 1.0154 1.6525 0.0058 0.0585 517 0.0243 Tractors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331 0.0008 0.0189 66.8 0.0046 Trenchers 15 0.0099 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 25 0.0397 0.1355 0.2509 0.0004 0.0094 32.9 0.0036 50 0.1142 0.3647 0.2965 0.0004 0.0255 32.9 0.0087 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413									
Tractors/Loaders/Backhoes Com; 0.0513 0.3647 0.3331 0.0008 0.0189 66.8 0.0046 Trenchers 15 0.0099 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 25 0.0397 0.1355 0.2509 0.0004 0.0094 32.9 0.0036 50 0.1142 0.3647 0.2965 0.0004 0.0255 32.9 0.0036 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.2009 750 0.4382 1.7994 3.7533 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.000									
Trenchers 15 0.0099 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 25 0.0397 0.1355 0.2509 0.0004 0.0094 32.9 0.0036 50 0.1142 0.3647 0.2965 0.0004 0.0255 32.9 0.0103 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001	Tractors/Loaders/Ba								
25 0.0397 0.1355 0.2509 0.0004 0.0094 32.9 0.0036 50 0.1142 0.3647 0.2965 0.0004 0.0255 32.9 0.0103 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144									
50 0.1142 0.3647 0.2965 0.0004 0.0255 32.9 0.0103 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 120 0.0398 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205									
120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 25 0.0161 0.0504 0.0927 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205									
175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 25 0.0161 0.0504 0.0927 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205 39.5 0.0036 175 0.0703 0.5400 0.5536 0.0011 0.0283									
250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 25 0.0161 0.0504 0.0927 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205 39.5 0.0063 175 0.0703 0.5400 0.5536 0.0011 0.0283 98.2 0.0063 250 0.0617 0.2348 0.5828 0.0013 0.0179									
500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 25 0.0161 0.0504 0.0927 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205 39.5 0.0063 175 0.0703 0.5400 0.5536 0.0011 0.0283 98.2 0.0063 250 0.0617 0.2348 0.5828 0.0013 0.0179 119 0.0056 500 0.0825 0.3196 0.7244 0.0016 0.0239									
750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 25 0.0161 0.0504 0.0927 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205 39.5 0.0063 175 0.0703 0.5400 0.5536 0.0011 0.0283 98.2 0.0063 250 0.0617 0.2348 0.5828 0.0013 0.0179 119 0.0056 500 0.0825 0.3196 0.7244 0.0016 0.0239 168 0.0074									
Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 25 0.0161 0.0504 0.0927 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205 39.5 0.0036 175 0.0703 0.5400 0.5536 0.0011 0.0283 98.2 0.0063 250 0.0617 0.2348 0.5828 0.0013 0.0179 119 0.0056 500 0.0825 0.3196 0.7244 0.0016 0.0239 168 0.0074								-	
Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 25 0.0161 0.0504 0.0927 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205 39.5 0.0036 175 0.0703 0.5400 0.5536 0.0011 0.0283 98.2 0.0063 250 0.0617 0.2348 0.5828 0.0013 0.0179 119 0.0056 500 0.0825 0.3196 0.7244 0.0016 0.0239 168 0.0074	Trenchers Composi								
250.01610.05040.09270.00010.004711.30.0015500.05630.23390.21080.00030.014426.00.00511200.03980.25400.27870.00050.020539.50.00361750.07030.54000.55360.00110.028398.20.00632500.06170.23480.58280.00130.01791190.00565000.08250.31960.72440.00160.02391680.074									
500.05630.23390.21080.00030.014426.00.00511200.03980.25400.27870.00050.020539.50.00361750.07030.54000.55360.00110.028398.20.00632500.06170.23480.58280.00130.01791190.00565000.08250.31960.72440.00160.02391680.074									
120 0.0398 0.2540 0.2787 0.0005 0.0205 39.5 0.0036 175 0.0703 0.5400 0.5536 0.0011 0.0283 98.2 0.0063 250 0.0617 0.2348 0.5828 0.0013 0.0179 119 0.0056 500 0.0825 0.3196 0.7244 0.0016 0.0239 168 0.0074									
1750.07030.54000.55360.00110.028398.20.00632500.06170.23480.58280.00130.01791190.00565000.08250.31960.72440.00160.02391680.0074									
2500.06170.23480.58280.00130.01791190.00565000.08250.31960.72440.00160.02391680.0074		-							
500 0.0825 0.3196 0.7244 0.0016 0.0239 168 0.0074									
Welders Composite I 0.0388 0.1876 0.1941 0.0003 0.0133 25.6 0.0035	Welders Composite		0.0388	0.1876	0.1941	0.0003	0.0133	25.6	0.0035

Tier 4 Final Emission Rates

Adjusted EF = Steady State EF x TAF x DF

Where:

EF = Emission Factor
TAF = Transient Adjustment Factor
DF = Deterioration Factor

Note: TAF = 1.0 for Tier 4 equipment

Deterioration "A"	
ROG	0.027
CO	0.151
NOx	0.008
PM10	0.473
DF	
ROG	1.0135
CO	1.0755
NOx	1.004
PM10	1.2365

			Steady State Emission Factors (g/bhphr)								Adjusted Emission Factors (g/bhphr)					Adjusted Emission Factors (lb/hr)							
Equipment	HP Rating	Load Factor	ROG	СО	NOX	SOX	PM	CO2	CH4	ROG	СО	NOX	SOX	PM	CO2	CH4	ROG	СО	NOX	SOX	PM	CO2	CH4
Drill Rig	250	0.43	0.1314	0.075	0.276	0.004998	0.0092	394.6		0.133174	0.080663	0.277104	0.004998	0.011376	394.6		0.031561	0.019116	0.065672	0.001184	0.002696	93.51784	
Wheel Loader	150	0.465	0.1314	0.087	0.276	0.004998	0.0092	394.6		0.133174	0.093569	0.277104	0.004998	0.011376	394.6		0.020478	0.014388	0.04261	0.000768	0.001749	60.67786	
Excavator	200	0.58	0.1314	0.075	0.276	0.004998	0.0092	394.6		0.133174	0.080663	0.277104	0.004998	0.011376	394.6		0.034057	0.020628	0.070864	0.001278	0.002909	100.9123	
Pump Truck	175	0.74	0.1314	0.075	0.276	0.004998	0.0092	394.6		0.133174	0.080663	0.277104	0.004998	0.011376	394.6		0.03802	0.023029	0.079111	0.001427	0.003248	112.6564	
Crane	375	0.43	0.1314	0.084	0.276	0.004998	0.0092	394.6		0.133174	0.090342	0.277104	0.004998	0.011376	394.6		0.047342	0.032116	0.098508	0.001777	0.004044	140.2768	
Forklift	150	0.475	0.1314	0.087	0.276	0.004998	0.0092	394.6		0.133174	0.093569	0.277104	0.004998	0.011376	394.6		0.020919	0.014697	0.043527	0.000785	0.001787	61.98276	
Pile Driving Machine	180	0.43	0.1314	0.075	0.276	0.004998	0.0092	394.6		0.133174	0.080663	0.277104	0.004998	0.011376	394.6		0.022724	0.013764	0.047284	0.000853	0.001941	67.33285	
Dozer	400	0.59	0.1314	0.084	0.276	0.004998	0.0092	394.6		0.133174	0.090342	0.277104	0.004998	0.011376	394.6		0.069288	0.047003	0.144172	0.0026	0.005919	205.3043	
Backhoe	150	0.465	0.1314	0.087	0.276	0.004998	0.0092	394.6		0.133174	0.093569	0.277104	0.004998	0.011376	394.6		0.020478	0.014388	0.04261	0.000768	0.001749	60.67786	
Grader	175	0.575	0.1314	0.075	0.276	0.004998	0.0092	394.6		0.133174	0.080663	0.277104	0.004998	0.011376	394.6		0.029543	0.017894	0.061472	0.001109	0.002524	87.53705	
Paver	34	0.62	0.1314	0.087	0.276	0.004998	0.0092	394.6		0.133174	0.093569	0.277104	0.004998	0.011376	394.6		0.006189	0.004348	0.012878	0.000232	0.000529	18.3382	
Roller	125	0.575	0.1314	0.087	0.276	0.004998	0.0092	394.6		0.133174	0.093569	0.277104	0.004998	0.011376	394.6		0.021102	0.014826	0.043908	0.000792	0.001803	62.52647	
Ballast Compressor	175	0.62	0.1314	0.075	0.276	0.004998	0.0092	394.6		0.133174	0.080663	0.277104	0.004998	0.011376	394.6		0.031855	0.019294	0.066283	0.001195	0.002721	94.38778	
Ballast Regulator	175	0.62	0.1314	0.075	0.276	0.004998	0.0092	394.6		0.133174	0.080663	0.277104	0.004998	0.011376	394.6		0.031855	0.019294	0.066283	0.001195	0.002721	94.38778	
Generator	49	0.74	0.1314	0.153	3	0.004998	0.0184	394.6		0.133174	0.164552	3.012	0.004998	0.022752	394.6		0.010646	0.013154	0.240774	0.0004	0.001819	31.54379	
Air Compressor	150	0.48	0.1314	0.087	0.276	0.004998	0.0092	394.6		0.133174	0.093569	0.277104	0.004998	0.011376	394.6		0.021139	0.014852	0.043985	0.000793	0.001806	62.63521	

۱	r)	

Heavy Trucks

35 MPH Brake Wear Tire Wear	CH4 0.04226	CO 0.479642	CO2 1412.196			PM 0.018407 0.189 0.092	0.18522			SOx 0.013061	TOG 0.121438				
Total		0.479642									0.121438	ROG	СО	NOX	SOX
lb/hr	0.003261	0.037009	108.9657	0.007408	0.279642	0.023102	0.022802	0.00925	0.00557	0.001008	0.00937	0.00557	0.037009	0.279642	0.0010
LDA															
	CH4		CO2			PM	PM10	PM2_5		SOx	TOG				
35 MPH Brake Wear	0.00271	0.685749	230.7754	0.011957	0.045605	0.001561		0.001293	0.008933	0.002313	0.012984				
Tire Wear						0.1125		0.04725							
Total	0.00271	0.685749	230.7754	0.011957	0.045605				0.008933	0.002313	0.012984	ROG	со	NOX	SOX
lb/hr	0.000209	0.052913	17.80674	0.000923	0.003519	0.010653	0.010467	0.004209	0.000689	0.000178	0.001002	0.000689	0.052913	0.003519	0.0001
LDT (gas)															
	CH4	со	CO2	нс	NOx	PM	PM10	PM2_5	ROG	SOx	TOG				
35 MPH	0.00676	1.375955	271.3023	0.035713	0.133387	0.002385		0.001967	0.026546	0.00273	0.038684				
Brake Wear						0.1125		0.04725							
Tire Wear	0.00070	1 275055	271 2022	0 025712	0 10000	0.024		0.006	0.026546	0 00070	0.020004	POC	60	NOV	COV
Total lb/hr		1.375955 0.106169									0.038684	ROG	CO 0.106169	NOX	SOX
10/111	0.000522	0.100105	20.33302	0.002750	0.010252	0.010710	0.010524	0.004201	0.002048	0.000211	0.002385	0.002048	0.100105	0.010252	0.0002
LDT (diesel)															
	CH4	СО	CO2	НС	NOx	PM	PM10	PM2_5		SOx	TOG				
35 MPH	0.004406	0.972576	291.835	0.020959	0.095824				0.015606	0.002927	0.022723				
Brake Wear						0.1125									
Tire Wear Total	0 004406	0.972576	291 825	0 020959	0.095824	0.024	0.024 0 13574	0.006	0.015606	0 002927	0 022723	ROG	со	NOX	sox
lb/hr		0.075044											0.075044		
•															

DXPM10PM2.5CO2CH4010080.0228020.00925108.96570.003261

 DX
 PM10
 PM2.5
 CO2
 CH4

 00178
 0.010467
 0.004209
 17.80674
 0.000209

 DX
 PM10
 PM2.5
 CO2
 CH4

 00211
 0.010524
 0.004261
 20.93382
 0.000522

 DX
 PM10
 PM2.5
 CO2
 CH4

 00226
 0.010474
 0.004215
 22.51813
 0.00034

Unmitigated At-Grade

Off-Road			(lb/hr)					Emiss	sions (lbs)											
Equipment	HP Rating	Hours	ROG	СО	NOX	SOX	PM10	PM2.5	CO2	CH4		ROG	СО	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e
Asphalt Paver	224	83	0.096219	0.306812	0.823589	0.001376	0.029997	0.029098	122.2913	0.008682		8.0	25.5	68.4	0.1	2.5	2.4	10150.2	0.7	10165.3
Asphalt Paver	35	156	0.082099	0.269557	0.216492	0.000309	0.018532	0.017976	23.92655	0.007408		12.8	42.1	33.8	0.0	2.9	2.8	3732.5	1.2	3756.8
Backhoe	50	41	0.051274	0.364663	0.333077	0.000775	0.018901	0.018334	66.79721	0.004626		2.1	15.0	13.7	0.0	0.8	0.8	2738.7	0.2	2742.7
Crawler Backhoe	266	12	0.09137	0.348282	0.596387	0.001932	0.020044	0.019442	171.737	0.008244		1.1	4.2	7.2	0.0	0.2	0.2	2060.8	0.1	2062.9
Tractor Backhoe	62	2675	0.049709	0.283857	0.234245	0.000392	0.012081	0.011719	30.3471	0.004485		133.0	759.3	626.6	1.0	32.3	31.3	81178.5	12.0	81430.4
Tractor Backhoe	98	3253	0.043487	0.342622	0.29366	0.000607	0.018357	0.017807	51.72802	0.003924		141.5	1114.6	955.3	2.0	59.7	57.9	168271.3	12.8	168539.3
Excavator	120	1334	0.069294	0.501744	0.442525	0.000864	0.028931	0.028063	73.62307	0.006252		92.4	669.3	590.3	1.2	38.6	37.4	98213.2	8.3	98388.3
8T Crane	50	1838	0.064589	0.252711	0.201938	0.0003	0.01513	0.014676	23.1867	0.005828		118.7	464.5	371.2	0.6	27.8	27.0	42617.1	10.7	42842.1
10T Crane	120	8	0.063871	0.34863	0.38575	0.000588	0.030642	0.029722	50.14797	0.005763		0.5	2.8	3.1	0.0	0.2	0.2	401.2	0.0	402.2
35T Crane	175	1242	0.075221	0.476621	0.502915	0.000904	0.028272	0.027424	80.3446	0.006787		93.4	592.0	624.6	1.1	35.1	34.1	99788.0	8.4	99965.0
50T Crane	250	170	0.07866	0.252136	0.616831	0.001262	0.021189	0.020553	112.1589	0.007097		13.4	42.9	104.9	0.2	3.6	3.5	19067.0	1.2	19092.4
100T Crane	500	2908	0.120161	0.408545	0.874849	0.001768	0.031732	0.03078	180.1013	0.010842		349.4	1188.0	2544.1	5.1	92.3	89.5	523734.5	31.5	524396.6
140T Crane	550	300	0.140979	0.478129	1.037114	0.002088	0.037402	0.03628	210.8371	0.01272		42.3	143.4	311.1	0.6	11.2	10.9	63251.1	3.8	63331.3
175T Crane	600	41	0.161797	0.547713	1.199378	0.002407	0.043072	0.04178	241.573	0.014599		6.6	22.5	49.2	0.1	1.8	1.7	9904.5	0.6	9917.1
200T Crane	750	77136	0.203433	0.686882	1.523907	0.003047	0.054413	0.052781	303.0447	0.018355	1	5692.0	52983.4	117548.1	235.0	4197.2	4071.3	23375653.8	1415.9	23405386.9
Air Compressor	49	1312	0.051782	0.214174	0.184788	0.000288	0.013056	0.012664	22.27126	0.004672		67.9	281.0	242.4	0.4	17.1	16.6	29219.9	6.1	29348.6
Air Compressor	120	5523	0.058164	0.313021	0.393537	0.000711	0.024634	0.023895	63.60731	0.005248		321.2	1728.8	2173.5	3.9	136.1	132.0	351303.2	29.0	351911.9
Concrete Mixer	20	5710	0.008662	0.041629	0.053759	0.000109	0.002193	0.002127	7.248148	0.000782		49.5	237.7	307.0	0.6	12.5	12.1	41386.9	4.5	41480.6
Concrete Pump	30	6	0.045793	0.272172	0.330641	0.00059	0.018942	0.018374	49.60666	0.004132		0.3	1.6	2.0	0.0	0.1	0.1	297.6	0.0	298.2
Roller	120	1218	0.068263	0.388482	0.448478	0.00077	0.029074	0.028202	67.04405	0.006159		83.1	473.2	546.2	0.9	35.4	34.4	81659.7	7.5	81817.2
Drill Rig	249	1790	0.053756	0.342582	0.249932	0.002116	0.006828	0.006624	188.1019	0.00485		96.2	613.2	447.4	3.8	12.2	11.9	336702.4	8.7	336884.7
Drill Rig	474	8020	0.088668	0.551156	0.403468	0.003056	0.011209	0.010873	311.3086	0.008		711.1	4420.3	3235.8	24.5	89.9	87.2	2496695.3	64.2	2498042.7
Drill Rig	580	33295	0.132064	0.820109	0.602858	0.00462	0.016706	0.016205	463.2009	0.011916	2	4397.1	27305.5	20072.2	153.8	556.2	539.5	15422272.6	396.7	15430604.2
Drill Rig	580	17575	0.132064	0.820109	0.602858	0.00462	0.016706	0.016205	463.2009	0.011916	2	2321.0	14413.4	10595.2	81.2	293.6	284.8	8140755.1	209.4	8145153.0
D6 Tractor	215	627	0.133304	0.417938	1.043014	0.001869	0.03855	0.037393	166.1315	0.012028		83.6	262.0	654.0	1.2	24.2	23.4	104164.5	7.5	104322.8
Boom Lift	65	445	0.064589	0.252711	0.201938	0.0003	0.01513	0.014676	23.1867	0.005828		28.7	112.5	89.9	0.1	6.7	6.5	10318.1	2.6	10372.5
Excavator CAT307	54	13	0.046808	0.252087	0.200215	0.000323	0.011054	0.010722	25.01754	0.004223		0.6	3.3	2.6	0.0	0.1	0.1	325.2	0.1	326.4
Excavator CAT321	148	5253	0.069294	0.501744	0.442525	0.000864	0.028931	0.028063	73.62307	0.006252		364.0	2635.7	2324.6	4.5	152.0	147.4	386742.0	32.8	387431.7
Excavator CAT324	190	133	0.082387	0.664068	0.506902	0.001263	0.02643	0.025637	112.2216	0.007434		11.0	88.3	67.4	0.2	3.5	3.4	14925.5	1.0	14946.2
Excavator CAT330	235	2	0.09333	0.33234	0.598381	0.001785	0.020201	0.019595	158.6828	0.008421		0.2	0.7	1.2	0.0	0.0	0.0	317.4	0.0	317.7
Excavator CAT336	266	14530	0.09333	0.33234	0.598381	0.001785	0.020201	0.019595	158.6828	0.008421	1	1356.1	4828.9	8694.5	25.9	293.5	284.7	2305660.9	122.4	2308230.4
Excavator CAT345	345	1960	0.113598	0.400618	0.693245	0.00204	0.024313	0.023584	196.2091	0.01025		222.7	785.2	1358.8	4.0	47.7	46.2	384569.8	20.1	384991.7
Forklift CAT TL-1055	125	25210	0.026472	0.211761	0.174533	0.000366	0.010802	0.010478	31.22492	0.002389		667.4	5338.5	4400.0	9.2	272.3	264.1	787180.2	60.2	788444.7
Generator 5kW	15	51082	0.012261	0.064385	0.085235	0.000159	0.00429	0.004162	10.20766	0.001106		626.3	3288.9	4354.0	8.1	219.2	212.6	521427.7	56.5	522614.5
Grader CAT14	180	3868	0.105909	0.729413	0.700188	0.001394	0.038491	0.037336	123.9215	0.009556		409.7	2821.4	2708.3	5.4	148.9	144.4	479328.5	37.0	480104.7
Loader Deere 210	78	1344	0.074242	0.319812	0.259094	0.000403	0.017448	0.016925	31.14967	0.006699		99.8	429.8	348.2	0.5	23.5	22.7	41865.2	9.0	42054.2
Loader CAT950	130	1293	0.065966	0.401558	0.412143	0.000691	0.030685	0.029765	58.91351	0.005952		85.3	519.2	532.9	0.9	39.7	38.5	76175.2	7.7	76336.8
Loader CAT963	150	7233	0.065966	0.401558	0.412143	0.000691	0.030685	0.029765	58.91351	0.005952		477.1	2904.5	2981.0	5.0	221.9	215.3	426121.4	43.1	427025.5
Loader CAT966	170	125237	0.088786	0.622687	0.590182	0.001196	0.032334	0.031364	106.3152	0.008011	1	1119.3	77983.5	73912.6	149.8	4049.4	3927.9	13314596.6	1003.3	13335665.5
Loader CAT IT62	207	33538	0.091694	0.473199	0.652182	0.001436	0.028343	0.027492	127.646	0.008273	3	3075.2	15870.1	21872.9	48.2	950.6	922.0	4280989.9	277.5	4286816.8
Loader CAT980	355	914	0.094601	0.323711	0.714183	0.001676	0.024351	0.023621	148.9767	0.008536		86.5	295.9	652.8	1.5	22.3	21.6	136164.7	7.8	136328.5
Skid Steer Loader	50	488	0.025253	0.214562	0.179886	0.000375	0.00735	0.00713	30.27763	0.002279		12.3	104.7	87.8	0.2	3.6	3.5	14775.5	1.1	14798.8
Pavement Broom	74	12480	0.082099	0.269557	0.216492	0.000309	0.018532	0.017976	23.92655	0.007408	1	1024.6	3364.1	2701.8	3.9	231.3	224.3	298603.4	92.4	300544.8
Forktruck	74	2377	0.082099	0.269557	0.216492	0.000309	0.018532	0.017976	23.92655	0.007408		195.1	640.7	514.6	0.7	44.1	42.7	56873.4	17.6	57243.2
Manlift 40ft	50	13434	0.033638	0.150605	0.152478	0.000254	0.009254	0.008976	19.61275	0.003035		451.9	2023.2	2048.4	3.4	124.3	120.6	263477.7	40.8	264334.0
Manlift 80ft	74	1125	0.033162	0.191258	0.204503	0.00035	0.013102	0.012709	28.84229	0.002992		37.3	215.2	230.1	0.4	14.7	14.3	32447.6	3.4	32518.3
Compactor CAT CB54	130	156	0.080548	0.380873	0.486882	0.000639	0.040033	0.038832	54.49936	0.007268		12.6	59.4	76.0	0.1	6.2	6.1	8501.9	1.1	8525.7
Compactor CAT CB64	130	165	0.080548	0.380873	0.486882	0.000639	0.040033	0.038832	54.49936	0.007268		13.3	62.8	80.3	0.1	6.6	6.4	8992.4	1.2	9017.6
Compactor CAT 433	100	4	0.080548	0.380873	0.486882	0.000639	0.040033	0.038832	54.49936	0.007268		0.3	1.5	1.9	0.0	0.2	0.2	218.0	0.0	218.6

Compactor CAT CP56	145	5 972	0.080548	0.380873	0.486882	0.000639	0.040033	0.038832	54.49936	0.007268		78.3	370.2	473.2	0.6	38.9	37.7	52973.4	7.1	53121.7
Compactor CAT PS360	130					0.000639						19.3	91.0	116.4	0.2	9.6	9.3	13025.3	1.7	13061.8
Compactor CAT CS423	80		0.082099	0.269557	0.216492	0.000309	0.018532	0.017976	23.92655	0.007408		368.0	1208.2	970.3	1.4	83.1	80.6	107238.8	33.2	107936.0
Scraper CAT 615	250	0 50	0.170437	0.532359	1.355816	0.002357	0.05014	0.048636	209.4703	0.015378		8.5	26.6	67.8	0.1	2.5	2.4	10473.5	0.8	10489.7
Skid Steer CAT 226	58	8 60651	0.026321	0.203471	0.17869	0.00033	0.006505	0.00631	25.51916	0.002375		1596.4	12340.7	10837.7	20.0	394.5	382.7	1547762.8	144.0	1550787.7
Skid Steer CAT 246	80	0 12958	0.012398	0.133999	0.098489	0.000251	0.004746	0.004604	21.38091	0.001119		160.7	1736.4	1276.2	3.2	61.5	59.7	277053.9	14.5	277358.3
Rack Truck		12480	0.00557	0.037009	0.279642	0.001008	0.022802	0.00925	108.9657	0.003261		69.5	461.9	3489.9	12.6	284.6	115.4	1359892.1	40.7	1360746.7
Mechanics Truck		3120	0.001204	0.075044	0.007394	0.000226	0.010474	0.004215	22.51813	0.00034		3.8	234.1	23.1	0.7	32.7	13.1	70256.6	1.1	70278.9
Oil dist Truck		213	0.001204	0.075044	0.007394	0.000226	0.010474	0.004215	22.51813	0.00034		0.3	16.0	1.6	0.0	2.2	0.9	4796.4	0.1	4797.9
Pickup 1/2T		327237	0.002048	0.106169	0.010292	0.000211	0.010524	0.004261	20.93382	0.000522		670.3	34742.5	3368.0	68.9	3443.7	1394.2	6850321.2	170.7	6853905.7
Pickup 3/4T		343772	0.001204	0.075044	0.007394	0.000226	0.010474	0.004215	22.51813	0.00034		414.0	25798.2	2541.8	77.6	3600.6	1448.9	7741103.8	116.9	7743558.0
Tractor 6x4		6280	0.013788	0.05546	0.419738	0.001278	0.023416	0.009838	133.9301	0.00064		86.6	348.3	2636.0	8.0	147.1	61.8	841081.3	4.0	841165.8
Water truck		51442	0.001204	0.075044	0.007394	0.000226	0.010474	0.004215	22.51813	0.00034		61.9	3860.4	380.4	11.6	538.8	216.8	1158377.8	17.5	1158745.1
											total	48,753	313,419	318,352	995	21,206	16,012	95,390,174	4,632	95,487,445
On Deed			(11, /1,)	(16./6.4)	(16/64)	(16./6)	(116 / 16 //	(1h /h /)	(11a / b.v.)	(1h /h /)					Fuele el	ono (lho)				
On-Road		Llours	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr) SOX	(lb/hr)	(lb/hr) PM2.5	(lb/hr) CO2	(lb/hr) CH4		BOC	со	NOX	SOX	ons (lbs)		CO2	CH4	CO2e
Equipment Dump Truck		Hours 82	ROG 0.00557	CO	NOX	0.001008	PM10 0.022802	0.00925		0.003261		ROG 0.5	3.0	22.9	0.1	PM10 1.9	PM2.5 0.8	8935.2	Сп4 0.3	8940.8
End Dump 10CY		33096	0.00557			0.001008			108.9657			184.4	3.0 1224.9	9255.0	33.4	754.7	306.2	3606329.3	0.3 107.9	3608595.6
End Dump 15CY		130929				0.001008			108.9657			729.3	4845.6	36613.2	132.0	2985.5	1211.1	14266772.0	426.9	14275737.6
Flatbed 10T		86337				0.001008			108.9657			480.9	3195.3	24143.4	87.0	1968.7	798.6	9407772.9	420.5 281.5	9413685.0
Flatbed 2T		156				0.001008			108.9657			480.9 0.9	5.8	43.6	0.2	3.6	1.4	16998.7	0.5	17009.3
Flatbed 20T		25145	0.00557			0.001008			108.9657			140.1	930.6	7031.6	25.3	573.4	232.6	2739942.9	82.0	2741664.7
Employee Commutes		196025	0.000689			0.0001000			17.80674			135.1	10372.2	689.8	35.0	2051.8	825.0	3490562.5	41.0	3491423.4
		100020	0.000000	0.002020	0.000010	0.0001/0	0.010.00	0.001200	27100071		total	1,671	20,577	77,800	313	8,339	3,376	33,537,313	940	33,557,056
												_)** _	_0,077	,	010	0,000	0,010	00,001,010	0.0	
								lb/acre								-	missions (l	bs)		
		Daily Acres						PM								PM10	PM2.5			
	Fugitive Dust	15						20								300.0	63.0			
												ROG	со	NOX	sox	PM10	PM2.5	CO2	CH4	CO2e
										Total (lb)		50,424	333,996	396,151	1,308	479,545	113,888		5,572	129,044,501
										Daily (lb)		33.6	222.7	264.1	0.9	319.7	75.9	85,951.7	3.7	86,029.7
										Annual (T)		4.2	27.8	33.0	0.1	40.0	9.5	10,744.0	0.5	10,753.7
										,		7.2	27.0	55.0	0.1	40.0	5.5	±0,7 ++.0	0.5	10,733.7

						1113310113 (11	55)		
					PM10	PM2.5			
					300.0	63.0			
	ROG	со	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e
otal (lb)	50,424	333,996	396,151	1,308	479,545	113,888	128,927,488	5,572	129,044,501
aily (lb)	33.6	222.7	264.1	0.9	319.7	75.9	85,951.7	3.7	86,029.7
nnual (T)	4.2	27.8	33.0	0.1	40.0	9.5	10,744.0	0.5	10,753.7

On-site Emissions									
	ROG	СО	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e
Total (lb)	48836.5	314447.4	322241.9	1010.5	471622.5	110681.2	97067040.0	4678.9	97165297.8
Daily (lb)	32.55769	209.6316	214.8279	0.673693	314.415	73.78744	64711.35997	3.119296	64776.9
Annual (T)	4.069711	26.20395	26.85349	0.084212	39.30188	9.223431	8088.919996	0.389912	8097.1
Total Emissions (tons)	ROG	со	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e
Off-road	24.4	156.7	159.2	0.5	10.6	8.0	47,695.1	2.3	47,743.7
On-Road	0.8	10.3	38.9	0.2	4.2	1.7	16,768.7	0.5	16,778.5
Fugitive Dust					225.0	47.3			
Total	25.2	167.0	198.1	0.7	239.8	56.9	64,463.7	2.8	64,522.3
Annual	4.2	27.8	33.0	0.1	40.0	9.5	10,744.0	0.5	10,753.7

Mitigated At-Grade

				<i></i>	<i></i>				<i></i>	RD reduction	0.95	0.9	0.9	1	0.7	0.7	0.8		
Off-Road			(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)					ons (lbs)				
Equipment	HP Rating	Hours	ROG	CO	NOX	SOX	PM10	PM2.5	CO2	CH4	ROG	CO	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e
Asphalt Paver	224		0.040774		0.084842			0.003378			3.2	2.1	6.3	0.1	0.2	0.2	8,022.2	0.7	8037.3
Asphalt Paver	35				0.012878					0.007408	0.9	0.6	1.8	0.0	0.1	0.1	2,288.6	1.2	2312.9
Backhoe	50				0.014203						0.3	0.2	0.5	0.0	0.0	0.0	663.4	0.2	667.4
Crawler Backhoe	266				0.075562						0.4	0.3	0.8	0.0	0.0	0.0	1,033.0	0.1	1035.1
Tractor Backhoe	62				0.017612						21.5	14.3	42.4	0.8	1.4	1.3	53,671.6	12.0	53923.5
Tractor Backhoe	98				0.027839						41.3	27.5	81.5	1.6	2.6	2.5	103,166.6	12.8	103434.6
Excavator	120				0.042519						25.9	14.9	51.0	1.0	1.6	1.6	64,616.2	8.3	64791.3
8T Crane	50				0.013134						11.0	7.1	21.7	0.4	0.7	0.7	27,501.7	10.7	27726.7
10T Crane	120				0.031522						0.1	0.1	0.2	0.0	0.0	0.0	287.3	0.0	288.3
35T Crane	175			0.014987				0.001831			26.1	16.8	51.4	1.0	1.6	1.6	65,043.5	8.4	65220.6
50T Crane	250		0.031561		0.065672				93.51784	0.007097	5.1	3.3	10.0	0.2	0.3	0.3	12,718.4	1.2	12743.8
100T Crane	500				0.131343					0.010842	174.4	112.1	343.8	6.9	11.0	10.6	435,119.8	31.5	435781.9
140T Crane	550	300	0.069435	0.047103	0.144478	0.002606	0.005931	0.005753	205.7393	0.01272	19.8	12.7	39.0	0.8	1.2	1.2	49,377.4	3.8	49457.6
175T Crane	600	41	0.075747	0.051385	0.157612	0.002843	0.00647	0.006276	224.4428	0.014599	3.0	1.9	5.8	0.1	0.2	0.2	7,361.7	0.6	7374.3
200T Crane	750	77136	0.094684	0.064231	0.197015	0.003553	0.008088	0.007845	280.5535	0.018355	6,938.4	4,459.1	13 <i>,</i> 677.3	274.1	436.7	423.6	17,312,621.9	1415.9	17342355.0
Air Compressor	49	1312	0.006905	0.004852	0.014368	0.000259	0.00059	0.000572	20.46083	0.004672	8.6	5.7	17.0	0.3	0.5	0.5	21,475.7	6.1	21604.4
Air Compressor	120	5523	0.001691	0.001188	0.003519	6.35E-05	0.000144	0.00014	5.010817	0.005248	8.9	5.9	17.5	0.4	0.6	0.5	22,139.8	29.0	22748.5
Concrete Mixer	20	5710	0.002818	0.00198	0.005865	0.000106	0.000241	0.000234	8.351361	0.000782	15.3	10.2	30.1	0.6	1.0	0.9	38,149.0	4.5	38242.7
Concrete Pump	30	6	0.004228	0.00297	0.008797	0.000159	0.000361	0.00035	12.52704	0.004132	0.0	0.0	0.0	0.0	0.0	0.0	60.1	0.0	60.7
Roller	120	1218	0.020258	0.014233	0.042152	0.00076	0.00173	0.001679	60.02541	0.006159	23.4	15.6	46.2	0.9	1.5	1.4	58,488.8	7.5	58646.3
Drill Rig	249	1790	0.031435	0.01904	0.065409	0.00118	0.002685	0.002605	93.14377	0.00485	53.5	30.7	105.4	2.1	3.4	3.3	133,381.9	8.7	133564.2
Drill Rig	474	8020	0.05984	0.036245	0.124514	0.002246	0.005112	0.004958	177.3098	0.008	455.9	261.6	898.7	18.0	28.7	27.8	1,137,619.9	64.2	1138967.3
Drill Rig	580	33295	0.073222	0.04435	0.152358	0.002748	0.006255	0.006067	216.9614	0.011916	2,316.0	1,329.0	4,565.5	91.5	145.8	141.4	5,778,983.8	396.7	5787315.4
Drill Rig	580	17575	0.073222	0.04435	0.152358	0.002748	0.006255	0.006067	216.9614	0.011916	1,222.5	701.5	2 <i>,</i> 409.9	48.3	76.9	74.6	3,050,477.3	209.4	3054875.2
D6 Tractor	215	627	0.037242	0.025264	0.077493	0.001398	0.003181	0.003086	110.3511	0.012028	22.2	14.3	43.7	0.9	1.4	1.4	55,352.1	7.5	55510.5
Boom Lift	65	445	0.009065	0.006369	0.018862	0.00034	0.000774	0.000751	26.85919	0.005828	3.8	2.6	7.6	0.2	0.2	0.2	9,561.9	2.6	9616.3
Excavator CAT307	54	13	0.009195	0.00557	0.019133	0.000345	0.000785	0.000762	27.24632	0.004223	0.1	0.1	0.2	0.0	0.0	0.0	283.4	0.1	284.5
Excavator CAT321	148	5253	0.025202	0.015265	0.05244	0.000946	0.002153	0.002088	74.67509	0.006252	125.8	72.2	247.9	5.0	7.9	7.7	313,814.6	32.8	314504.3
Excavator CAT324	190	133	0.032354	0.019597	0.067321	0.001214	0.002764	0.002681	95.86666	0.007434	4.1	2.3	8.1	0.2	0.3	0.2	10,200.2	1.0	10221.0
Excavator CAT330	235	2	0.040017	0.024238	0.083266	0.001502	0.003418	0.003316	158.6828	0.008421	0.1	0.0	0.1	0.0	0.0	0.0	253.9	0.0	254.2
Excavator CAT336	266	14530	0.045296	0.027435	0.09425	0.0017	0.003869	0.003753	134.2133	0.008421	625.2	358.8	1,232.5	24.7	39.4	38.2	1,560,095.8	122.4	1562665.2
Excavator CAT345	345	1960	0.058748	0.035583	0.122241	0.002205	0.005018	0.004868	174.0737	0.01025	109.4	62.8	215.6	4.3	6.9	6.7	272,947.5	20.1	273369.4
Forklift CAT TL-1055	125	25210	0.017432	0.012248	0.036272	0.000654	0.001489	0.001444	51.6523	0.002389	417.5	277.9	823.0	16.5	26.3	25.5	1,041,723.5	60.2	1042988.0
Generator 5kW	15	51082	0.003259	0.004027	0.073706	0.000122	0.000557	0.00054	9.656261	0.001106	158.1	185.1	3 <i>,</i> 388.6	6.2	19.9	19.3	394,608.9	56.5	395795.7
Grader CAT14	180	3868	0.030387	0.018405	0.063228	0.00114	0.002596	0.002518	90.03811	0.009556	111.7	64.1	220.1	4.4	7.0	6.8	278,613.9	37.0	279390.1
Loader Deere 210	78	1344	0.010649	0.007482	0.022157	0.0004	0.00091	0.000882	31.55249	0.006699	13.6	9.0	26.8	0.5	0.9	0.8	33,925.2	9.0	34114.3
Loader CAT950	130	1293	0.017748	0.01247	0.036929	0.000666	0.001516	0.001471	52.58748	0.005952	21.8	14.5	43.0	0.9	1.4	1.3	54,396.5	7.7	54558.1
Loader CAT963	150	7233	0.020478	0.014388	0.04261	0.000768	0.001749	0.001697	60.67786	0.005952	140.7	93.7	277.4	5.6	8.9	8.6	351,106.4	43.1	352010.4
Loader CAT966	170	125237	0.023209	0.016306	0.048292	0.000871	0.001982	0.001923	68.76824	0.008011	2,761.2	1,837.9	5,443.1	109.1	173.8	168.6	6,889,862.3	1003.3	6910931.2
Loader CAT IT62	207	33538	0.02826	0.019855	0.058802	0.001061	0.002414	0.002342	83.73544	0.008273	900.4	599.3	1,774.9	35.6	56.7	55.0	2,246,655.4	277.5	2252482.4
Loader CAT980	355	914	0.048465	0.034052	0.100844	0.001819	0.00414	0.004016	143.6043	0.008536	42.1	28.0	83.0	1.7	2.6	2.6	105,003.4	7.8	105167.3
Skid Steer Loader	50	488	0.006826	0.004796	0.014203	0.000256	0.000583	0.000566	20.22595	0.002279	3.2	2.1	6.2	0.1	0.2	0.2	7,896.2	1.1	7919.6
Pavement Broom	74	12480			0.021473						122.4	81.4	241.2	4.8	7.7	7.5	305,292.4	92.4	307233.8
Forktruck	74	2377			0.021473						23.3	15.5	45.9	0.9	1.5	1.4	58,147.4	17.6	58517.2
Manlift 40ft	50				0.014509						89.0	59.2	175.4	3.5	5.6	5.4	222,047.0	40.8	222903.3
Manlift 80ft	74	1125			0.021473						11.0	7.3	21.7	0.4	0.7	0.7	27,520.3	3.4	27591.0
Compactor CAT CB54	130				0.045665						3.3	2.2	6.4	0.1	0.2	0.2	8,115.4	1.1	8139.2
Compactor CAT CB64	130				0.045665						3.4	2.3	6.8	0.1	0.2	0.2	8,583.6	1.2	8608.8
Compactor CAT 433	100				0.035127						0.1	0.0	0.1	0.0	0.0	0.0	160.1	0.0	160.7
	100	-	0.010002	0.011001	0.000127	5.5550004	0.001772	5.501333	30.0211/	0.007200	0.1	0.0	0.1	0.0	0.0	0.0	100.1	0.0	100.7

	4	45 072	0 00 4 4 7 0	0.017100	0.050004	0.000010	0.000001	0 002020	72 5207	0 007200		22.0	15.0	1 A C	0.0	1 4	1 4	FC 200 0	7 4	
Compactor CAT CP56					0.050934					0.007268		22.6	15.0	44.6	0.9	1.4	1.4	56,399.9	7.1	56548.2
Compactor CAT PS360		30 239						0.001818				5.0	3.3	9.8	0.2	0.3	0.3	12,433.3	1.7	12469.7
Compactor CAT CS423		80 4482						0.001119				57.5	38.3	113.4	2.3	3.6	3.5	143,484.7	33.2	144182.0
Scraper CAT 615								0.003497				2.0	1.2	4.0	0.1	0.1	0.1	5,002.1	0.8	5018.3
Skid Steer CAT 226		58 60651			0.016476			0.000656		0.002375		456.2	303.7	899.4	18.0	28.7	27.9	1,138,400.1	144.0	1141425.0
Skid Steer CAT 246		80 12958			0.022725			0.000905				134.4	89.5	265.0	5.3	8.5	8.2	335,472.5	14.5	335776.9
Rack Truck		12480			0.279642				108.9657			66.0	415.7	3,140.9	12.6	199.2	80.8	1,087,913.7	40.7	1088768.3
Mechanics Truck		3120						0.004215		0.00034		3.6	210.7	20.8	0.7	22.9	9.2	56,205.3	1.1	56227.5
Oil dist Truck								0.004215		0.00034		0.2	14.4	1.4	0.0	1.6	0.6	3,837.1	0.1	3838.6
Pickup 1/2T		327237						0.004261				636.8	31,268.3	3,031.2	68.9	2,410.6	975.9	5,480,256.9	170.7	5483841.5
Pickup 3/4T								0.004215		0.00034		393.3	23,218.4	2,287.6	77.6	2,520.4	1,014.2	6,192,883.0	116.9	6195337.3
Tractor 6x4		6280	0.013788					0.009838		0.00064		82.3	313.5	2,372.4	8.0	102.9	43.2	672,865.0	4.0	672949.5
Water truck		51442	0.001204	0.075044	0.007394	0.000226	0.010474	0.004215	22.51813	0.00034	_	58.8	3,474.4	342.3	11.6	377.2	151.8	926,702.3	17.5	927069.5
											total	19,008	70,192	49,296	881	6,763	3,370	58,752,293	4,632	58,849,564
On-Road			(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)						ons (lbs)				
Equipment		Hours	ROG	CO	NOX	SOX	PM10	PM2.5	CO2	CH4		ROG	CO	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e
Dump Truck		82	0.00557		0.279642			0.00925	108.9657	0.003261		0.5	3.0	22.9	0.1	1.9	0.8	8935.2	0.3	8940.8
End Dump 10CY		33096	0.00557		0.279642			0.00925	108.9657			184.4	1224.9	9255.0	33.4	754.7	306.2	3606329.3	107.9	3608595.6
End Dump 15CY		130929	0.00557	0.037009	0.279642	0.001008	0.022802	0.00925	108.9657	0.003261		729.3	4845.6	36613.2	132.0	2985.5	1211.1	14266772.0	426.9	14275737.6
Flatbed 10T		86337	0.00557	0.037009	0.279642	0.001008	0.022802	0.00925	108.9657	0.003261		480.9	3195.3	24143.4	87.0	1968.7	798.6	9407772.9	281.5	9413685.0
Flatbed 2T		156	0.00557	0.037009	0.279642	0.001008	0.022802	0.00925	108.9657	0.003261		0.9	5.8	43.6	0.2	3.6	1.4	16998.7	0.5	17009.3
Flatbed 20T		25145	0.00557	0.037009	0.279642	0.001008	0.022802	0.00925	108.9657	0.003261		140.1	930.6	7031.6	25.3	573.4	232.6	2739942.9	82.0	2741664.7
Employee Commutes		196025	0.000689	0.052913	0.003519	0.000178	0.010467	0.004209	17.80674	0.000209		135.1	10372.2	689.8	35.0	2051.8	825.0	3490562.5	41.0	3491423.4
											total	1,671	20,577	77,800	313	8,339	3,376	33,537,313	940	33,557,056
																Daily Fr		hc)		
								lb/acre									nissions (II	537		
		Daily Acres						lb/acre PM								PM10	PM2.5	557		
	Fugitive Dust	Daily Acres						-								-	-			
	Fugitive Dust	•						PM								PM10	PM2.5			
	Fugitive Dust	•						PM				ROG	со	NOX	SOX	PM10	PM2.5	CO2	СН4	CO2e
	Fugitive Dust	•						PM		Total (lb)		ROG 20,679	CO 90,769	NOX 127,096	SOX 1,194	PM10 150.0	PM2.5 31.5		CH4 5,572	CO2e 92,406,620
	Fugitive Dust	•						PM				20,679	90,769	127,096	1,194	PM10 150.0 PM10 240,102	PM2.5 31.5 PM2.5 53,996	CO2 92,289,606		92,406,620
	Fugitive Dust	•						PM		Total (lb) Daily (lb) Annual (T)						PM10 150.0 PM10	PM2.5 31.5 PM2.5	CO2	5,572	

On-site Emissions									
	ROG	СО	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e
Total (lb)	19091.2	71220.9	53186.1	897.0	232179.9	50789.0	60429158.6	4678.9	60527416.4
Daily (lb)	12.72749	47.48059	35.45738	0.598016	154.7866	33.85932	40286.10574	3.119296	40351.6
Annual (T)	1.590936	5.935074	4.432172	0.074752	19.34833	4.232415	5035.763218	0.389912	5044.0
Total Emissions (tons)	ROG	со	NOX	SOX	PM10	PM2.5	CO2	CH4	CO2e
Off-road	9.5	35.1	24.6	0.4	3.4	1.7	29,376.1	2.3	29,424.8
On-Road	0.8	10.3	38.9	0.2	4.2	1.7	16,768.7	0.5	16,778.5
Fugitive Dust					112.5	23.6			
Total	10.3	45.4	63.5	0.6	120.1	27.0	46,144.8	2.8	46,203.3
Annual	1.7	7.6	10.6	0.1	20.0	4.5	7,690.8	0.5	7,700.6

SCAB Fleet Average Emission Factors (Diesel)

Road Emission Rates

Air Basin SC

		(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Equipment	MaxHP	ROG	CO	NOX	SOX	PM	CO2	CH4
Aerial Lifts	15	0.0101	0.0528	0.0631	0.0001	0.0025	8.7	0.0009
	25	0.0143	0.0468	0.0865	0.0001	0.0039	11.0	0.0013
	50	0.0336	0.1506	0.1525	0.0003	0.0093	19.6	0.0030
	120	0.0327	0.2319	0.2565	0.0004	0.0170	38.1	0.0029
	500	0.0840	0.3899	0.8852	0.0021	0.0270	213	0.0076
	750	0.1545	0.7049	1.6423	0.0039	0.0494	385	0.0139
Aerial Lifts Compo		0.0322	0.1740	0.2152	0.0004	0.0119	34.7	0.0029
Air Compressors	15	0.0098	0.0456	0.0608	0.0001	0.0033	7.2	0.0009
	25	0.0207	0.0645	0.1187	0.0002	0.0060	14.4	0.0019
	50	0.0518	0.2142	0.1848	0.0003	0.0131	22.3	0.0047
	120	0.0504	0.3097	0.3370	0.0006	0.0255	47.0	0.0045
	175	0.0685	0.4994	0.5069	0.0010	0.0268	88.5	0.0062
	250	0.0747	0.2653	0.6529	0.0015	0.0206	131	0.0067
	500	0.1262	0.4504	1.0161	0.0023	0.0345	232	0.0114
	750	0.1960	0.6961	1.6134	0.0036	0.0540	358	0.0177
	1000	0.2958	1.0416	3.7257	0.0049	0.0965	486	0.0267
Air Compressors C	1	0.0582	0.3130	0.3935	0.0007	0.0246	63.6	0.0052
Bore/Drill Rigs	15	0.0120	0.0632	0.0754	0.0002	0.0029	10.3	0.0011
	25 50	0.0193	0.0658	0.1219	0.0002	0.0046	16.0	0.0017
	50	0.0204	0.2211	0.1897	0.0004	0.0034	31.0	0.0018
	120	0.0308	0.4665	0.2710	0.0009	0.0072	77.1	0.0028
	175	0.0475	0.7542	0.2910	0.0016	0.0092	141	0.0043
	250	0.0538	0.3426	0.2499	0.0021	0.0068	188	0.0049
	500	0.0887	0.5512	0.4035	0.0031	0.0112	311	0.0080
	750	0.1755	1.0891	0.8022	0.0062	0.0222	615	0.0158
	1000	0.2789	1.6441	4.2095	0.0093	0.0723	928	0.0252
Bore/Drill Rigs Cor		0.0539	0.5011	0.4175	0.0017	0.0099	165	0.0049
Cement and Morta	r 15 25	0.0074 0.0232	0.0386 0.0754	0.0461 0.1391	0.0001 0.0002	0.0018 0.0064	6.3 17.6	0.0007 0.0021
Cement and Morta		0.0232	0.0734	0.0538	0.0002	0.0004	7.2	0.0021
Concrete/Industria		0.0199	0.0678	0.1256	0.0001	0.0047	16.5	0.0018
	50	0.0549	0.2534	0.2388	0.0004	0.0148	30.2	0.0050
	120	0.0650	0.4661	0.4898	0.0009	0.0335	74.1	0.0059
	175	0.1012	0.8661	0.8304	0.0018	0.0410	160	0.0091
Concrete/Industria		0.0605	0.3850	0.3959	0.0007	0.0261	58.5	0.0055
Cranes	50	0.0646	0.2527	0.2019	0.0003	0.0151	23.2	0.0058
	120	0.0639	0.3486	0.3857	0.0006	0.0306	50.1	0.0058
	175	0.0752	0.4766	0.5029	0.0009	0.0283	80.3	0.0068
	250	0.0787	0.2521	0.6168	0.0013	0.0212	112	0.0071
	500	0.1202	0.4085	0.8748	0.0018	0.0317	180	0.0108
	750	0.2034	0.6869	1.5239	0.0030	0.0544	303	0.0184
	9999	0.7422	2.3933	7.8338	0.0098	0.2146	971	0.0670
Cranes Composite		0.1012	0.4060	0.7908	0.0014	0.0318	129	0.0091
Crawler Tractors	50	0.0813	0.2884	0.2240	0.0003	0.0181	24.9	0.0073
	120	0.0945	0.4679	0.5589	0.0008	0.0448	65.8	0.0085
	175	0.1270	0.7327	0.8534	0.0014	0.0479	121	0.0115
	250	0.1333	0.4179	1.0430	0.0019	0.0385	166	0.0120
	500	0.1959	0.7202	1.4625	0.0025	0.0554	259	0.0177
	750	0.3529	1.2889	2.6916	0.0047	0.1006	465	0.0318
	1000	0.5380	2.0171	5.7362	0.0066	0.1663	658	0.0485
Crawler Tractors C		0.1185	0.5387	0.7960	0.0013	0.0457	114	0.0107
Crushing/Proc. Eq		0.0949	0.4230	0.3607	0.0006	0.0241	44.0	0.0086
	120	0.0849	0.5506	0.5679	0.0010	0.0416	83.1	0.0077
	175	0.1258	0.9520	0.8975	0.0019	0.0475	167	0.0113
	250	0.1386	0.4932	1.1284	0.0028	0.0359	245	0.0125
	500	0.2037	0.7231	1.5205	0.0037	0.0524	374	0.0184
		0.0400	4 4 9 0 0	0 4 4 4 4	0.0050	0.0004	E00	0 0000
	750 9999	0.3193 0.8312	1.1368 2.7569	2.4441 9.5902	0.0059 0.0131	0.0824 0.2467	589 1,308	0.0288 0.0750

Crushing/Proc. Equ	ipment Compo	0.1109	0.6328	0.7330	0.0015	0.0412	132	0.0100
Dumpers/Tenders	25	0.0092	0.0314	0.0584	0.0001	0.0023	7.6	0.0008
Dumpers/Tenders C	Composite	0.0092	0.0314	0.0584	0.0001	0.0023	7.6	0.0008
Excavators	25	0.0198	0.0677	0.1253	0.0002	0.0047	16.4	0.0018
	50	0.0468	0.2521	0.2002	0.0003	0.0111	25.0	0.0042
	120	0.0693	0.5017	0.4425	0.0009	0.0289	73.6	0.0063
	175	0.0824	0.6641	0.5069	0.0013	0.0264	112	0.0074
	250	0.0933	0.3323	0.5984	0.0018	0.0202	159	0.0084
	500	0.1339	0.4689	0.7881	0.0023	0.0284	234	0.0121
	750	0.2224	0.7769	1.3381	0.0039	0.0476	387	0.0201
Excavators Compos	site	0.0848	0.5160	0.5181	0.0013	0.0249	120	0.0077
Forklifts	50	0.0229	0.1440	0.1180	0.0002	0.0058	14.7	0.0021
	120	0.0265	0.2118	0.1745	0.0004	0.0108	31.2	0.0024
	175	0.0394	0.3322	0.2328	0.0006	0.0125	56.1	0.0036
	250	0.0440	0.1559	0.2594	0.0009	0.0089	77.1	0.0040
	500	0.0623	0.2131	0.3432	0.0011	0.0125	111	0.0056
Forklifts Composite		0.0372	0.2173	0.2186	0.0006	0.0101	54.4	0.0034
Generator Sets	15	0.0123	0.0644	0.0852	0.0002	0.0043	10.2	0.0011
	25	0.0231	0.0788	0.1449	0.0002	0.0070	17.6	0.0021
	50	0.0491	0.2265	0.2357	0.0004	0.0138	30.6	0.0044
	120	0.0642	0.4694	0.5181	0.0009	0.0333	77.9	0.0058
	175	0.0808	0.7324	0.7528	0.0016	0.0337	142	0.0073
	250	0.0857	0.3931	0.9756	0.0024	0.0274	213	0.0077
	500	0.1264	0.6113	1.3836	0.0033	0.0415	337	0.0114
	750	0.2080	0.9868	2.2918	0.0055	0.0679	544	0.0188
0	9999	0.5230	2.0948	7.5356	0.0105	0.1778	1,049	0.0472
Generator Sets Con		0.0477	0.2786	0.3759	0.0007	0.0192	61.0	0.0043
Graders	50	0.0676	0.2868	0.2305	0.0004	0.0157	27.5	0.0061
	120 175	0.0860 0.1059	0.5138 0.7294	0.5323 0.7002	0.0009 0.0014	0.0398	75.0 124	0.0078 0.0096
	250	0.1059	0.7294 0.3778	0.7002	0.0014	0.0385 0.0287	124	0.0096
	230 500	0.1115	0.5194	0.8409	0.0019	0.0287	229	0.0101
	500 750	0.1420	1.0988	2.1820	0.0023	0.0359	486	0.0128
Graders Composite		0.3024	0.5812	0.7217	0.0049	0.0355	133	0.0095
Off-Highway Tracto		0.1640	0.6879	0.9427	0.0011	0.0000	93.7	0.0000
On Flighway Fladio	175	0.1614	0.8085	1.1191	0.0015	0.0632	130	0.0146
	250	0.1275	0.3861	1.0244	0.0015	0.0411	130	0.0115
	750	0.5173	2.0914	4.1264	0.0057	0.1633	568	0.0467
	1000	0.7842	3.2770	8.0820	0.0082	0.2526	814	0.0708
Off-Highway Tractor		0.1631	0.6762	1.2293	0.0017	0.0579	151	0.0147
Off-Highway Trucks		0.0983	0.7542	0.5947	0.0014	0.0314	125	0.0089
<u> </u>	250	0.1042	0.3572	0.6660	0.0019	0.0225	167	0.0094
	500	0.1656	0.5578	0.9706	0.0027	0.0351	272	0.0149
	750	0.2693	0.9044	1.6152	0.0044	0.0577	442	0.0243
	1000	0.4058	1.3339	4.3394	0.0063	0.1110	625	0.0366
Off-Highway Trucks	Composite	0.1613	0.5634	1.0525	0.0027	0.0360	260	0.0146
Other Construction		0.0118	0.0617	0.0737	0.0002	0.0029	10.1	0.0011
	25	0.0159	0.0544	0.1008	0.0002	0.0038	13.2	0.0014
	50	0.0412	0.2342	0.2102	0.0004	0.0108	28.0	0.0037
	120	0.0604	0.5116	0.4573	0.0009	0.0279	80.9	0.0054
	175	0.0608	0.5859	0.4478	0.0012	0.0218	107	0.0055
	500	0.1122	0.4743	0.8004	0.0025	0.0275	254	0.0101
Other Construction		0.0633	0.3542	0.4478	0.0013	0.0181	123	0.0057
Other General Indu		0.0066	0.0391	0.0466	0.0001	0.0018	6.4	0.0006
	25 50	0.0185	0.0632	0.1170	0.0002	0.0044	15.3	0.0017
	50	0.0548	0.2314	0.1869	0.0003	0.0134	21.7	0.0049
	120	0.0732	0.4277	0.4544	0.0007	0.0350	62.0 05.0	0.0066
	175 250	0.0835	0.5664	0.5608	0.0011	0.0307	95.9 136	0.0075
	250 500	0.0884	0.2862	0.6866	0.0015	0.0221	136	0.0080
	500 750	0.1664	0.5336	1.1846	0.0026	0.0412	265 437	0.0150
	750 1000	0.2755	0.8795	2.0057	0.0044	0.0689	437 560	0.0249
Other General Indus		0.3866	1.2370 0.4591	4.3716 0.8242	0.0056	0.1169 0.0336	560 152	0.0349 0.0100
Other Material Han		0.0758	0.4591	0.8242	0.0016	0.0336	30.3	0.0100
	50 120	0.0758	0.3192	0.2598	0.0004	0.0186	30.3 60.7	0.0068
	120	0.0709	0.4162	0.4437 0.7125	0.0007 0.0014	0.0341	122	0.0064
	250	0.0934	0.3046	0.7336	0.0014	0.0303	145	0.0035
	200	0.0004	0.00-0	0.1000	0.0010	0.0201	1 10	0.0004

	500	0.1186	0.3838	0.8543	0.0019	0.0297	192	0.0107
Other Material Llan	9999 Ning Equipmon	0.5386	1.6331	5.7822	0.0073	0.1543	741	0.0486
Other Material Hand		0.1050	0.4495	0.8053	0.0015	0.0324	141 18.7	0.0095
Pavers	25 50	0.0226	0.0769	0.1434 0.2539	0.0002 0.0004	0.0057		0.0020
	50 120	0.0968 0.1030	0.3188 0.4862	0.2539	0.0004	0.0217 0.0506	28.0 69.2	0.0087 0.0093
	120	0.1030	0.4662	0.8205	0.0008	0.0508	128	0.0093
	250	0.1303	0.7632	1.3162	0.0014	0.0559	120	0.0123
	230 500	0.1574	0.5000	1.4189	0.0022	0.0490	233	0.0142
Pavers Composite	500	0.1765	0.6885	0.6241	0.0023	0.0539	77.9	0.0109
Paving Equipment	25	0.0152	0.0520	0.0241	0.0009	0.0419	12.6	0.0014
	23 50	0.0132	0.0520	0.0903	0.0002	0.0030	23.9	0.0074
	120	0.0821	0.2090	0.2103	0.0005	0.0185	23.9 54.5	0.0074
	120	0.0805	0.5809	0.4869	0.0008	0.0400	101	0.0073
	250	0.1062	0.3068	0.7567	0.0011	0.0424	101	0.0098
Doving Equipmont (0.0962	0.3068	0.8230	0.0014	0.0300	68.9	0.0087
Paving Equipment C Plate Compactors	15	0.0050	0.4130	0.0314	0.0008	0.0374	4.3	0.00077
Plate Compactors C		0.0050	0.0263	0.0314	0.0001	0.0012	4.3	0.0005
Pressure Washers	15	0.0059	0.0203	0.0314	0.0001	0.0012	4.3	0.0005
Tressure Washers	25	0.0033	0.0300	0.0400	0.0001	0.0021	7.1	0.0008
	23 50		0.0319					
	50 120	0.0170 0.0167	0.0895 0.1383	0.1059 0.1528	0.0002 0.0003	0.0054 0.0087	14.3 24.1	0.0015 0.0015
Pressure Washers		0.0167	0.1383	0.1528	0.0003	0.0087	9.4	0.0015
Pumps	15	0.0101	0.0362	0.0703	0.0001	0.0036	<u>9.4</u> 7.4	0.0009
i unpo	25	0.0101	0.0400	0.0623	0.0001	0.0034	19.5	0.0009
	25 50	0.0279	0.0871 0.2670	0.1601 0.2677	0.0002	0.0080	19.5 34.3	0.0025
	120	0.0599	0.2070	0.5260	0.0004	0.0104	77.9	0.0054
	120	0.0875	0.4787	0.5260	0.0009	0.0350	140	0.0081
	250	0.0845	0.7336	0.7348	0.0018	0.0350	201	0.0078
	500 750	0.1387 0.2330	0.6343	1.4367 2.4376	0.0034	0.0442	345 571	0.0125 0.0210
	750 9999	0.2330	1.0487 2.7434	2.4376 9.8509	0.0057 0.0136	0.0741 0.2358	571 1,355	0.0210
Pumps Composite	9999	0.7050	0.2722	0.3306	0.0006	0.2358	49.6	0.0030
Rollers	15	0.0438	0.2722	0.0461	0.0000	0.0189	6.3	0.0041
NUIIEIS	25	0.0074	0.0549	0.0401	0.0001	0.0018	13.3	0.0007
	23 50	0.0161	0.0549 0.2547	0.1017 0.2171	0.0002	0.0038	26.0	0.0015
	120	0.0680	0.2347	0.2171	0.0003	0.0138	20.0 59.0	0.0061
	120	0.0880	0.6130	0.4411	0.0007	0.0341	108	0.0081
	250	0.0897	0.8130	0.8369	0.0012	0.0356	153	0.0081
	230 500	0.0934	0.3300	1.0345	0.0017	0.0274	219	0.0084
Rollers Composite	500	0.0683	0.4902	0.4485	0.0022	0.0303	67.0	0.0062
Rough Terrain Fork	50	0.0655	0.3294	0.4483	0.0008	0.0291	33.9	0.0059
Rough renain on	120	0.0596	0.3234	0.3967	0.0004	0.0100	62.4	0.0053
	175	0.0911	0.7231	0.6072	0.0007	0.0273	125	0.0082
	250	0.0988	0.3504	0.7075	0.0014	0.0322	171	0.0089
	500	0.1441	0.5029	0.9468	0.0025	0.0237	257	0.0130
Rough Terrain Fork		0.0638	0.4499	0.4219	0.0008	0.0277	70.3	0.0058
Rubber Tired Dozel	175	0.1676	0.8191	1.1443	0.0015	0.0646	129	0.0151
	250	0.1890	0.5640	1.4879	0.0021	0.0605	183	0.0171
	500	0.2531	1.0338	1.9476	0.0026	0.0787	265	0.0228
	750	0.3821	1.5520	2.9917	0.0040	0.1195	399	0.0345
	1000	0.5986	2.5082	6.0072	0.0060	0.1906	592	0.0540
Rubber Tired Dozer							239	0.0211
		0.2343	0.8819	1.8194	0.0025	0.0737		0.0211
Rubber Tired Loade	s Composite	0.2343		1.8194 0.1291	0.0025	0.0737 0.0048		0.0211
	s Composite 25	0.2343 0.0204 0.0742	0.8819 0.0697 0.3198	0.1291		0.0048	16.9	
	s Composite	0.0204	0.0697		0.0002	0.0048 0.0174	16.9 31.1	0.0018
	s Composite 25 50 120	0.0204 0.0742 0.0660	0.0697 0.3198 0.4016	0.1291 0.2591 0.4121	0.0002 0.0004 0.0007	0.0048 0.0174 0.0307	16.9 31.1 58.9	0.0018 0.0067 0.0060
	s Composite 25 50 120 175	0.0204 0.0742 0.0660 0.0888	0.0697 0.3198 0.4016 0.6227	0.1291 0.2591 0.4121 0.5902	0.0002 0.0004 0.0007 0.0012	0.0048 0.0174 0.0307 0.0323	16.9 31.1 58.9 106	0.0018 0.0067 0.0060 0.0080
	s Composite 25 50 120 175 250	0.0204 0.0742 0.0660 0.0888 0.0946	0.0697 0.3198 0.4016 0.6227 0.3237	0.1291 0.2591 0.4121 0.5902 0.7142	0.0002 0.0004 0.0007 0.0012 0.0017	0.0048 0.0174 0.0307 0.0323 0.0244	16.9 31.1 58.9 106 149	0.0018 0.0067 0.0060 0.0080 0.0085
	s Composite 25 50 120 175 250 500	0.0204 0.0742 0.0660 0.0888 0.0946 0.1440	0.0697 0.3198 0.4016 0.6227 0.3237 0.5256	0.1291 0.2591 0.4121 0.5902 0.7142 1.0103	0.0002 0.0004 0.0007 0.0012 0.0017 0.0023	0.0048 0.0174 0.0307 0.0323 0.0244 0.0363	16.9 31.1 58.9 106 149 237	0.0018 0.0067 0.0060 0.0080 0.0085 0.0130
	s Composite 25 50 120 175 250 500 750	0.0204 0.0742 0.0660 0.0888 0.0946 0.1440 0.2966	0.0697 0.3198 0.4016 0.6227 0.3237 0.5256 1.0762	0.1291 0.2591 0.4121 0.5902 0.7142 1.0103 2.1374	0.0002 0.0004 0.0007 0.0012 0.0017 0.0023 0.0049	0.0048 0.0174 0.0307 0.0323 0.0244 0.0363 0.0758	16.9 31.1 58.9 106 149 237 486	0.0018 0.0067 0.0060 0.0080 0.0085 0.0130 0.0268
Rubber Tired Loade	s Composite 25 50 120 175 250 500 750 1000	0.0204 0.0742 0.0660 0.0888 0.0946 0.1440 0.2966 0.3912	0.0697 0.3198 0.4016 0.6227 0.3237 0.5256 1.0762 1.4170	0.1291 0.2591 0.4121 0.5902 0.7142 1.0103 2.1374 4.4558	0.0002 0.0004 0.0007 0.0012 0.0017 0.0023 0.0049 0.0060	0.0048 0.0174 0.0307 0.0323 0.0244 0.0363 0.0758 0.1188	16.9 31.1 58.9 106 149 237 486 594	0.0018 0.0067 0.0060 0.0080 0.0085 0.0130 0.0268 0.0353
Rubber Tired Loade Rubber Tired Loade	s Composite 25 50 120 175 250 500 750 1000 ers Composite	0.0204 0.0742 0.0660 0.0888 0.0946 0.1440 0.2966 0.3912 0.0861	0.0697 0.3198 0.4016 0.6227 0.3237 0.5256 1.0762 1.4170 0.4470	0.1291 0.2591 0.4121 0.5902 0.7142 1.0103 2.1374 4.4558 0.5831	0.0002 0.0004 0.0007 0.0012 0.0017 0.0023 0.0049 0.0060 0.0012	0.0048 0.0174 0.0307 0.0323 0.0244 0.0363 0.0758 0.1188 0.0300	16.9 31.1 58.9 106 149 237 486 594 109	0.0018 0.0067 0.0060 0.0080 0.0085 0.0130 0.0268 0.0353 0.0078
Rubber Tired Loade Rubber Tired Loade	s Composite 25 50 120 175 250 500 750 1000 ers Composite 120	0.0204 0.0742 0.0660 0.0888 0.0946 0.1440 0.2966 0.3912 0.0861 0.1382	0.0697 0.3198 0.4016 0.6227 0.3237 0.5256 1.0762 1.4170 0.4470 0.6686	0.1291 0.2591 0.4121 0.5902 0.7142 1.0103 2.1374 4.4558 0.5831 0.8165	0.0002 0.0004 0.0007 0.0012 0.0017 0.0023 0.0049 0.0060 0.0012 0.0011	0.0048 0.0174 0.0307 0.0323 0.0244 0.0363 0.0758 0.1188 0.0300 0.0661	16.9 31.1 58.9 106 149 237 486 594 109 93.9	0.0018 0.0067 0.0060 0.0080 0.0085 0.0130 0.0268 0.0353 0.0078 0.0125
	s Composite 25 50 120 175 250 500 750 1000 ers Composite 120 175	0.0204 0.0742 0.0660 0.0888 0.0946 0.1440 0.2966 0.3912 0.0861 0.1382 0.1579	0.0697 0.3198 0.4016 0.6227 0.3237 0.5256 1.0762 1.4170 0.4470 0.6686 0.8954	0.1291 0.2591 0.4121 0.5902 0.7142 1.0103 2.1374 4.4558 0.5831 0.8165 1.0712	0.0002 0.0004 0.0007 0.0012 0.0017 0.0023 0.0049 0.0060 0.0012 0.0011 0.0017	0.0048 0.0174 0.0307 0.0323 0.0244 0.0363 0.0758 0.1188 0.0300 0.0661 0.0603	16.9 31.1 58.9 106 149 237 486 594 109 93.9 148	0.0018 0.0067 0.0060 0.0080 0.0085 0.0130 0.0268 0.0353 0.0078 0.0125 0.0142
Rubber Tired Loade Rubber Tired Loade	s Composite 25 50 120 175 250 500 750 1000 ers Composite 120	0.0204 0.0742 0.0660 0.0888 0.0946 0.1440 0.2966 0.3912 0.0861 0.1382	0.0697 0.3198 0.4016 0.6227 0.3237 0.5256 1.0762 1.4170 0.4470 0.6686	0.1291 0.2591 0.4121 0.5902 0.7142 1.0103 2.1374 4.4558 0.5831 0.8165	0.0002 0.0004 0.0007 0.0012 0.0017 0.0023 0.0049 0.0060 0.0012 0.0011	0.0048 0.0174 0.0307 0.0323 0.0244 0.0363 0.0758 0.1188 0.0300 0.0661	16.9 31.1 58.9 106 149 237 486 594 109 93.9	0.0018 0.0067 0.0060 0.0080 0.0085 0.0130 0.0268 0.0353 0.0078 0.0125

Signal Boards 16 0.0072 0.0377 0.0460 0.0001 0.0118 6.2 0.0069 120 0.0695 0.4999 0.5256 0.0009 0.0172 36.2 0.0069 120 0.0695 0.8276 0.7968 0.0007 0.0336 80.2 0.0063 Signal Boards 0.0114 0.4877 1.1306 0.0023 0.0337 255 0.0104 Skid Steer Loaders 25 0.0176 0.0582 0.181 0.0002 0.0048 13.8 0.0074 Skid Steer Loaders 25 0.0176 0.0552 0.1787 0.0002 0.0074 30.3 0.0023 Sufacing Equipme 50 0.0253 0.2146 0.1799 0.0004 0.0074 30.3 0.0023 Sufacing Equipme 50 0.0317 0.1242 0.4667 0.0001 0.0257 85.8 0.0068 20 0.0633 0.2858 0.7013 0.0016 0.0230 1141 0.0022 0.0334	Scrapers Composite	2	0.2135	0.8418	1.6042	0.0027	0.0653	262	0.0193
50 0.0649 0.2966 0.2820 0.0005 0.0172 36.2 0.0063 175 0.0655 0.4999 0.5256 0.0007 0.0336 155 0.0063 Signal Boards Composite 0.0143 0.0916 0.1029 0.0002 0.00307 16.7 0.0013 Skid Steer Loaders 25 0.0176 0.0582 0.1081 0.0002 0.0065 16.7 0.0013 Skid Steer Loaders 25 0.0244 0.2680 0.1970 0.0005 0.0095 42.8 0.0022 Skid Steer Loaders Composite 0.0248 0.2460 0.1970 0.0000 0.0077 14.1 0.0023 Surfacing Equipme 50 0.0317 0.1422 0.1139 0.0001 0.02257 85.8 0.0986 250 0.0733 0.2858 0.7911 1.6685 0.0025 0.0350 221 0.0111 Sweepers/Scrubbe 15 0.0172 0.6864 0.0021 0.0236 1466 0.0023									
120 0.0685 0.4999 0.5256 0.0009 0.0365 80.2 0.0086 Signal Boards Composite 0.0143 0.0916 0.1029 0.0022 0.0337 255 0.0104 Signal Boards Composite 0.0143 0.0916 0.1029 0.0002 0.0026 1.67 0.0014 Skid Steer Loaders 25 0.0176 0.0523 0.11767 0.0003 0.0065 2.5.5 0.0022 Skid Steer Loaders Composite 0.0253 0.2146 0.1799 0.0004 0.0077 4.4.8 0.0025 Suffacing Equipme 50 0.0337 0.1467 0.4651 0.0007 0.0334 63.8 0.0068 Suffacing Equipme 500 0.0733 0.2858 0.7013 0.0015 0.0230 135 0.0068 Suffacing Equipment Composite 0.0923 0.4187 0.6843 0.0007 0.0334 63.8 0.0061 Suffacing Equipment Composite 0.0923 0.4187 0.6843 0.00017 0.02291 166	e.g.u. Bourdo								
175 0.0955 0.8276 0.7968 0.0017 0.0385 155 0.0013 Signal Boards Composite 0.01143 0.0916 0.1029 0.0022 0.0084 1.8.7 0.0013 Skid Steer Loaders 25 0.0176 0.0582 0.1081 0.0002 0.0084 1.8.8 0.0017 Skid Steer Loaders 0.0248 0.2680 0.1970 0.0005 0.0095 4.2.8 0.0022 Suffacing Equipme 50 0.0248 0.2680 0.1970 0.0005 0.00077 14.1 0.0023 Suffacing Equipme 50 0.0317 0.4677 0.5682 0.0011 0.0237 85.8 0.0058 120 0.0668 0.4072 0.4617 0.5062 0.0011 0.0237 135 0.0668 500 0.1782 0.7911 1.6685 0.0035 0.0558 347 0.0111 50 0.622 0.2917 1.0316 0.0022 1.0316 0.0291 75.0 0.0683									
250 0.1151 0.4857 1.1305 0.0029 0.0337 255 0.01013 Signal Boards Composite 0.0143 0.0916 0.1029 0.0002 0.0040 16.7 0.0013 Skid Steer Loaders 25 0.0176 0.0582 0.1081 0.0005 2.5.5 0.0024 Skid Steer Loaders Composite 0.0253 0.2146 0.1797 0.0004 0.0077 42.8 0.0025 Suffacing Equipme 50 0.0317 0.1242 0.1139 0.0002 0.0077 14.1 0.0025 Suffacing Equipme 50 0.0317 0.1242 0.1139 0.0002 0.0335 2.214 0.0161 175 0.0668 0.4072 0.4651 0.0007 0.0336 2.21 0.0111 750 0.1782 0.7911 1.6685 0.0035 0.258 3.47 0.0161 Suffacing Equipment Composite 0.0923 0.4187 0.8043 0.0017 0.0291 166 0.0021 0.0034 11.9									
Signal Boards Composite 0.0143 0.0916 0.1029 0.0002 0.00050 16.7 0.00150 Skid Steer Loaders 25 0.0176 0.0582 0.1081 0.0002 0.0068 13.8 0.0016 Skid Steer Loaders 0.0223 0.1787 0.0003 0.0065 42.8 0.0023 Surfacing Equipme 50 0.0317 0.1242 0.1139 0.0002 0.0077 14.1 0.0023 Surfacing Equipme 50 0.0317 0.4677 0.5082 0.0010 0.0257 85.8 0.0068 175 0.0637 0.4677 0.5082 0.0010 0.0257 85.8 0.0068 500 0.1120 0.5047 1.0316 0.0022 0.350 221 0.0101 Surfacing Equipment Composite 0.0023 0.4177 0.8080 0.4047 0.483 0.0017 0.0291 75.0 0.0052 Sweepers/Scrubbe 15 0.0124 0.0274 0.2539 0.0004 0.0137 31.6									
Skid Steer Loaders 25 0.0176 0.0582 0.1081 0.0002 0.0048 13.8 0.0016 Skid Steer Loaders Composite 0.0248 0.2280 0.1787 0.0003 0.0065 25.5 0.0024 Skid Steer Loaders Composite 0.0263 0.2146 0.1799 0.0004 0.0074 30.3 0.0023 Surfacing Equipme 50 0.0317 0.1242 0.1139 0.00002 0.0077 14.1 0.0029 175 0.0668 0.4072 0.4651 0.0015 0.0230 135 0.0066 500 0.1722 0.713 0.0015 0.0220 135 0.0066 Sweepers/Scrubbe 15 0.01742 0.7279 0.0870 0.0002 0.0034 119 0.0011 120 0.0647 0.4983 0.4442 0.00002 0.0034 119 0.0011 Sweepers/Scrubbe 15 0.0124 0.7279 0.0870 0.0002 0.0035 116 0.0021 <td>Signal Boards Com</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Signal Boards Com								
50 0.0263 0.2035 0.1787 0.0003 0.0065 22.5 0.0024 Skid Steer Loaders Composite 0.0223 0.2146 0.1799 0.0004 0.0074 30.3 0.0022 Surfacing Equipme 50 0.0317 0.1242 0.0139 0.0002 0.0077 14.1 0.0029 120 0.0668 0.4072 0.4661 0.0007 0.0334 63.8 0.0068 175 0.0637 0.4677 0.5082 0.0010 0.0257 85.8 0.0066 500 0.1120 0.5047 1.0316 0.0022 0.0350 221 0.0161 Surfacing Equipment Composite 0.0232 0.4187 0.8043 0.0017 0.023 1.19 0.0161 Surfacing Equipment Composite 0.0232 0.4187 0.8043 0.0017 0.023 1.19 0.0011 50 0.0522 0.274 0.2539 0.0004 0.0137 31.6 0.0021 50 0.0647 0.4983									
120 0.0248 0.2800 0.1970 0.0005 0.0095 42.8 0.0022 Skid Steer Loaders Composite 0.0253 0.2146 0.1799 0.0004 0.0074 30.3 0.0023 Surfacing Equipme 50 0.0317 0.1242 0.1139 0.00002 0.0077 14.1 0.0026 120 0.0668 0.4072 0.4651 0.0015 0.0231 15.6 0.0058 250 0.0733 0.2858 0.7013 0.0015 0.0230 135 0.0068 500 0.1120 0.5047 1.0316 0.0022 0.0350 221 0.0111 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0064 1.9 0.0011 120 0.0647 0.4983 0.4442 0.0002 0.0056 1.66 0.0021 120 0.0647 0.4983 0.6273 0.0016 0.0337 139 0.0087 120 0.0647 0.4983 0.4442									
Skid Steer Loaders Composite 0.0253 0.2146 0.1799 0.0004 0.0074 30.3 0.0023 Surfacing Equipme 50 0.0317 0.1242 0.1139 0.0007 0.0334 63.8 0.0060 120 0.0668 0.4072 0.4651 0.0007 0.0334 63.8 0.0060 175 0.0637 0.4677 0.5082 0.0015 0.0223 63.8 0.0066 500 0.1120 0.5047 1.0316 0.0022 0.0350 221 0.0101 Surfacing Equipment Composite 0.0123 0.4187 0.8043 0.0017 0.0291 166 0.0083 Sweepers/Scrubbe 15 0.0124 0.0729 0.8043 0.0002 0.0034 11.9 0.0011 50 0.0522 0.2974 0.2539 0.0004 0.0137 31.6 0.0041 120 0.0647 0.4983 0.4442 0.0009 0.0251 78.5 0.0061 120 0.0437 0.2839 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Surfacing Equipme 50 0.0317 0.1242 0.1139 0.0007 0.0334 63.8 0.0029 120 0.06637 0.4677 0.5082 0.0010 0.0257 85.8 0.0058 250 0.0733 0.2858 0.7013 0.0012 0.0230 135 0.0058 500 0.1782 0.7911 1.6685 0.0035 0.0588 347 0.0161 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0011 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0041 120 0.0647 0.4983 0.4442 0.0099 0.0221 75.0 0.0058 175 0.0966 0.8030 0.6280 0.0014 0.0221 778.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 10021 10.3 0.0045 120 0.0435	Skid Steer Loaders	-							
120 0.0668 0.4072 0.4651 0.0007 0.0334 63.8 0.0068 175 0.0637 0.4677 0.5082 0.0010 0.0257 85.8 0.0066 500 0.1120 0.5047 1.0316 0.00220 1.35 0.0066 500 0.1182 0.7911 1.6685 0.0035 0.258 347 0.0161 Surfacing Equipment Composite 0.0923 0.4187 0.8043 0.00017 0.0291 166 0.0083 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0011 50 0.0522 0.2974 0.2539 0.0004 0.0137 31.6 0.0041 175 0.9666 0.8030 0.6280 0.0018 0.0241 162 0.0081 17actors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0044 15.9 0.0017 Tractors/Loaders/Backhoes Composite 0.0681 0.4264 0									
175 0.0637 0.4677 0.5082 0.0015 0.0257 85.8 0.0058 250 0.0733 0.2858 0.7013 0.0015 0.0230 135 0.0065 500 0.1120 0.5047 1.0316 0.0022 0.0350 221 0.0101 Surfacing Equipment Composite 0.0923 0.4187 0.8043 0.0017 0.0291 166 0.0083 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0011 50 0.6522 0.2974 0.2539 0.0004 0.0137 31.6 0.0047 120 0.0647 0.4983 0.4442 0.0009 0.0291 75.0 0.0058 175 0.0964 0.3218 0.6073 0.011 0.0204 162 0.0081 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0024 162 0.0081 120 0.0435 0.3426 0.2337 0.0006									
250 0.0733 0.2858 0.7013 0.0015 0.0230 135 0.0066 500 0.1120 0.5047 1.0316 0.0022 0.0350 221 0.0161 Surfacing Equipment Composite 0.0923 0.4187 0.8043 0.0017 0.0231 166 0.0083 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0017 120 0.0647 0.4983 0.4442 0.0009 0.0291 75.0 0.0058 175 0.0966 0.8030 0.6280 0.0016 0.0337 139 0.0087 175 0.0966 0.4308 0.0009 0.021 78.5 0.0061 Sweepers/Scrubbers Composite 0.0681 0.4442 0.0009 0.0221 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0024 16.9 0.0017 Tractors/Loaders/Backhoes Comp 0.6814 0.42937 0.0004 0.0121									
500 0.1120 0.5047 1.0316 0.0022 0.0350 221 0.0101 Surfacing Equipment Composite 0.0923 0.4187 0.8043 0.0017 0.0291 166 0.0035 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0011 50 0.0522 0.2974 0.2893 0.0404 0.0137 31.6 0.0021 50 0.0522 0.2974 0.2890 0.0004 0.0137 31.6 0.0047 120 0.0647 0.4983 0.4442 0.0009 0.0291 75.0 0.0058 175 0.0966 0.8030 0.6280 0.0016 0.0337 139 0.0087 250 0.0894 0.4946 0.4308 0.0009 0.0251 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0663 0.1211 0.0002 0.0046 15.9 0.0171 120 0.0435 0.3426 0.2937									
750 0.1782 0.7911 1.6685 0.0035 0.0558 347 0.0161 Surfacing Equipment Composite 0.0923 0.4187 0.8043 0.0017 0.0291 166 0.0083 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0036 11.9 0.0011 50 0.0522 0.2974 0.2539 0.0004 0.0137 31.6 0.0047 120 0.0647 0.4983 0.4442 0.0009 0.0291 75.0 0.0086 175 0.0696 0.8030 0.6280 0.0016 0.0337 139 0.0087 Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0009 0.0211 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 120 0.0435 0.3426 0.2337 0.006 0.1184 51.7 0.038 120 0.0435 0.3426									
Surfacing Equipment Composite 0.0923 0.4187 0.8043 0.0017 0.0291 166 0.0083 Sweepers/Scrubbe 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0014 25 0.0237 0.0808 0.1495 0.0002 0.0056 19.6 0.0021 50 0.0522 0.2974 0.2539 0.0004 0.0137 31.6 0.0047 120 0.0647 0.4983 0.4442 0.0009 0.0211 75.0 0.0087 175 0.0966 0.8030 0.6280 0.0016 0.0337 139 0.0087 Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0009 0.0251 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 120 0.4335 0.3242 0.0004 0.0112 30.3 0.0046 250 0.0914 0.3483 0.4264 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Sweepers/Scrubbet 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0011 25 0.0237 0.0808 0.1495 0.0002 0.0056 19.6 0.0021 50 0.0522 0.2974 0.2539 0.0004 0.0137 31.6 0.0047 120 0.0667 0.4983 0.4442 0.0009 0.0291 75.0 0.0058 250 0.0894 0.3218 0.6073 0.0018 0.0204 162 0.0081 Sweepers/Scrubbers Composite 0.0661 0.4946 0.4308 0.0009 0.0221 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 120 0.0497 0.2839 0.2342 0.0014 0.0121 30.3 0.0045 175 0.0669 0.5845 0.4264 0.011 0.0218 101 0.0060 250 0.01788 0.6771 1.0736 <td>Surfacing Equipmen</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Surfacing Equipmen								
25 0.0237 0.0808 0.1495 0.0002 0.0056 19.6 0.0021 50 0.0522 0.2974 0.2539 0.0004 0.0137 31.6 0.0041 120 0.0667 0.4983 0.4442 0.0009 0.0291 75.0 0.0058 175 0.0966 0.8030 0.6280 0.0016 0.0337 139 0.0087 Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0002 0.0046 15.9 0.0017 Tractors/Loaders/B 25 0.0914 0.3426 0.2937 0.0006 0.0121 30.3 0.0045 120 0.0435 0.3426 0.2937 0.0004 0.0114 50.7 0.0082 175 0.0669 0.5845 0.4264 0.0011 0.0218 101 0.0062 250 0.914 0.3483 0.5964 0.0019 0.2020 172 0.0821 Tractors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331									
50 0.0522 0.2974 0.2539 0.0004 0.0137 31.6 0.0047 120 0.0647 0.4983 0.4442 0.0009 0.0291 75.0 0.0058 175 0.0966 0.8030 0.6280 0.0016 0.0337 139 0.0087 Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0009 0.0251 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 50 0.0497 0.2339 0.2342 0.0004 0.0121 30.3 0.0045 120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0082 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0756 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0058 <									
120 0.0647 0.4983 0.4442 0.0099 0.0291 75.0 0.0058 175 0.0966 0.8030 0.6280 0.0016 0.0337 139 0.0087 Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0009 0.0251 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 50 0.0497 0.2839 0.2342 0.0004 0.0121 30.3 0.0045 120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0082 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0736 0.0385 345 0.0416 750 0.2691 1.0154 1.6525 0.0058 0.0585 517 0.0243 Trenchers 15 0.0099 0.0517 0.0617 0.0001									
175 0.0966 0.8030 0.6280 0.0016 0.0337 139 0.0087 Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0009 0.0251 78.5 0.0001 Tractors/Loaders/B 25 0.0191 0.0663 0.1211 0.0002 0.0446 15.9 0.0015 120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0039 175 0.0669 0.5845 0.4264 0.0011 0.0218 101 0.0060 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0085 500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0088 0.0585 517 0.0243 Trenchers 15 0.0099 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 120 0.03959 0.4498 0.5899									
250 0.0894 0.3218 0.6073 0.0018 0.0204 162 0.0081 Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0009 0.0251 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0039 175 0.0669 0.5845 0.4264 0.0011 0.0218 101 0.0060 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0084 500 0.1788 0.6771 1.0736 0.0039 0.385 345 0.0161 750 0.2691 1.0154 1.6525 0.0038 0.0189 66.8 0.0009 17ectors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331 0.0004 0.0224 8.5 0.0039 17ectors/Loaders/Backhoes Comp 0.0517 0.617									
Sweepers/Scrubbers Composite 0.0681 0.4946 0.4308 0.0009 0.0251 78.5 0.0061 Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 50 0.0497 0.2839 0.2342 0.0004 0.0121 30.3 0.0045 120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0039 175 0.0669 0.5845 0.4264 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0058 0.0585 517 0.024 Tractors/Loaders/Backhoes Comp 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 1ca 0.0999 0.4498 0.5899 0.0004 0.0255 32.9 0.0036 120 0.0959 0.4498 0.5899 0.0004									
Tractors/Loaders/B 25 0.0191 0.0653 0.1211 0.0002 0.0046 15.9 0.0017 50 0.0497 0.2839 0.2342 0.0004 0.0121 30.3 0.0045 120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0039 175 0.0669 0.5845 0.4264 0.0011 0.0218 101 0.0060 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0088 0.0189 66.8 0.0046 Tractors/Loaders/Backhoes Comp 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 176 0.0397 0.1355 0.2509 0.0044 0.0255 32.9 0.0103 120 0.0959 0.4498 0.5899 0.00048 0.0477	Sweepers/Scrubber								
50 0.0497 0.2839 0.2342 0.0004 0.0121 30.3 0.0045 120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0039 175 0.0669 0.5845 0.4264 0.0011 0.0218 101 0.0060 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0058 0.0585 517 0.0241 Tractors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331 0.0008 0.0189 66.8 0.0096 750 0.2112 0.3647 0.2331 0.0004 0.0225 32.9 0.0103 120 0.0959 0.4498 0.5899 0.0004 0.0255 32.9 0.0103 120 0.0959 0.4498 0.5823 1.5446 0.0025 0.582<									
120 0.0435 0.3426 0.2937 0.0006 0.0184 51.7 0.0039 175 0.0669 0.5845 0.4264 0.0011 0.0218 101 0.0060 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0058 0.0585 517 0.0243 Tractors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331 0.0008 0.0189 66.8 0.0094 Trenchers 15 0.0099 0.0517 0.0617 0.0001 0.0024 8.5 0.00036 50 0.1142 0.3647 0.2965 0.0004 0.0255 32.9 0.0037 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 250 0.1783 0.5823 1.5446 0.0025 0.05	1100010/ E000013/ D								
175 0.0669 0.5845 0.4264 0.0011 0.0218 101 0.0060 250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0058 0.0189 66.8 0.0044 Tractors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331 0.0004 0.0024 8.5 0.0099 25 0.0397 0.1355 0.2509 0.0004 0.0024 8.5 0.0087 120 0.0959 0.4498 0.5899 0.0008 0.4477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.06607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311									
250 0.0914 0.3483 0.5964 0.0019 0.0200 172 0.0082 500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0058 0.0585 517 0.0243 Tractors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331 0.0008 0.0189 66.8 0.0046 Trenchers 15 0.0099 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 50 0.1142 0.3647 0.2965 0.0004 0.0954 32.9 0.0036 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740									
500 0.1788 0.6771 1.0736 0.0039 0.0385 345 0.0161 750 0.2691 1.0154 1.6525 0.0058 0.0585 517 0.0243 Tractors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331 0.0008 0.0189 66.8 0.0046 Trenchers 15 0.0099 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 50 0.1142 0.3647 0.2965 0.0004 0.0944 32.9 0.0036 50 0.1142 0.3647 0.2965 0.0004 0.0255 32.9 0.0103 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0667 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740									
750 0.2691 1.0154 1.6525 0.0058 0.0585 517 0.0243 Tractors/Loaders/Backhoes Comp 0.0513 0.3647 0.3331 0.0008 0.0189 66.8 0.0046 Trenchers 15 0.0099 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 25 0.0397 0.1355 0.2509 0.0004 0.0094 32.9 0.0036 50 0.1142 0.3647 0.2965 0.0004 0.0255 32.9 0.0087 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413									
Tractors/Loaders/Backhoes Com; 0.0513 0.3647 0.3331 0.0008 0.0189 66.8 0.0046 Trenchers 15 0.0099 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 25 0.0397 0.1355 0.2509 0.0004 0.0094 32.9 0.0036 50 0.1142 0.3647 0.2965 0.0004 0.0255 32.9 0.0036 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.2009 750 0.4382 1.7994 3.7533 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.000									
Trenchers 15 0.0099 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 25 0.0397 0.1355 0.2509 0.0004 0.0094 32.9 0.0036 50 0.1142 0.3647 0.2965 0.0004 0.0255 32.9 0.0103 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001	Tractors/Loaders/Ba								
25 0.0397 0.1355 0.2509 0.0004 0.0094 32.9 0.0036 50 0.1142 0.3647 0.2965 0.0004 0.0255 32.9 0.0103 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144									
50 0.1142 0.3647 0.2965 0.0004 0.0255 32.9 0.0103 120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 120 0.0398 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205									
120 0.0959 0.4498 0.5899 0.0008 0.0477 64.9 0.0087 175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 25 0.0161 0.0504 0.0927 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205									
175 0.1505 0.8436 1.1021 0.0016 0.0607 144 0.0136 250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 25 0.0161 0.0504 0.0927 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205 39.5 0.0036 175 0.0703 0.5400 0.5536 0.0011 0.0283									
250 0.1783 0.5823 1.5446 0.0025 0.0582 223 0.0161 500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 25 0.0161 0.0504 0.0927 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205 39.5 0.0063 175 0.0703 0.5400 0.5536 0.0011 0.0283 98.2 0.0063 250 0.0617 0.2348 0.5828 0.0013 0.0179									
500 0.2312 0.9564 1.9434 0.0031 0.0740 311 0.0209 750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 25 0.0161 0.0504 0.0927 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205 39.5 0.0063 175 0.0703 0.5400 0.5536 0.0011 0.0283 98.2 0.0063 250 0.0617 0.2348 0.5828 0.0013 0.0179 119 0.0056 500 0.0825 0.3196 0.7244 0.0016 0.0239									
750 0.4382 1.7994 3.7533 0.0059 0.1413 587 0.0395 Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 25 0.0161 0.0504 0.0927 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205 39.5 0.0063 175 0.0703 0.5400 0.5536 0.0011 0.0283 98.2 0.0063 250 0.0617 0.2348 0.5828 0.0013 0.0179 119 0.0056 500 0.0825 0.3196 0.7244 0.0016 0.0239 168 0.0074									
Trenchers Composite 0.1061 0.4368 0.5117 0.0007 0.0393 58.7 0.0096 Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 25 0.0161 0.0504 0.0927 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205 39.5 0.0036 175 0.0703 0.5400 0.5536 0.0011 0.0283 98.2 0.0063 250 0.0617 0.2348 0.5828 0.0013 0.0179 119 0.0056 500 0.0825 0.3196 0.7244 0.0016 0.0239 168 0.0074								-	
Welders 15 0.0084 0.0392 0.0522 0.0001 0.0028 6.2 0.0008 25 0.0161 0.0504 0.0927 0.0001 0.0047 11.3 0.0015 50 0.0563 0.2339 0.2108 0.0003 0.0144 26.0 0.0051 120 0.0398 0.2540 0.2787 0.0005 0.0205 39.5 0.0036 175 0.0703 0.5400 0.5536 0.0011 0.0283 98.2 0.0063 250 0.0617 0.2348 0.5828 0.0013 0.0179 119 0.0056 500 0.0825 0.3196 0.7244 0.0016 0.0239 168 0.0074	Trenchers Composi								
250.01610.05040.09270.00010.004711.30.0015500.05630.23390.21080.00030.014426.00.00511200.03980.25400.27870.00050.020539.50.00361750.07030.54000.55360.00110.028398.20.00632500.06170.23480.58280.00130.01791190.00565000.08250.31960.72440.00160.02391680.074									
500.05630.23390.21080.00030.014426.00.00511200.03980.25400.27870.00050.020539.50.00361750.07030.54000.55360.00110.028398.20.00632500.06170.23480.58280.00130.01791190.00565000.08250.31960.72440.00160.02391680.074									
120 0.0398 0.2540 0.2787 0.0005 0.0205 39.5 0.0036 175 0.0703 0.5400 0.5536 0.0011 0.0283 98.2 0.0063 250 0.0617 0.2348 0.5828 0.0013 0.0179 119 0.0056 500 0.0825 0.3196 0.7244 0.0016 0.0239 168 0.0074									
1750.07030.54000.55360.00110.028398.20.00632500.06170.23480.58280.00130.01791190.00565000.08250.31960.72440.00160.02391680.0074									
2500.06170.23480.58280.00130.01791190.00565000.08250.31960.72440.00160.02391680.0074		-							
500 0.0825 0.3196 0.7244 0.0016 0.0239 168 0.0074									
Welders Composite I 0.0388 0.1876 0.1941 0.0003 0.0133 25.6 0.0035	Welders Composite		0.0388	0.1876	0.1941	0.0003	0.0133	25.6	0.0035

Tier 4 Final Emission Rates

Adjusted EF = Steady State EF x TAF x DF

Where:

EF = Emission Factor
TAF = Transient Adjustment Factor
DF = Deterioration Factor

Note: TAF = 1.0 for Tier 4 equipment

Deterioration "A"

ROG	0.027
CO	0.151
NOx	0.008
PM10	0.473

DF

ROG	1.0135
CO	1.0755
NOx	1.004
PM10	1.2365

				Steady St	tate Emiss	ion Factors (g/bhphr)		Adjusted Emission Factors (g/bhphr)				Adjusted Emission Factors (lb/hr)							
Equipment	HP Rating	Load Factor	ROG	СО	NOX	SOX	PM	CO2	ROG	СО	NOX	SOX	PM	CO2	ROG	CO	NOX	SOX	PM	CO2
Drill Rig	250	0.43	0.1314	0.075	0.276	0.004998	0.0092	394.6	0.133174	0.080663	0.277104	0.004998	0.011376	394.6	0.031561	0.019116	0.065672	0.001184	0.002696	93.51784
Wheel Loader	150	0.465	0.1314	0.087	0.276	0.004998	0.0092	394.6	0.133174	0.093569	0.277104	0.004998	0.011376	394.6	0.020478	0.014388	0.04261	0.000768	0.001749	60.67786
Excavator	200	0.58	0.1314	0.075	0.276	0.004998	0.0092	394.6	0.133174	0.080663	0.277104	0.004998	0.011376	394.6	0.034057	0.020628	0.070864	0.001278	0.002909	100.9123
Pump Truck	175	0.74	0.1314	0.075	0.276	0.004998	0.0092	394.6	0.133174	0.080663	0.277104	0.004998	0.011376	394.6	0.03802	0.023029	0.079111	0.001427	0.003248	112.6564
Crane	375	0.43	0.1314	0.084	0.276	0.004998	0.0092	394.6	0.133174	0.090342	0.277104	0.004998	0.011376	394.6	0.047342	0.032116	0.098508	0.001777	0.004044	140.2768
Forklift	150	0.475	0.1314	0.087	0.276	0.004998	0.0092	394.6	0.133174	0.093569	0.277104	0.004998	0.011376	394.6	0.020919	0.014697	0.043527	0.000785	0.001787	61.98276
Pile Driving Machine	180	0.43	0.1314	0.075	0.276	0.004998	0.0092	394.6	0.133174	0.080663	0.277104	0.004998	0.011376	394.6	0.022724	0.013764	0.047284	0.000853	0.001941	67.33285
Dozer	400	0.59	0.1314	0.084	0.276	0.004998	0.0092	394.6	0.133174	0.090342	0.277104	0.004998	0.011376	394.6	0.069288	0.047003	0.144172	0.0026	0.005919	205.3043
Backhoe	150	0.465	0.1314	0.087	0.276	0.004998	0.0092	394.6	0.133174	0.093569	0.277104	0.004998	0.011376	394.6	0.020478	0.014388	0.04261	0.000768	0.001749	60.67786
Grader	175	0.575	0.1314	0.075	0.276	0.004998	0.0092	394.6	0.133174	0.080663	0.277104	0.004998	0.011376	394.6	0.029543	0.017894	0.061472	0.001109	0.002524	87.53705
Paver	34	0.62	0.1314	0.087	0.276	0.004998	0.0092	394.6	0.133174	0.093569	0.277104	0.004998	0.011376	394.6	0.006189	0.004348	0.012878	0.000232	0.000529	18.3382
Roller	125	0.575	0.1314	0.087	0.276	0.004998	0.0092	394.6	0.133174	0.093569	0.277104	0.004998	0.011376	394.6	0.021102	0.014826	0.043908	0.000792	0.001803	62.52647
Ballast Compressor	175	0.62	0.1314	0.075	0.276	0.004998	0.0092	394.6	0.133174	0.080663	0.277104	0.004998	0.011376	394.6	0.031855	0.019294	0.066283	0.001195	0.002721	94.38778
Ballast Regulator	175	0.62	0.1314	0.075	0.276	0.004998	0.0092	394.6	0.133174	0.080663	0.277104	0.004998	0.011376	394.6	0.031855	0.019294	0.066283	0.001195	0.002721	94.38778
Generator	49	0.74	0.1314	0.153	3	0.004998	0.0184	394.6	0.133174	0.164552	3.012	0.004998	0.022752	394.6	0.010646	0.013154	0.240774	0.0004	0.001819	31.54379
Air Compressor	150	0.48	0.1314	0.087	0.276	0.004998	0.0092	394.6	0.133174	0.093569	0.277104	0.004998	0.011376	394.6	0.021139	0.014852	0.043985	0.000793	0.001806	62.63521

Heavy Trucks

	CH4	CO	CO2	HC	NOx	PM	PM10	PM2_5	ROG	SOx	TOG
35 MPH	0.04226	0.479642	1412.196	0.096002	3.624155	0.018407	0.018296	0.017505	0.07219	0.013061	0.121438
Brake Wear						0.189	0.18522	0.07938			
Tire Wear						0.092	0.092	0.023			
Total	0.04226	0.479642	1412.196	0.096002	3.624155	0.299407	0.295516	0.119885	0.07219	0.013061	0.121438
lb/hr	0.003261	0.037009	108.9657	0.007408	0.279642	0.023102	0.022802	0.00925	0.00557	0.001008	0.00937

LDA

	CH4	CO	CO2	HC	NOx	PM	PM10	PM2_5	ROG	SOx	TOG
35 MPH	0.00271	0.685749	230.7754	0.011957	0.045605	0.001561	0.001403	0.001293	0.008933	0.002313	0.012984
Brake Wear						0.1125	0.11025	0.04725			
Tire Wear						0.024	0.024	0.006			
Total	0.00271	0.685749	230.7754	0.011957	0.045605	0.138061	0.135653	0.054543	0.008933	0.002313	0.012984
lb/hr	0.000209	0.052913	17.80674	0.000923	0.003519	0.010653	0.010467	0.004209	0.000689	0.000178	0.001002

LDT (gas)

	CH4	CO	CO2	HC	NOx	PM	PM10	PM2_5	ROG	SOx	TOG
35 MPH	0.00676	1.375955	271.3023	0.035713	0.133387	0.002385	0.002137	0.001967	0.026546	0.00273	0.038684
Brake Wear						0.1125	0.11025	0.04725			
Tire Wear						0.024	0.024	0.006			
Total	0.00676	1.375955	271.3023	0.035713	0.133387	0.138885	0.136387	0.055217	0.026546	0.00273	0.038684
lb/hr	0.000522	0.106169	20.93382	0.002756	0.010292	0.010716	0.010524	0.004261	0.002048	0.000211	0.002985

LDT (diesel)

	CH4	СО	CO2	HC	NOx	PM	PM10	PM2_5	ROG	SOx	TOG
35 MPH	0.004406	0.972576	291.835	0.020959	0.095824	0.001662	0.00149	0.001372	0.015606	0.002927	0.022723
Brake Wear						0.1125	0.11025	0.04725			
Tire Wear						0.024	0.024	0.006			
Total	0.004406	0.972576	291.835	0.020959	0.095824	0.138162	0.13574	0.054622	0.015606	0.002927	0.022723
lb/hr	0.00034	0.075044	22.51813	0.001617	0.007394	0.010661	0.010474	0.004215	0.001204	0.000226	0.001753

Appendix D: Operational Emission Calculations

(THIS PAGE INTENTIONALLY LEFT BLANK)

Train VMT

Existing Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	331	1.7	572.6	12.0	58.4	261.4	0.2	6.81	6.6	22,442.6
2026 No Build Conditions	Trips	Avg Length	VMT	VOC	CO	NO x	SOx	PM10	PM2.5	CO2
	331	1.7	572.6	4.2	58.4	140.6	0.2	2.64	2.6	22,442.6
2026 Build Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	398	1.5	612.9	4.5	62.5	150.5	0.2	2.82	2.7	24,021.7
2031 No Build Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	331	1.7	572.6	2.5	58.4	101.0	0.2	1.54	1.5	22,442.6
2031 Build Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	770	1.5	1,185.8	5.3	121.0	209.2	0.4	3.18	3.1	46,474.1
2040 No Build Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	331	1.7	572.6	1.2	58.4	50.5	0.2	0.66	0.6	22,442.6
2040 Build Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	842	1.5	1,296.7	2.6	132.3	114.4	0.5	1.49	1.4	50,819.7

Train Idling

				pounds per day							
Conditions	Trips	ldle time (hr)	Idle Hours	VOC	СО	NOx	SOx	PM10	PM2.5	CO2	
Existing	166	0.4	69.6	11.4	55.2	246.9	0.2	6.43	6.2	23122.7	
2026 No Build	166	0.4	69.6	3.9	55.2	132.8	0.2	2.49	2.4	23122.7	
2026 Build	199	0.3	54.2	3.1	42.9	103.3	0.2	1.94	1.9	17989.9	
2031 No Build	166	0.4	69.6	2.4	55.2	95.4	0.2	1.45	1.4	23122.7	
2031 Build	385	0.2	66.6	2.3	52.8	91.3	0.2	1.39	1.3	22126.0	
2040 No Build	166	0.4	69.6	1.1	55.2	47.7	0.2	0.62	0.6	23122.7	
2040 Build	421	0.2	72.7	1.1	57.6	49.8	0.2	0.65	0.6	24152.6	

Summary (lb/day)							
	VOC	СО	NOx	SOx	PM10	PM2.5	CO2
Existing	23.4	113.6	508.3	0.4	13.2	12.8	45,565.3
2026 No Build	8.1	113.6	273.4	0.4	5.1	5.0	45,565.3
Increase from Existing	-15.3	0.0	-234.9	0.0	-8.1	-7.9	0.0
2026 Build	7.5	105.5	253.8	0.4	4.8	4.6	42,011.5
Increase from Existing	-15.9	-8.1	-254.5	0.0	-8.5	-8.2	<i>-3,553.8</i>
Increase from No Build	-0.6	-8.1	-19.6	0.0	-0.4	-0.4	<i>-3,553.8</i>
2031 No Build	5.0	113.6	196.5	0.4	3.0	2.9	45,565.3
Increase from Existing	-18.5	0.0	-311.8	0.0	-10.3	-9.9	0.0
2031 Build	7.6	173.8	300.6	0.6	4.6	4.4	68,600.1

Increase from Existing	-15.8	60.2	-207.7	0.2	-8.7	-8.4	23,034.8	
Increase from No Build	2.6	60.2	104.1	0.2	1.6	1.5	23,034.8	
2040 N. D. 114	2.2	112 6	00.0		4.2	1.2		
2040 No Build	2.3	113.6	98.2	0.4	1.3	1.2	45,565.3	
Increase from Existing	-21.1	0.0	-410.0	0.0	-12.0	-11.6	0.0	
2040 Build	3.8	190.0	164.2	0.7	2.1	2.1	74,972.3	
Increase from Existing	-19.6	76.3	-344.0	0.3	-11.1	-10.8	29,407.0	
Increase from No Build	1.5	76.3	66.0	0.3	0.9	0.8	29,407.0	
Summary (tons/year)								Metric Tons
Summary (cons) yeary	voc	со	NOx	SOx	PM10	PM2.5	CO2	CO2
Existing	3.49	16.95	75.84	0.06	1.98	1.92	6,799.26	6,168.19
Existing	5.49	10.95	75.04	0.00	1.90	1.92	0,799.20	0,100.19
2026 No Build	1.21	16.95	40.79	0.06	0.76	0.74	6,799.3	6,168.2
Increase from Existing	-2.28	0.00	-35.05	0.00	-1.21	-1.17	0.00	0.00
2026 Build	1.12	15.74	37.87	0.06	0.71	0.69	6,269.0	5,687.1
Increase from Existing	-2.37	-1.21	-37.98	0.00	-1.27	-1.23	-530.30	-481.08
Increase from No Build	-0.09	-1.21	-2.92	0.00	-0.05	-0.05	-530.30	-481.08
2031 No Build	0.74	16.95	29.32	0.06	0.45	0.43	6,799.3	6,168.2
Increase from Existing	-2.75	0.00	-46.53	0.00	-1.53	-1.48	0,799.3	0,108.2
increase from Existing	-2.75	0.00	-40.55	0.00	-1.55	-1.40	0.0	0.0
2031 Build	1.13	25.93	44.85	0.09	0.68	0.66	10,236.5	9,286.4
Increase from Existing	-2.36	8.98	-30.99	0.03	-1.29	-1.25	3,437.3	3,118.2
Increase from No Build	0.39	<i>8.98</i>	15.53	0.03	0.24	0.23	3,437.3	3,118.2
2040 No Build	0.34	16.95	14.66	0.06	0.19	0.19	6,799.3	6,168.2
Increase from Existing	-3.15	0.00	-61.18	0.00	-1.78	-1.73	0.0	0,108.2
increase from Existing	-3.13	0.00	-01.10	0.00	-1.70	-1.75	0.0	0.0
2040 Build	0.56	28.34	24.51	0.10	0.32	0.31	11,187.4	10,149.0
Increase from Existing	-2.93	11.39	-51.34	0.04	-1.66	-1.61	4,388.1	3,980.8
Increase from No Build	0.23	11.39	9.85	0.04	0.13	0.12	4,388.1	3,980.8

Train VMT - Mitigated

Existing Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	331	1.7	572.6	12.0	58.4	261.4	0.2	6.81	6.6	22,442.6
2026 No Build Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	331	1.7	572.6	4.2	58.4	140.6	0.2	2.64	2.6	22,442.6
2026 Build Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	398	1.5	612.9	4.2	56.3	135.4	0.2	1.97	1.9	19,217.3
2031 No Build Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	331	1.7	572.6	2.5	58.4	101.0	0.2	1.54	1.5	22,442.6
2031 Build Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	770	1.5	1,185.8	5.0	108.9	188.3	0.4	2.23	2.2	37,179.3
2040 No Build Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	331	1.7	572.6	1.2	58.4	50.5	0.2	0.66	0.6	22,442.6
2040 Build Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	842	1.5	1,296.7	2.5	119.1	103.0	0.5	1.04	1.0	40,655.8

Train Idling - Mitigated

						p	ounds per o	day		
Conditions	Trips	ldle time (hr)	Idle Hours	VOC	СО	NOx	SOx	PM10	PM2.5	CO2
Existing	166	0.4	69.6	11.4	55.2	246.9	0.2	6.43	6.2	23122.7
2026 No Build	166	0.4	69.6	3.9	55.2	132.8	0.2	2.49	2.4	23122.7
2026 Build	199	0.3	54.2	2.9	38.6	93.0	0.2	1.36	1.3	14,391.9
2031 No Build	166	0.4	69.6	2.4	55.2	95.4	0.2	1.45	1.4	23122.7
2031 Build	385	0.2	66.6	2.2	47.5	82.2	0.2	0.97	0.9	17,700.8
2040 No Build	166	0.4	69.6	1.1	55.2	47.7	0.2	0.62	0.6	23122.7
2040 Build	421	0.2	72.7	1.1	51.9	44.9	0.2	0.46	0.4	19,322.1

Summary (lb/day) - Mitig	gated						
	VOC	СО	NOx	SOx	PM10	PM2.5	CO2
Existing	23.4	113.6	508.3	0.4	13.2	12.8	45,565.3
2026 No Build	8.1	113.6	273.4	0.4	5.1	5.0	45,565.3
Increase from Existing	-15.3	0.0	-234.9	0.0	-8.1	-7.9	0.0
2026 Build	7.2	94.9	228.4	0.4	3.3	3.2	33,609.2
Increase from Existing	-16.2	-18.7	-279.9	0.0	-9.9	-9.6	-11,956.1
Increase from No Build	-1.0	-18.7	-45.0	0.0	-1.8	-1.7	-11,956.1
2031 No Build	5.0	113.6	196.5	0.4	3.0	2.9	45,565.3
Increase from Existing	-18.5	0.0	-311.8	0.0	-10.3	-9.9	0.0
2031 Build	7.2	156.4	270.5	0.6	3.2	3.1	54,880.1
Increase from Existing	-16.2	42.8	-237.8	0.2	-10.0	-9.7	9,314.8
Increase from No Build	2.2	42.8	74.0	0.2	0.2	0.2	9,314.8
2040 No Build	2.3	113.6	98.2	0.4	1.3	1.2	45,565.3
Increase from Existing	-21.1	0.0	-410.0	0.0	-12.0	-11.6	0.0
2040 Build	3.6	171.0	147.8	0.7	1.5	1.5	59,977.9
Increase from Existing	-19.8	57.3	-360.4	0.3	-11.7	-11.4	14,412.5
Increase from No Build	1.3	57.3	49.6	0.3	0.2	0.2	14,412.5

Summary (tons/year) - M	litigated							Metric Tons
	VOC	СО	NOx	SOx	PM10	PM2.5	CO2	CO2
Existing	3.49	16.95	75.84	0.06	1.98	1.92	6,799.26	6,168.19
2026 No Build	1.21	16.95	40.79	0.06	0.76	0.74	6,799.3	6,168.2
Increase from Existing	-2.28	0.00	-35.05	0.00	-1.21	-1.17	0.00	0.00
2026 Build	1.07	14.16	34.08	0.06	0.50	0.48	5,015.2	4,549.7
Increase from Existing	-2.42	-2.79	-41.76	0.00	-1.48	-1.43	-1,784.09	-1,618.50
Increase from No Build	-0.14	-2.79	-6.71	0.00	-0.27	-0.26	-1,784.09	-1,618.50
2031 No Build	0.74	16.95	29.32	0.06	0.45	0.43	6,799.3	6,168.2
Increase from Existing	-2.75	0.00	-46.53	0.00	-1.53	-1.48	0.0	0.0
2031 Build	1.07	23.34	40.36	0.09	0.48	0.46	8,189.2	7,429.1
Increase from Existing	-2.42	6.39	-35.48	0.03	-1.50	-1.45	1,390.0	1,260.9
Increase from No Build	0.34	6.39	11.05	0.03	0.03	0.03	1,390.0	1,260.9
2040 No Build	0.34	16.95	14.66	0.06	0.19	0.19	6,799.3	6,168.2
Increase from Existing	-3.15	0.00	-61.18	0.00	-1.78	-1.73	0.0	0.0
2040 Build	0.54	25.51	22.06	0.10	0.22	0.22	8,949.9	8,119.2
Increase from Existing	-2.96	8.56	-53.79	0.04	-1.75	-1.70	2,150.6	1,951.0
Increase from No Build	0.20	8.56	7.40	0.04	0.03	0.03	2,150.6	1,951.0

Train VMT - Mitigated				0.7	0.63					
Existing Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	331	1.7	572.6	12.0	58.4	261.4	0.2	6.81	6.6	22,442.6
2026 No Build Conditions	Trips	Avg Length	VMT	VOC	CO	NO x	SOx	PM10	PM2.5	CO2
	331	1.7	572.6	4.2	58.4	140.6	0.2	2.64	2.6	22,442.6
2026 Build Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	398	1.5	612.9	4.2	56.3	135.4	0.2	1.97	1.9	19,217.3
2031 No Build Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	331	1.7	572.6	2.5	58.4	101.0	0.2	1.54	1.5	22,442.6
2031 Build Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	770	1.5	1,185.8	3.5	76.2	131.8	0.3	1.56	1.5	26,025.5
2040 No Build Conditions	Trips	Avg Length	VMT	VOC	CO	NO x	SOx	PM10	PM2.5	CO2
	331	1.7	572.6	1.2	58.4	50.5	0.2	0.66	0.6	22,442.6
2040 Build Conditions	Trips	Avg Length	VMT	VOC	CO	NOx	SOx	PM10	PM2.5	CO2
	842	1.5	1,296.7	1.6	75.0	64.9	0.3	0.66	0.6	25,613.1

Train Idling - Mitigated

				pounds per day							
Conditions	Trips	ldle time (hr)	Idle Hours	VOC	СО	NOx	SOx	PM10	PM2.5	CO2	
Existing	166	0.4	69.6	11.4	55.2	246.9	0.2	6.43	6.2	23122.7	
2026 No Build	166	0.4	69.6	3.9	55.2	132.8	0.2	2.49	2.4	23122.7	
2026 Build	199	0.3	54.2	2.9	38.6	93.0	0.2	1.36	1.3	14,391.9	
2031 No Build	166	0.4	69.6	2.4	55.2	95.4	0.2	1.45	1.4	23122.7	
2031 Build	385	0.2	66.6	2.2	47.5	82.2	0.2	0.97	0.9	17,700.8	
2040 No Build	166	0.4	69.6	1.1	55.2	47.7	0.2	0.62	0.6	23122.7	
2040 Build	421	0.2	72.7	1.1	51.9	44.9	0.2	0.46	0.4	19,322.1	

Summary (lb/day) - Mitig	gated						
	VOC	СО	NOx	SOx	PM10	PM2.5	CO2
Existing	23.4	113.6	508.3	0.4	13.2	12.8	45,565.3
2026 No Build	8.1	113.6	273.4	0.4	5.1	5.0	45,565.3
Increase from Existing	-15.3	0.0	-234.9	0.0	-8.1	-7.9	0.0
2026 Build	7.2	94.9	228.4	0.4	3.3	3.2	33,609.2
Increase from Existing	-16.2	-18.7	-279.9	0.0	-9.9	-9.6	-11,956.1
Increase from No Build	-1.0	-18.7	-45.0	0.0	-1.8	-1.7	-11,956.1
2031 No Build	5.0	113.6	196.5	0.4	3.0	2.9	45,565.3
Increase from Existing	-18.5	0.0	-311.8	0.0	-10.3	-9.9	0.0
2031 Build	5.7	123.8	214.0	0.5	2.5	2.5	43,726.3
Increase from Existing	-17.7	10.1	-294.3	0.1	-10.7	-10.4	-1,839.0
Increase from No Build	0.7	10.1	17.5	0.1	-0.5	-0.4	-1,839.0
2040 No Build	2.3	113.6	98.2	0.4	1.3	1.2	45,565.3
Increase from Existing	-21.1	0.0	-410.0	0.0	-12.0	-11.6	0.0
2040 Build	2.7	126.9	109.7	0.5	1.1	1.1	44,935.2
Increase from Existing	-20.7	13.3	-398.5	0.1	-12.1	-11.8	-630.1
Increase from No Build	0.4	13.3	11.5	0.1	-0.2	-0.2	-630.1

Summary (tons/year) - N	ummary (tons/year) - Mitigated Metric Tons							
	VOC	СО	NOx	SOx	PM10	PM2.5	CO2	CO2
Existing	3.49	16.95	75.84	0.06	1.98	1.92	6,799.26	6,168.19
2026 No Build	1.21	16.95	40.79	0.06	0.76	0.74	6,799.3	6,168.2
Increase from Existing	-2.28	0.00	-35.05	0.00	-1.21	-1.17	0.00	0.00
2026 Build	1.07	14.16	34.08	0.06	0.50	0.48	5,015.2	4,549.7
Increase from Existing	-2.42	-2.79	-41.76	0.00	-1.48	-1.43	-1,784.09	-1,618.50
Increase from No Build	-0.14	-2.79	-6.71	0.00	-0.27	-0.26	-1,784.09	-1,618.50
2031 No Build	0.74	16.95	29.32	0.06	0.45	0.43	6,799.3	6,168.2
Increase from Existing	-2.75	0.00	-46.53	0.00	-1.53	-1.48	0.0	0.0
2031 Build	0.85	18.47	31.93	0.07	0.38	0.37	6,524.8	5,919.2
Increase from Existing	-2.64	1.51	-43.91	0.01	-1.60	-1.55	-274.4	-248.9
Increase from No Build	0.11	1.51	2.62	0.01	-0.07	-0.07	-274.4	-248.9
2040 No Build	0.34	16.95	14.66	0.06	0.19	0.19	6,799.3	6,168.2
Increase from Existing	-3.15	0.00	-61.18	0.00	-1.78	-1.73	0.0	0.0
2040 Build	0.40	18.94	16.37	0.07	0.17	0.16	6,705.2	6,082.9
Increase from Existing	-3.09	1.98	-59.47	0.01	-1.81	-1.76	-94.0	-85.3
Increase from No Build	0.06	1.98	1.71	0.01	-0.03	-0.02	-94.0	-85.3

Rail Emission Rates - 2016

Pollutant	g/gal	g/mile			
VOC	5.48	9.5352			
CO	26.6	46.284			
NOx	119	207.06			
SOx	0.094	0.16356			
PM10	3.1	5.394			
PM2.5	3.007	5.23218			
CO2	10217	17777.58			

Rail Emission Rates - 2026

Pollutant	g/gal	g/mile
VOC	1.9	3.306
CO	26.6	46.284
NOx	64	111.36
SOx	0.094	0.16356
PM10	1.2	2.088
PM2.5	1.164	2.02536
CO2	10217	17777.58
NOx SOx PM10 PM2.5	64 0.094 1.2 1.164	111.36 0.16356 2.088 2.02536

Rail Emission Rates - 2031

Pollutant	g/gal	g/mile			
VOC	1.16	2.0184			
CO	26.6	46.284			
NOx	46	80.04			
SOx	0.094	0.16356			
PM10	0.7	1.218			
PM2.5	0.679	1.18146			
CO2	10217	17777.58			

Rail Emission Rates - 2040

Pollutant	g/gal	g/mile
VOC	0.53	0.9222
CO	26.6	46.284
NOx	23	40.02
SOx	0.094	0.16356
PM10	0.3	0.522
PM2.5	0.291	0.50634
CO2	10217	17777.58

	CO	VOC	NOx	SOx	PM10	CO2
Description	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
Locomotive (idling) ^a	0.793	0.163	3.547	0.003	0.092	332.223

Locomotive Emission Factors^b

	СО	VOC	NOx	SOx	PM10
Description	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)
2016 Fleet Average	1.28	0.2634615	5.7	0.00	0.1490385

Notes/Assumptions

g/hp-hr means grams per horsepower-hour

^aIdling Emissions [lb/day] = (Emission Factor [g/hp-hr]) x (1/BSFC [hp-hr/lb]) x (Fuel Density [lb/gal]) x (Fuel Use [gal/hr]) x (Idling Time [hr/day]) x (1/453.6 [lb/g])

Locomotive rating:	3200 horsepower (hp)
Idling time:	1 hr/day
Fuel:	Diesel
Fuel usage while idling:	15 gal/hr

^b CO, VOC (HC), NOx, and PM10 (PM) emission factors from EPA's *Exhaust Emission Standards - 40CFR1033.101*

SOx emission factor calculated based on sulfur content of diesel fuel:

SCAQMD Rule 431.2 (Sulfur Content of Liquid Fuels) limits the sulfur content of liquid fuels sold in the District to 500 ppmw. Effective 1 Jan 2005, a refiner or importer shall not produce or supply any diesel fuel for any stationary or mobile source application in the District, unless the diesel fuel is low sulfur diesel for which the sulfur content shall not exceed 15 ppm by weight.

Diesel fuel sulfur content:	15 ppmw (as S)
Diesel fuel fuel density:	6.943 lb/gal
Higher Heating Value (HHV) of diesel fuel:	138000 Btu/gal
Brake Specific Fuel Consumption (BSFC):	0.37 lb/hp-hr
	7354 Btu/hp-hr

SOx as SO2 (lb/hp-hr) = (ppmw as S/1000000) x (Fuel Density [lb/gal]) x (1 gal/138000 Btu) x (1 lb-mol S/32 lb S) x (1 lb-mole SO2/1 lb-mole S) x (64 lb SO2/1 lb-mole SO2) x (BSFC [Btu/hp-hr]) SOx EF: 1.11E-05 lb/hp-hr 0.01 g/hp-hr

CO2 emission factor calculated based on carbon content of fuel

CO2 = (fuel desity [g/gal]) x (44 g of CO2/12 g C) x (carbon content of diesel fuel)

CO2 EF: 10046 g/gal

@ 15 gal/hr: 332 lb/hr

	СО	VOC	NOx	SOx	PM10	CO2
Description	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
Locomotive (idling) ^a	0.793	0.057	1.908	0.003	0.036	332.223

Locomotive Emission Factors^b

	СО	VOC	NOx	SOx	PM10
Description	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)
2026 Fleet Average	1.28	0.0913462	3.1	0.00	0.0576923

Notes/Assumptions

g/hp-hr means grams per horsepower-hour

^aIdling Emissions [lb/day] = (Emission Factor [g/hp-hr]) x (1/BSFC [hp-hr/lb]) x (Fuel Density [lb/gal]) x (Fuel Use [gal/hr]) x (Idling Time [hr/day]) x (1/453.6 [lb/g])

Locomotive rating:	3200 horsepower (hp)
Idling time:	1 hr/day
Fuel:	Diesel
Fuel usage while idling:	15 gal/hr

^b CO, VOC (HC), NOx, and PM10 (PM) emission factors from EPA's *Exhaust Emission Standards* - 40CFR1033.101

SOx emission factor calculated based on sulfur content of diesel fuel:

SCAQMD Rule 431.2 (Sulfur Content of Liquid Fuels) limits the sulfur content of liquid fuels sold in the District to 500 ppmw. Effective 1 Jan 2005, a refiner or importer shall not produce or supply any diesel fuel for any stationary or mobile source application in the District, unless the diesel fuel is low sulfur diesel for which the sulfur content shall not exceed 15 ppm by weight.

Diesel fuel sulfur content:	15 ppmw (as S)
Diesel fuel fuel density:	6.943 lb/gal
Higher Heating Value (HHV) of diesel fuel:	138000 Btu/gal
Brake Specific Fuel Consumption (BSFC):	0.37 lb/hp-hr
	7354 Btu/hp-hr

SOx as SO2 (lb/hp-hr) = (ppmw as S/1000000) x (Fuel Density [lb/gal]) x (1 gal/138000 Btu) x (1 lb-mol S/32 lb S) x (1 lb-mole SO2/1 lb-mole S) x (64 lb SO2/1 lb-mole SO2) x (BSFC [Btu/hp-hr]) SOx EF: 1.11E-05 lb/hp-hr

0.01 g/hp-hr

CO2 emission factor calculated based on carbon content of fuel

CO2 = (fuel desity [g/gal]) x (44 g of CO2/12 g C) x (carbon content of diesel fuel)

CO2 EF:	10046	g/gal
@ 15 gal/hr:	332	lb/hr

	СО	VOC	NOx	SOx	PM10	CO2
Description	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
Locomotive (idling) ^a	0.793	0.035	1.371	0.003	0.021	332.223

Locomotive Emission Factors^b

	CO	VOC	NOx	SOx	PM10
Description	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)
2031 Fleet Average	1.28	0.0557692	2.2	0.00	0.0336538

Notes/Assumptions

g/hp-hr means grams per horsepower-hour

^aIdling Emissions [lb/day] = (Emission Factor [g/hp-hr]) x (1/BSFC [hp-hr/lb]) x (Fuel Density [lb/gal]) x (Fuel Use [gal/hr]) x (Idling Time [hr/day]) x (1/453.6 [lb/g])

Locomotive rating:	3200 horsepower (hp)
Idling time:	1 hr/day
Fuel:	Diesel
Fuel usage while idling:	15 gal/hr

^b CO, VOC (HC), NOx, and PM10 (PM) emission factors from EPA's *Exhaust Emission Standards* - 40CFR1033.101

SOx emission factor calculated based on sulfur content of diesel fuel:

SCAQMD Rule 431.2 (Sulfur Content of Liquid Fuels) limits the sulfur content of liquid fuels sold in the District to 500 ppmw. Effective 1 Jan 2005, a refiner or importer shall not produce or supply any diesel fuel for any stationary or mobile source application in the District, unless the diesel fuel is low sulfur diesel for which the sulfur content shall not exceed 15 ppm by weight.

Diesel fuel sulfur content:	15 ppmw (as S)
Diesel fuel fuel density:	6.943 lb/gal
Higher Heating Value (HHV) of diesel fuel:	138000 Btu/gal
Brake Specific Fuel Consumption (BSFC):	0.37 lb/hp-hr
	7354 Btu/hp-hr

SOx as SO2 (lb/hp-hr) = (ppmw as S/1000000) x (Fuel Density [lb/gal]) x (1 gal/138000 Btu) x (1 lb-mol S/32 lb S) x (1 lb-mole SO2/1 lb-mole S) x (64 lb SO2/1 lb-mole SO2) x (BSFC [Btu/hp-hr]) SOx EF: 1.11E-05 lb/hp-hr

0.01 g/hp-hr

CO2 emission factor calculated based on carbon content of fuel

CO2 = (fuel desity [g/gal]) x (44 g of CO2/12 g C) x (carbon content of diesel fuel)

CO2 EF:	10046	g/gal
@ 15 gal/hr:	332	lb/hr

Description	CO	VOC	NOx	SOx	PM10
	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
Locomotive (idling) ^a	0.793	0.016	0.686	0.003	0.009

Locomotive Emission Factors^b

	СО	VOC	NOx	SOx	PM10
Description	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)
2040 Fleet Average	1.28	0.0254808	1.1	0.00	0.0144231

Notes/Assumptions

g/hp-hr means grams per horsepower-hour

^aIdling Emissions [lb/day] = (Emission Factor [g/hp-hr]) x (1/BSFC [hp-hr/lb]) x (Fuel Density [lb/gal]) x (Fuel Use [gal/hr]) x (Idling Time [hr/day]) x (1/453.6 [lb/g])

Locomotive rating:	3200 horsepower (hp)
Idling time:	1 hr/day
Fuel:	Diesel
Fuel usage while idling:	15 gal/hr

^b CO, VOC (HC), NOx, and PM10 (PM) emission factors from EPA's *Exhaust Emission Standards - 40CFR1033.101*

SOx emission factor calculated based on sulfur content of diesel fuel:

SCAQMD Rule 431.2 (Sulfur Content of Liquid Fuels) limits the sulfur content of liquid fuels sold in the District to 500 ppmw. Effective 1 Jan 2005, a refiner or importer shall not produce or supply any diesel fuel for any stationary or mobile source applic in the District, unless the diesel fuel is low sulfur diesel for which the sulfur content shall not exceed 15 ppm by weight.

Diesel fuel sulfur content:	15 ppmw (as S)
Diesel fuel fuel density:	6.943 lb/gal
Higher Heating Value (HHV) of diesel fuel:	138000 Btu/gal
Brake Specific Fuel Consumption (BSFC):	0.37 lb/hp-hr
	7354 Btu/hp-hr

SOx as SO2 (lb/hp-hr) = (ppmw as S/100000) x (Fuel Density [lb/gal]) x (1 gal/138000 Btu) x (1 lb-mol S/32 lb S) x (1 lb-mole SO2/1 lb-mole S) x (64 lb SO2/1 lb-mole SO2) x (BSFC [Btu/hp-SOx EF: 1.11E-05 lb/hp-hr 0.01 g/hp-hr

CO2 emission factor calculated based on carbon content of fuel

CO2 = (fuel desity [g/gal]) x (44 g of CO2/12 g C) x (carbon content of diesel fuel)

CO2 EF: 10046 g/gal

@ 15 gal/hr: 332 lb/hr

CO2
(lb/day)
332.223

cation

hr])

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

Link US - 2031 Operational Emissions

South Coast Air Basin, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	30.00	1000sqft	0.69	30,000.00	0
Regional Shopping Center	410.60	1000sqft	9.43	410,600.00	0
Strip Mall	159.40	1000sqft	3.66	159,400.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	12			Operational Year	2031
Utility Company	Los Angeles Department	of Water & Power			
CO2 Intensity (Ib/MWhr)	834	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.2

Page 2 of 19

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

Project Characteristics - Intensity factor from LADWP 2017 Power Strategic Long-Term Resource Plan

Land Use - Regional Shopping Center represents the new passenger concourse space not included in the retail or office uses

Construction Phase - Construction is calculated separately

Off-road Equipment - Construction is calculated separately

Trips and VMT - Construction is calculated separately

Architectural Coating - Construction is calculated separately

Vehicle Trips - Trip rates from traffic analysis

Energy Use - .

Energy Mitigation - CalEEMod includes 2013 Title 24. 2016 Title 24 is 5% more energy efficient for non-residential uses

Table Name	Column Name	Default Value	New Value		
tblArchitecturalCoating	ConstArea_Nonresidential_Exterior	300,000.00	0.00		
tblArchitecturalCoating	ConstArea_Nonresidential_Interior	900,000.00	0.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00		
tblProjectCharacteristics	CO2IntensityFactor	1227.89	834		
tblTripsAndVMT	WorkerTripNumber	38.00	0.00		
tblVehicleTrips	ST_TR	2.46	0.49		
tblVehicleTrips	ST_TR	49.97	0.00		
tblVehicleTrips	ST_TR	42.04	8.10		
tblVehicleTrips	SU_TR	1.05	0.21		
tblVehicleTrips	SU_TR	25.24	0.00		
tblVehicleTrips	SU_TR	20.43	3.94		
tblVehicleTrips	WD_TR	11.03	2.21		
tblVehicleTrips	WD_TR	42.70	0.00		
tblVehicleTrips	WD_TR	44.32	8.54		

2.0 Emissions Summary

Page 3 of 19

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr								MT/yr							
2021	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr									MT/yr						
2021	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Page 4 of 19

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
		Highest		

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	7/yr		
Area	2.4469	7.0000e- 005	7.6200e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0149	0.0149	4.0000e- 005	0.0000	0.0159
Energy	6.7200e- 003	0.0611	0.0514	3.7000e- 004		4.6500e- 003	4.6500e- 003		4.6500e- 003	4.6500e- 003	0.0000	3,124.960 0	3,124.960 0	0.1076	0.0232	3,134.571 0
Mobile	0.1920	1.0994	2.0832	9.5400e- 003	0.9621	5.7800e- 003	0.9678	0.2577	5.3700e- 003	0.2630	0.0000	889.0200	889.0200	0.0377	0.0000	889.9630
Waste	F;		1	•		0.0000	0.0000		0.0000	0.0000	127.1535	0.0000	127.1535	7.5146	0.0000	315.0175
Water			y			0.0000	0.0000		0.0000	0.0000	15.0865	356.7331	371.8196	1.5619	0.0392	422.5358
Total	2.6456	1.1606	2.1422	9.9100e- 003	0.9621	0.0105	0.9725	0.2577	0.0101	0.2677	142.2400	4,370.727 9	4,512.967 9	9.2219	0.0624	4,762.103 1

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitiv PM10		PM10 Total	Fugitiv PM2		aust 12.5	PM2.5 Total	Bio- CO2	2 NBio	CO2	Total CO2	CH4	N2O	CO2e
Category						tons/yr									M	Г/yr		
Area	2.4469	7.0000e- 005	7.6200e- 003	0.0000		3.0000e 005	- 3.0000e- 005			00e- 05	3.0000e- 005	0.0000	0.0	149	0.0149	4.0000e- 005	0.0000	0.0159
Energy	6.4700e- 003	0.0588	0.0494	3.5000e- 004		4.4700e 003	4.4700e- 003		4.47 0	00e- 03	4.4700e- 003	0.0000	3,07	6.565 1	3,076.565 1	0.1060	0.0229	3,086.022 9
Mobile	0.1920	1.0994	2.0832	9.5400e- 003	0.962	5.7800e 003	0.9678	0.257		00e- 03	0.2630	0.0000	889.	0200	889.0200	0.0377	0.0000	889.9630
Waste	F,	,				0.0000	0.0000		0.0	000	0.0000	127.153	5 0.0	000	127.1535	7.5146	0.0000	315.0175
Water	F,	,				0.0000	0.0000		0.0	000	0.0000	15.0865	356.	7331	371.8196	1.5619	0.0392	422.5358
Total	2.6454	1.1583	2.1402	9.8900e- 003	0.962	0.0103	0.9723	0.257		00e- 03	0.2675	142.2400	4,32	2.333 1	4,464.573 1	9.2202	0.0620	4,713.555 0
	ROG	1	lOx	CO S	602 F			M10 Fotal	Fugitive PM2.5	Exha PM			- CO2	NBio-C	CO2 Total	CO2 CI	H4 I	N20 CO26
Percent Reduction	0.01	(0.20	0.09 ().20	0.00	1.72	0.02	0.00	1.	79 0.0)7 ().00	1.11	1 1.0)7 0.	02 ().59 1.02

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Architectural Coating	Architectural Coating	1/4/2021	1/3/2021	5	20	

Acres of Grading (Site Preparation Phase): 0

CalEEMod Version: CalEEMod.2016.3.2

Page 6 of 19

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	0	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Architectural Coat	ig (0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Page 7 of 19

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

3.2 Architectural Coating - 2021

Unmitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	Category tons/yr												MT	/yr		
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		tons/yr											MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Page 8 of 19

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

3.2 Architectural Coating - 2021

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	Category tons/yr												MT	∵/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

Page 9 of 19

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	gory tons/yr												МТ	'/yr		
Mitigated	0.1920	1.0994	2.0832	9.5400e- 003	0.9621	5.7800e- 003	0.9678	0.2577	5.3700e- 003	0.2630	0.0000	889.0200	889.0200	0.0377	0.0000	889.9630
Unmitigated	0.1920	1.0994	2.0832	9.5400e- 003	0.9621	5.7800e- 003	0.9678	0.2577	5.3700e- 003	0.2630	0.0000	889.0200	889.0200	0.0377	0.0000	889.9630

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	66.30	14.70	6.30	162,224	162,224
Regional Shopping Center	0.00	0.00	0.00		
Strip Mall	1,361.28	1,291.14	628.04	2,371,600	2,371,600
Total	1,427.58	1,305.84	634.34	2,533,824	2,533,824

4.3 Trip Type Information

		Miles			Trip %		Trip Purpose %			
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by	
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4	
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11	
Strip Mall	16.60	8.40	6.90	16.60	64.40	19.00	45	40	15	

CalEEMod Version: CalEEMod.2016.3.2

Page 10 of 19

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.554622	0.041562	0.206751	0.111062	0.012660	0.005774	0.022378	0.035217	0.002175	0.001476	0.004853	0.000718	0.000752
Regional Shopping Center	0.554622	0.041562	0.206751	0.111062	0.012660	0.005774	0.022378	0.035217	0.002175	0.001476	0.004853	0.000718	0.000752
Strip Mall	0.554622	0.041562	0.206751	0.111062	0.012660	0.005774	0.022378	0.035217	0.002175	0.001476	0.004853	0.000718	0.000752

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	Category tons/yr										MT/yr					
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	3,012.566 2	3,012.566 2	0.1048	0.0217	3,021.643 6
Electricity Unmitigated	n					0.0000	0.0000		0.0000	0.0000	0.0000	3,058.410 0	3,058.410 0	0.1064	0.0220	3,067.625 5
NaturalGas Mitigated	6.4700e- 003	0.0588	0.0494	3.5000e- 004		4.4700e- 003	4.4700e- 003		4.4700e- 003	4.4700e- 003	0.0000	63.9990	63.9990	1.2300e- 003	1.1700e- 003	64.3793
NaturalGas Unmitigated	6.7200e- 003	0.0611	0.0514	3.7000e- 004		4.6500e- 003	4.6500e- 003		4.6500e- 003	4.6500e- 003	0.0000	66.5500	66.5500	1.2800e- 003	1.2200e- 003	66.9455

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	Land Use kBTU/yr tons/yr									MT/yr							
General Office Building	312300	1.6800e- 003	0.0153	0.0129	9.0000e- 005		1.1600e- 003	1.1600e- 003		1.1600e- 003	1.1600e- 003	0.0000	16.6655	16.6655	3.2000e- 004	3.1000e- 004	16.7646
Regional Shopping Center	673384	3.6300e- 003	0.0330	0.0277	2.0000e- 004		2.5100e- 003	2.5100e- 003		2.5100e- 003	2.5100e- 003	0.0000	35.9343	35.9343	6.9000e- 004	6.6000e- 004	36.1479
Strip Mall	261416	1.4100e- 003	0.0128	0.0108	8.0000e- 005		9.7000e- 004	9.7000e- 004		9.7000e- 004	9.7000e- 004	0.0000	13.9502	13.9502	2.7000e- 004	2.6000e- 004	14.0331
Total		6.7200e- 003	0.0611	0.0514	3.7000e- 004		4.6400e- 003	4.6400e- 003		4.6400e- 003	4.6400e- 003	0.0000	66.5500	66.5500	1.2800e- 003	1.2300e- 003	66.9455

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	Land Use kBTU/yr tons/yr								MT/yr								
General Office Building	297270	1.6000e- 003	0.0146	0.0122	9.0000e- 005		1.1100e- 003	1.1100e- 003		1.1100e- 003	1.1100e- 003	0.0000	15.8635	15.8635	3.0000e- 004	2.9000e- 004	15.9577
Regional Shopping Center	649774	3.5000e- 003	0.0319	0.0268	1.9000e- 004		2.4200e- 003	2.4200e- 003		2.4200e- 003	2.4200e- 003	0.0000	34.6744	34.6744	6.6000e- 004	6.4000e- 004	34.8805
Strip Mall	252250	1.3600e- 003	0.0124	0.0104	7.0000e- 005		9.4000e- 004	9.4000e- 004		9.4000e- 004	9.4000e- 004	0.0000	13.4611	13.4611	2.6000e- 004	2.5000e- 004	13.5410
Total		6.4600e- 003	0.0588	0.0494	3.5000e- 004		4.4700e- 003	4.4700e- 003		4.4700e- 003	4.4700e- 003	0.0000	63.9990	63.9990	1.2200e- 003	1.1800e- 003	64.3793

Page 12 of 19

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	7/yr	
General Office Building	389700	147.4220	5.1300e- 003	1.0600e- 003	147.8662
Regional Shopping Center		2,096.932 8	0.0729	0.0151	2,103.251 2
Strip Mall	2.1519e +006	814.0552	0.0283	5.8600e- 003	816.5081
Total		3,058.410 0	0.1064	0.0220	3,067.625 5

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		МТ	7/yr	
General Office Building	382800	144.8117	5.0400e- 003	1.0400e- 003	145.2481
Regional Shopping Center	5.46077e +006	2,065.789 4	0.0718	0.0149	2,072.014 0
Strip Mall	2.11994e +006	801.9650	0.0279	5.7700e- 003	804.3815
Total		3,012.566 2	0.1048	0.0217	3,021.643 6

6.0 Area Detail

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Mitigated	2.4469	7.0000e- 005	7.6200e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0149	0.0149	4.0000e- 005	0.0000	0.0159
Unmitigated	2.4469	7.0000e- 005	7.6200e- 003	0.0000		3.0000e- 005	3.0000e- 005	 - - - -	3.0000e- 005	3.0000e- 005	0.0000	0.0149	0.0149	4.0000e- 005	0.0000	0.0159

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МТ	7/yr		
Architectural Coating	0.2781					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	2.1681					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	7.0000e- 004	7.0000e- 005	7.6200e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0149	0.0149	4.0000e- 005	0.0000	0.0159
Total	2.4469	7.0000e- 005	7.6200e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0149	0.0149	4.0000e- 005	0.0000	0.0159

Page 14 of 19

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МТ	/yr		
Architectural Coating	0.2781					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	2.1681					0.0000	0.0000	1 1 1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	7.0000e- 004	7.0000e- 005	7.6200e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0149	0.0149	4.0000e- 005	0.0000	0.0159
Total	2.4469	7.0000e- 005	7.6200e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0149	0.0149	4.0000e- 005	0.0000	0.0159

7.0 Water Detail

7.1 Mitigation Measures Water

Page 15 of 19

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

	Total CO2	CH4	N2O	CO2e
Category		MT	/yr	
	371.8196	1.5619	0.0392	422.5358
	371.8196	1.5619	0.0392	422.5358

7.2 Water by Land Use

<u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	√yr	
General Office Building	5.33201 / 3.26801	41.6910	0.1751	4.3900e- 003	47.3777
Regional Shopping Center	30.4142 / 18.6409	237.8084	0.9990	0.0250	270.2455
Strip Mall	11.8072 / 7.23665	92.3202	0.3878	9.7200e- 003	104.9126
Total		371.8196	1.5619	0.0392	422.5358

Page 16 of 19

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	ī/yr	
General Office Building	5.33201 / 3.26801	41.6910	0.1751	4.3900e- 003	47.3777
Regional Shopping Center		237.8084	0.9990	0.0250	270.2455
Strip Mall	11.8072 / 7.23665	92.3202	0.3878	9.7200e- 003	104.9126
Total		371.8196	1.5619	0.0392	422.5358

8.0 Waste Detail

8.1 Mitigation Measures Waste

CalEEMod Version: CalEEMod.2016.3.2

Page 17 of 19

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

Category/Year

	Total CO2	CH4	N2O	CO2e		
	MT/yr					
- J	127.1535	7.5146	0.0000	315.0175		
, i i i i i i i i i i i i i i i i i i i	127.1535	7.5146	0.0000	315.0175		

8.2 Waste by Land Use

<u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	/yr	
General Office Building	27.9	5.6635	0.3347	0.0000	14.0310
Regional Shopping Center	431.13	87.5155	5.1720	0.0000	216.8159
Strip Mall	167.37	33.9746	2.0078	0.0000	84.1706
Total		127.1535	7.5146	0.0000	315.0175

Page 18 of 19

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

8.2 Waste by Land Use

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	/yr	
General Office Building	27.9	5.6635	0.3347	0.0000	14.0310
Regional Shopping Center	431.13	87.5155	5.1720	0.0000	216.8159
Strip Mall	167.37	33.9746	2.0078	0.0000	84.1706
Total		127.1535	7.5146	0.0000	315.0175

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

<u>Boilers</u>

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type
----------------	--------	----------------	-----------------	---------------	-----------

User Defined Equipment

Equipment Type N

Number

Page 19 of 19

Link US - 2031 Operational Emissions - South Coast Air Basin, Annual

11.0 Vegetation

Link US - 2031 Operational Emissions - South Coast Air Basin, Summer

Link US - 2031 Operational Emissions

South Coast Air Basin, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	30.00	1000sqft	0.69	30,000.00	0
Regional Shopping Center	410.60	1000sqft	9.43	410,600.00	0
Strip Mall	159.40	1000sqft	3.66	159,400.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	12			Operational Year	2031
Utility Company	Los Angeles Department of	of Water & Power			
CO2 Intensity (Ib/MWhr)	834	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.2

Page 2 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Summer

Project Characteristics - Intensity factor from LADWP 2017 Power Strategic Long-Term Resource Plan

Land Use - Regional Shopping Center represents the new passenger concourse space not included in the retail or office uses

Construction Phase - Construction is calculated separately

Off-road Equipment - Construction is calculated separately

Trips and VMT - Construction is calculated separately

Architectural Coating - Construction is calculated separately

Vehicle Trips - Trip rates from traffic analysis

Energy Use - .

Energy Mitigation - CalEEMod includes 2013 Title 24. 2016 Title 24 is 5% more energy efficient for non-residential uses

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	ConstArea_Nonresidential_Exterior	300,000.00	0.00
tblArchitecturalCoating	ConstArea_Nonresidential_Interior	900,000.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblProjectCharacteristics	CO2IntensityFactor	1227.89	834
tblTripsAndVMT	WorkerTripNumber	38.00	0.00
tblVehicleTrips	ST_TR	2.46	0.49
tblVehicleTrips	ST_TR	49.97	0.00
tblVehicleTrips	ST_TR	42.04	8.10
tblVehicleTrips	SU_TR	1.05	0.21
tblVehicleTrips	SU_TR	25.24	0.00
tblVehicleTrips	SU_TR	20.43	3.94
tblVehicleTrips	WD_TR	11.03	2.21
tblVehicleTrips	tblVehicleTrips WD_TR		0.00
tblVehicleTrips	WD_TR	44.32	8.54

2.0 Emissions Summary

Link US - 2031 Operational Emissions - South Coast Air Basin, Summer

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										lb/day					
2021	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										lb/day					
2021	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Page 4 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Summer

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		lb/day											lb/c	lay		
Area	13.4094	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Energy	0.0369	0.3350	0.2814	2.0100e- 003		0.0255	0.0255		0.0255	0.0255		401.9662	401.9662	7.7000e- 003	7.3700e- 003	404.3548
Mobile	1.2634	6.5449	13.0640	0.0602	5.9568	0.0351	5.9919	1.5930	0.0326	1.6256		6,179.699 7	6,179.699 7	0.2513		6,185.983 2
Total	14.7096	6.8804	13.4064	0.0622	5.9568	0.0608	6.0176	1.5930	0.0583	1.6513		6,581.797 1	6,581.797 1	0.2594	7.3700e- 003	6,590.477 8

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Area	13.4094	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Energy	0.0354	0.3221	0.2706	1.9300e- 003		0.0245	0.0245		0.0245	0.0245		386.5576	386.5576	7.4100e- 003	7.0900e- 003	388.8547
Mobile	1.2634	6.5449	13.0640	0.0602	5.9568	0.0351	5.9919	1.5930	0.0326	1.6256		6,179.699 7	6,179.699 7	0.2513		6,185.983 2
Total	14.7082	6.8676	13.3956	0.0622	5.9568	0.0598	6.0166	1.5930	0.0573	1.6503		6,566.388 6	6,566.388 6	0.2591	7.0900e- 003	6,574.977 7

Link US - 2031 Operational Emissions - South Coast Air Basin, Summer

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.01	0.19	0.08	0.13	0.00	1.61	0.02	0.00	1.68	0.06	0.00	0.23	0.23	0.11	3.80	0.24

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Architectural Coating	Architectural Coating	1/4/2021	1/3/2021	5	20	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	0	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Architectural Coating	0	0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Link US - 2031 Operational Emissions - South Coast Air Basin, Summer

3.2 Architectural Coating - 2021

Unmitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Page 7 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Summer

3.2 Architectural Coating - 2021

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	day		
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

Page 8 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Summer

4.1 Mitigation Measures Mobile

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Mitigated	1.2634	6.5449	13.0640	0.0602	5.9568	0.0351	5.9919	1.5930	0.0326	1.6256		6,179.699 7	6,179.699 7	0.2513		6,185.983 2
Unmitigated	1.2634	6.5449	13.0640	0.0602	5.9568	0.0351	5.9919	1.5930	0.0326	1.6256		6,179.699 7	6,179.699 7	0.2513		6,185.983 2

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	66.30	14.70	6.30	162,224	162,224
Regional Shopping Center	0.00	0.00	0.00		
Strip Mall	1,361.28	1,291.14	628.04	2,371,600	2,371,600
Total	1,427.58	1,305.84	634.34	2,533,824	2,533,824

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11
Strip Mall	16.60	8.40	6.90	16.60	64.40	19.00	45	40	15

CalEEMod Version: CalEEMod.2016.3.2

Page 9 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Summer

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.554622	0.041562	0.206751	0.111062	0.012660	0.005774	0.022378	0.035217	0.002175	0.001476	0.004853	0.000718	0.000752
Regional Shopping Center	0.554622	0.041562	0.206751	0.111062	0.012660	0.005774	0.022378	0.035217	0.002175	0.001476	0.004853	0.000718	0.000752
Strip Mall	0.554622	0.041562	0.206751	0.111062	0.012660	0.005774	0.022378	0.035217	0.002175	0.001476	0.004853	0.000718	0.000752

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	lay							lb/c	lay		
NaturalGas Mitigated	0.0354	0.3221	0.2706	1.9300e- 003		0.0245	0.0245		0.0245	0.0245		386.5576	386.5576	7.4100e- 003	7.0900e- 003	388.8547
NaturalGas Unmitigated	0.0369	0.3350	0.2814	2.0100e- 003		0.0255	0.0255		0.0255	0.0255		401.9662	401.9662	7.7000e- 003	7.3700e- 003	404.3548

Link US - 2031 Operational Emissions - South Coast Air Basin, Summer

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	lay		
General Office Building	855.616	9.2300e- 003	0.0839	0.0705	5.0000e- 004		6.3800e- 003	6.3800e- 003		6.3800e- 003	6.3800e- 003		100.6608	100.6608	1.9300e- 003	1.8500e- 003	101.2589
Regional Shopping Center	1844.89	0.0199	0.1809	0.1519	1.0900e- 003		0.0138	0.0138		0.0138	0.0138		217.0456	217.0456	4.1600e- 003	3.9800e- 003	218.3354
Strip Mall	716.208	7.7200e- 003	0.0702	0.0590	4.2000e- 004		5.3400e- 003	5.3400e- 003		5.3400e- 003	5.3400e- 003		84.2598	84.2598	1.6100e- 003	1.5400e- 003	84.7605
Total		0.0369	0.3350	0.2814	2.0100e- 003		0.0255	0.0255		0.0255	0.0255		401.9662	401.9662	7.7000e- 003	7.3700e- 003	404.3548

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/o	day							lb/c	lay		
General Office Building	0.814438	8.7800e- 003	0.0799	0.0671	4.8000e- 004		6.0700e- 003	6.0700e- 003		6.0700e- 003	6.0700e- 003		95.8163	95.8163	1.8400e- 003	1.7600e- 003	96.3857
Regional Shopping Center	1.7802	0.0192	0.1745	0.1466	1.0500e- 003		0.0133	0.0133		0.0133	0.0133		209.4358	209.4358	4.0100e- 003	3.8400e- 003	210.6804
Strip Mall	0.691097	7.4500e- 003	0.0678	0.0569	4.1000e- 004		5.1500e- 003	5.1500e- 003		5.1500e- 003	5.1500e- 003		81.3056	81.3056	1.5600e- 003	1.4900e- 003	81.7887
Total		0.0354	0.3221	0.2706	1.9400e- 003		0.0245	0.0245		0.0245	0.0245		386.5576	386.5576	7.4100e- 003	7.0900e- 003	388.8547

6.0 Area Detail

Link US - 2031 Operational Emissions - South Coast Air Basin, Summer

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Mitigated	13.4094	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Unmitigated	13.4094	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004	 - - -	2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day				lb/d	day					
Architectural Coating	1.5238					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	11.8800					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	5.5800e- 003	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004	1	2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Total	13.4094	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398

Page 12 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Summer

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory		lb/day											lb/c	day		
	1.5238					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	11.8800		, , , , ,			0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	5.5800e- 003	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Total	13.4094	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
-----------------------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Page 13 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Summer

Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
Number					
	Number	Number Heat Input/Day	Number Heat Input/Day Heat Input/Year	Number Heat Input/Day Heat Input/Year Boiler Rating	Number Heat Input/Day Heat Input/Year Boiler Rating Fuel Type

Link US - 2031 Operational Emissions - South Coast Air Basin, Winter

Link US - 2031 Operational Emissions

South Coast Air Basin, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	30.00	1000sqft	0.69	30,000.00	0
Regional Shopping Center	410.60	1000sqft	9.43	410,600.00	0
Strip Mall	159.40	1000sqft	3.66	159,400.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	12			Operational Year	2031
Utility Company	Los Angeles Department of	of Water & Power			
CO2 Intensity (Ib/MWhr)	834	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.2

Page 2 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Winter

Project Characteristics - Intensity factor from LADWP 2017 Power Strategic Long-Term Resource Plan

Land Use - Regional Shopping Center represents the new passenger concourse space not included in the retail or office uses

Construction Phase - Construction is calculated separately

Off-road Equipment - Construction is calculated separately

Trips and VMT - Construction is calculated separately

Architectural Coating - Construction is calculated separately

Vehicle Trips - Trip rates from traffic analysis

Energy Use - .

Energy Mitigation - CalEEMod includes 2013 Title 24. 2016 Title 24 is 5% more energy efficient for non-residential uses

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	ConstArea_Nonresidential_Exterior	300,000.00	0.00
tblArchitecturalCoating	ConstArea_Nonresidential_Interior	900,000.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblProjectCharacteristics	CO2IntensityFactor	1227.89	834
tblTripsAndVMT	WorkerTripNumber	38.00	0.00
tblVehicleTrips	ST_TR	2.46	0.49
tblVehicleTrips	ST_TR	49.97	0.00
tblVehicleTrips	ST_TR	42.04	8.10
tblVehicleTrips	SU_TR	1.05	0.21
tblVehicleTrips	SU_TR	25.24	0.00
tblVehicleTrips	SU_TR	20.43	3.94
tblVehicleTrips	WD_TR	11.03	2.21
tblVehicleTrips	WD_TR	42.70	0.00
tblVehicleTrips	WD_TR	44.32	8.54

2.0 Emissions Summary

Page 3 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Winter

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day												lb/c	day		
2021	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
2021	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Page 4 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Winter

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		lb/day											lb/d	day		
Area	13.4094	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Energy	0.0369	0.3350	0.2814	2.0100e- 003		0.0255	0.0255		0.0255	0.0255		401.9662	401.9662	7.7000e- 003	7.3700e- 003	404.3548
Mobile	1.2010	6.5632	12.5385	0.0571	5.9568	0.0353	5.9921	1.5930	0.0328	1.6258		5,865.105 4	5,865.105 4	0.2558		5,871.500 7
Total	14.6472	6.8987	12.8809	0.0591	5.9568	0.0610	6.0178	1.5930	0.0584	1.6514		6,267.202 8	6,267.202 8	0.2639	7.3700e- 003	6,275.995 3

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		lb/day											lb/d	day		
Area	13.4094	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Energy	0.0354	0.3221	0.2706	1.9300e- 003		0.0245	0.0245		0.0245	0.0245		386.5576	386.5576	7.4100e- 003	7.0900e- 003	388.8547
Mobile	1.2010	6.5632	12.5385	0.0571	5.9568	0.0353	5.9921	1.5930	0.0328	1.6258		5,865.105 4	5,865.105 4	0.2558		5,871.500 7
Total	14.6458	6.8859	12.8701	0.0591	5.9568	0.0600	6.0168	1.5930	0.0575	1.6505		6,251.794 3	6,251.794 3	0.2636	7.0900e- 003	6,260.495 2

Link US - 2031 Operational Emissions - South Coast Air Basin, Winter

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.01	0.19	0.08	0.14	0.00	1.61	0.02	0.00	1.68	0.06	0.00	0.25	0.25	0.11	3.80	0.25

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Architectural Coating	Architectural Coating	1/4/2021	1/3/2021	5	20	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	0	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Architectural Coating	0	0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Page 6 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Winter

3.2 Architectural Coating - 2021

Unmitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Page 7 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Winter

3.2 Architectural Coating - 2021

Mitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

Page 8 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Winter

4.1 Mitigation Measures Mobile

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Mitigated	1.2010	6.5632	12.5385	0.0571	5.9568	0.0353	5.9921	1.5930	0.0328	1.6258		5,865.105 4	5,865.105 4	0.2558		5,871.500 7
Unmitigated	1.2010	6.5632	12.5385	0.0571	5.9568	0.0353	5.9921	1.5930	0.0328	1.6258		5,865.105 4	5,865.105 4	0.2558		5,871.500 7

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	66.30	14.70	6.30	162,224	162,224
Regional Shopping Center	0.00	0.00	0.00		
Strip Mall	1,361.28	1,291.14	628.04	2,371,600	2,371,600
Total	1,427.58	1,305.84	634.34	2,533,824	2,533,824

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11
Strip Mall	16.60	8.40	6.90	16.60	64.40	19.00	45	40	15

CalEEMod Version: CalEEMod.2016.3.2

Page 9 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Winter

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.554622	0.041562	0.206751	0.111062	0.012660	0.005774	0.022378	0.035217	0.002175	0.001476	0.004853	0.000718	0.000752
Regional Shopping Center	0.554622	0.041562	0.206751	0.111062	0.012660	0.005774	0.022378	0.035217	0.002175	0.001476	0.004853	0.000718	0.000752
Strip Mall	0.554622	0.041562	0.206751	0.111062	0.012660	0.005774	0.022378	0.035217	0.002175	0.001476	0.004853	0.000718	0.000752

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
NaturalGas Mitigated	0.0354	0.3221	0.2706	1.9300e- 003		0.0245	0.0245		0.0245	0.0245		386.5576	386.5576	7.4100e- 003	7.0900e- 003	388.8547
NaturalGas Unmitigated	0.0369	0.3350	0.2814	2.0100e- 003		0.0255	0.0255		0.0255	0.0255		401.9662	401.9662	7.7000e- 003	7.3700e- 003	404.3548

Page 10 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Winter

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	lay		
General Office Building	855.616	9.2300e- 003	0.0839	0.0705	5.0000e- 004		6.3800e- 003	6.3800e- 003		6.3800e- 003	6.3800e- 003		100.6608	100.6608	1.9300e- 003	1.8500e- 003	101.2589
Regional Shopping Center	1844.89	0.0199	0.1809	0.1519	1.0900e- 003		0.0138	0.0138		0.0138	0.0138		217.0456	217.0456	4.1600e- 003	3.9800e- 003	218.3354
Strip Mall	716.208	7.7200e- 003	0.0702	0.0590	4.2000e- 004		5.3400e- 003	5.3400e- 003		5.3400e- 003	5.3400e- 003		84.2598	84.2598	1.6100e- 003	1.5400e- 003	84.7605
Total		0.0369	0.3350	0.2814	2.0100e- 003		0.0255	0.0255		0.0255	0.0255		401.9662	401.9662	7.7000e- 003	7.3700e- 003	404.3548

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/o	day							lb/c	lay		
General Office Building	0.814438	8.7800e- 003	0.0799	0.0671	4.8000e- 004		6.0700e- 003	6.0700e- 003		6.0700e- 003	6.0700e- 003		95.8163	95.8163	1.8400e- 003	1.7600e- 003	96.3857
Regional Shopping Center	1.7802	0.0192	0.1745	0.1466	1.0500e- 003		0.0133	0.0133		0.0133	0.0133		209.4358	209.4358	4.0100e- 003	3.8400e- 003	210.6804
Strip Mall	0.691097	7.4500e- 003	0.0678	0.0569	4.1000e- 004		5.1500e- 003	5.1500e- 003		5.1500e- 003	5.1500e- 003		81.3056	81.3056	1.5600e- 003	1.4900e- 003	81.7887
Total		0.0354	0.3221	0.2706	1.9400e- 003		0.0245	0.0245		0.0245	0.0245		386.5576	386.5576	7.4100e- 003	7.0900e- 003	388.8547

6.0 Area Detail

Link US - 2031 Operational Emissions - South Coast Air Basin, Winter

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	13.4094	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Unmitigated	13.4094	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day							lb/d	day		
Architectural Coating	1.5238					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	11.8800					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	5.5800e- 003	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Total	13.4094	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398

Page 12 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Winter

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	lay		
Architectural Coating	1.5238					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	11.8800					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	5.5800e- 003	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Total	13.4094	5.5000e- 004	0.0610	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
-----------------------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Page 13 of 13

Link US - 2031 Operational Emissions - South Coast Air Basin, Winter

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
Boilers						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					
		-				
11.0 Vegetation						

Link US - 2040 Operational Emissions - South Coast Air Basin, Summary Report

Link US - 2040 Operational Emissions

South Coast, Summary Report

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	30.00	1000sqft	0.69	30,000.00	0
Regional Shopping Center	410.60	1000sqft	9.43	410,600.00	0
Strip Mall	159.40	1000sqft	3.66	159,400.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	12			Operational Year	2040
Utility Company	Los Angeles Department c	of Water & Power			
CO2 Intensity (Ib/MWhr)	1135	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments

Only CalEEMod defaults were used.

Project Characteristics - Intensity factor from https://data.lacity.org/A-Livable-and-Sustainable-City/LADWP-CO2-Generation/e5ni-eqan/10

Land Use - Regional Shopping Center represents the new passenger concourse space not included in the retail or office uses

Construction Phase - Construction is calculated separately

Off-road Equipment -

Off-road Equipment - Construction is calculated separately

Trips and VMT - Construction is calculated separately

Grading - Construction is calculated separately

Vehicle Trips - Trip rates from traffic analysis

Vehicle Emission Factors -

Vehicle Emission Factors -

Vehicle Emission Factors -

Energy Use - .

Energy Mitigation - CalEEMod includes 2013 Title 24. 2016 Title 24 is 5% more energy efficient for non-residential uses

2.0 Peak Daily Emissions

Peak Daily Construction Emissions

Peak Daily Construction Emissions

				Unmi	tigated					Miti	gated		
		ROG	NOX	CO	SO2	PM10	PM2.5	ROG	NOX	CO	SO2	PM10	PM2.5
Year	Phase		·		•		lb/	day	·	·	•	·	
2017	Site Preparation	0.0000 S											
	Peak Daily Total	0.0000 S											
	Air District Threshold												
	Exceed Significance?												

Peak Daily Operational Emissions

Peak Daily Operational Emissions

				Unm	itigated					Miti	gated		
		ROG	NOX	CO	SO2	PM10	PM2.5	ROG	NOX	CO	SO2	PM10	PM2.5
	Operational Activity			•	•		lb/d	day		•			
On-Site	Area	13.4094 S	5.5000e-004 S	0.0609 S	0.0000 S	2.2000e-004 S	2.2000e-004 S	13.4094 S	5.5000e-004 S	0.0609 S	0.0000 S	2.2000e-004 S	2.2000e-004 S
On-Site	Energy	0.0371 S	0.3369 S	0.2830 S	2.0200e-003 S	0.0256 S	0.0256 S	0.0356 S	0.3240 S	0.2721 S	1.9400e-003 S	0.0246 S	0.0246 S
Off-Site	Mobile	0.9412 S	6.4764 S	10.2667 S	0.0568 S	5.9825 W	1.6153 W	0.9412 S	6.4764 S	10.2667 S	0.0568 S	5.9825 W	1.6153 W
	Peak Daily Total	14.3877 S	6.8138 S	10.6106 S	0.0589 S	6.0084 W	1.6412 W	14.3862 S	6.8009 S	10.5997 S	0.0588 S	6.0074 W	1.6402 W
	Air District Threshold												

Exceed Significance?						

3.0 Annual GHG Emissions

Annual GHG

Annual GHG

			Unmi	tigated		Mitigated					
		CO2	CH4	N2O	CO2e	CO2	CH4	N2O	CO2e		
GHG Activity	Year	MT/yr									
Construction	2017	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Operational	2040	5,810.7892	9.2203	0.0630	6,060.0606	5,742.8719	9.2186	0.0626	5,991.9841		
	Total										
	Significance Threshold										
	Exceed Significance?										

Link US - 2040 Operational Emissions - South Coast Air Basin, Summer

Link US - 2040 Operational Emissions

South Coast Air Basin, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	30.00	1000sqft	0.69	30,000.00	0
Regional Shopping Center	410.60	1000sqft	9.43	410,600.00	0
Strip Mall	159.40	1000sqft	3.66	159,400.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	12			Operational Year	2040
Utility Company	Los Angeles Departmen	t of Water & Power			
CO2 Intensity (Ib/MWhr)	1135	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Intensity factor from https://data.lacity.org/A-Livable-and-Sustainable-City/LADWP-CO2-Generation/e5ni-eqan/10

Land Use - Regional Shopping Center represents the new passenger concourse space not included in the retail or office uses

Construction Phase - Construction is calculated separately

Off-road Equipment -

Off-road Equipment - Construction is calculated separately

Trips and VMT - Construction is calculated separately

Grading - Construction is calculated separately

Vehicle Trips - Trip rates from traffic analysis

Vehicle Emission Factors -

Vehicle Emission Factors -

Vehicle Emission Factors -

Energy Use - .

Energy Mitigation - CalEEMod includes 2013 Title 24. 2016 Title 24 is 5% more energy efficient for non-residential uses

Table Name	Column Name	Default Value	New Value
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	0.00
tblProjectCharacteristics	CO2IntensityFactor	1227.89	1135
tblProjectCharacteristics	OperationalYear	2018	2040
tblVehicleTrips	ST_TR	2.46	0.49
tblVehicleTrips	ST_TR	49.97	0.00
tblVehicleTrips	ST_TR	42.04	8.10
tblVehicleTrips	SU_TR	1.05	0.21
tblVehicleTrips	SU_TR	25.24	0.00
tblVehicleTrips	SU_TR	20.43	3.94
tblVehicleTrips	WD_TR	11.03	2.21
tblVehicleTrips	WD_TR	42.70	0.00
tblVehicleTrips	WD_TR	44.32	8.54

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	lay		
2017	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
2017	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Area	13.4094	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Energy	0.0371	0.3369	0.2830	2.0200e- 003		0.0256	0.0256		0.0256	0.0256		404.2869	404.2869	7.7500e- 003	7.4100e- 003	406.6893
Mobile	0.9412	6.4764	10.2667	0.0568	5.9594	0.0230	5.9825	1.5938	0.0214	1.6153		5,856.483 9	5,856.483 9	0.2210		5,862.009 7
Total	14.3877	6.8138	10.6106	0.0589	5.9594	0.0488	6.0083	1.5938	0.0472	1.6411		6,260.902 1	6,260.902 1	0.2291	7.4100e- 003	6,268.838 8

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO	2 NBio- CC	2 Total CO	2 CH4	N2O	CO2e
Category					lb/	day	·						lb	/day		
Area	13.4094	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Energy	0.0356	0.3240	0.2721	1.9400e- 003		0.0246	0.0246		0.0246	0.0246		388.7623	388.7623	7.4500e- 003	7.1300e 003	391.0725
Mobile	0.9412	6.4764	10.2667	0.0568	5.9594	0.0230	5.9825	1.5938	0.0214	1.6153		5,856.48 9	3 5,856.483 9	3 0.2210		5,862.009 7
Total	14.3862	6.8009	10.5997	0.0588	5.9594	0.0479	6.0073	1.5938	0.0463	1.6401		6,245.37 5	7 6,245.37 5	7 0.2288	7.1300e 003	6,253.222 0
	ROG	N	Ox	CO 5		- I			~ I		12.5 Bio otal	- CO2 NBi		otal C :O2	:H4 M	120 CC
Percent Reduction	0.01	0	.19 0	.10 0	0.14 0	.00 2	.01 0	.02 ().00	2.07 0	.06 0	.00 0	.25 0	.25 0	.13 3	.78 0.2

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	3/16/2017	3/15/2017	5	10	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Site Preparation	Rubber Tired Dozers	0	8.00	247	0.40

Site Preparation	Tractors/Loaders/Backhoes		0	8.00	97	0.37
------------------	---------------------------	--	---	------	----	------

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	0	0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 Site Preparation - 2017

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Fugitive Dust	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
ľ	Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Mitigated	0.9412	6.4764	10.2667	0.0568	5.9594	0.0230	5.9825	1.5938	0.0214	1.6153		5,856.483 9	5,856.483 9	0.2210		5,862.009 7
Unmitigated	0.9412	6.4764	10.2667	0.0568	5.9594	0.0230	5.9825	1.5938	0.0214	1.6153		5,856.483 9	5,856.483 9	0.2210		5,862.009 7

4.2 Trip Summary Information

	Aver	age Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	66.30	14.70	6.30	162,224	162,224
Regional Shopping Center	0.00	0.00	0.00		
Strip Mall	1,361.28	1,291.14	628.04	2,371,600	2,371,600
Total	1,427.58	1,305.84	634.34	2,533,824	2,533,824

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11
Strip Mall	16.60	8.40	6.90	16.60	64.40	19.00	45	40	15

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.552848	0.041144	0.205921	0.110574	0.011987	0.005763	0.023182	0.038654	0.002242	0.001394	0.004854	0.000710	0.000727
Regional Shopping Center	0.552848	0.041144	0.205921	0.110574	0.011987	0.005763	0.023182	0.038654	0.002242	0.001394	0.004854	0.000710	0.000727
Strip Mall	0.552848	0.041144	0.205921	0.110574	0.011987	0.005763	0.023182	0.038654	0.002242	0.001394	0.004854	0.000710	0.000727

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
NaturalGas Mitigated	0.0356	0.3240	0.2721	1.9400e- 003		0.0246	0.0246		0.0246	0.0246		388.7623	388.7623	7.4500e- 003	7.1300e- 003	391.0725
NaturalGas Unmitigated	0.0371	0.3369	0.2830	2.0200e- 003		0.0256	0.0256		0.0256	0.0256		404.2869	404.2869	7.7500e- 003	7.4100e- 003	406.6893

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/c	lay		
General Office Building	859.726	9.2700e- 003	0.0843	0.0708	5.1000e- 004		6.4100e- 003	6.4100e- 003		6.4100e- 003	6.4100e- 003		101.1442	101.1442	1.9400e- 003	1.8500e- 003	101.7453
Regional Shopping Center	1856.14	0.0200	0.1820	0.1529	1.0900e- 003		0.0138	0.0138		0.0138	0.0138		218.3691	218.3691	4.1900e- 003	4.0000e- 003	219.6667
Strip Mall	720.575	7.7700e- 003	0.0706	0.0593	4.2000e- 004		5.3700e- 003	5.3700e- 003		5.3700e- 003	5.3700e- 003		84.7736	84.7736	1.6200e- 003	1.5500e- 003	85.2773
Total		0.0371	0.3369	0.2830	2.0200e- 003		0.0256	0.0256		0.0256	0.0256		404.2869	404.2869	7.7500e- 003	7.4000e- 003	406.6894

Mitigated

	NaturalGa s Use	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/•	day							lb/c	lay		
General Office Building	0.818342	8.8300e- 003	0.0802	0.0674	4.8000e- 004		6.1000e- 003	6.1000e- 003		6.1000e- 003	6.1000e- 003		96.2756	96.2756	1.8500e- 003	1.7700e- 003	96.8477
Regional Shopping Center	1.79089	0.0193	0.1756	0.1475	1.0500e- 003		0.0133	0.0133		0.0133	0.0133		210.6931	210.6931	4.0400e- 003	3.8600e- 003	211.9451
Strip Mall	0.695246	7.5000e- 003	0.0682	0.0573	4.1000e- 004		5.1800e- 003	5.1800e- 003		5.1800e- 003	5.1800e- 003		81.7937	81.7937	1.5700e- 003	1.5000e- 003	82.2797
Total		0.0356	0.3240	0.2721	1.9400e- 003		0.0246	0.0246		0.0246	0.0246		388.7623	388.7623	7.4600e- 003	7.1300e- 003	391.0725

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/c	lay		
Mitigated	13.4094	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Unmitigated	13.4094	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398

6.2 Area by SubCategory <u>Unmitigated</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day				lb/c	lay					
Architectural Coating	1.5238					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	11.8800					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	5.5700e- 003	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004	D	0.1313	0.1313	3.4000e- 004		0.1398
Total	13.4094	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/c	lay		
Architectural Coating	1.5238					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	11.8800					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	5.5700e- 003	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004	Ø	0.1313	0.1313	3.4000e- 004		0.1398
Total	13.4094	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
oilers						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
ser Defined Equipment						
Equipment Type	Number	1				
		-				
1.0 Vegetation						

Page 1 of 1

Link US - 2040 Operational Emissions - South Coast Air Basin, Winter

Link US - 2040 Operational Emissions South Coast Air Basin, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	30.00	1000sqft	0.69	30,000.00	0
Regional Shopping Center	410.60	1000sqft	9.43	410,600.00	0
Strip Mall	159.40	1000sqft	3.66	159,400.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	12			Operational Year	2040
Utility Company	Los Angeles Departmen	t of Water & Power			
CO2 Intensity (Ib/MWhr)	1135	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Intensity factor from https://data.lacity.org/A-Livable-and-Sustainable-City/LADWP-CO2-Generation/e5ni-eqan/10

Land Use - Regional Shopping Center represents the new passenger concourse space not included in the retail or office uses

Construction Phase - Construction is calculated separately

Off-road Equipment -

Off-road Equipment - Construction is calculated separately

Trips and VMT - Construction is calculated separately

Grading - Construction is calculated separately

Vehicle Trips - Trip rates from traffic analysis

Vehicle Emission Factors -

Vehicle Emission Factors -

Vehicle Emission Factors -

Energy Use - .

Energy Mitigation - CalEEMod includes 2013 Title 24. 2016 Title 24 is 5% more energy efficient for non-residential uses

Table Name	Column Name	Default Value	New Value
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	0.00
tblProjectCharacteristics	CO2IntensityFactor	1227.89	1135
tblProjectCharacteristics	OperationalYear	2018	2040
tblVehicleTrips	ST_TR	2.46	0.49
tblVehicleTrips	ST_TR	49.97	0.00
tblVehicleTrips	ST_TR	42.04	8.10
tblVehicleTrips	SU_TR	1.05	0.21
tblVehicleTrips	SU_TR	25.24	0.00
tblVehicleTrips	SU_TR	20.43	3.94
tblVehicleTrips	WD_TR	11.03	2.21
tblVehicleTrips	WD_TR	42.70	0.00
tblVehicleTrips	WD_TR	44.32	8.54

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	lay		
2017	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
2017	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day				lb/c	lay					
Area	13.4094	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Energy	0.0371	0.3369	0.2830	2.0200e- 003		0.0256	0.0256		0.0256	0.0256		404.2869	404.2869	7.7500e- 003	7.4100e- 003	406.6893
Mobile	0.8992	6.4622	9.8572	0.0539	5.9594	0.0231	5.9825	1.5938	0.0215	1.6153		5,559.627 3	5,559.627 3	0.2264		5,565.287 9
Total	14.3457	6.7997	10.2010	0.0559	5.9594	0.0489	6.0084	1.5938	0.0473	1.6412		5,964.045 5	5,964.045 5	0.2345	7.4100e- 003	5,972.117 0

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		• 	•	•	lb/	day		·				·	lb/	day	•	
Area	13.4094	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Energy	0.0356	0.3240	0.2721	1.9400e- 003		0.0246	0.0246		0.0246	0.0246		388.7623	388.7623	7.4500e- 003	7.1300e- 003	391.0725
Mobile	0.8992	6.4622	9.8572	0.0539	5.9594	0.0231	5.9825	1.5938	0.0215	1.6153		5,559.627 3	5,559.627 3	0.2264		5,565.287 9
Total	14.3443	6.7867	10.1902	0.0559	5.9594	0.0479	6.0074	1.5938	0.0463	1.6402		5,948.520 9	5,948.520 9	0.2342	7.1300e- 003	5,956.500 2
	ROG	N	Ox C	co s							2.5 Bio- tal	CO2 NBio	-CO2 To C(14 N	20 CO
Percent Reduction	0.01	0	.19 0	.11 0.	.14 0	.00 2	.00 0	0.02 0	0.00	2.07 0.	06 0.	00 0.	26 0.2	26 0.1	13 3.	78 0.2

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	3/16/2017	3/15/2017	5	10	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Site Preparation	Rubber Tired Dozers	0	8.00	247	0.40

Site Preparation	Tractors/Loaders/Backhoes		0	8.00	97	0.37
------------------	---------------------------	--	---	------	----	------

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	0	0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 Site Preparation - 2017

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Fugitive Dust	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
ľ	Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Mitigated	0.8992	6.4622	9.8572	0.0539	5.9594	0.0231	5.9825	1.5938	0.0215	1.6153		5,559.627 3	5,559.627 3	0.2264		5,565.287 9
Unmitigated	0.8992	6.4622	9.8572	0.0539	5.9594	0.0231	5.9825	1.5938	0.0215	1.6153		5,559.627 3	5,559.627 3	0.2264		5,565.287 9

4.2 Trip Summary Information

	Aver	age Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	66.30	14.70	6.30	162,224	162,224
Regional Shopping Center	0.00	0.00	0.00		
Strip Mall	1,361.28	1,291.14	628.04	2,371,600	2,371,600
Total	1,427.58	1,305.84	634.34	2,533,824	2,533,824

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11
Strip Mall	16.60	8.40	6.90	16.60	64.40	19.00	45	40	15

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.552848	0.041144	0.205921	0.110574	0.011987	0.005763	0.023182	0.038654	0.002242	0.001394	0.004854	0.000710	0.000727
Regional Shopping Center	0.552848	0.041144	0.205921	0.110574	0.011987	0.005763	0.023182	0.038654	0.002242	0.001394	0.004854	0.000710	0.000727
Strip Mall	0.552848	0.041144	0.205921	0.110574	0.011987	0.005763	0.023182	0.038654	0.002242	0.001394	0.004854	0.000710	0.000727

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
NaturalGas Mitigated	0.0356	0.3240	0.2721	1.9400e- 003		0.0246	0.0246		0.0246	0.0246		388.7623	388.7623	7.4500e- 003	7.1300e- 003	391.0725
NaturalGas Unmitigated	0.0371	0.3369	0.2830	2.0200e- 003		0.0256	0.0256		0.0256	0.0256		404.2869	404.2869	7.7500e- 003	7.4100e- 003	406.6893

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/c	lay		
General Office Building	859.726	9.2700e- 003	0.0843	0.0708	5.1000e- 004		6.4100e- 003	6.4100e- 003		6.4100e- 003	6.4100e- 003		101.1442	101.1442	1.9400e- 003	1.8500e- 003	101.7453
Regional Shopping Center	1856.14	0.0200	0.1820	0.1529	1.0900e- 003		0.0138	0.0138		0.0138	0.0138		218.3691	218.3691	4.1900e- 003	4.0000e- 003	219.6667
Strip Mall	720.575	7.7700e- 003	0.0706	0.0593	4.2000e- 004		5.3700e- 003	5.3700e- 003		5.3700e- 003	5.3700e- 003		84.7736	84.7736	1.6200e- 003	1.5500e- 003	85.2773
Total		0.0371	0.3369	0.2830	2.0200e- 003		0.0256	0.0256		0.0256	0.0256		404.2869	404.2869	7.7500e- 003	7.4000e- 003	406.6894

Mitigated

	NaturalGa s Use	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/•	day							lb/c	lay		
General Office Building	0.818342	8.8300e- 003	0.0802	0.0674	4.8000e- 004		6.1000e- 003	6.1000e- 003		6.1000e- 003	6.1000e- 003		96.2756	96.2756	1.8500e- 003	1.7700e- 003	96.8477
Regional Shopping Center	1.79089	0.0193	0.1756	0.1475	1.0500e- 003		0.0133	0.0133		0.0133	0.0133		210.6931	210.6931	4.0400e- 003	3.8600e- 003	211.9451
Strip Mall	0.695246	7.5000e- 003	0.0682	0.0573	4.1000e- 004		5.1800e- 003	5.1800e- 003		5.1800e- 003	5.1800e- 003		81.7937	81.7937	1.5700e- 003	1.5000e- 003	82.2797
Total		0.0356	0.3240	0.2721	1.9400e- 003		0.0246	0.0246		0.0246	0.0246		388.7623	388.7623	7.4600e- 003	7.1300e- 003	391.0725

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/c	lay		
Mitigated	13.4094	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398
Unmitigated	13.4094	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398

6.2 Area by SubCategory <u>Unmitigated</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/c	lay		
Architectural Coating	1.5238					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	11.8800					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	5.5700e- 003	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004	D	0.1313	0.1313	3.4000e- 004		0.1398
Total	13.4094	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/c	lay		
Architectural Coating	1.5238					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	11.8800					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	5.5700e- 003	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004	Ø	0.1313	0.1313	3.4000e- 004		0.1398
Total	13.4094	5.5000e- 004	0.0609	0.0000		2.2000e- 004	2.2000e- 004		2.2000e- 004	2.2000e- 004		0.1313	0.1313	3.4000e- 004		0.1398

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
oilers						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
ser Defined Equipment						
Equipment Type	Number	1				
		-				
1.0 Vegetation						

Page 1 of 1

Link US - 2040 Operational Emissions - South Coast Air Basin, Annual

Link US - 2040 Operational Emissions

South Coast Air Basin, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	30.00	1000sqft	0.69	30,000.00	0
Regional Shopping Center	410.60	1000sqft	9.43	410,600.00	0
Strip Mall	159.40	1000sqft	3.66	159,400.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	12			Operational Year	2040
Utility Company	Los Angeles Departmen	t of Water & Power			
CO2 Intensity (Ib/MWhr)	1135	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity ((lb/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Intensity factor from https://data.lacity.org/A-Livable-and-Sustainable-City/LADWP-CO2-Generation/e5ni-eqan/10

Land Use - Regional Shopping Center represents the new passenger concourse space not included in the retail or office uses

Construction Phase - Construction is calculated separately

Off-road Equipment -

Off-road Equipment - Construction is calculated separately

Trips and VMT - Construction is calculated separately

Grading - Construction is calculated separately

Vehicle Trips - Trip rates from traffic analysis

Vehicle Emission Factors -

Vehicle Emission Factors -

Vehicle Emission Factors -

Energy Use - .

Energy Mitigation - CalEEMod includes 2013 Title 24. 2016 Title 24 is 5% more energy efficient for non-residential uses

Table Name	Column Name	Default Value	New Value
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	0.00
tblProjectCharacteristics	CO2IntensityFactor	1227.89	1135
tblProjectCharacteristics	OperationalYear	2018	2040
tblVehicleTrips	ST_TR	2.46	0.49
tblVehicleTrips	ST_TR	49.97	0.00
tblVehicleTrips	ST_TR	42.04	8.10
tblVehicleTrips	SU_TR	1.05	0.21
tblVehicleTrips	SU_TR	25.24	0.00
tblVehicleTrips	SU_TR	20.43	3.94
tblVehicleTrips	WD_TR	11.03	2.21
tblVehicleTrips	WD_TR	42.70	0.00
tblVehicleTrips	WD_TR	44.32	8.54

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2017	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2017	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
		Highest		

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Area	2.4469	7.0000e- 005	7.6100e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0149	0.0149	4.0000e- 005	0.0000	0.0159
Energy	6.7600e- 003	0.0615	0.0517	3.7000e- 004		4.6700e- 003	4.6700e- 003		4.6700e- 003	4.6700e- 003	0.0000	4,339.898 2	4,339.898 2	0.1105	0.0238	4,349.756 7
Mobile	0.1440	1.0823	1.6347	9.0100e- 003	0.9625	3.7900e- 003	0.9663	0.2578	3.5300e- 003	0.2613	0.0000	843.1540	843.1540	0.0333	0.0000	843.9866

Waste						0.0000	0.0000		0.0000	0.0000	127.1535	0.0000	127.1535	7.5146	0.0000	315.0175
Water						0.0000	0.0000		0.0000	0.0000	15.0865	485.4821	500.5686	1.5619	0.0392	551.2848
Water						0.0000	0.0000		0.0000	0.0000	10.0000	400.4021	000.0000	1.0010	0.0002	001.2040
Total	2.5976	1.1439	1.6939	9.3800e-	0.9625	8.4900e-	0.9710	0.2578	8.2300e-	0.2660	142.2400	5,668.549	5,810.789	9.2203	0.0630	6,060.061
				003		003			003			1	2			4

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ıs/yr							MT	T/yr		
Area	2.4469	7.0000e- 005	7.6100e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0149	0.0149	4.0000e- 005	0.0000	0.0159
Energy	6.5000e- 003	0.0591	0.0497	3.5000e- 004		4.4900e- 003	4.4900e- 003		4.4900e- 003	4.4900e- 003	0.0000	4,271.980 9	4,271.980 9	0.1087	0.0234	4,281.679 4
Mobile	0.1440	1.0823	1.6347	9.0100e- 003	0.9625	3.7900e- 003	0.9663	0.2578	3.5300e- 003	0.2613	0.0000	843.1540	843.1540	0.0333	0.0000	843.9866
Waste						0.0000	0.0000		0.0000	0.0000	127.1535	0.0000	127.1535	7.5146	0.0000	315.0175
Water						0.0000	0.0000		0.0000	0.0000	15.0865	485.4821	500.5686	1.5619	0.0392	551.2848
Total	2.5974	1.1415	1.6920	9.3600e- 003	0.9625	8.3100e- 003	0.9708	0.2578	8.0500e- 003	0.2659	142.2400	5,600.631 8	5,742.871 9	9.2186	0.0626	5,991.984 1
	ROG	N	Ox C	;0 S(·			-	aust PM 12.5 To		CO2 NBio	-CO2 To C(H4 N2	20 CO2e
Percent Reduction	0.01	0.	.21 0	.12 0.	21 0	.00 2	.12 0	.02 0	.00 2	.19 0.0	07 0.0	00 1.:	20 1.′	17 0.0	02 0.0	64 1.12

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	3/16/2017	3/15/2017	5	10	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Site Preparation	Rubber Tired Dozers	0	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	0	8.00	97	0.37

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	0	0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 Site Preparation - 2017 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.1440	1.0823	1.6347	9.0100e- 003	0.9625	3.7900e- 003	0.9663	0.2578	3.5300e- 003	0.2613	0.0000	843.1540	843.1540	0.0333	0.0000	843.9866
Unmitigated	0.1440	1.0823	1.6347	9.0100e- 003	0.9625	3.7900e- 003	0.9663	0.2578	3.5300e- 003	0.2613	0.0000	843.1540	843.1540	0.0333	0.0000	843.9866

4.2 Trip Summary Information

	Aver	age Daily Trip I	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	66.30	14.70	6.30	162,224	162,224
Regional Shopping Center	0.00	0.00	0.00		
Strip Mall	1,361.28	1,291.14	628.04	2,371,600	2,371,600
Total	1,427.58	1,305.84	634.34	2,533,824	2,533,824

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4

Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11
Strip Mall	16.60	8.40	6.90	16.60	64.40	19.00	45	40	15

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.552848	0.041144	0.205921	0.110574	0.011987	0.005763	0.023182	0.038654	0.002242	0.001394	0.004854	0.000710	0.000727
Regional Shopping Center	0.552848	0.041144	0.205921	0.110574	0.011987	0.005763	0.023182	0.038654	0.002242	0.001394	0.004854	0.000710	0.000727
Strip Mall	0.552848	0.041144	0.205921	0.110574	0.011987	0.005763	0.023182	0.038654	0.002242	0.001394	0.004854	0.000710	0.000727

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	4,207.616 9	4,207.616 9	0.1075	0.0222	4,216.933 0
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	4,272.964 0	4,272.964 0	0.1092	0.0226	4,282.424 7
NaturalGas Mitigated	6.5000e- 003	0.0591	0.0497	3.5000e- 004		4.4900e- 003	4.4900e- 003		4.4900e- 003	4.4900e- 003	0.0000	64.3640	64.3640	1.2300e- 003	1.1800e- 003	64.7464
NaturalGas Unmitigated	6.7600e- 003	0.0615	0.0517	3.7000e- 004		4.6700e- 003	4.6700e- 003		4.6700e- 003	4.6700e- 003	0.0000	66.9342	66.9342	1.2800e- 003	1.2300e- 003	67.3320

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
General Office Building	313800	1.6900e- 003	0.0154	0.0129	9.0000e- 005		1.1700e- 003	1.1700e- 003		1.1700e- 003	1.1700e- 003	0.0000	16.7456	16.7456	3.2000e- 004	3.1000e- 004	16.8451
Regional Shopping Center	677490	3.6500e- 003	0.0332	0.0279	2.0000e- 004		2.5200e- 003	2.5200e- 003		2.5200e- 003	2.5200e- 003	0.0000	36.1535	36.1535	6.9000e- 004	6.6000e- 004	36.3683
Strip Mall	263010	1.4200e- 003	0.0129	0.0108	8.0000e- 005		9.8000e- 004	9.8000e- 004		9.8000e- 004	9.8000e- 004	0.0000	14.0352	14.0352	2.7000e- 004	2.6000e- 004	14.1186
Total		6.7600e- 003	0.0615	0.0517	3.7000e- 004		4.6700e- 003	4.6700e- 003		4.6700e- 003	4.6700e- 003	0.0000	66.9342	66.9342	1.2800e- 003	1.2300e- 003	67.3320

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
General Office Building	298695	1.6100e- 003	0.0146	0.0123	9.0000e- 005		1.1100e- 003	1.1100e- 003		1.1100e- 003	1.1100e- 003	0.0000	15.9395	15.9395	3.1000e- 004	2.9000e- 004	16.0342
Regional Shopping Center	653675	3.5200e- 003	0.0320	0.0269	1.9000e- 004		2.4400e- 003	2.4400e- 003		2.4400e- 003	2.4400e- 003	0.0000	34.8826	34.8826	6.7000e- 004	6.4000e- 004	35.0899
Strip Mall	253765	1.3700e- 003	0.0124	0.0105	7.0000e- 005		9.5000e- 004	9.5000e- 004		9.5000e- 004	9.5000e- 004	0.0000	13.5419	13.5419	2.6000e- 004	2.5000e- 004	13.6223
Total		6.5000e- 003	0.0591	0.0497	3.5000e- 004		4.5000e- 003	4.5000e- 003		4.5000e- 003	4.5000e- 003	0.0000	64.3640	64.3640	1.2400e- 003	1.1800e- 003	64.7464

5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MI	Г/yr	
General Office Building	399600	205.7250	5.2600e- 003	1.0900e- 003	206.1805

Regional Shopping Center	5.69092e+ 006	2,929.839 2	0.0749	0.0155	2,936.326 1
Strip Mall	2.20928e+ 006	1,137.399 8	0.0291	6.0100e- 003	1,139.918 1
Total		4,272.964 0	0.1092	0.0226	4,282.424 7

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	Г/yr	
General Office Building	392370	202.0028	5.1600e- 003	1.0700e- 003	202.4501
Regional Shopping Center	5.60469e+ 006	2,885.447 6	0.0737	0.0153	2,891.836 3
Strip Mall	2.17581e+ 006	1,120.166 5	0.0286	5.9200e- 003	1,122.646 6
Total		4,207.616 9	0.1075	0.0222	4,216.933 0

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	2.4469	7.0000e- 005	7.6100e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0149	0.0149	4.0000e- 005	0.0000	0.0159
Unmitigated	2.4469	7.0000e- 005	7.6100e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0149	0.0149	4.0000e- 005	0.0000	0.0159

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	0.2781					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	2.1681					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	7.0000e- 004	7.0000e- 005	7.6100e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0149	0.0149	4.0000e- 005	0.0000	0.0159
Total	2.4469	7.0000e- 005	7.6100e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0149	0.0149	4.0000e- 005	0.0000	0.0159

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	0.2781					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	2.1681					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	7.0000e- 004	7.0000e- 005	7.6100e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0149	0.0149	4.0000e- 005	0.0000	0.0159
Total	2.4469	7.0000e- 005	7.6100e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0149	0.0149	4.0000e- 005	0.0000	0.0159

7.0 Water Detail

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		MT	/yr	
Mitigated	500.5686	1.5619	0.0392	551.2848
Unmitigated	500.5686	1.5619	0.0392	551.2848

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		M	Г/yr	
General Office Building	5.33201 / 3.26801	56.1272	0.1751	4.3900e- 003	61.8139
Regional Shopping Center	30.4142 / 18.6409	320.1537	0.9990	0.0250	352.5908
Strip Mall	11.8072 / 7.23665	124.2876	0.3878	9.7200e- 003	136.8801
Total		500.5686	1.5619	0.0392	551.2848

Mitigated

Indoor/Out Total CO2 door Use	2 CH4	N2O	CO2e
----------------------------------	-------	-----	------

Land Use	Mgal		M	Г/yr	
General Office Building	5.33201 / 3.26801	56.1272	0.1751	4.3900e- 003	61.8139
Regional Shopping Center	30.4142 / 18.6409	320.1537	0.9990	0.0250	352.5908
Strip Mall	11.8072 / 7.23665	124.2876	0.3878	9.7200e- 003	136.8801
Total		500.5686	1.5619	0.0392	551.2848

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		MT	/yr	
Mitigated	127.1535	7.5146	0.0000	315.0175
Unmitigated	127.1535	7.5146	0.0000	315.0175

8.2 Waste by Land Use

<u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	/yr	
General Office Building	27.9	5.6635	0.3347	0.0000	14.0310

Regional Shopping Center	431.13	87.5155	5.1720	0.0000	216.8159
Strip Mall	167.37	33.9746	2.0078	0.0000	84.1706
Total		127.1535	7.5146	0.0000	315.0175

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e	
Land Use	tons	MT/yr				
General Office Building	27.9	5.6635	0.3347	0.0000	14.0310	
Regional Shopping Center	431.13	87.5155	5.1720	0.0000	216.8159	
Strip Mall	167.37	33.9746	2.0078	0.0000	84.1706	
Total		127.1535	7.5146	0.0000	315.0175	

9.0 Operational Offroad

	Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
--	----------------	--------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
Boilers						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					

11.0 Vegetation

Appendix E: Health Risk Assessment

Operations - Unmitigated Concentrations

		Risk at	Existing		2026 NB	:	2026 B	:	2031 NB		2031 B		2040 NB		2040 B	
		1 ug/m3	Conc Ri	isk												
William Mead Homes	Residential	592.3	1.53693	910.3	0.59585	352.9	0.50693	300.3	0.34751	205.8	0.56323	333.6	0.14895	88.2	0.26391	156.3
William Mead Homes	Residential	592.3	1.17416	695.5	0.45521	269.6	0.38358	227.2	0.26548	157.2	0.42473	251.6	0.11379	67.4	0.19901	117.9
Mozaic Apartments	Residential	592.3	1.44599	856.5	0.56107	332.3	0.40627	240.6	0.3265	193.4	0.33017	195.6	0.13993	82.9	0.1546	91.6
Mission Road Residences	Residential	592.3	0.36014	213.3	0.13966	82.7	0.20373	120.7	0.0814	48.2	0.21959	130.1	0.03489	20.7	0.10289	60.9
Mission Road Residences	Residential	592.3	0.33853	200.5	0.13127	77.8	0.18602	110.2	0.07652	45.3	0.20146	119.3	0.0328	19.4	0.09439	55.9
One Santa Fe Apartments	Residential	592.3	0.15143	89.7	0.05872	34.8	0.05762	34.1	0.03423	20.3	0.06061	35.9	0.01467	8.7	0.0284	16.8
Utah Street Elementary School	School	22.5	0.32153	7.2	0.12467	2.8	0.14841	3.3	0.07268	1.6	0.1606	3.6	0.03115	0.7	0.07525	1.7
Mendez High School	School	22.5	0.32611	7.3	0.12645	2.8	0.16302	3.7	0.07372	1.7	0.1767	4.0	0.03159	0.7	0.08279	1.9
Ann Street Elementary School	School	22.5	1.48066	33.3	0.57403	12.9	0.53173	12.0	0.33479	7.5	0.59126	13.3	0.14349	3.2	0.27704	6.2
Twin Towers Correctional Facility	Commercial Worker	45.4	0.83813	38.1	0.3251	14.8	0.25175	11.4	0.18935	8.6	0.23683	10.8	0.08115	3.7	0.11093	5.0
Los Angeles Men's Central Jail	Commercial Worker	45.4	0.94566	42.9	0.3667	16.6	0.27113	12.3	0.21374	9.7	0.27933	12.7	0.09161	4.2	0.13086	5.9
Metro Offices	Commercial Worker	45.4	1.1194	50.8	0.43421	19.7	0.34901	15.8	0.25289	11.5	0.32944	15.0	0.10839	4.9	0.15431	7.0
Terminal Annex Alameda Street	Commercial Worker	45.4	1.05863	48.1	0.41072	18.6	0.29003	13.2	0.23908	10.9	0.24538	11.1	0.10247	4.7	0.11491	5.2

Construction - Unmitigated Concentrations

		Risk at	Above-Grade		At-Grade	
		1 ug/m3	Conc Ri	sk	Conc	Risk
William Mead Homes	Residential	368.2	0.0448	16.5	0.06843	25.2
William Mead Homes	Residential	368.2	0.04026	14.8	0.06149	22.6
Mozaic Apartments	Residential	368.2	0.23087	85.0	0.35259	129.8
Mission Road Residences	Residential	368.2	0.01593	5.9	0.02433	9.0
Mission Road Residences	Residential	368.2	0.0132	4.9	0.02016	7.4
One Santa Fe Apartments	Residential	368.2	0.00177	0.7	0.0027	1.0
Utah Street Elementary School	School	15.6	0.00909	0.1	0.01388	0.2
Mendez High School	School	15.6	0.01044	0.2	0.01594	0.2
Ann Street Elementary School	School	15.6	0.06071	0.9	0.09272	1.4
Twin Towers Correctional Facility	Commercial Worker	10.9	0.16149	1.8	0.24662	2.7
Los Angeles Men's Central Jail	Commercial Worker	10.9	0.10186	1.1	0.15557	1.7
Metro Offices	Commercial Worker	10.9	0.49109	5.4	0.75	8.2
Terminal Annex Alameda Street	Commercial Worker	10.9	0.17055	1.9	0.26047	2.8

Construction - Mitigated Concentrations

		Risk at	Above-Grade		At-Grade	
		1 ug/m3	Conc Risk	(Conc	Risk
William Mead Homes	Residential	368.2	0.00442	1.6	0.00716	2.6
William Mead Homes	Residential	368.2	0.00397	1.5	0.00644	2.4
Mozaic Apartments	Residential	368.2	0.02277	8.4	0.03691	13.6
Mission Road Residences	Residential	368.2	0.00157	0.6	0.00255	0.9
Mission Road Residences	Residential	368.2	0.0013	0.5	0.00211	0.8
One Santa Fe Apartments	Residential	368.2	0.00017	0.1	0.00028	0.1
Utah Street Elementary School	School	15.6	0.0009	0.0	0.00145	0.0
Mendez High School	School	15.6	0.00103	0.0	0.00167	0.0
Ann Street Elementary School	School	15.6	0.00599	0.1	0.00971	0.2
Twin Towers Correctional Facility	Commercial Worker	10.9	0.01593	0.2	0.02582	0.3
Los Angeles Men's Central Jail	Commercial Worker	10.9	0.01005	0.1	0.01628	0.2
Metro Offices	Commercial Worker	10.9	0.04844	0.5	0.07851	0.9
Terminal Annex Alameda Street	Commercial Worker	10.9	0.01682	0.2	0.02727	0.3

METRO LINKUS Construction Modeled DPM Concentrations [ug/m^3]

12/10/2018 Revised

	Discrete Receptor ID (Group Name)	Sensitive Receptor	Street Location (Los Angeles)	х	Y	Concentration (AVERAGE CONC) [ug/m^3]	Elevation (ZELEV)	Hill Heights (ZHILL)	Flagpole (ZFLAG)	Averagin Period (AVE)	Source Group (GRP)	Num Years (NUM YRS)
	ARC1 (ARCREC)	William Mead Homes	Bolero Lane	386554.29	3769752.53	0.0448	89.05	89.05	0	ANNUAL	ALL	5
	ARC2 (ARCREC)	Mozaic Apartments	Union Station Driveway	386040.13	3769154.79	0.23087	90.06	90.06	0	ANNUAL	ALL	5
	ARC3 (ARCREC)	K-12 School	Park Paseo St	386891.05	3768359.8	0.00545	82.03	82.03	0	ANNUAL	ALL	5
	ARC4 (ARCREC)	Twin Towers Correctional Facility	Bauchet Street	386341.41	3769277.46	0.16149	86.94	86.94	0	ANNUAL	ALL	5
	ARC5 (ARCREC)	Los Angeles Men's Central Jail	Bauchet Street	386283.86	3769482.56	0.05454	88.03	88.03	0	ANNUAL	ALL	5
Revised	ARC6 (ARCREC)	One Sante Fe Apartments	Santa Fe Avenue	386304.23	3767912	0.00177	81.1	81.1	0	ANNUAL	ALL	5
12/10/2018	ARC7 (ARCREC)	Metro Offices	N. Vignes Street	386214.89	3769095.39	0.49109	87.89	91.33	0	ANNUAL	ALL	5
Construction	(ARCREC)-1	Residential	Mission Road	386788.16	3768599.79	0.01593	83.69	83.69	0	ANNUAL	ALL	5
Above Grade	(ARCREC)-2	Residential	Mission Road	386771.84	3768542.02	0.0132	82.8	82.8	0	ANNUAL	ALL	5
Unmitigated	(ARCREC)-3	Residential	Mission Road	386747.98	3768474.21	0.01044	82.73	82.73	0	ANNUAL	ALL	5
Ommigated	(ARCREC)-4	Residential	Mission Road	386735.42	3768434.02	0.00909	82.66	82.66	0	ANNUAL	ALL	5
	(ARCREC)-5	Northend Outside Union Station	Union Station Driveway	386020.88	3769115.91	0.17697	86.07	86.07	0	ANNUAL	ALL	5
	(ARCREC)-6	USPO Terminal Annex	Cesar E Chavez Ave.	386061.06	3769257.82	0.17055	86.48	86.48	0	ANNUAL	ALL	5
	(ARCREC)-7	Los Angeles Men's Central Jail	Vignes Street	386288.36	3769402.23	0.10186	88.72	88.72	0	ANNUAL	ALL	5
	(ARCREC)-8	Trimana Fresh Food Market	Union Station Driveway	386000.79	3769006.66	0.17525	86.17	86.17	0	ANNUAL	ALL	5
	(ARCREC)-9	William Mead Homes	Bolero Lane	386720.35	3769817.9	0.04026	86.86	86.86	0	ANNUAL	ALL	5
	(ARCREC)-10	William Mead Homes	Bolero Lane	386678.91	3769778.97	0.06071	87.27	87.27	0	ANNUAL	ALL	5
	(ARCREC)-11	William Mead Homes	Bolero Lane	386618.63	3769760.13	0.05582	88.18	88.18	0	ANNUAL	ALL	5
	(ARCREC)-12								0		-	-
				1 30ENC1 0C								
		Metropolitan Water	Union Station Driveway	385961.86	3768935.08	0.09734	86.28	86.28	0	ANNUAL	ALL	5
	11/19/2018		Union Station Driveway	385961.86	3768935.08				<u> </u>			
		Rerun Model	Street Location (Los			Concentration	Elevation	Hill Heights	Flagpole	Averagin	Source	Num Years
	11/19/2018		· · ·	385961.86 X	Y	Concentration (AVERAGE CONC)			<u> </u>	Averagin Period	Source Group	Num Years
	11/19/2018 Discrete Receptor ID (Group Name)	Rerun Model Sensitive Receptor	Street Location (Los	x	Y	Concentration (AVERAGE CONC) [ug/m^3]	Elevation (ZELEV)	Hill Heights (ZHILL)	Flagpole	Averagin Period (AVE)	Source Group (GRP)	Num Years
	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)	Rerun Model Sensitive Receptor William Mead Homes	Street Location (Los Angeles) Bolero Lane	X 386554.29	Y 3769752.53	Concentration (AVERAGE CONC) [ug/m^3] 0.00442	Elevation (ZELEV) 89.05	Hill Heights (ZHILL) 89.05	Flagpole (ZFLAG)	Averagin Period (AVE) ANNUAL	Source Group (GRP) ALL	Num Years (NUM YRS)
	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)	Rerun Model Sensitive Receptor William Mead Homes Mozaic Apartments	Street Location (Los Angeles) Bolero Lane Union Station Driveway	X 386554.29 386040.13	Y 3769752.53 3769154.79	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277	Elevation (ZELEV) 89.05 90.06	Hill Heights (ZHILL) 89.05 90.06	Flagpole (ZFLAG)	Averagin Period (AVE) ANNUAL ANNUAL	Source Group (GRP) ALL ALL	Num Years (NUM YRS) 5
	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)ARC3 (ARCREC)	Rerun Model Sensitive Receptor William Mead Homes Mozaic Apartments K-12 School	Street Location Angeles)(Los Angeles)Bolero LaneUnion Station Driveway Park Paseo St	X 386554.29 386040.13 386891.05	Y 3769752.53 3769154.79 3768359.8	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277 0.00054	Elevation (ZELEV) 89.05 90.06 82.03	Hill Heights (ZHILL) 89.05 90.06 82.03	Flagpole (ZFLAG) 0 0	Averagin Period (AVE) ANNUAL ANNUAL ANNUAL	Source Group (GRP) ALL	Num Years (NUM YRS) 5 5
	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)ARC3 (ARCREC)ARC4 (ARCREC)	Rerun ModelSensitive ReceptorWilliam Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional Facility	Street Location Angeles)(Los Angeles)Bolero LaneUnion Station DrivewayPark Paseo St Bauchet Street	X 386554.29 386040.13	Y 3769752.53 3769154.79	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277 0.00054 0.01593	Elevation (ZELEV) 89.05 90.06	Hill Heights (ZHILL) 89.05 90.06	Flagpole (ZFLAG) 0 0 0	Averagin Period (AVE) ANNUAL ANNUAL	Source Group (GRP) ALL ALL ALL	Num Years (NUM YRS) 5 5 5 5
	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)ARC3 (ARCREC)ARC4 (ARCREC)ARC5 (ARCREC)	Rerun ModelSensitive ReceptorWilliam Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central Jail	Street Location Angeles)(Los Angeles)Bolero LaneUnion Station DrivewayPark Paseo StBauchet StreetBauchet StreetBauchet Street	X 386554.29 <u>386040.13</u> 386891.05 386341.41 386283.86	Y 3769752.53 3769154.79 3768359.8 3769277.46	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277 0.00054 0.01593 0.00538	Elevation (ZELEV) 89.05 90.06 82.03 86.94 88.03	Hill Heights (ZHILL) 89.05 90.06 82.03 86.94	Flagpole (ZFLAG) 0 0 0 0	Averagin Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Source Group (GRP) ALL ALL ALL ALL	Num Years (NUM YRS) 5 5 5 5 5 5
Revised	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)ARC3 (ARCREC)ARC4 (ARCREC)	Rerun ModelSensitive ReceptorWilliam Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional Facility	Street Location Angeles)(Los Angeles)Bolero LaneUnion Station DrivewayPark Paseo StBauchet StreetBauchet StreetSanta Fe Avenue	X 386554.29 386040.13 386891.05 386341.41 386283.86 386304.23	Y 3769752.53 3769154.79 3768359.8 3769277.46 3769482.56	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277 0.00054 0.01593 0.00538 0.00017	Elevation (ZELEV) 89.05 90.06 82.03 86.94	Hill Heights (ZHILL) 89.05 90.06 82.03 86.94 88.03	Flagpole (ZFLAG) 0 0 0 0 0 0	Averagin Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL	Source Group (GRP) ALL ALL ALL ALL ALL	Num Years (NUM YRS) 5 5 5 5 5 5
12/10/2018	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)ARC3 (ARCREC)ARC4 (ARCREC)ARC5 (ARCREC)ARC6 (ARCREC)ARC7 (ARCREC)	Rerun ModelSensitive ReceptorWilliam Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro Offices	Street Location Angeles)(Los Angeles)Bolero LaneUnion Station DrivewayPark Paseo StBauchet StreetBauchet StreetSanta Fe AvenueN. Vignes Street	X 386554.29 <u>386040.13</u> 386891.05 386341.41 386283.86	Y 3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769482.56 3767912 3769095.39	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277 0.00054 0.01593 0.00538 0.00017 0.04844	Elevation (ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89	Hill Heights (ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33	Flagpole (ZFLAG) 0 0 0 0 0 0 0 0	Averagin Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Source Group (GRP) ALL ALL ALL ALL ALL ALL ALL	Num Years (NUM YRS) 5 5 5 5 5 5 5 5 5 5
12/10/2018 Construction	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)ARC3 (ARCREC)ARC4 (ARCREC)ARC5 (ARCREC)ARC6 (ARCREC)ARC7 (ARCREC)(ARCREC)-1	Rerun ModelSensitive ReceptorWilliam Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidential	Street Location Angeles)(Los Angeles)Bolero LaneUnion Station DrivewayPark Paseo StBauchet StreetBauchet StreetSanta Fe AvenueN. Vignes StreetMission Road	X 386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89	Y 3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769482.56 3767912 3769095.39 3768599.79	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277 0.00054 0.01593 0.00538 0.00017 0.04844 0.00157	Elevation (ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69	Hill Heights (ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69	Flagpole (ZFLAG) 0 0 0 0 0 0 0 0 0 0 0	Averagin Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Source Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL	Num Years (NUM YRS) 5 5 5 5 5 5 5 5 5 5
12/10/2018 Construction Above Grade	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)ARC3 (ARCREC)ARC4 (ARCREC)ARC5 (ARCREC)ARC6 (ARCREC)ARC7 (ARCREC)(ARC7 (ARCREC)(ARCREC)-1(ARCREC)-2	Rerun ModelSensitive ReceptorWilliam Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidentialResidential	Street Location Angeles)(Los Angeles)Bolero LaneUnion Station DrivewayPark Paseo StBauchet StreetBauchet StreetBauchet StreetSanta Fe AvenueN. Vignes StreetMission RoadMission Road	X 386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386788.16 386771.84	Y 3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769482.56 3767912 3769095.39 3768599.79 3768599.79	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277 0.00054 0.01593 0.00538 0.00017 0.04844 0.00157 0.00130	Elevation (ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 82.8	Hill Heights (ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8	Flagpole (ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Averagin Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Source Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	Num Years (NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
12/10/2018 Construction	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)ARC3 (ARCREC)ARC4 (ARCREC)ARC5 (ARCREC)ARC6 (ARCREC)ARC7 (ARCREC)(ARCREC)-1(ARCREC)-2(ARCREC)-3	Rerun ModelSensitive ReceptorWilliam Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidentialResidentialResidential	Street Location Angeles)(Los Angeles)Bolero LaneUnion Station DrivewayPark Paseo StBauchet StreetBauchet StreetBauchet StreetSanta Fe AvenueN. Vignes StreetMission RoadMission RoadMission RoadMission Road	X 386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386788.16 386771.84 386771.84	Y 3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769482.56 3767912 3769095.39 3768599.79 3768542.02 3768474.21	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277 0.00054 0.01593 0.00538 0.00017 0.04844 0.00157 0.00130 0.00103	Elevation (ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 83.69 82.8 82.73	Hill Heights (ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8 82.73	Flagpole (ZFLAG) 0	Averagin Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Source Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	Num Years (NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
12/10/2018 Construction Above Grade	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)ARC3 (ARCREC)ARC4 (ARCREC)ARC5 (ARCREC)ARC6 (ARCREC)ARC7 (ARCREC)(ARC7 (ARCREC)(ARCREC)-1(ARCREC)-2(ARCREC)-3(ARCREC)-4	Rerun ModelSensitive ReceptorWilliam Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidentialResidentialResidentialResidentialResidential	Street Location Angeles)(Los Angeles)Bolero LaneUnion Station DrivewayPark Paseo StBauchet StreetBauchet StreetBauchet StreetSanta Fe AvenueN. Vignes StreetMission RoadMission RoadMission RoadMission RoadMission RoadMission Road	X 386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386788.16 386771.84 386747.98 386747.98	Y 3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769482.56 3767912 3769095.39 3768599.79 3768542.02 3768474.21 3768434.02	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277 0.00054 0.01593 0.00538 0.00017 0.04844 0.00157 0.00130 0.00103 0.00090	Elevation (ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 82.8 82.73 82.66	Hill Heights (ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8 82.73 82.66	Flagpole (ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Averagin Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Source Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	Num Years (NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
12/10/2018 Construction Above Grade	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)ARC3 (ARCREC)ARC4 (ARCREC)ARC5 (ARCREC)ARC6 (ARCREC)ARC7 (ARCREC)(ARCREC)-1(ARCREC)-2(ARCREC)-3(ARCREC)-4(ARCREC)-5	Rerun ModelSensitive ReceptorWilliam Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidentialResidentialResidentialResidentialResidentialNorthend Outside Union Station	Street Location Angeles)(Los Angeles)Bolero LaneUnion Station DrivewayPark Paseo StBauchet StreetBauchet StreetBauchet StreetSanta Fe AvenueN. Vignes StreetMission RoadMission RoadMission RoadMission RoadMission RoadUnion Station Driveway	X 386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386788.16 386771.84 386771.84 386735.42 386020.88	Y 3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769482.56 3769095.39 3768599.79 3768542.02 3768474.21 3768434.02 3769115.91	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277 0.00054 0.01593 0.00538 0.00017 0.04844 0.00157 0.00130 0.00103 0.00103 0.00090 0.01746	Elevation (ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 83.69 82.8 82.73 82.66 86.07	Hill Heights (ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8 82.73 82.66 86.07	Flagpole (ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Averagin Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Source Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	Num Years (NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
12/10/2018 Construction Above Grade	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)ARC3 (ARCREC)ARC4 (ARCREC)ARC5 (ARCREC)ARC6 (ARCREC)ARC7 (ARCREC)(ARCREC)-1(ARCREC)-2(ARCREC)-3(ARCREC)-4(ARCREC)-5(ARCREC)-6	Rerun ModelSensitive ReceptorWilliam Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidentialResidentialResidentialResidentialNorthend Outside Union StationUSPO Terminal Annex	Street Location Angeles)(Los Angeles)Bolero LaneUnion Station DrivewayPark Paseo StBauchet StreetBauchet StreetSanta Fe AvenueN. Vignes StreetMission RoadMission RoadMission RoadMission RoadUnion Station DrivewayCesar E Chavez Ave.	X 386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386788.16 386771.84 386747.98 386747.98 386735.42 386020.88 386061.06	Y 3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769095.39 3768599.79 3768542.02 3768434.02 3769115.91 3769257.82	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277 0.00054 0.01593 0.00538 0.00017 0.04844 0.00157 0.00130 0.00103 0.00103 0.00090 0.01746 0.01682	Elevation (ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 83.69 82.8 82.73 82.66 86.07 86.48	Hill Heights (ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8 82.73 82.66 86.07 86.48	Flagpole (ZFLAG) (2FLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Averagin Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Source Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	Num Years (NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
12/10/2018 Construction Above Grade	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)ARC3 (ARCREC)ARC4 (ARCREC)ARC5 (ARCREC)ARC6 (ARCREC)ARC7 (ARCREC)ARC7 (ARCREC)(ARCREC)-1(ARCREC)-2(ARCREC)-3(ARCREC)-4(ARCREC)-5(ARCREC)-6(ARCREC)-7	Rerun ModelSensitive ReceptorWilliam Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidentialResidentialResidentialResidentialNorthend Outside Union StationUSPO Terminal AnnexLos Angeles Men's Central Jail	Street Location Angeles)(Los Angeles)Bolero LaneUnion Station DrivewayPark Paseo StBauchet StreetBauchet StreetBauchet StreetSanta Fe AvenueN. Vignes StreetMission RoadMission RoadMission RoadMission RoadMission RoadUnion Station DrivewayCesar E Chavez Ave.Vignes Street	X 386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386788.16 386771.84 386771.84 386735.42 386020.88 386061.06 386288.36	Y 3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769095.39 3768599.79 3768542.02 3768474.21 3769434.02 3769115.91 3769257.82 3769402.23	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277 0.00054 0.01593 0.00538 0.00017 0.04844 0.00157 0.00130 0.00103 0.00103 0.00090 0.01746 0.01682 0.01005	Elevation (ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 82.8 82.73 82.66 86.07 86.48 88.72	Hill Heights (ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8 82.73 82.66 86.07 86.48 88.72	Flagpole (ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Averagin Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Source Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	Num Years (NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
12/10/2018 Construction Above Grade	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)ARC3 (ARCREC)ARC4 (ARCREC)ARC5 (ARCREC)ARC5 (ARCREC)ARC6 (ARCREC)ARC7 (ARCREC)(ARCREC)-1(ARCREC)-2(ARCREC)-3(ARCREC)-4(ARCREC)-5(ARCREC)-6(ARCREC)-7(ARCREC)-8	Rerun ModelSensitive ReceptorWilliam Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidentialResidentialResidentialResidentialResidentialNorthend Outside Union StationUSPO Terminal AnnexLos Angeles Men's Central JailTrimana Fresh Food Market	Street Location Angeles)(Los Angeles)Bolero LaneUnion Station DrivewayPark Paseo StBauchet StreetBauchet StreetBauchet StreetSanta Fe AvenueN. Vignes StreetMission RoadMission RoadMission RoadMission RoadMission RoadUnion Station DrivewayCesar E Chavez Ave.Vignes StreetUnion Station DrivewayUnion Station Driveway	X 386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386771.84 386771.84 386771.84 386771.84 386735.42 386020.88 386061.06 386288.36 386000.79	Y 3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769095.39 3768599.79 3768542.02 3768474.21 3769115.91 3769257.82 3769402.23 3769006.66	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277 0.00054 0.01593 0.00538 0.00017 0.04844 0.00157 0.00130 0.00103 0.00103 0.00090 0.01746 0.01682 0.01005 0.01729	Elevation (ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 82.8 82.73 82.66 86.07 86.48 88.72 86.17	Hill Heights (ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8 82.73 82.66 86.07 86.48 88.72 86.17	Flagpole (ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Averagin Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Source Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	Num Years (NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
12/10/2018 Construction Above Grade	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)ARC3 (ARCREC)ARC4 (ARCREC)ARC5 (ARCREC)ARC6 (ARCREC)ARC7 (ARCREC)(ARCREC)-1(ARCREC)-2(ARCREC)-3(ARCREC)-3(ARCREC)-5(ARCREC)-6(ARCREC)-7(ARCREC)-8(ARCREC)-9	Rerun ModelSensitive ReceptorWilliam Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidentialResidentialResidentialResidentialNorthend Outside Union StationUSPO Terminal AnnexLos Angeles Men's Central JailTrimana Fresh Food MarketWilliam Mead Homes	Street Location Angeles)(Los Angeles)Bolero LaneUnion Station DrivewayPark Paseo StBauchet StreetBauchet StreetBauchet StreetSanta Fe AvenueN. Vignes StreetMission RoadMission RoadMission RoadMission RoadMission RoadUnion Station DrivewayCesar E Chavez Ave.Vignes StreetUnion Station DrivewayBolero Lane	X 386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386788.16 386771.84 386747.98 386747.98 386747.98 386020.88 386020.88 386000.79 386720.35	Y 3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769095.39 3768599.79 3768542.02 3768474.21 3769432.59 3768542.02 3768474.21 3769115.91 3769257.82 3769402.23 3769006.66 3769817.9	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277 0.00054 0.01593 0.00538 0.00017 0.04844 0.00157 0.00130 0.00103 0.00103 0.00090 0.01746 0.01682 0.01005 0.01729 0.00397	Elevation (ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 82.8 82.73 82.66 86.07 86.48 88.72 86.17 86.86	Hill Heights (ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8 82.73 82.66 86.07 86.48 88.72 86.17 86.86	Flagpole (ZFLAG) (ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Averagin Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Source Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	Num Years (NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
12/10/2018 Construction Above Grade	11/19/2018Discrete ReceptorID (Group Name)ARC1 (ARCREC)ARC2 (ARCREC)ARC3 (ARCREC)ARC4 (ARCREC)ARC5 (ARCREC)ARC5 (ARCREC)ARC6 (ARCREC)ARC7 (ARCREC)(ARCREC)-1(ARCREC)-2(ARCREC)-3(ARCREC)-4(ARCREC)-5(ARCREC)-6(ARCREC)-7(ARCREC)-8	Rerun ModelSensitive ReceptorWilliam Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidentialResidentialResidentialResidentialResidentialNorthend Outside Union StationUSPO Terminal AnnexLos Angeles Men's Central JailTrimana Fresh Food Market	Street Location Angeles)(Los Angeles)Bolero LaneUnion Station DrivewayPark Paseo StBauchet StreetBauchet StreetBauchet StreetSanta Fe AvenueN. Vignes StreetMission RoadMission RoadMission RoadMission RoadMission RoadUnion Station DrivewayCesar E Chavez Ave.Vignes StreetUnion Station DrivewayUnion Station Driveway	X 386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386771.84 386771.84 386771.84 386771.84 386735.42 386020.88 386061.06 386288.36 386000.79	Y 3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769095.39 3768599.79 3768542.02 3768474.21 3769115.91 3769257.82 3769402.23 3769006.66	Concentration (AVERAGE CONC) [ug/m^3] 0.00442 0.02277 0.00054 0.01593 0.00538 0.00017 0.04844 0.00157 0.00130 0.00103 0.00103 0.00090 0.01746 0.01682 0.01005 0.01729	Elevation (ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 82.8 82.73 82.66 86.07 86.48 88.72 86.17	Hill Heights (ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8 82.73 82.66 86.07 86.48 88.72 86.17	Flagpole (ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Averagin Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Source Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	Num Years (NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

	Discrete Receptor ID (Group Name)	Sensitive Receptor	Street Location (Los Angeles)	x	Y	Concentration (AVERAGE CONC) [ug/m^3]	Elevation (ZELEV)	Hill Heights (ZHILL)	Flagpole (ZFLAG)	Averagin Period (AVE)	Source Group (GRP)	Num Years (NUM YRS)
	ARC1 (ARCREC)	William Mead Homes	Bolero Lane	386554.29	3769752.53	0.06843	89.05	89.05	0	ANNUAL	ALL	5
	ARC2 (ARCREC)	Mozaic Apartments	Union Station Driveway	386040.13	3769154.79	0.35259	90.06	90.06	0	ANNUAL	ALL	5
	ARC3 (ARCREC)	K-12 School	Park Paseo St	386891.05	3768359.8	0.00833	82.03	82.03	0	ANNUAL	ALL	5
	ARC4 (ARCREC)	Twin Towers Correctional Facility	Bauchet Street	386341.41	3769277.46	0.24662	86.94	86.94	0	ANNUAL	ALL	5
	ARC5 (ARCREC)	Los Angeles Men's Central Jail	Bauchet Street	386283.86	3769482.56	0.08330	88.03	88.03	0	ANNUAL	ALL	5
Revised	ARC6 (ARCREC)	One Sante Fe Apartments	Santa Fe Avenue	386304.23	3767912	0.00270	81.1	81.1	0	ANNUAL	ALL	5
12/10/2018	ARC7 (ARCREC)	Metro Offices	N. Vignes Street	386214.89	3769095.39	0.75000	87.89	91.33	0	ANNUAL	ALL	5
Construction At-	(ARCREC)-1	Residential	Mission Road	386788.16	3768599.79	0.02433	83.69	83.69	0	ANNUAL	ALL	5
Grade	(ARCREC)-2	Residential	Mission Road	386771.84	3768542.02	0.02016	82.8	82.8	0	ANNUAL	ALL	5
Unmitigated	(ARCREC)-3	Residential	Mission Road	386747.98	3768474.21	0.01594	82.73	82.73	0	ANNUAL	ALL	5
Onnitigated	(ARCREC)-4	Residential	Mission Road	386735.42	3768434.02	0.01388	82.66	82.66	0	ANNUAL	ALL	5
	(ARCREC)-5	Northend Outside Union Station	Union Station Driveway	386020.88	3769115.91	0.27028	86.07	86.07	0	ANNUAL	ALL	5
	(ARCREC)-6	USPO Terminal Annex	Cesar E Chavez Ave.	386061.06	3769257.82	0.26047	86.48	86.48	0	ANNUAL	ALL	5
	(ARCREC)-7	Los Angeles Men's Central Jail	Vignes Street	386288.36	3769402.23	0.15557	88.72	88.72	0	ANNUAL	ALL	5
	(ARCREC)-8	Trimana Fresh Food Market	Union Station Driveway	386000.79	3769006.66	0.26764	86.17	86.17	0	ANNUAL	ALL	5
	(ARCREC)-9	William Mead Homes	Bolero Lane	386720.35	3769817.9	0.06149	86.86	86.86	0	ANNUAL	ALL	5
	(ARCREC)-10	William Mead Homes	Bolero Lane	386678.91	3769778.97	0.09272	87.27	87.27	0	ANNUAL	ALL	5
	(ARCREC)-11	William Mead Homes	Bolero Lane	386618.63	3769760.13	0.08525	88.18	88.18	0	ANNUAL	ALL	5
	(ARCREC)-12	Metropolitan Water	Union Station Driveway	385961.86	3768935.08	0.14866	86.28	86.28	0	ANNUAL	ALL	5
						Concentration						

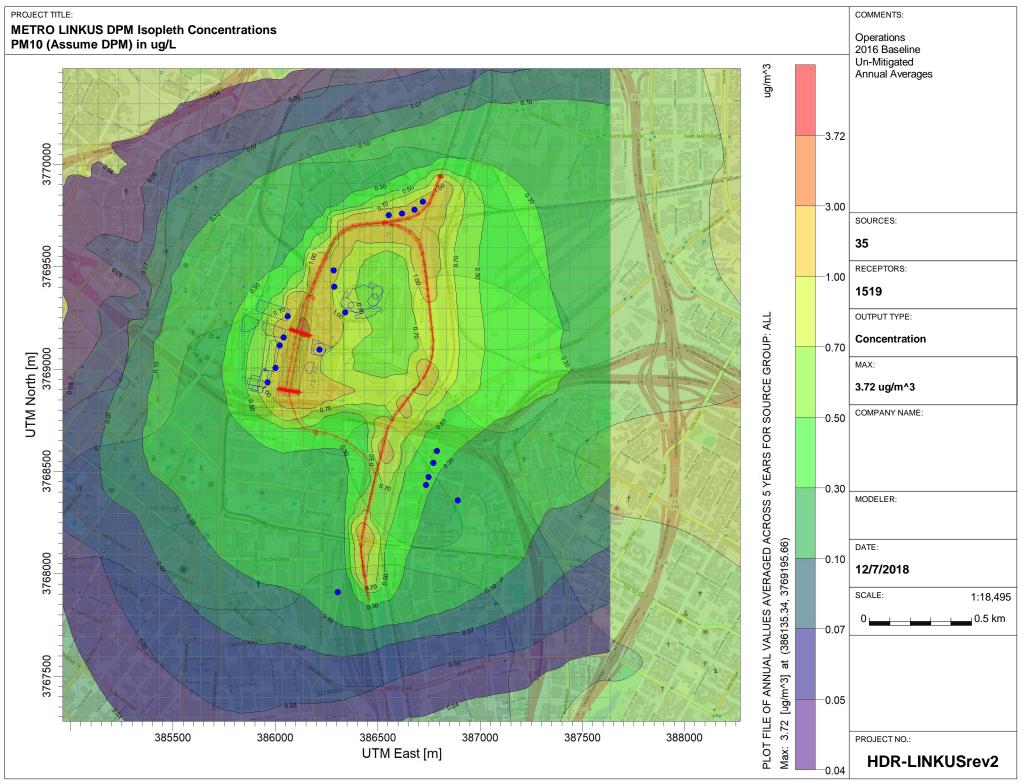
	Discrete Receptor ID (Group Name)	Sensitive Receptor	Street Location (Los Angeles)	x	Y	Concentration (AVERAGE CONC) [ug/m^3]	Elevation (ZELEV)	Hill Heights (ZHILL)	Flagpole (ZFLAG)	Averagin Period (AVE)	Source Group (GRP)	
	ARC1 (ARCREC)	William Mead Homes	Bolero Lane	386554.29	3769752.53	0.00716	89.05	89.05	0	ANNUAL	ALL	5
	ARC2 (ARCREC)	Mozaic Apartments	Union Station Driveway	386040.13	3769154.79	0.03691	90.06	90.06	0	ANNUAL	ALL	5
	ARC3 (ARCREC)	K-12 School	Park Paseo St	386891.05	3768359.8	0.00087	82.03	82.03	0	ANNUAL	ALL	5
	ARC4 (ARCREC)	Twin Towers Correctional Facility	Bauchet Street	386341.41	3769277.46	0.02582	86.94	86.94	0	ANNUAL	ALL	5
	ARC5 (ARCREC)	Los Angeles Men's Central Jail	Bauchet Street	386283.86	3769482.56	0.00872	88.03	88.03	0	ANNUAL	ALL	5
	ARC6 (ARCREC)	One Sante Fe Apartments	Santa Fe Avenue	386304.23	3767912	0.00028	81.1	81.1	0	ANNUAL	ALL	5
Revised	ARC7 (ARCREC)	Metro Offices	N. Vignes Street	386214.89	3769095.39	0.07851	87.89	91.33	0	ANNUAL	ALL	5
12/10/2018	(ARCREC)-1	Residential	Mission Road	386788.16	3768599.79	0.00255	83.69	83.69	0	ANNUAL	ALL	5
Construction At-	(ARCREC)-2	Residential	Mission Road	386771.84	3768542.02	0.00211	82.8	82.8	0	ANNUAL	ALL	5
Grade Mitigated	(ARCREC)-3	Residential	Mission Road	386747.98	3768474.21	0.00167	82.73	82.73	0	ANNUAL	ALL	5
	(ARCREC)-4	Residential	Mission Road	386735.42	3768434.02	0.00145	82.66	82.66	0	ANNUAL	ALL	5
	(ARCREC)-5	Northend Outside Union Station	Union Station Driveway	386020.88	3769115.91	0.02829	86.07	86.07	0	ANNUAL	ALL	5
	(ARCREC)-6	USPO Terminal Annex	Cesar E Chavez Ave.	386061.06	3769257.82	0.02727	86.48	86.48	0	ANNUAL	ALL	5
	(ARCREC)-7	Los Angeles Men's Central Jail	Vignes Street	386288.36	3769402.23	0.01628	88.72	88.72	0	ANNUAL	ALL	5
	(ARCREC)-8	Trimana Fresh Food Market	Union Station Driveway	386000.79	3769006.66	0.02802	86.17	86.17	0	ANNUAL	ALL	5
	(ARCREC)-9	William Mead Homes	Bolero Lane	386720.35	3769817.9	0.00644	86.86	86.86	0	ANNUAL	ALL	5
	(ARCREC)-10	William Mead Homes	Bolero Lane	386678.91	3769778.97	0.00971	87.27	87.27	0	ANNUAL	ALL	5
	(ARCREC)-11	William Mead Homes	Bolero Lane	386618.63	3769760.13	0.00892	88.18	88.18	0	ANNUAL	ALL	5
	(ARCREC)-12	Metropolitan Water	Union Station Driveway	385961.86	3768935.08	0.01556	86.28	86.28	0	ANNUAL	ALL	5

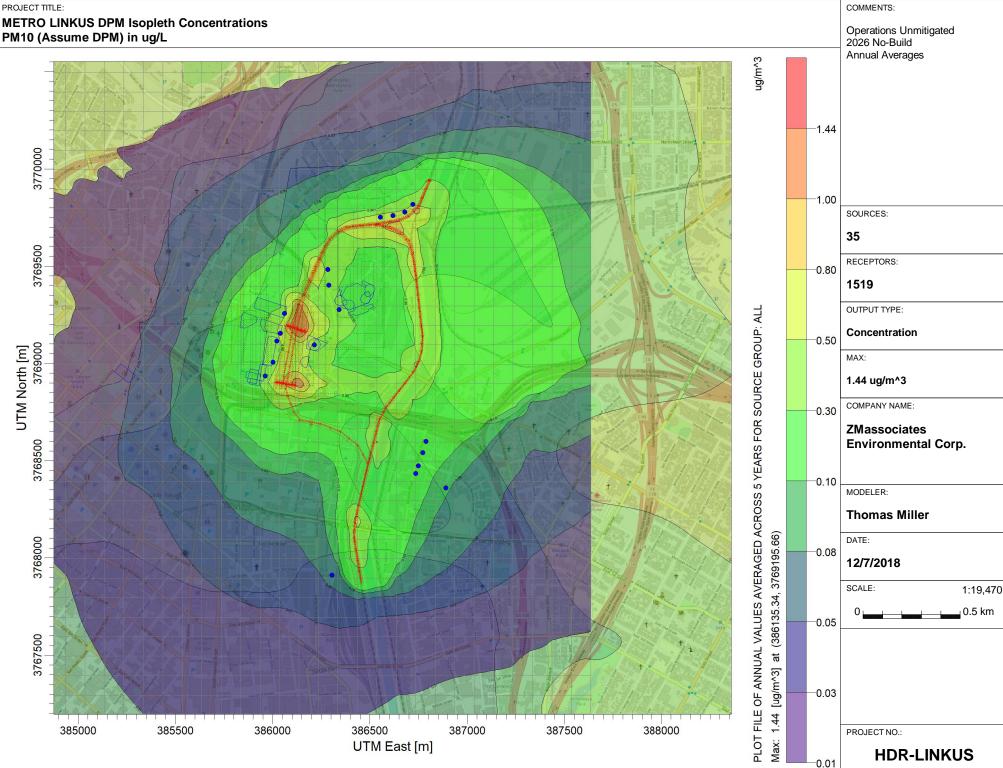
METRO LINKUS Operation Modeled DPM Concentrations [ug/m^3]

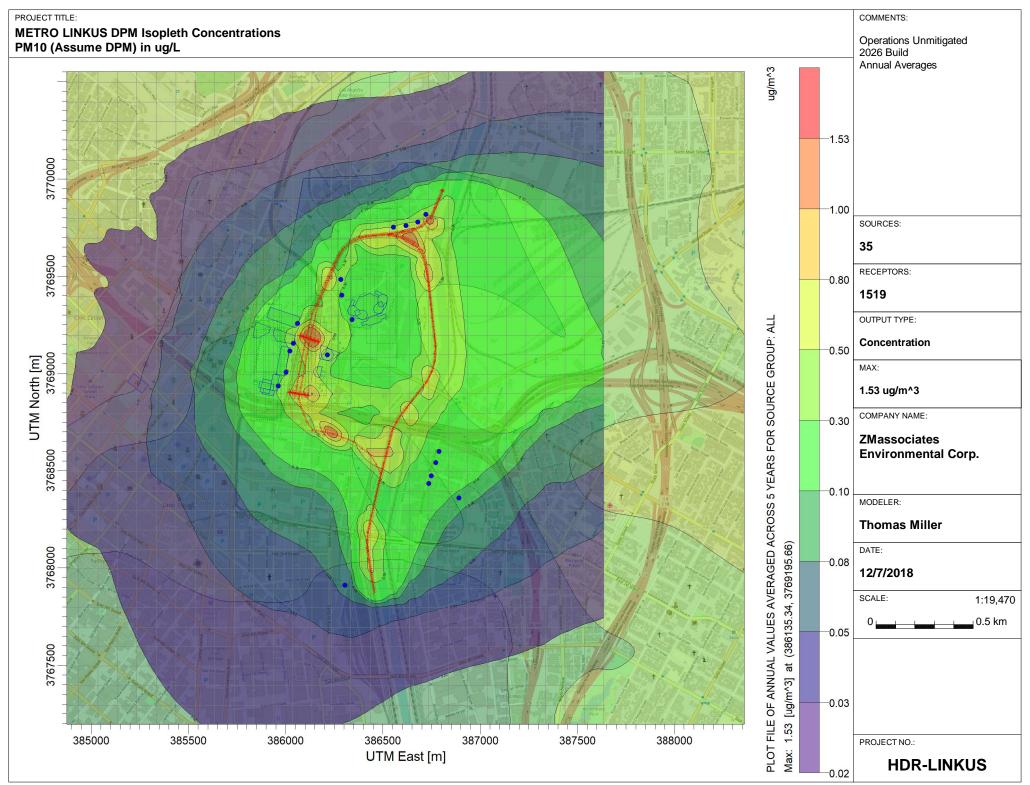
Rev-2 Operation Emission - Unmitigated

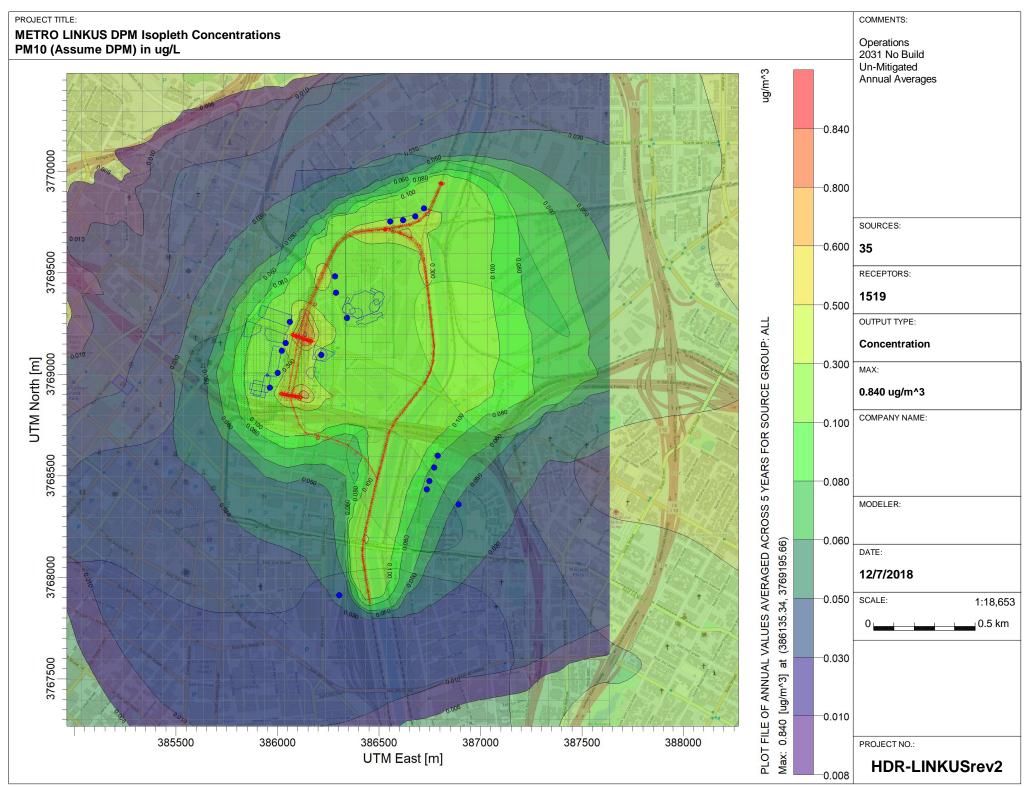
	Discrete Receptor ID (Group Name)	Sensitive Receptor	Street Location (Los Angeles)	х	Y	Concentration (AVERAGE CONC) [ug/m^3]	Elevation (ZELEV)	Hill Heights (ZHILL)	Flagpole (ZFLAG)	Averagin Period (AVE)	Source Group (GRP)	Num Years (NUM YRS)
	ARC1 (ARCREC)	William Mead Homes	Bolero Lane	386554.29	3769752.53	1.53693	89.05	89.05	0	ANNUAL	ALL	5
	ARC2 (ARCREC)	Mozaic Apartments	Union Station Driveway	386040.13	3769154.79	1.44599	90.06	90.06	0	ANNUAL	ALL	5
	ARC3 (ARCREC)	K-12 School	Park Paseo St	386891.05	3768359.8	0.21438	82.03	82.03	0	ANNUAL	ALL	5
	ARC4 (ARCREC)	Twin Towers Correctional Facility	Bauchet Street	386341.41	3769277.46	0.83813	86.94	86.94	0	ANNUAL	ALL	5
	ARC5 (ARCREC)	Los Angeles Men's Central Jail	Bauchet Street	386283.86	3769482.56	1.13848	88.03	88.03	0	ANNUAL	ALL	5
	ARC6 (ARCREC)	One Sante Fe Apartments	Santa Fe Avenue	386304.23	3767912	0.15143	81.1	81.1	0	ANNUAL	ALL	5
	ARC7 (ARCREC)	Metro Offices	N. Vignes Street	386214.89	3769095.39	1.1194	87.89	91.33	0	ANNUAL	ALL	5
2016	(ARCREC)-1	Residential	Mission Road	386788.16	3768599.79	0.36014	83.69	83.69	0	ANNUAL	ALL	5
Baseline	(ARCREC)-2	Residential	Mission Road	386771.84	3768542.02	0.33853	82.8	82.8	0	ANNUAL	ALL	5
	(ARCREC)-3	Residential	Mission Road	386747.98	3768474.21	0.32611	82.73	82.73	0	ANNUAL	ALL	5
	(ARCREC)-4	Residential	Mission Road	386735.42	3768434.02	0.32153	82.66	82.66	0	ANNUAL	ALL	5
	(ARCREC)-5	Northend Outside Union Station	Union Station Driveway	386020.88	3769115.91	1.07861	86.07	86.07	0	ANNUAL	ALL	5
	(ARCREC)-6	USPO Terminal Annex	Cesar E Chavez Ave.	386061.06	3769257.82	1.05863	86.48	86.48	0	ANNUAL	ALL	5
	(ARCREC)-7	Los Angeles Men's Central Jail	Vignes Street	386288.36	3769402.23	0.94566	88.72	88.72	0	ANNUAL	ALL	5
	(ARCREC)-8	Trimana Fresh Food Market	Union Station Driveway	386000.79	3769006.66	1.05032	86.17	86.17	0	ANNUAL	ALL	5
	(ARCREC)-9	William Mead Homes	Bolero Lane	386720.35	3769817.9	1.17416	86.86	86.86	0	ANNUAL	ALL	5
	(ARCREC)-10	William Mead Homes	Bolero Lane	386678.91	3769778.97	1.48066	87.27	87.27	0	ANNUAL	ALL	5
	(ARCREC)-11	William Mead Homes	Bolero Lane	386618.63	3769760.13	1.62149	88.18	88.18	0	ANNUAL	ALL	5
	(ARCREC)-12	Metropolitan Water	Union Station Driveway	385961.86	3768935.08	0.98665	86.28	86.28	0	ANNUAL	ALL	5
						Concontration						N V

	Discrete Receptor ID (Group Name)	Sensitive Receptor	Street Location (Los Angeles)	х	Y	Concentration (AVERAGE CONC) [ug/m^3]	Elevation (ZELEV)	Hill Heights (ZHILL)	Flagpole (ZFLAG)	Averagin Period (AVE)	Source Group (GRP)	Num Years (NUM YRS)
	ARC1 (ARCREC)	William Mead Homes	Bolero Lane	386554.29	3769752.53	0.59585	89.05	89.05	0	ANNUAL	ALL	5
	ARC2 (ARCREC)	Mozaic Apartments	Union Station Driveway	386040.13	3769154.79	0.56107	90.06	90.06	0	ANNUAL	ALL	5
	ARC3 (ARCREC)	K-12 School	Park Paseo St	386891.05	3768359.8	0.08313	82.03	82.03	0	ANNUAL	ALL	5
	ARC4 (ARCREC)	Twin Towers Correctional Facility	Bauchet Street	386341.41	3769277.46	0.3251	86.94	86.94	0	ANNUAL	ALL	5
	ARC5 (ARCREC)	Los Angeles Men's Central Jail	Bauchet Street	386283.86	3769482.56	0.44142	88.03	88.03	0	ANNUAL	ALL	5
	ARC6 (ARCREC)	One Sante Fe Apartments	Santa Fe Avenue	386304.23	3767912	0.05872	81.1	81.1	0	ANNUAL	ALL	5
	ARC7 (ARCREC)	Metro Offices	N. Vignes Street	386214.89	3769095.39	0.43421	87.89	91.33	0	ANNUAL	ALL	5
2026 No-	(ARCREC)-1	Residential	Mission Road	386788.16	3768599.79	0.13966	83.69	83.69	0	ANNUAL	ALL	5
Build	(ARCREC)-2	Residential	Mission Road	386771.84	3768542.02	0.13127	82.8	82.8	0	ANNUAL	ALL	5
	(ARCREC)-3	Residential	Mission Road	386747.98	3768474.21	0.12645	82.73	82.73	0	ANNUAL	ALL	5
	(ARCREC)-4	Residential	Mission Road	386735.42	3768434.02	0.12467	82.66	82.66	0	ANNUAL	ALL	5
	(ARCREC)-5	Northend Outside Union Station	Union Station Driveway	386020.88	3769115.91	0.41849	86.07	86.07	0	ANNUAL	ALL	5
	(ARCREC)-6	USPO Terminal Annex	Cesar E Chavez Ave.	386061.06	3769257.82	0.41072	86.48	86.48	0	ANNUAL	ALL	5
	(ARCREC)-7	Los Angeles Men's Central Jail	Vignes Street	386288.36	3769402.23	0.3667	88.72	88.72	0	ANNUAL	ALL	5
	(ARCREC)-8	Trimana Fresh Food Market	Union Station Driveway	386000.79	3769006.66	0.40752	86.17	86.17	0	ANNUAL	ALL	5
	(ARCREC)-9	William Mead Homes	Bolero Lane	386720.35	3769817.9	0.45521	86.86	86.86	0	ANNUAL	ALL	5
	(ARCREC)-10	William Mead Homes	Bolero Lane	386678.91	3769778.97	0.57403	87.27	87.27	0	ANNUAL	ALL	5
	(ARCREC)-11	William Mead Homes	Bolero Lane	386618.63	3769760.13	0.62863	88.18	88.18	0	ANNUAL	ALL	5
	(ARCREC)-12	Metropolitan Water	Union Station Driveway	385961.86	3768935.08	0.38286	86.28	86.28	0	ANNUAL	ALL	5

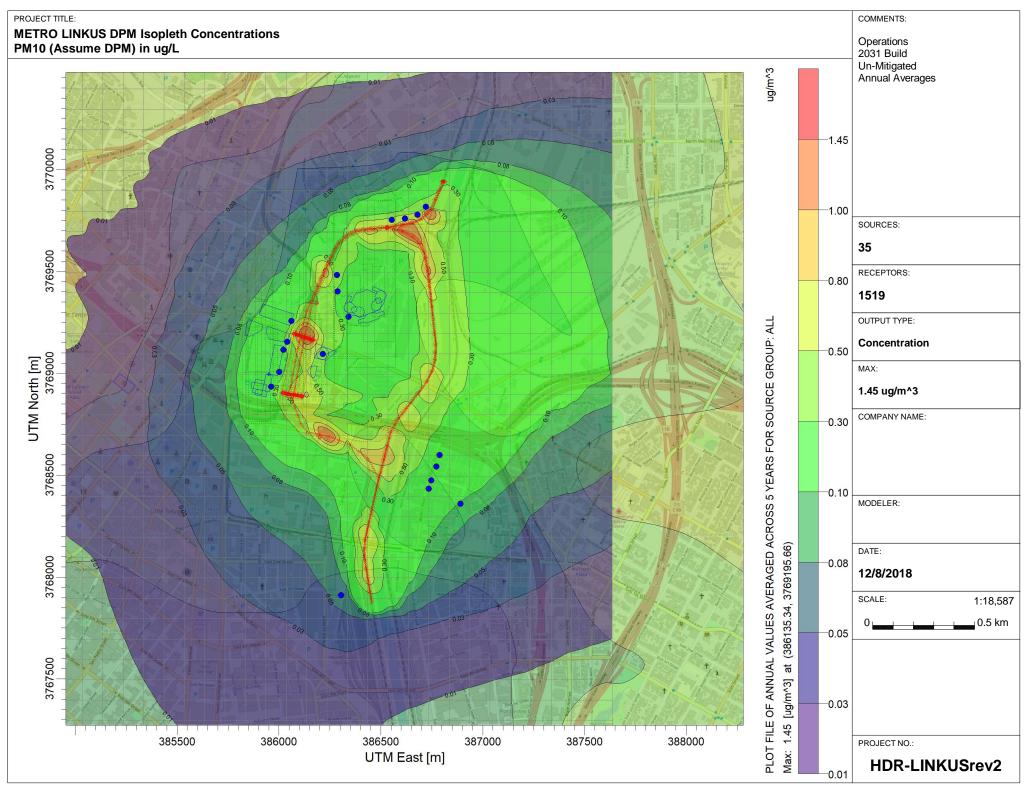

	Discrete Receptor ID (Group Name)	Sensitive Receptor	Street Location (Los Angeles)	х	Y	Concentration (AVERAGE CONC) [ug/m^3]	Elevation (ZELEV)	Hill Heights (ZHILL)	Flagpole (ZFLAG)	Averagin Period (AVE)	Source Group (GRP)	Num Years (NUM YRS)
	ARC1 (ARCREC)	William Mead Homes	Bolero Lane	386554.29	3769752.53	0.50693	89.05	89.05	0	ANNUAL	ALL	5
	ARC2 (ARCREC)	Mozaic Apartments	Union Station Driveway	386040.13	3769154.79	0.40627	90.06	90.06	0	ANNUAL	ALL	5
	. ,	K-12 School	Park Paseo St	386891.05	3768359.8	0.09126	82.03	82.03	0	ANNUAL	ALL	5
	ARC4 (ARCREC)	Twin Towers Correctional Facility	Bauchet Street	386341.41	3769277.46	0.25175	86.94	86.94	0	ANNUAL	ALL	5
	ARC5 (ARCREC)	Los Angeles Men's Central Jail	Bauchet Street	386283.86	3769482.56	0.33692	88.03	88.03	0	ANNUAL	ALL	5
	ARC6 (ARCREC)	One Sante Fe Apartments	Santa Fe Avenue	386304.23	3767912	0.05762	81.1	81.1	0	ANNUAL	ALL	5
	ARC7 (ARCREC)	Metro Offices	N. Vignes Street	386214.89	3769095.39	0.34901	87.89	91.33	0	ANNUAL	ALL	5
2026	(ARCREC)-1	Residential	Mission Road	386788.16	3768599.79	0.20373	83.69	83.69	0	ANNUAL	ALL	5
Build	(ARCREC)-2	Residential	Mission Road	386771.84	3768542.02	0.18602	82.8	82.8	0	ANNUAL	ALL	5
	(ARCREC)-3	Residential	Mission Road	386747.98	3768474.21	0.16302	82.73	82.73	0	ANNUAL	ALL	5
	(ARCREC)-4	Residential	Mission Road	386735.42	3768434.02	0.14841	82.66	82.66	0	ANNUAL	ALL	5
	(ARCREC)-5	Northend Outside Union Station	Union Station Driveway	386020.88	3769115.91	0.30314	86.07	86.07	0	ANNUAL	ALL	5
	(ARCREC)-6	USPO Terminal Annex	Cesar E Chavez Ave.	386061.06	3769257.82	0.29003	86.48	86.48	0	ANNUAL	ALL	5
	(ARCREC)-7	Los Angeles Men's Central Jail	Vignes Street	386288.36	3769402.23	0.27113	88.72	88.72	0	ANNUAL	ALL	5
	(ARCREC)-8	Trimana Fresh Food Market	Union Station Driveway	386000.79	3769006.66	0.30166	86.17	86.17	0	ANNUAL	ALL	5
	(ARCREC)-9	William Mead Homes	Bolero Lane	386720.35	3769817.9	0.38358	86.86	86.86	0	ANNUAL	ALL	5
	(ARCREC)-10	William Mead Homes	Bolero Lane	386678.91	3769778.97	0.53173	87.27	87.27	0	ANNUAL	ALL	5
	(ARCREC)-11	William Mead Homes	Bolero Lane	386618.63	3769760.13	0.60292	88.18	88.18	0	ANNUAL	ALL	5
	(ARCREC)-12	Metropolitan Water	Union Station Driveway	385961.86	3768935.08	0.30103	86.28	86.28	0	ANNUAL	ALL	5
	11/21/2	018 rerun using revised emission nu	umbers									
									-1 1			N N
	Discrete Receptor ID (Group Name)	Sensitive Receptor	Street Location (Los Angeles)	х	Y	Concentration (AVERAGE CONC) [ug/m^3]	Elevation (ZELEV)	Hill Heights (ZHILL)	Flagpole (ZFLAG)	Averagin Period (AVE)	Source Group (GRP)	Num Years (NUM YRS)
	-	Sensitive Receptor William Mead Homes	-	X 386554.29	Y 3769752.53	(AVERAGE CONC)		-		Period	Group	
	ID (Group Name)		Angeles)			(AVERAGE CONC) [ug/m^3]	(ZELEV)	(ZHILL)	(ZFLAG)	Period (AVE)	Group (GRP)	(NUM YRS)
	ID (Group Name) ARC1 (ARCREC)	William Mead Homes	Angeles) Bolero Lane	386554.29	3769752.53	(AVERAGE CONC) [ug/m^3] 0.34751	(ZELEV) 89.05	(ZHILL) 89.05	(ZFLAG)	Period (AVE) ANNUAL	Group (GRP)	(NUM YRS) 5
	ID (Group Name) ARC1 (ARCREC) ARC2 (ARCREC)	William Mead Homes Mozaic Apartments	Angeles) Bolero Lane Union Station Driveway	386554.29 386040.13	3769752.53 3769154.79	(AVERAGE CONC) [ug/m^3] 0.34751 0.3265	(ZELEV) 89.05 90.06	(ZHILL) 89.05 90.06	(ZFLAG) 0 0	Period (AVE) ANNUAL ANNUAL	Group (GRP) ALL ALL	(NUM YRS) 5 5
	ID (Group Name) ARC1 (ARCREC) ARC2 (ARCREC) ARC3 (ARCREC)	William Mead Homes Mozaic Apartments K-12 School	Angeles) Bolero Lane Union Station Driveway Park Paseo St	386554.29 386040.13 386891.05	3769752.53 3769154.79 3768359.8	(AVERAGE CONC) [ug/m^3] 0.34751 0.3265 0.04846	(ZELEV) 89.05 90.06 82.03	(ZHILL) 89.05 90.06 82.03	(ZFLAG) 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL	(NUM YRS) 5 5 5
	ID (Group Name) ARC1 (ARCREC) ARC2 (ARCREC) ARC3 (ARCREC) ARC4 (ARCREC)	William Mead Homes Mozaic Apartments K-12 School Twin Towers Correctional Facility	Angeles) Bolero Lane Union Station Driveway Park Paseo St Bauchet Street	386554.29 386040.13 386891.05 386341.41	3769752.53 3769154.79 3768359.8 3769277.46	(AVERAGE CONC) [ug/m^3] 0.34751 0.3265 0.04846 0.18935	(ZELEV) 89.05 90.06 82.03 86.94	(ZHILL) 89.05 90.06 82.03 86.94	(ZFLAG) 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL	(NUM YRS) 5 5 5 5 5
	ID (Group Name) ARC1 (ARCREC) ARC2 (ARCREC) ARC3 (ARCREC) ARC4 (ARCREC) ARC5 (ARCREC)	William Mead Homes Mozaic Apartments K-12 School Twin Towers Correctional Facility Los Angeles Men's Central Jail	Angeles) Bolero Lane Union Station Driveway Park Paseo St Bauchet Street Bauchet Street	386554.29 386040.13 386891.05 386341.41 386283.86	3769752.53 3769154.79 3768359.8 3769277.46 3769482.56	(AVERAGE CONC) [ug/m^3] 0.34751 0.3265 0.04846 0.18935 0.25738	(ZELEV) 89.05 90.06 82.03 86.94 88.03	(ZHILL) 89.05 90.06 82.03 86.94 88.03	(ZFLAG) 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL	(NUM YRS) 5 5 5 5 5 5 5
2031 No-	ID (Group Name) ARC1 (ARCREC) ARC2 (ARCREC) ARC3 (ARCREC) ARC4 (ARCREC) ARC5 (ARCREC) ARC6 (ARCREC)	William Mead Homes Mozaic Apartments K-12 School Twin Towers Correctional Facility Los Angeles Men's Central Jail One Sante Fe Apartments	Angeles) Bolero Lane Union Station Driveway Park Paseo St Bauchet Street Bauchet Street Santa Fe Avenue	386554.29 386040.13 386891.05 386341.41 386283.86 386304.23	3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3767912	(AVERAGE CONC) [ug/m^3] 0.34751 0.3265 0.04846 0.18935 0.25738 0.03423	(ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1	(ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1	(ZFLAG) 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL	(NUM YRS) 5 5 5 5 5 5 5 5 5
2031 No- Build	ID (Group Name) ARC1 (ARCREC) ARC2 (ARCREC) ARC3 (ARCREC) ARC4 (ARCREC) ARC5 (ARCREC) ARC6 (ARCREC) ARC7 (ARCREC)	William Mead Homes Mozaic Apartments K-12 School Twin Towers Correctional Facility Los Angeles Men's Central Jail One Sante Fe Apartments Metro Offices	Angeles) Bolero Lane Union Station Driveway Park Paseo St Bauchet Street Bauchet Street Santa Fe Avenue N. Vignes Street	386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89	3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3767912 3769095.39	(AVERAGE CONC) [ug/m^3] 0.34751 0.3265 0.04846 0.18935 0.25738 0.03423 0.25289	(ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89	(ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33	(ZFLAG) 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5
	ID (Group Name) ARC1 (ARCREC) ARC2 (ARCREC) ARC3 (ARCREC) ARC4 (ARCREC) ARC5 (ARCREC) ARC6 (ARCREC) ARC7 (ARCREC) (ARCREC)-1	William Mead Homes Mozaic Apartments K-12 School Twin Towers Correctional Facility Los Angeles Men's Central Jail One Sante Fe Apartments Metro Offices Residential	Angeles) Bolero Lane Union Station Driveway Park Paseo St Bauchet Street Bauchet Street Santa Fe Avenue N. Vignes Street Mission Road	386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386788.16	3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769482.56 3767912 3769095.39 3768599.79	(AVERAGE CONC) [ug/m^3] 0.34751 0.3265 0.04846 0.18935 0.25738 0.03423 0.03423 0.25289 0.0814	(ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69	(ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69	(ZFLAG) 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5
	ID (Group Name) ARC1 (ARCREC) ARC2 (ARCREC) ARC3 (ARCREC) ARC4 (ARCREC) ARC5 (ARCREC) ARC5 (ARCREC) ARC6 (ARCREC) ARC7 (ARCREC) (ARCREC)-1 (ARCREC)-2 (ARCREC)-3	William Mead Homes Mozaic Apartments K-12 School Twin Towers Correctional Facility Los Angeles Men's Central Jail One Sante Fe Apartments Metro Offices Residential Residential	Angeles) Bolero Lane Union Station Driveway Park Paseo St Bauchet Street Bauchet Street Santa Fe Avenue N. Vignes Street Mission Road Mission Road	386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386788.16 386771.84	3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769482.56 3767912 3769095.39 3768599.79 3768599.79	(AVERAGE CONC) [ug/m^3] 0.34751 0.3265 0.04846 0.18935 0.25738 0.25738 0.03423 0.25289 0.0814 0.07652	(ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 82.8	(ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8	(ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	ID (Group Name) ARC1 (ARCREC) ARC2 (ARCREC) ARC3 (ARCREC) ARC4 (ARCREC) ARC5 (ARCREC) ARC6 (ARCREC) ARC6 (ARCREC) (ARC7 (ARCREC) (ARCREC)-1 (ARCREC)-2 (ARCREC)-3 (ARCREC)-4	William Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidentialResidentialResidential	Angeles) Bolero Lane Union Station Driveway Park Paseo St Bauchet Street Bauchet Street Santa Fe Avenue N. Vignes Street Mission Road Mission Road	386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386788.16 386771.84 386771.84	3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769482.56 3767912 3769095.39 3768599.79 3768542.02 3768474.21	(AVERAGE CONC) [ug/m^3] 0.34751 0.3265 0.04846 0.18935 0.25738 0.03423 0.03423 0.25289 0.0814 0.07652 0.07372	(ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 83.69 82.8 82.73	(ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8 82.73	(ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	ID (Group Name) ARC1 (ARCREC) ARC2 (ARCREC) ARC3 (ARCREC) ARC4 (ARCREC) ARC5 (ARCREC) ARC6 (ARCREC) ARC6 (ARCREC) (ARC7 (ARCREC) (ARCREC)-1 (ARCREC)-2 (ARCREC)-3 (ARCREC)-4	William Mead Homes Mozaic Apartments K-12 School Twin Towers Correctional Facility Los Angeles Men's Central Jail One Sante Fe Apartments Metro Offices Residential Residential Residential Residential	Angeles) Bolero Lane Union Station Driveway Park Paseo St Bauchet Street Bauchet Street Santa Fe Avenue N. Vignes Street Mission Road Mission Road Mission Road	386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386788.16 386771.84 386747.98 386747.98	3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769482.56 3767912 3768599.79 3768599.79 3768542.02 3768474.21 3768434.02	(AVERAGE CONC) [ug/m^3] 0.34751 0.3265 0.04846 0.18935 0.25738 0.03423 0.25289 0.0814 0.07652 0.07372 0.07268	(ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 82.8 82.73 82.66	(ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8 82.73 82.66	(ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	ID (Group Name) ARC1 (ARCREC) ARC2 (ARCREC) ARC3 (ARCREC) ARC4 (ARCREC) ARC5 (ARCREC) ARC6 (ARCREC) ARC7 (ARCREC) (ARCREC)-1 (ARCREC)-2 (ARCREC)-3 (ARCREC)-4 (ARCREC)-5	William Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidentialResidentialResidentialResidentialResidentialNorthend Outside Union Station	Angeles) Bolero Lane Union Station Driveway Park Paseo St Bauchet Street Bauchet Street Santa Fe Avenue N. Vignes Street Mission Road Mission Road Mission Road Union Station Driveway	386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386304.23 386788.16 386771.84 386771.84 386735.42 386735.42	3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3767912 3769095.39 3768599.79 3768542.02 3768474.21 3768434.02 3769115.91	(AVERAGE CONC) [ug/m^3] 0.34751 0.3265 0.04846 0.18935 0.25738 0.03423 0.03423 0.03423 0.03423 0.03423 0.07652 0.07372 0.07268 0.24357	(ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 82.8 82.73 82.66 86.07	(ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8 82.73 82.66 86.07	(ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	ID (Group Name) ARC1 (ARCREC) ARC2 (ARCREC) ARC3 (ARCREC) ARC4 (ARCREC) ARC5 (ARCREC) ARC5 (ARCREC) ARC6 (ARCREC) (ARC7 (ARCREC) (ARCREC)-1 (ARCREC)-2 (ARCREC)-3 (ARCREC)-4 (ARCREC)-5 (ARCREC)-6	William Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidentialResidentialResidentialResidentialNorthend Outside Union StationUSPO Terminal Annex	Angeles) Bolero Lane Union Station Driveway Park Paseo St Bauchet Street Bauchet Street Santa Fe Avenue N. Vignes Street Mission Road Mission Road Mission Road Mission Road Union Station Driveway Cesar E Chavez Ave.	386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386788.16 386771.84 386747.98 386747.98 386735.42 386020.88 386061.06	3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3767912 3769095.39 3768599.79 3768542.02 3768474.21 3768434.02 3769115.91 3769257.82	(AVERAGE CONC) [ug/m^3] 0.34751 0.3265 0.04846 0.18935 0.25738 0.03423 0.25289 0.0814 0.07652 0.07372 0.07372 0.07268 0.24357 0.23908	(ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 82.8 82.73 82.66 86.07 86.48	(ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8 82.73 82.66 86.07 86.48	(ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	ID (Group Name) ARC1 (ARCREC) ARC2 (ARCREC) ARC3 (ARCREC) ARC4 (ARCREC) ARC5 (ARCREC) ARC5 (ARCREC) ARC6 (ARCREC) ARC7 (ARCREC) (ARCREC)-1 (ARCREC)-2 (ARCREC)-2 (ARCREC)-3 (ARCREC)-5 (ARCREC)-5 (ARCREC)-6 (ARCREC)-7	William Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidentialResidentialResidentialResidentialNorthend Outside Union StationUSPO Terminal AnnexLos Angeles Men's Central Jail	Angeles) Bolero Lane Union Station Driveway Park Paseo St Bauchet Street Bauchet Street Santa Fe Avenue N. Vignes Street Mission Road Mission Road Mission Road Mission Road Union Station Driveway Cesar E Chavez Ave. Vignes Street	386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386788.16 386771.84 386771.84 386771.84 386735.42 386020.88 386061.06 386288.36	3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3769482.56 3767912 3768599.79 3768599.79 3768542.02 3768474.21 3768434.02 3769115.91 3769257.82 3769402.23	(AVERAGE CONC) [ug/m^3] 0.34751 0.3265 0.04846 0.18935 0.25738 0.03423 0.25289 0.03423 0.25289 0.0814 0.07652 0.07372 0.07372 0.07268 0.24357 0.23908 0.21374	(ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 82.8 82.73 82.66 86.07 86.48 88.72	(ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8 82.73 82.66 86.07 86.48 88.72	(ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	ID (Group Name) ARC1 (ARCREC) ARC2 (ARCREC) ARC3 (ARCREC) ARC4 (ARCREC) ARC5 (ARCREC) ARC5 (ARCREC) ARC6 (ARCREC) ARC7 (ARCREC) (ARCREC)-1 (ARCREC)-2 (ARCREC)-3 (ARCREC)-3 (ARCREC)-5 (ARCREC)-6 (ARCREC)-7 (ARCREC)-8	William Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidentialResidentialResidentialResidentialNorthend Outside Union StationUSPO Terminal AnnexLos Angeles Men's Central JailTrimana Fresh Food Market	Angeles) Bolero Lane Union Station Driveway Park Paseo St Bauchet Street Bauchet Street Santa Fe Avenue N. Vignes Street Mission Road Mission Road Mission Road Mission Road Union Station Driveway Cesar E Chavez Ave. Vignes Street Union Station Driveway	386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386771.84 386771.84 386771.84 386774.98 386735.42 386020.88 386061.06 386288.36 386000.79	3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3767912 3769095.39 3768599.79 3768542.02 3768474.21 3768434.02 3769115.91 3769257.82 3769402.23 3769006.66	(AVERAGE CONC) [ug/m^3] 0.34751 0.3265 0.04846 0.18935 0.25738 0.03423 0.25289 0.0814 0.07652 0.07372 0.07372 0.07268 0.24357 0.23908 0.21374 0.23718	(ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 82.8 82.73 82.66 86.07 86.48 88.72 86.17	(ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8 82.73 82.66 86.07 86.48 88.72 86.17	(ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	ID (Group Name) ARC1 (ARCREC) ARC2 (ARCREC) ARC3 (ARCREC) ARC4 (ARCREC) ARC5 (ARCREC) ARC6 (ARCREC) ARC7 (ARCREC) (ARCREC)-1 (ARCREC)-2 (ARCREC)-3 (ARCREC)-3 (ARCREC)-5 (ARCREC)-5 (ARCREC)-6 (ARCREC)-7 (ARCREC)-8 (ARCREC)-9	William Mead HomesMozaic ApartmentsK-12 SchoolTwin Towers Correctional FacilityLos Angeles Men's Central JailOne Sante Fe ApartmentsMetro OfficesResidentialResidentialResidentialResidentialNorthend Outside Union StationUSPO Terminal AnnexLos Angeles Men's Central JailTrimana Fresh Food MarketWilliam Mead Homes	Angeles) Bolero Lane Union Station Driveway Park Paseo St Bauchet Street Bauchet Street Santa Fe Avenue N. Vignes Street Mission Road Mission Road Mission Road Mission Road Union Station Driveway Cesar E Chavez Ave. Vignes Street Union Station Driveway Bolero Lane	386554.29 386040.13 386891.05 386341.41 386283.86 386304.23 386214.89 386788.16 386771.84 386771.84 386747.98 386735.42 386020.88 386020.88 386061.06 386288.36 386000.79 386720.35	3769752.53 3769154.79 3768359.8 3769277.46 3769482.56 3767912 3768599.79 3768542.02 3768474.21 376915.91 3769257.82 3769402.23 3769402.23 3769407.23	(AVERAGE CONC) [ug/m^3] 0.34751 0.3265 0.04846 0.18935 0.25738 0.03423 0.25289 0.03423 0.25289 0.0814 0.07652 0.07372 0.07268 0.24357 0.23908 0.21374 0.23718 0.26548	(ZELEV) 89.05 90.06 82.03 86.94 88.03 81.1 87.89 83.69 82.8 82.73 82.66 86.07 86.48 88.72 86.17 86.86	(ZHILL) 89.05 90.06 82.03 86.94 88.03 81.1 91.33 83.69 82.8 82.73 82.66 86.07 86.48 88.72 86.17 86.86	(ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

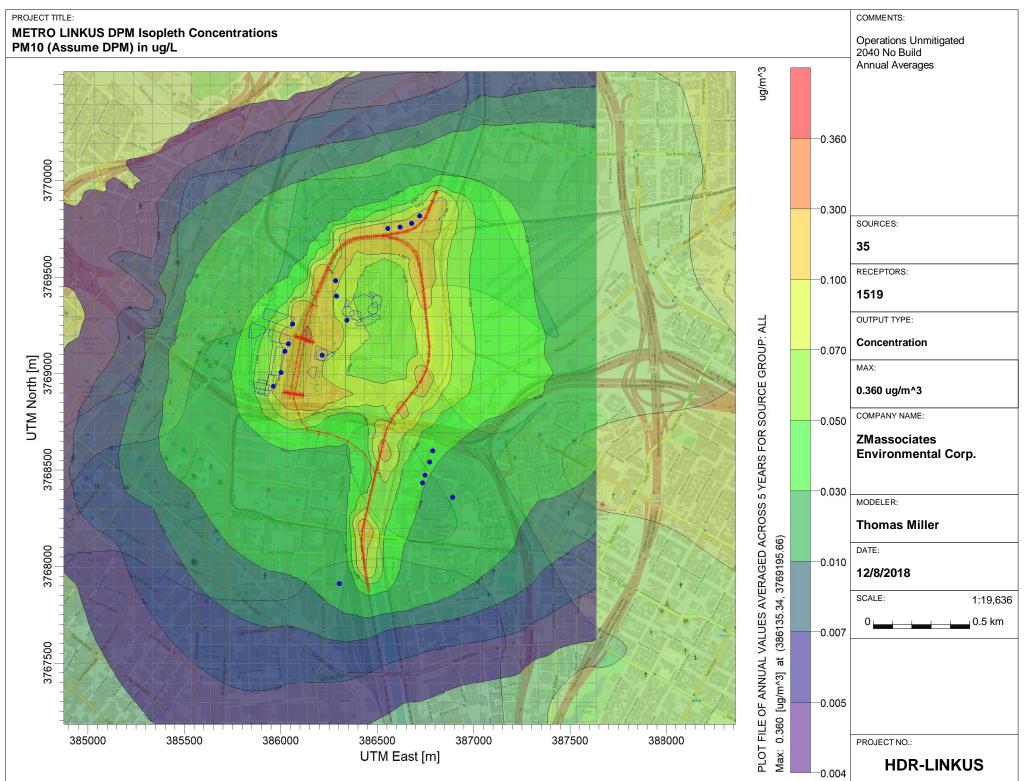

	Discrete Receptor ID (Group Name)	Sensitive Receptor	Street Location (Los Angeles)	x	Y	Concentration (AVERAGE CONC) [ug/m^3]	Elevation (ZELEV)	Hill Heights (ZHILL)	Flagpole (ZFLAG)	
	ARC1 (ARCREC)	William Mead Homes	Bolero Lane	386554.29	3769752.53	0.56323	89.05	89.05	0	A
	ARC2 (ARCREC)	Mozaic Apartments	Union Station Driveway	386040.13	3769154.79	0.33017	90.06	90.06	0	A
	ARC3 (ARCREC)	K-12 School	Park Paseo St	386891.05	3768359.8	0.09771	82.03	82.03	0	A
	ARC4 (ARCREC)	Twin Towers Correctional Facility	Bauchet Street	386341.41	3769277.46	0.23683	86.94	86.94	0	Α
	ARC5 (ARCREC)	Los Angeles Men's Central Jail	Bauchet Street	386283.86	3769482.56	0.36177	88.03	88.03	0	Α
	ARC6 (ARCREC)	One Sante Fe Apartments	Santa Fe Avenue	386304.23	3767912	0.06061	81.1	81.1	0	Α
	ARC7 (ARCREC)	Metro Offices	N. Vignes Street	386214.89	3769095.39	0.32944	87.89	91.33	0	Α
2031	(ARCREC)-1	Residential	Mission Road	386788.16	3768599.79	0.21959	83.69	83.69	0	А
Build	(ARCREC)-2	Residential	Mission Road	386771.84	3768542.02	0.20146	82.8	82.8	0	Α
	(ARCREC)-3	Residential	Mission Road	386747.98	3768474.21	0.1767	82.73	82.73	0	A
	(ARCREC)-4	Residential	Mission Road	386735.42	3768434.02	0.1606	82.66	82.66	0	А
	(ARCREC)-5	Northend Outside Union Station	Union Station Driveway	386020.88	3769115.91	0.25291	86.07	86.07	0	А
	(ARCREC)-6	USPO Terminal Annex	Cesar E Chavez Ave.	386061.06	3769257.82	0.24538	86.48	86.48	0	A
	(ARCREC)-7	Los Angeles Men's Central Jail	Vignes Street	386288.36	3769402.23	0.27933	88.72	88.72	0	A
	(ARCREC)-8	Trimana Fresh Food Market	Union Station Driveway	386000.79	3769006.66	0.25286	86.17	86.17	0	А
	(ARCREC)-9	William Mead Homes	Bolero Lane	386720.35	3769817.9	0.42473	86.86	86.86	0	А
	(ARCREC)-10	William Mead Homes	Bolero Lane	386678.91	3769778.97	0.59126	87.27	87.27	0	А
	(ARCREC)-11	William Mead Homes	Bolero Lane	386618.63	3769760.13	0.67144	88.18	88.18	0	A
	(ARCREC)-12	Metropolitan Water	Union Station Driveway	385961.86	3768935.08	0.24629	86.28	86.28	0	Α

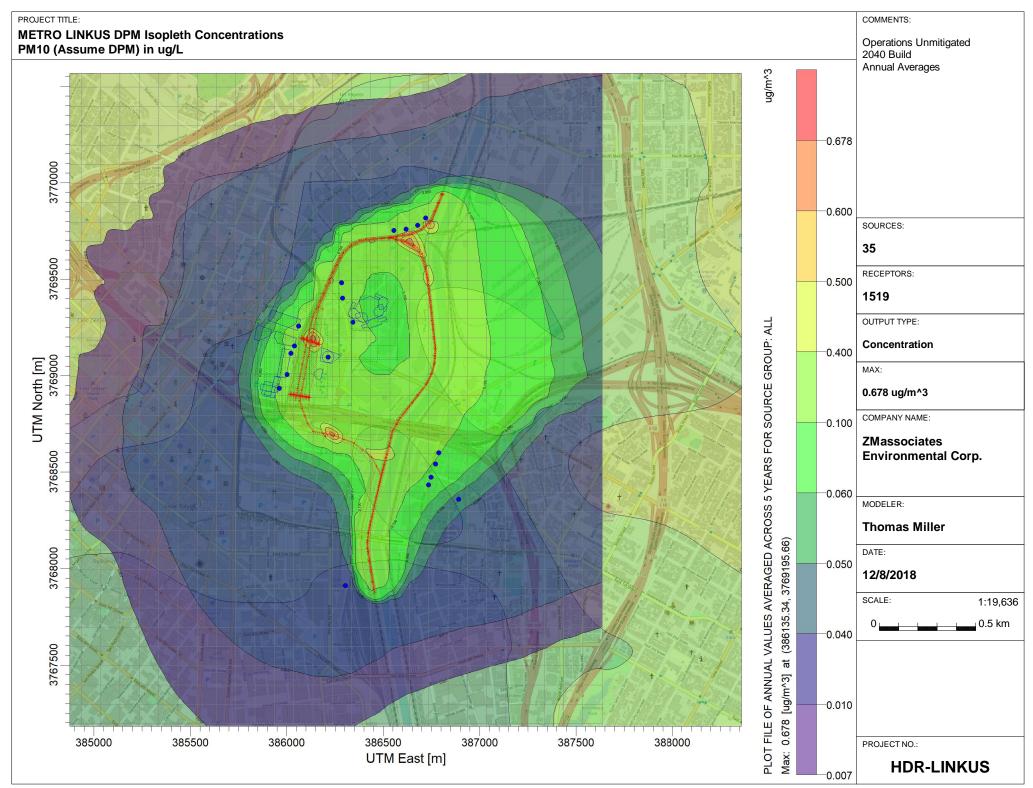

	Discrete Receptor ID (Group Name)	Sensitive Receptor	Street Location (Los Angeles)	x	Y	Concentration (AVERAGE CONC) [ug/m^3]	Elevation (ZELEV)	Hill Heights (ZHILL)	Flagpole (ZFLAG)	
	ARC1 (ARCREC)	William Mead Homes	Bolero Lane	386554.29	3769752.53	0.14895	89.05	89.05	0	Α
	ARC2 (ARCREC)	Mozaic Apartments	Union Station Driveway	386040.13	3769154.79	0.13993	90.06	90.06	0	Α
	ARC3 (ARCREC)	K-12 School	Park Paseo St	386891.05	3768359.8	0.02077	82.03	82.03	0	A
	ARC4 (ARCREC)	Twin Towers Correctional Facility	Bauchet Street	386341.41	3769277.46	0.08115	86.94	86.94	0	А
	ARC5 (ARCREC)	Los Angeles Men's Central Jail	Bauchet Street	386283.86	3769482.56	0.11031	88.03	88.03	0	Α
	ARC6 (ARCREC)	One Sante Fe Apartments	Santa Fe Avenue	386304.23	3767912	0.01467	81.1	81.1	0	А
	ARC7 (ARCREC)	Metro Offices	N. Vignes Street	386214.89	3769095.39	0.10839	87.89	91.33	0	Α
2040 No-	(ARCREC)-1	Residential	Mission Road	386788.16	3768599.79	0.03489	83.69	83.69	0	A
Build	(ARCREC)-2	Residential	Mission Road	386771.84	3768542.02	0.0328	82.8	82.8	0	Α
	(ARCREC)-3	Residential	Mission Road	386747.98	3768474.21	0.03159	82.73	82.73	0	А
	(ARCREC)-4	Residential	Mission Road	386735.42	3768434.02	0.03115	82.66	82.66	0	Α
	(ARCREC)-5	Northend Outside Union Station	Union Station Driveway	386020.88	3769115.91	0.10439	86.07	86.07	0	A
	(ARCREC)-6	USPO Terminal Annex	Cesar E Chavez Ave.	386061.06	3769257.82	0.10247	86.48	86.48	0	Α
	(ARCREC)-7	Los Angeles Men's Central Jail	Vignes Street	386288.36	3769402.23	0.09161	88.72	88.72	0	Α
	(ARCREC)-8	Trimana Fresh Food Market	Union Station Driveway	386000.79	3769006.66	0.10165	86.17	86.17	0	A
	(ARCREC)-9	William Mead Homes	Bolero Lane	386720.35	3769817.9	0.11379	86.86	86.86	0	A
	(ARCREC)-10	William Mead Homes	Bolero Lane	386678.91	3769778.97	0.14349	87.27	87.27	0	A
	(ARCREC)-11	William Mead Homes	Bolero Lane	386618.63	3769760.13	0.15714	88.18	88.18	0	Α
	(ARCREC)-12	Metropolitan Water	Union Station Driveway	385961.86	3768935.08	0.09547	86.28	86.28	0	Α


lagpole ZFLAG)	Averagin Period	Source Group	Num Years (NUM YRS)
	(AVE)	(GRP)	-
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
0	ANNUAL	ALL	5
lagpole	Averagin	Source	Num Years
	Period	Group	Num Years (NUM YRS)
ZFLAG)	Period (AVE)	Group (GRP)	(NUM YRS)
	Period (AVE) ANNUAL	Group	(NUM YRS)
ZFLAG)	Period (AVE)	Group (GRP)	(NUM YRS) 5 5
2FLAG) 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL	Group (GRP) ALL	(NUM YRS) 5 5 5
2 FLAG) 0 0	Period (AVE) ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL	(NUM YRS) 5 5 5 5
2FLAG) 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL	(NUM YRS) 5 5 5 5 5 5 5
2FLAG) 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL	(NUM YRS) 5 5 5 5 5 5 5 5 5
2 FLAG) 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL	(NUM YRS) 5 5 5 5 5 5 5
ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5
ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5
ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ZFLAG) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Period (AVE) ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	Group (GRP) ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	(NUM YRS) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

	Discrete Receptor ID (Group Name)	Sensitive Receptor	Street Location (Los Angeles)	х	Y	Concentration (AVERAGE CONC) [ug/m^3]	Elevation (ZELEV)	Hill Heights (ZHILL)	Flagpole (ZFLAG)	Averagin Period (AVE)	Source Group (GRP)	
	ARC1 (ARCREC)	William Mead Homes	Bolero Lane	386554.29	3769752.53	0.26391	89.05	89.05	0	ANNUAL	ALL	5
	ARC2 (ARCREC)	Mozaic Apartments	Union Station Driveway	386040.13	3769154.79	0.1546	90.06	90.06	0	ANNUAL	ALL	5
	ARC3 (ARCREC)	K-12 School	Park Paseo St	386891.05	3768359.8	0.04578	82.03	82.03	0	ANNUAL	ALL	5
	ARC4 (ARCREC)	Twin Towers Correctional Facility	Bauchet Street	386341.41	3769277.46	0.11093	86.94	86.94	0	ANNUAL	ALL	5
	ARC5 (ARCREC)	Los Angeles Men's Central Jail	Bauchet Street	386283.86	3769482.56	0.1695	88.03	88.03	0	ANNUAL	ALL	5
	ARC6 (ARCREC)	One Sante Fe Apartments	Santa Fe Avenue	386304.23	3767912	0.0284	81.1	81.1	0	ANNUAL	ALL	5
	ARC7 (ARCREC)	Metro Offices	N. Vignes Street	386214.89	3769095.39	0.15431	87.89	91.33	0	ANNUAL	ALL	5
2040	(ARCREC)-1	Residential	Mission Road	386788.16	3768599.79	0.10289	83.69	83.69	0	ANNUAL	ALL	5
Build	(ARCREC)-2	Residential	Mission Road	386771.84	3768542.02	0.09439	82.8	82.8	0	ANNUAL	ALL	5
	(ARCREC)-3	Residential	Mission Road	386747.98	3768474.21	0.08279	82.73	82.73	0	ANNUAL	ALL	5
	(ARCREC)-4	Residential	Mission Road	386735.42	3768434.02	0.07525	82.66	82.66	0	ANNUAL	ALL	5
	(ARCREC)-5	Northend Outside Union Station	Union Station Driveway	386020.88	3769115.91	0.11843	86.07	86.07	0	ANNUAL	ALL	5
	(ARCREC)-6	USPO Terminal Annex	Cesar E Chavez Ave.	386061.06	3769257.82	0.11491	86.48	86.48	0	ANNUAL	ALL	5
	(ARCREC)-7	Los Angeles Men's Central Jail	Vignes Street	386288.36	3769402.23	0.13086	88.72	88.72	0	ANNUAL	ALL	5
	(ARCREC)-8	Trimana Fresh Food Market	Union Station Driveway	386000.79	3769006.66	0.11841	86.17	86.17	0	ANNUAL	ALL	5
	(ARCREC)-9	William Mead Homes	Bolero Lane	386720.35	3769817.9	0.19901	86.86	86.86	0	ANNUAL	ALL	5
	(ARCREC)-10	William Mead Homes	Bolero Lane	386678.91	3769778.97	0.27704	87.27	87.27	0	ANNUAL	ALL	5
	(ARCREC)-11	William Mead Homes	Bolero Lane	386618.63	3769760.13	0.31461	88.18	88.18	0	ANNUAL	ALL	5
	(ARCREC)-12	Metropolitan Water	Union Station Driveway	385961.86	3768935.08	0.11533	86.28	86.28	0	ANNUAL	ALL	5







AERMOD View - Lakes Environmental Software

C:\Lakes\LINKUSrev2_Operations_Unmit_2013NoBuild\LINKUSrev2_Operations_Unmit_2013NoBuild.isc

Appendix F: Carbon Monoxide Hot-Spot Analysis

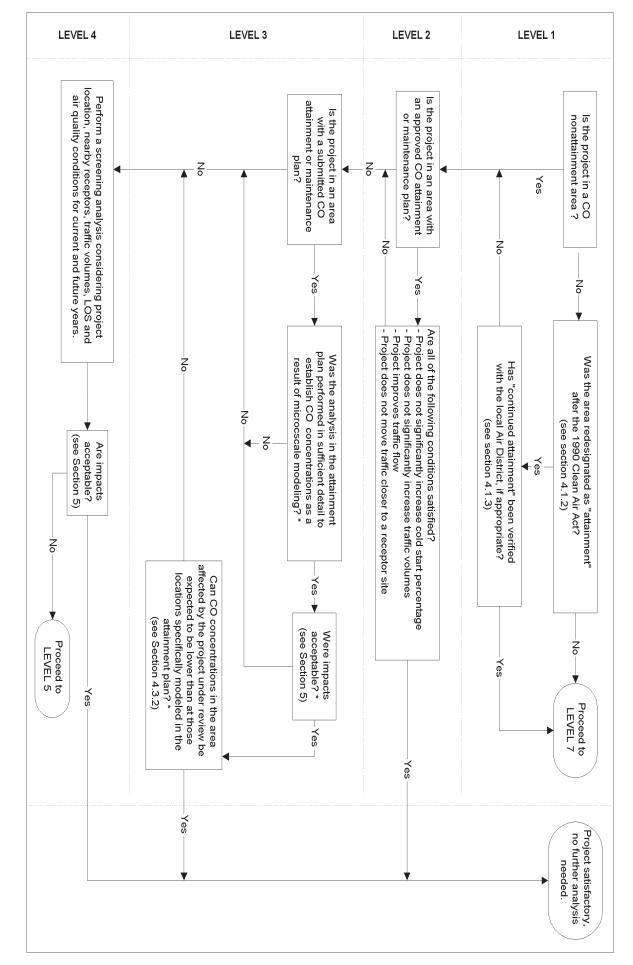


Figure 3. Local CO Analysis

4-10

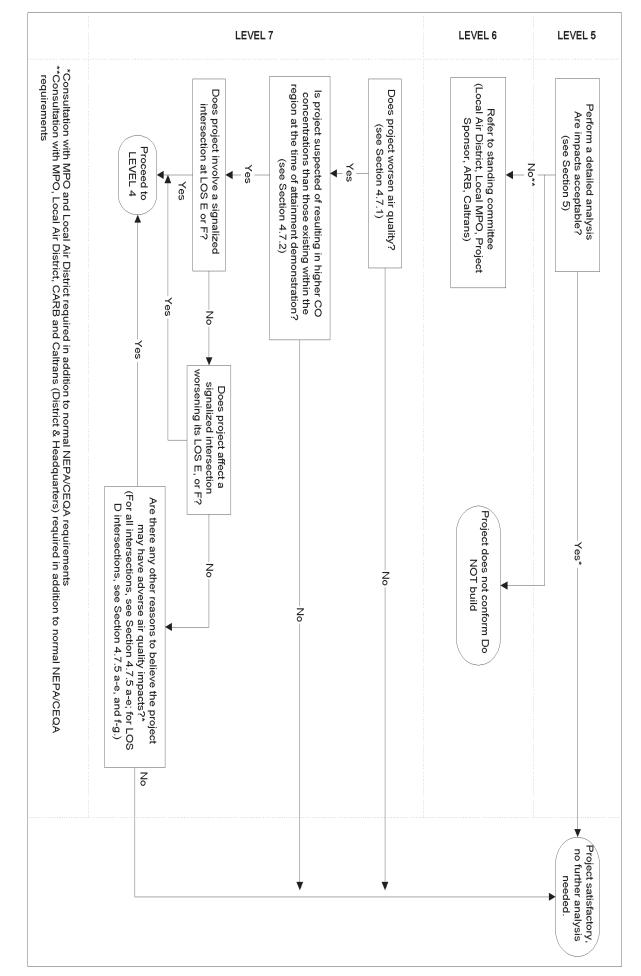


Figure 3 (cont.). Local CO Analysis

4-11

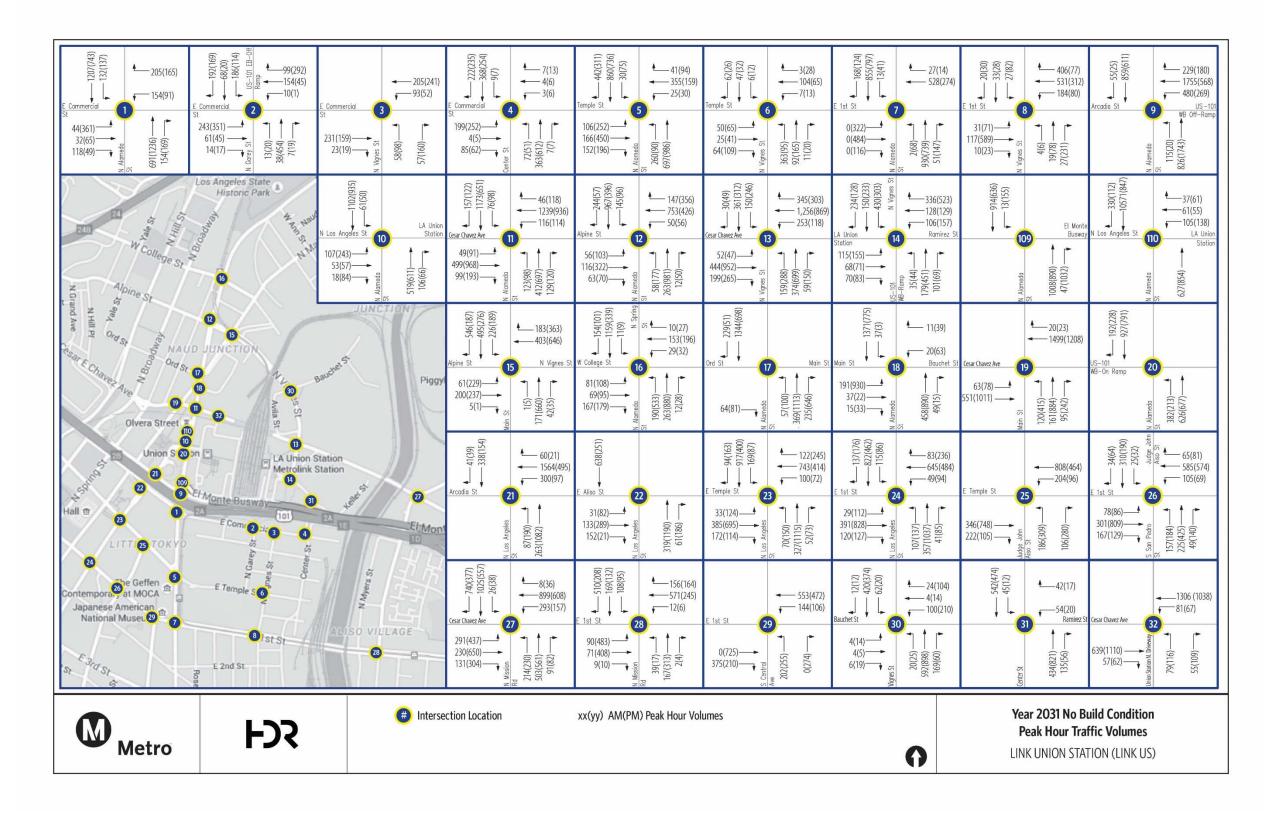
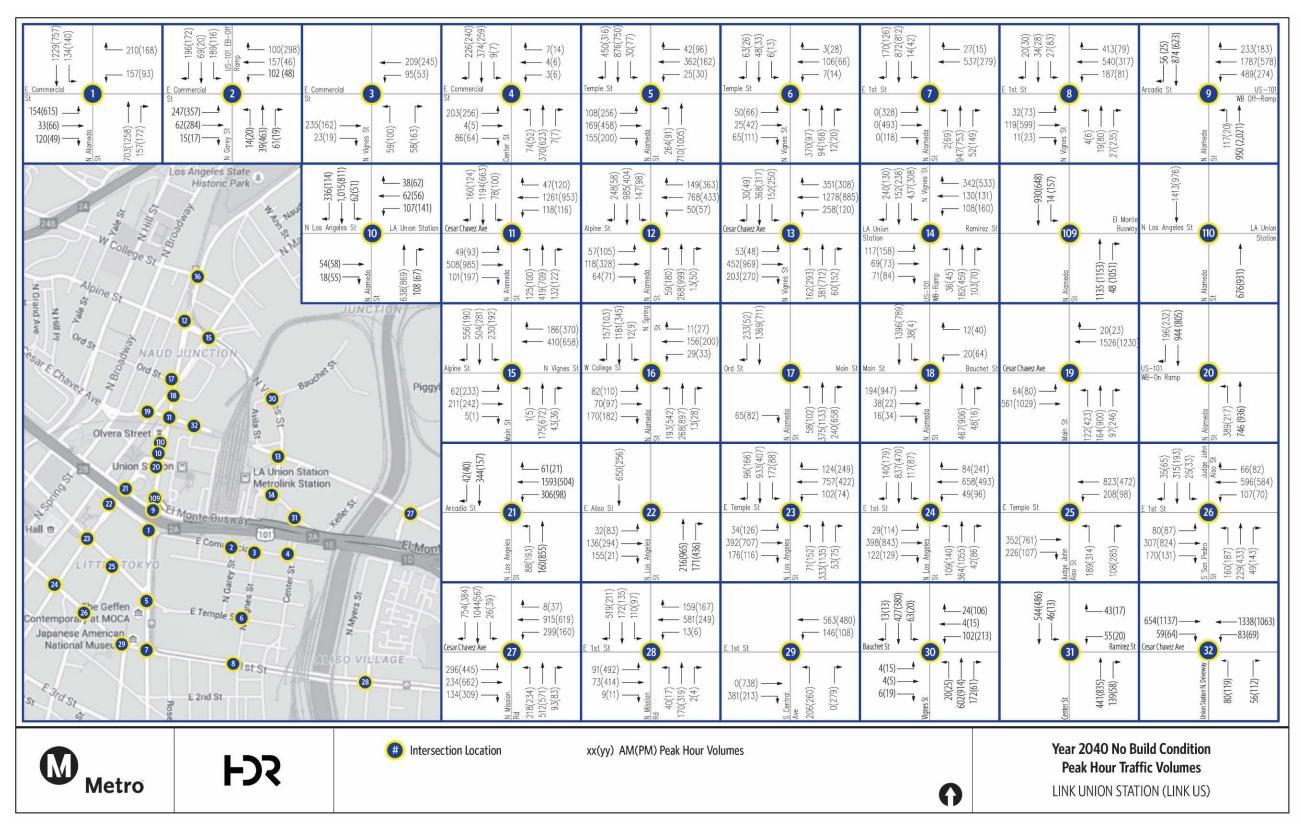



Figure 7-2. Year 2031 No Build Peak Hour Traffic Volumes

Figure 7-3. Year 2040 No Build Peak Hour Traffic Volumes

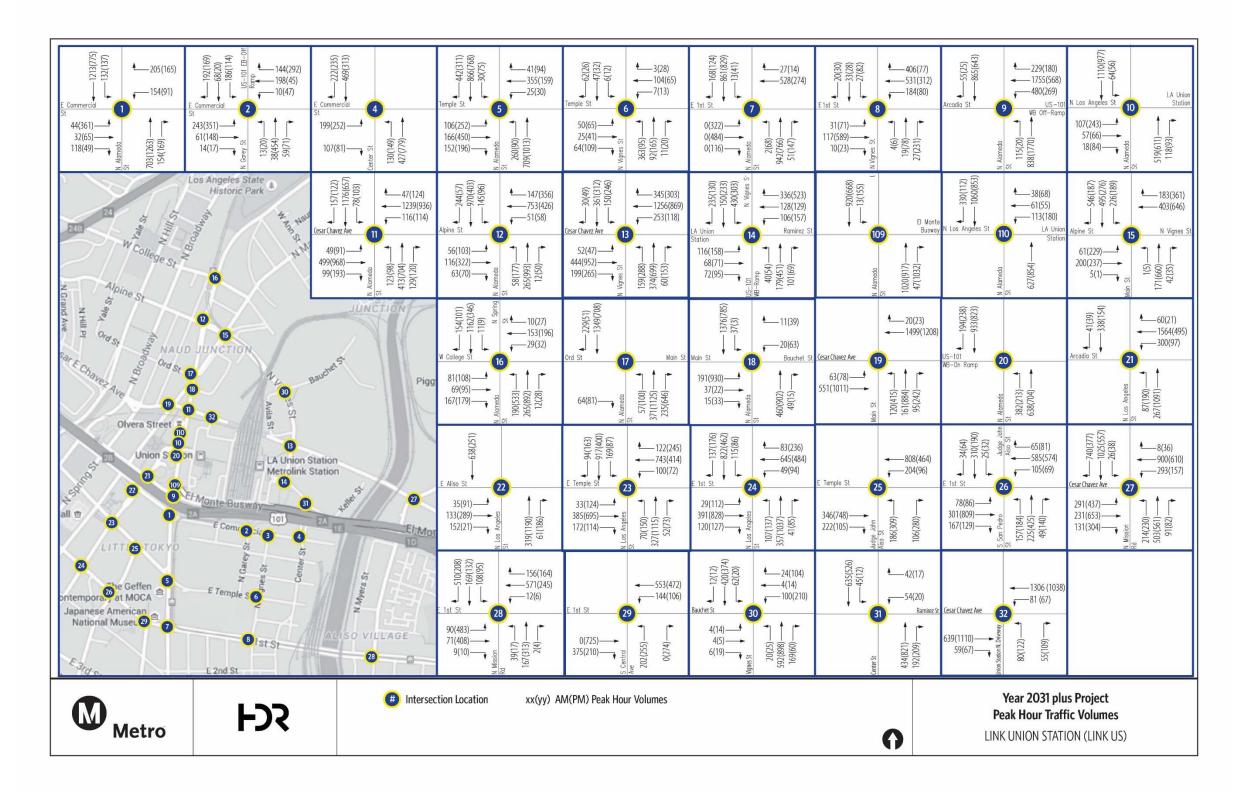


Figure 7-30. Year 2031 plus Project - Peak Hour Traffic Volumes

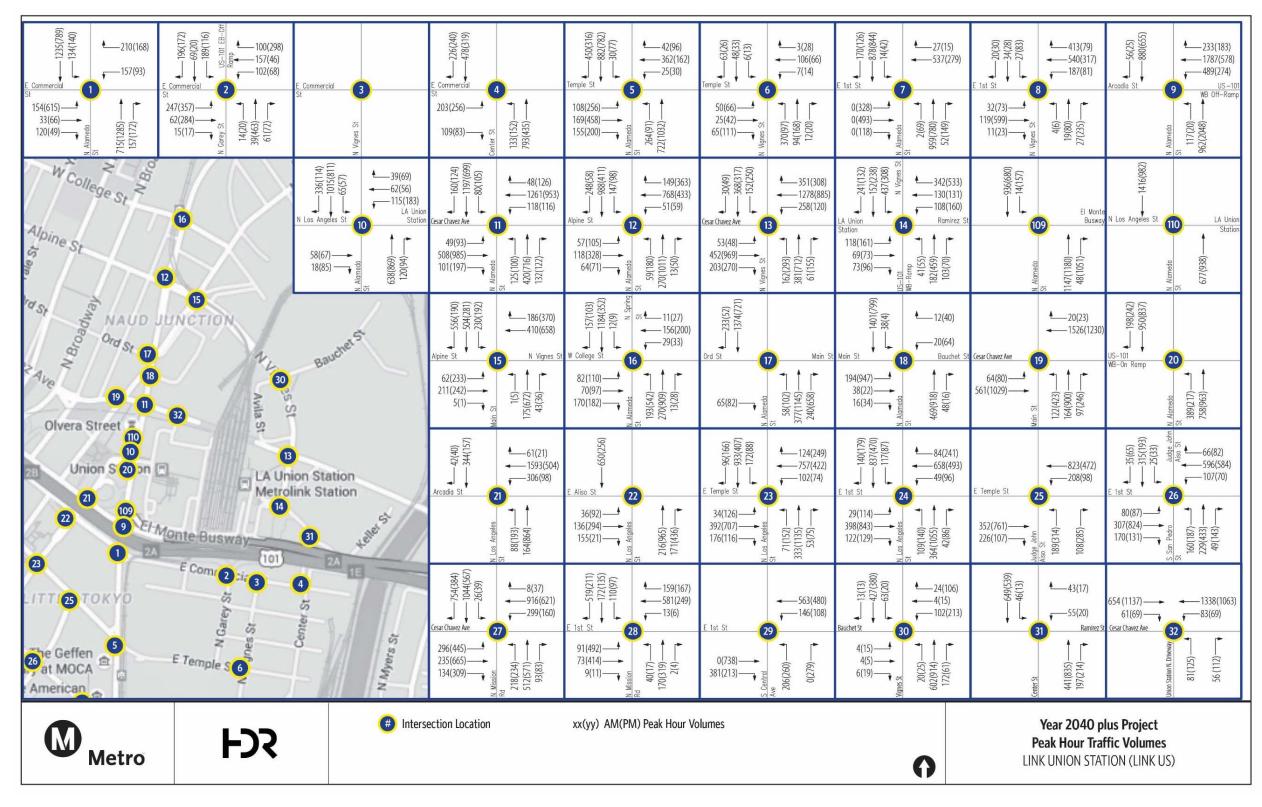


Figure 7-31. Year 2040 plus Project - Peak Hour Traffic Volumes

Table 12-1. Level of Service Summary

		2031	No Build			Year 2031 with Project						Year 2040 No Build						Year 2040 with Project							
ctio			AM Peak PM Pe			Peak		AM Peak			РМ	Peak		AM	Peak		PM	Peak	AM Peak				PM	Peak	
Intersection	Intersection	Delay (Sec)	V/C	ros	Delay (Sec)	V/C	SOJ	Delay (Sec)	V/C	ros	Delay (Sec)	V/C	ros	Delay (Sec)	V/C	ros	Delay (Sec)	V/C	ros	Delay (Sec)	V/C	ros	Delay (Sec)	V/C	ros
1	Alameda Street and Commercial Street	29.1	0.57	С	35.1	0.86	D	29.5	0.58	С	35.4	0.87	D	31.6	0.62	С	47.8	0.98	D	32.0	0.63	С	49.2	0.99	D
2	Garey Street and Commercial Street	31.3	0.39	С	34.1	0.49	С	62.9	0.63	Е	62.9	0.73	Е	31.3	0.39	С	34.6	0.49	С	55.5	0.65	Е	42.3	0.73	D
3	Vignes Street and Commercial Street ^a	9.8	0.39	А	10.1	0.40	В	NA	NA	NA	NA	NA	NA	9.8	0.39	А	10.2	0.41	В	NA	NA	NA	NA	NA	NA
4	Center Street and Commercial Street ^a	17.2	0.71	С	57.5	1.18	F	83.0	1.27	F	157.4	1.62	F	18.0	0.73	С	62.5	1.22	F	90.7	1.3	F	166.5	1.65	F
5	Alameda Street and Temple Street	14.6	0.67	В	16.7	0.74	В	14.7	0.68	В	15.8	0.75	В	16.3	0.69	В	16.9	0.75	В	16.3	0.69	В	16.9	0.77	В
6	Vignes Street and Temple Street ^a	15.4	0.72	С	9.9	0.42	А	15.4	0.72	С	9.9	0.42	А	15.9	0.73	С	10	0.43	А	15.9	0.73	С	10	0.43	А
7	Alameda Street and First Street	18.3	0.54	В	17.3	0.61	В	18.3	0.55	В	17.9	0.63	В	18.5	0.55	В	16.2	0.63	В	18.5	0.56	В	16.2	0.64	В
8	Vignes Street and First Street	20.2	0.51	С	27.6	0.59	С	20.2	0.51	С	27.5	0.59	С	21.1	0.51	С	26.9	0.59	С	21.1	0.51	С	26.6	0.59	С
9	Alameda Street and El Monte Busway/Arcadia Street	21.1	0.88	С	14.6	0.62	В	21.2	0.88	С	14.5	0.62	В	90.3	0.89	F	15.7	0.69	В	90.0	0.90	F	15.6	0.69	В
10	Alameda Street and Los Angeles Street EB ^a	12.1	0.32	В	12.4	0.34	В	11.7	0.33	В	12.6	0.35	В	28.0	0.65	С	15.5	0.59	В	28.1	0.66	С	14.2	0.62	В
110	Alameda Street and Los Angeles Street WB ^a	4.3	0.34	А	5.7	0.30	А	4.4	0.34	А	7.0	0.33	А	0.1	0.45	А	0.2	0.31	А	0.1	0.45	А	0.2	0.32	А
11	Alameda Street and Cesar Chavez Avenue	20.7	0.77	С	17.1	0.69	В	20.9	0.77	С	16.9	0.69	В	29.7	0.87	С	21.1	0.75	С	29.7	0.87	С	21.2	0.75	С
12	Alameda Street and Vignes Street/Alpine Street	11.6	0.58	В	13.8	0.62	В	13.7	0.58	В	18.1	0.62	В	12.5	0.59	В	14.4	0.63	В	12.5	0.59	В	14.5	0.63	В
13	Vignes Street and Cesar Chavez Avenue	18.5	0.78	В	25.1	0.86	С	19.9	0.78	В	25.9	0.86	С	18.1	0.79	В	21	0.88	С	18.1	0.79	В	21.1	0.88	С
14	Vignes Street and Ramirez Street	23.3	0.43	С	24.5	0.53	С	23.4	0.43	С	24.8	0.54	С	23.3	0.43	С	26	0.54	С	23.3	0.43	С	25.9	0.55	С
15	Vignes Street and Main Street	27.2	0.59	С	74.6	1.01	Е	17.6	0.60	В	50.7	0.99	D	18.8	0.6	В	62.8	1.04	Е	18.8	0.6	В	63.8	1.07	Е
16	Alameda Street/Spring Street and College Street	16.5	0.61	В	17.7	0.71	В	16.5	0.62	В	17.9	0.71	В	16.8	0.63	В	16.8	0.73	В	16.8	0.63	В	17.1	0.73	В
17	Alameda Street and Main Street/Ord Street ^a	0.7	0.34	А	0.7	0.41	А	0.7	0.34	А	0.7	0.41	А	0.7	0.35	А	0.7	0.42	А	0.7	0.35	А	0.7	0.42	А
18	Alameda Street and Main Street/Bauchet Street	5.8	0.42	А	9.6	0.57	А	5.7	0.42	А	9.8	0.58	А	5.3	0.42	А	14	0.6	В	5.3	0.42	А	14.3	0.6	В
19	Main Street and Cesar Chavez Avenue	7.7	0.44	А	19.8	0.64	В	7.7	0.44	А	19.8	0.64	В	7.1	0.45	А	19.6	0.67	В	7.1	0.45	А	19.4	0.67	В
20	Alameda Street and Northbound US-101 ^b																								
21	Los Angeles Street and Arcadia Street	7.7	0.59	А	4.8	0.52	А	7.8	0.59	А	5.1	0.52	А	8.9	0.62	А	5.9	0.44	А	9.0	0.62	А	6.0	0.44	А
22	Los Angeles Street and Aliso Street	9.4	0.30	А	11.8	0.61	В	9.5	0.30	А	11.7	0.62	В	10.1	0.3	В	12.1	0.64	В	10.2	0.3	В	12.2	0.64	В
23	Los Angeles Street and Temple Street	15.2	0.61	В	17.6	0.78	В	15.2	0.61	В	17.6	0.78	В	15.1	0.62	В	18	0.82	В	15.1	0.62	В	18	0.82	В
24	Los Angeles Street and First Street	15.2	0.55	В	20.7	0.90	С	15.2	0.55	В	20.7	0.90	С	14.1	0.56	В	21.9	0.97	С	14.1	0.56	В	21.9	0.97	С
25	Judge John Aiso Street and Temple Street	8.3	0.40	А	8.0	0.43	А	8.2	0.40	А	7.7	0.43	А	7.8	0.41	А	8.2	0.44	А	7.8	0.41	А	8.1	0.44	А
26	Judge John Aiso Street/San Pedro Street and First Street	15.6	0.44	В	15.3	0.66	В	15.6	0.44	В	15.3	0.66	В	16.1	0.45	В	15.4	0.67	В	16.1	0.45	В	15.3	0.67	В
27	Mission Road and Cesar Chavez Avenue	58.0	1.11	Е	25.6	0.89	С	58.1	1.11	Е	25.7	0.89	С	59.7	1.21	Е	26.6	0.92	С	59.7	1.21	Е	26.6	0.92	С
28	Mission Road and First Street	25.8	0.81	С	33.2	0.89	С	25.8	0.81	С	33.2	0.89	С	26.9	0.83	С	36.9	0.93	D	26.9	0.83	С	36.9	0.93	D
29	Central Avenue and First Street	8.8	0.33	А	11.3	0.49	В	8.8	0.33	А	11.3	0.49	В	9.1	0.33	А	11.4	0.5	В	9.1	0.33	А	11.3	0.5	В

	_													
Year 2040 with Project														
Peak		PM Peak												
V/C	ros	Delay (Sec)	V/C	ros										
0.63	С	49.2	0.99	D										
0.65	Е	42.3	0.73	D										
NA	NA	NA	NA	NA										
1.3	F	166.5	1.65	F										
0.69	В	16.9	0.77	В										
0.73	С	10	0.43	А										
0.56	В	16.2	0.64	В										
0.51	С	26.6	0.59	С										
	Peak V/C 0.63 0.65 NA 1.3 0.69 0.73 0.56	Peak V/C Signature 0.63 C 0.65 E NA NA 1.3 F 0.69 B 0.73 C 0.56 B	Peak PM V/C Z Delay (Sec) 0.63 C 49.2 0.65 E 42.3 NA NA NA 1.3 F 166.5 0.69 B 16.9 0.73 C 10 0.56 B 16.2	Peak PM Peak V/C Oragonal System V/C 0.63 C 49.2 0.99 0.65 E 42.3 0.73 NA NA NA NA 1.3 F 166.5 1.65 0.69 B 16.9 0.77 0.73 C 10 0.43 0.56 B 16.2 0.64										

December 2018

e		Year 2031 No Build					Year 2031 with Project						Year 2040 No Build						Year 2040 with Project					
ction		AM Peak		PM Peak			AM Peak			PM Peak			AM Peak			PM Peak			AM Peak			PM Peak		
Intersection	Dela (Sec		ros	Delay (Sec)	V/C	ros	Delay (Sec)	V/C	ros	Delay (Sec)	V/C	ros	Delay (Sec)	V/C	ROS	Delay (Sec)	V/C	ros	Delay (Sec)	V/C	ros	Delay (Sec)	V/C	LOS
30 Vignes Street and Bauchet Street	11.4	0.29	В	20.0	0.49	В	11.1	0.29	В	20.0	0.49	В	11.8	0.29	В	20.9	0.5	С	11.9	0.29	В	20.5	0.5	С
31 Ramirez Street and Center Street	1.7	0.24	А	0.6	0.35	А	1.7	0.2	А	0.6	0.35	А	1.8	0.21	А	0.7	0.36	А	1.7	0.28	А	0.7	0.37	А
32 Union Station North Driveway and Ces	ar Chavez Avenue 13.6	0.54	В	14.0	0.51	В	13.6	0.54	В	14.0	0.51	В	13.0	0.54	В	14.1	0.52	в	13.0	0.54	в	14.1	0.53	в

Notes:

^a Non-signalized intersection

^b Freeway on-ramp, neither signalized nor STOP-sign controlled LOS = level of service; Sec = Seconds; V/C = Volume to Capacity; WB = Westbound; EB = Eastbound; NA = Not Applicable

