
Link Union Station

DRAFT – Preliminary Geotechnical Report July 2016

CONTENTS

ES.0	Executive Summaryv			
1.0	Introduction 1.1 Project Location and Study Area 1.2 Proposed Project Overview 1.3 Build Alternative Overview	1 2		
2.0	Purpose	9		
3.0	Methodology1	1		
4.0	Literature Review			
5.0	Site Conditions	5		
6.0	Geologic and Geotechnical Conditions 11 6.1 Geologic Setting 1 6.2 Faulting and Seismicity 1 6.3 Seismic Design Criteria 2 6.4 Seismic Hazards 2 6.4.1 Fault Rupture 2 6.4.2 Seismic Ground Shaking 2 6.4.3 Liquefaction and Seismically-Induced Settlement 2 6.4.4 Lateral Spreading 2 6.4.5 Seiches and Tsunamis 2 6.5 Subsurface Earth Materials 2 6.6 Groundwater 2 6.7 Collapsible and Expansive Soils 2 6.8 Corrosion Potential 2 6.9 Subsidence and Settlement 2 6.10 Flooding 2 6.11 Mineral Resources 2 6.12 Environmental Concerns 2 6.13 Methane Gas 2	990111122234445555		
7.0	Geotechnical Considerations27.1Foundation Type27.2Constructability Considerations27.3Finite Element Analysis Results2	7 7		
8.0	Recommendations2	9		
9.0	Next Steps			
10.0	References	3		

TABLES

Table 5-1. As-Built Information – Existing Structures	17
Table 6-1. Nearby Faults	20

FIGURES

Figure 1-1. Project Location and Regional Vicinity	5
Figure 1-2. Project Study Area	7

APPENDICES

Appendix A: Exhibits Appendix B: As-Built Plans Appendix C: Existing Geotechnical Boring Logs

ACRONYMS

AOBB	Amtrak Office and Baggage Building
bgs	below ground surface
Caltrans	California Department of Transportation
CC	Converse Consultants, Inc.
CDMG	California Division of Mines and Geology
CGS	California Geological Survey
CIDH	cast-in-drilled-hole
CISS	cast-in-steel-shell
CPT	cone penetrometer test
EMI	Earth Mechanics, Inc.
HSB	Historic Station Building
LAUS	Los Angeles Union Station
LOTB	log of test boring
Metro	Los Angeles County Metropolitan Transportation Authority
MSL	mean sea level
ррт	parts per million
ROW	right-of-way
SCRIP	Southern California Regional Interconnector Project
SCRTD	Southern California Rapid Transit District
URS	URS Corporation
USGS	United States Geological Survey

ES.0 Executive Summary

This report presents the results of the review of existing data for the Link Union Station project (project) in Los Angeles, California. The purpose of the study was to review existing data at the site and provide preliminary geotechnical recommendations for the design and construction of the proposed project. The executive summary briefly summarizes results of the review and should be used only in conjunction with the findings and conclusions presented in the attached report.

A summary of findings and conclusions is presented below.

- The subsurface soils generally consisted of fill ranging from a few feet generally, to up to 30 feet in the station platform area. This fill is generally considered uncertified and may require special design considerations. Beneath the fill is a layer of alluvial soil consisting of sands, gravels, and cobbles over bedrock.
- The soils within the project site have a moderate to severe corrosion potential to buried metal structures, and the potential for sulfate attack on concrete is considered low.
- Groundwater is relatively shallow, at depths ranging from about 14 to 48 feet.
- No active or potentially active faults are known to cross the site, and the site is not located within a currently delineated State of California Alquist-Priolo Earthquake Fault Zone. Accordingly, the risk of surface rupture due to faulting is considered low. However, the project area may be subjected to strong ground shaking during its lifetime. The closest mapped fault is the Elysian Park (Upper) Fault located approximately 0.8 mile from the site.
- The California Geological Survey (CGS 1999) has identified the site within an area designated as potentially liquefiable. Potential for liquefaction may exist at the site and will be addressed after future field investigations.
- The probability of other geologic hazards, such as tsunami, seiches, deep seated landslides, or ground subsidence affecting the site, is considered low.
- The proposed project structures are likely to be lightly loaded structures or uninhabited structures that may be able to be founded on spread footings. However, heavy loads of major structures will likely require deep foundations including driven or drilled piles. Special consideration must be given to nearby structures, subsurface conditions, and loading in determining foundation types.
- Wet method or casing may be required for drilling, with relatively clean cohesionless soils and groundwater expected at relatively shallow depths. Encountering cobbles and possibly boulders should be expected, as well as possibly contaminated soils and groundwater.

It is HDR's professional opinion that the proposed project is feasible from a geotechnical standpoint, provided the recommendations presented in this geotechnical report are incorporated into the project design and construction.

1.0 Introduction

The Los Angeles County Metropolitan Transportation Authority (Metro) is proposing the Link Union Station Project (project) to transform Los Angeles Union Station (LAUS) from a "stub-end tracks station" into a "run-through tracks station" with a new passenger concourse that would improve the efficiency of the station and accommodate future growth and transportation demands in the region.

1.1 Project Location and Study Area

LAUS is located at 800 Alameda Street in the City of Los Angeles, California. LAUS is bounded by US-101 to the south, Alameda Street to the west, Cesar Chavez Avenue to the north, and Vignes Street to the east. Figure 1-1 depicts the regional location and general vicinity of LAUS.

Figure 1-2 depicts the project study area, which encompasses the extent of environmental study associated with potential direct, indirect, and cumulative impacts from implementation of the project. The project study area includes three main segments (Segment 1: Throat Segment, Segment 2: Concourse Segment, and Segment 3: Run-Through Segment). The existing conditions within each segment are summarized north to south below.

- Segment 1: Throat Segment This segment, known as the LAUS throat, includes the area north of the platforms, from Main Street at the north to Cesar Chavez Avenue at the south. In the throat segment, all arriving and departing trains traverse five lead tracks into and out of the rail yard, except for one location near the Vignes Street Bridge where the tracks reduce to four lead tracks. Currently, special track work consisting of multiple turnouts and double-slip switches are used in the throat to direct trains into and out of the appropriate assigned terminal platform tracks.
- Segment 2: Concourse Segment This segment is between Cesar Chavez Avenue and US-101 and includes LAUS, the rail yard, the Garden Tracks (stub-end tracks where private train cars are currently stored, just north of the platforms and adjacent to the existing Gold Line aerial guideway), the East Portal building, the baggage handling building with aboveground parking areas and access roads, the ticketing/waiting halls, and the pedestrian passageway with connecting ramps and stairways below the rail yard.
- Segment 3: Run-Through Segment This segment is south of LAUS and extends east/west from Alameda Street to the west bank of the Los Angeles River and north/south from Keller Yard to Control Point Olympic. This segment includes US-101, the Commercial Street/Ducommun Street corridor, Metro Red and Purple Lines Maintenance Yard (Division 20 Rail Yard), BNSF West Bank Yard, Keller Yard, the main line tracks on the west bank of the Los Angeles River, from Keller Yard to Control Point Olympic, and the "Amtrak Lead Track" connecting the main line tracks with Amtrak's Los Angeles Maintenance Facility. Businesses within the run-through segment are primarily industrial and manufacturing related.

The project study area has a dense street network ranging from major highways to local city streets. The roadways within the project study area include the El Monte Busway, US 101, Bolero Lane, Leroy Street, Bloom Street, Cesar Chavez Avenue, Commercial Street, Ducommun Street, Jackson Street, East Temple Street, Banning Street, First Street, Alameda Street, Garey Street, Vignes Street, Main Street, Aliso Street, Avila Street, Bauchet Street, and Center Street. Proposed Project Overview

The proposed project components are summarized north to south below.

- Throat and Elevated Rail Yard The proposed project includes subgrade and structural improvements in Segment 1 of the project study area (throat segment) to increase the elevation of the tracks leading to the rail yard. The proposed project includes the addition of one new lead track in the throat segment for a total of six lead tracks to facilitate enhanced operations for regional/intercity rail service providers (Metrolink/Amtrak) and accommodate the planned High-Speed Rail (HSR) system within a shared track alignment. Regional/intercity and HSR trains would share the two western lead tracks in the throat segment. The rail yard would be elevated approximately 15 feet. New passenger platforms with individualized canopies would be constructed on the elevated rail yard, with an underlying assumption that the platform infrastructure and associated vertical circulation elements (stairs, escalators, and elevators) would be modified at a later date to accommodate the planned HSR system. The existing railroad bridges in the throat segment at Vignes Street and Cesar Chavez Avenue would also be reconstructed. North of Control Point Chavez, the proposed project also includes safety improvements at the Main Street public at-grade crossing on the west bank of the Los Angeles River (medians, restriping, signals, and pedestrian and vehicular gate systems) to facilitate future implementation of a quiet zone by the City of Los Angeles.
- Above-Grade Passenger Concourse The proposed project includes an above-grade passenger concourse with new expanded passageway in Segment 2 of the project study area (concourse segment). The above-grade passenger concourse with new expanded passageway would include space dedicated for passenger circulation, waiting areas, ancillary support functions (back-of-house uses, baggage handling, etc.), transit-serving retail, office/commercial uses, and open spaces and terraces. The new passenger concourse would create an opportunity for an outdoor, community-oriented space and enhance Americans with Disabilities Act accessibility at LAUS. The elevated portion of the above-grade passenger concourse would be located above the rail yard, approximately 90 feet above the existing grade with new plazas east and west of the elevated rail yard (East and West Plazas). The new expanded passageway would be located below the rail yard to provide additional passenger travel-path convenience and options. Amtrak ticketing and baggage check-in services would occur at two locations at the east and west ends of LAUS, and new carousels would be constructed within the new expanded passageway. The above-grade passenger concourse includes a canopy over the West Plaza up to 70 feet in height, with individual canopies that would extend up to 25 feet over each platform. New vertical circulation elements would also be constructed throughout the concourse to enhance passenger

movements throughout LAUS while meeting Americans with Disabilities Act and National Fire Protection Association platform egress code requirements.

 Run-Through Tracks – The proposed project includes up to 10 new run-through tracks (including a new loop track) south of LAUS in Segment 3 of the project study area (run-through segment). The run-through tracks would facilitate connections for regional/intercity rail trains and HSR trains from LAUS to the main line tracks on the west bank of the Los Angeles River. A "common" viaduct/deck over US-101 and embankment south of US-101, from Vignes Street to Center Street, would be constructed wide enough to support regional/intercity rail run-through service, and future run-through service for the planned HSR system.

The proposed project would also require modifications to US 101 and local streets (including potential street closures and geometric modifications); railroad signal, positive train control, and communications related improvements; modifications to the Gold Line light rail platforms and tracks; modifications to the main line tracks on the west bank of the Los Angeles River; modifications to Keller Yard and BNSF West Bank Yard (First Street Yard); modifications to the Amtrak lead track; new access roadways to the railroad right-of-way (ROW); additional ROW; new utilities; utility relocations, replacements, and abandonments; and new drainage facilities/water quality improvements.

1.2 Build Alternative Overview

The primary differences between the proposed project and the build alternative are related to the lead tracks north of LAUS and the new passenger concourse. Compared to the proposed project, the build alternative includes the following:

- Dedicated Lead Tracks North of LAUS The build alternative includes reconstruction of the throat, with two new lead tracks that would be located outside of the existing railroad ROW, facilitating a dedicated track alignment, with a total of seven lead tracks. Reconfiguration of Bolero Lane and Leroy Street would also be required.
- At-Grade Passenger Concourse The build alternative includes an at-grade passenger concourse below the rail yard.

All other infrastructure elements are similar to the proposed project. The components of the build alternative are described north to south below.

• Throat and Elevated Rail Yard – The build alternative accommodates future HSR trains on dedicated lead tracks in the throat segment. The build alternative includes the addition of two new lead tracks for a total of seven lead tracks in the throat segment (with future HSR trains and some express/intercity services using the two western dedicated lead tracks and most regional/intercity trains using the five eastern lead tracks). The rail yard would be elevated approximately 15 feet. New passenger platforms with a grand canopy covering the elevated rail yard would be constructed, with an underlying assumption that the platform infrastructure and associated vertical circulation elements (stairs, escalators, and elevators) would be modified at a

later date to accommodate the planned HSR system. The existing railroad bridges in the throat segment at Vignes Street and Cesar Chavez Avenue would also be reconstructed under the build alternative. North of Control Point Chavez, the build alternative also includes safety infrastructure improvements at the Main Street public at-grade crossing on the west bank of the Los Angeles River (medians, restriping, signals, and pedestrian and vehicular a four-quadrant gate systems) to facilitate future implementation of a quiet zone by the City of Los Angeles.

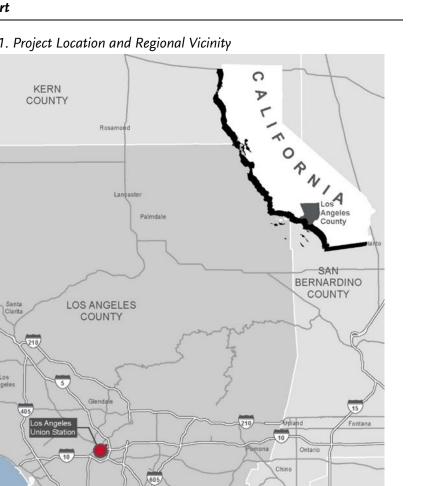
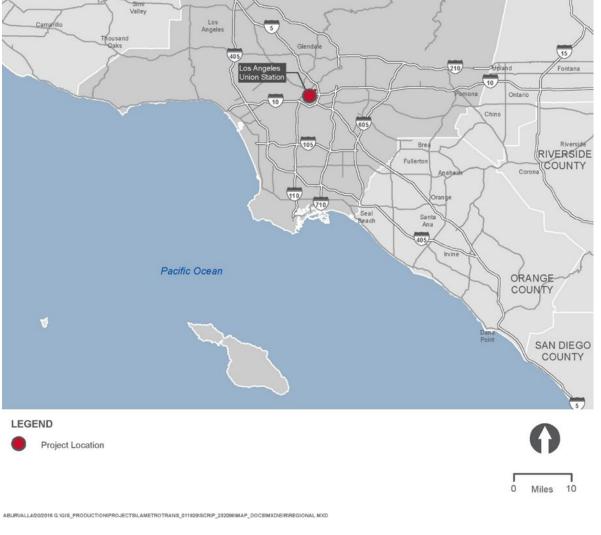
- At-Grade Passenger Concourse The build alternative includes a new at-grade passenger concourse that would include space dedicated for passenger circulation, waiting areas, ancillary support functions (back of house uses, baggage handling, etc.), transit serving retail, office/commercial uses, and open spaces and terraces. The at-grade passenger concourse would also create an opportunity for an outdoor, community oriented space and enhanced Americans with Disabilities Act accessibility. The at-grade passenger concourse would be constructed below the elevated rail yard. Amtrak ticketing and baggage check-in services would occur at a centralized location where new carousels would be constructed at the concourse level. The at-grade passenger concourse also includes new plazas east and west of the elevated rail yard (East and West Plazas), and a grand canopy that would extend up to 70 feet above the elevated rail yard and West Plaza. New vertical circulation elements would also be constructed throughout the concourse to enhance passenger movements throughout LAUS while meeting Americans with Disabilities Act and National Fire Protection Association platform egress code requirements.
- **Run Through Tracks** The build alternative includes up to 10 new run through tracks (including a new loop track) in the run-through segment. All infrastructure south of LAUS is the same as described above for the proposed project.

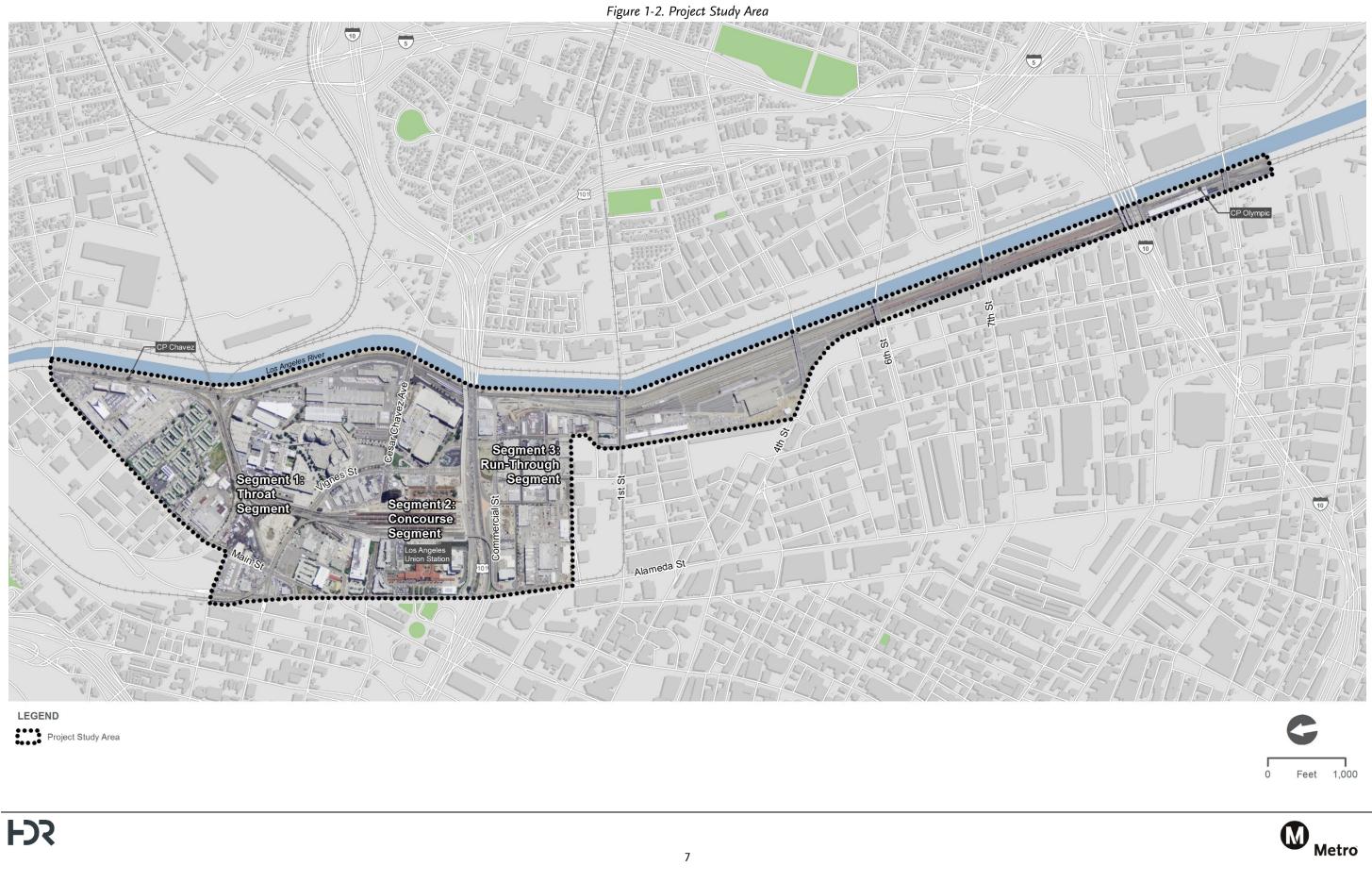
The build alternative would also require modifications to US 101 and local streets (including potential street closures and geometric modifications); railroad signal, positive train control, and communications related improvements; modifications to the Gold Line light rail platforms and tracks; modifications to the main line tracks on the west bank of the Los Angeles River; modifications to Keller Yard and BNSF West Bank Yard (First Street Yard); modifications to the Amtrak lead track; new access roadways to the railroad ROW; additional ROW; new utilities; utility relocations, replacements, and abandonments; and new drainage facilities/water quality improvements.

5

VENTURA

COUNTY


Figure 1-1. Project Location and Regional Vicinity

2.0 Purpose

The purpose of this report is to:

- Document existing geologic, geotechnical, and seismic conditions, including subsurface soils, groundwater, seismicity, corrosion potential, subsidence, and environmental concerns relevant to the proposed project.
- Facilitate the understanding of the existing geologic and geotechnical information at the project site that would be used for the preliminary design of the proposed improvements and during the planning of future geotechnical exploratory investigations. During the planning of future geotechnical investigations, the existing available data and findings presented in this report will be taken into consideration to allocate resources where geotechnical information is missing and/or augment subsurface geotechnical information in other areas within the project limits.
- Identify constructability conditions relevant to proposed improvements considered in the Link Union Station Project. The early identification of these conditions will provide the opportunity to consider alternatives during the planning, design, and construction phases.
- Provide preliminary recommendations for foundation selection, summarize key constructability-related subsurface conditions affecting the proposed project, and provide recommendations for future geotechnical investigations.

3.0 Methodology

The methodology used in this report included the following tasks:

- Literature Review Public agencies were contacted to obtain relevant geotechnical and geology reports for the proposed project site. Documents reviewed were obtained from the City of Los Angeles Department of Public Works, City of Los Angeles Department of Building and Safety, California Department of Transportation (Caltrans), and Metro. The reviewed documents include published geologic maps; planning documents and hazard maps; as-built log of test borings (LOTB); and previous geotechnical and environmental reports for LAUS, Metro Red Line Tunnel, East Side Underpass Light Rail Transit (Gold Line Eastside Extension), and nearby developments. This review provided the basis for the evaluation of site conditions and geologic and geotechnical conditions present at the project site.
- *Site Conditions* The existing site conditions present at the proposed site were described. A site reconnaissance was performed to visually identify existing facilities, evaluate the accessibility to the site for future explorations, confirm desk study findings, and identify potential issues that could affect the proposed improvements.
- *Geologic and Geotechnical Conditions* Relevant geologic and geotechnical data were compiled in this report, along with the findings for the proposed project. Topics covered included faulting and seismicity, seismic hazards, subsurface soil conditions, groundwater, and environmental-related issues.
- *Geotechnical Considerations* Discussion and conclusions were provided regarding foundation selection, constructability conditions, and summary of finite element analysis results for the proposed improvements.
- *Recommendations* Recommendations for additional geotechnical investigations were provided to better characterize the subsurface conditions at the site and to confirm the preliminary findings of this report.
- *Next Steps* Discussion was provided for subsequent actions to follow this report.
- *References* A list of references used in the preparation of this report was provided.

4.0 Literature Review

Various documents were reviewed pertaining to the project site and surrounding area. Documents reviewed include published geologic maps; planning documents and hazard maps; LOTBs; and previous geotechnical and environmental reports for LAUS, Metro Red Line Tunnel, East Side Underpass Light Rail Transit (Gold Line Eastside Extension), and nearby developments (Exhibit 4-1 in Appendix A). A list of maps, reports, and documents reviewed is presented below.

Published geologic and hazard maps include the following:

- State of California Special Studies Zones Los Angeles Quadrangle, Official Map. (California Division of Mines and Geology [CDMG] 1977)
- State of California Seismic Hazard Zones Los Angeles 7.5 Minute Quadrangle (California Geological Survey [CGS] 1999)
- Los Angeles County Tsunami Inundation Maps (CGS 2009)
- Geologic Compilation of Quaternary Surficial Deposits in Southern California, Los Angeles 30'x 60' Quadrangle (CGS 2012)
- Quaternary Fault and Fold Database for the United States (United States Geological Survey [USGS] and CGS 2006)

Geotechnical information reviewed includes geotechnical reports for LAUS, as well as nearby developments, and as-built plan sheets (Appendix B) presenting LOTBs for nearby Caltrans structures. Pertinent LOTBs are provided in Appendix C, alphabetically by reference name. The complete list of documents reviewed is presented in Section 10.0. The following is a list of the most relevant geotechnical reports and documents considered in this report:

- Final Environmental Impact Report/Environmental Impact Statement, Los Angeles Union Station Run-Through Tracks Project (Caltrans 2005)
- Final Geotechnical Summary Report, SR-710 Tunnel Technical Study, Los Angeles County, California (CH2M Hill 2010)
- Geotechnical Investigation Report Volume I, Southern California Rapid Transit District [SCRTD], Metro Rail Project, (Converse Consultants, Inc. [CC] et al. 1981)
- Geotechnical Report: Metro Rail Project-Design Unit A135, LOTBs SCRTD, (CC et al. 1983)
- Union Station Area Aquifer Pump Tests Metro Rail Project (CC et al. 1986)
- Temporary Tunnel Excavation Support by Chemical Grouting. Grouting Soil Improvement and Geosynthetics Proceedings, GT Div. ASCE (Gularte et al. 1992)

- Geotechnical Engineering and Groundwater Study, Proposed Two Level Subterranean Parking Garage and Four Story Office (J. Byer Group, Inc. 1998)
- Report of Phase I Environmental Site Assessment, Alameda District Plan (Law/Crandall, Inc. 1994)
- Metro Rail Project, Main Yard and Shops Yard Leads (SCRTD 1988)
- The Phase I Subsurface Investigation at the Metro Rail A-130 Corridor (The Earth Technology Corporation 1987a)
- The Phase III Subsurface Investigation at the Metro Rail A-130 Corridor (The Earth Technology Corporation 1987b)
- The Phase IV Subsurface Investigation at the Metro Rail A-130 Corridor (The Earth Technology Corporation 1987c)
- Geotechnical Investigation, Proposed West Campus Infrastructure Project, Los Angeles, California, LOTBs (URS Corporation [URS] 2003)
- Phase I Environmental Site Assessment and Limited Phase II Testing Selected Portions of the Los Angeles Union Station Property (URS 2011)

Technical memoranda addressing specific design considerations, including preliminary seismic design parameters for proposed improvements, the lowering of the intersection grade at Commercial Street and Center Street, and potential impacts on the Metro Red Line Tunnel due to the proposed aerial structures, were also reviewed. The documents reviewed include the following:

- Preliminary Draft Report for Seismic Design Parameters, Southern California Regional Interconnector Project (SCRIP) (Earth Mechanics, Inc. [EMI] 2015)
- Draft Technical Memorandum Static and Seismic Performance of Red Line Tunnel, SCRIP (EMI 2016a)
- Draft Technical Memorandum Impact of Lateral Pile Loading on Red Line Tunnel, SCRIP Project– Geotechnical Fatal Flaw Study (EMI 2016b)

Pertinent findings and information contained within these maps, memoranda, and reports are discussed within the body of this study.

5.0 Site Conditions

5.1 Existing Facilities

LAUS is located in the northeastern portion of Downtown Los Angeles, on the property bounded by Alameda Street, Cesar Chavez Avenue, Vignes Street, and US-101 (Exhibit 5-1 in Appendix A). In general, surface conditions across the project site are considered improved, consisting of commercial/industrial and residential developments.

A field reconnaissance was conducted August 15, 2014, of the project footprint area and April 20, 2016, within the LAUS area to evaluate existing facilities and activities. The proposed project lies within a mixed industrial-commercial use area. Most of LAUS, including train platforms, rail tracks, and some nearby facilities, are owned by Metro. Other owners include the City and County of Los Angeles and private corporations. Specific site locations that were explored during these field visits included the Historic Station Building (HSB), Amtrak Office and Baggage Building (AOBB), LAUS train platforms, Gateway Station Building, Metro Red Line, Cesar Chavez Avenue Undercrossing (Bridge Number [No.] 53C-131), and the facilities in the vicinity of Commercial and Center Streets. The site overlies two major tunnels: one constructed for pedestrian access and the other for the Metro Red Line. A detailed description of the Metro Red Line Tunnel is provided in Section 5.1.1. The pedestrian tunnel is about 28 feet wide and traverses one floor level below the surface tracks and platforms connecting the AOBB and Gateway Station Building with the boarding platforms (Caltrans 2005).

The HSB is located east of Alameda Street and adjacent to the Metropolitan Water District Building. The HSB incorporates a series of retail businesses, waiting area for passengers, and ticket booths within its central portion. Driveways, an enclosed garden, and a subterranean parking garage are located within the HSB area. The eastern portion of the HSB constitutes the AOBB, used by Amtrak for luggage handling and storage area. Important features to consider for future geotechnical exploration activities include the underground tunnel for the Metro Red Line subway located north of the HSB and the connecting pedestrian tunnel that runs underneath the LAUS train platforms to the AOBB area.

The LAUS train platforms, located on the central portion of LAUS, consist of 6 reinforced concrete platforms with access to 12 rail lines serving Metrolink and Amtrak trains. There is an additional platform located adjacent to the AOBB parking lot area that is in use by the Metro Gold Line. All the Amtrak/Metrolink platforms are accessed through the underground pedestrian tunnel via stairs and access ramps located on both sides of the pedestrian tunnel. The Gold Line platform is accessed via stairs or by an elevator located adjacent to the underground pedestrian tunnel. The surficial materials encountered on the rail tracks consist predominantly of ballast rock, and the areas surrounding the platforms are either concrete or paved surfaces.

The Gateway Station Building is located on the eastern portion of LAUS, adjacent to the train platforms and north of US-101. This building serves as the eastern entrance for the Metro subway lines, Metro buses, and Amtrak/Metrolink. During the field visit conducted August 14, 2014, there were construction

activities occurring on the southern end of the parking lot and on Vignes Street. These improvements were in their final stage, and completion is anticipated in the near future.

Commercial Street, located south of LAUS and parallel to US-101, was explored to identify potential issues with the proposed aerial structures on August 14, 2014. During this site visit, personnel performed a reconnaissance of the street starting at Hewitt Street on the west end and terminating at the east end of Commercial Street near the Metro's ROW and railroad tracks. In addition, the intersection of Commercial Street was visually explored to evaluate the potential lowering of the intersection grade. Observed land uses within the area consist of existing commercial and industrial establishments. The pavement condition ranges from poor to fair in most of the observed areas. Access to the Metro's ROW parallel to the Los Angeles River was not available on foot at the time of this visit, but future geotechnical exploration of these premises is considered accessible with the required entry permits.

Other facilities near the project footprint area include commercial buildings, parking lots, residential buildings, a Metro bus station, mechanic shops, major freeways and local streets, the Metro Gold Line Bridge, and underground utilities. Existing utility research in this area indicates existing storm drain, steam, air, petroleum products, fiber optic, sewer, electric, water, natural gas, and various other lines within LAUS and the surrounding area.

A summary of existing facilities and foundation information is provided in Table 5-1.

Table 5-1. As-Built Information – Existing Structures						
Structure	Approximate Foundation Elevation (feet MSL)	Foundation Type	Number of Piles	Average Tip Elevation (feet MSL)	Approximate Pile Length (feet)	Pile Construction Technique
Los Angeles River Bridge	e and Overhead at	Aliso Street (Bridge	No. 53-0405	i) — Initial Const	ruction (Approxim	ately 1954)
Abutment/Pier 1A, 2A, 1B-17B, 19D, and 20D	270	16-inch diameter CIDH	Hundreds	255	15	Drilled in place
West and East Arch Abutments, Piers 24D and 25D, Abutment 1 – Pier 25	236 at Arch abuts, 267 at Piers	Spread Footing	-	-	—	-
Pier 26 – Abutment 28	255	7-gauge fluted 16-inch diameter CISS	Hundreds	230	20 - 38	Driven
Los Angeles Street Overcrossings (Bridge No. 53-0629) – Initial Construction (Approximately 1949)						
All	259	Spread footing	—	—	—	—
Alameda Street Overcrossing (Bridge No. 53-0782) – Initial Construction (Approximately 1952)						
All	240	Spread footing	—	—	—	—
Eastside Underpass [Gold Line] (Bridge No. 53-2975)– Initial Construction (Approximately 2004)						
Abutment 1	288	4-foot diameter CIDH	6	210	78	Drilled in place
Bent 2 and Bents 6-9	262	8-foot diameter CIDH	1 each	190	72	
Bents 3-5	267	10-foot diameter CIDH	1 each	194	73	
Abutment 10	269	3-foot diameter CIDH	5	215	54	
Source: Caltrans n.d., 1949, 1954, and 2004						

Notes:

No.=number; MSL=mean sea level, CIDH=cast-in-drilled-hole, CISS=cast-in-steel-shell

5.1.1 Metro Red Line Tunnel

The Metro Red Line Tunnel is a twin cast-in-place concrete tunnel that runs in a northwest-to-southeast direction through LAUS. Each tunnel is nearly 20 feet in diameter with a nominal 12-inch thick concrete lining and located approximately 28 feet apart center-to-center. Within LAUS, this structure runs beneath the station's platforms and pedestrian tunnel. Southeast of LAUS, the Metro Red Line Tunnel begins at grade level, described as the east portal, and runs beneath the intersection of Commercial Street and Center Street, some private lots, and US-101. The construction of the tunnel segment located within LAUS was performed using the cut-and-cover method, and the excavations were supported by the implementation of tiebacks (pre-stressed soil anchors). After construction of the tunnel concrete box structure at LAUS, the tiebacks were abandoned in place (SCRTD 1988). The tunnel segment located southeast of LAUS was bored using a conventional tunnel boring machine. Horizontal and vertical grouting techniques were implemented for soil stabilization for the segments that run beneath the intersection of Commercial Street and Center Street and beneath US-101. The chemical grouting was applied around the Metro Red Line Tunnel, forming a binocular-shaped underground structure (EMI 2016a). The Metro Red Line Tunnel invert elevation ranges from about 265 feet mean sea level (MSL) near the east portal entrance and slopes down as the it advances northwest with an average invert elevation of about 237 feet MSL beneath US-101 and LAUS. Photographs taken during the construction of the Metro Red Line Tunnel are presented on Exhibits 5-2 and 5-3 in Appendix A.

During the construction of the tunnel segment between the intersection of Commercial Street and Center Street and US-101, a fire incident was reported July 13, 1990. Based on the reviewed documents, the fire was initiated by a spark from the cutting torch used during the installation of high density polyethylene membrane. During this fire, approximately 730 feet of tunnel lagging used for support was destroyed causing the collapse of this tunnel segment that, at the time of the fire, was ungrouted (Gularte et al. 1992).

6.0 Geologic and Geotechnical Conditions

6.1 Geologic Setting

The project site is located within the Los Angeles Basin near the boundary of the Transverse Ranges Province and the northern Peninsular Ranges Geomorphic Province. The mountain ranges include the Santa Monica and San Gabriel Mountains located northwest of the project site and the Palos Verdes Hills toward the southwest. The Transverse Ranges are characterized by an east to west trending complex group of mountain ranges and valleys. The Transverse Ranges are comprised predominantly of sedimentary rocks, Mesozoic granitic rocks, and ancient Precambrian rocks of all types. The northern Peninsular Ranges are characterized by a series of northwest to southwest trending mountains and faults. These mountain ranges are composed of metamorphosed sedimentary and volcanic rocks of Jurassic age that have been intruded by mid-Cretaceous plutonic rocks of the Southern California batholith and rimmed by Cenozoic sedimentary rocks (Gastil and Krummenacher 1981; Schoellhamer et al. 1981).

The project footprint area is located west of the Los Angeles River on a gently sloping alluvial surface. Topography within the proposed project footprint area slopes downward from north to south with ground elevations ranging from about 274 to 295 feet above MSL. Based on the review of the Geologic Compilation of Quaternary Surficial Deposits in Southern California (CGS 2012), the site is underlain by varying amounts of artificial fill and of Holocene-age and Pleistocene alluvium deposits consisting of silty sands, sands and silts with varying amounts of gravel and cobbles (Exhibit 6-1 in Appendix A). Beneath the alluvium layers, Miocene Puente marine sedimentary formations are present within the project footprint area (Bilodeau et al. 2007).

6.2 Faulting and Seismicity

The review of available literature indicates there are no known active or potentially active faults that have been mapped at the site, and the site is not located within an Alquist-Priolo Earthquake Fault Zone (Exhibit 6-2 in Appendix A). The principal seismic hazard that could affect the site is ground shaking resulting from an earthquake occurring along one of several major active or potentially active faults in Southern California. Based on the review of the Caltrans Acceleration Response Spectrum Online (Caltrans 2016), the USGS and CGS (USGS and CGS 2006) Quaternary Fault and Fold Database, and the Alquist-Priolo Special Studies Zone Map for Los Angeles Quadrangle (CDMG 1977), the closest active faults that could affect the site, approximate distances, fault lengths, and magnitudes are presented in Table 6-1.

Table 6-1. Nearby Faults				
Fault Name	Distance from Site (Mile)²	Moment Magnitude ³		
Elysian Park (Upper) ¹	0.8	6.6		
Hollywood	4.3	6.6		
Puente Hills (Los Angeles) ¹	4.5	6.9		
Raymond	4.6	6.7		
Santa Monica	4.6	7.0		
Verdugo	6.8	6.8		
Newport Inglewood	8.4	7.2		
Sierra Madre	11.0	7.2		
Elsinore	11.6	6.9		
Malibu Coast	16.7	6.6		
Palos Verdes	17.7	7.2		
San Gabriel	18.2	7.3		
THUMS – Huntington Beach	19.6	6.6		
Northridge Hills	19.3	6.4		

Note:

1 Blind thrust fault: Mapped by Caltrans Acceleration Response Spectrum Online but not mapped by USGS and CGS (Caltrans 2016; USGS and CGS 2006)

2 Distance from site is approximate and measured from LAUS (USGS and CGS 2006)

3 Caltrans 2016

6.3 Seismic Design Criteria

To mitigate the effects of ground shaking produced by regional seismic events, seismic design should be performed in accordance with the applicable building codes. Seismic design criteria and recommendations relevant to the proposed improvements are included in a preliminary technical memorandum prepared by EMI (EMI 2015).

6.4 Seismic Hazards

6.4.1 Fault Rupture

Based on available literature and reports, no active faults are known to traverse the project site, and the site is not located within a currently designated Alquist-Priolo Earthquake Fault Zone. The nearest special study zone as mapped by CDMG is approximately 5.5 miles from the site (CDMG 1977) (Exhibit 6-3 in Appendix A).

6.4.2 Seismic Ground Shaking

The proposed project is located within an active seismic region and is expected to experience ground shaking from an earthquake occurring along several major active or potentially active faults in Southern California (Section 6.2 for details). Consequently, the implementation of the proposed improvements may increase the number of people exposed to effects associated with seismically-induced ground shaking. The seismic ground shaking hazard is considered moderate to high.

6.4.3 Liquefaction and Seismically-Induced Settlement

Liquefaction is the loss of soil strength or stiffness due to a buildup of pore-water pressure during ground shaking. Liquefaction is associated primarily with loose (low-density), saturated, fine- to medium-grained, cohesionless soils. Effects of liquefaction can include sand boils, excessive displacements, bearing capacity failures, and lateral spreading. Seismically-induced settlement consists of dry dynamic settlement (above groundwater) and liquefaction-induced settlement (below groundwater). This settlement occurs primarily within loose to moderately dense sandy soil due to reduction in volume during and shortly after an earthquake event.

Based on the review of the Seismic Hazard Zones map for the Los Angeles 7.5-Minute Quadrangle (CGS 1999), the site is located within an area designated as potentially liquefiable (Exhibit 6-3 in Appendix A).

A review of existing borings from nearby projects and borings performed by others at LAUS and surrounding areas, the groundwater level ranges between depths of approximately 14 to 48 feet below ground surface (bgs) (corresponding groundwater elevations range from about 222 to 256 feet MSL). Historical groundwater depths as shallow as 13.5 feet below ground were reported (Law/Crandall, Inc. 1997; J. Byer Group 1998), but more recent measurements indicated a steady groundwater level decline (Section 6.6 for discussion). The soils encountered below groundwater are generally alluvial deposits consisting of medium dense to very dense sandy silts, silty sands, and sands with gravel that are not considered susceptible to liquefaction. However, there is evidence of thin interbedded loose materials within the upper 30 feet of the project footprint area. These layers will need to be evaluated during future subsurface exploration to confirm their liquefaction potential for the site. In general and from a preliminary standpoint, based on the available geotechnical data, the potential for liquefaction and seismically-induced settlement to occur at the proposed project location is considered low.

6.4.4 Lateral Spreading

Lateral spreading is a type of landslide motion generally characterized by progressive cracking and ground motion near a slope face. Lateral spreading is generally associated with liquefiable soils, which allow the slope face and surrounding area to flow during or shortly after earthquake ground motions. Conditions favorable for lateral spreading are frequently found along streams and waterfronts or in loosely placed, saturated, sandy fill (Rauch 1997). The Los Angeles River is located southeast of LAUS; it is a channelized concrete channel. Based on the proposed improvements, as well as the known soil conditions, the potential for lateral spreading at the site is considered low. The project footprint area, located near the Los Angeles River where limited geotechnical information is available, needs further investigation to evaluate the lateral spreading potential.

6.4.5 Seiches and Tsunamis

Seiches are large waves generated in enclosed bodies of water in response to ground shaking. Tsunamis are waves generated in large bodies of water by fault displacement or major ground movement. Based on the absence of enclosed bodies of water near the site and the CGS Tsunami Inundation Map (CGS 2009), seiche and tsunami risks at the site are considered negligible.

6.5 Subsurface Earth Materials

The review of existing geotechnical data, geologic maps, reports, and other pertinent information indicates the project footprint area is underlain by varying amounts of artificial fill and young alluvium deposits ranging from loose to medium dense materials, such as silty sands/sandy silts, silt, and sands with varying amounts of gravel and cobbles. The artificial fill varies in composition but is generally known to contain construction debris, as well as imported natural earth materials. The compaction of this layer is uncertain and, therefore, this layer of fill is categorized as "uncertified fill." Generally, in Los Angeles County, uncertified fill may not be used to support loads from structures, and the removal and recompaction of this layer should be anticipated for construction. In the review of existing data, the artificial fill layer varies from about 5 to 15 feet in thickness but may extend to depths as great as about 30 feet bgs in some locations. Within the concourse area, the artificial fill ranges from about 20 to 30 feet bgs. The young alluvium encountered within the project footprint area consists primarily of coarse-grained deposits ranging in consistency from loose to very dense silty sands, clayey sands, and sands with varying amounts of gravel and cobbles. Interbedded fine-grained deposits consisting of soft to stiff sandy silts, silt, and clay were also observed within the young alluvium in the LAUS area (CC et al. 1983). The thickness of the young alluvium within the project area ranges from about 40 to 70 feet. For the concourse area, the thickness of the young alluvium deposits ranges from about 65 to 75 feet.

Beneath the fill and younger alluvium, older alluvium deposits, sometimes referred as to the San Pedro Formation, overlay bedrock of the Puente Formation. Older alluvium materials consist of dense to very dense silty sands, sands, interbedded clays, and gravels with varying thickness from 10 to about 70 feet. The Puente Formation (bedrock) consists predominantly of interbedded siltstone and sandstone with thinly bedded claystone. The degree of weathering of the bedrock decreases with increasing depth. The

upper several feet of the bedrock is weakly cemented and susceptible to softening or slaking in the presence of water; however, deeper beds are strongly cemented. Bedrock at the project site is generally encountered at depths ranging from about 18 to 100 feet bgs or with corresponding elevations ranging from 190 to 254 feet MSL. Bedrock was encountered at relatively shallow depths ranging from about 18 to 30 feet bgs or corresponding elevations ranging from 245 to 257 feet MSL in the southwestern portion of LAUS as described in the geotechnical exploratory borings (URS 2003). Near the platforms/tracks and the concourse passenger areas, bedrock was generally encountered at approximately elevation 200 feet MSL, which is about 95 feet below existing grade (CC et al. 1983). On the southeast side of LAUS, in the vicinity of US-101 and the intersection of Commercial Street and Central Street, bedrock was generally encountered at depths ranging from 90 to 100 feet bgs. However, the borings performed for the Gold Line Eastside Extension Project located near the intersection of Alameda Street and Commercial Street encountered bedrock at depths ranging from 49 to 75 feet bgs or corresponding elevations ranging from 226 to 218 feet MSL. Other data reviewed included borings located on Cesar Chavez Avenue, Keller Street, and Lyon Street, which did not encounter bedrock within their exploration depths (up to about 50 feet bgs).

In general, the Puente Formation is of low to moderate strength with locally hard, cemented, and interbedded concretions. Limited unconfined compressive strength tests performed for the Metro Red Line Tunnel indicates unconfined compressive strengths ranging from about 10 to 175 pounds per square inch, with an average value of about 80 pounds per square inch (CC et al. 1983). Based on a review of similar projects performed for an area near LAUS by others, the unconfined compressive strength of the Puente Formation varies from about 50 to 750 pounds per square inch. The strength of cemented layers and concretions vary from 4,000 to 15,400 pounds per square inch (CH2M Hill 2010). Cross sections utilizing selected boring logs obtained from the previous reports were prepared for LAUS and Commercial Street (Exhibits 6-4 and 6-5 in Appendix A).

6.6 Groundwater

Based on the review of previous reports and available data, the groundwater levels within the project footprint area range between approximately 14 and 48 feet bgs (corresponding groundwater table elevations range from about 222 to 256 feet MSL). Historical groundwater depths as shallow as 13.5 feet below ground were reported (Law/Crandall, Inc. 1997; J. Byer Group, Inc. 1998), but more recent measurements indicated a steady groundwater level decline. The groundwater quality at the project is not specifically known, but the groundwater may contain inorganic constituents, as well as organic contaminants from solvent and petroleum hydrocarbon pollution associated with industrial activities in the area (Caltrans 2005). Underground facilities, as well as temporary excavations during construction, should anticipate encountering groundwater if greater than about 10 to 15 feet bgs. See Section 6.12, Environmental Concerns regarding potential groundwater contamination.

6.7 Collapsible and Expansive Soils

Collapsible soils are soils that undergo settlement upon wetting, even without the application of additional loads. Typical collapsible soils are low in plasticity and have relatively low moisture contents and densities. These soils are distributed throughout the southwestern United States, specifically in areas of young alluvial fans, debris flow sediments, and loess (wind-blown sediment) deposits. Expansive soils are generally plastic clays that can undergo a substantial increase in volume with increase in moisture content. Expansive soils can cause uplift pressures that can lead to structural damage. Based on the review of available geotechnical reports (Section 4.0), collapsible soils and expansive soils have not been identified at the proposed project site. Therefore, the soils at the site have low collapse and expansion potential.

6.8 Corrosion Potential

Existing available data indicates soils located within LAUS exhibited sulfate concentrations ranging from 152 to 475 parts per million (ppm) and chloride concentrations ranging from 3,000 ppm to 4,600 ppm (CC et al. 1981). Caltrans specifications define a corrosive soil as a material in which any of the following conditions exist: a chloride content greater than 500 ppm; soluble sulfate content greater than 2,000 ppm; or a pH of 5.5 or less. Based on these guidelines established by Caltrans and existing data from previous reports, the soils within the project site have a moderate to severe corrosion potential to buried metal structures, and the potential for sulfate attack on concrete is considered low. However, future studies should further assess corrosion potential.

A geotechnical report prepared for the Metro Red Line Tunnel (CC et al. 1986) described severe corrosion to groundwater monitoring instrumentation and pump equipment exposed to the groundwater in the LAUS area. During this investigation, soils within LAUS were treated with hydrogen peroxide to reduce hydrogen sulfide content in the groundwater. The hydrogen peroxide treatment was successful in the reduction of hydrogen sulfide in the groundwater within LAUS (CC et al. 1986). The subsurface soils within the project site will be evaluated in the future, planned investigations for the potential for corrosion to concrete and ferrous metals to confirm previous findings.

6.9 Subsidence and Settlement

Ground subsidence is a process characterized by downward displacement of surficial materials caused by natural phenomena, such as removal of underground fluids, natural consolidation, or dissolution of underground minerals, or by man-made phenomena, such as underground mining or tunneling. The project site is located north of the Union Station Oil Field. The LAUS Run-Through Tracks Project Environmental Impact Report/Environmental Impact Statement (Caltrans 2005) indicates the potential for subsidence due to the extraction of oil in the surrounding area near LAUS is considered low. It is anticipated that the proposed improvements would impose higher loads on the existing soils than presently exist; therefore, settlement, both long-term and immediate, is anticipated to occur in low density, loose deposits of silts, clays and sands for those improvements proposed to rely upon the upper zones for support using shallow foundations. The review of existing soil boring logs indicates thin,

interbedded loose deposits within the upper 30 feet of the artificial fill should be anticipated. Significant settlement was generally not a controlling issue in the reports reviewed. Proper compaction and/or the removal of fill soils should be considered for proposed improvements. Another alternative to consider is use of deep foundations which extend through the artificial fill soils and bear in firm strata.

6.10 Flooding

The Flood Insurance Rate Map 06037C1636F (Federal Emergency Management Agency 2015) depicted that the project footprint area is located within Zone "X" (unshaded), an area designated to be outside the 500-year floodplain and protected by levee from 100-year floodplain. The potential for flooding for the proposed project is considered low.

6.11 Mineral Resources

The project footprint area is underlain by man-made fill and alluvium materials, such as sand and gravel, which could be considered mineral resources and used as construction aggregates. However, the mining of such materials within an urbanized environment is not practical. Therefore, no significant impact on mineral resources would be attributed to the construction of the proposed project.

6.12 Environmental Concerns

Several environmental reports were reviewed regarding subsurface conditions. Due to the long history and varied uses of this area of Los Angeles, the site is expected to have variable potential for contamination. The J. Byer Group reported encountering methane and hydrogen sulfide in their test wells near LAUS (J. Byer Group, Inc. 1998). In one sample at Test Well No. CMW2, located west of the HSB, combustible gas readings were high enough to reach the lower explosive limit. Similar combustible gas conditions were encountered at the site when performing pump tests as reported by others (CC et al. 1986). CC also reported previous problems had been encountered at the site when performing a pump test. CC encountered entrained gases in the water (possibly methane), which may have been released by the underlying Puente Formation. Groundwater contaminated with gas or other volatile organic compounds may be encountered during groundwater pumping on site. Other detailed recommendations for dewatering can be found in the J. Byer Group report (J. Byer Group, Inc. 1998). The area west of First Street Bridge is mapped as a Union Station Oil Field; consequently, bedrock could contain hydrocarbon odor and stains.

A boring performed near the Los Angeles River (Boring CEG-2) indicates the presence of natural oil, which was encountered at a depth of about 37 feet bgs (CC et al. 1981).

Soil and groundwater contamination at LAUS was found primarily in the eastern, northern, and southern portions of the property. The contaminants found in soil samples at LAUS included carbon disulfide, petroleum hydrocarbons, benzene, toluene, xylenes and potentially methylene choline in the upper 30 feet bgs. Twenty-eight volatile organic compounds were reported in groundwater samples, which include acetone, dicloroethane, dichloroethylene, tetrachloroethylene, toluene, methylene chloride, carbon

disulfide, and various others (Law/Crandall, Inc. 1994). Further studies (URS 2011) suggest the highest concentrations of volatile organic compounds exist on the off-site portion of the Gateway Area, near the intersection of Vignes Street and Cesar Chavez Avenue, whereas the yard tracks are contaminated with petroleum hydrocarbons, lead, and semi-volatile organic compound from historic rail operations. Similar types of contaminants are expected to be found near LAUS, including the southern parts of the First Street Viaduct Bridge, Keller Street, Ramirez Street, Commercial Street, Center Street, and various other streets.

Soil and groundwater environmental investigations for the construction of the Metro Red Line Tunnel segment between the intersection of Commercial Street and Center Street and US-101 revealed low levels to nondetectable levels of soil and groundwater contaminants (The Earth Technology Corporation 1987a, 1987b, and 1987c).

Numerous on- and off-site contamination sources are known to exist or have existed at the site. Some of these sources and their contaminants are described in previous environmental documents (Law/Crandall, Inc. 1994; URS 2011). In general, the site is impacted by volatile organic compounds from various sources, and nearby rail operation areas are impacted by petroleum hydrocarbons, lead, and semi-volatile organic compound. URS determined that these areas impacted by rail operations are generally limited to the upper 10 feet of materials below existing site grade.

6.13 Methane Gas

Based on the review of the Methane and Methane Buffer Zone Map (City of Los Angeles 2004), portions of the project are located within an area designated as Methane Zone. The areas within the project limits affected by this designation are located south of US-101. Therefore, there is the potential for methane and other volatile gases to exist within the project footprint area.

7.0 Geotechnical Considerations

7.1 Foundation Type

Based on the review of previous reports, anticipated loading characteristics of the proposed improvements and the soil stratigraphy within the project site, a combination of shallow foundations and deep (pile) foundations will likely be suitable to support proposed improvements. Reviewed reports indicate allowable bearing pressures for spread footings of between 3,000 and 4,000 pounds per square foot. Where conventional spread foundations are considered, proper treatment (removal and recompaction) of the uncertified artificial fill is required. Similarly, if loading capacity is required for pile foundations (especially for lateral loading), the uncertified fill should be removed and recompacted to meet or exceed the minimum compaction criteria for the proposed improvements, or these foundations are designed to not rely on these uncertified fill soils for lateral resistance.

The foundation type selection should account for the presence of adverse conditions, such as a shallow groundwater table, presence of dense to very dense granular materials and cobbles, caving of loose granular soils, the highly urbanized area surrounding the project site, potential soil corrosion, and potential for encountering contaminated soils. Heavy column and wall loads will be best supported by a deep foundation system. Feasible deep foundation types include steel piles driven to refusal into bedrock, and cast-in-drilled-hole (CIDH) piles. Foundation types, such as CIDH piles and driven steel piles, will provide suitable support for the proposed structures with the proper design and construction methods. During the construction of pile foundations, difficult driving and/or drilling can be expected due to the presence of dense to very dense deposits, cobbles and bedrock at shallow depths within the project footprint area. CIDH piles were the prevailing recommended foundation type among the more recent documents reviewed. Where axial load demands are high, utilizing methods such as base grouting of CIDH piles should be considered to increase compressive capacity.

However, the relatively shallow depth to the Puente Formation bedrock may make driven piles a feasible alternative. Consideration should be given to underground utilities; nearby structures; and existing tunnels, which may be sensitive to ground vibrations, corrosion of pile steel, and noise impacts if driven piles are to be considered.

7.2 Constructability Considerations

Some known constructability-related subsurface conditions exist at the project site. The intent of the planned future exploration is to better delineate these and other conditions near proposed improvements. Anticipated subsurface conditions at the project footprint area that might affect the proposed improvements are summarized below:

- Shallow groundwater table ranging from 14 to 20 feet bgs is anticipated at LAUS.
- Environmental concerns exist, given the presence of contaminated soils and groundwater at LAUS.

- Corrosion potential of soils at LAUS is considered high.
- The impact of proposed improvements to the existing Metro Red Line Tunnel within LAUS and off-site areas must be considered (near the intersection of Commercial Street and Center Street).
- Difficult driving or drilling conditions for piles could be encountered at the site due to gravel and cobble layers and bedrock.
- Abandoned tiebacks (pre-stressed soil anchors) installed during the construction of the Metro Red Line Tunnel within LAUS could pose obstructions to deep foundations and other proposed improvements.

7.3 Finite Element Analysis Results

A finite element analysis was performed by EMI to evaluate the impact on the existing Metro Red Line Tunnel due to the potential street grade modification at the intersection of Commercial and Center Streets, which includes the lowering of the roadway by approximately 7 feet below existing grade. Based on the preliminary results provided in the technical memorandum by EMI (EMI 2016a), the lowering of Commercial Street and Center Street would not affect the structural integrity of the existing Metro Red Line Tunnel. In addition, EMI did not identify any fatal flaws when evaluating the tunnel performance under static and seismic conditions due to the proposed lowered grade (EMI 2016a).

Another analysis was performed (EMI 2016b) to evaluate the impact of lateral pile loading on the Metro Red Line Tunnel near the intersection of Commercial Street and Center Street due to the proposed aerial bridge structure. The two-dimensional finite element analysis considered a 10-foot diameter CIDH pile located at approximately 20 feet apart from the Metro Red Line Tunnel. Since lateral pile demands were not available, EMI provided a range of possible pile response using incremental lateral displacements for both fixed and free pile head conditions. Based on the analysis, the pile top shear force required to displace the pile 1 inch is approximately 1,700 kips and 3,500 kips for the free-head and fixed-head conditions, respectively (EMI 2016b). These results are considered preliminary, and further analysis will be required when more detailed design information becomes available.

8.0 Recommendations

Future geotechnical exploration is recommended to better characterize the subsurface conditions and anticipate issues that would affect the proposed improvements. In general, additional explorations should be performed at the existing platform area within LAUS, along the proposed overhead aerial structure and on the approach tracks that would provide entrance/exit to LAUS. Special consideration should be given to the existing Metro Red Line Tunnel to identify any potential impacts that the proposed improvements might have on this underground structure. The subsurface soils and groundwater contain moderate to high levels of contamination, and the presence of combustible gases, including methane, may affect the drilling and sampling at the project site (Section 6.12).

Based on the existing project site conditions and the expected shallow depth to groundwater, rotary-wash borings are recommended. Coring of bedrock, if encountered, should be considered to obtain bedrock design information. Subsurface materials contain varying amounts of gravel and range from medium dense to very dense, but these soils can be drilled and sampled to the required depths using conventional drilling technology. Where borings would be used for foundation parameters and/or subterranean structures, they should extend to a minimum depth of 100 feet or into bedrock, whichever is shallower. The spacing of exploratory borings will depend of the type of structure and proposed improvements. In general, a minimum of one exploratory boring per bridge support is recommended. Standard penetration test blow counts (N-values) should be obtained from these borings. Geotechnical laboratory testing of recovered soil samples should be performed, as necessary, to obtain engineering design parameters of the subsurface materials.

Cone penetrometer tests (CPT) equipped with one or more geophone sensors and pushed to refusal should be considered in addition to the conventional borings, in particular at the platform areas and the proposed overhead aerial structure. Per foot of exploration, CPTs are more cost-effective than soil borings, and they also provide more precise subsurface data useful for soil characterization, liquefaction analysis, seismic analysis, and pile capacity design. The state of the practice for CPTs has improved over the years and some CPTs can now be pushed through more dense or coarse grained alluvium than in the past but may still encounter relatively shallow refusal in very dense soil layers or bedrock. CPTs could be mobilized first and exploratory borings using either hollow stem and/or mud rotary methods could then be drilled to augment data where the CPTs could not reach sufficient depths. Seismic design parameters (shear wave velocity) can be obtained by using seismic CPTs, seismic refraction, and/or downhole P-S suspension logging. Due to the presence of dense granular materials, seismic CPTs might encounter shallow refusal, consequently limiting its capabilities to gather useful data for seismic analysis. Downhole P-S suspension logging is the preferable method for obtaining seismic design data at the proposed site due to the accurate measurement of the shear wave velocity value and site specific conditions. The downhole P-S suspension logging can be performed in any exploratory boring planned for the project. Noninvasive methods, such as seismic refraction, can also be considered to obtain seismic design data for the proposed improvements.

9.0 Next Steps

The findings presented in this report were based solely on the review of published geologic maps and geologic sources, planning documents, and previous geotechnical reports for LAUS and nearby developments. The findings presented in this report are considered preliminary and will need to be re-evaluated during the project's final design phase. Additional geotechnical investigations should be performed to provide site-specific design information for the proposed improvements and incorporate any modifications to the project alternatives. The next steps to be considered for the project will consist of the following:

- Delineate potential areas requiring further investigation by taking into consideration the findings presented in this report and the location of the proposed improvements
- Plan and prepare a detailed geotechnical field work plan for proposed geotechnical investigation, which will be prepared by incorporating the preliminary findings of this report and the recommendations, as described in Section 8.0
- Conduct additional geotechnical exploratory investigations to obtain additional subsurface soil information to be used to confirm preliminary findings and in the refinement of recommendations, which will reduce the risk of encountering unexpected subsurface conditions during the project's design phase
- Provide mitigation alternatives for the identified constructability-related subsurface conditions affecting the project, as described in Section 7.2
- During final design, a final geotechnical report shall be prepared incorporating new findings; refined project alternatives; and updated design recommendations, which will include soil bearing capacity, earth pressures, seismic design parameters, foundation selection, and mitigation of adverse conditions recommendations

10.0 References

- Bilodeau, L. William, Bilodeau, W. Sally, Gath, M. Eldon, Oborne, Proctor, J. Richard. 2007. Geology of Los Angeles: The Geological Society of America, Environmental and Engineering Geoscience, Vol. XVIII, No. 2, pp. 99-160.
- California Division of Mines and Geology (CDMG). 1977. State of California Special Studies Zones Los Angeles Quadrangle, Official Map, Los Angeles.
- California Geological Survey (CGS). 1999. State of California Seismic Hazard Zones Los Angeles 7.5 Minute Quadrangle, Los Angeles County.
- ——— 2009. Los Angeles County Tsunami Inundation Map. <u>http://www.conservation.ca.gov/cgs/Pages/Tsunami/Maps/LosAngeles.aspx</u>.
- 2012. Geologic Compilation of Quaternary Surficial Deposits in Southern California, Los Angeles 30'x 60' Quadrangle.
 <u>http://www.conservation.ca.gov/cgs/Documents/Program-FWGP/CGS_Special_Report_217_RE</u> VISED.pdf.
- California Department of Transportation (Caltrans). n.d. As-Built Plans and LOTBs for Alameda Street Underpass, Bridge No. 53-0782.
- ——— 1949. As-Built Plans for Los Angeles Street Overcrossing, Bridge No. 53-0629.
- ——— 1954. As-Built Plans and LOTBs for the Widening of L.A. River Bridge and OH at Aliso Street, Bridge No. 53-0405.
- ——— 2004. As-Built Plans and LOTBs for the Eastside Light Rail Transit Project Bridge over HWY 101, Bridge No. 53-2975 and 53C-2148.
- 2005. Final Environmental Impact Report/Environmental Impact Statement. Los Angeles Union Station Run-Through Tracks Project.
 - http://www.dot.ca.gov/d7/env-docs/docs/UnionStation_Final_eireis.pdf.
- ——— 2016. Caltrans Acceleration Response Spectrum Online (v2.3.07). Accessed March 4, 2016: <u>http://dap3.dot.ca.gov/ARS_Online/</u>.
- CH2M Hill. 2010. Final Geotechnical Summary Report, SR-710 Tunnel Technical Study, Los Angeles County, California. <u>http://libraryarchives.metro.net/DPGTL/710_Tunnel/SR-710_Tunnel_Final_Geotech_Summary_</u> <u>Report.pdf</u>
- City of Los Angeles. 2004. City of Los Angeles Department of Public Works, Methane and Methane Buffer Zone Map.
- Converse Consultants (CC), Inc., Earth Sciences Associates, and Geo/Resource Consultants. 1981. Geotechnical Investigation Report Volume I. Southern California Rapid Transit District (SCRTD), Metro Rail Project.
- ——— 1983. SCRTD, Geotechnical Report, Metro Rail Project Design Unit A135, LOTBs.
- ——— 1986. Union Station Area Aquifer Pump Tests. Metro Rail Project.

- Earth Mechanics, Inc. (EMI). 2015. Preliminary Draft Report for Seismic Design Parameters, Southern California Regional Interconnector Project (SCRIP). Los Angeles County, California.
 - 2016a. Draft Technical Memorandum Static and Seismic Performance of Red Line Tunnel, SCRIP. Los Angeles County, California.
- ——— 2016b. Draft Technical Memorandum Impact of Lateral Pile Loading on Red Line Tunnel, SCRIP – Geotechnical Fatal Flaw Study.
- Federal Emergency Management Agency. 2015. ARCGIS 100-year Flood Insurance Rate Maps, Panel 06037C1636F, revised September 25, 2008.
- Gastil, G. and Krummenacher, D. 1981. The Tectonic History of Peninsular California and Adjacent Mexico, The Geotechnical Development of California: Rubey Vol. I, Prentice - Hall, Inc., Englewood Cliffs, NJ, pp. 285-306.
- Gularte, F. B., Taylor, G. E., and Borden, R. H. 1992. Temporary Tunnel Excavation Support by Chemical Grouting. Grouting Soil Improvement and Geosynthetics Proceedings, GT Div. ASCE, New Orleans.
- J. Byer Group, Inc. 1998. Geotechnical Engineering and Groundwater Study, Proposed Two Level Subterranean Parking Garage and Four Story Office.
- Law/Crandall, Inc. 1994. Report of Phase I Environmental Site Assessment, Alameda District Plan, Los Angeles, California.

——— 1997. LOTBs included in URS, 2003 report. See below for reference.

- Rauch, A. F. 1997. "An Empirical Method for Predicting Surface Displacements Due to Liquefaction Induced Lateral Spreading in Earthquakes." Ph.D. Dissertation, Virginia Polytechnic Inst. and State Univ.
- Schoellhamer, J. E., Woodford, A. O., Vedder, J. G., Yerkes, R.F., and Kinney, D.M. 1981. Geology of the Northern Santa Ana Mountains, California: U.S. Geological Survey Professional Paper 420-D, U.S. Geological Survey. Denver, Colorado.
- Southern California Rapid Transit District (SCRTD). 1988. Metro Rail Project, Main Yard and Shops Yard Leads, Contract No. A130.
- The Earth Technology Corporation. 1987a. The Phase I Subsurface Investigation at the Metro Rail A-130 Corridor, Los Angeles, California.
- ——— 1987b. The Phase III Subsurface Investigation at the Metro Rail A-130 Corridor, Los Angeles, California.
- ——— 1987c. The Phase IV Subsurface Investigation at the Metro Rail A-130 Corridor, Los Angeles, California.
- URS Corporation (URS). 2003. Geotechnical Investigation, Proposed West Campus Infrastructure Project, Los Angeles, California, LOTBs.
- ------ 2011. Phase I Environmental Site Assessment and Limited Phase II Testing Selected Portions of the Los Angeles Union Station Property, Los Angeles, California.

United States Geological Survey (USGS) and California Geological Survey (CGS). 2006. Quaternary Fault and Fold Database for the United States. Accessed July 9, 2014. <u>http/earthquakes.usgs.gov/regional/qfaults/.</u>

Appendix A: Exhibits

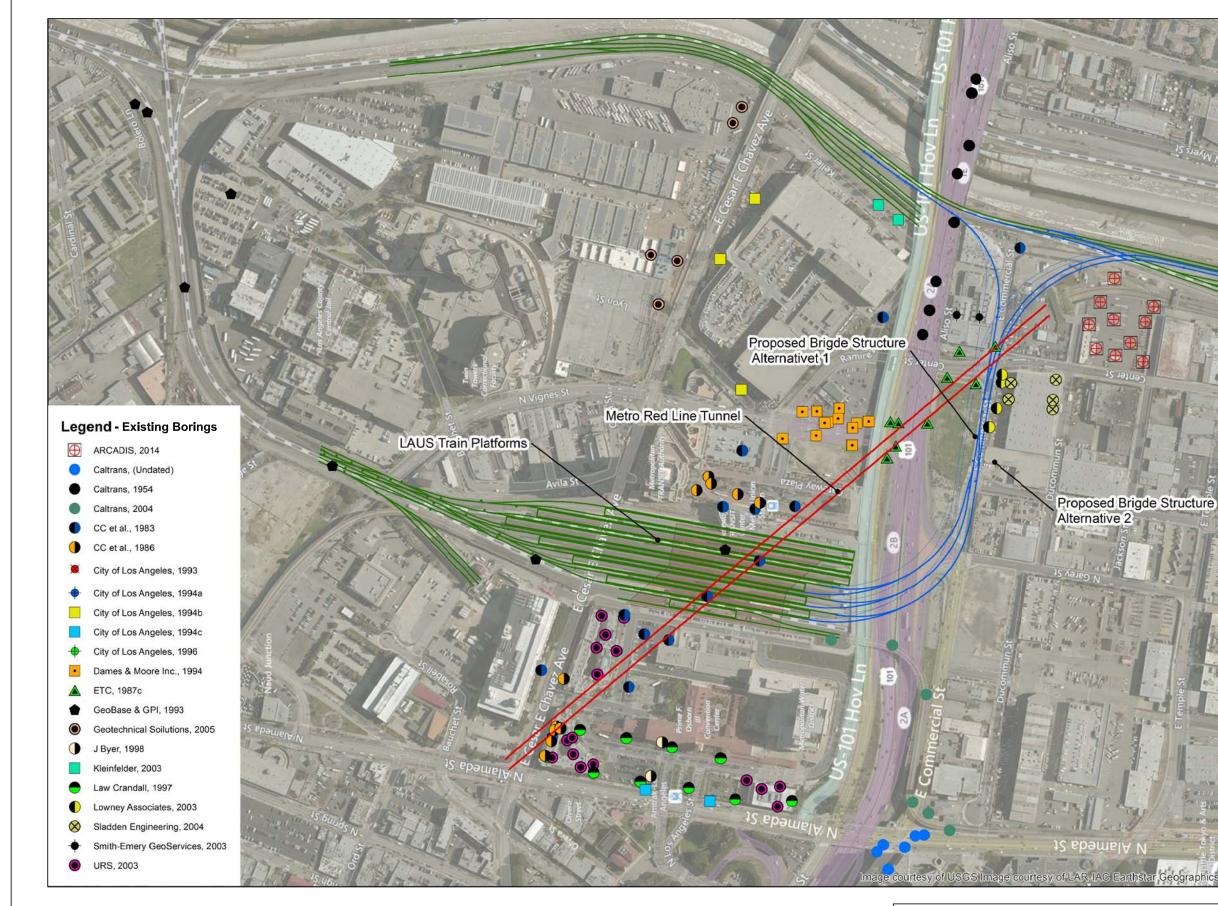


Photo No. 1. False tunnel sets at the South Tunnel Portal of YR Tunnel (south of LAUS) with tunnel shield and mucking machine in the background. Photo taken: 01/30/90. Source: SCRTD, 1990a.

Photo No. 3. Mezzanine floor slab in place with column reinforcement steel protruding. The reinforcement for lift No. 4 of mezzanine floor is being placed in the foreground. Photo Taken: 01/30/90. Source: SCRTD, 1990a.

Photo No. 2. False tunnel sets and the jacking frame and struts for pushing the shield off of at the South Tunnel Portal (south of LAUS). Photo taken: 01/30/90. Source: SCRTD, 1990a.

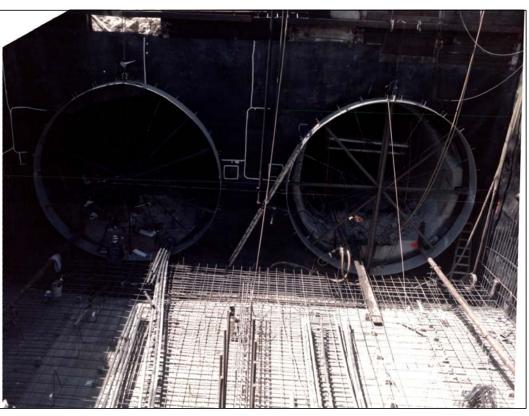
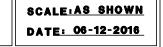
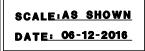



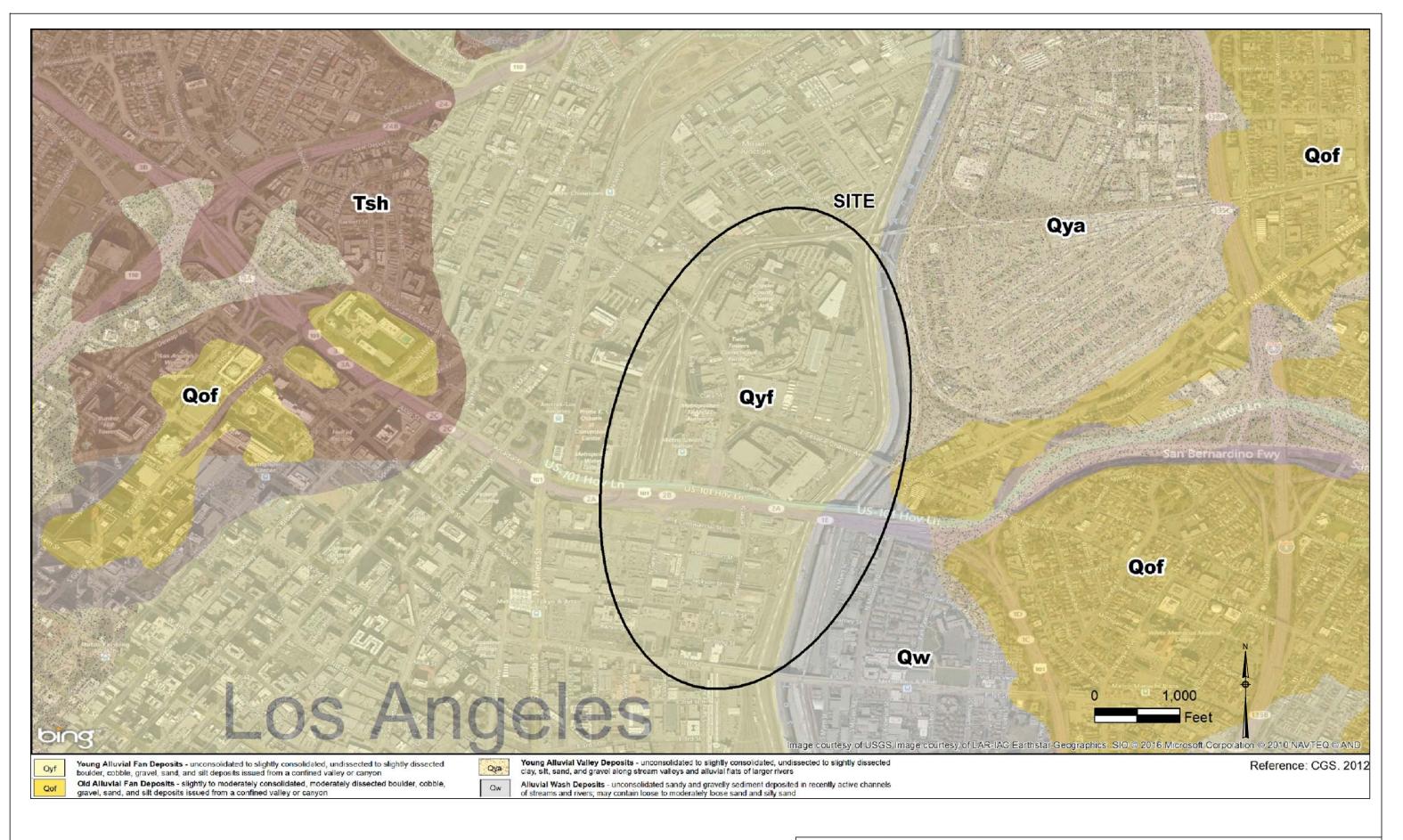
Photo No. 4. Reinforcement steel being placed in the closing slab of box structure at the south tunnel portals. Photo taken: 07/30/90. Source: SCRTD, 1990a.

LINK UNION STATION PHOTOGRAPHS - EXHIBIT 5-2

	NEG NO <u>B</u> ROLL NO <u>PICT NO 9</u> SCRTD - M.O.S. 1 PROJECT <u>Main Yard and Shops -</u> Yard Leads CONTRACT NO <u>A-130</u> DATE <u>1-18-90</u> TAKEN BY <u>D. EDGOR</u> LOCATION <u>STA</u> . <u>YR 98+00 - TRACTION</u> <u>PDRNER SUR STATION</u> . COMMENT <u>PICTURE SHOWS 2'</u> <u>BOULDER</u> in <u>CUT</u> , <u>ENCONTREGO</u> <u>BY</u> HAY SOOD - BAKER.
Fight No. 5. Boulders encountered at the Main Yard and Shors (currently LAUS). Photo baker: CH/1890, Source: SCRT). 1990.	NEG NO ROLL NO PICT NO SCRTD - M.O.S. 1 PROJECT Main Yard and Shops Yard Leads CONTRACT NO DATE CONTRACT NO DATE TAKEN BY COMMENT COMMENT COMMENT MSLUCKIE HOLDING MET 34000005 4' BOULDER.

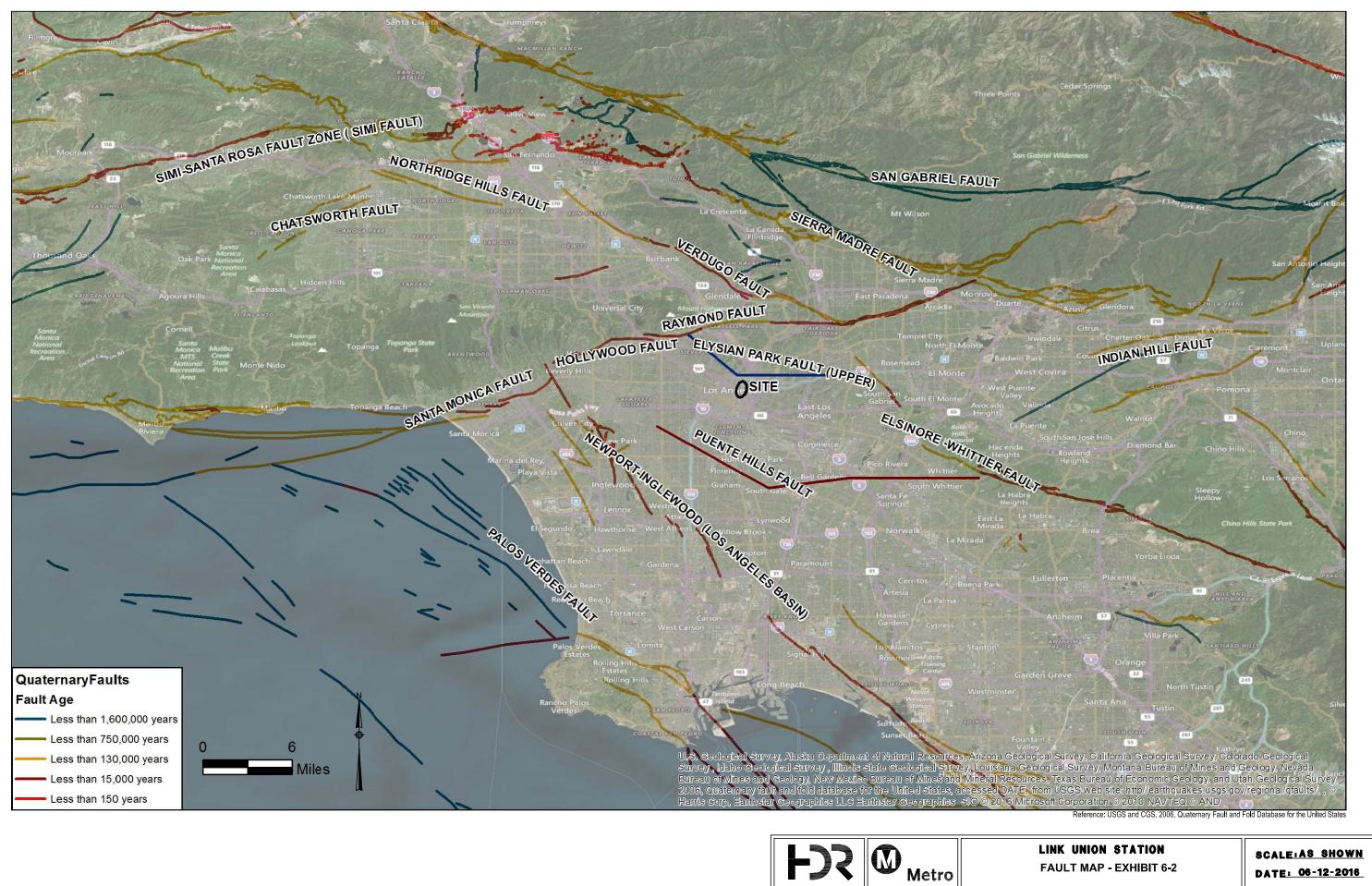
Photo No. 6. Interface between the box structure (LAUS area) on the YL side at Sta. 89+7 and the YL Tunnel (south of LAUS). Photo taken: 03/04/90. Source: SCRTD, 1990a.

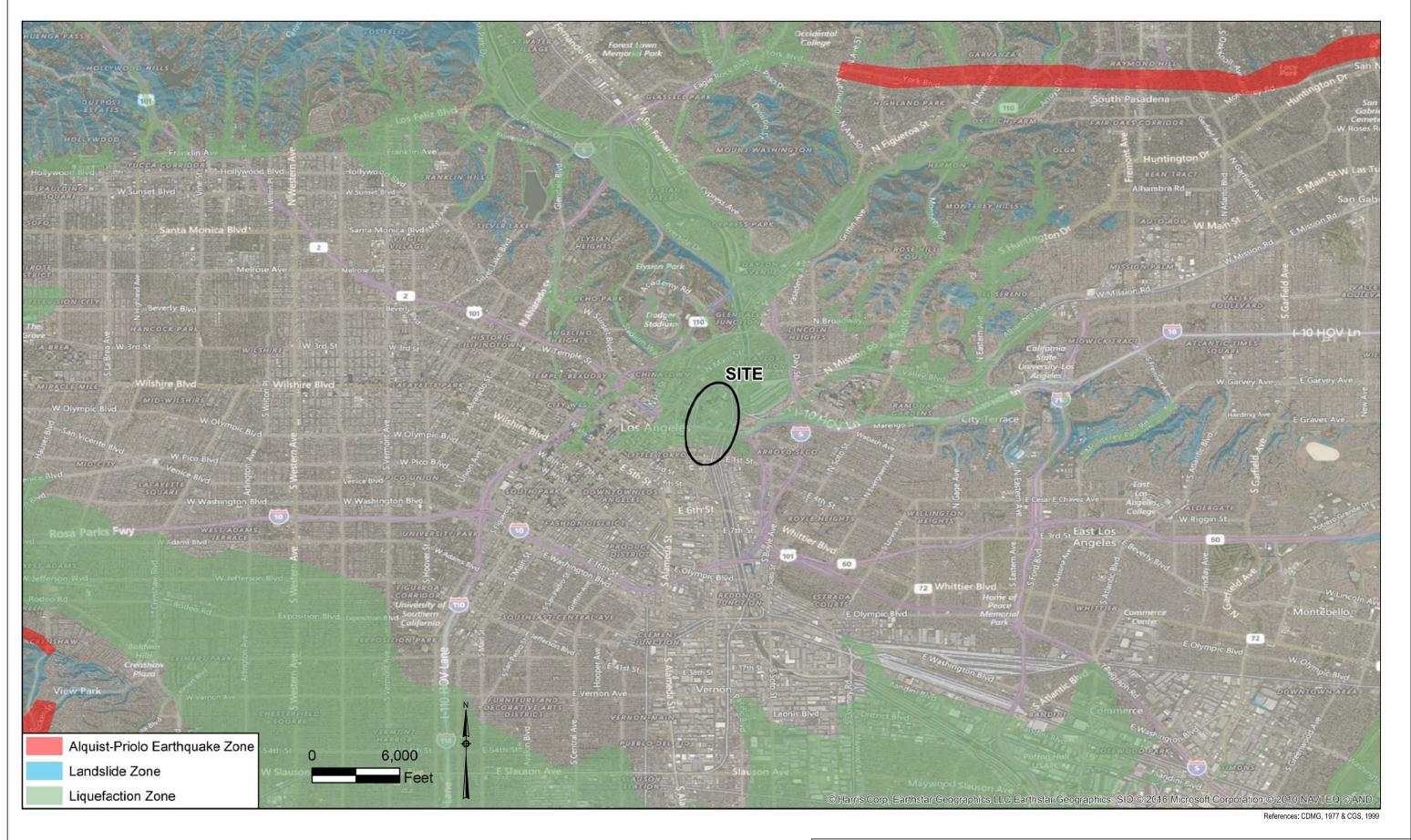

Photo No. 7. Sub-ballast placed on the base of slab in the "U" wall structure area, East Portal Entrance (south of LAUS). Looking north towards LAUS. Photo taken: 07/30/90. Source: SCRTD, 1990a.



nd Shops (currently LAUS). Photo taken: 01/18/90. Source: SCRTD, 1990

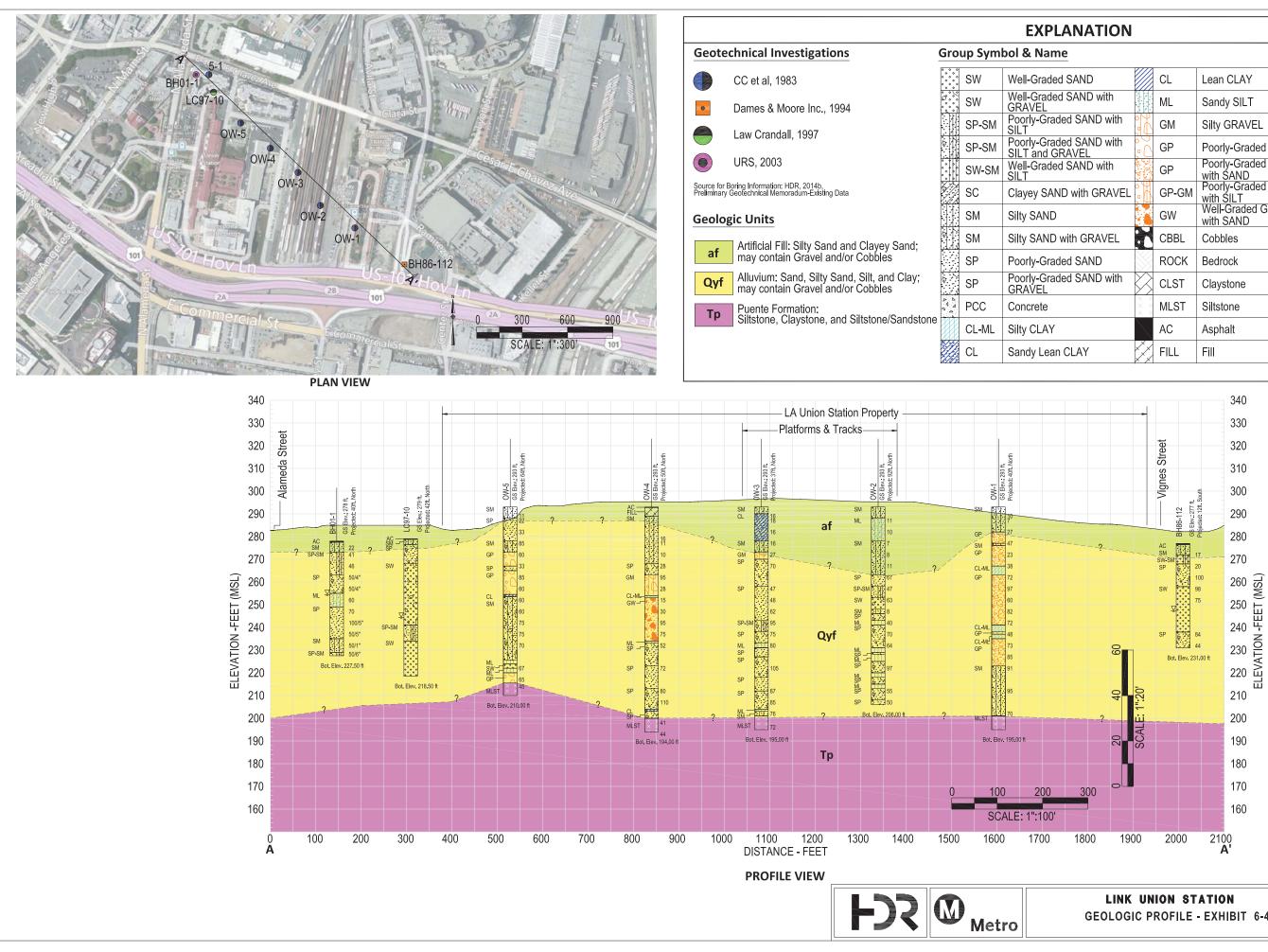
LINK UNION STATION PHOTOGRAPHS - EXHIBIT 5-3

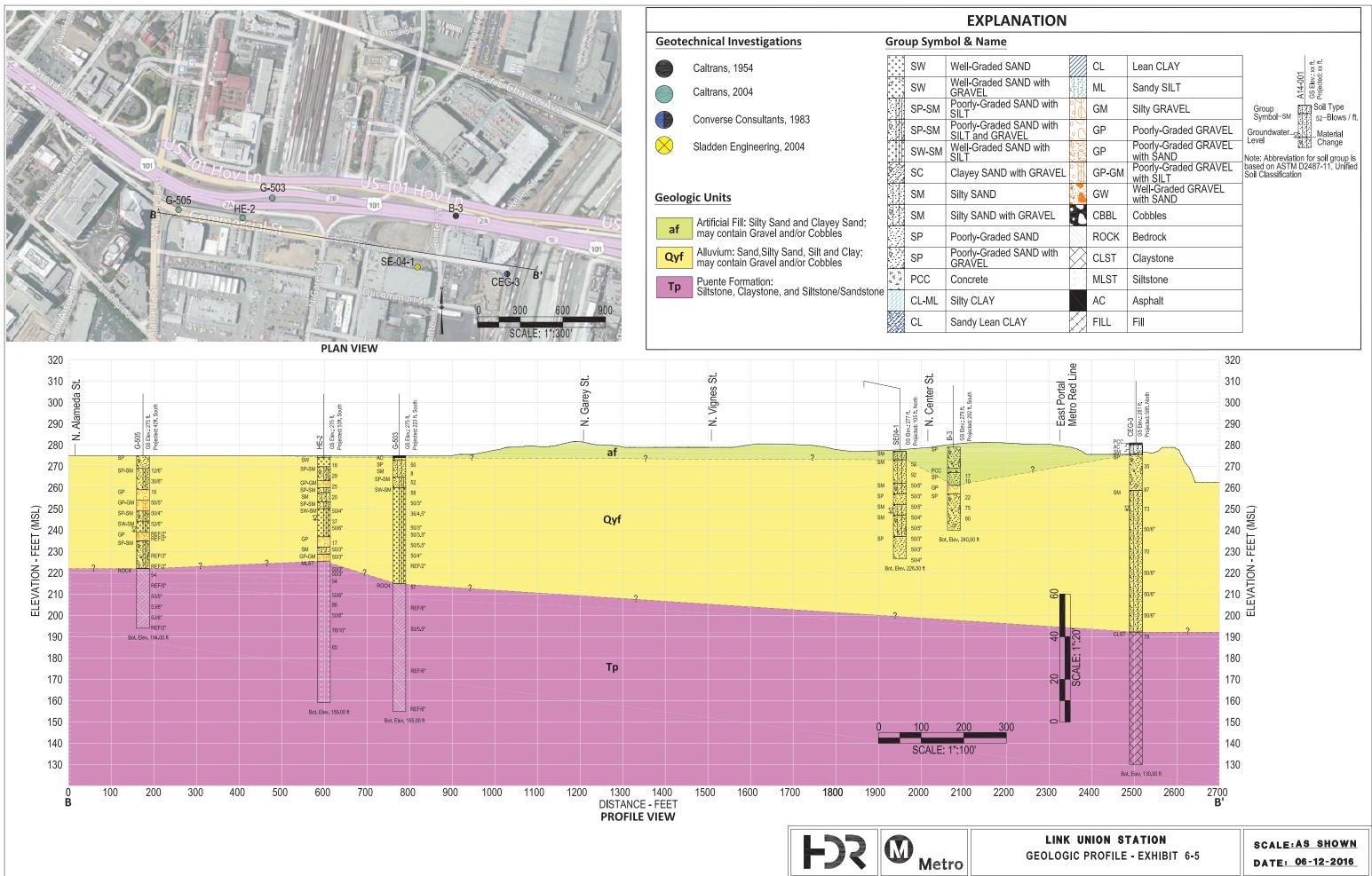




LINK UNION STATION GEOLOGIC MAP - EXHIBIT 6-1

SCALE: AS SHOWN DATE: 06-12-2016




LINK	UNION	STATION
HAZAI	RD MAP	- EXHIBIT 6-3

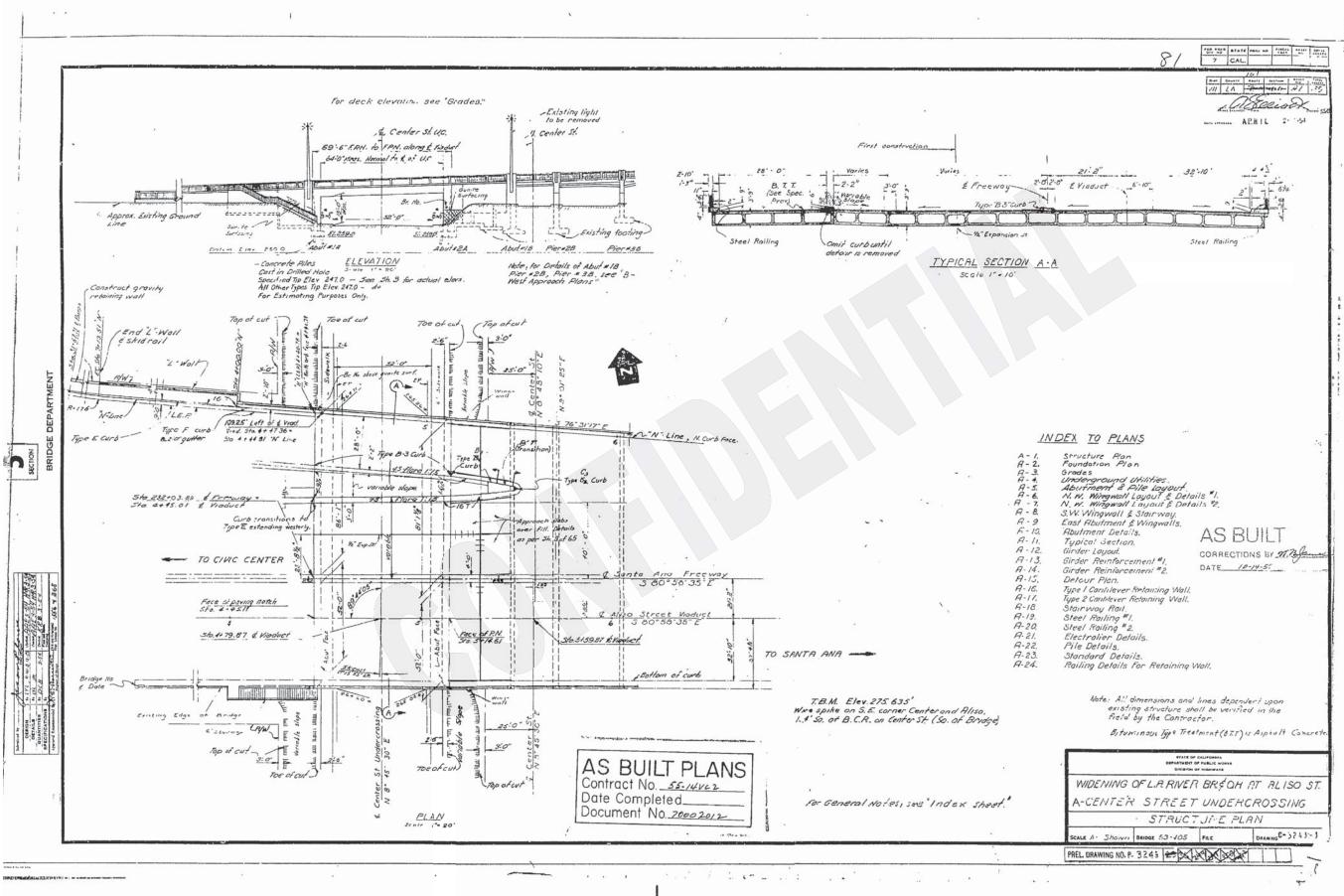
SCALE:AS SHOWN Date: 06-12-2016

SAND		CL	Lean CLAY		
SAND with		ML	Sandy SILT	A14-001 GS Elev: xx ft. Projected: xx ft.	
SAND with		GM	Silty GRAVEL	Group Symbol—SM	
d SAND with		GP	Poorly-Graded GRAVEL	GroundwaterMaterial	
SAND with		GP	Poorly-Graded GRAVEL with SAND	M.F. Onlange	
with GRAVEL		GP-GM	Poorly-Graded GRAVEL with SILT	Note: Abbreviation for soil group is based on ASTM D2487-11, Unified Soil Classification	
		GW	Well-Graded GRAVEL with SAND		
th GRAVEL		CBBL	Cobbles		
SAND	\otimes	ROCK	Bedrock		
SAND with	\square	CLST	Claystone		
	\times \times \times \times \times	MLST	Siltstone		
		AC	Asphalt		
LAY		FILL	Fill		

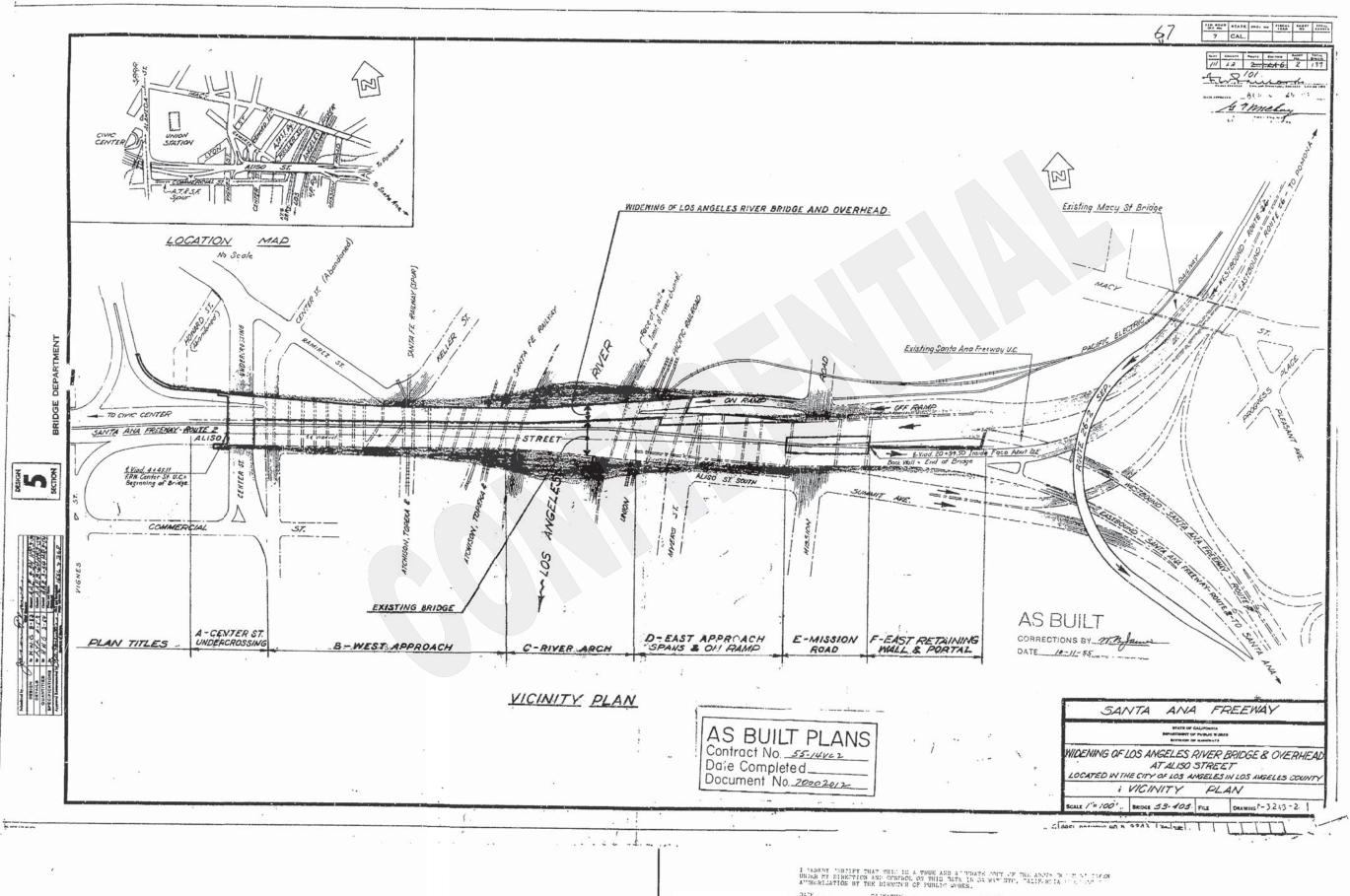
GEOLOGIC PROFILE - EXHIBIT 6-4

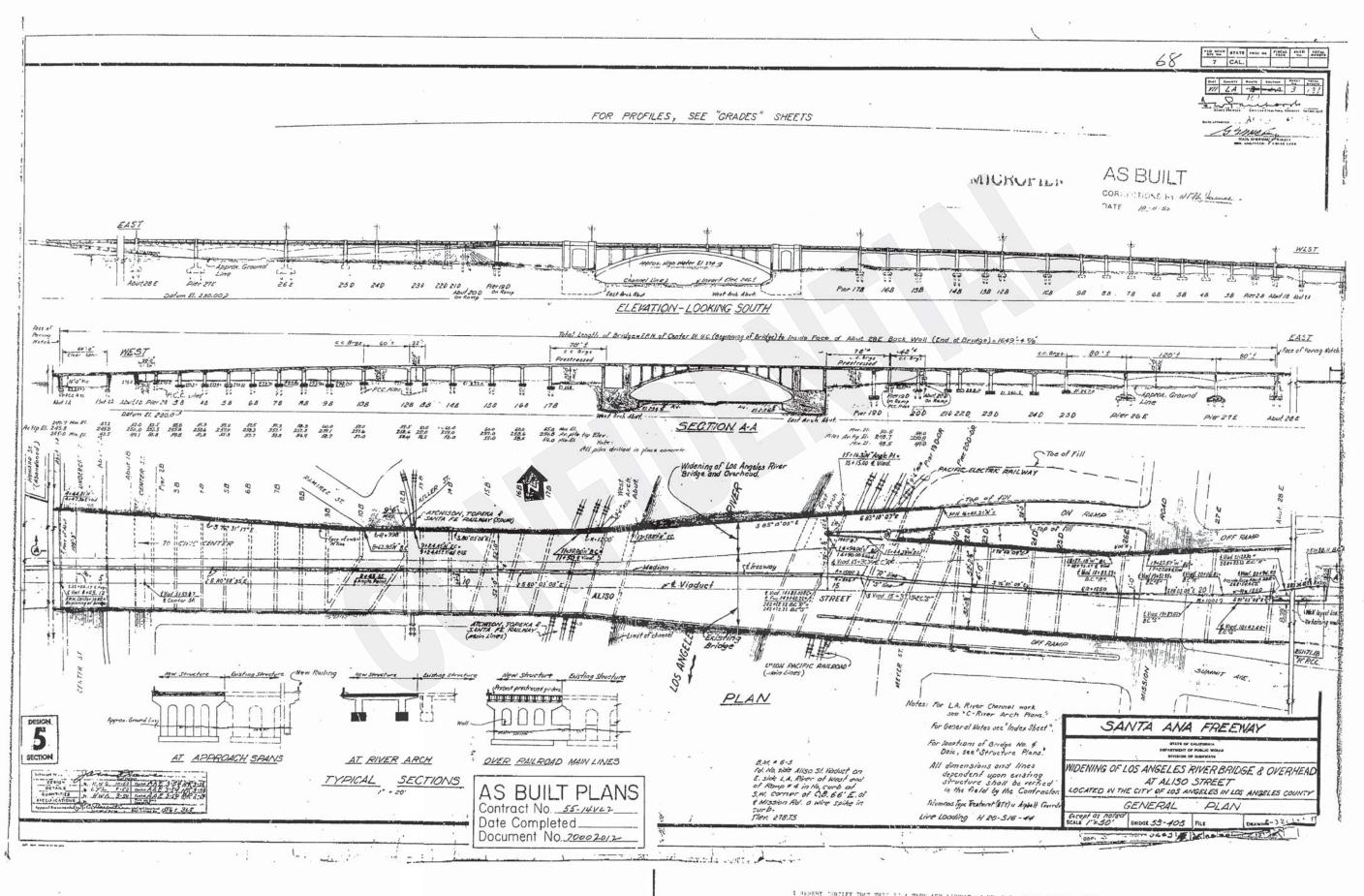
AND		CL	Lean CLAY	××.ff. ××.ff.
AND with		ML	Sandy SILT	A14-001 GS Elev. xx ft. Projected: xx ft.
SAND with		GM	Silty GRAVEL	Group Group Soil Type Symbol—SM 정전 52–Blows / ft.
SAND with VEL	0	GP	Poorly-Graded GRAVEL	Groundwater_v
AND with	₀ () ∘ ()	GP	Poorly-Graded GRAVEL with SAND	with onlinge
with GRAVEL		GP-GM	Poorly-Graded GRAVEL with SILT	Note: Abbreviation for soil group is based on ASTM D2487-11, Unified Soil Classification
	Ċ	GW	Well-Graded GRAVEL with SAND	
h GRAVEL		CBBL	Cobbles	
SAND	\otimes	ROCK	Bedrock	
SAND with	\square	CLST	Claystone	
	× × × × × ×	MLST	Siltstone	
		AC	Asphalt	
_AY		FILL	Fill	
				-

Appendix B: As-Built Plans

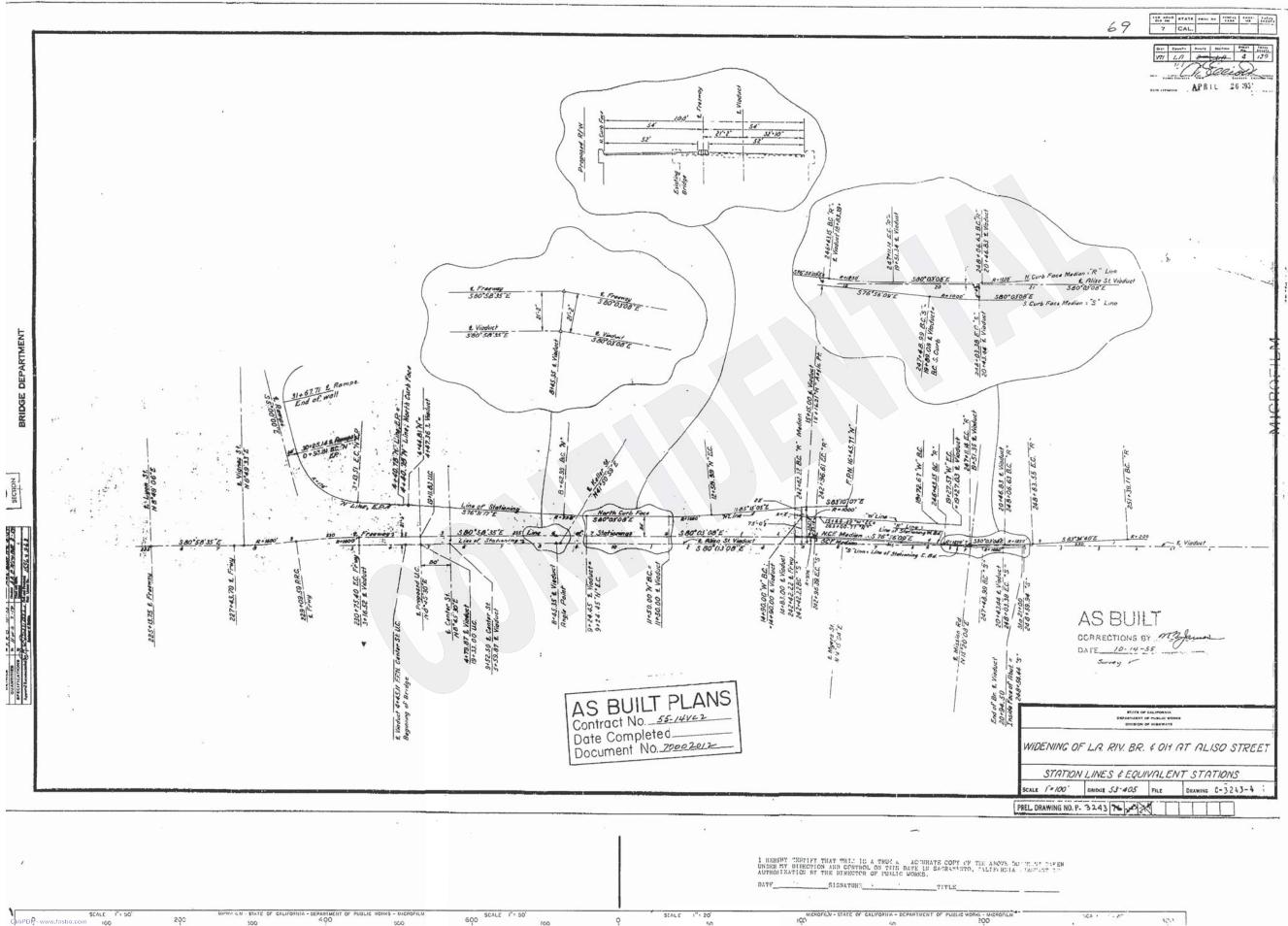


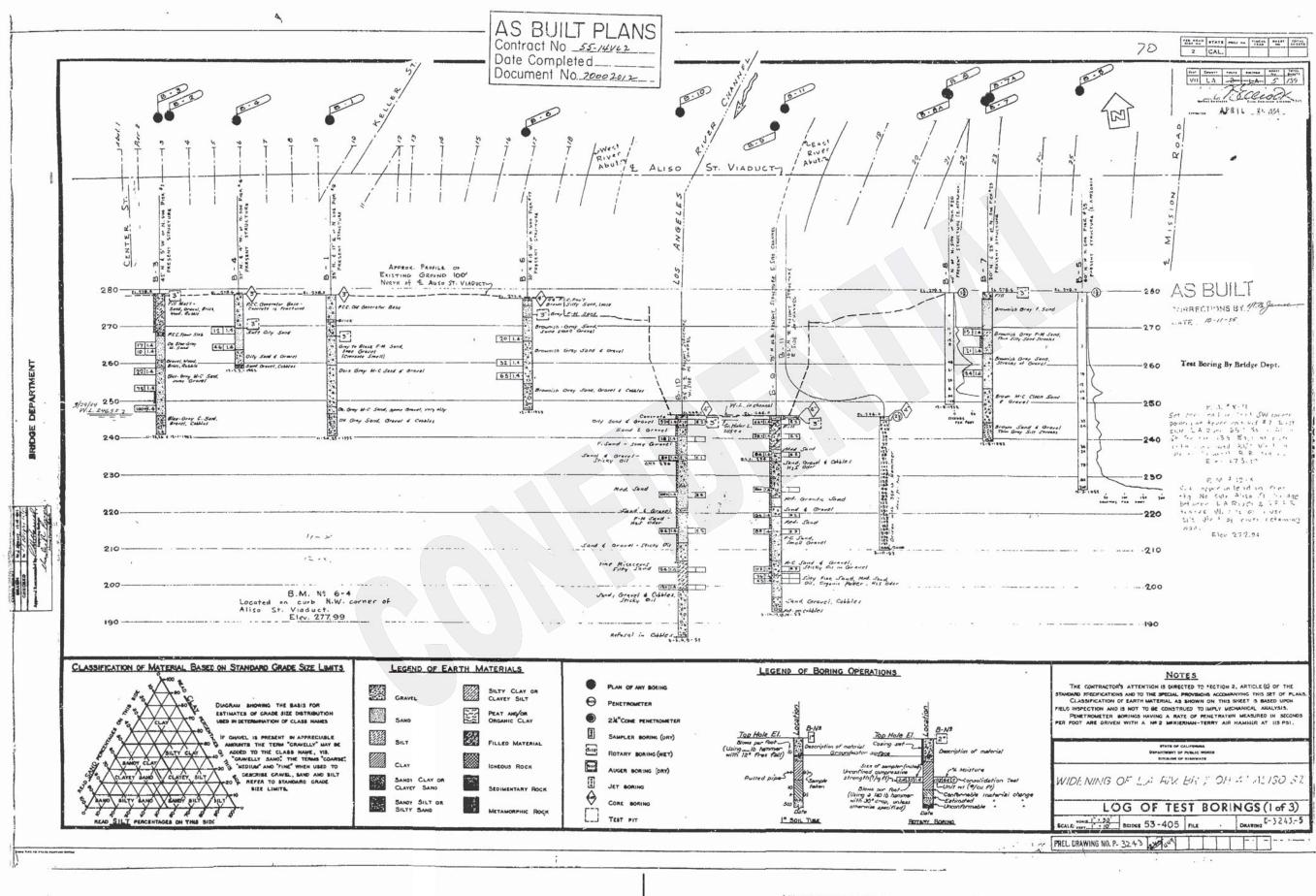
As-Built Plans Los Angeles River Bridge & OH at Aliso Street, Bridge No. 53-0405



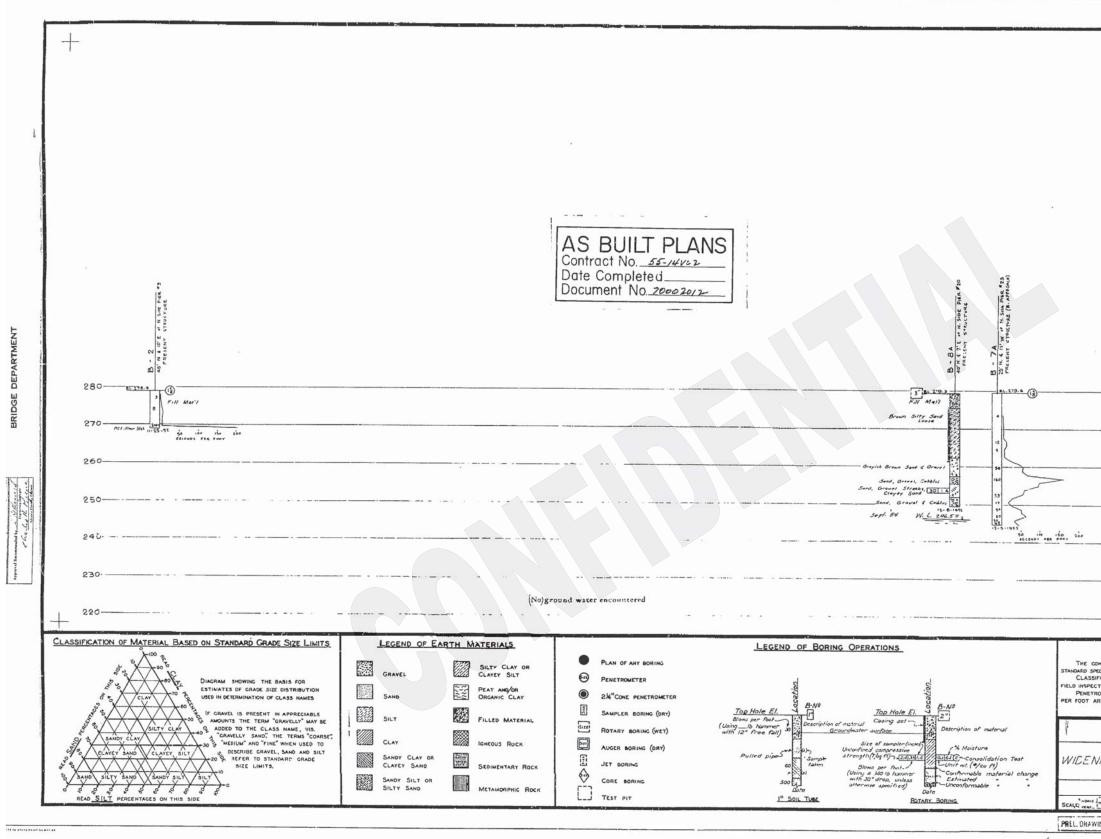

I HENERY TERTIFY THAT THIS IS A THUE AND ACCURATE COPY OF THE AROYS DOC MONT TAYEN UNDER MY DIRECTION AND CONTROL OF THIS DATE IN SAURASCHTO, TALIFORNIA PORCHAT TO AUTHORIZATION BY THE DIRECTOR OF PUBLIC WORKS.

SIGNATURE



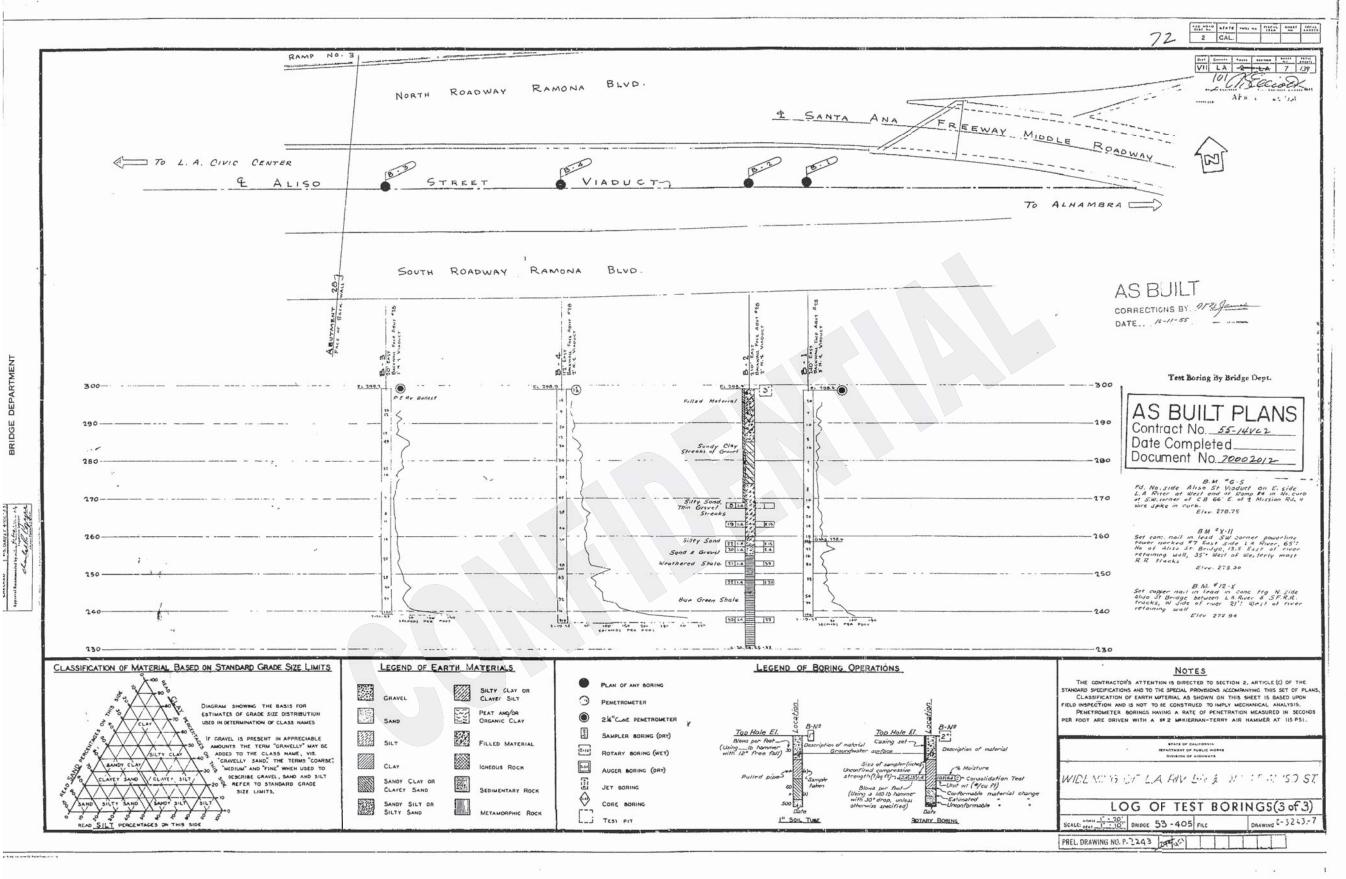

- · · · · ·

______ OJ WATUY _____



I GENERAL CERTIFY THET THEN IS A TRUE AND ACCURATE SET 2 The ASSES SCHEME THEN AND REPAIR AND RESTRICT OF THE DATE IN LASSING TO THE DATE IN LASSING TO THE DATE OF THE ASSESSMENT AND RESTRICT AND R 24.79

-

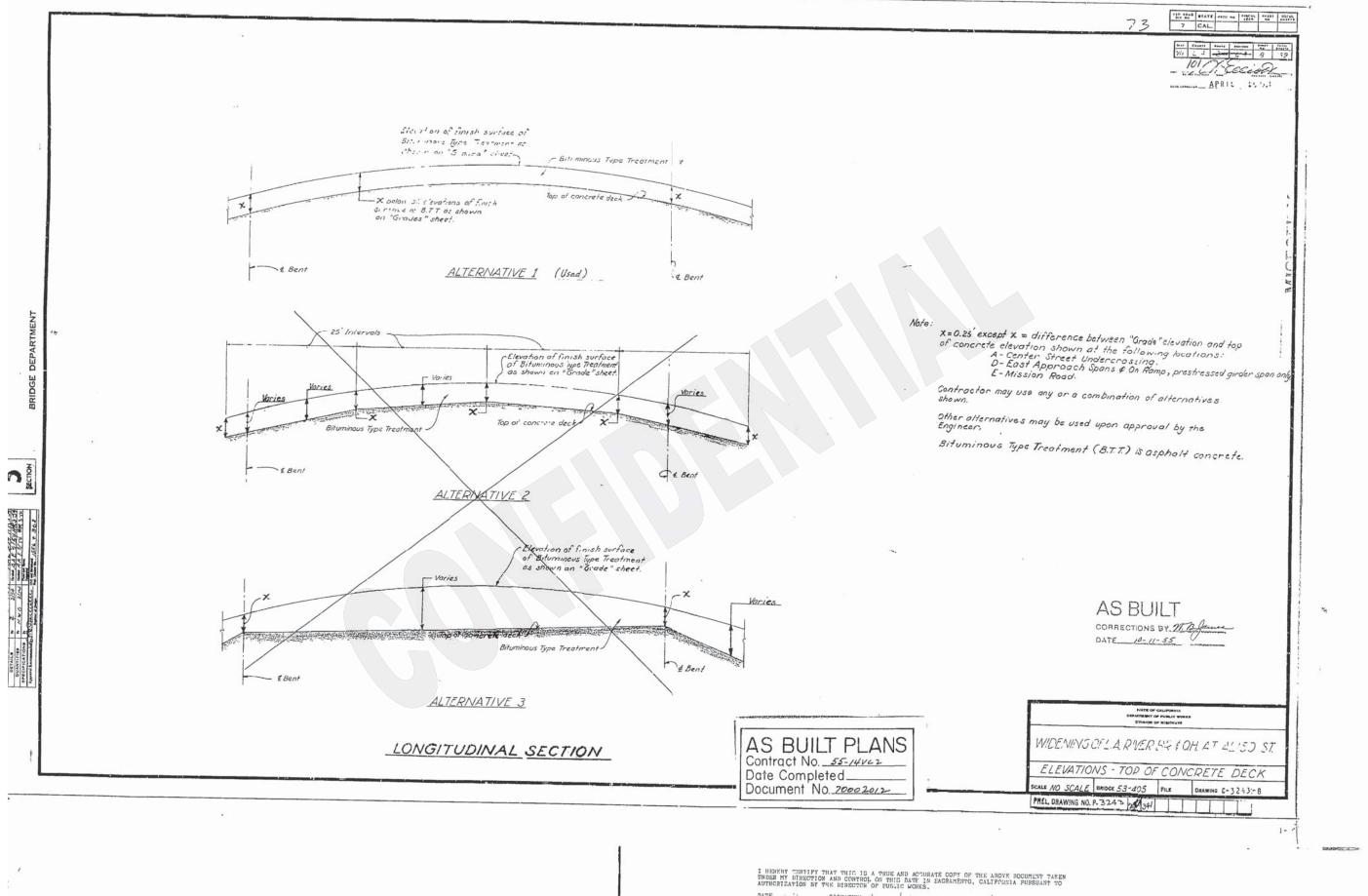


I HEREBY CERTIFY THAT THIC IS A THUE AND ACCURATE COPY OF THE ABOVE DOCUMENT TAKEN UNDER MY DIRECTION AND CONTROL ON THIS BATE IN SACRAMENTO, CALIFORNIA PUBBLIANT TO AUTHORIZATION BY THE DIRECTOR OF FUBLIC WORKS. DATE____ Last TITLE

···-

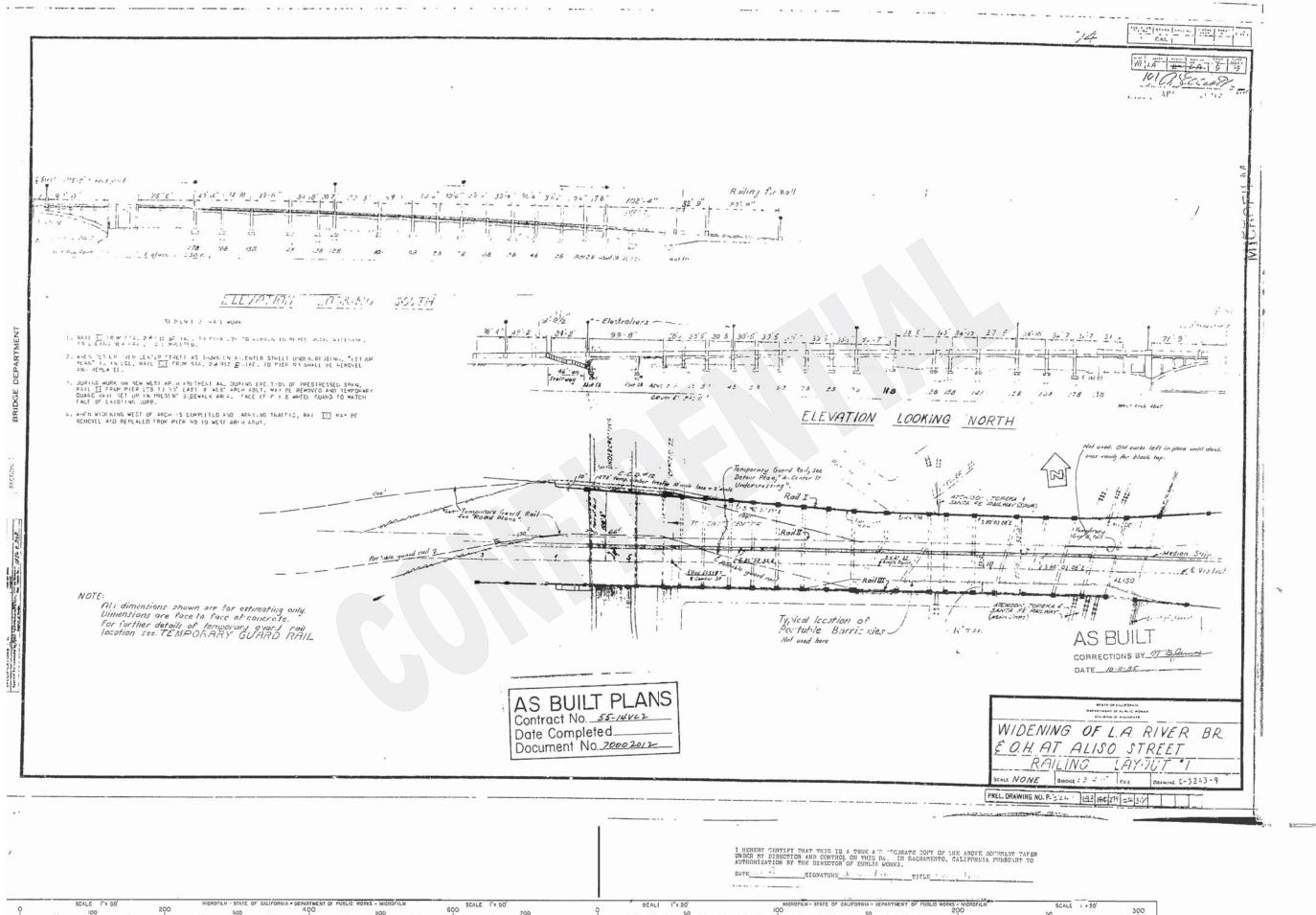
7/ 2 CAL.	
APRIL 25 554	
AS BUILT CORRECTIONS BY 27.2 January DATE2011:55	
280	
270	
	, 1 67
220	
NOTES CONTRACTOR'S ATTENTION IS DIRECTED TO SECTION 2. ARTICLE (C) OF THE SPECIFICATIONS AND TO THE SPECIAL PROVISIONS ACCOMMUNITIE THIS SET OF PLANS. SIPICATION OF EARTH MATERIAL AS SHOWN ON THIS SHEET IS BASED UPON CCTION AND IS NOT TO BE CONSTRUED TO IMPLY MECHANICAL MALYSIS. TROMETER BORINGS HAVING A RATE OF PENETRATION MEASURED IN SECONDS ARE DRIVEN WITH A NI 2 MEMIERMAN-TERRY AIR HAMMER AT IS PSI.	ų
STATE OF CALIFORNIA DUASTINOT OF PUBLIC WORKS DIVISION OF HIGHRATS	
NING OF L.4 RIV BR & OH 4T 4. 150 ST	
LOG OF TEST BORINGS (2 of 3)	
WINI, NU. P 2243	
\$	2480.64

16:20



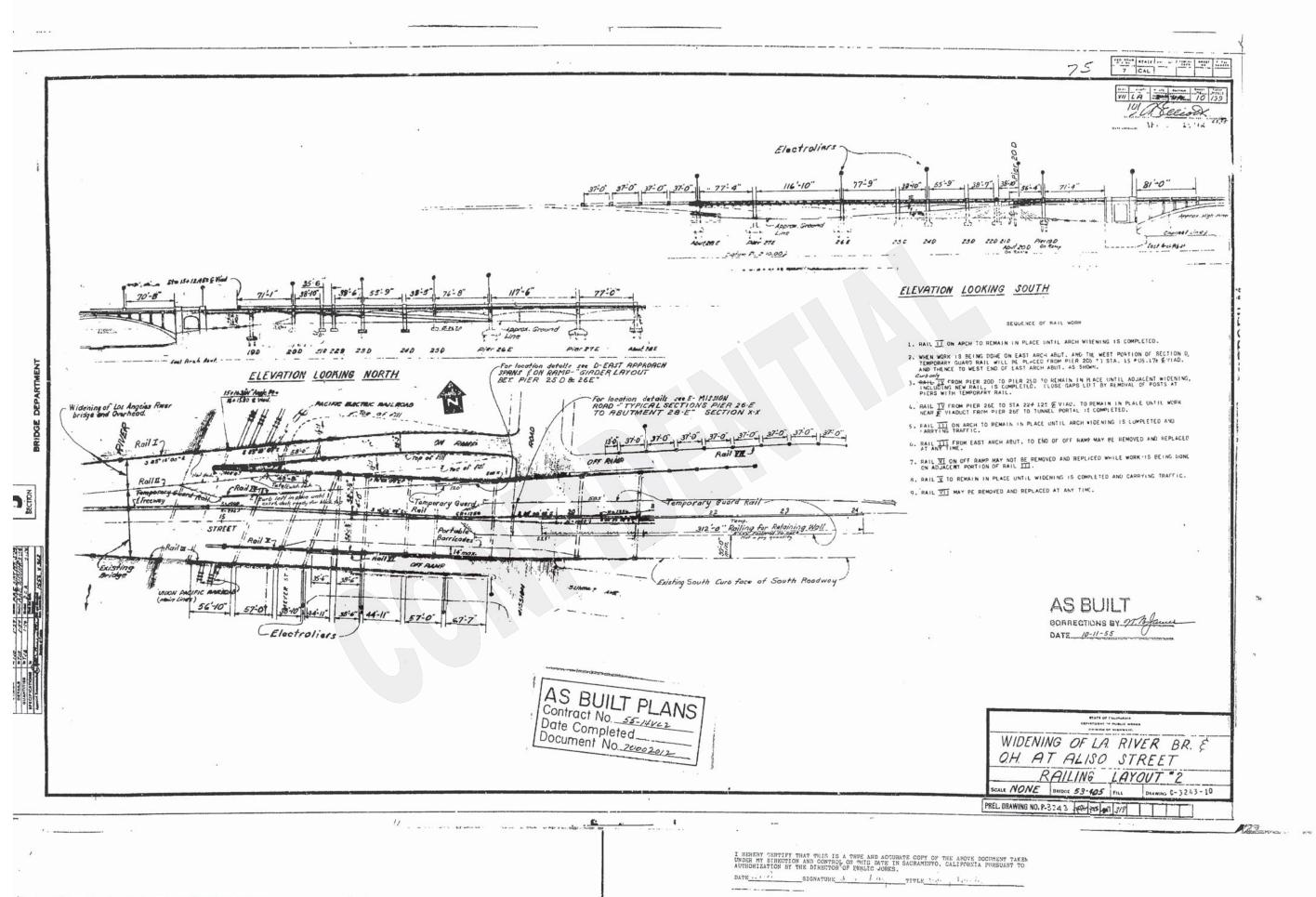
1.4

contraction of the second

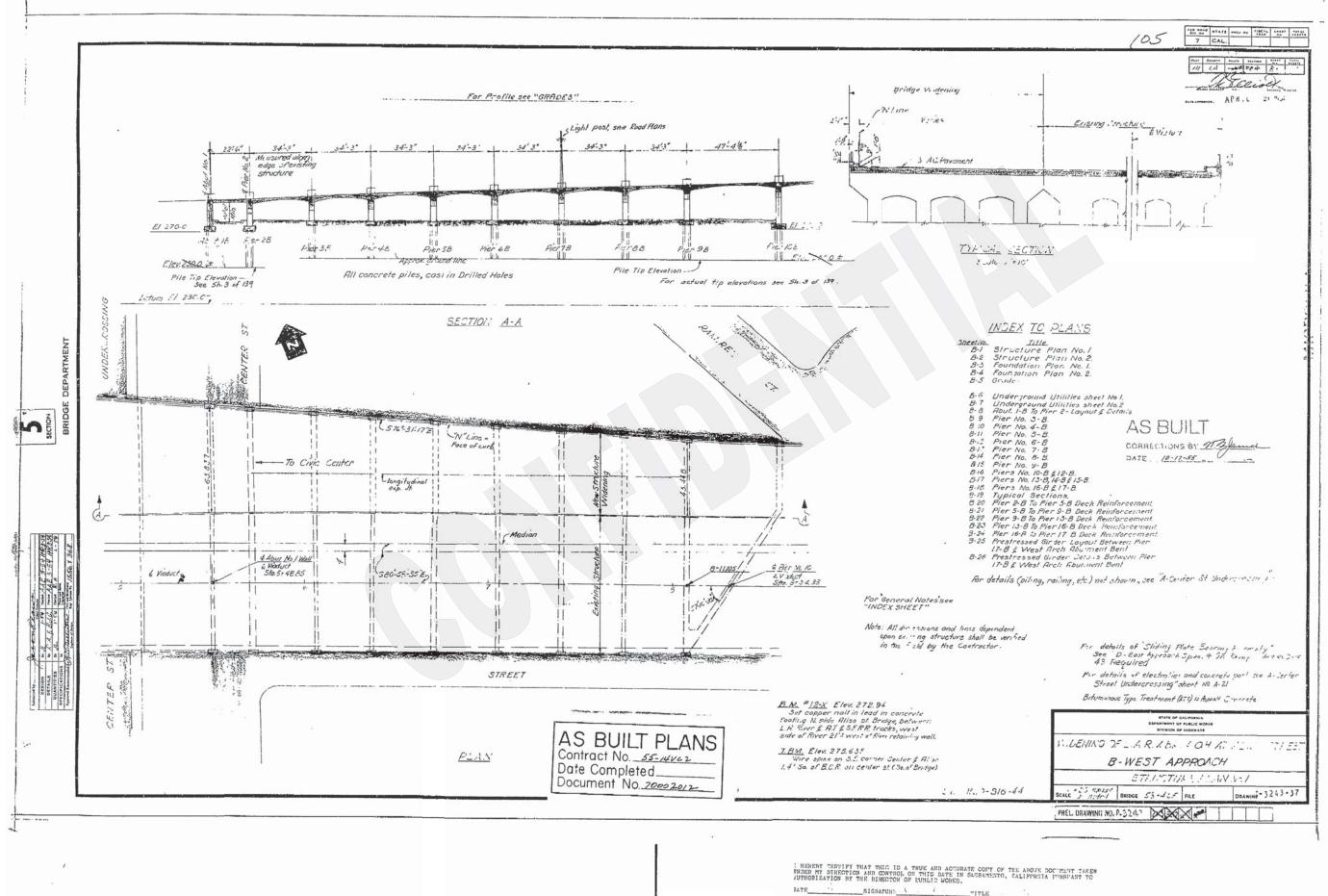


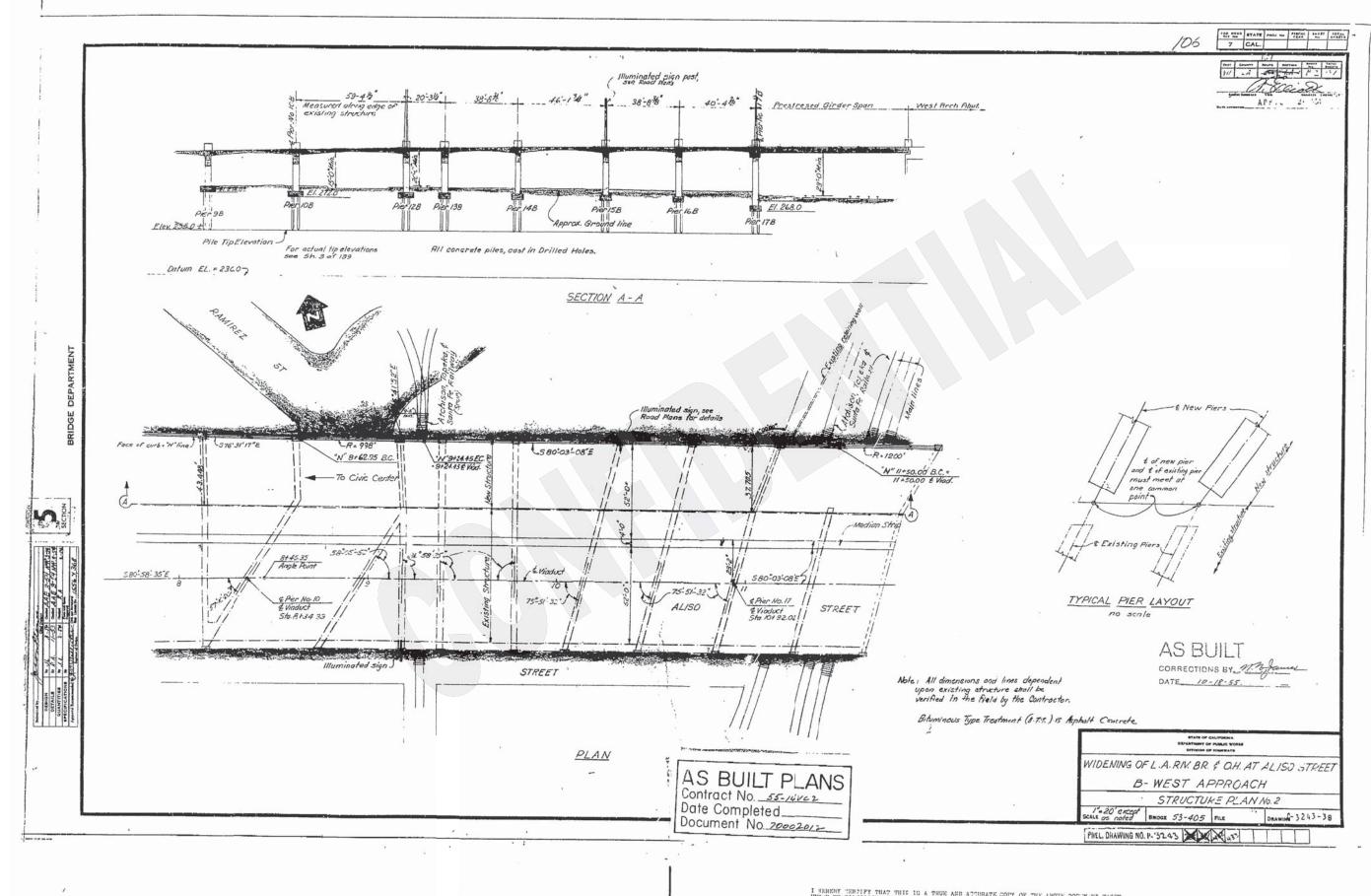
I HEREBY CRETIFY THAT THIS IS A THUE AND ACCURATE COPY OF THE ABOVE DOCUMENT TAKEN UNDER MY DIRECTION AND CONTROL ON THIS DATE IN SACRAMENTO, CALIFORNIA PUBLICANT TO AUTHORIZATION BY THE DIRECTOR OF RUBLIC WORKS. DATE____ _SIGNATURE A

DATE____ SIGNATURS V / Join


CIDPI

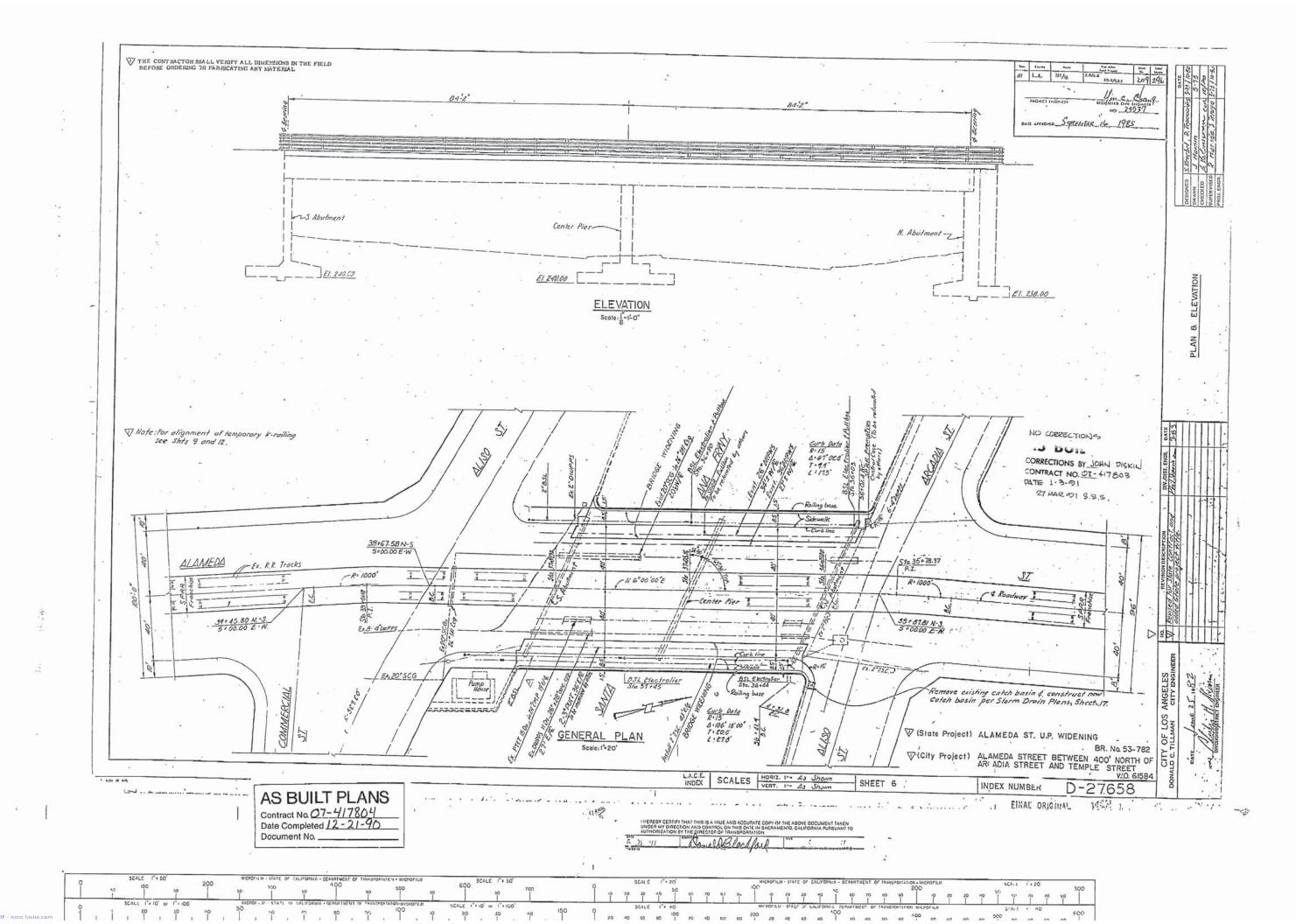
10 20 30 40

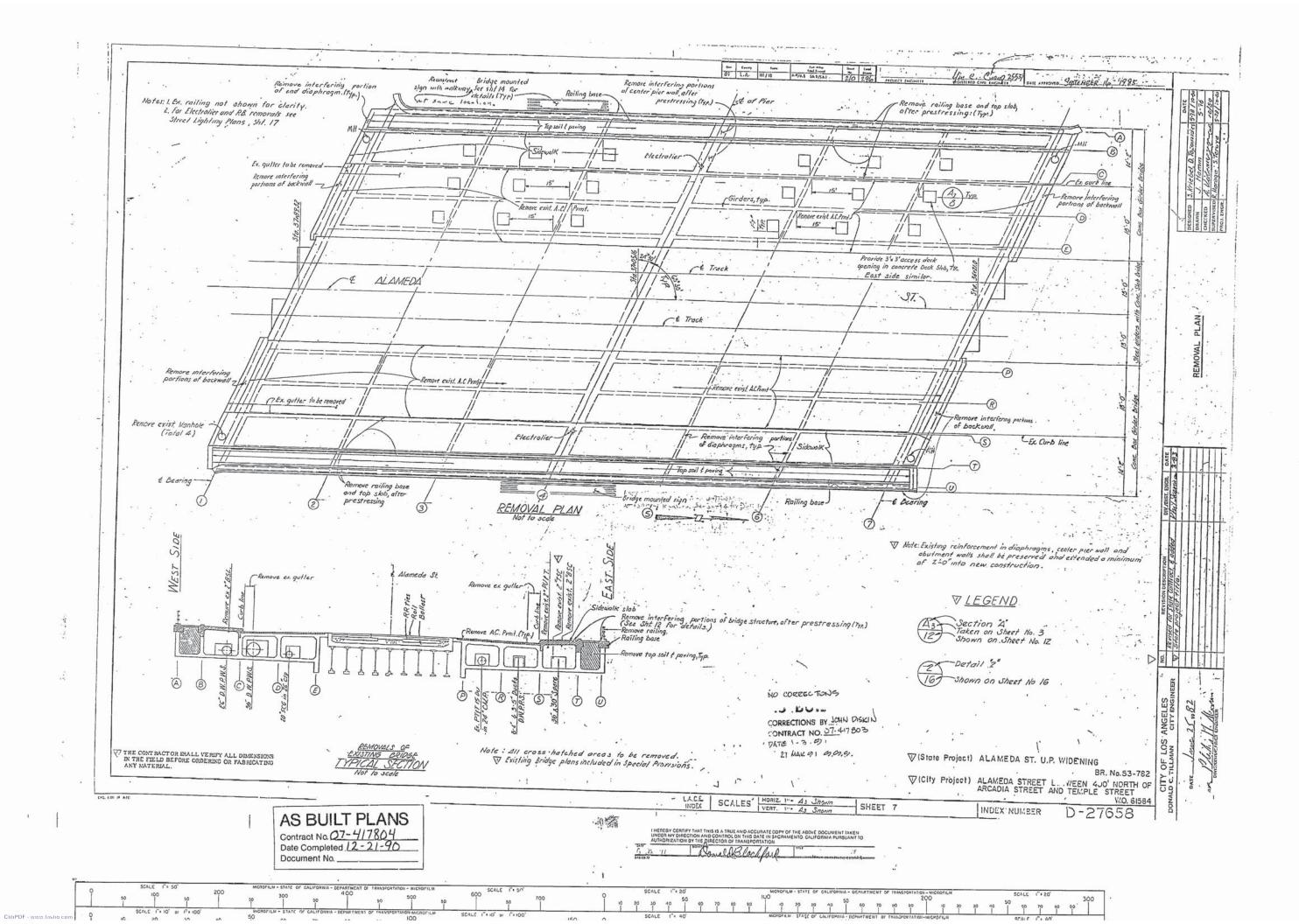

|

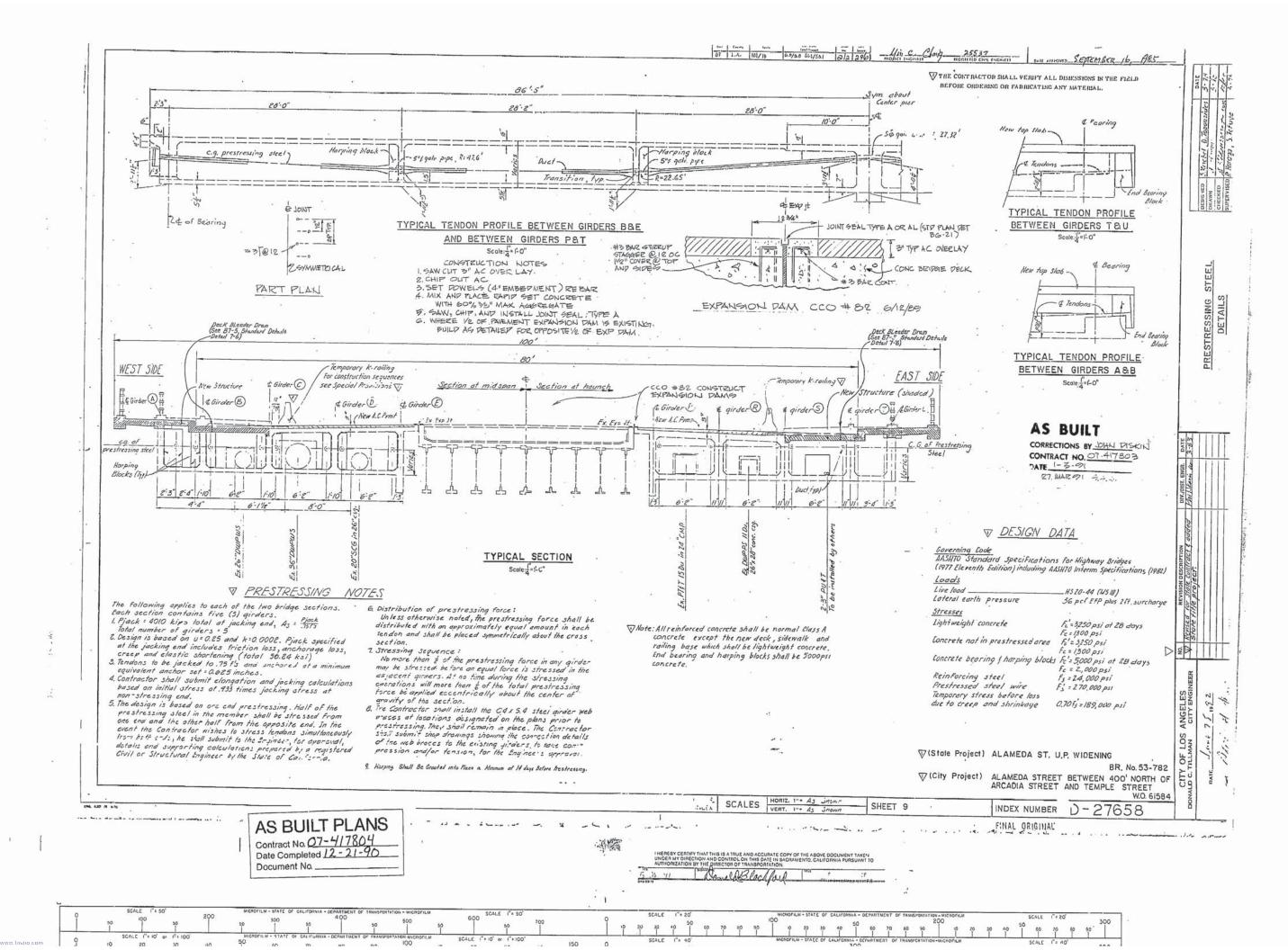


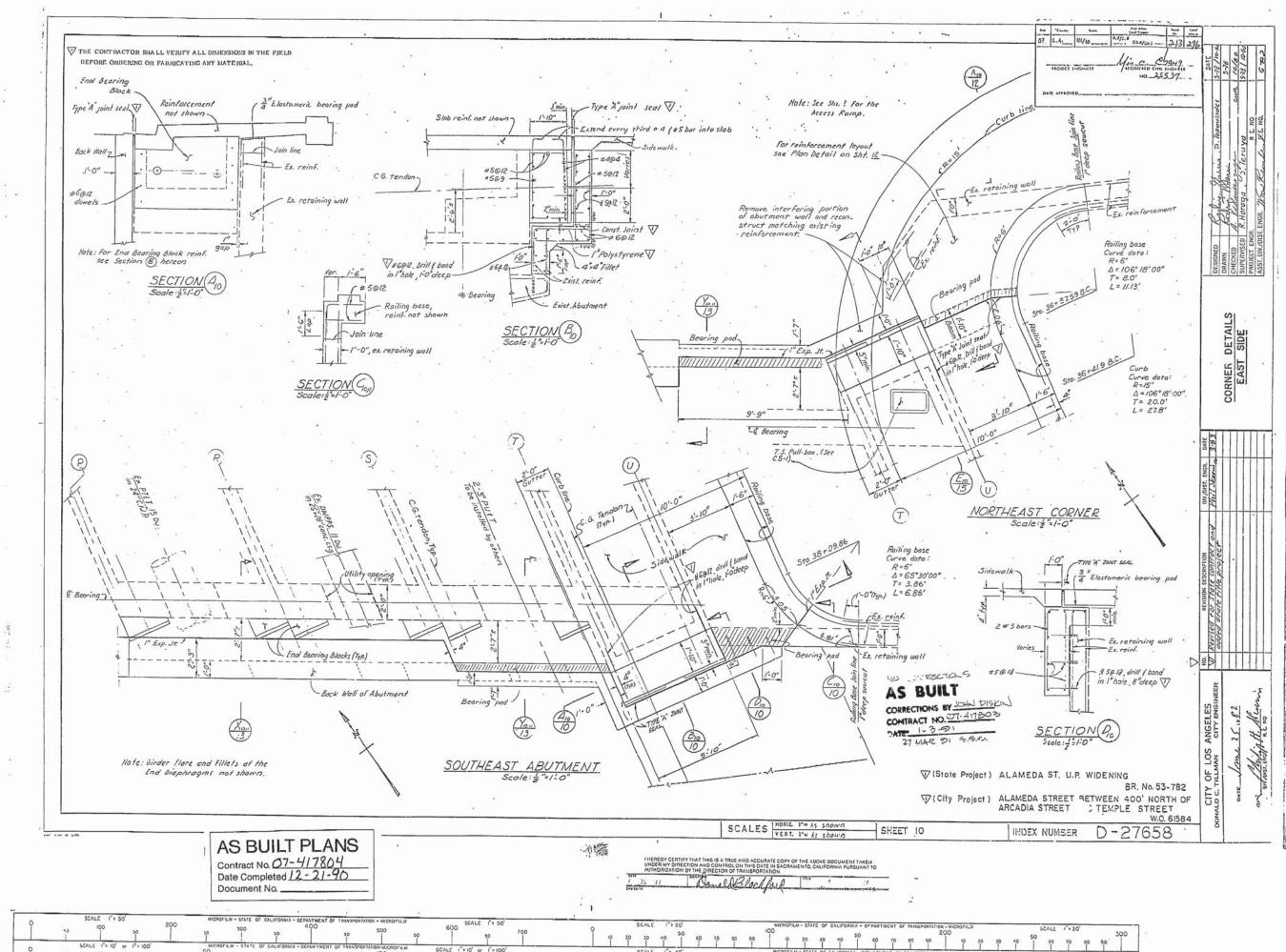
SCALE 1's 50

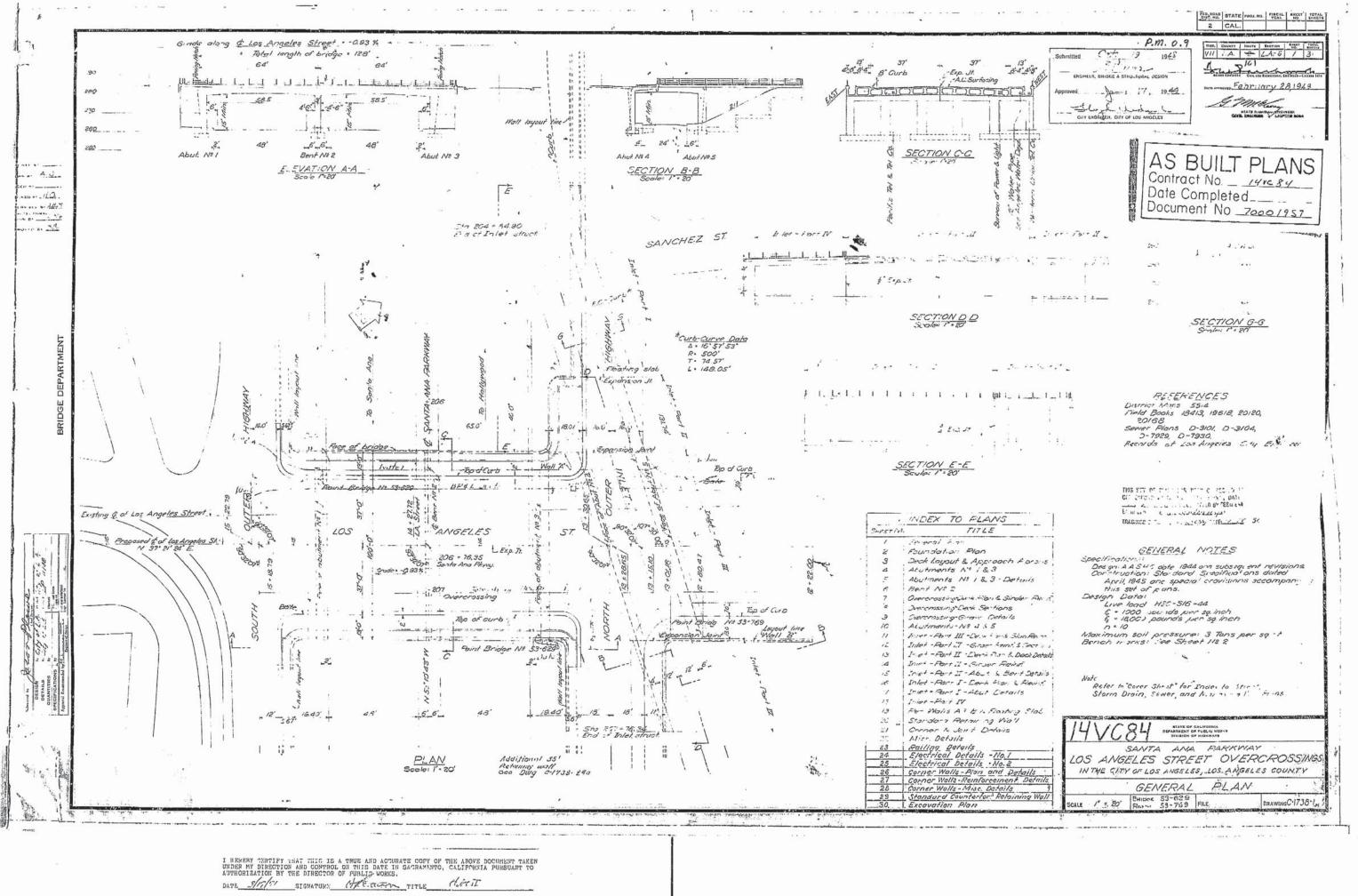
MICROFILM - STATE OF CALIFORNIA - DEPARTMENT OF PUBLIC WORKS - MICROF

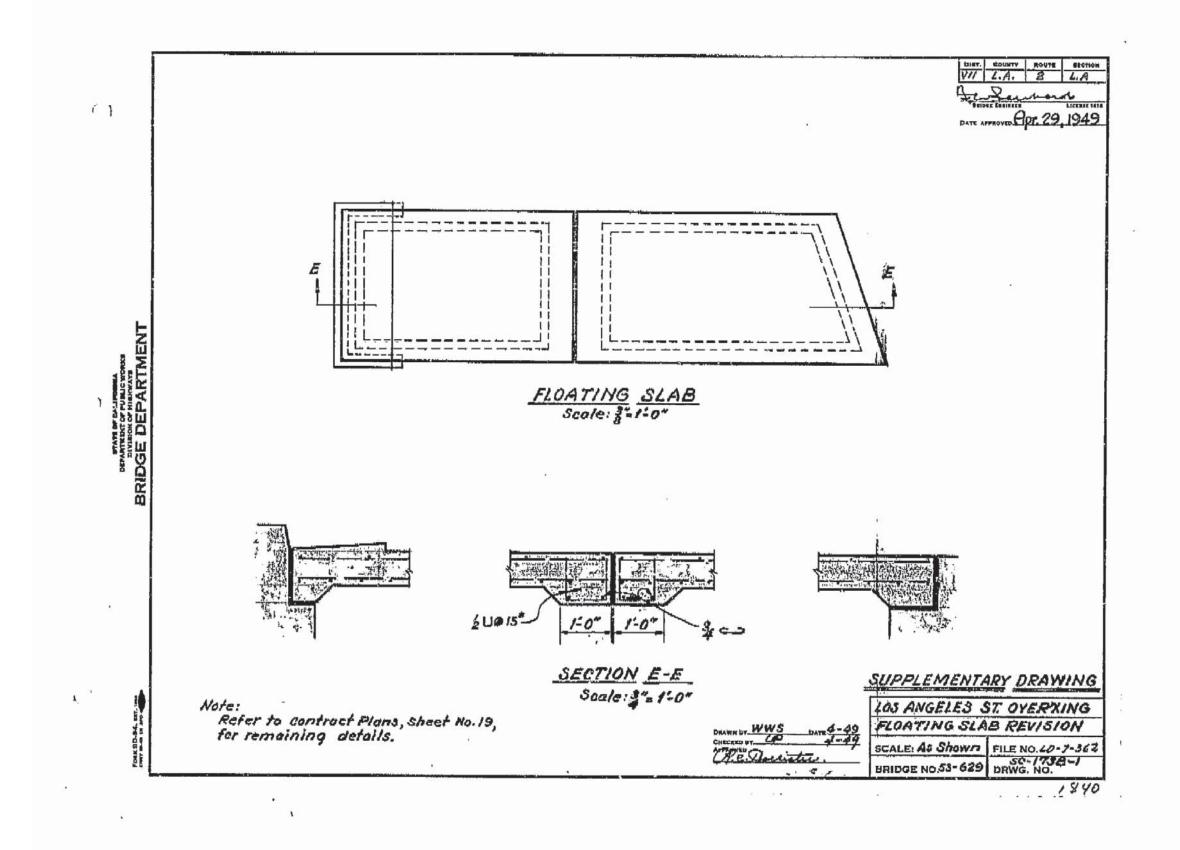


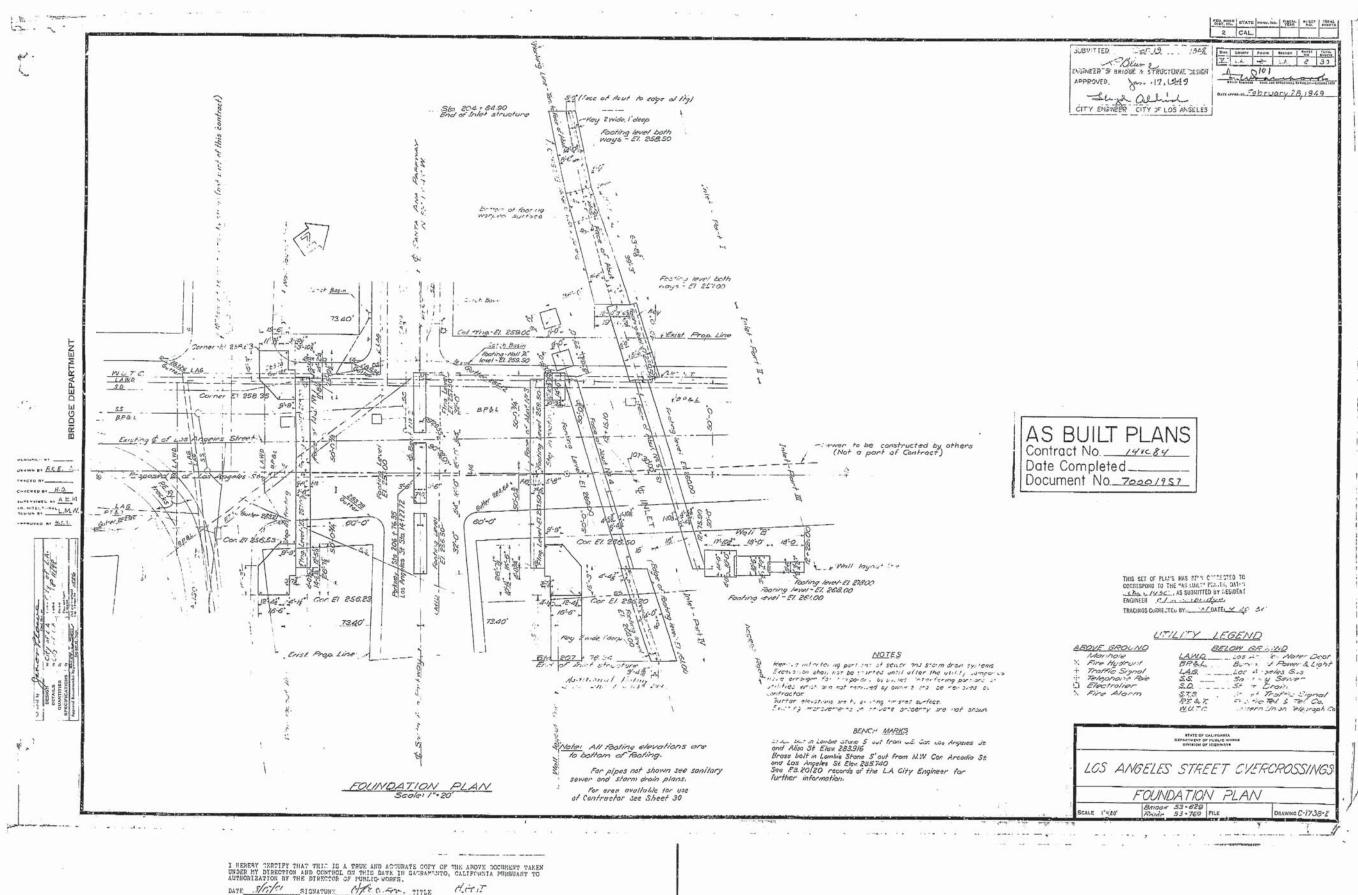


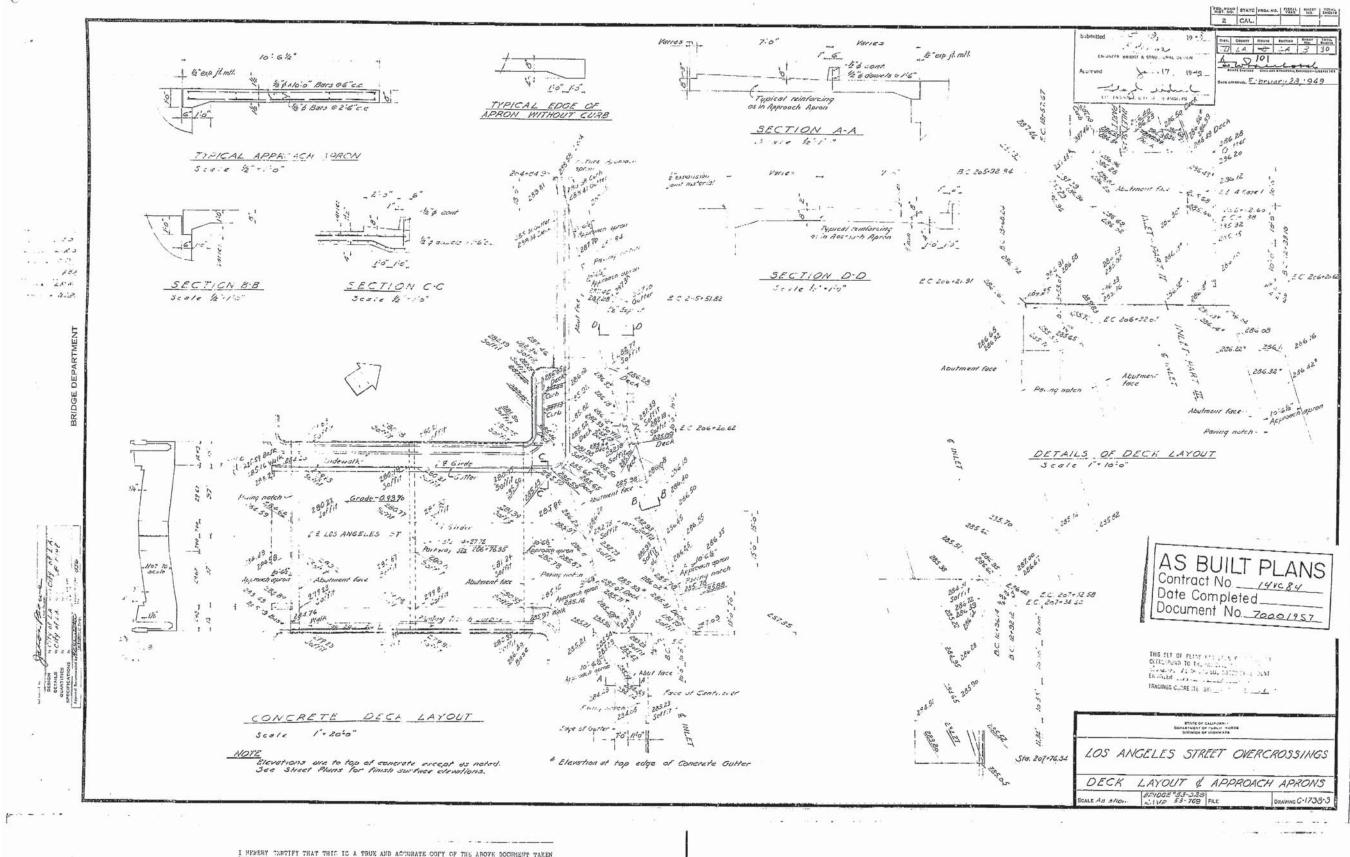

As-Built Plans Alameda Street Underpass, Bridge No. 53-0782

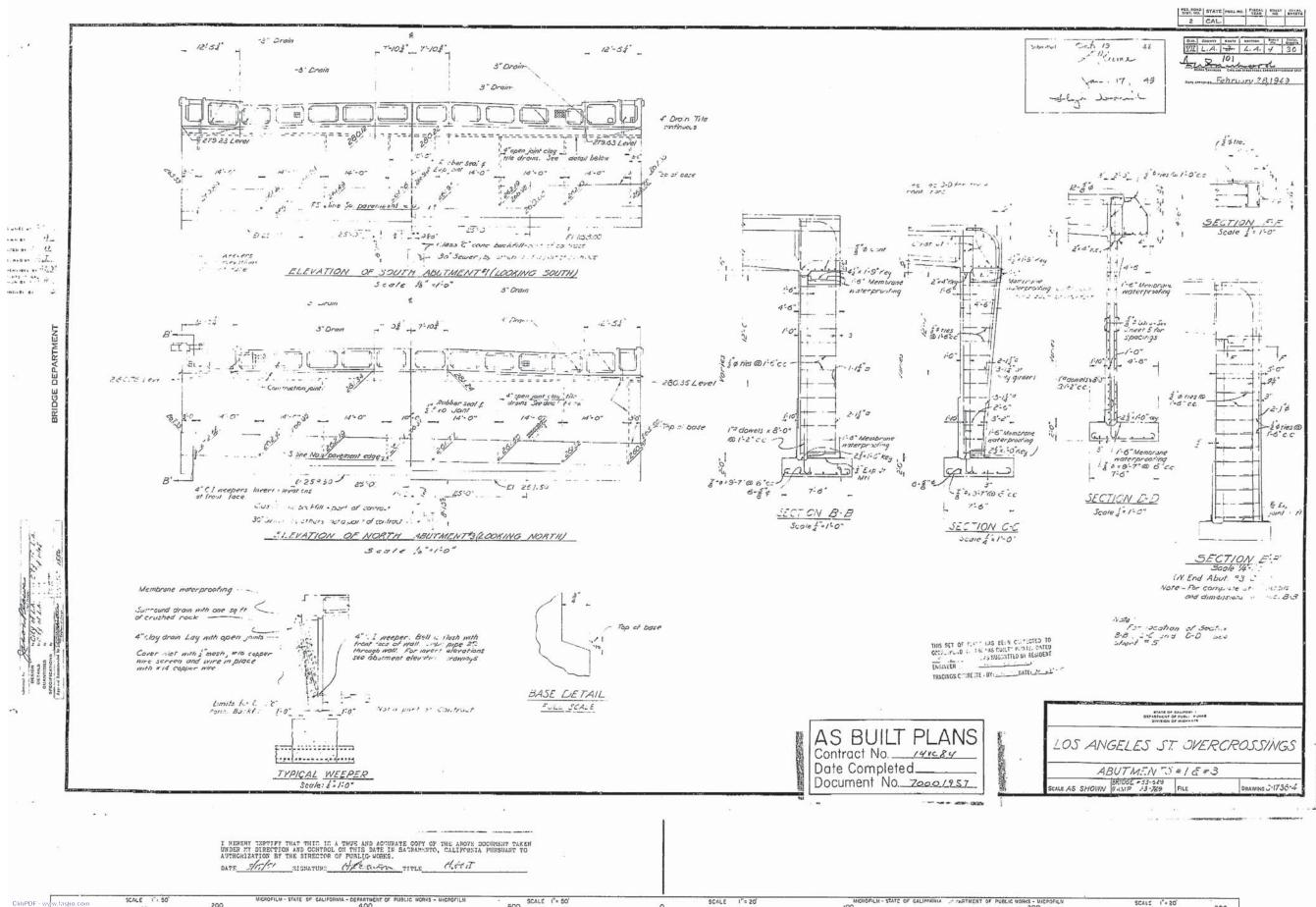


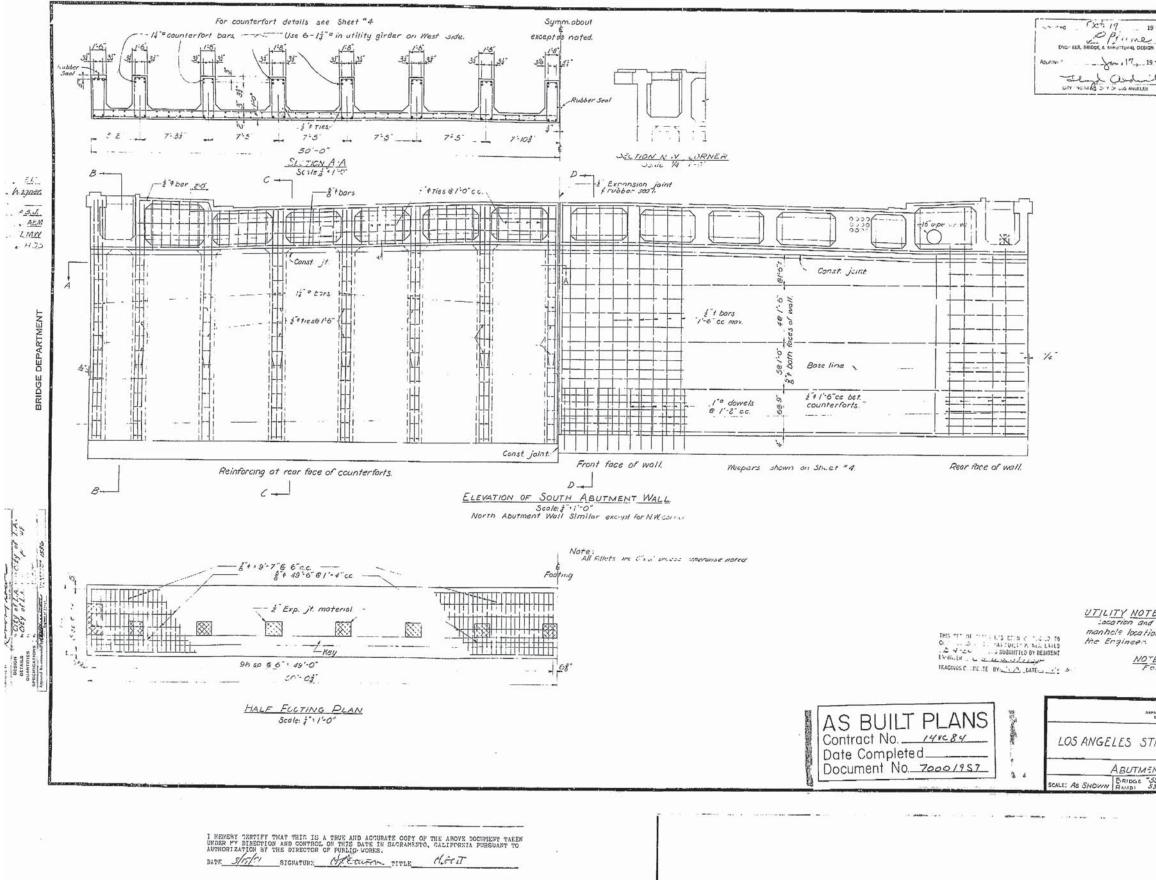



SCALL

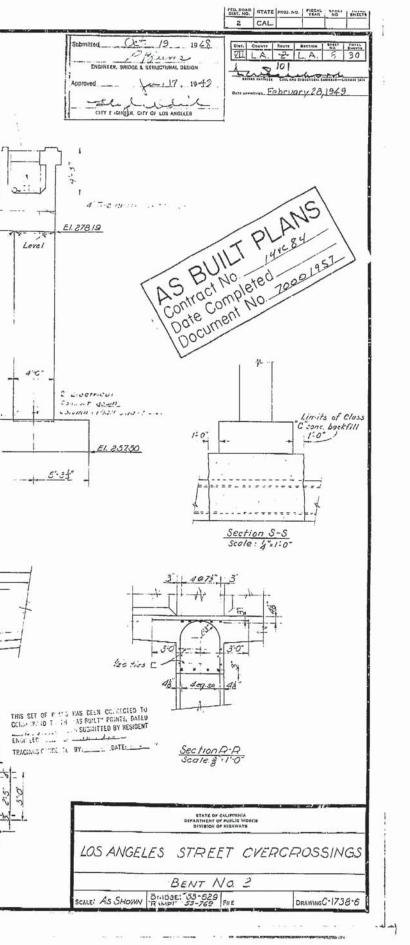

As-Built Plans Los Angeles Street Overcrossing, Bridge No. 53-0629





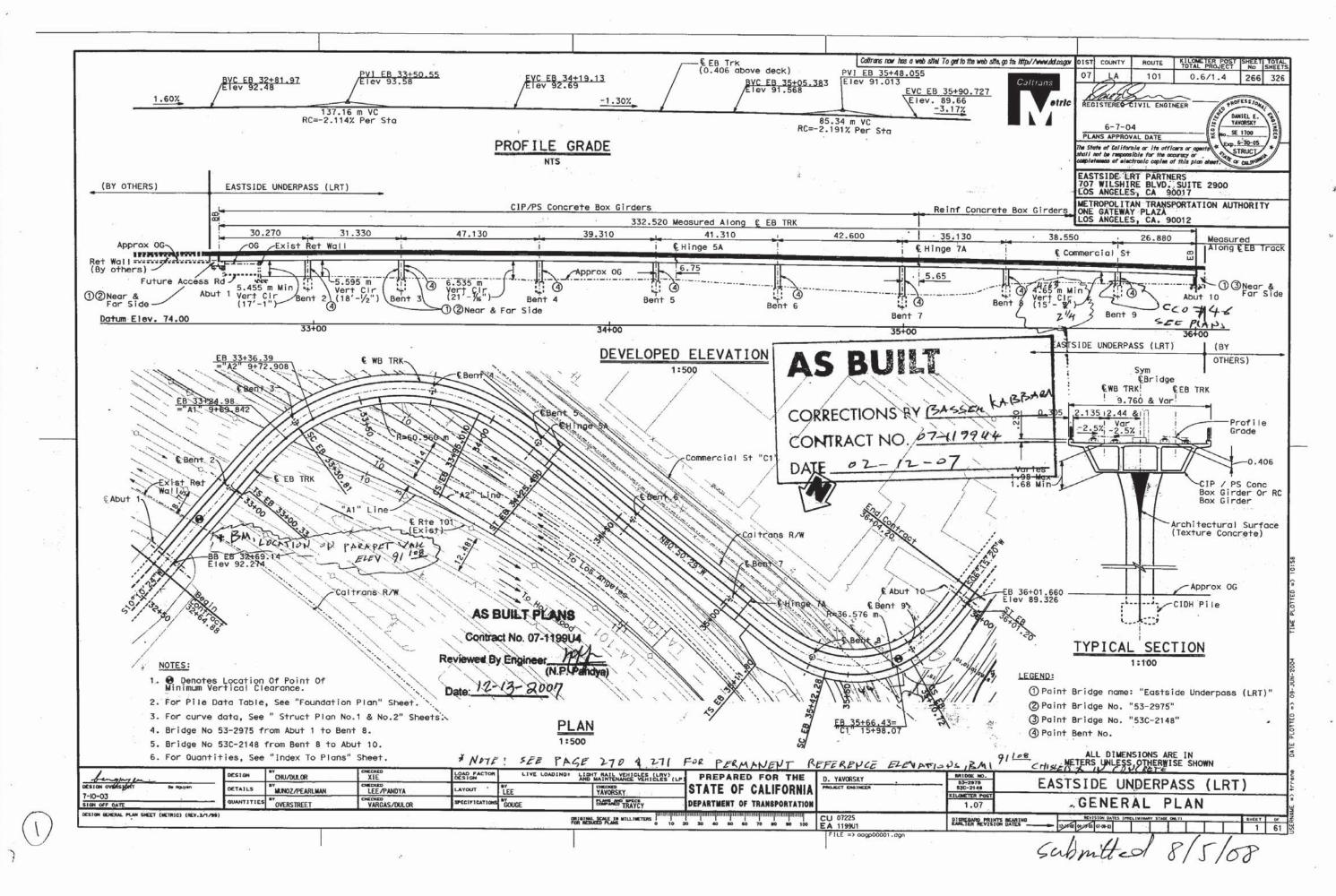


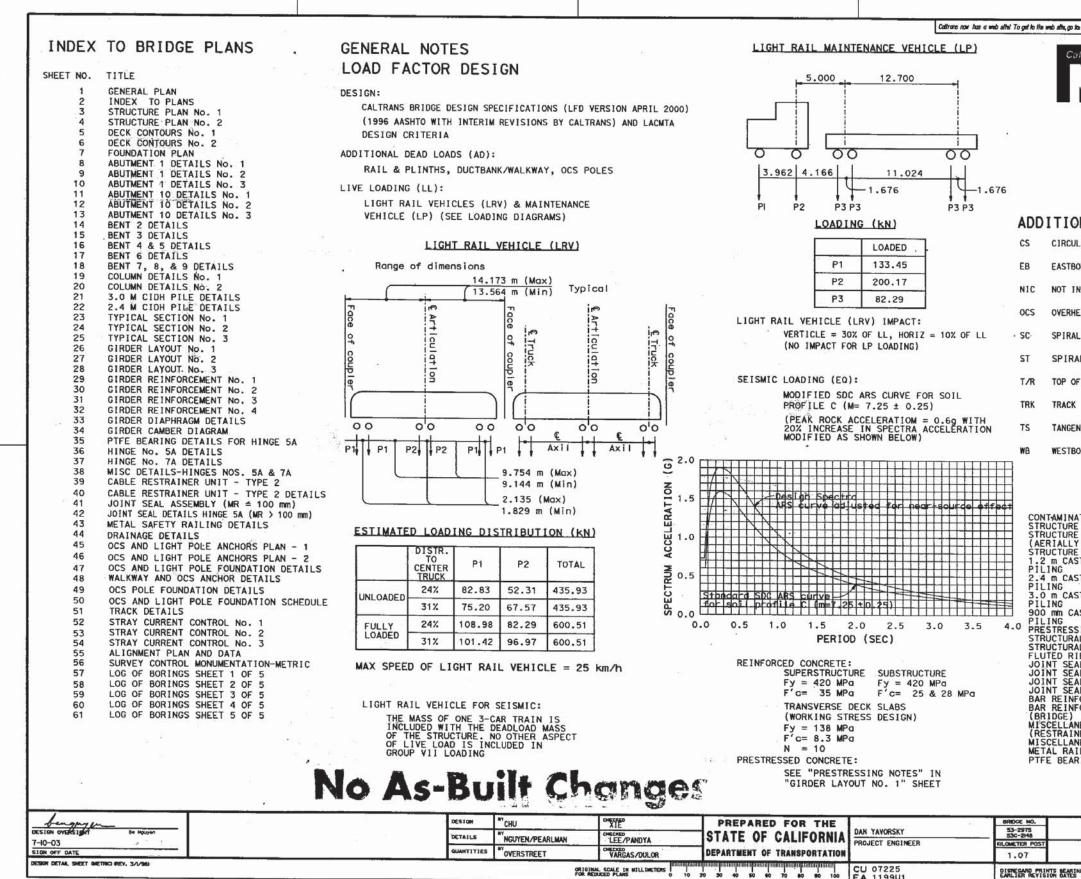
Ť.



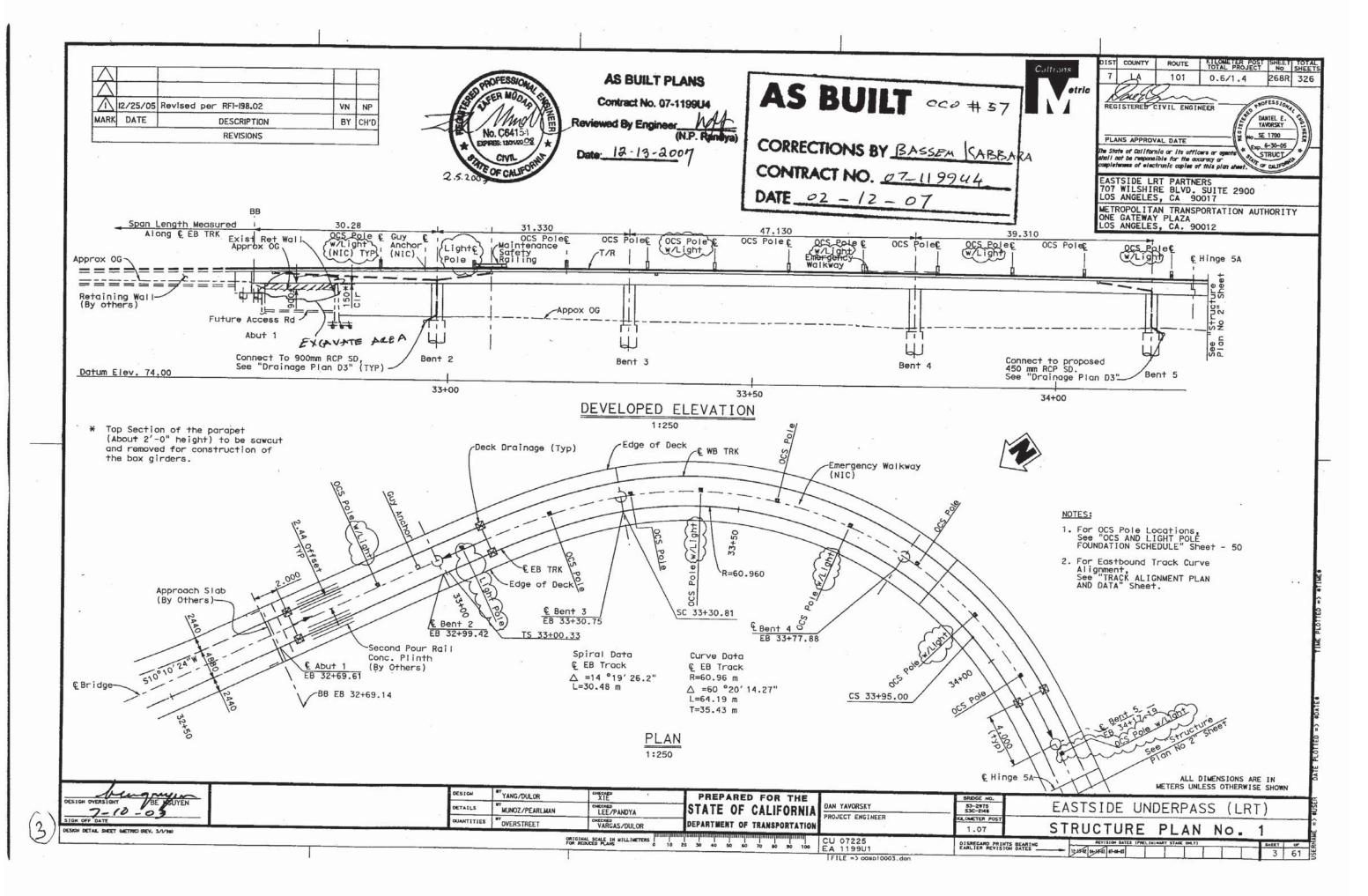
1	FED. RO.D	STATE	PAQJ. NO	PISCAL YEAR	SHEET NO.	TOTAL BUIECTS
	2	CAL.		1		
942.	Dier, 1	COUNTY	Roure	Bection	Neter	TOTAL
	1111		21	L.A.	5	30
in	4.74	1 Committe		tration	the state	
s 12	DATE APPR	ave	stru	ary: 28	1949	
L_						
						- 1
						1
						1
						- 1
						- 1
						Ĩ
						- 1
						- 1
						- 1
						- 1
						- 1
						- 1
						- 1
						- 1
		5				- 1
						- 1
						- 1
E.						
t size a	of uti	lity .	74 -	10 2	nd	
E: 1 size c ions maj	y be n	re ti-		dir	PC 123	by
TE: or Section	an 2		229	00		
ser.	ster.			~.		
			10021317			
STATE OF CA	LIFORMIA					
NTATE OF CA	UALIE WORK			-		
TREE					ING.	S
53-629 53-769				-		_
N75	63	1-2	ETA	41L S.		
53-769 F	ILE			ORAWING	C-173	8-5
A DESCRIPTION OF THE OWNER.				- 1		ACCUMUTE OF
		-				
	1.1.1	10.000	1.1			

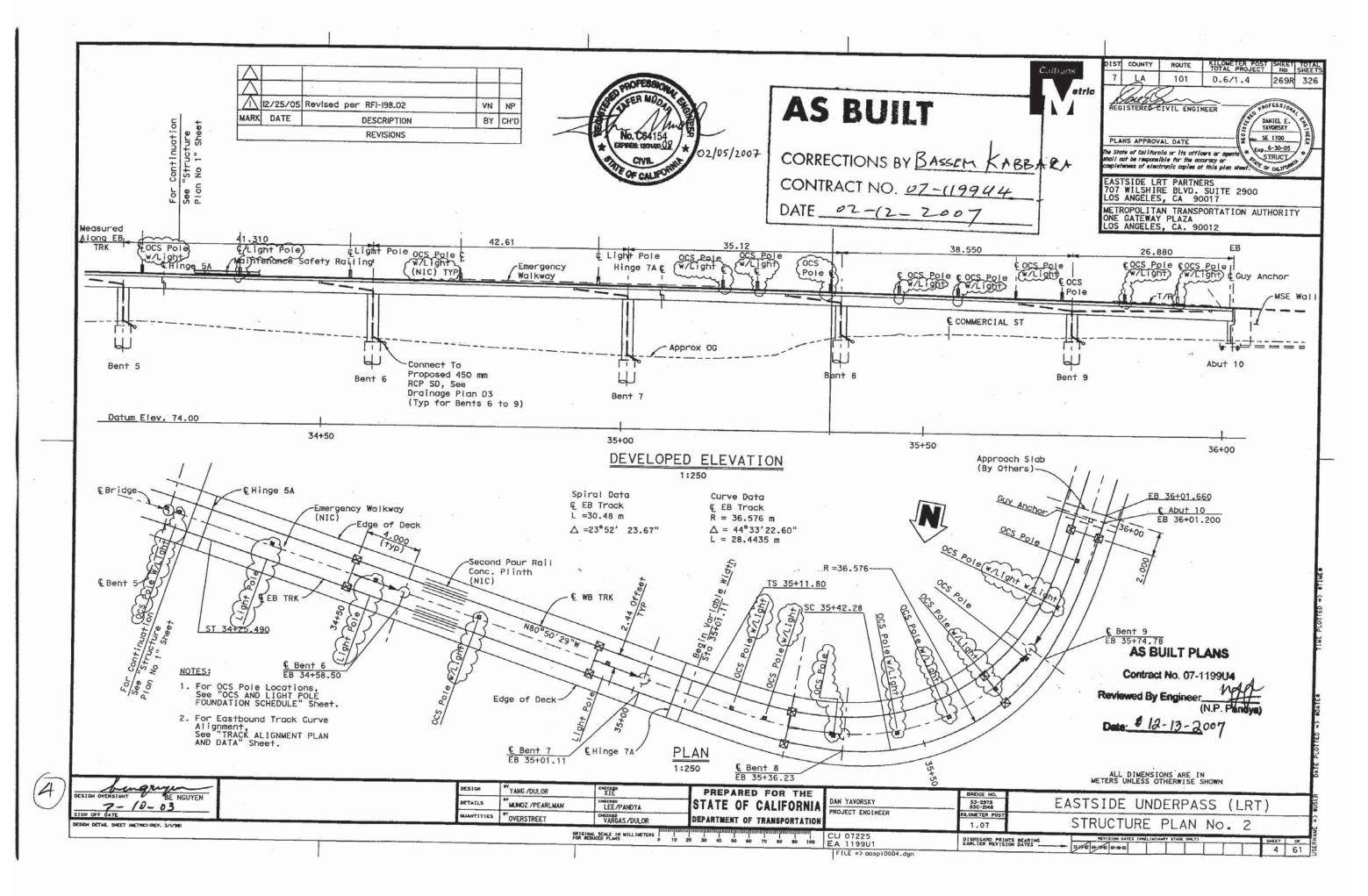
12"12"Wastern-Union-Euci 16" nipple through bent. Bridge Bureau of Power & Light-EL-204.90 12"x15" Telephone duct 7-103 7-10: -4-13 ""bars \$46'-0" 4-1" bors 4-15 "bars * 22'-0" 4-13" bars + 16'-0" -4-13 -- Expansion Joint material -2-37 16-01 15 N ×/2 · R. abaa 1 00000 H 3.1 2-2.4 I.R. man an hipper 12 . 50 12:35 EL-2 TOO2 E1.279.19 13 eq sp. 13.5. EL 27012 6 eg su 5 K -----4.0 Level 3C .- 17 5 E1.227 \$ Sti UDS I ·Level. Level 21181 - 5'-0" 15-0" AEM. 3. eq. sp. 3. 3. 7.e1 SF B QI IL ... L.M.W. , p 1 10 Note Elevations are at E. 1---1.00 . 0. C. Const joint "Lirs. 1ºbirs ---- H. J.S. 1ª tor t of bent. Totil 20 (721) (Total de TH. - Contand Lefeb. -1 '25 25'0" тЦПП Section 00 Section P.F Section Q.Q 111111 "I + Ties & / "O"se "# Ties 51 " 'cc. f # Ties@1'O'cc 5'0.1'Oca 1"dowe k HHH 1"d-,vels 6.0, 10 cc * 6'0, 1-0 a 5:0" 7-22" 14'-58" 5.0 14 - 58 4.0. 8 4 63 3406 100, 9 . 3:118 3406 309.50 446 S-+ 10 4063 3406 4010 1 2. EI. 257.00 E1.256.50 ·s + Ties 5:31 18-115 7:93 5.1 6.3 9-8: M 6-31 5'-4' 7:98 18-11: + 1.2.2 The store be an index to complet - in 35 Sewer, to others retain to dentrout . . . -ELEVATION BENT NO.2 Looking South Scile 1110 32'-0" S---. 42 30 9" AL A 30.9" A 31 Sp. @ 1'-0" -mal 14 _____ 16 City of 1.4 1 "p \$ Stirr.ips . 1" cars 17 SP & 7" 8 30. 6 1-2 17 50 0 7 ft ties 1 - O'ce 2 3pel'19 11. weity of - 1; " bars 15.6" - 14" bars . 31.6"." EXTERIOR FOOTING 1" dowels Scale & 1'-1774+ 38:0" --- \$ + Durs 6-5 11.5 2.10 13eg sa: 60 / 6 6 31 SP @ 1'-0" · Alerian 6 Mater 10 2:10 2:10" 12 00 . 06 W_6_ ¿ Exp. Jt. MHI. TY 2 + ties + 3 - 1" \$ + Jurs - 5-3 17eg. sp. 16 '0' 6 1100.50.6.0 Lowe 7:0" 7:0" Section M-M Scale 2 1'0 Section N-N Scale: 8"11-0" 17. SA @ 7" - Bsp@1'2" 17 SA @ 7 INTERIOR FOOTING Scale: g": 1'-0" 1.1 . .

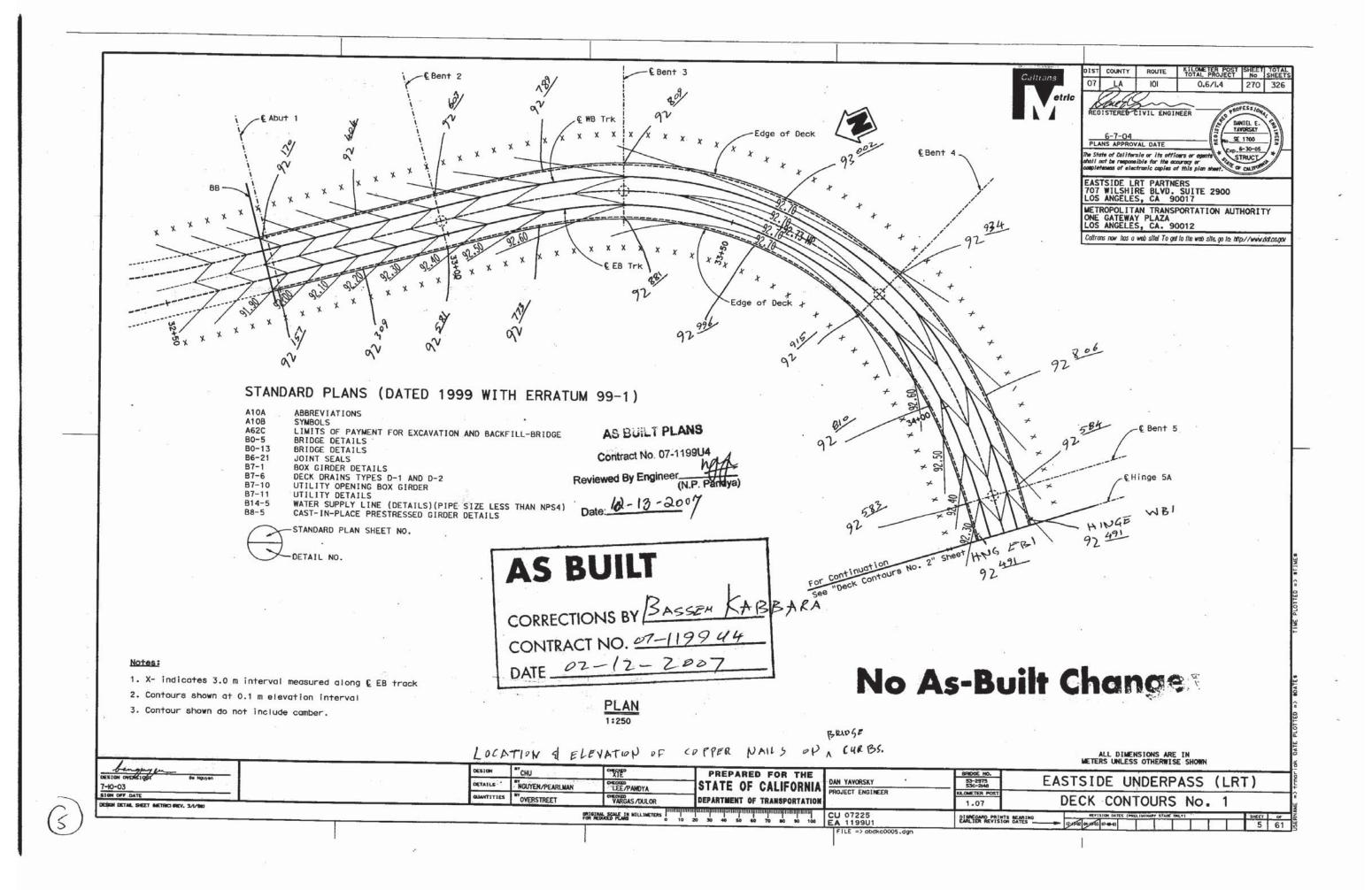

> I HEREBY DEROTION AND SOMTHOL OF THIS AND ACTURATE COFY OF THE ABOVE DOCUMENT TAKEN UNTER MY DIRECTION AND SOMTHOL OF THIS DATE IN SACRAMENTO, CALIFORNIA PURSUANT TO AUTHORIZATION BY THE DIRECTOR OF PUBLIC WORKS. DATE SIGNATURE OF COLLEGE OF THE CONTENT TO THE COST OF THE

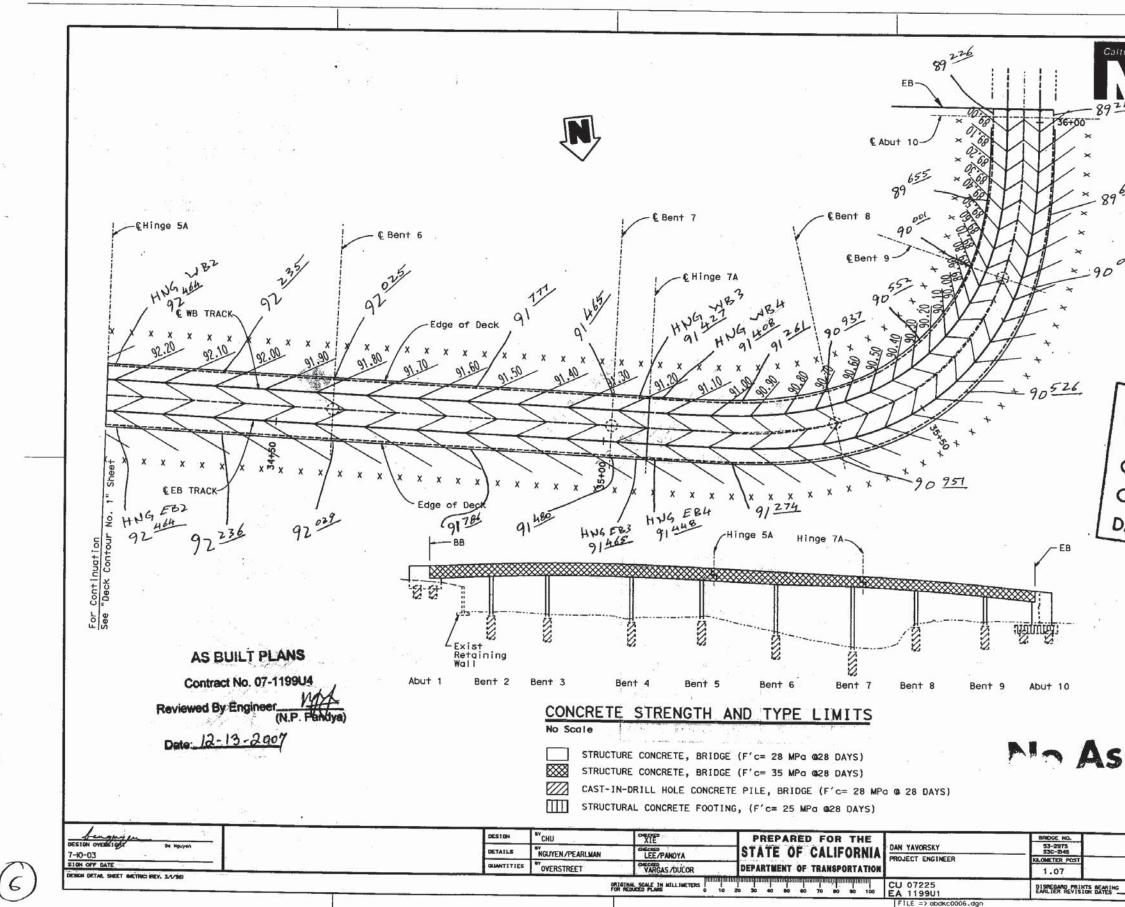


As-Built Plans Eastside LRT Project Bridge over HWY 101, Bridge No. 53-2975

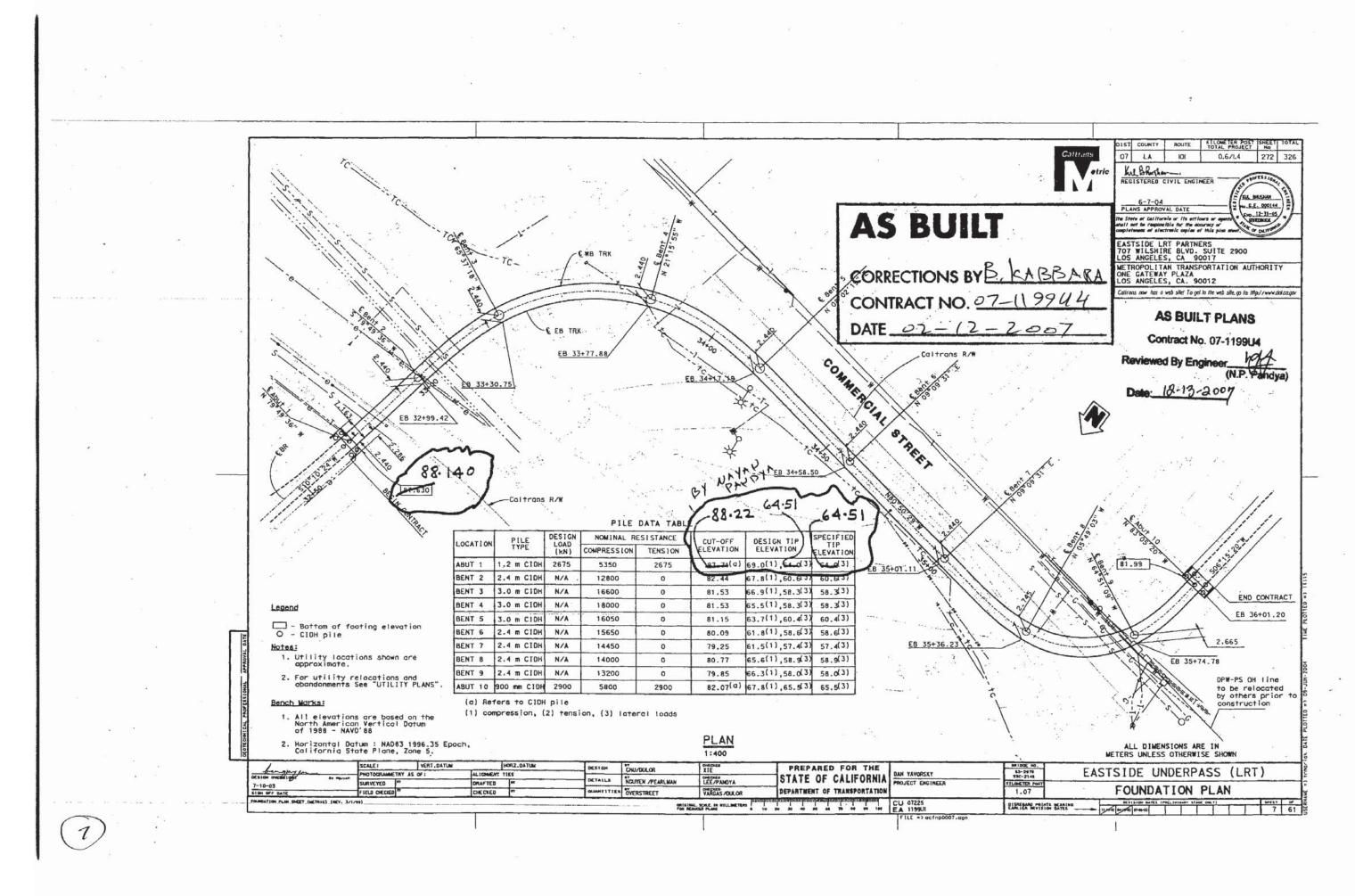


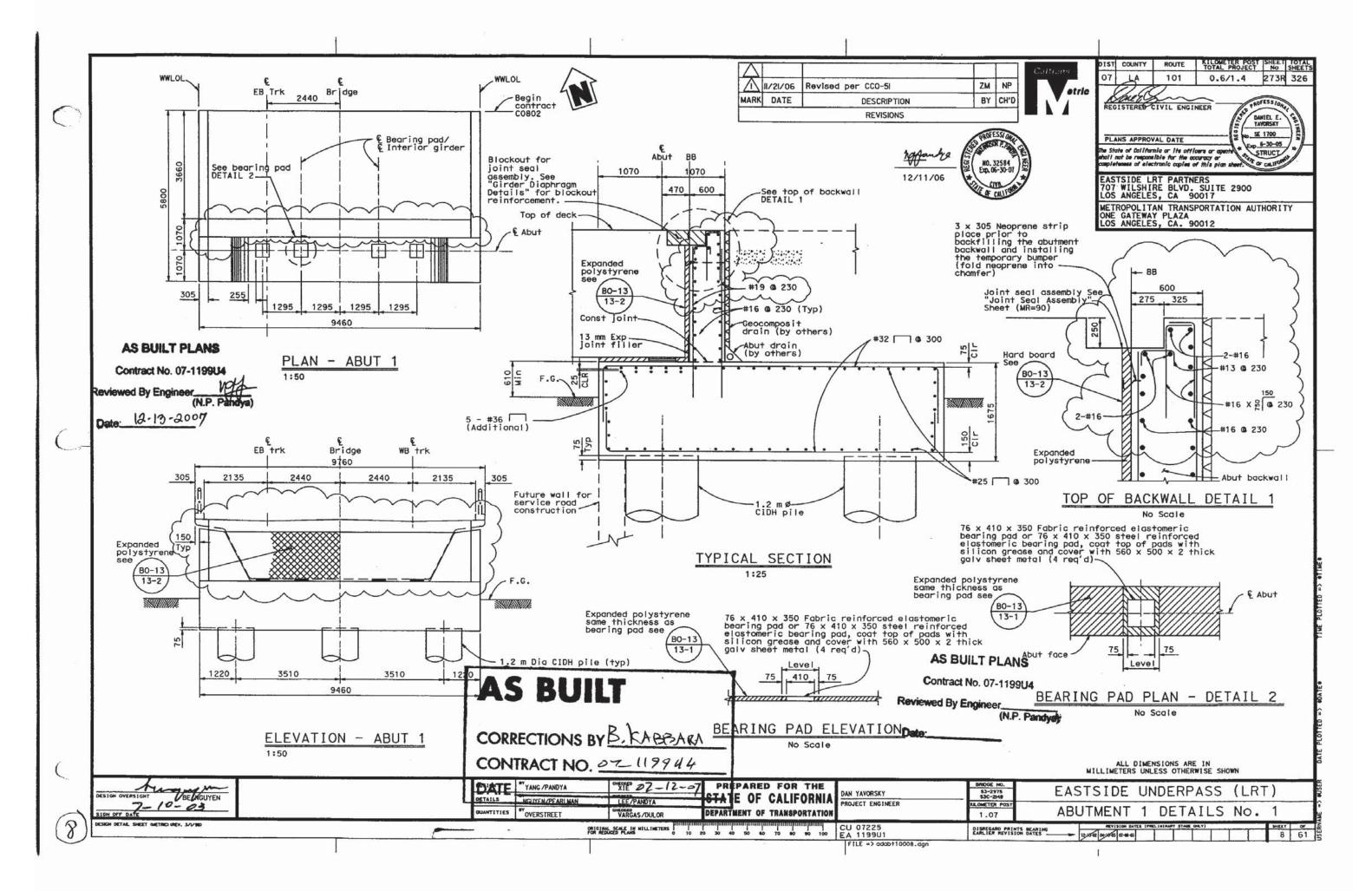

2

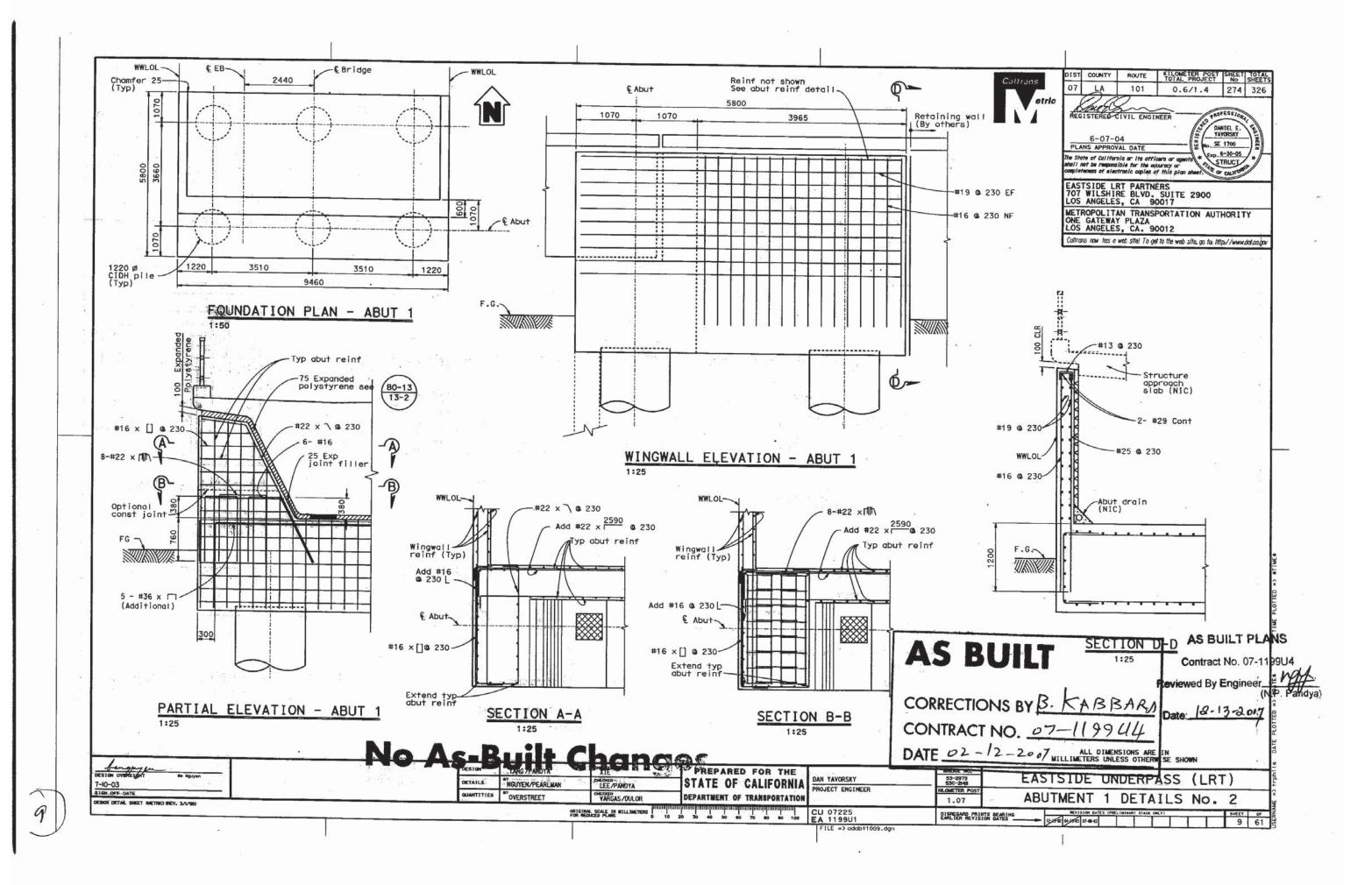

	1									
http://www.dot.on.gov	DIST	COUNTY	ROUTE	KILOMETER P		SHEETS				
ltrans	07	D'a	101	0.6/1.4	267	326				
etric	REG	ISTERED	IVIL ENGI	NEER	PROFESSIO	N.				
		DANIEL E. S								
	PLA	6-7-04			IO. SE 1700	-) INEER				
2	shall i	not be respons	ible for the ac	cers or agents	STRUCT	-/*/				
			RT PARTN		COF CALIFO					
	707	WILSHI	RE BLVD.	SUITE 290	0					
	MET	ROPOLIT	AN TRANS	PORTATION		TΥ				
		ANGELES	S, CA. 9	0012						
NAL ABE	BRE	VIAT	ONS							
AR CURVE TO	SPI	RAL								
DUND										
			172							
THIS CONTR	ACT	(BY OTHER	RS)							
AD CONTACT	SYST	EM								
TO CIRCULA	R CU	RVE								
L TO TANGE	NT C	OR SHORT	TANGENT							
RAIL			AS BU	ILT PLA	NS					
RAIL			Contract	No. 07-119	9904					
		Pevie	wed By E	Indineer	nett	1				
T TO SPIRAL	e.	IVEALO	wea by t	(N.	P. Pand	ya)				
DUND		Date	12-	13-200	7					
		(Jorente	- and them says	/						
		QUANTI	21.0-07.770.770-							
TED MATERI EXCAVATIO	AL F	ANDLING	;	ŧ	LUMP 243	m ³				
DEPOSITE	D LE	EAD)			44	m ³ m ³				
T-IN-DRILL	ED-H	IOLE CON	ICRETE		370 142	m				
T-IN-DRILL					109	m	TIMES			
T-IN-DRILL					67	m	÷.			
ST-IN-DRIL				2.1	83	m	PLOTTED			
ING CAST-I L CONCRETE L CONCRETE B TEXTURE	, BF	ACE CON	OTING		LUMP 191	SUM m ³	DTO.			
B TEXTURE	, B⊧	TUGE			2 360	m ³ m ²	TINE			
L ASSEMBLY L ASSEMBLY		R 70 mm) R 90 mm) R 101 mm	14		10 10	m M M				
I ASSEMBIT	(MF	R 101 mm	н — 160 п		10	m kg				
ORCING STE		EPOXY C	OATED)		6 200	kġ	TE s			
EOUS METAL ER - CABLE	TYP	PE)			1 334	kg	S SDA			
EOUS METAL	. (BF	(IDGE)			18 400 667	kg m	ED =			
ING					4	EA	LOTT			
	10						DATE PLOTTED => \$DATE			
	METE	ALL DIME	NSIONS ARE S OTHERWIS	E IN SE SHOWN		32				
EAST	SIC	DE UN	DERP	ASS (I	RT)		rrene			
•	I	NDEX		LANS		1.5	JSERNAME => trrene			
IG ID H	REVI	e gangan wang	ELIMINARY STAGE		546		ERNAM			
12450	1	01-08-05				2 61	ŝ			
	1									

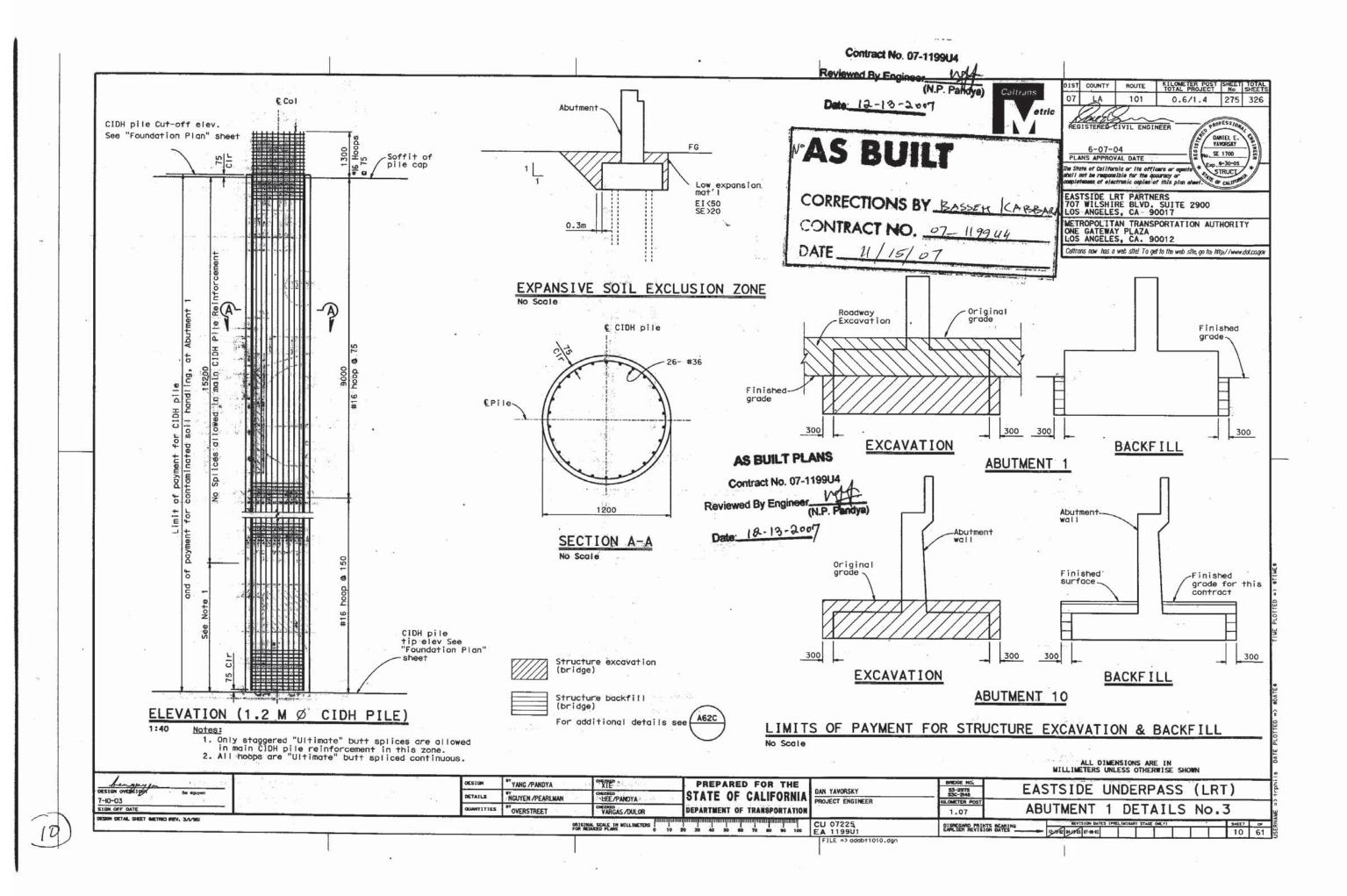

ILE => doitp0002.don

Ż









	1						1.11
14.00.00	DIST	COUNTY	ROUTE	KILONETER POST TOTAL PROJECT	SHEET	TOTAL	
Itrans	07	LA	101	0.6/1.4	271	326	
etric	A	ner	IVIL ENGI		FESSION		
2.441	REG	ISTERED (IVIL ENGI	·	WIEL E.	is)	
	PLA	6-7-04	AL DATE	No	1700	LINGINEEA	
	The Sto shall i	nte of Californ Not be respons	ila or its affi ible for the a		6-30-05 TRUCT	1.H	
	comp/en	teness of elec	tranic capies a		TRUCT	/	
651	107	WILSHI	RT PARTN	ERS SUITE 2900 0017			
0.00	MET	ROPOLIT	AN TRANS	PORTATION AUT	HORI	Y	
			CA. 9				
	Cattra	hs now has a	web sitel To ge	t to the web site, go to: ht	p://www.	dol.co.gov	
025							
5							
						19	
- N - 12			1				
AG		DI	1 P. Mar			1	
AS		DL		Г			7
							1 .
CORRE	ic 7	10.		>	1		\vdash
CO		IONS	5 BY E	ASSEM	F.	20	
					N	BB,	ARA
DATE	0-	-	5	ASSEM -11990	14		Å
		/	4-	2007	7	-1	
						_/	
							•
							\$T INE
							-
							OTTED
							AE PL
		2					111
-		¥				5	DATEs
-BI	U	It	Ch	anc		. V	3* <=
					5		LTED
				-			LO14
		ALL DIMEN	SIONS ARE	E IN			DATE
MI	LLIME	TERS UNL	ESS OTHER	WISE SHOWN			≡>trmariak DATE PLOTTED => \$DATE\$
EAST	SI	DE UI	NDERF	PASS (LR	T)		trm0
DE	СК	CON	TOURS	No. 2			- ₽
	MEY I	STON DATES (PRE	LININARY STACE	ONCY)	змее 6		ISERNAME
- Jose	1				 °	01	5
	1						

Appendix C: Existing Geotechnical Boring Logs

Existing Geotechnical Boring Logs ARCADIS, 2014

SOIL DESCRIPTION

Soil descriptions on the exploration logs are based on visual observations and laboratory testing on selected samples.

DryLittle perceptible moistureDampBelow optimum moisture for compactionMoistLikely near optimum moisture contentWetLikely wet of optimum moisture contentSaturatedProbably below water table or in perched	MOISTU	RE
MoistLikely near optimum moisture contentWetLikely wet of optimum moisture contentSaturatedProbably below water table or in perched	Dry	Little perceptible moisture
Saturated Probably below water table or in perched	•	
	Wet	Likely wet of optimum moisture content
groundwater	Saturated	Probably below water table or in perched groundwater

SAMPLE TYPE SYMBOLS

MCS 2.0 = Modified California (ID 1.9 inch with liner)

CT = Cuttings

- CR = Core Run
- ST = Shelby Tube

TEST SYMBOLS

- MC Moisture Content
- GS Grain Size
- AL Atterberg Limits
- SG Specific Gravity
- DT Density Test
- OG Organic Content
- **CN** Consolidation
- UU Unconsolidated Undrained Triaxial
- CU Consolidated Undrained Triaxial
- UC Unconfined Compression
- DS Direct Shear
- K Permeability
- PP Pocket Penetrometer in tons/ft²
- **CT** Corrosivity Test
- PID Photoionization Detector Reading
- CA Chemical Analysis

KEY TO EXPLORATION LOGS

KREFS: IMAGES: PROJECTNAME:

Drilli Drille Drilli Rig 1	Date Start/Finish: 8/19/14 Drilling Company: Jet Drilling Driller's Name: Gary Buss Drilling Method: Hollow Stem Auger Rig Type: CME 75 Sampling Method: CA Modified Split Spoon								orthing: NA asting: NA asing Elevation: NA orehole Depth: 50 ft orehole Diameter: 8" urface Elevation: NA escriptions By: Brent Anderson	Authority Location: MTA I 410 C	les Metropolitan Transportation
DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigra	phic Description	
- 0 -					0.0		sw		Gravel and asphalt debris. WELL GRADED SAND Fill (20, 80, 0, 0), olive brown gravel.	ı (2.5Y 4/3), dry, subangul	ar, with little fine- to coarse-grained
-	B-01-5	MCS 2.0	1.5	4 5	0.0	GS, MC,	sw		WELL GRADED SAND (18, 84, 2, 0), brown (10YR 4	I/3), dry, medium- to coars	se-grained, subangular to angular.
-	B-01-10	MCS	1.5	11 18		DS	sw		WELL GRADED SAND (0, 95, 5, 0), brown (10YR 4/	− − − − − − − − − − − − − − − − − − −	subangular.
- 10		2.0		15	0.0				WELL GRADED SAND WITH GRAVEL (14, 82, 4, 0), light brownish gray (10Y	R 6/2), dry, medium- to very coarse-
- 15	B-01-15	MCS 2.0	1.5	23 32	0.0	GS, MC, DT	sw		grained, angular.		
								emar msl = a	ks: bove mean sea level; bgs = below ground surfa	ce; Dia. = diameter:	Water Level Data
	σ Δ	RC	Ά	D					, NA = not applicable/available; ppm = parts pe		8/19/14 X 20 NA
Press	Infrastructure · Water · Environment · Buildings								0) = %(gravel, sand, silt, clay) First Encountered Water = Static Wate	۲ 	NA O NA NA btoc ft amsl

Client: Los Angeles Metropolitan Transportation Authority

Site Location:

Well/Boring ID: B-01

Borehole Depth: 50 ft

MTA Metro 410 Center Street Los Angeles, California Geologic Column Recovery (feet) Sample Type Blow Counts USCS Code Stratigraphic Description PID (ppm) Sample ID Lab Tests DEPTH 17 WELL GRADED SAND (20, 80, 0, 0), dark yellowish brown (10YR 4/4), dry, medium- to very coarse-grained, angular. 45 sw B-01-20 1.5 MCS 2.0 0.0 50 - 20 25 WELL GRADED SAND (16, 78, 6, 0), dark yellowish brown (10YR 4/4), dry, medium- to coarse-grained, subangular. - 25 GS, 28 B-01-26 1.5 SW MCS MC, 2.0 30 DT 41 Poorly Graded GRAVEL, pulverized. ⊠ GS, 32 ⊠ B-01-30 GP MCS 2.0 1.5 MC, 3.2 23 \boxtimes DT - 30 GS, 50 Same as above. ⊠ 0.8 MC, GP MCS 2.0 B-01-35 50 X DT 35 **Remarks:** Water Level Data amsl = above mean sea level; bgs = below ground surface; Dia. = diameter; Date Depth Elev. ft/' = feet, NA = not applicable/available; ppm = parts per million NA 30 RCAD 8/19/14 👤 ft bgs ft amsl (5, 95, 0, 0) = %(gravel, sand, silt, clay) Infrastructure · Water · Environment · Buildings NA NA NA 0 ∇ = Static Water = First Encountered Water btoc ft amsl Ο Template:G:\Projects\LogPlot\LogS\LO490000\LO492301\0000\/dfx and dat temp...\boring_well HSA 2007 analytical USCS WL_25 ft per p Project: LO492301.0000 Data File: B-01.dat Date: 10/23/2014 Created/Edited by: Geoff Bishop Page: 2 of 3

Client:	Los Angeles Metropolitan Transportation Authority	
---------	---	--

Well/Boring ID: B-01

Borehole Depth: 50 ft

MTA Metro 410 Center Street Los Angeles, California

Site Location:

DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigraphic Description		
- 40	B-01-40	coarse gravel with medium-	to very								
B-01-45 MCS 0.8 50 0.0 SF							SP	•••••	POORLY GRADED SAND (25, 75, 0, 0), dark grayish brown (2.5Y 4/2), wet, m with some fine to coarse gravel, some larger rock fragments.	edium- to coarse-grained, su	bangular,
- 50	B-01-50 MCS 2.0 0.8 28 50 0.0 SP POORLY GRADED SAND (0, 100, 0, 0), dark gray (2.5Y 4/1), wet, coarse-g 0 B-01-50 MCS 0.8 50 0.0 SP POORLY GRADED SAND (0, 100, 0, 0), dark gray (2.5Y 4/1), wet, coarse-g 0 Bottom of boring at 50 ft bgs. Bottom of boring at 50 ft bgs. Bottom of boring at 50 ft bgs.									ned, subangular to angular, c	ompacted.
Remarks: Water Level Da											Data
Infrastructure · Water · Environment · Buildings						ldings	a ft (!	msl = a /' = feet 5, 95, 0, 0 ✓ =	KS: pove mean sea level; bgs = below ground surface; Dia. = diameter; NA = not applicable/available; ppm = parts per million)) = %(gravel, sand, silt, clay) First Encountered Water = Static Water s\LO490000\LO492301\0000\ldfx and dat temp\boring_well HSA 200	DateDepth8/19/14✓30 ft bgsNA○NA btoc	Elev. NA ft amsl NA ft amsl

Drilli Drille Drilli Rig 1	e Start/Finis ing Compar er's Name: ing Method Type: CME pling Metho	ny : Jet Gary B : Mud F 75	Drillii uss Rotar	y	Spli	t Spoor	1	E C B S	lorthing: NA asting: NA asing Elevation: NA corehole Depth: 50 ft corehole Diameter: 8.25" urface Elevation: NA descriptions By: Ali Zafarani		es Metropoli		sportation		
DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigrap	Stratigraphic Description					
-0									4" Asphalt at surface.						
-									3' Concrete slab.						
- 5															
-	B-02-9	MCS 2.0	1.0	7 12 20	0.0	GS, MC	sw		WELL GRADED SAND (11, 82, 7, 0), pale brown (10 gravel.	YR 6/3), dry, fine- to coars	-	unded, fine	to medium		
10 - -															
-				20	0.0				Same as above.						
	B-02-14	MCS 2.0	0.9	34 38	0.0		sw								
- 15	¥ا -ع2- ت														
				12			sw	emar	WELL GRADED SAND (8, 86, 6, 0), brown (10YR 5/3	8), dry, fine- to coarse-grain	i	-			
							а	msl = a	bove mean sea level; bgs = below ground surface	ce; Dia. = diameter;	Vvater Date	Level Depth	Data Elev.		
	A 🔍	RC	Δ	D	15		nt.	r ≕ tee	t, NA = not applicable/available; ppm = parts per		8/26/14 👳		NA ft amsl		
	frastructure ·							(5, 95, 0, 0) = %(gravel, sand, silt, clay) → = First Encountered Water = Static Water NA NA btoc ft amsl							
	Project: LO492301.0000 Template:G:\Projects Data File:B-02.dat								ps\LO490000\LO492301\0000\ldfx and dat temp. e: 10/23/2014 Created/Edited by:)7 analytical U		25 ft per p age: 1 of 3		

Well/Boring ID: B-02

Borehole Depth: 50 ft

MTA Metro 410 Center Street Los Angeles, California

ДЕРТН	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigraphic Description				
		MCS 2.0	0.9	22	0.0	GS,	sw						
-	B-02-19	2.0		28		MC	-	<u></u>					
- 20													
-													
-	B-02-23	MCS	0.9	27	0.0		GP		POORLY GRADED GRAVEL (66, 32, 2, 0), dark yellowish brown (10YR 4/4), d	ry, fine- to coarse-graine	ed, fine gravel.		
		MCS 2.0		50-5"				⊠.`∶เ					
- 25													
-													
				00		GS,	<u> </u>	- <u>تع</u> ر					
-	B-02-28	MCS 2.0	0.5	36 50-5"	0.0	MC	GP	·∷⊠ ⊠.∵.	Same as above.				
-		2.0			1								
- 30													
-													
-													
	B-02-33		0.7	40			sw	<u></u>	WELL GRADED SAND (5, 95, 0, 0), very dark gray (10YR 3/1), wet, fine- to coa	arse-grained, subangula	r, trace fine to		
-	2 02 00	MCS 2.0	0.7	50-5"	1.7				medium gravel.				
-													
- 35													
-													
	Remarks: Water Level Data												
							а	imsl = al	oove mean sea level; bgs = below ground surface; Dia. = diameter; NA = not applicable/available; ppm = parts per million	Date Dep	th Elev.		
	A 	RC	A	D	IS			-		8/26/14 💌 NA ft bg	NA JS ft amsl		
	frastructure ·						(5, 95, 0, 0)) = %(gravel, sand, silt, clay)	NA O NA	NA		
									First Encountered Water O = Static Water	btoc	; ft amsl		
Projec Data I	t: LO49230 ile:B-02.da	1.0000 t	Те	mpla	ate:G	:\Project	ts\LogF	Plot\Log Date	s\LO490000\LO492301\0000\ldfx and dat temp\boring_well HSA 200 10/23/2014 Created/Edited by: Geoff Bishop	7 analytical USCS W	/L_25 ft per p Page: 2 of 3		

Client:	Los Angeles	Metropolitan	Transportation Authority
---------	-------------	--------------	--------------------------

Site Leastion

Well/Boring ID: B-02

	MTA Metro 410 Center Los Angeles	Street	ornia						Borehole Depth:	50 ft		
DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigraphic Description			
- 40	B-02-39	MCS 2.0	1.3	45 48 50-2"	0.0		sw		Same as above.			
- 45	B-02-43	MCS 2.0	0.3	50 50-3"			sw		WELL GRADED SAND (30, 70, 0, 0), very dark gray (10YR 3/1), wet, fine- to co medium gravel and crushed rock.	parse-grained, subrounded, tra	ce	
- - - 50	B-02-49	MCS 2.0	1.2	50 45 45	0.0		SP		POORLY GRADED SAND (0, 98, 2, 0), very dark gray (10YR 3/1), wet, fine- to Bottom of boring at 50 ft bgs.	medium-grained, subrounded,	trace silt.	
- - 55												
Infrastructure - Water - Environment - Buildings								/' = feet 5, 95, 0, 0 ✓ = Plot\Log	kS: bove mean sea level; bgs = below ground surface; Dia. = diameter; , NA = not applicable/available; ppm = parts per million b) = %(gravel, sand, silt, clay) First Encountered Water = Static Water s\LO490000\LO492301\0000\ldfx and dat temp\boring_well HSA 2000 e: 10/23/2014 Created/Edited by: Geoff Bishop		Elev. NA ft amsl NA ft amsl	

Drill Drill Drill Rig	e Start/Finis ing Compar er's Name: ing Method: Type: CME 7 ppling Method	i y: Jet Gary Bi Hollow 75	Drilliı uss v Ste	m Aı		Spoor	1	E C B SI	orthing: NA asting: NA asing Elevation: NA orehole Depth: 5 ft orehole Diameter: 8" urface Elevation: NA escriptions By: Brent Anderson		es Metropolita		portation		
DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigra	Stratigraphic Description					
0					0.0		SP		POORLY GRADED SAND (0, 85, 15, 0), dry, fine gra	ained, rounded.					
- 5					0.0		SP		POORLY GRADED SAND (0, 100, 0, 0), slightly moi	subangular.					
- 10	Image: Second									ction.					
-															
- 15	15 Image: Constraint of the second secon														
Projec	Infrastructure - Water - Environment - Buildings								bove mean sea level; bgs = below ground surfa , NA = not applicable/available; ppm = parts per 0) = %(gravel, sand, silt, clay) First Encountered Water = Static Wate s\LO490000\LO492301\0000\ldfx and dat temp e: 10/23/2014 Created/Edited by:	r million r \boring_well HSA 2007	Date NA VA NA NA O 7 analytical US		Elev. NA ft amsl NA ft amsl 25 ft per p ge: 1 of 1		

Drilli Drille Drilli Rig	e Start/Finis ing Compar er's Name: ing Method: Type: CME 7 pling Metho	i y: Jet Gary Bi Hollow 75	Drilliı uss v Ste	m Aı	-	Spoor	1	E C B S	orthing: NA asting: NA asing Elevation: NA orehole Depth: 20 ft orehole Diameter: 8" urface Elevation: NA escriptions By: Brent Anderson	Well/Boring ID: B-04 Client: Los Angeles Metropolitan Transportation Authority Location: MTA Metro 410 Center Street Los Angeles, California						
DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigrap	hic Description						
0								Decomposed brick mixed with fill, sand and trace fine gravel, metal debris.								
- 5								Unknown fill objects impeading auger rods, concrete structure.								
- 15																
In	frastructure -1	Nater - El	nviroi	nmer	nt · Bui	ildings	a ft (!	/' = feet 5, 95, 0, 1 ✓ =	bove mean sea level; bgs = below ground surfac , NA = not applicable/available; ppm = parts per 0) = %(gravel, sand, silt, clay) First Encountered Water = Static Water	million NA						

Client: Los Angeles Metropolitan	Transportation Authority
----------------------------------	--------------------------

Well/Boring ID: B-04

	ite Location MTA Metro 410 Center Los Angele	Street	ornia						Borehole Depth:	20 ft		
DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigraphic Description			
- 20									Boring terminated @ ~20' bgs due to broken auger.			
- 25												
- 30	0											
- 35												
	Infrastructure · Water · Environment · Buildings							t/' = feet 5, 95, 0, 1 ✓ =	ks: bove mean sea level; bgs = below ground surface; Dia. = diameter; , NA = not applicable/available; ppm = parts per million 0) = %(gravel, sand, silt, clay) First Encountered Water = Static Water s\LO490000\LO492301\0000\ldfx and dat temp\boring_well HSA 20	Date NA NA	ter Level I Depth NA ft bgs NA btoc	Elev. NA ft amsl NA ft amsl

Created/Edited by: Geoff Bishop

Drilli Drille Drilli Rig	Start/Finis ing Compar er's Name: ing Method Type: CME pling Metho	ny : Jet Gary B : Mud F 75	Drillii uss Rotar	ng y		t Spoor	n	E C B S	Northing: NA Well/Boring ID: B-05 Easting: NA Casing Elevation: NA Borehole Depth: 49 ft Borehole Diameter: 8" Surface Elevation: NA Descriptions By: Brent Anderson (8/22) James Gonzales (8/25)					
DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigrap	Stratigraphic Description				
-0 -0 <td< td=""><td></td></td<>														
-				16				<u></u>	WELL GRADED SAND (2, 89, 9, 0). verv dark brown	(10YR 2/2), medium- to coarse-grained, subrounded to				
In Projec	ofrastructure - ct: LO49230 File: B-05.da	Water · E	nviro	D	nt · Bu	ildings	a ft ({ -	emar msl = a /' = feet prilled to 5, 95, 0, = Plot\Log	ks: bove mean sea level; bgs = below ground surface , NA = not applicable/available; ppm = parts per 0 17.5 ft bgs on 8/22/14. 0) = %(gravel, sand, silt, clay) First Encountered Water	ce; Dia. = diameter; million Water Level Data Date Depth Elev. NA NA NA t amsl NA NA btoc NA t amsl NA t amsl NA NA t amsl NA Starse NA Starse NA Starse NA Starse NA Starse NA Starse NA Starse				

Well/Boring ID: B-05

Borehole Depth: 49 ft

MTA Metro 410 Center Street Los Angeles, California

DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigraphic Description			
	D 05 40	MCS 2.0	1.5	38 23	0.0	GS	sw		subangular, trace fine subangular gravel, trace silt.			
— 20	B-05-19											
	B-05-24	MCS 2.0	1.5	22 31 50	0.0	GS	sw		WELL GRADED SAND (0, 90, 8, 2), very dark brown (10YR 2/2), medium- to c subangular, trace fine subangular gravel, trace silt.	oarse-grained, su	brounded to	
- 25	B-05-28	MCS 2.0	0.4	50-5"	0.0		SW		WELL GRADED SAND (20, 80, 0, 0), very dark grayish brown (10YR 3/2), mec to medium gravel.			
30												
- 35	B-05-33	MCS 2.0	0.75	50 50-3"	0.0		SW		Same as above.			
								emar	ke.	Water		Data
amsl = above mean sea level; bgs = below ground surface; Dia. = diameter; ft/ = feet NA = not applicable/available: nom = parts per million												
	A 	RC	A	D	IS				17.5 ft bgs on 8/22/14.	8/25/14 포	NA ft bgs	NA ft amsl
	frastructure ·								0) = %(gravel, sand, silt, clay) First Encountered Water = Static Water	NA 🔿	NA btoc	NA ft amsl
	oject: LO492301.0000 Template:G:\Projects\LogPlot\Logs\LO490000\LO492301\0000\ldfx and dat temp\boring_well HSA 2007 analytical USCS WL_25 ft per p tata File:B-05.dat Date: 10/23/2014 Created/Edited by: Geoff Bishop Page: 2 of 3											

Client:	Los Angeles	Metropolitan	Transportation	Authority
---------	-------------	--------------	----------------	-----------

Well/Boring ID: B-05

Site Location: Borehole Depth: 49 ft MTA Metro 410 Center Street Los Angeles, California Geologic Column Recovery (feet) Sample Type Blow Counts USCS Code Stratigraphic Description Sample ID PID (ppm) Lab Tests DEPTH 40 WELL GRADED SAND (35, 65, 0, 0), very dark gray (10YR 3/1), medium- to coarse-grained, subrounded, fine to B-05-38 0.9 SW MCS 2.0 0.0 medium gravel, rounded. 50-5 - 40 20 WELL GRADED SAND (20, 79, 1, 0), very dark gray (10YR 3/1), subrounded, fine to coarse gravel, subangular, trace B-05-43 silt. 37 MCS 2.0 1.5 SW 48 - 45 28 Same as above. B-05-48 44 sw MCS 2.0 1.5 49 Bottom of boring at 49 ft bgs. - 50 - 55 Remarks: Water Level Data amsl = above mean sea level; bgs = below ground surface; Dia. = diameter; Date Depth Elev. ft/' = feet, NA = not applicable/available; ppm = parts per million RCADIS NA NA 8/25/14 👳 Drilled to 17.5 ft bgs on 8/22/14. ft bgs ft amsl (5, 95, 0, 0) = %(gravel, sand, silt, clay) Infrastructure · Water · Environment · Buildings NA NA NA 0 ∇ = Static Water = First Encountered Water btoc ft amsl Ο Template:G:\Projects\LogPlot\LogS\LO490000\LO492301\0000\/dfx and dat temp...\boring_well HSA 2007 analytical USCS WL_25 ft per p Project: LO492301.0000

Drilli Drille Drilli Rig 1	e Start/Finis ing Compar er's Name: ing Method: Type: CME 7 pling Metho	ny : Jet Gary B : Mud F 75	Drillii uss Rotar	y	Split	Spoor	1	E C B S	orthing: NA asting: NA asing Elevation: NA orehole Depth: 49 ft orehole Diameter: 8.25" urface Elevation: NA escriptions By: Ali Zafarani	Well/Boring ID: B-06 Client: Los Angeles Metropolitan Transportation Authority Location: MTA Metro 410 Center Street Los Angeles, California
DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigrap	hic Description
- 0 -							sw		4" Asphalt at surface. Aggregate Base Fill. 6" Concrete slab.	
10	B-06-9	MCS 2.0	1.5	16 17 21	0.0		SW		WELL GRADED SAND (5, 95, 0, 0), brown (7.5YR 4/3 gravel, trace silt.	3), moist, fine- to coarse-grained, subrounded, fine to medium
15	B-06-13 MCS 0.45 50-5" 0.0									0YR 3/1), moist, medium- to coarse-grained, subangular, trace fine
In	frastructure	Water · E	nviroi	nmen	nt · Bui	ldings	ai ft/ (5	" = feet 5, 95, 0, (☑ =	ks: bove mean sea level; bgs = below ground surfac , NA = not applicable/available; ppm = parts per 0) = %(gravel, sand, silt, clay) First Encountered Water = Static Water	million 8/25/14 → NA NA ft bgs ft amsl NA ∩ NA NA

Well/Boring ID: B-06

Borehole Depth: 49 ft

MTA Metro 410 Center Street Los Angeles, California

DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigraphic Description		
		MCS 2.0	1.35		0.0	GS,	SW		gravel.		
-	B-06-19	2.0		20		MC		<u></u>			
- 20											
-											
-											
			<u> </u>	28	-		<u> </u>				
-	B-06-23	MCS	0.75	20 50-3"			sw	•••••	Same as above.		
		2.0						<mark></mark>			
- 25											
L											
-											
				38	1				WELL GRADED SAND (2, 92, 6, 0), very dark gray (10YR 3/1), moist, fine- to o	coarse-grained, subangular,	trace gravel.
		MCS 2.0	1.2	35	0.0	GS,	SW				
-	B-06-29			42		MC	<u> </u>				
- 30											
-											
					-		<u> </u>				
-		MCS	1.2	30 39	0.0		sw		Same as above.		
	B-06-34	2.0		43							
- 35											
								emar	ks:	Water Level	Data
							а	imsl = a	bove mean sea level; bgs = below ground surface; Dia. = diameter; , NA = not applicable/available; ppm = parts per million	Date Depth	Elev.
	A 	RC	Δ	D	15			. 1001		8/25/14 _ NA ft bgs	NA ft amsl
	frastructure ·						(5, 95, 0,	0) = %(gravel, sand, silt, clay)		
	and the set of the set of the	- rester to				an ga	= First Encountered Water = Static Water				
Projec	ct: LO49230	1.0000	Те	mpla	ate:G	:\Projec	ts\LogF	Plot\Log	s\LO490000\LO492301\0000\ldfx and dat temp\boring_well HSA 200		
Data F	File: B-06.da	t						Date	e: 10/23/2014 Created/Edited by: Geoff Bishop	Pa	age: 2 of 3

Client: Los Angeles Metropolitan Transportation Authority Well/Boring ID: B-06 Site Location: Borehole Depth: 49 ft MTA Metro 410 Center Street Los Angeles, California Geologic Column Recovery (feet) Sample Type Blow Counts USCS Code Stratigraphic Description Sample ID PID (ppm) Lab Tests DEPTH No Recovery. 0.0 MCS 2.0 _____ - 40 WELL GRADED SAND (5, 95, 0, 0), black (10YR 2/1), wet, fine- to coarse-grained, subrounded, trace fine gravel. 0.45 50-5" 0.0 sw MCS B-06-43 2.0 45 40 WELL GRADED SAND (5, 95, 0, 0), black (10YR 2/1), wet, fine- to coarse-grained, subrounded, trace medium gravel. 2.1 SW 42 MCS 1.35 2.0 50 B-06-48 Bottom of boring at 49 ft bgs. - 50 - 55 Remarks: Water Level Data amsl = above mean sea level; bgs = below ground surface; Dia. = diameter; Date Depth Elev. ft/' = feet, NA = not applicable/available; ppm = parts per million RCAD NA NA 8/25/14 👳 ft bgs ft amsl (5, 95, 0, 0) = %(gravel, sand, silt, clay) Infrastructure · Water · Environment · Buildings NA NA NA 0 ∇ = Static Water = First Encountered Water btoc ft amsl Ο

Drilli Drille Drilli Rig 1	Start/Finis ing Compar er's Name: ng Method rype: CME 5 pling Metho	ıy: Jet Gary B : Hollov 75	Drillii uss v Ste	m Aı		Spoor	1	E C B S	orthing: NA asting: NA asing Elevation: NA orehole Depth: 50 ft bgs orehole Diameter: 8" urface Elevation: NA escriptions By: Brent Anderson	Authority Location: MTA N 410 Ce	es Metropolitan Trans	portation
DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigrap	phic Description		
- 0							sw		SAND Fill and asphalt debris.			
- 5	B-07-5	MCS 2.0	0.5		0.0		SW		WELL GRADED SAND (5, 95, 0, 0), dark reddish bro	wn (5YR 3/2), dry, fine- to	very coarse-grained, subang	ular.
- 10	B-07-10	MCS 2.0	0.25	50-3"		GS, MC	SW		WELL GRADED SAND (12, 79, 9, 0), dark reddish br recovery.		o very coarse-grained, suban	gular, poor
15	B-07-15	MCS 2.0	1.5	11 17 20	0.0	GS, MC	sw		WELL GRADED SAND (29, 66, 5, 0), brown (10YR 5,	/3), dry, fine- to coarse-gra	ined, angular.	
In	frastructure - t: LO49230	Water · E	nviro	nmen	nt · Bu	ildings	ai ft/ (5	" = feet 5, 95, 0, 1 ☑ =	KS: bove mean sea level; bgs = below ground surfar , NA = not applicable/available; ppm = parts per D) = %(gravel, sand, silt, clay) First Encountered Water = Static Water s\LO490000\LO492301\0000\ldfx and dat temp.	million r	Water Level I Date Depth 8/21/14 \checkmark 8/21/14 \checkmark RA \bigcirc NA \bigcirc NA \bigcirc	Elev. NA ft amsl NA ft amsl

Well/Boring ID: B-07

Site Location:

MTA Metro 410 Center Street Los Angeles, California Borehole Depth: 50 ft bgs

DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigraphic Description			
- 20	B-07-20	MCS 2.0	1.5	25 28 35	0.0	GS, MC	SW		WELL GRADED SAND (7, 88, 5, 0), dark reddish brown (5YR 3/2), dry, fine- to	coarse-grained, subrounded.		
-												
- 25 -	B-07-25 MCS 2.0 27 50-5* 0.0 WELL GRADED SAND (20, 80, 0, 0), dark reddish brown (5YR 3/3), dry, fine- to very coarse-grained, angular, some fine to coarse gravel, trace crushed rock, mica.											
- 30	B-07-30 B-07-3											
- 35	- 35 B-07-30 MCS 2.0 0.4 50-5" GP B Same as above, saturated.											
<i>In</i> Projec	Remarks: Water Level Data amsl = above mean sea level; bgs = below ground surface; Dia. = diameter; Date Depth Elev. hfrastructure · Water · Environment · Buildings (5, 95, 0, 0) = %(gravel, sand, silt, clay) Image: Static Water NA NA Project: LO492301.0000 Template:G:\Projects\Log\$\LO490000\LO492301\0000\LO492301\0000\LO492301\0000\Log\$ Static Water NA NA Project: LO492301.0000 Template:G:\Projects\Log\$\LO490000\LO492301\0000\LO492301\0000\Lo492301\0000\Log\$ Created/Edited by: Geoff Bishop Page: 2 of 3											

Well/Boring ID: B-07

Borehole Depth: 50 ft bgs

MTA Metro 410 Center Street Los Angeles, California

Site Location:

DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigraphic Description		
- 40 -	B-07-40	MCS 2.0	0.7	44 50-2"	0.0		sw		WELL GRADED SAND WITH GRAVEL (40, 60, 0, 0), very dark gray (10YR 3/ subangular, fine to coarse gravel.	I), wet, fine- to coarse-grained	
- 45	B-07-45	MCS 2.0	1.5	20 33 50	0.0		SP		POORLY GRADED SAND (0, 100, 0, 0), dark gray (10YR 4/1), wet, fine-graine	d, subangular.	
- 50 -	B-07-50	MCS 2.0	1.5	14 20 20			sw		WELL GRADED SAND (5, 95, 0, 0), dark gray (10YR 4/1), wet, fine- to medium Bottom of boring at 50 ft bgs.	n-grained, subangular.	
In	frastructure - t: LO49230	Water · E	nviror	nmen	t∙Bui	ildings	a ft (5	/' = feet 5, 95, 0, (=	ks: bove mean sea level; bgs = below ground surface; Dia. = diameter; , NA = not applicable/available; ppm = parts per million 0) = %(gravel, sand, silt, clay) First Encountered Water = Static Water s\LO490000\LO492301\0000\ldfx and dat temp\boring_well HSA 200	Water Level DDateDepth8/21/14 \checkmark $\frac{28}{\text{ft bgs}}$ NA \bigcirc NA btoc	Elev. NA ft amsl NA ft amsl

Data File: B-07.dat

Date: 10/28/2014

Created/Edited by: Geoff Bishop

Drilli Drille Drilli Rig	e Start/Finis ing Compar er's Name: ing Method Type: CME	ıy : Jet Gary B : Hollov 75	Drillii uss v Ste	m Aı	-	t Spoor	٦	E C B S	orthing: NA asting: NA asing Elevation: NA orehole Depth: 44 ft bgs orehole Diameter: 8" urface Elevation: NA escriptions By: Brent Anderson	Authority Location: MTA M 410 C	les Metropolitan Transportation
DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigra	ohic Description	
	B-08-5	MCS 2.0	0.5		0.0		SP		POORLY GRADED SAND Fill (5, 95, 0, 0), brown (10	DYR 4/3), dry, fine-grained	1, subrounded.
- 10	B-08-10	MCS 2.0	1.5	9 14 20	0.0	GS, MC	sw		WELL GRADED SAND (30, 66, 4, 0), reddish gray (5	YR 5/2), dry, fine- to coar	se-grained, rounded, little fine gravel.
- 15	B-08-15	MCS 2.0	1.5	20 23 40	0.0		sw		Same as above, micaceous.		
In Projec	frastructure -	Water • E	nviro	nmen	nt · Bu	ildings	ai ft. (5	/' = feet 5, 95, 0, ✓ = Plot\Log	ks: bove mean sea level; bgs = below ground surfa , NA = not applicable/available; ppm = parts per 0) = %(gravel, sand, silt, clay) First Encountered Water = Static Wate s\LO490000\LO492301\0000\ldfx and dat temp. e: 10/23/2014 Created/Edited by:	r r \boring_well HSA 200	Water Level Data Date Depth Elev. 8/21/14

Well/Boring ID: B-08

Borehole Depth: 44 ft bgs

MTA Metro 410 Center Street Los Angeles, California

DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigraphic Description					
- 20	B-08-20	MCS 2.0	1.5	26 32 40	0.0	GS, MC	sw		WELL GRADED SAND (43, 52, 5, 0, reddish brown (5YR 4/3), dry, medium- to	coarse-grained, fi	ne subroun	ded gravel.		
- 25 B-08-25 MCS 0.9 43 50.5° GS, MC SW Crushed micaceous rock.														
- - 30	30 B-08-30 MCS 0.25 50-3* 0.0 SW Well GRADED SAND (10, 90, 0, 0), very dark grayish brown (10YR 3/2), moist, fine- to coarse-grained, subrounded.													
B-08-35 B-08-3														
Remarks: Water Level Data amsl = above mean sea level; bgs = below ground surface; Dia. = diameter; Date Depth Elev. bit if = feet, NA = not applicable/available; ppm = parts per million 8/21/14 30 NA bit if = feet, NA = not applicable/available; ppm = parts per million 8/21/14 30 NA bit if = feet, NA = not applicable/available; ppm = parts per million NA NA At amsl bit if = feet, NA = not applicable/available; ppm = parts per million NA NA At amsl bit if = feet, NA = not applicable/available; ppm = parts per million NA NA At amsl bit if = feet, NA = not applicable/available; ppm = parts per million NA NA At amsl bit if = feet, NA = not applicable/available; ppm = parts per million NA NA At amsl bit if = feet, NA = not applicable/available; ppm = parts per million NA NA At amsl														

Well/Boring ID: B-08

Borehole Depth: 44 ft bgs

MTA Metro 410 Center Street Los Angeles, California

DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigraphic Description				
_			-	20					POORLY GRADED SAND (15, 85, 0, 0), very dark gray (10YR 3/1), wet, mediu	m- to coarse-grained, subrounded.			
- 40	B-08-40	MCS 2.0	1.5	25 50-3"	0.0		SP						
_													
_													
_													
_	Bottom of boring at 44 ft bgs due to refusal.												
- 45													
_													
_													
_													
_													
- 50													
_													
_													
_													
_													
- 55													
								emar		Water Level Data			
		DC			10		a fi	amsl = a t/' = feet	bove mean sea level; bgs = below ground surface; Dia. = diameter; , NA = not applicable/available; ppm = parts per million	Date Depth Elev.			
							,		n) = % (arough cond cith clov)	8/21/14			
In	frastructure · \	vvater - E	nviroi	nmen	t Bui	idings	Image (5, 95, 0, 0) = %(gravel, sand, silt, clay) Image Image Image Image						
	ct: LO49230 File:B-08.da		Те	mpla	ite:G:	\Project	s\LogI		s\LO490000\LO492301\0000\ldfx and dat temp\boring_well HSA 200 e: 10/23/2014 Created/Edited by: Geoff Bishop	7 analytical USCS WL_25 ft per p Page: 3 of 3			

Drilli Drille Drilli Rig	e Start/Finis ing Compar er's Name: ing Method Type: CME pling Metho	ıy : Jet Gary B : Hollov 75	Drilliı uss v Ste	ng m Au	uger	t Spoor	1	E C B S	orthing: NA asting: NA asing Elevation: NA orehole Depth: 45 ft bgs orehole Diameter: 8" urface Elevation: NA escriptions By: Brent Anderson	Authority Location: MTA M 410 C	eles Metropolitan Trans	sportation
DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigra	ohic Description		
- 0							SP		POORLY GRADED SAND Fill (0, 90, 10, 0), dark yel subrounded.	lowish brown (10YR 3/4),	dry, fine- to medium-grained,	
- 5	B-09-5	MCS 2.0	0.5		0.0	GS, MC	SP		POORLY GRADED SAND (6, 93, 1, 0), dark yellowis angular.	h brown (10YR 3/4), dry, '	fine- to medium-grained, suba	angular to
- 10	B-09-10	MCS 2.0	1.5	9 12 25	0.0	DS	SP		Same as above, increased silt (0, 90, 10, 0).			
- 15	B-09-15	MCS 2.0	1.5	16 28 24	0.0	GS, MC	sw		WELL GRADED SAND (17, 79, 4, 0), brown (10YR 5	i/3), dry, fine- to coarse-gr	rained, subangular, trace fine	gravel.
In	frastructure -	Water · E	nviro	nmer	nt · Bu	ildings	a ft (!	/' = feet 5, 95, 0, 1 	ks: bove mean sea level; bgs = below ground surfa , NA = not applicable/available; ppm = parts per 0) = %(gravel, sand, silt, clay) First Encountered Water = Static Wate s\LO490000\LO492301\0000\ldfx and dat temp.	r	Water Level Date Depth 8/20/14	Elev. NA ft amsl NA ft amsl

Well/Boring ID: B-09

Borehole Depth: 45 ft bgs

MTA Metro 410 Center Street Los Angeles, California

DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigraphic Description			
- 20	B-09-20	MCS 2.0	1.5	27 18 27	0.0		sw		Same as above.			
- - - 25	B-09-25	MCS 2.0	1.5	20 25 33	0.0	GS, MC	sw		WELL GRADED SAND (4, 92, 4, 0), brown (10YR 5/3), dry, fine- to coarse-grai	ned, subangular.		
- - - 30	B-09-30 MCS 1.5 30 0.0 36						SP		POORLY GRADED SAND (5, 95, 0, 0), yellowish brown (10YR 5/6), moist, met	fium- to coarse-g	rained, subro	ounded.
- - - 35	B-09-35	MCS 2.0	1.5	41 50 50	0.0	GS, MC	SP		POORLY GRADED SAND (20, 73, 7, 0), yellowish brown (10YR 5/6), wet, med	ium- to coarse-gi	rained, subro	unded.
In Projec	frastructure - tr: LO49230 File: B-09.da	Water - E	nviror	nmen	nt · Bu	ildings	a ft (!	t/' = feet 5, 95, 0, (✓ = Plot\Log	kS: bove mean sea level; bgs = below ground surface; Dia. = diameter; NA = not applicable/available; ppm = parts per million b) = %(gravel, sand, silt, clay) First Encountered Water = Static Water s\LO490000\LO492301\0000\ldfx and dat temp\boring_well HSA 2000 b: 10/23/2014 Created/Edited by: Geoff Bishop	Date 8/20/14	NA btoc	Elev. NA ft amsl NA ft amsl

Client:	Los Angeles Metropolitan Transportation Authority
---------	---

Well/Boring ID: B-09

Borehole Depth: 45 ft bgs

MTA Metro 410 Center Street Los Angeles, California

DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigraphic Description		
- 40 -	B-09-40	MCS 2.0	0.75	50 50-3"	0.0		sw		WELL GRADED SAND (10, 90, 0, 0), very dark gray (10YR 3/1), wet, fine- to coarse-grained, subrounded, trace fine and coarse gravel.		
- - - 45	B-09-45	MCS 2.0	1.25	20 20 50-3"	0.0		sw		Same as above, increased gravel (25, 75, 0, 0). Bottom of boring at 45 ft bgs due to sheared rod.		
-											
50 - -											
- 55								emar	ks: Water Level Data		
In Projec	Project: LO492301.0000 Template:G:\Project Data File: B-09.dat								Water Level Data above mean sea level; bgs = below ground surface; Dia. = diameter; back Depth Elev. k, NA = not applicable/available; ppm = parts per million 0) = %(gravel, sand, silt, clay) First Encountered Water = Static Water (a) = %(gravel, sand, silt, clay) (b) = %(gravel, sand, silt, clay) (c) = %(gravel, sand, silt, clay) (c) = Static Water (c) = Static Water		

Drilli Drille Drilli Rig 1	Start/Finis ng Compar er's Name: ng Method Type: CME pling Metho	ny : Jet Gary B : Hollo\ 75	Drillii uss v Ste	m Au		t Spoor	1	E C B S	orthing: NA asting: NA asing Elevation: NA orehole Depth: 50 ft bgs orehole Diameter: 8" urface Elevation: NA escriptions By: Brent Anderson		les Metropolitan 1		ortation
DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigra	ohic Description			
- 0 -	B-10-5	MCS 2.0	0.5		0.0	MC, DS	SP		POORLY GRADED SAND WITH GRAVEL (50, 50, 0	, 0), dark yellowish brown	(10YR 4/4), dry, mediu	ım-graine	
- 10	B-10-10	MCS 2.0	1.5	24 32 32	0.0	GS, MC	GP	· · · · · · · · · · · · · · · · · · ·	•	wn (10YR 6/3), dry, fine- to) medium-grained, sub	rounded.	
15	B-10-15	MCS 2.0	1.5	20 28 34	0.0		GP	· · · · · · · · · · · · · · · · · · ·	Same as above, increasing grain size.				
Projec	frastructure - tr: LO49230 File: B-10.da	Water - E	nviro	nmer	nt · Bu	ildings	ai ft. (5	/' = feet 5, 95, 0, ∽ = Plot\Log	ks: bove mean sea level; bgs = below ground surfa x, NA = not applicable/available; ppm = parts per 0) = %(gravel, sand, silt, clay) First Encountered Water = Static Wate s\LO490000\LO492301\0000\ldfx and dat temp. e: 10/23/2014 Created/Edited by:	r r \boring_well HSA 200	8/29/14 <u></u> 31 NA <u>NA</u> <u>NA</u>	pth ogs A oc WL_25	Elev. NA ft amsl NA ft amsl

Well/Boring ID: B-10

Borehole Depth: 50 ft bgs

MTA Metro 410 Center Street Los Angeles, California

DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigraphic Description		
- 20	B-10-20	MCS 2.0	1.5	25 28 44	0.0	GS, MC	GP	. ⊻ ⊠ . ⊠	POORLY GRADED GRAVEL (58, 38, 4, 0), light brownish gray (2.5Y 6/2), dry, subrounded.	medium- to very coarse-ç	
- 25	B-10-25	MCS 2.0	1.5	33 45 30	0.0		sw		WELL GRADED SAND (15, 85, 0, 0), light yellowish brown (2.5Y 6/3), slightly n subangular.	noist, fine- to very coarse-	grained,
- 30	B-10-29	MCS 2.0	1.5	30 36 40	0.0	GS, MC	SP		POORLY GRADED SAND (20, 73, 7, 0), dark gray (7.5YR 4/1), wet, medium-g	rained, subrounded.	
35	B-10-35	MCS 2.0	1.5	20 25 38	0.0	GS, MC	SP		POORLY GRADED SAND (32, 60, 8, 0), dark gray (7.5YR 4/1), wet, medium-g gravel.	rained, subrounded. 30%	fine to coarse
Infrastructure · Water · Environment · Buildings							a ft ({	/' = feet	KS: bove mean sea level; bgs = below ground surface; Dia. = diameter; NA = not applicable/available; ppm = parts per million 0) = %(gravel, sand, silt, clay) First Encountered Water = Static Water	Water LeveDateDept8/29/14 \checkmark $\overset{31}{\text{ft bgs}}$ NA \bigcirc NA btoc	n Elev.

Well/Boring ID: B-10

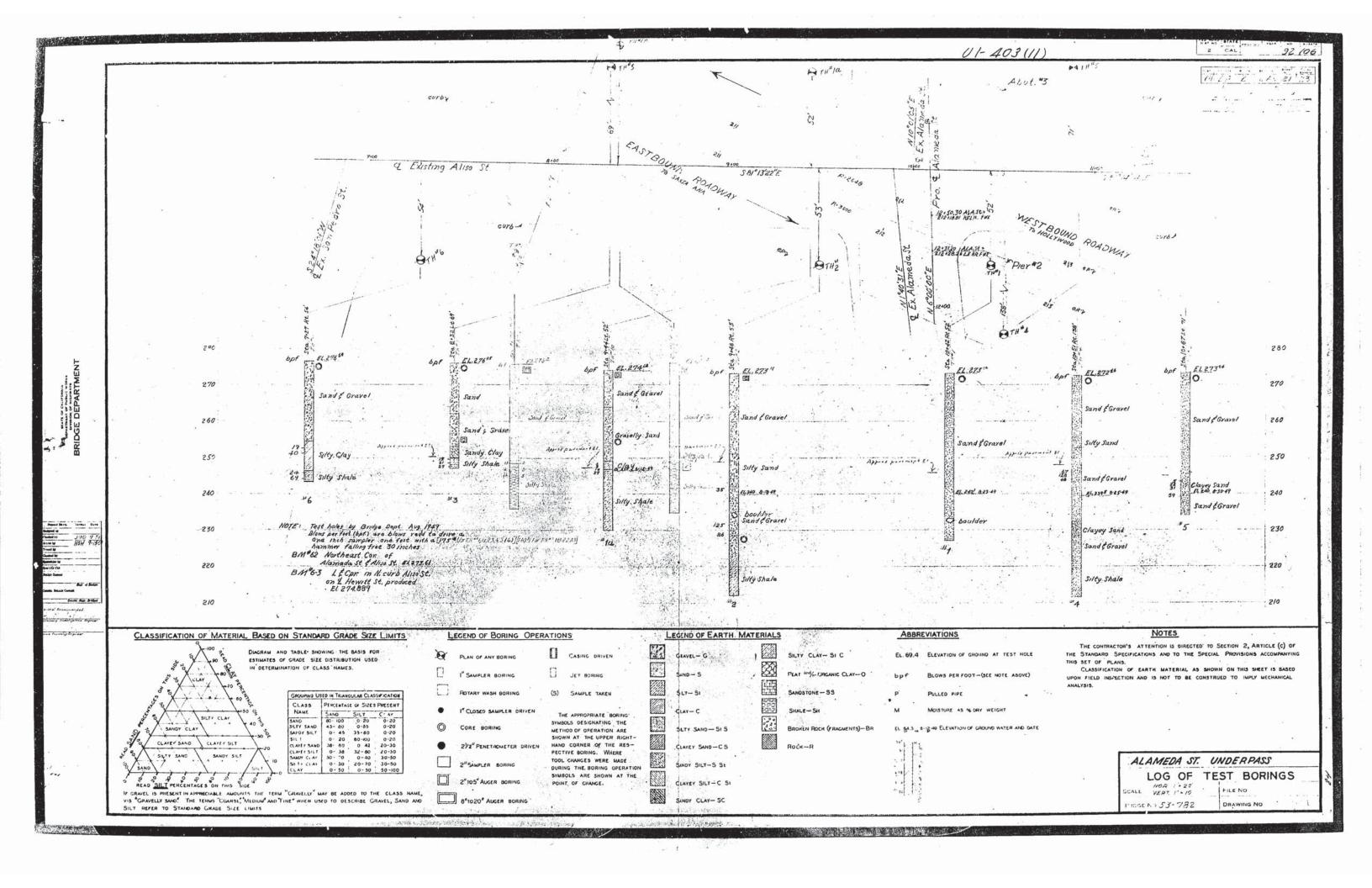
Borehole Depth: 50 ft bgs

MTA Metro 410 Center Street Los Angeles, California

Site Location:

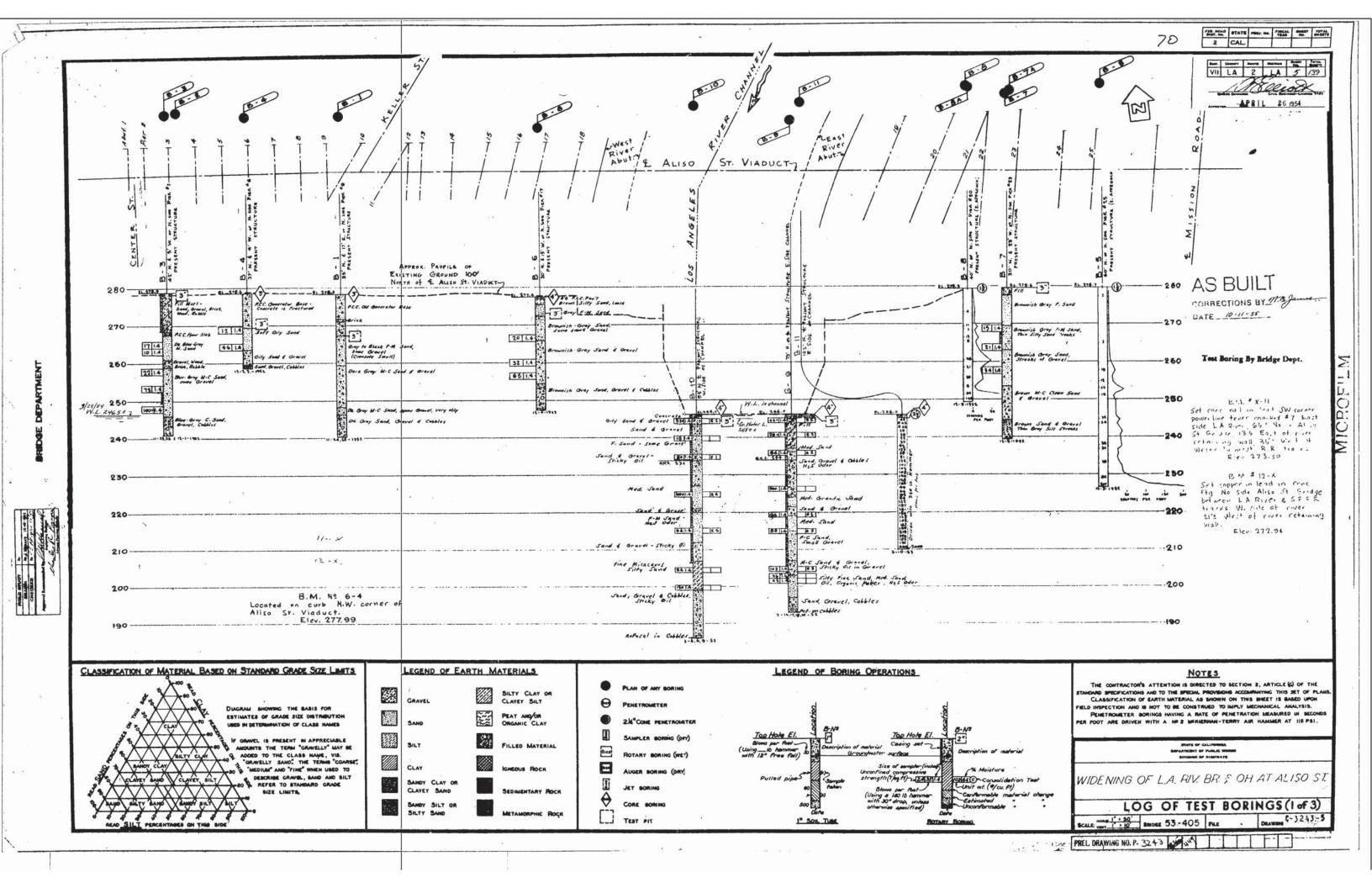
			-	-	_		_				
DEPTH	Sample ID	Sample Type	Recovery (feet)	Blow Counts	PID (ppm)	Lab Tests	USCS Code	Geologic Column	Stratigraphic Description		
- - 40 -	B-10-40	MCS 2.0	0.75	38 50-3"	0.0		SP		POORLY GRADED SAND (0, 100, 0, 0), dark gray (7.5YR 4/1), wet, medium-g	rained, subrounded.	
- 45	B-10-45	MCS 2.0	0.8	50 50-4"	0.0		SP		Same as above, 5% medium gravel.		
- - 50 -	B-10-50	MCS 2.0	0.9	50 50-5"	0.0		SP		Same as above, slight increase in grain size. Bottom of boring at 50 ft bgs.		
	A ה						a ft	/' = feet	ks: bove mean sea level; bgs = below ground surface; Dia. = diameter; , NA = not applicable/available; ppm = parts per million	Water LevelDateDepth8/29/14 \rightarrow 31 ft bgs	Data Elev. NA ft amsl
Infrastructure · Water · Environment · Buildings							-	∽ =	First Encountered Water = Static Water s\LO490000\LO492301\0000\ldfx and dat temp\boring_well HSA 200	NA NA btoc	NA ft amsl

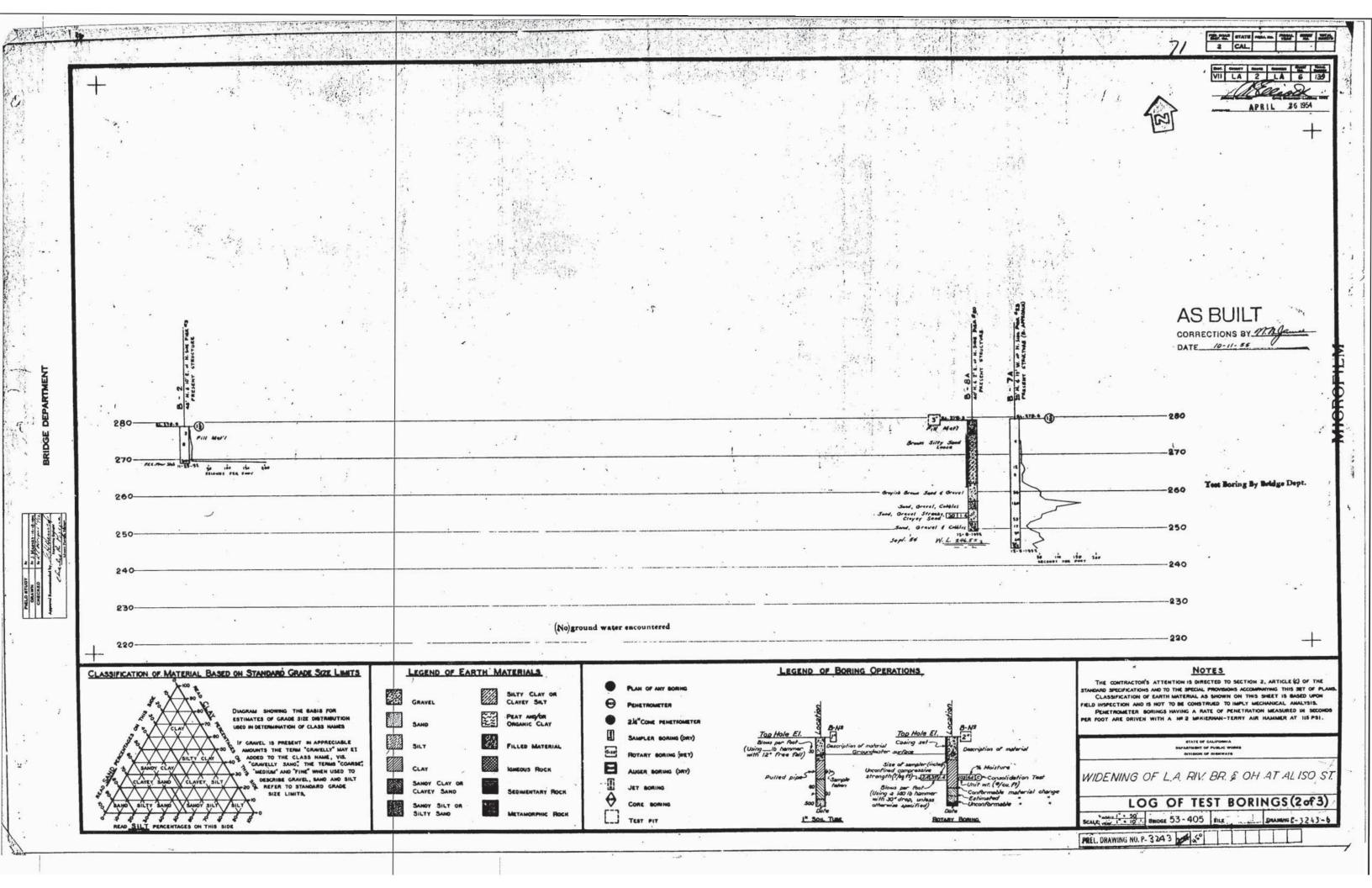
Data File: B-10.dat

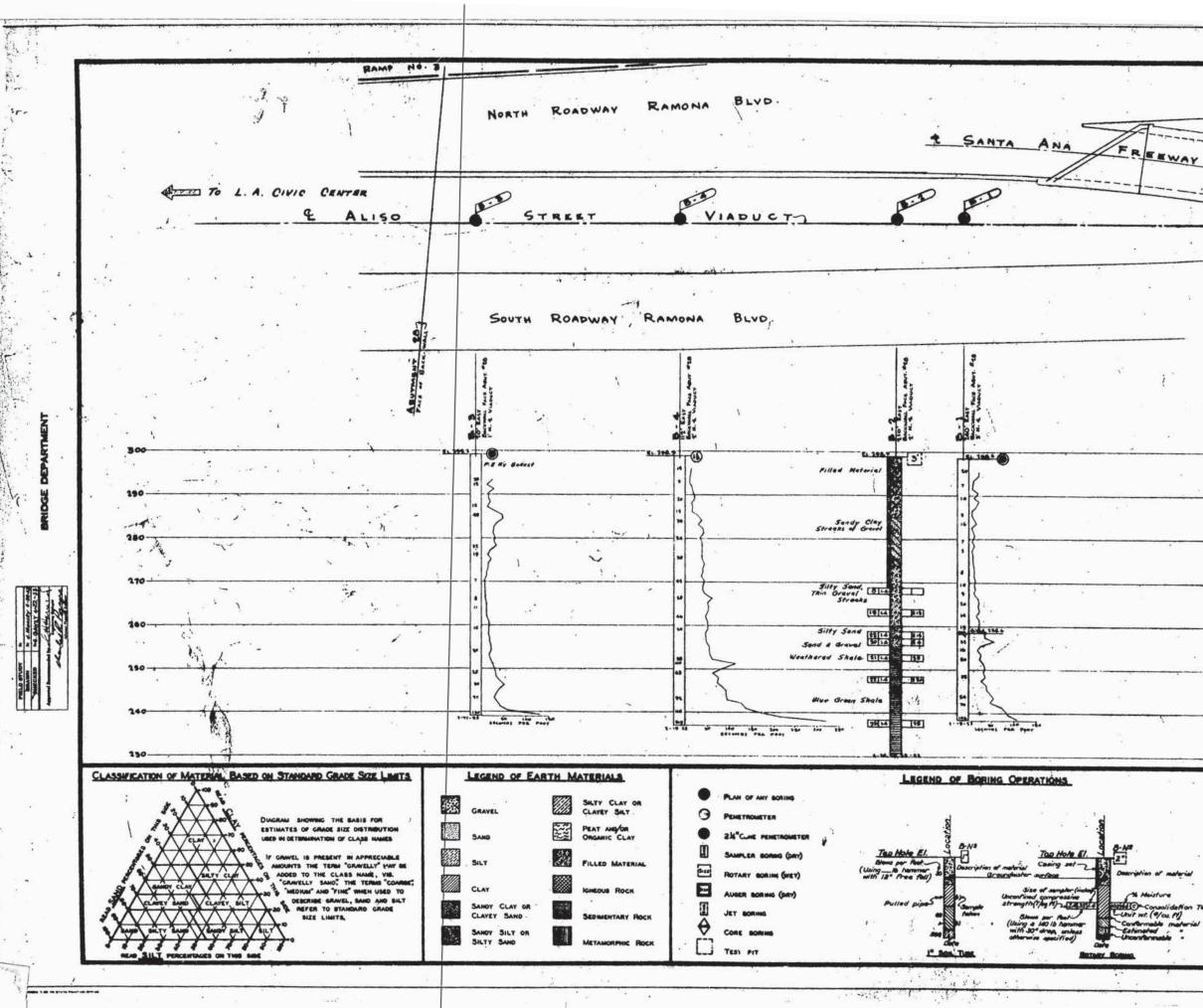

Created/Edited by: Geoff Bishop

Existing Geotechnical Boring Logs Caltrans (Updated)

(THIS PAGE INTENTIONALLY LEFT BLANK)



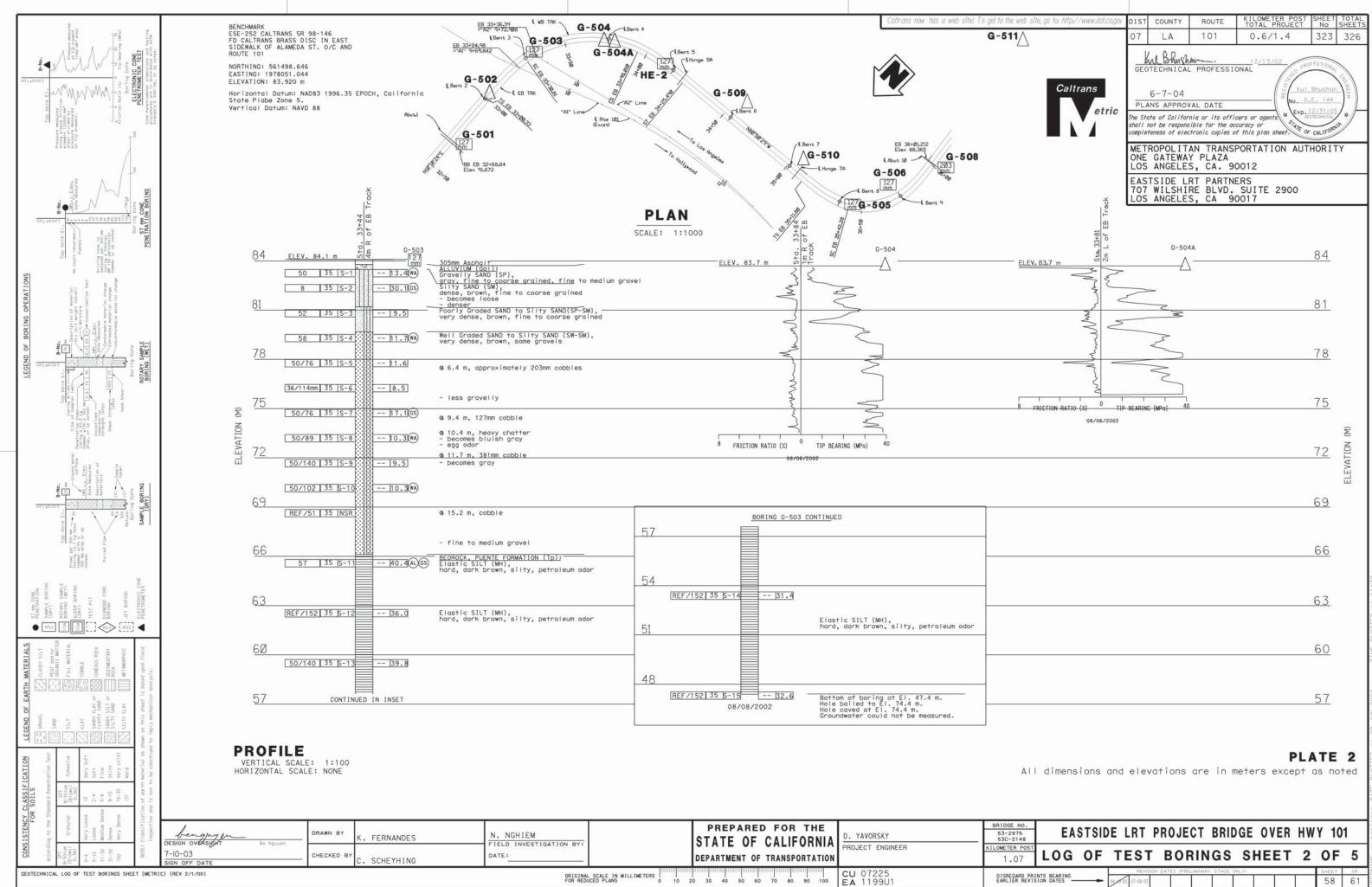

Existing Geotechnical Boring Logs Caltrans, 1954



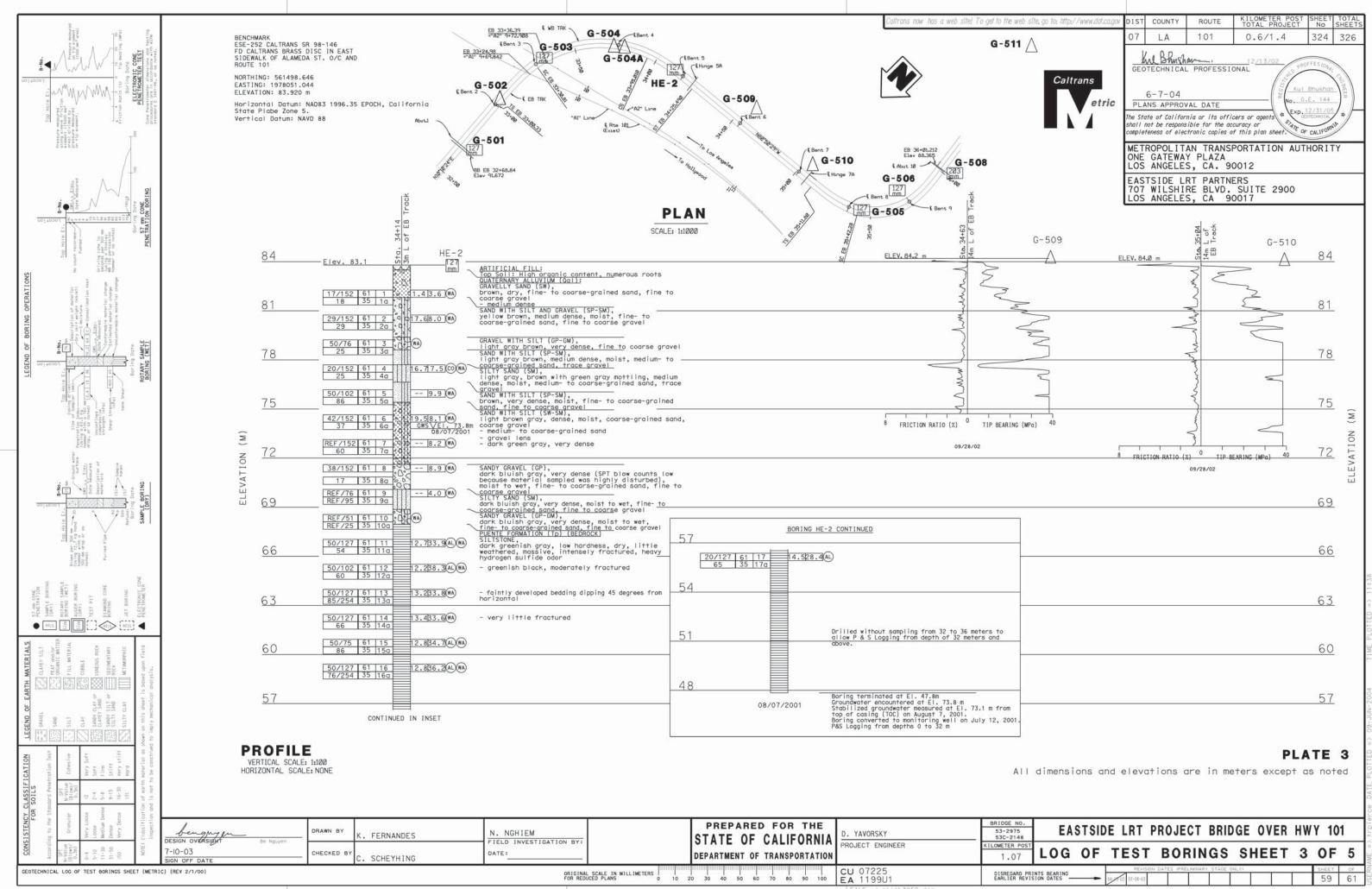
(THIS PAGE INTENTIONALLY LEFT BLANK)


2 GAL. 72 VIII LA 2 LA 7 137 APHIL 26 1954 MIDDLE ROADWAY R TO ALHAMBRA AS BUILT CORRECTIONS BY Maga 10-11-55 DATE Test Boring By Bridge Dept. 300 B.M. #6-5 Fd. No. side Aliso St. Viaduct on E. side L.A. River at West and of Rame Be in No. curb at SM. exercer at C.B. 66' E. at 2 Mission Rd, a sure spike in curb. Elev. 278.75 170 B.M. ⁴Y-11 Set conc. noil in-lead SW corner powerline tower marked #7 East side 1.A. River, 65't No. of Alico St. Bridge, 13.5 East of river retaining well, 35's Mast of Westerly most R.R. tracks. 260 Elev. 273.30 250 B.M. #12-X Set capper nail in lead in canc. Hg. N. side Aliso St. Bridge between LA. River & S.F.R.R. tracks, W. side of river. 21's West as river reteining well. Elev. 272.94 240 -230 NOTES THE CONTRACTOR'S ATTENTION IS DIRECTED TO SECTION &, ARTICLE (C) OF THE THE OPHTHACTORYS ATTENTION IS DIRECTED TO SECTION 2. ATTALLE () OF THE MADAD SPECTATIONS AND TO THE SPECAL PROVIDENS ACCOMPANYING THIS SET OF PLAN CLASSIFICATIONS AND TO THE SPECAL PROVIDENS ACCOMPANYING THIS SET OF PLAN CLASSIFICATION AND IS NOT TO BE CONSTRUCT TO MARY MECHANICAL ANALYSIS. PENETROMISTER BORNES HAVING A RATE OF PENETRATION MERSAFED IN SECOND OF POOT ARE DRIVEN WITH A MP 2 MERIERMAN-TERRY AIR HAMMER AT 13 PS1. STATE OF CALIFORNIA DEPARTMENT OF PUBLIC WORKS BITISHON OF MISSIWATS WIDENING OF L.A. RIV. BR. & OI! AT AL ISO ST. LOG OF TEST BORINGS(3 of 3) SCALE VENT 1' - 10' SHEDEE 53-405 FLE DRAWNE 6-3243-7 PREL DRAWING NO. P-3243

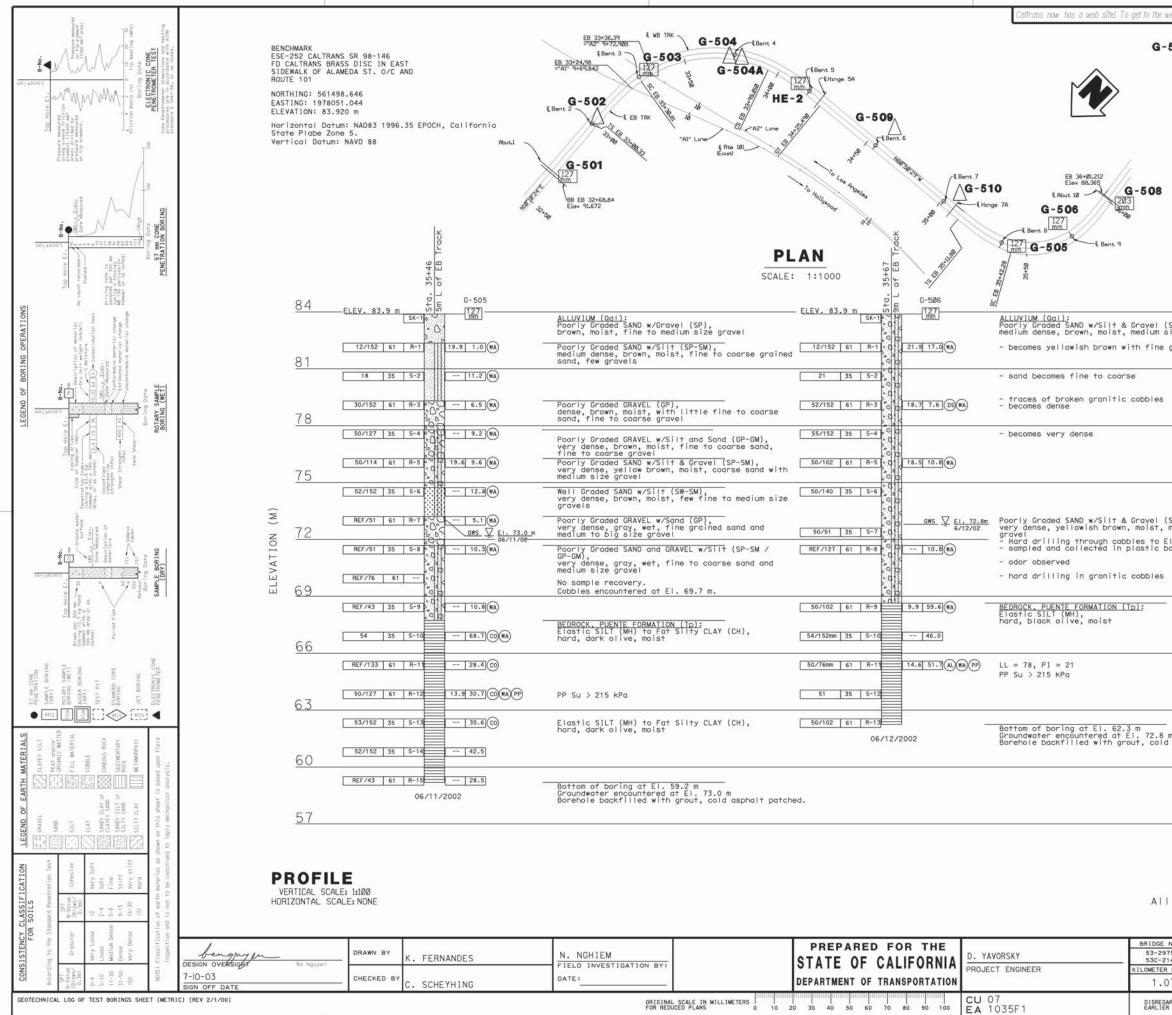
Existing Geotechnical Boring Logs Caltrans, 2004



(THIS PAGE INTENTIONALLY LEFT BLANK)



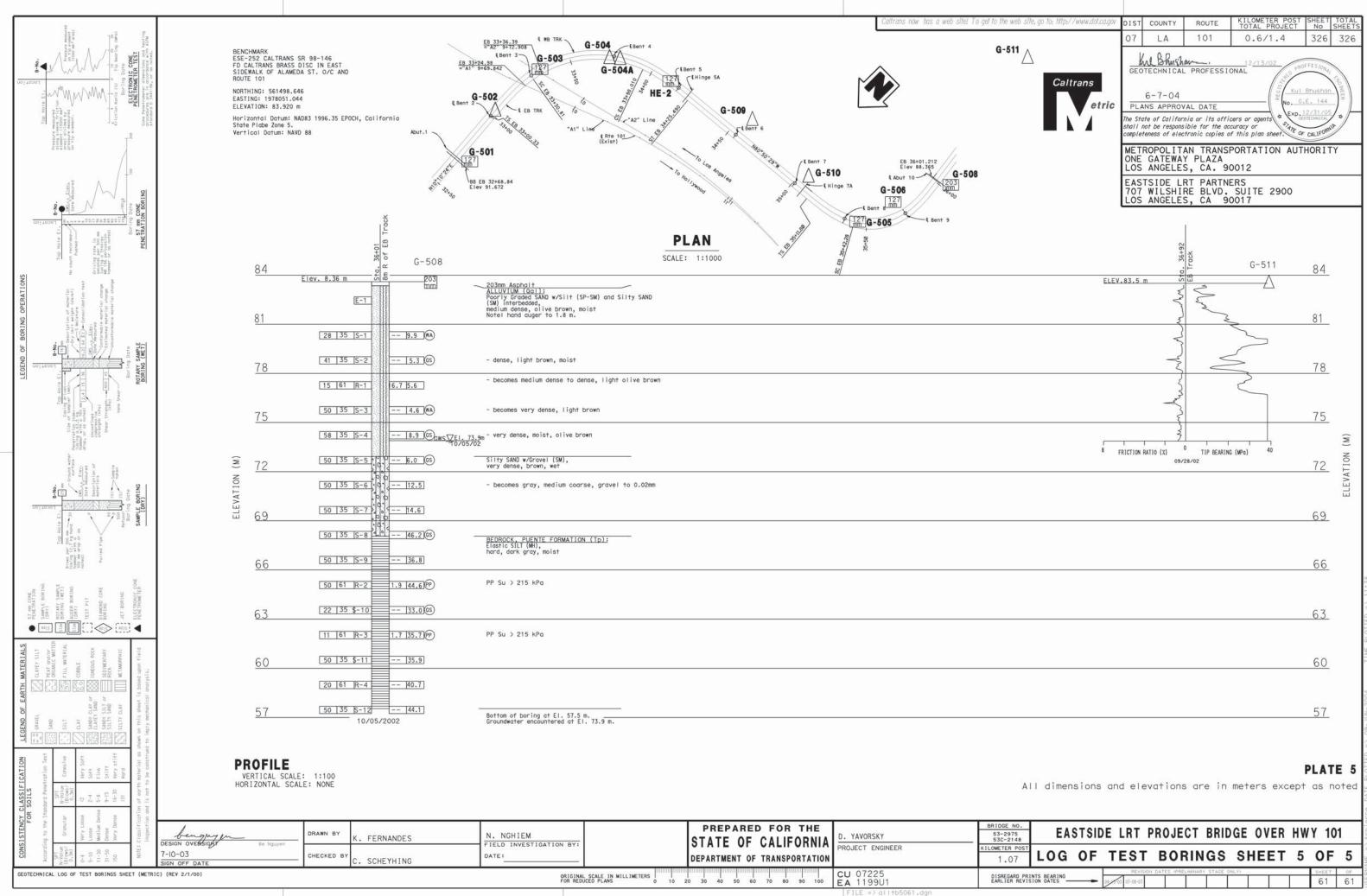
							leu-sea	
web site, go to: http:	//www.dot.ca.gov	DIST		ROUTE		TER POST PROJECT	SHEET No	TOTAL SHEETS
		07	LA	101	0.6/	1.4	322	326
Call	trans etric	PLA The Sta shall i comple MET ONE LOS EAS	6-7-04 ANS APPROV ate of Californ teness of elect ROPOLIT. GATEWA ANGELE TSIDE L	nia or its offi ible for the ac tronic copies o AN TRANSI Y PLAZA S, CA. 90 RT PARTNI	cers or agen curacy or f this plan PORTATI 0012 ERS	ts sheet.	Bhushan E. 144 12/31/05 OTECHNICAL	CNOWEER #
MMER DATA (ALL BOR	INGS)		WILSHI	RE BLVD. S, CA 90		2900		
OUTSIDE DIAMETER (mm)	INSIDE DIAMETER (mm)		TYPE OF HAMMER	WEIGHT OF HAMMER (KN)	HEIGHT DROF (mm)	>		
76.2	61.5		Automatic	Ø.623	762	2		
50.8	34.9		Automatic	Ø.623	762	:		
	Track				87			
	33+04 of EB							
LEV. 84.4 m	Am R o		G-502		84			
					04			
	July /				81			
। इ. ह	Muhum				78	EVATION (M)		
-	NN	0			75	ELEV		
	MM				72			
FRICTION RATIO		I ARING	(MPa) 40					
	08/06/2002				69			
					66			
				P	LATE	E 1		
ns and eleva	tions are	ın m	eters ex	cept as n	oted			
NO. 75 148	STSIDE I	LRT	PROJE	CT BRID	GE OV	ER H	WY 1	01
R POST	OF T	ES	т воі	RINGS	SHE	ET 1	OF	5
ARD PRINTS BEARING R REVISION DATES -		REV:	SION DATES IPRE	LIMINARY STAGE O	NLYS	ТТ	SHEET	61



			058.	

	EA	STSIC	DE LRT	PROJECT	BRID	GE	OVER	HW	Y 10	1
DST	LOG	OF	TEST	BORI	NGS	SI	IEET	2	OF	5
			REVIS	ION DATES IPRELIMIN	ARY STAGE O	INLY)	1. 1011		SHEET	Of
VIS	NTS BEARING	-	04-2-03 07-08-03						58	61

NO. '5 48	EA	STSI	DE LRT	PROJECT	BRID	GE C	VER	HW	Y 10	1
post 7	LOG	0F	TEST	BORIN	IGS	SHI	EET	3	OF	5
D PRI	NTS BEARING		REVISI	ON DATES IPRELIMINAR	Y STACE ON	LYI	- T	-	SHEET	OF
REVIS	ION DATES -	-	04-13-03 07-08-03						59	61


FILE => all+b4060.dgn

web site, go to: http://www.dot.ca.gov	DIST	COUNTY	ROUTE	KILOMETER POST TOTAL PROJECT	SHEET No	TOTAL SHEETS
	07	LA	101	0.6/1.4	325	326
Caltrans	PLA The Sta shall i comple MET ONE LOS EAS	6-7-04 ANS APPROV the of Califor not be respons teness of elec ROPOLIT GATEWA ANGELE TSIDE L	nia or its offi iible for the ac- tronic copies of AN TRANS Y PLAZA S, CA. 9 RT PARTN	cers or agents curracy or of this plan sheet. PORTATION AUT 0012 ERS	Bhushan E. 144 12/31/05 OTECHNICAL	CNOWEER #
	707	WILSHI	RE BLVD. S, CA 9	SUITE 2900		
(SP-SM), size gravel					84	
grained sand					81	
					78	
					75	
(SP-SM), medium size El. 71.9 m bag					72	ELEVATION (M
-					69	
					66	
					63	
d asphalt patched.					60	
					57	

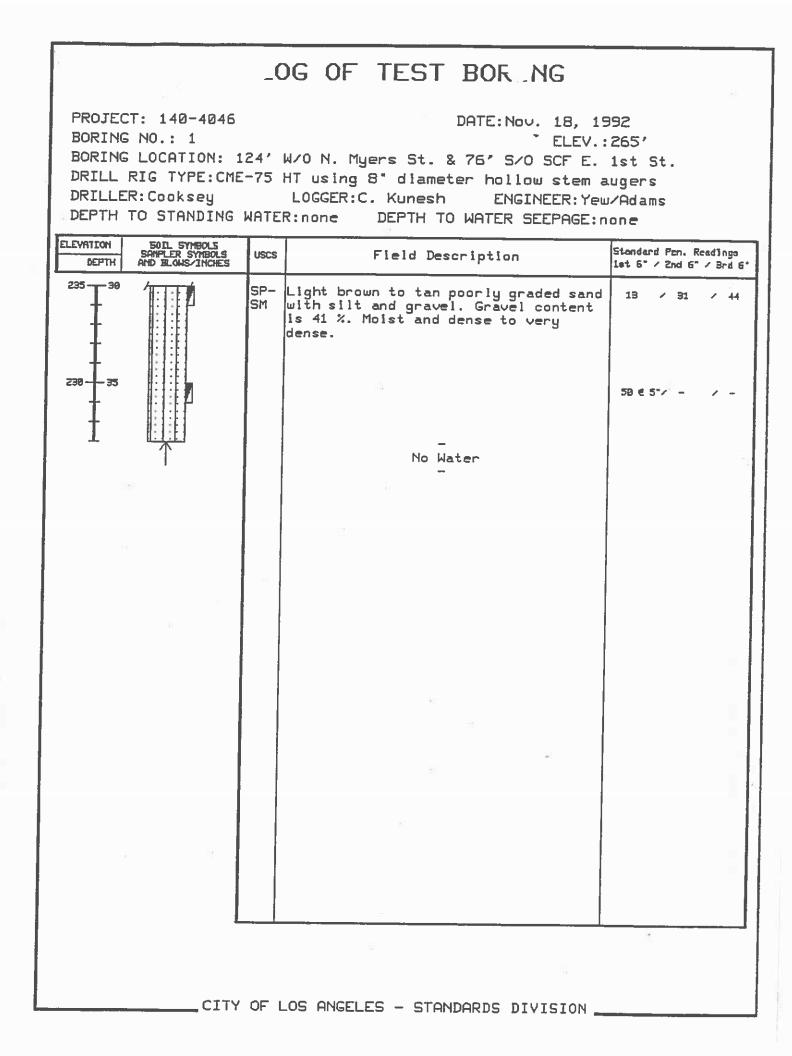
PLATE 4

All dimensions and elevations are in meters except as noted

75 148	EAS	STSI	DE LRT	PROJECT	BRID	GE OVER	HW	Y 10	1
R POST	LOG	OF	TEST	F BORI	NGS	SHEET	4	0F	5
ARD PRIN R REVISIO			REVI	SION DATES IPRELIMIN	ARY STAGE ONL	(Y)		SHEET	OF

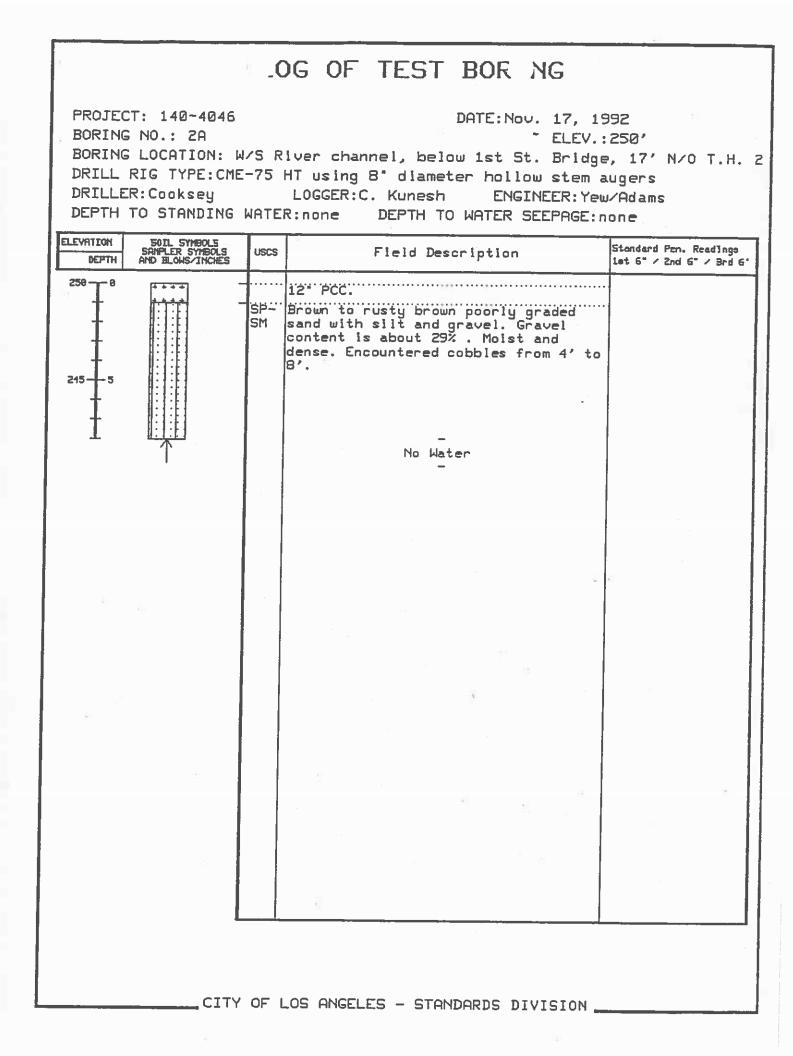
NO. 975 148	EA	STSIC	E LRT	PROJECT	BRID	GE	OVER	HW	Y 10	1
POST	LOG	0F	TEST	BORI	IGS	Sł	IEET	5	0F	5
RD PR1 REVIS	NTS BEARING ION DATES	-	REVIS	ON DATES IPRELIMINA	RY STAGE OF	VLY)	- T		SHEET 61	₀⊧ 61

Existing Geotechnical Boring Logs City of Los Angeles, 1993



LOG OF TEST BORING

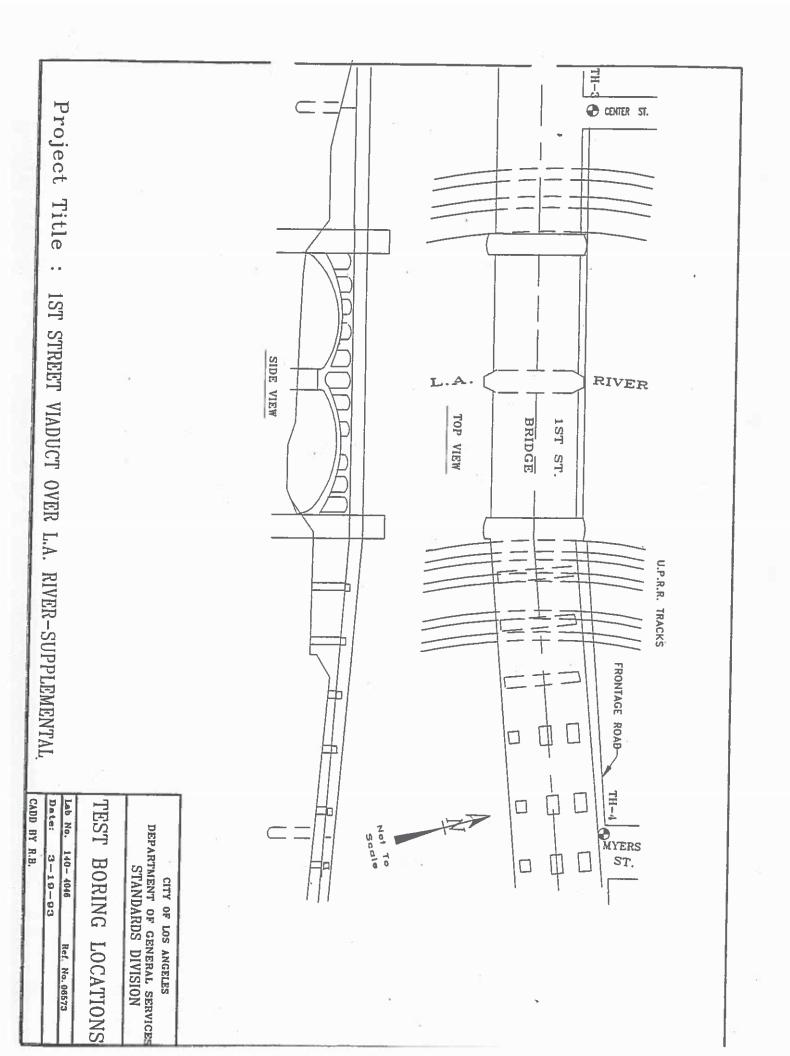
PROJECT: 140-4046DATE:Nov. 18, 1992BORING NO.: 1ELEV.:265'BORING LOCATION: 124' W/O N. Myers St. & 76' S/O SCF E. 1st St.DRILL RIG TYPE:CME-75 HT using 8' diameter hollow stem augersDRILLER:CookseyLOGGER:C. KuneshDEPTH TO STANDING WATER:noneDEPTH TO WATER SEEPAGE:none


DEPTH	5011. SYMBOLS SANPLER SYMBOLS AND BLOWS/INCHES	USCS	Field Description	Standa 1et 6*	rd Pa / Zn	n. R	cad)	inga Ərd
265 - 0		SÞ	Brown poorly graded sand with gravel. Trace of silt. Moist and dense.			8		_
268 - 5				Ð	1	6	,	9
55 18 		[511]	Light brown to tan, well graded sand with silt, granitic gravel and cobbles. Dry to moist and dense.	6	1	9	,	10
50 15 		101.1	Light brown to tan poorly graded sand with silt and gravel. Gravel content ranges from B% to 42% . Molst and dense to very dense.	12	/ 1	14	7	19
5-20				19	/ 3	9	1	18
25 				29	/ Э	Ð	1	24
- + 5	Baring Cantinues		æ .v					

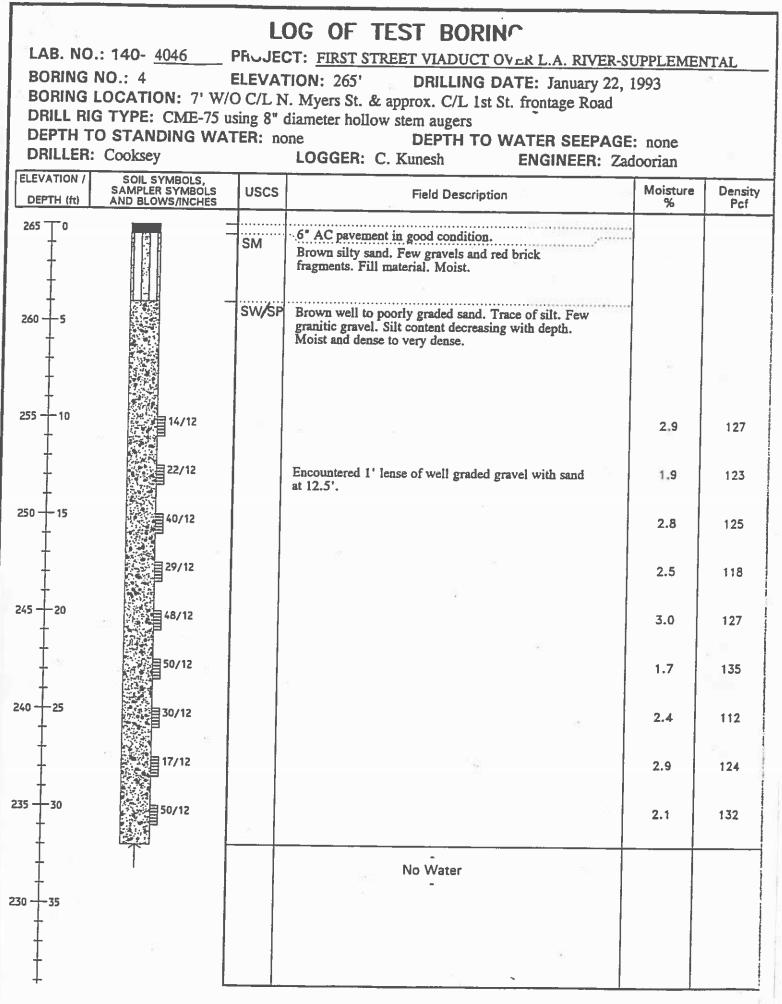
_CITY OF LOS ANGELES - STANDARDS DIVISION _

BORING DRILL DRILLE	RIG TYPE:CME R:Cooksey	-75	DATE:Nov. 13, 19 ELEV.: A. River channel, below 1st St. E. HT using 8° diameter hollow stem a LOGGER:C. Kunesh ENGINEER:Yeu R:none DEPTH TO WATER SEEPAGE:n	250' ridge ugers vAdams	
DEPTH	5011 Symbols Sanpler Symbols And Blows/Inches	USCS	Field Description	Standard Pen. Reading 1st 6" / 2nd 6" / 3rd	3 6'
250 0		SP- SM	12" PCC. Brown to rusty brown poorly graded sand with silt and gravel. Gravel content is 29%. Moist and dense. Encountered granitic cobbles from 4' to 10'.	8	
245 5			31	19 / 29 / 3	-
		GM	Brown to rusty brown well graded gravel with silt, sand and granitic cobbles. Sand content is 31% . Moist and dense. No Water	25 / 27 / 21	•
	5				
	2		e 2		

CITY OF LOS ANGELES - STANDARDS DIVISION __


Existing Geotechnical Boring Logs City of Los Angeles, 1994a

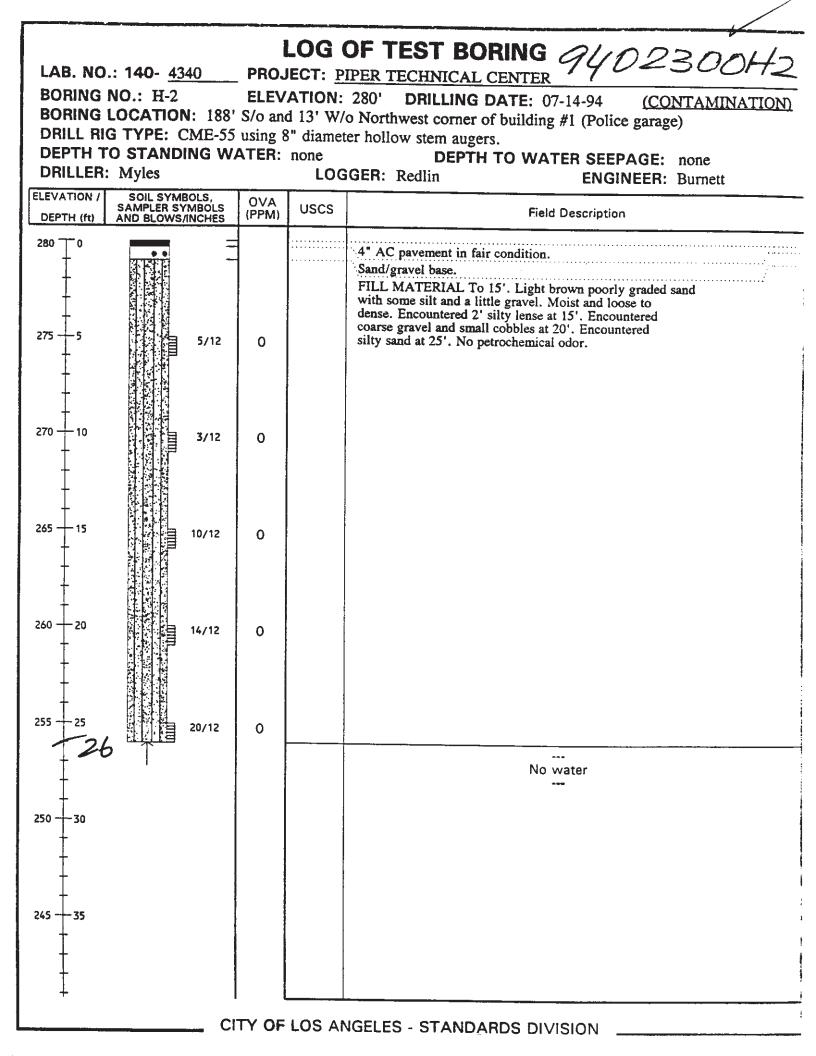
12	
Legend:	
Symbol: Description: Symbol:	Description:
Poorly graded sand with gravel. Trace of silt.	
Well graded sand with silt, granitic gravel and cobbles.	
Poorly graded sand with silt and gravel.	PCC.
Well graded gravel with silt, sand and granitic cobbles.	
	Water at depth indicated during drilling
	Rig refusal or end of boring
Notes	
 Exploratory borings were drilled on November 13 CME-75 HT drill rig using 8° diameter hollow st), 17, & 18, 1992 with a
2. Free water was not encountered during the drill	ing of this project.
 The boring locations and elevations were provid Services. 	ed by Geotechnical
4. Abbreviations used on logs: HT = high torque N/O = north of NCF = north curb face S/O = south of SCF = south curb face E/O = east of ECF = east curb face W/O = west of WCF = west curb face OVA = organic vapor analyzer LEL = log AC = asphalt concrete PCC = Portland cement	BCR = begin curb return PL = property line LEV. = elevation
5. A maximum blow count value of 75 per 6 inch inc the Standard Penetration Test.	rement was used for
1. *	
\$2	
Project No. 140-4046	


CITY OF LOS ANGELES - STANDARDS DIVISION _____

LOG OF TEST BORIN^ LAB. NO.: 140- 4046 PROJECT: FIRST STREET VIADUCT OVER L.A. RIVER-SUPPLEMENTAL BORING NO.: 3 ELEVATION: 265' DRILLING DATE: January 21, 1993 BORING LOCATION: 25' N/O NCF 1st St. frontage road & 46' W/O ECF Center St. DRILL RIG TYPE: CME-75HT using 8" diameter hollow stem augers DEPTH TO STANDING WATER: none DEPTH TO WATER SEEPAGE: none DRILLER: Cooksey LOGGER: C. Kunesh ENGINEER: B. Adams

ELEVATION / DEPTH (ft)	SOIL SYMBOLS, SAMPLER SYMBOLS AND BLOWS/INCHES	USCS	Field Description	Moisture %	Density Pcf
265 0		SM	10" AC pavement in good condition. Brown silty sand. Few gravels and red brick fragments. Fill material to 2.5'. Moist. Color changes to light brown at 2.5'.		
÷		ML	Brown silt. Little amount of clay. Moist and firm.		
255 + 10	14/12 _	SW	Gray well graded sand. Few granitic gravel. Moist and dense. Moisture decreasing with depth.	6.3	107
+	20/12			3.7	116
250 + 15	26/12		Encountered a 1' lense of poorly graded gravel with sand at 15'.	2,5	.120
Ļ		ML	Brown-gray silt. Little to some fine sand. Moist and firm.	16:1	98
245 - 20	23/12	SW	Gray-brown well graded sand with silt and gravels. Gravel is granitic. Moist and dense.	2.6	119
+	15/12		Encountered a 1' poorly graded sand lense at 22'.	7.6	101
40	30/12			3.2	118
ļ	37/12			3.1	115
35 - 30	50/7			2.1	126
+			No Water		
30 35					
† †		ļ			
ļ					

CITY OF LOS ANGELES - STANDARDS DIVISION



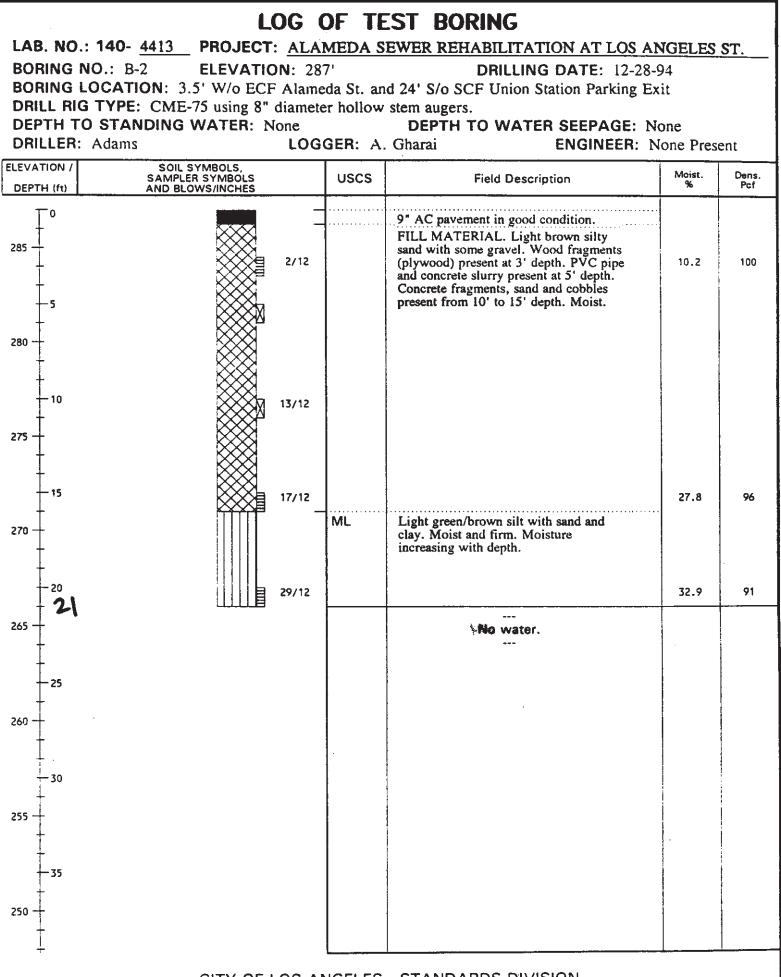
CITY OF LOS ANGELES - STANDARDS DIVISION

Existing Geotechnical Boring Logs City of Los Angeles, 1994b

	LUC	PIPER TECHNICAL CENTER 940230 H12
LAB. NO.: 140- 4340		
BORING NO.: H-9A	ELEVATIO	N: 280' DRILLING DATE: 08-31-94 (CONTAMINATION)
DRILL RIG TYPE CME 55	5/0 and $32'$ V	V/O NW corner of column OB at Crease 1001 D 1111 //O
DRILL RIG TYPE: CME-55 DEPTH TO STANDING W	using o ula	neter hollow stem augers.
DRILLER: L. Cooksey		COOTE L'EL HINTO WATER SEEFAGE: HONE
ELEVATION / SOIL SYMBOLS		OGGER: J. Kunesh ENGINEER: Burnett
DEPTH (ft) AND BLOWS/INCHES	OVA (PPM) USC	S Field Description
280 - 0 - 275 - 5 - 270 - 10 - 265 - 15 40/12	7	4" AC pavement in good condition. Crushed aggregate base with some sand. FILL MATERIAL. Grayish-brown silty sand with some gravel. Slight petrochemical odor from 8' depth. No sampling at 5' and 10' depths per engineer present. Concrete fragments present from 11' to 13' depth. Granite cobble lodged in split spoon sampler at 16' depth. Petrochemical odor decreasing with depth. Moist and dense.
	8	Brown poorly graded sand with some granitic gravel and cobbles. Sand color becoming lighter with depth. Trace of petrochemical odor present. Moist and dense.
255 25		No water
250		
245 - 35		

CITY	OF	LOS	ANGEL	ES -	STAND,	ARDS	DIV	ISIO	N
------	----	-----	-------	------	--------	------	-----	------	---

		LO)G (OF TEST BORING 940230421
LAB. NO	.: 140 - <u>4340</u>	PROJEC	:T: <u>P</u> 1	IPER TECHNICAL CENTER
	NO.: H-18	ELEVAT		
BORING	LOCATION: 61' V	W/o and 11	1' N/o	Diesel Pump at back of building #1 Space 150
DRILL RI	G TYPE: CME-75	using 8" d	liamete	er hollow stem augers.
DEPTH T	O STANDING WA	ATER: no	ne	DEPTH TO WATER SEEPAGE: none
	L. Cooksey		LOG	GER: Redlin ENGINEER: Burnett
ELEVATION / DEPTH (ft)	SOIL SYMBOLS, SAMPLER SYMBOLS AND BLOWS/INCHES	OVA (PPM) U	iscs	Field Description
280 - 0				57 4 0
ł				5" AC pavement in fair condition. Sand/gravel base.
ł				FILL MATERIAL, Grav/brown silty sand with some clay
f				binders, gravel and a few red brick fragments. Moist
•••			ľ	and fairly loose. Slight petrochemical odor at 10'.
275 + 5	4/12			
Ť				
Ī				
Ţ				
270 - 10				
	6月月11/12		ľ	
4				
4				
Ŧ				
265 + 15	· · · · · · · · · · · · · · · · · · ·			
Ļ	13/12			
+				
+				
+				
260 - 20			Cha	
ł		SP SP	P-SM	Light brown/tan poorly graded sand. Moist and fairly loose. No petrochemical odor. Encountered some gravel
+				at 25'. Sand is becoming coarser with depth.
+				
+				
255 + 25	10/12			
+2	6	·		
+	I			No water
†				
250 - 70				1
250 30				į
Ι				i
Ţ				
Ţ				
245 - 35				
Ļ				
Ļ				
Ļ				


Existing Geotechnical Boring Logs City of Los Angeles, 1994c

941100001A LOG OF TEST BORING LAB. NO.: 140- 4413 PROJECT: ALAMEDA SEWER REHABILITATION AT LOS ANGELES ST. **ELEVATION: 287'** BORING NO .: B-1A **DRILLING DATE:** 12-28-94 BORING LOCATION: 3.5' W/o ECF Alameda St. and 92' S/o SCF Union Station Parking Ent. DRILL RIG TYPE: CME-75 using 8" diameter hollow stem augers. DEPTH TO STANDING WATER: None **DEPTH TO WATER SEEPAGE: None DRILLER:** Adams LOGGER: A. Gharai ENGINEER: None Present ELEVATION / SOIL SYMBOLS, SAMPLER SYMBOLS AND BLOWS/INCHES Moist. % Dens. USCS **Field Description** DEPTH (ft) Pcf 0 9" AC pavement in good condition. FILL MATERIAL. Light brown poorly 285 graded sand with some silt and gravel. Concrete slurry present from 4.5' to 6' 7/12 3.1 122 depth. 43/12 7.2 116 SP **POSSIBLE FILL MATERIAL from** 280 existing sewer line. Light brown sand with some granitic gravel and traces of silt. Moist and loose. ۱n 3.7 111 6/12 275 ML Light green silt with clay. Moist and firm. Density increasing with depth. 15 18/12 28.0 96 270 20 23.1 104 28/12 2 ---265 No water. ---25 260 255 35 250

941100002

CITY OF LOS ANGELES - STANDARDS DIVISION _

Existing Geotechnical Boring Logs City of Los Angeles, 1996

KEY TO SYMBOLS

Symbol Description

<u>STRATA</u>

AC pavement

Silty sand.

Fine to very fine sandy silt.

Well graded sands. Few granitic gravel.

Well to poorly graded sand. Trace of silt.

MISCELLANEOUS

 \uparrow

End of Boring

SAMPLERS

Split spoon sampler

LAB NO.: 140- 4046

KEY TO SYMBOLS

Notes:

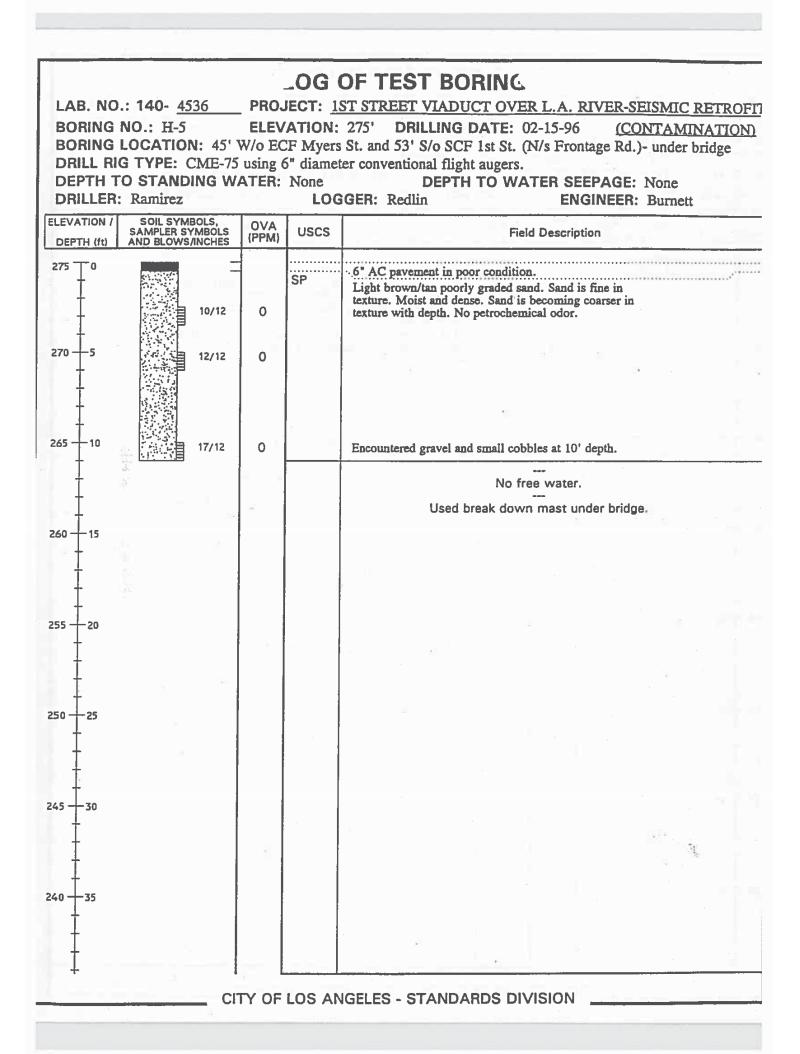
- 1. Exploratory borings were drilled on January 21, 1993 with a CME-75 HT drill rig and on January 22, 1993 with a CME-75 drill rig using 8" diameter hollow stem augers.
- 2. Free water was not encountered during the drilling of this project.
- 3. The boring locations and elevations were provided by Geotechnical Services.
- 4. Test Holes No. 1 & 2 were drilled on November 17th & 18th, 1992.

5. Abbreviations used on logs: N/O = north of NCF = north curb face NE = northeast S/O = south of SCF = south curb face NW = northwest E/O = east of ECF = east curb face SE = southeast W/O = west of WCF = west curb face SW = southwest C/L = center line PL = property line AC = asphalt concrete PCC = Portland cement concrete OVA = organic vapor analyzer LEL = lower explosive limit HT = high torque

OG OF TEST BORING PROJECT: 1ST STREET VIADUCT OVER L.A. RIVER-SEISMIC RETROFT LAB. NO.: 140- 4536 **3ORING NO::** H-2 ELEVATION: 270' DRILLING DATE: 02-15-96 (CONTAMINATION) 3ORING LOCATION: 5' N/o SCF 1st St. (N/s Frontage Rd.) and 48' E/o ECF Santa Fe Ave. DRILL RIG TYPE: CME-75 using 6" diameter conventional flight augers. **DEPTH TO WATER SEEPAGE: None** DEPTH TO STANDING WATER: None **DRILLER:** Ramirez LOGGER: Redlin **ENGINEER:** Burnett SOIL SYMBOLS, SAMPLER SYMBOLS EVATION / **OVA** USCS **Field Description** (PPM) DEPTH (ft) AND BLOWS/INCHES *************** 70 6" AC pavement in poor condition. SM-ML Light brown silty sand/sandy silt with some clay binders. Sand is fine in texture. Moist and firm, No 5/12 0 petrochemical odor. 65 6/12 0 SP Light tan sand with a little silt and gravel. Moist and dense. Sand is becoming coarser in texture with depth. Gravel content is increasing with depth. No petrochemical odor. 60 10 15/12 0 No free water. 55 15 50 20 45 25 40 -30 35 35 CITY OF LOS ANGELES - STANDARDS DIVISION 4

JG OF TEST BORING

LAB. NO.: 140-4536PROJECT:IST STREET VIADUCT OVER L.A. RIVER-SEISMIC RETROFITBORING NO.: H-1ELEVATION:270'DRILLING DATE:02-15-96(CONTAMINATION)BORING LOCATION:11' E/o WCF Center St. and 53' S/o SCF 1st St. (N/s Frontage Rd.) under bridgeDRILL RIG TYPE:CME-75 using 6" diameter conventional flight augers.DEPTH TO STANDING WATER:NoneDEPTH TO WATER SEEPAGE:None


DRILLER: Ramirez

ELEVATION / SOIL SYMBOLS, OVA

LOGGER: Redlin

ENGINEER: Burnett

 9/12 12/12	0	SM ML SP	 6* AC pavement in poor condition. FILL MATERIAL. Light brown silty sand with some clay binders and a trace of gravel. Sand is fine in texture. Moist and firm. Encountered some red brick fragments at 2.5' depth. Light brown sandy silt with some clay binders. Moist and firm. No petrochemical odor. Light tan sand with some gravel. Moist and dense. No petrochemical odor.
12/12	0	SP	petrochemical odor.
			666
			No free water.
			Used break down mast under bridge.
•			
		20	
		۵. ا	
	⁵⁸ (9)		
-		-	
	CIT	CITY OF	CITY OF LOS AM

. JG OF TEST BORING

AB. NO.: 140-4536PROJECT:IST STREET VIADUCT OVER L.A. RIVER-SEISMIC RETROFIT3ORING NO.: H-4ELEVATION:275'DRILLING DATE:02-15-96(CONTAMINATION)3ORING LOCATION:28' S/o SCF 1st St. (N/s Frontage Rd.) and 104' W/o ECF Myers St.- under bridgeORILL RIG TYPE:CME-75 using 6" diameter conventional flight augers.DEPTH TO STANDING WATER:NoneDEPTH TO WATER SEEPAGE:NoneORILLER:RamirezLOGGER:RedlinENGINEER:

SOIL SYMBOLS, SAMPLER SYMBOLS AND BLOWS/INCHES EVATION / **OVA** USCS **Field Description** (PPM) DEPTH (ft) 75 0 6" AC pavement in poor condition. CL-ML POSSIBLE FILL MATERIAL (due to presense of disturbed soil matrix) Light brown silty clay/clayey silt with 9/12 0 SP some sand and gravel pockets. Moist and firm. No petrochemical odor. Light brown/tan sand with some gravel. Moist and dense. 70 Gravel content is increasing with depth. No 10/12 0 petrochemical odor. 10 65 17/12 0 Encountered small cobbles at 10^e depth. No free water. Used break down mast under bridge. 60 15 20 55 50 -25 45 -30 -35 40 CITY OF LOS ANGELES - STANDARDS DIVISION -

.OG OF TEST BORING

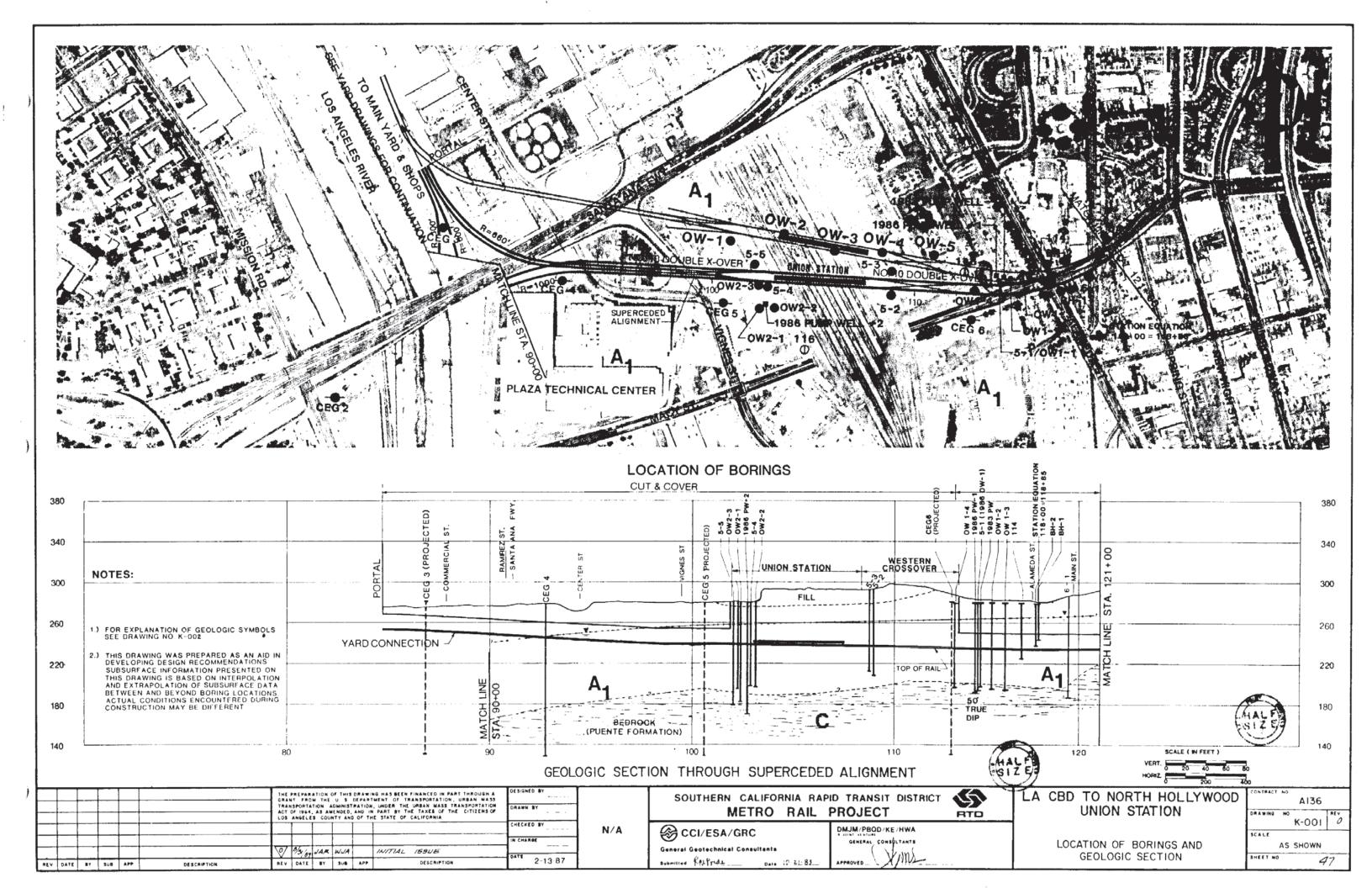
LAB. NO.: 140-4536PROJECT:IST STREET VIADUCT OVER L.A. RIVER-SEISMIC RETROFTBORING NO.: H-3ELEVATION:271'DRILLING DATE:02-15-96(CONTAMINATION)BORING LOCATION:59' E/o ECF Center St. and 54' S/o SCF 1st St. (N/s Frontage Rd.) under bridgeDRILL RIG TYPE:CME-75 using 6" diameter conventional flight augers.DEPTH TO STANDING WATER:NoneDEPTH TO WATER SEEPAGE:None

DRILLER: Ramirez

LOGGER: Redlin

ENGINEER: Burnett

(THIS PAGE INTENTIONALLY LEFT BLANK)



Existing Geotechnical Boring Logs Converse Consultants/Earth Sciences Associates Geo/Resource Consultants, 1983 and 1986

(THIS PAGE INTENTIONALLY LEFT BLANK)

GEOLOGIC EXPLANATION

GEOLOGIC UNITS

HOLOCENE

PLEISTOCENE

PLIOCENE

MIOCENE

QUATERNARY

FERTIARY

A1

A2

A3

Ċ

YOUNG ALLUVIUM (Granular): Includes clean sands, silty sands, gravely sands, sandy gravels, and locally contains cobbles and boulders. Primarily dense, but ranges from loose to very dense.

YOUNG ALLUVIUM (Fine-grained) : Includes clays, clayey slits, sandy slits, sandy clays, clayey sands. Primarily stiff, but ranges from firm to hard.

OLD ALLUVIUM (Granular): Includes clean sands, silty sands, gravely sands, and sandy gravels. Primarily dense, but ranges from medium dense to very dense.

OLD ALLUVIUM (Fine-grained): includes clays, clayey silts, sandy silts, sandy clays, and clayey sands. Α4 Primarily stiff, but ranges from firm to hard

SAN PEDRO FORMATION: Predominantly clean, cohesionless, fine to medium-grained sands, but includes SP layers of silts, silty sands, and fine gravels. Primarily dense, but ranges from medium dense to very dense. Locally impregnated with oil or tar.

FERNANDO AND PUENTE FORMATIONS: Claystone, siltstone, and sandstone; thinly to thickly bedded. Primarily low hardness, weak to moderately strong. Locally contains very hard, thin cemented beds and cemented nodules. Locally contains gas and oil.

SYMBOLS

?	Geologic contact: approximately located, queried who
?	Fault: approximately located; queried where inferrred is an apparent dip and is not corrected for scale dis
40	Dip of bedding: from unoriented core samples, bedding profile, but represent dips to illustrate regional geologi
, 😍	Perched water level: approximately located; queried
	Permanent water level: approximately located, queried whe
•	Boring - CEG (1981)
•	Boring - CCI/ESA/GRC (1983, 1984 & 1985)
\oplus	Boring - Woodward - Clyde (1977) } See appropriate
Φ	Boring - Kaiser Engineers (1962)
θ	Boring - Other (USGS 1977 and various foundation
0	Boring - Nuclear Regulatory Commision (1980)

NOTES

- 1) The geologic sections are based on interpolation between borings and were prepared as an aid in developing design recommendations. Actual conditions encountered during construction may be different. Geologic sections are plotted for AR (Outbound) track.
- 2) Track alignment plan and profiles are approximate.
- 3) Borings projected more than 200' to the profile line were considered in some of the interpretation of subsurface conditions. However, final interpretation is based on numerous factors and may not reflect the boring logs as presented on Drawings No. K-001.
- 4) Displacements shown along faults are graphic representations. Actual vertical offsets are unknown.
- 5) Additional information on observation wells (OW) and pump wells (PW), located in the Union Station vicinity, is presented in the report titled "Union Station Area Aquifer Pump Test", dated November 11, 1986.
- 6) CONTRACTOR SHOULD BE AWARE OF THE PRESENCE OF COBBLES AND BOULDERS AT LOWER DEPTHS IN THE BORINGS, ABOVE THE PUENTE FORMATION

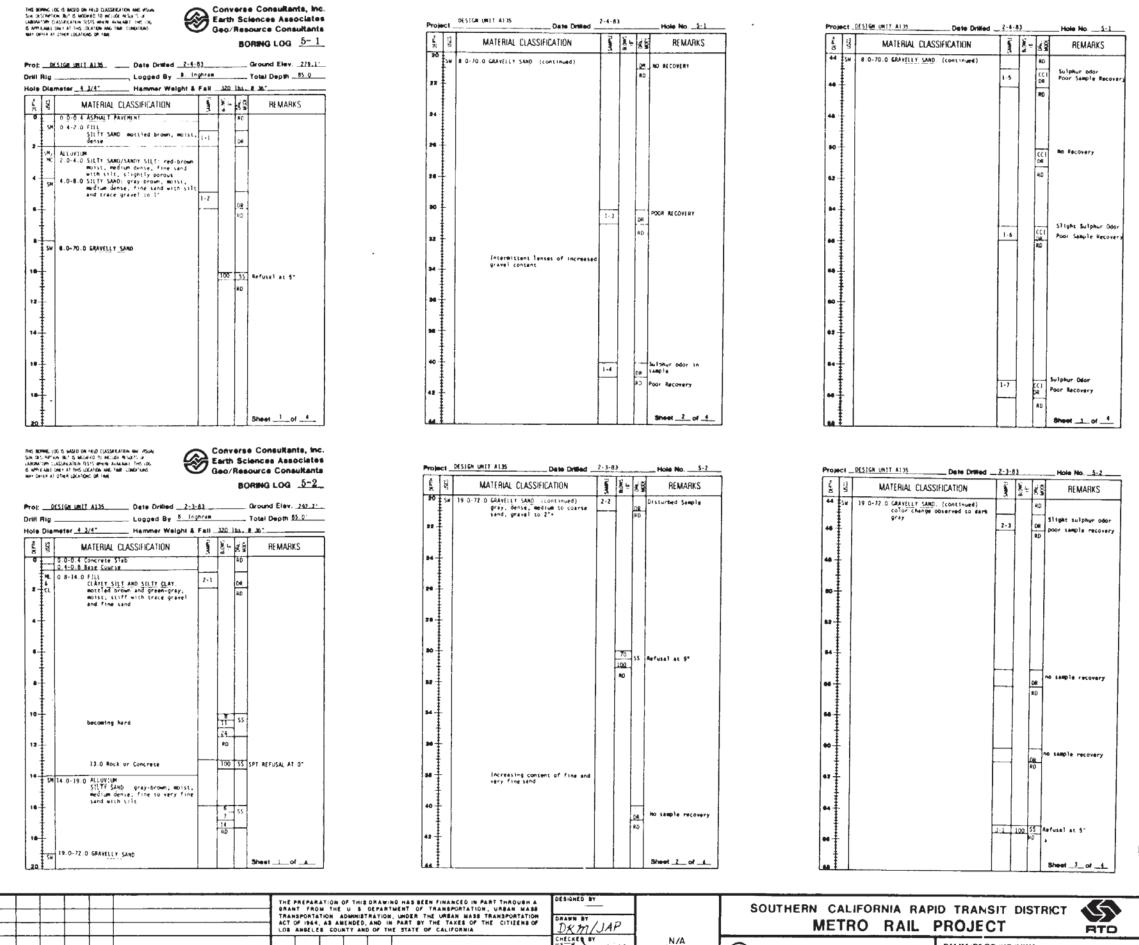
REVISIONS

1) Added supplemental borings to plan and geologic section.

2) The following data was added to boring logs

Boring 5-1 : Drill Rig - Failing 1500 Boring 5-2 : Drill Rig - Failing 1500 Boring 5-3 : Drill Rig - Failing 1500 Boring 5-4 : Drill Rig - Failing 1500 Boring 5-5 : Drill Rig - Failing 1500

						GRAN TRANS	F IS64	TION AS AN	DMINIS	DE PAR	TING HAS BEEN FINANCED IN PART THROUGH A EXEMT OF TRANSPORTATION, URGAN MASS IN, UNDER THE URBAN MASS TRANSPORTATION IN PART BY THE TAXES OF THE CITIZENS OF THE STATE OF CALIFORNIA	DESIGNED BY		SOUTHERN CALIFORNIA RAP METRÓ RAIL	
_			-			Ø	8/34/89	JAR	WJA		INITTAL ISSUE	CHECKED BY	N/A	CCI/ESA/GRC General Geotechnical Consultants	DMJM/PBOD/KE/HWA
REV	DATE	81	SUB	1 APP	DESCRIPTION	REV	DATE	BY	508	APP	DESCRIPTION	2-13-87		SUBMITTED toward a challeticity for: 2-13-87	APPROVED Fourth Alleliff


ere Inferred. d; arrows indicate probable movement; attitude in profile istortion. ng attitudes may not be correctly orjented to the plane of the gic trends; number gives true dip in degrees, as encountered in boring. where inferred ere interred.

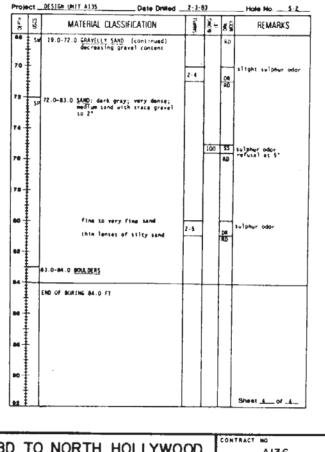
te Woodward - Clyde and Kaiser report(s).

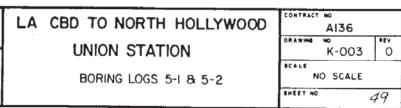
studies)

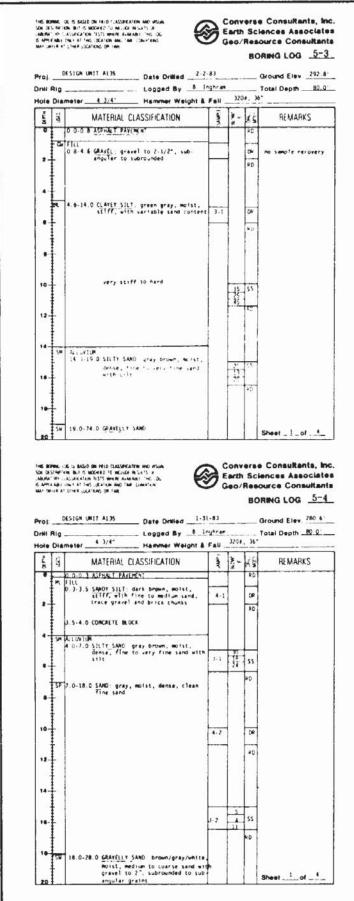
Borings not drilled for Metro Rail Project. Logs not available in ail Transit Consultants' office.

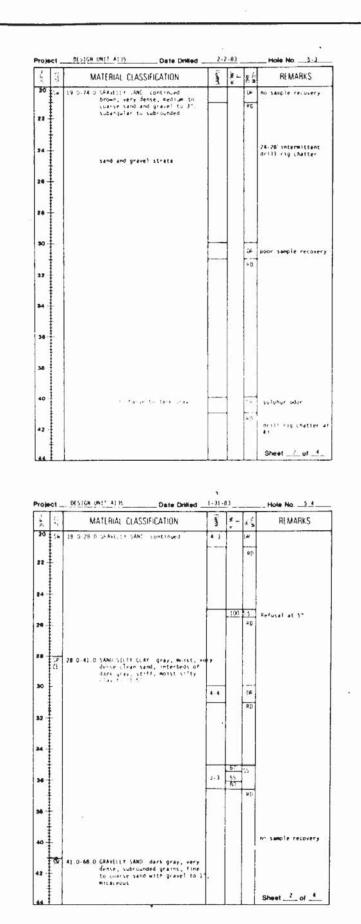
LA CBD TO NORTH HOLLYWOOD	CONTRACT NO A136
UNION STATION	K-002 0
	NONE
EXPLANATIONS, NOTES AND REVISIONS	SHEET NO 48

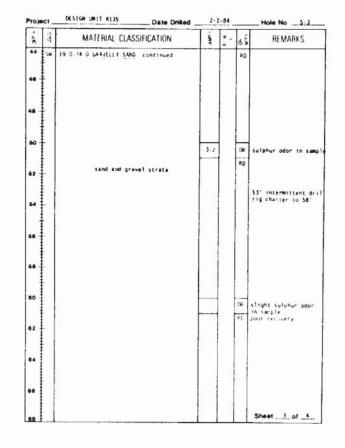
30 NOV. 84

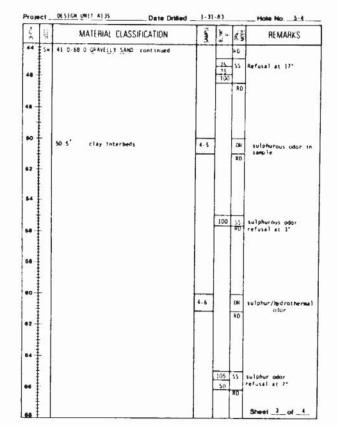

						SERI OF TRANSPORTATION, UNDER BADD	
	ACT	OF 1964	A3 A8	ENDED.	AND IN	I, UNDER THE URBAN MASS TRANSPORTATION Part by the taxes of the citizens of De State of California	DKm/JAP
							JA Sportett
	1	1/31/09	JAR	WJA		INITIAL ISSUE	KM Pres
DESCRIPTION		DATE	87	306	4.99	DESCRIPTION	BO NOV. 84

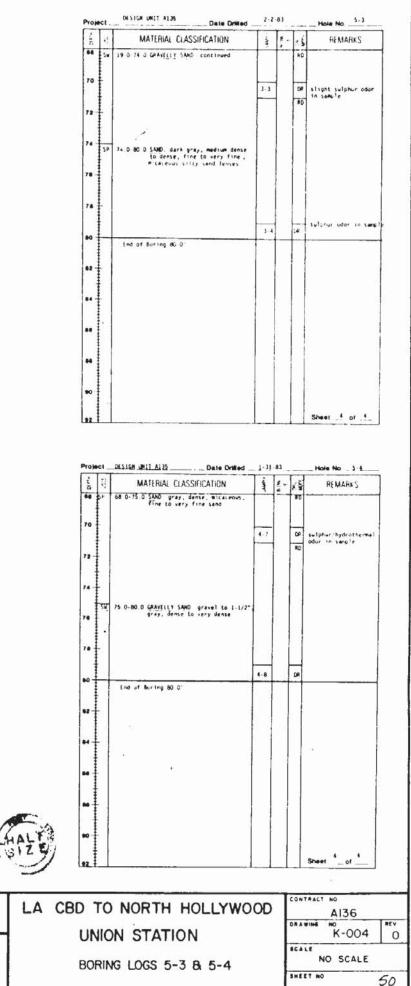

REV. DATE BY SUB APP

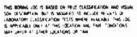

CCI/ESA/GRC General Geotechnicati Consultanta SUBMUTTER R.M. M.	METRO	RAIL	PROJECT	RTD
	•		A JOINT VENT M	a lill


. . .

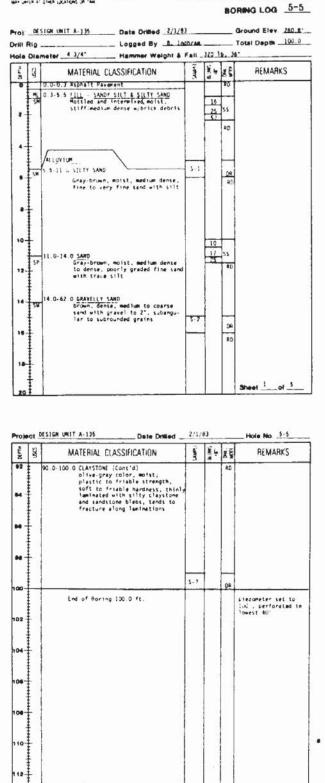

	ICI _	DESIGN UNIT A135 Date Drilled	1-4-8	·		Hole No5-1
, M	53	MATERIAL CLASSIFICATION	ŝ	Bill MrS	<u>ಕ</u>	REMARKS
44	SW	8 0-70-0 GRAVELLY SAND (continued)	1-	-	RD	
78 -	•	70.0-79.5 1000.05115				
71						
14						No Recovery
/10-1						Refusal
78 -						
••-	-	SANDS FONT OF THE OWNER OF THE	1.8		24	
		frash, thinly laminated, frash, thinly laminated, friable strength, friable to low hardness. Tends to fracture along laminations			RD	
4	-		1-9			
•	-	END OF BORING 85.0 FT				Plezometer set to 85 D' perforated
•						interval. 45'-85'
••						
, 1						Sheet 4_of 4

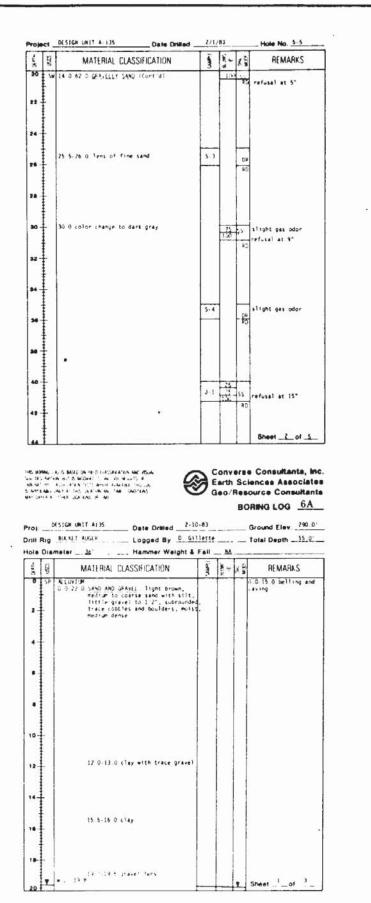


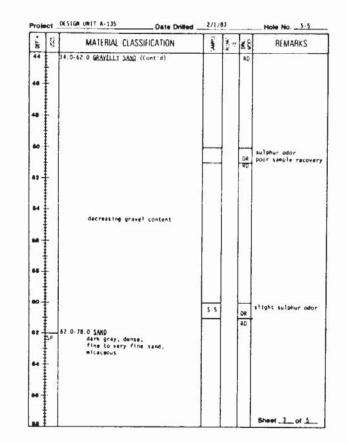


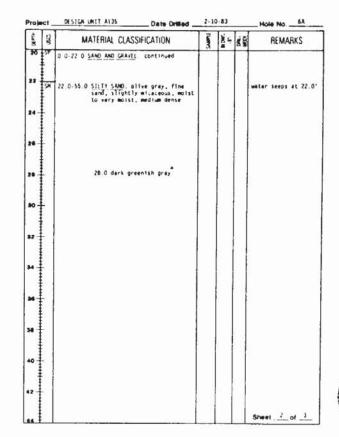


			 	TRA ACT	NT PR		ADMINIST	PATION AND IN	NG MAS BEEN FINANCED IN PART THROUGH A Ment of transportation, urban mass (, urder the Urban mass transportation (part by the taxes of the citizens of ie state of califormia	DRAWN BY DRAWN BY DKM/JAP	5	SOUTHERN CALIFORNIA RAPID TRANSIT DISTRIC METRO RAIL PROJECT					
				-	-	-				JA Soon itte	N/A	CCI/ESA/GRC	DMJM/PBQD/KE/HWA				
			\heartsuit	0/31/8	y JAK	WL/A		INITIAL ISSUE	DATE BONOV. BA		General Geglechnical Consultanta	APPROVED _ Deuser & Scheld					

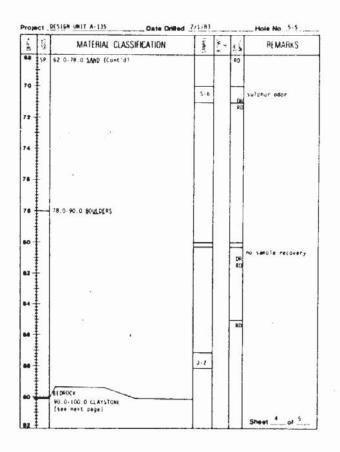


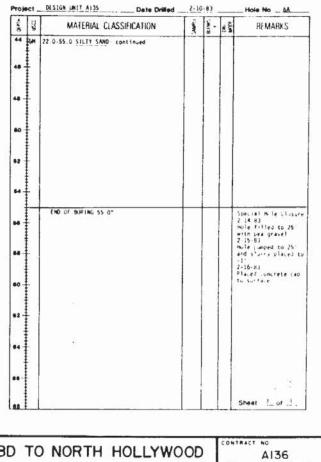


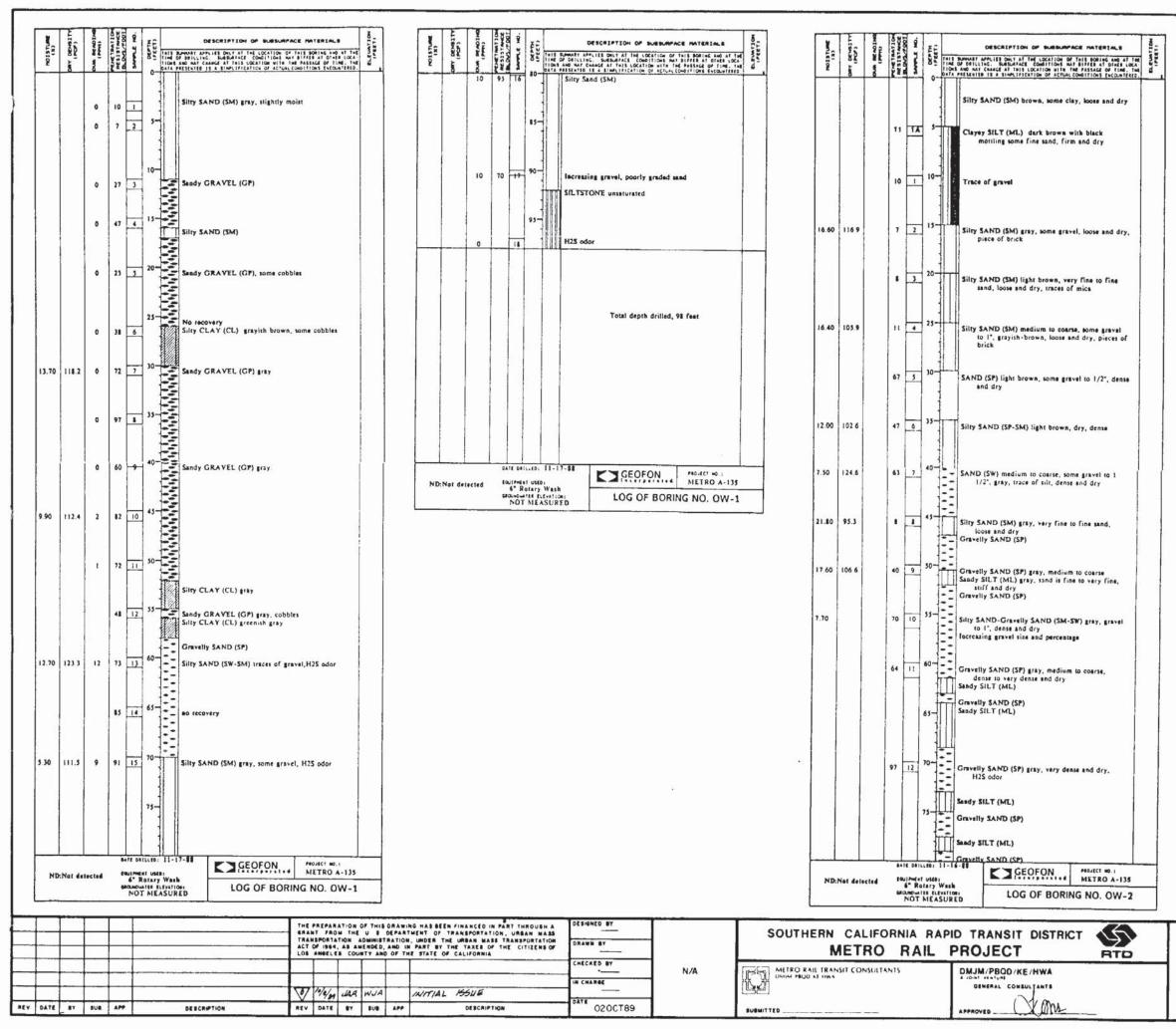

116 1

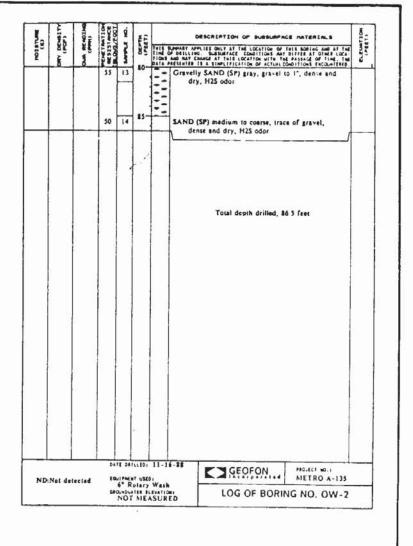


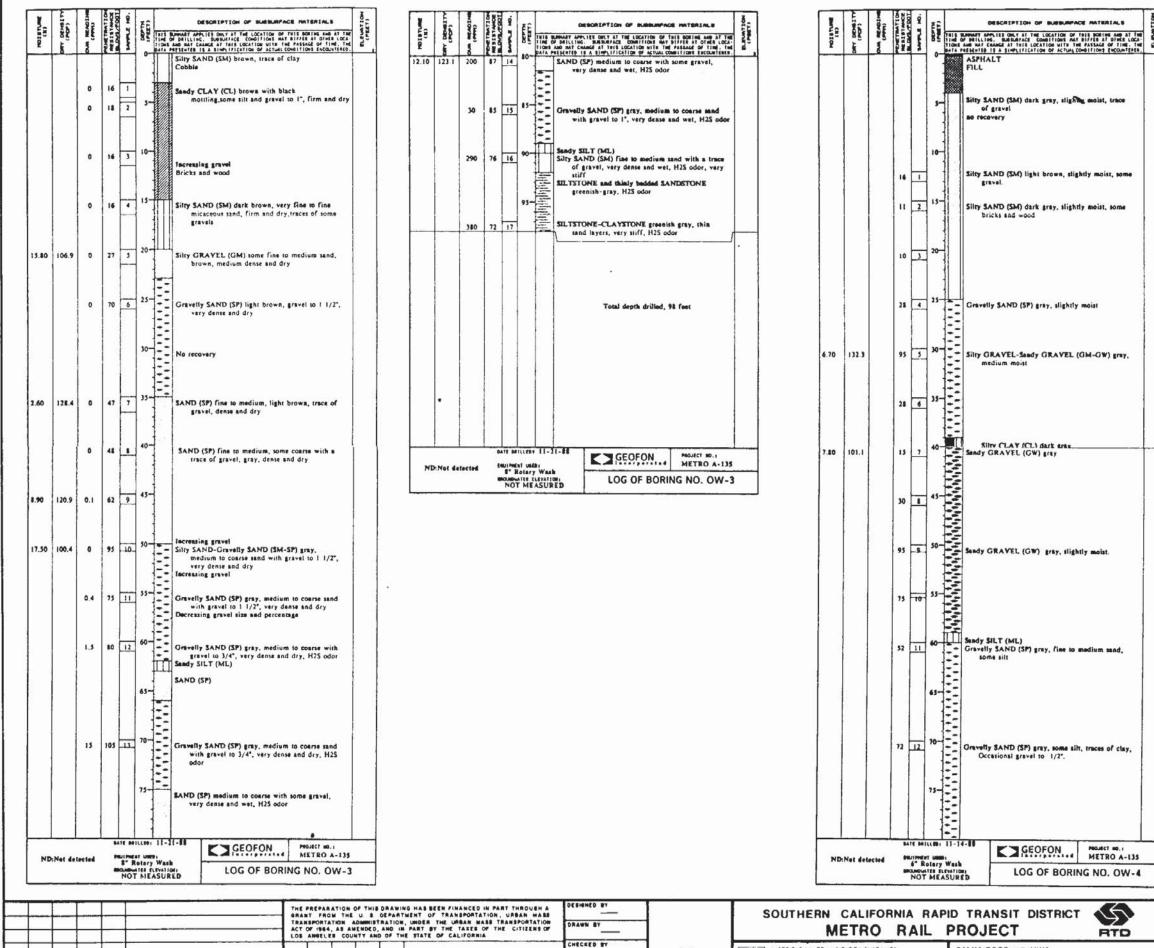
Sheet _5 of 5








THE PREPARATION OF THIS DRAWING HAS BEEN FINANCED IN PART THROUGH A GRANT FROM THE U S DEPARTMENT OF TRANSPORTATION, URBAN MASS TRANSPORTATION ADMINISTRATION, UNDER THE URBAN MASS TRANSPORTATION ACT OF 1964, AS AMENDED, AND IN PART BY THE TAXES OF THE CITIZENS OF LOS ANGELES COUNTY AND OF THE STATE OF CALIFORNIA	DRAWN BY DRAWN BY DKM/JAP	SOUTHERN CALIFORNIA RAI METRO RAIL	PID TRANSIT DISTRICT				
	A Doperto N/A	CCI/ESA/GRC	DMJM/PBOD/KE-HWA				
REV DATE BY SUB APP DESCRIPTION	DATE Nor BL	General Gegrechnical Consultante	APPROVED - Arourand Heliel H				

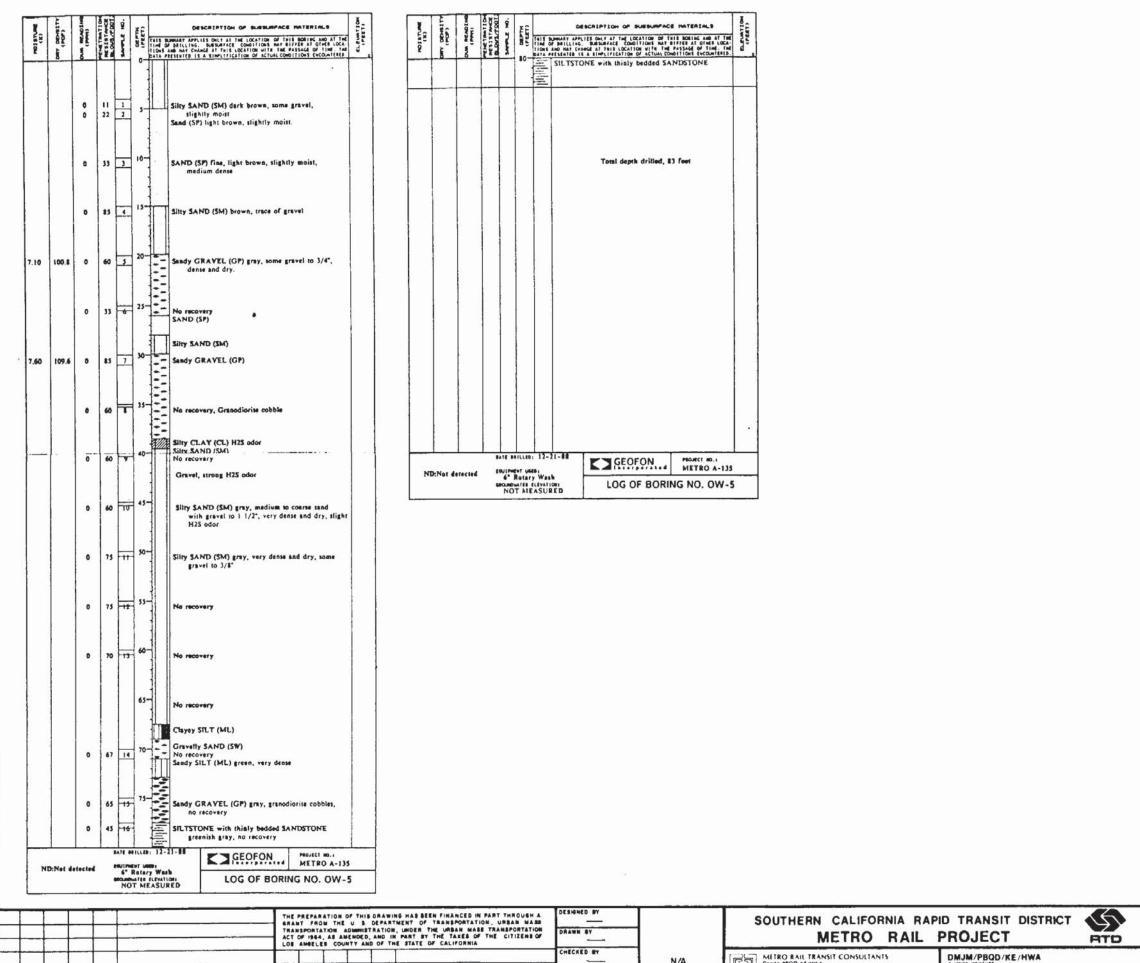

LA CBD TO NORTH HOLLYWOOD	CONTRACT NO AI36
UNION STATION	K-005 0
BORING LOGS 5-5 & 6A	NO SCALE
	SHEET NO 51

ΙΔ	CBD TO NORTH HOLLYWOOD	CONTRACT NO	
		A136	
	UNION STATION	K-006	NEV O
		SCALE	
	BORING LOGS OW-1 & OW-2	NO SCALE	
		SHEET NO	52

- 16	ddi	 _
1		
- ŝi	П (
- 17		

REY DATE BY SUB. APP

DESCRIPTION

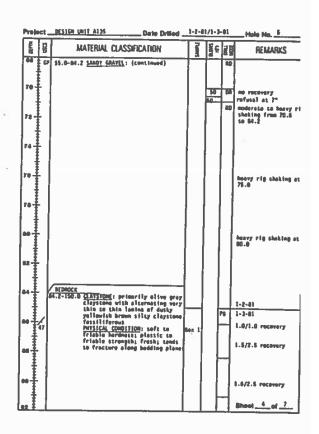

O Polaton JAR WUA

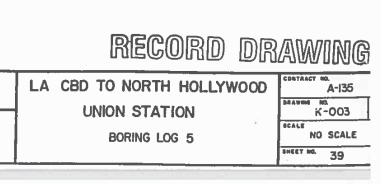
REV DATE BY SUB APP

INITIAL ISSUE

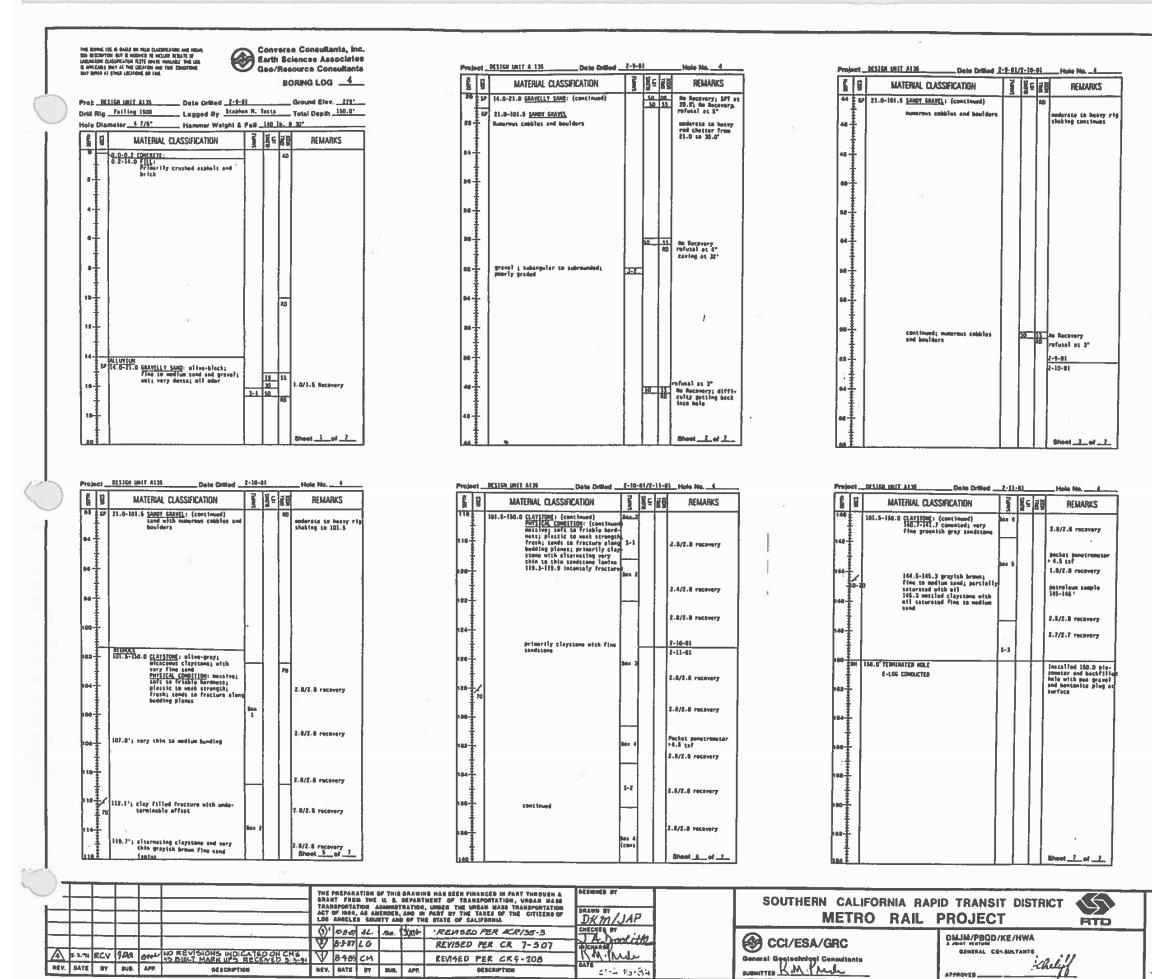
DESCRIPTION

								a da a construction de la constr		-										indiana -	
DESCRIPTION OF BUBBLINPACE MATERIALS	No. C.	1	1	1	NULL N	ġ Fi		DESCRIPTION OF BUEBURFACE MATERIALS	PERT :	1	E	THE OTHER	T001	Ŷ	₹Ê				NCE MATERIALS]
ART APPLIES DELY AT THE LOCATION OF THIS BORING AND AT TH MILLING. BURBLEACH DOMITIONS BAY BIFSE AT OTHER OCA DANT COMMENT AT THE LOCATION THE FASLAGE OF THE LOTES IS A SIMPLIFICATION OF ACTUAL COMPILICIES EXCOUNTERS		CR1	Capely Land	AN NO			TION	REMART APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE OF DETLING. SUBBARACE CONSTITUTE ANT DIFFER AT OFFIC LOCA- E AND NAT CARACE AT HIS LOCATION UTTO THE FASTACE OF THE LOCA- PRESENTED IS A SIMPLIFICATION OF ACTUAL COMPLITIONS ENCOUNTEERS.	22.	1110	(LEGA)	(Innel) Only McO	TALEN T		10	THIS BURNAST APP TING OF BATLLING TIDET AND NAT CR DATA PERSENTED T	DES CONT AT TO BERRETACE MICE AT THIS LO & & BINPLIFICA	CONDITIONS AU CONDITIONS AU CATION VITE	THIS BORING AND THIS BORING AND THIS PASSAGE OF THE CONDITIONS SHOULD	LOCA	
AND (SP) medium to coarse with some gravel, very dense and wet, H25 odor						- °		ASPHALT FILL					80	13	~	- Gravelly	SAND (SP)	gray.			
																3					
ravelly SAND (SP) gray, medium to coarse mad with gravel to 1°, very dense and wat, H2S odor						5	1	Sitty SAND (SM) dark gray, slighte moist, trace of gravel no recovery					110	14.	85-	- Be recov	very og grævel size	and percen	tage		
]]						
andy SILT (ML) Jty SAND (SM) fine to medium sand with a trace						10							125	15	. ÷-	- Gravelly	SAND (SP)		m to coarse,		
of gravel, very dense and wet, H2S odor, very stiff ILTSTONE and thinly bedded SANDSTONE					16	ī		Silty SAND (SM) light brown, slightly moist, some gravel.					41	1			ONE and this	aly bedded S	ANDSTONE		
greenish-gray, H2S odor						2 15	-	Silty SAND (SM) dark gray, slightly moist, some							95-	H2	odor.	ery line sen	d, dense and de	y.	
ELTSTONE-CLAYSTONE greenish gray, this sand layers, very stiff, H2S odor								bricks and wood				ŀ	44		95-	Bedding	planes at ap	proximately	30 degrees		
					10	20	4					-			-	·*······					
						4															
						25											Tout		00 (
Total depth drilled, 98 feet					28	- "	=	Gravelly SAND (SP) gray, slightly moist									1 DCal C	lepth drilled	, 99 1001		
							-			-											
		6.70	132.3		95	5 30	-	Silty GRAVEL-Sandy GRAVEL (GM-GW) gray, medium moist													
							=														
					28	6 35															
SECTION METRO A-13		7.20	101.1		15	7 40		Sinty CLAY (CL) dark erax Sendy GRAVEL (GW) gray				L				11-14-00	KJG	EOFON	METRO		1
LOG OF BORING NO. OW-							1111			F	D:Net de	rtected		6" R	otary	Wash Wash ASURED	LOC	OF BOI	RING NO. O	W-4	1
					30	1 45															
						6	15														
					95	s 50		Sandy GRAVEL (GW) gray, slightly moist.													
					75	55															
					52	60	ĮÚ	Sandy SILT (ML) Gravelly SAND (SP) gray, fine to medium sand,													
							-	some silt													
						65	E														
							E														
						- 70-	=														
					"		1	Oreveily SAND (SP) gray, some silt, traces of clay, Occessional gravel to 1/2".													
						75-	E														
							1														
							1												MALF		
		ND	.Net det	lected		Roter		GEOFON MOJECT NO. 1												7	
					SHOUL N	OT ME	ASUR	LOG OF BORING NO. OW-4											7 • • • • · · ·		
DE 5:0HED BY										A	20	TO	NIC	00		LUO! !	VWO		NTRACT NO		_
SOUTHERN CALIFORNIA RAPID TRANSIT DISTRICT																HOLL	_1 WO(50		136	Ev
CHECKED #* N/A		TRANSI			-		1	DMJM/PBQD/KE/HWA						÷							0
IN CHARGE	<u>Č</u>							GENERAL CONSULTANTS			BORI	NGI	_06	s	ow	-3 8 OW	1-4		NO SC		_
OZOCT89	SUBNITTED						-	APPROVED			- 0101								EET NO	53	3




				TRANSPORTATION ADMINISTRATION, U					TMENT OF TRANSPORTATION, URBAN MASS I, UNDER THE URBAN MASS TRANSPORTATION IN PART SY THE TALES OF THE CITIZENS OF NE STATE OF CALIFORNIA	DRAWN BY		METRO		
	-					-		-				IN CHARGE	N/A	METRO RAIL TRANSIT CONSULTAT
	-					9	10/2/89	JAA	WINA		INITIAL ISSUE			
REV	DATE	87	8U8.		DESCRIPTION	REV.	DATE	-	308	-	DESCRIPTION	020CT89		SUBMITTED

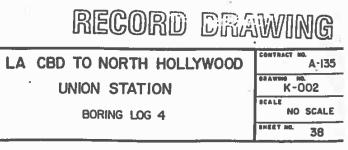
RAIL TRANSIT CONSULTANTS DMJM/PBOD/KE/HWA	TRO RAIL PRO	JECT ATE	2
APPROVED VIIV	4 JOINT GE	TANK CONBULTANTS	
	AFFRY		


UNION STATION			_				
			UNI	FIED SOI		FICATION SYSTEM (ASTM	D-2487)
	PRIMA				STHRUL		
	5		3	CRAVELS		WELL CRADED CRAVELE, CRAVE	LEAND WIXTURES, LITTLE OR
	2	3 7 6 6	ΞĚ	SE FINES	G	POORLY CRADED CRAVELS OF C	RAVEL SAND MIXTURES, LITTLE OF
		1000	a	GRAVEL	CM		BLT MIXTURE, NON PLASTIC FINES
	N N N	35	1°				
	111	37	3_	SANDE			
	NOT NOT	ACC -			- 1		
	N N	1000	1.	WITH			
		-1-	4	-ALI			
		A.F.		1.1		CLAYEY FINE SANDE OR CLAYEY	SILTS WITH SLIGHT PLASTICITY.
	1 299	59	10m	232		CLAYS SAMPY CLAYS BUTY CL	AVE. LEAN CLAVE
	ANN AND		-	-		INORGANIC BILTE MICACEOUS D	
	ALC: NO	11		No.		BILTY BOILS, PLASTIC SILTS.	
	THOU THE	29	9	19.92	-	the second s	
INTERTITION MEETING # 01 MADE AND GAVIELE ILLUMINOUS CALVIEL ILLUMINOUS CALVIELE ILLUMINOUS CALVIELE INTERTITION MEETING THE ILLUMINOUS CALLING THE AND THE ILLUMINOUS CALVIELE AND THE ILLUMINOUS CALLING THE ADDRESS INTERTITION MEETING THE ILLUMINOUS CALLING THE ADDRESS INTERTITION CALIFORNIA THE ILLUMINOUS CALIFORNIA THE ILLUMINOUS CALIFORNY INTERTITION CALIFORNY THE ILLUMINOUS CALIFORNY CALVIER INTERTION ESTIMATED INTERTITION CALIFORNY THE ILLUMINOUS CALUER IN THE ILLUMINOUS CALUER INTERTITION CALIFORNY THE INFORMATION CALIFORNY CALVIER INTERTION ESTIMATED INTERTITION CALIFORNY THE INFORMATION CALIFORNY CALVIER INTERTION ESTIMATED INTERTICUE CALVIER IN A RANGE ON LAW ESTIMATED IN ESTIMATED INTERTICUE CALVIER IN A RANGE ON LAW ESTIMATED IN THE INFORMATION CALIFORNY CALUER CALVIER IN A RANGE ON LAW ESTIMATED IN THE INFORMATION CALUER INTERTICUE CALVIER IN A RANGE ON LAW ESTIMATED IN THE INFORMATION CALUER INTERTICUE CALVIER IN A RANGE ON LAW ESTIMATED IN THE INFORMATION CALUER INTERTICUE CALVIER IN A RANGE ON LAW ESTIMATED IN THE INFORMATION CALUER INTERTICUE CALVIER IN A RANGE ON FRANCE ON THE INFORMATION CALVIER INTERTICUE CALVIER IN A RANGE ON FRANCE ON THE INFORMATION CALVIER IN THE ILLUMINON STATION OF LAND IN CONTRACT IN A RANGE ON FRANCE ON THE INFORMATION CALVIER IN THE INFORMATION CALVIER IN THE INFORMATION CALUER IN THE INFORMATION CALVIER IN THE INFORMATION CALUER IN THE INFORMATION CALUER IN THE INFORMATION CALUER IN THE INFORMATION CALUER IN THE INFORMATION CALVIER IN THE INFORMATION CALVIER IN THE INFORMATION CALVIER IN THE INFORMATION CALUER IN THE INFORMATION CALUER IN THE INFORMATION CALVIER IN THE INFORMATION CALUER IN THE INFORMATION CALVIER IN THE INFORMATION CALVIER IN THE INFORMATION CALVIER IN THE INFORMATION CALVIER IN THE INFORMA							
ANDRIAND CRAVELA BLANTIN LOCATAL VERY LOOK VERY LOOK <td></td> <td></td> <td>CL</td> <td>ASSIFICA</td> <td>TION CR</td> <td>ITERIA BASED ON FIELD T</td> <td>ESTS</td>			CL	ASSIFICA	TION CR	ITERIA BASED ON FIELD T	ESTS
ANDRIAND CRAVELA BLANTIN LOCATAL VERY LOOK VERY LOOK <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
LASE AND CLAVELA Inclusion Inclusio		101100-01	-	PRU		CLAYS AND SILTS	
ALL ONCE 1.100FT 1.1	SANDS	AND CRAY	-		CONSISTEN	CY BLOWE/POOT" STRENCTH**	INCHES TO DRIVE A 1 INCH O.B.
VIDUAL DOUBLE 4:10 1	BELATIVE DE	ENSITY BI		*TOOT	VERY SOF	Т 8-1 8-1	SAMPLER (ASTM-1506 STANDARD
International state International state <thinternatistate< th=""> International state</thinternatistate<>	VERY LOC	MAK		•	BOFT	2+4 4+16	
Image: Strate Strate Image: Strate Strat	LOOME		4.	10	FURM	4-8 8-1	
No. N	MEDIUM DI	1943	10-	30	811.97	8-15 1-2	READ FROM POCKET
VEX DECK OVER 10 OVER 10 OVER 10 OVER 10 CLASSIFICATION CRITERIA BASED ON LAB TESTS OV ADD N'-C, - D, D CRITERIA BASED ON LAB TESTS D ADD N'-C, - D, D CRITERIA BASED ON LAB TESTS Image: Dom of the state of	DENSE		36 -	54	VERY FTP	77 33-30 3-4	PENETROMETER
A CBD TO NORTH HOLLLYWOOD UNIT HOLD TO MAKE TO ALL TO ALL THE INCLUSE TO TATE BORING LOG 5 8	VERY DEN	41	OVE	8.50	MAND		
A CBD TO NORTH HOLLLYWOOD UNIT HOLD TO MAKE TO ALL TO ALL THE INCLUSE TO TATE BORING LOG 5 8							
Contract to C		-	CL	ASSIFICA	TION CR	TERIA BASED ON LAB TE	STS
Contract to C	**	ПП	Т			P44	10 mg (10 mg)2
Contract NO Contract			-04	₩°		DIS LATER THAN & POR O	AND & POL SWICE DIA X DIA
Contract No Contract No Contr			1	11 0	AND 27 -	CLEAN GRAVEL OR SAND NOT HE	STING REQUIREMENT FOR OW
A CBD TO NORTH HOLLYWOOD UNITACT NO UNION STATION BORING LOG 5 &		112	4	HH .			IN OR P.L. LEES THAN &
A CBD TO NORTH HOLLYWOOD UNION STATION UNION STATION BORING LOG 5 8	30		der			ATTERSERC LINET ABOVE "A" LE	NE P.L. GREATER THAN 7
A CBD TO NORTH HOLLYWOOD UNION STATION UNION STATION BORING LOG 5 8					Part	PINE MEDIUM COALLE	
A CBD TO NORTH HOLLYWOOD UNION STATION	LC RI	1 M.L.A.	F			AN EAND EAND CANE	RAVEL CRAVEL COARLES BOULDERS
A CBD TO NORTH HOLLYWOOD UNION STATION	20	48 66			ILEVE BIZES	40 10 0	3/4" 3" 18"
LA CBD TO NORTH HOLLYWOOD UNION STATION BORING LOG 5 8 BCALE NO SCALE	· - 20	44 64 Liquid Lib	ar		ILEVE BIZES	40 10 0	3/4" 3" 18"
BORING LOG 5 8 NO SCAL	· - 20	44 64 Liquid Lib	ar		ILEVE BIZES	40 10 0	3/4" 3" 18"

HAT BEIS AT STORE OF THE	h Sciences Associates /Resource Consultants	Project OfSIGN UNIT A135	Date Drilled 1-2-40 Hole No 5	Project DESTER (MIT AL35 Date Dri	Wed <u>1-2-80</u> Hole M
	BORING LOG	MATERIAL CLASSIFIC	2 2 2 22	MATERIAL CLASSIFICATION	j j j ⊆ z g REN
Proj: Drates with Alas. Date Drilled		20 GP 0.3-52.0 SAUDY EAAT(1: (cant	tinued) 2D andersta to heavy rig chatter from 3.0	44 EF 0.3-52.0 SANDY CAAVEL: (continued)	RD heavy rig
Drill Rigfathing_1500 Logged By _ <u>Stephen H. Test</u> Hole Diameter <u>A.2/R. 4 2/A</u> Hammer Weight & Fath <u>140 1</u>		22			
A MATERIAL CLASSIFICATION	REMARKS				
		34			
CD All UVID 0.3-82-0. SLADY CAAVEL: primerily gravel ug to 8 with eadim to carse sand; poorly graded		1 1 1			
2 Sand; puorig graded	molerate to heavy rig Chatter from 3.0	20			
		80-		SZ. 0-55.0 CRAVILLY SAMD: medium dank	
				R2 + SP S2.6-55.0 <u>CRAVELLY SAUD</u> : medium dark medium to coerse sand with gravel up to § fach; sower o	efer 50 refusal at
		30		64 ±	
				55.0-04.2 SANDY GRAVEL :	rig shaking to 60.0
		RR			
10-1-		*±±			
			• / / / / / / / / / / / / / /		
		30 		00	1 12 12
			'		60 SS no recovery So refusal at a
		30		ag	beauy rie sh 60.6 to 66.0
		44		여름	
10		I			
		48		an T medium dark gray; very fine	1 tand 1.2 8 55 0.3/1.5 recev 20 refusal at 10 50 reg Stept 3
	Sheet		Bheet_1of_7		20 refusal at 10
Project <u>BESIGH UNIT AIJS</u> Date Dritted <u>1-3-90</u>	tole Ho		ate Drilled Hole No	ProjectDE3158_SHIT_A128 Date Onlie	ed <u>1-3-01</u> Hole Ho
		B MATERIAL CLASSIFICAT	2 8 03	MATERIAL CLASSIFICATION	E BE BE REMAN
02 64.2-150.0 CLAYSTONE: (continued) primarily claystone from 93.5 to 100.4 500	POCLAS personator +0.5 LLF 2-3-01 2-2/2-5 recovery	518 64.2-150.0 <u>CLAYSTONE</u> : (cantinu primarily claystone nating very this to lamina of Landstone finallifement claws	ved) PB	140 B4.2-150.0 CLAYSTONE: (continue) very this to modium alternat	
B4		110 to the tamina of tamina of tamina to tamina tam	n medium p; micaceous man 1		
	1.9/2.5 vacavery			44 data 1112 claritona inclusion 44 data 1112 claritona inclusion 44 thickness of Jaalau primary 45 claritona from 142.3 (1921) 46 tantinon from 142.3 (1921) 47 tantinon from 142.3 (1921)	7 ne
BB this sandstone Tamina at 96.6.		120-	1.7/2.5 recovery	163.1-145.3	
	2.0/2.5 recovery	dip of bedding plan (10-46*): folding a	hes variable		Pan 5
64	Bithal appetranter	128-	1.9/2.5 recovery	rea . Pits <u>icAL COMPITION</u> : soft to Triable Aardiness; plastic to	1.8/2.8 recev
	pochut penetranytar +4.5 tsf 2-9-81			friðble dardness; plestic sa friðble strangshi Freshi ser	ads
100 -	L-9/2-5 recovery	124-		friable strangth; fresh; ten ta frecture slamp bedding pl 148-	2.0/2.7 recen
alternating very this so mod- ium lamins of clarstone; cond- stone and silty claystone		falding apparent, fre	vm 125-126.0		
102 stone and slity claystone	L-9/2.5 recovery	128 44			12-3-01
			Bez 4	BH TEMMINATED HOLE AT 350.0"	Installet 100.
104-7-	1.5/2.5 recovery	120 + Alternating Jamina of Claystone and silty dark yellowish brown	of sandstone:	162-	Plazameter
	8		Plant penetrumpter		
		130-1-	1.8/2.3 Pecavery	ha4 # {	
	pockat menetrimeter 24.5 tif g-g-gg				
	2.5/2.5 recevery	132" Li32" clay filled fra offsets	Icture with 1.3/2.5 recovery	hee 🗄 👘	
310					
	2-5/2.5 recevery	Ī		naa -	
188	1.1/2.5 recevery	130	1.4/2.8 recovery		
		1 1 1		100-2-	
		PHYSICAL CONDITIONS: Friable Asrdmests pill friable strength, fre to fracture sleng but friable to fracture ste	soft to astic to bht tends		
114		ta fracture along bei friable santstang la	ean; Lends dding plane ; alias		
	2.5/2.5 recovery				Bheel_7_of
	2-5/2.5 recovery Sheet <u>5</u> of <u>7</u>	140	Bheet_6_of_2_		
	THE DEFENDATION OF THE DAMA				
116	THE DEFENDATION OF THE DAMA	THE MAS BEEN FINANCED IN PART TURGUON A ATMENT OF TRABPORTATION, URBAN MASS N. UNDER TAL UBAN MASS TRABPORTATION	SEGAMED BY	OUTHERN CALIFORNIA RAPID TRAN	
	Sheet _1 of _2 THE PREPARATION OF THIS BRAW BRANT FROM THE U. B. DEPAR TAANSPORTATION ADMINISTRATIO ACT OF Red, AS AMENDED, AND C. AS AMENDED, AND C. BRANT FROM THE U. B. DEPAR TAANSPORTATION ADMINISTRATION	146	SESUMED BY		
	Sheet _1 of _2 THE PREPARATION OF THIS BRAW BRANT FROM THE U. B. DEPAR TAANSPORTATION ADMINISTRATIO ACT OF Red, AS AMENDED, AND C. AS AMENDED, AND C. BRANT FROM THE U. B. DEPAR TAANSPORTATION ADMINISTRATION	THE MAS BEEN FINANCED IN PART TURGUON A ATMENT OF TRABPORTATION, URBAN MASS N. UNDER TAL UBAN MASS TRABPORTATION	SESUMED BY	OUTHERN CALIFORNIA RAPID TRAN	

APPROVED Themand Scheliff

Prei	ect _	DESIGN LINET, & 135 Dete Diffied	2-10	-11		•Hole He
1	1	MATERIAL CLASSIFICATION	ſ	¥.		
66 78 - 72 - 74 - 70 -		21.6-101.5 <u>TANOY GAArti</u> : [contlowed] primarily coboles and boulders		70	80	noderato to heavy of shaking continues No recoverys diffics gotting het into he refusal at 2°
70- 80-		continued; primerily cobbles and boulders	(#)	20	18 ° 1	No receivery refusal at 4"
84-		~	:			
86- 90- 81		r				Sheet <u>4</u> of <u>7</u>


9

NOTES:

- 84

1. DRILL THREE PROPOSED BORINGS TO AT LEAST 5 FEET INTO BEDROCK.

- TAKE SOIL SAMPLES AT EVERY 5-FOOT INTERVALS TO AT LEAST 60 FEET DEPTH REQUIRED AT CLOSER DEPTHS. AFTER 60 FEET TAKE SAMPLES AT EVERY 10-FOOT I VALS OR AS REQUIRED. TAKE M-VALUES (STANDARD PERETRATION TEST) WHILE SAMP USING A SPLIT SPOOM OR EQUIVALENT CALIFORNIA SAMPLER.
- DETERMINE GROUND WATER DEPTHS, DURING AND AFTER DRILLING TO LOCATE EXI GROUNDWATER LEVEL IN EACH BORING. NUMITOR FOR PRESENCE OF GAS/OIL.
- 4. PERFORM NECESSARY LABORATORY TESTING ON RELATIVELY UNDISTURBED SQIL SAMPL DETERMINE NOISTURE/DENSITY, C AND Ø VALUES, SETTLEMENT PARAMETERS, REPORTA PARAMETERS AND GALIM SIZE DISTRIBUTION. CONFIRCTOR SMALL PROVIDE ADDIT SQIL TEST DATA, IF AEQUIRED BY THE DISTRICT ON ITS DESIGNEE. ALL SAMPLES BE TESTED AND STORED IN A RECOMPLETION OF TESTINGS AND THEM THE SA NORLD BE TRANSFERRED TO THE DISTRICT ON ITS DESIGNEE. SOLL TESTS SMA PERSERVED FOR ONE MONTH AFTER COMPLETION OF TESTINGS AND THEM THE SA SMORLD BE TRANSFERRED TO THE DISTRICT ON ITS DESIGNEE. SOLL TESTS SMA PERSERVED AFTA PROPRIATE ASTH CRITERIA.
- TEST MATER AND SOIL SAMPLES FOR MEASURING LEVELS OF PRIORITY POLLUTARTS. AT LEAST FIVE SOIL SAMPLES (COLLECTED IN AIRTIGHT GLASS JARS) AND TWO SAMPLES FOR FOLLOWING CHENICAL ANALYSIS IN A STATE APPROVED LANORATORY 604, 608, 624, 625, 6020, 8020, 8040, 8080, 8240 AND 8270-APHA 2098. 1
- 6. COLLECT AND DISPOSE OF ALL SPOIL AS APPROPRIATE, NEETING CITY AND STATE N REQUIREMENTS.
- 7. CONTRACTOR MAY USE THESE BORINGS TO PROVIDE OBSERVATION WELLS. IN THAT BORINGS SHALL BE CONTRACTOR WITH THESE ON NETAL PLATE FOR SITE SAFETY UNTIL ARE INSTALLED. CONTRACTOR MUST ENSURE BEFORE DRILLING SPECIFIED REQUIRD FOR INSTALLING AND DEVELOPING WELLS.
- 6. CHECK PRESENCE OF POLYCHLORINATED BIPHENOLS ALONG THE TRACK AREA IN THE UP TO 5 FEET OF SUBSOIL, IN THE THREE BORINGS OR MEAR BY.
- 9. FINAL BORING LOGS SHOULD BE PREPARED BY A GEOTECHNICAL ENGINEER. SOILS BE IDENTIFIED BY USING THE UNIFIED SOILS CLASSIFICATION SYSTEM.
- 10. FIELD AND LABORATORY MORK SHALL BE CARRIED OUT UNDER THE FULL SUPERVISION GEOTECHNICAL ENGINEER REGISTERED IN THE STATE OF CALIFORNIA, MAD WILL PM Seal and Signature on All Pertiment Documents, Field and test data shou Made Available to the district or its designee inmediately upon comple

B.4 SAMPLING AND LOGGING PROCEDURES

Logging and sampling were performed in the field by the geologist. The following describes sampling equipment and procedures and notations used on the lithologic logs to indicate drilling and sampling modes.

B.4.1 Sampling

In the overburden at about 10-foot intervals, the Converse ring sampler was driven using a down-hole 450-pound slip-jar hammer. The Converse sampler was followed with the standard split spoon sample (SPT) driven with a 140-pound hammer with a 30 inch stroke. Where the Puente Formation was encountered, the borings were sampled using a Pitcher-Barrel and Converse ring sampler at 20-foot intervals.

The most common cause for loss of samples or altering the sample interval was when gravels were encountered at the desired sampling depth. Standard penetration blow count information can often be misleading in this type of formation, and it is difficult to recover an undisturbed sample. Therefore at some locations borings were advanced until drill response and cutting suggested a change in formation.

The following symbols were used on the logs to indicate the type of sample and the drilling mode:

Log Symbol	Sample Type	Type of Sampler 					
8	Bag						
J	Jar						
С	Can						
S	Shelby Tube	Pitcher Barrel					
Box	Box	Pitcher Barrel, Core Barrel					

Symbol	Drilling Mode
AD	Auger Drill
RD	Rotary Drill
PB	Pitcher Barrel Sampling
SS	Split Spoon
DR	Converse Drive Sample
С	Coring

100

B.4.2 Field Classification of Soils

All soil types were classified in the field by the site geologist using the "Unified Soil Classification System". Based on the characteristics of the soil, this system indicates the behavior of the soil as an engineering construction material.* Although particle size distribution estimates were based on volume rather than weight, the field estimates should fall within an acceptable range of accuracy.

Table A-1 shows the correlation of standard penetration information and the physical description of the consistency of clays (hand-specimen) and the compactness of sands used by the field geologists for describing the materials encountered.

N-Values (blows/foot)	Hand-Specimen (clay only)	Consistency (clay or silt)	(sand only)	N-Values (blows/foot)
0 - 2	Will squeeze between fingers when hand is closed	Very soft	Very Loosa	0 - 4
2 - 4	Easily molded by fingers	Sott	Loose	4 - 10
4 - 8	Molded by strong pressure of fincers	Firm		
3 - 16	Dented by strong pressure of fincers	Stiff	Medium den se	10 - 30
16 - 32	Dented only slightly by finger pressure	Very stiff	Can se	30 - 50
32+	Cented only slightly by pencil point	Hard	Very dense	50+

B.4.3 Field Description of the Formations

The description of the formations is subdivided in two parts: lithology and physical condition. The lithologic description consists of:

- rock name;
- color of wet core (from GSA rock color chart);
- mineralogy, textural and structural features; and
- any other distinctive features which aid in correlating or interpreting the geology.

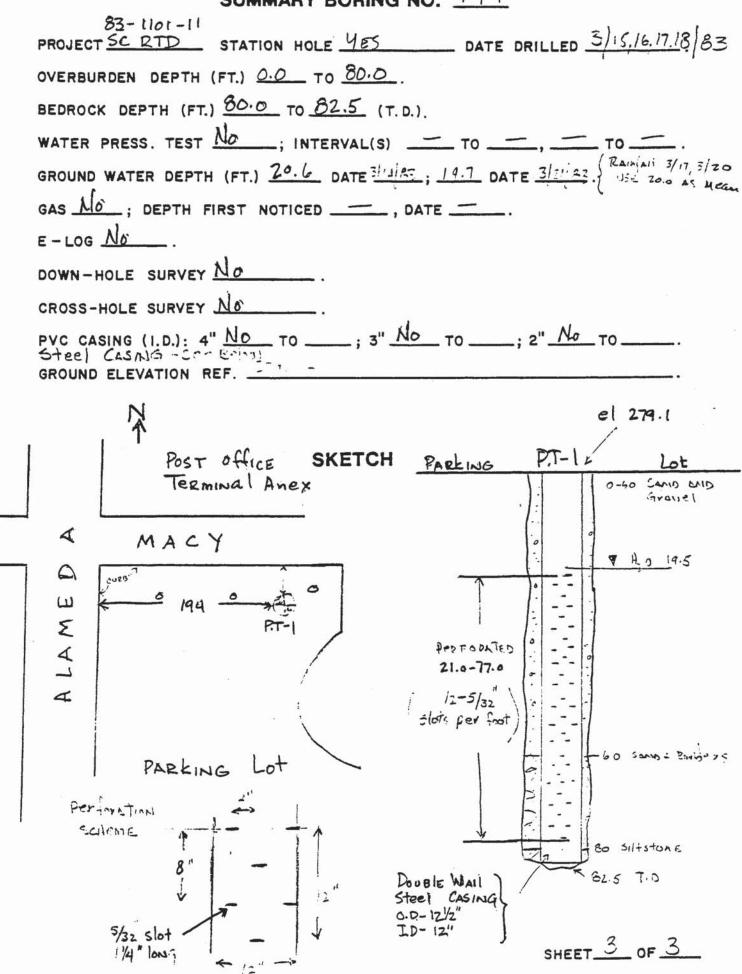
The physical condition describes the physical characteristics of the rock believed important for engineering design consideration. The form for the description is as follows:

Physical	condition:		fractured,	minimum	,
maximum _		mostly	;		hardness;
	strength;	-	weathered.		

^{*} For a more complete discussion of the Unified Soil Classification System, refer to Corps of Engineers, Technical Memorandum No. 3-357, March 1953, or Department of the Interior, Bureau of Reclamation, Earth Manual, 1963.

UNION STATION-SITE#1-1983 Boring Log PT-1

Converse Consultants


THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

D	RILLING	CONTR	D 83-101-11 10 Alameda =	SS LOGGED	BY DAN	611	ette	2	DEPT	TH TO GI	ROUND \	.79.1 NATER <u>2≎</u> 3/=	
1	SURFACE	CONDIT	Tod HOLE DIAN	Arking Lot	HAMMER	WE TAL	DEF	F AI	ND F. 82.5	ALL NA	CORE BO	XESNA	- / · =
	DEPTH	CLASS	FIELD	DESCRIPTION	SAMPLE	SPT (6")	DRILL MODE	RUN NO.	CORE REC. %	RE	MARKS		
	2.0	Af	0.0-1.5 ARTI 1.5-60.0 SA MODERATE	ND AND GRAVE		T	mif Est Ol			95f#ALT	PAVING	Төрзи	
	6		BROWNI (10 50-759, 5,	R 416); contai	Ť	SA	MP	LEg	+++++++++++++++++++++++++++++++++++++++				
	6 - /() -						RD		*				
	2 -			<i>L</i>			*				st.	2	
	4 'a 1					·			+++++++++++++++++++++++++++++++++++++++	la.		-	3/ 3/
	5. 200-								*****				7
	1.10		e.						***				
							•		+++++				
	4			ž									
	2-0-												
					+++++++++++++++++++++++++++++++++++++++				+++++				
	42.00									SHEET	<u> </u>	F <u>3</u>	51

		<i>d</i> =		-11 (1-	les		DTI
PROJECT SC	RTD	03-1101-11	DATE	DRILLED 3/16,16,17,1	3/03	HOLE NO	P1-1

PROJECT						1			
DEPTH	CLASS.		SAMPLE	14S	DRILL	RUN NO.	CORE REC. %	REMARKS	
20.0 2 - 6 - 8 - 2 - 4 - 4 - 8 - 2 - 4 - 8 -					RD V	N.	······································		3/
100.0 - 2 - 4 - 6 - 70.0 - 2 - 1 - 5 - 70.0 - 2 - 1 - 2 - 2 - 1 - 2	Por line line line line line line line line	60.0-80.0 SANGAND Zajidevs light gray (N7); contains 40-20% Sand And Granitic Zoulders BC-0-82.0 Sillistone AND Claystone Olive Black (SY 2/1)					+++++++++++++++++++++++++++++++++++++++		3/1
32.0		END BORING B2.5	•				****	SHEET 2 OF 3	5

SUMMARY BORING NO. PT-1

Converse Consultants, Inc. This boring log is based on Field Classification and Visual SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF Earth Sciences Associates LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG Geo/Resource Consultants IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS BORING LOG PUMP WELL MAY DIFFER AT OTHER LOCATIONS OR TIME. Proj: 33-1140 -06 Date Drilled 6/18-20/36 Ground Elev. 279 ____ Total Depth ______ Drill Rig Gus Peth 4 SUME KENY Logged By MBS Hole Diameter 24" BUCKET Hammer Weight & Fall (NO SAMPLING PERFORMED BLOWS (6") MODE SAMPLE DEPTH SCS REMARKS MATERIAL CLASSIFICATION O VIII 0.0-0.3 ASPHALTIC PAVEMENT (NO SAMPLING 0700 SANDY SILT N/ DEDRI (FILL 0.3-6.0 24" ML RED BRICK LAYBE Z' (0-20-80) SILT WITH FINE SAND, SOME CLAY BUCKET 2 -BINDER, MOIST, LOOSE - MEDIUM AUGER ODUSE, MISC. OFBRI AND RUBBLE AD DECREASENE WITH OUPTH, OLIVE BROWN COLOR V 6 ADDED DRILLING 6 GRAVELY SAND 6.0 - 70.0 FLUID (SUPPECOL(2014 (35-65-0 SW AND WATER MIX) FINE TO COARSE SAND WITH BUILT SOIL BERM TO GRAVELS, OCCASSIONAL COBBLES TO 5", CONTAIN FLUIDS AT 8 CLASTS SUBROUNDED TO ROUMDED, RIVER SURFACE 0 5POSITS DRILLING FLUID IN 10-BORING WASHING OUT MANY OF THE FINES N EACH BUCKET OCCASSIONAL DRILL RIG CHATTER 12-FROM COBOUGS AMO GDAVEDS 14 COBBLED TO 14" OCCASSIONAL SUBROUNDED TO ROUNDED 16 PREDOMINANTLY GRAVELLY SAND 18 Sheet _____of __4

Site # 1

Project _	B3-1140-06 Date Drilled	6-18	3-86	,	Hole No. Pomp Wal
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	BLOWS	DRILL MODE	REMARKS
20 22 22 24 24	GRAVELLY SAND WITH CLASSIONAL COBBLES - CONTINUED INTERBEDDED LEINSES OF COARSE GRAVEL AND SMALL COBBLES ALTERNIATING WITH LEINSES OF SAMOS AMO GRAVELLY SANICS	R		AD V	HzS 600R
28 30 30	28' COBBLES WITH POSSIBLES SMALL BOULDERS, DIFFICULT DRILLING, DRILL RIG CHATTER, COBBLES TO 14"			27	(0900) PLACED NEW TESTIN ON 24" BUCKET
32 34 34 36	INTERGUODISO THIN LATIONS OF CLAM AND SILT, OLIVE GRAM TO GRAM, PRESOMINANTU! SAND AND GRAVELY SANDS WITH COBBLES, AUDMACH COBBLES SIZE 3"6", OCCASSIONAL COBBLES TO 14"	(40-60-0)			
38 40 42	OCCASSIONAL CLAMSY GRAVEL LATERS VARIABLE THICKNESS, 1-2, OLIVE GRAY COLOR WITH H2S ODOR				
					Sheet _ 2_ of _ 4

~

НЦАВО	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
44	5W	GRAVELLY SANDS - CONTINUED FINE TO COARGE SAND WITH GRAVEL, OCCASSIONAL COBOLIES FROM 6"-14", SUBROUNDED TO ROUNDED.	ø		AD	(1000
48		INTERBEDOED THIN LONSES OF CLAM AND SILTY CLAM - UMPLAGUE, PREDOMINIANTUS GRAVELLY SIAMOS				*.
52						(1106
56						HYDRAULIC LEAK DEVISCOPING ON DRILL RIG RING GISAR
58						
60		GRAUBLY SANDS - CONTINUED, OCCASSIONAL SYMAUL CURABLED				
64						
66 -						(1200)
68						(1200) Sheet <u>3</u> of <u>4</u>

I	Proje	ect _	33-1140-06	Date Drilled	6-1	8		Hole No. SITE #1
5 	DEPTH	uscs	MATERIAL CLAS	SIFICATION	SAMPLE	NU.	DRILL	REMARKS
	68 70 72 -		GRAVELLY SANDS- INCREASING FI 70.0 - 74.0 BRAVELY MIXTURE OF SAND WITH A CLAY / SIUT GIZAY, DENSE, H2S MATERIALS, DELASSIC CLASTS SUBAUGULAR	SAND W/ CLAY ANC GRAVEL Y CLAY BINDER ODOR IN FINER WAL COBBLES,	(35-40-25)		AD	ADDED ±20165 OF SUPERCOL TO DRILLING FLUID IN BORING. (1320)
	74 - 76 - 78 -		74.0- 80.0 <u>GOBBLES</u> WITH SURROUNDED TO ROUNDE TO 12", COBBLES GUNERA SANGY GRAVEL CONSISTING COARSE SANDS AND GRAVES PEROSITS, H2S ODOR	LIT 4"-8", Some				PLACED NEW TESTH (2000 SET) on 241" BUCKET 6-18-34 74'- SHUTDOWN AT 1430, NEW SPECIAL BUCKED TO REMOVE COBBLES, SELVED SITE 6-20-86 ATTEMPTLS TO COPAL THOUGH POLL IN COTTOM OF
	80 -		GRADATIONAL				1	BORING APPENIES TO BE LARGE COBBLE OR BOULDER, USING CHORDING BUCKET AND LARDE SINGLE TOOTH WITH
	82 -	***	BO.0- 88' BEDRO CLAYSTONIE / SILTS PUENTE FORM OLIVE GRAY SILTSTANE MEDIUM PLASTICITY, AQU	AND CLAUSTALE,				NO SUCCESS 6-21-86 USING CORING BUCKET TO ADUANCIS THROUGH ROCK, HOLE REMAINED OPEN PAST TWO DATS WITH A MINIMUM OIF DRILLING FLUID
	84 -							
	86 -							EASY DRILLING (0900) THROUGH SILTSTONE/ CLAYSTONE
	88 -	<u><u></u></u>	END OF BORING 88'					(0930)
л. Э	90 -	+++++++++++++++++++++++++++++++++++++++	USED I BAG SUPERCOL (SOIL INSTALLED PUMP WELL CA CASINGS FROM APPROX 7' CONTRALIZORS AT 7'40', CONJSISTING OF IMPORTED D WITH TAPE SOUNDINGS	TO 87', 0-7' NON SUD 87', BACKFILLED AROUN	TTED C	ASING	LAC	NOS CAPPED, WELL NG WITH (SW) SAND INITORIO BACKFILLING
	92	ŧ						Sheet _4 of _4

- 14 2

Converse Consultants

Boring Log

THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME.

CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

DRIL	TION LING OF	CONTRA	CTOR CONVERSE - LAS VECAS LOGGED BY	B. I MER	NGH WE	RAM	ГА	GR DE ND	OUND ELEV. 279.1' PTH TO GROUND WATER 20.3
DE	ртң	CLASS.	FIELD DESCRIPTION	SAMPLE	5PT (6")	DRILL	RUN NO.	CORE REC. %	REMARKS
- 2	0	94/ 	2.0-4.0 STLTY SAND SANDY SILT			RD ccl DR RD			SET UP 7:00 AM BEGIN DRILLING 7:30 AM WEATHER : CLEAR, WARM SLIGHTLY POROUS
- 1	.0	54	RED- BRN., MOIST, M. DENSE V. FINE SAND - 50-60% SILT - 40-50% 4.0 - 8.0 <u>SILTY SAND</u> GRAY-BRN., MOIST, M. DENSE FINE SAND WITH 20% SILT AND TRACE GRAVEL TO 1	1-2		CC H R R R			
	10.0 -	A SW	8.0-70.0 GRAVELLY SAND	5" REFUS	-	SPT RD			
	2.0 - 14.0 -	d 0.0.0							
	16.C IS.C						•		SHEET / OF 5

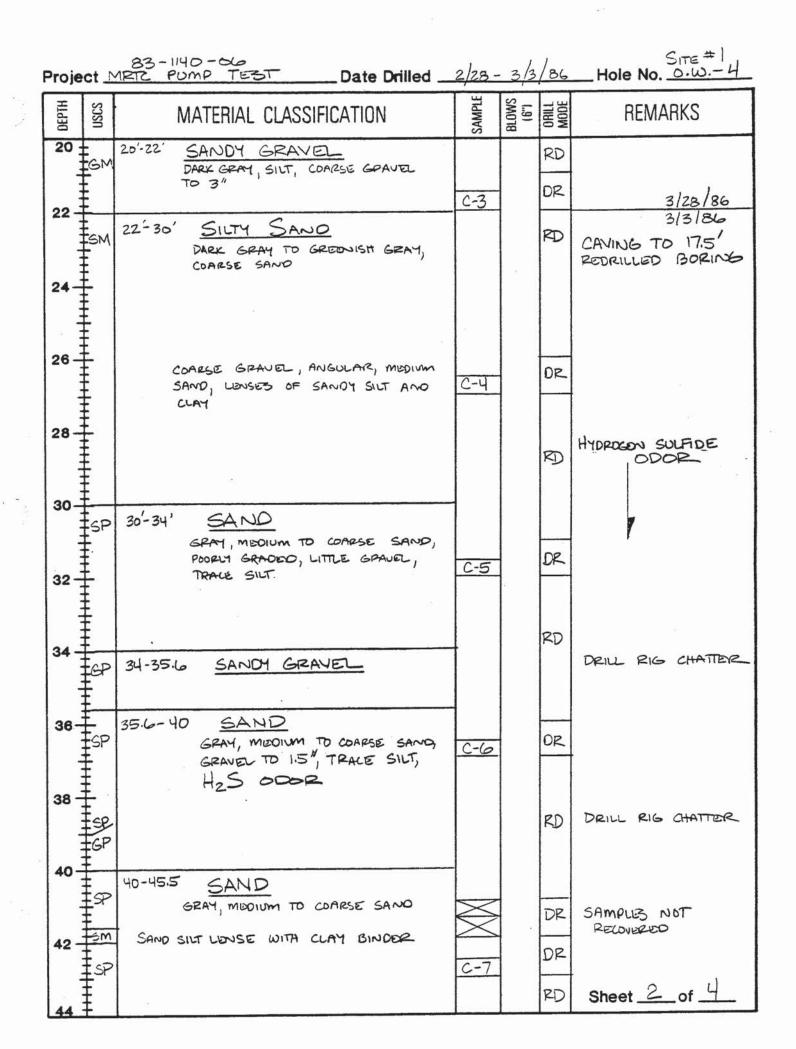
DEPTH CLASS. FIELD DESCRIPTION THE STORE WOULD REMAR 20.0 444 SW 8.0-70.0 GRAVELLY SAND SOK DR DIFFICULTY E 14.0 100 100 100 100 100 100 100 100 100 1	1024 1
$22.0 \qquad \qquad$	KS
	XTRUDING -
30.0 TO POOR RECOVER 1-3 CCT POOR RECOVER 1-3 CCT DELICATE SAN 45K RD TO RECOVER 1-3 CCT TO RECOVER 1-45K TO RECOVER 1-3 CCT TO RECOVER 1-45K TO RE	RY, VIPLE Y
32.0 10 INTERMITTENT LENSES OF INCREASED	
34.0 to or GRAVEL CONTENT	
40.0 TO SULPHUR ODO 55K DR FOOR RECOVER 420 TO	24,
42.0 40 42.0 40 42.0 40 42.0 5 42.0 5 42.0 5 50.6 50.	

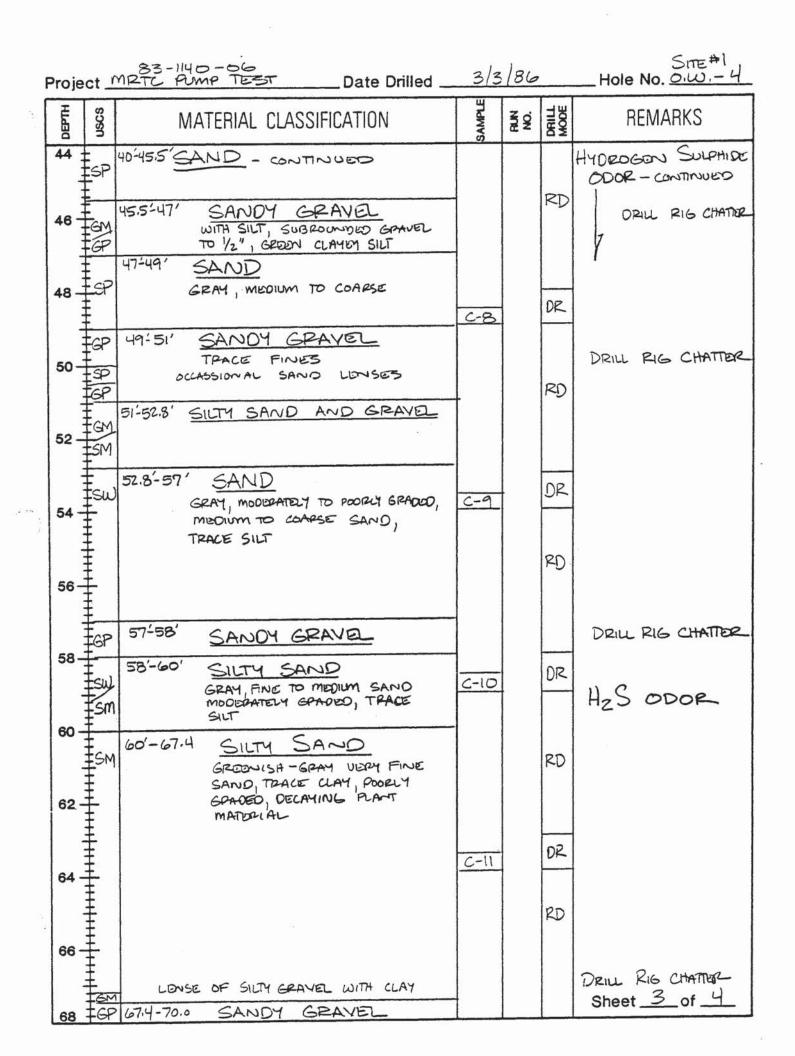
C				1
PROJECT SCRTD -	UNION STATION	DATE DRILLED	2/4/	83

OBSERVATION WELL #1

00	0 1	-	~	-	
PR	00	-	J		1

SCRTD - UNION STATIONDATE DRILLED _ 2/4/83 HOLE NO.

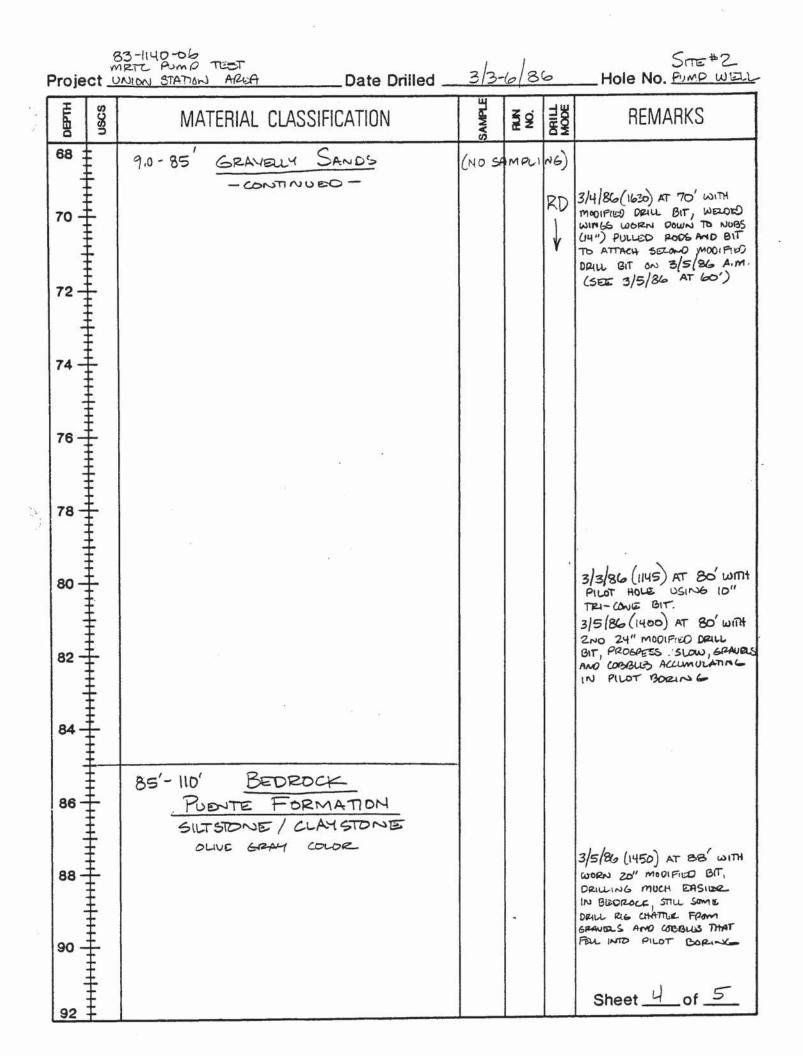

SITE # 1 OBSERVATION WELL #1

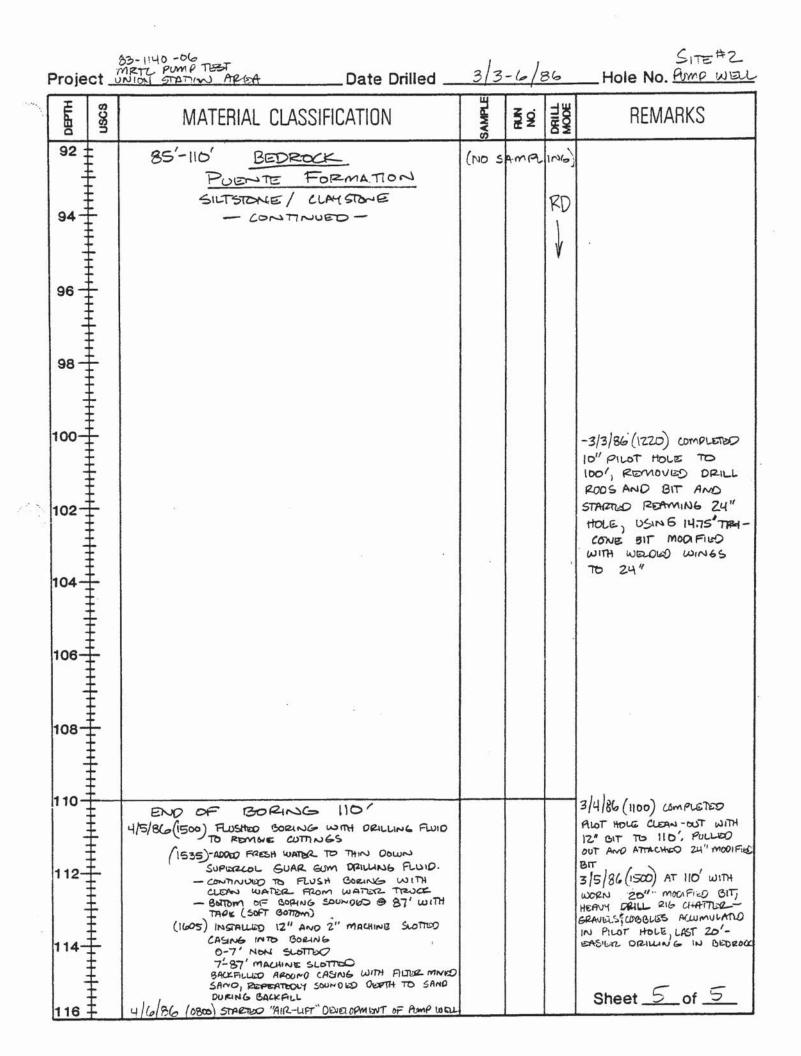

DEPTH	CLASS.	FIELD	DESCRIPTION	SAMPLE	5PT [6"]	DRILL	RUN NO. CORE REC. %	REMARKS
44.0	SW	8.0 - 70.0 GR	AVELLY SAND (CONTINUED)	11-5 57K		RD cci DR RD		SULPHUR ODOR Poor Sample Recovery 2 Rings ONLY
48.0 50.0 52.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		بر بر ¹⁵			cci DR RD		GRAVELLY SAMPLE - FELL OUT OF SAMPLER
54.0		а; 16 17	ೆ ಕೆ.ಲೆ. ಹಿ		-10"	CCI DR RD	***	SLIGHT SULPHUR ODOR POOR SAMPLE RECOVERY - 5 RINIGS CALLY
58.0	A	ж 15	•	*****			+++++++++++++++++++++++++++++++++++++++	
62.0 64.C	0.00		5: F				· · · · · · · · · · · · · · · · · · ·	-
66.0				11-7 100 K	10	RD	*****	SULPHUR ODOR POOR RECOVERY 4 RINGS ONLY SHEET 3 OF 5

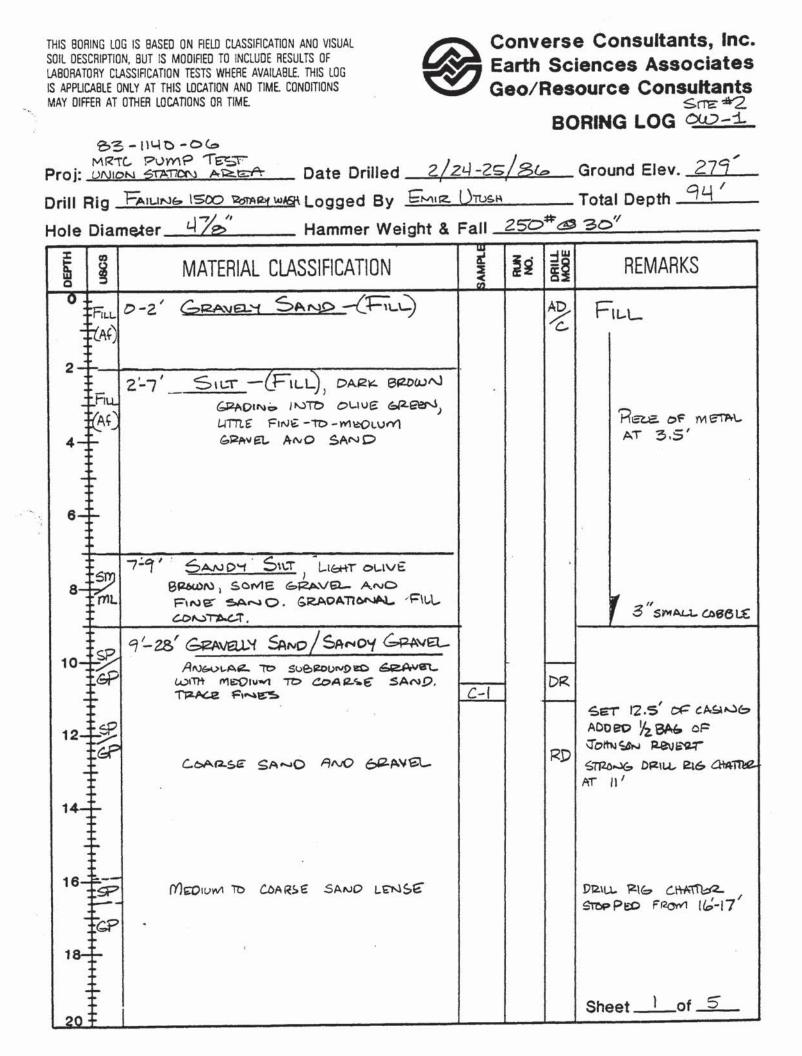
P	ROJECT	SCRTI	D - UNION STA.	DATE DRILLE	ID _2/	4/8	3		I	°65 HOLE NO.	SRVATION	WELL #
Γ	DEPTH	CLASS.	FIELD DE	SCRIPTION	SAMPLE	1.5	DRILL	RUN NO.	CORE REC. %	REM	ARKS	
2	68.0 70.0	A SW	(ca 70.0-79.5 Bou	UDERS.	****		RD				ŕ	
	72.0 _		GRANITIC						····			
2	74.0 _								+++++	ATTEMPTE	e or a	AMPLE -
	76.0 -				REFL	SAL.			****	COULD N SAMP Too HARD	OF DRI LER	VE
	78.0 _		•	•	**				···			
	80.0 -		AND CLAY	CLAYSTONE EY SANDSTONE			CLI DR RD		+++++++++++++++++++++++++++++++++++++++	, t	5	
	82.0 -		OLIVE-GRAY CO THINLY LAMINA PLANNES DIP - NOT ORIENTED)	- 50° (SAMIPLES	12-1-1-1				+++++++++++++++++++++++++++++++++++++++			
	84.0		FRIABLE. STRE TO LOW HARDNI FRACTURE ALON	NGTH, FRIABLE	1-9 40K		CCI DR		+++++++++++++++++++++++++++++++++++++++			
	s attention from the other		END BORING PIEZOMETER S PERFORATED INT	бет то 85.0'	***				***	•		9 43
ŀ					+++++++++++++++++++++++++++++++++++++++				+++++++++++++++++++++++++++++++++++++++	SHEET_	4 OF	5

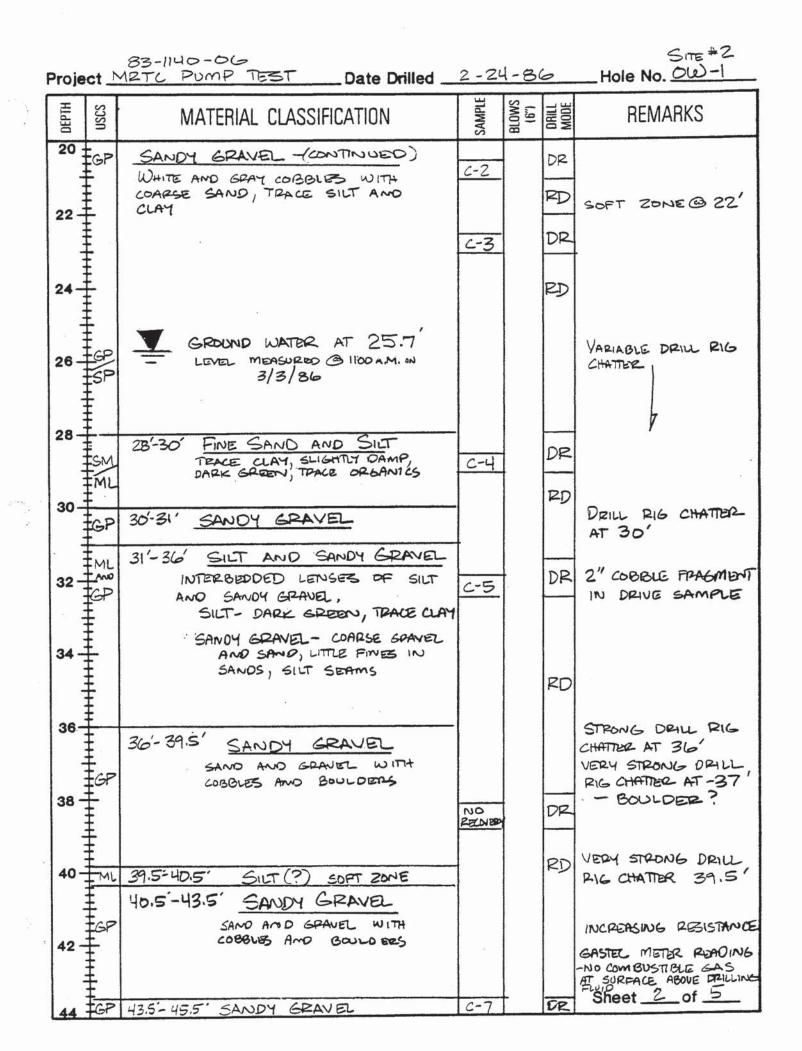
SOIL DESCRIPTI LABORATORY C IS APPLICABLE	OG IS BASED ON FIELD CLASSIFICATION AND VISUAL ON, BUT IS MODIFIED TO INCLUDE RESULTS OF LASSIFICATION TESTS WHERE AVAILABLE. THIS LOG ONLY AT THIS LOCATION AND TIME. CONDITIONS OTHER LOCATIONS OR TIME.		arth	Sc Res	e Consultants, Inc. iences Associates ource Consultants SITE#1 ORING LOG				
Proj: UNI	Proj: UNION STATION AREA Date Drilled 3/1-3/86 Ground Elev. 281								
Drill Rig	FAILING 1500 ROTARY WASH LOgged By Emis	2 UT	USH	1.10-	Total Depth				
	meter <u>478"</u> Hammer Weight &	Fall_	250	1	<u>9</u> 30"				
DEPTH UBCS	MATERIAL CLASSIFICATION	SAMPL	NO.	DRILL	REMARKS				
° <u></u> ₽	0-0.5' ASPHALTIC PAVEMENT AND BASE 0.5'-5' SANDY SILT			C					
I IML	BROWN, MOIST, VERY FINE SAND AND			AD					
	SILT								
4									
	5-6								
6	GRAVELLY SAND, BROWN				INSTALLED CASING				
	LIGHT BROWN AND GRAY, MEDIUM			RD	MIXEO REVERT				
B 8	TO COARSE SAND, POORLY GRADED, COBBLES TO 4", SUBROUNDED,			1					
	MOIST, LOOSE TO MEDIUM DENSE, TRACE FINES								
Į									
		C-1		DR					
	а — ж. _с								
12				RD					
	13-15' SAND								
	YELLOWISH BROWN, GRANITIC FRAGMENTS, MEDIUM TO COARSE, TRACE FINE								
‡	GRAVEL			02					
16-GP	42LOWISH BROWN, MEDIUM TO COARSE SAMP, COARSE GRAVEL AND	C-2		DR					
	SMALL COBBLES, SAND LENSES, TPACE SILT AND CLAY, POORLY			RD					
18	GRADED WITH TPACE FINES								
20	APPROXIMATE GROUNDWATER				Sheetof				

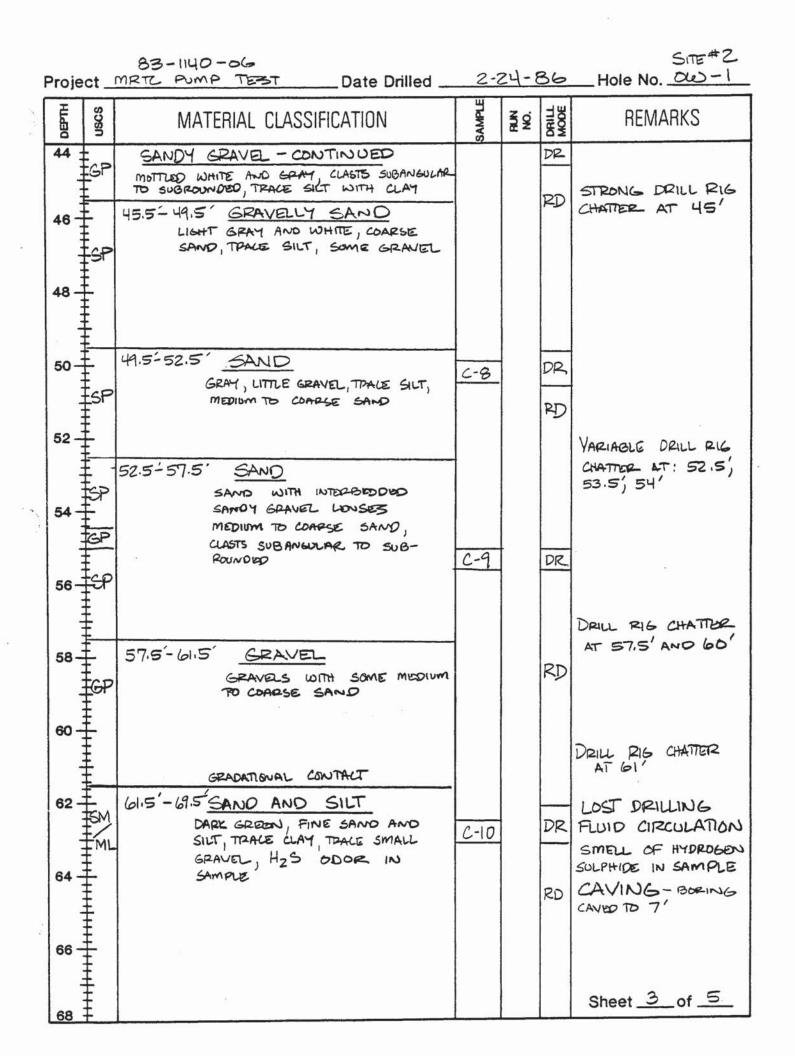
.

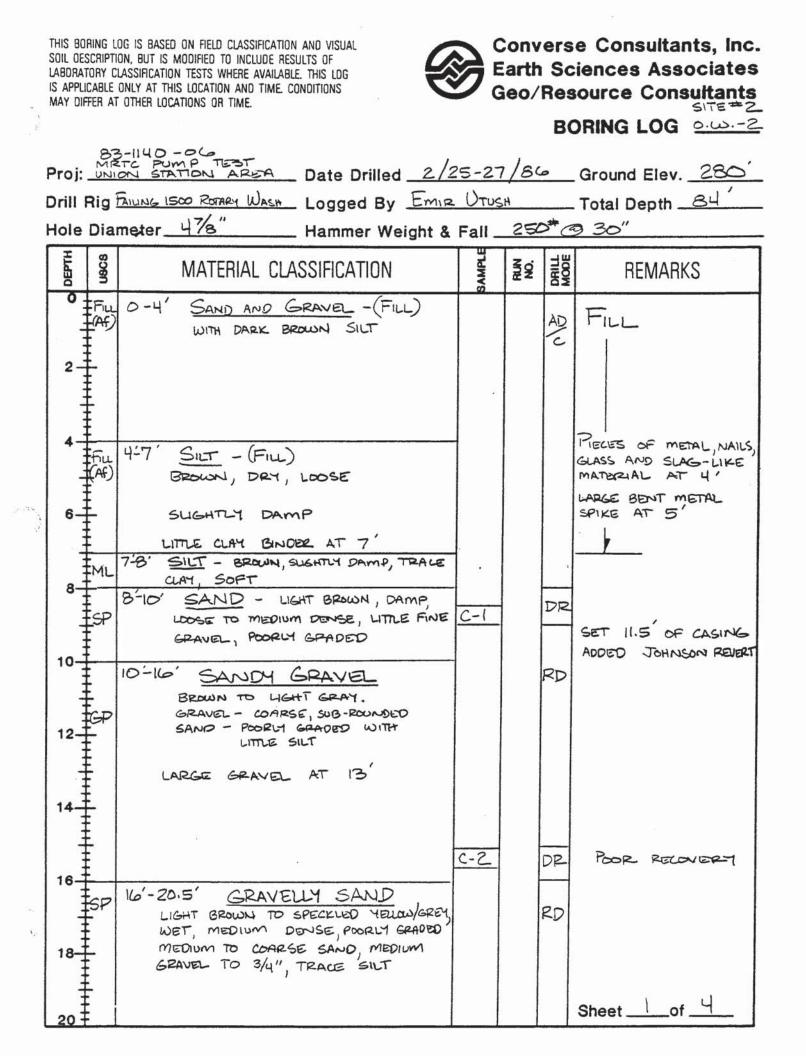


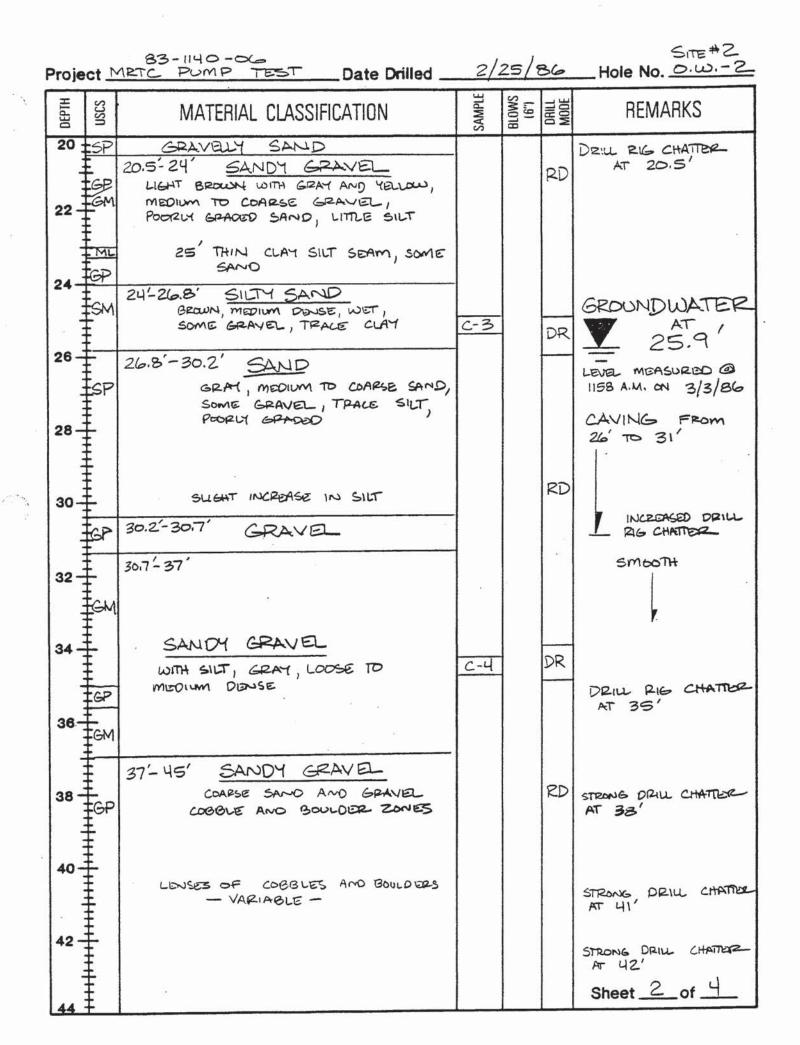

Pr	oject <u>1</u>	83-1140-06 MRTC PUMP TEST Date Drilled	3/3	180	0	Hole No. 5004
:[i	USCS	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
6	8 GP	67.4-70' <u>SANDY GRAVEL</u> GRAY, COARSE, TRACE FINES			RD	
7		GRAVELS TO 3" MODERATER WELL	C-12		DR	SMALL COBBLE IN SAMPLER TIP
7	2 4 4 6 7 6 7	GRADED, COBBLES 72-78' <u>SANDY GRAVEL</u> GRAY, COARSE, COBBLES AND				DRILL RIG CHATTER
7	4	BOULDERS, TRACE FINES			RD	
7	6					í.
7	8-1	78-79' SANDY SILT BROWNISH GREEN, POORLY GRADED, TRANSITION ZONG				
8	•	79-84' BEDROCK - PUENTE FORMATION SILTSTONE / CLAYSTONE OLIVE GRAY, STIPF, TRACE VERY FINE SAND			1	·
8	2	FINE SHOUL				
a	4	END OF BORING 84'				S
8	16	- INSTALLED PIEZOMETER 0-10' NON SLOTTED 2" PVC CASING 10'-79' MACHINE SLOTTED 2" CASING, 0.20" SLOTS, END CAPPED - FLUSHED CASING AND BORING WITH CLEAN WATER (± 1000 GALLONS)				
B	8	- BACKFILLED BORING WITH #3 MONTEREY SAND, 12-100# SACS - SDALED TOP 5' WITH CONCRETE GROUT AND BUNTONITE, INSTALLED 2.5' CASING AND WELL COVER.				
		2.3 CHOING AND WELL LOVER.				Sheet of

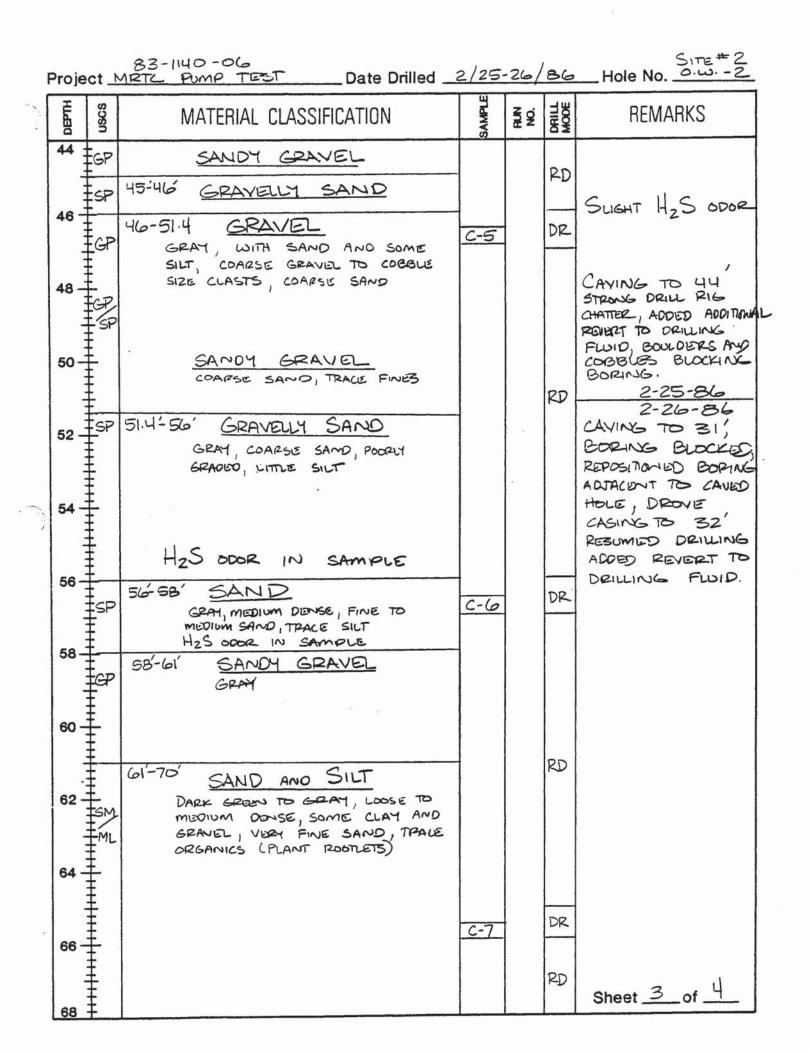

Converse Consultants, Inc. THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF Earth Sciences Associates LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG Geo/Resource Consultants IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME. SITE#2 BORING LOG PUMP WELL 83-1140-06 MRTC PUMP TEST Proj: UNION STATION AREA Date Drilled 3/3-6/86 Ground Elev. 279.5 Drill Rig INGERSOL RAND TH 60 Logged By MARK SCHLUTER Total Depth _ Hole Diameter 10" REAMED TO 24" Hammer Weight & Fall (NO SAMPUNG PERFORMED) SAMPLE (1.9) DRILL DEPTH JSCS REMARKS MATERIAL CLASSIFICATION Ō STARTED DRILLING 0.0 - 9.0 FILL (NO SAMPLING AT (0945) 3-3-86 GRAVELLY SAND, SILT, AND 3/3/86 AIR-LIFTED CUTTING SANDY SILT, TRACE AMOUNT OF WITH DRILL RIG COMPRESSOR 2 DEBRI AND RUBBLE INCLUDING FROM 0-10' FRAGMENTS OF CONCRETE, BRICK, METAL 3/3/86(1240) STARTED REAMING BORING WITH MODIFED 24" AIR DRILL BIT ROTAR 3/4/86 (0730) DRILLED OUT HOLE WITH 12" TRI-ONE BIT TO CLOAN OUT FALLEN GPAVELS AND LOBBLES ATOM 24" POAMINE DRILLED TO 110' WITH 12" BIT. (1100) 8-DRILLED TO 10, SET UP FOR 10" ROTARY WASH 9.0-85 GRAVELY SAND DRILLING 10. MEDIUM TO COAPSE SAND, ATTACHED ID" TRI-CONE SOME GRANELS, TPACE SILT BIT TO ID' LONG REAMING SELTION AND STAPTED BORING LOGGED GASIO ROTARY WASH DRILLING ON ROTARY WASH CUTTING, 12. WASH OF PILOT HOLE, GRAVELS AND COBBLES BROKEN DRILLED 10" PILOT UP DURING DRILLING. RD HOLE TO 100' 3.3. ADDED SUPERIOL GUAR GUM TO DRILLING FLUID, 16 - DRILL RIG CHATTER 16 3/3/86(1340) AT 16" WITH 24" GRAVELS AND LOBBLES MODIFIED DRILL BIT PROGRESS SLOWED 18-Sheet _____ of ____

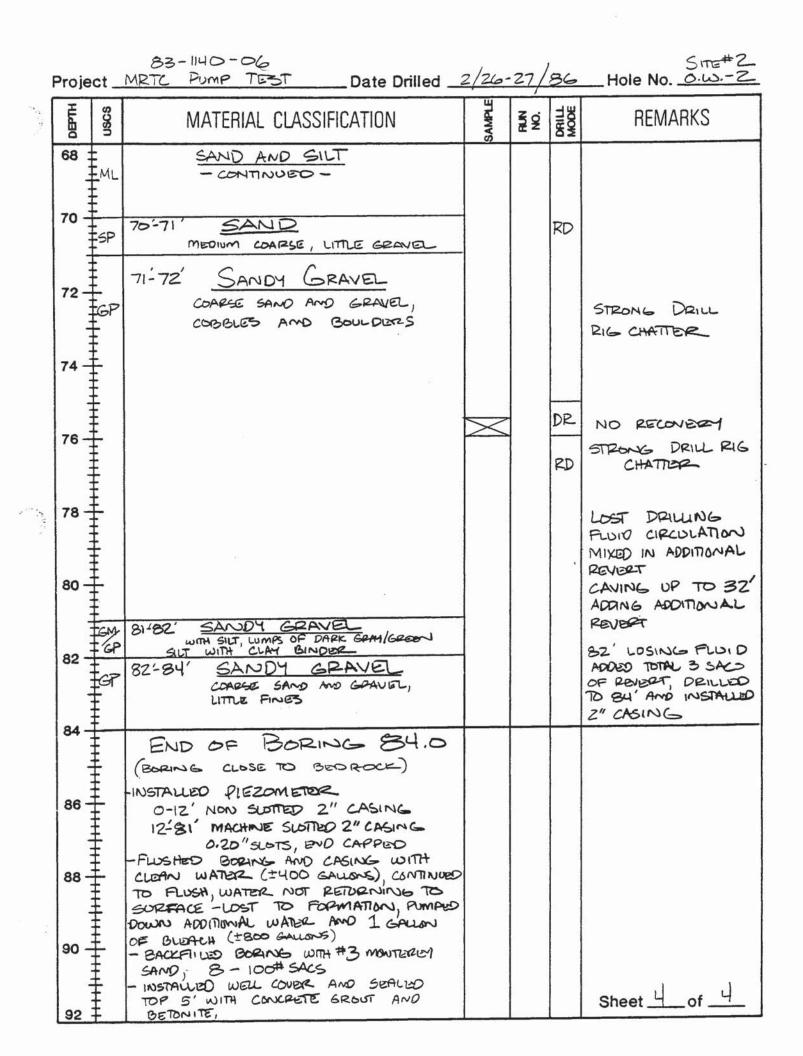

Projec	n n	NION STATION AREA Date Drilled _	3/3-	6/8	o	SITE #2_ Hole No. PUMP WELL
DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	BLOWS (6")	DRILL MODE	REMARKS
20		9.0-85' <u>GRAVERLY</u> SANOS - CONTINUED -	(אט פ	AMRI	NG)	3/3/86 (1030) AT 20' WITH 10" TRI-COME BIT.
22					RD 	
26		25' - DRILL RIG CHATTER-10" BIT COBBLES AND GRAVELS				3/3/86 (1040) AT 25' WITH 10' TRI-CONE BIT
28						3/3/86 (1510) AT 28' WITH MODIFIED 24" BIT, GRAVELS AND COBBLES FALLING INTO PILOT HOLE, PULLED 24" MODIFIED BIT OUT OF HOLE AMY ATTACHED
32		-1		t		12" TRI-CONE BIT TO CLEANS OUT PILOT HOLE
34						
36		es Maria				
38		• •				
40						
42						Sheet _2 of _5

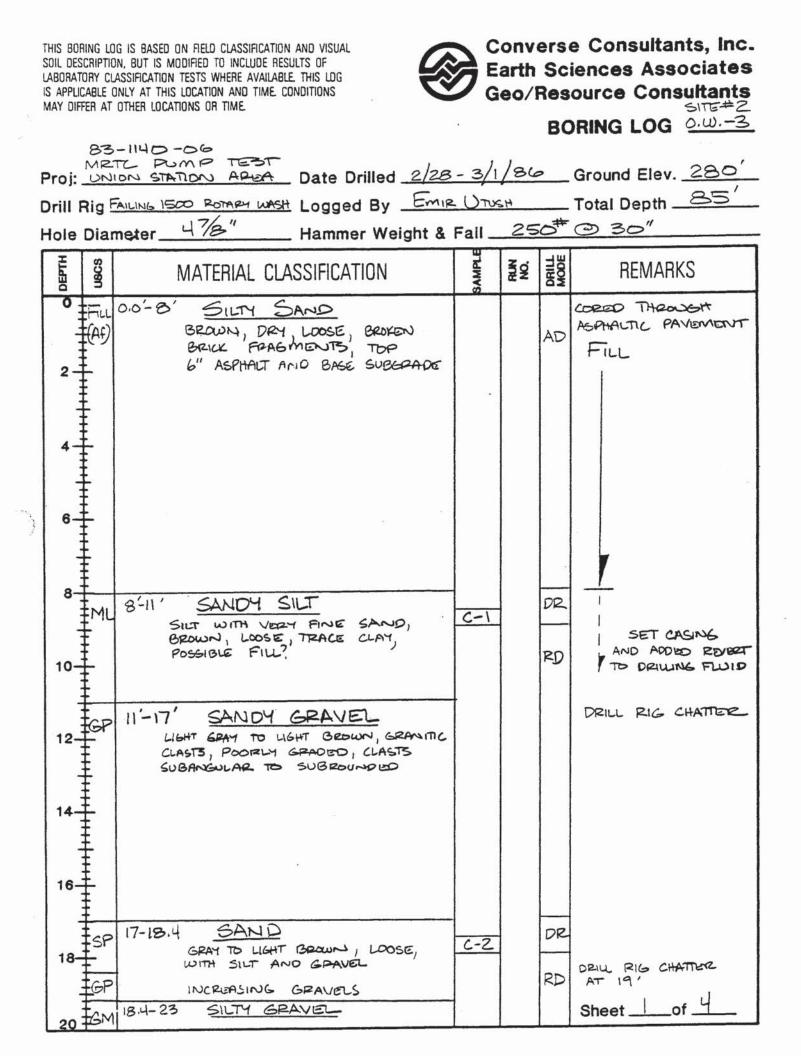

1	Proje	ଞ (ମ) (1)	3-1140-06 RTC PUMP TEST VION STATION APER Date Drilled _	3/3-0	6 86	7	SITE #2 Hole No. Rump WEL
$\sum_{i=1}^{n}$	нгар	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
	44		9.0-85' <u>GRAVELY SANCS</u> - CONTINUED -	(NO 5)	Am PL	rng) RD ↓	
	50 - 52 -			-	6		3/4/86 (1430) AT 50' WITH 24" MODIFIED OPILL BIT
	54 -						
×	60 - 62 - 64 -	+++++++++++++++++++++++++++++++++++++++					3/5/86 (0820) BT 60, STARTOD DRILLING WITH NEW 24" MODIFILD ORILL BIT, 2ND BIT USED. GRANDS AMD COBBLED FALLING INTO CUDANED OUT PILOT HELE AS 24" BIT IS ADVANCES
ž	66 -	****					Sheet <u>3</u> of <u>5</u>

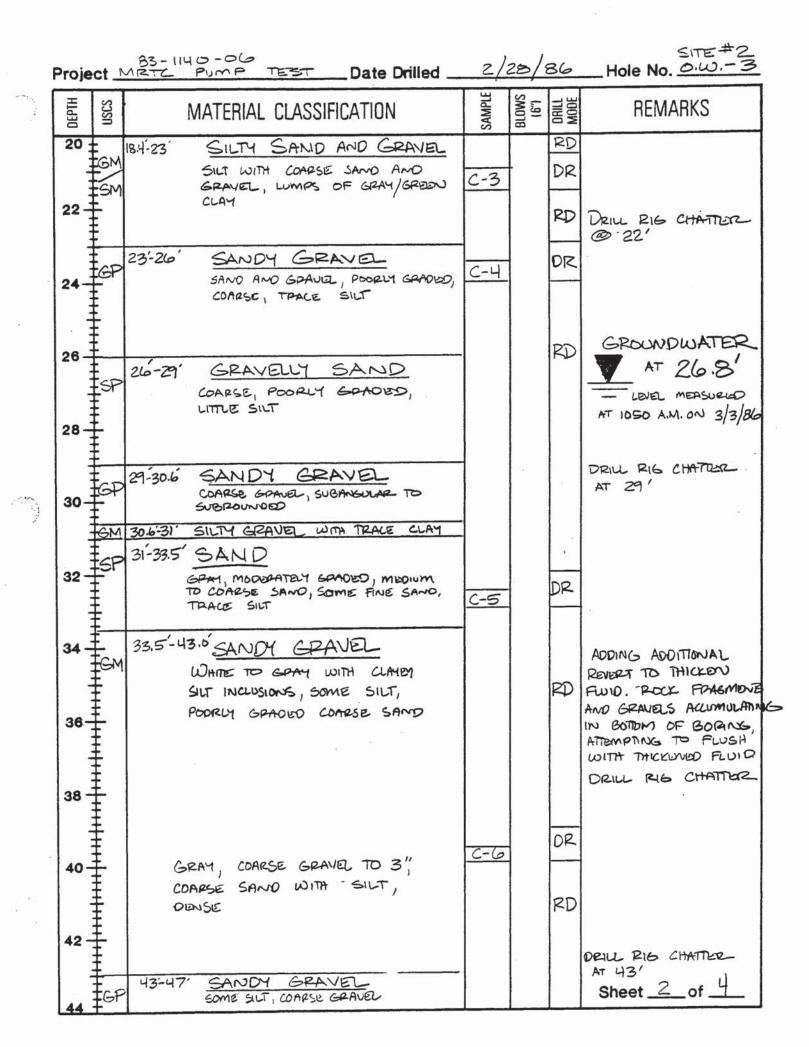


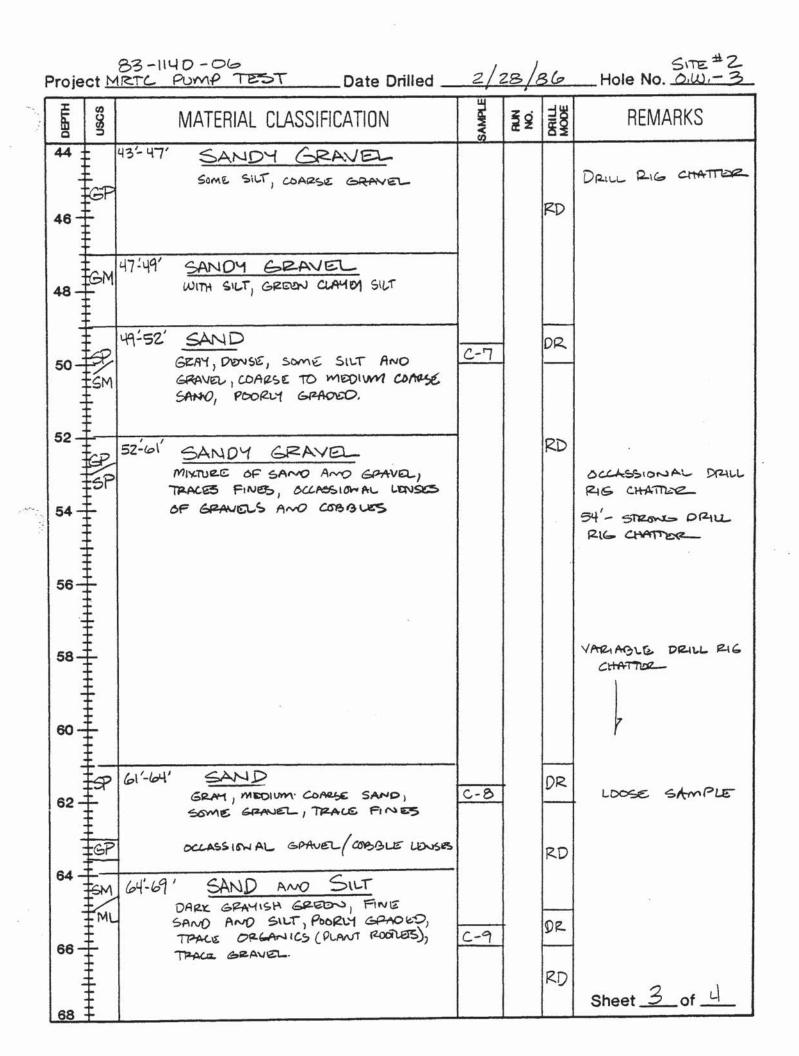







	Proje	ect _^	83-1140-06 1RTC Pump TEST Date Drilled	2/:	25/8	36	SITE # 2 Hole No. 000-1
· · ·	нгчар	USCS	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
	92 :	Te //	BEDROCK-SILTSTONE/CLAYSTONE - CONTINUED - PUENTE FORMATION			RD	
	96 -	*****	END OF BORING 94.0' -FUSHED BORING -INSTALLED PIEZOMETER 0'-10' NON SLOTTED 2" CASING 10'-89' MACHINE SLOTTED 2" CASING, 0.20" SLOTS, END CAPPED'				-
	98 -	****	BACKFILLED BORING WITH #3 MONTERED SAND, 6-100# SALS - FLUSHED PIEZUMETER WITH PRESH WATER,	×.			۰۰ ^{۱۱}
	100-		- INSTALLED WELL COVER AND SEALED TOP 4.5' WITH CONCRETE GROUT AND BENTON ITE.				
	102-						
	104-						
	106-						
	108-						
	110-						
	112-	+++++++++++++++++++++++++++++++++++++++	*				
,	114-						Sheet <u>5</u> of <u>5</u>





F	Proj	ect _\	83-1140-06 ARTC PUMP TEST Date Drilled 2	128-	3/1	/86	SITE #2. Hole No. 0.0 3
][DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
	68 70	1 mL	64'-69' <u>SAND AND SILT</u> DARK GROW TO GRAY, FINE SAMD, LITTLE GRAVEL 69'-71' <u>SANDY GRAVEL</u>			RD	DRILL RIG CHATTER
	72 -	FSP	71-74' <u>SAND</u> GRAT, COARSE SAND LITTLE GRAVEL				
	74 · 76 ·	- Jun	74-84' <u>GRAVEL</u> COARSE GRAVEL TO 2", WITH MEDIUM TO COARSE SAND, TRACE SILT, GRAY COLOR	C-10		DR	STARTED LOSING
	78	***	τ	43		RD	DRILLING FLUID TO FORMATION, MIXING IN ADDITIONAL REVIECT 2/28/86 3/1/86 CAVING TO 72'
	80		SANDY GRAVEL SUBROUNDED TO WELL ROUNDED PETBBLES				MIXED ADDITIONAL REVERT, BOTTOM OF BORING CAVING
	82		84-85' BEDROCK-PUENTE FORMATION				DRILLED TO 85' And inistalled Casing
	86	¥./	END OF BORING 85' -INSTALLED PLEZOMETERZ 0-10' NON SLOTTED 2" PVC CASING 10'-78.5' MACHINE SLOTTED 2" CASING 0.20" SLOTS, END CAPPED				
•	88	**	- FWSHED CASING AND BORING WITH CLEAN WATER (±1800 GALLONS WITH ±650 GALLONS RETURNING) RETURN FLUID REDUCED AS BORING WAS FWSHED, ADDED 1/2 QUART BLEACH.				
	90 92		-BACKFILLED BORING WITH #3 MONTERED SAND -INSTALLED WELL COUER AND CASING TOP 2.5', SEALED TOP 5' WITH CONCRETE GROUT AND BENTONITE	÷			Sheet <u>4</u> of <u>4</u>

SITE # 2 OBSERVATION WELL #4

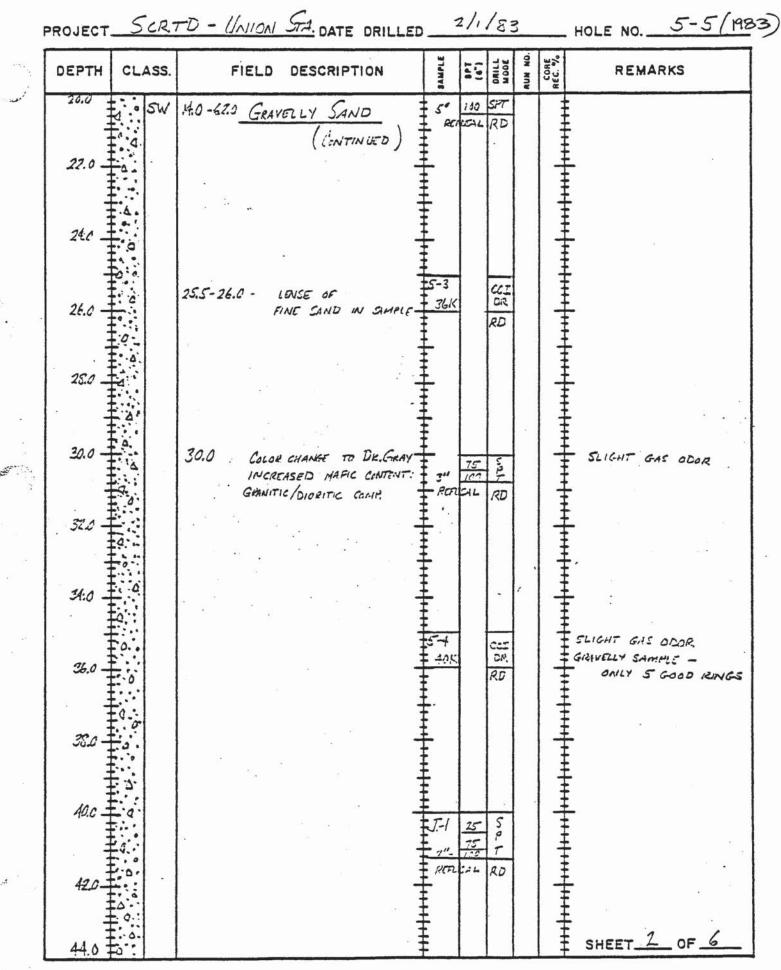
Boring Log 5-5 (AB3)

Converse Consultants

1000

£ ...

3.



THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIPPER AT OTHER LOCATIONS OR TIME.

÷						CON	-	-	DIFFER AT OTHER LOCATIONS OR TIME.	
2	PROJECT.	SCRTE	G UCCH AT INT: VIGNES & RACIN	D	2/1/	83		HO	LE NO. 5-5	
	DRILLING	CONTRA	CTOR CONVERSE - LAS VICAS LOGGED BY	B.I	JE+IR	AM		DE	PTH TO GROUND WATER 27.9	
	TYPE OF	RIG	HOLE DIAMETER 424" HAM	MER	WE	IGH1	A	ND	FALL 320" 36" (2-2-2	•.
	SURFACE	CONDITIC	ONS A.C. PARKING HERA	_ TOT	AL	DEF	тн	100	NO. CORE BOXES	
	DEPTH	CLASS.	FIELD DESCRIPTION	SAMPLE	(")) 797	DRILL	RUN NO.	CORE REC. %	REMARKS	
	0.0	==/ ML	0.0 - 0.3 · ASPHIT PAVEMENT			RD		ŧ	SET UP 2:45 PH 1/31	
			0.3-5.5 - FILL - SANDY SILT &	-		5		1	BEGIN DRILLING 7:15AM WEATHER: CLEAR, WARM 183	
	2.0	SM SM	SILTY SAND		16 25 57	P		1	WEATINGIC CLEWR, WARM	
		===/	MOTTLED & INTERMIXED		57	T		‡		
		F /-	Meist, STIFF /M. DEASE			RD		H	DRILLED TO 5	
	4.0	<u> </u>	W/ BRICK DLERIS					1	WITH 7" BIT FOR PIEZO INSTALLATTON	· .
		E =/.						Ŧ	44." BIT BELOW	
				5-1		CEI		‡	1	
	61 -	E. SM	YOUNG ALLUVIUM	3K		CCI ER		1	CONTACT CONTRINED WITHIN SAMPLE	
		<u></u> ₹: -	55-11.0 SILTY SAND			RD		‡	WITHIN SAMPLE	
		<u></u> ≢:-1	GRAY-BAN. MOIST,	Ξ.				Ī		
	8.0 -	Ŧ	MED. DENSE FINE TO V. FINE SAND-707					4		
		ŧ⊡	20% SILT	-						
t 5		Ē						1		
	10.0 -	₽		-	10	S				
		<u><u> </u></u>	11.0 - 14.0 SAND	-	12	P		1 ‡		
		50	GRAVI- BAN, MOIST,		25	1 RD		Į		
	12.0 -	Ŧ	M. DENSE TO DENSE	-		~~				
	.	<u>‡</u> .	POORLY GRADED FINE SAND	-		·		1		
	14.0-	Ŧ		2					See.	
	17.0-	SW	14.0 -62.0 GRAVELLY SAND	Ē						
		Ŧ	BROWN, DENSE WELL GRADED -	5-2		Car			GRAVELLY -	
	16.0-	Ξ	MER TO GARIST CLEAN SAND	50K		CCI TR		1	DISTURBED SAMPLE	
	,0,0-	± : ^	- 70% , GRAVEL TO 2"- 30%	F		RD				
		Ŧ	SUBANGULAR TO SUBROUNDE	Ē		÷				
j,	180-	<u>- 0.</u>	GRAINS, GRANITIC COMP.					1		
		E						Ī		
		1.0		Ē					SHEET OF 6	
	20.0	<u>‡931</u>		-				Ŧ	SALEIUP	

. *

OBSERVATION WELL #4

· · ·

۰.

•*•••	(*) (*.*.	5 5 1	343 + 34-1	•					OBSERVATION WELL#4	
ï	PROJECT.	SCRT	D - UNION STA. DATE DRIL	LED	1. 1	, 83			HOLE NO. 5-5 (1983)	
I	DEPTH	CLASS.	FIELD DESCRIPTION	SAMPLE	1.5	DRILL	RUN ND.	CORE REC. %	REMARKS	
-	44.0	0.	14.0 - 62.0 GRAVELLY SAND		ľ	RD				
	46.0		(CONTINUED)		-				_	
		0	er en	1 1						
	48.0 -			+						
	50.0	0	¥ 04	-					, SULPHUR ODOR	
				75%		RD			POOR SAMPLE RECOVERY - REMAINING SAMPLE	
	520 -			+		•			DESTROYED IN HANDLING	
	54.0	0	a A DE MARA A A DE MARA A	+						,
>~-		G	GRAD. DECREASING GRAVEL CONTENT							
• *	56.0-			+					1977 - 19	
2	58.0 -	0.		1						
-	60.0	0		5-5		CCT			SLIGHT SULPHUR ODOR	
		0		<u>sok</u>	4 1	CCI RA RD				
	62.0	57	62.0-78.0 SAND	+++						
	64.0		DARK GRAY, DENSE POOKLY GRADED UNIFORM FINE TO							
			VERY FINE GRAINED MICACEOUS							
¥	66.0-									
	68.0		1 12/	+++++++++++++++++++++++++++++++++++++++					SHEET 3 OF 6	

OBSERVATION WELL # 4

PROJECT	SCRT	D - UNION ST DATE DRIL	LED 2	1.1	83		- HOLE NO. 5-5 (1983)
DEPTH	CLASS.	FIELD DESCRIPTION	SAUPLE	19		RUN NO.	
68.C 70.0 -	SP	62.0-TR.O <u>SAND</u> (CONTINUED)	5.6 DK		RD CCI DR		STRONGER SULPIUR ODOR ROOR SAMPLE RELOVERY:
72.0					RͲ		4' RINGS ONLY
- 74.0 -							
78.0-		TE.O-90.0 BOULDERS					78.0 - CHANGE IN DRILLING CONDITIONS -
80.0-		CUTTINGS : MED. TO COMMENT SUBANGULAR GRAINS GRANITIC COMMENTION		1" #L	+ CC DR D		V. HARD DRILLING, FULL WT. OF RIG (10 TON) ON BIT. TOO HARD TO SAMPLE TO 90.0' No SAMPLE RECOVERY
82.0 -			···				
84.c - - - 86.0 -			100 /		RD		ATTEMPTED TO SAMPLE - UN SUCCESSFUL
88.0_			1J-2	હ્ય			JAR SAMPLE OF CUTTINGS TAKEN
90.0-	CL.	PLIENTE FORMATION 900-100.0 CLAY STONE					EASY DRILLING FROM 90.0' CLAYSTONE CUTTINIGS OBTAINED
92.0		(SEE NEXT PAGE)	Ŧ			ŀ	SHEET 4 OF 6

•

SITE #2 OBSERVATION WELL # L

1	PROJECT	SCRTI	D - UNION STA DATE DRILLED	2	1,1	83		ł	HOLE NO. 5-5	(1983)
đ	DEPTH	CLASS.	FIELD DESCRIPTION	SAMPLE	1.9	DAILL	RUN NO.	CORE REC. %	REMARKS	
Λ	92.0 94.0	CL	90.0-100.0 CLAYSTONE (CENTINUED) OLIVE-GRAY COLOR, MOIST. PLASTIC TO FRIABLE STREAMENT			RD		******		
34	96.0 -		SOFT FRIABLE STREVETY, SOFT FRIABLE HANDWELS, THINLY LAMINATED W/ SILTY CLAYSTONE -20%. SANDSTONE BLEDS.	***				**		
	98.0-		TENDS TO FRACTURE ALONG LAMINATIONS					+++++	1 7	
	100.0			5-7 -50K	-	AR AR		Ī		
			END BORING 100.0FT PIEZAMETER SET TO 100' PERFORMATED IN LOWEST 40'-							
je								****	SHEET OF	2

SITE#2 OBSERVATION WELL SUMMARY BORING NO. 5-5 (1983) PROJECT SCRTD STATION HOLE UNION STA. DATE DRILLED 2/1/83 OVERBURDEN DEPTH (FT.) 0.0 TO 90.0 BEDROCK DEPTH (FT.) 90.0 TO 100.0 (T.D.). No : INTERVAL(S) WATER PRESS. TEST _ GROUND WATER DEPTH (FT.) 28.0 DATE 2/3/83: 27.9 DATE 2/5/63. GAS YES ; DEPTH FIRST NOTICED 30' , DATE _ (SULPHUR ODOR) E-LOG _A/a No DOWN-HOLE SURVEY __ No CROSS-HOLE SURVEY ; 3" _____ TO ____; 2" <u>0.4</u> TO <u>100.0</u>. PVC CASING (1.D.): 4" _____ TO ___ GROUND ELEVATION REF. X. S. PLATE SECTION 20.1 SKETCH NORTH (EST.) 10 5.5 SILTY SANS TO II VIGNES ST. FUTURE STATE AND ADDRESS IN SAND, TC 14 Bus GRAVELLY SAND PARKING TO 62' A.C. PAVEMENT ANZEA SAND 70 78 LOUIDERS Dock LOADING GRAVEL TO 90' AREA A.C. 30 CLAYSTONE PAVEMENT 10' BHS-10 100 BH 5-5 T30' 2 PVC STANDPIJE 20' 110 BOTTOM 40' PERF. PEAGRAVEL BACKFILL SLOPE ł CENTONITE SEAL OF SHEET. 6-TOALKE

1983 UNION STATION BORING LOGS

DESIGN UNIT A135

BORING LOGS FOR HOLE NUMBERS 5-2, 5-3 and 5-4

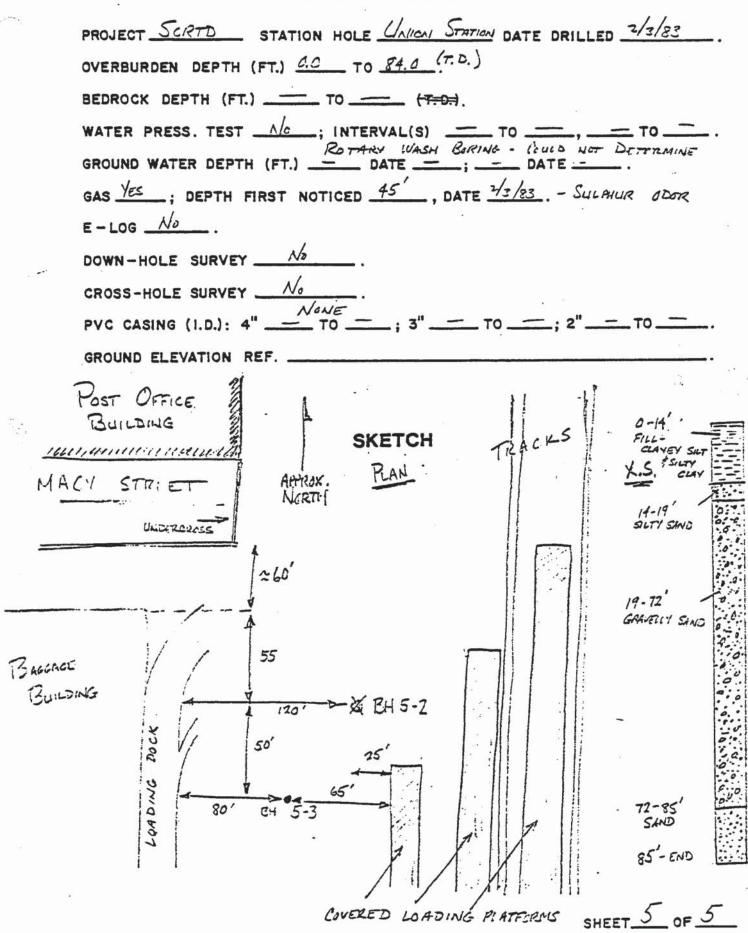
Converse Consultants

Boring Log 5-2

THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

					CON	01710		DIFFER AT OTHER LOCATIONS OR TIME	
PROJECT_	SCRTI	- UNION STATION DATE DRILLI	ED_2/	3/2	3		_но	LE NO. 5-2	
LOCATION							OUND ELEV. 292.7'		
		CTOR L'ANDERSE-LIS VECK LOGGED BY	FOR CONVERSE-LIS VECK LOGGED BY B. INGHRAM						
TYPE OF		HOLE DIAMETER 44" HAN	IMER	WE	IGHT		ND 95	FALL 320 # 36 "	
SURFACE	CONDITI	ONS ALL PURCHER FAILS AREA	_ 101	AL	DEF	- IH		NO. CORE BUXES	
DEPTH	CLASS.	FIELD DESCRIPTION	SAMPL	5PT (6°)	DRILL	RUN NO	CORE REC.	REMARKS	
0.0		0.0-0.4 CONCRETE SLAB 0.4-0.8 BASE COURSE	ŧ		25			SET UP 7:00 AM BEGIN DRILLING 7:30 AM	
-	TAL	0.8 - 14.0 FILL - CLAYEY SILT	2-1					WEATHER : OVENCAST, COSL	
2.0		AND SILTY CLAY	85		שא				
		MOTTLES GRAN &	ŧ		RC				
-	1.5	GREEN - GRAY MOIST	ŧ						
	=/	STIFF. WI/ TRACE SRAVEL AND	ŧ						
4.0	=/:-	10% FINE SAND	ŧ						
1			Ł						
-	-/	2.00	ŧ		•				
6.0 -	-/-		F						
		e e e	ŧ						
	17. C.		F						
20 -			E						
1			Ē						
			Ē						
100 -			Ł						
			ŧ	8	SA				
	1/51		F	74	Ŧ				
120	21		Ē	Ĩ,	RD				
12.0			F					19 ³	
1		13.0 - ROCK OR CONCREST	ŧ	10-	dr.			TRIED TO SAMPLE	
		ENCOUNTERED	Ē	Ner	usal.			WITH SPT - COULD NOT	
14.0	SM	YOUNG ALLUVIUM	Ē					DRIVE,	
		14.0-190 SILTY SAND	ŧ						
	E -	GRAY - BRN, MOIST,	Ē						
160 -	E	MED. DENSE	-	6	5				
	E	FINE TO V. FINE SAND	Ē	7	10,				
	E	W/ 20% SILT	Ē.	14	T				
1803			F		RD				
1			Ē						
	o SW	19.0 - 72.0 GRAVELLY SAND	Ē					SHEET 1 OF 5	
20.0	Tr / call	(SEE NEXT PAGE)	F					SHEETOF	

PROJECT_	SCRTD	- UNIONI STATION DATE DRILLE	22	/3/8	13		HOLE NO
DEPTH	CLASS.	FIELD DESCRIPTION	SAMPLE	55	DRILL	RUN NO.	REMARKS
20,0	2.*. SW	17.0 -T2.0 GRAVELLY SAND (CONTINUED)	2-2 25X		CCI		DISTURBED SAMAPLE - 4 RINGS DAILY
22.0		GRAY, DENSE WELL GRADED - MED. TO			QD		
24.0	0	COARSE SMID, GRAVEL TO 2"+, PERCENTAGES VARVING WITH DEPTH					
	0	GRANITIC COMPESITION					
26.0	0						
20	0	्र स् स्					
	0	20 407 50 51 ⁽⁰					
20.0	0		J. R.	70 100 71511	SAT D		RUSTI STAMES GRAINS IN SAMPLE - BUYDIZING ENVIRCHARKINT
32.0						a second a second a	
34:0	2						
	0						
34.0	4.6	• 3				1000	
35.0	ć Z	INCREASING CONTINT OF FINE & V. FINE GRAINED SAND					
		7					
#20 <u>+</u>	3,0		50 K		CCI DR RD		No SAMPLE RECOVERY
420		1					
4.0			Ī				SHEET_Z OF_5


PROJECT.	SCRT	D - UNION STATION DATE DRILLED	_2/	13/8	3		HOL	e no. <u>5-2</u>
DEPTH	CLASS.	FIELD DESCRIPTION	SAMPLE	10	MODE	AUN NO.	CORE REC. %	REMARKS
44.0	0.0 0.0 0.0	19.0 -72.0 GRAVELLY SAND (CONTINUED) COLOR CHANGE CECURUED - TE DK. GRAY	2-3 75K	4	CI NOR		GRA POOR	INT SULPHUR ODOR, 14 SAMPLE – REDUCING ENVIRONMENT 2 SAMPLE RELEVENY –
48.0							**	DISTURBED RINKS CNLY
50,0							**	м Х
520 -								
54.0	0.0						**	
58.0 -			80K	1 1-	RI RD		**	SAMPLE RECOVERY
530 -	0.0 0.0 0.0		u lu u lu					
60.0	0.5		75×	4 1-	ecz DR RD		*	Sample Relevency
\$2.0	2	GRAVEL CONTENT DECREASES W/ DEPTH					**	
64.0		r	J-1 5"	IOD S	27			
66.0	4							- HEET <u>3</u> OF <u>5</u>

.

			2/3	1		ó		<u></u>
DEPTH	CLASS.	FIELD DESCRIPTION	SAMPL	12	DAILL	AUN NO	CORE REC. %	REMARKS
620	SW	19.0-72.0 GRAVELLY SAND	+++++++++++++++++++++++++++++++++++++++		ŔD			
70.0	4.4 74.4 4.4	(CONTINUED) DECREASING GRAVEL CONTENT	1 2-4 60 к		CCI DR			SLIGHT SULPHUR ODG
72.0	se SP	72.0-83.0 SAND			RD			EASIER DRILLING
74.0		DARK GRAY, DENSE POCHLY GRADED PAEDOM, MED GRAINED TRACE GRAVEL TO 2"					++++	SULPHUR ODOR
76.0 -				100	5#7 20			
78.0		SAND BECOMES MORE FINE - GIMINED						
80.0		FINE TO U.F.INE GRAINED. THIN LENSES OF SILTY SAND	72-5 50K		cci DR RD			SULPHUR ODER DISTURCED SAMPLE ONLY S RINGS
82.0		83.0-84.0 BOULDERS						HARD DRILLING
84.0	28	GRANITIC -TYPE CUTTINGS	50K-	0"	cer			TRIED TO SAMPLE -
		END BORING 84.0 FT					+++++	COULD NOT DRIVE SAMPLES
			++++++++					
			+++++++++++++++++++++++++++++++++++++++				+++++++++++++++++++++++++++++++++++++++	*
								SHEET <u>4</u> of <u>5</u>

1.2

SUMMARY BORING NO. 5-2

 $(\Phi_{1}, -1) = \{ i, 0, \dots, n \} = \{ i, 0, \dots, n \}$

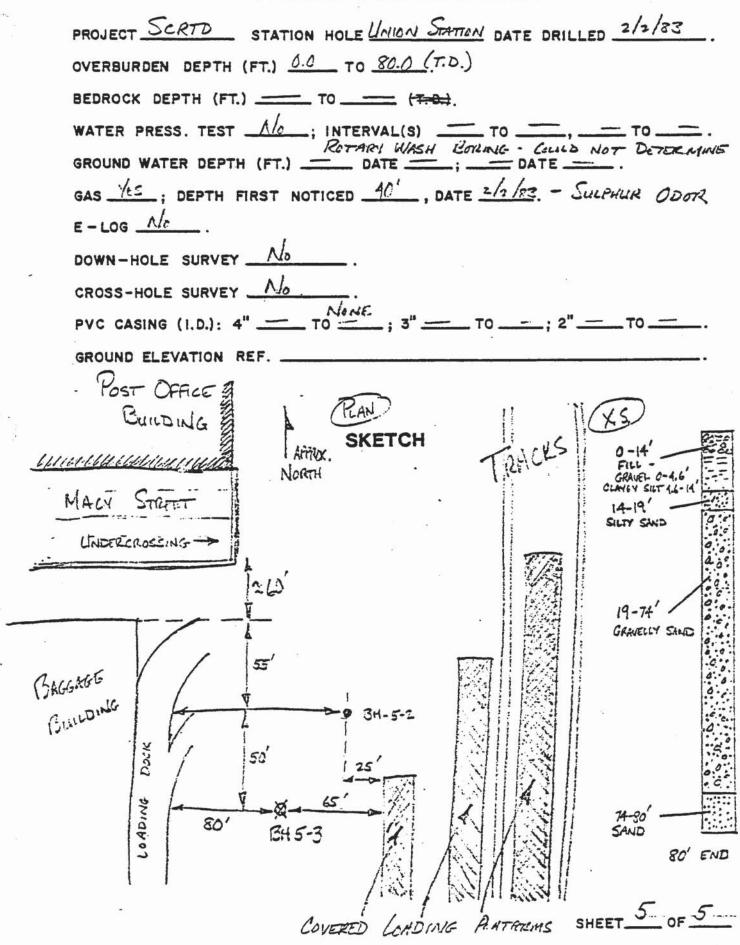
Converse Consultants

Boring Log 5-3

THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OF TIME.

	~			-/	1	CON	OFTIG		Y DIFFER AT OTHER LOCATIONS OF TIME.
PROJECT_	30	RIL) - UNION STATION DATE DRILLE	D 2/2	183			-HC	LE NO
LOCATION		TOA	N TRACKS & BACGARE BLOG. CTOR <u>CONVERSE - LAS LICAS</u> LOGGED BY.	BIL	ICHR.	AM			OUND ELEV. 292.8
TYPE OF			HOLE DIAMETER 434" HAM	MER	WE	IGH"	ΓΑ		
SURFACE	CON	DITIO	ONS A.C. PAVED AREA		AL	DEF	тн	_8	0.0' NO. CORE BOXES
DEPTH	CL	ASS.	FIELD DESCRIPTION	SAMPLE	SPT (6")	DRILL	RUN NO.	CORE REC. %	REMARKS
0.0			0.0 - 0.8' ASHIALT PAULMENT	:		RD	-	:	SET UP 7:00 AM
	-0"°	GW	0.8-4.6 FILL - GRAVEL	:					BEGIN DRILLING 7:30ANI WEATHER: COOL, RAINING
	300	GIN		-		CCI			-
2.0 -			WELL GRADED GRAVEL	20K		RD		-	NO SAMPLE RECOVERY
	500		TO 22", COMPOSITION VARIABLE			~			
			SUBANGULAR TO SUCROUNCED	F					LOST CIRCULATION OF
4.0 -	00:			E I					Dence INIG FEUID -
			4.6-14.0 CLAYEY SUT	E					
		ML		-3-1		CET			
6.0	=		GREEN-GRAY, MOIST, STIFF CONSISTENCY	15K		CCI			E in the second s
	=		VARIABLE SAND CONTENT			ß			
			(LECALLY 3-30%).	-					E I
			120			•			
8.0 -			а. — — — — — — — — — — — — — — — — — — —	Ē			.		
				E					
· .	F 2		To view of a	E					Ē
10.0	-		TO VERY STIFF CONSISTENT	-	15				
						50			
				-	<u>25</u> 45	T			
12.0				E		RD			
	. = "								
				F					
	F=								
14.0-		SM	YOUNG ALLUVIUM	F					
3	E		14.0-19.0 SILTY SAND	E					
	Ē			Ē	20 13 20	SP			
16.0-	F -		GRAY-BROWN, MOIST, MED. DENISE.		20	$ \tau $			
	I ···		FINE TO V. FINE SAID	Ē		RD			
1 3	Ē		WITH ZOS SILT						
12.0 -	E _	·		-				-	
	Ē			E					
	0:::	SW	19.0-74.0 GRAVELLY SAND	Ē					1 - 5
20.0	F.º.,		(SEE NEVT PAGE)	=					SHEET / OF 5

PROJECT.	JCRT	-D - UNION STA. DATE DRILLED	-4/3	1/83			HOLE NO
DEPTH	CLASS.	FIELD DESCRIPTION	SAMPLE	15	MODE	RUN NO.	REMARKS
20.0	s. Sw	19.0 - 74.0 <u>GRAVELLY SAND</u> (CONTINUED) BROWN, VERY DENSE,	37K		CCI DR RD		No SAMPLE RECEVERY
22.6		WELL GRATED - MED. TO COANST SAND (70%), GRAVEL TE 3"+ (30%) SUBANGULAR TO SUBROUNDED					
24:0	6. 	GRAINS, GRANITIC COMP. ALTERNIATING SAND & GRAVEL STRATA					24-28' INTERMITTENT RIG CHATTER
26.0							
28.0			l				
30,0	0		ROK-	9"	CCI DR		POOR SAMPLE RECOVER LANSE GRAVEL -
32.0	0.0				RD		HANDLING
34.0							
36.0	NO		han han				
38.0_	0 0		International				
40.0 -		CHANGE OF SAMPLE COLOR TO DARK GRAY	57K		CCT DR	Ő.	SULPHUR ODOR LARGE GRAVEL IN SAMPLE SAMPLE DESTROYED BY
4 2.0					RD		HANDLING RIG CHATTER AT 43.
44.0	100 100						SHEET 2 OF 5


DEPTH	CLASS.	FIELD DESCRIPTION	AMPLE	59	MODE	CORE REC. %	REMARKS
44.0	°, SW	19.0-74.0 GRAVELLY SAND			20		
46.0 -	2	(CONTINUED)					-
48.C _		-					-
50,0			3-2 41 K		LI DR		SULPHUR ODOR IN SAMPLE
52.0		ALTERNATING SAND AND GRAVEL STRATH		7	RD		-
54.0							53' INTERHITTENT RIG CHAFTER TO
56.0							
58.0							
60,0	0 0 0 0				NH HA	++++	- SLIGHT SULANUR COX IN SAMPLE
62.0	0	-	82K		20	++++++++	POCA RECOVERY - SAMI DESTROYED BY HANDL
64.0	000	LESS GRAVEL,				++++	
6.0	500	LENSES FURTHER MPART -	lindara				

÷

F	ROJECT.	SC.RT.	D - UNION STA DATE DRILLED	2/2	183	3			HOLE NO. 5-3
	DEPTH	CLASS.	FIELD DESCRIPTION	SAMPLE	19	DRILL	RUN NO.	CORE REC. %	REMARKS
	70.0	SW SW	19.0-74.0 <u>GRAVELLY SAND</u> (CONTINUED) (SAND STRATA SAMPLED)	3-3 85 K		RD UN RD			- SLIGHT SULPHUR ODOR IN SAMPLE
	72.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	74.0-80.0 <u>SAND</u>			κIJ		**	- 74' EASIER DRILLING
	76.0		DARK GIAY, MED. DENSE TO DENSE; POORLY GIADED, UNIFORM FINE TO V. FINE GRAINED, MICACLOUS SILTY SAND LENSES	- least least least					-
	78.0 80.0			3-4 35×		CCI DR		****	SULANUR ODOR IN SAMPLE
			END BORING 80.0 FT					***************************************	SHEET 4 OF 5

.

SUMMARY BORING NO. 5-3

Converse Consultants

Boring Log 5-4

THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

PROJECT SCRTD DATE DRILLED 1/31/83 HOLE NO. 5-4 LOCATION LOADING DOLK INT. VIGNES & RAMIREZ STREETS GROUND ELEV. 250 DRILLING CONTRACTOR CONVERSE - LAS VICALOGGED BY B INGHRAM DEPTH TO GROUND W. TYPE OF RIG HOLE DIAMETER 444 HAMMER WEIGHT AND FALL 320 # 36	
LOCATION LOADING DOLK INT. VIGNES & RAMIREZ STREETS GROUND ELEV. 250 DRILLING CONTRACTOR CONVERSE - LAS VERALOGGED BY B INGHRAM DEPTH TO GROUND W TYPE OF RIG HOLE DIAMETER 44 HAMMER WEIGHT AND FALL 320 # . 36"	
TYPE OF RIG HOLE DIAMETER 44" HAMMER WEIGHT AND FALL 320 # 36"	ATER
TYPE OF RIG HOLE DIAMETER 44 HAMMER WEIGHT AND FALL 320 4. 36	
SURFACE CONDITIONS A.J. PARMING AKEA TOTAL DEPTH 80.0' NO. CORE BOX	/50
DEPTH CLASS. FIELD DESCRIPTION	
0.0 MILLING BEGIN DRILLING	and the second
+= FILL - SANGY SILT + FILL - SANGY SILT	harm
I- I MAR MAN, MEIST, STUFF I' DO I I	
2.C SILT-50%, FINE TO MED SMOT ICK RD	
15-4.6 CONCRETE BLOCK	1
4.0-7.0 SILTY SAND	
GAAY - GRAN, MOIST, DENSE FIL 30 5	1.1
6.C ==	
1.0-12.0 SAND	
GARY MOIST DENSE. I	
CLEAN, UNIFORM FINE SANDE	
10.0 ±:	
12.0 +: BECOMES COARSER: +	
TO MED. GRAINED	1
140年:11 王 王	
18.0 -28.0 GRAVELLY SAND	
TO.O = .: SW GRAVELLT SALVE	
HED. TO COMEST CLEAN SAND - 60%	
20.0 + 0. SUBMIGULAS GRAMS.	5

1		TD - UNION STA. DATE DRILLE	1 -			ġ	wst			
DEPTH	CLASS.	FIELD DESCRIPTION	SAMPL	1.5	DAILI	NUN N	CORE REC. %		EMARK	
20.0	° SW	15.0-28.0 GRAVLILY SAND (CONTINUED)	1-3 75K		RD			SAMPLE	DISTURI DUE TI PIECES	16.
22.0	a	~						•		
21.0		ene Se								1. D
26.0			RER.	100	RD RD					
28.0	· · · · · · · · · · · · · · · · · · ·	25.0-41.0' SAND / SILTY CLAY GRAY, MOIST, DENSE	+++++++++++++++++++++++++++++++++++++++					•		i.
30.0		CLEAN SAND; INTERBEDS OF DARK CHAY STIFF HOIST SILTY CLAY TO 31.5'			CCI			•		
32.0	1/1- 	31.5- END CLAY INTER BEDS			RD			•	1	
34.0		е 2 с								
36.0			5.3	57 55 70	SPLR		++++			
38,0		9 2	***							
40.0			30K	Rea.				No S	AMPLE	Recov
42.0	sa. . a	41.0-68.0 GRAVELLY SAND DARK GRAY, VERY DENSE SUBROUNDED GRAINS, WELL GRADEN V. FINE TO COMPSE SAND - 75%								
1		GRAVEL TO 1"-25% HIGHLY MICACEOUS - DIORITIC COMPOSITION	Ŧ				Ŧ		т_2	5

ROJECT.	JLAI	U - UNION STA. DATE DRILL	ED	31 18	3		HOLE NO. 5-4
DEPTH	CLASS.		BAWALE	19	-	CORE REC. %	REMARKS
44.0 46.0 48.0	4	41.0-68.0 <u>GRAVELLY SANID</u> (CONTINUED)		15 78 100	RD SPT RD	****	
\$0.0 52.0	. a.	50.5' CLAY INTERBEDS DECKENSING GRAVEL (TO = 15%)	14-5- 70k	1 L	ET DR		4 RINGS ONLY SULPHUREOUS ODOR IN SAMP
54.0			+++++ ++++ +++++ +++++	100 S 154L	PT 20		SUL PHUMEOUS ODOR
58.0			1	7	CI		SULANUR HUCKOTHERMAL ODOR
62.0					5		SULPHUR ODOR
68.0				105 50	SAF 20		SHEET 3 OF 5

PROJECT SCRTD - UNION STA. DATE DRILLED 1/31 /83 HOLE NO. 5-4

DEPTH	CLASS.	FIELD DESCRIPTION	JIANVS	8PT (6") DAILL MODE	RUN NO. CORE	REMARKS
63.D 70.0-	SP	68.0-15.0 SAND GRAY, DENSE UNIFORM MICACEOUS FINE TO VERY FINE GRAININ	-D -7 25K	SR SR		SULPHUR/ HIDROTHCHMAL ODOR IN SAMIPLE
74.0		••• • •				
76.0	° SW	750-80.0 <u>GRAVELLY SAND</u> 20% GRAVEL TO 12" GRAN, DENSE TO V. DENSE	***			
78.0	8 7. a		4-8 75K	r SC SC		STOP DRILLING 2:30 PM
		END BORING 80.0 FT	+			
			·····			SHEET 4 OF 5

-

·····

.

SUMMARY BORING NO. 5-4

PROJECT 83-1101-41 STATION HOLE UNION STA. DATE DRILLED 1/31/83 OVERBURDEN DEPTH (FT.) 0.0 TO 80.0 (T.D.) NOT ENCOUNTER BEDROCK DEPTH (FT.) . WATER PRESS. TEST _______; INTERVAL(S) ______ TO ___ . TO. ROTARY WACH - COULD NOT DETERMINE GROUND WATER DEPTH (FT.) ___ DATE __ ____; ____ DATE ____ GAS Vis ; DEPTH FIRST NOTICED 50' , DATE 1/21 - SULIHUR OLOR E-LOG No No DOWN-HOLE SURVEY CROSS-HOLE SURVEY ______ NONE _ то ____: 2"_ PVC CASING (1.D.): 4" 3" GROUND ELEVATION REF. X<u>.</u>S. PLAN SILT 4-7' EST. NORTH SILTY SAND 7-18' VIGNES ST. SAND 18-28' GRAVELLY 28-41 SAND / W/ SILTY OLAY Bus PKG A.C. PAVEMENT AREA 41-68' GRAVELLY SAND Dock LOADING GRAVEL 68-15 SAND AREA A.C. PAVEMENT 30 75-80 0:0:0 METAL-SIDED GRAVELL' BH5-5 SAND SHED 110' SLOPE SHEET 5 OF 5 the AND AND CONTRACT OF THE

(THIS PAGE INTENTIONALLY LEFT BLANK)

Existing Geotechnical Boring Logs The Earth Technology Corporation, 1987c

(THIS PAGE INTENTIONALLY LEFT BLANK)

APPENDIX C

.

3

.

SITE BORING LOGS

BO	RE	HO	LE	LOG
----	----	----	----	-----

Projec	:t Neme:	METRO RAIL TRANSIT											
	:t Number:	87-600-0033	, Field Log of	Boreho	le Numb	er:		3H-201			Sheet _	1.	<u>, 2</u>
Bon	ehole Location:	Traffic Island off	101 Fwy			Ele	veti	on and De	tum: 2	.77.	4 feet	··· ·· ··	
Orill	ing Agency:	DRILL LINE	oriller: Gre Joh	gg De n Hal	el uca e	Det	e Si	iarted:	1-8-87		Deve Finished:	1-8	8-87
Drill	ing Equipment:	B-53				Cor		rtion: (feet)	46.5		Rock Depth: (feet)		
Met	od of Drilling:	Hollow Stem Auger	- 6 Inch	Dia.				-	Dist.:		Undist.:	Cor	u:
Bore	hole Size:	8 Inch				Wet			First:		Compl.:	24 1	١٣ ٤.
Тур	of Perforation	Baskfill: None				Log	ged	By:		1	Checked by:	_ i	
Туря	of Seel:	5% Bentonite Cement	t Grout				Sł	haron L	.agas		Barbara	Fon1	tes
÷	, - 113 113 113 113 113 113. -			Graphi				Semple		┉┈╸┩	<u></u> _		·
Depth (feet)		Description		Lithology	OVA (ppm	Number	Type	Blow Coun	Dritting Rate/Time		Rement	8	
		k brown, silty fine ize grain sand with avel		SM F111					9:30	at is di		Trai beer lurir	ffic n ng
2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Same as above with s chips of brick Hit debris (possibly	1	SN	1	1	Z	12/26/ 26	10:00	disturbed dur freeway const 00 tion 0VA Readings Baseline			
1111111	10-11.5'	Dry, dark brown, si fine to medium size		SM	1	2	Z	18/ 22/ 32	10:08		/A Reading Iseline	is at	
15 1 1 1 1 1 1	15-16.5'	Dry, brown to light silty sand with gra		SM	-	3	Z	14/9/ 7	10:13	Ba	A Reading seline recovery		
201111	20'	No recovery-cobble, gravel			-	-		NOTE	10:20		A Reading seline	is at	:
25 1 1 1 1 1	25'	No recovery - 5" cl of concrete Groundwater encount approximately 29 fe	tered at		-	-		NOTE	10:30	di 25 re	ssibility sturbed s ft. OV/ adings at seline	oil	to
30			1										

ļ

and a second sec

1.2.4.1.1

BOREHOLE LOG

Project name: METRO RAIL TRANSIT

Projec	t Number:	87-600-0033 Field Lo	g af Boreha	sie Numb	187 1,	BH·	-201		Sheet 2 of 2
-			Grep	hic Log		_	Samples		
Depth (feet)		Osseription	Lithology	und kun	Number	Type	Blow Count	Dulling Rate/Time	Remerks
	30-31.5'	Wet, gray, fine to medium size sand	- BP	70	4	Z	6/32/: 37	0:37	OVA Readings at Baseline, sample has oily film and slight oily odor with sheen
35	35-36.5'	Wet, gray, medium to coarse grained sand		-	5	Z	0/22/: 0	0:54	OVA Readings at Baseline No recovery for OVA
\$ \$	40'	No recovery - cobble, gravel	•				50/6 [#] :	1:04	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	45-46.0'	Wet, dark gray, fine to medium size sand	SP	8	6	z	5/50	1:18	OVA Readings at Baseline
8 11111	46.5'	Hit boulder End Hole						11:25	Collected water samples
55 1 1 1 1 1 1	that fol missing sampling	n this and all logs low, there are blow counts at some intervals. In those low counts were not	111111111					-	
8 111111	recorded	due to other demands nnel time.							
65-111111111111111111111111111111111111									

.

• • • • • • •

.

;

Proise	t Name:	METRO RAIL TRANSIT	,							_		
	e Number:	87-600-0033	_ Field Log of	f Borehol	ie Numb	er: B	H-20)2		-	Sheet _	12
Bor	noie Location:	Traffic Island off				Ele	vecion	and De	tum: 277	.3	ft	
Orial	ing Agency:	DRILL LINE	Driller John	g Del Hale	uca	Det	e Steri	ad: 1/	8/87		Dete Finishedg	/8/87
Orill	ing Equipment:	B-53					npletic rth (fe		50		Rock Depth: (feet)	
Met	ed of Drilling:	Hollow Stem Auger	– 6 Inch	Dia.		Nue of S	nber Iempie	er 8	Dist.:		Undist.: 8	Core:
Bore	hole Size:	8 Inch				Wet Oup	ar ch (ft)	:29	First:		Compl.:	24 hrs.
Тур	of Perforation	Backfill: None				وما	ged D ₁	/:			Checked by:	
Туре	of Seel:	5% Bentonite Cemen	t Grout				Shai	ron L	agas		Barbara	Fontes
÷				Graphi	e Log		1	Semple				
Depth (feet)		Description		Lithology	nva lapm	Number	Type	New Coun	Driffing Rete/Time		Remari	t9
5 10 15 15 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Hit conci 5-6.5' Di tu 10-10.5' 10.5-11.4 15-16.5' 17.5' 20-21.0'	ize sand with grave rete 0 1' ry, light brown, fi o medium size sand ith some silt Dry, brown, silty, to medium size san clay 5' Dry, light brown medium to coarse g sand with gravel Dry, light brown, to coarse sand wit gravel Hit cobble Same as above Dry, light brown, to coarse sand whi	ne fine d with rained medium h	Fill SM SC SP SP/CL	1 4 2	1	Z ^{1:}	3 5 3/40/ 5	1:40 1:45 1:50	OV Ba OV Ba OV Ba	ading 02 p A Readings seline A Reading seline A Readings seline A Readings seline, oi sand	at at at
25 IIIIII 25 IIIIII 30	25.5-26.0	grades into a brow silty clay O' Moist, brown-gra medium to coarse Groundwater enco at approximately feet	m-gray y, sand untered	SP	6	5	Z	4/23			A Readings seline	at

BOREHOLE LOG

METRO RAIL TRANSIT

Project name:

87-600-0033

BH-202

2

2

Project Number: Field Log of Borehole Number:... Sheet _ of . Semples Graphic Log (lee)) Drilling Rate/Time Lithdogy mqq Avo Count Description Number Remarks Type Depth ₹ 30-31.5' Wet, gray, medium to SP 16 6 13/35/ 2:15 OVA Readings at Baseline coarse grained sand 50 35-35' 8/16/ 2:20 No Recovery --40 40 40-41.5' Wet, gray, medium to SP 10 7 8/16 2:28 OVA Readings at 47 Baseline to coarse grained sand 45-45' Hit boulder 45.5'-46.5' Wet, dark gray, fine \exists SP 30/50 2:42 OVA Readings at 8/ -Baseline to medium size sand No recovery for OVA 50-3:15 No water sample 50' Hammer broke, ended hole 55-60--8

111

25

25-25.5' Dry, light brown, medium to coarse grained sand _ SP

to coarse grained sand with gravel

Groundwater encountered at approx. 30 feet

Project	t Nama:	METRO RAIL TRANSIT	unen.									
Projec	t Number:	87-600-0033 Field Log a	f Boreho	ie Numb			8H-20)3		Sheet		2
Bore	hole Location:	Traffic Island off 101 Fb	IY		6le	vetic	and De	turr:	2	76.5 ft		7
Orilli	ing Agency:	DRILL LINE Orition: Gre	gg De	luca	Det	o Sta	rted:	1/14/8	37	Dete Finished:	1/14/87	1
Drilli	ng Equipment:	B-53					tion: feet)	60		Rack Depth: {feet}		
Meth	ad of Drilling:	Hollow Stem Auger - 6 Inc	h Dia:	l.		nber iemp		Oist.:		Undist.: 5	Core:	
Boret	noie Size:	8 Inch			Wet Dep	** ch (f	fe): 30	First:		Compl.;	24 hrs.	
Туре	of Perforation B	eckfill: None				ged (Checked by:]
Туре	of Seel:	5% Bentonite Cement Grout	-			Si	haron	Lagas		Barbara	Fontes	
Ī			Graphi ≥			T	Semple					
Depth (leet)		Description	Lithology	OVA (ppm	Number	Type	Blow Count	Drilling Rete ⁷ Time		Remarks lant Drilli ngle = 20°		
•••••••••• 5	size sand and large 5' Sa al	wn, silty fine to medium d - at 6" hit old brick e boulder ame as above with gravel nd cobble - no sample	SM FILL		-		Note	10:00	N	VA not word o sample co ugers grind ravel and o	ollected,	•
	7° Broke	ollected • through gravel								lack brown oil	color	
22111111111	10-11.5'	Dry, black-brown, fine to medium sand and silt with small wood frag- ments	SM		1		15/19/ 26	10:51	. i	oil become: n color and n texture		
15 * * * * * * * * *	15-16.5'	Dry, brown, medium to coarse grained sand with gravel	SP		2		10/10/ 8	11:00)			
20 1 1 1 1	20'	No recovery			_		Note	, , , , , , , , , , , , , , , , , , , ,	d	ammer stick rilling and feet		

3

Note

Only 6" of sample 11:2: due to sampler falling at an angle.

Samplerhitting against the auger

.

and the second states

.

BOREHOLE LOG

Project name: METRO RAIL TRANSIT

Project	: Number:	87-600-0033 Field Log	of Boreho	le Numb	er:	B	H-203		Sheet 2 of 2
			Grap	nic Log			Semples		
Depth (feet)		Description	Lithology	(mqq AVO	Number	Type	Blow Count	Drilling Rate/Time	Remarks
	30-30.5'	Wet, brown, coarse grained sand and gravel	SP		4		0/6"	1:30	
35 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32.5' 35-35.7'	Small Cobble, large gravel Wet, gray, medium to coarse grained sand	TGP TSP		5	N	9/50 for 2"	1:43	Slight oily odor, only 8-10" of sample, rest was
4 11111	39' Sma' 40'	ll Cobble, large gravel (about 2 in.) No recovery - Possibly cobble and gravel*	T GP		-		lote	12:00	slough Hammer sticking
45 1 1 1 1 1	45'	No recovery - Possibly cobble and gravel*			-		lote	1:11	Hammer sticking- cannot sample with- out hammer getting stuck so continuing
5011111	50'	No recovery - Possibly cobble and gravel*	••••		-		Note	12:17	on to 60 feet
55	55'	No recovery			-		Note		Hitting cobbles
801111	grained	y, medium to coarse sand with slight bon odor coming up ers hole					•		Appears to be predominantly slough Collected water samples
65 I I I I I I I I I I I I I I I I I I I		bringing up slough per portion of e.							

.

•

. . . .

.

•

.

Projec	t Neme:	METRO RAIL TRANSI				.00	5					
Projec	t Number:	87-600-0033	_ Field Log of	Boreho	ie Numb	er:	BH	-204			Sheet	of
Bore	hole Location:	Old Center St. (b,	/t Aliso	& Co	mm.)	Ek	rveti	on and De	tum:	27	5.4 ft	
Orilli	ng Agency:	DRILL LINE	Driller: Greg	gg De Hal	luca	Der	te Si	terred: 1	/12/87		Dets Finished:	1/12/87
Drilli	ng Equipment:	8-53						rtion: (feet)	61.5		Rock Depth: (feet)	
Meth	od of Drilling:	Hollow Stem Auger	- 6 Incl	n Dia	•	Nu of	rribe Sern	n ples: 6	Dist.:	1	Undiet.: 6	Core:
Borel	nole Size:	8 Inch	· ·				ter pth ((ft): 30	First:		Compl.:	24 hrs.
Гуре	of Perforation B	leakfill: None				Lo	00°d	By:			Checked by:	
ïype	of Seel:	5% Bentonite Cemer	nt Grout			İ	B	arbara	Fonte	s	Sharon I	.agas
2	<u> </u>			Grephi	e Log			Semple				
Depth (leat)		Description		Lithology	OVA (ppm	Number	Type	Blow Coun	Drilling Rete/Time		Remark	•
		concrete debris brown, silty fine ize sand	e to	SM					7:30		seline OV/ ading at 4	
5-1-1-1		Same as above	-	SM		-		1			samples llected	
10 11 1		st clayey sand Dry, brown, silty, to medium size sar	, fine]	sc sm	2	1	Z	8/15/ 11	8:00	0V/ 111	A Reading: ne	s @ base-
111111111111	15-15.5'	Same as above		SM	4	2	N	18/6"	8:10	sar ob,	llected or mple. Hit ject-refus mpler is a	large
201111111	20-21.5'	Dry, brown, medium coarse grained sar fragmented gravel small cobbles	nd with -	SP	4	3	Z	39/50 49	/8:17	pei	netrating A readings	
25	25-25.5'	Same as above Groundwater encour at approx. 30 feet		SP	160	4	Ν	25/6"	8:25	can va	il has hyd rbon odor. lues recom) ppm	. OVA

BOREHOLE LOG

Projec	t neme;	METRO RAIL TRANSIT	BO	REH	OLE L	.OG	i			
•	t Number;	87-600-0033 Field 1	Log of	Boreho	ie Numb	er :	BH	-204		Sheet 2 of
Depth (feet)		Description		Lithology Bub	hic Log (wda) V AQ	Number	Type	Samples To O O X	Drilling Rate/Time	Remarks
	30-31.0'	Wet, gray, coarse grained sand		SP	-	5	Ζ	20/50		No OVA recovery
35	35-36.5' 38.5'	Same as above Cobble, gravel	-111111	SP		6	Z	Note		
4911111	40'	No recovery - cobble, gravel				-		Note	8:59	OVA reading 2 ppm Hole has slight creosote odor (40 to 60 feet)
45 1 1 1 1 1 1 1 1 1	45'	No recovery - cobble, gravel	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-		Note		
50 111111	50'	No recovery - slough				1		Note	-	Augers contained approx. 4 feet of slough
58 1 1 1 1	55'	No recovery	•••••			-		Note	-	•
60	60'	Wet, gray, coarse grained sand End Hole		P	>1000	-				Collected water samples, not enough recovery for soil samples
70			-							

•

÷

Bon	shole Location: C	Commercial and Cen	ter St	West	:	Ele	veti	on and De	tum:	27	4.7 ft	
			Dritter:Greg			Oet	e St	arcad: 1	/13/87	-	Dets Finished:	1/13/87
Drill	ing Equipment: B		<u>JONN</u>		2	Co	mph	rtion: (feet)	61.5		Rock Depth:	.,
Med	ad of Drilling:	lollow Stem Auger	- 6 Inch	Dia.	· · · · · · · · · · · · · · · · · · ·		_	-	Dist.:	-	Undist.: 7	Core:
lore	hale Size: 8	3 Inch				Wa	-		First:		Compl.:	24 hrs.
Гурі	of Perforation Bea				-			By:		ſ	Checked by:	
Гурі	of Seel: 5	3 Bentonite Cemen	t Grout				Ba	arbara	Fontes	:	Sharon i	Lagas
Ĩ			Log			Semple		Ŷ				
Depth (feet)		Description	Lithology	OVA (ppm	Number	Type	Blow Coun	Dritting Rete/Thme		Remark	*	
	Dry, brown size sand possibly f 5' No		SM F111				Note	9:00	rea Sui coi bro So	seline OV ading @ 2 rface soi ntains sho oken potto il type no nt in otho	ppm 1 ells and ery. ot evi-	
	. M)ry, light brown, medium to coarse s with gravel	and	SP	4	1	Ζ	26/22 23	/9:05			
	15-16.0' S	Same as above		SP	-	2	Z	48/50	9:10			
	g)ry, brown, coarse grained sand and s gravel	_	SP	-	3	Z	49/50	9:20			
	25-26.0' S	Same as above		SP	-	4	Z	33/56	9:36	CO	composed bble in a obble > 3	uger

;

١

:

METRO RAIL TRANSIT

Project	neme:	METRO RAIL TRANSIT							
Project	Number;	87–600–0033 Field Log of	Borehoi	e Numb	M 1	BI	H - 205		Sheet of
			Graph	ic Log			Semples		
Depth (feet)		Description	Lithology	mqq) AVO	Number	Type	Blow Count	Driving Rate/Time	Flemerks
	30-31.0'	Wet, grey, medium to coarse grained sand Groundwater encountered at approximately 30 feet	SP	30	5	V	28/50	9:48	OVA and 1 brass recovery
35-1	35-36.5'	Same as above	SP	4	6	Ζ	14/37 48	/9:54	
401111		Same as above	SP		7	Ζ	Note	10:00	l brass recovery, no OVA sample OVA reading @ base- line
	43° Cobl	ole, gravel	GP						
45	45'	No recovery - cobble, gravel			-		Note	10:27	
517777777	50 *	Wet, dark gray, fine to medium size sand, oily film and odor	SP	100	-		10/26 50	/10:37	Only OVA sample recovery OVA reading @ base- line
55 6 7 7 7 7 7	55-56.5'	Same as above	SP	100	-		3/13/ 50	10:48	· · ·
60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60'	No recovery-sampler and "A" rods stuck in augers End Hole			-		Note	10:59	Water samples collected

4

Project	Neme:	METRO RAIL TR	ANSIT									•••••
	: Number:	87-600-0033	Field Log of	i Borehol	e Numb	er:		<u>BH-206</u>			Sheet	<u>1 of</u>
Bore	hole Location:	Vignes St. (C	.C. Meyer's	yard)		Ele	veti	on and De	tum:	2	76.8 ft	
Drilli	ng Agency:	DRILL LINE	Driller: Gre	gg De n Hal	luca	Det	• 54	arted:]	-9-87		Dem Finished: 1	-9-87
Orilli	ng Equipment:	8-53			-			rtion: (feet) }	/A		Rock Depth: (feet)	
Meth	ad of Drilling:	Hollow Stem A	uger - 6 Inc	<u>h Dia</u>	•	Nut of S		r ples: ()	Dist.:		Undist.:	Core:
Soreh	ole Size:	8 inch				Wat Dep		ft):	First:		Compl.:	24 hrs.
Туре	of Perforation B	eckfill: None				وما	ged	By:		:	Checked by:	
Туре	of Seel:	5% Bentonite	Cement Grout				S	haron	Lagas		Barbara	Fontes
;				Graphi	_			Sample				
Depth (leet)		Omeription		Lithology	mqqi AVO	Number	Type	Blow Coun	Drilling Rete ⁷ Time		Remarks	
	large col concrete 4' concre	k brown, silty bbles and pied ete abandoned aft	es of	SM F111					9:25	r H f 9	aseline OVA eading @ 2 it concrete eet and cou et drill st bandoned ho	ppm. at 4 ild not raight-

Projec	METRO RAIL TRANS	(T										
Projec	st Number:87-600-003	_ Field Log of	i Boreho	le Numb	er: .	BH	-20	6A		Sheet	_	1 of2
Bore	whole Location: Vignes St. (C.C.	Meyer's	yard)		Ein	etion en	d De	tum:	276	5.5 ft		
Driffi	ing Agency: DRILL LINE		egg De In Hal	luca	Det	Started	:	1-9-87		ne Finished	1:	1-9-87
Orilli	ing Equipment: B-53					upletion: th (feet)		41.5		ock Cepth: et)		
Meth	nod of Drilling: Hollow Stem Auger	- 6 Inc	h Dia	۱.	Nur	nber emples:	_	Dist.:	lu	ndist.: (5	Core:
Boret	hole Size: 8 Inch				Wat	er sh (ft): 2	29.	First:	- c	empl.:		24 hrs.
Туре	of Perforation Backfill: NONE	<u></u>				ed By:	-		ļa	vecked by:		
Туре	of Seel: 5% Bentonite Ceme	nt Grout				Shar	•on	Lagas		Barbar	ra I	Fontes
2			Grephi		_	Ş.	nple					
Depth (feet)	Description		Lithology	OVA (ppm)	Number	Type Blow Count		Dritting Rate/Time		Rema	rics	
• • • • • • •	Dry, dark brown, sand and with some silt	gravel	SP							eline (ding 0		to Sppm
11011111	5-6' Dry, medium to coarse with some gravel 6-6.5' Dry, medium grained with silt and some	sand	SP SC	3	1-		0/10	/10:10	OVA lin	readir e	ng (ð base-
177871771	10' No recovery (probably fill)					10 27	/ 15	/10:13	OYA lin	readin e	ig (base-
15 15 1 1 1 1 1 1	15-15.5' Dry, light brown, medium to coarse with gravel	sand	SP	14	2	50	/6"	10:23	OVA lin	readin e	ıg (base-
20	20' Dry, gravel with o grained sand 23' Gravel and cobble	coarse	GP GP			- 23	/6"	10:30	No stu	recover ck in s	y, amp	cobble ler
25	25-26.5' Moist, medium to a grained sand with gravel	coarse -	SP_	12	3	10,	/43	/10:38	OVA lim	readin B	g @	base-
30	Groundwater encour at approx. 29.5 fe											

BOREHOLE LOG

Ģ

:

.

BOREHOLE LOG

Project name: _____METRO RAIL TRANSIT

Project Number: _____87-600-0033__

_ Field Log of Borehole Number: <u>BH-206A</u>

_____ Sheet <u>2</u> of <u>2</u>

		Grant	ic Log	1		Semples		
Depth (feet)	Description	Lithology	(mqa) AVO	Number	Type	2	Drilling Rate/Time	Remarka
11111111	30-31.5' Wet, gray, medium to coarse grained sand	SP	. 8	4	Z	3/6/ 10	11:20	OVA reading @ base- line
35	35-36.5' Wet, gray, fine to medium size sand	SP	10	5	Z	6/10/ 13	11:26	OVA reading @ base- line
40 45 55 68 55 89 55 89 55 89 55 55 55 55 55 55 55 55 55 55 55 55 55	40-41.5' Same as above End Hole	SP	6	6	Z	23/49 48	/11:36	OVA reading at baseline, 10 feet of slough in hole Collected water samples
65-11 11 11 70-								

;

- - - - **-**

÷

۰.

.

Proje	ct Neme:	METRO RAIL TRANSI	.T									
Proje	ct Number:	87-600-0033	_ Field Log of	Boreho	le Numb	er:	_	<u>BH-207</u>	,		Sheet	of
Bor	ehole Location:	101 FWY South fro	om Vignes			Eie	veci	on and De	Detum: 276.9 ft			
Drill	ling Agency:	DRILL LINE	Driller: Greg	gg De n Hal	luca	Oat	n St	arted: 1	/12/87		Dete Finished	1/12/87
Oriil	ling Equipment:	8-53						nion: (feet)	60		Rock Depth: (feet)	
Met	hod of Orilling:	Hollow Stem Auger	- 6 Inci	h Dia	•	mbe Semi	pies: 4	Diet.:	i	Undist.: 4	Core:	
Bore	hole Size:	8 Inch				We Dep	ter sith (in: 30	First:		Compl.:	24 hrs.
Тур	e of Perforation B	ackfill: None						By:			Checked by:	
Тур	e of Seel:	5% Bentonite Ceme	ent Grout				8	arbara	Fonte	s	Sharon	Lagas
2				Graphi	e Log			Sample	•			-
Depth (feet)		Description		Lithology	mqqf AVO	Number	Type	Blow Count	Dritting Rate/Time		Remar	tc)
	medium si	k brown, silty, fi ize sand with grav /garbage debris		Fil]				12:10		seline O ading 0	
5	5-6.5' Sa	ame as above		Fil]			Note			ry little re on au	•
10	10-11.5	Moist, black-brow silty sand, mediu plasticity clay w oxidation stainin t debris-augers cr	im vith 1 Ig 1	sc	2	1	Z	3/5/ 8	12:28			
15-	15-16.5'	Moist to dry, med coarse sand	lium to	SP	4	2	Z	31/36 33	/12:35		A reading ine	g @ base-
	19' Grave	and cobbles	11	6P								
20-	20'	Dry, coarse grain sand with gravel cobbles	SP	6	-		50/6"	12:56	li in No	ne, cobb sampler recover;	g @ base- le stuck y for lab	
25	25'	Same as above		SP	6	-		50/6'	1:01	No	mples recover mples	y for lab

BOREHOLE LOG

Project name: _____METRO_RAIL_TRANSIT

Project Number: ____

•

•

n i

• •

÷

87-600-0033 Field Log of Borehole Number: BH-207

_____ Sheet _2___ of __2__

			Graph	ic Log	r		Samples		
Depth (feet)		Description	Lithology	(mqq) AVO	Number	Type	Blow Count	Drilling Rate/Time	Remarks
• • • • • • • • • •	30-31.5'	Wet, gray, coarse sand with some silt Groundwater encountered at approximately 30 feet	SP	12	3	Ζ	4/4/ 24	1:07	
35		Same as above	SP	4	4	Z	20/50	/1:14	
	38' Grave	el and cobble	GP						Augers vibrating
*	40'	Wet, gray, medium to coarse grained sand	SP	12	4		50/6	"1:27	No recovery for lab samples
45	45'	No recovery - Possibly medium to coarse grained sand			-		Note	1:30	Having problem with sand heaves going to 60'-sand locking around drill
50 T T T T T T T T T T T T T T T T T T T	50'	No recovery - Possibly medium to coarse grained sand			•		Note		
55 1 1	55'	No recovery - Possibly medium to coarse grained sand			-		Note	-	
	60' End	Hole						2:15	Collected water Samples

Projec	t Name:	RO RAIL TRANSI	Τ		<u>.</u>							
Projec	t Number:87-	600-0033	_ Field Log of	Borehol	e Numb	er:		<u>BH-208</u>		Sheet	1 of2	
Bon	hole Location: NE	of BH-205/Adja	cent to (Cente	r St.	EXe	vetic	on and De	tum:	270.6 ft		
Dritti	ing Agency: DRI	LL LINE	Driller: Gre	gg De n Hal	luca	Det	* St	arted: 1	/13/87	Dete Finished: 1/13/87		
Oriili	ing Equipment: 8-5	3						rtion: (feet)	60	Rock Depth: (feet)		
Meth	od of Drilling: H0]	low Stem Auger	- 6 Incl	h Dia	•		mbe Bernj	ples: 6	Dist.:	Undist.: 6	Core:	
Sore	hole Size: 8 I	nch				Wat Dep	ter ath (ft): 25	First:	Compl.:	24 hrs.	
Туре	of Perforation Backfill	^{I:} None			Logged By:					Checked by:		
Туре	of Seel: 5%	Bentonite Ceme	nt Grout				B	arbara	Fontes	Sharon L	agas	
-				Graphi	-			Semple				
Depth (feet)		Description		Lithology	OVA (ppm	Number	Type	alow Count	Dritting Rate/Time	Romarka		
	Dry, dark br medium size	own, silty fin sand	e to	SM				H	12:42	Baseline OYA reading @ 2		
	5' No sa	mple collected						Note	12:45	OVA reading line	0 base-	
1011111	coa	, brown, mediu rse grained sa h gravel		SP	2	1	Z	33/45 45	/12:48	OVA reading line, large in sampler		
15	15-16.0' Dry med	y, brown, fine tium grained sa	to find	SP	2	2	Z	34/50	12:58	OVA reading line	0 base-	
211111	coa	r, brown, mediu Irse sand with I broken cobble	gravel 🚽	SP	4	3	Z	40/50	1:05	Bouncing off cobble	[:] large	
88	coa occ Gro	, gray, medium rse grained sa asional gravel oundwater encou approx. 25 fee	nd with ntered	SP	100	4	Ζ	16/19 15	1:12	Slight oily	odor	

BOREHOLE LOG

Project name:

87-600-0033

METRO RAIL TRANSIT

8H-208 Field Log of Borehole Number:..

2

2

Project Number;, of . Sheet Graphic Log Semples Depth (lest) Lithology Drilling Rate/Time OVA (ppm DW COUNT Description **Remarks** Numbo Type 30-31.5' Same as above-not as SP 40 5 7/7/ 1:19 coarse 13 34' Gravel and cobble GP Drilling very difficult 35 35 ' No recovery-gravel and GP cobble 11:28 Note 40 6 40-41.5' Wet, gray, medium SP 2 7/9/ 1:43 OVA reading @ base-line, slight grained sand 34 creosote odor 45' No recovery - Possibly Note sand 50' No recovery-6 feet of Note 50 slough in augers -Possibly sand 55· 55' Note No recovery - Possibly 8 sand 60' Abandoned hole due to sampler being stuck in 2:44 Upon removal of augers. Could not advance hole any further augers, strong creosote odor. No water samples collected due to sampler being stuck

. . . .

•

.

ct Neme:	METRO RAIL TRAN	SIT	_			• • • • • • • • • • • • • • • • • • •	··· - ·· -					
ct Number:	87-600-0033	Field Log of	Boreho	ie Numb	er:	BI	1-200		Sheet	of		
rehole Location:	East Corner Cen	ter & Comm	ercia	1 St.	Ele	vecio	in and Def	tum: 2	73.6 ft			
ling Agency:	DRILL LINE		-		Det	e Sta	erted: 1	/21/87	Date Finished:	Data Finished: 1/21/87		
ling Equipment:	8-53	001	11	G –				50	Rock Depth: (feet)			
had of Orilling:	Hollow Stem Aug	er - 6 Inc	h Dia	•				Diet.:	Undist.: 8	Core:		
thole Size:	8 Inch				Wet Dec	ber Hith (i	n:: 30	First:	Compl.: 24 hrs.			
e of Perforation 8					5	ged	8y:		Checked by:			
e of Seel:	5% Bentonite Ce	ment Grout				S	haron	Lagas	Barbara	Fontes		
			<u> </u>	_								
	Description		Lithology	ovA (ppn	Number	Type	llow Cour	Dritting Rate/Tim	Remar	ka.		
6"-1.2' 1.2'-1.6 Dry, dar	Brick Road ' Concrete k brown, silty,		Fil									
fine to	medium size sand		SM	6	1	Ζ	5/4/4	9:54	line, only	AVO		
10.7-11.	silty, fine t	o medium -	SM	6	2	Z	16/17	10:00	,			
15-16.5'	medium sand wit size gravel. Up stained black. increasing in s depth. Entire s	h pea pper 8" Gravel ize with ample	SP	33	3	Ζ	14/41 37	/10:05	line Large cobb bottom of	le in sampler		
	Dry, brown, sil 5' Moist, gray,	ty sand medium to	SM SP	6	4	Ζ	20/37 43	/10:20	line			
25 -26 .0' 27.5'	medium to coars with gravel. Hit cobble and Groundwater end	gravel	SM GP	6	5	Z	27/50	10:27	line	-		
	et Number: ehole Location: ling Agency: ling Equipment: had of Drilling: e of Seel: 0-6" Asp 6"-1.2' 1.2'-1.6 Dry, dar medium s 5-6.5' D fine to some gra 10.7-11. 15-16.5' 20-20.5' 20.5-21. 25-26.0'	et Nerne:	et Number: <u>87-600-0033</u> Field Log of whole Location: East Corner Center & Comm ling Ageney: DRILL LINE Orline: Gre John ling Equipment: <u>8-53</u> head of Drilling: Hollow Stem Auger - 6 Inc whole Size: <u>8 Inch</u> e of Seel: <u>5% Bentonite Cement Grout</u> Description 0-6" Asphalt 6"-1.2' Brick Road 1.2'-1.6' Concrete Dry, dark brown, silty, fine to medium size sand with some gravel 5-6.5' Dry, brown-black, silty, fine to medium size sand with some gravel 10.7-11.7' Moist, black-brown, silty, fine to medium size sand with some gravel 15-16.5' Dry, brown, fine to medium sand with pea size gravel. Upper 8" stained black. Gravel increasing in size with depth. Entire sample saturated with gasoline 20-20.5' Dry, brown, silty sand 20.5-21.5' Moist, gray, medium to coarse sand with pea size gravel 25-26.0' Dry, brown, silty, medium to coarse sand with gravel.	et Number:	et Number:	et Normer:	et Name: et Number: <u>A7=600=0033</u> Field Log of Borehole Number: <u>B7</u> ethole Location: <u>East Corner Center & Commercial St.</u> <u>Binework:</u> <u>Bast Corner Center & Commercial St.</u> <u>Bast of Drilling:</u> Hollow Stem Auger - 6 Inch Dia. <u>Bast State:</u> <u>Bast State:</u> <u>Bast State:</u> <u>Bast State:</u> <u>Competent Commercial St.</u> <u>Bast State:</u> <u>Bast State:</u> <u>Bast State:</u> <u>Description</u> <u>Bast State:</u> <u>Description</u> <u>Bast State:</u> <u>Dry, drown-black, silty, fine to medium size sand with some gravel <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> <u>State:</u> </u>	er Nome: er Number:	<pre>mt Monte:</pre>	<pre>rt Meme:</pre>		

BOREHOLE LOG

Project neme: _____ METRO RAIL TRANSIT

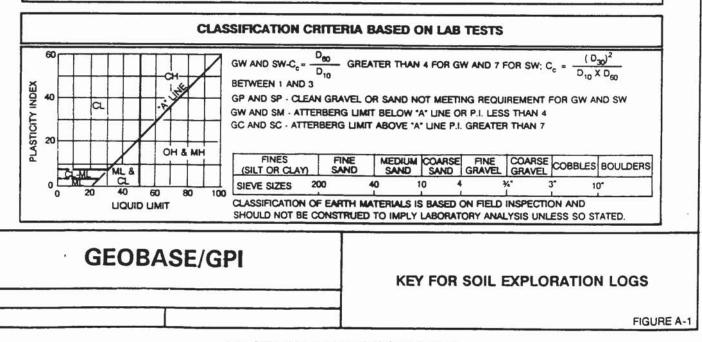
87-600-0033 BH-209 Sheet _____ of ___ 2 Project Number: "Field Log of Borehole Number:. Graphic Log Samples Î Coun <u>E</u> Ddiling Rate/Time Lithology Description Number Remarks Type Depth Š ž SP 30-31.0' Wet, green-gray, medium 24 36/50 10:35 OVA reading at baseto coarse sand with some line gravel Hit void Soil has H₂S odor Oily film on sampler 36 7 50/6" 10:44 35'-35.5' SP 46 OVA reading 0 base-Wet, gray, medium to coarse grained sand line 371 Hit cobble and gravel GP Strong H₂S odor 39 ' Slight creosote odor Broke through cobble on sampler SP 6/8/ 10:59 12 OVA reading @ base-40-41.5' Wet, gray, medium to coarse grained sand with 16 line Oily film on sampler gravel 45-45 ' No recovery - 4' Note slough in augers 50-11:21 Water samples 50' End hole - no recovery collected due to sampler sticking OVA reading 14 ppm in augers at top of hole 56 60. RR.

Existing Geotechnical Boring Logs GeoBase & GPI, 1993

(THIS PAGE INTENTIONALLY LEFT BLANK)

PROM	ARY DIVISIONS	•	GROUP SYMBOL	SECONDARY DIVISIONS
	GRAVELS	CLEAN GRAVELS	GW	WELL GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES.
COARSE	HALF OF COARSE	(LESS THAN 5% FINES)	GP	POORLY GRADED GRAVELS OR GRAVEL-SAND MIXTURES, LITTLE OR NO FINE
GRAINED SOILS	FRACTION IS	GRAVEL	GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURE, NON PLASTIC FINES
MORE THAN HALF OF	#4 SIEVE	FINES	GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES, PLASTIC FINES.
MATERIALS IS LARGER	SANDS	CLEAN SANDS	sw	WELL GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES.
THAN 200 SIEVE SIZE	MORE THAN HALF OF COARSE	(LESS THAN 5% FINES)	SP	POORLY GRADED SANDS OR GRAVELLY SANDS, LITTLE OR NO FINES.
	FRACTION IS	SANDS WITH	SM	SILTY SANDS, SAND-SILT MIXTURES, NON-PLASTIC FINES.
	#4 SIEVE	FINES	SC	CLAYEY SANDS, SAND-CLAY MIXTURES, PLASTIC FINES.
FINE	SILTS AND	CLAYS	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY.
GRAINED SOILS			a.	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS.
MORE THAN	(CLAN)	50	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY.
HALF OF MATERIAL	SILTS AND	CLAYS	мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS.
IS SMALLER THAN			сн	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS.
#200 SIEVE SIZE	THAN S	50	он	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS.
	HIGHLY ORGA	NIC SOILS	PT	PEAT AND OTHER HIGHLY ORGANIC SOILS.

CLASSIFICATION CRITERIA BASED ON FIELD TESTS


PENETRATION RES	SISTANCE (PR)							
SANDS AND GRAVELS								
RELATIVE DENSITY	BLOWS/FOOT*							
VERY LOOSE	0 - 4							
LOOSE	4 - 10							
MEDIUM DENSE	10 - 30							
DENSE	30 - 50							
VERY DENSE	OVER 50							

6

c	LAYS AND SILT	5
CONSISTENCY	BLOWS/FOOT*	STRENGTH**
VERY SOFT	0 - 2	0 - 1⁄4
SOFT	2 · 4	1/4 - 1/2
FIRM	4 - 8	1/2 - 1
STIFF	8 - 15	1 - 2
VERY STIFF	15 - 30	2 - 4
HARD	OVER 30	OVER 4

 NUMBER OF BLOWS OF 140 POUND HAMMER FALLING 30 INCHES TO DRIVE A 2 INCH O.D. (1 34 INCH I.D.) SPLIT BARREL SAMPLER (ASTM-1586 STANDARD PENETRATION TEST)

 UNCONFINED COMPRESSIVE STRENGTH IN TONS/SQ. FT. READ FROM POCKET PENETROMETER

1010400100516068

	MOISTURE (%)	DRY DENSITY (PCF)	PENETRATION RESISTANCE (BLOMS/FODT)	SAMPLE TYPE	CEPTH (FEET)	This drilling this lo					CE MATERIALS oring and at the time of attons and may change at nted is a simplification of l.	ELEVATION (FEET)
	2.4 24.1 23.2	95		B	5		FILL: MISC. C medium CRUSHE slightly n SILTY CI moist to	RUSHED dense to ED ROCK noist, den AY to CL very mois	BASE CO dense MIXED W se to very	ARSE, bro ITH SILTY dense, 1 t	wn, slightly moist, SAND (SM), brown, o 1.5 inch gravels mottled grey green,	-290-
S Sta D Dri	ck Core andard Sp ve Sample	•	EC	UIPM	ENT US AND			GEO	BASE		PROJECT NO.: 1133. METROLINK	21
B Bulk Sample GROUNDWATER LEVEL Tube Sample NOT ENCOUNTERED					LOG OF BORING NO. B-1 FIGURE A-2							

310 うり 1124 E* (-) e (??) en.**1**

	URE	DENSITY (PCF)	ATTON	TYPE	EA		D	ESCRIPTION OF S	UBSURFA	CE MATERIALS	NOL
	MOISTURE (%)	DRY DEI (PCI	PENETRI RESIST	SAMPLE	P (FEET)	Th drillin this l	is summary g. Subsurfa ocation with	applies only at the loca ce conditions may diffe the passage of time. The actual conditions	tion of this bo r at other loca he data presents encountered	oring and at the time of ations and may change at nted is a simplification of I.	ELEVATION (FEET)
								RAVEL (GM), grey, trace sand	dry, loose,	3/4 to 1.5 inch	
	28.2	90		В				LAY to CLAYEY SIL noist, very stiff	LT (CL-ML),	mottled brown	-290-
		29.5		В	-						
	13.0			В	5			olack ash AND (SM), grey, mo	oist, mediur	m dense to dense	
							Refusal	on rock at 7.5 feet.			-285-
÷											
C R S S	E TYPES ock Core tandard Sp rive Sampl				RILLED: ENT US		3	GEOBASE		PROJECT NO.: 1133. METROLINK	21
BB	ulk Sample ube Sample	н ¹	GF	OUN	DWATE	R LEVE	L: D	LOG	OF BOR	FIGUR	E A-3

	MOISTURE (%)	DENSITY (PCF)	TANCE FOOT	E TYPE	DEPTH (FEET)					CE MATERIALS	ELEVATION (FEET)
	SION	ORY DI (P(PENET! RESTS	SAMPLE		Thi drilling this lo	s summary . Subsurfaction with	applies only at the I ce conditions may o the passage of time actual condit	location of this bo differ at other loca e. The data prese tions encountered	pring and at the time of ations and may change a nted is a simplification o 1.	
					-0		FILL: SIL	TY GRAVEL (GI	M), brown, slig	ghtly moist, very	294.6
						1	dense, 1	" to 3" crushed r	rock, trace sar	nd	
	3.2	144		В	-						
	18.6	100		в			SILTY C	LAY to CLAYEY	SILT (CL-ML)	, light brown, stiff to	-
					-		very stiff	, moist, trace sa	Ind		7
								AND (SM), brow , clay chunks	n, moist, med	ium dense, bricks,	
	~				-		concrete	, clay chunks			
	9.1			В			Defend				_
							Refusal	on concrete at 3	l.5 feet.		
											- ²⁶ - 3
		4			-						
		2									
	3										
				3							
					÷						
SAMPLE	TYPES				RILLED:	0.2.02					
C Roc S Star	k Core ndard Spi			DUIPM	ENT US		0	GEOBA	SE/GPI	PROJECT NO.: 113 METROLINK	3.21
B Bull	ve Sample k Sample		GI	ROUNI	DWATE		i.	LOC	G OF BOF	RING NO. B-3	
Tub	e Sample		NUT	LINCOU	ALC CALL	· ·	FIGURE A-4				

1 K-k-k-k-

	MOISTURE (%)	(PCF)	ETRATION SISTANCE DMS/FOOT)	SAMPLE TYPE	DEPTH (FEET)	Th				CE MATERIALS	ELEVATION (FEET)
	Ĕ	DRÝ	PEN BLEN	SAM	0-	this l		the passage of time actual condit	e. The data presentions encountered	oring and at the time of ations and may change at nted is a simplification of t.	ц,
-	2.7	140		В				RAVEL (GM), br gravels to 3", tra		noist, very dense,	-295-
	29.1			В	-			LAY to CLAYEY prown, grey, stiff		, mottled dark iltstone fragments	
	16.8			в	_						
							Refusal a	at 4.5 feet.			
								21			
										,	
C R	SAMPLE TYPES DATE DRILLED: 9-2-93 C Rock Core S Standard Split Spoon EQUIPMENT USED:							GEOBA	SE/GPI	PROJECT NO.: 1133. METROLINK	21
D Dr B Bu	D Drive Sample HAND B Bulk Sample GROUNDWATER LEVEL: NOT ENCOUNTERED							LOC	G OF BOR	RING NO. B-4	E A-5

LL & C. C. L. C. J. - 8 . .

1016409260516888

	MOISTURE (%)	DENSITY (PCF)	TANTON	E TYPE	DEPTH (FEET)	and the second sec			CE MATERIALS	ITTON ET)		
	SION -	DRY DI (Pi	PENETI RESTS (BLOHS	SAMPLE	l (FE	Thi drilling this lo	s summary g. Subsurfa ocation with	applies only at the lo ce conditions may d the passage of time actual conditi	ocation of this bo differ at other loc. The data prese ions encountered	oring and at the time of ations and may change at inted is a simplification of d.	ELEVATION (FEET)	
					-	1.1.1.1.	FILL: SA trash	ANDY GRAVEL (C	GW), brown, c	lry, loose, glass,		
							SANDY	GRAVEL (GP), g	rey, dry, loos	e, 3/8" round gravels		
			·-·-/				Refusal	at 20 inches on a	asphalt concre	ete.		
									×			
SAMPL	E TYPES		DA	TE DR	ILLED:	9-2-93			. 1			
C Rock Core S Standard Split Spoon D Drive Sample				UIPME	ENT USI			GEOBASE/GPI PROJECT NO.: 1133.21 METROLINK				
 B Bulk Sample Tube Sample 			GR	OUND NOT E	WATER	LOG OF BORING NO. B					= A.G	

5

0

0

C

Ç 5

t ٩.

01

-

C2

	·	MOISTURE (%)	DRY DENSITY (PCF)	PENETRATION RESISTANCE BLOWS/FOOT)	SAMPLE TYPE	(FEET)		DESCRIPTION OF ry applies only at the lo face conditions may di th the passage of time. actual condition		CE MATERIALS ring and at the time of tions and may change at nted is a simplification of	ELEVATION (FEET)			
		10.7 3.4	113 99	1	B D	-0	FILL: SILTY moist,		M-SP), brown	, slightly moist to	-295-			
		7.7	99	3	D	5								
		10.6	97	6	D	-		- 9.0', bricks, ash			-290-			
		12.7	96	PUSH	D	10	odor	SAND (SM), brown	AND (SM), brown, moist, loose, slight petroleum					
2		22.9	96	3	D	-		E: SILTY SAND to S gravels, strong per			-285-			
1-4						15	Termir No cav	ated at 15 feet. ving.						
6-6-														
- line														
_						1								
}		E TYPES		D	ATE DE	RILLED:	9-7-93	05004		PROJECT NO.: 1133.	21			
	S I	Rock Core Standard Sp Drive Sampl	8		18" B		SED: AUGER R LEVEL:		GEOBASE/GPI METROLINK LOG OF BORING NO. B-6					
		Bulk Sample Fube Sampl					NTERED		FIGURE A-7					

	MOISTURE (%)	DENSITY (PCF)	RATION STANCE	E TYPE	DEPTH (FEET)						CE MATERIALS	ELEVATION (FEET)
	SION	DRY (PI	PENETI RESIS	SAMPLE		Th drillin this lo		applies only ce condition the passage actua	y at the locations may differ a s of time. The al conditions e	on of this bo at other loca data prese incountered	ning and at the time of tions and may change at nted is a simplification of I.	ELEVE
	4.1 6.6	111 91	1	B D			FILL: SILTY S medium clay,	AND (SM) dense, gl	, brown, sli ass, bricks,	ightly moi , gravels,	st to moist, loose to concrete, chunks of	-295-
	12.5	99	PUSH	D	5		@ 5', br	ick				-290-
	3.1		3	D					oncrete, mo slightly mo			250
	5.8	97	6	D	10-		NATIVE), brown, m moist, den			-285-
	3.2		5	D	15 -							
							· · · · · · · · · · · · · · · · · · ·	ted at 16 f iving and i	Carl Carl Dog 1			
								2)				
SAMPLE T C Rock S Stan	k Core	lit Spoon				9-7-93		GEOR	BASE/	GPI	PROJECT NO.: 1133. METROLINK	21
D Drive B Bulk	e Sample Sample	9		18" BI ROUNI	UCKET	AUGER	<u>.</u>		LOG O	F BOR	ING NO. B-7	
	Tube Sample NOT ENCOUNTERED FIGURE										E A-8	

C.C.C.C.C.C.C.

-

			>	12:	9 111		1							
		MOISTURE (%)	DENSIT'	RATIO	E TYPE	DEPTH (FEET)						CE MATERIALS	ELEVATION (FEET)	
		SION .	DRY D (P	PENET RESIS	SAMPLE	0- E	drilling this lo	s summary . Subsurfa cation with	applies only ce condition the passage actua	y at the locations may differ a e of time. The al conditions e	on of this bo at other loca data prese incountered	oring and at the time of ations and may change nted is a simplification o d.		
		4.1	117		В			FILL: SILTY S	AND (SM)	12.0		st, gravels to 2"		
		3.4	92	1	D			NATIVE SAND (S		, moist, very	/ dense, (gravels to 3"	-285-	
		2.6	119	6	D	5								
						-							-280-	
		6.2	102	10	D	10-								
		0.2	102	10	-0	-		Termina	ted at 11 f	leet		11	-	
3								No cavir						
• •														
2	8									1				
¢														
¢.														
C														
<u> </u>												5		
Č								5						
¢.														
S.														
-														
C.5														
												×.		
								;+						
	0													
			ĺ											
	C Ro	SAMPLE TYPES DATE DRILLED: 9-7-93 C Rock Core S Standard Split Spoon EQUIPMENT USED:							GEO	BASE	GPI	PROJECT NO.: 113 METROLINK	3.21	
	D Drive Sample 18" BUCKET AUGER B Bulk Sample GROUNDWATER LEVEL:								LOG OF BORING NO. B-8					
	T Tube Sample NOT ENCOUNTERED									FIGURE A-9				

•

(THIS PAGE INTENTIONALLY LEFT BLANK)

Existing Geotechnical Boring Logs Geotechnical Soilutions, 2005

(THIS PAGE INTENTIONALLY LEFT BLANK)

G	eot	ect	ni	cal	Soilutions, Inc.	Project No:	Client: Tetra Tech		
-	4.0				0.101	GS5101	Location: Aliso Sector D/MTA	_	
					enue, Suite 101		actor: C&C Drilling		
	s Ar d: (3				ifornia 90036		B" Hollow Stem Auger	Bori	ng 1
	ix: (3					Driving Weigl			
					Date:5/9/2005	Surface Eleva	ition:	Shee	1 A A A A A A A A A A A A A A A A A A A
-	J	l by	1	T	Date.3/3/2003	Reference:		of	1
O Depth in Feet	Drive Sample	Sample Type	Bag Sample	Blows Per 6 inches		Visual Des		Moisture Content %	Dry Unit Weight (Pcf)
. 0					About 4 inches asphalt, abo				
					Fill: Dark gray brown fine so moderately loose.	and and gravel,	pieces of concrete and brick, dry,		
5					Fine black sand, brick piece	es, slightly moist	, moderately loose.		
		CA		12 17	Discarded sample, abunda	nt brick pieces.			
				30					
10							94.)		
		CA		7	Possible Native: Brown me	dium grained sa	nd, moist, moderately dense.		
		СА		10 4	Brown medium grained san	d, moist, modera	ately dense.		
15					End of boring 14 feet.		14		
					Fill to about 10 feet.				
					No groundwater.				
							۵.,		
				1					
							9)		
							(a)		
-									
					4 St		<i></i>		
-			-				ž.		

PLATE XVIII

1010212200744793

÷.,

G	eot	ech	ni	cal	Soilutions, Inc.	Project No:	Client: Tetra Tech			
	4 0	-					Location: Aliso Sect	or D/MTA		
					enue, Suite 101		ctor: C&C Drilling			
		323)			fornia 90036		Hollow Stem Auger		Borir	ng 2
		323)			•	Driving Weigh Surface Eleva			-	
					Date:5/9/2005	Reference:	ion.		Shee	et 1
	1	<u> </u>		T		itererence.			of	
Depth in Feet	Drive Sample	Sample Type	Bag Sample	Blows Per 6 inches		Visual Desc			Moisture Content %	Dry Unit Weight (Pcf)
0					About 6 inches asphalt, abo					
					Fill: Dark gray medium grain	ed sand, lumps	of brown clay, pieces	of concrete,		
					brick and asphalt, slightly me	bist, moderateley	loose.			
5					Black sand, pieces of brick a	and concrete, sli	ghtly moist, moderate	ely loose.		
	N.	SPT		6						
				6		5 (. ¹⁵				
				6						
							₩			
10	হাজন্ত									
		CA		11	Possible Native: Brown sand	l, medium graine	ed, scattered gravel,	slightly moist,		
					moderately loose.					1
					End of boring 11 feet.	23				
22					Fill to about 10 feet					
15					No groundwater.			S.		
					Y E.			÷.		1
					¥.					
										2
-							• ·	•		
			1							
								0		
1				Ì						
-							(a ;a			
1										
1										
1										
					8					
-										
						•				
				4				PLAT	E Y	XIX

_	eot	ech	nnie	cal	Soilutions, Inc.	Project No:	Client: Tetra Tech		
		_				GS5101	Location: Aliso Sector D/MTA		
					enue, Suite 101		ractor: C&C Drilling		
					ornia 90036		8" Hollow Stem Auger	Borir	ng 3
		323) 323)				Driving Weig			
		d by			Date:5/9/2005	Surface Eleventer Reference:		Shee	et 1
20	l I	l by	1		Date.3/3/2003	Reference.		of	1
Depth in Feet	Drive Sample	Sample Type	Bag Sample	Blows Per 6 inches		Visual Des	scription	Moisture Content %	Dry Unit Weight (Pcf)
0					About 6 inches asphalt, a	bout 5 inches bas	Se.		
75					<u>Fill</u> : Gray-brown sand, pie loose.	eces of brick and	asphalt, slightly moist, moderately slightly moist, moderately loose.		
10		SPT			Black sand and clayey sa slightly moist,moderately		cattered pieces of brick, gravel,		
15		СА			Possible Native: Light gra moist, moderately dense.		th abundant gravel, odor, slightly		
20	No.	CA		100 6"	Light gray coarse sand ar Layers of coarse gravel/b		ightly moist, moderately dense.		
25		СА		32	Gray clayey silt and coars End of boring at 26 feet. Water at 26 feet, possibly		ist to wet, moderately dense.		

PLATE XX

Ge	eot	ech	nio	al		ct No:	Client: Tetra Tech		
		- ·			GS51		Location: Aliso Sector D/MTA		
							ractor: C&C Drilling		
							B" Hollow Stem Auger	Bor	ing 4
		323) 323)					ht: 140 lbs		
						ce Eleva ence:		She	
	Jac	l by			Date.0/9/2003	ence:		of	2
Uepth in Feet	Drive Sample No.	Sample Type	Bag Sample	Blows Per 6 inches	Vi	sual Des	cription	Moisture Content %	Drv Ilnit Weight (Pcf)
0					About 8 inches asphalt, about 5 inc	ches bas	se.		1
					Fill: Medium grained brown sand a	nd grave	el, pieces of brick and wood, slighly		
					moist, moderately loose.				1
					Mottled dark gray and light brown	silty clay,	slightly moist, moderately stiff.		1
					*		4		
5							5)		
				2.0					
	1								
								÷	
ô					Diogla cilla class accetto ac di brich for				1
	1 00	CA		6	Black silty clay, scattered brick frag	gments,	odor, moist, moderately stiff.	1	
1	Sec.2			7					
				25					
				20			12	1	
5							240		
-		CA		10	Possible Native: Dark gray fine sar	nd, slight	lv moist, moderatelv dense		
1				15	. ,		,		
				28					1
0									
	No.	CA			Dark gray coarse sand and gravel,	strong o	dor, moist, moderately dense.		
				50					
				2"					
1									
5	<u>इक</u> स								
+		SPT			Dark gray coarse sand and abunda	ant grave	l, strong odor, moist, moderately		
			- 1		dense.				
-				50					
				5"					
0				28	3		2		
1	新		- 1	1000	Dark gray medium grained sand, s	trong od	or moist modoratoly donas		
	N. 4.		_		san gray moulum grameu sanu, s	a ong ou	or, moist, moderately dense.		1

Geotechnical Se	oilutions, Inc.	Project No:	Client: Tetra T	ech		11 - CAR	
			Location: Aliso		A		
501 S. Fairfax Avenu		Drilling Contra	actor: C&C Dri	lling			
Los Angeles, Califor Tel: (323) 937-1097		Driving Weigh	" Hollow Stem A	Auger		Borin	ig 4
Fax: (323) 937-1099		Surface Eleva				Shee	+ 2
Logged by: SMD Da		Reference:				of	2
	500 L						
Fil	nd of boring at 31 feet. Il to about 15 feet. o groundwater.	Visual Desc	cription	Ŷ		Moisture Content %	Dry Unit Weight (Pcf)
					PLATE		

G	eot	ech	ni	cal	Soilutions, Inc. Project	No: Client: Tetra Tech		
-					GS510			
						Contractor: C&C Drilling		
		323)				nent: 8" Hollow Stem Auger Weight: 140 lbs	Borin	g 5
		323)					Chao	
					Date:5/9/2005 Refere		Shee of	1
Depth in Feet	Drive Sample	Sample Type	Bag Sample	Blows Per 6 inches	Visu	al Description	Moisture Content %	Dry Unit Weight (Pcf)
0					About 4 inches asphalt, about 8 inch	es base.		_
-						oundant gravel, brick pieces, slightly moist,		
5								
		2						
10					Gray and brown silty clay, moist, mo	derately stiff.		
	123	CA		10	Gray-brown silty fine sand, moist, m	adaratoly dance, alight adar		
	0862	UN		10 15	oray-brown sity inte saird, moist, m	derately dense, slight odor.		
15	- 1962 - 1962 - 1962	СА		18 38 50	Possible Native: Light brown coarse	sand and gravel, moist, moderately dense.		
20								
		SPT		50 5"	Light brown silty fine sand with occas	sional gravel, slightly moist, dense.		
25	瓑	СА			Gray fine to coarse sand and gravel,	slight odor, slightly moist, dense.		
					End of boring at 26 feet.			
					Fill to about 15 feet.			
-					No groundwater.			
30					۵.			

PLATE XXIII

Existing Geotechnical Boring Logs Kleinfelder, 2003

]]	Drill Drill	e Drille ed By: ing Me ged By	: ethod	Water Depth: Date Measured: Reference Elevation: Datum:							
Elevation (feet) Depth	Somple	Sample No.	Blow Count (Blows/ft.)	Graphic Log	GEOTECHNICAL DESCRIPTION AND CLASSIFICATION	Dry Density (pcf)	Moisture Content (%)	Additional Tests				
	1 6 108 10 2 12											
5	$ \begin{bmatrix} 1 \\ 2 \\ - 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ -$											
10-												
-	1											
	SAMP	I.F.	- Cr	ophical r	Presentation of sample type as shown below.	-						
	Split	Spoor	n - St	andard P	enetrotion Test Somple (SPT)							
	Bulk	Somp	le - Ot	loined by	omple (Col) y collecting cuttings in a plostic bag							
2.		Somp	ole – Sr D. – Som									
3.	BLOWS Samp Drive	S/FT - lers in sompli	- Number generol w es collecter	ol blows ere drive d in buc	required to advance sampler 1 foot (unless a lesser distance is specified). n into the soil at the bottom of the hole with a standard (140 lb) hommer droppin ket auger borings may be obtained by dropping non-standard weight from variable he blow count conforms to ASTM D-1586.	ng o stor heights.	ndard 30	inches.				
	SCR/	ROD - ntoge	Somple C	ore Reco	wery (SCR) in percent (%) and Rock Quality Designation (ROD) in percent (%). ROD in which the spacing between natural fractures is greater than 4 inches. Mechanical	is define breoks o	d as the	e bre				
4.	GRAF	PHIC L	.0G - Sta	ondord :	symbols for soil and rock types, as shown on plate B-1b.							
5.	<u>Soil</u> color	- Soil ond c	other modif	ons ore iers. Fiel	based on the Unified Soil Clossification System per ASTM D-2487, and designations d descriptions have been modified to reflect results of laboratory analyses where de	emed op	propriate					
	the r	nechor oppri	nical proper opriate.	ties of t	enerolly include a rock type, color, maisture, mineral constituents, degree at weather he rock. Fabric, lineations, bedding spacing, foliations, and degree of cementation a ck tormation is placed in brackets at the beginning of the description where applic	re olso p	resented					
6						0010, 101	exomple	, Nesiodol Soli.				
б. 7.												
8.	ATTIT respe	ectively	, preceede	dbyod	ck discontinuity observed in bucket auger boring or rock core, expressed in strike/a ne-letter symbol denoting nature of discontinuity as shown below.	dip ond d	lip ongle					
	100	B: E	Sedding Pla	ine	J: Jointing C: Contact F: Fault S: Shear							
	5		VI	EIN	FELDER EXPLANATION OF LOGS			PLATE				
	•		K L		EXPLANATION OF LOGS			A-1a				

101021020051324

PRI	MARY DIVISIONS		GROU	JP SYMBOLS		SECO	NDARY DIVISIO	NS		
		CLEAN	G		WELL GRADED	GRAVELS GRAVEL-	SAND MIXTURES, LI	TUE OR NO FINES		
z	LS DARS OARS V IS V IS	GRAVELS (LESS THAN)	6	P: P: P: P: P				ES, LITTLE OR NO FINES		
SOILS OF E THI	CTION SER	5% FINES			SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES					
VED S	CRAVELS MORE THAN MORE OF COARSE FRACTION IS LARGER THAN # SIEVE	WITH		c	ww	LS. GRAVEL-SAND-				
COARSE-GRAINED SOILS WORE THAN HALF OF WATERALS IS LARGER THAN \$200 SIEVE SIZE	ц т	CLEAN		- #/#/#/# w			SANDS, LITTLE OR	NO FINES		
RE TI	N IS N IS VE	SANDS (LESS THAN) 5% FINES	s	P			ELLY SANDS, LITTL			
ATER	SANDS WORE THAN HALE OF COARSE FRACTION IS SMALLER THAN MA SIEVE	SANDS	s	· ::::::::::::::::::::::::::::::::::::	SILTY SANDS,	SAND-SILT MIXTUR	ES			
2	ALF SWAI SWAI	FINES	5	sc	CLAYEY SANDS	S. SAND-CLAY MIXT	URES			
z				41			IDS. ROCK FLOUR,	SILTY OR		
ILS OF E THAN	SILTS AND CLAYS	LIQUID LIMIT IS LESS THAN 50	0	.L	CLAYEY FINE SANDS INDRGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS					
SOII ALF (LLER SIZE	SILT SILT	37	0		ORGANIC SILTS AND ORGANIC SILT-CLAYS OF LOW PLASTICITY					
FINE-GRAINED SOILS NORE THAN HALF OF MATERALS IS SMALLER #200 SIEVE SIZE	ę	2 0		MH INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDS OR SILTS, ELASTIC SILTS						
	SILTS AND CLAYS	LIMIT IS GREATER THAN 50	0	сн /////		AYS OF HIGH PLAS	TICITY, FAT CLAYS			
FINE MOR FERIAL	SIL SIL	- 51		он	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS					
MAT	HIGHLY ORGAN	NIC SOILS	1	PT	PEAT, MUCK	AND OTHER HIGHLY	ORGANIC SOILS			
	SANDSTO	ONES		ss IIIII						
TYPICAL FORMATIONAL MATERIALS	SILTSTO		SH	sн						
VPICA	CLAYSTO			cs i						
FOR	LIMESTO	NES								
	SHAL	E		sı						
a		CONSISTE	NCY	CRITERIA E	BASED O	N FIELD T	ESTS			
						*				
RELATIVE	DENSITY: COARSE-GR	AINED SOIL		CONSISTENCY: FINE-GRAINED SO	ıL	TORVANE	POCKET ** PENETROMETER	 NUMBER OF BLOWS OF 140 POUND HAW 		
RELATIVE DENSITY	SPT • (# blows/f1)	RELATIVE DENSITY (2)	CONSISTENCY	SPT (# blows/11)	UNDRAINED SHEAR STRENGTH (1s1)	UNCONFINED COMPRESSIVE STRENGTH (1s1)	FALLING 30 INCHES TO DRIVE A 2 INCH (1 3/8 INCH I.D.) SPLIT BARREL SAMP		
				Very Soft	<2	<0.13	<0.25	(ASTM-1586 STAND/ PENETRATION TEST)		

UNCONFINED COMPRESSIVE STRENGTH IN TONS/SO.FT. READ FROM POCKET PENETROMETER

MOISTURE CONTENT

KLEINFELDER

15 - 35

35 - 65

65 - 85

85 - 100

4 - 10

10 - 30

30 - 50

>50

Loose

Medium Dense

Dense

Very Dense

DESCRIPTION	FIELD TEST	DESCRIPTION	FIELD TEST
Dry	Absence of moisture, dusty, dry to the touch	Weakly	Crumbles or breaks with handling or slight finger pressure
Moist	Damp but no visible water	Moderotely	Crumbles or breaks with considerable linger pressure
Wet	Visible free water, usually soil is below water table	Strongly	Will not crumble or break with finger pressure

Soft

Medium Stiff

Stiff

Very Stiff

Hord

2 - 4

4 - 8

8 - 15

15 - 30

>30

0.13 - 0.25

0.25 - 0.5

0.5 - 1.0

1.0 - 2.0

>2.0

0.25 - 0.5

0.5 - 1.0

1.0 - 2.0

2.0 - 4.0

>4.0

CEMENTATION

EXPLANATION OF LOGS

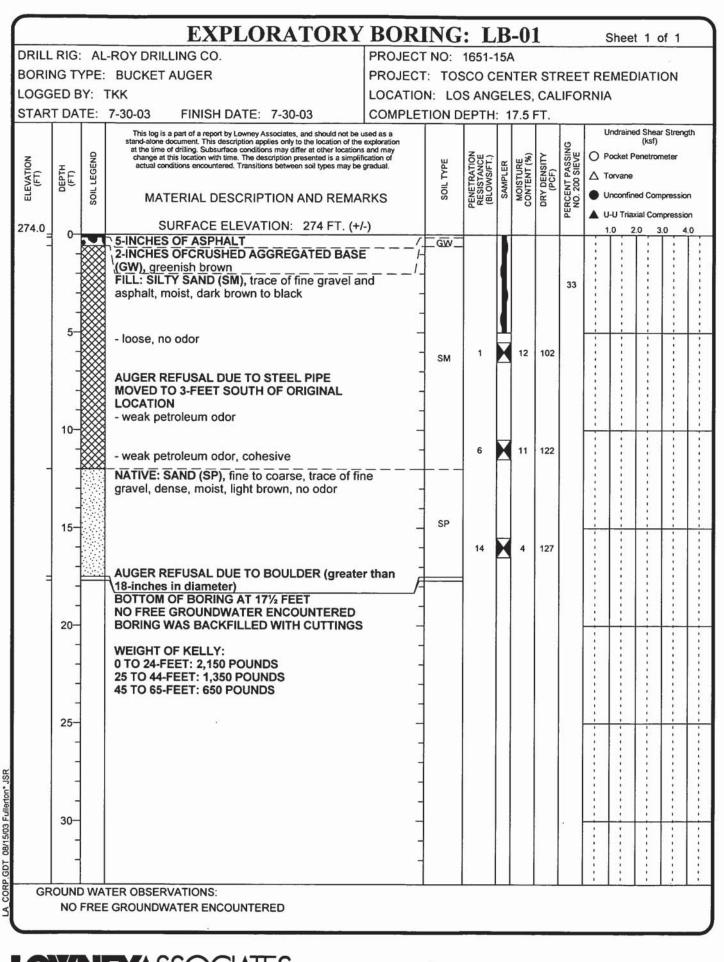
PLATE

Date Drilled:	4/24/03	Water Depth:	>30.5	fee	t		
Drilled By:	West Hazmat	Date Measured:	4/24/0	3			
Drilling Method:	Hollow Stem Auger	6" Elevation:	~280	feet	:		
Logged By:	Ed Che	Reference Datum:	MSL				
Elevation (feet) Depth Sample Type Sample Number Blow Counts (blows/foot) Graphic Log	}	OIL DESCRIPTION AND CLASSIFICATION		Dry Unit Weight (pcf)	Moisture Content (%)	Additional Tests	PID (ppm)
		(AC): approximately 3 inches this inches the state of the	ck				
	Artificial Fill (Af): Sandy Clay (CL): of brick fragments found Sandy Silt (ML): oli oxide stains, mottled	live gray, moist, fine to coarse san d, no ordor ve brown, moist, very stiff, iron with pockets of clay, no odor	nd, 	90	20.9	DS	5
	Native: Sand (SP): yellow bi fine grained, no odor	rown, slightly moist, medium den	ise,			w	A
	moist, dense, find 2 inch layer of gray of	e to coarse grained, some fine gra clay, highly moist, no odor	vel,	110	6.8		
	NFELDER	Proposed Shored Excavation Proje 710 N. Keller Street	ct			PLAT	ſE
PROJECT NO. 2971	12	Los Angeles, California LOG OF BORING B-1				A-2a	1

Explanation To Logs On Plate A-1

Elevation (feet) Depth Sample Type Sample Number Blow Counts (blows/foot) Graphic Log		OIL DESCRIPTION AND CLASSIFICATION ed From Previous Page)	Dry Unit Weight (pcf)	Moisture Content (%)	Addi tional Tests	(mdd) dig
260 $ -$	lodor	Silt (SP-SM): gray, moist, very n grained, fine and coarse gravel, no : 30.5 feet ountered th bentonite grout and topped with				
	I N F E L D E R 9712	Proposed Shored Excavation Project 710 N. Keller Street Los Angeles, California LOG OF BORING B-1			PLAT A-2b	
	Explanat	ion To Logs On Plate A-1		l		-

Date Drilled:	4/24/03	Water Depth:	>31	feet		
Drilled By:	West Hazmat	Date Measured:	4/24/0	3		
Drilling Method:	Hollow Stem Auger	6" Elevation:	~280	feet	t	
Logged By:	Ed Che	Reference Datum:	MSL			
Elevation (feet) Depth Sample Type Sample Number Blow Counts (blows/foot) Graphic Log	1.40	OIL DESCRIPTION AND CLASSIFICATION		Dry Unit Weight (pcf)	Moisture Content (%)	Additional Tests PID (ppm)
	Artificial Fill (Af):	(AC): approximately 3.5 inche dark olive gray, moist, fine to m s, trace fine gravel, some stainin wel and cobbles, concrete debri	/			
	<u>ceramics</u>	e wood debris and fragments of rown, moist, dense, fine to med gravel, no odor		94	22.7	CHEM, WA
2 39				105	6.0	GS
- 265 15	Silty Sand (SM): oli grained, no odor	ive brown, moist, very dense, fi	ne	87	7.4	
4 59	Gravelly Sand with moist, dense, fine to occasional layers of s	Silt (SP-SM): gray, moist to v coarse grained, fine and coarse sandy gravel, no odor	very gravel,			
	NFELDER	Proposed Shored Excavation Pro	oject			PLATE
PROJECT NO. 297		710 N. Keller Street Los Angeles, California LOG OF BORING B-2				A-3a


Explanation To Logs On Plate A-1

Existing Geotechnical Boring Logs Lowney Asssociates, 2003

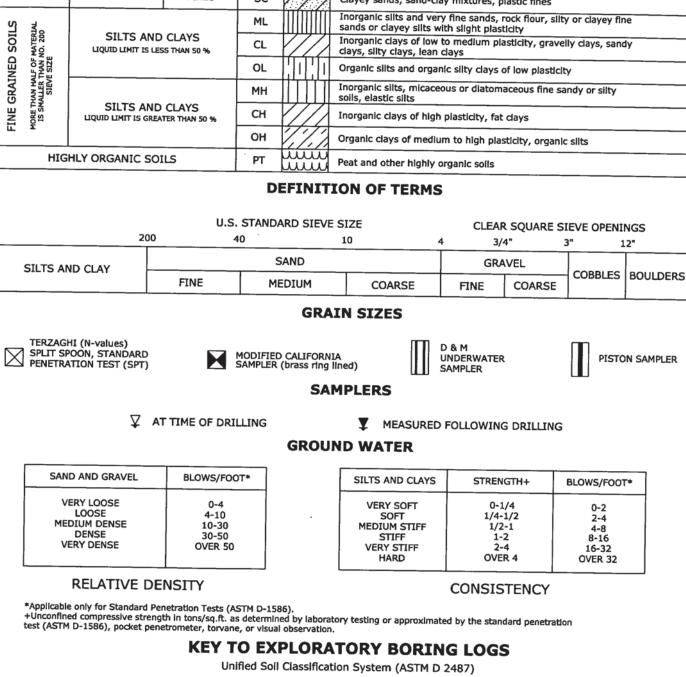
			-ROY DRILLING CO.	PROJECT	NO:	1651-	15A								
BORI	NG T	YPE	BUCKET AUGER	PROJECT	: то	sco c	EN	TEF	R ST	REE	T RE	MED	IATI	ON	
LOGG	GED B	BY:	ткк	LOCATIO	N: LC	S ANG	GEL	ES,	CAI	IFO	RNIA				
STAR	T DA	TE:	7-30-03 FINISH DATE: 7-30-03	COMPLET											
ELEVATION (FT)	DEPTH (FT)	SOIL LEGEND	This log is a part of a report by Lowney Associates, and should not be stand-alone document. This description applies only to the location of the at the time of drilling. Subsurface conditions may differ at other location change at this location with time. The description presented is a simp actual conditions encountered. Transitions between soil types may be MATERIAL DESCRIPTION AND REM.	ne exploration nns and may stification of xe gradual.	SOIL TYPE	PENETRATION RESISTANCE (BLOWS/FT.)	SAMPLER	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	PERCENT PASSING NO. 200 SIEVE	O Pa △ Ta ● Ur	ndrained ocket Pe orvane nconfine U Triax	(ksf) enetron ed Com	neter pressio	on
272.0	0-	XXX	SURFACE ELEVATION: 272 FT. (L					1.	0 2.	0 3	.0 4	4.0
_	-		FILL: SILTY SAND (SM), trace of fine gravel, moist to moist, brick rubble, brown	-	SM										
	- 5		FILL: SILT (ML), trace of sand and fine grave medium stiff, moist, brown, no odor	I, _ 	ML	3		10	104						
-	-		FILL: SAND (SP), fine to coarse, with fine to c gravel and cobbles less than 12-inches in dia moist, light brown - concrete rubble greater than 24-inches in dia	imeter,	 SP										
	-10 - - -		REFUSAL DUE TO SAND CAVING, MOVED T 5-FEET NORTH, 4-FEET WEST OF ORIGINA LOCATION SAND (SP), with fine to coarse gravel and col less than 12-inches in diameter, medium den orange brown	O L - bbles -		6	X	4	110						
	15- - -			-	SP	18	X	3	130						
_	- 20— -		- brown	-		19		7	114						
	-		GRAVELLY SAND (SW), fine to coarse grave cobbles less than 12-inches in diameter, dens orange brown with white mottling, no odor	se, moist,	sw										
	25— - -		SAND (SP), medium to coarse, trace of grave cobbles less than 12-inches in diameter, dens dense, olive green, no odor			30/10"	X	6	115						
			- fine to medium, moist to very moist		SP										
240.04	<u>z</u>			1		30/10"		19	105				:		
10.0			Continued Next Page												

\frown			EXPLORATORY BO	RING	: L	B-0 ′	2	С	on	t'd		Shee	t 2 c	f 2	
DRILL	RIG	AL	-ROY DRILLING CO.	PROJECT							`		(
BORI	NG T	PE:	BUCKET AUGER	PROJECT					R ST	REE	T RE	MED		NC	
LOGG	ED B	Y: '	ГКК	LOCATIO	N: LO	S ANG	GEL	ES,	CAL	IFO	RNIA	A			
STAR	T DA	TE:	7-30-03 FINISH DATE: 7-30-03	COMPLE		EPTH	: 3	2.0	FT.						
			This log is a part of a report by Lowney Associates, and should not be u stand-alone document. This description applies only to the location of the	exploration						0	U	Indraine	d Shear (ksf)	Streng	gth
NO	-	END	 at the time of drilling. Subsurface conditions may differ at other locations change at this location with time. The description presented is a simplifi actual conditions encountered. Transitions between soil types may be 	and may cation of	μ	Since Since	2	щ %	È	SSING	OP	ocket P	enetrom	eter	
ELEVATION (FT)	DEPTH (FT)	SOIL LEGEND		gradual.	SOIL TYPE	TRAT STAN WS/F	SAMPLER	STUR	DENS PCF)	IT PA		orvane			
ELE		SOIL	MATERIAL DESCRIPTION AND REMA	RKS	sol	PENETRATION RESISTANCE (BLOWS/FT.)	SA	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	PERCENT PASSING NO. 200 SIEVE	• U	Inconfin	ed Com	pressio	n
240.0	_					-				BE	_		ial Com		on 1.0
		_	BOTTOM OF BORING AT 32 FEET				Π							:	Ī
	_		FREE GROUNDWATER ENCOUNTERED AT 3 FEET	2							;			-	
	35-		BORING WAS BACKFILLED WITH CUTTINGS											i	
	_		BORING HALTED AT 32-FEET DUE TO REFUS												
	_		BOULDERS GREATER THAN 18-INCH DIAME	TER.											
	-		ALSO SAND CAVED DUE TO GROUNDWATER	२ –							÷			:	
	-		WEIGHT OF KELLY:	-							:		:	1	
	40-		0 TO 24-FEET: 2,150 POUNDS	-							:	;			;
	-		25 TO 44-FEET: 1,350 POUNDS 45 TO 65-FEET: 650 POUNDS	-							:			-	
	-			-							-			÷	
	-			-							1			:	
				-							;			-	
	45-			-											
]			-											
				1											
]											2
	50-			_										;	
	-			_										:	-
	-			_									:		
	-			-							:				н. Э.
	-			-											
	55-	[-						ŀ	+	+	;	+	+
	1			-										:	
	1	·		-							:	:			
	1			1										:	1
	60-			1							:	1		:	
	~			-						ľ	1	:1	:	:	
	_]											
	-														
	-			_											
													÷	:	
			ER OBSERVATIONS: ROUND WATER MEASURED DURING DRILLING AT	32.0 FEET											
															J

LA CORP.GDT 08/15/03 Fullerton* JSR

\square			EXPLORATORY	BOR	ING	: T	R	- 0′	3			Shee	+ 1 /	of 1	
DRILL	RIG	: AL	-ROY DRILLING CO.	PROJECT			_							<u>// /</u>	
BORIN	IG T	YPE:	BUCKET AUGER	PROJECT					R ST	REE	T RE	MED	DIATI	ON	
LOGG	ED E	3Y: '	ткк	LOCATIO											
STAR	T DA	TE:	7-30-03 FINISH DATE: 7-30-03	COMPLE		EPTH	1: 2	24.0	FT.						
			This log is a part of a report by Lowney Associates, and should not be stand-alone document. This description applies only to the location of the	used as a							ι	Indraine	d Shea (ksf)	r Stren	gth
z		Q	at the time of dnilling. Subsurface conditions may differ at other location change at this location with time. The description presented is a simpli	s and may ication of	ш —	SHC:	_		≥	NE	OF	Pocket P	• •	neter	
ELEVATION (FT)	DEPTH (FT)	SOIL LEGEND	actual conditions encountered. Transitions between soil types may be	gradual.	SOIL TYPE	TRATI STAN(PLEF	STUR ENT (CF)	T PAS	Δī	orvane			
ELE	Δ	SOIL	MATERIAL DESCRIPTION AND REMA	RKS	soll	PENETRATION RESISTANCE (BLOWS/FT.)	SAN	MOISTURE CONTENT (%)	οRY C (P	PERCENT PASSING NO. 200 SIEVE	• u	Inconfin	ed Corr	pressio	on
272.0			SURFACE ELEVATION: 272 FT. (+/	-)						PER		J-U Tria			
	0-	\otimes	FILL: SILT (ML), trace of fine sand and gravel	/			╁┰					0 2	0 3		4.0
	-		slightly moist to moist, brick rubble, brown	-	ML										
	-	\bigotimes		-	1					45					
1	-		FILL: CLAYEY SAND (SC), with fine gravel, tra	ice of		1									
	5-		asphalt, low to medium plasticity, moist, brown		sc										
	-		FILL: SAND (SP), medium to coarse, trace of and cobbles less than 12-inches in diameter, r	gravel		1	Ę				;		;	1	
	_	\bigotimes	dense to dense, moist, light brown to brown	nealum -]	8	A	5	110		:		:		
	_										÷	:	;		
	_										-		:		
	10-			_	SP						;	;	;		
	-	***	- light brown	_		10	X	3	114						
	-	***	- light brown	_			\cap							i	
	-	***	- with gravel and cobbles less than 12-inches i								÷		:		
	-	***	diameter								1			ł	
-	15-		SILT (ML), trace of fine sand, soft to medium s	tiff								;			
	-		moist, brown with iron oxide stains, no odor	-		4	X	12	107		:			:	
	-			-	ML						-			1	
1	-	$\uparrow\uparrow\uparrow$	SILTY SAND (SM), with gravel and cobbles les	s than											
	-		12-inches in diameter, fine to coarse, moist, br	own -	SM										
	20-									ł	-			-	$\left \cdot \right $
1			SAND (SP), fine to coarse with gravel and cobl	oles		13	Ă	6	115		÷	:		:	
]		less than 12-inches in diameter, medium dense dense, moist, orange brown, no odor	eto -	SP						1	:		:	
			- olive green	-										÷	
1	25-		BOTTOM OF BORING AT 24 FEET												
	_		NO FREE GROUNDWATER ENCOUNTERED BORING HOLE WAS BACKFILLED WITH CUT								:	:	-	:	
			BORING STOPPED AT 34 FEET DUE TO REFL	ISAL, _											
	_		BOULDER GREATER THAN 18-INCHES IN DIAMETER	_											
	_			_									:		
	30-		WEIGHT OF KELLY: 0 TO 24-FEET: 2,150 POUNDS	_						ļ				-	
	-		25 TO 44-FEET: 1,350 POUNDS	_									1		
	-		45 TO 65-FEET: 650 POUNDS	-							:	:			
0.00											:	:	;	:	;
GRU			ER OBSERVATIONS: GROUNDWATER ENCOUNTERED												
															J

LA CORP.GDT 08/15/03 Fullerton* JSR


			EXPLORATORY	BOR	ING	• T	R	-04	4			Shoot	1.		
DRILL	RIG:	AL	-ROY DRILLING CO.	PROJECT					-			Sheet		01 1	
BORIN	IG T	YPE:	BUCKET AUGER	PROJECT					R ST	REE	T RE	MED	ΙΑΤΙ	ON	
LOGG	ED B	Y: -	ГКК	LOCATIO										0.11	
START	DA	TE:	7-30-03 FINISH DATE: 7-30-03	COMPLET											
ELEVATION (FT)	DEPTH (FT)	SOIL LEGEND	This log is a part of a report by Lowney Associates, and should not be u stand-alone document. This description applies only to the location of the at the time of drifting. Subsurface conditions may differ at other locations change at this location with time. The description presented is a simplifi actual conditions encountered. Transitions between soil types may be	exploration and may cation of gradual.	SOIL TYPE	PENETRATION RESISTANCE (BLOWS/FT.)	SAMPLER	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	PERCENT PASSING NO. 200 SIEVE	O Po	ndraineo ocket Pe orvane	(ksf)		gth
		SOI	MATERIAL DESCRIPTION AND REMAI		So	PENI RES (BL(SA	CONC	DRY	PERCE NO. 3		NCONFINE			
272.0	0-		SURFACE ELEVATION: 272 FT. (+/ FILL: SILT (ML), with sand, trace of gravel, slig	-)							1.	0 2.	0 3	0 4	1.0
	-		moist to moist, brown	intiy - -											
	- 5-		- trace of sand, moist, gray brown	-	ML										
	-	***	- trace of fine sand, soft, brown	-		3	X	10	105		;		-	:	;
	-		FILL: SILTY SAND (SM), fine to coarse, moist, brown		SM										
	- 10-		NATIVE: SAND (SP), medium to coarse, with g medium dense, moist, light brown	ravel, - _											
				-	SP	9	X	2	128						
	 15—		- disturbed soil sample was retrieved in sample	-											
	-		only, due to gravel	-		9	0	3							
_	-	Щ	SILT (ML), trace of fine sand and gravel, moist, brown	- · _	ML										
	- 20-		SAND (SP), fine to coarse, with gravel and cobl less than 12-inches in diameter, moist, light bro												-
			 medium to coarse, medium dense required 30 minutes to drill from 22-feet to 24- 	-	SP	9	X	3	125						
=			to gravel and cobbles less than 12-inches in dia	ameter -											
	25 - -		BOTTOM OF THE BORING AT 24 FEET NO GROUNDWATER ENCOUNTERED BORING WAS BACKFILLED WITH CUTTINGS BORING STOPPED AT 24-FEET DUE TO REFUSAL	-											
	30-		WEIGHT OF KELLY: 0 TO 24-FEET: 2,150 POUNDS	-										-	
	-		25 TO 44-FEET: 1,350 POUNDS 45 TO 65-FEET: 650 POUNDS	-											
GRO	UND	WAT	ER OBSERVATIONS:									;	;	:	
			GROUNDWATER ENCOUNTERED												

LA CORP.GDT 08/15/03 Fullerton* JSR

JOIOZI9200515830

LOVNEYA Environmental/Geotechnical/Engineering Services

FIGURE A-1

F	RIMARY DIVISION	15	SOIL TYPE	LEGEND	SECONDARY DIVISIONS
	CDAVELO	CLEAN GRAVELS	GW	0 0 0 0 0 0	Well graded gravels, gravel-sand mixtures, little or no fines
SOILS TERIAL 200	GRAVELS MORE THAN HALF OF COARSE FRACTION	(Less than 5% Fines)	GP	3084	Poorly graded gravels or gravel-sand mixtures, little or no fines
	IS LARGER THAN NO. 4 SIEVE	GRAVEL WITH	GM		Silty gravels, gravel-sand-silt mixtures, plastic fines
DARSE GRAINED MORE THAN HALF OF MA IS LARGER THAN NO.		FINES	GC		Clayey gravels, gravel-sand-clay mixtures, plastic fines
	SANDS	CLEAN SANDS	SW		Well graded sands, gravelly sands, little or no fines
COARSE MORE THA	MORE THAN HALF	(Less than 5% Fines)	SP		Poorly graded sands or gravelly sands, little or no fines
8 -	IS SMALLER THAN NO. 4 SIEVE	SANDS WITH	SM		Slity sands, sand-slit-mixtures, non-plastic fines
		FINES	SC		Clayey sands, sand-clay mixtures, plastic fines
N 30			ML		Inorganic silts and very fine sands, rock flour, slity or clayey fine sands or clayey silts with slight plasticity
NO. 200	SILTS AND		CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, slity clays, lean clays
INED ALF OF THAN I			OL		Organic silts and organic silty clays of low plasticity
E GRAINED SOILS E THAN HALF OF MATERIAL SMALLER THAN NO. 200 SIEVE SIZE			мн		Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
FINE MORET MORET	SILTS AND		СН		Inorganic clays of high plasticity, fat clays
u, ×			ОН	1.1.1	Organic clays of medium to high plasticity, organic silts
HIG	HI V ORGANIC SOL	II C	· DT	hmm	

Existing Geotechnical Boring Logs Sladden Engineering, 2004

				Dynamic Builders					
Date		2/14/2	004	718 & 728 East Commerc Boring No. 1	ial, L.A	•	T-b bi		
Depili, fî	Symbol	Core	Blows/6"	Description	Soil type	Unit Wt, pcf	Moisture, %	% Minus #200	: 444-404 Remarks
0				Silty Sand with Gravel: Brown	SM	*			Artificia) Fill 4'
5		\ge	10/24/28	No Recovery					Native Soils
• 10 •			11/42/50	Silty Sand: Grey Brown	SM	107	3	4	
- 15			50-5"	Gravelly Sand: Brown	SM		2		
-			34/50-3"	Sand: Grey Brown	SM	103	3	2	
5	-		50-5"	Silty Sand: Grey Brown	SM		4		
0			50-4"	Petroleum Odor Gravelty Sand: Grey	SM				Groundwater @ 29'
5			50-5"	Gravelly Sand: Grey	SM		10		Note: The stratification lines represent the
			40/50-3"	Sand: Grey	SM		n		approximate boundaries between the soil types; the transition may be gradual.
State State State			50-3"	Sand: Grey	SM		15		Total Depth = 50,5' No Bedrock
	þ		50-4"	Sand: Grey	SM		10		

			Dynamic Builders					
Date:	2/14/200	0.4	718 & 728 East Commerci Boring No. 2	ial, L.A	•	Lab A	umber:	
Depth, ft Symbol		Blows/6"	Description	Soil type	Unit Wt, pcf	Moisture, %	Minus #200	: 444-404 Remarks
0			Silty Sand: Brown	SM				Artificial Fill 5'
5 · · · · · · · · · · · · · · · · · · ·		8/20/22	Silty Sand: Grey	SM	99	3	8	Native Soils
10	1	8/22/26	Silty Sand: Brown	SM		2	••••	Disturbed Sample
15 - -		50-5" (Gravelly Silty Sand, Brown	SM	101	3	5	
20		50-3" (Gravelly Sand: Brown	SM	102	2	6	
	Unr	N						Total Depth = 20.5' No Bedrock No Groundwater

				Dynamic Builders					
Date		2/14/2	2004	718 & 728 East Commerci Boring No. 3	al, L.A	•	Job N	umber	: 444-404
Depth, ft	Symbol	Core	Blows/6"	Description	W Soil type	Unit Wt, pcf	Moisture, %	% Minus #200	Remarks
0	「ない時間の			Silty Sand: Brown	SM				Anificial Fill 5'
• 6 •			36/50-5"	8" to 12" Thick Concrete @ 5' Gravelly Silty Sand: Grey Brown	SM	104	3	6	Native Soils
10			10/16/23	Silty Sand: Brown	SM	98	7	5	
- 15 -	のないない		27/40/50	Gravelly Sand: Brown	SM	123	4	4	
- 20			39/50-3"	Gravelly Sand: Brown	SM	104	3	6	
	V. N.		Recovered S						Total Depth = 20.5' No Bedrock No Groundwater
5	N I		Unrecovered	etration Sample					
5			b	Note: The stratification lines represent the approximate oundaries between the soil types, the transition may be radual.					
				4. I ¹					

	1		Dynamic Builders 718 & 728 East Commerc			900 - 1983 9	80 <u>-1</u> 4	n Sur
Date:	2/14/2	2004	Boring No. 4			Job N	umber:	444-404
Depth, fi	Core	Blows/6"	Description	WS Soil type	Unit Wt, pcf	Moisture, %	% Minus #200	Remarks
	and the second second	a	Silty Sand: Brown	SM		P44	***	Artificial Fill 19'
5		18/40/50	Gravelly Silty Sand: Dark Brown	SM	119	12	45	
10		20/31/42	Silty Sand with Gravel: Dark Grey Brown	SM	119	10	30	
- 15 - -	X	50-3"	No Recovery		-	-		
20		42/50-3"	Gravelly Silty Sand: Brown	SM	107	3	6	Native Soils
	\ge	ľ	11. A A A A A A A A A A A A A A A A A A					Total Depth = 20.5' No Bedrock No Groundwater

				Dynamic Builders					
Date	e:	2/14/2	2004	718 & 728 East Commerci Boring No. 5	al, L.A	•	Job N	mbar	444 404
o Depth, fi	Symbol		Blows/6"	Description	Soil type	Unit Wt, pcf	Moisture, %	% Minus #20	Remarks
0	These were		***	Silty Sand with Gravel: Grey Brown	SM		***		Artificial Fill 9'
5			רורור	Silty Sand with Gravel: Grey Brown	SM	96	9	31	
-			35/50-2"	Silty Sand: Grey Brown	SM	106	3	6	Native Soils
-		\boxtimes	36/50-2"	Ģravelly Sand: Brown	SM	113	2	7	
0			28/30/50	No Recovery					Total Depth = 20.5'
		\leq	ł						No Groundwater
5									

Existing Geotechnical Boring Logs Smith-Emery GeoServices, 2003

MAJO	DR SUBDIVISI	ONS	GRC SYM		MAJOR SUBDIVISIONS
	GRAVEL AND GRAVELLY SOILS	CLEAN GRAVELS (LITTLE OR NO FINES)	00000000000000000000000000000000000000	GW GP	WELL GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES. POORLY GRADED GRAVELS, OR GRAVEL-SAND MIXTURES, LITTLE
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	OR NO FINES. SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES.
	RETAINED FRACTION ON A NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL-SAND- CLAY MIXTURES.
	SAND	CLEAN SANDS		SW	WELL GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES.
	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY GRADED SANDS OR GRAVELLY SANDS, LITTLE OR NO FINES.
MORE THAN 50% OF MATERIAL IS <u>LARGER</u>	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES (APPRECIABLE		SM	SILTY SANDS, SAND-SILT MIXTURES.
THAN NO. 200 SIEVE SIZE	PASSING A NO. 4 SIEVE	AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND-CLAY MIXTURES.
				ML	INORGANIC SILTS, SANDY SILTS, AND CLAYEY SILTS OF LOW PLASTICITY.
FINE GRAINED SOILS		QUID LIMIT SS THAN 50.		CL	INORGANIC CLAYS OF LOW TO MED. PLASTICITY; GRAVELLY, SANDY OR SILTY CLAYS, LEAN CLAYS.
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY.
MORE THAN 50%				мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS. PLASTIC SILTS.
OF MATERIAL IS <u>SMALLER</u> THAN NO. 200	LAND	QUID LIMIT <u>EATER</u> THAN 50.		СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS.
SIEVE SIZE				ОН	ORGANIC CLAYS AND SILTY CLAYS OF MEDIUM TO HIGH PLASTICITY.
HIGHL	YORGANIC	SOILS	+ + + + + + + + + + + + + + + + + + + +	PT	PEAT AND OTHER HIGHLY ORGANIC SOILS.
NOTE: DUAL S		USED TO INDI			CHART
NIFIED SOIL	CLASSIFICAT	ION SYSTEM	л [Sn	PLATE NO.: A-LA

KEY TO LOG OF BORINGS

SYMBOL TYPE OF TEST

- COMP COMPACTION CHARACTERISTICS
- TX TRIAXIAL COMPRESSION TEST
- DS DIRECT SHEAR TEST
- UC UNCONFINED COMPRESSION TEST
- C CONSOLIDATION TEST
- COLL COLLAPSE TEST
- EXP PERCENT EXPANSION
- EI EXPANSION INDEX
- SA SIEVE ANALYSIS (+ #200 ONLY)
- -200 % PASSING #200 SIEVE
- HA HYDROMETER ANALYSIS (- #200 ONLY)
- AL ATTERBERG LIMITS
- SE SAND EQUIVALENT
- P PERMEABILITY
- R R-VALUE
- Gs SPECIFIC GRAVITY
- S SOLUBLE SULFATES
- CH HYDROGEN ION CONTENT
- RE RESISTIVITY
- CL CHLORIDE
- PTV POCKET TORQUE VANE
- PP POCKET PENETROMETER

KEY TO SAMPLES

- INDICATES DEPTH OF UNDISTURBED SAMPLE
- INDICATES DEPTH OF BULK SAMPLE
- INDICATES DEPTH OF SAMPLING ATTEMPT WITH NO RECOVERY
- INDICATES DEPTH OF STANDARD PENETRATION TEST (SPT)
- INDICATES DEPTH OF DISTURBED SAMPLE

NOTE ON SAMPLERS:

Undisturbed samples were obtained with a "California" sampler having an O.D. of 3.0 inches and an I.D. of 2.4 inches. The SPT sampler is 2 inches O.D.; the bit has an I.D. of 1.4 inches and the split barrel has an I.D. of 1.5 inches. Unless practical refusal was encountered, the samplers were driven 18 inches into the soil using a 140 pound weight falling 30 inches. The blow count for the final 12 inches is recorded on the boring logs.

Smith-Emery GeoServices

A-1B

PLATE NO .:

NOTES:

The descriptions on the boring logs apply only at the specific boring locations and at the time the borings were made. They are not warranted to be representative of subsurface conditions. Soil and rock descriptions are based on commonly accepted geotechnical methods of indentification and classification and are based on our professional judgment and experience. Field descriptions have been modified where appropriate to reflect laboratory test results. The stratification of soil layers is represented with approximate boundaries and the transition between soil types may be gradual.

Groundwater depths indicated on boring logs are specific to the time of drilling. The term "encountered" refers to the level at which free water was first noticed in the boring. The term "stabilized" refers to the level of the water after a lapse of at least one hour.

SMITH-EMERY GEOSERVICES

PROJECT: Proposed Two Elevators LOCATION: 801 E. Commercial Street, Los Angeles, California SURFACE ELEVATION: (Not surveyed) GROUNDWATER LEVEL: Not encountered DATUM

FILE NO .: 33182-1 REPORT NO. G-03-5577 DATE DRILLED: 9-11-03 CORRECTED LOG BY: ABC SHEET 1 OF 1

LOG OF BORING NO. 1

PLATE NO. A-2A SP-SM: MDD = 121.2 pcf

D	ST		USC	SYM	N"	G₄	W	s	LL	PL	%	RC	Gm
(FT.)		MATERIAL DESCRIPTION				(pcf)	%	%	%	%	-200	%	(pcf)
0		5" thick reinforced concrete floor slab											
		Fill: SILTY SAND- brown, some gravel, brick frag-	SM										
		ments, loose, damp			31	98.9	6.6	26.0				81.6	105.4
5		(moist)			27	111.5	10.6	58.2				92.0	123.3
		FINE SANDY SILT - olive brown, very loose, moist	ML		22	87.8	19.8	59.4			63.5	76.3	105.2
10		(wet) Bottom at 10 feet			29	85.2	33.0	92.9				74.1	113.3

	LOG OF BORING NO. 2									
0	3" thick concrete floor slab									
	SILTY SAND- olive brown, w/ gravel, loose to	SP								
5	medium dense, humid		28	104.0	1.7	7.6			85.8	105.8
			42	108.0	2.2	11.0		4.0	89.1	110.4
			38	106.0	3.2	15.1			87.5	109.4
			45	109.0	3.3	16.9			89.9	112.6

10 Bottom at 9 feet

LEGEND:

B - Bedding

- J Joint C - Contact
- F Fault
- RS Rupture Surface

- N' Blows per Foot (35-lb. weight)
- G_d Dry Unit Weight
- W Water Content
- S Saturation
- LL Liquid Limit
- MDD Maximum Dry Density

ML: MDD* = 115.0 pcf *Estimated

PL - Plastic Limit

RC - Relative Compaction

ST - Sample Type

- USC Unified Classification System
- D Depth
- Gm Moist Density (pcf)

Existing Geotechnical Boring Logs URS, 2003

(THIS PAGE INTENTIONALLY LEFT BLANK)

Ν	AJOR DIVISION	S	SYME	OLS	TYPICAL DESCRIPTIONS
- (146) (T = 70.5)	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY GRADED GRAVELS, GRAVEL - SAND MIXTURES LITTLE OR NO FINES
COARSE	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
GRAINED SOILS	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY GRADED SANDS, GRAVELLY SANDS, LITTLE OF NO FINES
	MORE THAN 50% OF COARSE FRACTION PASSING NO. 4 SIEVE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
		(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITI SLIGHT PLASTICITY
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS		14.1W 0 (646-9)		мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS
SMALLER THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				он	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIGH	Y ORGANIC SOILS	;	*****	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: Dual symbols are used to indicate gravels or sand with 5-12% fines and soils with fines classifying as CL-ML. Symbols separated by a slash indicate borderline soil classifications.

Sampler and Symbol Descriptions

Dames & Moore Type-U sampleStandard Penetration Test

No Recovery

Bk Bulk sample

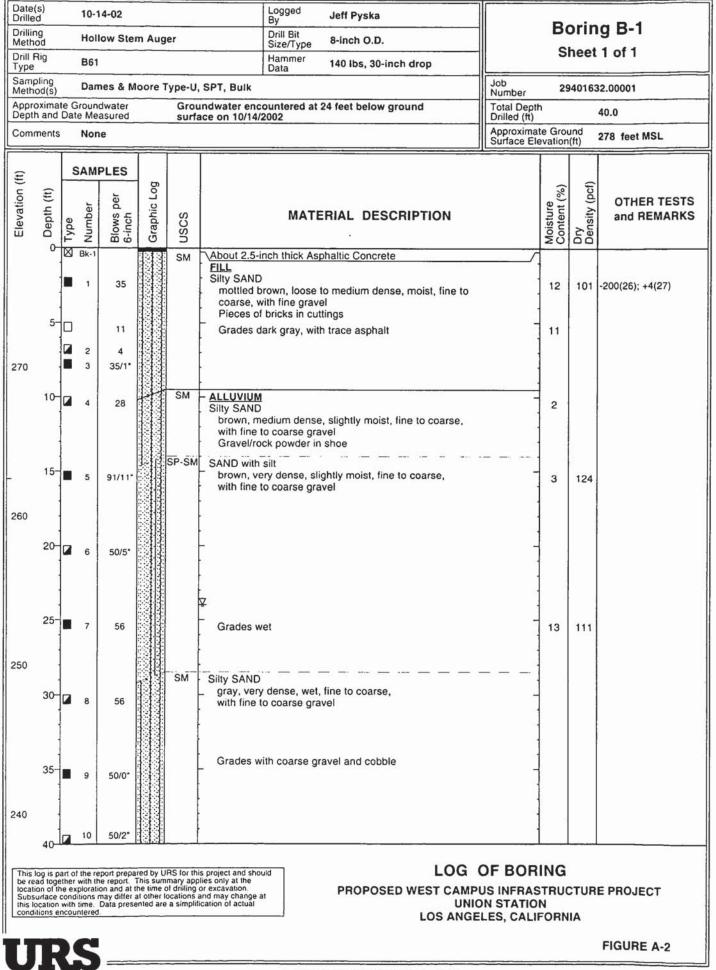
URS

Disturbed Type-U Sample

I Shelby Tube Sample

Bock Core Sample

其 Approximate depth of perched water or groundwater

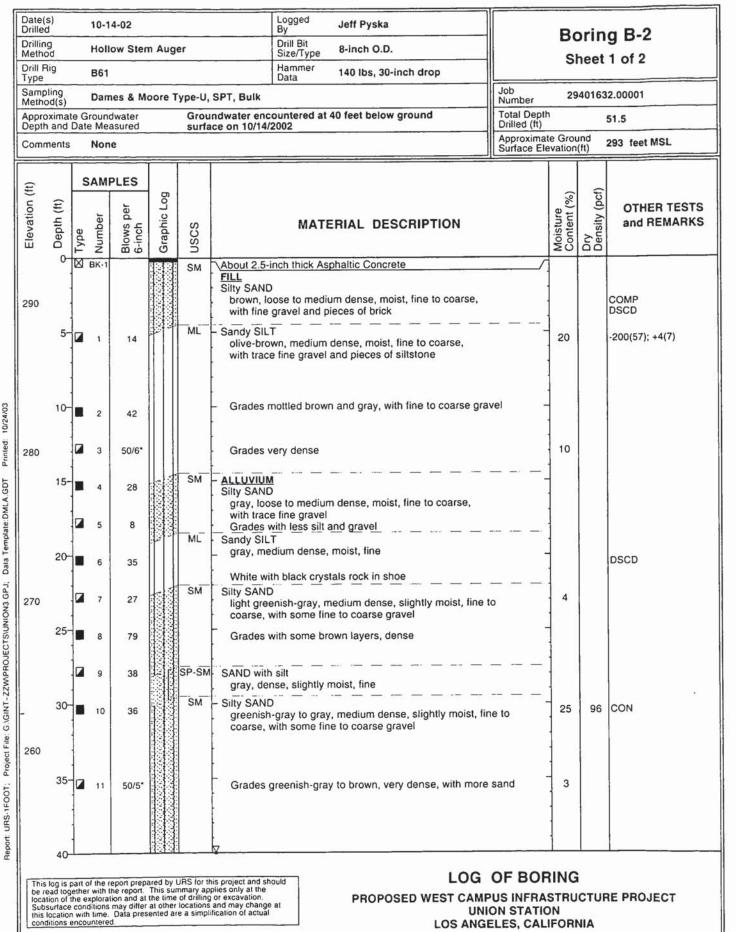

Note: Number of blows required to advance driven sample 12" (or length noted) is recorded.

Laboratory and Field Test Abbreviations

CBR	California Bearing Ratio test
COL	Collapse Potential test (test result in parentheses)
COMP	Compaction test
CON	Consolidation test
CORR	Corrosivity test
DSCD	Consolidated drained direct shear test (normal pressure and shear strength results shown)
EI	Expansion Index test (test result in parentheses)
LL=29	Liquid limit (Atterberg limits test)
Pl=11	Plasticity Index (Atterberg limits test)
PP	Pocket Penetrometer test (test result in parentheses, tsf)
R-Value	Resistance Value test
SA	Sieve Analysis (-200 result in parentheses)
SE	Sand Equivalent test (test result in parentheses)
SWELL	Swell Load test (test result in parentheses)
τν	Torvane test (test result in parentheses, tsf)
-200	Percent passing #200 sieve (lest result in parentheses)

KEY TO LOG OF BORING PROPOSED WEST CAMPUS INFRASTRUCTURE PROJECT UNION STATION LOS ANGELES, CALIFORNIA

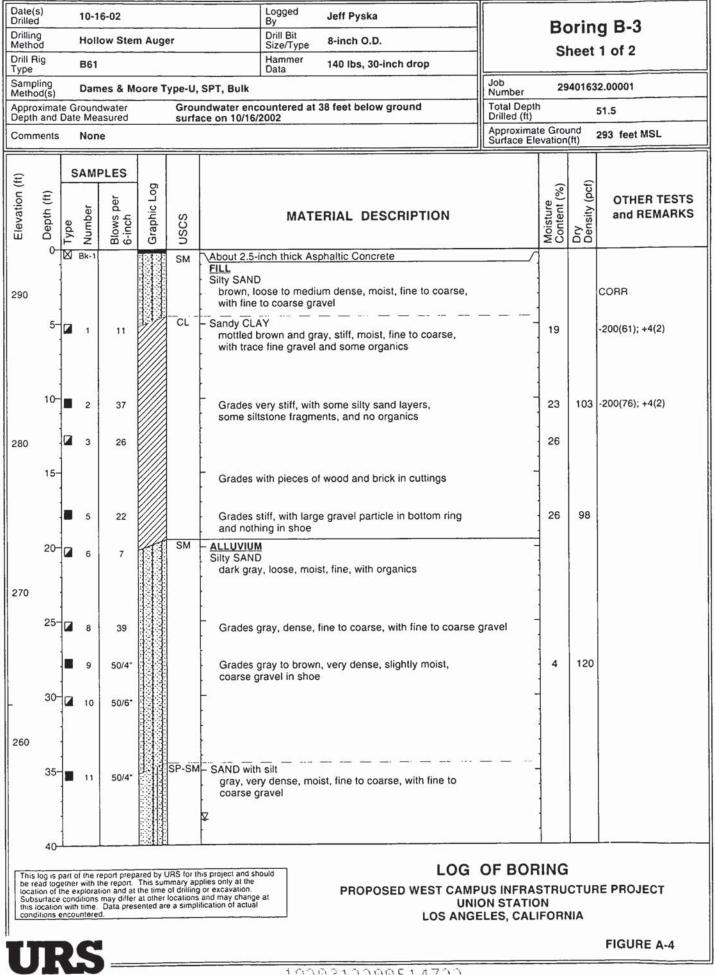
FIGURE A-1



10/24/03

Printed

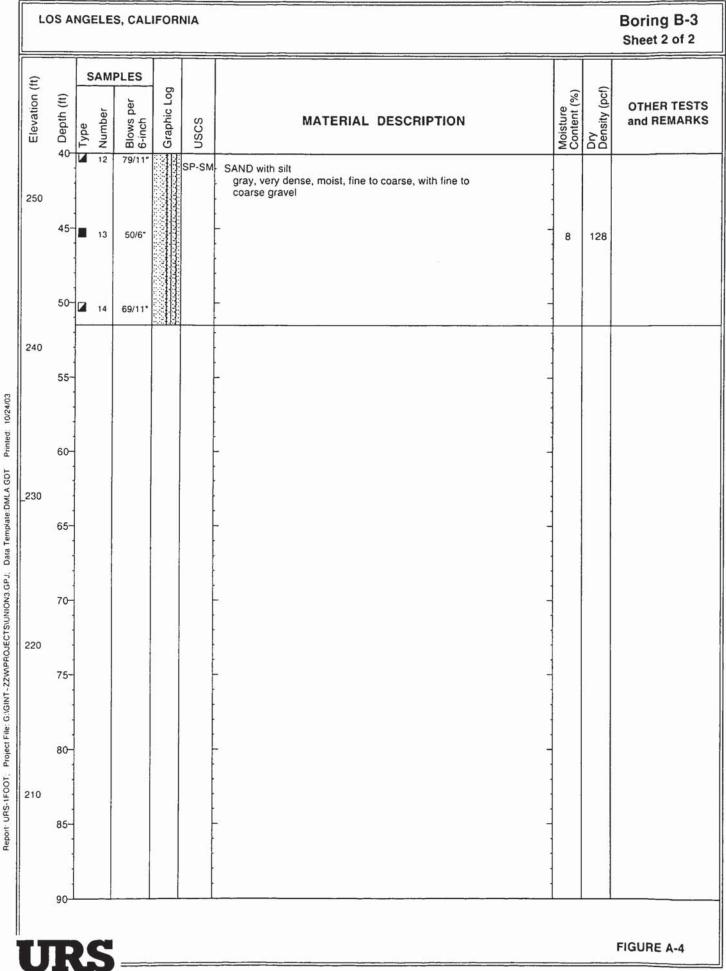
Data Template: DMLA.GDT

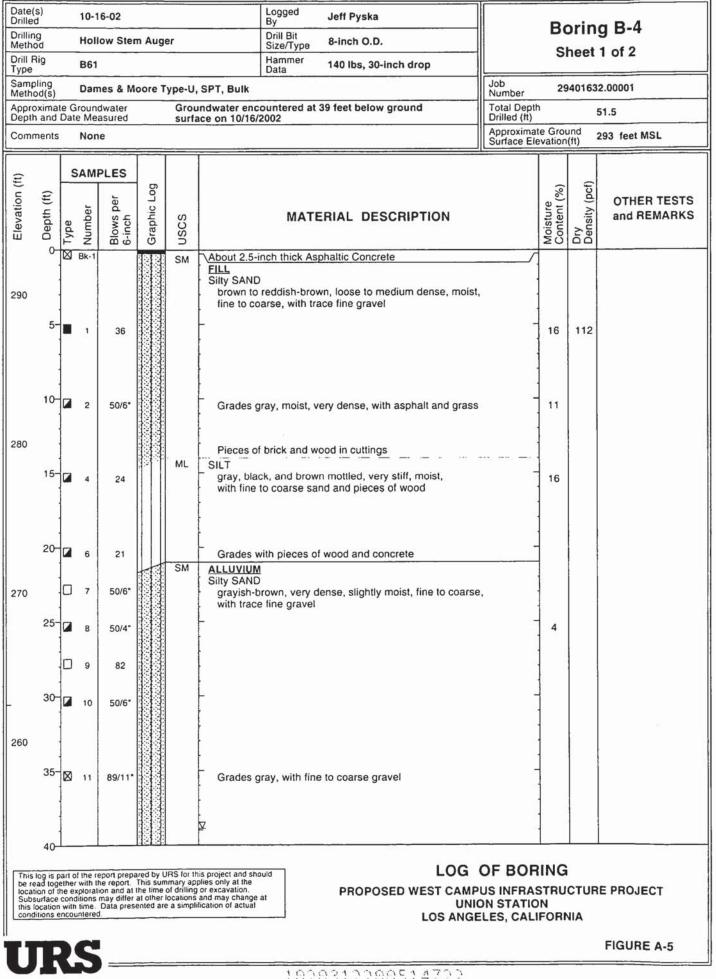

Report: URS-1FOOT; Project File: G:\GINT-ZZW/PROJECTS\UNION3.GPJ;

URS

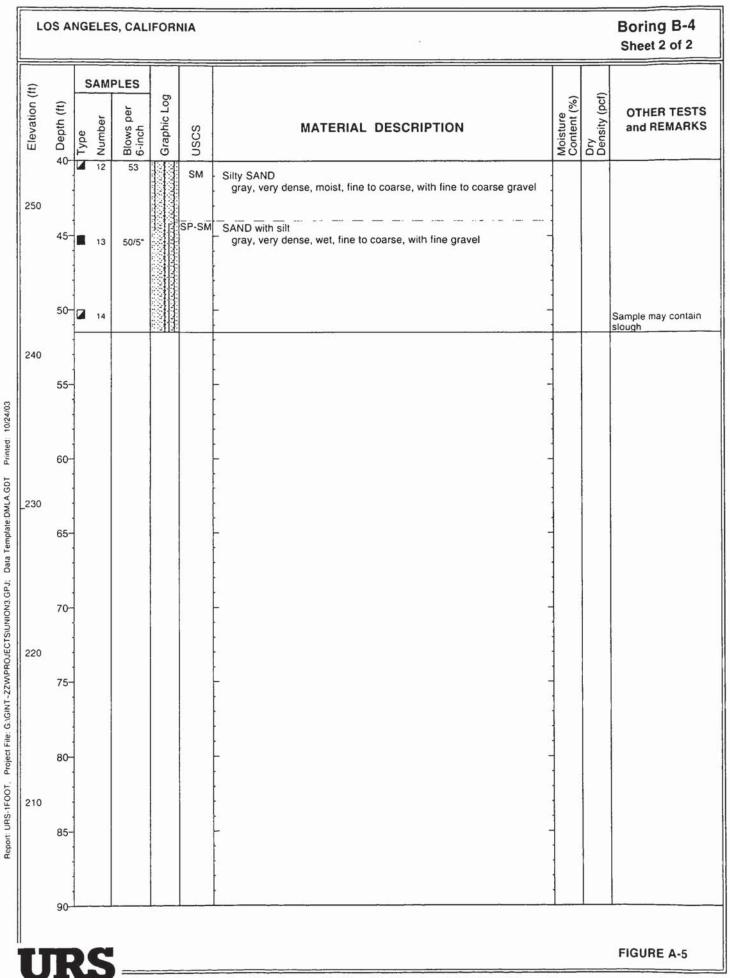
FIGURE A-3

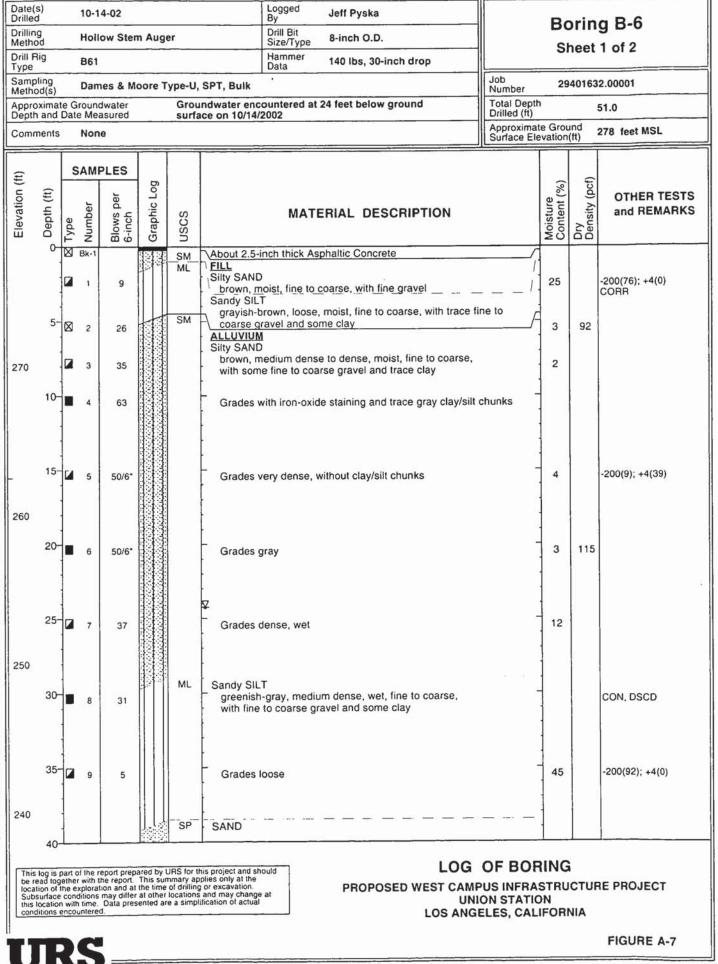
(Ŧ		s	AM	PLES						
Elevation (ft)	승 Depth (ft)	Type	Number	Blows per 6-inch	Graphic Log	uscs	MATERIAL DESCRIPTION	Moisture Content (%)	Dry Density (pcf)	OTHER TEST and REMARK
250	40-		12	64		SM	Silty SAND greenish-gray to brown, dense, wet, fine to coarse, with fine to coarse gravel SAND with silt			
	45-		13	28		3F-3M	gray, medium dense, moist, fine to coarse, with trace fine gravel	12	112	-200(8); +4(7)
	50-		14	45				9		
240	55-									
	60-									
_230	65-									
	70-					-				
220	75-					-				
	80					-				
210	85-									
	90-									



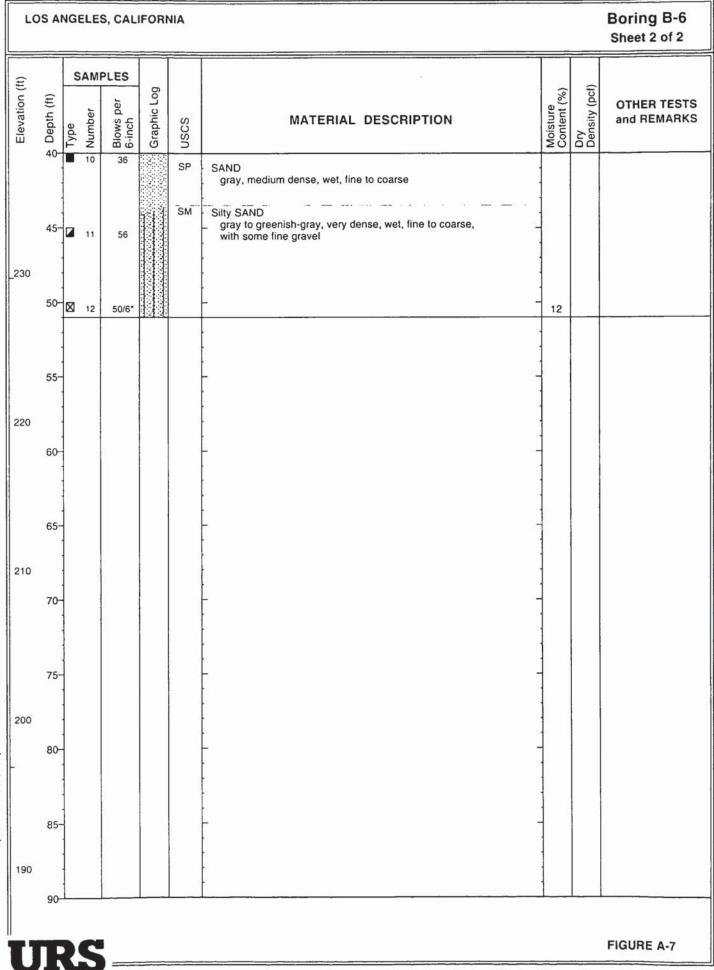

Printed: 10/24/03

Data Template: DMLA. GDT


Project File: G \GINT - ZZWAPROJECTS\UNION3.GPJ.


Report URS-1FOOT,

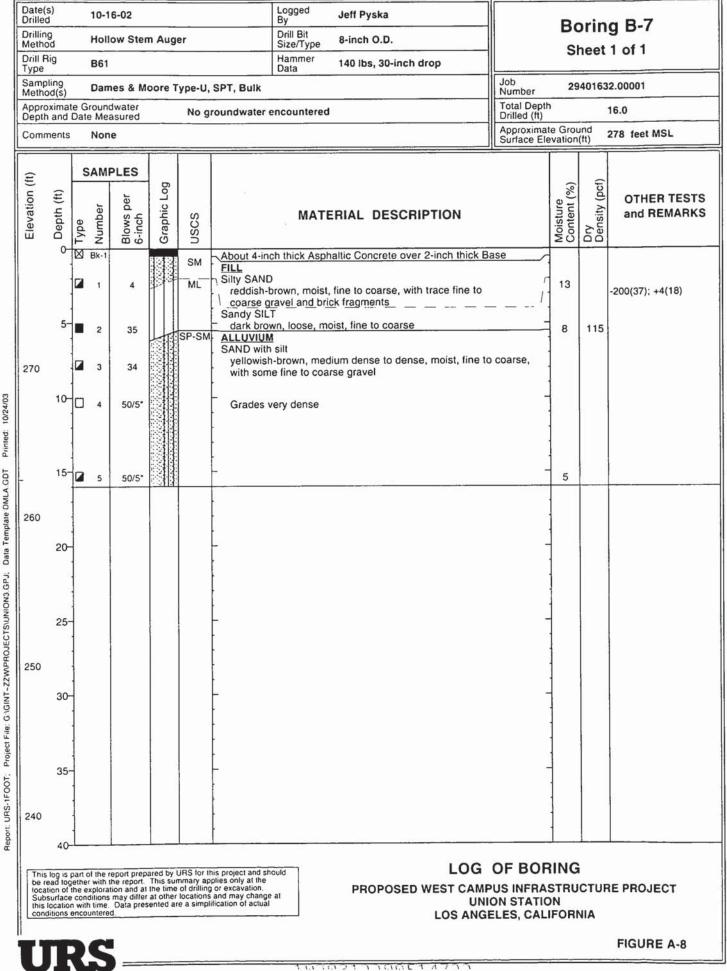
10/24/03 Printed. Data Template: DMLA. GDT Report. URS-1FOOT; Project File: G:\GINT-ZZWAPROJECTS\UNION3.GPJ;



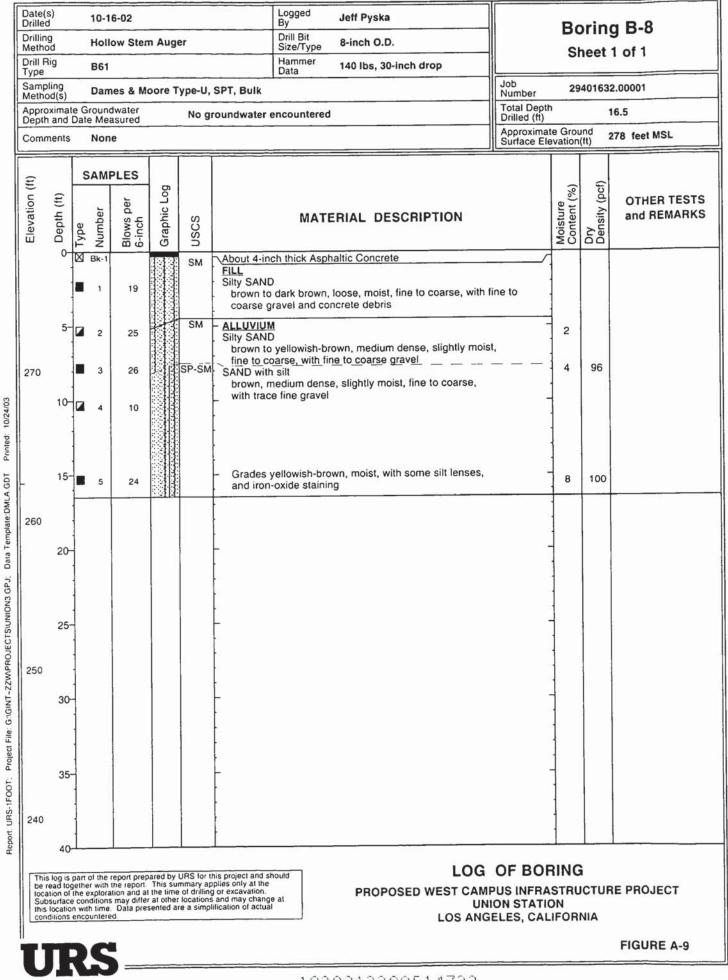
Printed: 10/24/03

Data Template: DMLA. GDT

Project File: G \GINT-22WAPROJECTS\UNION3.GPJ;


Report: URS-1FOOT;

¹⁰²⁰³¹²²⁰⁰⁵¹⁴⁷²²


Report URS-1FOOT; Project File: G:\GINT-ZZWPROJECTS\UNION3.GPJ; Data Template:DMLA.GDT

Printed: 10/24/03

10/24/03

Printed:

Printed: 10/24/03

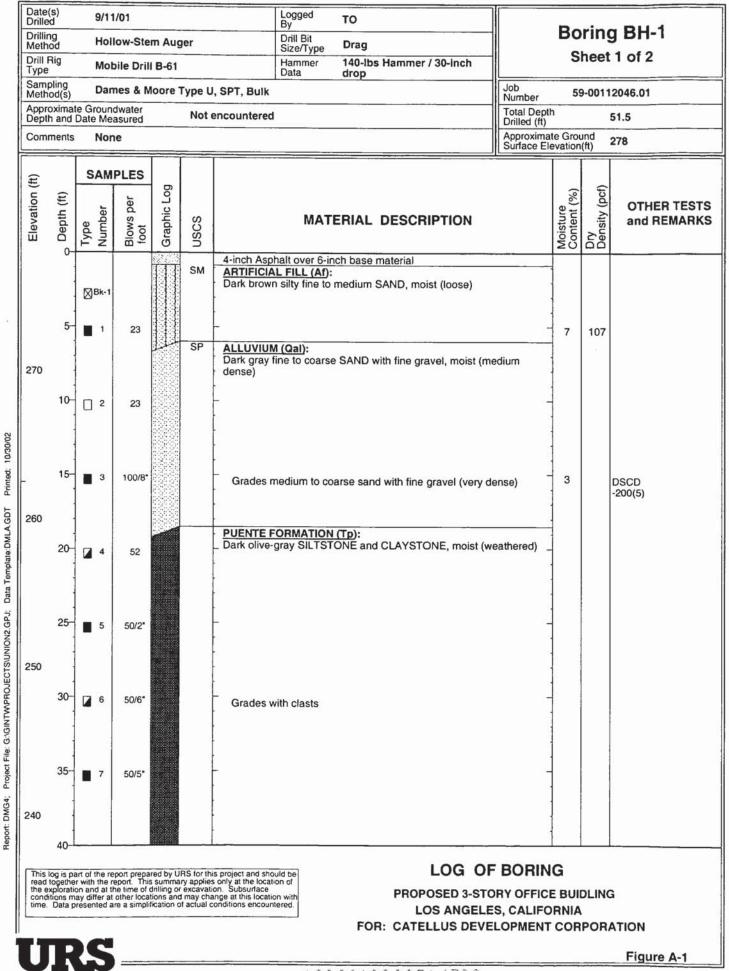
1	MAJOR DIVISIONS	6	SYME	BOLS	TYPICAL DESCRIPTIONS		
	GRAVEL AND	CLEAN GRAVELS	ange Le star	GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES		
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES		
COARSE	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		
GRAINED SOILS	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)	1 9 - 1 70) 4 - 1 - 1 - 1	GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES		
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES		
	MORE THAN 50% OF COARSE FRACTION PASSING NO. 4 SIEVE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES		
		(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES		
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SIL OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY		
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		
MORE THAN 50% OF MATERIAL IS				мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS		
SMALLER THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		
				он	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS		
HIGH	LY ORGANIC SOILS			PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		

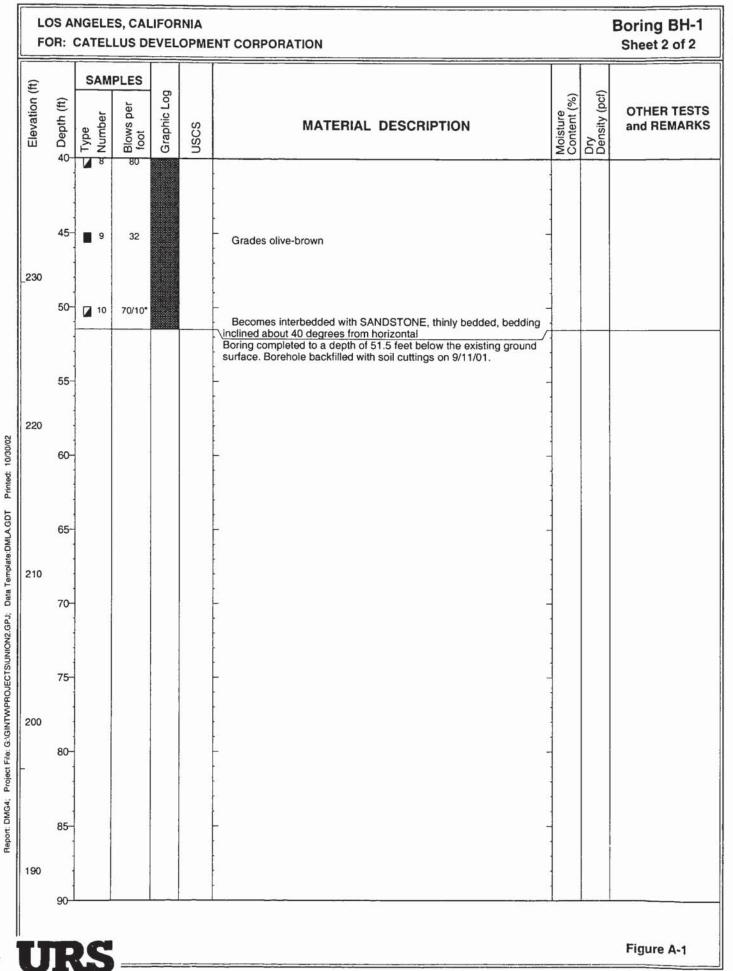
Sampler and Symbol Descriptions

URS

Laboratory and Field Test Abbreviations

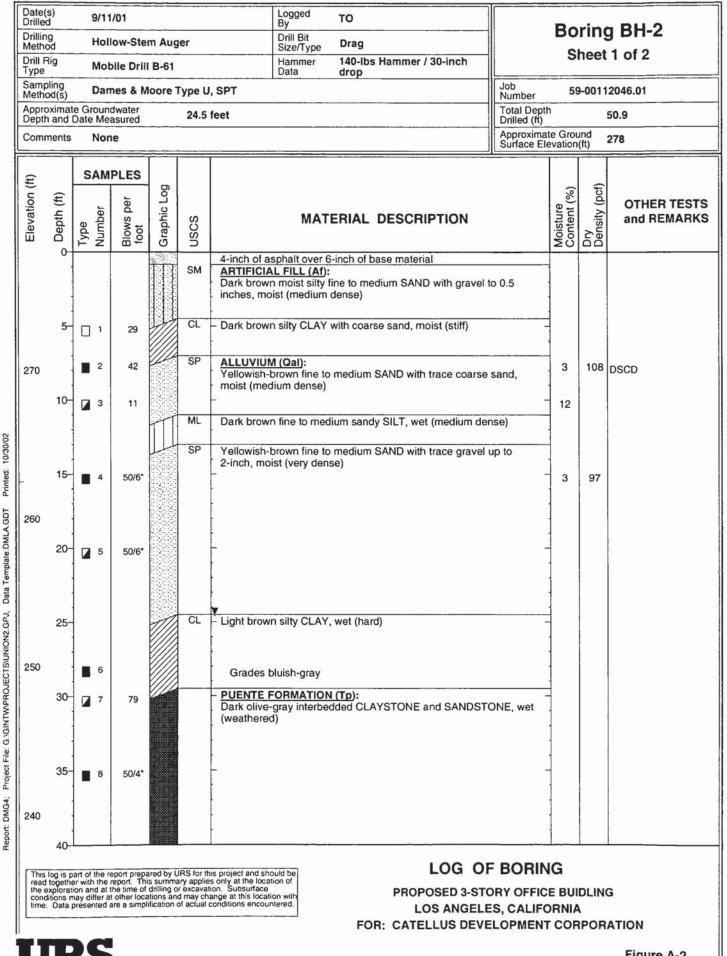
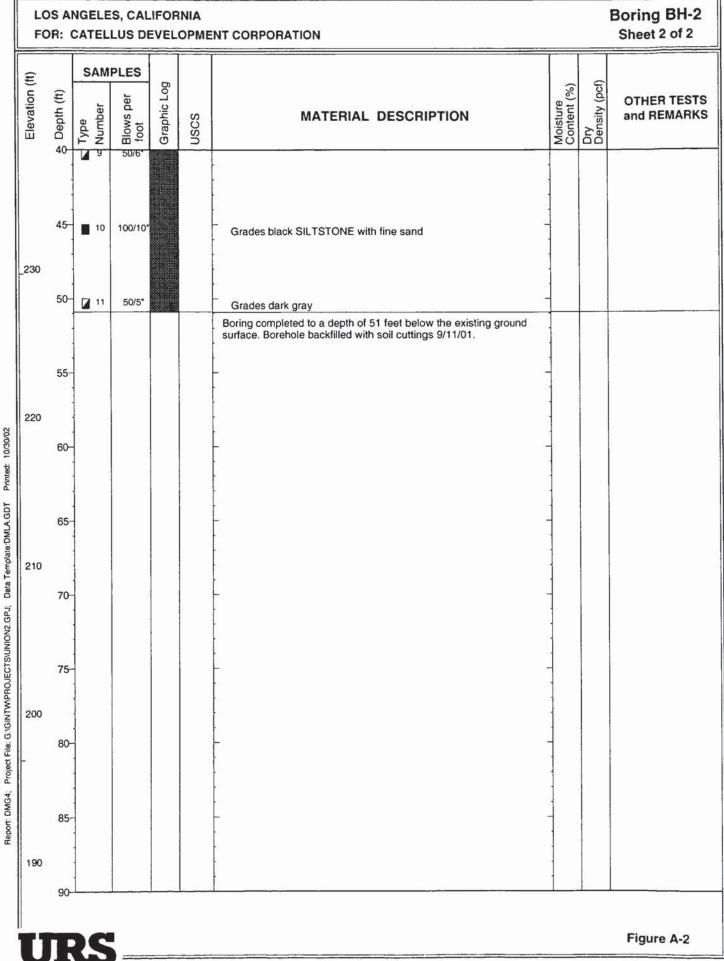
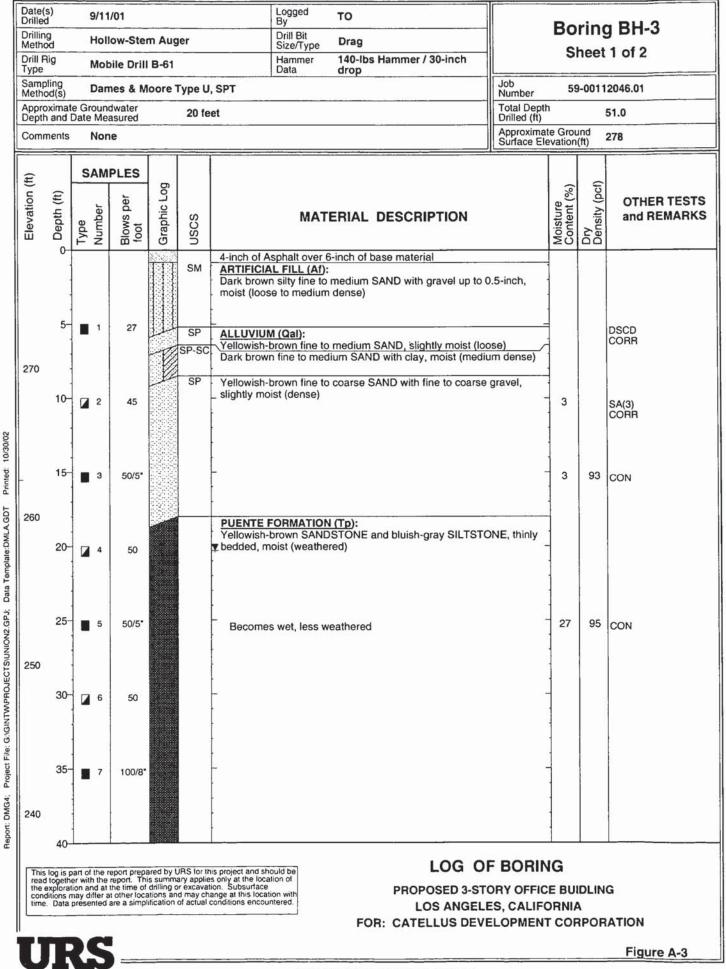
	Dames & Moore Type-U sample	CBR	California Bearing Ratio Test
	Standard Penetration Test	COL	Collapse Potential test (test result in parentheses)
	No Recovery	COMP	Compaction test
_		CON	Consolidation test
Bk	Bulk sample	CORR	Corrosivity test
	Disturbed Type-U Sample	DSCD	Consolidated drained direct shear test (normal pressure and shear strength results shown)
	Pitcher Tube Sample	EI	Expansion Index test (test result in parentheses)
00	Shelby Tube Sample	LL=29	Liquid limit (Atterberg limits test)
П	Rock Core Sample	PI=11	Plasticity Index (Atterberg limits test)
		PP	Pocket Penetrometer test (test result in parentheses, tsf)
	Approximate depth of perched water or groundwater	R-Value	Resistance Value test
	: Number of blows required to advance driven sample 12* ength noted) is recorded.	SA	Sieve Analysis (-200 result in parentheses)
(OF He	ngti noieu) is recordea.	SE	Sand Equivalent test (test result in parentheses)
		SWELL	Swell Load test (test result in parentheses)
		TV	Taniana toot (toot result in parentheras, to)

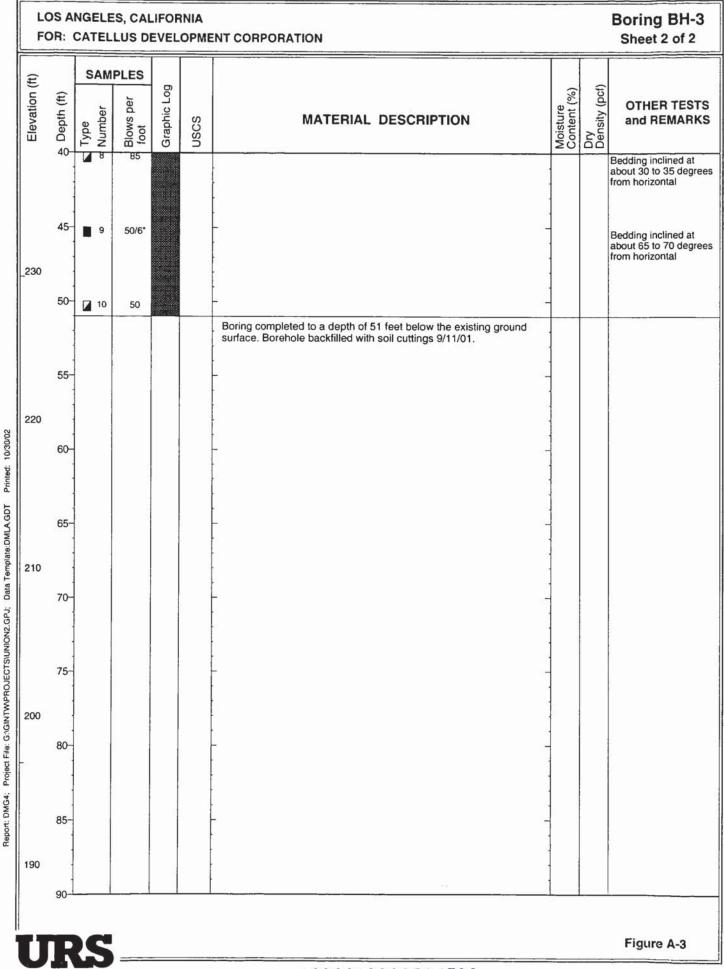

TV Torvane test (test result in parentheses, tsf)

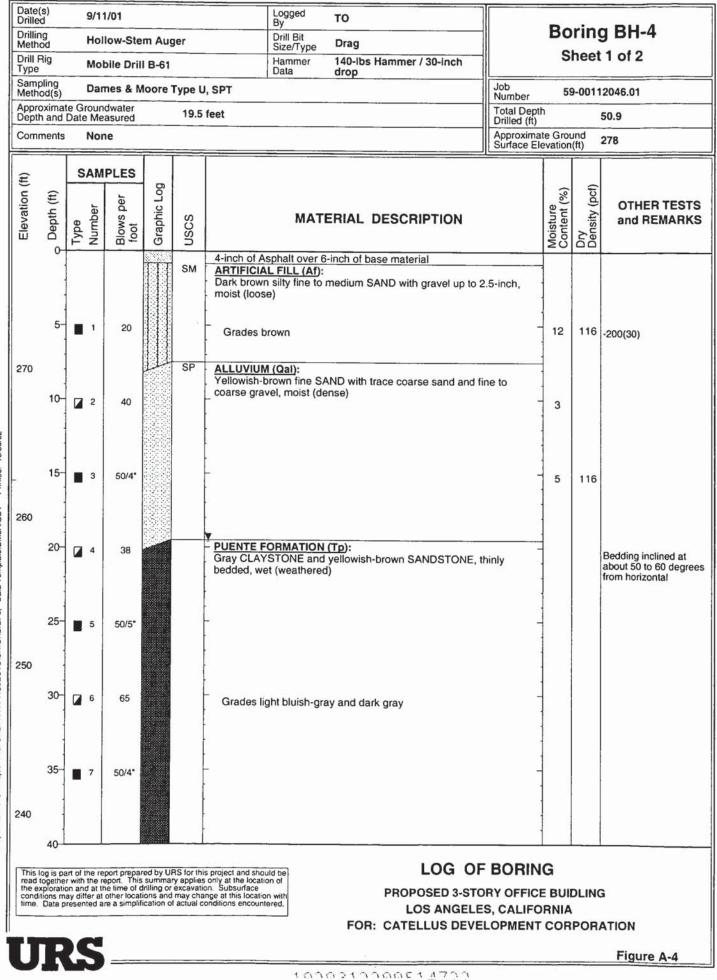

Percent passing #200 sieve (test result in parentheses) -200

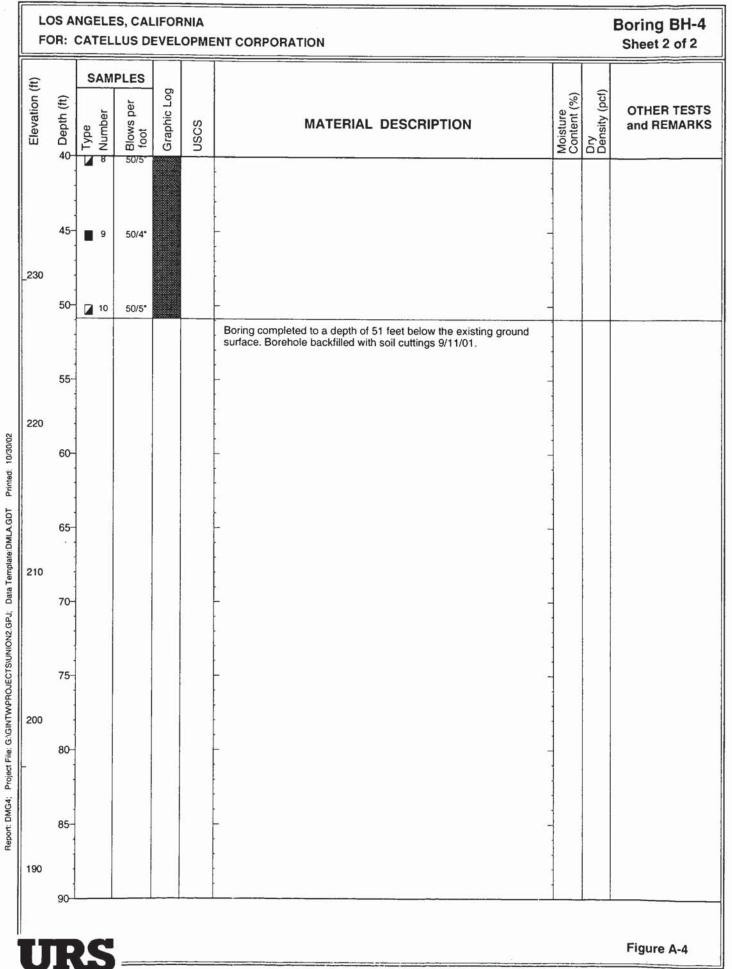
KEY TO LOG OF BORING PROPOSED 3-STORY OFFICE BUIDLING

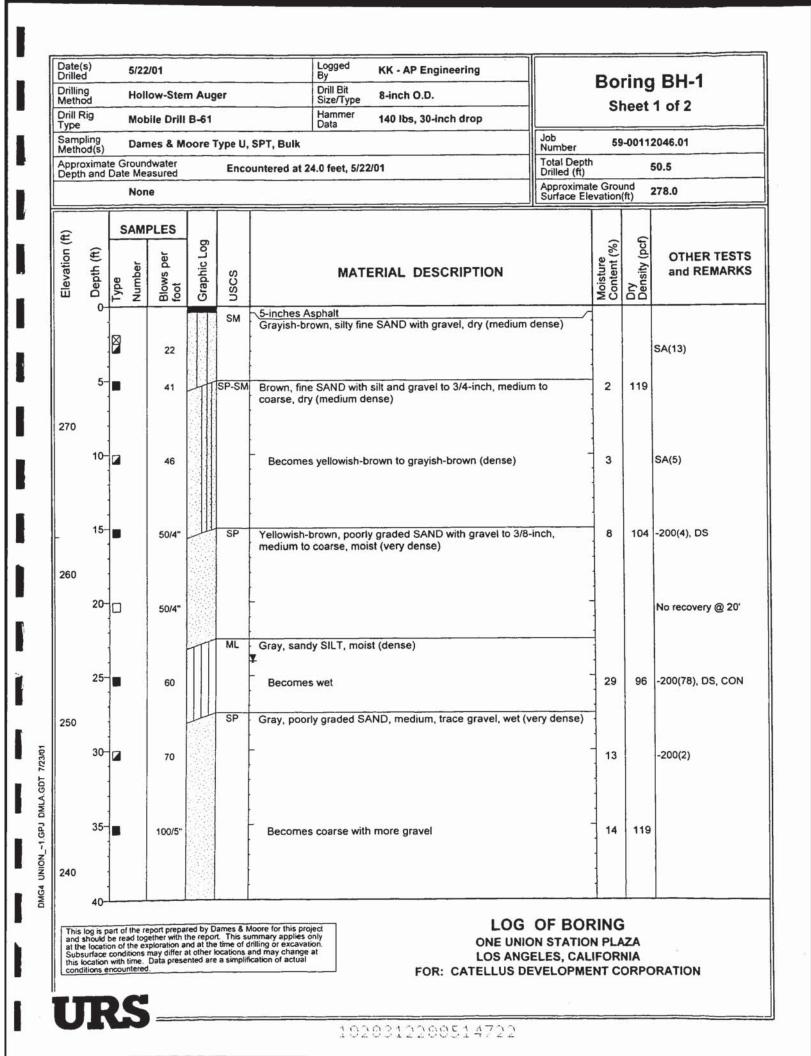
LOS ANGELES, CALIFORNIA FOR: CATELLUS DEVELOPMENT CORPORATION

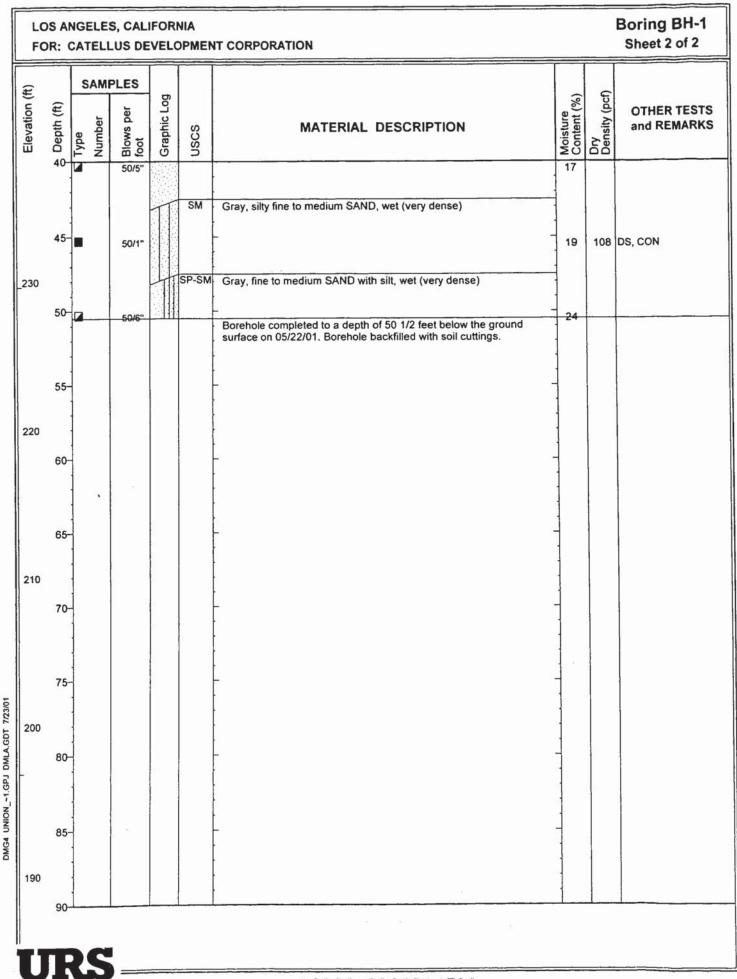




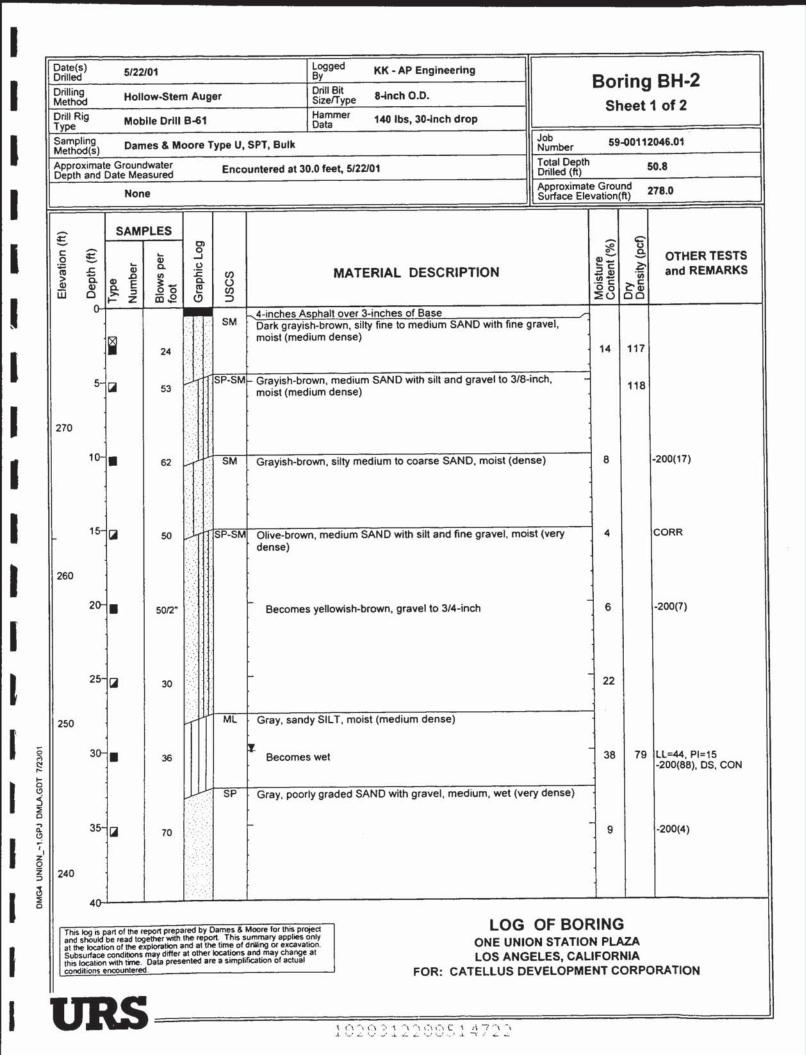

Figure A-2



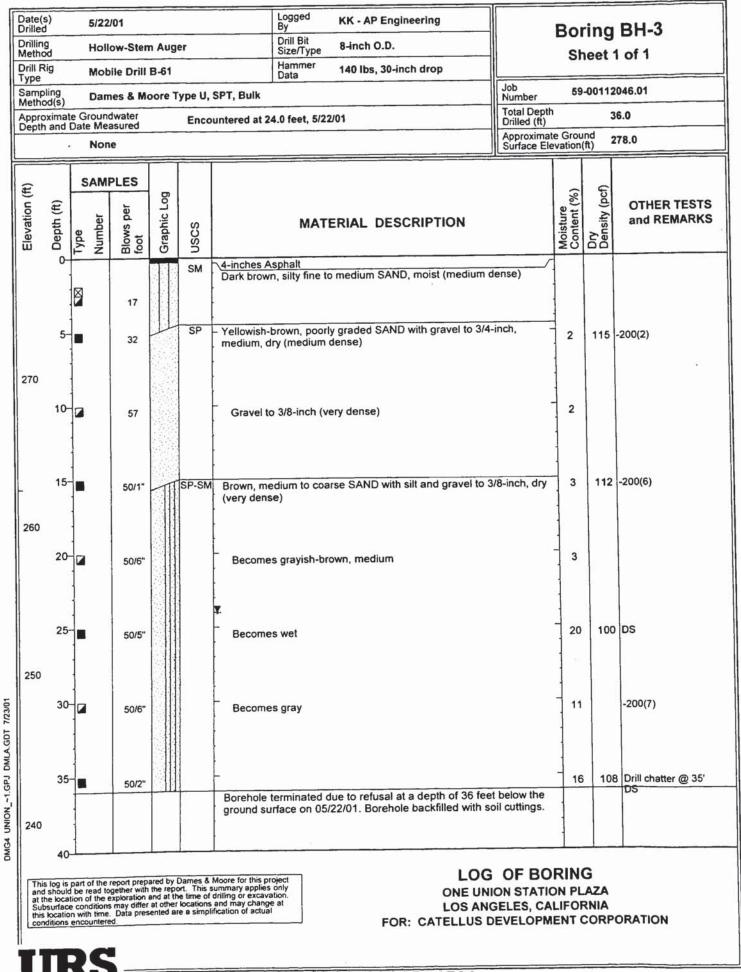

10/30/02

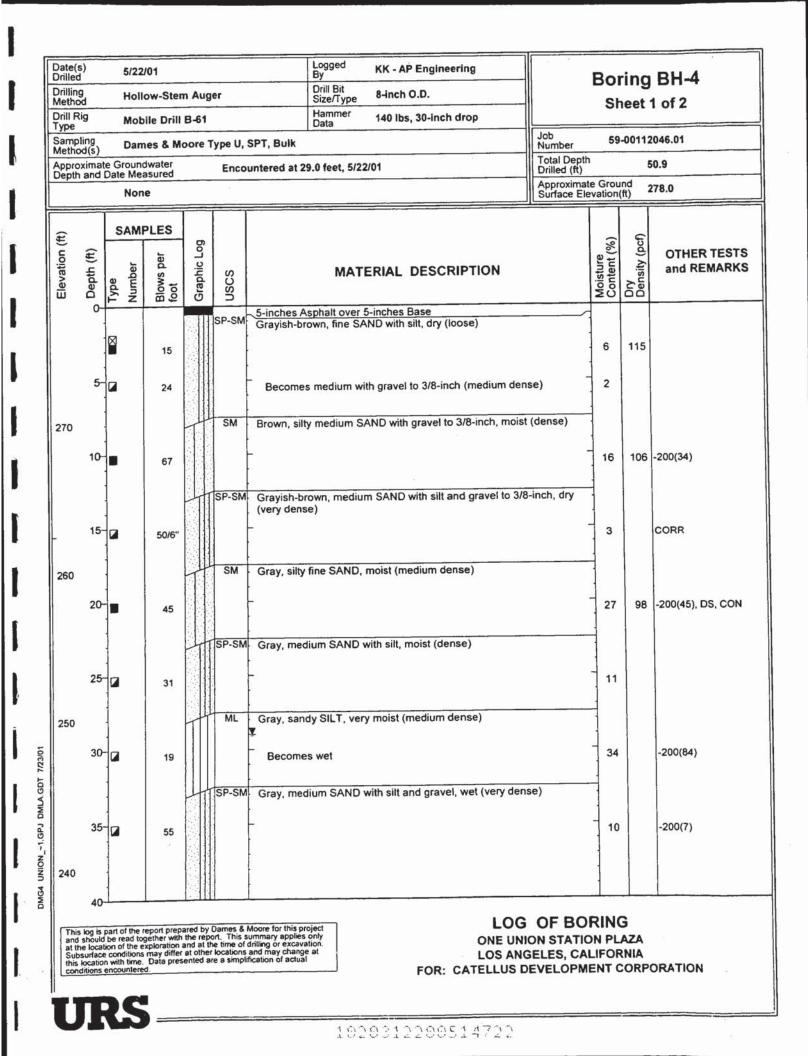

Printed:

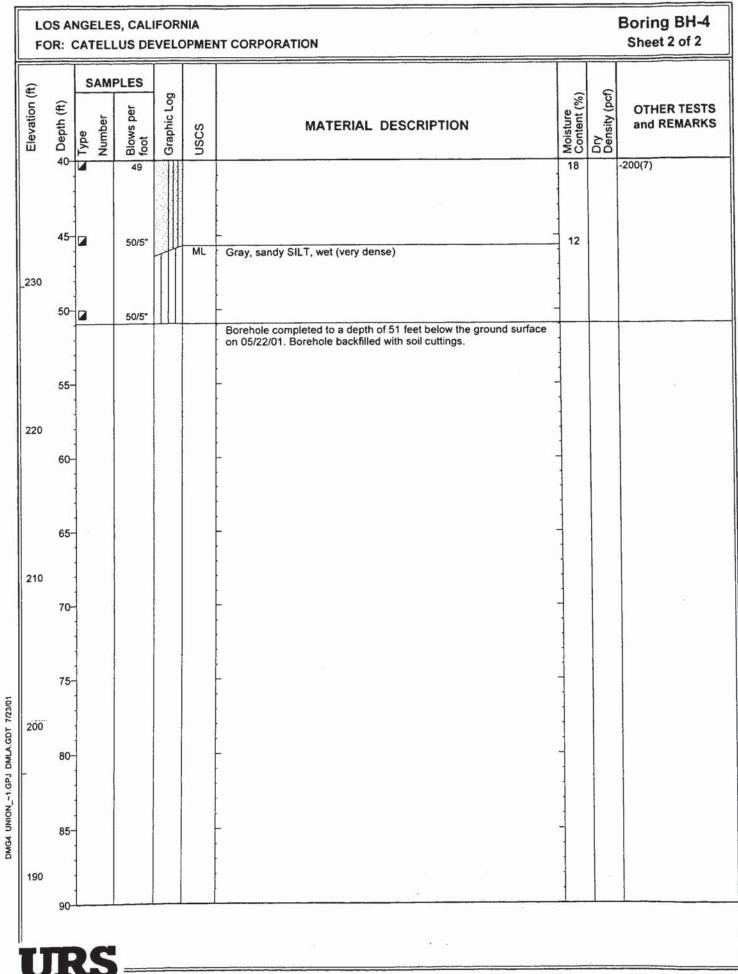




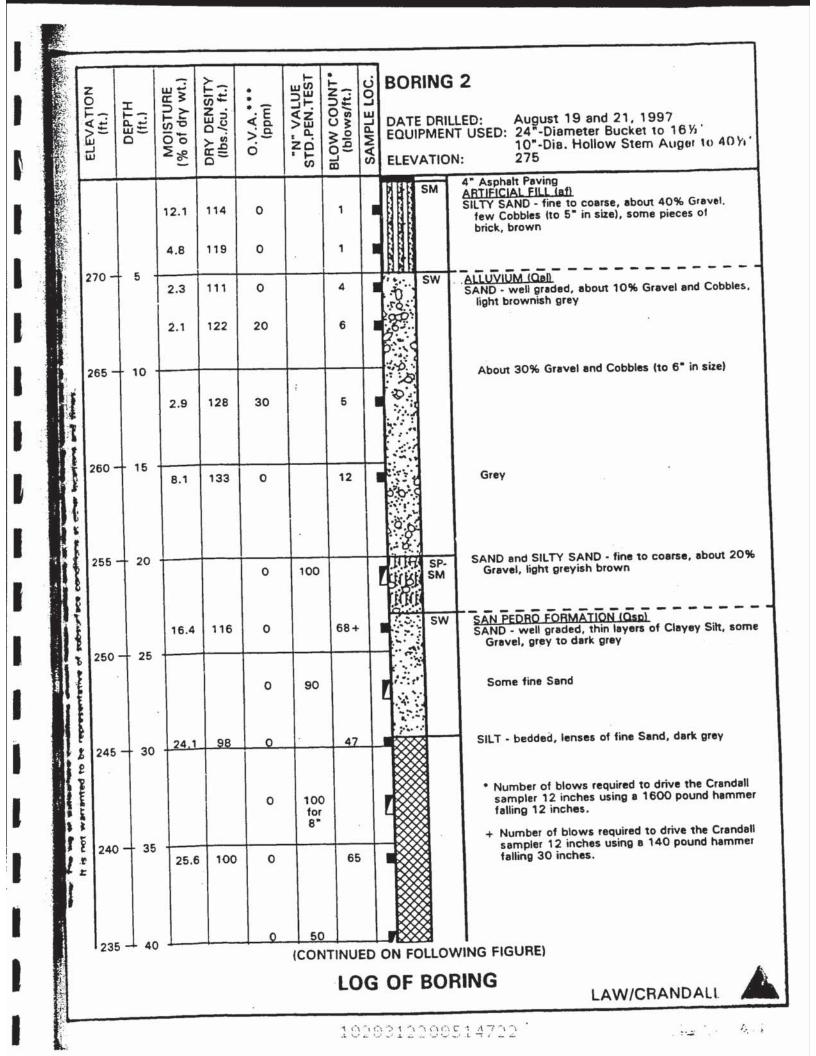
Printed: 10/30/02 Project File: G:\GINTW/PROJECTS\UNION2.GPJ; Data Template:DMLA.GDT Report: DMG4;







ŧ	1	SAM	PLES	_					
Elevation (ft)	Depth (ft)	Type Number	Blows per foot	Graphic Log	uscs	MATERIAL DESCRIPTION	Moisture Content (%)	Dry Density (pcf)	OTHER TESTS and REMARKS
			50/2"			Becomes fine to medium	17	117	
230	45-		40		SP-SM	Gray, medium SAND with silt, trace gravel, wet (dense)	18		-200(7)
	50-		50/3"			Becomes very dense Borehole completed to a depth of 50 3/4 feet below the ground surface on 05/22/01. Borehole backfilled with soil cuttings.	- 18	112	DS
220	55-					-			
	60-				-	-			
	65-					-			
210	70-								
	75-				-	5.			
200	80-				-				
	85-				-		-		
190	90-				•	A			


Existing Geotechnical Boring Logs Law Crandall, 1997

(THIS PAGE INTENTIONALLY LEFT BLANK)

ELEVATION (ft.)	DEPTH (ft.)	MOISTURE (% of dry wt.)	DRY DENSITY (lbs./cu. ft.)	0.V.A.*** (ppm)	"N" VALUE STD.PEN.TEST	BLOW COUNT* (blows/ft.)	SAMPLE LOC.	DE	QUI		LLED: NT USED: N:	August 19, 1997 8" - Diameter Hollow Stem Auger 275**
		23.2	89	0		23			4 4 4	ML	ARTIFICI	alt Paving <u>AL FILL (af)</u> SILT - some bedrock fragments, some roo rown
270 -	- 5 -	19.5	104	0		14			*	ML		SILT - brown
265 -	10 -			0		16	5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			SAND - 6" in s	fine to coarse, some Gravel, few Cobbles (size), brown ie not recovered
260 -	15	1.7	106	0		41		A Section				
ons at	20	9.9	105	0		105					Some	Silt
ubsurface con		31.0	85	>1000		65		XXXXXXXXXX			SAN PE	DRO FORMATION (Osp) bedded, lenses of fine Sand, dark grey
to be representative of subs 572 542	- 25	-	-			100					Sam	ple not recovered
eserder eq 245	- 30					75 for 4".					Som	ple not recovered e Clay e sulfur odor
warranted to		27.0	93	>1000		76					sar	mber of blows required to drive the Carinta mpler 12 inches using a 140 pound hamme ling 30 inches.
2 240	- 35	30.3	90	>1000		79	+		*		1	ee Plot Plan for location of bench mark
240 si ti											NOTE	: Water not encountered.
235	_ 40	33.6	84	> 1000		55			***	8	END	DF BORING AT 40'.
						LO	G	0	F	BOI	RING	LAW/CRANDALI

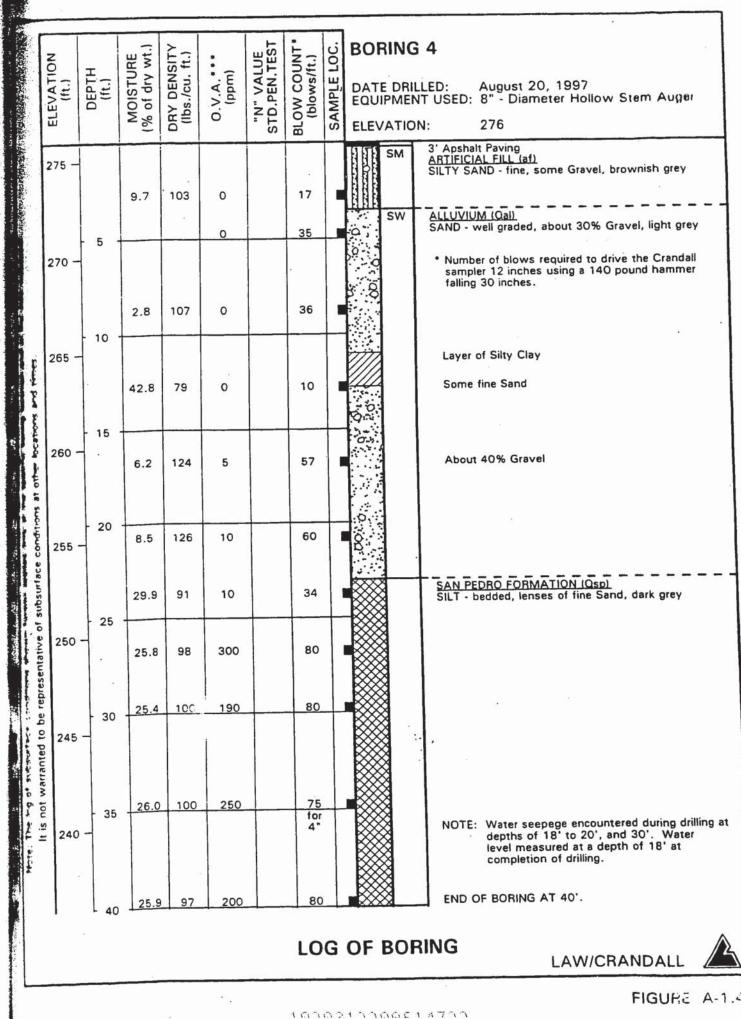
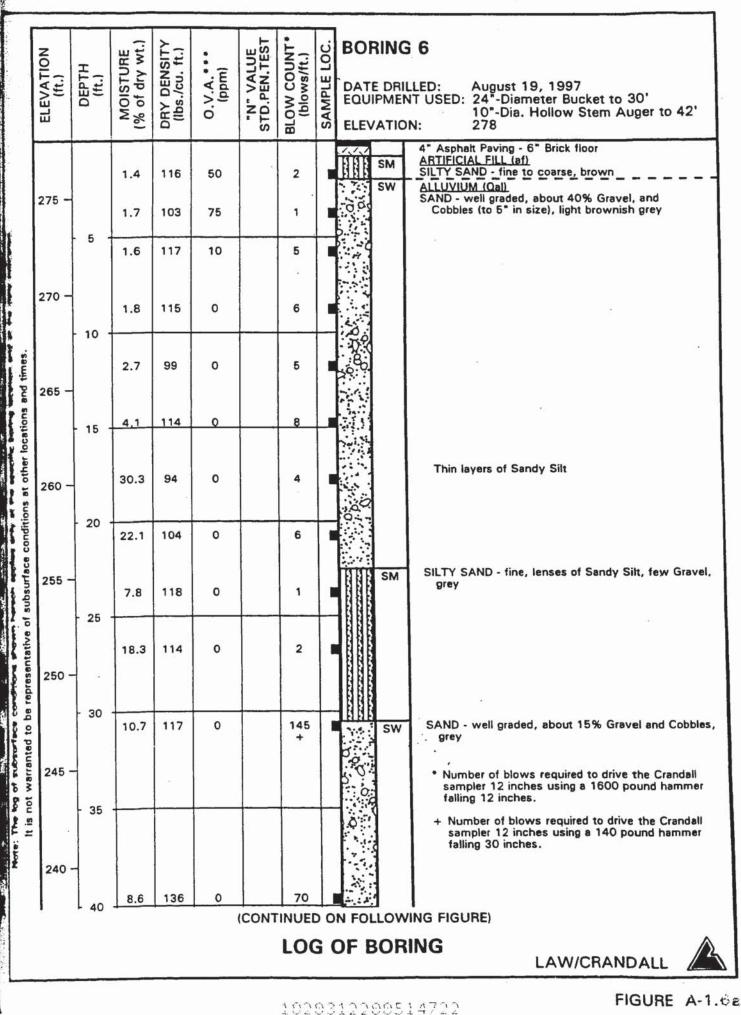
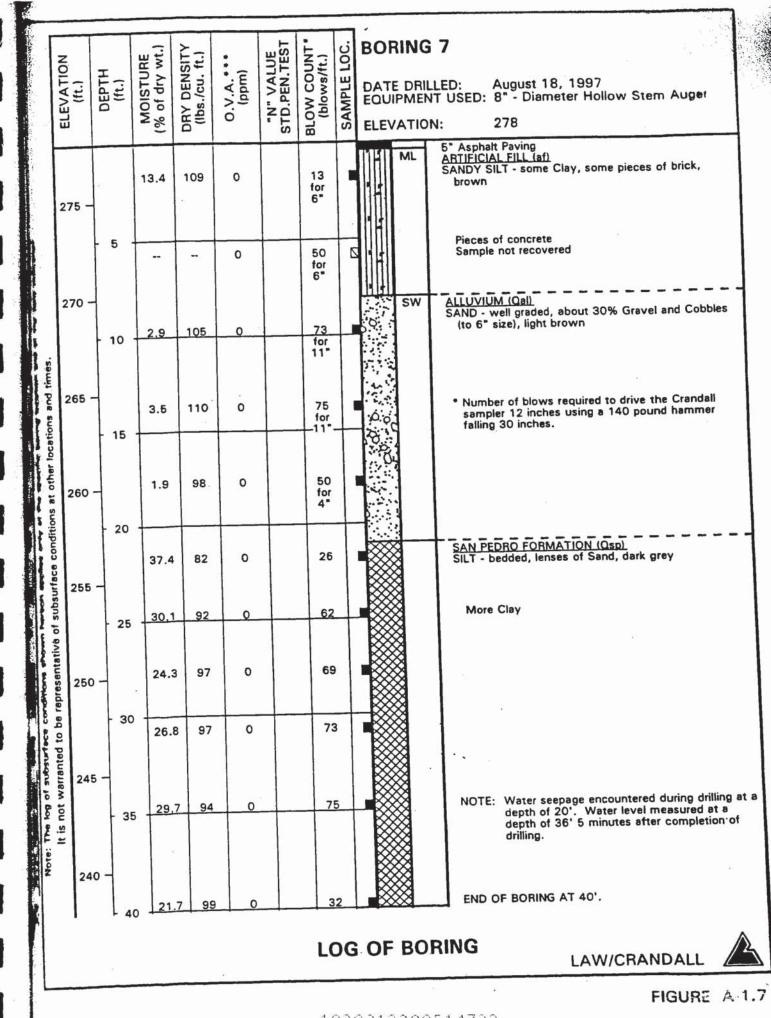
ELEVATION (ft.)	DEPTH (ft.)	MOISTURE (% of dry wt.)	DRY DENSITY (Ibs./cu. ft.)	0.V.A.*** (ppm)	"N" VALUE STD.PEN.TEST	BLOW COUNT* (blows/ft.)	SAMPLE LOC.	BORING 2 (Continued) DATE DRILLED: August 19 and 21, 1 EQUIPMENT USED: 24"-Diameter Bucket 10"-Dia. Hollow Sten ELEVATION: 275	997 to 16½' n Auger to 40]
				*				END OF BORING AT 40½'. NOTE: <u>BUCKET BORING</u> : Water s encountered during drilling Bucket boring terminated a due to caving and sloughin seepage.	at a depth of 14 it a depth of 16%
Ē						×.		HOLLOW STEM AUGER B future water level measure installed 4-inch-diameter P Pipe perforated between d 40'. Backfilled with-sand ground surface and filled v above 3'. A bentonite plu depths of 3' and 8' of gro Water level measured in th at a depth of 14' on 8/26/	ment and sampli VC pipe to 40'. epths of 10' and to within 8' of vith concrete g placed betwees und surface. he monitoring we
conditions at other locations and th									
subsurface									945
It is not warranted to be representative of									
Nore: The bag of such						ŤN			
	1			ļ		LO	G	DF BORING	

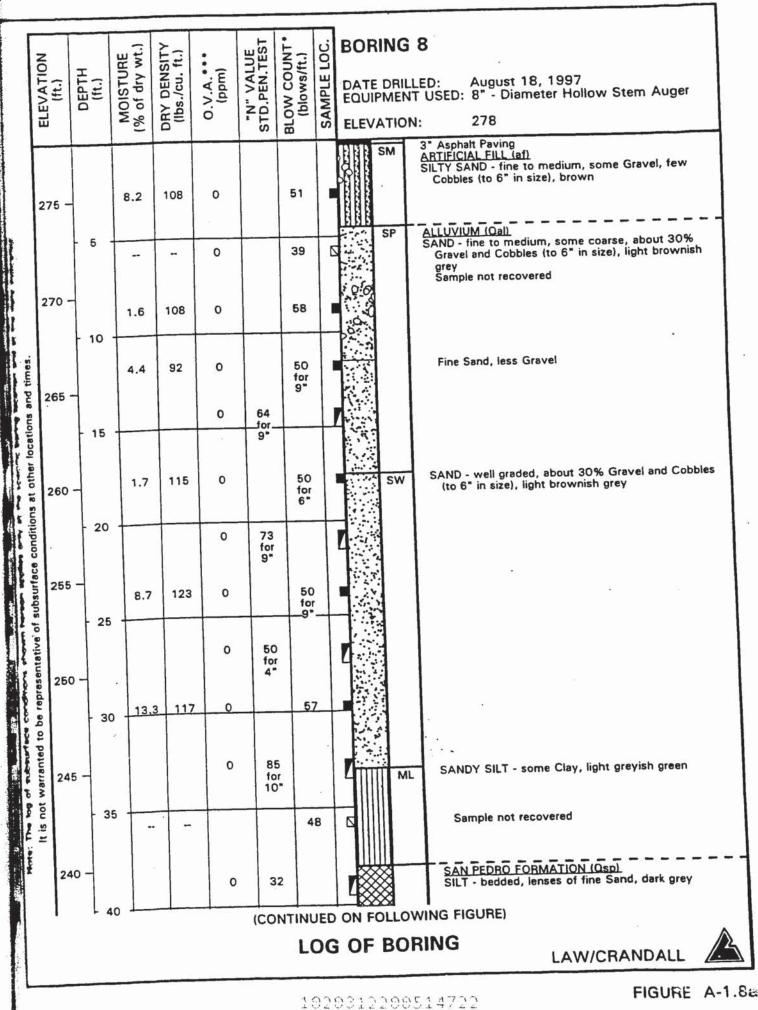
I

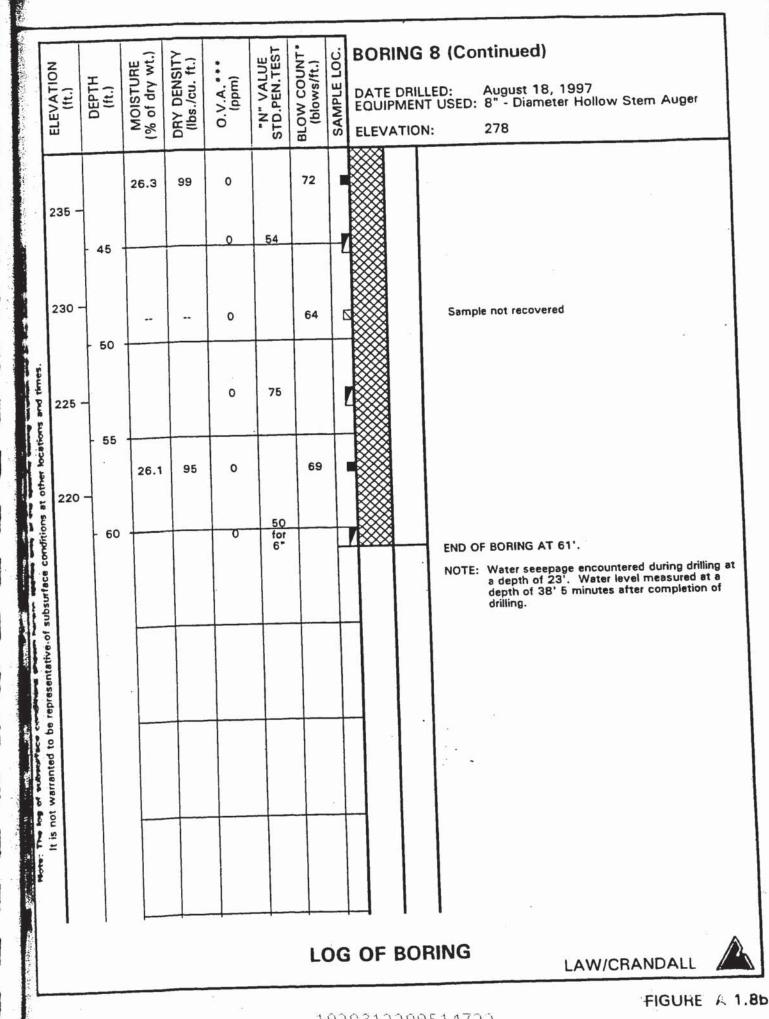
ľ

21.

235 - END OF BORING AT 42'. NOTE: <u>BUCKET BORING:</u> Wat encountered during drill Water level measured a drilling. Raveling from boring terminated at a caving and sloughing b <u>HOLLOW STEM AUGEI</u> future water level measured installed 4-inch-diameter Pipe perforated betwee 40'. Backfilled with sa ground surface and fille above 4'. A bentonite depths of 4' and 8' of Water level measured i at a depth of 15' on B.	ling at a depth of 15 after completion of 6' to 15'. Bucket depth of 17½' due elow water. R BORING: To obta
	er PVC pipe to 42'. en depths of 10' and and to within 8' of plug placed betwee ground surface. in the monitoring we


FIGURE A-1.4


275 - 0 4 SW SUTY SAND_ fine_ light grey 275 - 1.4 121 0 3 SW SW SW SW SW 276 - 1.4 121 0 3 SW SW SW SW SW SW 276 - 1.4 121 0 3 SW <	ELEVATION (ft.)	DEPTH (ft.)	MOISTURE (% of dry wt.)	DRY DENSITY (Ibs./cu. ft.)	0.V.A.*** (ppm)	"N" VALUE STD.PEN.TEST	BLOW COUNT* (blows/ft.)	SAMPLE LOC.	DATE DRILLED: August 13, 1997 EQUIPMENT USED: 24" - Diameter Bucket ELEVATION: 278
270 1.9 128 0 7 • Number of blows required to drive the Crandall sampler 12 inches using a 140 pound hammer falling 30 inches. 265 6.3 114 0 4 • Number of blows required to drive the Crandall sampler 12 inches using a 140 pound hammer falling 30 inches. 266 6.3 114 0 4 • • 266 6.3 114 0 4 • • 260 28.5 97 0 1 • CLAYEY SILT - dark grey 260 25.5 97 0 1 • SAM PEDRO FORMATION IGSall 250 14.0 109 10 9 • SAM PEDRO FORMATION IGSall 250 14.0 109 10 9 • SAM PEDRO FORMATION IGSall 264 25.7 100 100 11 • SUT - bedied, lenses of fine Sand, dark grey 245 23.0 104 175 19 • • • 10 115 19 • • • • • 245 100	275 —							3	.: · SW ALLEVIER (Oal)
260 29.5 97 0 1 ML CLAYEY SILT - dark grey 260 29.5 97 0 1 ML CLAYEY SILT - dark grey 260 20 37.4 85 0 <1	270 -				2.4		×		* Number of blows required to drive the Crandall sampler 12 inches using a 140 pound hammer
260 20 37.4 85 0 <1		- 15	6.3	114	0		4		
255 - 25 - 35.1 87 0 <1	260 -	- 20	29.5	97	0		1	1	ML CLAYEY SILT - dark grey
250 - 14.0 109 10 9 SW SAN PEDRO FORMATION (Qsp). SAND - well graded, lenses of Silty Sand and Clave. Silt, dark grey 30 25.7 100 100 11 SW SAN PEDRO FORMATION (Qsp). SAND - well graded, lenses of Silty Sand and Clave. Silt, dark grey 245 - 23.0 104 175 19 '(BORING TERMINATED AT A DEPTH OF 33' DUE DIFFICULT DRILLING BELOW WATER). NOTE: Water seepage encountered during drilling depth of 22'. Water level measured at a depth of 22'. 30 minutes after completion	255 ·	- 25							
NOTE: Water seepage encountered during drilling depth of 22'. Water level measured at a depth of 22'. 22' 30 minutes after completion	o representative o		14.0	109	10		9		SAND - well graded, lenses of Silty Sand and Cla Silt, dark grey
	is not						19		DIFFICULT DRILLING BELOW WATER). NOTE: Water seepage encountered during drillin depth of 22'. Water level measured at depth of 22'. 30 minutes after completing

ELEVATION (ft.)	DEPTH (ft.)	MOISTURE (% of dry wt.)	DRY DENSITY (lbs./cu. ft.)	0.V.A.*** (ppm)	"N" VALUE STD.PEN.TEST	BLOW COUNT * (blows/ft.)	SAMPLE LOC.	BORING 6 (Continued) DATE DRILLED: August 19, 1997 EQUIPMENT USED: 24"-Diameter Bucket to 30' 10"-Dia. Hollow Stem Auger to 278	42'
It is not warranted to be representative of advectace consists a set of the fill of the fi					50 for 1"			END OF BORING AT 42'. NOTE: <u>BUCKET BORING</u> ; Water seepage encountered during drilling at a depth of 24 minutes after completion of drilling. Buding terminated at a depth of 30' du caving and sloughing. <u>HOLLOW STEM AUGER BORING</u> ; To future water level measurement and si installed 4-inch-diameter PVC pipe to Pipe perforated between depths of 15 40'. Backfilled with sand to within 11 ground surface and filled with concret above 3'. A benchnite plug placed be depths of 3' and 11' of grounds surfac Water level measured in the monitorin at a depth of 22' on 8/26/97.	obtain ampling 42'. ' and ' of e tween e.
0						L	OG	OF BORING	. /

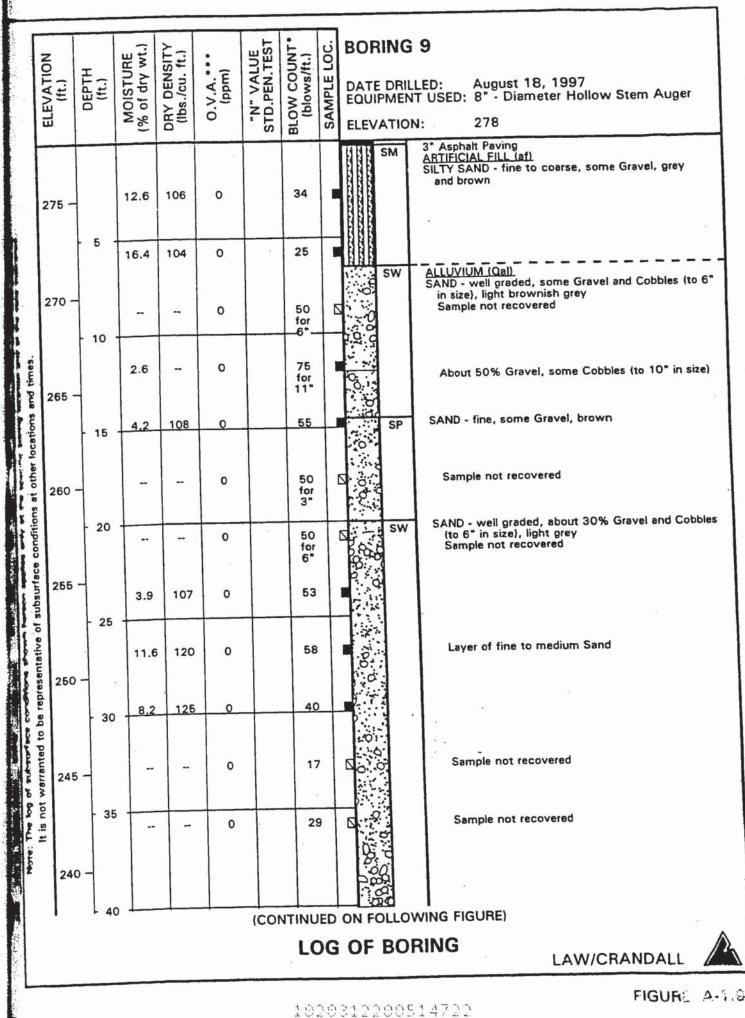
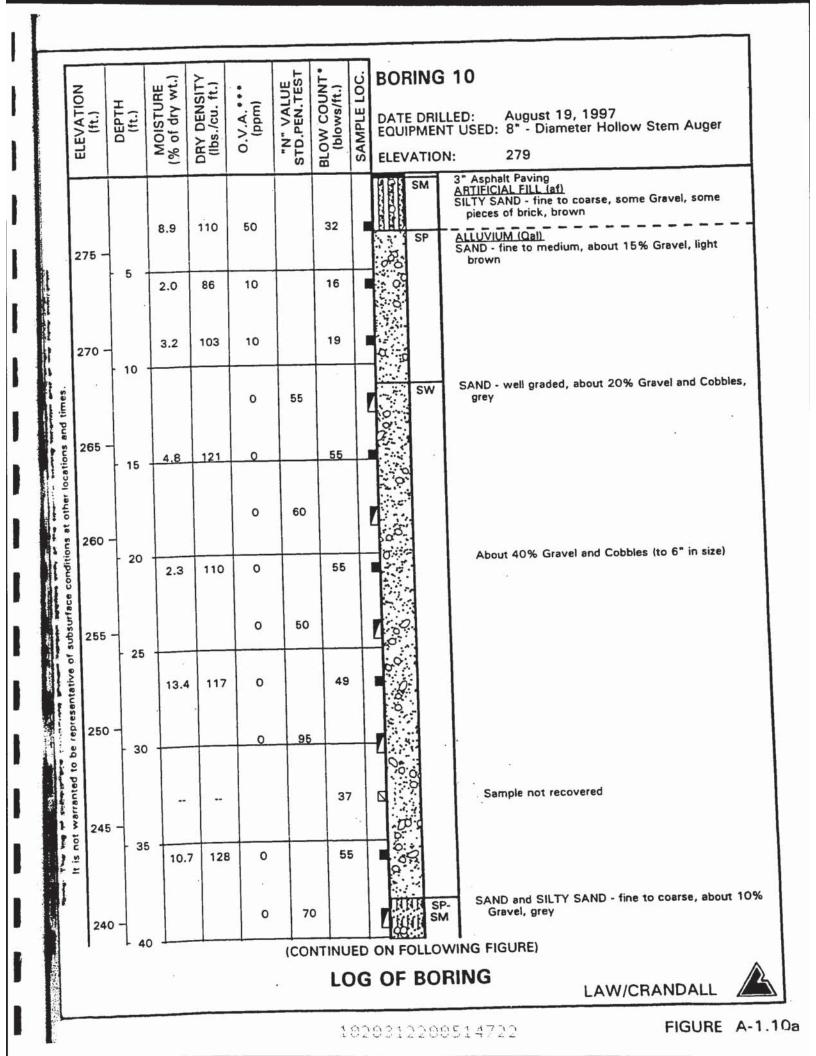



FIGURE A.1.9a

0 77 1 END OF BORING AT 41'. NOTE: Water seepage encountered durin depth of 26'. Water level measu depth of 31' 10 minutes after co drilling.	NOTE: Water seepage encountered during drilling at a depth of 26'. Water level measured at a depth of 31' 10 minutes after completion of

ELEVATION (ft.)	DEPTH (ft.)	MOISTURE (% of dry wt.)	DRY DENSITY (Ibs./cu. ft.)	0.V.A.*** (ppm)	"N" VALUE STD.PEN.TEST	BLOW COUNT * (blows/ft.)	SAMPLE LOC.		S 10 (Continued) LLED: August 19, 1997 NT USED: 8" - Diameter Hollow Stem Auger DN: 279
235 —		18.5	110	o		75			
230 -	- 45 -			50	100 for 9"	57		SW	SAND - well graded, about 10% Gravel and Cobble grey
225 -	- 50 -	-				65	Σ	U O	Sample not recovered
	- 55			0	54		1	0	
220 -	- 60			0	97				END OF BORING AT 60½'. NOTE: Water seepage encountered during drilling depth of 23'. Water level measured at a depth of 35½' 5 minutes after completion drilling.
to be representative o									
It is not warranted t				•				4.	
						LO	G	OF BOR	LAW/CRANDALL

Ob

Existing Geotechnical Boring Logs J Byer, 1998

(THIS PAGE INTENTIONALLY LEFT BLANK)

ĩ	Molsture Content %	Dry Density (pcf)	Blow Count	Sample Type	Symbol USCS	LOG OF BORING 1 PROJECT: JB: <u>17776-B</u> CATELLUS DATE LOGGED: 6/4/98 BY: JWB BORING TYPE: <u>8 Inch Hollow-Stem</u> SURFACE: <u>5 Inch AC Pavement</u> REPORT DATE: 7/9/98 ELEVATION: <u>276.4</u>
30 -	- - 26.0 -	96.9	15*	R	sc .	4 Inches Asphalt FILL: Clayey Sand, dark brown, moist, dense, some debris, asphalt, concrete, brick
، - -	-				sc	ALLUVIUM: Clayey Sand, dark brown, moist, medium dense, porous, grades to sand, light brown, moist, dense
-	- 6.2	119.5	43	R	SM	Silty Sand, light and dark brown, moist, medium dense with round granit cobbles
-	3.1	-	43	R		Silty Sand, light brown, moist, dense Gravelly layers with coarse sand
, 10 .	33.6	80.9	9	R		Sandy Silt, gray green, moist, firm, some peat
	4.6	112.3	40	R	SG	Gravelly Sand, light brown, moist, dense
15	36.7	83.5	25	R	1	Water at 16 Feet
•	Ļ	-			ML	Clayey Silt, light bluish gray, saturated, soft
	Ļ				SG	Gravelly Sand, gray, saturated, dense
20	9.8	118.4	50	R		
	10.6	114.7	43	R	GW	Sandy Gravel, gray, saturated, dense, rounded granite clasts
	+	125.9	45	R		*140 Pound hammer, 30 Inch drop
	+ 12.0	125.9				
25	1				The	J. Byer Group, Inc.

(feet)	Moisture Content %	Dry Density (pcf)	Blow Count	Sample Type	Symbol USCS	LOG OF BORING 1 (Continued) PROJECT: JB: <u>17776-B</u> CATELLUS DATE LOGGED: 6/4/98 BY: JWB BORING TYPE: <u>8 inch Hollow-Stem</u> SURFACE: <u>Asphalt Parking Lot</u> REPORT DATE: 7/9/98 ELEVATION: <u>276.4</u>
26 _	31.2	93.0	50	R		BEDROCK: Siltstone, blue gray, saturated, bedded, with layers of fine grained sandstone, soft to very firm
- - - - 30 -	28.2	96.4	50/9	R		Hydrogen Sulfide odor
	+ + + - 29.9	94.3	50/11	R		Siltstone with sandstone interbeds, firmer
35	+ + +					slow drilling
40	- 34.6	87.1	50/9	R		Siltstone continues
	+ + +					
45						
50						End at 50 Feet; Water at 16 Feet. Boring developed as 2 inch diameter monitoring well, sand to 15 feet, bentonite plug to top.

I

ł

Depth (feet)	Moisture Content %	Dry Density (pcf)	Blow Count	Sample Type	Symbol USCS	LOG OF BORING 2 PROJECT: JB: <u>17776-B</u> CATELLUS DATE LOGGED: 6/4/98 BY: JWB BORING TYPE: <u>8 Inch Hollow-Stem</u> SURFACE: <u>5 Inch AC Pavement</u> REPORT DATE: 7/9/98 ELEVATION: <u>276.4</u>
0 -					SM	FILL: Silty Sand, dark brown, moist, dense, with rock fragments and brick
10					SG SW GW	ALLUVIUM: Gravelly Sand, light brown, moist, dense grades to fine grained sand with gravel Gravel and Cobble layer, 4 feet thick, hard drilling
20					sw	Water at 23 Feet

Depth (feet)	Moisture Content %	Dry Density (pcf)	Blow Count	Sample Type	Symbol USCS	LOG OF BORING 2 (Continued) PROJECT: JB <u>17776-B CATELLUS</u> DATE LOGGED: 6/4/98 BY: JWB BORING TYPE: <u>8 Inch Hollow-Stem</u> SURFACE: <u>5 Inch AC Pavement</u> REPORT DATE: 7/9/98 ELEVATION: <u>276.4</u>
26 -	-				ι.	
30	- -					WEATHERED BEDROCK: Clayey Silt, greenish gray, saturated, soft to
32	+ + +				ML	firm
35]	BEDROCK: Siltstone, blue gray, very moist, bedded, fine sandstone layers
38						End at 38 Feet; Water at 23 Feet; Fill to 6 Feet.

Ē

The J. Byer Group, Inc. 512 E. Wilson Avenue • Sutte 201 • Glendale, Catifornia 91206 • (818) 549-9959 • Fax (818) 543-3747