ALAMEDA CORRIDOR

PRE-CONCEPT ESTIMATE

SEPTEMBER 12, 1991

PRESENTATION PACKET

ALAMEDA CORRIDOR

PRE-CONCEPT ESTIMATE

 SEPTEMBER 12, 1991
PRESENTATION PACKET

DMJM/M\&N

CONTENTS

TITLE PAGE
PRE-CONCEPT ESTIMATE - BASIS OF ESTIMATE 1
PROJECT COST COMPARISON - AT-GRADE ALTERNATIVE 2
PROJECT COST 4, 5, 6
DEFINITIONS 7,8
COST ESTIMATE MODEL - FLOW CHART 9
ILLUSTRATION OF STUDY SEGMENT LIMITS 10
LIST OF STRUCTURES 11
SEGMENT SUMMARY ALTERNATE 1, SEGMENT B 12
COST SUMMARY FOR ALTERNATE 1 13
COST SUMMARY FOR ALTERNATE 2.1A 14
CONSTRUCTION, RIGHT-OF-WAY (R/W) AND UTILITY COST 15,16
PRE-CONCEPT COST ESTIMATE 17, 18
APPENDIX
SUPPLEMENTAL GRADE SEPARATION STRUCTURES A-1
HAZARDOUS WASTE REMOVAL COST ESTIMATE A- 2

PRE-CONCEPT ESTIMATE

BASIS OF ESTIMATE

The quantity and cost estimates presented are based on:

1. $1^{\prime \prime}=100^{\prime}$ scale aerial mapping, dated June 26,1990
2. All new construction, including new railway equipment for tracks, ballasts, ties, etc.
3. All new roadway construction, including pavement, curbing, drainage, and sidewalks, etc.
4. Utility locations based on a data research of existing records.
5. Average unit prices in 1991 dollars published by Caltrans and from bid tabulations of local contract lettings.
6. Graphic layouts of roadway and railway alternative solutions, plotted on $1^{\prime \prime}=100^{\prime}$ scale maps.
7. Preliminary geotechnical information available from historical records and some recent investigations as summarized in a report, dated February 22, 1991.
8. Conceptual level right-of-way pricing.

AT-GRADE ALTERNATIVE

COST COMPARISON

(\$MILLION)

1991
1989
PRE-CONCEPT INITIALCOST

MANAGEMENT,
126
72
ADMINISTRATION, ENGINEERING, CONSTRUCTION MANAGEMENT

SUBTOTAL:
$\$ 1,017$
\$502
FINANCE AND LEGAL 61

PROJECT RESERVE
108
SUBTOTAL:
\$1,186

ESCALATION
403
\$1,589
NA

HE 554 .A62 P33

FEB 282001

COST COMPARISON

(\$ MILLION)

FEATURES P	$\begin{gathered} 1991 \\ \text { PRE-CONCEPT } \\ \hline \end{gathered}$	$\begin{gathered} 1989 \\ \text { INITIAL COST } \\ \hline \end{gathered}$	FEATURES
ROADWAY	\$81	\$60	12 Mi. ROADWAY
dide SEPARATIONS RUCTURES HIGHWAY AIL ESTIMATED)	\$391	\$250	16 GRADE SEPARATIONS (16 STRUCTURES ESTIMATED)
MAINLINE AGE (INCLUDES NDO JUNCTION GRADE ATION)	E \$101	\$120	23 Mi. MAINLINE TRACKAGE INCLUDES REDONDO JUNCTION GRADE SEPARATION)

TOTAL CONSTRUCTION
\$573

UTILITY RELOCATION \$58
RIGHT-OF-WAY*
$\$ 260$ *
\$891
TOTAL CONSTRUCTION,
RIGHT-OF-WAY, AND
UTILITY RELOCATION

* EXCLUDING RAILROAD R/W ALONG ALAMEDA

ALL COSTS INCLUDE CONTINGENCY.
** INCLUDED IN COST OF GRADE SEPARATIONS.

ALTERNATIVE 1
AT-GRADE TRAINWAY -
6 LANE ALAMEDA \$1,589
ALTERNATIVE 5
SAME TRAINWAY -
4 LANE ALAMEDA \$1,580

PROJECT COSTS (MILLION)

ALTERNATIVE 2.1A

DEPRESSED TRAINWAY -
6 LANE ALAMEDA

PROJECT COSTS (\$ MILLION)

ALTERNATIVE 2.1DEPRESSED TRAINWAYTERMINATING AT 91 FREEWAY -6 LANE ALAMEDA\$2,184
ALTERNATIVE 6.1 SAME TRAINWAY - 4 LANE ALAMEDA \$1,960

PROJECT COSTS

(MILLION)

ALTERNATIVE 2.2 DEPRESSED TRAINWAY WILMINGTON DIVERSION THROUGH THE CITY OF VERNON -
6 LANE ALAMEDA \$2,041
ALTERNATIVE 6.2
SAME TRAINWAY -
4 LANE ALAMEDA \$1,963

PROJECT COSTS

 (\$ MILLION)

> ALTERNATIVE 2.3
> DEPRESSED TRAINWAY
> TERMINATING AT N/O ROSECRANS 6 LANE ALAMEDA

ALTERNATIVE 6.3

SAME TRAINWAY -
4 LANE ALAMEDA \$1,873

PROJECT COSTS

(MILLION)

ALTERNATIVE 2.4
DEPRESSED TRAINWAYTERMINATING AT N/0 FIRESTONE -6 LANE ALAMEDA\$1,791
ALTERNATIVE 6.4
SAME TRAINWAY - 4 LANE ALAMEDA \$1,643

PROJECT COSTS

 (MILLION)

ALTERNATIVE 3.0
DEPRESSED TRAINWAY -
EAST SIDE ALAMEDA
6 LANE ALAMEDA
\$2,582

DEFINITIONS

Project Cost

Contingency

(20% Allowance)

All inclusive costs for implementing the project projected to the midpoint of construction.

A percentage applied to the construction cost to allow for refining construction items as a result of further engineering. As engineering progresses, construction needs will be defined and details developed which will result in more complete quantity take-offs and construction costing and the contingency will be decreased.

The cost of managing and administering the project, performing the engineering, and managing the construction. These costs include:

- Management and administrative staff
- Project control and scheduling
- Engineering for preparation of plans, specifications, and estimates
- Geotechnical investigations
- Detail survey for final design
- Construction management
- Construction inspection
- Construction survey
- Construction testing

Financing and Legal Costs (6\% Allowance)

The cost associated with obtaining the project funding and legal support during the life of the project. This item includes the following:

- Cost of obtaining project funds
- Contractual legal advice
- Special legal advice
- Legal support for EIR challenges
- General legal advice

Project Reserve (10\% Allowance)

Escalation
 (34\% Factor)

Abstract

An allowance included for the cost of accommodating items required to implement the project. This item is intended to include the following:

- Permits and regulatory requirements
- Temporary construction
- Construction packaging
- Accelerating construction items
- Unknown construction requirements/cost of doing business
- Design/Construction modifications due to unknown/varying field conditions

The projection of the present day (1991) project costs to the midpoint of construction to account for inflation. The projected midpoint of construction considered was 1997 and the escalation rate used was 5 percent per year compounded annually.

ALAMEDA CORRIDOR PRE-CONCEPT ESTIMATE Cost Estimate Model

	Location	Structure Type	Overhead Cost	Underpass Cost			Cost
				Use		Use	
1	Redondo Junction (15 mph)	RR Grade Sep			\$39,800,000	1	\$39,800,000
2	Redondo Junction (40 mph)	RR Grade Sep			\$48,300,000		
3	Washington Blva. (Widen)	Railroad			\$687,000	1	\$687,000
4	Washington Blyd/ Sante Fe	Highway	\$13,832,000	1	\$12,034,000		\$13,832,000
5	Soto St.	Railroad			\$2.150,000	1	\$2,150,000
6	Perrino Place	Railroad			\$3,306,000	1	\$3,306,000
7	Los Angeles River Bridge	Railroad			\$4,836,000	\dagger	\$4,836,000
-8	N/B Alameda	Highway			\$7,048,600	1	\$7,048,600
9	25th St.	Highway			\$4,134,000	1	\$4,134,000
- 10	Vernon Ave.	Highway	\$7,554,000		\$4,047,780	1	\$4,047,780
- 11	$38 \mathrm{th} / 41 \mathrm{st}$. St.	Highway			\$4,047,780	1	\$4,047,780
-12	Gage Avenue	Highway	\$6,808,200	1	\$5,182,000		\$6,808,200
-13	Slauson Ave.	Highway	\$8,087,340	1	\$4,047,780		\$8,087,340
14	Slauson Ave. (RR)**	Railroad			\$197,300		
15	Randolph**	Railroad			\$197,300		
-16	Nadeau St.	Highway	\$3,712,800		\$3,944,640	1	\$3.944.640
-17	Florence Ave.	Highway	\$7,568,450		\$3,944,640	1	\$3,944,640
-18	Northbound Cross Over	Highway			\$14,686,800	1	\$14,686,800
-19	Firestone	Highway	\$7,000,000		\$5,000,000	1	\$5,000,000
- 20	Southern Ave.	Highway	\$6,810,600	1	\$6,060,600		\$6,810,600
-21	Alameda/Tweody	Highway	\$14,416,200	1			\$14,416,200
-22	Imperial/Alameda	Highway			\$4,498,500	1	\$4,498,500
-23	Weber	Highway	\$6,288,360	1	\$4,975,200		\$6,288,360
- 24	El Segundo	Highway	\$5,727,360	1	\$4,463,200		\$5,727,360
- 25	Alondra	Highway	\$5,192,920		\$4,375,000	1	\$4,375,000
- 26	Compton/Ramps	Highway	\$12,370,380	1	\$4,520,100		\$12,370,380
27	Compton Creek Box Culvert	Highway/Rail	\$3,732,000	1			\$3,732,000
-28	Greenleaf	Highway	\$8,228,460	1			\$8,2.28,460
-29	Alameda UP at Laurel Pk.	Highway			\$10,089,800	1	\$10,089,800
30	Dominguez Channel (7A)	Railroad			\$1,255,000	1	\$1,255,000
31	Dominguez Channel (7B)	Railroad			\$1,745,000	1	\$1,745,000
32	Dominguez Channel (7C)	Railroad			\$775,000	1	\$775,000
- 33	Sepulveda	Highway	\$14,575,000	1			\$14,575,000
34	ACTA Railroad	Railroad	\$19,642,800	1			\$19,642,800
35	UPRR		\$13,513,100	1			\$13,513,100
- 36	Connector Road "A"	Highway	\$1,630,700	1			\$1,630,700
-37	Connector Road " 8 "	Highway	\$1,036,800	1			\$1,036,800
- 38	Connector Road "C'	Highway	\$120,000	1			\$120,000
-39	Henry Ford	Highway	\$1,233,000	1			\$1,233,000
- 40	Tl Fwy On-Ramp	Highway	\$1,093,000	1			\$1,093,000
- +1	TI Fwy Oft-Ramp	Highway	\$1,081,000	1			\$1,081,000
12	Marina RR Crossing	Railroad	\$3,690,000	1			\$3,690,000
43	Anaheim (Reconstruct)	Highway	\$14,585,000	1			\$14,585,000
-44	Pacific Coast Highway	Highway	\$10,498,700	1			\$10,498,700
			Total Structures				289,371,540

ALT-SEGMENT

COST SUMMARY FOR ALTERNATE 1 at grade trainway along alameda street aLAMEDA-ONE WAY COUPLET (3 LANES EACH DIRECTION) FROM 25TH STREET TO FIRESTONE BLVD. ALAMEDA- 6 LANES WEST SIDE FROM FIRESTONE TO SR91					
ITEM	SEGMENT A 1-10 10 25th Street	SEGMENT B 25th Straet 10 85th Street	SEGMENT C 85th Street to SR91	SEGMENT D SR 91 to Terminal Island	ALTERNATE TOTALS
ROADWAY	\$2.6	\$26.8	\$33.0	\$19.0	\$81.5
STRUCTURES	\$0.0	\$162.0	\$101.6	\$127.5	\$391.0
trainway	\$0.0	\$39.1	\$25.5	\$36.3	\$100.8
RIGHT-OF-WAY	\$7.2	\$145.4	\$62.4	\$44.6	\$259.7
UTILITY RELOCATION	\$1.2	\$8.9	\$20.8	\$26.7	\$57.7
TOTAL CONST. \& R/W COST	\$11.1	\$382.2	\$243.2	\$254.1	\$890.7

ALAMEDA CORRIDOR PRE-CONCEPT COST ESTIMATE

COST SUMMARY FOR ALTERNATE 2.1A IRENCH OVEPHANGS REMOVED DEPRESSED TRAINWAY - ALAMEDA 6 LANES COUPLETS - THREE LANES EACH DIRECTION EACH WAY FROM 25TH ST. TO COMPTON BLVD.] [COST IN \$ MILLIONS]					
ITEM	SEGMENT A $1-10$ to 25th Street	SEGMENT B 25th Streat to 85th Streat	SEGMENT C 85th Street to SR91	SEGMENT D SR 91 to Terminal Island	ALTERNATE TOTALS
ROADWAY	\$2.6	\$14.3	\$18.7	\$19.0	\$54.7
STRUCTURES	\$0.0	\$292.6	\$298.6	\$127.5	\$718.6
TRAINWAY	\$0.0	\$40.9	\$28.2	- \$36.3	\$105.4
RIGHT-OF-WAY	\$7.2	\$93.3	\$10.1	\$44.6	\$155.3
UTILItY RELOCATION	\$1.2	\$11.1	\$8.1	\$26.7	\$47.2
TOTAL CONST. \& R/W COST	\$11.1	\$452.2	\$363.8	\$254.1	\$1,081.2

$\stackrel{\rightharpoonup}{5}$

Construction, R/W, and Utility Cost (\$ Millions)							
Alt. Description	Roadway	Structures	Tralnway	Subtatal Constructlon Cosi ${ }^{\circ}$	Uillity Relocatlon	R/W	Construction R/W and Uillity Cos!
1 Al-Grade Tralnway- Alameda E Lanea [One Way Couplet- North of Firaatone Blvd., - Lenea Weat side South of Firestane Blud.]	\$81.5	\$391.0	\$100.8	\$573.3	$\$ 57.7$	\$259.7	. $\$ 890.7$
2.1 Depreseed Tralnway- Alamede 5 Lanee [One Way Couplot from 251 h St. to Complon Blud., - Lanea Weal Side to SR81 Froowayl	\$54.7	\$834.9	\$105.4	\$995.0	\$47.2	\$147.1	\$1,189.2
2.1A Alternate 2.1-Rallroad Trench Wall Overhange Deleted	\$54.7	\$718.6	\$105.4	\$878.8	\$47.2	\$155.3	\$1,081.2
2.2 Allernale 2.1-Vernon Diversion-Alamede Lanee Trralnway Vie Wilmington Branch (SPTC) North of Rendolph Street]	\$58.6	\$762.3	\$105.7	\$926.7	\$53.2	\$130.3	\$1,110.2
2.3 Alternale 2.1-Tralnway al-grade at Rowecrana-Alamede Lanes [Trainway tranalliona from depreseed to al-grade north of Hosecrans)	\$54.6	\$768.1	\$104.0	\$926.8	\$47.2	\$167.2	\$1,141.2
2.4 Alternate 2.1-Tralnway at-grade at Firatone-Alamada 6 Lanes [Tralnway tranallione Irom depreased to al-grade north of Firealone]	\$56.6	\$581.5	\$102.6	\$740.7	\$47.2	\$200.8	\$988.7
3 Depreswed Tralnway-Alameda Lanea It Lanee Weat Slde, Eaat Side Local and Property Accese on Structurea from 251 h St. 10 92nd St. Frontage Rd. Accent from 92nd St. to SR 9t]	\$54.3	\$1,019.4	\$105.4	\$1,179.0	\$53.5	\$173.3	\$1,405.9

Cons Description	Roadway	and U lons) Structures	ity Cos Trainway	(ContInued) Subtatal Construction Cost*	Utility Relocation	R/W	Construction R/W and Uillity Cost
4 Altornate 2.1-Alemeda 4 and 8 Lanes plus Excluaive Truck Lanes [Lanes adjacent to Depressed Trainway deaignated Exclualve Truckway between 25ih St. and Compton Blvd. Truckway grade-separaled from Croses Streete at Selected Major Interacilons]	\$54.6	\$985.3	\$105.4	\$1,145.3	\$47.2	\$147.1	\$1,339.6
5 At-Grade Tralnway- Alamada 4 Lanee [One Way Couplet- North of Firestone Blva., 4 Lanea Weat Side Soulh of Firestone Blvd.]	\$79.0	\$391.0	\$100.8	\$570.8	\$57.7	\$257.1	\$885.6
6.1 Alternate 2.1 Depressed Trainway- Alameda 4 Lanea [One Way Couplet from 25th St. to Complon Blud., 4 Lanee Weat Side to SR81 Freewayl	$\$ 52.5$	$\$ 718.6$	\$105.4	\$876.5	\$47.2	$\$ 146.2$	\$1,069.9
6.2 Alternait 2.2-Vernon Diversion-Alameda 4 Lanas [Tralnwey Via Wlimington Branch (SPTC) North of Randolph Street]	\$56.3	\$723.7	\$105.7	\$885.7	\$53.2	\$129.5	\$1,068.4
4.3 Alternale 2.3-Tralnway at-grade at Rosecrane-Alameda 4 Lanea [rainway Iranailione from depreseed to al-grade north of Rosecrans]	\$52.4	\$656.6	\$104.0	\$813.0	\$47.2	\$166.4	\$1,026.6
6.4 Alternate 2.4-Tralnway el-grade at Firestone-Alameda 4 Lenas [Tralnway tranallone Irom depreseed to at-grade north of Firesione]	\$61.0	\$498.6	\$102.6	\$662.3	\$47.2	\$200.0	\$909.4

- 1991 Dollars

Sep 02, 1991
ふ

Pre-Concept Cost Estimate ($\$$ Millions)						
Alt. Description	Construction R/W and Uillity Cost	Engineering Const. Management Adminlstration [20\%] ${ }^{*}$	Financing and Legal Costs [6\%]	Project Reserve [10\%]	Project Cost [1991-\$]	$\begin{gathered} \text { Project } \\ \text { Cost } \\ {[\text { Escalated }]^{\circ}} \end{gathered}$
1 At-Grade Tralnway- Alamede b Lanes [One Way Couplet- North of Firosione Blive., - Lanes Weat Slde South al Firestone Blvad.]	\$890.7	\$126.2	$\$ 61.0$	\$107.8	$\$ 1,185.7$	\$1,588.8
2.1 Depressed Tralnway-Alarneda E Lanee [One Way Couplet from $\mathbf{2 5 t h} \mathbf{~ S t . ~ t o ~ C o m p t o n ~ B l y d . , ~}$ C Lanea Weat Side to SR91 Freewayl	\$1,189.2	\$208.4	\$83.9	\$148.2	$\$ 1,629.7$	\$2,183.8
2.1A Ahernate 2.1-Rallroad Trench Wall Overhangs Dateled	\$1,081.2	\$185.2	\$76.0	\$134.2	$\$ 1,476.6$	\$1,978.7
2.2 Alternate 2.1-Yernon Diveralion [Tralnway Via Wlimington Branch (SPTC) North of Randolph Streel]	\$1,110.2	\$196.0	$\$ 78.4$	\$138.5	$\$ 1,523.0$	\$2,040.9
2.3 Alternale 2.1-Tralnway al-grade at Rocecrans [Trainway surfaces transilions from depressed to at-grade north of Rozecrans]	\$1,141.2	\$194.8	\$80.2	\$141.6	\$1,557.8	\$2,087.4
2.4 Alternate 2.1-Tralinway at-grade at Firestone-Alameda 8 Lanes [Tralnway trannillone from dopressed th al-grade north of Fitrasiona]	\$988.7	\$157.6	\$68.8	\$121.5	$\$ 1,336.6$	\$1,791.0
3 Depressed Tralnway-Alameda 6 Lanea is Lanes Weat Side, East Side Local and Property Access on Structures from 25 th St. to 92 nd St. Frontage Ra. Access from 92 nd St. 10 SR 911	\$1,405.9	\$246.5	\$99.1	\$175.2	$\$ 1,926,7$	\$2,581.8

-Engr., Const. Managmt. and Admin. Cost is 20% of Construction and Ulility Relocation Costs
"•Escalation (5\% per year to FY 97)-34\%
Sep 12, 1991

SUPPLEMENTAL GRADE SEPARATION STRUCTURES

The analysis of traffic demands and local access and circulation needs indicated that four additional grade separation structures are warranted for this project. For informational purposes, the total project costs in 1991 dollars for these grade separation structures are presented below and are included in the alternative costs presented herein.
38th/41st St. \$29.1 million
Nadeau St. $\$ 16.0$ million
Weber St. $\$ 29.0$ million
Greenleaf St. \$32.8 million

HAZARDOUS WASTE REMOVAL

COST ESTIMATE

Our preliminary investigations have determined that known hazardous waste sites exist on private properties along or in close proximity to the Alameda Corridor. Certain portions of these sites must be acquired for this project. Under current regulations, these sites to be acquired must be dealt with to clean-up and dispose of or treat in place to stabilize the hazardous waste. Since the issue is related to right-of-way acquisition negotiations, the costs associated with the removal of the wastes have not been included in the alternative project cost estimates. The following estimates are offered as potential costs to the project for waste removal.

Alternative $1 \quad \$ 35$ million
Alternative $2.1 \quad \$ 18$ million

It is important to note that the estimates have been prepared on the basis of limited research and investigation. Once an alternative design is selected, further investigation and analysis will be required to better quantify the magnitude and costs of addressing the hazardous waste issues.

October 2, 1991

Gill V. Hicks
ACTA General Manager
6550 Miles Avenue, Room 113
Huntington Park, CA 90255

RE: Alameda Corridor

Updated Decision Matrix Package
Dear Gill:
Enclosed for your use and distribution to the Technical Working Group are forty copies of the noted package. This information should replace the individual memorandums that were presented on September 12, 1991.

The information transmitted is identified as follows:

1. Three sheet decision matrix
2. Technical Memorandums
a. Traffic - No. 3, 4, 5
b. Safety/Security - No. 1 and 2
c. Railroad - No. 1
d. Environmental - No. 2, 3, 6, 7
e. Economic - No. 2, 4
f. Cost - No. 1, 3
g. Construction - No. 1

We are looking forward to meeting with the committee on October 10, 1991 to receive their review comments on the decision matrix.

Sincerely,

EXHIBT G-1
mam

- Project cost would be $\$ 1,949$ million without SPTC Wilmington Branch or Alameda improvements north of Slauson

ALTERNATIVES

MRASURED UNIT	ALT. 1.0	ALT. 2.1	AlT. 2.2	ALT. 2.3	T. 2.4		ALT. 5		ALT. 6.2	ALI. 6.3	T

At the conceptual level analysis of this goal, the benefit of any buffering was not considered (ie., existing tall buildings in close proximity to the Corridor), nor were any vibration concerns. The goal addressing aesthetics is based on a subjective rating. The goal related to noise is the only one of this category that has any measurable difference among the alternatives.

e. Economic Goals

This category of goals was given a weight of importance equal to 10 . Three out of the total six options were measured. While the goal of minimizing land devoted to Port-related rail freight does not vary, the goal of minimizing property acquisition was easily quantified, by determining the cost of acquisition of land in millions of dollars. The effect on access to business properties could also be quantified for comparison of the alternatives.

f. Cost Goals

This category of goals was given a weight of importance equal to 25 . Two of the three goals are quantified. One of the three is the comparison of total project cost by alternafive. The second goal compares alternatives by the ability to implement the construeton by phases. The number of construction segments was developed by looking at the number of complete operational units or a portion of an operational unit costing in the range of $\$ 400$ million. The operational unit, when complete, could be put into service.

g. Construction Goals

This category of goals was given a weight of importance equal to 5 . Two of the three goals were measured. The sensitive receptors were used to measure the magnitude of noise during construction. The value of this goal is not significant, since there are not many sensitive receptors along the Corridor. The second goal measured the number of years that a particular location would be affected by the proposed construction.

4. CONCLUSION

Initially, and prior to beginning the work of developing the alternative designs, it seemed that the comparison of the adopted goals would result in a favorable ranking of one or a few of the alternatives. The analysis did not provide such "winners." Therefore, other factors would have to be considered for determining the alternatives selection that would proceed into the EIR process.

The four-lane options could be eliminated, because of the results of the traffic analysis performed. Also, the impacts of the four-lane alternatives would be analyzed as part of the status quo alternative.

The environmental review of the shortened, depressed trainway options would be colred by performing the environmental analysis of the full, depressed alternative.

Alternative 3 scored comparatively high. However, when the factor of vibration is considered in the upcoming review period, this alternative may lose any advantage, because of the proximity of the depressed train to the existing buildings. Since this alternative is the most costly, it was eliminated from further consideration.

Based on this conceptual stage analysis and the results of comparing the success of the alternatives in comparison to meeting the project goals, Alternatives 1, 2.1Aand 2.2 should receive additional environmental review and be considered as the candidates for the Alameda Corridor project.

A Sensitivity Analysis was performed on the results of the decision matrix. The matrix was analyzed by final scores and again by ranking of the scores by category of the goals, with and without costs. The results of this analysis are shown in Exhibits "AlterNative Scores Without Costs, " Alternatives Ranking with Costs," and "Alternatives Ranking Without Costs."

GOALS	HIGIIEST SCORE/RANK	ALT. 1,0	ALT. 2.1A	ALT. 2.2	ALT. 2.3	ALT. 2.4
TRAFFIC GOALS	$\begin{gathered} 17.0 \\ 1 \end{gathered}$	15.1 4	17.0 1	17.0 1	16.3 2	16.1 3
SAFETY SECURITY GOALS	$\begin{gathered} 8.0 \\ 1 \end{gathered}$	88.0	7.9 2	7.9 2	7.9 2	7.9 2
RAILROAD GOALS	$\begin{gathered} 20.0 \\ 1 \end{gathered}$	20.0 1	19.0 4	18.1 5	19.4 3	19.7 2
ENVIRONMENTAL GOALS	$\begin{gathered} 15.0 \\ 1 \end{gathered}$	12.4 5	14.8 2	15.0 1	14.3	13.4 4
ECONOMIC GOALS	$\begin{gathered} 10.0 \\ 1 \end{gathered}$	7.27 .3 5	$\text { 8.9 } 9.5$	$\begin{array}{rrr}9.4 & 9.9 \\ 2.1\end{array}$	$\begin{array}{rr}8.4 & 9.3 \\ 4.3\end{array}$	$9.9 \begin{array}{ll}8.4 \\ & 1\end{array}$
COST GOALS	$\begin{gathered} 25.0 \\ 1 \end{gathered}$	24.9 1	16.6 5	16.8 4	18.6 3	19.4 2
CONSTRUCTION GOALS	$\begin{gathered} 5.0 \\ 1 \end{gathered}$	3.2 4	5.0 1	4.5 2	3.4 3	3.2 4
SCORE (MAXIMIZE)	100.0	90.890 .9	8722-89.8	85.789 .2	$85,3 \quad 89.2$	899,588.0
TOTAL NUMBER OF GOALS RANKED NO. 1 (MAXIMIZE)	7	3	2	23	30	10

EXHIBIT G.2: ALTERNATIVE SCORES AND RANKING WITH COST

GOALS	HIGIIEST SCORE/RANK	ALT. 1.0	ALT. 2.1A	ALT. 2.2	ALT. 2.3	AL.T. 2.4
TRAFFIC GOALS	17.0	15.1 4	17.0 1	17.0 1	16.3	16.1 3
SAFETY SECURITY GOALS	$\begin{gathered} 8.0 \\ 1 \end{gathered}$	8.0	$7.6 \begin{array}{rr}7.9 \\ & 2\end{array}$	$\begin{array}{rrr}7.6 & 7.9 \\ & 2\end{array}$	7.6 280	$\begin{array}{rr}7.6 & 7.9 \\ & 2\end{array}$
RAILROAD GOALS	$\begin{gathered} 20.0 \\ X \end{gathered}$	20.0 1	19.0 4	18.1 5	19.4 3	19.7 2
ENVIR ONMENTAL GOALS	$\begin{gathered} 15.0 \\ \lambda \end{gathered}$	12.4	14.8 2	15.0 1	14.3 3	13.4 .4
ECONOMIC GOALS	$\begin{gathered} 10.0 \\ f t \end{gathered}$	$\begin{array}{rr}7.2 & 7.3 \\ & 5\end{array}$	7.7 9.5	9.4 9.9 .9	$\begin{array}{rr}8,4 & 9.3 \\ & 3\end{array}$	9.7 8
COST GOALS						
CONSTRUCTION GOALS	5.0	3.2 4	5.0 1	4.5 2	3.4 3	3.2 4
SCORE (MAXIMIZE)	75.0	65.865 .9	72.373 .2	71.672 .4	67.370 .5	69.968 .7
TOTAL NUMBER OF GOALS RANKED NO. 1 (MAXIMIZE)	6	2	2	23	01	1

EXHIBIT G.3: ALTERNATIVE SCORES AND RANKING WITHOUT COST

Vehicle Hours of Delay Per Day

At Railroad Grade Crossings - Year 2020

Average PM Peak Hour Travel Speeds Alameda Street - Year 2020

Travel Time For Turning Movements

From Alameda Street to One Block Away

PREPARED BY:
DATE: 9/19/91
REV: 10/2/91

GOAL ANALYSIS - TECHNICAL MEMORANDUM

GOAL: Traffic Goal No. 3 - Improve Level of Service at Intersections

INTRODUCTION:

This memorandum presents a comparative evaluation of Alameda Corridor alternatives relative to their ability to reduce delays of vehicles wishing to negotiate the new Alameda intersections and reach a distant point off the corridor. This information is incorporated into a larger matrix that compares alternatives to improve Alameda Corridor for both freight rail and vehicular traffic.

The measurement criteria used to evaluate the vehicular travel time delays at an intersection is vehicular minutes of travel time delay due to requiring the drivers to take circuitous routes to reach their destinations. It is presented as the projected minutes of delay associated with each alternative.

METHODOLOGY:

The evaluation is based on estimating total vehicle travel time/delays in minutes by alternative, associated with negotiating the proposed intersection(s) to reach a distant point one block off the corridor. The vehicle must either traverse the grade separations or an atgrade bridge over the depressed trainway to reach the distant point.

The construction of roadway grade separation structures in order to eliminate the traffic conflict with an at-grade trainway will required additional travel distance and time to reach a destination point on the opposite side of the trainway. This additional distance and time can be compared to the travel time associated with negotiating the at-grade intersection of the depressed trainway alternatives. The comparison by alternative of the delay in reaching a certain point of intersection one block off of Alameda is a reasonable approach for comparing the serviceability of the alternatives or under this Goal.

Further, this approach is reasonable for comparing the alternatives, rather than comparing level of service of Alameda intersections, by analyzing the volume to capacity ratio of the intersections along Alameda. It is important to note that the Alameda intersections will be designed to provide a uniform level of service and signal timing with progression, to provide for the most efficient traffic control system practical. Also, the signals placed at the terminal point intersections of the grade separation structures will also be provided with a reasonable efficient design to maintain through traffic-operation along the east-west local streets.

An average speed of 25 mph and average 3 minute signalized intersection phasing were factors used for this analysis.

This goal is developed, where the low score is better than the higher. This differs from the procedures used for the other goals. Therefore, the lower value of time delay in minutes is the best score. The following is the results of this analysis:

ALTERNATIVE

SEGMENT	1.0/5.0	2.1/6.1	2.2/6.2	2.3/6.3	2.4/6.4	$\underline{3}$
A	n/a	n/a	n/a	n/a	n/a	n/a
B	53	25.1	25.1	25.1	25.1	25.1
C	43	23.9	23.9	40.7	43.1	23.9
D	9	9	9	9	9	9
TOTALS	105 min	58 min	58 min	74.8 min	77.8 min	58 min
INDEX	0.55	1.0	1.0	$\underline{0.77}$	0.74	1.0

GOAL ANALYSIS - TECHNICAL MEMORANDUM

GOAL: Traffic Goal No. 4 - Improve Connections to I-105 and I-10 Freeways

INTRODUCTION:

This memorandum presents a comparative evaluation of Alameda Corridor alternatives relative to their ability to provide improved connections to the I-105 and I-10 Freeways. This information is intended to be incorporated into a larger matrix that compares alternatives to improve Alameda Corridor for both freight rail and vehicular traffic.

The measurement criteria used to evaluate the improved connections to those freeways provided by each alternative is the time traveled (in minutes) from Alameda to each freeway.

METHODOLOGY:

The conceptual designs for the Alameda Corridor alternatives provided the basis for this analysis. Each design was reviewed and the distance from the nearest intersection along Alameda to the freeway on-ramp entrance as experienced by a motorist was established. The travel speed was then used to establish the time it would take to traverse this distance. This analysis was prepared for both the westbound as well as the eastbound move and is summarized in Table ATG4-1.

GENERAL OBSERVATIONS:

The major difference occurs between the depressed railroad condition and the at-grade railroad condition at the connection to the I-105 Freeway. Under the depressed railroad condition, both eastbound and westbound connections are provided. Under the at-grade railroad condition, only the eastbound connection is provided. The westbound connection is handled with the existing connection at the I-105 Freeway/Wilmington Avenue Interchange.

TABLE: ATG4-1 TRAVEL TIME IN MINUTES FROM ALAMEDA TO I-10 AND I-105 FREEWAYS

$$
\text { Reused } 10|z| 51
$$

PREPARED BY:
DMJM/M\&N-MGG
DATE: 8/29/91
REV: 10/2/81

GOAL ANALYSIS - TECHNICAL MEMORANDUM

GOAL:

Traffic Goal No. 5 - Provide Alternate Route to Parallel Freeways (Emphasize Trucks)

INTRODUCTION:

This memorandum presents a comparative evaluation of Alameda Corridor alternatives relative to their ability to attract Port trucks to Alameda Street and reduce Port trucks on the I-110 and I-710 Freeways which parallel Alameda Street. This information is intended to be incorporated into a larger matrix that compares alternatives to improve Alameda Corridor for both freight rail and vehicular traffic.

The measurement criteria used to reflect the relative difference of the alternatives in their ability to effect truck travel is Port Truck Vehicle Miles of Travel (VMT - Port Trucks).

METHODOLOGY:

Projections of vehicle travel were made in the Highway Capacity and Level-of-Service Analysis (HC \& LOSA) effort for this project. The traffic model used assigned the Port Truck travel independently to the network and the plots with this information were used to develop the VMT-Port Truck analysis. Six transportation models were run in the HC \& LOSA effort and analyzed to determine the Port truck volumes on Alameda and the I-110 and I-710 Freeways.

The six transportation models are briefly described below:
MODEL A - Existing conditions in the Year 1990 (mainly used for model calibration efforts)

MODEL B - "Status Quo" (No Build or Null Case) conditions incorporating proposed transportation improvements defined for the transportation network outside of the improvements under consideration for the Alameda Corridor Project.

MODEL C - "Build" (Improve Alameda Corridor) Equivalent to Alternative 1 for Alameda Corridor incorporating a six-lane roadway and an at-grade railway with 25 grade separations of major cross-streets.

MODEL D - "Build" (Improve Alameda Corridor) Equivalent to Alternative 5 for Alameda Corridor incorporating a four-lane roadway and an at-grade railway with 25 grade separations of major cross-streets.

MODEL E - "Build" (Improve Alameda Corridor) Equivalent to Alternative 2.1 for Alameda Corridor incorporating a six-lane roadway and a depressed railway with 15 intersections north of the Artesia Freeway (SR-91).

MODEL G - "Build" (Improve Alameda Corridor) Truck Only Expressway alternative which incorporates a two-lane (one-lane north and one-lane south) truck only expressway from SR-91 to south of 51st Street with a four-lane roadway and a depressed railway north of SR-91 (Similar to Alternative 2.1)

Using the planning Year 2020, the traffic model network for Average Daily Traffic (ADT) Volumes were analyzed for the numbers of Port trucks on the I-110 and I-710 Freeways and Alameda Street. The Port truck volumes were analyzed by segments established for this project except that Segments A and B were combined because of difficulties associated with quantifying the freeway volumes for these segments independently. North and Southbound traffic were combined for each link ${ }^{1}$ within a segment and averaged to represent the volume for that segment of the facility. The actual length of the roadway was defined for each segment and the average volume was multiplied by that length to establish the VMT for Port trucks. This was done for Alameda, the I-110 Freeway, and the I-710 Freeway. This computation was performed for Model Runs C through E in order to develop the relative attraction for each "Build" alternative. Each alternative then compared to Model Run B which represented the volume of Port-trucks on each facility under the "Status Quo" scenario.

The VMT-Port trucks presented represents the net increase on Alameda plus the decrease on each of the freeways (Δ Alameda "increase" $+\Delta \mathrm{I}-110$ "decrease" $+\Delta \mathrm{I}-710$ "decrease"). If the freeways gained Port trucks in any scenario those Port truck miles were subtracted from the VMT-Port trucks reported (Δ Alameda "increase" - $\Delta \mathrm{I}-710$ "decrease" - $\Delta \mathrm{I}$-110 "decrease").

Tables ATG5-1, ATG5-2, ATG5-3, ATG5-4 present the results of this analysis.
The Alameda Corridor Alternatives 2.2, 2.3, 2.4, 3, 6.1, 6.2, 6.3 , and 6.4 were not modeled in the HC \& LOSA. Those alternatives are hybrids of alternatives $1,2.1$, and 5 which were modeled. The VMT-Port trucks for these alternatives have been estimated from the model data available as the similarities with the alternatives that were modeled were considered adequate for the overall evaluation. It is reasonable to assume that slight variances from

[^0]the estimated VMT-Port trucks would occur if each alternative were modeled. The general approach to developing volumes for alternatives not modeled is presented below:

- Alt. 2.2 - This alternative slightly differs from Alternative 2.1 as it includes a diversion of rail traffic to the Southern Pacific Wilmington alignment for the depressed railroad between Slauson Avenue and 25th Street. The remainder of this alternative is exactly the same as Alternative 2.1. Also, the number of traffic lanes on Alameda Street from Slauson to 25 th Street is the same as Alternative 2.1. Therefore, the 2.1 volumes were used for this alternative.
- Alt. 3 - This alternative includes a depressed railroad along the east side of Alameda Street with six-lanes on Alameda from SR-91 thru 25 th Street. The roadway configuration is very similar to Alt. 2.1 with respect to intersections with cross-street traffic. Therefore, the volumes from 2.1 were considered appropriate for Alt. 3.
- Alts. 2.3 \& - These alternatives are hybrids of Alts. 1 and 2.1. Therefore, 2.4 where a transition occurred from Alt. 1 to Alt. 2.1, the appropriate volumes were averaged for that segment. The adjacent segment volumes were then adjusted to best reflect the type of roadway configuration and also considering a major facility (such as a freeway connection) within that segment.

Alt. 6.1 - This alternative has the same relationship to Alt. 2.1 that Alt. 1 has to Alt. 5 (six-lane with depressed railroad to four-lane with depressed railroad vs. six-lane with at-grade railroad to four-lane with at-grade railroad). Therefore, a decrease in Port trucks on Alameda Street was projected for Alt. 6.1 using the same ratio decrease that was realized between Alt. 1 to Alt. 5 (Model C vs. Model D).

Alt. $6.1=\frac{(\text { Model E) (Model D) }}{\text { Model C }}$
(Alameda Street Estimates)
However, the freeways were treated as a net decrease of Port trucks when estimating the Port trucks for Alternative 6.1:

Alt. 6.1 = Model E - [Model D - Model C]
(Freeway Estimates)

- Alts. 6.2, 6.3 - \quad These alternatives were treated similarly to Alt. 2.2, 2.3, and 2.4 \& 6.4 in developing the VMT-Port trucks.

The resulting matrix of VMT-Port trucks is presented in Table ATG-5 with the estimated VMT-Port trucks shown in italics.

GENERAL OBSERVATIONS:

- Model G results in the highest volumes of Port truck miles affected with approximately 132,800 , of this total 44% or approximately 58,000 VMT are caused by a reduction on the freeways.
- Model C (Alt. 1) results in the next highest volumes of Port trucks miles affected with approximately 19,500 , of this total approximately 27% or approximately 5,300 are caused by a reduction on the freeways.
- Model E (Alt. 2.1) results in approximately 17,5000 VMT-Port trucks with approximately 39% or approximately 6,700 VMT of those Port trucks attributed to a reduction on the freeways.

2020 - MODEL "D" - 4 LANE ALAMEDA \& @ GRADE R.R.
table: ATG5-2
PORT TRUCK FREEWAY DIVERSION TO ALAMEDA CORRIDOR
2020 FUTUAE TRAFFIC - PORT TRUCKS ONLY - ADT

2020 - MODEL "G" - TRUCK EXPRESSWAY \& DEPRESSED R.R.
PORT TRUCK FREEWAY DIVERSION TO ALAMEDA CORRIDOR
2020 FUSURE TRAFFIC - PORT TRUCKS ONLY - ADT

1-110 FREEWAY								alameda street								1-710 FREEWAY						PEACENI OF TOTAL port truck miles pffected ctimubuteo to Freeway Repuctions
	NOATH	noDet ${ }^{-1}$ SOUTI	TOTAL	noam	MODEL 'G sount	rotal	-90-98	mooel -8*			NOAIII	$\begin{aligned} & \text { MODEL }{ }^{\circ} \text { Gr } \\ & \text { SOUTH } \end{aligned}$	ioial	G'-8.	NOAIH	MODEL ${ }^{-8 .}$ SOUTH	total	MODEL ${ }^{\circ}$				
A\& ${ }^{\text {c }}$	033	717	1350		448	${ }^{\text {sos }}$		40 74 20	$\begin{aligned} & 39 \\ & 64 \\ & 8 \end{aligned}$	$\left.\begin{gathered} 86 \\ 138 \\ z 8 \end{gathered} \right\rvert\,$	304 1145 1420	$\begin{gathered} 818 \\ 1107 \\ 1434 \end{gathered}$	$\begin{aligned} & 16892 \\ & 2338 \\ & 2654 \end{aligned}$		$\begin{gathered} 402 \\ \hline 17206 \\ 2514 \end{gathered}$	$\begin{aligned} & 305 \\ & 2000 \\ & 2514 \end{aligned}$	$\begin{gathered} 707 \\ 3192 \\ 5028 \end{gathered}$	$\begin{gathered} 280 \\ 1420 \\ 1849 \end{gathered}$		$\begin{gathered} 8002 \\ 3000 \end{gathered}$		
	833	717	1350	440	↔	ses		13	12	25	1587	1591	3178									
	70	725	1523	308	450	${ }^{889}$		∞	3	133	2478	2421	4607		2045	2075	5320	1733	1737	3470		
	1035	${ }^{874}$	1909	700	800	1516		${ }^{64}$	∞	130	2513	2314	4827		2797	2842	8039		$1{ }^{189} 8$	3791		
								32	30	-	2481	2585	4888									
	1054	1003	3346	1055	1348	2403		38	${ }_{5}^{36}$	${ }^{76}$	2710	2565	5275									
SEa sum	1873	$\frac{1722}{1730}$	$\begin{array}{r} 3399 \\ 12825 \end{array}$	1002 4131				13 453		$\begin{aligned} & 132 \\ & 804 \end{aligned}$	18730		34051		10144	10032	20576	cous		14149		
- Of LINKS avo val.	1071	1075	$\begin{array}{r\|} \hline 6 \\ 2146 \end{array}$	∞	${ }_{818}^{8}$	1505		46	$\begin{aligned} & 10 \\ & 41 \end{aligned}$	$\begin{aligned} & 10 \\ & 80 \end{aligned}$	1000	1×4	3703^{8}		2028	2060^{5}	4115^{5}		${ }_{3433}^{5}$	$\begin{array}{r} 5 \\ 2 \times 30 \end{array}$		
SEGMENT OST PORT T. MLEES	810.7	$\begin{array}{r} 57 \\ 0.127 .5 \end{array}$	$\begin{gathered} 9.8 \\ 12 z=9.2 \end{gathered}$	$3 w_{2} 75$	$\begin{array}{r} 5.7 \\ 4058.8 \end{array}$	$\begin{array}{r} 5.7 \\ 0670.5 \end{array}$	-3053.7	210	1508	412.8	8.48	-235 ${ }^{40}$	$\operatorname{carse} 4$	17845.8	12×058	133504	20330	84*0.4	${ }^{0.4}$	$\begin{gathered} 0.4 \\ \text { veit } \\ \hline 12 \end{gathered}$	-2024	$401 \times$
c	2156	2314	4470	1231	1460	2717		7	so	133	2725	2577	3508		3022	3082	2004	2046	2092	4188		
	. 2134	2350	4443	1180	1456	2045		6	6	148	2770	2842	3412									
	22301	2500 2000	(4720	1240 1281	1546 1610	2708 2801		50	π	245	${ }_{2021}^{2020}$	3132 3030	coss cosi		3300	3350	0038	2355	2353	4708		
											2087		0000									
								8	87	${ }^{255}$												
								8	598	1200												
								830	387	1228												
	3600	389	35588	1509	1828	3008		879	008	1287	3301	30494	$\begin{aligned} & 8708 \\ & 87255 \end{aligned}$		${ }^{4234} 4$	$\stackrel{4252}{4}$	(2088	3527	$\begin{aligned} & 3144 \\ & 3195 \end{aligned}$	${ }_{6}^{68784}$		
								-00	842	1332												
								729 $\mathbf{e r g r}$		$\begin{aligned} & 1489 \\ & 1898 \end{aligned}$												
SEC SUM	13050	15447	20343	7800	15sen	17407		4818	4360	Q20s	20000	21407	42200		1.4000	19976	28876	11567	10784	22331		
- Df liniss avg vol.	2310	2815	4001^{6}		1508	2015		10 402	$\begin{array}{r} 10 \\ 430 \end{array}$	101		3060^{7}	$\begin{array}{r} 7 \\ 0.42 \end{array}$		3725	$3 x_{4}^{4}$	7409^{4}	2002	2×0	5583		
segment oist PORT T. MLEES	14500^{03}	10205	30013.3	8207.1	10007.4	$\begin{array}{r} 0.3 \\ 10306.5 \end{array}$	-12448.a		283°	5×6		18348	$\begin{gathered} 0 \\ 30252 \end{gathered}$	30728	212325	$\begin{array}{r} 5.7 \\ 21340.8 \end{array}$	$\begin{array}{r} 5.7 \\ 42573.3 \end{array}$	$\begin{array}{r} 5.7 \\ 160464.4 \end{array}$	15333.7	$\begin{array}{r} 5.7 \\ 31823.1 \end{array}$	-10750.2	43.0\%
0								1251														
	3723	3350	2073	2331	2297	4818					3000	3730	2431		5351	${ }_{4075}$	10328	4841	4522	2003		
	4328	353	$7 \mathrm{Ta49}$	3138	2458	${ }^{5500}$									5430	5201	10040	4000	4940	9740		
	407909	4318	${ }^{22905}$	3020 412	3100 3000	7008 7425		2524 2806	${ }_{3}^{2818}$	5	4435	4375	8610		8475	${ }^{8579}$	13054 1352 1	5850		11543 12145		
	5374	4631	2005	412	3183	1205					4707	4835	9008		5530	5971	11307	S097	3054	18111		
								3318	3738 4050	7057	5208	5288	10480									
								4221	4398	в890	${ }_{5}^{6239}$	${ }_{0} 0002$	${ }_{1}^{11505}$									
								4310	410	8788	0007	0453	12550									
								5068	$\$ 110$	12168	0157	0482	12030									
SEG Sum	2072	23274	49040	19287	10087	30114		27100	20013	50173	47054	50801	Qe215		31749	34508	40745	31504				
- Or lineis											-	,										
ave vol.	4 405	3078	ccia	32084	2841	0018		3×05	368	7022	528	5045	10013		5702	5033	11024	0×1	50 3	10333		
segment osit PORT T. MLES	$\begin{array}{r} 04 \\ 20120 \end{array}$	24825.4	$\begin{array}{r} 0.4 \\ 32031.0 \end{array}$	$\begin{array}{r} 0.4 \\ 207232 \end{array}$	$\begin{array}{r} 0.4 \\ 1 \pi 80 \end{array}$	30621.6	-1442		248030	$\begin{array}{r} 0.0 \\ 4779.0 \end{array}$	$\begin{array}{r} 80 \\ 30230.4 \end{array}$	$\begin{array}{r} 0.8 \\ 31978 \end{array}$	74200.4	28458	$\begin{array}{r} 0.5 \\ 37648 \end{array}$	$\begin{array}{r} 0.5 \\ 37914.5 \end{array}$	$\begin{array}{r} 0.0 \\ 75050 \end{array}$	$\begin{array}{r} 0.5 \\ 34180.5 \end{array}$	$\begin{array}{r} 0.5 \\ 32074.5 \end{array}$	$\begin{array}{r} 85 \\ 67104.5 \end{array}$	-8381.5	40.3\%
						Subioul	-30535]						Subtom	74830.6						Subivel	-27366	$430 x$
PORTITUCKPITROG-A.WK3									TOTALP	Ofi THuc	CK MILES	S AFFECIE	ED:	132831								

PREPARED BY:
DMJM/M\&N-MGG
DATE: 9/11/91
REV: 10/2/91
$10 / 10 / 91$

GOAL ANALYSIS - TECHNICAL MEMORANDUM

GOAL: Safety/Security Goal No. 1-Improve Vehicular Safety

INTRODUCTION:

This memorandum presents a comparative evaluation of Alameda Corridor alternatives relative to their ability to improve vehicular safety for rail/vehicle interface and along Alameda. This information is intended to be incorporated into a larger matrix that compares alternatives for both freight rail and vehicular traffic.

The measurement criteria used to reflect the relative difference of the alternatives in their ability to improve vehicular/railroad safety is the number of trains times the average daily traffic at each grade crossing.

METHODOLOGY:

The measurement for vehicle/railroad conflicts was established as the number of cars at an at-grade rail crossing times of the number of trains occurring at that crossing. The number of grade crossings have been identified by rail company along with the volume of average daily traffic. This information was obtained from the 1984 study prepared by SCAG and updated for this project. Exhibit ASSG1-1 contains this information for both the "Status Quo" routing of trains and the "Consolidated Corridor" routing of trains. A definition of "Status Quo" and "Consolidated Corridor" follows:

- "Status Quo" (No consolidation of port rail traffic and no improvements to the Alameda Corridor) - Under this scenario, all existing railroad routes would remain unchanged and projected increases of Port related freight rail movements would occur on existing trackage. All Alameda Corridor highway improvements would be limited to those facilities already funded or those projects programmed and approved for funding.
- "Consolidated Corridor" (Consolidate port rail traffic and improve Alameda Corridor to one of the Alameda Corridor alternatives under study) - Under this scenario, the Southern Pacific Railroad-San Pedro main line would be used as the consolidated route for all port related rail movements for all railroads serving the Ports; AT\&SF, Southern Pacific, and Union Pacific. The through rail movements to and from the Ports along the Alameda Corridor would be grade separated at selected major cross streets with all other railroad grade crossings eliminated.

The projections of through-trains for each rail company is presented in Table ASSG1-1 and is consistent for both the "Status Quo" routing as well as the "Consolidated Corridor" condition.

THROUGH-TRAIN MOVEMENTS PER PEAK DAY

RAIL COMPANY 2020
AT\&SF 24
Southern Pacific 41
Union Pacific 34
Total Train Movements 99

TABLE: ASSG1-1 Through-train movements by rail company.
This analysis presents a comparison of vehicle/train conflicts for the "Status Quo" vs. the "Consolidated Corridor" routing of through train movements. The "Consolidated Corridor" addresses all Alameda alternatives as equal when analyzing through-train movements. However, one of the key differences with the alternatives occurs in the handling of the rail traffic for industry service along the Alameda Corridor. Under the "Consolidated Corridor", a drill track ${ }^{1}$ is necessary to accommodate the rail traffic for industry service. The Alameda Corridor alternatives which incorporate an at-grade railroad provide a mitigation for potential vehicular/railroad conflicts associated with the train operations on the drill track because all rail crossings by cross street traffic are eliminated through grade separations or closures. Under the Alameda Corridor depressed railroad alternatives, the drill track remains at-grade and cross street traffic which is accommodated with grade separations (bridges over the depressed main line) still results in travel across the at-grade drill track. Thus, a potential conflict of vehicles ana trains occurs. These differences in vehicle/railroad conflicts are also included in this analysis. The following table presents the daily trains projected for industry service in the Year 2020.

[^1]
PLANNING YEAR

TYPE OF TRAIN 2020
Daily industry service ${ }^{2}$
along Consolidated Corridor 10
TABLE: ASSG1-2 Daily industry service along Alameda Corridor.

The potential conflicts of vehicles and trains at grade crossings are quantified in the same fashion as the through-train conflicts:

ADT * No. of Trains = vehicle/railroad conflict index

[^2]SOUTHERN PACIEIC - GRADE X-INGS, ADT'S, TR, \& ADT X TRANS PER PEAK DAY

EXHIBIT: ATG1-1 ADT x TRAINS PER DAY "STATUS QUO 2020" - SPTC

INT		$\begin{aligned} & \text { RR } \\ & \text { DES } \end{aligned}$	grade X-ing SIREET NAME	$\begin{aligned} & 2020 \\ & \text { ADT } \end{aligned}$	IR	2020 ADT x IR PER DAY	INT No. SEG		PR GRADE X-ING DES STREET NAME		$\begin{aligned} & 2020 \\ & \text { ADT } \end{aligned}$	IR	2020 ADT x TR PGR DAY
No.	SEG												
			ATSF HARBOR S	HCBAR	T 10	18580	51	43	2 H 3	IVY AV	2,360		56840
1	42	2 H 1	harriet St										
2	42	$2 \mathrm{H1}$	25TH ST	840	24	20180	52	43	$2 \mathrm{H}_{3}$	EUCALYP. AV	14,810	24	355440
3	42	2 H 1	28THST	14,110	24	338840	53	43	$2 \mathrm{H}^{2}$	N. CEDAP	1,250	24	30000
4	42	2 H 1	27THST	1,830	24	43820	54	43	2 H 3	OAKST	2,290	24	54960
5	42	2 H 1	29THST	310	24	7440	55	43	2 H 3	HYDE PK BL	4,940	24	$\begin{array}{r} 118560 \\ 697920 \end{array}$
6	42	2 H 1	37TH/38TH ST	19,440	24	488580	56	43	$2 \mathrm{H}_{3}$	LACIEN. Bl	29,080	24	
7	42	2 H 1	E.VERNON AV	14,970	24	358280	57	43	$2 \mathrm{H}_{3}$	HINDPY AV	4,580	24	109920
8	42	2 H 1	PACIFICBLVD	27,360	24	658840	58	43	$2 \mathrm{H}_{3}$	MANCH. AV	49,320	24	1183680
0	42	2 H 1	49TH ST	3,050	24	73200	59	43	2 H 3	ARBOP V.	22,760	24	546240
10	42	2 H 1	FRUITLANDAV	8,000	24	194180	60	43	2 H 3	104THST	15,480	24	$\begin{array}{r} 371520 \\ 56400 \end{array}$
11	42	2 HI	52NDST	070	24	23280	81	43	2 H 3	111THST	2,350	24	
12	42	2 H 1	53RD ST	1,860	24	44640	62	43	2 H 3	ImPErial hwy	78,490	24	1835760
13	42	2 H 1	54TH ST	850	24	20400	63	43	$2 \mathrm{H}_{3}$	118THST	6,460	24	155040
14	42	2 H 1	55TH ST	5,130	24	123120	64	43	$2 \mathrm{H}_{3}$	120TH ST	2,810	24	62640
15	42	2 H 1	56TH ST	900	24	23780	65	43	2 H 3	DOUGLASST	19,050	24	457200
18	42	$2 \mathrm{H}_{1}$	57TH ST	1,420	24	34080	66	1	$2 \mathrm{H}_{3}$	COMPTONAV	24,260	24	$\begin{aligned} & 582240 \\ & 928500 \end{aligned}$
17	42	$2 \mathrm{H}_{1}$	58TH ST	1,290	24	30060	87	1	$2 \mathrm{H}_{3}$	INGLEWOCO	38,690	24	
18	42	2 H 1	SANTAFEAV	27,050	24	648200	68	1	2 H 3	MANHATTANBL	2,000	24	828500 69600
19	42	2 H 1	2NDST	2,290	24	54980	89	1	$2 \mathrm{H}_{3}$	159THST	770	24	18480
20	42	2 H 2	ALAMEDA EN	32,880	24	788120	70	1	2 H 3	180TH ST	770	24	18480
21	42	2 H 2	HOLMESAV	1,100	24	28400	71	1	$2 \mathrm{H}_{3}$	161ST ST	770	24	18480
22	43	2 H 2	LONGBCH W.	1,440	24	228560	72	1	2 H 3	162ND ST	2,290	24	5406054960
23	43	2 H 2	COMPTON AV	17,450	24	418800	73	1	2 H 3	170TH ST	2,290	24	
24	43	2 H 3	hooper av	12,190	24	292560	74	1	2 H 3	182NDST	18,680	24	447840
25	43	2 H 3	central av	23,800	24	573380	75	1	$2 \mathrm{H3}$	TOPAANCE BL	38,120	24	814880
28	43	2 H 3	MCKINLEY AV	6,020	24	144480	78	1	2 H 3	SONOMAST	1,850	24	44400
27	43	$2 \mathrm{H}_{3}$	Paloma av	830	24	22320	77	1	$2 \mathrm{H}_{3}$	CARSON ST	37,120	24	88083028080
28	43	$2 \mathrm{H}_{3}$	avalonbl	23,540	24	584980	78	1	2 H 3	WASHNGTON AV	1,170	24	
29	43	$2 \mathrm{H}_{3}$	towne av	2,710	24	85040	78	1	2 H 3	ARLING. AV	21,520	24	518480
30	43	$2 \mathrm{H}_{3}$	SANPEDAOST	10,460	24	251520	80	1	2 H 3	CABRIL. AV	11,210	24	268040
31	43	2 H 3	S. MANST	10,270	24	462480	81	1	$2 \mathrm{H}_{3}$	border av	1,880	24	44840
32	43	2 H 3	S. BROADWAY	31,420	24	754080	82	1	2 H 3	SEPULVEDA	55,890	24	1330500 835520
33	43	$2 \mathrm{H}_{3}$	FIGUEROA	34,400	24	825600	83	1	2 H 3	WESTERNAV	38,080	24	935520331200
34	43	2 H 3	HOOVER ST	18,950	24	454800	84	1	$2 \mathrm{H}_{3}$	S. FGUEPOA	13,800	24	
35	43	2 H 3	VERMONTAV	31,100	24	747840	85	1	$2 \mathrm{H}_{3}$	AVALON BL	18,780	24	450240
36	43	2 H 3	budlong av	5,860	24	141120	88	1	$2 \mathrm{H3}$	BROAD ST	1,640	24	39380
37	43	$2 \mathrm{H}_{3}$	NOPMANDIE AV	29,560	24	709440	87	1	2 H 3	LAKME ST	2,240	24	53760
38	43	2 H 3	DENKER AV	10,360	24	248840	88	1	$2 \mathrm{H3}$	WILMIN. AV	18,640	24	390360624720
39	43	$-2 \mathrm{H} 3$	SLAUSONAV	38,860	24	056840	88	2	2 H 3	lomata	28,030	24	
40	43	$2 \mathrm{H}_{3}$	WESTGANAV	35,480	24	851040	90	3	2 H 3	Total ADT \times Traina/Day:	43,620	24	1046880
41	43	2 H 3	VAN NESS	17,620	24	422880							32,543,760
42	43	$2 \mathrm{H}_{3}$	4 THAV	3,620	24	86880							
43	43	2 H 3	8THAV	25,400	24	800600	ATSF SAN BERNARDINO SUBDIV. - HOBART TODT JUNCTION						
44	43	2 H 3	11THAV	2.960	24	71040							
45	43	$2 \mathrm{H}_{3}$	67THST	4,970	24	118280	1	38	2	PIONEER BLVD.	19,690	24	472560
46	43	2 H 3	CRENSHAW BL	35,080	24	841820	2	36	2	PASSONS ELVD	16,340	24	392160
47	43	$2 \mathrm{H}_{3}$	vicioria av	1,140	24	27360	-	38	2	SERAPIS AVE	8,040	24	144860
48	43	$2 \mathrm{H}_{3}$	bRYNHURST AV	1,050	24	25200				Total ADT \times Tralna/Day:			1,009,680
49	43	$2 \mathrm{H3}$	CENTINELA	25,070	24	601680							
50	43	$2 \mathrm{H}_{3}$	labreast	34,110	24	818840							
							TOTAL ATSF ADT E TRANSNOAY 33,553,440						

[^3]

EXHIBIT: ATG1-3 ADT x TRAINS PER DAY 'STATUS QUO 2020" - UPRR

$\begin{aligned} & \text { NT } \\ & \text { No. SEQ } \end{aligned}$	RA GRADEX-ING DES STPEET NAME	$\begin{aligned} & 2020 \\ & \text { ADT } \end{aligned}$	IR	2020 ADT X IR PERDAY	$\begin{aligned} & \text { INT } \\ & \text { No.SEG } \end{aligned}$	RR GRADE $X-$ ING DES STREET NAME	$\begin{aligned} & 2020 \\ & \text { ADT } \end{aligned}$	18	2020 ADT x IR PER DAY
	ALAMEDA CORRIDOR DPALL TRACK (SEE NOTE 1)				2322	BG2 POSECRANS (FUTURE GRADE SEPARATION BY OTHERS)	30250	10	302500
128	BG1 25TH ST (FUIURE GRADE SEPARATION)	9980	10	99800	2422	BG2 ELM ST (FUTURE RR CROSSING CLOSURE)	2300	10	23000
228	BG1 ALAMEDAE (FUTURE GRADE SEPARATION)	12210	10	122100	2522	BG2 PALMERAV (FUTURE RR CFOSSING CLOSURE)	4580	10	45800
328	BG1 41ST ST (FUTURE GRADE SEPARATION)	15150	10	151500	2822	BG2 COMPTON BL (FUTURE GRADE SEPARATION)	35190	10	351900
428	GG1 VERNONAV (FUTURE GRADE SEPARATION)	22280	10	222800	2722	BG2 LaUREL ST (FUTURE RR CROSSING CLOSURE)	1530	10	15300
528	BG1 51ST ST (FUTURE RR CROSSING CLOSURE)	790	10	7900	2822	BG2 ALONDRAAV (FUTURE GRADE SEPARATION)	22100	10	221000
628	BG1 55 TH ST (FUTURE RR CROSSING CLOSURE	9380	10	93800	2922	BG2 GREENLEAF (FUTURE GRADE SEPARATION)	15270	10	152700
728	BG1 SLAUSONAV (FUTURE GRADE SEPARATION)	42800	10	428000	3021	BG3 DELAMO BL (FUTURE GRADE SEPARATION BY OTHERS)	31990	10	319900
828	BG1 RANDOLPHST (FUTURE RA CROSSING CLOSURE)	10290	10	102900	3121	BG3 DOMINGUEZ (FUTURE RR CROSSING CLOSURE)	12680	10	126800
926	BG1 GAGEAVE (FUTURE GRADE SEPARATION)	26120	10	261200	3221	BG3 CARSON ST (FUTURE GRADE SEPARATION BY OTHERS)	14540	10	145400
1026	BG1 FLORENCEAV (FUTURE GRADE SEPARATION)	51040	10	510400	3318	BG3 SEPULVEDA (FUTURE GRADE SEPARATION)	26850	10	268500
1126	BG1 NADEAUAV (FUTURE GRADE SEPARATION)	29370	10	293700	346	BG3 PCH HWY (FUTURE GRADE SEPARATION)	50890	10	508900
1224	BG2 FIRESTONE (FUTURE GRADE SEPARATION)	41230	10	412300	TOTALADT x TPAINS PER DAY ALTS 2 1A, 2.2, 2.3, 2.4, 3.0, 6.1, 6.2, 6.3, 6.4				6,357,000
1324	BG2 SOUTHERNAV (FUTURE RA CROSSING CLOSURE)	12630	10	126300	TOTAL ADT \times TRAINS PER DAY ALTS 1.0, 5.0 (SEE NOTE 1)				0
1424	BG2 TWEEDY BL (FUTURE GRADE SEPARATION)	16370	10	163700					
1524	BG2 M.L KING (FUTURE RR CROSSING CLOSURE)	14510	10	145100	ATSF SAN BERINARDINO SUBDIV. - HOBART TO DT JUNCTION				
1624	BG2 FERNWOODAV (FUTURE RR CROSSNG CLOSURE)	4270	10	42700	$\begin{array}{ll} 1 & 36 \\ 2 & 36 \end{array}$	2 PIONEER BLVD 2 PASSONS BLVD	$\begin{aligned} & 19690 \\ & 16340 \end{aligned}$	24	$\begin{aligned} & 472560 \\ & 392160 \end{aligned}$
1724	BG2 IMPERIAL HWY (FUTURE GRADE SEPARATION)	14820	10	148200	336	2 SERAPIS AVE	6040	24	144960
1824	BG2 LYNWOODAV (FUTURE RR CROSSING CLOSURE)	12820	10	128200	TOTAL ADT \times TRAINS PER DAY				1,009,680
1924	GG2 BUTLER ST (FUTURE RR CROSSING CLOSURE)	410	10	4100					
2024	BG2 WEBERAV (FUTURE GRADE SEPARATION)	3340	10	33400					
2124	BG2 EL SEGUNDO (FUTURE GRADE SEPARATION)	26750	10	267500					
2224	BG2 PINE ST (FUTURE RR CROSSING CLOSURE)	10970	10	109700					

TOTALADTX TRAINS PER DAYALTS $2.14,2.2 .2,2,2.4,3,0,6.1,6.2,6.3,6.4$
TOTALADT \times TPAINS PEADAYALTS 1.0, 5.0 (SEE NOTE 1) 27, 169,150

SEG $=$ RA Mainline Segment
RR DESG = Railroad Mainline Branch No.
ADT = Average Daily Tratic Volume
TR = Trains per Day

STATUS QUO ADT x TR/DAY

PASADENA JCT TO J-YARD (UPRR) WILMINGTON BRANCH SAN PEDRO BRANCH LA HABRA BRANCH
PUENTE/SANTA ANA BRANCH
WEST LINE (PASADENA TO BARTOLO JCT.) BARTOLO TO INDUSTRY (UPRR) UNION PACIFIC

689400 5269300 15477700 6787520 7320200 6104040 2992430

SAN PEDRO BRANCH
 EAST L.A. TO INDUSTRY

ACTHISON, TOPEKA AND SANTA FE

HARBOR SUBDIVISION
 HOBART TO DT JUNCTION

PORTS TO DOWNTOWN CONNECTIONS
ALTS. 1.0, 5.0
N/A CONSOLIDATED CORRIDOR

ALTS. 2.1A, 2.2, 2.3, 2.4, 3.0, 6.1, 6.2, 6.3, 6.4 N/A 6357000
0
0
0
0
0
20855470
0

REDUCTION IN ADT \times TR/DAY

 CORRIDOR v. STATUS QUO
689400

 5269300 154777006787520
7320200

- 14751430 *INCREASE IN ADTxTR/DAY 2992430
TOTAL ADT \times TRAINS PER DAY 107413630

EXHIBIT ATG1 - 5: REDUCTION ADT x TRAINS PER DAY SUMMARY, CORRIDOR v. STATUS QUO, YEAR 2020

PREPARED BY:
DMJM/MN-WJM
DATE: 9/09/91
REV: 10/2/91

GOAL ANALYSIS - TECHNICAL MEMORANDUM

GOAL: Safery/Security Goal No. 2 - Improve Safety for Pedestrians

INTRODUCTION:

This memorandum presents a comparative evaluation of Alameda Corridor alternatives relative to their ability to provide an Improvement of Safety for Pedestrians from railroad operations. This information is intended to be incorporated into a larger matrix that compares alternatives to improve Alameda Street Corridor for both rail and vehicular traffic.
The measurement criteria used to quantify pedestrian safety is the Reduction in Trains per Day x Grade Crossings.

METHODOLOGY:

Significant railroad hazards to pedestrians result from exposure at At-Grade crossings. Even with crossings fully protected with gates and flashers (as proposed for the Corridor and recommended by the California Public Utilities Commission) pedestrians and motorists will chose to ignore the warning and walk into the path of an oncoming train.

A quantitative comparison of the alternatives can be made by tabulating the number of grade crossings and multiplying by the number of trains expected to operate over those crossings. In order to quantify the effects on rail lines beyond the Corridor this criteria was tabulated for grade crossings from the Ports to the City of Industry (SPTC, UPRR) or D.T. Junction (ATSF). This tabulation is presented in Table SS2-1. It should be noted that there are no At-Grade crossings of Corridor main track in any of the Alternatives, however the Depressed Alternatives include an at-grade drill track which is included in the tabulations. It is this tabulation that is carried over into the Matrix Evaluation of the Alternatives.

CONCLUSIONS:

From Table SS2-1 it can be seen that Alternatives 1.0 and 5.0, the At-Grade Trainway present the least pedestrian exposure to At-Grade crossing hazards. The reasoning behind this is because the pedestrians will be encouraged to use the overcrossing structures to traverse Alameda. This travel path would be encouraged in areas where continuous sound walls would be constructed along the trainway. This tabulation is carried over into the Matrix Evaluation of Alternatives.

GENERAL OBSERVATIONS:

The results of consolidating trains onto the Corridor trainway can have the effect of consolidating the "potential of pedestrian hazard" also. This in turn would automatically reduce the hazard exposure on the routes from which rail traffic was diverted. The effect of consolidating the trains and protecting the pedestrians with continuous fences and grade separations will largely eliminate pedestrian exposure to the Corridor trainway.

The Depressed Trainway should be less of an "attractive nuisance" to pedestrians attempting to cross Alameda. The Depressed Trainway will provide readily available crossings over the trainway at nearly all existing grade crossings. Also, pedestrian crossings over the Trainway can be readily installed where desirable. It will also be considerably difficult to get in and out of the Depressed Trainway. However, pedestrians may attempt to cross on utility bridges or spandrels. These facilities would be designed with property safeguards.

In that is an interesting and unusual structure, the Depressed Trainway may be more of an "attractive nuisance" to vandals and vagrants, particularly at the maintenance of way access ramps. This potential problem can be minimized by sufficient security patrols, lighting, and locked gates at the ramps.

Although it involves fewer grade crossings, the At-Grade Trainway Alternative is somewhat less amenable to the needs of pedestrians along Alameda. To utilize the over or under-pass structures, pedestrians will walk considerably out of their way east or west of Alameda St. Furthermore separate pedestrian crossings will necessitate large structures to be constructed involving stairs or long ramps along Alameda St.

Recent local experience on the Metro-Rail Blue Line is that the first year saw frequent, sometimes daily, cutting of the steel picket fence. The SCRTD followed a policy of A.S.A.P. repair of damaged fence panels. Recently vandalism of the fence has fallen to almost zero.

TABLE SS2 - 1 PEDESTRIAN EXPOSURE TO AT-GRADE CROSSING HAZARDS

PREPARED BY:
DMJM/M\&N - WJM
DATE: $9 / 26 / 91$
REV:10/2/91

GOAL ANALYSIS • TECHNICAL MEMORANDUM

GOAL: Railroad Goal No. 1 - Improve Railroad Operating Efficiency and Flexibility

INTRODUCTION:

This memorandum presents a comparative evaluation of Alameda Corridor alternatives relative to railroad efficiency. This information is intended to be incorporated into a larger matrix that compares alternatives to improve Alameda Street Corridor for both rail and vehicular traffic.

The measurement used to quantify efficiency includes a tabulation of physical characteristics affecting route efficiency as follows: length of line, quantity of special trackwork, total curvature, total rise and fall, maximum gradients, quantity of at-grade RR crossings. Flexibility is measured by the number of route between two points and is also included in this tabulation.

METHODOLOGY:

An important project goal is the improvement of the overall rail operations in the study area. The improvement in overall operating efficiency of the Corridor network over the Status Quo network has been modelled by computer simulation ${ }^{1}$. The quantifying by computer simulation operating efficiency accounts for such factors as train and ship arrivals, dispatching efficiency and priorities, loading and unloading times, probabilities of equipment failure and the impacts of passenger trains receiving track priority. All of the rail alternatives are very similar and satisfy the general operational rail network requirements stipulated in and verified by the computer simulations. Also, the actual procedures and practices of train operations that will be instituted by the railroads are beyond the scope of this project, and therefore cannot be included in determining the efficiency of any Alternative. In order to quantitatively compare the rail alternatives a detailed tabulation of the physical features of the alternatives representing Route Efficiency was prepared. This tabulation is presented by Segment (note: no railroad work in Segment A) in Tables RR1-1 and 2.

[^4]The short length of the corridor and the similarity of alternatives result in only minor differences when they are compared using conventional railroad quantitative parameters. The following measures of the physical characteristics of a railroad have been tabulated in order to define and compare the Route Efficiency of each alternative.

Length of Line:

Operating times tend to increase over a longer line. Construction and maintenance of way (M / W) cost will vary directly with length, i.e. more track to build and maintain.

Special Trackwork

Turnouts and at-grade crossing frogs are very expensive to install and maintain as compared to typical straight track. Also, special trackwork present a somewhat greater potential for operating inefficiencies as compared to typical track. In addition to the added construction and maintenance expense of the special trackwork required, at-grade crossings will tend to lower efficiency in that one train must wait for the other. It is assumed that Corridor traffic will be given priority in any crossing conflicts with other freight movements.

Total Curvature:

The total degree of curvature is a traditional measure of line "quality". Curves limit operating speeds and require somewhat increased maintenance. The impact of curves increases with degree or sharpness of the curve. The sharper curves also incur an increased potential for operating inefficiencies.

Total Rise and Fall

Total rise and fall is the sum of the differences between all summits and sags of a line. It is another traditional measurement of line quality. Its greatest effect is on operating and equipment cost, with minor impact on M/W cost. Note: the costs of the Depressed Trainway structure itself are compared elsewhere to costs of grade separation structures.

Maximum Gradients (Grades)

Greater gradient tends to increase operating costs, and to some degree M/W costs. lower construction cost.

Flexibility

Flexibility is defined as the number of routes available between two points. In the case of this study it is desirable to maintain and enhance, if possible, existing connections to the other rail lines in the area in order to maintain operational capacity should the Corridor incur an extended delay or maintenance operation. All alternatives maintain connections to the existing lines, and enhance overall access to the Ports. However, the Depressed Trainway Alternatives, 2.1, 2.2, 3.0, 6.1, and 6.2 which require the SPTC Santa Ana Branch to be connected to the Drill Track without access to the main track until the Artesia Fwy. are least flexible (subjective score 3). Depressed Alternatives 2.3 and 6.3, which require that the Santa Ana Branch be connected to the Drill Track but allows access to the Corridor Main tracks north of Rosecrans Ave. are somewhat more flexible and are given a subjective score of 4.All other alternatives (1.0, 2.4, 5.0 and 6.4) are equally more flexible (subjective score 5)._Note, Depressed Alternatives 2.4 and 6.4 are At-Grade at Firestone Blvd. and therefore allows the Santa Ana Branch the same access to Corridor Main Tracks as the At Grade Alternatives.

Alternatives Comparison

For the purposes of comparison, each characteristic of each Alternative was measured or subjectively ranked, as appropriate. These values where then normalized for each criteria and summed for each Alternative. These sums were then normalized and compared to determine the most desirable Alternative. Refer to Tables RR1-1 and RR1-2.

CONCLUSIONS:

By comparing the tabulation presented in TABLE RR1-1, it can be seen that from a railroad perspective all alternatives are very similar. However, it can be concluded that Alternatives 1.0 and 5.0, the At-Grade Trainway is the most desirable and Alternatives 2.2 and 6.2, which involve the Depressed Wilmington Diversion are the least.

ITEM	AT-Grade 1.0, 5.0		DEPRESSED 2.1, 3.0, 0.1		WILMINGTONDIV. 2.2, 8.2		DEPRESSED 2.3, 0.3		DEPRESSED 2.4, 6.4	
	ACTUAL	REL. RANK	ACTUAL	$\begin{array}{\|l\|} \text { REL } \\ \text { RANK } \end{array}$	ACTUAL	$\begin{aligned} & \text { REL. } \\ & \text { RANH } \\ & \hline \end{aligned}$	ACTUAL	PREL.	ACTUAL	$\left\lvert\, \begin{aligned} & \text { REL. } \\ & \text { PANK } \\ & \hline \end{aligned}\right.$
LENGTH	18.14 MILES	1.00	19.14 MILES	1.00	18.55 miles	0.98	19.14 miles	1.00	18.14 MILES	1.00
SPECIAL TRACKWOAK	58 EACH	1.00								
TOTAL. Curvature	380 DEGS	1.00	380 DEGS	1.00	507 DEGS	0.75	380 DEGS	1.00	380 DEGS	1.00
total RISE ANO FALL	282 FEET	1.00	322 FEET	0.81						
MAXIMUM GRADE	1.5 \%	1.00	1.5 \%	1.00	1.5 \%	1.00	1.5 \%	1.00	1.5 \%	1.00
FLEXIBIUTY RATING	5	1.00	3	0.80	3	0.00	4	0.80	5	1.00
EVALUATION		8.00		5.41		5.14		5.61		5.81
NORMALIEE EVALUATION		1.00		0.90		0.88		0.94		0.97

TABLE RR1 - 1: RAILROAD ROUTE EFFICENCY TABULATION - SUMMAAY B, C, \& D

ITEM	AT-GRADE 1.0, 5.0		DEPRESSED 2.1, 3.0, 0.1		WLMMINGTON DIV. 2.2, 6.2		DEPRESSED 2.3, 6.3		DEPRESSED 2.4, 6.4	
LeNGTH	ACTUAL	$\left\lvert\, \begin{aligned} & \text { REL. } \\ & \text { RANN } \end{aligned}\right.$	ACTUAL	RREL	ACTUAL	$\begin{array}{\|l\|} \text { REL. } \\ \text { RAN } \end{array}$	ACTUAL	REL.	ACTUAL	$\begin{array}{\|l\|l\|} \hline \text { REL. } \\ \text { RANK } \end{array}$
	5.59 MILES	1.00	5.59 Miles	1.00	8 MILES	0.83	5.50 MIES	1.00	5.50 MILES	1.00
TRACKWORK	B EACH	1.00	B EACH	1.00	8 EACH	1.00	B EACH	1.00	8 EACH	1.00
TOTAL CURVATURE	SO DEGS	1.00	90 DEGS	1.00	217 DEGS	0.41	90 DEGS	1.00	80 DEGS	1.00
total RISE AND FALL	110 FEET	1.00	140 FEET	0.78	140 FEET	0.78	140 FEET	0.79	170 FEET	0.65
MAXIMUM GaADE	0.8 \%	1.00	1\%	0.60	1\%	0.80	1 *	0.80	1 \%	0.00
FLEXIENUTY	3	1.00	1	0.33	1	0.33	2	0.67	3	1.00
evaluation		8.00		4.72		4.07		5.05		5.25
NORMALIEEDEVALUATION		1.00		0.78		0.68		0.84		0.87

TABLE RA1 - 1: PAILROAD ROUTE EFFICENCY TABULATION - SEGMENT B

ITEM	AT-GPADE 1.0,5.0		DEPRESSED 2.1, 3.0, 8.1		WILMINGTONOIV, 2.2,8.2		DEPRESSED 2.3, 6.3		DEPRESSED 2.4, 6.4	
	ACTUAL	$\left\lvert\, \begin{aligned} & \text { REL } \\ & \text { RANK } \end{aligned}\right.$	ACTUAL	$\begin{array}{\|l\|l\|} \text { REL } \\ \text { RANK } \end{array}$	ACTUAL	fRel. RANH	ACTUAL	Rel.	ACTUAL	PELL
LENGTH	5.83 MRES	1.00	5.83 MILES	1.00						
SPECIAL TRACKWORK	14 EACH	1.00	14 EACH	1.00	14 EACH	1.00	14 EACH	9.00	14 EACH	1.00
TOTAL CURVATURE	25 DEGS	1.00								
total RISE AND FALL	55 FEET	1.00	85 FEET	0.65	85 FEET	0.85	25 FEET	0.65	55 FEET	1.00
maximum GRADE	0.4 \%	1.00	1\%	0.40	1\%	0.40	1\%	0.40	0.4 \%	1.00
FLEXIBIUTY	1	1.00	1	1.00	1	1.00	1	1.00	1	1.00
EVALUATION		8.00		5.05		5.05		5.05		6.00
NOAMALIEDEVALUATION		1.00		0.64		0.84		0.84		1.00

TABLE RR1 - 1: RAILROAD ROUTE EFFICENCY TABULATION - SEGMENT C

ITEM	AT-GRADE 1.0, 5.0		DEPRESSED 2.1, 3.0, 6.1		WILMINGTON DIV. 2.2,6.2		DEPRESSED 2.3, 6.3		DEPPESSEO 2.4, 8.4	
	ACTUAL	$\left\lvert\, \begin{aligned} & \text { REL } \\ & \text { RANK } \end{aligned}\right.$	ACTUAL	REL. RANK	ACTUAL	$\begin{aligned} & \mathrm{REL} . \\ & \mathrm{RANH} \end{aligned}$	ACTUAL	$\begin{aligned} & \text { REL } \\ & \text { RANN } \end{aligned}$	ACTUAL	$\begin{aligned} & \text { REL } \\ & \text { PANi } \\ & \hline \end{aligned}$
Lengith	7.72 MIUES	1.00	7.72 MILES	1.00						
SPECIAL trackwork	38 EACH	1.00	38 EACH	1.00	36 EACH	1.00	36 EACH	1.00	36 EACH	1.00
total CURVATURE	265 DEGS	1.00	285 DEGS	1.00						
total RISE AND FALL	97 FEET	1.00	97 FEET	1.00	97 FEET	1.00	87 FEET	1.00	97 FEET	1.00
MAXIMUM GRADE	1.5\%	1.00	1.5 \%	1.00	1.5 \%	1.00	1.5 \%	1.00	1.5 \%	1.00
FLEXIBNTY	1	1.00	1	9,00	1	1.00	1	1.00	1	1.00
evaluation		6.00		8.00		8.00		0.00		6.00
NOPMALIEEDEVALUATION		1.00		1.00		1.00		1.00		1.00

TABLE RR1 - 1: PALLROAD ROUTE EFFICENCY TABULATION - SEGMENT D

GOAL ANALYSIS - TECHNICAL MEMORANDUM

GOAL:
Environmental Goal No. 2 - Minimize Projected Air Pollution

Introduction

This memorandum presents a comparative evaluation of Alameda Corridor alternatives in light of air quality and energy consumption. This information is intended to be incorporated into a larger evaluation matrix that compares alternatives to improve the Alameda Street corridor for both freight rail and vehicular traffic in terms of a number of goals that were established at the outset of the project. The criterion by which air pollution was to be evaluated was tons/day of criteria pollutants.

Methodology

Estimates of daily criteria pollutant production were developed by applying emission factors to daily estimates of vehicle miles of travel (VMT) for each of four alternatives: (1) existing (1990), (2) null (year 2020), (3) a six-lane at-grade facility for both rail and vehicles (2020), (3) a 4-lane at grade roadway facility with an at-grade railroad facility, and (5) an alternative with six vehicular travel lanes and railroad in trench. The VMT estimates that were used in this exercise were taken from previous travel modeling that had been conducted by DKS Associates. In this previous work, the modeling alternatives were referred to as A, B, C, D and E, respectively, and therefore these references are also used in this memo.

In the modeling work that was previously done, estimates were provided for daily vehicular travel by trucks and all vehicles in a study area bounded by $1-110$ on the west, l-710 on the east, $1-10$ on the north, and the Ports on the south. Using this information, daily auto travel was derived as the remainder of total vehicle miles of travel minus truck travel. Moreover, the estimates were developed for three facility types; freeway, arterials in the study area, and Alameda Street itself. The modeling work also estimated a surrogate for speed by dividing total daily miles of travel by total daily hours of travel, also by the three facility types. This information is shown in Table 1.

To the information shown in Table 1 were applied emission factors for the following pollutants: carbon monoxide, reactive organic gases, nitrogen oxides, particulates, and sulfur oxides. All but sulfur oxides are produced by both autos and trucks. Sulfur oxide production by autos is negligible. The emission factors (see Table 2) were taken from Air Quality Handbook for Preparing EIRs, South Coast Air Quality Management District, 1987. The emission factors are expressed in grams per mile. For automobiles, they vary by speed, and they are available for

1990 and for a number of intervening years up to 2002. They are not published by the SCAQMD for years beyond 2002, and therefore the 2002 factors were used for the future year of 2020 in the comparison among alternatives. This would tend to overstate the effects uniformly for all alternatives. For trucks, diesel engine emission factors were used. These are not published for any year beyond 1987, and they do not vary by speed. Diesel rail locomotive emissions were not included in the analysis because they would be equal for all alternatives. The effects associated with vehicular delays at railroad crossings were also not included. These emissions will be addressed in the project environmental document as will emissions associated with locomotive operation. The equation used to estimate emissions was as follows:

$$
\text { Emissions = VMT (by vehicle \& roadway type) } \mathrm{X} \text { emission factor }
$$

Table 3 shows the results of the analysis, for each of the modeled alternatives, by each pollutant type. Also provided in the table is a summation across all pollutants. In reality this has little meaning, but it is here used as a simple indicator of the total quantity of pollutants generated under each of the alternatives.

Table 4 presents a summary of total pollutant burden for the alternatives being considered for the corridor. Alternatives $2.2,2.3$, and 2.4 were judged to be sufficiently similar to Alternative 2.1 such that the numerical values obtained for Alternative 2.1 would apply. Alternative 6.1, 6.2, 6.3, and 6.4 are the same as Alternatives 2.1 through 2.4, except that four lanes of highway are provided instead of six. Pollutant levels for these alternatives were calculated by applying the ratio of pollutant burden for Alternative 5 divided by pollutant burden for Alternative 1 to the calculated value for Alternatives 2.1 through 2.4.

General Observations

- All alternatives result in an increase in pollutants produced in the study area, as compared with the present due to substantial increases in travel. Improvements in internal combustion engine emissions characteristics over time are not sufficient to overcome the effects of increased travel.
- None of the alternatives can be differentiated by level of pollutants generated. Each performs nearly the same as all others.
- All of the project alternatives improve operating conditions within the corridor and study area to the extent that they attract trips to the study area that otherwise would not occur under the Null alternative. This results in small increases in emissions as compared to the Null Alternative, because they are directly linked to trip making.

Source: DKS Associates, 1991.

	CRITERIA	TABLE 2 TANT EMI ams Per N	N FACTOR		
Composite Factors ${ }^{(1)}$	Carbon Monoxide (CO)	Reactive Organic Gases (ROG)	Nitrogen Oxides (NO_{x})	Particulates	Sulfur Oxides (SO ${ }_{\mathbf{x}}$)
Year Speed (mph) 1990 20	12.40	0.97	1.48	. 308	Negligible
2002 25	9.87	0.78	1.42	. 308	
	8.00	0.64	1.40	. 308	
	9.20	0.71	1.23	. 268	
	7.27	0.57	1.14	. 268	
Heavy Duty ${ }^{(2)}$ Diesel	8.37	2.93	17.20	3.3	3.2
${ }^{11}$ EMFAC 7C composite fleet factors were taken from Appendix D. Emission factors were not published for years beyond 2002. ${ }^{121}$ EMFAC 7C diesel truck emission factors were taken from Appendix L Diesel factors not published by speed.					

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{\begin{tabular}{l}
TABLE 3 \\
ESTIMATED EMISSIONS (TONS/DAY)
\end{tabular}} \\
\hline \& \& \multicolumn{5}{|c|}{POLLUTANT} \& \\
\hline Alternative \& Component \& CO \& ROG \& NO, \& Part \& SO, \& Total Burden \\
\hline \begin{tabular}{l}
A \\
(Existing)
\end{tabular} \& \begin{tabular}{l}
Trucks \\
Autos \\
- Freoway \\
- Arterials \\
- Alameda \\
TOTAL
\end{tabular} \& \begin{tabular}{l}
\[
14.4
\] \\
107.3 \\
123.7 \\
2.9 \\
248.3
\end{tabular} \& \[
\begin{array}{r}
5.0 \\
8.6 \\
9.7 \\
0.2 \\
23.5
\end{array}
\] \& \[
\begin{array}{r}
29.6 \\
18.8 \\
14.8 \\
0.4 \\
63.6
\end{array}
\] \& \begin{tabular}{l}
5.7 \\
4.1 \\
3.1 \\
0.1 \\
13.0
\end{tabular} \& \begin{tabular}{l}
\[
5.5
\] \\
5.5
\end{tabular} \& 353.9 \\
\hline \[
\begin{gathered}
\text { B } \\
\text { (NULL) }
\end{gathered}
\] \& \begin{tabular}{l}
Trucks \\
Autos \\
- Freeway \\
- Arterials \\
- Alameda TOTAL
\end{tabular} \& \begin{tabular}{l}
25.7 \\
123.0 \\
109.5 \\
4.5 \\
262.7
\end{tabular} \& \[
\begin{array}{r}
9.0 \\
9.6 \\
8.4 \\
0.4 \\
27.4
\end{array}
\] \& \[
\begin{array}{r}
52.7 \\
19.3 \\
14.6 \\
0.7 \\
87.3
\end{array}
\] \& \[
\begin{array}{r}
10.1 \\
4.5 \\
3.2 \\
\frac{0.2}{2} \\
18.0
\end{array}
\] \& \begin{tabular}{l}
9.8 \\
9.8
\end{tabular} \& 405.2 \\
\hline \[
\begin{gathered}
\text { C } \\
\text { (Alt. 1) }
\end{gathered}
\] \& \begin{tabular}{l}
Trucks \\
Autos \\
- Freeway \\
- Arterials \\
- Alameda \\
TOTAL
\end{tabular} \& \[
\begin{array}{r}
26.0 \\
122.0 \\
108.7 \\
\underline{7.0} \\
263.7
\end{array}
\] \& \begin{tabular}{l}
9.1 \\
9.6 \\
8.4 \\
0.6 \\
27.7
\end{tabular} \& \begin{tabular}{l}
53.4 \\
19.1 \\
14.5 \\
1.1 \\
88.1
\end{tabular} \& \[
\begin{array}{r}
10.2 \\
4.5 \\
3.2 \\
\underline{0.3} \\
18.2
\end{array}
\] \& 9.9

9.9 \& 407.6

\hline \[
$$
\begin{gathered}
\text { D } \\
\text { (Alt. 5) }
\end{gathered}
$$

\] \& | Trucks |
| :--- |
| Autos |
| - Freeway |
| - Arterials |
| - Alameda |
| TOTAL | \& \[

$$
\begin{array}{r}
26.2 \\
122.5 \\
197.6 \\
5.6 \\
271.9 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 9.2 \\
& 9.6 \\
& 8.3 \\
& 0.4 \\
& 27.5 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
53.9 \\
19.2 \\
15.7 \\
0.9 \\
89.7 \\
\hline
\end{array}
$$

\] \& | 10.3 |
| :--- |
| 4.5 |
| 3.2 |
| 0.2 |
| 18.2 | \& | 10.0 |
| :--- |
| 10.0 | \& 417.3

\hline \[
$$
\begin{gathered}
\text { E } \\
\text { (Alt. 2.1) }
\end{gathered}
$$

\] \& | Trucks |
| :--- |
| Autos |
| - Freeway |
| - Arterials |
| - Alameda TOTAL | \& \[

$$
\begin{array}{r}
25.9 \\
121.9 \\
108.6 \\
6.4 \\
262.8
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
9.1 \\
9.6 \\
8.4 \\
\underline{0.5} \\
\hline 27.6
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
53.3 \\
19.1 \\
14.5 \\
1.0 \\
87.9
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
10.2 \\
4.5 \\
3.2 \\
0.2 \\
18.1
\end{array}
$$

\] \& | 9.9 |
| :--- |
| 9.8 | \& 406.3

\hline \multicolumn{8}{|l|}{Source: Myra L Frank \& Associates, Inc., 1991.}

\hline
\end{tabular}

ESTIMATED T	UTANT BURDEN Y)
ALTERNATIVE	TOTAL BURDEN
1	407.6
2.1	406.3
2.2	406.3
2.3	406.3
2.4	406.3
3	406.3
5	417.3
6.1	416.0
6.2	416.0
6.3	416.0
6.4	416.0
Source: Myra L. Frank \& Associates, Inc., 1991.	

PREPARED BY:
MFA - GLP
DATE: August 27, 1991
REVISED: September 26, 1991

GOAL ANALYSIS - TECHNICAL MEMORANDUM

GOAL: Environmental Goal No. 3-Reduce Energy Consumption

Introduction

This memorandum presents a comparative evaluation of Alameda Corridor alternatives in light of energy consumption. This information is intended to be incorporated into a larger evaluation matrix that compares alternatives to improve the Alameda Street corridor for both freight rail and vehicular traffic in terms of a number of goals that were established at the outset of the project. The criterion by which energy consumption was to be measured was gallons/day of diesel fuel and gasoline consumed.

Methodology

Energy consumption was estimated for several modeling alternatives that were developed by DKS Associates. Vehicie miles of travel, from previously prepared estimates, were divided by fuel economy rates, resulting in estimates of truck diesel fuel and auto gasoline consumption per day. The fuel economy rates were taken from a 1984 study prepared by the Southern California Association of Governments for the Long Beach-Los Angeles Rail Transit Project, which provided fuel economy rates for the years 1984 and 2010. These rates were assumed to yield reasonable results for the Alameda corridor analysis, for the years 1990 and 2020. The results of the analysis are displayed in Table 1.

For alternatives that were not modeled, the results shown in Table 1 were factored to generate estimates for the remaining alternatives. Alternatives 2.2. through 3 were judged to be sufficiently similar to Alternative 2.1 that the estimates for Alternative 2.1 would apply. Estimates for Alternatives 6.1 through 6.4 were obtained by applying the ratio of fuel consumption for Alternative 5 divided by the results of Alternative 1 to the estimates for Alternatives 2.1 through 2.4. The results are shown in Table 2.

General Observations

- Owing to improvements in automobile fuel economy, a 25% decrease in study area fuel consumption can be expected between the present and any of the future year alternatives. This occurs despite an estimated increase in truck travel of 34% and auto travel of 14%.
- The variance among the alternatives, including the Null Allternative, is so slight as to not meaningfully distinguish among them. All alternatives are regarded as equal for purposes
of this analysis. It is not anticipated that the detailed analysis to be conducted for the environmental document would change this finding.

		TABLE 1 CALCULAT			
Alternative	A (Existing)	B (NULL)	C (Alt. 1)	D (Alt. 5)	E (AH. 2.1)
Truck VMT	1,566,723	2,787,937	2,820,541	21,848,714	2,818,633
Truck Fuel Econ. (mpg.)	5.2	5.2	5.2	5.2	5.2
Gallons Diesel	301,293	536,142	542,412	547,830	542,045
Auto VMT	21,532,610	26,768,384	26,870,897	27,643,993	26,781,818
Auto Fuel Econ. (mpg.)	13.9	24.0	24.0	24.0	24.0
Gallons Gasoline	1,549,109	1,115,349	1,119,621	1,151,833	1,115,909
TOTAL GALLONS	1,850,402	1,651,491	1,662,033	1,699,663	1,657,954
Source: Myra L. Frank \& Associates, Inc., 1991.					

TABLE 2 SUMMARY OF ENERGY ESTIMATES (Gallons Per Day)	
ALTERNATIVE	FUEL CONSUMPTION
	1
2.1	1,662
2.2	1,658
2.3	1,658
2.4	1,658
3	1,658
5	1,658
6.1	1,700
6.2	1,696
6.3	1,696
6.4	1,696

PREPARED BY:
MFA-GLP
DATE: August 27, 1991
REVISED: September 26, 1991

GOAL ANALYSIS - TECHNICAL MEMORANDUM

GOAL: Environmental Goal No. 6-Aesthetics

Introduction

This memorandum presents a comparative evaluation of Alameda Corridor alternatives in light of aesthetics. This information is intended to be incorporated into a larger evaluation matrix that compares alternatives to improve the Alameda Street corridor for both freight rail and vehicular traffic in terms of a number of goals that were established at the outset of the project. A subjective rating was identified as the criterion by which aesthetics would be measured.

Methodology

The aesthetic effects of proposed corridor improvements relate to the physical presence of above-ground structures constructed as part of the project and also as a result of daily railroad operations along the corridor. Consequently, these two components were selected as focal points for the analysis.

At-Grade Railroad Exposure

Once the project is in operation, it will facilitate the daily movements of up to 90 trains, each of which could be several thousand feet in length. The presence of this level of freight traffic would result in a frequent inability to see across Alameda Street, if the trains were to be operating at .grade. This could be viewed as an adverse visual effect and it is amenable to measurement. The number of miles of at-grade railroad operations permitted under each of the alternatives was used as the means by which this would be assessed.

As was noted in the Introduction, a subjective rating was established as the means by which aesthetics would be addressed for the alternatives analysis. In order to translate the number of at-grade railroad miles into a ranking mechanism, a scoring system was devised in which a raw score of between 1 and 5 was assigned to each alternative in each segment. A score of 5 was selected to represent "best" and a score of 1 was selected to represent "worst". The score assigned to each alternative was determined by taking into account both the amount of at-grade railroad exposure and the visual sensitivity of the segment in question. Some segments have very littie residential or other uses which are normally considered sensitive to issues such as aesthetics. Segment A, for example, contains no residential uses adjacent or in close proximity
to the corridor. Segment D has approximately 10% of its nearby land use in residential use. The same is true for the Alameda Street portion of Segment B. The Long Beach Avenue portion of Segment B has approximately one-half of its surrounding use as residential and Segment C has about 40% residential uses in proximity. These two portions would therefore be the most sensitive of all study areas. Using the length of at-grade railroad facility while at the same time considering the proportion of nearby sensitive use yielded a score for each alternative.

In order to assess the desirability of each alternative in its entirety, the scores for each segment were summed to yield a total raw score, which was then normalized to the 1 to 5 score system devised at the outset. Table 1 presents the results of this step in the analysis.

Grade Separations

In a fashion similar to that used for the railroad exposure analysis, an assessment was made of the degree to which above-ground project structures would be present under the project alternatives. The number of above-grade east-west grade separations were determined for each alternative and tabulated. Once again, taking into account the relative sensitivity of the specific segment in question, scores were assigned to each segment. And as in the above analysis, the scores were summed and normalized. Table 2 presents the results of this step in the analysis.

Combined Ratings

In order to account for both railroad exposure and above-grade structures, the scores for each were added by segment, totaled, and normalized. The results are presented in Table 3.

General Observations

$0 \quad$ Alternatives 1 and 5 are least attractive throughout the project area, because it has the greatest amount of at-grade railroad exposure and the most above-ground grade separation structures. This alternative was rated particularly low in project segments B and C .
$0 \quad$ Alternatives 2.4 and 6.4 did not score as high as other alternatives in Segment B and as Iow as Alternatives 1 and 5 in Segment C. As a result, these two alternatives scored second best overall. This alternative provides for nearly all of Segment B in a depressed configuration, and it would eliminate four above-grade structures proposed by Alternative 1 , which makes it more desirable in that portion of the corridor.

- All remaining alternatives are comparable to one another, both in terms of at-grade railroad exposure and the presence of above-ground grade separations. All remaining alternatives would appear to be substantially superior to Alternatives 1 and 5.
$0 \quad$ Alternatives 2.2 and 6.2 in Segment B do not show differences when compared with most other alternatives, because no at-grade railroad or above-grade roadway structures are proposed. Segment B under this alternative contains a high proportion of adjacent residential land use and therefore if an at-grade rail facility were to be proposed here, a substantial adverse effect could be expected.

TABLE 1 ALAMEDA CORRIDOR TRANSPORTATION PROJECT ALTERNATIVE EVALUATION: AESTHETICS PART ONE - AT-GRADE RAILROAD EXPOSURE (RAW SCORES: $5=$ BEST; 1 = WORST)							
		ALTERNATIVE					
		$1 / 5$	2.1/6.1	2.2/6.2	2.3/6.3	2.4/6.4	3
Segment A	RR miles at-grade	0	0	0	0	0	0
	Score ${ }^{11}$	5	5	5	5	5	5
Segment B	RR miles at-grade	5.59	1.30	1.30	1.30	1.36	1.30
	Score	$2^{(2)}$	5	5	5	4	5
Segment C	RR miles at-grade	6.10	0	0	0.32	6.10	0
	Score	$1^{(3)}$	5	5	4	$1^{(3)}$	5
Segment D	RR miles at-grade	4.66	4.66	4.66	4.66	4.66	4.66
	Score ${ }^{\text {[4] }}$	2	2	2	2	2	2
Combined Segments	RR miles at-grade	16.35	5.44	5.44	6.28	12.11	5.44
	Total of Raw Scores	10	17	17	16	12	17
	Normalized Score	2.9	5.0	5.0	4.7	3.5	5.0

Source: Myra L. Frank \& Associates, Inc., July 1991.

Footnotes:
${ }^{11}$ Segment A has no residential or other sensitive uses adjacent to the corridor. Scores reflect visibility ratings/view blockages as perceived by the general public.
${ }^{[2]}$ All of the route in this segment is at-grade under this alternative. Sensitive uses are estimated to contribute a small proportion of adjacent properties.
${ }^{(3)}$ All of the route in this segment is at-grade under this alternative. Sensitive uses comprise $35-40 \%$ of properties adjacent to the corridor.
${ }^{(4)}$ Sensitive uses are estimated to comprise 10% of properties adjacent to the corridor.

	TABLE 2 ALAMEDA CORRIDOR TRANSPORTATION PROJECT ALTERNATIVES EVALUATION: AESTHETICS PART TWO - GRADE SEPARATIONS (RAW SCORES: 5=BEST; 1 =WORST)					
			ALTE	IVES		
	1/5	2.1/6.1	2.2/6.2	2.3/6.3	2.4/6.4	3
Number Of Above Grade Structures						
Segment A Segment B	0	0	0	0	0	0
	4	0	0	0	0	0
Segment $C^{(1)}$	$8{ }^{12}$	0	0	$4^{(2)}$	$8^{(2)}$	0
Segment D	3	3	3	3	3	3
Total	15	3	3	7	11	3
Raw Scores						
Segment A	5	5	5	5	5	5
Segment B	3	5	5	5	5	5
Segment C	2	5	5	4	2	5
Segment D	5	5	5	5	5	5
Total	15	20	20	19	17	20
Normalized Score	3.75	5.0	5.0	4.75	4.25	5.0
Source: Myra L Frank \& Associates, Inc., July 1991.						
${ }^{(2)}$ Four grade separations are currentiy proposed as above-grade structures. The remainder could be abovegrade or under passes. ${ }^{(3)}$ These scores pertain only to the portion of Segment D in which alternatives 7.1 and 7.2 propose improvements.						

TABLE 3 ALAMEDA CORRIDOR TRANSPORTATION PROJECT ALTERNATIVES EVALUATION: AESTHETICS COMBINED AESTHETICS RATING						
Combined Raw Scores ${ }^{(1)}$	ALTERNATIVES					
	1/5	2.1/6.1	2.2/6.2	2.3/6.3	2.4/6.4	3
Segment A	10	10	10	10	10	10
Segment B	5	10	10	10	9	10
Segment C	3	10	10	8	3	10
Segment D	7	7	7	7	7	7
Total	25	35	35	35	29	35
Normal Score	3.6	5.0	5.0	5.0	4.1	5.0
Source: Myra L. Frank \& Associates, Inc. Footnotes: ${ }^{111}$ Scores shown are the addition of the at-grade railroad exposure and grade separations ratings. ${ }^{121}$ These scores pertain only to the portion of Segment D in which alternatives 7.1 and 7.2 propose improvements.						

PREPARED BY:
MFA - GLP
DATE: September 9, 1991
REVISED: September 27, 1991

GOAL ANALYSIS - TECHNICAL MEMORANDUM

GOAL:
Environmental Goal No. 7 - Minimize Exposure to Noise and Vibration

Introduction

This memorandum presents a comparative evaluation of Alameda Corridor alternatives in light of operational noise and vibration. This information is intended to be incorporated into a larger evaluation matrix that compares alternatives to improve the Alameda Street corridor for both freight rail and vehicular traffic in terms of a number of goals that were established at the outset of the project. The criterion used for evaluating noise and vibration effects was the number of sensitive receptors affected by noise and vibration.

Methodology - Operational Noise and Vibration

The analysis of operational noise and vibration considered the effects on five groups of sensitive receptors; residences, schools, hospitals/medical centers, churches, and parks. In order to provide a more detailed accounting, residences have been broken down into three subgroups; single family, multi family housing with 2 to 4 units, and multi family housing with 5 or more units, including mobile home parks.

At fuil operation, up to 90 trains per day will traverse the corridor. In order to determine the potential effects of this level of train use and also to consider the contributing effects on vehicular travel along the corridor, Harris Miller Miller and Hanson developed a prediction model that provided estimates of impact distances under varying assumptions of vehicular traffic and train volumes, as well as consider the different structure configurations. Noise projections were made based on measured train noise and standard Federal Highway Administration (FHWA) models for traffic noise. Both Urban Mass Transportation Administration (UMTA) and FHWA criteria were considered and as a result, a criterion of 63 dBA CNEL was selected for the analysis. Using this criterion, impact distances were estimated. The initial impact distance estimates were subsequently refined to account for alternatives that separated rail traffic from vehicular traffic. The refined impact distances are as follows: (1) at-grade trains and vehicular traffic could be expected to produce a significant effect (exceed the criterion) on properties up to 1,500 feet on either side of the aligriment, (2) depressed trains together with at-grade vehicular traffic could affect properties up to 1,000 feet on either side of the alignment, (3) at-grade vehicular traffic alone could affect properties up to 700 feet away, (4) at-grade trains alone could have an impact distance of 1200 feet, and (5) depressed trains alone could have an impact distance of 335 feet. The documentation in support of these estimated impact distances is attached to this technical
memorandum. The impact distances predicted by the noise model were used to reflect the effects of vibration as well, recognizing that a more detailed analysis of this issue will be required during subsequent project development phases. This decision was made because it is unlikely that the depressed or at-grade rail configurations would have markedly different vibration characteristics. Low frequency vibrations are expected in either case, with associated long wave lengths.

A land use map was prepared at a scale of $1^{n}=400$ in order to identify the impact areas in the context of individual properties. Assessor's Index Sheets were used for this purpose, supplemented with a collection of Assessor's Page Maps encompassing the corridor. When necessary, the boundaries were split at the parcel level. After these parcel splits were made, each alternative was defined according to Assessor's Book, Page, and Parcel, taking into account the noise contours that applied for each segment.

In order to account for the widest range of potential effect, transitions from at-grade to depressed railroad cross sections were assumed to be at the full at-grade band-width until full descent into the trench was reached. Likewise, transitions from depressed to at-grade were considered to be at the full at-grade band-width at the earliest point of the ascent out of the trench. Thus, the noise contour of all at-grade and grade-transition sections for trains plus vehicular traffic is 1,500', and is 1,000 ' only for fully depressed train sections, where trains and vehicular traffic operate adjacent to one another. This is a conservative assumption that would be refined for subsequent studies.

Once the band-widths had been determined for each alternative in each segment, a series of computer programs were developed and run in order to identify individually affected parcels. These programs were designed to identify and categorize all parcels defined within the impact contours, according to the land use types discussed above. These programs were applied to a database containing parcel-level land use information for this corridor, consisting of approximately 9,000 parcels. The programs isolated each parcel containing a sensitive use, and performed various processing operations, depending on the type of use encountered. For example, residential uses were counted by number of units, where single family was counted as one unit and all other residential parcels counted the number of units given on the database for that particular parcel. Schools, churches, and hospitals/medical centers were each counted as one unit, and parks comprised of multiple parcels per park were counted as one unit.

The sensitive-use parcels were totalled according to where they coincided with the appropriate band-width of effect for each alternative. These totals occur by segment and alternative, and are totalled for each alternative including all four segments. The results are presented in Tables 1 through 8.

General Observations

- Alternatives 1 and 5 generally affected substantially more sensitive receptors than any of the other alternatives. This large difference is accounted for by the fact that these alternatives, being at-grade, have the widest band-width. Understanding that the 1,500 ' band-width is 50% larger than the area of the $1,000^{\prime}$ band-width, this means that the area between $1,000^{\prime}$ and 1,500 is predominantly comprised of sensitive receptors. Two exceptions to this finding are hospitals/medical centers and parks, which were evenly affected throughout all the alternatives.
- The alternatives with the next largest effect, $2.4 \& 6.4$, are also the alternatives with the next largest amount of at-grade rail.
- All of the remaining alternatives are relatively comparable, and the majority of the effect of all of the alternatives takes place in segments B and C.
- Alternatives $1 \& 5$ would affect nearly twice as many school parcels as any other alternative.
- Alternatives $1 \& 5$ would adversely affect the greatest number of churches, followed by Alternatives $2.4 \& 6.4$. The remaining alternatives would have a somewhat diminished and nearly equivalent effect on churches.
- Few parks or medical centers would be affected by any alternatives.
- Taking into account all receptors, Alternatives $1 \& 5$ would have the greatest adverse effect. Alternatives $2.1,6.1,2.2,6.2, \& 3$ have the least effect and are nearly equivalent to one another.

ALAMEDA CORRIDOR TRANSPORTATION PROJECT
 NOISE \& VIBRATION SENSITIVE RECEPTORS

Table 1 Number of Units - Single Family Residential

SEGMENT	ALTERNATIVES					
	1, 6	2.1, 6.1	2.2,6.2	2.3, 6.3	2.4, 6.4,	3
A	29	29	29	29	29	29
B	2062	1091	867	1091	1350	1091
C	3366	2081	2081	2729	3366	2081
D	924	924	924	924	924	924
TOTALS	6381	4125	3901	4773	5669	4125

Table 2 Number of Units - Multi Family Residential (2-4 Units)

ALAMEDA CORRIDOR TRANSPORTATION PROJECT NOISE \& VIBRATION SENSITIVE RECEPTORS

Table 3 Number of Units - Multi Family Residential (5 or more units, mobile homes)

	ALTERNATTVES					
SEGMENT	1.5	2.1,6.1	2.2,6.2	2.3, 6.3	2.4,6.4	3
A	0	0	0	0	0	0
B	1070	541	471	541	559	541
C	1064	651	651	901	1064	651
D	666	666	666	666	666	666
TOTALS	2800	1858	1788	2108	2289	1858

Table 4 Number of Parcels - Schools

SEGMENT	ALTERNATIVES					
	1.5	2.1,6.1	2.2,6.2	2.3, 6.3	2.4, 6.4	3
A	0	0	0	0	0	0
8	20	5	16	5	5	5
C	22	12	12	13	22	12
D	0	0	0	0	0	0
TOTALS	42	17	28	18	27	17

[^5]
ALAMEDA CORRIDOR TRANSPORTATION PROJECT NOISE \& VIBRATION SENSITIVE RECEPTORS

Table 5 Hospitals / Medical Centers

SEGMENT	ALTERNATIVES					
	1,5	2.1.6.1.	2.2, 6.2	2.3, 6.3	2.4, 6.4	3
A	0	0	0	0	0	0
B	1	1	1	1	1	1
C	1	1	1	1	1	1
0	0	0	0	0	0	0
TOTALS	2	2	2	2	2	2

Table 6 Churches

SEGMENT	ALTERNATIVES					
	1,5	2.1.6.1	2.2,6.2	2.3. 6.3	2.4, 6.4	3
A	0	0	0	0	0	0
B	28	17	8	17	17	17
C	36	20	20	29	36	20
D	3	3	3	3	3	3
TOTALS	67	40	31	49	56	40

ALAMEDA CORRIDOR TRANSPORTATION PROJECT
 NOISE \& VIBRATION SENSITIVE RECEPTORS

Table 7 Parks

SEGMENT	ALTERNATIVES					
	1.5.	2.1,6.1	2.2,6.2	2.3,6.3	2.4,6.4,	$3 \times$
A	0	0	0	0	0	0
B	3	2	2	2	2	2
C	1	1	1	1	1	1
0	0	0	0	0	0	0
TOTALS	4	3	3	3	3	3

Table 8 ALL RECEPTORS

sEGMENT						
	\% 1.5	$2.1,6.1$	2.2,6.2	2.3,6.3	2.4, 6.4,	3
A	35	35	35	35	35	35
B	6362	3338	2739	3338	3848	3338
C	6803	4174	4174	5634	6263	4174
D	1869	1869	1869	1869	1869	1869
TOTALS	15,069	9416	8817	10,876	12,015	9416

Source: Myra L Frank \& Assoclates, Inc., August 1991.

Harris Miller Miller \& Hanson inc.

429 Marrett Road
Lexington, Mass. 02173
Tel. (617) 863-1401
Fax (617) 861-8188

TECHNICAL MEMORANDUM

TO: Gary Petersen
Myra L. Frank and Associates
FROM: Yuki Kimura
Hugh Saurenman
Harris Miller Miller \& Hanson Inc.
DATE: July 5, 1991
SUBJECT: Preliminary Noise Impact Analysis, Consolidated Transit Corridor
HMMH Job No. 291080

A noise impact analysis was performed for the proposed rail line along the Alameda Corridor using both projected traffic volumes on Alameda Street and train pass-bys for the various alternatives. The results of this analysis are outlined below.

SUMMARY OF RESULTS

Noise projections were made based on measured train noise and standard Federal Highway Administration (FHWA) models for traffic noise. Two different noise impact criteria were considered: the criteria proposed by HMMH for the Urban Mass Transportation Administration (UMTA), which have not been officially adopted by UMTA, and existing FHWA noise abatement criteria. The FHWA criteria are based on peak or noisiest hour of the day; an implicit assumption is a typical distribution of traffic between day and night. The UMTA procedure involves comparison of the existing, pre-project ambient noise level in terms of Community Noise Equivalent Level (CNEL) and then comparing it with the predicted project CNEL. We recommend the UMTA criteria as more appropriate for the Alameda Corridor project since a high percentage of the freight traffic is expected to occur during nighttime hours when most people are more sensitive to community noise.

The projections assume that freight traffic is equally distributed through the day; automobile and truck traffic volumes were taken directly from the projections made by DKS. We made projections using a range of different traffic volumes, representing different points along the corridor. The final impact screening distances are not very sensitive to traffic volume because the train noise tends to dominate the noise environment.

The worst-case impact distance was found to be approximately 1500 feet with the at-grade train configuration, and 900 feet with depressed track, for which a shielding adjustment of 12 to 15 dB was assumed. Mitigation provided by the depressed rail could be improved by enclosing the trench

Technical Memo to Gary Petersen, Myra L. Frank \& Associates Preliminary Noise Impact Analysis: Alameda Corridor

more, applying sound-absorptive material to the walls of the trench, or constructing side barriers above-grade. With these enhancements a 20 dB sound reduction may be possible.

Additional shielding adjustments can be assumed for rows of buildings between the source and receiver. About 3 dB is provided by the first row when the buildings occupy 40 to 65 percent of the length of the row and 5 dB when the buildings occupy 65 to 90 percent of the length of the row. The standard assumption is an additional attenuation of 1.5 dB for each successive row up to a maximum attenuation of 10 dB , which is the maximum attenuation that this mechanism provides. ${ }^{1}$

NOISE IMPACT CRITERIA

numand

UMTA Critcria: These criteria were recently developed by HMMH for UMTA transit projects in urban areas. ${ }^{2}$ They are based on comparison of the existing noise levels and future noise levels with the proposed project. Because the criteria are based on 24 -hour noise exposure as expressed by CNEL or L_{dn}, they account for community annoyance caused by late night or early morning train service as well as the varying sensitivity of communities to projects under different background noise conditions. Three categories of impact are defined: i) Severe Impact, under which noise mitigation should be required for the affected areas; ii) lmpact, which represents sufficient impact such that noise mitigation should be considered and included in the project if practical and cost-effective; and iii) No Impact, where noise from the project may be audible, but is considered to cause only a minor change in the community noise environment.

FHWA Criteria: When mass transit projects will be integrated with existing highways, noise impact and noise abatement guidelines are often determined using existing FHWA procedures. The procedures include FHWA Noise Abatement Criteria, current FHWA noise prediction models and the guidlines for considering noise abatement measures. According to these criteria, traffic noise impacts occur when the predicted traffic noise levels approach or exceed the FHWA Noise Abatement Criteria based on land use (exterior peak hour $L_{e q}=67 \mathrm{dBA}$ for residential land use), or when the predicted traffic noise levels substantially exceed the existing noise levels. An increase greater than or equal to 10 or 15 decibels is considered substantial. The regulations further prescribe that noise impact should be assessed for the noisiest hour of the day in the design year.

[^6]Technical Memo to Gary Petersen, Myra L. Frank \& Associates
July 5, 1991
Preliminary Noise Impact Analysis: Alameda Corridor
Page 3

NOISE PROJECTION MODELS

Future noise levels were predicted using mathematical models of freight train and highway traffic noise propagation along the Alameda Corridor. The scenarios cvaluated were for the year 2020 (90 train movements per peak day), including at-grade trainway with grade-separated east/west traffic, and depressed trainway with at-grade traffic. The geometries for both center and east-side track alignments were considered for the two track configurations. Worst-case traffic volumes for each scenario were assumed in projecting traffic noise.

The projections of train noise are based on the measurements that we performed in October 1990. As mentioned above, we assumed that the 90 trains per day (45 in each direction) were equally distributed through the daytime and nighttime hours. Because of the 10 dB penalty included in calculation of CNEL for nighttime noise (10 pm to 7 am), computationally one nighttime train is equivalent to 10 daytime trains.

IMPACT SCREENING DISTANCES

Noise levels were computed over a range of distances separately for trains and traffic. An existing CNEL of 68 dBA was assumed for the entire corridor. The propagation characteristics for train and traffic CNEL/Peak Hour $\mathrm{L}_{\text {eq }}$ were then combined, and using the above guidelines, distances to the different impact levels were extracted. These are summarized below in Table 1.

It was found that differences in traffic volumes on Alameda Street had little impact on the total CNEL for the at-grade railway alternatives, since train noise will be the dominant noise source. For the depressed railway alternatives, however, shielding provided by the deep 27 -foot trench is significant enough that street traffic noise is projected to be higher than noise from train movements.

The impact distances using the FHWA criteria are significantly less than the impact distances using the UMTA criteria. If the train traffic were concentrated during the daytime hours as is typical for highway traffic, the two criteria would be in close agreement. To give some idea of this effect, we estimated FHWA criteria impact distances assuming that there are twice as many trains during the peak hour. As indicated in the table, with the railroad tracks at-grade, this increases the impact distances by a factor of approximatcly 1.5. With the railroad tracks depressed, this results in only a small change in the impact distances.

Noise Impact Distances . Year 2020

ALTERNATIVE DESCRIPTION	Recelver Location	Distance to Significant Impact (H) (CNEL = 63 dBA)			Dlstance to Severe Impact (ft) (CNEL $=69 \mathrm{dBA}$)		
		Trains + Tratlic	Trattic only	Trains only	$\begin{gathered} \text { Trains + } \\ \text { Traffic } \\ \hline \end{gathered}$	Tralfic only	Trains only
Alt.C2: At-Grade RA with one-way oouplet (Alameda)	East/West ${ }^{(4)}$	1510	700	1240	680	255	560
Al, C2: At-Grade RR	Wost ${ }^{(n)}$	1490	715	1180	640	270	605
	East ${ }^{(b)}$	1480	605	1210	630	160	530
Alt. E2: Depressed RR with one-way couplet at-grade (Alameda)	EaslWest ${ }^{\left.()^{1}\right)}$	890	710	335	325	260	76
All. E2: Depresped RR	West ${ }^{(2)}$	900	735	285	330	280	25
	East ${ }^{(0)}$	870	680	335	295	220	75

(e) Distance measured from center line of near traffic tane on Alameda.
(b) Distance maasured from center line of fronlage road.
(c) Distance measured from center line of drill track.

ALAMEDA CORRIDOR TRANSPORTATION PROJECT NOISE \& VIBRATION SENSITIVE RECEPTORS

Table 1 Number of Units - Single Family Residential

SEGMENT	ALTERNATIVES					
	1.5	2,1,6.1	2.2.6.2	2.3, 6.3	2.4, 6.4	3
A	29	29	29	29	29	29
日	2062	781	1070	. 1091	1350	1091
c	3366	2081	2081	2729	3366	2081
D	924	924	924	924	924	924
TOTALS	6381	3815	4104	4773	5669	4125

Table 2 Number of Units - Multi Family Residential (2-4 Units)

SEGMENT	ALternatives					
	1.5	2.1, 6.1	2.2, 6.2	2.3, 6.3	2.4, 6.4	3
A	6	6	6	6	6	6
B	3178	1103	1529	1681	1914	1681
c	2313	1408	1408	1960	2313	1408
D	276	276	276	276	276	276
TOTALS	5773	2793	3219	3923	4529	3371x

ALAMEDA CORRIDOR TRANSPORTATION PROJECT
 NOISE \& VIBRATION SENSITIVE RECEPTORS

Table 3 Number of Units - Multi Family Residential (5 or more units, mobile homes)

SEGMENT	ALTERNATIVES					
	1,5	2.1.6.1	2.2,6.2	2.3,6.3	2.4,6.4	3 \% $\%$ \%
A	0	0	0	0	0	0
B	1070	443	537	541	559	541
C	1064	651	651	901	1064	651
D	666	666	666	666	666	666
TOTALS	2800	1760	1854	2108	2289	1858

Table 4 Number of Parcels - Schools

SEGMENT	ALTERNATIVES					
	1.5	2.1, 6.1	2.2, 6.2	$2.3,6.3$	2.4,6.4	3
A	0	0	0	0	0	0
B	20	16	16	5	5	5
C	22	12	12	13	22	12
D	0	0	0	0	0	0
TOTALS	42	28	28	18	27	17

Source: Myra L. Frank \& Associates, Inc., August 1991.

ALAMEDA CORRIDOR TRANSPORTATION PROJECT

 NOISE \& VIBRATION SENSITIVE RECEPTORSTable 5 Hospitals / Medical Centers

SEEMENT	ALTERNATIVES					
	1.5	2.1.6.	2.2, 6.2	2.3.6.3	2.4, 6.4	3
A	0	0	0	0	0	0
B	1	0	1	1	1	1
c	1	1	1	1	1	1
D	0	0	0	0	0	0
totals	2	1	2	2	2	2

Table 6 Churches

SEGMENT	ALTERNATIVES					
	1.5	2.1, 6.1	2,2,6.2	2.3, 6.3	2.4, 6.4	3
A	0	0	0	0	0	0
B	28	3	11	17	17	17
C	36	20	20	29	36	20
D	3	3	3	3	3	3
TOTALS	67	26	34	49	56	40

> ALAMEDA CORRIDOR TRANSPORTATION PROJECT
> NOISE \& VIBRATION SENSITIVE RECEPTORS

Table 7 Parks

SEGMENT	ALTERNATIVES					
	1.5	$2.1,6.1$	2.2,6.2	2.3, 6.3	2.4,6.4	3
A	0	0	0	0	0	0
B	3	1	2	2	2	2
C	1	1	1	1	1	1
D	0	0	0	0	0	0
TOTAL8	4	2	3	3	3	3

Table 8 ALL RECEPTORS

sEGMENT	ALTERNATIVES					
	1.6	2.1,6.1	2.2.6.2	2.3, 6.3	2.4,6.4.4.	3
A	35	35	35	35	35	35
B	6362	2347	3166	3338	3848	3338
c	6803	4174	4174	5634	6263	4174
D	1869	1869	1869	1869	1869	1869
totals	15,069	8425	9244	10,876	12,015	9416

Source: Myra L. Frank \& Associates, Inc., August 1991.

GOAL ANALYSIS - TECHNICAL MEMORANDUM

GOAL: Economic Goal No. 2 - Minimize Land Devoted to Port Related Rail Freight Operations (Throughout Basin)

INTRODUCTION:

This memorandum presents a evaluation of Alameda Corridor alternatives relative to minimizing land devoted to Port related rail freight operations as compared to the "Status Quo" network. This information is intended to be incorporated into a larger matrix that compares altematives to improve Alameda Street Corridor for both rail and vehicular traffic.

The measurement criteria used to quantify land devoted to Port related rail freight operations is Train Route Miles from the City of Industry to the Ports.

METHODOLOGY:

The Train Routes Miles for each of the lines in the "Status Quo" network and for each of the Alternatives was measured and tabulated in order to compare the "Status Quo" to the "Consolidated Corridor" and to compare the Alternatives to each other. The Train Route Miles are tabulated in Tables EG2-1 and EG2-2.

CONCLUSIONS:

Referring to Table EG2-1, it can be seen that the Corridor network will result in decreases of over 70 percent in Train Route Miles as compared to the "Status Quo" network.

Referring to Table EG2-2, it can be seen that all alternatives will have equal Train Route Miles, except Alternatives 2.2 and 6.2 (Wilmington Diversion Alternatives), which are slightly longer.

REDUCTION IN RAILROAD ROUTE MILES "CONSOLIDATED CORRIDOR" v. "STATUS QUO"		
ALL ALTERNATIVES EXCEPT 2.2 AND 6.2	111.4 MILES	73% REDUCTION
ALTERNATIVES 2.2 AND 6.2	110.9 MILES	72% REDUCTION

TABLE EG2 - 1: RAILROAD ROUTE MILES - PORTS TO CITY OF INDUSTRYIDT JUNCTION "STATUS QUO" v. "CONSOLIDATED CORRIDOR" ALTERNATIVES

COMPARISON OF TRAIN ROUTE MILES											
	alternatives										
	1.0	2.1	2.2	2.3	2.4	3.0	5.0	6.1	6.2	6.3	6.4
MILES	41.8	41.8	42.3	41.8	41.8	41.8	41.8	41.8	42.3	41.8	41.8
NORMALIZED SCORE	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00

TABLE EG2 - 2: COMPARISON OF TRAIN ROUTE MILES AMONG 'CONSOLIDATED CORRIDOR' ALTERNATIVES
.

GOAL ANALYSIS - TECHNICAL MEMORANDUM

GOAL: Economic Goal No. 4 - Maintain/Improve Access to Existing Businesses

Introduction

This memorandum presents a comparative evaluation of Alameda Corridor alternatives in light of business access considerations. This information is intended to be incorporated into a larger evaluation matrix that compares alternatives to improve the Alameda Street corridor for both freight rail and vehicular traffic in terms of several goals that were established at the outset of the project. A subjective rating was identified as the criterion by which this would be measured.

Methodology

The initial criterion of subjective rating was replaced by a quantitative approach, described as follows. Affected businesses were defined as commercial or industrial structures located adjacent to Alameda Street or adjacent to roadway/rail improvements that would have to be constructed for the respective alternative. Roadway/rail improvements could be overpasses, underpasses, or new frontage/access roads. It should be noted that the proposed project would generally improve access to businesses and promote increased economic activity due to its improved operating conditions. To the extent these improvements occur, they would generally affect business activity in the corridor uniformly, and thus would not distinguish among alternatives. Therefore, the analysis methodology was focused on adverse access issues that, would more readily exist in the evaluation of competing alternatives.

Residential dwellings were excluded from this analysis. Using $1^{\prime \prime}=100$ engineering drawings and comparing present access on Alameda Street with future access determined the impact of a given alternative in terms of business access. The perspective of a motorist provided the method for the analysis, focusing on the businesses' current and future accessiblity by Alameda and the cross streets, wherever applicable. Access to a business would be considered inconvenient if the motorist could not, starting from the business location, reach the north and south bound traffic on Alameda as conveniently as he could at present. Similarly, access to those businesses around the overpasses and underpasses would be considered inconvenient since the motorist would have to travel circuitous routes to get to the businesses. Before the analysis was begun, assumptions were made concerning the impact on access. The following is a list of these assumptions.

[^7]* Building footprints on the engineering drawings were generally counted as one structure unless aerial maps ($1^{1}=50^{\prime}$) clearly delineated the outline of more than one structure.
* Rail traffic would be so heavy that crossing the tracks would only be possible at overpasses and underpasses.
* Crossing structures on the engineering drawings were assumed to be overpasses unless explicitly defined as an underpass. Overpasses have a greater impact on the surrounding area.
* Only frontage roads that ran parallel to Alameda Street were measured. Present and future frontage roads satisfying this condition were included.
* Only the front row buildings along Alameda and the cross streets were included in the analysis.

Businesses with inconvenient access resulted from the construction and/or operation of the corridor were identified using the aerial photos and engineering drawings provided by DMJM/M\&N. In addition, structures that would be taken for right of way purposes were also reported. While in a strict sense this is not a post-project access consideration, it does provide an additional indication of overall effects on businesses. Lengths of at-grade or depressed rail alignments, frontage roads, and overpasses/underpasses were also recorded from each engineering drawings using a map wheel. This information, including number of overpasses and underpasses, was recorded in tabular format. Schematic drawings of each alternative have also been prepared to show frontage roads, overpasses/underpasses, and rail alignments. Special Note: A few segments among the alternatives did not have an engineering drawing. In these cases, the missing portion was noted on the schematic and further noted on the table. Further, the number of improved parcels taken should be regarded as an approximation because there could be more than one business in each building footprint. The following tables show the results of the analysis.

General Observations

* Alternative 1 would result in the greatest number of improved parcels taken, thus the largest number of businesses affected. It should be noted, however, that the number of businesses with inconvenient access under this at-grade railroad option would only be slightly higher than that under the depressed railroad Alternative 2.1. Adverse impacts due to the penetration of overpasses/underpasses into the surrounding neighborhood would be offset by easy access to north and south bound traffic on Alameda Street. With the six-lane Alameda Street on the west side of the railroad tracks (starting in Segment C), no businesses on the west side of Alameda would be affected. Some of the businesses on the east side, however, would have greater difficulty in reaching Alameda Street due to the closure of some of the cross streets.

The Wilmington Branch depressed railroad segment would have effects quite similar to those expected along Alameda Street, with the exceptions that inconvenient business access would be reduced.

* Alternative 2.4, which has a depressed railroad configuration primarily confined to Segment B, has the same number of improved parcels taken as Alternative $1 / 5$ in Segment C.
* Inconvenient access is substantial with the depressed railroad options due to the separation of north and south bound traffic on either side of the tracks. The combination of depressed railroad and overpasses/underpasses in Alternative 2.3 results in the largest number of
inconvenient business access. Moving the depressed railroad alignment to the Wilmington Branch (Alternative 2.2) reduces the degree of inconvenient access.
* The presence of frontage roads help to reduce the impact on business access if access to these frontage roads is adequate. Frontage roads with limited access do not mitigate the problems associated with increased travel distance and inconvenient U-turns.
* Depressed rail alignments generally have a lesser impact on business access because railroad crossings can be provided by at-grade bridges. These structures do not penetrate into the surrounding community and are easier to reach from Alameda Street.

TABLE 1: ALAMEDA CORRIDOR TRANSPORTATION PROJECT SUMMARY: BUSINESS ACCESS EVALUATION

Eviuation ractor						
	4,	2, \%ist	\%2\% 4 \%	4, 3.65	4,48\%	3
Improved Parcels Taken						
Segment A	12	12	12	12	12	12
Segment B	146/138	99	92/85	99	99	73
Segment C	84/56	25	25	49	56	53
Segment D	68	68	68	68	68	68
Total	310/274	204	197/190	228	235	206
Inconvenient Access						
Segment A	0	0	0	0	0	0
Segment B	136	95	67	95	90	0
Segment C	119	160	160	164	119	26
Segment D	42	40	40	42	42	40
Total	297	295	267	301	251	66
Total Structures and Businesses Affected	(ionivy				\% $\begin{aligned} & \text { ing: } \\ & \text { \% }\end{aligned}$	

Date: October 9, 1991
Prepared by. Myra L. Frank \& Associates, Inc.

ALTERNATIVE $1 / 5^{\circ}$									
Segment	Aairrad (in miles)		Frontage Road (miles)	Overpasses		Underpasses		No. of Structures with Inconvenient access	No. of improved parcels taken
	At-grade	Depressed		Number	Total miles	Number	Total miles		
Segment A	0.00	0.00	0.00	0	0.00	0	0.00	0	12
Segment B	5.59	0.00	0.36	4	1.61	7	2.42	136	146/138
Segment C	6.10	0.00	5.44	$7{ }^{\text {b }}$	3.87	2	0.58	119	84/56
Segment D	4.66	0.00	0.96	3	2.71	2	0.80	42	68
Total	16.35 ${ }^{\circ}$	0.00	6.76	14	8.19	11	3.80	297	310/274

ALTERNATIVE 2.1/8.1 ${ }^{\text {d }}$									
Segment	Railroad (in miles)		Frontage Road (miles)	Overpasses		Underpasses		No, of Structures with Inconvenient access	No, of improved parcels taken
/ .	At-grade	Depressed		Number	Total miles	Number	Total miles		
Segment A	0.00	0.00	0.00	0	0.00	0	0.00	0	12
Segment B	1.30	4.31	0.00	8	0.96	1	0.28	95	99
Segment C	0.00	6.09	3.25	$10^{\text {b }}$	0.77	0	0.00	160	25
Segment D	4.14	0.83	0.96	3	2.71	2	0.79	40	68
Total	5.44°	11.23	4.21	21	4.44	3	1.07	295	204

Source: Myra L. Frank \& Associates, Inc., October 9, 1991.

- Table for Alternative 5 is the same as Alternative 1, except for number of improved parcels taken.
b Rosecrans Avenue fly-over and Artesia Blvd overcrossing are excluded in the total number of overpasses.
c This total excludes the At-Grade Trainway length of the Port Access Demonstration Project between Del Amo Blvd and Sepulveda Blvd.
${ }^{d}$ Table for Alternative 6.1 is the same as Alternative 2.1 except that there may be 10 -12 fewer structures taken with an estimated 12 -foot reduction in the right-of-way width from 6 -lanes to 4-lanes.

TABLE 2 NTINUED)

ALTERNATIVE 2.2/6.2 ${ }^{\circ}$									
Segment	Railroad (in miles)		Frontage Road (miles)	Overpasses		Underpasses		No. of Structures with Inconvenient access	No. of improved parcels taken
	At-grade	Depressed		Number	Total miles	Number	Total miles		
Segment A	0.00	0.00	0.00	0	0.00	0	0.00	0	12
Segment B	1.30	5.31	0.00	12	0.90	1	0.28	67	92/85
Segment C	0.00	6.09	3.25	$10^{\text {b }}$	1.02	0	0.00	160	25
Segment D	4.14	0.83	0.96	3	2.71	2	0.79	40	68
Total	$5.44{ }^{\circ}$	12.23	4.21	25	4.63	3	1.07	267	197/190

ALTERNATIVE 2.3/6.3 ${ }^{\text {d }}$									
Segment	Rairroad (in miles)		Frontage Road (miles)	Overpasses		Underpasses		No. of Structures with Inconvenient access	No. of improved parcels taken
	At-grade	Depressed		Number	Total miles	Number	Total miles		
Segment A	0.00	0.00	0.00	0	0.00	0	0.00	0	12
Segment B	1.30	4.31	0.00	8	0.96	1	0.56	95	99
Segment C	2.21	3.90	5.26	$10^{\text {b }}$	2.20	0	0.00	164	49
Segment D	4.66	0.00	0.96	3	2.71	2	0.80	42	68
Total	8.17°	8.21	6.22	21	5.87	3	1.36	301	228

Source: Myra L. Frank \& Associates, Inc., October 9, 1991.

- Table for Alternative 6.2 is the same as Alternative 2.2 except that there may be $10-12$ fewer structures taken with an estimated 12 -foot reduction in the right-of-way width from 6 -lanes to 4-lanes.
${ }^{6}$ Rosecrans Avenue fly-over and Artesia Blvd overcrossing are excluded in the total number of overpasses.
- This total excludes the At-Grade Trainway length of the Ports Access Demonstration Project between Del Amo Blvd and Sepulveda Blvd.
${ }^{d}$ Table for Alternative 6.3 is the same as Alternative 2.3 except that there may be $10-12$ fewer structures taken with an estimated 12 -foot reduction in the right-of-way width from 6 -lanes to 4-lanes.

	ALTERNATIVE 2.4/6.4 ${ }^{\circ}$								
Segment	Railroad (in miles)		Frontage Road (miles)	Overpasses		Underpasses		No. of Structures with Inconvenient access	No. of improved parcels taken
	At-grade	Depressed		Number	Total miles	Number	Total miles		
Segment A	0.00	0.00	0.00	0	0.00	0	0.00	0	12
Segment B	1.36	4.53	0.24	7	0.84	1	0.28	90	99
Segment C	6.10	0.00	5.44	$7{ }^{\text {b }}$	3.86	2	0.58	119	56
Segment D	4.66	0.00	0.96	3	2.71	2	0.80	42	68
Total	12.12°	4.53	6.64	17.	7.46	5	1.66	251	235

- Table for Alternative 6.4 is the same as Alternative 2.4 except that there may be 10-12 fewer structures taken with an estimated 12-foot reduction in the right-of-way width from 6-lanes to 4-lanes.
${ }^{\text {b }}$ Rosecrans Avenue fly-over and Artesia Blvd overcrossing are included in the total number of overpasses.
${ }^{\text {c }}$ This total excludes the At-Grade Trainway length the Ports Access Demonstration Project between Del Amo Blvd and Sepulveda Blva.

ALTERNATIVE 3 WITH OPTIONAL FRONTAGE ROAD									
Segment	Railroad (in miles)		Frontage Road (miles)	Overpasses		Underpasses		No. of Structures with Inconvenient access	No of improved parcels taken
	At-grade	Depressed		Number	Total miles	Number	Total miles		
Segment A	0.00	- 0.00	0.00	0	0.00	0	0.00	0	12
Segment B	1.30	4.36	1.11	32	0.87	1	0.28	0	73
Segment C	0.00	6.14	5.42	11^{6}	0.41	0	0.00	26	53
Segment D	4.14	0.83	0.96	3	2.71	2	0.80	40	68
Total./.	5.44°	11.33	7.49	46	3.99	3	1.08	66	206

Source: Myra L. Frank \& Associates, Inc., October 9, 1991.

ALTERNATIVE 3 WITHOUT OPTIONAL FRONTAGE ROAD									
Segment	Rairroad (in miles)		Frontage Road (miles)	Overpasses		Underpasses		No. of Structures with Inconvenient accass	No. of improved parcels taken
	At-grade	Depressed		Number	Total miles	Number	Total miles		
Segment A	0.00	0.00	0.00	0	0.00	0	0.00	0	12
Segment B	1.30	4.36	0.23	52	1.11	1	0.28	0	73
Segment C	0.00	6.14	5.42	11°	0.41	0	0.00	26	53
Segment D	4.14	0.83	0.96	3	2.71	2	0.80	40	68
Total	$5.44^{\text {b }}$	11.33	6.61	66	4.23	3	1.08	178	206

Source: Myra L. Frank \& Associates, Inc., October 9, 1991

* Rosecrans Avenue fly-over and Artesia Blvd overcrossing are included in the total number of overpasses.

This total excludes the Ar-Grade Trainway length of the Ports Access Demonstration Project between Del Amo Blvd and Sepulveda Blvd.

GOAL ANALYSIS - TECHNICAL MEMORANDUM

GOAL: Cost Goal No. 1 - Maximize Cost Effectiveness.

INTRODUCTION:

This memorandum presents an evaluation of Alameda Corridor alternatives relative to their ability to maximize Cost Effectiveness of the Corridor Project Improvements. This information is intended to be incorporated into a larger matrix that compares alternatives for the Alameda Transportation Corridor.

The measurement criteria used to quantify Cost Effectiveness is Absolute Costs of the Alternative.

METHODOLOGY:

In order to compare the costs of each Alternative the total project costs in 1991 dollars were taken from the Alameda Corridor Project Cost Estimate in the Project Report and tabulated below.

Alternative
Cost (millions)
\$
$1.0 \quad 1588.8$
$2.1 \mathrm{~A} \quad 1978.7$
$2.2 \quad 2040.9$
$2.3 \quad 2087.4$
$2.4 \quad 1791.0$
$3.0 \quad 2581.8$
$5.0 \quad 1580.1$
$6.1 \quad 1960.3$
$6.2 \quad 1962.7$
$6.3 \quad 1872.9$
$6.4 \quad 1642.6$

CONCLUSIONS:

Referring to the table above, it can be seen that the Alternative 5.0 has the greatest Cost Effectiveness, and Alternative 3.0 the least.

PREPARED BY:

DMJM/M\&N-RT/DRM

DATE: 9/11/91
REN. 1012191

GOAL ANALYSIS - TECHNICAL MEMORANDUM

GOAL: \quad Cost Goal No. 3 - Ability to Implement in Phases

INTRODUCTION:

This memorandum presents a comparative evaluation of Alameda Corridor alternatives relative to the number of discrete/separate construction components, where more components is better for Alameda Street under each alternative. This information is intended to be incorporated into a larger matrix that compares alternatives to improve Alameda Street Corridor for both rail and vehicular traffic.

The measurement criteria used to identify the subjective value is the number of construction segments to build the Alameda improvements.

The construction segments were determined as follows:
The total alternative was divided into segments which would result in either:
a. A complete operational unit
(i.e. grade separation, one useable section of railroad or highway), or
b. A portion of an operational unit costing around $\$ 400$ million (escalated) to construct.

Estimates were made for Alternatives 1 and 2.1A. The values for other alternatives were based on a proration of these two comparative totals.

The discrete/separate construction components are:

ALTERNATIVE 1

NO.	PROJECT
1	Henry Ford/T.I. Fwy
2	Anaheim St. Bridge
3	Pacific Coast Highway OH
4	Sepulveda Blvd. OH
5	Reconstruct Alameda
6	Compton Creek RCB
7	Southern Trainway
8	Compton Blvd.
9	Alondra Blvd.
10	Wilm./MC-5 Conn. (incl. Dom. Chan. Strs.)
11	Florence Ave.
12	Imperial Hwy.
13	El Segundo
14	Firestone Blvd.
	Gage Ave.
16	Slauson Ave.
17	Vernon Ave.
18	Widen Alameda to 6
	Lns.
19	Widen Alameda to 6 Lns.
20	Widen alameda to 6
	Lns.
21	Widen alameda to 6
	Lns.
22	Central Trainway
23	Northern Trainway
24	Greenleaf
25	Weber
26	Tweedy
27	Southern
28	Nadeau
29	38th/41st St.
30	25th St.

LIMITS

Schuyler Heim Br. to Dom. Channel
Anaheim St. at Dominguez Channel
P.C.H. at Santa Fe R.R.

Sepulveda Blvd. at Alameda St.
Laurel Park to SR 91
Compton Creek at Alameda
Badger Ave. Br. to Thenard Jct.
Compton Blvd. at Alameda
Alondra Blvd. at Alameda
Thenard Jct. to Dominguez Jct.
Florence Ave. at Alameda
Imperial Hwy. at Alameda
El Segundo at Alameda
Firestone Blvd. at Alameda
Gage Ave. at Alameda
Slauson Ave. at Alameda
Vernon Ave, at Alameda
SR 91 to El Segundo
El Segundo to 85th Street
85th St. to Slauson incl. Alameda
Crossover
Slauson to I-10 incl. N. Bd.
Alameda
Compton creek to J Yard J Yard to Hobart
Greenleaf at Alameda
Weber Ave. at Alameda
Tweedy Ln. at Alameda
Southern at Alameda
Nadeau Ave. at Alameda
38th/41st at Alameda
25th St. at Alameda

PROJECT TYPE

Construct Grate Separation
Reconstruct Overhead
Construct Overhead
Construct Overhead
Reconstruct Highway \& Grade
Sep.
Highway/Railway Structure
Railway/Structures
Overhead
Underpass
Railway (One Track)
Underpass
Underpass
Overhead
Underpass
Overhead
Overhead
Underpass
Reconstruct and Widen Street
\& Construct Drill Track
Construct Trainway
Construct Trainway
Construct Overhead
Construct Overhead
Construct Overhead
Construct Overhead
Construct Overhead
Construct Underpass
Construct Underpass
$\left.\begin{array}{llll}1 & \text { Henry Ford/T.I. Fwy } & \begin{array}{l}\text { Schuyler Heim Br. to Dom. } \\ \text { Channel } \\ \text { Anaheim St. at Dominguez }\end{array} & \begin{array}{l}\text { Construct Grade Separation }\end{array} \\ 2 & \text { Anaheim St. Bridge } & \begin{array}{l}\text { Reconstruct Overhead } \\ \text { Channel }\end{array} \\ \text { P.C.H. at Santa Fe R.R. }\end{array} \quad \begin{array}{l}\text { Construct Overhead }\end{array}\right\}$

TABLE CG3-1 NUMBER OF CONSTRUCTION UNITS BY ALTERNATIVE

ALTERNATIVE	1	2.1	2.2	2.3
NO. OF UNITS	30	16	17	22
ALTERNATIVE	2,4	3	5	6.1
NO. OF UNITS	20	16	30	16
ALTERNATIVE	6.2	6.3	6.4	
NO. OF UNITS	17	22	20	

PREPARED BY:
DMJM/M\&N-RT/DRM
DATE: 9/11/91
REV: 10/2/91

GOAL ANALYSIS - TECHNICAL MEMORANDUM

GOAL: Construction Goal No. 1-Minimize Disruption to Highway and Rail Users

INTRODUCTION:

This memorandum presents a comparative evaluation of Alameda Corridor alternatives relative to the duration in years required to construct improvements on Alameda Street under each alternative. This information is intended to be incorporated into a larger matrix that compares alternatives to improve Alameda Street Corridor for both rail and vehicular traffic.

The measurement criteria used to identify construction duration is the Years of Construction of each Alternative.

METHODOLOGY:

Four representative locations along the Corridor were analyzed. They were:
Slauson
Firestone
El Segundo
Compton
The estimates for construction were developed for these four locations. Thus an average duration (divided by four) was determined. Then the total construction components developed previously was used to determine the construction duration for each alternative.

ALTERNATIVE	1	2.1	2.2	2.3
CONSTRUCTION DURATION	6	6.75	6.75	6.25
ALTERNATIVE	2.4	3	5	6.1
CONSTRUCTION DURATION	6.25	6.75	6	6.75
ALTERNATIVE	6.2	6.3	6.4	
CONSTRUCTION DURATION	6.75	6.75	6.25	

CONCLUSIONS:

It can be seen from the above table that Alternatives 1.0 and 5.0, the At-Grade Trainway have the minimum disruption to highway and rail users.

[^0]: ${ }^{1}$ Links are model representations for actual streets.

[^1]: ${ }^{1}$ Capacity requirements as defined in Volume 4 - Railroad Capacity and Operations Analysis identifies a two track main line for through train movements with a dedicated drill track to provide for industry service.

[^2]: ${ }^{2}$ Estimated as a typical day's activity for industry service along Alameda Corridor occurring on the drill track only.

[^3]: SEG $=$ RR Mainline Segment
 RR DES = Raliroad Mainline Branch No.
 ADT = Average Daily Traffic Volume
 ir $=$ Trains per Segment

[^4]: ${ }^{1}$ Railroad Capacity and Operation Analysis, Alameda Consolidated Transportation Corridor Project - Leachman and Associates, 1991.

[^5]: Source: Myru L. Frank \& Assoclates, Inc., August 1991.

[^6]: 1 Barry, T.M. and Reagan, J.A., FHWA Highway Traffic Noise Prediction Model, Report No. FHWA-RD-77-108, Federal Highway Administration, December 1978.
 ${ }^{2}$ Guidance Manual for Transit Noise and Vibration Impact Assessment, prepared by Harris Miller Miller \& Hanson Inc. for U.S. Department of Transportation, Urban Mass Transportation Administration, June 1991.

[^7]: * U-turns were defined as not being an inconvenience for drivers if the travel distance (before making the U-turn) was less than 1,000 feet.

