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ABSTRACT

In this study, we proposed an intelligent energy management strategy for plug-in hybrid
electric vehicles. At the trip level, the strategy takes into account a priori knowledge of
vehicle location, roadway characteristics, and real-time traffic information on the travel route
from intelligent transportation system technologies in generating synthesized velocity
trajectory for the trip. The synthesized velocity trajectory is then used to determine
charge-depleting control that is formulated as a mixed integer linear programming to
minimize the total fuel consumption for the trip. The strategy can be extended to optimize
fuel consumption at the tour level if a pre-planned travel itinerary for the tour and the
information about available battery recharging opportunities at intermediate stops in the tour
are available. The effectiveness of the proposed strategy, both for the trip-based and
tour-based controls, was evaluated against the existing binary mode energy management
strategy using a real-world example trip/tour in Southern California. The evaluation results
show that the fuel savings of the proposed strategy over the binary mode strategy are around
10-15%.

Keywords:
Plug-in hybrid electric vehicle, intelligent transportation system, optimization, fuel
consumption



3
Wu/Boriboonsomsin/Barth

INTRODUCTION

Transportation-related energy consumption and air quality degradation have been a major
concern for years. In the United States, the total energy consumption by the transportation
sector was estimated to be as high as 27.51 Quadrillion Btu in 2010 (1), and the U.S.
Environmental Protection Agency (EPA) reported that nearly 33% of carbon dioxide (CO2)
emissions, 24% of methane (CH4) emission, and 65% of nitrous oxide (N2O) emissions
resulted from fossil fuel combustion for transportation activities in 2009 (2).

Numerous technologies and strategies have been developed and deployed to address
these energy and environment issues. Among those, advanced vehicle technologies, such as
hybrid electric vehicles (HEVs) and electric vehicle (EVs), are very promising in improving
fuel efficiency of motor vehicles. As one type of HEVs, plug-in hybrid electric vehicles
(PHEVs) can be plugged into the electrical grid to charge its battery, thus increasing the use
of electrical energy and achieving even higher overall fuel efficiency (3).

One of the critical considerations in PHEV development is the design of the energy
management strategy, which determines how energy in a hybrid powertrain should be
produced and utilized as a function of various vehicle parameters. In the past decade, a
variety of energy management strategies for PHEVs have been developed from control and
optimization perspectives (4-8). Most of these strategies were evaluated using standard
driving cycles such as the EPA’s city and highway cycles for fuel economy testing. Thus,
their effectiveness under real-world driving conditions (e.g., traffic congestion and road
topology) was unknown. In addition, to our best knowledge, PHEV energy management
studies to date have only focused on optimizing energy consumption for individual trips
without considering recharging opportunities (e.g., at workplace or shopping malls) in the trip
chain or tour where additional fuel saving benefits can be gained from the plug-in capability
of PHEVs.

Therefore, in this study we proposed an intelligent energy management strategy for
PHEVs. At the trip level, the strategy takes into account a priori knowledge of vehicle
location, roadway characteristics, and real-time traffic information on the travel route from
intelligent transportation system (ITS) technologies to determine charge-depleting control
that minimizes fuel consumption for the trip. The strategy can also be extended to optimize
energy consumption at the tour level if a pre-planned travel itinerary for the tour and the
information about available battery recharging opportunities at intermediate stops in the tour
are available. The effectiveness of the proposed strategy was evaluated against existing
strategies using a real-world case study.

BACKGROUND

To develop an intelligent energy management strategy for PHEVs, we need to first be able to
estimate the required power at the wheels on a continuous basis. Therefore, second-by-second
velocity trajectories for individual trips need to be synthesized based on roadway
characteristics (e.g., road grade) and real-time traffic information (e.g., average traffic speed)
on the travel route. These synthetic velocity trajectories are then used in conjunction with
PHEV vehicle and powertrain models to determine the optimal energy management strategy.
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Velocity Trajectory Synthesis

Numerous studies have been conducted to estimate vehicle speed or reconstruct velocity
trajectory using real-world traffic data collected from various surveillance systems, in
particular the prevalent inductive loop detectors (ILD). Based on 5-minute ILD data, Chen et
al. (9) proposed to used traffic speed at the closest loop detector during the closest time
interval as the estimate of instantaneous speed, while Rice and Van Zwet (10) suggested to
use the average speed between two bracketing ILDs as a surrogate. Ni and Wang (11)
proposed a two-dimensional interpolation method to reconstruct velocity trajectories based on
point-based speed data collected by existing intelligent transportation systems (ITS). Krol (12)
evaluated two different models, one data-driven and the other based on fundamental-diagram
(FD), for synthesizing velocity trajectory using dynamic macroscopic traffic data. Besides
point-based detection data, Herrera and Bayen (13) integrated probe-vehicle data to
reconstruct traffic states, which could be further used for trajectory synthesis. Barth et al. (14)
set up models to relate the statistics of microscopic traffic data with macroscopic flow, speed,
and density parameters under different traffic conditions. Lin and Niemeier (15) proposed a
statistical approach to construct driving cycles (i.e., velocity trajectories) based on segmented
microscopic data with specific modal operating conditions, such as cruise, idle or
acceleration/deceleration).

PHEV Modeling and Energy Management

Numerous studies have been conducted to model hybrid electric vehicles (HEV) or Plug-in
Hybrid Electric Vehicle (PHEV) (16, 17). The modeling approaches can be categorized into
two types with respect to the physical causality principles (18):

1) Forward approach. It is assumed that the command signals proceed from the driver to
the wheel. This approach takes the driver commands as inputs, models the physical
behavior of each component, and generates the vehicle performance as outputs.

2) Backward approach. It is assumed that a) the vehicle can meet the target performance
at each time step; b) the vehicle velocity profile is predetermined; and c) the required
power can be calculated using the kinematic relationship imposed by the drivetrain.
Compared with the forward modeling approach, the backward one is less complicated,

due to not having to solve the differential motion equations for the vehicle. However, the
former seems to be more appropriate for real-world implementation since it reflects the actual
system architecture and command signal direction.

A variety of HEV or PHEV energy management strategies have been proposed and
evaluated in previous studies for different purposes (19-25). These strategies can be grouped
into two categories:

1) Binary mode (e.g., CD-CS). In this strategy, the vehicle operates in charge depleting
(CD) mode as long as the electric motor(s) can supply the required power and the
state of charge (SOC) of battery pack is higher than a minimum threshold. Once the
battery depletes to the minimum SOC, the vehicle switches to charge sustaining (CS)
mode.

2) Blended mode. In this strategy, the internal combustion engine (ICE) is used in
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conjunction with the electric motor(s) along the entire driving cycle. The power splits
between ICE and motor(s) are optimized such that the SOC decreases during the trip
and reaches the minimum threshold only at the end of the trip.
The blended mode requires a priori knowledge of the driving cycle for the

development of charge-depleting control algorithms. Example strategies under this category
include:

1) Rule-based strategy. This strategy uses pattern recognition techniques to classify the
actual driving cycle into different scenarios and applies a variety of heuristic rules for
energy management.

2) Dynamic programming (DP) or stochastic dynamic programming (SDP) strategy. The
problem is posed as a multi-stage process requiring a sequence of interrelated
decisions (with constraints), and solved by a DP approach. If uncertainties or
randomness on the trip information are introduced, the problem can then be
formulated as a location-dependent Markov chain with finite horizon, which can be
solved by a SDP approach.

3) Equivalent consumption minimization strategy (ECMS) or adaptive equivalent
consumption minimization strategy (A-ECMS). Rather than considering the global
criterion, this strategy minimizes the instantaneous cost function (i.e., dependent on
the system variables at the current time) as a sum of the fuel consumption and an
equivalent fuel consumption related to the SOC variation. Such simplified strategy
can be well applied in real-time although no global optimum can be guaranteed.
However, the performance of this strategy largely depends on the choice of
equivalence factor, which may be varied by driving conditions.
In this study, we proposed a novel mixed integer linear programming (MILP) to

achieve an optimal charge-depleting control for PHEV. Such an optimization problem can be
solved very efficiently for global optimum by commercial solvers.

VELOCITY TRAJECTORY SYNTHESIS METHOD

In this study, vehicle velocity trajectory is synthesized in two steps. First, an initial velocity
trajectory is created based on macroscopic traffic data measured by ILDs. This velocity
trajectory will have a correct average velocity trend, but can be unrealistically smooth. Thus,
in the second step the variation in velocity at the microscopic level is stochastically
introduced using representative driving cycles for the corresponding average velocity. It is
noted that the implementation of PHEV energy management strategies typically requires
prior knowledge of the driving conditions (in terms of anticipated velocity trajectory and the
associated road grade information) to calculate the required power for the PHEV. Based on
traffic information along the desired route and representative vehicle trajectory datasets used
by the U.S. Environmental Protection Agency (EPA) in their Motor Vehicle Emission
Simulator (MOVES) model (26), a synthesized velocity trajectory of the subject vehicle can
be written as

( ) = ( ) + ( ) (1)

mnes1zeo ve10cny u-aJectc 

v(t) = v'(t) + v"(t) 
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where ( ) is the synthesized instant velocity at time t; ( ) is the average velocity of
traffic at time t; and ( ) is the random variation in velocity for the subject vehicle at time
t.

To reconstruct each component of the right hand side of Equation (1), we employed
the following methods: a) average velocity estimation using 2-D interpolation; and b) random
velocity disturbance generation based on representative driving cycles.

Average Velocity Estimation Using 2-D Interpolation

In this study, we proposed a two-dimensional interpolation method which has been modified
based on (11), to estimate the velocity of average traffic based on aggregated data (e.g.,
5-minute) from vehicle detector stations (VDS).

FIGURE 1 Illustration of velocity estimation using 2-D interpolation method.

As illustrated in Figure 1, suppose that there are two VDSs located at and ,
respectively. Then, the estimated velocity of average traffic at time and location can be
written as,

( , ) = ∙ ∙ ∙ ∙ ∀ ∈ ( , ) and ∈ ( , ) (2)

where represents the aggregated velocity measurement at , ; and ∙.∙’s denote the

associated “areas” in the 2-D plane. However, this method only uses simple mathematical
relationship but no traffic flow theory.

Alternatively, the velocity estimation method in this study can be divided into two
steps. First, we apply the same 2-D interpolation technique to estimate both flow, , and

density, , at , . Then, we calculate the velocity based on the fundamental relationship
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= in traffic flow theory. More specifically, the estimated flow and density of average
traffic at time and location can be written as

( , ) = ∙ ∙ ∙ ∙ ∀ ∈ ( , ) and ∈ ( , ) (2’a)

and

( , ) = ∙ ∙ ∙ ∙ ∀ ∈ ( , ) and ∈ ( , ) (2’b)

where = ⁄ . Therefore, ( , ) can be expressed by harmonic mean as

( , ) = ( , )
( , )

=
∑ ,

(2’)

where

=
∙

∑ ∙,

Random Velocity Disturbance Generation Based on Representative Driving Cycles

As aforementioned, ( , ) is an estimated average velocity of traffic, which can be
unrealistically smooth for the estimation of vehicle energy consumption or emissions. A
heuristic way of addressing this issue is to add a random term ( , ), e.g., white noise with
predetermined variance, to make the velocity trajectory more realistic for an individual
vehicle.

In this study, we proposed a method to account for the velocity disturbance of an
individual vehicle based on vehicle dynamics of specific vehicle types (passenger cars in our
study) under different traffic conditions, extracted from representative driving cycles used by
the EPA in their MOVES model (26). Examples of representative driving cycles for
passenger cars are shown in Figure 2.

Selection of Driving Cycles
To determine which driving cycles are appropriate for extracting vehicle dynamics, the
estimate of route velocity, , needs to be obtained first.

Suppose the duration of a whole trip is ∙ ∆ , where is the total number of time
steps and ∆ is the length of each step (e.g., 1 second). If the average traffic velocity at
multiple ILDs along the route at each time step is available, then one candidate estimate of
the route velocity will be

= ∑ ( , )∙∆ (3)

Wu/Boriboonsomsin 
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(a) Average speed 46.1 mph

(b) Average speed 58.8 mph

FIGURE 2 Examples of representative driving cycles for passenger cars
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However, in the actual implementation, ( , ) for any > ∙ ∆ is not available
at time = ∙ ∆ . Therefore, an alternative of such estimate will be

( ) = ∑ ( , )∙∆ (4)

or even,
( ) = ( , ) (5)

Based on the estimated route velocity, two driving cycles whose average speeds are
the closet to the estimated route velocity and bracket it are selected as sample pools for
random velocity disturbance generation. For example, if the estimated route velocity is 50
mph, then Driving Cycles #1020 (average speed of 46.1 mph) and #1019 (average speed of
58.8 mph) are selected. Note that only freeway driving cycles have been considered in this
study, but the method can also be applied to non-freeway driving cycles.

After two candidate driving cycles are determined, a target driving cycle is randomly
chosen where the probability of selecting which of the two cycles is governed by the
difference between the estimated route velocity and the average speed of each driving cycle.
For the same example mentioned above, the probability of choosing Driving Cycle #1020 is
0.693 while 0.307 for the other. So, Driving Cycle #1020 is more likely to be selected as the
target sample pool.

2-D Binning for Target Driving Cycles
Upon the selection of target driving cycle, data samples are binned based on the joint
distribution of velocities at two consecutive time steps. In general, the bin size could be
varying, but in this study, we use a fixed bin size of 2 mph for simplicity. Accordingly,
acceleration/deceleration value at each time step can be calculated by applying the Central
Difference Method to the velocity data.

Random Sampling from Matched Bin
Based on the disturbed velocity at time step , ( , ), and the estimated average velocity
of traffic at time step + 1, ( , ), a matched bin can be obtained from the data
samples of target driving cycle. Then, an estimated acceleration can be randomly sampled
from the selected bin and used to calculate the disturbed velocity at time = ( + 1) ∙ ∆ .
Therefore, the synthesized velocity at time is given by

= , ℎ
+ , ℎ (6)

where = ( , ) and is the operator which follows the aforementioned
procedures to randomly generate using values of ( , ) and ( , ). In
other words,
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=
0, ℎ

+ − , ℎ (7)

Care needs to be taken when selecting an acceleration sample from the associated bin
which is comparable to the disturbed velocity at time step , ( , ), and estimated
velocity at time step + 1, ( , ). Otherwise, the disturbed velocity may drift out
of the range of target driving cycles. It should be also mentioned that when implementing the
algorithm, we set = 0.

Flow Chart of Proposed Algorithm

In summary, the synthesized velocity trajectory of a vehicle is governed by the estimated
traffic condition (average velocity of traffic) based on real-world data collected from VDS.
However, the estimated average velocity of traffic using 2-D interpolation is unrealistically
smooth for the estimation of vehicle fuel consumption and emission. Thus, random noise has
been introduced to the initial velocity trajectory using vehicle dynamics information under
different traffic conditions based on a set of representative driving cycles.

Without loss of generality, we assume that at time = 0, the travel route is known
(e.g., it can be generated by the in-vehicle navigation system given starting and ending
locations) and the traffic data (e.g., flow, occupancy, and speed) are available from VDS. The
flow chart of the proposed algorithm for synthesizing velocity trajectory is presented in
Figure 3. In the flow chart, represents the estimated location based on the estimated
average velocity of traffic at time = (assuming ∆ = 1 sec); is the calculated
location of the subject vehicle; is the synthesized velocity at time = ; is the
estimated average velocity of traffic; is the estimated route velocity; and (> 0) is the
total travel distance.

FIGURE 3 Flow chart of the proposed algorithm for vehicle velocity trajectory
synthesis.

It should be pointed out that the 2-D interpolation technique is good for estimation but
not for prediction of average velocity of traffic. Short-term traffic prediction methods such as
those proposed in (10, 27) may be used for real-time implementation. In addition, the
proposed binning strategy is preliminary and the size of velocity bin (2 mph in this study)
may affect the estimation of the random term. Further investigation on the binning strategy
can be a potential research topic in the future.

Start 

End 

h 

be tal 1 when selecti.L.i 
m1e to t dismrbed velc 
ep k + 1, v' (xk+1, tk+1). 
~et driving cycles. lt shonl, 

vb'= o. 

me 1 

:e.g. , 1 w, occup, 

1lgoritnm for syn 
xk represents th( 
t time t = k (assi.: 

vk is the syntb 

fir.: vf is the e~ 

Initialize Xo and 

matched bin is empty 
otherwise 

mple from the : 

k , v(xk,tk), , 
mhecl velocitv 

,rmss1 1 

icle d 

drivin 

t=0 
·stem 

uao1e 
ctory 1s preseme, 

10 

(7) 

JeeoJ 
,eloci 

I loca 
t=1 
,eloci · 

sed on the estimated 

Yk is the calculated 

m e t = k ; vk is the 
,rl d(> n) i~ 

Calculate Vx' Calculate v/' 
set yo= Xo using Eq (2) or (2') using Eq (4) 

k=k-t1 

No 

Yes X1<->1 = Xx -t V/ Obtain Vx using 
Y1<->1 - yo:>= d Y1<->1 = Yx -t Vx random sampling 



11
Wu/Boriboonsomsin/Barth

An Example of Synthesized Velocity Trajectory

By following the aforementioned procedures, velocity trajectory can be synthesized for a trip
starting at a specified time along a specified route. Figure 4 shows an example trip along
I-210 E from the interchange between I-210 and I-605 to Day Creek Blvd. in Southern
California, and Figure 5 presents the synthesized velocity trajectory for the trip starting at
16:00 on January 17th, 2012.

FIGURE 4 Example trip used for velocity trajectory synthesis.

FIGURE 5 Synthesized velocity trajectory for the example trip starting at 16:00 on
January 17th, 2012.
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ROAD GRADE INFORMATION SYNCHRONIZATION

The road grade information associated with the synthesized velocity trajectory can be
obtained from Dynamic Roadway Network (DynaNet) (28). However, such road grade
information is location-based. For different driving cycles, time-based road grade information
(i.e., second-by-second road grade) needs to be obtained by synchronizing with the vehicle
velocity at each time step. Figure 6 shows both location-based and time-based road grade
profiles for the aforementioned example.

(a) Location-based road grade (%)

(b) Time-based road grade (%) after synchronization with the associated trip
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FIGURE 6 Synchronized road grade profile for the synthesized velocity trajectory along
I-210 E, CA, starting at 16:00 on January 17th, 2012.

PHEV MODELING

Several approaches with different levels of complexity have been proposed for modeling
PHEV vehicle and powertrain. A complex PHEV model with a large number of states may
not be suitable for the optimization of PHEV energy control. Therefore, a simplified but
sufficiently detailed vehicle and powertrain model was developed in this study. In general,
there are three major PHEV powertrain architectures: a) series, b) parallel, and c) power-split
(series-parallel).This study is focused on the power-split one. Figure 7 depicts the
configuration of a power-split PHEV, in which three major sub-systems: a) internal
combustion engine (ICE), b) planetary gear set (PGS), and c) motor/battery are modeled as
described below.

FIGURE 7 Power-split plug-in hybrid electric vehicle configuration.

Internal Combustion Engine

To simplify the whole PHEV model, the engine dynamics were ignored based on the
quasi-static assumption (29). Fuel consumption and engine-out emissions wre considered as
static functions of two independent variables: engine speed and engine torque. Based on the
archived data in Autonomie simulation tool (30), the engine efficiency map and brake
specific fuel consumption (BSFC) map of a mid-size, two-wheel drive PHEV with
power-split architecture were extracted. In addition, it is assumed that the engine is fully
warmed up; hence, engine temperature effect is not considered.
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Planetary Gear Set

One of the major components in a power-split PHEV is the power split device, also known as
the planetary gear set (PGS), which consists of a ring gear, a sun gear, a carrier gear and
several pinion gears (see Figure 8). More specifically, the sun gear is connected to a
motor/generator (MG1), which is used to assist the engine start and charge the battery pack
by transferring energy from the engine during normal driving. The carrier gear is attached to
the engine. The ring gear is linked to the drive shaft and the other motor/generator (MG2),
which enables direct motor propulsion and energy restoration due to regenerative braking. By
lever analogy, the relationship among the angular velocities of different components in PGS
can be derived as

∙ + ∙ = ∙ ( + ) (8.a)
or,

∙ + ∙ = ∙ ( + ) (8.b)

Note that MG1, ICE and MG2 are attached to the sun gear, carrier gear, and ring gear,
respectively, i.e.,

= (8.c)
= (8.d)
= (8.e)

Therefore,
∙ + ∙ = ∙ ( + ) (8)

where and are the radii of the sun gear and ring gear, respectively; and are the
numbers of teeth of the sun gear and ring gear, respectively; , , and represent the
angular velocities of sun gear, carrier gear, and ring gear, respectively; and , , and

denote the angular velocities of MG1, ICE, and MG2, respectively. Since the ring gear
is connected to the vehicle drive axle with a fixed transmission ratio, , the angular velocity
of the wheel, , is

= ⁄ (9)
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FIGURE 8 Power split device [Source: http://eahart.com/prius/psd/].

If it is further assumed that
1) The inertia of pinion gears are trivial;
2) Gear mechanical efficiency is perfect;
3) There is no efficiency loss in the driveline;
4) Only the vehicle longitudinal dynamics is considered; and
5) There is no tire slip;

then the following dynamic equations for each part of PGS can be derived based on the
conservation of angular momentum:

On the sun gear shaft,

̇ ∙ = ∙ + (10.a)
and

̇ ∙ = − (10.b)

From Equation (8.c), (10.a), and (10.b),

̇ ∙ ( + ) = ∙ + (10)

where and are the inertias of the sun gear and MG1, respectively; is the
internal force on the pinion gears; and and are the torques applied to the sun gear
and MG1, respectively.

On the carrier gear shaft,

̇ ∙ = − ( ∙ + ∙ ) (11.a)
and

̇ ∙ = − (11.b)

From Equation (8.b), (11.a) and (11.b),

ls and lMc i are th 
I force cm the nin;",.., 

J), 

Ws ·ls= Fint · S + Ts 

f the sun gear and 

Ts and T MGi are tht 

We le= Tc - (Pint ·S + Fint · R) 

Wice · lice = Tice - Tc 

(lv 

Pint is th 
1e imn !H'" 



16
Wu/Boriboonsomsin/Barth

̇ ∙ ( + ) = − ( ∙ + ∙ ) (11)

where and are the inertias of the carrier gear and ICE, respectively; and and
are the torques applied to the carrier gear and ICE, respectively.

On the ring gear shaft,

̇ ∙ = ∙ + (12.a)
and

̇ = ( − ) ( ∙ )⁄ (12.b)

where is the inertia of the ring gear and is the associated torque; is the tire radius;
= + ⁄ is the effective mass of the vehicle given that is the vehicle mass

and is the equivalent moment of inertia of the rotating components in the vehicle; is
the torque due to road loads; and = − is the net wheel torque given that
and are the final propulsion torque after transmission and the friction brake toque,
respectively. According to Figure 7,

= ( − ̇ ∙ − ) ∙ (12.c)

As to , it consists of three types of torque: a) rolling resistance torque, , b)
climbing torque, , and c) aerodynamic drag torque, , i.e.,

= + + (12.d)
More specifically,

= ∙ ∙ ( ) ∙ ∙ (12.e)
= ∙ ∙ ( ) ∙ (12.f)
= 0.5 ∙ ∙ ∙ ∙ ∙ (12.g)

where is the gravitational acceleration (9.81 m/s2); is the rolling resistance coefficient;
is the road grade; is the density of air; is the vehicle frontal area; and is

aerodynamic drag coefficient.
Also note that

= ∙ (12.h)

From Equation (1.c), (2), and (5.a) – (5.h),

̇ ∙ ∙ + ∙ + ∙ = ( + ∙ ) ∙ − −

∙ ∙ ( ) ∙ − ∙ ∙ ( ) − 0.5 ∙ ∙ ∙ ∙ ∙ ∙ (12)

It should be pointed out that the positive directions for both and in the
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equations above are as shown in Figure 9.
Furthermore, Equations (8) and (10) – (12) can be written in the matrix form as

follows:

−( + )
+ 0

0
0 −

0 +
0 0

0 +
∙ + ∙ + ∙ − ∙

̇
̇
̇ =

⎣
⎢
⎢
⎢
⎡

0

∙ − − ∙ ∙ ( ) ∙ ∙ − ∙ ∙ ( ) ∙ − 0.5 ∙ ∙ ∙ ∙ ⁄ ∙ ⎦
⎥
⎥
⎥
⎤

(13)

The number of mechanical degrees of freedom is 2 in the above system, where and
are selected as the state variables.

intF R

intF S

int intF S F R  

vehM fN

1MGI

2MGI

2MGT

1MGT

RT RT

ST ST

RI

SI CI
CT CT

ICET

ICEI

,T 
rlT

FIGURE 9 Free body diagram for the mechanical path of PHEV.

Motor/Battery

The inverter is used to draw/store power from/into the battery batch. The relationship among
the battery state of charge (SOC), the battery capacity, and the current can be described as

̇ = − ( )⁄ (14)

where ( ) and are the battery current at time and the maximum capacity,
respectively. For simplicity, the battery is modeled as a series circuit with an internal resistor

and open circuit voltage (see Figure 10). In this study, a finite battery charge
capacity model is used as the energy storage system, where the voltage source is
charge-dependent (31).

The battery power is given by

( ) = ( ) ∙ ( ( ) − ( ) ∙ ) (15)
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or

( ) = ( ) − ( ) − 4 ∙ ∙ ( ) (2 ∙ ) (16)

Note that if and are positive, the battery is discharged. If they are negative,
the battery is charged. The relationship of the power flows among the battery and the electric
motors/generators through the inverter is governed by

( ) = ∙ ∙ ∙ + ∙ ∙ ∙ (17)

where and are the efficiencies of MG1 and MG2, respectively, which can be
obtained from the electric motor efficiency maps in Autonomie; and and are the
corresponding efficiencies of the inverters. The exponent k is 1 if the battery is being charged
by the generators and -1 if the battery is charging the electric motors.

Rb

VOC

+

_

Ib

+

_

FIGURE 10 Internal resistance battery model.

According to Equation (7) through (10), SOC can be derived as

̇ = − − − 4 ∙ ∙ ( ∙ ∙ ∙ + ∙ ∙ ∙ ) (2 ∙ ∙ ) (11)

PHEV Model Parameters

All major parameters and the associated values of the PHEV model used in this study are
listed in Table 1.
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TABLE 1 List of PHEV Model Parameters

Parameters Value Unit
Vehicle curb weight 1718 kg

Final drive ratio 3.93 /
Vehicle equivalent mass 1853 kg

Tire radius 0.317 m
No. of teeth on sun gear 30 /
No. of teeth on ring gear 78 /

Gravitational acceleration 9.81 m/s2

Rolling resistance coefficient (constant term) 0.008
Rolling resistance coefficient (linear term) 0.00012 s/rad

Air density 1.2041 kg/m3

Projected frontal area 2.2508 m2

Aerodynamic drag coefficient 0.26
Maximum engine power 60 kWatt

Moment of inertia for engine 0.1598 kg*m2

Maximum motor power 50 kWatt
Moment of inertia for motor 0.0302 kg*m2

Maximum generator power 30 kWatt
Moment of inertia for generator 0.0287 kg*m2

Maximum brake torque 2000 N*m
No. of battery cells per module 12 /

No. of battery module 6 /
Nominal open-circuit voltage 3.6 volt

Battery capacity 17 Ah
Minimum state of charge (SOC) 0.2 /

OPTIMAL CHARGE-DEPLETING CONTROL

Given a synthesized velocity trajectory and corresponding road grade information, the
required power at wheel at each time step can be calculated based on vehicle dynamics.
Based on the simplified PHEV model described in the previous section, the feasible sets of
engine power supply and the associated drop or gain in the batter SOC can be obtained at
each time step. Therefore, the optimal charge-depleting control problem for PHEV can be
formulated as a 0-1 binary mixed integer non-linear programming (MINLP) as follows:

min∑ ∑ ( , ) ∙ (13)

Subject to

∑ − ∑ ( , ) ∙ ≤ ∀ = 1, … , (14)

∑ ( , ) = 1 ∀ (15)
( , ) = {0, 1} ∀ , (16)

Peng 
T '\'N (k ") i J k = l L. i=1 X , L ' eng 

1J i 

C1fk(Pk - 7=1 x(k, i). ~eng ) :::; C Vj = 1, r (14 

f= i x(k, i) = k 
x(k,i) = f Vk, i 
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where T is the time span (say, 1800 sec) for the whole trip; N is the number of discretized
power level for the engine C is the threshold for the gap of battery’s state of charge between

the initial and the minimum; is the i-th discretized power level for the engine and

is the associated engine efficiency; and Pk is the required power at wheel from the

vehicle; fk is a non-linear function to calculate the falls and rises of battery SOC,
Δ (positive for discharging whereas negative for charging), based on the simplified
PHEV model. If Δ is calculated for each associated engine power level at each time step,
then constraint (14) can be replaced by

− ≤ ∑ ( , ) ∙ ∆ ( , ) ≤ − ∀ , = 1,… ,

(17)

where is the initial SOC; and and are the minimum and
maximum of SOC, respectively. Therefore, the problem is turned into a mixed integer linear
programming (MILP) and numerous efficient solvers can be applied to obtain the global
optimal solution. In this study, we used IBM ILOG CPLEX Optimization Studio (ver. 12.2)
to solve the proposed MILP problem.

The trip-based optimization problem formulation above can be extended to a tour-based one
that considers battery recharging opportunities at intermediate stops in the tour as follows:

min∑ ∑ ∑ ( , , ) ∙ (18)

Subject to

− ≤ ∑ ( , , ) ∙ ∆ ( , , ) ≤ − ∀ , , =

1, … , (19)

−∑ ( , , ) ∙ ∆ ( , , ) + = ∀ (20)

∑ ( , , ) = 1 ∀ , (21)
( , , ) = {0, 1} ∀ , , (22)

where l is the trip index within a tour; and represents the gain of SOC at the end of
l-th trip due to batter recharging. It is still an MILP and can be solved very efficiently using
CPLEX.

EVALUATION OF INTELLIGENT ENERGY MANAGEMENT STRATEGY

Trip-Based Control Evaluation

The proposed intelligent energy management strategy using MILP for optimal
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charge-depleting control was applied to the example trip shown in Figure 4 as well as the trip
in an opposite direction, i.e., from Day Creek Blvd. to Interchange of I-210 and I-605
(along I-210 W) in Southern California, starting at 08:00 on January 17th, 2012. Figure 11
presents the SOC profiles along those trips whose initial SOC and minimum SOC are 0.8
(also the maximum SOC in the normal operating range) and 0.2, respectively. For comparison,
Figure 12 illustrates the results using the binary (CD-CS) mode as the energy management
strategy. According to Table 2, the proposed strategy can save fuel consumption by 14.4% on
the westbound trip and 9.3% on the eastbound trip compared to the binary-mode strategy.

(a) PHEV’s SOC profile for I-210W sample trip (starting at 08:00)

(b) PHEV’s SOC profile for I-210E sample trip (starting at 16:00)

FIGURE 11 Results of intelligent energy management strategy.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

1 73 14
5

21
7

28
9

36
1

43
3

50
5

57
7

64
9

72
1

79
3

86
5

93
7

10
09

10
81

11
53

12
25

12
97

13
69

14
41

15
13

15
85

16
57

17
29

SOC

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

1 65 12
9

19
3

25
7

32
1

38
5

44
9

51
3

57
7

64
1

70
5

76
9

83
3

89
7

96
1

10
25

10
89

11
53

12
17

12
81

13
45

14
09

14
73

15
37

SOC

~ 

'"""--
'-
~ 



22
Wu/Boriboonsomsin/Barth

(a) PHEV’s SOC profile for I-210W sample trip (starting at 08:00)

(b) PHEV’s SOC profile for I-210E sample trip (starting at 16:00)

FIGURE 12 Results of binary-mode energy management strategy.

TABLE 2 Total Trip Fuel Consumption for Trip-Based Control

Trip Fuel Consumption (gallons)
Proposed Strategy Binary Mode Strategy % Difference

I-210 W starting at 08:00 0.346 0.404 14.4
I-210 E starting at 16:00 0.311 0.343 9.3

Tour-Based Control Evaluation

To evaluate the proposed intelligent energy management strategy at the tour level, a
hypothetic trip chain was set up as follows:
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a) Trip #1: From Day Creek Blvd. to Interchange of I-210 and I-605 (along I-210 W),
CA, starting at 08:00 on January 17th, 2012. This trip is mainly downhill;

b) Trip #2: From Interchange of I-210 and I-605 (along I-210 E) to Day Creek Blvd.,
starting at 16:00 on January 17th, 2012. This trip is mainly uphill;

c) Between the end of Trip #1 and the beginning of Trip #2, there is a battery recharging
opportunity to gain SOC by 60% (i.e., = 0.6).
Figure 13(a) presents the SOC profile along the whole tour using the tour-based

optimal energy management strategy with the knowledge of recharging opportunity of 60%
SOC recovery at the end of Trip #1. Due to such knowledge, the SOC at the end of Trip #1
(downhill route) reached the minimum SOC of 0.2.

For comparison, the following two other scenarios were considered:
1) Using tour-based optimal energy management strategy without the knowledge of

battery recharging opportunity. The SOC profile for this scenario is shown in Figure
13(b);

2) Using the binary-mode energy management strategy (no matter whether the battery
recharging opportunity is known). Figure 13(c) illustrates the results for this scenario.
As shown in Figure 13(b), the SOC at the end of Trip #1 was 0.46 rather than 0.2.

Since it was unknown how much SOC could be gained before the beginning of Trip #2, the
control strategy attempted to reserve battery energy for the return trip. Due to the lack of
knowledge about the battery recharging opportunity, the strategy over-reserved the battery
energy and did not fully take advantage of available energy by electrical grids (since SOC can
only be gained up to a maximum limit; 0.8 in this study). It is interesting to find that such
scenario inadvertently resulted in even higher fuel consumption than the binary-mode
strategy whose SOC profile is shown in Figure 13(c). Based on the total fuel consumption
results for the example tour in Table 3, the tour-based control strategy, when used in
conjunction with information about battery recharging opportunity, have 14.9% lower total
fuel consumption than the tour-based strategy without such information, and 12.1% lower
total fuel consumption than the binary mode strategy.

(a) Optimal strategy with knowledge of rechargeable opportunity
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(b) Optimal strategy without knowledge of rechargeable opportunity

(c) Binary-mode strategy

FIGURE 13 PHEV’s SOC profile for a sample tour.

TABLE 3 Total Tour Fuel Consumption for Tour-Based Control (in gallon)

Battery Recharging Opportunity
Known Unknown

Charge-Depleting
Control

Proposed Strategy 0.657 0.772
Binary Mode Strategy 0.747 0.747
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CONCLUSIONS AND FUTURE WORK

In this study, we proposed an intelligent energy management strategy for PHEVs. At the trip
level, the strategy takes into account a priori knowledge of vehicle location, roadway
characteristics, and real-time traffic information on the travel route from intelligent
transportation system technologies in generating synthesized velocity trajectory for the trip.
The synthesized velocity trajectory is then used to determine charge-depleting control that is
formulated as a mixed integer linear programming to minimize the total fuel consumption for
the trip. The strategy can be extended to optimize fuel consumption at the tour level if a
pre-planned travel itinerary for the tour and the information about available battery
recharging opportunities at intermediate stops in the tour are available. The effectiveness of
the proposed strategy, both for the trip-based and tour-based controls, was evaluated against
the existing binary mode energy management strategy using a real-world example trip/tour in
Southern California. The evaluation results show that the fuel savings of the proposed
strategy over the binary mode strategy are around 10-15%.

There are several topics for future work on this research. For instance, the velocity
trajectory synthesis method could be improved by imposing a vehicle power constraint in
order to avoid having parts of the velocity trajectory requiring power beyond the physical
limit of the vehicle. The optimal charge-depleting control could be formulated and solved by
other forms of optimization techniques such as dynamic programing. In additional, the further
evaluation of the trip-based and tour-based controls using additional data sets, the sensitivity
analysis of critical control parameters, and the implementation of the proposed strategy on a
test PHEV would all make an interesting and worthwhile future research topic as well.
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