
 

 
 

Deployment of Practical Methods for Counting Bicycle and 
Pedestrian Use of a Transportation Facility 

 
Final Report 

 
 
 
 

Prepared by: 

Guruprasad Somasundaram 
Vassilios Morellas 

Nikolaos Papanikolopoulos 
 

Department of Computer Science and Engineering 
University of Minnesota 

 

CTS 12-01 

 
 
 
 

 

 

 
 
 



Technical Report Documentation Page 
1. Report No. 2. 3. Recipients Accession No. 
CTS 12-01             

4. Title and Subtitle 5. Report Date

Deployment of Practical Methods for Counting Bicycle and 
Pedestrian Use of a Transportation Facility 

January 2012 
6.

      
7. Author(s) 8. Performing Organization Report No. 
Guruprasad Somasundaram, Vassilios Morellas, Nikolaos 
Papanikolopoulos 

      

9. Performing Organization Name and Address 10. Project/Task/Work Unit No. 
Department of Computer Science and Engineering 
University of Minnesota 
200 Union Street SE 
Minneapolis, MN 55455 

CTS Project #2010080 
11. Contract (C) or Grant (G) No. 

 

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered 
Intelligent Transportation Systems Institute 
Center for Transportation Studies 
University of Minnesota 
200 Transportation and Safety Building 
511 Washington Avenue SE 
Minneapolis, MN 55455 

Final Report 
14. Sponsoring Agency Code 
      

15. Supplementary Notes 
http://www.its.umn.edu/Publications/ResearchReports/ 
16. Abstract (Limit: 250 words)

The classification problem of distinguishing bicycles from pedestrians for traffic counting applications is the 
objective of this research project. The scenes that are typically involved are bicycle trails, bridges, and bicycle 
lanes. These locations have heavy traffic of mainly pedestrians and bicyclists. A vision-based system overcomes 
many of the shortcomings of existing technologies such as loop counters, buried pressure pads, infra-red counters, 
etc. These methods do not have distinctive profiles for bicycles and pedestrians. Also most of these technologies 
require expert installation and maintenance. Cameras are inexpensive and abundant and are relatively easy to use, 
but they tend to be useful as a counting system only when accompanied by powerful algorithms that analyze the 
images. We employ state-of-the-art algorithms for performing object classification to solve the problem of 
distinguishing bicyclists from pedestrians. We detail the challenges that are involved in this particular problem, and 
we propose solutions to address these challenges. We explore common approaches of global image analysis aided 
by motion information and compare the results with local image analysis in which we attempt to distinguish the 
individual parts of the composite object. We compare the classification accuracies of both approaches on real data 
and present detailed discussion on practical deployment factors. 

 

17. Document Analysis/Descriptors 

Computer vision, Object classification, Image analysis, 
Bikeways, Cyclists, Pedestrians, Traffic counting 

18. Availability Statement 
No restrictions. Document available from: 
National Technical Information Services, 
Alexandria, Virginia  22312 

19. Security Class (this report) 20. Security Class (this page) 21. No. of Pages 22. Price 
Unclassified Unclassified 35       

 

 



Deployment of Practical Methods for Counting Bicycle and 
Pedestrian Use of a Transportation Facility 

 
 
 

Final Report 
 
 
 
 

Prepared by: 
Guruprasad Somasundaram 

Vassilios Morellas 
Nikolaos Papanikolopoulos 

 
Department of Computer Science and Engineering 

University of Minnesota 
 
 

January 2012 
 
 
 

Published by: 
 

Intelligent Transportation Systems Institute 
Center for Transportation Studies 

200 Transportation and Safety Building 
511 Washington Avenue SE 

Minneapolis, Minnesota 55455 
 
 
 
 
 

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the 
information presented herein.  This document is disseminated under the sponsorship of the Department of 
Transportation University Transportation Centers Program, in the interest of information exchange.  The U.S. 
Government assumes no liability for the contents or use thereof.  This report does not necessarily reflect the official 
views or policies of the University of Minnesota. 
 
The authors, the University of Minnesota, and the U.S. Government do not endorse products or manufacturers.  Any 
trade or manufacturers’ names that may appear herein do so solely because they are considered essential to this 
report. 



Acknowledgments 

The authors wish to acknowledge those who made this research possible. The study was funded 
by the Intelligent Transportation Systems (ITS) Institute, a program of the University of 
Minnesota’s Center for Transportation Studies (CTS).  Financial support was provided by the 
United States Department of Transportation’s Research and Innovative Technologies 
Administration (RITA). 



Table of Contents 

Chapter 1 Introduction .................................................................................................................... 1 

Chapter 2 Related Work .................................................................................................................. 3 

Chapter 3 Theory and Implementation ........................................................................................... 7 

Training Requirements and Complexity Analysis ...................................................................... 8 

Mixed Dictionaries to Detect Mixed Classes .............................................................................. 8 

Implementation.......................................................................................................................... 10 

Chapter 4 Experimental results on datasets and real data ............................................................. 15 

Results of Classification and Counting ..................................................................................... 18 

Chapter 5 Conclusions and Future Work ...................................................................................... 23 

References ..................................................................................................................................... 25 

 



List of Figures 

Figure 1 Comparison of bicycles and pedestrians between real blob images and images obtained 
from standardized datasets upon which prototypes are built. ......................................................... 4 

Figure 2 Example of mixed classes. ............................................................................................... 9 

Figure 3 Reconstruction error curves for a bicyclist. We see that the reconstruction error is the 
lowest with the combined dictionary. ........................................................................................... 10 

Figure 4 A flow chart indicating the flow of operations in the software. ..................................... 11 

Figure 5 Classification of image patches using dictionaries. ........................................................ 12 

Figure 6 A Sony HD camera. ........................................................................................................ 13 

Figure 7 Mixed class classification accuracies using different features and error norms. We 
notice greater than 90% accuracy with bicyclists vs pedestrians. ................................................ 16 

Figure 8 Mixed class classification accuracies using different features and error norms. We 
notice that l2 error is slightly inferior to l1 error based classification. ......................................... 17 

Figure 9 Sample blob images and corresponding classification overlays. Grey: background; 
white: person; black: bicycle. ....................................................................................................... 19 

Figure 10 Reconstruction error curves with respect to bicycle and person dictionaries for a 
person patch (a) and bicycle patch (b). ......................................................................................... 20 

 



List of Tables 

Table 1 Dependency on appearance and motion characteristics as a function of the image quality.
......................................................................................................................................................... 7 

Table 2 Confusion matrices between mixed classes p: person c: car b: bicycle pc: person and car 
pb: bicyclist (person and bicycle) cb: car and bicycle. ................................................................. 18 

Table 3 Overall classification accuracies ...................................................................................... 21 

 



Executive Summary 

The primary goal of this project is to develop a practical vision-based bicycle counting system 
that is capable of automatically processing video stream data of traffic scenes involving bicycle 
and pedestrian activity and estimating their traffic counts. Upon a successful deployment this can 
be potentially the cheapest and easiest method to do the counting. This is due to the fact that 
cameras are inexpensive and in many places we will be able to leverage the already existent 
security cameras, which can reduce incurred expenses further. While cutting costs is important, 
processing videos for getting bicycle counts is non-trivial and involves state-of-the-art machine 
learning and computer-vision algorithms. Based on practical experience from developing similar 
systems in the past for the Minnesota Department of Transportation (MnDOT), we have 
addressed some key issues from a scientific perspective to improve our algorithm software. Upon 
further testing, we evaluate the efficacy of our new algorithm and obtain improved performance. 
The new algorithm is more precise as it exploits the localized appearance characteristics of a 
bicyclist and a pedestrian. The particular challenge is that a bicyclist is a combination of a 
bicycle and a person. Also the algorithm is faster and can process more hours of video in a day, 
thereby saving time and hence costs. The new algorithm is not specific to bicyclists and 
pedestrians; it can also be extended to other vision-based recognition tasks such as vehicle class 
type (sedan, SUV, etc.) estimation, traffic estimation, etc. Albeit the parameters for the algorithm 
have been fine tuned for optimal performance with respect to bicyclist classification and 
counting. 
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Chapter 1 Introduction 

The classification problem of distinguishing bicycles from pedestrians for traffic counting 
applications is the objective of this research project. The scenes that are typically involved are 
bicycle trails, bridges, and bicycle lanes. These locations have heavy traffic of mainly 
pedestrians and bicyclists. A vision-based system overcomes many of the shortcomings of 
existing technologies such as loop counters, buried pressure pads, infra-red counters, etc. These 
methods do not have distinctive profiles for bicycles and pedestrians. Also most of these 
technologies require expert installation and maintenance. Cameras are inexpensive and abundant 
and are relatively easier to use. Whereas cameras are cheap and easy to use, they tend to be 
useful as a counting system only with accompanying powerful algorithms to analyze the images. 

We employ state-of-the-art algorithms for performing object classification to solve the problem 
of distinguishing bicyclists vs. pedestrians. The challenge in this problem is that the bicyclist is a 
composite combination of a bicycle and a person. We employ local image analysis in which we 
attempt to distinguish the individual parts of the composite object. We analyze the performance 
of the algorithm on real data and present detailed discussion on performance and accuracy. 

Object classification has diverse applications. The techniques used to perform object 
classification are equally diverse and often depend on the target application for which the 
classification is performed. The accuracy of classification is thus subjective and depends on 
many parameters and computational resources. We will be considering the class of supervised 
learning methods in this paper and the method discussed here can be categorized under this 
domain. Usually learning methods have a training phase in which visual models of the different 
object classes are created. There are two key factors in training which are the object 
representation and the classifier and its training algorithm. Objects can be represented using 
several different features such as color, texture, shape, etc. This is one area of intensive research 
in computer vision. As part of this work we will examine the effect of learning the dictionaries 
using a few different feature representations. Classifiers are usually maximum-margin-based, 
like the support vector machine (SVM), which usually have high accuracies. SVMs are 
extremely popular not only in the computer vision domain but also in many other fields. Also the 
amount of labeled training samples available is important to the accuracy, which is a direct result 
from machine learning theory. For practical applications we would like to minimize the amount 
of training required while achieving a high degree of classification accuracy.  

In recent times sparse signal models have become popular for image compression and 
reconstruction. Dictionaries representative of each object class can be learned. The underlying 
theory makes them suitable to incorporate discriminative components, wherein the learned 
dictionaries could be used to tell apart two different classes of signals. Mairal et al. [8] have 
effectively used this concept for texture classification with inspiring results. We employ similar 
methods to learn discriminative bicycle and pedestrian dictionaries and use them to classify 
bicyclists and pedestrians in traffic video images. 



2 



3 

Chapter 2 Related Work 

Choosing the right features for representation is often domain dependent and is very crucial for 
obtaining successful classification. Features can be classified broadly into interest point features, 
region features and shape features.  Shape contexts [10] have been demonstrated to be a viable 
choice for matching and recognizing digits, letters, and 3D objects where shapes as well as pose 
of the objects are the discriminative factors. SIFT (scale invariant feature transform) [11] is one 
of the most effective interest point detectors, which uses scale space extrema as interest points 
and provides a localized high dimensional descriptor. While SIFT promises some great matching 
results, it lacks the simplicity of certain other features. It is computationally expensive and in low 
resolution images multiple scale spaces of gradients do not carry much information. A detailed 
report of interest point detectors which focus on scale and affine invariance of corner detectors is 
given in [12]. Some global image features are more suitable under certain circumstances such as 
human detection. PHOG (pyramidal histogram of oriented gradients) provides statistical 
information of edge directions which is understood to be a good indication of object and shape 
representation in images [13]. They also show good results for human detection. It is to be noted, 
that these features depend on the quality of the images and presence of sufficient gradient 
information. Techniques that work on standardized dataset images will not necessarily guarantee 
good results in practice, as we need to deal with problems like poor resolution, motion blur, 
occlusion, etc. The problems are escalated when the images are blob images obtained from 
tracking (See Figure 1). 
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Figure 1 Comparison of bicycles and pedestrians between real blob images and images 
obtained from standardized datasets upon which prototypes are built. 

Unsupervised learning methods for image classification are more popular in large scale 
applications like web search where human training is daunting except when there are tags 
available for images. Many of these methods are extensions of ideas from document 
classification based on LSI (latent semantic indexing).  

SVM (support vector machine) based approaches have been prominent under supervised learning 
methods category [14]. Not limited to object classification, SVMs have been an attractive choice 
for many other classification and regression applications. SVMs have been used with many 
different object features with success and a detailed report is available in [3]. A similar approach 
which constructs different feature vocabulary sets as well as investigates the use of probabilistic 
latent semantic analysis, is presented in [15]. HOG features have been extended to construct part 
models which accommodate deformations in objects and hence improve accuracy [16]. Another 
approach to parts modeling is to learn the spatial contexts of the different parts by learning the 
weights of all possible configurations of parts across different object classes [17]. In papers [19], 
and [20], the use of LDA (Latent Dirichlet Allocation) for object and scene classification and 
annotation is discussed. Most of these methods use benchmark datasets such as the Caltech, Graz 
02, etc.  
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Sparse signal models are an interesting area of research for a variety of different applications. 
They were applied for texture classification in images for the purpose of compression and 
reconstruction [8]. Sparse signal models are constructed using the K-SVD procedure and MOD 
(method of optimal directions) algorithms. We have derived the theory for our approach from the 
ideas presented by Mairal et al. [8] and Starck et al. [20] discuss the design of dictionaries for 
sparse representations of image content as texture and smooth regions, where they propose basis 
pursuit denoising with augmented dictionaries for separation of the two components in image 
content. We use a similar idea to recognize different image classes contained in composite 
images, using the image patches. 

The associated literature presented here are important considerations while designing a 
classification method for the problem of bicyclists vs. pedestrians. Many researchers have 
approached the problem of object classification for many different object classes. The class of 
bicycles is typically considered in many standard datasets. However these approaches need 
extensions to work for the problem for the bicyclists vs. pedestrians.   
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Chapter 3 Theory and Implementation 

We address the issue of classifying bicyclists vs. pedestrians as a problem of composite object 
class vs. simple object class problem. Here a composite object class is a combination of two or 
more simpler object classes. Hence a bicyclist which is an intricate combination of bicycle and 
person is rather complicated to build an appearance model for. Often motion information is 
difficult to obtain without calibration and we have to solely depend on appearance information to 
classify. In general we can observe the trend shown in Table 1.  

Table 1 Dependency on appearance and motion characteristics as a function of the image 
quality. 

Image Quality  Dependency on Motion 
characteristics 

Dependency on Appearance 
characteristics 

Low High Low 

High Low High 

 

In this project we developed a new localized appearance model which takes full advantage of the 
available information in the image. Hence better the quality of the image the better the method 
performs. This is a desirable result since high resolution cameras are cheap these days and that 
classification approaches are not bottlenecked by image quality any more. When we have high 
quality images, every localized area in an image is informative. Small regions in the image 
termed “patches” are used as the fundamental elements in creating the model for each object 
class. However the algorithms need to be efficient to handle high precision data, since often it 
results in a large amount of data. The method we present here handles high dimensional data 
efficiently and details of the complexity of the algorithm is presented in this chapter in the 
implementation section.  

The underlying theory of this approach is based on the work by Mairal et al. [8]. (For the 
convenience of the reader we will stick to their notation.) Given a set of 
patches , a reconstructive dictionary  is learned adaptively from 
the data such that the respective decomposition  is sparse (i.e., no more than  non-zero 
elements) by solving the optimization problem:  

 
 

(1) 

 

The best possible reconstruction error for a given signal  and dictionary  is denoted 
as , where  
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  (2) 

Here  is the optimal -sparse decomposition for the pair .  

The K-SVD procedure was used to solve the dictionary learning problem in Eq. (1) in an 
iterative fashion efficiently with convergence guaranteed in few steps.  

Suppose now that we have  different classes  of signals, , and we would like to 
perform classification of these signals, with the help of dictionary learning. Mairal et al. [8] 
incorporate a discriminative component into the objective function in Eq. (1), and learn separate 
dictionaries, one per class, so that a signal belonging to one class is reconstructed poorly by a 
dictionary corresponding to another class. Thus the residual reconstruction error of a signal  by 
the dictionary belonging to class ,  is used as a discriminant for classification. The 
residual reconstruction error as a function of the sparsity level provides us a feature vector that 
can be used with any discriminative model. Here we use a simple fisher linear discriminant 
analysis as shown in Figure 4. The fisher linear discriminant analysis learns a set of weights for 
the reconstruction error as a feature. We employ this method for its simplicity and the relative 
ease with which it can be trained. 

Training Requirements and Complexity Analysis 

Typically dictionaries can be learned with very few iterations. The KSVD method is known to 
converge in <= 20 iterations. Convergence can be indicated by the relative change in the 
individual atoms of the dictionaries and can also be measured using the incoherence metric. 
Specifically the time taken for the KSVD algorithm is  

T - K-SVD = R(2NL + K2L + 7KL + K3+ 4KN)+ 5NL2 

where R is the number of training signals, K is the number of iterations, N is the number of 
dimensions of the signal and L is the number of atoms in the dictionary. The dictionaries are 
however computed offline in batch mode. The classification step involves determining the 
reconstruction error which is carried out using the omp method. The omp method can be 
performed efficiently using the batch cholesky method. This method requires 

T-OMP = 2KNL + 2K2N + 2K(L + N) + K3 
 
per signal. In real time units, the tracking alone can be performed at 15 frames per second (0.06 
seconds per image/ frame) and the classification can take up to 0.01 seconds per frame. We use 
efficient implementations of the OMP procedure by the SPAMS library [8]. The total is time is 
approximately 0.07 seconds per frame or 14.2 frames per second on an intel core i5 machine 
with 4GB of RAM running Windows 7. 

Mixed Dictionaries to Detect Mixed Classes 

The dictionaries are adapted in the above manner to discriminate between objects from  
classes. However, when images from two different classes  and  co-occur in an image, for 



9 

e.g., a person holding a bike, as shown in Figure 4, neither of the learned dictionaries  and  
will be able to individually provide an efficient reconstruction. The primary goal of this 
experiment is to detect and classify this image as belonging to a class , without explicitly 
training for such a case. In this direction we construct a new dictionary  by concatenating the 
dictionaries of the individual classes as: equation D  For our requirements 
class A is a bicycle and class B is a person, and class AB is a bicyclist. We extended this study to 
other mixed classes as shown in figure 4.  

 

Figure 2 Example of mixed classes. 

Let us denote by Ea, Eb and Eab respectively the normalized error curves generated by the 
dictionaries DA, DB and DAB. We compute the logarithm of the ratio of the differences of the 
curves Ea and Eb with respect to Eab. These differences are computed using either the l1 or l2 
norm. If the image contains objects from two classes, as in Figure 3, then the curves Ea and Eb 
will both be roughly equally well separated from Eab, resulting in Ep ; p = 1; 2 being close to 
zero. However, if the image contains only one class, say A, then the Ea and Eab curves will be 
quite similar, whereas Eb will be very distinct from these two.  
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Figure 3 Reconstruction error curves for a bicyclist. We see that the reconstruction error is 
the lowest with the combined dictionary. 

Implementation 

An overview of the practical implementation of a classification and counting system is shown in 
Figure 2. The implementation was carried out in C++ using open source computer vision 
libraries such as OpenCV and VXL. This can be employed with live camera streams or with 
recorded videos. The first step of processing is background removal and separation of foreground 
objects. This is done using the mixture of Gaussians method of background modeling [23]. The 
separated blobs are associated across different frames using a bipartite graph based approach 
which is based on blob area overlap percentages. Although tracking blobs is not of primary 
interest to this problem, it provides useful information when combined with the calibration 
information. The scene was calibrated beforehand using the method described in [24].  
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Figure 4 A flow chart indicating the flow of operations in the software. 
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Figure 5 Classification of image patches using dictionaries. 

Blob images tend to be small. For a typical video resolution of 320 X 240, blobs are 
approximately 25 X 45 pixels. However for some of our analysis we used a HD video camera 
thereby we could get higher resolution blobs to extract more meaningful patches for this 
analysis.  
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Figure 6 A Sony HD camera. 

Another factor that influences the performance of the method is camera placement. Ideally, we 
would like to place the cameras in locations which can optimally observe the bicycle path with as 
much resolution as possible and minimizing occlusions at the same time. So an optimal choice 
would be directly perpendicular to the path of the pedestrians and cyclists. But this choice brings 
complete loss in counts due to occlusions and phenomena like parallel riding. But it was still 
considered the best overall single camera choice since it maximizes the resolution of the 
bicyclists or pedestrians for extracting appearance information given the physical constraints in 
placement. 

We address the issue of self occlusion of the bicycle by the bicyclist using local image analysis 
based on dictionary learning. We have trained dictionaries to detect composite objects in 
thumbnail images and then discriminatively learned multiscale dictionaries to segment individual 
image patches.  
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Chapter 4 Experimental results on datasets and real data 

The discriminative dictionary learning framework was used to learn dictionaries based on the 
people (p), cars (c) and bicycles (b) classes from the GRAZ02 dataset [21], [22]. Three different 
experiments were run based on pair wise combinations of these classes (N = 2). Test images 
consisting of mixed classes were obtained from the GRAZ01 dataset [27], [28], the INRIA 
Person dataset [29], and Flickr [30]. 

Two classes of images are selected for training from the GRAZ02 dataset, for e.g., people and 
cars. Discriminative dictionaries are learned based on the framework in [8], to yield Dp (for 
people) and Dc (for cars), and a combined dictionary Dpc is created by concatenating the 
individual dictionaries. For each image in the test set, the residual reconstruction error curves 
were plotted as explained in the previous section, and the quantities E1 and E2 are obtained. The 
images were classified using univariate Gaussian classifiers based on the E1 and E2 values and 
the accuracy was evaluated using leave-one-out cross-validation. Figures 7(a) and 7(b) show the 
classification accuracy based on the E1 difference between the individual curves and the 
combined curve. The results show that the dictionaries learned using gray scale and P-HOG 
features are better at recognizing mixed classes compared to the dictionaries learned from hue-
saturation values. We believe that the hue and saturation values at such low scales (16 X 16)  
doesn't generate enough discriminative information. Traditionally the overall distribution of the 
hue and saturation values have been used for an entire image as a classification feature. Figures 
8(a) and 8(b) show the corresponding results for the E2 difference. Using the E1 difference 
produced better results compared to the E2 difference. The corresponding confusion matrices for 
different class combinations using the gray scale intensity features are shown in Table 2. 
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Figure 7 Mixed class classification accuracies using different features and error norms. We 
notice greater than 90% accuracy with bicyclists vs pedestrians. 
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Figure 8 Mixed class classification accuracies using different features and error norms. We 
notice that l2 error is slightly inferior to l1 error based classification. 
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Table 2 Confusion matrices between mixed classes p: person c: car b: bicycle pc: person 
and car pb: bicyclist (person and bicycle) cb: car and bicycle. 

 

Results of Classification and Counting 

For this experiment, we acquired 2 hours of high quality video from 3 university walkway sites. 
We also used some high velocity bicycle traffic from the Gateway bicycle trail in uptown. The 
traffic analyzed is predominantly of bicyclists and pedestrians. The split in traffic was around 
60% pedestrians and 40% bicyclists. The ground-truth for these blobs was obtained using manual 
labeling and then the classification of these blobs was done using the algorithm described in 
chapter 3. Two sample reconstruction error curves for patches originating from bicyclists and 
pedestrians are shown in Figure 10. Classifications label masks overlaid on sample blob images 
are shown right next to the true blob images in Figure 9. Note that the labels are for 16 X 16 
patches. Here white corresponds to pedestrian patches, black to bicycle patches, and grey 
represents background, which was not considered for classification. The counting accuracy for 
bicyclists and pedestrians, as well as the overall accuracy, are shown in Table 3. From the 
overlaid class labels for each patch we observe that in some cases patches from the person riding 
the bicycle are classified as part of the bicycle. This factor has not biased the classification 
results. In fact we observe that we have very few pedestrian patches labeled as bicycle patches. 
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Figure 9 Sample blob images and corresponding classification overlays. Grey: background; 
white: person; black: bicycle. 
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Figure 10 Reconstruction error curves with respect to bicycle and person dictionaries for a 
person patch (a) and bicycle patch (b). 
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Table 3 Overall classification accuracies 
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Chapter 5 Conclusions and Future Work 

We discussed the problem of classifying bicyclists versus pedestrians. This problem is 
complicated since a bicyclist is an intricate combination of a bicycle and a person. The 
discriminating factor then is the presence of bicycle-like components, which are differentiated 
well by performing local image analysis using discriminative dictionaries. We also investigated 
the detection of mixed (composite) classes in traffic scenes and obtained significant success on 
different permutations of mixed classes without specifically learning models for mixed classes. 
Current work concerns extending this work to multiple classes of objects (3 or more). Work is in 
progress to integrate the crowd counting approach presented in [31] along with this appearance 
based method to improve counting in mixed groups. 
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