
 ROUTE REFINEMENT STUDY COASTAL CORRIDOR RAIL TRANSIT PROJECT SOUTH SEGMENT MAY 1990

ROUTE REFINEMENT STUDY
 COASTAL CORRIDOR RAIL TRANSIT PROJECT SOUTH SEGMENT

Prepared for:
The Los Angeles County Transportation Commission in Cooperation with the Cities of Lawndale, Redondo Beach, and Torrance
\section*{Prepared by:}
Bechtel Civil, Inc. (Project Team Leader)
Acoustical Analysis Associates
Barrio Planners, Inc.
DKS Associates, Inc.
Manuel Padron Associates
Michael Brandman Associates
Ralph Stone and Company, Inc.
PGH Wong Engineering, Inc.
W.J. Okitsu Engineering

The following organizations and individuals participated in the preparation of this study:
Los Angeles County Transportation Commission
Executive Director Neil Peterson
Director of Rail Development Richard Stanger
Rail Development Manager Susan Rosales
Senior Rail Development Planner Sharad Mistry
Rail Development Planner Nelia Custodio
Community Relations Manager Steve Lantz
Community Relations Specialist Paula Willins
Public Affairs Officer Mary Lou Echternach
City of Lawndale
City Planner Kendra Morries
City of Redondo Beach
Housing, Economic Development and Transit Sue Heller
Cara Rice
Department of Public Works John Mate
Ken Montgomery
Planning and Community Development Randy Berler
City of Torrance
Transportation Planning Manager Richard Etherington
Department of Transportation Ray Schmit
Robert Hildebrand
James Chen
Department of Engineering Dick Perkins
Office of the City Manager Gary Flod
Department of Planning Elnora Lee

TABLE OF CONTENTS

Section Page
1 PROJECT BACKGROUND 1-1
2 ENGINEERING FEASIBILITY ANALYSIS 2-1
2.1 General 2-1
2.2 Alignments 2-1
2.3 Methodology for Alignments 2-2
2.4 Alignment Discussion 2-3
2.5 Summary of Findings 2-14
3 STATION SITING ANALYSIS 3-1
3.1 Description of Stations 3-1
3.2 Station Alternatives for Alignments South of Sepulveda Boulevard. 3-4
4 PATRONAGE 4-1
4.1 Introduction 4-1
4.2 Patronage Summary 4-1
4.3 Mode of Arrival 4-2
5 GENERAL ENVIRONMENTAL ANALYSIS 5-1
5.1 Introduction 5-1
5.2 Study Methodology 5-4
5.3 General Environmental Analysis of the Alignments and Station Alternatives 5-6
5.4 Conclusions 5-21
6 TRAFFIC ANALYSIS 6-1
6.1 Environmental Setting and Existing Conditions 6-1
6.2 Environmental Impacts 6-11
6.3 Roadway Geometric Impacts Due to Aerial Structure 6-14
6.4 Mitigation Measures 6-22
7 NOISE ANALYSIS 7-1
7.1 Introduction 7-1
7.2 Noise and Vibration Metrics and Impact Criteria 7-1
7.3 Noise and Vibration Impacts of Operations 7-7
7.4 Mitigation Measures 7-18
7.5 References 7-21

TABLE OF CONTENTS (continued)

Appendices

A. Engineering Drawings
B. Terminal Site Selection Report
C. Intersection Analysis Worksheets

LIST OF TABLES

Table Page
4-1 Average Weekday Home-Work Trips (Lomita/Crenshaw Terminus) 4-2
4-2 Average Weekday Home-Work Trips (Lomita/Crenshaw Terminus) with with Park and Ride at Artesia, 190th, and Del Amo Fashion Center 4-3
4-3 Average Weekday Home-Work Trip (Madison/Skypark Terminus) 4-4
5-1 Land Use Impacts 5-10
5-2 Potential Hazardous Material Contamination Sites 5-14
5-3 Street Tree Impacts 5-18
5-4 Overview of Environmental Impacts 5-23
6-1 Level of Service Interpretation 6-9
6-2
Existing Volume/Capacity Ratio and Level of Service at Key Intersection 6-10
6-3 Estimated Station-Related Traffic Generation 6-13
6-4 Existing and Year 2010 Volume/Capacity Ratio and Level of Service 6-15
7-1 Maximum Noise Level Goals for Light Rail Transit and Rail Freight Operations 7-6
7-2 Maximum Ground-Bourne Vibration Criteria, Light Rail Transit and Freight Rail Operations 7-8
7-3 Maximum A-Weighted Sound Levels for Various Transportation Modes 7-9
7-4 Results of Single Event Noise Impact Analysis for Proposed Coastal Corridor (South) Light Rail Alternatives 7-11
7-5 Comparison of Noise Exposure for Various Transportation Modes 7-14

LIST OF TABLES

Table Page
7-6 LRT Coastal Corridor (South) CNEL Impact Results 7-15
7-7 Vertical Vibration Velocity Levels for Various Transportation Modes 7-17
7-8 Results of Single Event Vibration Impact Analysis for Proposed Coastal Corridor (South) Light Rail Transit Alternatives 7-19

LIST OF EXHIBITS

Exhibit Page
1-1 Los Angeles County Rail Transit Plan 1-3
1-2 Phases of Project Development 1-4
5-1 Regional Location Map 5-2
5-2
Alignment and Stations Alternatives 5-3
5-3 Existing Land Uses 5-7
5-4 Land Use Impacts 5-12
5-5
Hazardous Materials Contamination Sites 5-13
5-6 Aerial Perspective of Typical Segment 5-17
6-1 Proposed Coastal Corridor South LRT Alignment 6-2
6-2 Study Intersections 6-8
6-3 LRT Column Layout: Hawthorne Boulevard at Torrance Boulevard 6-16
6-4 LRT Column Layout: Hawthorne Boulevard at 230th Street 6-17
7-1 Community Response to Noise 7-3
7-2 Land Use Compatibility With Yearly Day-Night Average Sound Level at a Site for Buildings as Commonly Constructed 7-4

SECTION 1

PROJECT BACKGROUND

In November 1980, residents of the Los Angeles County voted to increase the general sales tax by one-half cent to finance development of the countywide transportation system. The measure, commonly referred to as Proposition A, gave the Los Angeles County Transportation Commission (LACTC) the mandate to improve and expand existing public transportation countywide, reduce fares, and design and construct a rail transit system serving approximately 13 corridors. In 1983, the LACTC designated the Coastal Corridor as one of the high priority rail corridors. (Please refer to Exhibit 1. Los Angeles County Rail Transit Plan.)

As planned, the Coastal Corridor will be an extension of the Green Line (Norwalk-El Segundo). The North Segment begins at Aviation Boulevard and continues northerly through Century and Lincoln Boulevards to a proposed terminus at Culver Boulevard. The South Segment begins at Space Park and turns south through the Atchison, Topeka, and Santa Fe (AT\&SF) right-of-way to Hawthorne Boulevard.

Approximately 8.3 miles, the South Segment follows a median alignment along Hawthorne Boulevard to several alternative terminal sites. The decision to focus on an alignment along Hawthorne Boulevard was the result of a selection process that included alternative alignments and participation from public officials and interested parties. In a jointly signed letter to LACTC in October 1983, officials from 13 cities comprising the South Bay Steering Committee endorsed the Hawthorne Boulevard alignment. Section 2 of this report briefly explores variations of the alignment and reaffirms the overall viability of the route along Hawthorne Boulevard. Favorable land use and Hawthorne Boulevard's ability to accommodate transit provide strong support for this alignment.

This study explores the basic feasibility of the preferred route. It develops a preliminary track alignment based upon engineering and traffic conditions and requirements, and identifies alternative station locations. It examines land use, environmental, and community concerns associated with the development of the rail line. It provides the baseline information which allows the initial determination of the line's engineering feasibility, service area, and impacts on the environment. The route refinement process provides sufficient information to determine if a full environmental assessment is appropriate, in which specific impacts are examined in greater depth
and detail. (Please refer to Exhibit 2. Phases of Project Development, Los Angeles County Rail Transit System.)

LOS ANGELES METRO

STATION LOCATIONS

Red Line-Union Station to HollywoodNine

1. Union Station
2. 1st St./Mill St. (Civic Center)
3. 5 th St/Rill St.
4. 7th St./Flower St.
5. Wilshire Bivd./Alvarado St.
6. Wilshire Blvd.Nermont Ave.
7. Wilshire Blvd.Normandie Ave.
8. Wilshire Blvo.Nestern Ave.
9. Vermont Ave./Beveriy Blvd.
10. Vermont Ave./Santa Monica Bivd.
11. Vermont Ave./Sunset Bivd.
12. Hollywood Bivd.Western Ave.
13. Hollywood Blivd. Nine St.

Blue Line-Long Beach to Los Angeles
14. 7 th St./Flower St .
15. Pico Blvd./Fiower St.
16. Grand Ave.Nashington Bivd. 17. San Pedro SI./Washington Blvod. 18. Washington Blvo./Long Beach Ave. 19. Vernon Ave./Long Beach Ave. 20. Slauson Ave./Long Beach Ave. 21. Florence Ave./Graham Ave. 22. Firestone Blvo./Graham Ave. 23. 103rd St/Graham Ave. 24. Imperial Hwy. Wilmington Ave. 25. Compton Blvd_Willowbrook Ave.
26. Artesia Blvd./Acacia Ave.
27. Del Amo Blvd./Santa Fe Ave. 28. Wardlow Rd./Pacific Ave. 29. Willow St./Long Beach Biva.
30. Pacific Coast Hwy./Long Beach Blvd.
31. Araheim St./Long Beach Blvd.
32. 5th St/Long Beach Blvo.
33. 1st St//Long Beach Blvo. 34. 1st St./Pine Ave.
35. 5th St./Pacific Ave.

Green Line-Norwalk to EI Segundo 36. Studebaker Rd./605 Fwy. 37. Lakewood Blvd./Imperial Hwy. 38. Long Beach Blvd./Imperial Hwy.
39. Imperial Hwy.Nilmington Ave. 40. Avalon Blvo./117th St. 41. 110 Fwy . 117 H St . 42. Vermont Blvd./117th St. 43. Crenshaw Bivd./119th St. 44. Hawhorne Bivd./111th St. 45. Aviation Blvd./mmperial Hwy. 46. Mariposa Ave.Nash St. 47. EI Segundo Ave.Nash St.
48. Douglas St.
49. Freeman Ave.

Phases Of Project Development

For Los Angeles County Rail Transit System

SECTION 2

ENGINEERING FEASIBILITY ANALYSIS

2.1 GENERAL

For each of the alignment segments and alternatives, this report provides a description, and discusses physical constraints, right-of-way requirements, utility conflicts, and engineering feasibility. Station site planning and traffic and environmental impacts are discussed in separate reports. This report is supplemented by the engineering drawings. Right-of-way requirements, where obvious, are depicted on the drawings as cross-hatched. Right-of-way for possible street widenings at intersections due to column placement is not shown due to lack of certainty at this point in the study. These detailed assessments cannot be made accurately until sufficient engineering studies of the alignment are completed.

Modifications that may be required on Hawthorne Boulevard will be to CALTRANS' design standards and subject to the approval of CALTRANS. If jurisdiction of Hawthorne Boulevard is relinquished to the cities by 1991, as planned, then the redesign of Hawthorne Boulevard would be subject to the standards and approval of the cities involved.

The structural and seismic design of the aerial guideway and stations depicted on the conceptual drawings and described in this report will be subject to the design criteria established by the Los Angeles County Transportation Commission's Design and Performance Criteria, in conformance with design codes effective at the time of design, and be based on site-specific recommendations from geotechnical consultants.

2.2 ALIGNMENTS

For ease of understanding this report, the alignments were segmented and grouped as follows:

- From Compton Boulevard (the southern terminus of the Norwalk-El Segundo Line or Green Line) along the AT\&SF Railroad southeasterly to Manhattan Beach Boulevard, then east in the median of Manhattan Beach Boulevard and along the southwest embankment of the San Diego Freeway and finally entering the median of Hawthorne Boulevard at the freeway interchange.
- Aerial guideway in median of Hawthorne Boulevard from the San Diego Freeway interchange to Lomita Boulevard.
- Alternative alignments that depart from and return to the Hawthorne Boulevard median at the Galleria of South Bay, Old Towne Mall, and Del Amo Fashion Center. These options are also aerial.
- Terminal site alignments as follows:

Departing from Hawthorne Boulevard at Lomita Boulevard and continuing on aerial guideway in the center of Lomita to a terminal station site near Crenshaw Boulevard.

Continuing on aerial guideway in the Hawthorne Boulevard median south of Lomita and turning into the south side and then center of Skypark Drive to a terminal site located near Madison Street or near Garnier Street.

Continuing in the Hawthorne Boulevard median south of Lomita Boulevard or Skypark Drive on single track aerial guideway to a station site in Rolling Hills Estates near Ernie J. Howlett Park. This option is viewed as a branch line to the main dual track guideway.

- A cursory examination was made of an alignment alternative that would follow the AT\&SF right-of-way southward through Lawndale, remain in the AT\&SF right-of-way as it crosses Hawthorne Boulevard, and continue southeasterly to Madrona Avenue, where the alignment would turn southerly into Madrona Avenue. This alternative alignment could link with the alignment in Hawthorne Boulevard to form other options. In addition to being extendable to the east, it could function to anchor the Coastal Corridor to a significant parking terminus in the event parking could not be developed along Hawthorne to the south.

2.3 METHODOLOGY FOR ALIGNMENTS

The criteria for alignment engineering were established by the Long Beach-Los Angeles Rail Transit Project, Design and Performance Criteria. The criteria were modified by discussions with LACTC staff and other LACTC consultants as appropriate for a fully grade-separated and automated transit system, powered by an overhead contact system. Plan and profile sheets were prepared on mylar from mapping made from aerial photo mosaics flown in 1988. Additional mapping and topo data for studies of various terminal segments were acquired from the City of Torrance. Plans of existing utility facilities were obtained from the various cities, agencies, and utility companies.

The alignment drawings and sections included in Appendix A should be reviewed in concert with this report for a full understanding of the engineering feasibility.

2.4 ALIGNMENT DISCUSSION

COMPTON BOULEVARD TO HAWTHORNE BOULEVARD

Description

The alignment begins as aerial guideway at the southern terminus of the El Segundo Rail Transit Project (the Green Line) near Compton Boulevard. In the AT\&SF right-of-way on the westerly side of the existing tracks, the alignment continues southerly as aerial guideway in the railroad right-of-way to Manhattan Beach Boulevard. In the center of Manhattan Beach Boulevard, the alignment continues as aerial guideway in an easterly direction to the San Diego Freeway (I-405) right-of-way, and proceeds southerly along the westerly embankment of the freeway until Hawthorne Boulevard is reached. There are no stations located in this segment.

Physical Constraints

A fifteen foot horizontal distance is required between the centerline of nearest transit track and the AT\&SF mainline and/or siding track. The relocation and consolidation of siding and spur tracks will be required.

Some reconstruction of the median of Manhattan Beach Boulevard will be required for the accommodation of guideway support columns. Special guideway support bents and deep girders may be required for long spans crossing the traffic lanes.

Right-Of-Way Requirements

A strip of right-of-way outside the AT\&SF right-of-way will be required on the westerly side of the AT\&SF railroad between Inglewood Avenue and Manhattan Beach Boulevard. Two private property takes will also be required on the inside of the curve first as the guideway curves into Manhattan Beach Boulevard (corner clip) and then as it curves onto the San Diego Freeway embankment (corner clip and removal of two buildings).

Utility Interferences

A petroleum pipeline that parallels the AT\&SF right-of-way on the westerly side may require relocation for an undetermined length. Two aerial power transmission lines in the area between Compton Boulevard and Inglewood Avenue (a 66 KV tower line paralleling the railroad tracks on the west side and a 66 KV power line crossing the tracks) will need to be raised and possibly rearranged. The aerial power transmission lines on the west side will likely be rearranged by the Green Line construction. However, the other line, which crosses under the line on the west side, will need to be rearranged as a part of this contract as it will probably be unaffected by the previous Green Line construction. Another aerial power transmission line crosses the alignment on Manhattan Beach Boulevard (at Firmona) and continues on along the west side of the San Diego Freeway between Manhattan Beach Boulevard and 161st Street. This 220 KV pole line will probably also need to be raised and/or relocated. At street crossings and along Manhattan Beach Boulevard, overhead power lines, street lighting, and routine subsurface utilities will be encountered. A gas line may require rearrangement as the guideway enters Manhattan Beach Boulevard.

HAWTHORNE BOULEVARD MEDIAN ALIGNMENT

Description

The alignment closely follows the centerline of Hawthorne Boulevard on aerial structure from where Hawthorne is entered at the San Diego Freeway interchange to Lomita Boulevard, at which point terminal alignment options develop. (The alternative alignments that depart from the street center and traverse the parking areas of the three major shopping centers along Hawthorne are discussed in Section 2.4.3.)

The stations along the median alignment are elevated and are located in Lawndale at 166th Street, opposite the Galleria at South Bay in Redondo Beach, near the northern end of Old Towne Mall in Torrance, and at the northern end of Del Amo Fashion Center, also in Torrance.

Physical Constraints

Aerial guideway will be supported by columns resting on pilings or caissons. Care will need to be taken to avoid conflict with underground utility lines when setting pier locations and constructing the foundations.

Maintenance of vehicular traffic during construction will require careful consideration of construction traffic plans that are workable for the businesses and acceptable to the jurisdictions involved.

As Hawthorne Boulevard south of Artesia Boulevard exists today, aerial guideway cannot be easily accommodated in the median while maintaining existing traffic capacity primarily due to the narrow islands in the turn lane areas. Hawthorne Boulevard north of Artesia Boulevard, however, has a median wide enough to accommodate guideway supports with less modification than the segment south of Artesia. The narrow islands will have to be widened to accommodate approximately seven feet diameter columns at 80 feet to 100 feet spacing along the guideway, and possibly bent structures in the station areas. Where existing island widths are insufficient, widening of the median would be required, especially at major intersections. Additional right-of-way may be required in some areas. In order to avoid street widening, in some instances straddle bent structures may be utilized, but even these may require some right-of-way from private property.

Because Hawthorne Boulevard is fully utilized for traffic lanes, there is little opportunity to gain space in the median for column supports by removing curb parking. Additional space may be gained by eliminating left turn lanes and/or by closing median openings at minor intersections. This will be particularly effective south of Artesia Boulevard.

In reconfiguring the median of the street, curbs and traffic lanes must be redesigned to accommodate a revised traffic pattern with transit in the center. Guideway column supports, nominally spaced at 80 feet centers, will present sight distance problems for turning vehicles. This conflict can be mitigated in redesigning the street and by requiring that all remaining median openings be signalized.

At major intersections, deep girder sections will be required to span long reaches across the intersections. The structures, as with straddle bent structures, are more expensive to construct.

Right-of-Way Requirements

Additional right-of-way will be required at station sites to accommodate vehicular and pedestrian access facilities and may be required in major intersection areas where the median must be widened to accommodate guideway support columns.

Utility Interferences

In addition to the usual relocation of the smaller trunk and service lines to accommodate transit columns and station parking and access facilities, the following major impacts are expected to be encountered in Hawthorne Boulevard:

An aerial power transmission line crosses the alignment just north of Redondo Beach Boulevard. This 220 KV pole line will need to be raised. Two aerial power transmission lines cross the alignment just south of 177 th Street. These two lines, a 220 KV tower line and a 66 KV tower line, will need to be raised. A 66 KV pole line, crossing the alignment near 186th Street and again just north of 190 th Street, will probably also need to be raised. And finally, three tower lines crossing the alignment south of 190 th Street (a 66 KV and two 220 KV tower lines) will need to be raised.

A major underground telephone cable could be encountered between 160th Street and Artesia Boulevard, although it may be possible to avoid this conflict. At most major cross streets, there may be some conflict with underground telephone cables. In addition to telephone cables, other aerial and underground cables, such as TV cables, cross Hawthorne Boulevard at several cross streets. Where cables are encountered, they may require splicing, extending, and relocating.

Some water main crossings are encountered and may require rearrangement. Most water mains are not in the street median and major impacts may be avoided. Some rearrangements may be required due to street widening around intersections.

Some large sanitary sewer lines are crossed at different locations and may require manhole relocations, but the sewers along Hawthorne are not severely impacted as they are in the side of the street. Redesign of the street to accommodate rail transit may reveal further impacts.

Storm drains are encountered at different locations. In addition to crossings at intersections that may require rearrangements, a large line varying in diameter from 72 inches to 48 inches is encountered in the median between the San Diego Freeway and 172nd Street. Another major line is encountered between Redondo Beach Boulevard and Artesia Boulevard. Other major storm drains are at times in the median of Hawthorne but primarily along the sides of the street and are not directly impacted by aerial guideway in the median. There are also cross-connections that may be impacted. It may be possible to avoid these major lines in most cases.

Major gas lines are largely avoided except for possible conflicts with street widening where required. Potential conflicts with a 6 -inch line between Redondo Beach Boulevard and 190th Street, and south of Lomita Boulevard, is noted.

Petroleum lines exist in Hawthorne Boulevard north of 190th Street. Generally, they are in an easement outside the median area, but do cross the median, and therefore may be in conflict with the column foundation supports. Petroleum lines are within the street confines in several areas and, while transit in the median may largely avoid them, the major modifications that would be required to Hawthorne may impact these lines.

It must be emphasized that, in addition to the major conflicts noted above, distribution lines, both aerial and subterranean, and aerial power, street lighting, and traffic signalling lines will require rearranging. The extent of this work will largely depend on the configuration of the redesigned Hawthorne Boulevard.

ALTERNATIVE ALIGNMENTS AT SHOPPING CENTERS

Description

Galleria at South Bay

The alignment departs from Hawthorne Boulevard near Artesia Boulevard and, following reverse curves, allows for sufficient tangent track to place an aerial station in the shopping center parking area. This alignment option reenters Hawthorne Boulevard just north of 179th Street.

Old Towne Mall

This alignment option departs the median of Hawthorne Boulevard just north of the AT\&SF Railroad crossing and flies over the railroad, following a gently curving alignment into the parking area where an aerial station is proposed between the existing shopping center structures and the proposed new buildings. This option reenters Hawthorne Boulevard north of Del Amo Boulevard.

Del Amo Fashion Center

This alignment departs the Hawthorne median just north of Del Amo Circle and, utilizing reverse horizontal curves, allows for an aerial station to be positioned over Carson Street. This option reenters Hawthorne on a gently curving alignment south of Sepulveda Boulevard.

Physical Constraints

Galleria at South Bay

Reverse horizontal curves are proposed in order to minimize the length of span as the guideway crosses the vehicular lanes of Hawthorne Boulevard. Even so, straddle bent structures and possibly eccentrically loaded support columns placed in modified median island and sidewalk areas will be required to support the guideway. Maintenance of traffic during construction in the parking area and along Hawthorne will be a requirement, as will business access.

Old Towne Mall

A very high (50 feet) aerial structure is required in crossing the AT\&SF traffic. This requirement is the same for both the shopping center and median alignments. Support of the guideway will be difficult due to long spans across the northbound lanes of Hawthorne Boulevard and the crossing of 190th Street. Special support structures and reconfiguration of sidewalk areas will be required. Traffic along Hawthorne Boulevard and in the shopping center parking area, as well as business access, will require attention during construction.

Del Amo Fashion Center

As with the other shopping center alignment options, reverse horizontal curves are specified in order to reduce the spans across the Hawthorne Boulevard traffic lanes. Straddle bent structures, eccentrically loaded columns, and rearrangement of sidewalks and, possibly, median islands will be required. Maintenance of traffic both along Hawthorne Boulevard and in the shopping center parking areas will be required. Business access could also be affected.

Right-of-Way Requirements

Once outside public street rights-of-way, aerial easements and touchdown point acquisitions for the aerial guideway and stations will be necessary. Purchase of private property and/or agreement for joint-use will be required for parking/station access facilities.

Utility Interferences

For the shopping center alignment options, moderate conflicts with major utility lines, both buried and aerial, are anticipated. Water lines, storm drains, sanitary sewers, gas lines, and petroleum lines are often located near the curbs of Hawthorne Boulevard. In addition to guideway foundations, major street widening or modification may cause direct impacts. Aerial high voltage electrical lines at the Galleria and Old Towne Mall will require relocation, but this is also the case for the median alignment. A 66 KV aerial power transmission line is located on the east side of Hawthorne Boulevard adjacent to the Old Towne Mall. This line will need to be modified in the areas where it crosses the proposed guideway as it turns into and out of the Mall area to leave/return to the median.

Relocations of buried and aerial minor distribution lines and service lines will be required.

The placement of guideway into the shopping center areas should not create utility impacts that are substantially more significant than the median guideway, as parking and access facilities will be required in either cases and these facilities will cause some relocations.

Terminal Station Site Alignments

Various alternative terminal station sites and connecting alignments were studied. Please refer to the Station Siting Report, Appendix B.

Description

Terminal Station at Lomita/Crenshaw

This terminal alignment option departs Hawthorne Boulevard and proceeds aerially in the center of Lomita Boulevard with an elevated station located at Hospital Drive (Lomita-Hospital Station), and continues as aerial guideway in the center of Lomita to an aerial terminal station site along the south side of Lomita at the southwest quadrant of the Lomita/Crenshaw intersection.

Terminal Station at Skypark/Madison or Skypark/Garnier

This alignment departs Hawthorne as aerial guideway and offers the possibility of a terminal station site on the south side of Skypark at Madison or continues aerial in the center of Skypark with the terminal station located north of Skypark and east of Garnier.

A variation of this alignment may be to consider a northeasterly alignment continuation that traverses private property with a station located in the southwest quadrant of Lomita/Crenshaw. In this case, the station near Madison would be an intermediate stop rather than a terminal candidate. This alignment possibility was not carried through this study and assessed; therefore drawings that depict this option are not included.

Terminal Site in Rolling Hills Estates

The guideway would remain in the center of Hawthorne as elevated guideway but would become a single track operation a short distance south of either Lomita or Skypark, depending on the terminal siting solution. The link to the at-grade station opposite Ernie J. Howlett Park (Rolling Hills Station) is not considered a terminal alignment/station solution due to the steep grades involved in accessing the station site, the lack of opportunity to further extend the line due to terrain, and the concern for placing a large terminal parking lot on a methane gas producing landfill. This alignment would be a branching option and not a line haul operation.

A single track is sufficient to meet the operational requirements for the branch option. As future extension is not considered feasible, future double track is not envisioned.

Physical Constraints

Terminal Station at Lomita/Crenshaw

Lomita is a street without a median island and such an arrangement would have to be created for placement of guideway columns in the center.

Some street widening may be required, especially at major intersections and at the Lomita-Hospital Station. In other areas, street parking may be removed to allow a transit-occupied median. Horizontal geometry is restrictive at the curve entering Lomita and, again, at the reverse curves approaching the Lomita/Crenshaw Station. Special structures, such as bents or straddle bents, will be required as Lomita is entered from Hawthorne, at the Lomita-Hospital Station, and as the guideway crosses to the south of Lomita at the terminal.

Terminal Station at Skypark/Madison or Skypark/Garnier

Skypark is a relatively narrow street for aerial guideway. Guideway is to the south side for a considerable reach for the purposes of the station siting at Madison and because of the street width. Some other constraints associated with this alignment option are the moderately restrictive horizontal curves entering Skypark and again at the Garnier Street Station site, and the requirement for special guideway support structures as Skypark is entered and departed. Another
constraint is the difficulty of extending the alignment eastward without inordinate horizontal geometry offsets. A possibility may be to traverse the oil company property to the northeast and gain entry to Lomita near Crenshaw. A possible constraint that will require further investigation is the FAA clearance requirements for Torrance Municipal Airport near the Madison Street station. Also, because of aviation clearance problems, the private helipad operated by the hospital will probably need to be relocated.

Terminal Site and Rolling Hills Estates

While the horizontal alignment is acceptable, the unrelenting climb on first a four percent and then a five percent grade is not very acceptable to transit operations. Other problems are the continuing difficulty of establishing column placements in Hawthorne Boulevard and the lack of a desirable terminal parking area in the methane gas producing landfill that is available for parking.

Right-of-Way Requirements

Right-of-way acquisition would be required where Lomita may be widened at major intersections and at the Lomita-Hospital Station site. Right-of-way will also be required for the corner clip at the northeast quadrant of the Hawthorne Boulevard/Lomita Boulevard intersection and for the terminal station and station parking/access facilities at Crenshaw.

For the Skypark alignment, an acquisition will be required at the northeast corner of Hawthorne/Skypark. Other right-of-way acquisition will be required for the station facilities at the Madison and/or Garnier Station sites, and potentially for the relocated helipad.

For the link to the south, property needs outside the Hawthorne right-of-way are required where the street may be widened to accommodate guideway columns at intersections, and possibly at the Rolling Hills Station site.

Utility Interferences

Lomita Boulevard contains a 21 -inch and a 34 -inch trunk sewer and a 16 -inch water line that will need to be avoided to the extent possible during design. The usual relocation of minor
subsurface and aerial lines is anticipated, with more significant impacts in street widening and station siting areas.

Skypark Drive contains a 30 -inch storm drain near the center of the street that may be impacted in some areas. Two water mains are also located in the street and some impacts will occur. Routine rearrangements are anticipated, especially where street modifications occur and at station sites.

Hawthorne Boulevard utility rearrangement requirements are much the same between Lomita and Pacific Coast Highway as they are north of Lomita, that is, substantial impacts may occur where major modifications to Hawthorne Boulevard are required. South of Pacific Coast Highway, the intensity of existing utilities diminish somewhat but rearrangements will occur, especially where street modifications are required. An aerial power transmission line (66 KV) crosses the alignment just north of Pacific Coast Highway and a second one (also 66 KV) crosses the alignment near Newton Street. Both of these lines will probably need to be raised. In addition, a 66 KV pole line crosses the alignment just south of Newton Street and continues along the west side of Hawthorne Boulevard. This line will have to be raised where it crosses the alignment. In addition, it may need to be modified to some degree where the guy wires to the poles (which currently stretch across the street) need to be eliminated due to conflict with the elevated guideway. At present, an unknown in this area is the extent of gas pipelines originating in the landfill area and the nature of these impacts. Should this segment be studied further, more investigation needs to be carried out on methane gas impacts.

AT\&SF/MADRONA AVENUE ALIGNMENT

Description

This alignment would remain at AT\&SF right-of-way south of Manhattan Beach Boulevard and would be mostly elevated with some at-grade guideway. Hawthorne Boulevard would be crossed in the AT\&SF right-of-way just north of 190th Street. From this point eastward, the guideway would remain in the railroad right-of-way until it reaches Madrona, where it would turn south in the center of Madrona to Sepulveda Boulevard, and then continue east.

Presumably, this option would be elevated guideway. A modification to this alignment option would be to originate it at Hawthorne Boulevard rather than Manhattan Beach Boulevard. Station sites and alignment drawings were not produced for this alternative.

Physical Constraints

Tight horizontal curves would be required entering and departing Madrona Avenue. Column placement and long span girder problems would be encountered at major street crossings along both the railroad and streets and where streets are entered and departed.

Right-of-Way Requirements

Studies of this alignment were not advanced sufficiently to determine right-of-way impacts.

Utility Interferences

Studies were not advanced sufficiently to assess major impacts, but a determination of existing utility conditions would include a concern for major electrical transmission line clearance problems, the possibility of oil and fiber optics easements in the railroad right-of-way and the impacts that would be created by modifications to Madrona Avenue and Sepulveda Boulevard.

2.5 SUMMARY OF FINDINGS

The construction of aerial transitway in the median of Hawthorne Boulevard will have a major impact on the present vehicular traffic circulation patterns and capacity of the streets as the median is not sufficiently wide in many places to accommodate guideway support columns. There is little to almost no excess space between the curbs and the placement of columns has the potential to obscure sight distances for left turn motorists. While this subject is more appropriately addressed as a traffic problem and discussion is contained in the traffic analysis report, the subject is stressed in this report due to the obvious need to redesign large segments of Hawthorne by widening at intersections, closing minor cross street median openings, eliminating many left turns and left turn lanes from Hawthorne, and rearranging the lane configuration of major stretches. During later planning phases, close coordination with the jurisdictions will be required, and a major traffic circulation study will be needed. Such an undertaking has utility
impacts, both minor and major, aerial and buried, that in addition to major street work, tend to further increase the cost of guideway. Due to the traffic congestion in Hawthorne, and the modifications required to the street to accommodate both transit and vehicular traffic, the aerial guideway would be more expensive than more conventional aerial guideway.

The relatively high cost is also attributable to deep long span girder construction that will be necessary in spanning major cross streets and straddle bent structures required to place transit stations in the shopping center parking areas. While transit stations in the parking lots have features attractive to good station site planning, such guideway geometry introduces reverse horizontal curves and deep girder construction with straddle bent supports, which increases capital costs. In addition, the length of the line is increased, thereby increasing capital cost. However, some economy may be realized in more efficient station access from the parking lot areas. Another benefit may be that some major intersection conflicts can be avoided by removing the guideway from the Hawthorne median in the shopping center areas. It is assumed that real estate and construction costs associated with parking areas would be about the same for both median and side alternatives.

In selecting a terminal site, there are --in addition to other considerations-- four basic criteria that must be met. (Please refer to the terminal siting criteria contained in the Station Siting Report.) The four are as follows:

1. Parking lot for $1,000+$ autos, plus Kiss \& Ride and bus drop-off area.
2. Station and storage track - Straight and level section to provide 600 to 1,000 feet of track for station and storage.
3. Future Extension - Site must not preclude future extension to Long Beach Line.
4. Accessibility by Rail - Must be accessible to mainline without violating alignment design criteria.

The link to Rolling Hills Estates is ruled out as a valid terminal alternative since it does not meet these four basic criteria. Both Lomita and Skypark alternatives meet the criteria. The Skypark alignment could be extended northeasterly through private property so that an eastward extension would be achieved along Lomita. The Lomita alignment provides an easier, more direct potential extension to the Blue Line (Long Beach-Los Angeles). The Lomita option thus appears to best
meet the criteria, even though it may present more problems due to the busier nature of the street.

No attempt is made in this study to explore the attractiveness of the AT\&SF/Madrona/Sepulveda alignment as a terminal alignment. This is due to the cursory nature of the engineering assessment and the fact that this option is seen as an alternative to Hawthorne Boulevard as a transit corridor rather than as a terminal alternative.

SECTION 3

STATION SITING ANALYSIS

3.1 DESCRIPTION OF STATIONS

LAWNDALE STATION

The Lawndale Station would be located at Hawthorne Boulevard and 166th Street. The station would be a neighborhood station serving Lawndale and nearby communities. Surrounding land uses are primarily commercial along Hawthorne Boulevard, and residential to the east and west. Walking would be the primary mode of access, with bus and kiss-ride being secondary modes.

The aerial station would be located in the median of Hawthorne Boulevard. At the north end of the center platform there would be vertical circulation units rising to a pedestrian overpass, which would cross to both the northeast and northwest corners of the intersection.

On the northeast corner there would be vertical circulation between the overpass and sidewalk level, with a recessed bus bay for northbound buses on Hawthorne Boulevard. The northwest corner would also have vertical circulation and a southbound bus bay. In addition, there would be an area for kiss-ride and short-term parking, with space for about 30 cars. This would require acquisition of a gas station/convenience store on that corner. (If there are major problems with property acquisition, the kiss-ride facility could be moved to another corner of the intersection, with appropriate changes in the overpass location.)

GALLERIA STATION

This station would be located along Hawthorne Boulevard, a short distance south of Artesia Boulevard, on the east side of The Galleria shopping center. There are two possible configurations for the station, one on the west side of Hawthorne, and the other in the median of Hawthorne. Both locations would be aerial stations with center platforms. Both configurations would have similar access facilities, the main difference being the need for a pedestrian overpass and two additional sets of vertical circulation units with the median location.

The station would be within walking distance of the Galleria, as well as other commercial development along Hawthorne, and residential areas east of Hawthorne.

Buses would be an important mode of access to the station. There is an existing transit center located on the northwest side of the Galleria. The center is used by buses of SCRTD, Torrance, Gardena, and Lawndale, with a current total of eight bus routes. The transit center should be relocated to the rail station on the east side of the Galleria. This will facilitate bus-rail transferring as well as bus-bus transferring. There may also be other existing or new bus routes that should feed into this station.

The station would have space for kiss-ride access. Parking facilities should also be provided. There is a good opportunity for a shared parking facility with the Galleria, assuming that new decked parking can be constructed. The peak demand for transit parking would be during weekdays, while peak shopping center demand is normally on weekends.

The west-side location of the station would be more convenient than the median location for the majority of patrons, since it would be closer, both horizontally and vertically, for all patrons arriving by bus or car, and for most walk-in patrons.

OLD TOWNE STATION

There are also two possible locations for this station. The median alternative would be located in the median of Hawthorne Boulevard at the northwest corner of the Old Towne Mall, about two blocks south of 190th Street. The east-side location would be located in the parking lot of the Old Towne Mall, at the southwest corner of the mall, about two blocks north of Del Amo Boulevard. Since the two locations are some distance apart, the access facilities would be different.

The median alternative would be an aerial station with center platform. Vertical circulation from the north end of the platform would rise to a pedestrian overpass that would cross to both the east and west sides of Hawthorne Boulevard. On the east side there would be bus drop-off facilities in the northwest corner of the mall parking lot. There could possibly be shared parking with the mall.

On the west side the vertical circulation would require the acquisition of one house on Cadison Street. There would be a southbound bus bay along Hawthorne Boulevard. Parking and kissride facilities would be provided along a power right-of-way that runs east-west across Hawthorne. The land is currently used by a nursery. There is space for about 500 cars if the right-of-way is used as far west as Firmona Avenue, about 1,000 feet west of Hawthorne. Firmona connects to 190th Street, thus providing access from the west, although it is basically a neighborhood street. (Parking could also be provided along the power right-of-way east of Hawthorne, but auto access in and out of that site would be difficult.)

The east-side alternative would also be an aerial station with center platform. Bus loading would be located along the shopping center entrance that connects to Hawthorne across from Halison Street. Kiss-ride and parking facilities would be located in what is now surface parking for Old Towne Mall. As with the Galleria Station, there is opportunity for shared use of existing or new decked parking at this station.

Either station location would serve the surrounding communities fairly well if adequate parking can be provided.

DEL AMO STATION

The Del Amo Station would be located at Del Amo Fashion Center, one of the largest shopping centers in the region, and a growing center of commercial and office development. As with the Galleria and Old Towne Stations, there are two alternatives for the Del Amo Station, a median and an east-side alternative. Both would be located on the west side of the shopping center, in the vicinity of Carson Street and Del Amo Circle. This location serves both the shopping center on the east side of Hawthorne and the growing office development on the west side. Both would be aerial stations with center platforms.

The median alternative station would be located just south of Del Amo Circle. A pedestrian overpass would connect the north end of the platform to both the southeast and southwest corners of the Hawthorne Boulevard/Del Amo Circle intersection. The southwest corner is the location of Del Amo Financial Center, a large office complex. On the southeast corner the
overpass would touch down in a portion of the shopping center parking lot. A bus loop and kissride area would be provided. Parking should also be provided, either by shared use of existing parking or new construction.

The east-side alternative would be located east of Hawthorne Boulevard, on the west side of Del Amo Fashion Center just north of Carson Street. A bus loop and kiss-ride area would be located in an area currently used for surface parking. Patron parking should be provided by construction of new parking decks.

3.2 STATION ALTERNATIVES FOR ALIGNMENTS SOUTH OF SEPULVEDA BOULEVARD

There are two alternative alignments for the main line south of Sepulveda, and a possible branch line. The main line would turn southeast off Hawthorne Boulevard at either Lomita Boulevard or Skypark Drive. There would be a station a short distance east of Hawthorne on either alignment. The main line would then continue southeast of a terminal station. With the Lomita alignment the terminal would be at Lomita and Crenshaw. With the Skypark alignment the terminal could be either at Garnier Street or at Crenshaw and Lomita. The possible branch line would continue south along Hawthorne Boulevard to a terminal station in Rolling Hills Estates.

TORRANCE HOSPITAL STATION

The first station on the Lomita alignment would be located at Lomita Boulevard and Hospital Drive. The Torrance Memorial Hospital is located on the southeast corner of this intersection. Office buildings are the predominant land use along both sides of Lomita towards Hawthorne Boulevard, and light industrial uses are located to the southeast along Lomita.

The station would be an aerial station located in the median of Lomita Boulevard. A pedestrian overpass would connect to the south side of Lomita for walk-in patrons. The overpass would also connect to the north side, where vehicular access facilities would be located in what is currently employee parking for a Garrett facility. Replacement parking could be provided with decked parking to the rear. The access facilities would include bus and kiss-ride spaces. Parking should also be provided. The amount of parking would depend partially on the amount of parking
provided at nearby stations (Del Amo and rolling Hills), and partially on the availability of property at the station site. If acquisition of the Garrett property is not feasible, then alternative locations could be considered to the northwest along Lomita. They would require acquisition of office or industrial buildings.

CRENSHAW STATION

The terminal station for the Lomita alternative would be located on the southwest quadrant of Lomita Boulevard and Crenshaw Boulevard. A large vacant parcel owned by Union Oil Company extends south to Skypark Drive. The northern portion of the property would be used for the station and a large parking facility of approximately 1,000 spaces. The surrounding land uses are generally industrial, although there is commercial and residential development east of Crenshaw in the City of Lomita.

The station itself would be an aerial station with center platform, located along the south side of Lomita just west of Crenshaw. (Future extension of the line towards Long Beach would continue southeast along Lomita Boulevard.) Bus loading spaces would be located underneath the aerial station. Kiss-ride spaces would be just south of the station, and then the parking lot. Entrances would be located off both Lomita and Crenshaw.

MADISON STREET STATION

The Madison Street Station would be the first station on the Skypark alternative. It would be located on the southeast quadrant of Skypark Drive and Madison Street, at the northwest corner of Torrance Municipal Airport. It would serve the office development to the west and north, the Torrance Hospital to the northeast, and would have vehicular access facilities.

The station would be aerial with a center platform. Bus loading and kiss-ride facilities would be located close to the station. Parking would be provided by acquiring the existing parking lot (480 spaces) at the west end of the airport. Additional parking could be provided in the adjacent vacant land along the south side of Skypark Drive in the airport clear zone. The feasibility of this station location depends on favorable negotiations with the City of Torrance and clearance from the Torrance Municipal Airport.

GARNIER STREET STATION

The terminal station for the Skypark alternative would be located just east of Garnier Street in currently vacant land along the north side of Skypark Drive. The surrounding land use is generally industrial: oil company and airport facilities. (An option would be to continue the line eastward and turn northeast to the Union Oil site at Crenshaw Boulevard.)

The station would be an aerial station with center platform. Bus loading would be located under the aerial structure. Kiss-ride facilities would be located between the station and Skypark Drive. Approximately 1,000 parking spaces would be located north of the station. There would be two major entrances off Skypark Drive.

ROLLING HILLS STATION

The Rolling Hills Station would be located along Hawthorne Boulevard across from Ernie Howlett Park, about one-half mile north of Palos Verdes Drive. The City of Torrance plans to develop a bus park-ride lot at this location, which is a reclaimed landfill site. The bus park-ride lot would have approximately 300 parking spaces.

The rail station would be located in the median of Hawthorne Boulevard. The center platform would be at about the same grade as the street. A pedestrian overpass would link the station to Ernie Howlett Park on the northwest side of Hawthorne and to the park-ride lot on the southeast side. Bus and kiss-ride facilities would also be located in the park-ride lot. The parking demand for a rail station should exceed the 300 spaces to be provided in the bus park-ride lot. Additional parking could be provided if it is possible to use more of the landfill site.

SECTION 4

PATRONAGE

4.1 INTRODUCTION

Estimated ridership in the Year 2010 was developed by the Southern California Association of Governments (SCAG) in coordination with the LACTC rail planning staff. SCAG employs a regional transportation model that consists of four stages: (1) trip generation, (2) trip distribution, (3) mode choice, and (4) trip assignment. Trip generation produces trips within a zone (e.g., home-work, home-shopping, etc.). Trip distribution assigns destinations to the trips generated from each zone to all other zones. Mode choice splits person trips among the modes available (transit or private vehicle). Trip assignment chooses particular routes for the trips by mode (e.g., transit or highway networks). The models in each of these stages are developed and calibrated with origin-destination travel survey data collected in the planning area.

The patronage estimates summarized in Tables 4-1, 4-2 and 4-3 assume the operation of the Red (Metro Rail), Blue (Long Beach-Los Angeles), Pasadena, San Fernando Valley, and Green (Norwalk-El Segundo, North and South Coast) lines as well as the operation of the Harbor Freeway Transitway. Two Green lines were simulated for patronage estimation. Both lines were assumed to operate over a common trunk from Norwalk to Aviation Boulevard, then continue with one line following the North Segment route and the other South Segment route. Ridership was obtained in separate model runs for each variation of a line terminus or park-ride availability. (For further information, please refer to "Ridership Forecasts for the Pasadena and Coastal Corridor Light Rail Projects," Southern California Association of Governments, February 1990.)

4.2 PATRONAGE SUMMARY

Tables 4-1 and 4-2 compare estimated patronage for the South Segment with varying in parkride assumptions at the shopping center stations (0 and 200 spaces, respectively) and the southern terminus at Lomita/Crenshaw. Table 2 shows the ridership for the South Segment with 200 parking spaces assumed for the shopping center stations, but with the southern terminus at Madison/Skypark. Because the study uses a work mode choice model, ridership is expressed in terms of home-work trips, or daily boardings. Tables 4-1, 4-2 and 4-3 show daily boardings at each

TABLE 4-1

AVERAGE WEEKDAY HOME-WORK TRIPS Lomita/Crenshaw Terminus

Daily Boardings
Station Park and Ride Home-Work Only
Space Park 1,269
166th/Hawthorne 30 457
Artesia/Hawthorne 701
190th/Hawthorne 706
Del Amo Fashion Center 1,440
Lomita/Hospital 200 968
Crenshaw/Lomita 1,000 761
Daily Boardings, Home-Work 6.302
TOTAL DAILY BOARDINGS, INCLUDING NONWORK TRIPS 11,670**
Daily boardings, Home-work, Norwalk to Crenshaw/Lomita 28,220
TOTAL DAILY TRIPS (Home-work, Nonwork), Norwalk to Crenshaw/Lomita 52,259

* Assumes no additional Park \& Ride requirements at this station for the South Segment.
** This was estimated by applying a regional factor used by SCAG (.54) to daily work trips for the segment. As noted in an earlier discussion, this cannot be done by station because nonwork trips do not have the same destination as work trips.

TABLE 4-2

AVERAGE WEEKDAY HOME-WORK TRIPS WITH PARK AND RIDE AT ARTESIA, 190TH, AND DEL AMO FASHION CENTER Lomita/Crenshaw Terminus

Station	Park and Ride	Daily Boardings Home-Work Only
Space Park	$*$	1,278
166th/Hawthorne	30	450
Artesia/Hawthorne	200	845
190th/Hawthorne	200	1,033
Del Amo Fashion Center	200	1,752
Lomita/Hospital	200	956
Crenshaw/Lomita	1,000	767
Daily Boardings, Home-Work	$\mathbf{7 , 0 8 1}$	
TOTAL DAILY BOARDINGS, INCLUDING NONWORK TRIPS		
TOTAL DAILY TRIPS (Home-work, Nonwork),		
Norwalk to Crenshaw/Lomita		

* Assumes no additional Park \& Ride requirements at this station for the South Segment.
** This was estimated by applying a regional factor used by SCAG (.54) to daily work trips for the segment. As noted in an earlier discussion, this cannot be done by station because nonwork trips do not have the same destination as work trips.

TABLE 4-3

AVERAGE WEEKDAY HOME-WORK TRIPS Madison/Skypark Terminus

Station	P\&R	Daily Boardings Home-Work Only
Space Park	$*$	1,293
166th/Hawthorne	30	456
Artesia/Hawthorne	200	869
190th/Hawthorne	200	1,024
Del Amo Fashion Center	500	$\underline{1,172}$
Madison/Skypark		
	$\underline{6.511}$	
Daily Boardings, Home-Work	$\underline{12,057^{* *}}$	
TOTAL DAILY BOARDINGS, INCLUDING NONWORK TRIPS		
Daily boardings, Home-work, Norwalk to		
Madison/Skypark		
TOTAL DAILY TRIPS (Home-work, Nonwork),		
Norwalk to Madison/Skypark		

* Assumes no additional Park \& Ride requirements at this station for the South Segment.
** This was estimated by applying a regional factor used by SCAG (.54) to daily work trips for the segment. As noted in an earlier discussion, this cannot be done by station because nonwork trips do not have the same destination as work trips.
station along the South Segment and include total boardings for the line from Norwalk to a South Segment terminus as well as total daily trips for the entire Green Line. Total daily (weekday) trips, which include nonwork trips, were estimated by applying a regional factor (.54) to daily work trips for the line as a whole. This cannot be done by station because nonwork trips do not have the same destinations as work trips.

As shown in Table 4-2 patronage of the South Segment increased from 6,302 to 7,081, or by 12.4 percent, when park-ride capacity was added at Artesia, 190th and Del Amo Fashion Center. Home-work trips to Space Park, represented by alightings at that station, also increase as a result of increased park-ride capacity at the shopping center stations.

4.3 MODE OF ARRIVAL

Overall, walking and use of the automobile are the most prevalent modes of access. On the average, 48 percent walk, 44 percent drive, and eight percent ride the bus to the various rail stations.

SECTION 5

GENERAL ENVIRONMENTAL ANALYSIS

5.1 INTRODUCTION

The general environmental analysis includes discussions on existing and planned land uses, potential displacement, sensitive land uses, disruption, and a number of key environmental issues that should be considered in future planning. If a specific project were to be proposed by LACTC, an environmental impact report would be required.

This report considers one primary alignment with two terminal station alternatives. The primary alignment begins in the northern city limits of Redondo Beach as an extension of the Green Line. The alignment follows an existing AT\&SF Railroad right-of-way to Manhattan Beach Boulevard, where it turns eastward and then parallels the San Diego Freeway to Hawthorne Boulevard where it turns southward. Both alternative alignments continue southward on Hawthorne Boulevard and terminate in the City of Torrance. The two terminal station alternatives considered result in the following alignment designations for the portion of the alignment south of Lomita Boulevard.

- Lomita Alignment
- Sky Park Alignment

A single track branch operation along Hawthorne Boulevard to a terminus in the City of Rolling Hills Estates was also studied.

The regional context of the alignment under consideration is indicated in Exhibit 5-1. The alignment is illustrated in Exhibit 5-2. There are nine stations proposed along the alignment. All of the stations are planned adjacent to bus stops and would be Kiss-and-Ride locations. The Madison Street, Crenshaw-Lomita, and Garnier Street stations are located adjacent to roadways. The Lawndale Avenue, Lomita Hospital, and Rolling Hills stations are within the street medians. Two locations are under consideration for each of the Galleria, Old Towne, and Del Amo stations. One alternative for each is within the Hawthorne Boulevard median. The second alternative for each proposes to extend the rail into the existing mall parking lots and locate stations adjacent to the mall structures.

4580003 June 1989

Exhibit 5-1

The general environmental analysis consisted of a review of the preliminary $1^{\prime \prime}=100^{\prime}$ scale centerline alignment plans and profiles of the LRT routes prepared by Bechtel Civil, Inc. In addition, the project team reviewed available local records and conducted a field survey to determine potential environmental and community impacts. Current land use plans and recent environmental studies were consulted to identify land use issues. A field survey of the alignment was conducted to assess displacement, as well as potential impacts on residential and business uses located near the alignments. A review of the hazardous waste sites listed by the federal and state government was conducted to assess the likelihood of the presence of toxic or hazardous materials contamination. The project team also consulted with city staff as appropriate to identify additional environmental issues. These and other factors investigated are explained in greater detail below.

LAND USE CHARACTERISTICS

A generalized land use survey was completed to identify the distribution of land use along the potential alignment for this analysis. Land uses were placed into one of six categories: residential, commercial, industrial, parklands, public, and undeveloped land. Retailing and service activities and professional office uses were classified as commercial. Manufacturing and warehousing activities were placed into the industrial category. Public uses included Torrance Municipal Airport.

LAND USE IMPACTS

The engineering team has completed a series of engineering drawings that indicate the location and extent of proposed LRT facilities. This assessment of land use impacts focuses on identifying existing and planned land uses and development, potential land use conflicts, potential for businesses to be disrupted, and anticipated displacement impacts. Residential uses abutting the alternative alignments are identified. This measure helps indicate the potential for noise, visual, and land use compatibility impacts that may affect sensitive residential uses.

PARKING DISPLACEMENT

The potential displacement of parking is identified by the approximate number of spaces affected. All of the parking spaces eliminated are off-street parking.

BUSINESS DISRUPTION IMPACTS

Commercial business areas that may be disrupted by the LRT alignments are identified. Construction disruption is not evaluated as part of this factor because it will affect the entire corridor. Rather, permanent effects are assessed, such as loss of parking in commercial areas, impacts related to commercial visibility, or changes in automobile access. Potential beneficial impacts of the LRT facilities were not considered in this initial assessment though these benefits should be considered along with any adverse effects in future evaluations.

TOXIC AND HAZARDOUS MATERIAL CONTAMINATION

The U.S. Environmental Protection Agency (EPA) National Priorities List (NPL), updated June 1988; the Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) list produced by the EPA May 1988; and the California Expenditure Plan for the Hazardous Substances Cleanup Bond Act of 1984 (revised January 1988) were reviewed for sites of potential hazardous materials contamination within one mile of the alignment under consideration. In April 1989, the California Water Resources Control Board (RWQCB) of the Los Angeles Region compiled an Underground Storage Tank (UST) Case List of leaks. This UST Case List was also consulted for sites of soil and/or groundwater contamination caused by underground tank spills or leaks along the alignment under consideration.

OTHER ENVIRONMENTAL ISSUES

Potential environmental issues are highlighted as outlined by the California Environmental Quality Act (CEQA). These issues are intended to begin documentation of potential environmental issues and help direct future environmental analysis of alignments by the LACTC.

5.3 GENERAL ENVIRONMENTAL ANALYSIS OF THE ALIGNMENTS AND STATION ALTERNATIVES

This section of the Route Refinement Study describes, in general, the potential impacts that may result from the construction and subsequent operation of the proposed alignment and various station alternatives. The individual factors considered in this analysis are summarized below.

LAND USE CHARACTERISTICS

The land uses along the alignment are depicted in Exhibit 5-3. For further characterization of these land uses, the alignment was divided into three separate segments.

Segment 1 - (Railroad R-O-W to Hawthorne Boulevard)

This portion of the alignment occupies the Santa Fe railroad right-of-way northwest of Manhattan Beach Boulevard in the cities of Redondo Beach and Lawndale, along the Manhattan Beach Boulevard median from railroad right-of-way to San Diego Freeway in the City of Lawndale, and along the southwestern side of the San Diego Freeway to Hawthorne Boulevard in the City of Lawndale. Small to medium industrial and commercial uses are located along the railroad right-of-way and Manhattan Beach Boulevard. Along the San Diego Freeway portion, there are residential single-family housing and undeveloped areas.

Segment 2 - Hawthorne Boulevard (San Diego Freeway To Lomita Boulevard)

This portion of the alignment runs along Hawthorne Boulevard from the San Diego Freeway to Lomita Boulevard and through the cities of Lawndale, Redondo Beach, and Torrance. This segment includes the Lawndale, Galleria, Old Towne, and Del Amo stations. Primarily, commercial uses line Hawthorne Boulevard with single-family residential at three locations as depicted in Exhibit 5-3.

Two terminal station alternatives are being considered for this segment. They include the Lomita and Skypark terminal stations in the City of Torrance.

- Lomita Alignment. The Lomita Alignment continues eastward on Lomita Boulevard from Hawthorne Boulevard and terminates at the Lomita Station immediately west of Crenshaw Boulevard. A second station (Lomita-Hospital Station) is located at Torrance Memorial Hospital. Land uses along this alignment include commercial use such as Torrance Memorial Hospital and industrial uses on the northwest and southwest corner of Lomita and Crenshaw Boulevards (the Union Oil Company maintains oil tank yards in this area).
- Skypark Alignment. The Skypark Alignment continues south on Hawthorne Boulevard to Skypark Drive where it shifts eastward approximately two-thirds of the distance to Crenshaw Boulevard. Commercial and public uses border this alignment. Torrance Municipal Airport is located to the south of Skypark Drive. Two stations are located along this alignment, Madison Street Station and Garnier Station. A baseball diamond (not public) is located to the northeast of the Garnier Street Station.

In addition to the Lomita and Skypark Alignments, a branch into the City of Rolling Hills was considered.

- Rolling Hills Branch. The Rolling Hills Alignment continues south on Hawthorne Boulevard to the northern boundary of the City of Rolling Hills Estates. The only station is located at the end of this branch. Adjacent land uses include commercial developments and park and undeveloped land in steep terrain at the terminus.

LAND USE CONFLICTS

Potential land use conflicts may arise from adverse impacts associated with the LRT operation due to potential displacement or the disruption of normal present-day activities. In general, displacement impacts relate to the use of parking lot area by the alternative station locations adjacent the malls. Some displacement of structures and trees will occur at these locations. Displacements will also occur at the southwest corner of the San Diego Freeway and Manhattan Beach Boulevard, a corner at 166th and Hawthorne Boulevard, and northeast corners of Hawthorne Boulevard and Lomita Boulevard and Skypark Drive.

Sensitive land uses considered for this study included single-family homes existing along the alignment, a medical/dental building, the Torrance Memorial Hospital, and Ernie Howlett Park. Business disruption will result primarily from the loss of parking space visibility. The impacts related to displacement, sensitive land use, and business disruption are summarized in Table 5-1, and the locations are indicated on Exhibit 5-4.

TOXIC AND HAZARDOUS WASTE CONTAMINATION

There were no National Priorities List sites located along the alignments. However, there were two sites listed on the California Bond Expenditure Plan and six CERCLIS sites within one mile of all the alignments. In addition, three sites along the alignment were listed on the UST Case List. The City of Torrance also provided information on a non-listed contamination site (UNOCAL Tank Yard) at Lomita and Crenshaw boulevards. The sites of potential contamination are located on Exhibit 5-5 and summarized in Table 5-2.

PLANNED DEVELOPMENT

As shown in Exhibit 5-3, there are only three areas of undeveloped land along the proposed alignments. The site for the Crenshaw-Lomita Station is currently undeveloped. Commercial uses surround the site with the UNOCAL Tank Yard to the north and west. For the Skypark Alignment, undeveloped property is located northeast of the Garnier Street Station. However, the property has commercial uses on all sides including Torrance Municipal Airport to the south and is designated in the General Plan for commercial uses. The Rolling Hills Branch has undeveloped land on both sides near the terminus. However, the terrain is steep making development extremely difficult.

OTHER ENVIRONMENTAL ISSUES

A number of additional environmental issues were identified in the analysis with discussions following. The potential impacts of each are described in qualitative terms and are described in the following sections for each alignment alternative.

LAND USE IMPACTS

Segments 1 and 2-All Alignments

1. Santa Fe Railroad right-of-way
2. Northeast corner of Manhattan Beach Boulevard and railroad line
3. Southwest corner of Manhattan Beach Boulevard and San Diego Freeway
4. Grevillea Avenue adjacent to the San Diego Freeway
5. Southwest corner of San Diego Freeway and Hawthorne Boulevard
6. Hawthorne Boulevard at 166th Street Lawndale Station/kiss and ride/parking
7. Hawthorne Boulevard at 176th Street Galleria Station westside alternative
8. East side of Hawthorne Boulevard between 174th and 177th Street - median alternative
9. Hawthorne Boulevard at 176 Street Galleria Station median alternative
10. Southeast corner of 190th Street and Hawthorne Boulevard
11. Hawthorne Boulevard at Old Towne Mall Old Towne Station east-side alternative
12. West side of Hawthorne Boulevard between Cadison Avenue to Del Amo Boulevard median alternative

Encroachment into railroad right-of-way.
Right-of-way required.

Displacement of two businesses.

Increased noise and loss of aesthetic landscaping and visibility to single-family residences.

Right-of-way required.

Loss of one business, approximately 25 off-street parking spaces, aesthetic landscaping, and visibility to businesses.

Loss of approximately 15 off-street parking spaces and aesthetic landscaping, and visibility to businesses.

Increased noise and loss of aesthetic visibility to singlefamily residences.

Loss of approximately eight off-street parking spaces and visibility of businesses.

Increased noise and vibration to medical and dental businesses.

Loss of approximately 15 off-street parking spaces and aesthetic landscaping and visibility to businesses.

Increased noise and loss of aesthetic landscaping and visibility to single-family residences.

TABLE 5-1 (continued)

Location Nature of Impact

13. Hawthorne Boulevard between 225th and
227th Street - Del Amo Station eastside
alternative
14. East side of Hawthorne Boulevard between
225th and 227 th Street

Segment 3 - Lomita Alignment

15. Northeast corner of Hawthorne Boulevard and Lomita Drive
16. Lomita Avenue - Torrance Memorial
Hospital
17. Southwest corner of Crenshaw Blvd. and Lomita at station site

Segment 3-Sky Park Alignment

18. Northeast corner of Hawthorne Boulevard and Skypark Drive
19. South side of Skypark Drive at Madison Street Station
20. North side of Skypark Drive for Garnier Street Station

Segment 3 - Rolling Hills Branch

Loss of approximately 17 off-street parking spaces and aesthetic landscaping and visibility.

Increase noise and loss of aesthetic landscaping and visibility to single-family residences.

One business displaced and right-of-way required.

Loss of approximately eight off-street parking spaces, right-of-way required, increased noise and vibration, and loss of visibility.

Major vacant land acquisition.

Right-of-way required and loss of 10 off-street parking spaces.

Land acquisition and right-of-way required.

Major vacant land acquisition for station facilities and parking.

Minor increase in noise levels.

TABLE 5-2
POTENTIAL HAZARDOUS MATERIAL CONTAMINATION SITES

Site	Listed On	Distance From Alignment	Status
Segments 1 and 2-Alignments			
Lawndale Annex FAAVFB 14724 S. Aviation Blvd. Hawthorne	CERCLIS	approximately $1 / 2$ mile to the northeast	No information available.
ELCO Corporation 2250 Park Place El Segundo	California Bond Act	approximately $3 / 4$ mile to the north	Soil contaminated with cadmium and/or nickel to depth of 50 feet. Remedial action completed.
UNOCAL Station 4373 122nd Street Torrance	RWQCB UST	within $1 / 4$ mile of site	Soil contamination of site. No action taken.
UCC/Linde Division 19200 Hawthorne Torrance	RWQCB UST	on alignment	Acetone contamination extent undetermined. No action taken.
Mobil Oil Corporation 3700 W. 190th Street Torrance	CERCLIS	$3 / 4$ mile to the east	No information available.
Union Carbide Corporation Torrance DLT 3651 Del Amo Blvd. Torrance	CERCLIS	within $1 / 4$ mile of site	No information available.

TABLE 5-2 (Continued)
Site $\begin{array}{ccc}\text { Listed On } & \begin{array}{c}\text { Distance } \\ \text { From Alignment }\end{array} & \text { Status }\end{array}$

Torrance Landfill Madrona and Del Amo Torrance	CERCLIS		approximately $1 / 2$ mile to the east
Sperry Remington 610 S. Maple Avenue Torrance	CERCLIS	No information available.	

Noise

The operation of the LRT will generate noise which may affect noise sensitive land uses located in the immediate vicinity of the proposed LRT. However, high ambient noise levels presently exist due to traffic on the San Diego Freeway, Hawthorne and Lomita Boulevards, and Skypark Drive.

The Noise and Vibration Technical Report for the Coastal Corridor (South) Rail Transit Project Route Refinement Study provides a detailed discussion of potential noise and vibration impacts. The conclusions of the report are summarized below.

- Noise. Three small areas were identified as having noise impacts on a CNEL basis. These are the Medical Building at Hawthorne Blvd. and 190th Street, and commercial buildings located adjacent to the turns from Hawthorne Blvd. to Lomita Blvd. or Skypark Drive for those alternative termini. Noise mitigation could take the form of sound barrier walls along the edge of the rail guideway structure nearest the given building. In most cases, a relatively short barrier could be used (perhaps 3 feet high) to block line-of-sight between the wheel/rail noise source and the receiver.
- Vibration. The report identified several areas where vibration mitigation measures should be considered. All of these involve buildings in adjacent (under 50 feet) to the proposed LRT aerial structure. To minimize impacts, the support structure should never be in direct contact with a building structure or foundation. Ideally, there should be at least 2 feet of intervening soil between the support structure and any building foundations or structures. In cases where this is not possible, an elastomer element should be placed between the subway box and the building foundation to prevent direct transmission of ground-borne noise and vibration into the building.

Aesthetics

Aesthetic impacts would result from construction of stations and support facilities. For example, all of the alignments will involve the construction of columns needed to support the LRT, which will result in aesthetic impacts. The stations may also result in aesthetic and visual impacts. However, substantial aesthetic impacts are not expected for two reasons. First, the alignments are entirely long existing rail lines or roadways. Secondly, the shape of the concrete structures will be designed in form and appearance to blend into the streetscape as much as possible. Exhibit 5-6 depicts a typical segment along Hawthorne Boulevard.

LOS ANGELES COUNTY TRANSPORTATION COMMISSION

Street Trees/Open Space Resources

The areas where the proposed alignments are being considered have virtually no areas that have not been disturbed by past urbanization. It will be necessary to remove street trees to accommodate the LRT.

While the exact number of affected trees has not been determined, the number of street trees likely to be affected by the proposed LRT alignment in each segment is identified in Table 5-3.

TABLE 5-3

STREET TREE IMPACTS

Segment	Impact
1. Railroad R-O-W to Hawthorne Blvd.	Loss of landscaping along freeway
2. Hawthorne Blvd. (San Diego Freeway	
to Lomita Boulevard)	
- with median alternatives only	Loss of approximately 50 street trees
- with alternatives adjacent	Loss of approximately 75 street and wall trees
3. South of Lomita Boulevard	Loss of approximately 75 street and mall trees
- Lomita Alignment	No trees lost
- Skypark Alignment	No trees lost
- Rolling Hills Branch	Loss of approximately 40 street trees

PUBLIC SAFETY

No significant public safety concerns have been identified for any of the three terminal station alignments.

Earth

The area in which the alignments are being considered is fully urbanized and little grading and soil displacement are likely. Some localized excavation may be required, though the precise nature and extent of grading and/or excavation will need to be defined in subsequent phases of engineering and design.

The alignments under consideration are located in a seismically active region and could experience the effects (primarily ground motion and possible surface rupture) from a major earthquake during the operational lifetime of the project. The Palos Verdes Fault crosses the southern end of the alignment. In addition, the Newport-Inglewood Fault is approximately 5 miles to the north of the northern end of the alignment. If the project were implemented, seismic standards appropriate to the area will be incorporated in project design.

Air

The construction and operation of the proposed LRT will result in localized air quality impacts. A primary objective of this proposed project, as well as other transit projects in the region, is to reduce usage of private vehicles which are a major contributor to emissions in the South Coast Air Basin (SCAB). Localized increases in vehicular emissions may occur around stations and park and ride facilities. Carbon monoxide levels may increase in the vicinity of stations (and along Hawthorne Boulevard, Lomita Boulevard, and Skypark Drive).

Water

The alignments under consideration will not involve any significant alterations in surface water runoff or in the direction or rate of flow of groundwater.

Light and Glare

The operation of the proposed LRT will introduce additional light and glare into an area that is urbanized at the present time. However, most of the area where the LRT is being considered is adjacent to activities that would not be overly sensitive to increased lighting. Potential adverse impacts related to light and glare are not expected.

Energy/Utilities

The LRT system will use electrical power to provide power to the vehicles. This power will be generated by plants located within the SCAB and will include power purchased from purveyors outside the region.

The construction and operation of the proposed LRT will require some modification to existing utilities facilities and substructures and may result in additional systems.

Natural Resources

Some nonrenewable resources will be consumed during the construction of the proposed project. In addition, facilities providing power to the proposed project will consume nonrenewable fossil fuels.

Risk of Upset

Risk of upset is defined as the risk of explosion or the release of hazardous substances (including, but not limited to, oil, pesticides, chemicals, or radiation) in the event of an accident or upset condition. In addition, risk of upset also applies to any interference with an emergency response plan or emergency evacuation plan. This issue was addressed in the discussion on Land Use Impacts.

Population/Housing

The implementation of the proposed LRT will not result in any displacement of housing units. The operation of the proposed LRT may result in some growth-inducing impacts which will affect both housing and population in the city.

Public Services

The LRT system will maintain its own security staff which will limit the impacts on cities for patrol and law enforcement services. No schools are located in the immediate vicinity of the alignment, though Ernie Howlett Park is located adjacent to the Rolling Hills Alignment.

None of the terminal station alternatives and the branch line results in a significant environmental impact that could not be mitigated. The major environmental concerns are highlighted below and compared in Table 5-4.

Segments 1 and 2 (Railroad R-O-W to intersection of Hawthorne and Lomita Boulevards for both terminal station alternatives):

- Minor rights-of-way and land acquisitions
- Two businesses displaced at southwest corner of Manhattan Beach Boulevard and San Diego Freeway
- Displacement of one business at northwest corner of Hawthorne Boulevard and 166th Street
- Possible contaminated soils at UCC Linde Division and Union Carbide Corporation locations (see Exhibit 5-5)
- Noise impact at medical building at Hawthorne Boulevard and 190th Street
- Removal of approximately 50 to 75 street trees in median of Hawthorne Boulevard and at stations
- Loss of off-street parking at station locations and in median of Hawthorne Boulevard north of Redondo Beach Boulevard

Segment 3 - South of Lomita Boulevard:

- Lomita Alignment
- One business displaced at northeast corner of Hawthorne Boulevard and Lomita Drive
- Major land acquisition Crenshaw - Lomita Station
- Possible contaminated site at Hughes Aircraft Co. and UNOCAL Tank Yard
- Noise impact to commercial buildings at northeast corner of Hawthorne and Lomita Boulevards
- Skypark Alignment
- Major vacant land acquisition at Garnier Street Station
- Noise impact to commercial buildings at northeast corner of Hawthorne Boulevard and Skypark Drive
- Rolling Hills Branch
- Land acquisition at Rolling Hills Station
- Removal of approximately 40 street trees

TABLE 5-4

OVERVIEW OF ENVIRONMENTAL IMPACTS

Issue Area	Segment 1	Segment 2 (Hawthorne Blvd. to San Diego Freeway to Lomita Blvd.	Segment 3		
	(Railroad R-O-W to Hawthorne Blvd.)		Lomita Alignment	Skypark Alignment	Rolling Hills Branch
Land Use	Land acquisition of railroad and freeway right-of-way, and southwest corner of Manhattan Beach Blvd/San Diego Freeway and southwest corner of	Land acquisition near 190th Street and at stations	Land acquisition at stations and corner of Hawthorne Blvd.	Land acquisition at stations and corner of Hawthorne Blvd.	Land acquisition at stations
$\begin{aligned} & \stackrel{\sim}{1} \\ & \stackrel{\omega}{\omega} \end{aligned}$	Hawthorne Blvd/San Diego Freeway				
Hazardous Materials (contamination)	No substantial impact	Possible contamination at UCC Linde Division and Union Carbide Corp.	Possible contamination at Hughes Aircraft Co. and UNOCAL Tank Farm	No substantial impact	No substantial impact
Noise	No substantial impacts	Medical Bldg. impacted at Hawthorne Blvd. and 190th Street	Impact to commercial buildings at northeast corner of Hawthorne and Lomita Blvds.	Impact to commercial buildings at northeast corner of Hawthorne Blvd. and Sky Park Drive	No substantial impacts
Aesthetics	No substantial impact	No substantial impacts	No substantial impacts	No substantial impacts	No substantial impacts

TABLE 5-4 (Continued)

Issue Area	Segment 1	Segment 2	Segment 3		
	(Railroad R-O-W to Hawthorne Blvd.)	(Hawthorne Blvd. to San Diego Freeway to Lomita Blvd.	Lomita Alignment	Skypark Alignment	Rolling Hills Branch
Street Trees/ Open Space	Removal of open space and landscaping adjacent to San Diego Freeway	Removal of approximately 50 trees if all median alternatives are constructed, approximately 20 less if Galleria westside alternative is chosen; 24 more	Removal of approximately 8 street trees	No impact	Removal of approximately 40 street trees. Minor impact to Ernie Howlett Park
-		for Old Towne or Del Amo east-side alternatives			
Public Safety	No substantial impacts				
Earth	No major grading or excavation				
Air	No substantial impacts				
Light and Glare	No substantial impacts				

Issue Area	\qquad Segment 1 (Railroad R-O-W to Hawthorne Blvd.)	Segment 2 (Hawthorne Blvd. to San Diego Freeway to Lomita Blvd.	Segment 3		
			Lomita Alignment	Skypark Alignment	Rolling Hills Branch
Natural Resources	Consumption of nonrenewable resources for construction and power generation	Consumption of nonrenewable resources for construction and power generation	Consumption of nonrenewable resources for construction and power generation	Consumption of nonrenewable resources for construction and power generation	Consumption of nonrenewable resources for construction and power generation
Risk of Upset	No significant risk of upset anticipated				
Population/ Housing	No displacement of housing. Growthinducing impacts on housing and population	No displacement of housing. Growthinducing impacts on housing and population	No displacement of housing. Growthinducing impacts on housing and population	No displacement of housing. Growthinducing impacts on housing and population	No displacement of housing. Growthinducing impacts on housing and population
Public Services	No significant adverse impacts on public services anticipated	No significant adverse impacts on public services anticipated	No significant adverse impacts on public services anticipated	No significant adverse impacts on public services anticipated	No significant adverse impacts on public services anticipated
Energy Consumption	LRT will consume electricity for power generation				

SECTION 6

TRAFFIC ANALYSIS

6.1 ENVIRONMENTAL SETTING AND EXISTING CONDITIONS

REGIONAL SETTING AND PROPOSED ALIGNMENT

The Coastal Corridor Light Rail Transit Project South Segment begins at the end of the El Segundo Extension of the Century Freeway rail project. The alignment proceeds south along the Santa Fe Railroad right-of-way and rises to an elevated structure to flyover Compton Boulevard. It proceeds along the railroad right-of-way to Manhattan Beach Boulevard where the aerial structure turns into the median and proceeds to the west side of the San Diego Freeway (I-405). It runs along the west side of the freeway to Hawthorne Boulevard. The proposed alignment continues on aerial structure in the median of Hawthorne Boulevard for nearly six miles to Rolling Hills Road. This traffic analysis addresses that portion of the alignment which is outside of existing railroad right-of-way.

Abstract

Alternatives to the median alignment are proposed at the following station locations: the Galleria Station, the Old Towne Station, and the Del Amo Station. The alternative alignments at these locations would bring the aerial structure out of the median of Hawthorne Boulevard and into the existing parking areas of the South Bay Galleria, the Old Towne Mall, and the Del Amo Fashion Center. Two additional alignment alternatives would bring the line onto Skypark Drive or Lomita Boulevard from Hawthorne Boulevard. Both of those alternatives would serve the general area of the Torrance Airport and the Torrance Memorial Hospital Medical Center. Exhibit 6-1 displays the location of the proposed rail line and alternatives.

STREET AND HIGHWAY SYSTEM

The following summarizes existing conditions for each principal roadway in the corridor. Number of traffic lanes, presence of parking or restrictions and average daily traffic (ADT) volumes are provided where the information was available from the cities along the corridor and Caltrans.

DKS Associates

Freeways

Currently, the only freeway near the light rail corridor under study is the San Diego Freeway (I-405). The proposed rail line runs parallel to the freeway between Manhattan Beach Boulevard and Hawthorne Boulevard. The Century Freeway (I-105) is scheduled for completion in 1993. The Century Freeway light rail line will connect directly to the coastal route at the "wye" to be located near the intersection of Imperial Highway and Aviation Boulevard.

San Diego Freeway (I-405)

The San Diego Freeway is a major north/south route which connects the Coastal LRT Corridor to West Los Angeles and the San Fernando Valley to the north and Long Beach and Orange County to the south. Near Manhattan Beach Boulevard, it has four lanes in each direction. The average daily traffic volume on I-405 near the project is approximately $270,000$.

Major Highways

The proposed rail project runs primarily along Hawthorne Boulevard, Lomita Avenue and Skypark Drive, with a small segment along Manhattan Beach Boulevard. The traffic impact analysis therefore focuses upon those key roadways. Several major and secondary highways may be impacted where they cross Hawthorne Boulevard. Potential impacts on those streets are analyzed in terms of intersection operating conditions.

Manhattan Beach Boulevard

Near the project Manhattan Beach Boulevard consists of two through lanes in each direction plus parking on each side of the street and a raised median. The existing volume east of Inglewood Avenue is approximately 33,200 vehicles per day. Manhattan Beach Boulevard is 84 feet wide curb-to-curb where the proposed rail alignment would run.

Hawthorne Boulevard

Hawthorne Boulevard, also known as State Route 107, varies from three to four through lanes in each direction over most of the corridor from the San Diego Freeway to Pacific Coast Highway (PCH). No parking is allowed anywhere along Hawthorne Boulevard north of PCH. South of PCH parking is allowed to Newton Street. Exclusive left-turn lanes are provided at the intersection of Hawthorne Boulevard with most major and secondary highways. There is a raised median over the entire segment which ranges from several feet to over 50 feet wide. The width of the median is key to the potential for traffic impacts and thus the median configuration is discussed in more detail in Section 2, which outlines potential project-related impacts.

Lomita Boulevard

Lomita Boulevard functions as an arterial facility between Hawthorne Boulevard and Crenshaw Boulevard. West of Hawthorne Boulevard, it becomes a residential collector street. It has two lanes plus a bike lane in each direction where the rail line is proposed. The curb-to-curb width of Lomita Boulevard west of Hawthorne Boulevard is 40 feet. East of Hawthorne Boulevard it widens to a full 80 -foot width curb-to-curb. The ADT on Lomita Boulevard is approximately 33,500.

Skypark Drive

Skypark Drive is a collector street which runs from Hawthorne Boulevard to Crenshaw Boulevard. It serves as the northern boundary of the Torrance Municipal Airport property. Skypark Drive intersects Hospital Drive and therefore acts as a major access route to the Torrance Memorial Hospital Medical Center. It has two lanes in each direction near the project at Madison Street.

Existing Transit Service

Transit service for the proposed rail corridor is provided by SCRTD and Torrance Transit. Several SCRTD and Torrance Transit lines run along some portion of Hawthorne Boulevard within the proposed rail corridor and on the east/west routes which cross perpendicular to the corridor. The following summarizes the routes that currently serve the area.

Routes Along Hawthorne Boulevard

SCRTD 40

Within the corridor, this line runs from the South Bay Galleria Transit Center north along Hawthorne Boulevard to La Brea Avenue. It continues through Inglewood and south central Los Angeles into downtown Los Angeles.

SCRTD 210

This line runs north from the South Bay Galleria to Artesia Boulevard via Hawthorne Boulevard. It continues east on Artesia Boulevard to Crenshaw Boulevard. It follows Crenshaw Boulevard to Wilshire Boulevard. North of Wilshire Boulevard, the line continues into Hollywood via Rossmore Avenue and Vine Street.

SCRTD 211

This line runs north from the South Bay Galleria to Artesia Boulevard via Hawthorne Boulevard. It follows Artesia Boulevard east to Prairie Avenue where it continues north into Inglewood.

SCRTD 442

This express line operates along Hawthorne Boulevard from the South Bay Galleria to La Brea Avenue. It follows Manchester Boulevard and the Harbor Freeway into downtown Los Angeles.

SCRTD 444

Line 444 operates on Hawthorne Boulevard over most of the proposed rail corridor. It runs on Hawthorne from the Palos Verdes Peninsula to Artesia Boulevard. From Artesia Boulevard it takes the San Diego Freeway to the Harbor Freeway into downtown Los Angeles.

Torrance Transit Routes 2, 3, 4, 7, 8 and 9 all operate along some portion of the rail corridor. Route 8 covers the largest section of the corridor, running from south of Pacific Coast Highway
to north of Artesia Boulevard. The various routes provide service to all parts of Torrance, the Harbor City area (Route 2), Long Beach (Route 3), and downtown Los Angeles (Route 2).

Routes Crossing Hawthorne Boulevard

The following SCRTD routes cross Hawthorne Boulevard within the proposed rail corridor: 130 (on Artesia Boulevard), 448 (on Pacific Coast Highway), and 232 (on Pacific Coast Highway).

Lomita Boulevard Transit

Torrance Transit Route 9 runs along Lomita Boulevard from Hawthorne Boulevard to Western Avenue. It runs entirely within the City of Torrance and connects the Lomita Boulevard corridor to downtown Torrance and the Del Amo Fashion Square.

EXISTING TRAFFIC CONDITIONS

Existing traffic operating conditions have been analyzed at key intersections along Manhattan Beach Boulevard and Hawthorne Boulevard in the Cities of Lawndale, Redondo Beach, and Torrance. Because the alignment will be aerial and will most likely be located in the median of Hawthorne Boulevard, the impact analysis focuses upon those locations where column supports may impact traffic operations. Intersections which may be impacted by station-related pedestrian or vehicular traffic are also included in the analysis.

At-grade rail crossings are not feasible due to the operation of a driverless automated vehicle, which is an element of the Green Line. The issue of at-grade versus aerial traffic impacts is therefore not investigated as part of this analysis. Preliminary analysis has generally eliminated the side-running alignment along Hawthorne Boulevard. Traffic impacts therefore focus on the median alignment except at three station locations where alternative alignments are proposed outside of the median.

The following intersections are included in the traffic impact analysis:

- Redondo Beach Boulevard/Hawthorne Boulevard
- Artesia Boulevard/Hawthorne Boulevard
- 190th Street/Hawthorne Boulevard
- Del Amo Boulevard/Hawthorne Boulevard
- Torrance Boulevard/Hawthorne Boulevard
- Carson Street/Hawthorne Boulevard
- Sepulveda Boulevard/Hawthorne Boulevard
- Lomita Boulevard/Hawthorne Boulevard

Exhibit 6-2 displays the locations of these study intersections.

Morning and evening peak hour traffic counts have been obtained from existing studies, from City records, and taken in the field during March and June, 1989.

Existing intersection operating conditions have been analyzed utilizing the critical movement analysis (CMA) method. The CMA method measures the critical traffic volume at an intersection, compares that volume to an assumed capacity and results in a volume-to-capacity (V/C) ratio. The assumed capacity per lane is 1,700 vehicles per hour of green signal indication, adjusted downward as necessary to account for lost time due to multiple signal phases. These assumptions are consistent with those used in the environmental analysis prepared for the Coastal Corridor North Segment, although they are adjusted slightly to reflect conditions specific to the Torrance area.

After calculation of the volume/capacity ratio at each intersection, a level of service (LOS) is determined at each location. Level of service is a qualitative measure of intersection operating conditions which ranges from A (very good operating conditions) to F (extremely congested conditions). Table 6-1 describes typical intersection operating conditions and volume/capacity ratios under each level of service.

The existing V/C ratios and level of service at key intersections are listed in Table 6-2. The table shows the estimated LOS during both the morning (7 to 9 AM) and evening (4 to 6 PM) peak periods.

The minimum acceptable level of service on urban arterial streets is generally regarded as LOS D. Intersections operating at LOS E or F are considered to be severely congested with traffic demand approaching or at capacity. Of the eight study intersections, six are at LOS E or F during the AM peak hour, and seven are currently at LOS E or F during the PM peak hour. This indicates that considerable traffic congestion exists throughout the corridor. The provision of double left-turn

DKS Associates

Table 1
Level of Service Interpretation

$\begin{array}{l}\text { Level of } \\ \text { Service }\end{array}$	$\begin{array}{c}\text { Delay Range } \\ \text { (Sec. per } \\ \text { Vehicle) }\end{array}$	$\begin{array}{c}\text { Volume to } \\ \text { Capacity } \\ \text { Ratio }\end{array}$
A	$\begin{array}{l}\text { Excellent operation. All approaches to the intersection } \\ \text { appear quite open, turning movements are easily made, } \\ \text { and nearly all drivers find freedom of operation. }\end{array}$	-5

Source: Based on National Academy of Sciences, Highway Capacity Manual, 1965 and 1986.

Table 2
Existing Volume/Capacity Ratio and Level of Service at Key Intersections

	AM Peak Hour		PM Peak Hour	
Intersection	$\underline{V / C}$	LOS	V / C	LOS
Hawthorne Boulevard/Redondo Beach Boulevard	-1.00	F	0.88	D
Hawthorne Boulevard/Artesia Boulevard	0.97	E	0.90	E
Hawthorne Boulevard/190th Street	0.98	E	-1.00	F
Hawthorne Boulevard/Del Amo Boulevard	0.95	E	-1.00	F
Hawthorne Boulevard/Torrance Boulevard	0.80	D	-1.00	F
Hawthorne Boulevard/Carson Street	0.80	D	1.00	F
Hawthorne Boulevard/Sepulveda Boulevard	0.96	E	-1.00	F
Hawthorne Boulevard/Lomita Boulevard	1.00	F	-1.00	F

lanes at several major intersections also indicates a history of high peak hour traffic volumes along the Hawthorne Boulevard corridor.

6.2 ENVIRONMENTAL IMPACTS

TRAFFIC PROJECTIONS - AMBIENT TRAFFIC GROWTH

For purposes of this study, year 2010 was chosen as the design year in which future traffic conditions with and without the project are assessed. A methodology of projecting future traffic volumes was developed for the Coastal Corridor Rail Transit Project North Segment and the Pasadena Rail Transit Project. The same methodology is utilized for this analysis to remain consistent with previous light rail transit studies. The calculation of background traffic growth rates is described below.

A background traffic growth rate was developed for each intersection based upon regional traffic model projections from the Southern California Association of Governments (SCAG). Average daily traffic volumes from the 1984 SCAG regional model were compared to those from the 2010 model run, and an annual rate of background traffic growth was determined for all key facilities.

The annual growth rates based upon the SCAG projections for different segments of the corridor range over the rail corridor. The average growth rate is calculated as 0.6 percent per year. To assure a conservative (worst case) analysis, the annual growth rate is rounded to one percent per year for purposes of this analysis. The one percent growth rate represents ambient (background) traffic growth due to development not related to the rail transit project. Based upon a one percent compounded annual growth rate, the total ambient traffic growth is expected to be 22 percent over the 20 -year period. Although this rate is low relative to recent trends in Southern California, it is considered a realistic rate for the Hawthorne Boulevard corridor due to characteristics of the area. Many parcels adjacent to the proposed rail corridor are essentially built out and Hawthorne Boulevard has been modified to achieve maximum capacity within existing right-of-way. Even if development patterns cause significant additional traffic demand, new traffic will be forced to seek alternate routes due to capacity constraints already imposed by roadway geometrics along Hawthorne Boulevard.

A significant level of medical office development has been proposed in the area around Lomita Boulevard between Hawthorne Boulevard and Crenshaw Boulevard. No specific information on the size, location, or timing of that development was available when this analysis was prepared. Traffic resulting from expansion of the medical office district is therefore not included in the forecast of future traffic growth. Future development of a specific plan for the medical office district should be closely coordinated with the rail transit project planning.

TRAFFIC PROJECTIONS - PROJECT RELATED TRAFFIC

The next step is to estimate the traffic volumes generated by the project. SCAG's modeling results indicate that this project has no significant impact on the regional traffic projections. Future traffic volumes projected by SCAG for the "Base Case" and With LRT" differ only slightly. Therefore, traffic generation by LRT will only be localized at roadways and intersections near stations during the peak periods.

There is no established trip generation rate for light rail stations. Two approaches could be used to estimate the number of trips generated at LRT stations. As in previous LRT traffic studies, SCAG's "Mode of Access" table could be reviewed to identify the amount of auto trips generated/attracted at each station. The SCAG "mode of access" information, however, was developed before the specific station locations were identified. Therefore, the SCAG patronage information as of the date of this report does not match proposed station locations and does not provide a meaningful estimate of future project-related traffic flows. Station related traffic generation is therefore based upon the number of proposed parking spaces at each station location. The number of kiss-and-ride (drop off) trips may also be included in the calculation, although those numbers were not available when this study was prepared.

Table 6-3 shows estimated AM and PM peak hour station related tripmaking based up on the number of proposed parking spaces and the Institute of Transportation Engineers trip rate for park-and-ride lots. Those stations for which no parking or patronage information is available are not included.

Table 3
Estimated Station-Related Traffic Generation

${ }^{1}$ Based on ITE trip rate \# 090

${ }^{2}$ Parking proposed to be shared with shopping centers. SCAG model runs completed following preparation of this report indicate 200 to 300 peak hour vehicle trips at each location. Subsequent detailed analysis should include SCAG projections. These changes may result in additional local roadway improvements, but will not change the general conclusions of this study.

TRAFFIC IMPACTS

Future Without the Project

As stated in the previous section, an overall ambient traffic growth rate of 22 percent is assumed for the future before project implementation. Intersection V/C ratios and LOS have been recalculated with the assumed 22 percent traffic growth. Table 3 displays forecast intersection operating conditions for 2010 with and without the project. Based upon this analysis, a 22 percent traffic growth rate would result in significant congestion (LOS E or F) at every study intersection.

Future with Proposed Light Rail Project

Intersection operations for 2010 have been recalculated with the addition of project-related trips shown in Table 6-4. The ultimate V/C ratio and level of service at each location with the rail line are shown in the table. This scenario assumes that the LRT could be built without impacting the intersection geometry, a topic which is addressed in the next chapter. The data in the table illustrate that the station-related traffic impacts are forecast to be insignificant at most intersections. Three intersections are expected to experience a 0.01 increase in V/C and one is expected to experience $0.04 \mathrm{~V} / \mathrm{C}$ increase.

6.3 ROADWAY GEOMETRIC IMPACTS DUE TO AERIAL STRUCTURE

Because the proposed rail line will be aerial, no traffic lanes will be permanently removed to install right-of-way for the tracks. However, some temporary loss of roadway width and lanes for moving traffic will occur during construction. Furthermore, some roadway space will be permanently lost due to the placement of column supports.

Exhibits 6-3 and 6-4 show sketches of the proposed traffic lane configuration of Hawthorne Boulevard at Torrance Boulevard and at 230th Street, respectively. The aerial structure is shown in the median of Hawthorne Boulevard. The columns are assumed to be six feet wide. Approximately two feet of additional space on each side of the columns is necessary as a buffer between moving traffic and the columns. Although the median has been widened in both exhibits to accommodate the columns, the existing number of lanes have been maintained without

Table4 Existingand Year 2010Volume/CapacityRatioand Levelof Service												
	AMPeakHour						PMPeakHour					
	Existing		BaseCase		WithLRT		$\begin{aligned} & \text { Existing } \\ & \text { V/C LOS } \end{aligned}$		$\frac{\text { Base Case }}{\text { V/C LOS }}$		$\frac{\text { WithLRT }}{\text { V/C LOS }}$	
Intersection	V/C	LOS	$\overline{\mathrm{V} / \mathrm{C}}$	LOS	V/C	LOS						
HawthorneBlvd.at:												
RedondoBeachBlvd.	-1.00	F	1.25	F	1.25	F	0.88	D	1.08	F	1.08	F
ArtesiaBlvd.	0.97	E	1.19	F	1.19	F	0.90	E	1.09	F	1.09	F
190thSt.	0.98	E	1.20	F	1.21	F	-1.00	F	1.28	F	1.29	F
Del Amo Blvd.	0.95	E	1.16	F	1.16	F	-1.00	F	1.27	F	1.27	F
TorranceBlvd.	0.80	D	0.97	E	0.97	E	-1.00	F	1.36	F	1.36	F
CarsonSt.	0.80	D	0.98	E	0.98	E	1.00	F	1.22	F	1.22	F
SepulvedaBlvd.	0.96	E	1.17	F	1.17	F	-1.00	F	1.47	F	1.47	F
LomitaBlvd.	1.00	F	1.23	F	1.26	F	-1.00	F	1.45	F	1.49	F

widening Hawthorne Boulevard, by using narrower lanes. Exhibits 6-3 and 6-4 are intended to illustrate the striping concept for this route refinement study. A more detailed investigation of the traffic striping and right-of-way requirements is appropriate during the preparation of the EIR.

Due to the significant traffic volumes already experienced along Hawthorne Boulevard and the projected LOS E and F conditions, the removal of any existing roadway capacity would create a significant impact. The aerial structure must therefore be designed without the loss of any through traffic lanes or left or right turn lanes at critical intersections.

As discussed earlier, the aerial structure is proposed to run down the median of Manhattan Beach Boulevard and Hawthorne Boulevard except where alternative station sites are proposed at the South Bay Galleria, Old Towne Mall, and Del Amo Fashion Center. The Lomita Boulevard alternative includes the aerial structure in the median of Lomita Boulevard until the CrenshawLomita station location where it moves to the south side of the street. The Skypark Drive alternative runs in the median of Skypark Drive from Hawthorne Boulevard to Madison Street. East of Madison Street it moves to the south side of the street for approximately 200 feet after which it returns to a median alignment until the Garnier Street station to be located north of Skypark Drive.

The aerial structure can be easily accommodated over a portion of the proposed alignment where the existing median is sufficiently wide. In some portions of the alignment, however, the existing median is too narrow to accommodate the columns. Complete reconstruction of the median will be required at those locations in conjunction with other measures such as narrowing of sidewalks, removal of left-turn lanes at minor intersections, purchase of right-of-way, and signalization.

Detailed discussion of every potentially impacted roadway segment is beyond the scope of this analysis. A conceptual discussion of the required mitigation by segment is, however, included below.

Manhattan Beach Boulevard

The existing median width of 16 feet is sufficient to accommodate aerial structure columns without removing through traffic lanes. A straddle bent will be required where the structure turns onto

Manhattan Beach Boulevard (see Plan and Profile drawing C102). At Firmona Avenue the eastbound left-turn bay (to a driveway) must be eliminated to accommodate a column. The westbound left-turn bay (to southbound Firmona Avenue) must be redesigned and the median adjacent to the left-turn pocket widened. This can likely be accommodated within the existing curb-to-curb width through parking removal.

Adjacent to San Diego Freeway

No roadway related impacts are anticipated as the aerial structure is outside of all surface street right-of-way.

Hawthorne Boulevard (San Diego Freeway to Lawndale Station)

The wide median in this segment will accommodate the structure without significant reconstruction. Straddle bent support structures may be required where left-turn pockets cut through the median. The median island at 166 th Street must be redesigned to accommodate structural columns for the Lawndale Station which would span the intersection.

Hawthorne Boulevard (Lawndale Station to Galleria Station)

The median along most of this segment is wide enough to accommodate the structure without significant reconstruction. Where left-turn pockets cut through the median, straddle bents will be required or the median islands will require redesign. More detailed traffic engineering analysis of all proposed straddle bent and column locations will be necessary during later design phases of the project. This review will be required to prevent potential sight distance problems (i.e., columns interfering with the driver's view of oncoming vehicles). Detailed review of potential column sight distance problems should be conducted not only for this segment but over the entire alignment.

Preliminary review of the line reveals that sight distance problems may occur for left-turning vehicles at minor cross streets. Installation of traffic signals to control left-turn movements may be required at those locations unless the left-turn pockets are removed and left turns are prohibited. Signal timing at any new traffic signals along Hawthorne Boulevard would need to be carefully coordinated with adjacent existing signals to minimize disruption to traffic flow. Even
with coordination, however, congestion on Hawthorne Boulevard could worsen with the installation of new signals at intersections which are currently controlled only by stop signs.

The median alternative for the Galleria Station may require widening of the existing 10 -foot median. To prevent loss of roadway capacity, the east curb line must be moved. The west side will also require widening for a bus turnout. The existing traffic signal poles will also need to be relocated as the median and curbs are redesigned.

The westside alternative would not require any median island or signal redesign as the structure would be located in the existing Galleria parking area.

Hawthorne Boulevard (Galleria Station to 190th Street)

Due to the narrow median island size and location of multiple left-turn pockets, significant roadway redesign is required for this segment. The median must be widened throughout, and the lost roadway area must be taken from the sidewalks on either side. The sidewalks on the east side vary from 14 to 22 feet, thus, removal of a few feet will not create a significant impact. Westside sidewalks are generally narrower, but appear to have sufficient width (10 to 15 feet) to allow minor roadway widening. Left-turn pockets at minor streets such as 186 th Street may need to be removed to accommodate the aerial structures.

A straddle bent will be required where the structure crosses Hawthorne Boulevard north of the AT\&SF bridge north of 190th Street. The median island on the east side of 190th Street must be widened and extended to the west approximately 10 feet for placement of a column support. The southeast corner of the intersection will require reconstruction, and purchase of additional right-of-way may be necessary.

Hawthorne Boulevard (190th Street to Del Amo Station)

Median reconstruction and roadway widening will be necessary along this entire segment. Sidewalks will need to be narrowed at various locations and closure of some minor street leftturn pockets may be necessary.

Skypark Drive Alternative

The LRT columns could be accommodated with two lanes in each direction or one lane plus parking on each side of the street. East of Madison Street, Skypark Drive narrows to under 40 feet, but no impacts are anticipated because the alignment is proposed to be located south of the street.

6.4 MITIGATION MEASURES

Two types of mitigation measures will be necessary to reduce anticipated LRT related impacts to levels of insignificance. First, all roadway space lost due to placement of LRT columns must be replaced through restriping (if feasible), widening via reduction in sidewalk width, or widening via purchase of right-of-way. These specific mitigation measures should be developed throughout the proposed LRT corridor during later design phases of the project. A preliminary review of the improvements that will be needed were outlined in Section 3.

The second general type of improvement will be needed to mitigate circulation impacts due to the placement of park-and-ride and kiss-and-ride lots near proposed stations. Although it can be argued that the rail line may ultimately reduce the number of automobile trips on the roadway system, it may also increase local tripmaking around stations. One mitigation strategy will be the provision of local feeder bus service which will bring LRT users to the rail line from surrounding residential and commercial areas. Efficient east/west oriented feeder bus service will eliminate many single occupant automobile trips to the stations.

The traffic impact analysis results indicate that nearly all anticipated future impacts will be due to ambient traffic growth rates. The LRT will have some local traffic impacts near stations, but these impacts will be minor compared to congestion already on the street system. All driveway access locations, however, must be carefully designed to prevent further impact to traffic flow on Hawthorne Boulevard. If it is feasible all access should be limited to side street rather than Hawthorne Boulevard itself.

From a traffic impact perspective, the east and westside station alternatives are preferred. These alternatives eliminate all column related impacts in the vicinity of the station due to the placement of the aerial structure outside of the roadway median. Also, the circulation systems in those areas

The Del Amo Station median alignment would require roadway reconstruction but the eastside alternative could be accommodated without impacting Hawthorne Boulevard or other streets.

Hawthorne Boulevard (Del Amo Station to 230th Street)

Median island reconstruction will be necessary primarily at intersections where the island narrows to eight feet. Spot widening will be required and some loss of sidewalk width will occur. Between intersections the median widens to 20 feet and will accommodate columns.

Hawthorne Boulevard (230th Street to Pacific Coast Highway)

Similar to the previous segment, median island widening and reconstruction will be required at intersections, but midblock segments will accommodate the LRT columns without widening. A new raised median will be required from Pacific Coast Highway northward to the existing island located approximately 750 feet north of PCH. Left turns into and out of three driveways on the west side of Hawthorne between PCH and 229th Street must be restricted to right-turn-in/right-turn-out.

Hawthorne Boulevard (PCH to Rolling Hills Station)

Median reconstruction and widening of the roadway will be necessary at intersection locations. The single track alignment along this section will result in narrower columns and therefore median widening will be less than segments to the north. South of PCH the extra roadway width needed for moving traffic lanes may be taken from existing parking lanes with resulting impact to the street's parking capacity.

Lomita Boulevard Alternative

Although there is currently no raised median on Lomita Boulevard, there is sufficient width (80 feet curb-to-curb) to accommodate the LRT columns without loss of roadway capacity. No direct roadway impacts are expected due to the Crenshaw station as it will be located south of Lomita Boulevard and west of Crenshaw Boulevard, outside of the roadway right-of-way.
are already designed to handle significant traffic flow into and out of the shopping center parking areas where the stations would be located. Finally, much of the rail patronage at these locations will likely be oriented to the shopping areas. The east and westside alternatives, unlike the median alignment, would not require rail passengers destined for the shops to cross into the middle of the street (and thereby impact capacity) to access the rail line.

SECTION 7

NOISE ANALYSIS

7.1 INTRODUCTION

This report examines the potential noise and vibration impacts associated with the proposed Coastal Corridor (South) Rail Transit Project and provides the technical documentation for the noise and vibration sections of the project route refinement study.

As a basis for the analysis of potential impact, noise and vibration measures and impact criteria are described in Section 7.2. Section 7.3 presents the results of the noise and vibration impact analysis conducted along the proposed route, concentrating on the change in exposure in sensitive areas for the proposed operation of the system. Section 7.4 identifies those areas where potential impacts exist, and suggests possible mitigation measures for further study and evaluation.

7.2 NOISE AND VIBRATION METRICS AND IMPACT CRITERIA

NOISE OF OPERATIONS

When high noise levels are experienced inside or outside people's homes, as may occur from the passage of motor vehicles (cars, buses, trucks) or rail rapid transit vehicles, feelings of annoyance may result. These noise levels may also interfere with the performance of various activities such as conversation, TV watching, sleeping, etc. The degree to which there is annoyance and/or activity interference depends upon the magnitude of the intruding noise level, the frequency with which it occurs, and the time of day of occurrence. At present, there is a consensus among a variety of government agencies charged with establishing noise standards and criteria that the daynight average sound level is the preferred unit of noise exposure for use in assessing the potential impact of an intruding noise source. ${ }^{1}$ The day-night sound level ($L_{\delta_{n}}$) represents an average of the A-weighted noise levels occurring during a complete 24 -hour period; however, it includes a weighing applied to those noises occurring during nighttime (10 p.m. to 7 a.m.) hours.

[^0]Several social surveys have been conducted in which people's reaction to their noise environment has been determined as a function of the day-night sound level occurring outside their homes. Figure 7-1 shows the results of many of these surveys. ${ }^{2}$ The measure of community annoyance is expressed in terms of the percentage of the population sampled who indicated that they were "highly annoyed" with their noise environment. This curve has been found to be appropriate for a variety of noise sources, ranging from aircraft to surface transportation to railroad noise.

Specific criteria can be developed for individual land uses based upon the information described in Figure 7-1 as well as information concerning activity interference. For residential land use, a day-night sound level of 65 dB has been selected by a number of federal agencies (HUD, DOD, etc.) as a general dividing line between an unacceptable and an acceptable noise environment ${ }^{1}$, based upon several considerations including the potential for disturbance of various activities that normally are conducted at home. (Note that an $L_{d n}$ of 65 dB would result from Figure 7-1 in 15 percent of the population being highly annoyed. It should be recognized that in any noise environment some people will always indicate annoyance and some people will never indicate annoyance regardless of noise level).

For other land uses, the level of acceptability of the noise environment is dependent upon the activity that is conducted and the type of building construction (for indoor activities). Figure 7-2 provides noise exposure compatibility guidelines for a variety of land uses. ${ }^{3}$ The figure shows that for many "noise sensitive" land uses such as schools, churches, hospitals, etc., an $L_{U_{0}}$ value of 65 dB is also selected as the dividing line between an unacceptable and an acceptable noise environment.

In California, several agencies use an alternate measure of noise exposure known as the community noise equivalent level, or CNEL. The CNEL is identical to the $L_{\text {din }}$ with one exception: in the CNEL measure there is a weighing of 5 dB applied to those noises occurring during evening hours (7 p.m. to 10 p.m.). Thus, both measures represent a 24 -hour average of the A-weighted noise levels at a particular location; the $\mathrm{L}_{\mathrm{d} \boldsymbol{n}}$ includes a nighttime weighing, and the CNEL includes both an evening and a nighttime weighing. For most transportation and community noise sources, the CNEL and L_{Un} are equal to within 1 dB (typically CNEL $=\mathrm{L}_{\mathrm{d} n}$ +0.5 dB). In the remainder of this document, the CNEL measure will be utilized.

COMMUNITY RESPONSE TO NOISE

LAND USE COMPATIBILITY WITH YEARLY DAY-NIGHT AVERAGE SOUND LEVEL AT A SITE FOR BUILDINGS AS COMMONLY CONSTRUCTED
(AFTER ANSI STD S 3.23-1980)

In addition to being concerned about the absolute noise level that might occur when a new noise source is introduced into an area, it is also important to consider the level of the existing noise environment. If the existing noise environment is quite low and the new noise source greatly increases the noise exposure (even though a criterion level might not be exceeded), some impact may occur. Conversely, if the existing noise environment is quite high and the new noise source is of comparable level, there may be no new noise impact even though existing levels and levels in combination with the new source may exceed a criterion level.

The discussion above has concentrated on the concept that noise impact is best assessed by evaluating the long-term noise exposure from a proposed transportation source. Many people are often concerned about the maximum noise level produced during the passby of a transit vehicle in addition to the long-term noise exposure implications of the operation of such vehicles. At present, there are no state or federal standards limiting the noise of such vehicles, nor do individual cities and counties address such sources in their noise ordinances. Guidelines on the maximum allowable single-event noise level from light rail vehicles are available, however, as proposed to LACTC. These guidelines (presented in Table 7-1) vary as a function of receiving land use and community area category, which relates to the background noise level in the community. The most restrictive maximum noise level appropriate for residential areas along the proposed alignments would be 75 dB , applicable for LRT operations. Based on the expected operating speeds and distances from the tracks to sensitive nearby structures, the proposed light rail system should not exceed this guideline level at most locations along the proposed coastal route. Further, the guideline has been chosen to minimize "possible large differences between maximum passby levels and average community ambient noise. ${ }^{4}$ Maximum noise levels in most areas along the proposed route are currently in excess of 75 dB due to existing noise sources such as heavy surface traffic on the major arterial streets.

VIBRATION

In measuring the noise of transportation systems, it is customary to utilize the A-weighted noise level, which is a single number that takes into account the frequency characteristics of the sound signal. Similarly, the potential vibration impacts of the light rail system can be described in terms of a single number, the maximum vertical velocity experienced during a vehicle passby in dB relative to $10-6$ inches/second.

TABLE 7-1
MAXIMUM NOISE LEVEL GOALS FOR LIGHT RAIL TRANSIT AND RAIL FREIGHT OPERATIONS
(Noise Sensitive Receivers)
LMAX Design Criteria, dBA LRT Railroad
Residential Buildings
Land Use Category 1 - Low Density Residential 75 88
Land Use Category 2 - Medium Density 78 88
Land Use Category 3 - High Density (Multi-Family) 80 90
Land Use Category 4 - Commercial 80 93
Land Use Category 5 - Industrial 80 93
Schools, Churches, Hospitals, Museums, Theatres, Libraries .
Land Use Categories 1-3 78 88
Land Use Category 4 80 88
Land Use Category 5 80 88

To assess the impact of vibration levels in this report, criteria for maximum vertical velocity level as a function of receiver land uses during an LRT passby are used. These criteria are shown in Table 7-2.

7.3 NOISE AND VIBRATION IMPACTS OF OPERATIONS

NOISE IMPACTS

Assessment of the noise impacts of proposed LRT operations will be conducted in two different ways:

- General information will be presented that compares projected LRT maximum passby noise levels with corresponding levels from existing and future noise sources.
- For residential areas along the proposed alignments, a detailed noise exposure (CNEL) analysis will be performed to provide the numbers of residences exposed to accepted criteria levels for existing and future alternative conditions.

In evaluating the potential noise impact of a new transportation noise source, there are generally two factors which should be considered. First, the expected noise of the new system should be compared to applicable criteria to insure compliance with local, state or federal regulations and guidelines to minimize interference with specific activities as a function of land use. Second, expected system levels should be compared with existing levels in areas along the alignment to ensure that the noise environment is not degraded.

As a starting point, Table $7-3$ presents the maximum A-weighted sound levels expected from various transportation modes at typical distances from the noise source. Since most of the aerial alignment is located in the median of Hawthorne Blvd., the maximum levels due to typical auto, truck, and bus passbys are of interest. As can be seen from the table, the existing maximum level from such sources is comparable to that expected from a single light rail vehicle passby at curbside.

A screening-level assessment of noise impact from LRT operations can be made by comparing expected maximum noise levels from such activity with the noise level goals (presented in Table 7-1) for different receiving land uses, and with existing levels in the various areas. The

TABLE 7-2

MAXIMUM GROUND-BORNE VIBRATION CRITERIA, LIGHT RAIL TRANSIT AND FREIGITT RAIL OPERATIONS

Ground-borne Vibration $L^{2}{ }^{1}$ Railroad ${ }^{1}$
Residential Buildings
Land Use Category 1 70 dB 75 dB
Land Use Category 2 70 75
Land Use Category 3 73 78
Land Use Category 4 75 80
Land Use Category 5 78 83
Schools, Churches, Hospitals, Museums, Theaters, Libraries
Land Use Categories 1-3 78 78
Land Use Category 4 75 80
Land Use Category 5 78 83
Concert Halls, TV Studios, Recording Studios 65 70

[^1]TABLE 7-3

MAXIMUM A-WEIGHTED SOUND LEVELS FOR VARIOUS TRANSPORTATION MODES

Distance from Vehicle Path Centerline, ft.

Mode 50 100
For speeds of $35 \mathrm{mph} / 55 \mathrm{mph}$
Auto 64/70 58/64
Bus 74/80 68/74
LRT At Grade 74/80 68/74
LRT Aerial 77/83 $71 / 77$
results of this evaluation are summarized in Table 7-4, and are used to identify areas where further study is indicated.

As shown in Table 7-4, the numbers of noise-sensitive structures along each the route for which the recommended maximum A-weighted sound level limits (see Table 7-1) would be exceeded during each LRT passby are few. Further, in these cases, existing maximum noise levels from roadway traffic are comparable (80 to 85 dBA) to those expected from LRT passbys.

In the Manhattan Beach Blvd. section, there are 3 commercial buildings (converted residences) where the maximum noise level criterion will be exceeded. Just beyond this portion, where the alignment is adjacent to the San Diego Freeway, there are 3 multi-family residences where the maximum passby noise criterion will be exceeded, and one single family residence. At 190th St., a Medical Building will experience maximum noise levels exceeding the criteria during rail passbys. Along Hawthorne Blvd. there are a total of 7 single family residences where the maximum passby noise level criterion will just be reached. Six are just south of Sepulveda Blvd., and the last is near the end of the alignment just south of Rolling Hills Rd, giving the totals shown in Table 7-4.

The Galleria Station and Old Towne Station alternatives will not change the number of structures where the maximum noise level criterion is exceeded. However, the Del Amo Station East Side Alternative will result in close approaches (20 to 40 feet) to three commercial buildings, resulting in maximum passby noise levels over the suggested criteria.

On the other hand, selection of the Lomita or Skypark alternatives would result in significantly fewer commercial buildings impacted, and one less residence. This is accomplished by avoiding the area of Hawthorne Blvd. south of Pacific Coast Highway, where the right-of-way and distances to the nearest structures are less than they are farther north.

The impact of the light rail vehicle noise source, although seemingly significant in the areas noted above on a maximum noise level basis, may be less significant due to the high noise levels generated by other transportation and community noise sources. A measure of long-term noise exposure, such as CNEL, may be more appropriate in assessing impact from light rail operations and comparing these to other significant noise sources. The operating schedule used to compute LRT CNEL was provided by Manuel Padron Associates. Existing and future roadway traffic levels are based on data provided by DKS Associates, the project traffic consultants.

TABLE 7-4
RESULTS OF SINGLE EVENT NOISE IMPACT ANALYSIS FOR PROPOSED COASTAL CORRIDOR (SOUTH) LIGHT RAIL TRANSIT ALTERNATIVES

No. of Buildings exceeding criteria:

| | Land Use
 Route Segment | LRT
 Category | Residential
 Lmax, dB | $\underline{\text { Sgl Fam }} \quad$ Multi |
| :--- | :---: | :---: | :---: | :---: |\quad Commercial Medical

Hawthorne Alternative:

$142-149$	3,4	87	0	3	3	0
$149-157$	2	79	1	0	0	0
$258+00$	4	81	0	0	0	0
$380-390$	2	78	6	0	0	0
$426-466$	4	81	0	0	12	0
$466-479$	4	0	0	12	0	
$479-487$	2	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	
			8	3	27	1

Galleria Station West Side Alternative:
No change in impacts.
Old Towne Station East Side Alternative:
No change in impacts.
Del Amo Station East Side Alternative:

$142-149$	3,4	87	0	3	3	0
$149-157$	2	79	1	0	0	0
$258+00$	4	81	0	0	0	1
$341-356$	4	80	0	0	1	0
$356-380$	4	86	0	0	2	0
$380-390$	2	78	6	0	0	0
$426-466$	4	81	0	0	12	0
$466-479$	4	79	1	0	$\underline{0}$	$\underline{0}$
$479-487$	2		8	3	0	0
				30	1	

TABLE $7-4$ (CONT') RESULTS OF SINGLE EVENT NOISE IMPACT ANALYSIS FOR PROPOSED COASTAL CORRIDOR (SOUTH) LIGHT RAIL TRANSIT ALTERNATIVES

No. of Buildings exceeding criteria:

	Land Use Route Segment Category	LRT Lmax, dB	Residential Sgl Fam	Multi	Commercial	Medical
Lomita Alternative:						
$142-149$	3,4	87	0	3	3	0
$149-157$	2	79	1	0	0	0
$258+00$	4	81	0	0	0	1
$380-390$	2	78	6	0	0	0
$410-425$	4	87	$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{0}$
			7	3	4	1

Skypark Alternative:

$142-149$	3,4	87	0	3	3	0
$149-157$	2	79	1	0	0	0
$258+00$	4	81	0	0	0	1
$380-390$	2	78	6	0	0	0
$426-445$	4	87	0	0	-1	0
			7	3	4	1

Table 7-5 provides a comparison of the light-rail system with other transportation systems on a noise exposure (CNEL) basis. The table shows that the CNEL 50 feet from the centerline of a major thoroughfare such as Hawthorne Blvd. with high traffic flow would be approximately 74 dB . In comparison, the CNEL from the currently proposed operating schedule would be 70 dB for the aerial guideway configuration at maximum speed (55 mph) and 65 dB at a reduced speed (35 mph).

The results of the system-wide noise exposure analysis are given in Table 7-6. The noise exposure impact is given by the change in future CNEL resulting from project implementation (with project vs. no project). In cases where the increase is less than 3 dB , the impact is insignificant, since a 3 dB increase in level is the point at which the average listener can detect the change.

Where the increase is 3 to 5 dB , the noise impact is significant. An increase in CNEL of more than 5 dB is generally considered to be adverse.

Due to the contributions of other noise sources, the (CNEL) 24-hour average noise impact is far less significant than the impact on a single event basis. As shown in Table 7-6, the only areas where further study is indicated are at the Medical Building at 190th St. and Hawthorne Blvd., and at the commercial buildings located nearest the proposed turns to Lomita Blvd. and Skypark Drive for the respective alternatives. The change due to the project indicated for the industrial area toward the east end of the Skypark alternative is probably not as great as 3 to 4 dB , because of our estimate of existing traffic on Skypark Drive (10,000 ADT). 24-hour traffic counts are not currently available for Skypark Drive.

VIBRATION IMPACTS

Groundborne vibration is generated during light rail vehicle operations as the steel wheels of the rail vehicle impact the rail. In the vicinity of existing roadway transportation facilities, in which there are only rubber-tired vehicles, groundborne vibration is generally low.

The impact of vibration levels induced by the LRT vehicle passbys were evaluated in terms of the maximum vertical vibration velocity in decibels relative to $10-6 \mathrm{in} / \mathrm{sec}$. Table $7-7$ presents the vibration velocity levels expected for various transportation modes at 50 ft and 100 ft

TABLE 7-5
COMPARISON OF NOISE EXPOSURE FOR VARIOUS TRANSPORTATION MODES

Transportation Source

Major Thoroughfare Traffic 74
(50,000 ADT)
Major Freeway Traffic 84
(120,000 ADT)
LRT Using Proposed Operating Schedule 35 mph at-grade 62
35 mph on aerial guideway 65
55 mph at-grade 67
55 mph on aerial guideway 70

TABLE 7-6
LRT COASTAL CORRIDOR (SOUTH) CNEL IMPACT RESULTS

ALIGNMENT STATION NUMBERS	BUILDING	$\left\lvert\, \begin{gathered} \text { DIST } \\ \text { TO BLDG } \\ \text { FT } \end{gathered}\right.$	$\begin{array}{\|r\|} \text { LRT } \\ \text { CNEL } \end{array}$	EXISTING CNEL	$\left\lvert\, \begin{gathered} \text { TOTAL FL } \\ \text { NO PROJ } \\ \text { CNEL } \end{gathered}\right.$	TURE NOI W/PROJ CNEL	LEVELS CNEL CHANGE (IMPACT)
142-149	TYPICAL	50	68.2	74.6	74.7	75.6	0.9
MF RES	NEAREST	20	72.2	77.8	77.9	79.0	1.0
149-157	TYPICAL	80	66.2	73.8	73.9	74.6	0.7
SGL RES	NEAREST	50	68.2	75.5	75.7	76.4	0.7
165-205	TYPICAL	85	66.8	71.1	71.9	73.1	1.2
COMMERCIAL	NEAREST	80	67.1	71.1	71.9	73.2	1.2
205-216	TYPICAL	100	61.7	70.8	71.6	72.0	0.4
SGL RES	NEAREST	85	62.4	71.6	72.5	72.9	0.4
216-223	TYPICAL	100	65.2	71.3	72.1	72.9	0.8
SGL RES	NEAREST	70	66.8	71.6	72.5	73.5	1.0
246-251	TYPICAL	100	67.0	71.4	72.3	73.4	1.1
SGL RES	NEAREST	90	67.4	71.6	72.5	73.7	1.2
258+00	TYPICAL	45	65.2	70.8	71.6	72.5	0.9
MED BLDG	NEAREST	20	68.7	70.8	71.6	73.4	1.8
258-271	TYPICAL	110	61.3	70.5	71.4	71.8	0.4
SGL RES	NEAREST	60	63.9	70.7	71.5	72.2	0.7
271-290	TYPICAL	120	66.2	70.5	71.4	72.5	1.1
SGL RES	NEAREST	110	66.6	70.7	71.5	72.7	1.2
290-341	TYPICAL	90	67.4	72.6	73.5	74.4	1.0
COMMERCIAL	NEAREST	60	69.2	73.0	73.8	75.1	1.3
341-356	TYPICAL	100	61.7	72.3	73.2	73.5	0.3
COMMERCIAL	NEAREST	70	63.2	72.9	73.8	74.1	0.4
356-380	TYPICAL	85	67.7	72.6	73.4	74.4	1.0
COMMERCIAL	NEAREST	70	68.5	72.9	73.8	74.9	1.1
380-390	TYPICAL	80	67.9	73.1	74.0	75.0	1.0
SGL RES	NEAREST	70	68.5	73.4	74.2	75.3	1.0
390-410	TYPICAL	80	62.7	73.6	74.4	74.7	0.3
COMMERCIAL	NEAREST	60	63.9	74.0	74.9	75.2	0.3
410-426	TYPICAL	85	67.7	73.0	73.9	74.8	0.9
COMMERCIAL	NEAREST	70	68.5	73.4	74.2	75.3	1.0
426-466	TYPICAL	75	68.2	74.2	75.0	75.9	0.8
COMMERCIAL	NEAREST	50	70.0	74.8	75.7	76.7	1.0
466-479	TYPICAL	60	69.2	73.8	74.6	75.7	1.1
MF RES ?	NEAREST	50	70.0	74.1	75.0	76.2	1.2
479-487	TYPICAL	75	68.2	72.7	73.6	74.7	1.1
SGL RES	NEAREST	65	68.8	73.0	73.8	75.0	1.2
487-505	TYPICAL	300	62.2	66.8	67.6	68.7	1.1
PARK	NEAREST	250	63.0	67.1	68.0	69.2	1.2

TABLE 7-6 (Cont.)
LRT COASTAL CORRIDOR (SOUTH) CNEL IMPACT RESULTS

GALLERIA STATION WEST SIDE ALTERNATIVE

$205-216$	TYPICAL	230	58.1	70.8	71.6	71.8	0.2
SGL RES	NEAREST	210	58.5	71.6	72.5	72.7	0.2
$216-223$	TYPICAL	120	64.4	71.3	72.1	72.8	0.7
SGL RES	NEAREST	100	65.2	71.6	72.5	73.2	0.7

OLD TOWNE STATION EAST SIDE ALTERNATIVE

$258+00$	TYPICAL	45	69.6	70.7	71.5	73.7	2.2
$M E D$ BLDG	NEAREST	30	71.4	70.7	71.5	74.5	2.9
$258-271$	TYPICAL	380	61.2	70.5	71.4	71.8	0.4
SGL RES	NEAREST	140	65.5	70.7	71.5	72.5	1.0
$271-290$	TYPICAL	380	55.9	70.5	71.4	71.5	0.1
SGL RES	NEAREST	140	60.2	70.7	71.5	71.8	0.3

DEL AMO STATION EAST SIDE ALTERNATIVE

341-356	TYPICAL	100	61.7	72.3	73.2	73.5	0.3
COMMERCIAL	NEAREST	25	67.7	72.9	73.8	74.7	1.0
356-380	TYPICAL	120	66.2	72.6	73.4	74.2	0.7
COMMERCIAL	NEAREST	30	72.2	72.9	73.8	76.1	2.3

LOMITA ALTERNATIVE

$410-425$	TYPICAL	75	68.2	70.4	71.3	73.0	1.7
COMMERCIAL	NEAREST	20	74.0	71.2	72.0	76.1	4.1
$425-440$	TYPICAL	100	61.7	68.9	69.7	70.4	0.6
IND/MED	NEAREST	75	62.9	69.4	70.3	71.0	0.7
$440-485$	TYPICAL	100	65.2	68.9	69.7	71.1	1.3
INDUSTRIAL	NEAREST	75	66.5	69.4	70.3	71.8	1.5

SKYPARK ALTERNATIVE

$426-445$	TYPICAL
COMMERCIAL	NEAREST
$470-486$	TYPICAL
INDUSTRIAL	NEAREST

100	63.0
20	70.0
90	65.7
50	68.2

65.4	66.2
65.9	66.8
65.4	66.2
65.9	66.8

67.9
71.7
69.0
70.6
1.7
4.9
65.4
66.8
2.7
3.8

TABLE 7-7 VERTICAL VIBRATION VELOCITY LEVELS FOR
VARIOUS TRANSPORTATION MODES
Distance from Vehicle Path Centerline, ft .
Mode Condition 50 100
Bus smooth road 51 46
rough road 63 58
LRT vehicle 35 mph 65-69 60-63
LRT vehicle 55 mph 69-73 64-67
distances. The values given for the light rail vehicle passbys are stated in terms of a range of levels in the ground representing the average-to-maximum values expected for an at-grade construction. For the aerial configuration, levels of vibration in the ground will be somewhat lower, and concentrated in the areas of the concrete and steel supports. These levels, therefore, represent a worst-case condition.

Table 7-8 shows the numbers of structures at which the LRT maximum vibration velocity levels will exceed the suggested criterion level. The results differ somewhat from the single event noise level results in that fewer areas are impacted by vibration levels. As shown, vibration impacts may result at the same three commercial and multi-family buildings and at the Medical Building. However, LRT vibration impacts will not exist at any other location along the Hawthorne alternative. The Del Amo East Side Alternative will result in vibration impacts at the same three commercial locations which were identified as impacted by noise. Similarly, the Lomita Blvd. and Skypark Drive alternatives give rise to vibration impacts at the same locations identified as having noise impacts.

7.4 MITIGATION MEASURES

NOISE MITIGATION OF LRT OPERATIONS

Three small areas were identified as having noise impacts on a CNEL basis. These are the Medical Building at Hawthorne Blvd. and 190th St., and commercial buildings located adjacent to the turns from Hawthorne Blvd. to Lomita Blvd. or Skypark Drive for those alternatives. Noise mitigation could take the form of sound barrier wells along the edge of the rail guideway structure nearest the given building. In most cases, a relatively short barrier could be used (perhaps 3 ft high) to block line-of-sight between the wheel/rail noise source and the receiver.

VIBRATION MITIGATION OF LRT OPERATIONS

Section 7.3 of this report identified several areas where vibration mitigation measures should be considered. All of these involve buildings in close proximity (under 50 feet) to the proposed LRT aerial structure. To minimize impacts, the support structure should never be in direct contact with a building structure or foundation. Ideally, there should be at least 2 feet of intervening soil between the support structure and any building foundations or structures. In cases where this

TABLE 7-8
RESULTS OF SINGLE EVENT VIBRATION IMPACT ANALYSIS FOR PROPOSED COASTAL CORRIDOR (SOUTH) LIGHT RAIL TRANSIT ALTERNATIVES

No. of Buildings exceeding criteria:
LRT
Route Segment Land Use Velocity
Category level, dB
Hawthorne Alternative:

$142-149$	3,4	80	0	3	3	0
$149-157$	2	72	1	0	0	0
$258+00$	4	77	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{1}$
			1	3	3	1

Galleria Station West Side Alternative:
No change in impacts.
Old Towne Station East Side Alternative:
No change in impacts.
Del Amo Station East Side Alternative:

$142-149$	3,4	80	0	3	3	0
$149-157$	2	72	1	0	0	0
$258+00$	4	77	0	0	0	1
$351-356$	4	73	0	0	1	0
$356-380$	4	78	$\underline{0}$	$\underline{0}$	-2	$\underline{0}$
			1	3	6	1

Lomita Alternative:

$142-149$	3,4	80	0	3	3	0
$149-157$	2	72	1	0	0	0
$258+00$	4	77	0	0	0	1
$410-425$	4	79	-0	-0	-1	$\underline{0}$
			1	3	4	1

TABLE 7-8 (Cont')
RESULTS OF SINGLE EVENT VIBRATION IMPACT ANALYSIS FOR PROPOSED COASTAL CORRIDOR (SOUTH) LIGHT RAIL TRANSIT ALTERNATIVES

No. of Buildings exceeding criteria:

| | LRT
 Route Segment | | | | Land Use
 Category | Velocity
 level, dB |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Residential |
| :---: |
| Sgl Fam |\quad Multi \quad Commercial Medical

Skypark Alternative:

$142-149$	3,4	80	0	3	3	0
$149-157$	2	72	1	0	0	0
$258+00$	4	77	0	0	0	1
$426-445$	4	79	-0	-	-1	0
			1	3	4	1

is not possible, an elastomer element should be placed between the subway box and the building foundation to prevent direct transmission of ground-borne noise and vibration into the building.

7.5 REFERENCES

1. "Guidelines for Considering Noise in Land Use Planning and Control," Federal Interagency Committee on Urban Noise, June 1980.
2. T. J. Schultz, "Synthesis of Social Surveys on Noise Annoyance," JASA, Vol. 64, No. 2, August 1978.
3. American National Standards Institute (ANSI) Standard s3.23-1980.
4. American Public Transit Association (APTA), "1981 Guidelines for Design of Rail Transit Facilities."
5. "Guidelines for Preparing Environmental Impact Statements on Noise," Working Group 69 of the Committee on Hearing Bioacoustics and Biomechanics, National Academy of Sciences, 1977.

APPENDICES

APPENDIX A

 ENGINEERING DRAWINGS
LOS ANGELES COUNTY TRANSPORTAT COASTAL CORRIDOR RAIL TRAI (SOUTH SEGMENT)

NOTES:
\square NOTES:
NOATION GOWER SUBSTATION LOCATIONS ARE
5. WHEN REQUIRED, E/MIMINATE LEFT TURN BAYS. \qquad 24.9

NOTES:

			\cdots									
		180										
			U									
			- ${ }^{\circ}$									
												\%.
		170	0									
]		
							7					
			v									
										-		
			$+$		-	-						
		130	-6		-	-	-					
-	-		0	-	-	\cdots				-		
			∇		$=$							
		140	N		-							

			,				180
				\cdots	丳		
	-			0			
					-8		
				1	8		770
				W			
				2	Q		
				\square	-		\%
					+	万	
					17		
				7			
		-					
			\%				
		r	\ldots	-			
	7	-	-	-			
							140

NOTE I: ELIMINATE LEFT TURN BAY. WHERE NOT EXIST. WIDEN MEDIAN \& ROADWAY 70 ONE
SIDE
station canopy not shown.
NOTE 2: STATION CANOPY NOT SHOWN.
TYPICAL CROSS SECTION OF STATION
IN MEDIAN OF ARTERIAL
(HAWTHORNE BLVD, LOMITA BLVD.)

$$
\text { SCALE: } I^{\prime \prime}=20^{\prime}
$$

APPENDIX B

TERMINAL SITE SELECTION REPORT

TERMINAL STATION SITE SELECTION

1.0 Criteria
1.1 Parking lot. An area to accommodate $1000+$ autos plus a kiss and ride and bus drop-off area is required.
1.2 Station and storage track. A straight and level section to provide 600 to 1000 feet of tangent level alignment for the station proper and storage track is necessary. For anchorage of the track and safe terminal operations the storage track should be placed on embankment.
1.3 Future extension. The site should not preclude future extension to the Long Beach Line.
1.4 Accessibility by rail. The site must be accessible to the main line without violation of the general
alignment criteria, e.g. within the minimum curve and maximum grade restrictions.
1.5 Accessibility by vehicular traffic including the bus system. The site should be in the proximity of a major arterial.
1.6 Cost. Construction, real estate, and operational costs shall all be considered in the selection of the site.
1.7 Other considerations that apply:
o Proximity to trip generators/attractors

- Population density in the immediate services area
- Pedestrian access and movement
- Capacity to accommodate future increases in parking and pedestrian traffic
- Joint development potential
- Station spacing
- Constructibility
2.0 Sites under consideration (Hawthorne alignment)
2.1 S.W. corner of Lomita and Crenshaw. A large level area, even larger than necessary, is available, and stations, storage tracks, and parking lot can easily be provided. Future extension appears possible and bus and auto accessibility would be from Crenshaw Blvd.
2.1.1 Possible problems. The land is for sale and may be purchased and developed in the near future. The site is almost 8000 feet from Hawthorne.
2.2 Skypark and Garnier. The available land appears just adequate. Future extension would be Skypark to Crenshaw Blvd. to Pacific Coast Highway. Bus and auto accessibility would be from Hawthorne and Crenshaw Blvd.
2.2.1 Possible problems. The land may be purchased and developed in the near future. Developing rail transit on Pacific Coast Highway will be difficult. The site is 4800 feet from Hawthorne Blvd. and over 3000 feet from Crenshaw Blvd. making auto and bus accessibility difficult.
2.3 Skypark and Madison. Sufficient land is available along Skypark adjacent to the airport for the station and the storage track; space for parking and drop-off areas would have to be arranged for from the existing parking lot with perhaps some airport land. Future
extension would be Skypark Dr. to Crenshaw Blvd. to Pacific Coast Highway. Bus and auto accessibility would be from Hawthorne Blvd.
2.3.1 Possible problems. Parking may be costly to arrange and may entail purchasing buildings to which the current parking is assigned. Rail transit will be difficult to develop on Pacific Coast Highway.
3.0 Sites no longer under consideration.
3.1 Hawthorne Blvd. south of Rolling Hills Road (opposite Ernie J. Howlett Park). No future extension is possible and rising land presents a grade problem. The area is still under consideration as single track spur line.
3.2 N.E. corner of Hawthorne Blvd. and Pacific Coast Highway. The area is already under consideration for development by others and the real estate cost will be high.
3.3 Skypark Dr. west of Hawthorne Blvd. Expensive construction would be necessary in unstable ground over an active county flood control sump area.
3.4 Narbonne south of Pacific Coast Highway (backfilled quarry site). Rail and auto access along a narrow road with steep grades would be very difficult and future extensions impossible.
3.5 Consolidated Edison property east of Crenshaw Blvd. and south of 235 th Street. Rail access and future extension would be impossible without extensive additional private property acquisition.

APPENDIX C

INTERSECTION ANALYSIS WORKSHEETS

DKS ASSOCIATES CAPACITY CALCULATION

INTCAS 3.0
Circular 212 Planning Method
hAWTHORNE AVE \& TORRANCE BLVD AM PEAK HOUR-EXISTING BASE VOLUMES

					OPPOSING	TOTAL	LANE	CRITICAL
DIRECTION	VOLUMES		LANES		AND PCE	VOLume	VOLUME	VOLUMES
Northbound	Left	245	Left	2	245	245	135	0
	,		Thr-Lft	0				
	Through	2307	Through	4	2476	2307	577	
			Thr-Rt	0				577
	Right	169	Right	1		169	169	
			COOE	2				

WestboundLeft 292 Left Thr-Lft 2 292 292	161	161						
	Through	627	Through	3	746	746	249	
	Right	119	Right	0	0		0	119

Southbound	Left	237	Left	2	237	237	130	130
			Thr-Lft	0				
	Through	1604	Through	3	1735	1604	535	
			Thr-Rt	0				0
	Right	131	Right	1		131	131	
			CODE	2				

Eastbound	Left	259	Left Thr-Lft	2	259	259	142	0
	Through	842	Through Thr-Rt	0	1215	842	281	
	Right	373	Thight Righ COOE	1	2		373	373

TOTAL 1249

4 PHASES CAPACITY 1560

V/C $\quad 0.80$

APPROACH VOLUMES

Northbound	In	2721	Southbound	In	1972
	Out	2269		Out	2685

DKS RSSOCIATES CAPACITY CALCULATIOW

INTCR 3.0
Circular 212 Planning Method Calculation form 1, page 16

DIRECTIOW	VOLUMES		LANES	OPPOSING		total VOLUME	LANE VOLUME	CRITICAL VOLUMES	
				AND PCE					
Northmound	Left	434		Left	2	434	434	239	239
			Thr-Lft	0					
	Through	2315	Through	4	2456	2315	579		
			Thr-Rt	0				0	
	Right	141	Right	1		141	141		
			COOE	2					
Westbound	Left	455	Left	2	455	455	250	0	
			Thr-Lft	0					
	Through	1291	Through	3	1453	1453	484		
			Thr-Rt	0				484	
	Right	162	Right	0		0	162		
			COOE	2					
Southbound	Left	332	Left	2	332	332	183	0	
			Thr-Lft	0					
	Through	2480	Through	3	2727	2480	827		
			Thr-Rt	0				827	
	Right	247	Right	1		247	247		
			COOE	2					
Eastbound	Left	341	Left	2	341	341	188	188	
			Thr-Lft	0					
	Through	863	Through	3	1186	863	288		
			Thr-Rt	0				0	
	Right	323	Right	1		323	323		
			COOE	2					

TOTAL 1737

4 PHASES
CAPACITY
1560

V/C 1.11

CRITICAL VOL. COMPARISON

WB Thr + SB Lft 761
SB Thr + NB Lft 1065

WB Thr + EB Lft 672
$E B \mathrm{Thr}+\mathrm{WB} \mathrm{Lft} \quad 573$
\qquad
approach calculations

Approach V/C	15%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	579
Shared Right	0
Approach Phasing	0
Approach V/C	31%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	484
Shared Right	1
Approach Phasing	0

Approach V/C	53%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	827
Shared Right	0
Approach Phasing	0

Approach V/C 12%
Shared Left
PCE Value

Thr-Rt Max 323
Shared Right 0
Approach Phasing 0

W-S Phase 2
E-U Phase 2
Adjusted Capacity 0

APPROACH VOLUMES

Nortthound	In	2890	Southbound	In	3059
	Out	3258		Out	2818
Westbound	In	1908	Eastbound	In	1527
	Out	1336		Out	1972

DKS ASSOCIATES CAPACITY CALCULATION

INTCAP 3.0
Circular 212 Planning Method HAWTHORNE AVE TORRANCE BLVD Calculation Form 1, page 16 AM PEAK HOUR WITH 2010 VOLUMES

TOTAL	1514	
4 PHASES	CAPACITY	1560
	V/C	0.97

APPROACH VOLUMES

Northbound	In	3319.	Southbound	In	2405.84
	Out	2768.		Out	3275.7
Westbound	In	1266.	Eastbound	In	1798.28
	Out	1522.		Out	1223.66

DKS ASSOCIATES CAPACITY CALCULATION

Circular 212 Planning Method				HAWTHORNE AVE \& TORRANCE BLVD			
Calculation Form 1, page 16				PM PEAK HOUR WITH 2010 VOLUMES			
				OPPOSING	TOTAL	LANE	CRITICAL
DIRECTIDW	VOLUMES		LANES	AND PCE	VO: UME	VOLUME	VOLUMES
Northbound	Left	529	Left	529	529	291	291
			Thr-Lft				
	Through	2824	Through	2996.32	2824	706	
			Thr-Rt				0
	Right	172	Right	1	172	172	
			COOE	2			
Westbound	Left	555	Left	555	555	305	0
			Thr-Lft				
	Through	1575	Through	$\begin{array}{ll}3 & 1772.66 \\ 0 & \end{array}$	1773	591	
			Thr-Rt				591
	Right	198	Right	0	0	198	
			COOE	2			
Southbound	Left	405	Left	405	405	223	0
			Thr-Lft				
	Through	3026	Through	33326.94	3026	1009	
			Thr-Rt	0			1009
	Right	301	Right	1	301	301	
			COOE				
Eestbound	Left	416	Left	416	416	229	229
			Thr-Lft				
	Through	1053	Through	31446.92	1053	351	
			Thr-Rt	0			0
	Right	394	Right	1	394	394	
			COOE				
						TOTAL	2119
			4	PHASES		APACITY	1560
						V/C	1.36

APPROREM VOLUMES

Northbound	In	3525.	Southbound	In	3731.98
	Out	3974.		Out	3437.96
Westbound	In	2327.	Eastbound	In	1862.94
	Out	1629.		Out	2405.84

CRITICAL VOL. COMPARISON

NB Thr + SB Lft	929
SB Thr + NB Lft	1300
WB Thr + EB Lft	820
EB Thr + WB Lft	699

APPROACH CALCULATIONS

Approach V/C	19\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	706
Shared Right	0
Approach Phasing	0
Approach V/C	38\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	591
Shared Right	1
Approach Phasing	0
Approach V/C	65\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	1009
Shared Right	0
Approach Phasing	0
Approach V/C	15\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	394
Shared Right	0
Approach Phasing	0
N-S Phase	2
E-W Phase	2
Adjusted Capacity	0

DKS ASSOCIATES CAPACITY CALCULATION

IHTCAP 3.0

Circular 212 Planning Method	Hawthorne Ave \& Del Amo
Calculation Form 1, page 16	AM Peak - Existing Base Volumes

DIRECTION	VOLUMES		LANES	OPPOSING		TOTAL VOLUME	LANE VOLUNE	CRITICAL VOLUMES	
				PCE					
Nor thbound	Left	97		Left	1	97	97	97	0
			Thr-Lft	0					
	Through	2704	Through	4	2829	2829	707		
			Thr-Rt	0				707	
	Right	125	Right	0		0	125		
			COOE	2					
Westbound	Left	108	Left	1	108	108	108	0	
			Thr-Lft	0					
	Through	419	Through	2	560	560	280		
			Thr-Rt	0				280	
	Right	141	Right	0		0	141		
			COOE	2					
Southbound	Left	188	Left	2	188	188	103	103	
			Thr-Lft	0				.	
	Through	1560	Through	4	1694	1694	424		
			Thr-Rt	0				0	
	Right	134	Right	0		0	134		
			COOE	2					
Eastbound	Left	391	Left	1	391	391	391	391	
			Thr-Lft	0					
	Through	877	Through	2	937	937	469		
			Thr-Rt	0				0	
	Right	60	Right	0		0	60		
			COOE	2					
							TOTAL	1482	
			4	PHASES			CAPACITY	1560	
.							V/C	0.95	

APPROACH VOLLMES

Morthbound	In	2926	Southbound	In	1882
	Out	1728		out	3236
Hestbound	In	668	Eastbound	In	1328
	Out	1190		Out	650

CRITICAL VOL. COMPARISON

NB Thr + S8 Lft	811
SB Thr + NB Lft	521
WB Thr + EB Lft	671
EB Thr + WB Lft	577
APPROACK CALCULATIONS	
Approach V/C	45\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	707
Shared Right	1
Approach Phasing	0

Approach V/C	18%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	280
Shared Right	1
Approach Phasing	0

Approach V/C	7%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	424
Shared Right	1
Approach Phasing	0

Approach V/C	25%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	469
Shared Right	1
Approach Phasing	0
W-S Phase	2
E-W Phase	2
Adjusted Capacity	0

DKS RSSDCIATES CAPACITY CALCULATION

INTCAP 3.0

Circular 212 Plaming Method	Hawthorne Ave \& Del Amo
Calculation Form 1, page 16	PN Peak - Existing Base Volumes

DIRECTIOW	VOLUAES		LANES		OPPOSING AND PCE	TOTAL VOLUME	LANE VOLUME	CRITICAL VOLUNES
Northbound	Left	218	Left	1	218	218	218	218
			Thr-Lft	0				
	Through	2509	Through	4	2676	2676	669	
			Thr-Rt	0				0
	Right	167	Right	0		0	167	
			COOE	2				
Westbound	Left	288	Left	1	288	288	288	0
			Thr-Lft	0				
	Through	754	Through	2	1018	1018	509	
			Thr-Rt	0				509
	Right	264	Right	0		0	264	
	-		COOE	2				
Southbound	Left	182	Left	2	182	182	100	0
			Thr-Lft	0				
	Through	2599	Through	4	2810	2810	703	
			Thr-Rt	0				703
	Right	211	Right	0		0	211	
			CODE	2				
Eastbound	Left	197	Left	1	197	197	197	197
			Thr-Lft	0				
	Through	447	Through	2	569	569	285	
			Thr-Rt	0				0
	Right	122	Right	0		0	122	
			CODE	2				

TOTAL 1627
4 PHASES CAPACITY 1560

V/C $\quad 1.04$

APPROACH VOLUMES

Northbound	In	2894	Southbound	In	2992
	Out	3009		Out	2970
Hestbound	In	1306	Eastbound	In	766
	Out	796		Out	1183

CRITICAL VOL. COMPARISON
\qquad
NB Thr + SB Lft 769
S8 Thr + NB Lft 921

W8 Thr + EB Lft 706
$E B$ Thr $+W 8$ Lft $\quad 573$

APPROACH CALCULATIOWS

Approach V/C	$14 x$
Shared Left	0
PCE Value	1.2
Thr-Rt Max	669
Shared Right	1
Approach Phasing	0
Approach V/C	$33 x$
Shared Left	0
PCE Value	1.2
Thr-Rt Max	509
Shared Right	1
Approach Phasing	0

Approach V/C	45%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	703
Shared Right	1
Approach Phasing	0

Approach V/C	13%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	285
Shared Right	1
Approach Phasing	0
N-S Phase	2
E-w Phase	2
Adjusted Capacity	0

dKS associates capacity calculation								
INTCAP 3.0								
Circular 212 Planning Method				Hauthorne Ave a Del Amo				
				NH Peak - with 2010 Volumes				
DIRECTION	VOLumes		LANES	OPPOSING AND PCE	total VOLUME	LaNE VOLLUE	CRItICAL	
			VOLUMES					
Northbound	Left	118		Left	118	118	118	0
			Thr-Lft					
	Through	3299	Through	43451.380	3651	863	863	
			Thr-Rt					
	Right	153	Right	0	0	153		
			COOE	2				
Westbound	Left	132	Left	132	132	132	0	
			Thr-Lft					
	Through	511	Through	683.2	683	342	342	
			Thr-Rt					
	Right	172	Right	0	0	172		
			COOE					
Southbound	Left	229	Left	229	229	126	126	
			Thr-Lft					
	Through	1903	Through	42066.68	2067	517		
			Thr-Rt	0			0	
	Right	163	Right	02	0	163		
			COOE					
Eastbound	Left	477	Left	477	477	477	477	
			Thr-Lft					
	Through	1070	Through	21143.140	1143	572		
			Thr-Rt				0	
	Right	73	Right	0	0	73		
			COOE					
					total		1808	
			4	phases	capacity		1560	
			.			v/c	1.16	
approach volumes								
Northbound	in	3569.		Southbound	In		2296.04	
	out	2108.			out		3947.92	
Westbound	In	814.9		Eastbound	In		1620.16	
	out	1451.			out		793	

CRITICAL VOL. COMPARISOW	
W8 $\mathrm{Thr}+\mathrm{SB} \mathrm{Lft}$	989
S8 $\mathrm{Thr}+\mathrm{NB} \mathrm{Lft}$	635
W8 Thr + EB Lft	819
$E B \mathrm{Thr}+\mathrm{WB} \mathrm{Lft}$	703
approach calculatiows	
Approach V/C	55\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	863
Shared Right	1
Approach Phasing	0
Approach V/C	22\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	342
Shared Right	1
Approach Phasing	0
Approach V/C	8\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	517
Shared Right	1
Approach Phasing	0
Approsch V/C	318
Shared Left	0
PCE Value	1.2
Thr-Rt Max	572
Shared Right	1
Approach Phasing	0
N-S Phase	2
E-W Phase	2
Adjusted Capacity	0

CRITICAL VOL. COMPARISOW	
NB $\mathrm{Thr}+\mathrm{SB} \mathrm{Lft}$	938
SB Thr + NB Lft	1123
W8 Thr + EB Lft	861
$E B \mathrm{Thr}+\mathrm{WB}$ Lft	698
approach calculatiows	
Approach V/C	177
Shared Left	0
PCE Value	1.2
Thr-Rt Max	816
Shared Right	1
Approach Phasing	0
Approach V/C	40x
Shared Left	0
PCE Value	1.2
Thr-Rt Max	621
Shared Right	1
Approach Phasing	0
Approach V/C	55\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	857
Shared Right	1
Approsch Phasing	0
Approach V/C	15\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	347
Shared Right	1
Approach Phasing	0
M-S Phase	2
E-W Phase	2
Adjusted Capacity	0

DKS RSSOCIATES CAPACITY CALCULATION

IMTCAP 3.0
Circular 212 Planning Method Calculation Form 1, page 16

DIRECTION	VOLUMES		LANES	OPPOSING		TOTAL volume	LANE volume	CRITICAL VOLUMES	
				AND PCE					
Northbound	Left	88		Left	1	88	88	88	0
			Thr-Lft	0					
	Through	2327	Through	3	2457	2327	776		
			Thr-Rt	0				776	
	Right	130	Right	1		130	130		
			COOE	2					
Westbound	Left	144	Left	2	144	144	79	79	
			Thr-ift	0					
	Through	340	Through	3	502	502	167		
			Thr-Rt	0				0	
	Right	162	Right	0		0	162		
			COOE	2					
Southbound	Left	179	Left	2	179	179	98	98	
			Thr-Lft	0					
	Through	1624	Through	4	1673	1673	418		
			Thr-Rt	0				0	
	Right	49	Right	0		0	49		
			CODE	2					
Eastbound	Left	87	Left	1	87	87	87	0	
			Thr-Lft	0					
	Through	503	Through	2	590	590	295		
			Thr-Rt	0				295	
	Right	87	Right	0		0	87		
			COOE	2					

TOTAL 1248

4 PHASES
CAPACITY
1560

V/C $\quad 0.80$

APPROACH VOLUMES

Northbound	In	2545	Southbound	In	1852
	Out	1855		Out	2576
Hestbound	In	646	Eastbound	In	677
	Out	812		Out	477

CRITICAL VOL. COMPARISON

WB Thr + SB Lft 874
SB Thr + NB Lft 506
WB Thr + E8 Lft 254

EB Thr + WB Lft $\quad 374$
approach calculations

Approach V/C	50%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	776
Shared Right	0
Approach Phasing	0

Approach V/C	$\mathbf{5 \%}$
Shared Left	0
PCE Value	1.2
Thr-Rt Max	167
Shared Right	1
Approach Phasing	0

Approach V/C	6%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	418
Shared Right	1
Approach Phasing	0

Approach V/C	19%
Shared Left	0
PCE Value	1.2
Thr-Rt Nax	295
Shared Right	1
Approach Phasing	0
W-S Phase	2
E-W Phase	2
Adjusted Capacity	0

DKS ASSOCIATES CAPACITY CALCULATION

INTCAP 3.0
$\begin{array}{ll}\text { Circular } 212 \text { Planning Method } & \text { HAWTHORNE AVE \& CARSON BLVD } \\ \text { Calculation Form 1, page } 16 & \text { PM PEAK HOUR-EXISTING BASE VOLUMES }\end{array}$

D! RECTION	VOLUNES		LANES	OPPOSING		total	LANE	CRITICAL VOLLWES
				AND	PCE	VOLUME	VOLUME	
Nor thbound	Left	140	Left	1	140	140	140	140
			Thr-Lft	0				
	Through	2165	Through	3	2417	2165	722	
			Thr-Rt	0				0
	Right	252	Right	1		252	252	
			COOE	2				
Westbound	Left	359	Left	2	359	359	197	197
			Thr-Lft	0				
	Through	492	Through	3	566	566	189	
			Thr-Rt	0				0
	Right	74	Right	0		0	74	
			COOE	2				
Southbound	Left	54	Left	2	54	54	30	0
			Thr-Lft	0				
	Through	2452	Through	4	2947	2947	737	
			Thr-Rt	0				737
	Right	495	Right	0		0	495	
			CODE	2				
Eastbound	Left	322	Left	1	322	322	322	0
			Thr-Lft	0				
	Through	598	Through	2	974	974	487	
			Thr-Rt	0				487
	Right	376	Right	0		0	376	
			COOE	2				
							TOTAL	1561
			4	PHASES			CAPACITY	1560
							V/C	1.00

APPROACH VOLUMES

Northbound	In	2557	Southbound	In	3001
	Out	3187		Out	2561
Hestbound	In	925	Eastbound	In	1296
	Out	904		Out	1127

CRITICAL VOL. COMPARISON	
N8 Thr + S8 Lft	751
SB Thr + NB Lft	877
WB Thr + EB Lft	511
$E B$ Thr + WB Lft	684
APPROACH CALCULATIONS	
Approach V/C	9%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	722
Shared Right	0
Approach Phasing	0
Approach V/C	13\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	189
Shared Right	1
Approach Phasing	0
Approach V/C	472
Shared Left	0
PCE Value	1.2
Thr-Rt Max	737
Shared Right	1
Approach Phasing	0
Approach V/C	31\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	487
Shared Right	1
Approach Phasing	0
N-S Phase	2
E-W Phase	2
Adjusted Capacity	0

DKS ASSOCIATES CAPACITY CALCULATION

INTCAP 3.0

Circular 212 Planning Method Calculation Form 1, page 16

DIRECTION	VOLUMES		LANES	OPPOSING AND PCE	TOTAL VOLUME	LANE VOLUNE	CRITICAL VOLUMES
Nor thbound	Left	107	Left	1107	107	107	0
			Thr-Lft	0			
	Through	2839	Through	32997.54	2839	946	
			Thr-Rt	0			946
	Right	159	Right	1	159	159	
			COOE	2			
Westbound	Left	176	Left	2176	176	97	97
			Thr-Lft	0			
	Through	415	Through	$3 \quad 612.44$	612	204	
			Thr-Rt	0			0
	Right	198	Right	0	0	198	
			COOE	2			
Southbound	Left	218	Left	$2 \quad 218$	218	120	120
			Thr-Lft	0			
	Through	1981	Through	42041.06	2041	510	
			Thr-Rt	0			0
	Right	60	Right	0	0	60	
			COOE	2			
Eastbound	Left	106	Left	1106	106	106	0
			Thr-Lft	0			
	Through	614	Through	2719.8	720	360	
			Thr-Rt	0			360
	Right	106	Right	0	0	106	
			CODE	2			
		-				TOTAL	1523
			4	PHASES		CAPACITY	1560
						V/C	0.98

APPROACH VOLUMES

Northbound	In	3104.	Southbound	In	2259.44
	Out	2263.		out	3142.72
Hestbound	In	788.1	Eastbound	In	825.94
	Out	990.6		Out	581.94

NB Thr + SB Lft	1066
SB Thr + NB Lft	618
WB Thr + EB Lft	310
$E B$ Thr + WB Lft	457
APPROACH CALCULAT	
Approach V/C	61\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	946
Shared Right	0
Approach Phasing	0
Approach V/C	6\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	204
Shared Right	1
Approach Phasing	0
Approach V/C	8\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	510
Shared Right	1
Approach Phasing	0
Approach V/C	23\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	360
Shared Right	1
Approach Phasing	0
N-S Phase	2
E-W Phase	2
Adjusted Capacity	0

OKS ASSOCIATES CAPACITY CALCULATION

IMTCAP 3.0
Circular 212 Planning Method HAWTHORNE AVE CARSON BLVD Calculation Form 1, page 16 PM PEAK HOUR WITH 2010 VOLUMES

DIRECTION	VOLUMES		LANES	OPPOSING	total VOLUME	LANE VDLUAE	CRITICAL VOLLMES	
			AND PCE					
Nor thbound	Left	171		Left	1171	171	171	171
			Thr-Lft	0				
	Through	2641	Through	32948.74	2641	880		
			Thr-Rt	0			0	
	Right	307	Right	1	307	307		
			COOE	2				
Westbound	Left	438	Left	2438	438	241	241	
			Thr-Lft	0				
	Through	600	Through	$3 \quad 690.52$	691	230		
			Thr-Rt	0			0	
	Right	90	Right	0	0	90		
			COOE	2				
Sourthbound	Left	66	Left	266	66	36	0	
			Thr-Lft	0				
	Through	2991	Through	43595.34	3595	899		
			Thr-Rt	0			899	
	Right	604	Right	0	0	604		
			code	2				
Eastbound	Left	393	Left	1393	393	393	0	
			Thr-Lft	0				
	Through	730	Through	21188.28	1188	594		
			Thr-Rt	0			594	
	Right	459	Right	0	0	459		
			cooe	2				

TOTAL 1905

4 PHASES CAPACITY 1560

V/C 1.22

APPROACH VOLUMES

Morthbound	In	3119.	Southbound	In	3661.22
	Out	3888.		Out	3124.42
Hestbound	In	1128.	Eastbound	In	1581.12
	Out	1102.		Out	1374.94

CRITICAL VOL. COMPARISON

NB Thr + SB Lft	917
S8 Thr + NB Lft	1070
WB Thr + EB Lft	623
$E B$ Thr + WB Lft	835
APPROACH CALCULATIONS	
Approach V/C	11\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	880
Shared Right	0
Approach Phasing	0
Approach V/C	15\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	230
Shared Right	1
Approach Phasing	0
Approach V/C	58\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	899
Shared Right	1
Approach Phasing	0
Approach V/C	38\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	594
Shared Right	1
Approach Phasing	0
N-S Phase	2
E-W Phase	2
Adjusted Capacity	0

DKS ASSOCIATES CAPACITY CALCULATION

InTCAP 3.0
Circular 212 Planning Method
hawt horne ave \& 190Th ST Calculation Form 1, page 16 AM PEAK HOUR EXISTING BASE VOLUMES

DIRECTIOW	VOLUMES		LANES	OPPOSING		total volume	LANE VOLUME	CRITICAL VOLUMES	
				AND PCE					
Northbound	Left	172		Left	2	172	172	95	0
			Thr-Lft	0					
	Through	3316	Through	4	3534	3316	829		
			Thr-Rt	0				829	
	Right	218	Right	1		218	218		
			COOE	2					
Westbound	Left	150	Left	2	150	150	83	83	
			Thr-Lft	0					
	Through	661	Through	2	831	661	331		
			Thr-Rt	0				0	
	Right	170	Right	1		170	170		
			COOE	2					
Southbound	Left	106	Left	2	106	106	58	58	
			Thr-Lft	0					
	Through	1455	Through	4	1599	1455	364		
			Thr-Rt	0				0	
	Right	144	Right	1		146	144		
			COOE	2					
Eastbound	Left	256	Left	2	256	256	141	0	
			Thr-Lft	0					
	Through	1125	Through	2	1417	1125	563		
			Thr-Rt	0				563	
	Right	292	Right	1		292	292		
			COOE	2					

TOTAL 1532

4 PRASES
CAPACITY 1560

V/C $\quad 0.98$

APPRCACH VOLUMES

Northbound	In	3706	Southbound	In	1705
	Out	1897		Out	3742
Hestbound	In	981	Eastbound	In	1673
	Out	1449		Out	977

CRITICAL VOL. COMPARISOW

NB Thr + SB Lft 887
SB Thr + NB Lft 458

WB Thr + EB Lft 471
EB Thr + WB Lft 645
approach calculations

Approach V/C	$53 x$
Shared Left	0
PCE Value	1.2
Thr-Rt Max	829
Shared Right	0
Approach Phasing	0

Approach V/C	$\mathbf{5 x}$
Shared Left	0
PCE Value	1.2
Thr-Rt Max	331
Shared Right	0
Approach Phasing	0

Approach V/C	4\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	364
Shared Right	0
Approach Phasing	0

Approach V/C $\quad 36 \%$
Shared Left 0

PCE Value 1.2
Thr-Rt Max 563
Shared Right 0
Approach Phasing 0
N-S Phase 2
E-W Phase 2
Adjusted Capacity 0

CRITICAL VOL. COMPARISOW

NB Thr + SB Lft	822
SB Thr + NB Lft	845
WB Thr + EB Lft	797
EB Thr + WB Lft	587

approach calculations

Appraach V/C	15%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	728
Shared Right	0
Approach Phasing	0
Approach V/C	$43 x$
Shared Left	0
PCE Value	1.2
Thr-Rt Max	676
Shared Right	0
Approach Phasing	0
Approach V/C	39%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	611
Shared Right	0
Approach Phasing	0
Approach V/C	8%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	400
Shared Right	0
Approach Phasing	0
W-S Phase	2
E-W Phase	2
Adjusted Capacity	0

DKS RSSOCIATES CAPACITY CALCULATION

INTCAP 3.0

Circular 212 Planning Method	HAWTHORNE AVE \& 190TH ST
Calculation Form 1, page 16	AM PEAK HOUR WITH 2010 VOLUnES

DIRECT1OW	VOLUMES		LANES		OPPOSING AND PCE	TOTAL VOLUME	LANE VOLUAE	CRITICAL VOLUMES
Northbound	Left	210	Left	2	210	210	115	0
			Thr-Lft	0	.			
	Through	4046	Through	4	4311.48	4046	1011	
			The-Rt	0				1011
	Right	266	Right	1		266	266	

| WestboundLeft 183 Left
 Thr-Lft 2 183 183 | 101 | 101 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Southbound Left	129	Left Thr-Lft	2	129	129	71	71

Eastbound	Left	312	Left	2	312	312	172	0
	Through	1373	Thr-Lft 0					
Through								
Thr-Rt	2	1728.74	1373	686				
	Right	356	Right 1	356	356	686		

TOTAL 1869

4 PHASES
CAPACITY 1560

V/C $\quad 1.20$

APPROACH VOLUMES

Northbound	In	4521.	Southbound	In	2080.1
	Out	2314.		Out	4565.24
Westbound	In	1196.	Eastbound	In	2041.06
	Out	1767.		Out	1191.94

DKS ASSOCIATES CAPACITY CALCULATION

INTCAP 3.0
$\begin{array}{ll}\text { Circular } 212 \text { Planning Method } & \text { HAUTHORNE AVE } 2190 T H \text { ST } \\ \text { Calculation form 1, page } 16 & \text { PM PEAK HOUR WITH } 2010 \text { VOLUMES }\end{array}$

DIRECTIOM	Volumes		LANES	OPPOSING AND PCE	total volume	LANE volume	CRITICAL VOLimes
Northbound	Left	519	Left	2519	519	285	285
			Thr-Lft	0			
	Through	3551	Through	43910.1	3551	888	
			Thr-Rt	0			0
	Right	359	Right	1	359	359	
			COOE	2			
Westbound	Left	415	Left	2415	415	228	0
			Thr-Lft	0			
	Through	1648	Through	21837.32	1648	824	
			Thr-Rt	0			824
	Right	189	Right	1	189	189	
			COOE	2			
Southbound	Left	210	Left	2210	210	115	0
			Thr-Lft	0			
	Through	2982	Through	43378.18	2982	745	
			Thr-Rt	0			745
	Right	397	Right	1	397	397	
			COOE	2			
Eastbound	Left	270	Left	2270	270	148	148
			Thr-Lft	0			
	Through	800	Through	21288.32	800	400	
			Thr-Rt	0			0
	Right	488	Right	1	488	488	
			CODE	2			

TOTAL 2003 4 PHASES CAPACITY 1560

V/C
1.28

APPROACH VOCLMES

Northbound	In	4428.	Southbound	In	3588.02
	Out	3884.		Out	4010.14
Westbound	In	2252.	Eastbound	In	1557.94
	Out	1368.		Out	2563.22

CRITICAL VOL. COMPARISON

NB Thr + SB Lft 1003
S8 Thr + NB Lft 1031

WB Thr + E8 Lft 972
$E B$ Thr + WB Lft 716

APPROACH CALCULATIONS

Approach V/C	$18 x$
Shared Left	0
PCE Value	1.2
Thr-Rt Max	888
Shared Right	0
Approach Phasing	0
Approach V/C	$53 x$
Shared Left	0
PCE Volue	1.2
Thr-Rt Max	824
Shared Right	0
Approach Phasing	0

Approach V/C	48%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	745
Shared Right	0
Approach Phasing	0
Approach V/C	10%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	488
Shared Right	0
Approach Phasing	0
N-S Phase	2
E-W Phase	2
Adjusted Capacity	0

CRITICAL VOL. COMPARISOW	
W8 $\mathrm{Thr}+\mathrm{SB} \mathrm{Lft}$	953
SB Thr + NB Lft	371
$18 \mathrm{Thr}+\mathrm{EBLft}$	514
E8 Thr + WB Lft	563
approach calculations	
Approach V/C	57\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	894
Shared Right	1
Approach Phasing	0
Approach V/C	6\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	514
Shared Right	1
Approach Phasing	0
Approach V/C	4\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	277
Shared Right	1
Approach Phasing	0
Approach V/C	30\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	465
Shared Right	1
Approach Phasing	0
W-S Phase	2
E-W Phase	2
Adjusted Capacity	0

CRITICAL VOL. COMPARISOH	
WB Thr + SB Lft	681
SB Thr + NB Lft	805
WB Thr + EB Lft	479
E8 Thr + W8 Lft	591
apProach Calculatiows	
Approach V/C	11\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	593
Shared Right	1
Approach Phasing	0
Approach V/C	14%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	479
Shared Right	1
Approach Phasing	0
Approach V/C	41\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	639
Shared Right	1
Approach Phasing	0
Approsch V/C	24\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	375
Shared Right	1
Approach Phasing	0
N-S Phase	2
E-W Phase	2
Adjusted Capacity	0

INTCAS 3.0							
Circular 212 Planning Method				hauthorne	AVE \&	ARTESIA B	lvo
				OPPOSING	total	lane	CRITICAL
DIRECTION	VOLumes		lanes	and pce	volume	VOLUME	VOLUMES
Northbound	Left	210	Left	2210	210	115	0
			Thr-Lft	0			
	Through	4176	Through	44360.28	4360	1090	
			Thr-Rt	0			1090
	Right	184	Right	0	0	184	
			COOE	2			
Westbound	Left	217	Left	$2 \quad 217$	217	119	119
			Thr-Lft	0			
	Through	1053	Through	21254.16	1254	627	
			Thr-Rt	0			0
	Right	201	Right	0	0	201	
			COOE	2			
Southbound	Left	132	Left	2132	132	72	72
			Thr-Lft	0			
	Through	1327	Through	41349.32	1349	337	
			Thr-Rt	0			0
	Right	22	Right	0	0	22	
			COOE	2			
Eastbound	Left	0	Left	00	0	0	0
			Thr-Lft	0			
	Through	1443	Through	31703.12	1703	568	
			Thr-Rt	0			568
	Right	260	Right	0	0	260	
			COOE	2			
						total	1850
			4 P	PHASES		CAPACITY	1560
				v/c			1.19
APPROACH VOLUMES							
Northbound	In 4	4570.		Southbound	In		1481.08
	Out 1	1804.			out		4377.36
Westbound	In 1	1471.		Eastbound	In		1703.12
	Out 1	1759.				out	1284.66

CRITICAL VOL. COMPARISOW	
WB Thr + SB Lft	1163
SB Thr + NB Lft	453
We Thr + EB Lft	627
EB Thr + WB Lft	687
approach calculations	
Approach V/C	70\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	1090
Shared Right	1
Approach Phasing	0
Approach V/C	8%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	627
Shared Right	1
Approach Phasing	0
Approach V/C	5\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	337
Shared Right	1
Approach Phasing	0
Approach V/C	36\%
Shared Left	0
PCE Value	1.2
Thr-rt Max	568
Shared Right	1
Approach Phasing	0
W-S Phase	2
E-W Phase	2
Adjusted Capacity	0

DKS RSSOCIATES CAPACITY CALCULATION

IMTCEP 3.0
Circuld ar 212 Planning Method Calcutation Form 1, page 16

HAWTHORNE AVE \& ARTESIA BLVD PM PEAK HOUR WITH 2010 VOLUMES

DIRECTION	VOLUMES		LANES	OPPOSING AND PCE	total VOLUME	LANE VOLUME	CRITICAL SOLUMES
Northbound	Left	370	Left	2370	370	203	203
			Thr-Lft	0			
	Through	2616	Through	42891.4	2891	723	
			Thr-Rt	0			0
	Right	276	Right	0	0	276	
			COOE	2			
Westbound	Left	479	Left	2479	479	264	264
			Thr-Lft	0			
	Through	1066	Through	21167.54	1168	584	
			Thr-Rt	0			0
	Right	101	Right	0	0	101	
			CODE	2			
Saithbound	Left	195	Left	2195	195	107	0
			Thr-Lft	0			
	Through	3074	Through	$4 \quad 3117.1$	3117	779	
			Thr-Rt	0			779
	Right	43	Right	0	0	43	
			COOE	2			
Eastbound	Left	0	Left	00	0	0	0
			Thr-Lft	0			
	Through	991	Through	31373.72	1374	458	
			Thr-Rt	0			458
	Right	383	Right	0	0	383	
			COOE	2			
						TOTAL	1704
			4	PHASES		CAPACITY	1560
						V/C	1.09

APPROACH VOLUMES

Northbound	In	3261.	Southbound	In	3312.3
	Out	3936.			
Hestbound	In	1647	Eastbound	In	1373.72
	Out	1461.		Out	1478.64

CRITICAL VOL. COMPARISON
...................................
SB Thr + NB Lft 340
WB Thr + EB Lft 227
EB Thr + WB Lft 338

hoproach calculations

Approach V/C	92π
Shared Left	0
PCE Value	1.2
Thr-Rt Max	1428
Shared Right	1
Approach Phasing	0
Approach V/C	$12 x$
Shared Left	1
PCE Value	1.0
Thr-Rt Max	182
Shared Right	0
Approach Phasing	1
Approach V/C	$5 x$
Shared Left	0
PCE Value	1.2
Thr-Rt Max	330
Shared Right	1
Approach Phasing	0
Approach V/C	$17 x$
Shared Left	1
PCE Value	1.0
Thr-Rt Max	263
Shared Right	1
Approach Phasing	1
W-S Phase	2
E-W Phase	2
Adjusted Capacity	0

DKS ASSOCIATES CAPACITY CALCULATION								
Intcas 3.0								
Circular 212 Planning Method				hauthorne ave \& redondo beach blvd				
Calculation form 1, page 16				PM PEAK 2010 VOLUMES + STATION GEN				
DIRECTION	VOLUMES		LANES	and PCE	VOLUME	LANE Volume	CRItical	
			VOLUMES					
Northbound	Left	100		Left	100	100	100	0
			Thr-Lft					
	Through	2177	Through	32544.220	2544	848		
			Thr-Rt				848	
	Right	367	Right	2	0	367		
			COOE					
Westbound	Left	611	Left	611	0	306	0	
			Thr-Lft					
	Through	610	Through	815	1221	407	407	
			Thr-Rt					
	Right	205	Right	13	205	205		
			COOE					
Southbound	Left	182	Left ${ }^{\text {- }}$	182	182	182	182	
			Thr-Lft					
	Through	2765	Through	3016	3016	754		
			Thr-Rt				0	
	Right	251	Right	0	0	251		
			COOE	2				
Eastbound	Left	162	Left	162	0	81	0	
			Thr-Lft					
	Through	540	Through	569.74	732	244	244	
			Thr-Rt					
	Right	29	Right	0	0	29		
			COOE					
					total		1681	
			4	PHASES		CAPACITY	1560	
						v/c	1.08	
APPROACH VOLLMES								
Northbound		$\begin{aligned} & 2644 . \\ & 3405 . \end{aligned}$		Southbound		In	3197.78	
						Out	2544.26	
Westbound	$\begin{aligned} & \text { In } \\ & \text { out } \end{aligned}$	$\begin{aligned} & 1426 . \\ & 1089 . \end{aligned}$		Eastbound		n	732961.04	
						Dut		

CRITICAL VOL. COMPARISON

NB Thr + SB Lft	1030
SB Thr + WB Lft	854

WB Thr + EB Lft 488
EB Thr + WB Lft 550

approach calculations

Approach V/C	54%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	848
Shared Right	1
Approach Phasing	0

Approach V/C	26%
Shared Left	1
PCE Velue	1.0
Thr-Rt Max	407
Shared Right	0
Approach Phasing	1

Approach V/C	12%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	754
Shared Right	1
Approach Phasing	0

Approach V/C	$16 x$
Shared Left	1
PCE Value	1.0
Thr-Rt Max	244
Shared Right	1
Approach Phasing	1
W-S Phase	2
E-W Phase	2
Adjusted Capacity	0

DKS ASSOCIATES CAPACITY CALCULATION

INTCAF 3.0
$\begin{array}{ll}\text { Circular } 212 \text { Planning Method } \\ \text { Calculation Form 1, page } 16 & \text { HAMTHORNE AVE \& 190TH ST } \\ \text { A PEAK } 2010 \text { VOLUMES + STATION GENERATED TRAFFIC }\end{array}$

DIRECTIDW	VOLUMES		LANES	OPPOSING		TOTAL VOLUME	LANE VOLLME	CRITICAL VOLUMES	
				ANC PCE					
Northbound	Left	212		Left	2	212	212	117	0
			Thr-Lft	0					
	Through	4080	Through	4	4348	4080	1020		
			Thr-Rt	0				1020	
	Right	268	Right	1		268	268		
			COOE	2					

$\left.\begin{array}{lllllllll}\text { Westbound } & \text { Left } & 195 & 195 & 195 & 107 & 107 \\ & \begin{array}{llll}\text { Left } \\ \text { Thr-Lft }\end{array} & 2 & 0\end{array}\right)$

TOTAL 1885

4 PHASES CAPACITY 1560

V/C 1.21

APPROACH VOLUMES

Northbound	In	4560	Southbound	In	2196
	Out	2465		out	4599.72
Westbound	In	1208.	Eastbound	In	2063.82
	Out	1769.		Out	1194.1

intens 3.0								
Circular 212 Plaming Method				hanthorne ave \& 190th st				
Calculation form 1, page 16				PM PEAK 2010 VOLUAES + STATIO GENERATED				traffic
				OPPOSING	total	LAME	CRItical	
DIRECTIOW	VOLumes		lanes	AND PCE	volume	Volume	volumes	
Northbound	Left	536	Left	2536	536	295	295	
			Thr-Lft	0				
	Through	3663	Through	44033	3663	916		
			Thr-Rt	0			0	
	Right	370	Right	1	370	370		
			COOE	2				
Westbound	Left	418	Left	2418	418	230	0	
			Thr-Lft	0				
	Through	1648	Through	21837.32	1648	824		
			Thr-Rt	0			824	
	Right	189	Right	1	189	189		
			COOE	2				
Southbound	Left	210	Left	$2 \quad 210$	210	115	0	
			Thr-Lft	0				
	Through	3005	Through	43401.5	3005	751	,	
			Thr-Rt	0			751	
	Right	397	Right	1	397	397		
			CODE	2				
Eastbound	Left	270	Left	2270	270	148	148	
			Thr-Lft	0				
	Through	800	Through	21292.32	800	400		
			Thr-Rt	0			0	
	Right	492	Right	1	492	492		
			CODE	2				
						total	2018	
			4	PHASES		apacity	1560	
						v/c	1.29	

CRITICAL VOL. COMPARISOM	
NB $\mathrm{Thr}+\mathrm{SB} \mathrm{Lft}$	1031
SB $\mathrm{Thr}+\mathrm{NB} \mathrm{Lft}$	1046
W8 Thr + EB Lft	972
EB Thr + WB Lft	722
approach calculatiows	
Approach V/C	19%
Shared left	0
PCE Value	1.2
Thr-Rt Max	916
Shared Right	0
Approach Phasing	0
Approach V/C	537
Shared Left	0
PCE Value	1.2
Thr-Rt Max	826
Shared Right	0
Approach Phasing	0
Approach V/C	488
Shared Left	0
PCE Value	1.2
Thr-Rt Max	751
Shared Right	0
Approach Phasing	0
Approach V/C	10%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	492
Shared Right	0
Approach Phasing	0
W-S Phase	2
E-W Phase	2
Adjusted Capacity	0

APPROACH VOLUWES

Northbound	in	4569	Southbound	In	3611.34
	out	3915			
out					

DKS ASSDCIATES CAPACITY CALCULATIO

INTCAP 3.0

Westbound	Left	501	Left	1	501	0	251	0
			Thr-Lft	1				
	Through	500	Through	1	667	1001	334	
			Thr-Rt	0				334
	Right	167	Right	1		167	167	
			COOE	3				

Southbound	Left	149	Left	1	149	149	149	149
			Thr-Lft	0				
	Through	2259	Through	4	2464	2464	616	
.			Thr-Rt	0				0
	Right	205	Right	0		0	205	
			COOE	2				
Eastbound	Left	133	Left	1	133	0	67	0
			Thr-Lft	1				
	Through	443	Through	1	467	600	200	
			Thr-Rt	0				200
	Right	24	Right	0		0	24	
	R		COOE	3				

TOTAL 1377

4 PHASES CAPACITY 1560
\qquad
APPROACH VOLUNES

Northbound	In	2166	Southbound	In	2613
	Out	2784		Out	2083
Westbound	In	1168	Eastbound	In	600
	Out	893		Out	787

CRITICAL VOL. COMPARISOW

WB Thr + SB Lft	844
SB Thr + NB Lft	698
WB Thr + EB Lft	400
EB Thr + WB Lft	451

APPROACK CALCULATIONS

Approach V/C	45%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	695
Shared Right	1
Approach Phasing	0
Approach V/C	21%
Shared Left	1
PCE Value	1.0
Thr-Rt Max	334
Shared Right	0
Approach Phasing	1
Approach V/C	10%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	616
Shared Right	1
Approach Phasing	0
Approach V/C	13%
Shared Left	1
PCE Value	1.0
Thr-Rt Max	200
Shared Right	1
Approach Phasing	1
N-S Phase	2
Adjusted Capacity	0

DKS ASSOCIATES CAPACITY CALCULATION

INTCAP 3.0
Circular 212 Planning Method
Calculation Form 1, page 16
HAWTHORNE AVE \& REDONDO BEACH BLVD AM PEAK HOUR WITH 2010 VOLUMES

APPROACH VOLUMES

Nor thbound	In	4284.	Southbound	In	1399.34
	Out	1431.		Out	3996.72
Westbound	In	624.6	Eastbound	In	788.12
	Out	1316.		Out	352.58

Intcap 3.0							
Circular 212 Plaming Method				hauthorne ave \& REDONDO BEACH BLVD			
				OPPOSING	total	LANE	CRItICAL
DIRECTIOW	VOLUMES		LANES	AN? PCE	VOLIME	VOLume	VOLUMES
Horthbound	Left	100	Left	1100	100	100	0
			Thr-Lft	0			
	Through	2175	Through	32542.48	2542	847	
			Thr-Rt	0			847
	Right	367	Right	0	0	367	
			COOE	2			
Westbound	Left	611	Left	1611	0	306	0
			Thr-Lft	1			
	Through	610	Through	1813.74	1221	407	
			Thr-Rt	0			407
	Right	204	Right	1	204	204	
			COOE	3			
Sourthbound	Left	182	Left	1182	182	182	182
			Thr-Lft	0 .			
	Through	2756	Through	43006.08	3006	752	
			Thr-Rt	0			0
	Right	250	Right	0	0	250	
			COOE	2			
Eastbound	Left	162	Left	1162	0	81	0
			Thr-Lft	1			
	Through	540	Through	1569.74	732	244	
			Thr-Rt	0			244
	Right	29	Right	0	0	29	
			COOE	3			
						total	1680
			4	PHASES		apacity	1560
						v/c	1.08

APPROACH VOLUMES

Northbound	In	2642.	Southbound	In	3187.86
	out	3396.		Out	2541.26
Westbound	In	1424.	Eastbound	In	732
	out	1089.		Out	960.14

CRITICAL VOL. COMPARISON	
NB $\mathrm{Thr}+\mathrm{SB} \mathrm{Lft}$	1029
SB Thr + NB Lft	852
WB Thr + EB Lft	488
EB $\mathrm{Thr}+\mathrm{WB} \mathrm{Lft}$	550
approach calculations	
Approach V/C	54\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	847
Shared Right	1
Approach Phasing	0
Approach V/C	26\%
Shared Left	1
PCE Value	1.0
Thr-Rt Max	407
Shared Right	0
Approach Phasing	1
Approach V/C	12\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	752
Shared Right	1
Approsch Phasing	0
Approach V/C	16\%
Shared Left	1
PCE Value	1.0
Thr-Rt Max	244
Shared Right	1
Approach Phasing	1
N-S Phase	2
E-W Phase	2
Adjusted Capacity	0

CRITICAL VOL. COMPARISOM	
NB Thr + SB Lft	916
SB Thr + NB Lft	544
WB Thr + EB Lft	500
E8 $\mathrm{Thr}+\mathrm{wb} \mathrm{Lft}$	579
approach calculations	
Approach V/C	55\%
Shared left	0
PCE Value	1.2
Thr-rt Max	854
Shared Right	1
Approach Phasing	0
Approach V/C	14\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	322
Shared Right	0
Approach Phasing	0
Approach V/C	4x
Shared left	0
PCE Value	1.2
Thr-Rt Max	481
Shared Right	0
Approach Phasing	0
Approsch V/C	23\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	354
Shared Right	0
Approach Phasing	0
N-S Phase	2
E-W Phase	2
Adjusted Capacity	0

DKS ASSOCIATES CAPACITY CALCULATION

INTCAP 3.0
Circular 212 Planning Method Calculation Form 1, page 16

HAWTHORNE AVE \& SEPULVADA BLVD PM PEAK HOUR-EXISTING BASE VOLUMES

DIRECTION	VOLUMES		LANES	OPPOSING		total volume	LANE VOLUME	CRITICAL VOLUNES	
				AND PCE					
Nor thbound	Left	325		Left	2	325	325	179	0
			Thr-Lft	0					
	Through	1982	Through	3	2764	2764	921		
			Thr-Rt	0				921	
	Right	782	Right	0		0	782		
			COOE	2					
Westbound	Left	815	Left	2	815	815	448	448	
			Thr-Lft	0					
	Through	1321	Through	4	1558	1321	330		
			Thr-Rt	0				0	
	Right	237	Right	1		237	237		
			COOE	2					
Southbound	Left	367	Left	2	367	367	202	202	
			Thr-Lft	0					
	Through	2318	Through	3	2655	2318	773		
			Thr-Rt	0				0	
	Right	337	Right	1		337	337		
			COOE	2					
Eastbound	Left	300	Left	2	300	300	165	0	
			Thr-Lft	0					
	Through	914	Through	3	1040	914	305		
			Thr-Rt	0				305	
	Right	126	Right	1		126	126		
			COOE	2					

	TOTAL	1876
4 PHASES CAPACITY	1560.	

V/C $\quad 1.20$

APPRCACH VOLUMES

Northbound In	3089	Southbound	In	3022						
	Out	3259		2519						
Westbound					In		2373	Eastbound	In	1340
:---	:---	:---	:---	:---						
	Out	2063		Out						

intees 3.0							
Circular 212 Planning Method				hant horne ave \& SEPulvada blvo			
				OPPOSING	total	LANE	CRItical
DIRECTION	VOLUMES		LANES	AND PCE	Volume	volume	VOLumes
Northbound	Left	140	Left	2140	140	77	0
			Thr-Lft	0			
	Through	2599	Through	33126.86	3127	1042	
			Thr-Rt	0			1042
	Right	528	Right	0	0	528	
			COOE	2			
Westbound	Left	499	Left	2499	499	274	274
			Thr-Lft	0			
	Through	904	Through	41296.86	904	226	
			Thr-Rt	0			0
	Right	393	Right	1	393	393	
			COOE	2			
Southbound	Left	138	Left	2138	138	76	76
			Thr-Lft	0	.		
	Through	1759	Through	31862.94	1759	586	
			Thr-Rt	0			0
	Right	104	Right	1	104	104	
			COOE	2			
Eastbound	Left	394	Left	2394	394	217	0
			Thr-Lft	0			
	Through	1297	Through	31407.88	1297	432	
			Thr-Rt	0			432
	Right	111	Right	1	111	111	
			COOE	2			
						total	1825
			4	PHASES		CAPACITY	1560
						v/c	1.17
APPROACH VOLUMES							
Northbound		3267.		Southbound		In	2000.8
	Out 2	2369.				out	3385.5
Westbound	In 1	1795.		Eastbound		In	1801.94
	Out 1	1962.				Out	1148.02

CRITICAL VOL. COMPARISON

WB Thr + SB Lft	1118
S8 Thr + NB Lft	664
WB Thr + EB Lft	610
EB Thr + WB Lft	707

approach calculations

Approach V/C	$67 x$
Shared Left	0
PCE Value	1.2
Thr-Rt Max	1042
Shared Right	1
Approach Phasing	0

Approach V/C	18%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	393
Shared Right	0
Approach Phasing	0
Approach V/C	5%
Shared Left	0
PCE Value	1.2
Thr-Rt Kax	586
Shared Right	0
Approach Phasing	0

Approach V/C	28%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	432
Shared Right	0
Approach Phasing	0
W-S Phase	2
E-W Phase	2
Adjusted Capacity	0

DKS ASSOCIATES CAPACITY CALCULATION

INTCAP 3.0
Circular 212 Planning Method
Calculation Form 1, page 16
HAWTHORNE AVE \& LOMITA BLVD AM PEAK HOUR-EXISTING BASE VOLUMES

DIRECTION	VOLUMES		LANES	OPPOSING		total VOLUME	LANE VOLUME	CRITICAL VOLUMES	
				AND PCE					
Northbound	Left	80		Left	1	80	80	80	0
			Thr-Lft	0					
	Through	2064	Through	4	2217	2217	554		
			Thr-Rt	0				554	
	Right	153	Right	0		0	153		
			COOE	2					
Westbound	Left	91	Left	1	91	91	91	91	
			Thr-Lft	0					
	Through	381	Through	2	725	381	191		
			Thr-Rt	0				0	
	Right	344	Right	1		344	344		
			COOE	2					
Southbound	Left	619	Left	2	619	619	340	340	
			Thr-Lft	0					
	Through	1093	Through	3	1161	1093	364		
			Thr-Rt	0				0	
	Right	68	Right	1		68	68		
			coos	2					
Eastbound	Left	132	Left	1	132	132	132	0	
			Thr-Lft	0					
	Through	997	Through	2	1164	1164	582		
			Thr-Rt	0				582	
	Right	167	Right	0		0	167		
			COOE	2					

TOTAL
1568

4 PHASES
CAPACITY
1560

V/C
1.00
\qquad

APPROACH VOLUMES

Northbound	In	2297	Southbound	In	1780
	Out	1351		Out	2540
Westbound	in	816	Eastbound	In	1296
	Out	1769		Out	529

CRITICAL VOL. COMPARISON
-........-............................

NB Thr + SB Lft 895
SB Thr + NB Lft 444

WB Thr + EB Lft $\quad 476$
$E B$ Thr + WB Lft 673
\qquad
APPROACH CALCULATIONS

Approach V/C	36%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	554
Shared Right	1
Approach Phasing	0
Approach V/C	6%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	344
Shared Right	0
Approach Phasing	0

Approach V/C	22%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	364
Shared Right	0
Approach Phasing	0

Approach V/C	37%
Shared Left	0

PCE Value 1.2
Thr-Rt Max 582
Shared Right 1

Approach Phasing 0

N-S Phase 2
E-W Phase 2

Adjusted Capacity 0

INTCAP 3.0							
Circular 212 Planning Method Calculation form 1, page 16				hauthorne ave \& sepulvada blvo PM PEAK HOUR WITH 2010 VOLUMES			
				OPPOSING	total	LANE	CRITICAL
DIRECTION	VOLUMES		lanes	AND PCE	volume	VOLUME	volumes
Northbound	Left	397	Left	397	397	218	0
			Thr-Lft				
	Through	2418	Through	3372.08	3372	1124	1124
			Thr-Rt				
	Right	954	Right	0	0	954	
			COOE				
Westbound	Left	994	Left	994	994	547	547
			Thr-Lft				
	Through	1612	Through	1900.76	1612	403	0
			Thr-Rt				
	Right	289	Right	1	289	289	
			CODE				
Southbound	Left	448	Left	448	448	246	246
			Thr-Lft				
	Through	2828	Through	3239.1	2828	943	0
			Thr-Rt				
	Right	411	Right		411	411	
			COOE	2			
Eastbound	Left	366	Left	366	366	201	0
			Thr-Lft				
	Through	1115	Through	1268.8	1115	372	372
			Thr-Rt				
	Right	154	Right	1	154	154	
			CCOE				
						total	2289
		-	4	PHASES		Capacity	1560
						v/c	1.47

CRITICAL VOL. COMPARISON

NB Thr + SB Lft	1370
SB Thr + NB Lft	1161
WB Thr + EB Lft	604
EB Thr + WB Lft	919

approach calculations

Approach v/C	72%
Shared left	0
PCE Value	1.2
Thr-Rt Max	1124
Shared Right	1
Approach Phasing	0

Approach V/C	35\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	403
Shared Right	0
Approach Phasing	0
Approach V/C	16%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	943
Shared Right	0
Approach Phasing	0

Approach V/C	24%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	372
Shared Right	0
Approach Phasing	0
W-S Phase	2
E-W Phase	2
Adjusted Capacity	0

approach volumes

Northbound	in out	$\begin{aligned} & 3768 . \\ & 3975 . \end{aligned}$	Southbound	$\begin{aligned} & \text { In } \\ & \text { out } \end{aligned}$	$\begin{aligned} & 3686.84 \\ & 3073.18 \end{aligned}$
Westbound	In	2895.	Eastbound	In	1634.8
	out	2516.		out	2419.26

DKS RSSOCIATES CAPACITY CALCULATION

IMTCAP 3.0
Circular 212 Planning Method
Calculation Form 1, page 16
HAWTHORNE AVE \& LOMITA BLVD PM PEAK HOUR-EXISTING BASE VOLUMES
VIRECTION VOLUMES LANES AND PCE VOLUME VOLUME VOLUMES

Northbound	Left	243	Left	1	243	243	243	243
			Thr-Lft	0				
	Through	1842	Through	4	1942	1942	486	
			Thr-Rt	0				0
	Right	100	Right	0		0	100	
			COOE	2				
Westbound	Left	259	Left	1	259	259	259	0
			Thr-Lft	0				
	Through	931	Through	2	1738	931	466	
			Thr-Rt	0				807
	Right	807	Right	1		807	807	
			COOE	2				
Southbound	Left	429	Left	2	429	429	236	0
			Thr-Lft	0				
	Through	2080	Through	3	2270	2080	693	
			Thr-Rt	0				693
	Right	190	Right	1		190	190	
			COOE	2				
Eastbound	Left	117	Left	1	117	117	117	117
			Thr-Lft	0				
	Through	433	Through	2	573	573	287	
			Thr-Rt	0				0
	Right	140	Right	0		0	140	
			COOE	2				

	TOTAL	1860
4 PHASES CAPACITY	1560	
	V/C	1.19

APPROACH VOLUMES

Northbound	In	2185	Southbound	In	2699
	Out	2479		Out	2766
Westbound	In	1997	Eastbound	In	690
	Out	962		Out	1364

CRITICAL VOL. COMPARISON	
NB Thr + SB Lft	721
SB Thr + NB Lft	936
WB Thr + E8 Lft	924
EB Thr + W8 Lft	546
APPROACH CALCULATIONS	
Approach V/C	16\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	486
Shared Right	1
Approach Phasing	0
Approach V/C	52\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	807
Shared Right	0
Approach Phasing	0
Approach V/C	44x
Shared Left	0
PCE Value	1.2
Thr-Rt Max	693
Shared Right	0
Approach Phasing	0
Approach V/C	8\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	287
Shared Right	1
Approach Phasing	0
W-S Phase	2
E-W Phase	2
Adjusted Capacity	0

DKS ASSOCIATES CAPACITY CALCULATION

INTCAP 3.0
$\begin{array}{ll}\text { Circular } 212 \text { Planning Method } & \text { HAWTHORNE AVE \& LOMITA BLVD } \\ \text { Calculation Form 1, page } 16 & \text { AM PEAK HOUR-WITH } 2010 \text { VOLUMES }\end{array}$

DIRECTION	VOLUMES		LANES		OPPOSING AND PCE	TOTAL VOLUME	LANE VOLUME	CRITICAL VOLUMES
Northbound	Left	98	Left	1	98	98	98	0
			Thr-Lft	0				
	Through	2518	Through	4	2704.74	2705	676	
			Thr-Rt	0				676
	Right	187	Right	0		0	187	
			COOE	2				
Westbound	Left	111	Left	1	111	111	111	111
			Thr-Lft	0				
	Through	465	Through	2	884.5	465	232	
			Thr-Rt	0				0
	Right	420	Right	1		420	420	
			COOE	2				

Southbound	Left	755	Left	2755	755	415	415
			Thr-Lft	0			
.	Through	1333	Through	31416.42	1333	444	
			Thr-Rt	0			0
	Right	83	Right	1	83	83	
			COOE	2			

$\begin{array}{llllllll}\text { Eastbound Left } & 161 & \text { Left } & 1 & 161 & 161 & 161 & 0\end{array}$ Thr-Lft 0

Through 1216	Through 2 1420.08 1420 710				
	Thr-Rt	0			
		710			

Right 204 Right $0 \quad 0 \quad 204$ COOE 2

TOTAL 1913

4 PHASES
CAPACITY
1560

V/C
1.23
\qquad
APPRQACH VOLUMES

Northbound	In	2802.	Southbound	In	2171.6
	Out	1648.		Out	3098.8
Westbound	In	995.5	Eastbound	In	1581.12
	Out	2158.		Out	645.38

CRITICAL VOL. COMPARISON

NB Thr + SB Lft	1092
SB Thr + NB Lft	542
WB Thr + EB Lft	581
EB Thr + WB Lft	821

A.OPROACH CALCULATIONS

Approach V/C	43%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	676
Shared Right	1
Approach Phasing	0
Approach V/C	7%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	420
Shared Right	0
Approach Phasing	0

Approach V/C	27%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	444
Shared Right	0
Approach Phasing	0

Approach V/C	46%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	710
Shared Right	1
Approach Phasing	0

N-S Phase 2
E-W Phase 2

Adjusted Capacity 0
dKS RSSOCIATES CAPACITY CALCULATIO

INTCAP 3.0

Circular 212 Planning Method	HAWTHORNE AVE \& LOMITA BLVD
Calculation Form 1, page 16	PM PEAK HOUR WITH 2010 VOLUMES

DIRECTION	VOLUMES		LANES	OPPOSING AND PCE	TOTAL VOLUME	LANE VOLUNE	CRITICAL VOLUMES
Northiound	Left	296	Left	1296	296	296	296
			Thr-Lft	0			
	Through	2247	Through	42369.24	2369	592	
			Thr-Rt	0			0
	Right	122	Right	0	0	122	
			CODE	2			
Westbound	Left	316	Left	1316	316	316	0
			Thr-Lft	0			
	Through	1136	Through	22120.36	1136	568	
			Thr-Rt	0			985
	Right	985	Right	1	985	985	
			COOE	2			
Southbound	Left	523	Left	2523	523	288	0
			Thr-Lft	0			
	Through	2538	Through	$3 \quad 2769.4$	2538	846	
-			Thr-Rt	0			846
	Right	232	Right	1	232	232	
			COOE	2			
Eastbound	Left	143	Left	1143	143	143	143
			Thr-Lft	0			
	Through	528	Through	2699.06	699	350	
			Thr-Rt	0			0
	Right	171	Right	0	0	171	
			COOE	2			
						TOTAL	2270
			4	PHASES		PACITY	1560
						V/C	1.45

APPRCMCH VOLUMES

Northmound In	2665.	Southbound	In	3292.78	
	Out	3024.		Out	3374.52
Westbound	In	2436.	Eastbound	In	841.8
	Out	1173.		Out	1664.08

CRITICAL VOL. COMPARISON

NB Thr + SB Lft	880
SB Thr + NB Lft	1142
WB Thr + EB Lft	1127
EB Thr + WB Lft	666

APPROACH CALCULATIONS

Approach V/C	19%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	592
Shared Right	1
Approach Phasing	0
Approach V/C	63%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	985
Shared Right	0
Approach Phasing	0

Approach V/C	54%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	846
Shared Right	0
Approach Phasing	0
Approach V/C	9%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	350
Shared Right	1
Approach Phasing	0
W-S Phase	2
E-W Phase	2
Adjusted Capacity	0

dKS associates capacity calculation

INTCAP 3.0
$\begin{array}{ll}\text { Circular } 212 \text { Planning Method } & \text { HAWTHORNE AVE \& LOMITA BLVD } \\ \text { Calculation form 1, page } 16 & \text { PM PEAK } 2010 \text { VOLLMES + LOMITA ALTERNATIVE }\end{array}$

DIRECTION	VOLUMES		LANES	OPPOSING AND PCE	TOTAL VOLUME	lane volume	CRITICAL VOLUWES
Northbound	Left	296	Left	1296	296	296	296
			Thr-Lft	0			
	Through	2247	Through	42370.24	2370	593	
			Thr-Rt	0			0
	Right	123	Right	0	0	123	
			coos	2			
Westbound	Left	323	Left	1323	323	323	0
			Thr-Lft	0			
	Through	1162	Through	22169	1162	581	
			Thr-Rt	0			1007
	Right	1007	Right	1	1007	1007	
			COOE	2			
Southbound	Left	529	Left	2529	529	291	0
			Thr-Lft	0			
	Through	2538	Through	32769.4	2538	846	
			Thr-Rt	0			846
	Right	232	Right	1	232	232	
			COOE	2			
Eastbound	Left	143	Left	1143	143	143	143
			Thr-Lft	0			
	Through	534	Through	2704.8	705	352	
			Thr-Rt	0			0
	Right	171	Right	0	0	171	
			CODE	2			
						total	2292
			4	PHASES		CAPACITY	1560
						v/c	1.47

APPROACH VOLUMES

Northbound	In out	$\begin{aligned} & 2666 . \\ & 3031 . \end{aligned}$	Southbound	In out	$\begin{array}{r} 3298.4 \\ 3396.98 \end{array}$
Westbound	In	2492	Eastbound	In	847.54
	Out	1186		out	1690.26

CRITICAL VOL. COMPARISON
....................................

WB Thr + SB Lft	884
SB Thr + NB Lft	1142
WB Thr + EB Lft	1150
EB Thr + WB Lft	675

approach calculations

Ap.............................	19%
Approach V/C	0
Shared Left	1.2
PCE Value	593
Thr-Rt Max	1
Shared Right	0
Approach Phasing	0
Approach V/C	65%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	1007
Shared Right	0
Approach Phasing	0
Approach V/C	54%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	846
Shared Right	0
Approach Phasing	0
Approach V/C	9%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	352
Shared Right	1
Approach Phasing	0
N-S Phase	2
E-W Phase	2
Adjusted Capacity	0

DKS ASSOCIATES CAPACITY CALCULATION

INTCAP 3.0

Circular 212 Plaming Method	HAWTHORNE AVE \& LOMITA BLVD
Calculation Form 1, page 16	AM PEAK 2010 VOLUMES + LOMITA ALTERNATIVE

DIRECTION	VOLUMES		LANES	OPPOSING	total VOLUME	LANE VOLUME	CRITICAL VOLUMES	
			AND PCE					
Northbound	Left	98		Left	198	98	98	0
			Thr-Lft	0				
	Through	2518	Through	42710.08	2710	678		
			Thr-Rt	0			678	
	Right	192	Right	0	0	192		
			COOE	2				
Westbound	Left	113	Left	1113	113	113	113	
			Thr-Lft	0				
	Through	472	Through	2898	472	236		
			Thr-Rt	0			0	
	Right	426	Right	1	426	426		
			COOE	2				
Southbound	Left	776	Left	2776	776	427	427	
			Thr-Lft	0				
	Through	1333	Through	31416.42	1333	444		
			Thr-Rt	0			0	
	Right	83	Right	1	83	83		
			CODE	2				
Eastbound	Left	161	Left	1161	161	161	0	
			Thr-Lft	0				
	Through	1250	Through	21453.74	1454	727		
			Thr-Rt	0			727	
	Right	204	Right	0	0	204		
			COOE	2				
						TOTAL	1944	
			4	PHASES		CAPACITY	1560	
						V/C	1.25	

CRITICAL VOL. COMPARISOW	
NB $\mathrm{Thr}+\mathrm{SB} \mathrm{Lft}$	1104
SB Thr + NB Lft	542
W8 $\mathrm{Thr}+\mathrm{EBLft}$	587
EB Thr + WB Lft	840
approach calculations	
Approach v/c	43\%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	678
Shared Right	1
Approach Phasing	0
Approach V/C	77
Shared Left	0
PCE Value	1.2
Thr-Rt Max	426
Shared Right	0
Approach Phasing	0
Approach V/C	277
Shared Left	0
PCE Value	1.2
Thr-Rt Max	444
Shared Right	0
Approach Phasing	0
Approach V/C	477
Shared Left	0
PCE Value	1.2
Thr-Rt Max	727
Shared Right	1
Approach Phasing	0
N-S Phase	2
E-4 Phase	2
Adjusted Capacity	0

APPROACH VOLUMES

Northbound	In	2807.	Southbound	In	2192.42
	out	1650.		out	3105.12
Westbound	In	1011	Eastbound	In	1614.78
	Out	2218		out	652.56

DKS ASSOCIATES CAPACITY CALCULATION

INTCAP 3.0

Circular 212 Planning Method	HAWTHORNE AVE \& LOMITA BLVD
Calculation Form 1, page 16	AM PEAK 2010 VOLUMES + SKYPARK ALTERNATIVE

DIRECTION	VOLUMES		LANES	OPPOSING		TOTAL VOLUME	LANE VOLUME	CRITICAL VOLUNES	
				AND PCE					
Northbound	Left	100		Left	1	100	100	100	0
			Thr-Lft	0					
	Through	2586	Through	4	2778	2778	695		
			Thr-Rt	0				695	
	Right	192	Right	0		0	192		
			COOE	2					

Westbound	Left	132	Left		132	132	132	132
			Thr-Lft					
	Through	465	Through	2	884.5	465	232	
			Thr-Rt					0
	Right	420	Right	1		420	420	
			COOE	2				
Southbound	Left	755	Left	2	755	755	415	415
			Thr-Lft					
	Through	1574	Through	3	1656.96	1574	525	
			Thr-Rt					0

Right
83 Right 1
$83 \quad 83$

Eastbound

Left	161	Left	1161	161	161	0
		Thr-Lft	0			
Through	1216	Through	21456.34	1456	728	
		Thr-Rt	0			728
Right	240	Right	0	0	240	
		CODE	2			

TOTAL 1970

4 PHASES
CAPACITY
1560

V/C 1.26

APPROACH VOLUMES

Northbound	In	2878	Southbound	In	2412.14
	Out	1946		Out	3166.72
Westbound	In	1016.	Eastbound	In	1617.38
	Out	2163.		Out	647.78

CRITICAL VOL. COMPARISON

NB Thr + SB Lff	1110
SB Thr	

WB Thr + EB Lft 581
$E B$ Thr + WB Lft 860

APPROACH CALCULATIONS

Approach V/C	45%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	695
Shared Right	1
Approach Phasing	0

Approach V/C	8%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	420
Shared Right	0
Approach Phasing	0

Approach V/C	$27 x$
Shared Left	0
PCE Value	1.2
Thr-Rt Max	525
Shared Right	0
Approach Phasing	0

Approach V/C	47%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	728
Shared Right	1
Approach Phasing	0

N-S Phase 2
$E-W$ Phase 2
Adjusted Capacity 0

DKS ASSOCIATES CAPACITY CALCULATIOW

inticap 3.0
Circular 212 Planning Method
Calculation Form 1, page 16

HAWTHORNE AVE \& LOMITA BLVD PM PEAK 2010 VOLUMES + SKYPARK ALTERNATIVE

DIRECTION	VOLUMES		LANES	OPPOSING		tOTAL VOLUME	LANE VOlume	CRITICAL VOLUAES	
				AND PCE					
Northbound	Left	326		Left	1	326	326	326	326
			Thr-Lft	0					
	Through	2478	Through	4	2614.24	2614	654		
			Thr-Rt	0				0	
	Right	136	Right	0		0	136		
			COOE	2					
Westbound	Left	322	Left	1	322	322	322	0	
			Thr-Lft	0					
	Through	1136	Through	2	2120.36	1136	568		
			Thr-Rt	0				985	
	Right	985	Right	1		985	985		
			COOE	2					
Southbound	Left	523	Left	2	523	523	288	0	
			Thr-Lft	0					
	Through	2589	Through	3	2820.4	2589	863		
			Thr-Rt	0				863	
	Right	232	Right	1		232	232		
			COOE	2					
Eastbound	Left	143	Left	1	143	143	143	143	
			Thr-Lft	0					
	Through	528	Through	2	703.06	703	352		
			Thr-Rt	0				0	
	Right	175	Right	0		0	175		
			cooe	2					

TOTAL 2317
4 PHASES CAPACITY 1560

V/C $\quad 1.49$

APPROACH VOLUMES

Northbound	In	2940.	Southbound	In	3343.78
	Out	3085.		Out	3605.52
Westbound	In	2442.	Eastbound	In	845.8
	Out	1187.		Out	1694.08

CRITICAL VOL. COMPARISON

```
NB Thr + SB Lft }94
```

SB Thr + NB Lft 1189
WB Thr + EB Lft 1127
$E B$ Thr +WB Lft 674

APIROACH CALCULATIONS

Approach V/C	$\mathbf{2 1 \%}$
Shared Left	0
PCE Value	1.2
Thr-Rt Max	654
Shared Right	1
Approach Phasing	0

Approach V/C	$\mathbf{6 3 \%}$
Shared Left	0
PCE Value	1.2
Thr-Rt Max	985
Shared Right	0
Approach Phasing	0

Approach V/C	55%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	863
Shared Right	0
Approach Phasing	0

Approach V/C	9%
Shared Left	0
PCE Value	1.2
Thr-Rt Max	352
Shared Right	1
Approach Phasing	0
N-S Phase	2
E-W Phase	2
Adjusted Capacity	0

[^0]: ${ }^{1}$ References are listed at the end of Sec. 7.

[^1]: ${ }^{1}$ Vertical vibration velocity in cB relative to $10^{-6} \mathrm{in} / \mathrm{sec}$

