

TE 7 .N26 no. 203 Transportation Research Board National Research Council SPORTATION RESEARCH BOARD EXECUTIVE COMMITTEE 1994 - - 31228

TE 7

.N26

no.

203

SEP 2 3 2004

H M. SUSSMAN, JR East Professor and Professor of Civil and Environmental Engineering, Massachusetts Institute of Technology

hair

AN C. LIBURDI, Director, Port Authority, The Port Authority of New York and New Jersey

Executive Director

ROBERT E. SKINNER, JR., Transportation Research Board, National Research Council

Members

BRIAN J. L. BERRY, Lloyd Viel Berkner Regental Professor & Chair, Bruton Center for Development Studies, University of Texas at Dallas DWIGHT M. BOWER, Director, Idaho Department of Transportation JOHN E. BREEN, The Nasser I. Al-Rashid Chair in Civil Engineering, The University of Texas at Austin KIRK BROWN, Secretary, Illinois Department of Transportation DAVID BURWELL, President, Rails-to-Trails Conservancy L. GARY BYRD, Consulting Engineer, Alexandria, Virginia A. RAY CHAMBERLAIN, Vice President, Freight Policy, American Trucking Associations, Inc. (Past Chair, 1993) RAY W. CLOUGH, Nishkian Professor of Structural Engineering, Emeritus, University of California, Berkeley RICHARD K. DAVIDSON, Chairman and CEO, Union Pacific Railroad JAMES C. DELONG, Director of Aviation, Stapleton International Airport, Denver, Colorado DELON HAMPTON, Chairman & CEO, Delon Hampton & Associates DON C. KELLY, Secretary and Commissioner of Highways, Transportation Cabinet, Kentucky ROBERT KOCHANOWSKI, Executive Director, Southwestern Pennsylvania Regional Planning Commission JAMES L. LAMMIE, President & CEO, Parsons Brinckerhoff, Inc. WILLIAM W. MILLAR, Executive Director, Port Authority of Allegheny County, Pennsylvania (Past Chair, 1993) CHARLES P. O'LEARY, JR., Commissioner, New Hampshire Department of Transportation JUDE W. P. PATIN, Secretary, Louisiana Department of Transportation and Development NEIL PETERSON, former Executive Director, Los Angeles County Transportation Commission DARREL RENSINK, Director, Iowa Department of Transportation JAMES W. VAN LOBEN SELS, Director, California Department of Transportation C. MICHAEL WALTON, Ernest H. Cockrell Centennial Chair in Engineering and Chairman, Department of Civil Engineering, The University of Texas at Austin DAVID N. WORMLEY, Dean of Engineering, Pennsylvania State University HOWARD YERUSALIM, Secretary of Transportation, Pennsylvania Department of Transportation ROBERT A. YOUNG III, President, ABF Freight Systems, Inc.

MIKE ACOTT, President, National Asphalt Pavement Association (ex officio) ROY A. ALLEN, Vice President, Research and Test Department, Association of American Railroads (ex officio) ANDREW H. CARD, JR., President and CEO, American Automobile Manufacturers Association THOMAS J. DONOHUE, President and CEO, American Trucking Associations (ex officio) FRANCIS B. FRANCOIS, Executive Director, American Association of State Highway and Transportation Officials (ex officio) JACK R. GILSTRAP, Executive Vice President, American Public Transit Association (ex officio) ALBERT J. HERBERGER, Maritime Administrator, U.S. Department of Transportation (ex officio) DAVID R. HINSON, Federal Aviation Administrator, U.S. Department of Transportation (ex officio) GORDON J. LINTON, Federal Transit Administrator, U.S. Department of Transportation (ex officio) RICARDO MARTINEZ, Administrator, National Highway Traffic Safety Administration (ex officio) JOLENE M. MOLITORIS, Federal Railroad Administrator, U.S. Department of Transportation (ex officio) DAVE SHARMA, Administrator, Research and Special Programs Administration, U.S. Department of Transportation (ex officio) RODNEY E. SLATER, Federal Highway Administrator, U.S. Department of Transportation (ex officio) ARTHUR E. WILLIAMS, Chief of Engineers and Commander, U.S. Army Corps of Engineers (ex officio)

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Transportation Research Board Executive Committee Subcommittee for NCHRP JOSEPH M. SUSSMAN, Massachusetts Institute of Technology (Chair) A. RAY CHAMBERLAIN, American Trucking Associations, Inc. FRANCIS B. FRANCOIS, American Association of State Highway and Transportation Officials

Field of Special Projects Project Committee SP 20-5

KENNETH C. AFFERTON, New Jersey Department of Transportation ROBERT N. BOTHMAN, H.E.L.P. JOHN J. HENRY, Pennsylvania Transportation Institute GLORIA J. JEFF. Federal Highway Administration EARL SHIRLEY, Consulting Engineer JON UNDERWOOD, Texas Dept. of Transportation (Chair) WILLIAM A. WESEMAN, Federal Highway Administration J. RICHARD YOUNG, JR., Mississippi Department of Transportation RICHARD A. McCOMB, Federal Highway Administration (Liaison) ROBERT E. SPICHER, Transportation Research Board (Liaison)

LILLIAN C. LIBURDI, Port Authority of New York and New Jersey RODNEY E. SLATER, Federal Highway Administration L. GARY BYRD, Consulting Engineer ROBERT E. SKINNER, JR., Transportation Research Board

Program Staff

ROBERT J. REILLY, Director, Cooperative Research Programs CRAWFORD F. JENCKS, Manager, NCHRP LOUIS M. MACGREGOR, Administrative Officer STEPHEN E. BLAKE, Senior Program Officer LLOYD R. CROWTHER, Senior Program Officer AMIR N. HANNA, Senior Program Officer FRANK R. McCULLAGH, Senior Program Officer KENNETH S. OPIELA, Senior Program Officer DAN A. ROSEN, Senior Program Officer SCOTT A. SABOL, Program Officer EILEEN P. DELANEY, Editor

National Cooperative Highway Research Program

Synthesis of Highway Practice 203

Current Practices in Determining Pavement Condition

WADE L. GRAMLING, P.E. The Gramling Group Mechanicsburg, Pennsylvania

Topic Panel

D.W. DEARASAUGH, Transportation Research Board RUDOLPH R. HEGMON, Federal Highway Administration KENNETH H. McGHEE, Virginia Transportation Research Council (Retired) CHERYL A. RICHTER, Federal Highway Administration MICHAEL M. RYAN, Pennsylvania Department of Transportation M.Y. SHAHIN, U.S. Army Corps of Engineers JACK H. SPRINGER, Federal Highway Administration GEORGE B. WAY, Arizona Department of Transportation

> TRANSPORTATION RESEARCH BOARD NATIONAL RESEARCH COUNCIL

Research Sponsored by the American Association of State Highway and Transportation Officials in Cooperation with the Federal Highway Administration

NATIONAL ACADEMY PRESS Washington, D.C. 1994

Subject Areas Pavement Design, Management, and Performance

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Systematic, well-designed research provides the most effective approach to the solution of many problems facing highway administrators and engineers. Often, highway problems are of local interest and can best be studied by highway departments individually or in cooperation with their state universities and others. However, the accelerating growth of highway transportation develops increasingly complex problems of wide interest to highway authorities. These problems are best studied through a coordinated program of cooperative research.

In recognition of these needs, the highway administrators of the American Association of State Highway and Transportation Officials initiated in 1962 an objective national highway research program employing modern scientific techniques. This program is supported on a continuing basis by funds from participating member states of the Association and it receives the full cooperation and support of the Federal Highway Administration, United States Department of Transportation.

The Transportation Research Board of the National Research Council was requested by the Association to administer the research program because of the Board's recognized objectivity and understanding of modern research practices. The Board is uniquely suited for this purpose as it maintains and extensive committee structure from which authorities on any highway transportation subject may be drawn; it possesses avenues of communications and cooperation with federal, state, and local governmental agencies, universities, and industry; its relationship to the National Research Council is an insurance of objectivity; it maintains a full-time research correlation staff of specialists in highway transportation matters to bring the findings of research directly to those who are in a position to use them.

The program is developed on the basis of research needs identified by chief administrators of the highway and transportation departments and by committees of AASHTO. Each year, specific areas of research needs to be included in the program are proposed to the National Research Council and the Board by the American Association of State Highway and Transportation Officials. Research projects to fulfill these needs are defined by the Board, and qualified research agencies are selected from those that have submitted proposals. Administration and surveillance of research contracts are the responsibilities of the National Research Council and the Transportation Research Board.

The needs for highway research are many, and the National Cooperative Highway Research Program can make significant contributions to the solution of highway transportation problems of mutual concern to many responsible groups. The program, however, is intended to complement rather than to substitute for or duplicate other highway research programs.

NCHRP SYNTHESIS 203

Project 20-5 FY 1990 (Topic 22-07) ISSN 0547-5570 ISBN 0-309-05661-6 Library of Congress Catalog Card No. 94-61134

Price \$16.00

NOTICE

The project that is the subject of this report was a part of the National Cooperative Highway Research Program conducted by the Transportation Research Board with the approval of the Governing Board of the National Research Council. Such approval reflects the Governing Board's judgment that the program concerned is of national importance and appropriate with respect to both the purposes and resources of the National Research Council.

The members of the technical committee selected to monitor this project and to review this report were chosen for recognized scholarly competence and with due consideration for the balance of disciplines appropriate to the project. The opinions and conclusions expressed or implied are those of the research agency that performed the research, and, while they have been accepted as appropriate by the technical committee, they are not necessarily those of the Transportation Research Board, the National Research Council, the American Association of State Highway and Transportation Officials, or the Federal Highway Administration of the U.S. Department of Transportation.

Each report is reviewed and accepted for publication by the technical committee according to procedures established and monitored by the Transportation Research Board Executive Committee and the Governing Board of the National Research Council.

The National Research Council was established by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy's purposes of furthering knowledge and of advising the Federal Government. The Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in the conduct of their services to the government, the public, and the scientific and engineering communities. It is administered jointly by both Academies and the Institute of Medicine. The National Academy of Engineering and the Institute of Medicine were established in 1964 and 1970, respectively, under the charter of the National Academy of Sciences.

The Transportation Research Board evolved in 1974 from the Highway Research Board, which was established in 1920. The TRB incorporates all former HRB activities and also performs additional functions under a broader scope involving all modes of transportation and the interactions of transportation with society.

Published reports of the

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

are available from:

Transportation Research Board National Research Council 2101 Constitution Avenue, N.W. Washington, D.C. 20418

NOTE: The Transportation Research Board, the National Research Council, the Federal Highway Administration, the American Association of State Highway and Transportation Officials, and the individual states participating in the National Cooperative Highway Research Program do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

PREFACE

A vast storehouse of information exists on nearly every subject of concern to highway administrators and engineers. Much of this information has resulted from both research and the successful application of solutions to the problems faced by practitioners in their daily work. Because previously there has been no systematic means for compiling such useful information and making it available to the entire community, the American Association of State Highway and Transportation Officials has, through the mechanism of the National Cooperative Highway Research Program, authorized the Transportation Research Board to undertake a continuing project to search out and synthesize useful knowledge from all available sources and to prepare documented reports on current practices in the subject areas of concern.

This synthesis series reports on various practices, making specific recommendations where appropriate but without the detailed directions usually found in handbooks or design manuals. Nonetheless, these documents can serve similar purposes, for each is a compendium of the best knowledge available on those measures found to be the most successful in resolving specific problems. The extent to which these reports are useful will be tempered by the user's knowledge and experience in the particular problem area.

FOREWORD

By Staff Transportation Research Board This synthesis will be of interest to pavement designers, materials engineers, planners, and others concerned with measuring the condition of existing pavements for the purpose of planning maintenance, rehabilitation, or reconstruction. Information is presented on the various practices in use for the collection, reporting, and application of pavement condition data for their service in pavement management systems (PMS) in the United States and Canada, focusing on four primary measures of pavement condition: distress, roughness, structural capacity, and friction resistance evaluations.

Administrators, engineers, and researchers are continually faced with highway problems on which much information exists, either in the form of reports or in terms of undocumented experience and practice. Unfortunately, this information often is scattered and unevaluated and, as a consequence, in seeking solutions, full information on what has been learned about a problem frequently is not assembled. Costly research findings may go unused, valuable experience may be overlooked, and full consideration may not be given to available practices for solving or alleviating the problem. In an effort to correct this situation, a continuing NCHRP project, carried out by the Transportation Research Board as the research agency, has the objective of reporting on common highway problems and synthesizing available information. The synthesis reports from this endeavor constitute an NCHRP publication series in which various forms of relevant information are assembled into single, concise documents pertaining to specific highway problems or sets of closely related problems.

Nearly all transportation agencies are using or are in the process of implementing PMS for scheduling rehabilitation and maintenance activities. These systems require data on pavement condition and structural capacity. This report of the Transportation Research Board describes the types of equipment being used by state transportation agencies to obtain these data and how the data are used to affect decision making by transportation managers.

To develop this synthesis in a comprehensive manner and to ensure inclusion of significant knowledge, the Board analyzed available information assembled from numerous sources, including a large number of state highway and transportation departments. A topic panel of experts in the subject area was established to guide the researcher in organizing and evaluating the collected data, and to review the final synthesis report.

This synthesis is an immediately useful document that records practices that were acceptable within the limitations of the knowledge available at the time of its preparation. As the processes of advancement continue, new knowledge can be expected to be added to that now at hand.

CONTENTS

- 1 SUMMARY
- 3 CHAPTER ONE INTRODUCTION Background, 3
- 5 CHAPTER TWO PAVEMENT MANAGEMENT SYSTEMS PMS Status, 5 Summary, 6 Maintenance and Repair, 9
- 8 CHAPTER THREE DISTRESS EVALUATION Introduction, 8 Distress Data Collection, 9 Survey Methods, 13 Summary, 17
- CHAPTER FOUR ROUGHNESS EVALUATION Development of Evaluation Methods, 18 Survey Equipment Used, 20 Survey Procedures, 20 Data Handling, 21 Summary, 24
- 25 CHAPTER FIVE STRUCTURAL CAPACITY Equipment, 25 Equipment Types Used, 25 Survey Procedures, 26 Data Reporting and Use, 27 Summary, 27
- 31 CHAPTER SIX PAVEMENT FRICTION Equipment Types and Operation, 31 Survey Procedures, 32 Data Reporting, 32 Summary, 32
- 35 CHAPTER SEVEN CONCLUSIONS AND RECOMMENDATIONS Conclusions, 35 Recommendations, 35
- 37 REFERENCES

APPENDIX ASurvey QuestionnaireAPPENDIX BGeneral Pavement ManagementAPPENDIX CPavement DistressAPPENDIX DPavement RoughnessAPPENDIX EPavement Structural CapacityAPPENDIX FPavement Friction TestingAPPENDIX GContacts Within Responding Agencies

ACKNOWLEDGMENTS

Wade L. Gramling, P.E., The Gramling Group, was responsible for collection of the data and preparation of the report. He was assisted by John E. Hunt, P.E.

Valuable assistance in the preparation of this synthesis was provided by the Topic Panel, consisting of D.W. Dearasaugh, Engineer of Design, Transportation Research Board; Rudolph R. Hegmon, Research Mechanical Engineer, Federal Highway Administration; Kenneth H. McGhee, Virginia Transportation Research Council (Retired); Cheryl A. Richter, Research Highway Engineer, Federal Highway Administration, LTPP Division; Michael M. Ryan, Chief Engineer, Highway Administration, Pennsylvania Department of Transportation; M.Y. Shahin, Principal Investigator, U.S. Army Corps of Engineers, Construction Engineering & Research Lab.; Jack H. Springer, Highway Engineer, Federal Highway Administration; and George B. Way, Pavement Services Engineer, Arizona Department of Transportation.

The Principal Investigators responsible for the conduct of this synthesis were Sally D. Liff, Manager, Synthesis Studies, and Stephen F. Maher, Senior Program Officer.

Scott A. Sabol, Program Officer, National Cooperative Highway Research Program, assisted the NCHRP 20-5 staff and the Topic Panel. This synthesis was edited by Linda S. Mason.

Information on current practice was provided by many highway and transportation agencies. Their cooperation and assistance were most helpful.

CURRENT PRACTICES IN DETERMINING PAVEMENT CONDITIONS

SUMMARY

Since the days of ox-drawn wagons and corduroy roads, road bosses and superintendents have been concerned with providing functional, solidly built roadways. Today's transportation agency managers perpetuate this concern as they strive to provide the traveling public with functional, cost-effective, and structurally sound highways. To accomplish this, transportation managers must have comprehensive, timely information on the conditions of their existing pavements.

Transportation agency managers have widely recognized the value of a pavement management system (PMS) in providing sound, comprehensive pavement condition information to assist in decision making. Nearly all state agencies in the United States, and the provincial governments in Canada, have recently been involved in developing, expanding, or enhancing a PMS. The enactment of the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 specifically requires that states have a PMS.

The steps in developing a comprehensive, functional, and structural PMS are generally well established: several guidelines have been published, or proposed, on national and world scopes. The Federal Highway Administration (FHWA), the American Association of State Highway and Transportation Officials (AASHTO), the American Public Works Association (APWA), and the World Bank have all actively provided direction and encouragement in PMS development.

A comprehensive database is one of the key elements in a PMS. The database must contain reliable, objective, and timely information to provide the transportation manager with logical output and feedback to assist in making planning and budget decisions. A PMS database must contain a comprehensive inventory of an agency's highways, which have been segmented into identifiable management sections. Any information contained in the database must be attributed to one of the designated segments or sections and must include pavement condition and traffic loadings, which are basic needs for PMS conditions.

Pavement condition surveys are important in providing information to monitor how well a particular pavement section is serving highway users. When condition data are collected, pavement performance can be evaluated and prediction models can be developed to assist in evaluating design methods and estimating future needs.

Pavement condition surveys are also useful in evaluating the functional and structural condition of an existing pavement. Condition surveys include four basic types of information: ride quality or roughness, physical distress, structural capacity, and friction measurements.

This synthesis summarizes the current practices used in determining the condition of pavements. A comprehensive questionnaire was developed and distributed to the states, the District of Columbia, and the Canadian provinces. Replies were received from 50 states, the District of Columbia, and 9 Canadian provinces. All of the responding agencies indi-

cated that they have a PMS in operation or are in the process of implementing one. Nearly all of the replies indicated that the agencies are performing data collection activities in one or more of the four areas of pavement condition evaluation.

The methods and procedures used for the collection of roughness data and friction testing are the most standardized practices being followed. Both use of the South Dakota type profiling device and reporting of roughness data in terms of the International Roughness Index (IRI) have increased sharply.

Many of the agencies evaluate structural capacity, but practices vary widely in programming, conducting, and reporting procedures. Structural evaluation information is primarily used for project-level design development rather than for the network-level testing needed for a PMS.

Nearly all of the agencies perform friction testing, or skid testing, and American Society of Testing Materials (ASTM) test methods are commonly employed. Only a few of the agencies perform friction testing on a continuous, annual, network-survey basis. Testing is performed in compliance with FHWA Safety Requirements and as part of research and materials evaluation.

The widest variation of practices occurs in the collection and use of pavement distress information. Many of the agencies have recently updated their procedure manuals. The field survey procedures and the type, extent, and severity of distresses collected vary greatly. The methods and numerical values used for establishing the condition of a pavement segment (which incorporate distress data) allow little opportunity for exchange of performance data among agencies (e.g., some agencies use a deduct system for distress using a 0 to 100 scale with 100 being excellent, while other agencies use an opposite scale where 0 is considered to be excellent).

As pavement management systems become more fully developed in coming years, the attendant improvements will broaden the benefits of these systems. This can be accomplished by improving data quality, establishing reliable location reference systems, extending standardization efforts to include distress and structural evaluation, implementing procedures developed by the Strategic Highway Research Program, and facilitating the dissemination and exchange of pavement condition information.

INTRODUCTION

BACKGROUND

A 10-year National Highway Program (1) dated January 1955 showed a total road and street system in the United States of 3,348,000 miles. At that time, there were 48 million cars and 10 million trucks in use. In contrast, *Highway Statistics, 1988 (2)* showed a road and street system of 3,871,000 miles, which constituted a 16 percent increase in mileage in 33 years. Over the same period, the number of automobiles had increased to 141 million and trucks to 42 million. These numbers represent huge increases of vehicles (194 percent increase—cars, 320 percent increase—trucks) traveling on a system that grew by only 16 percent.

Another document published in 1955, "Needs of Highway Systems," (3) contained a far-sighted statement that was used to provide an interpretation of roadway needs: "It is not possible to 'complete' a highway in the sense that it can by a single construction operation be made forever adequate. From the very day that highway facilities are opened to traffic they begin the course of deterioration and obsolescence that eventually leads to necessary reconstruction or replacement."

These 1955 documents were largely instrumental in the landmark passage of the Federal-Aid Highway Act of 1956 (4), which inaugurated the construction of the present interstate system. At about the same time the interstate system was being planned, the highway engineering community was assessing the size and weight problem associated with the design of roadway pavements. A road test conducted in Maryland in 1950 and 1951 identified the need for extensive additional research. This need for research evolved into the American Association of State Highway Officials (AASHO) and the Western Association of State Highway Officials (WASHO) Road Tests (5, 6, 7).

The results of the AASHO Road Test subsequently shaped the nature of pavements being constructed and maintained. Results included the development of a set of relationships between axle loads and the performance of various thicknesses of pavement surfaces, bases, and subbases. The Road Test also resulted in the development of an objective methodology that enables pavement performance to be evaluated over a known time period by using a Present Serviceability Index (PSI) (8).

The use of a serviceability index sharply contrasted with many of the planning and management philosophies in use up until that time. A typical 1950 planning report (9) describes efforts to evaluate sections of roadway as follows:

The field engineers, each one possessed of long years of experience in highway work were told to avoid slavish dependence on numerical quantities of condition, and were, at all points, to exercise their best judgment as to adequacy or inadequacy of each road section to perform its anticipated functions.

The evolution of evaluating pavements from a bestjudgment approach to more objective methods is described in *Pavement Management Systems (10)*, which is one of the first books "written to provide some basic understanding of the principles of planning, designing, constructing and maintaining pavements."

Pavement Management

There are a number of definitions for pavement management and for pavement management systems (PMSs). As defined in *National Cooperative Highway Research Program* (NCHRP) *Report 215 (11)*, "pavement management, in its broadest sense, encompasses all the activities involved in the planning, design, construction, maintenance, and rehabilitation of the pavement portion of a public works program. A pavement management system is a set of tools or methods that assist decision-makers in finding optimum strategies for providing and maintaining pavements in a serviceable condition over a given period of time."

NCHRP Synthesis of Highway Practice 135 (12) used the following definitions from an American Association of State Highway and Transportation Officials (AASHTO) publication (13) to provide a common basis of understanding:

Pavement Management (PM) is the effective and efficient directing of the various activities involved in providing and sustaining pavements in a condition acceptable to the traveling public at the least life cycle cost. Examples of these activities include, but are not limited to, the following as they relate to pavements:

planning

monitoring

- design
- budgeting and programming
- construction

research

- maintenance
- reconstruction rehabilitation.

A Pavement Management System (PMS) is an established, documented procedure treating many or all of the pavement management activities listed above in a systematic and coordinated manner. It consists of five essential elements structured to serve decision-making responsibilities at various management levels.

- 1. Pavement surveys related to condition and serviceability
- 2. Data base containing all pavement related information
- 3. Analysis scheme
- 4. Decision criteria
- 5. Implementation procedures

The latest update of the AASHTO Guidelines for Pavement Systems (14) contains a Federal Highway Administration (FHWA) definition for PMS: "a set of tools or methods that can assist decision-makers in finding cost-effective strategies for providing, evaluating and maintaining pavements in a serviceable condition."

Most guidelines for the development of PMS caution against collecting huge amounts of data simply because such collection is automated or available. A World Bank publication (15) offers criteria for selecting data items for inclusion in a roadway management information system. These criteria deal with relevance, reliability, affordability, and appropriateness. For a PMS, reliability of data is essential and is determined by the data's accuracy, spatial coverage, completeness, and currency.

Considerable development activity has resulted from an FHWA regulation (16) that required all state agencies to have an acceptable PMS in place by January 1993. This development activity has enhanced and broadened the state agencies' ability to evaluate and exchange pavement performance and design information.

The FHWA's *Highway Performance Monitoring System* (*HPMS*) *Field Manual* (17) outlines the procedures to be used by states to report information about the extent and physical condition of the state's highway system. Among the objectives the HPMS manual addresses is the evaluation of changes in characteristics and performance based on detailed, section-specific data. These data are to be compatible with other data systems to permit meaningful comparisons. Information available from a well-planned and developed PMS will enable agencies to achieve both national and local objectives in delivering acceptable highway services.

The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 has broadened the scope of the federally mandated implementation of PMS. Prior to ISTEA all states were required to implement a PMS by January 1, 1993. The ISTEA extends this mandate by requiring that all roadways eligible to receive Federal-Aid monies be covered by a PMS by January 1, 1995, regardless of whose jurisdiction they are under.

Synthesis Objectives

Five essential elements are needed to produce information from PMS that meets the needs of various management levels:

- A data base to contain all pavement-related information,
- Pavement surveys related to condition and serviceability,

- An analysis scheme,
- Decision criteria, and
- Implementation procedures.

The condition of existing pavement is an indispensable input to PMS. Four primary measures of pavement condition need to be surveyed to support PMS implementation procedures: roughness, distress, structural capacity, and pavement friction. This synthesis determines the current practices and the state of the art in gathering and use of pavement condition data.

Scope

Pavement condition can be determined in many different ways. Some methods are based entirely on ride quality or the effect of road roughness, whereas others include factors such as distress, skid resistance, and deflection. Composite indexes, which incorporate various other factors, are also used.

This synthesis addresses the measurement or collection, reporting, and use of pavement condition data including roughness, friction resistance, distress, and structural evaluation.

Methodology

Over the last few years the development of PMS and the methods and equipment used to obtain pavement condition data have advanced rapidly. Methods of using PMS data to provide the information output for management use in decision making have also improved.

To determine the state of the art, a questionnaire was developed and distributed to transportation agencies in the 50 states, the District of Columbia, and the Canadian provinces. A sample questionnaire is in Appendix A.

The questionnaire is organized into five parts that could be separated and distributed within each agency to the appropriate functional group responsible for the subject activity. The subjects of the five parts are Pavement Management, Pavement Distress Surveys, Pavement Roughness Surveys, Pavement Structural Capacity, and Pavement Friction Testing. Tabulations of the replies to each part are contained in Appendices B through F, respectively. Appendix G contains a tabulation of the particular unit(s) within each agency that responded to the questionnaire.

The questionnaire contains general questions about the status of PMS activities in each agency, its location referencing system, and how each agency uses PMS data. More specific questions address the types of equipment used in surveys and methods of operation employed in gathering each type of condition data.

Completed questionnaires were received from 50 states, the District of Columbia, and 9 of the Canadian provinces. Replies to the questionnaires were interpreted, tabulated, and analyzed to determine current practices employed by the responding agencies.

PAVEMENT MANAGEMENT SYSTEMS

PMS STATUS

The first section of the questionnaire was directed at obtaining general information about the state and province PMS practices, the methods used for location referencing for system inventories, the types of condition data collected, and the methods of PMS data storage and usage.

A majority of the agencies responded that they have a PMS. However, only half of those with a PMS stated that they have an established PMS policy. A PMS policy would include an agency's method of incorporating PMS data into its programming and budgeting decision-making processes. The responses to the questionnaire indicate that the states were moving to comply with FHWA regulations requiring a PMS by January 1993.

Data Management

For an agency's PMS to be effective, the agency must develop and maintain a historical record of the condition of sitespecific manageable pavement segments. Ideally, the records should include information about maintenance and rehabilitation work performed on the individual control or management sections. Without this type of historical information base, a PMS cannot be used for its intended purposes. Historical information can be contained in various printed reports, stored in separate or combined computer files, or maintained in a number of other forms.

Of the responding agencies, 50 reported that they store roadway management information on a mainframe, 9 replied that they use personal computers (PCs), and 1 currently uses hard copy but plans to upgrade to a PC. Many of the agencies are on-line, which means that their data files are readily accessible through use of mainframe terminals. Twenty-eight agencies indicated that their PMS information is kept in separate, nonintegrated files. Maintaining data in separate files can create problems in future merging attempts. The files must have a common key so data can be merged and integrated into management information reports. Variation in the location referencing system used to collect and store the individual files can also cause problems.

Location Referencing

Mileposting (and similar methods) is the most common method of dividing continuous roadway lengths into sections or segments for referencing roadway information. Mileposting is the practice of referencing data and/or location to the cumulative logged mileage along a particular route, usually beginning at some political or physical boundary such as a county line or an intersection. Thirty-eight agencies use some form of mileposting for reporting data, but only 30 physically mark milepost locations on part or all of their highways. Use of the term mileposting is subject to interpretation because various types of devices are used to geographically mark the mile points in the field, and several agencies use the terms "reference post" or "marker" for milepost. In addition, mileposts are frequently located at variable distances apart because of errors in placing or replacing markers.

Similar information concerning location referencing was collected and reported in *NCHRP Synthesis 158 (18)*, which deals with wet pavement accidents. The report noted wide variation in the methods of identifying the location of accidents and in the accuracy of the location used in accident reporting. It should be recognized that accurate reference systems for collecting and storing data in PMS databases should be established and maintained to ensure integrity and validity of management reports.

A number of states indicated that they plan to adopt segmenting for their location referencing. A location reference system based on link-nodes, or segments, is very adaptable to computerized databases and to establishing segment keys. Segments can be easily adjusted for changes in alignment or for subdividing segments to accommodate changes in section homogeneity. Most PMS data are more easily handled when based on a homogeneous section of roadway.

State transportation agencies are also expressing an increased interest in Geographic Information Systems (GIS). In the past, linear databases were used to track most highway data. With the rapid development of Global Positioning System (GPS) equipment and methods, obtaining coordinate information has become more practical and will facilitate adoption of GIS. The use of GIS-related PMSs will enhance the presentation and analysis of data through the mapping and sorting capabilities available.

Condition Surveys

The agencies were asked to indicate what types of pavement condition data they collected as part of their PMS function. Table 1 shows a tabulation of the replies from 60 agencies.

Nearly all agencies surveyed collect roughness and distress data for use in PMS. Most agencies also collect friction data, but friction data collection was not reported as part of a PMS in most cases. Apparently the agencies regard friction test data as being related to specific program areas, such as wetweather accident reduction. Many of the agencies have indicated that they test these data in relation to accidents, research, materials evaluation, and other factors. Agencies reported that they also conduct structural testing to provide project-level design information and to satisfy other purposes at specific locations. The following chapters detail the four major types of condition data.

Pavement Condition Information Uses

The final group of questions concerning PMS activities was directed at obtaining general information on the availability of PMS data within the agency and the uses of PMS data.

TABLE 1 CONDITION DATA COLLECTED FOR PMS

Pavement Condition Type	Number of Agencies
Distress	58 ^a
Roughness	59
Structural	23 ^b
Friction	43 ^c

* Includes 2 agencies reporting that PCR is collected.

^b Includes 3 agencies reporting data collected as a distress

and 3 agencies collecting data for project purposes. ^c Includes 5 agencies reporting testing by request, by sample,

or selected locations.

Within an agency, the assignment of responsibility for pavement condition information varies widely. Eighteen agencies indicated that condition information is available on the mainframe; of those 18, nine indicated that PMS data are available through a particular functional unit of the agency. Other agencies related that PMS information is available and is located in one or more of the various functional units commonly found in typical highway organizations. Table 2 contains a tabulation of the respondents' replies concerning availability of PMS information.

An earlier synthesis report on pavement management practices (12) contained a breakdown on management responsibilities of the 51 agencies surveyed in 1986. A comparison of that information and information in Table 2 shows that there has been little change in assignment of PMS responsibilities. The increased emphasis on the importance of PMS and the broader scope and improved technology in PMS operation have not resulted in appreciable organizational changes since the 1986 survey.

The questionnaire also asked about the use of pavement condition data from PMS for planning and scheduling maintenance work, for project design, and for planning and budgeting. Thirty-eight agencies use condition data for planning maintenance work on an annual basis; 19 agencies responded that they do not use condition data for these tasks, but 4 of the 19 indicated that they are actively developing methods or planning to use the data for maintenance work; 43 agencies use condition data in project design; and 51 of the 60 agencies use PMS pavement condition data for planning and budgeting purposes. Two agencies are in the planning stages for using the data for design planning and budgeting.

SUMMARY

Of the 60 agencies surveyed, 58 indicated that they have a PMS in place; 24 of the 58 have developed a policy statement for their agency.

Many of the agencies store PMS information on mainframes; however, half of the agencies store the various data in separate data files. To make the fullest and most efficient use of the information, the files should be integrated using a common inventory of roadway sections to store data.

Mileposting is a common method for referencing information from the field into the databases. About one-third of the states and provinces do not have milepost references or other field identification markers, which creates a potential problem in relating field data collection to accurate entry of these data into PMS databases.

Nearly all agencies collect some form of pavement roughness and distress information. Most agencies also conduct

TABLE 2	
PAVEMENT MANA	AGEMENT DATA SOURCES

General Location	Number of Agencies 22 ^a	
Mainframe		
PMS Functions	8	
Planning Functions	8	
Materials, Testing, and Research	7	
Highway Needs, Planning File	3	
Maintenance	2	
Other	5	
Periodic Reports	5	

^a Indicates that PMS data are generally available to persons with access to the mainframe.

friction testing, but about one-third do not consider this activity to be part of their PMS function. Twenty-three agencies perform structural evaluations, predominantly for use in specific project design rather than for comprehensive PMS network data. The intent in developing and maintaining a PMS is to provide a central, reliable source of information for multiple users. Based on the number of agencies reporting PMS data use for maintenance, design, planning, and budgeting, the intended purpose of PMS is being served.

CHAPTER THREE

DISTRESS EVALUATION

INTRODUCTION

Physical distress is a measure of the road surface, and subsurface, deterioration caused by traffic, environment, and aging (14). The type, amount, and severity of distress occurring within a portion of roadway are used as indicators of how well that roadway is performing its intended function of transporting goods and people. Currently, there are no nationally accepted standards for either the procedures or equipment to be used in collecting distress information.

Distress data are usually collected by type, extent, and severity. Distress types tend to fall into three general categories, regardless of roadway surface type: cracking, surface deterioration, and distortion. However, the ways in which the specific distress types, severities, and extents are defined vary by the geographic location and the types of distress generally prevalent in an agency's pavements.

Efforts to standardize the collection of pavement distress data have been underway since the mid 1970s. One of the early attempts at standardizing the collection of pavement distress data came in 1976 when a pavement condition rating report (19) and an Airfield Pavement Distress Identification Manual (20) were published by the United States Air Force.

The next step in standardizing the collection of pavement distress data came in March 1979, when the FHWA published the *Highway Pavement Distress Manual for Highway Condition and Quality of Highway Construction Survey (21)*. This manual provided definitions of distress types, severities, and measurement techniques for the pavement types of jointed plain concrete pavement (JPCP), jointed reinforced concrete pavement (JRCP), continuously reinforced concrete pavement (CRCP), and asphalt concrete surfaced pavement (ACP).

In July 1979 the U.S. Army Construction Engineering Laboratory published *Technical Report M-268: Development* of a Pavement Condition Rating Procedure for Roads, Streets, and Parking Lots, Vol. II: Distress Identification Manual, by M.Y. Shahin and S.D. Kohn. This manual provided definitions of distress types, severities, and measurement techniques for asphalt surfaced pavement and jointed concrete pavement.

In 1982 the monitoring and evaluation of various in-service pavements across the country was performed as part of the Long Term Pavement Monitoring (LTPM) Program, which was sponsored by the FHWA. The use of a standard procedure for evaluating pavement distress was necessary to permit comparison of pavement performance among the cooperating agencies. Building on the FHWA's 1979 Highway Pavement Distress Identification Manual, Lytton, Rauhut, and Darter developed the Long Term Pavement Monitoring Data Collection Guide (22). Agencies across the United States used this guide to evaluate the condition of LTPM sites.

The next development in standardizing pavement distress data collection came in 1985 when the FHWA published the *Pavement Condition Rating Guide (23)*. Developed by Zaniewski, Hudson, and Hudson, this guide presents a pavement distress survey procedure that combines a large number of pavement distresses into several distress types to reduce the time and cost of data collection efforts.

The most recent efforts to develop standardized methods of collecting pavement distress data have been made as part of the Strategic Highway Research Program (SHRP), for use on sites being evaluated under the Long Term Pavement Performance (LTPP) studies project. The Distress Identification Manual for the Long-Term Pavement Performance Studies (24), developed by SHRP in 1990, has evolved from a combination of the 1979 FHWA Distress Identification Manual, the 1982 LTPM Data Collection Guide, and the 1985 Pavement Condition Rating Guide with extensive state Department of Transportation (DOT) experience and input.

The SHRP manual represents the latest and most comprehensive approach to a national standard for distress data collection. Although the SHRP manual was not the reference used for this study, it should be noted that this manual was updated in 1993 (SHRP-P-338). The information relative to this discussion is essentially the same in both versions. Table 3 compares the distress types recorded in each of the reports mentioned previously. This table shows that the following distress types are common to all of the manuals:

• Asphalt Surfaced Pavements—Longitudinal, transverse, alligator, block, and reflection cracking; potholes; rutting; bleeding; raveling/weathering; and lane-shoulder separation.

• Jointed Concrete Pavements—Longitudinal, transverse, and durability "D" cracking; faulting of transverse joints; and blowups.

• Continuously Reinforced Pavements—Durability "D" cracking.

Although the distress names are the same from manual to manual, the ways in which distresses are identified, severity levels are defined, and the extents are measured are different in each manual.

Table 3 also contains a number of distresses that are found in four of the five manuals for ACP and JCP, and three of the four manuals for CRCP. This would indicate that these distresses are also of importance and should be considered when developing a group of standard distress types. This group includes the following distresses:

• Asphalt Surfaced Pavements—Patch/patch deterioration, shoving, and polished aggregate.

• Jointed Concrete Pavements—Corner breaks, joint seal damage, longitudinal and transverse joint spalling, joint load transfer deterioration, map cracking and/or scaling, popouts, AC patching, PCC patching, lane-shoulder separation, and water bleeding and pumping.

• Continuously Reinforced Concrete—Longitudinal and transverse cracking, map cracking and/or scaling, popouts, blowups, punchouts, AC patching, PCC patching, spalling of

 TABLE 3
 STANDARD PAVEMENT DISTRESSES COLLECTED—HISTORICAL

Distress Type	FHWA 1979	ARMY 1979	LTPM 1982	FHWA 1985	SHRP 1990
Asphalt Surfaced			.		
Longitudinal Cracking	х	Х	X	Х	Х
Transverse Cracking	x	Х	Х	х	Х
Alligator Cracking	х	Х	Х	х	Х
Block Cracking	х	Х	Х	х	Х
Edge Cracking	-	Х	-	Х	Х
Reflection Cracking	х	Х	Х	х	X -
Sealed Cracks	-	1 X	-	х	
Potholes	Х	х	Х	x	х
Patch/Patch Deterioration	х	Х	-	Х	x
Skin Patch	-	Х	-	Х	-
Shoving	X	х	-	х	x
Swell	x	Х	-	х	-
Depressions	x	Х	-	х	-
Corrugations	x	Х	-	Х	-
Rutting	Х	Х	Х	Х	Х
Bleeding	х	-	Х	х	x
Ravel/Weathering	х	Х	Х	Х	х
Polished Aggregate	Х	Х	-	Х	Х
Lane-Shoulder Dropoff	х	х	-	-	x
Lane-Shoulder Separation	Х	-	Х	Х	Х
Water Bleeding and Pumping	х	-	-	-	Х

longitudinal joints, lane-shoulder separation, and water bleeding and pumping.

When a standard distress manual is ultimately accepted, the distresses included must be well identified, distress severity levels must be defined by <u>measurable</u> means [i.e., an ACP transverse crack with a width of 6 mm (1/4 in.) would be low severity, etc.], and the extents must be recorded in a manner that allows future use of the data for objective measures for research, development, and design. The manual should be useable for windshield and walking surveys as well as for automated surveys.

Efforts to standardize the collection of pavement distress data continue. The American Society for Testing Material

(ASTM) has adopted the Pavement Condition Index (PCI) for airfields (ASTM D5340) and is in the process of developing Standards for Distress Identification that should reflect the SHRP distress manual and the American Public Works Association (APWA) PAVER Manual.

DISTRESS DATA COLLECTION

The survey responses show a lack of standardization not only in the types of pavement distress data collected, but also in the methods used to collect the distress data. These methods include windshield surveys, shoulder surveys, walking surveys, and automated surveys using sensors, video, or film

TABLE 3 (CONTINUED)

Distress Type	FHWA 1979	ARMY 1979	LTPM 1982	FHWA 1985	SHRP 1990
Jointed Concrete					
Longitudinal Cracking	Х	Х	х	х	х
Transverse Cracking	Х	Х	Х	Х	х
Corner Breaks	Х	Х	-	х	х
"D" Cracking	Х	Х	Х	Х	Х
Joint Seal Damage	х	Х	-	x	х
Spall Longitudinal Joint	Х	Х	-	х	х
Spall Transverse Joint	Х	Х	-	х	х
Faulting Transverse Joint	Х	Х	Х	х	х
Faulting Longitudinal Joint	Х	Х	-	-	-
Joint Load Transfer Deterioration	Х	-	х	Х	-
Blowups	Х	Х	Х	Х	х
Map Cracking and Scaling	х	Х	-	x	x
Polished Aggregate	Х	-	-	Х	х
Popout	Х	Х	-	Х	х
Reactive Aggregate	х	-	-	-	-
AC Patching	х	х	-	х	x
PCC Patching	Х	Х	-	х	х
Patch Adjacent Slab Deterioration	Х	Х	-	х	-
Depressions	Х	-	-	-	-
Swell	Х	-	-	-	-
Lane-Shoulder Dropoff	Х	Х	-	-	Х
Lane-Shoulder Separation	Х	-	Х	-	Х
Water Bleeding and Pumping	Х	Х	Х	-	Х
Rutting	-	-	-	-	х

cameras to record pavement distress conditions. Table 4 shows a summary of the methods used to collect data and the methods of defining the pavement area to be surveyed. Some agencies survey 100 percent of the pavement surface, or a pavement lane, while others designate a predetermined representative sample.

During windshield surveys, a survey team travels over the section being surveyed and attempts to collect distress data while viewing the pavement through the windshield of a vehicle traveling in traffic. These surveys provide very general data on distress. Windshield surveys are performed by 18 of the responding agencies, at speeds ranging from 8 to 88 kph (5 to 55 mph). Of the responding agencies, 16 survey 100 percent of their system, while 2 use sample sections between 30.5 and 91.5 m (100 ft and 300 ft) in length. Windshield distress surveys include those performed while using an Automatic Road Analyzer (ARAN) system to collect other pavement condition information.

Shoulder surveys are performed by a survey team traveling in a vehicle along the shoulder and collecting distress data by viewing the travel-lane pavement. Compared with the windshield surveys, this type of survey tends to provide more

TABLE 3 (CONTINUED)

Distress Type ^a	FHWA 1979	LTPM 1982	FHWA 1985	SHRP 1990	
Continuously Reinforced Concrete		<u></u>			
Longitudinal Cracking	х	-	Х	Х	
Transverse Cracking	X	-	Х	Х	
"D" Cracking	Х	Х	х	х	
Map Cracking and Scaling	х	-	х	x	
Polished Aggregate	-	-	Х	Х	
Popouts	x	-	Х	Х	
Reactive Aggregate	Х	-	-	-	
Blowups	х	х	-	x	
Construction Joint Deterioration	х	-	-	х	
Punchouts	х	-	Х	х	
AC Patching	х	-	Х	Х	
PCC Patching	х	-	Х	X	
Patch Adjacent Slab Deterioration	х	-	Х	-	
Localized Distress	х	-	-	-	
Faulting Longitudinal Joint	х	-	-	-	
Spall Longitudinal Joint	х	-	Х	Х	
Spalling	х	-	-	-	
Swell	х	-	-	-	
Depressions	х	-	-	-	
Lane-Shoulder Dropoff	Х	-	-	Х	
Lane-Shoulder Separation	Х	Х	-	Х	
Water Bleeding and Pumping	Х	Х	-	Х	
Rutting	-	-	-	Х	

* The 1979 U.S. Army Manual, Technical Report M-268, did not contain distresses for CRCP.

TABLE 4SUMMARY OF DISTRESS DATA COLLECTION METHODS

Data Collection Method	Number of States	Number of Provinces
Windshield	14	4
Shoulder	9	0
Walking	9	1
Combination	8	4
Automated	8	0

Equipment	Manufacturer	Collection Method
ARAN	Highway Products Int.	Keyboard
AREV	Pavement Management Services	Video/Voice
ARIA	MHM Associates	Video
KJ LAW 8300A	K.J. Law Engineers, Inc.	Keyboard
Laser RST	IMS	Laser Sensors
PAS-1	PAVEDEX, Inc.	Video
PAVETECH	PaveTech, Inc.	Video
PDI-1	Roadman-PCES, Inc.	Linear Video
ROAD PROFILER	South Dakota DOT	Acoustic Sensors
ROADRECON	PASCO USA, Inc.	35mm Film
VIDEOCOMP	VideoComp	Video

 TABLE 5
 5

 AUTOMATED DISTRESS DATA COLLECTION EQUIPMENT AT AMES, IOWA

SOURCE: Proceedings of the Automated Pavement Distress Data Collection Equipment Seminar, June 1990.

complete and accurate information, since the survey teams are usually traveling more slowly. Shoulder surveys are performed by 9 of the responding agencies, at speeds ranging from 8 to 24 kph (5 to 15 mph). Four of these agencies cover 100 percent of their systems, while the other five cover approximately 10 percent of their systems.

Walking surveys are conducted by a survey team traveling on foot along the section being surveyed and recording the distress observed and/or measured. These surveys tend to be more detailed than a shoulder survey and require more survey time. In some instances survey teams may even draw distress maps of the section. Ten agencies conduct walking surveys. Eight of these agencies use representative samples of their management section, one surveys only specific projects, and one did not respond to that part of the questionnaire. When representative samples are used, they range in size from 30.5 to 161 m (100 ft to 0.1 mile).

An additional 12 agencies use some combination of the aforementioned methods, while 8 use some form of automated system.

Agencies conduct automated surveys by using a survey system that automatically records the pavement distress on the section. Available automated systems use 35mm photography, video technology, and noncontact sensors. Automated survey systems first appeared in the United States in the early 1980s and have been continually updated and refined.

In 1986 FHWA sponsored a project to evaluate the available automated survey systems by using these automated systems to collect distress data on SHRP's LTPP sites. The systems evaluated under this project were the PASCO ROADRECON systems, the GERPHO device, the IMS Laser RST, and the ARAN device. FHWA compared these devices with several variations of manual survey methods (25).

The PASCO ROADRECON systems and the GERPHO device both used 35 mm film to record distress on the pavement's surface. In addition, the PASCO ROADRECON Unit that was evaluated had the capability to record transverse profile and roughness.

The Laser RST uses laser sensors mounted on a transverse bar to measure texture, roughness, transverse profile, and cracking.

The ARAN device measures roughness, transverse profile, cross-slope, and grade. The ARAN is also equipped with video cameras to record a general highway view and a view of the pavement surface.

FHWA conducted manual surveys in accordance with the PAVER (26) and Concrete Pavement Evaluation System (COPES) (27) survey methods. Data were recorded using both manual recording and automated entry with data loggers.

The 1987 FHWA report (25) of the systems evaluated stated that the PASCO ROADRECON and GERPHO systems provided a permanent record of the highest quality, most detailed data, in the most cost-effective manner. It was also found that these systems could be used for network- and project-level pavement management purposes.

In 1990 FHWA sponsored the Automated Pavement Distress Data Collection Equipment Seminar in Ames, Iowa (28). At this seminar, 11 suppliers and operators of automated pavement distress data collection equipment demonstrated their equipment. Table 5 lists the types of exhibited equipment. (Of the four systems evaluated in the 1986 FHWA study, only the GERPHO device was not present at this seminar.)

Of the equipment demonstrated at the Ames seminar, one item uses 35mm film, six use video cameras, two use noncontact sensors, and two use manual keyboard entry for recording pavement distress. Some of the systems using video cameras have combined capability with other measuring methods such as sensors, voice input, etc. Table 6 summarizes the types of equipment present at the Iowa seminar.

The LTPP studies that started in the SHRP program and continue under the direction of FHWA use an automated

TABLE 6DATA COLLECTION METHODS DEMONSTRATED AT AMES, IOWA

Data Collection Method	Number of Vendors
35mm Film	1
Video Cameras	6
Sensors	2
Keyboards	2

SOURCE: Proceedings of the Automated Pavement Distress Data Collection Equipment Seminar, June 1990.

Method (Number of Agencies)								
Frequency	Total	Windshield	Shoulder	Walking	Automated	Combination		
Annual	28	9	4	6	5	4		
Biennial	17	5	5	1	3	3		
Triennial	4	2	-	-	-	2		
Every 4 Yrs.	1	-	-	-	-	1		
Planned '92	1	-	-	-	-	1		
Unknown	9	3	-	3	1	2		

 TABLE 7

 DISTRESS SURVEY FREQUENCIES AND METHODS

system to collect a 35mm film record of pavement distress. As the trend toward automation develops, states, counties, and municipalities are beginning to use this and other automated data collection systems.

In 1991, NCHRP Project 1-27, "Video Image Processing for Evaluating Pavement Surface Distress" (29), was completed. The objective of this 2-year project was to develop a system to process video images to identify type, extent, and severity of distress present. The resulting system employs image processing and pattern recognition techniques, and shows potential for identifying cracking on both asphalt and PCC surfaces. This system can be used on both isolated and pattern cracking. It can also be used to determine joints from cracks on PCC pavements.

SURVEY METHODS

Sixty agencies responded to the questionnaire for this synthesis. Of the reporting agencies, 49 use some form of distress manual, with 41 of them using manuals that are unique to their agencies. In addition, two agencies use the 1979 FHWA Manual, five use the 1990 SHRP Manual, and one uses the 1989 HPMS Manual. Figure 1 shows the types of manuals used.

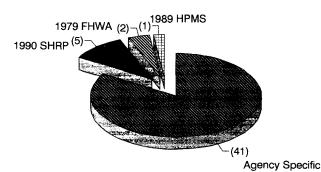


FIGURE 1 Distress manuals used by responding agencies.

As with the distress manuals, there is a great deal of variability in the frequency of distress surveys and in the methods used by the responding agencies. Frequencies range from annual to none, and survey methods range from windshield surveys to automated surveys. Table 7 shows the variation in survey frequencies and methods.

Both the designation for survey sections and the sampling intervals vary greatly among agencies—16 agencies using homogeneous sections, 12 use predetermined sections, 15 use projects or construction sections, 3 perform continuous surveys, 6 use segments, and 4 use some other method. A homogeneous section is a section in which the individual portions of the section all have the same pavement cross-section, construction history, rehabilitation history, traffic levels, and underlying soil conditions. Predetermined sections are sections with arbitrarily set beginning and ending points, such as a block, mile, half-mile, etc. Thirty-six agencies sample 100 percent of the sections, 9 collect one sample per mile, 3 take samples at the mileposts, and the remaining 12 use sampling techniques that are unique to their agency.

Of the distress data recorded, the measurement of rutting is most rapidly becoming automated. Twenty-nine agencies are using automated equipment to collect rutting measurements, with 15 of those agencies using the 3-sensor devices and 13 using devices with 5 or more sensors. Of the remaining agencies, 16 use a straightedge of varying lengths, 9 use a visual estimate, and 6 do not collect rutting data. Figure 2 shows the methods used to measure rutting.

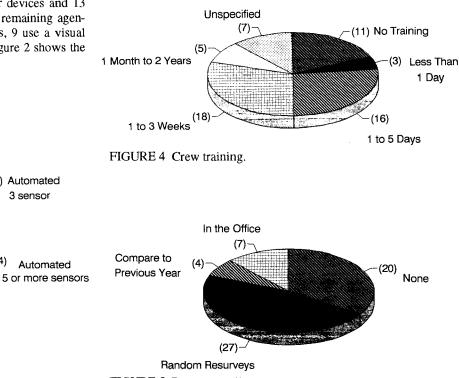
(15) Automated

3 sensor

Automated

Do not Collect

(6)


FIGURE 2 Rut measuring methods.

Visual (9)

Straightedge (16)

1 and 5 days, 18 train for between 1 and 3 weeks, 5 train for between 1 month and 2 years, and 7 did not specify the length of their training. Figure 4 shows the amount of crew training given by the agencies.

Twenty-seven of the agencies perform random resurveys for quality assurance purposes, 4 compare their findings to the previous year, 7 perform quality assurance in the office, and 20 have no quality assurance program for distress surveys. Figure 5 shows a distribution of the types of quality checks in use.

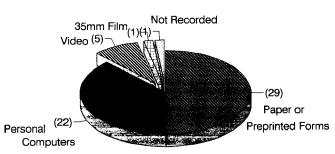


FIGURE 3 Distress data recorded.

Twenty-nine of the agencies reported that they record distress data on paper or preprinted forms, 22 record the data on PCs, 5 use video, 1 uses 35mm film, and 1 does not record these data. When asked if the data are recorded automatically, 32 answered no, 18 stated that they use a keyboard in a vehicle, and 6 use video. Figure 3 is a chart of the methods used to record distress data in the field.

When surveyed as to the amount of crew training performed, 11 agencies responded that they do no formal crew training, 3 provide less than 1 day's training, 16 train between

FIGURE 5 Distress quality assurance.

Many of the agencies generate some type of index as the output from the distress surveys-24 agencies generate a Distress Index, 13 compile a PSI or Present Serviceability Rating (PSR), 11 generate priority ratings, and 10 generate indices in some other manner. These indices, or ratings, are developed using a number of different methods-18 of the agencies use formulas, 10 use some type of deduct system, 9 use some type of weighting factors, 4 use tables, 9 use unique methods, and 9 do not use indices or ratings.

Some of the agencies combine the distress indices, or ratings, with other indices or ratings. Of the agencies that combine indices, 17 combine distress ratings with roughness ratings, 5 agencies combine distress with roughness and Friction Number or accident data, 8 agencies combine distress with roughness and Structural Number or data, and 6 combine distress with roughness and average daily traffic. Of the questionnaire respondents, 17 agencies do not combine distress with anything.

TABLE 8

DISTRESS SURVEY, UNITED STATES

	Survey Method	Survey	Method to Determine	Distress Rating		
Agency	Used	Manual Di	Distress Rating	Combined With?	Method or Formulae	
Alabama	walk	yes	weight factors	roughness	formula	
Alaska	shoulder	yes	distress state table	roughness, frost	compare with 240 condition states	
Arizona	walk	yes	no response	roughness, structural, traffic	no response	
Arkansas	walk	yes	deduct point system	roughness	Rigid=0.65 defects+0.35 ride, Flexible=1/2 power (ride x defec	
California	walk	yes	pavement condition category	roughness	over/under decisions	
Colorado	windshield	no	no response	roughness	condition matrix	
Connecticut	photo log	yes	weight factors	roughness, AADT	dr+ri+adt+class	
Delaware	windshield	yes-SHRP	weight factors	Ride Comfort Index	PSI=75%(SDI)+25%(RCI), also safety and traffic	
Dist. of Columbia	windshield	yes	table	no response	no response	
Florida	shoulder	yes	deduct points	not used	seperate rating for ride, rutting, cracking.	
Georgia	walk	yes-(flexible)	deduct from 100	not used	not used	
Hawaii	windshield	yes-(Caltrans)	distress severity and extent	not used	not used	
daho	shoulder	yes	cracking index	PSI (SDP)	50% roughness (0-5)+50% cracking (0-5)	
llinois	windshield, Int. walk	yes	CRS 0-9	na	na	
ndiana	windshield	yes-HPMS	PSR 0-5, HPMS	not used	na	
owa	shoulder	yes	PCR 0-100	roughness, friction, structural	formula with coefficient	
Kansas	shoulder	yes	Woodward-Clyde methodology	roughness	based on distress state	
Kentucky	windshield, shoulder	no	assigned demerits	roughness, friction, traffic	point assignment	
Louisiana	video	yes-(draft)	under development	roughness	under development	
Maine	video/ARAN	yes	PCR 0-5	not used	па	
Maryland	shoulder	yes	weight factors, deduct values	roughness	priority matrix	
Massachusetts	windshield/ARAN	no	formulae	roughness	PSI=0.65DI+0.35PSR	
Michigan	semiautomatic	no	remaining service life (RSL)	not used	threshold values	
Minnesota	shoulder	yes	weight scale 0-4	roughness	PQI= square root (PSR X SR)	
Mississippi	video	yes-SHRP	formula	roughness	PCR=100*(12-IRI /12)*(Dmax-DP/Dmax)^2	
Missouri	video	no	condition score 0-20	roughness	PSR= (2 x roughness score) + (condition score)	
Montana	walk/shouder	yes	under development	roughness	PSI reduced by degree of rutting	
Nebraska	windshield/walk	yes	NSI (similar to PCI)	roughness	PMS Manual procedure	
Nevada	walk	yes	formula	roughness, friction	AASHO Road Test Formulas	
New Hampshire	windshield/ARAN	yes	formula	no response	no response	
New Jersey	windshield/ARAN	yes-SHRP	weighting factors 0-5	roughness, traffic	PI=0.6*RQI+0.3*SDI+0.1*TF	
New Mexico	walk	yes-FHWA	tables	roughness, traffic, accidents	formulas	
New York	windshield	yes	score summaries	not used	no response	
North Carolina	windshield, shoulder, walk	yes	deduct values	roughness	deduct value in distress index	
North Dakota	video	yes	deduct values	roughness	1/3 distress+1/3 ride+1/3 age=composite index (0-5)	
Ohio	walk	yes	deduct values	roughness, friction	not combined, independent consideration	
Oklahoma	automated	ves	no response	planning	no response	

TABLE 8 (CONTINUED)

	Survey Method	Survey	Method to Determine	Distress Rating	
Agency					Method or Formulae
	Used	Manual	Distress Rating	Combined With?	
Oregon	windshield, (Intshoulder)	yes	deduct values	not used	not used
Pennsylvania	shoulder	yes	deduct values	roughness	PSRcurve=OPI=.45RI+.30SI+.20DI+.05SFI
Rhode Island	windshield, walk	yes	formula	roughness	proprietory software
South Carolina	windshield	yes	distress values, models	roughness, structural values	PQI= 1.158+0.138(PDI)(PSI)
South Dakota	windshield	yes	distress data elements	roughness, structural, traffic	ranking process
Tennessee	walk	yes-FHWA	not used	not used	not used
Texas	windshield, walk	yes	utility factors	roughness	tables, equations
Utah	shoulder	yes-SHRP	DI=5.0 -0.13(C+P)1/2pwr.	roughness, structural, skid	under development
Vermont	automated	yes	no response	roughness, friction	formula
Virginia	windshield	yes	rating factors	ride rating	ride considered seperate
Washington	shoulder	yes	deduct values	no response	developing new process
West Virginia	windshield, shoulder	no	not used	not used	not used
Wisconsin	shoulder	yes	work factors	no response	no response
Wyoming	windshield	no (plan SHRP)	no response	none	not used

CANADIAN PROVINCES

	Survey Method	Survey	Method to Determine	Distress Rating		
Agency					Method or Formulae	
-	Used	Manual	Distress Rating	Combined With?		
Alberta	windshield, video log	yes-SHRP, Ontario	weight factors	roughness, structural	PQI=f(RCI+SAI+VCI)	
British Columbia	walk	yes	proposed PI=RI+SI+DI	roughness, structural	developing	
Manitoba	windshield	yes	condition ratings	not used	not used	
New Brunswick	windshield, walk	yes	formula	roughness, structural	PN =0.4PN ride+0.35PN distress+0.25PN strength	
Nova Scotia	windshield, shoulder, walk	yes-RTAC	weight factors	not used	roughness	
Ontario	windshield	yes	formula	roughness	DMI=(Si+Di)Wi; severity, density, weighting	
Prince Edward Isle	windshield	yes	formula, table	roughness, structural	PQI=composite pavement quality index	
Quebec	windshield	no	expert system	roughness, structural, other	na	
Saskatchewan	windshield, shoulder, walk	no	no response	no response	no response	

SUMMARY

Although efforts to standardize distress evaluation have been ongoing since the 1970s, much work still needs to be done. Currently there is little evidence of standardization in the collection or definition of distress. However, in some areas trends are beginning to appear. Table 8 summarizes agency distress survey practices.

No process stands alone as a real trend in the identification survey sections: however, 57 percent of the agencies perform 100 percent samples of the survey sections identified.

Most agencies conduct distress surveys either annually or biennially. The methods used to perform these surveys do not currently show a strong trend, although agencies are using automated survey systems more frequently than reported in *Synthesis 126 (30)*, with approximately half of the agencies now using some type of automated equipment to collect rutting data.

The majority of agencies record distress data on paper or preprinted forms, although a number of agencies are using PCs.

The amount of survey crew training varies from 1 day to 2 years. Approximately one-third of the agencies do not have a quality assurance program for distress surveys.

Approximately 80 percent of the agencies use either a distress index, serviceability index/rating, or a priority rating as the output for the distress survey. No trend appears to be evident in the way these indices or ratings are developed, although formulas are used more frequently than other methods. Over two-thirds of the agencies combine their distress index or ratings with other indices or ratings. The most often used additional index is roughness.

CHAPTER FOUR

ROUGHNESS EVALUATION

DEVELOPMENT OF EVALUATION METHODS

Ride quality consistently has been found to be a strong measure of the ability of pavements to serve the traveling public. For many years, state agencies reported highway system extent and physical condition information to FHWA in accordance with the HPMS Field Manual (17). Until 1988, states could report the pavement condition component as a PSR, which could be based on a subjective rating of the pavement in accordance with a 0 to 5 scale containing verbal descriptions of condition and supplemented with a judgment of ride.

The 1987 edition of the HPMS Field Manual added a data field that required a pavement roughness measurement for each HPMS section and included an appendix that described the equipment, calibration/correlation, and data collection procedures. This landmark requirement provided state agencies with the ability to compare roughness data from across the United States (17).

During the AASHO Road Test, conducted from 1956–60 (31), AASHO developed a pavement serviceability concept that approximated the sentiments of the traveling public by using several serviceability panels comprised of a cross-section of highway users. These panel members rode over a number of roadway sections that represented different levels of road roughness. Each panel member rated each of the road segments traveled, and AASHO used the ratings of each panel member to establish a PSR for each segment and an overall PSR scale.

The use of serviceability panels to monitor the performance of a pavement during the life of the Road Test was impractical. Therefore, it was necessary to develop a means of approximating the PSR results through objective measurement of pavement characteristics. After extensive analysis of the PSR results, AASHO selected the pavement characteristics that best represented pavement serviceability—longitudinal profile variation, cracking, and patching. These characteristics were applied to both concrete and flexible pavements. For flexible pavements, AASHO included the additional measurement of transverse profile variation (rutting). The objective measurements selected were then statistically combined to permit the calculation of a PSI, which produces ride quality through longitudinal profile variation data.

The need for a method to measure longitudinal profile variation led to a simplified profiling device developed by and named for William N. Carey, Jr., Henry C. Huckins, Rex C. Leathers, and other engineers. The CHLOE Profilometer is a trailer-mounted contact profiler that uses a set of small tandem wheels placed 20.3 cm [8-in.] apart to measure slope variance of the pavement's surface.

The CHLOE Profilometer was a more objective method of measuring road roughness than the Bureau of Public Roads (BPR) Roughometer, a response-type device which had been developed much earlier. The BPR Roughometer consists of a single-wheel trailer that measures the vertical movement of a dampened leaf-spring wheel by means of a mechanical integrator. Because of the electromechanical counts, the device must be operated slowly along the pavement. The output is a summary statistic expressed in in./mile.

Following the development of the PSI concept, and the recognition of roughness as a predominant measure of pavement service quality, other types of road roughness measuring equipment were developed. Historically, the equipment that has been used to measure pavement roughness can be categorized into two general types—response type road roughness measuring systems (RTRRMSs) and profilers.

RTRRMSs are devices that determine the pavement's roughness by measuring its effects on the movement of a vehicle or a wheel. Some of these devices have accelerometers on one of the axles, or they may measure the vertical movement of a vehicle's body in relation to the axle. Some examples of RTRRMSs are the BPR Roughometer, the Mays Ride Meter, the ARAN, the PCA Ride Meter, and the Cox Ride Meter. Until the late 1980s, most highway agencies used some type of RTRRMS to measure roughness. The response type equipment requires constant attention to the mechanical and operating conditions during testing and is usually operated at a constant speed (e.g., 40 mph).

Profilers (sometimes called profilometers or profilographs) are instruments designed to produce a continuous signal or trace related to the true profile of the pavement surface. A simple example is a rolling straightedge, which records a midpoint deviation. Other examples of this type of device are the California Profilograph, the Reinhart Profilograph, and the Ames Profilograph. Figure 6 shows a California type Profilograph, which is most often used for checking pavement surfaces for specification compliance. The California Profilograph is usually hand-propelled at walking speeds and is not practical for surveying long distances.

FIGURE 6 California profilograph.

Early models of the GM Profilometer also obtained elevation measurements through a small following wheel in contact with the pavement in the wheelpath. The vertical elevations of the wheel were measured many times in small increments and processed mathematically to obtain a single numeric describing the condition of the wheelpath.

More recent profiles are equipped with noncontact sensors that use lasers, light beams, and acoustics to obtain profile information, rather than mechanical devices that contact the pavement. These types of profilers are capable of measuring profiles at traffic speeds and were in use in a few states by the mid 1980s. Examples of these devices include the newer K.J. Law Profilometers, the South Dakota type Road Profiler, and the IMS Laser RST. Figure 7 shows one of the SHRP Profilometers supplied by K.J. Law.

FIGURE 7 SHRP profilometer.

Janoff developed an equation for correlating longitudinal profile with rideability. [This work was reported in *NCHRP Report 275 (32)* and *NCHRP Report 308 (33)*]. Janoff conducted this study in five states using serviceability panels, contact and noncontact profilometers, and a Mays Ride Meter. In his study, Janoff converted the longitudinal profile measurements taken with a profiler into a Ride Number that matches the Mean Panel Ratings (MPRs) of the serviceability rating panels. The resulting equation makes it possible for agencies to use objective measures of a pavement's longitudinal profile to determine its acceptability to the traveling public.

Because many of the states were using RTRRMSs at this time, Janoff's research also analyzed RTRRMSs to determine their correlation with the MPR. He found that the correlation for bituminous pavements was very high, nearly as close as the correlation between the profilometers and the MPRs. However, on the portland cement concrete and composite pavements he found the correlation to be fair to poor. Because the concrete and composite pavements used in the tests did not include pavements with higher roughness, the correlation may have been affected. The correlations and equations developed by Janoff were major steps in the pursuit of an objective and standardized means of evaluating pavement roughness.

At about the same time that Janoff was performing his correlation work, the World Bank and others sponsored the International Road Roughness Experiment (IRRE) to establish guidelines for conducting and calibrating road roughness measurements. The resulting World Bank Technical Paper Number 46 (34) further advanced the standardization of road roughness technology by developing an international standard for measuring and reporting road roughness, the International Roughness Index (IRI), and by grouping the various methods for measuring road roughness into four classes based on the ability of each class to precisely measure IRI.

The IRI is a standardized roughness measurement that is calculated by mathematically applying a reference quarter car simulation (RQCS) to a measured profile. Based on extensive research, the World Bank established RQCS parameter values that best represented roughness-related measuring equipment being used worldwide (35, 36). The IRI is measured in units of meters/kilometer or in./mile can easily be related to those measurements obtained by RTRRMSs. This index is very useful for relating a roughness measure to overall ride quality (which is obtained at highway speeds).

Because IRI is a characteristic of the longitudinal profile of a wheelpath, and not a characteristic of a piece of equipment, the index is time-stable. This index is directly measurable by a number of profilometric methods, and it correlates extremely well with the measures of RTRRMSs, as well as with subjective opinion. The World Bank has studied the relatedness of IRI to subjective opinions (34), and ASTM is currently developing IRI standards for the United States.

In establishing IRI as a reporting standard, the HPMS report (17) established four classes of approaches for measuring road roughness based on the ability of each method to precisely and accurately measure IRI:

- Class I Precision Profiles. In a Class I survey, the longitudinal profile of the wheelpath is measured manually using a rod and level. Transportation Road Research Laboratory (TRRL) Beam, Face Dipstick (shown in Figure 8), or similar high-precision device. The measured profile is used as a basis for calculating the IRI. A Class I survey provides the highest level of precision and repeatability.
- Class II Other profilometer methods. In a Class II survey, the profile of one or both wheelpaths is measured using either contact or noncontact prolifometers that have been calibrated on sections with profiles determined from a Class I survey.
- Class III IRI estimates from correlation equations. A Class III survey is performed using an RTRRMS or other roughness device such as a rolling straightedge. The measures from these devices must be correlated with IRI using equations developed experimentally for each device. The equipment used in a Class III survey must be calibrated to sections whose profiles have been determined from a Class I or Class II survey.
- Class IV Subjective ratings and uncalibrated measures. Class IV surveys use subjective evaluations of the roadway that are produced by either riding over the section or by conducting a visual inspection. These evaluations are then roughly correlated with IRI through the use of roadway descriptions for various IRI values. These surveys are considered to be "calibration by description." An uncalibrated RTRRMS may also be used.

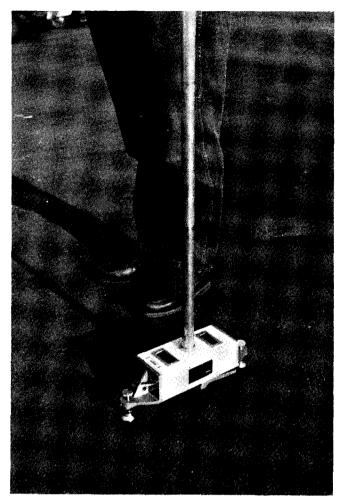


FIGURE 8 Face Dipstick.

SURVEY EQUIPMENT USED

In 1986, NCHRP Synthesis 126 (30) reported that a majority of the states were using RTRRMSs to measure pavement roughness. Since then there has been a strong movement among the states to use a noncontact acoustic road profiler similar to the one developed by the South Dakota DOT. Figure 9 shows one version of the South Dakota type Road Profiler. The front bumper contains three sensors and two accelerometers. In the previous synthesis, South Dakota was the only state that reported its use, whereas in the survey responses for this synthesis, 34 units were in use in 25 agencies. Table 9 compares the equipment usage findings of the two syntheses.

Road profilers are seeing wider usage for a number of reasons. First, FHWA now requires the roughness on HPMS sites to be reported in IRI. Although this measurement can be taken using an RTRRMS, it would require the establishment of correlation factors with a Class I or Class II method; the road profilers can obtain IRI data much more easily. In addition, road profilers require minimal calibration/verification compared to the RTRRMSs, which require frequent calibration. Overall, road profilers are very economical.

Many of the states and provinces continue to use their existing equipment and supplement their capability with other systems. Among the agencies responding, 10 use more than one type of roughness testing equipment to conduct their roughness surveys.

FIGURE 9 South Dakota Road Profiler.

The majority of agencies calibrate their equipment using either the HPMS guidelines, correlation procedures, or test sections. Of these methods, 3 of the agencies use the HPMS guidelines contained in the *Highway Performance Monitoring System Field Manual (17)*, Appendix J, issued in 1987; 20 use correlation procedures; and 24 use established test sections.

The HPMS guidelines recommend procedures for collecting pavement performance data for the test sites included in the HPMS. These guidelines adopt the survey procedure classifications established at the IRRE, require roughness data to be reported in IRI, and establish equipment calibration procedures for Class II and III roughness surveys.

Of the agencies using correlation procedures, six correlate with Class II systems and three correlate with other South Dakota type Profilometers.

Of the agencies using test sections for calibration, 11 use a Dipstick to measure the longitudinal profile of the test section. Manufactured by the E.W. Face Company, the Dipstick measures the difference in elevation between a series of points that are 1 ft apart. Originally developed to measure warehouse concrete floor flatness, the Dipstick consists of an inclinometer built into a rectangular case with two feet at the ends spaced 1 ft apart. The device is equipped with a cane-like handle that permits the operator to "walk" the instrument down a survey line. At each turn the elevation is recorded by internal electronics that convert the inclination angle into an elevation difference at the 1-ft interval. These differences are then used to determine the true profile of the test section, and the RQCS is used to compute IRI over the profile. The Dipstick method is a Class I method.

SURVEY PROCEDURES

Though the responding agencies survey the various portions of their highway systems for roughness or profile using a variety of schedules and cycles, the majority of them tend to survey either annually or biennially. Table 10 shows the breakdown of the survey frequencies.

TABLE 9 ROUGHNESS MEASURING EQUIPMENT USAGE, 1986 AND 1991 (36)

	Number of Agencies Using		
Equipment Type	1986	1991	
GMR Profilometer (K.J. Law)	4	3	
South Dakota Road Profiler	1	25	
K.J. Law 8300	0	3	
Cox CS8000 Ultrasonic	0	8	
Mays/PCA/Cox Ride Meters	32	22	
ARAN	0	10	
BPR Roughometer	4	0	
Others	0	2	

TABLE 10

NETWORK SURVEY FREQUENCY

Survey Frequency	Entire System	Interstate Network	Primary Network	Other Network
Annual	22	27	21	19
Biennial	13	14	15	18
Triennial	2	1	1	2
Other	12	2	3	4

When surveying 2-lane roads, 38 agencies survey in only one direction, while 15 survey in both directions. On 4-lane highways, 37 agencies survey the outside lane in both directions, 7 survey one lane in one direction and 8 survey all lanes in both directions.

The surveys are conducted at speeds ranging from 5-60 mph (see Table 11) with production rates ranging from 27 to 350 lane miles (LM)/day (see Table 12).

TABLE 11

NETWORK	SURVEY	SPEEDS
---------	--------	--------

Survey Speeds	Agencies
45-50 mph	27
Posted Limit	11
Other (5-60 mph)	12

biennially. The roughness, or profile is measured while surveying one direction on 2-lane roads and the outside lane in both directions on 4-lane roads at speeds of 40-55 mph, or at the posted speed limit.

TABLE 12

NETWORK SURVEY PRODUCTIVITY

Survey Productivity	Agencies
300-350 LM/Day	9
200-250 LM/Day	16
65-125 LM/Day	13
27-40 LM/Day	4

In general, the current trend in survey procedures appears to be to survey the higher systems, such as the interstate, annually with the rest of the network being surveyed annually or

DATA HANDLING

Among the responding agencies, there is a definite trend toward the use of IRI for reporting road roughness—20 agencies report only in IRI units, 11 agencies report in IRI and

TABLE 13

PAVEMENT ROUGHNESS, UNITED STATES

A	Equipment	Data	Calibration
Agency	Туре	Units	Procedure
Alabama	SDP (International Cybernetics)	IRI	HPMS procedures
Alaska	SDP, RD, PC	IRI	calibration guage
Arizona	Mays	no response	correlate with Profilometer
Arkansas	Mays	in/mi	test track
California	Cox	no response	test track
Colorado	ARAN	IRI	test sites
Connecticut	TechWest+SDP	arb1to1000	calibration site run monthly
Delaware	ARAN, PURD	IRI, RMSV	manufacturer recommendations
District of Columbia	Mays (Rainhart)	IRI	correlate with Class 2
Florida	SDP (International Cybernetics)	IRI-conv. PSI (SV)	with CHLOE for PSI (Slope Variance)
Georgia	Mays (mod-Ga)	no response	no response
Hawaii	Cox	ridescore	per HPMS (World Bank)
Idaho	SDP (International Cybernetics)	IRI/PSI	no response
Illinois	SDP (Ill.mfg)	IRI	test sensers
Indiana	Cox/Prof, Prorut (spring92)	ridescore (IRI-92)	correlation loop, once per month
Iowa	SDP (International Cybernetics)	IRI	correlate with CHLOE
Kansas	Mays (Rainhart)/SDP (Internaional Cybernetics)	IRI	MAYS/SDP/Dipstick
Kentucky	Mays (Rainhart)	RI	test sections monthly/Profilometer yearly
Louisiana	contract	IRI	contract
Maine	ARAN	IRI	surveyed test sections/test sensors
Maryland	KJLaw 8300	IRI	In-house
Massachusetts	ARAN	IRI, RMSVA	Dipstick/survey test sections (9)
Michigan	Inertial Profilometer (Michigan DOT)	IRI	self-calibrating
Minnesota	SDP (MinnDOT)	IRI	self-calibrating
Mississippi	SDP (Pave Tech/2 International Cybernetics)	IRI	multiple runs/Dipstick/SHRP sites
Missouri	ARAN	RMSVA (IRI-10sts)	internal/10 calibration sites periodically
Montana	SDP (International Cybernetics)	IRI, profile, rut depth	against other SDP at Users Group Meeting
Nebraska	SDP (Nebraska)	IRI	against other SDP at Users Group Meeting
Nevada	Cox	IRI, slope variance	per HPMS/Dipstick/calibrated sections
New Hampshire	ARAN	RCI, SDI, RRI	test sections(9)/Dipstick
New Jersey	ARAN	ARAN	test sections(6)/Dipstick
New Mexico	ARAN/PhotoLog-roughness	IRI< raw data	rod and level survey
New York	SDP (contract)	IRI	test sections/Dipstick
North Carolina	SDP	IRI	not necessary
North Dakota	SDP in Video Tech Van	IRI	weekly over test strip
Ohio	KJLawProfilometer/MDR8300/Mays (Rainhart)	IRI, PSI	against Profilometer
Oklahoma	SD style/Mays	IRI	Mays frequently, SDP not needed

TABLE 13 (CONTINUED)

	Equipment	Data	Calibration
Agency			
	Туре	Units	Procedure
Oregon	SDP	IRI	plan Dipstick-just purchased equip
Pennsylvania	SDP/Mays	IRI	test sections/Dipstick
Rhode Island	SDP (ConnDOT)	IRI	see ConnDOT
South Carolina	Mays (Rainhart)/SDP (International Cybernetics)	IRI	test sections/Dipstick
South Dakota	SDP (SDDOT)	IRI, PSR	test segments/Dipstick
Tennessee	no survey		
Texas	Siometer	SI	test sections
Utah	Cox	RI to IRI	standard section weekly
Vermont	IMS (contract)	IRI	no response
Virginia	SDP (Internatioal Cybernetics)/MDR8300 (KJLaw)	IRI	test sections vs. KJLaw
Washington	SDP/Cox	IRI	no response
West Virginia	KJLaw Profilometer/Mays	IRI	Mays to Profilometer
Wisconsin	SDP	IRI	system check
Wyoming	SDP	IRI	Annual users group/daily test sections

CANADIAN PROVINCES

	Equipment	Data	Calibration
Agency			
	Туре	Units	Procedure
Alberta	Cox (CS8000 Ultrasonic)	RCI	CGRA-Roadmeter to RCI
British Columbia	na		
Manitoba	na		
New Brunswick	Mays	IRI, RCI	IRI from MDR/special calibration section
Nova Scotia	Roadmeter-NSDTC	counts/kilometer	20 control sections/rating panel/road meter
Ontario	PURD (Roadware)	RMSVA	standard sections
Prince Edward Isle	PURD	RCI	RCI/panel correlation, test sections twice/year
Quebec	PCA/Mays	IRI	TAC specifications/RRMR response to IRI
Saskatchewan	Cox (Ultrasonic)	RCI	standard sections monthly

other data units, and 14 agencies do not report IRI reporting roughness in other forms. Other forms of data reported include Ridescore, in./mile, and Root Mean Square Vertical Acceleration.

The trend in data collection and reporting is to collect the data for both wheelpaths and report those data as an average of the wheelpaths. Thirty-seven of the agencies handle the data in this manner, 5 agencies measure and report roughness only in the right wheelpath, and 10 report only for the left wheelpath.

Once an agency collects the data for a section of pavement, these data are processed and summarized for reporting. Twenty-seven of the agencies use a uniform increment, such as 0.1 mile; 21 agencies report the data by section; and 6 report data for both.

The majority of agencies, 39, store raw data in PC files, 11 still use hard copy, and 3 store data on tape. Once the data arrive in the office, they are summarized for the reporting section—31 of the agencies store these data on mainframe computers, 19 use PCs, and 1 still uses hard copy.

Overall the current trend in data collection and reporting is to collect IRI data for both wheelpaths, reporting the average of the wheelpaths. The raw data are collected and stored in PC files. In the office, the data for a uniform increment of roadway are processed and reported and the processed data are stored on mainframe computers.

SUMMARY

In the United States and Canada, the road roughness measuring community is progressing toward standardization of data reporting, equipment, and techniques for measuring equipment calibration. Table 13 summarizes agency roughness survey practices.

The IRRE and the HPMS guidelines helped spur the move toward use of the IRI, and have established uniform, practical procedures for calibrating measuring equipment. In addition, the guidelines have established a uniform basis for communication and information exchange among users, and the development of the four classes of roughness survey has related the procedures and equipment being used in terms of accuracy and data reporting.

The current trend in road roughness surveys is to conduct the surveys using a Class II profiler, with the South Dakota type, noncontact acoustic road profiler being the most common. These surveys are performed more frequently on the higher type systems, such as the interstate, with speeds ranging from 45–55 mph. The roughness measurements are collected in both wheelpaths while surveying in one direction on 2-lane roads, and in both outside lanes when surveying 4-lane roadways. The data are reported in IRI for some uniform increment of roadway, while the agencies maintain the data on personal and mainframe computers.

STRUCTURAL CAPACITY

The structural capacity of a pavement denotes the pavement's ability to carry traffic loadings with minimum distress or deformation. A structural evaluation of a pavement can be performed to assess the pavement's structural capacity and to determine the pavement's ability to perform satisfactorily under current and projected traffic loadings. Determination of the structural capacity is useful in providing information for the design and selection of rehabilitation alternates for asphalt concrete overlays and in planning rehabilitation of portland cement concrete pavements to locate possible voids under the slabs and to evaluate load transfer properties at joints.

Agencies can conduct a structural evaluation of an existing pavement by using equivalent thickness values, by measuring surface deflections, or by performing a mechanistic layer analysis. Most of the methods used for structural evaluation require some type of pavement measurements, whether destructive or nondestructive. Destructive tests involving coring and sampling provide pavement layer thickness and material properties are needed; however, nondestructive (NDT) test methods are generally preferred. A majority of the questionnaire respondents have the capability to do this type of testing.

NDT methods evaluate structural capacity by measuring the pavement response to a known applied load. The most commonly used measurement is the surface deflection of the pavement under some type of controlled loading. Equipment in use includes those devices that apply loads by slow-moving known wheel weights and those that use stationary, vibratory, or falling weights. Agencies obtain measurements for peak rebound deflection under an applied load and usually for a measure of the curvature of the deflection basin. These measurements can then be used to estimate the properties of existing layers for use in pavement analysis and rehabilitation design. NCHRP Report 327 (37) details the use of NDT data for this purpose for flexible pavements. NCHRP Synthesis 126 (30) provides a more complete description of deflection equipment.

EQUIPMENT

Equipment is readily available for conducting the three common load application tests. The Benkelman beam is a low-cost method used to measure rebound deflections under a test vehicle as the vehicle moves away from a probe on the end of a static beam. This process is slow and requires lane closure. Several automated versions measure deflections under moving loads in a manner similar to that of a Benkelman beam. These automated processes mechanically place the beam or sensors stationary on the ground and use the moving, carrying vehicle to apply the load. After the deflection measurements are taken, the beam is picked up and advanced to the next measuring point. Examples of this equipment include the California Deflectometer and the La Croix Deflectograph. A second type of equipment, known as a falling weight deflectometer (FWD), drops a known mass from a known distance to impart a load on the pavement. Deflections are then measured with a line of geophones or seismometers. FWDs include the Dynatest FWD, the KUAB FWD, and the Phoenix FWD.

A third type of equipment employs a vibratory load that is generated hydraulically or by counterrotating masses. Deflections under variable applied loadings are also obtained with a line of geophones. The Road Rater and the Dynaflect both employ vibratory loads.

EQUIPMENT TYPES USED

Forty-four of the agencies responding to the questionnaire use one or more of the NDT pieces of test equipment. Two agencies use a Benkelman beam. One agency currently has no equipment but is in the procurement process. Several other agencies also indicated that they are procuring added devices.

Table 14 summarizes the type of equipment in use. A comparison with similar information in *Synthesis 126 (30)* showed a strong increase in use of FWD equipment and reduced use of the vibratory load types, such as the Road Rater or Dynaflect. Reported use of the Benkleman beam also dropped from 14 to 2 users, although the Benkleman beam is still used by a number of the responding agencies.

Most of the agencies use a one- or two-person crew, exclusive of traffic control, to operate equipment during deflection testing. Some agencies use more crew members, but those crew members perform other duties during the deflection test period such as traffic control, faulted joint measurements, and distress evaluation. Ten agencies use a 1-person crew, 24 agencies use a 2-person crew, 8 agencies use a 3-person crew, 4 agencies use a 4-person crew, and 13 agencies use a 5-person crew. Most agencies manage deflection testing as an independent function and provide appropriate traffic control from sources used for other lane-closure purposes.

Traffic control requirements during deflection testing are handled as a lane-closure operation or a slow-moving operation in accordance with the Manual for Uniform Traffic Control Devices (MUTCD). When agencies test high-level highway pavements, they commonly use several arrow boards and shadow vehicles.

Most of the automated deflection-measuring equipment in use has fairly complex instrumentation that requires periodic calibration. Many of the devices contain built-in calibration procedures and external sensor-check procedures that were developed by the manufacturers. The need for equipment calibration, operation requirements, and skilled crew training has influenced the type and extent of deflection-testing programs conducted. In many agencies the deflection-testing function is considered to be research, or special testing.

TABLE 14 STRUCTURAL CAPACITY EQUIPMENT (30)

Туре	1991 Agencies	Number of Units	1986 [*] Agencies	Number of Units
Dynatest	20	39	1	1
KUAB	4	4	-	-
Phoenix	1	1	1	1
Unknown FWD	9	10	4	4
Dynaflect	18	30	20	22
Lane Wells – Geolog	2	5	-	-
Road Rater	5	7	5	5
Benkelman Beam	7	26	17	17

^{*} Does not include Canadian provinces.

FIGURE 10 Deflection reference site.

The SHRP LTPP program included the periodic measurement of deflections on the test section as part of the pavement condition data. The FWD method was selected, and four Dynatest devices were obtained. The program made extensive efforts to evaluate the equipment and establish uniform testing procedures for use across the United States and Canada. In a draft report, the results of the effort describe detailed calibration procedures, which consist of first calibrating the FWD deflection and load transducers against reference devices. This part of the procedure is called "reference calibration." The calibration of the FWD deflection sensors is then further refined by a process called "relative calibration." Though these procedures were written for the Dynatest device, they can be adapted to other FWDs with minor modifications. The site facilities required for the reference calibration have been established in each of the four SHRP regions: St. Paul, MN; Reno, NV; Harrisburg, PA; and College Station, TX.

FIGURE 11 Reference site with FWD in place.

Use of the reference calibration procedures will supplement current calibration procedures and will greatly improve the consistency and reliability of deflection test results among agencies and equipment. Figure 10 shows one of the reference sites in Pennsylvania. Figure 11 shows an FWD positioned on the reference slab.

SURVEY PROCEDURES

Most structural capacity evaluations are performed primarily on a project-level basis. Project-level surveys are localized surveys performed for rehabilitation design purposes, while a network-level survey involves sampling at some interval over a network or entire highway system. Thirty-five of the agencies are conducting tests on a project-level basis, and 13 are conducting both project-level and network-level testing. Two agencies report conducting only network-level testing, and one reports performing only research testing. The number of project related test miles done each year ranges from 12 to 700

TABLE 15 ANNUAL PROJECT TEST MILEAGE

Number of Agencies	Miles
9	0-100
9	100-200
7	201-500
6	501-1,000
1	over 1,000
10	various

miles. Table 15 shows the project related test mileage by various agencies.

Ninety percent of the agencies doing deflection testing perform tests at uniform intervals throughout the project or network section length. Table 16 contains a tabulation of the intervals used.

Eight agencies reported that they used sampling procedures in establishing test locations; however, there was little agreement in the procedures used. The amount of production reported also varied widely—18 of the agencies reported less than 150 data points per day, another 18 reported from 200 to 400 data points per day, 15 agencies were testing up to 100 days per year, and 13 were testing over 100 days per year.

DATA REPORTING AND USE

Of 51 responding agencies, 35 reported that they recorded deflection test data on PCs. Another 5 agencies recorded on tape or a combination of tape and PCs, and 11 used hard copy. Twelve of the states reported that they upload the deflection test data to their mainframes for storage.

The questionnaire replies concerning use of deflection data were not sufficiently detailed to enable more than a general assessment. Twenty-five agencies appear to be using a method to back calculate layer modulus. Others are using empirical relationships to derive overlay requirements, determining remaining life, or convert deflection values to structural equivalencies. At least seven agencies perform routine tests on concrete pavements to evaluate load transfer properties at joints and to locate potential voids under slabs.

While the specific ways in which agencies handled structural capacity data were unclear, the end use of the data could be determined from responses to the questions. Forty-two agencies are using deflection test data for design. An additional two agencies are developing procedures and plan to use the data for design. Nine agencies use deflection test data to assist in establishing seasonal loads, and nine agencies use the data to set load limits. Eight agencies reported using joint load transfer data in concrete pavement rehabilitation planning.

SUMMARY

About 90 percent of the agencies are equipped to perform structural capacity evaluation using automated test equipment

TABLE 16DEFLECTION TEST INTERVALS

Project Level			
Agencies	Intervals		
3	<30 m	(<100 ft)	
8	61-81 m	(200-265 ft)	
14	152-162 m	(500-528 ft)	
5	268-402 m	(880-1,320 ft)	
Network Level	· · · · · · · · · · · · · · · · · · ·		
Agencies	Intervals		
5	<268 m	(<880 ft)	-
1	305 m	(1,000 ft)	
3	1,610 m	(5,280 ft)	

TABLE 17 PAVEMENT STRUCTURAL CAPACITY, UNITED STATES

Agency	Equipment Type	Survey Type	Equipment	Calibration
Alaska	Dynatest-9000 Dynatest-8000	project	no response manufacturer	no response
		project		no response
Arizona	Dynatest	project	manufacturer	annually
Arkansas	Dynatest-8600	network, project	manufacturer	biennially
California	Dynaflect, Lane-Wells GeoLog	project	load cell, test section	annually
Colorado	FWD-Foundation Mechanics	project	manufacturer	annually
Connecticut	Benkleman Beam	project, research	no response	no response
Delaware	no testing			
District of Columbia	Coring			
Florida	FWD, Dynaflect	project, rehabilitation	sensors	monthly
Georgia	Dynatest-8000	project	manufacturer	quarterly
Hawaii	Dynatest	none		
Idaho	Dynatest-8000	network, project	SHRP sites, center	annually
Illinois	Dynatest	project	manufacturer, ASTM	annually
Indiana	Dynaflect,Dynatest	project	SHRP	annually
Iowa	Foundation Mechanics, Road Rater-M400	network	manufacturer, test section	annually
Kansas	Dynaflect, GeoLog	project		monthly
Kentucky	Road Rater-M2000	project	sensors	annually
Louisiana	Dynaflect, FWD	project	no response	no response
Maine	Road Rater-400B	project	sensor check	3 times per year
Maryland	Road Rater, FWD	project	FWD to Florida, RR-sensors	FWD-6 month; RR- monthly
Massachusetts	no testing			
Michigan	KUAB	research	manufacturer	as needed
Minnesota	Dynatest	project	sensor check	3 times per year
Mississippi	Dynaflect, SIE,Inc.	project	Dynaflect setup	twice per day
Missouri	Dynatest	project	sensors	annually
Montana	RoadRater-400B, Foundation Mechanics	project	manufacturer	annually
Nebraska	FWD	project	internal	daily
Nevada	Dynatest+(procuring second)	project	SHRP	annually
New Hampshire	no testing			-
New Jersey	no testing			
New Mexico	nr			
New York	none (procuring)			
North Carolina	Dynatest	project	tower	no response
North Dakota	FWD	project	manufacturer	biennially
Ohio	Dynatest-M8000, Dynaflect	project	sensors	twice per day
Oklahoma	FWD, Benkleman Beam	network, project	sensors	twice per year
Oregon	Dynatest-M8000	project	manufacturer	annually

TABLE 17 (CONTINUED)

		Survey Type	Equipment	Calibration
Agency	Equipment Type	Network/Project	Calibation	Frequency
Pennsylvania	Phoenix-M10000, KUAB-2M-33	project	SHRP	twice per year
Rhode Island	Benkleman Beam	project	no response	no response
South Carolina	Dynatest-M8000	project	relative	varys
South Dakota	Dynaflect-GeoLog	network, project	sensors	3 time per year
Tennessee	Dynatest-M8000	project	manufacturer	every three years to manufacturer
Texas	Dynatest, Dynaflect, Benkleman Beam	network, project	correlate units, plan SHRP	annually; biweekly
Utah	Dynaflect	network, project	standard sections	monthly
Vermont	FWD	network, project	others	no response
Virginia	Dynatest-M8000	project	sensors	bimonthly
Washington	Dynatest-9000	project	sensors	weekly
West Virginia	Dynaflect, GeoLog	project	manufacturer	each use
Wisconsin	KUAB-2M	project	operations program	quarterly
Wyoming	KUAB, Dynaflect	network, project	sensors, plan SHRP	2 to 3 years; SHRP annually

CANADIAN PROVINCES

		Survey Type	Equipment	Calibration
Agency	Equipment Type			
		Network/Project	Calibration	Frequency
Alberta	Dynaflect-DM00E	network, project	equipment manual	three weeks
British Columbia	FWD, Benkleman Beam	yes	relative and absolute	relative monthly; absolute yearly
Manitoba	Benkleman Beam	network, project	none	no response
New Brunswick	Dynaflect	yes	sensors	weekly
Nova Scotia	Dynaflect	project	equipment manual	daily
Ontario	Dynaflect (contract)	project	contractor	no response
Prince Edward Isle	Dynaflect (Geolog)	network	sensors	daily
Quebec	Dynaflect/FWD	network, project	calibration device	daily
Saskatchewan	Benkleman Beam	project	vehicle weighed, beam check	weekly

of the falling weight or vibratory type. Most of the testing is performed to develop data for use in project design rather than for more extensive testing for network PMS users. The types of data analysis being used vary widely as do the reported calibration practices. Table 17 shows the various agency structural capacity testing practices.

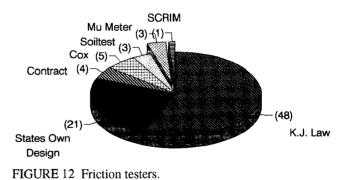
PAVEMENT FRICTION

Meyer and Goodwin have defined pavement skid resistance as the horizontal force developed when a tire that is prevented from rotating slides along the pavement surface (38). Pavement friction, or skid resistance, is usually thought of as a wet pavement characteristic and is important in providing safe operating conditions for vehicles traveling over the pavement. Safety requirements promulgated by FHWA require the states to have specifications and standards that result in the construction of new pavement surfaces with adequate friction characteristics. The state is also required to monitor pavement surfaces in service to ensure that adequate levels of friction are maintained.

The inclusion of pavement friction measurements in a PMS allows an agency to monitor an important safety condition of the pavements on its system. The ability of a roadway to provide an adequate friction level between the pavement surface and a vehicle tire is a primary concern in providing safe operating conditions. Through a PMS database, the level of friction provided on a pavement section can be related to other types of data to identify and evaluate accident locations. Considerable research on the pavement-tire-vehicle relationship has been conducted over the past 25 years, and the technical literature dealing with the topic is extensive (*38, 39, 40*).

Friction measurements can be determined by using a number of methods, including portable friction testers, the use of automobiles with various braking systems, and equipment built to measure friction under operating conditions. The locked-wheel trailer is by far the most popular equipment used for highway pavement friction testing performed in accordance with ASTM test methods. Because of the use of ASTM test methods, friction testing has become the most standardized pavement condition measurement effort conducted by the agencies. ASTM Test Method E-274, and accompanying standards, prescribes equipment, test tires, water application, test speeds, and reporting requirements.

Because friction properties on airport runway pavement are very critical, testing is usually more frequent. Test data are accumulated by traveling at high speeds over continuous lengths of pavement. Several types of available equipment employ a set of special smooth tires set at a specified angle that develops a measured side force as the tires are towed along the pavement. The MuMeter and SCRIM are examples of these towed devices. Several manufacturers build automobiles with yawed tire devices built into the vehicles.


EQUIPMENT TYPES AND OPERATION

The responding agencies currently report using 84 pieces of equipment to measure pavement friction. The locked-wheel trailer is the most predominate and is used by 51 of the 60 agencies responding. Alberta and Arizona make use of the MuMeter, and Quebec uses a SCRIM. Forty-five of the agencies perform tests at 40 miles per hour. Six of the agencies indicated that they also test at higher or posted speeds, and three test at 50 miles per hour. Of the 60 agencies, 50 reported that they test in accordance with ASTM E-274.

Two types of standard test tires are available under ASTM Standards. The most popular is the ribbed tire, which is believed to resemble treaded passenger tires in permitting water to escape from under the tire. However, a number of states expressed a renewed interest in use of the blank, or bald, test tire; this tire can be used to get a better indication of pavement macrotexture and to determine pavement speed gradients, which are used to evaluate the relationship of friction to test speeds. The bald tire is also a better indicator of "worst" condition (i.e., the driver of a vehicle with worn, treadless tires). Of the agencies reporting tire type, 49 use a ribbed test tire and 4 use a bald tire. Of the 49 agencies that use a ribbed tire, 10 also use a bald tire in testing for research, special projects, and/or safety related tests.

Although some variation exists in the manufacture of the locked-wheel testers being used, as shown in Figure 12, the overall process of collecting pavement friction is by far the most standardized pavement condition measurement now being obtained. Figure 13 depicts one of the most common friction testers operated by the Pennsylvania DOT.

Thirty-seven agencies operate their friction test equipment with 2-person crews, 17 use a 1-person crew, and 1 agency has 3 people on the tester.

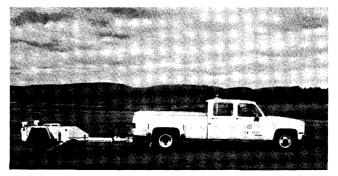


FIGURE 13 Typical friction tester.

Equipment Calibration

Friction-testing equipment requires the same high level of calibration and correlation as other sophisticated test instruments. To ensure that consistent reliable test results are obtained, methods have been developed to routinely calibrate testers on a selected periodic basis. Twenty-eight of the agencies reported that they routinely used calibration methods with force plates employing air bearings, ball bearings, or other devices. One agency used a torque device, and five used selected test surfaces. Figure 14 shows a friction-test trailer wheel sitting on a calibration plate.

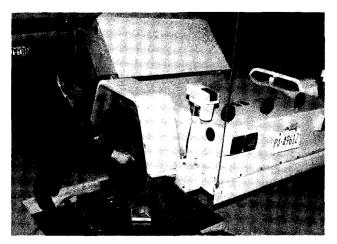


FIGURE 14 Friction test trailer and calibration plate.

Twenty agencies reported that they send their equipment to regional test centers for correction on an annual, biennial, or triennial basis. Six agencies are participating in an ASTM/ARML program where standard calibration is provided at the agency's site.

SURVEY PROCEDURES

Most friction tests are run in the left wheelpath of the lane being tested. The left wheelpath of the traffic lane is considered to receive more wheel passes due to passing maneuvers; because of this, the left wheelpath is more polished, resulting in the lowest friction level found across the lane width. Thirtyfour agencies test in the left wheelpath, eight test in the right, and five agencies test in both wheelpaths. Agencies run tests at various longitudinal intervals. Ten agencies test at a 1-mile interval, 17 test at half-mile intervals, and 11 test between a tenth-of-a-mile and a half-mile. Twelve agencies reported that intervals vary.

On two-lane roadways, 30 agencies test the outside lane and 20 agencies test both lanes. On highways with four or more lanes, 40 agencies report that they test both outside lanes, 6 agencies test all lanes, and 3 agencies test only one lane.

DATA REPORTING

The results of friction tests are reported and stored in a number of ways, with individual test results being the most basic. Forty agencies report on this basis. Thirty-four agencies report on the basis of a section of roadway, and 10 agencies report on a per-mile basis. Many of the agencies use a combination of two or three of the reporting intervals.

Of the agencies reporting, 27 store friction test data on mainframes, 20 agencies use PCs, and 5 use hard-copy reports. Most states indicated that their friction test data are available from a number of storage mediums.

SUMMARY

The majority of the 60 agencies included in the survey have a friction-testing program. Several agencies perform testing by contract, and one agency is in the process of acquiring test equipment. The agencies have a combined number of 84 pieces of test equipment. Equipment maintenance, equipment calibration, and testing are conducted in conformity with welldeveloped, standardized procedures. Table 18 summarizes pavement friction testing by the agencies.

Overall the current agency friction-testing programs appear to be at about the same level of activity as found in previous surveys (18) over the past 10 years. When compared to the collection of roughness, distress, and structural capacity data, the collection of friction data is the most standardized pavement condition information.

The survey questionnaire was not designed to obtain specific information concerning use of friction test data. Six agencies responded that friction test results were included when pavement condition ratings were combined. This would indicate that most agencies use the body of friction test data as an independent factor, or as part of a safety program activity.

TABLE 18 PAVEMENT FRICTION/SKID, UNITED STATES

Agency	Equipment Type	Calibration Method	Calibration Frequency	Comments
Alabama	K. J. Law	force plate, test center	monthly, biennially	
Alaska	contract	no response	no response	
Arizona	Bison Mu Meter	standard surface	daily	
Arkansas	K. J. Law R-30	test track	quarterly	
California	Cox towed trailer	ASTM E-556	as needed, annually, biennially - test center	curves, bridges, intersections
Colorado	K. J. Law	test center	every 2 years	· · · · · · ·
Connecticut	K. J. Law 1290	force plate	yearly	no inventory tests
Delaware	Soil test (modified)	ASTM E-556	annually	·····
Dist. of Columbia	no report for friction testing			
Florida	K. J. Law	force plate, test center	monthly, annually	
Georgia	Soil test	x-y air bearing	yearly	
Hawaii	Acquiring equipment	······································		
Idaho	IDOT locked wheel	ball - bearing platform	monthly	
Illinois	IIIDOT, ASTM	torque arm	every 2 weeks	
Indiana	trailer	calibration track, force plate	force plate monthly	
owa	K. J. Law	air - bearing plate, test pads, test center	weekly, biweekly, triennially	interstate tested annually
Kansas	K. J. Law 1270	no response	no response	
Kentucky	K. J. Law	test center	annually	
ouisiana	K. J. Law 1270	force plate, test center	biennially	
Maine	Me.DOT 2 wheel trailer	ball - bearing platform	annually	······································
Maryland	K. J. Law 8274	force plate	monthly	
Massachusetts	K. J. Law	air - bearing plate	annually	
Michigan	MiDOT 2 wheel trailer	test center	annually	about 10,000 tests per year
Minnesota	K. J. Law	test center	biennially	
Mississippi	K. J. Law 1290	ASTM	annually	not part of PMS, not inventory bas
Missouri	K. J. Law 1270	internal check, test center	triennual	· · · · · · · · · · · · · · · · · · ·
Montana	contract	ASTM E-556, test center	annual to test center	····
Nebraska	K. J. Law 1290	force plate	annually	
Nevada	Cox	field test, test center	every 6 months, annually	· · · · · · · · · · · · · · · · · · ·
New Hampshire	Maine DOT	ARML	every 18 months	······································
New Jersey	ASTM trailer	ASTM	annually	
New Mexico	K. J. Law	test center	biennially	
New York	ASTM trailer	force plate	3 times per year	
North Carolina	K. J. Law 1270, 1290	no response	no response	
North Dakota	contract	force plate	annually	test 1/5 of 7,330 miles biennially
Ohio	K. J. Law, ODOT	test center	annually	
Oklahoma	K. J. Law	on-board check	daily	
Oregon	K. J. Law	test center	undetermined	new test equipment

- 7

TABLE 18 (CONTINUED)

Agency	Equipment Type	Calibration Method	Calibration Frequency	Comments
Pennsylvania	K. J. Law 1270	ASTM E-556	every 6 months	
Rhode Island	K. J. Law 1290	no response	no response	testing by contract with FHWA
South Carolina	K. J. Law 1290	force plate	every 6 months	
South Dakota	K. J. Law	force plate	annually	
Tennessee	K. J. Law	ASTM	annually	
Texas	TexDOT ASTM	test center	annually	
Utah	trailer	test center	biennially	
Vermont	K. J. Law 1290	test center	every 2-3 years	testing by contract with FHWA
Virginia	K. J. Law	force plate	weekly	······································
Washington	Cox	platform, test center	monthly, biennially	
West Virginia	K. J. Law 965	test center	annually	
Wisconsin	K. J. Law	air - bearing plate	monthly	
Wyoming	K. J. Law 1270	test center	biennially	

CANADIAN PROVINCES

Agency	Equipment Type	Calibration Method	Calibration Frequency	Comments
Alberta	Mu Meter MK 3	Mu Meter board	every 2-3 weeks	
British Columbia	British Pendulum	ASTM	special projects	
Manitoba	none			
New Brunswick	none			
Nova Scotia	ASTM trailer	ASTM	prior to use	
Ontario	K. J. Law	platform	annually	
Prince Edward Isle	No response for friction			
Quebec	SCRIM	mechanical/electrical	annually	
Saskatchewan	Saskatchewan Trailer	no response	annually	

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The survey questionnaire dealt with five topics regarding pavement condition: pavement management, distress surveys, roughness surveys, structural capacity evaluation, and friction testing (see Appendix A). Each of the 60 replies from U.S. state agencies and Canadian province agencies was reviewed individually and then tabulated to permit study of the combined practices used in determining pavement condition. As a result of reviewing current literature on pavement condition evaluation practices and the information obtained from the questionnaire response, the following conclusions were made:

• All of the agencies indicated that they have, or are in the process of developing, a PMS and that they are collecting pavement condition data. A majority of the agencies are also actively expanding or enhancing their present systems to improve methods for collecting condition information. Only about half of the agencies have established a written PMS policy.

• The functional responsibility for a PMS, or parts of a PMS, is assigned to many different locations within the organizations of the agencies, as is the custody for various evaluations and information.

• About 85 percent of the agencies store PMS data on a mainframe computer. About half of the agencies indicated that PMS data are maintained in separate files.

• The agencies employ a variety of location reference systems, with about half of the agencies using some form of mileposting. Several agencies indicated that they are going to adopt a link-node, or segment, system that is more adaptable to database management. Some of the agencies using mileposting have not placed mile markers in the field, and others have only marked the interstate or primary mileages.

• All of the agencies collect one or more types of pavement condition information. The most universal types of information collected are roughness and friction data; most agencies collect this information. The measurements of roughness and friction are also the most standardized methods of data collection.

• In response to FHWA-HPMS reporting requirements, agencies have largely moved toward use of IRI units to express roughness measurements. The number of agencies using South Dakota type Road Profiler equipment to collect roughness data has also increased sharply. In 1989, eight states used SD Road profilers; the 1994 survey indicates that 24 states now use the device.

• Agencies generally perform structural evaluations for a project-oriented purpose rather than for PMS network surveys. Deflection test data are used in a variety of ways to determine structural capacity or overlay requirements. Structural testing requires lane-closure traffic protection commensurate with the type of facility being tested, and test results are sensitive to temperature, season, and moisture conditions. Testing meth-

ods and interpretation of data are exacting and timeconsuming, which limits the capability to acquire the amount of data needed for a network PMS.

• Almost all of the agencies have friction-testing equipment and conduct tests in conformance with ASTM standards. Many of the agencies have not integrated friction activities into their PMS, and most of the test programs are oriented toward accidents, research, special projects, or materials evaluation.

• The greatest variation in the type and amount of data collected, the method of collection, and the ways the data are used occurs in the area of pavement distress. Most agencies have developed or revised reasonably current manuals for use in conducting distress surveys; however, there is little standardization in the types, extents, and severity of distress data collected. Survey procedures vary widely—from observation through the windshield of a moving vehicle to detailed automated surveys. There is also little uniformity in the way distress data are used in developing pavement condition ratings.

RECOMMENDATIONS

Based on the conclusions drawn during the preparation of this synthesis, the following are suggested practices for determining pavement condition.

• It appears that PMSs will continue to be enhanced and become more fully developed in the coming years. Agencies will then review the function and organizational location for the assignment of PMS responsibility. As condition data improve in quality, the PMS broadens to serve a wide variety of functions within an agency, the capabilities and services of a PMS can be disseminated and easily obtained.

• Agencies would be well advised to review their location reference system practices. It is important to collect good PMS data, but those data also need to be accurately related to field location. The establishment of a location referencing system is central to the accuracy of data collection and the reliability of the information output. Manageable sections of homogeneous pavements with similar traffic and location can be established and adequately marked in the field to permit collection of site-specific data and to allow users to identify the source of information in the field.

• The degree of standardization being developed in roughness and friction evaluation might also be achieved in distress and structural evaluation. Better general agreement on some of the basic distress types, and on the extent and severity to be determined, would facilitate the exchange of information in pavement performance and evaluation between agencies. A reasonable consensus should also be attempted in the use of deflection test data.

• Extensive research and development has been directed at establishing the procedures for pavement condition evaluation

being used in the LTPP project as part of the SHRP. Several of the agencies have adopted the SHRP distress manual and are using other SHRP methods that are applicable to PMS. Agencies are encouraged to incorporate SHRP methods to facilitate the exchange of pavement condition information and to use the benefits that accrue from the SHRP effort.

REFERENCES

- "A Ten Year National Highway Program," A Report to the President, The President's Advisory Committee on a National Highway Program, January 1955.
- 2. *Highway Statistics, 1988,* U.S. Department of Transportation, Federal Highway Administration, Washington, D.C.
- "Needs of Highway Systems," Letter from the Secretary of Commerce, U.S. Government Printing Office, House Document No. 120, March 1955.
- 4. "Title 1—Federal-Aid Highway Act, 1956," Public Law 627, Approved June 29, 1956.
- Highway Research Board Special Report 61A: The AASHO Road Test, Publication 816, National Academy of Sciences, National Research Council, Washington, D.C. 1961.
- Highway Research Board Special Report 18: The WASHO Road Test, Part 1: Design, Construction, and Testing Procedures, National Academy of Sciences, National Research Council, Washington, D.C., 1954.
- Highway Research Board Special Report 22: The WASHO Road Test, Part 2: Test Data, Analyses, Findings, National Academy of Sciences, National Research Council, Washington, D.C., 1955.
- 8. Carey, W.N., Jr. and P.E. Irich. *Highway Research Board Bulletin 250: The Pavement Serviceability-Performance Concept*, pp.40–58, 1960.
- 9. *Pennsylvania Highway Today and Tomorrow*, Pennsylvania Department of Highways, Harrisburg, November 1950.
- 10. Haas, R. and W.R. Hudson, *Pavement Management Systems*, McGraw-Hill, Inc., New York, NY, 1978.
- Hudson, W.R., R. Haas, and R.D. Pedigo, NCHRP Report 215: Pavement System Development, Transportation Research Board, National Academy of Sciences, Washington, D.C., 1979.
- Peterson, D.E., NCHRP Synthesis of Highway Practice 135: Pavement Management Practice, Transportation Research Board, National Research Council, Washington, D.C., 1987.
- Guidelines on Pavement Management, American Association of State Highway and Transportation Officials, AASHTO Joint Task Force on Pavements, Washington, D.C., 1985.
- AASHTO Guidelines for Pavement Management Systems. American Association of State Highway and Transportation Officials, July 1990.
- Paterson, William D.O. and T. Scullion, "Information Systems for Road Management: Draft Guidelines on System Design and Data Issues," The World Bank, Washington, D.C., September 1990.
- Federal-Aid Highway Program Manual, Volume 6, Engineering and Design: Section 4, Pavement Management and Design, Subsection 1, Pavement Management and Design Policy, U.S. Department of Transportation, Federal Highway Administration, Washington, D.C., March 6, 1989.
- Highway Performance Monitoring Report Field Manual, U.S. Department of Transportation, Federal Highway Administration, Washington, D.C., 1987.
- Dahir, Sabbir H.M. and W.L. Gramling, NCHRP Synthesis 158: Wet Pavement Safety Programs, Transportation Research Board, National Research Council, Washington, D.C., July 1990.

- Shahin, M.Y., M.I. Darter, and S. D. Kohn, *Development of* a Pavement Maintenance Management System, Vol. I: Airfield Pavement Condition Rating, AFCEC-TR-27, U.S. Air Force Civil Engineering Center, November 1976.
- Shahin, M.Y., M.I. Darter, and S.D. Kohn, *Development of a Pavement Maintenance Management System*, Vol. II: Airfield Pavement Distress Identification Manual, AFCEC-TR-27, U.S. Air Force Civil Engineering Center, November 1976.
- Smith, R.E., M.I. Darter, and S.M. Herrin, *Highway Pavement Distress Identification Manual for Highway Condition* and *Quality of Highway Construction Survey*, U.S. Department of Transportation, Federal Highway Administration and Transportation Research Board, Washington, D.C., March 1979.
- Lytton, R.L., J.B. Rauhut and M.I. Darter, *Long Term Pavement Monitoring Data Collection Guide*, U.S. Department of Transportation, Federal Highway Administration, Washington, D.C., May 1985.
- Zaniewski, J.P., S.W. Hudson and W.R. Hudson, *Pavement Condition Rating Guide*, U.S. Department of Transportation, Federal Highway Administration, Washington, D.C., May 1985.
- Distress Identification Manual for the Long-Term Pavement Performance Studies, Report No. SHRP-LTPP/FR-90-001, Strategic Highway Research Program, National Research Council, Washington, D.C., 1990.
- Hudson, W.R., G.E. Elkins, W. Uddin, and K.T. Reilly, *Improved Methods and Equipment to Conduct Pavement Distress Surveys*, Report No. FHWA-TS-87-213, U.S. Department of Transportation, Federal Highway Administration, Office of Implementation, Turner-Fairbank Highway Research Center, McLean, VA, April 1987.
- American Public Works Association Research Foundation, Draft, "APWA PAVER Implementation Manual," April 1983.
- Darter, M.I., J.M. Becker, M.B. Snyder, and R.E. Smith, NCHRP Report 277: Portland Cement Concrete Pavement Evaluation System, COPES, Transportation Research Board, National Research Council, Washington, D.C., September 1985.
- Proceedings of the Automated Pavement Distress Data Collection Equipment Seminar, June 12–15, 1990, Iowa State University Extension, Iowa Department of Transportation, U.S. Department of Transportation, Federal Highway Administration, 1990.
- Fundakowski, R.A., "Video Image Processing for Evaluating Pavement Surface Distress, Final Report," NCHRP Project 1–17, 1991, Loan Copy Available.
- Epps, J.A. and C.L. Monismith, NCHRP Synthesis of Highway Practice 126: Equipment for Obtaining Pavement Condition and Traffic Loading Data, Transportation Research Board, National Research Council, Washington, D.C., 1986.
- Highway Research Board Special Report 61E: The AASHO Road Test, Report 5, Pavement Research, National Academy of Sciences, National Research Council, Washington, D.C., 1962.

- Janoff, M.S., J.B. Nick, P.S. Davit, and G.F. Hayhoe, NCHRP Report 275: Pavement Roughness and Rideability, Transportation Research Board, National Research Council, Washington, D.C., 1985.
- Janoff, M.S., NCHRP Report 308: Pavement Roughness and Reliability Field Evaluation, Transportation Research Board, National Research Council, Washington, D.C., 1988.
- 34. Sayers, M.W., T.D. Gillespie, and W.D.O. Paterson, World Bank Technical Paper Number 46: Guidelines for Conducting and Calibrating Road Roughness Measurements, The International Bank for Reconstruction and Development/The World Bank, Washington, D.C., 1986.
- Gillespie, T.D., et al, NCHRP Report 228: Calibration of Response-Type Road Roughness Measuring Systems, Transportation Research Board, National Research Council, Washington, D.C., 1986.
- 36. Sayers, M.W., T.D. Gillespie, and C. A.V. Queiroz, World Bank Technical Paper Number 45: The International Road

Roughness Equipment, The International Bank for Reconstruction and Development/The World Bank, Washington, D.C., 1986.

- Lytton, R.L., F.P. Germann, Y.J. Chou, and S.M. Stoffels, NCHRP Report 327: Determining Asphalt Concrete Pavement Strength Properties by Non-Destructive Testing, Transportation Research Board, National Research Council, Washington, D.C., June 1990.
- Meyer, W.E. and W.A. Goodwin, *NCHRP Synthesis 14: Skid Resistance*, Transportation Research Board, National Research Council, Washington, D.C., 1972.
- Kummer, W.H. and W.E. Meyer, NCHRP Report 37: Tentative Skid Resistance Requirements for Main Rural Highways, Transportation Research Board, National Research Council, Washington, D.C., 1967.
- Zeeger, Charles V., NCHRP Report 91: Highway Accident Analysis Systems, Transportation Research Board, National Highway Research Council, Washington, D.C., July 1982.

APPENDIX A

Survey Questionnaire

NCHRP Synthesis Topic 22-07 Survey

PART A - General Pavement Management

Pavement condition data are normally collected uniformly across a given functional system or network. The entire system is usually made up of links or sections of various lengths which are managed as units. The following questions are directed at your agency's current method of collecting, storing and using pavement condition data. Subsequent parts of the questionnere deal with specific types of condition data including distress, roughness, structural capacity and friction.

Name of agency:	
Name of respondent:	
Title:	
Address:	

- A-1 Do you have a pavement management system in your agency? yes / no
- A-2 Does your agency have an established policy or procedural statement concerning pavement management? yes / no
- A-3 How do you store your agency's roadway information?
 - Hard copy ____ Personal computer ____ Main frame ____ Other ____

Phone number:

A-4 If your files are computerized, how is the information stored and accessed?

Separate files
Some files can be combined
All files are accessible (customized reports)
Are PMS files "On Line"

A-5 What type of location referencing system do you use for your road inventory?

Link-node (segments)	
Control section	
Mile posting	
Stationing	
Other	

A-6 Are location references physically marked in the field? yes / no How are they marked? NCHRP Synthesis Topic 22-07 Survey

Agency Reporting:

T

Part A. Continued

A-7 What condition data are collected for the sections in the road inventory?

Roughness	
Friction	
Structural capacity	
Distress	
Other	

- A-8 Briefly describe how and where pavement condition information is available in your agency.
- A-9 Are pavement condition data used in planning or scheduling maintenance work?

Daily
Weekly
Annually
Not used
Comments:

A-10 Are pavement condition data used in project design? yes / no

Comments: _____

A-11 Are pavement condition data used in planning and budgeting? yes / no

Comments:

NCHRP Synthesis Topic 22-07 Survey

PART B - Pavement Distress Surveys

Please answer the following questions about your agency's pavement distress survey activities as part of pavement management operations.

Name of agency: Name of respondent:	
Title:	
Address:	
Phone number:	

B-1 Does your agency perform distress surveys? yes / no What is the frequency of your distress surveys?

B-2 How are the distress surveys performed?

Windshield drive through	Speed
Shoulder drive through	Speed
Walking	
Automated	Speed

B-3 Do you have a manual that describes your distress survey procedures and indicates the type, severity and extent of distress collected? yes / no

If you have a manual and you will return a copy with this questionaire, please skip to question B-9 and check "Manual enclosed".

Manual enclosed

B-4 How do you subdivide your pavements into suitable sections for the collection of distress data?

Link-node (segment)	
Control sections	
Homogeneous length*	
Predetermined length	
Other	

* If you answered homogeneous length, what is your definition of homogeneous length?

B-5 Do you perform a 100% survey or do you survey sample lengths? 100% / sample lengths If you answered sample lengths, please explain your procedures to select your sample.

What are your sample lengths?

NCHRP Synthesis Topic 22-07 Survey

Agency Reporting:

PART B. Continued

B-6 What distress information is collected for bituminous surfaces?

DISTRESS TYPES	UNITS OF MEASURE	SEVERITY LEVELS	EXTENT LEVELS
· · · · · · · · · · · · · · · · · · ·			
·····			
			[

.

NCHRP Synthesis Topic 22-07 Survey

Agency Reporting:

NCHRP Synthesis Topic 22-07 Survey

Agency Reporting:_____

•

.

PART B. Continued

PART B. Continued

B-7 What distress information is collected for jointed concrete pavement?

DISTRESS TYPES	UNITS OF MEASURE	SEVERITY LEVELS	EXTENT LEVELS
	· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·			

. .

B-8 What distress information is collected for continuously reinforced concrete pavement?

DISTRESS TYPES	UNITS OF MEASURE	SEVERITY LEVELS	EXTENT LEVELS
		· · · · · · · · · · · · · · · · · · ·	

NCHF	RP Synthesis Topic 22-07 Survey Agency Reporting:	NCHR	P Synthesis Topic 22-07 Survey Agency Reporting:
Part B	. Continued	Part B.	Continued
B-9	If you include rutting in your distress survey, how do you obtain the information?	B-19	What type of rating or index is produced from the distress survey?
B-10	Observation Measurement If you measure rutting, please briefly describe your procedure.		Maintenance needs Distress index (PCI, PCN, PCR, etc.) Priority rating Other
		B -20	Please describe your method (formulae) for determining a rating or index, including weight factors.
B-11	How are distress data recorded in the field?		
B-12	Paper form Preprinted paper form Electronic recording Type Other method If you use automated distress surveys, please indicate the system used.	B-21	Do you combine a distress information index with other pavement condition information? Roughness Friction Structural Other
		B-22	Please describe your method (formulae), including weight factors, for determining a combined condition rating (Composite Index).
B-13	What size crews are used for distress surveys?		
B-14	What is the crew productivity? miles/day		
B-15	Are the crews given distress survey training? yes / no		
B-16	If yes, how long is the training period?		
B-17	Do you have a quality assurance procedure to monitor the information collected? yes / no		
B-18	If yes, please briefly describe the procedures.		

۰, **۱**

CH	RP Synthesis Topic 22-07 Survey	NCHR	P Synthesis Topic 22-07 Survey Agency Reporting:
1 (C - <u>Pavement Roughness Surveys</u>	Part C.	. Continued
	Please answer the following questions about your agency's pavement roughness survey.	C-6	How are the data stored?
	Name of agency:		Hard copy
	Name of respondent:		Personal computer Main frame
	Title:Address:		
		C-7	What procedures are used to calibrate or correlate the equipment?
	Phone number:		
1	What type of equipment does your agency use to collect roughness data?		
	Name, type and manufacturer Number of units		
2	How frequently do you survey your pavements?		
	Network Number of miles Frequency		
	Network Number of miles Frequency		
	<u> </u>		
3	What data are collected?		
	Units (IRI, etc.)		
	Measurement interval (data points per unit)		
	Right wheel path		
	Average		
	Direction: 2 lane: one / both 4 lane: one / both outside / all		
4	How are the data reported?		
	Uniform increments		
	Section length summary		
	Hardcopy Computer disk Tape Other		
5	What are the operating characteristics?		
	Usual survey speed		
	Average lane miles per day		

- 🦝

43

NCHRP Synthesis Topic 22-07 Survey

PART D - Pavement Structural Capacity

Please answer the following questions about your agency's activities in performing pavement structural capacity evaluations.

Name of agency:	 	
Name of respondent:		
Title:		
Address:		
Phone number:		
XX/I and down a set of a set of a set of a	 	

D-1 What type of equipment does your agency use to evaluate pavement structural capacity?

Name, type and manufacturer	Number of units	Crew size
-----------------------------	-----------------	-----------

D-2 Where do you perform structural evaluations?

Number of miles Frequency

Network surveys	
Project surveys	

D-3 What are the operating characteristics?

Uniform testing throughout sections _____ Interval _____ Sampling program _____ Sample size _____ Interval _____ Sample location _____ Average data points produced per day _____ Days per year testing ______ Traffic control used _____

D-4 How are the data reported?

Drop point				
Test location				
Section				
Hardcopy	Computer disk	Tape	Other	

•

•

NCHR	P Synthesis Topic 22-07 Survey	Agency Reporting:_
Part D	. Continued	
D-5	How are the data stored?	
	Hard copy Personal computer Main frame	
D-6	How are the data analyzed?	
	Back calculation of layer moduli Other	
	Comment:	
D-7	How is your structural evaluation equip	oment calibrated?
	How frequently?	
D-8	How are the data used?	
	Overlay design Seasonal load limits	
	Load limitsOther	
	Comment:	
		-

.

.

44

-

.

NCHRP Synthesis Topic 22-07 Survey

PART E - Pavement Friction Testing

Please answer	the following	questions abo	ut your agency	's activities in	performing	pavement friction
testing.						

Name of agency:			
Name of respondent.			
Address:			
Phone number:			
What type of equipment does y	our agency use to coll	ect friction data?	
Name, type and manufacturer	Number of units	Crew size	
	<u></u>		
What are the operating character	eristics?		
Usual Test Speed	Test by ACTL stor	dandal	
Usual Test Speed	Test by ASTIM star	idards? yes / no	
Lane miles tested per day	r		
Number of days testing per year	r		
Number of days testing per year Tire type used: ribbed / bald / l	r		
Number of days testing per year Tire type used: ribbed / bald / l If bald or both, please explain.	r both		
Number of days testing per year Tire type used: ribbed / bald / l If bald or both, please explain.	r both		
Number of days testing per year Tire type used: ribbed / bald / l If bald or both, please explain.	r both		
Number of days testing per year Tire type used: ribbed / bald / l If bald or both, please explain.	r both		
Number of days testing per year Tire type used: ribbed / bald / If bald or both, please explain. Calibration method	r both		
Number of days testing per year Tire type used: ribbed / bald / l If bald or both, please explain. Calibration method What data are collected?	rboth		
Number of days testing per year Tire type used: ribbed / bald / If bald or both, please explain. Calibration method What data are collected? Testing interval	rboth		
Number of days testing per year Tire type used: ribbed / bald / l If bald or both, please explain. Calibration method What data are collected? Testing interval Test in right wheel path	r both		
Number of days testing per year Tire type used: ribbed / bald / l If bald or both, please explain. Calibration method What data are collected? Testing interval Test in right wheel path	r both		
Number of days testing per year Tire type used: ribbed / bald / l If bald or both, please explain. Calibration method What data are collected? Testing interval Test in right wheel path Test in left wheel paths	r both		
Number of days testing per year Tire type used: ribbed / bald / l If bald or both, please explain. Calibration method What data are collected? Testing interval Test in right wheel path Test in left wheel path Test in both wheel paths Direction: 2 Lane - one /	r both	Frequency	
Number of days testing per year Tire type used: ribbed / bald / l If bald or both, please explain. Calibration method What data are collected? Testing interval Test in right wheel path Test in left wheel path Direction: 2 Lane - one / 4 or more lane:	r both	Frequency	
Number of days testing per year Tire type used: ribbed / bald / l If bald or both, please explain. Calibration method What data are collected? Testing interval Test in right wheel path Test in left wheel path Test in both wheel paths Direction: 2 Lane - one /	r both	Frequency	
Number of days testing per year Tire type used: ribbed / bald / I If bald or both, please explain. Calibration method What data are collected? Testing interval Test in right wheel path Test in left wheel path Direction: 2 Lane - one / 4 or more lane: How are the data reported? Individual tests	rboth	Frequency	
Number of days testing per year Tire type used: ribbed / bald / l If bald or both, please explain. Calibration method What data are collected? Testing interval Test in right wheel path Test in left wheel path Direction: 2 Lane - one / 4 or more lane:	r both	Frequency	

E-5 How are are the data stored?

Hard copy _____ Personal computer _____ Main frame _____

۰ ×

APPENDIX B

General Pavement Management

-

-

State/Agency	Have a Pavement	PMS Policy		Computer Files	Location Reference	References	Roughness		Structural	Distress
	Management System			Accessed	System	Marked		Information	Information	Information
	A-1	A-2	A-3	A-4	<u>A-5</u>	A-6	A-7			
labama	yes	no	mf, pc	online	milepost, control section	y-mp	yes	yes	project	yes
laska	yes	yes	mf	online	segment	y-ref. mo.@15m	yes	yes	no	yes
rizona	yes	yes	mf, pc	partial online	milepost	y-mp	yes	yes	no	yes
rkansas	ves	no	mf, pc, hc	online	milepost	mileposts	yes	yes	no	yes
alifornia	ves	yes	mf	partial online	milepost	markers		no response		•
olorado	ves	усs по		•			yes		no response	yes
	2		mf, pc, hc	separate files, reports		reference points	yes	no	no	yes
onnecticut	yes	no	mf, pc	online	milepost	no	yes	proposed	no	yes
elaware	yes	yes	рс	separate files	milepost	no	yes	yes	no	yes
istrict of Columbia	r	no response	pc	online	street, block	intersections	yes	selected	no response	yes
lorida	yes	yes	mf	online	milepost	no	yes	yes	rehabilitation	yes
eorgia	yes	no response	mf, hc	separate files	milepost	mileposts	no	yes	no	yes- flexible
lawaii	yes	no	pc, hc	separate files	odometer miles	no	yes	no	по	yes
taho	yes	yes	mf, pc, hc	online	milepost, segment	mileposts	yes	yes	no	yes
linois	yes	по	mf	Interstate online	segment (in development)	mileposts	yes	no	no	yes
ndiana	no	по	mf, pc, hc	separate files	milepost	mile markers	yes	yes	no	no
owa	yes	yes	mf, hc	online	control section	mileposts	yes	yes	yes	yes
ansas	yes	yes	mf	online	milepost	no	yes	no	по	yes
entucky	ves	yes	mf	separate files	milepost	mileposts	yes	no response	no response	yes
ouisiana	yes	yes	mf, pc	main frame link	control secction	no- physical features				-
faine	ves			separate files			yes	yes	no	yes
	P ·	yes	mf, pc	1	segment	no	yes	no	no	yes
faryland	yes	no	pc	relational	milepost	no- crossroads	yes	yes	no	yes
lassachusetts	yes	yes	pc, hc	no response	milepost	yes- 0.1 mile	yes	yes	no	yes
4ichigan	yes	no	mf	separate files	control section, milepost	no (video link)	yes	yes	no	yes
linnesota	yes	yes	mf	online	reference post (milepost)	mile marker	yes	no	yes	yes
lississippi	yes	no	pc	separate files	segment, county log mile	yes- pavement stripe	yes	request	request	yes
lissouri	yes	no	mf, pc, hc	online	log mile	no- key events	yes	no	no	yes
Iontana	yes	yes	mf, hc	separate files	milepost	mileposts	yes	yes	yes	yes
lebraska	ves	no	mf, pc, hc	online	control section, milepost	reference posts	yes	yes	project	yes
levada	ves	yes	mf, hc	separate files	milepost	mile markers	yes	yes	no	yes
lew Hampshire	yes	по	mf, pc	separate files	station	no	yes	sample	по	yes
lew Jersey	yes	yes	mf	separate files	milepost	mileposts	yes	ves	no	yes
lew Mexico	yes	yes	mf	online	all	mileposts	yes	yes	no	yes
New York	yes	-	mf	separate files	control section, milepost	mileposts	•	-		
	1 ²	yes					yes	request	no (planned)	yes
North Carolina	yes	no	mf, pc, hc	separate files	milepost	mileposts- Interstate only	yes	yes	yes	yes
lorth Dakota	yes	no	pc	separate files	milepost	reference posts	yes	yes	no	yes
Dhio	yes	yes	mf	separate files	county route log	mile markers	yes	yes	no	yes
Oklahoma	no	no	mf, pc, hc	separate files	county control section, subsection	no	yes	yes	no	yes
Dregon	yes	yes	mf, pc.hc	separate files	milepost	mileposts	yes	yes	no	yes
ennsylvania	yes	yes	mf	online	segment	segment markers	yes	yes	no	yes
thode Island	yes	yes	mf	no response	milepost	no	yes	yes	no	yes
outh Carolina	ves	по	mf, pc	online	milepost	mileposts- Interstate only	ves	ves	yes	ves
outh Dakota	yes	yes	mf	seperate files	milepost	reference posts	yes	yes	yes	yes
ennessee	ves	по	mf	separate files	segment	no	ves	yes	no	PCR
'exas	no response	no	mf	online	milepost, control section	reference posts	yes	yes	yes	yes
itah			mf, pc, hc	separate files	milepost	•				
	yes	yes		separate files		mileposts mileposts	yes	yes	yes	yes
ermont	yes	yes	pc	•	milepost, control section	•	yes	yes	yes	yes
'irginia	yes	yes	mf, pc	online	milepost (planning to use segments)	Interstate only	yes	request	request	yes
Vashington	yes	no	mf, pc	pc copies distributed	milepost	mileposts (partial)	yes	yes	no	yes
Vest Virginia	yes	no	pc	custom reports	milepost	reference posts	yes	no	no	PCR
Visconsin	yes	no	mf, hc	online	features as reference points	no	yes	yes	no	yes
√yoming	partial	no	mf, pc	limited online	milepost	mileposts	yes	yes	yes	no (planned
lberta	yes	yes	mf, hc	online	control sections, segments	no	yes	yes	yes	yes
ritish Columbia	yes	no	hc, (future PC)	no	segments, kilometer posts	kilometer posts	yes	no	yes	yes
fanitoba	no	no	mf, hc	seperate files	mileposts, control sections	4 kilometers when marked		no	yes	yes
lew Brunswick	ives	ло	mf, pc, hc	seperate files	control sections	control section signs	yes	no	yes	yes
	P					-	•			-
lova Scotia	no (developing)	no	mf, pc, hc	seperate files	mileposts, control sections, segments		yes	yes	yes	yes
Intario	yes	yes	mf, hc	online	linear reference system	no- landmarks	yes	no	no	yes
rince Edward Isle	yes	no	mf	online	control sections, subsections	yes	yes	no	yes	yes
uebec	no	no	mf	seperate files	segments	segments	yes	no	yes	yes
Saskatchewan	yes	yes	mf, pc, hc	online	control sections, stations	no	yes	yes	yes	yes

•

.

- .

Availablefor Maintenance for Design AvailablePlanning, Buggerin AvailableAlabamaannual reportannualrepyesAlakamainframeannualnoyesAlakamainframeannualnoyesArizonaMaterials Sectionno (developing) yesyesyesArkansasProgram and Contracts Divisionno (developing) yesyesyesColoradoEngineering Districts, Maintenance SectionweeklyyesyesColoradoEngineering Districts, Maintenance DivisionnonoyesDistrict of ColumbDegramment of Public WorksannualyesyesFloridamainframe, reportsnononoyesIldahomainframeannualyesyesyesIldahomainframeannualyesyesyesIldahomainframeannualyesyesyesIldahomainframenonononoIldahomainframenonononoIldahamainframenonononoIldahamainframeannualyesyesIldahamainframenonononoIldahamainframenonononoIldahamainframenonononoIldahamainframenonononoIldahapavenentMaagement Section <th>State/Agency</th> <th>Condition Data</th> <th>Data Used</th> <th>Data Used</th> <th>Data Used for</th>	State/Agency	Condition Data	Data Used	Data Used	Data Used for
Alabama annual report annual res Alaka mainfarme annual res Arizona Materials Section no (developing) yes yes Arkanas Program and Contracts Division no (developing) yes yes Colorado Engineering Districts, Maintenance Section annual yes yes Colorado Engineering Districts, Maintenance Section annual yes yes Delaware no response no no yes yes District of Columb Department of Public Works annual yes yes Florida mainfarme, reports no no yes yes Ildabo mainfarme annual yes yes yes Ildabo mainfarme annual yes yes yes Ildaba mainfarme annual yes yes yes Ildaba mainfarme annual yes yes yes Ildaba mainfarme geneent Anal yes yes yes <td></td> <td>Available</td> <td>for Maintenance</td> <td>for Design</td> <td>Planning, Budgetin</td>		Available	for Maintenance	for Design	Planning, Budgetin
Alaka Arizona Arizona Materials Sectionannual no (developing) yesyesyesArkansa Colorado California Pomss, Maintenance Divisionno (developing) yesyesyesColorado Connecticut reportspers, Maintenance Devision annual yesyesyesColorado Connecticut reportsnome yesyesyesDelaware Consponse reportsnome yesyesyesDistrict of Columbia Denatiframe, reports mainframe, lanned reportsnome yesyesFlorida Materials refus mainframe reportsnom yesyesFlorida Materials refus mainframe mainframenom yesyesFlorida Materials refus mainframe mainframenom yesyesIllinois mainframe mainframe mainframenom nom yesyesIllinois mainframe mainframe mainframenom nom yesyesIndiana Research Divisionannual yesyesIndiana Pavement Management Engineer masachustetnom nom nom nomnom nom nom nom nom nomMariana Masachustet Masachustetpavement Management Section mainframe manual yesyesyesMoriana Pavement Management Section mainframe masachustetnominal yesyesyesMoriana Pavement Management Section mainframe manual masachustetyesyesyesMoriana Pavement Management Section mainframe pavement Management System, mainframe man		A-8	A-9	A-10	A-11
Alaka Arizona Arizona Materials Sectionannual no (developing) yesyesyesArkansa Colorado California Pomss, Maintenance Divisionno (developing) yesyesyesColorado Connecticut reportspers, Maintenance Devision annual yesyesyesColorado Connecticut reportsnome yesyesyesDelaware Consponse reportsnome yesyesyesDistrict of Columbia Denatiframe, reports mainframe, lanned reportsnome yesyesFlorida Materials refus mainframe reportsnom yesyesFlorida Materials refus mainframe mainframenom yesyesFlorida Materials refus mainframe mainframenom yesyesIllinois mainframe mainframe mainframenom nom yesyesIllinois mainframe mainframe mainframenom nom yesyesIndiana Research Divisionannual yesyesIndiana Pavement Management Engineer masachustetnom nom nom nomnom nom nom nom nom nomMariana Masachustet Masachustetpavement Management Section mainframe manual yesyesyesMoriana Pavement Management Section mainframe masachustetnominal yesyesyesMoriana Pavement Management Section mainframe manual masachustetyesyesyesMoriana Pavement Management Section mainframe pavement Management System, mainframe man					
ArizonaMaterials Sectionno (developing)esesArkanassProgram and Contracts Divisionannualno (plan)no (plan)no (plan)CaliforniaPMS, Maintenance DivisionannualyesyesColoradotreportsannualyesyesDatavareno responsenonoyesDatistei of ColumbiaDepartment of Public WorksannualyesyesFloridamainframe, planed reportsnonoyesyesFloridamainframenononononoIdahomainframenonyesyesyesIllinoismainframenononononoIowamainframenonyesyesyesKentuckyPavement Management Branch, mainframenoyesyesAtamasaMaterials and Research, LANannualyesyesKanasaMaterials and Research, CANannualyesyesMainePavement Management Branch, mainframenoyesyesMarylandannual reportannualyesyesMasachuettsTraffe, Planning, DevelopmentannualyesyesMississipiPubment Management Scion, Planning DevelopmentannualyesyesMississipiResarch ad Development, PlanningnoyesyesMississipiResarch ad DevelopmentannualyesyesMississipi <td< td=""><td></td><td>•</td><td></td><td></td><td></td></td<>		•			
ArkanasPogram and Contracts Divisionno (planning)no (plann)no (plann)ColloradoEngineering Districts, Maintenance SectionannualyesyesColoradoreportsannualyesyesDelawareno orsponsenoyesyesDistrict of ColumbiaDepartment of Public WorksannualyesyesFloridamainframe, planned reportsnoyesyesFloridaMaterials, resportsnoyesyesIdadomainframenoyesyesIdadomainframenoyesyesIdadomainframenonononoIdadaResearch DivisionnonononoIdavamaterials, reportsannualyesyesIdanaResearch DivisionnonononoIdavamainframenonononoIdavamainframenonononoIdavamainframenonononoIdavamainframenonononoMaraPavement Management EngineernononoMarianPavement Management EngineerannualyesyesMarianPavement Management EngineernononoMarianPavement Management EngineernononoMarianPavement Management StocionannualyesyesMa					•
California PMS, Mainteance Division annual per second p					
Colorado Connection reportsExplicition porsponseweekly pesyes yesDelavare Connection District of Columbia Department of Public Worksannual pesyesyesDistrict of Columbia Department of Public Worksannual pesyesyesGeorgia Hawaiimainframe, reports mainframeno noyesyesIdaho Inainframe Inframemainframe mainframeno noyesyesIdaho Inainframe Inframeno mainframeno no nono nono noIdaho Inframe Inframemainframe mannual yesyesyesIndiana Neasearch Divisionannual pesyesyesIdaha Inframe Inframe Inframe Masachuettsannual pesyesyesIndiana MasachuettsPavement Management Engineer manual pesno yesno yesno yesMarian MasachuettsPavement Management Scion pes manual pesannual yesyesyesMithigan pe linked mainframe mainframe, report Mississiptannual pesyesyesMississipti Pavement Management Scion Mississipti Pavement Management Scion pes pavement Management System mainframe pavement Management System mainframe manual pesyesyesNew Jack New Jack New Jack Pavement Management System mainframe mainframe manual pesyesyesNew Jack New Jack New Jack Pavement Management System mainframe mannal pes<					
Connecticutreports portsannualyesyesDelawatenonoyesyesDelawatenonoyesyesIbritci of ColumbiaDepartment of Public WorksannualyesyesEloridamainframe, planed reportsnonoyesyesHawaiiMateriak, Testing and Laboratory, pc, hcannual (special)nonoIdahomainframenoyesyesIllinoismainframenononoIowamainframenononoIowamainframenononoIowamainframenononoIowamainframenononoIowamainframenoyesyesVentuckyPavement Management Bench, mainframenononoIowaannual reportannualyesyesMarjandannual reportannualyesyesMasachustersTraffe, Panning, DevelopmentannualyesyesMissispipiResearch and Development, PlanningnononoMissouriPavement Management SccionannualyesyesMissouriPavement Management SccionannualyesyesNew MarybitPavement Management SccionannualyesyesNew MarybitPavement Management SccionannualyesyesNew MarybitPavement Management Sccion<		1 .		-	•
DelawarenononoyesDistrict of ColumbiaDepartment of Public WorksannualyesyesFloridamainframe, planned reportsnoyesyesHoridaMaterials, Testing, and Laboratory, pc, hcannual (special)nonoIdahomainframenoyesyesIllinoismainframeannualyesyesIndianaResearch DivisionnononoIowamainframeannualyesyesKansasMaterials and Research, LANannualyesyesLouisianaPavement Management EngineernononoMainePavement Management EngineernononoMasachueztTarufin, PortannualyesyesMassachueztTarufin, PortannualyesyesMissignipiResearch and DevelopmentannualyesyesMississippiResearch and Development, PlanningnononoMississippiResearch and Development, Planning DevelopmeannualyesyesNevadaPavement Management SocionvarietannualyesyesNevadaMaterial Frai Division, Data ProcessingannualyesyesNevadaMaterial Frai Division, Tachinga PoesannualyesyesNevadaMaterial Frai Division, Tachinga PoesannualyesyesNevadaMaterial Frai Division, Tachinga Poesno					-
District of Columbia Department of Public Works no pres yes yes Florida mainframe, planned reports no yes yes yes florida mainframe, reports no no yes yes Hawaii Materials, Testing and Laboratory, pc, hc annual (special) no no no no lowa mainframe and species of the second secon				•	
FloridanoyesyesGeorgiamainframe, reportsnonoyesHawaiiMaterials, Testing and Laboratory, pc, hcannual (special)nonoIdahomainframenoyesyesIndinaResearch DivisionnonononoIowamainframeannualyesyesyesKansasMaterials and Research, LANannualyesyesLouisinaPavement Management EngineernononoMainePavement Management EngineerannualyesyesMarylandannual reportannualyesyesMassakuusettsTraffic, Planning, DevelopmentannualyesyesMississipiResearch and Development, PlanningnononoMississipiResearch and Development, PlanningnoplanningnoMississipiResearch and DevelopmentannualyesyesNewadaMavement Management SectionannualyesyesNewadaMavement Management SectionannualyesyesNew HampshirePavement Management SystemannualyesyesNew HampshirePavement Management SystemannualyesyesNew HampshirePavement Management SystemannualyesyesNew HampshirePavement Management SystemannualyesyesNew HampshirePavement Management Systemannualyes					•
Georgiamainframe reportsnonoHawaiiMaterials, Testing and Laboratory, pc, hcannual (special)nonoIdahomainframenoyesyesIllinoismainframeannualyesyesIllinoismainframeannualyesyesIllinoismainframeannualyesyesIowamainframenononoIowamainframenoyesyesKentuckyPavement Management Branch, mainframenononoPavement Management BectionannualyesyesyesMainePavement Management SectionannualyesyesMassachusetsTafife, Planing, DevelopmentannualyesyesMinestapavement Management SectionannualyesyesMissuriPavement Management SectionannualyesyesMissuriPavement Management SectionvariesyesyesMissuriPavement Management SystemannualyesyesNevadaPavement Management Group, mainframeannualyesyesNew JerseyPavement Management Group, mainframeannualyesyesNew JerseyPavement Management Group, mainframeannualyesyesNew JerseyPavement Management Group, mainframeannualyesyesNew JerseyPavement Management Group, mainframeannualyesyesNor				•	•
Hawaii Idaho InfarmeMateriak, Teiting and Laboratory, pc, hc noannual (special) nonono yesIdaho Infarmeannual mainframeannual yesyesIndiana Research DivisionnononoIova Mainframeannual mainframeyesyesKansa Materials and Research, LAN Materials and Research Margement Engineerannual yesyesLouisiana 				-	-
IdahomainframenoyesyesIllinoismainframeannualyesyesIllinoismainframeannualyesyesIovamainframeannualyesyesIowamainframeannualyesyesKansasMaterials and Research, LANannualyesyesKentuckyPavement Management EngineernononoMainePavement Management EngineernononoMainePavement Management EngineernononoMassachusettsTraffic, Planning, DevelopmentannualyesyesMissuripespesyesnonoMissuriPavement Management SectionannualyesyesMissuriPavement Management Section, Planningno (planning)nonoMissuriPavement Management System, mainframeannualyesyesNevadaMaterials Test Division, Data ProcessingannualyesyesNew JerseyPavement Management Group, mainframeannualyesyesNew JerseyPavement Management System, Research and					•
IllinoismainframeannualyesyesIndianaResearch DivisionnononoIowamainframeannualyesyesKansasMaterials and Research, LANannualyesyesLouisianaPavement Management EngineernononoMainePavement Management EngineernononoMarinePavement Management EngineernononoMarinePavement Management SectionannualyesyesMarylandannual reportannualyesyesMinesotamainframe, reportannualyesyesMississipiResearch and Development, Planning DevelopmeannualyesyesMississipiResearch and Development, Planning DevelopmeannualyesyesMississipiResearch and Development, Planning DevelopmeannualyesyesMississipiResearch Management System, mainframeannualyesyesNew HamphirePavement Management Group, mainframeannualyesyesNew MerseyPavement Management Group, mainframeannualyesyesNew MerseyPavement Management Group, mainframeannualyesyesNew MerseyPavement Management SystemannualyesyesNorth CarolinaPavement Management SystemannualyesyesNorth DakotaPavement Management SystemannualyesyesN					
IndianaResearch DivisionnonononoIowamainframeannualyesyesKansasMarcials and Research, LANannualyesyesKansusMarcials and Research, LANannualyesyesKentuckyPavement Management EngineernononoMainePavement Management EngineernononoMainePavement Management SectionannualyesyesMassachusettsTraffic, Planning, DevelopmentannualyesyesMissiganpe linked mainframenonononoMissouriPavement Management Section, Planningno (planning)nonoMissouriPavement Management System, mainframeannualyesyesMotanaPavement Management System, mainframeannualyesyesNew HarskaPavement Management System, mainframeannualyesyesNew JerseyPavement Management Group, mainframeannualyesyesNew JerseyPavement Management Group, mainframeannualyesyesNew MerciomainframeannualyesyesyesNorth DakonPavement Management Group, mainframeannualyesyesNorth DakonPavement Management Group, mainframeannualyesyesNorth DakonPavement Management System, Research and MateinoopyesNorth DakonPavement Management System, Rese	-				•
IowamainframeannualyesyesKansasMaterials and Research, LANannualyesyesKansasMaterials and Research, LANannualyesyesLouisianaPavement Management EngineernononoMainePavement Management SectionannualyesyesMarylandannual reportannualyesyesMassachusettsTraffic, Planning, DevelopmentannualyesyesMississippiResearch and Development, PLanningnononoMississippiResearch and Development, Planningno (planning)nonoMississippiResearch and Development, Section, Planning DevelopmeannualyesyesNontanaPavement Management SectionannualyesyesyesNew HampshirePavement Management SystemannualyesyesNew HarpshirePavement Management Group, mainframeannualyesyesNew MerseyPavement Management Oricital Services DivisionannualyesyesNew MerseyPlavement Management MinframeannualyesyesNew Margo Planning Division, Technical Services DivisionannualyesyesNorth DakotaPlanning DivisionnonoyesyesNorth DakotaPlanning, mainframeannualyesyesNorth DakotaPlanning, mainframenonoyesNorth CarolinaPavement Management Syste				•	-
KansasMaterials and Research, LANannualyesyesKentuckyPavement Management Branch, mainframenoyesyesLouisianPavement Management EngineernononoMainePavement Management SectionannualyesyesMassachusetsTraffic, Planning, DevelopmentannualyesyesMichiganpo linked mainframenononoMissouriPavement Management Section, Planning DevelopmeannualyesyesMissouriPavement Management Section, Planning DevelopmeannualyesyesMissouriPavement Management Section, Planning DevelopmeannualyesyesNetvakaPavement Management Section, Planning DevelopmeannualyesyesNetvataPavement Management Section, Planning DevelopmeannualyesyesNetvataPavement Management Group, mainframeannualyesyesNew JerseyPavement Management Group, mainframeannualyesyesNew VerkxoPlanning Division, Technical Services DivisionannualyesyesNorth CatolinaPavement Management Unit, mainframeannualyesyesNorth DakotaPlanning Division, Technical Services DivisionannualyesyesNorth DakotaPlanning, DainframeannualyesyesNorth DakotaPlanning, mainframeannualyesyesPregonPavement Management System, Research and					
Kenucky LouisianaPavement Management Branch, mainframe nonoyesyesLouisianaPavement Management Exciton annualannualyesyesMaryland MassachusettsTraffic, Planning, Development annualannualyesyesMichigan Mishissispippc linked mainframe nonononoMinesota MississispipResearch and Development, PLanning mo to (planning) nononoMississippi Montana Pavement Management Section, Planning Developme Materials Test Division, Data Processing annualannualyesyesNew Hampshir Pavement Management System, mainframe annualannualyesyesyesNew Hampshir Pavement Management System, mainframe annualannualyesyesyesNew Hampshir Pavement Management System, mainframe annualannualyesyesyesNew Harpshir Pavement Management System annualannualyesyesyesNew York Planning Division, Technical Services Division annualannualyesyesNorth Dakota Plavement Unit mainframeannualyesyesyesNorth Dakota Plavement Unit mainframenoyesyesNorth Dakota Plavement UnitannualyesyesyesNorth Dakota Plavement Management System, Research and Materi po, hcnonoyesyesVermont pc, hcperment Management System, Research and Materi provent proventnoy					•
LouisianaPavement Management EngineernononoMainePavement Management SectionannualyesyesMassachusettsTraffic, Planning, DevelopmentannualyesyesMissouripc linked mainframenonononoMissouriResearch and Development, PLanningno (planning)nononoMissouriPavement Management Section, Planning Developme annualyesyesyesMontanaPavement Management System, mainframeannualyesyesyesNevtaaMaterials Test Division, Data ProcessingannualyesyesyesNew JackPavement Management Group, mainframeannualyesyesyesNew JerseyPavement Management Group, mainframeannualyesyesyesNew JerseyPavement Management Group, mainframeannualyesyesyesNew VerseyPavement Management Unit, mainframeannualyesyesyesNorth DakotaPlanning Division, Technical Services DivisionnonoyesyesNorth DakotaPlanning, mainframenoyesyesyesyesNorth DakotaPlanning, mainframenoyesyesyesNorth DakotaPlanning, mainframenoyesyesyesNorth DakotaPlanning, mainframenonoyesyesNorth DakotaPlanning, Data Servicesdailyyes <td< td=""><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td></td<>		· · · · · · · · · · · · · · · · · · ·			
Maine Maryland annual reportPavement Management Section annual annual yesyesyesMaryland MassachusettsTraffic, Planning, Development mainframe, reportannual annual yesyesyesMississippiResearch and Development, PLanning moniframe, reportno annual yesyesyesMississippiResearch and Development, PLanning Developme annual Pavement Management SoctionvariesyesyesNetwadaPavement Management System mainframe annualannual yesyesyesNetwada New Hampshire Pavement Management Group, mainframe manual tersetannual yesyesyesNew Hampshire Pavement Management Group, mainframe annualannual yesyesyesNew YorkPlanning Division, Technical Services Division annual yesyesyesNorth Carolina Pavement Management Unit, mainframe annual yesannual yesyesyesOrigon Pavement Unit mainframeannual annual yesyesyesOrigon Pavement Unit mainframeannual annual yesyesyesOrigon Pavement Unit mainframeannual annual yesyesyesOrigon Pavement Management System Pavement Management System annual yesyesyesOrigon OrigonPavement Management Unit, mainframe annual yesyesyesOrigon Pavement Management System Rasearch and Materi Indeveloping) yesnoyesyesO				•	-
Marylandannual reportannualyesyesMassachusettsTraffic, Planning, DevelopmentannualyesyesMississippiRescarch and Development, PlanningnononoMissouriPavement Management Section, Planning DevelopmeannualyesyesMotananPavement Management Section, Planning DevelopmeannualyesyesNebtraskaPavement Management System, mainframeannualyesyesNevadaMaterials Test Division, Data ProcessingannualyesyesNew IdamsPavement Management Group, mainframeannualyesyesNew MexicomainframeannualyesyesNew VorkPlanning Division, Technical Services DivisionannualyesyesNorth CarolinaPavement Management Unit, mainframeannualyesyesNorth DakotaPlanning DivisionnonoyesyesOklahomaHighway Needs Study filenonoyesyesOregonPavement Management System, Research and Materino (developing)no (developing)pesSouth DakotaPlanning, Data ServicesdailyyesyesyesVermontPavement Management System, Research and MaterinoyesyesNoth CarolinaPavement Management System, Research and MaterinonoyesSouth DakotaPlanning, Data ServicesannualyesyesVermontpc, hcannua					
MassachusettsTraffic, Planning, DevelopmentannualyesyesMichiganpc linked mainframenononoMinnesotamainframe, reportannualyesyesMissiouriPavement Management Section, Planning DevelopmeannualyesyesNessouriPavement Management Section, Planning DevelopmeannualyesyesNevadaPavement Management System, mainframeannualyesyesNevadaMaterials Test Division, Data ProcessingannualyesyesNew HampshirePavement Management Group, mainframeannualyesyesNew HarseyPavement Management Group, mainframeannualyesyesNew VarkPlanning Division, Technical Services DivisionannualyesyesNorth DakotaPlanning DivisionnonoyesyesNorth DakotaPlanning, mainframeannualyesyesOfklahomaHighway Needs Study filenonoyesNorth CarolinaPavement Management System, Research and MaterinoyesyesSouth DakotaPlanning, mainframenoyesyesPermesteePlanning, mainframenoyesyesPermesteePlanning, mainframenoyesyesPermesteePlanning, mainframenoyesyesVermontpc, hcannualyesyesVirginiamainframe, reportsannualyesye				•	
Michigan Minesota Minesota mainframe, reportnonononoMinesota Mississippi Research and Development, PLanning Mississippi Research and Development, PLanning Pavement Management Section, Planning Developme annualnoyesyesMississippi Mississippi Montana Pavement Management System, mainframe Pavement Management System New Jarsey Pavement Management System mainframe Pavement Management System Pavement Management System mainframe Pavement Management System mainframe Pavement Management Group, mainframe annual yes yesannual yes yesyesNew Jersey New Jersey Pavement Management Ofrup, mainframe mainframe Pavement Management Unit, mainframe annual Pavement Management Unit, mainframe annual yes yes North Carolina Pavement Unit, mainframe pavement Unit, mainframe mainframeannual yes yes yes yes no no proves <td></td> <td></td> <td></td> <td>•</td> <td>-</td>				•	-
Minnesotamainframe, reportannualyesyesMissisipiResearch and Development, PLanningno (planning)nonoMissouriPavement Management SectionvariesyesyesMontanaPavement Management SectionvariesyesyesNetrakaPavement Management System, mainframeannualyesyesNevadaMaterials Test Division, Data ProcessingannualnoyesNew JerseyPavement Management Group, mainframeannualyesyesNew JerseyPavement Management Group, mainframeannualyesyesNew VerkorPlanning Division, Technical Services DivisionannualyesyesNorth DakotPlanning DivisionnoyesyesyesNorth DakotPlanning DivisionnoyesyesyesOhioTechnical Services BureauannualyesyesyesOrigonPavement UnitannualyesyesyesNorth DakotaPlanning, mainframeannualyesyesPensylvaniamainframeannualyesyesyesSouth CarolinaPavement Management System, Research and Materino (developing)no (developing)South CarolinaPavement Management System, Research and Materino (developing)no (developing)South CarolinaPavement Management System, Research and MaterinoyesyesSouth CarolinaPavement Management System, Researc					•
MississippiResearch and Development, PLanningnononoMissouriPavement Management Section, Planning Developme annualannualyesyesMontanaPavement Management System, mainframe annualannualyesyesNevadaMaterials Test Division, Data Processing annualannualyesyesNew Hampshire 	•				
MissouriPavement Management Section, Planning Developme annualyesyesMontanaPavement Management SectionvariesyesyesNebraskaPavement Management SystemannualyesyesNew dataMaterials Test Division, Data ProcessingannualyesyesNew HampshirePavement Management Group, mainframeannualyesyesNew JerseyPavement Management Group, mainframeannualyesyesNew VerkPlanning Division, Technical Services DivisionannualyesyesNorth CarolinaPavement Management Unit, mainframeannualyesyesNorth DakotaPlanning DivisionnoyesyesOhioTechnical Services BureauannualyesyesOregonPavement UnitannualyesyesPavement UnitannualyesyesyesPavement UnitannualyesyesyesSouth CarolinaPavement Management System, Research and MaterinoyesyesSouth CarolinaPavement Management System, Research and MaterinonoyesSouth CarolinaPavement Anagement System, Research and MaterinonoyesSouth CarolinaPavement Anagement System, Research and MaterinonoyesSouth CarolinaPavement Anagement System, Research and MaterinonoyesSouth CarolinaPavement Management System, Research and Materinono<				•	
MontanaPavement Management SectionvariesyesyesNebraskaPavement Management System, mainframeannualyesyesNew AadaMaterials Test Division, Data ProcessingannualyesyesNew HampshirePavement Management Group, mainframeannualnoyesNew JerseyPavement Management Group, mainframeannualyesyesNew VerkPlanning Division, Technical Services DivisionannualyesyesNew YorkPlanning DivisionnoyesyesNorth CarolinaPavement Management Unit, mainframeannualyesyesNorth DakotaPlanning, DivisionnonoyesyesOklahomaHighway Needs Study filenonoyesyesPennsylvaniamainframeannualyesyesyesRhode IslandPlanning, mainframenoyesyesyesSouth CarolinaPlanning, mainframenonoyesyesPenesylvaniamainframenonoyesyesSouth CarolinaPavement Management System, Research and Materino (developing)no (developing)no (developing)South DakotaPlanning, mainframenonoyesyesTexasMaintenance and Operations DivisionannualyesyesVermontpc, hcannualyesyesyesVirginiamainframe, reportsannualnoyesye					
NebraskaPavement Management System, mainframeannualyesyesNevadaMaterials Test Division, Data ProcessingannualyesyesNew HampshirePavement Management Group, mainframeannualyesyesNew JerseyPavement Management Group, mainframeannualyesyesNew VorkPlanning Division, Technical Services DivisionannualyesyesNorth CarolinaPavement Management Unit, mainframeannualyesyesNorth DakotaPlanning DivisionnonoyesyesOklahomaHighway Needs Study filenonoyesyesOregonPavement Management System, Research and MaterinonoyesyesPennsylvaniamainframenonoyesyesyesSouth CarolinaPlanning, Data ServicesnonoyesyesPavement Management System, Research and Materino (developing)no (developing)no (developing)South CarolinaPlanning, mainframenonoyesyesPavement Management System, Research and MaterinonoyesyesTenaseePlanning, mainframeannualyesyesyesVermontpc, hcannualyesyesyesVermontpc, hcannualyesyesyesVirginiamainframe, reportsannualyesyesWashingtonMaterials Laboratory, pcannual<				•	
NevadaMaterials Test Division, Data ProcessingannualyesyesNew HampshirePavement Management SystemannualnoyesNew JerseyPavement Management Group, mainframeannualyesyesNew MericomainframeannualyesyesNew VorkPlanning Division, Technical Services DivisionannualyesyesNorth DakotaPlanning DivisionnoyesnoOhioTechnical Services BureauannualyesyesOklahomaHighway Needs Study filenonoyesyesPennsylvaniamainframeannualyesyesyesPennsylvaniamainframeannualyesyesnoSouth CarolinaPavement Management System, Research and MaterinoyesyesSouth DakotaPlanning, Data ServicesdailyyesyesyesTenseseePlanning, mainframenononoyesyesUtahannual reportannualyesyesyesyesVirginiamainframe, reportsannualyesyesyesWisconsinpc, hcannualyesyesyesWisconsinmainframe, reportsannualyesyesWirginiamainframe, reportsannualyesyesWisconsinmainframeannualyesyesWisconsinPavement Management System Engineer, Planningnoyes				-	•
New HampshirePavement Management SystemannualnoyesNew JerseyPavement Management Group, mainframeannualyesyesNew MexicominframeannualyesyesNew YorkPlanning Division, Technical Services DivisionannualyesyesNorth CarolinaPavement Management Unit, mainframeannualyesyesNorth DakotaPlanning DivisionnoyesyesOhioTechnical Services BureauannualyesyesOregonPavement UnitannualyesyesPennsylvaniaminframenonoyesnoRhode IslandPlanning, mainframenoyesyesSouth CarolinaPavement Management System, Research and Materino (developing)no (developing)South CarolinaPavement Management System, Research and Materino (developing)no (developing)South DakotaPlanning, mainframenonoyesyesTennesseePlanning, mainframenonoyesyesVirginiamainframe, reportsannualyesyesyesVirginiamainframe, reportsannualyesyesyesWest VirginiaMaterials Laboratory, pcannualyesyesyesNoterontpc, hcnonoyesyesWest VirginiamainframeannualyesyesyesNotarootinmainframeannual				•	•
New Jersey New MexicoPavement Management Group, mainframe mainframeannual annualyesyesNew York New York North CarolinaPavement Management Unit, mainframe Pavement Management Unit, mainframeannualyesyesNorth CarolinaPavement Management Unit, mainframe annualannualyesyesNorth DakotaPlanning Division Technical Services BureauannualyesyesOhioTechnical Services BureauannualyesyesOregonPavement Unit mainframenonoyesPensylvania Panning, mainframenoyesyesNoth DakotaPlanning, mainframenoyesyesSouth CarolinaPavement Management System, Research and Materi Planning, Data ServicesdailyyesyesSouth DakotaPlanning, Data ServicesdailyyesyesyesTexasMaintenance and Operations DivisionannualnoyesyesVermontpc, hcannualyesyesyesVirginiamainframe, reportsannualyesyesyesWashingtonMaterials Laboratory, pcannualyesyesyesMerions Davisem Engineer, PlanningnoyesyesyesWisconsinmainframeannualyesyesyesMaintframeannualyesyesyesyesNoriniamainframeannualyesyesyesNorinini	New Hampshire		annual	•	
New MexicomainframeannualyesyesNew YorkPlanning Division, Technical Services DivisionannualyesyesNorth CarolinaPavement Management Unit, mainframeannualyesyesNorth DakotaPlanning DivisionnoyesyesOhioTechnical Services BureauannualyesyesOklahomaHighway Needs Study filenonoyesyesOregonPavement UnitannualyesyesyesPennsylvaniamainframenoyesyesnoSouth CarolinaPlanning, Data ServicesdailyyesyesSouth CarolinaPavement Management System, Research and MaterinoyesyesSouth CarolinaPavement Management System, Research and MaterinoyesyesTennesseePlanning, Data ServicesnonoyesyesTexasMaintenance and Operations DivisionannualnoyesyesUtahannual reportannualyesyesyesVirginiamainframe, reportsannualyesyesyesWisconsinMaterials Laboratory, pcannualyesyesyesWisconsinmainframeannualyesyesyesManitobaPavement Management System Engineer, PlanningnoyesyesNova ScotiaMaterials LabannualyesyesyesManitobamainframe				ves	•
New YorkPlanning Division, Technical Services DivisionannualyesyesNorth CarolinaPavement Management Unit, mainframeannualyesyesNorth DakotaPlanning DivisionnoyesnoOhioTechnical Services BureauannualyesyesOklahomaHighway Needs Study filenonoyesyesPennsylvaniamainframeannualyesyesyesPennsylvaniamainframeannualyesyesyesRhode IslandPlanning, mainframenoyesyesnoSouth CarolinaPavement Management System, Research and Materino (developing)no (developing)no (developing)South CarolinaPlanning, Data ServicesdailyyesyesyesTennesseePlanning, Data ServicesannualnoyesyesTexasMaintenance and Operations DivisionannualyesyesyesVirginiamainframe, reportsannualyesyesyesWest VirginiaInventory, HPMS, Project Tracking FilenonoyesyesWisconsinmainframeannualyesyesyesAlbertamainframeannualyesyesyesMaintobaPavement Management System Engineer, PlanningnoyesyesNotasififinframeannualyesyesyesNotasifimainframeannualyesyesy	New Mexico		annual		
North CarolinaPavement Management Unit, mainframeannualyesyesNorth DakotaPlanning DivisionnoyesnoOhioTechnical Services BureauannualyesyesOklahomaHighway Needs Study filenonoyesOregonPavement UnitannualyesyesPennsylvaniamainframeannualyesyesSouth CarolinaPavement Management System, Research and MaterinoyesyesSouth DakotaPlanning, mainframenonoyesyesSouth CarolinaPavement Management System, Research and Materino (developing)no (developing)no (developing)South CarolinaPavement Management System, Research and MaterinonoyesyesTennesseePlanning, mainframenononoyesyesTexasMaintenance and Operations DivisionannualyesyesyesVermontpc, hcannualyesyesyesVirginiaInventory, HPMS, Project Tracking FilenonoyesyesWsconsinmainframeannualnoyesyesWyomingPavement Management System Engineer, PlanningnoyesyesMaterials Laboratory, pcannualnoyesyesMasinframeannualyesyesyesWyomingPavement Management System Engineer, PlanningnoyesyesMaintoba <td>New York</td> <td>Planning Division, Technical Services Division</td> <td>annual</td> <td>yes</td> <td>yes</td>	New York	Planning Division, Technical Services Division	annual	yes	yes
North DakotaPlanning DivisionnoyesnoOhioTechnical Services BureauannualyesyesOklahomaHighway Needs Study filenonoyesOregonPavement UnitannualyesyesPennsylvaniamainframeannualyesyesPennsylvaniaPlanning, mainframenoyesnoSouth CarolinaPavement Management System, Research and Materino (developing)no (developing)South DakotaPlanning, Data ServicesdailyyesyesTennesseePlanning, mainframenonoyesVarmontpc, hcannualyesyesVermontpc, hcannualyesyesVirginiamainframe, reportsannualyesyesWashingtonMaterials Laboratory, pcannualnoyesWisconsinmainframenonoyesyesWyomingPavement Management System Engineer, PlanningnoyesyesAlbertamainframeannualyesyesyesManitobamainframeannualyesyesyesWisconsinmainframeannualyesyesyesMaterials Laboratory, pcannualnoyesyesyesMaterials Laboratory, pcannualnoyesyesyesMaintobamainframeannualyesyesyesyesMarinab </td <td>North Carolina</td> <td>Pavement Management Unit, mainframe</td> <td>annual</td> <td>yes</td> <td>-</td>	North Carolina	Pavement Management Unit, mainframe	annual	yes	-
OklahomaHighway Needs Study filenonoyesOregonPavement UnitannualyesyesPensylvaniamainframeannualyesyesPensylvaniamainframenoyesyesRhode IslandPlanning, mainframenoyesyesSouth CarolinaPavement Management System, Research and Materino (developing)no (developing)no (developing)South CarolinaPavement Management System, Research and MaterinoyesyesTennesseePlanning, mainframenonoyesTennesseePlanning, mainframenonoyesUtahannual reportannualnoyesVermontpc, hcannualyesyesWashingtonMaterials Laboratory, pcannualyesyesWaskingtonMaterials Laboratory, pcannualnoyesWisconsinmainframeannualnoyesWyomingPavement Management System Engineer, PlanningnoyesyesManitobamainframeannualyesyesManitobamainframeannualyesyesNoyesyesyesyesWyomingPavement Management System Engineer, PlanningnoyesNoyesyesyesyesManitobamainframeannualyesyesNova ScotiaMaterials Labnoyesyes	North Dakota	Planning Division	no	yes	no
Oregon PennsylvaniaPavement Unit mainframeannual annualyes yesyesRhode Island South Carolina South Carolina Pavement Management System, Research and Materi Planning, mainframenoyesnoSouth Carolina South DakotaPlavement Management System, Research and Materi Planning, Data Servicesnono (developing) no (developing)no (developing)South Carolina TexnasPlanning, Data ServicesnonoyesyesTennessee VermontPlanning, mainframenonoyesyesVermont Wermontpc, hcannualyesyesyesVirginia WashingtonMaterials Laboratory, pcannualyesyesWest Virginia WisconsinInventory, HPMS, Project Tracking File Pavement Management System Engineer, Planning Pavement Management System Engineer, Planning Pavement Management System Engineer, Planning NonoyesyesAlberta British Columbia Maninframemainframe Planning, Operations, Program Services mainframeannual annual yesyesyesAlberta Manitobamainframe mainframeannual yesyesyesyesNova Scotia OrtiarioMaterials Lab mainframenoyesyesyesNova Scotia OrtiarioMaterials LabnoyesyesyesNova Scotia OrtiarioMaterials LabnoyesyesyesNova Scotia OrtiarioMaterials Labnoyesyesyes </td <td>Ohio</td> <td>Technical Services Bureau</td> <td>annual</td> <td>yes</td> <td>yes</td>	Ohio	Technical Services Bureau	annual	yes	yes
PennsylvaniamainframeannualyesyesRhode IslandPlanning, mainframenoyesnoSouth CarolinaPavement Management System, Research and Materino (developing)no (developing)no (developing)South DakotaPlanning, Data ServicesdailyyesyesTennesseePlanning, mainframenonoyesUtahannual reportannualnoyesVermontpc, hcannualyesyesVirginiamainframe, reportsannualyesyesWest VirginiaInventory, HPMS, Project Tracking FilenonoyesWisconsinmainframeannualnoyesyesWyomingPavement Management System Engineer, PlanningnoyesyesAlbertamainframeannualyesyesyesManitobamainframeannualyesyesyesWyomingPavement Management System Engineer, PlanningnoyesyesAlbertamainframeannualyesyesyesManitobaPlanning, Operations, Program ServicesannualyesyesManitobaMaterials LabonoyesyesyesManitobaPlanning, Operations, Program ServicesannualyesyesManitobamainframeannualyesyesyesNova ScotiaMaterials LabnoyesyesyesOntarioma	Oklahoma	Highway Needs Study file	no	no	yes
Rhode IslandPlanning, mainframenoyesnoSouth CarolinaPavement Management System, Research and Materino (developing)no (developing)no (developing)South DakotaPlanning, Data ServicesdailyyesyesTennesseePlanning, mainframenonoyesTexasMaintenance and Operations DivisionannualnoyesUtahannual reportannualyesyesVermontpc, hcannualyesyesWashingtonMaterials Laboratory, pcannualyesyesWisconsinInventory, HPMS, Project Tracking FilenonoyesWyomingPavement Management System Engineer, PlanningnoyesyesAlbertamainframeannualyesyesyesAlbertamainframeannualyesyesyesNova ScotiaMaterials LabnoyesyesyesNova ScotiamainframeannualyesyesyesNova ScotiaMaterials LabnoyesyesyesNova ScotiaMaterials LabnoyesyesyesNova ScotiaMaterials LabnoyesyesyesNova ScotiaMaterials LabnoyesyesyesNova ScotiaMaterials LabnoyesyesyesPrince Edward IslemainframeannualnoyesyesNova Scotiama	Oregon	Pavement Unit	annual	yes	yes
South Carolina South DakotaPavement Management System, Research and Materi no (developing)no (developing) no (developing)no (developing)South Dakota Planning, Data Servicesdaily yesyesyesPlanning, Data Servicesdaily usesyesyesPlanning, mainframenonoyesTexas utahmaintenance and Operations DivisionannualnoyesUtah washingtonpc, hcannualyesyesVermont Washingtonpc, hcannualyesyesWashingtonMaterials Laboratory, pcannualyesyesWest Virginia WisconsinInventory, HPMS, Project Tracking File Pavement Management System Engineer, Planning Pavement Management System Engineer, Planning nonoyesyesAlberta British Columbia Mainframemainframe Planning, Operations, Program Services annual Planning Branchannual annual yesyesyesNova Scotia OfitarioMaterials Lab mainframenoyesyesNova Scotia Prince Edward Isle Mainframeannual mainframenoyesyesPrince Edward Isle Quebecnonoyesyes	Pennsylvania	mainframe	annual	yes	yes
South DakotaPlanning, Data ServicesdailyyesyesTennesseePlanning, mainframenonoyesTexasMaintenance and Operations DivisionannualnoyesUtahannual reportannualyesyesVermontpc, hcannualyesyesWashingtonMaterials Laboratory, pcannualyesyesWest VirginiaInventory, HPMS, Project Tracking FilenonoyesWisconsinmainframeannualnoyesyesWyomingPavement Management System Engineer, PlanningnoyesyesAlbertamainframeannualyesyesyesManitobamainframeannualyesyesyesAlbertamainframeannualyesyesyesNova ScotiaMaterials LabnoyesyesyesNova ScotiaMaterials LabnoyesyesyesNova ScotiaMaterials LabnoyesyesyesPrince Edward IslemainframeannualnoyesyesOntariomainframeannualnoyesyesNova ScotiaMaterials LabnoyesyesyesOntariomainframeannualnoyesyesPrince Edward IslemainframeannualnoyesyesOntariomainframeannualyesyesyes <td>Rhode Island</td> <td>Planning, mainframe</td> <td>no</td> <td>yes</td> <td>no</td>	Rhode Island	Planning, mainframe	no	yes	no
TennesseePlanning, mainframenonoyesTexasMaintenance and Operations DivisionannualnoyesUtahannual reportannual reportannual yesyesVermontpc, hcannualyesyesVirginiamainframe, reportsannual yesyesWest VirginiaInventory, HPMS, Project Tracking FilenonoyesWisconsinmainframeannualnoyesWyomingPavement Management System Engineer, PlanningnoyesyesAlbertamainframeannualyesyesManitobamainframeannualyesyesManitobamainframeannualyesyesNova ScotiaMaterials LabnoyesyesOntariomainframeannualyesyesPrince Edward IslemainframeannualnoyesPrince Edward IslemainframeannualnoyesQuebecannual reportsannualyesyes	South Carolina	Pavement Management System, Research and Materi	no (developing)	no (developing)	no (developing)
TexasMaintenance and Operations DivisionannualnoyesUtahannual reportannualyesyesVermontpc, hcannualyesyesVirginiamainframe, reportsannualyesyesWashingtonMaterials Laboratory, pcannualyesyesWest VirginiaInventory, HPMS, Project Tracking FilenonoyesWisconsinmainframeannualnoyesWyomingPavement Management System Engineer, PlanningnoyesyesAlbertamainframeannualyesyesManitobaPlanning, Operations, Program ServicesannualyesyesNew BrunswickPlanning BranchannualyesyesNova ScotiaMaterials LabnoyesyesOntariomainframeannualnoyesPrince Edward IslemainframeannualnoyesQuebecannual reportsannualyesyes				yes	yes
Utahannual reportannualyesyesVermontpc, hcannualyesyesyesVirginiamainframe, reportsannualyesyesWashingtonMaterials Laboratory, pcannualyesyesWest VirginiaInventory, HPMS, Project Tracking FilenonoyesWisconsinmainframeannualnoyesWyomingPavement Management System Engineer, PlanningnoyesyesAlbertamainframeannualyesyesPavement Management System Engineer, PlanningnoyesyesMaintobamainframeannualyesyesPanning, Operations, Program ServicesannualyesyesManitobamainframeannualyesyesNova ScotiaMaterials LabnoyesyesOntariomainframeannualnoyesPrince Edward IslemainframeannualnoyesQuebecannual reportsannualyesyes		Planning, mainframe	no	no	yes
Vermont Virginiapc, hcannual mainframe, reportsyesyesWashingtonMaterials Laboratory, pcannualyesyesWest VirginiaInventory, HPMS, Project Tracking File mainframenonoyesWisconsinmainframeannualnoyesWyomingPavement Management System Engineer, Planning Pavement Management System System SystemnoyesyesAlbertamainframe Planning, Operations, Program Services mainframeannualyesyesPaning, Operations, Program Services mainframeannualyesyesNova ScotiaMaterials LabnoyesyesOntariomainframeannualyesyesPrince Edward IslemainframeannualnoyesPrince Edward IslemainframeannualnoyesYesyesyesyesyesNova ScotiamainframeannualnoyesPrince Edward IslemainframeannualnoyesPrince Edward IslemainframeannualyesyesPrince Edward Islemainframeannualyesyes				по	yes
Virginiamainframe, reportsannualyesyesWashingtonMaterials Laboratory, pcannualyesyesWest VirginiaInventory, HPMS, Project Tracking FilenonoyesWisconsinmainframeannualnoyesPavement Management System Engineer, PlanningnoyesyesAlbertamainframeannualyesyesPartish ColumbiamainframeannualyesyesManitobaPlanning, Operations, Program ServicesannualyesyesNova ScotiaMaterials LabnoyesyesOntarioMaterials LabnoyesyesPrince Edward IslemainframeannualnoyesPrince Edward IslemainframeannualnoyesQuebecannual reportsannualyesyes				yes	yes
Washington West VirginiaMaterials Laboratory, pcannualyesyesWest Virginia Wisconsin WyomingInventory, HPMS, Project Tracking File mainframenonoyesExpresswaysPavement Management System Engineer, Planning British Columbia Manitobamainframe Planning, Operations, Program Services mainframeannualyesyesNew Brunswick Nova ScotiaPlanning Branch Materials LabannualyesyesNova Scotia OfinarioMaterials LabnoyesyesPrince Edward Isle Quebecannualnoyesyes				yes	yes
West Virginia Inventory, HPMS, Project Tracking File no no yes- Expressways Wisconsin mainframe annual no yes Wyoming Pavement Management System Engineer, Planning no yes yes Alberta mainframe annual yes yes British Columbia Planning, Operations, Program Services annual yes yes New Brunswick Planning Branch annual yes yes Nova Scotia Materials Lab no yes yes Prince Edward Isle mainframe annual no yes Quebec annual reports annual yes yes					yes
Wisconsin mainframe annual no yes Wyoming Pavement Management System Engineer, Planning no yes yes Alberta mainframe annual yes yes British Columbia Planning, Operations, Program Services annual yes yes Manitoba Planning Branch annual yes yes Nova Scotia Materials Lab no yes Ontario mainframe annual no Prince Edward Ise mainframe annual no Quebec annual reports annual yes yes					
Wyoming Pavement Management System Engineer, Planning no yes yes Alberta mainframe annual yes yes British Columbia Planning, Operations, Program Services annual yes yes Manitoba mainframe annual yes yes New Brunswick Planning Branch annual yes yes Nova Scotia Materials Lab no yes yes Ontario mainframe annual yes yes Prince Edward Isle annual reports annual yes yes				no	yes- Expressways
AlbertamainframeannualyesyesBritish ColumbiaPlanning, Operations, Program ServicesannualyesyesManitobamainframeannualyesyesNew BrunswickPlanning BranchannualyesyesNova ScotiaMaterials LabnoyesyesOntariomainframeannualnoyesPrince Edward IslemainframeannualyesyesQuebecannual reportsannualyesyes					•
British Columbia Planning, Operations, Program Services annual yes Manitoba mainframe annual yes yes New Brunswick Planning Branch annual yes yes Nova Scotia Materials Lab no yes yes Ontario mainframe annual no yes Prince Edward Isle mainframe annual yes yes Quebec annual reports annual yes yes	Wyoming	Pavement Management System Engineer, Planning	no	yes	yes
British Columbia Planning, Operations, Program Services annual yes Manitoba mainframe annual yes yes New Brunswick Planning Branch annual yes yes Nova Scotia Materials Lab no yes yes Ontario mainframe annual no yes Prince Edward Isle mainframe annual yes yes Quebec annual reports annual yes yes					
British Columbia Planning, Operations, Program Services annual yes Manitoba mainframe annual yes yes New Brunswick Planning Branch annual yes yes Nova Scotia Materials Lab no yes yes Ontario mainframe annual no yes Prince Edward Isle mainframe annual yes yes Quebec annual reports annual yes yes	4.11				
Manitoba mainframe annual yes yes New Brunswick Planning Branch annual yes yes Nova Scotia Materials Lab no yes yes Ontario mainframe annual no yes Prince Edward Isle mainframe annual yes yes Quebec annual reports annual yes yes				•	
New Brunswick Planning Branch annual yes yes Nova Scotia Materials Lab no yes yes Ontario mainframe annual no yes Prince Edward Isle mainframe annual yes yes Quebec annual reports annual yes yes				•	*
Nova ScotiaMaterials LabnoyesyesOntariomainframeannualnoyesPrince Edward IslemainframeannualyesyesQuebecannual reportsannualyesyes				-	
Ontario mainframe annual no yes Prince Edward Isle mainframe annual yes yes Quebec annual reports annual yes yes				•	
Prince Edward Isle mainframe annual yes yes Quebec annual reports annual yes yes					
Quebec annual reports annual yes yes					•
		1		-	•
Saskaichewan [GIS/HIS, FMIS annual yes yes		-		-	
	Saskatenewan	CIS/IIIS, FMIG	aillual	yes	yes

۰.

APPENDIX C

Pavement Distress

. .

State/Agency	Perform Distress	Method	Speed	Manual	Survey	100% Survey	Sample	Is Rutting	Method to	Survey
					Sections	or Sample				Automation
		B-2			B-4	B-5		B-9/10	B-11	B-12
								CDB 4 feet antiched		
	y	walk shoulder		yes yes	no response segment	no response 100%			preprinted paper	laptop/DMI
	yes-50% per year ves	walk		-	predetermined length	at milepost	• •		pc	laptop/DMI
	,	walk		yes yes	predetermined length	one per 2 miles average			pc	planned
	yes-Interstate, primary-biennial				• •	2 per mile flexible, 100% rig			pc	laptop
	yes-biennial		50 mph	yes no	homogeneous section homogeneous section	100%	0.1 mile section		pc	ARAN
	yes-annual ves-annual			yes	homogeneous section		frame summary		pc 35mm film	workstation
	yes-biennial			yes-SHRP	maintenance road number	100%	not applicable		electronic	ARAN
	ves	windshield		ves	predetermined length	100 %	not applicable			no report
	yes-annual			yes	homogeneous section	100 %	not applicable		preprinted paper	
	ves-annual	walk		yes-(flexible)	project	sample for one-mile segment			paper	not used
	ves			yes-(Caltrans)	predetermined length	100%	not applicable		paper	not used
	yes-annual		5-55 mph	yes	control section	one per section	500'		paper	not used
Illinois	yes-biennial			yes	homogeneous section	at mile post	500'			not used (evaluating)
	ves-annual			yes-HPMS	no response	no response	no response		paper	not used
	yes-biennial			yes	control section	sample		-	paper	not applicable
	yes-annual	shoulder	•	yes	one-mile segment	three samples/segment	100' random		electronic	IC-MDR4010
	yes-annual	windshield, shoulder		no	construction section	100%	not applicable		preprinted paper	
Louisiana	yes-annual (contract)		highway speed		homogeneous section	100%	not applicable		video	Pavedex
Maine	yes-biennial	video/ARAN	highway speed	· · ·	segment	one per mile, minimum two	100'		pc	semiautomated
	yes-annual	shoulder		yes	predetermined length	100%	0.2 mile		preprinted paper	not used
	yes	windshield/ARAN	40 mph	no	continuous	100%	1.0 mile	visual	pc	ARAN keyboard
Michigan	yes-biennial	semiautomatic	no response	no	homogeneous section	100%	0.1 mile	3 sensor profilometer	video	work stations
Minnesota	yes-50% per year	shoulder	5 mph	yes	homogeneous section	1/mile	500'	SDP/3 sensors	preprinted paper	not used
Mississippi	yes-annual	video	highway speed	yes-SHRP	homogeneous section	2/mile	500'	SDP/3 sensors	video	Pavedex
Missouri	yes-Interstate, Primary -annual- other trienni	video	no response	no	predetermined length	100%	0.02 mile		video	ARAN video
	yes-biennial	walk/shouder	30 mph	yes	control section	1/mile	200'		paper	not used
	yes-annual	windshield/walk	40 mph	yes	control section	100 %	reference mile		electronic	not used
Nevada	yes-annual	walk	walk	yes	one-mile segment	rating section	1000 sf flexible, 10 slabs rigi		preprinted paper	not used
	yes-Interstate annual-other biennial	windshield/ARAN		yes	continuous	100 %	not applicable		pc	ARAN keyboard
New Jersey	yes-annual	windshield/ARAN	40 mph	yes-SHRP	continuous	100%	0.2 mile		pc	ARAN keyboard
	yes-annual	walk	walk	yes-FHWA	control section	random	0.1 mile	visual, 4-foot straightedge		
	yes-annual	windshield	highway speed	-	control section	100 %	not applicable		preprinted forms	
	yes-Int. annual-other biennial	windshield/shoulder/walk		yes	homogeneous section	100% flexible, sample rigid	rigid-0.1 mile	· · · · · · ·	preprinted paper	
	yes	video	55 mph	yes	predetermined length	1/mile	500'		pc	PAVETECH
Ohio	yes-multi-lane annual	walk	walk	yes	homogeneous section	1/mile	200'		paper	not used
Oklahoma	yes-biennial	automated	45-55 mph	yes	control section	100% 100%	no response		pc	IMS
Oregon	yes-biennial	windshield, Interstate-shoulder	•	yes	project	100%	100' increments	visual, straightedge	preprinted paper	
Pennsylvania	yes-50% per year	shoulder windshield/walk	5 mph	yes	segments	100% windshield and sample			preprinted paper	
Rhode Island	yes- three year cycle	windshield	posted speed 40-50 mph	yes	homogeneous section	100% which and sample	0.1 mile maximum incremen		preprinted paper	modified SDP
South Carolina	yes-annual			yes	one mile section	1/mile at mile marker			pc	not used
South Dakota	yes-triennial	windshield walk	(FWD crew) walk	yes yes-FHWA	predetermined length project	17mile at mile marker	area visible at stop project		рс па	not used
Tennessee Texas	for design yes-annual	walk windshield/walk	15 mph	yes-rnwA yes	segment	100 %	average 2 mile sections	4 /	na pc, paper	ARAN video
Utah	ves-biennial	shoulder	5-10 mph	yes-SHRP	predetermined length	1/mile at milepost	500'		pc, paper	not used
Vermont	ves-annual	automated	40 mph	yes-Silki	control sections	100%	not applicable	IMS/lasor sensors	electronic	IMS
Virginia	ves-biennial	windshield	5 mph	yes	homogeneous section	100%	section		pc	not used
Washington	yes-annual	shoulder	5-10 mph	ves	control section	100%	average 1 mile subsection	visual, 6-foot straightedge		not used
West Virginia	not used-pilot 1991	windshield/shoulder	variable	no	homogeneous section	pilot	not used		paper	not used
	ves-biennial (CRC-annual)	shoulder	5 mph	yes	predetermined length	1/mile	500'		preprinted paper	not used
Wyoming	not used-plan for 1992	windshield	55 mph	no-(plan SHRP)	predetermined length	at milepost	100-400'		pc	SDP Data Logger
ii yoming			ee mpn		processing to gas				r*	
Alberta	ves	windshield/video log	8/50 mph	yes-SHRP, Ontari	control, inventory section	100%	+250 meters	ARAN	video	ARAN
	yes-annual	walk	walk	yes	segment, control section	100% proposed	currently sample		paper	ARAN (trial)
Manitoba	yes-annual	windshield	55 mph	yes	control section	100%	variable	visual	paper	not used
New Brunswick	ves-1/3 per year	windshield/walk	30 mph	yes	control section	100%, sample	500 meters (2nd & 8th sectio	MDR-5 sensors	pc	not used
	yes-as required	windshield/shoulder/walk	50 mph	yes-RTAC	segment	100 %	variable	ARAN (planned)	paper	ARAN
	yes-biennial	windshield	30 mph	yes	homogeneous length	100%	variable	template	paper	not used
Prince Edward Isle	12	windshield	25-50 mph	yes	homogeneous length	100 %	+300 meters	visual, 1/2-lane straightedg		not used
Quebec	yes-annual	windshield	40 mph	no	predetemined length	100 %	100 meters	not used	electronic	not used
Saskatchewan	yes- every four years	windshield/shoulder/walk	25 mph	no	control section	100 %	variable	rut bar-9 sensors	pc	PURD
	-									

۰ ،

. .

			Crew	Survey	Survey Rating	Method to Determine		Method or Formulae
			Training	Quality Check	Output	Distress Rating	Combined With?	
	B-13	B-14	B-15/16	B-17/18	B-19	B-20	B-21	B-22
Alabama	2	12 mpd	3 weeks	random check	distress index	weight factors	roughness	formula
			1 week	PMS engineer field checks	relative pavement condition comparis			compare with 240 condition states
			2 months	supervisor checks, compare prior yea		no response	roughness, structural, traffi	
	-		ves-variable	not used	distress index	deduct point system		Rigid=0.65 defects+0.35 ride, Flexible=1/2 power (ride
			1 month	team leader, random check	priority rating			over/under decisions
Colorado			2 weeks	correlation, data edits	pavement condition rating	no response		condition matrix
			2 days	rerate 10%	distress score 0-100	weight factors		dr+ri+adt+class
Delaware			as needed	not used	surface distress index	weight factors		PSI=75% (SDI)+25% (RCI), also safety and traffic
Dist. of Columbia			1 week new, 2 days experienc	random check, replicate survey	pavement condition rating	table		no responce
			1 week		rut+crack rating	deduct points		separate rating for ride, rutting, cracking
Georgia	2	no response	2 days	not used	priority rating	deduct from 100		not applicable
			not used	not used	priority rating	distress severity and extent	not used	not applicable
Idaho	2	150-200 mpd	2 weeks	compare with previous year	distress rating	cracking index		50% roughness (0-5)+50% cracking (0-5)
Illinois	Interstate-2, other 5	Interstate-30 mpd	Interstate 3days, other 2 days	spot sample, compare previous year	condition rating survey	CRS 0-9	not applicable	not applicable
Indiana	2		1 week	not used	present serviceability rating	PSR 0 to 5, HPMS	not used	not applicable
lowa		12mpd (0.5 mile sample	6 hours	compare with previous year	pavement condition rating	PCR 0-100	roughness, friction, structur	formula with coefficient
		60 mpd	1 week	compare two teams	distress index	Woodward-Clyde methodolog	roughness	based on distress state
		80 mpd	2 years (seasons)	compare with previous years	demerit point score	assigned demerits	roughness, friction, traffic	point assignment
Louisiana			yes-unknown		pavement condition rating	under development	roughness	under development
Maine		80 mpd	1 or 2 days	random review of rater work	pavement condition rating	PCR 0-5	not used	na
			2 days	computer trends, random comparison	priority rating	weight factors, deduct values		priority matrix
Massachusetts	2	75 mpd	2 or 3 days	field spot check	distress index (DI)	formulae	roughness	PSI=0.65DI+.35PSR
Michigan		4-5 mpd	1 week per pavement type	random check	distress index	remaining service life (RSL)		threshold values
Minnesota			3 days	not used	surface rating (SR)	weight scale 0-4		PQI = square root (PSR X SR)
		not applicable	no response	random 5%	distress rating	formula		PCR=100(12-IRI /12)(Dmax-DP/Dmax) squared
		200 mpd	yes	random check	priority rating	condition score 0-20		$PSR = (2 \times roughness \ score) + (condition \ score)$
Montana			7-10 days	random check, resurvey	priority	under development	roughness	PSI reduced by degree of rutting
i icolaska			2 weeks	check 1/3 of sections rated	distress index	NSI (similar to PCI)	roughness	PMS Manual procedure
Nevada		20 mpd	4 hours	field check	distress modes and repair strategies	formula	roughness, friction	AASHO Road Test Formulas
room room participation of		45 mpd	ongoing	not used	surface distress index	formula	no response	not used
		80 mpd	6 months	project-level selections confirmed	surface distress index	weighting factors 0-5	roughness, traffic	PI=0.6 RQI+0.3 SDI+0.1 TF
		30-40 samples/day	1 week	random check	distress rating	tables	roughness, traffic, accidents	
nen ren			2 days	office audit	raw scores	score summaries	not used	not used
		40-50 mpd	2 days	random check	distress index	deduct values deduct values	roughness	deduct value in distress index
i tortar D anota	-	100 mpd 50-100 mpd	not used	not used	distress score (0-99)99=new	deduct values	roughness	1/3 distress + 1/3 ride + 1/3 age = composite index (0-5)
Ohio Oklahoma		50-100 mpd	with experienced crew yes	not used no response	pavement condition rating not implemented	no responce	roughness, friction planning	not combined, independent consideration no response
		variable	yes 1 day	not used	rating score, description of condition		not used	not applicable
oregen	2		2 days		maintenance needs, pavement index		roughness	PSR curve=OPI=0.45 RI+0.30 SI+0.20 DI+.05 SFI
Rhode Island	3		2-3 days	alternate crew resurvey	pavement condition rating	formula	roughness	proprietary software
	1-2	100 mpd	permenant crew members	no response	pavement distress index	distress values, models		PQI = 1.158 + 0.138 (PDI)(PSI)
	3 (with dynaflect)	100 mpd	1 week	not used	not used separate index	distress data elements	roughness, structural, traffi	
Tennessee		per project	not used	design field view	none	not applicable	not applicable	not applicable
		50 m/d	1 to 3.5 days	resurvey random samples	unadjusted visual utility base	utility factors	roughness	tables, equations
		50 m/d	1 month	check results	distress index	DI = 5.0 - 0.13(C + P)1/2pwr.		under development
	-	varies	yes	dipstick, mays meter	distress index, priority rating	not used	roughness, friction	formula
		15 m/d	1 day	resurvey random samples	distress maintenance rating	rating factors	ride rating	ride considered seperate
		50-100 m/d	1 week	occasional field check	distress index, priority rating	deduct values	no response	developing new process
West Virginia	2	na	pilot testing	not applicable	pilot development	not applicable	not applicable	not applicable
Wisconsin	2	50 m/d	2 days	duplicate random ratings	pavement distress index (0-100)	work factors	no responce	no response
		200 mpd	as required	not used	remaining service life	no response	none	not applicable
Alberta	1-2	100 mpd	2 weeks	check video tapes	visual condition index	weight factors	roughness, structural	PQI = f(RCI + SAI + VCI)
	3 (also Benkleman Beam)		ongoing	not used	used subjectively	proposed PI=RI+SI+DI	roughness, structural	developing
Manitoba		300 mpd	on-the-go	compare panel ratings	surface condition rating	condition ratings	not used	not used
New Brunswick	2	50 mpd	5 days	crews overlap	surface distress index	formula	roughness, structural	PN =0.4 PN ride+0.35 PN distress+0.25 PN strength
Nova Scotia	6	no response	1/2 to 1 day	not used	pavement condition rating	weight factors	not used	roughness
Ontario		35 mpd	on-the-job	yes-history	distress manifestation index	formula	roughness	DMI=(Si+Di)Wi; severity, density, weighting
Prince Edward Isl	1	25 mpd	2 weeks	yes-edit	surface distress index	formula, table	roughness, structural	PQI=composite pavement quality index
Quebec	2	100 mpd	2 weeks	yes-resurvey	diagnot usedstic of distress causes	expert system	roughness, structural, other	
Saskatchewan	2 automated/4 manual	60 mpd	3 weeks	not used	distress index	no responce	no response	no response

× 7

APPENDIX D

Pavement Roughness

. .

State/Agency	Type of Roughness	Number of		Number	Frequency	Data Collection	Measurement	Wheelpaths
	Survey Equipment	Units	Surveyed	of Miles	of Surveys	Units	Interval	Measured
	C-1		C-2			C-3		
Alabama	SDP (International Cybernetics)	1	all	11,000	biennial	IRI	0.5 mile	average
Alaska	SDP, RD, PC	1	no response	2,600	1/2 per yr	IRI	1 mile	average
Arizona	Mays	3	all	7,400	annual	no response	no response	average
Arkansas	Mays	2	Interstate, primary, other	6,285-9,800	biennial-4 to 5 years	in/mi	0.1 mile	average
California	Cox	6	all	15,000	biennial	no response	no response	average
Colorado	ARAN	1	all	10,950	biennial	IRI	100 points/mile	r/l/ave
Connecticut	TechWest+SDP	2+1	all	7,700	annual	arbitrary-1 to 1,000	52.8 feet	average
Delaware	ARAN, PURD	1	all	no response	biennial	IRI, RMSV	4 inches	average
District of Col.	Mays (Rainhart)	1	all	1,100	biennial	IRI	no response	average
Florida	SDP (International Cybernetics)	5	no response	no response	annual	IRI-conv.PSI (SV)	no response	average
Georgia	Mays (mod-Ga)	8	no response	no response	no response	no response	no response	no response
Hawaii	Cox	1	all	938	biennial	ridescore	1 mile	average
Idaho	SDP (International Cybernetics)	1	all	5,000	annual	IRI/PSI	1 foot	both, average
Illinois	SDP (Ill.mfg)	1	Interstate, other	1,900-17,000	annual-biennial	IRI	no response	right
Indiana	Cox/Profilometer, Prorut (spring92)	1+1	all	13,000	annual	ridescore (IRI-92)	0.1 mile	average
Iowa	SDP (International Cybernetics)	1	all	10,000	1/2 per year	IRI	1 foot	both, average
Kansas	Mays (Rainhart)/SDP (International Cybernetics)	3+1	all	11,000	annual	IRI	0.1 mile	MDR left, Mays averag
Kentucky	Mays (Rainhart)	6	all	25,000	annual	RI	0.1 mile	average
Louisiana	contract	no response	Interstate, primary, other	840+3,120-10,7	biennial-4 to 5 years	IRI	continuous	both, average
Maine	ARAN	1	all	8,500	biennial	IRI	8 inches	both, average
Maryland	KJLaw 8300	1	all	6,000	annual	IRI	0.1 mile	right
Massachusetts	ARAN	1	all	3,000	1/3 per year	IRI, RMSVA	0.2 mile	average
Michigan	Inertial Profilometer (Michigan DOT)	1	all	10,000	annual	IRI	3 inches	right
Minnesota	SDP (MinnDOT)	1	no response	14,000	1/2 per year	IRI	1 foot	left
Mississippi	SDP (Pave Tech/2 International Cybernetics)	1+2	all	12,000	annual	IRI	1 foot	left
Missouri	ARAN	1	Interstate, primary, secondar	9,800-22,500	annual-1/3 per year	RMSVA (IRI-1,000	0.02 mile	average
Montana	SDP (International Cybernetics)	1	all	8,200	biennial	IRI, profile, rut dept		average
Nebraska	SDP (Nebraska)	1	all	10,000	annual	IRI	1 foot	left
Nevada	Cox	1	all	11,494	annual	IRI, slope variance	counts/ mile	average
New Hampshire	ARAN	1	Interstate, other	278-3,718	annual-biennial	RCI, SDI, RRI	0.1 mile	average
New Jersey	ARAN	1	all	2,100	annual	ARAN	0.01 mile	average
New Mexico	ARAN/PhotoLog-roughness	1+2	Interstate, other	999-10,706	annual-biennial	IRI, raw data	no response	average
New York	SDP (contract)	no response	sample	1,000	biennial	IRI	no response	right
North Carolina	SDP	1	primary	8,000	annual	IRI	1 foot	left
North Dakota	SDP in Video Tech Van	1	all	8,600	annual	IRI	1 foot	right
Ohio	KJ Law Profilometer/MDR8300/Mays (Rainhart)	1+1+1	all	19,000	biennial	IRI, PSI	0.2 mile	left
Oklahoma	SDstyle/Mays	1+1	all	18,400	biennial	IRI	0.01 mile	average
Oregon	SDP	1	no response	no response	no response	IRI	1 foot	average
Pennsylvania	SDP/Mays	4+4	Interstate, PCN, other	1,200-42,000	annual-biennial	IRI	1 foot	average
Rhode Island	SDP (ConnDOT)	1	all	no response	part annual	IRI	no response	average
South Carolina	Mays (Rainhart)/SDP (International Cybernetics)	1+2	all	7,900	annual	IRI	no response	average
South Dakota	SDP (SDDOT)	2	all	8,204	biennial	IRI, PSR	1 foot	left
Tennessee	no survey			·		, .		
Texas	Siometer	16	all	27,400	annual	SI	0.2 mile	average
Utah	Cox	1	ali	5,800	annual	RI to IRI	no response	average
Vermont	IMS (contract)	varies	all	3,000	biennial	IRI	no response	left
Virginia		1+1	planning	no response	no response		0.1 mile	left
Washington	SDP/Cox	1+1	all	8,000	annual	IRI	16 inches	average
West Virginia	KJ Law Profilometer/Mays	1+1	all	2,500	annual	IRI	6 inches	both, average
Wisconsin	SDP	1	ali	13,400	1/2 annual	IRI	1 foot	left
Wyoming	SDP	î	all	7,200	annual	IRI	1 foot	left
,		-		.,			1 1000	
Alberta	Cox (CS8000 Ultrasonic)	2	primary, secondary	18,000	3 to 4 years	RCI	200 to 500 meters	average
British Columbia	not applicable			,	,			
Manitoba	not applicable							
New Brunswick	Mays	1	arterials, collectors	3,000	biennial	IRI, RCI	continuous	average
Nova Scotia	Roadmeter-NSDTC	3	infrequent	2,000	o iona fila		continuous	average
Ontario	PURD (Roadware)	1	all	14.000	biennial	RMSVA	not applicable	-
Prince Edward Isle		1	all	2.065	1/3 per year	RCI	50 meters	average
Ouebec	PCA/Mays	4+1	all	2,065	annual	IRI		average
	Cox (Ultrasonic)	3	designed pavement/oil treate				not applicable	average
		,	DESIRORD DAVETHEBU/OIL FRATE	7.3330/3.133	annual/ 5 years	RCI	kilometer	average

50

1

v

•

- .

State/Agency			Uniform Length		Data Collection			Data Stored	Equipment
	Two-Lane Roads	Four-Lane Roads	Data Reported C-4	Data Reported	Means	Survey Speed C-5	Lane Miles Per Day	C-6	Calibration C-7
labama		both outside	no response		hc	55 mph		mf, pc, hc	HPMS procedures
aska		one	yes		pc .	5-55 mph		pc	calibration guage
rizona	one	one	mile point		pc, tape, hc	50 mph		mf, pc, hc	correlate with Profilometer
kansas	one	both outside	no response		tape	30-50 mph		mf, pc, hc	test track
lifornia	both	all	no response	section	pc	no response	no response	mf	test track
olorado	one	both outside	0.1 mile, 1 mile	section	pc	50 mph	300	pc, hc	test sites
onnecticut	both	both outside	no response	section	hc	20-40 mph	100	mf	calibration site run monthly
elaware	one	both outside	0.02 mile	0.2 mile	рс	30 mph	5 to 50	pc	manufacturer recommendations
istrict of Col.	one	one	л		hc	15-25 mph		pc	correlate with Class 2
orida	one	both outside	section		рс	30, 40, 50 mph	27+distress	mf	with CHLOE for PSI (slope variance)
eorgia	no response	no response	no response		no response	no response		no response	no response
awaii		all	lane mile	•	hc	posted		pc, hc	per HPMS (World Bank)
awan aho	one	both outside	no response	homogenous section		50 mph	200	no response	no response
						50 mph	300	1	test sensors
inois		both outside	0.1 mile graph		hc			mf, pc	
diana		both outside		homogenous section		30, 50, 60 mph		pc	correlation loop, once per month
wa	one	both outside	no response		pc, hc	55 mph		mf, pc, hc	correlate with CHLOE
ansas		both outside	0.1 mile	•	pc	50 mph, SDP-any	250	mf, pc	MAYS/SDP/Dipstick
entucky	both	all	no response	yes	hc	50 mph	300	mf	test sections monthly/Profilometer yearly
ouisiana	one	both outside	mile	no response	pc, hc	posted	225	рс	contract
laine	one	one	section	no response	pc	25-50 mph	100	mf, pc	surveyed test sections/test sensors
laryland	both	both outside	yes		pc	40 mph	200	рс	in-house
lassachusetts	one	both outside	no response		pc	40 mph	75	pc, hc	Dipstick/survey test sections (9)
lichigan		both outside	0.1 mile	•	pc	posted	350	pc	self-calibrating
linnesota		both outside	0.1 mile	-	pc	55 mph	200	mf	self-calibrating
lississippi		both outside	yes		pc, hc	posted	200	pc, hc	multiple runs/Dipstick/SHRP sites
lissouri		both outside	•			50-60 mph	250	mf, pc	internal/10 calibration sites periodically
			yes		pc	50 mph	200	mf, pc	against other SDP at Users Group Meeting
lontana		all	section		pc				
ebraska		both outside	yes		mf, pc, hc	50 mph	75	mf, pc, hc	against other SDP at Users Group Meeting
evada		both outside	no response		tape, hc	posted	100	mf, hc	per HPMS/Dipstick/calibrated sections
ew Hampshire	one	both outside	no response	section	pc, hc	posted	no response	mf, pc, hc	test sections (9)/Dipstick
ew Jersey	one	one	0.2 mile	no response	pc	40 mph	80	mf	test sections (6)/Dipstick
ew Mexico	one	one	no response	no response	pc	no response	no response	mf	rod and level survey
ew York	one	both outside	no response	section	pc	posted	no response	mf, pc	test sections/Dipstick
orth Carolina	both	both outside	0.1 mile	no response	hc	posted	80	pc	not necessary
orth Dakota	one	both outside	1 mile	no response	рс	55 mph	300	pc	weekly over test strip
hio		both outside	yes		pc, tape	50 mph	225	mf	against Profilometer
klahoma		both outside	yes		pc, mpc	50 mph	65	mf, pc	Mays frequently, SDP not needed
regon			-	•	-	50 mph		pc, hc	plan Dipstick-just purchased equip
		both outside	yes		pc		no response	pe, ne	
ennsylvania	one	both outside	no response		pc, hc	45 mph	125		test sections/Dipstick
hode Island		both outside	yes	no response	pc, hc	posted	125	hc	see ConnDOT
outh Carolina		both outside	0.1 mile	·····F ·····	hc	SDP-45, Mays-50 mph		pc, hc	test sections/Dipstick
outh Dakota ennessee	both	both outside	yes	yes	pc, hc	posted	300	mf, pc, hc	test segments/Dipstick
exas	one	both outside	yes	yes	pc, hc	50 mph	200	mf, pc, hc	test sections
tah		both outside	yes		pc, hc	55 mph	200	mf, pc	standard section weekly
ermont	one	no response	•		•	40 mph	no response	no response	no response
			no response		pc				
irginia		all	yes		pc, hc	55 mph	40 for HPMS sample		test sections vs. KJ Law
ashington		both outside	yes	0.1 mile	pc .	50 mph	no response	mf, pc	no response
est Virginia	one	both outside	no		pc, hc	40 - 60 mph	10	pc, hc	Mays to Profilometer
isconsin		both outside	no response		pc, hc	25 - 65 mph	240	mf, hc	system check
yoming	one	one	yes	mile point	pc, hc	posted	200	mf, pc, hc	Annual users group/daily test sections
lberta	both	all	average RCI	continuos section	hc	50 mph	120	mf, hc	CGRA-Roadmeter to RCI
ritish Columbia Ianitoba									
ew Brunswick	both	all	yes	yes	pc, hc		560	nc(MDR) he	IRI from MDR/special calibration section
ova Scotia	both	all		•		50 mph	na	pc, hc	20 control sectios/rating panel/road meter
			no response	yes average/1,000 meter	pc, hc	•			standard sections
ntario	one	both outside	10 meters			na 40 mm	na	mf, pc, hc	
rince Edward Isle		no response	50 meters	yes .	pc, hc	40 mph	40	mf, hc	RCI/panel correlation, test sections twice/
uebec	one	both outside	100 meters	yes	pc	40 mph	100	mf	TAC specifications/RRMR response to IR
askatchewan	one	both outside	kilometer	continuous section		50 mph	300	mf, pc	standard sections monthly

• •

APPENDIX E

Pavement Structural Capacity

.

•

State/Agency	Type Equipment			Network/Project	Frequency	Uniform	Test	Sampling
	Used	of Units	Size	Survey Tests	of Testing	Testing	Intervals	Size Used
	D-1			D-2		D-3		
Aiabama	Dynatest-9000	1	3	project	as needed-150 miles/year	yes	no response	no response
Alaska	Dynatest-8000	5	1	project	as needed	yes	250-300 feet	no
Arizona	Dynatest	1	4	project	200 projects, twice a year	yes	5 per mile, all lanes	no
Arkansas	Dynatest-8600	1	2	network, project	75 network miles/year, 24 project miles/year	yes	10 per mile	yes-8 per mile
California	Dynaflect, Lane-Wells GeoLog	1+3	1	project	2300 miles/year	yes	0.01 mile	yes- 0.1 mile
Colorado	FWD-Foundation Mechanics	1	1	project	as needed	yes	0.1 to 0.2 mile	no
Connecticut	Benkleman Beam	1	3	project, research	no response	no response	no response	no response
Delaware	no testing							
District of Col.	coring							
Florida	FWD, Dynaflect	2+3	2	project, rehabilitation	as needed	yes	1/4 mile	no
Georgia	Dynatest-8000	1	1	project	varys	yes	0.1 mile	по
Hawaii	Dynatest	1	2	none	not used	yes		
Idaho	Dynatest-8000	1	5	network, project	15 to 60 network miles/year, 100 project miles/year	yes	0.1 mile	yes
Illinois	Dynatest	1	2	project	500 miles/year	yes	200 feet	500 feet
Indiana	Dynaflect, Dynatest	2+2	1	project	as needed	yes	100 feet	no
Iowa	Foundation Mechanics, Road Rater-M40	2	4	network	'10,000 miles, Interstate every third year, other miles every	yes	30 per section	no
Kansas	Dynaflect, GeoLog	1+1	3	project	500 mile/year	yes	0.1 mile	no
Kentucky	Road Rater-M2000	1	2	project	20 projects per year	yes	0.1 mile	по
Louisiana	Dynaflect, FWD	1 + 1	3	project	by request	yes	no response	yes
Maine	Road Rater-400B	1	2	project	225 mile/year, prior to overlay	yes	250 feet	no
Maryland	Road Rater, FWD	2+1	3	project	600 mile/year, 116 projects	yes	500 feet	no
Massachusetts	no testing					yes		
Michigan	KUAB	1	1	research	no response	no response	no test format adopted	
Minnesota	Dynatest	3	1-2	project	before and after rehabilitation	yes	0.1 mile	по
Mississippi	Dynaflect, SIE, Inc.	2	2	project	250 mile/year	yes	500 feet	по
Missouri	Dynatest	1	4	project	as needed	yes	no response	yes
Montana	RoadRater-400B, Foundation Mechanics	1	1	project	700 mile/year	yes	880 feet	по
Nebraska	FWD	1	2	project	300 mile/year	yes	no response	yes
Nevada	Dynatest+(procuring second)	1	2	project	150 mile/year	yes	0.1 mile	no
New Hampshire	no testing					yes		
New Jersey	no testing					yes		
New Mexico	nr					yes		
New York	none (procuring)					yes		
North Carolina	Dynatest	1	2	project	overlays, special projects	yes	500 feet	no
North Dakota	FWD	1	2	project	200 mile/year	yes	200 feet	no
Ohio	Dynatest-M8000, Dynaflect	1+2	1	project	700 mile/year	yes	300 feet rigid, 200 feet flexible	no
Oklahoma	FWD, Benkleman Beam	1+1	2+3	network, project	1,000 mile every 2 years	yes	1,000 feet	no
Oregon	Dynatest-M8000	1	4	project	varys	yes	250 feet	yes
Pennsylvania	Phoenix-M10000, KUAB-2M-33	1+1	1 + 1	project	95 mile/year	varies	varies	varies
Rhode Island	Benkleman Beam	1	6	project	one per month	yes	200 feet	no
South Carolina	Dynatest-M8000	1	2	project	varys	yes	500 to 2,500 feet	no
South Dakota	Dynaflect-GeoLog	1	3	network, project	700 mile/year, 8204 in 3 years	yes	mile	no
Tennessee	Dynatest-M8000	1	2	project	varys	yes	0.1 mile	3 per site
Texas	Dynatest, Dynaflect, Benkleman Beam	13 + 2 + 2		network, project	14,000 network miles/year, 1000 project mile/year	yes	5 points per section	no
Utah	Dynaflect	1	2	network, project	5,800 miles biennually, 200 project mile/year	yes	1 mile network, 0.1 mile project	по
Vermont	FWD	1	2	network, project	300 network mile/year, 300 project mile/year	yes	1/4-1/2 mile	no
Virginia	Dynatest-M8000	1	2	project	request only	yes	100 feet/ 2 mile, 250 feet/ 2-5 mile, e	
Washington	Dynatest-9000	1	1	project	no response	yes	0.05 mile	no
West Virginia	Dynaflect, GeoLog	1	2-3	project	20 mile/year- twice		uniform	10 per mile
Wisconsin	KUAB-2M	1	1-2	project	40 to 80 mile/year	no response	no response	no response
Wyoming	KUAB, Dynaflect	1+2	3	network, project	1,000 network mile/year, 100 project mile/year	yes	0.5mi+500ft	varies
4.11	D G DIGOT		2.2		225		200 500 5	
Alberta	Dynaflect-DM00E	1	2-3	network, project	235 network mile/year, 235 project mile/year	У	200, 500 feet/mile	no
British Columbia	FWD, Benkleman Beam	1+6	3-5	yes	no response	у	40m	no
Manitoba	Benkleman Beam	10	3	network, project	7,200 miles in 3 years, 100 miles/year	yes	mile	no
New Brunswick	Dynaflect	2	2	yes	3,000miles in 3 years	yes	200m	no
Nova Scotia	Dynaflect	2	2 2	project	600 miles/year	yes	50m	no
			2	project	20mile/year	no response	no response	no response
Ontario	Dynaflect (contract)	1.				•		
Prince Edward Isle	e Dynaflect (Geolog)	1	2	network	700 mile/year	yes	200m	no
		-				•		no yes 2,000m

. .

• •

	Sample Interval	Sample Location	Average Data Points/Day	Days Testing per Year	Traffic Controls Used	Drop Point Data Reported D-4	Test Location Reported	Section Data Reported	Data Recorded	Data Stored D-5
Alabama	no response	no response	varies	40	lane closure, arrow board	yes	yes	yes	pc, hc	pc, hc
Alaska	по	no	2,000	210	urban	yes	yes	yes	pc	pc
Arizona	no	no	100	60	signs, cones	no	yes	no	pc	mf, pc
Arkansas	100 feet	yes-near instrumentation	no response	365	signs, 2 flaggers	yes	yes	yes	pc, hc	pc, hc
California	lane mile	outer wheelpath	300-400	continuous	varies with traffic, geometry	no	yes	yes	hc	project file
Colorado	no	no	200	varies, project needs	shadow vehicle in front, arrow board in back	yes	yes	no	pc, hc	pc
Connecticut Delaware	no response	no response	no response	no response	no response	no response	no response	no response	hc	hc
District of Col.										
Florida	no	no	140	no response	2-lane- flagger; 4-lane- arrow board, shadow truc		yes	no	pc	рс
Georgia Hawaii	no	no	no response	no response	no response	no	yes	no	hc	рс
	0.1 mile	outer wheelpath	100-150	60	crash truck, 2 sign trucks	yes	yes	no	pc	pc
Illinois	no	outer wheelpath	75	175	lane closure, crash truck	yes	yes	yes	tape, hc	pc, hc
Indiana	no	no	no response	150, 60	shadow truck, 1 to 3 arrow boards, signs	yes	yes	yes	pc, hc	pc, hc
Iowa	no	no	600	32, April, May	2 or 3 safety vehicles	no	milepost	control	hc	mf, hc
Kansas	по	no	varies	May to October	2 vehicles, 2 flaggers, sign board, signs	yes	yes	yes	tape	mf, pc
Kentucky	no	по	200	20	shadow trucks, arrow boards, signs	no	yes	yes	tape	mf
Louisiana	no response	no response	no response	no response	no response	no response	no response	yes	hc	no response
Maine	no	no	40	65	crash truck with arrow board, arrow board on tes		yes	no	pc, hc	pc
Maryland	no	no	no response	140	yes	по	no	no	hc	hc
Massachusetts										
Michigan			300	1(0	lane closure				pc	pc
Minnesota	no	no	300 250	160 25	2 crash trucks, arrow board, mobile operation	yes	no	no	pc	mf no
Mississippi	no	no		25 Da	MUTCD for slow moving operations	no	yes	yes	pc, hc	pc mf
Missouri	varies	na	na 200	125	moving operation, 2 shadow trucks	no	yes	no response	pc	
Montana Nebraska	no random	no random	200	150-200	flaggers in busy areas, flaggers	yes	yes	no no	pc, hc	pc, hc mf
Nevada		no	no response	no response	yes	yes yes	yes no	no	pc, hc	pc, hc
New Hampshire New Jersey New Mexico New York										
North Carolina	по	no	no response	no response	yes	yes	yes	no	pc, hc	pc, hc
North Dakota	no	no	300	120	truck, arrow board	no	yes	no	pc	hc
Ohio	no	no	340	235	crash truck, cones, arrow board	no	yes	no	tape, pc, h	mf, pc, hc
Oklahoma	no	no	300	20-40	2 crash trucks with arrow boards	yes	yes	yes	pc, hc	mf, pc, hc
Oregon	varies	varies	varies	varies	no response	yes	yes	yes	pc, hc	pc, hc
Pennsylvania	varies	varies	80	90	yes	yes	yes	yes	pc, hc	pc, hc
Rhode Island	no	no	6	12	flaggers, cones	no	yes	yes	hc	hc
South Carolina	no	no	100	50	2-lane, flaggers; 4-lane, arrow board, 2 crash tru	yes	yes	no	рс	pc
South Dakota	no	no	125	70	lead vehicle with flashers, arrow board on tester	no	yes	no	рс	mf, pc, hc
Tennessee	varies	varies	varies	varies	arrow board	yes	no	yes	hc	hc
Texas	no	no	150	300	2-lane-lead and shadow vehicle; shadow on divid		yes	yes	tape,pc,hc	
Utah	no	no	30	100	2 shadow trucks	no	yes	yes	pc, hc	mf,pc,hc
Vermont	no	no	no response	summer only	yes	no response	no response	no response	pc	pc .
Virginia	no	no	20-25 mile/day		yes	no	yes	yes	pc, hc	pc, hc
Washington	no .	no	200	60-100	flaggers, shadow truck	yes	yes	no	pc, hc	pc
West Virginia	random	random	100	4	standard requirements	no	yes	no	hc	hc
Wisconsin	no response	no response	70	25	flaggers, shadow truck	no	yes	no	pc, hc	pc
Wyoming	500 feet	no	50	100	Interstate-shadow truck, arrow board; 2 lane-flag	yes	yes	yes	рс	pc
Alberta Deixish Columbia	no	no	150	80	flaggers, signs, arrow board	yes	yes	yes	hc	mf,hc
	no	no	200	year round	flaggers, lane closure	no	yes	yes	hc bo	hc mf ha
Manitoba	no	no	80	30	flagger shadow ynhiele flagger	no	yes	no	hc	mf,hc mf.nc
New Brunswick	no	no	250	80	shadow vehicle, flagger	no	no	yes	pc, hc	mf, pc
Nova Scotia	no	no	no response	180	moving workplace	no no	yes	no	pc, hc	pc, hc
Ontario	no	no response	no response	no response	as required		yes	no	pc, hc	pc, hc
Prince Edward Isle		no	150 120	40	shadow vehicle shadow vehicle	no	yes	yes	hc	mf, pc mf
Quebec		no response	200	no response		no	yes	no	pc,tape,hc	
Saskatchewan	no	no	200	50	signs and lights	no	yes	yes	pc, hc	mf, pc, hc

• •

•

-

Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Col. Florida	D-6 back calculation back calculation correlate performance ELMOD, ELCON, ROADHOG Caltrans-GE other	Calibation D-7 no response manufacturer manufacturer manufacturer	Frequency no response no response	D-8	Seasonal Limits		Uses
Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Col.	back calculation back calculation correlate performance ELMOD, ELCON, ROADHOG Caltrans-GE other	no response manufacturer manufacturer	-		no		
Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Col.	back calculation correlate performance ELMOD, ELCON, ROADHOG Caltrans-GE other	manufacturer manufacturer	-	yes	no		
Arizona Arkansas California Colorado Connecticut Delaware District of Col.	correlate performance ELMOD, ELCON, ROADHOG Caltrans-GE other	manufacturer	no response			no	
Arkansas California Colorado Connecticut Delaware District of Col.	ELMOD, ELCON, ROADHOG Caltrans-GE other			-	yes	no	
California Colorado Connecticut Delaware District of Col.	Caltrans-GE other	manufacturer	annual		no	no	
Colorado Connecticut Delaware District of Col.	other		biennial		yes (research)	yes	concrete joint load transfer
Connecticut Delaware District of Col.		load cell, test section	annual	2 · · ·	no	yes	routine for rehabilitation; concrete joints
Delaware District of Col.		manufacturer	annual		no	no	
District of Col.	no response	no response	no response	no response	no response	no response	specific research project deflection tests
Fiorida							
a ·		sensors	monthly		no	no	soil support; resilient modulus for rehabilitation desi
Georgia	back calculation	manufacturer	quarterly	no	no	no	supplement visual rating and coring
Hawaii							
Idaho		SHRP sites, center	annual	yes	no	no	L- L-Minstein lunding
Illinois		manufacturer, ASTM	annual	yes	some	yes	rehabilitation evaluation
Indiana		SHRP	annual	yes	no	no	BMC DCB
lowa		manufacturer, test section	annual monthly	yes	no	no	PMS PCR equations
Kansas	Asphalt Institute MS-17		annual	yes	no no	no no	condition assessment
Kentucky		sensors		yes			CONTRICT ASSESSMENT
Louisiana Maine		no response sensor check	no response 3 times per year	no response	no response no	no response no	
Maryland			FWD-6 month; RR- monthly	yes yes	no no	no no	concrete joints
Maryland Massachusetts	i wo-oack calculate, KR-Asphält Institute	i no w rionua, Kresensor	THE HOUSE, KE HOULD	103	10	10	concrete journa
Michigan	back calculation	manufacturer	as needed	planned			
Minnesota		sensor check	3 times per year	yes	no	yes	
Mississippi	empirical-deflection/overlay	Dynaflect setup	twice per day	yes	по	no	
Missouri		sensors	annual	no	no	no	research
Montana	Chevron deflection	manufacturer	annual	ves	research	research	PSI curves
Nebraska	back calculation	internal	daily	yes	no	no	10104.005
Nevada		SHRP	annual	yes	no	yes (specific)	
New Hampshire	back calculation (version 4.0)	0.11(1		<i>j</i> 03		Jes (speeme)	
New Jersey							
New Mexico							
New York							
North Carolina	back calculation; in-house deflection proceedure	tower	no response	yes	no	no	
North Dakota	back calculation	manufacturer	biennial	yes	no	no	
Ohio	back calculation; 2-layer theory; concrete joints	sensors	2 per day	yes	no	no	locating underseal locations; research
Oklahoma	back calculation; ELMOD, ELSDEF; ODOT deflection prog		2 per year	no (plan)	no	no	critical locations
Oregon	back calculation; concrete load transfer	manufacturer	annual	yes	no	no	
Pennsylvania	back calculation; concrete load transfer	SHRP	2 per year	yes	yes	yes	joints; voids
Rhode Island	AASHTO-T256	no response	no response	по	no	no	back calculate resilient modulus
South Carolina	back calculation, convert to stiffness index	relative	varies	yes	no	no	
South Dakota	sensors 1 and 2 used for strength	sensors	3 per year	yes	no	no	PSR; prioritize
Tennessee	back calculation	manufacturer	every three years to manufacture		no	по	
Texas	back calculation; compute strength	correlate units, plan SHRP	annual; biweekly	yes- optional	yes (occasional)	yes	joint load transfer
Utah	investigating	standard sections	monthly	yes	yes	yes	predict fatigue failure
Vermont	back calculation	others	no response	yes	no response	no response	
Virginia	Pennsylvania deflection basin method	sensors	bimonthly	yes	yes	yes	rehabilitation
Washington	back calculation	sensors	weekly	yes	no	no	
West Virginia	Pennsylvania deflection basin method	manufacturer	each use	yes	no	yes	
Wisconsin	back calculation	operations program	quarterly	yes (experimental)	yes	no	load transfer research
Wyoming	reviewing	sensors, plan SHRP	2 to 3 years; SHRP annually	yes	no	no	structural capacity
Alberta	structural index	equipment manual	3 weeks	yes	yes	no	PMS; research
Alberta British Columbia		relative and absolute	relative- monthly; absolute yearl		yes	no	
Manitoba	other	none	no response	yes	yes	10	
New Brunswick	other	sensors	weekly	yes	yes	yes	
Nova Scotia	other	equipment manual	daily	yes	yes	yes	
Nova Scotia Ontario	back calculation	contractor	no response	occasional	no	no	joint stabilization
Prince Edward is		sensors	daily	no	no	no no	network programming; overlays; seasonal loads
Ouebec	calculate overlay depth	calibration device	daily	yes	yes	по	structural capacity; establish priority
Saskatchewan	no response	vehicle weighed, beam chec		yes	no	no	
ous calline wall	[no response	tenere weighten, beam ener		,			

•

.

APPENDIX F

Pavement Friction Testing

-

Alabama Alaska Arizona Arkansas California Colorado	Used E-1 KJ Law contract Bison Mu Meter KJ Law R-30	of Units		Speed E-2	ASTM	Lane miles per day	per year	used	Method	Frequency
Alaska Arizona Arkansas California	contract Bison Mu Meter	-								
Alaska Arizona Arkansas California	contract Bison Mu Meter	1	2	40 mph	yes	150 lmpd	100	ribbed	force plate, Test Center	monthly, biennial
Arkansas California		1	1		no		45		no response	no response
California	KJ Law R-30	1	2	40 mph	yes	100 lmpd	60		standard surface	daily
		2	I	40 mph	yes	220 Impd	128		test track	quarterly
Colorado	Cox towed trailer	3	2	posted	yes	160 Impd	175		ASTM E-556	as needed, annual, biennial- Test Cente
	KJ Law	1	I	40 mph	no	160 Impd	10-50 (request)		Test Center	2 years
Connecticut	KJ Law 1290	1	2	40 mph	yes	no response	10-20		force plate	yearly
Delaware	Soiltest (modified)	1	2	40 mph	yes	100 Impd	75	ribbed	ASTM E-556	annual
Dist. of Columbia	no report for friction testing			•						
Florida	KJ Law	4	1	40 mph	yes	200 lmpd	50	ribbed, bald safety	force plate, Test Center	monthly, annually
Georgia	Soiltest	2	1		yes	100 lmpd	250	ribbed, bald-accidents, textur		yearly
Hawaii	Aquiring equipment							,	, ,	,,
Idaho	IDOT locked wheel	1	2	40 mph	no	100-200 lmpd	80	ribbed	ball-bearing platform	monthly
Illinois	IIIDOT ASTM	3	2	40 mph	yes	by projects	175-200		torque arm	every 2 weeks
Indiana	trailer	2	1			200 lmpd	80		calibration track, force plate	force plate monthly
Iowa	KJ Law	2	2	40 mph	yes	100 lmpd	32		air-bearing plate, test pads, Test Cent	
Kansas	KJ Law 1270	1	1	40, 55 mph		60 Impd	100	ribbed	no response	no response
Kentucky	KJ Law	1	i	40 mph	yes	10 Impd	20	ribbed, trying bald	Test Center	annual
Louisiana	KJ Law 1270	1	1	40 mph	yes	70 Impd	160	ribbed	force plate, Test Center	biennial
Maine	Maine DOT 2-wheel trailer	1	2	40 mph	yes	new pavement, specials			ball-bearing platform	annual
Maryland	KJ Law 8274	2	2	40 mph	yes	200 Impd	160	ribbed	force plate	monthly
Massachusetts	KJ Law	2	2	40 mph	yes	requests	no response		air-bearing plate	annaul
Michigan	MiDOT 2-wheel trailer	1	2	40 mph	yes	varies	150		Test Center	annual
Minnesota	KJ Law	2	2	50 mph	yes	200 lmpd	60		Test Center	biennial
Mississippi	KJ Law 1290	1	1	40 mph	yes	40 lmpd	80	ribbed	ASTM	annual
Missouri	K. L. Law 1270	1	3	40 mph	yes	50-150 impd	varys	ribbed	internal check. Test Center	triennual
Montana	contract	1	1	40 mph	yes	no response	'60	ribbed	ASTM E-556, Test Center	annual to test center
Nebraska	KJ Law 1290	1	1	40 mph	yes	45 lmpd	120	ribbed	force plate	annual
Nevada	Cox	1	2	40 mph	yes	120 Impd	35	ribbed	field test, Test Center	6 month, annual
New Hampshire	contract Maine DOT	1	2	40 mph	no	150 lmpd	10	no response	ARML	18 month
New Jersey	ASTM trailer	4	2	40 mph	yes	60 lmpd	60	ribbed	ASTM	annual
New Mexico	KJ Law	1	2	varies	yes	250 impd	no response	ribbed	Test Center	biennial
New York	ASTM trailer	1	2	posted	yes	20 Impd	90 ·	ribbed	force plate	3 times per year
North Carolina	KJ Law 1270, 1290	2	1	40 mph	yes	no response	200	bald	no response	no response
North Dakota	contract	1	2	40 mph	yes	1,500 lane miles per yea	no response	ribbed	force plate	annual
Ohio	KJ Law, ODOT	2	2	40 mph	yes	100-150 impd	no response	ribbed	Test Center	annual
Oklahoma	KJ Law	1	2	40 mph	yes	no response	no response	ribbed	on-board check	daily
Oregon	KJ Law	1	2	40 mph	yes	200 Impd	40	ribbed	Test Center	undetermined
Pennsylvania	KJ Law 1270	3	2	40 mph	yes	50 Impd	160	ribbed	ASTM E-556	6 month
Rhode Island	KJ Law 1290	1	2	40 mph	yes	varies	6-10	ribbed	no response	no response
	KJ Law 1290	2	1	40 mph	yes	100 Impd	150	ribbed	force plate	6 month
South Dakota	KJ Law	1	2	40 mph	yes	150 lmpd	70	ribbed	force plate	annual
Tennessee	KJ Law	2	2	40 mph	yes	250 Impd	120	ribbed	ASTM	annual
Texas	TexDOT ASTM	6	2	40 mph	yes	150 lmpd	180	ribbed	Test Center	annual
Utah	trailer	1	2	40 mph	yes	150 1mpd	100	ribbed	Test Center	biennial
Vermont	KJ Law 1290	1	2	40 mph	yes	varys	varys	ribbed	Test Center	2-3 years
	KJ Law	2	2	40 mph	yes	100 lmpd	year round	bald, ribbed	force plate	weekly
Washington	Cox	1	2	50 mph	yes	200-300 Impd	no response	ribbed	platform. Test Center	monthly, biennial
	KJ Law 965	ī	2	posted	yes	20 Impd	180	ribbed	Test Center	annual
Wisconsin	KJ Law	1	2	40 mph	yes	no response	60	ribbed	air bearing plate	monthly
Wyoming	KJ Law 1270	1	2	40 mph	yes	150 lmpd	60	ribbed	Test Center	biennial
Alberta	Mu Meter MK 3	1	2	40 mph	yes	45 lmpd	80	ASTM MU Meter	MU Meter board	every 2-3 weeks
British Columbia Manitoba	British Pendulum none	1	1	-	yes	no response	no response	no response	ASTM	special projects
New Brunswick	none									
Nova Scotia	ASTM trailer	1	1		yes	56 Impd	10	no response	ASTM	prior to use
Ontario	KJ Law	i	2	50 mph	yes	100 Impd	100	ribbed	platform	annual
Prince Edward Isle		•	-	20 mpn	,	100 millio			president	Lindu
Quebec	SCRIM	1	2	40 mph	no	300 lmpd	90	bald	mechanical/electrical	annual
	Saskatchewan Trailer	1	1	40 mph	yes	special projects	15	ribbed	no response	annual
GaskatoneWall	1 Jaskalonewan Haller		•	40 mpu	yes	special projects	1.5	10000	no response	amual

* A.

	Friction	Wheelpath		Lanes Tested	Individual Test	•			Comments
	Test Interval	Tested	on Two-lane	on Four-lane	Data Reported	per Mile	per Segment	Stored	
	E-3				E-4			E-5	
labores	- ila	left		hash averida					
	mile mile	no response	one	both outside	yes	no	yes	mf/pc/hc	
		left		hath autoida	yes	no	no	pc	
	milepost		one	both outside	500 feet	no	no	mf/pc	
rkansas	1/2 mile	left	one	both outside	yes	no	no	mf/pc/hc	
	spot	left	one, both	special investigation	-	no	по	mf/pc/microfiche	curves, bridges, intersections
Colorado	varies	left	one	one	yes	yes	yes	pc/hc	
Connecticut	varies	left	both	all	some	no	yes	pc	no inventory tests
Delaware	1/2 mile	left	both	both outside	yes	yes	yes	mf/hc	
Dist. of Columbia									
Florida	3-5 per mile	left	one	both outside	no	no	no	mf	
Georgia	1/2 mile	right, left, both	both	both outside	yes	yes	yes	mf/hc	
lawaii					-		yes		
daho	1/2 mile	left	one	both outside	no	по	yes	mf/pc/hc/disk	
llinois	0.1 first mile, then 1/2 mi	both (note)	no response	no response	yes	yes	yes	mf/pc	
ndiana	mile	left	one	both outside	milepost	no	yes	pc/hc	
owa	varies	left	both	both outside	yes	no	yes	mf/hc	Interstate tested annually
	5 per mile	left	both	both outside	occasionally			mf/hc	incistate tested annually
	no response	left	both	both outside	no	no	yes		
ouisiana	•	left				no	yes	pc mf/ma/ha	
	varies		both	both outside	yes	no	yes	mf/pc/hc	
	500 feet	both	both	both outside	yes	no	yes	hc	
	0.3 mile	no response	both	both outside	no	по	yes	pc/hc	
Massachusetts	1/2 mile	no response	one	both outside	yes	no	по	pc/hc	
	construction project	left	both	all	no	no	yes	pc	about 10,000 tests per year
Minnesota	0.1 mile	left	both	both outside	yes	no	no	mf	
Mississippi	1/2 mile	left	one	both outside	yes	no	yes	pc/hc	not part of PMS, not inventory ba
Missouri	0.1-0.3 mile	left	both	both outside	yes	no	yes	mf	
Montana	1/2 mile	left	one	both outside	yes	no	yes	pc/hc	
Nebraska	1/2 mile	left	one	both outside	no	no	yes	, mf	
	mile	left	both	both outside	yes	yes	no	mf/hc	
New Hampshire	mile	both	one	both outside	yes	no	yes	hc	
New Jersey	no response	left	one	both outside	по		no	mf/mag tape	
New Mexico	no response	icit	Unc	both outside	110	yes	110	mininag tape	
		left	hath	all					
	0.1 mile		both	all	yes	yes	no	mf	
	1/2 mile	right	one	both outside	yes	no	no	hc	
	1/2 mile	no response	one	both outside	yes	yes	yes	pc/hc	Test 1/5 of 7330 miles biennially
Dhio	varies	left	one	both outside	yes	no	yes	mf	
Oklahoma	1/2 mile	right	one	both outside	yes	no	no	pc/hc	
· •	1/2 mile	no response	one	both outside	yes	no	no	mf/pc	new test equipment
Pennsylvania	segment (average 1/2 mile	left	one	both outside	yes	no	yes	mf/hc	
Rhode Island	1/2 mile	left	one	both outside	yes	no	по	pc/hc	testing by contract with FHWA
South Carolina	0.3 mile	left	one	both outside	yes	по	00	pc/hc	
South Dakota	mile	left	both	both outside	yes	yes	yes	mf/pc/hc	
Tennessee	no response	right	both	both outside	no	yes	по	mf	
	1/2 mile	right	one	both outside	yes	•		hc/mf	
	mile	*				no	yes		
		right	one	both outside	yes	yes	yes	mf/pc	
Vermont	1/2 mile	left	one	both outside	yes	no	no	pc/hc	testing by contract with FHWA
	mile	left	one	one	yes	no	yes	pc/hc	
	mile	left	one	both outside	yes	no	no	mf/pc/hc	
West Virginia	15 tests per site	right	one	both outside	no	no	yes	hc	
Wisconsin	0.1 mile	left	both	all	no	по	yes	m f/hc	
Vyoming	varies with friction numbe	left	both	both outside	yes	no	yes	pc/hc	
Alberta	180 meters	right	both	all	yes	no	ves	mf/hc	
	as required	no response	no response	no response	yes	по	yes	hc	
Manitoba			iesponse		,		.03		
New Brunswick		hash	L - aL	-11				1.	
Nova Scotia	varies	both	both	all	yes	no	no	hc	
Ontario	varies	right	one	both outside	yes	no	yes	pc/hc	
rince Edward Isle									
-	5,10 or 20 meters	right	one	one	yes	no	no	pc	
Saskatchewan	no response	left	no response	no response	yes	no	no	pc/hc	

. .

APPENDIX G

.

.

CONTACTS WITHIN RESPONDING AGENCIES

Alabama Prevenet Masgement Engineer Boreau of Marinka and Tests 1409 Collasem Bid., Mongomery, AL 26130 Alabama Prevenet Management Engineer Offee of Portman and Maintenante Management 900 Collering Chief Offee of Portman and Maintenante Management 901 Collering Chief Offee of Portman and Maintenante Management 901 Collering Chief Offee of Portman and Maintenante Management 901 Collering Chief Offee of Portman and Maintenante Management 901 Collering Chief Offee of Portman and Maintenante Management 901 Porteine Fearemic Fagineer Rearch and Development Branch Florida Chief Rearch and Development Branch Florida Chief Chief Chief Rearch and Development Branch Divation of Roudrey Management 900 Maine Porteinent Management Engineer Chief Chief Maine Chief Chief Chief Chief Maine Porteinent Management Engineer Chief Chief Chief	State/Province/Agen	Response Source Title	Unit	Address
AixbaPacement Management EnginerS00 Er Tade RL, Ankräuger, AK 99907AlkanaPacement Management EnginerPill N 215, Aur. MD 060R, Phoems, AK 27025CaliforniaChafOffice of Pavement and Maintanaux Magnet.Pill N 215, Aur. MD 060R, Phoems, AK 27025CaliforniaChafMaranaPill N 215, Summens, CA 9814CaliforniaChafPavement Management EnginerPill N 215, Summens, CA 9814Darcar of Karasch and MarcinPavement Management EnginerPill N 215, Summens, CA 9814Darcar of Pavement FinderPavement Management EnginerPill N 215, Summens, CA 9814Darcar of Pavement FinderPavement Management EnginerPill N 215, Summen, CA 9814GoogiaChafPavement Management EnginerPill N 215, Summen, CA 9814CaliforRepricer of Pavement TechniqueYikin N 216, Summent And 9104UnisonRepricer Management EnginerYikin N 216, Summent And 9104MariaRepricer Management EnginerYikin N 216, Summent And 9104MariaChafSumment EnginerYikin N 216, Summent And 9104MariaRepricer Management EnginerYikin N 216, Summent And 9104MariaChafSummant Repricer N 2104MariaRepricer Management Enginer <td></td> <td></td> <td></td> <td></td>				
AtazasPaceman Service Engine**121 N.1 St. Ave., MD 6981, Penetr. A 2800CaliforiaChefOffice of Povenest and Maintenato MangeronP. O. 602 201CaliforiaS. Tanperotin SeptisituDecan of HighwayND 18 7/38, Sarameno, CA 5814ConzaoS. Tanperotin SeptisituPaceman Mangeron EngineerDist 7/2 (Dans 37, Sarameno, CA 5914Destar of ConzabS. Tanperotin ConzabPaceman Mangeron EngineerPaceman Mangeron EngineerParit of ConzabChefReacted and Device/pener Branch100 Real/Perkway, S. W., Washippen, DC 2002Parit of ConzabChefReacted and Device/pener Branch15 Kened, D. 1990, Cansexille, T. 5020BrancePaceman Tageneer Engineer201 Lif-Karas, Sank, ID 3010HawaiAttering Tachangeron Engineer201 Lif-Karas, Sank, ID 3010BrancePaceman Tageneer Engineer201 Lif-Karas, Sank, ID 3010RanceChefReactel and Pacedop Mangerone Engineer201 Lif-Karas, Sank, ID 3010BrancePaceman Mangerone Engineer201 Scott Officias, Chem and High S. Frankfork, KY 4062ConstanPaceman Mangerone Engineer201 Scott Officias, Chem and High S. Frankfork, KY 4062ConstanPaceman Mangerone Engineer201 Scott Officias, Chem and High S. Frankfork, KY 4062ConstanPaceman Mangerone Engineer201 Scott Officias, Chem and High S. Frankfork, KY 4062ConstanPaceman Mangerone Engineer201 Scott Paces Scat, Ind Pacedop PaceMassenPaceman Mangerone Engineer201 Scott Paces Scat, Ind Pacedop PaceMassenPaceman Mangerone En			Bureau of Materials and Tests	
AkanasBacenta Mangenes EnginesP. 0. Box 2261. Life Nort, A. 2203ColoradoChief and Materiala Relation Relation Materiala Relation Relatio				
CaliformOffice of Pwemen and Maintenance Mangemen110 B. N.S., Saramenou, C. 89314ConsortDirector of Reserch and MaterialsBursa of Highays140 B. N.S., Saramenou, C. 89314ConsortDirector of Reserch and MaterialsBursa of Highays140 B. N.S., Saramenou, S. D. N., Wolterfield, C. TO 6179DeharatDirector of Reserch and MaterialsBursa of Highays140 B. N.S., Board, B. D. S., Wolterfield, C. TO 6179DeharatCharatReserch and Developmen Branch140 B. N.S., Board, B. D. S., Wolterfield, C. TO 6179Rober, D. E. Donald, T. Staing and Reserch Engineer150 K. Saramet, D. S., Saramet, D. S		0		
ColoradoSr. Transportation SpecialityUnitable statusColoradoSecure (C) Basers (C			Office of Pavement and Maintenance Management	
Connection ConnectionDirector of Research and Marcelina Delayour Powered Management EnginerO'Woo'red Hill Bar, Pool So, A, Weberfield. CT 06179 			Office of Pavement and Mannehance Management	
Delaware Pavement Management Enginer Powement Management Brack PO Box 778, Dover JU Sepad Evricat Counsel Pavement Management Brack 4701 Shepherd Parkwoy, S.W., Washington, D.C. 20032 Evricat Pavement Enginer 130 Kington, D.C. 20032 Baware Polication Enginer 230 Linkter Highware, Management Management Management Management Parkwoy, S.W., Washington, D.C. 20032 Baware Reservice And Development Brach 230 Linkter Highware, Management And Development Brach Baware Association of Pavement Regimer 201 Kingtoney, Management Enginer Baware Pavement Management Enginer Cartral Materials Laboratory 200 Van Bawar, Polica, NS 66611 Kanaa Pavement Management Enginer Cartral Materials Laboratory 200 Van Bawar, Polica, NS 66611 Maria Pavement Management Enginer 101 Fark Bawar, S.W., MB 60333 200 Van Bawar, Polica, NS 66611 Maria Pavement Management Enginer Maariak and Technology Division 203 Van Bawar, Polica, NA 601 200 Van Bawar, Polica, NA 601 Mariak and Stear Pavement Management Enginer Natariak and Technology Division 203 Van Bawar, Polica, Mawar, Mariak and Technology Division 203 Van Bawar, Polica, Polica, Mawar, Mariak and Technology Division			Bureau of Highways	
Dipert of Columba Pareners Management Branch 4701 Shepted Parkey, S.W., Washington, D.C. 20032 Fordia Object Pareners Management Engineer 2500 Linke Highway, Hondbulk, H98419 Havaita Attariak, Tsing and Reserch Engineer 2500 Linke Highway, Hondbulk, H98419 Havaita Attariak, Tsing and Reserch Engineer 2500 Linke Highway, Hondbulk, H98419 Havaita Attariak, Tsing and Reserch Engineer 2500 Linke Highway, Hondbulk, H98419 Havaita Attariak, Tsing and Reserch Engineer 2500 Variak, Kennek Ave, Telescoper, Ke 4002 Havaita Attariak, Tsing and Reserch Engineer 2500 Variak, Ke 6611 Hondbulk Parenert Management Engineer 200 Variak, Ke 6611 Havaita Parenert Management Engineer 200 Variak, Ke 6611 Havaita Parenert Management Engineer 201 Kaginak, ME 6433 Mariata Parenert Management Engineer 100 Exc 1000 Ravaita, ME 6433 Mariata Parenert Management Engineer 100 Exc 1000 Ravaita, ME 6433 Mariata Parenert Management Engineer 100 Exc 1000 Ravaita, ME 6433 Mariata Parenert Management Engineer 100 Exc 1000 Ravaita, ME 6433 Mariata<		1	2 3 3 2 2 3 1 1 B	
Final Pavement Evaluation Enginer PO Box 1292 (Ensure) Exact A Groupin Chief Rearch and Development Branch 15 Kontedy Dr., Forste Park, G A3005 Hawaii Materials, Testing and Reasch Engineer 2310 Linklike Highway, Hondhuk, HI 9849 Binnois Engineer of Pavement Technology 128 E. An S. & Synthesis, Net Adv., Information, Net Adv. Binnois Engineer of Pavement Technology 128 E. An S. & Synthesis, Net Adv., Information, Net Adv. Konsak Pavement Management Engineer 702 State Are, Information, Net Adv. Konsak Pavement Management Engineer 702 State Are, Information, Net Adv. Marina Pavement Management Engineer 702 State Are, Information, Net Adv. Marina Pavement Management Engineer 101 EA State, Met Adv. Marina Pavement Management Engineer 101 EA State, Met Adv. Marina Transportation Engineer Marina ad Foundation Division 703 State, Met Adv. Marina Transportation Engineer Marina ad Technology Division 700 Nor 380, Record, MM 55100 Monesoa Pavement Management Engineer Nor 380, Record, MM 55100 700 Nor 380, Record, MM 55100			Pavement Management Branch	4701 Shepherd Parkway, S.W., Washington, DC 20032
GeorgiaChiefReserch and Development Branch15 Kennet Vir. Gosts Pair, Go 3000HavarialNaterials, Tering and Reserch Pairs33111 W Saret S, Bries, ID 3370HavariaChiefDivision of Roadway Management100 N. Steate Art., Indiance/is, IM 4504HainaChiefDivision of Roadway Management100 N. Steate Art., Indiance/is, IM 4504HainaChiefDivision of Roadway Management200 Van Bater, Indiance/is, IM 4504HainaPavement Management EngineerCentral Materials Laboratory200 Van Bater, Indiance Art., Indiance/is, IM 4504HainaPavement Management EngineerSolis and Foundation Division200 Van Bater, Indiance Art., Indiance Art	Florida	Pavement Evaluation Engineer	0	PO Box 1029, Gainesville, FL 32602
TableParener TegingerNo3311 W States 27, Boiler, ID 3307IllinoisaChiefDivition of Roadway Management100 N. Senate Act, Indiangols, IN 45204IndianaChiefDivition of Roadway Management100 N. Senate Act, Indiangols, IN 45204IndianaChiefDivition of Roadway Management100 N. Senate Act, Indiangols, IN 45204KanasParenent Management Engineer702 Sate Office Bldg, Clinoin and High Sat, Frankfort, KY 40622LauisianaParenent Management Engineer702 Sate Office Bldg, Clinoin and High Sat, Frankfort, KY 40622MariyandChiefSole and Foundation Division232 Wast Jopa Rd, Brooklandville, MD 2102MarschaustrParenent Management EngineerMatrials and Technology DivisionPO Box 3004, Jataen Rd, Hage ManagementMinegoaTransportation EngineerMatrials and Technology DivisionPO Box 3004, Jataen M, 48809MinegoaParenent Management EngineerPo Box 3004, Jataen M, 48809MinegoaParenent Management EngineerPO Box 3004, Jataen M, 48809MissouriParenent Management EngineerPo Box 3004, Jataen Dr., Concol NH 03302MorardaSapervior, Parenent Management EngineerPo Box 3004, Jataen Dr., Concol NH 03302New ArbryParenent Management EngineerPo Box 3004, Jataen Dr., Concol NH 03302New ArbryParenet Management EngineerPo Antron Management Monagement EngineerNew HortyParenet Management EngineerPorten Hagement Management EngineerNew HortyParenet Management EngineerParenet Management EngineerN	Georgia		Research and Development Branch	15 Kennedy Dr., Forest Park, GA 30050
IllingiaEngineer of Pivement Technology126 E. ANR S., Springfield, IL. S2704IowaChiefDivision of Rodwy Management800 Lincolowy, Ames, IA. S0010KaraskaPavernent Management Engineer702 Sate Office Bldg, Clinent and High SL, Prakfort, KY 40622LouisianPavernent Management Engineer702 Sate Office Bldg, Clinent and High SL, Prakfort, KY 40622MainePavernent Management Engineer702 Sate Office Bldg, Clinent and High SL, Prakfort, KY 40622MainePavernent Management Engineer702 Sate Office Bldg, Clinent and High SL, Prakfort, KY 40622MainePavernent Management EngineerMaterials and Technology Division702 Sate Office Bldg, Clinent and High SL, Prakfort, KY 40622MassahasetsPavernent Management EngineerMaterials and Research Laboratory10 Par Pizza, Par. 4150, Bonon, MA 02116MinesonaPavernent Management EngineerMaterials and Research Laboratory10 Par Pizza, Par. 4150, Bonon, MA 02116MinesonaPavernent Management Engineer10 Par Pizza, Par. 4150, Bonon, MA 02116MinesonaPavernent Management Engineer10 Par Pizza, Par. 4150, Bonon, MA 02116MorisonaPavernent Management Engineer10 Par Pizza, Par. 4150, Bonon, MA 02116MorisonaPavernent Management Engineer10 Par Pizza, Par. 4150, Bonon, MA 02116MorisonaPavernent Management Engineer10 Par. 11 P	Hawaii	Materials, Testing and Research Engineer		2530 Lifelike Highway, Honolulu, HI 96819
IndiandChiefDivision of Roadway Management100 N. Serant Ave., Indianapolis, 1N. 46204IowaAsk 1S special investigations: EngineerCentral Materials Laboratory200 Van Buren, Topeka, KS 66611KanskaPavement Management Engineer200 Van Buren, Topeka, KS 66611LouisianPavement Management Engineer1201 Capito Access Road, Baon Roage, LA 70804MariePavement Management Engineer1201 Capito Access Road, Baon Roage, LA 70804MariyandChiefSoits and Foundation Division223 West Burgen, M. Roady, J. AndronMasschusettsPavement Management EngineerMaterials and Technology DivisionPO Box 1909, Lasing, M. 48909MinescoaPavement Management EngineerMaterials and Technology DivisionPO Box 1909, Lasing, M. 48909MinescoaPavement Management EngineerMaterials and Research LaboratoryPO Box 1909, Lasing, M. 48909MinescoaSupervisor, Pavement Management EngineerPO Box 1900, Lakono, MS 30115MissouriPavement Management EngineerPo Box 1900, Lakono, MS 302115MissouriPavement Management EngineerPo Box 1900, Lakono, MS 302115NewakaPavement Management EngineerPo Box 1900, Lakono, MS 302115NewakaPavement Management EngineerPo Box 1900, Ratieg, Max, Borno, NJ 00620NewakaPavement Management EngineerPo Box 1900, Ratieg, Max, Borno, NJ 00620New ArkoPavement Management EngineerResarchNew ArkoPavement Management EngineerResarchNew ArkoPoncipte EngineerResarch	Idaho	Pavement Engineer		3311 W State St., Boise, ID 83707
InvexArs 1 Special Investigations Eng.Contral Materials Laboratory800 LineSony, Arnes, IA S0010KanasaPavement Managenenn Engineer702 Sate Office Bidg., Climon and High Sc., Frankfort, KY 40622LusistanaPavement Managenenn Engineer702 Sate Office Bidg., Climon and High Sc., Frankfort, KY 40622MainePavement Managenenn EngineerClife St., Station 16, Augusta, ME 04333MarinalChiefSols and Foundation Division233 West Jopp 842, Decoklandville, MD 2102MassachustisPavement Managenenn EngineerMaterials and Technology DivisionPO Box 13049, Laming, M4 8090MinestonaPavement Managenenn EngineerMaterials and Research Laboratory1400 Gervis Ave., Maplewood, MN 55109MississipiiResearch and Development EngineerP.O. Box 1302, Leicknon KS 39215MississipiiResearch and Development EngineerP.O. Box 1302, Leicknon KS 39215MississipiiSupervisor, Tavement Management SeriesMaterials BureauNorbankaHighway Managenent EngineerPO Box 1302, Leiferson City, MV 85109NevadaHajkway Managenent EngineerPo Box 1302, Leiferson City, MV 8712NevadaHajkway Managenent EngineerPo Box 1302, Leiferson City, MV 8712NevadaHajkway Managenent EngineerPo Box 1302, Leiferson City, MV 8712NevadaAsistand DirectorPlaningBasta Challer, NT 5503NevadaSaistand DirectorPlaningPlaningNevadaSaistan DirectorPlaningPlaningNev MarcoPavement Managenent EngineerPlaning Natagenent Dire	Illinois	Engineer of Pavement Technology		
Kanss Barnent Mangement Engineer2100 Vaneer, Mangement Engineer2100 Vaneer, Mangement EngineerLouisian Barnent Mangement Engineer1201 Capital Access Road, Baton Rouge, LA 7004Marie MariePavement Mangement Engineer1201 Capital Access Road, Baton Rouge, LA 7004Marie MaschuettsPavement Mangement Engineer1201 Capital Access Road, Baton Rouge, LA 7004Marian MaschuettsPavement Mangement Engineer1201 VanieMarian MaschuettsPavement Mangement EngineerMaterials and Technology Division1203 Vanie, MI 4809Minesca Minesca Missionri Pavement Mangement EngineerMaterials and Research Laboratory1400 Gervai Ave., Maplewood MN 55100Missionri Pavement Mangement EngineerPo Bos 720, Jeffron City, MO 65102Montan Missiouri Pavement Mangement EngineerPo Bos 720, Jeffron City, MO 65102Mortan Missiouri Pavement Mangement EngineerPo Bos 94759, Lincein, NE 6550Nevada Nevada A datiant DirectorPaningNevada New Arey Principle EngineerResarchPavement Mangement EngineerPo Bos 1149, Saute Fo, NG 7534New Arey Principle EngineerPavement Mangement System DevelopmentNew Marey Pavement Mangement EngineerPavement Mangement EngineerNew Marey Differed Engineer <td></td> <td></td> <td></td> <td></td>				
Kenucky KenuckyPavernet Mangement Engineer702 State702			Central Materials Laboratory	
Louisina MainePavement Management EngineerSoils and Foundation DivisionChi Ld Su, Satura Me 60433MarylandChiefSoils and Foundation DivisionDi Park Plaza, R. 4150, Boton MA 0211 6MaschuettsTransportation EngineerMaterials and Technology DivisionPO Bave Mos 2004) Larsing, MI 4809MinescolaPavement Management EngineerMaterials and Research LaboratoryPO Gorvia's Ave., Maplewood MN 55109MissuispiiResearch and Development EngineerPo Box 1800, Jackson, MS 3015MissuispiiResearch and Development EngineerPO Box 1800, Jackson, MS 30215MissuispiiResearch and Development EngineerPO Box 1800, Jackson, MS 30215NevadaAsitant DirectorPlanningNevadaAsitant DirectorPlanningNevadaAsitant DirectorPlanningNev HampshirePols 0479, Juneola, NK 66509New HampshirePavement Management EngineerNew HampshirePavement Management EngineerNew AttraspitPavement Management EngineerNew MetrobData Collection EngineerPavement Management EngineerPavement Management EngineerNorth CarolinData Collection EngineerPavement Management EngineerPavement Management EngineerNorth CarolinData Collection EngineerPavement Management EngineerPavement Management Engineer </td <td></td> <td></td> <td></td> <td></td>				
Maine MarylandPavenent Management EngineerChief Sustantion 16, Augusta, ME 0433Maryland MarylandFavenent Management Engineer10 PAX Plaza, Rm., 4150, Boston, MA 02116Missission MississionPrevenent Management EngineerMaterials and Technology DivisionPO Box 2009, Larsing, MI 48099Missission MississionResearch and Development EngineerPO Box 2009, Lefferson City, MO 65102Missission MississionSupervior, Pavenent Management EngineerPO Box 270, Lefferson City, MO 65102Missission MonanaSupervior, Pavenent Management EngineerPO Box 270, Lefferson City, MV 65102Nebraka MississionHighway Management CoordinatorPO Box 270, Lefferson City, MV 65102Nevada NevadaAssistant DiversorPlanning1263 S. Sewart, S., Carson City, NV 89712Nevada NevadaMississingin Pavenent Management EngineerPlanning1005 Parkway An., Tenton, NJ 06252Nev Jotsi North CarolinPavenent Management EngineerPlanning1005 Parkway An., Tenton, NJ 06252Nev Jotsi North CarolinPavenent Management EngineerPlanning Division608 East Doubland Ave., Bidar, AN, OB 5050 CitalNorth Carolin DioPavenent Management EngineerPavenent Management Engineer25 South Front JL, Room 504, Albany, NY 1222North Carolin DioPavenent Management EngineerPavenent Management Engineer25 South Torot JL, Room 504, CitalNorth Carolin DioSaudo Vardy Management DivisionSout Alban, Stater, Alban, St				
Maryland Chief Soils and Foundation Division 2223 West Jopps R.d., Brooklandville, MJ 21022 Mascalusters 10 Park Plaza, M. Alog. NA 02116 Michigan Trapportation Engineer Materials and Technology Division PO 80x 30049, Laming, M. 48099 Minnesona Research and Dovelopment Engineer Materials and Technology Division PO 80x 1850, Jackson, MS 31921 Mississippi Research and Dovelopment Engineer PO 80x 1850, Jackson, MS 39215 Mississippi Supervior, Pavement Management Engineer PO 80x 1850, Jackson, MS 39215 Monana Supervior, Pavement Management Sectio Materials Bureau 2101 Prospect Ave., Ildera, MT 96620 Nevala Highway Management Engineer Planning 1635 Stewart St., Carson City, NV 8712 New Jersey Promoth Management Engineer Research 1035 Parkway Are, Terroton, NI 08625 New Vork Promoth Management Engineer Pavement Management Engineer Po 80x 1149, Saute Fe, NN 87504 New Vork Chief Pavement Management Division 608 East Boulverd Ave., Binder, AR, Bons 01A, Alhany, NY 12232 North Dakoa Pavement Management Engineer Po aventest Management Engineer PO 80x 1140, Saute Fe, NN 87504 North Dakoa Senior Engineer Pavement Management Engineer PO 80x 1140, Saute Fe, NN 87504 North Dakoa Senior Engineer				
MasachuettaPearle Nanagement EngineerItel Nanagement EngineerPearle Nanagement EngineerPearle Nanagement EngineerMisersonPavement Management EngineerNaterials and Technology DivisionPO Box 3090, Laning, MI 4890MississippiRescarch and Development EngineerPO Box 1200, Jackson, MS 3015MississippiRescarch and Development EngineerPO Box 1200, Jackson, MS 3016MississippiSupervisor, Navement Management Scrib Mareials Bureau2701 Progene City, NO 65102NetrakaHighway Management CoordinatorPlaningNevadaAssistand DirectorPlaningNevadaAssistand DirectorPlaningNew JersyPrinciple EngineerRescarchNew JersyPrinciple EngineerPavement Management EngineerPovement Management EngineerNew YorkOtiefPavement Management EngineerPlaningNew YorkDiata Coltcion EngineerPavement Management System DevelopmentPD Box 32501, Railegh, NC 27611Nordi CarolinaData Coltcion EngineerPavement Management Division608 East Boolavad Ave., Biamati, ND 5850Nordi CarolinaSparversity Management EngineerPavement Management Division800 Aiport Air, Soon So, Columbas, OH 43215Nordi Data Coltcin EngineerPavement Management Division800 Aiport Air, Soon So, Columbas, OH 43215OkidoSparversity Givil EngineerPavement Management Division800 Aiport Air, Soon Soo, Columbas, OH 43215OkidoSparversity Givil EngineerPavement Management EngineerPavement Management EngineerP				
MichingamTransportation EngineerMaterials and Technology DivisionP Dos x30049, Lansing, M1 48909MinensotaPavement Management EngineerPO Dox 1850, Jackcon, MS 39115MissouriPavement Management EngineerP O. Dox 270, Jefferon City, MO 651002MontanaSupervisor, Pavement Management EngineerP O. Dox 270, Jefferon City, MO 651002MontanaSupervisor, Pavement Management EngineerP O. Dox 270, Jefferon City, MO 65102NevalaAssistant DirectorPlanning1263 S. Stewart St., Carson City, NV 8712New JersyPrinciple EngineerRecarch1035 Parkway Ave., Thennon, NB 66359New VarkPrinciple EngineerRecarch1035 Parkway Ave., Thennon, NB 6635New VarkParement Management EngineerPavement Management Engineer1035 Parkway Ave., Thennon, NB 6635New VarkChiefPavement Management Engineer1030 Parkway Ave., Thennon, NB 6635North DakoaSenior EngineerPavement Management Division608 East Boulvard Ave., Barnak, ND 5805OhinPavement Management Engineer200 N.E. 215., Oktahoma City, OK 73105OrgonPavement Management Engineer200 N.E. 215., Oktahoma City, OK 73105OrgonPavement Management EngineerPavement DivisionTAS Blag, Harrisburg, PA 1720OrgonPavement Management Engineer1000 James K. Stalin, OK 7310Pavement Management EngineerPavement Management DivisionTAS Blag, Harrisburg, PA 1720OrgonPavement Management Engineer1000 James K. Stalin, Stave, Javeille, TA 7203Pavement Manage			Soils and Foundation Division	
Minescod MississippiPavement Management EngineerVatorials and Research Laboratory1400 Gervais Ave., Maplewood, MN 55109MississippiResearch and Development EngineerP O. Box 270, Jefferson City, MO 65102MisnauriSupervisor, Pavement Management Sector Metrials Bureau2011 Prospect Ave., Helena, MT 59620NevakaAsistant DirectorPaming1263 S. Stewart S., Carson City, NN 89712NevakaAsistant DirectorPaming1263 S. Stewart S., Carson City, NN 89712New HamphitePavement Management Engineer1005 Parkway Ave., Trenton, NI 08625New HamphitePavement Management Engineer1005 Parkway Ave., Trenton, NI 08625New MexicoPavement Management System Development1220 Washington Ave., Big. 7A, Room 501A, Albary, NY 12232North CarolinaData Collecton EngineerPavement Management System Development1220 Washington Ave., Big. 7A, Room 501A, Albary, NY 12232North CarolinaData Collecton EngineerPavement Management System Development1220 Washington Ave., Big. 7A, Room 501A, Albary, NY 12232North DakotaSenior Research Projeet ManagerPavement Management System Development1220 Washington Ave., Big. 7A, Room 501A, Albary, NY 12232OkishomsSenior Research Projeet ManagerResearch And Development Division800 Argropr RL, Seland Ave., Stama RL, Song RL, Son			Manaiala and Taskaslana Division	
Mississipi Beschaft and Development Engineer PO Box 1850, Jackson, MS 39215 Missiouri Parement Management Engineer PO Box 1792, Lindon, NE 68509 Nebraixa Highway Management Coordinator 1203 S. Stewart SL, Caston City, NM 05102, MO 10302 New Jaka Highway Management Engineer 1203 S. Stewart SL, Caston City, NM 9712 New Jampshire Parement Management Engineer Resarch New Jersey Principle Engineer Resarch New Vork Parement Management Engineer Resarch New Vork Chief Parement Management System Development 1200 Washingon Ave., Bidg, 7A, Room 501A, Albany, NY 12232 North Carolina Data Collection Engineer Parement Management Engineer Parement Management North Carolina Data Collection Engineer Parement Management Development PO Box 7507, Raliegh, NC 27611 North Carolina Saite Collection Engineer Parement Management Division 605 Est Boulvard Ave., Bismark, ND 5805 Ohio Parement Management Engineer Parement Junit Boulvard Ave., Bismark, ND 5805 Okalona Senior Resarch Projet Management Division Saite Office Bidg, Provider Kal, Saiten Office Bidg, Pro			25	
Missouri P.O. Box 270. Lefferson City, NO 65102 Moritana Supervisor, Pavement Management Sectio Materials Bureau 201 Prospect Ave., Helma, MT SP620 Nevada Assistant Director Planning 1263 S. Stewart St., Carson City, NV 89712 Nev Hamphite Pavement Management Engineer Join O. Morton Bidg., P.O. Box 433, Hazen Dr., Concod NH 03302 New Hamphite Pavement Management Engineer Research 1005 Parkway Ave., Trenton, NU 86625 New Mexico Pavement Management Engineer Pavement Management Engineer PO Box 270, Raliegh, NC 27611 North Carolina Data Collection Engineer Pavement Management Division 200 Nr. E. 2151, Oktahoma City, OK 73105 North Datota Senior Research Project Manager Research and Development Division 200 Nr. E. 2151, Oktahoma City, OK 73105 Oregon Pavement Management Engineer Po Box 190, Augement Management Division 200 Nr. E. 2151, Oktahoma City, OK 73105 Pavement Management Engineer Pavement Management Division 740 Grifer Bidg., Providence, RI 02933 South Carolina Pavement Management Engineer Po Box 191, Columbia, SC 29202 Research Scientist Virginia Transportation Research Council 800 Aingrert Assaten, RB 7930			Materials and Research Laboratory	
Montana Nebraka Highway Maagement Sectio Vaterials Bureau2701 Prospect Ave., Helem., MT 59620Nebraka Highway Maagement CoordinatorPlanning1263 S. Stewart St., Carson City, NV 89712New Jata New JerseyPavement Management EngineerJohn O. Morton Bidg., P.O.Box 4433, Hazen Dr., Concod NH 03302New JerseyPrinciple EngineerResearch105 Parkway Ave., Fretnon, NJ 06625New VorkChiefPavement Management EngineerPo Box 1494, Saute Fe, NM 87504New KricioPavement Management EngineerPavement Management Devolopment120 Washington Ave., Bldg. 7A, Soom 501A, Albany, NY 12232North DatoSenior EngineerPavement Management Devolopment60 Batz Boulward Ave., Bldg. 7A, Soom 501A, Albany, NY 12232OhioSenior EngineerPavement Management Engineer25 South Front st., Room 506, Columbus, OH 43215OklahomaSenior EngineerPavement Management Division200 N. F. 2152Oklahoma City, OK 73105OregonPavement Management EngineerPavement System Division200 N. F. 2152Oklahoma City, OK 73105PensylvaniaChiefRoadway Management DivisionTAS Bldg., Haritsburg, PA 17120PensylvaniaSupervising Civil EngineerPavement Management Engineer700 East Boulway Ave., Piere, SD 57501PensylvaniaSupervising Civil EngineerPavement Management Engineer1000 James K. Polk Bldg., Nashville, TN 37243South DakonPavement Management Engineer103 Sate St., Monpelier, VT 05002Y24114VermontPavement Management Engineer103 Sate St., Monpelier, VT 050021				
Netrada Highway Management Coordinator PO Box 94759, Lincoln, NE 68:09 Nevada Assitant Director Planning 1263 S. Stewart St., Carson City, NV 89712 New Hampshtt Pavement Management Engineer John O. Morton Bidg., P.O. Box 443, Hazen Dr., Concod NH 03302 New Jersey Principle Engineer Research 1035 Parkway Ave., Trenton, NJ 08625 New Mexico Pavement Management Engineer Poon 149, Saute Fe, NM 87504 North Carolin Data Collection Engineer Pavement Management Ingineer North Dakota Senior Research Project Manager Research and Development Division Senior Research Project Manager Research and Development Division 200 N. E. 218t., Okahoma City, OK 73105 Oregon Pavement Management Division Stab Arbiting, PA 7110 Pavement Management Division Senior Research Project Manager Pavement Siglig, Hor 27011 Pavement Management Division Stab Arbiting, PA 7110 Rhode Island Spervising Civil Engineer Planning Division Stab Of Fioe Bidg., Providence, RI 02903 South Dakota Pavement Management Engineer Planning Division Stat Office Bidg., Nashville, TN 37243 Ternessee Pavement Management Engineer Planning Division Stat Off			Materials Bureau	
Nevada Nevada New HamphirePlanning1263 S. Stewart St., Carson City, NV 89712New Hamphire New Jersev Principle EngineerResearchJohn O. Morton Bidg. P.O. Box 438. Hazen Dr., Concod NH 03302New KeitoPavement Management Engineer1035 Parkway Ave., Trenton, NJ 08625 PO Dox 1149, Same Fe, NM 87504New YorkChiefPavement Management System DevelopmentPO Box 1149, Same Fe, NM 87504North CarolinaData Collection EngineerPavement Management System DevelopmentPO Box 22301, Raliegh, NC 27611North DakosSenior EngineerPavement Management Engineer25 South Front st., Room 506, Columbus, OH 43215OktahomaSenior Research Project ManagerResearch and Development Division260 N. E. 2151.OregonPavement Management EngineerPavement Unit800 Airport Rd., Salem, OR 97310PennsylvaniaChiefRoadway Management DivisionTas Bidg., Parisburg, PA 1720South DakotaPavement Management EngineerPo Box 191, Columbia, SC 29202South DakotaPavement Management Engineer1000 James K. Polk Bidg., Nativille, TN 37243TexasEngineerPavement Management Engineer1000 Salt Stac 4004 Ave., BitarVermontPavement Management Engineer1000 James K. Polk Bidg., Nativille, YA 22903VirginiaResarch ScientistVirginia Transportation Research CouncilBox 817, University Station, Charleston, WV 25305VermontPavement Management EngineerPavement Management Engineer1055 South 2nd Ave., Bidg., 4999-98th, Ave., Edmonton, Alberta, Canada, T6B 2X3Virgin			Matchais Burcau	
New Hampshire Pavement Management Engineer Generation John O. Morton Bldg., P.O. Boć 483. Hazen Dr., Concod NH 03302 New Jersey Principle Engineer Research 1035 Parkway Ave., Trenton, NJ 08625 New Mexico Pavement Management Engineer Pavement Management System Development 1220 Washington Ave., Bldg. 7A, Room 501A, Albany, NY 12232 North Carolina Data Collection Engineer Pavement Management System Development 1220 Washington Ave., Bismark, ND 58505 Ohio Pavement Management Engineer Planning Division 608 East Boulvard Ave., Bismark, ND 58505 Oklahoma Senior Research Project Manager Pavement Management Division 200 N. E. 21St., Oklahoma City, OK 73105 Oregon Pavement Management Engineer Pavement Jinit 800 Anyort Ma, Salen, NC 29202 Pensylvania Chief Roadway Management Division State Office Bidg., Providence, RI 02903 South Carolina Pavement Management Engineer Yoo Dawn SK 70k Bidg., Natville, TN 37243 Texas Engineer of Pavement Management Engineer Yoo Dawn SK 70k Bidg., Natville, TN 37243 Texas Engineer of Pavement Management Engineer 125 East I Ith. Street, Austin, TX 78701 Usermot Pave			Planning	
New Jess' New MexicoPinciple EngineerResearch1035 Parkway Ave, Trenton, NU 08625New MokicoPavement Management EngineerPavement Management System Development1220 Washington Ave., Bidg. 7A, Room 501A, Albany, NY 12232North CarolinaData Collection EngineerPavement Management System Development1220 Washington Ave., Bidg. 7A, Room 501A, Albany, NY 12232OkinhomaSenior EngineerPavement Management Engineer058 Sot Soule Varol Xe., Bidg. 7A, Room 506, Columbus, OH 43215OkinhomaSenior Research Project ManagerResearch and Development Division200 N. E. 21St., Okiahoma City, OK 73105OregonPavements EngineerPavement Unit800 Airport Rd., Salem, OK 97310PennsylvaniaChiefRoadway Management DivisionT&S Bidg., Harrisburg, PA 17120Rohde IslandSupervising Civil EngineerPlanning DivisionTAS Bidg., Harrisburg, PA 17120South CarolinaPavement Management EngineerPolanni DivisionTAS Bidg., Providence, R1 02903South DakotaPavement Management Engineer1000 Janes Ke, Nork Bidg., Mashville, TN 37243TexasEngineer of Pavement Management125 East 11th. Street, Austin, TX 78701VirginiaResearch ScientistVirginia Transportation Research CouncilBox 592, Charleston, W 25305WisconsinPavement Management EngineerPianning and ResearchBidg. 5, Room A-863, Capitol Couplex, Charleston, WV 25305VirginiaPavement Management EngineerPianning and ResearchBidg. 5, Stoom A-863, Capitol Couplex, Charleston, WV 25305VirginiaPavement Manage			. tothing	
New YorkChiefPavement Management System Development1220 Washington Ave., Bitg. 7A, Room 501A, Albany, NY 12232North CarolinaData Collection EngineerPavement ManagementPO Box 25201, Raliegh, NC 27611North DaktoSenior EngineerPlanning Division608 East Boluvrad Ave., Bismark, ND 58505OhioPavement Management EngineerPanning Division25 South Front st., Room 506, Columbus, OH 43215OklahomaSenior Research Project ManagerResearch and Development Division200 N. E. 2182., Oklahoma City. OK 73105OregonPavements EngineerPavements Unit800 Airport Rd., Salem, OR 97310PennsylvaniaChiefRoadway Management DivisionT&S Bildg., Harrisburg, PA 17120Nohde IslandSupervising Civil EngineerPlanning DivisionT&S Bildg., Harrisburg, PA 17120Nohde IslandSupervising Civil EngineerPlanning DivisionT&S Bildg., Marisburg, PA 17120Nohdo LarolinaPavement Management EngineerPlanning DivisionT&S Bildg., Marisburg, PA 17120Nohdo LarolinaPavement Management EngineerPlanning DivisionT&S Bildg., Nashville, TN 37243TemesseePavement Management Engineer1000 James K. Polk Bildg., Nashville, TN 37243TemesseeResearch ScientistVirginia Transportation Research CouncilBox 3817, University Station, Charletosville, VA 22903VirginiaResearch ScientistVirginia and ResearchBox 3817, University Station, Charletosville, VA 22903VirginiaPavement Management EngineerPlanning and ResearchBildg. S, Room A-863, Capitol Com	•		Research	
North Carolina North DakotaData Collection EngineerPavement Management Pavement Management EngineerPo Box 25201, Raliegh, NC 27611North DakotaSenior EngineerPlanning Division608 East Boulvard Ave., Bismark, ND 58505OhioPavement Management EngineerPavement Division25 South Front st., Room 506, Columbus, OH 42215OklahomaSenior Research Project ManagerResearch and Development Division200 N. E. 218L., Oklahoma City, OK 73105OregonPavements EngineerPavement Unit800 Airport Rd., Salem, OR 97310PennsylvaniaChiefCivil EngineerPlanning DivisionT&S Bldg., Harrisburg, PA 17120Rhode IslandSupervising Civil EngineerPlanning DivisionState Office Bldg., Providence, RI 02903South CarolinaPavement Management EngineerPo Box 191, Columbus, SC 19202South DakotaPavement Management Engineer700 East Broadway Ave., Pierre, SD 57501TennesseePavement Management Engineer1000 James K. Polk Bldg., Nashville, TN 37243VirginiaPavement Management Engineer133 State St., Monpelier, VT 05602VirginiaResearch ScientistVirginia Transportation Research CouncilBox 3817, University Station, Charlottesville, VA 22903WaschingtonPavement Management EngineerPlanning and ResearchBldg. S. Room A-863, Capitol Complex, Charleston, WV 25305WisconsinPavement Management SupervisorMaterials Center500 Kinsmar Blvd., Madison, WI 53704WyomingPavement Management EngineerPlanning and ResearchBldg. S. Room A-863, Capitol Comple	New Mexico	Pavement Management Engineer		PO Box 1149, Sante Fe, NM 87504
North DakotaSenior EngineerPlanning Division608 East Boulvard Ave., Bismark, ND 58505OhioPavement Management Engineer25 South Front st., Room 506, Columbus, OH 43215OklahomaSenior Rescarch Project ManagerResearch and Development Division200 Nr. E. 21St., Oklahoma City, OK 73105OregonPavements EngineerPavements Unit800 Airport Rd., Salem, OR 97310PennsylvaniaChiefRoadway Management DivisionT&S Bldg., Harrisburg, PA 17120Rhode IslandSupervising Civil EngineerPlanning DivisionT&S Bldg., Providence, RI 02903South CarolinaPavement Management EngineerPol Box 191, Columbia, SC 29202South DakotaPavement Management Engineer700 East Broadway Ave., Pierre, SD 57501TennesseePavement Management Engineer1000 James K. Polk Bldg., Nashville, TN 37243TexasEngineer of Pavement Management125 East Ith. Street, Austin, TX 78701UtahPavement Management EngineerVirginia Transportation Research CouncilBox 3817, University Station, Charlottexville, VA 22903VirginiaResearch ScientistVirginia Transportation ResearchBidg., S. Room As63, Capitol Complex, Charleston, WV 25305WashingtonPavement Management EngineerPlanning and ResearchBidg., S. Room As63, Capitol Complex, Charleston, WV 25305WisconsinPavement Management EngineerPlanning and ResearchBidg. S. Room As63, Capitol Complex, Charleston, WV 25305WisconsinPavement Management EngineerPlanning and ResearchBidg. S. Room As63, Capitol Complex, Charleston, WV 25305	New York	Chief	Pavement Management System Development	1220 Washington Ave., Bldg. 7A, Room 501A, Albany, NY 12232
Ohio Pavement Management Engineer 25 South Front st., Room 506, Columbus, OH 43215 Okiahoma Senior Research Project Manager Research and Development Division 200 N. E. 21St., Oklahoma City, OK 73105 Oregon Pavements Engineer Pavements Unit 800 Airport R4, Salem, OR 97310 Pensylvania Chief Roadway Management Division T&S Bldg., Harrisburg, PA 17120 Rhode Island Supervising Civil Engineer Planning Division State Office Bldg., Providence, RI 02903 South Carolina Pavement Management Engineer Planning Division State Office Bldg., Providence, RI 02903 South Dakota Pavement Management Engineer Planning Division T&S Bldg., Nashville, TN 37243 Tenassee Engineer of Pavement Management 120 East 11th. Street, Austin, TX 78701 Utah Pavement Management Engineer 4501 South 2700 West, Salt Lake City, UT 84119 Vermont Pavement Management Engineer Virginia Transportation Research Council Box 3817, University Station, Charlottesville, VA 22903 Washington Pavement Management Engineer Virginia and Research Bid.g. S. Room A-863, Capitol Complex, Charleston, WV 25305 Wastorigin Pavement Management Engineer	North Carolina	Data Collection Engineer	Pavement Management	PO Box 25201, Raliegh, NC 27611
Oklahoma OregonSenior Research Project Manager Pavements EngineerResearch and Development Division200 N. E. 21St., Oklahoma City, OK 73105Oregon Pennsylvani ChiefRoadway Management Division74X B1dg., Harrisburg, PA 17120Rhode Island South CarolinaSupervising Civil EngineerPlanning Division74X B1dg., Harrisburg, PA 17120Rhode Island South DakotaPavement Management EngineerPlanning DivisionState Office Bldg., Providence, RI 02903Pavement Management EngineerPlanning Division700 East Broadway Ave., Pierre, SD 57501TennesseePavement Management Engineer700 East Broadway Ave., Pierre, SD 57501TexasEngineer of Pavement Management125 East 11th. Street, Austin, TX 78701UtahPavement Management Engineer4501 South 2700 West, Sait Lake City, UT 84119VermontPavement Management Engineer133 State St., Montpelier, VT 05602VirginiaResearch ScientistVirginia Transportation Research CouncilBox 3817, University Station, Charlottesville, VA 22903WashingtonPavement Management EngineerPlanning and ResearchBilg. 5, Room A-863, Capitol Complex, Charleston, WV 25305WisconsinPavement Management SupervisorMaterials Center3502 Kinsmar Blvd., Madison, WI 53704WyomingPavement Management SupervisorMaterials Center3502 Kinsmar Blvd., Madison, WI 53704Pavement Management SupervisorMaterials Center3502 Kinsmar Blvd., Madison, WI 53704Pavement Management SupervisorMaterials Center3502 Kinsmar Blvd., Madison, WI 53704P	North Dakota	Senior Engineer	Planning Division	608 East Boulvard Ave., Bismark, ND 58505
OregonPavements EngineerPavements Unit800 Airport Rd., Salem, OR 97310PennsylvaniaChiefRoadway Management DivisionT&S Bldg., Harrisburg, PA 17120Rhode IslandSupervising Civil EngineerPlanning DivisionState Office Bldg., Providence, RI 02903South CarolinaPavement Management EngineerPo Box 191, Columbia, SC 29202South DakotaPavement Management Engineer700 East Broadway Ave., Pierre, SD 57501TennesseePavement Management Engineer1000 James K. Polk Bldg., Nashville, TN 37243TexasEngineer of Pavement Management Engineer125 East Lith. Street, Austin, TX 78701UtahPavement Management Engineer4501 South 2700 West, Salt Lake City, UT 84119VirginiaResearch ScientistVirginia Transportation Research CouncilWashingtonPavement Management EngineerPlanning and Research CouncilWashingtonPavement Management EngineerPlanning and ResearchWisconsinPavement Management EngineerPlanning and ResearchWyogningPavement Management EngineerPlanning and ResearchWisconsinPavement Management Systems EngineerPlanning and ResearchWisconsinPavement Management Systems EngineerPlanning and ResearchWisconsinPavement Management Systems EngineerPlanning America CenterAlbertaPavement Systems EngineerMaterials CenterAlbertaPavement Systems EngineerAtherials CenterAlbertaPavement Design EngineerAtherials and ResearchBritish ColumbiaPa				
PennsylvaniaChiefRoadway Management DivisionT&S Bldg., Harrisburg, PA 17120Rhode IslandSupervising Civil EngineerPlanning DivisionState Office Bldg., Providence, RI 02903South CarolinaPavement Management EngineerPO Box 191, Columbia, SC 29202South DatotaPavement Management EngineerToo East Broadway Ave., Pierre, SD 57501TennesseePavement Management Engineer1000 James K. Polk Bldg., Nashville, TN 37243TexasEngineer of Pavement Management Engineer125 East 11th. Street, Austin, TX 78701UtahPavement Management Engineer133 State St., Montpelier, VT 05602VirginiaResearch ScientistVirginia Transportation Research CouncilBox 3817, University Station, Charlottesville, VA 22903South 2700 West, Salt Lake City, UT 84119VermontPavement Management EngineerPlanning and ResearchWashingtonPavement Management EngineerPlanning and ResearchWest VirginiaPavement Management SupervisorMaterials CenterPavement Management SupervisorMaterials Center3002 Kinsmar Blvd., Madison, WI 53704WyoningPavement Management SupervisorMaterials and ResearchHitish ColumbiaPavement Design Engineer404 Blanshard St., Victoria, BC, Canada, V8W 3E6Materials and Research1181 Portage Ave. (Annex), Winnepeg, Manitoba, Canada, R3G 0T3New BunswickSenior Systems EngineerPlanning DivisionNova ScotiaPlanning EngineerPlanning DivisionNova ScotiaPlanning EngineerPlanning Division				
Rhode IslandSupervising Civil EngineerPlanning DivisionState Office Bldg., Providence, RI 02903South CarolinaPavement Management EngineerPO Box 191, Columbia, SC 29202South DakotaPavement Management Engineer700 East Broadway Ave., Pierre, SD 57501Pavement Management Engineer1000 James K. Polk Bldg., Nashville, TN 37243TexasEngineer of Pavement Management Engineer125 East 11th. Street, Austin, TX 78701UtahPavement Management Engineer4501 South 2700 West, Salt Lake City, UT 84119VermontPavement Management Engineer133 State St., Montpelier, VT 05602VirginiaResearch ScientistVirginia Transportation Research CouncilWashingtonPavement Management EngineerPlanning and ResearchWisconsinPavement Management Systems EngineerPlanning and ResearchWisconsinPavement Management Systems EngineerPlanning and ResearchWyomingPavement Management Systems EngineerPlanning and ResearchWyomingPavement Management Systems EngineerPlanning and ResearchWisconsinPavement Management Systems EngineerPlanning and ResearchWisconsinPavement Management Systems EngineerPlanning and ResearchWyomingPavement Management EngineerPlanning and ResearchWisconsinPavement Management Systems EngineerPlanning And ResearchWisconsinPavement Management Systems EngineerPlanning And ResearchMaterials and ResearchBldg. f, Vietoria, BC, Canada, V8W 3E6British ColumbiaDirector		-		
South CarolinaPavement Management EngineerPO Box 191, Columbia, SC 29202South DakotaPavement Management Engineer700 East Broadway Ave., Pierre, SD 57501Pavement Management Engineer1000 James K. Polk Bldg., Nashville, TN 37243TennesseeEngineer of Pavement Management125 East 11th. Street, Austin, TX 78701UtahPavement Management Engineer4501 South 2700 West, Salt Lake City, UT 84119VermontPavement Management Engineer133 State St., Montpelier, VT 05602VirginiaResearch ScientistVirginia Transportation Research CouncilBox 3817, University Station, Charlottesville, VA 22903WashingtonPavement Management EngineerPlanning and ResearchBldg. 5, Room A-863, Capitol Complex, Charleston, WV 25305WisconsinPavement Management SupervisorMaterials Center3502 Kinsmar Blvd., Madison, WI 53704WyomingPavement Design EngineerPlanning and ResearchBldg. 5, Noin A-863, Capitol Complex, Charleston, Alberta, Canada, T6B 2X3AlbertaPavement Design EngineerMaterials and Research1181 Portage Ave. (Annex), Winnepeg, Manitoba, Canada, WSW 3E6ManitobaDirectorMaterials and Research1181 Portage Ave. (Annex), Winnepeg, Manitoba, Canada, R3G 0T3Nova ScotiaPlanning EngineerPlanning DivisionPo Box 6000, 2nd. Floor, Kings Place, Fredericton, New Brunswick, Canada, E3B 5H1Nova ScotiaPlanning Engineer, StudiesPlanning DivisionPo. Box 186, Halifax, Nova Scotia, Canada, B3J 2N2			, ,	
South Dakota Pavement Management Engineer 700 East Broadway Ave., Pierre, SD 57501 Tennessee Pavement Management Engineer 1000 James K. Polk Bldg., Nashville, TN 37243 Texas Engineer of Pavement Management Engineer 125 East 11th. Street, Austin, TX 78701 Utah Pavement Management Engineer 4501 South 2700 West; Salt Lake City, UT 84119 Vermont Pavement Management Engineer 4501 South 2700 West; Salt Lake City, UT 84119 Virginia Research Scientist Virginia Transportation Research Council Box 3817, University Station, Charlottesville, VA 22903 Virginia Pavement Management Engineer Planning and Research Bldg. 5, Room A-863, Capitol Complex, Charleston, WV 25305 Wisconsin Pavement Management Systems Engineer Planning and Research Bldg. 5, Room A-863, Capitol Complex, Charleston, WV 25305 Wyoming Pavement Management Systems Engineer Planning and Research Bldg. 5, Room A-863, Capitol Complex, Charleston, WV 25305 Virginia Pavement Management Systems Engineer Planning and Research Bldg. 5, Room A-863, Capitol Complex, Charleston, WV 25305 Wisconsin Pavement Management Systems Engineer Planning and Research Bldg. 5, Room A-863, Capitol Complex, Charleston, Alberta, Canada, T6B 2X3 Rritish Columbia			Planning Division	
TennesseePavement Management Engineer1000 James K. Polk Bldg., Nashville, TN 37243TexasEngineer of Pavement Management125 East 11th. Street, Austin, TX 78701UtahPavement Management Engineer4501 South 2700 West, Salt Lake City, UT 84119VermontPavement Management Engineer133 State St., Montpelier, VT 05602VirginiaResearch ScientistVirginia Transportation Research CouncilBox 3817, University Station, Charlottesville, VA 22903WashingtonPavement Management EngineerPlanning and Research1655 South 2nd Avc., Tumwater, WA 98507West VirginiaPavement Management EngineerPlanning and ResearchBldg. 5, Room A-863, Capitol Complex, Charleston, WV 25305WisconsinPavement Management SupervisorMaterials Center3502 Kinsmar Blvd., Madison, WI 53704WyomingPavement Management Systems EngineerP.O. Box 1708, Cheyenne, WY 82002AlbertaPavement Design Engineer4th Floor, Twin Atria Bldg., 4999-98th. Ave., Edmonton, Alberta, Canada, T6B 2X3British ColumbiaDirectorMaterials and Research1181 Portage Ave. (Annex), Winnepeg, Manitoba, Canada, R3G 0T3Nova ScotiaPlanning EngineerPlanning DivisionPO Box 6000, 2nd. Floor, Kings Place, Fredericton, New Brunswick, Canada, E3B 5H1Nova ScotiaPlanning Engineer, StudiesPlanning DivisionPO. Box 186, Halifav, Nova Scotia, Canada, B3J 2N2				
Texas Engineer of Pavement Management 125 East 11th. Street, Austin, TX 78701 Utah Pavement Management Engineer 4501 South 2700 West, Salt Lake City, UT 84119 Vermont Pavement Management Engineer 133 State St., Montpelier, VT 05602 Virginia Research Scientist Virginia Transportation Research Council Box 3817, University Station, Charlottesville, VA 22903 Washington Pavement and Soils Engineer Planning and Research Bildg. 5, Room A-863, Capitol Complex, Charleston, WV 25305 Wisconsin Pavement Management Systems Engineer Planning and Research Bildg. 5, Room A-863, Capitol Complex, Charleston, WV 25305 Wyoning Pavement Management Systems Engineer Planning and Research Bildg. 5, Room A-863, Capitol Complex, Charleston, WV 25305 Wyoning Pavement Management Systems Engineer Planning and Research Bildg. 7, 4099-98th. Ave., Edmonton, Alberta, Canada, T6B 2X3 Alberta Pavement Design Engineer 4th Floor, Twin Atria Bldg., 4999-98th. Ave., Edmonton, Alberta, Canada, T6B 2X3 Manitoba Director Materials and Research 1181 Portage Ave. (Annex), Winnepeg, Manitoba, Canada, R3G 0T3 New Brunswick Senior Systems Engineer Planning Branch PO Box 6000, 2nd. Floor, Kings Place, Fredericton, New Brunswick, Canada, E3B 5HI				
Utah Pavement Management Engineer 4501 South 2700 West, Salt Lake City, UT 84119 Vermont Pavement Management Engineer 133 State St., Montpelier, VT 05602 Virginia Research Scientist Virginia Transportation Research Council Box 3817, University Station, Charlottesville, VA 22903 Washington Pavement and Soils Engineer Planning and Research Bldg. 5, Noom A-863, Capitol Complex, Charleston, WV 25305 Wisconsin Pavement Management Engineer Planning and Research Bldg. 5, Noom A-863, Capitol Complex, Charleston, WV 25305 Wyoming Pavement Management Supervisor Materials Center 3502 Kinsmar Blvd., Madison, WI 53704 Pavement Management Engineer Pavement Management Supervisor Materials Center 3502 Kinsmar Blvd., Madison, WI 82002 Virish Columbia Pavement Design Engineer Pavement Margement Provocoment Supervisor 4th Floor, Twin Atria Bldg., 4999-98th. Ave., Edmonton, Alberta, Canada, T6B 2X3 British Columbia Pavement Design Engineer Materials and Research 1181 Portage Ave. (Annex), Winnepeg, Manitoba, Canada, VSW 3E6 Nova Scotia Planning Engineer, Studies Planning Division PO Box 6000, 2nd. Floor, Kings Place, Frederictor, New Brunswick, Canada, E3B 5H1				
Vermont Pavement Management Engineer 133 State St., Montpelier, VT 05602 Virginia Research Scientist Virginia Transportation Research Council Box 3817, University Station, Charlottesville, VA 22903 Washington Pavement and Soils Engineer Planning and Research Bldg. 5, Room A-863, Capitol Complex, Charleston, WV 25305 Wisconsin Pavement Management Engineer Planning and Research Bldg. 5, Room A-863, Capitol Complex, Charleston, WV 25305 Wisconsin Pavement Management Systems Engineer Materials Center 3502 Kinsmar Blvd., Madison, WI 53704 Wyoming Pavement Management Systems Engineer Materials Center 3502 Kinsmar Blvd., Madison, WI 25305 Alberta Pavement Design Engineer Materials and Research 4th Floor, Twin Atria Bldg., 4999-98th. Ave., Edmonton, Alberta, Canada, T6B 2X3 British Columbia Pavement Design Engineer Materials and Research 1181 Portage Ave. (Annex), Winnepeg, Manitoba, Canada, R3G 0T3 New Brunswick Senior Systems Engineer Planning Branch PO Box 6000, 2nd. Floor, Kings Place, Fredericton, New Brunswick, Canada, E3B 5H1 Nova Scotia Planning Engineer, Studies Planning Division Po. Box 186, Halifax, Nova Scotia, Canada, B3J 2N2				
Virginia Research Scientist Virginia Transportation Research Council Box 3817, University Station, Charlottesville, VA 22903 Washington Pavement and Soils Engineer Planning and Research 1655 South 2nd Ave., Tumwater, WA 98507 West Virginia Pavement Management Engineer Planning and Research Bldg. 5, Room A-863, Capitol Complex, Charleston, WV 25305 Wisconsin Pavement Management Supervisor Materials Center 3502 Kinsmar Blvd., Madison, WI 35704 Wyoming Pavement Management Systems Engineer P.O. Box 1708, Cheyenne, WY 82002 Alberta Pavement Design Engineer 4th Floor, Twin Atria Bldg., 4999-98th. Ave., Edmonton, Alberta, Canada, T6B 2X3 British Columbia Pavement Design Engineer Materials and Research 1181 Portage Ave. (Annex), Winnepeg, Manitoba, Canada, R3G 0T3 New Brunswick Poirot Materials and Research 1181 Portage Ave. (Annex), Kinge Place, Fredericton, New Brunswick, Canada, E3B 5HI Nova Scotia Planning Engineer, Studies Planning Division PO Box (800, 2nd. Floor, Kings Place, Leada, B3J 2N2		e :		
Washington Pavement and Soils Engineer Image: Construct of the second seco			Virginia Transportation Research Council	
West Virginia Pavement Management Engineer Planning and Research Bldg. 5, Room A-863, Capitol Complex, Charleston, WV 25305 Wisconsin Pavement Management Supervisor Materials Center 3502 Kinsmar Blvd., Madison, WI 53704 Wyoning Pavement Management Systems Engineer P.O. Box 1708, Cheyenne, WY 82002 Alberta Pavement Design Engineer 4th Floor, Twin Atria Bldg., 4999-98th. Ave., Edmonton, Alberta, Canada, T6B 2X3 British Columbia Pavement Design Engineer 4th Floor, Twin Atria Bldg., Victoria, BC, Canada, V8W 3E6 Manitoba Director Materials and Research 1181 Portage Ave. (Annex), Winnepeg, Matalioba, Canada, R3G 0T3 New Brunswick Senior Systems Engineer Planning Branch PO Box 6000, 2nd. Floor, Kings Place, Fredericton, New Brunswick, Canada, E3B 5H1 Nova Scotia Planning Engineer, Studies Planning Division P.O.Box 186, Halifax, Nova Scotia, Canada, BJ 2N2			- Burne Transportation Resource Council	
Wisconsin Pavement Management Supervisor Materials Center 3502 Kinsmar Blvd., Madison, WI 53704 Wyoming Pavement Management Systems Engineer P.O. Box 1708, Cheyenne, WY 82002 Alberta Pavement Systems Engineer 4th Floor, Twin Atria Bldg., 4999-98th. Ave., Edmonton, Alberta, Canada, T6B 2X3 British Columbia Pavement Design Engineer 4th Floor, Twin Atria Bldg., 4999-98th. Ave., Edmonton, Alberta, Canada, T6B 2X3 Manitoba Director Materials and Research 1181 Portage Ave. (Annex), Winnepeg, Manitoba, Canada, R3G 0T3 New Brunswick Senior Systems Engineer Planning Branch PO Box 6000, 2nd. Floor, Kings Place, Fredericton, New Brunswick, Canada, E3B 5H1 Nova Scotia Planning Engineer, Studies Planning Division PO. Box 186, Halifax, Nova Scotia, Canada, B3J 2N2			Planning and Research	
Wyoming Pavement Management Systems Engineer P.O. Box 1708, Cheyenne, WY 82002 Alberta Pavement Systems Engineer 4th Floor, Twin Atria Bldg., 4999-98th. Ave., Edmonton, Alberta, Canada, T6B 2X3 British Columbia Pavement Design Engineer 4th Floor, Twin Atria Bldg., 4999-98th. Ave., Edmonton, Alberta, Canada, T6B 2X3 Maintoba Director Materials and Research 1181 Portage Ave. (Annex), Winnepeg, Manitoba, Canada, R3G 0T3 New Brunswick Senior Systems Engineer Planning Branch PO Box 6000, 2nd. Floor, Kings Place, Fredericton, New Brunswick, Canada, E3B 5HI Nova Scotia Planning Engineer, Studies Planning Division P.O. Box 186, Halifax, Nova Scotia, Canada, B3J 2N2	0		5	
British Columbia Pavement Design Engineer 4A - 940 Blanshard St., Victoria, BC, Canada, V8W 3E6 Manitoba Director Materials and Research 1181 Portage Ave. (Annex), Winnepeg, Manitoba, Canada, R3G 0T3 New Brunswick Senior Systems Engineer Planning Branch PO Box 6000, 2nd. Floor, Kings Place, Fredericton, New Brunswick, Canada, E3B 5H1 Nova Scotia Planning Engineer, Studies Planning Division P.O.Box 186, Halifax, Nova Scotia, Canada, B3J 2N2				
Manitoba Director Materials and Research 1181 Portage Ave. (Annex), Winnepeg, Manitoba, Canada, R3G 0T3 New Brunswick Senior Systems Engineer Planning Branch PO Box 6000, 2nd. Floor, Kings Place, Fredericton, New Brunswick, Canada, E3B 5H1 Nova Scotia Planning Engineer, Studies Planning Division P.O.Box 186, Halifax, Nova Scotia, Canada, B3J 2N2	Alberta	Pavement Systems Engineer		4th Floor, Twin Atria Bldg., 4999-98th. Ave., Edmonton, Alberta, Canada, T6B 2X3
New Brunswick Senior Systems Engineer Planning Branch PO Box 6000, 2nd. Floor, Kings Place, Fredericton, New Brunswick, Canada, E3B 5H1 Nova Scotia Planning Engineer, Studies Planning Division P.O.Box 186, Halifax, Nova Scotia, Canada, B3J 2N2				
Nova Scotia Planning Engineer, Studies Planning Division P.O.Box 186, Halifax, Nova Scotia, Canada, B3J 2N2				
Ontario Manager Pavement Design, Evaluation and Management Secti Surveys and Design Office, West Bldg. 2nd Floor, 1201 Wilson Ave., Downsview, Ontario, Ca			Pavement Design, Evaluation and Management Secti	
Prince Edward Isle Engineering Technician P.O.Box 2000, 11 Kent St., Charlottetown, PEI, Canada, C1A 7N8				
Quebec Engineer Planning 700, boul. St-Cyrille Est, Quebec, Quebec, Canada				
Saskatchewan Director Technical Research Branch 1855 Victoria Ave., Regina, Saskatchewan, Canada S4P 3V5	Saskatchewan	Director	Technical Research Branch	1855 Victoria Ave., Regina, Saskatchewan, Canada S4P 3V5

TE 7 .N26 no. 203 --- 31228

Gramling, W. L.

Current practices in determining pavement

DATE DUE

:	

---31228

ConnDOT Library & Information Center 2800 Berlin Turopike Newington, CK 06111-4416

DEMCO

THE TRANSPORTATION RESEARCH BOARD is a unit of the National Research Council, which serves the National Academy of Sciences and the National Academy of Engineering. It evolved in 1974 from the Highway Research Board, which was established in 1920. The TRB incorporates all former HRB activities and also performs additional functions under a broader scope involving all modes of transportation and the interactions of transportation with society. The Board's purpose is to stimulate research concerning the nature and performance of transportation systems, to disseminate information that the research produces, and to encourage the application of appropriate research findings. The Board's program is carried out by more than 270 committees, task forces, and panels composed of more than 3,300 administrators, engineers, social scientists, attorneys, educators, and others concerned with transportation; they serve without compensation. The program is supported by state transportation and highway departments, the modal administrations of the U.S. Department of Transportation, the Association of American Railroads, the National Highway Traffic Safety Administration, and other organizations and individuals interested in the development of transportation.

The National Academy of Sciences is a nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce Alberts is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encouraging education and research, and recognizes the superior achievements of engineers. Dr. Robert M. White is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences, by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Kenneth I. Shine is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy's purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce Alberts and Dr. Robert M. White are chairman and vice chairman, respectively, of the National Research Council.

2101 Constitution Avenue, N.W. Washington, D.C. 20418 Transportation Research Board National Research Council

ADDRESS CORRECTION REQUESTED

Υ.

HTA DOROTHY GRAY LIBRARY & ARCHIVE