FHWA/IN/JTRP-2000/23

Final Report

DETERMINATION OF PRACTICAL ESALS PER TRUCK VALUES ON INDIANA ROADS

Sedat Gulen John Nagle John Weaver Victor Gallivan

December 2000

Final Report

FHWA/IN/JTRP-2000/23

DETERMINATION OF PRACTICAL ESALS PER TRUCK VALUES ON INDIANA ROADS

by

Sedat Gulen Pavement Research and Statistical Engineer Division of Research Indiana Department of Transportation

John Nagle Safety/Congestion Management Engineer Program Development Division Indiana Department of Transportation

John Weaver Chief Program Development Division Indiana Department of Transportation

Victor Lee Gallivan Pavement/Materials Engineer Federal Highway Administration Indiana Division

Joint Transportation Research Program Project No. C-36-54EEE File No. 3-3-57 SPR-2331

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Indiana Department of Transportation nor the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

> INDOT Division of Research West Lafayette, Indiana December 2000

			TECHNIC	TECHNICAL REPORT STANDARD TITLE AGE				
1. Report No.	2. Gover	nment Accession N	o. 3	3. Recipient's Catalog No.	0			
FHWA/IN/JTRP-2000/23								
4. Title and Subtitle				5. Report Date				
				December 2000				
Determination of Practical E	SALs Per T	Truck Values on Indi						
			6	6. Performing Organizat	ion Code			
7. Author(s)			8	3. Performing Organizat	ion Report No.			
Sedat Gulen, John Nagle, Joh	nn Weaver	and Victor Lee Gall		FHWA/IN/JTRP-2000/23	1			
9. Performing Organization	n Name an	d Address	1	l0. Work Unit No.				
Joint Transportation Researc	h Program							
Indiana Department of Trans	portation							
Research Division			1	11. Contract or Grant No).			
P.O. Box 2279			-	SPR-23				
West Lafayette, IN 47906				511(25	51			
12. Sponsoring Agency Nat	no and Ad	droce		13. Type of Report and F	Dariad Covered			
Indiana Department of Trans		uress	1	Final Rep				
State Office Building	sportation			Final Rej	pon			
100 North senate Building			-					
Indianapolis, In 46204			1	14. Sponsoring Agency C	ode			
15. Supplementary Notes	.1 T P			1 111 1 1 1 1 .				
Prepared in cooperation with	the Indiana	a Department of Tra	nsportation and Fee	deral Highway Administra	ation			
16. Abstract	` TT		1					
The Indiana Department of								
pavement design. The cur								
allowable maximum loads ha	ave increas	ed the 1970's values	. Updated ESAL va	alues are needed for better	road designs.			
The 1998 and 1999 traffic d	ata from th	e all Weight_in_Mo	tion (WIM) station	s were obtained and used	to compute undated			
ESAL values for multiple u								
that average ESAL values for								
non-interstates roads are not								
Due to other calibration defi								
were computed and recomme				ompatations: Then the To				
1			8					
For Multiple Unit Trucks (C	lass 9):							
a)	1.3 ESAL	/Truck for flexible p	avements					
b)	2.0 ESAL	/Truck for rigid pav	ements					
For Single Unit Trucks (Clas	s 5, 6 & 7)	:						
a)		/Truck for flexible p						
b)	0.9 ESAL	/Truck for rigid pave	ements					
17. Key Words			18. Distribution	Statement				
Littey Words				This document is availabl	e to the public			
ESAL, Equivalent Single Ax	le Loads P	Pavement Design		Technical Information Ce				
WIM			VA 22161	- common mitormation Ct				
19. Security Classif. (of the	is report)	20. Security Class	sif. (of this page)	21. No. of Pages	22. Price			
Unclassified		Unc	assified	28				

TECHNICAL Summary

INDOT Research

Technology Transfer and Project Implementation Information

TRB Subject Code: 24-01 Pavement Management Systems Publication No.FHWA/IN/JTRP-2000/23, SPR-2331 December 2000 Final Report

Practical Pavement Performance Prediction Models for Indiana Roads

Introduction

The Indiana Department of Transportation (INDOT) uses equivalent single axle load (ESAL) values as part of the information needed for pavement design. The current ESAL values were last estimated in the late 1970s. However, truck deregulation and higher allowable maximum loads have led to increases in truck weights and axle-loads on Indiana roads. This study investigated updating the ESAL values in order to validate current pavement design process.

There are currently thirty-six WIM Stations, twenty-six of them on Interstate Roads and the

Findings

The following conclusions and recommendations were based on this research study using 1998 and 1999 traffic data:

- 1. The updated ESAL values computed for Single Unit and Multiple Unit Trucks, are higher than those used currently.
- 2. The average ESAL values on Interstates roads are statistically higher than on Non-Interstates roads.
- 3. Even though the average ESAL values for Interstates and Non-Interstates roads are not statistically the same, for all practical purposes the following overall ESAL values per truck are recommended to be used for future road pavement mix designs in Indiana are:

remaining are on the other INDOT roads. The 1998 and 1999 traffic data from the all Weigh-in-Motion (WIM) stations were obtained and an average ESAL value per lane per day was computed for multiple unit trucks (Class 9/F-9) and single unit trucks (Class 5, 6 and 7) as a group. Some WIM stations were deleted because of calibration problems. Due to other calibration deficiencies, the data was further refined before final ESAL computations were made.

For Multiple Unit Trucks (class 9): **1.3** for flexible pavements **2.0** for rigid pavements

For Single Unit Trucks (Class 5, Class 6 and Class 7): **0.6** for flexible pavements **0.9** for rigid pavements

- 4. The distribution of the ESALs and gross weights of trucks was found to be approximately normally distributed.
- 5. The accuracy of the ESAL values is dependent upon the accuracy of the WIM stations. It is recommended that the calibrations of the WIM stations use class 9 trucks.

Implementation

The research results were presented to the pavement design committee and they have already implemented the new ESAL estimates into their design of pavements.

This research has led to more valid pavement designs for today's traffic of heavier and increased numbers of commercial vehicles.

Contact

For more information:

John Weaver/John Nagle

Principal Investigators Indiana Department of Transportation Roadway Management Division. State Office Building Room: N808 100 N. Senate Avenue. Indianapolis, IN 46204 Phone: 317-232-5884 Fax: (317) 232-5478

Sedat Gulen

Principal Investigator Indiana Department of Transportation Research Division 1205 Montgomery Road P.O.Box 2279 West Lafayette, IN 47906 Phone: (765) 463-1521 Fax: (765) 497-1665

Indiana Department of Transportation

Division of Research 1205 Montgomery Street P.O. Box 2279 West Lafayette, IN 47906 Phone: (765) 463-1521 Fax: (765) 497-1665

Purdue University

Joint Transportation Research Program School of Civil Engineering West Lafayette, IN 47907-1284 Phone: (765) 494-9310 Fax: (765) 496-1105

ACKNOWLEDGMENTS

This report was prepared by Sedat Gulen, John Nagle, John Weaver for the Indiana Department of Transportation and Lee Gallivan for the Federal Highway Administration, Indiana Division. The authors wish to thank Mr. Gordon Hooker, Research Division, who reduced the raw data and prepared various plots for this research. The authors would also thank to Geraldine Lampley, Program Development Division, who supplied the original raw data.

I. INTRODUCTION:

Indiana Department of Transportation (INDOT) has been increasingly using the average ESAL (Equivalent Single Axle Load) per truck for pavement design. The current ESAL values per multiple-unit truck and single-unit truck were prepared and validated in the late 1970's, Table 1, Chapter 52, INDOT Design Manual⁽¹⁾. Truck deregulation and higher allowable maximum loads have affected these 1970's values. For this reason more realistic and reasonable ESAL estimates are now required on the title sheets of plans for design of pavements in Indiana and the results of this study will also improve ESAL/Truck factors for estimating design ESALs.

INDOT has thirty six weigh-in-motion (WIM) sites total. Thirty-two WIM sites were constructed in 1992-93 in conjunction with the Long Term Pavement Performance (LTPP) efforts. An additional site was constructed to monitor a research project in 1993 and three sites were installed for monitoring of pavement warranty projects. The sites used International Road Dynamics[®] Inc. bending plates, on site data collector and software. Many of the bending plates and load cells have now been replaced by piezo weight sensors. Each location is calibrated once a year by maintenance agreement and after a major repair to the site. Sites were calibrated using a class 7 vehicle of a known weight of 22.7 Mg (50,000 lbs.).

II. OBJECTIVE:

The objective of this research study is to update the average ESAL estimate values for multiple unit trucks (F-9) and single unit trucks (F-5, F-6 and F-7), Table 2, for use in pavement design procedures.

III. DATA COLLECTION

The data were obtained from all installed WIM stations. There are currently thirty six WIM stations, twenty six of them on Interstate Roads and the remaining are on the other INDOT roads as shown on Table 3 and Table 4. In order to represent the most recent ESAL values, the 1998 and 1999 data collected by the WIM stations were compiled.

The average daily ESAL data for the single unit trucks and multiple unit trucks were calculated using AASHTO formulas and compiled from the WIM axle distributions. Due to calibration problems and breakdown of some WIM stations the ESAL data were refined by deleting data from the following categories.

- a. If Class 9 truck (F-9) Gross Vehicle Weight (GVW) is equal to zero
- b. If ESAL for F-9 is less than or equal 0.04
- c. If GVW for Class 9 truck is less than 13.5 Mg (30,000 lbs.)
- d. If GVW for Class 9 truck is greater than 56.6 Mg (125,000 lbs.)
- e. If Class 7 truck GVW is equal to zero or greater than 30.8 Mg (68,000 lbs.)
- f. If Class 6 truck GVW is equal to zero or greater than 23.6 Mg (52,000 lbs.)
- g. If Class 5 truck GVW is equal to zero or greater than 17.2 Mg (38,000 lbs.)

VI. DATA ANALYSES

Looking at the distribution of classes of trucks it was observed that the five-axle semi (class 9) trucks typically made up 80% of the volumes of all trucks and over 85% of all calculated ESALs. Therefore Class 9's were used for the data analysis to simplify the calculations. An average ESAL per truck was also determined for Class 5, 6 and 7's as a group since the pavement design calculations asked for one. The distribution of daily average ESAL values and daily average gross vehicle weights were checked and found to be approximately normally distributed for each WIM station and the variances were also found to be homogeneous, Figures 1-6. The ESAL values used in the statistical analyses were computed for flexible pavement with terminal PSI=2.5 and Structural Number=5. The Analysis of Variances (ANOVA)⁽²⁾ and other statistical techniques were utilized to analyze the ESAL data by using the SAS⁽³⁾ Institute Statistical Package Version 8.00.

ANOVA indicated that:

- 1. The average ESAL values, for class 9 trucks, of individual WIM stations are all not statistically the same.
- 2. The effect of the year on average ESAL values is not statistically significant.
- 3. The average ESAL values of the WIM stations on Interstates Roads are statistically higher than on Non-Interstates Roads, Table 5 and Table 6.

Since average ESAL values are statistically different for individual WIM stations on Interstates and Non-Interstates roads, various average ESAL values for Class 9, Class 5, Class 6 and Class 7 trucks were computed. Tables 7 and 8 show average ESAL values of Class 5, 6, 7, and 9 trucks. Tables 7 and 8 also show standard deviation, number of lane days (observations), average (AVG) total number of trucks, total traffic, and percent of Class 9 trucks by years and WIM Stations.

Table 7 and 8 shows, for example, for WIM site 4110, in 1998, the average ESAL per class 9 trucks is 2.0. The average GVW was 28.3 Mg (62,199 lbs.) with 353 lane days of observations.

Table 9 shows overall average ESAL values, number of lane days and standard deviations for Class 5, 6 and 7 trucks on all roads combined. The weighted ESAL value for Single Unit Trucks was then computed from Table 9 and found to be 0.6 ESAL/Truck.

Table 10 shows overall average ESAL values, number of lane days, GVW in pounds, total truck count, total traffic count and percent of Class 9 Trucks. The weighted average ESAL Class 9 Trucks was then computed as 1.3 ESAL/Truck.

Updated ESAL values for Single Unit and Multiple Unit Trucks are then computed and listed in Table 11. Table 11 also shows the effect of varying the terminal PSI from the department standard value of 2.5 to 2.0 PSI. This demonstrates the nominal effect of varying the terminal serviceability on the ESAL calculation.

VII. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations were based on this research study using 1998 and 1999 traffic data:

- The updated ESAL values computed for Single Unit and Multiple Unit Trucks, Table 6, are higher than those used currently.
- 2. The average ESAL values on Interstate roads are statistically higher than on Non-Interstate roads.
- 3. Even though the average ESAL values for Interstates and Non-Interstates roads are not statistically the same, for all practical purposes the following overall ESAL values per truck are recommended to be used for future road pavement mix designs in Indiana.

For Multiple Unit Trucks (class 9):

- **1.3** ESAL/Truck for flexible pavements
- 2.0 ESAL/Truck for rigid pavements

For Single Unit Trucks (Class 5, Class 6 and Class 7):

- **0.6** ESAL/Truck for flexible pavements
- **0.9** ESAL/Truck for rigid pavements
- 4. The distribution of the ESAL and the GVW of trucks was found to be approximately normally distributed.
- The accuracy of the ESAL values is dependent upon the accuracy of the WIM stations. It is recommended that the calibrations of the WIM stations use class 9 trucks.

REFERENCES

- 1. INDOT, Chapter 52, Pavement Design Manual.
- 2. Anderson V. L. and McLean R. A., *Design of Experiments Realistic Approaches*, Mercel Decker Inc., New York N. Y.
- 3. SAS Publications on Statistics and Linear Models, SAS Institute Inc., Cary. NC.

LIST OF TABLES

Table	Description	Page
Table 1	The current ESAL Values for INDOT	9
Table 2.	Class 5, Class 6, Class 7 and Class 9 Trucks	10
Table 3	Indiana Weigh-in-Motion (WIM)	11
Table 4	Listing of WIM Stations	12
Table 5.	Duncan's Comparison of Means Tests for ESAL9 Values	13
Table 6.	Average ESAL for Interstates and Non-Interstates Roads	14
Table 7	Average ESAL Values of WIM stations by years	15
Table 8	Average ESAL Values of WIM stations by years	16
	(continuation of Table 7)	
Table 9	Overall Average ESAL Values for Class 5, 6, and 7 Trucks	17
Table 10	Overall Average ESAL Values for Class 9 Trucks	18
Table 11	Updated ESAL	19

LIST OF FIGURES

Figures	Description	Page
Figure 1	WIM Station 4110, I-65, July 1999, ESAL9 vs. PERCENT	20
Figure 2	WIM Station 4250, SR-2, May 1999, ESAL9 vs. PERCENT	21
Figure 3	WIM Station 5110, I-70, May 1999, ESAL9 vs. PERCENT	22
Figure 4	WIM Station 4110, I-65, May 1999, WEIGHT vs. PERCENT	23
Figure 5	WIM Station 4250, SR-2, Jun 1999, WEIGHT vs. PERCENT	24
Figure 6	WIM Station 5110, I-70, Jun 1999, WEIGHT vs. PERCENT	25

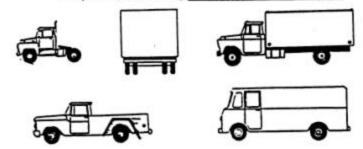

Pavement Type	Single Unit Trucks	Multiple Unit Trucks
Flexible	0.316	0.860
Rigid	0.230	1.115

Table 1. The current ESAL Values for INDOT

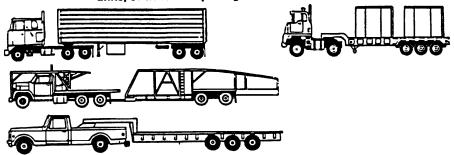
Table 2. Class 5 (F-5), Class 6 (F-6), Class 7 (F-7) and Class 9 (F-9) Trucks.

Classification #5

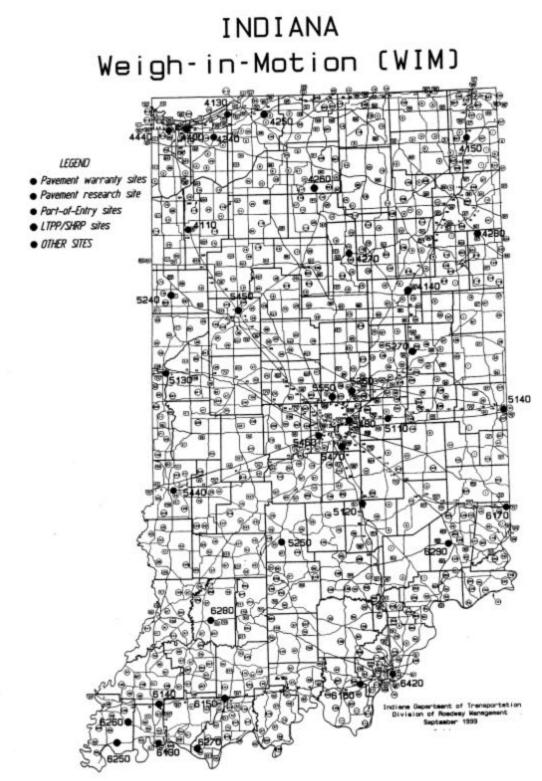

Two-Axle, Six-Tire Single Unit Truck (SU): All vehicles on a single frame including camping and recreational vehicles, motor homes, large step vans, etc. having <u>2 Axles and Dual Rear Tires</u>.

Classification #6

Three-Axle Single Unit Truck (SU): All vehicles on a single frame having three axles.


Classification #7

Four or More Axle Single Unit Truck (SU): All vehicles on a single frame having four or more axles.



<u>Classification #9</u> Five-Axle Single Trailer Truck (Combo): All vehicles consisting of two units, of which the pulling unit is a tractor or single unit truck.

Note: Figures were taken from "Operation Tips Trafi COMP® III", Model 241 operating manual, as modified by INDOT.

MIM	LOCATION
STATION	
4110	On 1-65 3.6 miles N. of SR 114
4130	On 1-94 3.4 miles E. of US 421
4140	On 1-69 4.1 miles N. of SR 18
4150	On 1-69 3.5 miles N. of US 6
4240	On SR 49 1.5 miles S. of US 6
4250	On SR 2 2.8 miles W. of US 20
4260	On US 31 4.0 miles N. of SR 110
4270	On US 24 6.4 miles E. of SR 19
4280	On US 27 6.2 miles S. of SR 469
4440	On 1-80/94 0.9 mile E. of SR 912
5110	On 1-70 4.28 mile E. of SR 9
5120	On 1-65 1.0 mile S. of SR 252
5130	On 1-74 0.6 mile E. of SR 63
5140	On 1-70 0.5 mile W. of US 40
5240	On US 41 1.7 miles S. of SR 18
5250	On SR 37 2.8 miles S. of SR 45 S
5260	On SR 37 0.9 mile N. of SR 238
5270	On SR 332 0.4 mile E. of I-69
5440	On 1-70 0.7 mile E. of US 41
5450	On 1-65 1.3 miles N. of SR 25
5460	On 1-465 0.7 mile N. of I-70W
5470	On 1-65 0.6 mile S. of Southport Rd
5480	On 1-465 1.0 mile S. of US 36E
5550	On US 31 0.5 mile N. of 116 St.
6130	On 1-164 2.25 mile E. of US 41
6140	On 1-64 1.5 miles W. of SR 57
6150	On 1-64 1.1 miles E. of SR 161
6160	On 1-64 1.0 mile W. of SR 62/64
6170	On 1-74 0.8 mile E. of US 52
6250	On SR 62 5.1 miles E. of SR 69
6260	On SR 66 0.9 mile W. of SR 65
6270	On SR 66 6.1 miles E. of SR 61
6280	On US 50 11.1 mile W. of US 231
6290	On US 50 0.85 mile W. of US 421
6420	On I-65 0.9 miles S. Of I-265

 Table 4. Listing of WIM Stations

Table 5. Duncan's Multiple Range Test for ESAL9

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha Error Degrees of Freedom Error Mean Square Harmonic Mean of Cell Sizes	0.05 31504 2.425866 s 12356.52		
Number of Means Critical Range	2 0.03884		
Duncan Grouping	<u>Mean</u>	<u>N</u>	Roads
Α	1.37490	23070	INTERSTATES
В	1.23984	8438	NON-INTERSTATES

Means with the same letter under "Duncan Grouping" are not significantly different. Means with the different letter under "Duncan Grouping" are significantly different.

NOTE: Cell sizes are not equal.

Where:

N = Number of Observations (lane-days)

Mean = Average ESAL/Truck value

ROADS	YEAR	AVG. ESAL5	AVG. ESAL6	AVG. ESAL7		S9	N9	AVWGHT9	TOTAL_F9	T_ADT	PRCT_F9
INT	98	0.14	0.41	1.73	1.18	1.28	11339	54246	17799644	119347130	15
INT	99	0.19	0.70	1.84	1.54	2.08	12143	55808	18453701	142830973	13
NINT	98	0.19	0.63	2.63	1.26	0.75	4176	53744	1127922	18034400	6
NINT	99	0.18	0.60	2.23	1.22	0.87	4262	52497	901638	18522540	5

Table 6. Average ESAL Values of Interstates (INT) and Non-Interstates (NINT) Roads

Where: AVG. = Average

ESAL5= ESAL for Class 5 truck ESAL6= ESAL for Class 6 truck ESAL7= ESAL for Class 7 truck ESAL9= ESAL for Class 9 truck S9 = Standard Deviation of ESAL for Class 9 Trucks N9 = Number of Days (Observations) for Class 9 Trucks AVWGHT9 = Average GVW Weight in lbs. for Class 9 Trucks TOTAL_F9= Total numbers of Class 9 Trucks T_ADT = Total traffic PRCT_F9 = Percent of Class 9 Trucks = (TOTAL_F9/T_ADT)*100

Note: Mg = 1000 Kg = 2.2075 Kips = 2207.5 lbs.

lbs. = 1/2207.5 Mg

 Table 7. Average ESAL values of WIM Stations by years

CT THE	VEND	AVG.	AVG.	AVG.	AVG.	G O	NO				
SITE	YEAR	ESALS	ESAL0	ESAL7	ESALY	59	N9	AVWGHI9	TOTAL_F9	T_ADT	PRCT_F9
4110	98	0.24	0.59	2.14	2.00	1.98	353	62199	1041126	3500713	30
4110	99	0.28	0.55	2.03		1.36	357	57219	972011	3648949	27
4130	98	0.08	0.37	0.99	0.95	0.48	157	55008	192267	1181379	16
4130	99	0.07	0.74	1.08	1.54	2.28	1539	57090	1681399	12264426	14
4140	98	0.43	0.56	1.19	3.17	1.83	128	66444	262257	1086691	24
4140	99	0.08	0.16	0.72	0.35	0.19	236	37793	556860	2287585	24
4150	98	0.06	0.36	1.96	0.88	0.24	1227	53999	1041762	8102358	13
4150	99	0.07	0.30	1.46	0.68	0.71	1021	47851	918608	6699807	14
4250	98	0.15	0.52	2.01	0.81	0.45	335	49447	29244	1298348	2
4250	99	0.16	0.61	3.28	0.82	0.25	418	51429	46544	1586597	3
4260	98	0.14	0.26	1.69	0.78	0.57	350	46725	209000	1820541	11
4260	99	0.19	0.21	1.06	1.46	0.86	318	49261	105517	1733455	б
4270	98	0.10	0.45	2.04	1.04	0.63	578	55051	200041	2094049	10
4270	99	0.06	0.24	1.37	0.60	0.18	706	48275	248067	2536184	10
4440	98	0.08	0.13	0.77	0.79	0.74	367	46074	1179152	7427882	16
4440	99	0.11	0.37	1.36	0.94	0.72	35	49885	40331	2041203	2
5110	98	0.10	0.36	1.31	1.36	1.02	1366	57369	2880747	10676272	27
5110	99	0.19	0.51	1.37	1.42	1.12	736	58806	1331715	6327112	21
5120	98	0.09	0.28	1.68	0.75	0.29	1001	51559	1131723	8505395	13
5120	99	0.10	0.29	1.19		1.40	984	51432	1809567	10334443	18
5130	98	0.07	0.36	0.65		0.89	479	49275	391844	3072107	13
5130	99	0.04	0.30	0.67	0.68	1.03	378	46426	524354	2306624	23
5140	98	0.15	0.37	1.37	1.05	1.00	676	51522	1247071	8340708	15
5140	99	0.20	0.55	1.25		0.70	633	60667	1930699	7200285	27
5240	98	0.29	0.50	2.04		0.32	312	59802	150421	572047	26
5240	99	0.62	0.54	3.13	1.44		92	59988	36031	144630	25
5250	98	0.16	0.69	2.36		0.23	320	51154	94530	2025888	5
5250	99	0.16	0.35	1.18	0.54		346	42111	80757	2200297	4
5260	98	0.34	1.51	4.36		0.60	341	59124	76156	2515952	3
5260	99	0.25	1.90	4.28	1.72		347	57610	74401	2496548	3
5270	98	0.05	0.35	2.14		0.21	287	47781	16709	1405305	1
5270	99	0.06	0.49	2.69		0.51	396	50998	26104	2080380	1
5440	98	0.12	0.26	0.80		0.43	595	50980	1536115	6694978	23
5440	99	0.08	0.64	1.79	1.14		408	53513	1094240	4931142	22
5450	98	0.09	0.33	1.69	1.08		710	51704	1952674	8966121	22
5450	99	0.08	0.27	1.28	0.92		648	51154	2300703	8415835	27
5460	98	0.15	0.35	1.95	1.17			56422		18412506	8
5460	99	0.18	0.41	1.61	1.09		947	55748		17075652	7
5480	98	0.17	2.75	7.02	5.07		247	77352	361266	6558648	6
5480	99	0.55	2.81	5.33	5.21		994	76829		27129442	4
5550	98	0.14	0.47	1.64	0.93		15	53294	3885	149346	3
5550	99	0.16	0.41	1.05	0.93	1.22	218	51835	75486	2296784	3

		AVG.	AVG.	AVG.	AVG.						
SITE	YEAR	ESAL5	ESAL6	ESAL7	ESAL9	s 9	N9	AVWGHT9	TOTAL_F9	T_ADT	PRCT_F9
6130	98	0.14	0.48	2.09	1.64	0.59	601	61317	233576	5200627	4
6130	99	0.17	0.52	2.09	1.58	0.78	795	59086	345773	7083884	5
6140	98	0.16	0.30	1.65	0.83	0.55	611	50800	679859	3308499	21
6140	99	0.36	0.85	2.10	1.83	1.47	697	58535	513293	4249281	12
6160	98	0.27	0.41	1.91	1.05	1.10	1248	50147	1675023	12085551	14
6160	99	0.12	0.28	2.12	1.13	0.64	657	49831	955205	6497096	15
6170	98	0.12	0.30	1.27	0.92	0.25	391	55701	410355	3924431	10
6170	99	0.12	0.35	0.73	0.91	0.63	533	49849	393757	5418197	7
6250	98	0.19	1.14	5.05	1.72	0.58	287	49331	88784	1689862	5
6250	99	0.39	1.37	3.63	1.91	0.62	111	50712	35193	635687	б
6260	98	0.20	0.61	2.16	1.78	0.87	286	59767	6260	996914	1
6260	99	0.16	0.34	1.04	1.11	0.65	338	53773	9541	1183752	1
6270	98	0.22	0.39	2.11	1.22	0.26	278	56961	60137	1322232	5
6270	99	0.20	0.68	2.05	2.16	0.58	345	65195	65919	1569923	4
6280	98	0.13	0.35	2.25	0.89	0.47	172	41387	66384	825392	8
6280	99	0.08	0.22	1.42	0.85	0.42	171	45232	43138	834161	5
6290	98	0.26	0.66	3.14	1.77	0.96	623	58162	130212	1439950	9
6290	99	0.27	0.72	2.79	1.81	1.25	668	56756	130397	1513296	9
6420	98	0.13	0.33	1.37	0.82	0.46	92	51918	195352	1859706	11
6420	99	0.09	0.33	1.08	0.76	0.95	282	49935	639337	5873408	11

Table 8. Average ESAL values of WIM Stations by years (continuation of Table 7)

Where:

Site = WIM Station Number

AVG. = Average ESAL5= ESAL for Class 5 truck ESAL6= ESAL for Class 6 truck ESAL7= ESAL for Class 7 truck ESAL9= ESAL for Class 9 truck S9 = Standard Deviation of ESAL for Class 9 Trucks N9 = Number of Lane Days (Observations) for Class 9 Trucks AVWGHT9 = Average GVW in lbs. for Class 9 Trucks TOTAL_F9= Total numbers of Class 9 Trucks T_ADT = Total traffic PRCT_F9 = Percent of Class 9 Trucks = (TOTAL_F9/T_ADT)*100

Note: Mg = 1000 Kg = 2.2075 Kips = 2207.5 lbs.

lbs. = 1/2207.5 Mg

YEAR	AVG. ESAL5	S5	N5	AVG. ESAL6	S6	N6	AVG. ESAL7	S7	N7	
98	0.15	0.41	9318	0.36	0.41	9329	1.3	0.91	9243	
99	0.16	0.29	10702	0.44	0.54	10864	1.2	0.99	10792	

Table 9. Overall Average ESAL Values for Class 5, 6 and 7 Trucks by years

I	Veighted ESAL =	$= \frac{0.15 * 9318 + 0.36 * 9329 + 1.3 * 9243 + 0.16 * 10702 + 0.44 * 10864 + 1.2 * 10792}{0.16 * 10702 + 0.44 * 10864 + 1.2 * 10792} = 0.6$
		9318 + 10702 + 9329 + 10864 + 9243 + 10792
Where	e: S5 =	Standard Deviation of ESAL for Class 5 trucks
	N5 =	Number of Lane Days (observations) for Class 5 trucks
	S5 =	Standard Deviation of ESAL for Class 6 trucks
	N6 =	Number of Lane Days (observations) for Class 6 trucks
	S7 =	Standard Deviation of ESAL for Class 7 trucks
	N7 =	Number of Lane Days (observations) for Class 7 trucks

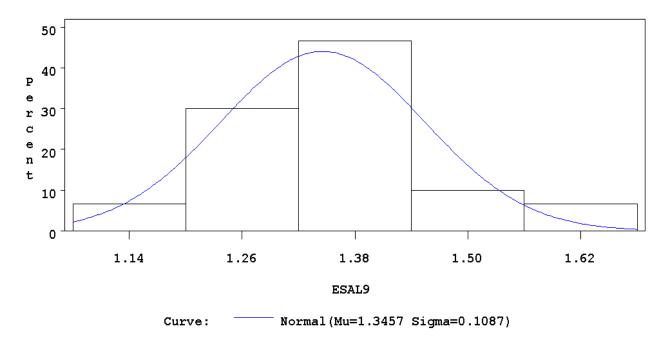
YEAR	AVG. ESAL9	s9	N9	AVWGHT9	TOTAL_F9	T_ADT	PRCT_F9
1998	1.21	1.16	15117	54318	17748097	129632516	14
1999	1.44	1.81	16319	54904	19312729	158554862	12

Table 10. Overall average ESAL values for Class 9 Trucks by Years

 $Weighted ESAL = \frac{1.21 * 15117 + 1.44 * 16319}{15117 + 16319} = 1.32$

Note: The terms in the column heads are defined before.


PAVEMENT TYPE	SN	TERMINAL PSI	DEPTH in	SINGLE UNIT CLASS 5-7	MULTIPLE UNIT CLASS 9
Flexible	5	2.5	-	0.6	1.3
Flexible	5	2.0	-	0.98*0.8= 0.59	1.3*0.98= 1.27
Rigid	-	2.5	10	0.6*1.57 = 0.9	1.3*1.57= 2.0
Rigid	-	2.0	10	0.98*1.2 = 0.89	0.98*2.0= 1.96


Table 11. Updated ESAL Values

Where:

SN= Structural Number

PSI= Pavement Serviceability Index

Where:

ESAL9= ESAL for Class 9 (F-9) truck

Mu = Mean ESAL/Truck

Sigma = Standard Deviation

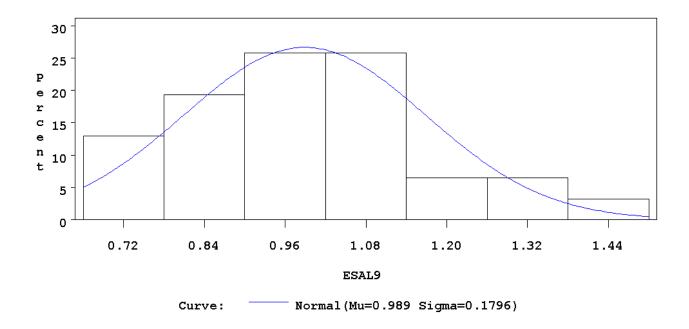


Figure 2. WIM Station 4250, on SR-2, May 1999, South Bound travel Lane

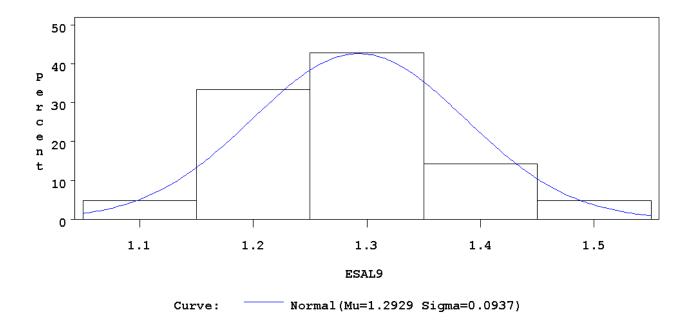


Figure 3. WIM station 5110, on I-70, May 1999, East Bound Travel Lane

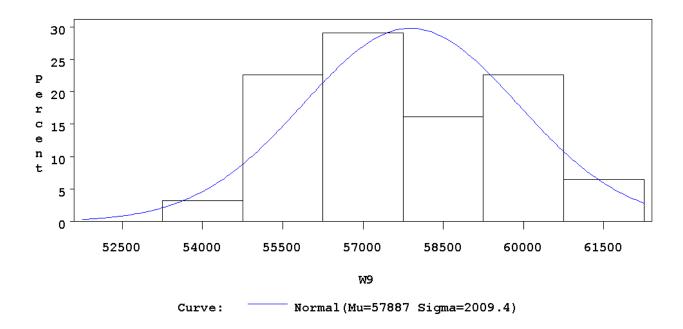


Figure 4. WIM station 4110, on I-65, May 1999, South Bound Travel Lane

Where: W9 = Average daily GVW weight of Class 9 truck in lbs.

Mu = Average monthly GVW weight of Class 9 truck in lbs.

Note: Mg = 1000 Kg = 2.2075 Kips = 2207.5 lbs. lbs. = 1/2207.5 Mg

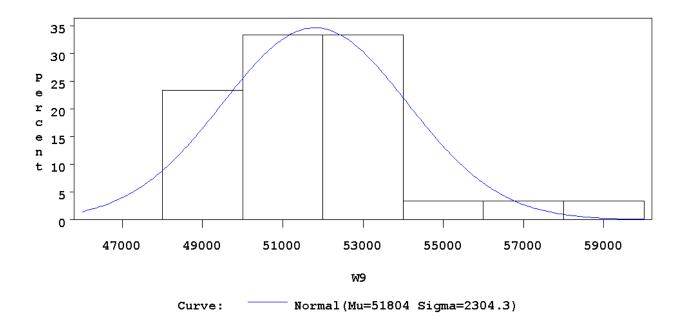


Figure 5. WIM station 4250, on SR-2, June 1999, South Bound Travel Lane

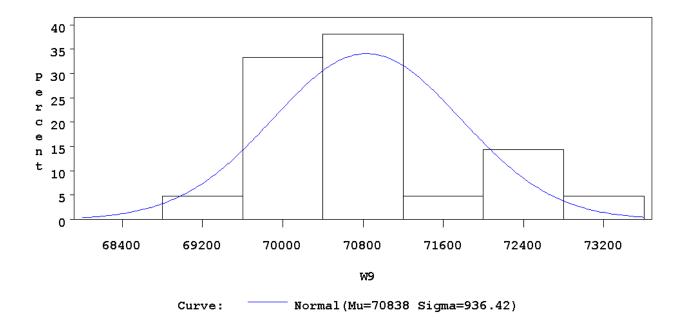


Figure 6. WIM station 5110, on I-70, October 1999, East Bound Travel Lane