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TECHNICAL Summary 
Technology Transfer and Project Implementation Information 

 
TRB Subject Code: 54 Operations and Traffic Control November 2000 
Publication No. FHWA/IN/JTRP-2000/15, SPR-2208 Final Report 
 

Providing Real-Time Traffic Advisory and Route 
Guidance to Manage Borman Incidents On-Line 

Using the Hoosier Helper Program 
Introduction  

 INDOT is currently 
installing Variable Message Signs (VMS) as 
part of information-based real-time advanced 
traffic management systems (ATMS) to 
enable travelers to make more informed pre-
trip and en-route route choice decisions. The 
effectiveness of the VMS strategy in 
enhancing travel conditions, especially 
under incidents, depends on driver attitudes 
and response behavior under the messages 
displayed. This highlights the importance of 
the content of the VMS messages displayed 
and the need for coordinated and consistent 
control strategies by the system controller. 
The primary focus of this study is to develop 
a mechanism to determine the VMS 
messages to be displayed that enhance 
system performance and are consistent with 
driver response behavior. 
 To enable effective VMS-based 
incident management, a framework for 
optimizing system performance was 

developed using the VMS message content 
as the control variable. It consists of 
simulation-based algorithms to determine 
the optimal VMS messages to be displayed, 
driver response behavior models under the 
displayed VMS messages, and an incident 
clearance time prediction model to estimate 
the incident duration. The driver behavior 
models were classified into freight truck and 
non-truck categories to differentiate between 
the response attitudes of freight truck drivers 
and other travelers vis-a-vis en-route route 
diversion. 
 The Borman Expressway corridor in 
northwest Indiana was used as a case study 
to develop the driver response behavior 
models and the incident clearance time 
prediction model. Simulation-based off-line 
testing and evaluation of the effectiveness of 
the VMS message strategies were 
performed. 

Findings  
 This research has the following 
findings that meet the research objectives. 
 
1. The driver response behavior models 

can estimate the diversion rates in 
response to the displayed VMS message. 
Further, the diversion rates for freight 
truck drivers can be specifically 
determined and can be differentiated 

from the diversion rates for other 
travelers. 

2. The incident clearance time prediction 
model that estimates the incident 
duration as part of the incident 
management framework uses data on 
ambient traffic conditions, incident 
severity, and weather conditions. 
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3. The driver response models for the 
Borman Expressway were developed 
using stated preference on-site, mail-
back, and Internet-based surveys. The 
Internet-based survey is generic and 
provides a low-cost readily-available 
mechanism to INDOT to conduct such 
surveys at other locations as warranted. 

 
4. The simulation-based optimal VMS 

message algorithms determine the 
messages to be displayed that are 
consistent with driver attitudes in the 
region. 

 
Implementation  

 The proposed VMS-based 
framework can be implemented on the 
Borman Expressway corridor for on-line 

testing and real-time operation after the 
ATMS installation by INDOT is 
completed.
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1. INTRODUCTION 

 

Traffic congestion in most urban areas around the world is a daily phenomenon.  

Congestion can be viewed as the outcome of the interaction between travel demand and 

capacity supply.  When demand for road capacity becomes larger than supply, congestion 

arises.  The effects of congestion, such as excessive delays, increased fuel consumption, 

and incidents, can be translated into significant economic and social costs.  Metropolitan 

areas in the United States are experiencing unprecedented challenges to mobility.  In the 

past decade, traffic volumes in urban areas have grown by 30%.  A recent study has 

shown that in the next 10 years, the number of vehicles on U.S. roads and highways will 

increase by 50% [1].  American people spend 2 billion hours queued in traffic every year, 

which translates to over 48 billion dollars in lost productivity.  State and local 

governments are struggling with the demands this places on the infrastructure system.  As 

congestion continues to increase in most areas, the conventional approach of building 

more roads is not always a viable solution primarily for two reasons.  First, the lack of 

space to expand or build new highways renders many alternatives obsolete.  Second, 

building new highways, in many cases, compounds congestion problems by inducing 

unforeseen demands for travel by auto.    
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The U.S. and many countries around the world are applying advanced 

technologies as tools to manage and operate existing transportation systems in an 

efficient manner, a paradigm referred to as Intelligent Transportation Systems (ITS).  ITS 

combines the power of communications with a variety of information technologies to 

better manage and improve the operation of existing transportation systems.  ITS can be 

characterized as a combination of several key elements: Advanced Traffic Management 

Systems (ATMS), Advanced Traveler Information Systems (ATIS), Advanced Vehicle 

Control Systems (AVCS), Advanced Rural Transportation Systems (ARTS), Advanced 

Public Transportation Systems (APTS), and Commercial Vehicle Operations (CVO).  In 

general, the benefits of ITS include: reduced traffic congestion, enhanced public safety, 

improved access to travel information, and reduced adverse environmental impacts.   

1.1 ATIS 

Advanced Traveler Information Systems (ATIS) represent one of the strategies 

employed in recent years to alleviate traffic congestion.  ATIS aim to provide motorists 

travel-related information to enable them to make more informed decisions on congestion 

avoidance, departure time, route selection, and en-route diversion.  They can be classified 

into pre-trip information services (such as route planning information services through 

the Internet) and en-route information broadcasting services such as personalized 

navigation systems, highway advisory radio (HAR), and variable message signs (VMS).  

In a real-time framework, ATIS can be used by traffic controllers to disseminate 

information on traffic conditions to trigger optimal routing policies to improve network 

performance. 
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1.2 Problem Statement 

Incidents or non-recurrent congestion can lead to severe traffic delays as well as 

deterioration in terms of safety (for example, secondary accidents) and air quality.  The 

Indiana Department of Transportation (INDOT) is currently implementing an ATMS on 

the Borman Expressway in northern Indiana, a major interstate corridor, to better manage 

incidents and enhance mobility in the area.  The Borman Expressway is a sixteen mile 

segment of interstates 80 and 94 (I-80/94) and is part of the Gary-Chicago-Milwaukee 

corridor.  It begins at the Indiana/Illinois border and stretches east to the Indiana Toll 

Road interchange.  Figure 1.1 illustrates the Borman Expressway and its associated 

corridor.  The average daily traffic (ADT) on the Borman is approximately 140,000 

vehicles, with trucks comprising about 30% of the traffic on average and peaking at 70% 

at night.  Traffic volumes are relatively constant from the morning through the early 

evening, with near or at capacity volume during most of the daylight hours under perfect 

operational conditions.  

Operational problems arise on the Borman Expressway due to non-recurrent 

congestion, primarily through accidents and stalled vehicles [2].  Over 60% of the 

incidents involve passenger vehicles and 20% involve trucks and semi-trailers.  The 

sizeable percentage of through traffic in the form of cargo-carrying trucks increases the 

likelihood of their involvement in these accidents.  This increases the potential severity of 

accidents by increasing the average duration of the operation of the expressway under 

reduced capacity around the bottleneck area. Additional complications arise due to major 

construction projects currently underway or planned for the next five to ten years.              
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The Hoosier Helpers (HH) are freeway service patrols on the Borman 

Expressway.  They have been identified as the system operator in the field and an 

essential player in the rapid detection, verification, response, and removal of incidents.  

In order to effectively and rapidly manage incidents, the HH operators have specially 

equipped vehicles to operate key elements of the system directly from the vehicle, with 

capabilities to communicate with the central system in the Traffic Management Center 

(TMC), perform various system functions, log new incidents, and initiate response 

actions (including the notification of emergency and law enforcement agencies).  While 

this helps to develop a coordinated effort and reduce the incident response and clearance 

time, they lack the capabilities to effectively manage traffic during incident clearance 

and minimize the amount of traffic adversely impacted by an incident. 

VMS and HAR are the primary technologies being considered for the Borman 

Expressway ATMS.  VMS are the most visible means of dissemination of traffic 

information.  They are electronic message boards placed in close proximity to roadways.  

They allow traffic controllers to inform drivers on changing traffic conditions, and are 

commonly used for parking guidance, control of high occupancy vehicle (HOV) lanes, 

congestion warnings, safety warnings, and traffic flow diversion.  While they have an 

obvious role under incidents in terms of improving network performance, they have the 

potential to contribute positively under recurrent congestion and special events as well.  

Unlike in-vehicle navigation systems (IVNS), which can provide personalized routing 

information, VMS are constrained to display generic information.  This places a higher 

premium on the message displayed through a VMS in the context of its relative effect on 

system performance.  Currently, the system operator lacks an anticipatory capability of 



 

 

5

determining what type of VMS-based information should be provided to motorists.  

INDOT is currently developing an expert system to address the following issues for 

Borman incident management: (i) whether to inform drivers of incidents, (ii) when to 

advise drivers to switch and to which diversion routes, (iii) when to modify advisories, 

(iv) when to remove such advisories, and (v) which VMS locations to activate to display 

information, so at to minimize traffic delays and the number of drivers adversely affected 

by the incident.  However, all of these tasks require coordinated information provision 

strategies which the present study aims at addressing.   

1.3 Study Objectives 

The primary objective of this study is to develop a framework for optimizing 

system performance under incidents using VMS message content as the control variable.  

Presumably, if different message contents to describe the same situation prompt different 

diversion rates, then message content can be used as control variable by the system 

operator to generate favorable network conditions in the real-time operation of the system 

while conserving the integrity of information.  The framework aims at determining 

whether and when to activate, modify, or remove VMS advisories.  This is done using a 

dynamic traffic assignment (DTA) based methodology that determines the optimal detour 

routes and diversion rates, and an incident clearance time prediction model.  These are 

essential inputs to the system operator to effectively manage incidents on-line.   

Figure 1.2 illustrates the overall framework for the on-line route advisory and 

guidance for incident management using VMS.  It consists of: 
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i) an incident clearance time prediction model which helps in predicting the 

expected delay due to the incident. 

ii) a DTA model which predicts the traffic conditions in response to a particular 

VMS information provision strategy and can be used to determine VMS 

strategies that optimize system performance. 

iii) a driver behavior model which can predict how drivers respond to different 

VMS  message contents. 

The on-line framework is activated by a system operator log that describes the 

incident by type, location, and number of vehicles involved.  This data and other relevant 

information from the TMC are used by the incident clearance time prediction model to 

determine the expected duration of the incident.  This information is fed to the DTA 

model to develop effective VMS information provision strategies and predict future 

traffic conditions.  The integrated model, which determines the optimal time-dependent 

anticipatory information to be provided through the VMS, is incorporated in an on-line 

detour implementation framework that periodically updates the incident situation in terms 

of the expected remaining time to clearance.  The VMS are deactivated when the effects 

of the incident(s) on the traffic conditions are no longer significant. 

 

1.4 Organization of the Report 

This report consists of 6 chapters.  Chapter 2 provides a literature review on the 

real-time use of VMS for congestion and incident management.  Chapter 3 presents the 
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development and discussion of the incident clearance time prediction models.  Chapter 4 

discusses the modeling methodology employed for the development of the driver 

response models, the data collection, and the VMS driver response models estimated.  

Chapter 5 discusses the methodology to determine the optimal detour routes and VMS 

diversion rates.  Chapter 6 provides some concluding comments and recommendations. 
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Figure 1.1  Borman Expressway Network 



 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2  On-line Route Advisory and Guidance Framework 
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2. LITERATURE REVIEW 

 

In the context of ATIS implementation, dynamic traffic assignment (DTA) 

models [3] aim to capture the dynamic nature of traffic interactions spatially and 

temporally to optimize system performance (usually in terms of travel cost 

minimization).  They provide systematic operational procedures that can be automated 

and deployed.  The goal of these models is to generate time-dependent routes to assign to 

drivers that optimize some system-wide objectives while satisfying certain individual 

user characteristics (in terms of behavioral attitudes and/or goals). 

2.1 Issue of Computational Tractability 

A key deployment issue with dynamic traffic assignment models is their 

computational intractability.  Their execution as part of an on-line traffic control 

framework requires massive computation which cannot be typically accomplished in sub-

real time. Past studies have shown that the generation of off-line solutions itself requires 

substantial computation. Given the convenient and simplifying assumptions on 

information available on demand and supply conditions in the off-line models, an on-line 

scenario with its significantly higher complexity due to the need to factor several sources 

of randomness generates further computational intractability.  However, frameworks [4] 

have been developed to solve the on-line DTA problem by using off-line solution models 
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and a truncated planning horizon.  These frameworks (such as the rolling horizon 

approach) tend to alleviate some of the computational burden by simplifying the problem 

to be solved (typically be truncating the planning horizon and/or circumventing forecasts 

of future demand/supply), but are still computationally infeasible from a deployment 

perspective.  As stated earlier, off-line DTA algorithms assume static demands and 

supply conditions that do not accurately reflect the real world conditions.  When 

randomness is factored in, real-world conditions are significantly more accurately 

depicted, but this introduces another dimension of complexity to the on-line DTA 

problem. Recent algorithmic developments [5] have addressed this aspect.  However, 

another key issue is the difficulty in capturing user behavior accurately as several 

behavioral user classes exist in the traffic stream.  Hence, an approach that can efficiently 

(from a computational perspective) achieve system-wide objectives without making 

restrictive assumptions on user behavior facilitates effective online deployment from the 

ATIS/ATMS perspective.  A VMS-based approach offers this potential.  

2.2 Existing Usage of VMS 

Presently, the most common usage of VMS is to provide current traffic 

congestion updates, weather-related information, notification of road construction, 

controlling access to high occupancy vehicle (HOV) lanes, displaying safety messages 

and notification of public events.  VMS, even in a rudimentary form, have been used to 

disseminate traffic-related information to travelers for more than two decadestheir 

primary purpose was to control access to HOV lanes.  As a result, the VMS were placed 
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in locations that are illogical from the perspective of motorist information needs [6].  The 

strategic location of VMS in the network [7] is an important consideration because it 

gives the traffic manager efficient control over the system and minimizes the possibility 

of system deterioration under recurrent and non-recurrent congestion when compared to a 

rule-of- thumb based location approach. 

2.3 Route Guidance using VMS 

Field studies indicate that route guidance using VMS, a recent phenomenon, have 

a substantially greater potential to improve system performance when compared to VMS 

displaying passive descriptive information like ambient traffic/weather conditions.  Field 

experiments in the city of Aalborg, Denmark [8] studied how VMS can be best managed 

to provide relevant reliable information and route guidance to motorists to improve 

system performance.  An automatic control strategy based solely on real-time 

measurements from loop detectors was employed to achieve this objective.  A simplistic 

rule for calculating travel time was included in the model.  The study reported significant 

improvements to the system performance using this strategy.  Studies of user response to 

VMS on the 600-km freeway network around Paris [9] aimed at modifying individual 

driver behavior so as to achieve better system performance.  In this study, link flow 

evaluations using loop detector data were performed to estimate the differences in the 

flow rates with and without VMS.  However, traffic flow data analysis was done for a 

selected link to address issues of user response variation with the type of message 

displayed on the VMS.   
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The primary data sources for VMS are loop detectors embedded in the pavement, 

closed circuit television cameras, and other ITS traffic surveillance equipment.  Dynamic 

information may also be gathered using probe vehicles reporting their position and speed 

at regular intervals to the traffic controller.  The Aalborg and the Paris experiments relied 

solely on loop detector data to improve system performance.  This raises issues of the 

accuracy of these analyses because of measurement errors inherent to loop detectors. A 

more significant drawback of these studies is their lack of transparency to user attitudes 

towards VMS messages.  In a VMS-based approach to optimize system performance it is 

imperative that the interaction between user VMS response attitudes and the messages 

displayed on the VMS be considered explicitly because this directly influences network 

performance. Driver attitudes to messages, in turn, are affected by the current state of the 

network.. Hence, a fixed-point interaction between user response and network 

performance exists.  This is akin to the fixed-point interaction between path assignments 

and experienced path travel times from which stems the complexity of the DTA problem 

and which is also inherited by the VMS problem.    

There are additional issues of consistency that need to be considered while 

solving the VMS problem. User perception of the reliability of the messages displayed on 

the VMS contributes significantly to any VMS strategy for optimizing system 

performance. Hence, the messages displayed on the VMS should be consistent from a 

spatial and temporal perspective. Another deficiency in the state-of-the-art of VMS 

algorithms is their lack of generality vis-a-vis optimizing system performance.  Hence, a 

key aim of our study is to develop systematic procedures to address these operational 

issues.  
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2.4 Role of Simulation in Evaluating Effectiveness of VMS 

The effectiveness of VMS messages is difficult to isolate for the following 

reasons:  

(i) the  inability to determine what proportion of the flow is actually affected by the 

message, and 

(ii) the variations in the effect of different message contents and format. 

While detailed field monitoring of VMS is expensive, an additional difficulty arises in the 

context of collecting field data on user response behavior to VMS.  Experiments are 

constrained by the traffic controller’s reluctance to allow the system to lose credibility by 

displaying messages that are not appropriate based on the prevailing network conditions 

or to explore a wide variety of message formats.   Research conducted as part of the 

DRIVE project by the Commission of European Communities R&D program [12] aimed 

at predicting the effectiveness of a given message in a given situation through the use of a 

route choice simulator. This was then used to select that message which has the effect of 

diverting the desired proportion of traffic - enough to reduce overload at the incident 

location but not so much as to cause significant problems elsewhere in the network.  This 

study confirmed the important role of simulation studies to pre-screen messages before 

field application.  In our study, simulation was used primarily to evaluate the 

effectiveness of the proposed VMS algorithm, given an user response model estimated 

from a stated preference (SP) survey of driver attitudes on the Borman Expressway. 
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3. INCIDENT CLEARANCE TIME PREDICTION MODELS 

 

Besides the driver response models under VMS-based information, the overall 

framework for the VMS-based on-line route advisory and guidance for incident 

management includes an incident clearance time prediction model.  In this chapter, 

incident clearance time prediction models for crashes and roadway debris are estimated 

using Borman incident data recorded by the Hoosier Helpers. 

3.1 Introduction 

For an ATMS to be effective vis-à-vis non-recurrent congestion, it is crucial to 

accurately predict traffic delays due to incidents.  This implies timely and accurate 

information on incident delays for increased credibility and effectiveness of traffic 

information.  This motivates the need for estimating incident duration prediction models. 

As shown in Figure 3.1, the total incident duration consists of four components: 

1) detection and verification time T1; this represents the time interval from the occurrence 

of the incident until the incident is detected and information related to the incident 

location, type, and severity reaches the TMC; 2) dispatch time T2, this is the time elapsed 

between the identification of the incident and the dispatch of the incident response 

vehicle (IRV); 3) IRV travel time T3, this is the time that the IRV requires to arrive at the 
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incident scene from its previous location; and 4) clearance time T4, this is the time 

between the start of the on-site IRV operation and the end of the clean-up operation.  The 

models estimated in this chapter only predict the fourth component (i.e. clearance time) 

of the incident duration since data for the other three components is not available.  

Incident data from the Hoosier Helper logs was used to update existing Borman 

incident clearance time prediction models [13].  The existing models were developed 

using data over a single period, while the models estimated in this Chapter use multi-

period data which aids in the estimation of more accurate models.  The models developed 

in this Chapter are also superior in the sense that they incorporate detailed explanatory 

variables for weather conditions unlike the previous models.  In addition, variables that 

reflect on incident severity are included to enhance robustness vis-à-vis prediction.     

3.2 Factors Affecting Incident Clearance Time 

The factors that have either direct or indirect influence on incident clearance time 

are grouped into four major categories: 1) incident characteristics, 2) traffic 

characteristics, 3) environmental characteristics, and 4) operational characteristics.  The 

incident characteristics include the type of incident, location of incident, and the type and 

number of vehicles involved.  It has been observed that clearance time is longer for 

incidents involving injuries, more than one vehicle, occurrence of incident on ramps, and 

occurrence of incidents in work zones.  Traffic characteristics include traffic volumes, 

average traffic speed, and the percentage of trucks at the time of the incident.  High 

volumes of traffic increase the time taken by the IRV to reach the scene.  High average 
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speeds and high percentage of trucks also prolong the clearance time, as the response 

crew has to be more cautious about safety.  Bad weather conditions such as intense rain 

and snow hamper the clearance time of incidents.  Operational characteristics also affect 

the clearance time of incidents.  They may include the workload of the emergency crew 

at the time of the incident, the equipment used, and the provision of traffic information to 

motorists.  Notifying motorists on what to expect ahead through VMS and radio traffic 

reports (RTR) helps in reducing the clearance time since some drivers may divert to 

alternate routes and reduce the flow in the incident vicinity.  This objective is addressed 

in Chapter 4. 

3.3 Analysis of Data 

An INDOT database containing Hoosier Helper motorist assists from July 1, 1996 

to October 28, 1998 is used to develop the incident clearance time prediction models.  

During this period, the Hoosier Helper completed 22,737 assists, or 26.8 assists per day.  

The database includes information on the Hoosier Helper arrival and departure time from 

the scene, the type of incident, and the lateral and longitudinal location of the incident.  

The incidents are categorized into crash, debris on roadway, or disablement.  The last 

category involves one or more of the following Hoosier Helpers services: changing tire, 

calling tow trucks, doing minor repairs, supplying gas, aiding overheated vehicles, 

escorting a motorist, extinguishing fire, waking a sleeping motorist, and providing 

information. 
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A distribution of incident frequency and clearance time by incident type and 

lateral location of occurrence for the period of July 1996 to October 1998 is presented in 

Figure 3.2 and Table 3.1.  An analysis of these incidents found that disablements, with a 

mean clearance time of 13.4 minutes, represented 91.1% of the total number of incidents. 

Debris on roadway represented 5.2% of all incidents with a mean clearance time of 4.8 

minutes.  Crashes had the largest mean clearance time, 33.9 minutes, and comprised 3.7% 

of all incidents.  For the purpose of comparison, a FHWA study [14] reported that 80% of 

freeway incidents recorded by local authorities were disablements, while crashes only 

made up 10% of reported incidents.                  

3.4 Model Estimation Results 

    Linear regression models were estimated for two types of incidents: debris 

on roadway and crashes.  Only these two types of incidents were considered since they 

are more like to significantly disrupt traffic flow.  The Limdep software package [15] was 

used to estimate the models. 

 Table 3.2 describes the relevant explanatory variables included in the models.  

They can be classified into four categories: incident severity variables (NVEH, TRUCK), 

incident lateral location variables (RAMP, MEDIAN, LL, CL, RL), environmental 

condition variables (NIGHT, TEMP, VIS, RAINH, RAINL), and current traffic condition 

variables (RUSH).  To the extent that the Hoosier Helper is the system operator, the 

variables included in the models ensure that the clearance time can be predicted with data 

accessible by the Hoosier Helper operator, traffic controller, or both.  
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There are some key differences between the existing models [13] and the models 

estimated in this Chapter.  First, the updated model for crashes includes variables that 

indicate the severity of the accident in terms of the number and type of vehicles involved 

(NVEH and TRUCK).  As the number of vehicles involved in the accident increases, the 

clearance time also increases.  The involvement of trucks in crashes results in longer 

clearing operations.  Hence, a truck variable was included as well.  Second, the existing 

models include a variable to indicate if the incident clearance process occurs under 

adverse weather conditions.  However, this variable is rather general.  In order to gain 

richer insights on the effect of weather conditions on the incident clearance process, 

variables representing rainy and snowy conditions were included.  Furthermore, rainy 

conditions were separated into two categories depending on the intensity of the rain: high 

intensity rain (RAINH) and low intensity rain (RAINL).  The inclusion of these variables 

allowed the estimation of more refined and accurate clearance time prediction models.  

The weather data was provided by the Applied Meteorology Group in the Department of 

Agronomy at Purdue University.  They provided an hourly weather database, which made 

possible the matching with the incident occurrence times.  This should represent a 

reliable weather data source for INDOT in the future. 

 The estimated models are illustrated in Table 3.3.  The data sets for the crashes 

and debris on roadway incidents included 835 and 1,176 observations, respectively.  The 

model for crashes suggests that the number of vehicles involved in the crash (NVEH) is 

an important factor (the estimated coefficient has a high t-statistic).  The variable 

TRUCK is not a significant variable.  Its low t-statistic may be due to the lack of 

sufficient observations of severe incidents involving trucks.  Also, it is likely that when a 



 

 

20

truck is involved in a crash, the damage done to the truck is insignificant and hence it can 

be pulled to the shoulder.  On the other hand, if the severity of the accident is high (e.g. 

the truck has overturned), then the immobility of the vehicle increases the time to clear 

the accident.   

 In the context of the incident lateral location variables (the base case is the right 

shoulder), the variable RAMP had the highest coefficient in both models.  This could be 

because the sight distance on freeway ramps is less and the traffic is more difficult to 

control requiring extra caution by the rescue crew.  Being more cautious lends itself to an 

increase in the clearance time.  The same line of reasoning can be extended to variable 

CL. 

 The variable NIGHT had a negative coefficient in both models, implying that 

clean-up operations take longer time during night.  TEMP also had a negative coefficient 

indicating that clearance time of incidents is shorter at high temperatures.  At very low 

temperatures (i.e., during winter months) it is difficult to work outside leading to longer 

clearance times.  As expected, variables RAINH and RAINL were statistically very 

significant for both the crash and debris on roadway models.  The results are intuitive 

since the coefficient of RAINH is greater than the coefficient of RAINL.  The results 

indicate that high intensity rains hamper the incident clearing process more than low 

intensity rains.  The same line of reasoning can be applied to the variable SNOW.  

However, this variable was statistically significant only in the debris on roadway model.  

The lack of statistical significance of SNOW in the crash model may be due to the small 

number of observations included in the data set under snowy conditions.  Although some 
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variables had a low t-statistic, they were included in the models because of their potential 

importance in predicting incident clearance times.  An analysis of the appropriateness of 

the regression models was done.  Figures 3.3 and 3.4 show that the residuals, when 

plotted against the predicted values of the incident clearance time prediction models, do 

not show any regular pattern and hence the models give unbiased results. 
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Figure 3.1  Components of Incident Duration  
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Figure 3.2   Distribution of Hoosier Helper Assisted Incidents by Type and Lateral 
Location  
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Figure 3.3  Plot of Predicted Values Versus Residuals from Incident Clearance Time 

Prediction Model of Crash Incidents 
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Figure 3.4  Plot of Predicted Values Versus Residuals from Incident Clearance Time 

Prediction Model of Debris on Roadway 
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Table 3.1  Clearance Time of Hoosier Helper Assisted Incidents (Jul. 1996 – Oct. 1998) 

Incident Lateral Location 

Median Shoulder In-Lane Right Shoulder Ramp Incident 
Type 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Disablements 14.67 17.17 19.38 22.96 10.52 13.80 11.58 16.11 

Debris 24.75 31.35 4.28 8.93 7.83 12.37 6.47 16.33 

Crashes 37.39 28.85 40.95 30.17 28.69 23.15 55.12 34.25 

Note: Mean and standard deviation (S.D.) values are in minutes. 
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Table 3.2  Explanatory Variables 

Explanatory Variable Mnemonic 
Number of vehicles involved in the incident NVEH 

Median 
= 1, if incident occurred on the median 
= 0, otherwise 

MEDIAN 

Left Lane 
= 1, if incident occurred on the left lane 
= 0, otherwise 

LL 

Center Lane 
= 1, if incident occurred on the center lane 
= 0 otherwise 

CL 

Right Lane 
= 1, if incident occurred on the right lane 
= 0, otherwise 

RL 

Ramp 
= 1, if incident occurred on the freeway ramp 
= 0, otherwise 

RAMP 

High intensity rain  
= 1, if raining with high intensity during the incident   

clearance process 
= 0, otherwise 

RAINH 

Low intensity rain  
= 1, if raining with low intensity during the incident   

clearance process 
= 0, otherwise 

RAINL 

Snow 
= 1, if snowing during the incident clearance process 
= 0, otherwise 

SNOW 

Night 
= 1, if the incident clearance process occurs at night 
= 0, otherwise 

NIGHT 

Truck 
= 1, if a truck is involved in the incident 
= 0, otherwise 

TRUCK 

RUSH 
= 1, if the incident occurred during the rush hours 
= 0, otherwise 

RUSH 
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Table 3.3  Models for Prediction of Incident Clearance Time 

Model 
Crashes Debris Variable 

Coeff. (t-ratio) Coeff. (t-ratio) 
ONE 12.774 (1.989) 4.120 (1.722) 
NVEH 7.349 (4.741) -- 
TRUCK 2.930 (1.199) -- 
RAMP 18.055 (3.742) 15.677 (6.498) 
MEDIAN 4.496 (1.472) -0.854 (-0.212) 
LL 9.095 (2.795) -0.290 (-0.135) 
CL 15.846 (5.054) 9.825 (4.780) 
RL 9.780 (2.854) 0.678 (0.344) 
NIGHT 16.596 (5.478) 1.730 (1.809) 
TEMP -0.065 (-1.164) -0.015 (-0.741) 
VIS -0.136 (-0.523) -0.0001 (-0.002) 
RAINH 32.842 (5.094) 13.563 (6.619) 
RAINL 13.571 (2.606) 8.487 (2.967) 
SNOW 6.527 (1.355) 9.396 (2.835) 
RUSH  -1.150 (-0.511) 3.154 (3.912) 
Sample Size 835 1176 
R2 0.234 0.362 
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4. DRIVER BEHAVIOR MODELS FOR THE BORMAN 

 

This chapter discusses the survey results from data collected on the Borman 

Expressway in Indiana.  In addition, VMS route diversion prediction models are 

developed for the Borman Expressway region using the survey data.  The focus is on 

developing logit models for estimating the diversion rate in response to a specific VMS 

message type.  A detailed discussion is presented on the estimated parameters for each 

model. 

4.1 Information-based Route Diversion Behavior 

Information-based route diversion behavior is the outcome of several factors: (i) 

driver’s socioeconomic characteristics, (ii) network state characteristics, and (iii) 

information characteristics.  The socioeconomic characteristics include gender, age, 

income level, as well as familiarity with the network [16, 17, 18, 19].  Socioeconomic 

characteristics are considered static, that is, they do not change on a day-to-day basis.  

Network state characteristics include congestion severity and weather conditions.  They 

also can significantly influence driver route diversion decisions [20, 21, 22]. In contrast 

to the socioeconomic characteristics, these may change on a day-to-day or intra-day basis 

and hence are considered dynamic.  Information attributes also play an important role in 
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driver attitudes.  Different levels of information may provoke different route diversion 

rates.  Information accuracy is an important factor as well.  Discrepancies between the 

acquired information and the travel experience may lead drivers to rely less on 

information over time. 

Figure 4.1 illustrates the driver response mechanism under information provision. 

The rectangles correspond to the static characteristics while the trapezoids correspond to 

the dynamic characteristics.  The oval corresponds to the unobservable aspects.  The 

decision-making process is influenced significantly by the feedback in terms of actual 

experience resulting from the decision.  Therefore, a learning process is also involved.  

However, inertia plays an important role in this learning process as certain thresholds 

representing a comfort range need to be exceeded before drivers change their habitual 

behavior.  

4.2 VMS Messages 

VMS messages are classified into two categories in terms of their level of 

persuasion vis-à-vis diversion: passive and active.  Passive messages provide information 

about an incident or traffic congestion only, leaving the course of action to the traveler.  

They provide information on the type of incident, its location and/or expected delay.  

Active messages provide instructions on the use of an alternate route to avoid the 

bottleneck.  The passive information can be further classified as qualitative or 

quantitative.  Qualitative information refers to the problem generically (e.g. “ACCIDENT 

AHEAD”) whereas quantitative information focuses on specifics such as the expected 
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delay and/or the location of the incident (e.g. “ACCIDENT 2 MI AHEAD, 15 MINUTES 

DELAY”).  From an operator’s perspective, passive messages are less complex than 

active messages in that they are primarily descriptive and inform travelers about ambient 

traffic conditions.  The use of active messages often requires the detection and 

verification of traffic conditions on the alternate route and the network, increasing the 

amount of effort required to operate the system.  This study analyzes whether route 

diversion rates differ based on the type and amount of VMS information displayed. 

4.3 User Survey Design  

A stated preference (SP) survey in the form of a questionnaire is conducted in this 

study to elicit relationships between VMS message content and driver response.  The SP 

methodology is used because it allows researchers to control the explanatory variables 

[23] and because the main focus of the study is to capture drivers’ diversion intentions 

under a wide range of VMS messages.  The revealed preference (RP) approach was not 

an option because it entails impractical logistic mechanisms like stopping and 

interviewing motorists on the road after they encounter a VMS message.  This also 

implies that the results would be limited to the messages displayed during the survey 

period. 

The commonly used SP methodology has a number of well-understood 

limitations.  Its main weakness is that subjects may not respond the way they state, in a 

real situation.  In the VMS context, this is primarily because SP cannot effectively 

capture the situational behavior of users under actual situations characterized by the 
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weather, time of day, and ambient traffic conditions.  All of these are key situational 

elements in the driver diversion decision-making process.  The ability of the SP 

methodology to reasonably infer on these factors requires the use of advanced driving 

simulators capable of recreating driving environments that closely replicate real world 

conditions (e.g., similar to flight simulators used by the aviation industry to train pilots).  

However, even if it were possible to use a sophisticated driving simulator, the SP 

approach is still limited compared to RP in terms of inferring driver actions.  Another 

weakness of the SP methodology is that surveys can be lengthy depending on the key 

variables that need to be considered.  To illustrate this, assume that we are trying to 

capture the effect of a set of variables Xi (i = 1, 2, 3,…, n) on the dependent variable Y 

(divert or not divert).  Furthermore, assume that each of these n variables have m 

potential sub-categories.  Therefore, there are mn unique combinations of these variables.  

Ideally, we would like to know the value of the dependent variable for each of the mn 

unique combinations of variables.  In a SP survey, this implies user response to mn 

questions. 

After identifying the measurable factors that potentially influence route diversion 

decision under VMS, a SP survey in the form of a questionnaire was designed.  The 

survey questionnaire is illustrated in the Appendix.  The first part addresses questions on 

socioeconomic characteristics such as gender, age, level of education, and household 

size.  The second part elicits their propensity to divert under specific scenarios.  In the 

last part of the questionnaire, the respondents were presented with generic description of 

VMS messages, and asked whether they would divert to an alternate route.  The 

responses were recorded on a five point Likert scale (1-5), where 1 implies low 
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willingness to divert and 5 implies high willingness to divert.  Respondents answering 4 

or 5 were assumed to divert under that VMS message.  The objective of this part was to 

determine how different levels of information content provided by a VMS influence 

motorists’ propensity to divert.  The generic messages are shown in Table 4.1.  It should 

be noted that the messages were specified in a random order in the questionnaire to avoid 

potential directional bias.     

Three survey administration methods were adopted in this study: 1) on-site 

survey, 2) mail-back survey, and 3) Internet-based survey.  The multiple administration 

approach was used to more effectively sample all segments of the target population. 

There are advantages and disadvantages of using one method over the other.  For 

example, the on-site method allows the researchers to personally interview the 

respondents, and hence the responses tend to be more reliable.  However, the on-site and 

the mail-back surveys are time-consuming as data needs to be manually archived in the 

computer. 

The Internet-based survey allows broad access of participants to the survey since 

it only requires Internet access.  There is no need to physically intercept subjects to 

request their participation.  The recruitment process can be done by sending a 

participation request to randomly selected subjects through electronic mail or regular 

mail.  The respondents’ choices are automatically recorded in the server containing the 

survey, and can be retrieved at a later time by the researcher.  Hence, it is less time- 

consuming than the other two approaches.  Shortcomings of this approach include the 
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need for high levels of accessibility of Internet among potential respondents, and 

overcoming the inertia of having to access a specific Internet address.    

4.3.1 Internet-based Survey 

Internet-based surveys have grown significantly in recent years, providing 

substantial experience on their design and administration.  Access to the questionnaire 

was provided through a respondent-unique secure point of entry.  It is critical to ensure 

that each respondent has the opportunity to complete only one questionnaire, and that 

others who are not recruited do not have access to the survey.  This is done by providing 

a password to the target respondents along with the participation request.  To ensure that 

respondents complete only one questionnaire, their computer Internet protocol (IP) 

address was captured by the server containing the survey using a common gateway 

interface (CGI) script.  An IP address is a series of four numbers, each in the range of 0 to 

255, separated by periods, which uniquely identify a computer on the Internet.  A Java 

script is used to ensure that the participant answers all questions before submitting the 

survey questionnaire. 

4.4 Data Collection 

The target population was travelers on the Borman Expressway.  The on-site 

survey targets commuters, infrequent Borman travelers, and truck drivers on the Borman 

Expressway.  The mail-back survey helps in sampling travelers that use the Borman on a 

daily basis (commuters).  The Internet-based survey targets businesses and individuals 
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who value time highly and who as a group entail high refusal rates in mail-back surveys.  

The survey results from the different administration methods adopted in this study are 

presented below. 

 

4.4.1 On-site Survey Results 

Two survey locations were identified for the on-site interview.  The first is a truck 

stop on the Borman Expressway.  Hence, most respondents at this location were truck 

drivers.  There are no rest areas on the Borman Expressway.  Hence, a rest area on I-65 a 

few miles south of the Borman was used as the second survey location.  The Borman 

Expressway represents part of the journey for most drivers who stop at this rest area.  

Most travelers surveyed here were non-truck drivers.  The surveys on both locations were 

conducted using a 4-person crew for two days each.  Potential respondents were 

approached and informed about the objectives of the survey and requested to answer the 

short questionnaire.  The refusal rates were 20% and 10% at the truck stop and the rest 

area, respectively.  The data collection effort resulted in 248 observations; 116 truck 

drivers and 132 non-truck drivers. 

  Table 4.2 reports the socioeconomic characteristics of the sample. The 

characteristics are shown for the truck drivers, the non-truck drivers, and for the sample 

as a whole.  About 79% of the respondents were male.  The distribution of the 

respondents in terms of age groups was mostly even, except for the less than 20 and 

greater than 65 age groups.  59% have at least some college experience and 41% received 

at least one college degree.  61% have a household with 3 or more members including 
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themselves.  The question on the household size was included in this survey because 

studies have shown that transportation-related decisions are a function of household size 

[16, 17, 19 ].  It should be noted that a large proportion of truck drivers belonged to the 

less-educated category while a large proportion of the non-truck drivers belonged to the 

well-educated category.  Also, most truck drivers were male. 

Table 4.3 shows the diversion characteristics of the respondents.  About half of 

the respondents stated that they were regular drivers in the Borman Expressway region.  

However, this does not necessarily imply that such drivers are familiar with alternate 

routes other than their regular route.  Hence, regular drivers were asked to state their 

familiarity level with alternate routes.  Among this group, 65% were familiar with at least 

one alternate route besides the Borman Expressway.  70% stated that they would divert to 

an alternate route to avoid unexpected congestion under adverse weather conditions if a 

VMS message suggested it.  This could be due to the effect of incident clearance time.  

Bad weather conditions may increase the clearance time, persuading drivers to avoid 

potential excessive delays by diverting to an alternate route.  Also, 65% of the 

respondents stated that they would divert to an alternate route during night.  These results 

are consistent with the results of previous studies [16] in this region.  While the survey 

obtains responses on weather and time-of-day variables, these responses are not based on 

the consideration of other relevant factors (such as incident severity) that make driver 

responses to these variables more meaningful.  Such a capability entails providing the 

respondents several specific situations involving many factors through SP to elicit their 

response attitudes.  As discussed earlier, this is a limitation of the SP approach.   Since 

portable VMS have been in place on the Borman Expressway for a few years, drivers’ 
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trustworthiness on the information provided was sought in the survey.  While 39% of the 

drivers stated that they would divert to an alternate route even if they believe that it 

would be longer than their current route, 29% stated that they would not.  33% stated that 

they were undecided.  71% stated that they would divert to an alternate route under a 

work-related trip if that alternate route offered travel time savings ranging from 5 to 30 

minutes.  However, only 47% stated that they would divert on a personal trip for identical 

time savings.  This reaffirms the notion of higher value of time for work-related trips. 

The driver willingness to divert to an alternate route when different VMS message 

contents are displayed is summarized in Table 4.4.  The responses were obtained in the 

form of a 5-point Likert scale where ‘5’ represents a strong willingness to divert and ‘1’ 

represents a strong unwillingness to divert.  The results indicate that as information 

content increases, driver propensity to divert also increases provided the information is 

considered valuable.  The results suggest no significant differences in the diversion 

response to VMS messages 1 and 2.  That is, qualitative VMS information such as 

Occurrence of Accident and Location of the Accident has similar effect on driver 

propensity to divert.  However, quantitative and active messages conveying information 

on Expected Delay and/or Best Detour Strategy are considered valuable vis-à-vis 

influencing drivers’ route diversion decisions.  A shortcoming of using generic VMS 

messages in the survey is illustrated by the perceived relative values of expected delay 

and location.  While expected delays are perceivable in terms of magnitude, the value of 

location is perceivable only in actual situations or specifically constructed SP scenarios.  

In reality, the incident location can represent valuable information under many real 

situations.   
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4.4.2 Mail-back Survey Results 

The mail-back questionnaire was sent to 3,660 randomly selected households and 

businesses in the Borman Expressway region.  The survey included a brief explanation of 

the purpose of the survey, the questionnaire, and a reply envelope.  A total of 402 

residents and businesses responded, which represents a response rate of about 11%. 

Table 4.5 reports the socioeconomic characteristics of the sample.  Among the 

respondents, 59% were male.  Compared to the on-site survey sample, there is a greater 

female representation in the mail-back survey sample.  The distribution of the 

respondents in terms of age group is skewed towards the older age groups; 73% of the 

subjects were older than 40 years.  This is different from the on-site survey where the 

distribution is more uniform.  55% have at least some college experience and 45% 

received at least one college degree.  In terms of the level of education, there is no 

statistical difference between the on-site survey and the mail-back survey samples. 

Table 4.6 illustrates the diversion attitudes of the mail-back survey sample.  

During the design of the on-site survey, it was assumed that Borman users were not 

familiar with VMS.  However, several on-site survey respondents stated that they were 

familiar with VMS.  Therefore, the mail-back questionnaire survey, which was conducted 

later, included a question on drivers’ familiarity with VMS.  The survey shows that 84% 

of the respondents have experience with VMS.  This high percentage is because most 

respondents are daily commuters in the Borman Expressway region and, hence, are 

familiar with the portable VMS that have been in place on the Borman for a few years.  

However, the portable VMS are currently used to inform users on roadwork and traffic 

conditions at the simplest information level.  Almost 81% of the respondents stated that 
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they were regular drivers on the Borman Expressway.  This percentage is higher 

compared to the on-site survey because the sample from the mail-back survey is mostly 

composed of Borman commuters.  Among regular drivers, 90% indicated that they were 

familiar with alternate routes besides the Borman Expressway.  Although the survey 

attempts to capture the effect of the magnitude of delay on the propensity to divert, the 

ratio of this delay to the expected trip time may be a more robust explanatory variable. 

Therefore, a question on the respondents’ average commute time was included in the 

mail-back questionnaire.  50% experience an average commute time less than 30 minutes, 

26% experience between 30 to 60 minutes, 10% experience more than 60 minutes, and 

14% are either unemployed or retired.  Akin to the on-site survey, most respondents 

stated that they would divert to an alternate route to avoid unexpected traffic delay under 

adverse weather conditions or during the night.  When asked if they would divert to an 

alternate route if a VMS suggested it, even if they believe that it would be longer than 

their current route, 39% stated that they would divert, 30% were undecided, and 31% 

stated that they would not divert.  The distribution of the responses to this question is 

almost identical to that under the on-site survey.  84% of the participants stated that they 

would divert to an alternate route under a work-related trip if the alternate route offered 

travel time savings ranging from 5 to 30 minutes, while 75% stated that they would divert 

under a personal trip for identical time savings.  The difference (9%) between drivers 

diverting under work-related trips and personal trips is lesser than the difference (24%) 

from the results of the on-site survey.  This is consistent with the responses to the 

question on the amount of delay that would convince drivers to divert.  In the on-site 

survey, 53% stated that they would divert to an alternate route when the delay ranges 
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from 5 to 30 minutes, while in the mail-back survey 82% would divert for the same range 

of delay. 

Table 4.7 summarizes the willingness to divert to an alternate route when 

different VMS message contents are displayed.  The results are consistent with those of 

the on-site survey, that is, driver propensity to divert increases as level of detail in the 

information increases.  The results suggest no significant difference in the diversion 

response to VMS message types 3 and 4, and between 6 and 7.  The Best Detour Strategy 

and the Location of Accident have added value only in conjunction with information on 

Expected Delay and Best Detour Strategy.  

In addition to the questions on driver propensity to divert under specific scenarios, 

the mail-back survey included an optional question to answer which asked respondents to 

state any comments on VMS and what message might be useful for them.  The most 

common comment was that the VMS should graphically display the lane(s) affected by 

the incident.  Another common suggestion was that VMS should also be installed on 

arterials so that information on traffic congestion is available before entering the freeway 

ramp.  Finally, a significant amount of the respondents stated that if route guidance is 

provided, the freeway off-ramp number should be displayed on the VMS.      

4.4.3 Internet-based Survey Results 

The Internet-based survey participants were recruited through e-mail.  880 e-mail 

addresses of residents in the Borman Expressway region and 125 e-mail addresses of 

businesses in the area were used to target potential survey participants.  The sample 

consists of 29 residents and 5 businesses.  This represents a response rate of 4.4% and 
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4.7% for the residents and businesses, respectively.  The overall response rate, factoring 

in invalid addresses, is 3.5%. The survey was implemented on the URL 

http://www.ecn.purdue.edu/Action/Survey/index.htm. 

The socioeconomic characteristics of the sample are illustrated in Table 4.8.  

About 74% of the respondents were male.  This distribution compares quite well with 

that of the on-site survey.  Most participants (82%) are less than 40 years old.  In 

addition, the majority of the respondents (79%) received at least one college degree.  21% 

have some college experience.  Hence, the sample is biased towards young and well-

educated persons. 

The sample diversion characteristics are summarized in Table 4.9.  Since the 

survey targeted residents and businesses in the Borman Expressway region, the results 

are similar to those obtained in the mail-back survey.  Almost all the respondents (97%) 

are regular drivers in the Borman Expressway region and are familiar with at least one 

alternate route besides their regular one.  A notable difference between the Internet-based 

survey and the other two surveys is in the context of the driver’s trust in the traffic 

information provided.  In the Internet-based survey, 47% of the respondents stated that 

they would divert to an alternate route even if they believed that it would be longer than 

their current route.  Since the majority of the participants in the Internet-based survey are 

well-educated individuals, they are likely to be more at ease with technological 

innovations, and hence may exhibit lesser inertia and a greater level of compliance with 

VMS-based information.  Table 4.10 summarizes the willingness to divert to an alternate 

route under different VMS message contents.  They are consistent with those obtained in 

the other two surveys. 
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4.5 Driver Behavior Model Structure 

The choice set Cn of each individual consists of only two alternatives (divert or 

not divert), motivating the use of a binary logit model to predict the probability of a user 

diverting under a VMS message.  The utility functions are represented by: 

ininin VU ε+=  [4.1]

jnjnjn VU ε+=  [4.2]

where: 

i = alternative representing user diverting, 

j = alternative representing user not diverting, 

Vin = systematic component of the utility of diverting from the current route, 

Vjn = systematic component of the utility of not diverting from the current route, and 

εin and εjn = disturbances or random components. 

The probability of an individual n diverting is equal to the probability that the utility of 

alternative i, Uin, is greater than or equal to the utility of alternative j, Ujn.  This can be 

written as follows: 

( ) [ ]njninnn Cj,UUPrCiP ∈∀≥=  [4.3]

Then, the probability of user n diverting is given by: 

( ) ( )jnin VVn e
iP −−+

=
1

1  [4.4]

The difference in the systematic components is represented as follows: 

VMSXONE-VVV jnin αβ ++==  )(  [4.5]

where: 
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ONE = alternative specific constant corresponding to divert, 

X = vector of those explanatory variables other than VMS message type that may 
influence a driver’s decision to divert,  

 
β = vector of estimated parameters corresponding to X, 

VMS = vector of dummy explanatory variables representing each of the VMS message 
types provided to drivers, and 

 
α = vector of estimated parameters corresponding to VMS. 

The third element of the right hand side of equation [4.5] is represented as: 

�
=

=
8

2k
kkVMSVMS αα  [4.6]

where: 

αk = coefficient of VMSk, and 

VMSk = dummy variable representing VMS message k.  

The explanatory variables included in the utility function are shown in Table 4.11.  The 

survey data was used to estimate the logit models, which are then icorporated into the 

VMS-based on-line route advisory and guidance framework.   

4.6 Analysis of Models 

Logit models are developed using the survey data.  The Maximum Likelihood 

Estimation (MLE) procedure was used to estimate the parameters of the models.  The 

Limdep software package [15] was used to estimate the parameters of the models. 
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4.6.1 Estimation Using the On-site Survey Data 

As a first step in the model building procedure, a General model was constructed 

with the on-site survey data (8 VMS message types per person × 248 respondents = 1984 

pooled observations).  The second column in Table 4.12 shows the estimation results of 

this General model.  All variables were included in the initial estimation procedure.  

However, variables found to be insignificant in the intermediate models were omitted at 

the corresponding stages.  Also, the categories shown in Table 4.11 for some variables 

(SEX, AGE, EDU, TRUCK, DRIV, FAM, TRUST, VMSk) were obtained after grouping 

survey subcategories that were not statistically different. 

The variable ONE is the alternative specific constant.  It represents the utility of 

diverting for a driver exposed to VMS1, and whose socioeconomic and other 

characteristics are given by the base cases (represented by the zero values in Table 4.8).  

The negative sign is indicative of a natural aversion or inertia to diversion.  It illustrates 

that the potential for “convincing” more drivers to divert exists through different VMS 

message contents (compared to VMS1).  When any of the message types VMS1, VMS2, 

VMS3 or VMS4 are displayed, there is no combination of socioeconomic variables that 

will produce a positive utility difference.  A pair-t-test [25] at the significance level of 5% 

showed no statistical differences between VMS messages 1 through 4, suggesting that 

motorists exhibit an inclination to stay on their current route when they do not have 

detailed information on the incident.  This reaffirms the conclusions of previous studies 

[16, 17, 19]. 

SEX and AGE are important socioeconomic characteristics that influence the 

diversion behavior of an individual.  SEX has a positive sign implying that males are 
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more likely to divert than females under similar conditions.  AGE has a negative 

coefficient indicating that younger drivers are more likely to divert than older drivers.   

These results are consistent with previous studies [16, 19], that indicate that females and 

older drivers are more risk averse than males and younger drivers, respectively.  

The model also suggests that the education level (EDU) of a driver may be an 

important factor influencing his/her diversion decisions. Well-educated individuals 

exhibit greater compliance with VMS as compared to their less-educated counterparts 

under similar conditions.  Education is a well-known proxy for the income level of a 

person [26].  Therefore, well-educated people are likely to value time more and may be 

more sensitive to delays on their planned route.  Another reason for the significance of 

the EDU variable relates to the level of comfort with technology.  Well-educated 

individuals are at greater ease with technological innovations, at least initially, and hence 

may not exhibit as much inertia to VMS messages.  A related issue is that most truck 

drivers belong to the less-educated category.  Therefore, EDU could act as a proxy for 

truck drivers.  This becomes evident when estimating models for the non-truck drivers 

separately. 

Dummy variables corresponding to VMS messages 3 through 8 were included in 

all models (VMS1 is the base case).  The VMSk variables are very significant and provide 

the largest increases in log-likelihood among all variables.  As discussed in section 4.3, 

VMS messages from 1 through 8 are in the order of increasing amounts of information.  

In all models, coefficient values increase with information, implying that more relevant 

information displayed on a VMS leads to higher diversion propensity.  These results are 
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important because they suggest that driver diversion behavior can be influenced by 

controlling the amount of information displayed on the VMS.  The traffic controller could 

use this variable to improve network performance without impinging on the information 

veracity.  The model suggests no statistical difference between messages VMS1 and 

VMS2, implying the lack of value for the location of the incident.  Hence, the variable 

VMS2 was not included in the model.  This highlights the limitations of the SP approach 

in the VMS context.  Location plays a significant role in diversion decisions based on the 

actual destination.  However, unlike expected delay magnitude, which can be perceived 

irrespective of the actual situation, the value of the location of an incident is revealed 

only in real situations.  Hence, the lack of statistical differences between one or more 

VMS variables might be an artifice of the SP methodology as opposed to a behavioral 

effect.  

To explore whether significant differences exist in the response attitudes of truck 

drivers compared to other travelers, the survey data was separated into truck and non-

truck observations and separate binary logit models were estimated for them.  The 

diversion behavior of truck drivers could be significantly different from that of non-truck 

drivers because not all alternate routes available to a non-truck driver are feasible for 

trucks.  Hence, truck drivers may exhibit more resistance to diversion than other drivers.  

The results are illustrated in Table 4.12. 

 The major difference between the Truck and Non-Truck models is the effect of 

the variables DRIV (regular driver) and FAM (familiarity with alternate routes).  These 

variables are significant for truck diversion, but not for non-truck diversion, suggesting 
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that being a regular driver and being familiar with alternate routes is important for truck 

drivers vis-à-vis route diversion decisions.  This implies that they may a priori hesitate to 

consider all alternate routes as legitimate alternatives.  Therefore, unless a truck driver is 

familiar with alternate routes, he/she may not risk diverting.  The variable TRUST is an 

important explanatory variable in all three models (General, Truck, Non-Truck).  It has a 

positive sign indicating that people who trust the messages displayed on the VMS are 

more amenable to diverting as compared to those who do not.   

The trends in the VMSk variables for the Truck and Non-Truck models are similar 

to those observed in the General model.  There is a small decrease in coefficient values 

from VMS6 to VMS7 in the Truck model.  However, these messages are statistically 

different as determined from a pair-t-test at the 95% confidence level.  For the Truck 

model, VMS2 and VMS3 are not statistically different from the base case (VMS1).  

Similarly, for the Non-Truck model there is no statistical difference between VMS1 and 

VMS2 as determined from a likelihood ratio test.  These are possibly because of the 

limitations of the SP methodology, as discussed earlier.   

So far the specific trends for the Truck and Non-Truck models have been 

discussed.  However, the models cannot compare their coefficients.  For instance, is the 

effect of TRUST on diversion probability different for truck and non-truck drivers?  To 

answer such questions, the truck and non-truck data were pooled and a combined model 

with interaction variables was estimated, as shown in Table 4.12.   

The effect of age on diversion propensities is similar for truck and non-truck 

drivers, and is hence not a significant interaction variable.  As discussed earlier, DRIV 
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and FAM are important factors for truck drivers.  Hence, (DRIV*TRUCK) and 

(FAM*TRUCK) are significant variables in this model.  Also, the effect of the TRUST 

variable seems to differ for truck and non-truck drivers.  From Table 4.9, the TRUST 

variable has a coefficient value of 0.924 and the interaction variable (TRUST*TRUCK) 

has a coefficient value of -0.525.  Hence, the contribution of the TRUST variable will be 

(0.924 - 0.525) = 0.399 for a truck driver but 0.924 for a non-truck driver.  The positive 

sign for the combined coefficient (0.399) for truck drivers implies that trusting truck 

drivers exhibit a higher diversion propensity compared to non-trusting ones.  Also, since 

0.399 is less than 0.525 (TRUST), it suggests that trusting truck drivers exhibit a slightly 

lower propensity to divert than trusting non-truck drivers.  Hence, the TRUST variable 

does not have similar effects on truck and non-truck drivers.  The same line of reasoning 

can be extended to the VMS interaction variables.  (VMS3*TRUCK), (VMS5*TRUCK) 

and (VMS7*TRUCK) are all negative.  This implies that if the message VMS3, VMS5, or 

VMS7 is shown, a truck driver is less likely to divert than a corresponding non-truck 

driver.  It highlights the greater importance of location for truck drivers.  However, when 

one of the other VMS messages is displayed, there is no significant difference in their 

diversion probabilities. 

These findings are important in the context of commercial highway corridors such 

as the Borman Expressway where trucks represent a significant fraction of the total 

traffic.  An important issue that needs to be considered in this regard in the VMS 

advisory and route guidance on-line framework is the strategy adopted for trucks and 

other CVO operations.  Due to the size of trucks, certain routes are infeasible due to 

capacity and geometry constraints.  Also, trucks may be precluded from using certain 
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streets by the traffic controller for safety reasons.  To address this problem, the VMS on-

line framework should be capable of identifying alternate routes that are truck-safe.  

Specific VMS messages should be displayed for truck drivers to inform them of feasible 

alternate routes.  In the Borman Expressway region, two alternative truck-safe routes 

have been identified: US-30 and I-90.  The latter is a toll road and hence may incur some 

resistance as an alternative route.  However, since it is an interstate highway, it can 

potentially absorb relatively large diversions from the Borman.  US-30, another potential 

diversion route has several signalized intersections.  During the on-site survey, truck 

drivers expressed reluctance to divert to this route because of the delays due to signals 

and the effort involved in truck operation at low speeds.  Hence, there are advantages and 

disadvantages to each alternative diversion route. 

4.6.2 Estimation Using the Mail-back Survey Data 

The logit model estimated using the mail-back survey data is presented in Table 

4.13.  All variables were included in the estimation procedure.  Variables determined as 

being insignificant in intermediate models were omitted at the corresponding stages.  The 

variable DRIV has a positive sign implying that regular drivers in the Borman 

Expressway region are more likely to divert.  This is consistent with the survey since 

84% of the survey participants use the Borman Expressway regularly.  Since the survey 

targeted residents and businesses in the Borman Expressway region, respondents are 

familiar with at least one alternate route besides the Borman.  This is reflected in the high 

explanatory power of the variable FAM.  The model also suggests that individuals whose 

average work commute time is more than 30 minutes are more likely to divert under 
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unexpected traffic congestion.  This is because drivers with longer travel times have 

greater opportunities to switch routes.  As before, the variable TRUST is an important 

explanatory variable.  Delay thresholds were investigated in this study by incorporating 

different expected delay ranges in the survey.  They were categorical and were 

represented by a dummy variable (DELAY) at the 10 minute threshold which was the 

only statistically significant one.  The model indicates that drivers are more likely to 

divert if the expected delay is at least 10 minutes.  This is important in the context of 

designing VMS information strategies, implying that it would be better to incorporate a 

delay threshold and display diversion advice only if the threshold is exceeded.  The 

trends in the VMS variables are similar to those in the on-site survey based models.  

There is a small drop in the coefficient values from VMS3 to VMS4, but difference is not 

statistically significant as determined from the pair-t-test.  This suggests that explicit 

information on delays is valuable to drivers.  

4.6.3 Estimation Using the Internet-based Survey Data 

The logit model for driver response under VMS using the Internet-based survey 

data is presented in Table 4.14.  It should be noted here that the number of sample 

observations for this survey is small compared to those for the other two surveys.   In the 

context of the socioeconomic variables, the results are consistent with those obtained in 

the previous models.   A major difference is that the variable TRUST is not a significant 

variable and hence was not included in the model.  The low statistical significance for 

this variable might be to the high level of education of the survey respondents (79% 

received at least one college degree).  Well-educated individuals are likely to be more at 
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ease with technological innovations and hence may exhibit greater compliance with 

VMS-based information.  The trends in the VMSk variables are similar to those observed 

in the on-site and mail-back sample models. 

4.6.4 Combined Data Estimation 

Three survey administration methods were used in this study to elicit relationships 

between the VMS message content and driver response.  As stated earlier, the multiple 

administration approach allows sampling the various segments of the target population 

more effectively.  Therefore, a model combining the data collected from the on-site, mail-

back, and Internet-based surveys was estimated.  It is illustrated in Table 4.15.  The 

results lead to similar conclusions as in the previous models.  Most socioeconomic 

variables were not statistically significant and hence were not included in the model. 
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Figure 4.1 Driver Response Mechanism Under Information Provision 
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Table 4.1  VMS Message Content 

VMS Category Message Content 

1 Qualitative Occurrence of accident only 

2 Qualitative Location of the accident only 

3 Quantitative  Expected delay only 

4 Prescriptive The best detour strategy only 

5 Prescriptive Location of the accident and the best detour strategy 

6 Quantitative Location of the accident and the expected delay 

7 Prescriptive Expected delay and the best detour strategy 

8 Prescriptive Location of the accident, expected delay, and the best 
detour strategy 
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Table 4.2  Socioeconomic Characteristics of the On-site Survey Sample 

 

Attribute Range Non-truck 
Drivers (%) 

Truck 
Drivers (%) 

Aggregate 
(%) 

Gender Male 
Female 
 

63.6 
36.4 

95.7 
4.3 

78.6 
21.4 

Age Group < 20 
20-29 
30-39 
40-49 
50-64 
≥ 65 
 

4.5 
21.2 
28.0 
22.7 
12.9 
10.6 

 

2.6 
26.7 
27.6 
24.1 
15.5 
3.4 

3.6 
23.8 
27.8 
23.4 
14.1 
7.3 

Education Level High School or less 
Some College 
College Graduate 
Post Graduate 
 

18.2 
15.2 
40.2 
26.5 

35.3 
52.6 
12.1 
0.0 

26.2 
32.7 
27.0 
14.1 

Persons in Household 1 
2 
3 
≥ 4 

17.4 
26.5 
25.0 
31.1 

11.2 
22.4 
22.4 
44.0 

14.5 
24.6 
23.8 
37.1 
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Table 4.3  Diversion Characteristics of the On-site Survey Sample 
 

Sample Attributes Frequency (%) 
Regular driver on the Borman Expressway 

Yes 
No 
 

 
50.4 
49.6 

Familiarity with alternate routes 
Very familiar 
Familiar 
Undecided 
Not familiar 
Not familiar at all 
 

 
32.8 
32.0 
13.6 
17.6 
4.0 

Diverting under adverse weather conditions 
Yes 
No 
 

 
73.8 
26.2 

Diverting at night 
Yes  
No 
 

 
65.3 
34.7 

Diverting even when believing that alternate 
route would be longer 

Strongly agree 
Agree 
Undecided 
Disagree 
Strongly disagree 
 

 
 

8.5 
30.2 
32.7 
16.5 
12.1 

Travel time savings under work-related trip 
5-10 min. 
10-30 min. 
30-60 min. 
More than 60 min. 
None 
 

 
22.6 
48.0 
20.6 
3.6 
5.2 

Travel time savings under personal trip 
5-10 min. 
10-30 min. 
30-60 min. 
More than 60 min. 
None 
 

 
9.7 

37.5 
38.3 
10.1 
4.4 

Delay before diverting 
5-10 min. 
10-30 min. 
30-60 min. 
More than 60 min. 
None 

 
12.9 
39.9 
35.9 
10.1 
1.2 
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Table 4.4  Effect of VMS Message Content (On-site Survey Sample) 
 

Relative Willingness to Divert VMS 
Message 

Type 
Message Content 1 

% 
2 
% 

3 
% 

4 
% 

5 
% 

1 Occurrence of accident only 13.7 33.9 26.6 13.3 12.5 
2 Location of the accident only 20.2 33.1 22.6 11.3 12.9 
3 Expected delay only 9.3 12.9 39.5 23.8 14.5 
4 The best detour strategy only 7.7 18.5 30.2 25.0 18.5 

5 Location of the accident and the best detour 
strategy 2.0 4.0 22.6 35.1 36.3 

6 Location of the accident and the expected 
delay 0.8 0.8 19.8 38.3 40.3 

7 Expected delay and the best detour strategy 2.0 2.0 13.7 33.5 48.8 

8 Location of the accident, expected delay, and 
the best detour strategy 1.2 2.0 5.6 19.8 71.4 
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Table 4.5  Socioeconomic Characteristics of the Mail-back Survey Sample 
 

Attribute Range Percentage 
Gender Male 

Female 
 

58.5 
41.5 

Age Group < 20 
20-29 
30-39 
40-49 
50-64 
≥ 65 
 

0.0 
8.5 
18.4 
27.3 
29.9 
15.9 

Education Level High School or less 
Some College 
College Graduate 
Post Graduate 
 

24.7 
30.5 
26.4 
18.4 

Persons in Household 1 
2 
3 
≥ 4 

17.0 
40.1 
14.6 
28.3 
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Table 4.6  Diversion Characteristics of the Mail-back Survey Sample 
 

Sample Attributes Frequency (%) 
Familiar with VMS 

Yes 
No 

 
84.1 
15.9 

Regular driver on the Borman Expressway 
Yes 
No 

 
80.8 
19.2 

Familiarity with alternate routes 
Very familiar 
Familiar 
Undecided 
Not familiar 
Not familiar at all 

 
59.7 
29.9 
4.2 
6.2 
0.0 

Average work commute time  
5-10 min. 
10-30 min. 
30-60 min. 
More than 60 min. 
None 

 
15.5 
34.4 
26.2 
10.0 
13.9 

Diverting under adverse weather conditions 
Yes 
No 

 
89.5 
10.5 

Diverting at night 
Yes  
No 

 
66.9 
33.1 

Diverting even when believing that alternate 
route would be longer 

Strongly agree 
Agree 
Undecided 
Disagree 
Strongly disagree 

 
 

6.3 
32.5 
30.4 
18.6 
12.1 

Travel time savings under work-related trip 
5-10 min. 
10-30 min. 
30-60 min. 
More than 60 min. 
None 

 
35.7 
48.3 
9.4 
0.5 
6.0 

Travel time savings under personal trip 
5-10 min. 
10-30 min. 
30-60 min. 
More than 60 min. 
None 

 
21.5 
53.3 
18.9 
4.7 
1.6 

Delay before diverting 
5-10 min. 
10-30 min. 
30-60 min. 
More than 60 min. 
None 

 
24.7 
57.7 
14.7 
2.4 
0.5 

 



 

 

59

Table 4.7  Effect of VMS Message Content (Mail-back Survey Sample) 

Relative Willingness to Divert VMS 
Message 

Type 
Message Content 1 

% 
2 
% 

3 
% 

4 
% 

5 
% 

1 Occurrence of accident only 20.7 17.1 33.1 18.6 10.5 
2 Location of the accident only 8.7 24.1 34.1 21.0 12.1 
3 Expected delay only 5.0 8.4 32.3 36.5 17.8 
4 The best detour strategy only 5.5 21.0 21.3 31.8 20.5 

5 Location of the accident and the best detour 
strategy 1.3 3.7 21.0 32.0 42.0 

6 Location of the accident and the expected 
delay 1.6 3.1 14.4 35.7 45.1 

7 Expected delay and the best detour strategy 1.6 3.4 13.1 28.9 53.0 

8 Location of the accident, expected delay 
and the best detour strategy 0.5 1.8 4.5 19.4 73.8 
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Table 4.8  Socioeconomic Characteristics of the Internet-based Survey Sample 
 

Attribute Range Percentage 
Gender Male 

Female 
 

73.5 
26.5 

Age Group < 20 
20-29 
30-39 
40-49 
50-64 
≥ 65 
 

14.7 
38.2 
29.4 
11.8 
5.9 
0.0 

Education Level High School or less 
Some College 
College Graduate 
Post Graduate 
 

0.0 
20.6 
55.9 
23.5 

Persons in Household 1 
2 
3 
≥ 4 

5.9 
55.9 
11.8 
26.4 
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Table 4.9  Diversion Characteristics of the Internet-based Survey Sample 

Sample Attributes Frequency (%) 
Familiar with VMS 

Yes 
No 

 
79.4 
20.6 

Regular driver on the Borman Expressway 
Yes 
No 

 
97.1 
2.9 

Familiarity with alternate routes 
Very familiar 
Familiar 
Undecided 
Not familiar 
Not familiar at all 

 
72.7 
24.2 
0.0 
3.1 
0.0 

Average work commute time  
    5-10 min. 

10-30 min. 
30-60 min. 
More than 60 min. 
None 

 
2.9 

50.1 
23.5 
23.5 
0.0 

Diverting under adverse weather conditions 
Yes 
No 

 
82.4 
17.6 

Diverting at night 
Yes  
No 

 
67.6 
32.4 

Diverting even when believing that alternate 
route would be longer 

Strongly agree 
Agree 
Undecided 
Disagree 
Strongly disagree 

 
 

14.7 
32.4 
29.4 
17.6 
5.9 

Travel time savings under work-related trip 
5-10 min. 
10-30 min. 
30-60 min. 
More than 60 min. 
None 

 
35.3 
52.9 
11.7 
0.0 
0.0 

Travel time savings under personal trip 
5-10 min. 
10-30 min. 
30-60 min. 
More than 60 min. 
None 

 
35.3 
41.2 
17.6 
5.9 
0.0 

Delay before diverting 
5-10 min. 
10-30 min. 
30-60 min. 
More than 60 min. 
None 

 
32.3 
47.1 
20.6 
0.0 
0.0 
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Table 4.10  Effect of VMS Message Content (Internet-based Survey Sample) 

Relative Willingness to Divert VMS 
Message 

Type 
Message Content 1 

% 
2 
% 

3 
% 

4 
% 

5 
% 

1 Occurrence of accident only 26.5 17.6 29.4 17.6 8.8 
2 Location of the accident only 5.9 35.3 29.4 23.5 5.9 
3 Expected delay only 2.9 5.9 38.2 44.1 8.8 
4 The best detour strategy only 2.9 20.6 29.4 41.2 5.9 

5 Location of the accident and the best detour 
strategy 0.0 2.9 35.3 32.4 29.4 

6 Location of the accident and the expected 
delay 2.9 2.9 14.7 41.2 38.2 

7 Expected delay and the best detour strategy 2.9 5.9 8.8 38.2 44.1 

8 Location of the accident, expected delay and 
the best detour strategy 0.0 0.0 5.9 29.4 64.7 
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Table 4.11  Explanatory Variables Included in the Logit Models 

Explanatory Variable Mnemonics 
Alternative specific constant ONE 
Sex 
= 1, if male 
= 0, if female 

SEX 

Age group 
= 1, if age ≥ 40 years 
= 0, if age < 40 years  

AGE 

Level of education 
= 1, if education ≤ some college 
= 0, if education ≥ college 

EDU 

Dummy variable for truck drivers 
= 1, if respondent is a truck driver 
= 0, otherwise 

TRUCK 

Regular driver in the Borman Expressway region 
= 1, if Yes 
= 0, if No 

DRIV 

Familiarity with alternate routes 
= 1, if familiar 
= 0, if not familiar 

FAM 

Average commuting travel time to work 
= 1, if travel time ≥ 30 minutes  
= 0, if travel time < 30 minutes 

COMM 

Trust in information provided 
= 1, if high 
= 0, otherwise 

TRUST 

Amount of delay convincing a driver to divert 
= 1, if delay ≥  10 minutes 
= 0, if delay < 10 minutes 

DELAY 

Dummy variables corresponding to each VMS 
message type, k = 2 to 8 VMSk 
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Table 4.12  Logit Models for Driver Response Under VMS Using the On-site Survey 
Data 

 

Model 
General  Truck Drivers Non-truck Drivers Interaction Variable 

Coeff. (t-ratio) Coeff. (t-ratio) Coeff. (t-ratio) Coeff. (t-ratio) 
ONE -1.942 (-10.45) -1.500 (-4.50) -2.586 (-10.52) -2.472 (-12.64) 
SEX 0.433 (3.26) 0.640 (1.62) 0.416 (2.45) 0.266 (1.91) 
AGE -0.458 (-4.17)  -0.238 (-1.53) -0.422 (-3.77) 
EDU -0.308 (-2.74)    
TRUCK    -0.371 (-1.29) 
DRIV 0.207 (1.87) 0.454 (2.50)   
FAM  0.662 (3.22)   
TRUST 0.666 (5.84) 0.516 (3.11) 0.916 (5.61) 0.924 (5.82) 
VMS3 0.656 (3.83)  1.154 (4.48) 1.051 (4.48) 
VMS4 0.886 (5.22) 0.750 (3.39) 1.046 (4.03) 0.937 (5.35) 
VMS5 2.128 (11.78) 1.588 (6.52) 2.671 (10.10) 2.357 (10.68) 
VMS6 2.535 (13.16) 2.312 (8.00) 2.864 (10.60) 2.683 (13.34) 
VMS7 2.775 (13.73) 1.940 (7.40) 3.577 (11.78) 3.442 (12.35) 
VMS8 3.593 (14.27) 3.163 (8.19) 4.057 (11.92) 3.776 (14.51) 
DRIV*TRUCK    0.549 (2.92) 
FAM*TRUCK    0.713 (3.35) 
TRUST*TRUCK    -0.525 (-2.27) 
VMS3*TRUCK    -0.712 (-2.31) 
VMS5*TRUCK    -0.762 (-2.33) 
VMS7*TRUCK    -1.279 (-3.45) 
Sample size 1984 928 1056 1984 
L(0) -1375.20 -643.24 -731.96 -1375.20 
L (ββββ̂ ) -1037.75 -499.73 -519.34 -1009.77 

ρ2 0.245 0.223 0.290 0.266 
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Table 4.13  Logit Model for Driver Response Under VMS Using the Mail-back Survey Data 

Variable Coeff. (t-ratio)  
ONE -1.085 (-6.01) 
EDU -0.148 (-1.69) 
DRIV 0.446 (2.62) 
FAM 0.834 (5.34) 
COMM 0.138 (1.53) 
TRUST 0.298 (3.33) 
DELAY 0.398 (3.46) 
VMS2 0.190 (1.39) 
VMS3 1.100 (7.08) 
VMS4 1.013 (6.52) 
VMS5 2.004 (12.11) 
VMS6 2.408 (13.72) 
VMS7 2.479 (13.96) 
VMS8 3.604 (15.32) 

Sample size = 3048 
L(0) = -2018.98, L(ββββ) = -1583.66 
ρ2 = 0.216 
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Table 4.14 Logit Model for Driver Response Under VMS Using the Internet-based 
Survey Data 

Variable Coeff. (t-ratio)  
ONE -2.033 (-3.51) 
SEX 1.023 (2.73) 
AGE -1.608 (-3.66) 
EDU -1.029 (-2.55) 
COMM 1.509 (3.81) 
DELAY 1.048 (2.94) 
VMS3 1.386 (2.74) 
VMS4 1.075 (2.14) 
VMS5 1.860 (3.58) 
VMS6 2.970 (5.02) 
VMS7 3.205 (5.21) 
VMS8 4.638 (5.36) 

Sample size = 272 
L(0) = -122.81, L(ββββ) = -183.91 
ρ2 = 0.332 
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Table 4.15  Logit Model for Driver Response Under VMS Using the Combined Survey 
(On-site, Mail-back, and Internet-based) Data 

 

Variable Coeff. (t-ratio)  
ONE -1.623 (-14.04) 
SEX 0.123 (1.76) 
DRIV 0.169 (1.54) 
FAM 0.540 (5.25) 
TRUST 0.435 (6.29) 
DELAY 0.311 (3.86) 
VMS3 0.848 (8.25) 
VMS4 0.888 (8.64) 
VMS5 1.938 (17.47) 
VMS6 2.364 (19.75) 
VMS7 2.480 (20.21) 
VMS8 3.472 (21.32) 

Sample size = 5032 
L(0) = -3382.58, L(ββββ) = -2619.04 
ρ2 = 0.225 
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5. DETERMINATION OF OPTIMAL VMS MESSAGES 

 

A key objective of the study is to develop a heuristic procedure for optimizing 

network performance using VMS-based messages that would be both general in its scope 

of application and computationally efficient from a real-time deployment perspective.  In 

order to accomplish this the heuristic procedure needs to possess certain properties.   

First, it has to be simple so that its execution can be kept within bounds imposed by real-

time operational constraints.  Second, it should not impose network specific restrictions 

on the algorithmic logic so as to ensure transferability. Third, it has to be robust so that 

fluctuations in demand and supply can be accounted for.  A rule-based approach was 

adopted to address these issues.  

Computational efficiency can be obtained if the VMS procedure does not introduce 

any expensive computations that need to be done in addition to those in the traditional 

on-line DTA solution procedure discussed in Chapter 2.  The DTA procedure computes 

the optimal path assignment proportions for the user classes in the traffic stream.  The 

VMS heuristic uses these proportions to determine the messages to be displayed 

consistent with driver VMS response attitudes. Two standard assignment objectives are 

used to determine the optimal VMS messages. They are: user equilibrium (UE) and 
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system optimal (SO). While UE represents a reasonable proxy for actual driver behavior, 

the SO objective provides a benchmark for the best possible system performance. Hence, 

the SO objective based VMS solution is the desired one from the traffic controller 

perspective. 

To ensure that the scope of the heuristic is general, it does not make network 

specific assumptions. It uses the driver response and incident clearance prediction models 

for that network.  These models serve as inputs which can be plugged into the heuristic to 

determine the VMS messages under an incident.  The heuristic can hence be ported to 

any network for which driver response models and incident clearance prediction models 

are available.  An advantage of such an approach is that it obviates the need for different 

VMS heuristics for different networks, unlike many existing models which are network 

specific. 

 The solution robustness issue is addressed by using a robust hybrid methodology 

[5] to compute the optimal DTA path assignment proportions. It combines off-line and 

on-line procedures that account for stochasticity in demand and supply conditions. The 

VMS heuristic can use these proportions to determine the messages to be displayed. 

Hence, the robustness of the VMS heuristic depends on the robustness of the procedure 

employed to determine the optimal VMS path assignment proportions. 

5.1 Problem Description 

 A key factor motivating the VMS-based traffic management problem is that the 

current market penetration of in-vehicle navigation systems (IVNS) is considerably less 

than that of VMS. VMS are being extensively deployed in the US to disseminate 
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congestion information, workzone information, and lane closure notification, as well as 

for parking and route guidance. 

 Route guidance through VMS, is however, a recent functional application.  It has 

been  used to address congestion problems for specific network topologies. This study 

aims to develop a general framework which uses VMS to optimize traffic system 

performance.  

5.1.1 Problem Statement 

Given a traffic network G(N,A) with N nodes, A arcs, user class fractions, 

variable message signs at pre-specified locations, a VMS driver diversion response 

model, and an incident clearance time prediction model, the traffic system controller 

seeks to determine the time-dependent VMS messages to be displayed during the horizon 

of interest (typically under incidents) that address some system-wide objectives and are 

consistent with driver VMS response behavior. Implicit in the VMS problem is the usage 

of message content as a control variable to achieve desired diversion rates. Practically, 

the problem consists of determining: (i) the VMS to be activated for message display, (ii) 

the messages to be displayed, and (iii) the frequency at which messages should be 

updated, so that unequipped drivers diverting based on their VMS diversion response 

attitudes satisfy some system-wide objectives of the traffic controller. The user class 

fractions can be based on unequipped and equipped drivers. However, equipped drivers 

may further be categorized into classes such as user equilibrium (UE) objective drivers 

and system optimal (SO) objective drivers. 
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A key difference of the proposed problem from previously addressed VMS 

problems is the explicit consideration of driver diversion response behavior while 

satisfying system controller objectives. Hence, the response attitudes of drivers to the 

displayed VMS is accounted for. 

5.1.2 Issues 

Issue 1: Messages to be displayed 

This is the main objective of the VMS problem.  The issue of determining the 

time-dependent messages to be displayed entails the consideration of the following sub-

issues: 

(i) The type of message to be displayed.  Based on the type of information 

disseminated, VMS messages can be broadly classified as informative 

messages, advisory (descriptive) messages, and route guidance (prescriptive) 

messages.  As discussed in Chapter 4, different message types (see Table 4.1) 

can be used to induce different diversion rates. 

(ii) The content of the message to be displayed. This involves the consideration of 

the actual semantics of the message displayed in terms of the particular choice 

of parameters (qualitative and/or quantitative) that characterize the system 

state and influence driver response. Hence, the message content (see Table 

4.1)  is used as a control variable to enhance the traffic system performance. 

The driver response is determined using the SP survey discussed in Chapter 4.  

Issue 2: VMS to be activated 

Given the network topology and the location of the permanent VMS, messages 

activated at a specific set of locations may have the most beneficial influence on traffic 
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flows vis-a-vis optimizing system performance than at other locations for the given traffic 

conditions.  The current study aims to identify these locations and the messages to be 

displayed on the VMS at these locations.  There may be VMS that do not require 

activation under a given incident scenario.  In such a case, it is important from a 

computational standpoint that unnecessary combinations are not considered so as to 

satisfy the real-time constraints imposed by the problem. 

Issue 3: Placement of portable VMS 

Issue 2 involves the determination of appropriate message display locations to 

optimize system performance.  Based on the specific traffic conditions, there may be 

some paths requiring significant amounts of traffic diversion, but lack a VMS.  These 

paths are potential candidates for deployment of portable VMS.  If certain pre-determined 

thresholds for traffic diversion are exceeded at any location consistently over several 

incident scenarios, a case can be made for installing a permanent VMS at that location. 

Issue 4: Update frequency 

It is important to determine how frequently the messages will have to be updated, 

for two reasons.  First, if the messages are updated too quickly they may not have the 

desired effect in terms of the desired diversion rates, and there may be the further risk of 

drivers perceiving the messages as unreliable because of the frequent changes.  Second, 

the update frequency determines how often the optimal VMS messages are to be 

determined, thereby circumventing periodic computations. 
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5.1.3 Assumptions 

The proposed VMS heuristic is based on certain assumptions which control the 

nature of the solution (path assignment proportions) and consequently the messages to be 

displayed on the VMS.  These assumptions are stated below: 

• The VMS heuristic is deployed only under incident conditions. 

• Driver response models for the messages displayed on the VMS are assumed 

to be available (see Chapter 4). 

• An incident clearance prediction model is assumed to be available (see 

Chapter 3). 

• VMS messages are assumed to affect only unequipped users in the network. It 

is reasonable to assume that equipped users receiving personalized 

information will ignore VMS messages due to their generic nature. 

5.2 Solution Methodology 

5.2.1 VMS-Based Optimal Diversion Rates Heuristic 

The proposed VMS control heuristic addresses the problem by determining 

optimal diversion rates for unequipped drivers under current network conditions. The 

primary objective of the VMS control heuristic is to obtain diversion rates and 

consequently new path assignment proportions for unequipped drivers whose pre-

determined paths (historical paths) include the incident link. These drivers, in the absence 

of any information, follow their fixed pre-determined paths. However, if a VMS is 

present upstream of the incident link it can be used to divert them from these paths by 
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providing routing information that aids incident management. This ensures that drivers do 

not queue upstream of the incident link leading to increased system delays. 

The VMS control heuristic ensures that the VMS are inactive when there is no 

incident/congestion and after the effects of an incident/congestion on the network have 

dissipated. The control heuristic uses the driver diversion response model to determine 

the messages to be displayed from the diversion rates obtained. The display locations are 

determined by comparing diversion rates with threshold activation criteria. Messages are 

updated based on traffic data feedback. The VMS control heuristic consists of three sub-

algorithms that follow a sequential logic to determine: (i) the VMS that should be 

activated, (ii) the messages to be displayed on the active VMS, and (iii) the frequency 

with which the VMS messages should be updated. The sub-algorithms are as follows:  

5.2.2 The Activation Algorithm 

The Activation algorithm determines the VMS to be activated for message display 

(by the Message Display algorithm) through a set of heuristic rules. These rules activate 

only those VMS for which the required diversion rates to improve system performance 

exceed a pre-specified threshold. This implicitly ensures that the sensitivity of the 

network performance vis-à-vis the diversion achieved by the identified VMS is 

significant. It eliminates the need to activate VMS which do not significantly influence 

system performance. This aspect is computationally attractive from an operational 

standpoint.  

The algorithm lists all origin-destination (O-D) pairs in the network as candidates 

for determining incident-affected paths. From this set the K most used paths (in terms of 
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path flows) between each O-D pair that include the incident link are identified. Any VMS 

on these paths are activated if they satisfy either of the following activation criteria: (i) 

VMS is within R minutes of incident link, or (ii) VMS is within Y miles of the incident, 

where R and Y are pre-determined parameters specific to that network.  

The K most used paths that include the incident link are obtained using the 

immediate past data on the network state. R is determined from the time-dependent path 

travel times and is a more robust filter criteria than Y because it better reflects the 

ambient traffic conditions. It could, for example, be a percentage of the path travel time 

from the origin node to the upstream node of the incident-affected link, or a measure 

based on the predicted incident clearance time. It can be time-dependent to reflect 

improvements in the network performance due to the VMS strategy adopted in previous 

intervals, and hence enhances the efficiency of the VMS control heuristic. While the use 

of Y is less meaningful in congested situations, it can be a useful threshold in the absence 

of time-dependent network data. Besides, it is useful when addressing incidents involving 

hazardous material spills which require the quarantining of a region.  

5.2.3 The Message Display Algorithm (MDA) 

The Message Display Algorithm, illustrated in Figure 5.1, determines the optimal 

messages to be displayed on the VMS selected by the Activation algorithm using one of 

two system controller objectives, user equilibrium (UE) or system optimal (SO) flow 

patterns. A multiple user classes deterministic DTA algorithm [3] is used to determine the 

optimal path assignment proportions under the incident (case 1), based on the objective 

(SO or UE), for computing the desired diversion rates. The deterministic DTA model 
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calculates the optimal path assignment proportions in a network with multiple user 

classes over a planning horizon of interest. It takes as input deterministic O-D desires and 

an initial path set for all drivers and determines path assignment proportions that optimize 

system performance. In this case, the unequipped drivers are assumed to be UE (SO) 

users for the UE (SO) objective. The optimal assignments are also computed using the 

actual user class fractions (case 2). The optimal path assignment proportions from the two 

scenarios are used to determine the messages to be displayed on the VMS. This is done 

by comparing the path assignment proportions from case 2 with the desired path 

assignment proportions from case 1. If the proportions are larger in case 2 compared to 

case 1 for the incident-affected VMS paths, unequipped users could be induced to switch 

from those paths through appropriate VMS messages. Hence, the desired objective is to 

seek the network flow pattern under case 1. The percentage diversion of unequipped 

drivers from the VMS links represents the desired diversion rates. However, a single 

VMS may lie on paths requiring different diversion rates. Since only one message can be 

displayed on the VMS for all such paths, a combined measure of these diversion rates has 

to be considered for operational purposes. From the limited experiments conducted in this 

study, an average of these diversion rates seems to represent a good proxy for the desired 

diversion rate. The diversion rate from the VMS driver diversion response model that is 

closest to the desired diversion rate for a particular VMS is used to determine the 

message to be displayed. Figure 5.1 illustrates the algorithm for the UE objective. The 

SO objective solution can be obtained by substituting UE by SO in the figure. Here, T 

denotes the length of the planning horizon. 
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5.2.4 The Update Frequency Algorithm 

The displayed VMS messages need to be updated over time to reflect changes in 

the incident situation and/or traffic flow conditions. For example, progress in the incident 

clearance may enable increased capacity on the incident link leading to an increased 

ability to route traffic through the incident area. Similarly, improved traffic conditions in 

the vicinity of the incident due to prior VMS messages may require the updating of the 

messages displayed. The Update Frequency algorithm determines when such updates 

should occur, that is when to invoke the Message Display algorithm. It does so by 

monitoring at regular intervals the incident clearance situation and the flow conditions in 

the incident vicinity. The length of the monitoring interval depends on the specific 

network and incident situation. Hence, the Update Frequency algorithm can aid the 

efficiency of the VMS control heuristic and its effectiveness vis-à-vis system 

performance. The logic of the Update Frequency algorithm is as follows: 

Incident Link: If the incident link capacity in the monitoring interval τ is α% different 

from that of interval (τ-1), where α is a pre-set time-dependent threshold, the MDA is 

invoked. 

Ambient Traffic Conditions: If the incident link conditions do not warrant an update, the 

ambient traffic conditions in its vicinity are analyzed. This is done by computing the 

updated instantaneous path travel times on the K most used paths from each origin node 

to the incident link upstream node. If the difference in the path travel times for β number 

of these paths in two successive monitoring intervals exceeds γ%, MDA is invoked. Here, 

β and γ are pre-specified thresholds.  
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If neither of these two update criteria trigger an update, the current messages are 

retained. Incident clearance time prediction models (see Chapter 3) are used to estimate 

the remaining incident clearance time and project when the messages are likely to be 

deactivated. 

5.3 VMS Control Heuristic Implementation 

The proposed VMS control heuristic is implemented using a hybrid framework 

[5] consisting of off-line and on-line components. The off-line component addresses the 

computationally intensive components and the on-line component uses an efficient 

rolling horizon implementation that circumvents future state predictions. The rolling 

horizon implementation is ideal from the perspective of the on-line deployment [3] 

because of the computational time savings obtained by using a truncated planning 

horizon.  

Off-line component: The computationally intensive off-line component determines the 

time-dependent path assignment proportions using a deterministic DTA algorithm for 

several probable incident scenarios and a mean O-D matrix. These proportions are stored 

for use by the on-line component to determine the optimal diversion rates in a 

computationally efficient manner. 

On-line component: Figure 5.2 illustrates the rolling horizon implementation of the VMS 

control heuristic. It is a stage-based approach illustrating the on-line nature of the VMS 

control heuristic. A stage is a truncated portion of the planning horizon, implying lesser 

computational effort. The planning horizon is divided into several stages. If an incident 

and/or high congestion is detected in the current stage the VMS control heuristic 

described earlier is executed to determine optimal time-dependent path assignment 
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proportions and messages to be displayed in the next stage. In the absence of incidents 

and/or high congestion the deterministic DTA model is used to determine the optimal 

path assignment proportions. The current stage is incremented and the messages 

determined in the previous stage are implemented for a roll period, which is a sub-

interval of a stage. The network data collected from detectors is used to repeat this 

process in the next stage. 

Figure 5.3 illustrates a typical cycle of the VMS control heuristic using the rolling 

horizon framework. The flow of logic in the figure is for the stage i in which the incident 

is first detected. It is used to determine the messages to be implemented in stage i+1. The 

inputs are the predicted O-D desires of drivers departing in this stage and the historical 

paths for the unequipped drivers. The VMS messages are assumed to influence only the 

unequipped drivers. The Activation algorithm determines the VMS locations for 

activation. The Message Display Algorithm determines the message to be displayed by 

mapping diversion rates onto actual messages by mapping diversion rates onto actual 

messages by through a driver diversion response model.  

Figure 5.4 illustrates the execution of the VMS control heuristic within any stage 

subsequent to the stage in which the incident is detected. The Update Frequency 

algorithm is executed for each monitoring interval and is used for updating messages 

within the current stage using the update criteria stated earlier. The monitoring interval is 

a sub-interval of the current roll period. If neither of the update criteria are satisfied the 

messages remain unchanged.  

The control heuristic is repeated until all the VMS are deactivated implying that 

the adverse effects of the incident on the network have dissipated. A computationally 
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attractive feature of this approach is that the MDA is activated only when deemed 

necessary by the Update Frequency algorithm. Additionally the parameters in the Update 

Frequency algorithm can be adjusted to vary the frequency of MDA activation to suit the 

resources of the traffic controller. 
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Figure 5.1  Message Display Algorithm 
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Figure 5.2 Rolling Horizon Implementation 
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Figure 5.3   The Rolling Horizon Implementation of the VMS Control Heuristic in the 
Stage that the Incident is First Detected (i) 
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Figure 5.4   The Rolling Horizon Implementation of the VMS Control Heuristic in Stages 
Following the Detection of the Incident 
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6. CONCLUSIONS 

 

This study focuses on the development of an on-line route advisory and guidance 

framework using VMS.  This chapter provides some concluding remarks and 

recommendations.  

6.1 General Comments 

A solution methodology for optimizing network performance using VMS 

message content as the primary control variable was developed.  The key difference of 

the proposed methodology from previous VMS-based incident management approaches 

is its consistency with driver VMS response behavior.  Given driver response to VMS 

information and incident duration prediction models, the control strategy is capable of 

determining the VMS signs to be activated, the VMS message to be displayed, and the 

message update frequency.  This makes the control process more realistic from the 

perspective of users and is especially useful under on-line route-guidance where the 

realism of the adopted strategy is critical to system performance.  An important 

characteristic of this methodology is that it is general in its scope of application.  It can be 

ported to any network for which drivers’ VMS response models and incident clearance 

time prediction models are available.  The framework is general because it does not make 

any network specific assumption beyond taking into consideration the drivers’ response 
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model for user in that region and incident clearance time prediction models.  The solution 

methodology is also computationally efficient from a real-time deployment perspective. 

Different SP survey administration methods were adopted in this study: (i) on-

site, (ii) mail-back survey, and (iii) Internet-based survey.  The multiple administration 

method was adopted to more effectively sample the target population.  The on-site survey 

targeted commuters, infrequent Borman travelers, and truck drivers on the Borman 

Expressway.  The mail-back and Internet-based surveys were used to target residents and 

businesses in the Borman region.  Hence, the combined survey sample is representative 

of the different groups of individuals using the Borman Expressway.  Although the 

Internet-based survey offered some advantages, the response rate was very low.  

However, as Internet usage becomes more commonplace, the various advantages of 

Internet-based surveys such as greater target audience access, greater data automation, 

etc., will increase their attractiveness vis-à-vis driver behavior sampling.  Since the on-

line VMS route advisory and guidance framework can be ported to any traffic network, 

Internet-based surveys represent a long-term cost-effective approach for INDOT for 

driver behavior sampling in other traffic regions in the state. 

The commonly used SP approach has a number of well-understood limitations.  

First, the SP responses may not satisfactorily reflect actual behavior.  Second, in the 

context of VMS driver response, SP surveys can be lengthy (to address the multiple 

actual scenarios possible).  However, the current sparsity in VMS response field data 

suggests SP methodology as an effective tool to address driver behavior under a variety 
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of scenarios.  The SP study provides some important insights on VMS survey design and 

drivers attitudes for on-line traffic operations.  

An important contribution of this work is the insights it provides for diversion 

behavior under the influence of different VMS message contents.  The strong correlation 

between VMS message types and driver response suggests message content as an 

important control variable for improving system performance without compromising the 

integrity of the information provided.  Significant differences were found in the attitudes 

of truck and non-truck drivers.  This is important for the use of VMS-based information 

systems to influence network performance in commercial corridors such as the Borman 

Expressway region where trucks represent a significant percentage of the traffic.  The use 

of a Likert scale in the SP survey vis-à-vis VMS message content enables a finer 

resolution in understanding the differences between driver response to various message 

types.  A shortcoming of using generic variables is illustrated by the perceived relative 

values of expected delay and location.  While expected delays are perceivable in terms of 

magnitude without the need for specific scenarios in SP surveys, the value of location is 

perceivable only in actual situations or specifically constructed SP scenarios for a 

particular traffic network.  Hence, the incident location, in a generic sense, was not found 

to be significant in this study, though it is in the real world.  

Data from the Hoosier Helper logs was used to update existing incident clearance 

time prediction models.  The models estimated were developed using multi-period data, 

which leads to a more robust prediction of incident clearance time.  Variables describing 

incident severity, the lateral location of the incident, and weather conditions during the 
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clean-up operation have significant explanatory power.  More refined models in terms of 

weather data were developed, compared to existing models.  Also, the updated models 

include variables to reflect incident severity.  Accurate prediction of incident duration is 

critical in the context of ATIS because it can aid user confidence vis-à-vis traffic 

information provision. 

6.2 Recommendations 

As stated in Chapter 4, RP and SP are the two basic approaches of data collection 

used to model route choice behavior.  Most studies in this area tend to rely on SP 

methods.  This is because of the current lack of adequate field data on driver behavior 

under different VMS messages.  However, after the Borman Expressway VMS-based 

information system is operational, the system can be used to collect field data to estimate 

diversion prediction models under a specific VMS message type.  

The current SP diversion prediction models are static.  In other words, they do not 

take into account situational factors (e.g. current network conditions, current weather 

conditions, time of day) that may change with time.  They capture the effect of only static 

variables (such as socioeconomic variables) on the propensity to divert.  They may at best 

form part of a larger framework of models that incorporate dynamic variables from actual 

field data.  In addition, an “after” study, which represents driver surveys after drivers 

have sufficient experience the Borman VMS system, will aid in further calibrating the 

VMS driver response models developed in this study.  They can be used to reflect 

changing driver response attitudes based on their experience with the VMS-based 

information.  This is important because driver attitudes can change significantly based on 
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the perceived value of the information provided.  Therefore, field tests and “after” 

surveys represent should be conducted in the future.  

6.3 Future Work 

Future work will focus on extensive testing of different incident scenarios, 

congestion levels, path assignment strategies, and user class fractions on the Borman 

network to obtain insights on the performance and robustness of the VMS heuristic. 

Experiments will be conducted on other networks to analyze the scope and generality of 

the procedure. Based on the results from the experiments, recommendations will be made 

for the on-line deployment of the VMS heuristic as part of an ATMS framework to 

automate the determination of the optimal VMS messages. 
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A Survey of Driver Attitudes Towards the Content of  
Variable Message Signs  

 
Joint Transportation Research Program 

 

 
 

Part I: About Yourself 
 

1. Gender:  � Male   � Female 

2. What is your age group? 
 �  Less than 20 years � 20-29 years  � 30-39 years 
  �  40-49 years  � 50-64 years  � 65 or older 

3. What is the highest level of education you have completed? 
 � High school or less � Some college 
 � College graduate � Postgraduate 

4. How many persons including yourself live in your household? _______ persons 

 
Part II: Your Attitudes and Preferences 

 
The Indiana Department of Transportation is currently installing variable message signs along a sixteen-
mile segment of interstates 80 and 94 (I-80/94) in northwestern Indiana, better known as the Borman 
Expressway.  We are interested in hearing your opinion about how these signs might influence your 
driving. 
 
1.  Are you familiar with variable message signs? 
� Yes  � No 
 
2. Are you a regular driver in the Borman Expressway region?  
� Yes  � No            [If answer is ‘No’, proceed to question number 4] 
 
3. How familiar are you with alternate routes besides your regular route? 
� Very familiar  � Familiar � Undecided � Not familiar � Not familiar at all 
 
4.  What is your average work commute trip time?   
� 5-10 minutes  � 10-30 minutes      � 30-60 minutes      � More than 60 minutes  � None 
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5. If traffic congestion exists, a variable message sign may suggest you to take an alternate route.  Would 
you consider diverting to the suggested alternate route if: 

Adverse weather conditions are present? � Yes  � No 
                                         It is nighttime? � Yes  � No 

 
6. Would you take a suggested alternate route if you believe that it would be longer than your current 
route? 
� Strongly agree  � Agree  � Undecided � Disagree � Strongly disagree 
 
7. If you are on a work related trip, what travel time savings on the alternate route will convince you to 
divert? 
� 5-10 minutes  � 10-30 minutes      � 30-60 minutes      � More than 60 minutes  � None 
 
8. If you are on a personal trip, what travel time savings on the alternate route will convince you to divert? 
� 5-10 minutes  � 10-30 minutes      � 30-60 minutes      � More than 60 minutes  � None 
 
9. If an accident occurs on your current route, what expected delay on the route will convince you to divert? 
� 5-10 minutes  � 10-30 minutes      � 30-60 minutes      � More than 60 minutes  � None 
 
10. Do you prefer freeway travel, if available? 
� Always  � Sometimes  � Does not matter  � Never 
 
11. Do you consider the neighborhood of your travel route when planning your regular commute? 
� Always  � Sometimes  � Does not matter  � Never 
 
12. When an accident occurs, a variable message sign can display information on its occurrence, location, 
duration, and/or detour strategies (route advisory).  If an accident occurs ahead, indicate your willingness to 
divert to an alternate route if the variable message sign indicates: 
 
 

Location of the accident and the expected delay. 5 4 3 2 1 
Location of the accident and the best detour strategy. 5 4 3 2 1 
Occurrence of accident only. 5 4 3 2 1 
Expected delay and the best detour strategy. 5 4 3 2 1 
Location of the accident only. 5 4 3 2 1 
Expected delay only. 5 4 3 2 1 
Location of the accident, expected delay and the best detour strategy. 5 4 3 2 1 
The best detour strategy only. 5 4 3 2 1 

 
13. Please provide us with any comments you may have on variable message signs and what messages 
might be useful for you (optional): 
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