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Executive Summary

Increased urban sprawl and increased vehicular traffic have resulted in an increased

number of traffic fatalities, the majority of which occur near intersections. According to

the National Highway Safety Administration, one out of eight fatalities occurring at

intersections is a pedestrian. An intelligent, real-time system capable of predicting

situations leading to accidents or near misses will be very useful to improve the safety of

pedestrians as well as vehicles. This project investigates the prediction of such situations

using current traffic conditions and computer vision techniques. An intelligent system

may gather and analyze such data in a scene (e.g., vehicle and pedestrian positions,

trajectories, velocities, etc.) and provide necessary warnings. The current work focuses

on the monitoring aspect of the project. Certain solutions are proposed and issues with

the current implementation are highlighted. The cost of the proposed system is low and

certain operational characteristics are presented.
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Chapter 1   Introduction

An intelligent system using computer vision techniques to monitor intersections and

predict intersection collisions is proposed. The input to the system consists of grayscale

image sequences of the traffic scene to be monitored. The first step in recognition is

separating the background from the foreground. Traditional computer vision techniques

involve using a fixed non-adaptive background image subtraction which is however not

suitable for outdoor images owing to changes in illumination and lighting conditions.

Standard adaptive background estimation schemes involve averaging the scene over time,

which results in an approximate representation of the current scene except for the places

where there is motion. This method works well for cases where the objects are

continuously in motion and the majority of the background is visible most of the time.

However, it does not handle situations where the objects are moving slowly, the

background is covered for longer durations, etc. making it unsuitable for the present

application. An approach similar to the Stauffer et al. [6] is used for background

estimation. This method uses a mixture of Gaussian models to estimate the background.

This method is very robust to scene changes and recovers very quickly when the

background changes rapidly.

Once the background is separated from the foreground, the individual regions in the

foreground image are extracted and a minimum bounding rectangle is computed for each.

Oriented boxes are chosen as opposed to simple bounding rectangles due to the closer fit

these boxes can provide as opposed to the latter type. These bounding boxes are used for

the tracking and the classification of blobs in the image sequence. Several experimental

results are presented in this report.
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System Description

Figure 1 shows an outline of the system:

Figure 1. Outline of the system.

The input to the system consists of a sequence of images taken from the scene to be

monitored. For the experimental setup, the image sequences are obtained from a VCR.

Each image is smoothed with a Gaussian filter to remove any noise and then passed on to

the Background Estimation Module. In this module, the new background is generated

using a Gaussian Mixture model for each pixel in the image (explained in the following
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sections). The estimated background is then passed on to the Image Processing Module.

The current image is subtracted from the estimated background image and then binarized.

This is then passed on to the Blob Extraction Module where the individual regions in the

image are extracted using a two-pass connected region extraction. The statistics for each

blob (such as area, position, length, elongation, bounding box, and velocity) are

computed.  After filtering spurious blobs, the remaining blobs are passed on to the next

stage wherein the oriented bounding boxes are computed using principal component

analysis. Then, the blobs are passed on to the tracking and classification modules.
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Chapter 2    Background Estimation

Motivation

Traditional background estimation methods use a fixed non-adaptive background model.

Every new image is subtracted from the background image to obtain the foreground. This

method is not suitable for outdoor images owing to its incapability to handle changing

lighting conditions, shadows, etc.

Other, more robust methods of background estimation include Kalman Filtering,

Adaptive Gaussian modeling of the entire image, averaging the image over time, etc.

Rosin et al. [3] use adaptive background by computing the median images over time. One

other method is inter-frame differencing between a set of three images. This method is

very fast, however it suffers from the problem of ‘ghosts’ consisting of trails behind the

moving objects.  A more robust method is the Pfinder [9] that uses a single Gaussian to

cluster pixels in the image.

Time averaging of background images is robust and provides an approximate

representation of the scene except for the places where the objects have moved. This

method is quite robust in handling changes in lighting and illumination. A typical

approximated background with the corresponding difference image is as shown below.

Figure 2. Approximate background of a highway scene (left) with its difference image (right).
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However, this method requires the objects in the scene to be continuously in motion and

does poorly in cases where the objects are slow-moving and when majority of the

background gets covered. This method also cannot handle bimodal backgrounds, and

recovers slowly when the background is uncovered—resulting in ‘ghosts’ behind the

moving vehicle. In addition,  this method assumes a fixed threshold throughout the entire

image. A typical example of the ghosting effect is shown in Figure 3.

Figure 3.  Typical traffic scene with ghosts behind cars (Foreground

in black and background in white).

A typical grayscale background image is shown in Figure 4.

              

                            Figure 4. Grayscale image where the ghost-effect of the bus can be seen.
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One of the main problems with the ‘ghosts’ occurs when there is a platoon of slow-

moving vehicles. In such cases, there is the possibility that all the vehicles will be merged

into one long vehicle. This causes tracking errors and possibly incorrect trajectory

generation. To overcome these problems, the Gaussian Mixture Models approach used by

Stauffer et al. [6] is implemented. The method consists of modeling a pixel value as a

mixture of Gaussian distributions rather than a single Gaussian distribution. Based on the

persistence and variance of each Gaussian mixture, the Gaussian(s) corresponding to the

background color are determined. Those that do not fit into the background distribution

are classified as foreground. This system adapts very robustly to lighting changes, slow

moving objects, cluttered scenes, etc. Slow moving objects will take longer to be

absorbed into the background owing to their higher variances. This method can also learn

repetitive variations and maintains a model of the background distribution even when it is

temporarily replaced by another distribution. As a result, recovery is very fast when the

background is uncovered again.

Method

To account for the variation in the lighting intensity and the other changes that occur at a

particular pixel, a mixture of adaptive Gaussians is used to approximate the process. Each

Gaussian distribution is updated in every frame. The distributions corresponding to the

background are isolated after the Gaussian distribution update in every frame. The

distributions with least variance and maximum weight will be isolated as the background

while the remaining ones correspond to the foreground. The values of a particular pixel

over time are considered as “pixel process”. A “pixel process” is thus just intensities of

the pixel over time. These in our case are grayscale values over time. The recent history

of pixel intensity is modeled as K Gaussian distributions. The probability that a pixel of

particular Gaussian distribution will occur at a time is determined by

∑
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∑=
k

i
titittit XXP

1
,,, ),,(*)( µηω  



8

where k  is the number of distributions,  ωi,t is an estimate of the weight of the ith

Gaussian in the mixture at time t, µi,t and Σi,t are the mean and covariance matrix of the ith

distribution at time t¸ and where η is a Gaussian probability density function. This

function η is given by:

k is determined by the available memory and the computational speed of the hardware.

For computational reasons only the values along the main diagonal of the covariance

matrix are used for computation, which in our case are scalar values.

Thus, a mixture of Gaussian distributions characterizes the distribution of recently

observed pixel values in the scene. Every new pixel value will be matched against the

existing distributions until a match is found. A match is defined as the pixel value within

2.5 standard deviations of a distribution. This value is just a threshold and can be altered

depending on the image scenes.

When none of the distributions match, the least probable distribution is replaced by the

new distribution and the mean is initialized to the pixel value of the new pixel. The

variance is initialized to an initially high value and the weight to a very low value.

The prior weights of all the distributions are then updated as

)()1( ,1,, tktktk Mαωαω +−= −
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The learning rate parameter determines the speed with which the parameters in a

distribution will be altered and thus determines the speed with which the background

model will be learned.

The µ and σ parameters remain unchanged for the unmatched distributions while they are

updated as shown below for the matched distribution:
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is the learning factor for updating the current distributions.

Background Model Estimation

As the parameters for the pixel change continuously, the background model is determined

by identifying the Gaussians having maximum weights, or supporting evidence and least

variance. For example, a stationary persistent object in the image would have least

variance and accumulate higher weights with time. On the other hand, when a new object

or a moving object occludes the background, this would result in either creation of a new

distribution with a very high variance and very low weight or in increased variance in the

existing distribution. That is, the models with a high ω/σ value correspond to the

background.

To model the above, the Gaussian distributions are arranged in the increasing order of

ω/σ in an array with the least probable ones towards the end and the most probable

distributions towards the beginning. Thus, when a distribution is re-estimated, the

Gaussians have to be sorted from this distribution in the beginning. The least probable

distributions will move towards the end of the list and can be removed from the end and

replaced with a new distribution when needed.
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Thus, the first Β distributions are considered as the background where

).(minarg
1

∑
=

>=
b

k
kb TB ω  

T is a threshold which gives the measure of the minimum portion of the data to be

included as the background. Thus, a higher value of T results in more colors to be

included in the background, while a low value results in very few colors included in the

background.

One of the significant advantages of the above-described method is that even when an

object is temporarily allowed to become part of the background, a background model of

the previous background is maintained. Thus, when the object (e.g., a stationary vehicle)

begins to move again and the background is uncovered, recovery is very fast. This

completely eliminates the problem of ‘ghosts.’ Another advantage of this method is that

the system learns the repetitive motions or noise in the image sequence and adapts it to

the background model. An example of an image obtained using this method is shown in

Figure 5.

            Figure 5. Image obtained from method (black-background and white-foreground)
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Chapter 3    Image Processing and Blob Extraction

Once the background is estimated, the current image is subtracted from the background to

obtain the foreground. The resulting difference image is then binarized using a threshold

determined most suitable for the image sequence and then subjected to erosion and

dilation. Then various regions in the foreground are extracted using a two-pass connected

region extraction method. The regions or blobs correspond to the individual objects in the

image. Various statistics such as area of the blob, zero-, first-, and second-order

moments, elongation, perimeter, length, etc. are also computed for each blob. Spurious

blobs such as those due to continuous motion of the entire image (which occur at the

corners of the image) are filtered out and so are the blobs which are really small in size.

The remaining blobs are then passed on to the next stage where the oriented bounding

boxes are computed.

The reason for using oriented bounding boxes is to obtain closer fit to elongated objects

moving along a direction not perpendicular to the optical axis. This holds true especially

in the case of vehicles. Simple bounding boxes will not provide a good fit to the vehicles,

which might result in tracking errors. The oriented boxes provide the position of the blob.

The blobs along with the oriented boxes are passed on to the next stage, namely tracking.
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Oriented Bounding Box Computation

The oriented boxes are computed using the covariance matrix of the blob. The covariance

matrix of each blob is given by:
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The above can be calculated using the zero-, first-, and second-order moments of the

blob. Once the covariance matrix is computed, principal component analysis is used to

obtain the eigenvectors. Eigenspace representation gives the first two principal axes of

the space represented by M. Eigenvalues represent the importance of these axes.

Diagonalising M gives

∆∆= ..DM t  

where ∆ represents the space change matrix and D the diagonal matrix. We also assume

[v1, v2] = ∆ and 
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v2

v1

Oriented box

If e1 > e2 then we choose e1 as the first principal axis with vector v1 and elongation 2.e1.

The angle made by the principal axis to the x-y image coordinate can be computed from

the vector. Similarly, e2 is chosen as the second principal axis with vector v2 and

elongation 2.e2.  The result of applying principal component analysis is shown in Figure

6.

     Figure 6. Oriented box with its principal axes.
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Chapter 4    Tracking

Tracking of the objects in the scene is done at the blobs level. The blobs obtained after

image subtraction and after estimation of their oriented boxes are passed on to the

tracking phase. Tracking is done by obtaining the association of the new blobs obtained

from the ith frame with those in the (i-1)th frame. This is done based on the Masoud’s

pedestrian tracker [2]. The relation between the blobs in the two frames is expressed by

an undirected, many-to-many connected bipartite graph. This is because with each new

frame, the blobs can split, merge, appear or disappear. Thus, tracking is equivalent to

computing the new relations between the blobs on either side of the graph. To simplify

graph computation, we do not consider graphs with vertices having more than degree

one. That is, from one frame to another, a blob may not participate in both a splitting and

merge operation. This is known as the parent structure constraint.

To reduce the exponentially large number of possible graphs, we pose another constraint

known as the locality constraint. According to this constraint, vertices or blobs can be

connected only if their corresponding blobs have a bounding box overlap area which is at

least half the size of the bounding box of the smaller blob. These two constraints reduce

the possible number of graphs significantly. The second constraint is based on the

assumption that a given blob cannot be too far away from its current position in the next

frame considering the speed of the blobs in the image.

A cost function is used to compute the optimum graph. The optimum graph is the least

cost graph. The cost function penalizes graphs in which blob sizes change significantly.

For a perfect match, the blob sizes remain the same. The optimum graph is computed

iteratively by computing the least cost graph.

The algorithm works by considering two blobs that satisfy the locality constraint and then

checking if they violate the parent constraint. If they don’t, they are just related to each

other. On the other hand, if they do (a parent blob might be participating in a splitting as
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well as a merge operation), then the least cost graph satisfying the parent constraint is

computed from all the associated blobs to the current parent. The resulting graph will be

an optimal graph. At the end of this stage, the velocities of the blobs are computed.

Computation of the overlap area of the bounding boxes between two blobs is tricky in

this case because the rectangles are not simple rectangles and are oriented with respect to

each other. There are several different ways in which overlap can occur. Computation of

the overlap is done in two steps, the first step being a crude step mainly to eliminate the

non-overlapping blobs and the second being a more computational stage where the actual

computation of overlap is done. The steps for overlap computation are outlined in the

following subsection.

Bounding Box Overlap

In the first step, the overlap is computed by taking the extreme points of the two

bounding boxes and computing the overlap between the bounding rectangles formed

from the extreme points. This gives a very rough estimate of the overlap between the two

boxes. However, this helps to eliminate a lot of unrelated blobs and save computation.

The computation is done as illustrated in Figure 7.

Figure 7. Oriented box overlap computation—first step.

Bounding

rectangle of obox2

Bounding

rectangle of obox1

       Obox1
Obox 2
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The blobs having a bounding box overlap of at least half the minimum bounding box of

the two are passed on to the next stage of computation. This size is just a threshold and

can be perturbed based on the speed with which objects move in the scene.

In the next stage, the two oriented bounding rectangles are considered as polygons. There

can be different cases of overlap based on the number of vertices of one rectangle inside

the other namely, zero, one, two, three or all points inside. The total overlap area is

computed by considering each rectangle inside the other and computing the number of

vertices of one inside the other. Considering each vertex of a rectangle and computing the

number of crossovers with the other rectangle does this. If the number of crossovers is

even, then the vertex lies outside the other rectangle; otherwise, it is inside. Then, using

the number of points that lie inside, the intersection points of the two rectangles are

computed. The area is computed by computing the area of the polygon formed by the

inside points and the intersecting points. This is repeated by considering the second

rectangle inside the first. The total overlap area is the sum of the two overlap areas.

Figure 8. Computation of the number of inside points (Crossover

computed by drawing a semi-infinite line from a vertex and computing

the number of lines crossed. An odd number of crossings means the point

is inside. Diamond indicates a crossing).
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Chapter 5    Classification

Once the relation between the blobs is obtained, the blobs are classified as pedestrians or

vehicles. We accomplish classification by using the principal axis angles obtained from

the eigenvectors estimated previously during the computation of the oriented boxes.

Pedestrians appear as tall thin blobs. So generally, the main principal axis angle of a

pedestrian blob has an angle 90° to the x-axis. On the other hand, vehicles appear as

elongated blobs. Hence, the main principal axis angle is horizontal or parallel to the x-

axis. This along with certain other features is used for the classification of pedestrians

and vehicles. This classification is very fast and generally provides acceptable results, but

is not without faults. For example, the classification fails when there is a group of

pedestrians walking close to each other. Thus, there are certain issues that need to be

addressed. The results of the tracking and the Stauffer’s background method are shown in

the following pages.
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Chapter 6    Results

Tracking examples are shown in Figure 9 using the Stauffer method. The pictures are not

from consecutive scenes. The numbers are just to indicate relation between the previous

and current blob.

 

                                        

                                                        Figure 9. Tracking results.
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Classification examples are shown in Figure 10.

 

                                                Figure 10. Classification results.

Some bad tracking results due to failures of the adaptive background averaging method

are shown in Figure 11.

    

              Figure 11. Unsuccessful tracking results.

As can be seen from the above picture, the computed vehicle size is bigger than the actual

vehicle owing to the ‘ghost’ effect. One may also observe vehicles found in the empty

region where there was a very intense ‘ghost’ effect as a result of which the background

is misclassified as a part of the foreground.
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                                               Figure 12. Misclassification example.

In Figure 12, we include an example of occasional misclassification owing to problems

with segmentation and shadows. In this case, the pedestrian with his/her shadow is being

misclassified as a pedestrian and a vehicle.

Figure 11

Issues

One of the main issues that remain to be solved is segmentation. Owing to inaccuracies in

segmentation, a single large vehicle is sometimes misclassified as two or more vehicles.

Other problems include misclassification of vehicles, pedestrians, and shadows as shown

in some examples above. There is also a problem with tracking that needs to be resolved.

This can be handled by using predictive filtering like Kalman filters, etc. The Stauffer

method of background estimation, though very fast, is computationally expensive. As a

result, the images are subsampled four times and images of size 140x160 are used for the

purpose of analyzing the scene to obtain frame rates. The problem with reducing the

image size is obvious in that important information can be lost sometimes.
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Chapter 7    Future Work

Segmentation is currently one of the biggest problems that has to be addressed. As the

images are dealt with only at the low blob level, a lot of information is lost. A better way

to approach the problem would be to work at higher image levels for classification and

segmentation purposes. The present background estimation, while capable of producing a

good estimate of the background and being very robust, is computationally expensive. As

the entire image needs to be analyzed to estimate the background, the computation of

background increases dramatically with the size of the image. So images are subsampled

from 480 x 512 pixels to 140 x 160 pixels to speed computation. Again, the

computational time increases as the number of Gaussian kernels increases. As a result

(even if higher number of kernels would provide better approximation), we use six

kernels at present. This issue could be addressed by using faster hardware than we have at

present. Better background estimates can be obtained by using color images rather than

grayscale.

Classification, at present, suffers from problems owing to shadows and segmentation.

Inaccuracy in classification and occasional tracking errors need to be addressed.

Improved tracking can be obtained by using Kalman filtering. Further, with camera

calibration, the effects of perspective projection can be dealt with, resulting in improved

classification.

More robust techniques for classifying pedestrians and vehicles include classification of

objects as rigid or non-rigid. Pedestrians, being articulated entities, appear as non-rigid

objects while vehicles appear as rigid objects in a scene.  The work in [7] provides a

method for classifying objects as rigid or non-rigid. Other techniques like skeletonization

of moving objects [8] can also provide fast cues for classification of objects while others

such as analyzing the nature of motion of objects can also be used for this purpose.
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Chapter 8    Conclusions

This report deals with the intersection monitoring problem. A set of cameras detects

situations that may evolve into collisions. Vehicles and pedestrians are detected and

tracked in this context. To perform robust detection, an effective method for background

estimation has been implemented. A method that provides a more accurate estimate of the

foreground has also been implemented. Oriented bounding boxes are used for computing

the bounding rectangles around the blobs. They provide a very close fit and as a result

improved tracking compared to simple bounding boxes. These methods along with the

use of principal axis angles provide a good method of classifying traffic objects in a

scene. Several experimental results from real intersections are presented.
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