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EXECUTIVE SUMMARY 

 

This report deals with the problem of estimating the accident rate at a specified roadway site 

when the total traffic at the site is not known with certainty, by must be estimated from a traffic 

count sample. Although the standard statistical methods for estimating accidents rates implicitly 

assume that total traffic is known, in almost all practical cases this is not so. Neglecting the 

additional uncertainty arising from  estimating the total traffic can lead to falsely identifying a site as 

a potential high-hazard location, or to falsely concluding that a safety treatment has had a significant 

effect on accident occurrence. After briefly reviewing standard practice in accident rate estimation, it 

is argued that a Bayesian approach to statistical inference more nearly matches the requirements and 

expectations of safety engineers. 

Consideration of accident rate estimation reveals that standard methods in essence use the 

sample to compute a heuristic prediction of total traffic, but that no formal treatment of this 

prediction problem has been done. Chapter 2 provides this treatment, and builds on earlier work by 

the PI to develop a Bayesian method for making such predictions. The accuracy of this predictor was 

evaluated by using data from 48 Mn/DOT automatic traffic recorders (ATR) , in which 90% 

confidence intervals for the total 1991 traffic volume at each ATR were computed using traffic 

samples from 1992, and these intervals were then compared to the actual 1991 traffic totals.  

Chapter 3 then describes how the total traffic prediction model can be formally incorporated 

into  accident rate estimation, and how an advanced  numerical technique called Gibbs Sampling can 

be used to estimate accident rates with traffic count samples.  Total accident counts for 1992 were 

prepared for Mn/DOT’s outstate ATRs, and for 17 ATR sites accident rate estimates and confidence 

intervals were computed for full traffic counts, a two-week count sample and a two-day count 

sample. It was found that the precision obtained from the two-week sample was similar to that 

obtained from a full count, but that the two-day sample estimates were noticeably less precise. It is 

recommended that a two-week traffic count be included in the suite of engineering studies conducted 

when selecting countermeasures for a potentially high-hazard site, and that Bayesian methods be 

incorporated in network wide analyses, such as identifying potential high-hazard sites, when they 

become computationally friendly. 
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CHAPTER 1 

INTRODUCTION 

 

This report describes part of  a long-term effort by the Principal Investigator to  place 

statistical practice in traffic engineering on a sounder theoretical base, and to bring the state of 

statistical practice in traffic engineering more nearly in line with the state of the art. Many of the 

statistical techniques taught to and used by traffic engineers date back to the middle part of the last 

century, and are based on simplified statistical models adapted to the conceptual and computational 

constraints of those times. Although in some instances a simple statistical model is perfectly 

adequate, such as using the normal distribution to describe homogeneous vehicle spot speeds, in 

other instances the simplified model ignores important problem features, and this can lead to 

overstating the accuracy of an estimation technique. For example, Davis (1997a, 1997b)  pointed out 

that published statements of the accuracy achieved by two-day traffic counts in estimating annual 

average daily traffic (AADT) implicitly assumed an unrealistic ability to determine  correct seasonal 

and day-of-week adjustment factors. An alternative method for estimating AADT, employing a 

Bayesian statistical approach and based on a well-confirmed statistical model for a location’s daily 

traffic volumes, was described in Davis and Guan (1996) and Davis (1997a). 

The estimation of traffic accident rates at individual roadway sites provides another example 

of how unrealistic assumptions are needed to justify a relatively simple statistical technique. In this 

case, it is assumed that the total traffic at the site is known with certainty, when in almost all 

practical cases the total traffic is also a quantity that must be estimated. This uncertainty regarding 

total traffic makes accident rate estimation more akin to an errors-in-variables regression problem 

rather than to a standard regression problem, and it is well-known that the statistical properties of 

standard regression estimates break down when there are unacknowledged errors-in-variables (Seber 

and Wild, 1989).  In this report, we address the estimation of traffic accident rates at individual 

roadway sites when the total traffic volume using that site is not known with certainty, but must be 

estimated from a sample of daily traffic counts. The emphasis will be on estimating the accident 

rates at individual sites, rather than on estimating a common rate for a number of sites, because 

recent findings concerning the tendency of accident counts to be over-dispersed imply that the 

statistical models supporting  common rates are also over-simplified.  In what follows we will often 
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use the traditional term “accident” rather than the currently popular term “crash”, partly out of 

consistency with past usage, and partly because crashes include events, such as suicides and 

homicides, whose prevention is not usually affected by safety countermeasures. In this view, the 

objective of traffic safety engineering is prevention of unintended accidents, rather than deliberate 

crashes. However, this is primarily a semantic quibble, and we will follow Hauer (1997) in using 

“crash” and “accident” as synonyms. 

In the remainder of this chapter we will first consider how uncertainty in estimates of AADT 

can affect estimates of accident rate. We will then review  the statistical theory for estimating 

accident rates when the full traffic count is known with certainty, and argue that a Bayesian 

approach to statistical inference more nearly accommodates the requirements of traffic  engineers. In 

Chapter 2 we will consider the problem of estimating the total traffic volume from a traffic count 

sample, and develop an approximation to the predictive distribution of the total traffic. We will then 

present some empirical results supporting the use of this approximation in practice. In Chapter 3 we 

will take up the problem of estimating accident rates given an accident count and a traffic count 

sample, and show how a Bayesian approach to this problem can be implemented using a relatively 

new computational technique called Gibbs sampling. We will then compare the precision achieved 

in estimating accident rates with a full traffic count, a two-week sample of daily counts, and a two-

day sample of daily counts. The comparison will be empirical, using traffic count and accident data 

from 17 Minnesota outstate automatic traffic recorder (ATR) sites. Finally, Chapter 4 will present 

our conclusions and recommendations. 

 

ACCIDENT RATES AND AADT 

Estimated accident rates are used in several safety engineering activities, such as 

identification of potential high-hazard sites, predicting the benefits expected from an accident 

countermeasure, and evaluating the impact of a countermeasure once it is in place. The commonly 

recommended estimator of a site’s accident rate takes the form 

 

(1.1) 
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where 

λ̂  = estimated accident rate at the site of interest, 

x = the site’s accident count over some specified time period, 

N = number of days over which the accident count was made, 

A Â DT = estimated AADT for the site. 

For example, if over a one-year period a section of road had an observed accident of count of 10, and 

an estimated AADT of 5500 vehicles/day, the estimated accident rate would be  

λ̂  = 10/(365*5500)=4.98×10-6 accidents/vehicle.  

Because an accident count can vary randomly even though the underlying features which make a site 

more or less dangerous have not changed, equation (1.1) gives an estimate rather than the (unknown) 

true accident rate. This means that there will be uncertainty concerning the degree to which the 

estimate  approximates the true rate, and when one attempts to assess this uncertainty  it is important 

to recognize that both the numerator and the denominator in equation (1.1) are random quantities 

and that  both contribute to the overall uncertainty. Ignoring the uncertainty which arises because the 

traffic total has also been estimated can lead one to overstate the accuracy attached to the accident 

rate estimate, which in turn could lead to falsely identifying a site as potentially hazardous, or falsely 

concluding that a safety treatment has had a significant effect.  In particular, since an estimate of 

AADT appears in the denominator of equation (1.1), the issues concerning accurate estimation of 

AADT carry over to the estimation of accident rates. 

In order to determine how uncertainty in the estimate of total traffic can influence uncertainty 

in the estimated accident rate, it is first necessary to select a measure of how close an estimate tends 

to be to the (unknown) true rate. One commonly used measure is the mean squared error (MSE), 

defined as  

(1.2) 

 

where E[.] denotes the expected value of the random variable appearing inside the square brackets 

and VAR[.] denotes the corresponding variance. Note that the right hand side of equation (1.2) 

shows that the MSE can be decomposed into two components, the first term being the variance of 

the estimator λ̂ and the second being the square of the estimator’s bias. For an unbiased estimator 
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the second term vanishes and MSE is equal to the estimator’s variance, so that when an estimator’s 

performance is evaluated in terms of its variance, there is an implicit assumption that the bias of the 

estimator is negligible.  A more intuitive way of presenting MSE is to express the square root of the 

MSE as a proportion of the true accident rate, a quantity which will be called the root-mean squared 

proportional error (RMSPE). Formally, this quantity is given by 

(1.3) 

 

and can be interpreted as an expected distance between the estimated rate and the true rate, 

expressed as a proportion of the true rate. 

To illustrate how uncertainty in AADT affects the estimated accident rate, we will consider 

estimation for the simple case where the analyst has an accident count x on hand, but must estimate 

the total traffic from only a single day’s traffic count, denoted by z~  This traffic count scenario is 

chosen primarily for its analytic simplicity, but is not completely unrealistic since some jurisdictions 

do estimate AADT from 24-hour counts.  It is well known that daily traffic volumes vary both 

throughout the year and within the week, so to capture these effects the expected value of the daily 

count will be assumed to follow a multiplicative model of the form 

(1.4) 

where 

M = monthly adjustment factor, 

W = day of week adjustment factor, 

Zo = AADT. 

In this case the adjusted count z~ /(MW) is an unbiased estimate of the AADT, so this model is 

consistent with current practice in adjusting traffic count samples.  It will also be assumed that the 

variance of the daily count is given by 

  (1.5) 

 

so that v denotes the coefficient of variation for the daily traffic counts. Next, let zT denote the 

(unknown) true traffic total at the site, and let the accident count x be the outcome of a Poisson 

random variable with mean λzT. Finally, we will assume that the analyst does not know the site’s true 

adjustment terms M and W, but rather must use estimates M̂ andŴ . The corresponding estimate of 
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the total traffic, which forms the denominator of the estimated accident rate, is simply 

 

(1.6) 

 

and it is straightforward to verify that 

 

(1.7) 

 

 

Hauer (1997) has illustrated how statistical differentials can be used to derive approximate 

expressions for the expected value and variance of the ratio between two random quantities, and this 

method can  be applied to the accident rate estimate given in equation (1.1) to produce 

 

 

(1.8) 

 

 

where the right-most approximations use the fact that z0≈(zT/N). These approximations can then be 

substituted into equation (1.3) to give an expression for the RMSPE. 

 

(1.9) 

 

Equation (1.9) reveals that RMSPE is determined by three quantities, the expected accident 

count λzT, the coefficient of variation for the traffic counts, v, and the ratio of the estimated 

adjustment terms to the actual adjustment terms, WM ˆˆ /MW. To illustrate how these terms interact,  

Figure 1.1 shows a contour plot of RMSPE as a function of the ratio ( WM ˆˆ /MW) and the coefficient 

of variation v, for the case where  the expected accident count λzT=10. The ranges for ( WM ˆˆ /MW) 

and v were chosen to correspond to those observed in an analysis of daily traffic counts from the 50 

Minnesota automatic traffic recorders (ATR)  described in (Davis, 1997a). Inspection of Figure 1.1 

reveals that although  RMSPE increases rather slowly as v increases, it is somewhat more sensitive 
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to the potential biases introduced when estimated adjustment factors must be used to estimate a site’s 

 AADT. For example, when WM ˆˆ /MW =1.0, so that an unbiased estimate of AADT is used, and 

v=0.1, RMSPE=0.33, meaning that on average the estimated accident rate differs from the true rate 

by 33%. But if one were unlucky in picking the adjustment terms, so that WM ˆˆ /MW =1.5, RMSPE 

more than doubles, to 72%. It was pointed out in (Davis, 1997b) that in the past the problem of 

reliably matching a short-count site to a set of adjustment factors tended to be ignored, but more 

recent work  indicates that  a site can often be reliably matched to one of a small set of factor groups 

using a count sample consisting of at least two well-chosen weeks. On the other hand,  the standard 

24 or 48-hour counts will generally not be sufficient for reliable matching, so that unless an analyst 

has either good prior knowledge concerning the correct adjustment factors  or an atypically large 

traffic count sample, adjustment bias will introduce uncontrolled and usually unacknowledged error 

into the accident rate estimate. 

 

COMPARING BAYESIAN AND FREQUENTIST APPROACHES  

Statistical methods  for accident rates usually begin  with the assumption that accidents at a 

roadway site are “rare events,” so that the Poisson distribution can be used to describe the 

probability of observing a given accident count. Formally, if X denotes a random variable describing 

the  accident count at a site during some specified time period , zT denotes the total traffic volume at 

the site during the same time period, and λ denotes the site’s accident rate, then 

 

(1.10) 

 

Strictly speaking, the accident rate λ is the expected increase in the accident count resulting 

when one additional vehicle uses the site, which justifies its use as a measure of the site’s accident 

hazard. Informally, it can be interpreted as the probability an arbitrarily selected vehicle has an 

accident at the site. When one has an observed accident count and when the traffic volume at the site 
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Figure 1.1 Contour Plot Showing RMSPE as a Function of Adjustment Ratio and Coefficient 

of Variation 

(Print to see detail.) 
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is known exactly, frequentist estimation of the accident rate begins with the fact that the maximum 

likelihood estimate of λ is given by 

 

(1.11) 

 

and that the variance of maximum likelihood estimator is 

 

(1.12) 

This estimator has several desirable frequentist properties. In particular, the maximum likelihood 

estimator is unbiased, that is 

 

(1.13) 

 

and efficient, i.e. 

 

(1.14) 

where λ~ denotes any other estimator of λ.  Further, as the expected accident count (λzT) becomes 

large, the distribution of the maximum likelihood estimator can be approximated by a normal 

distribution with mean equal to λ and variance equal to (λ/zT). An approximate 95% confidence 

interval for λ can then be computed as 

 

 

(1.15) 

 

We might be tempted to believe at this point that the unbiasedness and efficiency properties of the 

maximum likelihood estimator permit us to conclude that the estimated rate can be taken as a 

reasonable approximation of the  unknown true rate, and that the confidence interval gives us a range 

within which the unknown rate lies, but this is not so. In words, an unbiased estimator is one for 

which, if our data collection experiment were repeated an infinite number of times and the estimate 

of the accident rate computed for each repetition, the average of these estimates would equal the true 
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rate, while an efficient estimator is one for which the scatter of these estimates about the true rate is 

minimal. Neither of these properties tells us anything about the relation of a specific estimate to the 

(unknown) true rate.  Similarly, the appropriate frequentist interpretation of the confidence interval 

is that if we were to compute lower and upper bounds for our infinite number of samples according 

to equation (1.15), 95% of the time these bounds would catch the unknown true rate, but for any 

individual confidence interval, the unknown rate is either inside or outside the interval. The 

frequentist statistical theory can thus be viewed as giving the safety engineer a set of gambling rules, 

which if followed under appropriate conditions will produce specified results on average over the 

long run, but no claim is made concerning performance in any particular instance. 

In contrast to this rather restricted view of what statistical inference gives us, we might 

consider what safety engineers think they are getting. As a proxy for a survey of engineers we will 

look at what a non-random sample of standard references says about confidence intervals. First, in 

two texts written by statisticians for use by engineers, we find the orthodox frequentist interpretation 

of the meaning of a confidence interval: 

“According to this interpretation, the confidence level 95% is not so much a statement about 

any particular interval such as (79.3, 80.7) but pertains to what would happen if a very large number 

of like intervals were to be constructed.” (Devore, 1995, p. 279); 

“This last probability statement must be interpreted very carefully. It does not mean that the 

probability of the parameter µ falling into the specified interval equals 2Φ(z)-1; µ is a parameter and 

either is or is not in the above interval. Rather, the above should be interpreted as follows: 2Φ(z)-1 

equals the probability that the random interval  

 

contains µ.” (Meyer, 1970, p. 304). 

When we turn to materials written by engineers for engineers we find a clear dissatisfaction with the 

frequentist interpretation: 

“A precise definition of a (1-α)100 per cent confidence interval for µ would involve the 

following statement: ‘If in a series of very many repeated experiments an interval such as the one 

)n/z+X  ,n/z-X( σσ  
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calculated were obtained, we would in the long run be correct (1-α)100 per cent of time in claiming 

that µ is located in the interval (and wrong 100α percent of the time.)’ Unfortunately, such a 

statement is sometimes difficult to comprehend for the nonstatistician and awkward to interpret 

operationally. Therefore we shall consider a (1-α)100 per cent confidence interval as a range within 

which we are (1-α)100 per cent sure that the true parameter is contained,...” (Hahn and Shapiro, 

1967, p. 75); 

“More properly, then, the interval estimated on the basis of a single sample of size n should 

be interpreted as follows: ‘There is a confidence of (1-α) that the estimated interval contains the 

unknown µ.’” (Ang and Tang, 1975, p. 234). 

Finally, in materials written by traffic engineers for traffic engineers, we do not even find lip service 

being paid to the frequentist view:  

“It can be said with 95% confidence that the true mean speed of all traffic is within the range 

defined by the observed mean plus or minus twice the standard error” (Homburger and Kell, 1988, p. 

6-6); 

“This can be read as ‘The probability that the true mean lies in the interval 

is 0.95’” (McShane and Roess, 1990, p. 129); 

“The interpretation of the probability statement for an interval estimate is that the confidence 

interval contains the population value with a probability that is equal to the confidence coeffi-

cient,”(Box and Oppenlander, 1976, p. 198,  King, 1994, p. 406); 

“This means that it is 95% certain that the true arithmetic mean of the universe lies between 

51.01 and 52.99,” (Greenshields and Weida, 1952, p. 143, Gerlough and Huber, 1978, p. 101). 

If the statements in these texts can be seen as reflecting practice, then it is clear that traffic 

engineers view the confidence coefficient for a confidence interval as reflecting the degree of 

certainty attached to a statement that the true parameter is within the interval’s bounds. The clear 

gap between what the frequentist interpretation guarantees from   confidence intervals and what 

traffic engineers think they provide might be taken to imply that engineers are ignorant or being 

careless. But before fixing on this uncharitable view, let us consider the alternative approach. 









N

1.96+X  ,
N

1.96-X σσ  
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Taking a Bayesian approach to the rate estimation problem, we begin as before with the 

Poisson accident model, but in addition we need to specify a prior probability density characterizing 

our uncertainty concerning the unknown accident rate λ before obtaining the data (x,zT).  Bayes 

Theorem is then used to determine how our uncertainty about the site’s accident rate should 

rationally change after the data become available. For example, suppose that our prior uncertainty 

can be characterized by a gamma probability density of the form 

 

(1.16) 

It is well known that combining this with the Poisson accident model via Bayes Theorem produces a 

gamma posterior density, and that a point estimate of the site’s accident rate can be given as the 

posterior expected value 

 

(1.17) 

The uncertainty concerning this estimate can be summarized by the posterior variance, which for the 

gamma posterior has the form 

 

(1.18) 

Comparing equation (1.11) and (1.12) to (1.17) and (1.18) it can be seen that when the parameters α 

and β, which characterize the gamma prior density, take on small values, the computational 

outcomes of the Bayesian analysis and of the frequentist analysis are essentially the same. This 

suggests that when safety engineers perform the likelihood-based computations but then interpret the 

results as providing information concerning the particular site’s accident rate, they are actually 

conducting a Bayesian analysis, using frequentist formulas to approximate the desired Bayesian 

quantities. So, rather than suggesting that safety engineers are sloppy frequentists, we think it more 

appropriate to see them as approximate Bayesians. 

 We have argued that a Bayesian approach to statistical inference more closely represents 

engineering practice. We now turn to the situation where the total traffic count zT is unknown, but 

where one has a sample of daily counts z=[z1,..,zn]′ (the prime symbol ′ is used to denote the 

transpose of a vector or matrix.) Taking a Bayesian approach, our objective is to somehow determine  
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the posterior distribution f(λ  x,z), and in principle this can be expressed in terms of the “full 

count” posterior f(λx,zT)  via the expression 

 

(1.19) 

The density f(zT x, z) is known as the predictive density of the traffic total, and it can be seen that if 

we could determine a form for this predictive density,  the Bayesian estimation problem could in 

principle be solved by an additional integration. In the Chapter 2 we will consider the somewhat 

simpler problem of characterizing the predictive distribution f(zT z), where we are attempting to 

predict the total traffic volume using a count sample. These results will then be used in Chapter 3 to 

develop a computationally feasible method for evaluating (1.19). 
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CHAPTER 2 

ESTIMATING TOTAL TRAFFIC VOLUME FROM SAMPLE COUNTS 

 

As noted in Chapter 1, estimating a site’s accident rate when we do not have an actual count 

of the total traffic at that site requires that we estimate the total traffic somehow, usually using a 

short-count sample of the daily traffic. The objective of this chapter is to develop a useable 

expression for the predictive distribution of a site’s total traffic, conditional on a sample. Before 

proceeding, let us introduce the following notation 

zt = traffic count on day t, t=1,..,N 

zN = Σt zt, the total traffic count over days t=1,..N 

zl = traffic count on the l-th sample day, l=1,..,n 

z = [z1,..,zn]′, n-dimensional vector containing the sample counts. 

In Chapter 1 we introduced the predictive density f(zNz), but here it will turn out that 

approximations  and computations are more easily carried out using the corresponding conditional 

cumulative distribution function F(zN  z)=P[ZN≤zN z]. Since the total traffic count zN is 

determined as the sum of the daily counts zt, the statistical properties of the daily traffic volumes will 

determine the form of the conditional distribution F(zN z).  

 

LOGNORMAL APPROXIMATION 

We will develop an explicit expression for F(zNz) in several steps. The first step is  to 

characterize the statistical properties of the daily traffic volumes zt, and in a detailed analysis of 

daily traffic counts from 50 automatic traffic recorders (ATR) in Minnesota,  Davis (1997a) showed 

that the daily traffic volumes could be described using a lognormal regression model of  the form 

 

(2.1) 

where 

yt = loge(zt), the natural logarithm of a daily count, 

u = expected log traffic count on a typical day, 
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∆t,i =  1, if the count zt was made during month i, i=1,..,12, 

0, otherwise; 

mk,i = correction term for month i, characteristic of factor group k, 

δt,j =  1, if the count zt was made on day-of-week j, j=1,..,7, 

0, otherwise, 

wk,j = correction term for day-of-week j, characteristic of factor group k, 

et = random error. 

If we let βk=[mk,1,..,mk,12, wk,1,..,wk,7]′ denote a column vector containing the monthly and day-of-

week adjustment terms for factor group k,  and xt=[ ∆t,1 ,..., ∆t,12 , δt,1 ..,, δt,7 ], the above equation can 

be written in a slightly simpler form 

(2.2) 

 

In the above model the mean value of the logarithm of the daily count varies according to month and 

day of week, and the magnitude of these variations depends on the factor group to which the site of 

interest belongs. In addition, analyses of the regression residuals indicated that the error terms et 

showed day-to-day dependencies which could be described by a multiplicative autoregressive (AR) 

model of the form 

(2.3) 

where the at are independent, identically distributed normal random variables with common variance 

and mean equal to 0, and ф1 and ф7 are autoregressive coefficients. 

The above model is parameterized by u, a mean-value parameter, β, the monthly and day of 

week adjustment terms, σ2, the variance of the et terms, and the autoregressive coefficients ф1, ф7. In 

the next step, we will assume we know the values of these parameters, but nothing else about the 

site. Properties of lognormal random variables can be used to show that the expected value of the 

total traffic volume is 

 

(2.4) 
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and the variance of the total traffic volume is 

 

(2.5) 

 

 

where ρt,s is the correlation between et and es, which can be computed from the noise covariance 

parameters ф1, ф7 using standard time-series methods (e.g. Brockwell and Davis,1991). Now since 

zN is a sum of lognormal random variables, characterizing its probability distribution turns out to be 

very difficult even for the case N=2, and no result for general N is known (Johnson, Kotz and 

Balakrishnan, 1994). In most situations of practical interest however N will be equal to the number 

of days in one or more years, so that an asymptotic approximation might prove useful. In the 

Appendix it is shown that the cumulative distribution function of 

 

(2.6) 

converges to that of  a standard normal random variable, implying that for large N, loge(zN) is 

approximately a normal random variable with mean equal to loge(µ N) and variance equal to  

(vN
2/µ N2). This in turn supports using a lognormal approximation for zN,  

 

 

 

(2.5) 

 

 

where Ф(.) denotes the standard normal probability distribution function. 

The sample z provides two types of information concerning zN. On the one hand, it provides 

information concerning the model parameters, and in principle this information could be 

summarized by the posterior distribution function F(u,β, ф1, ф7,σ2  z). On the other hand the 

correlated noise model (2.3) implies that any given daily count zt is correlated with its neighbors, so 

that  knowing zt allows us to more accurately predict neighboring values. If the noise model (2.3) is 

stationary, and if the sample counts are sufficiently separated in time from the counts comprising zN 
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(such as might occur when trying to predict the total volume for 1999, using a sample taken in 1997) 

we can take the sample and the total count as being independent of each other, and then the sample 

provides information on the total only by providing information on the model parameters. The 

distribution              could then be found as 

(2.8) 

 

When the sample counts are correlated with counts comprising the total zN, the expression (2.8) will 

only be approximate, with the approximation deteriorating with increasing overlap between the 

sample counts and the counts entering into the total. In principle, smoothing algorithms could be 

used to include dependency on z in (2.4) and (2.5), so that a z-dependent asymptotic approximation 

could be developed, but the necessary computational labor appears to be substantial. For the 

situations commonly encountered in highway and safety engineering, the number of counts entering 

into the total will be large compared to size of the sample (e.g. one or more years for N, compared to 

a 48-hour or two one-week counts for   n), so that most of the aggregating counts will be separated 

from the sample counts by at least one month. For these cases we conjecture that (2.8) will provide a 

suitably accurate approximation, and some empirical evidence supporting this conjecture will be 

presented later. 

The final steps involve characterizing the distribution F(u,β, ф1, ф7,σ2 z) and then finding  a 

computationally feasible way to evaluate the (multidimensional) integral in (2.8). It turns out 

however that this problem is very similar to the problem of computing Bayes estimates of mean 

daily traffic described in Davis (1997a) and Davis and Guan (1996), and a similar solution can be 

employed here. In this approach, a prior distribution describing our uncertainty concerning the 

parameter values is combined with the likelihood function of the count sample, and Bayes Theorem 

is used to derive the posterior distribution for the parameters, given the count sample.  

As in Davis (1997a), we will assume that the highway agency has divided its road segments 

into a set of m factor groups, and that estimates of the adjustment factors for each group, βk, 

k=1,..,m, are available. We will further assume that the agency maintains a total of M ATRS, and 

that for each ATR estimates of the covariance parameters (ф1p,ф7p,σp), p=1,..,M, are also available.  

Prior to collecting any data for a site, we will assume that our uncertainty concerning that site’s 

parameters is captured by the prior probability distribution 
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Prior to collecting any data for a site, we will assume that our uncertainty concerning that site’s 

parameters is captured by the prior probability distribution 

 

(2.9) 

 

where Ib(x) denotes a Kronecker delta function 

Ib(x) = 1, if  x=b, 

0, otherwise. 

Basically, this prior assumes that we are completely uncertain as to the value of u in the sense that 

our prior probability is uniformly distributed on the real line. For the adjustment terms β, we are 

certain that it takes on one of the values β1,..,βm characterizing our factor groups, but that we are 

equally uncertain as to which of these is correct. Similarly, for (ф1,ф7,σ) we are certain that one of 

the sets of values estimated from our ATR sites is correct, but prior to collecting data we are equally 

uncertain as to which. 

Because the logarithms of the traffic counts are normal random variables, the likelihood 

function of the sample is easy to specify. Letting y denote the vector containing the logarithms of the 

sample counts and V denote the correlation matrix for the count sample (which can be computed 

from once one knows the value of the AR parameters ф1 and ф7), then if we knew the site-specific 

values for the parameters u, β, σ, ф1, and ф7, the likelihood of the sample could be computed using 

the appropriate multivariate normal density 

 

 

(2.10) 

 

 

Here X is a matrix, of dimension Nx19, each row having elements equal to 0 or 1 according to the 

month and day-of-week of the corresponding sample count, while 1n is an n-dimensional column 

vector with each element equal to 1.0.  
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were used to estimate monthly and day-of-week adjustment terms for three factor groups, and 

covariance parameters for each of the 50 ATRs. These estimates were used to construct the discrete 

prior distributions for β, and (ф1,ф7,σ), giving m=3 and M=50. In addition, daily counts from the 

year 1991 were available for 48 ATRS, and for each of these ATRs a sample consisting of a 1-week 

count from the month of March and a 1-week count from the month of July was drawn. A MATLAB 

(Mathworks, 1992)  program for evaluating (2.11) was written, and then for each of the 48 ATRs, 

the 5th and 95th percentile points of the predictive distribution of the logarithm of the 1991 total 

traffic volume was computed by embedding the MATLAB routine inside an equation solver. Finally, 

the logarithm of the total 1991 traffic volume was also computed for each ATR, and the results of 

these computations are displayed in Tables 2.1-2.3. 

The 5th and 95th percentile points describe the bounds of a 90% confidence interval, and if 

the approximation (2.11) is acceptably accurate, we would expect the actual count to fall inside the 

bounds 90% of the time. Inspection of Tables 2.1-2.3 shows that for ATRs 2, 8, 12, 204, 208, 217,  

218, and 226 the actual count fell outside out estimated bounds.  Since the probability of obtaining 

eight or more successes in 48 binomial trials with success probability equal to 0.1 is 0.102, this 

result is consistent with the hypothesis that (2.11)  gives a reasonably accurate approximation of the 

predictive distribution of the total traffic. 
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Table 2.1. Evaluation of 90% Prediction Intervals: Factor Group 1. 
 
 
Mn/DOT 
ATR Number 

 
5%-ile of Predictive 
Distribution 

 
Log Total Count 

 
95%-ile of Predictive 
Distribution 

 
2 

 
12.2954 

 
12.5539 

 
12.5531 

 
3 

 
13.9783 

 
14.1189 

 
14.2267 

 
7 

 
12.2483 

 
12.3857 

 
12.4690 

 
8 

 
10.9598 

 
11.3207 

 
11.2912 

 
9 

 
11.8849 

 
11.9756 

 
12.1124 

 
10 

 
12.8934 

 
13.0059 

 
13.0748 

 
12 

 
13.1947 

 
13.1813 

 
13.4464 

 
14 

 
12.9814 

 
13.0870 

 
13.2310 

 
50 

 
13.4775 

 
13.5663 

 
13.6500 

 
54 

 
10.2983 

 
10.5153 

 
10.5339 

 
56 

 
11.4603 

 
11.5531 

 
11.6512 

 
100 

 
15.2954 

 
15.4013 

 
15.5066 

 
102 

 
16.4250 

 
16.4932 

 
16.6343 

 
103 

 
16.0997 

 
16.1653 

 
16.2748 

 
104 

 
15.2014 

 
15.2137 

 
15.2945 

 
110 

 
15.6586 

 
15.7102 

 
15.8464 

 
164 

 
13.8722 

 
13.9628 

 
14.0880 

 
166 

 
13.8270 

 
13.8729 

 
13.9741 

 
170 

 
13.8047 

 
13.8419 

 
13.9555 

 
172 

 
14.9882 

 
15.1130 

 
15.1175 

 
179 

 
13.0413 

 
13.1812 

 
13.2469 

 
197 

 
13.7666 

 
13.8906 

 
13.9826 

 
199 

 
12.4498 

 
12.6153 

 
12.6332 

 
211 

 
13.4673 

 
13.5737 

 
13.6714 
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Table 2.1 (Continued) 
 
 
213 

 
14.0399 

 
14.0975 

 
14.1949 

 
216 

 
12.4219 

 
12.5007 

 
12.6338 

 
217 

 
11.9371 

 
12.1674 

 
12.1390 

 
219 

 
13.2525 

 
13.2984 

 
13.4746 

 
225 

 
12.0633 

 
12.2808 

 
12.3005 

 
226 

 
11.5859 

 
11.7921 

 
11.7918 

 
 
 
 
Table 2.2. Evaluation of 90% Prediction Intervals: Factor Group 3. 
 
 
Mn/DOT 
ATR Number 

 
5%-ile of Predictive 
Distribution 

 
Log Total Count 

 
95%-ile of Predictive 
Distribution 

 
52 

 
11.4197 

 
11.5725 

 
11.6027 

 
175 

 
15.2607 

 
15.3471 

 
15.4842 

 
187 

 
14.9642 

 
15.0832 

 
15.2037 

 
200 

 
15.7115 

 
15.8787 

 
15.9226 

 
204 

 
14.0265 

 
14.2724 

 
14.2705 

 
207 

 
12.8435 

 
12.9302 

 
13.0395 

 
208 

 
14.8488 

 
14.9436 

 
14.9377 

 
215 

 
11.7087 

 
11.8455 

 
11.9711 

 
218 

 
11.5948 

 
11.9728 

 
11.8361 

 
224 

 
13.1007 

 
13.2427 

 
13.3437 
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Table 2.3. Evaluation  of 90% Prediction Intervals:  Factor Group 4. 
 
 
Mn/DOT 
ATR Number 

 
5%-ile of Predictive 
Distribution 

 
Log Total Count 

 
95%-ile of Predictive 
Distribution 

 
1 

 
12.9936 

 
13.0798 

 
13.2428 

 
51 

 
11.4256 

 
11.5018 

 
11.6581 

 
55 

 
12.0286 

 
12.1631 

 
12.1852 

 
57 

 
12.4938 

 
12.7573 

 
12.7840 

 
214 

 
11.5181 

 
11.6925 

 
11.7181 

 
220 

 
13.2472 

 
13.3545 

 
13.4526 

 
221 

 
13.4560 

 
13.4819 

 
13.6290 

 
223 

 
12.8283 

 
12.9375 

 
12.9596 
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CHAPTER 3 

ACCIDENT RATE ESTIMATION WITH TRAFFIC SAMPLES 

 

We return finally to our original problem, estimating a site’s accident rate λ when the data at 

hand consist of an accident count x, and a sample of daily traffic counts z=[z1,..,zn]′. This chapter has 

three main objectives.  First, given our argument for the importance of the Bayesian approach in 

accident rate estimation, we would like to have a computationally feasible method for computing 

Bayesian estimates of a site’s accident rate given an accident count and a traffic count sample. 

Second, we would like to gain some idea of how uncertainty concerning the accident rate is affected 

by the size of the traffic count sample, so that informed decisions concerning sample size can be 

made.  Third, given that the Bayesian point estimate of the accident rate is optimal, in the sense of 

minimizing posterior mean-squared error, we would like to gain some idea of the increase in error 

which results when more traditional accident rate estimates are used.  

As indicated at the end of Chapter 1, the posterior distribution of the accident rate, given the 

accident count and traffic sample, can be expressed formally as 

(3.1) 

There are two probability densities appearing inside the integral. The first can in principle be 

computed via Bayes Theorem once we have specified the likelihood function for the traffic count 

and a prior density for λ 

 

(3.2) 

 

Next, if we approximate the second density f(zTx,z) with a density f(zTz) corresponding to the 

distribution function  developed in Chapter 2,   these expressions could be inserted into (3.1) and we 

would have our result. In practice though it was found that the computational requirements for 

evaluating  the approximation f(zTz) were so burdensome  that embedding the approximation inside 

a multidimensional numerical integration routine  did not appear likely to yield a computationally 

feasible approach.  

The numerical problems arising when attempting to evaluate (3.1) are typical for complex 

models, especially those containing hidden variables such as our total traffic volume. Similar 
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numerical constraints have limited the practical applicability of Bayesian methods until the early 

1990s, when researchers began to show that a set of numerical techniques known as Markov Chain 

Monte Carlo (MCMC) methods could be profitably applied to a number of hitherto intractable 

problems (Carlin and Louis, 1996). Standard Monte Carlo (MC) methods have been used for some 

time to estimate characteristics of a target probability distribution to any required degree of accuracy 

by simulating, on a computer, a random sample of outcomes from that distribution, and then simply 

computing the desired estimate by appropriately summing over the elements of the sample. The 

standard MC methods are limited though to problems with fairly simple structures. In an MCMC 

method a type of stochastic process called an ergodic Markov chain is constructed which has the 

target distribution as its stationary distribution, and then a computer is used to generate a simulated 

realization from the Markov chain. One of the characteristics of an ergodic Markov chain is that 

after a suitable initialization period, averages computed over a single run of the chain converge to 

the same limits as averages computed over a random sample from its stationary distribution, so that 

the output of one (or a small number) of long runs can be used to compute Monte Carlo estimates. 

The MCMC approach is even more attractive because a software package called BUGS 

(Speigelhalter, et al. 1995), which implements an MCMC technique called Gibbs sampling, is 

available for experimental use. So in what follows, BUGS will be used to compute Bayesian 

estimates of accident rates given traffic count samples.  

Our second objective is to gain some idea of how sensitive the Bayesian estimate of accident 

rate is to traffic sample size. This will be done by comparing estimates based on a “full” traffic count 

to those based on 2-day and 14-day traffic samples. As  in Chapter 2, the daily traffic count data  for 

50 outstate Minnesota ATRs were used, and these were supplemented by computerized files 

containing the 1992 accident records for all accidents occurring within about 2.5 miles of each of 

Mn/DOT’s ATRs. From these accident record files daily accident counts for each day of 1992 were 

compiled for each of the 50 outstate ATRs. It turned out that the majority of the ATRs had yearly 

accident counts of zero or one, but a total of 17 ATRs had five or more accidents occurring in their 

vicinities during 1992, and these were used in our analyses. The locations of these ATRs are shown 

in Figure 3.1. 

To meet the second objective, it was first necessary to compute estimates of accident rates as 

if we had a “full” traffic count. To accomplish this, for each of the 17 study ATRs those days which 
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Mn/DOT analysts had flagged as containing questionable traffic counts were deleted from the data 

set, and then total traffic and accident counts were computed for each ATR by summing over the 

remaining daily traffic and accident counts. In some cases the corresponding accident count was less 

than the total for that site because one or more accidents occurred on days with bad traffic data. 

Next, as noted in Chapter 1, computing Bayesian estimates of the accident rate requires first 

specifying a probability density which expresses the analyst’s prior (before data collection) 

uncertainty concering a site’s accident rate, as well as a likelihood function for the accident counts. 

The Poisson likelihood depicted in (1.10) was used, and the computations were carried out using two 

different prior densities. The first was the gamma density described in (1.16), with parameters 

α=0.0005 and β=0.0005, and the second was a lognormal density for which the underlying normal 

mean was 0.0, and the underlying normal variance was 1,000,000. These priors were chosen because 

they were both fairly flat (uninformative) over the range from 10-6 to 10-5, where most actual 

accident rates tend to fall.  The principle of stable estimation (Edwards, Lindman and Savage, 1962) 

then implies that the posterior distribution will be dominated by the likelihood function, so that the 

prior should have little influence on the final result.  

As indicated in Chapter 1, closed form expressions are available for the posterior probability 

density, the posterior expected value and the posterior variance when the gamma prior is used. No 

such convenient expressions are known for the lognormal prior, and numerical integration must be 

employed. For this analysis, MATHCAD 6.0+ (Mathsoft, 1995) was used to compute posterior 

expected values, variances and the 2.5%-ile and 97.5%-ile points for the posterior distributions, for 

each of the 17 ATR sites. These latter two quantities give lower and upper bounds for a 95% 

Bayesian confidence interval for the accident rate.  Tables 3.1 and 3.2 display the results of these 

computations for the 17 study sites, along with the total accident count, total traffic count and the 

number of days during 1992 for which the ATR had good count data. Table 3.3 displays parallel 

results computed using frequentist procedures.  

Comparing Table 3.1 to Tables 3.2, we can see that the gamma and lognormal priors 

produced nearly identical results, and looking at Table 3.3 we can see that the results of the Bayesian 

analyses  are numerically similar to those resulting from a frequentist analysis. The chief difference 

between the Bayesian and frequentist results is that the frequentist confidence intervals are 

symmetric about the point estimates of the accident rate while the Bayesian intervals are skewed. 
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This is because the normal approximation (1.15) was used to compute the frequentist interval while 

the Bayesian intervals were computed directly from posterior densities. Plots of the likelihood 

functions for each of the 17 sites showed  that in many cases they were skewed, indicating that the 

expected accident counts were smaller than those needed to justify  the normal approximation.   

Next, two traffic count samples were taken for each of the study sites. The first sample 

consisted of daily traffic counts for two consecutive weeks during the month of July, 1992 while the 

second sample consisted of two consecutive days during the month of July. July was selected as the 

sample month because (a) an earlier study (Davis, 1997a) indicated that counts from this month 

tended to be more informative concerning the monthly and day-of-week factors appropriate for a 

given site, and (b) this month fell in the middle of the normal traffic counting season in Minnesota. It 

turned out that the distribution of bad traffic count days made it difficult to find a full two weeks for 

all of the ATR sites, so that some of the so-called “two-week” samples had less than 14 days worth 

of traffic counts. For the two-day samples, the selected days were always on Tuesdays and 

Wednesdays. 

The computer program BUGS was used to compute posterior means, standard deviations,   

2.5%-ile,  and 97.5%-ile points for each traffic count sample at each site. It was discovered that 

BUGS ran more reliably if the accident count was broken down into two subcounts, one of accidents 

occurring on traffic sample days, and one of accidents occurring on non-sample days. In addition, 

having BUGS evaluate the variance term (2.5) turned out to be infeasible, so an approximation was 

used where it is assumed that the autocorrelations are identically equal to 1.0 for all lags. This 

produces an upper bound for (2.5), and when this bound is used  we get the substantial simplification 

 

(3.3) 

 

The distribution of the logarithm of the total traffic count can then be approximated by a normal 

distribution with mean equal to loge(µN) and variance exp(σ2)-1.  Listings of example model 

specifications and output can be found in the Appendix, but an informal description of the statistical 

model specified for BUGS is as follows: 

(1) given an accident rate λ and a traffic count zT, accident counts were assumed to be 

Poisson outcomes with mean λzT; 
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(2) given the mean value parameter u, the adjustment terms β and standard deviation σ, the 

logarithm of the total traffic counts was assumed to be normal with mean and variance described in 

(3.3) above; 

(3) given the mean value parameter u, adjustment terms β, and covariance matrix σ2V, the 

logarithms of the sample counts were assumed to be jointly normal as specified in equation (2.10); 

(4) the prior for loge(λ) was assumed to be normal with mean 0 and variance 1,000,000; 

(5) the prior for β was assumed to be a discrete uniform with three components 

corresponding to the three 1992 factor groups described in Davis (1997a); 

(6) the prior for u was taken to be normal with mean equal to 0 and variance equal to 1000; 

(7) for the “two-week” sample, the prior for the covariance matrix σ2V was assumed to be 

Wishart with expected value being a diagonal matrix with diagonal elements equal to the average 

variance estimated for the 50 ATR sites; 

(8) given σ,ф1, and ф7, the covariance matrix for the two-day sample was 2x2 with diagonal 

elements equal to σ2 and off-diagonal elements σ2ф1. 

All BUGS runs consisted of a 2000 iteration burn-in, followed a a 5000 iteration sample. 

Posterior means, standard deviations and bounds for the 95% Bayesian confidence intervals are 

shown in Table 3.4. 

Four of the ATRs, 52, 208, 172 and 197, had fairly small “two-week” samples, due to the 

prevalence of bad traffic count days during July, and the BUGS software crashed when we attempted 

to compute Bayesian accident rate estimates for these sites. This problem did not occur  for the two-

day samples, which used a different prior distribution for the sample covariance matrix, nor did it 

occur when we used a lognormal prior for λ with a variance of 1000, instead of 1,000,000.  

Comparing the posterior  standard deviations for the two sample sizes we see that, as 

expected, estimates of λ based on the two-day sample showed greater uncertainty than do estimates 

based on the “two-week” sample. This greater uncertainty is also reflected by the wider confidence 

intervals for the two-day sample. Interestingly, comparing the variances and confidence intervals for 

the “two-week” sample to the parallel quantities in Table 3.2 indicates that little additional gain in 

precision is obtained when moving from the “two-week” sample to the “full-count”. The estimates in 

the Tables 3.2 and 3.4 are not strictly comparable since those in 3.2 assume a time period reflecting 

only “good” traffic count days, while those in 3.4 assume a time-period of 366 days. Nevertheless, 
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)-(+ = RMSE 22
post λλσ

~

366xAADT
x = λ~

the posterior standard deviations and confidence interval widths indicate that at least for estimating 

accident rates at these sites, a traffic count sample of about two weeks duration is sufficient to 

achieve accuracy similar to that of much longer count samples. 

We now turn to our third objective, which is to assess the additional error arising when using 

more traditional estimates of accident rates. The measure of error we will use is the posterior root-

mean squared error (RMSE), defined as 

(3.4) 

 

where 

σpost = posterior standard deviation  of the accident rate λ, 

λ = posterior mean of the accident rate, 

λ~ = an estimate of the accident rate λ. 

Informally, posterior RMSE can be seen as the expected distance between an estimate of λ and its 

true value, and clearly this is minimized when the estimate is taken to be the posterior mean.  

Traditional accident rate estimates for 1992 take the form  

 

(3.5) 

where AADT means annual average daily traffic. In practice, AADT is often estimated from a 48-

hour short count which is then adjusted to correct for seasonal and day-or-week biases. To emulate 

this practice, we computed two accident rate estimates using the two-day samples described above, 

both estimates having the form shown in (3.5). The first  rate estimate, called the factored estimate,  

used an estimate of  AADT  computed by first adjusting each of the two daily counts  using the 

monthly and day-of-week factor computed for  that ATR’s factor group, and then averaging these 

adjusted counts. This is the estimate of AADT one would obtain if one knew exactly what 

adjustment factors were appropriate for the site of interest. The second rate estimate, called the 

unfactored estimate, used an estimate of AADT computed by simply averaging the two daily counts 

in the sample without adjusting for month or day-of-week.  These estimates, together with two-day 

sample posterior means and standard deviations were then substituted into (3.4) to yield RMSE 

values, and the results of these computations are shown in Table 3.5.  
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From Table 3.5 we can see that the dominant component of expected error is the posterior 

variance, which all rate estimates are subject to. In no case did the percentage increase in expected 

error incurred when one uses a traditional accident rate estimate exceed 20%, with the unfactored 

estimates generally showing a greater increase in expected error than did the factored estimates.  

This suggests that, to the extent that this sample of roadway sites is representative of other sites, the 

posterior mean is to be preferred as a point estimate of accident rate, but that simpler estimates based 

on traditional estimates of AADT, do not appear to incur substantial increases in error. 
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Figure 3.1. Outstate ATRs with 5 or More Accidents in 1992  

                   (Print to see detail.) 
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Table 3.1 Bayes Estimation Using “Full-Year” Counts.  Gamma Prior for λ. 
 
ATR# 

 
Accident 

Count (x) 

 
Total Traffic 

(z) 

 
“Good” 

Data Days 

 
Posterior 

Mean ×106 

 
Posterior St. 

Dev.×106 

 
λ.025 

×106 

 
λ.975 

×106 

 
175 

 
11 

 
3633983 

 
238 

 
3.027 

 
0.913 

 
1.511 

 
5.061 

 
52 

 
6 

 
129062 

 
276 

 
46.493 

 
18.980 

 
17.063 

 
90.414 

 
187 

 
2 

 
2031318 

 
181 

 
0.985 

 
0.696 

 
0.119 

 
2.743 

 
200 

 
9 

 
6816272 

 
262 

 
1.320 

 
0.440 

 
0.604 

 
2.313 

 
204 

 
10 

 
1999478 

 
264 

 
5.002 

 
1.582 

 
2.399 

 
8.545 

 
208 

 
21 

 
3781054 

 
205 

 
5.554 

 
1.212 

 
3.438 

 
8.169 

 
223 

 
6 

 
648747 

 
207 

 
9.249 

 
3.776 

 
3.395 

 
17.986 

 
3 

 
5 

 
1357989 

 
306 

 
3.682 

 
1.647 

 
1.196 

 
7.542 

 
50 

 
6 

 
690287 

 
257 

 
8.693 

 
3.549 

 
3.190 

 
16.904 

 
110 

 
38 

 
6851628 

 
336 

 
5.546 

 
0.900 

 
3.925 

 
7.443 

 
164 

 
13 

 
2479466 

 
335 

 
5.243 

 
1.454 

 
2.792 

 
8.454 

 
166 

 
5 

 
1165843 

 
275 

 
4.289 

 
1.918 

 
1.393 

 
8.785 

 
170 

 
6 

 
1091136 

 
355 

 
5.499 

 
2.245 

 
2.018 

 
10.694 

 
172 

 
13 

 
2008653 

 
191 

 
6.472 

 
1.795 

 
3.446 

 
10.436 

 
179 

 
4 

 
552554 

 
354 

 
7.240 

 
3.620 

 
1.973 

 
15.867 

 
197 

 
5 

 
1092392 

 
317 

 
4.578 

 
2.047 

 
1.487 

 
9.376 

 
211 

 
5 

 
1084894 

 
336 

 
4.609 

 
2.061 

 
1.497 

 
9.440 
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Table 3.2. Bayes Estimation Using “Full-Year” Counts. Lognormal Prior for λ. 
 
ATR# 

 
Accident 

Count (x) 

 
Total Traffic 

(z) 

 
“Good” 

Data Days 

 
Posterior 

Mean ×106 

 
Posterior St. 

Dev.×106 

 
λ.025 

×106 

 
λ.975 

×106 

 
175 

 
11 

 
3633983 

 
238 

 
3.027 

 
0.913 

 
1.511 

 
5.061 

 
52 

 
6 

 
129062 

 
276 

 
46.489 

 
18.980 

 
17.061 

 
90.409 

 
187 

 
2 

 
2031318 

 
181 

 
0.985 

 
0.695 

 
0.119 

 
2.739 

 
200 

 
9 

 
6816272 

 
262 

 
1.318 

 
0.432 

 
0.605 

 
2.482 

 
204 

 
10 

 
1999478 

 
264 

 
5.005 

 
1.558 

 
2.399 

 
8.540 

 
208 

 
21 

 
3781054 

 
205 

 
5.553 

 
1.208 

 
3.439 

 
8.196 

 
223 

 
6 

 
648747 

 
207 

 
9.244 

 
3.778 

 
3.395 

 
18.042 

 
3 

 
5 

 
1357989 

 
306 

 
3.684 

 
1.655 

 
1.196 

 
7.552 

 
50 

 
6 

 
690287 

 
257 

 
8.699 

 
3.536 

 
3.191 

 
17.056 

 
110 

 
38 

 
6851628 

 
336 

 
5.536 

 
1.122 

 
3.926 

 
7.511 

 
164 

 
13 

 
2479466 

 
335 

 
5.230 

 
1.467 

 
2.792 

 
8.453 

 
166 

 
5 

 
1165843 

 
275 

 
4.289 

 
1.916 

 
1.393 

 
8.800 

 
170 

 
6 

 
1091136 

 
355 

 
5.496 

 
2.240 

 
2.019 

 
10.782 

 
172 

 
13 

 
2008653 

 
191 

 
6.686 

 
1.549 

 
3.450 

 
10.806 

 
179 

 
4 

 
552554 

 
354 

 
7.240 

 
3.612 

 
1.972 

 
15.843 

 
197 

 
5 

 
1092392 

 
317 

 
4.577 

 
2.046 

 
1.486 

 
9.391 

 
211 

 
5 

 
1084894 

 
336 

 
4.608 

 
2.060 

 
1.497 

 
9.455 
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Table  3.3. Maximum Likelihood Estimates,  Standard Errors and 95% Confidence Intervals 
 
ATR# 

 
Accident 

Count (x) 

 
Total Traffic 

(z) 

 
“Good” 

Data Days 

 
MLE of 

Acc. Rate 

×106 

 
Standard 

Error×106 

 
λ.025 

×106 

 
λ.975 

×106 

 
175 

 
11 

 
3633983 

 
238 

 
3.027 

 
0.913 

 
1.239 

 
4.816 

 
52 

 
6 

 
129062 

 
276 

 
46.649 

 
18.979 

 
9.291 

 
83.688 

 
187 

 
2 

 
2031318 

 
181 

 
0.985 

 
0.696 

 
-0.380 

 
2.349 

 
200 

 
9 

 
6816272 

 
262 

 
1.320 

 
0.440 

 
0.458 

 
2.183 

 
204 

 
10 

 
1999478 

 
264 

 
5.001 

 
1.582 

 
1.901 

 
8.101 

 
208 

 
21 

 
3781054 

 
205 

 
5.554 

 
1.212 

 
3.179 

 
7.930 

 
223 

 
6 

 
648747 

 
207 

 
9.249 

 
3.776 

 
1.848 

 
16.649 

 
3 

 
5 

 
1357989 

 
306 

 
3.682 

 
1.647 

 
0.455 

 
6.909 

 
50 

 
6 

 
690287 

 
257 

 
8.692 

 
3.549 

 
1.737 

 
15.647 

 
110 

 
38 

 
6851628 

 
336 

 
5.546 

 
0.900 

 
3.783 

 
7.310 

 
164 

 
13 

 
2479466 

 
335 

 
5.243 

 
1.454 

 
2.393 

 
8.093 

 
166 

 
5 

 
1165843 

 
275 

 
4.289 

 
1.918 

 
0.295 

 
8.048 

 
170 

 
6 

 
1091136 

 
355 

 
5.499 

 
2.245 

 
1.099 

 
9.899 

 
172 

 
13 

 
2008653 

 
191 

 
6.472 

 
1.795 

 
2.954 

 
9.990 

 
179 

 
4 

 
552554 

 
354 

 
7.239 

 
3.620 

 
0.145 

 
14.333 

 
197 

 
5 

 
1092392 

 
317 

 
4.577 

 
2.047 

 
0.565 

 
8.589 

 
211 

 
5 

 
1084894 

 
336 

 
4.609 

 
2.061 

 
0.569 

 
8.648 
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Table 3.4. Performance of Bayesian Estimates of Accident Rates Based on Two-Week and 
Two-Day Traffic Count Sample (All entries have been multiplied by 106). 
  

 
“Two-Week” Sample 

 
Two Day Sample 

 
ATR # 

 
Post. Mean 

 
Post. St. 
Dev 

 
λ.025 

 
λ.975 

 
Post.Mea
n  

 
Post. St. 
Dev 

 
λ.025 

 
λ.975 

 
175 

 
3.543 

 
0.991 

 
1.876 

 
5.731 

 
4.429 

 
1.433 

 
2.260 

 
7.847 

 
52 

 
--- 

 
---- 

 
---- 

 
---- 

 
49.16 

 
24.49 

 
15.69 

 
106.2 

 
187 

 
1.533 

 
0.629 

 
0.575 

 
3.012 

 
1.900 

 
0.897 

 
0.653 

 
4.081 

 
200 

 
0.921 

 
0.345 

 
0.389 

 
1.720 

 
1.218 

 
0.468 

 
0.452 

 
2.259 

 
204 

 
5.571 

 
1.728 

 
2.718 

 
9.377 

 
7.333 

 
2.563 

 
3.484 

 
13.38 

 
208 

 
--- 

 
--- 

 
--- 

 
--- 

 
5.059 

 
1.593 

 
2.613 

 
8.771 

 
223 

 
7.066 

 
2.785 

 
2.861 

 
13.36 

 
6.828 

 
3.097 

 
2.440 

 
14.12 

 
3 

 
3.126 

 
1.524 

 
0.943 

 
6.754 

 
3.538 

 
1.833 

 
0.984 

 
9.083 

 
50 

 
6.451 

 
2.926 

 
2.213 

 
13.31 

 
5.868 

 
1.628 

 
3.311 

 
9.673 

 
110 

 
5.390 

 
1.224 

 
3.214 

 
8.075 

 
6.816 

 
3.283 

 
2.147 

 
14.88 

 
164 

 
5.395 

 
1.634 

 
2.680 

 
9.181 

 
5.993 

 
2.177 

 
2.663 

 
11.05 

 
166 

 
3.306 

 
1.605 

 
0.974 

 
7.197 

 
3.512 

 
1.803 

 
0.974 

 
7.862 

 
170 

 
5.186 

 
2.351 

 
1.781 

 
10.82 

 
5.523 

 
2.642 

 
1.823 

 
11.87 

 
172 

 
--- 

 
--- 

 
--- 

 
--- 

 
4.439 

 
1.430 

 
2.155 

 
7.675 

 
179 

 
9.170 

 
4.388 

 
2.746 

 
19.67 

 
10.03 

 
5.316 

 
2.910 

 
23.76 

 
197 

 
--- 

 
--- 

 
--- 

 
--- 

 
7.448 

 
3.239 

 
2.790 

 
15.14 

 
211 

 
4.418 

 
2.100 

 
1.401 

 
9.355 

 
4.647 

 
2.363 

 
1.331 

 
10.41 
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Table 3.5. Comparison of Bayesian and Traditional Accident Rate Estimates Using Two-Day 
Traffic Count Samples. (All entries have been multiplied by 106). 
 

 
ATR # 

 
Posterior 
Mean 

 
Factored 
Estimate 

 
Unfactored 
Estimate 

 
Posterior 
S.D. 

 
Factored 
RMSE 

 
Unfactored 
RMSE 

 
175 

 
4.429 

 
3.948 

 
3.571 

 
1.433 

 
1.512 

 
1.67 

 
52 

 
49.16 

 
43.622 

 
39.455 

 
24.49 

 
25.109 

 
26.345 

 
187 

 
1.900 

 
1.663 

 
1.504 

 
0.897 

 
0.928 

 
0.981 

 
200 

 
1.218 

 
1.006 

 
0.910 

 
0.468 

 
0.514 

 
0.56 

 
204 

 
7.333 

 
6.390 

 
5.780 

 
2.563 

 
2.731 

 
2.997 

 
208 

 
5.059 

 
4.429 

 
4.007 

 
1.593 

 
1.713 

 
1.909 

 
223 

 
6.828 

 
8.398 

 
5.391 

 
3.097 

 
3.472 

 
3.414 

 
3 

 
3.538 

 
3.352 

 
2.800 

 
1.833 

 
1.842 

 
1.976 

 
50 

 
5.868 

 
6.508 

 
5.437 

 
1.628 

 
1.749 

 
1.684 

 
110 

 
6.816 

 
5.653 

 
4.723 

 
3.283 

 
3.483 

 
3.893 

 
164 

 
5.993 

 
5.819 

 
4.862 

 
2.177 

 
2.184 

 
2.453 

 
166 

 
3.512 

 
3.334 

 
2.785 

 
1.803 

 
1.812 

 
1.944 

 
170 

 
5.523 

 
5.265 

 
4.399 

 
2.642 

 
2.655 

 
2.871 

 
172 

 
4.439 

 
4.558 

 
3.911 

 
1.430 

 
1.435 

 
1.524 

 
179 

 
10.03 

 
9.865 

 
8.242 

 
5.316 

 
5.319 

 
5.609 

 
197 

 
7.448 

 
7.108 

 
5.939 

 
3.239 

 
3.257 

 
3.573 

 
211 

 
4.647 

 
4.439 

 
3.709 

 
2.363 

 
2.372 

 
2.542 
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CHAPTER 4 

SUMMARY AND CONCLUSIONS 
 

This report began by pointing out that estimated accident rates play crucial roles in traffic 

safety programming, and by arguing that a Bayesian approach to statistical inference better supports 

the type of decisions that safety engineers need to make. It was noted that conventional statistical 

approaches to estimating accident rates make an assumption that the total traffic volume (or vehicle-

miles of travel) at a location is known with certainty, but that in almost all practical instances traffic 

totals are estimated from short traffic count samples. This means that to some degree the total traffic 

is uncertain, and that this uncertainty will increase the uncertainty associated with an estimated 

accident rate. In principle this could in turn lead to falsely identifying a site as a potential high-

hazard location, or overestimating the effect of a safety countermeasure in a before-and-after study. 

Three main objectives were specified for this study: 

(1) To develop a method for estimating accident rates that accounted for uncertainty which 

arises when using estimated traffic totals, 

(2) To assess the effect of the size of traffic count sample on the precision of an accident rate 

estimate, and  

(3) To assess the likely increase in error arising when one uses traditional accident rate 

estimates. 

Objective (1) was achieved by first expanding the work in Davis (1997a) and developing a 

Bayesian approach to estimating traffic volume totals from short-count samples. The resulting 

relationships between the accident count, the accident rate, the traffic total and the traffic sample 

were somewhat complicated, but it turned out that a relatively new computational technique called 

Gibbs sampling could be used to perform the necessary computations, with a surprisingly small 

amount of additional analytic work. Objective (2)was then achieved by comparing the uncertainty 

resulting when attempting to estimate accident rates using three different traffic count samples: (i) 

close to a full year’s traffic count data, (ii) approximately two weeks of traffic count data and (iii) 

two days of traffic count data.  Objective (3) was achieved by comparing the increase in expected 

error arising when using traditional accident rates estimates based on the two-day traffic count 

samples. 
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Table 4.1 displays the expected errors arising when using Bayesian estimates for the three 

traffic count samples, and when using a factored estimate of AADT to estimate the annual traffic 

total, to estimate 1992 accident rates at 17 Mn/DOT outstate ATR sites.  Because these expected 

errors are conditional on the actual data they do not tell exactly the same story in all cases, but 

generally one can see that (1) the error arising when using the two-week count is comparable to the 

error arising when using the “full-year” count, (2) error increases by 20%-50% when going from the 

two-week count to the two-day count, and (3) the additional error incurred when using the traditional 

rate estimate instead of the two-day Bayesian estimate is not substantial. 

Our first conclusion is based on what is arguably our most interesting finding, that the 

precision achieved by full-counting is also achieved by the two-week sample. This means that a 

safety programming decisions  based on well-chosen two-week traffic samples should be as accurate 

as decisions made using full traffic counts, so that safety programs can be based on traffic sampling 

without suffering a loss in precision.  Two-week count samples are not all that common however, 

two-day weekday counts being much more typical. If we take the factored AADT estimates based on 

two-day traffic samples as being representative of current practice, then our second conclusion is 

that there does not seem to be a substantial difference between the point estimates produced by 

current practice and the point estimates one would get using a Bayesian procedure on the same data. 

However, properly interpreting the importance of a point estimate requires some sense of the 

estimate’s precision, and it is here that weaknesses in current practice appear. First, the estimated 

variance formula (1.3) would normally be used to assess the precision of an estimated accident rate, 

even if the total traffic count was also estimated using a two-day sample. In practice, this means that 

the safety engineer would act as if   the entries in the “Full-Count” column in Table 4.1 gave the 

correct assessment of estimator precision when the actual precision is given by the entries in the “2-

Day Sample” and the “Factored AADT” columns of Table 4.1. Thus current practice tends to 

overstate the precision of accident rate estimates based on two-day traffic samples. Second, as 

illustrated in Table 3.3, current practice treats the distribution of an estimated accident rate as being 

approximately normal, so that confidence intervals will be symmetric about the point estimate. This 

normal approximation is commonly used in identifying potential high-hazard locations via the rate 

quality-control method. However, at least for these data, the likelihood functions tend to be skewed, 

rather than symmetric, and this is reflected in the shapes of the posterior densities. This means that 
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the bounds defining a confidence interval will be different than those based on the normal 

approximation, as one can see by comparing Tables 3.1 and 3.2 to Table 3.3. Thus our third 

conclusion is that for traffic counting programs based on two-day samples,  traditional accident rate 

estimation methods, which implicitly assume full counting and normally distributed accident rate 

estimates, overstate the precision that can actually be provided and  this overstatement of precision 

can possibly lead to inefficiencies in safety decision making. 

These conclusions suggest two recommendations for improving current safety practice. First, 

for analyses involving detailed investigation of individual sites, such as when one is attempting to 

identify countermeasures, or attempting to assess the effect of a countermeasure in a before-and-

after study, we recommend that an extended traffic count sample of at least two weeks duration be 

included as one of the traffic engineering studies done at the site. For before-and-after studies this 

count should taken in both the before and the after periods. This should reduce the error in 

estimating accident rates to about what one could expect from full counting. We also note that Davis 

(1997a) found that at least when considering  Mn/DOT’s outstate factor groups, a count sample 

consisting of a one-week count in March and a one-week count in July proved as effective in 

identifying a site’s factor group as did an “optimal” sample design. This suggests that when possible, 

making two one-week counts in different months could provide some additional precision when 

estimating total traffic at a site. 

Second, we recognize that most agencies do not have the resources to conduct two-week 

counts on a network-wide, routine basis. Assuming that the two-day count remains a mainstay of 

traffic counting programs, we recommend that current safety programming methods be enhanced so 

as to correctly account for the uncertainty in estimated accident rates. This should be seen as a long-

term rather than short term recommendation however, since although promising statistical methods 

do exist, as demonstrated by the work reported in Chapter 3, they are not available in user friendly 

implementations, and their correct use requires statistical knowledge beyond that normally taught to 

traffic engineers.  In particular, as the authors of the BUGS software note, “Gibbs sampling can be 

dangerous!” and at present it is not possible to give a general set of rules for correct application of 

MCMC methods. Rather each application must be judged on a case-by-case basis. One alternative to 

MCMC methods would be to perform numerical integration in (3.1). As computers become faster, 

this approach may become feasible for network wide analyses. 
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In conclusion, the field of statistics has undergone something of a computational revolution 

during the past 10 years, and the long-term dependence on simplistic by computationally tractable 

statistical models has been lessened. One such simplification has been to treat the problem of 

estimating traffic totals as separate and independent of the problem of estimating accident rates. In 

principle, it is now possible to treat these problems in a unified manner, and the question of interest 

is how to make what is possible in principle a practical reality. 

 

Table 4.1 Estimation Error Summary from Different Traffic Samples. 
 
Mn/DOT ATR # 

 
“Full-Count” 
Stan. Dev. 

 
“2-Week” Sample 
 Stan. Dev. 

 
2-Day Sample  
Stan. Dev. 

 
Factored AADT 
RMSE 

 
175 

 
0.913 

 
0.991 

 
1.433 

 
1.512 

 
52 

 
18.98 

 
---- 

 
24.49 

 
25.109 

 
187 

 
0.695 

 
0.629 

 
0.897 

 
0.928 

 
200 

 
0.432 

 
0.345 

 
0.468 

 
0.514 

 
204 

 
1.558 

 
1.728 

 
2.563 

 
2.731 

 
208 

 
1.208 

 
---- 

 
1.593 

 
1.713 

 
223 

 
3.778 

 
2.785 

 
3.097 

 
3.472 

 
3 

 
1.655 

 
1.542 

 
1.833 

 
1.842 

 
50 

 
3.536 

 
2.926 

 
1.628 

 
1.749 

 
110 

 
1.122 

 
1.224 

 
3.283 

 
3.483 

 
164 

 
1.467 

 
1.634 

 
2.177 

 
2.184 

 
166 

 
1.916 

 
1.605 

 
1.803 

 
1.812 

 
170 

 
2.240 

 
2.351 

 
2.642 

 
2.655 

 
172 

 
1.549 

 
---- 

 
1.430 

 
1.435 

 
179 

 
3.612 

 
4.388 

 
5.316 

 
5.319 

 
197 

 
2.046 

 
---- 

 
3.239 

 
3.257 

 
211 

 
2.060 

 
2.100 

 
2.363 

 
2.372 

 



41 

REFERENCES 

 

Ang, A., and Tang, W. (1975) Probability Concepts in Engineering Planning and Design, Volume 1-
Basic Principles, New York, Wiley and Sons. 
 
Box, P., and Oppenlander, J. (1976) Manual of Traffic Engineering Studies, Fourth Edition, 
Washington, DC, ITE. 
 
Carlin, B., and Louis, T. (1996) Bayes and Empirical Bayes Methods for Data Analysis, London, 
Chapman and Hall. 
 
Brockwell, P., and Davis, R. (1991) Time Series: Theory and Methods, New York, Springer-Verlag. 
 
Davis, G. (1997a) Estimation Theory Approach to Monitoring and Updating Average Daily Traffic, 
Report 97-05, Minnesota Dept. of Transportation, St. Paul, MN. 
 
Davis, G.  (1997b) Accuracy of estimates of mean daily traffic: A review, Transportation Research 
Record, 1593,  12-16. 
 
Davis, G. and Guan, Y, (1996) Bayesian assignment of coverage count locations to factor groups 
and estimation of mean daily traffic, Transportation Research Record, 1542,30-37. 
 
Devore, J. (1995) Probability and Statistics for Engineering and the Sciences, Fourth Edition, Pacific 
Grove, CA, Brooks/Cole Publishing. 
 
Edwards, W., Lindman, H., and Savage, L. (1963) Bayesian statistical inference for psychological 
research, Psychological Review, 70, 193. 
 
Gallant, R., and White, W. (1988) A Unified Theory of Estimation and Inference for Nonlinear 
Dynamic Models, New York, Basil-Blackwell. 
 
Gerlough, D., and Huber, M. (1975) Statistics with Applications to Highway Traffic Analysis, 
Second Edition,  Westport, CT, Eno Foundation. 
 
Greenshields, B., and Weida, F. (1952) Statistics with Applications to Highway Traffic Analysis, 
Saugatuck, CT, Eno Foundation. 
 
Hahn, G., and Shapiro, S. (1967) Statistical Models in Engineering, New York, Wiley and Sons. 
 
Hauer, E. (1997) Observational Before-After Studies in Road Safety, New York, Elsevier Science. 
 
Homburger, W., and Kell, J. (1988) Fundamentals of Traffic Engineering, Twelfth Edition, 
Berkeley, CA, Institute of Transportation Studies, University of California. 
 



42 

Johnson, N., Kotz, S., and Balakrishnan, N. (1994) Continuous Univariate Distributions, Volume 1, 
Second Edition, New York, Wiley and Sons. 
 
King, L.E. (1994) Statistical analysis, in Robertson, H., et al. (Ed) Manual of Transportation 
Engineering Studies, Englewood Cliffs, NJ, Prentice-Hall. 
 
Marlow, N. (1967) A normal limit theorem for power sums of independent random variables, Bell 
Systems Technical Journal, 46, 2081-2089. 
 
Mathsoft (1995) Mathcad 6.0+ User’s Guide, Mathsoft, Inc. 
 
Mathworks, (1992) MATLAB Version 4, Mathworks, Inc. 
 
McShane, W., and Roess, R. (1990) Traffic Engineering, Englewood Cliffs, NJ, Prentice-Hall. 
 
Meyer, P. (1970) Introductory Probability and Statistical Applications, (2nd edition), Reading, MA, 
Addison-Wesley. 
 
Seber, G., and Wild, C. (1989) Nonlinear Regression, New York, Wiley and Sons. 
 
Spiegelhalter, D., Thomas, A., Best, N., and Gilks, W. (1995) BUGS 0.5 Reference Manual, 
Cambridge, UK, MRC Biostatistics Unit, Cambridge University. 
 



 

APPENDIX 

 

ASYMPTOTIC APPROXIMATION FOR TOTAL TRAFFIC COUNT 



 



A-1 

APPENDIX 

 

ASYMPTOTIC APPROXIMATION FOR TOTAL TRAFFIC COUNT 

As in Chaper 2, let zt, t=1,.., N denote a sequence of lognormal random variables, and let 

zN=Σt zt denote their sum. Ф(x) denotes the cumulative normal distribution function. As above, we 

will assume that the zt follow the model 

 

and the error terms {et} follow a stationary p-order autoregressive (AR(p)) process. Marlow (1967) 

showed that if their existed sequences of positive real number {µN} and {vN} such that  
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for all t and k.  It is then possible to show that 
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whenever the  ρk are the autocorrelations for a stationary AR(p) process. Similarly, 
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central limit theorems to verify condition (b), as done by Marlowe (1967). A more general central 

limit theorem, allowing for dependence of the sort generated by the AR(p) model for the errors et , is 

stated in Theorem 5.3 in Gallant and White (1988, p.76). In particular, if we can show that: 
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then condition (b) will be satisfied, and we are done.  

(1) Let ω=exp(σ2), and since zt is lognormal its fourth central moment is known, so that 

(2) This condition is satisfied trivially, since 

implies 

 

(3) This condition is also satisfied trivially since the fact that the noise process {et} is a 

stationary AR(p) process implies that it is α-mixing of all orders. 

(4) This follows from the fact, demonstrated above, that vN
2=O(N). 
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EXAMPLE MODEL SPECIFICATIONS AND OUTPUT FROM BUGS 
 
ATR #175, Two-Day Sample: 
 
Welcome to BUGS on 22 nd Dec 1998  at 13:5:27 
BUGS : Copyright (c) 1992 .. 1995 MRC Biostatistics Unit. 
All rights reserved. 
Version 0.600 for 32 Bit PC. 
For general release: please see documentation for disclaimer. 
The support of the Economic and Social Research Council (UK) 
is gratefully acknowledged. 
Bugs>compile("bayrat2.bug") 
model bayesrate; 
const 
           N=2, 
           M=3, 
           NS=50; 
var 
    z[N],month[N], day[N], mf[12,M],wf[7,M], 
    y[N], R[N,N],T[N,N],  ybar[N], p[M],m[M],ps[NS],sigprior[NS,3], 
    u, d[N], yTbar, alg, yT, yS,sig2,taus,sigx,phi, 
    groupid, mu1, mu2,yearcnt, loglambda, lambda, N1, N2 ; 
data 
   mf in "monfac.dat", 
   wf in "dayfac.dat", 
   sigprior in "sigprior.dat", 
   N1, N2 in "rst2175.dat", 
   z, month, day in "day2175.dat"; 
inits in "bayrat.in"; 
{ 
m[1]<-370.385; m[2]<-374.451; m[3]<-384.905; 
for (i in 1:N) { 
   
  R[i,i] <- 1/(sig2*(1-pow(phi,2))); 
  y[i] <- log(z[i]); 
  ybar[i] <- u+mf[month[i],groupid]+wf[day[i],groupid]; 
  for (j in i+1 :N) 
   { R[i,j] <- -phi/(sig2*(1-pow(phi,2))); 
    R[j,i] <- -phi/(sig2*(1-pow(phi,2))); 
    } 
  d[i] <- exp(mf[month[i],groupid] + wf[day[i],groupid]); 
  } 
for (j in 1:M){ 
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 p[j] <- 1/M; 
 } 
for (j in 1:NS) {ps[j] <- 1/NS;} 
 
y[] ~ dmnorm(ybar[], R[,]); 
N1 ~ dpois(mu1); 
N2 ~ dpois(mu2); 
 
T[,] <- inverse(R[,]); 
alg <- log(m[groupid] - sum(d[])); 
yTbar <- alg + u + sig2/2; 
yS <- log(sum(z[])); 
sig2 <- sigprior[sigx,1]; 
phi <- sigprior[sigx,2]; 
taus <- 1/(exp(sig2)-1); 
log(mu1) <- yS + loglambda; 
log(mu2) <- yT + loglambda; 
lambda <- exp(loglambda); 
yearcnt <- exp(yT) + sum(z[]); 
 
yT ~ dnorm(yTbar, taus); 
u ~ dnorm(0,.001); 
loglambda ~ dnorm(0, .001); 
groupid ~ dcat(p[]); 
sigx ~ dcat(ps[]); 
} 
 
 
 
 
Parsing model declarations. 
Loading data value file(s). 
Warning -- expected data read before end of file 
Warning -- expected data read before end of file 
Warning -- expected data read before end of file 
Warning -- expected data read before end of file 
Warning -- expected data read before end of file 
Loading initial value file(s). 
Parsing model specification. 
Checking model graph for directed cycles. 
Generating code. 
Generating sampling distributions. 
Generating initial values 
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Checking model specification. 
Choosing update methods. 
compilation took  00:00:02  
Bugs> 
Bugs>init() 
Variable not found or bad command syntax 
Bugs> 
Bugs>data() 
       15051           7           3 
       15554           7           4 
 
Bugs> 
Bugs>update(2000)      time for    2000   updates was  00:00:19  
Bugs> 
Bugs>monitor(lambda) 
Bugs> 
Bugs>monitor(u) 
Bugs> 
Bugs>monitor(sig2) 
Bugs> 
Bugs>monitor(phi) 
Bugs> 
Bugs>monitor(R) 
Bugs> 
Bugs>monitor(taus) 
Bugs> 
Bugs>monitor(yT) 
Bugs> 
Bugs>monitor(yearcnt) 
Bugs> 
Bugs>monitor(groupid) 
Bugs> 
Bugs>update(5000)      time for    5000   updates was  00:00:48  
Bugs> 
Bugs>diag(lambda) 
                  mean       sd       mean       sd        Z       sample   
                4.51E-6   2.15E-13  4.51E-6   1.26E-13 -2.30E-2     5000   
Bugs> 
Bugs>diag(u) 
                  mean       sd       mean       sd        Z       sample   
                9.38      7.94E-3   9.38      3.53E-3  -2.24E-2     5000   
Bugs> 
Bugs>diag(sig2) 
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                  mean       sd       mean       sd        Z       sample   
                1.84E-2   1.12E-5   2.03E-2   1.36E-5  -1.87        5000   
Bugs> 
Bugs>diag(phi) 
                  mean       sd       mean       sd        Z       sample   
                4.51E-1   4.05E-4   4.53E-1   1.97E-4  -3.72E-1     5000   
Bugs> 
Bugs>diag(taus) 
                  mean       sd       mean       sd        Z       sample   
                7.95E+1   6.83E+1   7.75E+1   4.30E+1   9.45E-1     5000   
Bugs> 
Bugs>diag(yT) 
                  mean       sd       mean       sd        Z       sample   
                1.53E+1   8.71E-3   1.53E+1   5.10E-3  -2.79E-1     5000   
Bugs> 
Bugs>diag(yearcnt) 
                  mean       sd       mean       sd        Z       sample   
                4.63E+6   1.73E+11  4.70E+6   1.28E+11 -6.19E-1     5000   
Bugs> 
Bugs>stats(lambda) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                4.520E-6   1.464E-6   2.227E-6   7.902E-6   4.314E-6     5000   
Bugs> 
Bugs>stats(u) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                9.384E+0   1.939E-1   9.021E+0   9.716E+0   9.413E+0     5000   
Bugs> 
Bugs>stats(sig2) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                2.006E-2   1.976E-2   5.945E-3   7.592E-2   1.430E-2     5000   
Bugs> 
Bugs>stats(phi) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                4.556E-1   1.394E-1   2.006E-1   6.612E-1   4.556E-1     5000   
Bugs> 
Bugs>stats(R) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
[1,1]           1.046E+2   6.437E+1   1.828E+1   2.965E+2   8.739E+1     5000   
[1,2]          -5.058E+1   4.135E+1  -1.950E+2  -7.532E+0  -3.608E+1     5000   
[2,1]          -5.058E+1   4.135E+1  -1.950E+2  -7.532E+0  -3.608E+1     5000   
[2,2]           1.046E+2   6.437E+1   1.828E+1   2.965E+2   8.739E+1     5000   
Bugs> 
Bugs>stats(taus) 
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                  mean        sd       2.5% :  97.5%  CI    median      sample 
                7.796E+1   4.259E+1   1.267E+1   1.676E+2   6.942E+1     5000   
Bugs> 
Bugs>stats(yT) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                1.532E+1   2.350E-1   1.488E+1   1.579E+1   1.532E+1     5000   
Bugs> 
Bugs>stats(yearcnt) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                4.683E+6   1.202E+6   2.932E+6   7.266E+6   4.560E+6     5000   
Bugs> 
Bugs>stats(groupid) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                2.052E+0   8.233E-1   1.000E+0   3.000E+0   2.000E+0     5000   
Bugs> 
Bugs>q() 
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ATR #175, “Two-Week” Sample 
 
Welcome to BUGS on 14 th Dec 1998  at 20:36:4 
BUGS : Copyright (c) 1992 .. 1995 MRC Biostatistics Unit. 
All rights reserved. 
Version 0.600 for 32 Bit PC. 
For general release: please see documentation for disclaimer. 
The support of the Economic and Social Research Council (UK) 
is gratefully acknowledged. 
Bugs>compile("bayesrat.bug") 
model bayesmdt; 
const 
           N=13, 
           M=3, 
           NS=50; 
var 
    z[N],month[N], day[N], mf[12,M],wf[7,M], 
    y[N], R[N,N],T[N,N],  ybar[N], p[M],m[M],ps[NS],sigprior[NS], 
    u,nu, d[N], yTbar, alg, yT, yS,sig2,taus,sigx, 
    groupid, mu1, mu2,yearcnt, loglambda, lambda, N1, N2 ; 
data 
   mf in "monfac.dat", 
   wf in "dayfac.dat", 
   sigprior in "sigprior.dat", 
   z, month, day in "samp175.dat", 
   N1, N2 in "rest175.dat"; 
inits in "bayesmdt.in"; 
{ 
m[1]<-370.385; m[2]<-374.451; m[3]<-384.905; 
for (i in 1:N) { 
  R[i,i] <- .028; 
  y[i] <- log(z[i]); 
  ybar[i] <- u+mf[month[i],groupid]+wf[day[i],groupid]; 
  for (j in i+1 :N) 
   { R[i,j] <- 0; 
    R[j,i] <- 0 
    } 
  d[i] <- exp(mf[month[i],groupid] + wf[day[i],groupid]); 
  } 
for (j in 1:M){ 
 p[j] <- 1/M; 
 } 
for (j in 1:NS) {ps[j] <- 1/NS;} 
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y[] ~ dmnorm(ybar[], T[,]); 
N1 ~ dpois(mu1); 
N2 ~ dpois(mu2); 
alg <- log(m[groupid] - sum(d[])); 
yTbar <- alg + u + sig2/2; 
yS <- log(sum(z[])); 
nu <- N+2 ; 
sig2 <- sigprior[sigx]; 
taus <- 1/(exp(sig2)-1); 
log(mu1) <- yS + loglambda; 
log(mu2) <- yT + loglambda; 
lambda <- exp(loglambda); 
yearcnt <- exp(yT) + sum(z[]); 
yT ~ dnorm(yTbar, taus); 
u ~ dnorm(0,.001); 
loglambda ~ dnorm(0, .001); 
T[,] ~ dwish(R[,],nu); 
groupid ~ dcat(p[]); 
sigx ~ dcat(ps[]); 
} 
 
Parsing model declarations. 
Loading data value file(s). 
Warning -- expected data read before end of file 
Warning -- expected data read before end of file 
Warning -- expected data read before end of file 
Warning -- expected data read before end of file 
Warning -- expected data read before end of file 
Loading initial value file(s). 
Parsing model specification. 
Checking model graph for directed cycles. 
Generating code. 
Generating sampling distributions. 
Generating initial values 
Checking model specification. 
Choosing update methods. 
compilation took  00:00:02  
Bugs>update(2000)      time for    2000   updates was  00:00:44  
Bugs>monitor(lambda) 
Bugs>monitor(u) 
Bugs>monitor(sig2) 
Bugs>monitor(taus) 
Bugs>monitor(yT) 
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Bugs>monitor(yearcnt) 
Bugs>monitor(groupid) 
Bugs>update(5000)      time for    5000   updates was  00:01:51  
Bugs>diag(lambda) 
                  mean       sd       mean       sd        Z       sample   
                3.51E-6   4.92E-14  3.57E-6   2.17E-14 -1.03        5000   
Bugs>diag(u) 
                  mean       sd       mean       sd        Z       sample   
                9.59      7.38E-5   9.59      2.68E-5  -4.27E-1     5000   
Bugs>diag(sig2) 
                  mean       sd       mean       sd        Z       sample   
                2.87E-2   2.74E-5   2.81E-2   1.48E-5   4.05E-1     5000   
Bugs>diag(taus) 
                  mean       sd       mean       sd        Z       sample   
                6.36E+1   5.15E+1   6.41E+1   3.08E+1  -2.47E-1     5000   
Bugs>diag(yT) 
                  mean       sd       mean       sd        Z       sample   
                1.55E+1   2.18E-3   1.55E+1   8.88E-4   8.04E-1     5000   
Bugs>diag(yearcnt) 
                  mean       sd       mean       sd        Z       sample   
                5.86E+6   9.43E+10  5.80E+6   3.47E+10  8.28E-1     5000   
Bugs>stats(lambda) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                3.569E-6   1.023E-6   1.863E-6   5.847E-6   3.456E-6     5000   
Bugs>stats(u) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                9.595E+0   2.394E-2   9.550E+0   9.643E+0   9.595E+0     5000   
Bugs>stats(sig2) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                2.746E-2   2.851E-2   6.261E-3   9.936E-2   1.686E-2     5000   
Bugs>stats(taus) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                6.483E+1   4.127E+1   9.572E+0   1.592E+2   5.878E+1     5000   
Bugs>stats(yT) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                1.551E+1   1.720E-1   1.519E+1   1.591E+1   1.550E+1     5000   
Bugs>stats(yearcnt) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                5.779E+6   1.030E+6   4.187E+6   8.377E+6   5.646E+6     5000   
Bugs>q() 
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