ANALYSIS OF ON-BOARD SURVEY IN MID-CITIES AREA WTACMBRARY

24161268

TABLE OF CONTENTS

I. INTRODUCTION
il. data collection and preparation
III. ANALYSIS OF RETURNS
IV. RECOMMENDATIONS FOR FURTHER ANALYSIS
APPENDICES
A. SAMPLE SIZE ESTIMATION:
B. CHECKER SCHEDULE
C. UNIT RECORD LAYOUT
D. CONFIDENCE INTERVAL FOR VARIOUS PROPORTIONS

SECTION I

INTRODUCTION

As part of an intensive short-term transit improvement program initiated by SCRTD to evaluate the quality and efficiency of bus service in the Los Angeles Metropolitan Area, CENTS was assigned the task of examining and recommending improvements that could be achieved within available or reasonable resources in The Mid-Cities area. This assignment resulted in a series of recommendations presented to SCRTD in May, 1975. These recommendations were subsequently approved by the Board of Directors of SCRTD and were implemented in March, 1976.

CENTS, as part of their surface planning contract, was given the assignment of evaluating the new service that was to be implemented in the Mid-Cities area. This was to be done in part through two on-board surveys - one conducted prior to the implementation of the new service and one some months after the service had been in operation. Due to the delay in the implementation of the new service, the surveys of the new service were undertaken late in June and time did not permit any analysis to be undertaken. This report presents the results of the survey taken in February, 1976 before the new service was implemented. Recommendations are also included for further analysis that should be undertaken with the on-board "after" surveys to complete the evaluation of the new service.

SECTION II

DATA COLLECTION AND PREPARATION

Prior to implementation of the new service, SCRTD operated 15 lines within the area. Table II-1 displays the A.M. peak headway, the number of vehicles required, the percent of operating time within the area, the daily patrons, and other operating statistics for those lines. Also shown are three additional lines that operate only on the periphery of the area but are included due to the fact that the new service effected these lines.

Four types of routes are defined in Table II-1 as follows:
W: Those lines whose stops are totally within the MidCities area.

E: Those lines with one end within the Mid-Cities area and one outside.

T: Those lines with stops in the Mid-Cities area but $-\cdots$ whose ends are both outside the area.

0: Those lines whose stops are all outside the area.

DATA COLLECTION

The patrons of interest are those who either get on or off a bus within the Mid-Cities area. The first step in designing the sampling plan was to determine how many patrons are included in this population. The second was to determine how many returns would be required in the sample and the third was to develop the bus runs to be sampled and the number of checkers required. These are discussed in the following sections.

Daily Patrons Within Area

In order to estimate the daily patronage within the study area, CENTS used the total daily patronage on each route and the percent of operating tine spent in the area (see Table II-1). The percent of operating miles within the area was also computed to insure that the figures being used for each line were comparable. The total number of daily patrons within the area was estimated to be 6300 using this method. This compares to 6493 used by CENTS in their May, 1975 final report. .

Sample Size Determination

The determination of sample size was based upon the proposition that information would be required on each specific line. The population
figure used was therefore the total daily ridership on a line whose boarding stop or alighting stop was within the Mid-Cities area. Table Il-2 displays the total daily patronage within the area for each line and the sample required for the anaylsis. Appendix A contains the statistical formulation used to arrive at the sample sizes shown in Table II-2.

Schedule of Bus Runs and Checkers Required

The return rate for completed surveys was estimated to be 75-percent of those handed out. This figure was used to determine the actual number of surveys to be given to patrons on each line. Runs were selected based upon the number of expected riders to be found on that run. This number was determined by examining the available riding checks for those lines of interest. The number of checkers required for each line is displayed in Table II-2 and Appendix B presents the specific runs that the checkers were to ride.

The schedule for the checkers includes the stop where they were to get on the bus and the stop where they were to get off the bus. Since there was no interest in riders who boarded and alighted from a bus outside the Mid-Cities area some bus lines were not riden from the beginning to the end. For those lines that were within (W) the area or outside (0) the area, surveys were handed out at ali stops along the route. For those lines that end (E) in the area, the checker aboard a bus only rode as far out of the area as needed to enable the collection of surveys from those who boarded within the area. The checker would then cross the street to board the bus selected to be riden that was going in the opposite direction. For those buses traveling into the area, surveys were handed out to all people who boarded the bus. For buses traveling out of the area, surveys were only handed to those persons who boarded the bus within the study area. A similar procedure was used for those lines that go through (T) the study area. The selected last stop was either at the end of the line or at an interim stop outside the Mid-Cities area.

DATA PREPARATION
The surveys that were returned were subjected to coding, key punching, and computer analysis. Two types of records were produced. The first record consisted of all the entries on the on-board survey except the address in Item \#5. The coding sheet and unit record layout for the records are shown in Appendix C. Since the data from the "after" surveys in the Mid-Cities area would not be available for analysis before the expiration of the contract, a decision was made to limit the geographic coding of the bus stops to areas roughly equivalent to the conmunities making up the Mid-Cities area. The alternative would have been to convert all intersections to geographic coordinates by use of the CENSUS Bureau's ADMATCH program and DIME files. The boundaries for the twelve communities are defined in Table II-3. Included in the geographic coding were certain destinations outside the Mid-Citie's area. These codes are listed and described in Table II-3 and in Appendix C.

 Ends In Through 0
7
0
0
0

－－

This broad definition of the geographic boundaries prevents certain analysis from being undertaken. The need for finer resolution would only, be helpful if the "after" data were available. For the purposes of the analysis of the "before" data, the subject of this report, the geographic data coded is adequate to determine the existing travel patterns in the Mid-Cities area before the new service went into effect.

The second type of record produced was the address record. Appendix C presents the unit record layout for the address record. These are formatted so that they can be used with the CENSUS Bureau DIME files and ADMATCH program. Of the 1985 surveys returned, 1752 (89 -percent) had codeable addresses. These records were only coded and not keypunched since any analysis of these records would only be done in conjunction with the "after" data.

SECTION III

ANALYSIS OF RETURNS

A total of 4760 surveys were issued to checkers to be handed out to patrons aboard the buses that were selected for them to ride. The number was based upon previous riding checks the SCRTD conducted on these runs. Only 2170 surveys were handed out to passengers. It would appear that considerably fewer people were riding these specific runs than was estimated from the data. A total of 1985 surveys were returned. Of these, 802 had boarding or alighting stops within the Mid-Cities area with an additional 86 having unknown boarding and alighting stops. A total of 691 surveys were returned from the three lines operating outside the area. Table III-1 summarizes the returns by line. Of the 15 lines operating in the Mid-Cities area, only two have survey returns that represent less than 10 percent of the estimated ridership.

Where averages for the entire Mid-Cities area were required for the analysis, the data has been weighted to take into account the different patronage on each line. Table III-2 presents a comparison between the total patronage by community estimated by CENTS in their May, 1975 final report and the total patronage by community estimated from the survey results. The total patronage estimate differs by less than 2 percent. The distribution by community is different by as much as a factor of 10 for Santa Fe Springs and Lakewood. The difference shown by community is most likely due to the geographic boundaries used to delineate a community. The highly irregular boundaries used by CENTS in May 1975 are the actual legal boundaries of the communities, including the pockets of Los Angeles County scattered throughout the Mid-Cities area. In this recent exercise the boundaries used are those described in Table II-3. These boundaries were designed to basically follow simple geographic lines in order to make the coding easy and to relate community travel to more realistic geographic areas.

COMPARISON OF LINES BY RIDERSHIP CHARACTERISTICS

Table III-3 presents a distribution, for those lines operating in the Mid-Citites area, of various characteristics of the riders either boarding or alighting within the Mid-Cities area. A weighted average and 95 -percent confidence interval for the entire Mid-Cities area has been calculated. Those lines that are statistically different from the MidCities average are denoted by an asterik. The confidence interval for an entry for an individual line can be obtained by examining the number of surveys returned for a specific line indicated in the last column of Table III-1. and Table D-1 in Appendix D which shows the 95-percent confidence interval for various sample sizes and proportions.

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

* The percentage represents the portion of the ridership of the line, within the area and the total line, that handed in a survey with responses on it.

> TABLE III-3
> CHARACTERTSTICS OF RIDERS BOARDING AND ALIGHTING IN MID-CITIES AREA

$$
\begin{aligned}
& \begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
2 \\
<
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { x } \\
\text { an } \\
\text { co }
\end{array}
\end{aligned}
$$

5

TABLE III-3
(continued)

TYPE OF FARE
EDUCATION


```
                                    TABLE III-3
(continued)
```

TRIP PURPOSE FOR PERSONS BOARDING AND ALIGHTING IN MID－CITIES AREA

	Line	Work	Social／				
			Shop	School	Rec	Medical	Other
m	34	$76.5 *$	5.9 ＊	7.8	3.9	3.9	$2.0{ }^{*}$
m	38	22．2＊	18．5	0	7.4	14.8	37.0 ＊
	55	75．0＊	5.3 ＊	3.8	9.8	． 8^{*}	5.3
等	58	55．1＊	14.3	$2.0{ }^{\text {＊}}$	16.3 ＊	3.1	9.2
	72	76．2＊	6.9 ＊	7.9	5．0	2.0	2.0 ＊
	111	33.3 ＊	16.7	9.5	7.1	19.0	14.3
	112	50.0	33.3	0	16.7	0	0
w	113	62.7	5.9 ＊	5.9	9.8	7.8	7.8
	116	26.8 ＊	31.7	22.0	4.9	7.3	7.3
0	117	43.6	34．5＊	5.5	$1.8{ }^{*}$	5.5	9.1
\cdots	118	74.1	7.4	3.7	0	11.1	3.7
	132	29．7＊	32.4	2.7	5.4	13.5	16.2
－	134	40.0	0	20.0	30.0	0	10.0
	136	66.7	7.4	11.1	3.7	3.7	7.4
鼩	137	66.7	6.7	10.0	6.7	0	10.0

． ．Weighted
．Average
95 Percent
$54.9 \quad 17.0$
8.2
6.4
5.5
8.0 Confidence Interval

Overall averages indicate that 59 percent of the riders in the Mid-Cities area are female. The only line with a statistically different proportion of riders by sex is Line 113, a local route that runs between Whittier and Compton, passing through Pico Rivera, Downey, and Paramount. The reason for this is not apparent from the other available data. The only other deviation from the average Mid-Cities route for Line 113 is for trip purpose where the proportion of shopping trips is low. This would seem to run counter to the larger proportion of females since shopping trips are predominantly made by females.

Approximately 30 percent of the patrons in the Mid-Cities area are between the ages of 25 and 44. Lines 116 and 117 , two local lines have proportions that are different from the average. One-third of the riders on Line 117 are 65 or older. This compares to 11 percent for the Mid-Cities area. Line 117 services the area north of Whittier, where the census data has tracts with greater than 20 -percent of the inhabitants being senior citizens. Line 117, which serves four major shopping areas, has the highest (34.5 percent) proportion of shopping trips by transit which correlates with the large proportion of older patrons.

The average number of autos per household for the transit riders in the Mid-Cities area is slightly less than one auto per household (0.97). .-.Census data for the Mid-Cities area indicates 1.6 autos per household. The only line that shows any statistical deviation from the average for the area is Line 132 which has the highest percentage of patrons having 3 or more cars per household. Line 132, which stays within the Mid-Cities area for its entire length, passes through census tracts that have the full range of auto ownership categories. There is no apparent reason why the auto ownership is different. The other three categories (0,7 , and 2 auto per household) do not differ statistically from the remainder of the lines.

Nearly one-half the riders in the Mid-Cities area pay a cash fare only and 19 percent pay cash and buy a transfer. Twenty-four percent of the riders use a transfer either when they board a bus in the Mid-Cities area or when they aligint from one. Approximately 23 percent of the riders use a monthly pass. Line 34 and 72 have the highest percentage of patrons using monthly passes, 47.2 and 42.3 percent respectively. Both lines connect the Mid-Cities area with downtown Los Angeles and have relatively short headways for the area. Both lines have a statistically higher than average proportion of work trips. Since work trips are normally fairly regular in frequency, it is not surprising to find a high proportion of monthly passes on these lines. Line 132, which has the lowest proportion of monthly passes, also has a significantly lower number of work trips. The predominant trip purpose on line 132 is shopping.

Eighty-two percent of the Mid-Cities riders have at least a high school education. Only Line 55 deviates from the average distribution for the area with a low proportion of "elementry school only" educated riders.

Of those persons boarding a bus within the Mid-Cities area, 74
percent walk to the bus. A nearly equal percent of those persons alighting from buses within the area walk to their destination. Oniy 11 percent of the patrons are driven or drive to a bus in the MidCities area. Line 136, a local bus in Pico Rivera has the highest proportion of people who walk to the bus, nearly 93 percent. Those people that leave the bus have a statistically lower walking percentage and a higher transfer proportion than the other buses in the area. Line 136 is not unusual in any other way. Line 38 has the lowest proportion of people that access the bus by walking and the highest number that transfer to it. Line 38 has the smallest proportion of work trips also. This is probably due to the 240 minute headway during the peak hours.

The patrons were asked on the survey to indicate the number of different lines they ride to reach their final destination. The responses to this question were none, one, two, or three or more. The presence of "none" as a response would indicate that if no transfers are madethen none should be checked - even though one bus line is required to reach the final destination. The results shown in Table III-3 for this variable must be viewed with this in mind for it is not clear how a person who transfers once, for example, would respond. Comparing this variable to the type of fare paid produces some questionable resuits. Forty-six percent of the persons boarding in the Mid-Cities area may possibly transfer at least once. This figure can be obtained by adding those who pay a cash fare and buy a transfer, those who use a transfer, and those who use a monthly pass. Since at least some of those using monthiy passes do not tranfer, 46 percent is the maximum that transfer. Over 88-percent of the people have indicated that they need at least one different bus to reach their final destination i.e., at least 88 percent indicate they transfer. Although the two percentages vary from line to line, the difference between these two questions would seem to indicate that the results, at least for number of buses, is suspect. It is probable that some patrons that checked " 1 " meant that they only ride one bus, i.e., they do not transfer.

The greatest number of differences between lines appear for the trip purpose category of Table III-3. For work trips, all those lines that are above average for the Mid-Cities area have downtown Los Angeles as one of their termini while all those lines that have less than the average proportion of work trips are local lines that either end or are totally within the Mid-Cities area. Line 117 with twice as many shopping trips as the other lines, serves five major shopping areas. Those lines that have less shopping trips than the a.verage have more work trips than average. Line 58 has proportionately about three times as many social/ recreational trips as the average Mid-Cities line. This line serves both Disneyland and Knott's Berry Farm just outside the Mid-Cities area.

TRAVEL BETWEEN AREA

Table III-4 presents a distribution of trips taken between the various communities within the Mid-Cities area. The table does not show these trips to areas outside the area or those trips where only the on or off stop was given by the transit rider. The community boundaries are the same as those given in Table II-3. The greatest number of trips are those that both

$$
\begin{aligned}
& \begin{array}{l}
\text { SNAGZVO } \\
\text { NVIIVMVH }
\end{array} \\
& 0 \\
& \text { SOIIGYAT }
\end{aligned} 0
$$

vagnid oold
PICO RIVERA
WHITTIER
DOWNEY
SANTA FE
SPRINGS
NORWALK
LA MIRADA
PARAMOUNT
BELLFLOWER
LAKEWOOD
ARTESIA
CERRITOS
HAWAIIAN
GARDENS
originate and terminate within the area defined as Whittier. Table III-5 is a reproduction of a table from the CENTS final report. It presents the trave 1 time between communities for the Mid-Cities bus system before the new service was implemented. Of the 78 pairs, sixteen have travel times of over 2 hours. Only two of the sixteen pairs with travel time of two hours or more have any transit users traveling between them. These two pairs are between La Mirada and Pico Rivera and La Mirada and Paramount. There are 24 pairs where travel time is less than one hour. Of these 24 pairs, 16 have at least some transit riders traveling between each.

$$
\text { वOOMAYYT N} \underset{\sim}{\circ} \text { N }
$$

YZIIIIHM

SECTION IV

RECOMMENDATIONS FOR FURTHER ANALYSIS

The purpose of collecting the data described and analyzed in this report was to compare it to data collected from patrons using the new service. This report falls short of the goal of evaluating the new service. As mentioned previously, the data from the survey taken after the new service went into effect was not available by the expiration date of the contract. Therefore, this chapter is devoted to specifying what steps should be undertaken to analyze the data from the new service and what comparisons need to be made in order to determine whether the objectives of the new service are being met.

The first step in the analysis of the new service would be-to enumerate both the specific and general objectives of the new service. Specific objectives would be those that are specific to the area of the new service. General objectives are those that would be objectives of any improved transit service anywhere.

Table IV-l lists a number of specific and general objectives that can be used, to evaluate the new service by comparing it to the old service. Table IV-7 also lists measures that can be used to compare the two services in relation to these objectives.

Additional effort should be spent to analyze exactly where people who use the transit service come from. This data can be used to analyze and compare the service area profiles for the old lines and the new lines. The data needed to do this analysis is the home address indicated on the on-board survey. The on-board survey taken on the old service has had all the addresses coded. Key punching of this data was not undertaken since the data by itself, i.e., without the after data, would not reveal much. Two specific questions can be answered using this data. First, are patrons coming from the same distance to access a specific line and lines in qeneral in the area. Second, if riders are coming from different distances, can this be attributed to a more or less attractive service that is being provided by the new structure of lines within the area.

The evaluation effort should reveal exactly where the new service is leading to accomplishment of the objectives set forth and where it is not. This information could be used. to "tune-up" the service being provided.

$$
\begin{aligned}
& \text { rax } \\
& \text { r }
\end{aligned}
$$

This appendix will describe the technique used to estimate the required minimum sample size calculated for each bus line. The symbols used in the following equations are: bus line i
$n_{i}:$
Sample size for bus line i
$S\left(\hat{P}_{i}\right)$: Standard error of P_{i}
$N_{i}: \quad$ Total daily ridership on line i

The standard error is set at 0.05 and we wish to find the minimum sample size that satisfies the following inequality:

$$
\begin{equation*}
\mathrm{S}\left(\widehat{P_{i}}\right) \leq 0.05 \tag{1.}
\end{equation*}
$$

If the attribute of interest is the number of females on bus line i, then $N_{i} P_{i}$ would be the number of females where P_{i} is the proportion of females on ${ }^{i}$ line 1 . The number of females in the sample on line i is distributed according to the hypergeometric distribution since we are sampling without replacement, i.e., no rider will fill out more than one questionnaire. The standard error of the estimate of the proportion is then given by the formula:

$$
\begin{equation*}
S\left(\hat{P}_{i}\right)=\sqrt{\frac{P_{i}\left(1-P_{i}\right)\left(N_{i}-n_{i}\right)}{n_{i}\left(N_{i}-1\right)}} \tag{2.}
\end{equation*}
$$

Combining equations (1.) and (2.) produces

$$
\sqrt{\frac{P_{i}\left(1-P_{i}\right)\left(N_{i}-n_{i}\right)}{n_{i}\left(N_{i}-1\right)}} \quad \leq 0.05
$$

Since P_{i} is unknown, and in fact we are trying to esimate its value which is a function of the sample, we must use an estimate of it in order to solve equation (3.) for the value of n_{i}. The maximum value of the minimum sample size for each line is obtained when $P_{i}=0.5$. We can thus use this estimate in order to be conservative in the computation of the
sample size. This assumption is actually not that critical since the function $P_{i}\left(1-P_{i}\right)$ is nearly constant over the range of P_{i} values from .25 to .75 .

Solving equation (3.) with $P_{i}=0.5$ and knowing that N_{i}, n_{i}, and $N_{i}-n_{i}$ are all positive yields

$$
\begin{equation*}
n_{i} \quad \therefore \leq \frac{100 N_{i}}{99+N_{i}} \tag{4.}
\end{equation*}
$$

Hence n_{i}, the minimum sample size, is the smallest integer which exceeds

$$
\begin{equation*}
\frac{100 N_{i}}{99+N_{i}} \tag{5.}
\end{equation*}
$$

where N_{i} is the total daily ridership on the line. Because of the criterion regarding geographic locations of addresses, the minimum sample size required is defined as the greater of n_{i} as computed above or 10 percent of the estimated daily riders.

The 10 percent limitation was arrived at by considering the data requirements needed to investigate specific geographic areas along routes. Data on these geographic areas would be obtained from both the household survey and the on-board survey. It was decided that a standard error in the estimate of percentage response rate in each area should be not more than 10 percent. Given this lower bound on the precision of the estimate, the sample size required to obtain this level of precision was calculated as follows:

The standard error of the estimate is

$$
\begin{equation*}
\sqrt{\frac{p_{j}\left(1-p_{j}\right)}{n}} \tag{6.}
\end{equation*}
$$

where

$$
\begin{aligned}
& n=\text { sample size } \\
& p_{j}=\text { estimated proportion of riders in area } \mathrm{J} \text { with attribute }
\end{aligned}
$$

Since p_{j} is unknown, we assume $p=.5$, which gives the maximum estimate of ${ }^{j}$ the standard error of proportions. Hence,

$$
\begin{equation*}
\sqrt{\frac{(0.5)(1-0.5)}{n}} \leq .10 \tag{7.}
\end{equation*}
$$

Solving equation (7.) for n yields:

$$
n \geq 25
$$

The sample size for each area of interest must therefore be no smaller than 25 to obtain no more than a 10 percent standard error of estimate of percentage response.

3	Allington/Bellflower	6:05 a.m.	Alameda/l03rd St.	6:43...a.m.
2	Alameda/l03rd St.	7:08 a.m.	Allington/Bellflower	7:38 a.m.
2	Allington/Bellflower	7:45 a.m.	Alameda/103rd St.	8:24 a.m.
1	Alameda/103rd St.	8:40 a.m.	Allington/Bellflower	9:15 a.m.
1	Allington/Bellflower	9:40 a.m.	Alameda/103rd St.	10:14 a.m.
3	Alameda/l03rd St.	10:40 a.m.	Allington/Bellflower	11:15 a.m.

EXPECTED RIDERS: 140
CHECKER TIME: 5:10
SERIAL NO: 10001 - 10780

LINE 38

CHECKER \#2

3

CHECKER \#3

RUN NO.	LEAVE	AT	ARRIVE
5	Green Valley Circle/ $5: 57$ arm. Cudahy	$6: 59$ arm.	

EXPECTED RIDERS: 260
CHECKER TIME: 5:51.
SERIAL NO. : 10251-10541
BCHECKER \#4

EXPECTED RIDERS: 240
CHECKER TIME: 5:01
SERIAL NO.: 10541 - 10830

LNE

CHECKER \#5

EXPECTED RIDERS: 90
CHECKER TIME: 4:18
SERIAL NO.: 11811-11900

- CHECKER \#9

EXPECTED RIDERS: 160

CHECKER TIME: 6:16
SERIAL NO.: 11901-12100

:HECKER \#IO

4 (D)	LA RTD Station	6:05 a.m.	Beach/Katella	7:01 a.m.
-53 (D)	Beach/Katella	7:19 a.m.	LA RTD Station	8:44 a.m.
m6 (D)	LA RTD Station	8:50 a.m.	Beach/Katella	10:03 a.m.
m_{52} (S)	Disneyland	10:36 a.m.	LA RTD Station	12:04 p.m.

EXPECTED RIDERS: 120
CHECKER TIME: 5:59
SERIAL NO.: 12101-12300

EXPECTED RIDERS:

200

CHECKER TIME:
6:21

- SERIAL NO: 12301-12500

CHECKER \#12

4	Whittier Station	6:52 a.m.	$5 \mathrm{th} / \mathrm{Be} a u d r y$	7:44 a.m.
4	5th/Beaudry	8:02 a.m.	Whittier Station	8:55 a.m.
4	Whittier Station	9:26 a.m.	5th/Beaudry	10:27 a.m.
4	5th/Beaudry	10:55 a.m.	Whittier Station	11:31 a.m.

EXPECTED RIDERS: 200
CHECKER TIME: 4:39
SERIAL NO: 12501-12700

CHECKER \#13

RUN NO.

1	Slauson/Eastern
1	Gage/Alamo
1	Slauson/Eastern
1	Gage/Alamo
1	Slauson/Eastern
1	Gage/Alamo

6:31 a.m. Gage/Alamo
7:15 a.m. Slauson/Eastern
8:06 a.m. Gage/Alamo
8:55 a.m. Slauson/Eastern
9:45 a.m. Gage/Alamo
10:35 a.m. Slauson/Eastern
270
EXPECTED RIDERS:
4:39
CHECKER TIME: 13050
SERIAL NO.: 12701 -

CHECKER \#14

Gage/Alamo
Slauson/Eastern
Gage/Alamo
Slauson/Eastern
Gage/Alamo
Slauson/Eastern
6:20 a.m. Slauson/Eastern
6:52 a.m
7:06 a.m. Gage/Alamo
7:41 a.m
7:55 a.m. Slauson/Eastern 8:29 a.m

8:46 a.m. Gage/Alamo
9:35 a.m.* Slauson/Eastern
10:22 a.m.* Gage/Alamo
270
EXPECTED RIDERS:
$4: 38$
$4: 38$
CHECKER TIME: 13400
'HECKER \#15
$+3$

	3 (B)	Bellflower	7:25 a.m.	Huntington Park	8:20 a.m.
	3 (A)	Huntington Park	8:45 a.m.	Downey	9:14 a.m.
	$3(A)$	Downey	9:25 a.m.	Huntington Park	9:53 a.m.
	3 (B)	Huntington Park	10:15 a.m.	Bellflower	11:04 a.m.
4	3 (B)	Bellflower	11:30 a.m.	Huntington Park	12:24 a.m.
0	1 (B)	Huntington Park	1:15 p.m.	Bellflower	2:04 p.m.

EXPECTED RIDERS: 100
CHECKER TIME: 6:39
SERIAL NO.: 13401-13550
CHECKER \#16

1 (A)	Downey	6:37 a.m.	Huntington Park	7:03	a.m.
$1(A)$	Huntington Park	7:47 a.m.	Downey	8:17	a.m.
1 (A)	Downey	8:25 a.m.	Huntington Park	$8: 51$	a.m.
$2(A)$	Huntington Park	9:45 a.m.	Downey	10:48	a.m.

Whittier Station
Huntington Park
Whittier Station
Huntington Park10:00 a.m. Whittier Station10:47 a.m.
EXPECTED RIDERS: 60
CHECKER TIME: 3:42
SERTAL NO.: 13651 - 13710

CHECKER \#18

RUN NO.

LEAVE
AT
ARRIVE
AT

Compton
1 | Whittier Station
3 Compton
3 Whittier Station

6:25 a.m. Whittier Station 7:20 a.m.

7:25 a.m. Compton 8:22 a.m.

8:3l a.m. Whittier Station
9:35 a.m. Compton
10:32 a.m.

EXPECTED RIDERS: 80 CHECKER TIME: 3:53 SERIAL NO.: 13711 - 13840

LINE 116

CHECKER \#19

T.TNE 117

3 Whittwood
3 Whittier Station

Floral Drive/
3 Pioneer Avenue
3 Whittier Station
3 Meyer/Leffington
3 Whittier Station
3 Whittwood
3 Floral/Ioneer

3 Whittier Station
3 Meyer/Leffington".

3 Whittier Station

6:40 a.m. Whittier Station
7:06 a.m. Floral Drive/ Pioneer Avenue

7:20 a.m. Whittier Station

7:37 a.m. Meyer/Leffington
8:05 a.m. Whittier Station
8:30 a.m. La Mirada
9:00 a.m. Floral/Pioneer
9:40 a.m. Whittier Station

9:57 a.m. Meyer/Leffington

10:31 a.m. Whittier Station
11:00 a.m. Whittwood
10:55 a.m.
11:26 a.m.

EXPECTED RIDERS: 140
CHECKER TIME: 5:46
SERIAL NO.: 14011-14110

1
1 Whittier Station
6:30 a.m. Olympic/Boyle 7:10 a.m.
1 Olympic/Boyle
7:15 a.m. Whittier Station 7:57 a.m.

1. Whittier Station
8:00 a.m. Olympic/Boyle 8:40 a.m.
1 Olympic/Boyle
8:55 a.m. East Whittier
9:47 a.m.
1 East Whittier
9:47 a.m. Olympic/Boyle 10:40 a.m.
1 Olympic/Boyle 10:55 a.m. Whittier Station 11:47 a.m.
EXPECTED RIDERS: 80
CHECKER TIME: 5:17
SERTAL NO.: 14111 - 14210

CHECKER \#22

4	1	Lakewood	6:53 a.m.	Hawaiian Gardens	8:15 a.m.
\#	1:	Hawaiian Gardens	8:45 a.m.	Lakewood	10:11 a.m.
-	1	Lakewood	10:53 a.m.	Hawaiian Gardens	12:25 p.m.
*	1 :	Hawaiian Gardens	12:45 p.m.	Lakewood	2:11 p.m.

EXPECTED RIDERS: 90
CHECKER TIME: 7:18
SERIAL NO.: 14211 - 14310

EXPECTED RIDERS: 60
CHECKER TIME: 3:54
SERIAL NO.: 14311-14410

LINE 136

CHECKER \#24

RUN NO.
Telegraph/Lakewood
Bartolo/Durfee
Telegraph/Lakewood
Bartolo/Durfee
Telegraph/Lakewood
Bartolo/Durfee
Telegraph/Lakewood
Bartolo/Durfee

5:57 a.m. Bartolo/Durfee
6:24 a.m. Telegraph/Lakewood
7:00 a.m. Bartolo/Durfee
7:27 a.m. Telegraph/Lakewood
7:53 a.m. Bartolo/Durfee
8:15 a.m. Telegraph/Lakewood
8:53 a.m. Bartolo/Durfee
$9: 13$ a.m.
9:15 a.m. Telegraph/Lakewood
$9: 33 \mathrm{a} \cdot \mathrm{m}$.

EXPECTED RIDERS: 110
CHECKER TIME: $3: 36$
SERIAL NO.: 14411-14510

HCKER
\#25

NO. LEAVE AT ARRIVE AT

4	2	Metropolitan State Hospital	6:36 a.m.	Willowbrook	7:10 a.m.
Pr	5	-Willowbrook	7:24 a.m.	Metropolitan State Hospital	7:58 a.m.
$\underline{\square}$	5	Metropolitan State Hospital	8:40 a.m.	Willowbrook	9:14 a.m.
蓶	3	Willowbrook	9:27 a.m.	Metropolitan Sate Hospital	10:00 a.m.
	3	Metropolitan State Hospital	10:40 a.m.	Willowbrook	11:14 a.m.
	2	Willowbroox	11:27 а.m.	Vetropoistan Stare Hospital	1i:5シ м..̈.

EXPECTED RIDERS: 190
CHECKER TIME: 5:23
SERIAL NO.: 14511 - 14760

TABLE C-I
UNIT RECORD LAYOUT
ON-BOARD SURVEY

COLUMN
18

19

20

21

22-26
27-30
31

32-35

DESCRIPTION

Sex

Age

Education

Number of Autos

Survey Number
Time Bus Run Started
Blank

Time Bus Run Ended

VALUES

$$
1=\text { Ma1e }
$$

$$
2=\text { Female }
$$

$$
1=\text { Under } 16 \text { years }
$$

$$
2=16 \text { to } 24 \text { years }
$$

$$
3=25 \text { to } 44 \text { years }
$$

$$
4=45 \text { to } 64 \text { years }
$$

$$
5=65 \text { years or more }
$$

1 = Elementry school
$2=$ High school
3 = College
$0=$ No cars
$1 .=$ one cars
2 = two cars
3 = three or more cars

TABLE C-3

UNIT RECORD LAYOUT

HOME ADDRESS CARD*

Column	
1-5	Description
$6-14$	Survey Number
$15-42$	House Number
$43-47$	Street Name
$48-67$	Apartment Number
$68-72$	City Name
* ALL ENTRIES ARE LEFT JUSTIFIED	

\(\left.\begin{array}{c}Percent with

Attribute\end{array}\right]\)| P |
| :--- |
| 10% |
| 20% |
| 30% |
| 40% |
| 30% |

