32725722

general planning consultant
TECHNICAL MEMORANOUM 6.1.3
DESCRIPTION OF TRANSPORTATION SYSTEM
MANAGEMENT (TSM) ALTERNATIVE NETWORKS

Prepared for:
Southern California Rapid Transit District

Prepared by:
Barton-Aschman Associates, Inc.
in association with:
Schimpeler.Corradino Associates
Cordoba Corporation
Myra L. Frank \& Associates Robert J. Harmon \& Associates Deloitte Haskins \& Sells

Manuel Padron The Planning Group, Inc.

TABLE OF CONTENTS

PAGE

1. INTRODUCTION 1
2. DEFINITION OF ALTERNATIVES 2
2.1 4-MILE TSM ALTERNATIVE 2
2.2 8-MILE TSM ALTERNATIVE 2
2.3 18.6-MILE TSM ALTERNATIVE 5
2.4 TSM IMPROVEMENTS 7
2.4.1 Recently Implemented TSM Improvements 7
2.4.2 Proposed TSM Measures 10
REFERENCES 14
MTA LIBRARY
TIIN $2^{9} 1900$
SCRTD
1984
. D 472
T36
$192 \in 6$

The Southern California Rapid Transit District is currently considering three Los Angeles Metro Rail alternatives. The first alternative, termed the LocallyPreferred Alternative (LPA), is 18.6 miles in length and extends from the Los Angeles CBD to North Hollywood. The second alternative, termed the Minimum Operable Segment (MOS), is an 8.8 mile segment of the 18.6 mile LPA, extending from the Los Angeles CBD to Fairfax Avenue at Beverly Boulevard. The third alternative, termed the MOS-1, is a shorter segment of, the LPA, extending 4 miles from the Los Angeles CBD to Alvarado Street at Wilshire Boulevard. In order to qualify for rail funding, the Urban Mass Transportation Administration (UMTA) requires the transit industry to calculate several cost effectiveness indices which guide UMTA in making decisions on major transit investments. These indices, representing a measure of transportation cost and benefits, are based upon a comparison between the rail alternatives and Transportation System Management (TSM) alternatives which are comparable in terms of the level of service provided. To this end, three additional non-rail alternatives were developed by SCRTD which reflect traffic operation and transit service improvements. A comparison of each rail alternative to its non-rail TSMequivalent is then made in order to measure the cost-effectiveness of the rail alternatives.

The following text provides a detailed definition of the TSM alternatives, followed by a summary of TSM measures that have already been implemented, measures that have been considered, and most importantly, additional actions which are proposed to supplement the current TSM program. In each case, the impact of the TSM actions on the transit and highway level of service is quantified.

2. DEFINITION OF ALTERNATIVES

TSM alternatives were derived incrementally. The 4-mile alternative was developed from the 1985 -base planned and committed system. The 8 -mile TSM alternative was developed from the $4-m i l e ~ T S M ~ a l t e r n a t i v e . ~ T h e ~ T S M ~ a l t e r n a t i v e ~$ was derived, in turn, from the 8 -mile system.

2.1 4-MILE TSM ALTERNATIVE

Figure 1 shows the impact area of the $4-m i l e ~ T S M$ alternative. This area is bounded on the north by the Hollywood and Pasadena Freeways; on the south by the Santa Monica Freeway; on the east by the Los Angeles River; and on the west by Hoover Street.

To arrive at this alternative, the following modifications were made to the 1985 base planned and committed transit system:
A. Prohibit left turns on 7th Street between Alvarado and the Harbor Freeway. This traffic management action has the effect of increasing the speeds of all highway and transit modes on 7 th Street by 15 percent.
B. Implementation of a computerized signal control system affects limited stop transit route speeds (Routes 320 and 322 on Wilshire Boulevard, and Route 328 on Olympic Boulevard) as well as surface street arterial speeds. The effect of this action is to increase the speeds on the affected bus routes and arterial streets by 7 percent.

2.2 8-MILE TSM ALTERNATIVE

Figure 2 defines the impact area of the 8 -mile TSM alternative. This area is bounded on the north by Melrose Avenue and the Hollywood and Pasadena Freeways; on the south by the Santa Monica Freeway; on the east by the Los Angeles River; and on the west it is bounded by Santa Monica Boulevard, Wilshire Boulevard and La Cienega Boulevard.

For this alternative, the following modifications were made to the 1985-base planned and committed transit system:
A. All changes described above for the 4-mile alternative.
B. Implement left-turn prohibition on Olympic Boulevard from San Pedro Street (Los Angeles CBD) to La Cienega Boulevard. The effect of this action is to increase transit and automobile speed by 15 percent
C. Implement asymmetrical traffic operation (reversible lanes) on Olympic Boulevard between San Pedro Street (Los Angeles CBD) and La Cienega Boulevard. The impact of this traffic operation change is to increase transit and automobile speed on Olympic Boulevard by an additional 10 percent.
D. Extend implementation of the computerized signal control system within the 8-mile TSM alternative impact area. The effect of this action is

8 MILE TSM ALTERNATIVE
FIGURE 2

2ns

18.6 MILE TSM ALTERNATIVE

to increase limited-stop bus route speeds on 01ympic, Wilshire and Cahuenga Boulevards by 7 percent. Similarly, auto speed increases of 7 percent apply to the arterial street system in the area. Total speed increase on Olympic Boulevard is 32 percent.

2.3 18.6-MILE TSM ALTERNATIVE

Figure 3 shows the entire impact area of the 18.6-mile TSM alternative. In addition to the area defined for the 8 -mile alternative, the $18.6-\mathrm{mile}$ TSM impact area extends to Sylvan Street on the north.

The 18.6 -mile TSM Alternative is defined as follows:
A. All changes described above for the 4 - and 8 -mile alternatives.
B. Extend computerized signal control system within the expanded LPA impact area. The effect of this action is to increase limited-stop bus route speeds on Wilshire Boulevard and automobile speeds on arterial streets by 7 percent.
C. Incorporate the following route changes:

- Divert Route 150 to Universal City Transit Center (UCTC) via Lankershim. Peak headway: 7 minutes.
- Extend Route 152 to Universal City Transit Center (UCTC).
- Add Route S-170 service from Lankershim/Tujunga to Burbank CBD via Tujunga, Ventura, Lankershim, Cahuenga, Riverside, Main, Victory and Olive. Peak headway: 22 minutes; off-peak headway: 35 minutes.
- Extend Route 160 to UCTC.
- Add limited stop service (Route L-4) from Ventura Hills to UCTC via Ventura Boulevard. A.M. peak headway: 5 minutes, P.M. peak headway: 8 minutes.
- Eliminate express Route 424 west of UCTC; leave express to CBD.
- Divert Route 423 to UCTC.
- Eliminate express Route 425 west or north of UCTC; leave express to CBD.
- Divert Route 427 to UCTC.
- Add Route S-162 on Reseda from Devonshire to Ventura Boulevard. A.M. peak headway: 5 minutes; P.M. peak headway: 8 minutes; offpeak headway: 20 minutes.
- Delete Routes 421 and 422.
- Divert Routes $420,420 \mathrm{~A}, 426$ and 426 A into UCTC.

4 MILE TSMCLTERNATIVE

2.4 TSM IMPROVEMENTS

2.4.1 Recently Implemented TSM Improvements

The City of Los Angeles and SCRTD have actively pursued a rigorous TSM program to make effective use of its existing transportation resources. Since 1980 numerous TSM projects have been implemented for both highway and transit facilities.

The City of Los Angeles Department of Transportation's extensive list of recent TSM improvements range from the restriction of parking in commercial areas to the installation of a computerized traffic control system. The following list presents the types of TSM improvements implemented by LADOT and typical locations where the improvements were made. This list presents examples and do not represent all improvements made.
a. Channelization of traffic

- Western Avenue between Santa Monica Freeway and Franklin Avenue.
- Beverly Boulevard between Fairfax Avenue and Rossmore Avenue.
b. Reversible lane operation
- Highland Avenue between Hollywood Freeway and Sunset Boulevard.
c. Downtown contra-flow bus lane
- Spring Street from Ninth Street to Sunset Boulevard.
d. Fine-tuning of intersections signal timing
- Various locations (100 to 200 per year).
e. Improvement of signal coordination
- Wilshire Boulevard from Alvarado Avenue to La Brea Avenue.
f. Computerized traffic control operation
- Los Angeles Coliseum area bounded by Santa Monica Freeway (north), Harbor Freeway (east), Vernon Street (south) and Western Avenue (west)
g. Bus pre-emption of traffic signals
- Ventura Boulevard from Vineland Avenue to Reseda Boulevard.
h. Improvement of signal operation reliability
- Various locations. Replaced electro-mechanical signal controls with micro procedures at multi-phase traffic signal locations.
i. Installation of left turn restrictions (except buses)
- Wilshire Boulevard and Alvarado Avenue
- Wilshire Boulevard and La Brea Avenue
- Wilshire Boulevard and Fairfax Avenue
j. Widening of approaches to intersections
- Normandie Avenue and OTympic Boulevard
- Wilton Place and Wilshire Boulevard
k. Strict enforcement of traffic regulations and parking restrictions
- The City of Los Angeles recently established the Bureau of Parking Management. Their responsibility is to enforce traffic regulations and parking restrictions.

1. Restriction of on-street parking during peak periods

- Wilshire Boulevard between San Vincente Boulevard and Figueroa Street
m. Time-limited parking in commercial areas
- Wilshire Boulevard between Highland Avenue and La Brea Avenue
n. Neighborhood preferential parking programs
- Universal City area (sticker parking for residents)
o. Provision to permit reduced on-site parking in exchange for comprehensive employer-sponsored ridesharing incentive program (new development).
- City ordinance passed in 1982
p. Flexible work program
- City employees work eighty hours in a two-week period in nine working days and take Monday or Friday off.
q. Promotion of ridesharing programs
- A quasi-public agency formed to promote and encourage ridesharing (Commuter Transportation Services--Commuter Computer)
r. Development of bicycle routes and storage facilities
- Bicycle route on Venice Boulevard between La Brea Avenue and Pacific Avenue
- Shower facilities for bike riders in City Hall
- Enclosed bike storage lockers at City Hall

RTD has implemented its 1980 Sector Improvement Program (SIP). The SIP represented the biggest series of service changes in RTD history. A key feature of service in the 1980 Sector Improvement Program developed an expanded bus route grid of north-south and east-west bus lines with improved frequencies of ten minutes or better between Santa Monica Mountains and Manchester Boulevard,
and between downtown Los Angeles and La Cienega Boulevard.
In addition to establishing a grid system, the SIP also used the concept of transit centers which are key locations where certain lines converge for the convenience of passengers (such as shopping center malls and employment centers). The transit centers simplified transferring and made possible the boarding of any of several routes at one location.

The grid network of bus lines simplified the system, spread passenger loads over more lines, and eliminated duplication.

The 1980 Segtor Improvement Program simplified the bus system on a single street in a grid-like manner whenever possible. It reduced the number of transfers; provided faster service; and reduced overcrowding.

The 1980 SIP provides the following benefits to the public and to the District:
a. Produces a more comprehensive system. Recognizing urban growth and change in the last $30-40$ years:

- Replaces uncoordinated conglomeration of predecessor companies, lines with a coordinated system.
- Fills in service voids and creates a basic grid in the core of RTD system.
b. Improve responsiveness. Implements requests, comments, and suggestions from the public which require change in more than a single line.
c. Simplify the system for users. By replacing circuitous, complex and/or confusing routings with simplified grid and improved service:
- Reduces travel time in several major corridors.
- Reduces the number of transfers required to complete a trip, thereby increasing usage by many who chose not to use previous services.
d. Open new opportunities for travel. New lines or connections of existing lines provide:
- Better "crosstown" service in peripheral areas, allowing patrons to complete their trips without traveling through downtown Los Angeles.
- Better linkage across topographic barriers (e.g., Hollywood Hills, Baldwin Hills, Elysian Valley - L.A. River).
- Improved connections between sectors (e.g., San Fernando Valley to Pasadena, Highland Park to Hollywood, Glendale to West Los Angeles, North Los Angeles to Central Cities and East Los Angeles to the employment centers in Commerce,

Vernon, and Cudahy).
Implementation of TSM improvements are hindered by discontinuities in the street system. Despite the grid pattern of the street system, there are only four through streets on an east-west axis in the entire corridor, namely, Third Street, Sixth Street, Wilshire, and 0lympic. Fourth Street and Fifth Street are discontinuous at the Harbor Freeway and in the middle of the corridor. Sixth Street, while continuous, turns into a quiet residential street west of Western Avenue. Wilshire, while continuous throughout the corridor, dead-ends on the west side of the CBD necessitating major bus turning mpvements in the CBD.

Seventh, Eighth, and Ninth Streets are discontinuous in the mid-Wilshire area. Several north-south streets in the study area are also discontinuous. These include Rossmore Avenue/Crenshaw Boulevard, Wilton Place/Arlington Avenue, Normandie Avenue/Irolo Street and Virgil Avenue/Hoover Street. The discontinuous streets result in a concentration of vehicular movement on only a few arterial streets which are already at capacity, thus compounding the congestion problem. Figure 4 shows the discontinuities, including jogs and street mergers, which are an impediment to the normal flow of traffic. Congestion on Cahuenga/Highland in the vicinity of the access ramps to the Hollywood Freeway is also very severe, in spite of special traffic measures, such as using one lane as a reversible lane for peak direction travel.

2.4.2 Proposed TSM Measures

The previous chapter outlined various transportation system management (TSM) techniques which have already been implemented by the City of Los Angeles. In addition to these, three general TSM techniques were proposed to supplement the existing TSM program:
a. Expansion of Computerized Traffic Signal Control
b. Prohibition of left turns; and
c. Asymmetrical lane operation.
d. Development of Transit Centers

The following text provides documentation of the travel time savings which can be expected for each technique as it is applied to the transportation system.

2.4.2.1 Computerized Traffic Signal Control

The City of Los Angeles Department of Transportation has conducted two studies to measure the effectiveness of computerized signal control. The first study was conducted to quantify the benefits of installing a computerized traffic signal control system in Downtown Los Angeles. The results of the study showed significant improvements, with reductions in stops and delays of thirteen to seventeen percent for automobile and bus traffic. The second study was conducted to evaluate the TRANSYT model in Downtown Los Angeles. A TRANSYTderived timing plan for the p.m. peak period was installed in the study network. Before-and-after field evaluations indicated that the TRANSYT timing plan produced a thirteen percent reduction in stops and delays, with an increase in average speed in the study network of seven percent.

Based on the results of the above studies, a seven percent increase in speed for auto traffic was assumed and incorporated into the highway networks used for the

SOURCE: FINAL AA/EIS ON TRANSIT SYSTEM IMPROVEMENT IN THE LOS ANGELES REGIONAL CORE, APRILIGBO.

TSM alternatives. Since signals are not timed for local bus operation, no change in speed for local bus routes was assumed.(1) Limited-stop bus routes are affected, however, and therefore the same speed increases assumed for auto were assumed for limited-stop transit service.

2.4.2.2 Prohibition of Left Turns

The City of Los Angeles Department of Transportation conducted a study in 1980 to evaluate the effect of left-turn prohibitions on Seventh Street in Downtown Los Angeles. As shown in Table 1, the results of the speed study--conducted before and after the left-turn prohibition--indicate an overall reduction in travel time of thirteen percent and an overall increase in speed of fifteen percent.

Therefore, using the results of this study, a fifteen percent increase in speed was applied to auto and bus speeds in the networks used for the TSM alternatives.

2.4.2.3 Asymmetrical Lane Operation

$07 y m p i c$ Boulevard currently provides three travel lanes in each direction, and operates at a V/C ratio of approximately 0.90 .

Asymmetrical lane operation, to be applied only to 0lympic Boulevard, would provide four travel lanes in the peak direction and two travel lanes in the nonpeak direction. This operation would provide one additional lane in the peak direction, thus theoretically increasing capacity in the peak direction by 33 percent.

According to a graphic representation of travel speed versus V/C ratio in the Highway Capacity Manual(2), an increase in capacity of 33 percent (to go from good to perfect progression) would result in an thirty percent increase in speed. However, since perfect progression can realistically seldom be achieved, and since adding 33 percent capacity cannot actually be attained by adding a fourth lane to 0lympic Boulevard, this increase in speed may not be feasible. Therefore, as a conservative estimate, an increase in speed of ten percent was used for auto and bus traffic and incorporated into the highway networks used for the TSM alternative.

2.4.2.4 Development of Transit Centers

Implementation of the $18.6-$ mile TSM alternative would require the construction of transit centers (as defined in the 1980 Sector Improvement Plan) at Universa? City and at Hollywood/Cahuenga.

TABLE 1
7th Street Between Feft Turn Prohibition Results: Figueroa Street and Los Angeles Street (3,630 ft.)

Period of Day	Direction	Time Trials Before "No Left Turn" September 1980	Time Trials After "No Left Turn" April 1981	
		Time, sec Speed, mi/hr	Time, sec Speed, mi/hr	
AM Peak	EBWB	$\begin{array}{ll}186.5 & 13.3 \\ 218.3 & 11.3\end{array}$	$\begin{aligned} & 186.4 \\ & 163.1 \end{aligned}$	$\begin{aligned} & 13.3 \\ & 15.2 \end{aligned}$
Mid-day	$\begin{aligned} & \mathrm{EB} \\ & \mathrm{WB} \end{aligned}$	$\begin{array}{ll}293.7 & 8.4 \\ 309.1 & 8.0\end{array}$	$\begin{array}{r} 305.9 \\ 278.8 \end{array}$	$\begin{aligned} & 8.1 \\ & 8.9 \end{aligned}$
PM Peak	$\begin{aligned} & E B \\ & W B \end{aligned}$	$\begin{array}{ll}309.7 & 8.0 \\ 339.8 & 7.3\end{array}$	$\begin{aligned} & 234.6 \\ & 272.8 \end{aligned}$	$\begin{array}{r} 10.5 \\ 9.1 \end{array}$
Average	Both	9.0	240.3	10.3

Overall Reduction in Time $=13.0 \%$
Overall Increase in Speed $=15.0 \%$ -

Source: Los Angeles Department of Transportation

REFERENCES

(1) Jovanis, Paul P. and Adolf D. May, "Alternative Objectives in Arterial Traffic Management," Transportation Research Record \#682 - Urban System Operation and Freeways, Transportation Research Board, National Academy of Sciences, Washington, D.C., 1978, pp. 1-7.
(2) National Research Council, Highway Capacity Manual, Highway Research Board Special Report 87, Washington, D.C., 1965, pp. 320.

gENERAL PLANNING CONSULTANT
 TECHNICAL MEMORANDUM 6.1.4
 COST-EFFECTIVENESS CALCULATIONS

Prepared for:
Southern California Rapid Transit District

Prepared by:
Barton-Aschman Associates, Inc.
in associaton with:
Schimpeler.Corradino Associates
Cordoba Corporation
Myra L. Frank \& Associates
Robert J. Harmon \& Associates
Deloitte Haskins \& Selis
Manual Padron
The Planning Group, Inc.

September, 1984

Metro Rail and Transportation System Management (TSM) al ternatives have been defined for each of the three Metro Rail line extents ($4,8.8$, and 18.6 miles $)^{1}$. Complete travel demand model simulations have been performed to estimate the ridership, travel time, and operating resource and cost implications of each of thse six alternatives.

Briefly sumarized in this memorandum are the results of the UMTA prescribed cost-effectivenss calculations ained at comparing each rail al ternative with the comparable non-rail alternative.

2. Cost-Effectiveness Inputs and Results

In addition to the data provided by the individual travel demand model simulations, other capital and operating costs were computed based upon the definition of the specific alernative being tested.

Rail system capital costs included the cost of the Metro Rail line and the corresponding cost of bus expansion and replacement. The rail system operating costs were derived from the respective rail and bus cost models, which are calibrated components of the travel demand models.

The TSM capital costs include the cost of bus fleet expansion and replacement for all alternatives. Computerized traffic signal constrol was also included in all alternatives at $\$ 40,000$ per signal, with the following number of signals in each alternative:

TSM	NUMBER OF SIGNALS
ALTERNATIVE	EFFECTED

4.0 mile

334
8.8 mile

682
18.6 mile

960
In the 8.8 and 18.6 mile TSM alternatives, reversible lane control on $01 y m p i c$ Boulevard was included at $\$ 1.5$ million. And finally, in the 18.6 TSM alternative, new transit centers at Universal City and Hollywood/ Cahuenga were included at a total cost of $\$ 5.7$ million. TSi4 operating costs include the Long Beach Light Rait line and regional bus operating costs plus the maintenance of the computerized traffic signal control system (at $\$ 700$ per signal per year).

All cost-effectiveness inputs are presented in the attached tables together with the calculation results:

Extent Mile)	Federal Index	Total Index
8.0	4.58	6.51
18.6	1.80	3.00
	2.03	3.77

1 Technical Menorandum 6.1.3, Description of Transportation System Hanagement (TSM) Al ternative Networks, September, 1984

Alternative Nane: mos-1

Item	Disc L	Lite	guantity	Unit Frice	Cost	Rate	Qaide	TOTALS
RAIL ALTEGMTIVE								
Rail Capital Cost	0.1	30	1.175E+09	1	\$1174900000.00	0.1060792	\$124632508.77	
Initial Bus Expansion	0.1	12	94	\$150000.00	\$12600000.00	0.1467633	\$1849217.77	
Other Eus Capital	0.1	30	0	\$29000000.00	30.00	0.1060792	\$0.00	
Replacement Eus Costs	0.1	12	2254	\$150000.00	\$344100000.00	0.1467633	\$50501256.73	
Other Casital Costs	0.1	33	1	1	\$0.80	0.1060792	80.00	\$17692583.27
Local Capital Funding						-	\$52970021.43	\$52970021.43
Sus Doerating Costs	\pm	1	525420800	1	\$525420300.10	1	\$525420300.60	
Rail Gperatiog Costs	1	1	28380060	1	\$28390000.00	1	\$28880000.06	\$553300800.00
Work Transit Travel Tine	1	1	78311305	\$4.00	\$313245220.00	1	(5313245220.00)	
Nonvork Travel Tine	1	1	269573760	\$2.00	\$539947520.00	1	(\$535947520.00)	(\$953192740.00)
Ann, Linked Transit Trio	1		522733900	1	529732900	1	522732900	
TSTALEFUATALE								
Intial Eus Expansion	0.1	12	26	\$150000.00	\$2900000.00	0.1467633	\$572376.93	
Other Eus Capital	0.1	30	0	\$29010000.00	\$0.00	0.1063792	\$0.00	-
Replacement Bus Costs	0.1	12	2226	\$159000.00	\$335400000.00	0.1467633	\$49224415.58	
Dther Capital Costs	0.1	30	13350900	1	\$13360000.00	0.1060792	\$1417216.76	\$51214811.57
Local Capital Funding							\$12803502.89	\$12603502.39
Bus Operatitig Costs	1	15	518105880	1	\$518106880.00	1	\$518106880.00	
0ther Operating Costs	1	1	13233800	1	\$13233800.00	1	\$13233800.00	\$531340650.00
Work Transit Travel Time	1	1	79354485	\$4.00	\$319417940.00	1	(1319417940.00)	
Nonwork Travel Time	1	12	273339760	\$2.00	\$546675520.00	1	(\$546679520.80)	(\$866077460.00)
Mnn. Linked Transit Trip	!	15	501937200	1	501937200	1		

[^0]Alternative Name: MCS

Item Dise Life Guantity Unitfrice Rost Vate Vats
RAIL ALTERNATIUE

Rail Capital Cost	0.1		$2.134 \mathrm{E}+09$	1	\$2133500000.60	3.1060792	\$226320076.15	
Initial Eus Expansion	0.1	12	0	\$150000.00	\$0.00	0.1467633	\$0.00	
Other Bus Cayital	8.1	30	0	\$29000000.00	\$0.00	0.1060792	\$0.00	
Renlacement Eus Cosis	0.1	12	2104	\$150000.00	\$315600000,00	3.1467633	\$46318502.25	
Other Capital Costs	0.1	30	0	$!$	\$0,00	0.1060792	$\$ 0.00$	\$272635578.39
Local Cabital Furding						=	\$84002049.93	\$84006849.93
Eus Comerating Costs	1		490261200	1	\$490221200,09	\pm	\$490281200.60	
Rail Pperating Costs	1	1	44900000	1	\$447000c0. 60	1	\$44900000.08	\$555181200.00
Werk Transit Travel Tine	1	1	8966534	\$4.00	\$358663360.00	1	(\$358663360.30)	
Nonuork Travel Time	1		288312400	\$2.00	\$535624800.00	1	($\$ 536224800.00$)	(\$89528816i.00)
Arm. Linked Transit Trio	1		57645659	1	576418500	1	576418500	

TSM ALTERHTHVE

Initial Eus Expansion	0.1	12	208	\$150000.00	\$31200000.00	0.1467633	\$4579015.43	
Other Eus Capitai	0.1	30	1	\$29006000.06	\$29000000.00	0.1060792	\$3076295.20	
Repiacement Eus Costs	0.1	12	2418	\$150000.00	\$252700060.00	0.1467633	\$53231054.39	
Other Capital Coste	0.1	30	28780000	1	\$28780000.00	0.1060792	$\$ 3052960.76$	\$63939328.78
Local Capital Finding							\$15984832.20	\$15984832.20
Bus Uperating Costs	1	1	544063832	1	\$544088932.00	1	\$544088832.c0	
Qther Operating Costs	1	1	13522400	1	\$13522400.00	1	\$13522400.00	\$557611232,00
Werk Transit Travei Time	1	1	91528800	\$4,00	\$366115200.00	1	(3366115290.00)	
Nomork Travel Time	1		273015440	\$2.00	\$546030880.00	1	(\$546030850.00)	(1912146030.00)
Ann. Linked Transit Trio	i		519990700	1	519990900	1	519990900	

Item Disclite Quantity Unitprite Cost Rate Vaiue TOTALS FAIL ALTERNATIVE

Fail Casital Cost	0.1		$3.3845+29$	$!$	\$3384000000.00	0.1060792	\$358972176.09	
Initial Eus Expancion	0.1	12	0	\$15000.00	\$0.00	0.1467630	\$0.00	
Other Eus Capital	0.1	30	0	\$29000000.00	\$0.00	0.1060795	\$0.60	
Replacement Sus Coste	0.1	12	1724	\$150000.00	\$258600000.00	0.1467633	\$37957993.28	
Dther Capital Costs	9.:	30	0	1	\$0.00	0.1860792	\$0.00	\$396983167.37
Local Capital Funding						$=$	\$124359344.67	\$124359344.67
Bus Eyerating Costs	1		406346000	1	\$406346000.90	$!$	\$405346600.00	
Rail Dperating Costs	1	1	61521000	1	\$61520000.00	1	\$61520060.03	\$467866009.00
Worl Transit iravei itme	1	1	90891040	\$4.00	\$363644160.00	1	($\$ 363564160.00)$	
Nonwork Tanel Time	1		265235040	\$2.00	\$530470080.00	1	($\$ 530470080.00$)	\$ 9894034240.00$)$
Anr, Linked Transit Trip	1		582381600	1	582561600	1	582281400	

TSH ALTERATIUE

Initial Eus Expansion	0.1	12	151	\$150000.00	\$24150000.90	0.1467633	\$3544334.06	
Other Eus Cepital	0.1	33	1	\$29000000.00	\$29000000.00	0.1060792	\$3076298.20	
Replacement Sus Coste	3.1	12	2 E	3153004.00	\$355650500.00	0.1467633	\$52196373.02	
Other Capital Costs	0.1	30	45600000	1	\$45600000.00	0.1060792	\$4837213.72	\$636542:8.95
Local Capital Funding							\$15913554.75	\$15913554.75
Eus Operating Costs	1	1	533260000	1	\$533260000.00	1	\$533260000. $0^{\text {d }}$	
Other Operating Costs	1	1	13717000	1	\$13717000.00	1	\$13717000.00	\$546985000.00
Work Transit Travel Time	1	1	91133920	\$4.00	\$364535680.00	1	(\$364535680.00)	
Noriwork Travel Time	1		273988500	\$2,00	\$547977120.90	1	1.5547977120.00)	\{5912512000.00)
Ann. Linked Transit Trip	1		519652300	1	515852300	1	515852300	

[^1]in associaton with:
Sclimpeler.Corradino Associates
Cordoba Corporation
Myra L. Frank \& Associates
Robert J. Harmon \& Associates Deloitte Haskins \& Sells

Manual Padron
The Planning Group, Inc.

Metro Rail and Transportation System Management (TSM) alternatives have been defined for each of the three Metro Rail line extents $(4,8.8$, and 18.6 miles $)^{\text {I }}$. Complete travel demand model simulations have been performed to estimate the ridership, travel time, and operating resource and cost implications of each of thse six alternatives.

Briefly sumarized in this memorandum are the results of the UMTA prescribed cost-effectivenss calculations aimed at comparing each rail al ternative with the comparable non-rail alternative.

2. Cost-Effectiveness Inputs and Results

In addition to the data provided by the individual travel demand model simulations, other capital and operating costs were computed based upon the definition of the specific alernative being tested.

Rail system capital costs inciuded the cost of the Metro Rail line and the corresponding cost of bus expansion and replacement. The rail system operating costs were derived from the respective rail and bus cost models, which are calibrated components of the travel demand models.

The TSil capital costs include the cost of bus fleet expansion and replacement for all alternatives. Computerized traffic signal constrol was also included in all alternatives at $\$ 40,000$ per signal, with the following number of signals in each alternative:

TSM ALTERNATIVE	NUMBER OF S EFFECTED
4.0 mile	334
8.8 mile	682
18.6 mile	960

In the 8.8 and 18.6 mile $T S M$ alternatives, reversible lane control on $01 y m p i c$ Boulevard was included at $\$ 1.5$ million. And finally, in the 18.6 TSM alternative, new transit centers at Universal City and Hollywood/ Cahuenga were included at a total cost of $\$ 5.7$ million. TSil operating costs include the Long Beach Light Rail line and regional bus operating costs plus the maintenance of the computerized traffic signal control system (at $\$ 700$ per signal per year).

All cost-effectiveness inputs are presented in the attached tables together with the calculation results:

Extent	Federal	Total
(Mile)	Index	Index
4.0	4.58	6.51
8.8	1.80	3.00
18.6	2.03	3.77

[^2]Item Disc bife Quantity UnitPrice Cost Rate Value TOTALS
rail ALTENATHVE

Rail Capital Cost	0.1		1.175E+09	1	\$1174900000.00	0.1060792	\$124632508.77	
Initial Bus Expansion	0.1	12	84	\$150000.00	\$12600000.00	0.1467633	\$1849217.77	
Other Eus Capital	0.1	30	0	\$29000000,00	\$0.00	0.1060792	50.00	
Replacement Bus Costs	0.1	12	2294	\$150000.00	\$344100000.00	0.1467633	\$50501256.73	
Other Capital Coste	0.1	30	[1	\$0.60	0.1060792	\$0.00	\$176922,83.27
Local Capital Funding							\$52970021.43	\$52970021.43
Bus Onerating Costs	\pm	1	525420800	\pm	\$525420800.00	1	\$525420800.60	
Rajl Operating Costs	1	1	28380000	1	\$28380000.00	1	\$28380900.00	\$553900800.00
Work Transit Travei Time	1	1	78311385	\$4.00	\$313245220.00	i	(17313245220.00$)$	
Nomwork Travei Tine	1		269973760	$\$ 2.00$	\$539947520.00	1	(9557947520.00)	(\$853192740.00)
Ann. Linked Transit Trip	1		522732900	1	522732900	1	5272732700	

TSH ALTERAATIVE

Initiaj Eus Expansion	0.1	12	26	\$150000.00	\$3900000.00	0.1467633	\$572376.93	
Other Bus Capital	0.1	30	0	\$29000000, 00	\$0.00	0.1060792	\$0.00	-
Replacement Bus Costs	0.1	12	2236	\$150000.00	\$335400000.00	0.1467633	\$49224415.38	
Other Capitai Costs	0.1	30	13350900	1	\$13360000.00	0.1060772	\$1417218.76	\$51214011.57
Local Capital Funding							\$12603502.09	\$12803502,89
Bus Eperating Costs	1	1	518106880	1	\$518106880.00	1	\$518106860.01	
Other Opersting Costs	1	1	13233860	1	\$13233800.00	j	\$13233200.00	\$531340680.00
Work Transit Travei Time	1	1	79854485	\$4,00	\$319417940.00	1	(\$319417540,00)	
Somurk Travel Time	1	1	273339760	\$2,00	\$546675520.00	1	\{ 3546679520.00$\}$	(4866097460.00$)$
Ann. Linked Transit Trip	1	1	501937200	1	501937200	1	501937208	

Item Disc Lite buantity Unit frice bost Rate Value totals

RAIL ALTERNATIUE

Rail Capital Cost	0.1		$2.134 E+09$	1	\$2133500000.00	0.1060772	\$226320076.15	
Initial Bus Expansion	0.1	12	0	\$150008.80	\$0.00	0.1467633	\$0.00	
Other Bus Capitai	0.1	30	0	\$29000000.00	50.00	0.1060792	\$0.00	
Replacenent Bus Costs	0.1	12	2104	\$150000.06	\$315600000.00	0.1467633	\$46318502.25	
Other Capital Costs	8.1	30	0	1	$\$ 0.00$	0.1030782	\$0.00	\$272638578.39
Local Capital Funding							\$84002049.93	\$84002049.93
Eus Cperating Costs	1		490281200	1	\$490281200.00	1	\$490281210, 60	
Rail Operating Costs	i	1	44900000	1	\$44900000.00	1	\$44900000.00	\$5351E1200.00
Werk Transit Travel Time	1	1	89665840	\$4,00	\$358663360.00	\pm	($\$ 358663360.00)$	
Nonwork Travel Time	1		268312400	\$2.08	\$536624800.00	1	(\$536624800,00)	(\$895288160,00)
Ann. Linked Transit Trip	1		578418569	1	576418500	1	576418500	

TSM ALTERYATIVE

Initial Bus Expansion	0.1	12	208	\$150000.00	\$31200000.00	0.1467633	\$4579015.43	
Other Eus Capital	0.1	30	1	\$29000000.00	\$29000000.00	0.1060792	\$3076298.20	
Fediacment bus Costs	0.1	12	2418	\$159000.00	\$362700000.00	0.1467833	\$53231054.39	
Other Capitai Costs	0.1	30	28780000	1	\$28780900,00	0.1060792	\$3052960.76	\$63939325.78
Local Capital Funding							\$15984832.20	\$15984832.20
Bus Uperating Costs	1	1	544088832	1	\$544068832.00	1	\$544088832.60	
Other Operating Costs	1	1	13522400	1	\$13522400.00	1	\$13522400.00	\$557611232.00
Werk Transit Travei Time	1	1	91528900	\$4.00	\$366115200.00	1	(366115200.00$)$	
Nowork Travel Time	1		273015440	\$2.00	\$546030880.60	1	(15546030580.00)	(9912146000.00)
Ana, Linked Transit Trio	!	!	519990900	1	519990900	1	519990900	
Cost-Effactiueness Index								3.0023
Federal Cost-Etfectivenes	5 In						-	1.7969

Iteri Disclife Ruantity Unitfrice Cost Rate Value TOTALS

RAIL ALTERATATIVE
Rail Capital Cost
$0.1303 .384 E+09$
Initial Bus Expension
$0.1 \quad 12$
$0 \quad \$ 150000.00$
$1 \$ 3364000000.000 .1060752 \$ 359972176.09$

Other Eus Capital
0.130
(] $\$ 29000000.00$

1724
$\$ 150000.00$
$\$ 256600000,008.1467633$
$\$ 37952993,28$

Other Capital Cost
0.130

0
1
$\$ 0.000 .1060792$
$\$ 0.00$
$\$ 124359344.67 \quad \$ 124359344.67$
1 \$406346000.00
$1 \$ 406346000.00$
1
$\$ 61520000.00$
$1 \$ 61520000.00 \$ 267866000.00$
$\$ 4.00 \quad \$ 36356460.00$; $\$ 363564160.00)$
$\$ 2.00 \quad \$ 530470080.00$
1 ($\$ 530470080.00)(\$ 894034240.00\rangle$
Angi, Linked Transit Trip 1582381600

TST ALTERATIIVE

Initial Bus Expansion	0.1	12	161	\$150000.00	\$24150000.00	0.1467633	\$3544334.06	
Other Bus Cepitai	0.1	30	1	\$29000000.00	\$29000000.00	0.1060792	\$3076298.20	
Replacement Sus Costs	0.1	12	2371	\$150000.90	\$355650000.00	0.1467633	\$52196373.02	
Other Capital Costs	0.1	30	45600000	1	\$45600000.00	0.1060792	\$4837213.72	\$63654218.99
Local Capital Funding							\$15913554.75	\$15913554,75
Eus Dperating Costs	1	1	533268000	1	\$533268000.00	1	\$533268000.00	
Other Operating Coste	1	1	13717000	1	\$13717000.00	1	\$13717000.60	\$596985000.00
Work Transit Travel Time	1	1	91133920	\$4.00	\$364535680,00	1	(\$364535600.00)	
Nenwork Travel Tipe	1	:	273988560	\$2.00	\$547977120.00	1	(5547977120.00)	(9912512800.00)
Ann, Linked Transit Trip	1	1	519852300	1	519852300	1	519852300	

Cost-Effectiveness index
general planning consultant
TECHNICAL MEMORANDUM 6.1.4
COST-EFFECTIVENESS CALCULATIONS

Prepared for:
Southern California Rapid Transit District

Prepared by: Barton-Aschman Associates, Inc.
in associaton with:
Schimpeler.Corradino Associates
Cordoba Corporation
Myra L. Frank \& Associates
Robert J. Harmon \& Associates Deloitte Haskins \& Sells

Manual Padron
The Planning Group, Inc.

I. Introduction

Metro Rail and Transportation System Management (TSM) alternatives have been defined for each of the three Metro Rail line extents (4,8.8, and 18.6 miles $)^{-}$. Complete travel demand model simulations have been performed to estimate the ridership, travel time, and operating resource and cost implications of each of thse six alternatives.

Briefly sumarized in this memorandum are the results of the UMTA prescribed cost-effectivenss calculations aimed at comparing each rail alternative with the comparable non-rail alternative.

2. Cost-Effectiveness Inputs and Results

In addition to the data provided by the individual travel demand model simulations, other capital and operating costs were computed based upon the definition of tine specific alernative being tested.

Rail system capital costs included the cost of the Metro Rail line and the corresponding cost of bus expansion and replacement. The rail system operating costs were derived from the respective rail and bus cost models, which are calibrated components of the travel demand models.

The TSM capital costs include the cost of bus fleet expansion and replacement for all alternatives. Computerized traffic signal constrol was al so included in all alternatives at $\$ 40,000$ per signal, with the following number of signals in each alternative:

$$
\begin{array}{cc}
\begin{array}{l}
\text { TSM } \\
\text { ALTERNATIVE }
\end{array} & \begin{array}{c}
\text { NUMBER OF SIGNALS } \\
\text { EFFECTED }
\end{array} \\
\hline 4.0 \mathrm{mile} & 334 \\
8.8 \mathrm{mile} & 682 \\
\therefore \quad 18.6 \mathrm{mile} & 960
\end{array}
$$

In the 8.8 and 18.5 mile $T S M$ alternatives, reversible lane control on 01 ympic Boulevard was included at $\$ 1.5$ million. And finally, in the 18.6 TSM alternative, new transit centers at Universal City and Hollywood/ Cahuenga were included at a total cost of $\$ 5.7$ milion. TSil operating costs include the Long Beach Light Rail line and regional bus operating costs plus the maintenance of the computerized traffic signal controt system (at $\$ 700$ per signal per year).

All cost-affectiveness inputs are presented in the attached tabies toge tiner with the calculation results:

Extent \qquad	Federal \qquad	$\begin{aligned} & \text { Total } \\ & \text { Index } \end{aligned}$
4.0	4.58	6.51
8.8	1.80	3.00
13.6	2.03	3.77

[^3]Alternative Nans: Mos-!

Ites
Cisc Lifg Euntity Unit Frice
Cost
Rate
Valus
TOTALS

Rail Capitai Cost	0.1		$1.1755+19$	1	\$177400000.60	0.1060792	\$124632508.77	
Initial Eus Expansion	0.1	12	94	\$150000.00	\$12600000.90	4.1467633	\$1849217.77	
Other Eus Capital	0.1	30	0	\$29009000.00	\$0.00	0.1060792	\$0.00	
Replacement Eus Costs	0.1	12	2254	\$150000.00	\$344100000.00	0.1467633	\$50501286.73	
Other Capitai Costs	0.1	3	0	1	\$8.60	0.1060792	\$0.00	\$176982763.27
Local Capital Funding						c	\$52970021.43	\$52970021.43
Bus Dierating Costs	1	1	525420300	1	\$525420600.00	1	\$525420800.06	
Rail Operating Costs	1	1	28380000	1	\$28380000.00	1	\$28360000.00	\$553500800, 00
Work Transit Travel Time	1	1	78311305	\$4.00	\$313245220.00	1	(313245220.00$)$	
Nonwork Traval Time	\pm	1	269873760	\$2.06	\$539947520.00	1	(寺539947520.00)	(\$853192740.00)
Ang. Linked Transit Trip	1	1	52273250	1	522732900	1	522732900	

TSt ALTERATHE

Initiai Sus Expansion	0.1	12	26	\$ 750000.00	\$3900020.00	0.1467633	\$5,2376.93	
Other Eus Capital	0.1	30	0	\$29000000.00	\$0.00	0.1060772	\$0.00	,
Replacement Bus Costs	0.1	12	2226	\$150009.00	\$335400000.00	0.1467633	\$49224415.88	
Other Capital Costs	0.1	30	13350000	1	\$13360000.00	0.1060792	\$1417218.76	\$51214111.57
Local Capital Funding							\$12803502.89	\$12803502.89
Bus Sompating Costs	1	1	518105880	1	\$518106880.00	1	\$51810 8880.00	
Ather Operating coste	1	1	13233800	$!$	\$13232800.00	1	\$13233800.83	\$531340659.00
Work Transit Travei Time	1	1	79854485	\$4.00	\$319417940.00	1	(3319417940.00)	
Nonwork Traval Time	1	1	273339760	\$2.00	5546675520,00	1	(\$546679520.06)	(\$866097460.00)
Am, Linked Transut Trio	1	1	501537200	1	501937200	1	501737200	
Cust-Effectiveness]ndex								6.8973
Foderal Cost-Effectivenes	E In						,	4.575

Alternative Name: H0S

Item Disc Life Costantity Unit Frice Rate Value TOTALS
mAIL ALTERNATVE

Rail Caplal Cost	0.1		$2.134 E+69$	1	\$2133500000.00	0.1060792	\$22620076.15	
Initial Eus Expansion	0.1	12	0	\$150000.00	\$0.00	0.146763	\$0.00	
Gther Eus Capitai	0.1	30	0	\$2¢000000.00	\$0.00	0.1060792	\$0.00	
Replacement dus Costs	0.1	12	2104	\$150000.00	\$315605000.00	0.1467633	\$46318502.25	
Wher Capital Costs	0.!	30	0	$!$	50.00	0.1060782	\$0.60	\$272358578.39
Local Catital Funding						=	\$84092049.93	\$84002049.93
Bus Operatitit Costs	1	1	490281200	1	\$490231204.0.0	1	\$ 4902812006.30	
Rail Cperating Costs	1	1	44900000	1	\$44700000.00	1	\$44900000.00	\$555151200,00
Herk Transit Traval Time	1	1	$8566=540$	\$4.00	+358663360.00	1	($\ddagger 358663260.00)$	
Nombork Travel Tine	1	1	268312400	\$2.00	\$53624800.00	1	(\$536624800.60)	\$ $\$ 895283160.60$
Ainn, Linked Transit Trio	1		57246cti	1	576418500	1	576418500	

TSH ALTERAMTVIE

Initiai Eus Expancion	0.1	12	206	\$ $\$ 50000.00$	\$31200006.50	0.1467633	\$4573015.43	
Other Rus Capital	0.1	30	1	\$29000000.00	\$29000006.00	0.1060792	\$3076259,20	
Feplacement Bus Costs	[1, 1	12	2418	\$150001.00	\$362700000.00	0.1467633	453231054.39	
Other Cadital Coste	0.1	30	28780000	1	\$28780000.00	0.1060792	\$3052960.76	\$63839223.78
Local Capital Funding							\$15984882.20	\$15384832. 60
Bus uperatirg Coste	1	1	544083832	1	\$544288832.00	1	\$ $\$ 44088832.00$	
Other Operating Costs	1	1	13522400	1	\$13522400.00	1	\$13522400.00	\$557611232.60
Work Transit Travei Time	1	1	91528800	\$4,00	\$366155200.00	1	(4366115290.10)	
Nowork Travel Tine	:	$!$	$2730: 5440$	\$2,00	\$546020880.00	1	(4546030850.00)	(\$9121*6030,00)
Anfi. Linked Transit Trio	1	1	517990700	1	519090000	1	519990000	

Cost-Effectiveness Incex

Alternatiue Mame: LPA

Item Dischife eunatity Unit frice

Fail Canital Cost	0.1		$3.384 E+97$	1	\$3384000000.00	0.1060792	\$359972176.69	
Initial Eus Expension	0.1	12	0	\$ $\$ 50000.00$	\$9.00	0.1467653	\$0.00	
Other Eus Cepital	0.1	30	1)	\$29000000.00	\$0.00	0.1060792	\$0.00	
Roplacoment Sus Costs	0.1	12	1724	\$50000.00	\$250600000.00	0.1467633	\$37852993.28	
Other Capital Costs	0.1	30	0	1	\$0.00	0.106772	\$0.00	\$3, 9695169.37
Local Capital Fundino						$=$	\$124359344.67	\$124559344.67
Bus Geerating Costs	1		408346000	1	\$40634600.00	1	\$4063460000.00	
Rail Operating Costs	1	1	61520000	1	\$61520090.00	1	\$ 21520000.03	\$467686900.00
Wors Transit iravel ilme	1	1	90891040	\$4.00	$\$ 363564160.00$	1	(3 寺 33564160.06)	
Nonwork Tauti Time	1	1	265235040	\$2.00	\$530470080.00	1	(3530470080.00)	¢ 7894934240.00$)$
Anti. Sinked iransit Trip	1		582381600	1	58288.500	1	582881600	

TSH ALTENLSTIVE

Initial Eus Expancion	0.1	12	151	\$150000.00	224150000.00	0.1467633	\$3544334.06	
Dther Bus Cepital	0.1	38	1	\$25000000.00	\$29000000.0.05	0.1060792	\$3076298.20	
Replacement Sus cosis	3.1	12	297	\$150009.00	\$555650000.00	0.1467633	\$52596373.02	
Other Capital Costs	0.1	30	45650000	1	\$45600000.00	0.1080702	\$4887213.72	\$63654218.97
Local Capital Funding							\$15913554.75	\$15913554.75
Eus Operating Costs	1	1	533268000	1	\$533268000.00	1	\$533260000. 06	
Other Operating Costs	1	1	13717000	1	\$13717000.00	1	\$13717000.00	\$546985000.08
Work Transit Travel Time	i	1	91183920	\$4,00	\$364535580.00	1	〔\$364535680.00\}	
Norwork Travel Time	1	1	278908560	32,00	\$547977120.30	1	(6547977120.00)	(1912512200.00)
Ann Lined Transit Trio	1	1	519652300	1	515852300	1	5. 7852300	

Cost-Effectumes ynoen -

Associate Consultants

Banton-Aschman Associates
Del Haskins \& Sells
Harmon a Associates. Inc
The Planning Group, Inc.
Cordoba Corporation
Myra L. Frank \& Associates
Manuel Patron

Mr. Gary S. Spivack
Department of Planning
Southern California Rapid Transit District
425 South Main Street
Los Angeles, California 90013
Re: Revised Technical Memorandum 6.2.1 Alvarado Station Bus Interface Traffic and Operational Analysis

Dear Mr. Spivack:
Attached is a revised Technical Memorandum 6.2.1 on the Alvarado Bus Interface. This paper was originally submitted to you in August in support of the expanded traffic analysis which appeared in the Environmental Assessment on MOS-1. Because of the importance of the information in this report as a technical backup document to the EA, we have taken the time to review the paper again. Minor revisions in format have been made. The recommendations and conclusions main unchanged. This document was the second of such technical papers Inerated in Work Area 6, Environmental

CCS: dh

RECEIVED

NOV 16 个884
PLANNING DEPT.
general planning consultant:
TECHNICAL MEMORANDUM 6.2.1
ALVARADO STATION BUS INTERFACE TRAFFIC AND OPERATIONAL ANALYSIS

Prepared for:
Southern California Rapid Transit District

Prepared by:
Schimpeler.Corradino Associates
in association with
Barton-Aschman Associates, Inc.
Cordoba Corporation
Myra L. Frank \& Associates Robert J. Harmon \& Associates

Manuel Padron
The Planning Group, Inc.

November, 1984

The Alvarado Station is proposed to serve initially as a terminal station for the Union Station to Wilshire Alvarado (MOS-1) segment of the Metro Rail system. Use of this station as a terminal facility necessitates the routing of express buses via a passenger drop-off area located adjacent to the station site. Two alternative bus routings have been identified to provide access to the station. These two routings, referred to as the "Alvarado Alternative" and the "Westlake Alternative," are described in detail in this report.

The purpose of this analysis is to determine if the proposed location of the Alvarado Station would affect surface traffic to the extent that it exceeds an acceptable level of service and if sufficient street capacity is available to accommodate the needed bus access to the station. Potential impacts could result from buses terminating at the station. Originally, the bus routing for limited routes was east on Wilshire Boulevard, south on Alvarado Street, and west on 7th Street. Discharge and pickup of passengers would have occurred on the west side of Alvarado Street opposite the station entrance. This pedestrian movement was deemed unsafe, undesirable, and impractical given the traffic volume on Alvarado.

In the Alvarado Alternative the limited routes were proposed to allow discharge and loading on the east side of Alvarado Street. The alternative routing would be east on Wilshire Boulevard, south on Hoover Street, east on 7 th Street, north on Alvarado Street, then west on 6th Street and return to Wilshire via Rampart Boulevard or Lafayette Park Place. The westbound routing was placed on 6 th Street rather than Wilshire Boulevard because the distance from the station to Wilshire Boulevard was too short for the buses leaving the station to cross Ethrough lanes of traffic to turn left on to Wilshire Boulevard.

A second alternative routing for the limited buses (Westlake Alternative) was to have them travel east on Wilshire Boulevard past Alvarado Street and then south on Westlake Avenue, one block east. The buses would discharge and load passengers near the kiss-and-ride area on the west side of Westlake Avenue. The buses would leave the station area traveling south on Westlake Avenue, then west on 7th Street, and north on Hoover Street to west on Wilshire Boulevard.

The results of analysis on the Alvarado Alternative show that this scenario will not work without improvements, whether considering traffic flow or bus operations. Under existing conditions, traffic flow is extremely congested at Wilshire/Alvarado and 6th/Alvarado in the p.m. peak hour. The Westlake Alternative operates much more efficiently. The additional bus traffic does not add to the p.m. peak surface traffic congestion. Based on results of this analysis, it is recommended that the Westlake Alternative be implemented to provide the necessary bus interface with the Alvarado Station.

As part of this analysis, it is further recommended that the curb radius on the southwest corner of Wilshire and Westlake be improved to a minimum of 36 feet to enhance bus operations for this right-turn movement.

TABLE OF CONTENTS

Page
LIST OF FIGURES ii
LIST OF TABLES iii

1. INTRODUCTION 1
2. DESCRIPTION OF ALTERNATIVE BUS ROUTES 3
3. IDENTIFICATION OF CRITICAL INTERSECTIONS 4
4. METHODOLOGY 5
5. GEOMETRICS AND TRAFFIC CONTROL 6
6. TRAFFIC VOLUME DATA 7
7. ANALYSIS AND RESULTS 10
7.1 ALVARADO ALTERNATIVE 10
7.2 ALVARADO ALTERNATIVE WITH IMPROVEMENTS 10
7.3 WESTLAKE ALTERNATIVE 15
8. CONCLUSIONS AND RECOMMENDATIONS 18
APPENDIX A: TRAFFIC VOLUME DATA A-1
APPENDIX B: ALVARADO ALTERNATIVE B-1
APPENDIX C: ALVARADO ALTERNATIVE WITH IMPROVEMENTS. C-1
APPENDIX D: WESTLAKE ALTERNATIVE D-1
Figure Page
1
Wilshire/Alvarado Station Location................. 2
2 Alvarado Alternative Bus Interface................... 8
3 Westlake Alternative Bus Interface. 9
Table Page
1 Alvarado Station Intersections Studied. 11
2 Level of Service Ranges Operations of Design Applications 12Alvarado Alternative Criticai Movement Analysiswith Improvements.13
4 Alvarado Alternative (With Improvements) Critical Movement Analysis. 14
5 Westlake Alternative Critical Movement Analysis 16
6
Westlake Alternative Approach Volumes (in PCV) 17

The Alvarado Station is located in the block bounded by Alvarado Street, Wilshire Boulevard, Westlake Avenue and Seventh Street (Figure 1). The Alvarado Station is proposed to serve initially as a terminal station for the Union Station to Wilshire/Alvarado (MOS-1) segment of the Metro Rail system. Use of this station as a terminal facility necessitates the routing of express buses via passenger drop-off areas located adjacent to the station site. Two alternative bus routings have been identified to provide access to the station. These two routings, referred to as the "Alvarado Alternative" and the "Westlake Alternative," are described in detail later in this report.

Two basic operational elements are defined, evaluated, and documented herein. The first is an analysis of surface traffic (forecast to the Year 2000) including background vehicular and pedestrian traffic plus auto, bus, and pedestrian traffic interfacing with the station. The second is an evaluation of the bus operations for each of the alternative routings. The purposes of this analysis is to determine if the proposed location of the Alvarado Station would affect surface traffic to the extent that it exceeds an acceptable level of service and if sufficient street capacity is available to accommodate the needed bus access to the station.

2. DESCRIPTION OF ALTERNATIVE BUS ROUTINGS

A traffic engineering analysis was conducted to determine the effect on traffic flow when the Alvarado Station is temporarily used as a terminal station. Potential impacts could occur as a result of buses terminating at the station. Originally, the bus routing for limited routes was east on Wilshire Boulevard, to south on Alvarado Street, and west on 7th Street. Discharge and pickup of passengers would have occurred on the west side of Alvarado Street opposite the station entrance. Bus patrons accessing the station would have to cross Alvarado Street. This pedestrian movement was deemed unsafe, undesirable and impractical given the traffic volume on Alvarado.

An alternative bus routing (Alvarado Alternative) for the limited routes was proposed to allow discharge and loading on the east side of Alvarado Street. The alternative routing would be east on Wilshire Boulevard, south on Hoover Street, east on 7th Street, north on Alvarado Street; then west on 6th Street and return to Wilshire via Rampart Boulevard on Lafayette Park Place. The westbound routing was placed on 6th Street rather than Wilshire Boulevard because the distance from the station to Wilshire Boulevard was too short for the buses leaving the station to cross through lanes of traffic to turn left on to Wilshire Boulevard.

A second alternative routing for the limited buses (Westlake Alternative) was to have them travel east on Wilshire Boulevard past Alvarado Street and then south on Westlake Avenue, one block east. The buses would discharge and load passengers near the kiss-and-ride area on the westside of Westlake Avenue. The buses would leave the station area south on Westlake Avenue, then travel west on 7th Street, north on Hoover Street, and west on Wilshire Boulevard.

The impact of the bus routing on traffic flow in the station area was determined for each alternative.

3. IDENTIFICATION OF CRITICAL INTERSECTIONS

Five intersections were identified as having potential for being impacted by the Alvarado bus routings. These are Hoover Street/Wilshire Boulevard, Hoover Street/7th Street, Alvarado Street/6th Street, Wilshire Boulevard/Alvarado Street, and Wilshire Boulevard/Hoover. A review of traffic control, traffic volumes, and observation of traffic operation in the field indicated that the three intersections with Alvarado Street would be the critical intersections for analysis. The traffic volume in the Hoover Street area is significantly less than that in the Alvarado area and Hoover Street has an additional exclusive lane for left turns.

Two intersections were identified as having potential traffic impacts with the Westlake routing. They are 7 th/Alvarado and Wilshire/Alvarado.

The key analytical methods used in this study were Critical Movement Analysis and bus operations analysis.

The "Operations and Design" application of the Critical Movement Analysis as presented in "Transportation Research Circular Number 212, Interim Materials on Highway Capacity" was utilized to calculate the level of service for the critical intersections. The "Operations and Design" application of Critical Movement Analysis allows for specific adjustments to be made for traffic and roadway conditions. There are four adjustments related to the factors of vehicle mix (trucks and buses), peaking characteristics, turns, lane utilization (i.e., volume distribution), and lane width.

The traffic volumes used in the analysis are Year 2000 volumes assuming the temporary terminal station at Alvarado Street. The volumes were derived from the previous work of the City of Los Angeles Department of Transportation as documented in the "Final Project Report - Traffic Analysis," June 1983 (Task 18CAA21). Also used were existing traffic count data provided by the City of Los Angeles Department of Transportation. The bus volumes for the alternative routings were generated by SCRTD's General Planning Consultant. The volumes were based on travel demand forecasts for the systems with Alvarado Street serving as the terminal station.

The Alvarado Street, 6th Street, Wilshire Boulevard, and 7th Street intersections have similar geometrics and lane utilization. Each street has three lanes in each direction with the curb lane used for parking during part of the day. The approaches to each intersection have parking restricted (except for westbound 7 th Street at Alvarado) allowing right turns to be made from the curb lane. Left turns from all approaches at each intersection are prohibited during the hours of 7:00 a.m. and 6:00 p.m.. Buses may make left turns at all times throughout the day. Traffic signals are currently in operation at each of the critical or potentially critical intersections identified previously. These signals operate on a two-phase, fixed-time cycle length with approximately equal green-to-cycle (G/C) ratios. Specific signal timing was not considered critically essential in the analysis since it was assumed timings could be slightly modified as necessary to accomodate anticipated variations in traffic volumes.

6. TRAFFIC VOLUME DATA

The traffic volume data used in this analysis were obtained from three sources. Existing traffic count data, including 24 hour volumes, turning movement data, pedestrian volumes, and peak 15 minute counts. The volume of trucks and buses was provided by the City of Los Angeles Department of Transportation. These detailed counts were provided for the intersections of 6th Street and 7 th Street with Alvarado Street.

Also included with the turning movement counts are pedestrian volumes across each approach during the peak periods observed for the intersection of 7 th Street \& Alvarado Street. The pedestrian volumes are relatively light in the a.m. peak period when the average volume is around 150 persons per hour in each crosswalk. In the afternoon peak, however, pedestrian activity in the east-west crosswalks (crossing Alvarado) varies from 500 to 600 persons per hour. Pedestrians crossing 7th Street parallel to Alvarado Street range from 600 to 800 persons per hour.

Added to these traffic data and forecasts were the "limited" bus volumes associated with each alternative as forecasted by SCRTD's General Planning Consultant. These buses would be in addition to the local bus service and would only serve the Alvarado Station. The numbers of buses anticipated are 40 per hour in the a.m. peak, 35 per hour in the p.m. peak and 5 per hour during the mid-day (Hoover, 7 th, Alvarado, 6th and Lafayette Park Place back to Wilshire). Wilshire Boulevard eastbound would have six "Limiteds" per hour in the a.m. and one in the p.m. Seventh Street westbound from the station would carry one in the a.m. and six in the p.m. (Figure 2).

The "Westlake Alternative" (Figure 3) would have the same number of "limited" buses in each period; however, it would have a different routing system as described earlier. In addition, the document entitled "Final Project Report Traffic Analysis" (Task 18CAA21) by the City of Los Angeles. Department of Transportation was used as a source for Year 2000 traffic forecasts in the vicinity of the Alvarado Station. Copies of these data are provided in Appendix A.

Key:

$$
10 / 10 / 6 \gg
$$

AM Peak / PM Peak / Mid Day
Busas Per Hour

FIGURE 3 Alvarado Station Bus Interface
WESTLAKE ALTERNATIVE

7. ANALYSIS AND RESULTS

Critical intersections in the vicinity of the Alvarado Station were analyzed to determine the impacts created by buses, vehicular traffic, and pedestrians. This examination involved utilization of the Capacity and Critical Movement Analysis and an evaluation of bus operations were performed. The locations studied are presented in Table 1.

7.1 ALVARADO ALTERNATIVE

A Critical Movement Analysis was performed using the existing traffic control and street geometry conditions with Year 2000 background traffic control and street geometry conditions plus transit generated traffic and bus volumes. The traffic volume data and the detailed analysis results using existing conditions are presented in Appendix B for the Alvarado Alternative using existing conditions. Based on the level of service (LOS) ranges used in the referenced document for the "Operations and Design Application" (Table 2), it was determined that two of the intersections would experience unacceptable levels of service with transit traffic impacts during the p.m. peak period. With reference to Table 2, it should be noted that $L O S D$ is generally acceptable during peak periods while LOS E is not. Level of service F represents breakdown conditions in the traffic flow. The CMA results (Table 3) show that the a.m. peak period experiences acceptable conditions and the p.m. peak conditions at Wilshire/Alvarado and at 6th/Alvarado are less than desirable before transit bus traffic is added.

Pedestrian traffic at the intersections of Alvarado Street with 7th Street, Wilshire Boulevard, and 6th Street is relatively heavy (600 to 800 per hour) in the p.m. peak. However, adjustments were made in the Critical Movement Analysis to account for up to 1,200 pedestrians per hour opposing the right turn movements. Since the right turns are in separate lanes with space for queueing, relatively minor impacts result for through traffic. Since the critical movements are in the through lanes, no decrease in service level is experienced due to pedestrians. This conclusion applies to both alternatives.

7.2 ALVARADO ALTERNATIVE WITH IMPROVEMENTS

The next step in the evaluation of the Alvarado Alternative is to identify improvements that would enable this scenario to operate at an acceptable level of service. A major objective in realizing this goal is to minimize capital expenditures through the use of transportation systems management (TSM) type traffic enhancements. Because the p.m. peak period is the only time when unacceptable levels of service are experienced, it was decided to test a traffic flow improvement that prohibits curbside parking (which is currently metered) during the p.m. peak (3-6 p.m.) on the east side of Alvarado from about 200 feet south of 7 th Street north to Maryland Street, one block north of 6 th. This parking restriction would provide three lanes for moving traffic during the time when it is most needed. The results of the Critical Movement Analysis with this improvement (Table 4) indicate the service level can be improved to D, which is acceptable in urban areas during a peak period.

TABLE 1
ALVARADO STATION
INTERSECTIONS STUDIED

	Alvarado	Westlake
Intersection	Alternative	Alternative
7 th \& Alvarado	a.m. and p.m.	P.M. Only
Wilshire \& Alvarado	a.m. and p.m.	P.M. Only
6th \& Alvarado	a.m. and p.m.	Not Critical
7 th \& Hoover	Not Critical	Not Critical
Wilshire \& Hoover	Not Critical	Not Critical

Source: Schimpeler.Corradino Associates, 1984.

TABLE 2

> LEVEL OF SERVICE RANGES
> OPERATIONS AND DESIGN APPLICATIONS
> (IN PASSENGER CARS PER HOUR EQUIVALENCY)

FOR SIGNALIZED INTERSECTIONS

Level of Service	Maximum Sum of Critical Volumes		
	Two-Phase	Three-Phase	Four+ Phase
A	1,000	950	900
B	1,200	1,140	1,080
C	1,400	1,340	1,270
0	1,600	1,530	1,460
E	1,800	1,720	1,650
F	------	Not Applicab	--

Source: Transportation Research Circular 212 Interim Materials on Highway Capacity, Transportation Research Board, National Academy of Sciences, Washington, D.C.

TABLE 3

ALVARADO STATION

CRITICAL MOVEMENT ANALYSIS

Intersection	Alvarado Alternative	
	Sum of Critical	Level of
	Volumes (pch)	Service
7 th \& Alvarado		
a.m.	1,216	c
p.m.	1,433	D
Wilshire \& Alvarado		
a.m.	1,399	C
p.m.	1,717	E
6th \& Alvarado		
a.m.	1,491	0
p.m.	1,889	F

Source: Schimpeler.Corradino Associates, 1984.

TABLE 4
ALVARADO STATION
CRITICAL MOVEMENT ANALYSIS WITH IMPROVEMENTS

Alvarado Alternative
Intersection Volumes (pch)

1,538
D
6th \& Alvarado p.m.

1,513
D

Source: Schimpeler.Corradino Associates, 1984.

7.3 WESTLAKE ALTERNATIVE

The Westlake Alternative allows buses eastbound on Wilshire Boulevard to continue east to Westlake, and then turn right with passenger drop-off/pick-up from the Westlake side of Alvarado Station. Buses then continue right onto 7 th and back to Wilshire via Hoover. Based on the previous analysis it was determined that the a.m. operations would be at an acceptable level of service, but that two intersections were potentially critical during the p.m. peak period. The two intersections analyzed for this alternative were Wilshire/Alvarado and 7 th/Alvarado. The traffic volume data and detailed analyses for this alternative are presented in Appendix 0 . The results of the analysis (Table 5) show that the 7th/Alvarado intersection operates acceptably. However, the Wilshire/Alvarado intersection operates at LOS E, which is unacceptable. However, a further examination reveals that the transit traffic, specifically the buses eastbound on Wilshire in the p.m. peak to serve the Alvarado Station, does not add to the critical movements. This is demonstrated in Table 6 , which presents the equivalent passenger cars per lane per hour for each approach in the before-and-after transit condition. This table shows that the buses adted to the intersection are added to the smallest traffic stream (588 PCV before vs. 629 PCV after, with buses added) and that this addition leaves the eastbound movement far short of the critical volume (841 PCV) on the westbound approach. Therefore, the additional bus traffic contributes nothing to cause deterioration to the level of service and, although the service level is E, no improvements are recommended since transit and the station's presence make no contribution to the problem.

TABLE 5
WESTLAKE ALTERNATIVE CRITICAL MOVEMENT ANALYSIS

	Westlake Alternative	
Sum of Critical Volumes (pch)	Level of Service	
Wilshire \& Alvarado p.m.	1,676	E
Th \& Alvarado p.m.	1,470	0

Source: Schimpeler.Corradino Associates.

WESTLAKE ALTERNATIVE

 WILSHIRE/ALVARADO APPROACH VOLUMES (PCV)| | Total PCV (Passenger Car) | |
| :--- | :---: | :---: |
| Intersection Approach | Equivalents in Cars Per | |
| | Before | After |
| Wilshire \& Alvarado | -- | -- |
| Eastbound (Al) | 538 | 629 |
| Westbound (A2) | $841(\mathrm{C})$ | $841(\mathrm{c})$ |
| Southbound (A3) | 641 | 641 |
| Northbound (A4) | $835(\mathrm{c})$ | $835(\mathrm{C})$ |
| Sum of Critical Volumes | 1,676 | 1,676 |
| Level of Service | E | E |
| Reference: Calculation \#10, Appendix 0. | | |
| Source: Schimpeler.Corradino Associates. | | |

Stated succinctly, the results of analysis on the Alvarado Alternative show that this scenario will not work without improvements, either from the traffic flow perspective or the bus operations viewpoint. Traffic flow, with existing conditions and experiences, present extreme congestion at Wilshire/Alvarado and 6th/Alvarado in the p.m. peak period. Bus operations are seriously impacted due to insufficient length of the pull-out bus bay to allow for efficient loading/unloading, much less having space for layover. This scenario would, therefore, require buses to circulate around the block to accomplish layover time, which is obviously undesirable for several reasons.

The Westlake Alternative (refer to Figure 3), on the other hand, operates much more efficiently. The additional bus traffic does not add to the p.m. peak surface traffic congestion since it operates eastbound on Wilshire against the major traffic flow and 7 th/Hoover both have sufficient excess capacity to accept the additional buses. Bus operations are enhanced also through the provision of a layover space along the west curb face of Westlake Avenue south of Wilshire in addition to sufficient space for passsenger loading/unloading.

Based on results documented herein, it is strongly recommended that the Westlake Alternative be implemented to provide the necessary bus interface with the Alvarado Station.

As part of this analysis, it is further recommended that the curb radius on the southwest corner of Wilshire and Westlake be improved to a minimum of 36 feet to enhance bus operations for this right turn movement, allowing the buses to turn.

APPENDIX A

TRAFFIC VOLLME DATA
$0 ; 200(3 A-2 / T 9)$
City of Los Angele
City of Los Angeles
Department of Transportation
02010 82510 EAS HEST
DAY \& DATE
\qquad Alvaiado sticet
W. 6 DIEE thi. 10-9-81 WETHER Clear
\qquad

(a)
(1)

191
$1 / 31 \quad 7^{30} \quad 518$

518	7^{30}	425	7^{45}
19			

TTOTAL
$\mathrm{C}+\mathrm{h}$
1685
1625
1340
1970
2606
2547
$1 / 773$

wedsuunu apranach

$$
\begin{array}{llllllllllllll}
7-8 & 3 & 345 & 41 & 389 & 3 & 331 & 39 & 373 & 762 & 80 & - & 161 & 7 \\
8-9 & 8 & 446 & 36 & 490 & 1 & 349 & 61 & 411 & 901 & 11 & 2 & 188 & 7 \\
9-11 & 4 & 337 & 1 & 392 & 2 & 10 & 62 & 364 & 756 & 1 & - & 314 & 11 \\
3 & 10 & 375 & 83 & 464 & 5 & 452 & 90 & 47 & 1011 & 189 & - & 520 & 46 \\
4- & 3 & 552 & 126 & 681 & 10 & 659 & 105 & 774 & 1455 & 816 & - & 611 & 26 \\
5-6 & 4 & 493 & 100 & 597 & 4 & 704 & 97 & 805 & 1402 & 791 & - & 530 & 21 \\
\text { rotal } & 28 & 2548 & 437 & 3013 & 25 & 2795 & 454 & 3274 & 6287 & 25 & 2 & 2324 & 118
\end{array}
$$

ty or Les iye :
spartment of Traffie
2RTH/SOUTH
3T/LEST
Pbate
JURS SCHOOL DAY

CITY OF
LOS ANGELES 'artment --qF transportation LOCATION

24 OUR
RAFFIC OLUME

$\begin{aligned} & \text { ARTMENT - OF TRANSPORTATION } \\ & \text { DCATION } \end{aligned}$												DAY OF THE CREK			
HOUVER ST	0 WIL	SHIRE	BL					05－13	－8才	c． 036133	312		FR		CR
hour beginning	NORTH			B OUND		SOUTH BOUND					R A TI O（ H / S ）				
	00－15	15－30	30－45	45－60	hour．total	00－15	15－30	30－45	45－60	hour total	00－15	15－30	30－45	45－60	hour total
12 AM	23	13	22	9	6727	$\begin{array}{r} 12 \\ 9 \end{array}$	$\begin{array}{r} 6 \\ 2 \end{array}$	$\begin{array}{r} 10 \\ 7 \end{array}$		38	$\begin{gathered} 1.9 x \\ .8 \end{gathered}$	$\begin{aligned} & 1.6 * \\ & 5.5 * \end{aligned}$	$\begin{gathered} 2.8 x \\ -7 * \end{gathered}$		$\begin{array}{r} 105 \\ 51 \end{array}$
1 AM	7	11	5	4						24				－．7＊	
2 AM	20	4_{4}	2	7	33	$\begin{array}{\|l\|} \hline 8 \\ 1 \\ 1 \end{array}$	4	－1	51	254	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 * \end{aligned}$	$\begin{gathered} .3 * \\ 5.0 * \end{gathered}$	1.4	5815
3 AM	1.	2	5		11		1							3．0＊	
4 AM	2	3	1	5	10 24	$\begin{array}{\|} \hline 3 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 6 \\ & \hline \end{aligned}$	1	8	1437	$\begin{aligned} & .71 \\ & .8 \\ & \hline \end{aligned}$	$\begin{gathered} 1.5 \text { 相 } \\ .7 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$.5x	24
5 AM	4	4	11					9	17						24 61
6 AM	25	36	50	$\begin{array}{r} 56 \\ 164 \end{array}$	167441	$\begin{array}{r} 24 \\ -102 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 28 \\ 126 \end{array}$		76211	$\begin{aligned} & 171 \\ & 546 \end{aligned}$	$\begin{array}{r} 1.0 \\ .0 \end{array}$	$\begin{gathered} 1.3 \\ .6 * \end{gathered}$	1.2	$\begin{aligned} & .71 \\ & .8 \\ & .8 \end{aligned}$	338
7 AM	78	74	125										1.2		987
0 AM	145	133	127	124	529475	$\begin{aligned} & 169 \\ & 137 \end{aligned}$	$\begin{aligned} & 167 \\ & 111 \end{aligned}$	$\begin{array}{r} 154 \\ \because \quad 105 \\ \hline \end{array}$	$\begin{array}{r} 119 \\ 92 \\ \hline \end{array}$	609445	$\begin{array}{r} .9 \\ .9 \end{array}$	$\begin{array}{r} .8 \\ 1.1 \end{array}$	$\begin{array}{r} .8 \\ 1.0 \end{array}$	1.0	1138
$9{ }^{\text {A }}$ AM	125	122	110	118										1.3	920
10 AM	102	106	100	77	$\begin{array}{r} 385 \\ 448 \\ \hline \end{array}$	$\begin{array}{r} 95 \\ 89 \\ \hline \end{array}$	79	103	$\begin{aligned} & 77 \\ & 109 \end{aligned}$	$\begin{array}{\|r\|} \hline 370 \\ 370 \\ \hline \end{array}$	$\begin{aligned} & 1.1 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.4 \end{aligned}$	1.0	1.0	755
11 AM	104	103	96	145				99					1.0	1，3	018
12 PM	133	105	134	128	$\begin{array}{r} 500 \\ \\ \hline \end{array}$	$\begin{array}{r} 99 \\ 96 \\ \hline \end{array}$	$\begin{array}{r} 108 \\ 84 \\ \hline \end{array}$	100	109	417400	$\begin{aligned} & 1.3 \\ & 1.4 \\ & \hline \end{aligned}$	$\frac{1.4}{1.0}$	$\begin{aligned} & 1.2 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 917 \\ & 947 \\ & \hline \end{aligned}$
1 PM	139	144	124	140				11.2108				1．0			
$2 \cdot \mathrm{PM}$	131	126	131	179	$\begin{array}{r} 567 \\ 660 \\ \hline \end{array}$	$\begin{aligned} & 102 \\ & 102 \\ & \hline \end{aligned}$	$\begin{aligned} & 102 \\ & 147 \\ & \hline \end{aligned}$	79	117	400530	$\begin{aligned} & 1.3 \\ & 1.4 \end{aligned}$	$\begin{array}{r} 1.2 \\ 1.2 \\ \hline \end{array}$	$\begin{aligned} & 1.7 x \\ & 1.4 \end{aligned}$	$\begin{aligned} & 1.5 * \\ & 1.0 \end{aligned}$	9671198
3 PM	143	177	176					129	160						
4 PM	193	204	194	$\begin{aligned} & 195 \\ & 168 \end{aligned}$	786 815	$\begin{aligned} & 174 \\ & 165 \end{aligned}$	$\begin{aligned} & 157 \\ & 212 \end{aligned}$	$\begin{aligned} & 164 \\ & 103 \\ & \hline \end{aligned}$	159	536654604	$\begin{aligned} & 1.1 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.1+ \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1440 \\ & 1419 \end{aligned}$
5 PM	215	217	215						124						
${ }_{6} 6$ PM	170	153	134	$\begin{array}{r} 115 \\ 08 \\ \hline \end{array}$	$\begin{array}{r} 572 \\ 401 \\ \hline \end{array}$	$\begin{array}{r} 145 \\ -91 \\ \hline \hline \end{array}$	$\begin{aligned} & 91 \\ & 84 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 62 \end{aligned}$	111	443300	$\begin{aligned} & 1.3 \\ & 1.2 \\ & 1.3 \end{aligned}$	1．7＊	1.4	1．0	14191015701
7 PM	1.22	98	93						6.			1.2	1．5＊	1.4	
${ }^{1} \mathrm{P}$ PM	85	72	50		274304	$\begin{aligned} & 58 \\ & 32 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 46 \\ & 43 \end{aligned}$	38	300 $\quad 202$	1．5＊	1.2	1.1	1．8＊	476
9 PM	74	84	71	75					45	104	1.4	1．9＊	1．7＊	$1.7 *$	408
10 PM	61	58	50	47	216	43.	46	32	30	151	1.4	1.3	2.60	1．67	367
11 PM	39	57	3 B	43	177	43.	36	41	39	159	． 9	1．6＊	.9	1.1	336
		6 HO	UR total	tal	3706					3396					7102
		16 но	ur total	al	7871					6653					14524
		24 но	ur tot	AL	0436					7105					15541
			$\begin{array}{r} \mathrm{HOL} \\ \text { 日EGIN } \\ \hline \end{array}$	$\begin{aligned} & \text { JR } \\ & \text { NING } \end{aligned}$	VOLUME			$\begin{array}{r} \text { HOU } \\ \text { BEGIN } \\ \hline \end{array}$	INING	VOLUME			$\begin{array}{r} \mathrm{HOU} \\ \text { 日EGIN } \end{array}$	R NING	volume
		AM		45	569		AM		45	701		AM	7	45	1270
ORM NO． 283 BEV ．		PM		45	842		PM		30	700		PM	4	30	1521
$\begin{array}{cc} \hline 36990 & 7975 \\ 18 & 11 \end{array}$	305	$13-83$					HO	VER	ST ST	0 MILSHIRE					22

APPENDIX B

ALUARADO ALTERNATIUE

TRAFFIC VOLLME DATA

AND CMA RESULTS

EXISTING CONDITIONS Identification of Intersection Movements

Design Year 2000
Design Hour AM

Critical Movemeñ Analysis: OPEKATMON RND RESIGN Calculation Form 2

tersection $\quad 7^{\text {thi }}$ - trect 1, Alvarado $\Omega \frac{1}{1}$ Design Hour
 7: シn-6:--4M

Step 6. Calculate Period Volumes (PV) in pch

Step 7. Turn Adjustments

Step 10. Sum of Critical

 B2A1 Yolumes

Step 11. Intersection Level of Service
(compare Step 10 with Table 61

Step 12. Recalculate Not
Gemerric Change N Necessaty
Signai Change
Yolume Change
Comments

Traffic Volume Data
Identification of Intersection Movements

Design Year 2000
Design Hour AM leak th.
Intersection 7 " street
ant Alvarado Street
\qquad and Alvarado =-f. Design Hour \qquad Problem Statement Detarniue Critical have Volume and 105

Step 3. Identify Phasing

Step 5. Develop Passenger Car
Volumes $(P C V)$ in pah

Step 6. Calculate Period Volumes
(PV) in ph

Step 7. Turn Adjustments

Traffic Volume Data Identification of Intersection Movements

Alvarado Altemative
Existing Conditions
Critical Movement Analysis: OPERATIONS AND DESIGN Calculation Form 2

- inTersection Wiltshire and Alvarado Design Hour AmPaizttur Problem Statement Determue Gificel, Lane Volumes and LDS

Traffic Volume Data Identification of Intersection Movements

Hlivarade Altars in z?
Existing Conditions
Critical Movement Analysis: OPERATIONS AND DESIGN Calculation Form 2

- ${ }^{2}$ ersection $6^{\text {th }}$ Street and Alvarado Design Hour AM Peak Ht e Problem Statement Define Critical Lowe Volumes and cos

Step 2. Identify Hourly Volumes

Step 3. Identify Phasing

Step 4. Left I urn Check
a. Number of

Traffic Volume Data Identification of Intersection Movements

Critical Movement Analysis: OPERATIONS AND DESIGN Calculation Form 2

resection Thtriteet and Alvaro Design Hour PMMPlekthen.

 Problem Statement

Step 3. Identify Phasing

Step 5. Develop Passenger Car Volumes (PCV) in och

Step 6. Calculate Period Volumes
(PV) in pah 女

Step 7. Turin Adjustments

Approach Movement

Turn

Turn volume
(PV from Step 61
Opposing vol. in
Opposing vol. in
ph from Step 2
Ped. wal hour
PCE LT from
LT vol. in ph
PCE RT from
Table 4
Table 4
RT sol. in ph
TH sol. in pah
rum Step 6
Tula l PCV in pe h

Step $9 b$. Volume Adjustment for

 Multiphase Signal Overlap| | Possible | Volume | Adjusted |
| :--- | :--- | :--- | :--- |
| Probable | Criucal | Carryover | Cruical |
| Phase | Volume | to next | Volume |
| | in neth | phase | in pah |

Step 10. Sum of Critical
$A 2$ Volumes

Step 11. Intersection Level of Service (compare Step 10 with Table 6)

Step 12. Recalculate Geometric Change No Signal Change \qquad
Comments
that Prox thentrontrot bust

Traffic Volume Data Identification of Intersection Movements

Critical Movement Analysis: OPERATIONS AND DESIGN Calculation Form 2

Frersection
 \qquad Design Hour
 Problem Statement
 \qquad Volumes and COS

Step 2. Identify Hourly Volumes

Step 4. Left I urn Check

Step 5. Develop Passenger Car
Volumes (PCV) in pah

Step 6. Calculate Period Volumes (PV) in $p c h t a$

Step 7. I urn Adjustments

$2 Q$

Step 11. Intersection Level of Service
with Tate 6

resect

Traffic Volume Data Identification of Intersection Movements

Critical Movement Analysis: OPERATIONS AND DESIGN Calculation Form 2
 Problem Statement Define Critical Carse Volumes and LOS

Step 2, Identify Hourly Volumes

Step 11. Intersection Level of Service (compare Step 10 with Table 6)
Step 12. Recalculate Geometric Change Signal Change Volume Change Comments

APPENDIX C

ALUARADO ALTERNATIVE CMA RESULTS WITH IMPROVEMENTS
. vara 0
I native - mproverrien

Critical Movement Analysis: OPERATIONS AND DESIGN Calculation Form 2
a)ersection Wilshire and Alvarado Design Hour FM feakttw. Problem Statement Determine Cistical Lave Volumes and $\angle 05$

Step 2. Identify Hourly Volumes

Step 4. Left I urn Check

capacity
(b $\mathrm{b}+\mathrm{e})$
g. Left turn volume
h. In volume sumac.
inv ce> 0 ?

step 7. Turn Adjustments

Alvarado Alternative
With Improvencuts
Critical Movement Analysis: OPERATIONS AND DESIGN Calculation Form 2

- erection $6^{\text {th }}$ Sheet and Alveras'o Design Hour FAT Peak ter Problem Statement Define Critical lone Valomee and LOS

Step 1. Identify Lane Geometry

Step 2. Identify Hourly Volumes

Step 11. Intersection Level of Service
(compare Step to with Table 6)
\square
Step 12. Recalculate
Signal Change \qquad
Volume Change
Comments See Traffic Val.
Data Sheet \#7

APPENDIX D

Westlake Alternative
Traffjc Volume Data
and CMA Results
Existing Conditions
ra ic o ump Data Identification of Intersection Movements

Critical Movement Analysis: OPERATIONS AND DESIGN Calculation Form 2

- tersection Ulishire and Alvarado Design Hour PMI leak Hr. Problem Statement Determine Critical $\angle \cdots$ Volumes and $\angle O S^{\circ}$.

Step 2. Identify Hourly Volumes

Step 4. Left Turn Check
2. Number or

change internals
per four

in
in Vh
c.
e.
d. Ratio
d. Pp posing volume

Q. Eftitum in
opacity in ph

- Left furn volume
i. in ph

Step 7. Turn Adjustments
Approach Move
Turn
Turn volume
(PV from Step 6) Opposing vol. in
ip from Step Ped. vol hour PCB
Table
IT таые 3 LT sal in pah.
PCE RT from ThE 4 from
RT wool. in pah IH sol. in pen from Step 0
Total PCY ${ }^{\text {Total PCV }}$

esthake Alternative Traffic Volume Data with Identification of Intersection Movements

Critical Movement Analysis: OPERATIONS AND DESIGN Calculation Form 2
Otersection $7^{\text {th }}$ and Alvarado streets Design Hour PM Peak the. Problem Statement Define Critical Lone Volumes and $\angle 0 S^{\circ}$.

Step 2. Identify Hourly Volumes

Step 3. Identify Phasing

Prepared for:
Southern California Rapid Transit District

Prepared by:
Barton-Aschman Associates, Inc.
in associaton with:
Schimpeler.Corradino Associates
Cordoba Corporation

```
シ:. =%-
```

Myra L. Frank \& Associates
Robert J. Harmon \& Associates Deloitte Haskins \& Sells

Manual Padron
The Planning Group, Inc.

Metro Rail and Transportation System Management (TSM) alternatives have been defined for each of the three Metro Rail line extents (4,8.8, and 18.6 miles ${ }^{\perp}$. Complete travel denand model simulations have been performed to estimate the ridership, travel time, and operating resource and cost implications of each of thse six alternatives.

Briefly sumarized in this memorandum are the results of the UMTA prescribed cost-effectivenss calculations aimed at comparing each rail alternative with the comparable non-rail alternative.

2. Cost-Effectiveness Inputs and Results

In addition to the data provided by the individual travel demand model simulations, other capital and operating costs were computed based upon the definition of tio specific alernative being tested.

Rail system capital costs included the cost of the Metro Rail line and the corresponding cost of bus expansion and replacement. The rail system operating costs were derived from the respective rail and bus cost models, which are calibrated components of the travel demand models.

The TSin capital costs include the cost of bus fleet expansion and replacement for all alternatives. Computerized traffic signal constrol was also included in all alternatives at $\$ 40,000$ per signal, with the following number of signals in each alternative:

$$
\begin{array}{ll}
\text { TSM } & \text { NUMBER OF SIGNALS } \\
\text { ALTERNATIVE } & \text { EFFECTED } \\
\hline
\end{array}
$$

$$
4.0 \mathrm{mile} \quad 334
$$

$$
8.8 \mathrm{mile} \quad 682
$$

$$
\therefore \quad 18.6 \mathrm{mile}
$$

In the 8.8 and 18.6 mile TSM alternatives, reversible lane control on $01 y m p i c$ Boulevard was included at $\$ 1.5$ million. And finally, in the 18.6 TSM alternative, new transit centers at Universal City and Hollywood/ Cahuenga were included at a total cost of $\$ 5.7$ million. TSil operating costs include the Long Beach Light Rail line and regional bus operating costs plus the maintenance of the computerized traffic signal control system (at $\$ 700$ per signal per year).

All cost-effectiveness inputs are presented in the attached tabies together with the calculation results:

Extent $(\text { Mile })$	Federal Index	Total Index
4.0	4.58	6.51
8.8	1.80	3.00
12.6	2.03	3.77

[^4]Alternative rene：MOB－t

Itera oise bife Puantity FA］L ALTEPNTHE

Rail Capitas Cost	0.1		1．175E＋67	1	\＄117490000．00	0．106792	\＄124632508．77	
Iritial Eus Expassom	0.1	12	8 8	\＄150600．00	\＄12500606． 90	0.1467630	\＄1649217．77	
fiter Eus Csplial	0.1	36	0	\％29009060．00	\＄0．00	6．106079	\＄0．05	
Replacement Eus coste	4.1	12	2254	\＄150000．00	\＄34440000．00	0．1467633	\＄50501252． 73	
Qther Cupital Costs	0.1	20	10	1	50.60	0.106975	\＄0．80	\＄17692783．2？
Local Cepital Funding							\＄5297002．43	552970021，43
Eus Seerating Costs	1		525420800	＊ 1	\＄5こ530600．00	1	\＃5 25420800.60	
Rei．Deratiec Costs	1	1	20こ0ugh	1	5 28000000.46	；	5cenorounit	SE5Suteciluiu
Were Trasit Traut Time	1	1	78311305	\＄4．0J	\＄313245220，00	：	$\therefore 201348280.007$	
Normort Tracoi Time	1		26597276	\＄2．06	\＄539947520．60	$!$	（555994720．00）	
And．Limer irsinsit Tric	1		5278250	1	52.752596	：	5272800	
Initial Eus Expansion	0.1	12	26	\＄550000．00	73500800．00	1.1467633	\＄572376．53	
Other Eus Capitai	0.1	30	0	\％20000000，00	\＄0．00 0	0.166792	50.65	－
Foriacerant Eus duste	0.1	12	2204	5150300．60	¢35240060．00	11．14653	54922441E．38	
Other Coubal cosic	$6: 1$	3 3	12360004	1	\＃1836000．00	Q． 120637	\＄14726．76	TE121401． 57
Lecal Cabital Furding							103030．2．3F	
Eus Cunctine cosse	：		518125E＊	1		1		
Chtur Mieratirg Costs	1	1	1325300	$!$	$31: 323500.80$	$!$		
Wori Transit Ta，\％i Tres	$!$		7585455	\＄4．03	\＃3：947940， 0	1	$1320 \times 4:-7639$	
	：		2ワごこの	\＃2． 2		：		
	：		53155205	！		：		

bail mattenative

Rail Cabital Cost	0.1	$328.1345+09$	1	\＄2125500000．00	0.1000782	\＄2263076． 5	
Initis？Eus Eroansiait	0.1	12	7150003.85		0.146763	90．00	
Ohiter Eus Casitai	0.1	300	seracoiog．00	± 0.00	0.1060762	\＄0．50	
Eeslasemerit Eus Costs	0.1	122104	\＄150000．00	\＄33560000．0i6	0.1457630	\＄4638502．2E	
Other Casital Costs	0.1	30	$!$	15.09	0.1030792	30， 05	\＄27265778．8\％
Locai．Casitai Funcinc						T84003049． 5	\＄84020049．93
Eus Deretimg Costs	1	1459281200	＊ 1	F4068120， 30	1	349321200.00	
Eat Lasatirg Costs	1	1 49800000	1	\＄449000， 6	i		¢5EER200．0\％
Work Transit Travel Time	1	18268540	54．00	\＄3586030，30	1	（1）	
Nonwort Trave T Tipe	1	1 266312400	\＄2．00	\＄52652480， 60	1		（ 295988160 20
Gan，Enked Transit Triog	1	1 5764856	1	5764808	1	57641850	
TEU ALEESTELE ：							
Initial Eus Expansion	0.1	12208	\＄150000．00	\＄31200000．00	0.1467633	54575015.43	
Other Eus Catiza	0.1	301	F2900000．00	\＄2cô0¢	0.100072	5307655.75	－
Frovesont gus Cots	$\underline{1}$	：2 248	\＄15tonen	\＃E200050， 0	－¢4072		
Other Canital Cos？	6.1	202370000	！	\＄2678090． 0	0.100892	\＃ 2059940.7	
Lecei Guotal Findin							358523：3
Eus Cacratiraseste	；	154403585	\pm		：	Esincesta	
Gther Geretime costs	1	1 138209	1	31552840806	1		55： 512026
	i		34.00	：364159200．60	1	\％ 3 2 61520060	
	；	：29\％1805	san	56asesex	：		为：
	：		！		！	¢：ッアワ゚	

Yaius
T016：5
RAD ATERATIVE

	Û．1		$3.3545+99$	1	\＄3540600004．03	0.1060732	\＄356972176．07	
Jritas EvE Exacmsion	0.1	12	0	\＄150604．4	\＄t．06	0．147550	\＄0．00	
Oins EuE Cepitai	0.1	30	0	\＄25000006．60	80.30	2．106872	钓．60	
Ferizconot Eus Costs	0.1	12	1724	\＄EStatise	\＄258600000．60	9．140762	787c5250．28	．
Otas Catital Costs	0.1	3	0	$!$	96.05	6.116973		
Lecei Copitei Funding							\＄12435924，67	－ 1248583546
Sus Gutatino Cosis	1	1		－ 1	$\pm 40646045,00$	$:$	540236606， 80	
	$!$	1	SEDTM	1		i	\％$\%$ 52000．0	\＄4766thent
	1	1	90991040	94.010	\＄85864ict．00	1		
Womaris Traye？Time	1	1	26225940	72．00	5590470220．00	4	（5930470ed．00	
tra，Linkec Trasit Trip	$!$	1	52351600	！	58281604	1	585.31800	
TEt								
Intitai Eus Exparsion	0.1	12	151	\＄150000．05	\＄2450000．00	0.1467633	O9544304．06	
Citer Eus Copitaj	0.1	30	！	525000900.00	\＄29000000．00	6.2060792	3007688.20	－
	こ：	：	$5:$	\＃Engou		－ 14605		
Gther Cs：itis Costs	0.1	30	4560000	1	$\pm 45080000 \cdot 40$	O．148732		F6SERESET
Leci Cagital Funding								
Exs Gouciane Coste	1	$!$	5×3050000	1	55？actord．60	1	± 533260000.6	
Other igemimg cests	1	1	1377700	1	15375603 6	1	2193090， 00	
Wunk Traseltirsua Pine	！	1	$91: 295 * 2$	24.60		：		
	$!$		ごSos5d	き2．	：5：－7pann：0	1	－	
	：	：	$5 \times 5 \mathrm{con}$	．	$5 \cdot 08000$	1	9193ctan	

[^5]
[^0]: [set-Efectiveness]ndex

[^1]: Cost-Effectiveness index
 3.7690

 Feceral Cost-Effectiveness Index

[^2]: 1 Technical Memorandum 6.1.3, Description of Transportation System Hanagement (TSit) Alternative Networks, Septenber, 1984

[^3]: Technical :1emorandum 6.1.3, Description of Transportation System fanagement (TSi1) Al ternative vetworks, Saptember, 1934

[^4]: 1 Technicai temorandum 6.1.3, Description of Transportation Systen 'lanagement (TS'1) Alternative 'vetworks, Septenber, 1934

[^5]:

