22125722

GENERAL PLANNING CONSULTANT TECHNICAL MEMORANDUM 6.1.3 DESCRIPTION OF TRANSPORTATION SYSTEM MANAGEMENT (TSM) ALTERNATIVE NETWORKS

Prepared for:

Southern California Rapid Transit District

Prepared by:

Barton-Aschman Associates, Inc.

in association with:

Schimpeler.Corradino Associates Cordoba Corporation Myra L. Frank & Associates Robert J. Harmon & Associates Deloitte Haskins & Sells Manuel Padron The Planning Group, Inc.

September, 1984

TABLE OF CONTENTS

				PAGE
٦.	INTR	<u>DUCTION</u>		1
2.	<u>DEFI</u>	NITION OF ALTERNATIVES		2
	2.1	4-MILE TSM ALTERNATIVE	•••••••••••••••••••••••••••••••••••••••	2
	2.2	8-MILE TSM ALTERNATIVE		2
	2.3	18.6-MILE TSM ALTERNATIV	/E	5
	2.4	TSM IMPROVEMENTS		7
		2.4.1 Recently Implement	nted TSM Improvements	7
		2.4.2 Proposed TSM Meas	sures	10
	REFE	RENCES		14

19266

•

ţ

1. INTRODUCTION

The Southern California Rapid Transit District is currently considering three Los Angeles Metro Rail alternatives. The first alternative, termed the Locally-Preferred Alternative (LPA), is 18.6 miles in length and extends from the Los Angeles CBD to North Hollywood. The second alternative, termed the Minimum Operable Segment (MOS), is an 8.8 mile segment of the 18.6 mile LPA, extending from the Los Angeles CBD to Fairfax Avenue at Beverly Boulevard. The third alternative, termed the MOS-1, is a shorter segment of the LPA, extending 4 miles from the Los Angeles CBD to Alvarado Street at Wilshire Boulevard. In order to qualify for rail funding, the Urban Mass Transportation Administration (UMTA) requires the transit industry to calculate several cost effectiveness indices which guide UMTA in making decisions on major transit investments. These indices, representing a measure of transportation cost and benefits, are based upon a comparison between the rail alternatives and Transportation System Management (TSM) alternatives which are comparable in terms of the level of service provided. To this end, three additional non-rail alternatives were developed by SCRTD which reflect traffic operation and transit service improvements. A comparison of each rail alternative to its non-rail TSMequivalent is then made in order to measure the cost-effectiveness of the rail alternatives.

The following text provides a detailed definition of the TSM alternatives, followed by a summary of TSM measures that have already been implemented, measures that have been considered, and most importantly, additional actions which are proposed to supplement the current TSM program. In each case, the impact of the TSM actions on the transit and highway level of service is quantified.

2. DEFINITION OF ALTERNATIVES

TSM alternatives were derived incrementally. The 4-mile alternative was developed from the 1985-base planned and committed system. The 8-mile TSM alternative was developed from the 4-mile TSM alternative. The TSM alternative was derived, in turn, from the 8-mile system.

2.1 4-MILE TSM ALTERNATIVE

Figure 1 shows the impact area of the 4-mile TSM alternative. This area is bounded on the north by the Hollywood and Pasadena Freeways; on the south by the Santa Monica Freeway; on the east by the Los Angeles River; and on the west by Hoover Street.

To arrive at this alternative, the following modifications were made to the 1985 base planned and committed transit system:

- A. Prohibit left turns on 7th Street between Alvarado and the Harbor Freeway. This traffic management action has the effect of increasing the speeds of all highway and transit modes on 7th Street by 15 percent.
- B. Implementation of a computerized signal control system affects limited stop transit route speeds (Routes 320 and 322 on Wilshire Boulevard, and Route 328 on Olympic Boulevard) as well as surface street arterial speeds. The effect of this action is to increase the speeds on the affected bus routes and arterial streets by 7 percent.

2.2 8-MILE TSM ALTERNATIVE

Figure 2 defines the impact area of the 8-mile TSM alternative. This area is bounded on the north by Melrose Avenue and the Hollywood and Pasadena Freeways; on the south by the Santa Monica Freeway; on the east by the Los Angeles River; and on the west it is bounded by Santa Monica Boulevard, Wilshire Boulevard and La Cienega Boulevard.

For this alternative, the following modifications were made to the 1985-base planned and committed transit system:

- A. All changes described above for the 4-mile alternative.
- B. Implement left-turn prohibition on Olympic Boulevard from San Pedro Street (Los Angeles CBD) to La Cienega Boulevard. The effect of this action is to increase transit and automobile speed by 15 percent
- C. Implement asymmetrical traffic operation (reversible lanes) on Olympic Boulevard between San Pedro Street (Los Angeles CBD) and La Cienega Boulevard. The impact of this traffic operation change is to increase transit and automobile speed on Olympic Boulevard by an additional 10 percent.
- D. Extend implementation of the computerized signal control system within the 8-mile TSM alternative impact area. The effect of this action is

8 MILE_TSM_ALTERNATIVE

FIGURE 2

18.6 MILE TSM ALTERNATIVE

a a ser e ere as

FIGURE 3

1.

to increase limited-stop bus route speeds on Olympic, Wilshire and Cahuenga Boulevards by 7 percent. Similarly, auto speed increases of 7 percent apply to the arterial street system in the area. Total speed increase on Olympic Boulevard is 32 percent.

2.3 18.6-MILE TSM ALTERNATIVE

Figure 3 shows the entire impact area of the 18.6-mile TSM alternative. In addition to the area defined for the 8-mile alternative, the 18.6-mile TSM impact area extends to Sylvan Street on the north.

The 18.6-mile TSM Alternative is defined as follows:

- A. All changes described above for the 4- and 8-mile alternatives.
- B. Extend computerized signal control system within the expanded LPA impact area. The effect of this action is to increase limited-stop bus route speeds on Wilshire Boulevard and automobile speeds on arterial streets by 7 percent.
- C. Incorporate the following route changes:
 - Divert Route 150 to Universal City Transit Center (UCTC) via Lankershim. Peak headway: 7 minutes.
 - Extend Route 152 to Universal City Transit Center (UCTC).
 - Add Route S-170 service from Lankershim/Tujunga to Burbank CBD via Tujunga, Ventura, Lankershim, Cahuenga, Riverside, Main, Victory and Olive. Peak headway: 22 minutes; off-peak headway: 35 minutes.
 - Extend Route 160 to UCTC.
 - Add limited stop service (Route L-4) from Ventura Hills to UCTC via Ventura Boulevard. A.M. peak headway: 5 minutes, P.M. peak headway: 8 minutes.
 - Eliminate express Route 424 west of UCTC; leave express to CBD.
 - Divert Route 423 to UCTC.
 - Eliminate express Route 425 west or north of UCTC; leave express to CBD.
 - Divert Route 427 to UCTC.
 - Add Route S-162 on Reseda from Devonshire to Ventura Boulevard.
 A.M. peak headway: 5 minutes; P.M. peak headway: 8 minutes; offpeak headway: 20 minutes.
 - Delete Routes 421 and 422.
 - Divert Routes 420, 420A, 426 and 426A into UCTC.

4 MILE TSM LTERNATIVE

FIGEE 1

2.4 TSM IMPROVEMENTS

2.4.1 <u>Recently Implemented TSM Improvements</u>

The City of Los Angeles and SCRTD have actively pursued a rigorous TSM program to make effective use of its existing transportation resources. Since 1980 numerous TSM projects have been implemented for both highway and transit facilities.

The City of Los Angeles Department of Transportation's extensive list of recent TSM improvements range from the restriction of parking in commercial areas to the installation of a computerized traffic control system. The following list presents the types of TSM improvements implemented by LADOT and typical locations where the improvements were made. This list presents examples and do not represent all improvements made.

a. <u>Channelization</u> of traffic

Western Avenue between Santa Monica Freeway and Franklin Avenue.
 Beverly Boulevard between Fairfax Avenue and Rossmore Avenue.

- b. Reversible lane operation
 - Highland Avenue between Hollywood Freeway and Sunset Boulevard.
- c. <u>Downtown</u> contra-flow bus lane
 - Spring Street from Ninth Street to Sunset Boulevard.
- d. Fine-tuning of intersections signal timing
 - Various locations (100 to 200 per year).
- e. Improvement of signal coordination
 - Wilshire Boulevard from Alvarado Avenue to La Brea Avenue.
- f. <u>Computerized traffic</u> control operation
 - Los Angeles Coliseum area bounded by Santa Monica Freeway (north), Harbor Freeway (east), Vernon Street (south) and Western Avenue (west)
- g. Bus pre-emption of traffic signals
 - Ventura Boulevard from Vineland Avenue to Reseda Boulevard.
- h. Improvement of signal operation reliability
 - Various locations. Replaced electro-mechanical signal controls with micro procedures at multi-phase traffic signal locations.
- i. <u>Installation of left turn restrictions (except buses)</u>
 - Wilshire Boulevard and Alvarado Avenue

- Wilshire Boulevard and La Brea Avenue
- Wilshire Boulevard and Fairfax Avenue
- j. <u>Widening of approaches to intersections</u>
 - Normandie Avenue and Olympic Boulevard
 - Wilton Place and Wilshire Boulevard
- k. <u>Strict enforcement of traffic regulations and parking restrictions</u>
 - The City of Los Angeles recently established the Bureau of Parking Management. Their responsibility is to enforce traffic regulations and parking restrictions.
- 1. Restriction of on-street parking during peak periods
 - Wilshire Boulevard between San Vincente Boulevard and Figueroa Street
- m. <u>Time-limited parking in commercial areas</u>
 - Wilshire Boulevard between Highland Avenue and La Brea Avenue
- n. Neighborhood preferential parking programs
 - Universal City area (sticker parking for residents)
- o. <u>Provision to permit reduced on-site parking in exchange for</u> <u>comprehensive employer-sponsored ridesharing incentive program</u> (new development).
 - City ordinance passed in 1982
- p. Flexible work program
 - City employees work eighty hours in a two-week period in nine working days and take Monday or Friday off.
- q. Promotion of ridesharing programs
 - A quasi-public agency formed to promote and encourage ridesharing (Commuter Transportation Services--Commuter Computer)
- r. Development of bicycle routes and storage facilities
 - Bicycle route on Venice Boulevard between La Brea Avenue and Pacific Avenue
 - Shower facilities for bike riders in City Hall
 - Enclosed bike storage lockers at City Hall

RTD has implemented its 1980 Sector Improvement Program (SIP). The SIP represented the biggest series of service changes in RTD history. A key feature of service in the 1980 Sector Improvement Program developed an expanded bus route grid of north-south and east-west bus lines with improved frequencies of ten minutes or better between Santa Monica Mountains and Manchester Boulevard, and between downtown Los Angeles and La Cienega Boulevard.

In addition to establishing a grid system, the SIP also used the concept of transit centers which are key locations where certain lines converge for the convenience of passengers (such as shopping center malls and employment centers). The transit centers simplified transferring and made possible the boarding of any of several routes at one location.

The grid network of bus lines simplified the system, spread passenger loads over more lines, and eliminated duplication.

The 1980 Sector Improvement Program simplified the bus system on a single street in a grid-like manner whenever possible. It reduced the number of transfers; provided faster service; and reduced overcrowding.

The 1980 SIP provides the following benefits to the public and to the District:

- a. <u>Produces a more comprehensive system</u>. Recognizing urban growth and change in the last 30-40 years:
 - Replaces uncoordinated conglomeration of predecessor companies, lines with a coordinated system.
 - Fills in service voids and creates a basic grid in the core of RTD system.
- b. <u>Improve responsiveness</u>. Implements requests, comments, and suggestions from the public which require change in more than a single line.
- c. <u>Simplify the system for users</u>. By replacing circuitous, complex and/or confusing routings with simplified grid and improved service:
 - Reduces travel time in several major corridors.
 - Reduces the number of transfers required to complete a trip, thereby increasing usage by many who chose not to use previous services.
- d. <u>Open new opportunities for travel</u>. New lines or connections of existing lines provide:
 - Better "crosstown" service in peripheral areas, allowing patrons to complete their trips without traveling through downtown Los Angeles.
 - Better linkage across topographic barriers (e.g., Hollywood Hills, Baldwin Hills, Elysian Valley L.A. River).
 - Improved connections between sectors (e.g., San Fernando Valley to Pasadena, Highland Park to Hollywood, Glendale to West Los Angeles, North Los Angeles to Central Cities and East Los Angeles to the employment centers in Commerce,

Vernon, and Cudahy).

Implementation of TSM improvements are hindered by discontinuities in the street system. Despite the grid pattern of the street system, there are only four through streets on an east-west axis in the entire corridor, namely, Third Street, Sixth Street, Wilshire, and Olympic. Fourth Street and Fifth Street are discontinuous at the Harbor Freeway and in the middle of the corridor. Sixth Street, while continuous, turns into a quiet residential street west of Western Avenue. Wilshire, while continuous throughout the corridor, dead-ends on the west side of the CBD necessitating major bus turning movements in the CBD.

Seventh, Eighth, and Ninth Streets are discontinuous in the mid-Wilshire area. Several north-south streets in the study area are also discontinuous. These include Rossmore Avenue/Crenshaw Boulevard, Wilton Place/Arlington Avenue, Normandie Avenue/Irolo Street and Virgil Avenue/Hoover Street. The discontinuous streets result in a concentration of vehicular movement on only a few arterial streets which are already at capacity, thus compounding the congestion problem. Figure 4 shows the discontinuities, including jogs and street mergers, which are an impediment to the normal flow of traffic. Congestion on Cahuenga/Highland in the vicinity of the access ramps to the Hollywood Freeway is also very severe, in spite of special traffic measures, such as using one lane as a reversible lane for peak direction travel.

2.4.2 <u>Proposed</u> TSM Measures

The previous chapter outlined various transportation system management (TSM) techniques which have already been implemented by the City of Los Angeles. In addition to these, three general TSM techniques were proposed to supplement the existing TSM program:

- a. Expansion of Computerized Traffic Signal Control
- b. Prohibition of left turns; and
- c. Asymmetrical lane operation.
- d. Development of Transit Centers

The following text provides documentation of the travel time savings which can be expected for each technique as it is applied to the transportation system.

2.4.2.1 Computerized Traffic Signal Control

The City of Los Angeles Department of Transportation has conducted two studies to measure the effectiveness of computerized signal control. The first study was conducted to quantify the benefits of installing a computerized traffic signal control system in Downtown Los Angeles. The results of the study showed significant improvements, with reductions in stops and delays of thirteen to seventeen percent for automobile and bus traffic. The second study was conducted to evaluate the TRANSYT model in Downtown Los Angeles. A TRANSYTderived timing plan for the p.m. peak period was installed in the study network. Before-and-after field evaluations indicated that the TRANSYT timing plan produced a thirteen percent reduction in stops and delays, with an increase in average speed in the study network of seven percent.

Based on the results of the above studies, a seven percent increase in speed for auto traffic was assumed and incorporated into the highway networks used for the

1

1

SOURCE: FINAL AA/EIS ON TRANSIT SYSTEM IMPROVEMENT IN THE LOS ANGELES REGIONAL CORE, APRIL 1980.

DISCONTINUITIES IN ARTERIAL STREET SYSTEM IN REGIONAL CORE

FIGURE 4

TSM alternatives. Since signals are not timed for local bus operation, no change in speed for local bus routes was assumed.(1) Limited-stop bus routes are affected, however, and therefore the same speed increases assumed for auto were assumed for limited-stop transit service.

2.4.2.2 Prohibition of Left Turns

The City of Los Angeles Department of Transportation conducted a study in 1980 to evaluate the effect of left-turn prohibitions on Seventh Street in Downtown Los Angeles. As shown in Table 1, the results of the speed study--conducted before and after the left-turn prohibition--indicate an overall reduction in travel time of thirteen percent and an overall increase in speed of fifteen percent.

Therefore, using the results of this study, a fifteen percent increase in speed was applied to auto and bus speeds in the networks used for the TSM alternatives.

2.4.2.3 Asymmetrical Lane Operation

Olympic Boulevard currently provides three travel lanes in each direction, and operates at a V/C ratio of approximately 0.90.

Asymmetrical lane operation, to be applied only to Olympic Boulevard, would provide four travel lanes in the peak direction and two travel lanes in the nonpeak direction. This operation would provide one additional lane in the peak direction, thus theoretically increasing capacity in the peak direction by 33 percent.

According to a graphic representation of travel speed versus V/C ratio in the <u>Highway Capacity Manual(</u>2), an increase in capacity of 33 percent (to go from good to perfect progression) would result in an thirty percent increase in speed. However, since perfect progression can realistically seldom be achieved, and since adding 33 percent capacity cannot actually be attained by adding a fourth lane to Olympic Boulevard, this increase in speed may not be feasible. Therefore, as a conservative estimate, an increase in speed of ten percent was used for auto and bus traffic and incorporated into the highway networks used for the TSM alternative.

2.4.2.4 Development of Transit Centers

Implementation of the 18.6-mile TSM alternative would require the construction of transit centers (as defined in the 1980 Sector Improvement Plan) at Universal City and at Hollywood/Cahuenga.

TABLE 1

Left Turn Prohibition Results: 7th Street Between Figueroa Street and Los Angeles Street (3,630 ft.)

Period of Day		Direction	Before "No	Trials Left Turn" er 1980	Time Trials After "No Left Turn" April 1981		
$\left \right $				Speed, mi/hr	Time, sec	Speed, mi/hr	
	AM Peak	EB WB	186.5 218.3	13.3 11.3	186.4 163.1	13.3 15.2	
	Mid-day	EB WB	293.7 309.1	8.4 8.0	305.9 278.8	8.1 8.9	
	PM Peak	EB WB	309.7 339.8	8.0 7.3	234.6 272.8	10.5 9.1	
	Average	Both	276.2	9.0	240.3	10.3	

Overall Reduction in Time = 13.0% Overall Increase in Speed = 15.0% -

Source: Los Angeles Department of Transportation

REFERENCES

(1) Jovanis, Paul P. and Adolf D. May, "Alternative Objectives in Arterial Traffic Management," <u>Transportation Research Record #682 - Urban System</u> <u>Operation and Freeways</u>, Transportation Research Board, National Academy of Sciences, Washington, D.C., 1978, pp. 1-7.

(2) National Research Council, Highway Capacity Manual, Highway Research Board Special Report 87, Washington, D.C., 1965, pp. 320. GENERAL PLANNING CONSULTANT

TECHNICAL MEMORANDUM 6.1.4

COST-EFFECTIVENESS CALCULATIONS

.

Prepared for:

Southern California Rapid Transit District

c

Prepared by:

Barton-Aschman Associates, Inc.

in associaton with:

Schimpeler.Corradino Associates Cordoba Corporation Myra L. Frank & Associates Robert J. Harmon & Associates Deloitte Haskins & Sells Manual Padron The Planning Group, Inc.

September, 1984

١,

I. Introduction

Metro Rail and Transportation System Management (TSM) alternatives have been defined for each of the three Metro Rail line extents (4,8.8, and 18.6 miles)¹. Complete travel demand model simulations have been performed to estimate the ridership, travel time, and operating resource and cost implications of each of thse six alternatives.

Briefly sumarized in this memorandum are the results of the UMTA prescribed cost-effectivenss calculations aimed at comparing each rail alternative with the comparable non-rail alternative.

2. Cost-Effectiveness Inputs and Results

In addition to the data provided by the individual travel demand model simulations, other capital and operating costs were computed based upon the definition of the specific alernative being tested.

Rail system capital costs included the cost of the Metro Rail line and the corresponding cost of bus expansion and replacement. The rail system operating costs were derived from the respective rail and bus cost models, which are calibrated components of the travel demand models.

The TSM capital costs include the cost of bus fleet expansion and replacement for all alternatives. Computerized traffic signal constrol was also included in all alternatives at \$40,000 per signal, with the following number of signals in each alternative:

TSM ALTERNATIVE	NUMBER OF SIGNALS EFFECTED
4.0 mile	334
8.8 mile	682
18.6 mile	960

In the 8.8 and 18.6 mile TSM alternatives, reversible lane control on Olympic Boulevard was included at \$1.5 million. And finally, in the 18.6 TSM alternative, new transit centers at Universal City and Hollywood/ Cahuenga were included at a total cost of \$5.7 million. TSM operating costs include the Long Beach Light Rail line and regional bus operating costs plus the maintenance of the computerized traffic signal control system (at \$700 per signal per year).

All cost-effectiveness inputs are presented in the attached tables together with the calculation results:

Extent (Mile)	Federal Index	Total Index
4.0	4.58	6.51
8.8	1.80	3.00
18.6	2.03	3.77

Technical Memorandum 6.1.3, Description of Transportation System Management (TSM) Alternative Networks, September, 1984

Ľ.

Alternative Name: MOS-1

•

Item	Disc	Life	Quantity	Unit Price	Cost	Rate	Value	TOTALS
RAIL ALTERVATIVE								
Rail Capital Cost	0.1	30	1.175E+09	1	\$1174900000.00	0.1060792	\$124632508.77	
Initial Bus Expansion	0.1	12	84	\$150000.00	\$12600000.00	0.1467633	\$1849217.77	
Other Bus Capital	0.1	30	Q	\$29000000.00	\$0.00	0.1860792	\$0.00	
Replacement Bus Costs	0.1	12	2294	\$150000.00	\$344100000.00	0.1467633	\$50501256.73	
Other Capital Costs	0.1	30	0	1	\$0.00	0.1060792	\$0.00	\$176982983.27
Local Capital Funding						¢	\$52970021.43	\$52970021.43
Bus Operating Costs	1	1	525420800	i	\$525420300.00	_ 1	\$525420800.00	
Rail Operating Costs	1	i	28380000	1	\$28380000.00	1	\$28380000.00	\$553300600.00
Work Transit Travel Time	1	1	78311305	\$4.00	\$313245220.00	1	(\$313245220.00)	
Nonwork Travel Time	1	1	269973760	\$2.00	\$539947520.00	1	(\$539947520.00)	(\$853192740.DO)
Ann. Linked Transit Trip	1	1	522732900	1	522732900	1	522732900	
TSM ALTERNATIVE								
Initial Bus Expansion	0.1	12	26	\$150000.00	\$3900000.00	0.1467633	\$572376.93	
Other Bus Capital	0.1	30	0	\$29000000.00	\$0.00	0.1060792	\$0.00	,
Replacement Bus Costs	0.1	12	2236	\$150000.00	\$335400000.00	0.1467633	\$49224415.88	
Bther Capital Costs	0.1	30	13330000	t	\$13360000.00	0.1030792	\$1417218.76	\$51214011.57
Local Capital Funding							\$12803502.89	\$12803502.89
Bus Operating Costs	1	1	518106880	1	\$518106880.00	t	\$518106880.00	
Other Operating Costs	1	t	13233800	1	\$13233800.00	1	\$13233800.00	\$531340680.00
Work Transit Travel Time	1	1	79354485	\$4.00	\$319417940.00	1	(\$319417940.00)	
Nonwork Travel Time	1	1	273339760	\$2.00	\$546679520.00	1	(\$546679520.00)	(\$836097460.00)
Ann. Linked Transit Trip	1	1	501937200	1	501937200	1	501937200	

Cost-Effectiveness Index

Federal Cost-Effectiveness Index

Alternative Name: MOS

Item	Disc	Life	Quantity	Unit Price	Cost	Rate	Value	TOTALS
RAIL ALTERNATIVE								
Rail Capital Cost	0.1	30	2.134E+09	1	\$2133500000.00	9.1060792	\$226320076.15	
Initial Bus Expansion	0.1	12	0	\$150000.00	\$0.00	0.1467633	\$0.00	
Other Bus Capital	0.1	30	0	\$29000000.00	\$0.00	0.1060792	\$0.00	
Replacement Bus Costs	0.1	12	2104	\$150000.00	\$315600000.00	0.1467633	\$46318502.25	
Other Capital Costs	0.1	30	0	1	\$0.00	0.1060792	\$0.00	\$272638578.39
Local Capital Funding						r	\$84002049.93	\$84002049.93
Bus Operating Costs	1	1	490281200	1	\$490231200.00	1	\$490281200.00	
Rail Operating Costs	1	1	44700000	1	\$44900000.00	1	\$44900000.00	\$535181200.00
Work Transit Travel Time	1	1	89663840	\$4.00	\$358663360.00	1	(\$358663260.00)	
Nonwork Travel Time	1	1	268312400	\$2.00	\$536624800.00	1	(\$536624800.00)	(\$895288160.00)
Ann. Linked Transit Trip	1	1	576418556	1	576418500	1	576 418500	
TSM ALTERNATIVE								
Initial Bus Expansion	0.1	12	203	\$150000.00	\$31200000.00	0.1467633	\$4579015.43	
Other Bus Capital	0.1	30	1	\$29000000.00	\$2900000.00	0.1060792	\$3076295.20	
Replacement Bus Costs	Ú.1	12	2418	\$150000.00	\$362700000.00	0.1467633	\$53231054.39	
Other Capital Costs	0.1	30	28780000	1	\$28780000.00	0.1060792	\$3052960.76	\$637 39328.78
Local Capital Funding							\$15984832.20	\$15984832.20
Bus Operating Costs	1	1	544068832	1	\$544088832.00	1	\$544088832.00	
Other Operating Costs	1	1	13522400	1	\$13522400.00	1	\$13522400.00	\$557611232.00
Work Transit Travel Time	1	í	91528800	\$4,00	\$366115200.00	1	(\$336115200.00)	
Nonwork Travel Time	1	1	273015440	\$2.00	\$546030880.00	1	(\$546030850.00)	(\$912146030.00)
Ann. Linked Transit Trip	1	i	519990900	1	519990900	1	51 9990960	

Cost-Effectiveness Index

Federal Cost-Effectiveness Index

.

•

-

Alternative Name: LPA

<u>_</u>!-

•

1 tem	Disc	Life	Quantity	Unit Price	Cost	Rate	Value	TOTALS
RAIL ALTERNATIVE								
Rail Capital Cost	0.1	30	3.384E+09	1	\$3384000000.00	0.1060792	\$358972176.09	
Initial Bus Expansion	0.1	12	Û	\$150000.00	\$0.00	0.1467633	\$0.00	
Other Bus Capital	0.1	30	0	\$29000000.00	\$0.00	0.1060792	\$0.00	
Replacement Bus Costs	0.1	12	1724	\$150000.00	\$258600000.00	0.1467633	\$37952993.28	
Other Capital Costs	0.1	30	0	1	\$0.00	0.1060792	\$0.00	\$396925169.37
Local Capital Funding						÷	\$124359344.67	\$124359344.67
8us Coerating Costs	1	1	406346000	1	\$406346000.00	1	\$406346600.00	
Rail Operating Costs	1	1	61520000	1	\$61520000.00	1	\$61520000.00	\$467866000.00
Work Transit Travel Time	1	1	90891040	\$4.00	\$363564160.00	1	(\$363564160.00)	
Nonwork Travel Time	1	1	265235040	\$2.00	\$530470080.00	1	(\$530470080.00)	(\$894034240.00)
Ann. Linked Transit Trip	1	1	582381600	1	582381600	1	582381400	
TSM ALTERNATIVE								
Initial Bus Expansion	0.1	12	131	\$150000.00	\$24150000.80	0.1467633	\$3544334.06	
Other Bus Capital	0.1	30	1	\$29000000.00	\$29000000.00	0.1060792	\$3076298.20	
Replacement Sus Costs	0.t	12	2071	\$150000.00	\$355650000.00	0.1467633	\$52196373.02	
Other Capital Costs	0.1	30	45600000	1	\$45600000.00	0,1060792	\$4837213.72	\$63654218.99
Local Capital Funding							\$15913554.75	\$15913554.75
Bus Operating Costs	1	İ	533268000	1	\$533268000.00	1	\$533268000.DC	
Other Operating Costs	1	1	13717000	1	\$13717000.00	1	\$13717000.00	\$546985000.00
Work Transit Travel Time	1	1	91133920	\$4.00	\$364535680.00	1	(\$364535680.00)	
Nonwork Travel Time	1	1	273988560	\$2.00	\$547977120.00	1	(\$547977120.00)	(\$912512800.00)
Ann. Linked Transit Trip	1	1	519852300	1	519852300	1	51 9852300	

Cost-Effectiveness Index

Federal Cost-Effectiveness Index

GENERAL PLANNING CONSULTANT

TECHNICAL MEMORANDUM 6.1.4

. COST-EFFECTIVENESS CALCULATIONS

Prepared for:

Southern California Rapid Transit District

Prepared by:

.

Barton-Aschman Associates, Inc.

in associaton with:

Schimpeler.Corradino Associates Cordoba Corporation Myra L. Frank & Associates Robert J. Harmon & Associates Deloitte Haskins & Sells Manual Padron The Planning Group, Inc.

September, 1984

. .

I. Introduction

Metro Rail and Transportation System Management (TSM) alternatives have been defined for each of the three Metro Rail line extents (4,8.8, and 18.6 miles)¹. Complete travel demand model simulations have been performed to estimate the ridership, travel time, and operating resource and cost implications of each of thse six alternatives.

Briefly sumarized in this memorandum are the results of the UMTA prescribed cost-effectivenss calculations aimed at comparing each rail alternative with the comparable non-rail alternative.

2. Cost-Effectiveness Inputs and Results

In addition to the data provided by the individual travel demand model simulations, other capital and operating costs were computed based upon the definition of the specific alernative being tested.

Rail system capital costs included the cost of the Metro Rail line and the corresponding cost of bus expansion and replacement. The rail system operating costs were derived from the respective rail and bus cost models, which are calibrated components of the travel demand models.

The TSM capital costs include the cost of bus fleet expansion and replacement for all alternatives. Computerized traffic signal constrol was also included in all alternatives at \$40,000 per signal, with the following number of signals in each alternative:

TSM	NUMBER OF SIGNALS
ALTERNATIVE	EFFECTED
4.0 mile	334
8.8 mile	682
18.6 mile	960

In the 8.8 and 18.6 mile TSM alternatives, reversible lane control on Olympic Boulevard was included at \$1.5 million. And finally, in the 18.6 TSM alternative, new transit centers at Universal City and Hollywood/ Cahuenga were included at a total cost of \$5.7 million. TSM operating costs include the Long Beach Light Rail line and regional bus operating costs plus the maintenance of the computerized traffic signal control system (at \$700 per signal per year).

All cost-effectiveness inputs are presented in the attached tables together with the calculation results:

Extent (Mile)	Federal <u>Index</u>	Total Index
4.0	4.58	6.51
8.8	1.80	3.00
18.6	2.03	3.77

1

Technical Memorandum 6.1.3, Description of Transportation System Management (TSM) Alternative Networks, September, 1984 Alternative Name: MOS-1

.

Item	Disc	Life	Quantity	Unit Price	Cost	Rate	Value	TOTALS
RAIL ALTERNATIVE								
Rail Capital Cost	0.1	30	1.175E+09	1	\$1174900000.00	0.1060792	\$124632508.77	
Initial Bus Expansion	0.1	12	84	\$150000.00	\$12600000.00	0.1467633	\$1849217.77	
Other Bus Capital	0.1	30	Ð	\$29000000.00	\$0.00	0.1060792	\$0.00	
Replacement Bus Costs	0.1	12	2294	\$150000.00	\$344100000.00	0.1467633	\$50501256.73	
Other Capital Costs	0.1	30	Û	1	\$0.00	0.1060792	\$0.00	\$176982983.27
Local Capital Funding							\$52970021.43	\$52970021.43
Bus Operating Costs	1	1	525420800	1	\$525420800.00	1	\$525420800.00	
Rail Operating Costs	1	1	28380000	1	\$28380000.00	1	\$28380000.00	\$553900800.00
Work Transit Travel Time	1	1	78311385	\$4.00	\$313245220.00	1	(\$313245220.00)	
Nonwork Travel Time	1	t	269973760	\$2.00	\$539947520.00	1	(\$539 9 47520.00)	(\$853192740.00)
Ann. Linked Transit Trip	1	1	522732900	1	522732900	1	522732900	
TSM ALTERNATIVE								
Initial Bus Expansion	0.1	12	26	\$150000.00	\$3900000.00	0.1467633	\$572376.93	
Other Bus Capital	0.1	30	0	\$29000000.00	\$0.00	0.1060792	\$0.00	
Replacement Bus Costs	0.1	12	2236	\$150000.00	\$335400000.00	0.1467633	\$49224415.88	
Other Capital Costs	0.1	30	13330000	1	\$13360000.00	0.1030792	\$1417218.76	\$51214011.57
Local Capital Funding							\$12003502.89	\$12803502.89
Bus Operating Costs	1	1	518106880	1	\$518106880.00	1	\$518106880.00	
Other Operating Costs	1	1	13233800	i	\$13233800.00	i	\$13233800.00	\$531340680.00
Work Transit Travel Time	1	1	79854485	\$4.00	\$319417940.00	1	(\$319417940.00)	
Nonwork Travel Time	t	1	273339760	\$2.00	\$546679520.00	1	(\$546679520.00)	(\$566097460.00)
Ann. Linked Transit Trip	i	1	501937200	1	501937200	1	501937200	

Cost-Effectiveness Index

Federal Cost-Effectiveness Index

6.5073

١

-

SCRTD COST-EFFECTIVENESS CALCULATIONS

.

Alternative Name: MOS

÷

Item	Disc	Life	Quantity	Unit Price	Cost	Rate	Value	TOTALS
RAIL ALTERNATIVE					•			
Rail Capital Cost	0.1	30	2.134E+09	1	\$2133500000.00	0.1060792	\$226320076.15	
Initial Bus Expansion	0.1	12	0	\$150009.00	\$0.00	0.1467633	\$0.00	
Other Bus Capital	0.1	30	0	\$29000000.00	\$0.00	0.1060792	\$0.00	
Replacement Bus Costs	0.1	12	2104	\$150000.00	\$315600000.00	8.1467633	\$46318502.25	
Other Capital Costs	8.1	30	0	1	\$0.00	0.1060792	\$0.00	\$272638578.39
Local Capital Funding							\$84002049.93	\$84002047.93
Bus Operating Costs	1	1	490281200	1	\$490281200.00	. 1	\$490281200.00	
Rail Operating Costs	1	1	44900000	1	\$44900000.00	1	\$44900000.00	\$535181200.00
Work Transit Travel Time	1	1	B966384D	\$4,00	\$ 3 58663360.00	1	(\$358663360.00)	
Nonwork Travel Time	1	1	268312400	\$2.00	\$536624800.00	· 1	(\$536624800.00)	(\$895288163.00)
Ann. Linked Transit Trip	1	1	576418560	1	576418500	1	576418500	
TSM ALTERNATIVE								
Initial Bus Expansion	0.1	12	208	\$150000.00	\$31200000.00	0.1467633	\$4579015.43	-
Other Bus Capital	0.1	30	1	\$29000000.00	\$29000000.00	0.1060792	\$3076298,20	
Replacement Bus Costs	0.1	12	2418	\$150000.00	\$362700000.00	0.1467633	\$53231054.39	
Other Capital Costs	0.1	30	28780000	1	\$28780000.00	0.1060792	\$3052960.76	\$63939328.78
Local Capital Funding							\$15984832.20	\$15984832.20
Bus Operating Costs	í	1	544088832	1	\$544088832.00	1	\$544088832.00	
Other Operating Costs	1	1	13522400	i	\$13522400.00	i	\$13522400.00	\$557611232.00
Work Transit Travel Time	1	i	91528800	\$4.00	\$366115200.00	1	(\$366115200.00)	
Nonwork Travel Time	1	1	273015440	\$2.00	\$546030880.00	1	(\$546030880.00)	(\$912146080.00)
Ann. Linked Transit Trip	1	1	519990900	1	519990900	1	51 9990900	

Cost-Effectiveness Index

Federal Cost-Effectiveness Index

3,0023

Alternative Name: LPA

• • •

•

Item	Disc	Life	Guantity	Unit Price	Cost	Rate	Value	TOTALS
RAIL ALTERNATIVE					19			
Rail Capital Cost	0.1	30	3.384E+09	i	\$3384000000.00	0.1060792	\$358972176.09	
Initial Bus Expansion	0.1	12	Û	\$150000.00	⊈0.00	0.1467633	\$0.00	
Other Bus Capital	0.1	30	0	\$29000000.00	\$0.00	0.1060792	\$0.00	
Replacement Bus Costs	0,i	12	1724	\$150000.00	\$256600000.00	0.1467633	\$37952993.28	
Other Capital Costs	0.1	38	0	1	\$0.00	0.1060792	≇0.00	\$396925169.37
Local Capital Funding							\$124359344.67	\$124359344.67
Bus Operating Costs	1	1	406346000	1	\$406346000.00	1	\$403346000.00	
Rail Operating Costs	í	i	61520000	i	\$61520000.00	1	\$61520000.00	\$467866000.00
Work Transit Travel Time	1	1	90891040	\$4.00	\$363564160.00	1	(\$363564160.00)	
Nonwork Travel Time	i	i	265235040	\$2.00	\$530470080.00	1	(\$530470080.00)	(\$894834248.00)
Ann. Linked Transit Trip	1	1	582381600	1	582381600	1	582381600	
TSM ALTERNATIVE								
Initial Bus Expansion	0.1	12	161	\$150000.00	\$24150000.00	0.1467633	\$3544334.06	
Other Bus Capital	0.1	30	1	\$29000000.00	\$29000000.00	0.1060792	\$3076298.20	
Replacement Bus Costs	0.1	12	2371	\$150000.00	\$355650000 .0 0	0.1467633	\$52196373.02	
Other Capital Costs	0.1	30	45600000	1	\$45600000.00	0.1060792	\$4837213.72	\$63654218.99
Local Capital Funding							\$15913554.75	\$15913554.75
Bus Operating Costs	i	1	533268000	1	\$533268000.00	1	\$533268000.00	
Other Operating Costs	1	1	13717000	1	\$13717000.00	1	\$13717000.00	\$546985000.00
Work Transit Travel Time	1	1	911339 2 0	\$4.00	\$364535680.00	1	(\$364535680.00)	
Nonwork Travel Time	í	1	273988530	\$2.00	\$547977120.00	1	(\$547977120.00)	(\$912512800.00)
Ann. Linked Transit Trip	1	1	519852300	1	519852300	1	519852300	

Cost-Effectiveness Index

Federal Cost-Effectiveness Index

3,7690

GENERAL PLANNING CONSULTANT

TECHNICAL MEMORANDUM 6.1.4

COST-EFFECTIVENESS CALCULATIONS

.

. .

·<u>`</u>=`~-``~

Prepared for:

Southern California Rapid Transit District

Prepared by:

Barton-Aschman Associates, Inc.

in associaton with:

Schimpeler.Corradino Associates Cordoba Corporation Myra L. Frank & Associates Robert J. Harmon & Associates Deloitte Haskins & Sells Manual Padron The Planning Group, Inc.

September, 1984

I. Introduction

Metro Rail and Transportation System Management (TSM) alternatives have been defined for each of the three Metro Rail line extents (4,8.8, and 18.6 miles)¹. Complete travel demand model simulations have been performed to estimate the ridership, travel time, and operating resource and cost implications of each of thse six alternatives.

Briefly sumarized in this memorandum are the results of the UMTA prescribed cost-effectivenss calculations aimed at comparing each rail alternative with the comparable non-rail alternative.

2. Cost-Effectiveness Inputs and Results

In addition to the data provided by the individual travel demand model simulations, other capital and operating costs were computed based upon the definition of the specific alernative being tested.

Rail system capital costs included the cost of the Metro Rail line and the corresponding cost of bus expansion and replacement. The rail system operating costs were derived from the respective rail and bus cost models, which are calibrated components of the travel demand models.

The TSM capital costs include the cost of bus fleet expansion and replacement for all alternatives. Computerized traffic signal constrol was also included in all alternatives at \$40,000 per signal, with the following number of signals in each alternative:

TSM <u>ALTERNATIVE</u>	NUMBER OF SIGNALS EFFECTED		
4.0 mile	334		
8.8 mile	682		
18.6 mile	960		

÷.,

In the 8.8 and 18.6 mile TSM alternatives, reversible lane control on Olympic Boulevard was included at \$1.5 million. And finally, in the 18.6 TSM alternative, new transit centers at Universal City and Hollywood/ Cahuenga were included at a total cost of \$5.7 million. TSM operating costs include the Long Beach Light Rail line and regional bus operating costs plus the maintenance of the computerized traffic signal control system (at \$700 per signal per year).

All cost-effectiveness inputs are presented in the attached tables together with the calculation results:

Extent	Federal	Total
(Mile)	_Index	Index
4.0	4.58	6.51
8.8	1.80	3.00
13.6	2.03	3.77

Technical Memorandum 6.1.3, Description of Transportation System Management (TSM) Alternative Networks, September, 1984

Alternative Name: MOS-1

Iten (Disc	Life	Quantity	Unit Price	Cost	Rate	Value	TOTALS
RAIL ALTERNATIVE								
Rail Capital Cost	0.1	30	1.175E+09	1	\$1174900000.00	0.1060792	\$124632508.77	
Initial Bus Expansion	0.1	12	84	\$150000.00	\$12600000.00	0.1467633	\$1849217.77	
Other Bus Capital	0.1	30	Û	\$29000000.00	\$0.00	0.1060792	\$0.00	
Replacement Bus Costs	0.1	12	2254	\$150000.00	\$344100000.00	0.1467633	\$50501256.73	
Other Capital Costs	0.1	30	Ű	1	\$0.08	0.1030792	\$0.00	\$176982983.27
Local Capital Funding						د	\$52970021.43	\$52970021.43
Bus Operating Costs	1	1	525420800	1	\$525420800.00	1	\$525420800.00	
Rail Operating Costs	1	1	28380000	4	\$28380000.00	i	\$28380000.00	\$553300800.00
Work Transit Travel Time	1	1	78311305	\$4.00	\$313245220.08	***	(\$313245220.00)	
Nonwork Travel Time	1	Í	269973760	\$2.80	\$539947520.00	1	(\$537947520.00)	(\$853192740.00)
Ann. Linked Transit Trip	1	1	522732990	1	522732900	1	522732900	
TSM ALTERNATIVE								
Initial Bus Expansion	0.1	12	26	\$150000.00	\$3900000.00	0.1467633	\$572376.93	
Other Bus Capital	0.1	30	Û	\$29000000.00	\$0.00	0.1060792	\$0.00	r
Replacement Bus Costs	0.i	12	2236	\$150000.00	\$335400000.00	0.1467633	\$49224415.88	
Other Capital Costs	0.1	30	13360000	1	\$13360000.00	0.1030792	\$1417218.76	\$51214011.57
Local Capital Funding							\$12803502.89	\$12803502.89
Bus Operating Costs	1	1	518103880	1	\$518106880.00	1	\$518106880.00	
Other Operating Costs	1	1	13233800	1	\$13233800.00	1	\$13233800.00	\$531340660.00
Work Transit Travel Time	1	1	79854485	\$4.00	\$319417940.00	i	(\$319417940.00)	
Nonwork Travel Time	4	1	273339760	\$2.00	\$546679520.00	1	(≇546679520.00)	(\$866097460.00)
Ann. Linked Transit Trip	1	1	501937200	i	501937200	1	501937200	

Federal Cost-Effectiveness Index

Alternative Name: MOS

1.

	Item	Disc	Life	Quantity	Unit Price	Cost	Rate	Value	TOTALS
	RAIL ALTERNATIVE								
	Rail Capital Cost	0.1	30	2.134E+09	1	\$2133500000.00	0.1060792	\$226320076.15	
	Initial Bus Expansion	0.1	12	C	\$150000.00	\$0.00	0.1467633	\$0.00	
	Other Bus Capital	0.1	30	0	\$2900000.00	\$0.00	0.1060792	\$0.00	
	Replacement Bus Costs	0.1	12	2104	\$150000.00	\$31560000.00	8.1467633	\$46318502.25	
	Other Capital Costs	0.1	30	0	1	\$0.00	0.1060792	\$0.00	\$272638578.39
	Local Capital Funding						<u>-</u>	\$84002049,93	\$84002049.93
	Bus Operating Costs	1	1	490281200	1	\$490231200.00	1	\$490281200.00	
	Raii Operating Costs	1	1	44700000	1	\$44900000.00	ĩ	\$44900000.00	\$535161200.00
ļ	ork Transit Travel Time	1	1	89663840	\$4.00	\$358663360.00	1	(\$358663260.00)	
ľ	Jonwork Travel Time	ĺ	i	268312400	\$2,00	\$536624800 .0 0	i	(\$536624800.00)	(\$875288160.00)
ł	ann. Linked Transit Trio	1	-	576418500	t	576418500	1	576418500	
-	SM ALTERIATIVE								
	nitial Bus Expansion	0.1	12	208	\$150000.00	\$31200000.00	0 14/7/22	\$4579015.43	
	Other Bus Capital	0.1	30						
	·				\$2900000.00	\$29000000.00		\$3076295.20	
	leplacement Bus Costs	0.1	12	2418	\$150000.00	\$362700000.00	0.1467633	\$53231054.39	
[lther Capital Costs	0.1	30	28780000	1	\$28780000.00	0.1060792	\$3052960,76	\$63939328,78
l	ocal Capital Funding							\$15984832.20	\$15984832.20
E	lus Operating Costs	1	1	544088832	1	\$544088832.00	1	\$544088832.00	
(ther Operating Costs	1	I	13522400	1	\$13522400.00	1	\$13522400.00	\$537611232.00
ţ	lork Transit Travel Time	1	-	91528800	\$4,00	\$366115200.00	Í	(\$366115200.00)	
Ņ	onwork Travel Time	4	ę.	273015440	\$2,00	\$546020880.00	1	(\$546030850.00)	(\$912146030.00)
Ĥ	nn. Linked Transit Trip	1	*	519990900	1	519990900	1	51 9990960	

Cost-Effectiveness Index

Federal Cost-Effectiveness Index

« ,

Alternative Name: LPA

l.

-

Item	Disc	Life	Quantity	Unit Price	Cost	Rate	Value	TOTALS
RAIL ALTERMATIVE								
Rail Capital Cost	0.1	30	3.384E+09	i	\$3384000000.00	0.1060792	\$358972176.09	
Initial Bus Expansion	0.1	12	8	\$150000.00	\$0.00	0.1467633	\$0.00	
Other Bus Capital	0.1	30	0	\$29000000.00	\$0.00	0.1060792	\$0.00	
Replacement Bus Costs	0.1	12	1724	\$150000.00	\$258600000.00	0.1467633	\$37952993.28	
Other Capital Costs	0.1	30	0	1	\$0.00	0.1060792	\$0.00	\$396925169.37
Local Capital Funding						÷	\$124359344.67	\$124359344.67
Bus Geerating Costs	1	1	402346000	1	\$406346000.09	1	\$406346000.00	
Rail Operating Costs	1	1	61520000	1	\$61520000.00	1	\$61520000.00	\$467866000.00
Work Transit Travel Time	1	i	90891040	\$4.00	\$363564160.00	1	(\$363564160.00)	
Nonwork Travel Time	1	1	26,5235040	\$2.00	\$530470080.00	1	(\$530470080.00)	(\$894034240.00)
Ann. Linked Transit Trip	1	1	592381600	1	582381600	1	582381600	
TSM ALTERNATIVE								
Initial Bus Expansion	0.1	12	151	\$150000.00	\$24150000.00	0.1467633	\$3544334.06	
Other Bus Capital	0.1	33	1	\$29000000.00	\$29000000.00	0.1060792	\$3076298.20	
Replacement Sus Costs	3.1	12	2071	\$150000.00	\$355650000.00	0.1467633	\$52196373.02	
Other Capital Costs	0.1	30	45600000	1	\$45400000.00	0.1060792	\$4837213.72	\$63654218.99
Local Capital Funding							\$15913554.75	\$15913554.75
Bus Operating Costs	1	1	533268000	1	\$533268000.00	1	\$533268000.00	
Other Operating Costs	1	1	13717000	1	\$13717000.00	1	\$13717000.00	\$546985000.00
Work Transit Travel Time	1	1	91133920	\$4.00	\$364535680.00	1	(\$364535680.00)	
Nonwork Travel Time	1	1	273988560	\$2.00	\$547977120.00	1	(\$547977120.00)	(\$912512800.00)
Ann. Linked Transit Trip	1	1	519852300	1	519852300	1	51 9852300	

Cost-Effectiveness Index

Federal Cost-Effectiveness Index

SCHIMPELER-CORRADINO ASSOCIATES

GENERAL PLANNING CONSULTANT to the Southern California Rapid Transit District

425 South Main Street

Los Angeles, California 90013

November 16, 1984

Mr. Gary S. Spivack Department of Planning Southern California Rapid Transit District 425 South Main Street Los Angeles, California 90013

> Re: Revised Technical Memorandum 6.2.1 Alvarado Station Bus Interface Traffic and Operational Analysis

Dear Mr. Spivack:

Attached is a revised Technical Memorandum 6.2.1 on the Alvarado Bus Interface. This paper was originally submitted to you in August in support of the expanded traffic analysis which appeared in the Environmental Assessment on MOS-1. Because of the importance of the information in this report as a technical backup document to the EA, we have taken the time to review the paper again. Minor revisions in format have been made. The recommendations and conclusions memain unchanged. This document was the second of such technical papers nerated in Work Area 6, Environmental Assessments.

uly yours

CHARLES C. SCHIMPELER, P.E. Project Director General Planning Consultant

CCS:dh

RECEIVED

NOV 1 6 1984

PLANNING DEPT.

213/972-3239

GENERAL PLANNING CONSULTANT:

TECHNICAL MEMORANDUM 6.2.1

ALVARADO STATION BUS INTERFACE TRAFFIC AND OPERATIONAL ANALYSIS

Prepared for:

.

Southern California Rapid Transit District

Prepared by:

Schimpeler.Corradino Associates

in association with

Barton-Aschman Associates, Inc. Cordoba Corporation Myra L. Frank & Associates Robert J. Harmon & Associates Manuel Padron The Planning Group, Inc.

November, 1984

SUMMARY

The Alvarado Station is proposed to serve initially as a terminal station for the Union Station to Wilshire Alvarado (MOS-1) segment of the Metro Rail system. Use of this station as a terminal facility necessitates the routing of express buses via a passenger drop-off area located adjacent to the station site. Two alternative bus routings have been identified to provide access to the station. These two routings, referred to as the "Alvarado Alternative" and the "Westlake Alternative," are described in detail in this report.

The purpose of this analysis is to determine if the proposed location of the Alvarado Station would affect surface traffic to the extent that it exceeds an acceptable level of service and if sufficient street capacity is available to accommodate the needed bus access to the station. Potential impacts could result from buses terminating at the station. Originally, the bus routing for limited routes was east on Wilshire Boulevard, south on Alvarado Street, and west on 7th Street. Discharge and pickup of passengers would have occurred on the west side of Alvarado Street opposite the station entrance. This pedestrian movement was deemed unsafe, undesirable, and impractical given the traffic volume on Alvarado.

In the Alvarado Alternative the limited routes were proposed to allow discharge and loading on the east side of Alvarado Street. The alternative routing would be east on Wilshire Boulevard, south on Hoover Street, east on 7th Street, north on Alvarado Street, then west on 6th Street and return to Wilshire via Rampart Boulevard or Lafayette Park Place. The westbound routing was placed on 6th Street rather than Wilshire Boulevard because the distance from the station to Wilshire Boulevard was too short for the buses leaving the station to cross Ethrough lanes of traffic to turn left on to Wilshire Boulevard.

A second alternative routing for the limited buses (Westlake Alternative) was to have them travel east on Wilshire Boulevard past Alvarado Street and then south on Westlake Avenue, one block east. The buses would discharge and load passengers near the kiss-and-ride area on the west side of Westlake Avenue. The buses would leave the station area traveling south on Westlake Avenue, then west on 7th Street, and north on Hoover Street to west on Wilshire Boulevard.

The results of analysis on the Alvarado Alternative show that this scenario will not work without improvements, whether considering traffic flow or bus operations. Under existing conditions, traffic flow is extremely congested at Wilshire/Alvarado and 6th/Alvarado in the p.m. peak hour. The Westlake Alternative operates much more efficiently. The additional bus traffic does not add to the p.m. peak surface traffic congestion. Based on results of this analysis, it is recommended that the Westlake Alternative be implemented to provide the necessary bus interface with the Alvarado Station.

As part of this analysis, it is further recommended that the curb radius on the southwest corner of Wilshire and Westlake be improved to a minimum of 36 feet to enhance bus operations for this right-turn movement.

TABLE OF CONTENTS

		<u>Page</u>
LIST LIST	OF FIGURES OF TABLES	
1.	INTRODUCTION	1
2.	DESCRIPTION OF ALTERNATIVE BUS ROUTES	3
3.	IDENTIFICATION OF CRITICAL INTERSECTIONS	4
4.	METHODOLOGY	5
5.	GEOMETRICS AND TRAFFIC CONTROL	6
6.	TRAFFIC VOLUME DATA	7
7.	ANALYSIS AND RESULTS	10
	 7.1 ALVARADO ALTERNATIVE 7.2 ALVARADO ALTERNATIVE WITH IMPROVEMENTS	10 10 15
8.	CONCLUSIONS AND RECOMMENDATIONS	18
APPE	NDIX A: TRAFFIC VOLUME DATA	A-1
APPE	NDIX B: ALVARADO ALTERNATIVE	B-1
APPE	NDIX C: ALVARADO ALTERNATIVE WITH IMPROVEMENTS	C-1
APPE	NDIX D: WESTLAKE ALTERNATIVE	D-1

LIST OF FIGURES

Figure	Page
1	Wilshire/Alvarado Station Location
2	Alvarado Alternative Bus Interface
3	Westlake Alternative Bus Interface

LIST OF TABLES

<u>Table</u>		Page
1	Alvarado Station Intersections Studied	11
2	Level of Service Ranges Operations of Design Applications	12
3	Alvarado Alternative Critical Movement Analysis with Improvements	13
4	Alvarado Alternative (With Improvements) Critical Movement Analysis	14
5	Westlake Alternative Critical Movement Analysis	16
6	Westlake Alternative Approach Volumes (in PCV)	17

The Alvarado Station is located in the block bounded by Alvarado Street, Wilshire Boulevard, Westlake Avenue and Seventh Street (Figure 1). The Alvarado Station is proposed to serve initially as a terminal station for the Union Station to Wilshire/Alvarado (MOS-1) segment of the Metro Rail system. Use of this station as a terminal facility necessitates the routing of express buses via passenger drop-off areas located adjacent to the station site. Two alternative bus routings have been identified to provide access to the station. These two routings, referred to as the "Alvarado Alternative" and the "Westlake Alternative," are described in detail later in this report.

Two basic operational elements are defined, evaluated, and documented herein. The first is an analysis of surface traffic (forecast to the Year 2000) including background vehicular and pedestrian traffic plus auto, bus, and pedestrian traffic interfacing with the station. The second is an evaluation of the bus operations for each of the alternative routings. The purposes of this analysis is to determine if the proposed location of the Alvarado Station would affect surface traffic to the extent that it exceeds an acceptable level of service and if sufficient street capacity is available to accommodate the needed bus access to the station.

Southern California Rapid Transit District

Figure 1

Wiishire/Alvarado - Station Location for MOS -1 Alternative

2. DESCRIPTION OF ALTERNATIVE BUS ROUTINGS

A traffic engineering analysis was conducted to determine the effect on traffic flow when the Alvarado Station is temporarily used as a terminal station. Potential impacts could occur as a result of buses terminating at the station. Originally, the bus routing for limited routes was east on Wilshire Boulevard, to south on Alvarado Street, and west on 7th Street. Discharge and pickup of passengers would have occurred on the west side of Alvarado Street opposite the station entrance. Bus patrons accessing the station would have to cross Alvarado Street. This pedestrian movement was deemed unsafe, undesirable and impractical given the traffic volume on Alvarado.

An alternative bus routing (Alvarado Alternative) for the limited routes was proposed to allow discharge and loading on the east side of Alvarado Street. The alternative routing would be east on Wilshire Boulevard, south on Hoover Street, east on 7th Street, north on Alvarado Street; then west on 6th Street and return to Wilshire via Rampart Boulevard on Lafayette Park Place. The westbound routing was placed on 6th Street rather than Wilshire Boulevard because the distance from the station to Wilshire Boulevard was too short for the buses leaving the station to cross through lanes of traffic to turn left on to Wilshire Boulevard.

A second alternative routing for the limited buses (Westlake Alternative) was to have them travel east on Wilshire Boulevard past Alvarado Street and then south on Westlake Avenue, one block east. The buses would discharge and load passengers near the kiss-and-ride area on the westside of Westlake Avenue. The buses would leave the station area south on Westlake Avenue, then travel west on 7th Street, north on Hoover Street, and west on Wilshire Boulevard.

The impact of the bus routing on traffic flow in the station area was determined for each alternative.

3. IDENTIFICATION OF CRITICAL INTERSECTIONS

Five intersections were identified as having potential for being impacted by the Alvarado bus routings. These are Hoover Street/Wilshire Boulevard, Hoover Street/7th Street, Alvarado Street/6th Street, Wilshire Boulevard/Alvarado Street, and Wilshire Boulevard/Hoover. A review of traffic control, traffic volumes, and observation of traffic operation in the field indicated that the three intersections with Alvarado Street would be the critical intersections for analysis. The traffic volume in the Hoover Street area is significantly less than that in the Alvarado area and Hoover Street has an additional exclusive lane for left turns.

Two intersections were identified as having potential traffic impacts with the Westlake routing. They are 7th/Alvarado and Wilshire/Alvarado.

4. METHODOLOGY

The key analytical methods used in this study were Critical Movement Analysis and bus operations analysis.

The "Operations and Design" application of the Critical Movement Analysis as presented in "Transportation Research Circular Number 212, Interim Materials on Highway Capacity" was utilized to calculate the level of service for the critical intersections. The "Operations and Design" application of Critical Movement Analysis allows for specific adjustments to be made for traffic and roadway conditions. There are four adjustments related to the factors of vehicle mix (trucks and buses), peaking characteristics, turns, lane utilization (i.e., volume distribution), and lane width.

The traffic volumes used in the analysis are Year 2000 volumes assuming the temporary terminal station at Alvarado Street. The volumes were derived from the previous work of the City of Los Angeles Department of Transportation as documented in the "Final Project Report - Traffic Analysis," June 1983 (Task 18CAA21). Also used were existing traffic count data provided by the City of Los Angeles Department of Transportation. The bus volumes for the alternative routings were generated by SCRTD's General Planning Consultant. The volumes were based on travel demand forecasts for the systems with Alvarado Street serving as the terminal station.

5. GEOMETRICS AND TRAVEL CONTROL

Street, 6th Street, Wilshire Boulevard, and 7th Street The Alvarado intersections have similar geometrics and lane utilization. Each street has three lanes in each direction with the curb lane used for parking during part of The approaches to each intersection have parking restricted (except the day. for westbound 7th Street at Alvarado) allowing right turns to be made from the curb lane. Left turns from all approaches at each intersection are prohibited during the hours of 7:00 a.m. and 6:00 p.m.. Buses may make left turns at all times throughout the day. Traffic signals are currently in operation at each of the critical or potentially critical intersections identified previously. These signals operate on a two-phase, fixed-time cycle length with approximately equal green-to-cycle (G/C) ratios. Specific signal timing was not considered critically essential in the analysis since it was assumed timings could be slightly modified as necessary to accommodate anticipated variations in traffic volumes.

6. TRAFFIC VOLUME DATA

The traffic volume data used in this analysis were obtained from three sources. Existing traffic count data, including 24 hour volumes, turning movement data, pedestrian volumes, and peak 15 minute counts. The volume of trucks and buses was provided by the City of Los Angeles Department of Transportation. These detailed counts were provided for the intersections of 6th Street and 7th Street with Alvarado Street.

Also included with the turning movement counts are pedestrian volumes across each approach during the peak periods observed for the intersection of 7th Street & Alvarado Street. The pedestrian volumes are relatively light in the a.m. peak period when the average volume is around 150 persons per hour in each crosswalk. In the afternoon peak, however, pedestrian activity in the east-west crosswalks (crossing Alvarado) varies from 500 to 600 persons per hour. Pedestrians crossing 7th Street parallel to Alvarado Street range from 600 to 800 persons per hour.

Added to these traffic data and forecasts were the "limited" bus volumes associated with each alternative as forecasted by SCRTD's General Planning Consultant. These buses would be in addition to the local bus service and would only serve the Alvarado Station. The numbers of buses anticipated are 40 per hour in the a.m. peak, 35 per hour in the p.m. peak and 5 per hour during the mid-day (Hoover, 7th, Alvarado, 6th and Lafayette Park Place back to Wilshire). Wilshire Boulevard eastbound would have six "Limiteds" per hour in the a.m. and one in the p.m. Seventh Street westbound from the station would carry one in the a.m. and six in the p.m. (Figure 2).

The "Westlake Alternative" (Figure 3) would have the same number of "limited" buses in each period; however, it would have a different routing system as described earlier. In addition, the document entitled "Final Project Report Traffic Analysis" (Task 18CAA21) by the City of Los Angeles Department of Transportation was used as a source for Year 2000 traffic forecasts in the vicinity of the Alvarado Station. Copies of these data are provided in Appendix A.

10/10/6 >>>

AM Peak / PM Peak / Mid Day Busee Per Hour

Southern California Rapid Transit District Metro Rail Project FIGURE 3 Alvarado Station Bus Interface WESTLAKE ALTERNATIVE

7. ANALYSIS AND RESULTS

Critical intersections in the vicinity of the Alvarado Station were analyzed to determine the impacts created by buses, vehicular traffic, and pedestrians. This examination involved utilization of the Capacity and Critical Movement Analysis and an evaluation of bus operations were performed. The locations studied are presented in Table 1.

7.1 ALVARADO ALTERNATIVE

A Critical Movement Analysis was performed using the existing traffic control and street geometry conditions with Year 2000 background traffic control and street geometry conditions plus transit generated traffic and bus volumes. The traffic volume data and the detailed analysis results using existing conditions are presented in Appendix B for the Alvarado Alternative using existing Based on the level of service (LOS) ranges used in the referenced conditions. the "Operations and Design Application" (Table 2), it was document for determined that two of the intersections would experience unacceptable levels of service with transit traffic impacts during the p.m. peak period. With reference to Table 2, it should be noted that LOS D is generally acceptable during peak periods while LOS E is not. Level of service F represents breakdown conditions in the traffic flow. The CMA results (Table 3) show that the a.m. peak period experiences acceptable conditions and the p.m. peak conditions at Wilshire/Alvarado and at 6th/Alvarado are less than desirable before transit bus traffic is added.

Pedestrian traffic at the intersections of Alvarado Street with 7th Street, Wilshire Boulevard, and 6th Street is relatively heavy (600 to 800 per hour) in the p.m. peak. However, adjustments were made in the Critical Movement Analysis to account for up to 1,200 pedestrians per hour opposing the right turn movements. Since the right turns are in separate lanes with space for queueing, relatively minor impacts result for through traffic. Since the critical movements are in the through lanes, no decrease in service level is experienced due to pedestrians. This conclusion applies to both alternatives.

7.2 ALVARADO ALTERNATIVE WITH IMPROVEMENTS

The next step in the evaluation of the Alvarado Alternative is to identify improvements that would enable this scenario to operate at an acceptable level of service. A major objective in realizing this goal is to minimize capital expenditures through the use of transportation systems management (TSM) type traffic enhancements. Because the p.m. peak period is the only time when unacceptable levels of service are experienced, it was decided to test a traffic flow improvement that prohibits curbside parking (which is currently metered) during the p.m. peak (3-6 p.m.) on the east side of Alvarado from about 200 feet south of 7th Street north to Maryland Street, one block north of 6th. This parking restriction would provide three lanes for moving traffic during the time when it is most needed. The results of the Critical Movement Analysis with this improvement (Table 4) indicate the service level can be improved to D, which is acceptable in urban areas during a peak period.

TABLE	1
	_

ALVARADO STATION INTERSECTIONS STUDIED

Intersection	Alvarado Alternative	Westlake Alternative
7th & Alvarado	a.m. and p.m.	P.M. Only
Wilshire & Alvarado	a.m. and p.m.	P.M. Only
6th & Alvarado	a.m. and p.m.	Not Critical
7th & Hoover	Not Critical	Not Critical
Wilshire & Hoover	Not Critical	Not Critical

Source: Schimpeler.Corradino Associates, 1984.

LEVEL OF SERVICE RANGES OPERATIONS AND DESIGN APPLICATIONS (IN PASSENGER CARS PER HOUR EQUIVALENCY)

FOR SIGNALIZED INTERSECTIONS

Level of Service	Maximum Sum of Two-Phase Thr	Critical ee-Phase	Volumes Four+	Phase
A	1,000	950		900
В	1,200	1,140	1,	,080
С	1,400	1,340	1,	,270
D	1,600	1,530	1,	,460
E	1,800	1,720	1,	,650
F	Not	Applicat	ole	

Source: Transportation Research Circular 212 Interim Materials on Highway Capacity, Transportation Research Board, National Academy of Sciences, Washington, D.C.

ALVARADO STATION CRITICAL MOVEMENT ANALYSIS

	Alvarado Alterna	
Intersection	Sum of Critical Volumes (pch)	Level of Service
7th & Alvarado . a.m. . p.m.	1,216 1,433	C D
Wilshire & Alvarado a.m. p.m.	1,399 1,717	C E
6th & Alvarado a.m. p.m.	1,491 1,889	D F

Source: Schimpeler.Corradino Associates, 1984.

ALVARADO STATION

CRITICAL MOVEMENT ANALYSIS WITH IMPROVEMENTS

	Alvarado Alternative						
Intersection	Sum of Critical Volumes (pch)	Level of Service					
Wilshire & Alvarado p.m.	1,538	D					
6th & Alvarado p.m.	1,513	D					

Source: Schimpeler.Corradino Associates, 1984.

7.3 WESTLAKE ALTERNATIVE

The Westlake Alternative allows buses eastbound on Wilshire Boulevard to continue east to Westlake, and then turn right with passenger drop-off/pick-up from the Westlake side of Alvarado Station. Buses then continue right onto 7th Based on the previous analysis it was and back to Wilshire via Hoover. determined that the a.m. operations would be at an acceptable level of service. but that two intersections were potentially critical during the p.m. peak The two intersections analyzed for this alternative were period. The traffic volume data and detailed Wilshire/Alvarado and 7th/Alvarado. analyses for this alternative are presented in Appendix D. The results of the analysis (Table 5) show that the 7th/Alvarado intersection operates acceptably. However, the Wilshire/Alvarado intersection operates at LOS E, which is However, a further examination reveals that the transit traffic, unacceptable. specifically the buses eastbound on Wilshire in the p.m. peak to serve the Alvarado Station, does not add to the critical movements. This is demonstrated in Table 6, which presents the equivalent passenger cars per lane per hour for each approach in the before-and-after transit condition. This table shows that the buses edded to the intersection are added to the smallest traffic stream (588 PCV before vs. 629 PCV after, with buses added) and that this addition leaves the eastbound movement far short of the critical volume (841 PCV) on the westbound approach. Therefore, the additional bus traffic contributes nothing to cause deterioration to the level of service and, although the service level is E, no improvements are recommended since transit and the station's presence make no contribution to the problem.

WESTLAKE ALTERNATIVE CRITICAL MOVEMENT ANALYSIS

	Westlake Alternative							
Intersection	Sum of Critical Volumes (pch)	Level of Service						
Wilshire & Alvarado p.m.	1,676	E						
7th & Alvarado p.m.	1,470	D						

Source: Schimpeler.Corradino Associates.

WESTLAKE ALTERNATIVE WILSHIRE/ALVARADO APPROACH VOLUMES (PCV)

ntersection Approach	<u> </u>	
	Before	After
Wilshire & Alvarado		
Eastbound (Al)	538	629
Westbound (A2)	841(c)	841(c)
Southbound (A3)	641	641
Northbound (A4)	835(c)	835(c)
Sum of Critical Volumes	1,676	1,676
Level of Service	E	E

Reference: Calculation #10, Appendix D.

Source: Schimpeler.Corradino Associates.

8. CONCLUSIONS AND RECOMMENDATIONS

Stated succinctly, the results of analysis on the Alvarado Alternative show that this scenario will not work without improvements, either from the traffic flow perspective or the bus operations viewpoint. Traffic flow, with existing conditions and experiences, present extreme congestion at Wilshire/Alvarado and 6th/Alvarado in the p.m. peak period. Bus operations are seriously impacted due to insufficient length of the pull-out bus bay to allow for efficient loading/unloading, much less having space for layover. This scenario would, therefore, require buses to circulate around the block to accomplish layover time, which is obviously undesirable for several reasons.

The Westlake Alternative (refer to Figure 3), on the other hand, operates much more efficiently. The additional bus traffic does not add to the p.m. peak surface traffic congestion since it operates eastbound on Wilshire against the major traffic flow and 7th/Hoover both have sufficient excess capacity to accept the additional buses. Bus operations are enhanced also through the provision of a layover space along the west curb face of Westlake Avenue south of Wilshire in addition to sufficient space for passenger loading/unloading.

Based on results documented herein, it is strongly recommended that the Westlake Alternative be implemented to provide the necessary bus interface with the Alvarado Station.

As part of this analysis, it is further recommended that the curb radius on the southwest corner of Wilshire and Westlake be improved to a minimum of 36 feet to enhance bus operations for this right turn movement, allowing the buses to turn.

APPENDIX A

TRAFFIC VOLUME DATA

DT 200 (3H-2/79) City of Los Angeles					N		, , ,	
Department of Trans • 020/0 NORTH/SOUTH		ado \$	treit	,	1 •			har hor
82510 EAST WEST	THI:	that	1		(g)		V I	$\int \overline{\delta} f$
DAY & DATE	Fri. 10 - 9	7-81 WEAT	ther Cl	car	(n) 🗲		\mathcal{A}	(p)
HOURS	7-10	AM	3-6	PM	(a) 🗲	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$		
SCHOOL DAY	yes	DISTRICT	Hollin	work.	(1)		$\mathbf{X} \mathbf{A}$	<u>ل</u> ان
	N/B	S/B	E/B	W/B		\sim	ŇΙ	(c)
DUAL WHEELED	///	148	56_	62		$ \sum $		$(\subset$
BUSES	37	42	91	95		- ▼ ▼	(d)	
	N/B	TIME	S/B	TIME	E/B	TIME	W/B	TIME
AM PEAK 15 MI	n <u>180</u>	7 45	302	. 7 ³⁰	141	800	127	7 45
PM PEAK 15 HI	n <u>267</u>	4 45	452	5 30	191	4 15	2/3	.500
AM PEAK HOUR	700	730	//3/	7 30	518	7 ³⁰	425	7 45.
PM PEAK HOUR	987.92	4 45	1650 .91	3 45	681.8	4 00	832.4	4 45
the second se	HEOUND APPRO			ND APPRO		TOTAL	XING S/	
HOLE (a)	(b) (c) 580 40	(d) 621	(e) (f 11 99		(h) 1064	d + h 1685	Ped S 161	e Ch Ped Sc Ch 4 153 3
7-8 / 8-9 3	580 40 570 77	650	11 99 3 87	1	975	1625	144	4 162 2
	490 73	573			767	1340	291	12 224 -
	734 70	808	·12 66 4 100		162	1970		21 272 -
		965	6 15:		1641	2606	1	32 479 -
4-5 3	873 89 878 76	957	11 140	1	1590	2547	513	31 614 -
TOTAL 24	4125 425	4574	47 65		7199	1/773		104 1904 5
6	BUUNU APPROA		WESTBO	UND APPR		IUTAL	KING W	
1		200	2 0-		~ ~ ~ ~	762	P=4 5 80	- 161 7
7-8 3	345 41	389	3 33		.373		-	
P;-9 &	446 36	490		19 61	411	901	11	2 188 7
9-164	337 F1	392		00 62	364	756	1	- 314 11
3 6 4- 3	375 83	464		2 90	47	1011	F-89	- 520 46
· · · ·	552 126	681	,	9 105	774 DAE	14-55	816	- 611 26
-	493 100	597		4 97	805	1402	791	- 530 21
TOTAL 28	2548 437	3013	25 279	15 454	3274	6287	25.	2 2324 /18

ty of Los igt is N partment of Traffic Ungander St DRTH/SOUTH (g) ST/WEST (n) (p) Clina TUES 9-20-80 WEATHER DATE 10-12 NOCH (a)7-10 AM DURS **>** (e) Na DISTRICT (1)►(1) SCHOOL DAY 🅭 (c) W/B N/B S/B E/B 63 67 125 110 DUAL WHEELED 31 10 Ŵ W \$ BUSES (k)(f)(m) AM COURT (b) Ŵ/B E/B TIME TIME TIME TIME S/B N/B 1145 800 945 181 268 336 <u> 215</u> 154 AM PEAK 15 MIN 88 96 . գ۹ - gk PM PEAK 15 MIN 1145 800 745 745 941 647 589 AM PEAK HOUR PM PEAK HOUR JULGERS OK (OFFICIAL VEHICLE) Violations XING S/L(d) XING N/L(h) SOUTHBOUND APPROACH TOTAL NORTHBOUND APPROACH Sc Ch Ped d + hPed Sc Ch $\overline{\sqrt{(e)}}\sqrt{(f)}$ (g) (h) (d) (b) (c) HOL (a) 524 591 5 166 12/6 121 805 5 8-9 72 866 1350 6 9-10 712 8 6 10 52 694 22 0-1 139 840 553 845 4 547 11-12 1365 TOTAL 461 7 VIELH INTS 1:10-TOTAL XING W/L(1) XING E/L(p)WESTBOUND APPROACH ASTROUND APPROACH Sc Ch Ped Sc Ch + 0 Ped 3 ご(Ⅲ) (n) (o) (p) 1 LI 14 39 1143 5 739 7-8 5 365 41 881 885 4 8 5-9 35 3 34 657 6 663 1014 9-11 5 614 49 10-1370 632 15 947 11-_ 11 123 7// 1 137-7 1 3589 2330 6001 29 TOTAL

L 1 1 ty of Los Angeles N epartment of Traffic alvande St DRTH/SOUTH (g) T/WEST (q) (n) Clear TUES 10-7-80 WEATHER Y & DATE (a)b PM 12-RΑ JURS 🗩 (e) H.W. Ner DISTRICT (1)►(i) CHOOL DAY 🗩 (c) E/B W/B S/B N/B 98 20 109 JAL WHEELED 30 36 돃 đ ÷ **3USES** P.M Counts (k)(f)(m)(d)W/B TIME E/B TIME TIME S/B N/B TIME PEAK 15 MIN 500 312 296 515 500 500 250 309 PM PEAK 15 MIN Á 0 1 PEAK HOUR 445 430 445 430 1137 PM PEAK HOUR Violations VINATOR XING S/L(d) XING N/L(h) MOUTHBOUND APPROACH TOTAL TRTHEOLIND APPROACH Ped Sc Ch Ped Sc Ch d + h(h) 4.(e)0K (f) (g) (1) (c) (A) (b) HL 65 819 147 80 9 143 12-1 1367 XIT 660 14 B 1-2 // 224 142 764 15 641 13 -3 1639 868 3 77 864 NI 3-4 1942 88 2 88 1054 ЪI 3 45 975 2136 16 4 1157 6 5-4942 H1 4911 TOTAL XING ETL WESTBOUND APPROACH TOTAL XING W LEL LASTBUUND APPROACH c T, Se Ch Dod 1 + p (n) (o) (p) (m) ĩ LI 187 68 15 2 6 613 12-1 1767 9 157 1-2 14 9 724 15 109 2-3 685 102 17 () 2 4 16 4-5 7 2 89 6 5-6 ł 47/5 81 4633 TOTAL

DEPARTMENT OF TRANSPORTATION OUR IRAFFIC OLUME

	11241431	ORTATIC					DAT	E		DESCRIPTION	<u> </u>		DAY		E_WEEK	
7TH ST AT I	¶UO γE⊧	e sr						05-10	0-82 (C 030 30	22		MU		C.I.	
HOUR		E/	\ST	BOUM	Û.		WEST BOUND RATI							E O (EZW).		
BEGINNING	00-15	15-30	30-45	45-60	HOUR. TOTAL	00-15	15-30	30-45	45-60	HOUR TOTAL	00-15	15-30	30-45	45-60	HOUR TOTA	
12 AM	12	12	16	ß		11	16	15	8	50	1.1	•0	1-1	1.0	98	
1 <u>AM</u> 2 AM	5	<u>13</u> 5	<u>8</u> 3	<u>3</u>	29	11	<u>9</u> 19	<u>10</u> 9	9	<u> </u>	•5* •6*	<u>1.4</u> 03*	•8	<u>•3*</u> 1•7*	68 63	
3 AM	4		1	5	13_	5	5	4	6	20	.8	+6*	-	-8	33	
4 AN	6	2	2	2	12	2	2	5	7	16	3.0*	1.0	.4*	.3*		
<u>5 AM</u>	3	10	10	9		5	5	16	17	43	•6*			•5*		
6 A.H	14	34	45	42		16	24		54	131	•9	1.4	1.2	.8	266	
<u> </u>	51	36	53	76		50	59		86	245	1+0	<u>•6*</u>	1	<u>•9</u>	461	
8 AH	86	63	71	65		138 102	136 98	121 84	133 93	528 377	•6*	•2*		l	1	
9 AM 10 AM	<u>64</u> 65	<u> </u>	<u> </u>	<u>5()</u> 52		57	99	104	81	341	1.1	•5*	•6*		595	
11 AH	52	72	67 67	75		82	112	93	1.09		.6*	.6*	1	1	1	
12 PM	83	_	89	92		120	97	85	85		•7*		1.0	1.1	75 :	
1 PM	95		87	87		90	93		107	382	1.1	•8	• 9	•8	72:	
2 PM	79	F 1	69			88	100		81	371	•9	•8	•7*	1	67	
<u> </u>	84		76	79		116	91	117	136		•7*		•6*		1	
¥ PM	98		101	138		154	141	121	158	1	•6*	1	•8	-9 1.0		
<u> </u>	134		109			142 74	<u>155</u> 94		<u>127</u> 74		•9	<u>•9</u> •9	•7*	.8	67	
6 PH	117		78 45	1		57	68	65	44	l	1.0	•5*	1	1	41	
<u> </u>	29					60			50		•5*	r		69	36	
9 <u>PM</u>	33			-				1	32	1	8	1.3	-8	1.1	29.	
10 PM	27	1			1	23		1		75	1.2	1	1	1	19	
11_PM	33					20		4	1.4	47	1.7*	2.0*	4.34		12	
		6 н	OUR TO	TAL						0.000					47	
					2022					2772						
		16 H	OUR TO	тац ———	4493					5701					101	
	24 HOUR TOTAL				4847					6032					108	
				UR NN ING	VOLUME			1		VOLUME			1	NNING	VOLUM	
PEAK HO	OURS		0201			1					4	AM				
. •			11	_15	297	-		8	00	528			B	06	0	
ОЯМ NO, 289 REV.		РМ		45	515		PM		45	61.9			4	45	11	
82510 36990 A2 D4	0 6 05	-10-8					71	H ST	AT P	DUVER ST						

	DS AN				24	OU	R	RA	\FFI	C OLU	ME)
LOCATION	TRANGE	URIAIN					DAT	E	•	DESCRIPTIC	N		DAY	OF TH	WEEK
	AT 711	i ST						05-1	0-82	C 030 30	22		MO CR		
HOUR		N	л.т.н	BOUN	D ¹		Si	OUTH	BOUM	0	RA	ΤI	0 <u>IN</u>	/5)	
BEGINNING	00-15	15-30	30-45	45-60	HOUR. TOTAL	00-15	15-30	30-45	45-60	HOUR TOTA		15-30	30-45	45-60	HOUR TOTAL
12 AH	21	31	10 8	21	83 30	23 10	17	1	7	65 29	•9	1•8* 1•0	•6* 1•6*	3.0* 1.3	148 59
<u>1 AM</u> 2 AM	<u>. 6</u> 11	<u> </u>	0 6	2	34	11	13	3	2	29	1.0	1.2	2.0*	1.0	63
3 AM	3	 5	5		20	8	1	4	7	20	.4*			1.0	40
4 AM		2	10	5	17	8	3	5	6	22		•7*		8. * 3	39 89
<u> </u>	6	<u>11</u>	13	10		<u>3</u>	<u>12</u> 41	<u>15</u> 65	<u>19</u> 99		2.0*	· •9 1•2	+9 +9	<u>•5*</u> •9	463
6 A M	28 96		61 1,33	90 199		107	143	-	168		.9	.9	.8	1.2	1132
<u>7 AM</u> 8 AM	205		$\frac{133}{187}$	198		164	193		123		1.3	1.0	1.1	1.6*	1420
9 AM	162	146					30		61			4.9*	1,54	1.6*	723
10 AM	124	116		108			85		94			1.4	1.3	1.1	757
<u>11 AM</u>	108	130		128		97	_116		111		1.1	1.1	1.0	1.2	935
12 PM	137	146		143	565	131	125		115		1.0	1.2	1.a1 1.4	1 n2 1 • 1	1064 907
<u>1 PA</u>	1/14	135	142	132	<u> </u>	<u>117</u> 113	<u>100</u> 127		<u>115</u> 140		1.2	1.2	1.7	1.1	1076
2 Pit	131	147	144 189	158 170	580 702	113			153	1	1.4	1.2	1.5*	-	1242
<u> </u>	<u>162</u> 212	225		265		171	172		201		1.2	1.3	.9	1.3	1663
5 PM	_231	252	4			220			150		1.1	1.4	1.3	1.64	1643
6 PH	193		134			123	129		97	1	1.064	1.3	1.3	1.2	1658
אין ד	87	93		84	359	<u> </u>	83		58		_ 1.0	1.1	1.1	1.4	673
8 FM	76					74	62				1.1	1.0	1.6*		556
<u>9 pm</u>	64					59				T			1.1	9	466
10 PM	41	65			1	47				i	► 5 9	1.7*		1.2	336 222
L11_PM	37	30	30	26	123	39	19	18	23	<u> </u>	- 7	1.6*	1.7*		
				T A I											
			OUR TO		4398					3425				<u> </u>	
		16 H		TAL	8793				_	7065					15858
	9320					7534			 .		16854				
	HOUR BEGINNING									VOLUME			1	UR NNING	VOLUME
. PEAK H	PEAK HOURS						Ам	<u> </u>	45	69.0		AM	7	45_	1466
Form No. 253 REV.		РМ	4	45	954		РМ	4	30	825		РМ	4	30	1771
36990 82510 82 05	5 05	-10-8					HC	DOVER	ST /	T 7TH ST					2.2

ARTMENT OF TRANSPORTATION

DAT DESCRIPTION DAY OF THEMEK KOUVER ST S/D HILSHIRE DL 05-13-82 C 036 33 2 FR CR HOUM SOUTH BOUND SOUTH BOUND R A T I O (N/S) BEGINNING 00-15 15-30 30-45 45-60 HOUR TOTAL 00-16 15-30 30-45 65-60 HOUR TOTAL 00-16 15-30 30-45 15-30 30-45 15-30 30-45 15-30 30-45 15-30 30-45 15-30 30-45 15-30 30-45 15-30 30-45 15-30 30-45 15-30 30-45 15-30 30-45 30-50 120 30 11-30 15-30 30-45 30-50 120 30 11-30 120 13-30	ARTMENT 💛 OF	TRANSI	PORTATI	ON		4 4		- N				T Ba		-		\smile		
HOUVER ST S/D HILSHIRE BL 05-13-82 C 036 33 3 2 FR CR MOUR BEGINNING 00-15 15-30 30-43 45-60 HOUR TOTAL 00-15 15-30 30-45 45-60 HOUR TOTAL 00-15 15-30 30-45 45-60 HOUR TOTAL 00-16 16-30 30-45 45-60 HOUR TOTAL 00-15 15-30 30-45 45-60 HOUR TOTAL 00-15 16-7 24 10 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16						P								DAS				
HOUR BEGINNING NORTH 6 DUND SOUTH 6 DUND R A T I O (M/S) 12 AM 23 13 22 9 67 12 6 0 10 38 1.9% 1.6% 2.6% 9 100 12 AM 23 13 22 9 67 12 6 0 10 38 1.9% 1.6% 2.6% .9 100 14 AM 23 13 22 9 67 12 6 0 5 2.5% 1.0 1.6% 2.6% .9 100 3 AM 1 2 3 11 1 1 4 1.0 3.0% 117 .6% .7% .5% .2% 1.0% .5% .7% .5% .2% .6% .6% .7% .7% .2% .6% .6% .7% .2% .2% .2% .6% .6% .6% .6% .6% .6% .6% .6			I SHIR	E BL						3-82					<u>r yr in</u>			
BEGINNING 00-15 15-30 30-45 45-60 HOUR TOTAL 00-15 17 37 16		1		Ly L'he								– – – – –						
00-15 15-30 30-45 45-60 HOUR TOTAL 00-15 15-30 30-45 45-60 HOUR TOTAL 00-15 15-30 30-45 45-60 HOUR TOTAL 00-15 15-30 30-45 45-60 -97 110 1 AM 7 11 5 4 27 9 2 7 6 24 -8 5-58 -74 -74 55 2 AM 20 4 2 3 11 1 1 4 1+0 2.08 5.00 5.07 5.6 167 24 5 6 17 37 -8 -74 1.25 -8 907 6 AM 145 133 127 124 529 165 167 154 119 640 0.0 1.3 1.2 -74 33 1.2 -74 33 1.2 1.7 33 1.2 1.7 33 1.2 1.7 33 1.2	HOUR		N	ORTH	BOUN	SOUTH BOUND R A								TIO (N/S)				
12 AM 23 13 22 9 67 12 0 0 10 30 1.9* 1.6* 2.6* .9 10 1 AM 7 11 5 4 27 9 2 7 6 24 .8 5.5* .7* .7* .57 2 AM 20 4 2 7 33 8 4 0 5 225 2.5* 1.0 3* 1.4 5 4 AM 2 3 1 4 10 3 21 8 14 .7* .7* .5* 1.2 .3* 1.6* 2.0* .5* 2.7* .5* 1.7* .5* 1.0* .5* 2.7* .5* 1.4* 1.0* .5* 3.0* .7* .5* 1.2* .5* 1.4* 1.2* .5* 1.2* .5* .5* .7* .5* .5* .7* .5* .5* .7* .5* .5* .7* .5* .5* .7* .5* .5* .5* .5* .5* </td <td>BEGINNING</td> <td>00-15</td> <td>15-20</td> <td>30-45</td> <td>45-60</td> <td>HOUR TOTAL</td> <td>00.15</td> <td>16.20</td> <td>20.46</td> <td>AE-60</td> <td></td> <td>00.15</td> <td>15-20</td> <td>20.45</td> <td>45-60</td> <td>HOUR TOTAL</td>	BEGINNING	00-15	15-20	30-45	45-60	HOUR TOTAL	00.15	16.20	20.46	AE-60		00.15	15-20	20.45	45-60	HOUR TOTAL		
1 AM T 11 5 4 27 9 2 7 6 24 8 7.7 5.7 3 AM 1 2 5 3 11 1 1 1 4 1.00 2.07 5.07 3.0 1.4 5.07 4 AM 2 3 1 4 10 3 2 1 8 1.4 07 2.07 5.07 3.04 1.1 4 AM 2 3 1 4 10 3 2 1 8 1.4 07 1.57 1.27 2.07 5.07 3.04 1.1 1.0 1.3 1.2 37 2.07 5.07 3.07 1.1 1.00 1.03 1.67 1.54 1.9 0.09 6 8 6 1.0 1.3 1.2 77 3.37 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	12 44							15-30	0-45						1 _			
2 AM 20 4 2 7 33 8 4 0 5 25 2.5% 1.0 -3% 1.4 5 3 AM 1 2 5 3 1 1 1 1 1 4 1.0 2.0% 5.0% 3.0% 3.0% 1.2 2.5% 1.0 -3% 1.4 5.5% 2.5% 1.0 7.3% 1.4 5.5% 2.2% 1.5% 1.0 7.3% 1.4 5.5% 2.5% 1.0 7.3% 1.4 5.5% 2.5% 1.0 7.3% 1.4 1.5% 2.4% 5.6 5 1.7 3.7 4.8 -7% 1.2 2.4% 5.6 5 1.7 3.7 4.8 -7% 1.2 2.4% 5.6 5 1.7 3.7 1.1 1.0 1.3 1.2 1.4 1.0 1.3 3.2 1.7 1.13 1.0 1.2 1.4 1.0 1.3 1.2 1.4 1.0 1.2 1.4 1.0 1.0 1.2 1.4 1.0 1.2 1					(2	07							51		
3 AM 1 2 5 3 11 1 <td></td> <td>· ·</td> <td></td> <td></td> <td>7</td> <td></td> <td>- 8</td> <td></td> <td>6</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>58</td>		· ·			7		- 8		6	5						58		
4 AM 2 3 1 4 10 3 2 1 8 1.4 .7# 1.5# 1.0 .3% 6 5 AM 4 4 10 3 24 26 6 17 37 .8 .7# 1.2 .3% 6 6 AM 25 36 50 56 167 24 28 43 76 171 1.0 1.5 1.2 .7% 33 7 AM 78 74 125 164 .441 102 126 107 11 1.6 0.6 167 33 127 .8 .8 1.0 1.3 1.2 .8 1.0 1.3 1.2 .8 .9 1.3 .1 1.1 1.0 1.2 1.4 1.0 1.5 .5 .95 .03 77 .70 1.1 1.1 1.0 1.3 .0 1.2 1.4 1.0 1.3 .01 .5 .97 .13 .10 1.2 1.4 1.0 1.3 .10 .1 <			2	5	3		i	i	i	1								
5 A M 4 4 11 5 24 5 6 9 17 37 .8 .7* 1.2 .3# 6 6 A M 25 36 50 56 167 24 28 43 76 171 1.0 1.3 1.22 .8 901 0 A M 145 133 127 124 529 169 167 154 113 609 .9 .8 .8 1.0 1.3 921 10 A M 102 106 100 77 305 95 95 103 77 370 1.1 1.1 1.0 1.3 922 11 A M 104 103 96 145 448 89 73 99 109 370 1.2 1.4 1.0 1.3 921 12 PM 133 105 134 128 500 99 100 108 102 417 1.2 1.4 1.0 1.3 1.2 1.4 1.3 927 1.4 1.5 1.4 <td></td> <td>2</td> <td>3</td> <td>1</td> <td></td> <td></td> <td>3</td> <td>2</td> <td>1</td> <td>8</td> <td>1</td> <td>K 1</td> <td></td> <td></td> <td>1 1</td> <td></td>		2	3	1			3	2	1	8	1	K 1			1 1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 A M	4	4	11	5	24	5	6	9	17		.8	.7*	1.2	•3*			
B AM 145 133 127 124 529 167 154 119 609 .9 .8 .8 1.0 113 9 AM 125 122 110 118 475 137 111 105 92 445 .9 1.1 1.0 1.3 921 10 AM 102 106 100 77 385 95 92 103 77 370 1.1 1.2 1.4 1.1 1.2 1.4 1.1 1.2 1.4 1.1 1.3 1.2 1.2 1.1 1.3 <td>6 AM</td> <td></td> <td></td> <td>50</td> <td>56</td> <td>167</td> <td></td> <td></td> <td></td> <td></td> <td>171</td> <td>1.0</td> <td>1.3</td> <td>1.2</td> <td>.7*</td> <td>338</td>	6 AM			50	56	167					171	1.0	1.3	1.2	.7*	338		
9 AM 125 122 110 118 475 137 111 105 92 445 +9 1.1 1.0 1.3 922 10 AM 102 106 100 77 365 95 95 103 77 370 1.2 1.4 1.0 1.0 1.0 75 11 AM 104 103 96 145 448 89 73 99 106 102 1.1 1.0 1.2 1.3 1.0 1.2 1.3 1.01 1.2 1.3 1.01 1.2 1.3 1.01 1.2 1.3 1.01 1.2 1.3 1.01 1.2 1.3 91 1 PM 139 144 126 131 175 567 102 102 79 117 400 1.3 1.2 1.4 1.4 1.2 1.4 1.4 1.5 92 93 91 96 111 1.44 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>•6*</td> <td>1.2</td> <td>-8</td> <td>987</td>					-					-			•6*	1.2	-8	987		
10 AM 102 106 100 77 385 95 95 102 77 370 1.1 1.1 1.0 1.0 1.0 75 11 AM 104 103 96 145 448 89 73 99 109 370 1.2 1.4 1.0 1.0 1.2 1.4 1.0 1.2 1.4 1.0 1.2 1.4 1.0 1.2 1.4 1.0 1.2 1.4 1.0 1.2 1.4 1.0 1.2 1.4 1.0 1.2 1.4 1.0 1.2 1.4 1.0 1.2 1.4 1.2 1.4 1.0 1.2 1.4 1.5 91 1.1 1.3 1.2 1.4 1.2 1.4 1.5 96 1.2 1.3 1.2 1.4 1.5 96 1.1 1.3 1.2 1.4								-								1138		
11 AM 104 103 96 145 448 89 73 99 109 370 1.2 1.4 1.0 1,3 011 12 PM 133 105 134 128 500 99 108 102 417 1.3 1.0 1.2 1.3 97 1 PM 139 144 124 140 547 96 84 1.12 108 600 1.4 1.7* 1.5* 94 2 PM 131 126 131 179 567 102 102 79 117 400 1.3 1.2 1.4* 1.0* 1.5* 96' 3 PM 143 177 166 660 102 147 129 160 556 1.1 1.3 1.2 1.4* 1.0* 1.2' 1.4* 1.0' 1.5* 1.2' 1.4* 1.0' 1.5* 1.2' 1.4* 1.5* 1.5' 1.5' 1.5' 1.5' 1.5' 1.5' 1.5' 1.5' 1.5' 1.5' 1.5' 1.5'				· · · · ·					<u> </u>							920		
12 PM 133 105 134 126 500 99 106 100 102 417 1.3 1.0 1.2 1.3 91 1 PM 139 144 124 140 547 96 84 112 108 400 1.4 1.77 1.1 1.3 94 2 PM 131 126 131 179 567 102 102 79 117 400 1.3 1.2 1.77 1.5% 96 3 PM 143 177 176 164 660 102 147 129 160 536 1.4 1.2 1.4 1.5 1.52 1.4 1.41 1.3 1.2 1.2 1.4 1.41 1.41 1.41 1.4 1.41 </td <td></td>																		
1 PM 139 144 124 140 547 96 84 112 108 400 1.4 1.77 1.1 1.3 94 2 PM 131 126 131 179 567 102 102 75 117 400 1.3 1.2 1.77 1.58 96 3 PM 143 177 176 166 600 102 147 129 160 536 1.4 1.2 1.4 1.57 1.58 96 4 PM 193 204 194 195 786 174 1.57 1.64 159 654 1.1 1.3 1.2 1.2 1.44 <									1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
3 PM 143 177 176 164 660 102 147 129 160 536 1.4 1.2 1.4 1.0 1199 4 PM 193 204 194 195 786 174 157 164 159 654 1.1 1.3 1.2 1.2 1.4 1419 5 PM 217 215 168 815 165 212 103 124 604 1.3 1.0 2.17 1.4 1419 6 PM 170 153 134 115 572 145 91 96 111 443 1.2 1.57 1.4 1.00 1015 7 PM 122 98 93 08 401 91 84 62 63 300 1.3 1.2 1.51 1.4 1.00 1015 7 PM 122 98 93 06 717 5304 52 44 43 45 104 1.4 1.94 1.74 1.74 1.74 36 41 39 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									1 1									
4 PM 193 204 194 195 786 174 157 164 159 654 1.1 1.3 1.2 1.2 1440 5 PM 215 217 215 168 815 165 212 103 124 604 1.3 1.0 2.1* 1.4 1410 6 PM 170 153 134 115 572 145 91 96 111 443 1.2 1.0* 1.4 1.0 1.012 7 PM 1.22 98 93 00 -401 91 86 62 63 300 1.3 1.2 1.5* 1.4 1.08 470 9 PM 74 84 71 75 304 52 44 43 104 1.44 1.9* 1.7* 1.6* 36 46 32 30 151 1.4* 1.6* 36 46 32 30 151 1.4* 1.6* 36 46 32 30 151 1.4* 1.6* 9 1.6* 9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>1 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								-	1 1									
5 PM 215 217 215 168 815 165 212 103 124 604 1.3 1.0 2.1* 1.4 1419 6 PM 170 153 134 115 572 145 91 96 111 443 1.2 1.7* 1.4 1.0 1019 7 PM 1.22 98 93 68 401 91 84 62 63 300 1.3 1.2 1.5* 1.4 701 8 PM 65 72 50 67 274 58 60 46 38 202 1.5* 1.4																		
6 PM 170 153 134 115 572 145 91 96 111 443 1.2 1.7* 1.4 1.0 1015 7 PM 122 98 93 68 401 91 84 62 63 300 1.3 1.2 1.5* 1.4 700 8 PM 85 72 50 67 274 58 60 46 38 202 1.5* 1.2 1.1 1.0* 476 9 PM 74 84 71 75 304 52 44 43 45 1.64 1.9* 1.7* 1.6* 46 10 PM 61 56 50 47 216 43 46 32 30 151 1.4 1.3 1.6* 36 36 41 39 159 .9 1.6* .9 1.1 33 11 PM 39 57 38 43 177 43 36 41 39 159 .9 1.6* .9 1.1 33		1 1		1														
7 PM 1.22 98 93 08 401 91 84 62 63 300 1.3 1.2 1.5* 1.4 701 8 PM 85 72 50 67 274 56 60 46 38 202 1.5* 1.2 1.1 1.8* 476 9 PM 74 84 71 75 304 52 44 43 45 104 1.4 1.9* 1.7* 1.7* 400 10 PM 61 56 50 47 216 43 46 32 30 151 1.4 1.3 1.6* 36 1.6* 36 1.6* 36 1.6* 36 1.6* 36 36 41 37 157 9 1.6* .9 1.1 36 1.6* 36 41 37 1.5* 1.6* 36 1.1 1.6* 36 1.1 1.6* 36 1.1 1.1 <	r	and the second division of the second divisio																
8 PM 85 72 50 67 274 58 60 46 38 202 1.5* 1.2 1.1 1.8* 476 9 PM 74 84 71 75 304 52 44 43 45 104 1.4 1.9* 1.7* 1.7* 400 10 PM 61 58 50 47 21.6 43 46 32 30 151 1.4 1.3 1.6* 36* 36* 36* 36* 36* 36* 36* 36* 36* 36* 36* 37* 36* 36* 36* 37* 36* <td></td> <td>4 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 1</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>701</td>		4 1							1 1	-						701		
9 PM 74 84 71 75 304 52 44 43 45 104 1.4 1.9* 1.7* 1.7* 401 10 PM 61 58 50 47 216 43 46 32 30 151 1.4 1.3 1.6* 1.6* 36 36 41 39 159 .9 1.6* 1.6* 36 36 41 39 159 .9 1.6* .9 1.1 336 36 41 39 159 .9 1.6* .9 1.1 336 36 41 39 1.5* .9 1.1 336 11 PM 39 57 38 43 177 43 36 41 39 159 .9 1.6* .9 1.1 .336 11 PM 39 57 3671 36653 1455 1455 24 HOUR TOTAL 8436 <td>8 P.M</td> <td>85</td> <td>72</td> <td>50</td> <td>67</td> <td>274</td> <td>58</td> <td>60</td> <td>46</td> <td>38</td> <td>. 202</td> <td></td> <td></td> <td></td> <td></td> <td>476</td>	8 P.M	85	72	50	67	274	58	60	46	38	. 202					476		
11 PM 39 57 38 43 177 43 36 41 39 159 •9 1.6* •9 1.1 330 6 HOUR TOTAL 3706 3396 710 3396 710 16 HOUR TOTAL 3706 3396 710 1.6* .9 1.1 330 24 HOUR TOTAL 7871 6653 1457 1457 1457 24 HOUR TOTAL 8436 7105 1554 1554 PEAK HOURS HOUR VOLUME HOUR HOUR VOLUME BEGINNING VOLUME BEGINNING VOLUME 1554 PEAK HOURS AM 7.45 569 AM 7.45 701 AM 7.45 12* PM 4.45 842 PM 4.30 700 PM 4.30 157 36990 79750 3.05-13-83 HOUVER ST S/U WILSHIRE BL 157	<u>9 PM</u>					304		44							1.7#	488		
6 HOUR TOTAL 3706 3396 710 16 HOUR TOTAL 7871 6653 1457 24 HOUR TOTAL 8436 7105 1554 24 HOUR TOTAL 8436 7105 1554 PEAK HOURS HOUR BEGINNING VOLUME HOUR BEGINNING HOUR BEGINNING VOLUME PM 4 45 842 PM 4 30 700 PM 4 30 157 36990 79750 3 05-13-83 HOUVER ST S/U WILSHIRE BL						216		46	32	30	151	1.4	1.3	1.64	1.6*	367		
Image: Non-283 Rev.	<u> </u>	39	57	38	43	177	43	36	41	39	159	9	1.6*	9	1.1	336		
Image: Non-283 Rev.																		
PEAK HOURS Image: Constraint of the state o			6 н	UR TO	TAL	3706					3396			1		7102		
PEAK HOURS HOUR BEGINNING VOLUME HOUR BEGINNING HOUR SG090 YOLUME HOUR SG090	16 HOUR TOTAL		TAL	7871					6653					14524				
PEAK HOURS HOUR BEGINNING VOLUME HOUR BEGINNING VOLUME HOUR BEGINNING VOLUME AM 7_45 569 AM			24 H	DUR TO	TAL	8436	-				7105					15541		
PEAK HOURS AM 7 45 569 AM 7 45 701 AM 7 45 12 PM 4 45 842 PM 4 30 700 PM 4 30 152 0RM NO. 2653 REV. PM 4 45 842 PM 4 30 700 PM 4 30 152 36990 79750 3 05-13-83 HDUVER ST S/U WILSHIRE BL HDUVER ST S/U WILSHIRE BL 152	AM			HOUR VOLUME											VOLUME			
PM 4 45 842 PM 4 30 700 PM 4 30 157 36990 79750 3 05-13-83 HDUVER ST S/U WILSHIRE BL 157			AM					Ам			701		AM			1270		
36990 79750 3 05-13-83 HOUVER ST S/U WILSHIRE BL	ORM NO. 253 REV.		РМ				-	PM					PM			1521		
	36990 79750 18 11	3 05	-13-8									BL			<u> </u>	22		

								ε		DESCRIPTION	l		DAN		E WEEK
ALVARADO ST	Å1 /	A LLSH	IKE BI	L				U 7-2	6-82	02 030 30	33		ïυ		HW
HOUR			нтя	BÚUN	uu		Ś	OUTH	BOON	ο και			1.0 (N/S)		
BEGIARING	00-15	15-30	30-45	45-60	HOUR.TOTAL	00-15	15-30	30-45	45-60	HOUR TOTAL	00-15	15-30	30-45	45-60	HOUR TOTAL
12 AH	.64	69	33	37	203	65	57	54			1.0	1.2	•0*	1	415
<u> </u>	38	<u>29</u> 35	<u>- 50</u> 37	47	144	38	37				1.0	<u>- 8</u>		2.0+	
3 AM	43	12		20	135 43	52 21	40 24	31 13	30 12		1.3	•9 •5*	1.2	•6*	274
4 AH	13	26	22	31	92	16	<u> </u>	11	21	60	-8	2.2*		r	
<u>5 AM</u>	17	17	23	89		_ 25	38	45	51	159	7+	1			
6 AM	75	167	102	103	387	86	96	134		489	•9	1.1	• ť	±6¥	1
<u>7 AN</u>	43	145	169	· 150		<u> 200 - 200 </u>	248	. 1	275		_2*			<u>•5</u> ‡	
8 AM	156	164	164	161	645	255	227	267			•6*			•6*	1682
HA 9.	<u>163</u> 148	<u> 153</u> 196	<u>152</u> 168	<u> 144</u> 162	612	<u>250</u> 207	<u>178</u> 187	<u>. 217</u> 192	<u>171</u> 207	<u> </u>	<u>•7*</u> •7*		•7*	600 600	<u> </u>
	163	165	188	203	719	_175	197	_ 205	200		+1+ 9	8.	• 9	1.0	1407
12 PN	180	189	196	187	752	186	218	179			1.0	•9	1.1	1.0	1516
1 PH	170	190	2(4	165	729	208	172	166			.8	1.1	1.2	.9	1466
2 PM	177	205	216	163	751	181	149				1.0	1.4	1.2	1.0	1416
<u>3 PA</u>	208	229	237	229	903	4197	220	1	216		101	1.0	161.	1.1	1743
4 PM	228 268	261 255	206 	289	1044	245 - 229	236 227	234 - 219			•9 ~1•2-	1.1 1.1_	1+1	1.3	1984 <u>1856_</u>
6 PH	231	281	2.00	102		174		141			1.3	1.5*			
7 PM	215	196	158	139		172	159				1.3	1.2	1.6	.9	1354
8 P.H	125	145	120	137		174		142			•7*	1	•8	.9	1129
<u>9 PM</u>	_138	_143	_120	<u>145</u>	1 1	142	188	161	_122	1 – – –	100	<u></u> 8	7*	be2	
IO PM	121	132	110	89		128		147	•		•9	1.0	• 74		
<u>11 PH</u>	81	<u> </u>	65	57	287	_107	96	90	73	360	8.	.9	*	4 · _b	653
	6 HOUR TOTAL 4-698							5496							
	16 HOUR TOTAL		11311_					12264				<u> </u>			
	24 HOUR TOTAL														
				12813			· · · · · ·		13926				_	26739	
PEAK HOURS		HOUR BEGINNING		VOLUMĒ		HOU BEGIN			VOLUME			HO BEGII	UR NNING	VOLUME	
		AM	11	16			AM	*7	- T E	1// 0		АМ		-15	\$ 4.5.4
		 РМ	<u>x k</u>	15			PM	(<u> </u>	<u> </u>		PM		<u> </u>	<u>1b84</u>
FORM NO. 283 REV. 4 15					1084	<u>4 4 10 94(;</u>						ļ	4	15_	2008
02010 79750 11 08	02010 79750 5 07-20-82 11 08							VARAŬ	0 S.T	AT WILSHI	RE BL	-			32

1

4

DEPARTMÉNT OF TRANSPORTATION

-

A AC OLUME

•

.

ARTMENT	OF TRAN	SPOR	TATIO	И										-	1	
							DATE				DESCRIPTION		DAY			
alLSHIPE	UL AT	 AL\	VAGA	00 SI	•				(7-20	-82	, uso 30	3 2		τŪ		Hw
HOUR			EA	st	BOOM	J .		ME	sr	BUUN	ย	RATIO (E/H)				
BEGINNING	00-1	5 15	i-30	30-45	45-60	HOUR. TOTAL	00-15	15-30	30-45	45-60	HOUR TOTAL	00-15	15-30	30-45	45-60	HOUR TOTAL
12 Ad	3	3	44	25	31	133	41	30	21	26	118	6 8	1.5*		1.2	251
1 A/I			17	27	21	86	24	17	10	17	68	<u>69</u>	1.0	2.7*		154
2 AM		9	13	11	10	53	11	- 9	T 3	14	47	1.7*	1.4	00	167*	100
3 A#		7	5	8	5	25	5	10	5	<u> </u>	23	1.4	<u>+5*</u>		<u>1•7</u> *	48
4 AM		2	3	7	7	19	10	8	- 4	Э	25	•2*	•4*	1.6*	2.3*	44
5 A.M		8	16	17	20	61	5	23	18	<u>33</u>	<u> </u>	1.6*	<u>.7*</u>	.9	<u>6</u> *	140
6 AH		9	86	80	92	257	34	48	77	5 9 5	252	.3*	1.8*		1.0	509
(A8		- 1	156	105	203	649	95	1,27	136	152	510_	1 cl	1.2	1.4	1.3	1159
MA 8			186	109	162	725	- 152	184	160	139	635	1.02	1.0	1.2	1.2	1360
PA 8			150	155	177	652	145	1.45	162	169	621	1.2	1.0	1.0	1.0	1273
10 AM			142	168	177	643	183	197	174	209	763	•9	.7*	1.0	18	1406
			174	105	194	755	188	186	208	208	790	1.1	-9	•9	.9	1545
		~-r=	190	175	213	729	253	216	185	191	845	•6*	•9	•9	1.1	1574
12 88 1. 84			208	218	165	800	181	201	187	201	770	1.2	1.0	1.2	1 ie U	1570
				<u>د د</u> 2ء2	198	194	187	205	186	182	760	1.0	-8	1.2	1.1	1554
2 Fr			174	_			194	200	212	191	791	1.0	1.0	.8	8	1517
<u>3 P.</u>			192	175	155			213	233	276	<u> </u>	.8	•8	.8	•7#	1685
4 p.			179	191	185		.221 282	267	235	207		<u>.6*</u>		1		1694
<u>5</u> hr			182	107	160	701				134		.7*		.6*	1	1121
5 6 8			146	88	76		207	162	159			B	•1*		1 InB	791
<u> </u>		15	_89	36	81	351	123	_120	<u> </u>	100			T	- 81	1.03	651
8 Pr		'9	78	71	87	315	109	84	77	66		•7*			1	607
<u>_9_P.</u> /		12	73		68		78		78	69	I	1.1		1.0	1.0	
10 P/		18	- 92	123	59		58		65			1.3	1.2	1.9*		623
<u> </u>		<u>56</u>	_55	26	37	2.04	39	-71	_56	43	209	1.4	<u>8</u>	<u> \/_</u>	9_	413
			e ur		T A I											
			6 HOUR TOTAL			4189					4499_	ļ		<u> </u>		
			16 HOUR TOTAL			9599					_10417					20016
			24 HOUR TOTAL			10542					11247					21789
PEAK HOURS		HOUR BEGINNING		VDLUME	•			UR NNING	VOLUME				NUR NNING	VOLUME		
		-	AM 7 45		766		AM	_11_15		855		AM	11 15		1559	
FORM NO, 283 RE	. v.		РМ		45	848		РМ		45	1462		Рм		<u>+ 45</u>	1788_
79750 02.		7.2	20102					WI	Lohir		AT ALVARA	NOU ST				
11 4		·, · · ·		-		l										33

.

AI VARADO/WILSHIRE STATION TRAFFIC VOLUMES

APPENDIX B

ALVARADO ALTERNATIVE

TRAFFIC VOLUME DATA

AND CMA RESULTS

EXISTING CONDITIONS

HIVArado A'. erns. five Existing Conditions 2 Critical Movement Analysis: OPERATIONS AND DESIGN Calculation Form 2 tersection _7" Sheet and Alvarado 54. Design Hour Ain Peak Hr. Problem Statement Defermine Critical hours Valones and 405 Step 1. Identify Lane Geometry Step 5. Develop Passenger Car Step 8. Step 9a. Volumes (PCV) in pch Approach 3 Calculate Lane Approach 3 m RT = 88 Adjusted Volumes Volumes 34 0 Q TH = 544 1 Adjusted No. PCV Total Move- PCV **PCV** oſ per Lane 0 1 T = Lanes HL ment (Step 7) U W (U×W×PCV) RТ Approach Approach 4 BISES 49B 2 996 B2A1 949 1.05 1.0 1 14-14-14-_ proach Approach A2 640 1.05 1.0 672 2 336 71 A3 1368 1.05 1.0 718 1436 2 898 555 1.4 1056 1.05 1.0 1109 80 Approach LT = TH = 647 Step 2. Identify Hourly Volumes 46 RT = (HV) in vph Ξ E Approach 4 Approach 3 85 RT = . 3% тн : 479 Step 6. Calculate Period Volumes Step 9b. Volume Adjustment for (PV) in pch Multiphase Signal Overlap Ð LT = ____ Ξ 5 LB= Ħ Possible Volume Adjusted PHF = 0.85 680 Approach 3 at Probable Critical Carryover Critical T= 3% 0 5 0 Phase Volume to next Volume RT = 104 0. 30 in rch phase in pch Approact LB=_// T= <u>3</u>% TH = 640 6 HH E FHE 11 LT = D LB= . T= 37-LT = 408095 0220 ンぬ Approach 0 TH = 575 RT = 45 H **H** 5 Approach 4 Step 3. Identify Phasing PHF = 0.85 80 A1 🛶 A3 🛓 LT = 94 ó 4 =/0 TH = 761 Step 10. Sum of Critical リビビ A2--- A4 +4 BT = 54 Approach 4 32AI Volµmes B1 - B3 498 118 Step 7. Turn Adjustments B2 _ B4 4 1216 pch 3 4 Step 4. Left Turn Check Approach Step 11. Intersection Level of A4 A3 Approach 42 82A1 Movement Service 2 3 Rt Turn Rt Rt a. Number of Lt Rt 45 45 (compare Step 10 with Table 6) 45 15 change intervals Turn volume per hour (PV from Step 6) 94 54 104 158 107 C b. Left turn capacity 90 90 90 90 Opposing vol. in vph from Step 2 on change interval, 560 in vph 195-162 144 c. G/C 50 .50 .50 Ped, vol hour 113 Step 12. Recalculate .50 Not Ratio PCE LT from 2.0 d. Opposing volume Geometric Change _ 560 Table 3 y ph NICESSOra Lturn LT vol. in pch 188 Signal Change 40 copacity on PCE RT from 1.251,25 - 1.25 1.25 green, in vph Table 4 Volume Change 130 RT vol. in pch 130 198 134 . 68 capacity in vph (b + e) TH vol. in pch 161 640 1368 1056 Comments. g. Left turn volume 40 from Step 6 in vph Total PCV in pch 188 h. is volume > capac-NO NO NO NO 761 640 1368 1056 ity (g > f)?

Traffic Volume Data Identification of Intersection Movements

NYOR 710115 Critical Movement Analysis: OPERATIONS AND DESIGN Calculation Form 2 Heakton - and Alvana tersection _ 400 Design Hour Valaris and 205. Problem Statement Todayane Critical Love Step 1. Identify Lane Geometry Step 5. Develop Passenger Car Step 8. Step 9a. Volumes (PCV) in pch Approach 3 Calculate Lane Approach 3 1122 RT = 144 Adjusted Volumes Volumes Q 11:11 тн = 925 Adjusted PCV No. PĊV Move- PCV ഹി LT = D Lanes Lane ment (Step 7) U W (U+W+PCV) 표 5 П . vpproach Busys Approach B2A1 1032 1.05 1.0 1084 2 542 proach Approach A2 1164-105 10 1227 2 611 11/1/1 ₹ľ A3 1233 105 1.0 1295 2 648 AA 1566 105 10 1644 2 822 LT = 70 Approach 4 144 TH 637 Step 2. Identify Hourly Volumes RT - 134 (HV) in vph Ξ E Approach 4 107 Approach 3 BT = 140 0 18 390 Step 6. Calculate Period Volumes TH = 540 Step 9b. Volume Adjustment for (PV) in pch Multiphase Signal Overlap LB= _4 LT = 0 H E E Adjusted Critical Approach 3 PHF = 0.98 Possible Volume Probable Critical Carryover T= 370 Phase Volume to next Volume BT = 141 0 T= <u>3%</u> LB= <u>1</u>2 Ó in nch phase in pch LB= 12 TH = 944 PHF H -E IT E . LT = 35 Buses T= 390 80 Approach Approach TH - 560 LB=_4 m RT = 130 THE Approach 4 Step 3. Identify Phasing PHF = 0.89 0 27 Step 10. Sum of Critical 도 문 ¥+ H A2- A4 BT = 151 Approach 4 Volumes A2 81 - 83 611 Step 7. Turn Adjustments B2 🔳 B4 🖣 = 14-33 pch Step 4. Left Turn Check Approach Step 11. Intersection Level of PA Approach 14 04 Movement Service AZAI A2 A3 A4 Turn a. Number of 45 45 45 45 (compare Step 10 with Table 6) change intervals Turn volume 147 147 258 79 151 per hour (PV from Step 6) b. Left turn capacity 90 90 90 \mathcal{D} 90 Opposing vol. in on change interval, 780 vph from Step 2 in vph 0.50 0.50 050 0.50 c. G/C Ped. vol hour Step 12. Recalculate C 1250 Ratio PCE LT from NOT 4.0 d. Opposing volume 980 Geometric Change _ Tuble 3 in vph វៀលពា LT vol. in pch. NICESAR 316 Signal Change . 0 acity on PCE RT from cen, in vph 1.50 1.50 1.50 F Table 4 Volume Change . Left turn RT vol. in pch 90 277 220 220 capacity in vph TH vol. in pch 🗲 (b + c) *Comments* 3580:55 g. Left turn volume from Step 6 716 944 1233 19:6 in vph Total PCV in pph 1032 1164 1233 KA h. Is volume > capac-NO NO 11 y (g > 1)? NO M the Prov Hour factor base

Traffic Volume Data Identification of Intersection Movements

Design Hour <u>PM Reak</u> Intersection <u>6^A Struct</u>

APPENDIX C

ALVARADO ALTERNATIVE

CMA RESULTS

WITH IMPROVEMENTS

•

APPENDIX D

Westlake Alternative Traffic Volume Data and CMA Results Existing Conditions

• •

GENERAL PLANNING CONSULTANT

TECHNICAL MEMORANDUM 6.1.4

COST-EFFECTIVENESS CALCULATIONS

.

ē a

·≕÷-. ·

Prepared for:

Southern California Rapid Transit District

Prepared by:

Barton-Aschman Associates, Inc.

in associaton with:

Schimpeler.Corradino Associates Cordoba Corporation Myra L. Frank & Associates Robert J. Harmon & Associates Deloitte Haskins & Sells Manual Padron The Planning Group, Inc.

September, 1984

I. Introduction

Metro Rail and Transportation System Management (TSM) alternatives have been defined for each of the three Metro Rail line extents (4,8.8, and 18.6 miles)¹. Complete travel demand model simulations have been performed to estimate the ridership, travel time, and operating resource and cost implications of each of thse six alternatives.

Briefly sumarized in this memorandum are the results of the UMTA prescribed cost-effectivenss calculations aimed at comparing each rail alternative with the comparable non-rail alternative.

2. Cost-Effectiveness Inputs and Results

In addition to the data provided by the individual travel demand model simulations, other capital and operating costs were computed based upon the definition of the specific alernative being tested.

Rail system capital costs included the cost of the Metro Rail line and the corresponding cost of bus expansion and replacement. The rail system operating costs were derived from the respective rail and bus cost models, which are calibrated components of the travel demand models.

The TSM capital costs include the cost of bus fleet expansion and replacement for all alternatives. Computerized traffic signal constrol was also included in all alternatives at \$40,000 per signal, with the following number of signals in each alternative:

TSM	NUMBER OF SIGNALS
ALTERNATIVE	EFFECTED
4.0 mile	334
8.8 mile	682
7 18.6 mile	960

In the 8.8 and 18.6 mile TSM alternatives, reversible lane control on Olympic Boulevard was included at \$1.5 million. And finally, in the 18.6 TSM alternative, new transit centers at Universal City and Hollywood/ Cahuenga were included at a total cost of \$5.7 million. TSM operating costs include the Long Beach Light Rail line and regional bus operating costs plus the maintenance of the computerized traffic signal control system (at \$700 per signal per year).

All cost-effectiveness inputs are presented in the attached tables together with the calculation results:

Extent	F e deral	Total
(Mile)	Index	Index
4.0	4.58	6.51
8.8	1.80	3.00
13.6	2.03	3.77

Technical Hemorandum 6.1.3, Description of Transportation System Hanagement (TSM) Alternative Networks, September, 1984 Alternative Name: MOS-1

e .

lten	Disc	[]fe	Quantity	Unit Price	Cost	Rate	Value	TOTALS
RAIL ALTERNATIVE					,			
Rail Capital Cost	0.1	30	1.1758409	1	\$117490000.00	0.1060792	\$124632508.77	
Initial Bus Expansion	6.1	12	84	\$150600.00	\$12600000.00	0.1467633	\$1849217.77	
Other Pus Capital	0.1	30	C	\$29000000.00	\$0.00	0.1060792	\$0.00	
Replacement Bus Costs	0.1	12	2294	\$150000.00	\$344100000.00	0.1467633	\$50501256.73	
Other Capital Costs	0.1	30	0	4	\$0.00	0.1069792	\$0.00	\$176982983.27
Local Capital Funding							\$52970021.43	\$52970021.43
Bus Operating Costs	1	1	525420800	* 1	\$525420800.00	i	\$525420800.00	
Rail Operating Costs	1	1	28860000	1	≇28380000.60	2 4	\$28389600.00	\$553300860.00
Nork Transit Travel Time	1	1	78311305	\$4.0Û	\$313245220.00	1	(\$\$13245220.00)	
Nonwork Travel Time	ĺ	ę	269973760	\$2.00	\$539947520.00	1	(\$537947520.00)	(\$252192740.00)
Ann. Linked Transit Trip	1	4111	522732990	1	522732990	a a	522732900	
TSM ALTERNATIVE	÷							
Initial Bus Expansion	0.1	12	26	\$150000.00	\$3900000.00	0.1467633	\$572376.93	
Other Bus Capital	0.1	30	O	\$2900000. 00	\$0.00	0.1060792	\$0.00	ф.
Replacement Eus Costs	0.1	12	2234	€150000.00	\$335400660.00	0.1467333	\$49224415.38	
Other Capital Costs	8.1	30	13350000	1	\$13360000.00	0.1030792	\$1417218.76	\$51214011.57
Local Capital Funding							\$12803E02.3P	\$12303502.29
Eus Coenating Costs	1	1	518103250	. 1	4518106880.65	i	\$516197380.00	
Other Operating Costs	1	1	13233800	1	\$19203900.00	1	415223800.00	aEB:0240400.00
Work Transit Tralei Time	1	1	79854485	\$4.00	¢319417940.00	1	(2010417940.00)	
torvor+ Travel Rure	4	ş -	270229745	±2.00	≢546677520.30	1	45426765221000	\$8::097460.06 h
Annu 1 med Tharsut Thic	e 4	1 5	501937260	:	501937295	1	531957200	

Itor-Effect veress index

Federal Dist-Effectiveness Index

--

Alternative Name: MDS

•

Item	Disc	Life	Quantity	Unit Frice	Cost	Rate	Value	TOTALS
RAIL ALTERNATIVE								
Rail Capital Cost	0,1	30	2.134E+09	i	\$2133500000.00	0.1020792	\$226320076.15	
Initial Bus Expansion	0.1	12	Û	\$150605.00	\$0.00	0.1467633	\$C.00	
Other Bus Capital	0.1	30	0	\$29000000.00	\$0.ŪJ	0.1060792	\$0.GO	
Replacement Bus Costs	8.1	12	2104	\$150000.00	\$315300000.00	0,1467633	\$46318502.25	
Other Capital Costs	0.1	30	D	1	\$0.00	0.1030792	\$0.00	\$272638578.85
Local Capital Funding							\$84002049.93	\$84002049.93
Bus Operating Costs	1	1	450281200	¥ 1	\$490281200.00	1	\$490281200.00	
Rail Crenzting Costs	1	í	44900000	-	\$44900506.09	Ĭ	\$4490000.09	\$535161200.GC
Work Transit Travel Time	1	j	89665840	\$4.60	\$358668360.00	1	(\$352663360.00)	
Nonwork Travel Time	1	1	266312400	\$2.09	\$536624900.00	1	(\$536624606.00)	(\$895288160.00)
Ann. Linked Transit Trip	1	1	576418590	4	576418500	and the second se	576418508	
TEM ALTERNATIVE		-						
Initial Bus Expansion	0.1	12	203	\$150000.00	\$31200000.00	0.1467633	\$4579015.43	
Other Eus Capital	0.1	30	1	\$29000000.00	\$29000000.00	0.1060792	\$3076295.20	•
Replecement Bus Costs	0.1	12	2418	\$159000.00	\$332700060.00	0.1467633	\$53231054,39	
Other Capital Costa	0.1	30	28790000	1	\$26780000.00	0.1060792	≑3052960.78	\$63939029.78
Local Capital Funding							\$15984832.20	\$15984832.20
Eus Coenating Costs	4	1	544099882	. 1	±544065652.00	5 #	\$544088332.02	
Sther Goerating Costs	1	1	19522400	1	\$16522400.00	1	≢13522400.00	\$557711202.50
work Transit Travel Time	4	1	91528800	\$4.00	\$366115200.00	1	(\$356115200,00)	
Norwork Frankl Trine		ť.	273615440	45. ju	±546323996.00	4	\$544030680.00M	r#R12144130.01
Anni Linked Transis Thio	e A	ļ	210000000000	1	119991310	1	5,5753961	

Coer-Chieco eress Index

Pedenal Edst-Effect verees Index

Altennative Name: LPA

, k

....

s.,

item I)isc	Life	Quantity	Unit Price	Cost	Rate	Value	TOTALS
RALL ALTERNATIVE						-		
Rail Capital Cost	Û.1	30	3.354E+09	i	\$3384000000.00	0.1060792	€358972176.09	
Initial Bus Expansion	0.1	12	0	\$150000.00	\$0.00	ū.1437333	\$0.00	
Other Eve Capital	0.1	30	8	\$29000060.00	\$0.00	9.1060792	\$0.00	
Replacement Bus Dosts	0.1	12	1724	\$150000.00	\$25860000D.00	0.1467633	\$379529°3.28	
Other Capital Costs	0.1	36	D	1	\$0.00	8.1860792	\$6.00	\$396928169.37
Local Capital Funding							\$124359344.67	\$124359344.67
Bus Operating Costs	1	1	408346000	* 1	≇406346885.00	4	\$403346000,00	
Rain Operating Dosts	ĺ	1	61520000	1	\$61520000.00	4	\$61520000.00	\$467866905.00
Work Transit Travel Time	1	1	90891040	\$4.00	\$363564160.00	1	(\$363564160.00)	
Nonwork Travel Time	1	i	265235940	\$2.00	\$530470080.00	4	(\$530470080.00)	(\$\$\$4034240.00)
Ann, Linked Transit Trip	1	4	582381600	1	582981400	1	582391400	
TEM ALTERNATIVE								
Initial Eus Expansion	0.1	12	131	\$150000.00	\$24150000.00	0.1467633	€2544334.06	
Other Bus Capital	0.1	30	1	\$25000000.00	\$29000000.00	0.1060792	≤3076298.20	*
Replacement Eus Costs	n r Mil	12		\$150920.00	43EE3E5696.00	0.1467633	\$52198278.62	
Other Cacital Costs	0.1	30	45300000	1	±4560000.00	0.1030772	\$4927213.72	\$63654216, \$7
Local Capital Funding							\$15913554.75	±18912554.75
Sus Operating Costs	ĺ	1	503265060	1	\$523268000.00	1	\$533266000.00	
Other Operating Costs	1	1	13717000	1	\$15717600.00	1	\$13717005.00	\$546985000.00
Work Transit Travel Time	Ĩ	4	91133920	\$4.00	\$354535560.00	# 4	(\$364535390.00)	
Norwark The el Time	1	-	278993538	¥2,50	454777120.00	1	1:547977103.303	14933533503.000
Herry Lined Greneth The	4	:	517252555	4 **	519652300	1	<u>514855568</u>	

Deermennen Herees Index

Rebenal Cost-Effectiveness Index