29292615

Converse Consultants Earth Sciences Associates Geo/Resource Consultants

GEOTECHNICAL REPORT

METRO RAIL PROJECT Design Unit A220

ΒY

CONVERSE CONSULTANTS, INC. EARTH SCIENCES ASSOCIATES GEO/RESOURCE CONSULTANTS

MARCH 1984

MTA LIBRARY

Funding for this Project is provided by grants to the Southern California Rapid Transit District from the United States Department of Transportation, the State of California and the Los Angeles County Transportation Commission.

> ⁷ General Geotechnical Consultant Converse Consultants, inc. 126 West Del Mar Boulevard Pasadena, California 91105 Telephone 213 795-0461

Converse Consultants Earth Sciences Associates Geo/Resource Consultants

March 21, 1984

Metro Rail Transit Consultants 548 South Spring Street Los Angeles, California 90013

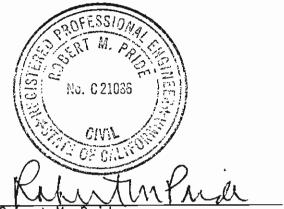
Attention: Mr. B.I. Maduke, Senior Geotechnical Engineer

Gentlemen:

This letter transmits our final geotechnical investigation report for Design Unit A220 prepared in accordance with our Contract No. 503 agreement dated September 30, 1984 between Converse Consultants, Inc. and Metro Rail Transit Consultants (MRTC). This report provides geotechnical information and recommendations to be used by design firms in preparing designs for Design Unit A220.

Our study team appreciate the assistance provided by the MRTC staff, especially Bud Maduke. We also want to acknowledge the efforts of each member of the Converse team, in particular Fred Chen and Jim Doolittle.

Respectfully submitted,


Robert M. Pride, Senior Vice President Converse Consultants, Inc.

RMP:i

ţ

MTA LIBRARY

General Geotechnical Consultant Converse Consultants, Inc. 126 West Del Mar Boulevard Pasadena, California 91105 Telephone 213 795-0461

Robert M. Pride Senior Vice President

This report has been prepared by CCI/ESA/GRC under the professional supervision of the principal soils engineer and engineering geologist whose seals and signatures appear hereon.

The findings, recommendations, specifications or professional opinions are presented, within the limits prescribed by the client, after being prepared in accordance with generally accepted professional engineering and geologic principles and practice. There is no other warranty, either express or implied.

Howard a. 1 mellenan

Howard A. Spellman/ Principal Engineering Geologist

Table of Contents

TABLE OF CONTENTS

SECTION	1.0 1.1 1.2 1.3 1.4	EXECUTIVE SUMMARY1STATIONS1TUNNELS AND CROSS PASSAGE2UNDERPINNING2SEISMIC CONSIDERATIONS2
SECTION	2.0	INTRODUCTION
SECTION	3.0 3.1 3.2 3.3 3.4	SITE AND PROJECT DESCRIPTION5GENERAL5WILSHIRE/NORMANDIE STATION SITE5WILSHIRE/WESTERN STATION SITE6TUNNEL ALIGNMENT6
SECTION	4.0 4.1 4.2 4.3 4.4 4.5 4.6	FIELD EXPLORATION AND LABORATORY TESTING7GENERAL7BORINGS7GEOPHYSICAL MEASUREMENTS8OIL AND GAS ANALYSES8WATER QUALITY ANALYSES8GEOTECHNICAL LABORATORY TESTING8
SECTION	5.0 5.1 5.2 5.3 5.4 5.5	SUBSURFACE CONDITIONS9WILSHIRE/NORMANDIE STATION9WILSHIRE/WESTERN STATION10TUNNEL ALIGNMENT11GROUND WATER12ENGINEERING PROPERTIES OF SUBSURFACE MATERIALS135.5.1General135.5.2Fill135.5.3Alluvium135.5.4San Pedro Formation Sand145.5.5Puente Formation Bedrock14
SECTION	6 1	GEOTECHNICAL EVALUATION AND DESIGN CRITERIA FOR STATIONS.17GENERAL17EXCAVATION DEWATERING186.2.1 General Evaluation186.2.2 Possible Dewatering System196.2.3 Criteria for Dewatering Systems19UNDERPINNING206.3.1 Common Underpinning/Support Methods206.3.2 Underpinning Considerations216.3.3 Design Criteria216.3.4 Underpinning Performance296.3.5 Underpinning Instrumentation29

TABLE OF CONTENTS (continued)

Page

	6.4	TEMPORARY EXCAVATIONS306.4.1General306.4.2Soldier Pile Shoring Systems306.4.3Shoring Design Criteria316.4.4Internal Bracing and Tiebacks356.4.4.1General356.4.4.2Performance356.4.4.3Internal Bracing35
	6.5 6.6 6.7 6.8	6.4.4.4Tieback Anchors386.4.5Anticipated Ground Movements416.4.6Historical Shoring Pressure Diagrams-Los Angeles41SUPPORT OF TEMPORARY DECKING41INSTRUMENTATION OF THE EXCAVATION42EXCAVATION HEAVE AND SETTLEMENT OF THE STATION STRUCTURES43FOUNDATION SYSTEMS456.8.1Main Stations45
	6.9 6.10	6.8.2Support of Surface Structures45PERMANENT GROUND WATER PROVISIONS45LOADS ON SLABS AND WALLS486.10.1Hydrostatic Pressures486.10.2Permanent Static Earth Pressures48
	6.11 6.12	SEISMIC CONSIDERATIONS486.11.1 General486.11.2 Dynamic Material Properties506.11.3 Liquefaction Potential50EARTHWORK CRITERIA53
SECTION	6.13 7 0	PAVEMENT SECTION
SECTION	7.1	TUNNELLING CONDITIONS55STRATIGRAPHY, GROUND WATER AND TUNNELLING CONDITIONS55
		7.1.1 Station 319+50 and Station 345+50 (2600 feet - Drawing 2)
		7.1.3 Station $372+50$ and Station $400+25$
		(2775 feet, Drawing 3)
	7.2 7.3 7.4 7.5 7.6 7.7 7.8	GROUND WATER - INFLOWS AND MINERAL ANALYSES60ENGINEERING PROPERTIES OF TUNNELLING MATERIALS60CROSS PASSAGES60GAS, OIL AND FAULTING62SHAFTS627.6.1Shaft GuidelinesSPECIAL TUNNELLING PROBLEM AREAS64DESIGN FOR EARTHQUAKES64
SECTION	8.0	SUPPLEMENTARY GEOTECHNICAL SERVICES

1

REFERENCES

DRAWING 1 - VICINITY MAP DRAWING 2 - LOCATION OF BORINGS AND GEOLOGIC SECTION DRAWING 3 - LOCATION OF BORINGS AND GEOLOGIC SECTION DRAWING 4 - LOCATION OF BORINGS AND GEOLOGIC SECTION DRAWING 5 - LOCATION OF BORINGS AND GEOLOGIC SECTION DRAWING 6 - LOCATION OF BORINGS - WILSHIRE/NORMANDIE STATION DRAWING 7 - SUBSURFACE SECTION A-A' - WILSHIRE/NORMANDIE STATION DRAWING 8 - LOCATION OF BORINGS - WILSHIRE/WESTERN STATION DRAWING 9 - SUBSURFACE SECTION B-B' - WILSHIRE/WESTERN STATION DRAWING 10 - GEOLOGIC EXPLANATION FIELD EXPLORATION APPENDIX A GEOPHYSICAL EXPLORATION APPENDIX B GEOTECHNICAL LABORATORY TESTING APPENDIX C WATER QUALITY ANALYSIS APPENDIX D

- APPENDIX E TECHNICAL CONSIDERATIONS
- APPENDIX F EARTHWORK RECOMMENDATIONS
- APPENDIX G GEOTECHNICAL REPORTS REFERENCES

LIST OF TABLES

TABLE		PAGE
5-1 5-2	GROUND WATER OBSERVATION WELL DATA	12 15
6-1	RECOMMENDED DYNAMIC MATERIAL PROPERTIES FOR USE IN DESIGN	50
7-1	GROUND WATER INFLOWS AND CAVING CONDITIONS	60

.

LIST OF FIGURES

.

FIGURE No.	TITLE				
6-1	UNDERPINNING GUIDELINES	22			
6-2	UNDERPINNING - DESIGN CAPACITY CRITERIA	23			
6-3	UNDERPINNING - JACKED PILE DESIGN PARAMETERS (NORMANDIE)	24			
6-4	UNDERPINNING - CAST-IN-PLACE PILE DESIGN PARAMETERS (NORMANDIE)	25			
6-5	UNDERPINNING - JACKED PILE DESIGN PARAMETERS (WESTERN)	26			
6-6	UNDERPINNING - CAST-IN-PLACE PILE DESIGN PARAMETERS (WESTERN) .	27			
6 - 7	UNDERPINNING - BEDROCK SUPPORT (NORMANDIE)	28			
6-8	LATERAL LOADS ON TEMPORARY SHORING (WITH DEWATERING)	32			
6-9	VERTICAL CAPACITY OF PILES FOR SHORING & DECKING (BEDROCK)	33			
6-10	VERTICAL CAPACITY OF PILES FOR SHORING & DECKING (SAN PEDRO) .	34			
6-11	SOLDIER PILE PASSIVE RESISTANCE (IN BEDROCK)	36			
6 - 12	SOLDIER PILE PASSIVE RESISTANCE (IN ALLUVIUM)	37			
6-13	STRAIGHT SHAFT TIEBACK ANCHOR CAPACITY	40			
6-14	SPREAD FOOTING BEARING/SETTLEMENT ON GRANULAR SOILS	46			
6-15	SPREAD FOOTING BEARING/SETTLEMENT ON FINE-GRAINED SOILS	47			
6-16	LOADS ON PERMANENT WALLS	49			
6-17	RECOMMENDED DYNAMIC SHEAR MODULUS RELATIONSHIPS	51			
6-18	RECOMMENDED DYNAMIC DAMPING RELATIONSHIPS	52			
7-1	EXAMPLES OF STRATIGRAPHIC VARIATIONS	58			

- -

Section 1.0

Executive Summary

1.0 EXECUTIVE SUMMARY

This report presents the results of our geotechnical investigations and engineering analyses for the A220 Design Unit of the Southern California Rapid Transit District's Metro Rail Project in Los Angeles. The A220 Design Unit consists of the Wilshire/Normandie and Wilshire/Western Stations and about three miles of tunnel line. (The Wilshire/Crenshaw Station is reported upon in a separate report.) The Stations will be constructed by cut-and-cover methods and extend in depth up to 70 feet below the existing ground surface. The line between the Stations will be constructed by tunnelling methods and will have a variable depth of cover above the crowns of the single track tunnels. Construction will occur predominantly in alluvial type soils having variable gas and ground water conditions. The report defines the subsurface conditions and provides recommendations for design and construction purposes.

1.1 STATIONS

The subsurface conditions at the station structures consist of 25 to 80 feet of alluvium, primarily silts, clays, clayey sands and silty sands. Underlying the alluvium, the explorations encountered the San Pedro sand and gravel layer varying in thickness between 8 and 20 feet at the Wilshire/Normandie Station but a generally uniform thickness of about 20 feet at the Wilshire/Western Station. The San Pedro sand is in turn underlain by interbedded siltstone, claystone and sandstone of the Puente Formation. Ground water was encountered within the Alluvium at depths of 25 to 42 feet below the existing ground surface at the Wilshire/Normandie Station, and at depths of 15 to 18 feet below the existing ground surface at the Wilshire/Western Station.

Station construction on Wilshire Boulevard will consist of excavations approximately 550 feet long, 60 feet wide, and up to 70 feet deep. The Wilshire/Western Station excavation occurs entirely within alluvial type soils as does the west end of the Wilshire/Normandie Station excavation. The easterly third of the Wilshire/Normandie Station excavation will penetrate the siltstones, claystones and sandstones of the Puente Formation.

Temporary support of the Station excavations will be either flexible or rigid type vertical wall systems with internal bracing or external tieback systems. Successful installation of tiebacks will require certain precautions to maintain the stability of such borings below ground water elevations. Lateral pressures and other guidelines for design of temporary support systems are provided in the report.

Certain fractions of the alluvium are more pervious than other fractions. Therefore, exterior and/or interior dewatering installations are anticipated to be necessary to control ground water seepage and loss of ground along the excavation faces and to maintain the stability of the bottom of the excavations at both Station locations. Dewatering of the alluvium and San Pedro Formation will result in some areal subsidence.

The undisturbed alluvium and the Puente Formation will adequately support the permanent reinforced concrete Station structures. Design lateral pressures for permanent structures under varying earth and hydrostatic loading conditions are outlined in the text of the report.

-1-

1.2 TUNNELS AND CROSS PASSAGE

Subsurface conditions along the A220 tunnel alignment are suitable for the use of soft ground tunnelling techniques utilizing a shield with hand and/or mechanical excavating equipment. The majority of the tunnel alignment will pass through horizons of differing alluvium except at the east end of A220 where the tunnels pass through the Puente siltstones, claystones and sandstones and bedrock-alluvial mixed face tunnelling conditions before entering The invert of the fully alluvial soil tunnelling conditions to the west. tunnels will penetrate the San Pedro Sands, underlying the alluvium, for a significant length of the alignment. Ground water levels lie above the crown of the tunnel the entire length. Therefore, some flowing ground conditions could be encountered at the face, and the potential for blow-outs at the invert should be anticipated. It is, therefore, anticipated that construction shield tunnelling methods will require means for the utilization of fore polling and/or breast boarding techniques to maintain stability of the face. In addition, surface and/or local subsurface dewatering measures will be required to control seepage inflows and to provide for the stability of the soils at the face and invert of the tunnels along certain portions of the tunnel alignment.

Design Unit A220 is considered potentially gassy to gassy per the classification contained in Tunnel Safety Orders issued by the California Division of Industrial Safety and adopted from California Administrative Code, Title 8, page 684.18.

The cross passage between tunnels near Station $436\pm$ will encounter saturated, interlayered horizons of cohesive and cohesionless-like soils. The cross passage should be excavated by hand and/or mechanical excavation equipment with appropriate support, exercising precautions similar to those noted for tunnel construction.

1.3 UNDERPINNING

Guidelines for assessing the need for underpinning of buildings adjacent to the Station construction and along the tunnel alignment are discussed in the report. Detailed analyses to identify and recommend which buildings and/or facilities shall be underpinned will be carried out by the section designer for this Design Unit.

At approximately Station 337+00, the crown of the AR tunnel line is anticipated to pass approximately 5 feet below the footings of the southeast corner of the Equitable Life Assurance Company parking structure. The evaluation of the underpinning requirements and the behavior of the tunnel and footings under static and earthquake loading conditions to assure the long-term integrity and stability of the structures will be carried out by others. Similar analyses will be required for the buildings under which the tunnels pass at approximately Stations 324+00 and 332+00.

1.4 SEISMIC CONSIDERATIONS

Analysis of the gradational characteristics and in-situ relative density of the granular soils indicate that liquefaction of such soils during a maximum design earthquake has a low probability.

CCI/ESA/GRC

Design procedures and criteria for underground structures under earthquake loading conditions are defined in the SCRTD report entitled "Guidelines for Seismic Design of Underground Structures" dated March 1984. Seismological conditions which may impact the project and the operating and maximum design earthquakes which may be anticipated in the Los Angeles area are described in the SCRTD report entitled "Seismological Investigations and Design Criteria" dated May, 1983. The 1984 report complements and supplements the 1983 report. Site specific static and dynamic properties for materials in design unit A220 are given in the report.

CCI/ESA/GRC

-3-

Section 2.0 Introduction

570

ł

2.0 INTRODUCTION

This report presents the results of a geotechnical investigation for Design Unit A220. The unit consists of Wilshire/Normandie, Wilshire/Western Stations, and about three miles of subsurface track line proceeding east to west from the west end of the Wilshire/Vermont Station to the east end of the Wilshire/LaBrea Station. The Wilshire/Crenshaw Station, with a double crossover ahead of the Station, and a mid-line ventilation station near the Mullen Avenue intersection are not included in this Design Unit. The work performed for this report includes borings, laboratory tests, engineering analysis, and the development of recommendations and specifications for design and construction of the included stations and the tunnels. This Design Unit is a part of the 18.6-mile long Metro Rail Project (see Drawing 1, Vicinity Map).

Additional geotechnical information on the Metro Rail Project is included in the following reports, some of which may pertain to Design Unit A220.

- [°] "Geotechnical Investigation Report, Metro Rail Project", Volume I -Report, and Volume II - Appendices, prepared by Converse Ward Davis Dixon, Earth Sciences Associates and Geo/Resource Consultants, submitted to RTD in November 1981. This report presents general geologic and geotechnical data for the entire project. The report also comments on tunneling and shoring experience and practices in the Los Angeles area.
- [°] "Geotechnical Report, Metro Rail Project, Design Unit A195", prepared by Converse Consultants, Inc., Earth Sciences Associates, and Geo/Resource Consultants, submitted to SCRTD in October, 1983. This report presents our results of the findings for the Wilshire/Vermont Station.
- Seismological Investigation & Design Criteria Metro Rail Project, prepared by Converse Consultants, Lindvall Richter & Associates, Earth Sciences Associates and Geo/Resource Consultants, submitted to RTD in May 1983. This report presents the results of a seismological investigation.
- "Geologic Aspects of Tunneling in the Los Angeles Area" (USGS Map No. MF866, 1977), prepared by the U.S. Geological Survey in cooperation with the U.S. Department of Transportation. This publication includes a compilation of geotechnical data in the general vicinity of the proposed Metro Rail Project and this Design Unit.
- Rapid Transit System Backbone Route", Volume IV, Book 1, 2 and 3, prepared by Kaiser Engineers, June, 1962 for the Los Angeles Metropolitan Transit Authority. This report presents the results of a Test Boring Program for the Wilshire Corridor and logs of borings.

The design concepts discussed in this report are based on the "Final Report for the Development of Milestone 10, CBD to North Hollywood Line Plans, Sheets 11 to 43, dated September 1983; and Preliminary Site Plans, Plans and Sections for Wilshire/Normandie and Wilshire/Western Stations, Sheets 44 to 58, dated February, 1983.

-4-

Section 3.0

Site and Project Description

3.0 SITE AND PROJECT DESCRIPTION

3.1 GENERAL

The existing ground surface elevations along the alignment vary between approximately 230 feet on the east and 195 feet on the west. Local variations from this inferred plane surface occur at Stations 341+00, 387+00, 412+00, 433+00 and 460+00 in the form of broad swales the widths of which may extend over several blocks. Such depressions infer the location of former northsouth drainage courses which incised the old alluvium and which are now infilled with young alluvial deposits or man-made fill having a comparatively moderate thickness. Such courses are now marked by development in the form of streets and structures.

The easterly 2000 feet of the alignment lies approximately midway between Wilshire Boulevard and Sixth Street (Stations 318+00 to 340+00), where the tunnels pass beneath buildings of moderate size and height. West of Station 340+00, the design unit alignment follows Wilshire Boulevard. The Wilshire corridor is highly developed on both sides with low, medium and high rise commercial buildings. Several of the buildings have been designated as historic landmarks.

All thoroughfares are paved and underlain by a variety of sensitive utilities and drainage facilities.

The construction features about three miles of twin bore tunnels, between Station locations, having an outside diameter of approximately 19 feet. The minimum depth of cover is approximately 25 feet, and the maximum depth of cover approaches 60 feet. Three Station structures are located at or near Normandie, Western and Crenshaw Avenue intersections. The geotechnical features of the latter Station are discussed in a separate report. The depths to Station structure inverts are approximately 55 and 65 feet at the Western and Normandie Avenue Stations, respectively.

A mid-tunnel vent structure and cross passage is located between Stations [·] 436+26 and 437+56 of the A220 Design Unit alignment.

3.2 WILSHIRE/NORMANDIE STATION SITE

The Wilshire/Normandie Station site will be located beneath Wilshire Boulevard between Ardmore and Normandie streets. A number of high-rise office buildings are located along Wilshire near the station location. The Wilshire Hyatt Hotel is immediately adjacent to the station, and the Ambassador Hotel is one block away. Residential areas are to the north and south of Wilshire. The existing ground surface along Wilshire Boulevard varies from Elevation 226 feet at Ardmore Avenue to Elevation 220 feet at Normandie Avenue.

The Wilshire/Normandie Station will be a reinforced concrete structure about 550 feet long and 60 feet wide (outside wall dimensions). The station has been planned with a mezzanine, and an entrance located on Irolo Street. Ancillary space is proposed at each end of the station. The top of rail varies from about Elevation 167 feet at the east end to about Elevation 168 feet at the west end of the station platform. Assuming the station will be

CCI/ESA/GRC

supported on a 4- to 6-foot thick concrete mat, the station area will require an excavation to about Elevation 161 feet. This is approximately 60 feet below the existing grade at the east end of the station, and 65 feet below the existing grade at the west end of the station. After the station is constructed, approximately 3 to 4 feet of fill will be placed above the station end areas, and between 19 and 24 feet of fill will be placed above the majority of the station box. Design loads for this Station structure were not available at the time of this report.

3.3 WILSHIRE/WESTERN STATION SITE

The Wilshire/Western Station site will be located between Manhattan Place and Oxford Street. This area is on the western edge of a high-rise segment of the Wilshire Corridor office core. The remainder of the surrounding area is in residential use. All four corners of the intersection of Wilshire and Western are developed: the historic landmark Wiltern Theater is located on the southeast corner and is undergoing renovation, a Union Bank building is on the southwest corner, the Pierce National Life Insurance Building is on the northwest corner, and a one-story Thrifty Drug Store is on the northeast corner adjacent to the McKinley Building. Existing ground surface along Wilshire Boulevard at the station site is approximately Elevation 200 feet.

The station has been planned with a mezzanine centered over the length of the platform. The northeast corner of the intersection of Western and Wilshire is selected as the entry area to this station. A bus-rail transfer and layover lane is planned north of Wilshire between Western Avenue and Oxford Street. Ancillary space will be located at each end of the station. A traction power substation will be located at grade adjacent to the station entrance.

The Wilshire/Western Station also will be a reinforced concrete structure about 550 feet long and 60 feet wide. The top of rail varies from about Elevation 153 feet at the east end to about Elevation 151 feet at the west end of the station platform. Assuming the station will be supported on a 4- to 6-foot thick concrete mat, the station area will require an excavation to about Elevation 146 feet. This is approximately 55 feet below the existing grade. After the station is constructed, roughly 8 feet of fill will be placed above the station box structure. Design loads for this Station structure were not available at the time of this report.

3.4 TUNNEL ALIGNMENT

As shown on Drawings 2, 3, 4 and 5, the tunnel line in Design Unit A220 is about three miles long, starting at approximately Station 319+16 and ending at approximately Station 474+47. The tunnel continues in an east-west direction from the west end of the Vermont Station and enters into a set of reversing curves to reach Wilshire Boulevard at Alexandria Avenue. From that point, the tunnel continues west directly under Wilshire Boulevard until it reaches the east end of the Wilshire/LaBrea Station.

Section 4.0

Field Exploration and Laboratory Testing

4.0 FIELD EXPLORATION AND LABORATORY TESTING

4.1 GENERAL

The information presented in this report is based primarily on the field and laboratory investigations performed in 1981 and 1983. This information was derived from field reconnaissance, borings, geologic reports and maps, ground water measurements, field gas measurements, field geophysical surveys, ground water quality tests, and laboratory tests on soil and rock samples. References listed at the end of this report were utilized to complement and supplement the more recent information.

4.2 BORINGS

For the A220 investigation, 16 borings were drilled along the alignment and at the station sites: three along the alignment, six at the Wilshire/Normandie Station, and seven at the Wilshire/Western Station. The alignment borings are numbered 13A, 13-7 and 13-8. The Wilshire/Normandie Station borings are numbered 14-1 to 14-5. The Wilshire/Western Station borings are numbered 15-1 to 15-5 and 15-A. Borings CEG-13 through CEG-17 which were drilled in 1981 are also included. The locations of the borings are shown on Drawings 2 and 4, and the logs of the borings from the 1981 and 1983 investigations are provided in Appendix A. Ground water observation wells were installed in Borings 14-1, 14-3, 15-1 and 15-3. Section 5.4 presents a summary of ground water level measurements in these wells and others near A220.

Information pertinent to the tunnel alignment for this design unit was also obtained from borings for the Wilshire/Crenshaw Station (Design Unit A240), a vent structure, and the Wilshire/LaBrea Station (Design Unit A245). These borings are identified as 16-1 through 16-6, 16A, 16-B, 17-A, 17-B, 18-2 through 18-7 drilled in 1983. Logs of these borings are also included in this report, and their locations and graphical sections are presented on "Location of Borings and Geologic Sections", Drawings 3, 4 and 5.

In 1962, Kaiser Engineers drilled 30 borings within the Design Unit A220 tunnel alignment section: Borings 44 to 74, inclusive. These borings were spaced about 500 feet apart and ranged from 50 to 80 feet deep at the locations shown on Drawings 2, 3, 4 and 5. Of the 30 Kaiser borings, 26 (Borings 55 through 70) are on the present Metro Rail Project alignment and were used to interpret the depth of soil overlying the bedrock, but they were not used to evaluate ground water conditions. The Kaiser Boring Logs can be examined at the Southern California Rapid Transit District office in Vol. 4, Books 2 and 3, entitled "Test Boring Program" prepared for the Los Angeles Metropolitan Transit Authority, June 1962.

Another source of boring information is the U.S. Geological Survey paper, "Geologic Aspects of Tunneling in the Los Angeles Area" (USGS Map No. MF-866, 1977).

The foundation investigation borings included in the USGS report are not shown on our drawings and were not used because they were too shallow for proper interpretation of subsurface conditions along the proposed grade of the Metro Rail tunnel.

-7-

4.3 GEOPHYSICAL MEASUREMENTS

Downhole and crosshole compression and shear wave velocity surveys were performed in Borings CEG-14 and CEG-15 which were drilled during the initial 1981 investigation. The CEG-14 boring was drilled about 200 feet east of the Wilshire/Normandie Station, and CEG-15 was drilled about 120 east of the Wilshire Western Station (see Drawings 2 and 3). Appendix B summarizes the field survey procedures as well as the results of the velocity measurements.

4.4 OIL AND GAS ANALYSES

A sulfurous odor was noted in Borings 14-2, 14-3 and 14-4 at the Wilshire/ Normandie Station site. The odor was noted at about the time the drilling encountered the Puente Formation.

The Los Angeles City Oil Field is located about 3,000 feet north of the Wilshire/Normandie Station, and the Western Avenue Oil Field is located about 4,000 feet north of the Wilshire/Western Station. The oil fields contain shallow accumulations of petroleum, surface seeps and more than 1250 wells. As discussed in the 1981 Geotechnical Report, these oil fields were discovered in the 1890's, and subsequently produced over a million barrels of oil per year for a few years. No evidence was found to indicate any regional subsidence has occurred due to the oil fields. Most of the wells which were drilled prior to 1900 were not surveyed or accurately located, and the ground surface has since been developed.

4.5 WATER QUALITY ANALYSES

Chemical analyses were performed and selected parameters were evaluated for water samples obtained in Borings 14, 16A, 17, 17A and 17B. The chemical analyses and results of these tests are presented in Appendix D.

4.6 GEOTECHNICAL LABORATORY TESTING

The laboratory program developed to test representative soil and rock samples consisted of classification tests, consolidation tests, triaxial compression tests, dynamic triaxial tests, resonant column tests, unconfined compression tests, direct shear tests, and permeability tests.

Appendix C summarizes the testing procedures and presents detailed results of the 1983 program and summarizes the results of the 1981 laboratory program.

Section 5.0

Subsurface Conditions

5.0 SUBSURFACE CONDITIONS

During the field programs conducted for this and the 1981 investigations, the contact between the Old and Young Alluvium was difficult to identify since the soils in these two deposits can be very similar. While the Young and Old Alluvium may be geologically different, our interpretation of the field and laboratory test data suggests that they do not differ significantly from an engineering standpoint. For the purposes of this report, Young and Old Alluvium have not been differentiated and are simply referred to as Alluvium. Generalized geologic interpretations of subsurface conditions along the proposed route are presented on Drawings 2, 3, 4, and 5.

5.1 WILSHIRE/NORMANDIE STATION

Drawings 2 and 7 show generalized subsurface cross sections through the proposed Wilshire/Normandie Station. Approximately one to 2-1/2 feet of fill overlie alluvial silty clays and silty sand. Within the station limits, an upper layer of granular Alluvium up to 6 feet in depth was encountered. Beneath this fine-grained Alluvium extends to depths varying between 35 feet at the east end and 75 feet at the west end of the station. The Alluvium is underlain by very dense San Pedro Sand. The thickness of this fine- to medium-grained sand varies from 10 to 30 feet between the east end and the west end of the station. Underlying the San Pedro Sand, the bedrock surface at the Wilshire/Normandie Station slopes gently downward from east to west.

Specific descriptions of the soil and rock materials encountered in the borings at the station site include the following:

- Fill: At Borings 14-3 and 14-5, approximately 1.5 feet of clayey sand and sandy clay fill were encountered. The fill in these two borings was dense and stiff. Generally one foot of asphaltic concrete and concrete pavement section existed on Wilshire Boulevard.
- Alluvium: A relatively thin layer (less than 6 feet) of granular Alluvium was encountered beneath the fill. The materials consisted of medium dense to dense silty sand and clayey sand. Two Standard Penetration Tests in this material showed driving resistance of 25 and 27 blows per foot. Based on boring data, the remainder of the Alluvium consisted of clays, clayey silts, sandy clays and silty and clayey sands, primarily very stiff and dense. The borings at the station site encountered some 35 to 75 feet of this unit overlying the sloping San Pedro sand unit. The sampling resistance, unit weight, moisture content, and laboratory test data performed in this unit showed that the clays and silts were stiff to very stiff with low compressibility, and that the sands were dense.
- San Pedro Sand: The borings encountered between 10 and 30 feet of a very dense fine sand and silty sand identified as the San Pedro Formation. The unit essentially consists of a uniform fine sand with less than 5% silt, and with occasional gravelly lenses. Based on the laboratory tests and field Standard Penetration Tests, this sand layer was very dense and low in compressibility.

-9-

[°] <u>Puente Formation</u>: The bedrock underlying the site consisted of thinly interbedded claystone and clayey siltstone of the Puente Formation. The top of the bedrock sloped gently downward toward the west. Bedding, where observed in samples, was between about 20° and 50°. Strike of the bedding could not be determined from the samples. However, the regional trend would be roughly a east-west strike, and a south dip. Occasional thin zones of localized hard cementation were encountered. However, these hard zones are estimated to comprise a small percentage of the Puente Formation.

5.2 WILSHIRE/WESTERN STATION

Drawings 3 and 8 show generalized subsurface cross sections through the proposed Wilshire/Western Station. The subsurface profile at the Station site consists of approximately 2 to 8-1/2 feet of fill over fine-grained Alluvium extending to depths of approximately 60 to 76 feet. Beneath this Alluvium, a layer of very dense San Pedro Sand was encountered. The thickness of this sand layer varied between 20 and 35 feet. At the boring locations within the station limits, a gravelly sand and sandy gravel course of approximately 5 to 8 feet was encountered toward the bottom of the San Pedro Sand layer. The bedrock surface at this Station site sloped slightly downward from west to east.

Specific descriptions of the soil and rock materials encountered in the borings at the site include the following:

- Fill: At Borings 15-1 through 15-4, between 2 and 8-1/2 feet of silty sand and sandy clay fill was encountered beneath the one foot thick pavement section. Boring 15-5 which is located about 275 feet east of the station limits encountered approximately 16-1/2 feet of fill materials. Test results within the fill showed that the materials are dense and stiff.
- Alluvium: The Alluvium consists of silty sand, sandy silt, sandy clay and silty clay. The consistency of this unit showed that the interbedded materials were very stiff and dense to very dense. The borings within the station site showed that the thickness of this layer varied from 60 to 67 feet between the west end and the east end of the station. Detailed descriptions of the unit are shown on Drawing 9.
- San Pedro Sand: The borings encountered between 20 and 25 feet of a uniform fine sand and gravelly sand of the San Pedro Unit. In Boring 15-1 and 15-3 approximately 5 to 8 feet of the lower portion of this unit consisted of coarse-grained sandy gravel. Field and laboratory test results showed that the San Pedro unit is generally very dense and relatively incompressible.
- Bedrock: The bedrock encountered at the Wilshire/Western Station site consists of both thin and thick interbedded siltstone and sandstone of the Puente Formation. The sandstone appears to be weakly cemented. The top of the bedrock slopes very gently toward the east. Dip of the bedding, where observed, was inclined at approximately 30° and 35°. Strike of the bedding could not be determined from the samples. However, the regional trend would be roughly east-west strike and south dip.

-10-

5.3 TUNNEL ALIGNMENT

About 15% of the A220 tunnel line between Stations 319 and 345 will occur in weak bedrock of the Puente Formation and approximately 85% of the tunnel will be in Alluvium. There is a distinct possibility that the tunnel invert between the Wilshire/Western and Wilshire/Crenshaw Stations will encounter the San Pedro (sand) Formation.

Mixed-faced tunnel conditions should be anticipated exiting the Wilshire/ Vermont Station (Stations 320± to 328) and entering the Wilshire/Normandie Station at about Station 344. A general description of the anticipated geologic units along the tunnel alignment follows:

- Alluvium: Alluvium consists of a mixture of clays, clayey silts, sandy clays, silt and clayey sands. The materials are primarily stiff to very stiff and dense with low compressibility. Large boulders are not anticipated. Ground water occurs at depths ranging from 9 to 40 feet below the existing ground surface. Below the ground water level, the granular alluvium may be expected to flow at the face of the excavation. This is expected due to the higher permeability of the granular soils. Clayey soils are expected to produce only minor water inflow.
- San Pedro Sand: The San Pedro Sand generally consists of a uniform fine sand with less than 5% silt, with occasional gravelly lenses. The San Pedro Sand is very dense in-situ with a low compressibility. In our opinion, the San Pedro Sand should be considered saturated for tunnelling purposes. This is based on the wet flowing nature of the sand as observed in man-sized auger Borings 15-A, 16-A, 16-B and 17-B.
- 0 Bedrock of the Puente Formation consists of well Puente Formation: stratified claystone and siltstone with interbeds of sandstone. The Puente Formation often is referred to as "bedrock" or "rock" in various other publications and in places within this report, but it has the engineering properties of hard or dense soils with significant cohesive strength. Hence, the Puente Formation is classified as "soil-like" bedrock or "soft ground" tunneling material. Locally, the Puente Formation contains very hard sandstone beds ranging from less than 1 inch to 3 feet in thickness, with an estimated unconfined compressive strength ranging from 5000 to 15,000 psi. Based on surface outcrops located about one mile east of the Wilshire/Normandie Station, bedding planes strike nearly east-west, with attendant dips of 13° to 40° southward. This corresponds to bedding observed in man-sized auger Boring 11-A near MacArthur Lake; i.e., strike N85°E, dip 33° to 45° south and man-sized auger Boring 13-A with strike N70°E, dip 25°S.

No tar or oil was encountered in the borings in Design Unit A220. However, man-sized auger Boring 17-A, located on the west side of Mullen Street about 200 feet south of Wilshire Boulevard, and opposite tunnel line Station 435, encountered gas under pressure for the depth interval from 38 to 42 feet. The gas detector read 100% Lower Explosive Limit (LEL) immediately after encountering the 38-foot depth and 20% LEL after 1 hour. Gas issued from the bottom of the hole so vigorously that it churned the water and white-colored vapor

CCI/ESA/GRC

was visible. Knowing that the San Pedro Sand Formation and the Puente/ Fernando Bedrock Formations contain oil and gas, and because Design Unit A220 is located near the Los Angeles City Oil Field and the Salt Lake Oil Field, Design Unit A220 should be considered potentially gassy to gassy. Gas was not detected by the gas meter in man-sized auger Borings 12-A (Station $303\pm$), 13-A (Station $321\pm$), 15-A (Station $374\pm$), 16-B (Station $416\pm$), and 17-B (Station $470\pm$).

The tunnel will pass beneath the southeast corner and the south edge of the Equitable Life Assurance Building. Based on building drawings provided by MRTC, the bottom of the garage wall footing is at about Elevation 164 feet. The crown of the tunnel at this location corresponds to about Elevation 159 feet. Therefore, there is only approximately 5 feet of cover above the crown of the tunnel.

5.4 GROUND WATER

Regionally, ground water has been measured both at shallow depths within the alluvium and at deep levels within the bedrock. The alluvial ground water occurs at depths of about 30 to 40 feet at the Wilshire/Normandie Station, and 15 to 20 feet at the Wilshire/Western Station. Ground water levels within the bedrock at the station sites are estimated to be about 150 feet below the ground surface. For design purposes, it is assumed that the bedrock above the lower ground water level is not submerged.

The following Table 5-1 presents ground water levels and fluctuations measured in piezometers and man-sized auger borings within the limits of A220.

		GROUND	WATER	ELEVATI	ON*	
	1981	1982		1983		1984
BORING	JAN.	APRIL	OCT.	NOV.	DEC.	MARCH
<u>13A</u>				<u>222*</u> *		
14			192	192		
14-1			<u>186</u>	186	186	186
14-3			186		<u>186</u>	187
15-1				<u>182</u>		182
15-3				180		180
16	176	167		173		
16A				<u>173**</u>		
16B				<u>187*</u> *		
16-2			176			174
16-5				174	174	174
16-6				175	175	175
17	171	168	des	tro	yed	
17A			187**			
17B			180**			
18-7			180	179	176	179

TABLE 5-1 GROUND WATER OBSERVATION WELL DATA

* Rounded to the nearest foot

** No piezometer installed; water level measured during drilling It appears that the ground water level varies across the Wilshire/Normandie Station site, ranging from about Elevation 192 feet in CEG-14 (located 200 feet east of the Wilshire/Normandie Station) to about Elevation 186 feet in Boring 14-3 (located just east of Ardmore Avenue). The ground water level varies across the Wilshire/Western Station site, ranging from about Elevation 182 feet in Boring 15-1 (located east of Manhattan Place) to about Elevation 180 feet in Boring 15-3 (located west of Oxford Street). The piezometer data represent a ground water gradient of about 0.017 across the Wilshire/Normandie Station site in the westward direction, and 0.003 across the Wilshire/Western Station in the eastward direction.

A sulfur odor was noted in Borings 14-2, 14-3 and 14-4 at the Wilshire/ Normandie Station site. The odor was noted after the borings had encountered the Puente bedrock.

5.5 ENGINEERING PROPERTIES OF SUBSURFACE MATERIALS

5.5.1 General

For purposes of our engineering evaluations, we have grouped the subsurface materials encountered at the Wilshire/Normandie and Wilshire/Western Station sites into five general subsurface units. These subsurface units include fill, granular Alluvium, fine-grained Alluvium, the San Pedro Sand, and bedrock. This section includes engineering descriptions of each subsurface unit and presents engineering parameters used in our analyses (see Table 5-2). These parameters are based on the laboratory test results, field test results, data from previous investigations, and published data of observed and recorded field behavior from construction projects. Therefore, the parameters are based on factual data and engineering judgement.

5.5.2 Fill

Fill soils encountered at the Wilshire/Normandie and Wilshire/Western Station sites included stiff sandy clays, and dense silty sands and clayey sands. Generally, fill was encountered to relatively shallow depths at the Wilshire/ Normandie Station site. Greater fill thickness was encountered at the Wilshire/Western Station site. None of the borings within the station sites encountered building debris. Due to possible variability of old fills however, the presence of undesirable materials or soft/loose zones should be anticipated. Strength tests performed on representative samples of the fill indicate that the fill at the station sites is either stiff and/or dense.

5.5.3 <u>Alluvium</u>

The Alluvium encountered at both station sites consisted of clay, silty clay, sandy clay, clayey sand, silty sand and gravelly sand. Standard Penetration Test (SPT) results, laboratory densities and strength tests indicate that the fine-grained and the coarse-grained alluvium are, respectively, stiff and dense.

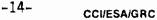
Strength tests performed on the alluvial soils included both direct shear and triaxial compression tests. Considering the relative high permeability of the coarse-grained alluvium and the random occurrence and lenticular nature of the fine-grained and the coarse-grained materials, drained (effective) strength parameters are considered appropriate for static design. These parameters are presented in Table 5-2.

5.5.4 San Pedro Formation Sand

At both station sites, a uniform fine sand, gravelly sand and sandy gravel layer of the San Pedro Formation was encountered. SPT results and laboratory densities indicate that this sand unit is very dense. This unit is below the water level.

Recommended moist and saturated densities are presented in Table 5-2. Permeability of the sands is expected to vary somewhat between the fine sand materials (10^{-2} to 10^{-3} cm/sec) and gravelly lenses or layers (5 x 10^{-2} cm/sec) which may be encountered. The permeability values are estimates based on results of the laboratory tests combined with engineering judgement.

Strength tests performed on the sands included both direct shear and triaxial compression tests. Considering the relatively high permeability of the sands, drained (effective) strength parameters are considered appropriate.


Elastic properties for the sands were based on the laboratory triaxial and consolidation tests combined with published data and engineering judgement. Modulus data on soil samples from this site and similar soil samples from other Design Units were evaluated. The data indicate that the modulus increases linearly with confining pressure. This characteristic is consistent with published data. The modulus value is presented on Table 5-2 in terms of the effective overburden pressure.

5.5.5 Puente Formation Bedrock

The weak Puente Formation claystone and siltstone were considered to be very stiff to hard overconsolidated fine-grained soil for engineering purposes. These materials were encountered below the water level which is within the alluvium and are assumed to be saturated but not submerged.

Due to the nature of the bedrock materials and the various loading conditions, both the drained (effective) and undrained (total) strength parameters were considered in developing design recommendations. Strength parameters presented in Table 5-2 should be considered to be representative of the relatively fresh bedrock encountered about 5 feet below the bedrock surface and were based on interpretation of triaxial, unconfined compression, and direct shear tests combined with our engineering judgement. The total stress data indicate a relatively high undrained friction angle. However, experience and principles of soil mechanics predict that the undrained strength of the bedrock should approach that of a cohesive material.

Bedrock elastic properties were selected based on consideration of field performance data, laboratory test data and published information combined with engineering judgement. For this study, the bedrock material was considered to

MATERIAL PROPERTY	FILL	FINE-GRAINED ALLUVIUM	GRANULAR ALLUVIUM	SAN PEDRO SAND	PUENTE ^C BEDROCK
Moist Density Above Ground Water (pcf)	130	130	130	130	120
Saturated Density (pcf)	-	130	130	130	120
Effective Stress Strength ø' (degrees) c' (psf)	- -	35 0	35 0	. 35 0	35 0
Total Stress Strength ^a ø (degrees) c (psf)	-	20 1000	2	- -	10 4000
Unconfined Compressive Strength (psf)	-	2000	-	-	8000
Permeability (cm/sec)	-	10^{-3} to 10^{-6}	10^{-2} to 10^{-4}	5×10^{-2} to 10^{-3}	10^{-6} to 10^{-7}
Initial Vertical Tangent Modulus (psf)	-	180• _σ v' ^b	300• _{″v} , ^b	300• _{″v} , ^b	2x10 ⁶
Poisson's Ratio (non-saturated)	-	0.40	0.35	0.35	0.35

TABLE 5-2 MATERIAL PROPERTIES SELECTED FOR STATIC DESIGN

^a The total stress parameters should be used to determine the increase in undrained strength with depth.

^b σ_{yi} is the effective overburden pressure (psf) (equal to effective density times overburden depth). Moist density should be used to determine σ_{yi} above the water table and submerged density (saturated density minus water density) should be used for the effective density of soils below the water table.

^C For relatively fresh bedrock.

have no significant modulus increase within the range of depth affected by the proposed stations. The apparent variation of modulus values at low confining pressures indicated by the laboratory data may be due to several factors including the effects of sample disturbance and sample expansion after insitu stresses were removed.

-16-

.

Section 6.0

Geotechnical Evaluation and Design Criteria for Stations

6.0 GEOTECHNICAL EVALUATION AND DESIGN CRITERIA FOR STATIONS

6.1 GENERAL

In general terms, construction of the A220 Stations will involve deep excavations through stiff and dense alluvium to depths varying between 55 and 70 feet below the ground surface. At the east end of the Wilshire/Normandie Station the excavation will penetrate up to about 30 feet of siltstone/ claystone bedrock. Construction problems will be similar at both sites. The existence of high ground water levels will require either dewatering or tight shoring for the construction excavations. The permeable San Pedro Sand layer below the alluvium must be dewatered or cut-off to prevent basal heave or blow-out.

If the sites are dewatered, our evaluation indicates that significant dewatering-related subsidence will likely occur within a few months over an area extending several hundred feet around the excavations. However, differential settlements due to dewatering subsidence are not expected to cause structural distress to adjacent structures assuming that conditions do not differ significantly from those at the station.

Considering the potential for general areal subsidence, it is our opinion that the combination of areal dewatering and the use of underpinning piles should be avoided where possible due to the potential for "downdrag" on underpinning piles and differential settlements between underpinned foundations and non-underpinned elements. Underpinning may be minimized or eliminated by designing a sufficiently conservative shoring system to limit ground movements adjacent to the shoring to tolerable levels or by utilizing column pick-up techniques during the construction period.

An alternative to the dewatering and conservative shoring approach to the excavation would be a tight shoring system such as slurry wall construction. Such a system could eliminate the need for areal dewatering provided that it was extended into the bedrock to effectively cut-off ground water flow from the San Pedro Sand Formation. Without areal dewatering, related subsidence would not occur, and underpinning could be used as necessary without unusual risk of "downdrag" on underpinning piles.

The permanent Station structures will, in essence, be concrete boxes supported on and retaining the surrounding soils and/or bedrock. As shown on Drawing 9, the subgrade condition at the Wilshire/Western Station generally will be uniform. However, at the Wilshire/Normandie Station (Drawing 7), the subgrade will vary from bedrock at the east end to alluvium at the west end. Significant differential settlement is expected to occur between the two extreme subgrade conditions at the Wilshire/Normandie Station; however, the subgrade transition is gradual enough (Drawing 7 exaggerates the vertical scale) that estimated angular distortions in the longitudinal direction are small.

The following subsections present our further evaluations and recommendations for design and construction of the A220 Station structures.

6.2 EXCAVATION DEWATERING

6.2.1 General Evaluation

The construction of both the Wilshire/Normandie and Wilshire/Western Stations will require excavations extending 30 to 40 feet below the measured ground water levels and may require areal construction dewatering if tight shoring is not used. As discussed in Section 5.0, the subsurface conditions at both sites generally consist of predominately fine-grained alluvium, overlying the San Pedro Sand Formation which in turn overlies siltstone bedrock. At the Wilshire/Normandie site, the bedrock and San Pedro Formation slope down toward the west and, therefore, the permeable San Pedro Sand strata will be exposed in both the sidewalls and bottom of the excavation (see Drawing 7). At Wilshire/Western site, the bedrock surface and overlying San Pedro Sand strata are relatively flat lying, and the bottom of excavation will be within the fine-grained alluvium about 10 to 15 feet above the San Pedro Sands (see Drawing 9).

The dewatering system must relieve the hydrostatic pressures within the San Pedro Formation to prevent basal heave or "blow-out" of the excavation. Ground water inflow to the dewatering system will, therefore, be primarily from the permeable San Pedro Sand Formation. Drawdown within the San Pedro Formation will probably occur within a few weeks; however, complete drawdown within the overlying clayey alluvium may require a few months. The shape of the drawdown surface is expected to be characteristic of the more permeable San Pedro Sand than the clayey alluvium. A relatively flat drawdown surface is expected which may extend 500 feet beyond the excavation. Geologic discontinuities, i.e., major variations in the alluvium or San Pedro could cause variations in the phreatic surface especially during the early stages of dewatering.

The approximate estimates of drawdown time and area of influence were necessarily based on assumed hydraulic properties and uniform conditions. Actual hydraulic properties and possible variations in subsurface conditions could significantly alter drawdown characteristics at the sites from those estimated. In our opinion, the best way to evaluate effects of possible subsurface variations and obtain reliable aquifer properties is by pump test(s) with separate observation wells (piezometers) in the San Pedro Sand and alluvium where the degree of hydraulic connection and the probable effect of the dewatering on the phreatic surface could be directly assessed. The test well(s) should ideally approximate characteristics of the dewatering wells. The number and locations of observation wells should be based on the known subsurface conditions and locations of areas in which settlement could be critical.

Changes in vertical pressures within the alluvium due to the reduction of buoyant forces via dewatering are estimated to result in significant surface settlement within the expected one year plus construction period. Our settlement calculations based on laboratory consolidation tests indicate that total surface settlements due to dewatering would be 1 to 2 inches for 40 feet of drawdown and 1/2 to 1-1/3 inches for 20 feet of drawdown. Actual total settlements will depend on variations in subsurface conditions and the duration of construction (dewatering). Due to the expected gently sloping ground

water drawdown curve, settlements should be relatively uniform (assuming uniform subsurface conditions), and differential settlements were estimated to be about 1/4 inch per 100 feet for locations more than 20 feet from the well.

It will be essential that the dewatering wells be properly designed (and installed) to prevent piping of soil into the wells. Uncontrolled piping into the wells will result in loss of ground (settlement).

As an alternative to dewatering, tight shoring such as slurry wall construction penetrating into the bedrock underlying the A220 sites could provide an effective ground water barrier. Chemical grout may also be considered to establish a ground water cut off within the San Pedro Sands in conjunction with a soldier pile system.

6.2.2 Possible Dewatering System

Local practice in the site vicinity generally has been to use conventional deep well dewatering systems without apparent unfavorable subsidence effects. Considering this, it is our opinion that a deep well system could be used for site dewatering. Pumping test(s) should be performed prior to dewatering. A possible dewatering system might consist of the following:

- Deep wells around the perimeter of the excavations pumping from the San Pedro Sands.
- Vertical drains through the alluvium which penetrate to the San Pedro Sands. These should be strategically located to drain known sand zones within the alluvium.
- Supplementary ditch drains and sumps within the excavation to handle localized inflows; e.g. from sand layers.

6.2.3 Criteria for Dewatering Systems

It is understood that the contractor will be responsible for designing, installing, and operating a suitable construction dewatering system subject to review and acceptance by the Metro Rail Construction Manager. The dewatering systems at both Stations should satisfy the following criteria:

- The system should maintain ground water levels low enough to provide stability of the bottom of the excavation against a "blow-out" failure at all times during construction.
- [°] To adequately draw down the water table, the dewatering system should be installed and in operation for a sufficient time period prior to when the excavation reaches the level of the static ground water level. This period will depend on the pumping rate of the system and the hydraulic characteristics of the site.
- [°] The dewatering system should maintain the ground water levels low enough to prevent piping of the alluvial soils into the excavation. Inflow seepage should be reduced to quantities which can be accommodated by a drain/sump system and which allow excavation and construction to proceed.

CCI/ESA/GRC

- Wells must be designed and developed to eliminate loss of ground from piping of soils near the wells. The well operations should be constantly monitored for evidence of piping.
- The system should operate continuously. Emergency power and backup pumps should be required to ensure continual excavation dewatering.

6.3 UNDERPINNING

6.3.1 Common Underpinning/Support Methods

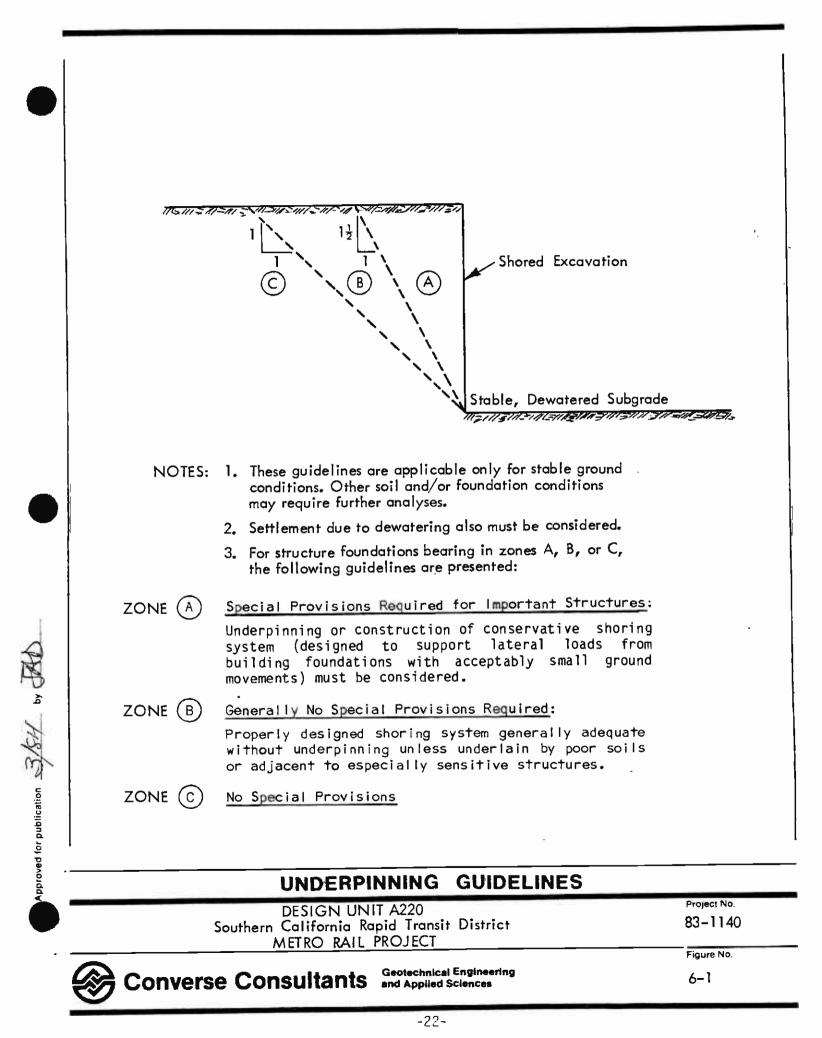
Several methods for underpinning are commonly used. These include jacked piles, slant drilled piles, and hand-dug pit or pier underpinning. Another technique which has been used is the "column pick-up" method which provides a means of jacking up selected columns if settlements occur. These various techniques are discussed below.

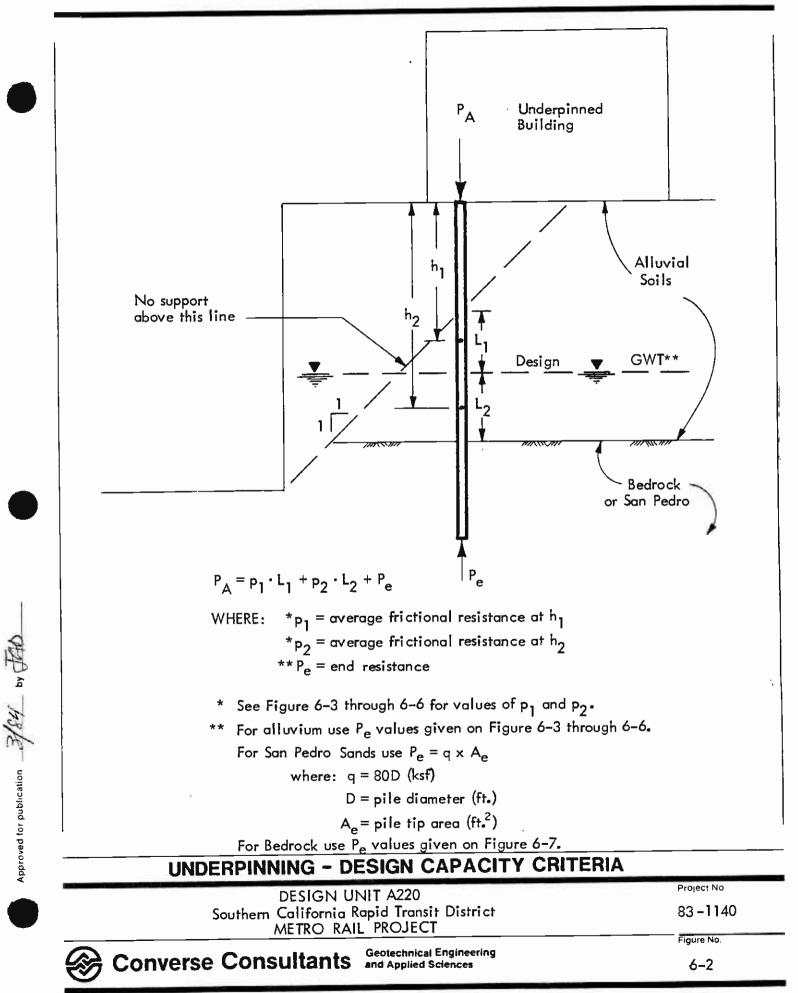
- [°] Jacked Piles: These piles generally consist of H-sections or open end pipe piles 6 to 18 inches in diameter. These sections generally are preferred due to their relatively low volume of soil displacement which facilitates placement. Open end pipe sections have the additional advantage of permitting clean-out to reduce point and shaft resistance during installation. The piles are normally placed in 4- to 5-foot long sections by jacking against the underpinned footing. Jacked piles are commonly pre-loaded individually to 150% of the design load and then locked off.
- Slant Drilled Piles: This method consists of placing a steel pile in a shaft (generally 12- to 24-inch diameter) drilled from the side of the foundation. The shaft is drilled at a small angle or slant under the foundation and then back-reamed to provide a vertical slot below the foundation. A steel pile is placed under the foundation, and the shaft is filled with concrete. The actual connection to the footing can be made by shimming or "drypack" concrete. Pre-loading could be accomplished using jacks and shims similar to jacked piles. In weak soils or in ground subject to sloughing, this method can result in settlement if there is loss of ground into the drilled hole.
- Hand-Dug Pits: This method consists of excavating an approach pit adjacent to and beneath the footing and advancing square or rectangular shafts, normally 3 to 5 feet wide, down to the bearing stratum. The shaft excavations are lagged for the entire depth with the lagging normally left in place permanently. Reinforcement is placed, and concrete is tremied into the shaft(s). In some cases, this process may be repeated until the entire plan area of the footing is supported on the deep bearing stratum.
- ^o Column Pick-Up: This technique provides a method of releveling specific structural elements without underpinning in the event that excessive settlements occur. A structural break is made between the column (or wall) and its foundation. Special connections are made to transmit loads around the structural break and jacking, or other means, is used to

relevel the column or wall. After completion of the excavation, a permanent connection between the building and foundation is re-established. Since this method does not transfer foundation loads to a lower stratum, both shoring and permanent walls must be designed for surcharge loads imposed by the existing structure.

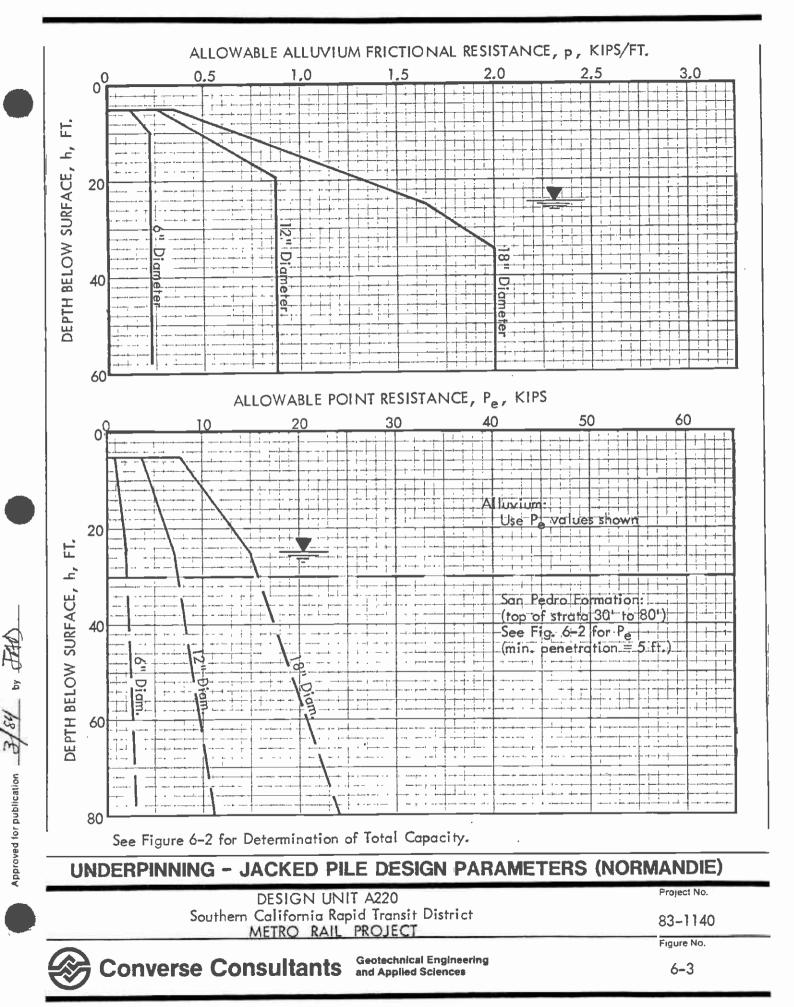
6.3.2 Underpinning Considerations

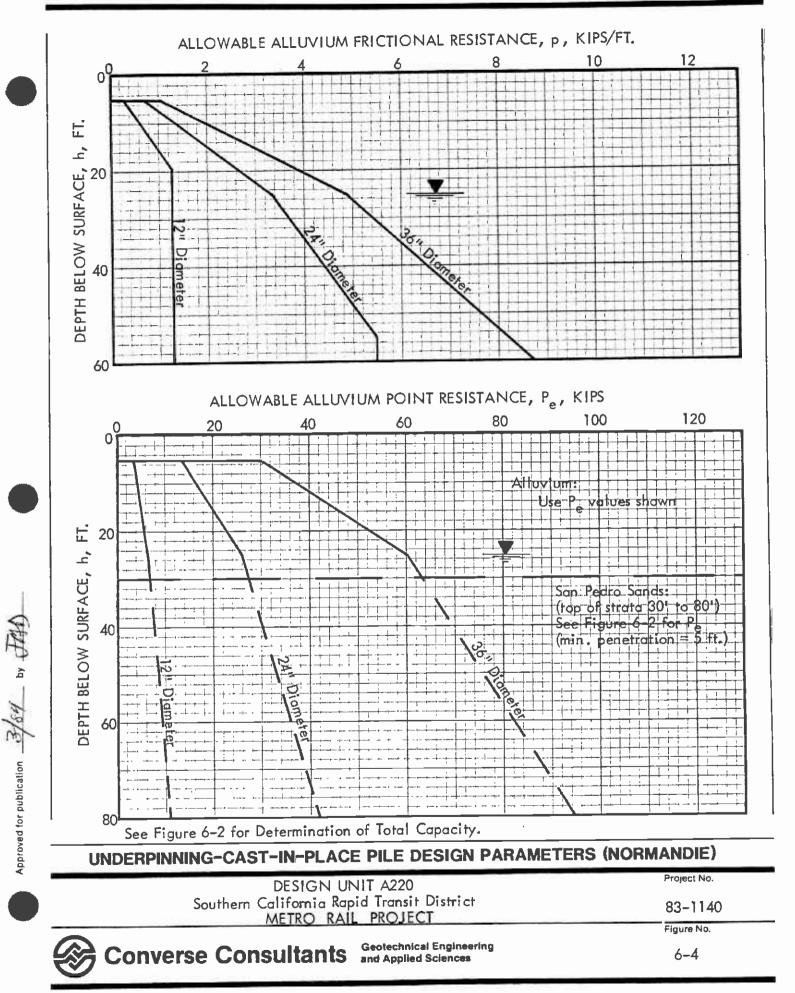
The need to underpin and the appropriate type of underpinning for specific buildings adjacent to the proposed excavation depend on many factors related to both engineering and economics and cannot be generalized. Thus each structure needs to be evaluated separately. The following discussions and evaluations are presented strictly from an engineering standpoint. Economic considerations are beyond the scope of this investigation.

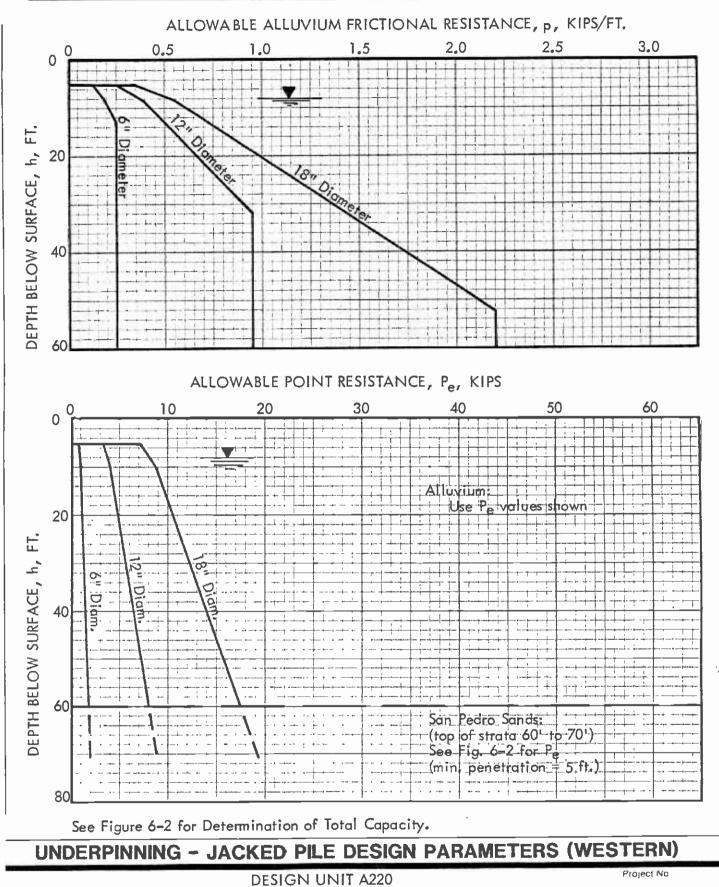

From an engineering standpoint, the need to underpin is evaluated on the basis of expected ground movements and potential for structural damage. Figure 6-1 presents general guidelines for evaluating if a structure may be within the influence zones of the excavation; however, further evaluation of expected ground movements should be made based upon the type of shoring proposed. Section 6.4.5 discusses the anticipated ground movements in the vicinity of the excavation due to shoring movement. A conservatively designed shoring system (higher design lateral pressures) could be constructed to reduce ground movements due to shoring and thereby reduce the need to underpin.


Due to contributing factors discussed in sections 6.1 and 6.2, if site dewatering is performed, the need to underpin and possible effects on and of underpinning should be carefully evaluated. Dewatering is expected to result in areal subsidence extending for hundreds of feet beyond the excavation limits. Effects of areal subsidence would include downdrag forces on underpinning piles and possible differential settlement between underpinned foundations and non-underpinned foundations. If dewatering is planned, underpinning should be avoided if possible, i.e., conservative shoring, or the effects of subsidence on the underpinned structure should be accommodated in the design. The "column pick-up" method described in 6.3.1 may be better adapted to the condition of areal settlement than the more conventional underpinning methods.

6.3.3 Design Criteria

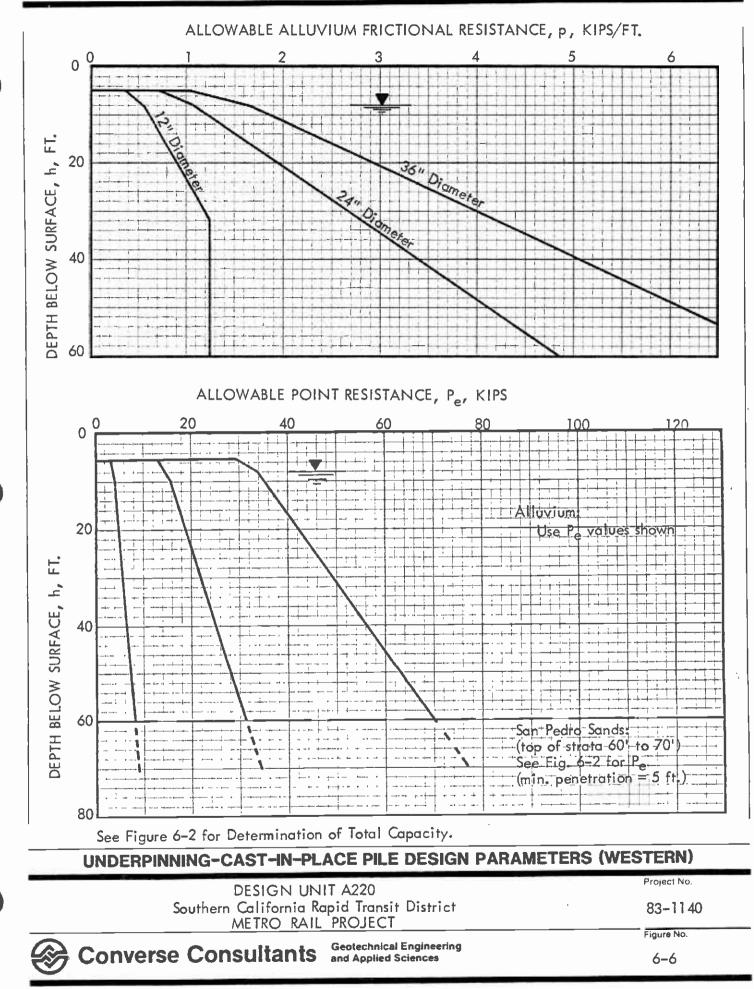

Figures 6-2 through 6-7 present design criteria for jacked piles and slant drilled piles without dragdown loads. Figure 6-2 illustrates the procedures for determining the geometry of the support zones. No support should be allowed within any existing fill soils encountered or within the "no support" zone shown on Figure 6-2. Figures 6-3, 6-4 and 6-7 present design parameters for underpinning based on the expected subsurface conditions at the Wilshire/ Normandie Station. Figures 6-5 and 6-6 present underpinning design data for deep alluvium conditions at the Wilshire/Western Station.


If jetting or other methods which remove soil ahead of the pile are used, no shaft frictional resistance should be allowed. To ensure proper end bearing, jetting must not be used for the final 5 feet of penetration. Group action of piles or piers should be considered and an appropriate reduction factor applied to determine the effective group capacity. An appropriate reduction factor is presented in the Los Angeles City Building Code, Section 91.2808b.



-23-

DESIGN UNIT A220 Southern California Rapid Transit District METRO RAIL PROJECT


Converse Consultants Geotechnical Engineering and Applied Sciences

Approved for publication 3/84/ by d

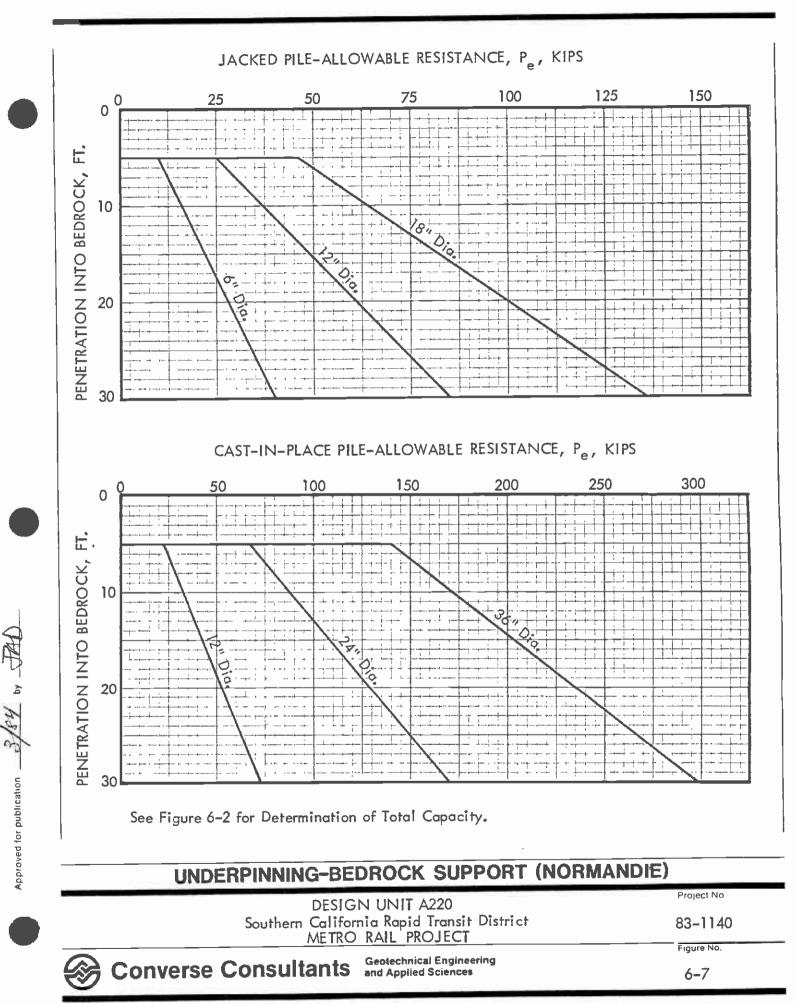

83-1140

Figure No.

6-5

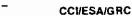
Approved for publication 2/84 by TM

-28-

Total capacity of hand-dug, lagged piers should be limited to end bearing only and must extend below the "no support" zone shown on Figure 6-2. All piers are assumed to be 36-inch square or larger in section. For design, an allowable bearing pressure of 7 ksf may be used for piers which bear on undisturbed alluvium and penetrate at least 10 feet below the ground surface. For piers which penetrate at least 5 feet into the San Pedro sand but are at least 5 feet above the bedrock surface, an allowable bearing pressure of 20 ksf may be used. Piers bearing on bedrock may be designed based on 15 ksf. These values apply only if the bearing surface is properly prepared and approved by a qualified engineer.

Surface subsidence due to dewatering and lateral ground movements adjacent to the excavation are discussed in Sections 6.2.1 and 6.4.5, respectively. The capability of the existing structure and underpinning system to sustain these movements should be evaluated. If dewatering is planned, the effects of downdrag due to surface subsidence should be included in underpinning design. For computation of downdrag loads, the following procedure may be used:

- The upper 3/4 of the alluvium thickness (including soils within the "no 1. load" zone) should be assumed to be the downdrag zone. The alluvium thickness may be estimated from Drawings 7 and 9 and should not include the San Pedro Sands.
- No positive (upward) frictional resistance should be used in the downdrag 2. zone, instead a negative (downward) frictional load equal to twice the allowable frictional resistance within the zone (as determined from Figures 6-3 through 6-6) should be added to the design load.


The negative frictional load is based on full soil strength (safety factor = 1.0) while the positive allowable frictional resistance is based on a safety factor of 2.0.

6.3.4 Underpinning Performance

Underpinning is not a guarantee that the structure will be totally free from either settlement or lateral movement. Some settlement may occur during the underpinning process. Additional vertical and/or lateral movement may occur during the construction of the main excavation, depending on the performance of both the shoring and underpinning elements. Effects of subsidence may result in differential settlements between underpinning elements and nonunderpinned elements.

6.3.5 Underpinning Instrumentation

Prior to construction, elevation reference points should be established on each foundation element to be underpinned. The points should be monitored on a regular basis consistent with the construction progress (readings may be required daily). Maximum allowable movements should be established for each element by the engineer prior to underpinning. If it appears that these limits may be exceeded, immediate measures should be taken such as restressing underpinning elements, adding more supports or changing installation procedures.

Where a group of three or more jacked piles is used to underpin a foundation element, load relaxation of previously installed piles can occur. Methods should be implemented to evaluate this problem and re-load piles if necessary.

6.4 TEMPORARY EXCAVATIONS

6.4.1 General

The required A220 station excavations will extend approximately 55 to 70 feet below the existing ground surface and 30 to 40 feet below the water table. A primary consideration in the selection of the shoring system should be the effects of dewatering as discussed in Sections 6.1 and 6.2. Dewatering of the site may result in significant areal subsidence in the site vicinity which could cause downdrag and differential settlements of underpinned structures. However, this condition could be mitigated by a conservatively designed shoring system which could minimize underpinning or by a "tight" shoring system which could eliminate the need for site dewatering. There are several currently used shoring methods which include soldier piles and lagging, slurry wall construction and sheet piles. Bracing systems are generally either tieback anchors or internal bracing. We understand that the excavation system will be chosen and designed by the contractor in accordance with specified criteria and subject to the review and acceptance by the Metro Rail Construction Manager.

The fine-grained alluvial soils at the site will generally be favorable for construction of shoring systems. However, caving may occur within the zones of granular alluvium and within the San Pedro Sands. In addition, gravel and cobble zones may be encountered, especially near the base of San Pedro Sand.

Considering local construction practice, we feel that a soldier pile and lagging shoring system with tiebacks and/or internal bracing is the most likely shoring system to be used at this site. The following discussions and recommendations are, therefore, directed to a soldier pile wall system. However, other shoring systems may be considered by the contractor, and further recommendations can be provided for their design if required.

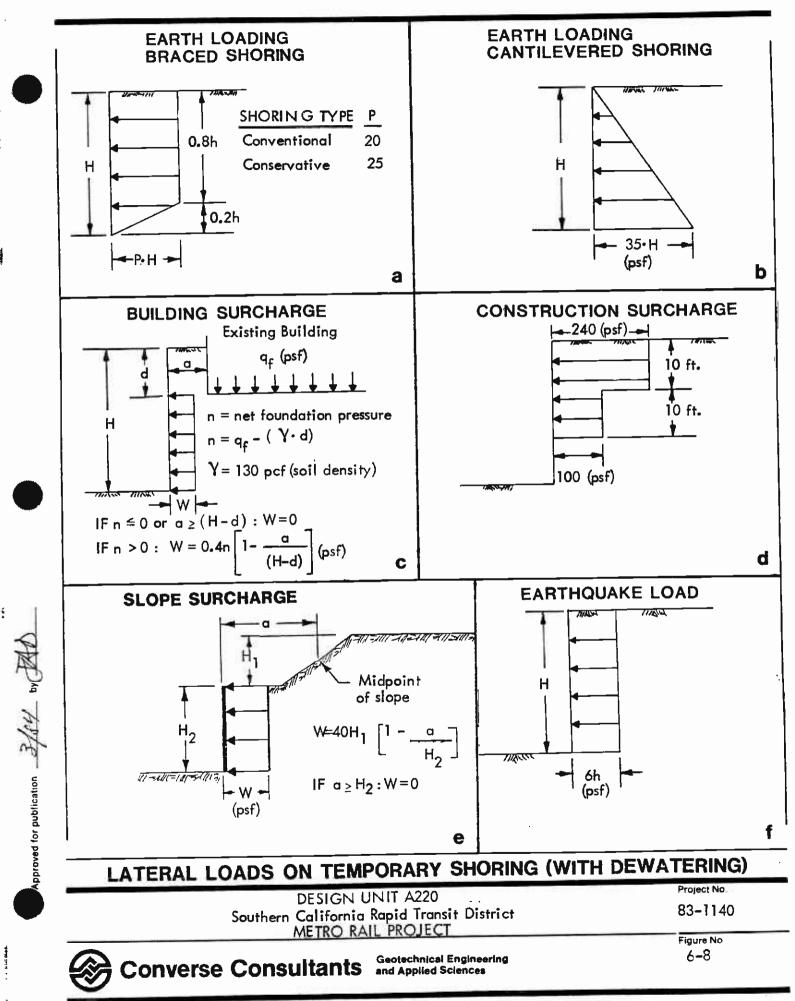
6.4.2 Soldier Pile Shoring Systems

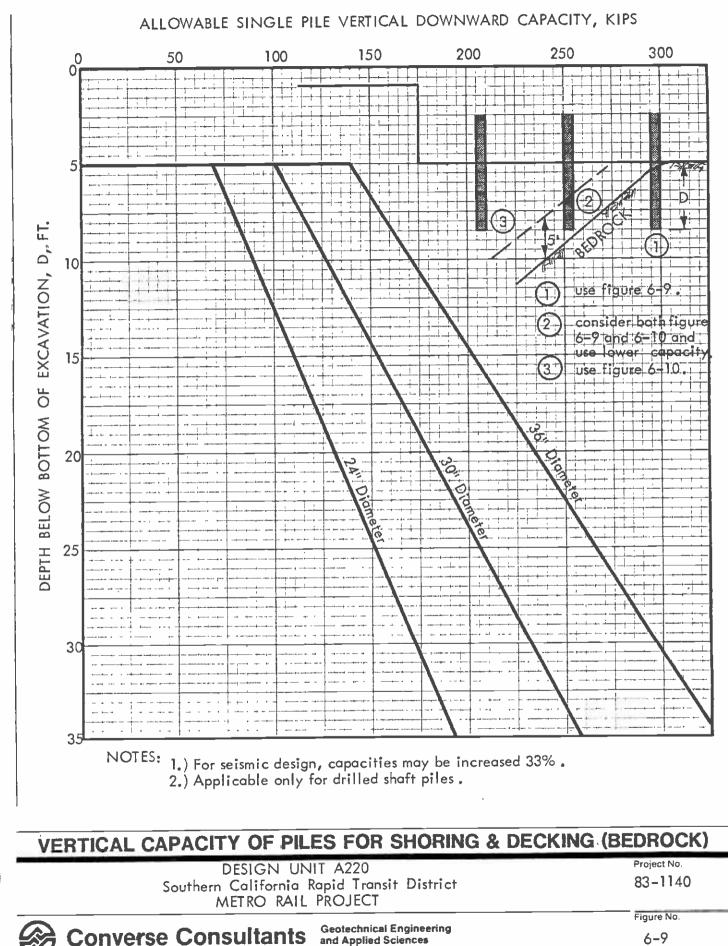
A soldier pile and lagging shoring system consisting of soldier piles installed in predrilled holes is a common method of shoring deep excavations in the Los Angeles area. Both conventional and conservative soldier pile shoring systems may be used at these sites. The conservative wall should be designed for higher soil loads to reduce ground movements behind the wall. Appendix D.1 summarizes several case studies in the Los Angeles area involving soldier pile excavations to depths exceeding 100 feet.

Soldier piles have been installed in the Los Angeles area in soils similar to those encountered at the proposed A220 Station sites. In granular soils, particularly below the ground water table, caving can be a problem. The contractor should recognize that caving conditions may be encountered in construction of soldier piles or other drilled shaft elements. Granular soil layers within the alluvium at the site will require support between soldier piles to eliminate loss of ground. Typically, wooden lagging is used although precast concrete or steel panels could also be used.

6.4.3 Shoring Design Criteria

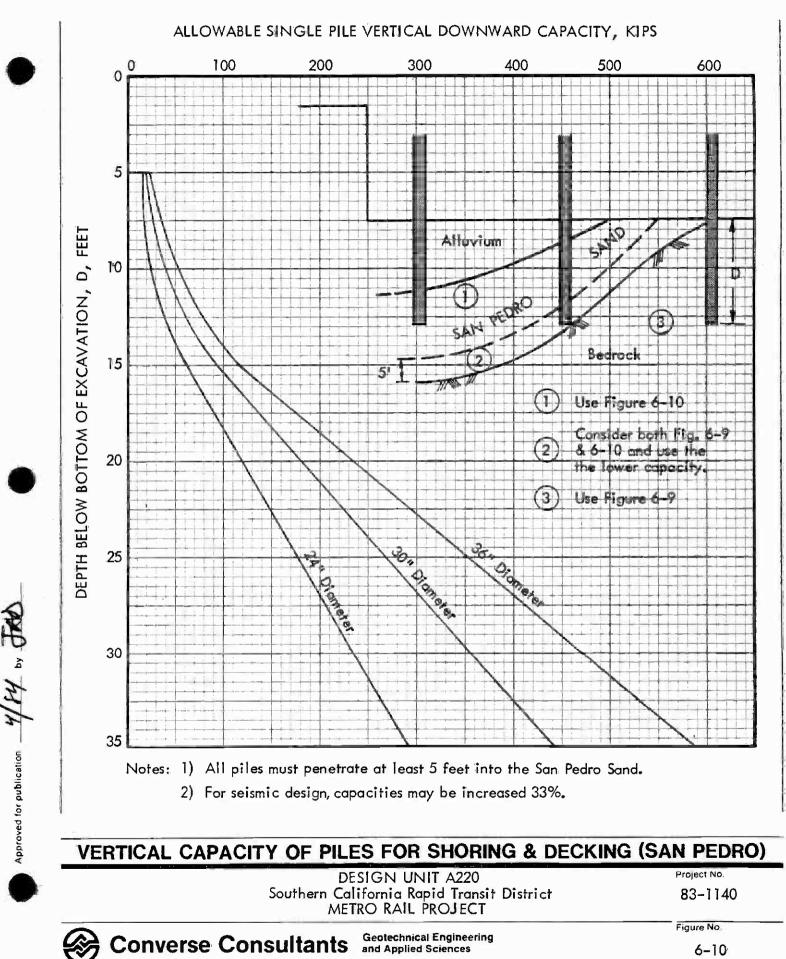
This section provides design criteria for both conventional and conservative soldier pile shoring systems consisting of soldier piles and wooden lagging supported by tiebacks or internal bracing. The criteria are limited to soldier pile walls. The soldier piles are assumed to consist of steel W or H-sections installed in predrilled circular shafts. It is assumed that the drilled shaft will be filled with concrete. Thus, for computing the allowable soil loads, the piles were assumed to have circular concrete sections.


At the east end of the Wilshire/Normandie Station the shoring will penetrate the Puente bedrock. The dip of the bedrock bedding planes is approximately 40° south. It is our opinion that no variation in shoring pressure is required to account for bedding. However, passive bedrock resistance below the east end of the Wilshire/Normandie excavation will be affected by the bedding, and reduced values are recommended for the south side of that excavation.


Specific shoring design criteria include:

- Design Wall Pressure: Figures 6-8a and 6-8b present the recommended lateral earth pressure on the temporary shoring walls. Design lateral pressures for both conventional and conservative shoring systems are presented in Figure 6-8a. Figure 6-8e also includes the case of partial slope cuts. Appendix D.2 provides technical support for the recommended seismic pressure of Figure 6-8f. The full loading diagram above the bottom of excavation should be used to determine the design loads on tieback anchors and the required depth of embedment of the soldier piles. For computing design stresses in the soldier piles, the computed values can be multiplied by 0.8. For sizing lagging, the earth pressures can be reduced by a factor of 0.5.
- Depth of Pile Embedment: The embedment depth of the soldier pile below the lowest anticipated excavation depth must be sufficient to satisfy both the lateral and vertical loads under static and dynamic loading conditions.

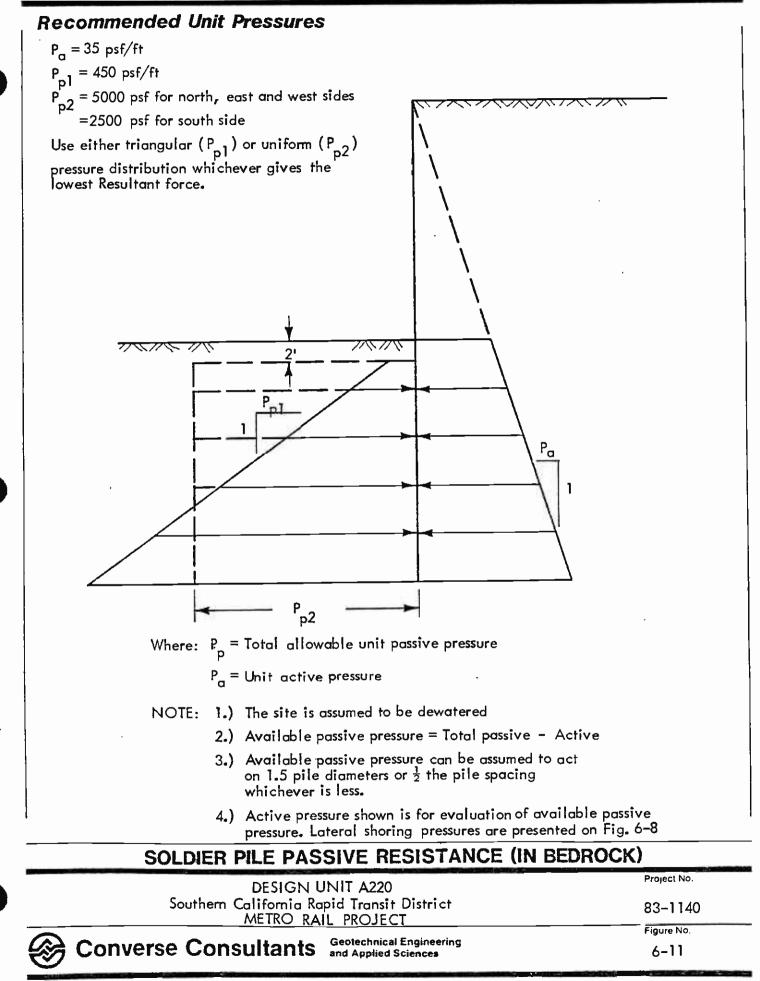
The required depth of embedment to satisfy vertical loading should be computed based on the allowable vertical loads shown on Figures 6-9 and 6-10. Figure 6-9 should be used for piles penetrating bedrock. Where the pile tip is within 5 feet vertically of the bedrock surface shown on Drawings 7 and 9, both Figures 6-9 and 6-10 should be considered and the lower capacity used. Figure 6-10 should be used for all other piles and it should be noted that all piles should penetrate at least 5 feet into the San Pedro bearing stratum.


The imposed lateral load on the pile should be computed based on the earth pressure diagrams of Figure 6-8 minus the support from tiebacks or internal bracing. The required depth of embedment to satisfy lateral loads should be computed based on the net allowable passive resistance

and Applied Sciences

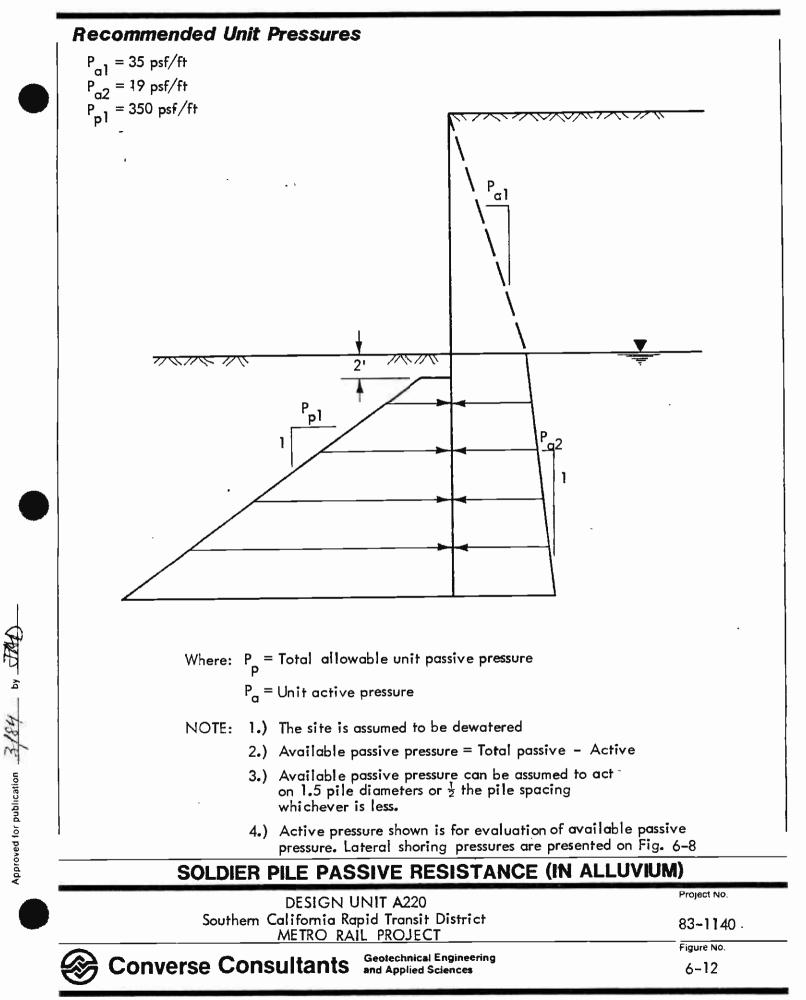
Approved for publication 3/81/ by 0

6-10


(total passive resistance of the soldier pile minus the active earth pressure below the excavation). Due to arching effects, it is recommended that the effective pile diameter be assumed equal to 1.5 pile diameters or half of the pile spacing, whichever is less. Figures 6-11 and 6-12 indicate the recommended method to compute net passive resistance. Figure 6-11 should be used for piles penetrating Puente bedrock. A reduced maximum passive resistance is recommended for the south side of the east Wilshire/Normandie excavation due to expected adverse bedrock bedding. Figure 6-12 should be used for all piles which do not penetrate bedrock.

- Pile Spacing and Lagging: The optimum pile spacing depends on many factors including soil type, soil loads, member sizes and costs. At the A220 Station sites the alluvial soils encountered were generally clayey. However, occasional silty sands layers may be exposed and these soils would be subject to ravelling and sloughing. Thus, it is recommended that the pile spacing be limited to about 8 feet and that continuous lagging be placed to minimize ravelling of soils and loss of ground between soldier piles. The contractor should limit the temporary exposed height of sandy soil to less than 3 feet to control ravelling problems, especially in the dewatered zone.
- Excavation Stability: As part of the shoring design, stability calculations should be performed to verify that the shoring/tieback system has an adequate safety factor against deep-seated failure.

6.4.4 Internal Bracing and Tiebacks


- 6.4.4.1 General: Tiebacks and/or internal bracing may both be suitable to support the temporary shoring wall for the proposed excavation. Tiebacks have the advantage of producing an open excavation which can significantly simplify the excavation procedure and construction of the permanent structure. However, there may be an opportunity to install used pipe and WF sections from other projects as struts and to salvage these for use elsewhere. This often makes the employment of internal bracing more attractive to the contractor than tiebacks. Obtaining permission to install tiebacks under adjacent properties and encountering obstructions from adjacent below grade structures (such as basements) can also affect the economics and feasibility of tiebacks.
- 6.4.4.2 Performance: Based on available field data there does not appear to be a significant difference between the maximum ground movements of properly designed and carefully constructed tieback walls or internally braced walls. However, there is a difference in the distribution of the ground movements. Prestressing of both tiebacks and struts is essential to confirm design capacities and minimize ground movements.
- 6.4.4.3 Internal Bracing: The contractor should not be allowed to extend the excavation an excessive distance below the lowest strut level prior to installing the next strut level. The maximum vertical distance depends on several specific details such as the design of the wall and the allowable ground movement. These details cannot be

CCI/ESA/GRC

4

Approved for publication 3/84 by TRM

generalized. However, as a guideline, we recommend consideration of the following maximum allowable vertical distances between struts:

- ° Conventional Shoring System: 12 feet
- ° Conservative Shoring System: 8 feet

In addition, the contractor should not be allowed to extend the excavation more than 3 feet below the designated support level before placing the next level of struts. The contractor may be allowed to excavate a trench within the excavation to facilitate construction operations provided the trench is not less than 15 feet horizontally from the shoring and does not extend more than 6 feet below the designated support level.

To remove slack and limit ground movement, the struts should be preloaded. A preload equal to at least 50% of the design load is normally desirable. The shoring design, preload procedures, and monitoring/ maintenance procedures must provide for the effects of temperature changes to maintain the shoring support.

6.4.4.4 Tieback Anchors: There are numerous types of tieback anchors available including large diameter straight shaft friction anchors, belled anchors, high pressure grouted anchors, high pressure regroutable anchors, and others. Generally, in the Los Angeles area, high capacity straight shaft or belled anchors have been used where construction conditions are favorable.

> Tieback anchor capacity can be determined only in the field based on anchor load tests. For estimating purposes, we recommend that the estimated capacity of drilled straight shaft friction anchors be computed based on the following equation:

$$P = \pi DLq$$

Where:

P = allowable anchor design load in pounds
D = anchor diameter in feet
L = anchor length beyond no load zone in feet
q = soil adhesion in psf.

The design adhesion value (q) can be determined by:

q = 750 psf (in all bedrock)

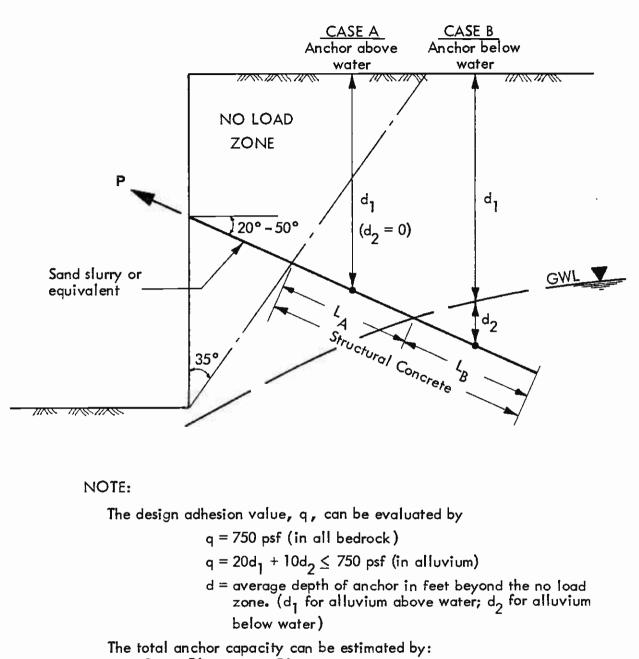
 $q = 20d_1 + 10D_2 < 750 \text{ psf}$ (in alluvium)

Where:

- d₂ = average depth (in feet) of the submerged anchor below the ground water level.

Figure 6-13 illustrates the tieback anchor parameters.

Allowable anchor capacity/length relationships for tieback types other than straight shaft friction anchors cannot be generalized. Design parameters for anchors such as high pressure grouted anchors and high pressure regroutable anchors must be based on experience in the field and on the results of test anchors.


For design purposes, it should be assumed that the potential wedge of failure behind the shored excavation is determined by a plane drawn at 35° with the vertical through the bottom of the excavation for alluvial soil conditions. The failure plane for the Puente bedrock on the north side of the Wilshire/Normandie Station should be assumed parallel to the dip of the bedding planes. Only the frictional resistance developed beyond the no-load zone should be assumed effective in resisting lateral loads.

The anchors may be installed at angles generally between 20° to 50° below the horizontal. Based on specific site conditions, these limits could be expanded to avoid underground obstructions. Structural concrete should be placed in the lower portion of the anchor up to the limit of the no-load zone. Placement of the anchor grout should be done by pumping the concrete through a tremie or pipe extending to the bottom of the shaft. The anchor shaft between the no-load zone and the face of the shoring must be backfilled with a sand slurry or equivalent after concrete placement. Alternatively, special bond breakers can be applied to the strands or bars in the no-load zone and the entire shaft filled with concrete.

For tieback anchor installations, the contractor should be required to use a method which will minimize loss of ground due to caving. The majority of the anchors should not experience significant caving problems. However, caving from sand layers within the alluvium could occur due to vibration from the drilling equipment and/or ground water effects. Caving problems should be expected where anchors penetrate sands below the water table. Caving not only causes installation problems but could result in surface subsidence and settlement of overlying buildings. To minimize caving, casing could be installed as the hole is advanced but must be pulled as the concrete is poured. Alternatively, the hole could be maintained full of slurry or a hollow stem auger could be used.

It is recommended that each tieback anchor be test loaded to 150% of the design load and then locked off at the design load. At 150% of the design load, the anchor deflection should not exceed 0.1 inches over a 15-minute period. In addition, 5% to 10% of the anchors should be test-loaded to 200% of the design load and then locked off at the design load. At 200% of design load the anchor deflections should not exceed 0.15 inches over a 15-minute period. The rate of deflection should consistently decrease during the test period. If the rate of deflection does not decrease the test should not be considered satisfactory.

-39-

$$P = \pi DL_A q_A + \pi DL_B q_B$$

See also Section 6.4.4.4

Approved for publication 3/84/ by JAD

STRAIGHT SHAFT TIEBACK ANCHOR CAPACITY

DESIGN UNIT A220	Project No.	
Southern California Rapid Transit District METRO RAIL PROJECT	83-1140	
\sim	Figure No.	
Converse Consultants Geotechnical Engineering and Applied Sciences	6-13	

6.4.5 Anticipated Ground Movements

The ground movements associated with a shored excavation depend on many factors including the contractors procedures and schedule, and therefore, the distribution and magnitude of ground movements are difficult to predict. Based on shoring performance data for documented excavations combined with our engineering judgement, we estimate that the ground movements associated with properly designed and carefully constructed shoring systems will be as follows:

- ° Conventional Wall With Tieback Anchors: The maximum horizontal wall deflection will equal about 0.1% to 0.2% of the excavation depth. The maximum horizontal movement should occur near the top of the wall and decrease with depth. The maximum settlement behind the wall should be equal to about 50% to 100% of the maximum horizontal movement and will probably occur at a distance behind the wall equal to about 25% to 50% of the excavation depth.
- ° Conventional Wall With Internal Bracing: The maximum ground movement will be similar to those anticipated with tiebacks. However, the maximum horizontal movement will probably occur near the bottom of the excavation decreasing to about 25% of the maximum at the surface.
- ° Conservative Wall With Tiebacks: We believe that the higher design pressure presented for conservative walls will reduce ground movements and limit the maximum horizontal and vertical movements to about 0.1% of the excavation depth.
- Conservative Wall With Internal Bracing: Similar to that described above for the conservative tieback supported wall.

6.4.6 Historical Shoring Pressure Diagrams - Los Angeles

Appendix E.1 summarizes the design shoring pressures for nine shoring systems in the Los Angeles vicinity. To our knowledge there are no data on field measurements of actual lateral soil pressures for shored excavations in the Los Angeles area and, therefore, the design pressures of Appendix E.1 have not been directly verified.

6.5 SUPPORT OF TEMPORARY DECKING

2

Where temporary street decking requires center support piles, the piles should extend below the maximum proposed excavation level for support. At these depths, the piles would be founded within the San Pedro layer or the bedrock. These materials are suitable for supporting such pile loads.

Since the shoring contractor will probably install soldier piles to support the excavation, we believe that he may use similar piles to support the center decking. Accordingly, we evaluated the allowable loads on these types of piles for several typical diameters. The recommended allowable design loads are shown on Figures 6-9 and 6-10. These values include both end bearing and shaft friction.

6.6 INSTRUMENTATION OF THE EXCAVATION

In our opinion the proposed A220 Station excavations should be instrumented to reduce liability (by having documentation of performance), to validate design and construction requirements, to identify problems before they become critical, and to obtain data valuable for future designs.

We recommend the following instrumentation program:

- Preconstruction Survey: A qualified civil engineer should complete a visual and photographic log of all streets and structures adjacent to the sites prior to construction. This will minimize the risks associated with claims against the owner/contractor. If substantial cracks are noted in the existing structures, they should be measured and periodically remeasured during the construction period.
- Surface Survey Control: It is recommended that several locations around the excavations and on any nearby structures be surveyed prior to any construction activity and then periodically to monitor potential vertical and horizontal movement to the nearest 0.01 feet. In addition, survey markers should be placed at the top of piles spaced no more than every fourth pile or 25 feet, whichever is less.
- Tiltmeters: Tiltmeters are used to monitor the verticality of buildings adjacent to the excavation and can provide a forewarning of distress. Normally ceramic plates are glued to the building walls and read using a portable tiltmeter containing the same type of tilt sensor used in inclinometers. It is recommended that a few tiltmeters be placed on the exterior walls of buildings which are located within the underpinning zones defined on Figure 6-1. Baseline readings should be made prior to all construction activity, and subsequent readings should be made at several excavation/ construction stages through the end of construction.
- Inclinometers: It is recommended that several inclinometers be installed and monitored around the station excavation. Inclinometers should be located on each side of the excavation. The casing could be installed within the soldier pile holes or in separate holes immediately adjacent to the shoring wall. Baseline readings of the inclinometers should be made immediately upon installation. Subsequent readings should be made at regular time intervals during excavation and construction.
- ^o Heave Monitoring: The magnitude of the total ground heave should be measured. This information will be valuable in determining the ground response to load change and as an indirect check on the magnitude of the predicted settlement of the station structure.

We recommend that heave gages be installed prior to construction along the longitudinal centerline of the excavation on about 200-foot centers. The devices could consist of conical steel points, installed in a borehole, and monitored with a probing rod that mates with the top of the conical point. The borehole should be filled with a thick colored slurry to maintain an open hole and allow for easy hole location. The top of the points should be at least 2 feet below the bottom of the final excavation to protect them from equipment yet allow for easy access should the hole collapse.

CCI/ESA/GRC

The points should be installed and surveyed prior to starting excavation. Once the excavation begins, readings should be taken at about two-week intervals until the excavation is completed and all heave has stopped.

- [°] Convergence Measurements: We recommend the use of tape extensometers to measure the convergence between points at opposite faces of the excavation during various stages of excavation. These measurements provide inexpensive data to supplement the inclinometer and survey information.
- ^o Measurements of Strut Loads: If internal bracing is used, we recommend that the loads on at least four struts at each support level be monitored periodically during the construction period. These measurements provide data on support loads and a forewarning of load reductions which would result in excessive ground movements. There are several methods to obtain these data. A commonly used method involves vibrating wire strain gages mounted on studs welded to the struts. For full measurements of maximum stresses, a minimum of three gages is needed on a pipe strut and four on a wide flange strut. However, two gages are often used to simplify the installation and monitoring effort with acceptable results. There should be a means of measuring the strut temperature at the time of the strain readings.
- [°] Frequency of Readings: An appropriate frequency of instrumentation readings depends on many factors including the construction progress, the results of the instrumentation readings (i.e., if any unusual readings are obtained), costs, and other factors which cannot be generalized. The devices should be installed and initial readings should be taken as early as possible. Readings should then be taken as frequently as necessary to determine the behavior being monitored. For ground movements this should be no greater than one to two-week intervals during the major excavation phases of the work. Strut load measurements should be more frequent, possibly even daily, when significant construction activity is occurring near the strut (such as excavation, placement of another level of struts, etc.).

The frequency of the readings should be increased if unusual behavior is observed.

In our opinion, it is important that the installation and measurement of the instrumentation devices be under the direction and control of the Engineer. Experience has shown when the instrumentation program has been included in the bid package as a furnish and install item, the quality of the work has often been inadequate such that the data are questionable. By defining Support Work (Contractor) and Specialist Work (Engineer) in the bid documents, RTD could allow the contractor to provide support to the Engineer in installing the instrumentation.

6.7 EXCAVATION HEAVE AND SETTLEMENT OF THE STATION STRUCTURES

The proposed excavations will substantially change the ground stresses below and adjacent to the excavations. The proposed 65-foot excavation at Wilshire/Normandie will decrease the vertical ground stresses by about 7000 psf. The proposed 55 foot deep excavation at Wilshire/Western will result in a ground stress reduction of about 4800 psf. Stress reduction caused by the excavation will result in rebound or heave of the alluvium and bedrock below the excavations. This response is not due to the occurrence of any type of swelling soils but simply an elastic response to stress unloading. In addition, even with a suitable shoring system, shear stresses will develop tending to cause the bedrock adjacent to the walls to heave upward. Since the excavations will be open for an extended period, the heave is expected to be completed prior to construction of the Stations. The Station structures and subsequent backfilling will reload the soil. We estimate that the net Station loads will be about 2000 to 4000 psf. This load will cause the ground to reconsolidate or settle. Thus, even though the weight of the excavated soil exceeds the weight of the final structure, the structure will experience some settlement due to recompression of the elastic heave.

We estimate that the maximum heave at the center of both excavations will be on the order of $1\frac{1}{2}$ to 3 inches. We also believe that the majority of this will occur while the excavation is being made. This estimate is based on computations of elastic shear deformation (elastic rebound) and unit volume changes (consolidation heave) within the bedrock underlying the proposed excavation. Due to the hard consistency of the bedrock, the majority of the deformation will be elastic rebound. These values agree well with observed behavior in similar excavations in the Los Angeles area (Evans, 1968).

It was computed that the estimated imposed loads from the structures and backfill will induce settlements on the order of 1 to 2-1/2 inches. Due to the long, narrow shape of the imposed load, the theoretical differential settlement is relatively small, on the order of 1/3 inches over the width of the structures. This correlates to an angular rotation of only about 1:1100. At the Wilshire/Normandie Station differential settlement between the alluvial supported west end the San Pedro Formation in the central portion and the bedrock supported east end could be one inch. However, the maximum longitudinal angular distortion is estimated to be only about 1:1800. Differential settlements at the Wilshire/Western Station should be equal or less than the values estimated for Wilshire/Normandie.

These calculations are based on a uniform foundation bearing pressure which could result only from a uniformly loaded and perfectly flexible structure. We understand that the Stations will be structurally quite stiff. Thus the actual differential settlement will be less than the theoretical flexible foundation assumed.

We understand that MRTC is contemplating modification of the Design Criteria and Standards for underground structures to permit use of a simplifying and conservative assumption resulting in a uniform net foundation bearing pressure for the design of the invert slabs of box structures. The use of the elastic soil-structure analysis or the simplifying uniform pressure approach is left to the discretion of MRTC and the Section Designer.

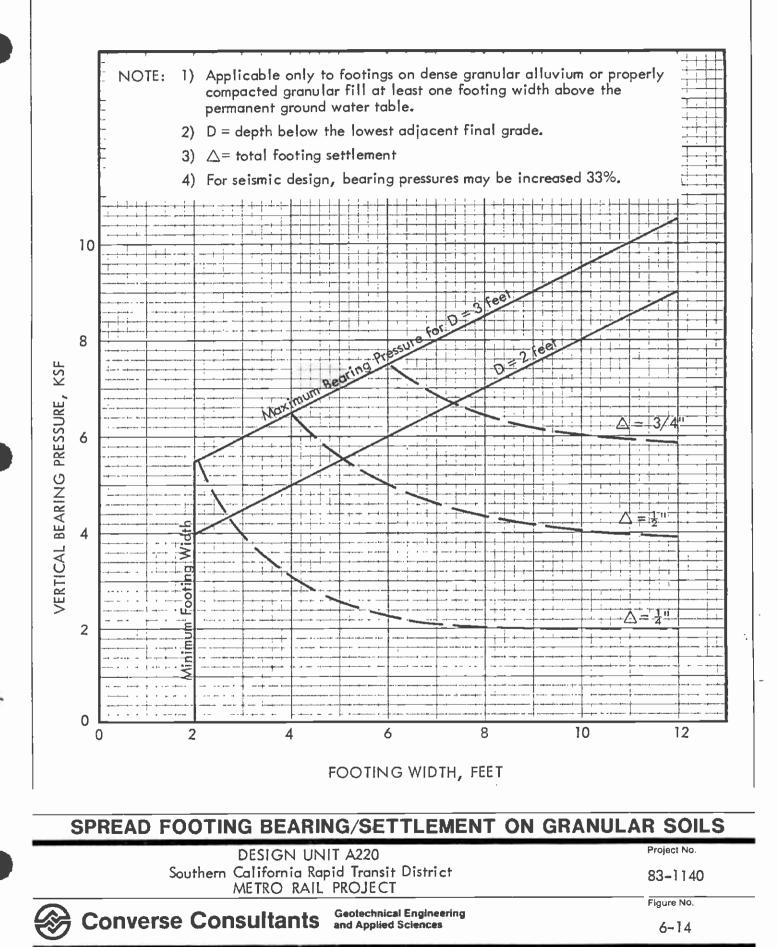
6.8 FOUNDATION SYSTEMS

6.8.1 <u>Main Stations</u>

It is understood that the proposed Stations will be supported on thick base slabs which will function as massive mat foundations. We estimate that the net mat foundation bearing pressures will be about 2000 to 4000 psf. In our opinion the stations can be adequately supported on mat foundations bearing on undisturbed soil/bedrock subgrade materials. Section 6.7 presents estimated settlements for the proposed station structures.

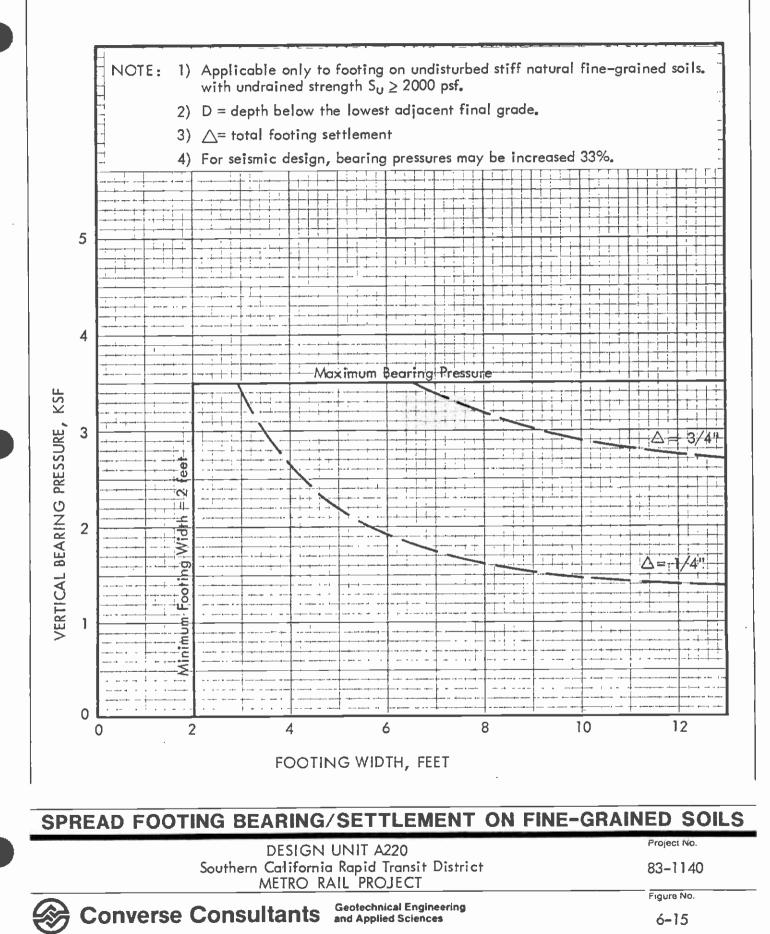
6.8.2 Support of Surface Structures

Surface structures can be generally supported on conventional spread footings founded on undisturbed stiff or dense natural soils. If suitable natural soils do not exist at the surface structure site, footings may be founded on a zone of properly compacted structural fill (see Appendix E). Allowable bearing pressures and estimated total settlements of spread footings bearing on the natural alluvium or compacted fill can be determined based on Figures 6-14 and 6-15. These figures are based on analytical procedures and experience in the Los Angeles area but are generally conservative due to lack of detailed information on structural loadings and site conditions at the surface structure location. Detailed site specific studies should be performed to provide final design recommendations for specific structures.


All spread footing foundations should be founded at least 2 feet below the lowest adjacent final grade and should be at least 2 feet wide. The bearing values shown on Figures 6-14 and 6-15 are for full dead load and frequently applied live load. For transient loads, including seismic and wind loads, the bearing values may be increased by 33%. Differential settlements between adjacent footings should be estimated as 1/2 of the average total settlements or the difference in the estimated total settlements shown on Figures 6-14 and 6-15, whichever is larger.

For design, resistance to lateral loads for surface structures may be assumed to be provided by passive earth pressure and friction acting on the foundations. An allowable passive pressure of 350 psf/ft may be used for the sides of footings poured neat against dense or stiff alluvium or properly compacted fill. Frictional resistance at the base of foundations should be determined using a frictional coefficient of 0.4 with dead load forces.

6.9 PERMANENT GROUND WATER PROVISIONS


We understand that the stations will be designed to be water-tight and to resist the full permanent hydrostatic pressures. We recommend that full waterproofing be carried at least 5 feet above the anticipated maximum ground water levels given in Section 6.10 for the Wilshire/Normandie Station. The entire structure at Wilshire/Western will require waterproofing because of the high ground water condition.

-46-

Approved for publication Apr by THAD

Approved for publication 3281 by T

6.10 LOADS ON SLAB AND WALLS

6.10.1 Hydrostatic Pressures

As discussed in Section 5.4, the existing ground water levels as measured at the boring locations were at about Elevation 186 at the Wilshire/Normandie site and about Elevation 180 to 182 at the Wilshire/Western site. The winter of 1983 was one of the five wettest years in the past 100 years and, therefore, the measured levels are considered to represent near maximum levels. It is recommended that the following ground water levels be assumed for determining hydrostatic pressures:

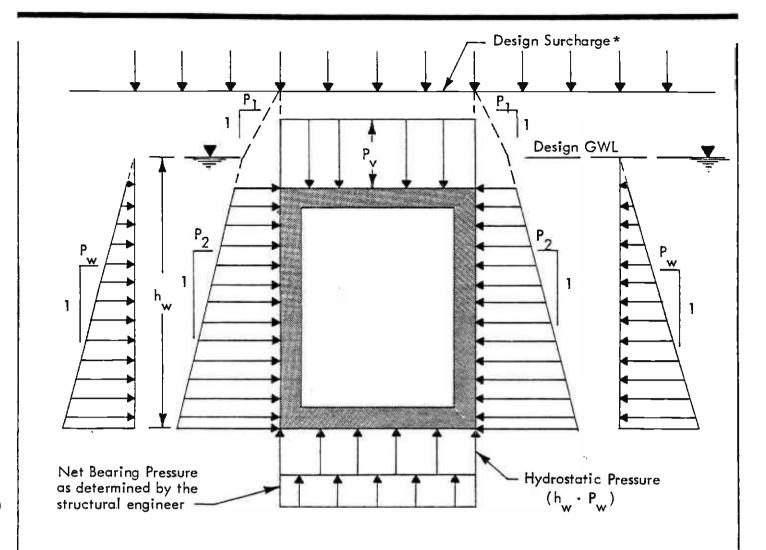
LOCATION	ELEVATION (ft)
Wilshire/Normandie Station	196
Wilshire/Western Station	190

6.10.2 Permanent Static Earth Pressures

Figure 6-16 presents lateral earth pressure diagrams recommended for design of permanent subsurface walls.

Vertical earth pressures on the roof should be assumed equal to the full moist and/or saturated weight of overburden soil plus surcharge. A total unit weight of 130 pcf may be used.

6.10.3 Surcharge Loads


Lateral surcharge loads from existing buildings not underpinned must be added to the lateral design earth pressure loads. The lateral surcharge loads are identical to those recommended for temporary walls. Procedures for computing these are presented on Figure 6-8. Vertical surcharge loads due to surface traffic, etc. should also be included in roof design. In addition, consideration should be given to loads imposed by earthmoving equipment during backfill operations.

6.11 SEISMIC CONSIDERATIONS

6.11.1 General

Design procedures and criteria for underground structures under earthquake loading conditions are defined in the Southern California Rapid Transit District (SCRTD) report entitled "Guidelines for Design of Underground Structures", dated March, 1984. Evaluations of the seismological conditions which may impact the project and the probable maximum credible earthquakes, which may be anticipated in the Los Angeles area, are described in the SCRTD report entitled "Seismological Investigation and Design Criteria", dated May, 1983. The 1984 report complements and supplements the 1983 report.

-48-

LOADING		DESIGN LOAD PARAMETERS			
CONDITION	P ₁ (psf)	P ₂ (psf)	P _w (psf)	P	GWL
End Construction	40	20	62.4	*	**
Long Term	60	30	62.4	*	***
Side sway 🕇	40/60	20/30	62.4	*	**

- * P_v = full overburden pressure (depth x total density) plus design surcharge; distribution and magnitude of design surcharge to be determined by section designer.
- ** Designer should use a GWL (between the base of slab and long term water elevation) which will be critical for the loading condition.

Approved for Dublication 2 (14) by

- *** Elev. 196 ft.at Wilshire/Normandie Sta. and elev. 190 ft. at Wilshire/Western Sta.
- + Sidesway condition assumes "End Construction" pressure on one side of the structure and "Long Term" on the other.

LOADS ON PERMANENT WALLS

DESIGN UNIT A220	Project No.
Southern California Rapid Transit District METRO RAIL PROJECT	83-1140
<u> </u>	Figure No.
Converse Consultants Geotechnical Engineering and Applied Sciences	6-16

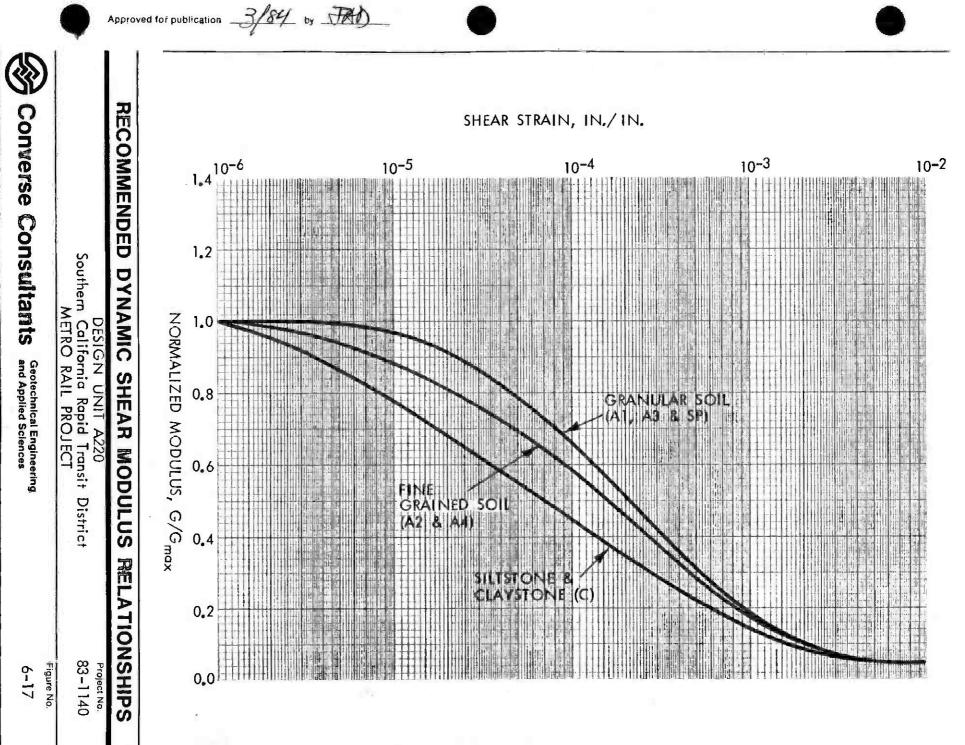
6.11.2 Dynamic Material Properties

Values of apparent wave propagation velocities for use in travelling wave analyses have been previously recommended in the May, 1983 Seismological Investigation and Design Criteria Report. Other dynamic soil parameters required for input into the various types of analyses recommended in the seismic design criteria report are also given. These include values of dynamic Young's modulus, dynamic constrained modulus, and dynamic shear modulus at low strain levels.

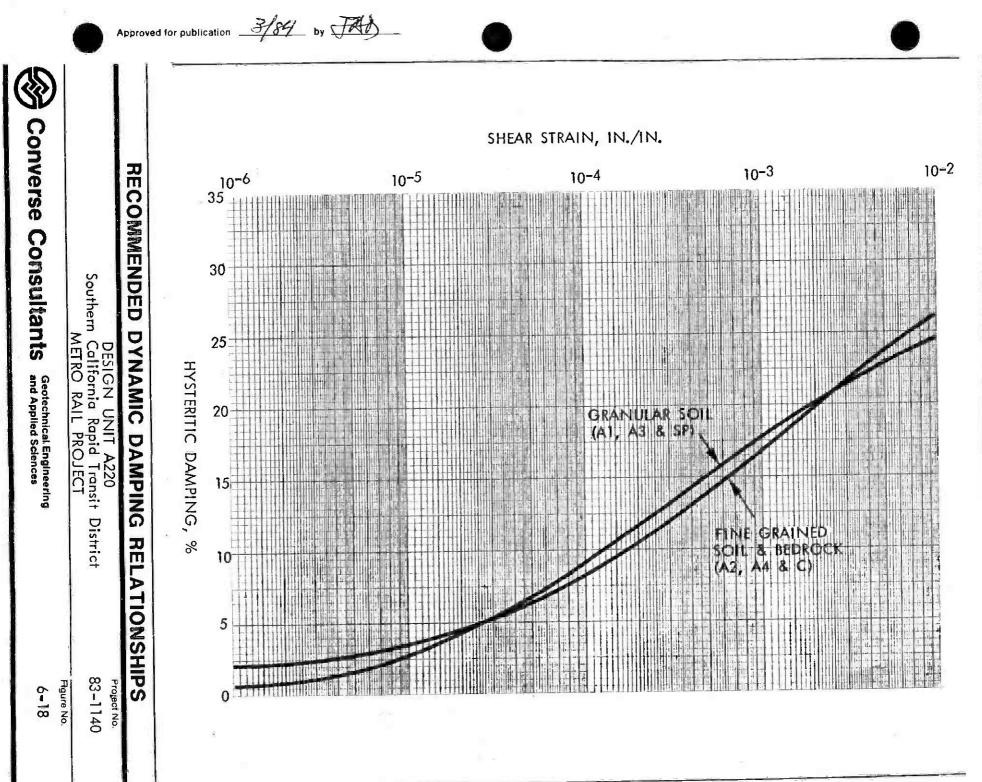
RECOMMENDED DYNAMIC MATERIAL	PROPERTIES FOR	R USE IN DE	SIGN	
3		ALLUVIUM	SAN PEDRO	PUENTE BEDROCK
Average Compression Wave Velocity, V _C (ft/sec)	- moist - sa <u>turated</u>	4000 5000	5000	5700
Average Shear Wave Velocity, Vs (ft/sec)		950	960	1300
*Poisson's Ratio		0.40	0.35	0.35
**Young's Modulus, E, (psi)	- moist - saturated	207,000 185,000		530,000
**Constrained Modulus, E _c , (psi)	- moist - saturated	450,000 700,000	700,000	850,000
**Shear Modulus, C _{max} , (psi)		25,000	25,000	45,000

TABLE 6-1 RECOMMENDED DYNAMIC MATERIAL PROPERTIES FOR USE IN DESIGN

* For saturated alluvium, use value of 0.45.


****** All modulus values are for low strain levels (10^{-6}) .

Average values of compression and shear wave velocities based on interpretation of limited downhole geophysical surveys performed in Boring CEG-14 and CEG-15 and other borings in similar materials during the 1981 investigation are presented in Table 6-1. These velocities have been used together with the corresponding values of density and Poisson's ratio to establish modulus values at low strain levels. Computed modulus values for the various geologic units present at the Station sites, are also tabulated in Table 6-1.


The variation of dynamic shear modulus, expressed as the ratio of G/G_{max} , with the level of shear strain is presented in Figure 6-17 for the various geologic units. Similar relationships for soil hysteretic damping are presented in Figure 6-18.

6.11.3 Liquefaction Potential

The generalized subsurface cross section has been described in Section 5.0 and is shown in Drawings 2,3,7 and 9. The ground water level appears to have a slight westward gradient declining from Elevation 192 in Boring CEG-14 to Elevation 185 in Boring 15-1. These ground water elevations correspond to depths of below the ground surface of about 35 feet at Wilshire/Normandie and about 15 feet at Wilshire/Western. The soils which are below the ground water level and, therefore, must be evaluated for liquefaction potential include the alluvial soils and the San Pedro Formation Sand.

-51-

-52-

Our liquefaction evaluation was based on procedures and correlations published by Seed et al (1983) which utilized index soil properties and performance data for soils during previous earthquakes. Field Standard Penetration Tests (SPT), available field geophysical data from CEG-14 and CEG-15, and laboratory classification test data were all used in our evaluation of liquefaction potential (see Appendix E).

Published correlations of SPT data and liquefaction potential have historically been made for granular soils. Measured SPT "N" values in the San Pedro Sands were all greater than 100 blows (refusal) and, therefore, these materials are considered to have a very low liquefaction potential even under the maximum design earthquake. Corrected "N" values (normalized to 2 ksf overburden pressure) for 20 SPT tests in saturated granular alluvium ranged from 10 to 82 with an average of about 47. Determination of dynamic strength was based on an M7.0 (maximum design) earthquake event. Only one SPT value (N=10) indicated a potential for liquefaction of the granular alluvium.

Clayey soils are generally considered non-liquefiable, but there are correlations between classification tests (Atterberg Limits, moisture content, and grain size distribution) and liquefaction potential of clayey soils. Index property tests of the clayey alluvium compared with index properties of soils vulnerable to liquefaction indicated these materials to be non-liquefiable.

Considering the above discussed results, it is our opinion that the potential for liquefaction at the A220 Station sites is low.

6.12 EARTHWORK CRITERIA

Site development is expected to consist primarily of excavation for the subterranean structure but will also include general site preparation, foundation preparation for near surface structures, slab subgrade preparation, and backfill for subterranean walls and footings and utility trenches. Recommendations for major temporary excavations and dewatering are presented in Sections 6.2 and 6.4. Suggested guidelines for site preparation, minor construction excavations, structural fill, foundation preparation, subgrade preparation, site drainage, and utility trench backfill are presented in Appendix F. Recommended specifications for compaction of fill are also presented in Appendix F. Construction specifications should clearly establish the responsibilities of the contractor for construction safety in accordance with CALOSHA requirements.

Excavated granular alluvium (sand, silty sand, gravelly sand, sandy gravel) are considered suitable for re-use as compacted fill, provided it is at a suitable moisture content and can be placed and compacted to the required density. The excavated existing fills, fine-grained soils and bedrock material are not considered suitable because these fine-grained materials will make compaction difficult and could lead to fill settlement problems after construction. If the granular alluvium materials cannot be stockpiled, imported granular soils could be used for fill, subject to approval by the geotechnical engineer.

6.13 PAVEMENT SECTION

Minimum flexible pavement sections for assumed Traffic Index (TI) values of 5.0, 7.0 and 9.0, and a subgrade R-value of 40 were developed using CALTRANS design method. Pavement sections provided below include the recommended thickness of compacted subgrade, base course and asphaltic concrete for the three Traffic Index values.

			THICKNESS (in	inches)
ASSUMED TRAFFIC INDEX (TI) 5.0		with Course Base Course 6.5	Full Depth Asphaltic Concrete 4.5	Compacted Subgrade (R ≥40) 24.0
7.0	3.0	8.5	7.0	36.0
9.0	4.0	11.0	9.5	36.0

We understand that the City of Los Angeles requires a minimum pavement section along major streets (such as Wilshire Boulevard) consisting of 8 inches of asphaltic concrete over 12 inches of base course. Therefore, the City of Los Angeles should be consulted regarding final selection of the replacement pavement sections.

Subgrade soil preparation should include processing of any disturbed subgrade areas, and excavation and replacement as required to provide a properly compacted subgrade of select granular material ("R" Value \geq 40) to the depths indicated above. Subgrade fill compaction should be performed in accordance with recommended specifications presented in Appendix F.

Base course material should be Type II aggregate base conforming with Section 26-1.023 of CALTRANS' Standard Specifications (1978).

Section 7.0

Tunnel Alignment -

Geotechnical Evaluation and Tunnelling Conditions

7.0 TUNNEL ALIGNMENT - GEOTECHNICAL EVALUATION AND TUNNELLING CONDITIONS

The general geologic stratigraphy along Design Unit A220 tunnel alignment is shown on Drawings 2, 3, 4 and 5. The tunnels occur between Station 319+00 and Station 474+00, a distance of about 2.5 miles, deducting for the stations within this Design Unit.

The average depth of ground cover above the crown of the tunnels is 35 feet, varying between a minimum of 25 feet near Station 458+00 and a maximum of 57 feet near Station 337+00, except where the AR line tunnel passes beneath the southeast corner of the Equitable Life Assurance Company building. The crown of the tunnel is always below the recorded water level in the alluvium.

7.1 STRATIGRAPHY, GROUND WATER AND TUNNELLING CONDITIONS

The geologic units existing along the tunnel alignment consist of cohesionless and cohesive alluvium (A_3/A_4) ; San Pedro Sands (SP) and bedrock-type materials of the Puente/Fernando Formation (C). These units are described in Sections 5.1, 5.2 and 5.3 of this report. The following descriptions define ground water conditions and the soft ground tunnelling conditions between cut-andcover stations and at significant changes in subsurface stratigraphy and/or conditions.

7.1.1 Station 319+50 and Station 345+50 (2600 feet - Drawing 2)

The tunnels leaving the Vermont Street Station will primarily pass through the Puente bedrock formation except that the crowns of the tunnels may encounter mixed-face conditions for a distance of approximately 300 feet east of the Vermont Station. The rock-alluvium interface may vary locally from that shown on Drawing 2, wherein the crown may pass in and out of mixed-face conditions locally over this length. The alluvial materials at the mixed-face can consist of saturated silts and/or sands overlying soft weathered Puente siltstone, claystone materials. The ground water level above the crown is about 17 feet between the west end of the Vermont Station and Station 322+50. It is anticipated that flowing ground conditions may be encountered at the crown of the tunnels assuming that dewatering systems are not in place or operating properly. Below the zone of weathering, the remaining perimeters of the tunnel are expected to pass through impervious, competent stable siltstones and claystones of the Puente formation with occasional hard sandstone beds.

West of approximately 322+50, the tunnels enter the Puente Formation completely, attaining a maximum cover of 35 feet of Puente material at approximately Station 337+00. Near Station $325\pm$ (624 Berendo Street apartment building), Boring 13-7 records about 15 feet of Puente bedrock over the crown. Near Station $332\pm$ (630 Kenmore Street apartment building), Boring 13-8 indicates there is about 30 feet of Puente bedrock over the crown.

At approximately Station $337\pm$, the AR line tunnel passes beneath the southeast corner of the Equitable Life Assurance Company building parking structure with only some 5 feet of Puente material between the crown of the tunnel and the underside of the wall footing. The exact elevation of the bottom of the wall footing will need to be established prior to the start of construction.

CCI/ESA/GRC

At approximately Station 345+00, it is anticipated that the crown of the tunnels will again encounter mixed-face conditions similar to those west of the Vermont Station, prior to arriving at, or egressing from, the east wall of the Normandie Station structure. The soil and ground water conditions here are expected to be similar to those at the west end of the Vermont Station, except that the natural head of water at the crown may be less.

We believe that ground conditions between the Vermont and Normandie Stations are suitable for the use of soft ground tunnelling techniques utilizing an open-face shield with mechanical excavation equipment. Because of the nature of the mixed-face conditions, we do not believe that methods of tunnel construction not employing a shield will be successful through this segment. The mixed-face segments are expected to require fore polling and/or breast boarding techniques within the alluvium to maintain stability of the face, prevent loss of ground and avoid surface settlement along such portions of this alignment.

When entirely within non-weathered Puente materials, the subsurface conditions are expected to be favorable for open-face shield tunnelling methods utilizing suitable excavation equipment. The average unconfined compressive strength of the siltstone, claystone fraction of the Puente Formation is 70 psi. The exception to this average compressive strength could be a few sandstone beds, 1 inch to 3 feet in thickness, which can have unconfined compressive strength ranging from 5,000 to 15,000 psi. The nearby Sacatella Tunnel was driven in the Puente formation and encountered several of these hard beds which could not be excavated with a claw-type excavator (see Appendix E.4). Our borings in Design Unit A220 suggest there are only a few such beds. No significant inflows of water are anticipated within the Puente Formation, where the tunnel crowns are well below the interface with the alluvium. The strike and dip of the bedding planes of the Puente vary appreciably because of the folded nature of this sedimentary formation. The general strike, however, is believed to be approximately east-west, sometimes parallel to the tunnel alignment, sometimes at an acute angle with the alignment. The observed dips are southward, varying between 10° and 55° below the horizontal. Because of the structural orientation of the Puente and the direction of the tunnel alignment, it is possible that the tunnels will encounter single or multiple beds of harder sandstone in the face of the tunnel excavation for certain lengths of the tunnel alignment occurring within the Puente Formation.

7.1.2 Station 349+75 and Station <u>368+25 (1850 feet, Drawing 3)</u>

The tunnels between the Normandie and Western Stations will encounter alluvial materials consisting entirely of interbedded horizons of saturated cohesiveand cohesionless-like alluvial soils. The depth of cover above the crown varies between 40 feet near the Normandie Station and 35 feet near the Western Station.

The ground water level varies between a few feet above the crown at the west end of the Normandie Station and 15 feet above the crown at the east end of the Western Station. It is anticipated that flowing ground conditions may be encountered between these two stations, assuming no dewatering systems are installed. Below the springline, in general, it is anticipated that more impervious cohesive materials will predominate. The following conditions were recorded in the noted borings through tunnel horizons.

- Boring 14-1 indicates clayey sand and clayey silt at crown elevation with a minor hydrostatic head. Below the crown and invert, the tunnelling medium consists of sandy clay and clayey sand with varying amounts of sand and clay throughout. Clayey silt exists below the invert to a depth of 76 feet, at which depth the San Pedro Sands are encountered.
- [°] Boring 15-4 indicates sandy clays, silty sands and clayey silts as being present within the zone of the tunnel crown with a hydrostatic head of approximately 15 feet. The potential for flowing ground at this end of this tunnel segment appears more probable than at Boring 14-1. Sandy clay occurs below the zone of the crown extending some 4 feet below the invert. A 2- to 3-foot thick, fairly clean sand 2 1/2 feet below the invert, may be under significant hydrostatic pressure, and the potential for a blow-out at the invert of the tunnels should not be overlooked.

Similar variations in soil stratigraphy and ground water conditions can be anticipated between Borings 14-1 and 15-4.

We believe that the soil conditions between the Normandie and Western Stations are suitable for the use of soft ground tunnelling techniques utilizing a shield with hand and/or mechanical excavation equipment. Because of the nature of the soil and ground water conditions, we do not believe that methods of tunnel construction not employing a shield will be successful in this segment of the tunnel. Construction shield tunnelling methods will require means for the utilization of fore polling and/or breast boarding techniques to maintain stability of the face, prevent loss of ground and avoid surface settlement along the alignment. The contractor should be prepared to search for, and relieve excessive hydrostatic uplift pressures below tunnel invert to prevent local blow-outs at the invert of the tunnels.

7.1.3 Station 372+50 and Station 400+25 (2775 feet, Drawing 3)

The tunnels between the Western and Crenshaw Stations will encounter alluvial materials consisting of interbedded horizons of saturated cohesive and cohesionless-like materials with a more or less equal distribution of occurrence over the face of the tunnels.

The ground water level varies between approximately 20 feet above the crown of the tunnel at the west end of the Western Station and 5 feet above the crown at the east end of the Crenshaw Station. A comparison with Section 7.1.2, above, indicates that this tunnel segment will also encounter flowing ground conditions, but more probably in the zone between the crown and invert of the tunnels.

Typical soil conditions which may be encountered by the tunnel construction along this segment are noted at the following locations:

- Boring 15-1 indicates sandy clay at the crown, clayey silt and silty sand above and below the springline, and sandy clay to 1 foot below the invert. The San Pedro Sands will occur immediately below the sandy clay.

- Boring 16-6 indicates the crown will encounter sandy clay soil/sands above and below the springline, and interbedded sand, silts and clays through to the invert. It is anticipated that the invert will penetrate the San Pedro Sands.
- Boring 16-5 suggests the crown is expected to pass through interbedded sandy clay, clayey silt and silty sand horizons, the latter of which may flow. From above the springline to the invert, saturated sands are expected to occur in the face of the tunnel excavation. The invert at this location may just be above the San Pedro Sands.

It is pointed out here that the elevation of the surface of the Sam Pedro Sands (Drawing 3) may vary from that shown between the borings and, therefore, the invert may encounter this sand for longer distances than that shown on the drawing.


We believe that the soil conditions between the Western and Crenshaw Stations are suitable for the use of soft ground tunnelling techniques utilizing a shield with hand and/or mechanical excavating equipment. We do not believe that tunnelling without a shield would be successful in these soils and ground water conditions described in this segment. Shield tunnelling methods are expected to require means by which the face of the tunnel excavations can be supported. Control of seepage flows may require the installation of dewatering systems ahead of the face of the tunnel excavation - the primary function of which would be to reverse the hydraulic gradients and, therefore, flows to the face and the invert of the tunnel excavation. Grouting of the San Pedro Sand Formation is believed feasible utilizing chemical and/or cement injection methods. However, grouting of the more cohesionless fractions of soils above the San Pedro is expected to be more difficult in most cases because of the significant silt and clay fractions within such soil horizons.

7.1.4 Station 405+75 and Station 474+25 (6850 feet, Drawings 4 <u>& 5</u>)

The tunnels between the Crenshaw and LaBrea Stations will encounter saturated alluvium throughout consisting of interbedded or interlayered horizons of cohesive and cohesionless-like soils.

The ground water level in the alluvium is consistently above the crown of the tunnels varying between 7 feet above at Boring 16-1, 15 feet above at Boring 16-B, 1 foot at Boring 17, and 17 feet above at Boring 18-7. It is conceivable that some flowing ground conditions may be encountered during the construction of this tunnel segment, as suggested by the variable stratigraphic conditions at tunnel grades (see Figure 7-1).

The heterogeneous nature of the tunnelling media not withstanding, we believe that the soil conditions between the Crenshaw and LaBrea Stations are suitable for the use of soft ground tunnelling techniques utilizing a shield with hand and/or mechanical excavating equipment. We do not believe that tunnelling without a shield would be feasible in the soil and ground water conditions described in this segment. Shield tunnelling methods are expected to require means by which the face of the tunnel excavation can be supported. The heterogeneous and non-continuous nature of the alluvial soils suggests that a general dewatering system in the alluvium may or may not be successful. A

similar conclusion would be viable for grouting the more pervious alluvial horizons along this segment. Grouting of the San Pedro Sand Formation is believed feasible utilizing chemical and/or cement methods.

7.2 GROUND WATER - INFLOWS AND MINERAL ANALYSES

We believe that water seepage into the tunnel excavation from fresh, unfaulted, slightly fracture, fine-grained bedrock of the Puente Formation will likely be of small amounts; i.e., dripping conditions.

Ground water inflows from saturated alluvial materials in the entire segment of this tunnel, in our judgement, are likely to be significant inflows with attendant caving problems, based on the performance of man-sized auger Boring Nos. 13A, 15A, 16A, 16B, 17A and 17B (see Appendix A). The ground water inflows/caving conditions are summarized in Table 7-1.

The entire alluvial interval below the water level is considered saturated. Although there are many fine-grained, tight, clay and silt beds, there are several relatively pervious sand horizons that could contribute considerable amount of water into the face of the tunnel excavation. Good examples of this are Boring 16B which recorded an inflow of 50 gpm for the interval 13 to 22 feet, Boring 15A which recorded a 15 gpm inflow for the interval 17 to 22 feet, and Boring 17B which recorded a 5 gpm inflow for the interval 28 to 64 feet.

Mineral analyses of the alluvial ground water from Boring Nos. 14, 16A, 17, 17A and 17B indicate the total dissolved solids (TDS) are less than 1000 parts per million (ppm). This is considered good quality water compared to mineral analyses of bedrock ground water from Boring 16, a sodium chloride type water containing a TDS of 6926 ppm. Ground water originating from the bedrock would be considered corrosive to metals and cement. For details on corrosion, refer to studies performed for SCRTD by Waters Consultants (Professional Services Group, Inc.), San Diego, California.

7.3 ENGINEERING PROPERTIES OF TUNNELLING MATERIALS

The engineering properties of alluvium, San Pedro Sand and Puente bedrock Formation, as applied to tunnelling, are similar to those described in Section 5.5 and in Table 5-2, "Material Properties Selected for Static Design".

Squeezing of Unit C should not be a particular stability problem in normal shield tunnel construction operations because the average unconfined compressive strength is 70 psi. In general, the alluvial material should not squeeze, although there could be a slight tendency for squeezing of local, saturated, cohesive interlayers. Such behavior of the cohesive material should not impede shield tunnelling operations.

7.4 CROSS PASSAGES

T

Southern California Rapid Transit District Drawings CSK-8 (Sheet 2 of 7) and CSK-9 (Sheet 3 of 7) dated January 12, 1984, indicate 15 cross passages are

BORING	APPROXIMATE TUNNEL STATION	DEPTH TO CROWN-INVERT (ft)	CAVING DEPTH (ft)	DEPTH TO WATER LEVEL (ft)	WATER CHEMISTRY (TDS/pH)	GAS/01L	REMARKS
13A	321	35 - 55	none	26	N/A	none	No caving O to 6O ft; slight caving 2 to 27 ft; 5 gpm inflow at 26 ft
15A	374	35 - 55	55 - 60	15	N/A	none	10 to 15 gpm inflow from confined same layer 17 to 23 ft; San Pedro Same probably caving from 55 to 60 ft
16A	398	43 - 63	30 - 33	42	914/7.9	slight sulfur odor	2 gpm ± inflow from San Pedro Sand a depth of 69 ft; caving San Pedro San 42 to 72 ft
16B	416	27 - 47	13 - 22 55 - 60	13	N/A	noné	50 gpm inflow from confined flowin sand layer 15 to 22 ft and San Pedr Sand 55 to 60 ft
17A	435	33 - 53	38 - 42	18	850/7.8	gas	100% LEL by gas detector; 1 gpm from 1 ft, 3 gpm from 26 ft
		<u> </u>					gas caused water to foam
178	470	35 - 55	flowing ground 56 - 64	18	670/7.9	none	caving from 48 to 64 ft; 5 gpm inflo from 28- to 64-ft interval; San Pedro Sand 56 to 64 ft

TABLE 7-1 GROUND WATER INFLOWS AND CAVING CONDITIONS

.

planned at tunnel line stations 325+66, 332+16, 338+66, 356+35, 361+96, 380+47, 388+05, 413+03, 420+78, 428+53, 436+26 (vent structure), 443+15, 450+98, 458+80 and 446+63 (see Drawings 2, 3, 4 and 5). According to SCRTD tunnel standard Drawings SD-053 and SD-054, the cross passage dimensions are about 20 feet long, 10 feet wide, and 12 feet high. The plans also indicate the finished opening will be supported by a 2-foot thick concrete liner.

Cross passages at Stations 325+66, 332+16 and 338+66 (Drawing 2) will require mining between twin-bore tunnels in siltstone, claystone and sandstone bedrock of the Puente formation (C). This is "soft-ground" tunnelling material, as described in Sections 5.3 and 5.5.5. Bedrock cover over the crown ranges from about 20 to 40 feet. Unit C should stand well with little, if any, caving or slaking that would require bracing, timbers, or rock bolts. Mechanical excavation equipment can excavate this material, possibly assisted by jackhammers if very hard 1 inch to 3-foot thick cemented interbeds are encountered.

All other cross passages (Drawings 3, 4 and 5) will be excavated in interbedded cohesive and cohesionless-like, heterogeneous alluvium (A_3/A_4) below the water table and in ground considered potentially gassy. These cross passages should encounter similar stratigraphic, ground water and tunnelling conditions described in Section 7.1. We believe mining of cross passages, with hand and/or mechanical excavating equipment, will require full support, breast boarding and ground water control to maintain stability of the passage. Based on Boring 17A, gas under pressure should be anticipated in the vicinity of cross passages at Stations 428+53, 436+26 and 443+15.

7.5 GAS, OIL AND FAULTING

The majority of the tunnel line segment in Design Unit A220 should be classified potentially gassy, and the area around Stations 430 to 450 possibly as gassy. These classifications are from the California Administrative Code, Title 8, page 684.18. Appropriate tunnelling equipment should conform with CALOSHA requirements and California Tunnel Safety Orders. For details on gas, refer to studies performed for SCRTD by Engineering Science, Arcadia, California.

The entire tunnel segment is considered devoid of oil according to boring records along this segment.

There are no known faults crossing Design Unit A220 based on a review of published geologic maps and literature. However, because this is California earthquake country, the contractor should anticipate encountering small faults and shear zones. The small faults and shear zones should not impede tunnelling excavation progress to any great extent.

7.6 SHAFTS

A shaft, vent structure, is planned near Wilshire and Mullen Street between Stations 436+26 to 437+56. Criteria and guidelines for the design and construction of shafts are provided in Section 7.6.1. 7.6.1 Shaft Guidelines

The radial effective pressure on shafts, developed by Terzaghi (1943) and Szechy (1970) were used herein for the design of shafts in soft-ground geologic units. Another more recent approach for design of shafts is the method suggested by Prater (1977).

The radial pressure on shafts in soft-ground units will depend on, but is not necessarily limited to, the type of unit, geometry of shaft and method of construction. For current design purposes, the radial pressures acting on vertical shafts, and shafts inclined at less than 10° from the vertical, can be estimated as follows:

° Fine-Grained Alluvium (A₄) and Siltstone/Claystone (C)

Radial pressures can be assumed equal to the at-rest pressure based on effective stress plus the hydrostatic pressure. Thus,

where

 σ_r = total radial pressure (psf)

K = at-rest lateral earth pressure coefficient

^o A_4 $K_0 = 0.5$ ^o Claystone $K_0 = 0.4$

 σ_i' = effective vertical earth pressure at designated location (psf)

 μ = anticipated ground water pressure at designated location (psf)

$$^{\circ}$$
 Granular Alluvium (A,) and Siltstone/Sandstone (C)

Theoretical analyses based on methods developed by Terzaghi (1943) and Szechy (1970) indicate the radial effective pressure on shafts in granular soils is nearly equal to the active pressure at shallow depths but approaches a constant pressure at great depths. Radial pressure on shafts can be estimated as:

$$\sigma_r = RK_a \sigma_s' + \mu$$

where:

 σ_{r} = estimated radial pressure

K_a = active lateral earth pressure coefficient

° A_1 , A_3 , A_4 , SP $K_a = 0.3$ ° Siltstone Sandstone $K_2 = 0.2$

 σ_{i}' = effective vertical earth pressure at designated location (psf)

 μ = anticipated ground water pressure at designated location (psf)

R = reduction factor based on ratio of depth (z) to shaft diameter (D) where (after Mueser, and others, 1967):

 $\frac{z/D}{R} \quad \frac{0}{1.0} \quad \frac{1}{0.9} \quad \frac{2}{0.8} \quad \frac{4}{0.7} \quad \frac{6}{0.6} \quad \frac{10}{0.5}$

CCI/ESA/GRC

Shafts, other than circular shafts, may also be utilized for vent structures. Design of non-circular structures may be based on normal earth pressure values such as recommended for the station structures.

7.7 SPECIAL TUNNELLING PROBLEM AREAS

Due to a high ground water table, relatively shallow cover over the tunnel crown and unknown conditions, research should be performed to establish underground conditions prior to start of construction at the following stations:

- Station 319 to 327 An east-west trending depression about 50 feet deep by 200 feet wide is located about 300 feet north of the tunnel line (Drawing 2). This depression was located in the former" Bimini Bath" stream channel and has been filled in with Class III landfill. Since this is an old stream channel, it may well be filled with ground water also. The tunnel line should not encounter the landfill/water-filled depression, based on our interpretation of the old U.S. Geological Survey topographic contour map prepared by plane table in 1920 (scale 1"=2000', contour interval 5').
- Station 324 to 325± and Station 331 to 332± Foundation conditions beneath the existing five-story mid-Wilshire apartment building at 624 Berendo Street and the six-story Evanston apartment building at 630 Kenmore Street should be researched prior to construction.
- Station 337± The exact elevation of the bottom of the wall footings for the Equitable Life Assurance Company building parking structure needs to be established prior to the start of construction.

7.8 DESIGN FOR EARTHQUAKES

Design procedures and criteria for underground structures under earthquake loading conditions are defined in the Southern California Rapid Transit District (SCRTD) report entitled "Guidelines for Design of Underground Structures", dated March, 1984. Evaluations of the seismologic conditions which may impact the project and the probable and maximum credible earthquakes, which may be anticipated in the Los Angeles area, are described in Converse's report to SCRTD entitled "Seismological Investigation & Design Criteria", dated May, 1983. The 1984 report complements and supplements the 1983 report.

Section 8.0

Supplementary Geotechnical Services

Section 8.0

Supplementary Geotechnical Services

8.0 SUPPLEMENTARY GEOTECHNICAL SERVICES

Based on the available data and the current design concepts, the following supplementary geotechnical services may be warranted:

Additional Field Exploration: Consideration should be given to drilling additional borings at the proposed station location sites where future at-grade structures. These additional borings are for the purpose of verifying the assumption that conditions encountered at the boring locations are applicable to the related station location.

Due to the lack of data on subsurface materials, ground water conditions, gas and flowing San Pedro Sand along the tunnel alignment, we recommend drilling three borings to obtain samples for laboratory testing and evaluation of tunneling conditions. These borings should be located near Stations 355, 424 and 444.

We also suggest drilling two additional man-sized auger borings. One at Station 378 (mixed-face invert) and the other at Station $437\pm$ (vent structure and cross passage) in order to assess the potential for flowing ground" condition and ground water parameters, in the San Pedro Sand.

- Pump Test: It is recommended that pumping tests be performed at the A220 Station sites to evaluate the pumping and dewatering characteristics. The test well(s) should ideally approximate characteristics of the dewatering wells. The number and locations of observation wells should be based on the known subsurface conditions and locations of areas in which settlement could be critical.
- Observation Well Monitoring: The ground water observation wells should be read several times a year until project construction and more frequently during construction if possible. These data will aid in confilming the recommended maximum design ground water levels. They will also provide valuable data to the contractor in determining his construction schedule and procedures.
- Review Final Design Plans and Specifications: A qualified geotechnical engineer should be consulted during the development of the final design concepts and should complete a review of the geotechnical aspects of the plans and specifications.
- Shoring/Dewatering Design Review: Assuming that the shoring and dewatering systems are designed by the contractor, a qualified geotechnical engineer should review the proposed systems in detail including review of engineering computations. This review would not be a certification of the contractor's plan but rather an independent review made with respect to the owner's interests.
- Supplemental Investigation: Consideration should be given to performing supplemental geotechnical investigations at the sites of proposed peripheral at-grade structures near the stations. The purpose of these studies would be to determine site specific subsurface conditions and provide site specific final design recommendations for these peripheral structures.

I

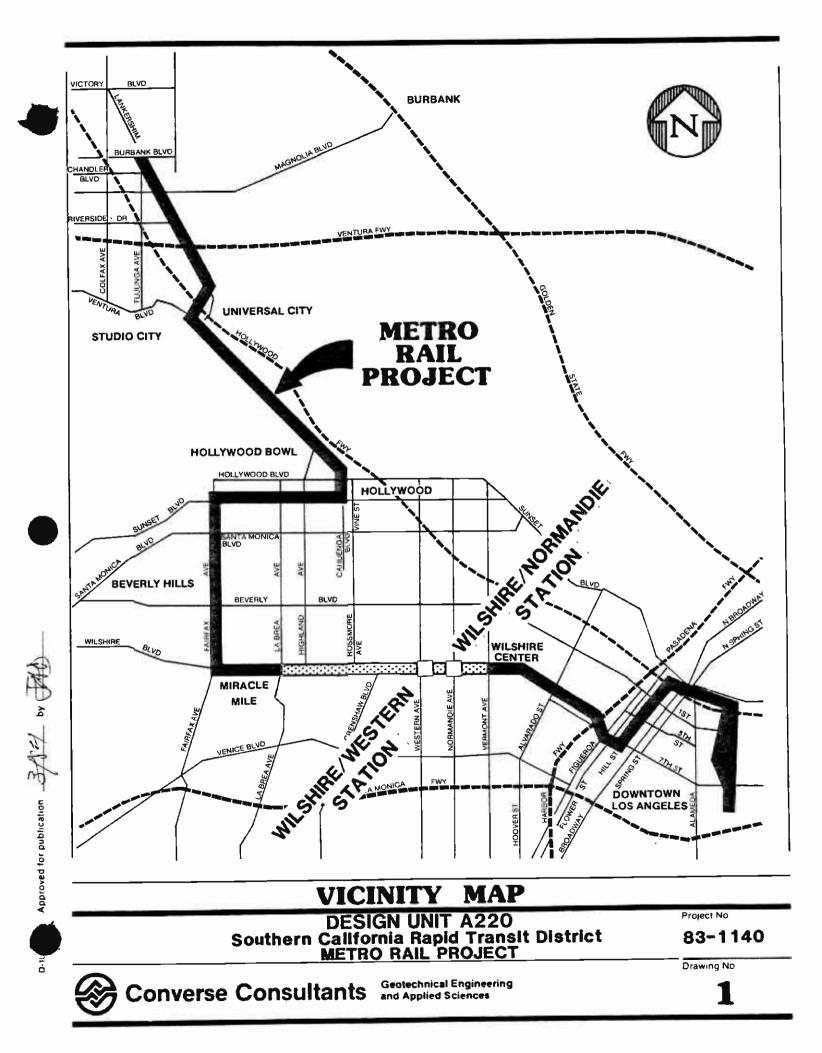
Construction Observations: A qualified geotechnical engineer should be on site full time during installation of the dewatering system, installation of the shoring system, preparation of foundation bearing surfaces, and placement of structural backfills. The geotechnical engineer should also be available for consultation to review the shoring monitoring data and respond to any specific geotechnical problems that occur.

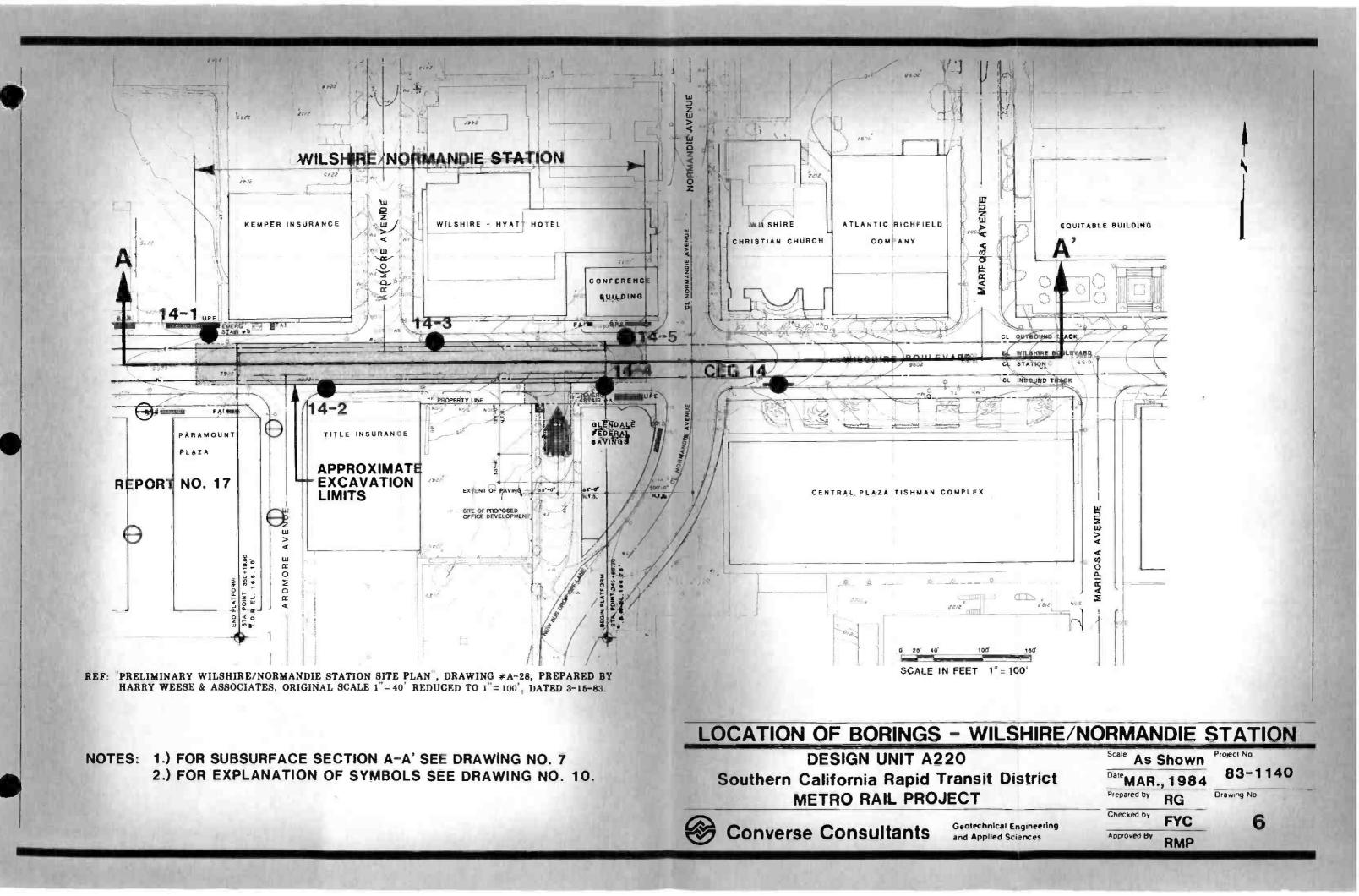
References

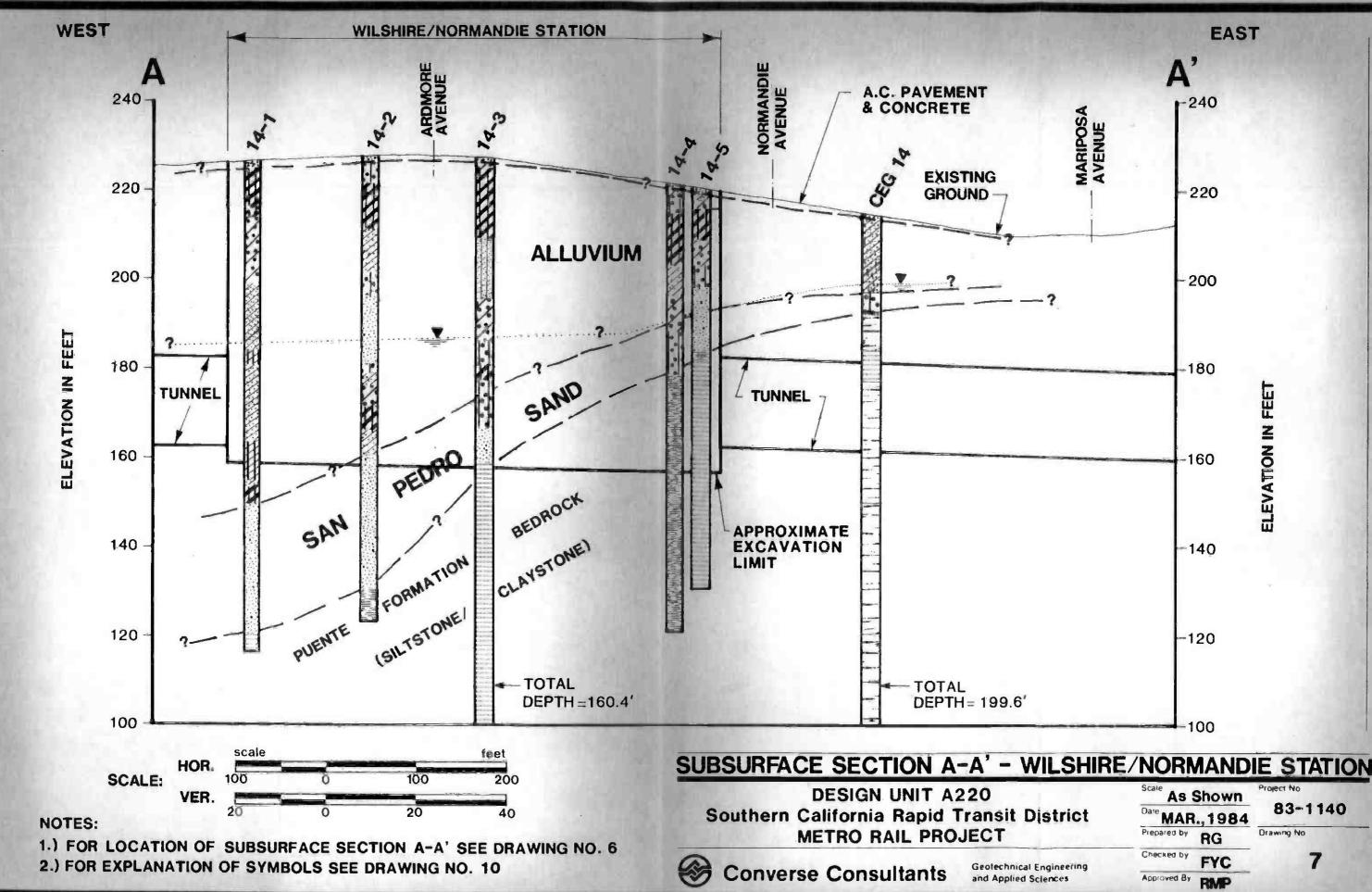
- CHAPMAN, K., Cording, E.J., and Schnabel, H., Jr., 1972, Performance of a Braced Excavation in Granular and Cohesive Soils: ASCE Specialty Conference on Performance of Earth and Earth-Supported Structures, Purdue University, Vol. III, pp. 271-293.
- CLOUGH, G.W., 1980, Slurry walls for underground tram facilities: U.S. Department of Transportation Report FHWA-TS-80-221.
- CLOUGH, G.W., Buchignani, A.L., 1981, Slurry walls in San Francisco Bay area: ASCE National Conference, New York, p. 81-142.
- CORDING, E.J., and O'Rourke, T.D., 1977, Excavation, ground movements, and their influence on buildings: American Soc. of Civil Engineers, Preprint, San Francisco.
- CORPS OF ENGINEERS, 1953, Technical Memorandum No. 3-357, March, 1953.
- CRANDALL, L.R., and Maljian, P.A., 1977, Use of earth anchors to restrict ground movements: Am. Soc. Civil Engineers, Preprint 2974, p. 1-27.
- DEPARTMENT OF THE INTERIOR, Bureau of Reclamation, 1963, Earth Manual.
- EVANS, L.T., 1968, Swell and settlement study Equitable Life Building, Los Angeles, California: Report by L.T. Evans, Inc.
- GOLDBERG, D.T., Jaworski, W.E., and Gordon, M.D., 1976, Lateral Support Systems and Underpinning: Federal Highway Administration, Offices of Research & Development, Vols. I, II, III.
- HARDIN, B.O., 1970, Suggested Methods of test for shear modulus and damping of soils by resonant column: ASTM Special Technical Publication 479.
- KISHIDA, H.J. 1969, Characteristics of liquified sand during Mino-Owari Tohnakai and Fukui earthquakes: Soils and Foundations, Japan, Vol. 9, No. 1, March, p. 79-92.
- LEE, K.L., and Fitton, J.A., 1968, Factors affecting the cyclic loading strength of soil, vibration effects of earthquakes in soils and foundations: American Society for Testing and Materials, Special Technical Publication 450.
- LOS ANGELES COUNTY FLOOD CONTROL DISTRICT, 1976, Hydrologic Report 1974-1975.
- LOS ANGELES COUNTY FLOOD CONTROL DISTRICT, Engineering Geology Section, Materials Engineering Division, 1973, Exploratory drilling and testing for proposed (Sacatella) tunnel sections: Geologic Rept. project 1102, file 364-1102.41, Dec. 26, 1973, 12 p.
- MALJIAN, P.A., and Van Beveren, J.F., 1974, Tied-back deep excavations in Los Angeles area: Journal of Constr. Div., ASCE, Vol. 100 CO3, p. 337-356.
- MANA, A.I., Clough, G.W., 1981, Prediction of movements for braced cuts in clay: ASCE Geotechnical Journal, June.

MASTERS, J.A., 1979, Deep basin gas trap, western Canada: Bull. AAPG, Vol. 63, No. 2, p. 152-181.

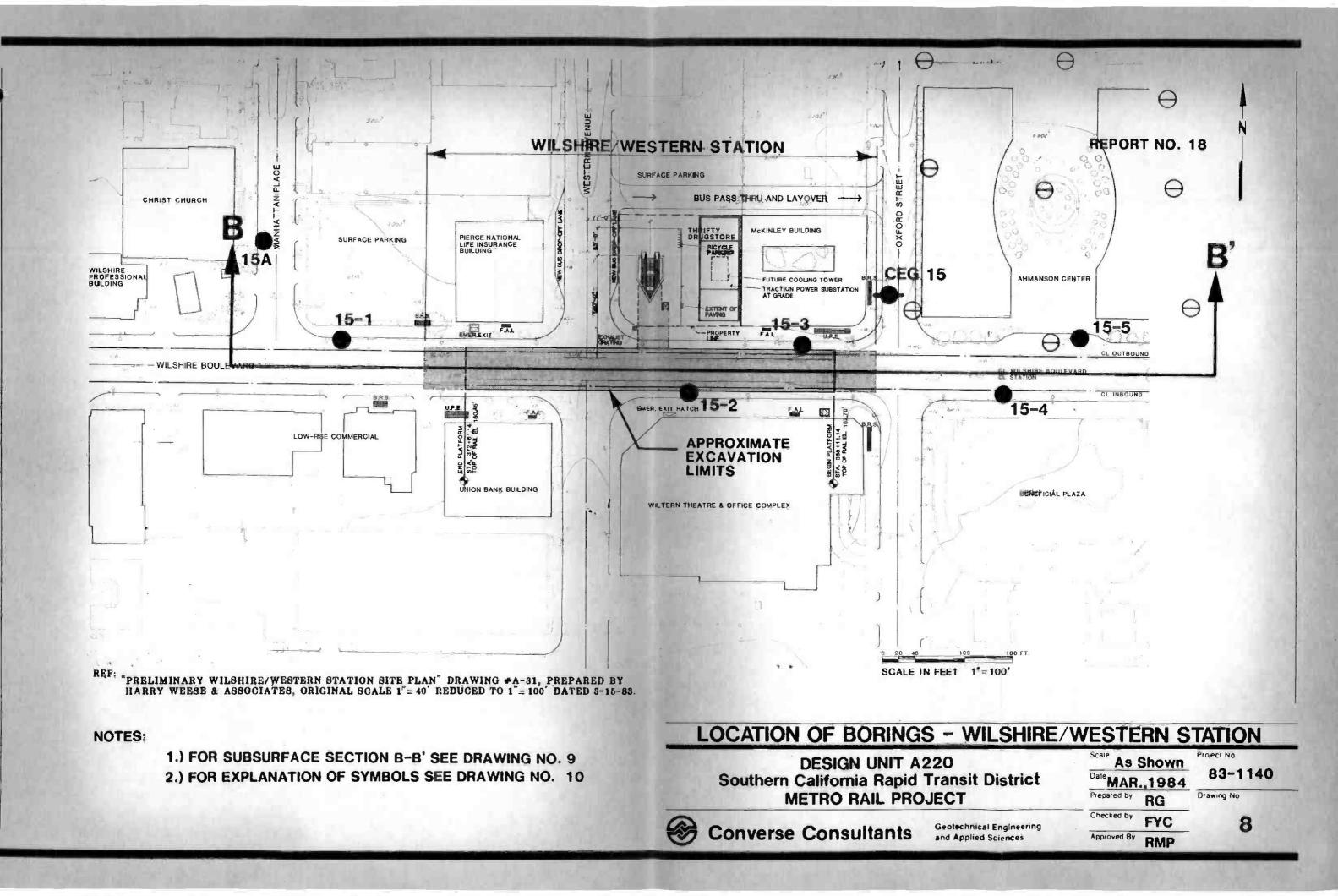
- MATSUO, H., and O'Hara, S., 1960, Lateral earth pressures and stability of quay walls during earthquakes: Proceedings of Second World Conference on Earthquake Engineering, Tokyo, Japan.
- MONOBE, N., and Matsuo, H., 1929, On the determination of earth pressures during earthquakes: Proceedings, World Engineering Conference, Vol. 9, p. 176.
- NAVFAC, 1971, Design Manual 7-Soil mechanics, foundations, and earth structures: Department of the Navy, Naval Facilities Engineering Command.
- NAVFAC, 1982, Design Manual 7.1-Soil mechanics: Department of the Navy, Naval Facilities Engineering Command, May.
- NELSON, J.C., 1973, Earth tiebacks support excavation 112 feet deep <u>in</u> Civil Engineering: Am. Soc. Civil Engineers, Nov. 1973, p. 41-44.
- NEWMAN, S.P., 1975, Analysis of Pumping Test Data from Anisotropic Unconfined Aquifers Considering Delayed Gravity Responses: Water Resources Research, Vol. 11, No. 2, p. 329-342.
- OKABE, S., 1926, General theory of earth pressure: Journal of Japanese Society of Civil Engineers, Vol. 12, No. 1.

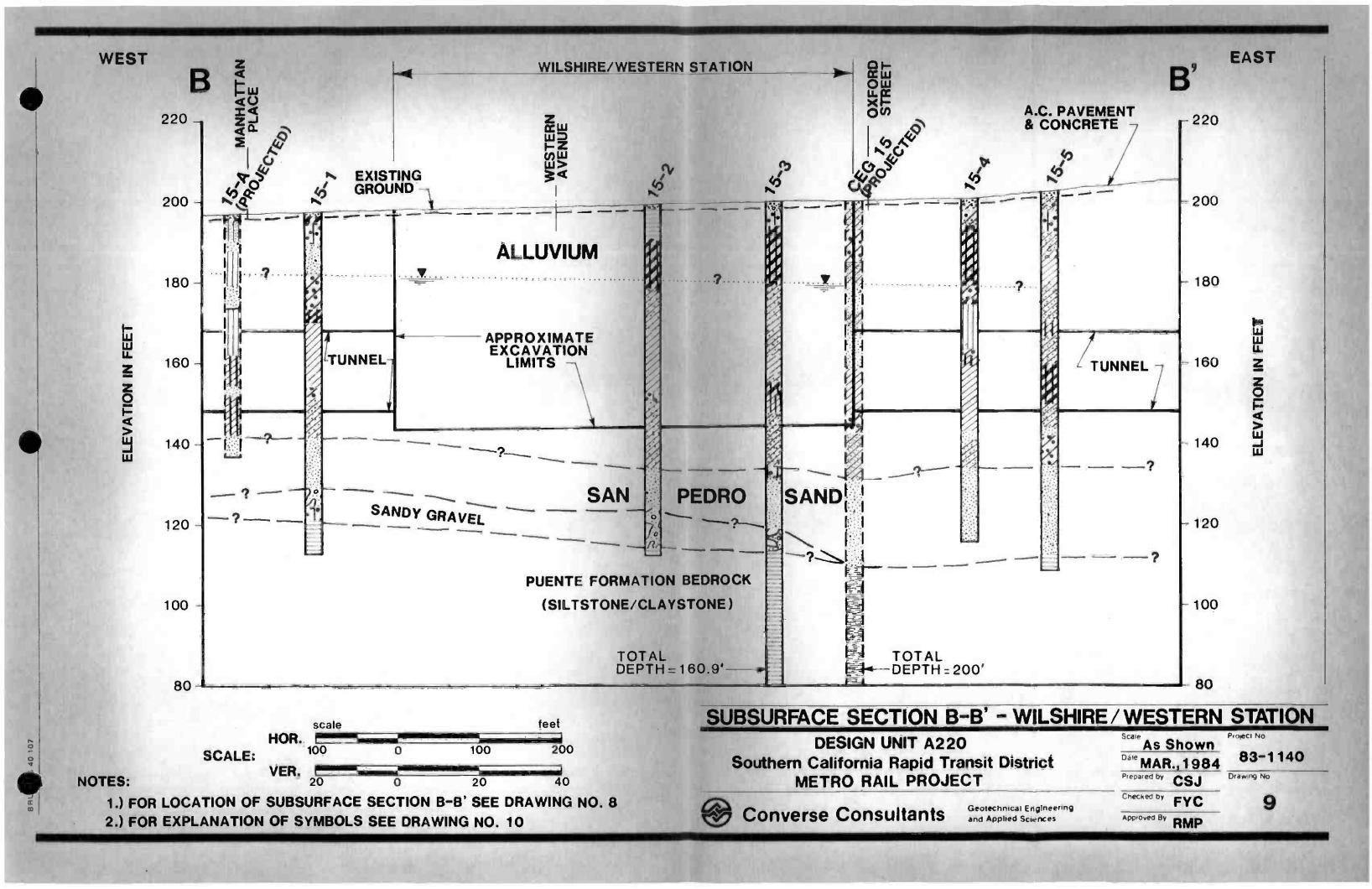

PRAKASH, S., 1981, Soil dynamics: McGraw-Hill, New York.


- PRATER, E.G., 1977, An examination of some theories of earth pressure on shaft linings: Can. Geotechnical Journal, Vol. 14, No. 1, Feb. 1977, p. 91-106.
- PROCTOR, R.J., 1981, Sacatella tunnel oil seeps; personal communication.
- SCHULTZ, M.S., 1981, An empirical investigation into the behavior of diaphragm walls, Masters Thesis, Massachusetts Institute of Technology.
- SEED, H.B., Idriss, I., Arango, I., 1983, Evaluation of Liquefaction Potential Using Field Performance Data: ASCE Journal of Geotechnical Division, Vol. 109, No.3, March 1983, p. 458-482.
- SEED, H.B, and Whitman, R.V., 1970, Design of earth retaining structures for dynamic loads <u>in</u> Ground and Design of Earth Retaining Structures: ASCE Specialty Conference on Lateral Stresses New York, p. 103-148.
- SEED, H.B. and Idriss, I.M., 1967, Analysis of soil liquefaction: Niigata Earthquake Journal of the Soil Mechanics and Foundations Division, ASCE Vol. 93, No. SM3, Proceedings Paper 5233, May, p. 83-108.
- WESTERGAARD, H.N., 1933, Water pressures on dams during earthquakes: Transactions, ASCE, p. 418-433.


WRIGHT, V.L., 1975, Pre-bid geologic proposal (Sacatella Tunnel): Los Angeles County Flood Control District, regional proj. 1102, unit 4, 14 p.

YOUD, L.T., 1982, U.S. Geological Survey, Menlo Park; personal communication.


Drawings



	As	Shown	
t District	Date MAR	.,1984	83-1140
	Prepared by	RG	Drawing No
nical Engineering	Checked by	FYC	7
lied Sciences	Approved By	RMP	

GEOLOGIC UNITS

SOFT GROUND TUNNELLING

OCENE

HOL

CENE

EISTO

PL

PLIOCENE

MIOCENE

TERTIARY

QUATERNARY

A

A2

A3

A4

SP

C

2-5

1-5

YOUNG ALLUVIUM (Granular): Includes clean sands, silty sands, gravelly sands, sandy gravets, and locally contains cobbles and boulders. Primarily dense, but ranges from loose to very dense.

YOUNG ALLUVIUM (Fine-grained): Includes clays. clayey silts, sandy silts, sandy clays, clayey sands. Primarily stiff. but ranges from firm to hard.

OLD ALLUVIUM (Granular): Includes clean sands, silty sands, gravelly sands, and sandy gravels. Primarily dense, but ranges from medium dense to very dense.

OLD ALLUVIUM (Fine-grained): Includes clays, clayey silts, sandy silts, sandy clays, and clayey sands Primarily stiff, but ranges from firm to hard.

SAN PEDRO FORMATION: Predominantly clean, cohesionless, fine to medium-grained sands, but includes layers of silts, silty sands, and fine gravels. Primarily dense, but ranges from medium dense to very dense. Locally impregnated with oil or tar.

FERNANDO AND PUENTE FORMATIONS: Claystone, siltstone, and sandstone; thinly to thickly bedded. Primarily low hardness, weak to moderately strong. Locally contains very hard, thin cemented beds and cemented nodules.

ROCK TUNNELLING (Terzaghi Rock Condition Numbers apply)*

-Terzaghi Rock Condition Number

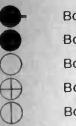
Approximate boundary between Terzaghi numbers

- TOPANGA FORMATION: Conglomerate, sandstone, and siltstone: thickly bedded; primarily hard and strong (Geologic symbol Tt).
- TOPANGA FORMATION: Basalt; intrusive, primarily hard and strong (Geologic symbol Tb).
- **TERZACHI ROCK CONDITION NUMBERS:***
- 1 Hard and intact
- 2 Hard and stratified or schistose
- 3 Massive, moderately jointed
- 4 Moderately blocky and seamy
- 5 Very blocky and seamy (closely jointed)
- 6 Crushed but chemically intact rock or unconsolidated sand; may be running or flowing ground
- 7 Squeezing rock, moderate depth
- 8 Squeezing rock, great depth
- 9 Swelling rock

'In practice, there are not sharp boundaries between these categories, and a range of several Terzaghi Numbers may best describe some rock

SYMBOLS

Geologic contact: approximately located; queried where inferred


40

Fault (view in plan): dotted where concealed; queried where inferred; (U) upthrown side, (D) downthrown side

Fault (view in geologic section): approximately located; queried where inferred: arrows indicate probable movement: attitude in profile is an apparent dip and is not corrected for scale distortion

Dip of bedding: from unoriented core samples; bedding attitudes may not be correctly oriented to the plane of the profile, but represent dips to illustrate regional geologic trends: number gives true dip in degrees, as encountered in boring

Ground water level: approximately located: queried where inferred

 \bigcirc

Boring --- CEG (1981)

- Boring CCI/ESA/GRC (1983)
- Boring Nuclear Regulatory Commission (1980)
- Boring Woodward-Clyde (1977)
- Boring Kaiser Engineers (1962)
- Boring Other (USGS 1977 and various foundation studies)
- NOTES: 1) The geologic sections are based on interpolation between borings and were prepared as an aid in developing design recommendations. Actual conditions encountered during construction may be different.
 - 2) Borings projected more than 100' to the profile line were considered in some of the interpretation of subsurface conditions. However, final interpretation is based on numerous factors and may not reflect the boring logs as presented in Appendix A.
 - Displacements shown along faults are graphic 3) representations. Actual vertical offsets are unknown.

GEOLOGIC EXPLANATION

Project No **DESIGN UNIT A220** N/A 83-1140 Southern California Rapid Transit District Dale MAR.,1984 Drawing No Prepared by METRO RAIL PROJECT RG Checked by JAD 10 Geotechnical Engineering **Converse Consultants** Approved By and Applied Sciences HAS

	SILT
	CLAY
	SANDY SILT
<u>ID</u>	SANDY CLAY
	CLAYEY SILT
	SILTY CLAY
	SILTY SAND
1.	CLAYEY SAND
	SAND
20	GRAVELLY SAND
20h	SANDY GRAVEL
0000	GRAVEL
412	GRAVELLY CLÂY
	TAR SILT & CLAY
	TAR SAND
	FILL
······································	SILTSTONE
	CLAYSTONE

SANDSTONE

CONGLOMERATE

CEMENTED ZONE

META-SANDSTONE

BASALT

BRECCIA

SHEAR ZONE

ONE TONE INTERBEDDED SANDSTONE WITH SILTSTONE OR CLAYSTONE SANDSTONE,

Appendix A Field Exploration

APPENDIX A FIELD EXPLORATION

A.1 GENERAL

Field exploration data presented in this report for Design Unit A220 includes logs of borings drilled for the 1981 Geotechnical Investigation Report, 1983 and 1984 borings drilled for this A220 investigation, and 1983 borings drilled for Design Units A240 and A245. The specific boring logs included are summarized below:

° <u>1981</u> CEG-13, CEG-14, CEG-15, CEG-16 and CEG-17

- <u>1983 and 1984 A220</u>
 13A, 13-7, 13-8
 14-1 through 14-5
 15-1 through 15-5, 15-A
 16B, 17A and 17B
- ° <u>1983 A240</u> 16A, 16-1 through 16-6
- ° <u>1983 A245</u> 18-2 through 18-7

Locations of the borings are shown on Drawings 2 through 5. Ground water observation wells (piezometers) were installed in borings listed in Section 5.4 (Table 5-1). Geophysical downhole and crosshole surveys were made for the 1981 investigation at Borings CEG-14 and CEG-15 (see Appendix B).

The borings were drilled to depths generally ranging from 60 to 200 feet, and penetrated through the alluvium into the underlying San Pedro sand or bedrock. All borings were sampled at regular intervals using the Converse ring sampler, pitcher barrel sampler and the standard split spoon sampler. Sample recovery was generally good in both the siltstone and claystone bedrock and the alluvium.

The following subsections describe the field exploration procedures and provide explanations of symbols and notation used in preparing the field boring logs. Copies of the field boring logs are presented following the text of this appendix.

A.2 FIELD STAFF AND EQUIPMENT

A.2.1 Technical Staff

Members of the three firms (CCI/ESA/GRC) participated in the drilling exploration program. The field geologist continuously supervised each boring during the drilling and sampling operation. The geologist was also responsible for preparing detailed lithologic log and for sample/core identification, labeling and storage of all samples, and installation of piezometer pipe, gravel pack and bentonite seals.

A.2.2 Drilling Contractor and Equipment

Most of the drilling was performed by Pitcher Drilling Company of East Palo Alto, California, with Failing 1500 rotary wash rigs, each operated by a two-man crew. Man-sized auger borings were drilled with bucket auger equipment by A&W Drilling Company of Brea, California.

A.3 SAMPLING AND LOGGING PROCEDURES

Logging and sampling were performed in the field by the geologist. The following describes sampling equipment and procedures and notations used on the lithologic logs to indicate drilling and sampling modes.

A.3.1 Sampling

In the overburden at about 10-foot intervals, the Converse ring sampler was driven using a down-hole 450-pound slip-jar hammer. The Converse sampler was followed with the standard split spoon sample (SPT) driven with a 140-pound hammer with a 30-inch stroke. Where the Puente Formation was encountered, the borings were sampled using a Pitcher Barrel and Converse ring sampler at 20-foot intervals.

The most common cause for loss of samples or altering the sample interval was when gravel was encountered at the desired sampling depth. Standard penetration blow count information can often be misleading in this type of formation, and it is difficult to recover an undisturbed sample. Therefore, at some locations, borings were advanced until drill response and cutting suggested a change in formation.

The following symbols were used on the logs to indicate the type of sample and the drilling mode:

Log Symbol	Sample Type	Type of Sampler
В	Bag	
J	Jar	Split Spoon
С	Can	Converse Ring
S	Shelby Tube	Pitcher Barrel
Box	Box	Pitcher Barrel, Core Barrel

Symbol	Drilling Mode
AD	Auger Drill
RD	Rotary Drill
PB	Pitcher Barrel Sampling
SS	Split Spoon
DR	Converse Drive Sample
C	Coring

~A2-

1.00

A.3.2 Field Classification of Soils

All soil types were classified in the field by the field geologist using the "Unified Soil Classification System". Based on the characteristics of the soil, this system indicates the behavior of the soil as an engineering construction material.* Although particle size distribution estimates were based on volume rather than weight, the field estimates should fall within an acceptable range of accuracy.

Table A-1 shows the correlation of standard penetration information and the physical description of the consistency of clays (hand-specimen) and the compactness of sands used by the field geologists for describing the materials encountered.

TABLE A-1 Correlation	of N-Values and	Consistency/Compactness	of Soil	Obtained in the Field

N-Values (blows/foot)	Hand-Specimen (clay only)	Consistency (clay or silt)	Compactness (sand only)	N-Values (blows/foot)
0 - 2	<u>Will squeeze between fincers when hand is closed</u>	Very soft	Very Loose	0 - 4
2 - 4	Easily molded by fincers	Soft	Loosa	4 - 10
4 - 8	Molded by strong pressure of fingers	Firm		
8 - 16	Dented by strong pressure of tingers	<u>Stiff</u>	Medium den se	10 - 30
16 - 32	Dented only slightly by finger pressure	Very stiff	Danse	30 - 50
32+	Dented only slightly by pencil (pint	_Hard	Very donse	50+

A.3.3 Field Description of the Formations

The description of the formations is subdivided in two parts: lithology and physical condition. The lithologic description consists of:

- ° rock name;
- color of wet core (from GSA rock color chart);
- mineralogy, textural and structural features; and
- ° any other distinctive features which aid in correlating or interpreting the geology.

The physical condition describes the physical characteristics of the rock believed important for engineering design consideration. The form for the description is as follows:

Physical	condition:			fractured,	minimum	,
maximum	,	mostly		;	-	hardness;
	strength;		weat	hered.		

Bedrock description terms used on the boring logs are given on Table A-2.

CCI/ESA/GRC

^{*} For a more complete discussion of the Unified Soil Classification System, refer to Corps of Engineers, Technical Memorandum No. 3-357, March 1953, or Department of the Interior, Bureau of Reclamation, Earth Manual, 1963.

TABLE A-2 Bedrock Description Terms

PHYSICAL CONDITION*	SIZE RANGE	REMARKS		
Crushed	-5 microns to 0.1 ft	Contains o	elay	
Intensely Fractured	0.05 ft to 0.1 ft	Contains r	io clay	
Closely Fractured	0.1 ft to 0.5 ft			
Moderately Fractured	0.5 ft to 1.0 ft			
Little Fractured	1.0 ft to 3.0 ft			
Massive	4.0 ft and larger			
HARDNESS**				
Soft Res	erved for plastic materia	al		
Friable - Eas	ily crumbled or reduced	to powder by	/ fingers	
Low Hardness - Can	be gouged deeply or car	ved with po	<u>cket</u> knife	
Moderately Hard - <u>Can</u>	be readily scratched by	a knife bla	ade; scratch leaves heav	ry trace of dust
Hard <u> </u>	be scratched with diffi	culty; scra	tch produces little powe	der & is often faintly visible
<u>Very Hard</u> - Can	not be scratched with kn	ife blade		
STRENGTH -				
<u>Plastic</u> - <u>B</u>	asily deformed by finger	pressure		
Friable - C	rumbles when rubbed with	fingers		
	Infractured outcrop would			
Moderately Strong - C	Utcrop would withstand a	few firm h	ammer blows <u>before break</u>	king t would yield, with difficulty,
strong - d	niv dust å small frægmen	ts		
)utcrops would resist hea . small fragments	vy ringing	hammer blows & will yie	ld with difficulty, only dust
WEATHERING DECOMPOS	ITION		DISCOLORATION	FRACTURE CONDITION
	to complete alteration , feldspars altered to c		Deep & thorough	All fractures extensively coated with oxides, carbonates, or cla
minerals		leavage	Moderate or localized & intense	Thin coatings or stains
Moderate = Slight a	literation of minerals, c lusterless & stained			
Moderate Slight a surfaces		rals	Slight & intermittent & localized	Few stains on fracture surfaces

*Joints and fractures are considered the same for physical description, and both are referred to as "fractures"; however, mechanical breaks caused by drilling operation were not included.

**Scale for rock hardness differs from scale for soil hardness.

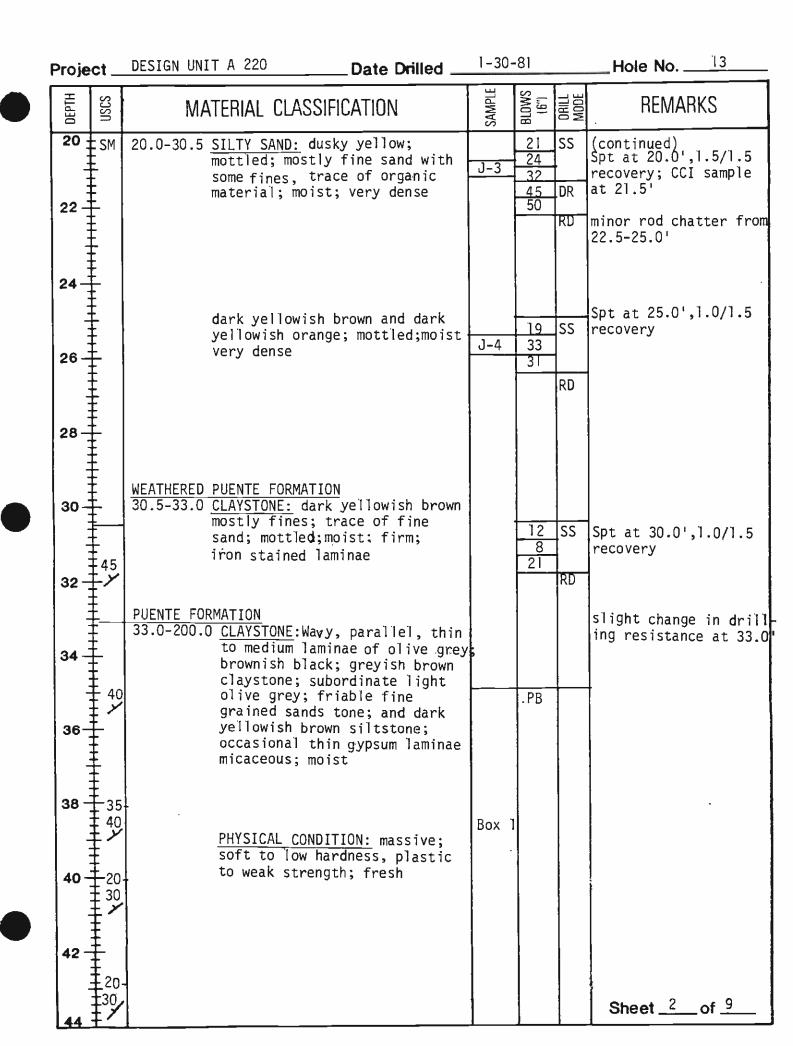
. •

A.4 PIEZOMETER INSTALLATION

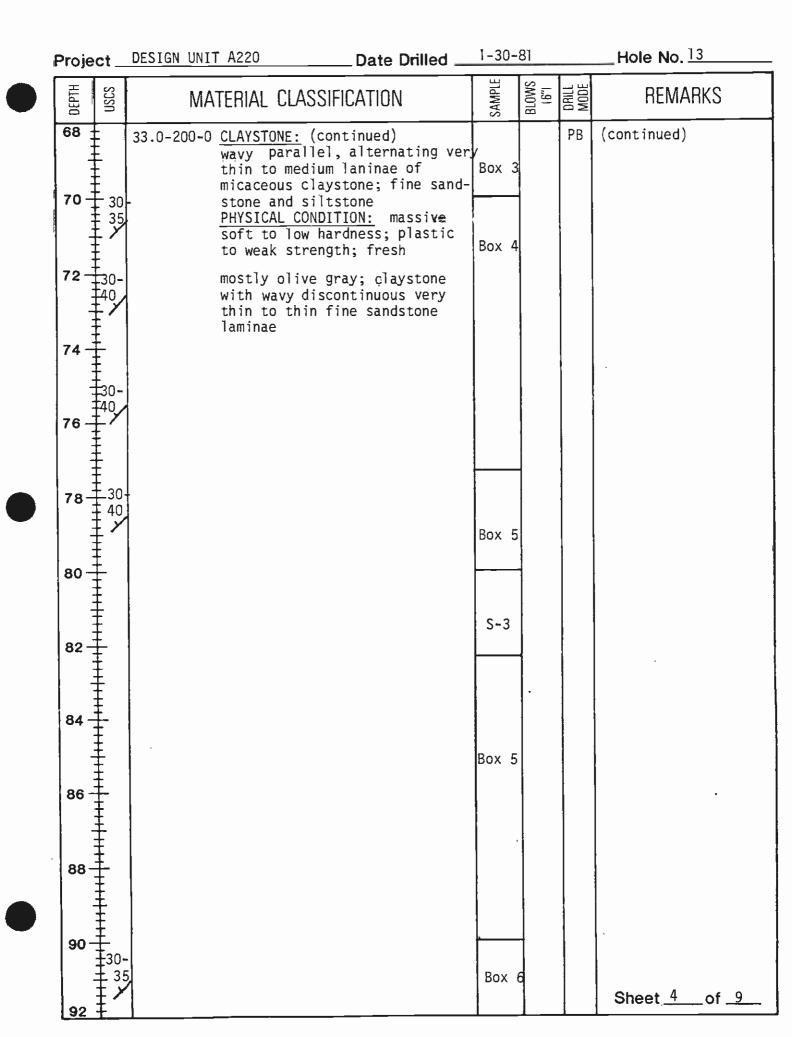
Piezometers were installed in borings 14-1, 14-3, 15-1 and 15-3 located at the Wilshire/Normandie and Wilshire/Western Station sites. Procedures for piezometer installation were as follows:

A 2-inch diameter plastic ABS pipe was installed in the boring. At least the lower 20 feet of the ABS pipe was perforated, and the annulus of the boring around the perforated portion of the pipe was backfilled with a coarse sand/pea gravel aggregate. Concrete/bentonite slurry was used to backfill around the non-perforated portion of the pipe to prevent surface water from artificially recharging the gravel-packed hole or contaminating local ground water. After the piezometer was installed, the boring was flushed using air lift provided by a trailer-mounted air compressor. The piezometer was covered with a standard 7-inch diameter steel water meter cap held at surface grade by a grouted in-place 3- to 4-foot long, 5-inch diameter plastic sleeve. Ground water data obtained from the piezometers are presented in Section 5.4 of the text.

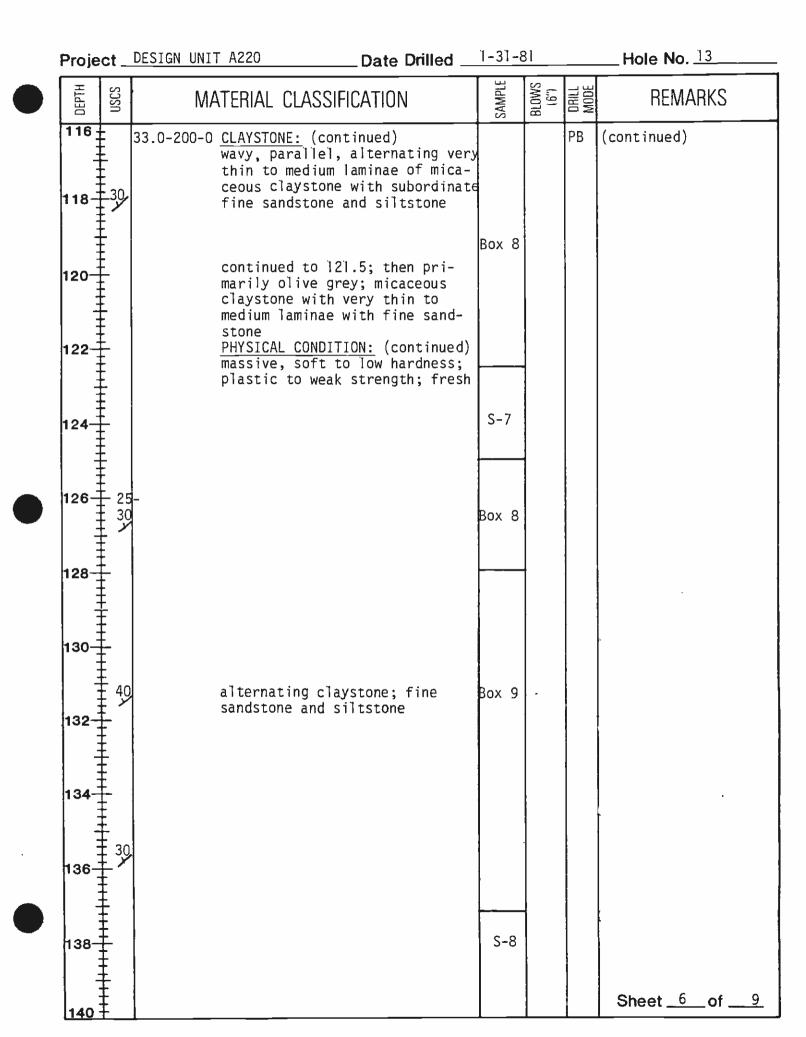
-A5-

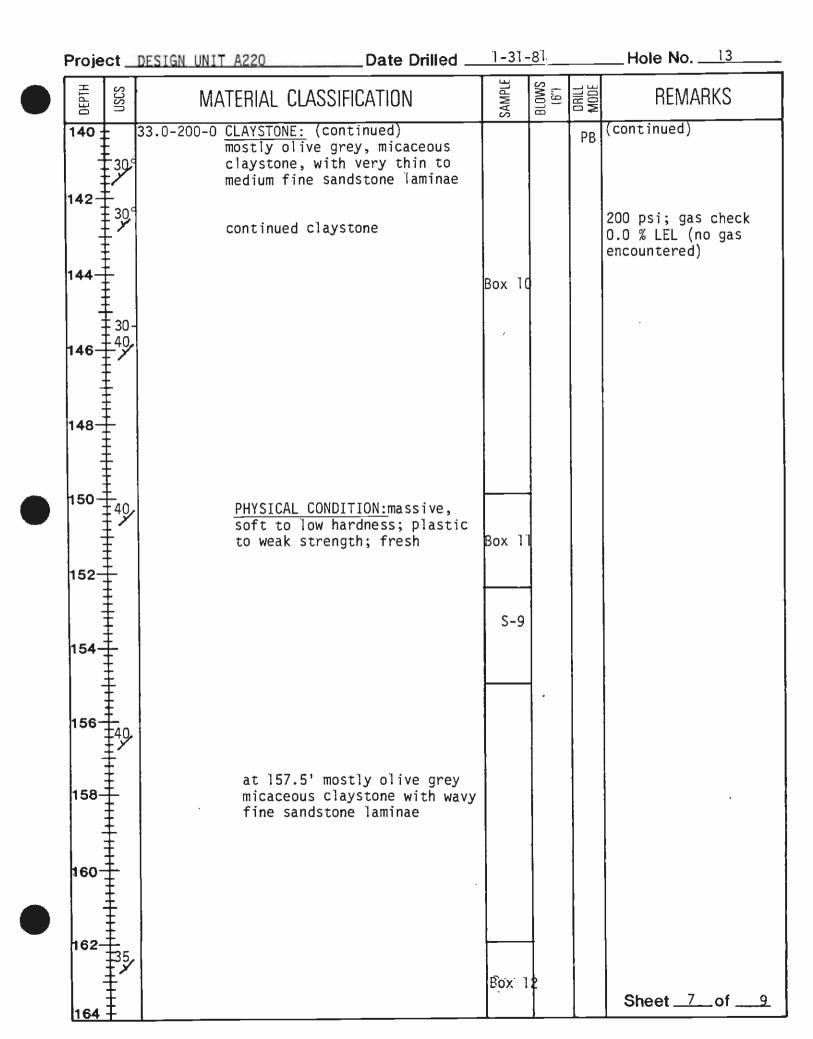

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

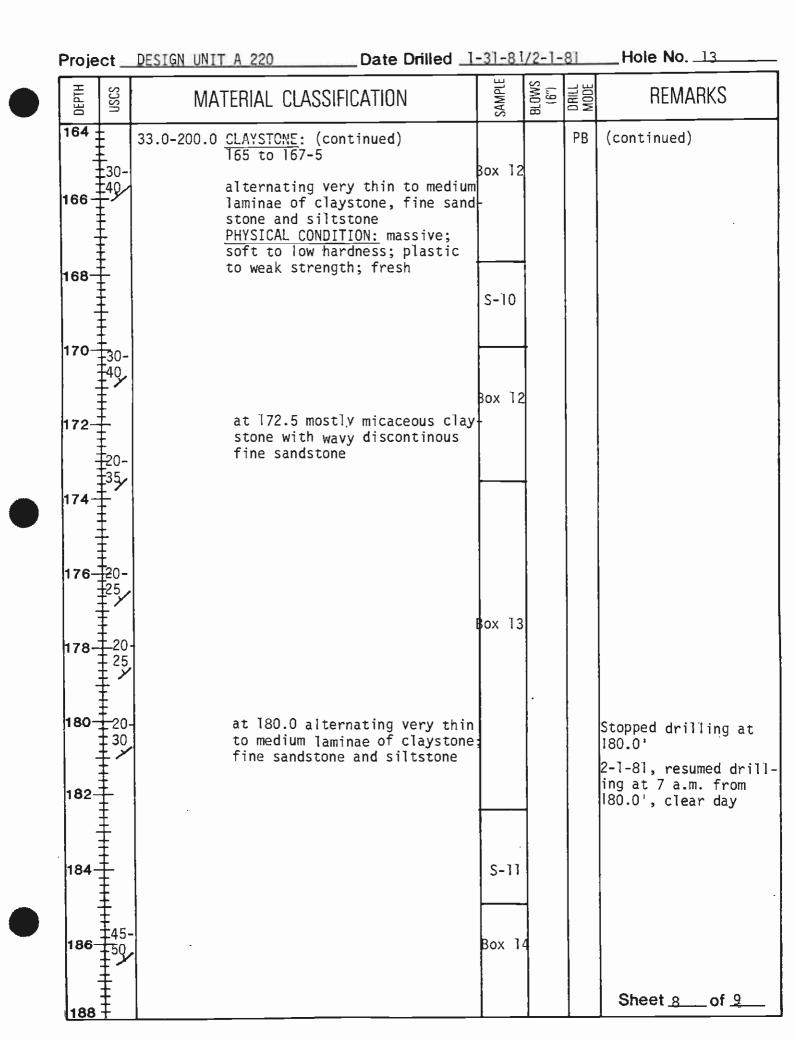


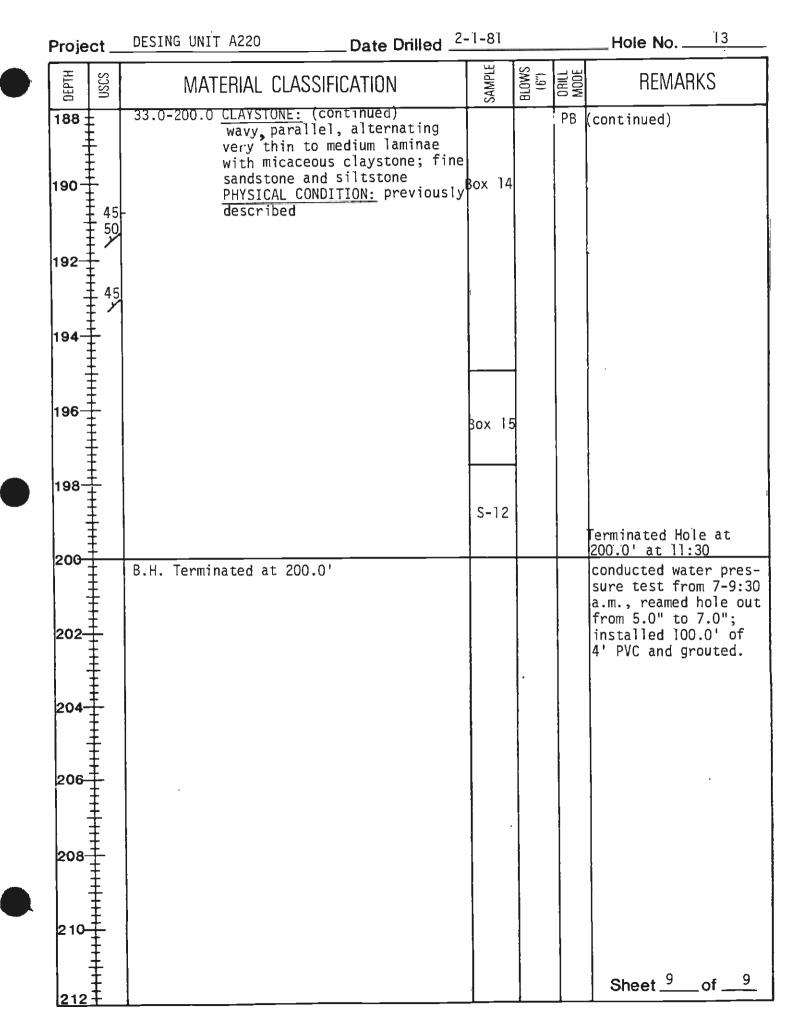

Proj: DESIGN UNIT A 220 Date Drilled 1-30-81/2-1-81 Ground Elev. 249 Drill Rig FAILING 1500 Logged By STEPHEN TESTA Total Depth 200.01

Hole Diameter 5" Hammer Weight & Fall 140 1b - 30"


DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	BLOWS (5")	DRILL MODE	REMARKS
2	CL	0.0-0.2 <u>ASPHALT:</u> 0.2-3.0 <u>SANDY CLAY:</u> light olive brown, mostly fines, with some fine sand moist; mottled; medium stiff				started drilling at 9:30, augered to 6.5'
4	SP	3.0-20.0 <u>SAND:</u> olive grey, mostly fine to medium sand, moist; trace of fines				
6-		at 5.0: moderate yellowish brown fine to coarse sand, trace of fin gravel; dry	e			
				RD		drove 8.5' ./5" casing
8						
10-		10.0 moist; very dense	1-L	20 30 34		Spt at 10.0', 1.5/1.5 recovery
12_					RD	
14		gravelly from 13.0 to 13.5'				moderate rod chatter from 13.0 to 13.5'
16-		dusky yellow, mostly fine to coars sand, with trace of fines and fine gravel; mottled; moist; very dense		22 50	RD	Spt at 15.0', 1.0/1.0 recovery groundwater level V
18-						at 16.0' (2-2-81)
20	T 1					Sheet <u>1</u> of <u>9</u>







33.0 CLAYSTONE: (continued) from 72.5 mostly 01ive grey; micaceous clay- stone; with wavy very thin to med- ium fine sandstone laminae Box 6 94 PHYSICAL CONDITION: massive; soft to low hardness; plastic to weak strength; fresh S-4 98 20- 33- 335 100 30- 335 102 alternating very thin to medium laminae of claystone; fine sandstone and siltstone Box 7 104 stone at 110.5' 105 20- 20 106 20- 20 107 stone at 110.5' 108 S-6 114 303		<u>т</u>	ESIGN UNIT A220	Date Drilled _				Hole No13
<pre>solution mostly offive grey; micaceous clay- stone; with wavy, very thin to med- ium fine sandstone laminae PHYSICAL CONDITION: massive; soft to low hardness; plastic to weak strength; fresh bivalves at 98.2 alternating very thin to medium laminae of claystone; fine sandstone and siltstone belief the grained sand- too well cemented fine grained sand- stone at 110.5' well cemented fine grained sand- stone at 110.5' protection of the grained sand- too rotary drilled to li2.5</pre>	DEPTH	USCS	MATERIAL	CLASSIFICATION	SAMPLE	(,,9) BLOWS	DRILL	REMARKS
PHYSICAL CONDITION: massive; soft to low hardness; plastic to weak strength; fresh strength			mostly olive	grev: micaceous clav-	Box 6		PB	(continued)
bivalves at 98.2 bivalves at 98.2 30- 30- 33- 102 103 104 104 104 104 104 105 104 104 105 105 105 106 105 106 105 106 105 106 105 106 105 106 105 107 108 108 108 108 108 108 108 108			low hardness;	plastic to weak				stopped drilling at a depth of 95.0' at 5:0
alternating very thin to medium laminae of claystone; fine sandstone and siltstone Box 7 104 106 10 107 108 108 100 100 100 100 100 100 100 100	98	20	bivalves at	98.2	Box 6			7:00 a.m. at a depth of 95.0', clear day
<pre>laminae of claystone; fine sandstone and siltstone loa loa loa loa loa loa loa loa loa loa</pre>		30- 35						
<pre>108 108 110 110 110 1112 112 114 114 114 114 114 114 114 11</pre>			laminae of c	laystone; fine sandston		7		
well cemented fine grained sand- stone at 110.5' S-6 RD H14 30° S-6 RD Box 7 PB	106	10 20						
112 114 30° 114 30° 114 30° 114 30° 114 30° 114 30° 114 30° 112 112 112 112 112 112 112 11			well cement	ed fine grained sand-	S-5			225 psi; due to re- fusal at 111.0'; put
	112		Stone at 11	J. 5	S-6		- - - - -	bn tri-cone bit and rotary drilled to
	114	30			Box 7			Sheet <u>5</u> of <u>9</u>

ų,

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SDIL DESCRIPTION, BUT IS MDDIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT DTHER LOCATIONS OR TIME.

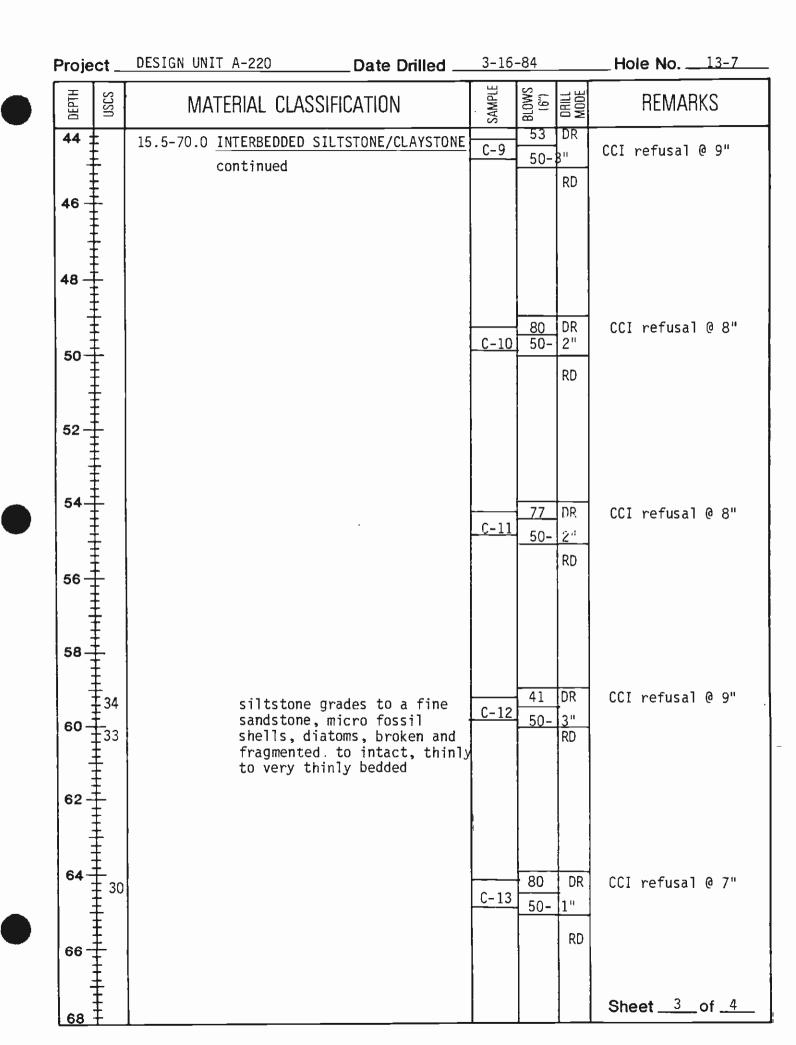
BORING LOG 13A

Proj:	D	ESIGN UNIT A-220	Date Drilled	11-9	-83			Ground Elev	2481
Drill I	Rig ₌	MAN-SIZE AUGER	Logged By	J. St	ellar			Total Depth —	60'
Hole	Diar	meter <u>33"</u>	Hammer Weig	ght &	Fall _	<u>N.A</u>			
DEPTH	nscs	Material Cla	SSIFICATION		SAMPLE	("9) 1dS	DRILL Mode	REMARKS	5
2-	- ML	A/C PAVEMENT <u>0.0-0.8</u> ALLUVIUM 0.8-4.0 <u>CLAYEY SILT</u> : moist, stiff	light brown, s , numerous root	ilight] s	У			Hole stood well general. 3' of @ 23'-27' due t seepage of perc water	belling o
6		4.0-11.0 <u>SILT</u> : light I moist, stiff clayey silt	orown, slightly , with layers c						
10-	L I	¹ / ₂ " 13.0-19.0 <u>SAND</u> : light	ım dense, grave	l to					
16 18 20	SP/	19.0-21.4 <u>SAND</u> : light dense w/ la	green, wet, m yers of silty	edium sand				Sheet _1of	3

F	Proje	ct	DESIGN UNIT A-220	Date Drilled	11-9	-83		Hole No	13A
	DEPTH	nscs	MATERIAL CLASSI	FICATION	SAMPLE	SPT (6")	DRILL Mode	REMA	RKS
	20	E SM	<u>SAND</u> : (continu 21.4-29.0 <u>SILTY SAND</u> : lig fine to medium						:
	24 26 28		6" lay silt	vers of sandy				5± g.p.m. s 26', 3' bel 27', most H from southw	ling 23'- 20 coming
	30		interbeds, weak stri	sh brown, low ly laminated sandy siltstone					
	34 36 38		becom low b	mes blue gray with Mardness, weak					
	40		stren	gth					
	44							Sheet2	_of

Proje	ct _	Design Unit A-220 Date Drilled _	11-9-8	3		Hole No
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
44		PUENTE FORMATION 29.0-60.0 <u>SILTSTONE</u> : (continued)				
48-						Bag Sample 50' - 53'
52		3"-4" sandy silt stone interbeds	-			
54-		becomes hard (silicious)				
56-	╪╎_{╹╹╹╹}					
60-		· · · · · · · · · · · · · · · · · · ·				
-		B. H. 60.0' Terminated hole. Cased hole to 40'.				-
62-		Don Rose (Tudor) Downhole J. Stellar				
64 -		On Site Don Rose Don Croft Keith Bull				
66-		Frank McLean (MRTC)				
68	Ŧ					Sheet of

This Boring Log is based on field classification and visual soil description, but is modified to include results of laboratory classification tests where available. This log is applicable only at this location and time. Conditions may differ at other locations or time.

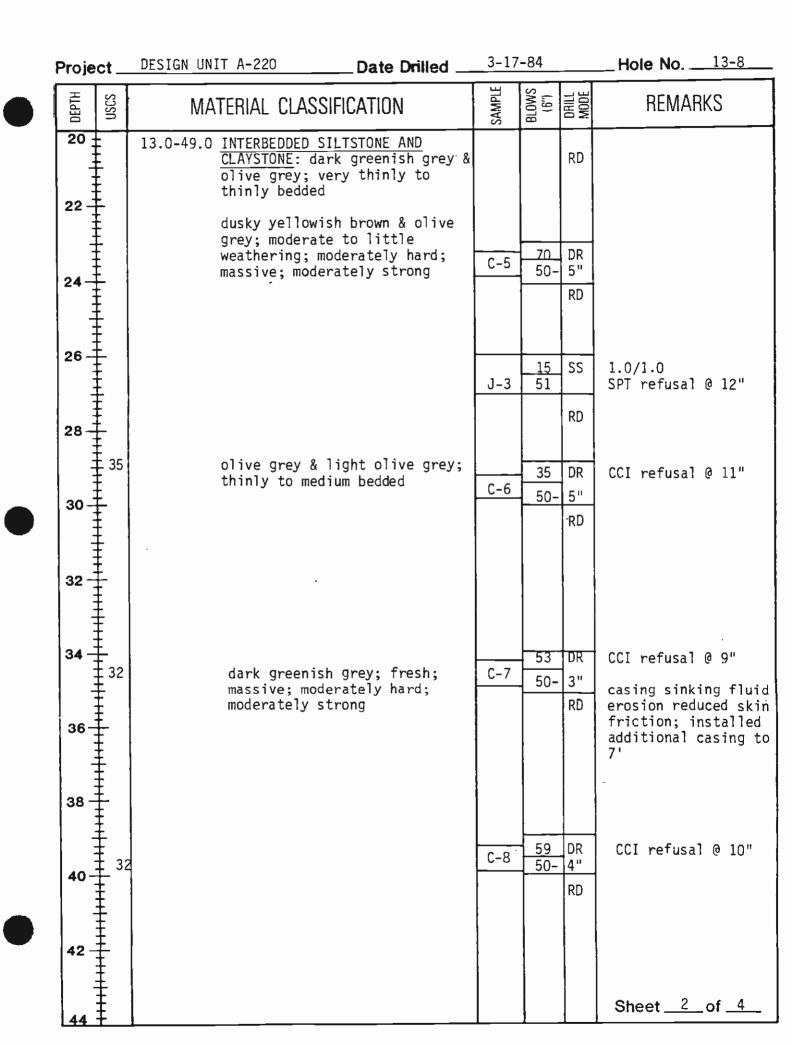


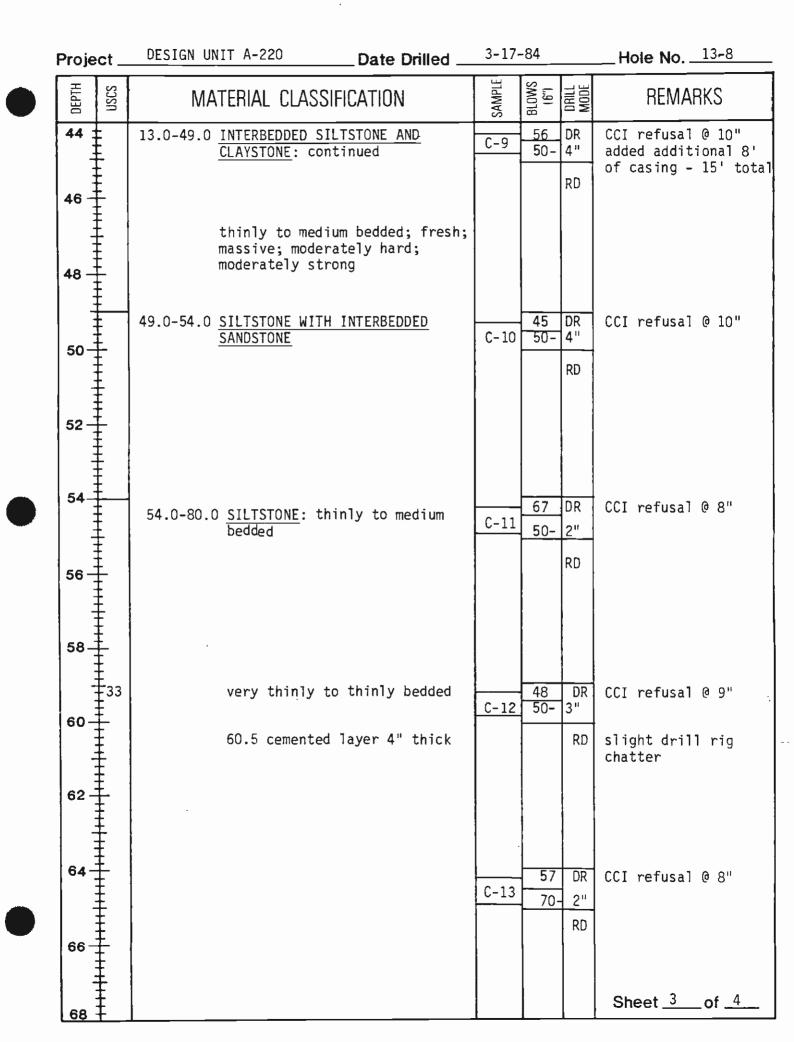
BORING LOG 13-7

Proj:	<u>DESIGN UNIT A-220</u>	Date Drilled	3-1	<u>6-84</u>		Ground Elev		
Drill Rig .	Failing 1500	Logged By	<u>M.</u> S	chluter			Total Depth	
	meter4_7/8"	Hammer Wei	ght &	Fall _	325# @	18	"/140# @ 30"	
DEPTH USCS	MATERIAL CLA	SSIFICATION		SAMPLE	BLDWS (6")	NODE	REMARKS	
• AC	0.0-0.8 A.C. PAVEMENT	-				С	start drilling @ 8:50	
2	0.8-2.5 <u>CLAYEY SILT</u> : sandy silt; m soft	olive black; s noist; soft to	some very			A	0.50	
4		<u>SILTY CLAY</u> : dar wn; moist; fir ous; increasing	m;	<u>C-1</u>	17	DR 325 RD	rotarywash,drag bit	
6				J-1	6 14	SS	1.5/1.5	
8 55C/ 10	8.0-12.5 CLAYFY SAND/ yellowish b grey; moist dense/soft	rown and light ; loose to med	olive			RD SS		
10 						RD		
14		<u>LY SAND</u> : dark prown; moist; n ense; gravel le		C-3	32	DR	top ring disturbed	
16		grey & light	brown	J-2	4	RD SS	1.3/1.5	
18	very thinly	ey; moist; thir / bedded; occas /yers; micaceou	ional		18	RD	Sheet1_of4_	
20 ‡							Sheetof	

I	Proje	ect _	DESIGN UNIT A-220	Date Drilled	3-16-8	84		Hole No.	13-7
	DEPTH	uscs	MATERIAL CLA	SSIFICATION	SAMPLE	1,29) SMDTB	DRILL MODE	REMA	RKS
	20 22		Physical Condit fractured to ma soft; plastic t weathering	ion: little ssive; very soft to o friable; moderate	<u> </u>	<u>18</u> 29	DR RD		
	24				<u>C-5</u>	<u>41</u> 59	DR RD		r I
	26 -		thinly to medi very thinly be interbeds	um bedded; occasiona dded to laminated	J-3	25 26 50-	SS 5" RD	1.5/1.5 SPT refusal	@ 17"
;	-	34	very thinly be laminated	dded; occasionally.	C-6	38 60	DR · · · RD		
	32 - 34 -	30		ring to fresh; soft hard; massive; rong	C-7	36 50-	DR RD	CCI refusal	@ 10"
	36 - - 38 -		thinly to med moderately ha	grey; olive black; ium bedded; fresh; rd; massive; rong; slightly moist	J-4	12 28 50-	SS " RD	1.2/1.3 SPT refusal	@ 15"
	40-				C-8	61 50-	DR Z₩ RD	CCI refusal	@8"
	42 -							Sheet 2	of4

Pro	ject _	DESIGN UNIT A-220 Date Drilled	3-16	-84		Hole No13-7
DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	(£") BLOWS	DRILI. Mode	REMARKS
68 70		15.5-70.0 INTERBEDDED SILTSTONE/CLAYSTONE continued	<u>C-14</u>	<u>64</u> 50-	DR 3"	CCI refusal @ 9"
72		END OF BORING 70.0' Filled hole with 3 sac/65 gallon cement slurry.				finished boring @ 2:55
74						
76						
78						
80	***					
82	*** *** **					
84	+++++++++++++++++++++++++++++++++++++++					
86	**					-
88	**					
90				s		
92	+++++++++++++++++++++++++++++++++++++++					Sheet <u>4</u> of <u>4</u>




THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

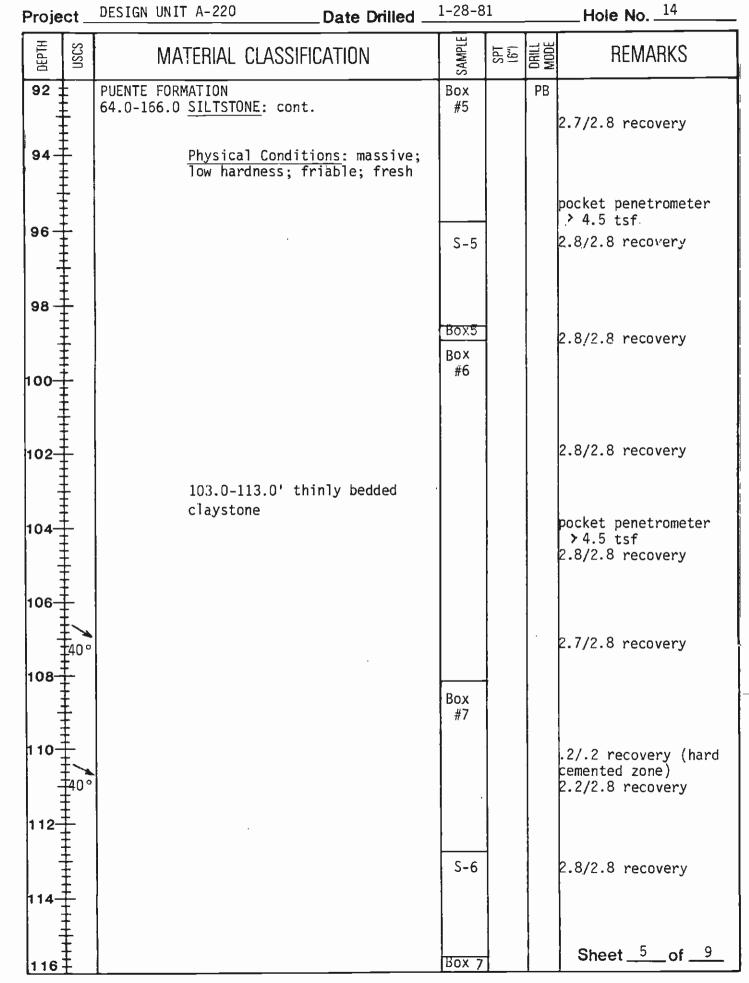
BORING LOG 13-8

Proj:		DESIGN UNIT A-220	Date Drilled	3	-17-84	4			Ground Elev
Drill	Rig	Failing_1500	Logged By _	Μ.	Sch1u	ter			Total Depth <u>80.0'</u>
Hole	Dia	meter_ <u>4_7/8"</u>	Hammer Weig	ght	& Fal	<u> </u>	325#	@ 18	"/140# @ 30"
DEPTH	uscs	MATERIAL CLA	SSIFICATION		SAMPLE		BLOWS (6")	DRILL MODE	REMARKS
· ·	AC SM	0.0-0.4 <u>A.C. PAVEMENT</u> 0.4-3.0 <u>SILTY SAND</u> : ye	ellowish grey,	ligh	nt			C	start drilling @ 8:00
2		olive grey; mo dense	bist; loose to	medi	i um			A	
4-	SP	3.0-13.0 <u>SAND:</u> yell yellow; med	owish grey, dus ium dense; mois		С	-1	17 30	DR RD	rotary wash, drag bit
6-					J-	1	12 22	SS	1.0/1.5
8-							40	RD	
10-					C-	2	10 19	DR RD	
12-									· ·
14-	31	13.0-49.0 <u>INTERBEDDEL</u> CLAYSTONE:	light olive gr / bedded; occas	ey;	C-:	3	<u>18</u> 21	DR RD	
16-		fractured t to low hard	ondition: little co massive; fria lness; weak to r lerate weatherin	able nod.		-2	8 15 32	SS RD	
20	24 24				C-	-4	11	DR	Sheet of

Pro	ject	DESIGN UNIT A-220 Date Dril		84	Hole No3-8
DEPTH	- IICLO	MATERIAL CLASSIFICATION	SAMPLE	BŁOWS (6") DRILL MODE	REMARKS
68 70		54.0-80.0 <u>SILTSTONE</u> : continued	C-14	RD 69 DR 50- 3" RD	CCI refusal @ 9"
72		fresh; massive; thinly to			
76		medium bedded; moderatel; moderately strong	/ hard <mark>; C-15</mark>	<u>61</u> DR 75- 3" RD	CCI refusal @ 9"
78	+++++++++++++++++++++++++++++++++++++++		C-16	<u>97</u> DR 50- 1.5	CCI refusal @ 7.5"
80		END OF BORING 80.0' Filled hole with 3 sac/70 gallon ce slurry	ement		Finished drilling @ 2:15
84					
86					
90					
92	2				Sheet _4_of4_

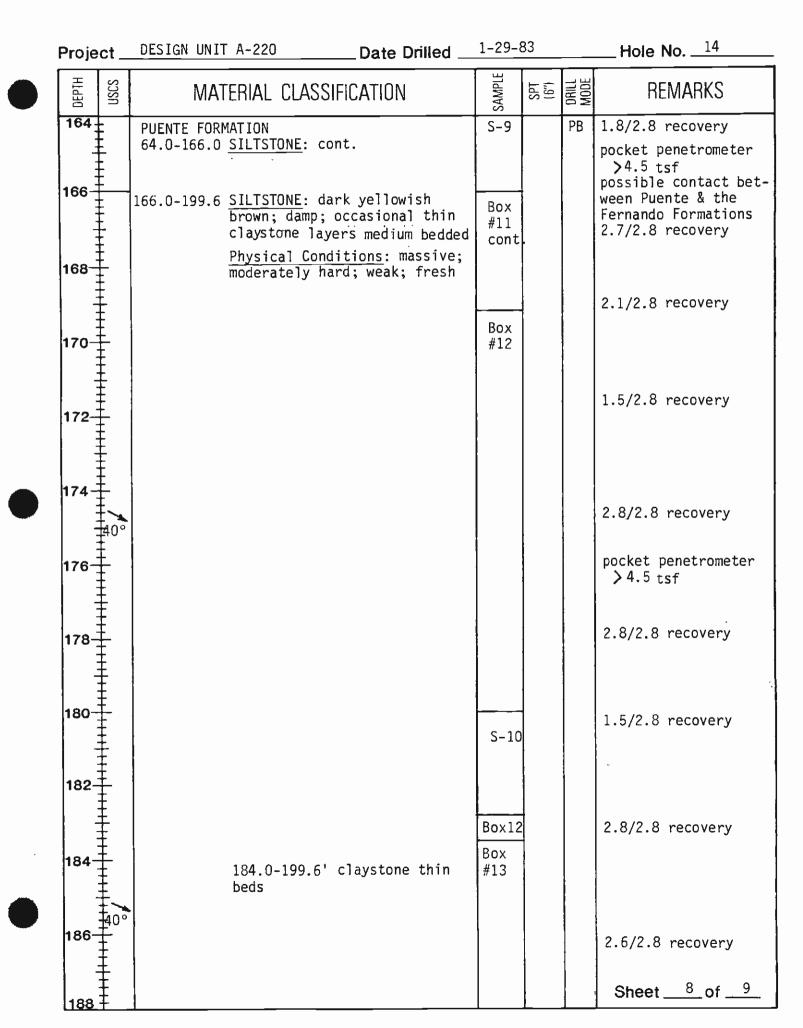
THIS BORING LOG IS BASED ON FILLD CLASSIFICATION AND VISUAL SOIL OESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG 14


Proj:	DE	SIGN UNIT A-		Date Drilled	[1/27	-30/8:	L		Ground Elev. 199.5'
Drill	Rig .	Failing		Logged By	Galli	natti			Total Depth199.6
		meter <u>4 7/</u>		Hammer Wei			140	<u>15 (</u>	<u>a 30"</u>
DEPTH	NSCS	MAT	ferial Cla	SSIFICATION		SAMPLE	SPT (6")	DRILL MODE	REMARKS
0 2- 4- 6-		ALLUVIUM 1.0-17.0 <u>SA</u> so	ONCRETE ANDY CLAY: o ome fine to oft	dark yellowish medium sand;	brown; damp;			AD	Begin drilling 2:00 1/27/81 Auger down to 8'
8- 10- 12- 14- 16- 18-		SAN PEDRO 17.0-21.5	FORMATION SILTY SAND:	ange to olive	some	J-1 J-2	3 3 4 7 12 15	RD SS RD SS	1.3/1.5 recovery 1.3/1.5 recovery
20	<u> </u>								Sheet1_of9

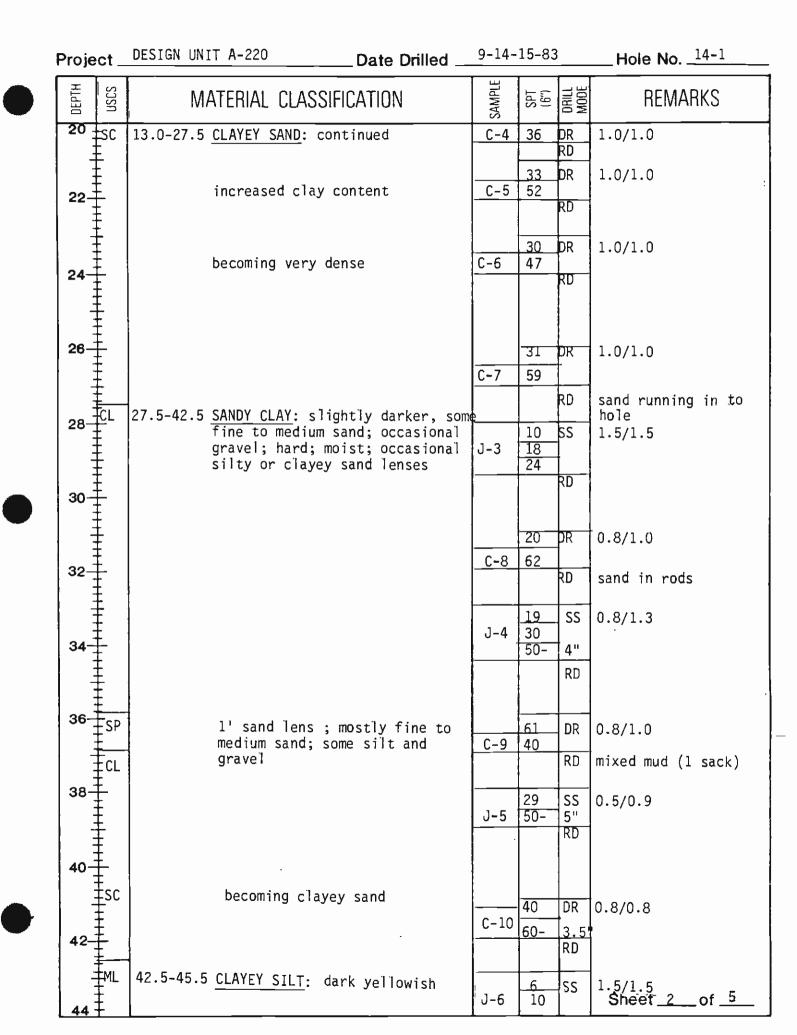
Proje	ect _	DESIGN UNIT A-220 Date Drilled	1-27-	81		Hole No14
DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
	SM ML	WEATHERED PUENTE FORMATION	J-3	13 15	DR SS	No Recovery 0/1.5 recovery
	+++++++++++++++++++++++++++++++++++++++	21.5-30.0 <u>CLAYEY SILTSTONE</u> : light brown; moist		13	RD	
24-			C-1		DR	1.0/1.0 recovery
28-	+++++++++++++++++++++++++++++++++++++++	sample: many oxide stained fracture surfaces	J-4	6 7 11	SS RD	1.5/1.5 recovery
30-	+++++++++++++++++++++++++++++++++++++++					
		PUENTE FORMATION 30.0-37.3 <u>SILTSTONE</u> with <u>CLAYSTONE</u> <u>INTERBEDS</u> : pale brown siltstone dark mod. brown clay; damp		<u>40</u> 55	SS RD	0.7/1.0 recovery
32-	++++50°	<u>Physical Condition</u> : massive; lo hardness; friable; fresh	W Box #1		РВ	1.6/2.8 recovery
34-					1	2.6/2,8 recovery
38-		37.3-60.8 <u>SILTSTONE</u> : dark yellowish brown damp	• 7			2.8/2.8 recovery
40-	+++++++++++++++++++++++++++++++++++++++	<u>Physical Conditions</u> : massive; low hardness; friable; fresh				pocket penetrometer ≻4.5 tsf
_						2.5/2.8 recovery
42-			S-1	-		Sheet of

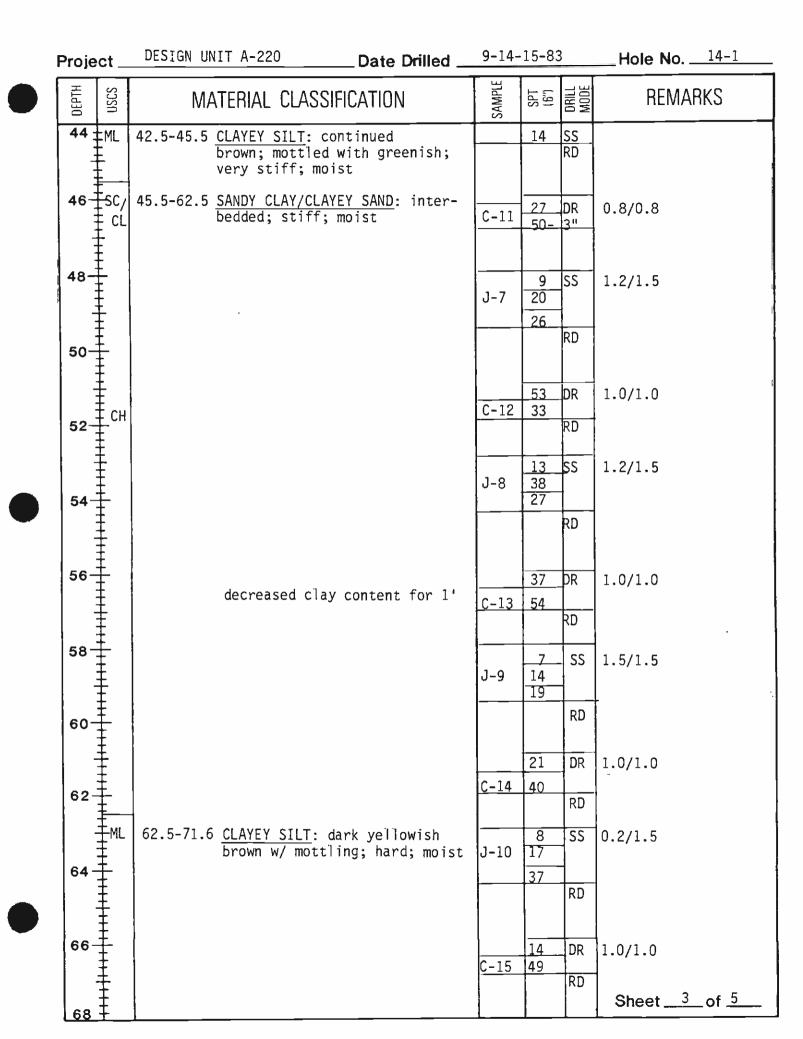
Proje	ect	DESIGN UNIT A-220 Date Drilled	1-27-8	81		Hole No14
DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DHILL MODE	REMARKS
44		PUENTE FORMATION 37.3-60.8 <u>SILTSTONE</u> : cont.	S-1		PB	2.8/2.8 recovery
48			Box #2			2.3/2.8 recovery
50-		51-60' interbeds of claystone and silty sandstone				2.6/2.8 recovery pocket penetrometer >4.5 tsf
54						2.7/2.8 recovery
56			Box #3			
58 60			\$-2 S-3			2.8/2.8 recovery 1.0/1.0 recovery
62		60.8-64.0 <u>SILTSTONE</u> : greyish brown; cemented; dry <u>Physical Conditions</u> : massive; hard; strong; little weathered		1	RD	60' - hard cemented siltstone
64		64.0-166. <u>SILTSTONE</u> : dark yellowish brown damp	Box		ъв	2 7/2 8
66		<u>Physical Conditions</u> : massive; low hardness; friable; fresh	#3 cont.		ם	2.7/2.8 recovery Sheet 3_{-9} of 9_{-9}
68 -			1			

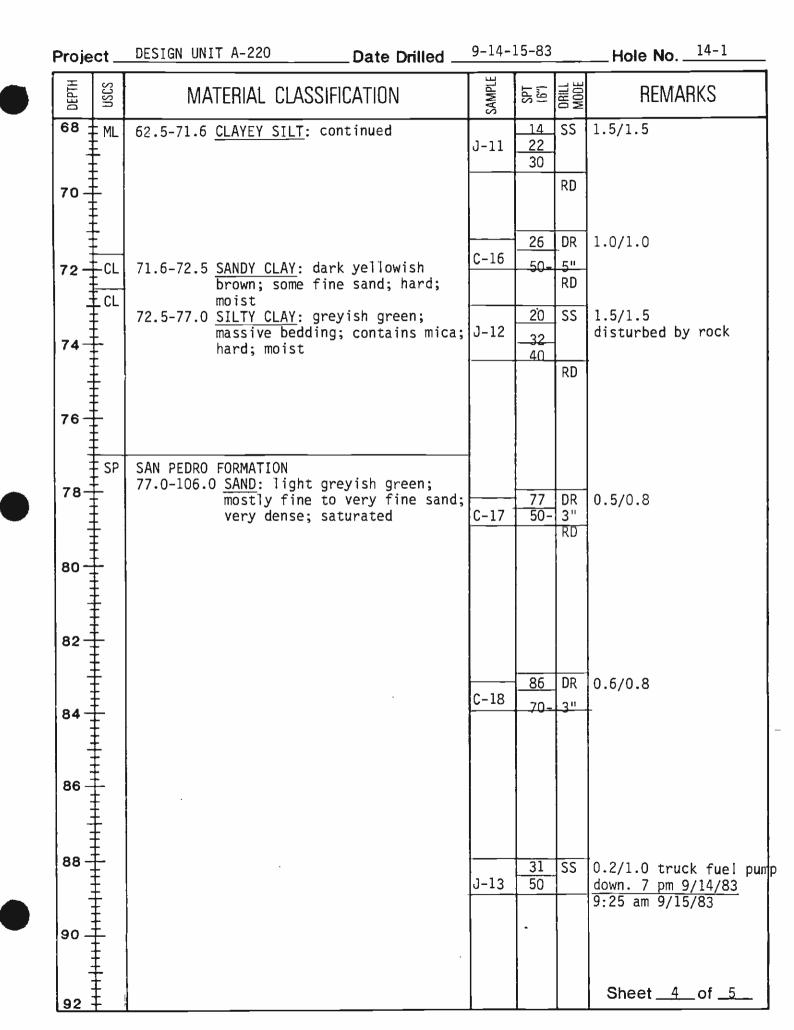

	Proje	ect _	DESIGN UNIT A-220	Date Drilled _	1-27-8	1		Hole No
ł	DEPTH	uscs	MATERIAL CLASSI	FICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
	68		PUENTE FORMATION 64.0-166.0 <u>SILTSTONE</u> : con	it.	Box #3		РВ	1.8/2.8 recovery
	70 -	40°	71.0' - thin s lens	ilty sandstone				2.8/2.8 recovery
	74-							2.7/2.8 recovery
	76-	╼ ╋╋┿┿╋╋╋	<u>Physical Condi</u> low hardness;	<u>tions</u> : massive; friable; fresh	Box #4			pocket penetrometer > 4.5 tsf 2.8/2.8 recovery
	78- 80-	┶╍┙┙┙			S-4			2.8/2.8 recovery
	82-		82.0-88.0' thi claystone	n]y bedded	Box #4 cont.		- - -	2.7/2.8 recovery
	- 86 -	40°						2.7/2.8 recovery pocket penetrometer > 4.5 tsf
	88 -	*			Box #5			2.8/2.8 recovery
	90 -							2.8/2.8 recovery
	92	ŧ				1		Sheet <u>4</u> of <u>9</u>

Project_	DESIGN UNIT A-220 Date Drilled	1-28-	81		Hole No14
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	SPT 16")	DRILL MODE	REMARKS
116 118 120	PUENTE FORMATION 64.0-166.0 <u>SILTSTONE</u> : cont. <u>Physical Conditions</u> : massive; low hardness; friable; fresh	Box #7		PB	<pre>pocket penetrometer > 4.5 tsf 2.8/2.8 recovery 2.8/2.8 recovery</pre>
122		Box #8	-		1.9/2.8 recovery
124					2.8/2.8 recovery 126.8' stop drilling 1/28/81;begin drilling
128		S-7			<pre>1/29/81-raining all day 2.8/2.8 recovery pocket penetrometer > 4.5 tsf 2.8/2.8 recovery</pre>
132		Box #8 cont.			2.8/2.8 recovery
136		Box #9			2.8/2.8 recovery
138					2.8/2.8 recovery
140	u				Sheet of

	Proje	ct _	DESIGN UNIT A-220 Date Drille	ed	1-29-	-81		Hole No14
)	DEPTH	NSCS	MATERIAL CLASSIFICATION		SAMPLE	SPT (6")	DRILL MODE	REMARKS
	140		PUENTE FORMATION 64.0-166.0 <u>SILTSTONE</u> : cont. <u>Physical Conditions</u> : massi	ve;	Box #9		РВ	<pre>pocket penetrometer 4.5 tsf 2.8/2.8 recovery</pre>
	144		low hardness; friable; fre 144.0-164.0 occasional cla layers and thin silty sand layers	yston	e Box #10			2.8/2.8 recovery
	146		· · ·		S-8		1	2.8/2.8 recovery
)	150	/ °			Box #10 cont			2.8/2.8 recovery
	152-		becoming more closely inte bedded	r-				2.8/2.8 recovery pocket penetrometer > 4.5 tsf
	156	/10°	mostly thin siltstone laye with some claystone layers sandstone layers					2.6/2.8 recovery
	158-				Box #11			2.8/2.8 recovery
)	160– 162–	40°						2.8/2.8 recovery
	164				S-9			Sheet _7_ of _9_

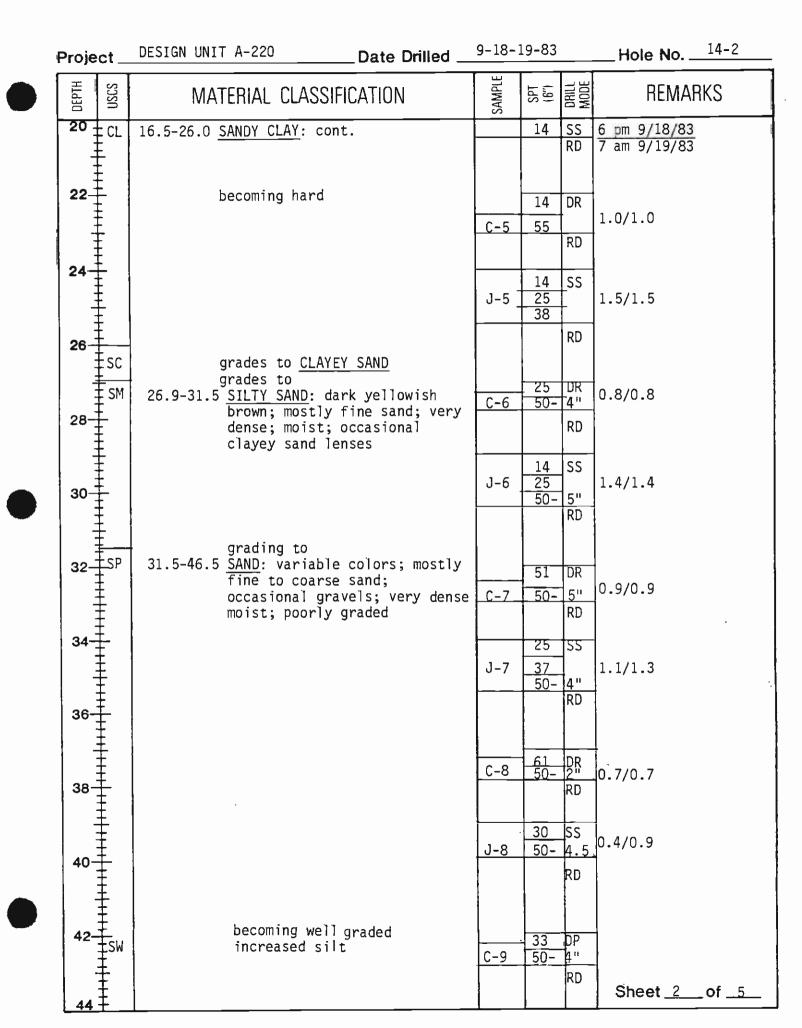

Projec	DESIGN UNIT A-220	Date Drilled		-81		Hole No	14
	MATERIAL CL	ASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMAR	RKS
188	166.0-199.6 <u>SILTSTON</u>	<u>E</u> : cont.	Box #13		PB	2.4/2.8 recov	very
190	0°					pocket penetr >4.5 tsf 2.0/2.8 recov	
194	0°		Box			2.1/2.8 recov	very
196	-		#14			2.8/2.9 recov	very
200	B.H. 199.6' Terminat no combustibles, 20%	Oxygen, water				stop circulat 1/29/81	
202	sampled within 2" pi	ezometer 2/18/81				1/30/81 - rur pressure test erial was too the packers t properly. The successful te	ts. Mat- b soft fo to seat e only
204						from 100'-120 psi. The form took no water meters insta pvc from 0-20 cloth covered)'@20 nation ^.Piezo- lled:2" DO'with
206						tions from 16 1" pvc from (perforations 25'. Gravel Bentonite plu	50–195'. D-30' wit from 15- packed w/ Jg from
210						27-33'. Surfa clean-up site	ace cap, e.
212+						Sheet9	of

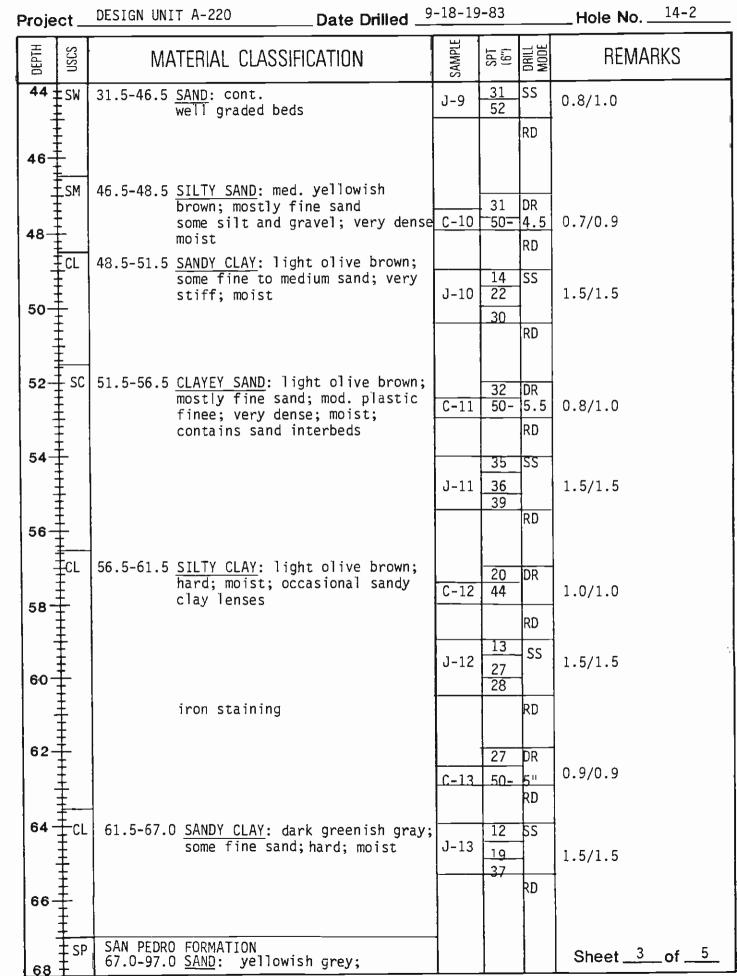

This boring LDG is based on field classification and visual soil description, but is modified to include results of laboratory classification tests where available. This log is applicable only at this location and time. Conditions may differ at other locations or time.

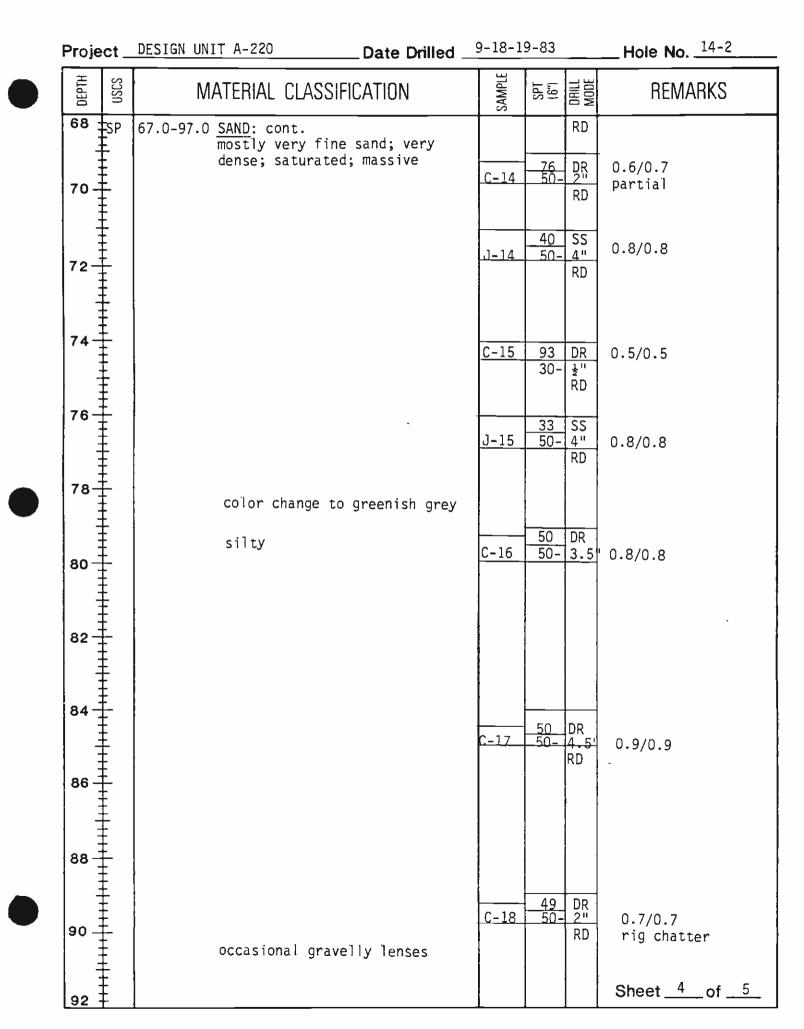


BORING LOG 14-1

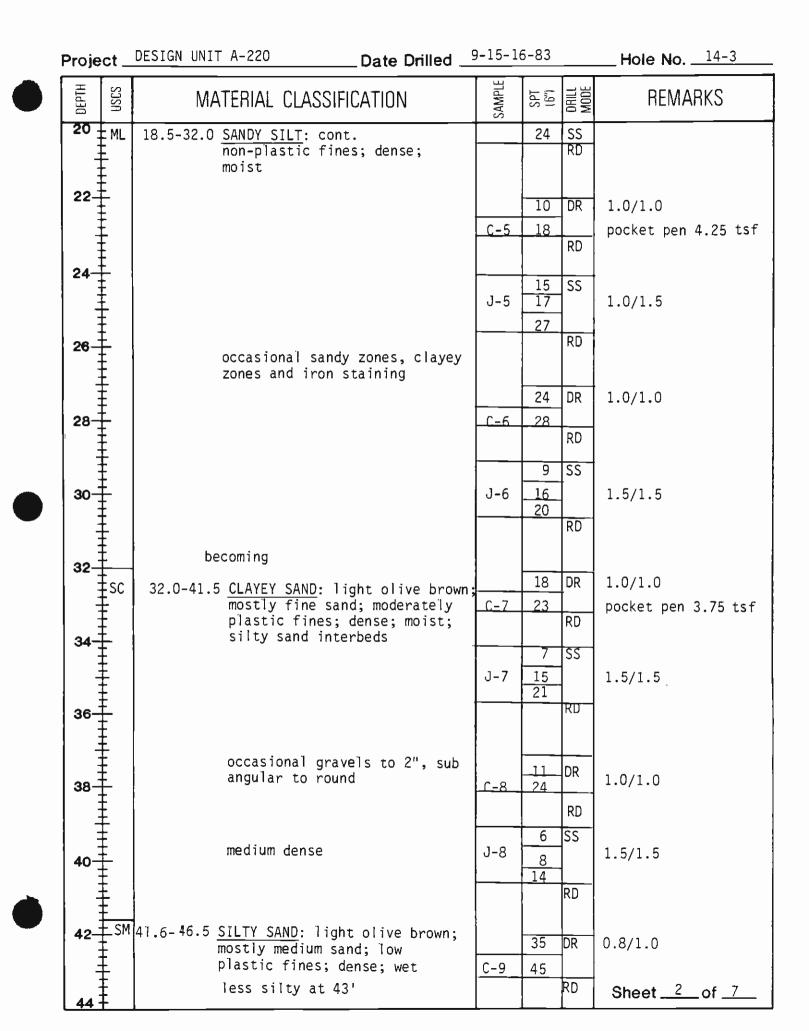
Proj:	SIGN UNIT_A-220 Date Drilled9-14	-15-83	3		Ground Elev. 225'
Drill Rig	Failing 1500 Logged By L.S	choeb	erlei	ī	Total Depth <u>109.9'</u>
Hole Diar	neter 4 7/8" Hammer Weight &	Fall _	140	Ь @	30"
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")		
	0.0-0.2 <u>APSHALT</u> 0.2-1.0 <u>CONCRETE</u> YOUNG ALLUVIUM 1.0-5.6 <u>SILTY CLAY</u> : dark yellowish brown;		4	GB DR	start drilling 10:30 0.8/1.0
2	mottled with greenish grey; some sand; ; moist; stiff; becomes reddish brown, mottled and contains occasional sand lenses to 4" thick	J-1	3	GB SS	1.2/1.5
			10	GB	11:15 setting tub and casing
6-+CL	OLD ALLUVIUM 5.6-10.5 <u>SILTY CLAY</u> : dark yellowish brown mottled with greenish grey; some sand; moist; stiff; becomes red- dish brown, mottled and contains		5	DR RD	to 5' 1.0/1.0
8 + + +	occasional sand lenses to 4" thick and roots increased to very stiff	J-2	5 12 21	SS	0.4/1.5 drove rock ahead
10	10.5-11.5 <u>SILTY SAND</u> : dark yellowish brown; mostly fine sand; dense; wet; contains lenses of coarser material	C-3	11 20	RD DR RD	1.0/1.0
	<pre>11.5-13.0 <u>SILTY CLAY</u>: dark yellowish brown; some silt, trace sand; very stiff; moist 13.0-27.5 <u>CLAYEY SAND</u>: dark yellowish brown, mostly fine sand, some clay; wet; moderately plastic; occasional gravel; dense; moist</pre>		15 19 20	SS RD	0/1.5 lost drive head of SPT, fished w/Shelby, no luck, drilled out with drag bit
			<u>30</u> 50-	DR 3" RD	0/0.75
18 + + + + + + + + + + + + + + + + + + +			95	DR RD DR	attempted drive w/ CCI sampler, brought up SPT shoe Sheet <u>1</u> of <u>5</u>


F	Proje	ct _	DESIGN UNIT A-220 Date Drilled	9-14-1	.5-83		Hole No
	DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	("3) T92	DRILL MODE	REMARKS
2	92	SP	77.0-106 <u>SAND</u> : continued	C-19	67 60-	RD DR 4" RD	0.8/0.8
	96 98 98					РВ	
	102			PB-1		RD '	1.3/2.5
4	104 104		grading fine grained with increased silt content, occasional rounded gravels	<u>C-20</u>	<u>57</u> 50-	DR 4'' RD	0.6/0.9
	106 108		PUENTE FORMATION 106-109.9 <u>SILTSTONE AND CLAYSTONE</u> : thinly interbedded; greyish green to dark olive; moist; not cemented <u>Physical Condition</u> : little fractured to massive; friable		- 38	DR	0.9/0.9
	110-		hardness and strength; little weathered B.H. 109.9. Terminated hole after extending it to fine siltstone, installe 2" piezometer to bottom. Lower 20' slotted.	C-21_	50-	5"	completed drilling 11:15
	114 116						Sheet <u>5</u> of <u>5</u>

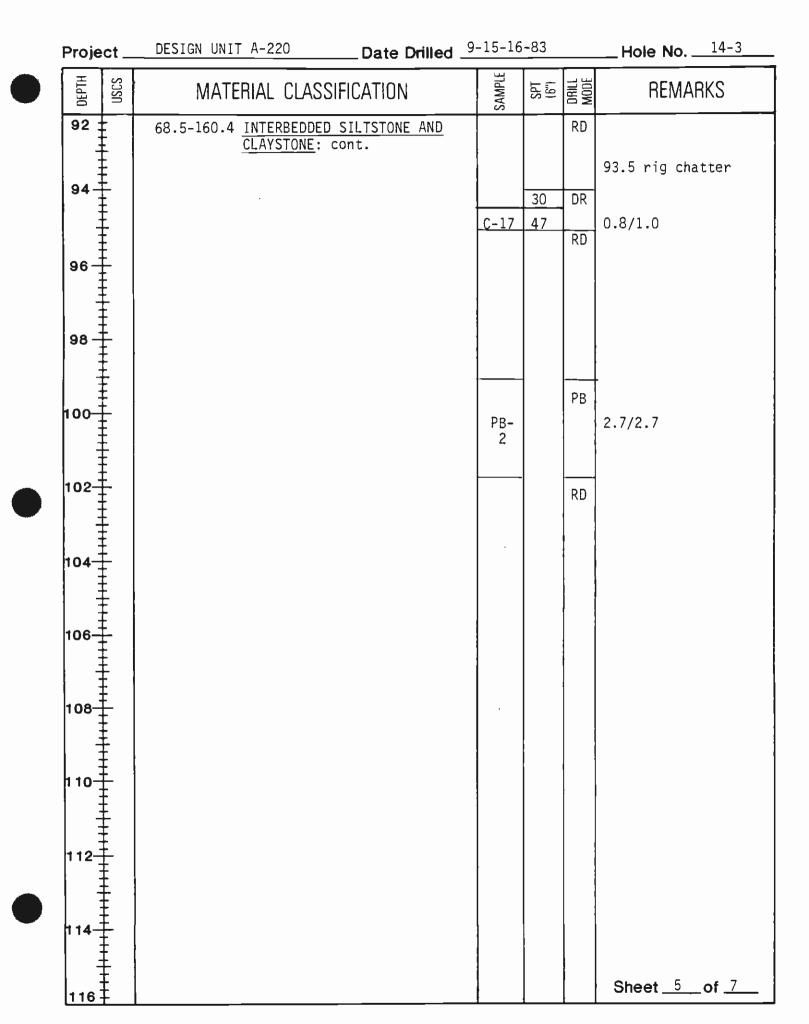

THIS BORING LOS IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

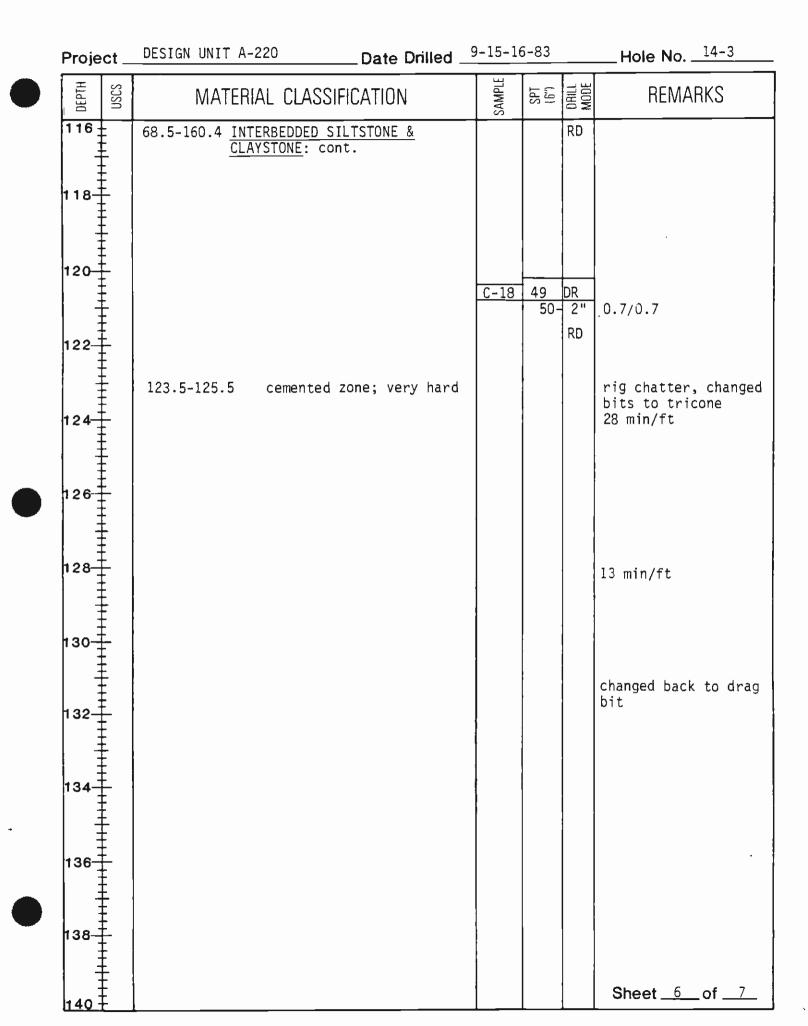

BORING LOG 14-2

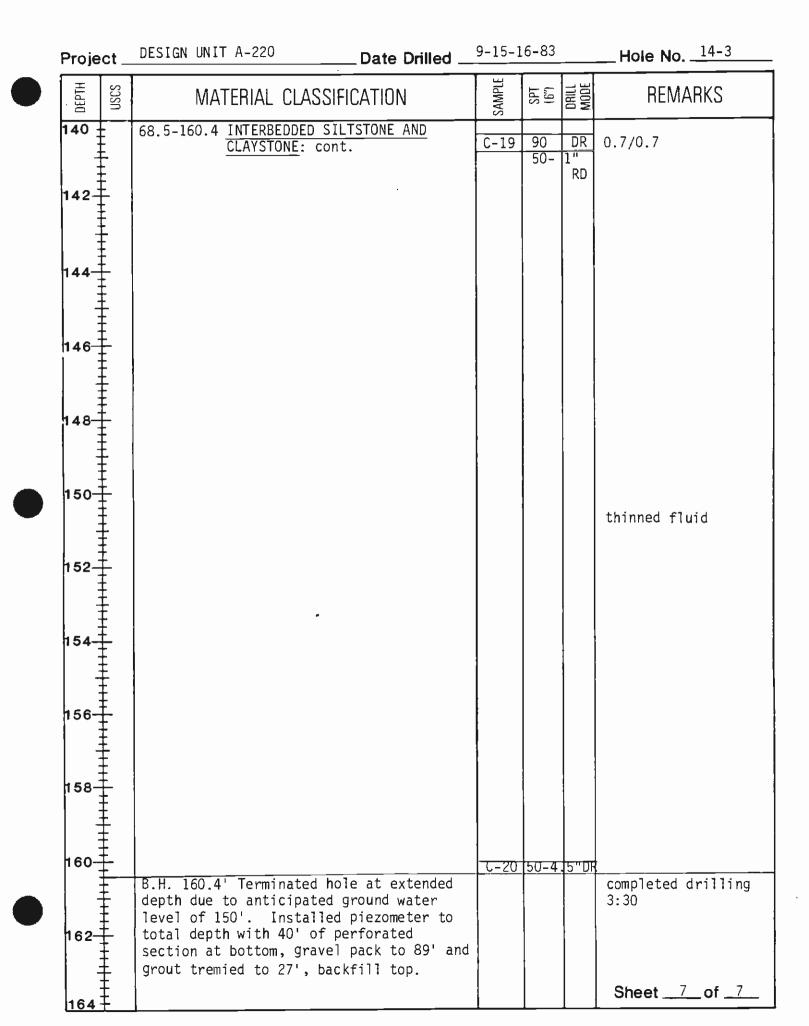
Proj: 🔄	ESIGN UNIT A-220 Date Drilled 9-18	-19-83			Ground Elev. 223
Drill Ri	gFailing 1500 Logged By L. Sch	bebe <u>rl</u>	in		Total Depth _104.7
Hole D	ameter <u>4 7/8</u> Hammer Weight &	Fall 🔟	40_lb	. 03	0"
DEPTH	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
	0.0-0.2 ASPHALT 0.2-0.7 CUNCRETE M YOUNG ALLUVIUM			GB	start drilling 4:15
2	0.7-6.0 SILTY SAND:med. yellowish brown; mostly very fine sand; some silt		10		
	med. dense; moist; iron staining	<u>C-1</u>		DR AD	1.0/1.0
	grain size increased to med. sand				
	clayey fine sand lens	J-1	<u>6</u> 12 15	ss	1.5/1.5
6	L OLD ALLUVIUM			AD	
	6.0-16.5 <u>SILTY CLAY</u> : dark yellowish brown mottled w/lt. olive brown		11	DR	1.0/1.0
8-	and black; hard; moist contains interbeds of sandy clay and clayey sand	<u>C-2</u>	34	RD	set tub and cased to 8.5
	8.5-11.00 sandy clay	J-2	15 16	ss	1.5/1.5
			20	RD	1.5/1.5
12			10	-	
		C-3	10 20		1.0/1.0
	becoming sandier		16	RD SS	
		J-3	27 38		0.7/1.5
	becoming 16.5-26.0 <u>SANDY CLAY</u> :light olive brown;			RD	
	CL some fine sand; v. stiff; moist	C-4	19	DR	1.0/1.0
	сн			RD	
20		J-4	7	SS	1.5/1.5 Sheet1of _5


Pro	ject _	DESIGN UNIT A-220 Date Drilled	9-18-19-8	3	Hole No
DEPTH	NSCS	MATERIAL CLASSIFICATION	SAMPLE	(6°) Drill Mode	REMARKS
92 94 96		67.0-97.0 <u>SAND</u> : cont. sulfur odor 2' cemented zone and gravels	C-19 100	RD - 5" DR RD	0.4/0.4 partial can hard drilling
98 10(10)	····	PUENTE FORMATION 97.0-104.7 <u>SILTY CLAYSTONE</u> : dark green- ish grey; thinTy bedded 1/4" to 3" <u>Physical Condition</u> : little fractured to massive; friable hardness and strength; little weathered	<u>23</u> C-20 50		0.7/0.8
10	- + + + + +	B.H. 104.7 Terminated hole; tremied grout to ground surface	C-21 50	DR 3"	0.7/0.7 complete drilling 1:45
10					
11					
11	16 +				Sheet <u>5</u> of <u>5</u>

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY OIFFER AT OTHER LOCATIONS OR TIME.

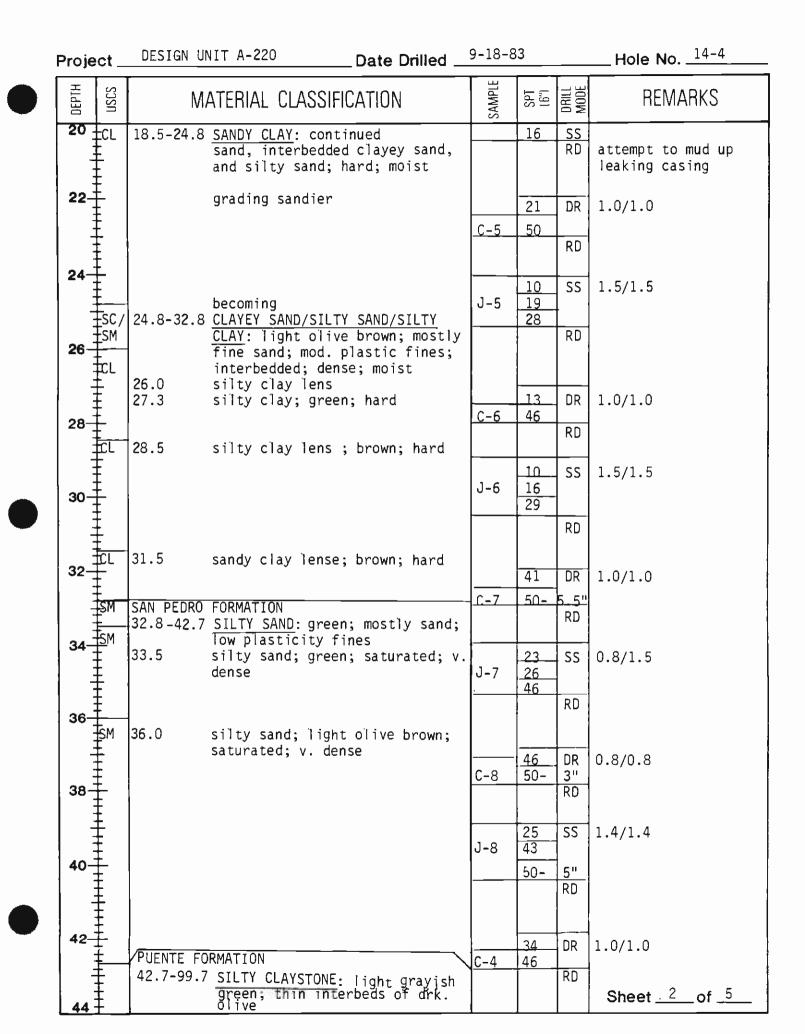

BORING LOG 14-3

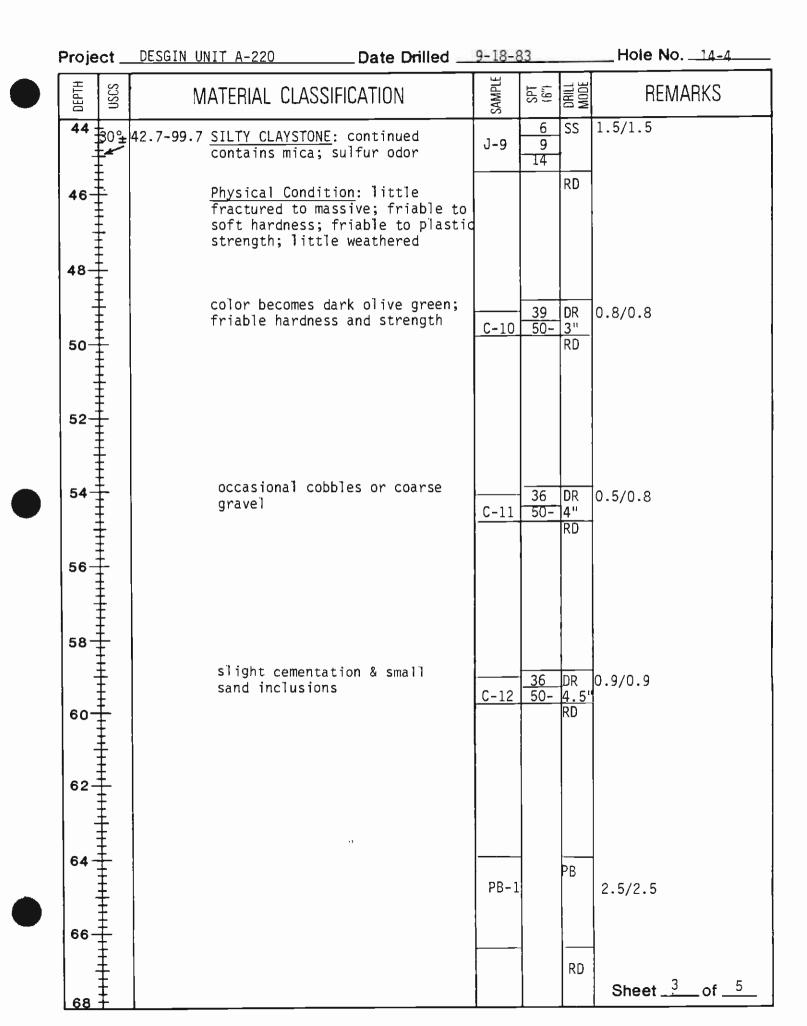

Proj: <u>DESIGN UNIT A-220</u> Drill Pig Failing 1500		SIGN UNIT A-220 Date Drilled 9-16			Ground Elev. 226.5	
Drill	-	meter 4 1/8" Logged By Logged By Meight &		140	_ 1ь	Total Depth
	T - 1				Ι	
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DAIL	REMARKS
0	+++++	0.0-1.0 CONCRETE			GB	start drilling 2:00 pm
2-	SC	FILL <u>CLAYEY SAND</u> : dark yellowish brown 1.0-2.5 mostly fine to medium sand; mod. ↓ plastic fines; dense; moist	C -1	8 16		1.0/1.0
		Y prastre (mes; dense; moist	-	4	SS	
4-	*	YOUNG ALLUVIUM 2:5-12.8 <u>SILTY CLAY</u> : dark yellowish browr mottled; stiff to very stiff;	J-1	7	<u> </u>	1.5/1.5
		moist; occasional sand grains; color grading to medium olive			GB	
6-	+	brown	C-2	5	DR	3.5 pocket pen (tsf)
8-					GB	1.0/1.0 set up tub & cased to 6.5'
	+		J-2	6 9	SS	1.5/1.5
10-				11	RD	
		sandy clay lenses interbedded with silty clay		13	DR	1.0/1.0
12-			<u>C-</u> 3	13	RD	pocket pen>4.5 tsf
14-		OLD ALLUVIUM 12.8-18.5 <u>SILTY CLAY</u> : dk yellowish brown mottled; stiff to very stiff; moist; occasional sand grains;			SS	1.5/1.5
16-	+++++++++++++++++++++++++++++++++++++++	color grading to medium olive brown; occasional iron strain- ing			RD	
	+++++++++++++++++++++++++++++++++++++++		<u>C-4</u>	8 13	DR RD	1.0/1.0
18- 20		18.5-32.0 <u>SANDY SILT</u> : light olive brown, with fine sand	J-4	<u>9</u> 18		^{1.2/1.5} of7

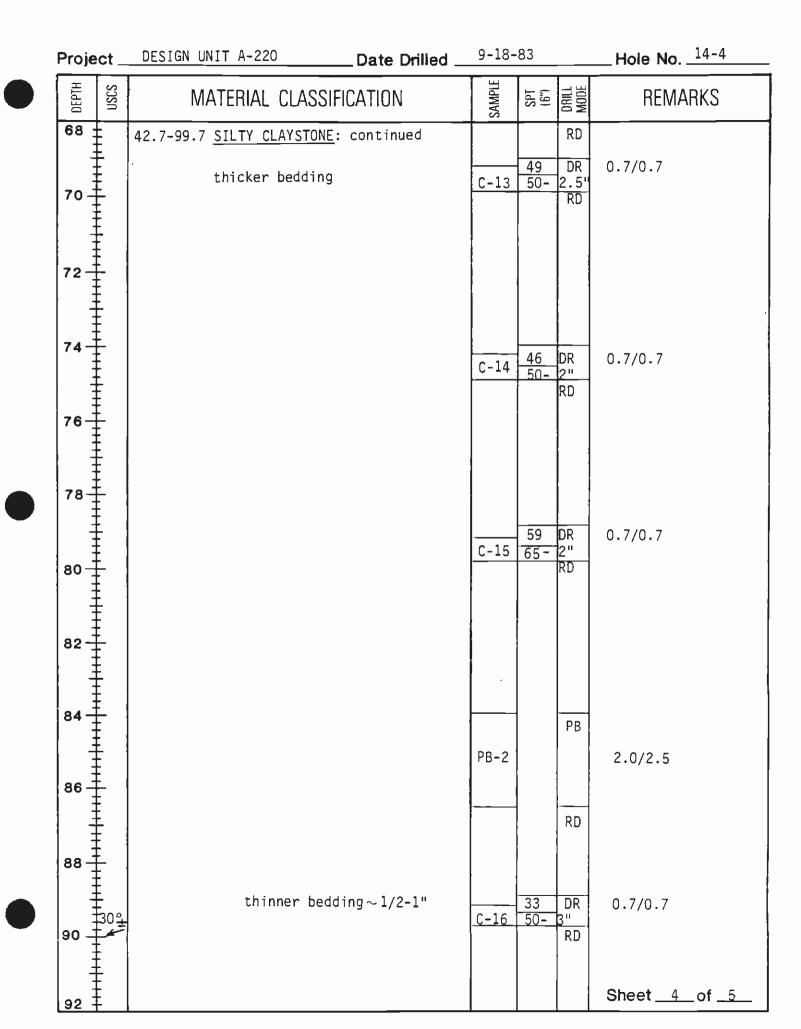


١	Proje	ect _	DESIGN UNIT A-220 Date Drilled	9-15-1	6-83	Hole No14-3
	DEPTH	NSCS	MATERIAL CLASSIFICATION	SAMPLE	SPT (6") DRILL MODE	REMARKS
	44	SM	41.5-46.5 <u>SILTY SAND</u> : cont.	J-9	17 SS 32 32 RD	1.0/1.5
	48-		46.5-50.2 <u>SILTY CLAY</u> : light olive brown; occasional gravels, rounded; hard; moist	<u>C-10</u>	18 DR 35 RD	pocket pen≯4.5 tsf
	50-	T SM	SAN PEDRO FORMATION 50.2-61.0 <u>SILTY SAND</u> : very dense		10 SS 21 40 RD	1.5/1.5
	52-		decreased silt	C-11	47 DR 50- 4" RD	0.8/1.0
	54- - 56-			J-11	33 SS 50- 4" RD	0.8/0.8
	58-	++++++++++++++++++++++++++++++++++++++		<u>C-12</u>	45 DR 50- 5" RD 25 SS	0.7/0.9
	60- - 62-	T SP	61.0-68.5 <u>SAND</u> : light greyish green; very	<u>J-12</u>	- <u>50</u> RD	1.0/1.0
	64-	<mark>╶╶╸╸┙┥╴╸</mark>	dense; moist to wet	<u>C-13</u>	28 DR 50- 4" RD	0.7/0.8
ł	66-	+++++++++++++++++++++++++++++++++++++++		J-13	15 SS 35 40 RD	1.5/1.5
	68	+ + + +				Sheet _3 of

Projec	:t	DESIGN UNIT A-220 Date Drilled 9		-83		Hole No14-3
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL	REMARKS
68 70 70	SP	61.0-68.5 <u>SAND</u> : cont. PUENTE FORMATION 68.5-160.4 <u>INTERBEDDED SILTSTONE AND</u> <u>CLAYSTONE</u> : light greyish green and dark olive; beds 1/4" - 3"; dipping 30°; occasionally cemented; sulfur odor	C-14	<u>-30</u> 50-	RD DR 3" RD	pocket pen > 4.5 tsf 0.7/0.7 7:30 pm 9/15/83 water @ 41' in am start drilling 7:30 am 9/16/83
72 +	-	<u>Physical condition</u> : little factured to massive, friable hardness and strength; little weathered	<u>C-15</u>	30	DR 3.5 RD	" 0.7/0.7
80	-	occasional sand lenses to 1/4" thick	C-16	<u>26</u> 50-	DR 5" RD	0.8/0.9
84					PB	2.5/2.5
90 92	-		<u>C-17</u>	50-	DR 4" RD	0.8/0.8 Sheet <u>4</u> of <u>7</u>



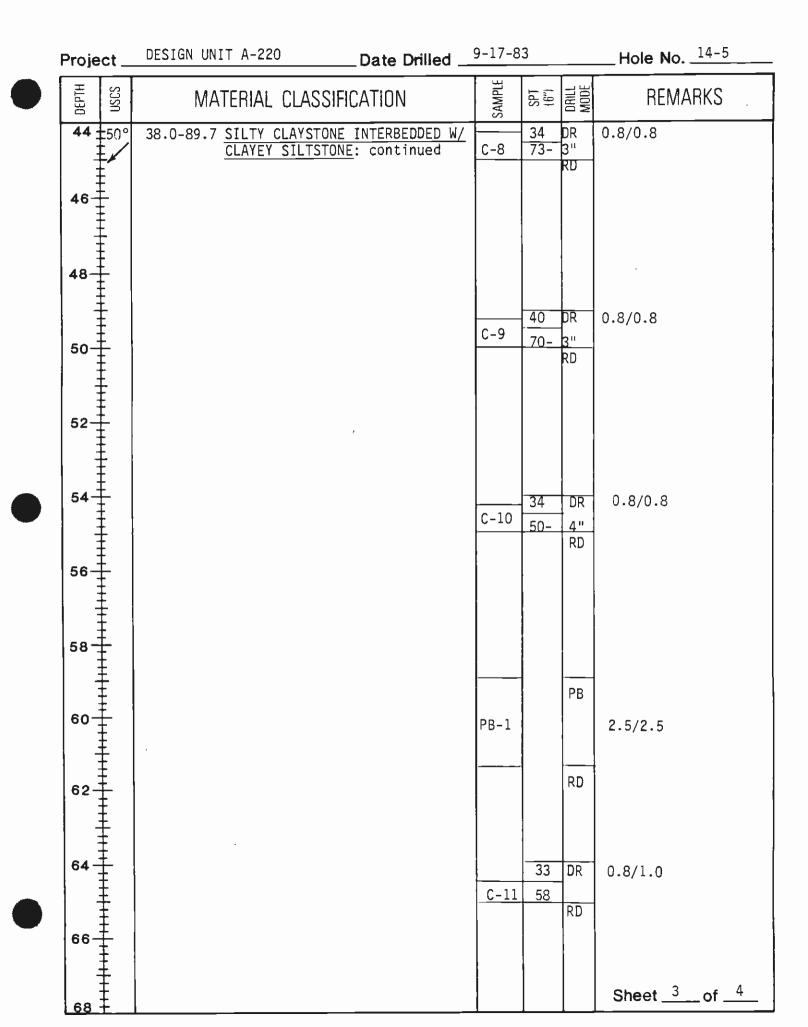

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS DF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY OFFER AT OTHER LOCATIONS OR TIME.



BORING LOG 14-4

Proj:	D	ESIGN UNIT A-220 Date Drilled9-16	5-83			Ground Elev. 220.5'
Drill F	Rig _	Failing 1500 Logged By L. Sch	<u>ioeber</u>	lei <u>n</u>		Total Depth99.7'
Hole	Diar	neter <u>4 7/8"</u> Hammer Weight &	Fall _	140	lh 0	30"
DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
0		0.0-0.8 CONCRETE			GB	start drilling 7:45
2	SC _	YOUNG ALLUVIUM 0.8-3.0 <u>CLAYEY SAND</u> : mod. yellowish brown mostly fine sand; mod. plastic		7	DR	1:0/1.0
		fines; dense; moist	C-1	19		pocket pen>4.5 tsf
	E SM	3.0-6.5 <u>SILTY SAND</u> : light olive brown; mostly medium sand, some silt;			GB	
4		interbeds of clayey sand, silty clay and sandy clay; dense; moist	J-1	10 11 14	SS	1.5/1.5
6-				<u> </u>	GB	
	CL	OLD ALLUVIUM 6.5-18.5 <u>SILTY CLAY</u> : dark yellowish brown		15	DR	set tub and 6.5' of
8	CH CH	to black; sandy clay lenses; occasional gravel; hard; moist iron staining	<u>C-2</u>	25	RD	casing, mixed mud 1.0/1.0
10-		-	J-2	10 15 24	SS	1.5/1.5
					RD	
12_				12	DR	1.0/1.0
			C-3	23	RD	pocket pen>4.5 tsf
14-		6" silty sand lens , color change to light olive brown, very stiff	J-3	14 12 15	SS	1.5/1.5
16-					RD	casing leaking
		iron staining	C-4	<u>10</u> 19	DR	1.0/1.0
18-					RD	add casing to 9.5'
20		18.5-24.8 <u>SANDY CLAY</u> : some fine to med.	J-4	9 16	SS	1.5/1.5 Sheetof

Proje	ect _	DESIGN UNIT A-220	Date Drilled9-16-83			Hole No	
DEPTH	USCS	MATERIAL CLASS	SIFICATION	SAMPLE	SPT (6")	orill Mode	REMARKS
92 94 96		42.7-99.7 <u>SILTY CLAYSTON</u>	E: continued	<u>C-17</u>	<u>38</u> 50-	RD DR 3" RD	0.7/0.7
98		B.H. 99.7 Terminated	hole, tremied	 C-18		DR 2"	0.7/0.7 completed drilling
102		grout to bottom of hol	e				2:15. continuous slight circulation loss throughout hole
104							
108							
110	ŧ.						
112	┝┼┼┽┼┝┱┼┼╁┤┾┼┑╺┠╅┼┾┿						Sheet of


THIS BORING LDG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS DF LABORATDRY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

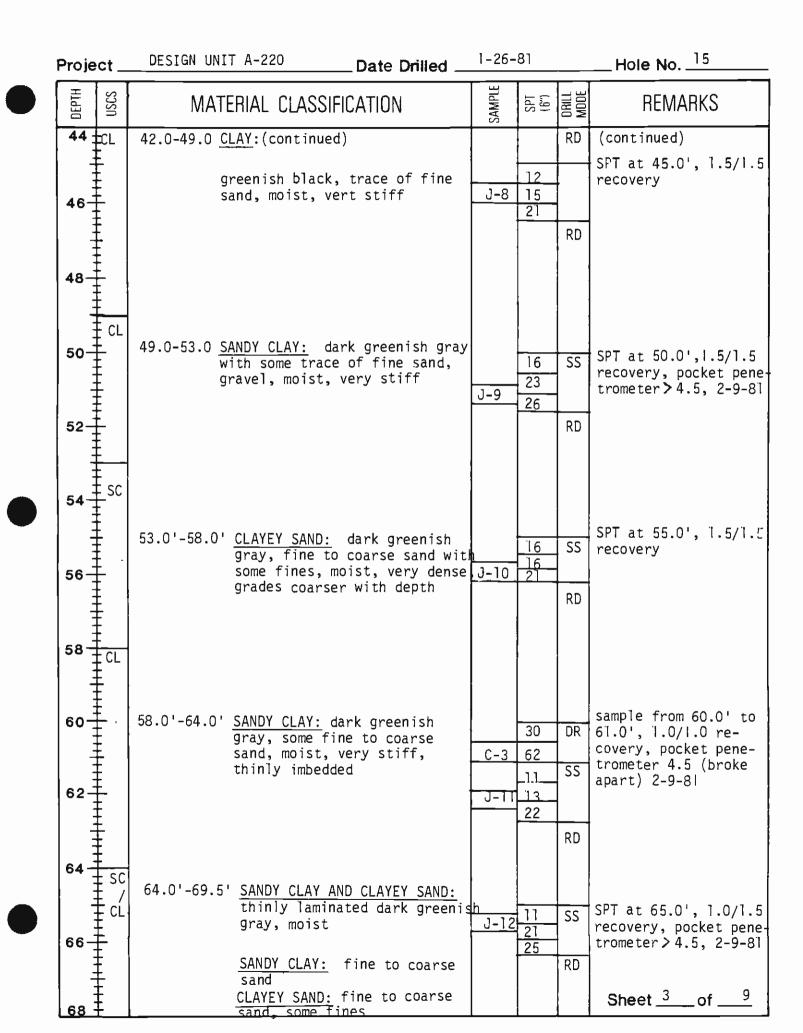
BORING LOG 14-5

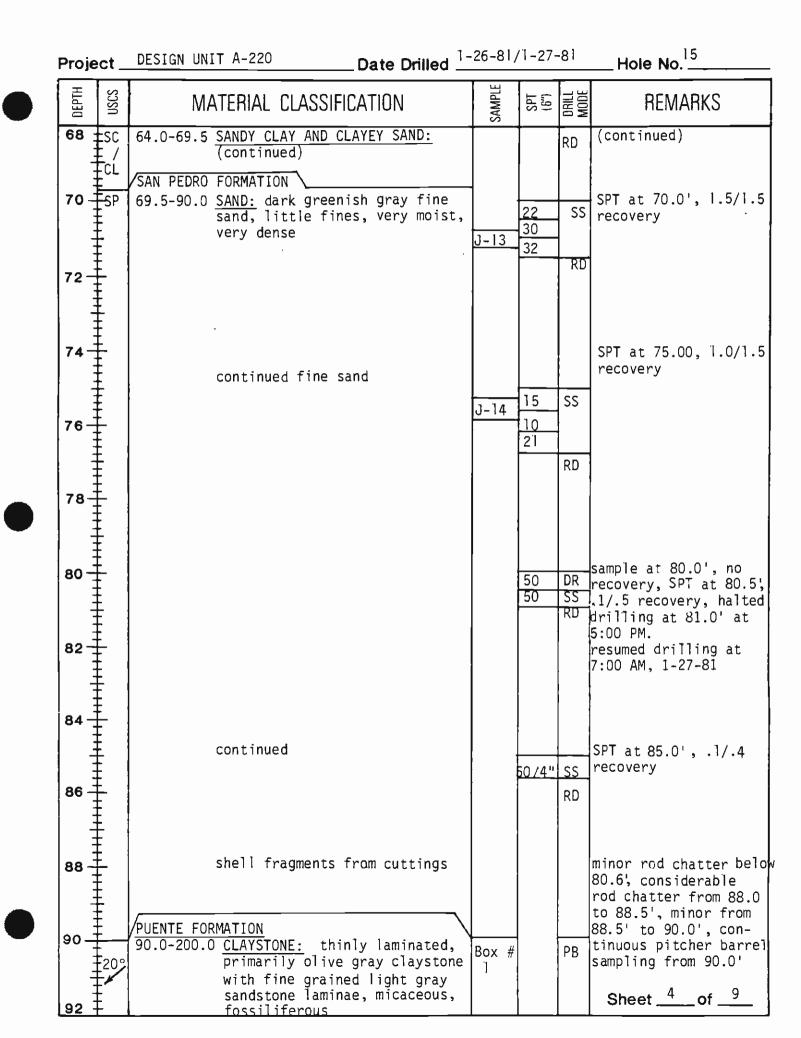
Proj:	D	ESIGN UNIT A-220	Date Drilled _	9-1	7-83			Ground Elev. 220'
Drill I	Rig	Eailing 1500	Logged By _	L. Sc	hoeber	lein		Total Depth89_7*
Hole	Diar	neter4 7/8"	Hammer Weig	ght & I	Fail _	140	<u>1</u> 6	@ 30"
DEPTH	NSCS	MATERIAL CLAS	SSIFICATION		SAMPLE	SPT (6")	DRILL MODE	REMARKS
0		0.0-1.0 <u>CONCRETE</u>					GB	
2_	CL	FILL 1.0-2.6 <u>SANDY CLAY</u> : va greens and bro		lacks,		6	DR	1.0/1.0
	-SC	YOUNG ALLUVIUM 2.6-3.5 <u>CLAYEY SAND</u> : c	lark yellowish	brown;	C-1	19		pocket pen 3.0 tsf
4-		dense 3.5-9.0 <u>SILTY CLAY</u> : li brown; stiff t	ght & medium o o very stiff;		J-1	4	SS	1.5/1.5
6-						9	RD	set tub & cased to 6.5
					C-2	7	DR	1.0/1.0
8-							RD	
10-	CL	OLD ALLUVIUM 9.0-11.5 <u>SILTY CLAY</u> : d brown; occasio	ark to yellowi nal sand inter		J-2	5 14 13	SS	1.5/1.5
		(thin); stiff	to v. stiff				RD	
12		11.5-17.0 <u>CLAYEY SAND</u> : mostly fine sa plastic fines;	nd; moderately		C-3	14	DR	1.0/1.0
14-							RD SS	1.3/1.5
-					J-3	13 14		
16-							RD	
18-	SM	17.0-22.5 <u>SILTY SAND</u> : mostly fine s	yellowish brow and; low plast		C- 4	31	DR	1.0/1.0
		fines; dense;	moist; interbe d and sandy cla	eds			RD SS	1.5/1.5
20	F				J-4	20		Sheet of4

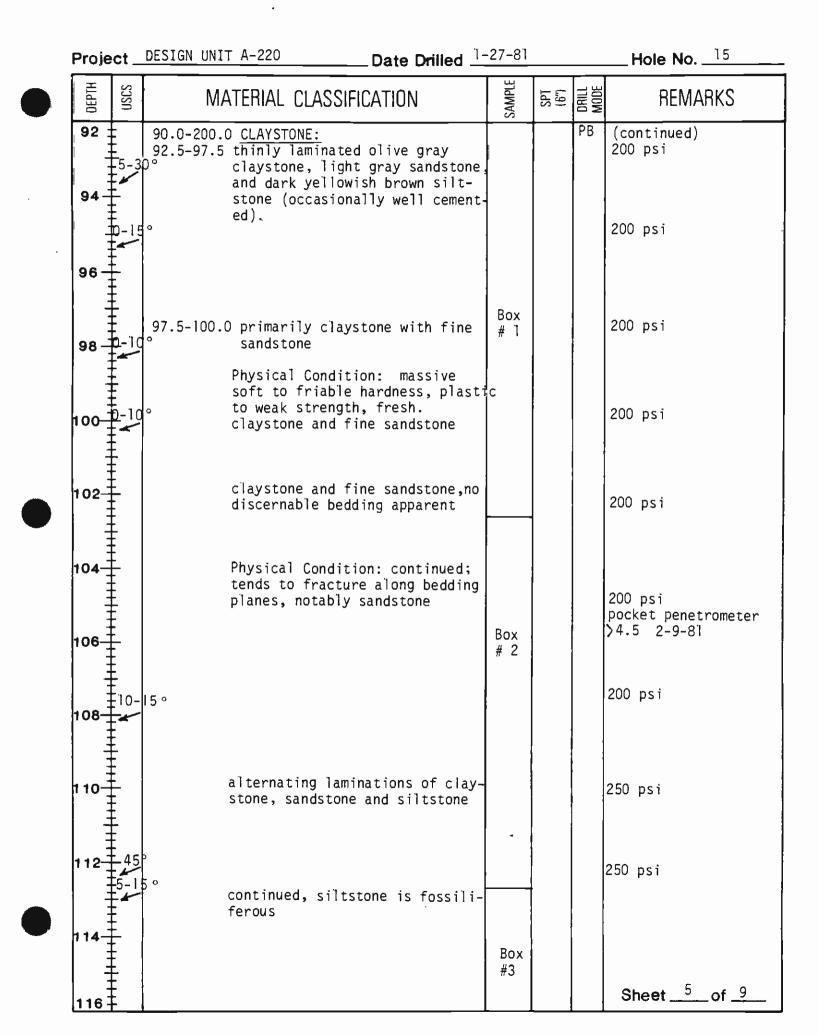
Project _	DESIGN UNIT A-220 Date Drilled	9-17-8	33		Hole_No
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
20 SM	17.0-22.5 SILTY SAND: continued		32	SS	leak around casing
22	SAN PEDRO FORAMTION 22.5-36.5 <u>SAND</u> : light yellowish brown; mostly fine sand; very dense;	C-5	36 50-	DR 3" RD	o.8/0.8 pushed additional
24	moist to wet		29 52	SS RD	casing to 9.5' 0.0/1.0 drove up to pull out, problem w/hammer
26 	silty clay lens coarse sand & silt lens	C-5	45 50-	DR 5" RD	
30	clayey sand lenses w/sand 2-3" thick	J-5	<u>31</u> 47	SS RD	1.0/1.5
32			28 32	DR	0.0/1.0
34		J-6	20 30 47	RD SS	1.5/1.5
36	WEATHERED PUENTE FORMATION 36.5-38.0 <u>SILTY CLAYSTONE</u> : light olive brown; mottled coloring	C-7		RD DR	1.0/1.0
38 	PUENTE FORMATION 38.0-39.7 <u>SILTY CLAYSTONE INTERBEDDED W/</u> <u>CLAYEY SILTSTONE</u> : greyish green dark olive; dip 45-50°; thinly to thickly bedded			RD SS	1.5/1.5
42	Physical Condition: little fractured to massive; friable hardness and strength; little weathered			RD	
44					Sheet _2_ of _4

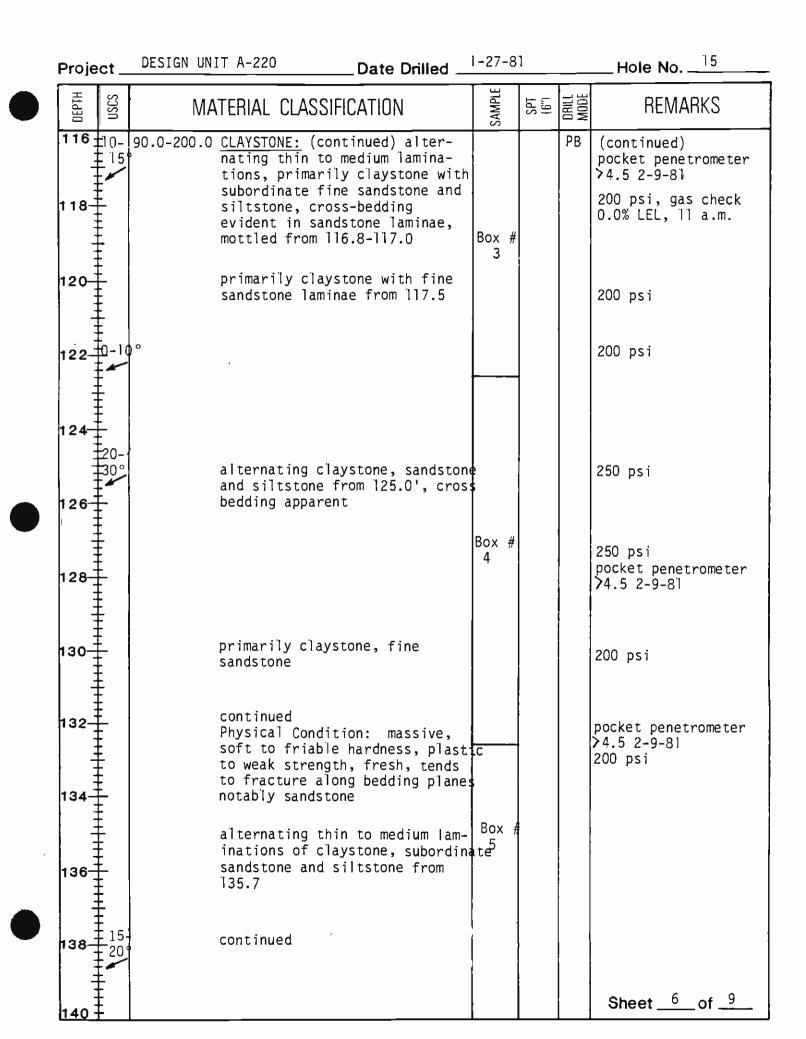
Proje	ct_	DESIGN UNIT A-220	Date_Drilled _	9-17-8	33		Hole No14-5
DEPTH	NSCS	MATERIAL CLASS	IFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
68		38.0-89.7 <u>SILTY CLAYSTON</u> CLAYEY SILTSTO	E INTERBEDDED W/ NE: continued	C-12	41 68-	RD DR 3" RD	0.8/0.8
72		73.5-76.0 well cemented :	zone				rig chatter 2-1/2'/hr
76				PB-2		PB	trouble getting on bottom through tight hard zone 2.5/2.5 hard chips as slough at top of sample
82		· · · · · · · · · · · · · · · · · · ·		<u>C-13</u>	<u>51</u> 77–	DR 3" RD	0.7/0.7
90		B.H. 89.7. Terminated h surface	ole, grouted to	C-14	<u>44</u> 50-	DR 3"	completed drilling 5:30 continuous slight circulation loss throughout hole Sheet <u>4</u> of <u>4</u>

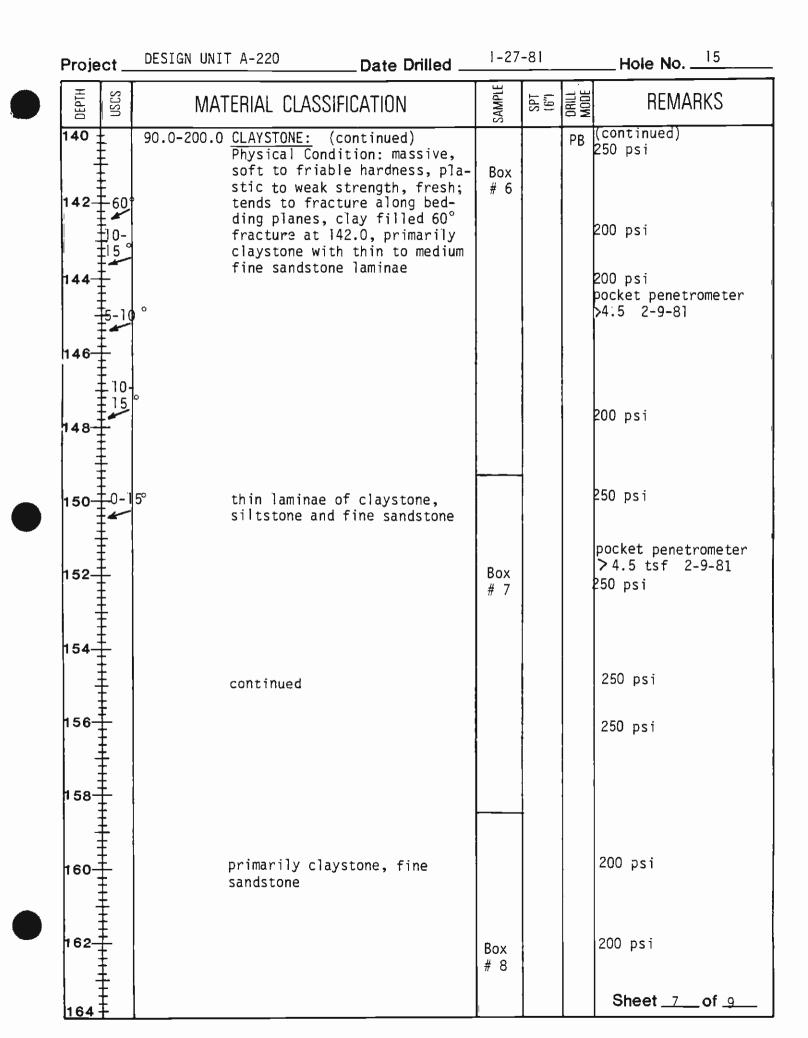
THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

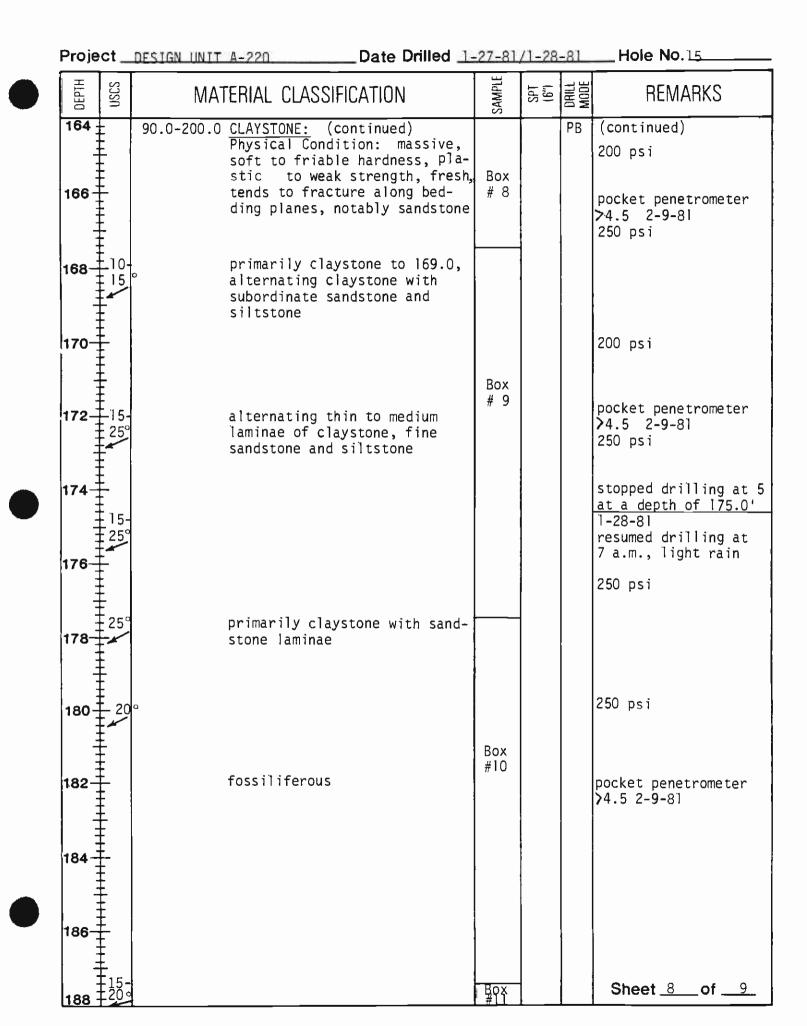


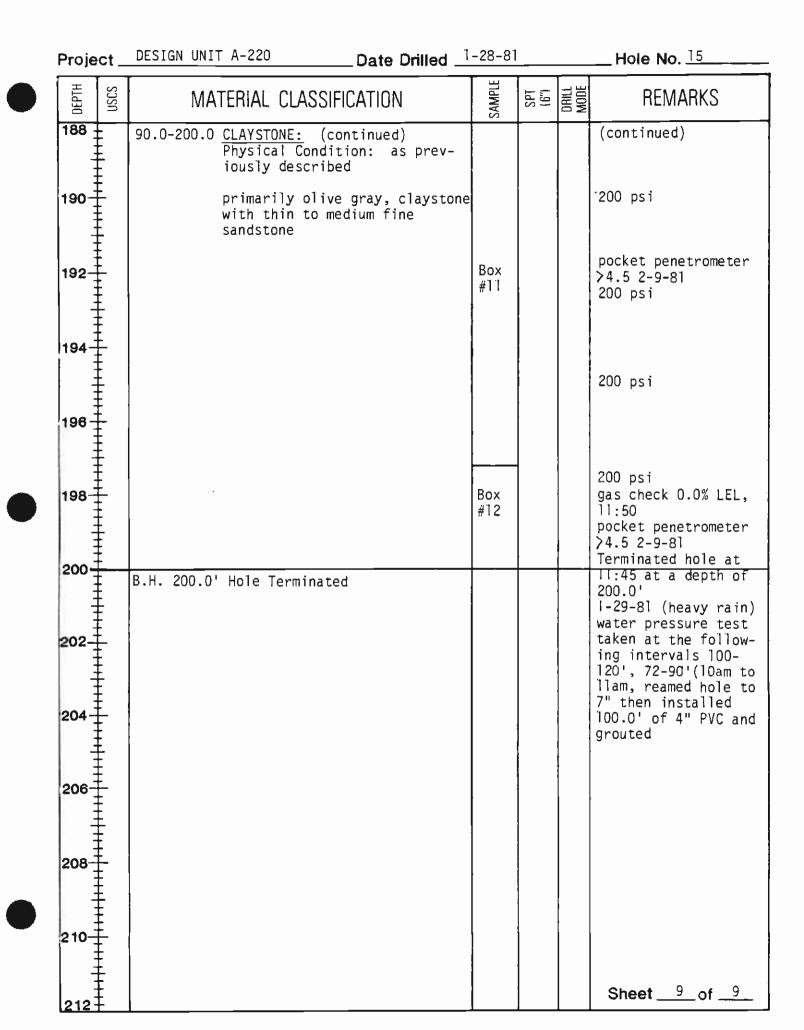

BORING LOG _15


Proj:	DESI	GN UNIT A-220	_ Date Drilled 1-26-8	1/1-28	-81		Ground Elev. 2001
Drill	Rig _	FAILING 1500	_ Logged By S. Testa	a			Total Depth ^{200.0}
Hole	Diar	meter5.0"	_ Hammer Weight &	Fall 1	40 Ib	03	0"
DEPTH	nscs	MATERIAL CL	ASSIFICATION	SAMPLE	(" <u>9</u>) 1dS	DRILL MODE	REMARKS
0 2- 4- 8-	CL CL		dark yellowish brown; to coarse sand; moist:			AD RD	started drilling at 11 a.m., augered down to 6.0'
10			grained sand, some e of tar, mottled,]]	8 15 21	SS RD	SPT at 10.0'1.1/1.5 recovery, pocket penetrometer 3.5 tsf (broke apart)2-9-81
16-	SP CL	sand 15.5-20.0 <u>SANDY CLAY</u> mostly find	black, fine to med- ular to subrounded dark yellowish browr s, with a little fine sand, mottled, moist,	_J_2_	7 8 21	SS RD	SPT at 15.0' 1.5/1.5 recovery Sheet <u>1</u> of <u>9</u>


Project DESIGN UNIT A-220 Date Drilled 1-26-81 Hole No. 15


DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
20	SP	 20.0-21.3 <u>SANDY CLAY</u>: dark greenish gray with some fine sand, mottled, moist, hard 21.3-28.0 <u>SAND</u>: dark greenish gray, trac of fines, fine to medium sand, trace of fine gravel, moist, medium dense, poorly graded 	C-1 J-3	25 26 29 3 4 7	DR SS RD	(continued) sample at 20.0', 1.5/1.5 recovery pocket penetrometer 3.75 (broke apart) 2-9-81 SPT at 21.5' .4/1.5 recovery
26-		25.0-26.0 continued, moist, dense	_ J-4	6 23 24	SS RD	SPT at 25.0',1.0/1.5 recovery
30-	SP	28.0-30.8 <u>SANDY CLAY:</u> greenish black wit some fine sand, moist 30.8-42.0 <u>SAND:</u> greenish black, fine to coarse sand, trace of fine gravel, trace of fines, moist, medium dense, poorly graded	J-5	6 11 17	SS RD	SPT at 30.0', 1.5/ 1.5 recovery pocket penetrometer 3.5 tsf (broke apart) 2-9-81
34– 36– 38–		dark greenish gray, mostly fine to coarse sand, trace of fines, very dense	<u>J-6</u>	25 33 25	SS RD	SPT at 35.0', 1.5/ 1.5 recovery.
40-		continued, moist, very dense 42.0-53.0 <u>CLAY</u> :greenish black, fine sand, moist, very stiff	C-2	39 50 15 16 21	DR SS RD	sample from 40.0' to 41.5', 1.5/1.5 recover SPT at 41.5, 1.5/1.5 recovery, pocket pene- trometer > 4.5, 2-9-81





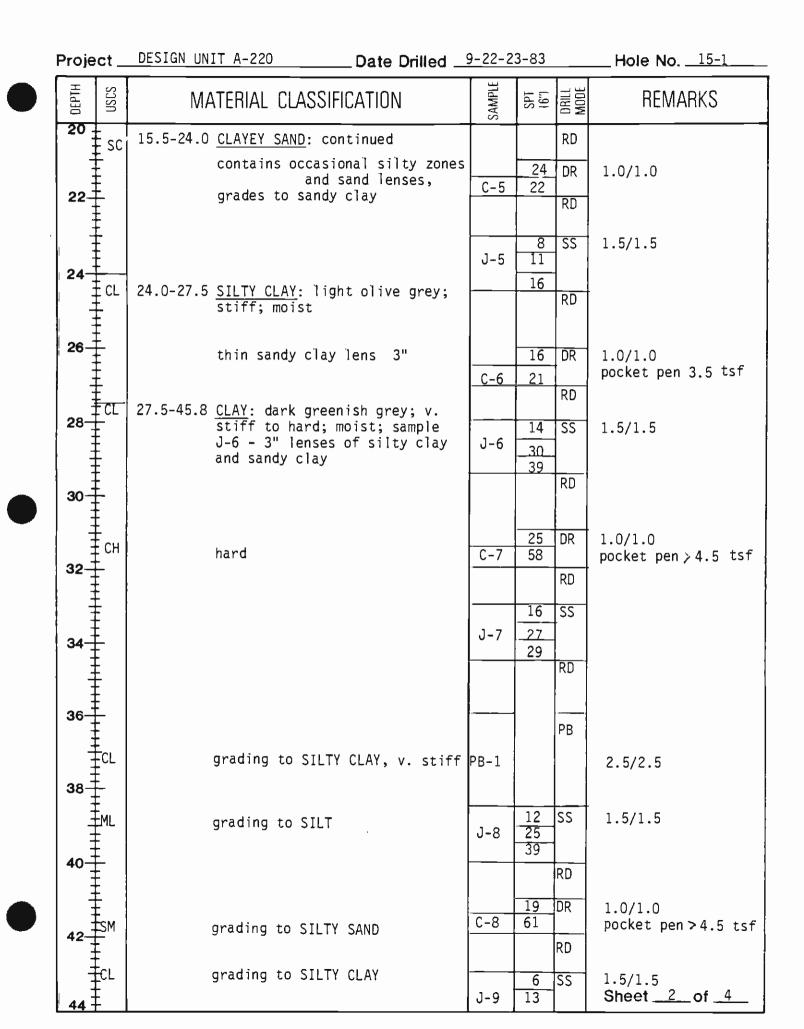
THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS DF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS DR TIME.

BORING LOG 15-A

Proj:	ESIGN UNIT A-220 Date Drilled 11	<u>-8-83</u>		Ground Elev. <u>199'</u>
Drill Rig	MAN-SIZE AUGER Logged By	Stella	r	Total Depth60'
Hole Dia	meter ^{33"} Hammer Weight &	k Fall_	N.A.	
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	SPT SPT (6") DRILL MODE	REMARKS
0 10 12 14 14 14 14 14 10 12 14 14 14 14 14 14 14 14 14 14	ASPHALTIC CONCRETE PAVEMENT 0.0-1.0 FILL 1.0-2.0 <u>CLAYEY SILT</u> : dark brown, moist, stiff, minor coarse sand ALLUVIUM 2.0-7.0 <u>SANDY SILT</u> : medium brown, moist, stiff 7.0-9.0 <u>SAND</u> : medium brown, very moist, medium dense, medium to coarse grained 9.0-17.0 <u>SILT</u> : medium brown, moist, stiff with layers of coarse sandy silt	f		Hole stood well in general, 3'-4' of cav- ing @ 17'-22' and probable caving 55'- 60' Hole caved at 40 to 45" after drilling
16	17.0-23.0 <u>SAND</u> : light brown, wet, medium dense, coarse grained, saturated, very minor gravel to ½"			A to 4' of caving at 17'-22', seepage at 10-15± g.p.m.
20 +				Sheet of

Proje	ct	DESIG	GN UNIT A - 220	Date Drilled		-83		Hole No	15A
DEPTH	nscs		MATERIAL CLASSI	FICATION	SAMPLE	SPT (6")	DRILL MODE	REMAI	RKS
20	SP	17.0- 23.0	SAND: (continued)						
22	ML	23.0- 35.0	grave <u>SILT:</u> medium brow with layers of sar	el to 3' @ 22.5' wn v. moist, stif ndy silt	f,				
26				omes reddish brow v. stiff	n :				
30	ML	35.0- 42.0	becc <u>CLAYEY SILT:</u> blue stiff, with layers	omes medium brown e gray, very moist s of sandy silt				bag sample (@ 33'
38-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		Υ Ζ. Ο							
42	ŠP/ SM	42.0- 44.6	<u>SAND:</u> blue, wet, of silty sand and	dense with layers silt	5			Sheet _2	.of ³

Proje	ect _	DESIGN UNIT A - 220 Date Drilled	11-8	8-83		Hole_No ^{15A}
DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL	REMARKS
44	E SM	42.0- 44.6 44.6- 55.0 SAND: (continued) CLAYEY SILT: blue, very moist, stiff with layers of silt and sandy silt	,			
48		becomes v. stiff				bag sample @ 49'
50 52						
54-1	SP	SAND PEDRO FORMATION				Bag sample @ 55' unable to remove sar
56		55.0- <u>SAND:</u> blue, wet, dense, with minor 60.0 layers of sandy silt and silt clean sand				cuttings below 56' - saturated clean sand falling from bucket probable caving 55'- 60' based on drillin behavior
58		B.H. 60.0'. Water at 27' during				
62		drilling operation. H20 @ 16' after 1½ hours. Hole caved back to 45' after 1½hrs. Water level at 15' after 2 hours. Hole caved back to 40' after 2 hours.				
64						
66 1 1 68						Sheet <u>3</u> of <u>3</u>


•

This boring log is based on field classification and visual soil description, but is modified to include results of laboratory classification tests where available. This log is applicable only at this location and time. Conditions may differ at other locations or time.

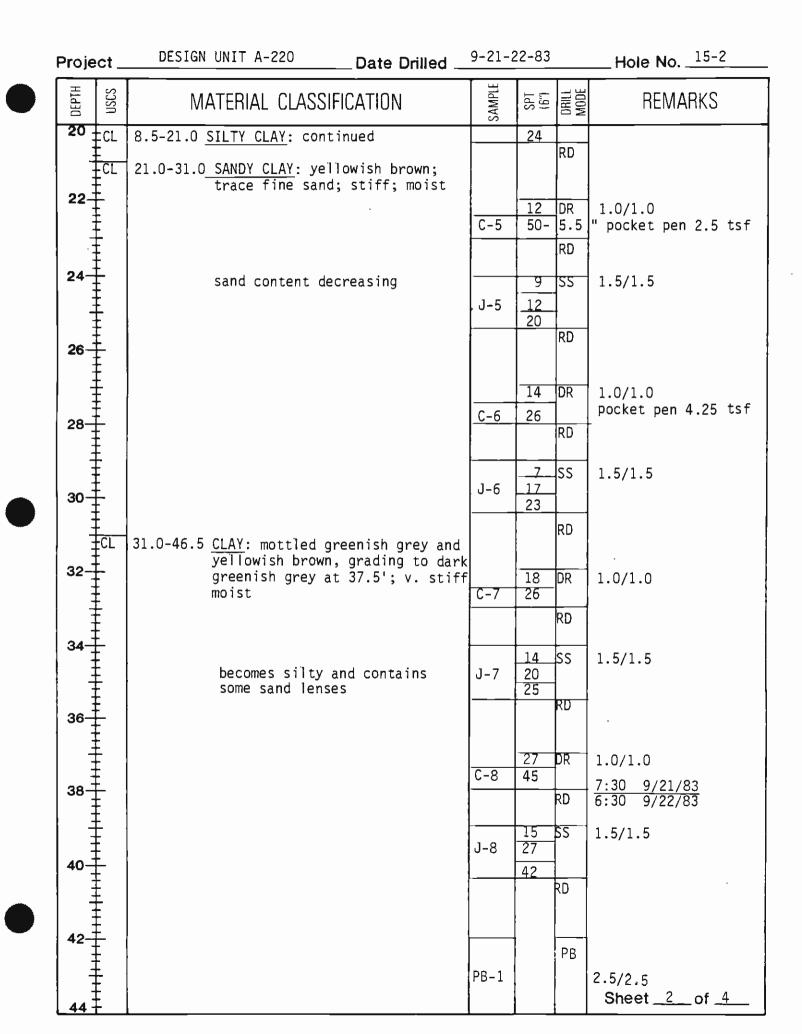
BORING LOG 15-1

Proj:	D	ESIGN UNIT A-220 Date Drilled 9-2	22-23-83			Ground Elev. 196'
Drill I	Rig	Failing 1500 Logged By L. So				Total Depth <u>84.8</u>
Hole	Dia	meter <u>4 7/8</u> Hammer Weight &	Fall_	140	1b (<u>30"</u>
DEPTH	NSCS	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
0		0.0-0.2 <u>ASPHALT</u> 0.2-1.0 <u>CONCRETE</u>			GB	start drilling 2:45
2	CL	FILL 1.0-2.5 <u>SILTY CLAY</u> : dark greenish grey to dark yellowish brown; stiff; moist	<u>C</u> -1	4 	DR AD	1.0/1.0
4	ML	OLD ALLUVIUM 2.5-7.5 <u>SILTY SAND/SANDY SILT</u> : brown; dense; moist		<u>11</u> <u>14</u> <u>26</u>	SS	1.5/1.5
					RD	set tub and cased to 6.5'
6			C-2	12 21	DR	1.0/1.0
8	SP	7.5-15.5 <u>SAND</u> : yellowish grey; mostly fine sand, silt; dense to v. dense; dry to moist; occasional zones of silt	J-2	16 16	RD SS	1.0/1.5
10				25	RD	-
12			C-3	48	DR	1.0/1.0
14	l l .	increased silt	J-3		RD SS	1.0/1.5
					RD	
16	SC	15.5-24.0 <u>CLAYEY SAND W/CLAYEY SILT</u> : yellowish grey; mostly fine to medium sand; dense; moist	C-4	14	DR RD	1.0/1.0
18	- i .	·	J-4	17 28 34	SS	
20	•				RD	Sheet of

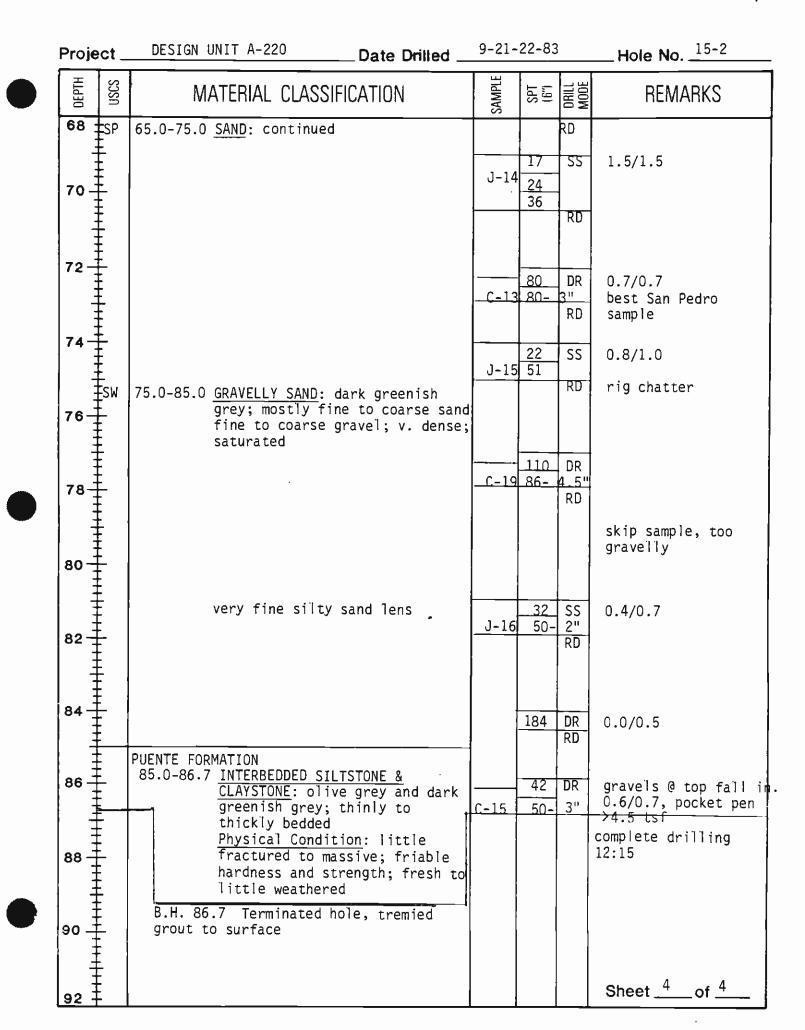
Proje	ct _	DESIGN UNIT A-220 Date Drilled			Hole No
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE SPT (6")	DRILL MODE	REMARKS
44		27.5-45.8 CLAY: continued	22	RD	
46	-CL	45.8-55.6 <u>SANDY CLAY</u> : dark greenish grey; little fine sand; hard, moist; contains occasional lenses of sand clay	<u> </u>	DR 4 RD	0.8/0.8
48-			J-10 30	SS	1.5/1.5
50-			30	RD	<u>6:30 9/22/83</u> 6:30 9/23/83
52			C-10 30 50-	DR 4.5 RD	0.9/0.9
54		clayey sand grading to sandy silt grading to silty sand grading to:	J-11 50-	SS 5" RD	1.4/1.4
56	SP	SAN PEDRO FORMATION 55.6-67.5 <u>SAND</u> : dark greenish grey; fine sand; very dense; saturate	d C-11 50-	DR 3" RD	0.8/0.8
58	-		<u>25</u> 50-	SS 5" RD	0.5/0.9
60			C-12 50-2		0.6/0.7
62 64			<u>36</u> J-13 56	RD SS RD	0.8/1.0
66			<u>C-13 100</u> 3 0-	DR 1/2 RD	0.5/0.5
68	- SW/G	P 67.5-73.0 GRAVELLY SAND:			Sheet <u>3</u> of <u>4</u>

-		DESIGN UNIT A-220 Date Drilled				Hole No15-1
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	SPT 16"		REMARKS
68 70	SW / GP	67.5-73.0 <u>GRAVELLY SAND/SANDY GRAVEL</u> : co greenish grey; mostly fine to coarse sand; fine to coarse gravel; v. dense; saturated	nt.	50-	RD	0.3/0.3
2	un transform			110-	<u>3"</u> D RD	R 0.0/0.2
74	SM	73.0-76.5 <u>SILTY SAND</u> : dark greenish grey mostly fine sand; some non- plastic silt; v. dense; saturated; sulfur odor	; 	68 50-	SS 3" RD	0.5/0.7
76-		75.5-76.5 gravelly				
78-		PUENTE FORMATION 76.5-84.8 <u>INTERBEDDED SILTSTONE, CLAYSTO</u> <u>AND FINE SAND</u> : olive grey and dark greenish; sand lenses; thinly to thickly bedded	<u>VE C-14</u>	30 50-	DR 5" RD	0.9/0.9
80 1 1		<u>Physical Condition</u> : fractured to massive; friable hardness a strength; little weathered to fresh	nd C-19	<u>-39</u> 50-	DR 3" RD	0.7/0.7
82 - 						
34-	-		 C-16	<u>- 34</u> 50-	DR 3.5	
36 -		B.H. 84.8 Terminated hole, installed piezometer bottom 20' slotted				complete drilling 10:15
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_					
92						Sheet _4 of _4

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME, CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.



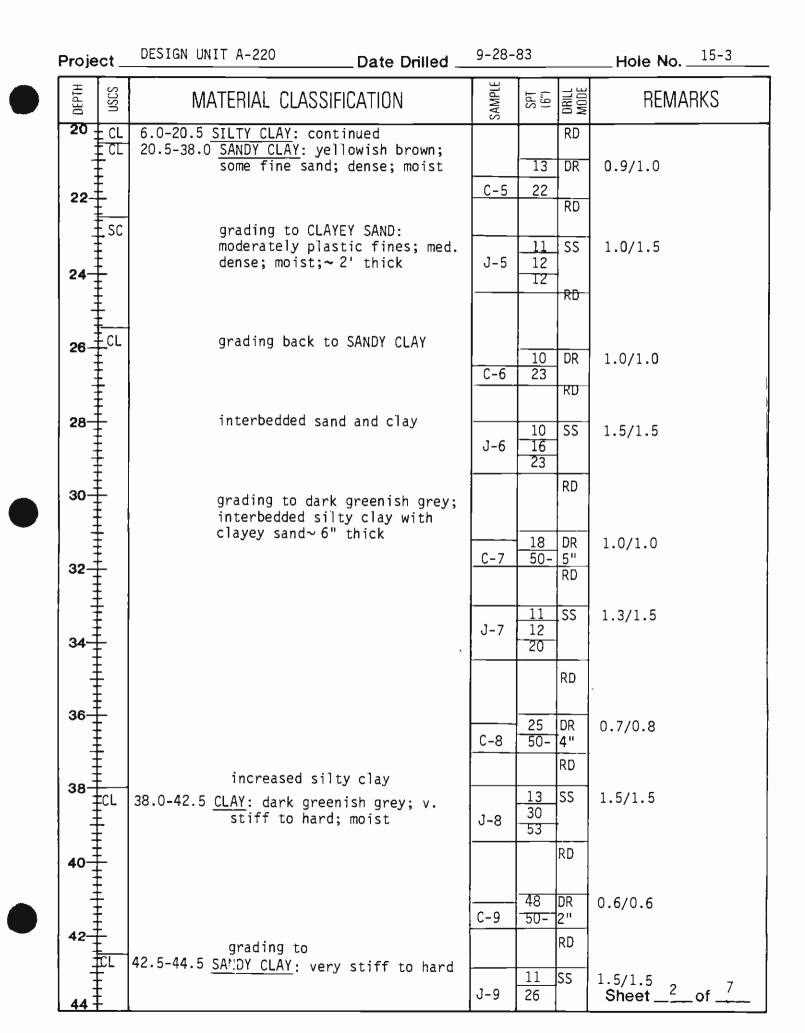
BORING LOG 15-2


DESIGN UNIT A-220 Proi: _____ Ground Elev. 199'_ ____ Logged By <u>L. Schoeberlein</u> Total Depth <u>86.7'</u> Drill Rig Failing 1500 _ Hammer Weight & Fall _____140 Tb @ 30"

Hole Diameter 4 7/8"

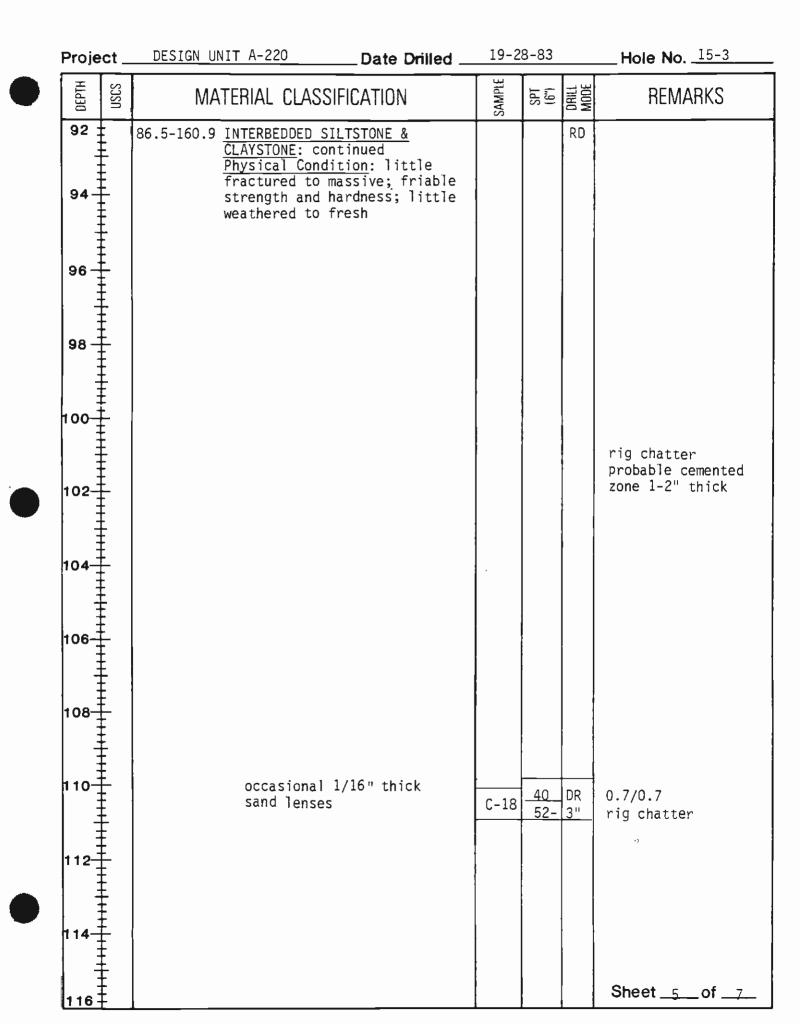
DEPTH	NSCS	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL	REMARKS
0		0.0-0.7 <u>CONCRETE</u>			GB	start drilling 5 pm
2-	SM / CL	FILL 0.7-8.5 INTERBEDDED SILTY SAND, SANDY CLAY, & SILTY CLAY: mottled yellowish grey to light brown; lenses 2" to 1' thick, stiff or dense; dry to moist	<u>C-1</u>	12 18-	DR 6" AD	0.7/0.7
4			J-1	11 20 25	SS	1.5/1.5
6-					RD	set tub & cased to 6.5'
8-			C-2	7 _16	DR RD	1.0/1.0
10	CL	OLD ALLUVIUM 8.5-21.0 <u>SILTY CLAY</u> : medium brown; v. stiff; moist	J-2	<u>9</u> 15 27	SS	1.5/1.5
					RD	
12	CH	mottled dark greenish grey and medium brown	<u>C-3</u>	18 29	DR RD	1.0/1.0
14			J-3	9 15 20	SS	1.5/1.5
16-				_*	RD	
18			C-4	<u>13</u> 24	DR RD	1.0/1.0 pocket pen >4.5 tsf
20		contains 6" sandy clay lens	J-4	10 17	SS	1.0/1.5 Sheet1of4

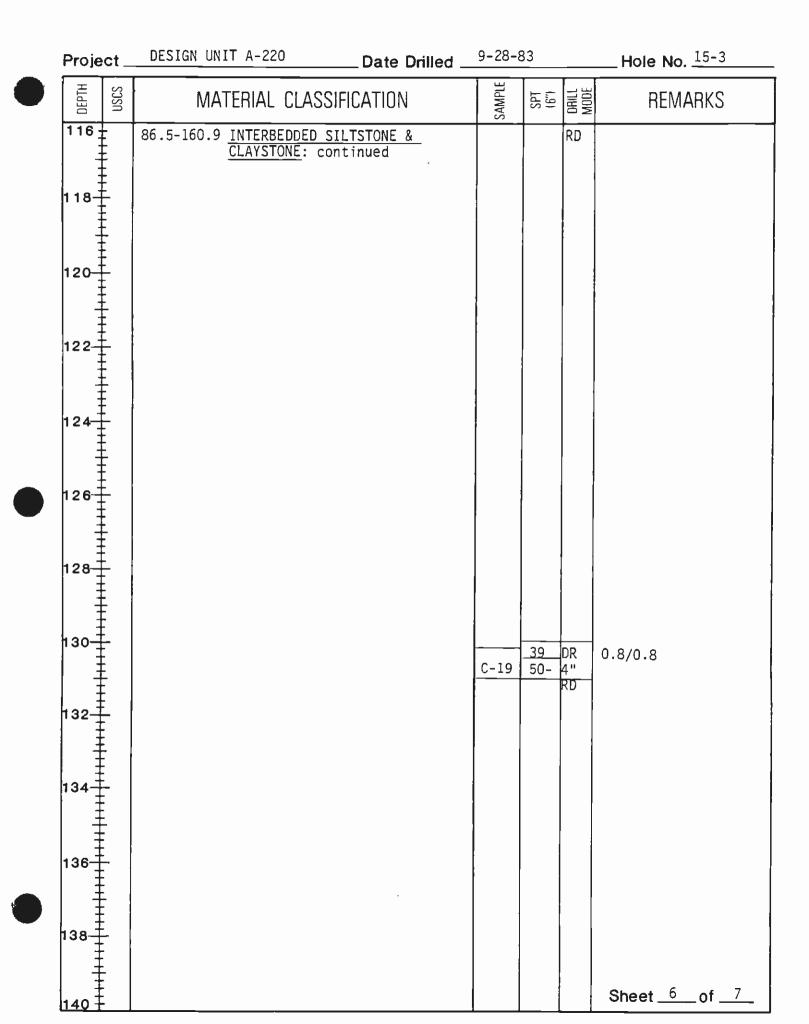
Proje	ct _	DESIGN UNIT A-220 Date Drilled	9-21-2	2-83		Hole No
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	orill Mode	REMARKS
44	CL	31.0-46.5 CLAY: continued grading to silty	J-9	11 23 44	RD SS	1.5/1.5
48	SM	46.5-48.5 <u>SILTY SAND</u> : dark greenish grey; mostly fine sand, silt; v. stiff; moist	C-9	- <u>30</u> 50-	RD DR 4" RD	0.8/0.8
50-	-CL	48.5-65.0 <u>SANDY CLAY</u> : dark greenish grey; some fine sand; v. stiff; moist	J-10	9 18 23	SS	1.5/1.5
52					RD DR	1.0/1.0
54		silt, clayey silt, clayey sand and silty sand interbeds to 8" thick	J-11	<u>22</u> 33	RD SS RD	1.5/1.5
56 58 58			<u>C-11</u>	37	DR	1.0/1.0 pocket pen>4.5
60			J-12	9 15 22	SS RD	1.5/1.5
62			C-12	23	DR	1.0/1.0
64		63.5-65.0 clayey sand lense	J-13	<u>17</u> 42	RD SS	1.0/1.5
66-		SAN PEDRO FORMATION 65.0-75.0 <u>SAND</u> : dark greenish grey; mostly fine sand, silt; v. dense saturated			RD	sample follo
68 -				67 50-	DR I ^m D	sample fell out Sheet 3 of 4

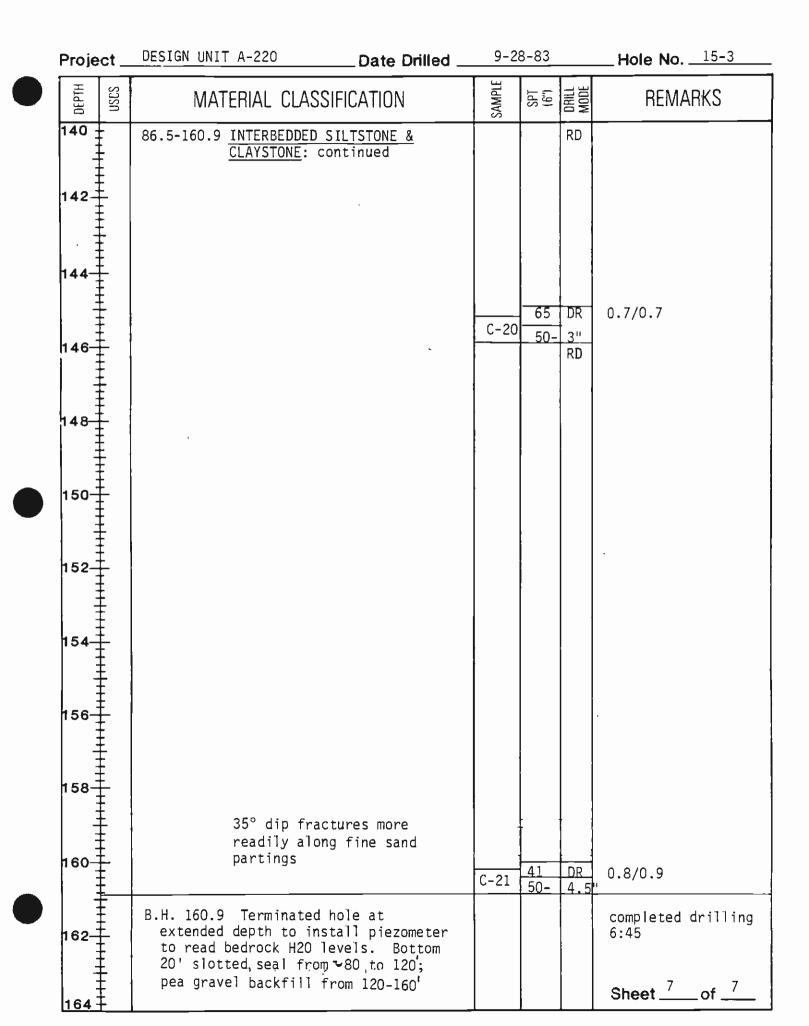



THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY OIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG 15-3

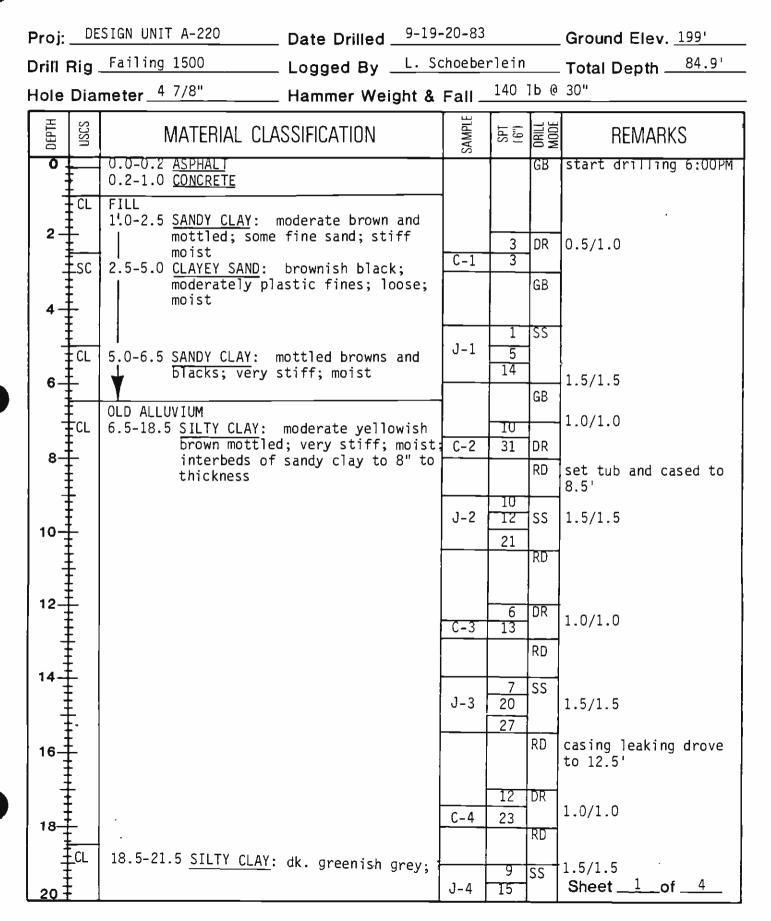

	lig :	DESIGN UNIT A-220 Date Drilled 9 Failing 1500 Logged By 1. meter 4 7/8" Hammer Weight	Schoeb	erlein		Ground Elev. 199'
	nscs	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
	CL	0.0-0.8 <u>CONCRETE</u> FILL		4	GB DR	start day 7:00 am start drilling 7:30 am 1.0/1.0
_ ‡	SM	0.8-1.8 <u>GRAVELLY SANDY CLAY</u> : mottled gr and browns; soft OLD ALLUVIUM	ey <u>C-1</u>		GB	
	-	1.8-6.0 <u>SILTY SAND</u> : yellowish brown; mostly fine sand; medium dense; moist	J-1	3	SS	0.8/1.5
		grading to			RD	set tub & cased to 4.5'
6	CL	6.0-20.5 <u>SILTY CLAY</u> : yellowish brown mottled with mod. brown; stiff moist; interbedded sand lenses		7	DR RD	1.0/1.0 pocket pen> 4.5 tsf
8	-		J-2	3	SS	1.3/1.5
10	-			12	RD	
12	-		C-3	5	DR RD	1.0/1.0 pocket pen 3.5tsf
	-		J-3	<u>6</u> 10	SS	1.3/1.5
	-			15	RD	
16	_		C-4	12 18	DR	0.9/1.0 pocket pen>4.5 tsf
18	-			7	RD SS	1.3/1.5
	-		J-4	14 22	RD	Sheet _1of7

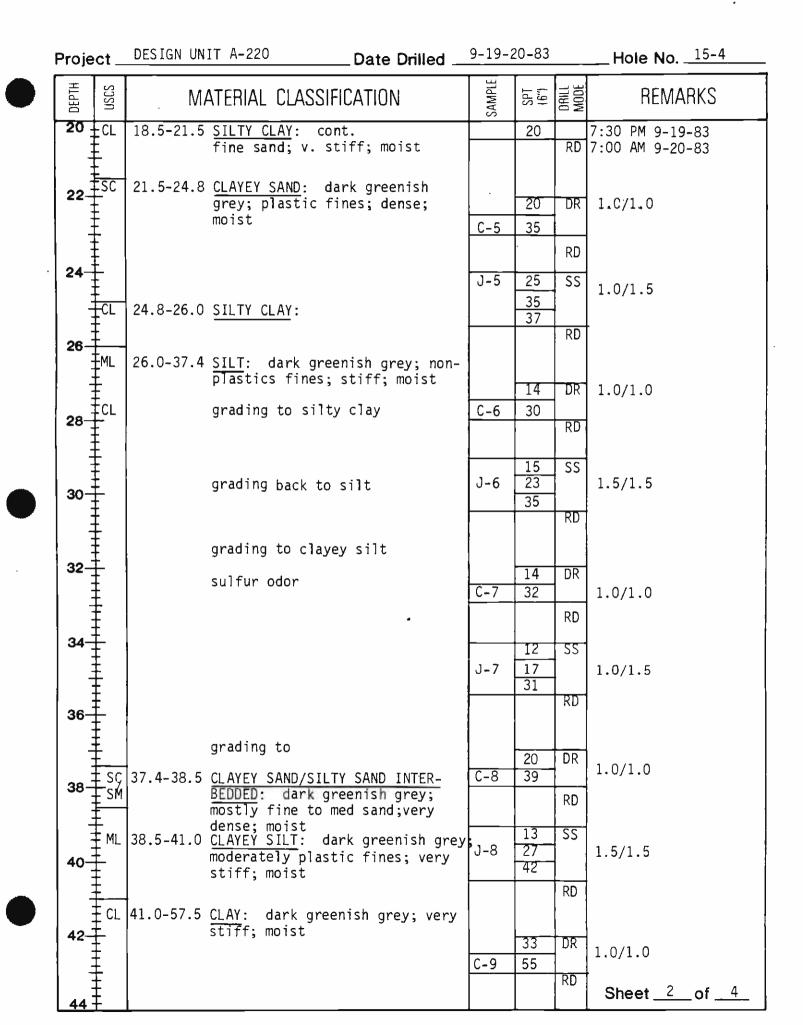




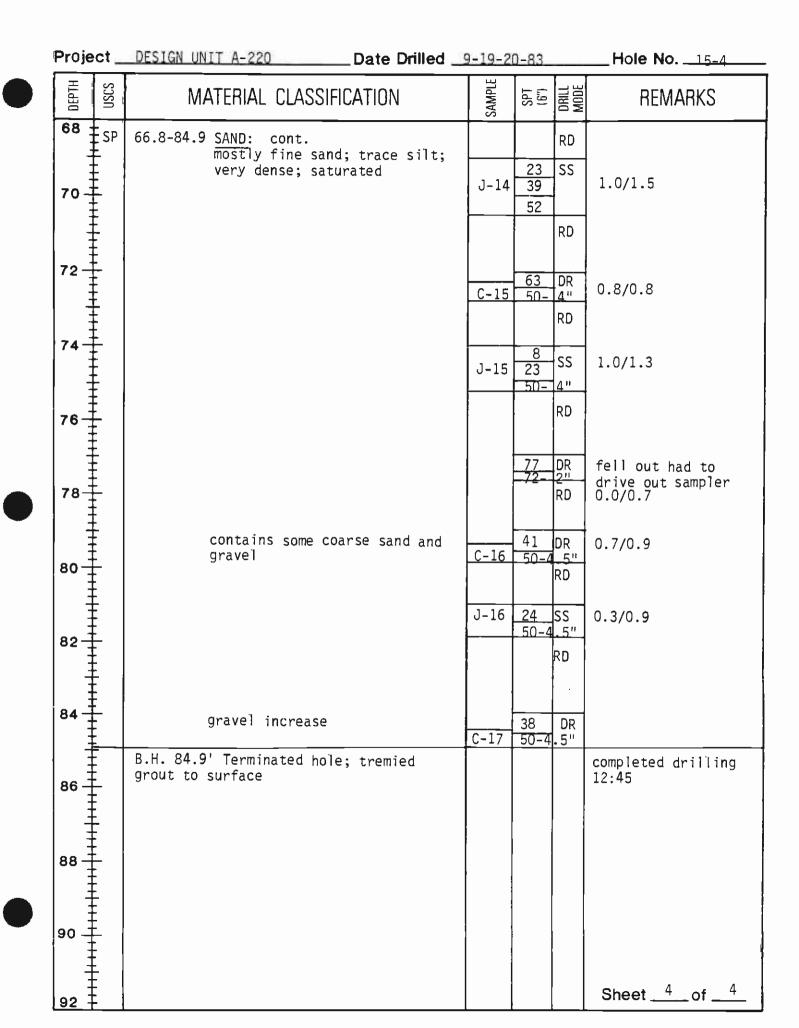
	Proj	ect_	DESIGN UNIT A-220 Date Drilled	9-2	8-83		Hole No
	DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
	68	SP I I I I	67.5-80.5 <u>SAND</u> : continued dark greenish grey; trace of silt; v. dense; saturated	J-1	23 3 51	SS RD	0.7/1.0
	70-	**					
	72-	*		C-1	4 <u>50</u> -	DR 3" RD	0.5/0.7
	74-	*++++		J-1	4 <u>50</u> -	SS 5" RD	0.6/0.9
	76-	**			57	DR	0.6/0.7
)	78-	+++++++++++++++++++++++++++++++++++++++		C-1 J-1	32	2½" RD SS	0.5/0.9
	80 -	+++++++++++++++++++++++++++++++++++++++			50-	<u>5.5</u> RD	n I
	82-	GP I I I I I I I I I I I I I I I I I I I	80.5-86.5 <u>SANDY GRAVEL</u> : dark greenish grey; mostly fine to medium gravel; angular; occasional coarse gravel and cobbles; v. dense; saturated		5 125-	5.5 RD	rig chatter " DR 0.4/0.4 disturbed sample
	84 -		fine sand lens, contains shells		<u>32</u> 50-	SS 4.5 RD	0.6/0.9
	86 -		PUENTE FORMATION				
	88 -		86.5-160.9 <u>INTERBEDDED SILTSTONE &</u> <u>CLAYSTONE</u> : olive grey and greenish black; thinly interbedded 1/2" to 3"; occasional well cemented zon	es <u>C-17</u>	46	DR 3"	0.7/0.8
	90 -	***	in primarily uncemented mate	rial.		RD	
	92	<u>+</u>					Sheet of

.





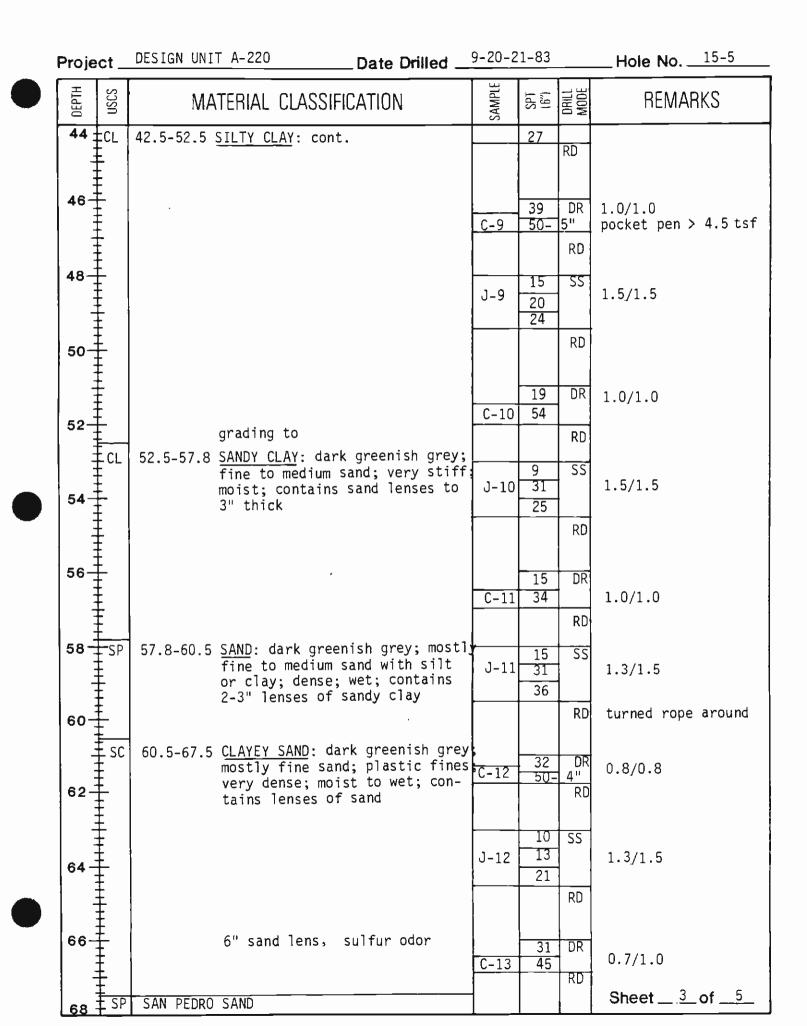
THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TD INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LDCATIONS OR TIME.

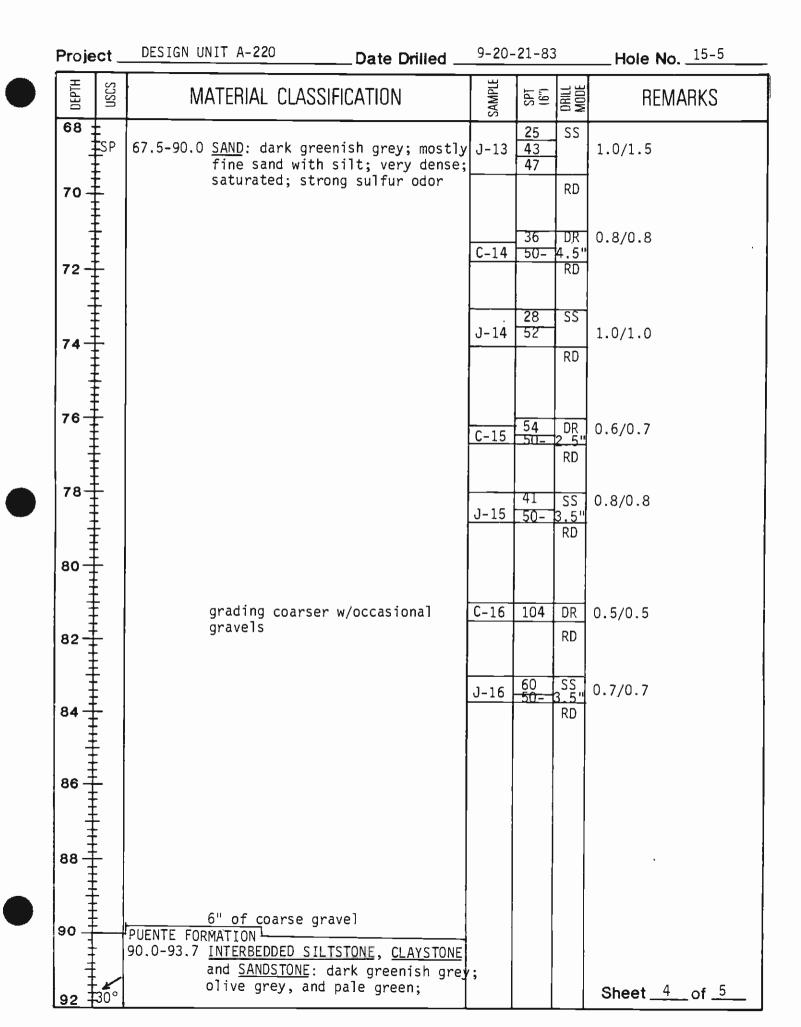


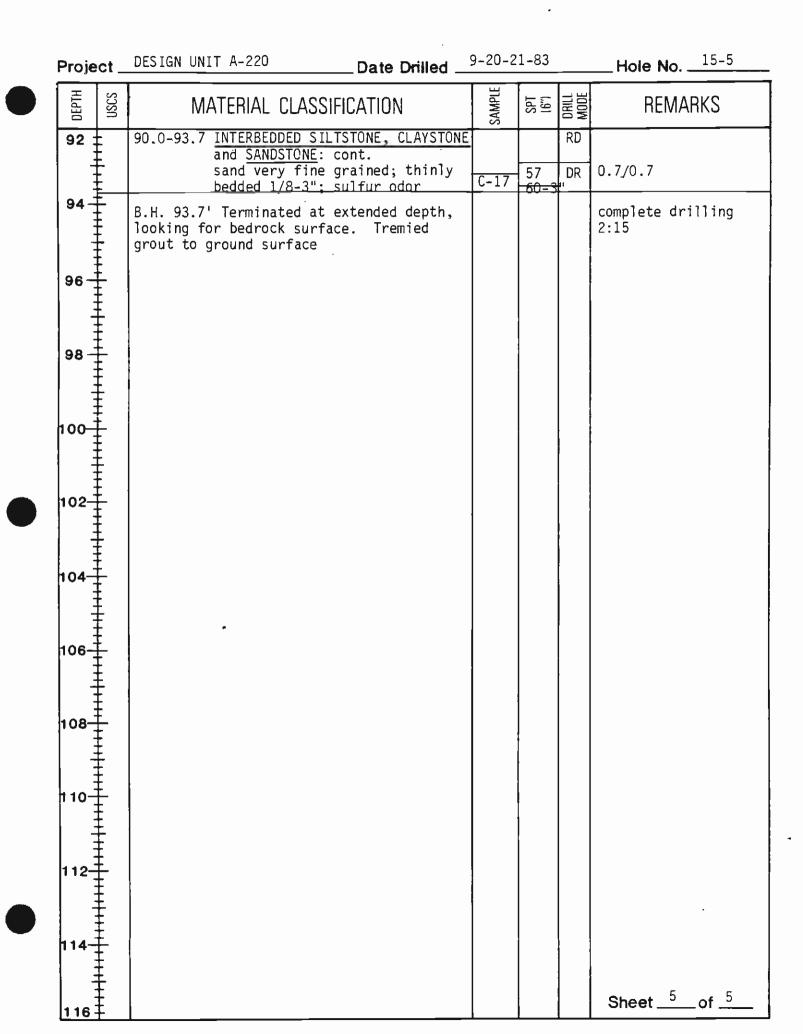
BORING LOG 15-4

	Proje	ct _	DESIGN UNIT A-220 Date Drilled _	9-19-	20-83	Hole No
	DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	SPT (6") DRH.L	REMARKS
	44	CL	41.0-57.5 <u>CLAY</u> : cont.	J-9	20	S 1.5/1.5
	46-				35 R	D
					27 0	R 1 0 / 1 0
	48-		sandy silt interbeds to 8" thic	C-10	48	L.0/1.0
					13 S	S 1.5/1.5
	50-		becoming less plastic	J-10	25	
						D
	52-			C-11	1 1	R 1.0/1.0
	54		silty sand interbed		F	D
)			sandy clay interbed	J-11		S 1.5/1.5
	56-					D
					26 [R
	58-	SP -	57.5-60.0 <u>SAND</u> : dark greenish grey; mostly medium sand; very dense;		42 F	1.0/1.0
			wet	J-12		S 1.5/1.5
	60	CL	60.0-66.8 <u>SANDY CLAY</u> : dark greenish grey fine sand; very stiff; moist		33	D
	62					
				C-13	20	R 1.0/1.0
	64		clayey sand lenses			
ļ			crayey sand renses	J-13	17 30	1.5/1.5
	66				F	<u>מ</u>
		r E sp	SAN PEDRO FORMATION 66.8-84.9 SAND: dark greenish grey;		50 D	
	68	F		C-14	50-5.5	

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

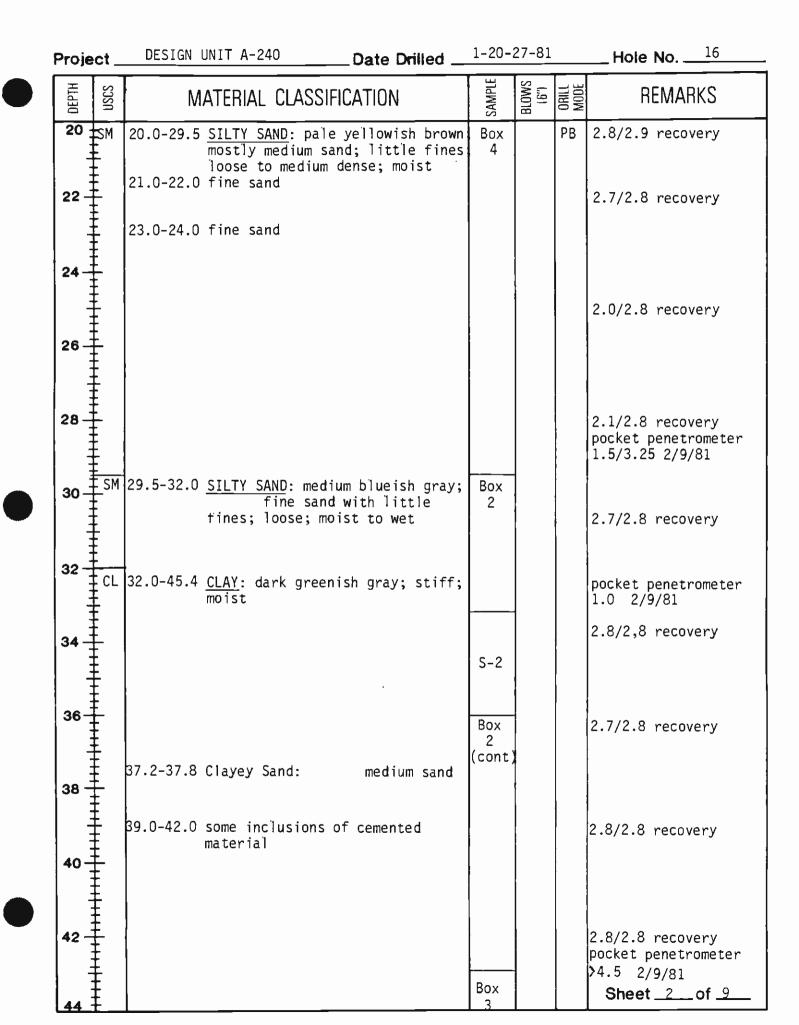


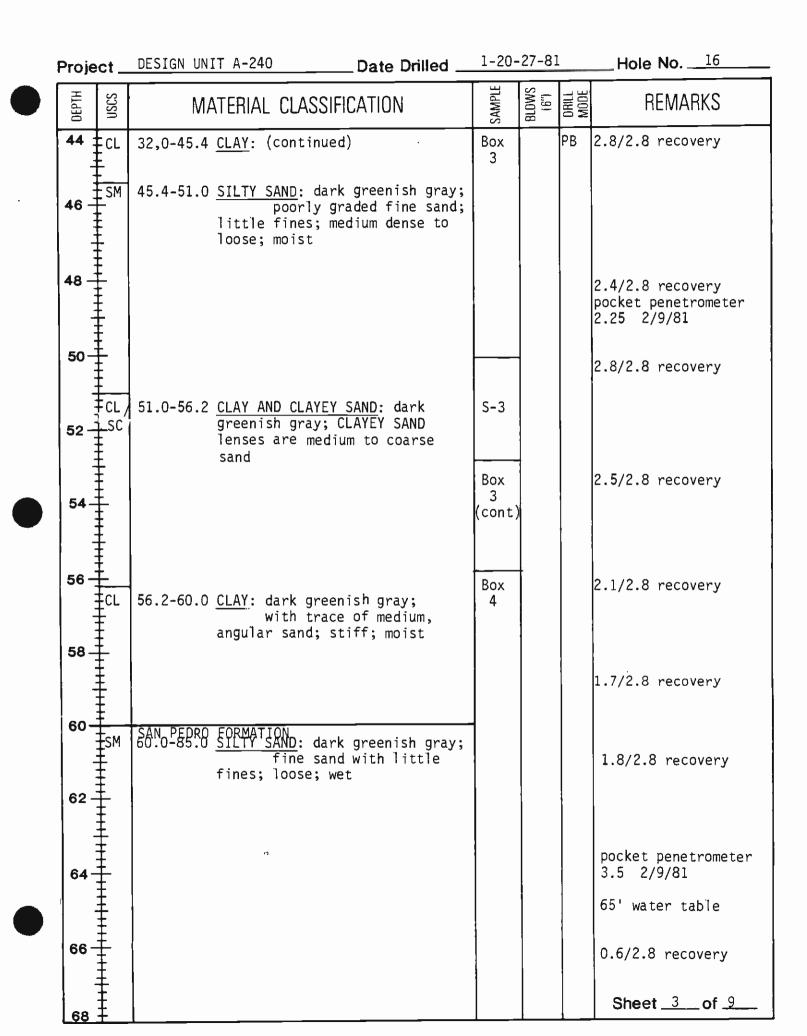

-


BORING LOG 15-5

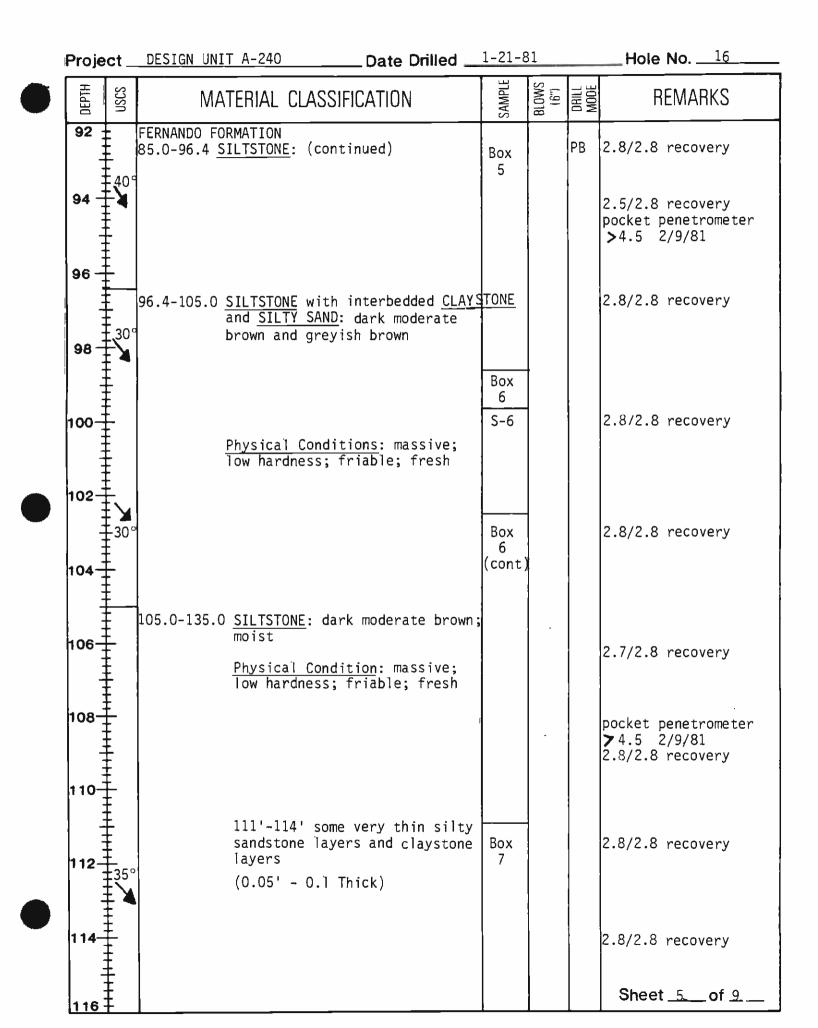
Proj:	SIGN UNIT A-220 Date Drilled 9-20	-2 <u>1-83</u>			Ground Elev.
Drill Rig	Failing 1500 Logged By L. Se	hoeber	rlein		Total Depth93.7'
Hole Dia	meter <u>4 7/8"</u> Hammer Weight &	Fall _	140	lb @	30"
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
	0.0-0.6 CONCRETE k0.6-1.0 BASEROCK			GB	start drilling 3:30
	FILL 1.0-2.6 <u>SANDY CLAY</u> : light brown		8	DR	0.5/1.0
sc	2.6-3.4 CLAYEY SAND: yellowish grey	C-1	16	AD	
	3.4-4.8 <u>SANDY CLAY</u> :	J-1	6 18	SS	1.5/1.5
6	4.8-10.0 <u>SILTY SAND</u> : yellowish grey; non-cohesive; medium dense		17	RD	set tub and cased to 6.5'
	gravelly		23 36	DR	0.0/1.0
	10.0-14.2 SANDY CLAY: moderate brown;		13 15 10	RD SS	0.0/1.5
	sand and gravel; soft; wet; contains other materials, brick fragments	C-2	3	RD DR	1.0/1.0
		J-2	5 10 18	RD SS	0.4/1.5
16	14.2-16.5 <u>CLAYEY GRAVEL</u> : variable color; mostly fine to medium gravel, with sand and clay			RD	
	16.5-22.5 <u>CLAY</u> : dark greenish grey; very stiff; moist	C-3	<u>13</u> 23	DR RD	1.0/1.0
		J-3	8 18 25	SS	1.3/1.5
20				ם א	Sheet <u>1</u> of <u>5</u>

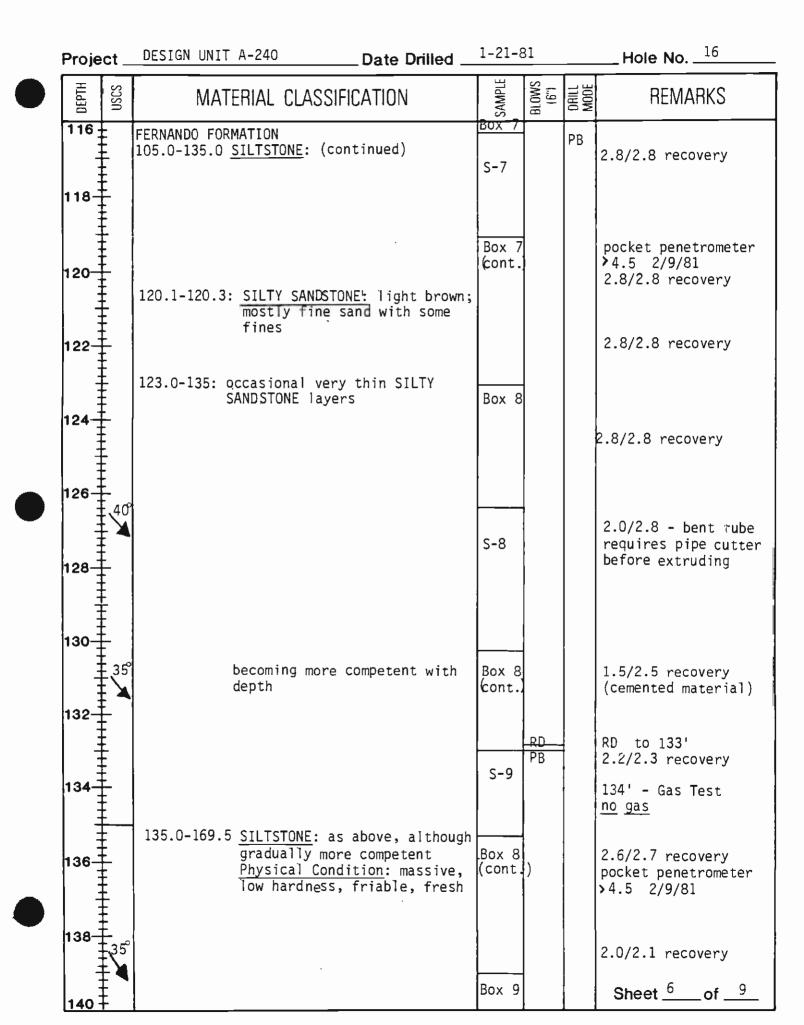
THIS BORING LOG IS EASEO ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION ANO TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

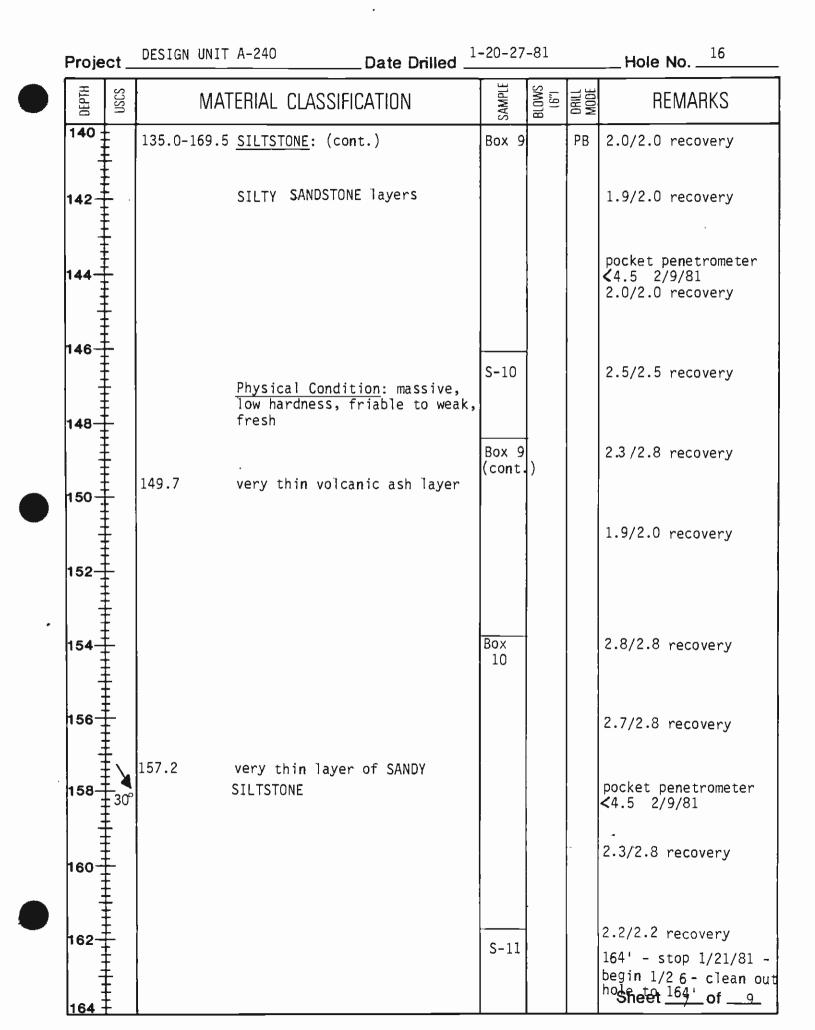

BORING LOG 16

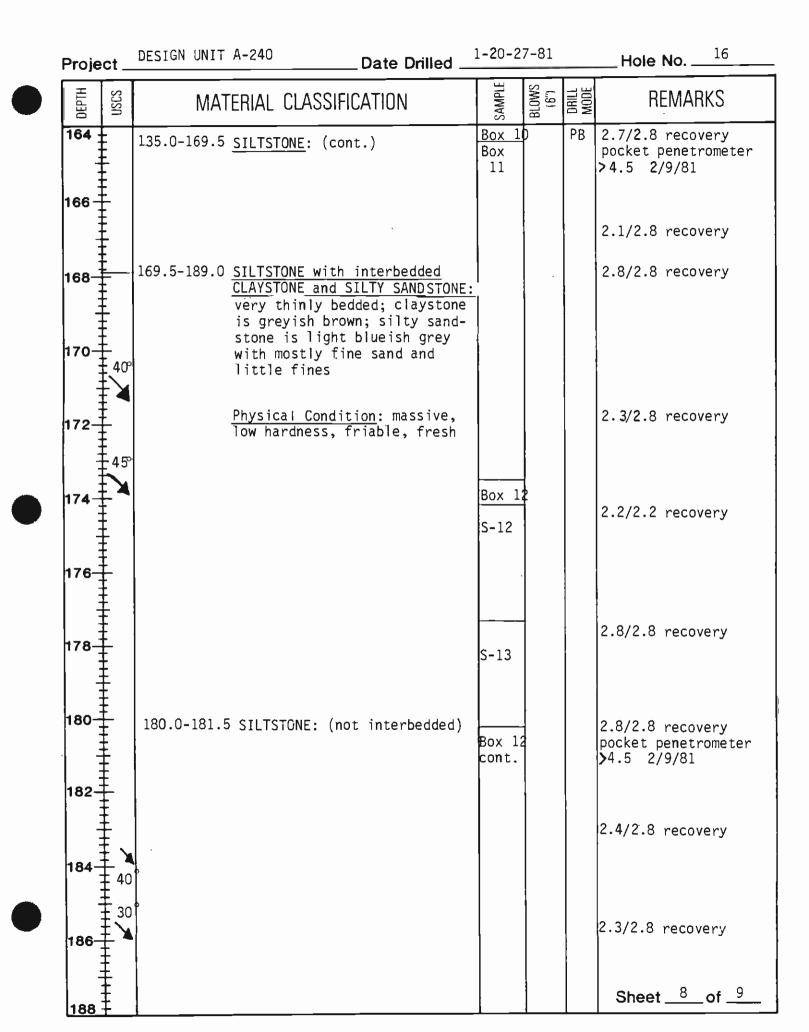

Proj: DESIGN UNIT A-240 Date Drilled 1-20-27-81 Ground Elev. 211'

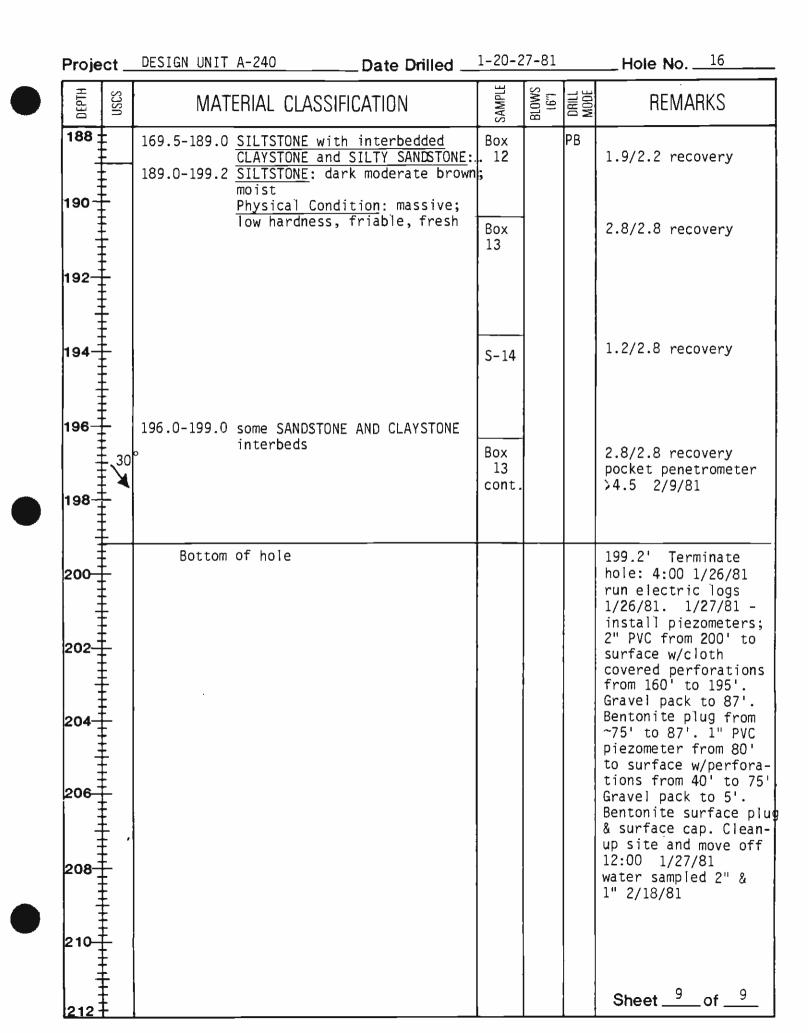
Drill Rig Failing 1500 Logged By Gallinatti _____ Total Depth 199.24

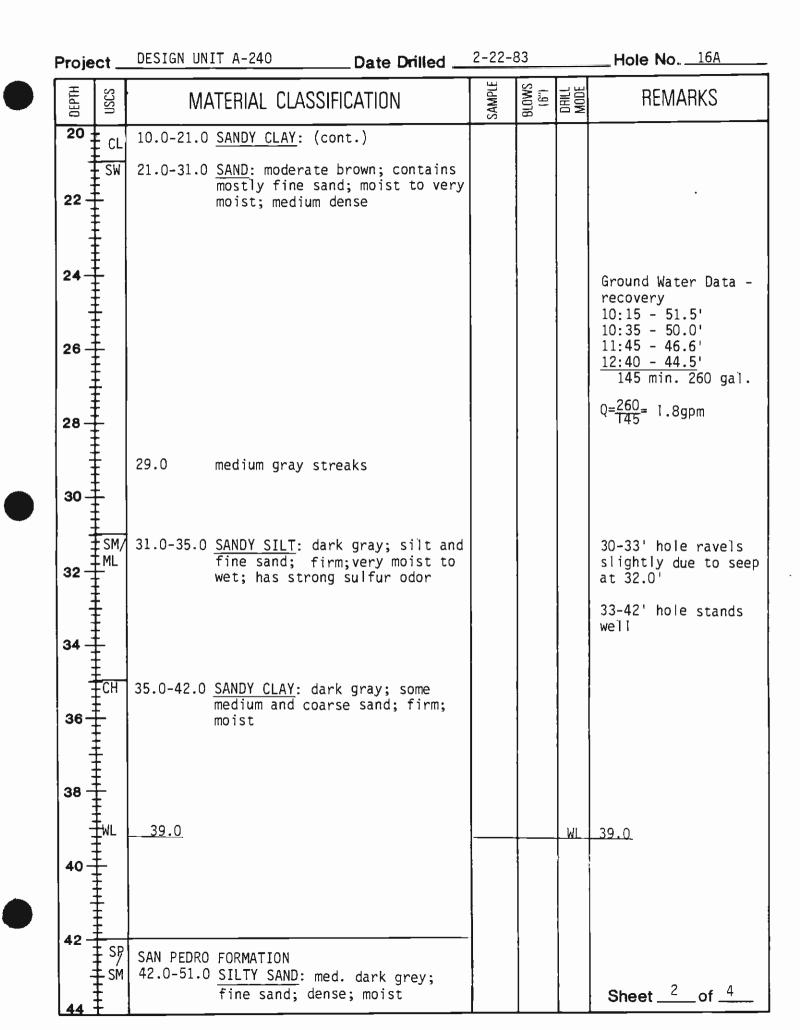

Hole Diameter 4 7/8" Hammer Weight & Fall 140 1b. 30"


DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	BLOWS	DRILL MODE	REMARKS
2	SM	0.0-0.5 <u>CEMENT</u> OLD ALLUVIUM 0.5-9.0 <u>SILTY SAND</u> : light olive brown; poorly graded fine sand, moist; subangular; loose;			AD	Begin drilling 11:30 1/20/81
4 6					RD	install 5' of 5" surface casing
8- 10- 12-	CL CH	<pre>9.0-12.0 <u>SANDY CLAY</u>: moderate yellowish brown; fine to medium sand; very stiff; moist 12.0-20.0 <u>CLAY</u>: dusky yellow; firm; moist</pre>	J-1	<u>22</u> 50	.SS RD	0.9/0.9 recovery install 5' more of surface casing
14			J-2	 	SS PB	1.5/1.5 recovery
18-	****		S-1 Box			2.8/2.8 recovery Sheet <u>1</u> of 9






	1	DESIGN UNIT A-240 Date Drilled				Hole No16
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	BLOWS (6")	DRILL MODE	REMARKS
68	±sм	60.0-85.0 <u>SILTY SAND</u> : (continued)			PB	No Recovery - satu- rated sands
70 -	***		S-4			1.5/2.8 recovery
72 -						
74 -			S-5			.9/2.8 recovery
		75'-77' medium to coarse sand				
76 -	+++++++++++++++++++++++++++++++++++++++		Box 4 (cont)			1.8/2.8 recovery
78-	+++++++++++++++++++++++++++++++++++++++					No Recovery
80 -						
82 -		81'-85' gravelly sand: probabl basal conglomerate	У		RD	1/20/81
						begin rotary drilli 1/21/81
84 -						
86 -		FERNANDO FORMATION 85.0-96.4 <u>SILTSTONE</u> : moderate brown; moist	Box 4		PB	1.1/2.8 recovery
88-		<u>Physical Condition</u> : massive; low hardness; friable; fresh	(cont)			
	**		Box			2.8/2.8 recovery
90-			5			
92	₽ 0°	91'-96.4' some thin sandy silt stone lenses	-			Sheet _4of _9



THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY OIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG 16A

				_A-240	Date Drilled	2-22	-83			Ground Elev. <u>212.0'</u>
		B. Aug								Total Depth 72.0'
Hole	Diar	neter_	30		Hammer Wei	ignt &			<u> </u>	
DEPTH	nscs		MA	Terial Cla	SSIFICATION		SAMPLE	() BLOWS	DRILL MODE	REMARKS
2	SC	YOUNG 0.0-10		CLAYEY SAND	<u>)</u> : grayish orar ium sand; mois1 se	nge; ;	RE OBSE	NO MPLES QUIRE RVATI HOLE	þ	0.0-33.0 hole stands well
6		5.0-6.	.0	Sand lens						
12_ 14_ 16_ 18_		OLD AL 10.0-2	21.0	SANDY CLAY:	streaks	sh bist;				Sheet _164

l	Proje	ct _	DESIGN UNIT A-240 Date Drilled	2-22-8	33		Hole No16A
	DEPTH	NSCS	MATERIAL CLASSIFICATION	SAMPLE	() BLOWS	DRILL Mode	REMARKS
	44	SP/ SM	42.0-51.0 <u>SILTY SAND</u> : (cont.) 43.5-45.0 little fine gravel				
	48				Ĩ		
	50-						•
	52	CL	51.0-53.0 <u>SANDY CLAY</u> : dusky blue green; little medium sand; firm; mois	t			
	54	20	53.0-72.0 <u>CLAYEY SAND</u> : medium dark grey; dense; medium sand; very moist	÷.			
	56 -						
	58-						
	60						
	62	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 					
	64-						
	66 - 68						Sheet <u>3</u> of <u>4</u>

Ρ	roje	ct_	DESIGN UNIT A-240 Date Drill	ed	2-22-8	33		Hole No
	DEPTH	nscs	MATERIAL CLASSIFICATION		SAMPLE	BLOWS (6")	DRILL MODE	REMARKS
	68 70	SC	53.0-72.0 <u>CLAYEY SAND</u> : (cont.)					
E	72		End Boring 72.0'					SPECIAL HOIE CLOSURE Note: stopped drilling due to excessive belling backfill - placed pea gravel to 30' then slurry to 1' then
	76							concrete cap to side- walk grade
	78 78 80							
	82 11 84							
	86 86							
}	88 88 90							
	92				1			Sheet4_ of4_

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SDIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LDG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT DTHER LDCATIONS OR TIME.

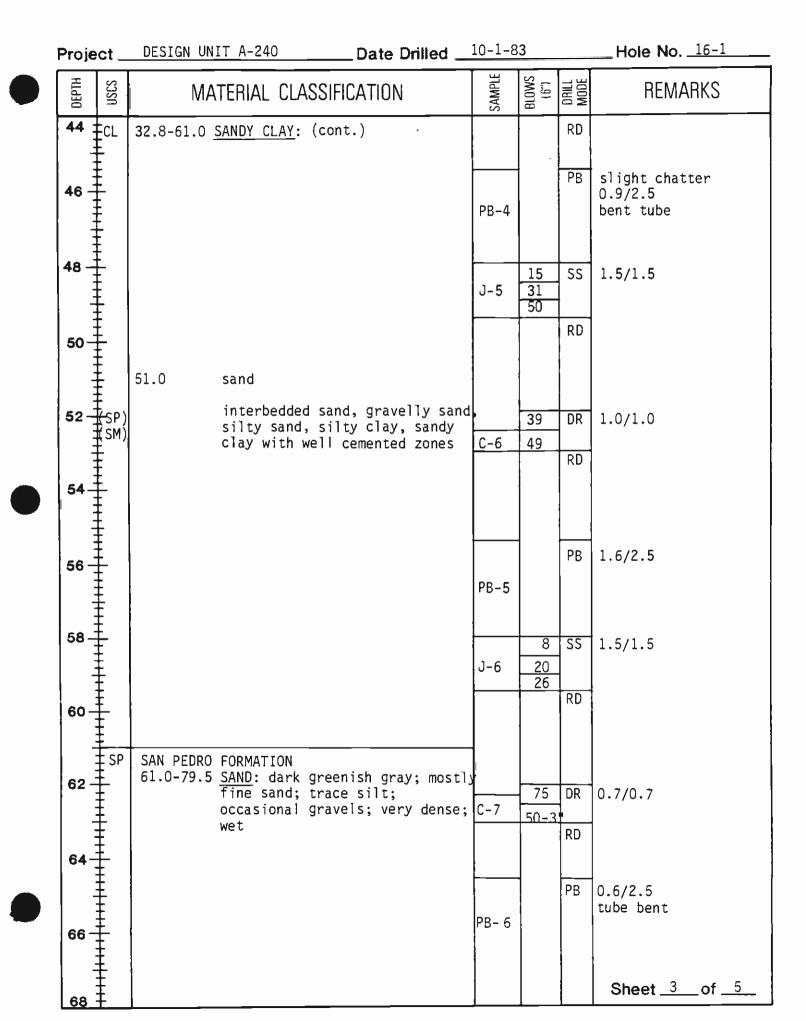
BORING LOG 16B

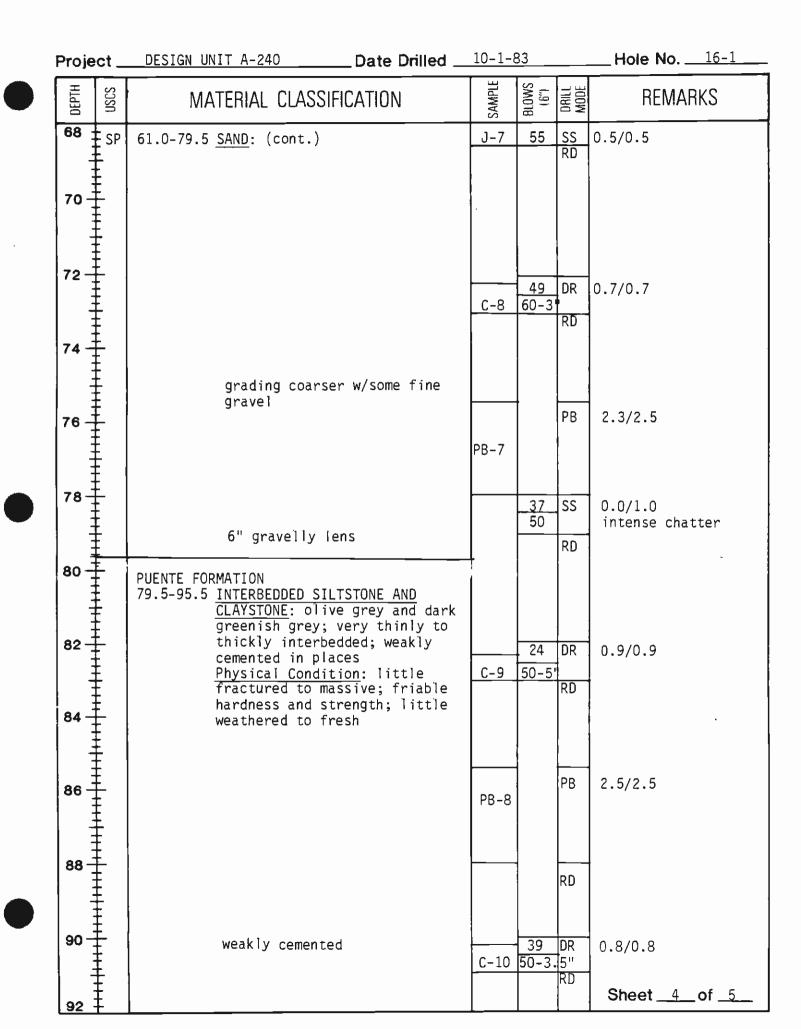
Proj:DESIGN_UNIT_A-220	Date Drilled11-7-83	Ground Elev
Drill RigMAN-SIZE AUGER	Logged By <u>J. Stellar</u>	Total Depth60.0
Hole Diameter 33"	Hammer Weight & Fall	

DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
2-		A/C PAVEMENT 0.0-0.6 ALLUVIUM 0.6-6.0 <u>SANDY SILT</u> : light yellowish brown, slightly moist, stiff				
6	ML.	6.0-12.0 <u>CLAYEY SILT</u> : medium brown, moist stiff, streaks of sandy silt				
10-	SM	12.0.13.0 SILTY SAND, light groupish group				
14-	ML SP	 12.0-13.0 <u>SILTY SAND</u>: light greenish gray, moist, medium dense 12.0-15.0 <u>SILT</u>: light greenish gray, moist stiff, with layers of silty sand and sandy silt 15.0-22.0 <u>SAND</u>: mottled orange and gray, wet, clean, medium grained, medium dense 	3			extensive caving 13'- 22' (8'-10' belling) water level @ 13' after 2 hours very rapid flow into hole 50± gpm
18-		1' layers of gravelly sand w/ gravel to 1"				bag sample @ 18' H2O @ 20' after 1 hour Sheet <u>1</u> of <u>3</u>

Project _	DESIGN	UNIT A-220	Date Drilled	11	-7-83		Hole No!6B
DEPTH USCS		MATERIAL CLAS	SIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
	15.0- 22.0	<u>SAND:</u> (continu	ed)				
	22.0- 25.0	<u>SILT:</u> light ye firm with layer	llowish brown, mois s of sandy silt				
24	25.0-	SAND. light ve	llowish brown, wet				
26	29.0	medium dense, a	Iternating with Ily sand and silty				
28	20.0						
	29.0- 36.0	SANDY SILI: gr moist, stiff wi silt and sand	eenish blue, very th layers of sandy				
32							bag sample @ 32'
34			yers of clayey silt and clayer sand				•
36 5M	36.0- 38.0	<u>SILTY SAND:</u> gre dense, with laye	eenish blue, wet, ers of sandy silt				
38 	38.0- 42.0	moist, firm to st	eenish blue, very tiff, w/ layers of 1, and gravelly sand				
40							
42	42.0 . 47.0	<u>SILTY SAND:</u> gre dense, with laye sandy silt	enish blue, wet, ers of sand, and				Sheet 2 of 3


Projec	;t	DESIGN UNIT A - 220 Date Drilled	11-	7-83		Hole No16-B
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL	REMARKS
44	SM 42 47	2.0- <u>SILTY SAND:</u> (continued) 7.0				
48		7.0- <u>SAND:</u> greenish blue, wet, dense 1.0 with layers of silty sand				bag sample @ 48'
50 52 52	ML 51	1.0- <u>SANDY SILT:</u> greenish blue, wet, 5.0 stiff, with layers of silty sand and sand				
54	- SP S	SAN PEDRO FORMATION				flow into holes from
56	_ 5	55.0- <u>SAND:</u> greenish blue, wet, dense 50.0 with layers of silty sand and sandy silt, coarse grained				saturated sands. (quantity undetermined)
58	-					
62	-	B.H. 60.0' Terminated hole. Hole caved back to 49.0' after 2 hours and to 20' after 4 hours. No Gas No downhole observations due to water and caving.				
64	-					
66	-					Sheet of


THIS BORING LOG IS BASED ON FIELO CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TD INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LDG IS APPLICABLE ONLY AT THIS LDCATION AND TIME. CONDITIONS MAY DIFFER AT DTHER LDCATIONS OR TIME.



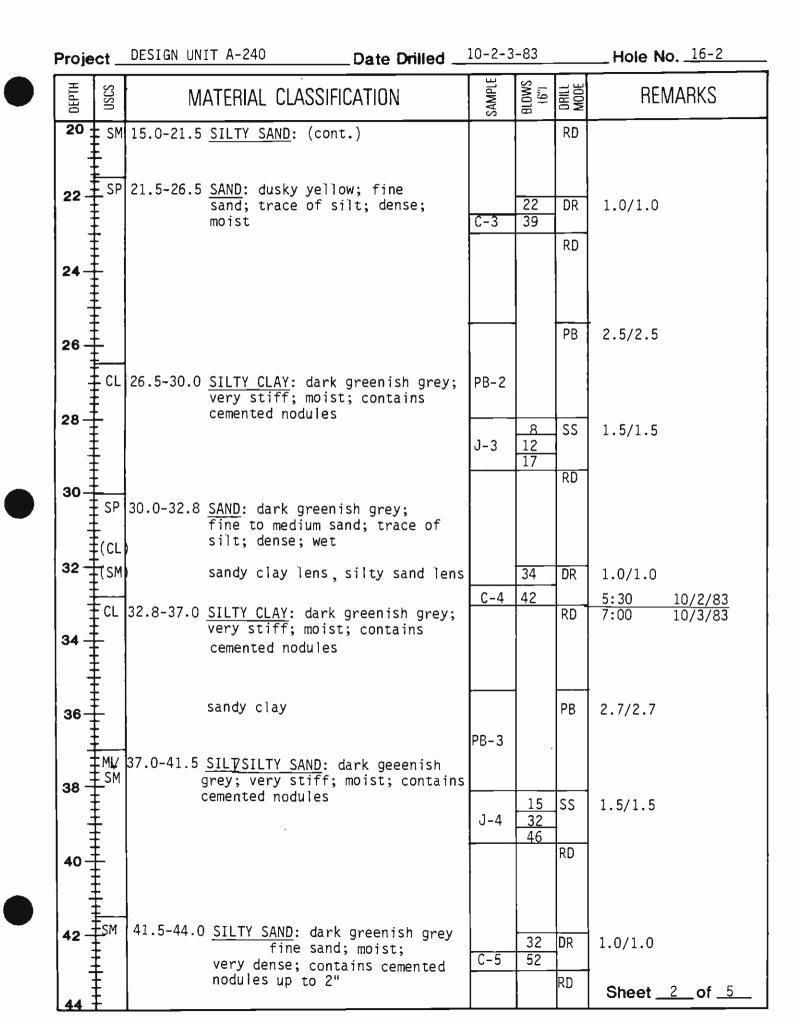
BORING LOG 16-1

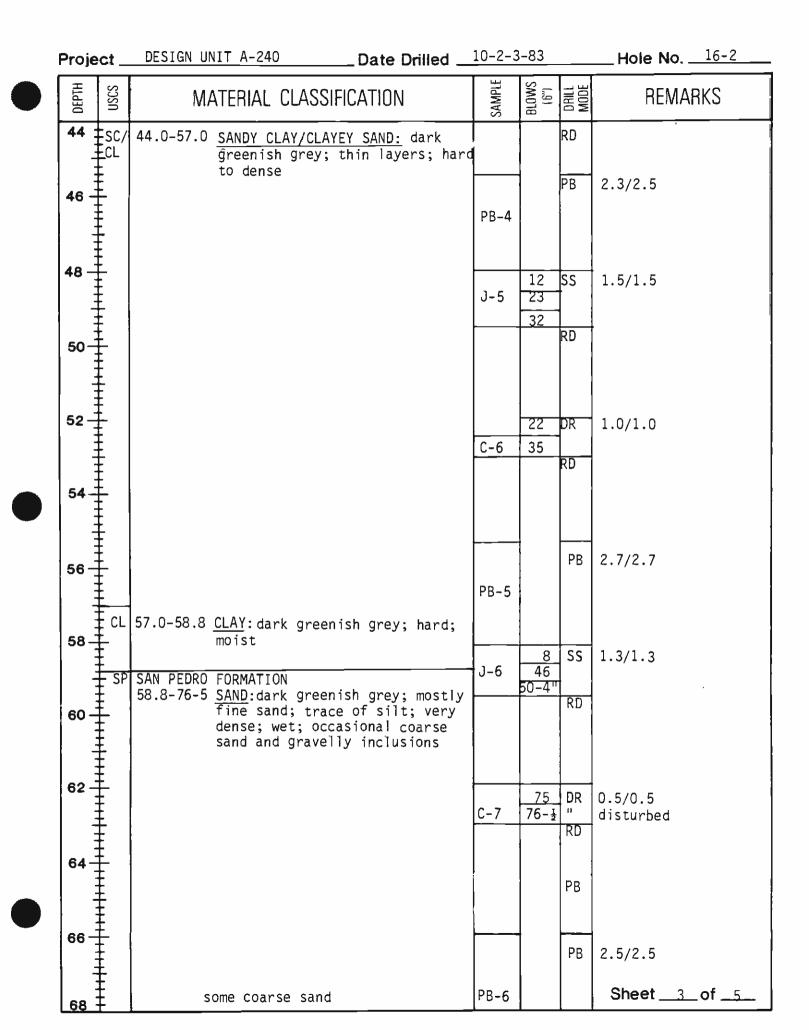
Proj: DESIGN UNIT A-240 Date Drilled <u>10-1-83</u> Ground Elev. <u>199.5'</u> Drill Rig Failing 1500 Logged By L. Schoeberlein Total Depth 95.5 Hole Diameter 4' 7/8" Hammer Weight & Fall 140 15 @ 30" SAMPLE BLDWS (6") DRILL MODE DEPTH JSCS MATERIAL CLASSIFICATION REMARKS O AC | 0.0-0.5 ASHALT IGB | start drilling 10:30 0.5-0.7 ROAD BASE GP ‡c∟ FILL 0.7-5.0 SANDY CLAY: moderate to dark yellowish brown; some fine sand, 2. DR 5 0.9/1.0 occasional gravel and cobbles; C-1 9 contains asphalt pieces; soft to AD firm; moist to wet **Ŧ**CL OLD ALLUVIUM 5.0-15.2 SANDYCLAY: moderate brown to SH 6moderate yellowish brown; trace SH-2.3/2.5 fine sand; firm; wet 1 pushed Shelby 8-SS 5 interbedded clayey sand lenses, J-1 5 moderate vellowish brown 1.5/1.5 6 AD 10-12-6 DR. 1.0/1.0 C-2 10 RD set tub & cased to 13', mixed 1 sack mud 14-15.2-27.0 SILTY SAND'SAND: dusky yellow LSM/ rig chatter 16_\$P fine sand; trace silt; very dense; moist; occasional PB gravel lenses and silty clay PB-1 2.5/2.5 L(C4) lenses 15.2-15.7 gravel lens, silty clay lens 18 21 SS J-2 36 Sheet $_^1$ of $_^5$ 47 20

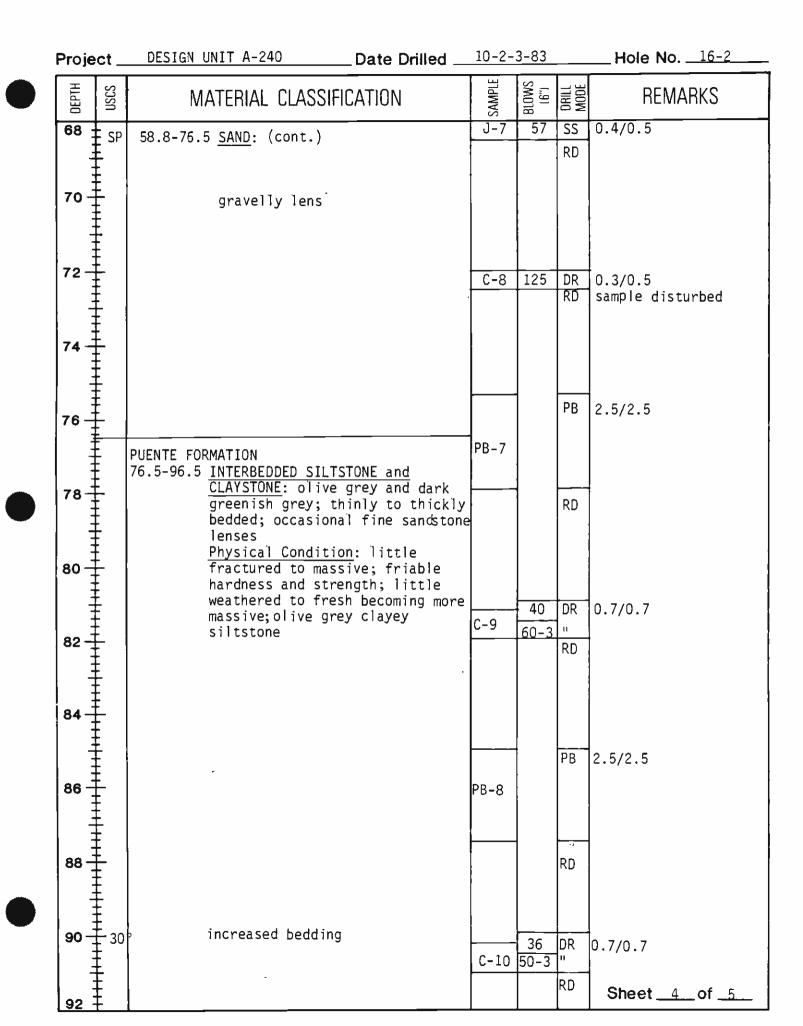
Proje	ect _	DESIGN UNIT A-240 Date Drilled	10-1-8	3		Hole No
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	BLOWS	DRILL MODE	REMARKS
92 - 94 -		79.5-95.5 INTERBEDDED SILTSTONE and CLAYSTONE: (cont.)	PB-9		RD PB	2.3/2.5
-						
96 -		B.H. 95.5' Terminated hole, grouted to surface				complete drilling 5:30
98 -						
100-						
102-						
104-						
106-						
108-						
110-						
112-		-				
114-						
	‡ ‡					Sheet 5 of 5

•

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SDIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY OIFFER AT DTHER LOCATIONS OR TIME.

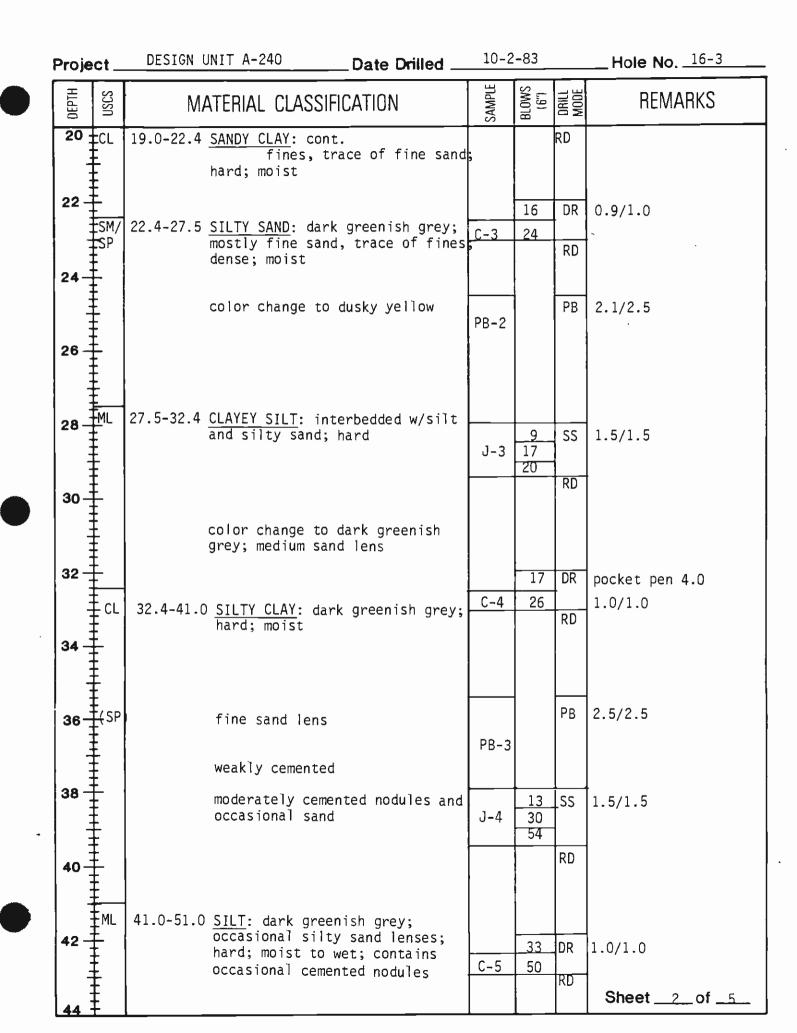

BORING LOG 16-2

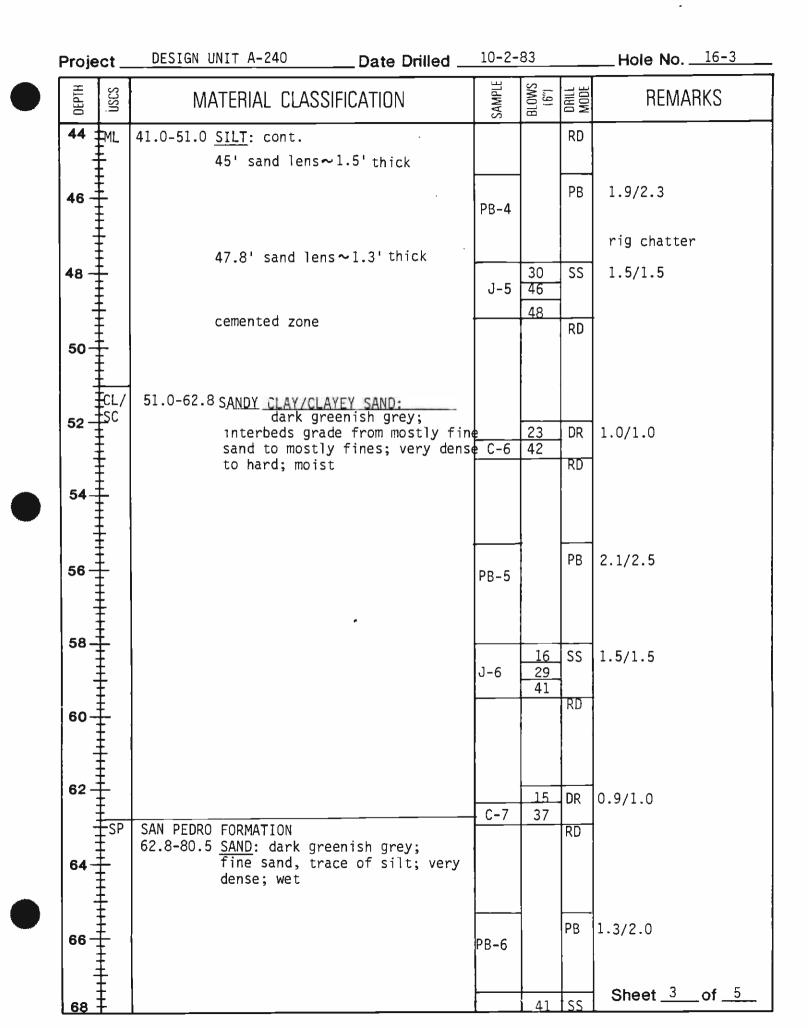

Proj: _____DESIGN_UNIT_A-240 _____Date_Drilled _____10-2-3-83 ______Ground_Elev. __203'____

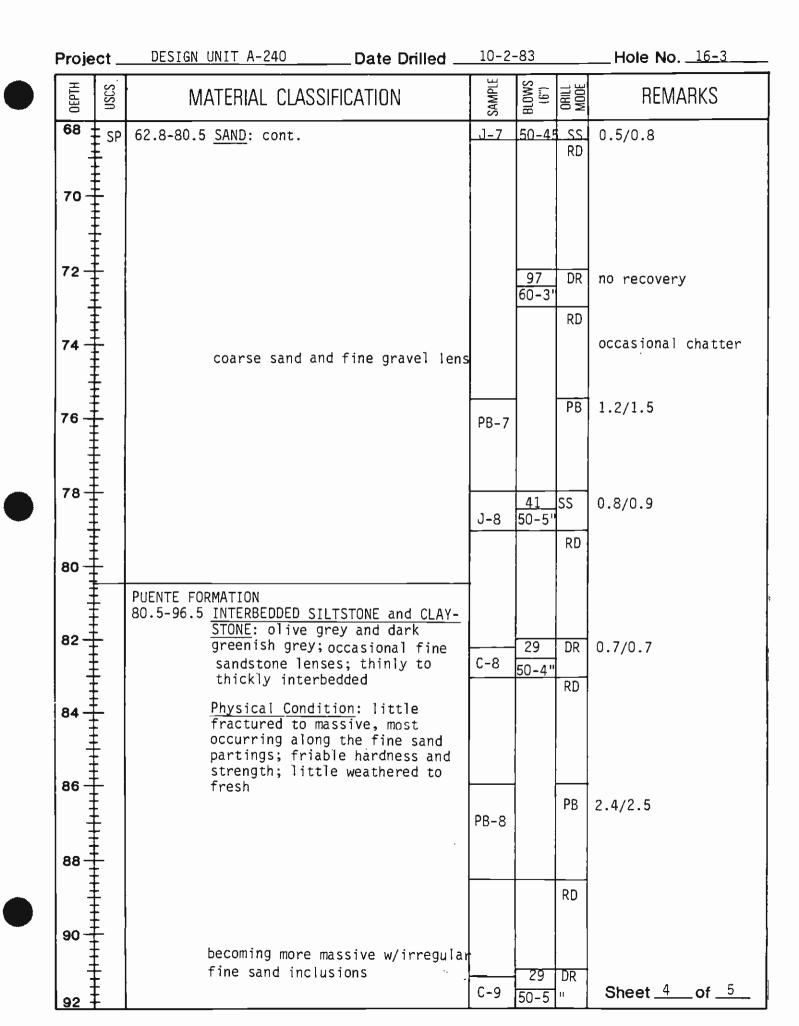

Drill Rig Failing 1500 Logged By L. Schoeberlein Total Depth 96.5'

Hole Diameter 4 4/8" Hammer Weight & Fall 140 15 @ 30"

DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	(P.) BLOWS	DRILL MODE	REMARKS
0	eonc	0.0-1.0 CONCRETE			GB	start drilling 3:30
2-	CL _	OLD ALLUVIUM 1.0-6.5 <u>SANDY CLAY</u> : dusky yellow brown; Tittle fine sand; firm; moist		3	DR	1.0/1.0
4-			C-1	9	AD	
					SH	2.4/2.5
6-	CL	6.5-9.0 <u>SANDY CLAY</u> : moderate brown; some fine sand; very stiff; moist	SH-1			
8-			J-1	5 14 17	SS	1.5/1.5
10-	SC	9.0-11.0 <u>CLAYEY SAND</u> : moderate brown; mostly well graded sand; some fines; occasional fine gravel; dense; moist		<u> </u>	AD	
12-	<u>-</u>	11.0-12.5 <u>SILTY CLAY</u> : dusky yellow; stiff moist		11	DR	
14-		12.5-15.0 <u>SANDY CLAY</u> : dusky yellow; mostly fines with little fine sand; very stiff; moist	<u>C-2</u>	<u>39</u>	RD	set up tub & cased to 13.5' mixed mud
-	SM/	15.0-21.5 <u>SILTY SAND</u> : dusky yellow; mostly fine sand; trac e fines; dense; moist	PB-1		PB	2.7/2.7
18-			J-2	<u>10</u> 13	SS	1.5/1.5
20				<u>13</u> 25	RD	Sheet $_1$ _of $_5$

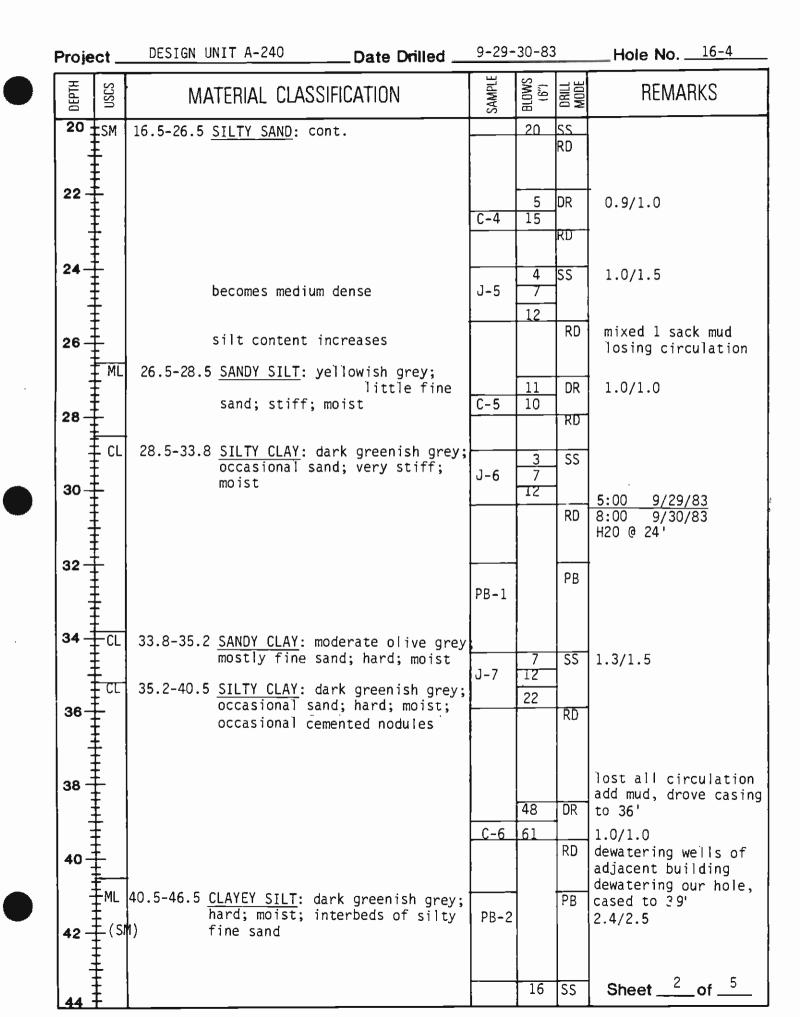



Project _	DESIGN UNIT A-240 Date Drilled _		3-83		Hole No16-2
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	BLOWS	WILL	REMARKS
92	76.5-96.5 <u>INTERBEDDED SILTSTONE and</u> <u>CLAYSTONE</u> : (cont.)		F	מא	
94		PB-9	F	ЪВ	
96	B.H. 96.5' Terminated hole, installed	_			complete drilling
98	piezometer to bottom, 76-96' slotted.				12:00
104					
					Sheet <u>5</u> of <u>5</u>

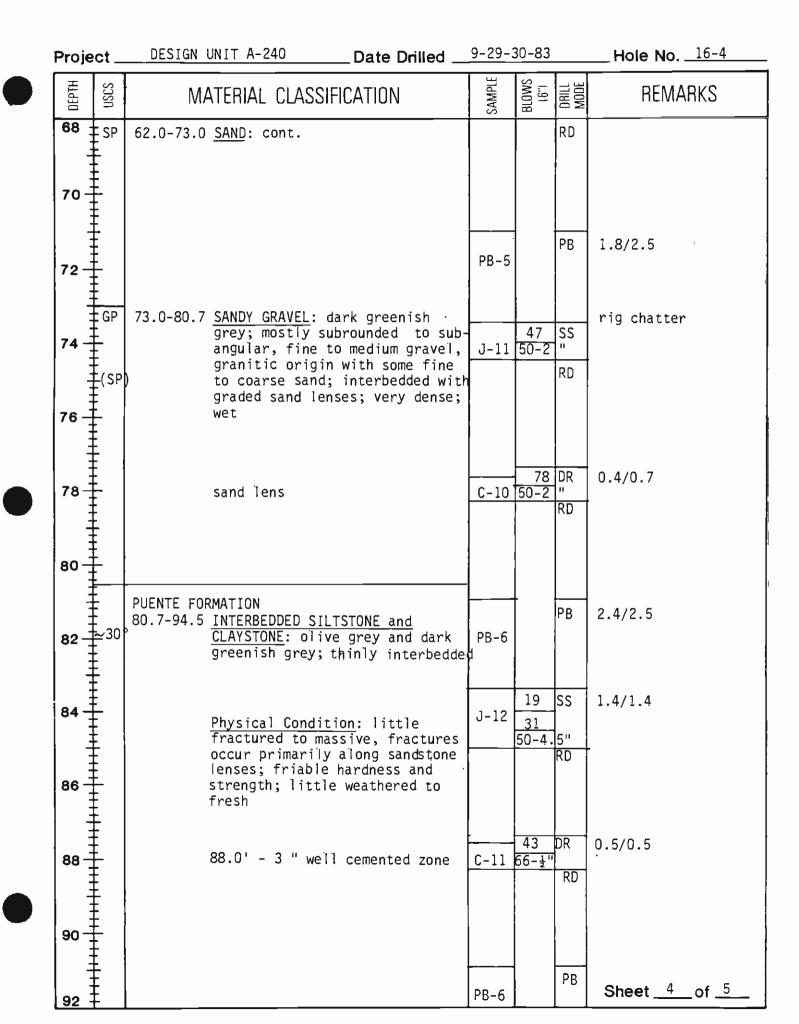


BORING LOG 16-3

_____ Ground Elev. __²⁰⁷ ' DESIGN UNIT A-240 ____ Date Drilled _____ Proi: Drill Rig Failing 1500 Logged By L. Schoeberlein Total Depth 96.5 Hole Diameter 4 7/8" Hammer Weight & Fall 140 1b @ 30" BLOWS (6") SAMPLE DEPTH USCS DRILL MODE MATERIAL CLASSIFICATION REMARKS O LAC 0.0-0.2 ASPHALT GB start drilling 8:00 FGP 0.2-1.0 BASE ROCK CL OLD ALLUVIUM 1.0-12.0 SANDY CLAY: moderate brown; 2 -5 **D**R little to trace of fine sand 0.8/1.0 C-1 11 very stiff; moist; AD PR pushed Shelby 2.5/2.5 6 S-1 color change to light olive 8 SS. grey, becomes hard 11 1.5/1.5 J-1 23 26 AD 10-12-8 DR 0.8/1.0 CL 12.0-15.0 SILTY CLAY: greyish green mottled with light brown: C-2 25 ferrous staining; hard; moist; RD set tub and drove occasional cemented nodules and casing to 13' mixed 14sand mud SC 15.0-19.0 CLAYEY SAND: dark greenish grey mostly fine sand, little fines; PB 2.5/2.5 16-#(SM) interbeds of silty sand; dense; PB-1 moist 18 7 SS 1.5/1.5 J-2 14 Sheet ______ of ____ 19 5 19.0-22.4 SANDY CLAY: dk. greenish grey CL RD 20



Proje	ct _	DESIGN UNIT A-240 Date Drilled	10-2-	<u> </u>		Hole No
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	(,,9) BLDWS	DRILL MODE	REMARKS
92		80.5-96.5 INTERBEDDED SILTSTONE and CLAYSTONE: cont.			RD	
1						
94 -			PB-9		PB	2.5/2.5
.						
96 -		·				
		B.H. 96.5 Terminated hole, tremied grout to surface				Completed drilling 2:15
98-						
00						
1111						
02						
04-						
06						
00						
1						
-80						
10-						
-						
12-			ĩ			
-						
114-						
-						
116	ŧ					Sheet <u>5</u> of <u>5</u>



BORING LOG 16-4

-		ESIGN UNIT A-240	_ Date Drilled _	9-29-	30-83			Ground Elev205.5'_
Drift	Rig .	Failing 1500	Logged By _	L. Sc	hoeben	<u>lein</u>		Total Depth94.5'
Hole	Diar	neter <u>4 4/8"</u>	Hammer Weig	ht &	Fall 🔟	140 11	9 @	30"
DEPTH	NSCS	Material CLA	ASSIFICATION		SAMPLE	BLOWS (6'')	DRILL MODE	REMARKS
0	cond - SM	0.0-0.8 <u>CONCRETE</u>					GB	start drilling 3 pm
2-		0.8-6.0 <u>SILTY SAND</u> : r fine f fines; loose	noderate brown; to medium sand, to medium dense thin gravelly le	;	C-1	32 26	DR AD	0.7/1.0
4-	**			i	J-1	5 5 4	SS AD	1.3/1.5
8-	SC				e	4	DR RD	set tub and cased to 7' O recovery
10-	+++++++++++++++++++++++++++++++++++++++				J-2	4 7 9	SS RD	0.8/1.5
12) interbedded	with sandy clay		C-2	3	DR RD	0.8/1.0
14-		13.5' - sanc color change becomes dens	to yellowish gr	rey	J-3	13 19	SS RD	1.0/1.5
18-	SM/	decreased pl 16.5-26.5 <u>SILTY SAND</u> : fine		ies;	C-3	21	DR RD	0.8/1.0
20		sand lenses	,	-, -,	J-4	 19	SS	1.0/1.5 Sheet <u>1</u> of <u>5</u>

Proje	ect _	DESIGN UNIT A-240 Date Drilled	9-29-30-83	Hole No
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE BLOWS (6") DRILL MODE	REMARKS
44	EML	40.5-46.5 CLAYEY SILT: cont.	34 SS J-8 50-4" RD	1.2/1.3
46		46.5-49.5 <u>SILTY CLAY</u> : dark greenish grey; occasional sand; hard; moist; occasional cemented nodules	21 DR C-7 50-5.5" RD	1.0/1.0
50		49.5-52.0 <u>SANDY CLAY</u> : dark greenish grey; mostly fines, with some fine sar	PB	2 4/2 5
52	ESM	52.0-56.5 <u>SILTY SAND</u> : dark greenish grey; mostly fine sand, little silt;	PB-3	2.4/2.5
54	KSC) KCL)	very dense; moist to wet; interbedded sandy clay and clayey sand	J-9 20 SS 50 RD	1.0/1.0
56		56.5-62.0 <u>CLAYEY SILT</u> : dark greenish grey; very stiff; moist		1.0/1.0
60 62	SP	SAN PEDRO FORMATION	PB-4	2.5/2.5
64		62.0-73.0 <u>SAND</u> : dark greenish grey; fine to medium sand, with trace of silt; very dense; wet	46 SS J-10 53 RD	0.5/1.0
66			C-9 150 DR	⁰ .4/1.0 Sheet_3of_5_


Proj	ect_	DESIGN UNIT A-240 Date Drilled	-29-30	-83		Hole No16-4
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	BLDWS (6")	DRILL MODE	REMARKS
92		80.7-94.5 INTERBEDDED SILTSTONE and CLAYSTONE: cont.	PB-6		РВ	2.5/2.5
94 ·			J-13	22 51	SS	1.0/1.0
96 -		B.H. 94.5 Terminated hole, grouted bottom to 40', backfilled with pea gravel to surface				complete drilling 4:45
98 [.]	***			1		
100-	***					
102	**					
104 [.]						
106 [.]	+++++++++++++++++++++++++++++++++++++++					
108	*					
110	*]			•
112						
116						Sheet <u>5</u> of <u>5</u>

BORING LOG 16-5

Proj:	DESIGN UNIT A-240 Date Drilled	<u>10-3-4-8</u>	3		Ground Elev. 211.5'
Drill Rig	Failing 1500 Logged By _L.	Schoeber	lein		Total Depth 99.7'
Hole Dia	meter <u>4 7/8</u> Hammer Weight		140	Ϊb (30"
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	(.9) BLOWS	DRILL MODE	REMARKS
	FILL 0.2-1.5 <u>SANDY CLAY</u> : brown, stiff; moist 1.5-10.0 <u>SANDY CLAY</u> : greyish green; som	e		GB	start drilling 2:15
4	fine sand; stiff to hard; mois	t [.]	7	DR AD	1.0/1.0
6 	thinly bedded clayey sand	SH-1		SH	2.5/2.5
8		J-1	16 17_ 20	SS AD	1.5/1.5
	<pre>10.0-11.5 <u>SILTY CLAY</u>: light olive brown fines, trace fine sand; hard; moist 11.5-21.0 <u>SANDY CLAY</u>: mottled light oli brown with greyish green; little fine sand; hard; moist</pre>	ve	13 37	DR RD	1.0/1.0 set tube & cased to 13', mixed mud
16	sand lens	PB-1		РВ	2.1/2.5
18		J-2	7 17 23	SS	1.5/1.5
20 ‡				RD	Sheet <u>1</u> of <u>5</u>

Projec	ct	DESIGN UNIT A-240 Date Drilled	10-3-4	-83		Hole No. <u>16-5</u>
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	(1,0) (1,0)	DRILL MODE	REMARKS
22	CL SC	11.5-21.0 <u>SANDY CLAY</u> : cont. 21.0-25.0 <u>CLAYEY SAND</u> : light olive grey; dense; moist	C-3	<u>22</u> 39	RD DR RD	1.0/1.0
24	SP	25.0-27.0 <u>SAND</u> : light olive grey; fine to medium sand, trace of silt; medium dense; wet	РВ-2		РВ	2.2/2.5
28	ML CL	27.0-28.0 <u>CLAYEY SILT</u> : dusky yellow; very stiff; moist 29.0-31.5 <u>SILTY CLAY</u> : dusky yellow; very stiff; moist	J-3	4 9 14	SS אט	1.5/1.5
	ML	31.5-35.0 <u>SANDY SILT</u> : dusky yellow; occasional silty sand lenses; stiff; moist	C-4	18 19	DR RD	1.0/1.0
	CL/ SM/ ML	35.0-52.0 <u>SANDY CLAY/SILTY SAND/SILT</u> : dark greenish grey; thin to medium layers; dense; moist; contains cemented nodules	РВ-3		РВ	2.7/2.7
38			J-4	17 26 50	SS RD	1.5/1.5
42			C-5	<u>36</u> 50-5	DR " RD	0.9/0.9
44			C-5	50-5		Sheet _2of

Projec	;t_	DESIGN UNIT A-240 Date Drilled	10 - 3	<u>-4-8</u> 3		Hole No16-5
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	BLOWS (6")	MODE	REMARKS
68	SP	64.5-86.5 <u>SAND</u> : cont.	J-7	29 S 50-4 5	S ;" 2D	0.7/0.9
70 72 72	-		C-7	50-4 5)R ;" :D	0.7/0.9
76	_		PB-7	P	B	1.9/2.0
78			J-8	50-4 "	SS RD	0.3/0.3
	ĞΡ	gravelly sand grading to sandy gravel with some fine sand lense	s			
82	-		<u>C-8</u>		<u>DR</u> RD	0.3/0.5
86	-					
88	-	PUENTE FORMATION 86.5-99.7 <u>INTERBEDDED SILTSTONE and</u> <u>CLAYSTONE</u> : olive grey and dark greenish grey; thinly to thickly interbedded; mostly fines, trace	PB-8	F	PB	2.0/2.5
90	-	fine sand partings <u>Physical Condition</u> : little fractured to massive; friable hardness and strength; little weathered to fresh		F	RD	
92 ‡						Sheet 4 of 5

Proje	ect _	DESIGN UNIT A-240 Dat	e Drilled _	10-3-4	-03		Hole No.	16-5
DEPTH	USCS	MATERIAL CLASSIFICATI	ON	SAMPLE	(9) SMOTB	DRILL MODE	REM	ARKS
92		86.5-99.7 INTERBEDDED SILTSTONE CLAYSTONE: cont.	and	C-9	41 50-3"	DR	0.7/0.7	
94 -						RD		

96 -	+++++++++++++++++++++++++++++++++++++++							
.						PB	2.5/2.5	
98-				PB-9				
100-		B.H. 99.7 Terminated hole; flu and installed piezom	eter to				Completed of 12:15	hilling
102-		bottom,~80-100' slo gravel backfill to s	urface					
104-	<u>+</u> <u>+</u>							
106-								
108-								
110-	¥ ¥							
112-	*							
114-								
116	<u>‡</u>						Sheet _5	of

Geo/Resource Consultants

BORING LOG 16-6

. _

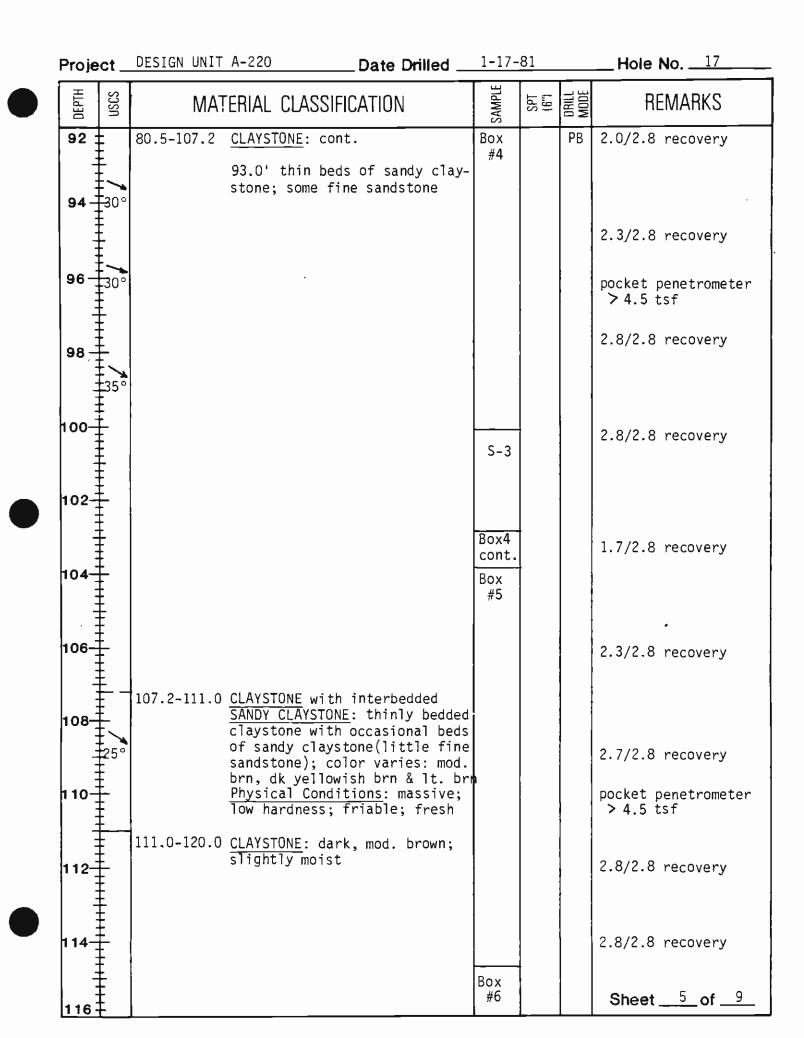
Proj:		DESIGN UNIT A-240 Date Drilled10-2				Ground Elev. 204'
Drill I	Rig .	Failing 1500 Logged By L. Sc	hoeber	lein		Total Depth 95.7'
Hole	Diar	neter <u>4 7/8"</u> Hammer Weight &		140 11	b @	30"
DEPTH	NSCS	MATERIAL CLASSIFICATION	SAMPLE	(9) SM018	DRILL MODE	REMARKS
0	CON	CONCRETE			GB	started drilling 9:30
	F ^{GP}	0.8-1.5 BASE ROCK				
2	CL	OLD ALLUVIUM 1.5-3.5 <u>SANDY CLAY</u> : dark greenish grey; trace of fine sand; very stiff; moist	C-1	9 16	DR AD	0.8/1.0 pocket pen 4.25 tsf
4-	-CL	3.5-11.0 <u>CLAY</u> : dark greenish grey; hard; moist	J-1	7 _13 _20	SS	1.5/1.5
6					RD	set tub & cased to 6.5'
8-		contains white cemented nodules	C-2	<u>8</u> 9	DR RD	1.0/1.0 pocket pen 4.25 tsf
10-				6 11 15	SS RD	0.1/1.5
12_		11.0-15.0 <u>SILTY CLAY</u> : dusky yellow; stiff; moist; mottled with ferrous staining	C-3	11 8	DR RD	1.0/1.0 pocket pen 3.5 tsf
14-	SP	15.0-23.5 <u>SAND</u> : dusky yellow: trace of fines; very dense; moist; occa- sional lenses of medium sand	J-2	3 515	SS RD	1.4/1.5
18			C-4	36	DR RD	1.0/1.0
20		intense ferrous mottling	J-3	17 41	SS	1.5/1.5 Sheet <u>1</u> of <u>5</u>

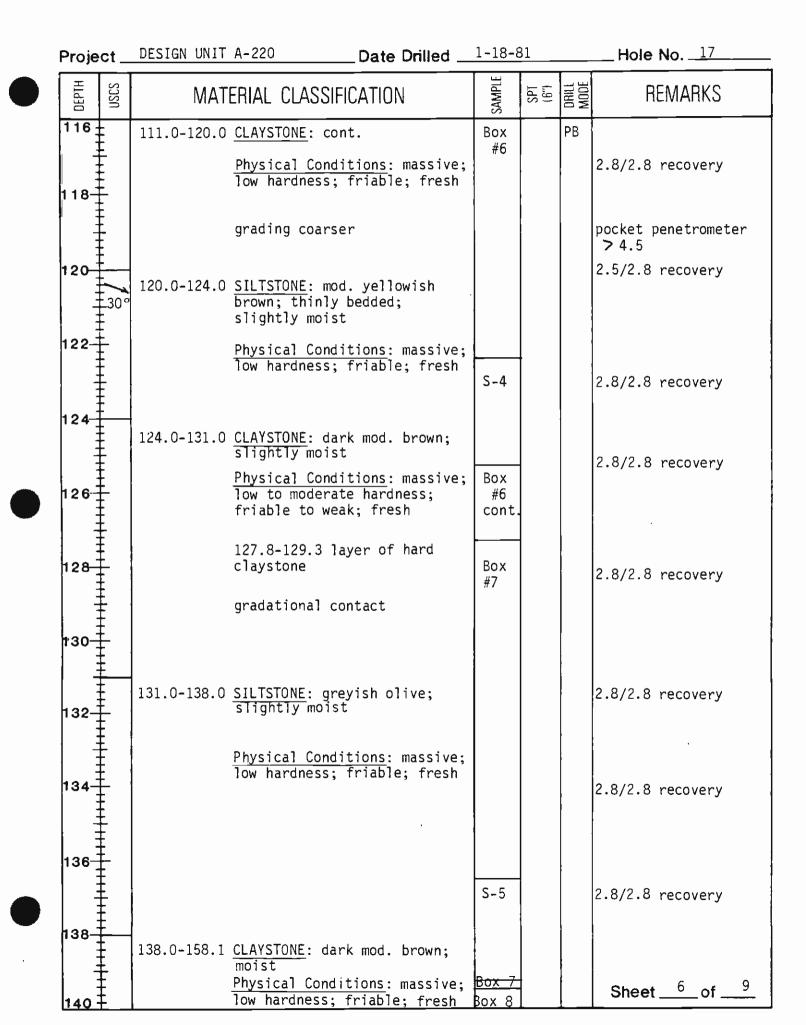
Project	DESIGN UNIT A-240	Date Drilled	10-23	3-24-83	Hole No	16-6
DEPTH	MATERIAL CL	ASSIFICATION	SAMPLE	BLOWS (6") DRILL MODE	REMARK	S
20 = 5	P 15.0-23.5 <u>SILTY SAND</u>	: cont.		42 SS RD		
22	thin claye	ey silt lens	C-5	15 DR 36 RD	0.9/1.0	
24	23.5-43.5 <u>SILTY CLA</u> hard; moi	<u>.Y</u> : dark greenish grey; st	J-4	8 SS 18 30	1.5/1.5	
26			C-6	21 DR 50-5.5"	1.0/1.0 pocket pen 2.7	'5 tsf
30	clayey sa	nd tens	J-5	RD 11 SS 20 31 RD	1.5/1.5	
32	becoming throughou nodules	weakly cemented t with cemented	C-7	34 DR 50-5" RD	0.8/0.9 pocket pen>4.	5 tsf
		ation, no nodules; some thin clayey sand	J-6	16 SS 34 50-5" RD	1.5/1.5	
38	occasiona increased	l cemented nodules, silt, sandy clay lens	C-8	36 DR 43 RD	1.0/1.0 pocket pen>4.	5 tsf
40	interbedd clay and s	ed silty sand, silty silt	J-7	9- SS 24 28	1.1/1.5	
42	weakly cer	nented in places	C-9	24 DR 59 DR	0.9/1.0	
	t 43.5-46.5 <u>SANDY CLAV</u>	<u>′</u> :		RD	Sheet _2_o	f _ <u>5</u>

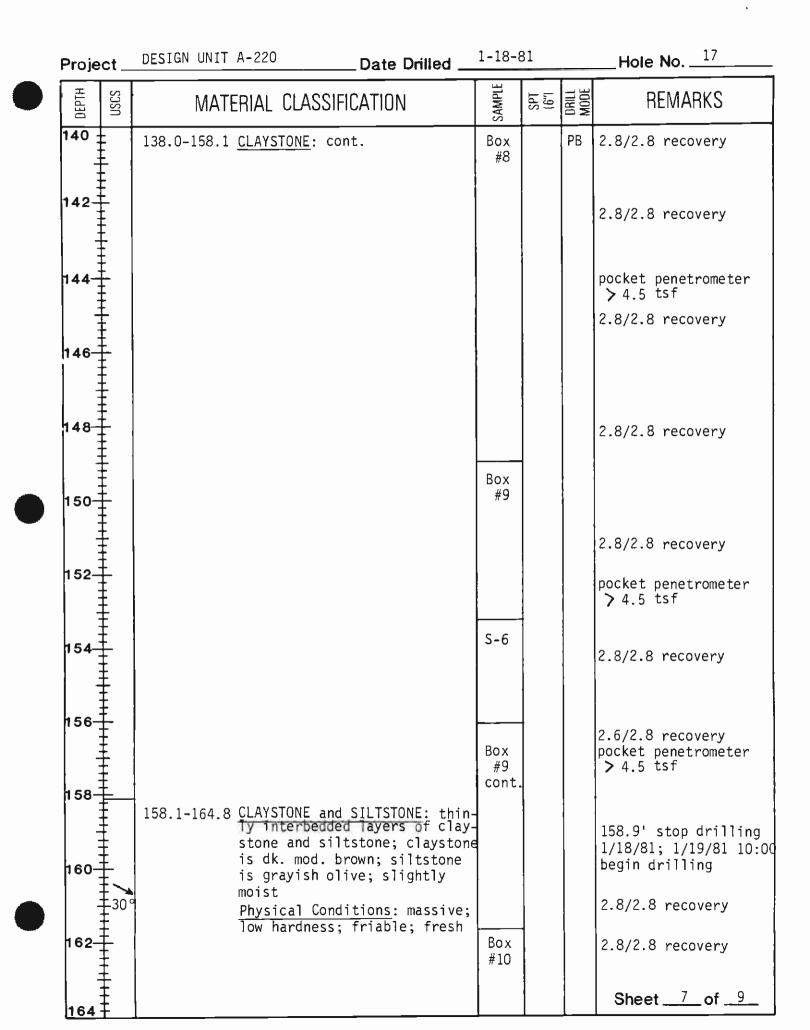
Proje	ect _	DESIGN UNIT A-240	Date Drilled	10-23-	24-83		Hole No	16-6
DEPTH	nscs	MATERIAL CLASS	SIFICATION	SAMPLE	(6") (6")	DRILL MODE	REMAR	KS
44 46 -			grey; little fine bist; occasional	J-8	19 24 30	SS RD	1.5/1.5	
48 -	ESM/	46.5-49.6 <u>SILTY SAND</u> : da little silt; sulfur odor	ark greenish grey; very dense; moist;	<u>C-10</u>	<u>58</u> 50-3"	DR RD	0.9/1.0	
50-		49.6-54.0 <u>SILTY CLAY</u> : da trace of sand contains occas cemented nodu	; hard; moist; sional small	J-9	21 _29 _38	SS RD	1.5/1.5	
52 -				C-11	31 46	RD	0.9/1.0 pocket pen > 4	.5 tsf
56 -		54.0-56.0 <u>SANDY SILT</u> : c increasing sa depth; hard; 56.0-57.4 <u>SILTY SAND</u> : c	nd content with moist		5 13 24	SS RD	1.5/1.5	
58-	= = + SP	increasing sa <u>depth: very c</u> SAN PEDRO FORMATION 57.4-67.0 <u>SAND</u> : dark gr	nd content with lense: wet	<u>C-12</u>	50-3	RD	0.7/0.7	
60 -					22 50	SS RD	0.1/1.0	
62 - - - 64 -				C-13	50-2.	5" RD	0.4/0.7 disturbed	
66-					53	SS RD	0.1/1.0	
68	SW SW	67.0-71.0 GRAVELLY SAND	: dark greenish gr	ъ			Sheet 3	of _5

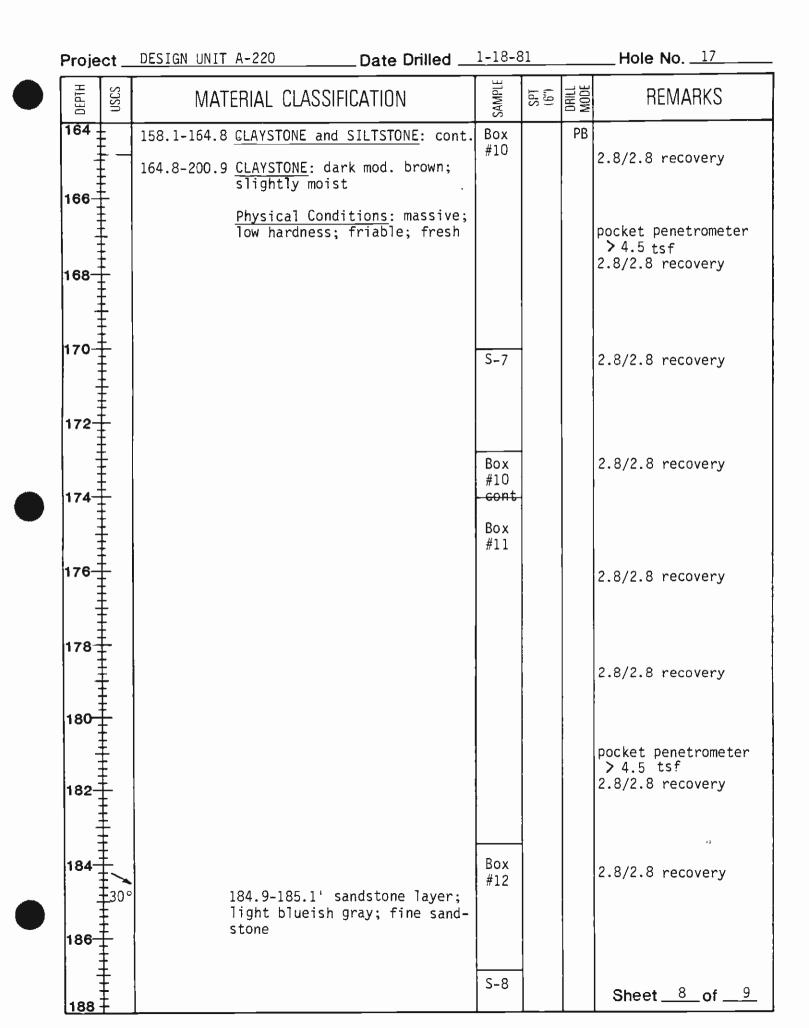
F	Proje	ect _	DESIGN UNIT A-240	Date Drilled		-24-83	Hole No	16-6
	DEPTH	nscs	MATERIAL CLASS	SIFICATION	SAMPLE	BLOWS (6") DRILL MODE	REMAR	KS
	68 70 -	SW	67.0-71.0 <u>GRAVELLY SAND</u> mostly fine to little fine gr wet	: cont. coarse sand with ravel; very dense;	J-11	RD 91-5.5" S	S 0.4/0.5	
	72 -	SP	71.0-76.0 <u>SAND</u> : dark gre fine sand, tra dense; wet	eenish grey; ace of silt; very	<u>C-14</u>	86 DR RD	0.3/0.5 disturbed	
	74 -		becoming fine	grained	J-12	25 SS 50-4.5" RD	0.9/0.9	
	76 -		gravelly sand PUENTE FORMATION]ens			rig chatter	
1	78-	***	76.0-95.7 INTERBEDDED SI CLAYSTONE: day	rk greenish grey /; thinly to thickly	<u>v C-15</u>	30 DR 50-4.5" RD	0.6/0.9	
	80 -			massive; friable strength; little				
	82 - 84 -	+++++++++++++++++++++++++++++++++++++++	some sandstone	e beds	C-16	46 DR 50-4 " RD	4:30 10/23/ 7:00 10/24/	<u>/83</u> /83
	86 - 88 -	+++++++++++++++++++++++++++++++++++++++	contains some of variable co	irregular inclusior lor	is C-17	39 DR 50-2 5" RD	0.6/0.7	
	90 - 92	+++++++++++++++++++++++++++++++++++++++			C-18	53 DR 50-4 <mark>"D</mark>	0.7/0.8 Sheet4	of

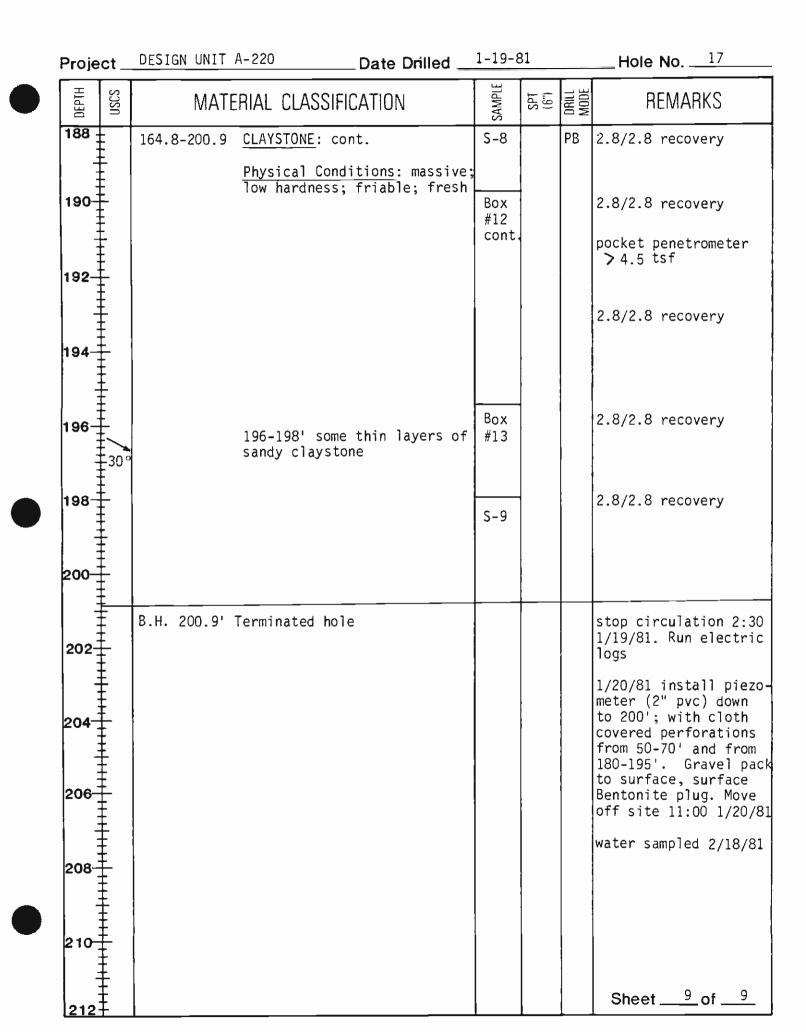
	Proje	ect _	DESIGN UNIT A-240	_Date Drilled	10-23-	24-83	}	Hole No	b. <u>16-6</u>	5
	ОЕРТН	USCS	MATERIAL CLASSIFI	CATION	SAMPLE	BLOWS (6")	DRILL MODE	REN	IARKS	
	92		76.0-95.7 <u>INTERBEDDED_SILT</u> <u>CLAYSTONE</u> : cont.	STONE and			RD			
	94 -									
1					C-19	<u>80</u>	DR 5″			
	96 –		B.H. 95.7 Terminated hole; piezometer to bo	installed ttom,~75-95'				complete flushing	drilling 8:45	and
	98-		slotted.							
	100-									
	102-									
	104-									
	-									
	106-									
	108-									
	1 10-				2 0 1 1					
	112-									
	114-									
	116							Sheet _	⁵ of	5


BORING LOG _17


Proj: <u>DE</u>	<u>SIGN UNIT A</u> Failing	-220	Date Drilled	<u>1-17</u> Gall	'-20-81 inatti				000 01
Drill Rig Hole Dia	meter <u>4</u> 7		Logged By _ Hammer Weig					Total Depth @ 30"	
DEPTH USCS	[SSIFICATION	- -	SAMPLE	SPT (6")	DRILL MODE	REMARK	S
2		ne sand; wi	dusky yellow; mo th some fines;				AD	begin drilling 1/17/81; auger begin rotary d	to 3',
4 + CL	4.5-15.0		moderate blue- and; stiff; moi				RD	- - -	
6 ++++++++++++++++++++++++++++++++++++		Some Trice S	ana, sorri, nor						
10					J-1	8 12 17	SS	1.3/1.5 recove	ry
						17	RD		
16	15.0-20.0	mostly fine medium to c	ate yellowish b sand with some oarse sand; tra ium dense to lo	ce of					
18 18 20								Sheet _1of	9


Project _	DESIGN UNIT A-220	Date Drilled _	1-17-8	31		Hole No
DEPTH USCS	MATERIAL CLAS	SIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
20 22	20.0-30.0 <u>CLAY</u> : moderat stiff; slight	e yellowish brown; ly moist to moist	C-1 J-2	4	DR SS	1.0/1.0 recovery 1.5/1.5 recovery
24				6	RD	
26						
28						
30 SP 32		SAND: pale yellow- ne sand; trace of graded; loose;	J-3	8 18 34	SS RD	1.5/1.5 recovery contact at very top of sample
34						or sampre
36 	34.5-38.0 <u>CLAY</u> : moderat stiff; slight	e yellowish brown; ly moist to moist				
38 7ML 40	38.0-49.5 <u>CLAYEY SILT</u> : stiff; slight tal thin lami	ly moist; horizon-				
			C-2	8	DR SS	1.0/1.0 recovery
42			J-4	18 32		1.5/1.5 recovery 42.5' begin contin-
			Box #1		ΡB	uous pitcher barrel- ing; pocket pen>4.5 Sheet 2_of 9_


Projec	ct	DESIGN UNIT A-220 Date Drilled	1-17-8	31		Hole No7
DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
44	ML	38.0-49.5 CLAYEY SILT: cont.	Box #1		РВ	1.9/2.5 recovery
						1.9/2.5 recovery
46	-					
	·					
48	-					2.5/2.5 recovery
	SP.	SAN PEDRO FORMATION 49.5-64.0 SAND: grayish blue-green; poorly				0.0/2.5 recovery
50	<u>, 1</u>	graded fine sand; trace of fines dense; moist to wet	;			
						No Recovery
52	-					1 7/2 5
						1.7/2.5 recovery
54	-					
		55.1' medium to coarse sand				1 5 (0 5
	-	56.9' medium to coarse sand	Box			1.5/2.5 recovery
	·		#2			
58-	-					2.5/2.5 recovery
	,					
	-					1/17/81 60' stop drill 1/18/81 begin drilling
						60' Gas Test - no gas
62	-					1.1/2.8 recovery
			S-1			1.9/2.8 recovery
64		FERNANDO FORMATION 64.0-74.0 CLAYSTONE: dark yellowish brown;				
		slightly moist to moist				
66	-	<u>Physical Conditions</u> : massive; low hardness; friable; fresh	Box #2 cont.			1.9/2.8 recovery
68 7						Sheet <u>3</u> of <u>9</u>


		DESIGN UNIT A-220 Date Drilled		т <u>т</u>	r	
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL	REMARKS
68		FERNANDO FORMATION 64.0-74.0 <u>CLAYSTONE</u> : cont.	Box #2		PB	2.1/2.8 recovery
70						2.2/2.8 recovery
72-			Box			
74	1 40°	74.0-79.1 <u>CLAYSTONE</u> with interbedded <u>SAND-</u> <u>STONE</u> : thinly bedded; claystone is dark yellowish brown; sand-	#3			1.9/2.8 recovery
76-1	/10°	<u>Physical Conditions</u> : massive; low hardness; friable; fresh				1.9/2.4 recovery
78-						
80-1		79.1-80.5 <u>CLAYSTONE</u> : olive gray; cemented claystone <u>Physical Conditions</u> : massive; hard; moderately strong; fresh 80.5-107.2 CLAYSTONE: mod. brown;	Box		RD	@ 79.2' no recovery bent tube, cemented zone is too hard to cut; rotary drill through it
82		slightly moist <u>Physical Conditions</u> : massive; Tow hardness; friable; fresh	#3 cont.			2.2/2.8 recovery
84	-		S-2			2.3/2.8 recovery
86-						pocket penetrometer > 4.5 tsf 2.0/2.9 recovery
88	_	-	Box #3 cont.			
90			Box #4			1.7/2.8 recovery
92 +						Sheet <u>4</u> of <u>9</u>

BORING LOG 17A

Proj: DESIGN UNIT A-220	<u>Date Drilled</u> <u>10-27</u>	<u>'-83 Ground Elev. 200 '</u>
Drill Rig MAN-SIZED AUGER	Logged By Stell	

Hole Diameter 33" Hammer Weight & Fall N.A.

DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
2-	ML	A/C PAVMENT 0.0-0.6 ALLUVIUM 0.6-4.0 <u>CLAYEY SILT</u> : black to dark gray, moist, firm, with organics, trace of sand and gravel to ¹ / ₄ "	2			Hole stands well O'- 42', very minor belling at 13', 18' & 26'
4 - 6-		4.0-10.0 <u>SANDY SILT</u> : gray, moist, stiff				
8-	**					
10-	SM	10.0-13.0 <u>SILTY SAND</u> : light green, very moist, medium dense, numerous calcareous streaks				,
14-		13.0-19.0 <u>SAND</u> : light brown, wet, medium				seepage at 1± gpm
18-	***	19.0-26.0 SANDY SILT:				water level @ 18' after 1½ hours
20	<u>‡</u>					Sheet _1of _2

Proje	ect	DESIG	N UNIT A-220	Da	te Drilled	10-27-	83		Hole No7A
DEPTH	uscs		MATERIAL C	LASSIFICAT	ION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
20		19.0- 26.0	<u>SANDY SILT:</u> light green, with lenses	stiff, moi					
26-	SP	26.0- 30.0	SAND: ligh with layers	t green, we of silty sa	t, dense nd				water seepage at 2-3 gpm
30-		30.0- 33.0	SANDY SILT: moist, stiff of sand	light gree to hard, w	n, very ith layers				
34-		33.0- 38.0	<u>SILT:</u> blueg to hard, wit and clayey s	h layers of	oist, stiff silty clay				
36		38.0- 42.0	<u>SAND:</u> light dense, stron			>			100% LEL Gas reading. gas vapors visable at surface. 20% LEL after caving sand sealed off most of the gas. Hole caved back to 35.5 after 1 hour
42-		amount water	2'. Terminate s of combusti @ 38'. Took y Took gas samp	bles. Gas (water sample	churning e @ 25' afte	er			Sheet _2of _2

BORING LOG 17B

Proj:	1	DESIGN L	JNIT A-220	_ Date Drilled	10-2	26-83			Groun	d Elev.	198	3'
Drill	Rig	MAN-SIZ	ZE AUGER	Logged By	J. ST	ELLAR			Total	Depth _	64 '	
Hole	Dia	meter_	33"	_ Hammer Wei	ght & I	-all _	N.A.	,				
DEPTH	nscs		MATERIAL CL	ASSIFICATION		SAMPLE	SPT (6")	DRILL MODE		REMARK	S	
0 2- 4-		A/C PA FILL 0.6- 2.0 ALLUVI 2.0- 5.0	firm	dark brown, mo ating light and					48',	stands we continuou g 48"-64	IS	0'-
6- 8-	SP	5.0- 16.0	dense, with lasilty and cla	brown, moist, m ayers and strea yey sand and reaks and blebs		-						
10-			b	ecomes light gre	een							
16- 18- 20		16.0- 34.0	moist, firm, w	greenish brown, with layers of c rous calcarous s becomes wet	clayey streaks				water	ample at level a 2 hours tof	t 18	

	FIUJEC					-		
ł		USCS		MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
	20	4∟ - -	16.0- 34.0	<u>SILT:</u> (continued)				water level at 23' after 1 hour
	26	-		moderate H2O seepage				seepage 1± gpm
•	30	-		gravelly layer,gravel to l"				water level at 32' during drilling operation
	34	ML / GM	34.0- 37.0	<u>GRAVELLY SILT:</u> orange brown, wet, stiff, gravel to l"				slow drilling @ 34'
	38	ML	37.0- 39.0	<u>SILT:</u> blue, wet, dense, layers of sandy silt			-	
)	40-	SM ML	41.0- 56.0	<u>SILTY SAND:</u> orange brown, wet dense, with layers of sandy silt and sand <u>SILT:</u> blue, wet, stiff, with laye of sandy silt and sand	rs			
	44							Sheet of _3

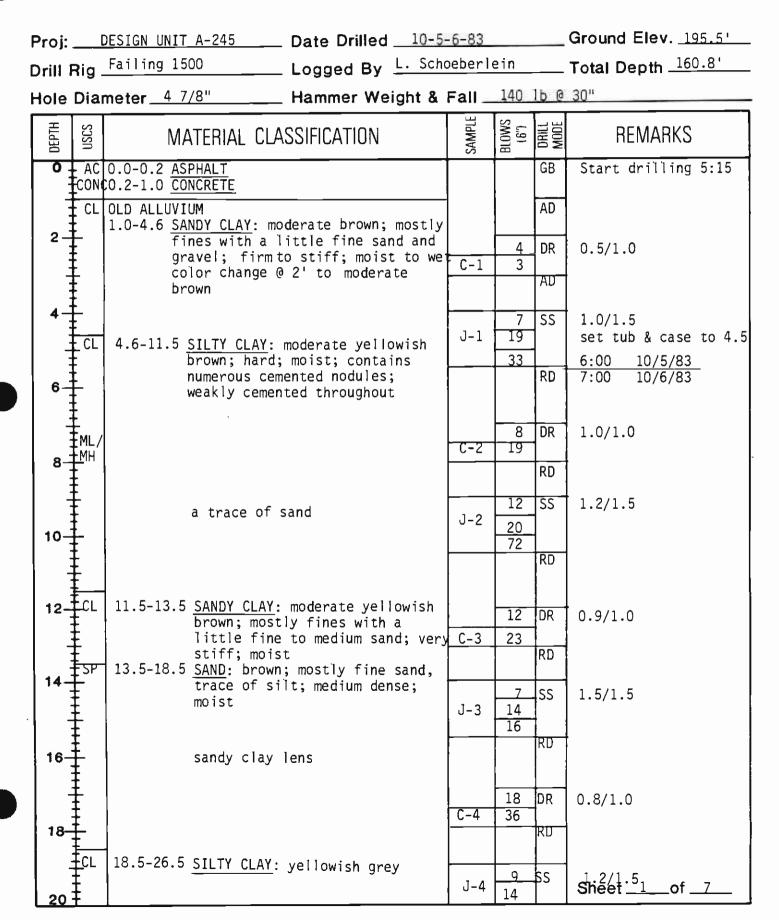
Proje	ect _	DESIGN UNIT A-220 Date Drilled	10-26	-83		Hole No178
DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	SPT (6")	DRILL MODE	REMARKS
44		41.0- <u>SILT:</u> (continued) 56.0				bag sample at 46'
48- - 50-	***					
52-		52'-54': sand layer, wet				
54-	*****					
56- - 58-	SP	SAN PEDRO FORMATION 56.0- <u>SAND:</u> blue, wet, dense, medium 64.0 grained, slight sulfur odor				sand continously caving,only small amounts of material remain in bucket bag sample @ 58'
60-						hole caved back to 48' after 2 hours
62-					-	
64-	+ + + + + + + + + + + + + + + + + + +	B.H. 64.0' Hole terminated due to running ground below 56'. No gas detected by meter.	 			
66-	+++++++++++++++++++++++++++++++++++++++	Downhole Observers: J. Stellar				Sheet _3of _3

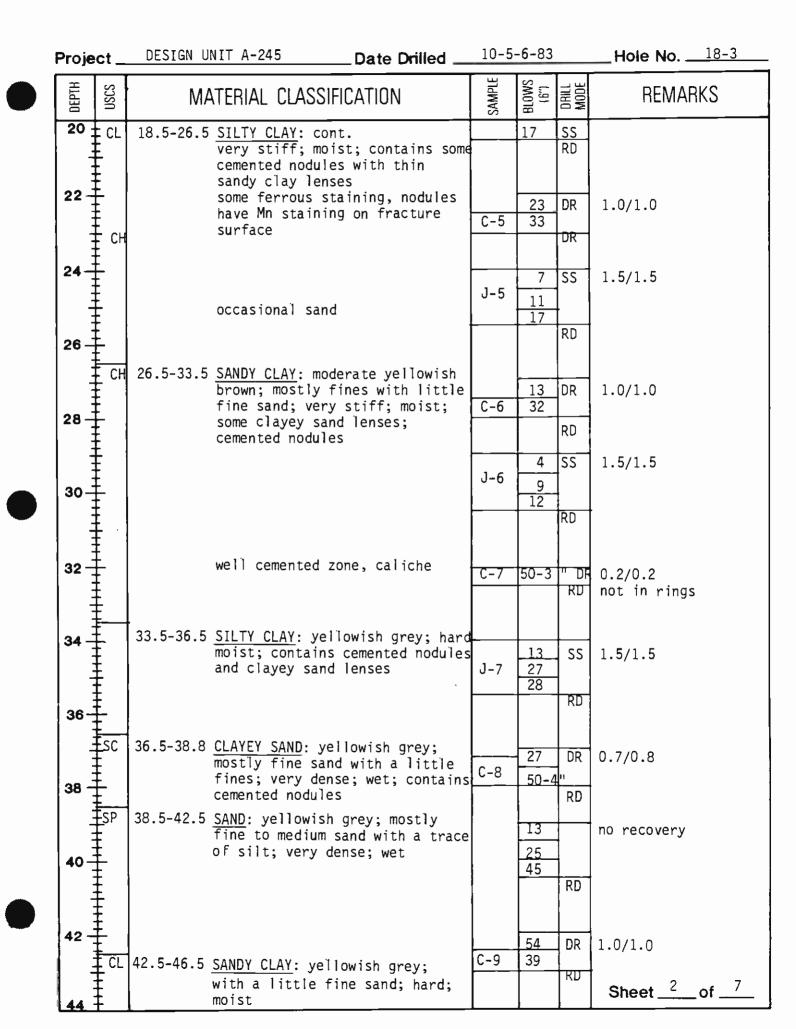
BORING LOG 18-2

			DESIGN UNIT A-245 Date Drilled 10-				
			Failing 1500 Logged By _L. Sc				
Hole Diameter 4 7/8" Hammer Weight & Fall 140 15 @ 30"							
	DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	() BLDWS	ORILL MODE	REMARKS
ſ	0	COND	0.0-0.7 <u>CONCRETE</u>			GB	start drilling 3:30
	2-		FILL 0.7-2.8 <u>SANDY CLAY</u> : olive black; mostly clay with a trace of fine sand; very stiff; moist	C-1	6	DR	1.0/1.0
	4-	CL	OLD ALLUVIUM 2.8-5.0 <u>SILTY CLAY</u> : moderate brown; stiff moist			AD	
	6-	ML	5.0-8.0 <u>SILT</u> : dusky yellow; hard; moist	J-1	14 26 21	SS	0.8/1.5
	8-	SM/	8.0-10.0 <u>SILTY SAND</u> : dusky yellow; mostly fine sand with some fines; dense moist	; C-2	17 27	AD DR AD	1.0/1.0
	10-		10.0-12.5 <u>CLAYEY SILT</u> : dusky yellow; hard moist	J-2	12 19 32	SS RD	1.5/1.5 set tub & case to 13' <u>4:30 10/4/83</u> 7:00 10/3/83
	14-		12.5-14.5 <u>SILT</u> : dusky yellow; hard; moist with cemented nodules	<u>C-3</u>	7	DR RD	1.0/1.0
	16-	<u> </u>	<pre>14.5-16.0 <u>SAND</u>: brown; mostly fine sand, trace of silt; dense; moist 16.0-17.5 <u>SANDY CLAY</u>: dusky yellow; mostly fines with a trace of sand and</pre>	J-3	, 1 23 25	SS	1.5/1.5
	18- 20		gravel; hard; moist 17.5-22.5 <u>CLAY</u> : dusky yellow; hard; moist with cemented zones & nodules	<u>C-4</u>	12 22	DR RD	1.0/1.0 pocket pen> 4.5 Sheet <u>1</u> of <u>5</u>

P	Proje	ct _	DESIGN UNIT A-245	Date Drilled	10-4	-5-83		Hole No	18-2
ſ	DEPTH	uscs	MATERIAL CLASS	IFICATION	SAMPLE	BLOWS 16")	MOOF	REMAR	iks
	20		17.5-22.5 <u>CLAY</u> : continue becoming weak		J-4	22 30	SS RD	1.5/1.5	
	24	CL		usky yellow with es; mostly fines fine sand; hard;	C-5	15	DR R	1.0/1.0	
	26				J-5	22 26	SS RD	1.5/1.5	
	28	SC	27.5-29.5 <u>CLAYEY SAND</u> : brown; mostly some fines; de	fine sand with	h _C-6	17	DR R	1.0/1.0	
	30	CL	29.5-38.5 <u>SANDY CLAY</u> : du fines with tra very stiff; ma	ace of fine sand;	J-6	11 14	55 2D	1.5/1.5	
	32 34		some ferrous s hard	taining, becoming	C-7	17 37	DR R	1.0/1.0	
	36				J-7	25 39	S S D	1.5/1.5	
	38 -	SC	38.5-48.0 <u>CLAYEY SAND</u> : o	dusky yellow; and with some fines	C-8	53	IR D	0.9/1.0	
	40		very dense; mo	moist; contains thin ndy clay lenses	J-8	14 41	S	1.5/1.5	
	42				C-9		DR	1.0/1.0 Sheet	of5

Project	DESIGN UNIT A-245 Date Drilled	10-4-5-83	Hole No. <u>18-2</u>
DEPTH	MATERIAL CLASSIFICATION	SAMPLE BLOWS (6") DRILL MODF	REMARKS
44 = S	38.5-48.0 <u>CLAYEY SAND</u> : continued dense	10 SS	1.5/1.5
46		J-9 21 22	
		RD	
	mostly fines with a trace of	33 DR C-10 41 RD	1.0/1.0
50	fine sand; hard; moist; weakly cemented in places; occasional very thin clayey silt lenses	J-10 11	1.5/1.5
52	M 51.0-54.5 <u>SILTY SAND</u> : dark greenish grey mostly fine sand with little		
	fines; dense; moist to wet	14 DR	1.0/1.0
54	- SL 54.5-57.5 SILTY CLAY: dark greenish grey	C-11 34 RD	
56	mottled with browns; mostly fines, trace of fine sand; hard moist		1.5/1.5
		RD	
58	M 57.5-59.0 <u>SILTY SAND</u> : dark greenish grey mostly fine sand with little fines; very dense; moist to we	C-12 50-5 "	0.9/0.9
60	P SAN PEDRO FORMATION 59.0-85.5 <u>SAND</u> : dark greenish grey; mostly fine sand, rounded; trac of silt; very dense; wet; sulfur odor	RD 23 SS 51 RD	no recovery
62			
		65 DR C-13 50-2 "	0.7/0.7
		RD	0.7/0.9
66		J-12 50- 5" RD	-
68 +			Sheet3_of _5

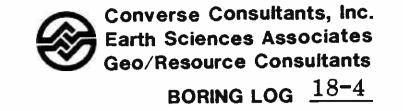

Proje	ect	DESIGN UNIT A-245 Date Drilled	10-4-5-8	3	Hole No. <u>18-2</u>
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE BLOWS (6")	DRILL Mode	REMARKS
68	F SP	59.0-85.5 <u>SAND</u> : continued	C-14 87	DR 2 " RD	0.6/0.7
70			J-13 50-4	SS 1.5" RD	0.5/0.9
72	SW	71.5 <u>GRAVELLY SAND</u> lenses with a little gravel			rig chatter
74			<u> </u>	DR RD	disturbed
76			J-14 40 50-1	SS 2.5" RD	0.4/0.7
78					
		with trace of gravel	<u> </u>	DR RD	0.3/0.5 disturbed
80			J-15 50-1	SS 5.5" RD	0.7/0.9
82			83	DR	0.7/0.7
84			C-17 50-3	RD	
86		FERNANDO FORMATION 85.5-94.7 <u>CLAYSTONE</u> : olive grey; massi	J-16 14 27 ve	SS RD	1.5/1.5
88		bedding; contains mica; slight petroleum odor. <u>Physical Condition</u> : little			
90		fractured to massive; friabl hardness and strength; littl weathered to fresh;088',6" w cemented hard zone	e — 33		0.8/0.8
92				RD	Sheet _4of _5


	Project _		DESIGN UNIT A-245 Date Dr	lled10-4	1-5-83	Hole No
).	DEPTH	NSCS	MATERIAL CLASSIFICATION	SAMPLE	BLOWS (6") DRILL MODE	REMARKS
	92		85.5-94.7 CLAYSTONE: continued		RD	
	94			C-19	48 DR 50-2-5"	0.7/0.7
	96		B.H. 94.7 Terminated hole. Tremied grout to surface.	t l		completed drilling 2:45
	98-					
	100-					
	102-					
	106-					
	108-					
	1 10-					
	1 12-					
	114-	┶┿┿┿┼┼┿┽┍╋┲ ┥				
	116	<u>+</u>				Sheet <u>5</u> of <u>5</u>

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG 18-3

Proje	ect _	DESIGN UNIT A-245 Date D	rilled	10-5-6-83	Hole No8-3
DEPTH	USCS	MATERIAL CLASSIFICATION		SAMPLE BLOWS (6") DRILL MODE	
44 46	CL	42.5-46.5 <u>SANDY CLAY</u> : cont.		J-8 26 RD	1.0/1.5
48	CL	46.5-51.5 <u>SILTY CLAY</u> : dark bluish hard; moist; contains br cemented zones at top; s cemented nodules through	ownish mall	76 DR C-10 54 RD	1.0/1.0
50				J-9 19 28 RD	1.5/1.5
52	ML	51.5-56.0 <u>CLAYEY SILT</u> : dark bluish hard; moist; occasional cemented nodules	grey;	C-11 29 DR C-11 50- 5" RD	1.0/1.0
56		56.0-57.5 <u>SILTY CLAY</u> : dark greenis	h grey	J-10 14 24 RD	1.5/1.5
58		57.5-58.5 <u>SANDY CLAY</u> : dark greenis mostly fines with little sand; hard; moist	h grey; fine	14 DR C-12 29 RD	1.0/1.0
60-	SP	58.5-61.0 <u>SILTY SAND</u> : dark greenis mostly fine sand with a fines; very dense; moist SAN PEDRO FORMATION	little	J-11 33 50 RD	1.0/1.5
62	*****	61.0-86.0 <u>SAND</u> : dark greenish grey fine sand with a trace overy dense; wet			0.8/0.9
64				30 SS 50-4.5" RD	no recovery
68				C-14 113 DR RD	0.5/0.5 Sheet <u>3</u> of <u>7</u>


Project _	DESIGN UNIT A-245 Date Drilled			Hole No. <u>18-3</u>
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE BLOWS (6')	DRILL MODE	REMARKS
68 SP	61.0-86.0 <u>SAND</u> : cont. occasional gravel	J-12 50-5	RD SS " RD	0.5/0.9
72		C-15 106	DR RD	0.3/0.5 partial
74	several very thin clayey lenses	J-13 50-	SS 5" RD	0.6/0.9
76 		C-16 51	DR	0.7/0.9
80		J-14 53	SS RD	0.5/1.0
82	with little silt	59 C-17 60-	DR 3" RD	0.7/0.7
84		J-15 62	SS	0.5/1.0
86	basal gravel FERNANDO FORMATION 86.0-160.8 INTERBEDDED SILTSTONE and			rig chatter
88	<u>CLAYSTONE</u> : olive grey and dark greenish grey; with fine sand partings; contains mica thinly bedded to massive bedding; sulfur odor	C-18 52	DR 3" RD	0.7/0.7
90	<u>Physical Condition</u> : little fractured to massive; friable hardness and strength; little weathered to fresh	50 C-19 50-	DR 3.5"	^{0.5-0.8} 4 of 7

Proj	ect_	DESIGN UNIT A-245	Date Drilled _	10-5	-6-83		Hole No	18-3
DEPTH	USCS	MATERIAL CLAS	SIFICATION	SAMPLE	BLOWS (6")	DRILL MODE	REMA	rks
92	+++++++++++++++++++++++++++++++++++++++	86.0-160.8 <u>INTERBEDDED</u> <u>CLAYSTONE</u> : c	SILTSTONE and ont.			RD		
96 -	***	contains irr inclusions o siltstone	egular angular f different color	C-20	- <u>63</u> 63-3	DR " RD	0.7/0.7	
98-	+++++++++++++++++++++++++++++++++++++++							
100-	**							
102-	***							
104-								
106-	***							
108	+++++++++++++++++++++++++++++++++++++++							
1 10	+++++++++++++++++++++++++++++++++++++++							
112								
114				C-21	- 48 65-	DR 3" _{RI}	0.7/0.7 Sheet 5	_of _7

Proje	ct _	DESIGN UNIT A-245	Date Drilled	10-5	-6-83		Hole No	18-3
DEPTH	NSCS	MATERIAL CLASS	IFICATION	SAMPLE	BLOWS	DRILL MODE	REMAF	3KS
116		86.0-160.8 <u>INTERBEDDED S</u> <u>CLAYSTONE</u> : co	ILTSTONE and nt.			RD		
118-								
120	- - -		·					
122								
124	- - - - -							
126	-							
128-	-							
130-1	-							
132	_							
134	_							
136	-			C-22	56 50-3	DR " RD	0.7/0.7	
138								
140	<u>.</u>						Sheet _6	of _7

Proje	ct _	DESIGN UNIT A-245	Date Drilled	10-6	-83		Hole_No	18-3
DEPTH	NSCS	MATERIAL CLASSIFIC	CATION	SAMPLE	BLOWS (6")	ORILL MODE	REMAR	RKS
140		86.0-160.8 INTERBEDDED SILT CLAYSTONE: cont.	STONE and			RD		
142								
144-								
146-	1							
148-								
150								
152-								
154								
156-								
158-								
							•	
160-				<u>C-23</u>	34 60-4	DR "	0.8/0.8	
162		B.H. 160.8 Terminated hole a to get groundwater data Installed piezometer to be	within bedrock. ottom, slotted	:n			Completed du flushing ho	rilling 8 le 7:15
		interval 140-160' backfil to 120', tremied grout sea some cave overnight and ba	led w/pea gravel					
164	<u> </u>	pea gravel					Sheet _7	of

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

Proj: _	(DESIGN UNIT A-245					
Drill F	Rig_	Failing 1500	Logged By L. Scho	beberl	ein		Total Depth _94.8'
Hole	Diar	neter4_7/8"	Hammer Weight &	Fall 🔤	140	1b @	30"
0EPTH	NSCS	MATERIAL CLA	SSIFICATION	SAMPLE	BLOWS (6")	DRILL MODE	REMARKS
1 1		0.0-0.7 CONCRETE				GB	start drilling 7:30 groundwater immediately
		FILL 0.7-1.5 SANDY CLAY: br	rownish black; stiff			AD	below concrete
2-	-sc	OLD ALLUVIUM 1.5-3.5 CLAYEY SAND: n	moderate brown; mostly	v	4	DR	0.8/1.0
			n sand with some	C-1	_19	AD	
4	CL	3.5-8.5 <u>SILTY CLAY</u> : mo		 J-1	7	SS	1.5/1.5
		weakly cemente	ns cemented nodules; ed throughout		15 20		
6-	-			-		RD	set tub & cased to ~5'
					9	DR	1.0/1.0
				C-2	19	1	pocket pen>4.5
8-					Γ	RD	
	E CL	8.5-13.2 SANDY CLAY: a	dark yellowish brown; with a little fine		19	SS	1.3/1.5
10-	F	sand; hard; n	noist; occasional	0.5	<u>35</u> 51	ł	
		cemented nodu	iles			RD	
12-					1.4		1.0/1.0
	ŧ			C-3	<u>14</u> 20	DR	1.0/1.0 pocket pen>4.5
	SM/	13.2-17.8 SILTY SAND:	dark vellowish brown	•		RD	
14-	ESP		sand with a little	<u>,</u>	5	SS	1.2/1.5
-	ŧ		um dense; moist;	J-3	11	1	
	F E	occasional c	clayey silt lenses		18	1	
16-						RD	
		wet			12	DR	1.0/1.0
18-		17 9 26 5 STITY CLAY	unlinuich and	<u>C-4</u>	15	00	disturbed
	Ē		; contains cemented			RD	
20		zones and no		J-4	5 15	SS	1.5/1.5 Sheet <u>1</u> of <u>5</u>

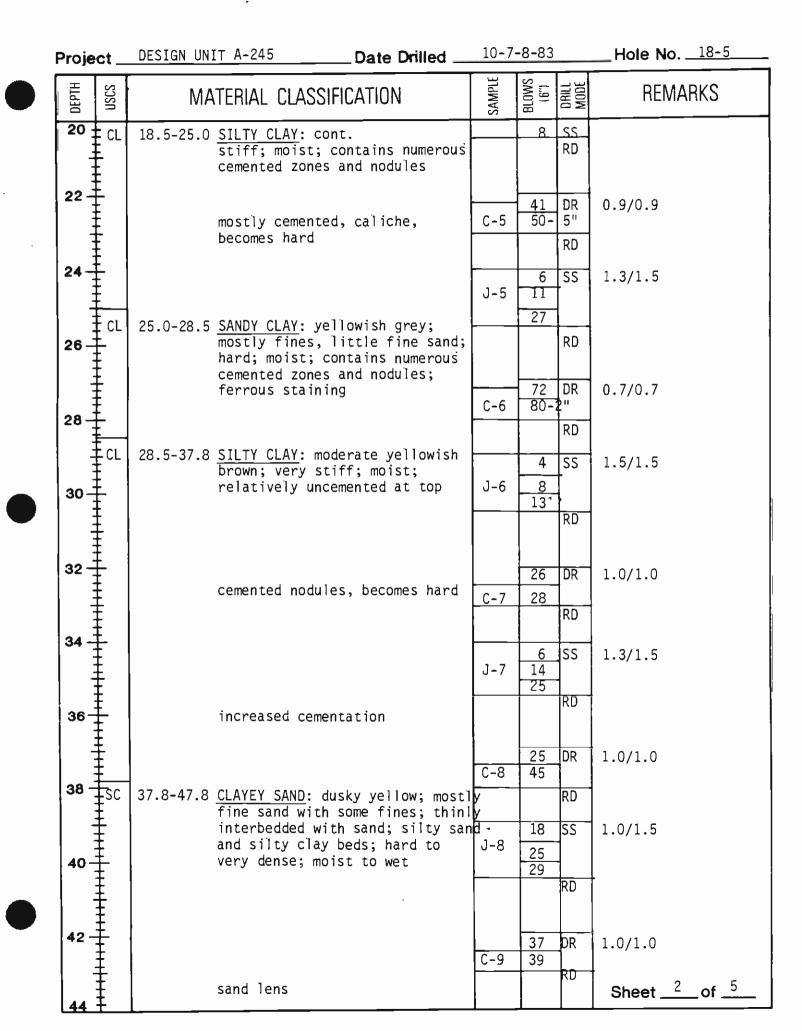
	Proje	ect _	DESIGN UNIT A-245 Date Drilled	10-1	0-83		Hole No <u>18-4</u>
	DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	(;,9) SW018	UHILL	REMARKS
	20		17.8-26.5 SILTY CLAY: cont.			ss RD	
	22 -		increased cementation	C-5	<u>8</u> 29	DR	1.0/1.0
	24 -			J-5	8	RD SS	1.5/1.5
	26 -	+ + + + + + + + + + + + + +				RD	
	28 -		26.5-32.0 <u>SANDY CLAY</u> : moderate yellowish brown; mostly fines with a little fine sand; stiff; moist;	C~6	18_ 26	DR RD	1.0/1.0 pocket pen 1.75
	30-	contains occasional cemented nodules; sand content increases with depth; ferrous staining		J-6	39	SS	1.5/1.5
		++++			12	RD	begin circulation loss
	32 -		32.0-36.5 <u>SILTY_CLAY</u> : moderate yellowish brown; hard; moist; occasional cemented nodules; some ferrous	C-7	28	DR RD	1.0/1.0 pocket pen 4.25
	34 -	*	staining	J-7	38-5	5" RD	10:30 SS hammer broke down 1.5 hrs; 0.5/0.5 mixed 1 sack mud
	36-		26 E 29 E SANDY STIT, medenate veillevich				intxed I Stek inde
	38 -		36.5-38.5 <u>SANDY SILT</u> : moderate yellowish brown; mostly fines with some fine sand; hard; moist; contains lenses of silty sand	<u>C-8</u>	50	DR RD	1.0/1.0
	40	and silty clay CL 38.5~46.0 <u>SANDY CLAY</u> : moderate ye brown; mostly fines wit fine sand; hard; moist		J-8	┝──┤	SS	1.5/1.5
I						RD	
	42		coarse sand	<u>9</u>	42	DR RD	1.0/1.0 Sheet <u>2</u> of <u>5</u>
	44	<u>+</u>					

F	Proje	ect _	DESIGN UNIT A-245	Date Drilled	10-1	0-83	Hole_No	18-4
) [DEPTH	uscs	MATERIAL CLASS	SIFICATION	SAMPLE	BLOWS (6") DRILL MODE	REMAR	rks
	-		38.5-46.0 <u>SANDY CLAY</u> : co clayey sand, s sandy silt ler	silty sand and	J-9	7 SS 30 50- 4" RD	1.2/1.2	
	46 - 48 -		46.0-51.5 <u>SILTY CLAY</u> : da sandy clay ler moist; minor o places	ns at top; hard;	C-10	19 DR 50-4.5" RD	0.6/0.8 pocket pen	4.5
	50 -	***			J-10	9 SS 16 23	1.5/1.5	
	52 -	SM/	dense; moist;	ace of fines; very		RD 38 DR 50- 5" RD	1.0/1.0	
)	54-				J-11		1.5/1.5	
	56 -			ark greenish grey; ed; hard; moist; sional cemented		33 RD 21 DR		4.5
	58-		57.8-61.0 <u>SANDY CLAY</u> : c mostly fines sand; hard; m sandy silt an	with some fine oist; grades to	C-12	28 RD 16 SS	pocket pen>	
	60 -	T SP				40 46 RD		
	62 -		very dense; w	h trace of silt;		47 DR 50-3 5" RD	sample fell jetting out	out
	64 -	+++++++++++++++++++++++++++++++++++++++			J-12	24 SS 50-5 "	0.8/0.4	
	66 - 68		sulfur odor		J-13	RD 75 DR 60-2 5"	sample distu Sheet _3	

Proje	ct_	DESIGN UNIT A-245 Date Drilled	10-10)-83	Hole_No18-4
DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	BLOWS (6°) DRILL MODE	REMARKS
68 70	SP	61.0-86.0 <u>SAND</u> :	 J-17	RD 27 SS 50-5 " RD	0.7/0.9
72		mostly gravel	_ <u>_C-13</u>	98 <u>DR</u> RD	0.5/0.5 disturbed continuing circulatic loss , mixed mud
74		fine to medium sand	J-15	25 SS 50 RD	0.4/1.0
76 -		fine sand		47 DR	5" sample recovered
78		fine sand		50-4.5" RD 53 SS	0.4/0.8
80			J-16	50-5 " RD	rig chatter
82			C-15		0.9/0.9
84			C-15	33-413	0.7/0.9
86		FERNANDO FORMATION 86.0-94.8 INTERBEDDED CLAYSTONE and		RD	
88		<u>SILTSTONE</u> : olive grey and dark greenish grey; thinly bedded to massive; contains mica <u>Physical Condition</u> : little fractured to massive; friable hardness and strength; little weathered to fresh	C-16	<u>37</u> DR 50-5 " RD	0.9/0.9
90					Sheet _4 of _5

Proje	ct _	DESIGN UNIT A-245	Date Drilled _		0-83		Hole No	18-4
DEPTH	USCS	MATERIAL CLAS	SIFICATION	SAMPLE	1.91 16"1	DRILL MODE	REMA	RKS
92		86.0-94.8 <u>INTERBEDDED S</u> <u>CLAYSTONE</u> : co	ILTSTONE and nt.		41 50-3	RD DR	0.8/0.8	
96		B.H. 94.8 Terminated ho to surface	le; tremied grout		50-3	.5	Drilling co 5:15	omplete
98								
100								
102								
104	مدلديمياريه							
106-								
108								
110								
114								
116							Sheet 5	_of5_

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.



BORING LOG 18-5

Proj:	DESIGN UNIT A-245	Date Drilled	10-7-8-83	Ground Elev.	<u> 197' </u>
Drill Rig	Failing 1500	Logged By	L. Schoeberlein	Total Depth _	95.7

Hole Diameter 4 7/8" Hammer Weight & Fall 140 1b @ 30"

DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	BLOWS (6")	Drill	REMARKS
0	CON CL	C 0.0-0.6 <u>Concrete</u>			GB	start drilling 8:30
		0.6-3.5 <u>SANDY CLAY</u> : moderate brown; mostl fines with some fine sand; stiff	/		AD	
2-		moist	C-1	4	DR	0.8/1.0
	E CL	3.5-8.5 <u>SILTY CLAY</u> : moderate brown; very			AD	
4		stiff; moist; gasoline odor	J-1	4	SS	1.3/1.5
6-				18	RD	set tub & cased to 4.5' mixed mud
		mottled and layered with greyish green		8	DR	1.0/1.0
8-			C-2	22	RD	
-	T ML	8.5-11.5 <u>CLAYEY SILT</u> : greyish green; hard moist		7	SS	1.0/1.5
10-			J-2	<u>17</u> 18	RD	
12-	t_sc t	11.5-13.5 <u>CLAYEY SAND</u> : light olive grey; mostly fines with a little fine sand; very dense; moist;	C-3	1 <u>4</u> 28	DR	1.0/1.0
-	SM	contains some cemented nodules	_		RD	
14-		mostly fine sand with a little fines; very dense; moist to wet	J-3	9 22	SS	1.0/1.5
16-				31	RD	
						1.0/1.0
18-		17.5-18.5 SANDY CLAY: moderate brown;	C-4	11 21		1.0/1.0
-		mostly fines with little fine sand 18 5-25 0 SILTY CLAY: vollowish group			RD	1 5 / 1 5
20	Ŧ Ŧ	18.5-25.0 <u>SILTY CLAY</u> : yellowish grey	J-4	4	SS	$\frac{1.5/1.5}{\text{Sheet}}$ of

Proje	ct _	DESIGN UN	NIT A-245	Date Dr	rilled	10-7	- <u>8-83</u>		Hole No	18-5
DEPTH	NSCS	MA	ATERIAL CLA	SSIFICATION		SAMPLE	BLOWS - (6")	DRILL MODE	REMA	RKS
44	SC	37.8-47.8	<u>CLAYEY SAND</u> ferrous sta			J-9	12 18 23	SS	1.5/1.5	
46			silty clay	lens	- - - - -		40	DR	1.0/1.0	
48 -	- CL	47.8-51.5	mostly fine	dark greenish s, trace of fi moist; contai	ne	C-10	45	RD		
50			cemented no		-	J-10	12 19 25	SS	1.5/1.5	
52	ML	51.5-56.0	mostly fine	dark greenish s with some fi	ne sand	C-11	45	RD DR 4.5"	0.8/0.9	
54			hard; moist	; 4" cemented	nodule		16 24	RD SS	0.0/1.5	
56	CL	56.0-61.5	<u>CLAY</u> : green	ish black; har	d;		37	RD		
58			moist		-	C-12	35 50	DR RD	1.0/1.0	
60 l			grading to silt	silty sand the	n sandy		10 14 26	SS	0.2/1.5	
62	SP	SAN PEDRO						RD		
				greenish grey; ith trace silt		C-13	65 50-	DR 5" RD	1.0/1.0	
64						J-11	41 50-	SS 4.5 RD	0.5/0.9 "	
66			strong sulf	ır odor	·	C-14	100	DR	0 5/0 5	N
68	Ē							RD	0.5/0.5 par Sheet _3	5

Ρ	roje	ct _	DESIGN UNIT A-245 Date Drilled	10-7-	-8-83		Hole No18-5
	DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	(f") (6")	DRILL MODE	REMARKS
	68 70	SP	61.5-87.0 <u>SAND</u> : cont.	J-12	51	RD SS RD	0.5/0.5
7	72			C-13	97 52-	DR 2" RD	0.7/0.7
	74			J-13	34 50-2	SS " RD	0.7/0.8
	78		becoming coarser grained gravelly zone	C-16	54 70- 36	DR 3" RD SS	0.6/0.7
	80		beoming finer grained	J-14		5.5' RD	
	84			C-17	84-	RD SS	0.7/0.7
	86 86			<u>J-15</u>		<u>5.5</u> ' RD	7 am 10/8/83
	88 88		FERNANDO FORMATION 87.0-95.7 <u>INTERBEDDED SILTSTONE and</u> <u>CLAYSTONE</u> : olive grey and dark greenish grey; contains mica; thinly bedded to massive; sulfur odor	<u>C-18</u>		DR <u>3.5</u> RD	0.8/0.8
	90 11 1 92		<u>Physical Condition</u> : little fractured to massive; friable hardness and strength; little weathered	C-19	35 50-4	DR " RD	⁰ _8/0.8 Sheet_4_of_5_

F	Proje	ct _	DESIGN UNIT A-245	Date Drilled	10-7	-8-83		Hole No	18-5
	DEPTH	nscs	MATERIAL CLASS	SIFICATION	SAMPLE	BLOWS (6")	DRILL MODE	REMARK	(S
	92		87.0-95.7 <u>INTERBEDDED S</u> <u>CLAYSTONE</u> : cor	ILTSTONE and			RD		
	94					52	סד	0.7/0.7	
	96		B.H. 95.7 Terminated he to surface	ole, tremied grout	C-20	75-3	- 11	Complete dri 7:45	lling
	98								
	100				1				
	102								
	104-								
	106-								
	108-								
	110-								
	112_								
	114-								
	116							Sheet 5	of

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LDG is applicable dnly at this location and time. Conditions MAY DIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG 18-6

Proj:	DESIGN UNIT A-245	Date Drilled	10-11-83	Ground Elev. <u>196.5'</u>
Drill Rig	Failing 1500	Logged By _	L. Schoeberlein	Total Depth 80.0

____ Logged By ____. Schoeder lein ___ Total Depth _80.0

Hammer Weight & Fall 140 1b @ 30" Hole Diameter 4 7/8"

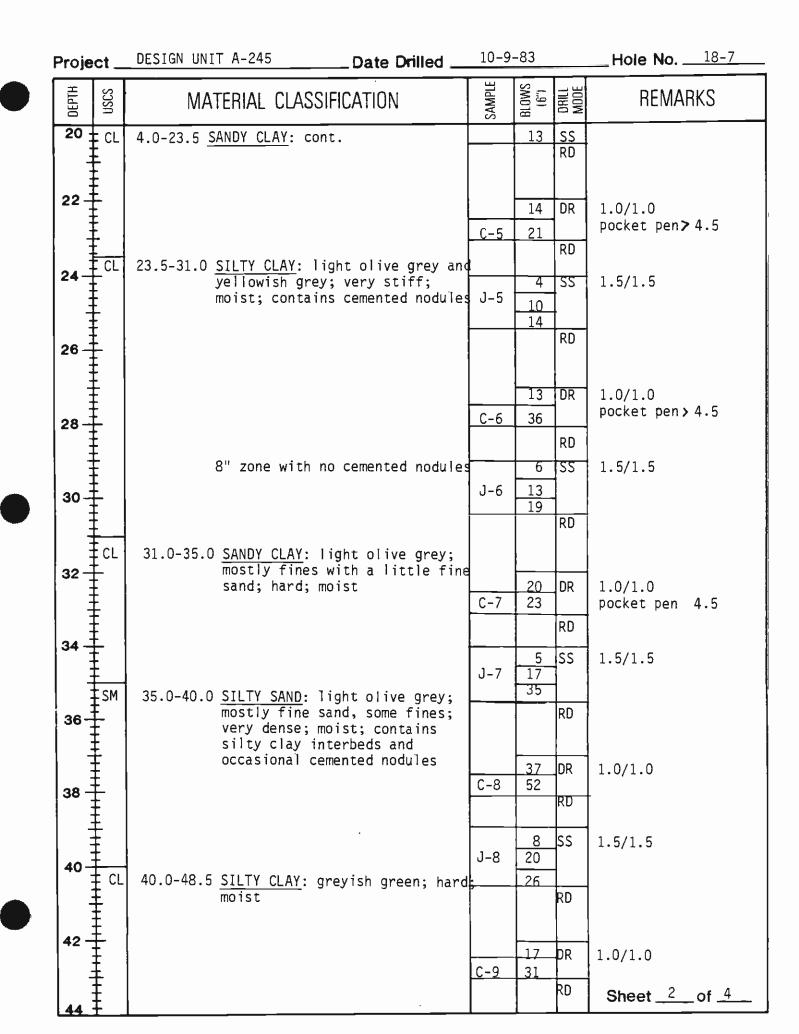
DEPTH	NSCS	MATERIAL CLASSIFICATION	SAMPLE	BLOWS (6")	DRILL MODE	REMARKS
0	AC CL	0.0-0.5 APSHALT			GB AD	start drilling 9 am
2 -		0.5-4.4 <u>SILTY CLAY</u> : brownish black. mostly fines with a trace of fine sand; stiff; moist to wet	C-1	4	DR	.5/1.0
4-				2	AD SS	1.2/1.5
		OLD ALLUVIUM 4.4-6.5 <u>SANDY SILT</u> : moderate yellowish brown; mostly fines with a trace	J-1	7		
6-		of fine sand; very stiff; dry to moist			RD	set tub & cased to ~5', mixed mud
8-	Ŧ	6.5-8.5 <u>SANDY SILT</u> : dark greenish grey; mostly fines with some fine sand; very stiff; moist; contains roots	C-2	<u>12</u> 17	DR	1.0/1.0
	‡	8.5-9.8 <u>SILTY SAND</u> : dark greenish grey; mostly fine sand with some silt		7	RD SS	1.3/1.5
10-	sc	9.8-13.5 CLAYEY SAND: dark greenish grey;	J-2	10 13		
		mostly fine sand, little fines; medium dense; moist; contains cemented zones and nodules			RD	5' of casing added
12-			C-3	7 15	DR	1.0/1.0
14-	5M/ 5P	13.5-15.5 <u>SILTY SAND</u> : dark greenish grey; mostly fine sand with a trace of fines; dense; wet	J-3	7	RD SS	1.0/1.5
16		15.5-23.0 <u>SILT</u> Y CLAY: light olive grey;		20	RD	
18		mottled with yellowish grey and ferrous staining; numerous cemented zones and nodules; hard; moist	C-4	14 20	DR RD	1.0/1.0
20		well cemented zone, caliche	J-4	25 40	SS	1.0/1.5 Sheet <u>1</u> of 4

oje	ect_	DESIGN UNIT	A-245	Date Drilled		1-83		Hole_No	10-0
DEPIH	NSCS	MAT	FERIAL CLASS	SIFICATION	SAMPLE	(, <u>,</u> 9) SM018	DRILL MODE	REMAR	rks
20 -	ECL	15.5-23.0 <u>S</u>	ILTY CLAY: co	ont.	[23	SS RD	rig chatter	
-	+						КU		
2 -	Ē							1.0/1.0	
-	ŧ				C-5	17 20	DR	1.0/1.0	
-	E ECL			ight olive grey to			RD		
4-	<u>.</u>			y; mostly fines wit ne sand; very stiff		3	SS	1.5/1.5	
			oist; well ce		ປ-5	8			
-	Ŧ					23	RD		
6 -	‡		6' end of cer						
-	‡			dules remaining, to dusky yellow		7	DR	1.0/1.0	
	Ŧ		-		C-6	10		pocket pen	2.0
8-	ŧ						RD		
-						5	SS	1.3/1.5	
- 0					J-6	13			
-	Ŧ					29	RD		
-	ŧ		ery well ceme e and Mn sta	ented zone l'thic ining	R.				
2-	‡			-		39	DR	0.9/1.0	
	sc	32.5-41.5 C	LAYEY SAND: r	noderate yellowish	C-7	13			
-	Ŧ	b		fine sand with som	le		RD		
 4 –	ŧ		-			5	SS	1.2/1.5	
-	ŧ		nterbeds of s emented clay	silt sand, sand and	J-7	36 44	$\left \right $		
36-	Ŧ						לא		
	Ŧ								
-	Ŧ				C-8	37	DR	1.0/1.0	
88 -	‡					<u> 50–</u> 5	RD		
_	‡	с	layey silt ar	nd sand lenses		8	SS	1.5/1.5	
	Ŧ				J-8	32		,	
+0 -	Ŧ					39	RD		
-	<u>+</u>								
12 -	ECL	41.5-45.4	<u>SANDY CLAY</u> : n	noderate yellowish		21	DR	1 0/1 0	
_	ŧ		brown; mostly	/ fines with some ard; moist; contain	C-9	35		1.0/1.0	
•	Ŧ		occastonal Ce	mented nodules	1	1	RD	Sheet _2	.

Proje	ct _	DESIGN	UNIT A-245	Date Dri	illed	10-1	.1-83		Hole No	18-6
DEPTH	nscs	MA	TERIAL CLA	SSIFICATION		SAMPLE	(9) SM018	DRILL MODE	REMA	RKS
44	CL	41.5-45.4	SANDY CLAY:	cont.		J-9	12 33 21	SS	0.5/1.0	
46 -	CL	45.4-51.0		dark greenish ; contains cem				RD		
48						C-10	36 50-5	DR .5" RD	1.0/1.0 pocket pen	4.0
50						J-10	<u>15</u> 53	SS	1.0/1.0	
50		E1 0 E4 9	CILTY CAND.	dauk anoonich				RD.		
52	SM/	51.0-54.8	mostly fine very dense;	dark greenish sand, trace o moist	f silt;	C-11	_28 _50-5	_	1.0/1.0	
54		F4 0 F0 0				J-11	<u>15</u> 24	RD SS	1.5/1.5	
56		54.8-58.0		dark greenish ; occasional c			40	עא		
58		58 0-59 0	SANDY CLAY.	dark greenish	arovi	C-12	18 23	DR RD	1/0/1.0	
60	SP	SAN PEDRO	mostly fine sand hard m FORMATION SAND: dark	<u>s with a little</u> oist greenish grey;	e fine mostly	J-12	16 54	SS	1.0/1.0	
62			dense; wet	trace of silt;	very		58	DR	0.6/0.6	
64						C-13	50-2	RD		
						J-13	33 <u>50-5</u>	SS . <u>5</u> " RD	1.0/1.0	
66						C-14	76	DR	0.5/0.7 d.is _{RD} Sheét '3	turbed
68	Ŧ					1	50-	4.5"		

P	roje	ct _	DESIGN UNIT A-245 Date Drilled	<u>1</u> 0-1	1-83		Hole No18-6
	DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	(,,9) SW018	ORILL MODE	REMARKS
	58 1 70	SP	59.0-80.0 <u>SAND</u> : cont.	J-14	<u>33</u> 53	RD SS	1.0/1.0
	0					RD	rig chatter
7	2		occasional sandy gravel lens	C-15	<u>56</u> 50-	DR 3"	0.5/0.7
7	4		grading coarser			RD	
	. 			J-15	35 37 50	SS	1.3/1.5
7	6		beoming gravelly			RĎ	intense rig chatter
-	78			C-16	<u>60</u> 50-3	DR " RD	0.7/0.7
				 J-16	27 54	SS	1.0/1.0
8	0 0		B.H. 80.0 Terminated hole, tremied grout to surface				complete drilling 2:30
8	32						
8	84 -			2 2 2 1			
8	86 -		_				
4	88						
	- 90 -						
	92						Sheet4_ of _4

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SDIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG is applicable dNLY at this location and time. Conditions MAY OIFFER AT DTHER LDCATIONS DR TIME.



BORING LOG 18-7

Proj: DESIGN UNIT A-245 Date Drilled 10-9-83 Ground Elev. 195.5' Drill Rig _____ Failing 1500 _____ Logged By L. Schoeberlein _____ Total Depth _____79.7'

Hole Diameter 4 7/8" Hammer Weight & Fall 140 Ib @ 30" ТшТТ

ſ	DEPTH	NSCS	MATERIAL CLASSIFICATION	SAMPLE	(,,9) 810WS	DRILL MODE	REMARKS
	0	AC	0.0-0.5 ASPHALT			GB	start drilling 11:45
	2-	CL	FILL 0.5-4.0 <u>SILTY CLAY</u> : dark greenish grey; mostly fines with a trace of fine sand; stiff; moist		5	AD DR	0.5/1.0
				C-1	14	AD	pocket pen 1.75
	4	CL	OLD ALLUVIUM 4.0-23.5 <u>SANDY CLAY</u> : dark yellowish brown mostly fines, little fine sand;	, J-1	5 12 13	SS	0.6/1.5
	6-		medium; moist; contains some minor wood fragments			RD	set tub & cased to 4.5', rig chatter @ 5.2'
	8-	***		C-2	9 14	DR	1.0/1.0 pocket pen > 4.5
	10-	****	becomes stiff	J-2	9 15 24	SS RD	1.5/1.5
	12-		sand content increases	C-3	<u>19</u> 22	DR	1.0/1.0
	- 14-		contains some cemented nodules; beomes firm	J-3	7 11	RD SS	1.5/1.5
	16-			1	18	RD	
	18-		clayey sand lens	C-4	7 17	DR RD	1.0/1.0
	20		becoming yellowish grey, trace of sand		5 11	SS	1.5/1.5 Sheetof4

Proje	ct _	DESIGN UNIT A-245 Date Drilled		-83		Hole No18-7
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	(1.9) BLOWS	DHILL	REMARKS
44		40.0-48.5 <u>SILTY CLAY</u> : cont.	J-9	<u>13</u> 19	SS RD	1.5/1.5
48			C-10	47	DR RD	1.0/1.0 pocket pen >4.5
50	ML	48.5-56.5 <u>SANDY SILT</u> : dark greenish grey mostly fines, some fine sand; hard; moist	; J-10	18 29	SS RD	1.5/1.5
52			C-11	<u>19</u> 47	DR	1.0/1.0 pocket pen> 4.5
54		contains some clayey silt/silt clay lenses, very stiff	y J-11	6 11 15	RD SS RD	1.5/1.5
56 58	SP	SAN PEDRO FORMATION 56.5-79.7 <u>SAND</u> : dark greenish grey; most fine sand, trace of silt, very dense; wet		41 50-5	DR	0.9/0.9
60			J-12	31	SS RD	1.0/1.0
62			C-13	50-2	DR " RU	0.7/0.7
64			J-13	50-2	SS . <u>5</u> " RD	0.5/0.7
66				113	DR RD	sample fell out Sheet <u>3</u> of <u>4</u>

Projec	;t	DESIGN UNIT A-245 Date Drilled		-83		Hole_No18-7
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	BLOWS 16")	ORILE MODE	REMARKS
68 70	SP	56.5-79.7 <u>SAND</u> : cont.	J-14	30 50-3	RD SS RD	0.5/0.7
72		gravel zones		65 65-3	DR " RD	0.4/0.7
74	-		J-15	<u>41</u> 50-5	SS RD	0.2/0.9
76	-			63 65-	DR 1" RD	sample lost
80 	-	B.H. 79.7 Terminated hole, installed piezometer to bottom, 60-80'	<u> </u>		DR 5.5"	0.5/0.7 complete drilling and flushing 5:45
82 	-	piezometer to bottom, 60-80' slotted, backfilled with pea gravel				
84	-					
86	-					
88	-					
90	-					Sheet4_of4

Appendix B

Geophysical Exploration

CCI/ESA/GRC

APPENDIX B GEOPHYSICAL EXPLORATION

B.1 DOWNHOLE SURVEY

B.1.1 <u>Summary</u>

Downhole shear wave velocity surveys were performed in Borings CEG-14 and CEG-15 for Design Unit A220. Measurements were made at 5-foot intervals from the ground surface to depths of 130 feet. A description of the technique and a summary of the results are attached.

B.1.2 Field Procedure

Shearing energy was generated by using a sledge hammer source on the ends of a 4-by-6-inch timber positioned under the tires of a station wagon, tangential to the borehole. A 12-channel signal enhancement seismograph (Geometrics Model ES1210) allowed the summing of several blows in one direction when necessary to increase the signal-to-noise ratio. Shear waves were identified by recording wave arrivals with opposite first motions on adjacent channels of the seismograph.

B.1.3 Data Analysis

For the purpose of illustration, typical wave arrival records from a downhole geophysical survey are reproduced in Figure B-1. The timing line shows a 20 millisecond (MS) break at the end of the record, indicating that each vertical line is 10 MS. The time of the first arrivals of compressional shear energy is indicated by P and S, respectively. Wave arrival records similar to Figure B-1 were analyzed to estimate wave travel times and velocities for CEG-14 and CEG-15.

B.1.4 Discussion of Results

Estimated velocity structures are summarized in Table B-1. Velocity estimates are based on selection of linear portions of the downhole arrival time curves (see Figures B-2 and B-3).

The error analysis performed for these surveys involved a least squares fit of these data by estimating the mean of the slope (\overline{V}) in Table B-1 and the standard deviation of this estimate of the slope. This estimate of the standard deviation was combined with an estimate of the overall accuracy to produce the best estimated velocity (V*). Vp* are the values to be used for studies of the response of these sites. N is the number of data points used for the straight line fit for each velocity estimate.

In general, the near-surface shear wave velocity was found to be approximately 1200 feet per second. To depths of about 200 feet, shear wave velocity estimates generally increased to 1700 to $2000\pm$ feet per second. One exception to this trend occurred at Boring CEG-14 where the shear wave velocity decreased from $2710\pm$ feet per second between depths of 55 and 75 feet to 860 feet per second between depths of 75 and 95 feet. Another exception occurred at Boring CEG-15 where the shear wave velocity decreased from $1180\pm$ feet per second between depths of 75 to 145 feet to $960\pm$ feet per second between depths of 145 and 175 feet.

B.2 CROSSHOLE SURVEY

B.2.1 <u>Summary</u>

Crosshole measurements for the determination of seismic wave velocities were performed in Boring CEG-15. The crosshole technique for determining shear wave velocities of in-situ materials was utilized in a three-borehole array. The array consisted of boring CEG-15 and two additional holes drilled approximately 15 feet away. All boreholes were drilled to a depth of 100 feet. Compressional wave and shear wave velocities are presented in Table B-2.

B.2.2 Field Procedure

The shear wave hammer is placed in an end hole of the array, and vertical geophones are placed in the remaining two boreholes. The shear wave generating hammer and the two geophones are lowered to the same depth in all boreholes. The hammer is coupled to the wall of the hole by means of hydraulic jacks, and the geophones are coupled by means of expanding heavy rubber balloons which protrude from one side of the geophone housings. The hammer is then used to create vertically polarized shear waves with either an up or down first motion. A 12-channel signal enhancement seismograph with oscilloscope and electrostatic paper camera is used as a signal storage device. Seismic wave velocity determinations were made at 5-foot intervals from 10 feet below ground surface to a depth of 100 feet (see Figures B-4 and B-5).

B.2.3 Data Analysis

For the data analysis actual crosshole distances were determined to within +0.01 feet. These distances were computed between each of the three boreholes at the elevations of shear measurements. From the crosshole records (seismograms), the travel times for both compressional and shear wave arrivals at each borehole and at each depth were measured. Shear wave arrivals were identified by the reversed first motion on the seismograms. Compression and shear wave estimates were based on the wave arrival records.

B.2.4 Discussion of Results

The shear wave velocity (V_S) is equal to the difference in travel path distance from the shear source to each geophone divided by the difference in shear wave arrival times. The results of the compressional and shear wave velocity analyses are shown in Table B-2. It should be noted that compression wave velocities below the ground water table may be masked by the compression wave response of the water (V_c = 5000 fps) particularly in highly porous materials.

CCI/ESA/GRC

BOR ING No.	DEPTH		VE	SHEAR WAVE							
	(ft)	ν _p	σp	Ep	Np	Vp*	٧s	σs	Es	Ns	Vs*
14	15- 55						1194	61	60	9	1190±120
	55- 75				_		2711	348	136	5	2710±480
	75- 95	6492	562	325	38	6490±890	856	32	43	5	860±70
	95-125						1429	394	71	7	1430±470
	125-198				_		1676	100	84	16	1680±180
15	10- 75	3935	544	197	14	3940±740	1277	48	64	14	1280±110
	75-145				-		1180	100	59	15	1180±160
	145-175	5267	629	263	23	5270±890	963	49	48	7	960±100
	175-200				—		2054	616	100	5	2054±720

TABLE B-1 DOWNHOLE VELOCITIES

 $\bar{V}p$ = mean estimate of compressional wave velocity.

 $\bar{V}s$ = mean estimate of shear wave velocity.

Op = standard deviation of estimated compressional wave velocity.

Os = standard deviation of estimated shear wave velocity.

Ep = estimated accuracy of compressional survey.

Es = estimated accuracy of shear survey.

Np = number of points used for straight line fit of comrpessional wave.

Vp* = overall accuracy of compressional wave velocity estimate.

Vs* = overall accuracy of shear wave velocity estimate.

Ns = number of points used for straight line fit of shear wave velocity data.

BORING	DEPTH							SHEAR WAVE					
No.	(ft)	Vp	σρ	Ep	Np	Vp*	- Vs	<u> </u>	Es	<u>Ns</u>	Vs*		
15	10	2043	36	137	2	2040±170	684	2	46	6	680±50		
	15	3240	590	227	2	3240±820	855	19	43	8	860±50		
	20	2752	830	138	2	2750±970	970	36	49	12	970±85		
	25	3020	300	150	2	3020±450	985	65	50	12	985±115		
	30	4150	105	200	4	4150±300	847	9	42	8	850±50		
	35	4380	574	219	3	4380±790	858	7	43	8	860±50		
	40	4621	41	231	5	4620±270	941	2	47	4	940±50		
	45	6066	8	303	2	6060±310	1049	6	51	4	1050±60		
	50	4410		440	1	4440±440	1155	30	58	8	1155±90		
	55	4460	67	220	5	4460±290	1093	10	52	12	1090±60		
	60	4390	6	220	2	4390±320	911	16	46	11	910±60		
	65	4120	114	206	3	4120±320	921	21	46	12	920±70		
	70	3740	640	187	7	3740±830	919	11	46	15	920±60		
	75	3940		400	1	3940±400	952	15	48	15	950±60		
	80	4260		430	1	4260±430	972	6	48	12	970±70		
	85	3950		400	1	3950±500	975	17	48	12	975±70		
	90	4505	336	225	2	4500±560	881	1	44	5	880±50		
	95	4475	225	224	3	4480±450	973	22	48	6	970±70		
	97	4085	794	200	3	4085±990	1243	24	62	12			

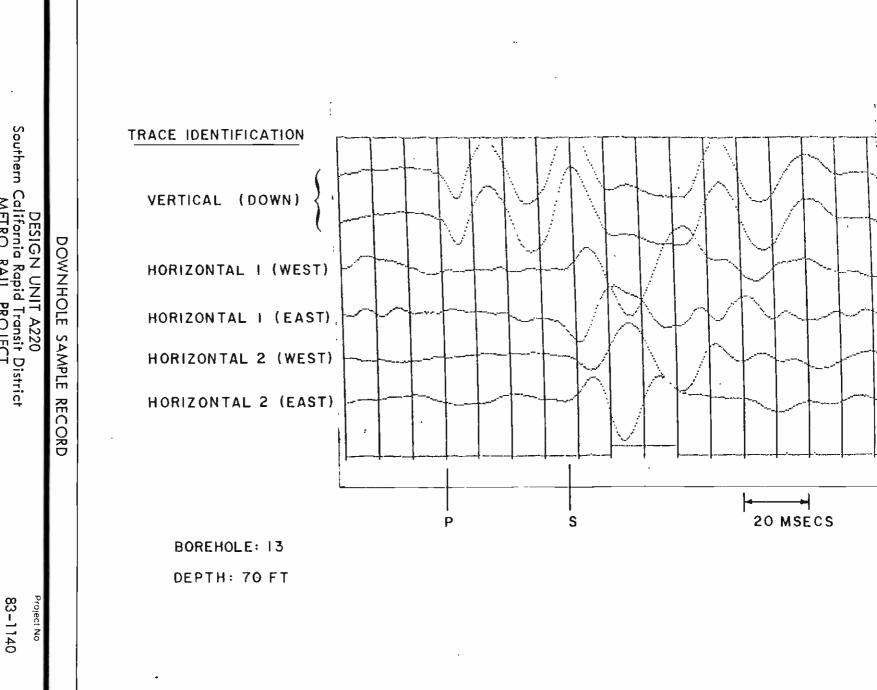
TABLE B-2 CROSSHOLE VELOCITIES

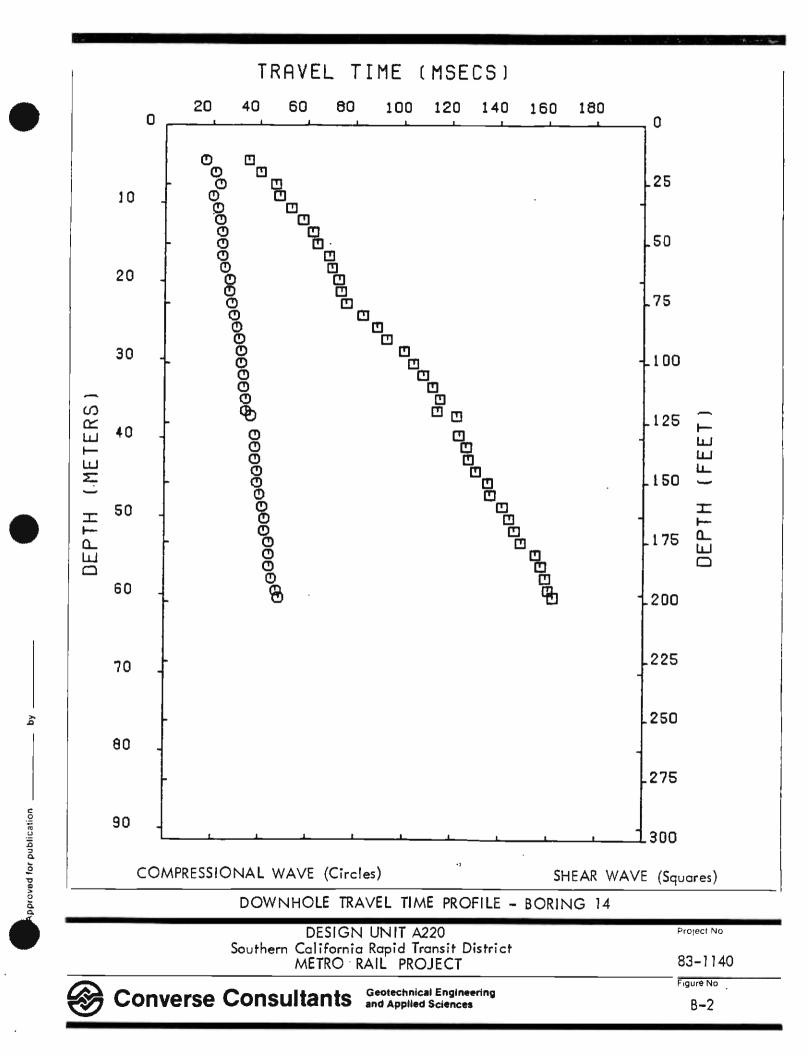
 $\bar{V}p$ = mean estimate of compressional wave velocity.

- \bar{V}_S = mean estimate of shear wave velocity.
- σ_p = standard deviation of estimated compressional wave velocity.
- σ_s = standard deviation of estimated shear wave velocity.
- Ep = estimated accuracy of compressional survey.
- Es = estimated accuracy of shear survey.

- Np = number of points used for straight line fit of comrpessional wave.
- Vp* = overall accuracy of compressional wave velocity estimate.
- Vs* = overall accuracy of shear wave velocity estimate.
- Ns = number of points used for straight line fit of shear wave velocity data.

pproved for publication by


Ŷ


Converse Consultants

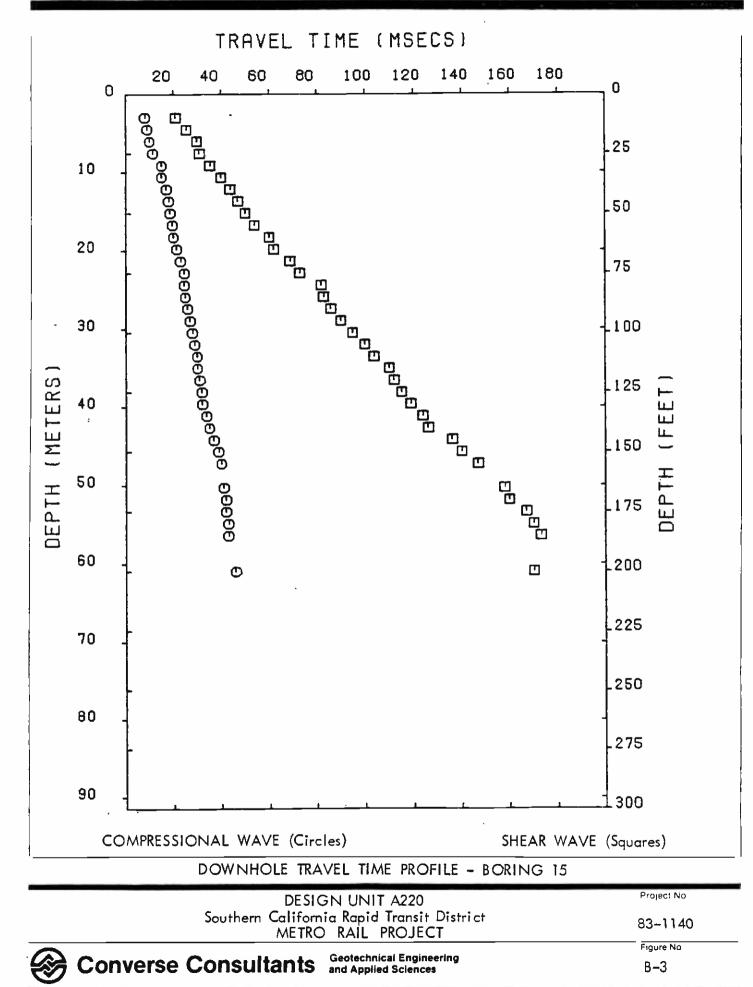
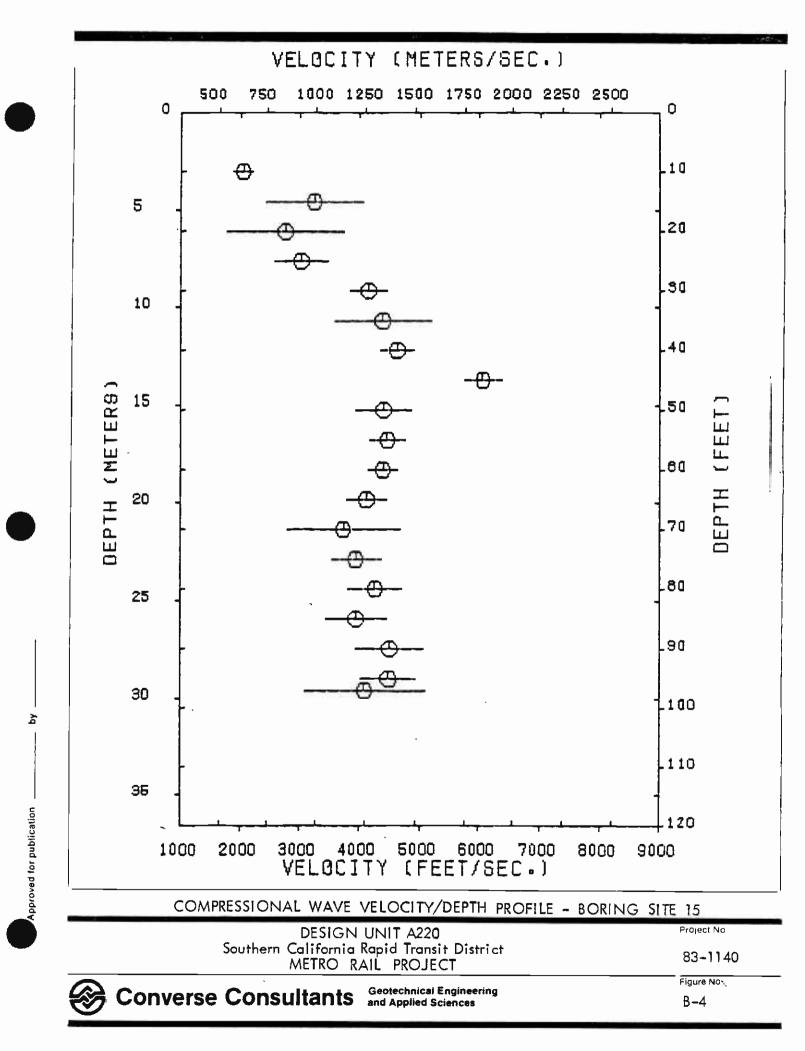
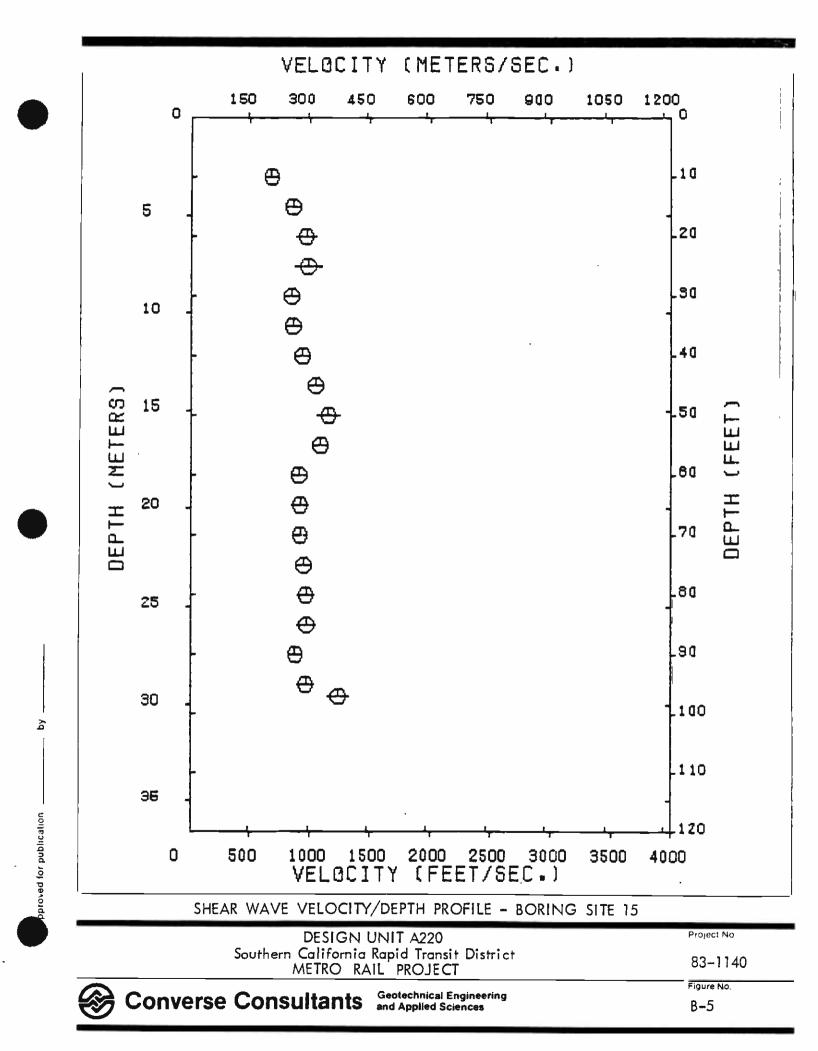

Geotechnical Engineering and Applied Sciences

Figure No.

8<u>1</u>





à

Approved for publication

Appendix C

Geotechnical Laboratory Testing

APPENDIX C GEOTECHNICAL LABORATORY TESTING

C.1 INTRODUCTION

This appendix presents laboratory geotechnical tests performed on selected soil and bedrock samples obtained from the borings drilled at the Wilshire/ Normandie and Wilshire/Western Station sites. Laboratory testing of the remaining borings is presented in the geotechnical reports for Design Units A240 and A245

The soil tests performed may be classified into two broad categories:

- Index or identification tests which included visual classification, grain-size distribution, Atterberg Limits, moisture content, and unit weight testing;
- [°] Engineering properties testing which included unconfined compression, triaxial compression, direct shear, consolidation, permeability, porosity, resonant column, cyclic triaxial, and dynamic triaxial tests.

The laboratory test data from the present investigation are presented in Table C-1, while data from the 1981 geotechnical investigation are presented in Table C-2. The geologic units listed in these tables are described in Section 5.0 of the report. Figures C-1 through C-13 summarize strength and modulus data for fine-grained alluvium, granular alluvium, San Pedro sand, and bedrock at this site and other nearby station sites.

C.2 INDEX AND IDENTIFICATION

C.2.1 Visual Classification

Field classification was verified in the laboratory by visual examination in accordance with the unified Soil Classification System and ASTM D-2488-69 test method. When necessary to substantiate visual classifications, tests were conducted in accordance with the ASTM D-2478-69 test method.

C.2.2 Grain-Size Distribution

Grain-size distribution tests were performed on representative samples of the geologic units to assist in the soils classification and to correlate test data between various samples. Sieve analyses were performed on that portion of the sample retained on the No. 200 sieve in accordance with ASTM D-422-63 test method. Combined sieve and hydrometer analyses were performed on selected samples which had a significant percentage of soil particles passing the No. 200 sieve. Results of these analyses are presented in the form of grain-size distribution or gradation curves on Figures C-14 through C-18.

It should be noted that the grain-size distribution tests were performed on samples secured with 2.42- and 2.87-inch ID samplers. Thus, material larger than those dimensions may be present in the natural deposits although not indicated on the gradation curves.

CCI/ESA/GRC

C.2.3 Atterberg Limits

Atterberg Limit Tests were performed on selected soil samples to evaluate their plasticity and to aid in their classification. The testing procedure was in accordance with ASTM D-423-66 and D-424-59 test methods. Test results are presented on Figure C-19 and Tables C-2 and C-3.

C.2.4 Moisture Content

Moisture content determinations were performed on selected soil samples to assist in their classification and to evaluate ground water location. The testing procedure was a modified version of the ASTM D-2261 test method. Test results are presented on Tables C-1 and C-2.

C.2.5 Unit Weight

Unit weight determinations were performed on selected undisturbed soil samples to assist in their classification and in the selection of samples for engineering properties testing. Samples were generally the same as those selected for moisture content determinations.

The test procedure entailed measuring specimen dimensions with a precision ruler or micrometer. Weights of the sample were than determined at natural moisture content. Total unit weight was computed directly from data obtained from the two previous steps. Dry density was calculated from the moisture content found in Section C.2.4 and the total unit weight. Results of the unit weight tests are presented as dry densities on Tables C-1 and C-2.

C.3 ENGINEERING PROPERTIES: STATIC

C.3.1 Unconfined Compression

Unconfined compression tests were performed on selected samples of cohesive soils and bedrock from the test borings for the purpose of evaluating the undrained, unconfined shear strength of the various fine-grained geologic units. The tests were performed in accordance with the ASTM D-2166 test method. Results of the unconfined compression tests are presented on Tables C-1 and C-2.

C.3.2 Triaxial Compression

Consolidated undrained and unconsolidated undrained (quick) triaxial compression tests were performed on selected undisturbed soil samples. The tests were conducted in the following manner:

C.3.2.1 Consolidated Undrained (CU) Tests

- * The undisturbed test specimen was trimmed to a length to diameter ratio of approximately 2.0.
- [°] The specimen was then covered with a rubber membrane and placed in the triaxial cell.

- The triaxial cell was filled with water and pressurized, and the specimen was saturated using back-pressure.
- [°] When saturation was complete, the specimen was consolidated at the desired effective confining pressure.
- [°] After consolidation, an axial load was applied at a controlled rate of strain. In the case of the undrained test, flow of water from the specimen was not permitted, and the resulting pore water pressure change was measured.
- ° The specimen was then sheared to failure or until a maximum strain of 15% to 20% was reached.

Some of the tests were performed as progressive tests. The procedure was the same as above except that, when the soil specimen approached but did not reach failure (usually to peak effective stress ratio), the axial load was removed and the specimen was consolidated at a higher confining pressure. The axial load was again applied at a constant rate of strain, and the load was removed before the specimen failed. This process was repeated a third time at a still higher confining pressure, and the sample was loaded until failure occurred.

Results of the triaxial compression tests are presented on Figures C-20 through C-26.

C.3.3 Direct Shear

Direct shear tests were performed on selected undisturbed soil samples using a constant strain rate direct shear machine.

Each test specimen was trimmed, soaked and placed in the shear machine, a specified normal load was applied, and the specimen was sheared until a maximum shear strength was developed. Fine-grained samples were allowed to consolidate prior to shearing. The maximum developed shear strengths are summarized on Tables C-1 and C-2.

Progressive direct shear tests were performed on selected undisturbed samples of coarse-grained material. After the soil specimen had developed maximum shear resistance under the first normal load, the normal load was removed and the specimen was pushed back to its original undeformed configuration. A new normal load was then applied, and the specimen was sheared a second time. This process was repeated for several different normal loads. Results of the progressive direct shear tests are summarized on Tables C-1 and C-2.

C.3.4 Swell

A free swell test was performed on a selected undisturbed sample of cohesive, potentially expansive soil. The test procedure entailed placing the undisturbed soil sample in a consolidometer, applying a vertical confining load, and inundating the sample with tap water. The resulting one-dimensional swell of the sample was measured and recorded. Results of the test are presented on Table C-1.

C.3.5 Consolidation

Consolidation tests were performed on selected undisturbed soil samples placed in 1 inch high by 2.42-inch diameter brass rings, or 3-inch diameter Shelby tubes trimmed to a 2.42-inch diameter.

Apparatus used for the consolidation test is designed to receive the 1 inch high brass rings directly. Porous stones were placed in contact with both sides of the specimens to permit ready addition or release of water. Loads were applied to the test specimens in several increments, and the resulting settlements recorded.

Results of consolidation tests on the undisturbed samples are presented on Figures C-27 through C-37.

C.3.6 Permeability

Permeability tests were performed on undisturbed specimens selected for testing, or in conjunction with the static and cyclic triaxial tests, using the same selected undisturbed samples of soil. Permeability was measured during back-pressure saturation by applying a differential pressure to the ends of the sample and measuring the resulting flow. Results of the tests are tabulated on Tables C-1 and C-2.

C.3.7 Porosity

Porosity, or void ratio, of selected undisturbed samples was determined by measuring the dry unit weight and specific gravity, then calculating the void ratio, e, and porosity, n, using the following formula:

$$e = \frac{1 - Vs}{Vs}$$
 where $Vs = \frac{Yd}{G \times Yw}$ and $n = \frac{e}{1 + e}$

Where:

γ_w = unit weight of water γ_d = unit dry weight of soil G = specific gravity of soil solids.

In some cases, an assumed average value for the specific gravity, based on the measured values for other specimens, was used for the calculation.

C.4 ENGINEERING PROPERTIES: DYNAMIC

C.4.1 Dynamic Triaxial Compression

This test evolved from the static triaxial procedure and is designed to evaluate the stress-strain properties of the soils under dynamic loading conditions. This test differs from the cyclic triaxial test in that it is designed to obtain dynamic stress-strain data at various strain levels, while the cyclic test measures deformation and liquefaction susceptibility at a given level of cyclic stress. Shear strain data is obtained generally in the range of 10^{-4} to 10^{-2} inch/inch.

- C.4.1.1 <u>Sample Preparation and Handling</u>: These tests were performed on undisturbed cylindrical samples obtained from rotary borings using a sampler lined with either brass rings or Shelby tubes. Samples from the brass rings were 2.42 inches in diameter by 5 inches in length; those from the Shelby tubes were 2.87 inches in diameter by 6 inches in length. The samples were extruded, weighed and placed in the test cell.
- C.4.1.2 <u>Test Conditions and Parameters</u>: Test conditions and parameters may vary in the dynamic triaxial test. The procedures followed for this project were:
 - ° Stress controlled: After specimen preparation, the specimens were loaded cyclically at several levels of cyclic stress. Generally, one or two cycles of a relatively low stress were applied, the specimen was reconsolidated and loaded again for one or two additional cycles at a slightly higher stress level. This procedure was repeated until the resulting strain levels became large enough to cause significant permanent strain, precluding further satisfactory data (strain of about 10^{-2} inch/inch or until the maximum cycle stress level possible with the procedure was reached, corresponding to $\sigma_{cyclic}^{/2\sigma}$ ac
 - ° Saturation: The specimens were artificially saturated using flushing and back pressure techniques. Typical back pressures of 60 to 100 psi were required to saturate the specimens. The degree of saturation was measured using Skempton's B parameter, $\Delta u/\Delta \sigma_{3c}$. A minimum value of B = 0.95 was obtained for all test specimens which were saturated.
 - [°] A few of the test specimens were tested in their in situ moisture condition, without artificial saturation, in order to evaluate the stress-strain properties of unsaturated samples. The tests which were not saturated are identified on the figures.
 - ° Consolidation: Specimens were allowed to consolidate under the specified static ambient stress levels. Consolidation was monitored either by measuring specimen volume changes or by closing the drainage lines and verifying that buildup of pore pressures did not occur. A consolidation ratio $(K_c = \sigma_{1c}/\sigma_{3c})$ of 1.0 was used for this program.
 - Waveform and Frequency: A sinusoidal waveform at a frequency of 0.5Hz was used for this test program.
- C.4.1.3 <u>Apparatus</u>: The apparatus described below was used for this test. In addition, for the dynamic triaxial tests, an x-y flatbed recorder was utilized to record the hysteretic stress stain curve for each load cycle.

The pneumatic loading system used for these tests was custom-designed and built for Converse Consultants. The device consists of the four main component groups described below.

- ^o Triaxial Chambers and Cyclic Loading Device: The triaxial chambers are comprised of stainless steel and aluminum cells designed for operating pressures up to 400 psi. (Pressures of up to 160 psi were used for this project.) A pneumatic, doubleacting piston, capable of applying both static and cyclic loads, is mounted above the triaxial chamber and connected to the specimen load cap by a low-inertia stainless steel rod. The rod passes through the top of the chamber and is held in place by low friction bushings and pressure seals.
- ^o Control Console: This unit contains the various pressure regulators and reservoir systems for controlling cell pressure, back pressures, and sample saturation and drainage. The controls on the console regulate the wave form, frequency, and magnitude of the static and cyclic axial loads.
- [°] Transducer System and Signal Conditioners: The electronic transducers produce electrical voltages in proportion to the key parameters being measured during the test. Parameters monitored and transducer type employed for this program are:

PARAMETER MONITORED	TRANSDUCER TYPE
Axial displacement	 Linear variable differential transformers (LVDT's) mounted internally to the specimen load caps
Soil pore water pressure	 Unbonded wire resistance strain-gauge-type transducers mounted external to the chamber on sample drainage lines
Axial load	 Bonded resistance strain-gauge-type load cell mounted between double-acting piston and rod connected to specimen load cap

Signal conditioners such as power supplies and variable gain amplifiers are used to excite the transducers and amplify the signals to recordable levels.

- Recording Devices: These include (a) a 4-channel continuous strip chart recorder, thermal pens and heat-sensitive paper, frequency response adequate for frequencies normally employed in cyclic triaxial testing, and (b) a cathode ray oscilloscope.
- C.4.1.4 <u>Data Reduction</u>: The following methods and definitions were employed in the reduction of test data from the dynamic triaxial tests.
 - Axial stress: Given in terms of axial load and the unconsolidated specimen crosssectional area.
 - ° Axial strain: Given in terms of the consolidated specimen length.

- Dynamic axial strain: The peak-to-peak axial strain for any given loading cycle.
- [°] Shear modulus and shear strain conversion: Axial stress, axial strain and Young's modulus, E, were converted to equivalent shear stress, shear strain and shear modulus, G, using a Poisson's ratio of 0.5 (undrained, zero volume change condition) for tests on saturated samples, and an assumed Poisson's ratio of 0.40 for tests on saturated specimens tested at their in situ moisture contents. Shear strain values are the strains on a plane located at 45° to the principal stress plane, which has been shown to be the plane of maximum shear strain during triaxial loading.
- ^o Modulus: Shear modulus values are defined as the equivalent linear modulus corresponding to the straight line connecting the end points of the hysteresis loop of each loading cycle.
- [°] Shear strain: Shear strain values given are the maximum shear strains between the end points of the hysteresis loop for a given cycle. The maximum shear strain is calculated according to the equations of solid body mechanics as 1.5 x the maximum axial strain.

The Dynamic Triaxial test results are shown on Figures C-38 through C-45.

EORING No.	SAMPLE No.	DEPTH (ft)	VISUAL CLASSIFICATION	DRY DENSITY (pcf)	MOISTURE CDNTENT (%)	TT ATTERBERC LIMITS	kv, COEFFICIENT OF PERMEABILITY (cm/sec) (Confining Pressure, psi)	ULCONFINED COMPRESSIVE SIRENGIN (ksf)	DIRECT SHEAR STRENCTH ENVELOPE Ø, deg c, ksf	ONE-DIMENSIONAL SWELL (%) {(Normal Load, ksf)	SWELL PRESSURE (ksf)	SIEVE ANALYSIS	HYDRUTILTER ANALYSIS	OEDONETER	TRIAXIAL COMPRESSION (Stages)
13-7	1	4	Silty Clay	107	19									_	
	2	10	Sandy Clay	101	21										
	3	15	Sand	109	16										
	4	21	Siltstone	87	32										
	6	30	Claystone	78	43										
	8	40	Siltstone	80	43										
	10	50	Sandy Siltstone	89	30	,						—			
	12	60	Siltstone	82	40								_		
	14	70	Siltstone	78	40							—	_		·
13-8	1	4	Sand	93	12				- <u></u>						
	2	10	Sand	96	16				<u> </u>						
	3	14	Silty Clay	86	36									_	
	5	24	Claystone	88	36			<u> </u>				_		_	
	7	35	Siltstone	84	36									_	
	9	45	Siltstone	77	47									_	
	11	55	Siltstone	81	41									—	
	13		Siltstone	88	36								—		
												—			

.

•

TABLE	1	LABU	RATURY LEST DATA											_			
EORING No.	SAMPLE No.	DEPTH (ft)	VISUAL CLASSIFICATION	DRY DENSITY (pcf)	MOISTURE CONTENT (%)			Kv, COEFFICIENT OF PERMEABILITY (cm/sec) (Confining Pressure, psi)	UNCONFINED COMPRESSIVE STRENGTH (ksf)	DIRECT S STRENGTi ENVELOP8 ∳, deg	1	ONE-DIMENSIONAL SWELL (%) (Normal Load, ksf)	SWELL PRESSURE (ksf)	SIEVE ANALYSIS	HYDROMETER AMALYSIS	OEDOMETER	TRIAXIAL CUMPRESSION (Stages)
14-1	1	2	Silty Clay	99	24											_	
	2	7	Clayey Silt	98	24				2.6		· · · · · · · · · · · · · · · · · · ·				_	_	
	3	12	Silty Sand	105	19												
	4	21	Silty Clayey Sand	105	11										_	_	
	5	22	Clayey Sand	125	13				4.9					<u> </u>		—	
	6	24	Clayey Sand	121	11												
	7	27	Clayey Sand	118	13									<u> </u>	_	—	
	8	32	Sandy Clay	120	12				3.6					<u> </u>		_	<u> </u>
	9	37	Sand, Silt and clay	114	11					28	1.50			—	_	_	
	10	42	Silty Sand	112	9											_	
	11	46	Clayey Sand	118	15									x			X(1)
	12	52	Sandy Silty Clay	96	31	51	27				<u> </u>			x			X(1)
	13	57	Silty Sand	113	17										_	_	
	14	62	Sandy Silty Clay	113	17									x		_	X(1)
	15	67	Sandy Clay	96	30										_	X	
	16	72	Sandy Clayey Silt	109	20											X	
	17	77	Sand	111	17												

TABLE	<u> </u>	LABU	RATURY TEST DATA														
BORING No.	SAMPLE No.	DEPTH (ft)	VISUAL CLASSIFICATION	DRY DENSITY (pcf)	MOISTURE CONTENT (%)		ATTERBERG LIMITS	Kv, COEFFICIENT OF PERMEABILITY (cm/sec) (Confining Pressure, psi)	I UNCONFINED COMPRESSIVE STRENGTH (ksf)	DIRECT S STRENGTH ENVELOPE Ø, deg	4	ONE-DIMENSIOMAL SWELL (%) (Normai Load, ksf)	SWELL PRESSURE (ksf)	SIEVE ANALYSIS	HYDROHETER AHALYSIS	DEDOMETER	TRIAXIAL COMPRESSION (Stages)
14-1	18	84	Silty Sand	107	19												
	19	94	Silty Sand	99	23												
	20	104	Silty Sand	99	25												
	21	105	Siltstone	83	35												
14-2	1	2	Silty Sand	106	12												
	2	7	Clayey Sand	118	14				6.1					_			
	3	12	Sandy Clay	111	19												
	4	17	Sandy Clay	102	24	54	37		7.6								
	5	22	Sandy Clay	117	16				10.3								
	6	27	Silty Sand	113	11												
	7	32	Silty Sand	112	10												
	8	37	Silty Sand	112	13					37	0.80						
	9	42	Gravelly Sand	115	12			2.1x10 ⁻³						<u>x</u>			
	10	47 ——	Silty Sand	110	18												
	11	52	Silty Sand	109	18											_	
	12	57	Sandy Clay	110	19				6.4						_		
	13	62	Sandy Clay	106	22				10.9								

.

14-2 14 69 Silty Sand 108 18 15 74 Silty Sand 103 21 30 0.87	TABLE	C-1	LABU	RATORY LEST DATA														
15 74 Silty Sand 103 21 30 0.87 X X 16 79 Silty Sand 109 20 3.0x10 ⁻⁴ (10) X X X 17 84 Silty Sand 96 24 X X X X 18 89 Silty Sand 98 25 X X X 19 94 Silty Sand 99 25 X X X 20 99 Silty Clay 84 35 X X X 104 Silty Clay 75 41 X X X X 14-3 1 2 Clayey Sand 110 12 X X X 14-3 1 2 Clayey Sand 110 18 36 20 X X X 14-3 1 2 Clayey Sand 101 23 X X X 14-3 1 2 Clayey Silt 95 25 4.4 X X <td< th=""><th>BORING No.</th><th>ш</th><th></th><th>VISUAL CLASSIFICATION</th><th>DENS I TY</th><th>CONTENT</th><th></th><th></th><th>Kv, COEFFICIENT OF PERMEABILITY (cm/sec) .(Confining Pressure, psi)</th><th>UNCONFINED COMPRESSIVE+ STRENGTH (ksf)</th><th>STRENGT</th><th>H E</th><th>SWELL f)</th><th>PRESSURE</th><th></th><th>HYDROMETER ANALYSIS</th><th>DEDOMETER</th><th>TRIAXIAL COMPRESSION (Stages)</th></td<>	BORING No.	ш		VISUAL CLASSIFICATION	DENS I TY	CONTENT			Kv, COEFFICIENT OF PERMEABILITY (cm/sec) .(Confining Pressure, psi)	UNCONFINED COMPRESSIVE+ STRENGTH (ksf)	STRENGT	H E	SWELL f)	PRESSURE		HYDROMETER ANALYSIS	DEDOMETER	TRIAXIAL COMPRESSION (Stages)
15 74 Silty Sand 103 21 30 0.87 X 16 79 Silty Sand 109 20 3.0x10 ⁻⁴ (10) 100 X X 17 84 Silty Sand 96 24 100 X X X 18 89 Silty Sand 96 25 100 100 20 100 100 100 100 20 99 Silty Sand 98 25 100 </td <td>14-2</td> <td>14</td> <td>69</td> <td>Silty Sand</td> <td>108</td> <td></td> <td>_</td> <td></td>	14-2	14	69	Silty Sand	108		_											
17 84 Silty Sand 96 24		15	74	Silty Sand	103						30	0.87					<u> </u>	
18 89 Silty Sand 98 25 19 94 Silty Sand 99 25 20 99 Silty Clay 84 35 21 104 Silty Clay 75 41 1 2 Clayey Sand 110 12 2 7 Silty Clay 101 23 1.7 3 12 Sandy Clay 110 18 36 20 4 17 Clayey Silt 95 25 4.4 5 22 Sandy Clayey Silt 95 25 4.4 6 27 Sandy Silt 100 23 23 23 7 33 Sandy Silt 100 23 23 26 0.65 8 38 Clayey Sand 105 20 26 0.65 26		16	79	Silty Sand	109	20			3.0×10 ⁻⁴ (10)						X			X(3)
19 94 Silty Sand 99 25 20 99 Silty Clay 84 35 21 104 Silty Clay 75 41 14-3 1 2 Clayey Sand 110 12 2 7 Silty Clay 101 23		17	84	Silty Sand	96	24											<u>x</u>	
20 99 Silty Clay 84 35 21 104 Silty Clay 75 41		18	89	Silty Sand	98	25												
21 104 Silty Clay 75 41 14-3 1 2 Clayey Sand 110 12 2 7 Silty Clay 101 23 1.7 3 12 Sandy Clay 110 18 36 20 4 17 Clayey Silt 95 25 4.4 5 22 Sandy Clayey Silt 99 21 34 0 6 27 Sandy Silt 100 23 23 1.7 7 33 Sandy Silt 100 23 1.7 7 33 Sandy Silt 100 23 1.7 7 33 Sandy Silt 106 20 1.7 8 38 Clayey Sand 105 20 26 0.65		19	94	Silty Sand	99	25												
14-3 1 2 Clayey Sand 110 12 2 7 Silty Clay 101 23 1.7 3 12 Sandy Clay 110 18 36 20 4 17 Clayey Silt 95 25 4.4 5 22 Sandy Clayey Silt 99 21 34 0 6 27 Sandy Silt 100 23 100 23 100 7 33 Sandy Silt 106 20 20 26 0.65		20	99	Silty Clay	84	35												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		21	104	Silty Clay	75	41						. <u></u>						
3 12 Sandy Clay 110 18 36 20 4 17 Clayey Silt 95 25 4.4 5 22 Sandy Clayey Silt 99 21 34 0 6 27 Sandy Silt 100 23 100 23 100 7 33 Sandy Silt 106 20 20 26 0.65	14-3	1	2	Clayey Sand	110	12												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	7	Silty Clay	101	23				1.7		<u> </u>						
5 22 Sandy Clayey Silt 99 21 34 0 6 27 Sandy Silt 100 23		3	12	Sandy Clay	110	18	36	20										
6 27 Sandy Silt 100 23 7 33 Sandy Silt 106 20 8 38 Clayey Sand 105 20		4	17	Clayey Silt	95	25				4.4								
7 33 Sandy Silt 106 20 8 38 Clayey Sand 105 20		5	22	Sandy Clayey Silt	99						34	0		<u> </u>				
8 38 Clayey Sand 105 20 26 0.65		6	27	Sandy Silt	100													
		7	33	Sandy Silt	106	_											<u></u>	
9 43 Sand 14 19 4.7x10 ⁻³ 36 0.50 X		8	38	Clayey Sand					<u>·</u>									
		9	43	Sand	14	19			4.7×10 ⁻³	<u> </u>	36	0.50			<u> </u>			

-

BORING No.	SAMPLE No.	DEPTH (ft)	VISUAL CLASSIFICATION	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	ATTERREG LIMITS	PI	Kv, COEFFICIENT OF PERMEABILITY (cm/sec) (Confining Pressure, psi)	UPICONFINED COMPRESSIVE STREPGTH (ksf)	DIRECT STRENGT ENVELOP ¢, deg	н	ONE-DIMENSIONAL SWELL (%) (Normal Load, ksf)	SWELL PRESSURE (ksf)	SIEVE ANALYSIS	HYDROMETER ANALYSIS	OEDOMETER	TRIAXIAL COMPRESSION (Stagus)
14-3	10	48	Sandy Silt	103	22				3.9						_	_	
	11	52	Silty Sand	105	19					28	1.14				_		
	12	58	Silty Sand	99	24			6.5×10 ⁻⁴		27	0.50			X			
	13	62	Sand	96	25			3.6×10 ⁻⁴		30	0.65						
	14	69	Clayey Silt	71	47									_		X	
	15	74	Clayey Silt	83	34				8.4		· · · · · · · · · · · · · · · · · · ·			_	_		
	16	79	Clayey Silt	81	37				3.3							_	_
	17	89	Clayey Silt	83	37				11.4								
	18	94	Clayey Siltstone	84	34											_	
	19	120	Clayey Siltstone	76	47												
	20	140	Clayey Siltstone	86	35										_		
	21	160	Clayey Siltstone	91	32						·						-
14-4	1	2	Clayey Sand	108	17										—		
	2	7	Silty Clay	101	26	54	38		6.9						_		
	3	12	Clay	94	28				6.3						_		
	4	17	C1 ay	91	32						- <u> </u>				_		
	5	22	Clayey Sand	112	17				4.7	<u> </u>					_		

TABLE	<u>C-1</u>	LABO	RATORY TEST DATA							-						
BORING No.	SAMPLE NO.	DEPTH (ft)	VISUAL CLASSIFICATION	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	T ATTERBERG LIMITS	Kv, COEFFICIENT OF PERMEABILITY (cm/sec) (Confining Pressure, psi)	UNCONFINED COMPRESSIVE STRENGTH (ksf)	DIRECT STRENGT ENVELOP ∳, deg	Н	ONE-DIMENSIONAL SWELL (%) (Normal Loud, ksf)	SWELL PRESSURE (ksf)	SIEVE ANALYSIS	HIYDROMETER ANALYSIS	OLDOMETER	TRIAXIAI, COMPRESSION (Stages)
14-4	6	28	Silty Clay	91	30				34	2.02						
	7	32	Sandy Clay	111	18		5.7x10 ⁻⁶		22	2.10						
	8	37	Silty Sand	90	25		2.6x10 ⁻³		30	0.60			<u>x</u>			
	9	42	Sandy Silty Clay	80	46		_	1.4								
	10	49	Siltstone	91	31	~										
	11	54	Siltstone	87	37						0.05(1)		—			
	12	59	Claystone	90	31										x	
	13	69	Clayey Siltstone	84	34			7.6					—			
	14	74	Clayey Siltstone	91	30						<u> </u>		—		X	
	15	79	Siltstone	92	30								_		_	
	16	89	Clayey Siltstone	85	35			12.6					_			
	17	94	Clayey Siltstone	d i	s t u	rbed				- <u></u>				_	—	
	18	99	Siltstone	96	28									_		
14-5	1	3	Silty Clay	95	30	<u> </u>										
	2	8	Silty Clay	97	26			5.7								
	3	13	Sandy Clay	110	18											
	4	18	Sandy Clay	106	20				18	1.26		<u></u> -				
	_	—					_									

(1)	SAMPLE No.	DEPTH (ft)	VISUAL	DRY DENSITY (pcf)	MOISTURE CONTENT (%)		ATTERBERG LIMITS	kv_COEFFICIENT OF PERHEABILITY (cm/sec) (Confining Pressure, psi)	HRICONFINED COMPRESSIVE SFRENGTH (4.5f)	DIRECT STRENGT ENVELOP	H E	'ONE-DIMENSIONAL SWELL (%) {Normal Load, ksf)	SWELL PRESSURE (ksf)	SIEVE ANALYSIS	HYDROMETER AMALYSIS	OEDONETER.	TRIAXIAL COMPRESSION (Stages)
						LL 	P1			ø, deg 30	c, ksf 0.58					_	
14-5	5	22	Sandy Clay	111	$\frac{11}{10}$												<u> </u>
	6	28	Sand	114	10					46	0.41				<u> </u>		
	7	38	Silty Clay	88	32				6.2								
	8	<u> </u>	Clayey Silt	86	33									<u> </u>	<u> </u>		X(1)
	9	50	Clayey Siltstone	83	37							0.21(1)					
	10	54	Siltstone	92	31											<u> </u>	
	11	65	Clayey Siltstone	90	31	45	10							<u> </u>	<u> </u>		X(1)
	12	70	Clayey Siltstone	87	31				4.8								
	13	84	Clayey Siltstone	96	28									<u> </u>	X		X(1)
	14	90	Clayey Siltstone	91	31												
15 - 1	1	2	Silty Clay	110	20												
	2	7	Silty Sand	112	16					30	0.90						
	3	12	Sand	107	14					34	0.60						
	4	17	Sandy Clayey Silt	109	20												
	5	21	Sandy Silty Clay	110	19												
	6	27	Silty Clay	100	23					20	1.30				_		
	7	31	Silty Clay	103	23	56	38								_		_

-

TADLE			RATURY TEST UATA														
BORING No.	SAMPLE No.	DEPTH (ft)	VISUAL CLASSIFICATION	DRY DENSITY (pcf)	MOISTURE CONTENT (%)			Kv, COEFFICIENT OF PERMEABILITY (cm/sec) (Confining Pressure, psi)	UNCONFINED COMPRESSIVE STRENCTH (ksf)	DIRECT STRENGT ENVELOP ∳, deg	Н	ONE-DIMENSIONAL SWELL (%) (Normal Load, ksf)	SWELL PRESSURE (ksf)	SIEVE ANALYSIS	HYDROMETER ANALYSIS	0EU0HETER	TRIAXIAL COMPRESSION (Stages)
15-1	8	41	Sandy Silt	94	30				1.8							<u></u>	
	9	46	Clayey Silt	107	22												
	10	51	Sandy Clay	112	17												
	11	56	Sand	114	15												
	12	61	Sand	108	19			4.1x10 ⁻⁴								X	
	13	66	Silty Sand	108	19					27	0.95						
	14	76	Siltstone	90	33				7.4					_			
	15	79	Siltstone	92	29									_			
	16	84	Siltstone	91	27											X	
15-2	1	2	Silty Clay	107	21												
	2	7	Clayey Silt	105	20												
	3	13	Clay	103	23	51	34			36	1.55						
	4	17	Silty Clay	102	25	<u></u>											
	5	23	Silty Sand	116	18					37	0.60						
	6	27	Silty Clay	107	23												
	7	32	Silt	98	26				6.6						_		
	8	37	Silty Clay	105	22												

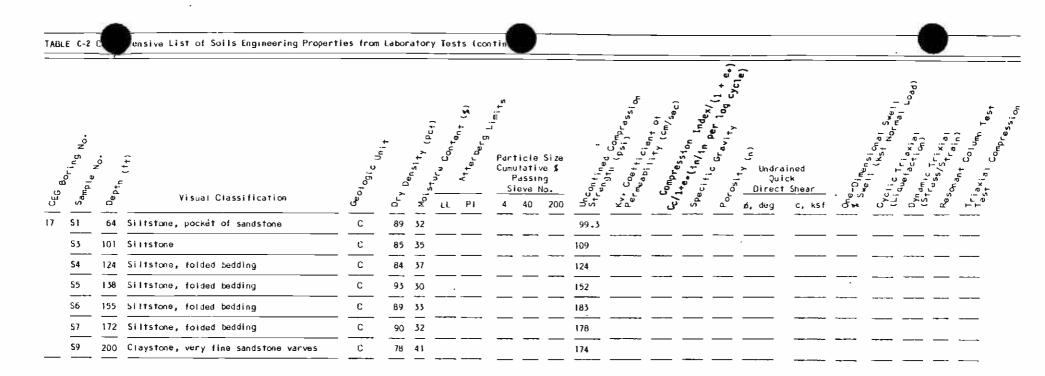
TABLE C-1 LABORATORY TEST DATA (isq ONE-DIMENSIONAL SWELL (%) .(Normal Load, ksf) UNCONFINED COMPRESSIVE STRENGTH (ksf) Kv, COEFFICIENT OF PERMEABILITY (cm/sec) (Cunfining Pressure, p ATTERBERG LIMITS (æ (ksf) TRIAXIAL COMPRESSION (Stages) ANALYSIS DENSITY (pcf) S MOISTURE CONTENT PRESSURE SIEVE ANALYSIS HYDROMETER (ft) BORING No. SAMPLE No DEDOMETER DIRECT SHEAR DEPTH STRENGTH SWELL DRY VISUAL ENVELOPE CLASSIFICATION ΡI LL ø,deg c,ksf 95 15-2 9 47 Silty Sand 32 0.45 ____ 52 Sandy Silt 116 17 10 ____ 16 57 Sandy Clay 112 11 _ 63 Silty Sand 98 28 χ 12 ----72 Sand 13 106 19 14 77 Silty Sand 121 14 ____ 93 29 15 86 Siltstone 4.1 -----15~3 Sandy Clay 107 17 2 1 ____ 6 Silty Sand 105 18 2 93 30 4.2 11 3 Sandy Silty Clay _ 16 Silty Clay 105 21 7.7 _ 21 Sandy Clay 17 113 ____ 26 19 3.7 Silty Sand 105 6 31 5.2 Silty Clay and Sand 119 14 7 ____ 36 22 Sandy Silty Clay 106 8 ____ 41 22 10.3 9 Silty Clay 106 28 96 46 Sandy Silt 10

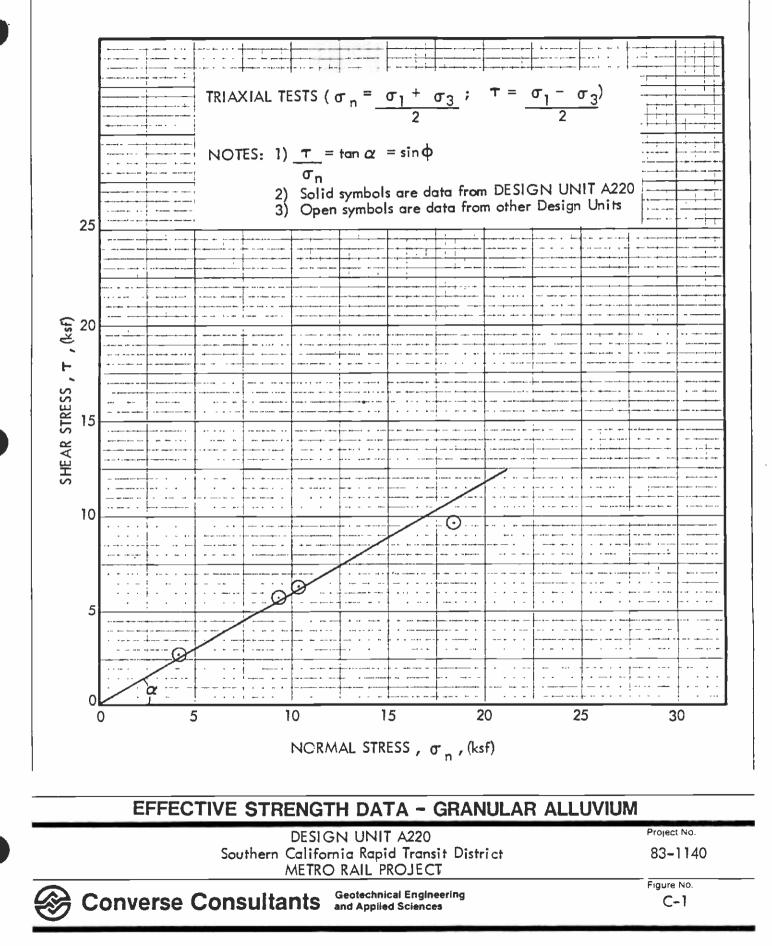
۲

TABLE C-1 LABORATORY TEST DATA (isq ONE-DIMENSIONAL SWELL (%) (Normal Load, ksf) UNCONFINED COMPRESSIVE STRENGTH (ksf) Kv, COEFFICIENT OF PERMEABILITY (cm/sec) (Confining Pressure, 1 8 ATTERBERG LIMITS (ksf) TRIAXIAL COMPRESSION (Stages) ANALYS I 5 DRY DENSITY (pcf) MOISTURE CONTENT SWELL PRESSURE SIEVE ANALYSIS HYDROME TER (ft) SAMPLE No DEDOMETER BORING No DIRECT SHEAR DEPTH STRENGTH VISUAL ENVELOPE LL ΡI CLASSIFICATION ø, deg c, ksf _____ 19 15-3 11 56 - Sandy Silt 107 ____ 1.0x10⁻⁶ 16 62 Sandy Silt 12 114 х ____ 13 66 Silty Sand 16 118 _ 17 71 Silty Sand 107 14 122 76 15 Sand Х X(3) 81 Disturbed 16 91 17 89 Siltstone х 26 34 18 110 Clayey Siltstone 82 Х ____ Clayey Siltstone 86 34 19 130 Х _ 40 20 145 Siltstone 81 ____ 84 35 160 Siltstone 21 X ____ 107 17 15-4 1 2 Sandy Clay 26 98 Clayey Silt 5.0 7 2 _ 99 23 12 Sandy Clayey Silt 2.9 3 ----17 Silty Clay 101 24 4 _ 22 Sandy Silty Clay 15 5 109 _ 27 Silty Clay 100 25 X(2) 6

TABLE C-1 LABORATORY TEST DATA (isq (° D COMPRESSIVE (ksf) ONE-DIMENSIONAL SWELL (Normal Load, ksf) Kv, COEFFICIENT OF PERMEABILITY (cm/sec) (Confining Pressure, F LIMITS (ksf) TR:AXIAL COMPRESSION (Stages) 3 ANAL YS I S DRY DENSITY (pcf) MOISTURE CONTENT SWELL PRESSURE ANALYS I S ATTERBERG UNCONFINED (STRENCTH (N) LIY DROME TAR (ft) BURING No. **DEDOMETER** SAMPLE No DIRECT SHEAR SIEVE DEPTH STRENGTH VISUAL ENVELOPE LL P١ CLASSIFICATION ø, deg c, ksf ____ 96 27 15-4 32 Silty Clay 4.2 7 _____ 20 1.7 37 8 Sandy Clayey Silt 106 7.2 101 24 9 42 Silty Clay ____ . . . 93 28 3.1 10 47 Clayey Silt _ 21 52 Silty Clay 109 11 Х 58 15 Sand 111 12 ____ 109 19 13 62 Sandy Clay -15 110 67 Silty Sand 14 ____ 6.5x10⁻⁴ 19 108 х 72 Sand 15 79 Silty Sand 119 38 1.0 10 16 17 84 Disturbed 22 Clayey Sand 1.0 14 15-5 2 113 1 -11 Silty Sand 20 102 2 7.9 100 16 Sandy Clayey Silt 24 3 ----Silty Sand 21 98 25 ____ 3.6 26 18 105 Silty Sand _ 23 31 102 6 Silty Sandy Clay

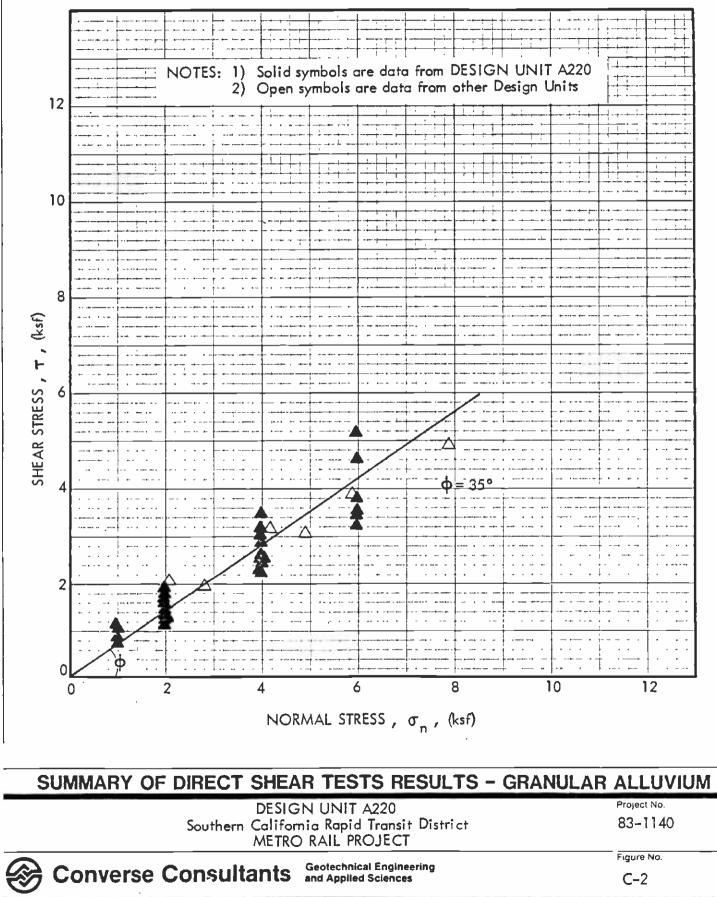
BORING No.	SAMPLE No.	DEPTH (ft)	VISUAL CLASSIFICATION	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	ATTERBERG LIMITS	Kv, COEFFICIENT OF PERMEABILITY (cm/sec) (Confining Pressure, psi)	UNCONFINED COMPRESSIVE STRENGTH (ksf)	DIRECT STRENCTI ENVELOPI ¢, deg	4	ONE-DIMENSIONAL SWELL (%) (Normal Load, ksf)	SWELL PRESSURE (ksf)	SIEVE ANALYSIS	HYDRUNL TER ANALYSIS	OLDOMETER	TRIAXIAL COMPRESSION (Stages)
15-5	7	36	Silty Clay	115	17								<u> </u>			
	8	41	Sandy Clayey Silt	108	18			8.0						_		
	9	46	Clayey Silt	104	22		·									
	10	51	Silty Clay	108	22										. <u> </u>	
	11	56	Sandy Clay	110	18									_		
	12	61	Clayey Sand	112	16										X	
	13	66	Sandy Silty Clay	114	16											
	14	71	Sand	107	19				25	0,85				_	_	
	15	76	Sand	105	19								_			
	16	81	Disturbed		_										_	
	17	93	Siltstone	87	30			5.1		<u> </u>						


TABLE C-2 Comprehensive List of Solls Engineering Properties from Laboratory Tests


															ر ا د ا د			-				
						2	(E)	= = 2				"ssign	0f [™] /sdc)	ှို	1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,				LS*C			test
ri _{ng No.}	•02	+ + .	c 1	+	^{censity} (pr.)	^u re Conte		Part Cumu	icle (lativo assing	2 5	e 		Compre- (c,	51on /1n		j⊆ ⊾ Unidra Qui		2 2 2			Resonand train)	تر د _{ہ اس} ا
CEG Boring N	Dept,		Geologic	٦. ٦	×.		<u>م</u> ٩١		eve No		ູດີ ເ ດີ ເ	້ ບັງຈັ ້້າ 	روساً روساً	5 _{Peci}	م ب ی د د د د د		c, kst	م * 2 * 2	5.5	Dyn 44	Resonand	Triaxia Testal
4 C1	26	Clayey silt & clay, bedded	A4	79	4ð	53	28	100	97	91		2.0E-7			53.2							cup
51	45	Siltstone	С	91	28	35	17					3.9E-8			45.8			<u>.</u>		x		
51	45	Siltstone	c	89	32																	Q
51	46	Claystone	С	96	29																x	
\$2	59	Claystone, beds of siltstone, sandstone	с	84	36	55	16															Q
53	60	Siltstone, bedded & folded with claystone	С	79	39																	Ŷ
54	80	Siltstone & sandstone	С	89	32	47	12									·						Q
54	80	Siltstona & sandstone	c	91	31						81.5											
S5	97	Siltstone	c	90	28						139											
S6	114	Siltstone	С	93	30	47	10			-2-3-5												Q
57	131	Siltstone, folded bedding	c	91	50	51	13			_												Ŷ
58	148	Siltstone	c		34						157							·				
<u> </u>	164	Siltstone bedding folded with sandstone	С	95	28	44	12												—		×	
59	165	Siltstone bedding folded with sandstone	С	93	29																	Ŷ
S9	167	Gray claystone	c	95	28																x	
510	181	Claystone & siltstone, folded	С	99	26						110											
511	198	Claystone & siltstone, folded	С	93	30						143											
0 01	21	Mottled selfy clay	<u>^4</u>	94	28					_						31	1.09					
CI	21	Mottled silty clay	A.4	 75	29								.107					9.11				
U2	41	Fine to medium sandy micaceous silt	 A 3	98	ZB							2.1E-7		2.70	41.0							
C2	41	Fine to medium sandy micaceous silt	A 3	101	25		·			—						23.5	1.25					
C3	61	Gray clay, stiff		103	24	53	24	100	95	<u>ь</u> 9		2.18-8		2.71	39.4							cup
- <u>-</u> 51	18	Silty clay	A	96	27		·		—	_		1.0E-6	-		42.5							cu
51	19	Silty clay	A4		23			_														cu
51		Silty clay	A4	- 99	25	43	19	100	98	81	39.5											*
<u> </u>		Silty clay	A4	93	29													3.31				

_

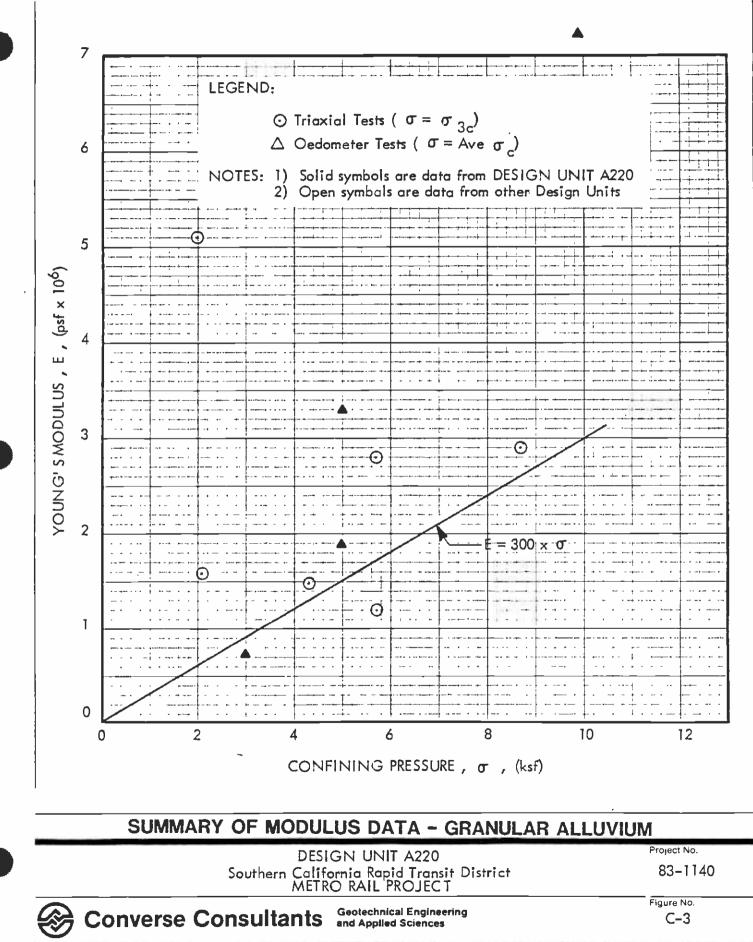
															ີ່.						
c _{EG} Boring No.	e No.	ر (t t t t t t t t t t t t t t t t t t t	Geologic	+ 5	ensity (proc		Atterberg	Part Cumu F	icle Hativ Passin	ne≴ 9	n fj nei nei	^{94h} ^{Compression} ^{Fv, Compression} ^{ermeab, fict}	Compression (cm/sec)		^{1c} Gravity cycle)	(¹¹)	ained ick		Cyclic Kstan Cyclic Kstan (Liquets Nor ^{5w} ell	Reson Strain ad	ant (n) ^{ria} t Colum ⁹⁵ + 1al Compression
ceger Samo		Visual Classification	99	Dr y	ž	,	81	4	<u>eve N</u> 40	200	s+6 S+6	× 4 , 9 , 6	، _د ر	Spec	م د	ø, deg	<u>† Shear</u> c, ksf	د الالا الالا		^۲ ۲ (۶۲ ه د ه د	, 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 S2	35	Silty clay	A4	87	35					_	37.3										
\$2	35	Silty clay	A4	87	33	49	26					3.3E-7			46.0					x	
52	35	Silty clay	A4	92	31				_	_										x	
32	36	Silty clay	A4	94	28															x	
S3	51	Sandy clay	Ad	98	26	37	16	98	80	67		1.7E-6			36.9						
\$3	52	Sandy clay	A4	98	26															x	<u> </u>
\$3	51	Sandy clay	A4	114	16															X	
\$3	52	Sandy clay	A ₄	106	21				_		40.0										
53	52	Sandy clay	A4	98	16				_												
53	53	Sandy clay	A4	114	16			_												x	
54	71	Fine to medium sand	SP	93	14			-99	84	6		3.4E-4		2.67	41.0	32	0.17			x	
54	71	Fine to medium sand	5,2	97	23			_										 ,		x	
54	71	Fine to medium sand	SP	93	14																
\$5	74	Fine to medium sand	SP SP	102	22																<u> </u>
\$5	74	Gray fine to medium sand	SP	103	19				_							33	•07				
\$5	. 75	Gray fine to medium sand	SP	104	21					_		······································							<u> </u>	x	
56	101	Siltstone	- <u> </u>	90	31															x	
S6	101	Siltstone	C	89	31	47	8	100	91	78		1.1E-7			46.8					x —	
57	118	Siltstone, clayey & micaceous	с	96	26	44	11				131										
	129	Siltstone, folded bedding	C	83	37						9.5										
59	134	Siltstone	C		27				_	_	151										
510	147	Siltstone	c	89	31						124										
\$11	163	Claystone, silty & micaozous	С	93	27						167					<u> </u>					
512	176	Claystone, varves siltstone		98	 26						173					·			~		
<u></u>	179	Siltstone	C	95	28						142										
S14	195	Siltstone, varves sandstone	с	88	30						77.8										
17 C2	41	Silfstone, pocket of sandstone	A4	95	28															x —	
																			~		



and the second second

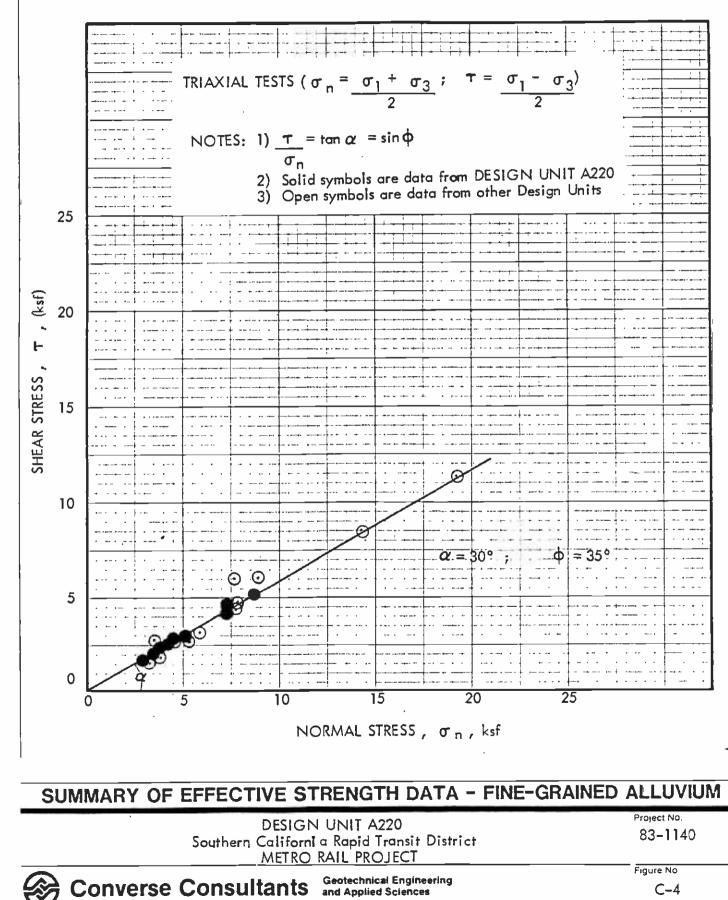
à

Approved for publication


والجالية وهيري المراجع

Approved for publication _____

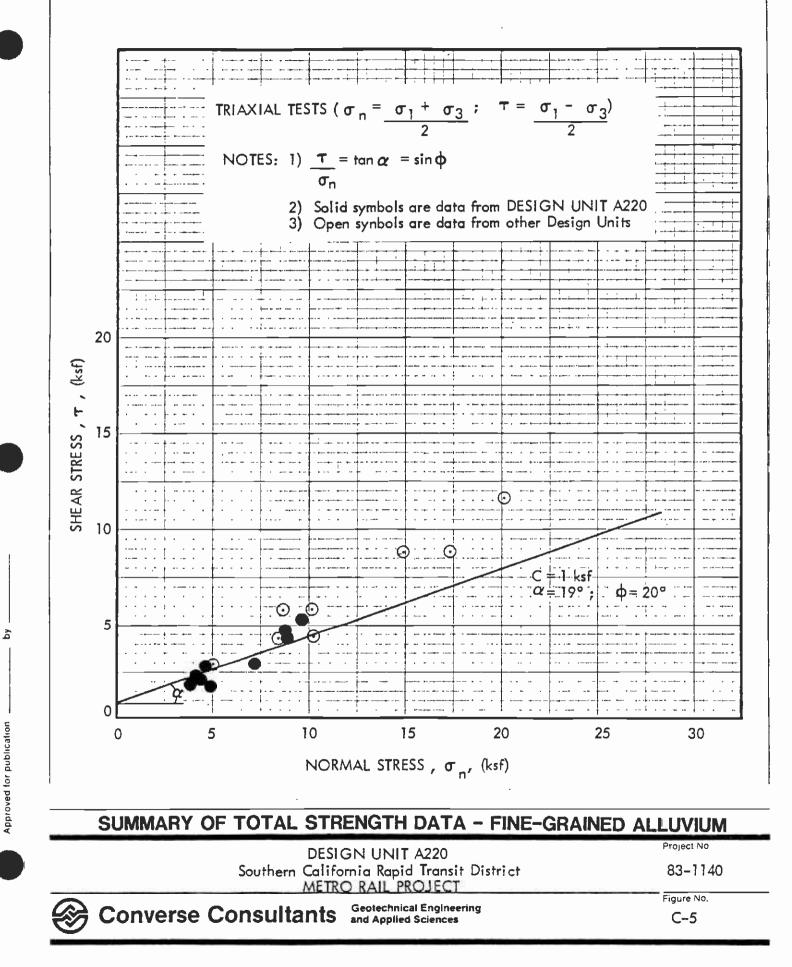
à

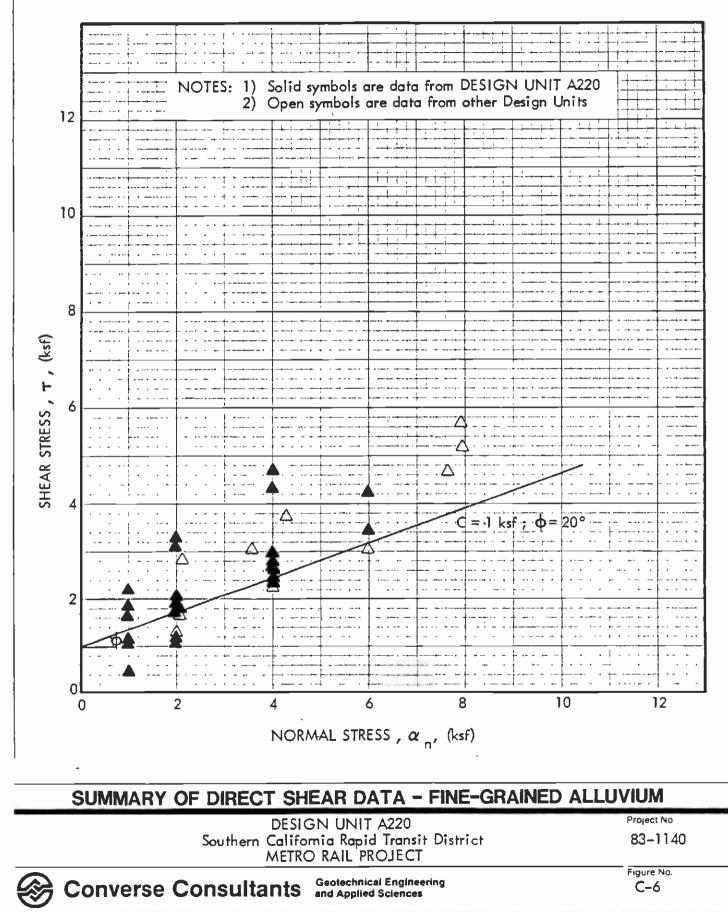


6. L.S

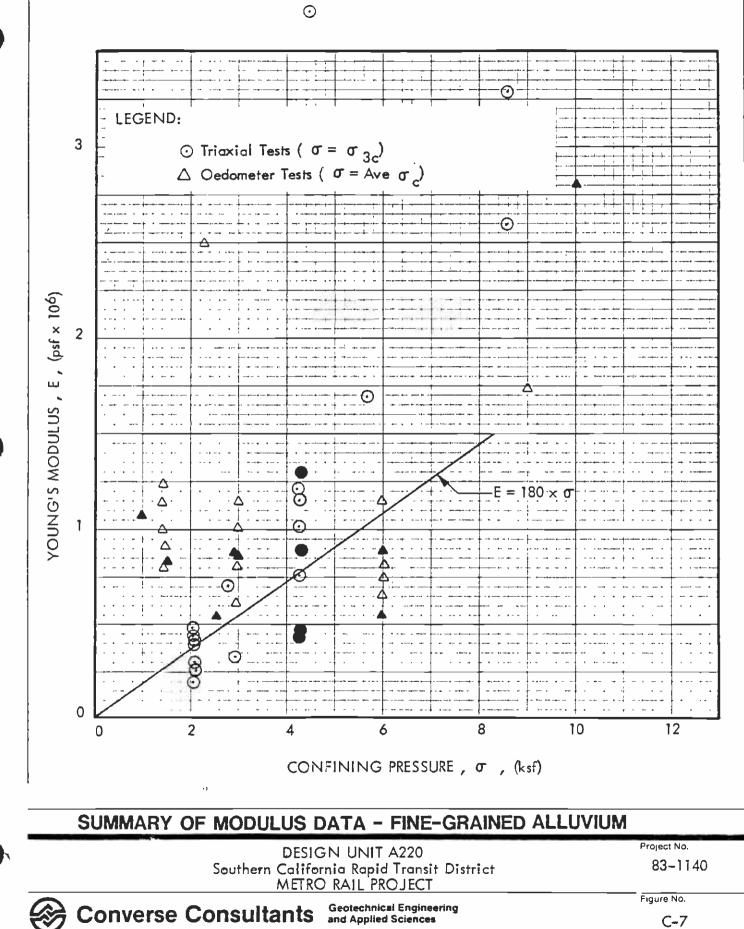
. .

à


ala santaha wasa



Approved for publication

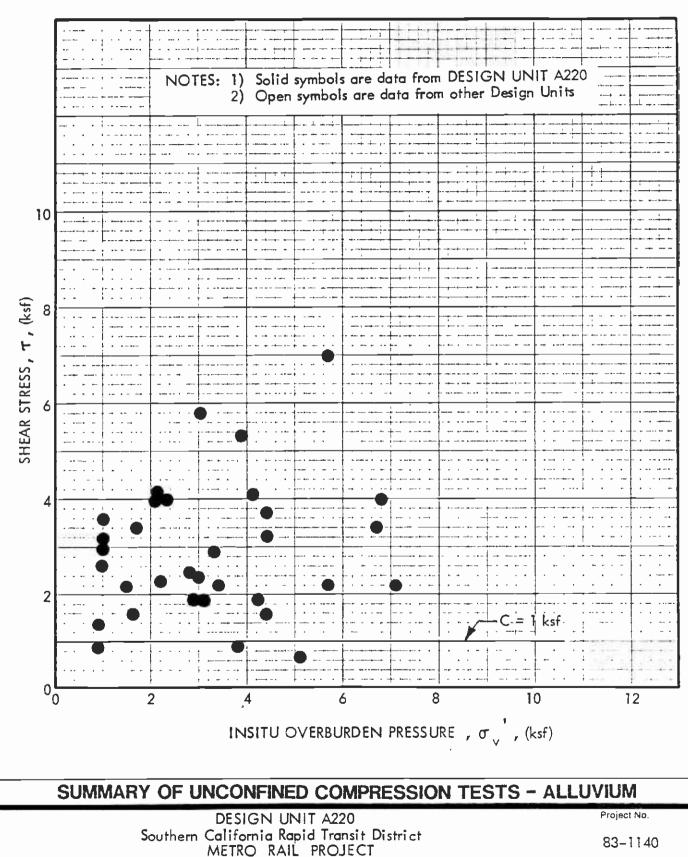

2

and Applied Sciences

...

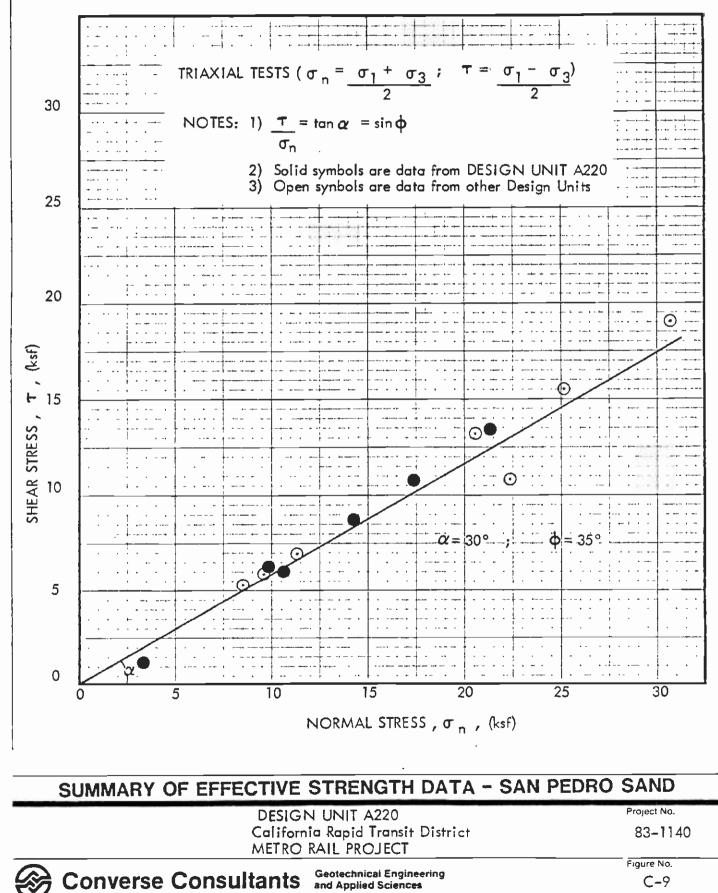
Approved for publication

à



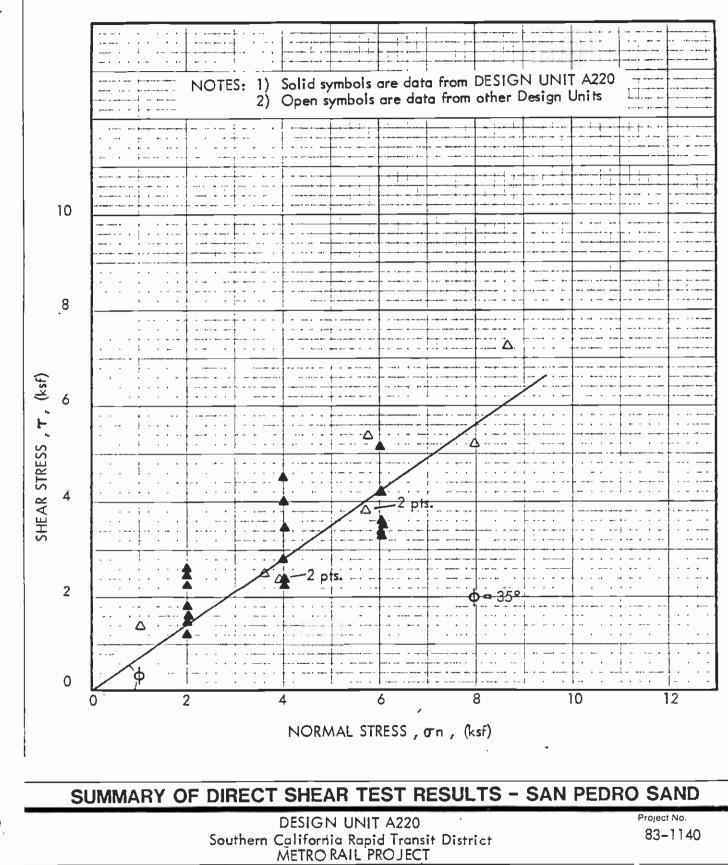
à

Approved for publication


C = Unconfined compression strength

2

Converse Consultants Geotechnical Engineering and Applied Sciences


. •

Approved for publication

à

Approved for publication

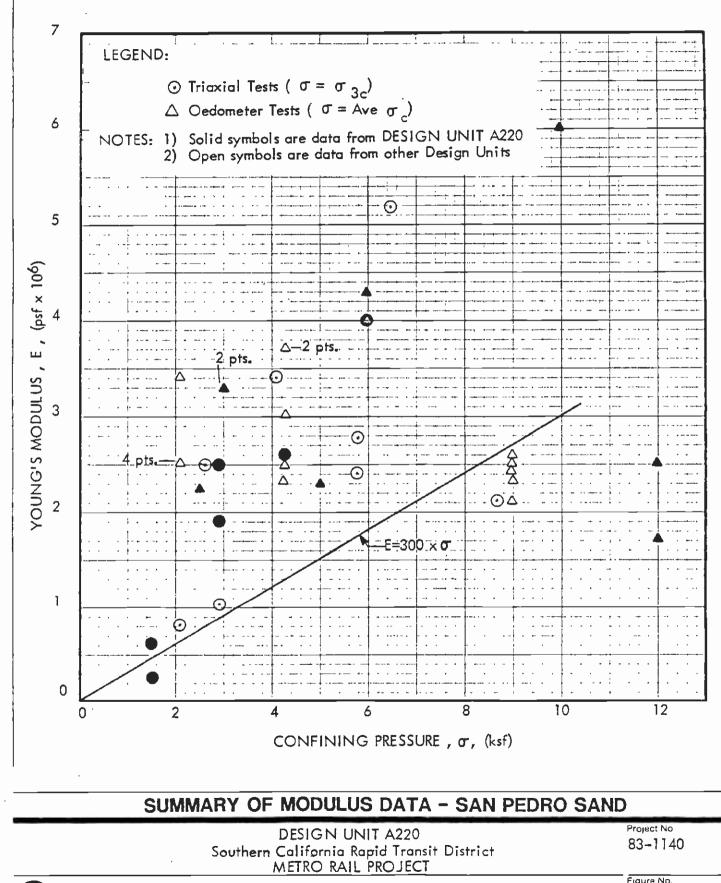
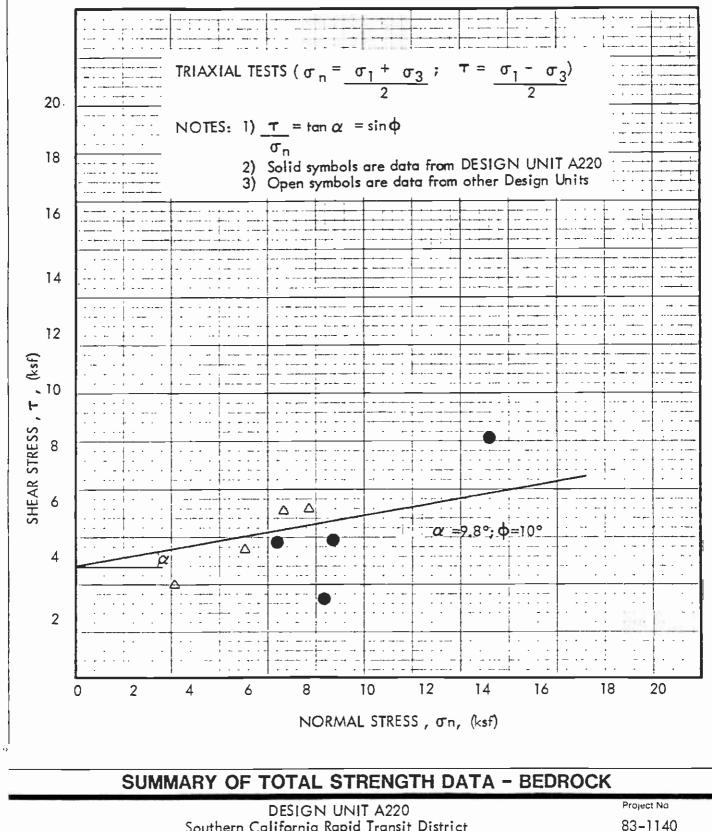

à

Figure No.

Geotechnical Engineering and Applied Sciences

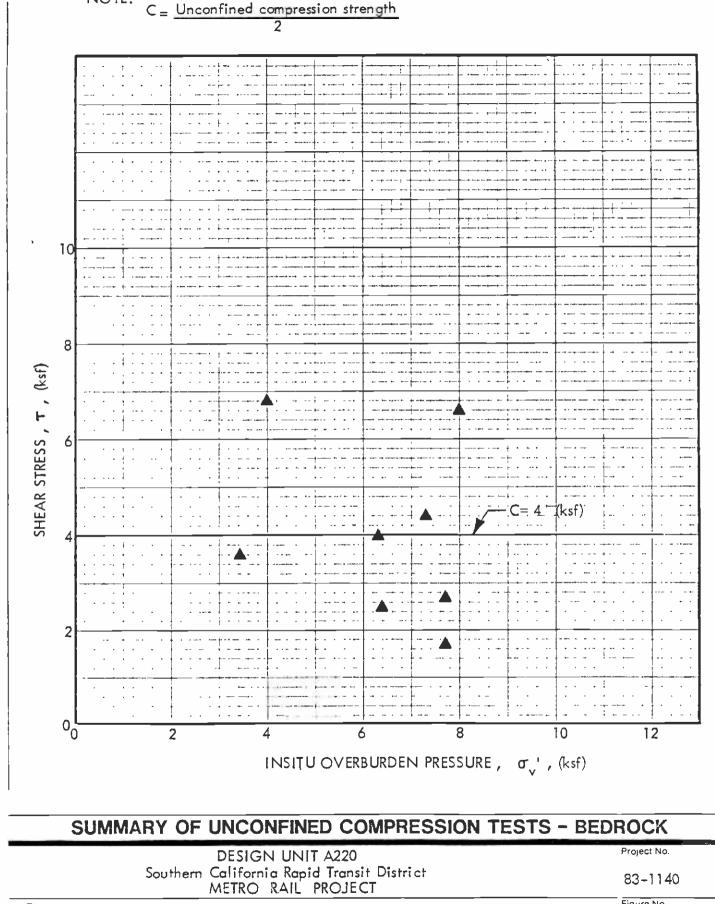
Converse Consultants


C-10

Converse Consultants Geotechnical Engineering and Applied Sciences

à

Approved for publication

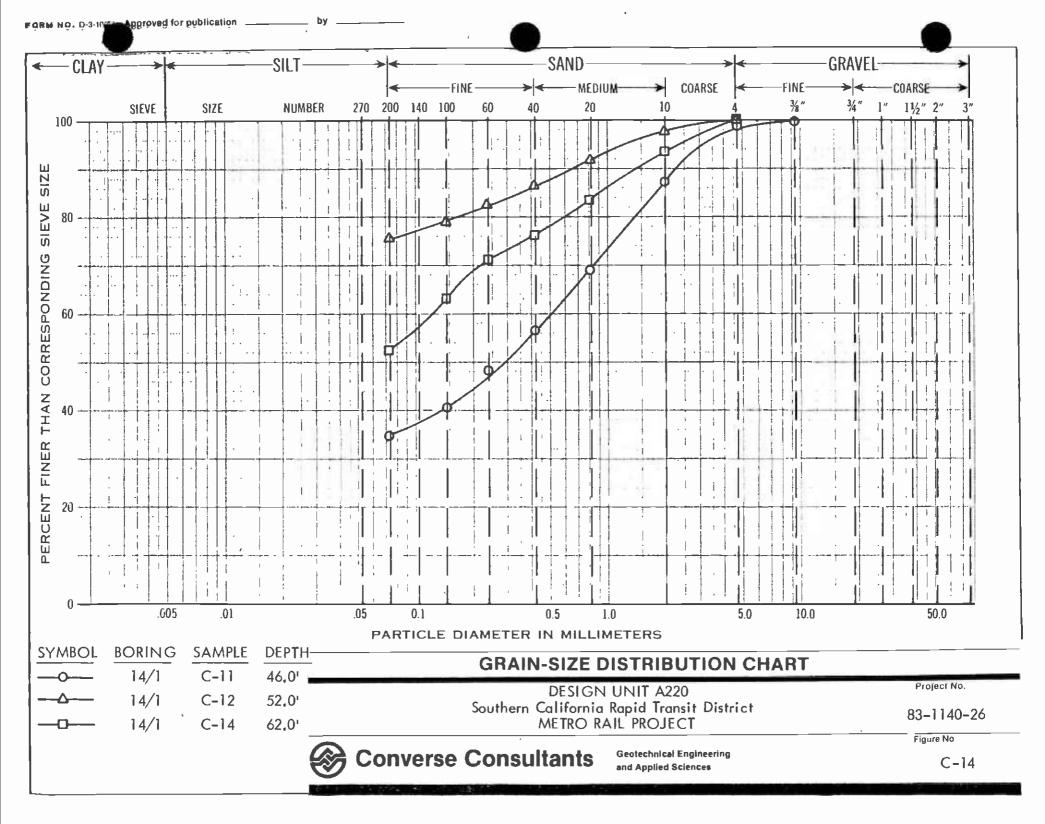

Southern California Rapid Transit District METRO RAIL PROJECT **Converse Consultants Geotechnical Engineering**

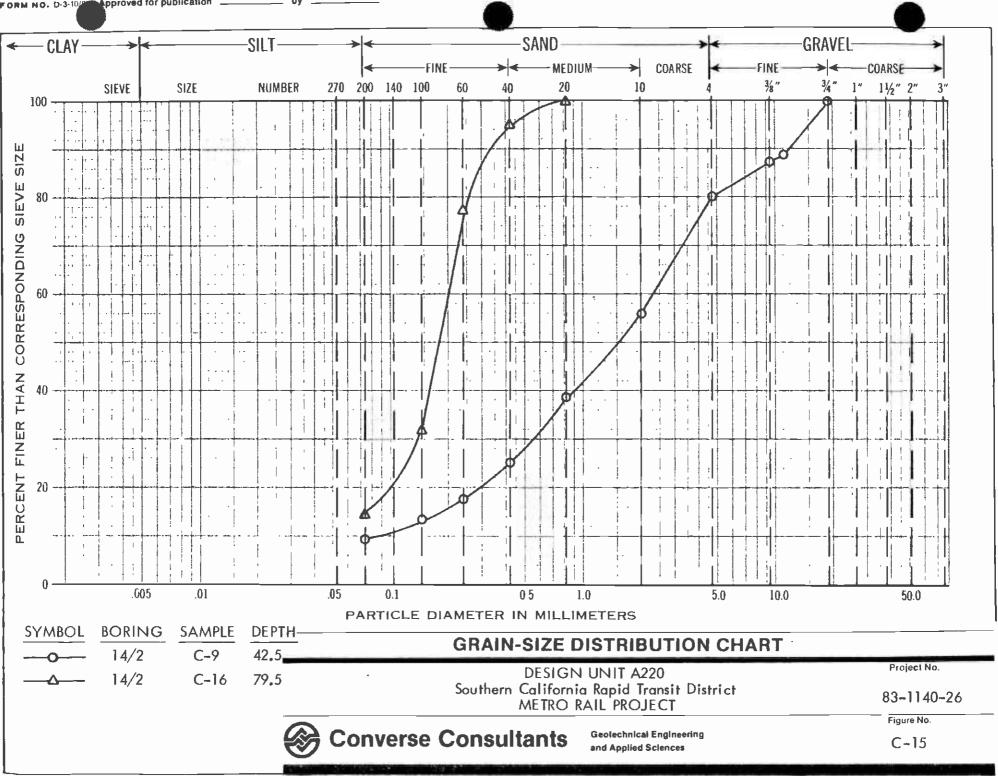
and Applied Sciences

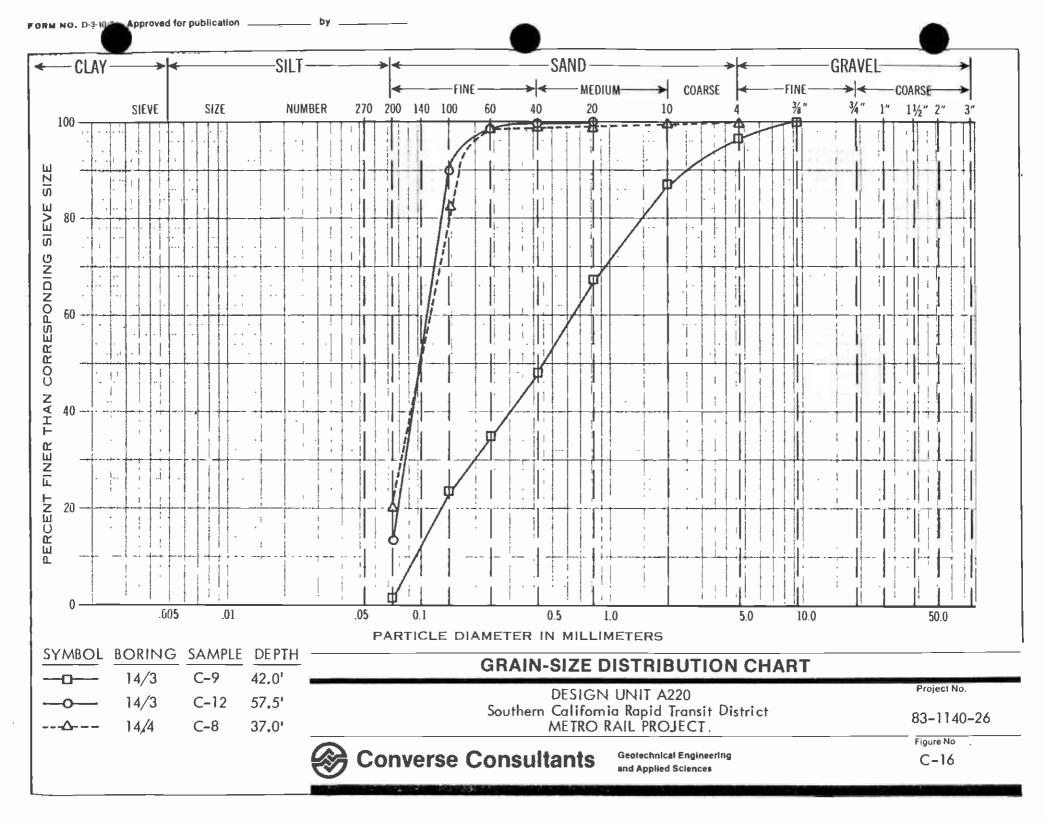
à

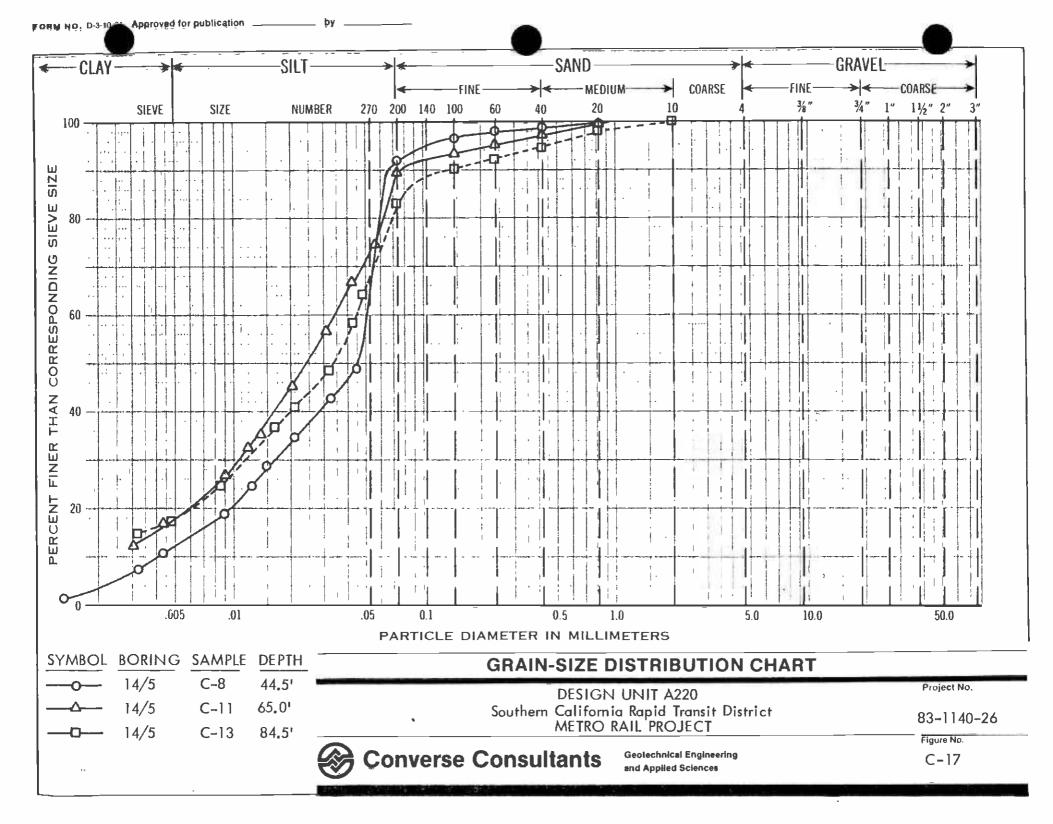
Approved for publication

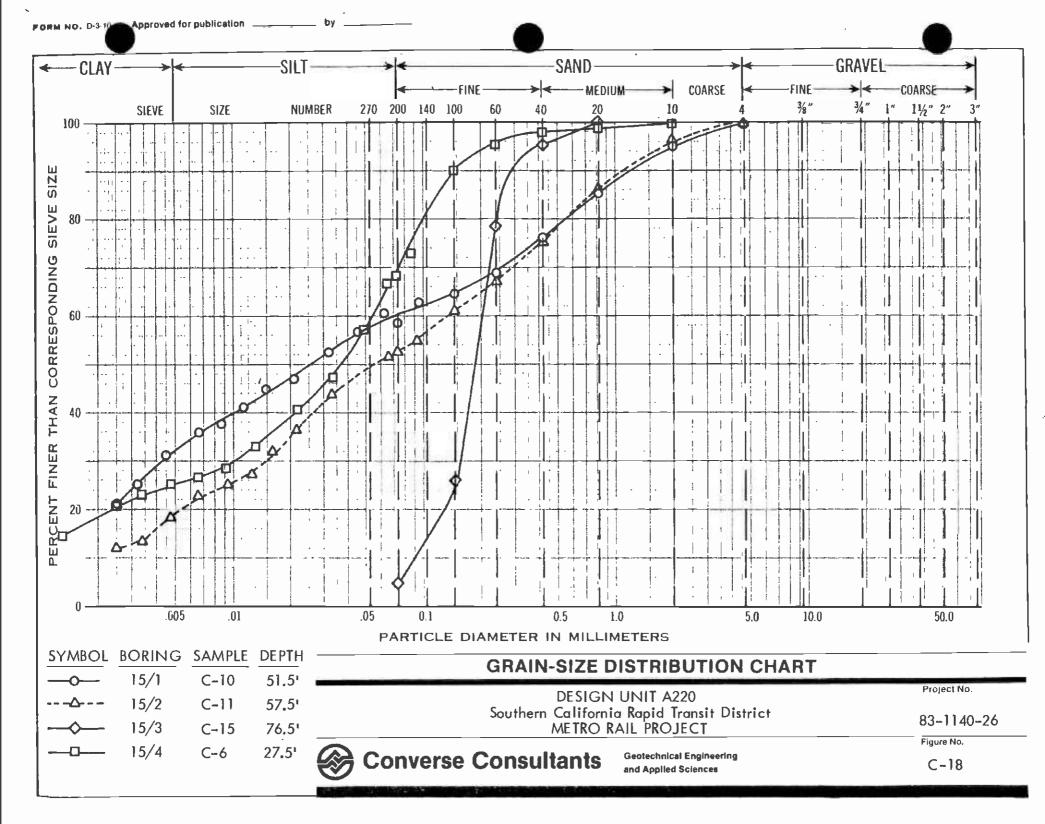
Figure No.

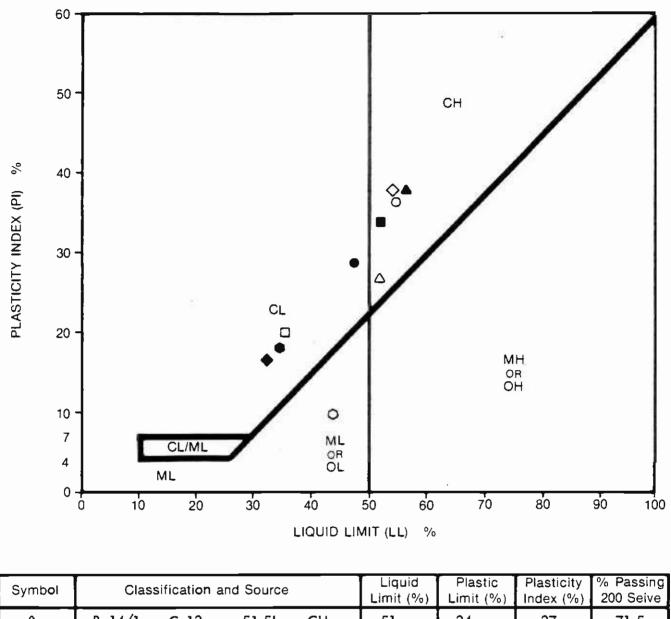

NOTE:


à


Approved for publication


Converse Consultants Geotechnical Engineering and Applied Sciences


Figure No

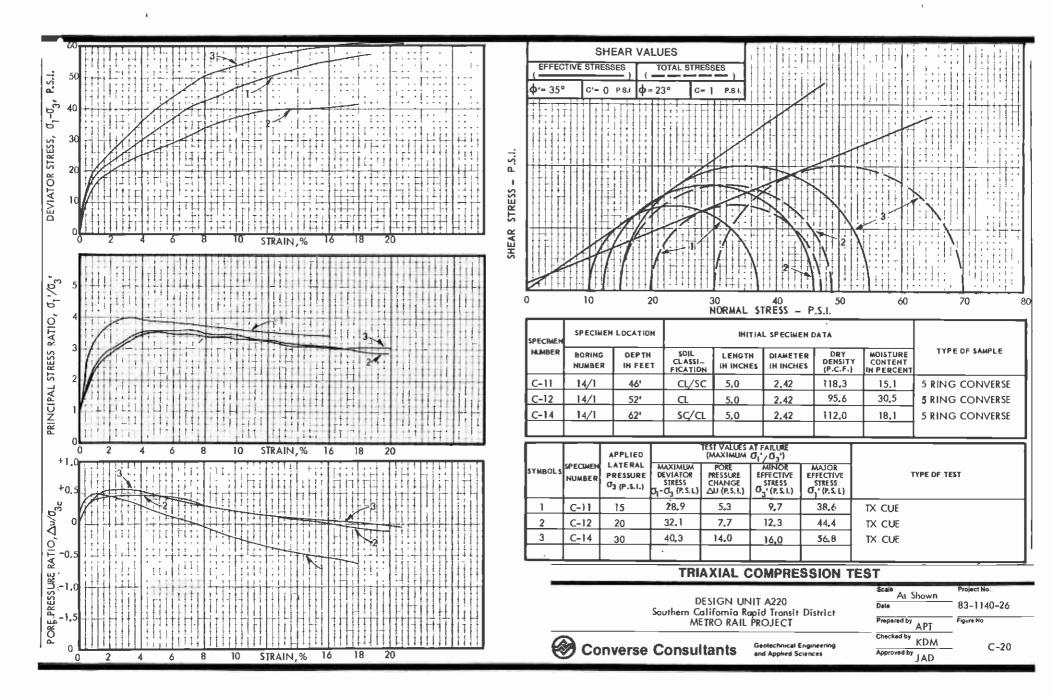


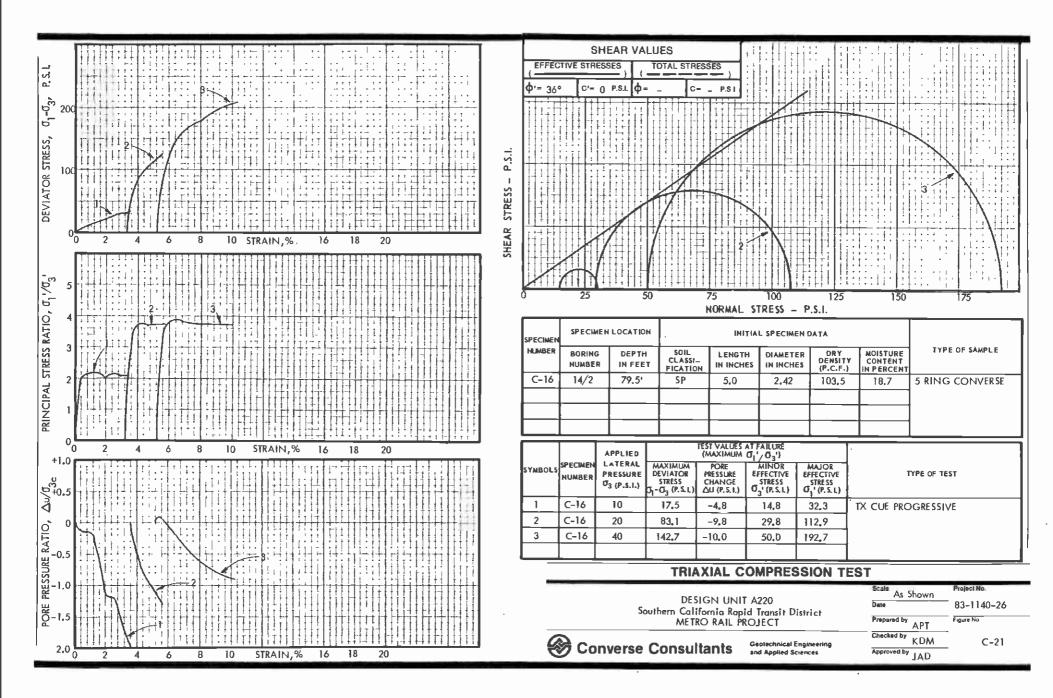
Symb ol	Clas	sification a	and Source		Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% Passing 200 Seive
	B-14/1 B-14/2 B-14/3 B-14/4 B-14/5 B-15/1 B-15/1 B-15/2 B-15/2 B-15/4	C-12 C-4 C-3 C-2 C-11 C-7 C-10 C-3 C-11 C-6	51.5' 17.5' 12.0' 7.0' 64.5' 31.5 51.5' 12.0' 57.5' 27.5'	CH C C C C C C C C C C C C C C C C C C	51 54 36 54 45 56 48 51 33 35	24 17 16 35 18 19 17 16 17	27 37 20 38 10 38 29 34 17 18	71.5 89.4 58.3 52.5 - 68.2

PLASTICITY CHART

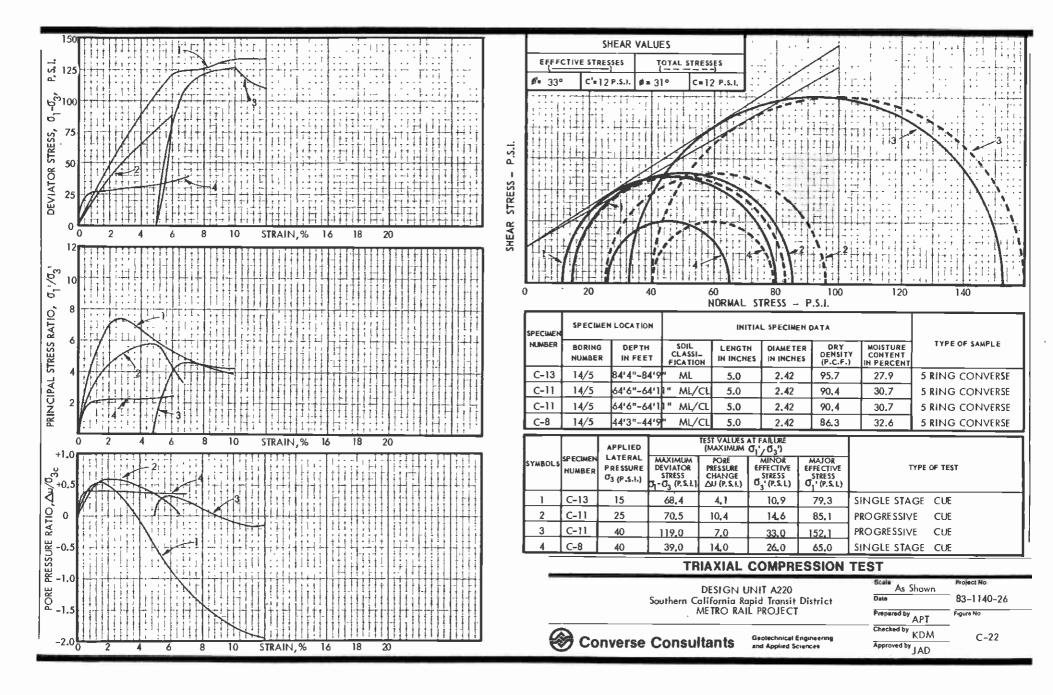
DESIGN UNIT A-220 Southern California Rapid Transit District METRO RAIL PROJECT

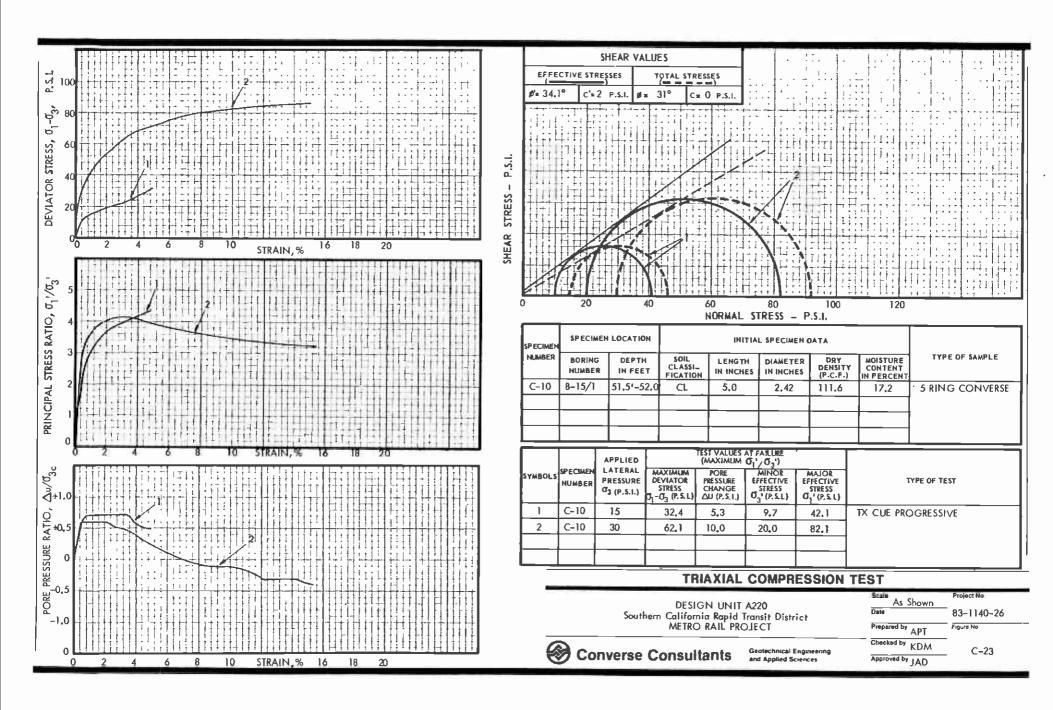
83-1140


Project No

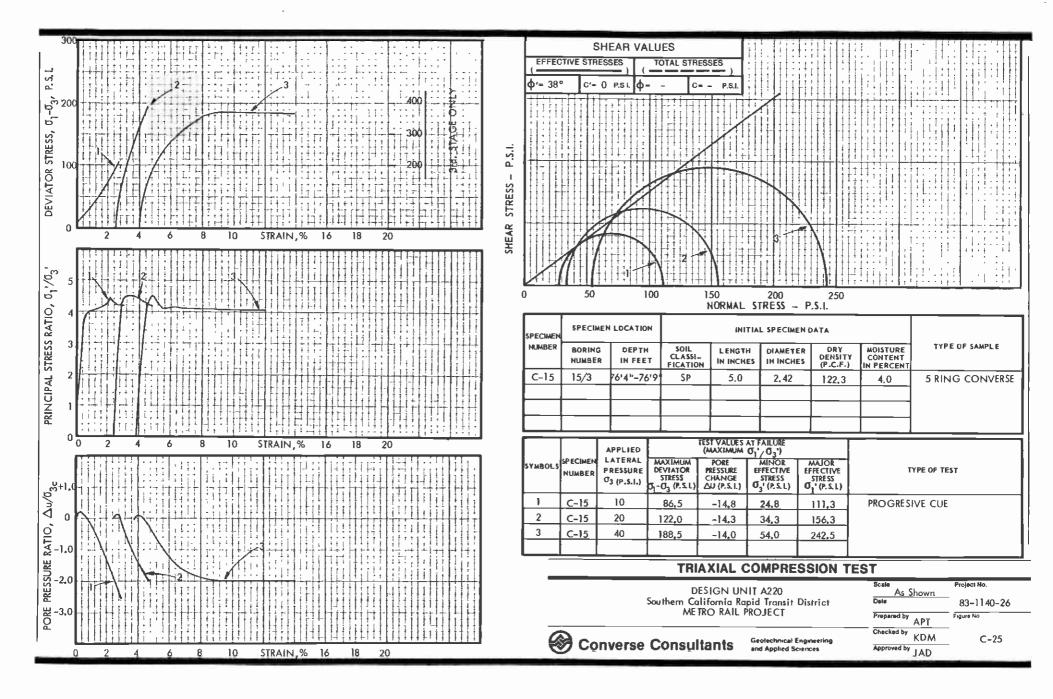

-

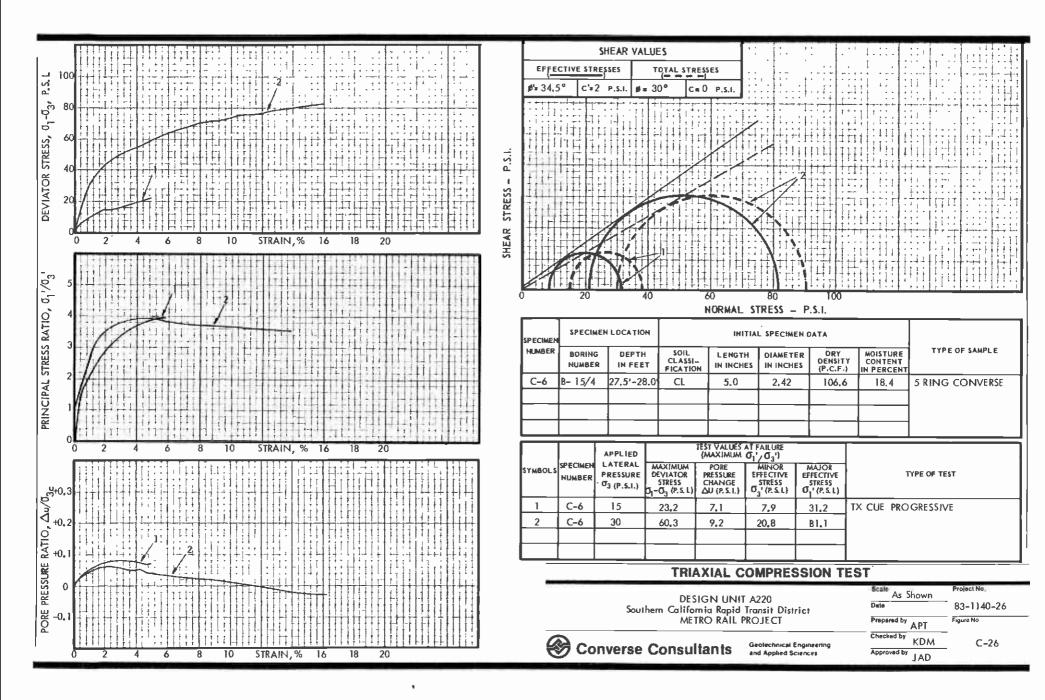
à


Approved for publication

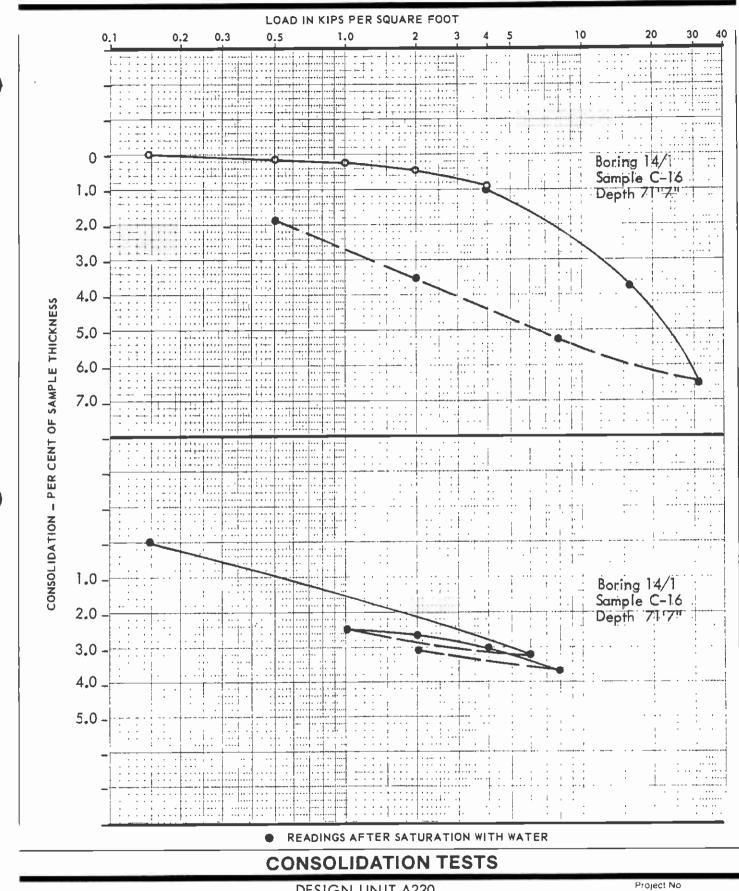

Converse Consultants Geotechnical Engineering and Applied Sciences Figure No






.

		LOAD IN KIPS PER SQUARE FOOT	
1	0.	3 0.5 1.0 2 3 4 5 6 7 8 9 10 20	30
	+1.3-		
	0-	Boring 14/1. Sample C-15	
NESS	1.0-		
SAMPLE THICKNESS	2.0-		
SAMPLE	3.0 -		
CENT OF	4.0 -		1.
PER CE	5.0 -		
1	_		
CONSOLIDATION	0 -		
CONS		Boring 14/1	
	1.0 -	Sample C-15 Depth6618"	
	2.0 -		
	3.0 -		
	-++U		· · · · ·


CONSOLIDATION TESTS

DESIGN UNIT A220 Southern California Rapid Transit District METRO RAIL PROJECT Project No 83-1140-26

à

Approved for publication

Converse Consultants Geotechnical Engineering and Applied Sciences Figure No.

DESIGN UNIT A220 Southern California Rapid Transit District METRO RAIL PROJECT

Geotechnical Engineering

and Applied Sciences

83-1140-26

Converse Consultants

à

Approved for publication

Figure No.

			LOAD IN KIPS P	PER SQUARE FO	ОТ	
	0.	3 0.5	1,0	2 3 4	5 6 7 8 9 10	20 30
	0-					
	0.5					Boring 14/2. Sample: 0-15 - Depth 74 0"
NESS	1.0					
THICK	1.5					
AMPLE	2.0					
NT OF	2.5					
PER CENT OF SAMPLE THICKNESS	3.0					
1	_					
CONSOLIDATION	-					
CONS	0 -					
	0.5 -					Boring 14/2 Sample C-17 Depth 85"0"
	1.0 -					
	1.5 -					
	2.5					

CONSOLIDATION TESTS

DESIGN UNIT A220 Southern California Rapid Transit District METRO RAIL PROJECT Project No

83-1140-26

Figure No.

 \bigotimes

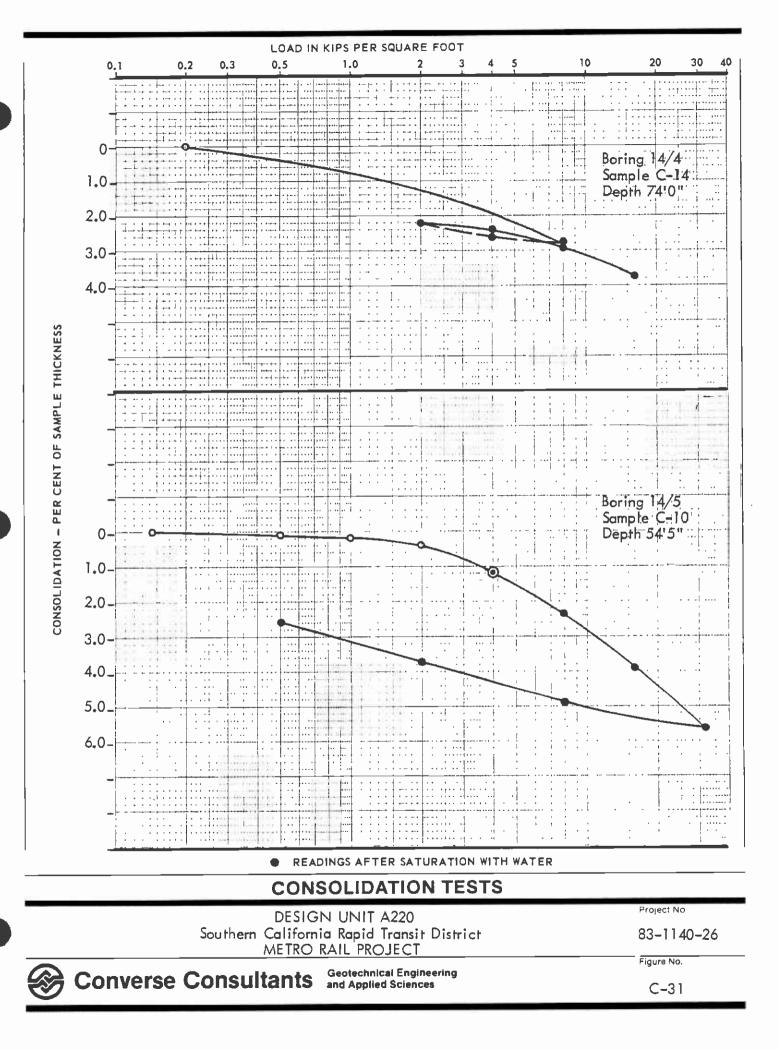
à

Approved for publication

Converse Consultants Geotechnical Engineering and Applied Sciences

					LOA	ND IN	KIF	PS P	ER S	SQUA	RE	FO	OT									
0.3	0).5			1,0			2	I	3	}	4	5	6	7	8	9	10		1	zq	30
					• , ; ;													· - ·			* · · · · · · · · · · · · · · · · · · ·	
														++++++++++++++++++++++++++++++++++++++	-r +- -		-				· · · · ·	,
												, , 	╎┠╌╸┊ ╾╌┠╶╡┝╵ ╼┠╼╋╾┥ ╾┥╼╊╼╿╵								╷╽╻╎ ╷┾┍╷╷ ┼┠┽┿	╸ ┶╼┶┓┝┶╌┨╺╹ ┷┶╌┙┝╍┥╺╺╹
0				1	, 1 , 1 , 1											· · ·	1.1. 1.1		Ba Sa	ning 1 mple	4/3- C-1-	
0							+- 								/		,. ,.					
.0				· · · · · · · · · · · · · · · · · · ·									· ·-·	' 	 							
0													• •	•	· · ·							· · · · · · · · · · · · · · · · · · ·
		4 1 · · ·	1.44						: : ;::::::::::::::::::::::::::::::::::	 	1 1			 	· · ·						• •	
					> . = 							. T . T		+. 				-	+ ــــــــــــــــــــــــــــــــــــ		• • • • 	· · · · · · · ·
				· · ·	- -							 					•				· · · ·	
								· · · · ·		:" 	· · · · · ·			 	· · · · ·				Sa: De	n ple pth 6	4/4 C+12 9'0"	2 1 2
					··· •·· •															1		· · ·
				• -		· · ·	; -	,														• • • • • • • • • • • • • • • • • • •
0					- - ·· -							 - - -			1 							
0					: 	+ ·						 		• • • • • •				,		· · · · · · · · · · · · · · · · · · ·	· ·	
																		·				
																						0

CONSOLIDATION TESTS


DESIGN UNIT A220 Southern California Rapid Transit District METRO RAIL PROJECT Project No

83-1140-26

ą

Approved for publication

Converse Consultants Geotechnical Engineering and Applied Sciences Figure No.

Approved for publication

δ

		LOAD IN KIPS	PER SQUARE FOO	т	
0.	.3 0.5	1,0	2 3 4	5 6 7 8 9 10	20 3
+0.5 -					╞╶╎╶╶╎┆╺ ╌┠╧╸┕╼╾╿╘┝╞┥┕╧┤┍╧┤╴ ╌┞┶╾╾┽┿╎┼┼┾┲╸┠╼╿╢ ╽╶┝╍┯╵┟┼╞┲╸┠╼╵╵
- 0				Boring. L Sample (Depth 6	5/1.1 C-12 '8 ¹¹¹
5 0 . 5 ⁻					
- 1.0 -					
n 1.5 ⁻ 5 ╤					
I.					
- 0.1+10N					
- 0 CONS				Boring 13 Sample (Depth 84	C+16 · 1 · · · · ·
1.0					
2.0					
3.0					
4.0					
5.0					

CONSOLIDATION TESTS

DESIGN UNIT A220 Southern California Rapid Transit District METRO RAIL PROJECT Project No

83-1140-26

 \otimes

à,

-|

Approved for publication

Converse Consultants Geotechnical Engineering and Applied Sciences

Figure No.

			LOAD IN KIF	PS PER SQUAR	RE FOOT		
1	0.	3 0.5	1,0	2 3	4 5 6	7 8 9 10	20 30
	+1.0-						
	-1.0						
						Bpring-15	/2
(NESS	1.0					Depth 62	
E THICKNESS	2.0-						
OF SAMPLE	3.0-						
CENT OF	4.0-						
PER CE	5.0-						
10	6.0-						
CONSOLIDATION	+1.0-						
CONSC	0-						
	1.0-					Boring 15 Sample C Depth 61	/3
	2.0-						
	3.0-						
	4.0						
	5.0						

CONSOLIDATION TESTS

DESIGN UNIT A220 Southern California Rapid Transit District METRO RAIL PROJECT Project No

83-1140-26

à

Approved for publication

Converse Consultants Geotechni and Applie

Geotechnical Engineering and Applied Sciences Figure No

		LOAD IN KIPS PI	ER SQUARE FOOT		
	0.3 0.5	1,0 2	3 4	5 6 7 8 9 10	20 30
+1.(Boring 15, Sample C Depth 310	/3
THICK					
ш 2.(ММГШ					
PER CENT OF SAMPLE THICKNESS					
N 4.(
CONSOLIDATION -					
					(3 17 10"
1.(
2.0					
3.(
4.(

CONSOLIDATION TESTS

DESIGN UNIT A220 Southern California Rapid Transit District METRO RAIL PROJECT Project NO

83-1140-26

ą

Approved for publication

Converse Consultants Geotechnical Engineering and Applied Sciences

Figure No.

			. Sar	20 3 ing 15/3 mple: C-19: pth 130/8"
			Bor	ing 15/3
			Bor Sar	ing 15/3 mple C-19
		此世 분위		
<u></u>				
		·		
			San	ing 15/3 nple C-21 pth 160'11"

CONSOLIDATION TESTS

DESIGN UNIT A220 Southern California Rapid Transit District METRO RAIL PROJECT Project No 83-1140-26

à

Approved for publication

Converse Consultants Geotechnical Engineering and Applied Sciences

Figure No C-35

			LOAD IN KI	PS PER SQ	UARE FOO	T		
	0.	.3 0.5	1,0	2	3 4	5 6 7	3 9 10	20 30
				┤ ┼╴╞╌┩╶╴┠╻┨╧┨┠╸ ┝╶┢╸╾┿┵╿╶┶┩╎╎╎ ╎┼╴┾╻┨╧┯┥╎╎╎				
	0 -							
ESS	0.5						Borit	ole 0-12
THICKN	1.0							
MPLE .	1.5							
L OF SA	2.0							
PER CENT OF SAMPLE THICKNESS	-							
1								
CONSOLIDATION	0-							
CONS	0.5 -							
	1.0 -						Bori Sam	ng 15/4 ble C-15 h 72'8"
	1.5 -							
	2.0 -							
	2.5							
	-							
			<u> </u>					╧╧╡╸ ╈┿╈╼╠╎┯╘╹╎╹

CONSOLIDATION TESTS

DESIGN UNIT A220 Southern California Rapid Transit District METRO RAIL PROJECT Project No

83-1140-26

Figure No.

β

Approved for publication

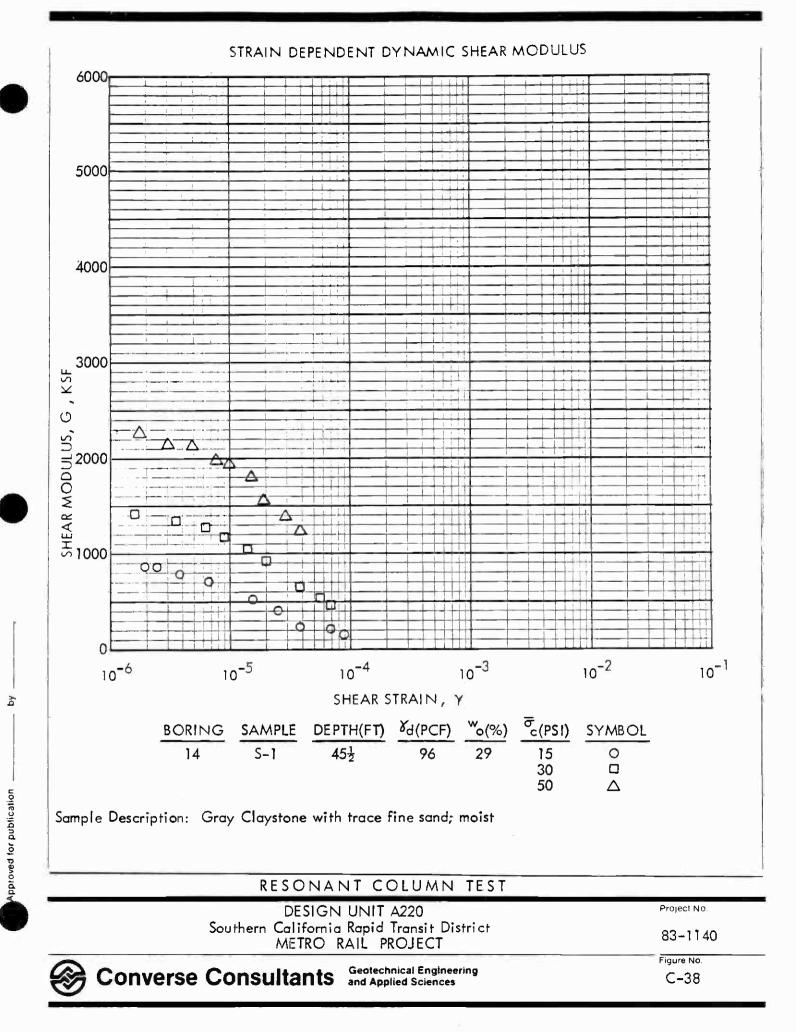
Converse Consultants Geotechnical Engineering and Applied Sciences

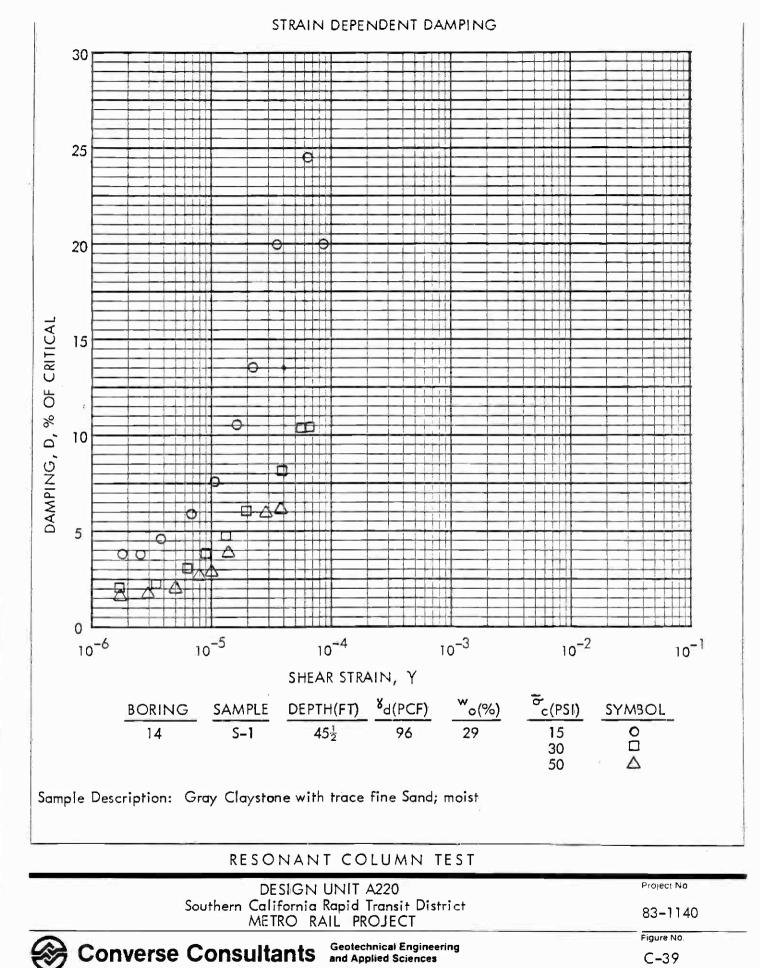
_			LOAD IN KIPS	5 PER SQUAF	RE FOOT		
1	0.	3 0.5	1,0	<u> </u>	4 5 6	7 8 91	p 20 <u>30</u>
	-						
	•						
THICKNESS							
SAMPLE	0-						
CENT OF	1.0-					· · ·	
PER CI	2.0						Samplei C-12 Depth 61 4"
1							
CONSOLIDATION	3.0-						
CON	4.0-					· · · · · · · · · · · · · · · · · · ·	
	_					•	
	-	TITE TO A CONTRACTOR OF A CONTRACTOR A CONTRACT					
				-I LET H IL			

CONSOLIDATION TESTS

DESIGN UNIT A220 Southern California Rapid Transit District METRO RAIL PROJECT . Project No

83-1140-26

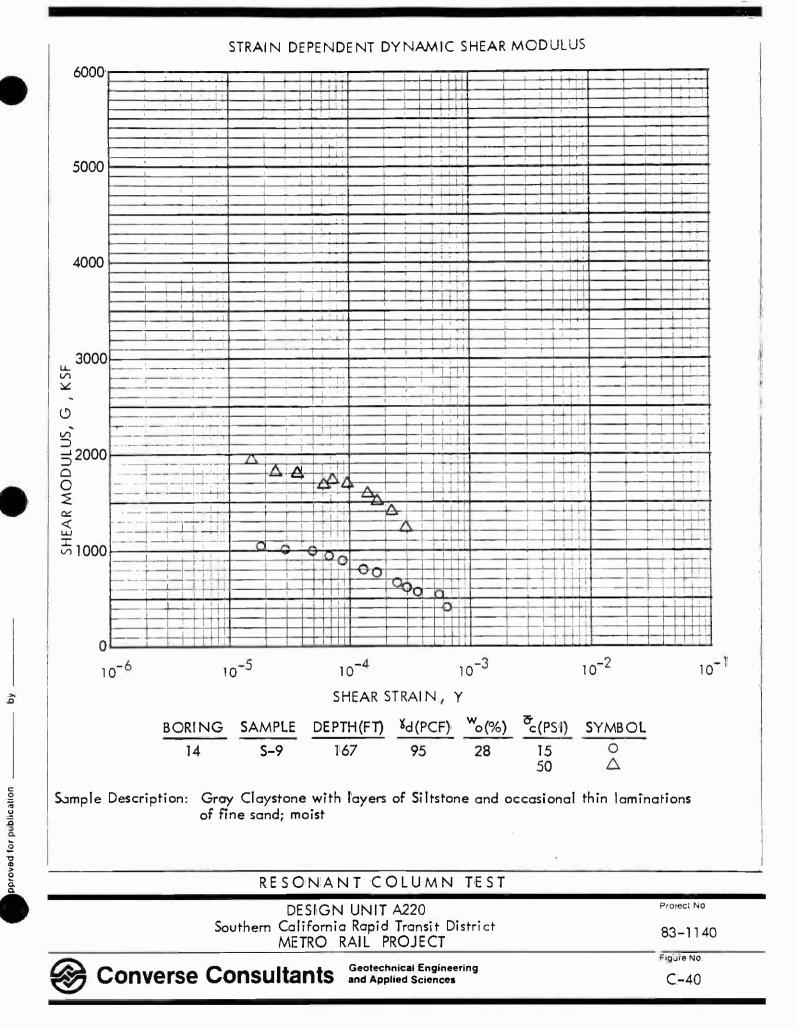

 \bigotimes

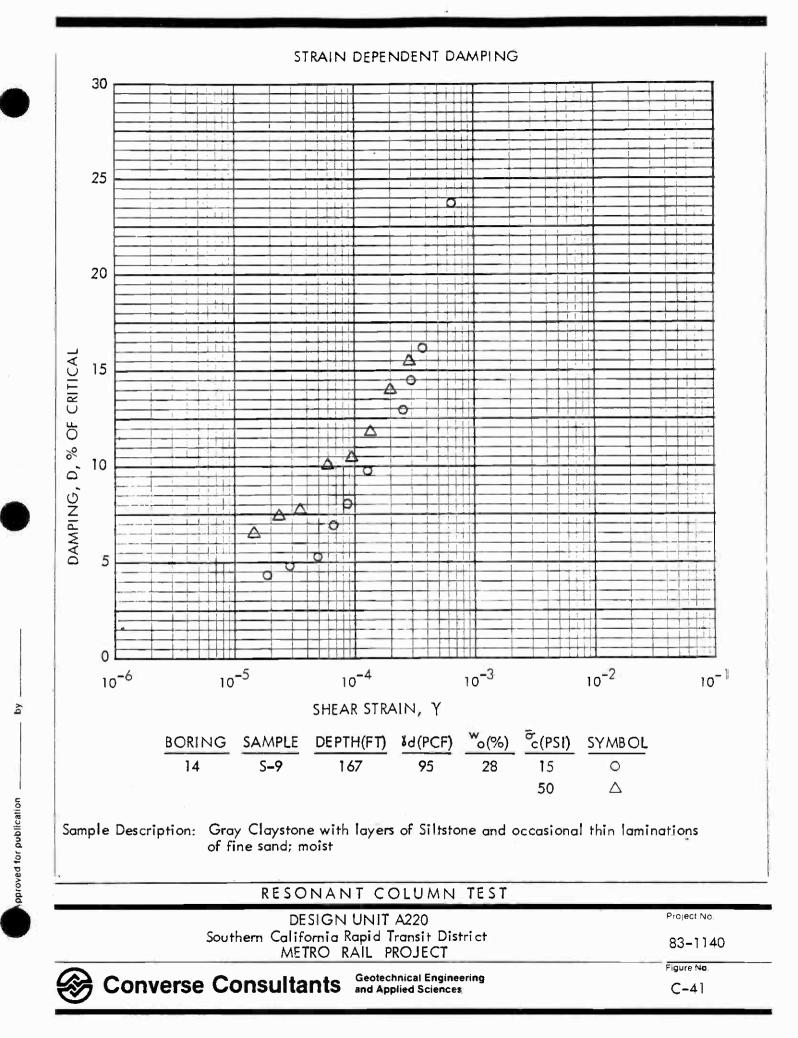

Å,

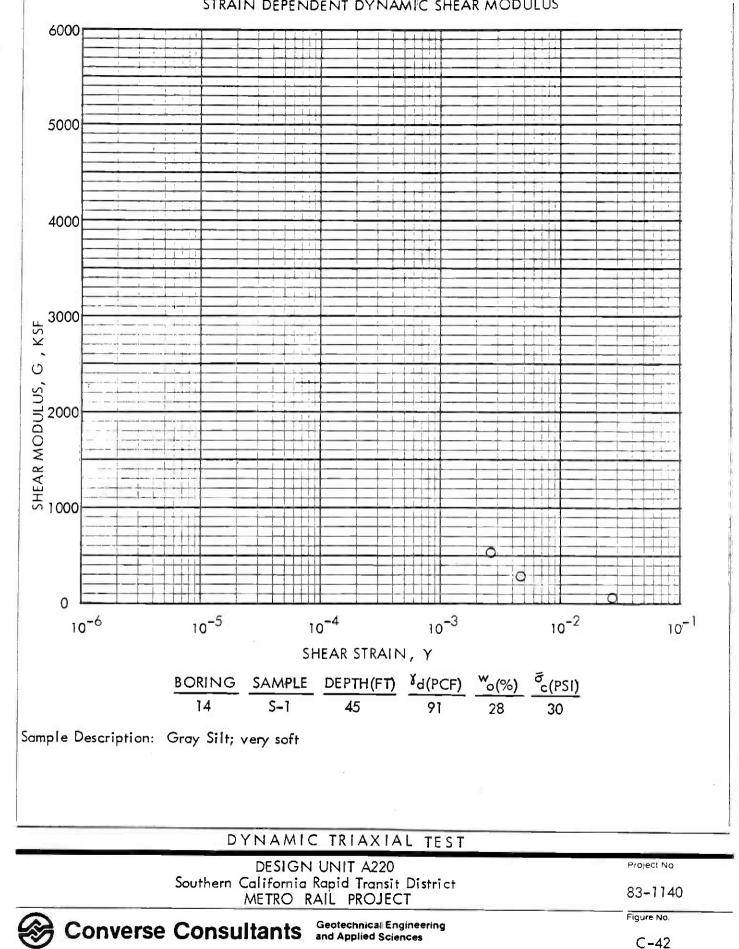
Approved for publication

Converse Consultants Geotechnical Engineering and Applied Sciences

Figure No.

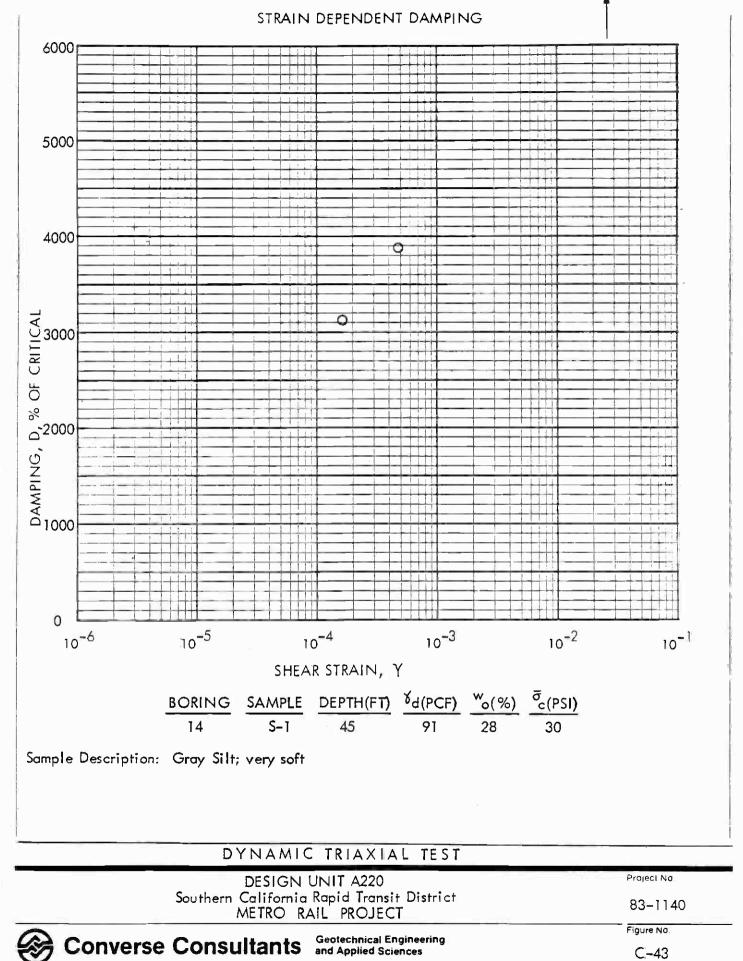





5

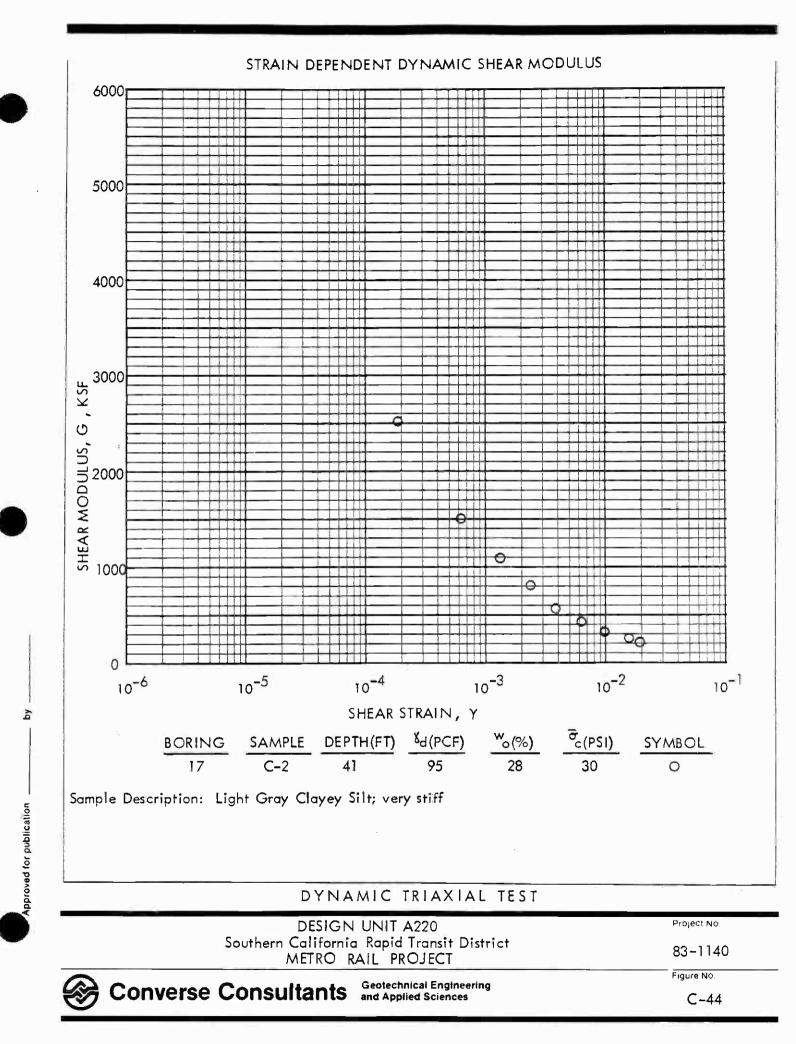
à

Approved for publication



by

Approved for publication


STRAIN DEPENDENT DYNAMIC SHEAR MODULUS

Approved for publication

à

0

Appendix D

Water Quality Analysis

APPENDIX D WATER QUALITY ANALYSIS

D.1 RESULTS

Water samples were taken from Borings CEG-14 and CEG-17 during the 1981 investigation and Borings 16A, 17A and 17B during the 1983 investigation. The purpose was to evaluate water chemicals that could have significant influence on design requirements and to identify chemical constituents for compliance with EPA requirements for future tunneling activities. The chemical constituents tested are attached.

D.2 FIELD PROGRAM

The boreholes were flushed and established as piezometers. At a later date (often several weeks) the established piezometer holes were again flushed and cleaned out. Upon achieving a clean hole, water samples were collected with an air-lifting procedure from various depths within the borehole. The water samples were collected in sterilized one-quart glass containers which were properly identified and marked in the field. The water samples were delivered to both Jacobs Laboratories and Brown and Caldwell Consulting Engineers for testing.

Converse Consultants, I	nc.		Lab No.	P81-02-159-3
Sample labeled: HOLE 1	<u>L4-2</u> "		Brought	oles : 5 By : Client By : Client ceived: 2-18-81
Conductivity: 1,120 Turbidity:	µ mhos/cm NTU		pH 7.9 pHs pHs	@ 25°C @ 60°F (15.6°C) @ 140°F (60°C)
Cations determined:		Milligrams per liter (ppm)	M1]	lli-equivalents per liter
Calcium, Ca Magnesium, Mg Sodium, Na Potassium, K		29 5 216 17	Total	1.45 0.41 9.40 0.43 11.69
Anions determined:				
Bicarbonate, as HCO ₃ Chloride, Cl Sulfate, SO ₄ Fluoride, F Nitrate, as N		382 120 67 0.5 0.7		6.26 3.49 1.40 0.03 0.05
			Total	11.23
Carbon dioxide, CO ₂ , Hardness, as CaCO ₃ Silica, SiO ₂ Iron, Fe Manganese, Mn Boron, B	Calc.	7 93 29 < 0.01 < 0.01 0.22		
Total Dissolved Minera (by addition: HCO ₃		677	,	

.

Converse Consultants, Inc.		Lab No. P81-02-159-2
Sample labeled : HOLE 17-2"		No. Sampled : 5 Sampled By : Client Brought By : Client Date Received: 2-18-81
Conductivity: 1,430 µ mhos/cm Turbidity: NTU		pH 7.6 @ 25°C pHs @ 60°F (15.6°C) pHs @ 140°F (60°C)
Cations determined:	Milligrams per liter (ppm)	Milli-equivalents per liter
Calcium, Ca Magnesium, Mg Sodium, Na Potassium, K	15.7 45 177 3.8	0.78 3.70 7.70 0.10 Total 12.28
Anions determined:		lotal 12.20
Bicarbonate, as HCO ₃ Chloride, Cl Sulfate, SO ₄ Fluoride, F ⁴ Nitrate, as N	375 240 87 0.3 0.9	6.15 6.66 1.81 0.02 0.06
		Total 14.70
Carbon dioxide, CO ₂ , Calc. Hardness, as CaCO ₃ Silica, SiO ₂ Iron, Fe Manganese, Mn Boron, B	14 366 34 < 0.01 < 0.01 0.12	
Total Dissolved Minerals, (by addition: HCO ₃ -> CO ₃)	795	

.

.

.

 $\langle \cdot \rangle$

GENERAL MINERAL ANALYSIS*

cc.

Reported To:

BROWN AND CALDWELL CONSULTING ENGINEERS ANALYTICAL SERVICES DIVISION 373 SOUTH FAIR OAKS AVE. PASADENA, CA 91105 PHONE (213) 795-7553

91105

Converse Consultants 126 West Del Mar Avenue

Pasadena, CA

Attn: Al Minas

P83-02-162-2 Log No.

Date Sampled Date Received Date Reported

+7

2/22/83

Sample Description	83-110	1-21	BH 16A -4	151 W	Ilshire @ Irving St.	
Anions	Miligrams per liter	Milliequiv. per liter	Determination	Milligrams per liter	Determination	Milligram per liter
Nitrate Nitrogen (as NO ₃)	1.4	0.02	Hydroxide Alkalinity (as CaCO ₃)	0.0		
Chloride	210	5.98	Carbonate Alkalinity (as CaCO ₃)	17		
Sulfate (as SO ₄)	100	2.10	Bicarbonate Alkalinity (as CaCO ₃)	440		
Drearbonate (as HCO ₃)	540	8.82	Calcium Hardness (as CaCO ₃)	320		
Carbonate (as CO ₃)	9.8	0.33	Magnesium Hardness (as CaCO ₃)	260		
Total Milliequívalents per l	_iter	17.25	Total Hardness (as CaCO ₃)	580		
Cations	Milligrams per liter	Milliequiv. per liter	Iron			
Sodium	150	6.61	Manganese			
Potassium	3.7	0.09	Соррет			
Calcium	130	6.44	Zinc			
Magnesium	64	5.26	Foaming Agents (MBAS)			
Total Milliequivalents per l	_iter	18.40	Dissolved Residue, Evaporated @ 180°C	914		
*Conforms to Title 22, Californ (California Domestic Water Qu		e Code	Specific Conductance, micromhos @ 25°C	1630	рН <u>7.9</u>	İ

(California Domestic Water Quality and Monitoring Regulations)

-

GENERAL MINERAL ANALYSIS*

	BROWN AND CALDWE	LL RECEIVED	Log No.	P83-11-056
	CONSULTING ENGINEERS ANALYTICAL SERVICES DIVISION	ueu 8 1983	Date Sampled	10-27-83 11-04-83
	373 SOUTH FAIR OAKS AVE PASADENA, CA 91105 PHONE (213) 795-7553	CONVERST CONSULTANTS	Date Received Date Reported	12-07-83
		Invoice	No. 1627, sepa	arate cover
			Page 1 of 4	
	Converse Consultants 126 West Del Mar Avenue Reported To: Pasadena, California 91105	·		
cc.	Attention: James A. Doolitt	le		

Sample Description	83~1140	-71, BH 17	A Wilshre/Mullen St.	A220		
Anions	Miligrams per liter	Milliequiv. per liter	Determination	Milligrams per liter	Determination	Milligrar per lite
Nitrate Nitrogen (as NO ₃)	11	0.18	Hydroxide Alkalinity (as CaCO ₃)	-0-	1	
Chloride	84	2.37	Carbonate Alkalinity (as CaCO ₃)	-0-		
Subtre (as SO ₄)	180	3.78	Bicarbonate Alkalinity (as CaCO ₃)	5 30		
Bicarbonate (as HCO ₃)	640	10.5	Calcium Hardness (as CaCO ₃)	190		-
Carbonate (as CO ₃)	-0-	-0-	Magnesium Hardness (as CaCO ₃)	160) 	
Total Milliequivalents per I	Liter	16.83	Total Hardness (as CaCO ₃)	350		
Cations	Milligrams per liter	Milliequiv. per liter	Iron	< 0.09		
Sodium	170	7.31	Manganese	< 0.04		
Potassium	1.3	0.03	Copper	< 0.07		
Calcium	75	3.75	Zinc	< 0.015		
Magnesium	40	3.28	Foaming Agents (MBAS)	< 0.1		
Total Milliequivalents per L	_iter	14.37	Dissolved Residue, Evaporated @ 180°C	850		
*Conforms to Title 22, California Administrative Code (California Domestic Water Quality and Monitoring		Specific Conductance, micromhos @ 25°C	1460	pH	7.	

*Conforms to Title 22, California Administrative Code (California Domestic Water Quality and Monitoring Regulations)

GENERAL MINERAL ANALYSIS*

	BRO	WN AND	CALDWELL	ನತರಿತ	CEVI	Log No.	₽83- 11-0	56
• BC	D AN	CONSULTING ALYTICAL SER 373 SOUTH FA PASADENA. PHONE (213	VICES DIVISION IR OAKS AVE CA 91105	UCU CONVERSE CO	ONSULTATION	Date Sampled Date Received Date Reported	10-27-83 11-04-83 12-0 7- 83	
						Page 2 of	4	
	Converse	e Consulta	nts					
Reported To:								
cc.	Ĺ							
						Lab	ratory Director	
Sample Description	83-114D	-71, BH 17	B Wilshive /	Ovanse_Dr	· Azzo	-y <u>v</u>		
Anions	Miligrams per liter	Milliequiv. per liter	Determina	ation	Milligrams per liter	Deter	mination	Milligran per lite
Nitrate Nitrogen (as NO ₃)	20	0.32	Hydroxide Alkalini	ty (as CaCO ₃ ') -0-	,		
Chloride	140	3.92	Carbonate Alkalini	ty (as CaCO ₃) -0-			
te (as SO ₄)	70	1.47	Bicarbonate Alkali	nity (as CaCO	3) 320			
Bicarbonate (as HCO ₃)	400	6.40	Calcium Hardness	(as CaCO ₃)	230			
Carbonate (as CO ₃)	-0-	-0-	Magnesium Hardne	ss (as CaCO ₃)) 160			
Total Milliequivalents per l	_iter	12.11	Total Hardness (as	CaCO ₃)	390			
Cations	Milligrams per liter	Milliequiv. per liter	Iron		< 0.09			
Sodium	82	3.53	Manganese		< 0.04	,		
Potassium	0.8	0.02	Copper		< 0.07	,		
Calcium	91	4.55	Zinc		< 0.015			
Magnesium	38	3.12	Foaming Agents (N	1BAS)	< 0.1			
Total Milliequivalents per L	_iter	11.22	Dissolved Residue, Evaporated @ 180)°C	670			
Conforms to Title 22, Californ (California Domestic Water Qu			Specific Conductar micromhos @ 25°		1200	рН		7.9

Regulations)

÷...

Appendix E

Technical Considerations

APPENDIX E TECHNICAL CONSIDERATIONS

E.1 SHORING PRACTICES IN THE LOS ANGELES AREA

E.1.1 <u>General</u>

Deep excavations for building basements in the Los Angeles area are commonly supported with soldier piles with tieback anchors. Three case studies involving deep excavations into materials similar to those anticipated at the proposed site are presented below.

E.1.2 Atlantic Richfield Project (Nelson, 1973)

This project involved three separate shored excavations up to 112 feet in depth in the siltstones of the Fernando Formation. The project is located just north of Boring CEG-9, and the proposed location of the 7th/Flower Station. Key elements of the design and construction included:

- Basic subsurface material was a soft siltstone with a confined compressive strength in the range of 5 to 10 ksf. It contained some very hard layers, seldom more than 2 feet thick. All materials were excavated without ripping, using conventional equipment. Up to 32 feet of silty and sandy alluvium overlaid the siltstone.
- Volume of water inflow was small and excavations were described as typically dry.
- Shoring system consisted of steel, wide flange (WF) soldier piles set in pre-drilled holes, backfilled with structural concrete in the "toe" and a lean concrete mix above. The soldier pile spacing was typically 6 feet.
- Tieback anchors consisted of both belled and high-capacity friction anchors.
- On the side of one of the excavations a 0.66H:1V (horizontal:vertical) unsupported cut, 110 feet in height, was excavated and sprayed with an asphalt emulsion to prevent drying and erosion.
- Timber lagging was not used between the soldier piles in the siltstone unit. However, an asphalt emulsion spray and wire mesh welded to the piles was used.
- [°] The garage excavation (when 65 feet deep) survived the February 9, 1971 San Fernando earthquake (6.4 Richter magnitude) without detectable movement. The excavation is about 20 miles from the epicenter and experienced an acceleration of about 0.1g. The shoring system at the plaza, using belled anchors, moved laterally an average of about 4 inches toward the excavation at the tops of the piles, and surface subsidence was on the order of 1 inch; surface cracks developed on the street, but there was no structural damage to adjacent buildings. Subsequent shoring used high capacity friction anchors and reportedly moved laterally less than 2 inches.

E.1.3 Century City Theme Towers (Crandall, 1977)

This project involved a shored excavation between 70 and 110 feet deep in Old Alluvium deposits. Immediately adjacent to the excavation (about 20 feet away), was a bridge structure supported on piles 60 feet below the ground surface. The project is located about one mile west of Boring CEG-20 and the proposed location of the Fairfax Avenue Station. Key elements of the design and construction included:

- Basic subsurface materials were stiff clays and dense silty sands and sands. The permanent ground water table was below the level of the excavation, although minor seeps from perched ground water were encountered.
- Shoring system consisted of steel WF soldier piles placed in 36-inch diameter drilled holes spaced 6 feet on center.
- As the excavation proceeded, pneumatic concrete was placed incrementally in horizontal strips to create the finished exterior wall. The concrete which was shot against the earth acted as the lagging between soldier piles.
- ° Tieback anchors consisted of high-capacity 12- and 16-inch diameter friction anchors.
- Actual load imposed on the wall by the adjacent bridge was computed and added to the design wall pressures as a triangular pressure distribution.
- [°] Maximum horizontal deflection at the top of the wall was 3 inches, while the typical deflection was less than 1 inch. Adjacent to the existing bridge, the deflections were essentially zero, with the tops of most of the soldier piles actually moving into the ground due to the high prestress loads in the anchors.
- ^o Survey of the bridge pile caps indicated practically no movement.

E.1.4 St. Vincent's Hospital (Crandall, 1977)

This project involved a shored excavation up to 70 feet deep into the claystones and siltstones of the Puente Formation. Immediately adjacent to the excavation (about 25 feet away) was an existing 8-story hospital building with one basement level supported on spread footings. The project is located about 1/3 mile north of Boring CEG-11 and the proposed location of the Alvarado Street Station. Key elements of the design and construction included:

- Basic subsurface materials were shale and sandstone, with a bedding dip to the south at angles ranging from 20° to 40°. Although the permanent ground water level was below the excavation level, perched zones of significant water seepage were encountered.
- Shoring system consisted of steel WF soldier piles placed in 20-inch diameter drilled holes spaced at 6 feet on center.
- ° Tieback anchors consisted of high-capacity friction anchors.

- Theoretical load imposed on the wall by the adjacent building was computed and added to the design wall pressure. The existing building was not underpinned; thus, the shoring system was relied upon to support the existing building loads.
- Shoring performed well, with maximum lateral wall deflection of about 1 inch and typical deflections less than 1/4 inch. There was no measurable movement of the reference points on the existing building.

E.1.5 Design Lateral Load Practices

Table E-1 summarizes the design lateral loads used for nine shored excavations in the general site vicinity. Based on these projects, the average equivalent uniform pressure for excavations in alluvium is 15.6H-psf (H = depth of the excavation). For excavations in the Puente or Fernando the average value used is 14.5H-psf.

According to Terzaghi and Peck's rules, the design pressure in granular soils would be equal to 0.65 times the active earth pressure. Assuming a friction angle of 37°, the equivalent design pressure should equal about 22H-psf. For hard clays, the recommended value ranges from 0.15 to .30 (equivalent rectangular distribution) times the soils unit weight or at least 18H-psf.

Thus, the local design practices are some 20% less than those indicated by Peck's rules.

PROJECT LOCATION	EXCAVATION DEPTH (ft)	SOIL CONDITIONS	ACTUAL DESIGN PRESSURE (P)
Broadway Plaza Near 7th/Flower Station	15 to 30	Fill over Alluvium Sands	19 . 0H
500 South Hill	25	Fill over Sands & Gravel	22.0H
Tishman Building Wilshire/Normandie Station	25	Alluvium-Clays, Sand, Silt	19.0H
Equitable Life Wilshire/Mariposa Avenues	55	Alluvium Sand/Siltstone	20.0H
Arco Flower Street/5th to 6th	70 to 90	Alluvium over Claystone	16.0H
Century City	70 t <u>o</u> 110	Alluvium-Clays & Sands	18.0H
St. Vincent's Hospital Near 3rd & Alvarado	70	Thin Alluvium over Puente	15.0H
Oxford Plaza Near 7th/Flower	40	Fill & Alluvium over Siltstone	21.0H
Bank Building* 2nd & San Pedro	40	Alluvium (including Sand & Gravel over Siltstone)	20H

TABLE E-1

SHORING LOADS IN LOS ANGELES AREA

* Considerable caving problems were encountered installing tiebacks in dry gravelly deposits in one section of excavation.

Note:

- 1. All shoring systems were soldier piles.
- 2. All pressure diagrams were trapezoidal.
- 3. Equivalent pressure equals a uniform rectangular distribution.

E.2 SEISMICALLY INDUCED EARTH PRESSURES

The increase in lateral earth pressure due to earthquake forces has usually been taken into consideration by using the Monobe-Okabe method which is based on a modification of Coulomb's limit equilibrium earth pressure theory. This simple pseudo-static method has been applied to the design of retaining structures both in the U.S. and in numerous other countries around the world, mainly because it is simple to use. However, just as the use of the pseudostatic method is not really appropriate for evaluating the seismic stability of earth dams, those same shortcomings are also applicable when using the method to evaluate dynamic lateral pressures.

During an earthquake the inertia forces are cyclic in nature and are constantly changing throughout its duration. It is unrealistic to replace these inertia forces by a single horizontal (and/or vertical) force acting only in one direction. In addition, the selection of an appropriate value of the horizontal seismic coefficient is completely arbitrary. Nevertheless, the pseudo-static method is still being used since it provides a simple means for assessing the additional hazard to stability imposed by earthquake loadings.

Monobe-Okabe originally developed an expression for evaluating the magnitude of the total (static plus dynamic) active earth pressure acting on a rigid retaining wall backfilled with a dry cohesionless soil. The method was developed for dry cohesionless materials and based on the assumptions that:

- ° The wall yields sufficiently to produce minimum active pressures.
- ^o When the minimum active pressure is attained, a soil wedge behind the wall is at the point of incipient failure, and the maximum shear strength is mobilized along the potential sliding surface.
- The soil behind the wall behaves as a rigid body so that accelerations are uniform throughout the mass.

Monobe-Okabe's method gives only the total force acting on the wall. It does not give the pressure distribution nor its point of application. Their formula for the total active lateral force on the wall, $P_{\rm AF}$, is as follows:

$$P_{AE} = 1/2\gamma H^2(1-k_v)K_{AE}$$

Where:

ų

$$\kappa_{AE} = \frac{COS^{2} (\phi - \theta - B)}{COS \theta COS^{2} \beta COS (\delta + \beta + \theta) \left[1 + \frac{\sqrt{SIN (\phi + \delta) SIN (\phi - \theta - i)}}{COS (\delta + \beta + \theta) COS (i - B)}\right]^{2}}$$

$$\theta = \tan^{-1} \frac{Kh}{1-Kv}$$

$$\gamma = \text{unit weight of soil}$$

$$\phi = \text{angle of internal friction of soil}$$

$$i = \text{angle of soil slope to horizontal}$$

$$\beta = \text{angle of wall slope to vertical}$$

$$k_{\text{h}} = \text{horizontal earthquake coefficient}$$

$$K_{\text{v}} = \text{vertical earthquake coefficient}$$

$$\delta = \text{angle of wall friction.}$$

For a horizontal ground surface and a vertical wall,

 $i = \beta = 0$

The expression for $K_{\mbox{\scriptsize AF}}$ then becomes,

$$KAE = \frac{COS^{2}(\phi-\theta-\beta)}{COS \ \theta \ COS \ (\delta+\theta) \cdot \left[1 + \frac{\sqrt{SIN \ (\theta+\delta) \ SIN \ (\phi-\theta)}}{COS \ (\theta+\delta)}\right]^{2}}$$

The seismic component, $\Delta \, P_{AE},$ of the total lateral load P_{AE} can be determined by the following equation:

 $\Delta P_{\Delta F} = 1/2 \gamma \text{ total } H^2 \Delta K_{\Delta F}$

Where:

 $\Delta K_{AE} = K_{AE}$ (static+seismic) - K_{AE} (static)

Inspection of actual acceleration time histories recorded during strong motion earthquakes indicates that the accelerations are quite variable both in amplitude and with time. For any given acceleration component the values fluctuate significantly during the entire duration of the record. Statistical analyses of the positive and negative peaks do indicate, however, that when one considers the entire record there are generally an equal number of positive and negative peaks of equal intensity. In the past it has been common practice to use the peak value of acceleration recorded during the earthquake as a value of engineering significance. However, this peak value might occur only once during the entire earthquake duration and is usually not representative of the average acceleration which might be established for the entire duration of shaking. It has been common practice in the past to ignore the effects of the vertical acceleration and to set the value of the vertical earthquake coefficient, k_y , equal to zero when using Monobe-Okabe's equation. This appears reasonable in the "light" of the above discussion since the vertical acceleration will act in upward direction about as often as it will act in the downward direction. It has also been common practice to set the value of the horizontal seismic coefficient, k_h , equal to the peak ground acceleration.

This is extremely conservative since the peak acceleration acts only on the wall for an instant of time. In addition, for a deep excavation the soil mass behind the wall will not move as a rigid body and will have a seismic coefficient significantly less than the peak ground acceleration (analogous to a horizontal seismic coefficient acting on a failure surface for an earth dam).

For evaluating dynamic earth pressures for this study, we recommend that the value of the horizontal seismic coefficient be taken equal to 65% of the peak ground acceleration and that the vertical seismic coefficient, k_v , be set equal to zero.

In a saturated soil medium the change in water pressure during an earthquake has usually been established on the basis of the method of analysis originally developed by Westergaard (1933). His method of analysis was intended to apply to the hydrodynamic forces acting on the fact of a concrete dam during an earthquake. However, it was used by Matsuo and O'Hara (1960) to determine the dynamic water pressure (due to the pore fluid within the soil) acting on quay walls during earthquakes, and has been used by various other engineers for evaluating dynamic water pressures acting on retaining walls backfilled with saturated soil. Unless the soil is extremely porous, it is difficult to visualize that the pore water can actually move in and out quick enough for it to act independently of the surrounding soil media. For most natural soils, the soil and pore water would move together in phase during the duration of the earthquake such that the dynamic pressure on the wall would be due to the combined effect of the soil and water. Thus, the total weight of the saturated soil should be used in calculating dynamic earth pressure values.

The Allowable Building Code stress increases for seismic loading (33%) translates into an allowable uniform seismic earth pressure on the temporary shoring of about magnitude 6H. This earth pressure corresponds to a seismic coefficient (K_h) of about 0.15g and a peak ground acceleration of about 0.23g (using the recommended procedures). Data from Part I Seismological Investigation indicates the 0.23g peak acceleration to have a probability of exceedance less than 5% during an average two-year period (a reasonable construction period). The average recurrence of this ground motion level was indicated to be about 100 to 150 years. Based on consideration of the above, the 6H uniform seismic pressure was recommended for design of the temporary wall (see Figure 6-8).

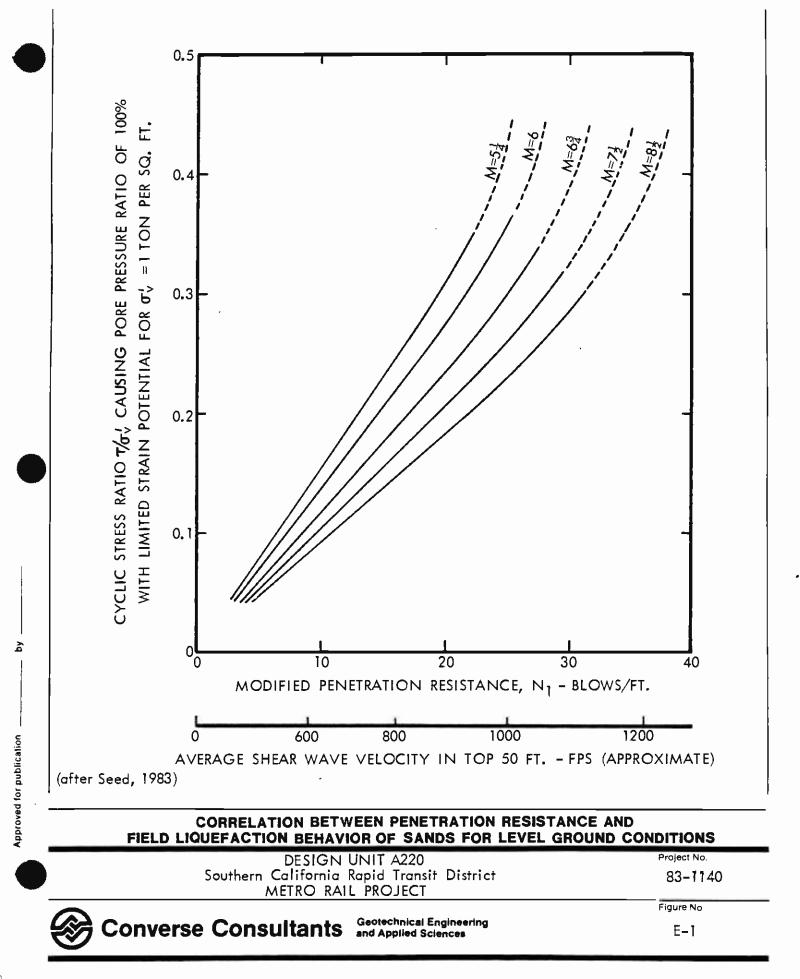
E.3 LIQUEFACTION EVALUATION METHODS

E.3.1 Standard Penetration Resistance

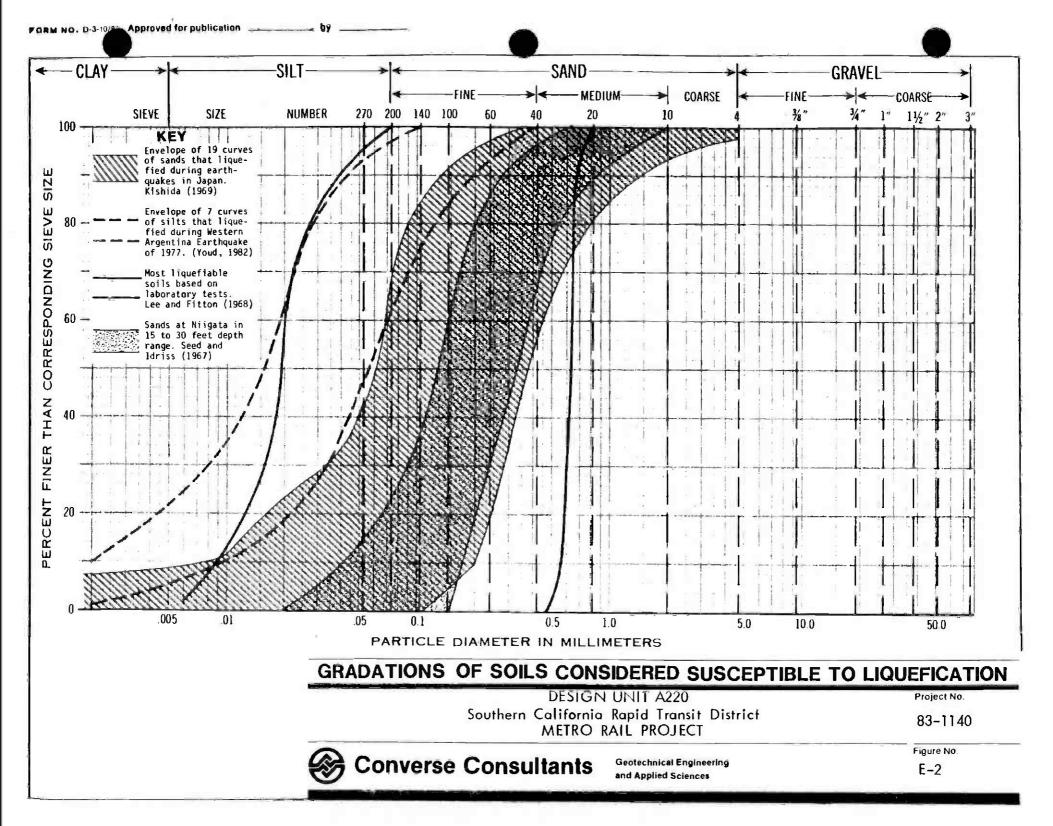
The use of the Standard Penetration Test (SPT) in estimating the liquefaction potential of saturated cohesionless soil deposits has been the topic of many previous investigations. Results of these investigations have recently been

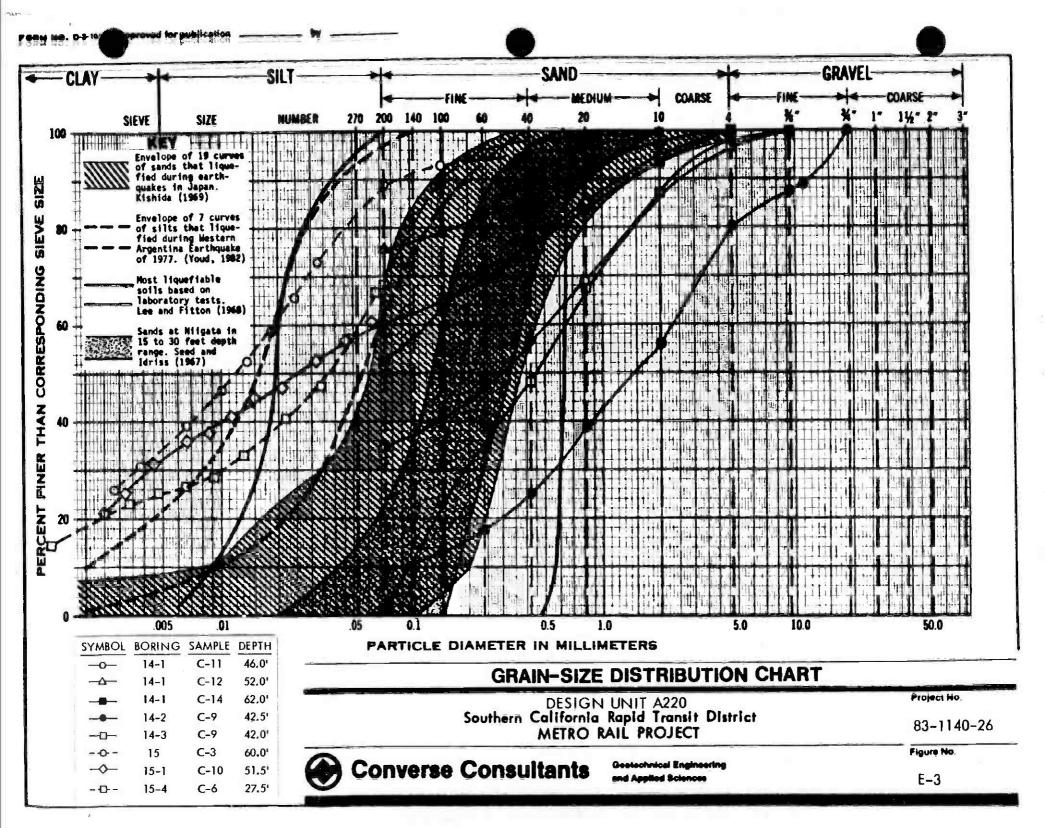
summarized by Seed et al (1983). Basically, the method utilizes empirical relationships which have been developed from a comprehensive collection of SPT blow count data obtained from sites where liquefaction or no liquefaction was known to have taken place during past earthquakes. Empirical relationships that have been recently proposed by Seed et al. (1983) are shown in Figure E-1.

While results of the Standard Penetration Test have been generally accepted as a good index upon which to estimate the liquefaction potential of saturated sand deposits, it should be noted that the SPT results cannot be utilized to evaluate the liquefaction potential of soils containing gravels, cobbles or boulders. However, for those soils which did not include significant percentages of gravel-sized particles, SPT blow count data were utilized along with the relationships shown in Figure E-1. In general, the SPT blow count measurements in the San Pedro Sands are greater than 50 blows per foot, indicating that these soils are generally very dense. These blow counts along with the relationship shown in Figure E-1 suggest that liquefaction of the San Pedro Sands would be unlikely during ground shaking from the maximum design The alluvial soils generally exhibit SPT blow counts great enough earthquake. to conclude that liquefaction of these soils also would be unlikely during shaking from the maximum design earthquake. Lower SPT blow counts in the alluvial soils generally reflected greater percentages of clay particles. The behavior of these clayey soils is governed by the clay characteristics discussed in E.3.3


E.3.2 Shear Wave Velocity Measurements

Crosshole measurements used for the determination of seismic wave velocities along the proposed SCRTD Metro Rail Project tunnel alignment were performed as part of the initial 1981 geotechnical investigation. One of the crosshole surveys was performed at Borings CEG-14 and CEG-15 near the Wilshire/Normandie and Wilshire/Western Station sites. Shear wave velocities measured in the Alluvium (approximately the upper 30 feet of the borehole) range between 890±60 fps to 990±90 fps for the crosshole measurements and 1280±90 fps for the downhole measurements.


While shear wave velocity has not been as widely accepted in the past as SPT blow count data for estimating the liquefaction potential of a soil deposit, it has received some recent attention (Seed et al. 1983). Figure E-1 suggests that liquefaction potential at the site would be low based on the shear wave velocities measured close to the Station site.


E.3.3 Gradation/Plasticity Characteristics

Another factor which may be considered in evaluating the liquefaction potential of a soil is the gradation characteristics of the material. A compilation of the ranges of gradational characteristics of soils which have liquefied during past earthquakes and/or are considered most susceptible to liquefaction in the laboratory is shown in Figure E-2. The ranges shown in this figure have been complied by Lee and Fitton (1968), Seed and Idriss (1967), Kishida (1969), and Youd (1982) and appear to indicate that the soil types most susceptible to liquefaction consist of primarily poorly graded silty sands and sandy silts. It is important to note that all the gradational ranges shown in Figure E-2 have less than 20% by weight clay size particles

þ

(i.e., particles less than 0.005 mm), suggesting that clayey (cohesive) soils have a low liquefaction potential. Seed and Idriss (1983) stated that clayey soils are not vulnerable to significant strength loss during earthquakes if the percentage of particles finer than 0.005 mm is greater than 20 or if the water content is less than nine-tenths of the Liquid Limit. Gradation characteristics typical of gravels and gravelly soils are also absent from Figure E-2 suggesting, in part, that these types of soils may not be capable of developing high excess pore pressure because they are either capable of draining rapidly during the cyclic loading or they are usually more efficiently packed (i.e., denser) in situ than soils that consist of uniformlysized particles. While the liquefaction potential of a soil is dependent on many factors other than gradation (such as the relative density of the soil, the intensity and duration of cyclic loading, among others), comparisons of the gradational characteristics of a soil with those ranges shown in Figure E-2 provides a useful guide in establishing the liquefaction potential of a soil.

The gradational characteristics of the various soils which comprise the onsite Alluvium were compiled from laboratory tests performed during this and the previous 1981 investigations. The comparisons of the gradations with the ranges of gradations of the "liquefiable" sandy soils shown in Figure E-2 are presented in Figure E-3.

Figure E-3 indicates that none of the samples tested falls entire within the range of gradations of soils considered "susceptible" to liquefaction. On the basis of gradation alone, there appear to be few alluvial soils at the site which are susceptible to liquefaction. The clayey alluvial soils satisfy the criteria described in Seed and Idriss (1983) for non-liquefiable clayey soils.

E.3.4 <u>Conclusions</u>

Based on the above considerations and comparisons, it is our judgement that the alluvial soil deposits would have low liquefaction potential during ground shaking from the maximum design earthquake. The low liquefaction potential of the alluvial soils is anticipated due to sufficiently high SPT blow counts or due to sufficiently high clay content and clay characteristics. The San Pedro Sands would have low liquefaction potential for similar ground shaking due to sufficiently high SPT blow counts.

E.4 PREVIOUS TUNNELING EXPERIENCE - LACFCD SACATELLA TUNNEL

E.4.1 Facts and Figures

The following tunneling data were received in an oral communication in June 1981 with the contractor, Donald Glanville of Glanville Construction Company, and John E.Witte, Tunnel Consultant, as well as LACFCD Pre-construction "Geologic Report", dated December 26, 1973; and Victor L. Wright's "Pre-Bid Geologic Appraisal" report, dated July 1975.

Tunnel Length	0.6 miles
Tunnel Diameter	18 ft O.D. excavated; 14.5 ft I.D.
Initial Support	Precast concrete liner (3 segments/ring)
Excavation Method	Digger Gradall & shield
Advance Rate	Maximum 32 ft/8-hr shift; average 15 ft
Geology	Claystone, siltstone & occasional interbeds of very hard "calcareous" cemented sandstone
Eventual Use	Storm drain, LACFCD
Contractor	Glanville Construction Co.
Bid Price	±\$4,000,000
Extras Awarded	±\$500,000
Tunnelling Period	1975-77

E.4.2 Relation to Metro Rail Alignment

The Los Angeles County Flood Control District's (LACFCD) Sacatella Tunnel is in litigation for "changed (geologic) conditions" in the tunnel (settled) and at both portals (unsettled). For this reason, the LACFCD was reluctant to release information.

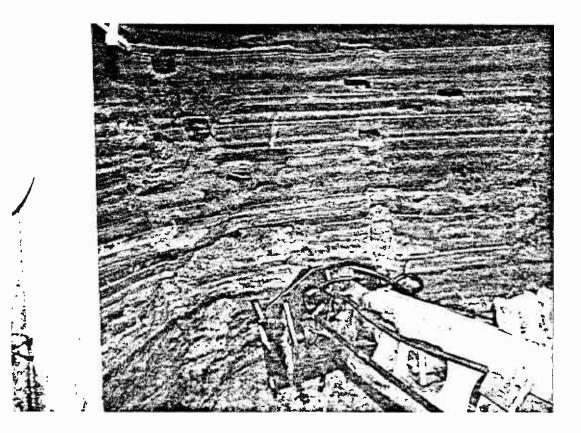
Geologic conditions and tunneling methods in this tunnel are very important to the Metro Rail alignment because:

- [°] Tunnel was excavated in a "gassy" reach under Hoover Street, north of Wilshire Boulevard, in claystone, siltstone and sandstone of the Puente Formation (Unit C).
- ° Formation is similar to the material anticipated in Metro Rail alignment Reaches 1 to 5 (Design Units A140 to A310).
- Total cover above tunnel crown ranges from 22 to 25 feet.
- ° Total bedrock cover above tunnel crown ranges from 2 to 25 feet.
- ° Old Alluvium cover above the tunnel crown ranges from 5 to 32 feet.

E.4.3 Peak Unconfined Compressive Strength

LACFCD test results of peak unconfined compressive strength, from six core samples obtained in the Puente Formation, are tabulated as follows:

LACFCD BORING	UNCONFINED COMPRESSIVE STRENGTH, Qu (psi)
1	401
	603
2	441
2	384
2	377
7	172
Average	396


Core samples from Borings 1 and 2 were taken essentially normal to the bedding, while the bedding at Boring 7 was inclined at about 45 degrees from the long axis of the core. This probably accounts for the considerably lower compressive strength test value for the sample from Boring 7. All core segments tested were selected for cross-sectional uniformity and freedom from cracking or damage and, as such, are considerably more competent than the average grade of rock encountered during drilling. Therefore, the values obtained for the compressive strength are probably greater than the average values which would be found during tunnel excavation (LACFCD, 1973).

E.4.4. Digger Excavator and Shield

The tunnel excavation was performed with a small (Model No. 2403) Gradall excavator. The rotating, telescoping boom was connected to a flat plate that had a single ripper tooth on one edge and several digger teeth on the other edge (Figure E-4). Also note in Figure E-4 Puente Formation bedding (Unit C) and lack of ground water inflow.

E.4.5 <u>Geology</u>

Puente Formation: Thin bedded, soft claystone and siltstone. The formation contained occasional interbeds of very hard "calcareous" cemented sandstone from 2 to 12 inches in thickness with unconfined compressive strength of 5,000 to 15,000 psi. These interbeds caused the "changed conditions", according to Donald Glanville, as they were not mentioned in the pre-construction reports. Some very hard interbeds were nearly horizontal and followed the face for several hundred feet; some were at a 45° angle to the tunnel alignment and followed the face for several tends of feet. This resulted in the following actions:

.

.

.

Digger Excavator (LACFCD Sacatella Tunnel)

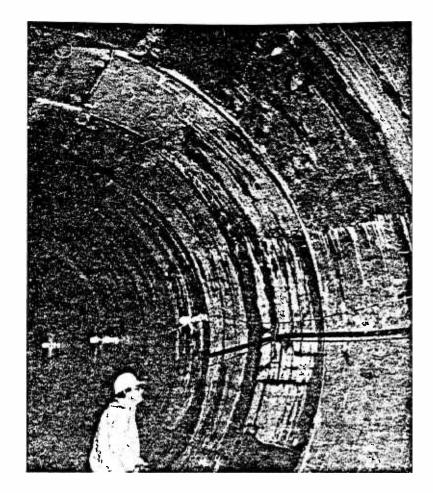
Figure E-4

- ° replaced single-tooth ripper with hydraulic jackhammer to break up hard layer (removed jackhammer in weak ground)
- ^o bent leading edge of shield, forcing contractor to stop and repair often; i.e., spent 8-hour shift digging and balance of day repairing shield
- ° difficult to maintain line and grade in hard rock layers (These hard layers, although 12 inches or less in thickness, made drilling of 5-foot diameter man-way shafts very difficult also.)
- [°] advance rate cut drastically; i.e., often reduced advance rate to 1 to 5 feet daily.

E.4.6 Tunnel Gas Classification

The tunnel was classified "gassy" because it traversed the Los Angeles City Oil Field. However, no fire or explosion occurred during the project.

- [°] The greatest apparent risk is where folding and a suspected fault may form significant traps (Wright, 1975, p. 8). Explosive-proof equipment was installed (although arc welding was permitted in the tunnel).
- ° The face was continuously monitored by a gas "sniffer" that automatically set off an alarm if high LEL readings were recorded. (Note: Alarm was never activated because ventilation was so effective.)
- Installed 4-foot-diameter ventilation duct and pumped air at 400 cfpm through the vent pipe.
- ° Oil, seeping down the sides of the supports, was skimmed off the discharge water at the portal and hauled away by tank truck (personal communication, R.J. Proctor, 1981). Oil seeps are shown on Figure E-5.


E.4.7 Abandoned Oil Wells

The tunnel encountered several uncharted, uncased, abandoned oil wells. Although oil was not encountered in these holes, several hundred gallons of water gushed into the tunnel for a few seconds, alarming the miners each time.

E.4.8 Ground Water

The tunnel was below a "permanent" water table. The water table was in the Puente Formation and the overlying Old alluvium. The contractor drilled 12 dewatering wells at selected locations along the alignment prior to excavating the tunnel. This dewatering of twelve 24-inch-diameter wells, recommended by Vic Wright, Tunnel Consultant, appears to have successfully kept tunnelling conditions in the "dry". According to Wright, 1975, "... ground water problems in the [Puente] formations are expected to be related more to softening and weakening, especially in the sticky shale zones, rather than to water volume."

Oil Seeps (LACFCD Sacatella Tunnel) Figure E-5

+1

The wells pumped about 20 gpm each from about 25 feet of overlying Old alluvium and 20 feet of Puente Formation. The water was pumped to the surface, and the contractor believes this kept tunnel inflow to a minimum, i.e., "dripping" condition rather than 10 to 100 gpm local inflows.

The following ground water information on transmissibility, permeability and artesian conditions in Old alluvium and Puente Formation at the Sacatella tunnel is not a substitute for dewatering pump tests for the Metro Rail Project. However, the data do provide some relative measure of inflow rates that could be locally applicable to the Metro Rail alignment. The following is excerpted from the LACFCD Geologic Report, pages 7 and 8:

Ground water was found in all [LACFCD] borings. However, due to drilling fluid in the boring, it was not possible to accurately determine the depth at which ground water was first encountered or if there were artesian or perched water table conditions. The initial soils investigations were conducted by the City of Los Angeles between 1967 and 1972, using augers which did not require drilling fluid. Logs of these borings indicated, at least in several locations, that water is perched in the unconsolidated sediments [Old alluvium] overlying the bedrock and is also found within the bedrock [Puente formation, Unit Cw], often under minor artesian head. Artesian head in the vicinity of Boring No. 3 was noted previously by the City as being particularly high with water rising from a depth of 33 feet to 13 feet overnight. Other borings in the vicinity had artesian heads of only 1 to 2 feet (City of Los Angeles Soils Investigation report, Test Boring Nos. 48, 48A and 48B). Static water levels in all borings were well above the top of the proposed tunnel, indicating that the excavation will probably be conducted under saturated conditions. The measurements for individual borings are listed in Table E-2.

Core samples [LACFCD] of the bedrock appeared to have extremely low permeabilities; hence it is presumed that ground water movement occurs through bedding planes, fracture fissures, rather than through pores in the rock. Estimates of bedrock transmissibility and permeability were made using the recovery time of the water surface in the borings after air jetting. The results are listed in Table E-2. The Coefficient of Transmissibility "T" ranges from 0.41 to 7.66 and is defined as the rate of flow in gallons per day through a vertical section of the water-bearing material, in which the width is 1 feet and the height is the measured thickness. The Coefficient of Permeability "p" is the flow in gallons-per-day through a cross-sectional area of 1 square foot of saturated material. The average coefficient of permeability was calculated from the coefficient of transmissibility by dividing this value by the footage thickness of the saturated material.

E.4.9 Stand-up Time, Slabbing, Overbreak

Stand-up time was more than 2 to 3 hours prior to placing liner. Slabbing of flat-lying or steeply dipping beds did not occur. No overbreak was recorded, but minor air slaking developed due to the high air ventilation. Mr. Glan-ville called this "ideal" tunneling formation, except for the hard cemented layers.

TABLE E-2

LACFCD BORING No.	APPROXIMATE ^a	DEPTH (ft)	DISTANCE TO WATER (ft)	SATURATED MATERIAL OVERLYING TUNNEL (ft)	ESTIMATED YIELD (gpm)	ESTIMATED ^D	ESTIMATED ^C	MAXIMUM ^d GAS <u>READING</u>	GROUND WATER SULFATE CONTENT (ppm)
1	292+70	47	10.5	9.5	0,15	2,43	0.07	17	66
2	287+58	52,25	7.2	19.0	0.49	4.96	0.02	12	778
3	282+46	53	10.0	15.0	1.23	7.66	0.18	0	928
4	277+00	47.17	9.2	10.0	0.09	0.63	0.02	7	1,350
5	272+60	50,75	10.6	12.2	0.10	1.13	0.03	20	154
6	229+94	54,08	17.6	5.5	0.03	0.41	0.01	0	252
7	227+27	59	23.7	4.3	0.17	2.28	0.06	0	182

COEFFICIENTS OF TRANSMISSIBILITY AND PERMEABILITY LACFCD (1973)

- ^a Refer to LACFCD Dwg. Nos. 364-1102-D7.6 and D8.4-8-7.
- ^b T = Coefficient of Transmissibility in gallons per day per foot.
- $^{\rm C}$ p = Coefficient of Permeability in gallons per day per square foot.
- ^d In percent of Lower Explosive Limit (LEL).

E.4.10 Ground Settlement Above Tunnel

The tunnel was excavated within 40 feet below the street surface in a residential area with one hotel. No settlement was noted, or reported, by the residents. No known complaints of noise, except at portals, were registered by the residents living above the tunnel during construction.

E.4.11 Local Caving Problem

An abandoned 2-foot-diameter auger hole was penetrated. The hole caved upward to within 6 feet of the ground surface. The contractor drilled a hole from the surface into the cavern and filled the cavern with pea gravel prior to advancing the tunnel. The cave did not "daylight" to the surface.

E.4.12 Portal Excavation Problems

Both portal excavations encountered local, very hard sandstone interbeds which could not be excavated by small equipment. Therefore, heavy equipment (D-9 Caterpillar) was required. These are part of the "changed conditions" (as yet unsettled), according to Mr. Glanville.

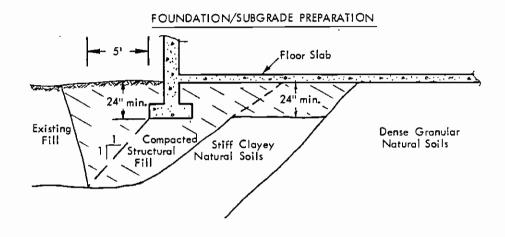
E.4.13 Ground Loading and Estimated Support Requirements

The following ground loading and estimated support requirements were reported (Wright, 1975, p.5 and 6):

Continuous light tunnel support will be necessary whether the tunnels are driven by boring machine or by drilling and blasting. The need for immediate support may often be marginal if the tunnel is machinebored. However, the shales will need support eventually because of stress relief fracturing and slaking. Slaking was evident in a small percentage of the cores. The generally short core lengths are probably due to stress relief. Ground loading assumptions in the specifications seem unreasonably high at 3370 psf. Maximum estimated loads for this study are 2400 psf, where the ground is wet and highly unstable. Most loads should be on the order of only 800 to 1600 psf. Lateral loading up to possibly 800 psf may build up in the wet unstable reaches.

Six-inch, 15.5# steel horseshoe sets spaced 3 to 5 feet apart will hold the estimated loads. A few invert struts may be necessary where the formation is extensively softened by ground water, especially through the low bedrock cover reaches.

Earthwork Recommendations


The following guidelines are recommended for earthwork associated with site development. Recommendations for dewatering and major temporary excavations are presented in the text sections 6.2 and 6.4, respectively.

- Site Preparation (surface structures): Existing vegetation, debris, and soft or loose soils should be stripped from the areas that are to be graded. Soils containing more than 1% by weight of organics may be re-used in planter areas, but should not be used for fill beneath building and paved areas. Organic debris, trash, and rubble should be removed from the site. Subsoil conditions on the site may vary from those encountered in the borings. Therefore, the soils engineer should observe the prepared graded area prior to the placement of fill.
- [°] <u>Minor Construction Excavations</u>: Temporary dry excavations for foundations or utilities may be made vertically to depths up to 5 feet. For deeper dry excavations in existing fill or natural materials up to 15 feet, excavations should be sloped no steeper than 1:1 (horizontal to vertical). Recommendations for major shored excavations are presented in Section 6.4.
- [°] Structural Fill and Backfill: Where required for support of near surface foundations or where subterranean walls and/or footings require backfilling, excavated onsite granular soils or imported granular soils are suitable for use as structural fill. Loose soil, formwork and debris should be removed prior to backfilling the walls. Onsite soils or imported granular soils should be placed and compacted in accordance with "Recommended Specifications for Fill Compaction". In deep fill areas or fill areas for support of settlement-sensitive structures, compaction requirements should be increased from the normal 90% to 95% or 100% of the maximum dry density to reduce fill settlement.

Where space limitations do not allow for conventional backfill compaction operations, special backfill materials and procedures may be required. Sand-cement slurry, pea gravel or other selected backfill can be used in limited space areas. Sand-cement slurry should contain at least 1-1/2 sacks cement per cubic yard. Pea gravel should be placed in a moist condition or should be wetted at the time of placement. Densification should be accomplished by vibratory equipment; e.g., hand-operated mechanical compactor, backhoe mounted hydraulic compactor, or concrete vibrator. Lift thickness should be consistent with the type of compactor used. However, lifts should never exceed 5 feet. A soils engineer experienced in the placement of pea gravel should observe the placement and densification procedures to render an opinion as to the adequate densification of the pea gravel.

If granular backfill or pea gravel is placed in an area of surface drainage, the backfill should be capped with at least 18 inches of relatively impervious type soil; i.e., silt-clay soils.

[°] Foundation Preparation: Where foundations for near surface appurtenant structures are underlain by existing fill soils, the existing fill should be excavated and replaced with a zone of properly compacted structural fill. The zone of structural fill should extend to undisturbed dense or stiff natural soils. Horizontal limits of the structural fill zone should extend out from the footing edge a distance equal to 5 feet or 1/2 the depth of the zone beneath the footing (a 1:1 ratio), whichever is larger. The structural fill should be placed and compacted as recommended under "Structural Fill and Backfill".

- Subgrade Preparation: Concrete slabs-on-grade at the subterranean levels may be supported directly on undisturbed dense materials. The subgrade should be proof rolled to detect soft or disturbed areas, and such areas should be excavated and replaced with structural fill. If existing fill soils are encountered in near surface subgrade areas, these materials should be excavated and replaced with properly compacted granular fill. Where clayey natural soils (near existing grade) are exposed in the subgrade, these soils should be excavated to a depth of 24 inches below the subgrade level and replaced with properly compacted granular fill. Where dense natural granular soils are exposed at slab subgrade, the slab may be supported directly on these soils. All structural fill for support of slabs or mats should be placed and compacted as recommended under "Structural Fill and Backfill".
- Site Drainage: Adequate positive drainage should be provided away from the surface structures to prevent water from ponding and to reduce percolation of water into the subsoils. A desirable slope for surface drainage is 2% in landscaped areas and 1% in paved areas. Planters and landscaped areas adjacent to the surface structures should be designed to minimize water infiltration into the subsoils.
- ^o <u>Utility Trenches</u>: Buried utility conduits should be bedded and backfilled around the conduit in accordance with the project specifications. Where conduit underlies concrete slabs-on-grade and pavement, the

remaining trench backfill above the pipe should be placed and compacted in accordance with "Structural Fill and Backfill".

- Recommended Specifications for Fill Compaction: The following specifications are recommended to provide a basis for quality control during the placement of compacted fill.
 - 1. All areas that are to receive compacted fill shall be observed by the soils engineer prior to the placement of fill.
 - 2. Soil surfaces that will receive compacted fill shall be scarified to a depth of at least 6inches. The scarified soil shall be moistureconditioned to obtain soil moisture near optimum moisture content. The scarified soil shall be compacted to a minimum relative compaction of 90%. Relative compaction is defined as the ratio of the inplace soil density to the maximum dry density as determined by the ASTM D1557-70 compaction test method.
 - 3. Fill shall be placed in controlled layers the thickness of which is compatible with the type of compaction equipment used. The thickness of the compacted fill layer shall not exceed the maximum allowable thickness of 8 inches. Each layer shall be compacted to a minimum relative compaction of 90%. The field density of the compacted soil shall be determined by the ASTM D1556-64 test method or equivalent.
 - 4. Fill soils shall consist of excavated onsite soils essentially cleaned of organic and deleterious material or imported soils approved by the soils engineer. All imported soil shall be granular and non-expansive or of low expansion potential (plasticity index less than 15%). The soils engineer shall evaluate and/or test the import material for its conformance with the specifications prior to its delivery to the site. The contractor shall notify the soils engineer 72 hours prior to importing the fill to the site. Rocks larger than 6 inches in diameter shall not be used unless they are broken down.
 - 5. The soils engineer shall observe the placement of compacted fill and conduct inplace field density tests on the compacted fill to check for adequate moisture content and the required relative compaction. Where less than 90% relative compaction is indicated, additional compactive effort shall be applied and the soil moisture-conditioned as necessary until 90% relative compaction is attained. The contractor shall provide level testing pads for the soils engineer to conduct the field density tests on.

Appendix G

Geotechnical Reports References

•

ι

|

-

•)

-

REPORT No.	REPORT OATE	LOCATION	CONSULTANT
12	05/23/67	3130 Wilshire	LeRoy Crandall & Associates
13	08/28/50	Northeast corner Vermont & Wilshire	L.T. Evans
13a	02/09/59	North of northwest corner Vermont & Wilshire	L.T. Evans
14	07/15/69	Southwest corner New Hampshire & Wilshire	LeRoy Crandall & Associates
15	08/27/79	Corner of Wilshire & Catalina	LeRoy Crandall & Associates
16	09/21/66	South of Wilshire at Mariposa	L.T. Evans
17	12/29/67	Block bounded by Kingsley, Wilshire, Ardmore and Seventh	LeRoy Crandall & Associates
18	09/11/68	North of Wilshire between Oxford & Serrano	LeRoy Crandall & Associates
19	06/10/69	North of Wilshire between Oxford & Serrano	P&C Drilling Company
20	02/16/54	Northeast corner Norton & Wilshire	L.T. Evans
21	11/15/81	4200 Wilshire Boulevard at Lorraine	LeRoy Crandall & Associates
22	03/21/67	4311 Wilshire at Windsor	LeRoy Crandall & Associates
23	04/14/47	Block bounded by Wilshire, Mansfield, Carling and Citrus	L.T. Evans
24	03/04/47	Northeast corner Wilshire & Curson	L.T. Evans
25	04/22/47	Northeast corner Wilshire & Sierra Bonita	L.T. Evans
26	10/27/69	Block bounded by Wilshire, Masselin, Eighth and Curson	L.T. Evans

;