

23 282763

Converse Consultants Earth Sciences Associates Geo/Resource Consultants

GEOTECHNICAL REPORT

METRO RAIL PROJECT Design Unit A410

ΒY

CONVERSE CONSULTANTS, INC. EARTH SCIENCES ASSOCIATES GEO/RESOURCE CONSULTANTS

JUNE 1984

MTA LIBRARY

Funding for this Project is provided by grants to the Southern California Rapid Transit District from the United States Department of Transportation, the State of California and the Los Angeles County Transportation Commission.

> General Geotechnical Consultant Converse Consultants, Inc. 126 West Del Mar Boulevard Pasadena, California 91105 Telephone 213 795-0461

Converse Consultants Earth Sciences Associates Geo/Resource Consultants

June 29, 1984

Metro Rail Transit Consultants 548 South Spring Street Los Angeles, California 90013

Attention: Mr. B.I. Maduke, Senior Geotechnical Engineer

Gentlemen:

This letter transmits our final geotechnical investigation report for Design Unit A410 prepared in accordance with our Contract No. 503 agreement dated September 30, 1983 between Converse Consultants, Inc. and Metro Rail Transit Consultants (MRTC). This report provides geotechnical information and recommendations to be used by design firms in preparing designs for Design Unit A410.

Our study team appreciate the assistance provided by the MRTC staff, especially Mr. B.I. Maduke. We also want to acknowledge the efforts of each member of the Converse team, in particular Howard A. Spellman, Jr.

Respectfully submitted,

CONVERSE CONSULTANTS, INC.

Robert M. Pride, Senior Vice President RMP:n

Dist: 5/Addressee

MTA LIBRARY

General Geotechnical Consultant Converse Consultants, Inc. 126 West Del Mar Boulevard Pasadena, California 91105 Telephone 213 795-0461

Robert M. Pride Senior Vice President

This report has been prepared by CCI/ESA/GRC under the professional supervision of the principal soils engineer and engineering geologist whose seals and signatures appear hereon.

The findings, recommendations, specifications or professional opinions are presented, within the limits prescribed by the client, after being prepared in accordance with generally accepted professional engineering and geologic principles and practice. There is no other warranty, either express or implied.

Howard A. Spellman, Jr.

Principal Engineering Geologist

MTA LIBRAR

TABLE OF CONTENTS

-

SECTION	1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	EXECUTIVE SUMMARY1GENERAL1GROUND COVER1MIXED-FACE CONDITIONS1BEDROCK UNITS1GROUND WATER2FAULTS2GAS AND OIL2DESIGN FOR EARTHQUAKES2LIQUEFACTION POTENTIAL2
SECTION	2.0	INTRODUCTION
SECTION	3.0 3.1 3.2	
SECTION	4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7	FIELD EXPLORATION AND LABORATORY TESTING6GENERAL6BORINGS6GEOPHYSICAL MEASUREMENTS6OIL AND GAS ANALYSES7GEOTECHNICAL LABORATORY TESTING7WATER QUALITY ANALYSES7PETROGRAPHIC ANALYSES7
SECTION	5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	SUBSURFACE CONDITIONS8GENERAL DESCRIPTION9ALLUVIUM95.2.1 Hollywood/Cahuenga Station Alluvium (A350)95.2.2 Highland Avenue Alluvium (A410)95.2.3 Universal City Station Alluvium (A425)11TOPANGA FORMATION (Middle Miocene)13TOPANGA FORMATION (Tt)15TOPANGA FORMATION (Tt scgl)16TOPANGA FORMATION (Tb)17GROUND WATER19PUMP TEST19

.

•

.

TABLE OF CONTENTS

1

SECTION	6.0 6.1 6.2	FAULTS
		6.2.1Hollywood Fault Zone - Stations 758± to 764±226.2.2Hollywood Bowl Fault23
		6.2.3 Los Angeles City Faults - Stations 844+00, 847+00 and 851+00
		6.2.4 Unnamed Fault No. 1 - Station 866+00
		6.2.5 Boring 32-2 Shear Zone - Station 873+50
		6.2.6 Unnamed Fault No. 2 - Station 894+50
		6.2.7 Boring 331- Fault - Station 901+50
		6.2.8 Benedict Canyon Fault - Station 921+50 and 922+50
	6.3	STRATIGRAPHIC, GROUND WATER AND TUNNELLING CONDITIONS 25 6.3.1 Station 766+50 and 800+50
		(3,400, Drawings 2 and 3)
		6.3.2 Station 806+00 and 866+00 (6,000 feet, Drawings 3 and 4)
		6.3.3 Station 866+00 and 893+00 (2,700 feet, Drawings 4 and 5)
		6.3.4 Station 893+00 and 930+00
	C A	(3,700 feet, Drawings 5 and 6)
	6.4	
		6.4.2 Highland Avenue Alluvial Channel 39
		6.4.3 Universal City Station Alluvium
		6.4.4 Criteria for Dewatering System 40
	6.5	GAS AND OIL
	6.6	SPECIAL TUNNELLING PROBLEM AREAS
	6.7	
	6.8	LIQUEFACTION POTENTIAL
	6.9	SUPPLEMENTARY GEOTECHNICAL SERVICES

REFERENCES

1

•

LIST OF FIGURES

.

FIGURE No.		TITLE		PAGE
6-1	EXAMPLES OF STRAT	IGRAPHIC VARIATIONS	5	27
6-2	EXAMPLES OF STRAT	IGRAPHIC VARIATIONS	5	28
6-3	EXAMPLES OF STRAT	IGRAPHIC VARIATIONS	· · · · · · · · · · · · · · · · · · · ·	29
6-4	EXAMPLES OF STRAT	IGRAPHIC VARIATIONS	5	30
6-5	EXAMPLES OF STRAT	IGRAPHIC VARIATIONS	S	31
6-6	EXAMPLES OF STRAT	IGRAPHIC VARIATIONS	S	33
6-7	EXAMPLES OF STRAT	IGRAPHIC VARIATIONS	5	36
6- 8	EXAMPLES OF STRAT	IGRAPHIC VARIATIONS	S	37
6-9	EXAMPLES OF STRAT	IGRAPHIC VARIATIONS	S	38

,

- LIST OF TABLES

-

*

TABLE No.		PAGE
5-1	ALLUVIUM MATERIAL PROPERTIES SELECTED FOR STATIC DESIGN	10
5-2	TOPANGA BEDROCK MATERIAL PROPERTIES	14
5-3	RQD VARIATIONS - BASALT	18
5-4	GROUND WATER OBSERVATION WELL DATA	20

.

TABLE OF CONTENTS

DRAWING 1 - VICINITY MAP DRAWING 2 - LOCATION OF BORINGS AND GEOLOGIC SECTION DRAWING 3 - LOCATION OF BORINGS AND GEOLOGIC SECTION DRAWING 4 - LOCATION OF BORINGS AND GEOLOGIC SECTION DRAWING 5 - LOCATION OF BORINGS AND GEOLOGIC SECTION DRAWING 6 - GEOLOGIC EXPLANATION

- APPENDIX A FIELD EXPLORATION
- APPENDIX B GEOPHYSICAL EXPLORATION
- APPENDIX C GEOTECHNICAL LABORATORY TESTING
- APPENDIX D WATER QUALITY ANALYSIS
- APPENDIX E PUMP TEST RESULTS
- APPENDIX F PREVIOUS TUNNELLING EXPERIENCE
- APPENDIX G EARTHWORK RECOMMENDATIONS
- APPENDIX H GEOTECHNICAL REPORTS REFERENCES
- APPENDIX I PETROLOGY

Section 1.0

Executive Summary

1.0 EXECUTIVE SUMMARY

1.1 GENERAL

This report presents the results of our geotechnical investigation for Design Unit A410, the Santa Monica Mountain tunnel. The purpose of the investigation is to provide geotechnical information to be used by design firms in preparing designs for the project. Although this report may be used for construction purposes, it is not intended to provide all of the information that may be required to construct the project. Construction methods and type(s) of excavation equipment for the tunnel, cross-passages, and vent shafts are being prepared by the design engineer.

The construction features about 3 miles of twin bore tunnels, between station locations, having an outside diameter of approximately 19 feet.

1.2 GROUND COVER

The minimum ground cover above the crown is 15 feet, and the maximum 500 feet. Caltrans piles for the Hollywood Freeway near Station $792\pm$ may intersect the tunnel. At Station 867+00, the Metro Rail Tunnel passes above the Los Angles City Sewer tunnel with about 10 feet of cover.

1.3 MIXED-FACE CONDITIONS

Mixed-face alluvial-bedrock tunnelling conditions will be encountered near the Hollywood/Cahuenga Station, Highland Avenue, Hollywood Bowl Station and Universal City Station before entering fully bedrock tunnelling conditions. Except for the Hollywood Bowl Station, dewatering of alluvium should be anticipated because ground water inflows are believed to be large.

1.4 BEDROCK UNITS

The majority of the tunnel alignment will pass through the following Topanga Formation bedrock units:

- 1. Topanga Formation (Tt) "low hardness", interbedded siltstone, claystone and sandstone
- 2. Topanga Formation (Tt scgl) "hard", sandstone and conglomerate
- 3. Topanga Formation (Tb)- "hard", basalt.

There are considerable variations in hardness and unconfined compressive strengths within each bedrock unit; i.e.,

UNIT	RANGE (psi)	"AVERAGE" (psi)
Tt	7 to 28,700	1000
Ть	980 to 35,600	4000
Tt scgl	350 to 33,600	2000

-1-

1.5 GROUND WATER

Ground water levels lie above the tunnel the entire length. Bedrock units are judged to be tight, and ground water inflows, in the main, should be nuisance dripping that can be handled with invert drains and sump pumps. Local 100 to 200 gpm inflows of short duration should be expected from bedrocks, based on records from the Los Angeles Sewer Tunnel excavated in 1955. Mineral analyses of water from our borings indicate total dissolved solids range from 511 ppm to 5,996 ppm.

1.6 FAULTS

The tunnel line will cross the projected traces of several known faults which could influence the physical properties of the rock and ground water conditions at tunnel grade. None of the faults crossing design Unit A410 are known to be active. The nearest fault judged to be active is the Hollywood fault, located about 300 feet south of Design Unit A410.

1.7 GAS AND OIL

The entire tunnel line segment in Design Unit A410 is judged to be non-gassy and devoid of oil according to boring records along this segment.

1.8 DESIGN FOR EARTHQUAKES

Design procedures and criteria for underground structures under earthquake loading conditions are defined in the Southern California Rapid Transit District (SCRTD) report entitled "Guidelines for Design of Underground Structures", dated 1984. Evaluations of the seismologic conditions which may impact the project and the probable and maximum credible earthquakes, which may be anticipated in the Los Angeles area, are described in Converse's report to SCRTD entitled "Seismological Investigation & Design Criteria", dated May, 1983. The 1984 report complements and supplements the 1983 report.

1.9 LIQUEFACTION POTENTIAL

The potential for liquefaction of alluvial materials at Design Units A350 (low to moderate), A415 (unlikely) and A425 (high) are discussed in the respective reports for these design units.

Section 2.0 Introduction

2.0 INTRODUCTION

This report presents the results of a geotechnical investigation for Design Unit A410. The subject design unit includes the proposed Santa Monica Mountain tunnel. This 3-mile tunnel will be part of the proposed 18-mile long Metro Rail Project (see Drawing 1, Vicinity Map). The purpose of the investigation is to provide geotechnical information to be used by design firms in preparing designs for the project. Although this report may be used for construction purposes, it is not intended to provide all the geotechnical information that may be required to construct the project. The work performed for this study included literature research, field reconnaissance, drilling and logging of exploratory borings, geologic interpretation, field and laboratory testing, engineering analyses, and the development of recommendations.

Additional geotechnical information on the Metro Rail Project is included in the following reports, some of which may pertain to Design Unit A410.

- [°] "Geotechnical Investigation Report, Metro Rail Project", Volume I -Report, and Volume II - Appendices, prepared by Converse Ward Davis Dixon, Earth Sciences Associates and Geo/Resource Consultants, submitted to SCRTD in November 1981: This report presents general geologic and geotechnical data for the entire project. The report also comments on tunneling and shoring experiences and practices in the Los Angeles area.
- "Geotechnical Report, Metro Rail Project, Design Unit A430," prepared by Converse Consultants, Inc., Earth Sciences Associates, and Geo/Resource Consultants, submitted to SCRTD in May 1984. This report presents the results of our findings for about two miles of subsurface track line proceeding south to north from the north end of the Universal City Station to the south end of the North Hollywood Station.
- Seismological Investigation & Design Criteria Metro Rail Project", prepared by Converse Consultants, Lindvall Richter & Associates, Earth Sciences Associates and Geo/Resource Consultants, submitted to SCRTD in May 1983: This report presents the results of a seismological investigation.
- "Geologic Notes and Log of Los Angeles City Sewer Tunnel", by David G. Campbell 1955; provides excellent description of geologic conditions encountered from drill and blast excavation along the alignment.
- "Rapid Transit System Backbone Route", Volume IV, Book 1, 2 and 3, prepared by Kaiser Engineers, June, 1962 for the Los Angeles Metropolitan Transit Authority. This report presents the results of a Test Boring Program for the Wilshire Corridor and logs of borings.
- "Report of Supplementary Alignment Rotary Borings, Metro Rail Project, Contract No. 2256-2," prepared by Converse Consultants, Inc., submitted to SCRTD in September 1983. This report presents the soil, rock, and ground water conditions encountered in 10 supplementary rotary wash borings drilled along the Metro Rail Project alignment. Results of laboratory tests performed on selected soil and rock samples are also summarized in the report.

"Report of Man-Size Auger Boring, Metro Rail Project, Contract No. 2256-2," prepared by Converse Consultants, Inc., submitted to SCRTD in August 1983. This report presents the soil, rock, oil/gas, ground water and other subsurface conditions encountered in 10 large-diameter or man-sized auger holes drilled at various locations along the Metro Rail Project alignment. Results of water quality analyses are also presented.

Pertinent data from the above reports have been incorporated in this report.

The design concepts discussed in this report are based on the following plans for the respective design units:

- A350 "Final Report for the Development of Milestone 10: Fixed Facilities" dated September 1983; CBD to North Hollywood Line Plans, dated September 1983; and Preliminary Site Plans, and Structure Plans and Sections for Hollywood/Cahuenga Station and Pocket Track, dated March, June and July 1983.
- A410 "Milestone 10, Definitive Fixed Facilities Plans, Alignment Plan and Profile", Sheets 15, 16, 17, 18 and 19 of 21, dated March, 1983.

"Final Report for the Development of Milestone 10: Fixed Facilities", dated September 1983.

- A415 "Final Report for the Development of Milestone 10, CBD to North Hollywood Line Plans, Sheets 7 and 8, dated July 1983; and Preliminary Site Plans, Plans and Sections for Hollywood Bowl Station, dated August, 1983.
- A425 "General Plans, CBD to North Hollywood, Contract No. A425, Universal City Station," Sheets 1 to 14 of 20, dated July 1983, and "Final Report for the Development of Milestone 10: Fixed Facilities," dated September 1983 and revised plans A-63 through A-66. These documents were prepared by SCRTD.

If the line and grade of the proposed tunnel, and related stations, are changed from that shown, this report will not be completely applicable to the changed conditions.

-4-

Section 3.0

Site and Project Description

3.0 SITE AND PROJECT DESCRIPTION

3.1 SITE DESCRIPTION

The proposed Santa Monica Mountain tunnel line starts at the north end of Hollywood/Cahuenga Station's Pocket Track at about Elevation 340 feet (Drawing 2). The line curves westward, beneath the Hollywood Freeway, rising at a steep grade to about Elevation 460 feet at the south end of the Hollywood Bowl Station (Drawing 3). The line continues through the Santa Monica Mountains, from the north end of the Hollywood Bowl Station, rising at a gentle grade to about Elevation 520 feet near tunnel Station 890+00 (Drawings 3, 4 and 5). From here, the line descends at a gentle grade to about Elevation 500 feet as it enters the south end of the Universal City Station (Drawings 5 and 6).

Ground cover above the tunnel crown ranges from a minimum of about 15 feet beneath Highland Avenue (Drawing 3) to a maximum of about 500 feet of ground cover in the core of the Santa Monica Mountains in the vicinity of Station 866+00 (Drawing 4). The ground surface above portions of the tunnel line is moderately to well developed.

3.2 PROPOSED TUNNEL

The construction features about 3 miles of twin bore tunnels, between Station locations, having an outside diameter of about 19 feet. Numerous cross passages are planned at locations shown on Drawings 2 through 6, inclusive. Two vent structures are located at about Stations 820+00 (Drawing 3) and 874+00 (Drawing 4). Possible alternate vent structure locations are also shown on Drawings 3 and 4.

Section 4.0

Field Exploration and Laboratory Testing

4.0 FIELD EXPLORATION AND LABORATORY TESTING

4.1 GENERAL

The information presented in this report is based primarily upon field and laboratory investigations carried out in 1981 and 1983. This information was derived from field reconnaissance, borings, geologic reports and maps, ground water measurements, field geophysical surveys, ground water quality tests, and laboratory tests on soil and rock samples.

4.2 BORINGS

A total of 31 exploratory boreholes have been drilled at or in relatively close proximity to the proposed tunnel of Design Unit A410. These are:

Nine rotary wash type borings:

28-8, 29A, 29B, 29C, 30A, 31-6, 31-7, 34A, and 34-1

19 NX diamond core borings:

CEG-29, 29-1, 29-2, 29-3, CEG-30, CEG-31, 31-1, 31-2, 31-3, 31-4, 31-5, 32-1, CEG-32, 32-2, CEG-32A, 33-1, 33-2, CEG-33 and CEG-34

Two 36-inch diameter man-sized auger borings:

30B and 34C

One pump test boring (near Universal City Station).

Locations of all the borings used in the interpretation of the subsurface conditions present along the proposed tunnel are shown in Drawings 2 through 6. A detailed description of the field procedures employed in logging the boreholes as well as the edited field logs of all the borings are included in Appendix A. Some water pressure test results are also in Appendix A.

Ground water observation wells (piezometers) were installed in several of the borings drilled at or near the tunnel. Free water was also observed in the man-size auger borings. A summary of the ground water levels measured in the borings is presented in Section 5.7.

4.3 GEOPHYSICAL MEASUREMENTS

Downhole and crosshole compression and shear wave velocity surveys were made in Boreholes CEG-31 and CEG-34 during the 1981 geotechnical investigation.

The downhole survey was conducted down to a depth of about 200 feet, and the crosshole survey was performed in a borehole array down to a depth of about 100 feet. The results of the downhole and crosshole surveys are summarized in Appendix B in addition to a discussion of the procedures employed in the field to perform these surveys.

-6-

4.4 OIL AND GAS ANALYSES

Strong natural gas odors and oil were not detected during the drilling and logging of the borings located at or near the tunnel. Occasional oil films appeared in the drilling fluid during drilling of a few borings.

Some organic type odors were detected in man-size auger boring 34C and several of the rotary-wash borings. However, these odors have been attributed to the decay of roots and wood fragments in the Alluvial soils.

4.5 GEOTECHNICAL LABORATORY TESTING

A laboratory testing program was performed on representative soil and rock samples. These consisted of classification tests, consolidation tests, triaxial compression tests, unconfined compression tests, point load tests, direct shear tests, and permeability tests.

About 70% of the unconfined compressive tests failed along bedding planes.

Appendix C summarizes the testing procedures and presents detailed results of the testing program performed as part of the Design Unit A410 investigation. Appendix C also presents some results of laboratory testing programs for Design Units A350, A415, A425 as well as A410.

4.6 WATER QUALITY ANALYSES

Mineral analyses have been performed on water samples obtained from Borings 29, 29-1, 29-2, 29-3, 30, 30B, 31, 32, 32A, 33, 33-1 and 33-2. The results of these tests are presented in Appendix D.

4.7 PETROGRAPHIC ANALYSES

The results of the petrographic analyses performed on selected rock samples obtained from Santa Monica Mountain cores in Borings CEG-30, 31, 32 and 32-A are presented in Appendix I, "Petrology".

Section 5.0

Subsurface Conditions

5.0 SUBSURFACE CONDITIONS

5.1 GENERAL DESCRIPTION

For purposes of our engineering geology evaluation, the subsurface materials were grouped into the following units:

- 1. Alluvium (A_1/A_2)
- 2. Topanga Formation (Tt) "low hardness", interbedded siltstone, claystone and sandstone
- 3. Topanga Formation (Tt scgl) "hard", sandstone and conglomerate
- 4. Topanga Formation (Tb)- "hard", basalt.

We want to emphasize at the outset that bedrocks of the Topanga Formation vary in hardness within each unit. For example, the bedrock unit classified as "low hardness" contains "hard" strata and "hard" cobbles. Also, bedrock classified as "hard" contains weak intervals of "low hardness".

"Low hardness" is defined in this report as bedrock that can be gouged deeply, or carved, with a pocket knife. Unconfined compressive strengths "average" less than 1000 psi but range from 7 to 4700 psi with one granite cobble up to 28,700 psi. The bulk of the interbedded siltstone, claystone and sandstone unit (designated Tt on Drawings 2 through 6, inclusive) fits this classification. However, we want to emphasize that there are some "hard" interbeds within the Tt unit; for example, near tunnel grade in Boring 29-2 at 95 feet, Boring 29-3 at 98 feet, and Boring 33-1 between 253 to 270 feet.

"Hard" is defined in this report as basalt and sandstone/ conglomerate bedrock that can be scratched with difficulty; that is, the scratch produces only a little powder, and the scratch is often faintly visible. Unconfined compressive strengths average 2000 to 4000 but range from 340 to 9700 psi. The bulk of the sandstone/ conglomerate unit (designated Tt scgl on Drawings 4 and 5), as well as the basalt unit (designated Tb on Drawings 3 and 4) fits this classification. However, we again want to emphasize there are "low hardness" intervals within the basalt and sandstone/conglomerate units near tunnel grade; for example, basalt in Boring 31-5 at 104 feet, and sandstone/conglomerate in Boring CEG 32A between 260 to 295 feet.

The range of hardness is best illustrated in the summary plots on Figures C-1, C-2, C-3 and C-4 (Appendix C).

About 95% of the recorded core breaks are due to natural fractures; the balance are mechanical breaks. Borings recorded wide variations in Rock Quality Designations (RQD) (Deere, 1966).

RQD, as defined in this report, is the percentage of core 4 inches or longer obtained from a coring run.

For example: RQD is poor to fair at the south end of the Hollywood Bowl Station and good to excellent near the north end of the Station. We believe the RQD is better at the north end of the station because this end is farther from the Hollywood Bowl fault zone. Mountain building (uplift) forces that created the Santa Monica Mountains contributed to discontinuities (fractures) in all borings along the tunnel line.

The following paragraphs present engineering descriptions of each of these subsurface materials. Engineering parameters assigned to these alluvial units are in Table 5-1 (Alluvial Material). The laboratory testing program and laboratory test results are presented in Appendix C.

Laboratory testing of the bedrock for this study has generally been limited to unconfined compression tests and point load tests performed during this investigation (Table C-2, Appendix C).

5.2 ALLUVIUM

During the field program for this investigation and neighboring design units, the contact between Young and Old Alluvium has been difficult to identify since the soils in these two deposits are generally very similar. However, considering the close proximity of the site to the Santa Monica Mountains, it is concluded that the alluvial deposits at the north and south ends of the tunnel line are relatively young (geologically speaking). Therefore, for purposes of this report, all references to alluvial deposits should be assumed to mean Young Alluvium.

Alluvial material properties for Design Units A350, A410, A415 and A425 are summarized on Table 5-1 and are described in the following sections.

5.2.1 Hollywood/Cahuenga Station Alluvium (A350)

The alluvial soils encountered at the boring locations generally consisted of a mixture of coarse- and fine-grained soils to depths of 50 to 65 feet underlain by predominately coarse-grained soils. Near surface alluvium was predominately granular, medium dense to dense, consisting of sands, clayey sands and gravelly sands to depths up to 15 feet. The underlying soils were mixtures of clay and sand and were generally classified medium dense to dense clayey sand with some firm to stiff sandy clay. Coarse-grained alluvial soils encountered below depths of 50 to 65 feet included dense to very dense sands, gravelly sands and sandy gravel materials. This material may also contain zones of cobbles and boulders although none were encountered.

5.2.2 Highland Avenue Alluvium (A410)

The alluvium encountered at this site consisted primarily of silty, fine to medium sand with a trace of clay and fine gravel. However, at Boring 31-3, the material graded to a sandy silt with clay. The gravel content of the alluvium tends to increase within about 10 feet of the bedrock surface. Standard Penetration Test (SPT) results ranged from 5 to 77 in this soil unit but averaged approximately 33. Laboratory density tests carried out on samples from this unit generally indicated dry densities ranging between 95 and 105 pcf. Triaxial test results indicated effective stress friction angles

	A3	50	A410	A415	A425		
MATERIAL PROPERTY	FINE-GRAINED ALLUVIUM	GRANULAR ALLUVIUM	HIGHLAND AVENUE ALLUVIUM	ALLUVIUM	FINE-GRAINED ALLUVIUM	GRANULAR ALLUVIUM	
Moist Density Above Ground Water (pcf)	125	125	120	120	125	125	
Saturated Density (pcf)	130	130	125	1 25	130	130	
Effective Stress Strength							
ø' (degrees)	30	35	30	33	33	38	
c' (psf)	0	0	0	200	0	0	
Total Stress Strength							
ø (degrees)	15	-	20	25	20	-	
c (psf)	500	-	0	500	0	-	
Permeability (cm/sec)	10^{-3} to 10^{-6}	10^{-1} to 10^{-4}	10 ⁻³ to 10 ⁻⁶	10^{-2} to 10^{-4}	10^{-4} to 10^{-7}	10 ⁻³ to 10 ⁻⁵	
Vertical Compression Modulus (psf)	150•σ_v'	450•0 °	150*σ_v	260°σ,	300°σv1	500° σ _v , c	
Poisson's Ratio (non-saturated)	0.40	0.35	0.40	0.35	0.40	0.35	

TABLE 5~1 ALLUVIUM MATERIAL PROPERTIES SELECTED FOR STATIC DESIGN

a The total stress parameters should be used to determine the increase in undrained strength with depth for use in undrained strength analyses.

^b Modulus values are secant modulus at 1/2% strain.

^C σ_v, is the effective overburden pressure (psf) equal to effective density times overburden depth. Moist density should be used to determine σ_v, above the water table and submerged density (saturated density minus water density) should be used for the effective density of soils below the water table.

of 32° to 33° and total stress friction angles of 24° to 25°. Direct shear test results were generally higher, with friction angles ranging from 29° to 45°. The strength values of Table 5-1 are somewhat lower than may be expected for "granular" alluvium due to the high silt content of the soils at this site. Undrained modulus values from triaxial tests exhibited a moderate increase with consolidation pressure. Permeability tests performed on silty sand specimens from this unit indicated permeabilities on the order of 10° to 10° cm/sec; however, the permeability of the more gravelly soils generally present at the base of the unit is considered to be 10^{-2} to 10^{-3} cm/sec.

Man-size Boring 30B was drilled at the intersection of Highland Avenue and Odin Street (Drawing 3). The purpose was to observe alluvial channel deposits and ground water conditions.

- ° Facts and Figures Boring 30B ground Elevation 467 feet; drilled to a total depth of 32 feet.
- Material Types -

0- to 9-foot interval encountered artificial fill

9- to 15-foot interval encountered alluvial deposits consisting of sandy clay and boulders up to 1 foot in diameter, dense, moist, stiff to very stiff

27.5- to 32-foot interval encountered the Topanga bedrock formation consisting of moderately hard sandstone with beds dipping 72° northerly.

- Caving the boring stood well for its full depth, and no caving was observed.
- [°] Ground Water At a depth of 27.5 feet which is at the contact of the alluvial and bedrock material, a seep on the order of 1 gpm entered the north side of the boring, and another seep on the order of 1/2 gpm entered the east side of the boring. This suggests that ground water flowing on top of the alluvial bedrock contact is likely to occur along this segment of the tunnel route. The static water level in Boring 30B was 21.7 feet, 20 hours after completing the boring. This depth is about 6 feet above the bedrock contact, suggesting there is a slight head on the water, typical of alluvial channel tributaries.
- Water Quality The total TDS were 1290 ppm, and the pH was 7.6. This water might be classified as a calcium sulfate water. A general mineral analysis is presented in Appendix D.
- ° Gas No gas was detected by meter or odor in this boring.

5.2.3 Universal City Station Alluvium (A425)

The fine-grained alluvium at the site consists of alternating layers and lenses of sandy and silty clays, clayey and sandy silts, and clayey sands. SPT blow count measurements taken in these soils situated near or below the level of the ground water at the site range from 1 to 27 blows per foot and are typically between 10 and 20 blows per foot. These measurements and results of laboratory tests indicate that these soils range from very soft to stiff and very loose to medium dense below the ground water level but are generally firm to stiff and medium dense. Above the water table, these soils have SPT blow counts between 9 and 43 blows per foot with average values in the range of 20 to 25 blows per foot. These SPT data indicate that these shallower soils are stiff to very stiff and medium dense to dense.

Within this generally coarse-grained unit, the materials were predominantly silty fine to coarse sands and gravelly sands. Some of these deposits contain cobbles reported to be up to 6 inches in size. Borings drilled in close proximity to the station site also encountered sandy gravels. These materials generally overlie the bedrock; however, relatively thin, discontinuous layers of silty and poorly graded sand were also found to be present within the fine-grained alluvium. Results of Standard Penetration Tests (SPT) in these soils range from 11 to over 100 blows per foot with typical values between 20 to 50 blows per foot. These measurements indicate that these soils are generally medium dense to dense.

During the drilling of the rotary wash borings at the station site, some difficulty was experienced in the sampling of some of the fine-grained alluvium. As noted in the description of this material type, the SPT blow counts measured in some of the soils situated below the water table were exceptionally low and, in a few cases, the SPT sampler was advanced in the hole by the weight of the drill rod and/or the weight of the hammer. Sample recovery of these soils was also sometimes poor since the soil samples tended to "pull out" of the sampler.

Some difficulty was also experienced during the drilling of Boring 34-5. Caving of this hole was noted by the geologist at a depth of about 38 feet. During installation of the piezometer in this hole, the geologist indicated that the pea gravel placed around the PVC piezometer pipe either bridged in the hole or the hole caved in.

The behavior described above, as well as the results of laboratory tests, indicate that very soft and/or loose layers, lenses, and/or pockets of clayey and sandy materials are present within the fine-grained alluvium close to or below the ground water table.

One large-diameter borehole (Boring 34C) was drilled near this station site. This boring was drilled in Weddington Park on Valleyheart Drive, about 140 feet from the intersection of Bluffside Drive and Valleyheart Drive (see Drawing 6 for location of Boring 34C). This boring is located about 700 feet from the northern end of the Universal City Station structure. The ground surface at the location of Boring 34C is at approximately Elevation 552, which is about 21 feet lower than the ground surface elevation at the north end of the station site. The purpose of this boring was to determine water levels and depths of alluvium above bedrock.

Artificial fill was encountered in Boring 34C from the ground surface to a depth of 10.5 feet and consisted of loose to medium dense silty sand and sandy silt that contained a significant amount of concrete and asphalt rubble. The artificial fill was subject to caving and ravelling.

CCI/ESA/GRC

Between the depths of 10.5 and 26 feet in Boring 34C, alluvium consisting of sand and silty sand with 15% to 25% round cobbles was encountered. It began to cave excessively at a depth of 21 feet, where ground water was encountered. Upon reaching a depth of 26 feet, the hole caved back to 21 feet. Bedrock was not encountered during the drilling of this hole.

5.3 TOPANGA FORMATION (Middle Miocene)

Topanga bedrock material properties for Design Units A350, A410, A415 and A425 are summarized in Table 5-2.

The best general description of the Topanga bedrock formation in the vicinity of Cahuenga Pass is by Hoots (1930). Some excerpts we believe pertinent to the Santa Monica Mountain Tunnel are noted below:

The formation consists essentially of a thick, steeply dipping series of sandstone, conglomerate, and shale, together with a large amount of intrusive and extrusive basalt

The Topanga formation in this area is divisible into three rather distinct members - a lower one that consists essentially of soft coarse gray conglomerate and loose granitic sandstone; a middle one composed of massive, more indurated beds of brown conglomerate and fossiliferous sandstone associated with minor amounts of gray shale and a thick body of basalt of both intrusive and extrusive origin; and an upper, less resistant member that consists essentially of soft thin-bedded shale and sandstone but contains a few massive ledges of brown conglomerate sandstone.

Lower conglomerate member. - The lower member, of coarse detrital character, was derived in part from the granitic and metamorphic core of the range and was deposited upon its irregular surface. Largely because of the preexisting irregularities of this old surface this conglomerate member varies considerably in thickness ... this member is fairly uniform throughout and consists of a mass of soft light-colored granitic and arkosic sandstone with abundant embedded cobbles and boulders as much as 1 foot in diameter. These cobbles and boulders are commonly very well rounded and have a strikingly smooth and highly polished surface. For the most part they are very hard and consist of about equal proportions of granite and gneissic granite, hard dense porphyritic basalt and andesite, and clear varicolored quartzite of fine uniform texture

Middle conglomeratic sandstone and basalt member. - [Author's Note: designated It scgl and Tb on Drawings 3, 4 and 5) ... the middle member of massive sedimentary and basic igneous rocks ... is massive brown conglomeratic sandstone with a minor amount of thin-bedded sandstone and shale ... the base of this member is overlain by a prominent elongate body of basalt which is far from uniform in thickness ... the basalt is overlain by massive coarse sandstone and conglomerate, together with a subordinate amount of thin-bedded sandstone and shale. The upper part of this largely massive unit grades into finer and thinner bedded shale and sandstone, so that the contact between this middle member and the overlying less massive upper member ... is difficult to draw

One of the most significant features of the conglomeratic portion of this middle member is the striking difference between the boulders present in beds below the basalt and those characteristic of much of the 500 to 700 feet of beds which directly overlie the

	A350 UNIT		A410 UNIT		A415	A425
MATERIAL PROPERTY	Tt "Low Hardnes <u>s</u> "	Tt "Low Hardness"	Tb "Hard"	Tt scgl "Hard"	Tb "Hard"	Tt "Low Hardness"
Moist Density Above Ground Water (pcf)		-	155	130	155	130
Saturated Density (pcf)	130	130	155	135	155	130
Effective Stress Strength						
ø' (degrees)	28	28	-	-	-	28
c' (psf)	0	0	-	-	-	0
Total Stress Strength ^a						
ø (degrees)	15	12	-	-	-	12
c (psf)	2000	1500	-		-	1200
Unconfined Compressive Strength (psi)						
Average	14	1000	4000	2000	1500	30
Range	7 to 200	7 to 4700	980 to 9700	350 to 4100	340 to 2500	7 to 120
Point Load Tests ^b (psi)						
Average	50	2000	10,000	6000	2000	-
Range	20 to 300	80 to 28,700	1550 to 35,600	1800 to 33,600	400 to 11,100	-
Permeability (cm/sec)	10^{-3} to 10^{-7}	10^{-3} to 10^{-7}	-	-	-	10 ⁺⁶ to 10 ⁻⁷
Poisson's Ratio (non-saturated)	0.35	0.35	0.25	0.30	0.35	0.40
Vertical Compression Modulus ^C (psi)	1.4×10^4	1.4×10^4	5 x 10 ⁴	4 x 10 ⁴	4 x 10 ⁴	1.4×10^4

TABLE 5-2 TOPANGA BEDROCK MATERIAL PROPERTIES

a The total stress parameters should be used to determine the increase in undrained strength with depth for use in undrained strength analyses.

^b Estimated strength based on 25 times the Point Load Diametral Strength Index (Bieniawski, 1975).

^C Modulus values are secant modulus at 1/2% strain.

basalt. In the lower beds the cobbles and boulders are generally [Author's Note: very hard] well rounded and, like those of the underlying conglomerate, consist essentially of granite, granodiorite, dense andesite and basalt porphyry, and quartzites of various color. In the beds above the basalt, the most striking feature is the abundance of [Author's Note: friable) deeply weathered subangular boulders of basalt as large as 4 feet across ... in outcrops where only 10 feet of a bed is exposed it is not uncommon to find six or eight basalt boulders that average 1 foot in diameter

Upper thin-bedded shale and sandstone member. - [Author's Note: designated Tt on Drawings 2, 3, 5 and 6] ... an upper member ... is well exposed in street cuts southwest and northeast of Cahuenga Avenue and is composed, to a large extent, of soft thin-bedded brown and bluish-gray shale and fine-grained sandstone, although massive beds of soft brown and gray sandstone and conglomeratic sandstone also occur in the middle and upper parts, northeast of Cahuenga Avenue [Author's Note: The contact between the upper and middle member is gradational.]

5.4 TOPANGA FORMATION (Tt) "Low Hardness" interbedded siltstone. claystone and sandstone

The areal distribution of these rocks is shown on Drawings 2 through 6, inclusive. These rocks occupy the southern and northern portions of the tunnel line. The Hollywood Bowl fault (Drawing 3) rather sharply defines the contact between "low hardness" rocks (Tt) and "hard" basalt (Tb) at the southern end of the line.

The contact between "low hardness" rock and "hard" sandstone/conglomerate (Tt scgl) at the southern end of the line is not sharply defined (shown on Drawing 5 as a queried contact). This contact is not sharp because the contact is gradational in a northward direction; i.e., the deposits gradually grade from coarse-grained (gravelly conglomerates) to finer-grained (sandstone and siltstone) materials near the Universal City Station. This means there are likely to be some "hard" interbeds of conglomerate dispersed in the "low hardness" rocks north of the contact, as evidenced in Borings 33-1 and CEG-33.

Borings drilled into the "low hardness" interbedded siltstone, claystone and sandstone bedrocks were:

Southern end tunnel line -28-8, CEG-29, 29-A, 29-B, 29-1, 29-C, 29-2, 29-3, 30-B, CEG-30 Northern end tunnel line -

33-1, 33-2, CEG-33 (1100 feet east of tunnel line), CEG-34 (1200 feet west of tunnel line), 34-A, 34-1.

Bedrocks encountered in these borings are of friable to low hardness, with "average" unconfined compressive strengths on the order of 30 psi but ranging from 7 to 4700 (Table 5-2). Occasional (not pervasive) "hard" interbeds were recorded with unconfined compressive strengths of 4700 psi (Boring 29-2), 1400 psi (Boring 29-3) and 2700 psi (Boring 33-1).

Point load tests were performed on some cores during the drilling operation. From the standpoint of strength, the results were considerably higher than our laboratory's unconfined compression strengths. The point load test diametral strength index was multiplied by 25 as a conversion factor to compare with unconfined compression tests (see Table C-2, Appendix C). A few exceptionally high point load test strengths were recorded in the "low hardness" Tt unit in Borings CEG-33 and 33-1; i.e.,

BORING	DEPTH _(ft)	POINT LOAD TEST (psi)	REMARKS
CEG-33	84	28,100	Quartzite
	102	16,300	Conglomerate interbed
	112	14,600	Quartzite
33-1	260	28,700	Granite cobble
	287	18,000	Granite cobble

The above illustrates there is a wide range of rock strengths within the "low hardness" unit at the northern end of the tunnel line.

The "low hardness" interbedded siltstone, claystone and sandstones are generally intensely to little fractured, thinly bedded, friable to low hardness, moderately strong, deep to moderately weathered as defined in Table A-3, "Bedrock Description Terms" (Appendix A).

Boring 34 (see Drawing 5), located about 1200 feet west of the tunnel line, recorded an average shear wave velocity of 1400 fps and average compressional wave velocities of 6200 fps (Appendix B).

5.5 TOPANGA FORMATION (Tt scgl) "Hard" sandstone and conglomerate

Borings 32-2 and CEG-32A were drilled in the "hard" sandstone and conglomerate bedrocks.

Bedrocks encountered in these borings are moderately hard to hard, with unconfined compressive strengths ranging from 350 to 2965 psi (Boring 32-2) and 472 to 4100 psi (Boring CEG-32A). The "average" unconfined compression strength is believed to be 2000 psi (see Table 5-2).

The "hard" sandstone and conglomerate are intensely fractured (spaced 0.05 feet to 0.1 feet apart) to little fractured (spaced 1.0 foot to 3.0 feet apart), averaging moderately fractured (spaced 0.5 feet to 1.0 foot apart); other physical properties are moderately hard to hard, weak to strong and deep to little weathered, as defined in Table A-3 (Appendix A).

Generally, this unit is strongly cemented. However, Boring 32-2 encountered a sheared, weakly cemented siltstone matrix at tunnel grade. Very hard, gravel, cobbles and boulders of chert, quartzite and granite were embedded in this matrix which resulted in almost 0% recovery and very difficult diamond core drilling because the cobbles wobbled around in the hole (see Sections 6.2.5 and 6.3.3 for further discussion). Point load tests in Boring 32-2 indicate some individual granite cobbles in the conglomerate go as high as 33,000 psi (Table C-2, Appendix C), but these were located well above tunnel grade.

CCI/ESA/GRC

5.6 TOPANGA FORMATION (Tb) "Hard" basalt

Borings 31-1, CEG-31, 31-5, 31-6, 32-1 and CEG-32 were drilled into "hard" basalt. The basalt, in general, is hard, strong and little weathered, as defined in Table A-3 (Appendix A).

Bedrocks encountered in these borings are moderately hard to hard, with unconfined compressive strengths ranging from 980 to 9700 psi and "averaging" 4000 psi (see Table 5-2).

A few very high point load test strengths were recorded in the "hard" Tb unit in Borings 31-3, 32-1 and CEG-32; i.e.,

		POINT LOAD	
BORING	DEPTH	TEST	REMARKS
No.	(ft)	(psi)	KEPIARKO
31 - 1	69	11,100	Unfractured
32-1	393	10,900	-
	401	13,800	-
	406	26,100	Unfractured
	424	35,600	Unfractured
CEG-32	280	10,700	Unfractured
	307	11,200	Unfractured

The "hard" basalt bedrocks are intensely to little fractured, averaging moderately fractured (spaced 0.5 to 1.0 feet apart). Basalt in Boring 32-1, although hard, is intensely fractured (spaced 0.05 ft. to 0.1 ft. apart) at tunnel grade. There was considerable evidence in Boring 32-1 at tunnel grade of "spun" basalt core suggesting mechanical breaks. However, after careful examination and discussion with the geologist who logged the hole, we conclude the cores in Boring 32-1 were in the main "spun" along natural fracture breaks. "Spun" in this case means core rotating in the core barrel.

Boring CEG-31 downhole geophysical tests in basalt recorded average shear wave velocities of 4800 fps and average compressional wave velocities of 8800 fps (Appendix B).

Basalt in Borings 31-2 through 31-4 is intensely fractured (spaced 0.05 foot to 0.1 foot apart) to moderately fractured (spaced 0.5 foot to 1.0 foot apart). Basalt in Boring 31-5 is moderately fractured to little fractured (spaced 1.0 foot to 3.0 feet apart). Fractures nearer the Hollywood Bowl fault zone are weakly cemented with soft, secondary minerals, chlorite and talc. Thus, cores break more easily, and the RQD is generally poor to fair. Fractures in Boring 31-5, farthest from the Hollywood Bowl fault zone, are more strongly cemented, predominantly with quartz. Thus cores do not break readily, and the RQD is generally good. Table 5-3 shows RQD variations in basalt at various depths near the Hollywood Bowl.

TABLE 5-3

RQD VARIATIONS - BASALT

	RQD	APPROXIMATE DEPTH INTERVAL	BORING	RQD	APPROXIMATE DEPTH INTERVAL	BORING	RQD	APPROXIMATE DEPTH INTERVAL	BORING RQD No. (%)	APPROXIMATE DEPTH INTERVAL (ft)
	(%)	(ft)	No.	<u>(%)</u>	(ft)	<u>No.</u>	(%)	<u>(ft)</u> 21 - 26	$\frac{No.}{31-5}$ $\frac{(\%)}{96}$	13 - 17
31-2	96	35 - 37	31-3	17	46 - 51	31-4	76	21 - 26		
	41	37 - 42		68	51 - 56		84	26 - 32	100	17 - 27
	79	42 - 47		63	56 - 59		67	32 - 36	100	27 - 37
	0	47 - 51		68	59 - 64		58	36 - 41	98	37 - 45
Station Grade →	38	51 - 56		100	64 - 69	ļ	27	41 - 46	95	45 7 55
	28	56 - 59	Station Grade	÷ 83	69 - 74		33	46 - 51	79	_ 55 - 65
	32	59 - 63	4	60	74 - 79		61	51 - 56	100	65 - 75
	77	63 - 70		92	79 - 84	1	60	56 - 61	95	75 - 80
	43	70 - 76		45	84 - 89		60	61 - 66	62	80 - 84
	75	76 ~ 82		65	89 - 90		69	66 - 71	82	84 - 88
	34	82 - 85		84	90 - 95	1	84	71 - 76	65	88 - 96
	19	85 - 90		96	95 - 100		54	76 - 81	93	96 - 105
	_	<u> </u>	I				57	81 - 86	80	105 - 113
							75	86 - 91	Tunnel → 98	113 - 121
						Station Grade	÷ 90	91 - 100	87	121 - 131

97 131 - 150

L.

RQD AS RELATED TO ROCK-MASS PROPERTIES:

RQD (%)	DESCRIPTION	APPROXIMATE EQUIVALENT FRACTURE SPACING
0- 25	Very poor	Intensely
25- 30	Poor	Closely
30- 75	Fair	Moderately
75- 90	Good	Little
90-100	Excellent	Massive

If compared to rock tunnelling conditions, we believe the following Terzaghi Rock Condition Numbers (Drawing 7) would apply to the basalt (Terzaghi, 1946).

> Borings 31-2, 31-3, 31-4 and 32-1: Terzaghi No. 4 (moderately blocky and seamy) Terzaghi No. 5 (very blocky and seamy) Borings 31-5 and CEG-32: Terzaghi No. 3 (massive, moderately jointed) Terzaghi No. 4 (moderately blocky and seamy)

5.7 GROUND WATER

Ground water levels along the tunnel line were measured in borings. Table 5-4 presents ground water levels measured in these borings. Drawings 2, 3, 4, 5 and 6 show the known current water levels. Table 5-4 indicates ground water levels measured in piezometers have remained relatively constant for the period 1981 to 1984.

Mineral analyses of water obtained from Borings CEG-29, 29-1, 29-2, 29-3, CEG-30, 30-B, CEG-31, CEG-32, CEG-32A, CEG-33, 33-1 and 33-2 are presented in Appendix D. The total dissolved solids (TDS) in these borings ranges from a minimum of 511 ppm in Boring CEG-31 to a maximum of 5,996 ppm in Boring CEG-29.

We did not study the effects of corrosion. For details on corrosion, refer to the "Corrosion Control Final Report", dated June 20, 1983, for SCRTD by Professional Services Group, Waters Consultants Division, San Diego, California.

5.8 PUMP TEST

A pump test was performed about 750 feet west of the Universal City Station site in April 1983 (see Drawing 6, Pump Test Well PT-2). The materials that were selected for aquifer testing consisted of a bed of clean sand and gravel and fine sand. It is our judgment that these soils have hydraulic characteristics which are similar to those of the sands and gravels which directly overlie the bedrock at the tunnel and Universal City Station site. However, the aquifer thickness at the tunnel is likely considerably greater than the aquifer tested 750 feet west of the tunnel. The general hydraulic characteristics determined on the basis of the pump test results are as follows:

- Transmissivity: About 19,000 gpd/ft (average).
- Storage Coefficient: Computed values vary between 0.008 to 0.059 because of the short duration of the test. It should be noted that, as these deposits are dewatered, a specific yield value that is considerably greater than the computed value of storativity will apply.
- Boundaries: A boundary was observed during one of the two pump tests conducted at the location of PT-2. The distance to the observed boundary could have been computed; however, it would not be applicable to the Universal City Station excavation.
- Average Formation Permeability: Computed to be about 9.0 x 10⁻² cm/sec (average). However, individual layers may have widely varying permeabilities.

A description of the general procedures and the results of the pump test are presented in Appendix E.

		GROUND WATER ELEVATION*								
	Ini	tial	1981	1982	22.700	1983	15775	75715	1984	05700
BORING	Reading	Date	06717	04/28	03/02	10/24	12/20	02/13	03/14 376	05/08
28-8	396	02/24/84								
CEG-29	344	03/23/81		374						
29-A	37 9	02/15/83			dry		dry		dry	
29-8	391	02/14/83			390			•	383	
29-1										420
29-C	438	02/10/83			441		434		432	
29-2										452
29-3**			متر خذا خد ی							469
30-B**	442	02/23/83		<u></u>						
CEG-30	454	03/03/81	456	453						455
31-1	453	10/06/83				453	453	453		454
CEG-31	453	02/24/81		456		- <u>-</u>		457		458
31-6**										dry
31-2**	486	10/24/83				486				
31-3**	470	10/09/83								
31-4**	516	11/03/83								
31-7	dry	03/14/84								dry
30-A**	dry	02/22/83								
31-5	530	10/19/83				531	531	533		531
32-1**	808	01/23/84								
32	713	03/20/81	714	720						
32-2**									893	
32-A	761	03/17/81		755						
33-1	754	05/17/84								
33	597	03/17/81		599						
33-2										590
CEG-34	555	04/02/81								
34-A	566	02/14/83					569		566	

TABLE 5-4 GROUND WATER OBSERVATION WELL DATA.

-

-

*Rounded to the nearest foot.

**No piezometer casing.

-

•

Section 6.0

Geotechnical Evaluation - Tunnels

6.0 GEOTECHNICAL EVALUATION - TUNNELS

6.1 GENERAL

The major soil and bedrock units which will be encountered along the proposed tunnel line are shown on Drawings 2, 3, 4, 5 and 6 and described in Sections 5.1 through 5.6, inclusive. These units are:

<u>Alluvium</u> (A₁/A₂): loose to medium dense sand and firm to stiff silts and clays with occasional gravel and cobbles . <u>Topanga Formation</u> (Tt): "low hardness" interbedded siltstone/claystone and sandstone <u>Topanga Formation</u> (Tt scgl): "hard" sandstone and conglomerate <u>Topanga Formation</u> (Tb): "hard" basalt.

Water pressure tests were performed in Borings 29-1, 29-2, 29-3, 32-1 and 32-2. The results are appended to Appendix A, and summarized below.

BORING	COMMENT
29-1	no take, "Tow hardness" rock
29-2	0.6 gpm take, "low hardness" rock
29-3	no take, "low hardness" rock
32-1	no take, "hard" basalt
32-2	1.2 gpm take (some due to rod leakage), "hard" conglomerate
33-1	hole too large to seat packer, "low hardness" rock
33-2	hole too large to seat packer, "low hardness" rock

Based on the results, both "low hardness" and "hard" bedrock units are tight. However, minor flows from a labyrinth of interconnected fractures should be anticipated. Most of these flows we believe can be handled with normal gravity invert drains and sump pumps.

Geologic mapping along and adjoining the ground surface of the tunnel alignment was not part of this contract. Therefore, oriented geologic contacts of various key bedrock units, faults, bedding planes, fracture attitudes are sparse to non-existent, and rosettes of discontinuities were not prepared. The areal distribution of geologic units shown on the drawings is from one or a combination of the following sources:

- Cos Angeles City's "Preliminary Geologic Map of the Santa Monica Mountains" (1970)
- Weber (1980) "Earthquake Hazards Associated with the Verdugo-Eagle Rock and Benedict Canyon Fault Zones, Los Angeles County, California" (CDMG Open File Report 80-10LA)

 Hoots (1930) "Geology of the Eastern Part of the Santa Monica Mountains, Los Angeles County, California", USGS Professional Paper 165-C.

Converse Consultants, Inc. file data.

Projecting unoriented surface geologic features hundreds of feet into tunnel grade is risky and very judgemental, especially when considering the strata are tilted 30° to 70° from the horizontal. Therefore, the locations of faults and geologic contacts at tunnel grade (Drawings 2, 3, 4, 5 and 6) may be ten to hundreds of feet from where shown or may be non-existent at tunnel grade.

6.2 FAULTS

Faults shown on the drawings are discussed below:

6.2.1 Hollywood Fault Zone - Stations 758± to 764±

The trace of the Hollywood fault zone is located between Stations $758\pm$ to $764\pm$ at Pocket Track grade (Drawing 2). The northernmost part of the Hollywood fault zone is believed to be 250 feet south of the tunnel contract for Design Unit A410, and should not affect tunnelling conditions.

However, this fault is judged to be active; i.e., there is evidence of displacement at or near the ground surface at least once within the past 10,000 years (Holocene time). This opinion is based on:

- a) Interpretation of Bouger Gravity and Density Model Profile 5 showing a vertical bedrock offset of about 400 feet along a thrust feature dipping about 50° to the north (Converse, et al, "Geotechnical Investigation Report, Volume II, Appendices", November 1981, p. II-714, and Figure No. D-5, p. II-721, prepared for SCRTD).
- b) Alignment of 2- to 3-meter high scarp-like features in the Hollywood, Los Feliz, Atwater area of Los Angeles; i.e., have offset very late Quaternary (including Holocene) alluvial sediments (Weber, et al, "Earthquake Hazards Associated with the Verdugo-Eagle Rock and Benedict Canyon Fault Zones, Los Angeles County, California", 1980, OFR 80-10LA, p. A-3, B-104, B-105 and B-106.
- c) Interpretation of Borings 28-B, 28-C, 28-2, CEG-28-A, 28-1 and 28-8 drilled by Converse for SCRTD and MRTC in 1981, 1983 and 1984.

A 1983 study to establish the date of the last movement on the Hollywood fault was inconclusive because the fault, where observed in granite bedrock, was not overlain by datable alluvium (Crook, R., Proctor, R.J. and Lindvall, C.E., "Seismicity of the Santa Monica and Hollywood Faults Determined by Trenching", February 1983, U.S. Geological Survey Contract No. 14-08-0001-20523).

The approximate 600-foot width of the fault zone is based on interpretation of alluvium and bedrock contacts from our 1981, 1983 and 1984 borings.

The seismic characteristics of the Hollywood fault are discussed in the "Seismological Investigation & Design Criteria" report of May, 1983 prepared by Converse et al for SCRTD. This report assigns a maximum design earthquake (Richter magnitude) of 6.5M to the Hollywood Fault. Although there is a low probability of this event (and attendant displacement) on the Hollywood fault, during the estimated 100-year life of the facility, such a potential event requires consideration in tunnel design.

6.2.2 Hollywood Bowl Fault

The Hollywood Bowl fault was encountered in Borings CEG 30 and 31 and is interpreted to be present in Gravity Profile 6 and Seismic Line S-51 (see Converse et al, 1981, Vol. II, p. 695 and 722). This fault does not appear to have offset alluvial deposits and is steeply dipping $(\pm 80^{\circ})$, with the north side reported to be displaced upward relative to the south side (see Drawing 3). The amount of displacement and the age of last displacement is unknown. However, the fault is not known to be an active or potentially active fault. The fault is judged not to be present in bedrock at the planned final grade, and should have little, if any, impact on tunnelling conditions.

6.2.3 Los Angeles City Faults - Stations 844+00, 847+00 and 851+00

These faults are shown on Los Angeles City's "Preliminary Geologic Map of the Santa Monica Mountains" (1970) and were projected vertically into the tunnel section (Drawing 4). We do not know the attitude, vertical depth, nor the physical condition, and have not confirmed the existence of these faults in the field. They are not known to be active faults.

6.2.4 Unnamed Fault No. 1 - Station 866+00

This fault is believed to occur at the contact of Topanga sandstone/ conglomerate and Topanga basalt (Drawing 4) as mapped by Hoots (1930), and may be nearly vertical, but there is no subsurface data to confirm that attitude. The north side is reported to be down relative to the south side. The fault is judged inactive as it is not designated active or potentially active on any State or City seismic hazard maps. The fault line crosses the tunnel line at an oblique angle and may follow the excavation for several tens of feet.

Metropolitan Water District's 1940 Hollywood Tunnel (Appendix F) was reported to have encountered a blocky and seamy area about 80 feet wide and a two-day inflow of 600 gpm from this fault.

However, the Los Angeles City Sewer Tunnel (Station $429+00\pm$) also crosses the Metro Rail Tunnel (Station $866+00\pm$) at this fault. Other than a 100-gpm inflow for a few hours from one joint, no unusual ground water inflows, nor unusually poor tunnelling conditions were reported. According to geologic notes (by David Campbell, 1955) taken during excavation, there were a few small 1/2 inch wide faults trending N72°-81°E, dipping 73°-87°SE that required only light support. These discrete breaks, as logged by Campbell, apparently extend for distances of 400 feet on each side of Unnamed Fault No. 1, but did not impede tunnel progress nor require extra supports.

6.2.5 Boring 32-2 Shear Zone - Station 873+50

A_zone of shearing which could_impact_tunnelling_and_vent shaft conditions, has been interpreted for the depth interval 417 to 470 feet in Boring 32-2 (Drawing 4). Only 4 feet of core (fragments) were recovered in this 53-foot interval.

In the depth interval 417-470 feet a few greenish-colored friable, brecciated siltstone/claystone fragments were recovered. These fragments exhibit soft, shiny, curved slickensided surfaces, probably due to shearing. Therefore, if we assume this feature is steeply dipping, and the green-colored material makes up the bulk of the matrix from 417 to 470 feet, we would interpret this as a 53-foot wide shear zone at tunnel and vent shaft grade (Drawing 4).

6.2.6 Unnamed Fault No. 2 - Station 894+50

This fault is believed to occur near the contact between the Topanga sandstone/conglomerate (Tt scgl) and Topanga siltstone, shale and sandstone (Tt) (Drawing 5), and may be nearly vertical as mapped by Weber (1980). The north side is reported to be down relative to the south side. The fault is believed to be inactive as it is not designated active or potentially active on any State or City seismic hazard maps. The fault line crosses the tunnel line at an oblique angle and may follow the excavation several tens of feet.

The physical conditions of the fault may be comparable to the fault zones encountered between Los Angeles City Sewer Tunnel Stations 444+34 to 446+24 and again between Stations 451+22 to 452+72, if projected into the Metro Rail tunnel. According to geologic notes (by David Campbell, 1955) taken during excavation of the Sewer Tunnel, these zones required moderate to heavy support for brecciated sandstone and shale bedrock. Seepage was noted in these fault zones, but no unusual quantities of inflow were reported. Bedding plane attitudes ranged from N50 to 70°W, dipping 34° to 72°NE with local slippage (faulting) along bedding planes.

6.2.7 Boring 33-1 Fault - Station 901+50

The bottom 19 feet (depth interval 351 to 370 feet) is judged to be faulted siltstone and sandstone that could influence tunnelling conditions if projected upward into the tunnel line (Drawing 5). The rocks are intensely fractured to crushed and slickensided, containing plastic clay (gouge). Fractures are filled with clay, and locally the clay surfaces are striated and polished. RQD was about 17% for 14 feet of the 19-foot interval.

6.2.8 Benedict Canyon Fault - Station 921+50 and 922+50

Approximately 1.5 miles of left-lateral offset has occurred along the Benedict Canyon fault based on the apparent separation of a stratigraphic contact between 10 to 15-million year old Miocene-age Topanga Formation (Hoots, 1930, Weber and others, 1980). Also, normal dip-slip offset has occurred along the fault, with the north side down relative to the south side (Weber, 1980). The youngest formation offset along the known segment of the fault is the late (5 to 10 million years old) Miocene-age Modelo Formation (Weber and others, 1980, and Woodward Clyde Consultants, 1982). Thus, the most recent documented movement of the fault is about 5 million years before present. Based on the above, and the fact that the <u>fault</u> is not <u>designated</u> active or <u>potentially</u> active on any State or City seismic hazard map, it is our opinion the Benedict Canyon fault is not active or potentially active.

The Benedict Canyon fault is shown on Drawings 5 and 6. The location is based on a compilation of work by others; i.e., Los Angeles City Geologic Map Sheet No. 94 (1970); Hill (1979); Weber (1980); Woodward Clyde Consultants (1982) and in part on Converse et al (1981) interpretation of seismic refraction survey data from Seismic Lines S-28 and S-33 (see Converse et al, 1981, Vol. II, p. 676, 677 and 697).

The physical condition of bedrock at tunnel grade is not known. However, the physical condition may be similar to two faults observed at the Universal Sheraton Hotel site (Clements, 1966) and one observed at the Getty Plaza site (Woodward Clyde Consultants, 1982). If these faults continue through the tunnel alignment, the following descriptions may be applicable to tunnelling conditions (they are shown on Drawings 5 and 6 as faults 1, 2 and 3):

- 1) Trend N65° to 70°E, dip vertical, 15- to 25-foot wide zone of crushed, broken and sheared bedrock with considerable gouge material and seepage from sandstone beds adjacent to and on the south side of the faults.
- 2) Trend N65° to 70°W, dip vertical, 1.5-foot wide zone of crushed, broken and sheared bedrock with gouge material and seepage from sandstone beds adjacent to and on the south side of the fault.
- 3) Trend N50° to 55°E, dip unknown, 10-foot wide zone of sheared and contorted bedrock material with fault gouge.

We point out that Boring 33-2, located a few feet south of the Benedict Canyon fault (Drawing 5), did not encounter sheared or faulted bedrock.

6.3 STRATIGRAPHIC, GROUND WATER AND TUNNELLING CONDITIONS

6.3.1 Station 766+50 and 800+50 (3,400, Drawings 2 and 3)

The twin bore tunnels emerge from the north end of the Hollywood/Cahuenga Station in primarily "low hardness" interbedded siltstone and claystone bedrock of the Topanga Formation (Tt). Variations in the bedrock surface may result in mixed faced conditions near the crown with alluvium above and Topanga Formation below between Stations 766+50 and 770+00; 5 to 10 feet of bedrock covers the crown in this segment. Hollywood/Cahuenga Station alluvium is described in Section 5.2.1. Dewatering will likely be required; dewatering systems are discussed in Section 6.4.1 The siltstone and claystone interbeds are likely to air-slake, but no treatment is believed necessary provided advance rates are reasonable. The bedrock should stand up well; the alluvium will likely cave. Squeezing ground is not likely.

Boring 29-1 encountered crushed, sheared, clay-filled fractures at the bottom of the hole (depth 110 to 120 feet). We interpret this as a fault zone as shown on Drawing 2.

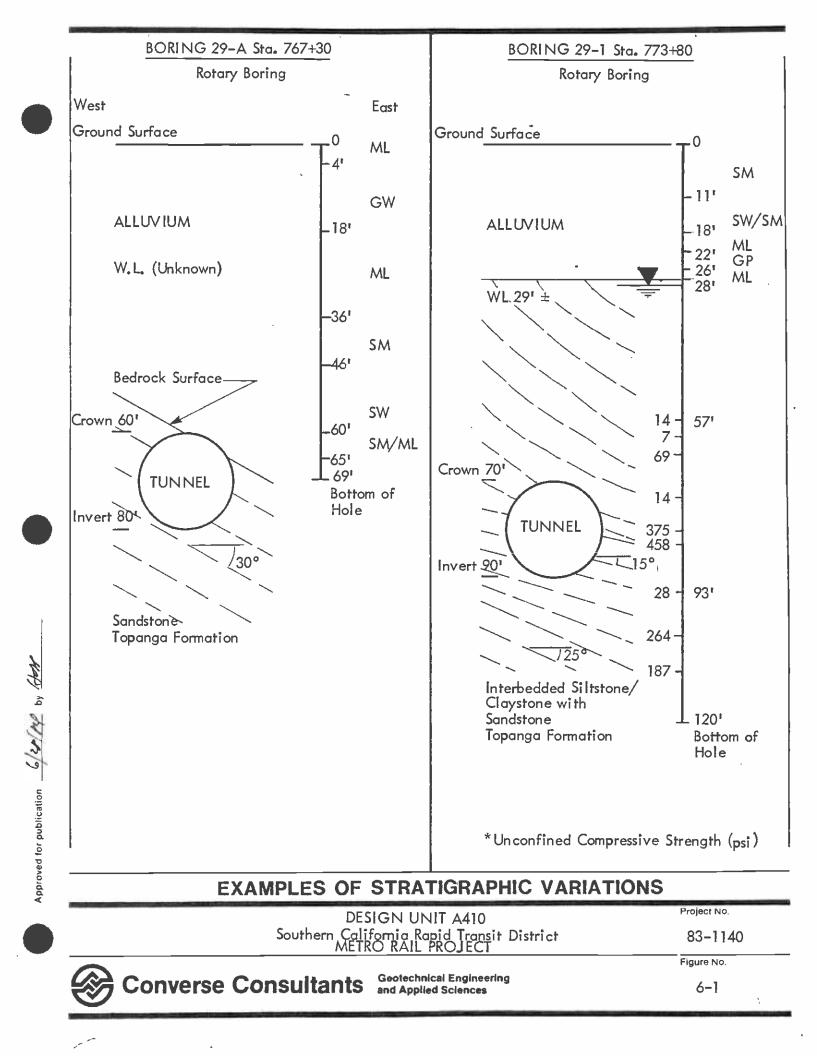
The tunnel emerges out of the Topanga Formation at about Station 792+50, passing through a mixed faced condition entirely into the saturated Highland Avenue alluvium. This alluvium terminates some 200 feet south of the Holly-wood Bowl Station. The Highland Avenue alluvium is described in Section 5.2.2. Dewatering will probably be required as discussed in Section 6.4.2.

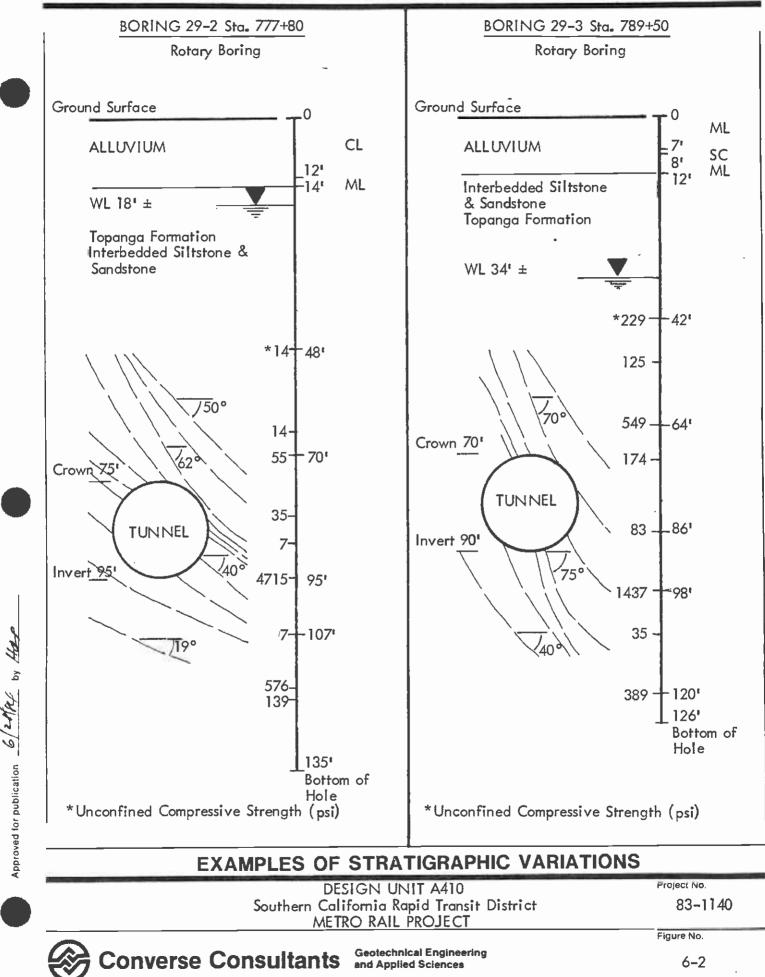
The tunnel passes over a buried channel with ground water near the crown between Stations 792+50 and 797+50. The tunnel invert on each side of the channel is supported on bedrock, and some differential settlement may result in this length of line due to vibrations from subway trains and/or seismic ground shaking. We base this opinion on low SPT blow count recorded in Boring 31-1; i.e., 8 to 10 blow counts above and slightly below tunnel grade, increasing to 33 blow counts at a depth of 50 feet, suggesting the Highland Avenue alluvium could densify.

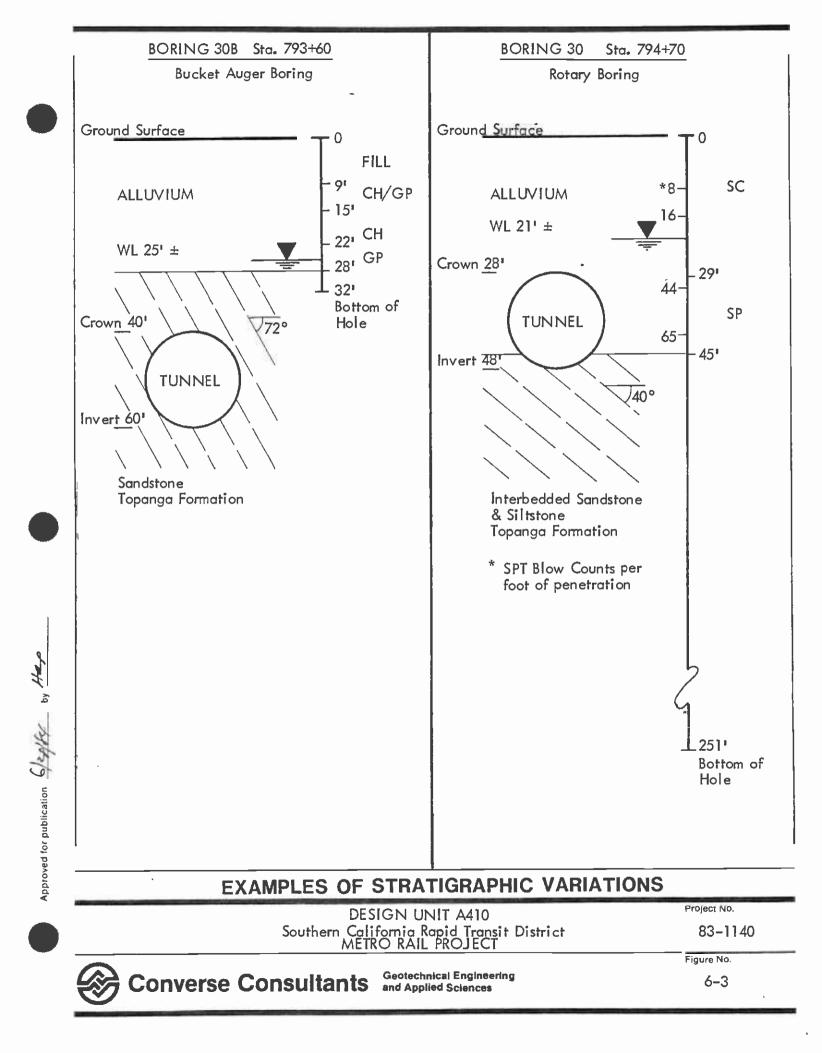
The Hollywood Bowl fault zone is believed to be located beneath the Highland Avenue alluvial channel, but we do not believe the channel deposits are disrupted by the fault (Drawing 3). The Hollywood Bowl fault is discussed in Section 6.2.2.

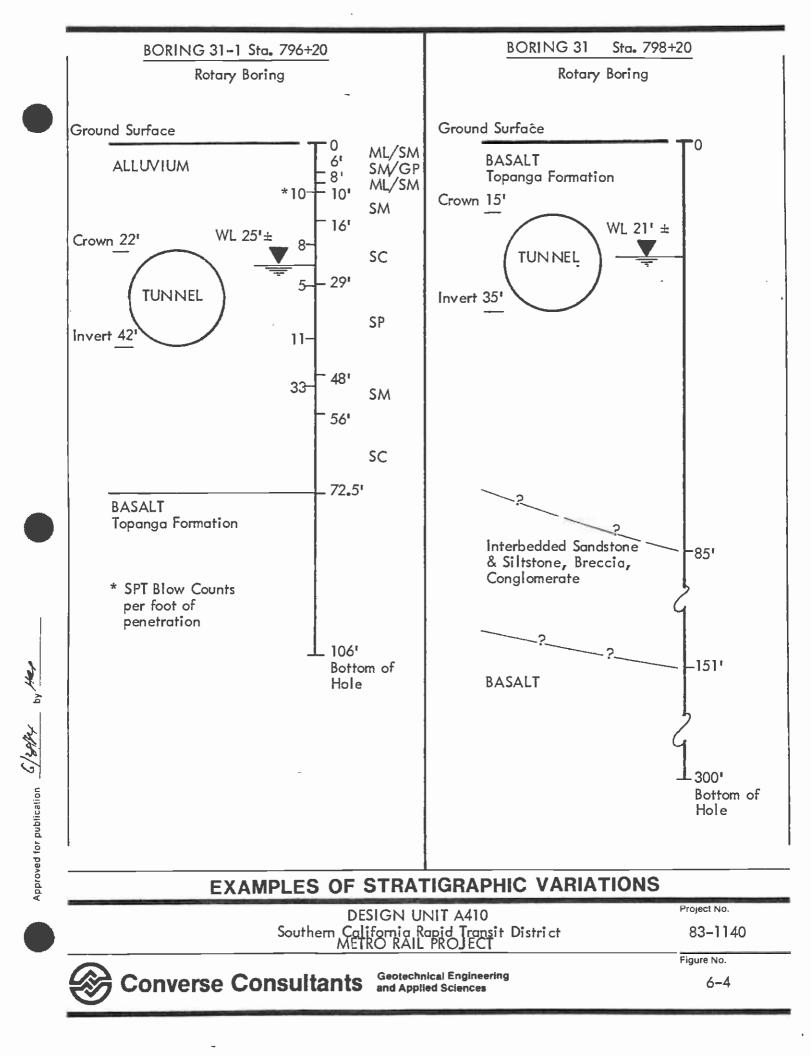
Between Stations 797+50 to 800+50, the tunnels will pass through moderately hard to hard basalt (Tb), except the crown may encounter mixed faced conditions of alluvium above and basalt bedrock below just as it enters the south end of the Hollywood Bowl Station.

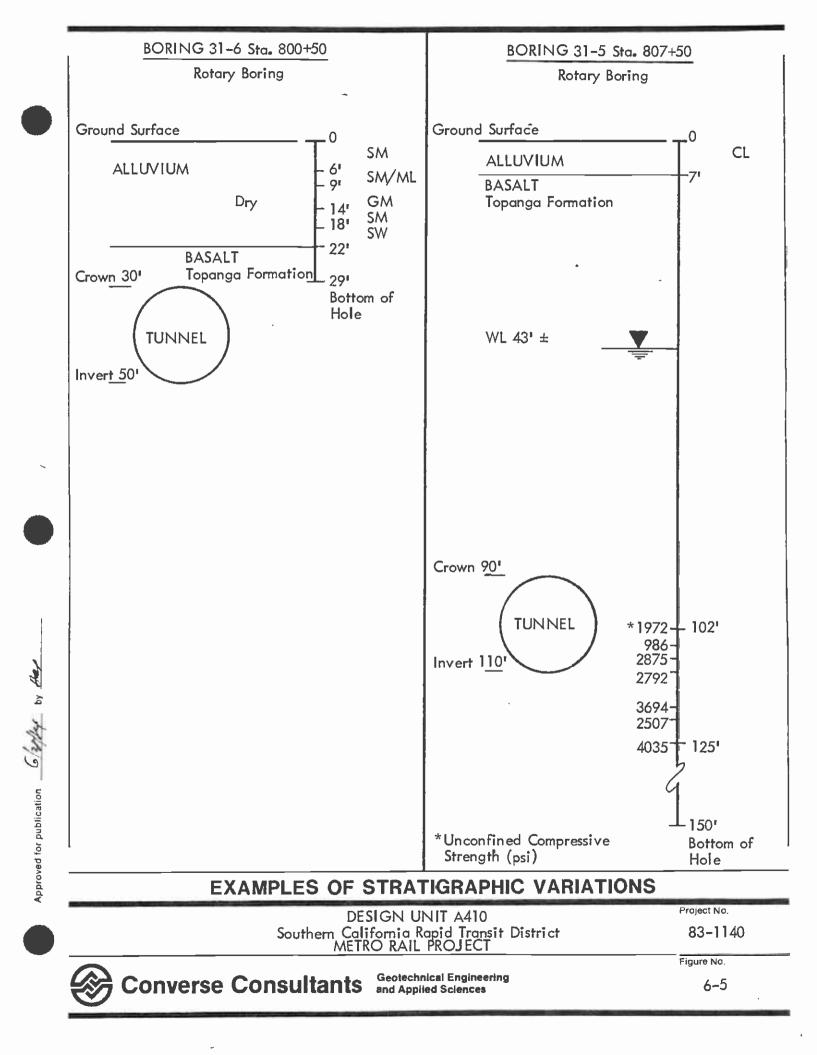
Figures 6-1, 6-2, 6-3, 6-4 and 6-5 show transverse sections relating the variable ground water levels, soil stratigraphy and unconfined compressive strengths of bedrock with the vertical tunnel alignment. Near tunnel grade, sedimentary bedrocks are considered primarily friable to low hardness and the basalt moderately hard to hard. The range of unconfined compressive strengths, as shown on these figures, are:


BORING		DESCRIPT	ION		ps	i
29-1 29-2 29-3 31-5	Siltstone, Siltstone, Siltstone, Basalt	claystone	and	sandstone		4700


As noted in Sections 5.1 and 5.4, variable hardness bedrock should be anticipated in both Tt and Tb units.


6.3.2 Station 806+00 and 866+00 (6,000 feet, Drawings 3 and 4)


The primary tunneling media between the north end of the Hollywood Bowl Station and Station 866+00 will be moderately hard to hard basalt of the Topanga Formation (Tb). The basalt should stand up well and require nominal support.


Vertical projection of surface geology to tunnel grade suggests some steeply dipping bands of sedimentary rock could be encountered between Stations 835+00 and 840+00 as well as Stations 844+00 to 847+00. These bands of sedimentary rock could well be altered by basalt intrusions. Bands of sedimentary rock

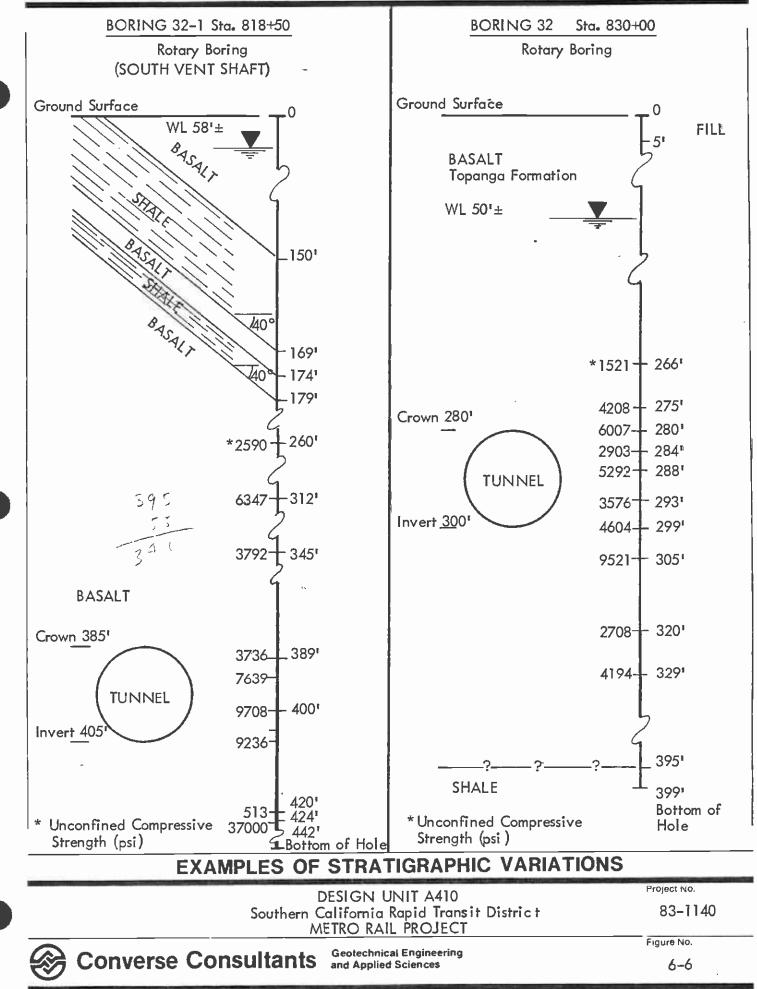
could conceivably be encountered at tunnel grade locations other than these. Vertical projection of three unconfirmed faults mapped by City of Los Angeles geologists would intersect the tunnel at about Stations 844+00, 847+00 and 851+00, as discussed in Section 6.2.3. Unnamed Fault No. 1 intersects the tunnel near Station 866+00 (see Section 6.2.4).

Boring 31-5: basalt encountered near tunnel grade was moderately hard to hard and little fractured. Fractures were strongly cemented; unconfined compressive strengths range from 986 to 4000 psi.

Boring 32-1 (south vent shaft): basalt encountered near tunnel grade was intensely to closely fractured. These fractures were strongly cemented, and the basalt was judged to be hard. Unconfined compressive strengths ranged from 3700 to 9700 psi, with one test registering 37,000 psi.

Boring CEG-32: although this boring was located about 900 feet east of the alignment, basalt was also encountered at about tunnel grade with unconfined compressive strengths ranging from 2900 to 9500 psi. This basalt was intensely to closely fractured, brecciated and slickensided, yet strongly cemented, therefore is classified as hard.

Ground cover above the tunnel ranges from a minimum of 65 feet at the north end of the Hollywood Bowl Station, rising steadily to a maximum of 470 feet near Station 866+00.


Ground water elevations in this segment are unknown; except one, at Elevation 808 feet in Boring 32-1 (Station 818+50), which represented 328 feet of head above the crown. We believe, in the main, there will be little more than nuisance dripping at tunnel grade from ground water stored in fractures for most of this segment. Exceptions to this general condition may be encountered. Experience from the nearby Los Angeles City Sewer Tunnel suggests there could be local inflows of 100 gpm (gallons per minute) for a short duration (Appendix F).

The Metro Rail Tunnel will pass above the Los Angeles City Sewer Tunnel near Station 866+00 with something on the order of 10 feet of cover between them. The vertical alignment of both tunnels should be carefully checked, and blasting (if this is the selected construction method) should be carefully controlled to avoid possible damage to the sewer tunnel.

Figures 6-5 and 6-6 show transverse sections relating the variable unconfined compressive strengths of basalt bedrock with the vertical tunnel alignment. The basalt bedrock is judged to be moderately hard to hard based on unconfined compressive strengths shown on these figures as well as on Table C-2 (Appendix C).

6.3.3 Station 866+00 and 893+00 (2,700 feet, Drawings 4 and 5)

The primary tunnelling media will be moderately hard to hard sandstone and conglomerate of the Topanga Formation (Tt scgl). The average unconfined compressive strength is believed to be 6000 psi, but individual granite cobbles (33,600 psi) and chert (19,900 psi) could be interspersed throughout the formation (Table C-2, Appendix C). The sandstone and conglomerate should stand up well and require nominal support. Squeezing ground is not likely.

Approved for publication 424/14/ by

Borings 32-2 (Station 873+50), and CEG-32A were drilled in the sandstone and conglomerate unit.

Boring 32-2 (north vent shaft): near tunnel grade, at depths between 417 to 470 feet, encountered very hard chert, quartzite and granitic cobbles and boulders embedded in apparently a weakly cemented sandstone and claystone shear zone (see Section 6.2.5). There was only one foot of core recovery at the tunnel grade interval because the drill fluids washed much of the matrix away. Drilling was difficult because very hard cobbles wobbled around in the hole, wearing out 4 diamond drill bits. A hard 5-foot thick basalt dike was encountered above tunnel grade at Elevation 580 with an unconfined compressive strength of 2965 psi. Sandstone and conglomerate above the basalt dike has unconfined compressive strength ranging from 354 to 1257 psi. Some point load tests on individual granite cobbles registered up to 33,600 psi.

Boring CEG-32A: drilled in 1981 and located 400 feet east of the tunnel line, encountered little fractured to massive, moderately hard to hard sandstone and conglomerate in the vicinity of tunnel grade (if projected into the tunnel line). Cobble-size makes up 10% of the material. Locally (depth interval 340-370 feet) the formation contains 20-40% cobbles and 10% boulders. Core recovery was 95% to 100%. A 3-foot wide shear zone containing gravel was encountered at depth interval 268 to 271 feet. Unconfined compression strengths range from 472 psi (near the invert) to 4100 psi near the crown (Table C-2, Appendix C).

Mixed face conditions of hard sandstone/conglomerate and "low hardness" interbedded sandstone, siltstone and claystone may occur in the vicinity of the North Vent Shaft, as well as other locations.

Figure 6-7 shows transverse sections relating the variable bedrock stratigraphy within the vertical tunnel alignment, including some unconfined compressive strengths.

6.3.4 Station 893+00 and 930+00 (3,700 feet, Drawings 5 and 6)

The primary tunnelling media will be "low hardness" siltstone, claystone and sandstone of the Topanga Formation. The "average" unconfined compressive strength is judged to be 1000 psi. Some interbedded conglomerate in Boring CEG-33 recorded 16,300 psi, and quartzite 14,600 psi.

Borings 33-1 (Station 901+50), CEG-33 (located 1000 feet east of the alignment), 33-2 (Station 921+00), 34-A (Station 926+00) and 34-1 (Station 930+00) were drilled in this segment.

A mixed face condition of alluvium above and siltstone/sandstone bedrock below are anticipated between Station 925+00 and 930+00 (south end of the Universal City Station). The ground water level is believed to be 50 to 65 feet above the crown in the alluvium.

Boring 33-1: in the vicinity of tunnel grade, encountered alternating beds of siltstone, sandstone with some conglomerate interbeds with unconfined compressive strengths ranging from 778 to 2750 psi. Some

granite cobbles registered 28,700 psi. The formation is closely fractured above the springline (RQD 38%) and moderately to little fractured below the springline (RQD 79%). Fractures are moderately to strongly cemented.

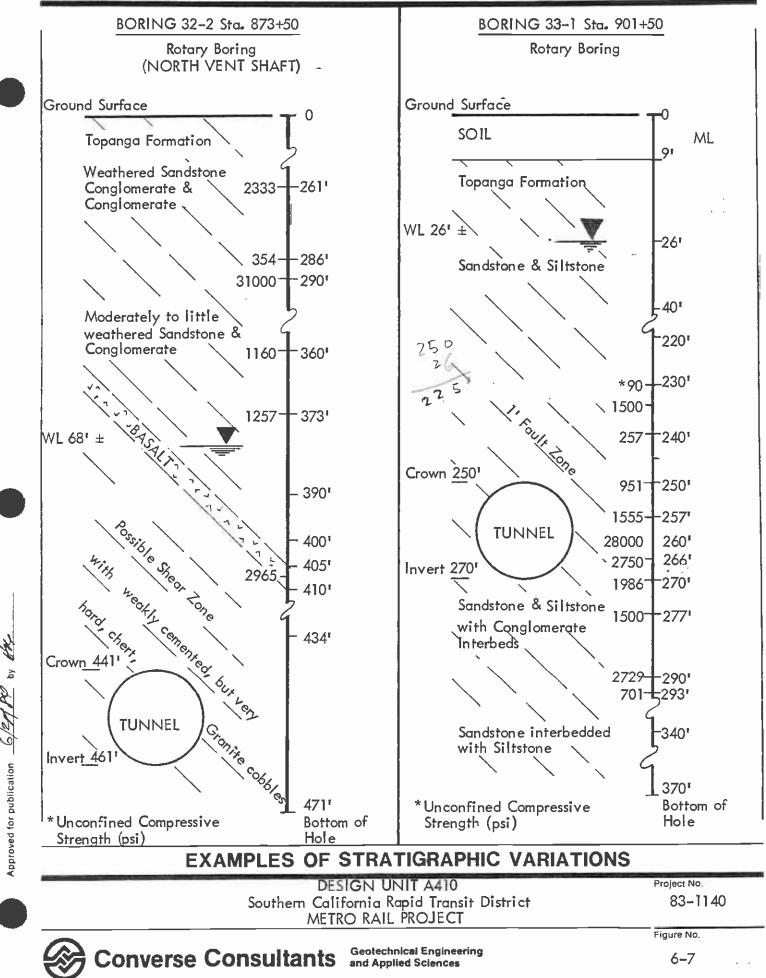
Boring CEG 33: located about 1,000 feet east of the alignment. If projected into the tunnel line grade, it would encounter interbedded sandstone, conglomerate, claystone and quartzite beds. A 1-foot wide, clay-filled shear zone, inclined 75° from the horizontal occurs at Elevation 528 feet. Vertical, hairline width slickensides were recorded at Elevations 517 and 522 feet. The conglomerate and quartzite interbeds are hard (unconfined compressive strengths up to 28,100 psi), and these interbeds alternate with claystone and sandstone of low hardness (unconfined compressive strength 71 to 212 psi).

Boring 34-A: encountered nearly horizontally layered, low hardness siltstone and sandstone near tunnel grade. At this location, there is about 7 feet of bedrock cover over the crown. No unconfined compression tests were performed in Boring 34-A.

Boring 33-2: near tunnel grade, is intensely to closely fractured, low hardness interbedded sandstone and siltstone. RQD ranged from 0% to 22%, improving at the invert to 50%. Steeply dipping, 68° to 75° bedding planes cross the line. Unconfined compression strengths from a few cores ranged from 49 to 132 psi near tunnel grade.

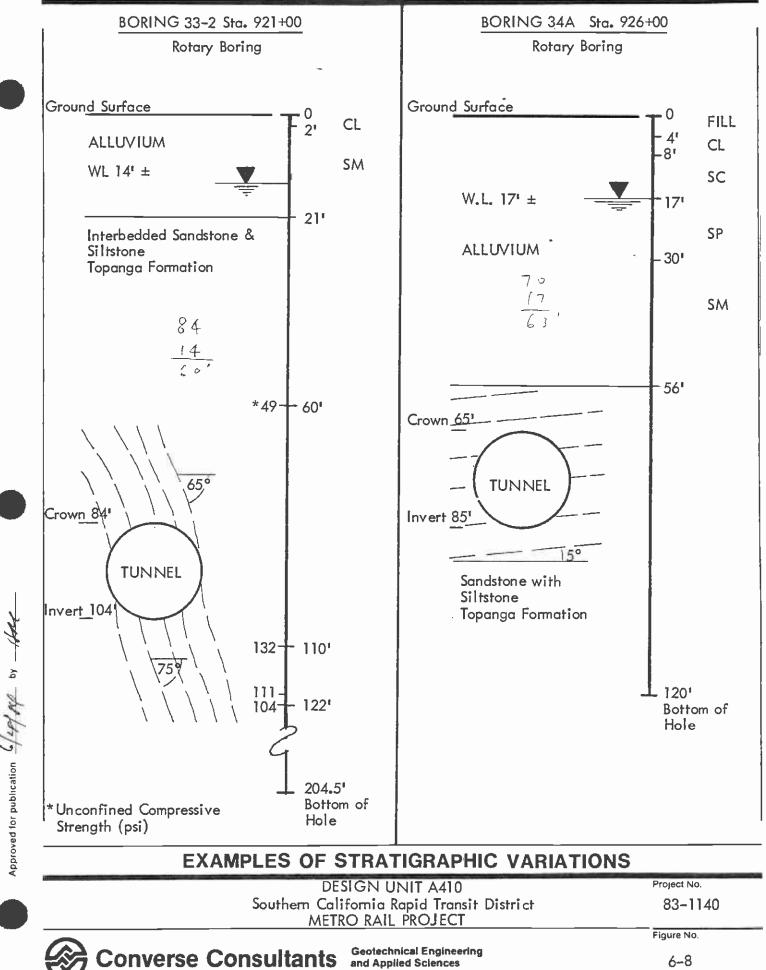
Figures 6-7, 6-8 and 6-9 show transverse sections relating the variable soil, stratigraphy, ground water levels, and variable unconfined compressive strengths of bedrock with the vertical tunnel alignment.

6.4 TUNNEL DEWATERING

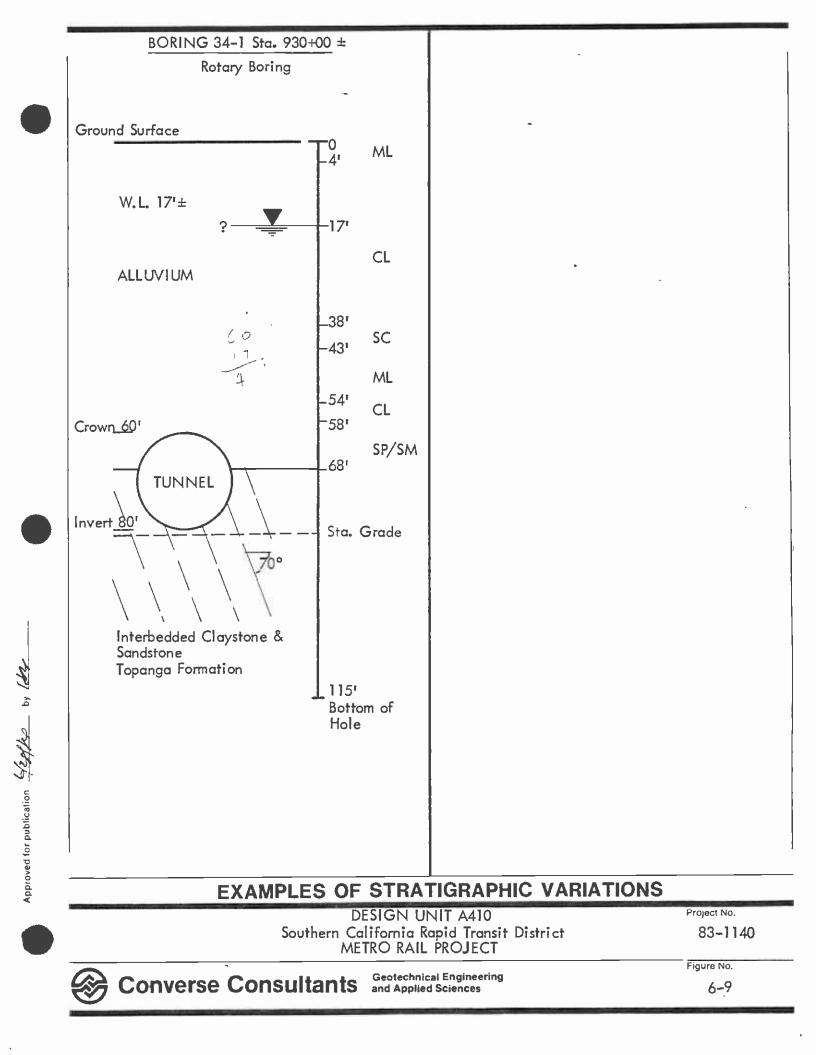

In our opinion, ground water flow within the bedrock along the A410 tunnel alignment is generally expected to be minor. A system of internal sumps and/or gravity drains is believed adequate to control ground water inflows.

Ground water flow from alluvium at Hollywood/Cahuenga Station, Highland Avenue, and Universal City Station are judged to be large. The following subsections present discussions of the dewatering requirements at these three locations.

6.4.1 Hollywood/Cahuenga Station Alluvium


Current ground water levels are about 20 feet above the bedrock surface and 40 to 75 feet above the proposed tunnel invert north of the Hollywood/Cahuenga Station pocket track section (see Drawing 2).

In the area immediately north of the A350 pocket track, bedrock cover will be very thin, and/or mixed face conditions may be encountered. Therefore, dewatering of the alluvium will likely be required. We recommend that the tunnel dewatering system be coordinated with Design Unit A350's system. We expect that the tunnel dewatering system will not be able to draw water levels down significantly below the bedrock surface. Therefore, some water may flow



Approved for publication

ģ £

6-8

into the tunnel face at the bedrock contact. A possible dewatering system might consist of the following:

- deep wells and/or ejector wells placed along the alignment. The wells should penetrate to the bedrock surface.
- supplementary systems within the tunnel to control flow into the tunnel along the bedrock surface.

About 1 inch of refined gasoline was observed floating an top of the water table in Boring 28-C (Drawing 2). Even though this boring is located some 700 feet south of Design Unit A410's starting point, the source of gasoline could possibly be upgradient. If this is the case, the gasoline may pose a hazard to tunnelling and may require special permits for disposal of the water.

Submerged alluvial deposits varying in thickness up to a maximum of about 20 feet are expected to be dewatered during construction. Potential settlements due to dewatering were calculated based on the assumption that the materials below the water table were granular and similar to those encountered in the borings. In addition, it was assumed that the dewatered soils overlie Topanga bedrock. These calculations indicate that total surface settlement would be less than 1/4 inch for up to 20 feet of drawdown. Differential settlements across the length of adjacent structures should be less than 1/8 inch.

6.4.2 Highland Avenue Alluvial Channel

Current ground water levels in the Highland Avenue alluvial channel (south of Design Unit A415, Hollywood Bowl Station) are about 10 to 15 feet above the proposed tunnel invert grade (see Drawing 3). Preconstruction dewatering will probably be required in this area to prevent flowing ground at the tunnel face. Dewatering could possibly be provided by a deep well system extending below the tunnel invert. Considering the relatively minor amount of drawdown required, dewatering related subsidence is not expected to be significant.

In the vicinity of the Hollywood Bowl Station, ground water levels are within the basalt bedrock below the alluvial soils (see Drawing 3). Therefore, preconstruction dewatering of this alluvium is not anticipated. Some gravity seepage from the bedrock is expected as the tunnel proceeds, but flow quantities should generally be low.

6.4.3 Universal City Station Alluvium

Thin bedrock cover and/or mixed face tunnel conditions are expected within a few hundred feet of Design Unit A425, Universal City Station (see Drawing 6). Ground water levels currently are about 60 to 65 feet above the proposed tunnel invert and, therefore, preconstruction dewatering is expected to be required in this area. We recommend that dewatering for the tunnel be coordinated with dewatering for Design Unit A425. Water levels cannot practically be drawn down below the bedrock surface and, therefore, some flow

-39-

would enter the tunnel face along the bedrock surface where mixed face conditions exist. A possible dewatering system might consist of the following:

- Deep wells and/or ejector wells placed along the alignment penetrating to the bedrock surface;
- supplementary systems within the tunnel to control flow into the tunnel along the bedrock surface.

Subsidence due to ground water drawdown may be significant here. Calculations for Design Unit A425 indicate that total surface settlement would be about 3 inches for up to 50 feet of drawdown and 1 inch for up to 20 feet of drawdown. Settlement of this magnitude could damage nearby structures but total subsidence would require several weeks to months to occur due to the low permeability of the fine-grained alluvium. Local dewatering contractors indicate that significant dewatering subsidence does not occur during construction; but, unless this can be verified by documented case histories, it should be assumed that significant settlement could occur.

6.4.4 Criteria for Dewatering System

It is understood that the contractor will be responsible for designing, installing, and operating a suitable construction dewatering system subject to review and acceptance by the Metro Rail Construction Manager. The system should satisfy the following criteria:

- The preconstruction dewatering system should be installed and in operation for a sufficient period prior to the excavation reaching the level of static ground water level to adequately draw down the ground water table. This period is a function of the maximum pumping capacity installed.
- A dewatering well system should maintain the ground water levels low enough to prevent flowing ground at the tunnel face. Inflow quantities should be reduced to levels which can be handled by a drain sump system and allow construction to proceed.
- Wells must be designed and developed to eliminate loss of ground from piping of soils from around the wells. The well operation should be constantly monitored for evidence of piping.
- The well system should be operated continuously. Emergency power and backup pumps should be required to ensure continual excavation dewatering.
- Internal sump systems should have the capability of quickly increasing pumping capacity to handle zones of high flow.
- Internal sump systems should operate continuously.
- Internal sump systems should include emergency power and backup pumps in case of power or equipment failure.
- Disposal of pumped water must be in accordance with all local ordinances.

6.5 GAS AND OIL

The entire tunnel line segment in Design Unit A410 is judged to be non-gassy. For details on gas, refer to studies performed for SCRTD by Engineering Science, Arcadia, California.

The entire tunnel line is considered devoid of oil according to boring records along this segment. Oil slicks on the drilling mud tanks were noted at Borings 28-8 (72 feet), 29-3 (50 feet), CEG-30 (72 feet), CEG-31 (87, 192, 214, 232, 240 feet), 33-1 (90, 124, 258, 274, 316 feet) and 34-A (15 feet). This suggests some interbeds contain very minor amounts of petroliferous material.

6.6 SPECIAL TUNNELLING PROBLEM AREAS

Due to a high ground water table, relatively shallow cover over the tunnel crown and discontinuities (fractures, faults), problems may occur at the following stations:

- Station 766+50 possibly refined gasoline is floating on top of the water table.
- Station 766+50 to 770+00 launching the excavation with 0 to 10 feet of cover.
- Station 792± depth of Caltran's Hollywood Freeway piles could intercept tunnel.
- Station 793 to 798± mixed face condition passing over a buried channel.
- Station 800± about 7 feet of cover at the south end of the Hollywood Bowl Station.
- Station 924 930± Shallow ground cover, ground water, and mixed face at the south end of Universal City Station.
- Possible broken rock conditions at fault crossings noted on Drawings 3, 4, 5 and 6.

Excavating equipment should anticipate dealing with at least three ground conditions: wet running alluvial deposits, "low hardness" bedrocks, and "hard" bedrocks (all three containing abrasive, hard, cobbly materials).

6.7 DESIGN FOR EARTHQUAKES

Design procedures and criteria for underground structures under earthquake loading conditions are defined in the Southern California Rapid Transit District (SCRTD) report entitled "Guidelines for Design of Underground Structures", dated 1984. Evaluations of the seismologic conditions which may impact the project and the probable and maximum credible earthquakes, which may be anticipated in the Los Angeles area, are described in Converse's report to SCRTD entitled "Seismological Investigation & Design Criteria", dated May, 1983. The 1984 report complements and supplements the 1983 report.

6.8 LIQUEFACTION POTENTIAL

The potential for liquefaction of alluvial materials at Design Units A350 (low to moderate), A415 (unlikely) and A425 (high) are discussed in the respective reports for these design units.

6.9 SUPPLEMENTARY GEOTECHNICAL SERVICES

Based on the available data and the current tunnel line and grade, the following supplementary geotechnical services may be warranted:

- o <u>Geologic Mapping</u>: We recommend geologic mapping along, and closely adjoining, the alignment to provide designers and bidders with a clearer picture of:
 - ° rock type distribution/percentages
 - ° orientation/frequency patterns of discontinuities (joint rosettes)
 - ° faults/condition of adjoining rocks.

Mapping, in our opinion, would reduce bidder contingencies by providing a better handle on costs for supports, excavation, advance rates. Results of mapping, tied to boring data, may influence the selection of construction method(s).

o We recommend photographing the exterior and interior of structures along and adjoining the alignment before construction.

BORING No.	APPROXIMATE STATION	DEPTH (ft)	PURPOSE
1	811+50	430	Rock and ground water conditions at alternate south vent shaft
2	843+00	600	Drill 45° angle hole northward to intersect "L.A. City Faults' for rock conditions
3	853+00	400	Altered sedimentary rock conditions from the basalt intrusion
4	879+00	360	Rock and ground water conditions at alternate north vent shaft
5	911+50	150	Determine depth of alluvium in "Regal Place" canyon and better define lateral limit of "low hardness" rocks (Boring 33-1 had some very hard cobbly conglomerate beds)

o We recommend the following borings to help reduce contingency costs:

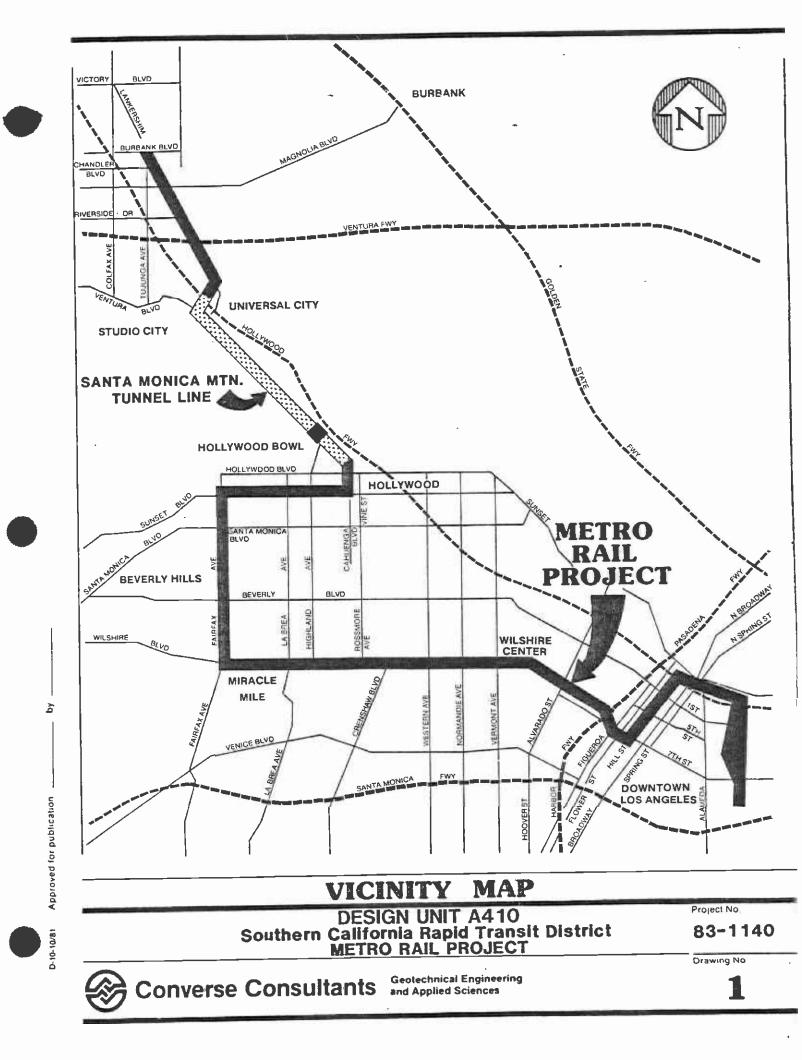
- O <u>Pump Test</u>: It is recommended that pumping tests be performed at: (1) the Highland Avenue alluvial channel and (2) the Universal City Station portal to evaluate the pumping and dewatering characteristics. The pump test well(s) should ideally approximate characteristics of the dewatering wells. The number and locations of observation wells should be based on the known subsurface conditions and locations of areas in which settlement could be critical.
- o <u>Observation Well Monitoring</u>: The ground water observation wells should be read several times a year until project construction, and more frequently during construction if possible. They will provide valuable data to the contractor in determining his construction schedule and procedures.

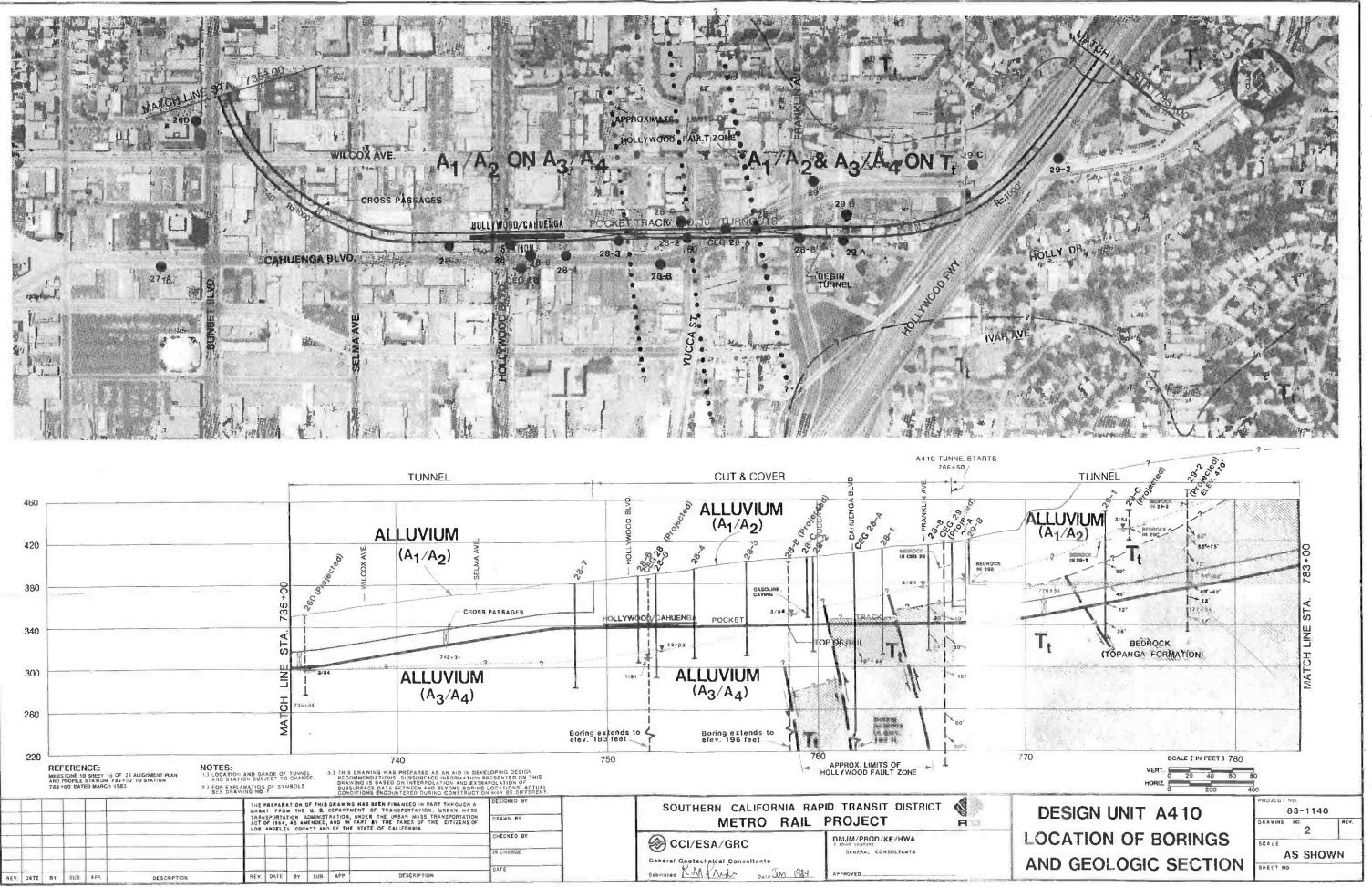
- o <u>Review Final Design Plans and Specifications</u>: A qualified geotechnical engineer should be consulted during the development of the final tunnel design and construction concepts and should complete a review of the geotechnical aspects of the construction/excavation methods, plans and specifications.
- Dewatering Design Review: Assuming that the dewatering systems are designed by the contractor, a qualified geotechnical engineer should review the proposed systems in detail including review of engineering computations. This review would not be a certification of the contractor's plan but rather an independent review made with respect to the owner's interests.
- o <u>Construction Observations</u>: An "as-built" geologic log of tunnel conditions (Proctor, 1971) should be prepared by an experienced engineering geologist as the tunnel is being excavated (prior to lining). Geologic notes should include ground water flows, seeps, support spacing, "heavy ground", bedrock structure, overbreak, faults, advance rates, and problem areas. The geologic log is invaluable for future tunnelling, and for assessing problems that develop after construction.

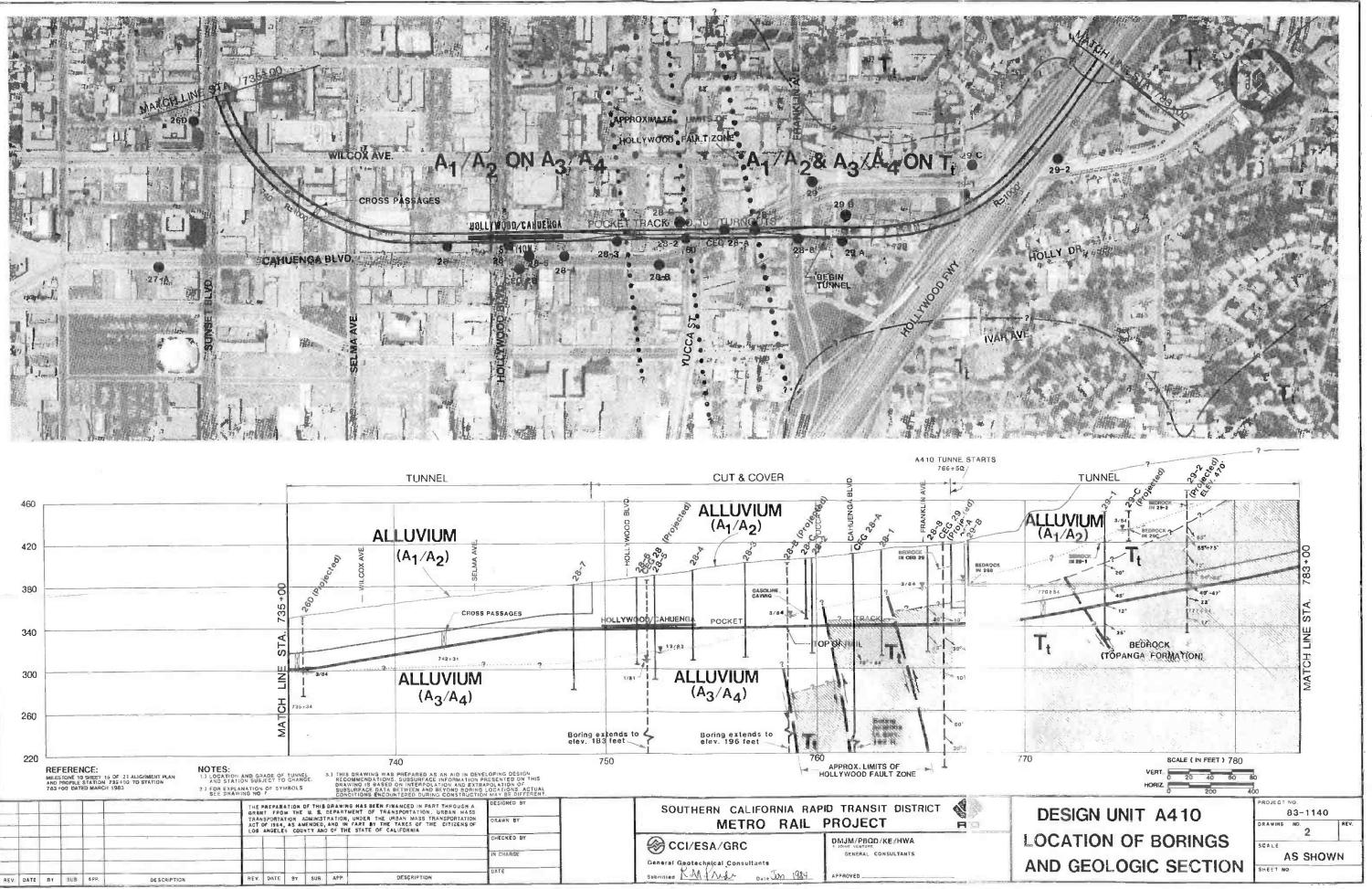
REFERENCES

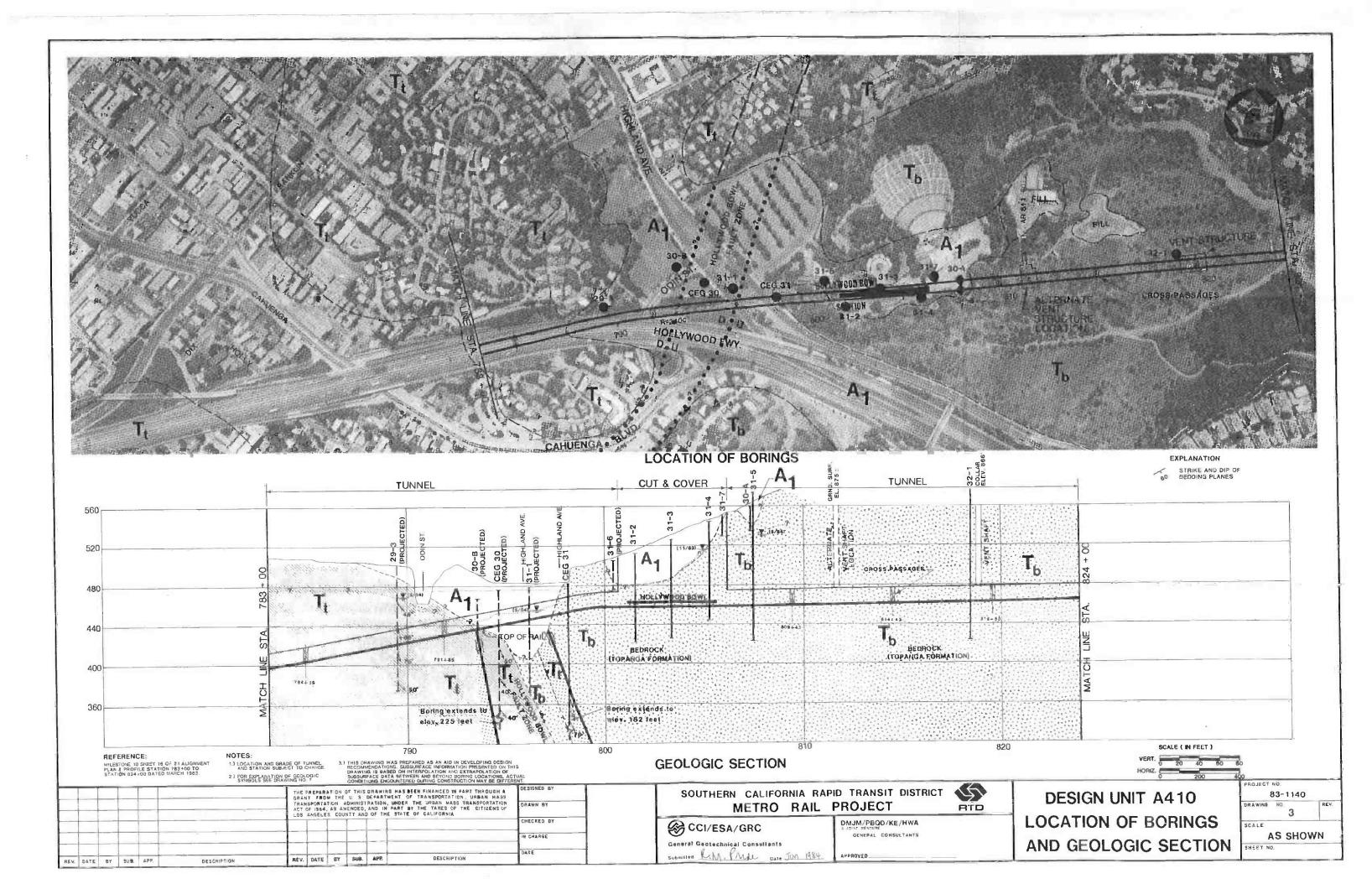
- Bieniawski, Z.T., 1975, The point-load test in geotechnical practice: Journal South Africa Institute Min. & Metall, p. 312-320.
- Campbell, D.G., 1955, Geologic notes and log of Los Angeles City sewer tunnel: Los Angeles City, Archives Dept., 32 p.
- Clements, T.C., 1966, Geologic investigation, Universal City Hotel, Universal City, California.
- Clough, G.W., 1981, Innovations in tunnel construction and support techniques: Bull., Assoc. of Engineering Geologists, Symposium Issue, v. 18, no. 2, p. 151-169.
- Deere, D.U., 1981, Adverse geology and TBM tunneling problems: Rapid Excavation and Tunneling Conference, San Francisco, May 3-7, 1981, Proceedings v. 1, p. 574-586.

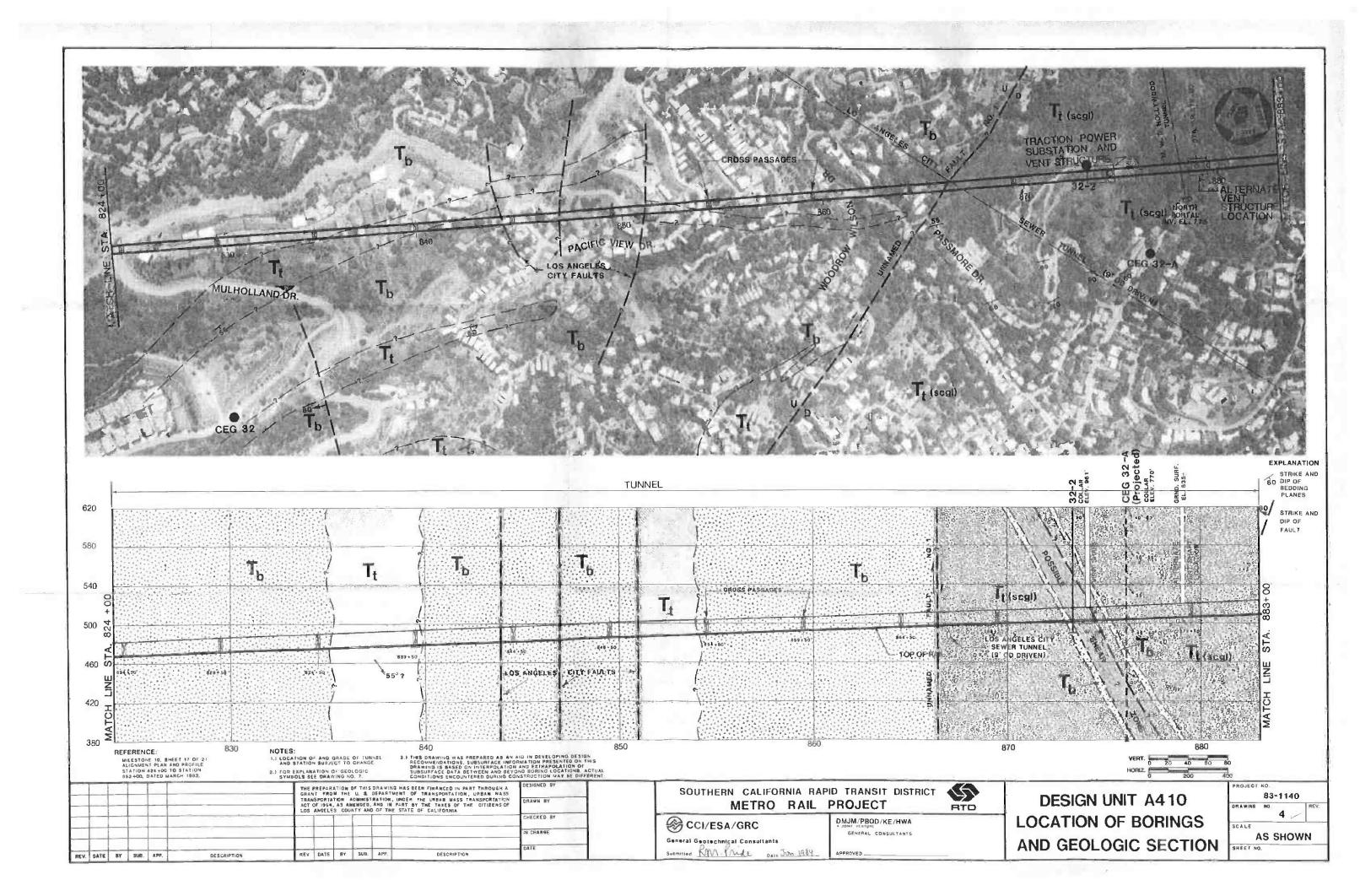
, and Miller, R.P., 1966, Engineering Classification and index properties for intact rock: Technical Report No. AFWL-TR-65-116, Air Force Weapons Laboratories, Kirkland Air Force Base, New Mexico.

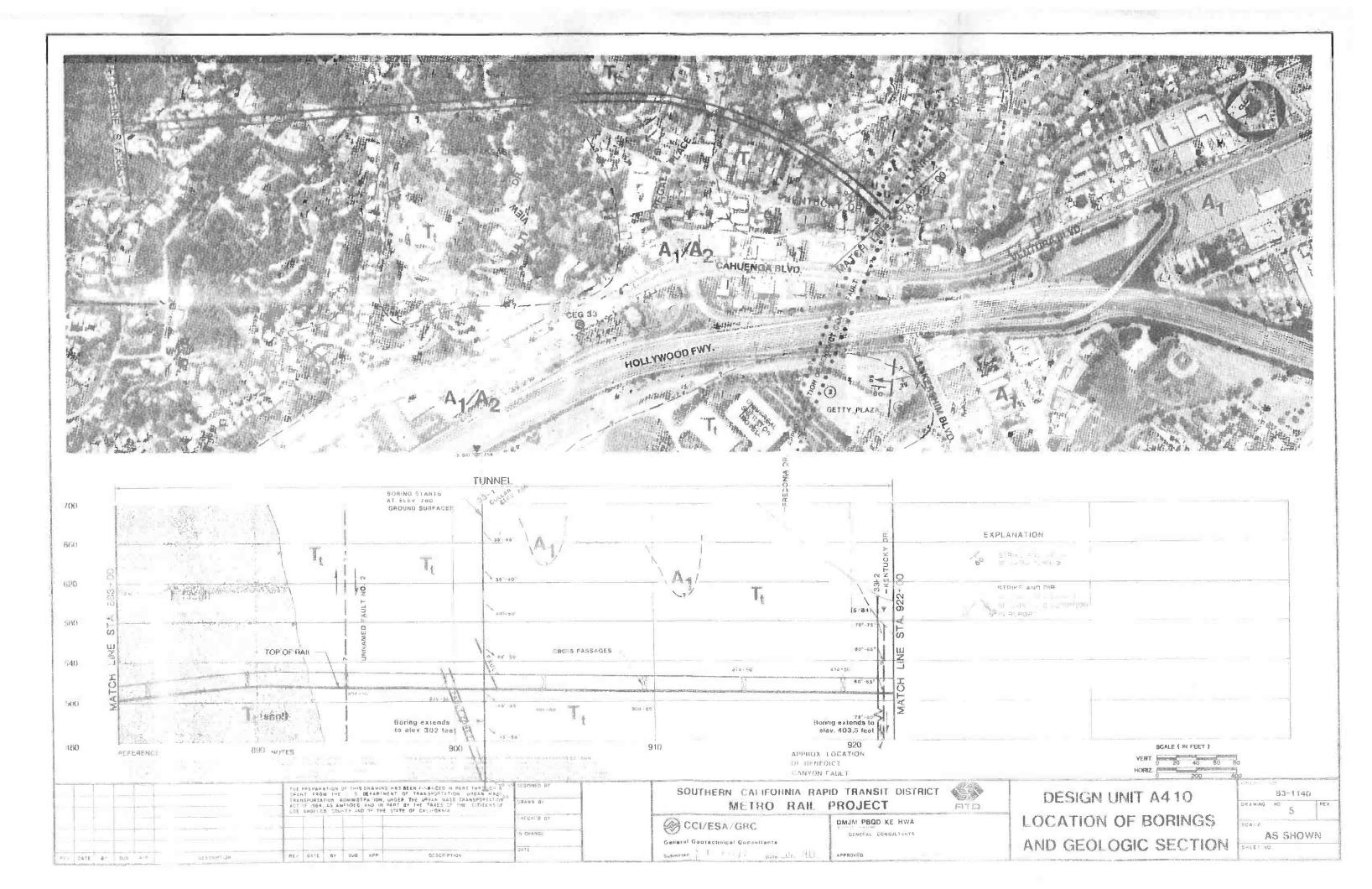

, Monsees, J.E., and Schmidt, B., 1970, Design of tunnel liners and support systems, Highway Research Record No. 339: Transportation Research Board, Washington, D.C., p. 26-33.

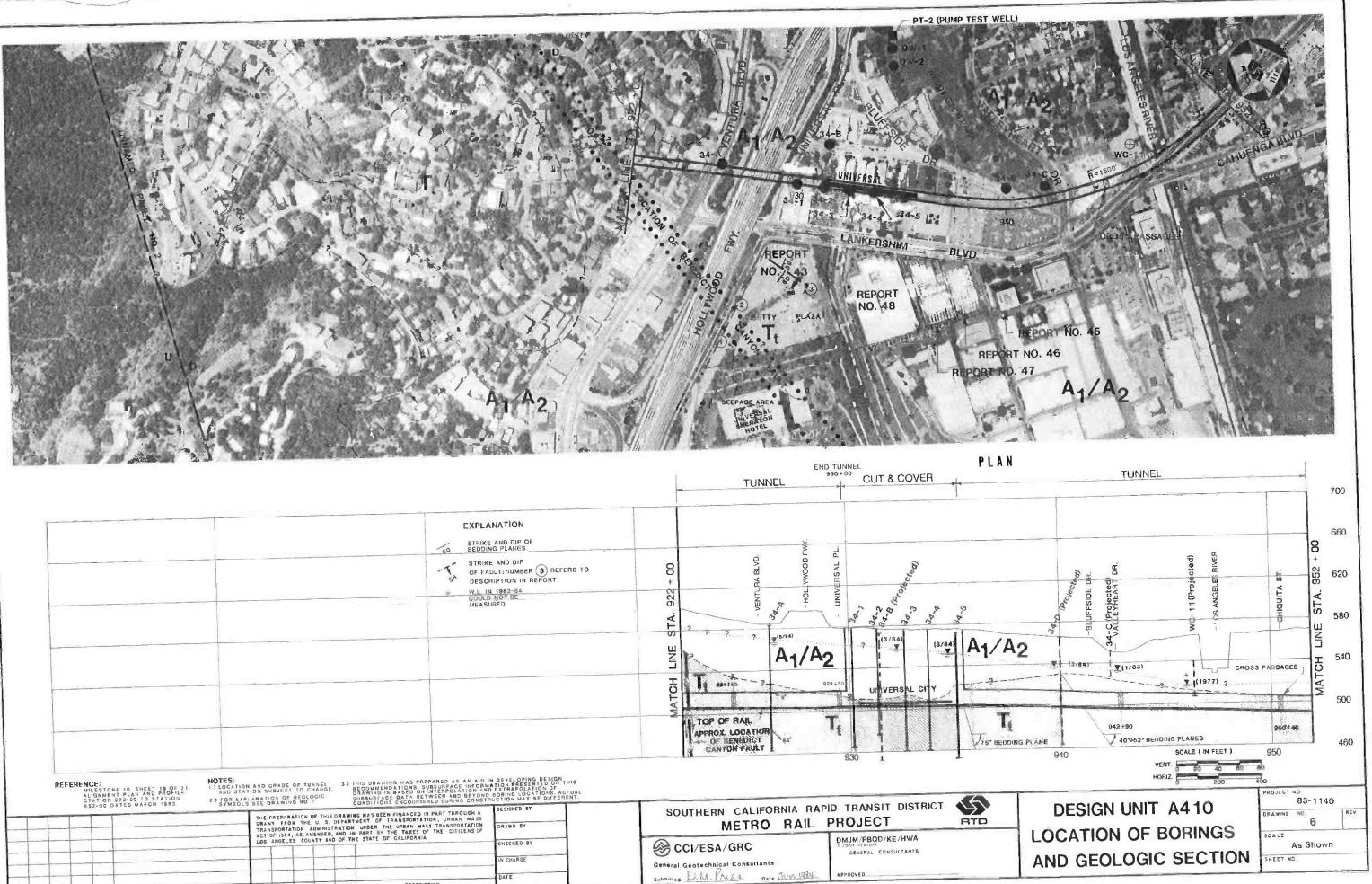

- Gallagher, R., 1981, Los Angeles' Proposed Metro Starter Line Subway: Bull. of Assoc. of Engineering Geologists, Symposium Issue, v. 18, no. 2, p. 137-139.
- Heuer, R.E., 1974, Important ground parameters in soft ground tunneling, <u>in</u> Proceedings, Specialty Conference on Subsurface Exploration for Underground Excavation and Heavy Construction: Am. Soc. of Civil Engineers, New York, N.Y., p. 41-55.
- Hill, R.L., and others, 1979, Earthquake hazards associated with faults in the greater Los Angeles metropolitan area, Los Angeles County, California, including faults in the Santa Monica-Raymond, Verdugo-Eagle Rock, and Benedict Canyon fault zones: Calif. Div. of Mines and Geology, Open File Rept. 79-16 LA, chp. A, B, C, D and E.
- Hoots, H.W., 1930, Geology of the eastern part of the Santa Monica mountains, Los Angeles County, California: U.S. Geol. Survey Prof. Paper 165-C, p. 83-134, map scale 1:24,000.
- Korbin, G.W., 1979, Factors influencing the performance of full face hard rock tunnel boring machines, Report No. UMTA-Ca-06-0122-79-1: U.S. Department of Transportation, Washington, D.C., 263 p.
- Los Angeles City, Street Opening and Widening Division, 1970, Preliminary geologic maps: Map sheets 74, H, I, 94, 95, K, L. 114, 115, 116, M, 135, 136, 137, H, 157, 158, 159, 0, 179, 180, 181, P, scale 1" = 400'.


Metropolitan Water District of Southern California, 1942, Hollywood Tunnel: Historical Record, Contract no. 470, 68 p.


- O'Neill, A.L., 1966, Rock reinforcement in underground construction: Fourth Annual Symposium of Engineering Geology and Soils Engineering, University of Idaho, Moscow, Idaho, Proceedings, p. 19.
- Proctor, R.J., 1971, Mapping geological conditions in tunnels: Assoc. of Engineering Geologists Bull. v. 8, no. 1, p. 1-43.
- Sperry, P.E., and Heuer, R.E., 1972, Excavation and support of Navajo Tunnel No. 3, in Lane, K.S., and Garfield, L.A., eds., Proceedings, 1st Rapid Excavation and Tunneling Conference, Chicago, June 5-7, 1972: American Institute of Mining, Metallurgical and Petroleum Engineers, New York, N.Y., p. 539-572.
- Terzaghi, K., 1946, Introduction to tunnel geology, in Proctor, R.V., and White, T.L., eds., Rock tunneling with steel supports: Commercial Shearing and Stamping Co., Youngstown, Ohio, p. 89-99.
- Weber, F.H., and others, 1980, Earthquake hazards associated with the Verdugo-Eagle Rock and Benedict Canyon fault zones, Los Angeles County, California: Calif. Div. of Mines and Geology, Open File Rept. 80-10 LA, chap. A and B.
- Woodward-Clyde Consultants, 1982, Geotechnical investigation, Getty Plaza, Universal City, California, for MCA Incorporated c/o Skidmore, Owings & Merrill.







		TUNNEL	CUT & COVER
	EXPLANATION STRIKE AND DIP OF BEDDING PLANES STRIKE AND DIP OF FAULT:NUMBER (3) REFERS TO DESCRIPTION IN REPORT WILL IN 1983-84 COULD NOT RE- MEASURED	MATCH LINE STA. 922 + 00 MATCH LINE STA. 922 + 00 WATCH LINE STA. 922 + 00 Public States of the stat	A2 930 1
REFERENCE: MILESTONE 10, SMEET 18 OF 21 ALIGNMENT FLAN AND PROFILE STATION 922:00 ID STATION S52:00 DATED MARCH 1983. I.D LOCATION AND GRADE OF TUNNEL AND STATION OF OPCOLOGIC SYMBOLS SEE DRAWING NO ? 3.) THIS DRAWING WA DRAWING IS 803. Image: State of the st		SOUTHERN CALIFORNIA R METRO RAIL Constants General Geotechnical Consultants	APID TRANSIT DISTRICT PROJECT DMJM/PBOD/KE/HWA GENERAL CONSULTANTS

DESCRIPTION

REV DATE BY SUB. APP.

REV. DATE BY SUB. APP.

DESCRIPTION

GEOLOGIC UNITS

SOFT GROUND TUNNELLING

HOLOCENE

PLEISTOCENE

PLIOCENE

CENE

MIO

TERTIARY

QUATERNARY

A1

A2

A3

A4

SP

С

2-5

1-5

YOUNG ALLUVIUM (Granular): Includes clean sands. silty sands, gravelly sands, sandy gravels, and locally contains cobbles and boulders. Primarily dense, but ranges from loose to very dense.

YOUNG ALLUVIUM (Fine-grained): Includes clays, clayey silts, sandy silts, sandy clays, clayey sands. Primarily stiff, but ranges from firm to hard.

OLD ALLUVIUM (Granular): Includes clean sands, silty sands, gravelly sands, and sandy gravels. Primarily dense, but ranges from medium dense to very dense.

OLD ALLUVIUM (Fine-grained): Includes clays, clayey silts, sandy silts, sandy clays, and clayey sands. Primarily stiff, but ranges from firm to hard.

SAN PEDRO FORMATION: Predominantly clean, cohesionless, fine to medium-grained sands, but includes layers of silts, silty sands, and fine gravels. Primarily dense, but ranges from medium dense to very dense. Locally impregnated with oil or tar.

FERNANDO AND PUENTE FORMATIONS: Claystone, siltstone, and sandstone; thinly to thickly bedded. Primarily low hardness, weak to moderately strong. Locally contains very hard, thin cemented beds and cemented nodules.

ROCK TUNNELLING (Terzaghi Rock Condition Numbers apply)

-Terzaghi Rock Condition Number

Approximate boundary between Terzaghi numbers

TOPANGA FORMATION: Conglomerate, sandstone, and siltstone; thickly bedded; primarily hard and strong (Geologic symbol Tt).

TOPANGA FORMATION: Basalt; intrusive, primarily hard and strong (Geologic symbol Tb).

TERZAGHI ROCK CONDITION NUMBERS:*

1 Hard and intact

- 2 Hard and stratified or schistose
- 3 Massive, moderately jointed
- 4 Moderately blocky and seamy
- 5 Very blocky and seamy (closely jointed)
- 6 Crushed but chemically intact rock or unconsolidated sand: may be running or flowing ground
- 7 Squeezing rock, moderate depth
- 8 Squeezing rock, great depth
- 9 Swelling rock

'In practice, there are not sharp boundaries between these categories, and a range of several Terzaghi Numbers may best describe some rock.

SYMBOLS

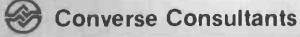
Geologic contact: approximately located; queried where inferred

40

Fault (view in plan): dotted where concealed; gueried where inferred; (U) upthrown side, (D) downthrown side

Fault (view in geologic section): approximately located; queried where inferred; arrows indicate probable movement; attitude in profile is an apparent dip and is not corrected for scale distortion

Dip of bedding: from unoriented core samples; bedding attitudes may not be correctly oriented to the plane of the profile, but represent dips to illustrate regional geologic trends; number gives true dip in degrees, as encountered in boring


Ground water level; approximately located; queried where inferred

Boring — CEG (1981)

- Boring CCI/ESA/GRC (1983)
- Boring Nuclear Regulatory Commission (1980)
- Boring Woodward-Clyde (1977)
- Boring Kaiser Engineers (1962)
- Boring Other (USGS 1977 and various foundation studies)
- NOTES: 1) The geologic sections are based on interpolation between borings and were prepared as an aid in developing design recommendations. Actual conditions encountered during construction may be different.
 - 2) Borings projected more than 100' to the profile line were considered in some of the interpretation of subsurface conditions. However, final interpretation is based on numerous factors and may not reflect the boring logs as presented in Appendix A.
 - 3) Displacements shown along faults are graphic representations. Actual vertical offsets are unknown.

DESIGN UNIT A410 Southern California Rapid Trans METRO RAIL PROJECT

Geotect and App

	SILT
	CLAY
	SANDY SILT
1D	SANDY CLAY
	CLAYEY SILT
	SILTY CLAY
	SILTY SAND
	CLAYEY SAND
	SAND
S.d	GRAVELLY SAND
ROM	SANDY GRAVEL
0000	GRAVEL
41A	GRAVELLY CLAY
	TAR SILT & CLAY
	TAR SAND
	FILL
	SILTSTONE
	CLAYSTONE
	INTERBEDDED SA

INTERBEDDED SANDSTONE WITH SILTSTONE OR CLAYSTONE

SANDSTONE

SANDSTONE. CONGLOMERATE

CEMENTED ZONE

META-SANDSTONE

BASALT

BRECCIA

SHEAR ZONE

GEOLOGIC EXPLANATION

	Scale N/A		Project No 83-1140	
sit District	Date JUN., 1984			
Т	Prepared by	RG	Drawing No	
nnical Engineering	Checked by	JAD	7	
plied Sciences	Approved By	HAS		

Appendix A Field Exploration

APPENDIX A FIELD EXPLORATION

A.1 GENERAL

Field exploration data presented in this report for Design Unit A410 includes logs of borings drilled for the 1981 Geotechnical Investigation Report, and 1983 borings drilled for this investigation. The specific boring logs included are numbered 28-8, CEG-29, 29-A, 29-B, 29-C, 29-1, 29-2, 29-3, 30-A, 30-B, CEG-30, CEG-31, 31-1 through 31-7, CEG-32, 32-1, 32-2, CEG-32A, CEG-33, 33-1, 33-2, CEG-34, 34-1, 34-A.

Locations of the borings are shown on Drawings 2 and 6, inclusive. Ground water observation wells (piezometers) were installed in borings listed in Section 5.4 (Table 5-2). Geophysical downhole and crosshole surveys were made for the 1981 investigation at Boring CEG-34 (see Appendix B). A downhole survey was conducted at CEG-31

The borings were drilled to depths ranging from 20 to 471 feet, and penetrated through the alluvium into the underlying bedrock. All borings were sampled at regular intervals using the Converse ring sampler, pitcher barrel sampler and the standard split spoon sampler. Continuous rock core samples were obtained in all of the borings except 28-8, 29-B, 29-C, 30-A, 30-B, 31-C, 31-7, 34, 34-1. Sample recovery was generally good in both the siltstone and claystone bedrock and the alluvium.

The following subsections describe the field exploration procedures and provide explanations of symbols and notation used in preparing the field boring logs. Copies of the field boring logs are presented following the text of this appendix.

A.2 FIELD STAFF AND EQUIPMENT

A.2.1 Technical Staff

Members of the three firms (CCI/ESA/GRC) participated in the drilling exploration program. The field geologist continuously supervised each boring during the drilling and sampling operation. The geologist was also responsible for preparing detailed lithologic log and for sample/core identification, labelling and storage of all samples, and installation of piezometer pipe, gravel pack and bentonite seals.

A.2.2 Drilling Contractor and Equipment

The rotary wash drilling was performed by Pitcher Drilling Company of East Palo Alto, California, with Failings 750 and 1500 rotary wash rigs, each operated by a two-man crew. A Mayhew 1000 rotary wash and man-sized bucket auger equipments of A&W Drilling Company of Brea, California, were also used.

A.3 SAMPLING AND LOGGING PROCEDURES

Logging and sampling were performed in the field by the project geologists. The following describes sampling equipment and procedures and notations used on the lithologic logs to indicate drilling and sampling modes.

CCI/ESA/GRC

A.3.1 Sampling

In the overburden at about 10-foot intervals, the Converse ring sampler was driven using either a down-hole 450-pound or a 340-pound slip-jar hammer. The Converse sampler was followed with the standard split spoon sample (SPT) driven with a 140-pound hammer with a 30-inch stroke. Where the soft bedrock was encountered, the borings were sampled using a Pitcher Barrel and Converse ring sampler at 20-foot intervals.

At locations where the bedrock was too hard for Pitcher Barrels or Converse rings, continuous rock core samples were obtained. The rock cores were cut with a diamond impregnated bit and removed in 5- and 10-foot runs.

The most common cause for loss of samples or altering the sample interval was when gravel was encountered at the desired sampling depth. Standard penetration blow count information can often be misleading in this type of formation, and it is difficult to recover an undisturbed sample. Therefore, at some locations, borings were advanced until drill response and cutting suggested a change in formation.

The following symbols were used on the logs to indicate the type of sample and the drilling mode:

Log Symbol	Sample Type	Type of Sampler
<u> </u>	Bag	
J	Jar	Split Spoon
C	Can	Converse Ring
<u> </u>	Shelby Tube	Pitcher Barrel
Box	Box	Pitcher Barrel, Core Barrel

Log <u>Symbol</u>	Drilling Mode
AD	Auger Drill
RD	Rotary Drill
PB	Pitcher Barrel Sampling
SS	Split Spoon
DR	Converse Drive Sample
C	Coring

A.3.2 Field Classification of Soils

All soil types were classified in the field by the field geologist using the "Unified Soil Classification System". Based on the characteristics of the soil, this system indicates the behavior of the soil as an engineering

construction material.* Although particle size distribution estimates were based on volume rather than weight, the field estimates should fall within an acceptable range of accuracy. A description of the Unified Soil Classification Symbols used on boring logs is presented in Table A-1.

TABLE A-1 UNIFIED SOIL CLASSIFICATION SYMBOLS

CDANUL AD COLLS

EINE-CRAINED SOLLS

	GRANULAR SOILS		FINE-GRAINED SUILS			
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION			
G₩	Well-graded gravels, gravel-sand mixtures, little or no fines	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight			
GP	Poorly graded gravels, gravel-sand mixtures, little or no fines		plasticity			
GM	Silty gravels, gravel-sand-silt mixtures	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays			
CC	Clayey gravels, gravel-sand-clay mixtures	0L	Organic silts and organic silty clays of low plasticity			
SW	Well-graded sands, gravelly sands, little or no fines	МН	inorganic silts, micaceous or diato- maceous fine sandy or silty soils, elastic silts			
SP	Poorly graded sands, gravelly sands, little or no fines	СН	Inorganic clays of high plasticity, fat clays			
SM	Silty sands, sand-silt mixtures					
SC	Clayey sands, sand-clay mixtures	он	Organic clays or medium to high plasticity, organic silts			
		Pt	Peat and other highly organic soils			

Table A-2 shows the correlation of standard penetration information and the physical description of the consistency of clays (hand-specimen) and the compactness of sands used by the field geologists for describing the materials encountered.

H-Values (blows/foot)	Hand-Specimen (clay only)	Consistency (clay or silt)		Compactness (sand only)	N-Values (blows/foot
0 - 2	Will squeeze between fingers when hand is closed	Very soft	11	Very loose	0 - 4
2 - 4	Easily molded by fingers	Soft	11	Loose	4 - 10
4 - 8	Holded by strong pressure of fingers	Firm	11		
8 - 16	Dented by strong pressure of fingers.	Stiff		Hedium dense	10 30
16 - 32	Dented only slightly by finger pressure	Very stiff		Dense	30 - 50
32+	Dented only slightly by pencil point	Hard	11	Yery dense	50+

^{*} For a more complete discussion of the Unified Soil Classification System, refer to Corps of Engineers, Technical Memorandum No. 3-357, March 1953, or Department of the Interior, Bureau of Reclamation, Earth Manual, 1963.

A.3.3 Field Description of the Formations

The description of the formations is subdivided in two parts: lithology and physical condition. The lithologic description consists of:

- ° rock name;
- ° color of wet core (from GSA rock color chart);
- ° mineralogy, textural and structural features; and
- ° any other distinctive features which aid in correlating or interpreting the geology.

The physical condition describes the physical characteristics of the rock believed important for engineering design consideration. The form for the description is as follows:

Physical condition: fractured, minimum , maximum , mostly _____; _____ hardness; ______ strength; ______ weathered.

Bedrock description terms used on the boring logs are given on Table A-3.

A.4 PIEZOMETER INSTALLATION

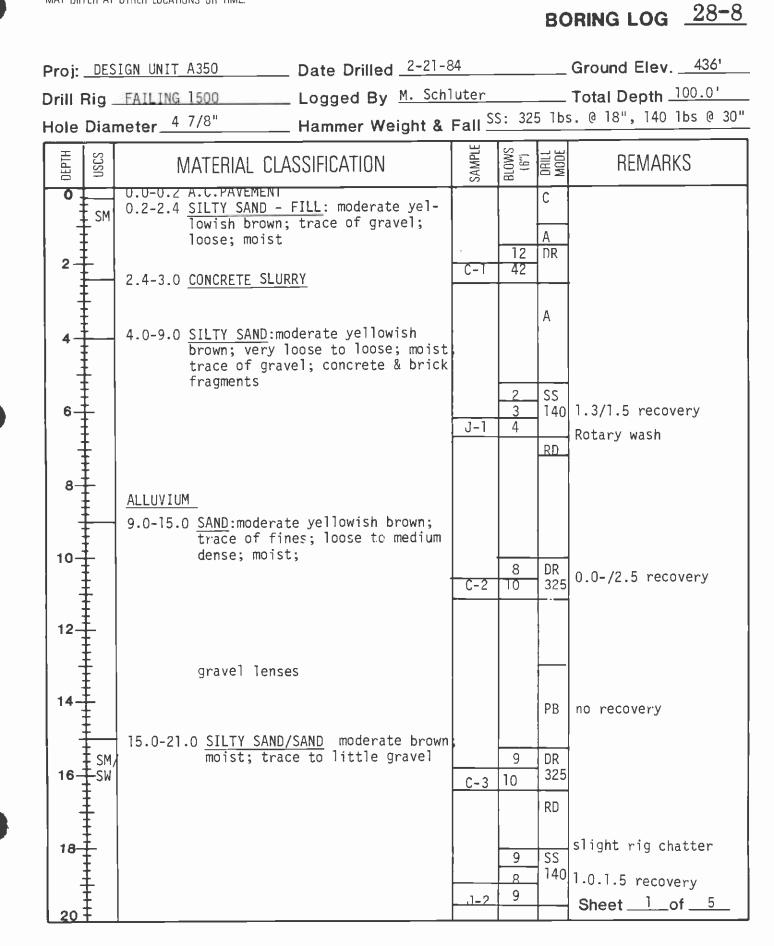
Piezometers were installed in borings 28-8, CEG-29, 29-B, 29-C, 29-1, 29-2, 29-3, CEG-30, CEG-31, 31-1, 31-5, 31-7, CEG-32, CEG-32A, CEG-33, 33-1, 33-2 and CEG-34. Procedures for piezometer installation were as follows:

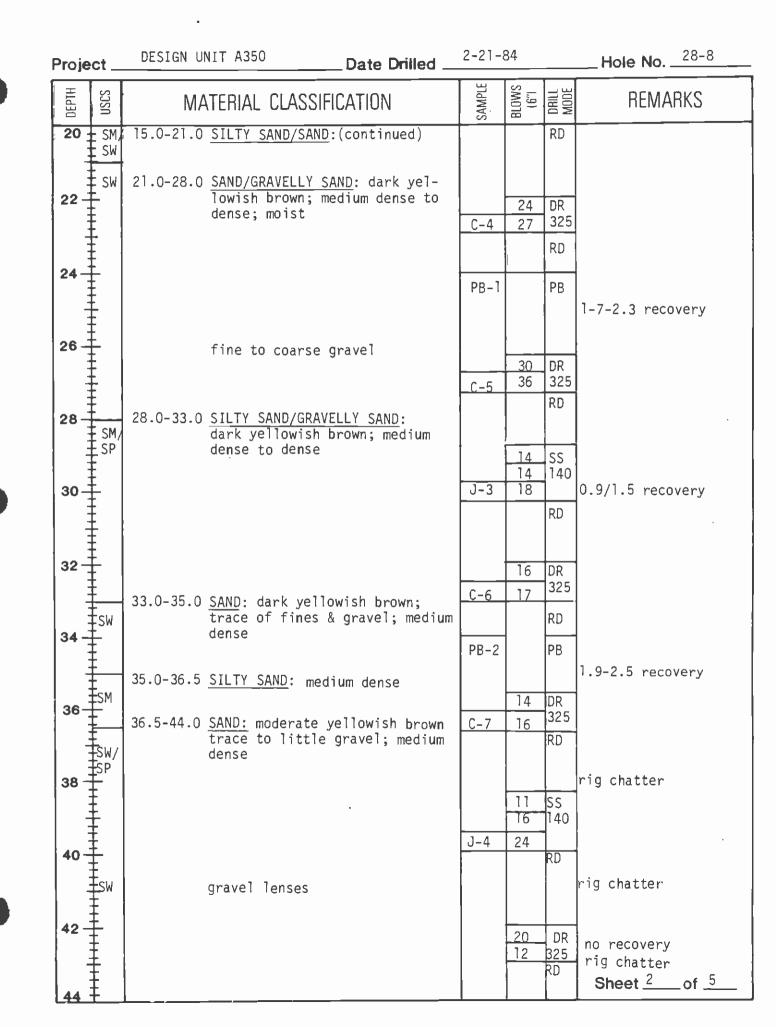
A 2-inch diameter plastic ABS pipe was installed in the boring. At least the lower 20 feet of the ABS pipe was perforated, and the annulus of the boring around the perforated portion of the pipe was backfilled with a coarse sand/pea gravel aggregate. Concrete/bentonite slurry was used to backfill around the non-perforated portion of the pipe to prevent surface water from artificially recharging the gravel-packed hole or contaminating local ground water. After the piezometer was installed, the boring was flushed using air lift provided by a trailer-mounted air compressor. The piezometer was covered with a standard 7-inch diameter steel water meter cap held at surface grade by a grouted in-place 3- to 4-foot long, 5-inch diameter plastic sleeve. Ground water data obtained from the piezometers are presented in Section 5.4 of the text.

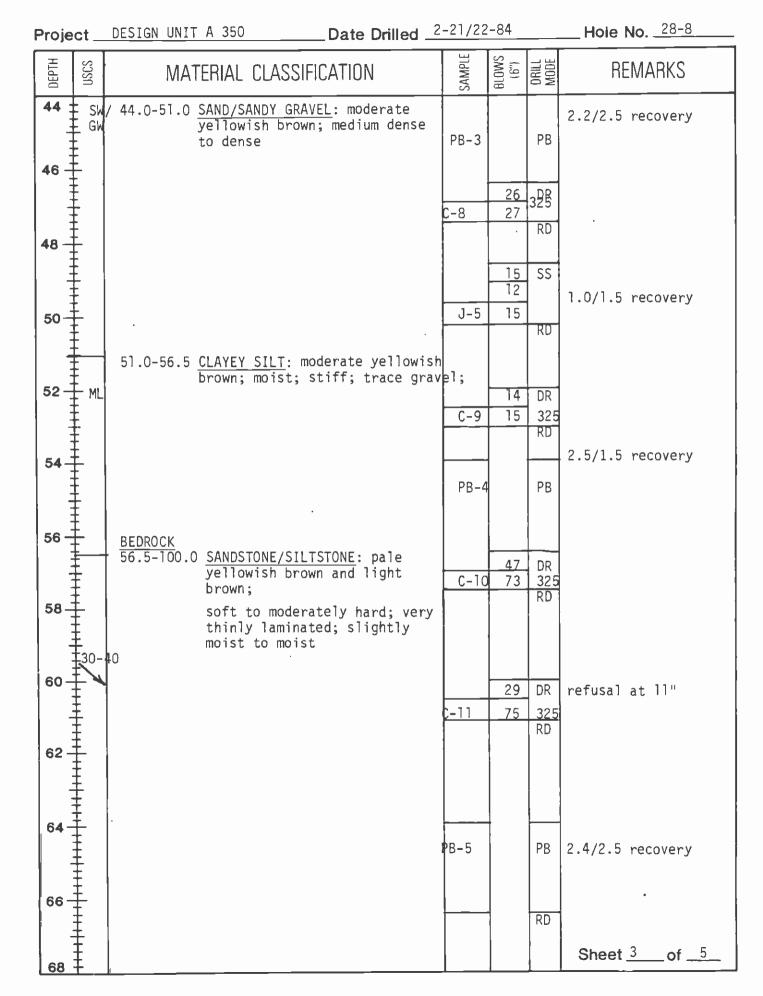
TABLE A-3	Bedrock	Description	Terms

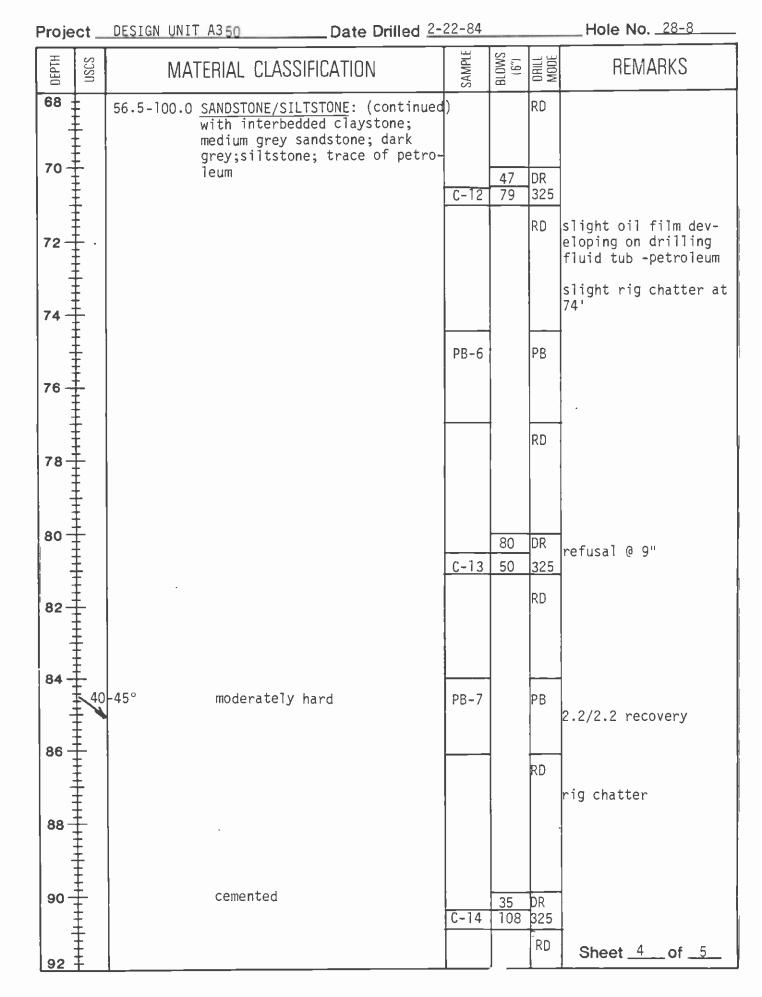
PHYSICAL CONDITION*	SIZE RANGE	REMARKS	
Crushed	-5 microns to 0.1 ft	Contains clay	
Intensely Fractured	0.05 ft to 0.1 ft	Contains no clay	4
Closely Fractured	0.1 ft to 0.5 ft		•
Moderately Fractured	0.5 ft to 1.0 ft		
Little Fractured	1.0 ft to 3.0 ft		
Massive	4.0 ft and larger		
HARONESS**			
	erved for plastic materi		
	ily crumbled or reduced		
	be gouged deeply or car		
Moderately Hard - Can	be readily scratched by	a knife blade; scratch leaves h	neavy trace of dust
<u>Hard t_</u> - <u>Can</u>	be scratched with diffi	culty; scratch produces little p	powder & is often faintly visible
<u>Very Hard</u> <u>- Can</u>	not be scratched with kn	ife_blade	
STRENGTH			
Plastic - I	asily deformed by finger	pressure	
Friable (Crumbles when rubbed with	fingers	·
Weak - L	Infractured outcrop would	<u>crumble_under_light_hammar_blo</u>	w5
Moderately Strong - 6	Outcrop would withstand a	few firm hammer blows before b	reaking
Strong T	solv duct & small fragmer	+e	but would yield, with difficulty,
New Stance	Outcrops would resist hea & small fragments	avy ringing hammer blows & will	yield with difficulty, only dust
WEATHERING DECOMPO	SITION	DISCOLORATION	FRACTURE CONDITION
	o to complete alteration		All fractures extensively coated with oxides, carbonates, or clay
Deep mineral	s, feldspars altered to alteration of minerals,	Cleavage Moderate or localiz & intense	Thin coarings or stains
Deep mineral Moderate Slight surface	s, feldspars altered to	cleavage Moderate or localiz & intenso Slight & intermitte	Thin coarings or stains

*Joints and fractures are considered the same for physical description, and both are referred to as "fractures"; however, mechanical breaks caused by drilling operation were not included.


**Scale for rock hardness differs from scale for soil hardness.


-A5-


.


THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SDIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABDRATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

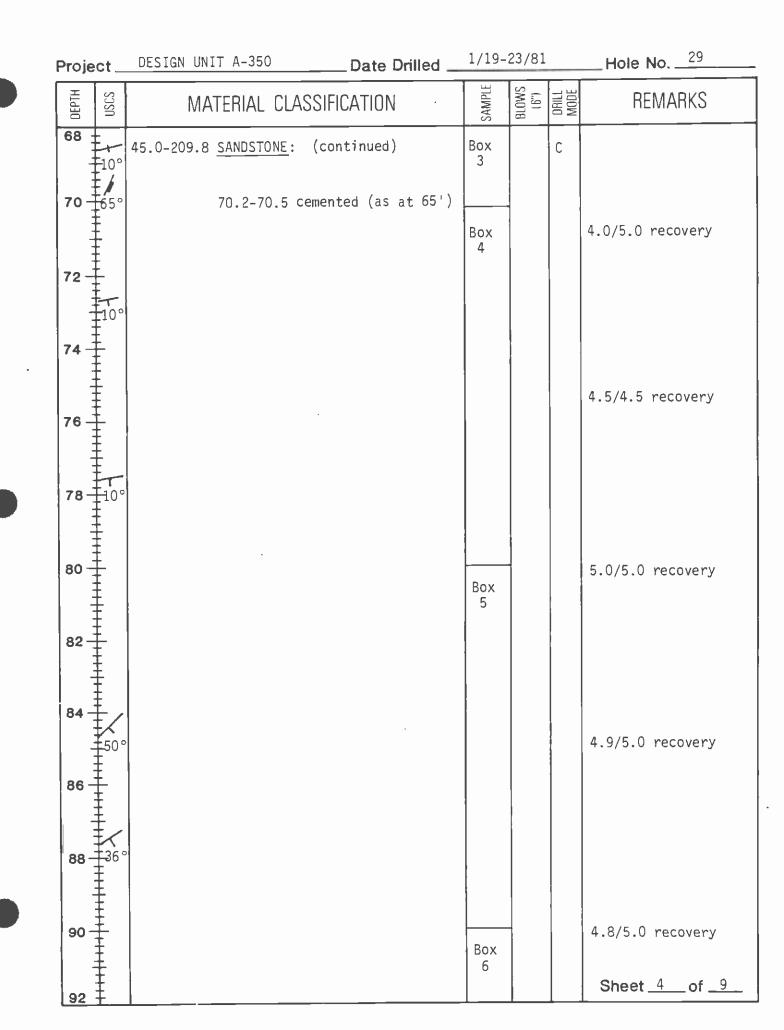
Project _	DESIGN UNIT A350	Date Drilled _	2-22-84		Hole No. <u>8</u>
DEPTH USCS	MATERIAL CLASSI	FICATION	SAMPLE	BLOWS (6") DRILL	Sector Remarks
92 94 94 96	stone; med	cemented sand- ium light grey; thinly bedded; thered	PB-8	RI F2	0.3/0.3 recovery
98	-		<u>C</u> -15	150 DF	disturbed sample
102	100.0' Terminated Hole				2-22-84 installed 100' piez- ometer, perforated from 80-100'; back- filled with pea gravel 2-24-84, water level 40.2' below street
104					level, installed cas- ing and cover
108					
112					
116 -					Sheet of

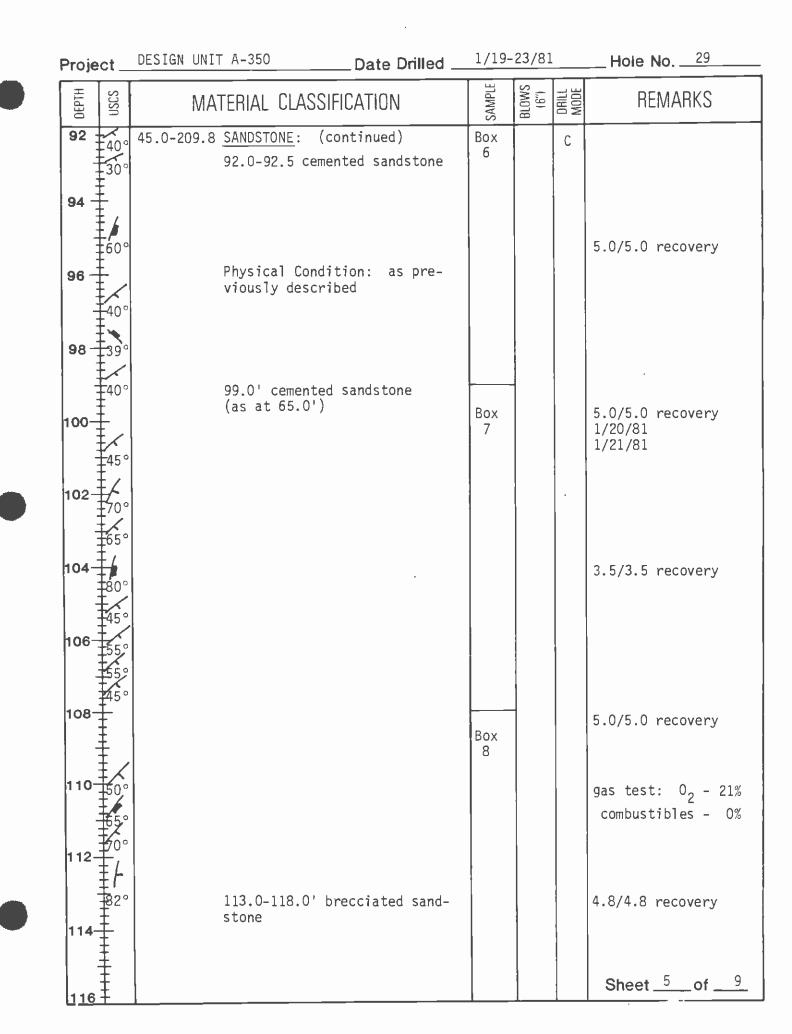
THIS BORINC LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SDIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LDCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

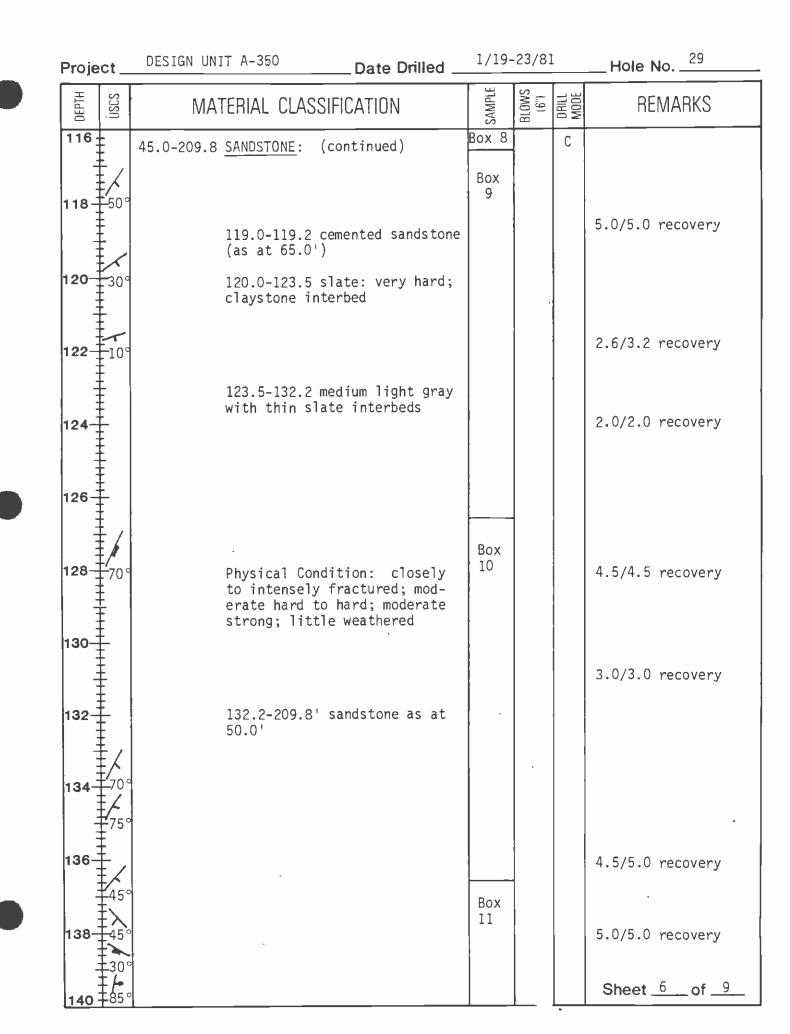
BORING LOG 29

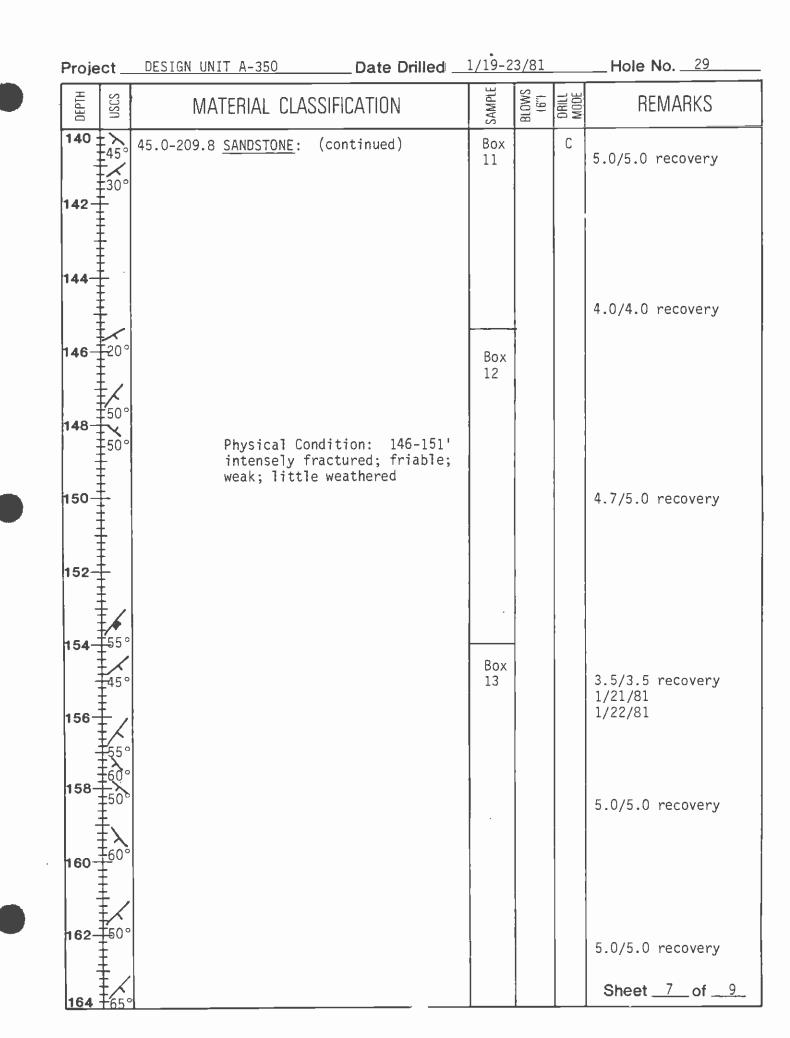
Proj:DESIGN UNIT A-350	Date Drilled 1/19-23/81	_ Ground Elev. <u>41/'</u>

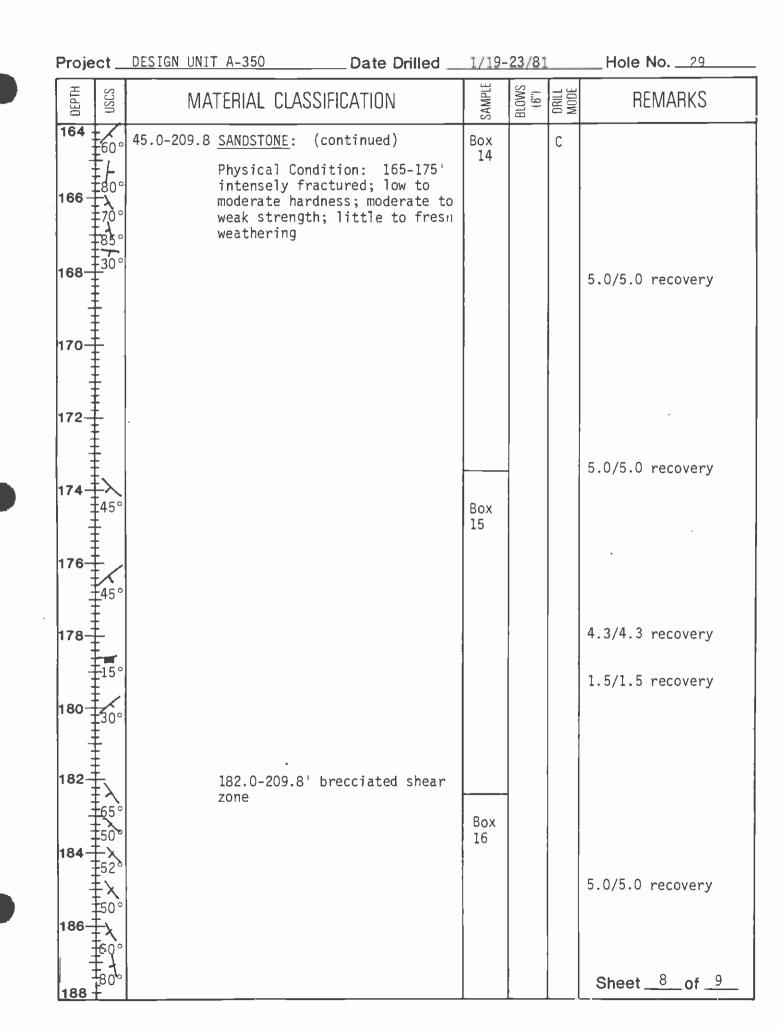
Drill Rig __Mobile B-40 _____ Logged By __D. Gillette _____ Total Depth __209.8'

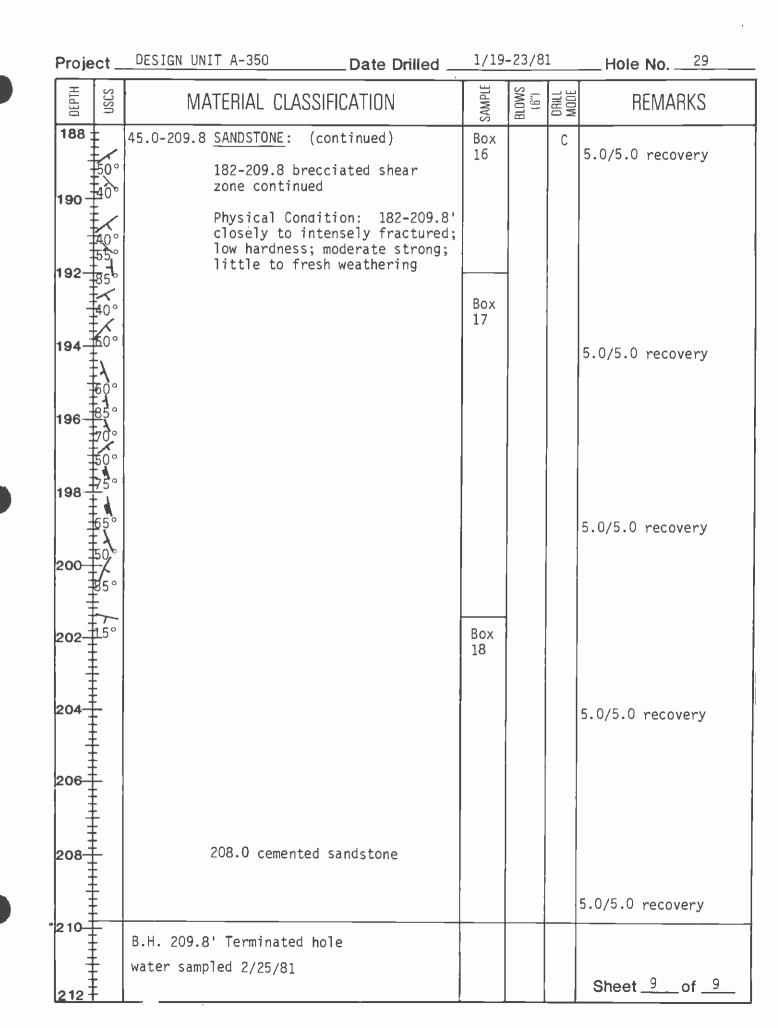

Hole Diameter 3", 6" Hammer Weight & Fall 140 lbs @ 15-18"


DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	(6") (6")	DRILL MODE	REMARKS
0 2- 4- 6- 8-		FILL 0.0-0.4 CONCRETE ALLUVIUM 0.4-16.5 <u>SILTY SAND</u> : moderate brown; trace of gravel; occasional thin silty clay lenses; moist; med- ium dense			AD RD	
10-			J-1	6 10 10	SS RD	1.0/1.5 recovery
14-		14.5-15.0 gravel				rig chatter .
18-	GP	16.5-20.5 <u>SANDY GRAVEL and COBBLES</u> : ligh brown and brownish gray; trace of fines; moist; dense	t			rig chatter
20	ŧ				РВ	Sheet of

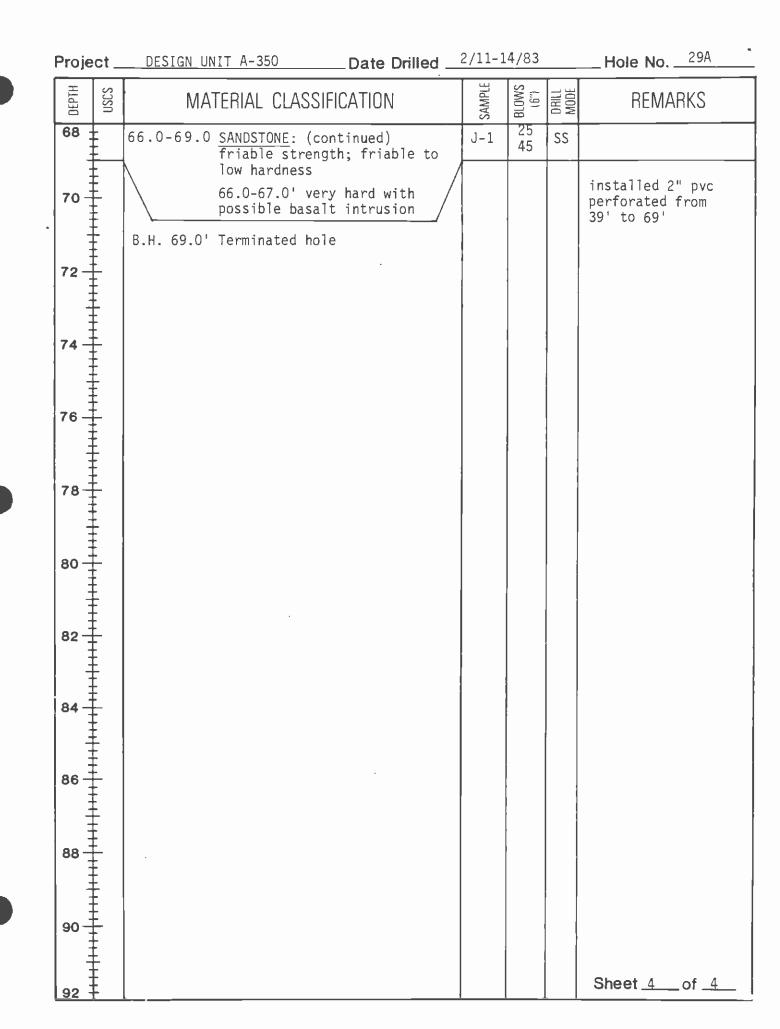

						-		Hole No29
DEPTH	nscs	MA	TERIAL CLASSIF	ICATION	SAMPLE	BLOWS (6")	DRILL MODE	REMARKS
20 -	GP	16.5-20.5	SANDY GRAVEL and	COBBLES: (cont)			PB	no recovery
	E	WEATHERED -	TOPANGA FORMATIC	N	1			
		20.5-36.0 \$	SANDY CLAYSTONE: inclusions and s	mottled gray				
2 -			firm to very sti	ff		5	SS	0.9/1.5 recovery
	ΕI			ene marcivo or	J-2	8		
4			little fractured	ion: massive or l; soft to fri- Friable strength;			RD	
6-								
8			29.0-29.6 cobb1	es or boulders				
- 01							PB	cobble pushed through clay no recovery
	ŧ							
2-	Ŧ					7	SS	1.2/1.5 recovery
-	‡				J-3	10		
	ŧ					13		
4 -							RD	
36-	‡ 							
- 8		36.0-42.0	erate yellow br gray; thin sand with siltstone	y claystone beds interbeds				
	ŧ		38.2-39.8 fract					
	Ī,		moderately frac	ion: closely to tured; friable				
40 -		c c	to low hardness	; weak to mode- deep to moderate	Box 1		PB	2.0/2.0 recovery
12 -	<u></u>	42.0-45.0	SILTY CLAYSTONE	-		11	SS	1.5/1.5 recovery pocket penetrometer
			Physical Condit little fracture moderate weather	tion: massive or d; soft; plastic red	J-4 ;Box 1		PB	3.5 tsf (broke apart) Sheet 2 of 9


Projec	t	DESIGN UNIT	A-350	Date Drilled _	1/19-2	23/81		Hole No
DEPTH	nscs	MAT	ERIAL CLAS	SIFICATION	SAMPLE	BLOWS (6")	ORILL MODE	REMARKS
44		42.0-45.0		TONE: (continued) moderate yellowis	Box 1		PB	2.1/2.1 recovery 1/19/81 1/20/81
46	,	43.0~205.8	brown and m moderate ye with very t	edium light gray; llowish brown beds hin medium light			RD	
48 	- 30°		beds; conta	siltstone inter- ins dark brown or- sions; lightly	.Box 2		с	1.1/1.1 recovery
50	८ 50°		fractured;	nditions: moderato low hardness; weak oderate to little				
52			ium light g black; occu stone beds	sandstone is med- ray and grayish rs as thin sand- with very thin ck siltstone and				4.9/4.9 recovery
54			claystone i					
56								
58					Box			2.8/5.0 recovery
60 	15°		60.0-68.0 c	laystone beds	3			
62	10°							2.4/3.0 recovery
64 + +								
66	-			ell cemented nedium light gray;				4.2/5.0 recovery
68 T			66.0 cement	ed				4.0/5.0 recovery Sheet <u>3</u> of 9


.



THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LDCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.


BORING LOG 29A

Proj:	DE	SIGN UNIT	A-350	Date Drilled 2/11-14/83						
Drill	Rig .	Maynew 1	000	Logged By _	G. H	albert			Total Depth69'	
Hole	Dia	meter	4 7/8"	Hammer 'Neig	pht &	Fall 🕹	40 lb	03	0", 340 16 @ 24"	
DEPTH	NSCS	M	aterial Cla	SSIFICATION		SAMPLE	BLOWS (6")	DRILL MDDE	REMARKS	
0		0.0-0.5	A.C. PAVEMEN	IT				С		
2	ML	FILL 0.5-4.0	CLAYEY SILT:	contains sand	đ			RD		
-										
4-	GW	ALLUVIUM 4.0-18.0	SAND:							
6-			6.0-7.0' gra	velly sand laye	er				moderate chatter	
8										
10			fine gravell	y sand					moderate to heavy chatter continuous	
12_			occasional s	iltysand lens					light to moderate chatter	
14-									drill rate: l'/min.	
16-										
18-		18.0-36.0		moderate yello stiff; very moi					Sheet <u>1</u> of <u>4</u>	

	ct _		NIT A-350	Date Dril				, 	Hole No
OEPTH	NSCS	M	aterial ci	ASSIFICATION		SAMPLE	BLDWS	ORILL MODE	REMARKS
20		18.0-36.0	with grave moderate y	: (continued) Ty sand lenses; Yellowish brown; Yy stiff to hard	very			RD	drill rate 0.8'/min
4 4 6	stal and the (SP)	25.0-25.8'	sand lens					moderate chatter
8	church (SP)	28.0-28.8'	gravelley sand `	lens				moderate chatter
2									
4			gravelly 1	ens			-		
8	SM	36.0-46.0	<u>SILTY SAND</u> brown; den	: moderate yello se	wish				drill rate 2'/min
	. Luci al ana al se								
2 1111111111111111111111111111111111111									Sheet <u>2</u> of <u>4</u>

1	ect	DESIGN UNIT A-350 Date Drille					Hole No9A
DEPTH	NSCS	MATERIAL CLASSIFICATION		SAMPLE	BLOWS	DRILL	REMARKS
44	SM	36.0-46.0 <u>SILTY SAND</u> : (continued)				RD	
46	SW	46.0-60.0 <u>SAND</u> : contains fine gravel; trace of fines					
18							
50-							drill rate 3'/min.
52							
54-	(SP)	fine gravelly sand lens					
	(SM)	silty sand with gravel					
56 -	(GW)	gravel lens					heavy chatter
58 -							
60-	SM ML	60.0-65.0 <u>SILTY_SAND/SILT</u> : moderate yellowish orange with dusky yellowish brown silt					
62 -		yerrowish brown site					dpill pate 0 41/mi
64							drill rate 0.4'/mir
66		TOPANGA FORMATION - BEDROCK 66.0-69.0 <u>SANDSTONE</u> : medium gray; find with very thin darker gray s layers; also dark yellowish					
	ŧ	layers; also dark yellowish orange weathering stains; jointed, otherwise massi	ve:		<u>18</u> 20	DR	Sheet <u>3</u> of <u>4</u>

,

j,

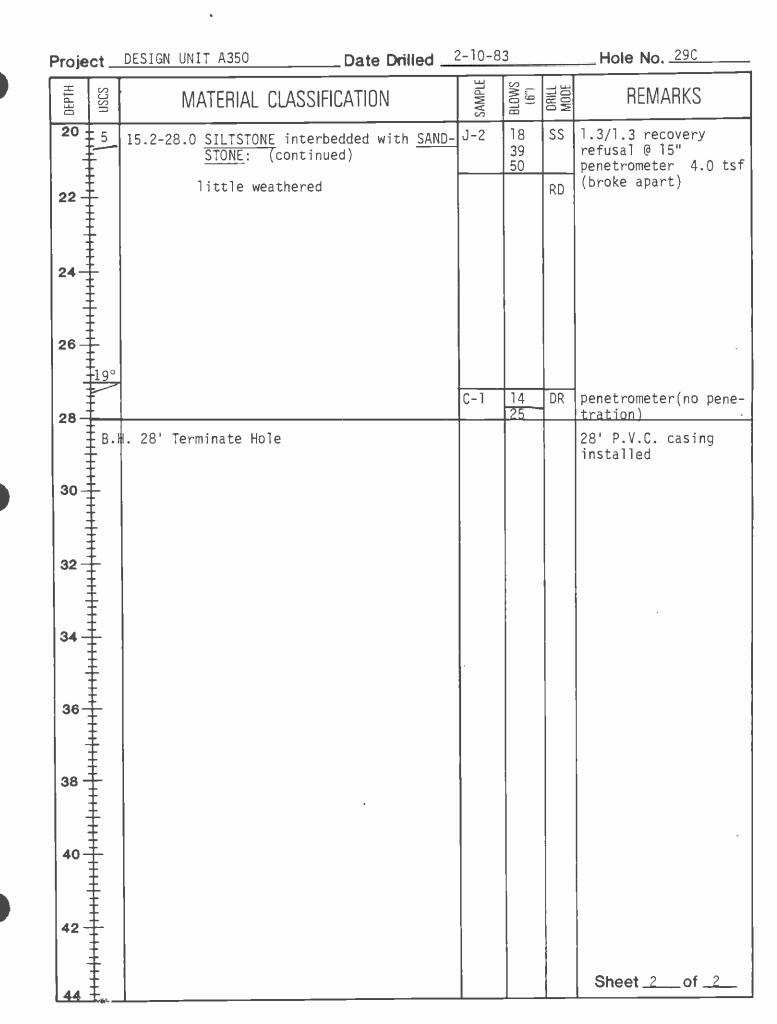
THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SDIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME

.

BORING LOG 29B

Proj:	DE	SIGN UNIT A350	Date Drilled	2/10-	11/83			Ground Elev. 421'
Drill I	Rig =	Mayhew 1000	Logged By	G. Ha	lbert			Total Depth47'
Hole	Diar	meter <u>4 7/8"</u>	Hammer Wei	ght &		T 140	1b,	30", C 3401b, 20"
DEPTH	uscs	MATERIAL CLA	SSIFICATION		SAMPLE	(9) SMOTB	DRILL Mode	REMARKS
2	CL.	0.0-0.5 A.C. PAVEMENT FILL 0.5-3.0 <u>CLAYEY SILT</u> : very stiff; 10	dark yellowish w plasticity	ı brown	• •		C RD	
4	SW	ALLUVIUM 3.0-22.6 <u>SAND</u> : mixed brown, dense	white, black,	red,				
8-		occasional si	lty sand lense	S	1			light chatter
10		fine gravel						moderate chatter
16-	GP	15.5-16.6 gra	vel layer					moderate chatter moderate to heavy chatter
20								Sheet <u>1</u> of <u>3</u>

oje	ct	ESIGN UNIT	A350	Date Dri			11/03		Hole N	o	230
UEYIR	uscs	MA	TERIAL CL/	ASSIFICATION		SAMPLE	(9) SMOT8	DRILL MODE	REI	MARKS	5
2	SW	3.0-22.6	SAND: (cont	inued)				RD	drill rat	e: 0.5	mi
4	SM	22.6-26.5		: moderate yello se to very dense		,					
6 8	SW/	26.5-36.0		<u>VEL</u> : mixed blac e green, little ery dense					light cha	tter	
2											
4 - 36 -	SM	34.0-35.0 BEDROCK	silty sa gravel	nd lens					drill rat	e 0.5'	/min.
- 8		36.0-46.5	mottled da medium gre moderately	interbedded si rk yellow orange y; moist; weathe fractured; fria gth, low hardnes	e & ered; able;	C-1	7	DR	1.0/1.0 r penetrome		-
40 - 12 -	┿┿┿┿┿┿┿			Ň					drill rat	e 0.3'	/min.
									Sheet _	_2of	:3


Project _	DESIGN UNIT A350	Date	e Drilled	2/10-	11/83		Hole No. 298
0EPTH USCS	MATERIAL	CLASSIFICATIO	IN .	SAMPLE	BLOWS (6")	DRILL MODE	REMARKS
44	36.0-46.5 <u>SANDSTO</u>	<u>)NE</u> : massive		J-1	21 34 46	RD SS	1.5/1.5 recovery
48	H. 46.5 Terminated	Hole					installed P.V.C. 2" diameter 0-46' perforated from 26'to 46'
50							
52	· .						
54							
56							
58		e					
60							
62							
64							
66 							Sheet3_ of _3

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATDRY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG 29C

Proj:	DE	SIGN UNIT A350 Date Drilled _2-10-	83			Ground Elev. 451'
Drill I	Rig .	Mayhew 1000 Logged By <u>G. Hal</u>	bert			Total Depth 281
Hole	Dia	meter 4 7/8 Hammer Weight &	Fall	SPT 14	0 16)., 30", C 3401b., 24"
DEPTH	NSCS	MATERIAL CLASSIFICATION	SAMPLE	BLDWS	DRILL MDDE	REMARKS
0	-	6" CONCRETE PAVEMENT			RD	
2-	L ML	FILL 0.5-5.0 <u>SANDY SILT</u> : moderate yellowish brown; stiff; moist				
4		- 				
6	ML. GW	ALLUVIUM 5.0-7.0 <u>SANDY SILT & GRAVEL</u> : gravel and cobbles				
8-	ML	7.0-15.2 <u>SANDY SILT</u>	Ĩ			
10-		greyish orange; very stiff to hard				
12						
16-	30° fai	SILTSTONE with interbedded	J-1	12 23 30	SS	1.5/1.5 recovery
20		19.0-19.4 cemented zone				moderate chatter @19' Sheetof

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABDRATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT DTHER LOCATIONS OR TIME.

BORING LOG 29-1

Proj:DESIGN_UNIT_A-410Date Drilled4-10/13-84Ground Elev. 449'Drill RigFAILING 1500Logged ByMARK_SCHLUTERTotal Depth120.0'

Hole Diameter 4 7/8"/3" Hammer Weight & Fall 325#@ 18"

DEPTH	MATERIAL CLASSIFICATION	SAMPLE	NON.	DRILL MODE	REMARKS
4	0.0-0.65 CONCRETE STREET SURFACE 0.65-11.0 <u>SILTY SAND</u> : moderate brown; moist, loose, trace clay binder	C-1		C A DR 325 A	started drilling @ 0820
10	interbedded sand layers;medium dense 11.0-18.0 <u>SAND/SILTY SAND</u> : moderate brown; moist, medium dense; occasional trace clay binder; trace gravel	C-2 C-3		DR 325 RD DR 325 RD	rotary wash tri cone bit
16	weakly to moderately cemented sand layers	<u>C-4</u>		DR 325 RD	slight to moderate rig chatter
20	18.0-22.0 <u>CLAYEY SILT</u> : moderate yellow- ish brown to light olive gray	C-5		DR 325	Sheet _1of

Project DESIGN UNIT A-410 Date Drilled 4-10/11-84 Hole No. 29-1

рертн	uscs	MATERIAL CLASSIFICATION	SAMPLE	NON.	DRILL	REMARKS
20		18.0-22.0 <u>CLAYEY SILT</u> (continued) moist, firm			RD	
22 -	GC	22.0-26.0 <u>CLAYEY SANDY GRAVEL</u> moderate brown; medium dense; moist, clay binder			DR	
24 -			C-6		325 RD	
26 -		26.0-28.0 <u>CLAYEY SILT</u> : light olive gray; moderate yellowish brown;moist firm GRADATIONAL CONTACT	<u>Ç-7</u>		DR 325	
28-		28.0-120.0 TOPANGA FORMATION SILTSTONE/ <u>CLAYSTONE</u> : moderate brown and light olive gray to medium light gray	C-8		RD DR	
30 -					325 PD C	
32 -		slightly moist; very intensely to intensely laminated; pre- dominantly siltstone with in- terbedded claystone		RUN #1		recovery: 0.4'/3.0' RQD: 0%
34 -	++++++++++++++++++++++++++++++++++++++		BOX #1	RUN #2		recovery: o'/3.5' RQD: 0%
36 -		PHYSICAL CONDITION: closely to moderately frac- tured; friable hardness; plas-	# 1			
38 -		tic to friable strength; mod- erate to little weathering; breaks along bedding		RUN #3		recovery: 2.5'/3.5' RQD: 60%
40				RUN	С	recovery: 3.4/3.5 RQD: 85%
42		dark gray; medium gray; silt- stone interbeds oxidized to a moderate yellowish brown		#4 RUN #	5	Sheet <u>2</u> of <u>6</u>

ОЕРТН	nscs	MATERIAL CLASSIFICATION	SAMPLE	NON .	DRILL	REMARKS
ā 4			SA)		Ľä≚.	
-		TOPANGA FORMATION SILTSTONE/ CLAYSTONE (continued)	BOX	RUN		
6 -		46.0-59.0-siltstone/claystone	#1	#5	с	recovery; 1.6/3.5
		with interbedded sandstone; dark gray to gray ; trace	<u> </u>	<u> </u>		RQD: 17%
8 - 8		petroliferous along fractures intensely to very intensely				
0 -		laminated; damp,friable hard- ness &strength moderately		RUN #6		recovery: 3.0/3.5 RQD: 57%
		fractured; moderate weathering				
0-				<u> </u>		
		52.2' 2"-2.5" offset of silt-	BOX #2			
2 -		stone and sandstone units @ 75°-85°, offset fracture clean,		RUN #7		recovery: 4.4/4,5 RQD: 80%
1		very narrow, slight deforma- tion of lamina, fracture zone				
4						
6					С	recovery: 3.5/4.1 RQD: 80%
111				RUN #8		
8-						
-		59.0-64.0 <u>PHYSICAL CONDITION</u> : moderately to little frac-	BOX	i		
0		<pre>tured; friable to low hard- ness; weak; little weathering;</pre>	#3	RUN #9		recovery: 4.5/4.9
		breaks along bedding plains		# 7		RQD: 85%
2 _						
		64.0-68.0 increasing inter-	1			
	-	bedded sandstone				recovery: 3.0/3.G
		sandstone interbeds intensely laminated; siltstone units		RUN	с	RQD: 93%
3- ‡		very intensely laminated		#10		
			BOX #4	RUN #11		
<u>3</u> ‡				#1T		Sheet <u>3</u> of <u>6</u>

Project __DESIGN UNIT A-410 _____ Date Drilled _4-11/12-84 _____ Hole No. _29-1 ___

DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NON NON	DRILL	REMARKS
68 70		TOPANGA FORMATION SILTSTONE/ CLAYSTONE WITH INTERBEDDED SANDSTONE 70.0-75.0-fracture zone-deform-	BOX #4	RUN #11 RUN #12		recovery 0.3/2.3 RQD: 0% (41%) recovery: 1.5/0.5 RQD: 41%
72 -		ation and folding of sandstone/ siltstone lamina,minor offsets, dark gray medium gray		RUN #13	с	recovery: 2.9/3.0 RQD: 91%
-		closely fractured, friable to low hardness, weak to moderate- ly strong, little weathering to fresh				<u>4-11-84</u> <u>4-12-84</u>
74 -		75.0-87.0-INTERBEDDED SILTSTONE AND SANDSTONE medium gray		RUN #14		recovery: 4.5"/4.5" RQD: 93%
76 -		dark gray -sandstone: thinly to very thinly bedded, moderate to little fractured, low to mod-		† 		
78 -		erately hard, weak to moder- ately strong, little weather- ing to fresh -siltstone: very thinly bedded to very intensely laminated,		RUN #15	С	recovery: 3.2"/4.5' RQD: 68%
80 -		moderate to little fractured, friable to low hardness, fri- able to weak strength, little weathering to fresh	BOX #5			
82				RUN #16		recovery: 3.8/3.5 RQD: 95%
84 -						
86 -		moderately fractured 87.0- <u>SILTSTONE WITH CLAYSTONE</u> : decreasing sandstone interbeds, predominantly siltstone thinly to intensely laminated	BOX #6	RUN #17		recovery: 4.9/4.1 RQD: 95%
90 -	╃ ╋╋╋╋╋╋	90.0-94.0- FRACTURE ZONE		RUN #18	С	recovery: 4.7/4.9 RQD: 93%
92		deformation and folding with offsets to 2" offsets @75°-85°, closely fractured, fracture moderately clean & narrow				Sheet of6

Project <u>DESIGN_UNIT_A-410</u> Date Drilled <u>4-12/13-84</u> Hole No. <u>29.1</u>

USCS	MATERIAL CLASSIFICATION	SAMPLE	NON O	DRILL	REMARKS
92	TOPANGA FORMATION SILTSTONE/ CLAYSTONE WITH INTERBEDDED SANDSTONE	BOX #6	RUN #18	С	
96	dark gray medium gray very thinly bedded to intensely laminated; little fractured,	BOX #7	RUN #19		recovery: 4.7/4.3 RQD: 98%
98 +	low hardness, weak to moder- ately strong, fresh 96.0- <u>INTERBEDDED SILTSTONE</u> <u>AND SANDSTONE</u> dark gray medium gray predominantly siltstone with		RUN #20		recovery: 2.3/2.3 RQD: 100%
	thinly interbedded sandstone, very thinly bedded to intensely laminated siltstone little fractured,low to mod- erate hardness and strength		RUN #21	С	recovery: 4.7/4.7 RQD: 80%
106		BOX #8			recovery: 4.9/5.0 RQD: 94%
	110.0-120.0 FRACTURE ZONE		RUN #22		<u>4-12-84</u> 4-13-84
112	intense to closely fractured, micro offsets to 1" offsets, narrow to wide fractures, clean to clay filled fractures, some crushed zones, deformation and folding,friable to low hardness and strength	BOX #9	RUN -#23	С	recovery:4.9/5.0 RQD: 20%
		,, •	RUN #24		Sheet _5_ of _6_

Proje	ct _	DESIGN UNIT A-410	Date Drilled		3-84		Hole_No
рертн	uscs	MATERIAL CLASS	SIFICATION	SAMPLE	NO.	DRILL	REMARKS
116		intensely fr tion and fol	ATION NDSTONE ZONE CONTINUED actured, deforma- ding of bedding filled fractures,	вох	RUN #24	С	recovery: 4.5/4.5 RQD: 0%
120 122 124 126 128 130 132		End of Boring 120.0'					Installed 120' piezometer 0-20' 0'-20' non perforated 40'-80'non perforated 80'-120' perforated
138							Sheet of

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY OIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG 29-2

Proj:	I	DESIGN UNIT A410	Date Drilled	4/14-1	17/84			Ground Elev	470'
Drill F	Rig.	Failing 1500	Logged By	Mar	k Schl	uter		Total Depth	135.0
		meter 4 7/8" 3"	Hammer Wei	ight &	Fall _	325	<u>5 1b</u>	. @ 18"	
DEPTH	USCS	MATERIAL CLA	SSIFICATION	_	SAMPLE	RUN NO.	DRILL	REMARKS	
0		0.0-0.6 <u>CONCRETE</u> STRE	ET SURFACE				RD		
2	CL		n to dark yell to very moist;		C-1		A DR 325		
6 6 10	CL	6.5-12.0 <u>SILTY CLAY</u> : moist; firm; (rootlets)	moderate brow trace organic		C-2		A DR 325		
12		slightly mo oxidized lig BEDROCK-TOPANGA FORMA 14.0-135.0 <u>SILTSTONE</u> : light olive brown; slig	ray; moist to ist; firm to s ght brown FION	tiff; nd t ense;			A DR 325 RD DR 325 RD	Rotary wash tri-c bit	cone
20					Box #1	1	с	Sheetof	6

DESIGN UNIT A410

4/14/84

Hole No. 29-2

DEPTH	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
20	14.0-135.0 <u>SILTSTONE</u> : continued <u>Physical Condition</u> : closely fractured; soft to friable hardness; plastic to friable strength; deep to moderate weathering;		1	С	3.5/4.8 recovery RQD =45%
24	23.0-dark gray to medium gray	Box #1	2		1.9/2.3 recovery RQD = 34%
26	26.0-101.0 <u>SILTSTONE/CLAYSTONE</u> : with interbedded sandstone; dark gray to medium gray; <u>sandstone</u> : thinly bedded; moderately fractured; low to moderately hard; moderately strong; little weathering. siltstone/claystone: thinly		3	С	1.4/4.7 recovery RQD = 18%
30	to intensely bedded; friable hardness and strength; moderate to little weathering; closely fractured		4		3.0/3.0 recovery RQD = 56%
34			5		3.4/3.5 recovery RQD = 71%
36		Box #2	6		0 recovery RQD = 0
40 1 75 42	40.5-42.0- fractured zone; micro offset; deformation and folding of bedding lamina; intensely fractured		7	С	2.0/3.5 recovery RQD = 57%
44			9		Sheet2 of6

Projeo		DESIGN UNIT A410 Date Drilled	1 111	<u>5/84</u>	r 1	HOIE NO
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
44	65	14.0-135.0 <u>SILTSTONE</u> : continued with interbedded sandstone slightly petroliferous		9		1.9/2.5 recovery RQD = 52% 4/14/84
46		47.5-fractured zone, 0.5"				4/15/84
48		offset along 60° fracture, clean and narrow	Box #3			2.3/3.0 recovery RQD = 43%
50 -		·	π		С	
52		52.0-56.0-fractured zone,		11		0 recovery RQD = 0
		intensely fractured to crushed; deformation; offsets to 1"		12		2.5/2.2 recovery RQD = 50%
54		intense to very intensely laminated siltstone interbedded with thinly bedded sandstone			с	4.7/4.0 100000000
56-				13		4.7/4.9 recovery RQD = 25%
58			1			
60		59.0-63.0-fractured zone, intensely fractured to crushed; offsets to 0.75"	Box #4	ÿ		
62				14		4.0/5.0 recovery RQD = 20%
64		dark gray to medium gray; closely to moderately			с	
66		fractured; friable to moderately hard, weak to moderately strong, little weathered to fresh		15		4.5/5.0 recovery
68 +		64.0-68.5-fractured zone; intensely fractured to crushed deformation of bedding lamina	Box #5			Sheet3_ of6

·		DESIGN_UNIT_A410 Date Drilled		1	Ŧ	Hole No
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NON NON	DRILL	REMARKS
68		14.0-135.0 <u>SILTSTONE</u> : with interbedded sandstone; continued 71.0-74.0-fractured zone; crushed to intensely fractured bedding indistinct; friable to	Box #5	16	С	4.4/4.0 recovery RQD = 47%
72		plastic		17		4.0/4.0 recovery
76		75.5-77.5-fractured zone crushed to intensely fractured bedding indistinct;				RQD = 15% <u>4-15-84</u> 4-16-84
80		78.0-80.0-fractured zone intensely fractured to crushed; offsets to 0.75" predominantly siltstone with	Box #6	18	С	2.7/3.1 recovery RQD = 35%
B2 -		interbedded sandstone; moderately to closely fractured; low hardness to moderately hard; fresh; dark gray to medium gray 82.5-88.0-fractured zone;		19		4.1-4.7 recovery RQD = 27%
84 -		intensely fractured to closely fractured				
86			Box #7	20	С	3.0/3.5 recovery
90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ðð.5-92.5-fractured zone; crushed to intensely fractured; bedding indistinct		21		4.7/5.2 recovery RQD = 9%
92						Sheet <u>4</u> of <u>6</u>

		DESIGN UNIT A410 Date Drilled _4	411	<u>, , , </u>		Hołe No
рертн	uscs	MATERIAL CLASSIFICATION	SAMPLE	NON.	DRILL	REMARKS
92 :		14.0-135.0 <u>SILTSTONE</u> : with interbedded sandstone, (continued) slightly petroliferous	Box #7	21	с	
94						
96 96		95.5-101.0-fractured zone; crushed to intensely fractured; bedding indistinct; offsets to 1"		22		4.3/6.7 recovery RQD = 17%
98			Box #8			
100					-	
102		101.0-130.0-siltstone with interbedded sandstone; dark gray; thinly bedded to very intensely laminated; siltstone: moderately		23	с	3.4/3.3 recovery RQD = 57%
104		fractured; low hardness; weak to moderately strong; fresh. sandstone: moderately to little fractured; moderately hard to hard, moderately strong to strong; fresh.		24		
106-						5.4/6.3 recovery RQD = 40%
108			Вох			4 16 94
110-			#9		• .	<u>4-16-84</u> 4-17-84
112-				25		
114						6.5/6.7 recovery RQD = 56%
116			Box#1	0		Sheet <u>5</u> of <u>6</u>

Project _	DESIGN UNIT A410 Date Drilled _	4/	17-84		Hole No29-2
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
116	14.0-135.0 <u>SILTSTONE</u> with interbedded sandstone, continued little fractured to massive	Box	25	С	4.8/5.0 recovery RQD = 96%
120	121.0-127.5-fractured zone; closely fractured; fractures	#10			
122	clean and narrow		27		1.2/1.0 recovery RQD = 70%
126		Вох	28	С	8.3/8.5 recovery RQD = 80%
128	130.0-135.0-fractured zone crushed to intensely	#11			
132	fractured; clay filled fractures; folding of lamina; bedding indistinct		29	С	3.5/4.0 recovery
134		Box #12			
136	End of boring 135.0' installed piezometer: 0-20' non perforated 20-80' perforate 80-135' caved material			•	
					Sheet of

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LDCATIONS OR TIME.

BORING LOG 29-3

Proj:	D	ESIGN UNIT A415						Ground Elev. 5031
Drill F	Rig .	Failing 1500	Logged By _	M. So	chulte	r		Total Depth 126.0
Hole	Dia	meter <u>4 7/8"</u>	Hammer Weig	ght 3	Fall _	325#	0 18	"/140# @_18"
DEPTH	nscs		LASSIFICATION		SAMPLE	RUN NO.		REMARKS
2-			moderate yellow sand; stiff to v ntly moist to moi	ery			A	
6		6.5-8.0 <u>CLAYEY SAND</u> medium dense moist to mo 8.0-11.5 SILTY SAND	e to dense; sligh ist; trace of gra	brown tly vel ish	<u>C-1</u>		DR	
10-		BEDROCK 11.5-126.0 SILTSTONE	 Z/SANDSTONE: ligh	t	J-1		SS RD	
14	* *	moist; de cemented <u>Physical</u> fractured	i medium gray; si ense; thinly lami layers <u>Condition</u> : close i; friable; deep weathering	nāted; ly	Box 1	1	С	3.2/3.5 recovery RQD = 0%
1820		soft to 1	DED CLAYSTONE & S ntensely fracture friable deep weat to friable	d;	5	2		1.9/5.0 recovery Sheetof

	Proje	ct _	DESIGN UNIT A415 Date Drilled	3-12-	-13-84	ļ 	Hole No
	DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
	20		11.5-126.0 SILTSTONE: continued			С	RQD = 20%
	22	-	intensely fractured; soft; silt- stone with interbedded claystone	Box 1	3		1.5/3.0 recovery RQD = 50%
	24 -				. 		
					4		1.6/2.0 recovery RQD = 80%
	26 -						
-	28				5		1.5.(5.0. 10000000)
			intense to closely fractured		5		1.5/5.0 recovery RQD = 30%
	30 -		30.0-34.0 SANDSTONE/SILTSTONE: moderate	Box 2			
			yellowish brown; dense; moist				
	32		Physical Condition: moderately fractured; friable; deeply weathered		6		1.7/2.5 recovery RQD = 68%
			of a color of TOTONE it into wheelded				
	34		34.0-38.0 SILTSTONE: with interbedded sandstone, moderate yellowish brown; stiff; moist <u>Condition</u> : moderately fractured friable; deep to moderate	9	7		1.2/1.5 recovery RQD = 48%
	36 -		weathering				
					8		1.7/2.5 recovery RQD = 48%
	38		38.0-41.5 CLAYSTONE/SILTSTONE: dark gray: moist, very stiff Physical Condition: moderately				
	40		fractured, friable, moderately weathered		9		2.5/4.0 recovery RQD = 63%
			41.5-56.0 SANDSTONE/SILTSTONE: medium				
	42		gray with moderate yellowish brown weathering and dark gray (siltstone) sandstone; thinly	Box			3/12/84
			bedded; moderately fractured, low hardness; weak, mod. weathe	3	10		Sheet <u>2</u> of <u>6</u>
	44 -	t	ion naraness, weak, moar weathe	<u>reu</u>			

Proje	ct_	DESIGN U	NIT A415		Date Drill	ed		3-84		Hole No	29-3
рертн	USCS	M	ATERIAL	CLASSIF	ICATION		SAMPLE	NO.	DRILL	REMA	RKS
44		t		/ fractur	bedded, mode red, fragile Ig			10	С	3.0/3.5 reco RQD = 26%	very
46	.62°	ອງ Sc fi ກາ S fi ກາ	rayish bl ninly bec andstone: ractured, oderaterl ng iltstone: ractured,	lack to m Ided moderat Jow to y strong moderat Jow har	E (interbed edium light moderately b , little wea ely to litt dness, weak little weat	gray le hard, ather le to		11		4.1/4.5 recov RQD = 75%	very
52 _	-									slightly petr	rolifero
54	-		ractured athering		sandstone, 1	ittle	Box 4	12		5.0/5.0 recc RQD = 84%	overy
58	-	56.0-63.5	Physica fractur moderat moderat	<u>l Condit</u> ed, low ely hard ely stro	SANDSTONE ion: little (siltstone) (sandstone) ng, little t g, very thin	,		13		5.0/5.0 reco RQD = 72%	very
62	-	63.5-74.5			um light gra to hard, me		Box 5	14		5.0/5.0 reco RQD = 86%	very
64 	-		to thic	kly bedde ed to mas	ed, little ssive, moder			15		Sheet 3.0	of 6

+

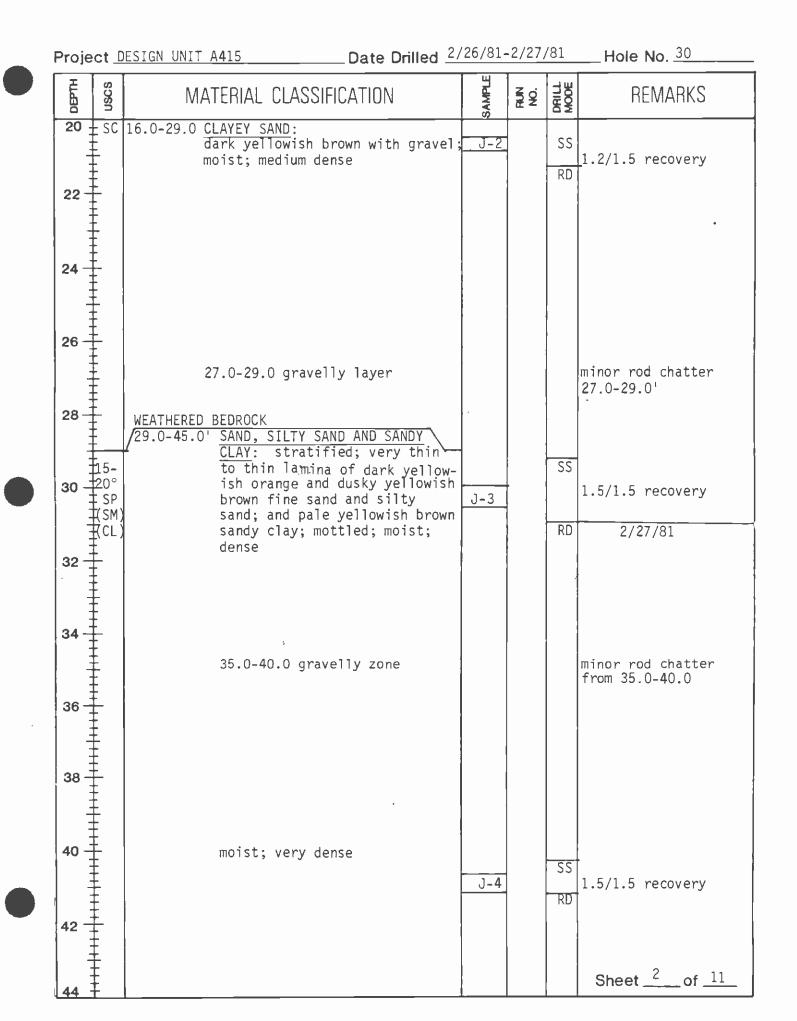
.

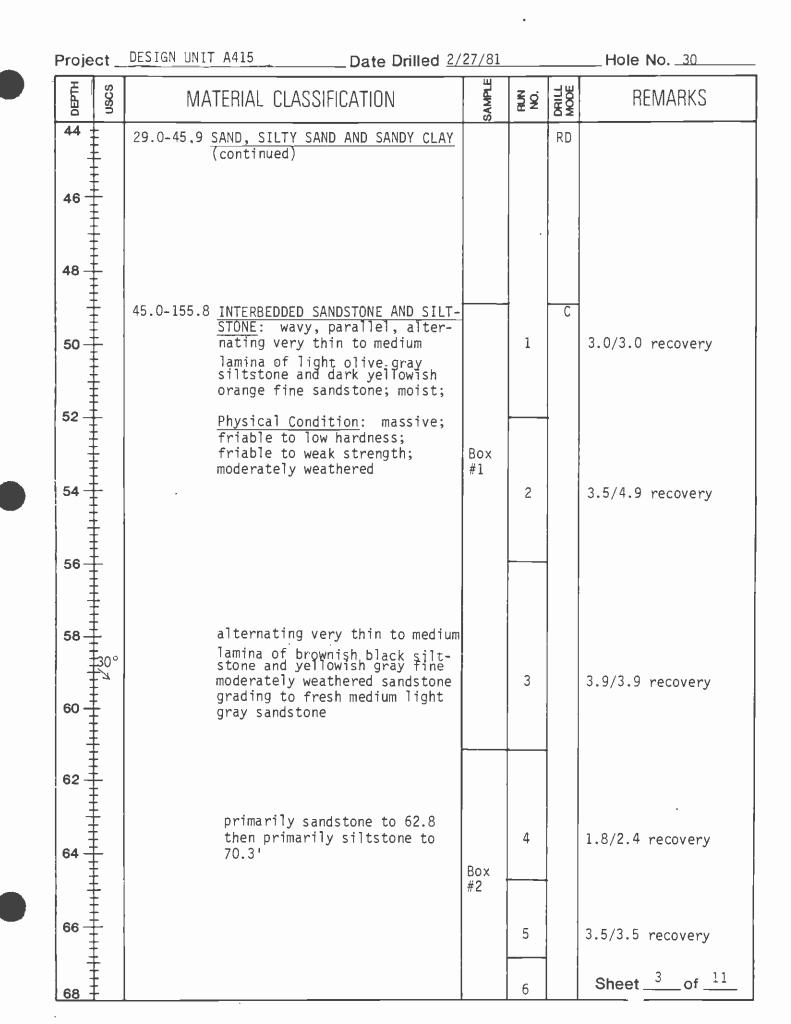
roje	ct _	DESIGN UNIT A415	Date Drilled	3-13	-14-84	4	Hole No	29-3
рертн	uscs	MATERIAL	CLASSIFICATION	SAMPLE	NO.	DRILL	REMA	RKS
68		63.5-74.5 SANDSTONE	: continued	Box 5	15		4.6/5.0 reco RQD = 66%	overy
70 -	-				1			
		little fr	ractured, low-moderately					
72 -			ak to moderately strong,	Box				
				6	16		4.0/5.0 record RQD = 60%	overy
74 -	-							
	-	thinly 1	NE/SANDSTONE: dark gray, amihated, little to					
76	-	hard, mo	fractured, moderately derately strong, little ng to fresh, moist					
	-		J		17		5.0/5.0 reco	overy
78	- - -						RQD = 84%	
	-	bedding,	E: medium gray, medium little fractured,					
80 +	_		ly hard, moderately o strong, fresh, trace					
+	50°	graver,						
82	-			Box 7	18		4.75/5.0 rec RQD = 94%	overy
	-							
84	-	thinly t	E/SANDSTONE: dark gray, o very thinly laminated	2				
+			ractured, moderately rong, fresh, moist					
86	-		E: medium gray, medium		10			
		peaaing,	massive, fresh		19		3.5/3.5 reco RQD = 97%	very
88	_		E/SANDSTONE: medium gray gray, thinly laminated,				2 1 2 0 4	
90 -		closely	to little fractured, low ately hard, moderately			r	3-13-84 3-14-84	
		strong	- · · · · · · · · · · · · · · · · · · ·	Вох	20			
92							Sheet <u>4</u>	of6

<u> </u>	ct	DESIGN UNIT A415	Date_Drilled		4-84		Hole No29-;	3
HLLABO	nscs	MATERIAL CLASSIF	ICATION	SAMPLE	NO.	DRILL	REMARKS	
92		88.5-96.5 SILTSTONE/SANDS thinly bedded,	TONE: continued little fractured		20	С	4.5/4.9 recovery RQD: 67%	
96		96.6-98.6 SANDSTONE: medi little fracture hard, moderately 98.6-106.5 SILTSTONE/SANDS	d, moderately / strong, fresh TONE: medium grad	y	21		5.0/5.0 recovery RQD = 70%	
100		to dary gray, th moderately fract hard, strong, fr	ured, moderately	, Box 9	22		5.0/5.0 recovery RQD = 52%	
104		106.5-108.5 soft to low ha	rdness		23		4.7/5.0 recovery RQD = 80%	
	90			Box				
112		111.5-115.5 closely fractu hard to soft	red, moderately	10	24		4.9/5.0 recovery RQD = 78%	
					25		Sheet <u>5</u> of <u>6</u>	_

Projec	t	DESIGN UNIT A415	Date Drilled		-84		Hole No3
DEPTH	nscs	MATERIAL CLAS	SIFICATION	SAMPLE	NON.	MODE	REMARKS
116			closely fractured, soft, deep to		25		4.0/5.0 recovery RQD = 72%
120		122.0-124.5 intensely f to soft	ractured, friable	Box 11	26		4.4/5.0 recovery RQD = 60%
124					27		1.4/1.4 recovery RQD = 100%
128 130 132 134 134 136		End of Boring 126.0' Flushed hole 3-15-84 Flushed hole. Perfor pressure test @ 50' a 1" PVC piezometer 0-46' non perforated 66-86' non perforated 86-126' perforated Backfilled with pea g	nd 86'. Installed (saw cut) ted (saw cut)				
138							Sheet <u>6</u> of <u>6</u>

THIS BORING LUG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS imay diver at other locations or time.


BORING LOG CEG 30


Proj:DESIGN UNIT A415	Date Drilled	2/26/81-3/3/81	Ground Elev.	476
	Date Prined			

_____ Logged By <u>Stephen M. Testa</u> Total Depth <u>251.01</u> Drill Rig <u>B-40</u>

Hole Diameter_NX Hammer Weight & Fall 140 1b., 30"

DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
0 2- 4- 6- 8-		0.0-0.2 CONCRETE: 0.2-16.0 CLAYEY SAND: Alluvium grayish brown; moist			RD	clear day
10- 12- 14- 16- 18-	ŧ	<pre>continued; moist; loose .</pre>	J-1		SS	1.0/1.5 recovery
_20	‡ ‡					Sheet <u>1</u> of <u>11</u>

ОЕРТН	nscs	MA	TERIAL	CLASSIFICATIO)N	SAMPLE	NO. NO	DRILL	REMARKS
58 			STONE (11e1 alt medium siltston	DDED SANDSTONE continued): w ternating very lamina of ligh ne and fine to light gray san	avy para- thin to t olive gra coarse	Boy	6	C	3.4/3.4 recovery
72 -	* * * * *		fracture	<u>l Condition</u> : ed, moderately ow to moderate	hard to		7		oil film in drilling water 1.5/1.9 recovery
-4 	┿┽┨╸┾╸┽╎╸┿┽╺┽╻┶┽┿┝			.1 well cement sandstone; har		₿ox #3	8		4.5/4.5 recovery
78 -	╸						9		1.8/1.8 recovery
30 - 32 -							10		3.7/3.7 recovery
- 34 - - 36 -	*****			.7 fine to med lso at 90.3 to		Box #4	11		pocket penetrometer ≻4.5 tsf 4.7/4.7 recovery
- 38 - - 00				.9 alternating			12		4.7/6.7 recovery
92	Ŧ								Sheet <u>4</u> of <u>11</u>

ł

DEPTH	uscs	ΜΔТ	FRIAI	CLASSIFICATI		SAMPLE	NON .	DRILL	REMARKS
범 92 :	Š								
92		45.0-155.8	INTERB STONE	EDDED SANDSTON (continued):	NE AND SILT	<u>-</u> Box #4	12	C	
94			92.4-93 stone;	3.8 fine to me alternating s ltstone from S	sandstone		13		4.8/4.8 recovery
96 - - -		1	Physica	al Condition:	little	Box #5			
98 1			hard; ` fresh;	red; moderate low to moderat tends to frac pedding planes	te strength ture		14		3.8/3.8 recovery
00									2-28-81
02							15		heavy continuous ra 2.0/2.0 recovery
04						Box #6	16		5.0/5.0 recovery
801									
110			gray fi	18.0 primaril ne to medium d sandstone w	grained wel	Box	17		5.0/5.0 recovery
-						#7			
114-				15 0			18		1.0/1.0 recovery
			114.5-1 well ce	15.3 coarse s mented; moder	andstone; ately hard		19		1.0/1.0 recovery
	ŧ.						20		Sheet <u>5</u> of <u>11</u>

	<u> </u>	DESIGN_UNIT	A415	Date Drill			1		Hole No
DEPTH	nscs	MA	TERIAL	CLASSIFICATION		SAMPLE	NO.	MODE	REMARKS
116	40°	45.0-155.8	STONE	DDED SANDSTONE AND		Box	20	С	3.0/3.0 recovery
18 - -			nating lamina	8.9 wavy parallel a very thin to medium of greenish gray sa and siltstone	r			- -	
20 -							21		4.0/5.0 recovery
22-			Physica	<u>l Condition</u> : littl	le				
24-			fractur	ed; moderately hard ow to moderate stre	t to 🛛		22		0.5/2.5 recovery
26-						Box #8			
28-							23		2.5/2.5 recovery
30-			101 5 4	- 120 -			24		pocket penetrometer >4.5 tsf 2.5/2.5 recovery
32-				o 132 coarse well d greenish gray san	nd-		25		2.0/2.5 recovery
-			closely	fractured			26		1.5/2.0 recovery
34						Box #9			
36			137.0-3	137.5 primarily sand	d-		27		3.0/3.0 recovery
38				little fractured			28		
: 40									Sheet

Project DESIGN UNIT A415 Date Drilled 2/28/81-3/2/81 Hole No. 30 DEPTH SAMPLE JSCS DRILL MATERIAL CLASSIFICATION N ON REMARKS 140 ± 45.0-159.8 INTERBEDDED SANDSTONE AND SILT-С STONE (continued): wavy, parallel, alternating very thin to medium lamina of green-Box 28 5.0/5.0 recovery 142 ish gray fine to coarse sand-#9 stone and brownish black siltstone Physical Condition: moderately 144 to closely fractured; moderate to low hardness; moderately strong; fresh Box #10 29 5.0/5.0 recovery 146-Ŧ 148.5-152.8 fine to medium sand-148-3-2-81 stone heavy rain until 11:00 a.m. 150-₽° 30, 4.8/4.8 recovery low hardness from 151.0'; close-152ly fractured 154 Box 155.8 to 156.4 clay shear zone #11 31 4.5/4.5 recovery 156-157.2 to 157.9 fine to medium well cemented sandstone; moderately hard 32 2.5/2.5 recovery 158-159.7-162.6 CLAY GOUGE: dark greenish gray 160-33 3.2/3.2 recovery 162.6-171.3 VOLCANIC BRECCIA: dark green-162ish gray; fine grained basalt fragments in a clay matrix Box #12 34 Sheet _7___ of _11__ 164

· .		DESIGN UNIT A415	Date Drilled _		<u> </u>		Hole_No30
DEPTH	nscs	MATERIAL CLAS	SIFICATION	SAMPLE	NO.	DRILL	REMARKS
64		162.6-171.3 VOLCANIC BRE	CCIA (continued):		34	С	3.0/3.0 recovery
					35		2.0/2.0 recovery
8.			.O closely to actured; slicken- es	Box #12	36		3.3/3.3 recovery
0		171.3-173.0 <u>SANDSTONE</u> :					1 7 /1 7
2		medium to c	oarse; hard		37		1.7/1.7 recovery
4			ne grained basalt trix; intensely to		38		1.7/1.9 recovery
6			light gray fine t ained; hard; close ely fractured	0 Box - #13	39		3.1/3.1 recovery
8							
0					40		4.6/4.6 recovery
2		183.5-251.0 <u>BASALT</u> : gro	eenish black; many				
4-		slickensided	surfaces		41		3.5/3.5 recovery
6		closely fract	lition: crushed to ured; moderately moderately strong athered		42		1.9/1.9 recovery
							Sheet <u>8</u> of <u>11</u>

_		DESIGN UNIT A415D						
рертн	USCS	MATERIAL CLASSIFICA	TION	SAMPLE	RUN NO.	DRILL	REMA	ARKS
188 :	F	183.5-251.0 BASALT: greenish	black;	Box	43	C	3/3/81	
-		numerous slickensio	led fractures	#14			3.3/3.3 red	overy
-	F							ý
90-	F -	190.0-191.0 <u>Physic</u> little fractured;	al Condition:					
1	Ŧ	hard to hard; mode	rately strong;					
-	Ē	fresh 191.6 6" shear zol			44		1.7/1.7 rec	NARV
92-	Į.	191.6 6 Shear 20	le				1.//1./ 100	Jovery
-	Ŧ			Davis				
-	ŧ			Box #15	45			
94-	<u>+</u>							
-	ŧ							
-	ŧ						4.7/4.7 red	covery
96-	Ē							
30	ŧ							
-	ŧ							
	Ŧ				46			
98-	Ī							
-	ł		I					
-	ŧ			1			4.1/4.1 red	covery
200-	-) 				1			
-	Ť.							
-	Ŧ							
202-	ŧ				47	1		
-	†	203.0-215.0 intense	ly to closely	Devi			1.2/1.2 red	covery
-	Ţ	fractured, numerous	STICKENSTORS	BOX #16	40			
204-	‡-				48		2.4/2.4 red	overy
-	<u>‡</u>							-
	Ŧ				49			
206-	<u>+-</u> ‡						1.2/2.6 red	covery
-	‡							
	Ŧ							
208-	1 ±	208.5-212.0 crushe	d to intense-		50			
_	+	ly fractured			-		1.5/1.9 red	covery
	ŧ							
210-	+				51		2.2/2.7 red	covery
	Ŧ							
	ŧ						Sheet <u>9</u>	of <u>11</u>
212	+			L		L		

	DESIGN UNIT A415 Date Drilled	-			Hole No. <u></u>
DEPTH	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
212.0	183.5-251.0 BASALT (continued):	Box	51		
+		#16	52	1	
214.4		Box			
Ŧ	215.0-226.0 closely to moderate	#17			2.4/3.0 recovery
16.0	ly fractured with fault gouge and intensely fractured zones		53		
					2.2/2.4 recovery
	217.8 thin fault gouge zone				
18.0			54		2.2/2.5 recovery
	219.0 and 214.5 fault gouge				
220 4					1.0/2.5
Ť			55		1.9/2.5 recovery
222.0	222.0-223.0 fault gouge				
+			56		
224.4	224.0-225.0 gouge; intensely fractured				
	Fractureu		67		2.0/2.0 recovery
226 4		Box #18	57		
+++++++++++++++++++++++++++++++++++++++	226.0 very thin gouge zone 226.0-232.0 <u>Physical Condition:</u> moderately fractured; hard; strong; fresh				2.9/3.0 recovery
228.4			58		
+					3.0/3.0 recovery
230.4					
			59	+	
					2.0/2.0 recovery
232.					
+			60	†	3.8/3.8 recovery
234		Вох	+		
		#19			
236.0 -					Sheet <u>10</u> of <u>11</u>

E o			I		
DEPTH	MATERIAL CLASSIFICATION	SAMPLE	NON.	DRILL	REMARKS
236.0	Basalt (continued):	Box #19	60		
	Physical Condition: moderately fractured; hard; sttong; fresh	μ _π τσ .	61	t	1.1/1.2 recovery
238.4	fractured; hard; sttong; fresh				
T T			62	1	2.6/2.6 recovery
Ŧ	239.8-240.6 intensely fractured				2.0/2.0 recovery
240.0					
Ŧ					
ŧ			63		
242.0					2.4/2.4 recovery
Ŧ			64		
44.0					
		Box			1 7/1 7 100000000
Ŧ		#20			4.7/4.7 recovery
46. 0					
ŧ					
248. 4	most fracture sets rehealed		65		
Ŧ	with silica				2.5/3.2 recovery
250.0					, ,
	End of Powing 251 01				
Ť	End of Boring 251.0' 3/3/81; 3/4/81 E-log				hole cleaned out 2
252. 🗄	3/4/81 water pressure test				times before complet
Ŧ					ing E logs
254. 4					
+					
256.4		i i			
ŧ					
ŧ					
258.4					
ŧ.					
‡					Sheet <u>11_of 11</u>

THIS BORING LOG IS BASED DN FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG <u>30-A</u>

Proj:	ESIGN UNIT A415	Date Drilled	<u>2/22/83</u>				Ground Elev. 560'
Drill Rig	Mayhew 1000	Logged By	G. Halb	ert			Total Depth
Hole Dia	meter <u>4 7/8"</u> .	Hammer Wei	ght & F	all <u>S</u>	PT 14	C 15	, 30" C-340 1b, 24"
DEPTH	MATERIAL CLA	SSIFICATION		SAMPLE	RUN NO.	DRILL MODE	REMARKS
2	0.0-0.3 <u>AC PAVEMENT</u> 0.3-7.5 <u>GRAVELLY SAND</u> fine gravel (s	: coarse sand w lopewash)	vith			RD	
4	anding finan						
6	grading finer with silty sar	nd					
B-TSM	ALLUVIUM						
	7.5-15.0 <u>SILTY SAND</u> : c	lark yellowish dium dense, mo	brown Dist				
				J-1		SS	1.2/1.5 recovery
16 16	15.0-20.0 <u>GRAVELLY SAN</u> with fines	<u>ID</u> : dense, mois	t,				light chatter
18							Sheet1of2

roje	ct _	DESIGN UNIT A415	Date Drilled		2-83		Hole No	30A
DEPTH	nscs	MATERIAL CLASS	SIFICATION	C-1	NO.	DRILL MODE	REMAF	RKS
20		BEDROCK 20.0-25.0 <u>BASALT</u> : olive fractured, mod friable to wea	derately weathered,	1			0.7/0.7 recov refusal at 7	very '
4	-							
26		End of Boring 25.0'					No water ente while open. E with pea grav plugged with concrete.	Backfill /el &
28 -	-							
	-							
12	-							
4 -1 4 -1 +	-							
36								
38								
	-							
2	-							
14 [‡]	-						Sheet _2	of

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SDIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

20 ‡

BORING LOG 30-B

Proj:	n	ESIGN UNIT A415	Date Drilled	2-7	23-83			Ground Elev.	467'
Drill	Rig	B. Auger	Logged By _	D. Gi	lette	_		Total Depth	32.0'
Hole	Dia	meter	Hammer Weig	ht &	Fall _	<u>N//</u>	4		
DEPTH	uscs	MATERIAL CLA	SSIFICATION		SAMPLE	RUN NO.	DRILL	REMARK	S
2		0.0-0.2 <u>ASPHALT</u> FILL 0.2-9.0 <u>SANDY CLAY</u> : va contains bott stiff, moist 7.0 - roots a	les, pipe, wood,		OBSER 1, HOL	E – N	N)	2" asphalt 0.0-11.0 sligh ravel	ling nds well ATA - atimated ae: north
10-	GP		nge and light b s (sandstone &	rown,	;),				
14-	CL.	sand and 10	<u>ULDERS</u> : medium ght brown with " boulders (basa ry stiff, moist	fine				Sheet of	2

DEPTH	uscs	<u>DESIGN_UNIT_A415</u> Date Drilled MATERIAL_CLASSIFICATION		T	3 E	Hole No. <u></u> REMARKS
			SAMPLE	N V	DRILL	
22	CL GP	15.0-22.0 <u>CLAY</u> : (continued) 22.0-27.5 <u>SANDY GRAVEL</u> : dark reddish brown contains cobbles&boulders, dense wet				W.L. 21.7 after 20 hours
24		WEL				ground water seeps at bedrock contact
28	72°	BEDROCK 27.5-32.0 <u>SANDSTONE</u> : dark yellowish orange slightly weathered, moderately hard	5			hard drilling bedding dips 72° northerly
32						not able to drill deeper, too hard
34		END OF BORING 30'				2-24-83 hole backfilled wit native material
36					-	
38 -						
40						
42						
						Sheet _2of _2_

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG CEG 31

Proj:	D	ESIGN UNIT	A415	_ Date Drilled	2-1	2-24-8	1		Ground Elev.	482.0'
Drill F	Rig .	Mobile		_ Logged By				a	Total Depth _	300.0'
Hole	Dia	meter	3"	_ Hammer We	ight &	Fall _	140	lb,	30"	
рертн	nacs	М	ATERIAL CL	ASSIFICATION		SAMPLE	NO.	DRILL	REMARK	(S
0 2 4 6 10 12 14 14 16 18			MAND BASE BASALT: mod to light ol Physical Co able hardne deeply weat deeply weat filled with Physical Co closely fra hard, moder moderate we planes comm	ive brown, fine vesicules commo chlorite and z ndition: intens ctured, moderat ately strong, d athering, fract only coated wit y (up to 3 mm)	d, fri- ength, nly eolites ely to ely to ure h iron	J-1 d Box	1 2 3	RD SS RD C	0.3/0.3 recov rig chatter 0.0/1.0 recov 1.6/2.0 recov 0.0/1.0 recov rig drilling	ery ery ery smoother

Project _	DESIGN A415	Date Drilled _	2-12-	13-81		Hole No31
DEPTH USCS	MATERIAL CL	ASSIFICATION	SAMPLE	NUR NO.	DRILL	REMARKS
20	vesicular Physical Cor closely frac	ive brown, fine graine ndition: intensely to ctured, moderately	Вох		С	
24	hard, modera weathered	ately strong, deeply			RD	0.1/0.4 recovery
			J-2	-	SS	
26	26.5-26.8 hard lens				RD	
28	29.0-29.5 hard					
30			<u>J-3</u>	-	SS RD	0.1/0.1 recovery 2-12-81
32						2-13-81
34				-		5-8 min/ft drilli rate
36	brown to	y and light olive brownish black			С	
			Box 1	6		2.5/3.0 recovery
38 +						
40	40.4-45.0 dark yello volcanic g	wish brown, fresh lass fragments in		7		4.3/4.3 recovery
42		ive gray ground mass,				
			Box 2	8		Sheet _2of _13

Project	DESIGN UNIT A415	Date Drilled	_	-13-8	1	Hole No	31
DEPTH	MATERIAL CLASSIF	ICATION	SAMPLE	RUN NO.		REMARK	S
44 + + + + + + + + + + + + + + + + + +	greyish blue gre		Box 2	8	С.	4.7/4.7 recover	°У
48	Physical Conditi moderately fract	ured, moderately		9		1.9/2.2. recove	-
50	hard to hard, st weathered	rong, little		10		3.0/3.0 recover	ry
52			Box	11		1.7/1.7 recover	гу
54	56.0-84.5 greyish blue g	reen		12		2.9/3.3 recover	ry
58	Physical Condit to moderately f moderately hard moderately weat	ractured, to hard, strong,	,	?		5.0/5.0 recove	ery
60	-						
64	64.0-65.0 extremely weathe to intensely fra 65.0-85.4 breccia, well re	ctured	Box 4	14		2.7/2.7 recove	
66				15 16		2.3/2.3 recove	

Project	t	DESIGN UNIT A415 Date Drilled _	2-12-	24-81		Hole No
DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
68		56.0-85.4 BASALT: continued fined grained vesicular basalt with numerous hairline fracture	Box 4 s	16	С	4.6/4.6 recovery
72		74.0-75.0 intensely to closely fractured zone	Box 5	17		4.8/4.8 recovery
76		calcite filled fractures		18		4.1/4.8 recovery
80		81.0-82.5 intensely to closely fractured zone		19		0.3/0.5 recovery
84	-	conformable contact	Box 6	20		drilling slower 4.9/4.9 recovery
86		85.4-91.0 <u>SILTSTONE</u> : greyish black, thin sandstone inclusions, well ceme ed, fractures all rehealed with calcite filling, alternating wavy parallel very thin to medi				oil in return water petroleum sample 87-89
88	Č.	fine grained siltstone and sand stone <u>Physical Condition</u> : little fractured to massive, hard, strong, fresh		21		drill rate increasin 4.7/4.7 recovery
92		conformable contact 91.0-102.7 <u>SANDSTONE BRECCIA</u> :				Sheet _4 of _13

Ŧ	ŝ			E E	Ξċ	18	REMAR	КS
DEPTH	USCS	MATERIAL CLASSI		SAMPLE	N S	DRILL		1/0
92	‡	91.0-102.7 SANDSTONE BRECC		Box	22	С	4.5/4.5 reco	very
-	†		medium dark grey ack fine grained	6				
	Ē	matrix, thin in	clusions of sand	- Pov				
94 -	Ē	stone and fine slightly metamo	grained porphyry orphased	7				
-	ŧ		ion: moderately					
-	ŧ	to little fract	ured, hard, stro	ng,				
96 -	Ŧ	fresh						
-	Ŧ				23		1.0/1.0 reco	very
	ŧ				24		4.9/4.9 reco	verv
98 -	ŧ							÷
-	Ŧ							
	ŧ	c 7 jakanaj dan m	macant infillin					
100-	ŧ	of fracture su	present, infillin Irface	9				
-	Ŧ							
	‡							
102 -	ŧ							
-	<u></u> 	102.7-109.0 <u>CONGLOMERATE</u> :		Box	25		4.9/4.9 reco	very
	ŧ		rtz sand, feldsp ne, sandstone an					
104-	Ŧ	igneous grave	ls well cemented					
-	Ŧ	up to 1.5" in	granitic grains diameter					
100	ŧ	Physical Conc	ition: closely ctured, hard,					
106-	Ī	strong, fresh	, ,					
-	Ŧ					-		
100	ŧ				26		4.7/4.7 recov	very
108-	Ŧ	conformable c	ontact					
-	‡	109.0-114.5 SANDSTONE BRE	CCIA: olive grey	,			minor rig cha	atter
110-	Ŧ	medium gray i fine grained	n greenish black					
	ŧ	inclusions of	sandstone and					
	‡	fine grained metamorphased	porphyry slightl	У				
112-	Ŧ	lie callor prased						
116	‡			Box	27	1	2 1/2 1	0.614
	‡ ±			9	L/		2.4/2.4 recov	ery
114-	Ŧ	113.7-114.7 deeply weath	ered shear zone					
1 14	<u>+</u>							
	+	114.5-121.4 INTERBEDDED	<u>SANDSTONE AND</u> ark gray to grey					
116	Ŧ	JILISTONE. Q	ark yray to grey	isn			Sheet 5	of <u>1</u>

÷

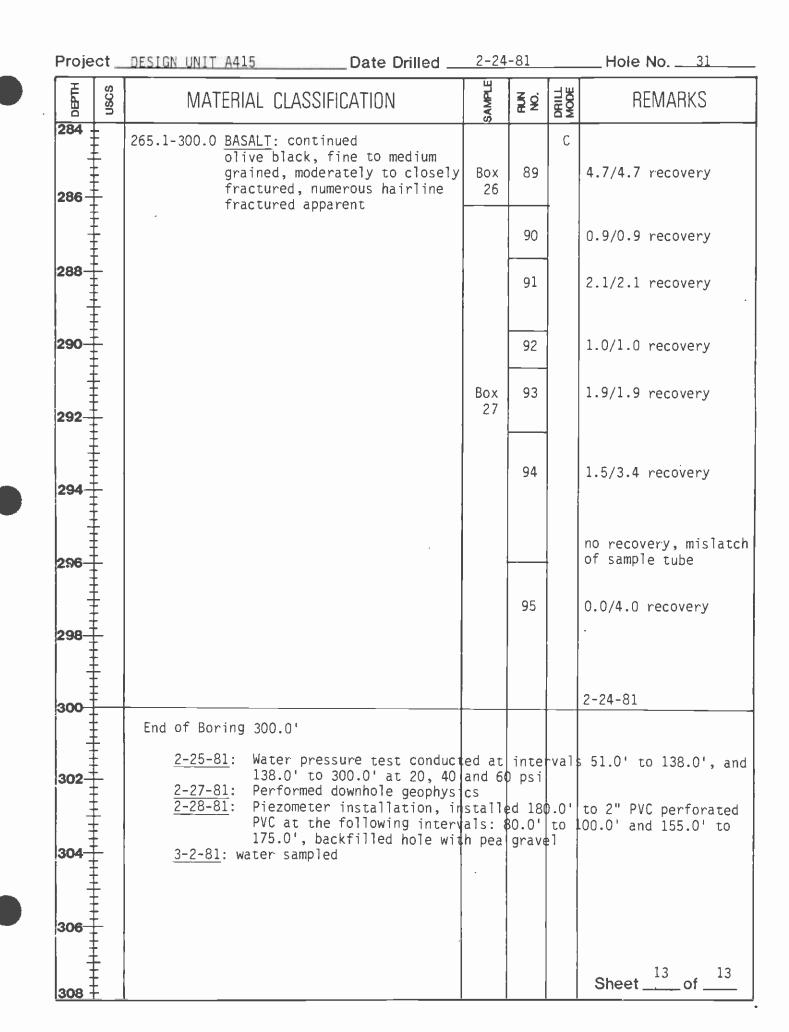
•

Proje	ct_	DESIGN UNIT A415		Da	ate Drilled	2-12-			Hole No	31
рертн	uscs	MAT	FERIAL (CLASSIFICAT	TION	SAMPLE	RUN NO.	DRILL	REMAR	iks
116	60°	114.5-121.4	SILTSTO black,	<u>NE</u> : contin well cement		Box 9	28	С	2.9/2.9 reco	very
118 -	-		70°, 20 filled,	° and 90°, 70° fractu	20° clay re open and		29		1.0/1.0 reco	-
120	-		calcite Physica	<u>l</u> Condition	ractures : moderately rd, strong,		30		2.8/2.8 reco	very
+	-	120.8-121.4 121.4-141.6	shear zo							
122-			quartz d	sand~50% q cement in f	ractures	Box	31		1.2/1.2 reco	very
124-	-		moderate	<u>l Condition</u> ely fracture trong, fres	: closely to ed, very h	10	32		4.9/4.9 reco	very
126										
	-									
128-	- - - 70	d					33		1.8/1.8 reco	very
		128.5	4" coar	rse grained	zone					
130 -							34		2.9/2.9 reco	very
132		131.5	lineat	aconglomera ed v schistose		Box 11				
				[.] grain size	e up to 4" in		35		4.6/4.6 reco	very
134-		135.0	grain	size decrea	ises					
136-	E 70°							-		
							36			
138										
		139.0-141.0) breccia	ated, close	ly fractured				Sheet <u>6</u>	of 12
140 -	F									<u> </u>

×

Proje	ct _	DESIGN_UNIT_A415Date_Drilled	d b	2-15-	16-8	1	Hole No31
DEPTH	nscs	MATERIAL CLASSIFICATION		SAMPLE	RUN NO.	DRILL	REMARKS
140		121.4-141.6 METASANDSTONE: continued	E	Box11	36	С	4.4/4.4 recovery
142	• • •	141.6-151.2 <u>INTERBEDDED SANDSTONE & SIL</u> <u>STONE</u> : medium gray to grayi	sh		37		1.0/1.0 recovery
144		black fine sand, fractures and calcite filled <u>Physical Condition</u> : intense to moderately fractured, ha to very hard. strong, fresh from 144 intensely fracture many open fractures	ly rd	Box 12	38		4.8/4.8 recovery
48	70°						
50	-	149.0-150.7 little fractured, finer grained	-		39		3.8/3.8 recovery
152	-	slickensides 151.2-190.8 <u>BASALT</u> : olive black, fine to medium grained, closely to intensely fractured, primar chlorite along fracture plan	ily		40		0.2/1.4 recovery
54		commonly showing slickenside surfaces and minor calcite	e [Box 13	41		2-16-81 1.8/2.2 recovery
56 ++++	_			P	42		.,2.4/2.8 recovery
58	_	Physical Condition: closely intensely fractured, moderat hard, moderately strong, fre	tely		43		1.8/1.8 recovery
160	_			-	44		0.4/0.5 recovery
	-				45		1.2/2.0 recovery
62	_	60° fracture planes most prominant	В	30x 14	46		0.7/0.7 recovery
164 -					47		1.5/1.9 recovery Sheet 7 of 13

DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
66 68		151.7-190.8 <u>BASALT</u> : continued fracture planes straight to irregular, numerous hairline fractures <u>Physical Condition</u> : closely to intensely fractured, moderatel hard, moderately strong, fresh	y Box	47 48 49 50 51	С	0.7/1.0 recovery 0.5/1.0 recovery 0.8/1.2 recovery 2.0/2.5 recovery
70-1	-		14	52		0.8/1.0 recovery
72	-		Box 15	53		0.0/1.4 recovery 1.7/3.0 recovery
76	-			55 56		2-17-81 0.7/1.0 recovery 1.0/1.0 recovery
30	-			57 58		1.8/2.4 recovery 0.7/1.0 recovery
32	-			59 60		1.4/1.6 recovery 1.8/2.2 recovery
36			Box 16	61		2.5/2.8 recovery
+ + 88				62		Sheet <u>8</u> of <u>13</u>


•

HLLABO	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL MODE	REMARKS
188		151.2-190.8 BASALT: continued	3		C	
-						
190-				62		4.8/4.8 recovery
4	-	190.8-260.7 SILTSTONE AND SANDSTONE INTER-				
		BEDS: primarily olive black, very thin to medium parallel				
192		lamina siltstone with sub- ordinate fine well cemented				oil film in drillin water
		bluish gray sandstoné, hair- line fractures apparent		63		1.5/2.0 recovery
194-						pocket penetrometer
				64		>4.5 tsf 2.0/2.0 recovery
196-						
	-			65		0.7/1.2 recovery
	-					
198-	-	primarily brownish black silt- stone and fine light bluish		66		4.5/4.8 recovery
		gray sandstone				
200-						
202	-					
		very thin to medium wavy lamin	a			2-18-81
		Dhysical conditions modewarely				
204-		Physical Condition: moderately fractured, moderate hard, weak		67		4.2/4.2 recovery
		to moderately strong, fresh, tends to fracture along bedding planes and healed fractures				
206-		pranes and heared fractures	Box 18			
				68		0.9/1.0 recovery
208-						
				69		4.7/4.7 recovery
210-						
						Sheet _9of _13_

E s		۳.		<u>-</u> цш	
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
212	190.8-260.7 SILTSTONE AND SANDSTONE INTER- BEDS: continued	Box 18	69 70		0.5/0.5 recovery
214 ++++++++++++++++++++++++++++++++++++	wavy alternating very thin to medium lamina of primarily brownish black siltstone and subordinate light bluish gray fine sandstone, numerous silic filled and hairline fractures:	a.	71		oil film in drillin water 4.1/4.8 recovery
18 18 20	Physical Condition: moderately fractured, moderately hard, weak to moderately strong, fresh, tends to fracture along bedding planes and healed fractures		72		pocket penetrometer >4.5 tsf 4.7/4.7 recovery
22		Box 20	73		4.3/4.8 recovery
26 28 30 	continued, fossiliferous silt- stone		74		2-23-81 0.5/0.5 recovery 4.9/4.9 recovery
32					oil film in drilling
34		Box 21	76		water 5.0/5.0 recovery
36 +					Sheet of

<u> </u>	ct_	DESIGN UNIT A415	Date Drilled _		4-81	-	Hole_No3	31
DEPTH	nscs	MATERIAL CLASSI	FICATION	SAMPLE	RUN NO.	DAILL	REMARKS	S
236		190.8-260.7 <u>SILTSTONE AND</u> <u>BEDS</u> : continue			76	С	5.0/5.0 recover	гy
238		fractured, mod weak to moder fresh, tends bedding planes fractures continued, fos	to fracture alon s and healed	g	77		3.5/3.5 recover oil film in dri water	
242	-	stone inclusio			78		1.5/1.6 recover	·у
				Box 22				
244					79		3.2/4.8 recover	у
246	-						pocket penetrom >4.5 tsf	leter
248	-				80		2.8/2.8 recover	·У
250	-					Í		
4	-				81		2.4/2.4 recover	у
252				Box 23				
254	_				82		4.7/4.7 recover	у
256-								
		grades sandie	r from 256.9					
258	-				83	Í	2-24-84 4.8/4.8 recovery	Ý
260				Box 2	1		Sheet <u>11</u> of	13

F	cs			COLEICATION	P.E.	Z d	그胺	REMAR	
DEPTH	nscs			SSIFICATION	SAMPLE	NON	DRILL MODE		UNO
260		-	BEDS: cont SANDSTONE:	AND SANDSTONE INTER inued medium gray, fine 11 cemented, quartz	to	83	C	4.8/4.8 recov	very
62		262.1-265.1	rich, lowe CONGLOMERA coarse (up	r contact 50° TE: greenish gray, to 10 mm max. dia. fractured (clay fil).	84		0.5/1.0 recov	very
:64			ed), clast numerous v	s include quartz, olcanics, grades to dstone with depth	Box	85		4.5/4.5 recov	very
66 · · ·		265.1-300.0	fine grain erately to fracture p	rk greenish gray, ed, vesicular, mod- closely fractured, lanes commonly fill				loss of circu	ulation
1			surfaces a	ite; slickenside t 20° to core axis,				water	
: 68			numerous h apparent	aírline fractures		86		4.8/4.8 recov	very
70									
72									
				live black, fine to ined, vesicules	Box 25		ŝ	pocket penetr 4.5 tsf	rometer
74						87		4.8/4.8 recov	very
76								gas detector no gas encoun	
78									
280						88		4.8/4.8 recov	ery
					Box 26			6	
82						89		4.7/4.7 recov	ery
-	ŧ							Sheet 12	of _13_

THIS 80RING LOG IS 8ASED ON FIELD CLASSIFICATION AND VISUAL SDIL DESCRIPTION, BUT IS MODIFIED TD INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG 31-1

Proj: DESIGN UNIT A415 Date Drilled 10/3/83-10/6/83 Ground Elev. 479

Drill Rig Failing 750 Logged By DG/MD/SS Total Depth 106.0

Hole Diameter 3" Hammer Weight & Fall 140 lbs., 30"

DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL MODE	REMARKS
2-	AF ML/ SM	0.0-0.2 <u>ASPHALT</u> 0.2-0.5 <u>BASE ROCK</u> ALLUVIUM 0.5-10.0 <u>SANDY SILT/SILTY SAND</u> : dusky yellowish brown with gravel; moist; stiff; medium dense			GB AD	
6-	SM7	6.0-8.0 gravelly layer				6.0-8.0 rig chatter
		10.0-16.0 <u>SILTY SAND</u> : light brown with gravel; moist; medium dense			RD SS RD	
14- 16- 18-		16.0-29.0 <u>SANDY CLAY</u> : dusky yellowish brown with gravel; moist; firm				
20	*					Sheet _1of _5

Project DESIGN UNIT A415 Date Drilled 10/3/83-10/6/83 Hole No. 31-1

DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
20	ECL	16.0-29.0 SANDY CLAY (continues as above):			SS	
22					RD	
			0			
24 -						
26 -						
28-						
30 -	₹SM	29.0-48.0 <u>SILTY SAND</u> : dusky brown; moist; loose; with gravel			SS	
					RD	
32 :						
34 -						
36 -						
38					i	
4 0 ·		becoming medium dense			SS	
42					RD	
42						
44	Ŧ					Sheet of _5

Project DESIGN UNIT A415 _____ Date Drilled 10/3/83-10/6/83 ___ Hole No. 31-1

DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
44	SM SM SM	29.0-48.0 <u>SILTY SAND (continued)</u> : 44.0-46.0 gravelly layer			RD	44.0-46.0 rig chatter
48 -	THE SM	48.0-56.0 <u>SILTY SAND:</u> moderate brown and dark gray with gravel; moist; dense; trace organics and slight organic odor			SS	
52 - 54 -					RD	
56-		56.0-72.5 <u>CLAYEY SAND</u> : greenish black; wet; very dense	PB-1	1	РВ	2.0/2.5 recovery
60 -					RD	
62 -	╹╹╹	64.0-65.0 gravelly layer		2	РВ	
66 -		3	PB-2 PB-3	3		1.5/2.5 recovery 2.0/2.5 recovery Sheet <u>3</u> of <u>5</u>

Project DESIGN UNIT A415 _____ Date Drilled 10/3/83-10/6/83 ___ Hole No. _31-1 ____

DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NUN.	DRILL	REMARKS
68	± sc	56.0-72.5 CLAYEY SAND (continued):	PB-3	3	PB	
	+				RD	
70 -						
	ŧ			-		
72 -	<u>+</u>					
	I	BEDROCK 72.5-106.0 BASALT: medium light gray;		4	PB	
	Ī	fine grained				
74 -		Physical Condition: intensely	PB-4			1.5/2.5 recovery
ŀ		fractured; low hardness; weak strength; deeply to moderately	r F			
	+	weathered		5		
76 -	$\frac{1}{4}$	dark gray, slightly clay, wet,				1.0.0.5
	Ŧ	firm to very stiff	PB-5			1.2/2.5 recovery
78 -						
	Ŧ			6		
	+		PB-6	ļ		0.9/2.5 recovery
80 -	+					
	Ŧ				RD	
82 -	+					
	ŧ					
84 -	+					
	Ŧ					
86 -	<u></u>					
j	+					
	Ŧ	87.0-90.1 shear zone: gravelly		1	С	
88 -	1	clay; moist to wet; stiff; color change to olive gray				1.8/2.0 recovery
	+	Physical Condition: crushed,				
	ŧ	soft to low hardness; plastic	Box	2		2.0/2.0 recovery
90 -	1	to weak strength; deep weather- ing; some fractures filled with	#1			
	<u>‡</u>	dark gray clay-moist; firm to very stiff			•	
92	Ŧ			3		Sheet <u>4</u> of <u>5</u>

Project DESIGN UNIT A415 ____ Date Drilled 10/3/83-10/6/83 ____ Hole No. 31-1 _____

HLL	uscs	MATERIAL CLASSIFICATION	SAMPLE	NON.	DRILL	REMARKS
92 94 96		72.5-106.0 <u>BASALT (continued)</u> : color becoming mottled-dark greenish gray, greenish black, and gray- ish black <u>Physical Condition</u> : intensely fractured; moderate to low hardness; weak to moderate strength; moderate weathering	Box #1	3	С	3.5/3.7 recovery 4.4/4.4 recovery
98						drill rate = 20 min/ft
100			Box #2	5		0.0/1.2 recovery drill rate = 8 min/ft 1.0/2.3 recovery drill rate = 22 min/ft
102		thin clay-filled fractures at 104', 105' 103.0-103.1 clay-filled shear zone		7		5 October 1983 6 October 1983 3.4/3.4 recovery
106-		Physical Condition: intensely to closely fractured; moderately hard; weak to moderately strong; deeply to moderately weathered end of boring = 106.0'				flushed hole; set 2"
108						ABS piezometer from 0.0-106.0, perforated from 86.0-106.0. Pulled casing and backfilled with pea gravel. Sealed top (0.5-4.0) with con- crete. Cleaned site; covered hole with steel cap
112						Sheet <u>5</u> of <u>5</u>

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME

BORING LOG 31-2

Proj: DESIGN UNIT A415	Date Drilled	10/22/83-10/24/83	Ground Elev.
Drill Rig Failing 750	Logged By	Steve Slaff	Total Depth <u>90.1</u>

Hole Diameter NX _____ Hammer Weight & Fall 140 16 @ 30" SS: 320 16 @ 16" DR

DEPTH	nacs	MATERIAL CLASSIFICATION	SAMPLE	NON.	DRILL	REMARKS
	<u> </u>	0.0-0.3 ASPHALT	ŝ	<u> </u>	GB	
		ALLUVIUM 0.3-6.0 SANDY SILT: moderate yellowish brown; trace gravel; dry; with organics (rootlets); becoming moist, firm	<u>C-1</u>		AD DR AD	1.0/1.0 recovery
4-			J-1			1.5/1.5 recovery
6-	ML GC	6.0-18.6 <u>SILTY SAND/SANDY SILT</u> : dark yellowish brown with gravel; moist, medium dense/very stiff 7.8-8.8 clayey gravel lens with	C-2		AD RD DR	1.0/1.0 recovery
10-	T SM7	color change to moderate yellow- ish brown	J-2		RD SS	
12-	****		C-3		RD DR	1.0/1.0 recovery
14-			J-3		RD SS RD	0.9/1.5 recovery
16- - 18-	* * * * * * * * * * * *		C-4		DR RD	1.0/1.0 recovery
20	SM7	18.6-24.6 <u>SILTY SAND/SANDY SILT:</u> dark yellowish brown with gravel;	J-4		SS PD	0.75/0.75 recovery refusal at 9" Sheetof _4

Project DESIGN UNIT A415 Date Drilled 10/22/83-10/24/83 Hole No. 31-2

DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
20 22 - 24 - 26 -		<pre>18.6-24.6 SILTY SAND/SANDY SILT (continued moist; very dense/hard 19.1-19.2 lense of fine quartz sand 24.6-30.0 CLAYEY GRAVEL: moderate yellow- ish brown; moist; very dense</pre>			RD DR RD SS RD	0.9-0.9 recovery refusal @ 11" 0.6/0.6 recovery refusal @ 7" rig chatter
28 -			PB-1	1	PB	1.5/2.5 recovery
30 -		30.0-32.3 <u>SILTY CLAY:</u> moderate yellowish brown; moist; hard with sand and gravel BEDROCK	PB-2	2		0.5/2.5 recovery Pitcher tube end damaged
32 -		32.3-90.1 <u>BASALT:</u> mottled-dusky green and medium dark gray; porphyritic; much of basic glass devitrified; phenocrysts fine grained pyroxene and plagioclase feld- spar. Clasts of fresher basalt	PB-3	3		1.9/2.5 recovery
36 -	+++++++++++++++++++++++++++++++++++++++	are set in matrix of more highly altered basalt characterized by secondary minerals. Slicken- sides fairly common. Secondary minerals include quartz, chlorite and epidote.	PB-4	4	C	1.2/1.2 recovery
38 -	+++++++++++++++++++++++++++++++++++++++	Physical Condition: intensely to closely fractured; moderately hard; moderately strong; moder- ately weathered; thin calcite coatings on some fracture sur-		1	1	RQD = 96% 2.3/2.3 recovery 0.3/0.3 recovery
40 -	+ + + + + + + + + + + + + + + + + + +	faces, most fractures closed and healed.	Box #1	3		RQD = 41% 2.8/2.8 recovery
44	+++++++++++++++++++++++++++++++++++++++			4		10/22/83 10/23/83 Sheet 2 of 4

Project DESIGN UNIT A415 Date Drilled 10/22/83-10/24/83 Hole No.31-2

рертн	nscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
44		32.3-90.1 BASALT (continued): quartz, chlorite are most abundant vessicle, cavity, and fracture filling minerals. Some zones exhibit slickensides at various	Box #1	4	С	RQD = 79% 4.8/4.8 recovery
		orientations including horizon- tal. Predominantly greenish black; minor brown orange and				
48 -		yellow iron oxide on fracture surfaces. 46.7-47.2 core is fractured	Box #2	5		RQD = 0% 3.6/3.6 recovery
50 -		47.2-49.9 core completely dis- aggregated into fragments				
52		49.9-50.5 disaggregated basalt and alteration product: clay- dusky green to greenish black; moist; stiff (shear zone) fine grained calcite on fracture surfaces		6		RQD = 38% 5.6/5.6 recovery
54 -		51.1-53.1 core disaggregated into fragments				
56-		core gradually changes color from green to dark gray after removal from the hole				
58		decreasing slickensides basalt nearly completely altered	Box #3	7		RQD = 28% 2.9/2.9 recovery
60 -				8		RQD = 32% 4.1/4.1 recovery
62		61.6-62.4 disaggregated basalt- fragments				
64 -			Pov	0		DOD - 770
66		calcite common on fracture surfaces	Box # 4	9		RQD = 77% 6.9/6.9 recovery
68				_		Sheet3_ of _4

Project DESIGN UNIT A415 Date Drilled 10/22/83-10/24/83 Hole No. 31-2

DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL. MODE	REMARKS
68 70		32.3-90.1 <u>BASALT (continued):</u> some surfaces have a glossy sheen due to microcrystaline micaceous chlorite	Box #4	9	С	23 October 1983
72 -		72.3-75.1 disaggregated zone		10		24 October 1983
74 -		with fragments core does not break cleanly, but makes hackly, uneven surface or disaggregates when struck		10		RQD = 43% 6.0/6.0 recovery
76 -		with hammer thin layers (0.05") of calcite ubiquitous on fracture surfaces	Box #5			
78		disaggregated core may indicate fracture, shear, or fault zone		11		RQD = 75% 6.0/6.0 recovery
80 -						
84	▶ • • • • • • • • • • • • • • • • • • •	slickensides common; within 20° of horizontal	Davi	12		RQD = 34% 2.9/2.9 recovery
86-			Box #6	13		RQD = 19% 4.2/4.2 recovery
88			Po::			
90 -	ŧ	end_of boring_90.1'	Box #7	14		1.0/1.0 recovery RQD = 100%
92			tremm cleane crete	d sii	e; t	ack cement grout; opped hole with con- Sheet <u>4</u> of <u>4</u>

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MDDIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY OIFFER AT OTHER LDCATIONS OR TIME.

Converse Consultants, Inc. Earth Sciences Associates Geo/Resource Consultants

Proj:	DESIGN UNIT A415 Date Failing 750 Log	e Drilled <u>10-6</u>	<u>-9-83</u> aff			Ground Elev. 526.0	_
	Log						
DEPTH USCS	MATERIAL CLASSIFI	CATION	SAMPLE	NO.	DRILL	REMARKS	
2	0.0-0.4 ASPHALT ALLUVIUM 0.4-4.7 GRAVELLY CLAY: mode brown to moderate moist; firm		• 3		GB AD		
4 +	becoming less grave 4.7-24.2 <u>SANDY SILT</u> : dark with gravel; mois	yellowish brown			RD		2
8			J-1		SS RD	1.0/1.5 recovery	
10							
						-	
14	becoming very st	iff	PB-1		PB	1.5/2.5 recovery	
	becoming sandier)		J-2		SS	1.0/1.5 recovery	
18					RD		
20 T M	19.5-19.8 gravel	lens				rig chatter at 19.5' Sheet <u>1</u> of 5	

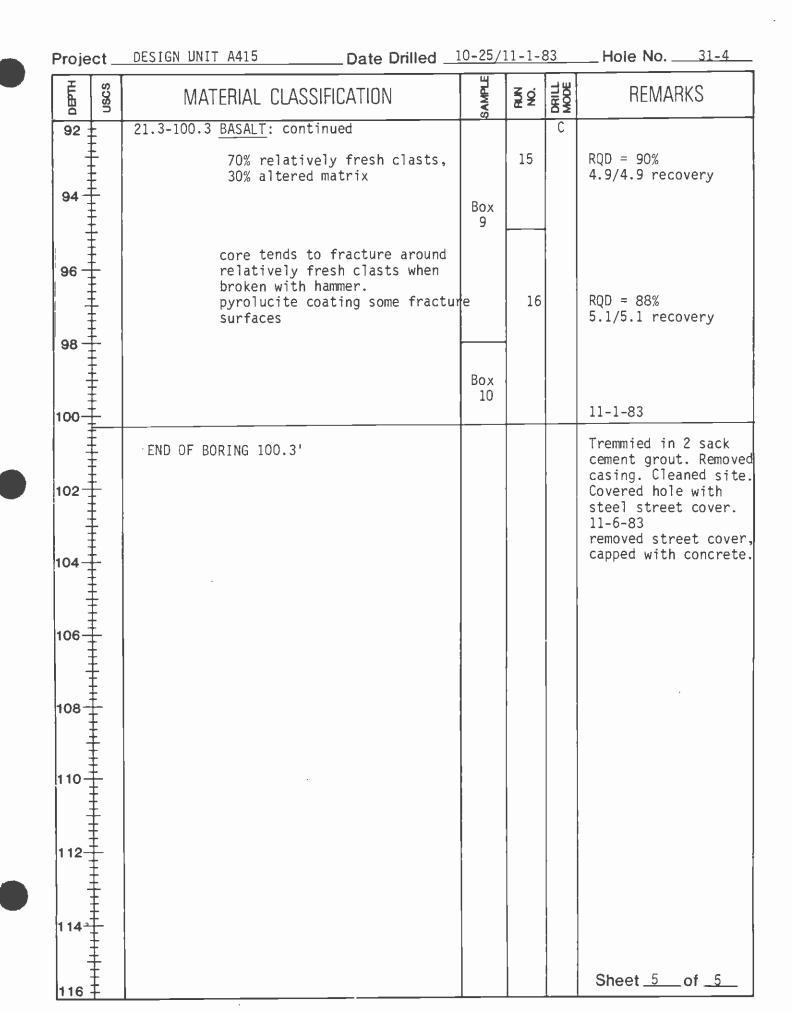
Proje	ect _	DESIGN UNIT A415 Date Drilled		<u>-9-83</u>		Hole No31-3
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
20	ML	4.7-24.2 <u>SANDY SILT</u> : continued			RD	
					PB	0.0/2.5 recovery
22-	-		lost			· · · ·
			1030			
-			L			
24 -	<u>↓</u> ↓					
-	₹ML ′	24.2-27.0 <u>SANDY SILT</u> : dark yellowish brown; moist; stiff	PB-2			2.5/2.5 recovery
	ŧ	brown, moist, stiff				
26 -	± ±				SS	0.75/1.5 recovery
-			J-3			10 6 82
28 -		27.0-29.4 <u>SILTY CLAY</u> : dark yellowish brown; moist; stiff			RD	10-6-83 10-7-83
	ŧ					
-						
30 -	E CL	29.4-35.6 <u>SANDY CLAY</u> : moderate brown; moist; with gravel; very stiff				
-	Ŧ		PB-3		PB	2.5/2.5 recovery
	Ŧ		F 0~ 0			
32 -	<u>+-</u>					
-	∓(sm)		J-4		SS	1.0/1.5 recovery
34 –	+(SM) +	becoming sandier		<u> </u>		
	Ŧ				RD	
	Ŧ					
36 -	GC					slight rig chatter
-	ŧ	moist; with sand; very dense				
38 -	ŧ				PB	sporadic rig chatt
	‡ ‡		PB-4			2.5/2.5 recovery
:	Ī	BEDROCK 39.0-100.1 BASALT: dusky yellowish green;	J-5		SS	0.3/0.3 recovery
40 -		aphanitic to fine grained; some			RD	refusal at 4"
	Ŧ	quartz-filled fractures Physical Condition: intensely				
	Ŧ	fractured, fractures closed by secondary minerals (calcite,				
42 -	Ŧ	zeolite, quartz); moderately hard	,			
-	‡ 1	moderately strong, moderately weathered				2 5
44	Ŧ					Sheet of5

Ŧ	S	8407				- Ц Ц	3	ЧЖ	DEMADUC
DEPTH	nscs		ERIAL I	CLASSIFICA		SAMPLE	RUN NO.	DRILL	REMARKS
44		39.0-100.1			now on frach	PB-5		₽В	2.0/2.0 recovery
-	- -		surfaces	s; porphyri	ray on fresh tic with fine				disturbed
46 -					e feldspar, tic ground-				
	+		mass.		: fractures			C	
-	Ŧ		to 1.0"	wide commo	nly filled	Rev	1		POD of come was high
48 -			ing chl	orite. Some	erals includ- zones crush-	1	1		RQD of core was highe but it disaggregates
-					ing fractures trong, little				upon removal from barrel
50 -	+		weather	ed. Predomi	nantly medium hly altered				RQD = 17% 4.8/4.8 recovery
00	+		zones d	usky yellow	rish green.				
	Ŧ		moderat	ely strong	are hard, in matrix of				
52 -	$\frac{1}{4}$			een alterat e low hardn	ion products ess, weak,		2		RQD = 68%
	Ŧ				y slickenside	s			5.0/5.0 recovery
	Į								
54 -									
	‡ ‡					Devi			
56-	+					Box 2			RQD = 63%
							3		3.2/3.2 recovery
58 -	ŧ								
	± ±			e fractures clasts are					<u>10-7-83</u> 10-8-83
60 -	<u>+</u>		long; c	lasts compo	se 60-90% of				RQD = 68%
			in this		tle calcite		4		55' 7:00 10-8-83
62 -	Ŧ			ne has~40% rv minerals	matrix of ,∼60% primary				
-	Ŧ		basalt	clasts. Sli on fracture	ckensides				
64 -	‡ ‡		More ca	lcite fille	d fractures,			•	
	ŧ			becoming st mpletely al	rong. Clasts tered.	Box	5		RQD = 100%
	ŧ			•		3			5.2/5.2 recovery
66 -	<u>+</u> -								
	±								
68	ŧ								Sheet <u>3</u> of <u>5</u>

Project_	DESIGN UNIT A415 Date Drilled	10-6-	9-83		Hole No
DEPTH	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
68 	39.0-100.1 <u>BAŜĂLT</u> : continued	Box 3	5	С	RQD = 83% 4.8/5.0 recovery
72	72.1-72.9 open fractures to 1/2" wide, lines with quartz crystals up to 0.2" across; rock sheared, clay in shear zone	Box 4			
76			7		RQD = 60% 4.9/4.9 recovery
80	white to light green calcite coating fractures; clasts have reaction rims and are more highly altered; slickensides; core breaks into jagged, hackl fragments when struck with		8		RQD = 92% 5.0/5.0 recovery
82 	grayish black, clay on fractured surfaces, breccia decreasing rock becoming basalt with secondary mineral filled fractures	Box 5	9		RQD = 45% 4.6/4.6 recovery
88			10		10-8-83 10-9-83 56' 7:10 10/9/83 RQD = 65% 1.7/1.7 recovery
90 ++++++++++++++++++++++++++++++++++++	basalt is serpentinized; slickensides are common	Box 6	11		Sheet <u>4</u> of <u>5</u>

Proje	ct_	DESIGN UNIT A415	Date Drilled	10-6-	- 9-83		Hole No	31-3
DEPTH	uscs	MATERIAL CLASS	SIFICATION	SAMPLE	RUN NO.	DRILL	REMARK	(S
92		39.0-100.1 <u>BASALT</u> : cont brecciated z	inued one 92.0-93.0	Box 6	11	С	RQD = 84% 5.0/5.0 recove	ry
94		some fractur	and calcite fillin es. Green second- can be scratched nail	ng .				
96			mottling of nerals, especially ite		12		RQD = 96% 4.9/4.9 recove	ry
98		slickensides	rare	Box 7				
100							10-9-83	
102		End of Boring 100.1'					Tremmied in tw cement to grou Removed casing filled with co to ground surf Cleanded site.	t hole. , back- ncrete ace.
104								
106								
108								
110	╸ ╺╺╺╺╸							
112								
114							Sheet _5	of _5

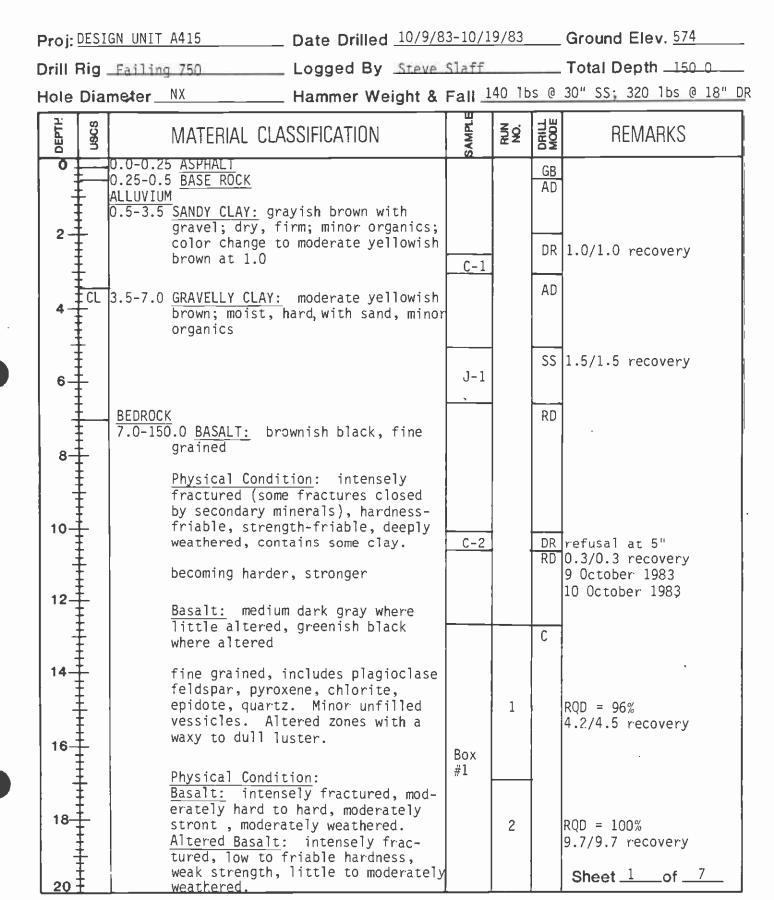
THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE DNLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

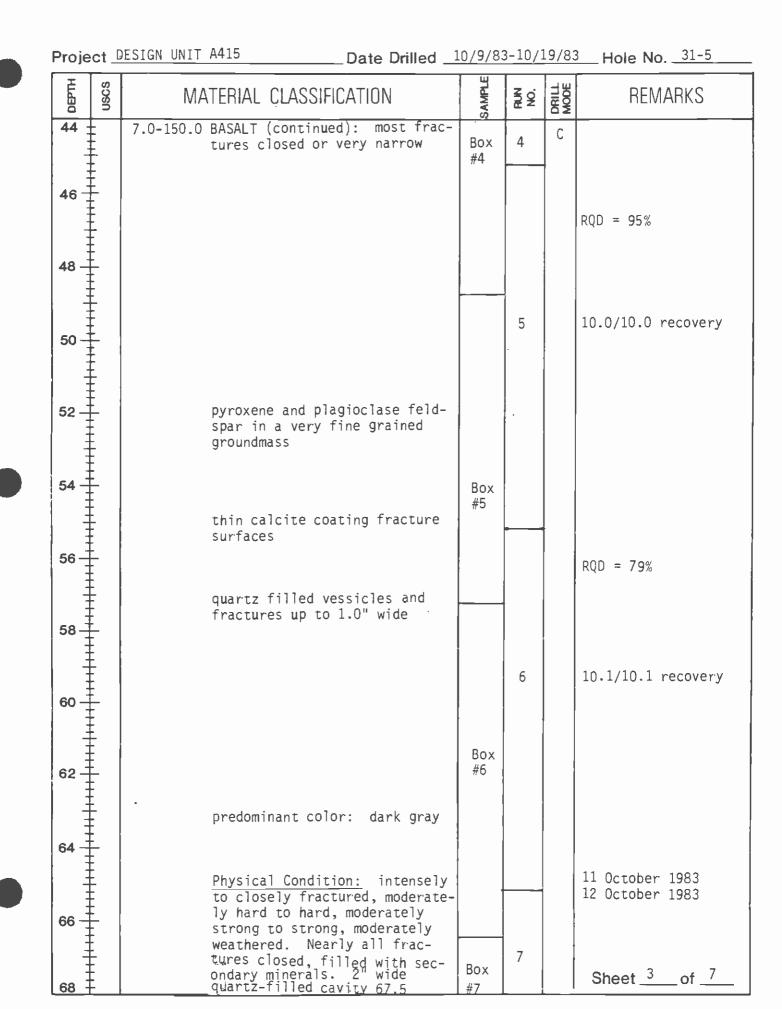


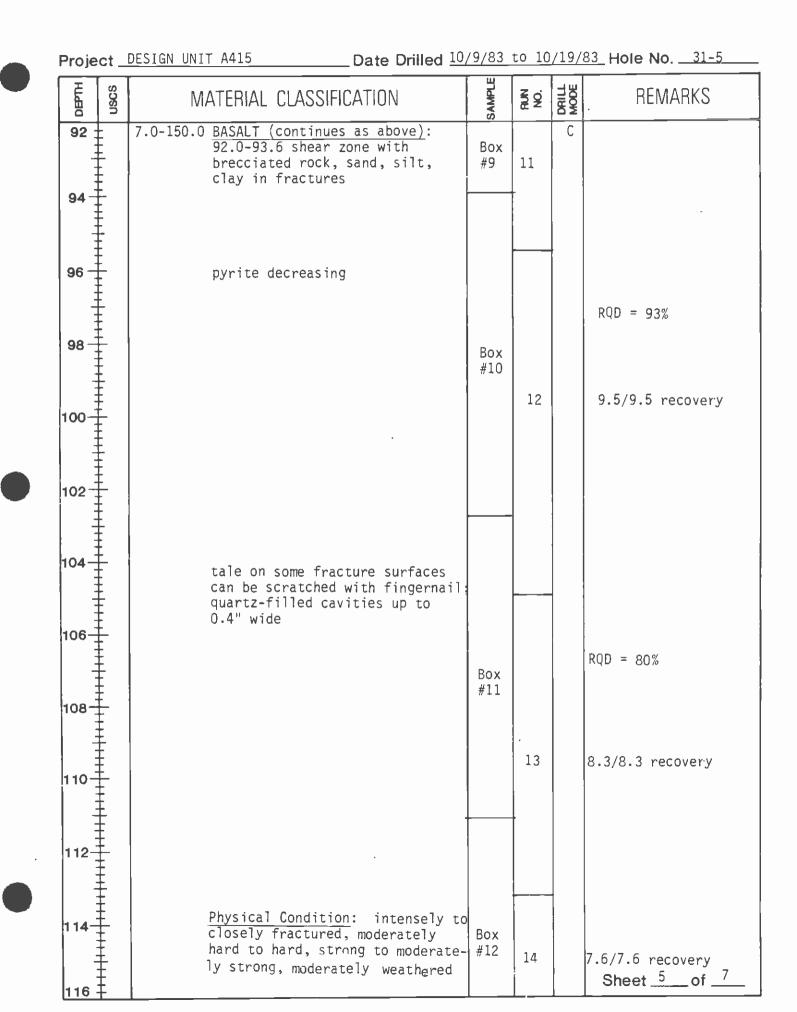
Proj:	DESIGN UNIT A415	Date Drilled	Date Drilled		
Drill Rig	Failing 750				Total Depth100.3'
Hole Dia	meter_ <u>NX</u>	Hammer Weight &	Fall_	<u>320 lbs,1</u>	8" DR/140 1bs, 30" SS
DEPTH USCS	MATERIAL CLA	SSIFICATION	SAMPLE	RUN NO. MODE	REMARKS
0 	stiff 2.0 - becoming mois content 3.2-10.8 SANDY SILT:	gravel and sand; dry t; increasing sand	C-1	GB AD DR AD SS RD. DR	1.0/1.0 recovery 1.5/1.5 recovery 1.0/1.0 recovery
8 10 12 	gravelly 10.8-12.6 <u>SILTY GRAVE</u> yellowish b sand, orang becoming mo 12.6-21.3 SANDY SILT:	rown and grayish wit e; moist; very dense re silty	J-2	RD SS RD DR RD	1.2/1.5 recovery rig chatter 1.0/1.0 recovery
16	shade betwe	-		SS RD DR RD SS	1.0/1.5 recovery 1.0/1.0 recovery rig chatter Sheet <u>1</u> of <u>5</u>

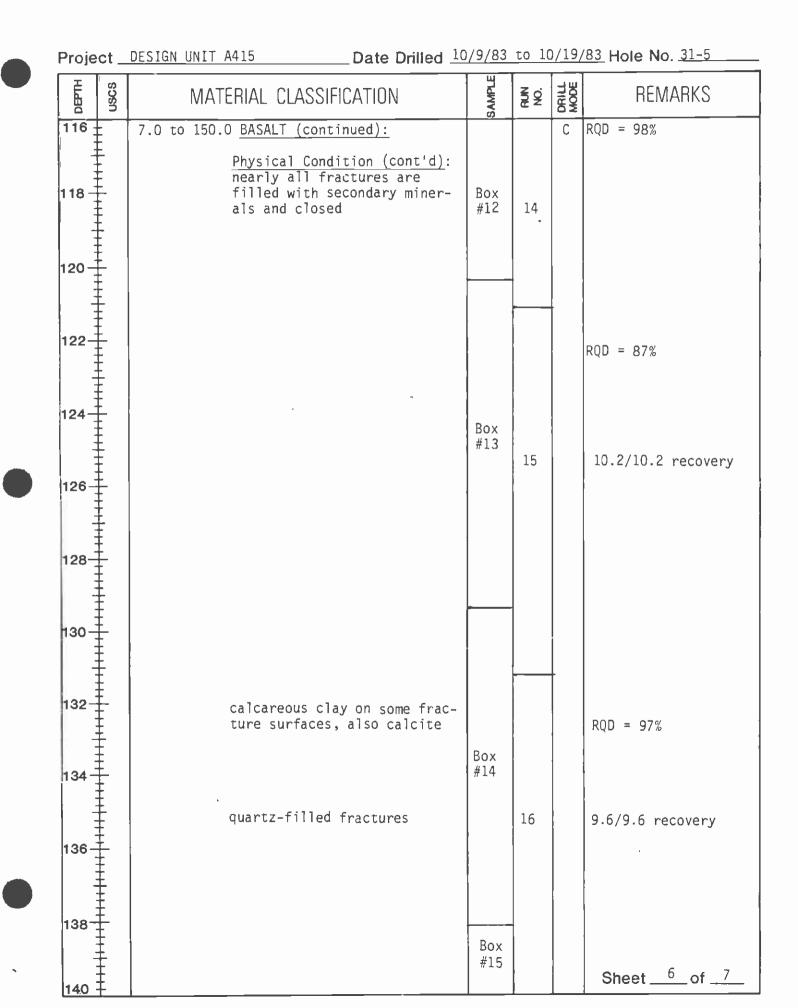
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
20	HML	12.6-21.3 <u>SANDY SILT</u> : continued	J-4		SS RD	1.1/1.4 recovery refusal at 17"
-						
2	Ē	BEDROCK 21.3-100.3 BASALT: mottled - greenish				
2-	F F	black and dark gray; porphyritic	<u>C-5</u>		DR C	0.25/0.25 recovery
-	ŧ	with aphanitic to hemihyaline ground mass, fine grained				refusal at 3"
4 -	Ē	phenorysts of plagioclase feld- spar and pyroxeme. Secondary	Box	1		
	ŧ	minerals include quartz filling	1			
-	÷	vessicles and veinlets, chlorite epidote with calcite coating	2			RQD = 76% 4.2/4.2 recovery
26 –	<u>+</u>	fracture surfaces and less commly in vessicles, iron oxide		-		
-	ŧ	coating fracture surfaces.				
-	Ŧ	Physical Condition: intensely to closely fractured; hard to		2		RQD = 84%
28 -	ŧ-	moderately weathered. Rock con- sists of relatively fresh dark				5.0/5.0 recovery
-	ŧ	gray basalt clasts in a greenis	1			
-	Ŧ	black matri× of altered basalt. Clasts are 0.1-4.0" long, averag	je			
- 0	Ē	1.5" long. 22.3-22.8 core is disaggregated. Relatively fresh				
-	ŧ	clasts comprise 30-40% of the				
32 -	Ē	formation. 36.5-41.4 relatively fresh clasts comprise 50-60% of			1	
-	ŧ	formation.				
-	Ē			3		RQD = 67% 5.0/5.0 recovery
4-	Į.					5.075.0 recovery
-	ŧ		Box			
-	Ē		2			
86 -	<u>+</u>					10-25-83
-	ŧ					10-26-83 • 7.7'
- 88	ŧ			4		RQD = 58%
- 04	Ŧ	Dhysical Conditions oblamits				4.9/4.9 recovery
-	‡	Physical Condition: chlorite- filled fractures are 0.05-0.25				
- 0	ŧ_	wide, average 0.1" wide				
-	Ŧ	41.3-42.8 zone with softer				
	Ē	matrix	Box			4.6/4.6 recovery
2 -	-		3	5		RQD = 27%
_	ŧ					recovered 0.3' of core from run 4
	‡	43.1-46.0 zone composed of 90%				Sheet 2 of 5

Projec	ct _	DESIGN UNIT A415	Date Drilled	10-25	/11-1	-83	Hole No
DEPTH	uscs	MATERIAL CLASS	IFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
44 44 46 46		21.3-100.3 <u>BASALT</u> : conti 45.1-46.0 disaggregated		Box 3	5	С	
48		(manganese di fracture surf			6		RQD = 33% 5.0/5.0 recovery
50	-	clasts,~20% 49.1-49.8, 51.4-55.8 zon tant matrix,	ly fresh basalt altered matrix es of less resis- core darkens and				drilling fluid is greenish gray
52	-		its green cast hours of exposure	Box 4	7		RQD = 61% 4.8/4.8 recovery
54 + + + + + + + + + + + + + + + + + + +	-	rock-breaks a surfaces when hammer	long hackly, uneve struck with	n 			<u>10-26-83</u> 10-31-83
58	-		ly fresh basalt altered matrix		8		<pre>27.5 RQD = 72% 5.0/5.0 recovery</pre>
60 62 62	-	fracture su ∼95% relati ∼5% seconda filling fr	vely fresh basalt, ry minerals (mostl	Box 5	9		RQD = 60% 5.0/5.0 recovery
64 	-	set undete have slick ary minera	rminable, surfaces ensides in second- ls ively fresh basalt	3			5.0/5.0 recovery
68	-			Box 6	10		RQD = 69% 4.9/4.9 recovery 5 Sheet of


	ect _	DESIGN UNIT A415	Date Drilled	-			Hole No	31-4
DEPTH	nscs	MATERIAL CLASSIFIC	ATION	SAMPLE	NON ON	DRILL	REMAF	₹KS
68		21.3-100.3 <u>BASALT</u> : continued	1	Box	10	С		
70 -		s]ickensides on s surfaces - orient horizontal. relatively fresh are angular to su	ed close to basalt clasts	6				
74 -		mostly subangular is 0.1"-6.0", ave	r; size range		11		RQD = 84% 5.1/5.1 rec	overy
76 –		. greenish gray, m calcite coating r	icrocrystalline nanv fracture	Box				
78		surfaces in layer thick	rs 0.01-0.1"	7	12	,	RQD = 54% 4.8/4.8 reco	very
80		anahedral, whit ing cavities an 0.5" thick, ave	d veinlets 0.1-	-			<u>10-31-83</u> 11-1-83 • 28'	_
82 -	+ + + + + + + + + + + + + + +	slickensides co calcite and chl	orite present		13		RQD = 57% 4.9/4.9 recc	overy
84 -	+++++++++++++++++++++++++++++++++++++++	on most fractur	e surfaces	Pov				
86		40% altered ma		Box 8				
88	+++++++++++++++++++++++++++++++++++++++	minor very fin euhedral pyrit some fracture	e grains on surfaces		14		RQD = 75% 4.8/4.8 reco	overy
90 -		alteration pro fracture surfa slippery		Box 9	15			
92	ŧ						Sheet 4_	of <u>5</u>


THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.


Converse Consultants, Inc. Earth Sciences Associates Geo/Resource Consultants



DEPTH	USCS	M	ATERIAL	CLASSIFICATION	SAMPLE	NON ON	DAILL	REMARKS
20		7.0-150.0	straight curved. with qua	<u>continued</u>): fractures to uneven, rarely Some fractures filled rtz, chlorite, epidote rline width to 0.2".	Box		C	
24			tends to	octures closed. Rock break along hackly, surfaces and along frac	-	2		9.7/9.7 recovery
26 -			predomir from hor	ant fractures dip 50°- izontal	50° Box #2			
28				yellow green, very fin calcite coats some fra faces				RQD = 100%
			rock is less alt	hard and strong where ered				
32				one – higher proportio basalt to altered	ו	3		10.2/10.2 recovery
4	· · · · · · · · · · · · · · · · · · ·		quartz,	chlorite, epidote	Box #3			
36 -	-							10 October 1983 11 October 1983
38	-		rock is • fresh ba	♥90% altered basalt, 10 salt)%			
			altered	f fresh basalt within basalt are 0.1"-8.0", ular to rounded shape		4		RQD = 98% 8.3/8.3 recovery
2					Box #4			

	oject DESIGN UNIT A415 Date Drilled 10/9/83-10/19/83 Hole No. 31-5								
DEPTH	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL MODE	REMARKS				
68 70 72	7.0-150.0 BASALT (continued):	Box #7	7	С	RQD = 100% 10.0/10.0 recovery				
74	slickensides in chlorite show relative movement from horizon- tal plane to various orientations up to 60° from horizontal chlorite and other alteration								
76	products coating fracture sur- faces can be scratched with fingernail; have waxy luster and feel		8		RQD = 95% 4.2/4.5 recovery				
30 	abundant chlorite-filled veinlets up to 0.15" wide	Box #8	9		RQD = 62% 3.9/3.9 recovery				
84	some vessicles only partially filled with secondary minerals; color change to dark greenish gray; very fine grained pyrite in matrix; pyrite more concen- trated on fracture surfaces								
86	86.3-87.3 clay filled shear or fracture zone; abundant very fine to fine grained pyrite, dark greenish gray clay, horizontal slickensides		10		RQD = 82% . 4.6/4.6 recovery				
90	calcite coating fracture surfaces in layers up to 0.1" thick •	Box #9	11		RQD = 65% 7.3/7.3 recovery Sheet <u>4</u> of 7				

Project DESIGN UNIT A415 _Date Drilled 10/9/83 - 10/19/83__ Hole No. 31-5_ SAMPLE DEPTH USCS DRILL MATERIAL CLASSIFICATION N OS REMARKS 140 ± 7.0-150.0 BASALT (continued): 16 С 142 142.0 - 1" thick quartz-filled fracture RQD = 96%Box #15 144 -17 quartz-filled fractures up to 0.3" thick open fractures coated with 146 secondary minerals 8.7/8.7 recovery 148-Box #16 18 0.5/0.5 recovery 150terminated hole at END OF BORING 150.0' 150.0; set 2" diameter ABS piezometer from surface to 150.0; back-152filled annulus with pea gravel; piezometer perforated from 110-150; set 5" PVC sleeve from ground 154 surface to 2.0; ŧ covered with steel street cap; cleaned site 156-158 🛨 160 162 Sheet 7 of 7 164

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LDG IS APPLICABLE DNLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

Proj: DESIGN UNIT A415 Date Drilled 2/	Ground I	Ground Elev		
Drill Rig Failing 1500 Logged By Ma	<u>rk Schluter</u> Total De	pth _29.0'		
Hole Diameter 4 7/8" Hammer Weigh	t & Fall <u>325 15 @ 18", 140 1</u>	o @ 30"		
MATERIAL CLASSIFICATION	RENN RUN REN	MARĶS		
OO.O-O.3 A.C. PAVEMENT SM FILL 0.3-6.0 SILTY SAND: moderate brown; 1	- c			
2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2				
	C-1 DR 325			
	RD			
6 SM/ALLUVIUM ML 6.0-8.5 <u>SILTY SAND/SANDY SILT</u> : modera brown to dark yellowish brown; medium dense/stiff; moist to	te J-1 SS 140 0.5/1.5 m	recovery		
8 Indeffull denseystiff, moist to slightly moist; trace gravel GM 8.5-13.5 SANDY GRAVEL/SILTY GRAVEL: di	JSKY C-2 325			
yellowish brown; medium dense; moist				
12	RD variable	rig chatter		
SM 13.5-18.0 SILTY SAND: moderate brown;	DR 225			
14 medium brown; medium dense; mo with gravel				
	SS 140			
18 5W 18.0-22.5 SAND: moderate brown to dust	J-2 0.6/1.5 r	recovery		
yellowish brown; trace fines ar gravel; medium dense; increasi gravel content	d DR	of 2		
20 =		of		

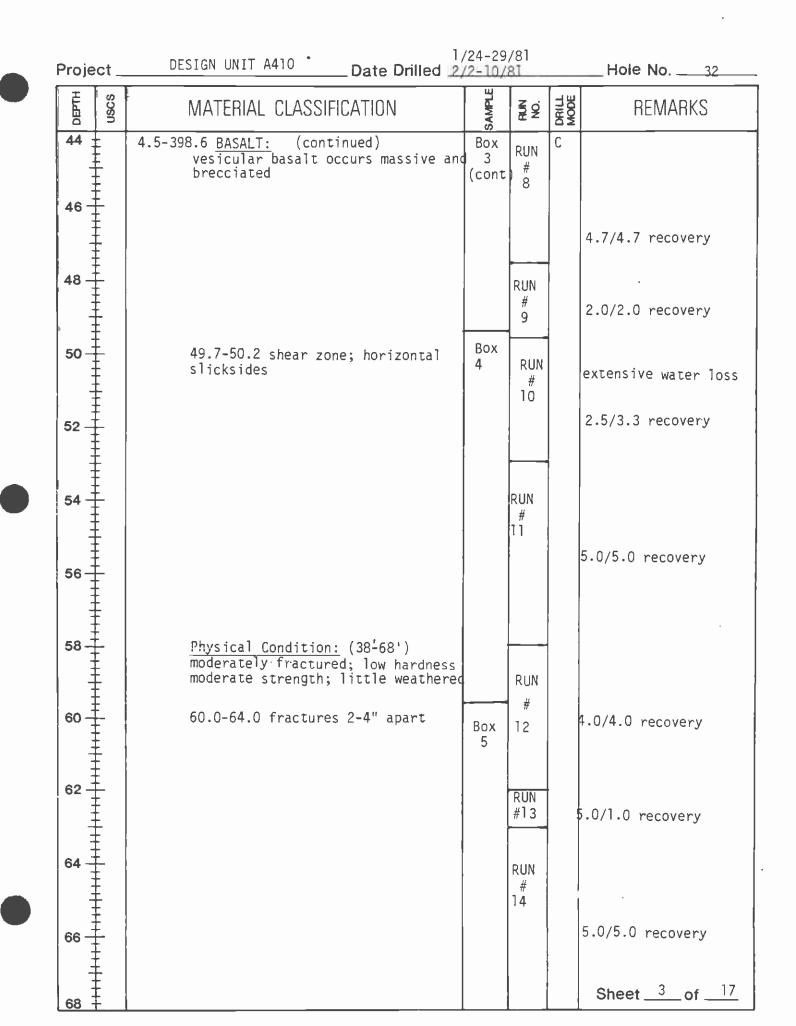
. •]•		ESIGN UNIT A415 Date Drilled		·		Hole No. <u>31-6</u>
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
20	ŧsw	18.0-22.5 SAND (continued):				
	‡"	18.0-22.3 <u>SAND (concinited)</u> .			RD	
	ŧ					
22 -	!/	BEDROCK				drill rig chatter
	¥	22.5-29.0 BASALT: dusky brown and grayish		ļ	DR	
-	ŧ	black; aphanitic to fine grain	C-5		325	
	Ŧ					refusal @ 11"
24 -	ŧ	Physical Condition: intensely fractured; moderately to deeply			RĎ	
-	Ŧ	weathered; soft	C-6			refusal @ 6"
	Ŧ	25.0-28.0 moderately weathered;			325] significant drilling
26 -	Ŧ	intensely fractured; moderately				fluid loss in basalt
	Ŧ	hard, narrow to very narrow			RD	formation
	Ŧ	fracture walls with clay filling				
28 -	Ŧ-					
	Ŧ	moderately to deeply weathered; intensely fractured	C-7	ł	DR 325	
-]_	END OF BORING 29.0'			525	
30 –	Ŧ					
30 -	Ŧ	Passive Percolation Test: hole				
	Ŧ	depth 29.0', 5" I.D. casing 13"				
	Ŧ	above ground surface				
32 –	Ŧ	water level fell 2.6' inside				
	Ŧ	steel casing during 1 minute				
	Ŧ	water level fell 10.8' below				
34 -	Ŧ	top of casing after 10 minutes				
	Ŧ					
-	Ŧ	2-25-84 water level 26.5' below				
26	Ŧ	ground surface				
36 -	Ŧ					
_	ŧ					
	ŧ		1			
38 -	ŧ					
	ŧ					
	ŧ					
40 -	+					
	ŧ					
-	ŧ	· · · · · · · · · · · · · · · · · · ·				
42 -	ŧ					
+2	ŧ					
-	‡					
	+					Sheet 2 of 2

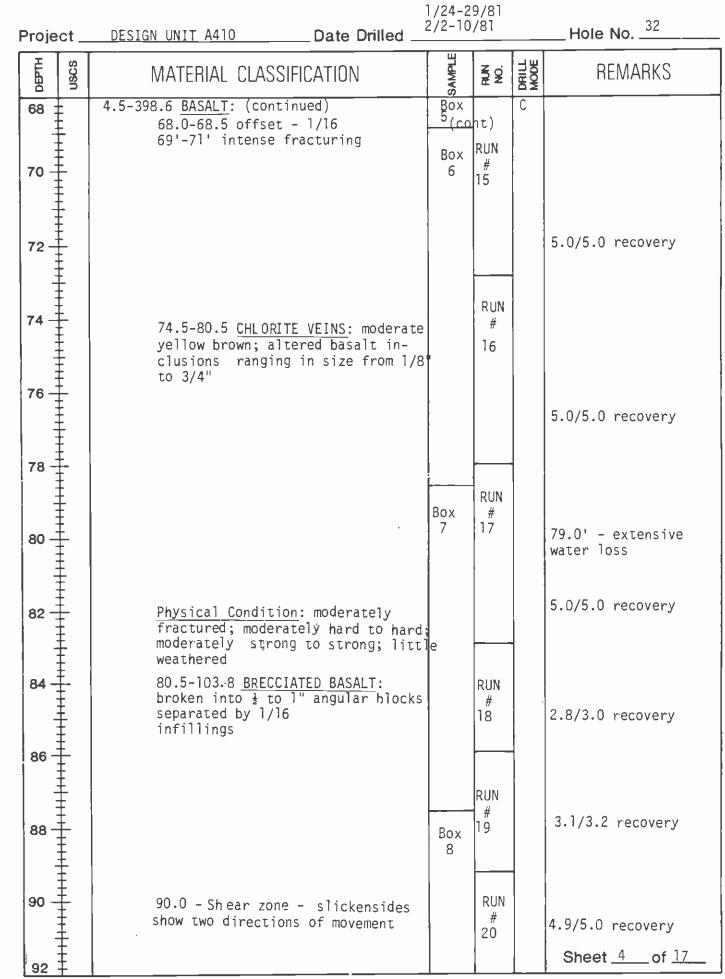
THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME, CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

Earth Sciences Associates

Proj:	D	ESIGN UNIT A415	Date Drilled	2-2	5-84	Ground Elev		
		Failing 1500						Total Depth
		meter <u>4 7/8"</u>						
DEPTH	nscs	MATERIAL CLA	SSIFICATION		SAMPLE	NON.	DRILL MODE	REMARKS
0		0.0-0.5 A.C. PAVEMENT:					С	started drilling @ 0730
-	±sм T	0.5-3.0 <u>SILTY SAND</u> : mo medium dense:	derate brown; moist; clay bi					
2-	Ŧ						А	
	ŧ							
	Ī	BEDROCK						
4 -		3.0-20.0 <u>BASALT</u> : brown	hish black to d	lusky	<u> </u>		DR	
.	÷ ÷		lition: intense osed-very narr				Α	
	Ŧ	fractured wal	ls, stained, m	nedium-	C-2		DR	
0-		5.0-10.0 very soft to					A	
-		highly weathe 1-10 mm. infi	ered, clay infi illing dark yel	lling llowish	C-3		DR	
8-	+	brown	-	İ			RD	drill rig chatter
								J
	Ŧ	10 0 17 0 1						
10-	‡ ‡		ered - medium	-				
	+	weathered, m fractured, r	nedium - highly random, clay ir		C-4		DR	
12-		ings 1-8 mm						varible drill rig
	ŧ						RD	chatter
-								
14-								
.	-	15.0-20.0 medium weath	nered, fresh, h	nard to			•	
	ŧ.	very hard ro	ock, highly fra 3, secondary mi	ictured	C-5		DR	
16-	ŧ		chloriate, epi					caving and sluffing into hole, added
	ŧ							additional bentonite
18-	<u>‡</u>							variable drill rig chatter
	+							heavy drill rig chatter
20	ŧ	END OF BORING 20.0',	finished @ 110	0	C-6			Sheet 1 of 1

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS DR TIME.




Converse Consultants; Inc. Earth Sciences Associates

BORING LOG 32

Proj:	DES	1/23-2 IGN UNIT A410 Date Drilled <u>2/2-10</u>				Ground Elev. 770
Drill F	Rig	Mobile B-40 Logged By D. Gil	lette			Total Depth <u>398.6'</u>
Hole	Diar	meter3" Hammer Weight &	Fall _			
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL MODE	REMARKS
2		0.0-0.4 <u>ASPHALT</u> 0.4-4.5 <u>ARTIFICIAL FILL</u> <u>SILTY SAND</u> : moderate yellow brown: medium dense			C RD	
4 		4.5-398.6 <u>TOPANGA FORMATION</u> 4.5-7.0 very weathered basalt; dusky yellowish brown				
8		7.0-18.0 basalt: dusky brown and brownish black; vesicular; slight] weathered; extensive Fe oxide staining; clay deposits in fractur 6" layers of clay 7.0-18.0 Ph <u>ysical Condition</u> : close to intensely fractured;soft to	25;	RUN #1	С	
12_		friable strength; moderate to deep weathered	Box #1		_	3.0/3.5 recovery
14				RUN #2		1.5/2.5 recovery
		15.0-18.0 clay; very soft		RUN #3		
						2.3/2.5 recovery
18	1	18.0-38.0 very weathered basalt		RUN #4		0.0/1.0 recovery
20			BOX #2	RUN #5	ΡB	1.8/2.0 recovery Sheet 1 of 17

Ξ		DESIGN UNIT A410 Date Drilled 2/2		I	1	Hole No
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NUN.	DRILL	REMARKS
20		4.5-398.6 BASALT: (continued)	Box #2		PB	
			cont.) RUN #6		
22						2.5/3.0 recovery
1						
24 –				RUN #6A		
						3.0/3.0 recovery
26 –		26.0-28.0 BASALT FLOW: olive blac				
-		vesicular			RD	
1						
28-						
30 -		<pre>Physical_Condition:(18'-38')</pre>		DUN		
		closely to moderately fractured; friable to low hardness; weak	Box 	RUN #6B	PB	1.0/1.0 recovery
-		strength; deep to moderately weathered			RD	
32 -		Physical Condition(26-28') mod- erately fractured, hard to very				
. 1		hard; strong to very strong;	\$			
34 -		.fresh				
1						
36 -						
38 -		38.0-400.0 <u>BASALT:</u> dark greenish grey; vesicular; Fe oxide stains				
1		on fractures				
40 -						
2			Box #	RUN #	с	
1			1	# 7		3.0/3.0 recovery
42						
			Box	RUN		
44			#3	RUN [#] 8		Sheet _2of _17

Proje	ct _	DESIGN UNIT A410 Date Drilled	2/2	4-29/8 -10/8		Hole No32
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL. MODE	REMARKS
92 94 96		4.5-398.6 <u>BASALT:</u> (continued)	Box 8 (con	20	C	4.9/5.0 recovery 5.0/5.0 recovery
98		97.5-98.5 shear zone; intensely fractured horizontal slicksides	Box 9			
102				RUN # 22		5.0/5.0 recovery
106-			Box 10	. RUN # 23		5.0/5.0 recovery
1 10-	╈┥┲┙			RUN # 24		
114-		114.4-124.0 Brecciated Basalt		RUN # 25		5.0/5.0 recovery Sheet <u>5</u> of <u>17</u>

Project		DESIGN UNIT A 410 Date Drilled _2				Hole No
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NON.	DRILL	REMARKS
116		4.5-398.6 <u>BASALT</u> : (continued)	Box 11	RUN # 25	С	5.0/5.0 recovery
20-						
22-		Physical Condition: Moderately to closely fractured; moderately hard moderate strength; little weather- ing to fresh BASALT- olive grey	5	RUN # 26		3.8/4.8 recovery
124				RUN		
126-			Вох	# 27		2.8/2.8 recovery
128	***		12	RUN # 28		lost 1 tank H ₂ 0
130-	+++++++++++++++++++++++++++++++++++++++					5.0/5.0 recovery
132-		132'- offset -3/8" wide; filled wi greyish green mineral	th	RUN		
134 -			•	# 29		3.5/3.5 recovery
136-	┿ ┿ ┿ ┿ ┿ ┿ ┿	137.8-138.4 intensely fracture zone; intensely fractured	Box 13	RUN # 30		3.1/3.1 recovery
138-		zone, mtensely irdutureu		RUN # 31		2.9/2.9 recovery
-	ŧ		1			Sheet _6 of;

•

DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NON	DRILL	REMARKS
ă 40		4.5-398.6 BASALT: (continued)	Box 13	RUN	°ZŽ C	2.3/2.3 recovery
42		fracture zone – crushed 4" wide	(cont	. 32		· •
44				RUN #		
46			Box 14	33		
						5.0/5.0 recovery
48		148-149' Offset - horizontal slickensides on joint plane		RUN #		
50				34		
52						5.0/5.0 recovery
54 -			Вох			
56			15	RUN # 35		4.9/5.0 recovery
58		shear zone - 1" wide; white				
60		non-plastic gauge		RUN # 36		
62-						5.0/5.0 recovery
-		163-163.4 intense fracturing		RUN		

Proje	ct _	DESIGN UNIT A410 Date Drilled	1/24 2/2-	-29/8 -10 <u>/81</u>	31	32 Hole No
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NON .	DRILL	REMARKS
164 166 168		4.5-398.6 <u>BASALT:</u> (continued)	Box 16 (cont	:) RUN # 37	C	4.8/5.0 recovery
70				RUN # 38		5.0/5.0 recovery
174			Box 17	RUN # 39		5.0/5.0 recovery
178				RUN # 40		
182			Box 18	RUN #		4.8/4.8 recovery
184				41		lost ½ tank H ₂ O 3.6/3.6 recovery
186				RUN # 42		Sheet <u>8</u> of <u>17</u>

HLLBO	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
188		4.5-398.6 BASALT: (continued)		RUN		
			Box 18	#	C	
90-		190.0 fault - ½" wide, filled with	(cont.	•)		4.0/4.0 recovery
-		greyish mineral				
1.1.1			Rev	RUN #		
92- -		<pre>Physical Condition:little frac- tured; hard; very strong; fresh</pre>	Box 19	43		
						4.0/4.0 recovery
94-						
				RUN #		
96-				π 44		
-86						4.5/4.5 recovery
-00		200.0 - offset - slickensildes	Вох	RUN		
, tu t			20	#		
02-				45		4.7/4.7 recovery
1.1						
04				RUN		
بلعين				#		
)6 –				46		
						4.7/4.7 recovery
- 						
				DIIN		
1111			Box	RUN #		
10-1		3	21	47		4.9/4.9 recovery
<u>12</u>						Sheet <u>9</u> of <u>17</u>

Project_	DESIGN UNIT A410 Date Drilled	1/24 2/24	4-29/8 -10/87	31 	Hole No
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	RUN.	DRILL	REMARKS
212	4.5-398.6 BASALT: (continued)	Box 21	#47	С	
, T		(cont)	ł		,
214			RUN #		
		i.	48		
216 <u>+</u>					4.8/4.8 recovery
218		Box 22			
220			RUN # 49		4.9/49 recovery
222					
‡ +					
224			RUN #		
Ŧ			50		
226-					
		Day			4.9/4.9 recovery
		Box 23			
228			RUN		
			#		
230-7-			51		
+					
232					5.0/5.0 recovery
+			RUN		
234 1			# 52		
1 1					4.8/4.8 recovery
<u>236 ‡</u>					Sheet <u>10</u> of <u>17</u>

.

Pro	et _	DESIGN UNIT A410 Date Drilled	2/2-10)/81		Hole No32
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NUN.	DRILL	REMARKS
236		4.5-398.6 BASALT: (continued)	Box 24	RUN #52	с	
238	<u> </u>					
240				RUN # 53		4.6/4.6 recovery
242	L			RUN #54		
244 ·		offset-1/8"; filled with greyish green mineral; healed				
246		<pre>Physical Condition: little frac- tured; hard; strong; fresh</pre>	Box 25	RUN # 55		4.9/4.9 recovery
248 -			25		•	
250-		249.5-251.0 shear zone		RUN #		A 0/A 0
252 -				56 RUN	,	4.0/4.0 recovery
-		253.0-25.6 offset magnitude unknown		#57		0.9/1.0 recovery
254			Box 26	RUN # 58		lost 1 tank H ₂ 0
256 -						4.9/4.9 recovery
258				RUN		
 260 -				# 59		Sheet

Proje	ct_	DESIGN_UNIT_A410Date Drilled	1/24-2 2/2-10			Hole No 32
оертн	uscs	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
		4.5-398.6 <u>BASALT</u> : (continued)	Box # 24	1 · · · · · · · · · · · · · · · · · · ·	С	
				*. Y -:		4.6/4.6 recovery
				f r		
		offset-1/8",* filled with greyish green mineral; healed <u>Physical Condition</u> : little frac-		R 1.		-
		tured; hard; strong; fresh	Box # 25			4.9/4.9 récovery
		249.5-251.0 shear zone		1 . I 		
		 253.0-25.6 offse t magnitude unknown				4.0/4.0 recovery
			Box ₹ 26	n b n b		lost 1 tank H ₂ 0
						4.9/4.9 recovery
				F 1 :		Sheet <u>11</u> of <u>17</u>

Project _	DESIGN UNIT A410 Date Drilled	2/2	4-29/8 -10/81	3 [Hole No
DEPTH	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
260	4.5-398.6 <u>BASALT</u> : (continued)	Box 26 (cont)	[#	с	4.7/4.9 recovery
264		Box 27	RUN #		4.8/4.9 recovery
270	271.0-271.4 offset		RUN # 61		4.8/4.8 recovery
274	274.0 offset	Box 28	RUN # 62		4.9/4.9 recovery
278			RUN # 63		5.1/5.1 recovery
284		Box 29	RUN # 64		Sheet <u>12</u> of <u>17</u>

.

Proje	1	DESIGN UNIT A 410 Date Drilled		1	T	Hole No32
нгаза	USCS	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
284 286 -		4.5-398.6 <u>BASALT</u> : (continued) 285.6-286.2 offset	Box 29 (cont	RUN # 64	С	4.2/4.2 recovery
288-				RUN # 65		
290			Box			4.8/4.8 recovery
292			31	RUN # 66		2.4/2.4 recovery
294 296 296				RUN # 67		4.8/4.8 recovery
300		<u>Physical Condition</u> : little fracturing to massive; hard; moderately strong; fresh	Box 31	RUN # 68		5.0/5.0 recovery
304 306				RUN # 69		4.8/4.8 recovery
308 -						Sheet <u>13</u> of <u>17</u>

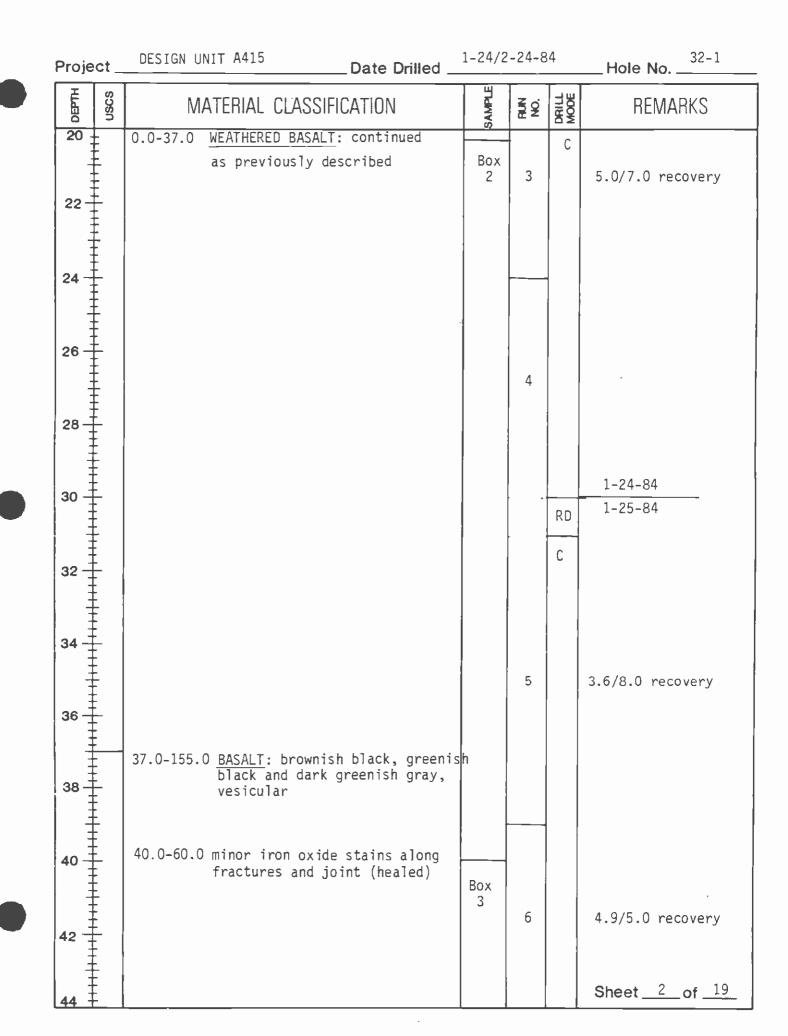
Proje	ct _	DESIGN UNIT A410 Date Drilled	1/24-29 2/2-10/)/81 '81		Hole No32
ОЕРТН	uscs	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
308 310- 312-		4.5-398.6 <u>BASALT</u> : (continued)	Box (Cont. Box 32) RUN # 70	С	4.9/4.9 recovery
314		314.5-318.8 Brecciated Basalt		RUN # 71		
316				RUN		4.4/4.9 recovery
320		322.2-324.6 shear zone	Box 33	# 72		4.8/4.8 recovery
324				RUN # 7 <u>3</u>		1.3/1.3 recovery
326				RUN # 74		4.9/4.9 recovery
328				RUN		
332			34	# 75		Sheet <u>14</u> of <u>17</u>

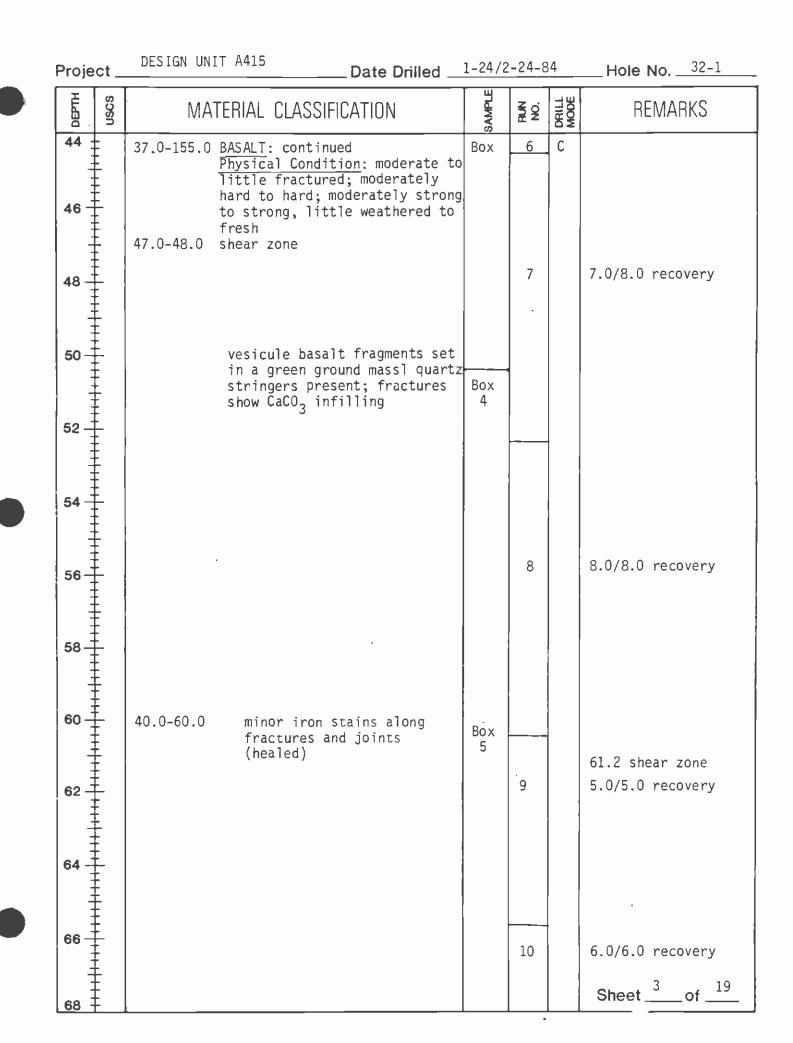
Project _	DESIGN UNIT A410 Date Drilled		Hole_No ³²
DEPTH	MATERIAL CLASSIFICATION	SAMPLE RUN NO. DRILL MODE	REMARKS
332 	4.5-398.6 <u>BASALT</u> : (continued) 333.5 ault; slickenslides	Box RUN C 34 <u>#75</u> (cont)	4.8/4.8 recovery
336	335.7 - well developed slicksides 336.0-340.0 shear zone	RUN # 76	4.6/4.9 recovery
338	339.0 offset	Box	
340	,	35 RUN 77	4.9/5.0 recovery
346		RUN # 78	4.9/4.9 recovery
348		Box 36 RUN #	
352		79 RUN	4.4/4.8 recovery
354	355'-357' Brecciated Basalt	#80 RUN #81	1.8/1.8 recovery Sheet 15 of 17

Proje	ect _	DESIGN UNIT A410 Date Drilled	1/24 - 2/2-1	0/81		Hole No. <u>32</u>
DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
356 358-	┝┾╄┾╁┥┍┝╁╕┼┍┍	4.5-398.6 <u>BASALT</u> : (continued)	Box 36 (cont Box	RUN # 81	С	4.6/4.8 recovery
360			37	RUN #		
362 		362.0-364.0 Brecciated Basalt		82		4.9/5.0 recovery
366		366.0-368.0 shear zone; well developed slickensides		RUN # 83		·
398 370-		Physical Condition: moderately fractured: moderately hard; strong little weathering to fresh	Box 38			4.8/4.9 recovery
372				RUN # 84		
374-						4.9/4.9 recovery
376 378		376.0-380.0 Fracture zone; closely to intensely fractured		RUN # 85		
380 ⁻				RUN #86		4.6/4.9 recovery Sheet <u>16</u> of <u>17</u>

	т 1	DESIGN UNIT A 410 Date Drilled	Ш			Hole No. <u>32</u>
HTMBD	USCS	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
380 		4.5-398.6 <u>BASALT</u> : (continued)	Box 39 (cont)	RUN #86	С	3.5/3.5 recovery
384	******	383.0-385.0 shear zone; well developed slickensides		RUN #87		2.3/2.3 recovery
386	┿┿╅╺╊╼┿┿┿┿ <mark>┝┿┽┍</mark> ╞┨┽		Box 40	RUN # 88		
388 390		389.0-390.0 fracture zone		RUN		4.8/4.8 recovery
392- 394-	┶┶┿┿┿┿┿┿┿┿┿┿			# 89		4.7/4.9 recovery
396-	╸╴╸	395.0-398.6 <u>SHALE</u> : olive black; very hard; low grade metamorphism	Box 4	RUN # 90		
398-		<u>Physical Condition</u> : little fracture hard to very hard; very strong; fresh	d ;			4.9/4.9 recovery
400		B.H. 398.6 Terminated Hole				water sampled 2-24-8 Set 397' ABS 2" casin l' bentonite seal at surface - placed wate meter cap over hole
402-						Sheet of

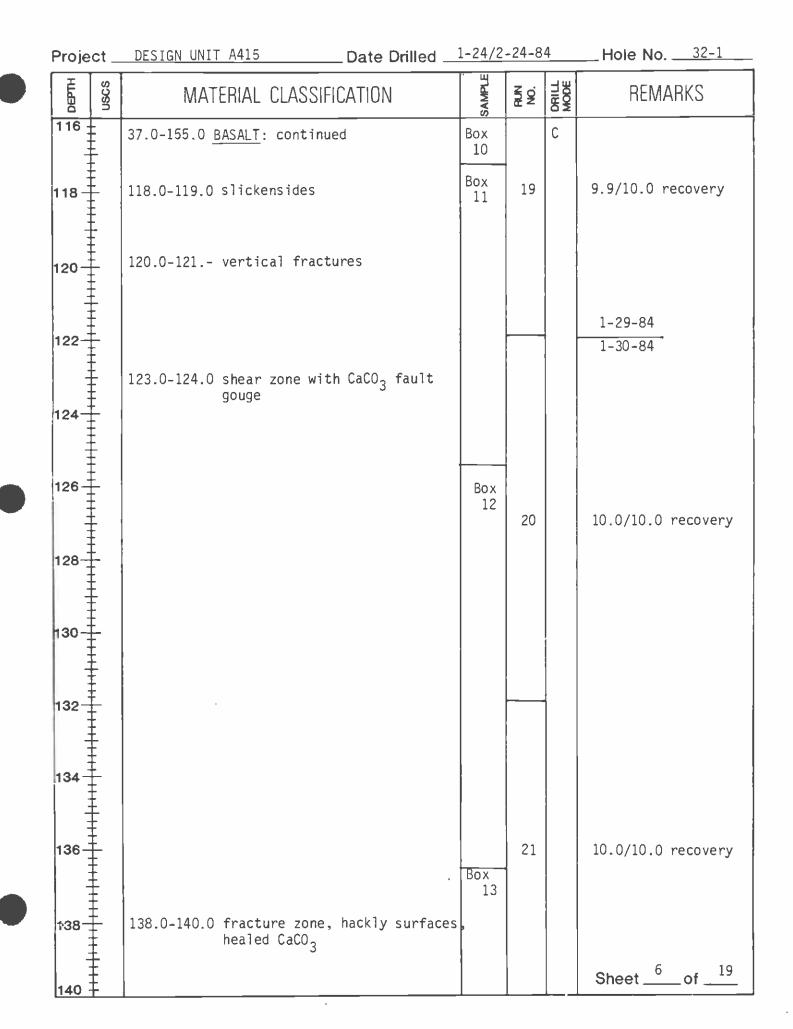
THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

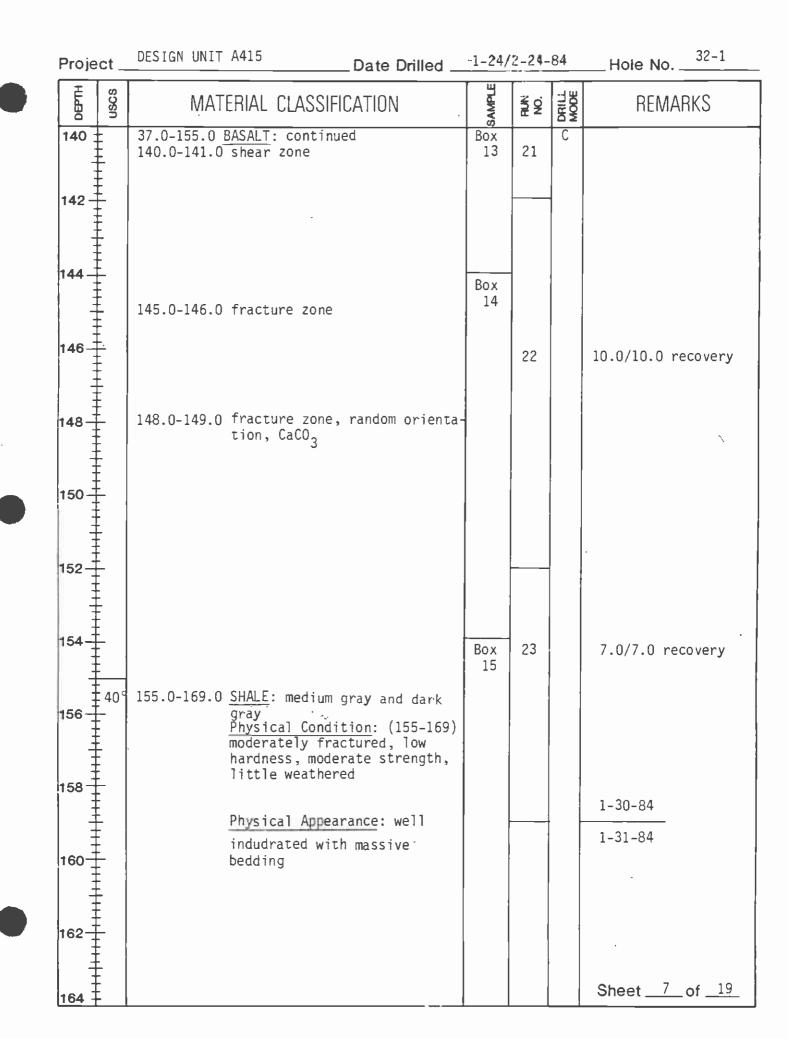

111


BORING LOG 32-1

Proj:DESIGN UNIT A415	Date Drilled _	1-24/2-24-84	Ground Elev.	865.5'
Drill Rig Failing 250	Logged By _	D. Gillette	Total Depth _	442.0'

Hole Diameter NX Hammer Weight & Fall N/A

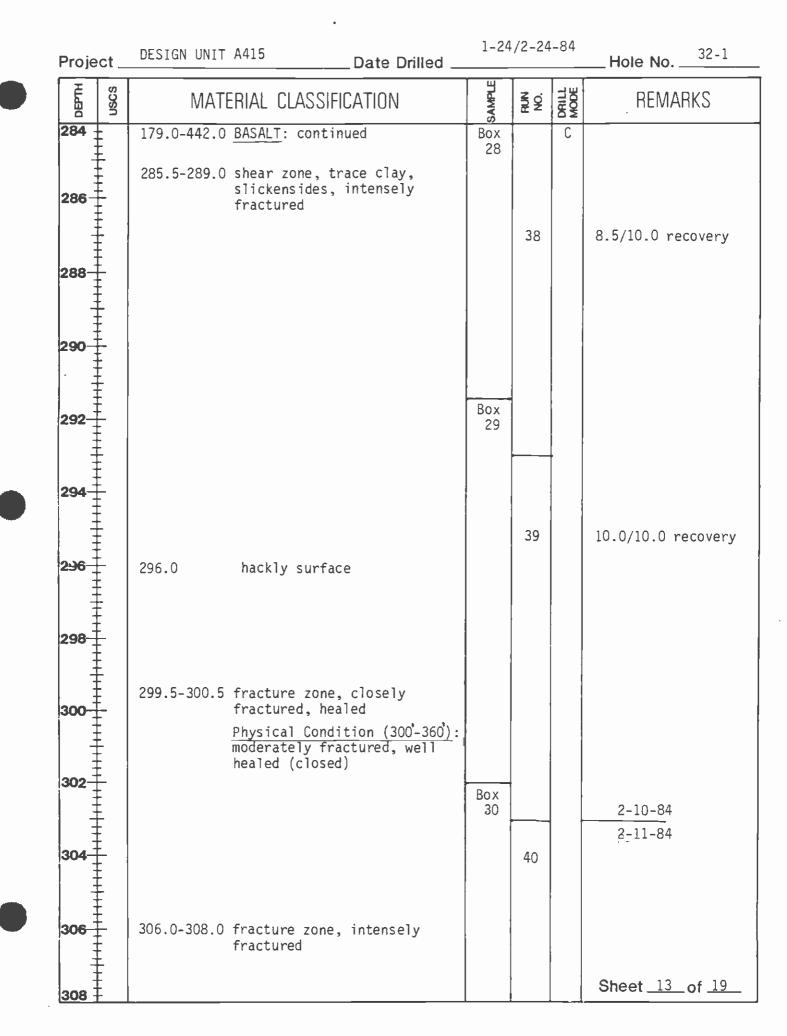

DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NON.	DRILL. MODE	REMARKS
2		BEDROCK 0.0-37.0 WEATHERED BASALT: dusky brown to brownish black with dusky yellow- ish brown streaks (iron oxide stains) contains clay deposits in fractur and exhibits feldspars weathering to clay	es		A	
4 6		,	PB-1		РВ	
8		Physical Condition: closely to intensely fractured, soft to friable hardness, friable strengt moderate to deeply weathered	Box 1 h,		RD C	1.5/2.5 recovery
10				1		4.8/5.0 recovery
12 14				2		3.0/5.0 recovery
16		14.5-17.0 intensely fractured				
18				3		5.0/7.0 recovery Sheet <u>1</u> of <u>19</u>



Proje	ect_	DÉSIGN UNIT A415	Date Drilled		2-24-	84	Hole No. <u>32-1</u>
рертн	nscs	MATERIAL CLASS	SIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
68 70 -		37.0-155.0 <u>BASALT</u> : conti as previously		Box 5 Box 6	10	С	6.0/6.0 recovery
72 -		70.0-71.0 fracture zone					
74 -					11		5.0/5.0 recovery
76 -		75.0 healed joint,	CaCO ₃				<u>1-27-84</u> 1-28-84
78		78.0-83.0 shear zone, i contains faul	ron oxide staining t gauge	Box 7	•		
80 -					12		7.5/9.0 recovery
82 -							
-							
86 -		86.0-88.0 fracture zone			13		very hard drilling
88 -							
90 -					14		
92	Ŧ			Box 8			Sheet <u>4</u> of <u>19</u>

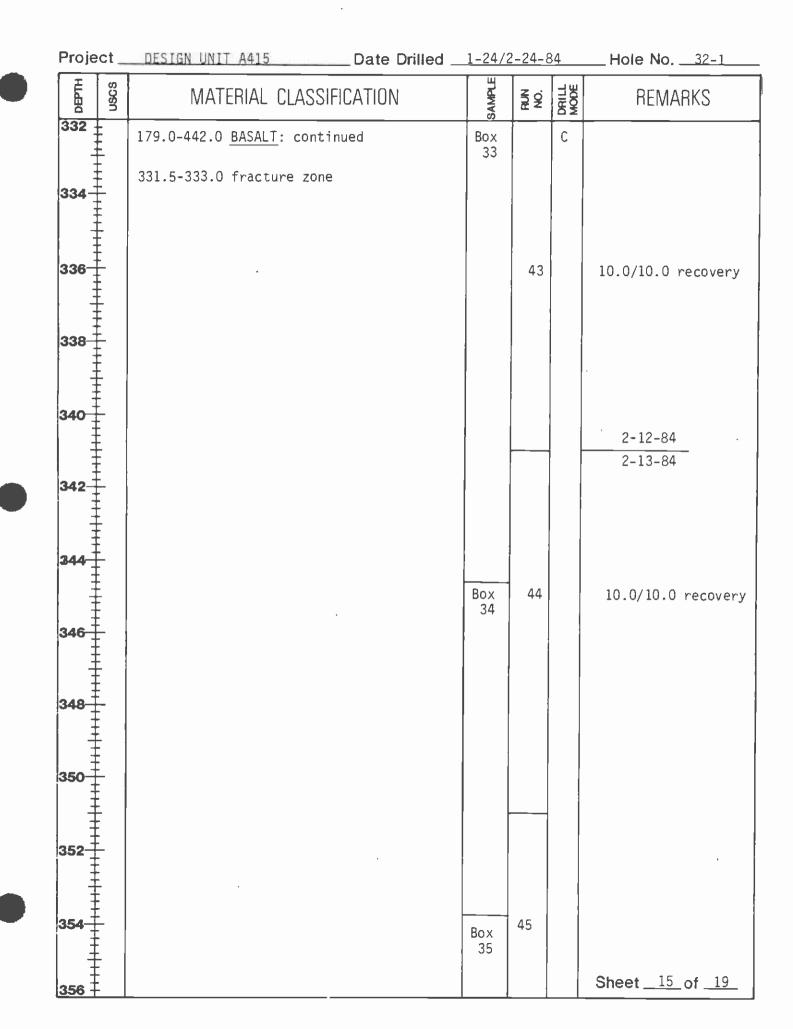
Project _	DESIGN UNIT A415 Date Drilled	1-24	/2-24	-84	Hole No	32-1
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL MODE	REMAR	KS
92	37.0- 155.0 <u>BASALT</u> : continued 93.0-102.0 zone of vertical fractures - 1/8" - CaCO ₃ healed	Box 8	14	С	7.0/7.0 reco	very
94			15		1-29-84 4.0/4.0 reco	very
98						
100			16	•	4.0/4.0 reco	very
102		Box 9				
104	103.0 slickensided surface					
	106.0-107.0 randomly oriented fractures and joints		17		9.9/10.0 rec	overy
		Box 10	-			
	111.0-112.0 shear zone					
1 12			18			
116 +					Sheet <u>5</u>	of <u>19</u>

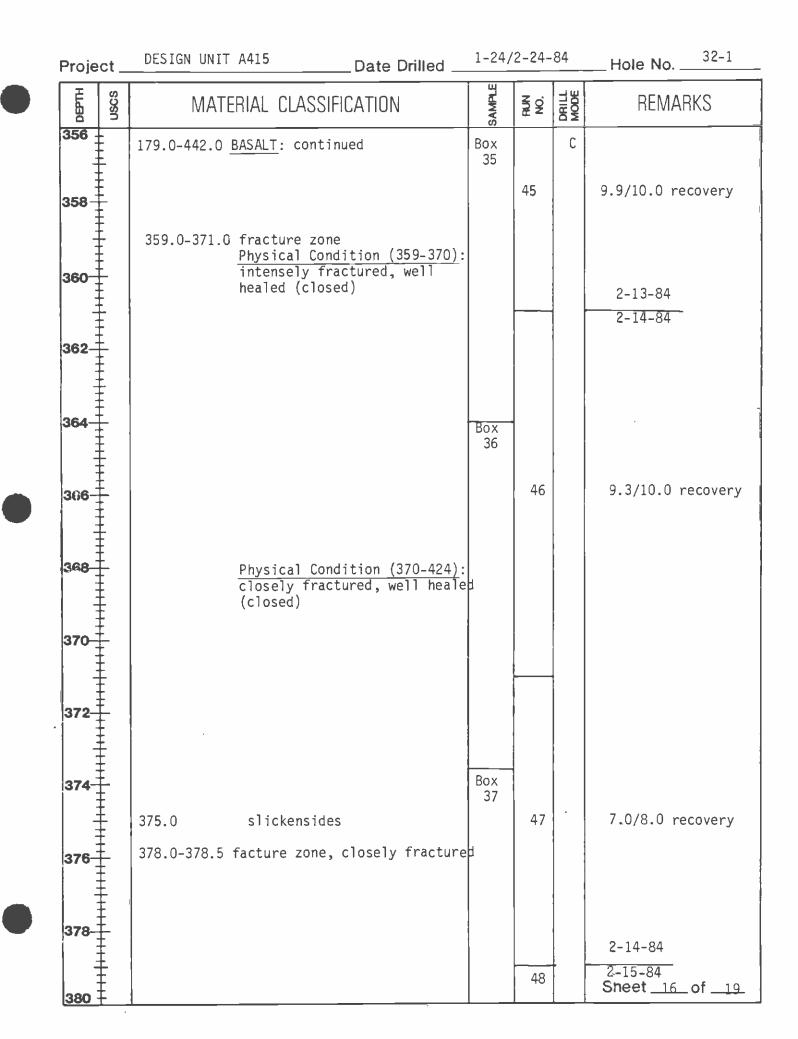
HLLBO	nscs	MATE	RIAL CLASSIFICATIO	NC	SAMPLE	NO.	DRILL	REMARKS
164		155.0-169.0	SHALE: continued		<u>д</u> Вох 16	24	C C	8.5/10.0 recovery
68		•						
70-		169.0-173.4	BASALT: brownish b ish black and dark gray, vesicular		-			
72		171.0-179.0	fracture zone, rar oriented fractures intensely fracture healed	s and joint	S ,	25		9.0/10.0 recovery
74	-		<u>SHAL</u> E: medium gray gray	/ and dark /	Box 17			
76-	-	175.0	slickensides					
78-1								
80		179.0-442.0	BASALT: brownish b ish black and dark gray, vesicular Physical Condition to moderately fract healed (closed), moder hard to hard, moder strong to strong, weathered to fresh	greenish : closely tured, well oderately rately little	-	26		6.9/7.0 recovery
84 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					Box 18			1-31-84
36		187.0-188.0	fractured zone			27		2-1-84
1 188 =								Sheet _8of19_

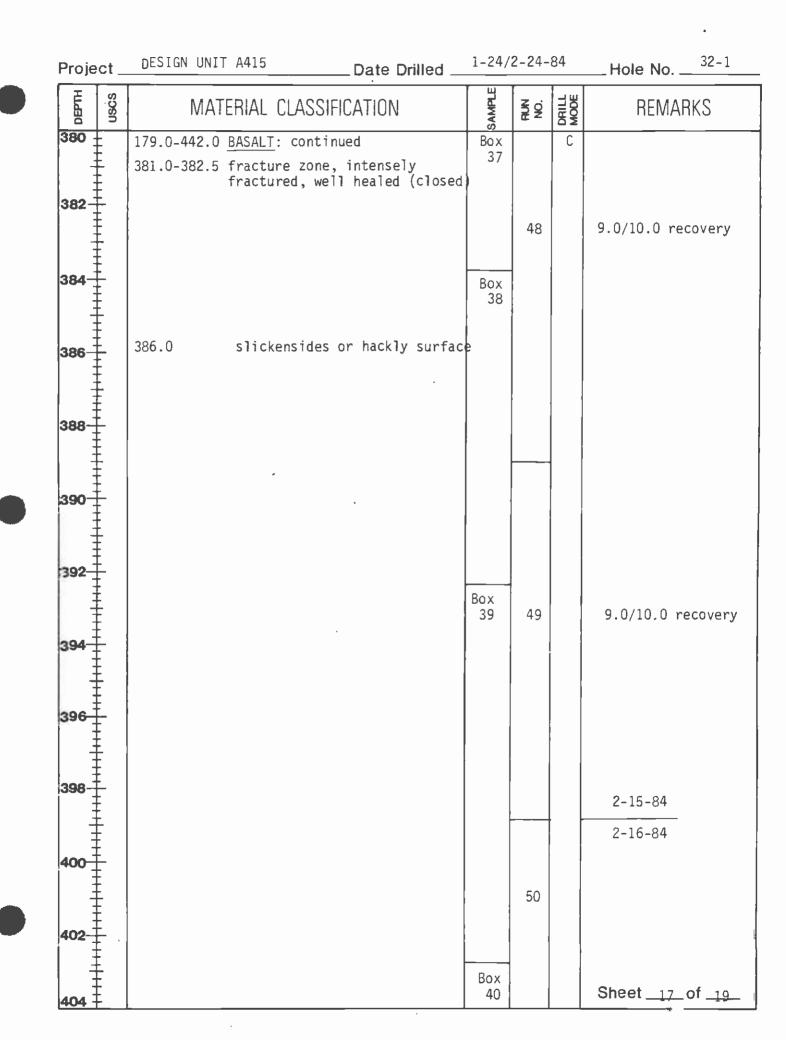

Project _	DESIGN UNIT A	A415 Date	e Drilled	1-24,	/2-24-	-84	Hole No	32-1
DEPTH	MATE	RIAL CLASSIFICATIO)N	SAMPLE	NO.	DRILL	REMAR	RKS
188		BASALT: continued Fracture zone, CaCO ₃ Mackly surface	infilling,	Box 18	27	С	10.0/10.0 re	ecovery
192 194 194 196	195.0 s	lickensides		Box 19				
200 202 204 1 204 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	203.5-204.5	fracture zone, inte fractured	nsely	Box 20	28		9.5/10.0 re	ecovery
208					29		9.0/10.0 re	covery
212		fracture zone, inter fractured	isely				Sheet _9	of <u>19</u>

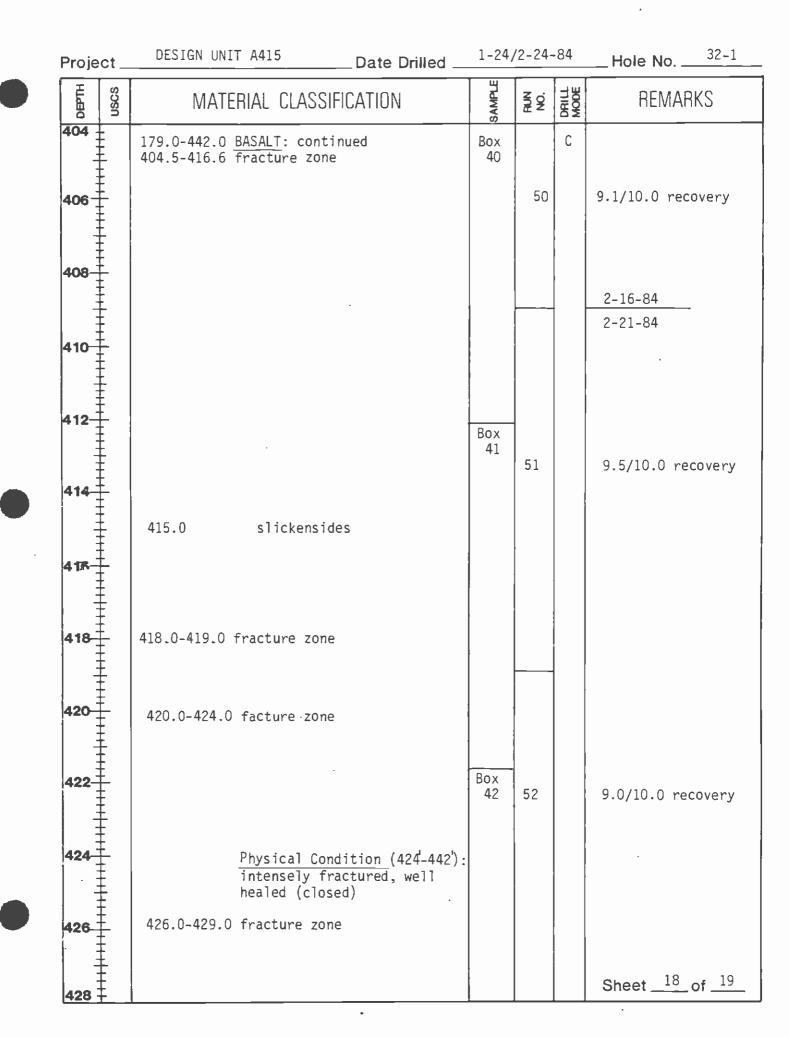
-

Proje	ct_	DESIGN UNIT A415	_Date Drilled _	1-24/2-	-24-84	1	Hole No
рертн	nscs	MATERIAL CLASSIFI	CATION	SAMPLE	RUN NO.	DRILL	REMARKS
212 214		179.0-442.0 BASALT: continu	ied	Box 21	29	С	9.0/10.0 recovery
216		216.0-217.0 fractured zone	, slickensides				2-1-84
218							
220		221.0-224.0 fractured zone, fractured, well	closely healed (close	d)	30		5.5/8.0 recovery
:24				Box 22			
226	_						
228					31		5.1/8.0 recovery
232		233.0-234.0 fracture zone,	slickensides				
234		200-204.0 inacture 20Me,	•		32		
236 ‡							Sheet <u>10</u> of <u>19</u>


H	0		- 4		84	
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
236		179.0-442.0 BASALT: continued	Box 22	32	С	5.2/7.0 recovery
238			Box 23			2-7-84
240-						2-8-84
242						
		243.0-244.0 fracture zone		33		9.0/10.0 recovery
244						
246	-		Box 24			
2-18						
250						
252		251.5-252.5 fracture zone, slickensides, closely fractured, well healed (closed)	Ī	34		9.3/10.0 recovery
254						
256			Box 25		-	
258	-					2-8-84
4	-			35	ľ	2-9-84 Sheet <u>11</u> of <u>19</u>


တ		Date Drille		T		Hole No32
USCS	MATERIAL (CLASSIFICATION	SAMPLE	ND NO	DRILL	REMARKS
	179.0-442.0 BASALT	: continued	Box 25	1	С	
				35		9.0/10.0 recovery
	264.5-265.0 fractu	re zone	Box 26			
***		-				268-269 very hard drilling
+++++++++++++++++++++++++++++++++++++++						
			Box 27	36		10.0/10.0 recover
	279.0 slicke	nsides				
				37		4.0/4.0 recovery
	282.0 CaCO ₃ (on fracture surfaces				2-9-84
ŧ			Box	38	ľ	2-10-84 Sheet2 of

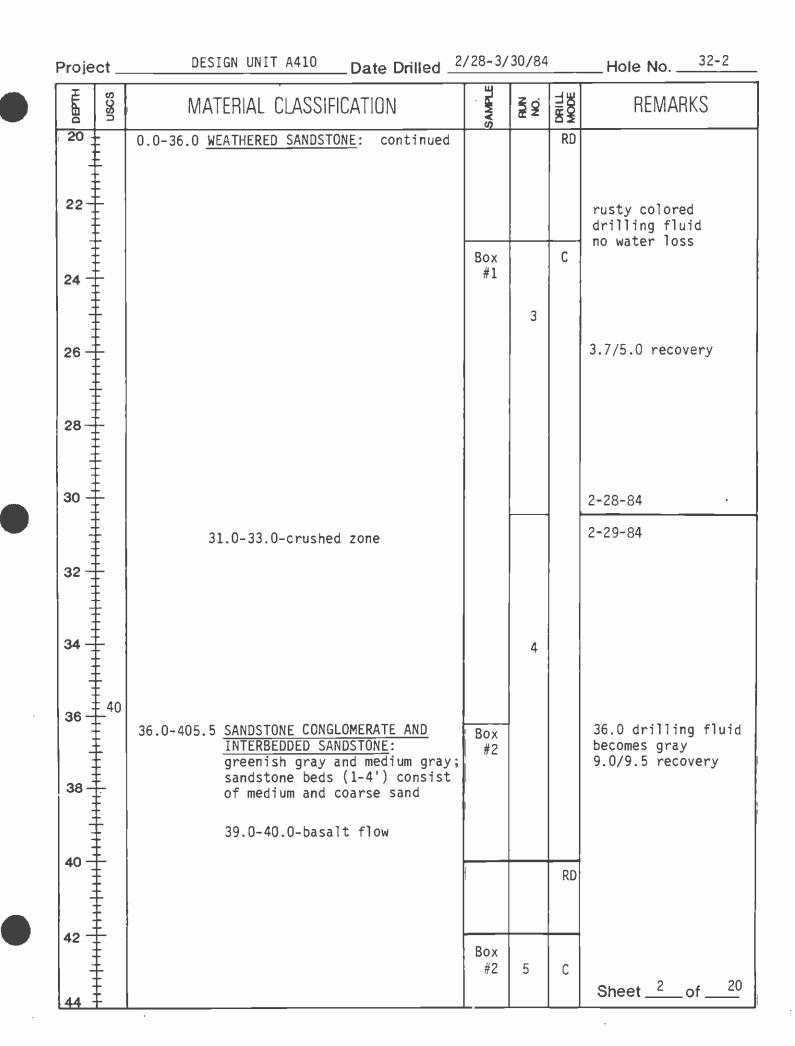



Proje	ct_	DESIGN UNIT A415	_Date Drilled _	1-24/2	2-24-8	4	Hole No	32-1
ЮЕРТН	nscs	MATERIAL CLASSIFI	CATION	SAMPLE	NO.	DRILL	REMAF	KS
308 310		179.0-442.0 <u>BASALT</u> : contin	ued	Bo x 30	40	С	9.0/10.0 r	ecovery
312		311.0-312.0 fracture zone		Box 31				
314		314.0-315.0 fracture zone						
316					41		10.0/10.0 1	recover
318-								
322				Box 32			2 11 04	
324							<u>2-11-84</u> 2-12-84	
326					42		7.8/8.0 red	covery
328								
330					4.2		01	- 10
332 -	<u> </u>				43		Sheet 14	01

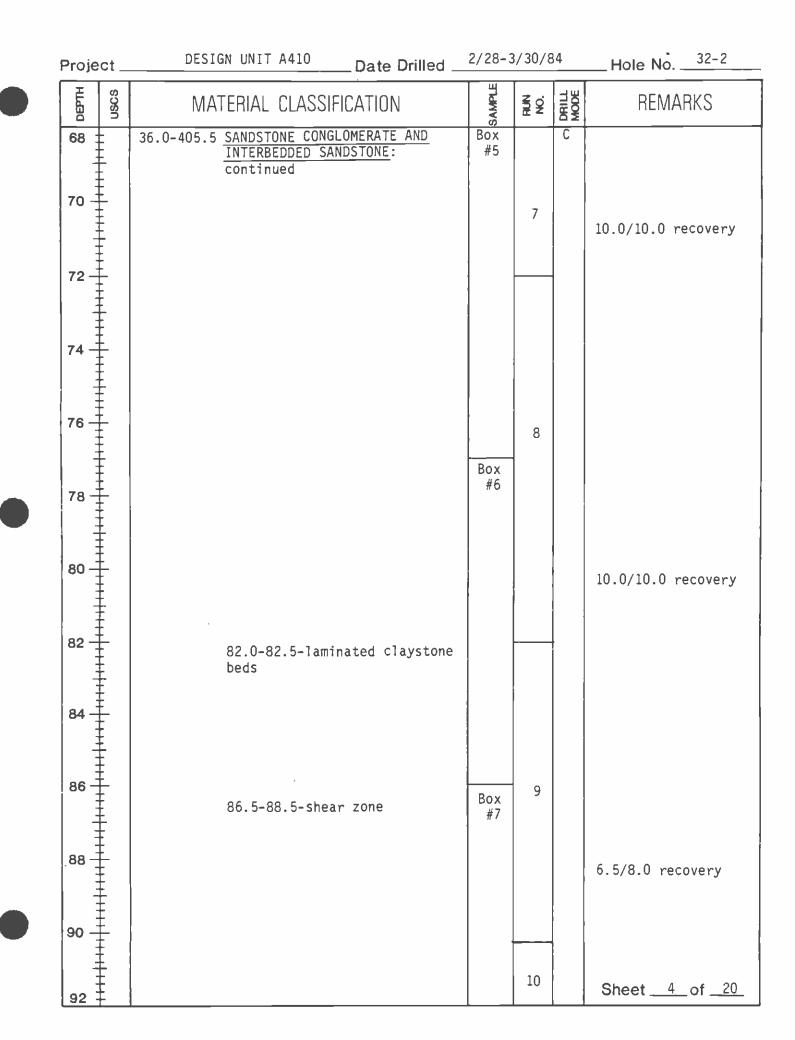
.

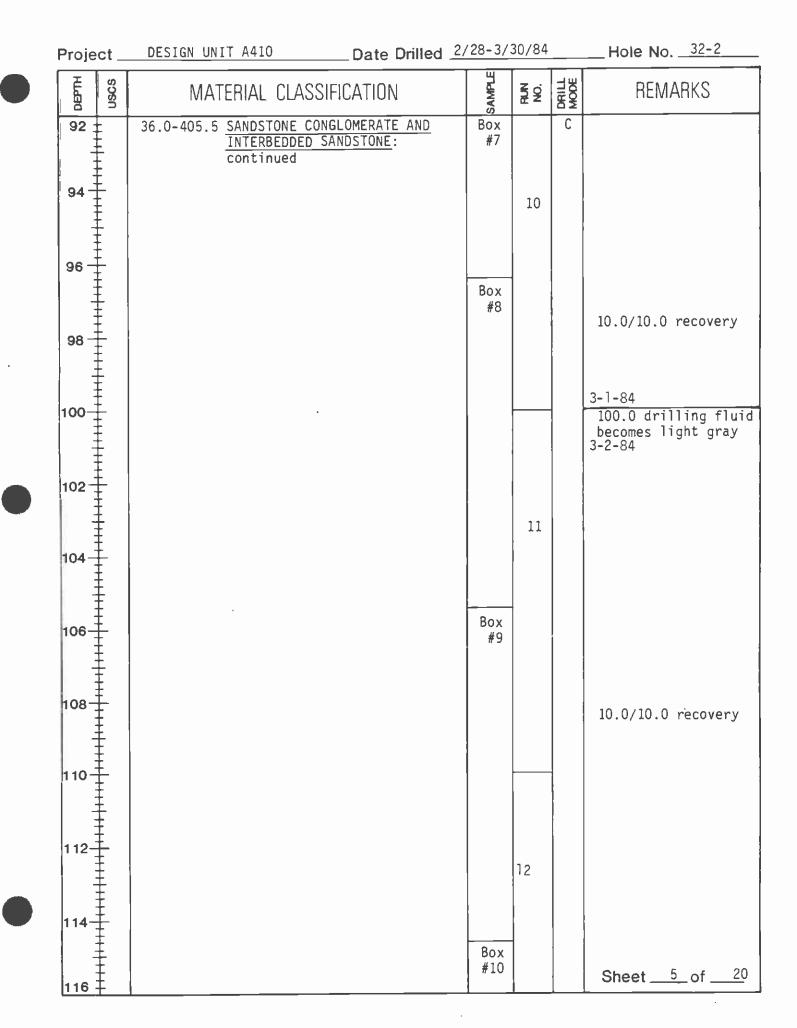
Proje	ct _	DESIGN UNIT A415 • Date Drilled		-24-84	1	Hole_No32-1
DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
428		179.0-442.0 BASALT: continued	Box 42	52	С	2-21-84
432			Box 43	53		7.5/8.0 recovery
434						
436		436.5-437.1 fracture zone				
438				54		4.6/5.0 recovery
459		440.0-442.0 fracture zone				
440-			44			·
442		END OF BORING 442.0'				
444	. he carl a carl					
446						
448						
452						Sheet <u>19</u> of <u>19</u>

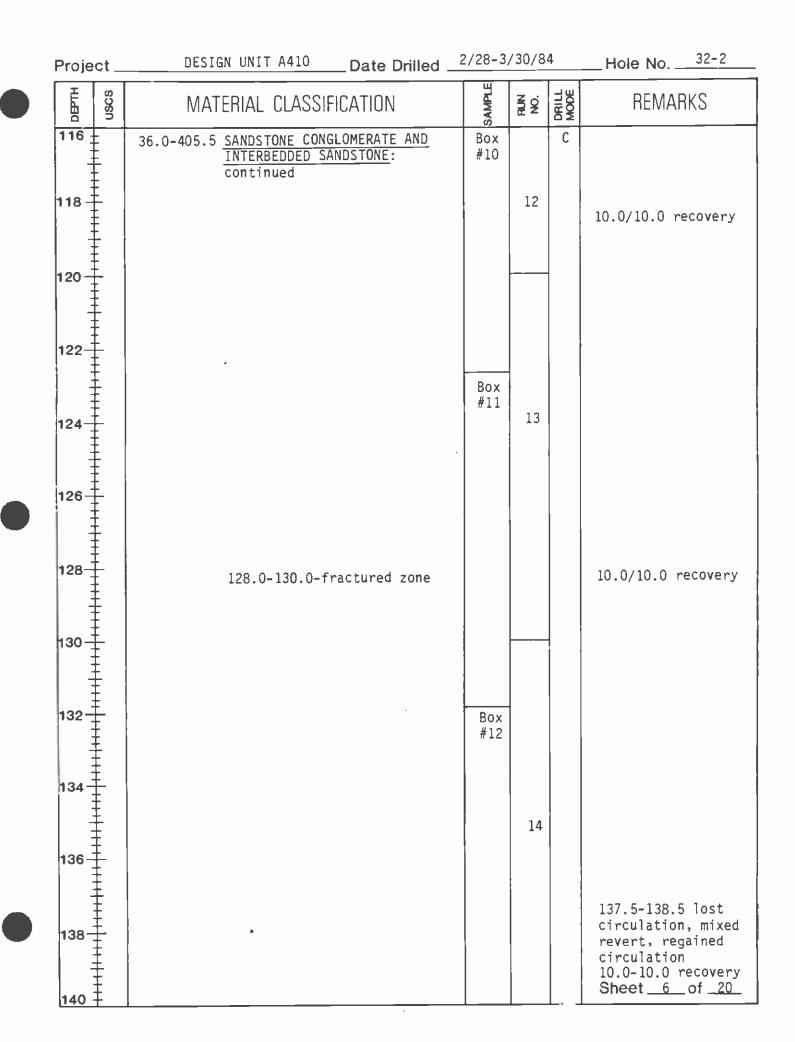
THIS BORING LOC IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

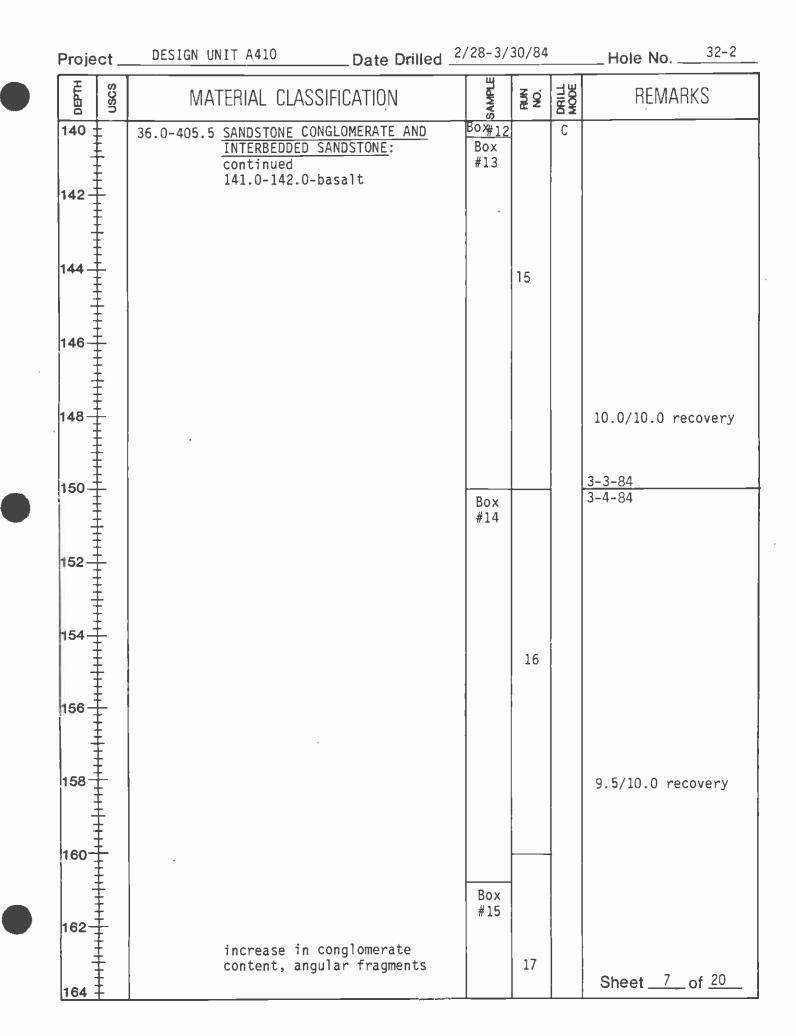

Geo/Resource Consultants

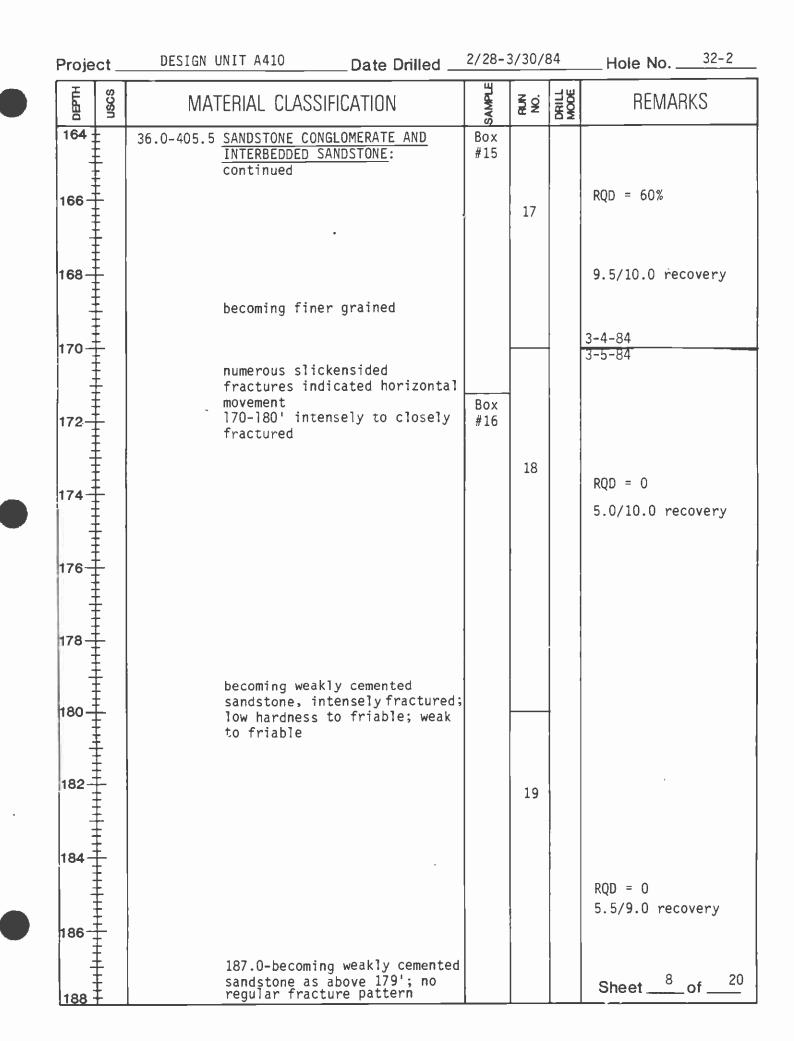
BORING LOG 32-2

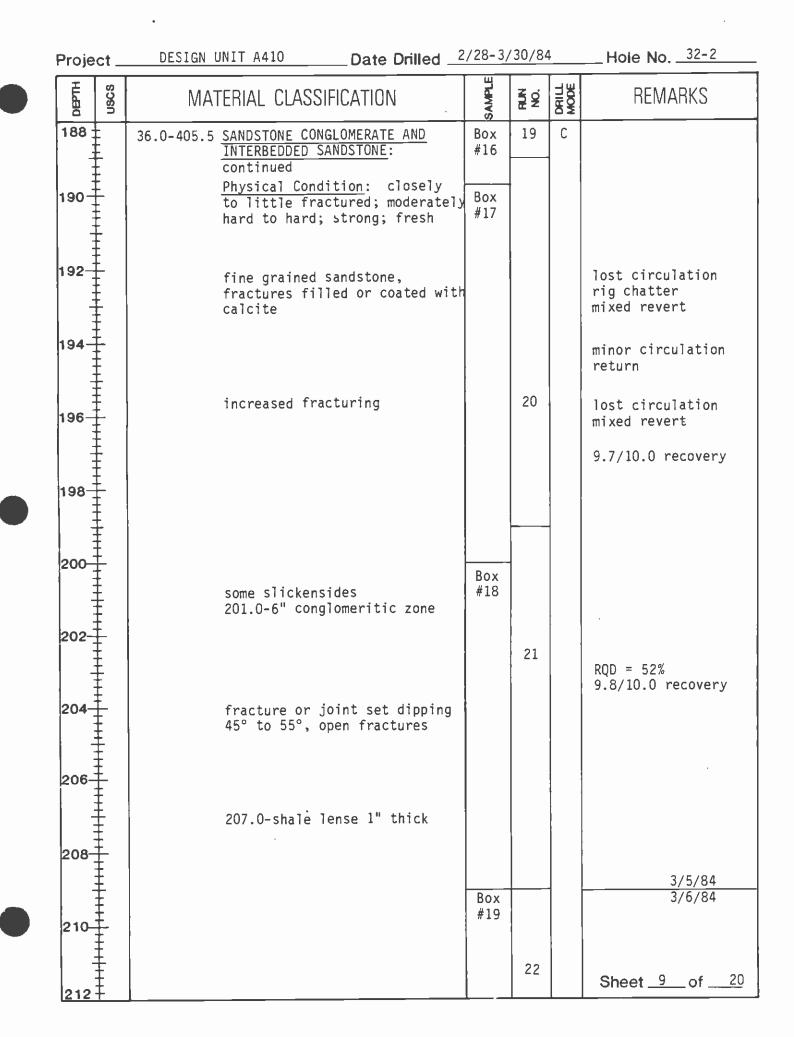

Proj: _	DESIGN UNIT A410	_ Date Drilled	2/28-3/30/84	Ground Elev	960.9'
Drill Ri	g Failing 250	_ Logged By .	DRG/LS/JRS	Total Depth	471.0'

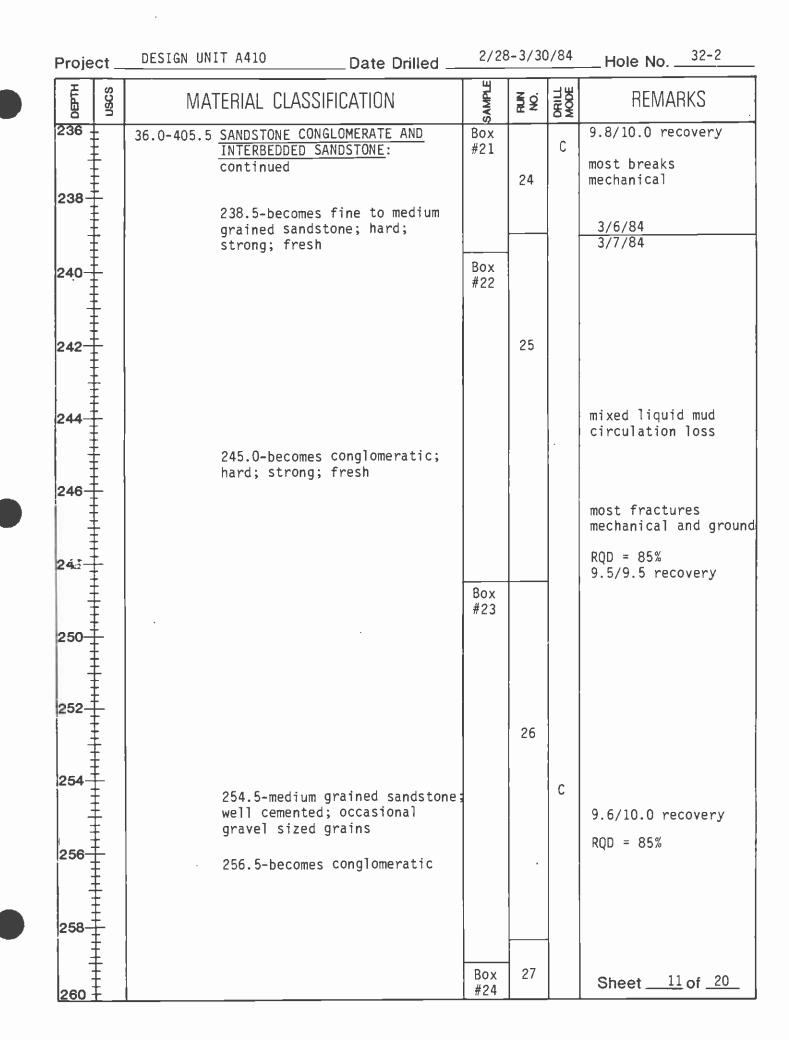

Hole Diameter <u>NX</u> Hammer Weight & Fall <u>N/A</u>

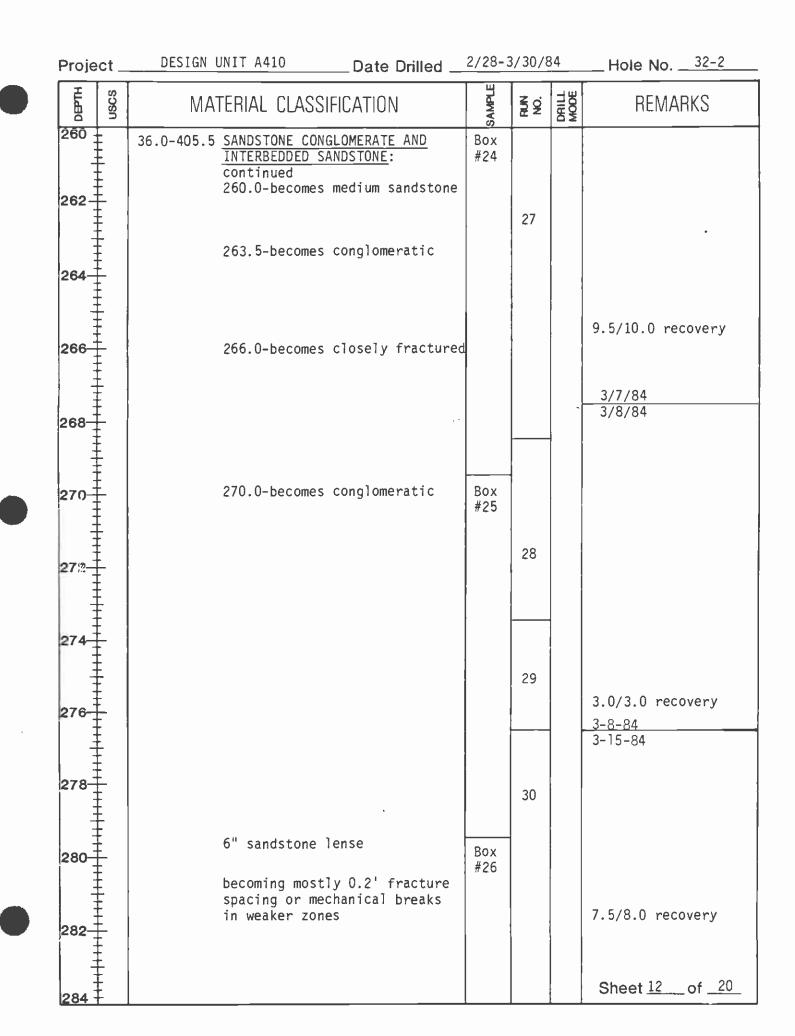

DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NON.		REMARKS
0	60	0.0-36.0 <u>WEATHERED SANDSTONE</u> : light brown and moderate yellowish brown			A	
4		Physical Condition: intensely to closely fractured; soft to friable hardness; plastic to friable strength; deeply weathered (0-15'); moderately weathered (15-36')			RD	
6-					С	
8				1		drilling flow is rusty brown in color no recovery
10-	**					
12				2		No recovery
					ŔD	
16						
18						Sheet1_of

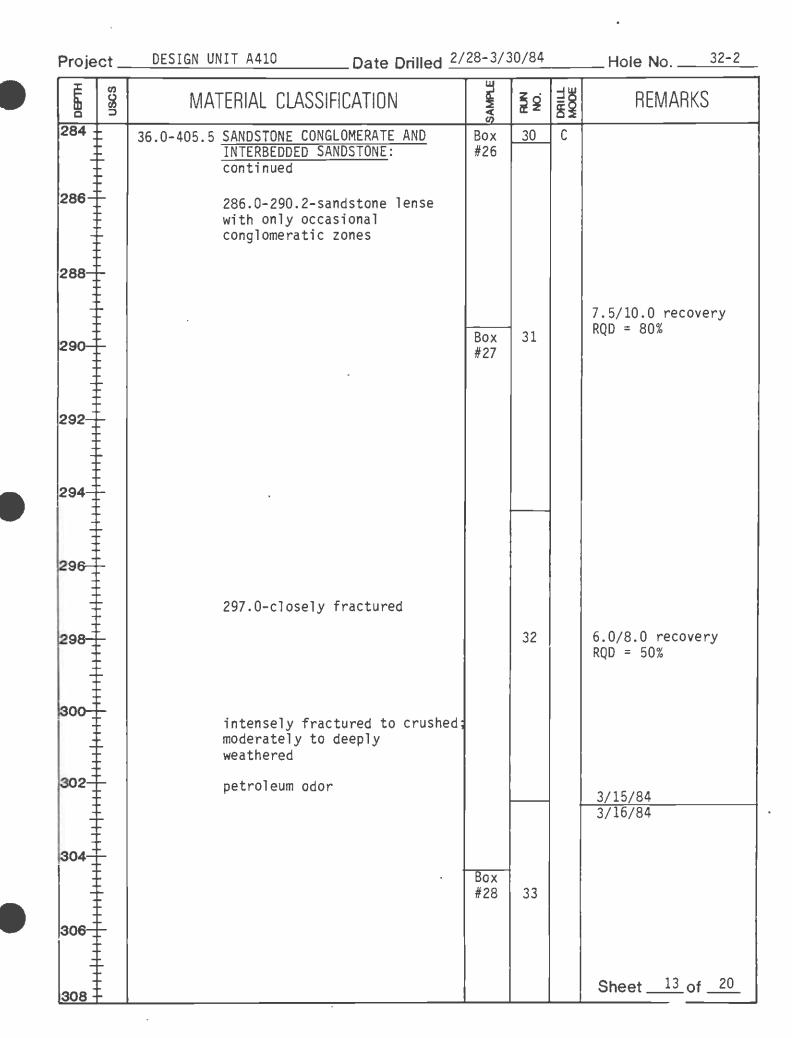


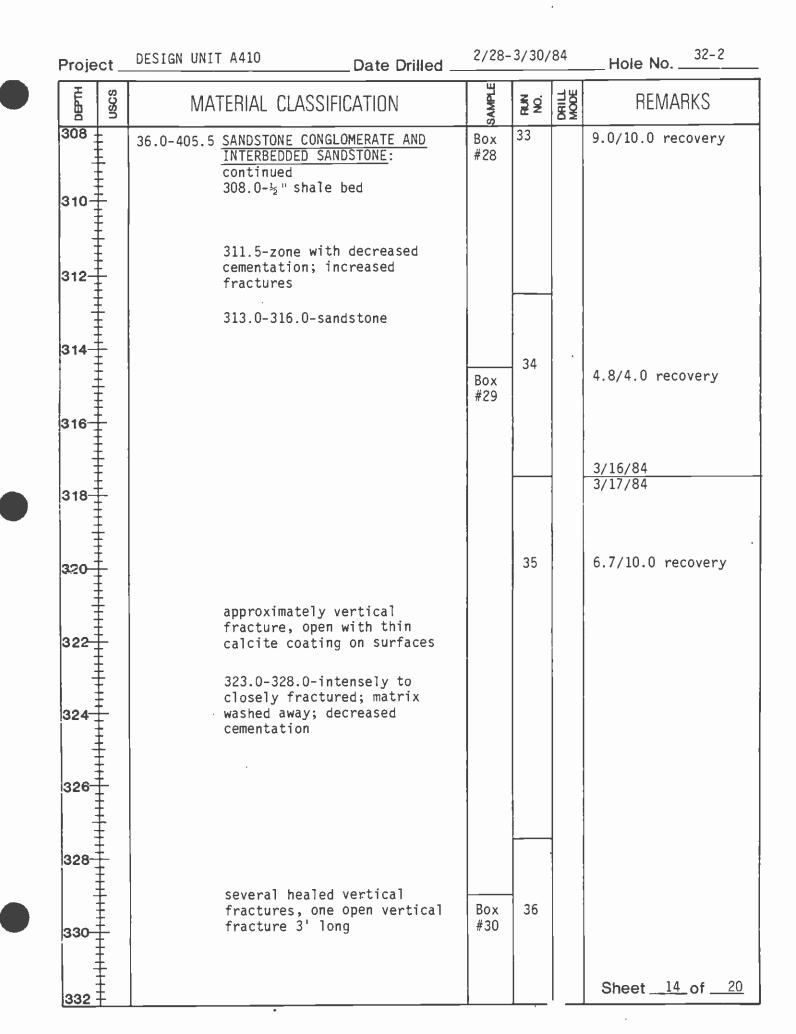

Ħ	8		Ш	Z.d	ЧЖ	DEMADKO
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NO.		REMARKS
44 ++++++++++++++++++++++++++++++++++++		36.0-405.5 <u>SANDSTONE CONGLOMERATE AND</u> <u>INTERBEDDED SANDSTONE</u> : continued <u>Physical Condition</u> : moderately to little fractured; moderately hard to hard; moderately strong; moderately weathered	Box #2	5	С	8.0/10.0 recovery
-	ŧ					s.o, io.o recovery
50 -			Box #3			
52 —						
54		53.0-54.0-fractured zone				
56		56.0-slickensides		6		
58-			Box #4		-	
60 -						10.0/10.0 recover
62						<u>2/29/84</u> 3/1/84
64 -		- -		7		
66 -	‡					
<u>68</u>			Box #5			Sheet <u>3</u> of <u>2</u>



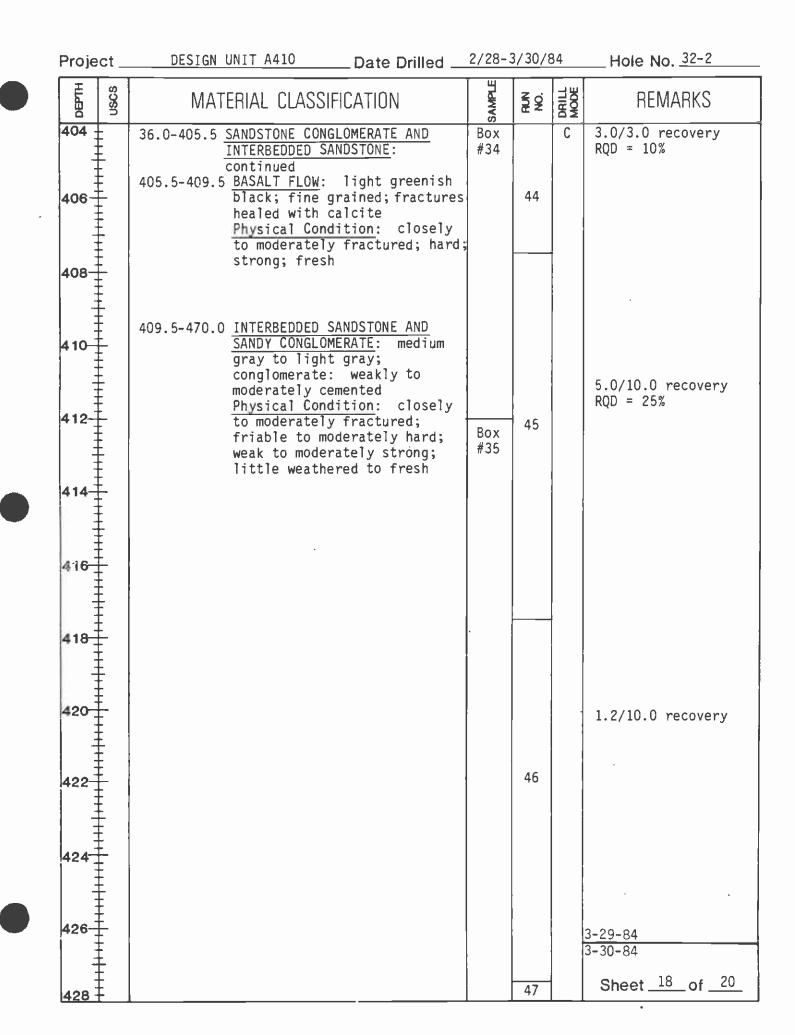




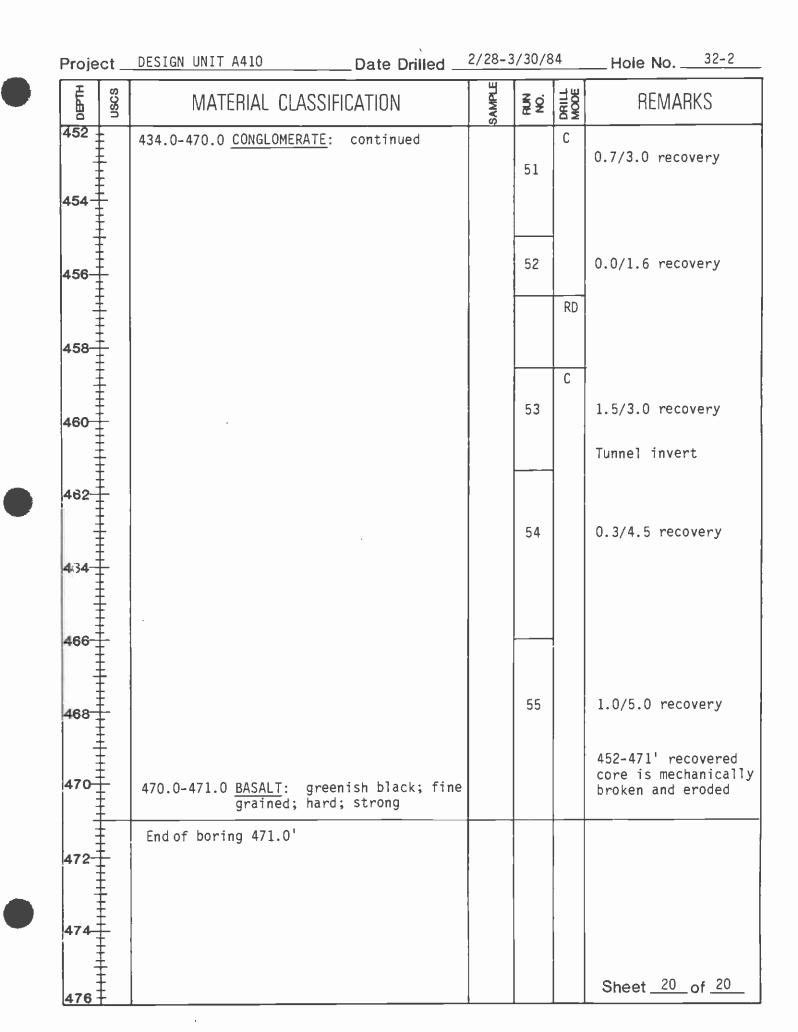



oject _	DESIGN UNIT A410 Date Drilled				Hole No32-2
	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
12	36.0-405.5 <u>SANDSTONE CONGLOMERATE AND</u> <u>INTERBEDDED SANDSTONE</u> : continued	Box #19		С	
	2-8" fracture spacing		22		
16+					10.0/10.0 recovery
18	217.0-fine grained sandstone; occasional healed fractures				most breaks horizont and ground slightly probably mechanical
20		Box #20			
22	220.5-becomes conglomeritic; 뉰"-6" grain size with sand matrix; calcite in healed fractures				
			23		9.8/10.0 recovery
26					
28					all breaks mechanic with ground surface
		Вох			Ĵ
30 <u>±</u>		#21			
32 1	231becomes fine grained sandstone with occasional coarse sand lenses; hard; strong; fresh		24		
34	233.0-becomes conglomeritic; coarse grains ½"-4"; calcite in healed fractures; hard; strong; fresh				•
Ŧ					Sheet <u>10</u> of <u>20</u>

,



Proje	ct_	DESIGN UNIT A410	Date Drilled	2/	28-3/	30/8	4Hole_No
DEPTH	uscs	MATERIAL CLAS	SIFICATION	SAMPLE	RUN.	DRILL MODE	REMARKS
332 - 334		36.0-405.5 <u>SANDSTONE CO</u> <u>INTERBEDDED</u> continued 332.0-some g observed ove		Box #30	36	С	8.7/10.0 recovery
336-			-crushed to closely				
338 340		occasional h	veakly to uncemented lard zones in low hard matrix, ong, little		37		
342							most of run washed o
344							
346					-		<u>3/17/84</u> 3/18/84
348-							
352		55° dippina	slickensides on		38		0.0/5.0 recovery
354-		fracture su 352.0-357.0	rface	Box #31	39		3/18/84 3/27/84
356		35° dipping fracture su	slickensides on rface				Sheet <u>15</u> of <u>20</u>


.

DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
356		36.0-405.5 <u>SANDSTONE CONGLOMERATE AND</u> <u>INTERBEDDED SANDSTONE</u> : continued 352.5-362.0-moderately fractured to massive; hard; strong 356.5- slickensides on fracture dip 70°	න Box #31	39	C	10.0/10.0 recovery RQD = 81%
360		362.0-crushed to closely fractured; friable strength and hardness; irregular				<u>3-27-84</u> 3-28-84
364		surfaced fractures; open, clean fracture set; irregular surface, open, clean 364.0-366.0-sandstone; massive bedding; long vertical fracture, open, clean, smooth surface 366.0-372.5-conglomeratic; many horizontal fractures;	Box #32	1		8.0/10.0 recovery RQD = 20%
3 ³ 8 370		irregular surfaces; intensely to moderately fractured		40		
374-		372.5-374.5-medium to coarse sandstone				
376		374.5-385.0-conglomeratic with weakly cemented matrix, closely fractured; low to moderately hard; weak to moderately strong		41		
378			Box #33			
						6.5/10.0 recovery RQD = 10% Sheet <u>16 of 20</u>

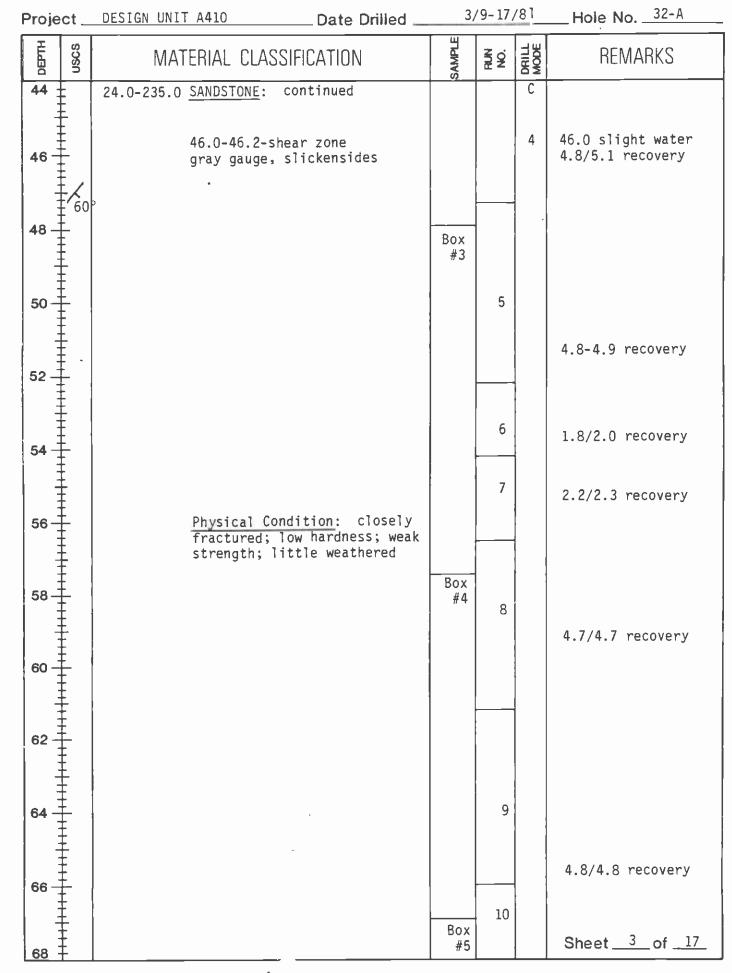
ΞĹ			Ш		<u></u>	
	MATERIAL CLASSIFI	CATION	SAMPLE	NUN.	DRILL	REMARKS
380	36.0-405.5 <u>SANDSTONE CONGL</u> <u>INTERBEDDED SAN</u> continued 380.0-intensely 3" 382.0-45° heaie	DSTONE: fractured zone	Box #33	41	С	
384	385.0-392.0-san casional coarse lenses; closely fractured; hard; strong fractures tend one set and 70- set, some are h open	sand and gravel to moderately ;moderately to dip 30-40°		42		
388						6.0/10.0 recovery RQD = 18%
5 ⁻)2 	392.0-conglomer weakly cemented matrix; crushed fractured; matr low hardness; w	sandstone to closely	Box #34		с	
396	fracture patter			43		3.0/10.0 recovery
398 400						
402				44		

	DESIGN UNIT A410 Date Drilled		<u>, 50/C</u>	···	Hole_No32-2
DEPTH	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
28 + + + + + + + + + + + + + + + + + + +	409.5-434.0 INTERBEDDED SANDSTONE AND SANDY CONGLOMERATE: continued	Box #35		С	0.0/6.5 recovery
32-			47		
34 	434.0-470.0 <u>CONGLOMERATE</u> : lt. greenish gray very hard material; cherty in appearance in cuttings sandstone matrix has low hardness with moderately hard to hard interbeds (5-6");			RD	
38	rock is fresh to little weathered; very hard chert and quartzite clasts; matrix is weak to moderately with stron to very strong interbeds (< 6")				
			48	C RD	
142 1			_49	C RD	0.0/0.2 recovery
46		1		C RD	0.2/0.2 recovery
48					
150					Sheet <u>19</u> of <u>20</u>

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SDIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG 32-A

Proj: DESIGN UNIT A	410 Date	Drilled	3/9-17/81	Ground Elev.	770'

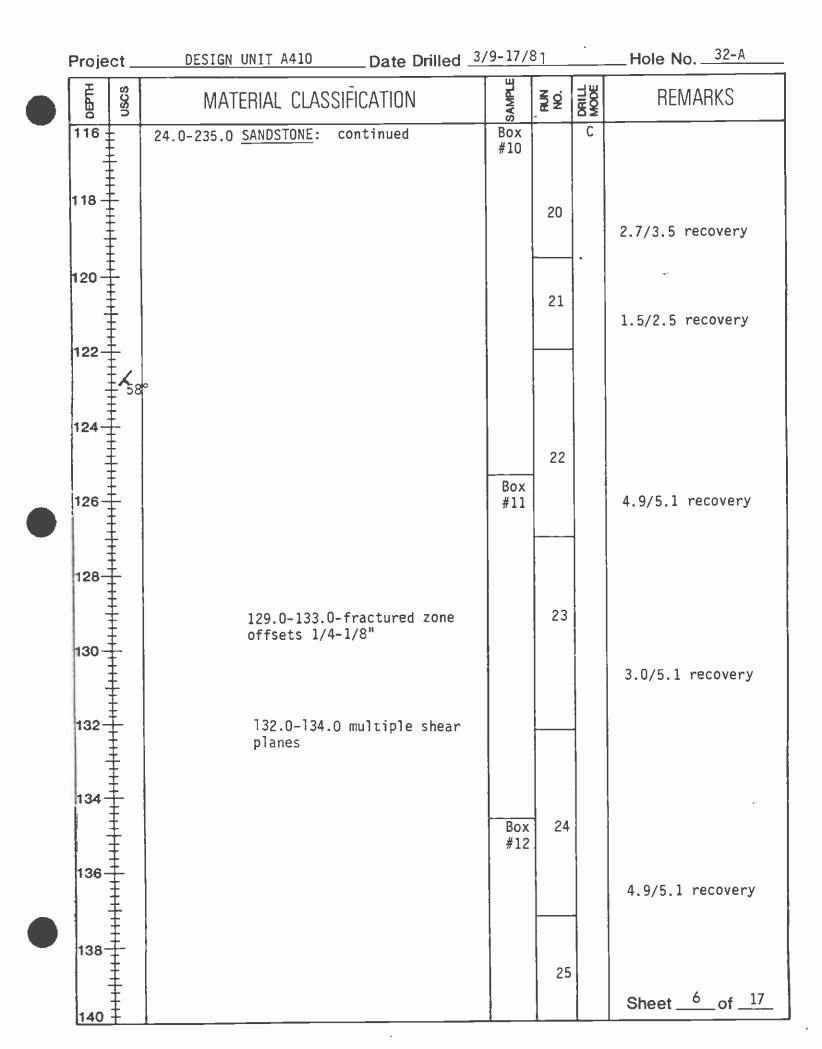

Drill Rig <u>Mobile B-40</u> Logged By <u>Dan Gillette</u> Total Depth <u>391.7'</u>

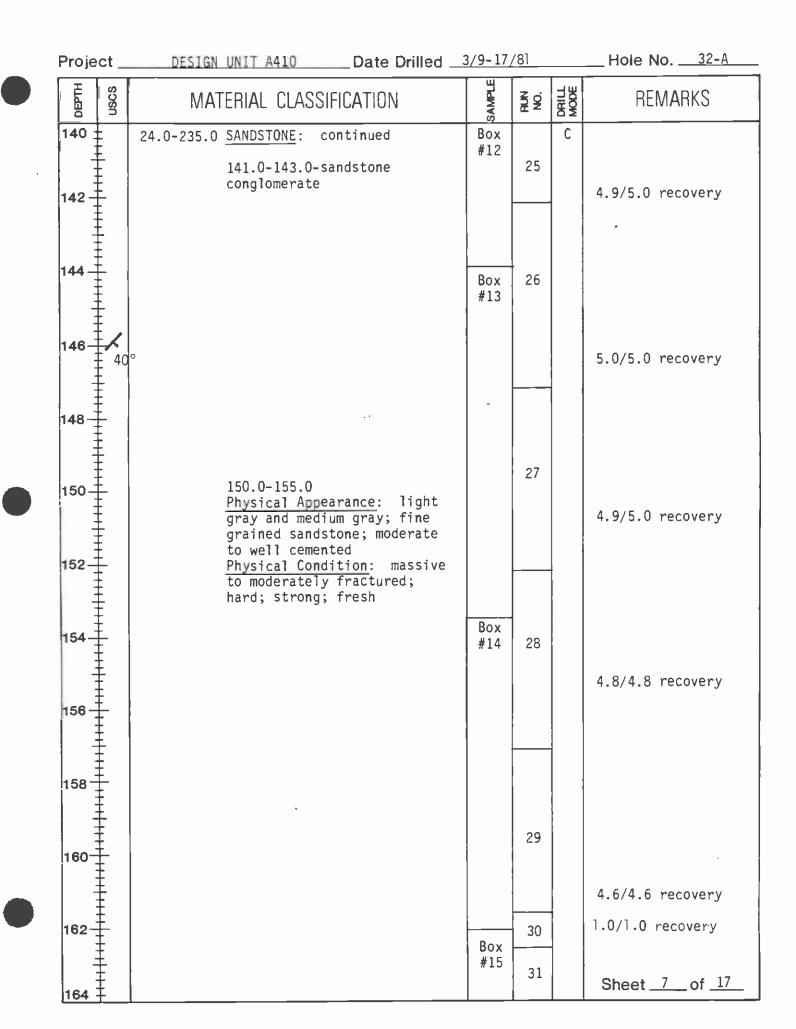
Hole Diameter_NX_____ Hammer Weight & Fall ____N/A

DEPTH	USCS	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL MODE	REMARKS
0	Af	0.0-0.8 <u>CONCRETE</u> 0.8-1.2 <u>BASE</u> : sand and gravel			C	
2		1.2-14.0 <u>SANDY CLAY</u> : light brown; slightly moist; medium dense			RD	
4-						
6-						
8-		·				
10-	+++++++++++++++++++++++++++++++++++++++					
12-						
14-	SC	14.0-17.0 <u>CLAYEY SAND</u> : moderately brown and moderately yellow brown; 40% plastic fines; medium to coarse sand; slightly				
16-		moist; medium dense 16.0-17.0-sand and gravel 17.0-24.0 WEATHERED SANDSTONE: brownish				
18-		• gray and light brown				Sheet1_of17

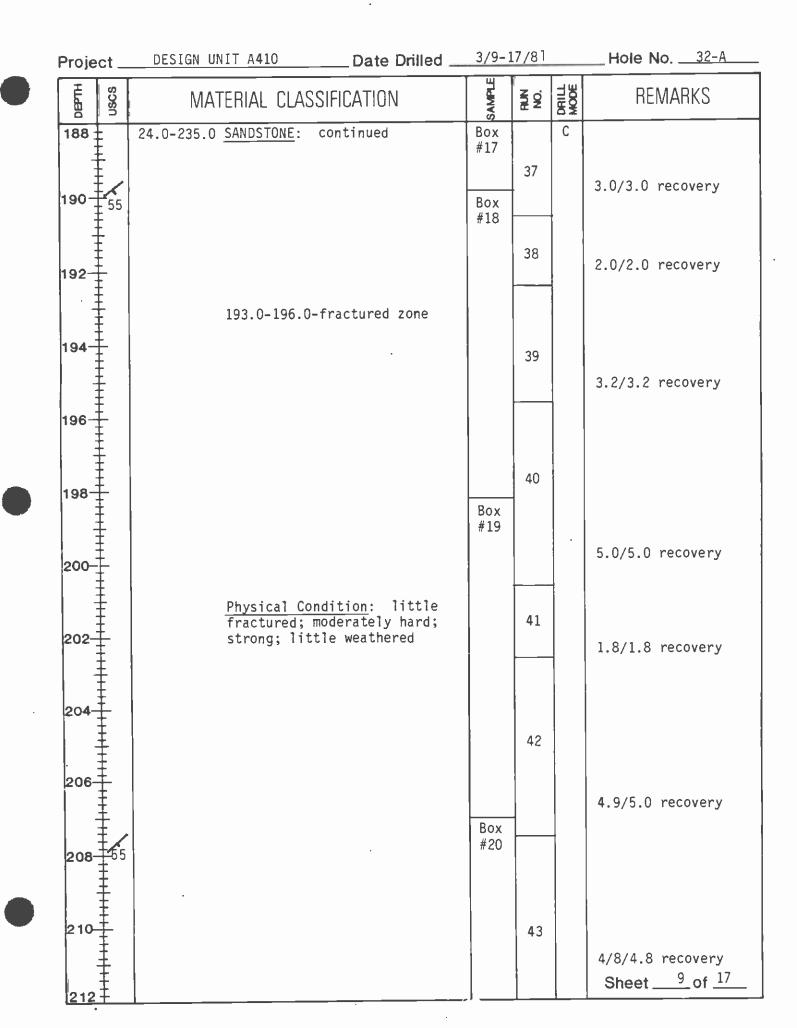
Project	DESIGN UNIT A410 Date Drilled _3,	/9-17/	81		Hole No32-A
DEPTH	MATERIAL CLASSIFICATION	SAMPLE	RUN.	DRILL	REMARKS
20	17.0-24.0 <u>WEATHERED SANDSTONE</u> : continued <u>Physical Condition</u> : closely fractured; soft to friable; friable strength; moderate to deep weathered				
24 	24.0-235.0 <u>SANDSTONE</u> : medium to dark gray <u>Physical Condition</u> : massive; soft to friable; friable; little weathered				
28					
		Box #1	1	С	2.7/2.7 recovery
34					
36			2		4.8/4.8 recovery
38					,,
40		Box #2	3		
42					4.9/4.9 recovery
			4		Sheet of7_

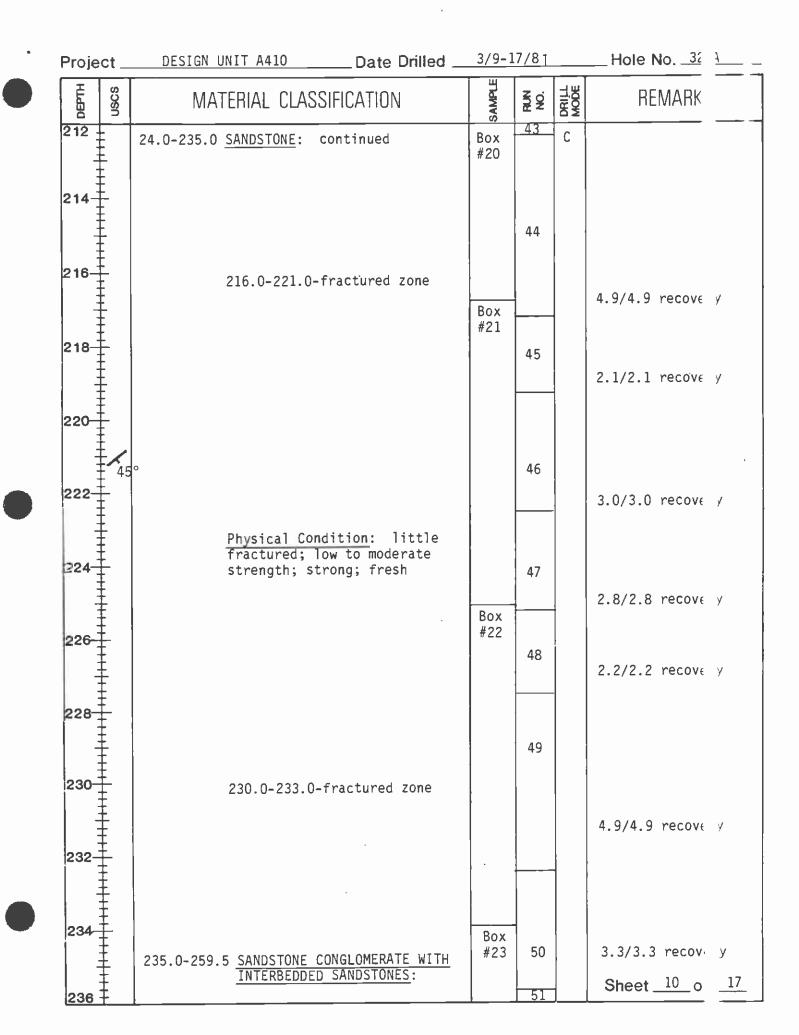
.

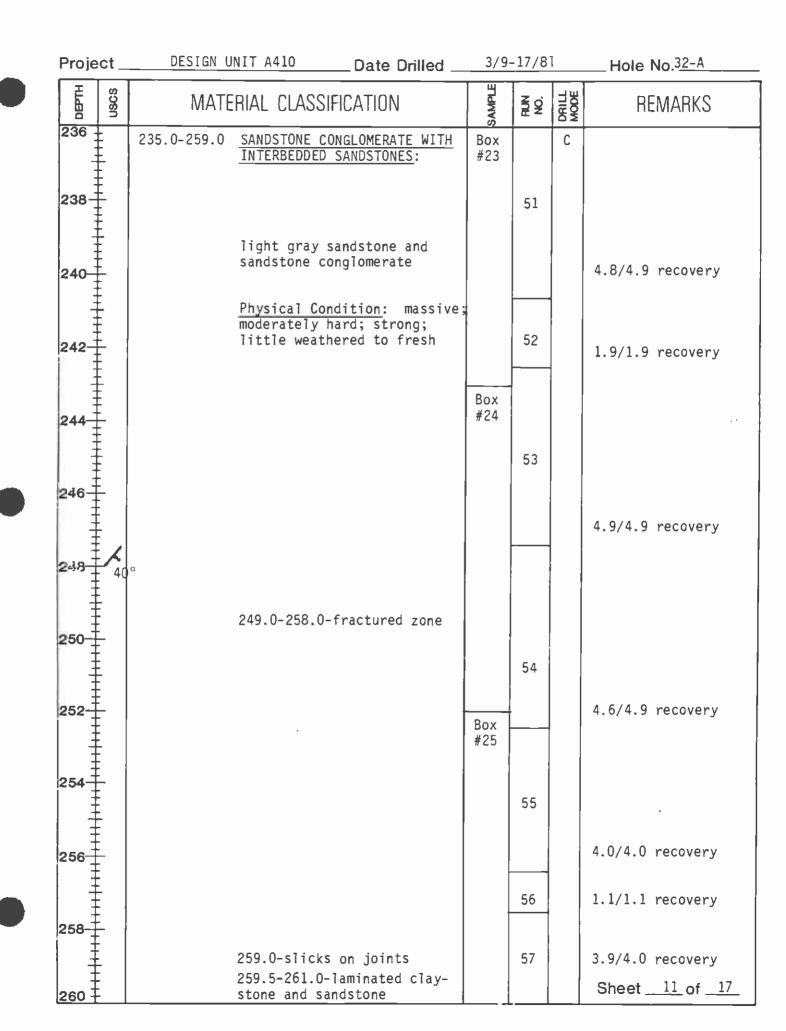

.....

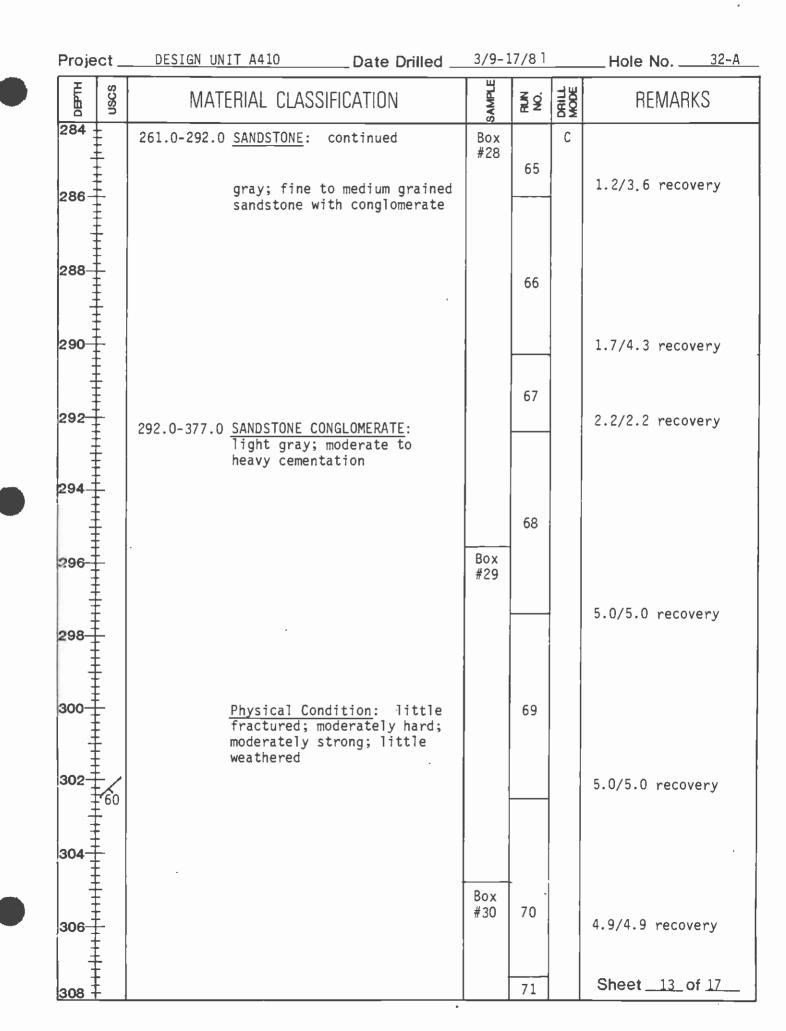

rojec	ct _	DESIGN UNIT A410 Date Drilled		ן8/7		Hole No
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
68	-	24.0-235.0 SANDSTONE: continued	Box #5		С	
70	_	70.0-77.0-fractured zone		10		5.0/5.0 recovery
72		73.0-shear zone		11		change drill water
76 –	~ 60	° 76.0-shear zone , 1/8″ offsets	Box	 		5.0/5.0 recovery
78		, or o shear zone ; zyo or beta	#6			
80 -	-			12		
					-	4.7/5.0 recovery
82	-			12		
84	-	<u>Physical Condition</u> : closely fractured; low to moderate hardness; weak to moderate strength; little weathered		13		4.8/5.0 recovery
86			Box #7			
88				14		89' oil blebs
90		·				4.9/5.0 recovery
92				15		Sheet of7

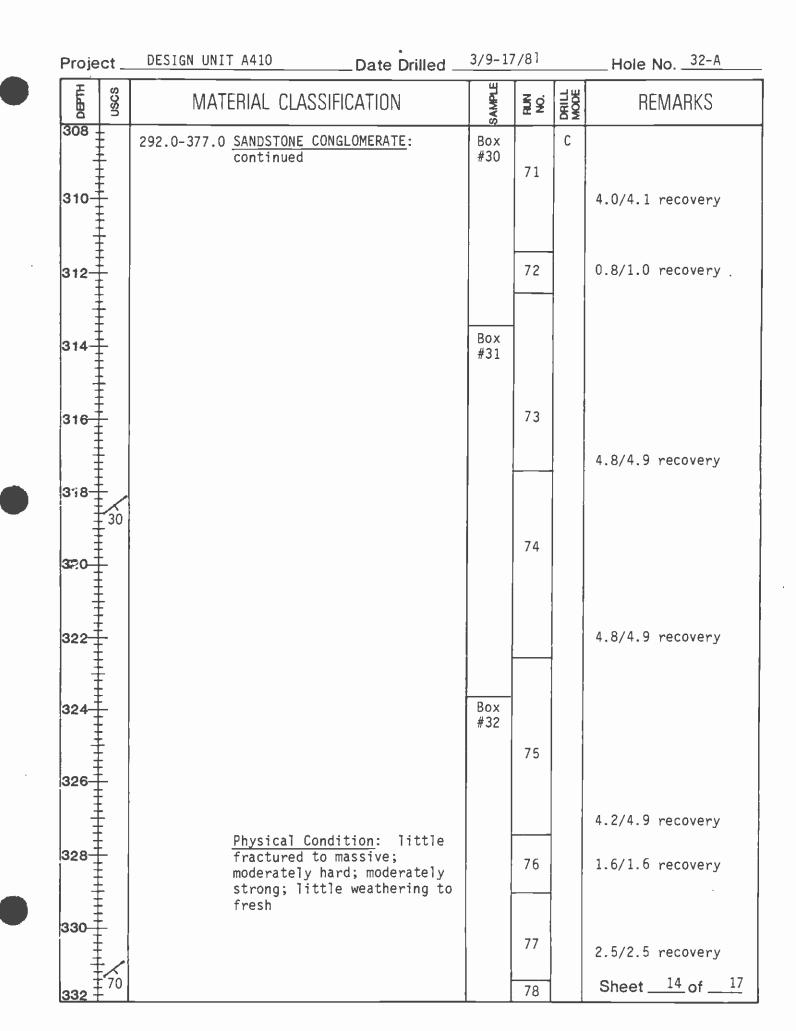
•

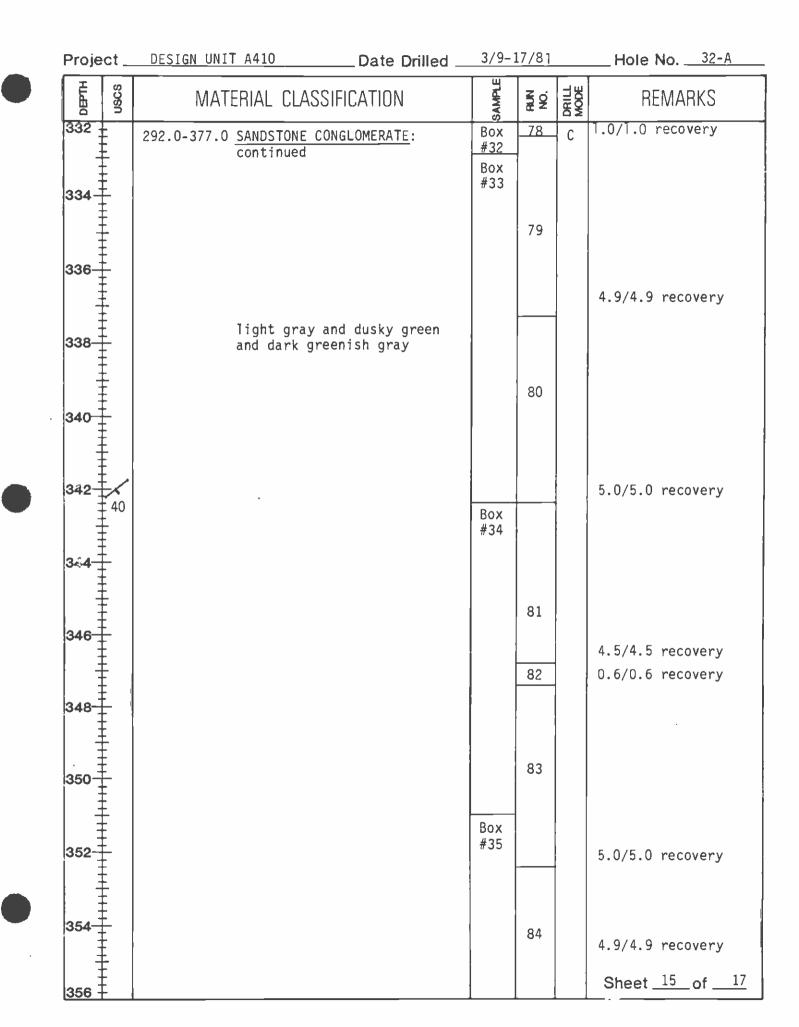

•

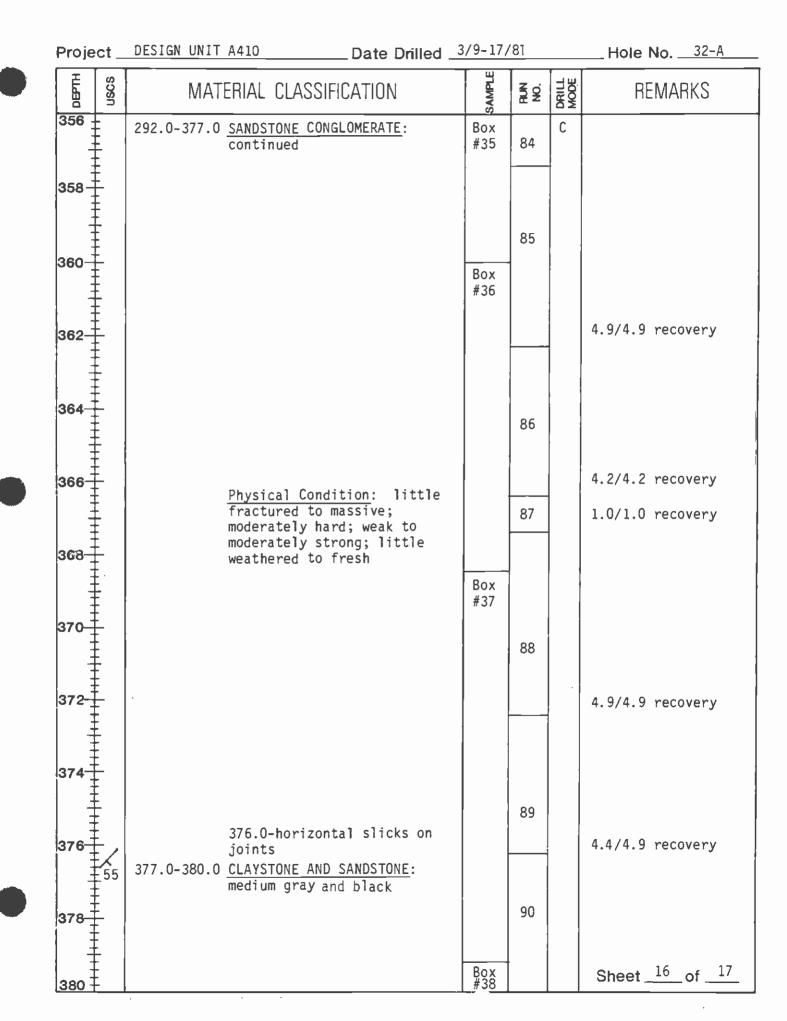

Proje	ct_	DESIGN UNIT A410 Date Drilled	3/9-17	7/81		Hole No
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL MODE	REMARKS
		24.0-235.0 <u>SANDSTONE</u> : continued	Box #7		С	
94		94.0-95.0-laminated siltstone <u>Physical Condition</u> : sandstone: moderately frac- tured; moderately hard; strong to very strong; fresh	Box #8	15		4.9/5.0 recovery
96		conglomerate: moderately to little fractured; moderately hard; strong; little weatherin siltstone: closely to moderately fractured; low hardness; weak strength; little weathering	g	16		
100-		101.0-104.0 - fracture zone				4.8/5.0 recovery
102		103.5-slickensides on joint				
104-			Box #9	17		4.9/5.0 recovery
106-						
108-				18		4.7/5.0 recovery
110-	**	111.0-113.0-fracture zone				4.7/5.0 recovery
112-	+++++++++++++++++++++++++++++++++++++++		Box	19		
114-			#10	•		4.9/5.0 recovery
116	<u>+</u>	115.8-hackly surface CaCOa ½"				Sheet <u>5</u> of <u>17</u>

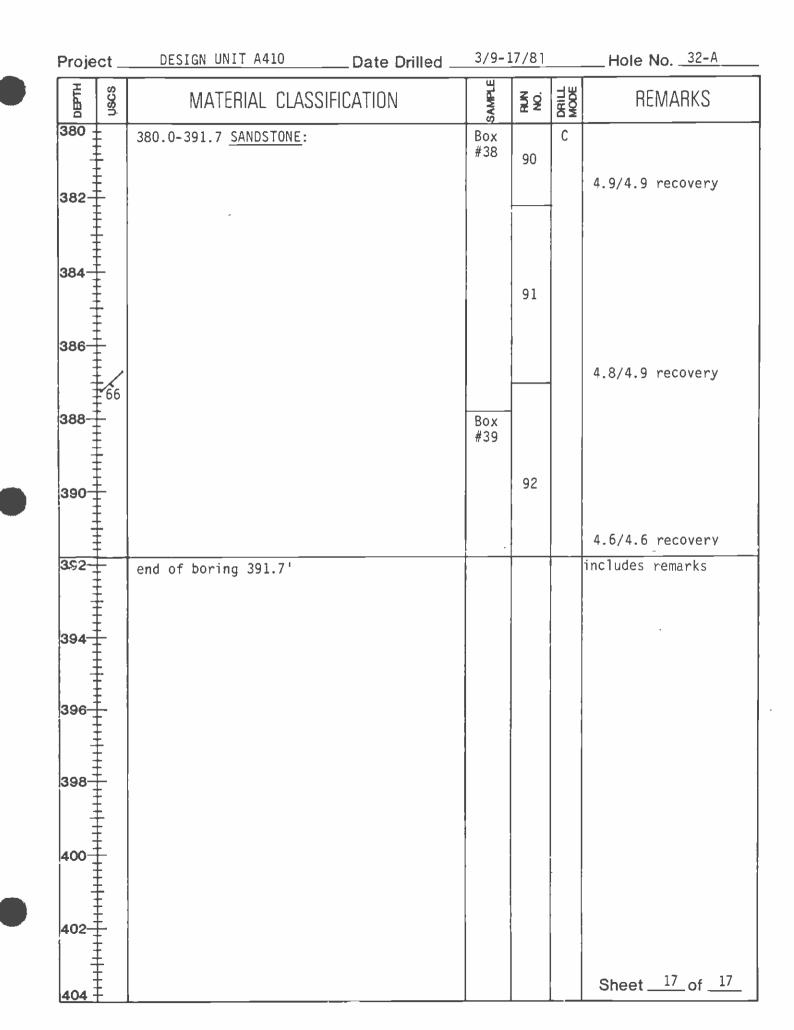



Project _	DESIGN UNIT A410 Date Drilled	3/9-17	7/81		Hole No32-A
DEPTH	MATERIAL CLASSIFICATION	SAMPLE	NO.		REMARKS
164 166 166	24.0-235.0 <u>SANDSTONE</u> : continued 166.5-slickensides on joint surfaces	Box #15	31	С	4.8/4.8 recovery
168	<u>Physical Condition</u> : massive; moderately hard; very strong; fresh		32		
172		Box , #16			4.8/4.9 recovery
176	173.0-179.0-fractured zone offsets in sandstone beds		33		4.8/4.9 recovery
178		Box #17	34		4.7/4.9 recovery
182			35		,
186					4.4/4.4 recovery
188 7			<u>36</u> 37		0.9/0.9 recovery Sheet of7

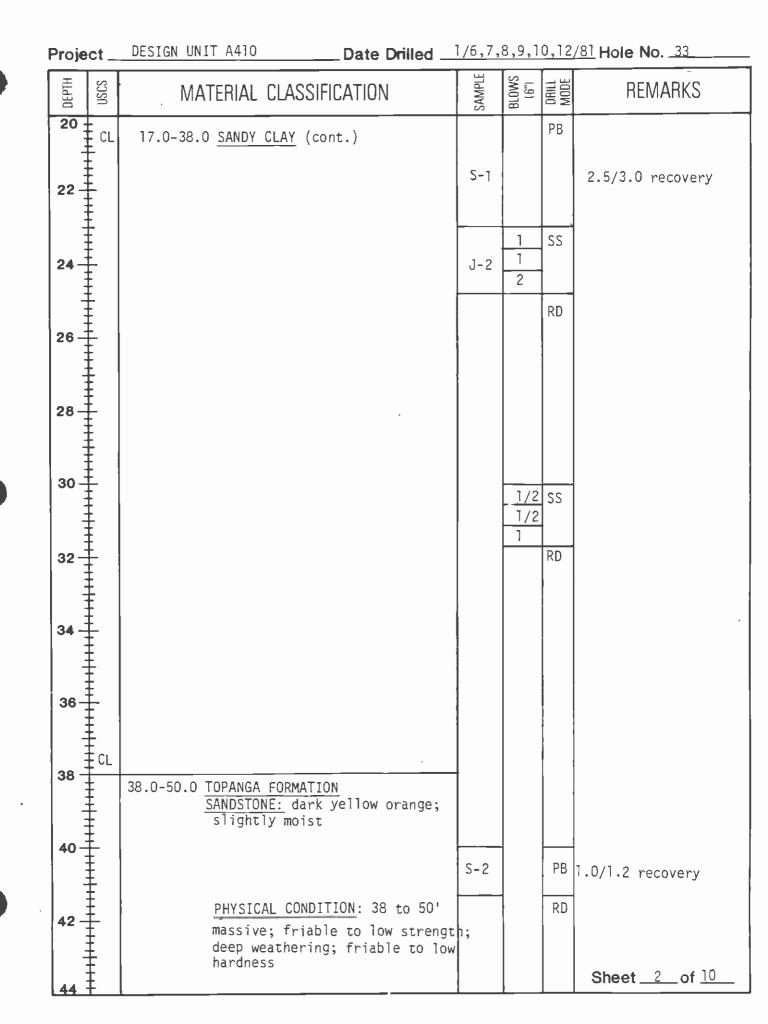


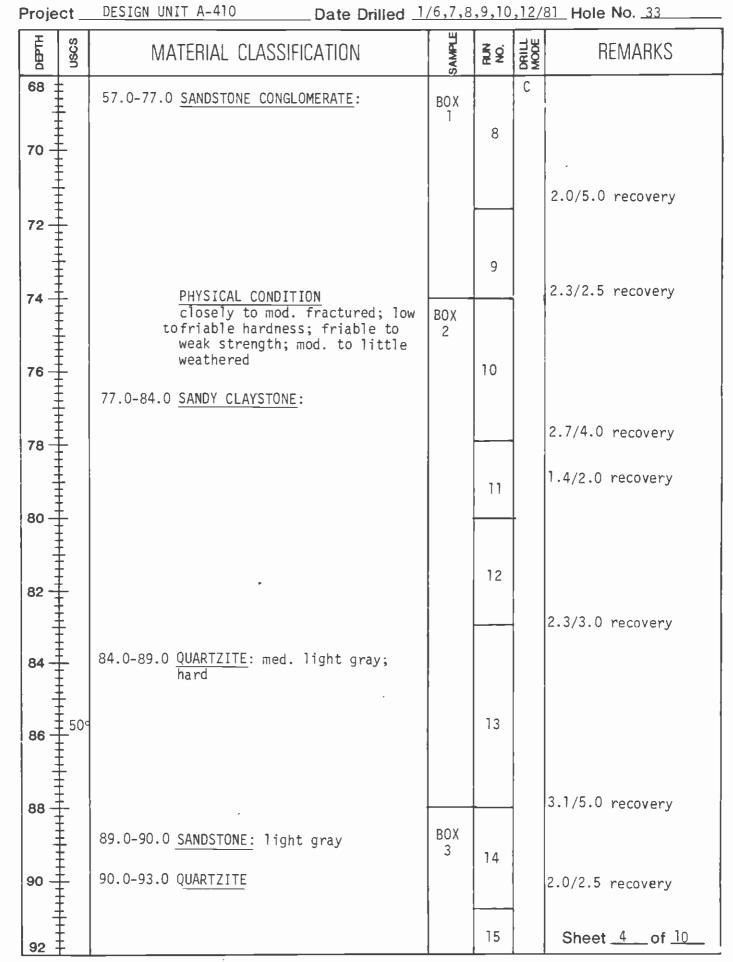


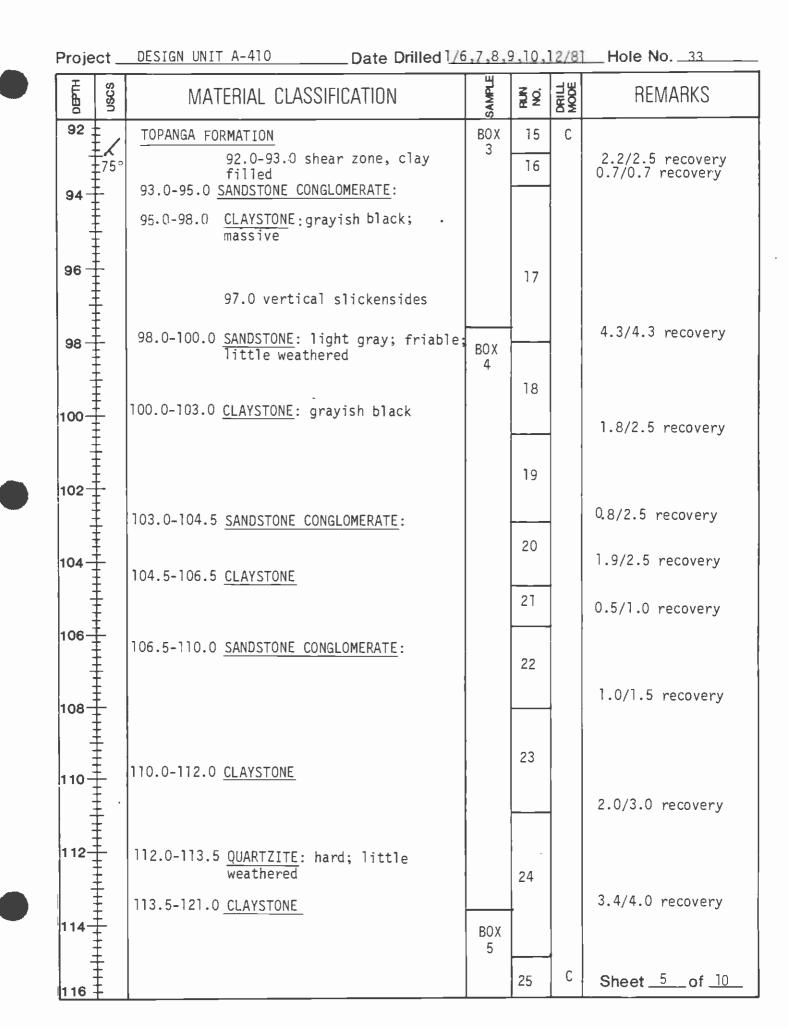


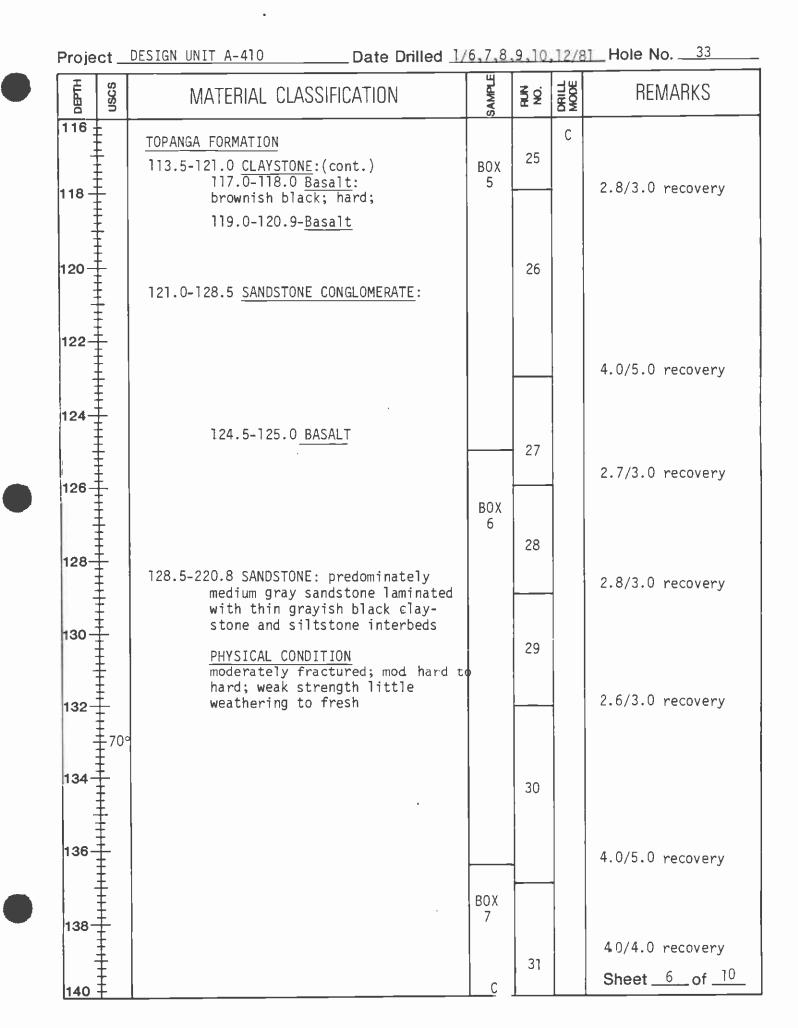

Proje		DESIGN UNIT A410 Date Drilled	-	1		Hole No. 32-A
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NON ON	DRILL	REMARKS
260		261.0-292.0 <u>SANDSTONE</u> : 261.5-263.0-fractured zone	Box #25	57	С	
262			Box #26	58		1.0/1.0 recovery
264						
266		266.0-268.0-fractured zone		59		4.6/4.9 recovery
268		268.0-271.0-shear zone intensely fractured				
270-				60		1.9/3.1 recovery
272			Dev	61		1.9/2.0 recovery
274-			Box #27	62		2.8/2.8 recovery
276						
444				63		1.9/2.2 recovery
278-7	-			64		
280		Physical Condition: closely fractured; low to moderate hardness; weak to moderate strength; little weathered				4.5/4.9 recovery
282-			Box #28			
284				65		Sheet <u>12</u> of <u>1</u>

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

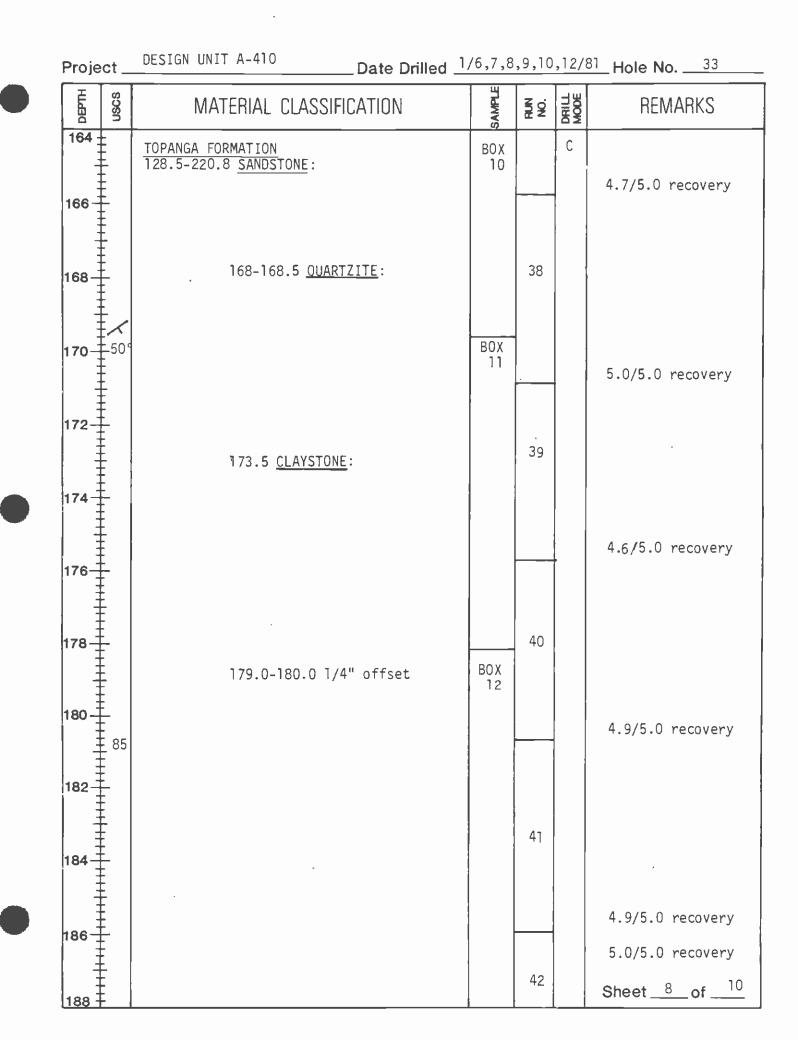

20 ‡

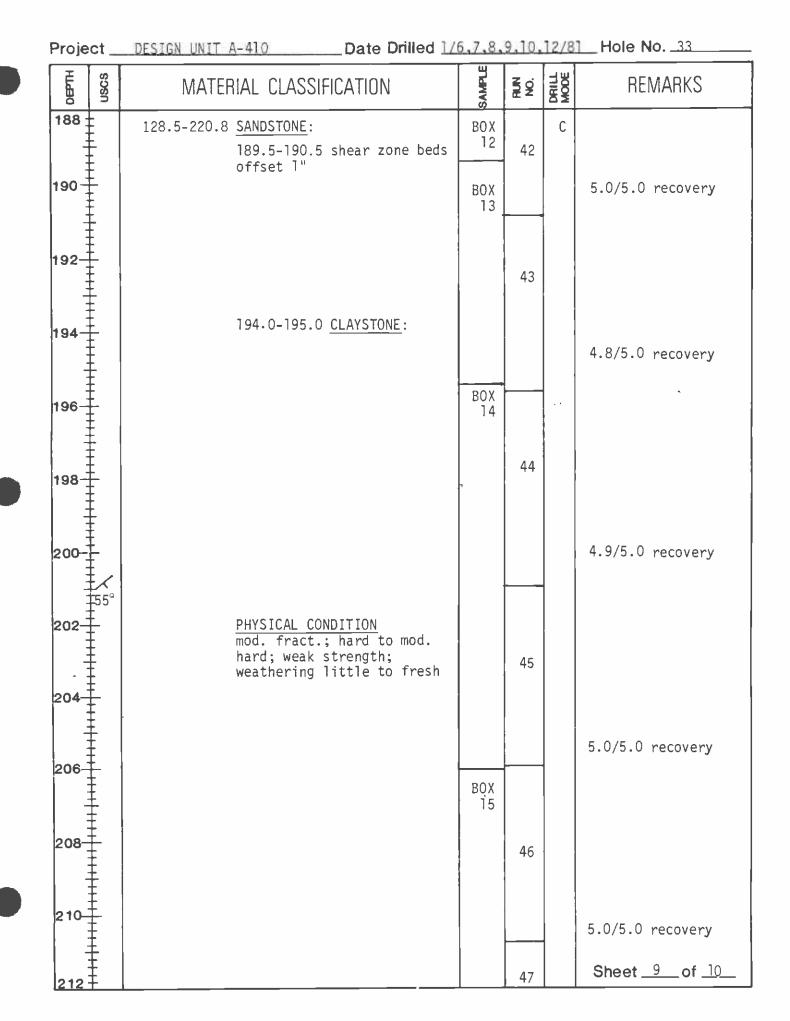

BORING LOG 33


COO1


Proj:	SIGN UN	UT A410	_ Date Dri		2/8		_	Ground Elev	620
Drill Rig	MOBILE	B~40	_ Logged	By D. Gi	llette			Total Depth	220'
Hole Dia	meter_	5"	_ Hammer	Weight &	Fall 💷	140	bs.	12-15	
DEPTH USCS		MATERIAL CL	ASSIFICATIO	ŅĊ	SAMPLE	(,,9) BLOWS	DRILL MODE	REMARKS	
6	0.4-4.	4 CONCRETE 8 <u>SANDY CLAY</u> : slightly porou 15-20% non- f. sand; sl slightly mo	medium bro plastic fin ightly poro	soft - wn; ues; 80-85% pus;			RD		
10 10 12 12 14 14 14 16 16	17.0-	38.0 <u>SANDY CL</u> A moist; fi	<u>\Y:</u> light b rm	rown:	J-1	3 5 5	SS	Sheet _1of	10

uscs	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
Ŧ	38.0-50.0 <u>SANDSTONE</u> : (cont.)			RD	
	47.0-48.0 <u>CLAYSTONE</u> : DARK GRAY				
	50.0-55.0 <u>SANDSTONE CONGLOMERATE</u> medium light gray	S-3	3	РВ	1.5/1.5 recovery
		вох	4	С	
	PHYSICAL CONDITION little fractured; low hardness mod. strong; mod. weathered	1	4		1.7/2.5 recovery
	55.0-57.0 <u>CLAYSTONE</u> : med. light gray				
			5		
	57.0-77.0 <u>SANDSTONE CONGLOMERATE</u> as at 55.0; cemented; clay- stone, siltstone and sand-				1.6/5.0 recovery
	stone in a sandstone matrix	±			-
			6		
					1.8/3.5 recovery
*			7		
+++++++++++++++++++++++++++++++++++++++					
	s				0.4/5.0 recovery
			8		Sheet _3 of _1





Project <u>DESIGN UNIT A-410</u> Date Drilled <u>1/6,7,8,9,10,12/81</u> Hole No. <u>33</u>

DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
140	86°	TOPANGA FORMATION: 128.5-220.8 <u>SANDSTONE</u> : (cont.)	BOX 7	31	С	4.0/4.0 recovery
142-				02		
144		144.0-148.0 shear zone	BOX 8			·3.0/3.0 recovery
146				33		
148		148.0 clay in shear zone-approx				3.5/3.5 recovery
-		1/8" wide		34		
150		151-151.8 shear zone				
152						4.8/5.0 recovery
154-			BOX 9	35		
156			1			3.3/3.3 recovery
450		158.5-shear zone				
158				36		
160		·				5.0/5.0 recovery
162			BOX 10	37		
164 -						4.7/5.0 recovery Sheet <u>7</u> of <u>10</u>

Project DESIGN UNIT A-410 Date Drilled 1/6,7,8,9,10,12/81 Hole No. 33

DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
212		128.5-220.8 TOPANGA FORMATION SANDSTONE: (continued)	BOX 15	47	С	
214	155°		BOX 16	4/		5.0/5.0 recovery
216				48		1.8/1.8 recovery
218				49		
220-						3.2/3.2 recovery
222	B.H.	Total Depth 220.8 Water at 50.0'				set 2" ABS casing to 160' set 1" PVC casing to 40' install bentonite
2:24						seal at: 0.0 -2.0' 40.0 -44.0' place pea gravel
226						2.0 - 40.0' cap hole 1-13-81
228						
230						
232						
234						
236 -						Sheet <u>10</u> of <u>10</u>

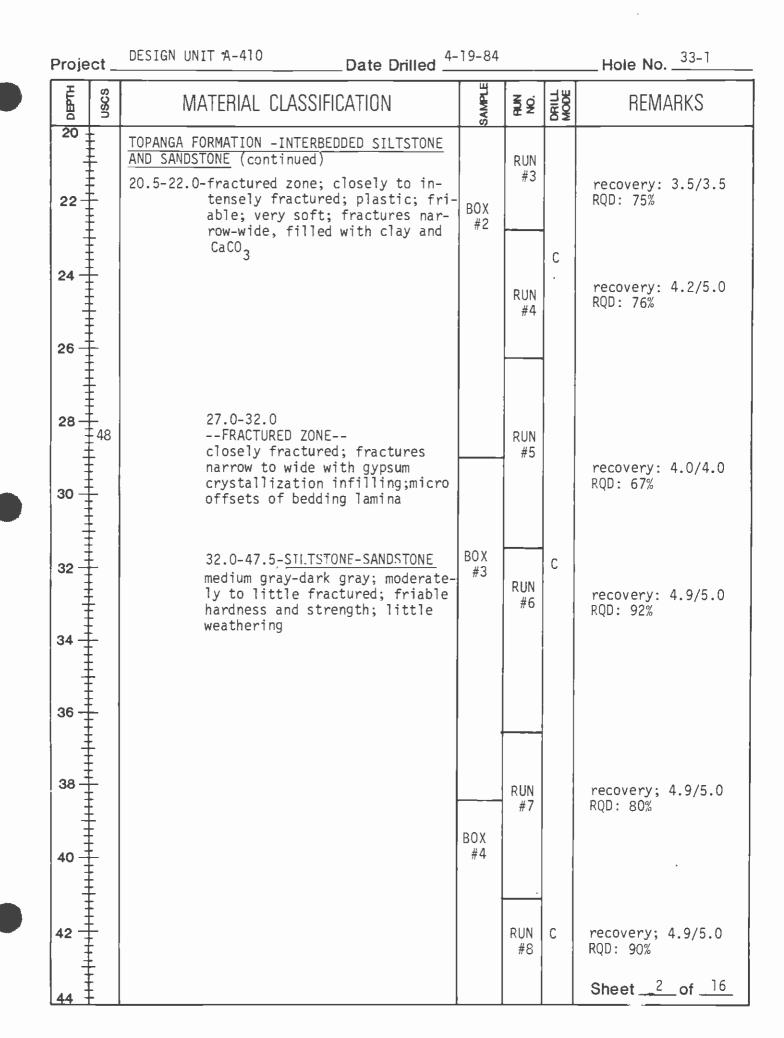
THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LDCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

20

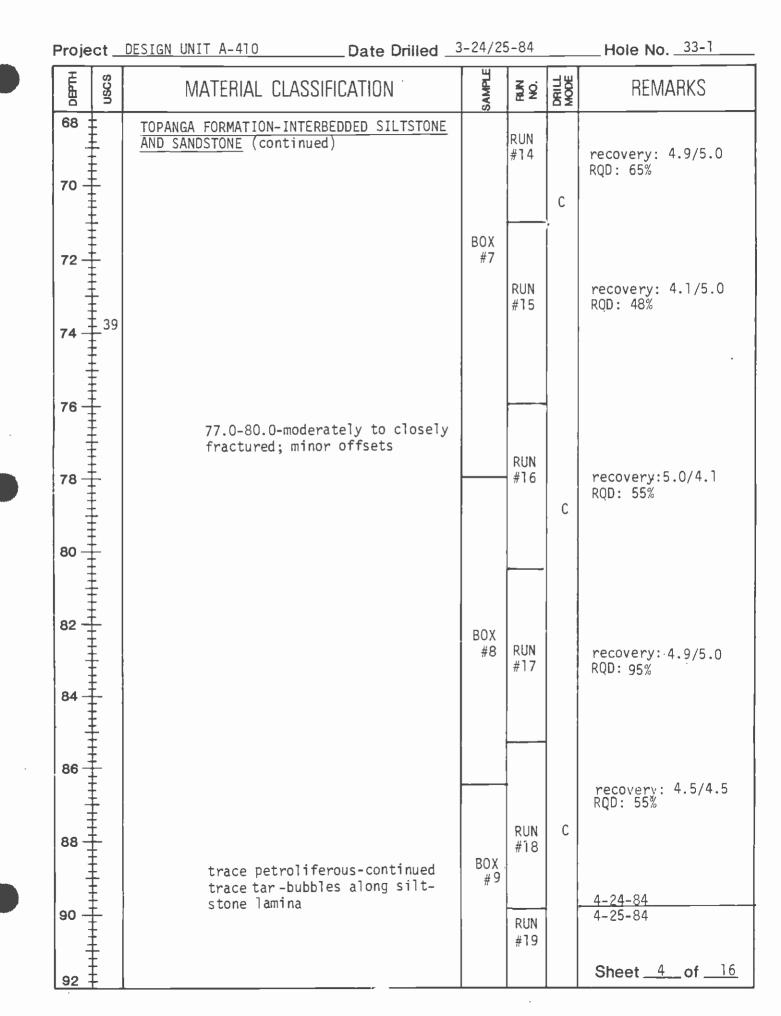
BORING LOG 33-1

Proj: DESIGN UNIT A-410 Drill Rig FAILING 1500 Hole Diameter 4 7/8"			Date Drilled			Ground Elev. 780*			
Hole	Dia	meter <u>" //</u>		Hammer Wei	ght &	Fall 🔤	325	618	3"
ОЕРТН	nacs	MA	terial Cla	SSIFICATION		SAMPLE	RUN NO.	DRILL MODE	REMARKS
2	ML.	0.0-5.5	orange; dry soft to fir	<u>Y SILT</u> : grayis to slightly n m,roots, sands one fragments	noist;			А	
6	ML	5.5-9.0	ish brown; lets; fragm	<u>Y SILT</u> : dark y moist; firm; r ments of highly lstone and silt	root- / wea-	<u>C-1</u>		DR 325	
8 10 12 14		9.0-370.0	WITH INTERE SANDSTONE light olive light brown medium ligh siltstone: sandstone: claystone; predominant sandstone w	nt gray moist/very the bedded to inte laminated; ver moist; thinly- thinly bedded moist; intense laminated ly siltstone w ith occasional	NE AND ensely ry soft very ely vith clay-	<u>C-2</u> BOX	RUN #1	RD DR 325 C	recovery 3.0/3.0 RQD: 90%
16	-48		thered 9.0-25.0 <u>P</u> moderately- friable to	beds; highly w <u>HYSICAL CONDIT</u> closely fractu soft hardness; c strength; de athering	ION: ired; fri-	I	RUN #2	,	recovery: 5.0/5.0 RQD: 90%

RUN

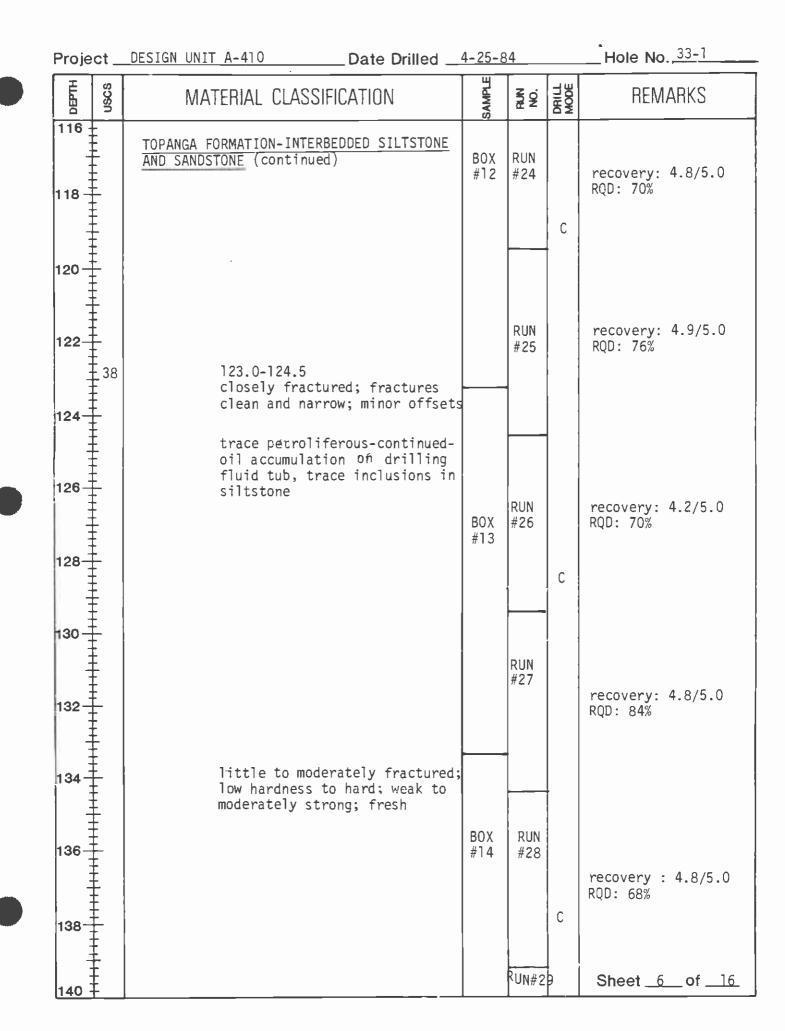

#3

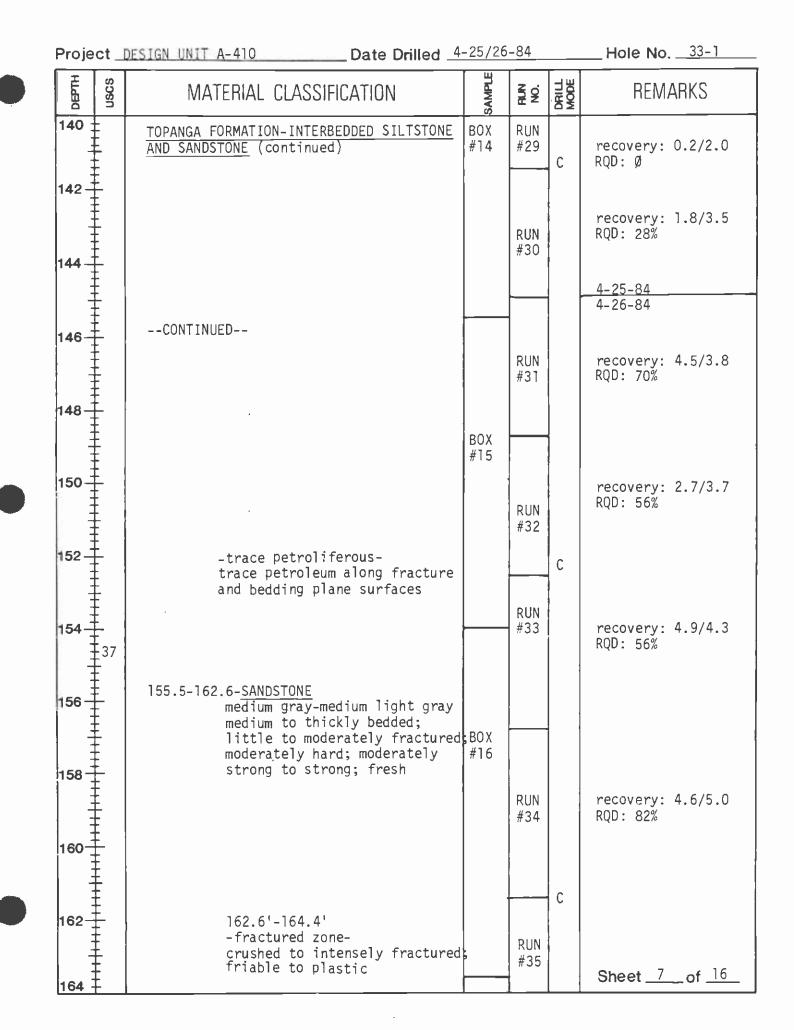
BOX#2

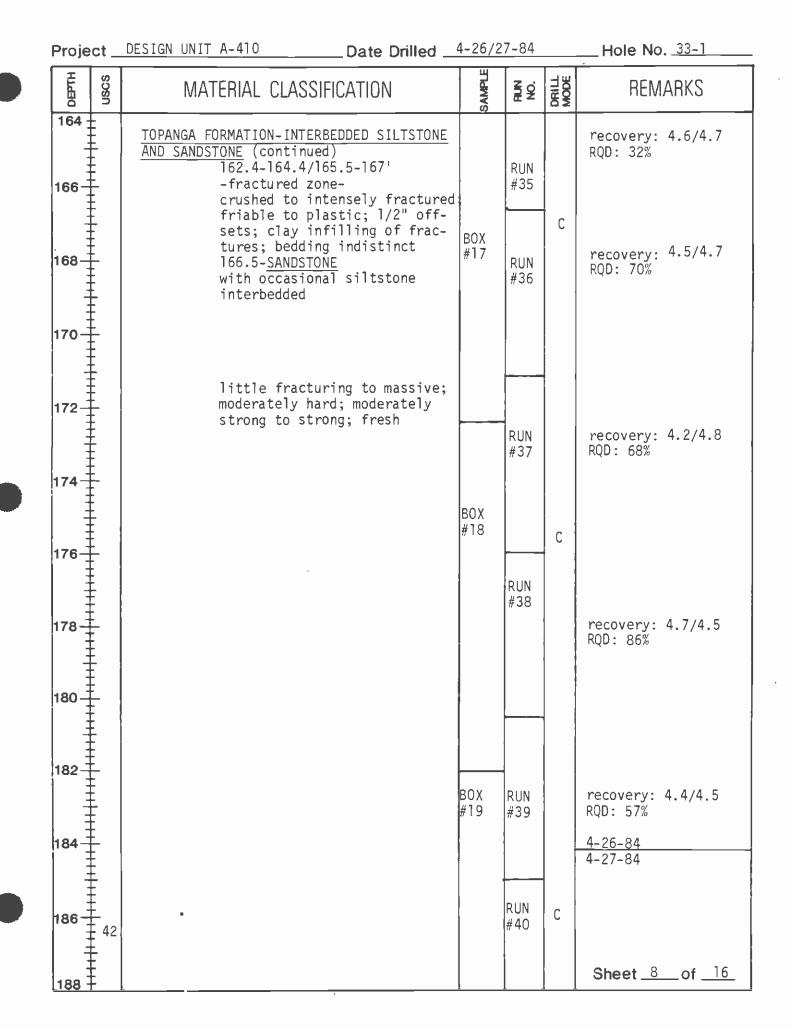

С

Sheet _1

of <u>16</u>



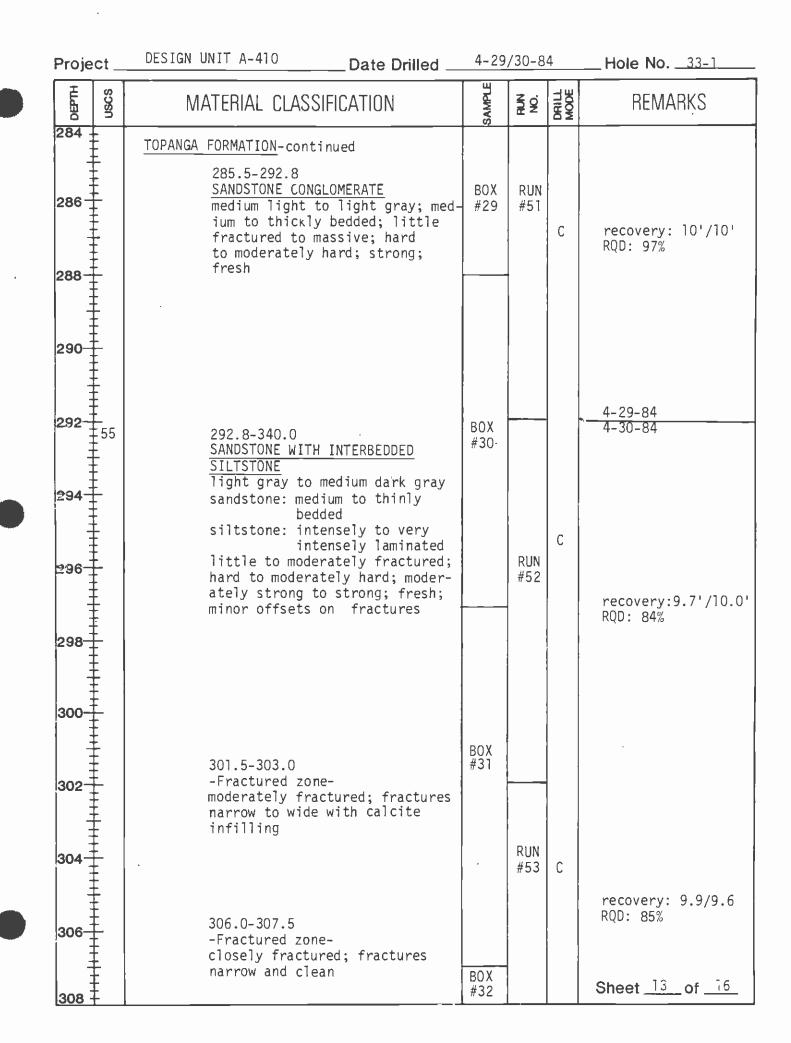

DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
44 44		TOPANGA FORMATIONINTERBEDDED SILTSTONE AND SANDSTONE (continued)	BOX #4	RUN #8		
.6		47.5-51.0-moderately-closely		RUN #9	i c	recovery 0.2/1.0 RQD: Ø
8 + + + + + + + + + + + + + + + + + + +		fractured; fractures clean and narrow		RUN #10		recovery: 3.5/4.5 RQD: 26%
2			BOX			4-19-84
4		54.0-94.0- <u>SILTSTONE/SANDSTONE</u> dark gray-medium gray; intense- ly laminated to very thinly	#5	RUN #11	С	4-24-84 recovery: 3.9/4.0 RQD: 20%
6		bedded; little fractured to massive; low to moderately hard weak to moderately strong; little weathering to fresh		RUN		recovery: 4.5/5.0 RQD: 85%
8 + 8	41			#12		
2		61.5-63.0-moderately-closely fractured zone	BOX #6		С	
~ + + + + + +				RUN #13		recovery 3.3/5.0 RQD: 36%
6 		TRACE PETROLIFEROUS	I			slight oil film developing on drill ing tub
8 +				RUN #14		Sheet <u>3</u> of <u>16</u>



Proje	ct _	Date Drilled _4	-23-04			Hole No33-1
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
92 94		TOPANGA FORMATION-INTERBEDDED SILTSTONE AND SANDSTONE (continued) trace petroliferous 94.0-100.5 PREDOMINANTLY SANDSTONE WITH	BOX #9	RUN #19	С	recovery: 4.9/5.0 RQD: 65%
96 98		INTERBEDDED SILTSTONE light gray to dark gray <u>SANDSTONE</u> :very thinly to medium bedding;little fractured;moder- ately hard to hard;moderately st <u>SILTSTONE</u> : very intensely to intensely laminated; little fractured; low hardness; weak; fresh		RUN #20		recovery: 4.5/5.0 RQD: 60%
100		100.5-105 <u>SILTSTONE WITH INTERBEDDED</u> <u>SANDSTONE</u> very intensely to intensely laminated; moderately to closely fractured; low hardness; weak; fresh		RUN #21	С	recovery: 3.8/4.5 RQD: 42%
104		105-155 <u>INTERBEDDEL SILTSTONE AND SANDS-</u> <u>STONE</u> light gray to dark gray; very intensely laminated to thinly bedded; little to moderately fractured; low hardness to hard; weak to moderately strong; fresh		RUN #22		recovery: 4.8/5.0 RQD: 70%
110			BOX #11	RUN #23	С	recovery: 4.6/5.0 RQD: 84%
116			BOX #12	RUN #24		Sheet <u>5</u> of <u>16</u>

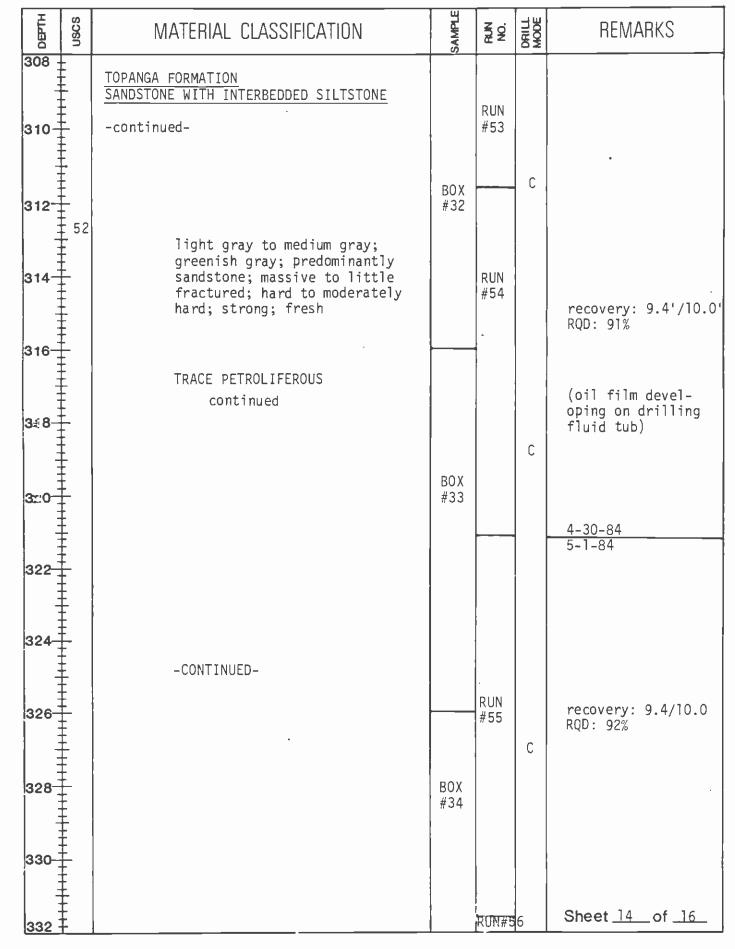
Hole No. <u>33-1</u> Project DESIGN UNIT A-410 ____ Date Drilled _4-27-84 SAMPLE DEPTH CRILL USCS NO S MATERIAL CLASSIFICATION REMARKS 188 ± TOPANGA FORMATION-INTERBEDDED SILTSTONE AND SANDSTONE (continued) recovery: 7.2/7.5 RUN 189'-191.5 BOX RQD: 56% 190千 #40 #19 -Fractured zoneintensely to closely fractured; С portions crushed; friable; 0.3" offsets; fractures narrow and ŧ 192clean to wide with clay infillings **194** + 42 BOX IRUN #20 #41 196recovery: 9.9/10 RQD: 81% ‡ 198 199.2-200.7 -Fractured zone-200 closely to intensely fractured; fractures clean and narrow; C some wide with clay infilling 202-SANDSTONE medium light gray-light gray; 204medium-thickly bedded; little ŧ fractured to massive; moderately hard; moderately strong to BOX strong; fresh RUN #21 206-#42 206.5-209.0 -Fractured zoneclosely to intensely fractured; recovery: 9.7/10 0.5" offsets; fractures narrow RQD: 75% to clay filled 208-210 BOX #22 Sheet _9___ of _16

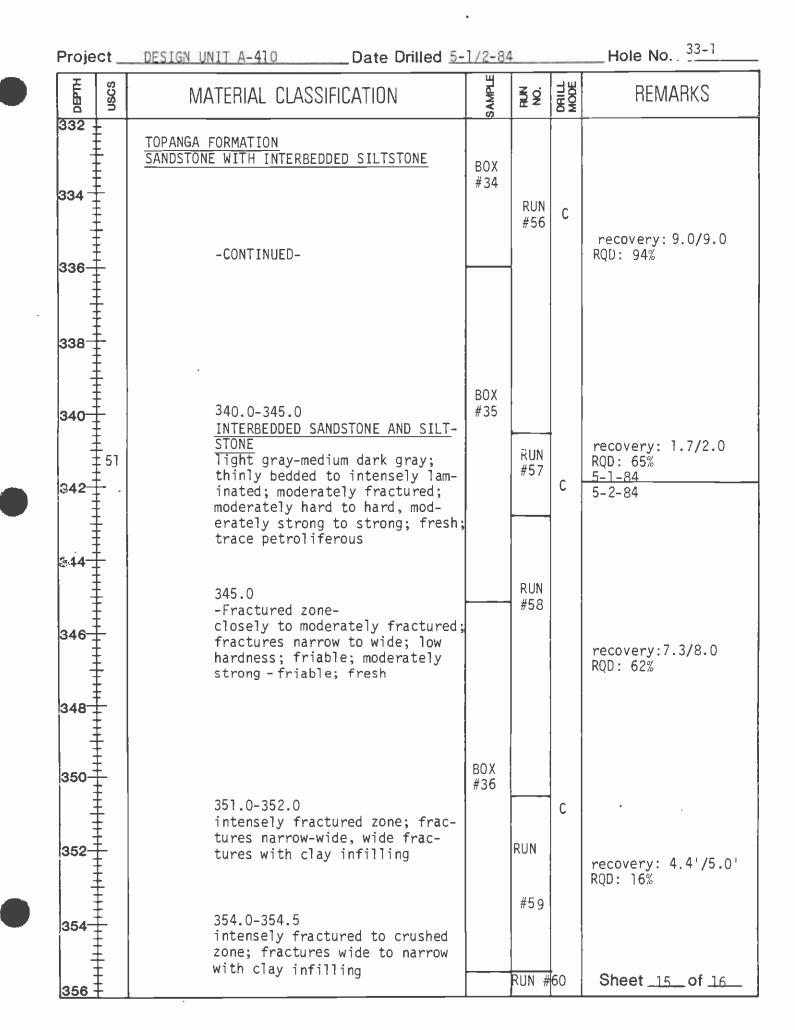
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NON NON	MODE	REMARKS
212 214 216 218		TOPANGA FORMATION-SANDSTONE WITH INTER- BEDDED SILTSTONE (continued) medium light gray; medium to thickly bedded sandstone; in- tensely laminated siltstone; little fractured to massive; moderately hard to hard; mod- erately strong to strong; fresh	80X #22	RUN #43	C	recovery: 9.2/10 RQD: 95%
220			B0X #23	RUN		<u>4-27-84</u> 4-28-84
2' '4- 226-		225-226.0 -Fractured zone- closely to intensely fractured; clay infilling; plastic to		#44		recovery: 4.3/3.9 RQD: 74%
228		friable; sulfurous odor		RUN #45		recovery: 10'/10 RQD: 95%
232-			BOX #24		с	


DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO. NO.	DRILL. MODE	REMARKS
36 -		TOPANGA FORMATION-SANDSTONE WITH INTER- REDDED SILTSTONE (continued)	BOX #24		С	
40 42 44	45	239.5-242.5 <u>-FAULTED ZONE-</u> closely to intensely fractured; offsets up to 10"; slicken- slides (apparent rake of 55°- 65°); fractures wide to narrow with clay infilling in frac- tures; sheared fractures with clay coatings	BOX #25	RUN #46		recovery: 8.2/10.0 RQD: 50%
46 48		246.5-251.5 -Fractured zone- closely fractured; fractures narrow to wide; little to no clay infilling; offsets to 1-2"				recovery: 9.8/10
50 52			BOX #26	RUN #47		RQD: 65%
54 56		254.0-257.0 -Fractured zone- crushed to closely fractured; offsets of siltstone lamina; wide fractures with clay in- filling				<u>4-28-84</u> 4-29-84
58		Trace petroliferous		RUN #48	c	recovery: 4.9/6.0 RQD: 38%
			BOX #27	π40	L	oil film developing on drilling fluid f Sheet <u>11</u> of 16

.

•

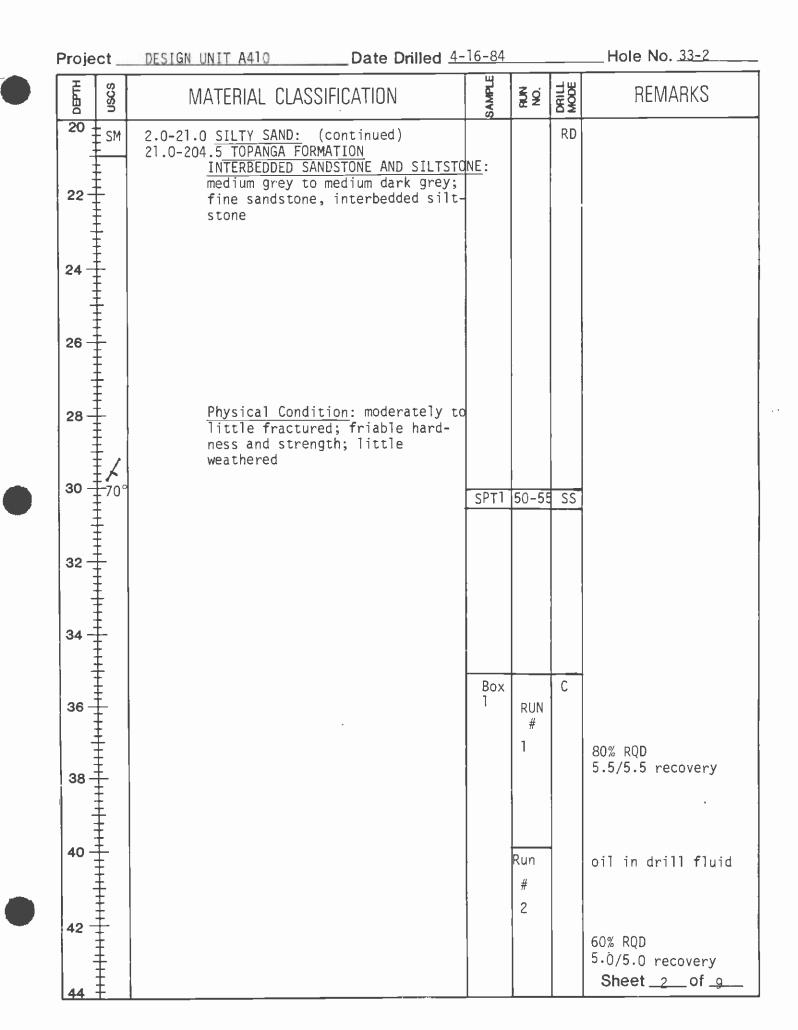

.

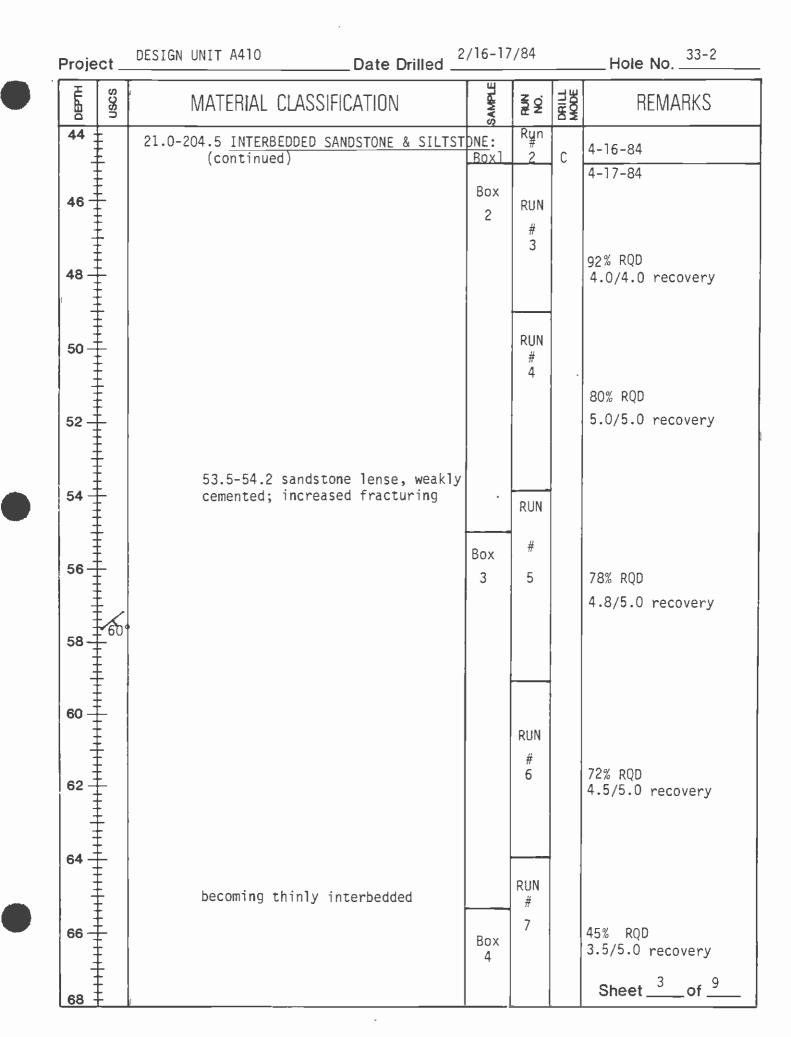

Project _	DESIGN UNIT A-410 Date Drilled	4-29-8	4		Hole No
DEPTH	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
260 +	TOPANGA FORMATION -continued SANDSTONE 257.0-268.0'	вох	RUN #48		
264	SANDSTONE CONGLOMERATE greenish gray; sandstone with small gravel; medium to thickly bedded; little to moderately fractured; fractures narrow to wide; moderately hard_bard and strong; fresh to little wea- thering	#27	RUN #49	С	recovery: 9.8'/10.0 RQD: 79%
268	268.0'-276.0' <u>SANDSTONE WITH INTERBEDDED</u> <u>SILTSTONE</u> light gray to medium light gray;		-		
270 47 272	medium bedding to intensely lamin little fractured to moderately fractured; moderately hard to hard; moderately strong to strong, fresh	ated;		С	
274	TRACE PETROLIFEROUS	BOX #28			oil film on drill ing fluid tub and trace inclusions
276	276.0'-285.5' predominantly sandstone; thickly bedded; massive to little frac- tured; moderately hard to hard; moderately strong; fresh		RUN #50	С	in rock core recovery: 9.7'/10.0 RQD: 96%
280					
282		BOX #29		•	
284 7			RUN #51		Sheet <u>12</u> of <u>16</u>

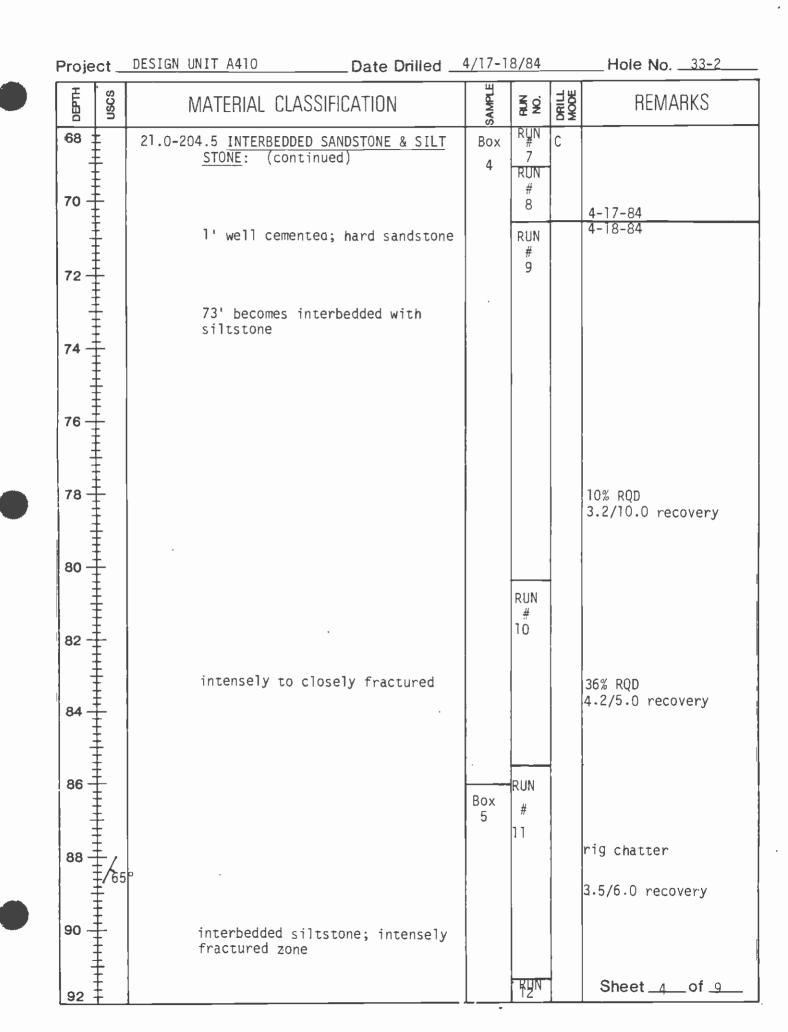
Project <u>DESIGN UNIT A-410</u> Date Drilled <u>4-30/5-1-84</u>

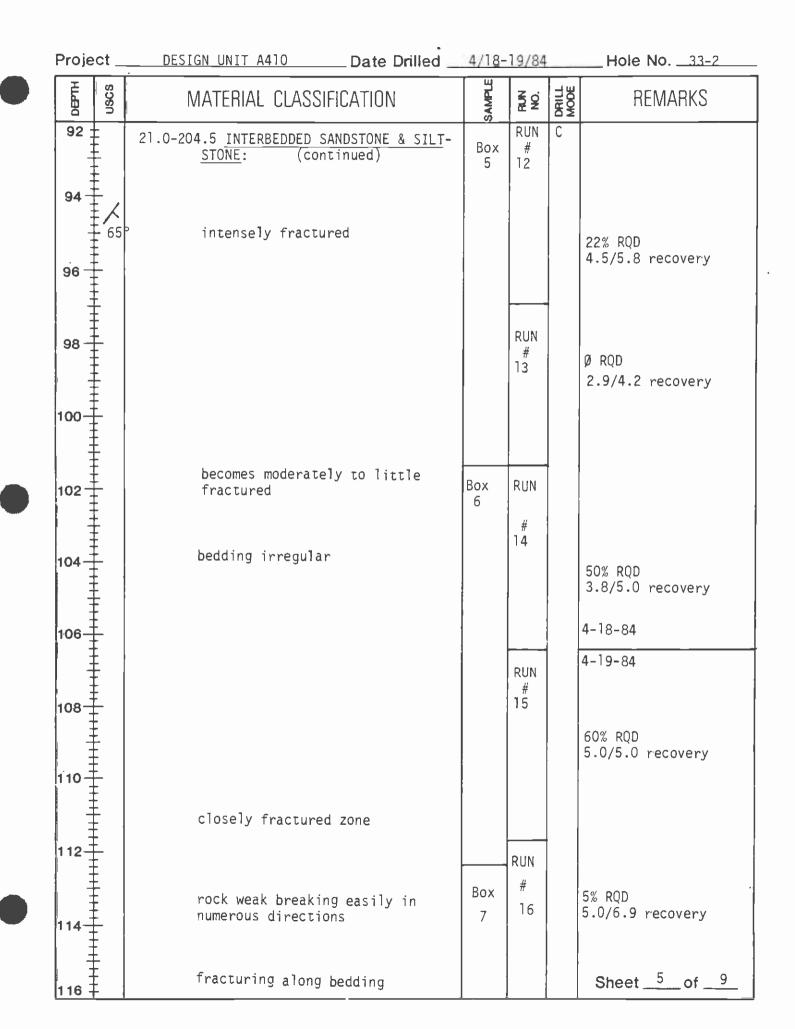
_ Hole No. __33-1

	DESIGN UNIT A-410	Date Drilled	5-2/3	- <u>04</u>		Hole No33-1
DEPTH	MATERIAL CLA	SSIFICATION	SAMPLE	NO.	DRILL	REMARKS
356	zone; fract	zone- ractured to crushed ures wide to narrow nfilling; crushed	BOX #37	RUN #60	с	recovery: 6.5/6.5 RQD: 46%
362	364.0-365.0					<u>5-2-84</u> 5-3-84
366 388		zone- ractured; fractures lay; friable; off-	BOX #38	RUN #61	С	recovery: 5.6/7.5 RQD: 18%
370	B. H. 370.0 Terminated	i Hole				Installed 1" PVC piezometer to 360'; 0-20'; non perforated 20-40' perforated 40-360' 20' perfora with 40' non perfora pea-gravel backfill
374 376 378		·			С	
<u>+</u> 380 +						Sheet <u>16</u> of <u>16</u>


.

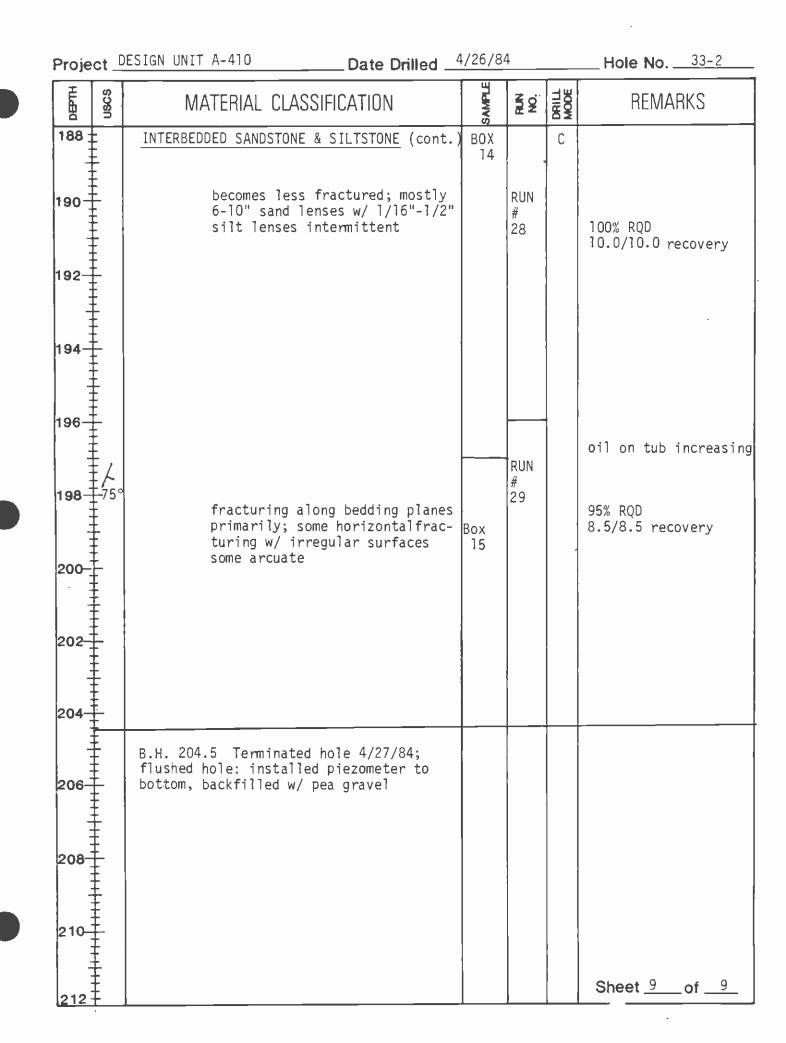

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG is applicable only at this location and time. Conditions MAY DIFFER AT OTHER LOCATIONS OR TIME.




BORING LOG 33-2

Proj:	DESIGN UNIT A410	_ Date Drilled	4/16-2	27/84			Ground Elev.	604 '
Drill Rig	FAILING 1500							
Hole Di	ameter <u>4 7/8"</u>	_ Hammer Wei	ght &	Fall 📃	40 1	p. @	30"	
DEPTH	MATERIAL CLA	ASSIFICATION		SAMPLE	NO.	DRILL MODE	REMARI	<s< td=""></s<>
2	C 0.0-0.3 ASHPALT L 0.3-2.0 <u>SILTY CLAY</u> : (olive grey; r M 2.0-21.0 SILTY SAND:	dusky yellow to nottled; stiff;	moist		NK N	GB AD RD	KEWIAKI	
							slight chatter	

4/19-20/84 Project DESIGN UNIT A-410 _Date Drilled _ SAMPLE DEPTH uscs DRILL NO. REMARKS MATERIAL CLASSIFICATION 116 ± С BOX INTERBEDDED SANDSTONE & SILTSTONE (cont.) RUN 7 # 16 118 + continued steeply dipping siltstone and sandstone RUN 120-**1**7 **122**75° 122.5'-8" closely fractured zone 124 BOX 8 64% RQD 126+ 126.5-6" closely fractured 8.1/8.1 recovery zone RUN 50% RQD 128-18 7.0/7.0 recovery 130-132-RUN. 134 2.0/2.0 recovery 134-136.5 Physical Condition: BOX 19 closely to moderately fractured; 9 hard to very hard; strong to 4/19/84 RUN #20_ very strong; fresh 4/20/84 136‡ 0.6/0.6 recovery 136.5-gradual decreased cementa-tion and increased interbeds of RUN siltstone # 21 Ŧ 138-138.5-139.5 sandstone lense Sheet _______ of ____9 40


	DESIGN UNIT A-410 Date Drilled		/24/8	34	Hole No. <u>33-2</u>
DEPTH	MATERIAL CLASSIFICATION	SAMPLE	NON OF	DRILL	REMARKS
140	INTERBEDDED SANDSTONE & SILTSTONE (con		RUN # 21	С	
	fracturing along bedding often re-healed w/ clay				95% RQD 7.6/9.4 recovery
144	144.5-147-95% sandstone; hard:				<u> </u>
46	strong; well cemented	BOX 10	RUN # 22		· ,
48	moderately hard to hard; moder ately strong	-			5.5/6.0 recovery
150- <u>-</u>					
152			RUN # 23		
154					70% RQD 7.5/8.5 recovery
156		BOX 11			
158	siltstone increase to 60%				
			RUN # 24		
162					85% RQD 7.5/8.0 recovery
164					Sheet7_ of9_

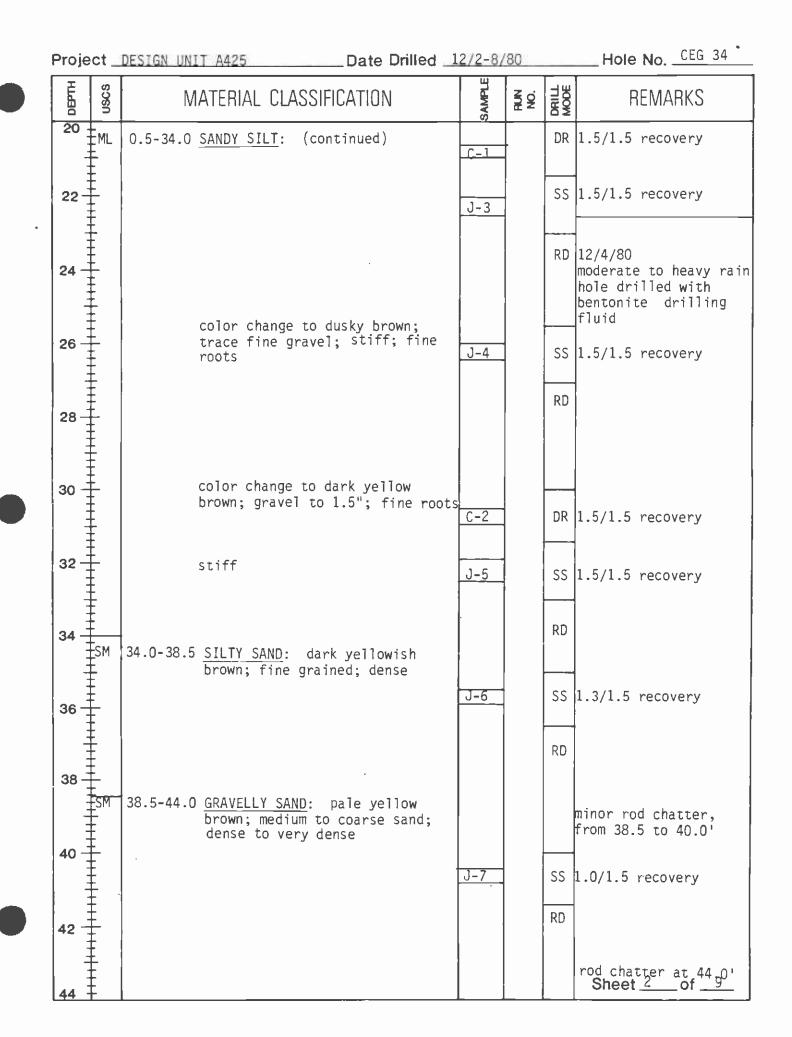
,

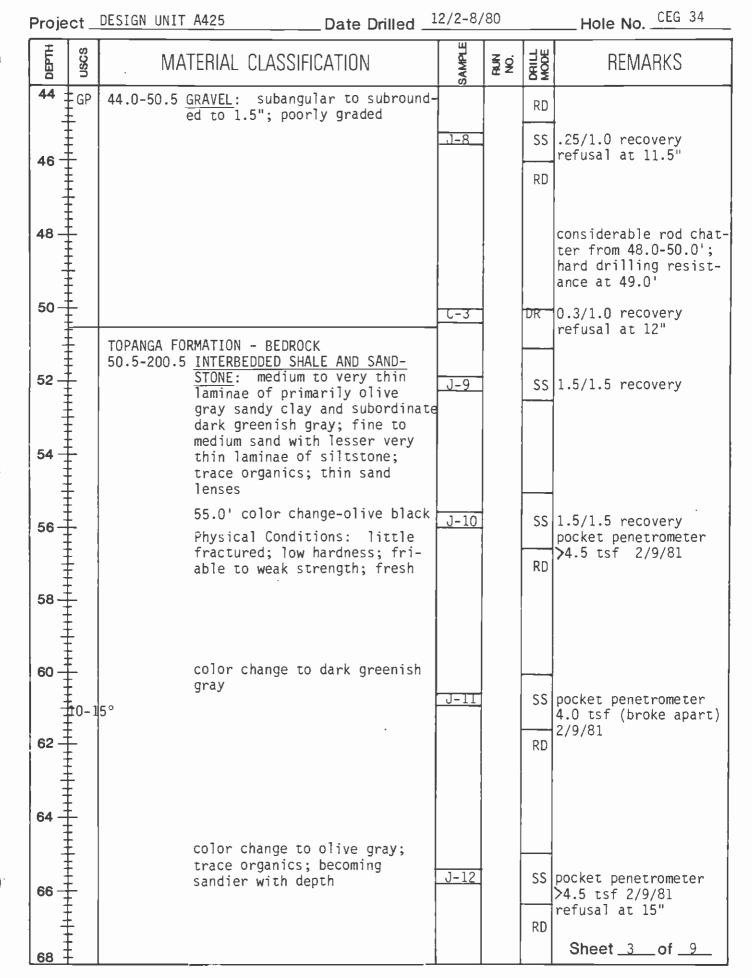
Project _DESIGN_UNIT_A-410 _____ Date Drilled ______4/24-26/84 _____ Hole No. _____33-2

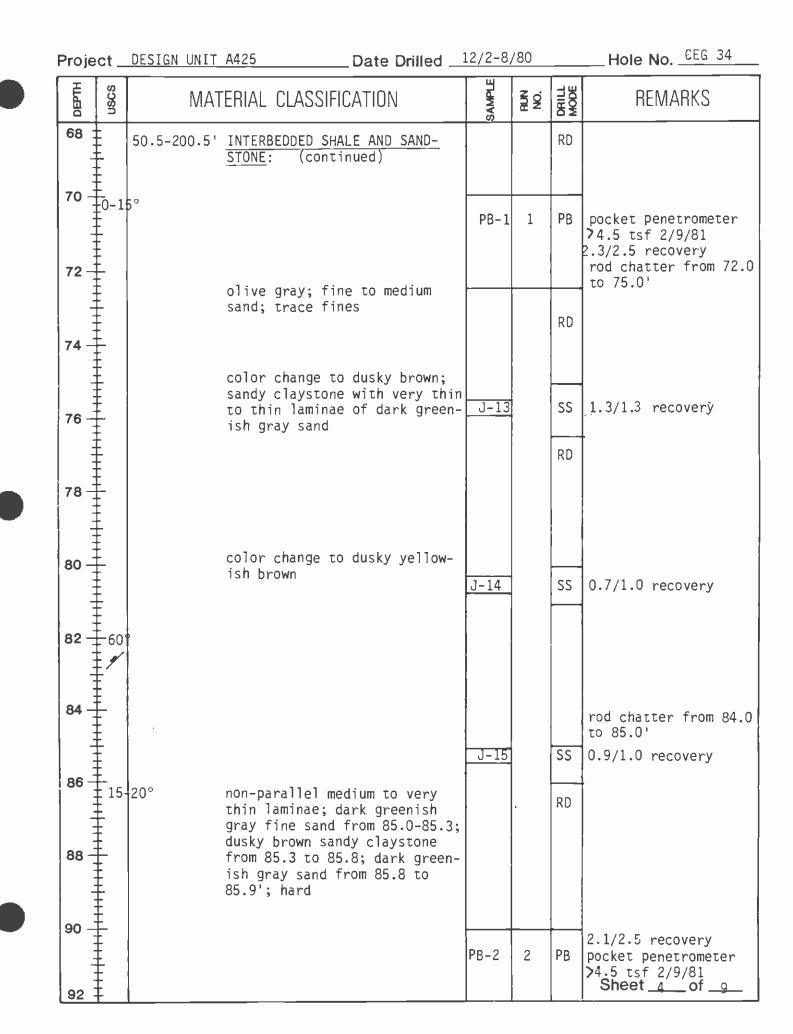
.

DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
164 166 168	65°	INTERBEDDED SANDSTONE & SILTSTONE (cont.) 170-173 mostly sandstone; unce- mented; friable strength and hardness	r	RUN # 24 RUN # 25 RUN # 26	С	4/24/84 4/25/84 2.5/2.5 recovery
174		173-176.5 sandstone lense; fine grained; well cemented; very hard and very strong	BOX 13			88% RQD 7.8/9.5 recovery
180		occasional thicker sand lenses to l"		RUN # 27		7.0/7.0 recovery
186		185- hard, well cemented sand- stone lens l' thick	BOX 1	RUN # 28		<u>4/25/84</u> 4/26/84 Sheet <u>8</u> of <u>9</u>

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

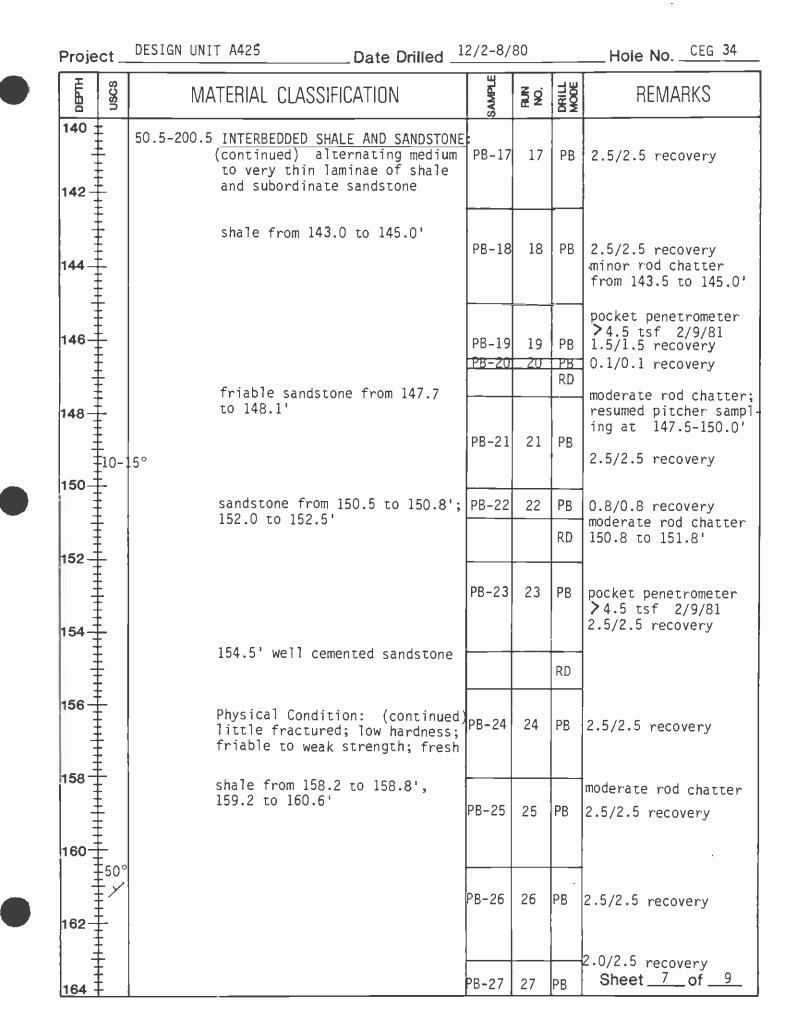


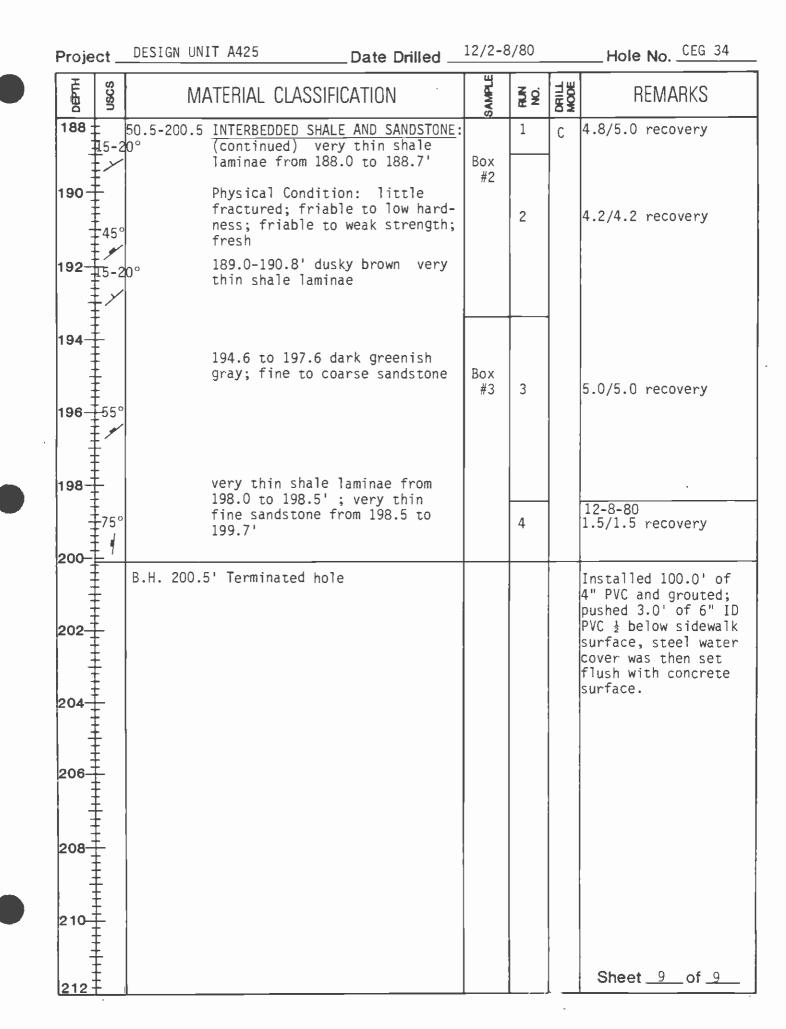

BORING LOG CEG 34


Proj: DESIGN UNIT A425	Date Drilled <u>12/2-8/80</u>	Ground Elev
Drill Rig Failing 1500	Logged By S. Testa	Total Depth200.5'

Hole Diameter 4 7/8" Hammer Weight & Fall DR: 240 1b @ 18", SS: 140 1b @ 30"

DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.		REMARKS
2-		0.0-0.5 CONCRETE ALLUVIUM 0.5-34.0 <u>SANDY SILT</u> : dark yellowish brown fine sand; moist			RD	12/2/80 clear day hole drilled with water
6-						
8-						·
10-		yellow brown; stiff; moist	J-1		SS RD	1.0/1.5 recovery
14-						pocket penetrometer
16-		becomes very stiff; moist; trace gravel	J-2		SS RD	2.0 tsf 2/9/81 1.2/1.5 recovery
20						Sheet <u>1</u> of <u>9</u>

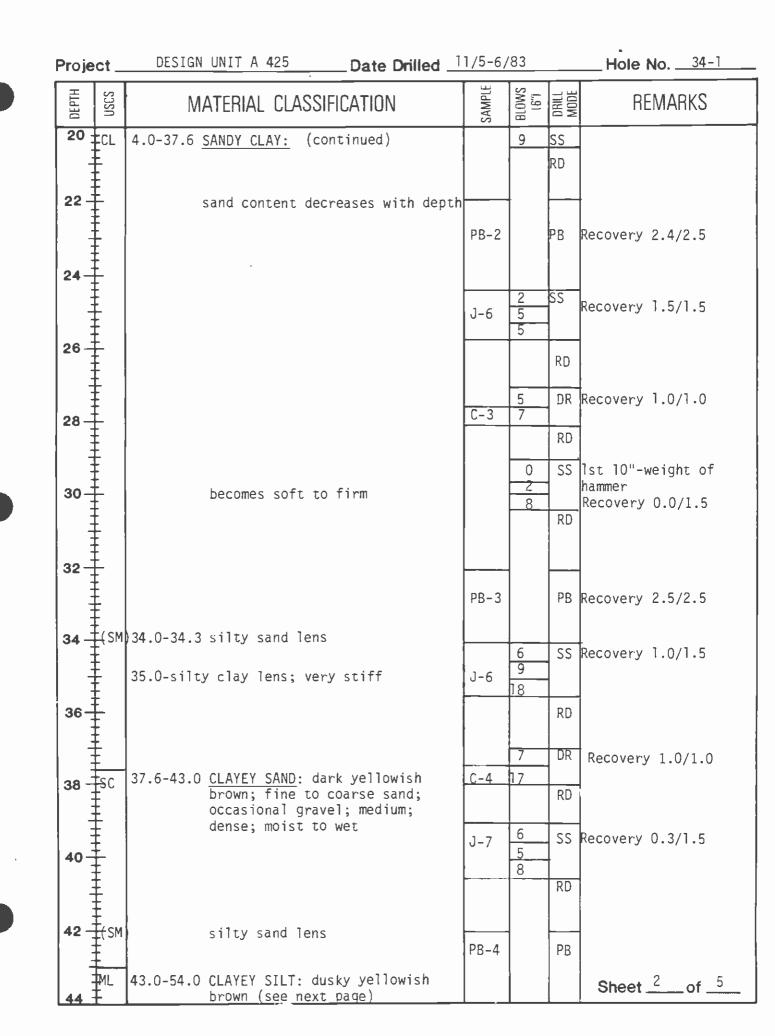


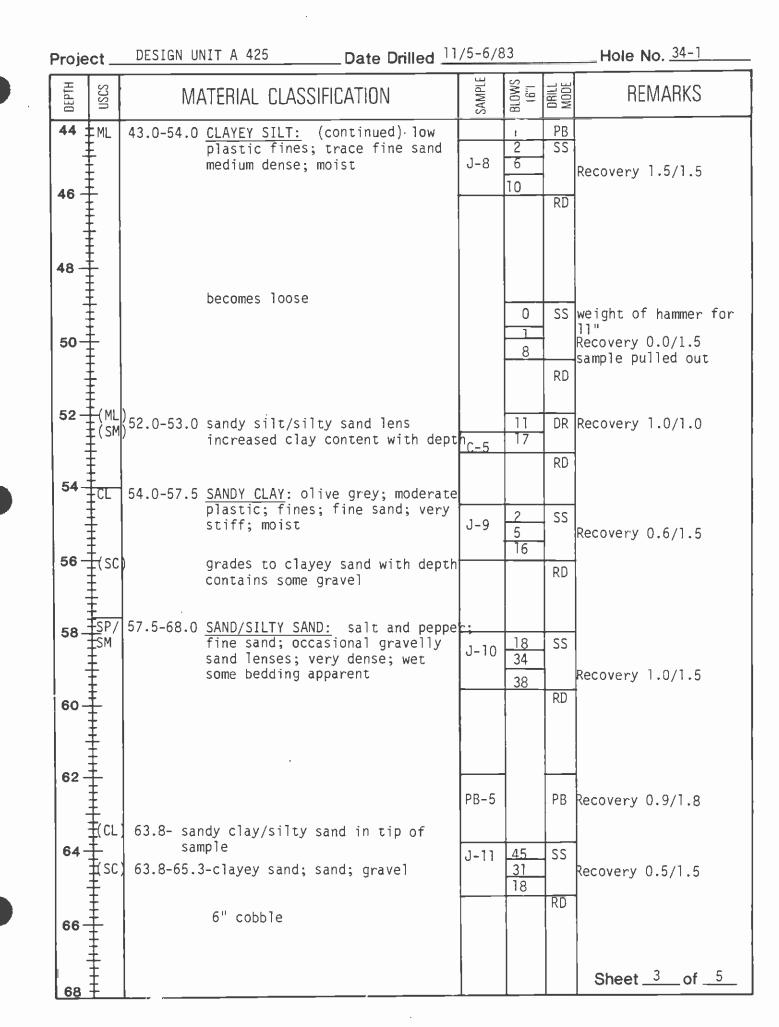

Project __DESIGN UNIT A425 _____ Date Drilled __12/2-8/80 _____ Hole No. CEG 34

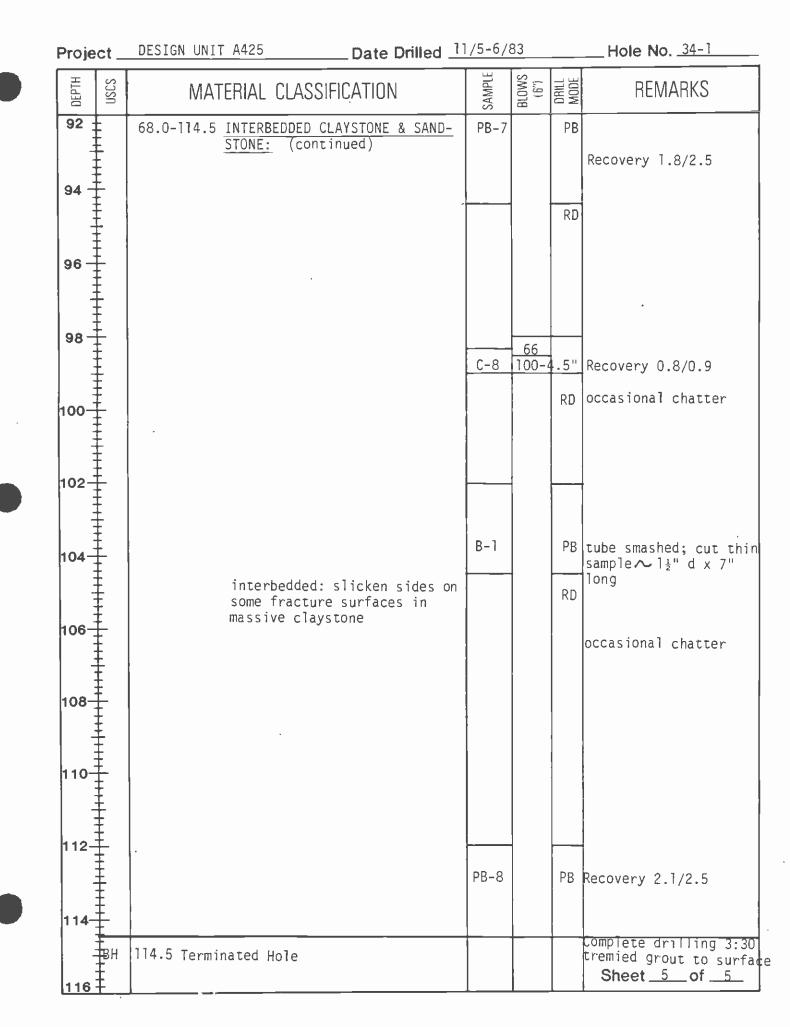
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL MODE	REMARKS
92 94 96 98		50.5-200.5 <u>INTERBEDDED SHALE AND SANDSTONE</u> : (continued) Physical Conditions: (continued) little fractured; friable to low hardness; friable to weak strength; fresh color change to olive black; 95.2' very thin sandy claystone lens	PB-2	2		0.4/0.4 recovery pocket penetrometer >4.5 tsf 2/9/81 12-5-80
100-	للسبية والمستعم وعالمه ومعادية	101.0-101.4 well cemented sand- stone	PB-3	3		pocket penetrometer >4.5 tsf 2/9/81 1.4/2.5 recovery
104		non-parallel medium to very thin laminae of olive black sandy claystone and greenish gray friable fine to medium sandstone	J-17A		RD SS RD	pocket penetrometer >4.5 tsf 2/9/81 1.3/1.4 recovery r efusal at 16.5"
110	45°		PB-4	4	PB	pocket penetrometer >4.5 tsf 2/9/81 2.5/2.5 recovery
114 116	80° / 45°	dusky yellowish brown sandy claystone	PB-5 PB-6	5	PB PB	2.0/2.5 recovery 2.5/2.5 recovery Sheet <u>5</u> of <u>9</u>

Hole No. _____ 34 Project DESIGN UNIT A425 Date Drilled 12/2-8/80 SAMPLE HLADO USCS DRILL MATERIAL CLASSIFICATION NON O REMARKS 116 + pocket penetrometer 50.5-200.5 INTERBEDDED SHALE AND SANDSTONE: >4.5 tsf 2/9/81 PB (continued) PB-6 6 2.5/2.5 recovery 117.5-118.4 thin to very thin alternating shale and sandstone 118 🕂 Taminae; from 119.0 olive black PB-7 7 PB 1.8/2.5 recovery shale. 120-PB-8 8 PB 2.5/2.5 recovery 121.4-122.4 moderate to well 122 cemented sandstone Physical Conditions: (continued) little fractured primarily along PB-9 - 9 PB 2.2/2.5 recovery bedding planes; low hardness; 124 friable to weak strength; fresh 126 <u>1</u>0-15° PB-10 10 PB 1.5/1.5 recovery variable resistance from 126-126.5': RD refusal at 126.5' 128medium to very thin laminae of alternating shale and sub-ordinate sandstone PB-11 PB 2.0/2.5 recovery 11 pocket penetrometer 130 74.5 tsf 2/9/81 PB-12 12 PB 2.5/2.5 recovery well cemented sandstone from 12-6-80 PB-13 PB 0.5/0.5 recovery 131.0-132.0, 133.2 to 133.5 13 133.0-133.5' rod 134-RD chatter **∄**0-15° PB-14 14 PB 2.5/2.5 recovery 136shale from 137.0 to 137.5' PB-15 15 PB 0.2/0.2 recovery 138 ₽B-16 16 PB 2.1/2.1 recovery Sheet $\frac{6}{9}$ of $\frac{9}{2}$ 40

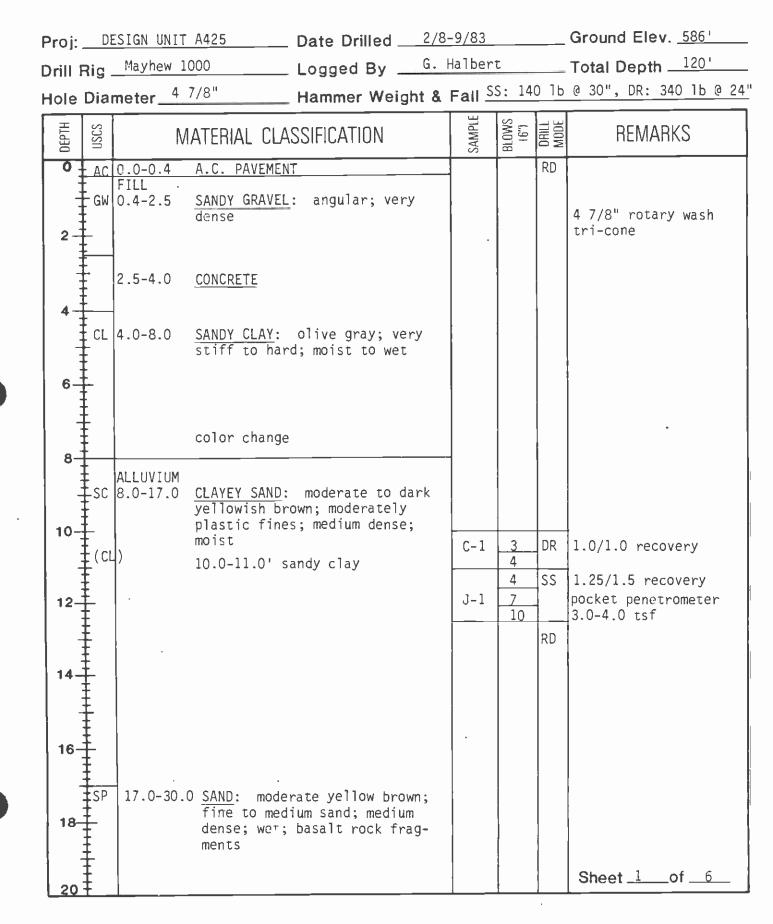
roje	ct _	DESIGN UNI	T A425		_Date Drilled _	12/2-8	8780		Hole No. CEG 34
DEPTH	nscs	M	ATERIAL	CLASSIF	ICATION	SAMPLE	NO.	DRILL	REMARKS
64		50.5-200.5	(contin to very	ued) alt thin lam	E AND SANDSTONE: ernating medium ninae of shale	PB-27	27	PB	
66-			lesser laminae	very thin •	sandstone with siltstone 67.0 to 168.0',	PB-28	28	PB	2.5/2.5 recovery moderate rod chatte from 167.0-168.0' pocket penetrometer
68 -		n°		0 170.0'					>4.5 tsf 2/9/81
	T0-2	0-	fractur friable	ed along	on: little bedding planes; ardness; friable : fresh		29	PB	2.5/2.5 recovery
70-			tu weak	strength	, 110511				considerable rod chatter
+								RD	
72						PB-30	30	РВ	0.2/0.2 recovery
	5 1 1 1							RD	12 7 90
74-			1 74. 0-1 sandsto		ium to coarse	PB-31	31	PB	12-7-80 0.8/1.0 recovery moderate rod chatte
			00110000			PB-32	32	PB	0.9/1.0 recovery
76-			shale f	rom 175.6	to 177.0'	PB - 33	33	PB	1.5/1.5 recovery
									considerable rod chatter
78-	-10-	20°						RD	
+++++++++++++++++++++++++++++++++++++++						РВ-34	34	PB	2.5/2.5 recovery
80- <u>+</u>			180.6 to	181.2'	well cemented				
+		1	sandstor	ne		PB-35	35	PB RD	0.6/0.6 recovery
82-			182.4',	183.0 to	ndstone 181.5 to 183.2'	PB-36	36	PB	0.4/0.4 recovery
								RD	
84-	46°		shale, s siltstor	sandstone ne; silts	alternating and subordinate tone moderate	PB-37	37	PB.	
86	80° 80°		very the laminae, brown to	in to thio , shale -) olive b	- olive gray ck parallel dusky yellowish lack very thin el laminae	Box #1	1	С	
88 -	ĘΥ								Sheet <u>8</u> of <u>9</u>

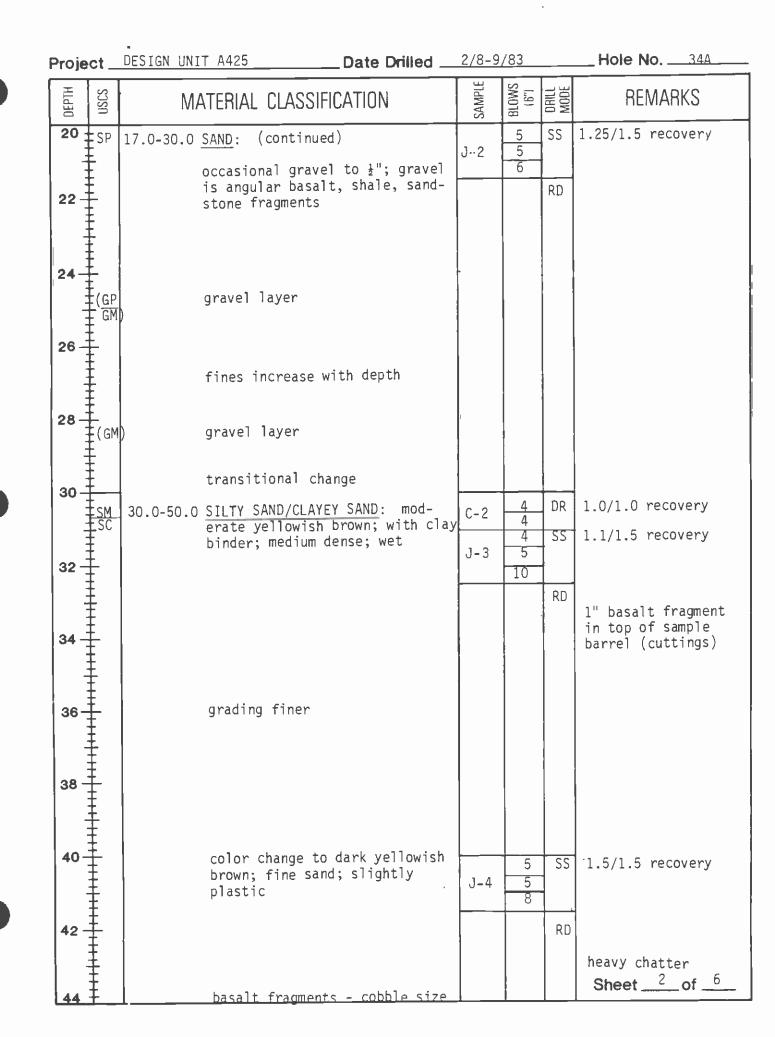



THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.


BORING LOG 34-1

Proj:	DES	IGN UNI	T A 425		Date Dri	lled	-6/8 3			Ground Elev. 580'
			IG 1500					ein		Total Depth 114.5'
Hole	Diar	neter_	4_7/8"		Hammer	Weight &	Fall 🔤	140	16.	p 30"
DEPTH	nscs		MATERIAL	CLA	SSIFICATI	ON	SAMPLE	(,9) BLOWS	DRILL MODE	REMARKS
	AC RD ML	0.3-0. ALLUVI	3 <u>ASPHALT</u> 5 <u>BASEROCK</u> UM 0 <u>CLAYEY SI</u> moderatel fine sand	y pla	astic fine				RD	start drilling 4:15
6	CL	4.0-37	fine san	plas d; ve	moderate b stic fines ery stiff; nd content	, trace moist	J-1	5 11 14 9	RD	Recovery 1.2/1.5 set up tub and cased to \sim 5' mixed mud Recovery 1.0/1.0
8-			hard				 J-2	<u> </u>	1	Recovery 1.0/1.5 5:30 11-5-83 7:00 11-6-83
	t t t sc	e F	some med 14.5' cla		co coarse sand	sand	PB-1	7	PB	Recovery 1.8/2.5 pocket pen: 3.25 tsf Recovery 1.4/1.5
16-	┶ ┺ ┺ ┺ ┺ ┺ ┺ ┺ ┺ ┺ ┺ ┺ ┺ ┺ ┺ ┺ ┺ ┺ ┺ ┺		increase stiff	d cor	ntent of f	ine sand	C-2	6 9 5 6	RD DR RD SS	Recovery 1.0/1.0 Recovery p.0/1.5 Sheetof5_


Project_	DESIGN UNIT A 425 Date Drilled 1	1/5-6-	/83		Hole No
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	BLOWS 16")	DRILL	REMARKS
68 70	TOPANGA FORMATION 68.0-114.5 <u>INTERBEDDED CLAYSTONE & SAND-</u> <u>STONE</u> : brownish black; fe stained mottled; contains sand lenses of varying thickness; occasional cemented zones; steeply dipping ~ 70°	J-12	35 33 33	RD SS RD	Recovery 0.7/1.5
72	physical condition: little fractured; friable to low hardness; friable to weak strength; little weathered	C-6	55 90-5	DR " RD	Recovery 0.7/0.9
78	thinly bedded 1/8"- 1/4"	J-13	54	SS RD	Recovery 0.5/0.5
80	becomes massive	PB-6			Recovery 1.1/2.5
86	interbedded; weakly to moderately cemented		78	RD DR	
90	a	C-7	80-2.	<u>5"</u> RD	Recovery 0.6/0.7 Sheet <u>4</u> of <u>5</u>



THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LDCATIONS OR TIME.

BORING LOG <u>34A</u>

Project __DESIGN UNIT A425 _____ Date Drilled _____2/8-9/83 _____ Hole No. ___34A

DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	BLOWS (6")	DRILL MODE	REMARKS
	SM SC	30.0-50.0 <u>SILTY SAND/CLAYEY SAND</u> : (cont)			RD	
48		basalt fragments				heavy chatter 6"
50		WEATHERED BEDROCK 50.0-56.0 <u>SILTY SANDSTONE</u> : mottled light and moderate yellow brown; ce- mented, dark stained joints; moist; uneven horizontal part- ing	C-3 J-5	18 25 20 40/2"	DR SS RD	0.7/1.0 recovery 0.7/0.7 recovery 1" piece of basalt in sample
54	-	color change				pieces of basalt in cuttings; frequent moderate rig chatter, harder drill- ing
58	-	TOPANGA FORMATION 56.0-120.3 <u>SANDSTONE</u> : medjum dark gray; massive; moist; well cemented; slightly calcareous; trace fine fine to medium sand; Physical Condition: friable; weak strength; poorly to mod- erately indurated		80/3"	DR	too hard for SPT
62	-	65.0-66.0 sandy siltstone; light brown				relatively hard, slow drilling continued rig chatter hard drilling easier drilling 1' Sheet <u>3 of 6</u>

roje	ect_	DESIGN UNIT	A420		Date Drilled			/83		Hole No34A
DEPTH	nscs	MA	TERIAL	CLASSIFI	CATION	CAMPLE	OMIVIT LE	BLOWS	DRILL MODE	REMARKS
68	¥5°	56.0-120.3	color massiv domina	e; well-g tely sub	medium gray; raded sand; angular quart:				RD	continued moderate chatter too hard for SPT
70 -			well c reous.		slightly calca	a- PB·	-1		PB	0.9/2.5 recovery sample disturbed by
72-			poorly weak s	to moder trength;	ion: friable ately indurat low to modera horizontal bea	ed: te				rotation cutting of sample barrel (spin- ning at silty layers bottom of tube rippe
74 —	┿ ┥┍┥┍┥┍		ding; lamina	occasiona] clayey silt				RD	relatively hard dril ing; nearly continuo moderate right chat- ter, occasionally heavy
6			75.0-7 olive		tone layer,					no chatter for 1'
78-										occasional light brown silty cuttings
30 -			•			<u>ए-</u> ८ ग-		<u>8074"</u> 10072		difficult to sample 0.3/0.3 recovery no recovery
- 82 -			81.5-8	2.5 silty	zone				RD	no chatter for about 1'
- - 84 –			sand d	lominantly	quartz with					continuous moderate chatter, heavy at times
			minor		ite and mica-					2-8-83
86 -				olive gr	y siltstone ay, plastic,					2-9-83 no chatter for 1.5'
88-					medium dark					
90 -					edium grained and with trac	e	0		DP	
_						PB	-2		PB	1.25/2.0 recovery too hard for SPT Sheet <u>4</u> of <u>6</u>

.

DESIGN UNIT	A425	Date Drilled	2/8-9/	83	_	Hole No34A
MAT	Ferial Classii	ICATION	SAMPLE	BLOWS (6")	DRILL MODE	REMARKS
56.0-120.3		continued) yey siltstone nd, dark gray,			RD	moderate chatter, heavy at times, fair ly difficult drillin occasional brown sil sand cuttings (weath ered fractures) occasional light chatter, slightly
	well graded s	to medium gray; and; subangular biolite grains);				easier drilling for 2'
			<u>C-6</u>	100/3	RD	0.25/0.25 recovery
	102.0-102.4 v	ery hard zone				heavy chatter; brown silty sand cuttings mixed with gray sand stone.
						light to moderate rig chatter, fairly con- sistent
	changes to mo	ed angular vol- ts (red brown and				
	color changes gray; sand is quartz, calca					
	erately strong	rd to hard; mod- j to strong; con-	PB-3		PB	heavy chatter, slow
	tact dip angle change	e 65° from fabric	J		ΓD	advance with Pitcher Barrel, refusal after 17" advance
		ard white rock ight gray; hard; rong			RD	1.4/1.4 recovery good hand specimen at bottom of barrel, saved sample of cut-
						tings, 112'. heavy rig chatter, 3/4" fragments in cut tings. moderate chatt Sheet 5_of 6_
		gray, poorly g	color change to medium dark gray, poorly graded fine quartz sand	gray, poorly graded fine	gray, poorly graded fine	gray, poorly graded fine

Project _	DESIGN UNIT A425	Date Drilled _	2/8-9/	83	Hole No
DEPTH USCS	MATERIAL CLA	ASSIFICATION	SAMPLE	BLOWS (6") DRHLL MODE	REMARKS
116	fine to m weak to m friable t	: (continued) edium quartz sand; oderately strong; o low hardness; petroliferous		RD	115' - oil in mud light to moderate rig chatter oil in mud
120			-6-7	80/3" UR	too hard for SPT 0.0/0.25 recovery
122	B.H. 120.3' Terminate	d hole			no sample retained i rings complete drilling 2/
124					
126					
128					
130					
132					
134					
138					Sheet 6 of 6
140 ‡					Sheet <u>6</u> of <u>6</u>

.

THIS BORING LDG IS BASEO ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS DF LABORATDRY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LDG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS DR TIME.

BORING LOG <u>34C</u>

Proj: DESIGN UNIT A 425	Date Drilled	1-25-83	Ground Elev. 5521
Drill Rig	Logged By	D. Gillette	Total Depth 76.01

Hole Diameter 36"

____ Hammer Weight & Fall N/A_

DEPTH	USCS	MA	ATERIAL CLASS	IFICATION	SAMPLE	(2.1) (6")	DRILL MODE	REMARKS
0 2 4 6 8		L ARTIFICIA 0.0-10.5	SILTY SAND/SA pieces and ch and concrete;	NDY SILT: contains unks of asphalt dusky brown; loos se; moist to wet on walls)				Observation hole no samples required. Difficult for auger drilling due to large chunks of concrete (curb and sidewalks asphalt) Note: bore hole subject to cav- ing and raveling from O-10.5'
10- 12- 14- 16- 18-		ALLUVIUM 10.5-23.0	<pre>sand streaks; grey; moist to to medium dens and ravels; co</pre>	y sand and clayey medium to dark very moist; loose e; readily caves ntains cobbles (we) contain micaceou	11			Easier auger drilling
20								Sheet _1of _2

Project	DESIGN UNIT A 425	Date Drilled	1-25-8	3		Hole No
DEPTH USCS	MATERIAL CLASSI	FICATION	SAMPLE	(P°) BLOWS	DRILL MODE	REMARKS
22 + + + (CL)	1.05-23.0 <u>SAND/SILTY</u> SAND contains coarse organic odor 23.0-24.5 sandy clay lay	sand layers			AD	H ₂ O at 21.0'; flows in from all sides at approximately 20-25 gpm. Note: Bore hole sub- ject to excessive cav ing at & below water table
24						Drilled to 26.D';hol caved back to 21.D' before placing casing
28	26.0 Terminated					finished drilling at 10am; 1-25-83. Plac 30" CMP casing backfilled hole with native material
30						
32		<i>;</i>				
34						
38						
40						
42						
						Sheet of 2

Field Water Pressure Test Boring No. 29-1

	ote FRIDAY ADRIL 13, 1984
JOB METRO RAIL PROJECT L	ocation CAHUENGA BLVD. 25'N OF HOLLYWOOD FWY ON PAMP
	lev, of Pressure Gauge
	SCHLUTER Depth of Hole 120.0'
Type of Packer MECHANICALLY COMPRESSED	NY PACKER
Remarks GROUND ELEVATION : 449'	·

Section	Tested		Water	Mater F	Readings	Duration	Flow	
Depth Top	Depth Bottom	Pressure (psi)	Start	End	Total Gals. Water Used	of Test (min.)	(gpm)	REMARKS
52	120	22±1	11:05:30	11:45:30 4313.2	0.7	10	0.07	SWIVEL HEIGHT : +12.5
52	120	35±3	11:17:00	11:28:00	5.7	10	0.57	9 11
52	120	48±5	11:31:00 4326.5	11:41:00	PACKER.	LDAKAG	E, MOVED	PRESERTED
63	12.0				PACKER	LEAFAC	£.	
169	120				PACKE	R LEA	KAGE .	PACKER FELLED OFF REPLACED
74	120				PACKER	LEAKA		
79.	12.0				PACKER	LEAKAG	E - R	R RUBRIC CAMAGOO
92	120	52±3	2:46:00 4(c74.4	2'E6:20 4/m4.4	0	10	NOTAKE	SWIVEL HEIGHT: 12.3
92	120	80年10	3:18:30 4605.2	3:28:30 4605.6	0.4	10	NO TAKE	11 13 11
	± INDICA	TES PRE	SURE	FLUCUA	TON			
			н	OLDIN	G TES	ST		.
Sectio	n Tested	Gauge	Pressure	at Test Ir	ntervals, ((psi)	4	REMARKS
Depth Top	Depth Bottom	Start	15 secs.	30 secs.	45 secs.	60 secs.		
92	120	60	59	58	58	58		nn. 150 m 10 mw. 1470 1
72	120	80	75	13	11	70	62.505	nin./57.5@10mm./54@!
							<u> </u>	· · · · ·

SHEET / OF /

Field Water Pressure Test Boring No. 29.2

Job No. <u>F2-1140-56</u>	Date WEDNESDAY APRIL 18, 1984 Location CAHUENGA BLVD., 26 N/HOLLYWOOD FWY
Water Table Elevation	Elev. of Pressure Gauge <u>475</u>
Type of Packer MECHANICALLY COMPRE	MARK SCHLUTER_ Depth of Hole 135.0
Remarks GROWN ELEVATION: 470	DRILL STUME WICKED, CASING TO 59.2' BELOW
SURFA(E	

				FLOW	V TESI	Γ			
Section Depth	Tested Depth	Pressure (psi)	Water Start	Meter R End	eadings Total Gals. Water Used	Duration of Test (min)	Flow (gpm)	REMARKS	
Top	Bottom		7151:00	8:01:00	0,5	10	0.05	PACKER IN CASING ,	
56 * wm	1351 PROPER OF	28 ATEC RORI	4796.5 NG TOOK	4797.0 LEPIOX, 3				SWIVE HEAHT 13.7 LIZE @ 28 P.S.I TEST	-
<u></u>		SPEEPVILO	OUT INN.	8.23:00	D GALLONS			H 11 11	
56	185'	40±2	8:13:00 4798,5 8:25:00	4799.6		10	6.11		_
56	1261	54±3	4800.6	1306.5	5.9	10	0.59		
EIGI.	FICACOT	CAVING	- 04.0	red at	COMPLE	TON 0	f firs	T SORIES OF	_
TEST	ATTEM	PTED	TO RE	PRILL	HOLE	CLEAN	OF CA	VEO MATERIAL	
	AI TIM		NO S.	MESS.	HOLE	WOULD	REZAV	E AS SOON AS	
ORIU.	FOOS	WERF.			16 Daci	RRUC	BTUJ	60-100' BELOU	J
	FUE CAV	D APRIA			1		HS. AT	TIMES SPOTTY	
		VING AR						VXED REVERT	
		FLUD	l .	1	HOLE CL	EAN OL	T FOR	PIEZOMETER	
	(ATAL)								
		l 			 				
			<u> </u>		G TES	<u> </u>		<u></u>	_
Section	Tested	Gauge	Pressure	at Test in	tervals, (psi)			
Depth Top	Depth Bottom	Start	5 secs.	30 secs.	45 sacs.	60 secs.		REMARKS	
56	135	51.5	49.0	47.5	46.5	46.0		1111. 36010 mins. 3301	_
56	135	41	38	37	36.5	36	37@ 5mi	N./30@10mm/28@1	15
	HOLE	AVEC	BELOW	60' AS	ORILL	ROCS	WERE	REMOVEO	
							<u> </u>		
		<u> </u>				1			_
						<u> </u>		•	,
			<u> </u>	<u> </u>		<u>}</u>		SHEET OF	

Field Water Pressure Test Boring No. 29-3

Job No. 83- 1140-56	Date THURSDAY 3-15-84
JOD METER PAIL PROJECT	Location FAINFIELD AVENILE, ADJACENT TO S/W SIDE OF HOLTWOOD
Water Table Elevation	Elev. of Pressure Gauge
Driller Harner Disuling Co. Tested by MA	RK. SCHLUTTER Depth of Hole126.0
Type of Packer MERHAMICAL NX FARMOR	
Remarks ALDENNU EIGY .: 502 . SWIVEL HER	HT 11.0 ACOVIL GRAVINO @ 50' TEST, 13'@ 86'
(REFTR TT PRISONEL TTOT GETUP FIGURE)	

				FLOV	V TEST	Γ		
Section	Tested	Prassure	Water	Meter R	eadings	Duration	Flow	REMARKS
Depth Top	Depth Bottom	(psi)	Start	End	Total Gais. Water Used	of Test (min.)	(gpm)	
50	126	20	10:02:20	10:12:30 3990	0	10	0	SWIND HAGHT : !!
50'	126	3211	10:18:20 3991	10:28:20 4001.1	10.1	10	/	SWIVEL HEIGHT II' EQUIVILANT INTAKE DATH MINUTE
EN	1216	5011	10135:10 4018	10:45:10 4031.1	13.1	10	1.31	SWITTEL HEIGHT II' EQUIVILANT INTAKE EFRIH MINUT
			AVERAGE					
<u> </u>			13:08:00	13:18:00	·2508 (.(7)		(0)007	SWIVEL NEIGHT +/3'
32	126	44±3	4128.5	4122.75	(.17)	10	(0),0.017' NO TAKE	DOUGLE PACKES SET OBG SLIGHT LOAKAGE-1,3CUFS
84	126'	67±3	13:28:00	4129,79	·08-0.B (0)	10	(O) NO TAKE	SWIVE HEGHT 13' 1.3 Mg
86	126'	8513	13:42:00 4131:0	13:52:00 4127.0	6.0-0.18 5.82	10	0.58	SWIVEL HEIGH 13' SLIGHT LEAKAGE BOURS
			H	OLDING	G TES	ST		
	n Tested	Gauge	Pressure 1	at Test In	tervals, (1	<u>psi}</u>	-	REMARKS
Depth Top	Depth Bottom	Start	15 secs.	30 secs.	45 secs.	60 secs.		
50	12/5	50±	49	47	46	45	3895m	IN. 33.80 10 MIN. 31 @ 15m
50	126	40=	39.5	39	38.5	28	32@5m	IN. 29 @ 10min., 27.5015m
50'	1216	22	22	22	22	22	22@5m	IN. 21 @ IDMIN, 20@15m
	<u> </u>							
	1		1	1			1	

SHEET 1 OF 2

Field Water Pressure Test Boring No.

Water Ta	ble Eleve	1tion 	_ Tested	by the ht - ht - ht - ht - ht -	In TLL	$\frac{Hr}{i} = De$	pth of H	tautore best ole 442 Inti a 1011 Envirtion konnute
					V TESI			
Depth	Tested Depth	Pressure (psi)	Water Start		Readings Total Gals. Water Used	Duration of Test (min.)	Flow (gpm)	REMARKS
Top	Bottom	55	18.2		D.9	10.0	12 c.	Terr - indiana, I
<u>, 10</u>	****	<u> </u>	1 set			1	'	0.9721 HA
								In IE MAN
								pin and applicate
		<u> </u>						Employ allow
								" Lale spen Tight
								1. Male Mapy Tight 10 TERE - Sire
		<u> </u>						That truth Hall
								James Harry
								JOS WE
: 70	410		78.8	78.7	-0.1	15 mg	0	1"An TELF
: .7.5	112	ên	28.7	22.7	1.0	12	0	"BAN TALF"
			н	OLDING	G TES	T		
Section	Tested	Gauge			tervals, (psi)		
Depth Top	Depth Bottom	Start	15 secs.	30 secs.	45 secs.	60 secs.	15 Min	REMARKS
370			0.5			20	1	
370	44.	1-5	60	-1 7	1e	40	7=	
2.70	442	80	78	67	59		21	
								ł
—	<u> </u>							

SHEET____OF_

Field Water Pressure Test Boring No. 32-2

Job No. 2 11412-56	Date4.5-84
Job	Location _ BORING 32-2
Water Table Elevation <u>613</u>	Elev. of Pressure Gauge
	JRS Depth of Hole 471.0
Type of Packer	
Remarks	•

				FLOW	V TEST	Г		
Section	n Tested	0	Water	Meter R	leadings	Duratian	Flow	
Depth Top	Depth Bottom	Pressure (psi)	Start	End	Total Gals. Water Used		(gpm)	REMARKS
100		20	51	57	6	5 min	1.2 spin	
		40	00	55	55	4 min	13 75-1m	mar, pressure
Zien	ι,,	60	61	75	14	5 min	Z. 8 -	
400	47	20	77	83	6	5-20-	1.2 50m	sobal, rod loin
	<u> </u>						 	
	<u> </u>		<u> </u>	OLDING	S TES	ST		
Sectio	n Tested	Gauge	Pressure	at Test In	tervals, (psi)		
Depth Top	Depth Bottom	Start	15 secs,	30 secs.	45 secs.	60 secs.		REMARKS
400	471	20	50	44	40	37	PHELOR	<u></u>
							1200)	LI-MIGARA
		<u> </u>					<u> </u>	

SHEET OF

Field Water Pressure Test Boring No. 33-1

Job No. 82-1140-56	Date May 8/9, 1984
JOB METER RAIL PROJECT	Location 3641 MULTVIEW DRIVE
Water Table Elevation	
Driller FITCH > DENUMA Co. Tested by MA	
Type of Packer METHANICH NY PACKE	
Remarks . PEVERT ADDITIVE USED TO DRILL AD	T BORINIK, HOLE REPEATEDLY CAVED REPEATED DIFFICULTIES
"STATING FACTORIES ACLED 1/2 SALLAND OF BLOACH	TO BREAK DON'T PEVERT, PLUSHED HOLE PRIOR TO TESTAY

Section	n Tested		Water	Meter F	Readings	Duration	Flow			
Depth Top	Depth Bottom	Pressure (psi)	Start	End	Total Gals. Water Used	of Test (min.)	(gpm)	REMARKS		
210	3/01.5	25	4905.0	4905.2	n.2	10	0.02	NO TAKE **		
210	361.5	57±3	10:17:04 4907.1	10:27:00	2)	1D	0.3			
210	3101.5	100=10	10:50:00 1917.7.	11:00:00 4943.0	25.8	10	2.58			
			H	OLDIN	G TES	Т				
Sectio	n Tested	Gauge	Pressure	at Test In	tervals, (psi)		DEMARKA		
Depth Top	Depth Bottom	Start	15 secs.	30 secs.	45 secs.	60 secs.	<u> </u>	REMARKS		
210	361.5	24	24	23	22	<u> </u>	18.5 0	SMIN.		
210	361.5	57	53	50	48.5	46	3605 min. /31 010 min. /27@1			
210	361.5	100	96	93	89.5	87.5	69 @ 5 mi	N. 58 @ 10 min. 50.53		
				<u> </u>						
			·		<u> </u>					

i ni

Appendix B

Geophysical Exploration

APPENDIX B GEOPHYSICAL EXPLORATION

B.1 DOWNHOLE SURVEY

B.1.1 Summary

Downhole shear wave velocity surveys were performed in Borings CEG-31 and CEG-34 for Design Unit A410. Measurements were made at 5-foot intervals from the ground surface to depths of 195 feet. A description of the technique and a summary of the results are attached.

B.1.2 Field Procedure

Shearing energy was generated by using a sledge hammer source on the ends of a 4-by-6-inch timber positioned under the tires of a station wagon, tangential to the borehole. A 12-channel signal enhancement seismograph (Geometrics Model ES1210) allowed the summing of several blows in one direction when necessary to increase the signal-to-noise ratio. Shear waves were identified by recording wave arrivals with opposite first motions on adjacent channels of the seismograph.

B.1.3 Data Analysis

For the purpose of illustration, typical wave arrival records from a downhole geophysical survey are reproduced in Figure B-1. The timing line shows a 20 millisecond (MS) break at the end of the record, indicating that each vertical line is 10 MS. The time of the first arrivals of compressional shear energy is indicated by P and S, respectively. Wave arrival records similar to Figure B-1 were analyzed to estimate wave travel times and velocities for CEG-31 and CEG-34.

B.1.4 Discussion of Results

Downhole velocities are summarized in Table B-1.

The error analysis performed for these surveys involved a least squares fit of these data by estimating the mean of the slope (\overline{V}) in Table B-1 and the standard deviation of this estimate of the slope. This estimate of the standard deviation was combined with an estimate of the overall accuracy to produce the best estimated velocity (V*). Vp* are the values to be used for studies of the response of these sites. N is the number of data points used for the straight line fit for each velocity estimate.

For CEG-31, the near-surface shear wave velocity was found to be approximately 1300 feet per second. To depths of about 115 feet, shear wave velocity estimates generally increased to 5000 feet per second.

CEG-34 had a near-surface shear wave velocity of about 800 feet per second. At a depth of 195 feet, the shear wave velocity was approximately 1400 feet per second.

B.2 CROSSHOLE SURVEY

B.2.1 Summary

Crosshole measurements for the determination of seismic wave velocities were performed in Boring CEG-34 The crosshole technique for determining shear wave velocities of in-situ materials was utilized in a three-borehole array. The array consisted of boring CEG-34 and two additional holes (34-A and 34-B) drilled approximately 15 and 30 feet away. All boreholes were drilled to a depth of 100 feet. Compressional wave and shear wave velocities are presented in Table B-2.

B.2.2 Field Procedure

The shear wave hammer is placed in an end hole of the array, and vertical geophones are placed in the remaining two boreholes. The shear wave generating hammer and the two geophones are lowered to the same depth in all boreholes. The hammer is coupled to the wall of the hole by means of hydraulic jacks, and the geophones are coupled by means of expanding heavy rubber balloons which protrude from one side of the geophone housings. The hammer is then used to create vertically polarized shear waves with either an up or down first motion. A 12-channel signal enhancement seismograph with oscilloscope and electrostatic paper camera is used as a signal storage device. Seismic wave velocity determinations were made at 5-foot intervals from 10 feet below ground surface to a depth of 100 feet.

B.2.3 Data Analysis

For the data analysis actual crosshole distances were determined to within ± 0.01 feet. These distances were computed between each of the three boreholes at the elevations of shear measurements. From the crosshole records (seismograms), the travel times for both compressional and shear wave arrivals at each borehole and at each depth were measured. Shear wave arrivals were identified by the reversed first motion on the seismograms. Compression and shear wave estimates were based on the wave arrival records.

B.2.4 Discussion of Results

The shear wave velocity (V_s) is equal to the difference in travel path distance from the shear source to each geophone divided by the difference in shear wave arrival times. The results of the compressional and shear wave velocity analyses are shown in Table B-2. It should be noted that compression wave velocities below the ground water table may be masked by the compression wave response of the water (V_c = 5000 fps) particularly in highly porous materials.

BORING	0EPTH		COMPI	RESSIO	NAL WA	VE	SHEAR WAVE				
No.	(ft)	ν̈́р	σρ	Ep	Np	Vp*	- Vs	σs	Es	Ns	Vs*
31	15- 30	3922	1253	196	5	3922±1450	1273	333	64	4	1270±400
	30-115	8788	1195	439	17	8790±1630	4842	190	240	18	4840±215
34	10- 35	1100	24	55	6	1100±80	807	31	40	5	810±70
	35-195	6243	541	312	31	6240±760	1412	142	71	24	1410±210

TABLE 8-1 DOWNHOLE VELOCITIES

 $\vec{V}p$ = mean estimate of compressional wave velocity.

 $\vec{V}s$ = mean estimate of shear wave velocity.

σp = standard deviation of estimated compressional wave velocity.

 σ s = standard deviation of estimated shear wave velocity.

Ep = estimated accuracy of compressional survey.

Es = estimated accuracy of shear survey.

Np = number of points used for straight line fit of compressional wave.

Vp* = overall accuracy of compressional wave velocity estimate.

Vs* = overall accuracy of shear wave velocity estimate.

Ns = number of points used for straight line fit of shear wave velocity data.

BORING	DEPTH		COMPI	RESSIO	NAL WA	V <u>E</u>		ę	SHEAR 1	WAVE	
No.	(ft)	Vр	σρ	Ep	Np	Vp*	- Vs	σs	Es	Ns	Vs*
34	10	1120	51	56	14	1120±110	830	14	41	16	830±60
	15	1240		120		1240±120	744	4	37	6	740±40
	20	<u> </u>		_	_		634	5	32	6	630±40
	25	1252	8	63	4	1250±70	673	14	34	8	670±50
	30	2900		290		2900±290	793	10	40	19	790±50
	35	2322	132	116	3	2320±250	799	5	40	9	800±50
	40	3570	81	179	8	3570±260	810	2	41	24	810±40
	45	3630	158	161	3	3630±340	841	28	42	9	840±70
	50	5096	165	255	14	5100±420	1033	11	52	12	1030±60
	55	6048	0	301	4	6050±300	1140	15	57	3	1140±70
	60	5818	137	291	16	5820±430	1164	15	58	10	1160±70
	65		<u></u>		_		1109	14	55	4	1110±70
	70	6291	260	315	6	6290±570	1147	9	57	11	1 150± 70
	75	5446	310	272	-4	5450±580	1260		126	2	1260±130
	80	5930	160	207	8	5930±460	1237	13	62	18	124 0± 80
	85	5100		510	1	5100±510	1536	161	77	4	1540±240
	90	6156	1061	308	6	6160±1370	1245	49	62	12	1250±110
	97	5757	138	288	9	5760±430	1333	37	67	18	1330±100

TABLE B-2 CROSSHOLE VELOCITIES

 \bar{V}_{p} = mean estimate of compressional wave velocity.

 $\bar{V}s$ = mean estimate of shear wave velocity.

 σp = standard deviation of estimated compressional wave velocity.

 σ s = standard deviation of estimated shear wave velocity.

Ep = estimated accuracy of compressional survey.

Es = estimated accuracy of shear survey.

Np = number of points used for straight line fit of compressional wave.

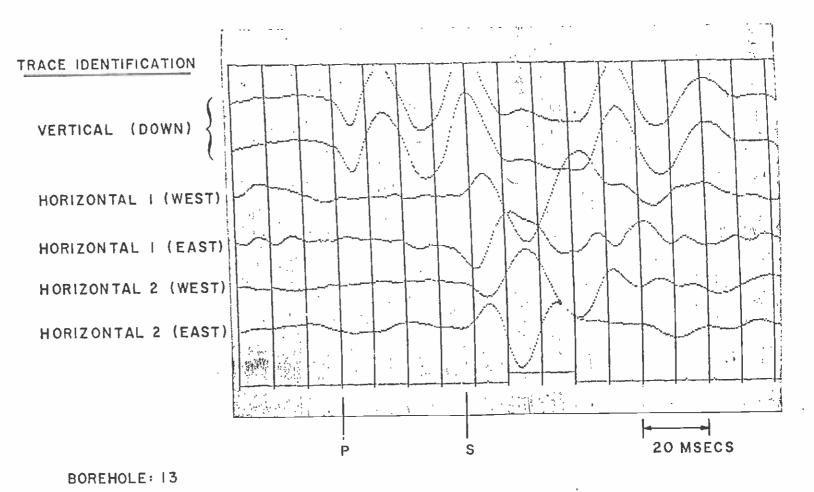
Vp* = overall accuracy of compressional wave velocity estimate.

Vs* = overall accuracy of shear wave velocity estimate.

Ns = number of points used for straight line fit of shear wave velocity data.

Approved for publication 4/84 by JPH

Converse Consultants Geotechnical Engineering and Applied Sciences


83-1140

Project No.

Figure No.

DESIGN UNIT A410 Southern California Rapid Transit District METRO RAIL PROJECT

DOWNHOLE SAMPLE RECORD

DEPTH: 70 FT

B-1

Appendix C

Geotechnical Laboratory Testing

APPENDIX C GEOTECHNICAL LABORATORY TESTING

C.1 INTRODUCTION

This appendix presents laboratory geotechnical tests performed on selected soil and bedrock samples obtained from the borings drilled within the A410 alignment.

The soil tests performed may be classified into two broad categories:

- Index or identification tests which included visual classification, grain-size distribution, moisture content, and unit weight testing;
- Engineering properties testing which included unconfined compression, direct shear, and permeability.

The following subsections provide general descriptions of the laboratory testing procedures. Laboratory test data are presented in the form of summary tables, summary plot figures, and individual test plot figures which follow the text.

C.2 INDEX AND IDENTIFICATION

C.2.1 Visual Classification

Field classification was verified in the laboratory by visual examination in accordance with the unified Soil Classification System and ASTM D-2488-69 test method. When necessary to substantiate visual classifications, tests were conducted in accordance with the ASTM D-2478-69 test method.

C.2.2 Grain-Size Distribution

Grain-size distribution tests were performed on representative samples of the geologic units to assist in the soils classification and to correlate test data between various samples. Sieve analyses were performed on that portion of the sample retained on the No. 200 sieve in accordance with ASTM D-422-63 test method. Combined sieve and hydrometer analyses were performed on selected samples which had a significant percentage of soil particles passing the No. 200 sieve. Results of these analyses are presented in the form of grain-size distribution or gradation curves on Figures C-5 through C-9.

It should be noted that the grain-size distribution tests were performed on samples secured with 2.42- and 2.87-inch ID samplers. Thus, material larger than those dimensions may be present in the natural deposits although not indicated on the gradation curves.

C.2.3 Moisture Content

Moisture content determinations were performed on selected soil samples to assist in their classification and to evaluate ground water location. The testing procedure was the ASTM D-2261 test method. Test results are presented on Table C-1.

C.2.4 Unit Weight

Unit weight determinations were performed on selected undisturbed soil samples to assist in their classification and in the selection of samples for engineering properties testing. Samples were generally the same as those selected for moisture content determinations.

The test procedure entailed measuring specimen dimensions with a precision ruler or micrometer. Weights of the sample were than determined at natural moisture content. Total unit weight was computed directly from data obtained from the two previous steps. Dry density was calculated from the moisture content found in Section C.2.4 and the total unit weight. Results of the unit weight tests are presented as dry densities on Table C-1.

C.3 ENGINEERING PROPERTIES: STATIC

C.3.1 Direct Shear

Direct shear tests were performed on selected undisturbed soil samples using a constant strain rate direct shear machine.

Each test specimen was trimmed, soaked and placed in the shear machine, a specified normal load was applied, and the specimen was sheared until a maximum shear strength was developed. Fine-grained samples were allowed to consolidate prior to shearing. The maximum developed shear strengths are presented on Table C-1

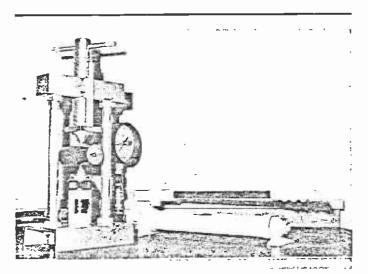
Progressive direct shear tests were performed on selected undisturbed samples of coarse-grained material. After the soil specimen had developed maximum shear resistance under the first normal load, the normal load was removed and the specimen was pushed back to its original undeformed configuration. A new normal load was then applied, and the specimen was sheared a second time. This process was repeated for several different normal loads.

C.3.2 Unconfined Compression

Unconfined compression tests were performed on selected samples of sandstone/ conglomerate, siltstone and basalt bedrock from the test borings for the purpose of evaluating the unconfined strength. Results of the unconfined compression tests are presented on Table C-2 and on the summary plots of Figures C-1, C-2 and C-3.

C.3.3 Permeability

Permeability tests were performed on undisturbed specimens. Permeability was measured by applying a differential pressure to the ends of the sample and measuring the resulting flow. Results of the tests are tabulated on Table C-1.



C.3.4 Point Load Strength Tests

Point load strength tests were performed on selected NX-size (2± inches in diameter) cores obtained from borings at the following time frames:

- During drilling operations Borings 32-1 (partial) and 32-2 (partial)
- ^o <u>Few days to one month after drilling</u> -Borings 29-1, 29-2, 29-3, 31-2, 31-3, 31-4, 31-5, 32-1 (partial, 32-2 (partial), 33-1 and 33-2
- <u>Two years after drilling</u> -Borings CEG-32, CEG-32A and CEG-33.

Point load tests were performed with Soil Test, Inc., "Rock Point Load Tester", Model RM-730. The 10,000-pound capacity apparatus is a hydraulic ram with 2 1/8-inch stroke and hand pump mounted in a rigid frame (see example below).

Rock Point Load Tester

Portable unit to determine Strength Index Log of unprepared rock cores. Specifications

Ram.	5 ton; hydraulic.
Pump.	Manual: hydraulic.
Sample Size.	4" diam, maximum.
Gauge	Calibrated in lbs. force and kg force, 10,000 lb. and 5000 kg capacity
Models RM-730,	
Weights Net 56 lbs. (2	25.4 kg), Shpg. 70 lbs. (31.8 kg).

Our 2-inch diameter NX cores were loaded horizontally (all tests were diametral point load tests) between pointed platens, with provisions for measuring the load P and distance D between the two platen contacts. The

distance D used in calculating the strength index, defined as the distance between platen points at the moment of failure, equals the distance at the start of the test only if the specimen is hard and platens do not penetrate into the specimen. For hard rocks, an initial reading of D is sufficiently accurate. For softer rocks where contact penetration occurred before failure of the specimen, the correct distance D was measured between penetration points after failure.

The diametral strength index $(Id = P/D^2)$ was obtained. The diametrical strength index (DSI) was converted to unconfined compressive strengths by multiplying by a factor of 25 (Bieniawski, 1975). The results of point load tests are presented on Table C-2 and on the summary plot of Figure C-4.

A few selected point load tests were performed on "very hard" rock fragments and cobbles that were embedded in a "friable" to "low hardness" matrix; i.e., irregular-shaped basalt fragments, cobbles and irregular-shaped quartzite fragments. Although the occurrence of "very hard" rocks is not believed to be pervasive, the results indicate a wide range of strengths within the Topanga formation.

TABLE	C-1	LAB	ORATORY TEST DATA	FOR A	LUVIL	IM AND	LOW HARDNES	6 ROCK*								
BORING No.	SAMPLE No.	DEPTH (ft)	VISUAL CLASSIFICATION	GEOLOGIC UNIT	DRY DENSITY (pcf)	끉 MOISTURE CONTENT (%)	TT ATTERBERC LIMITS	Kv, COEFFICIENT OF PERMEABILITY (cm/sec) (Confining Pressure, psi)	DIRECT S STRENGT ENVELOPE Ø, deg	1	ONE-DIMENSIONAL SWELL (%) (Normal Load, ksf)	SWELL PRESSURE (ksf)	SIEVE ANALYSIS	HYDROMETER ANALYSIS	OEDOMETER	TRIAXIAL COMPRESSION
29-1	1	3	Silty Sand	A ₁	107				30.0	0.50						<u>.</u>
	2	9	Sand	A	117	10			33.5	0.55						
	3	13	Gravelly Sand	A ₁	118	10 20	<u></u>		38.5	0.15						
	5	19	Silty Clay	A ₂	105											
	7	26	Sandy Clay	A ₂	104	20	<u> </u>									
	NX	43	Clayey Siltstone	Tt	115	17										
	NX	57	Sandy Claystone	Tt	-	-							X	X		
	NX	76	Sandy Claystone	Tt		-							X			
	NX	80	Sandstone	Tt	141	6							_X	<u> </u>		
	NX	83	Sandstone	Tt	-	-								<u> </u>		
	NX	88	Clayey Sandstone	Tt	-	-							X	<u> </u>		
29-2	1	3	Silty Clay	A_2	97	22			18.5	0,75		*				
	2	8	Silty CLay	<u>A</u> 2	103	20										
	3	13	Silty Clay	A_2	110	$\frac{6}{10}$										
	NX	63	Sandy Claystone	Tt	133	10						·				
	NX	67	Silty Claystone	Tt	-	_										
	NX	76	Silty Claystone	Tt	124	11								X		
	NX	88	Clayey Siltstone	Tt	126	9							X	<u> </u>		_
	NX	92	Sandy Claystone	Tt	_	_							<u>x</u>			_

ł.

*For unconfined compression test results in the "low hardness" and "hard" rock, see Table C-2.

TABLE	C~1	LAB	ORATORY TEST DATA	FOR /	ALLUVIU	JM AND	LOW HARDNESS	S ROCK*			_				
BORING No.	SAMPLE No.	DEPTH (ft)	V I SUAL CLASS I FICATION	GEOLOGIC UNIT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	TT ATTERBERC LIMITS	Kv, COEFFICIENT OF PERMEABILITY (cm/sec) (Confining Pressure, psi)	DIRECT SHEAR STRENGTH ENVELOPE ǿ, deg c, ksf	ONE-DIMENSIONAL SWELL (%) (Normal Load, ksf)	SWELL PRESSURE (ksf)	SIEVE ANALYSIS	HYDROMETER ANALYSIS	OEDOMETER	TRIAXIAL COMPRESSION
29-3	1	5	Sandy Clay	$\overline{A_2}$	110	15									
	NX	53	Silty Sandstone	Tt	123	12									
	NX	70	Silty Sandstone	Tt	-	_						<u>x</u>	X		
	NX	B2	Sandstone	Tt	131	5									
	NX	86	Sandstone	Tt	-								<u> </u>		
	ΝX	107	Sandy Claystone	Tt	-	_							X		
33-1	PB1	57	Clayey Sand	A ₁	96	28		3×10 ⁻⁷					<u> </u>		
	PB2	65	Silty Sand	<u>A</u> 1	96	29									
	PB3	67	Organic Silt	<u>A</u> 2	84	39		3.3×10 ⁻⁶					<u> </u>		
	1	5	Sandy Clay	A_2	104	10									,
	2	10	Silty Clay	A_2	103	20									
	NX	256	Silty Claystone	Tt	_	_					•		X		
33-2	NX	60	Silty Claystone	Tt	_	_							<u> </u>		
	NX	110	Silty Claystone	Tt	120	12									
	NX	120	Sandy Claystone	Tt	-	-						X	X		

ł.

*For unconfined compression test results in the "low hardness" and "hard" rock, see Table C-2.

	BASIC BEDROCK TYPE	BORING	DEPTH (ft)	UNCONFINED COMPRESSIVE STRENGTH (psi)	ESTIMATED UNCONFINED COMPRESSIVE STRENGTH FROM POINT LOAD TESTS* (psi)
	Siltstone/Claystone	29-1	19	21	
			26	7	
			48	7	
			53	7	
			57	14	
			60	7	
			64	69	
			70	7	
			72		20
			73	14	
			76	28	
UNNEL GRADE ±	* * * * * * * * * * * * * * * *	* * * *	80	375	
	Siltstone/Claystone		83	458	
			85	299	
			86		170
			88	118	
			90		210
			93	28	
			95	7	
			102	264	
			104	14	
			109	187	
			115	62	
			117	21	

TABLE C-2 - UNCONFINED COMPRESSION & POINT LOAD TESTS ON NX CORES

*Estimated strength based on 25 times the Point Load Diametral Strength Index (Bieniawski, 1975)

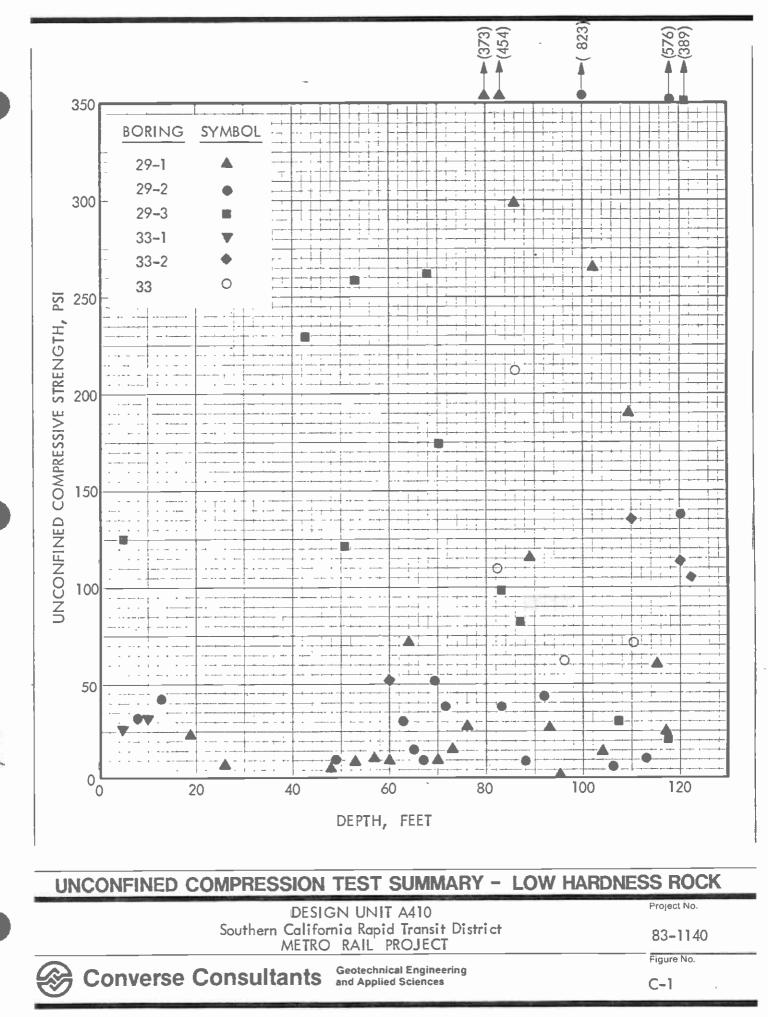
	BASIC BEDROCK TYPE	BORING	DEPTH (ft)	UNCONFINED COMPRESSIVE STRENGTH (psi)	ESTIMATED UNCONFINED COMPRESSIVE STRENGTH FROM POINT LOAD TESTS* (psi)
	Siltstone/Claystone	29-2	8	35	
			13	42	
			48	14	
			63	28	
			65	14	-
			67	14	
			70	55	
			72	42	
	Siltstone/Claystone		83	35	
			85		60
FUNNEL GRADE $\pm \rightarrow -$	›	$\rightarrow \rightarrow \rightarrow \rightarrow$	88	7	
			90		20
	Siltstone/Claystone		92	42	
			95	4715	
			107	7	
			113	14	
			118	576	
			120	139	

	BASIC BEDROCK TYPE	BOR ING	DEPTH (ft)	UNCONFINED COMPRESSIVE STRENGTH (psi)	ESTIMATED UNCONFINED COMPRESSIVE STRENGTH FROM POINT LOAD TESTS* (psi)
	Siltstone/Claystone	29-3	5	125	
			42	229	
			51	125	
			53	257	
			59		625
			64	549	
			66		2800
			68	264	
			70		2800
			71	174	
TUNNEL GRADE ±	* * * * * * * * * * * * * * * *	$\rightarrow \rightarrow \rightarrow \rightarrow$	78		750
	Siltstone/Claystone		82	97	
			85		675
			86	83	
			97		7800
			98	1437	
			100		675
			107	35	
			109		675
			117	21	
			120	389	

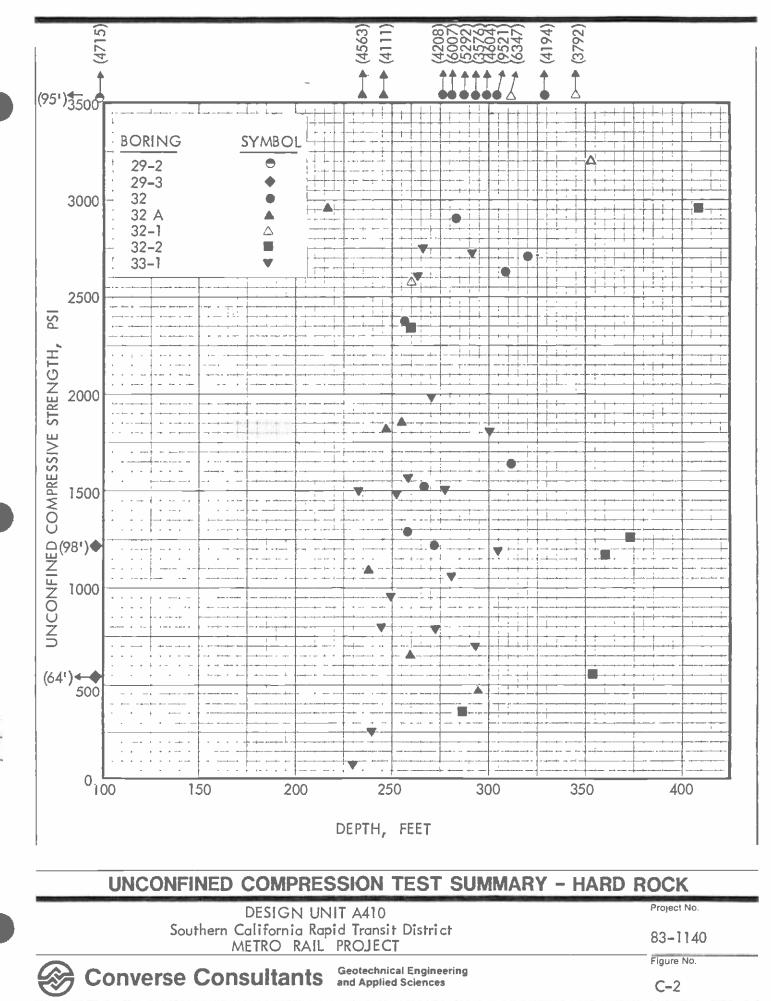
	BASIC BEDROCK TYPE	BOR I NG No ,	DEPTH	UNCONFINED COMPRESSIVE STRENGTH (psi)	ESTIMATED UNCONFINED COMPRESSIVE STRENGTH FROM POINT LOAD TESTS* (psi)
	Basalt	31-2	43	1465	
			54	792	
			55		1900
HOLLYWOOD BOWL STATION	ightarrow $ ightarrow$ $ ig$	$\rightarrow \rightarrow \rightarrow$	65	1778	
			66		3200
			68	1667	
			71	1694	
			74		4800
	Basalt	31-3	56	479	
			61	847	
			62		1400
			65	2222	
			67	1861	
HOLLYWOOD BOWL STATION	ightarrow $ ightarrow$ $ ig$	$\rightarrow \rightarrow \rightarrow$	69		11,100 (unfractured)
		•	70	1694	
			73	986	
			74	1861	
			75		400
			76	340	·
			77		8200
			79	2535	

	BASIC BEDROCK TYPE	BOR I NG	DEPTH (ft)	UNCONFINED COMPRESSIVE STRENGTH (psi)	ESTIMATED UNCONFINED COMPRESSIVI STRENCTH FROM POINT LOAD TESTS* (psi)
	Basalt	31-4	68	1243	
			69	903	
			74	514	
			76	527	
			78	·	- 1100
			80	451	
HOLLYWOOD BOWL STATION		$\rightarrow \rightarrow \rightarrow$	84	424	
			85		1700
			87	1014	
			89	1972	
			90		500
			93	736	
			96	1778	
	Basalt	31-5	101		800
			102	1972	<u>.</u>
			104	986	
			105		1400
			107	2875	·
IUNNEL CRADE ± $\rightarrow \rightarrow \rightarrow$	* * * * * * * * * * * * *	$\rightarrow \rightarrow \rightarrow \rightarrow$	110	2792	
			111		2800
			117	3694	
			120	2507	
			122		5200
			125	4035	

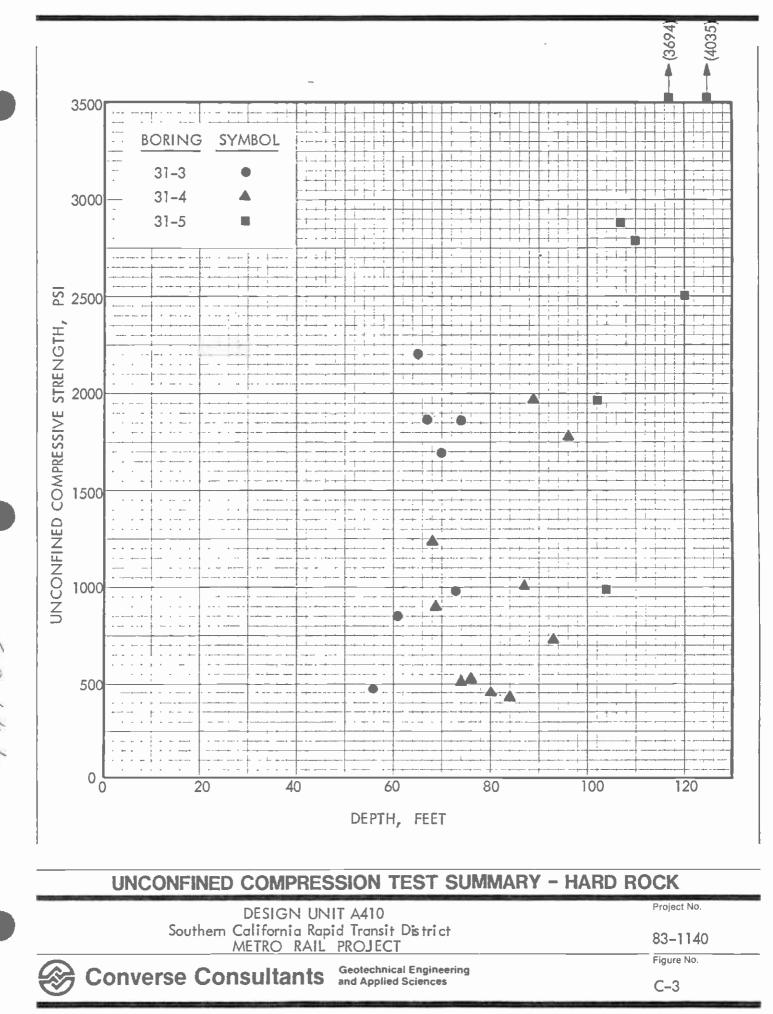
	BASIC BEDROCK TYPE	BORING	DEPTH (ft)	UNCONFINED COMPRESSIVE STRENGTH (psi)	ESTIMATED UNCONFINED COMPRESSIV STRENCTH FROM POINT LOAD TESTS* (psi)
	Basalt	32-1	260	2590	
			271		1880
			280		4600
			311	6347	
			344	3792	
			360	3701	
			368		1550
			389	3736	
			393	7639	10,900
TUNNEL GRADE ±	+ + + + + + + + + + + + + + + + + + +	\rightarrow \rightarrow \rightarrow \rightarrow	400	97.08	
			401		13,800
			404	9361	
			405	9236	
			406		26,100 (unfractured)
			407		12,500
			419		9,400
			420	3532	
			423		625
			424		35,600 (unfractured)
			430		950

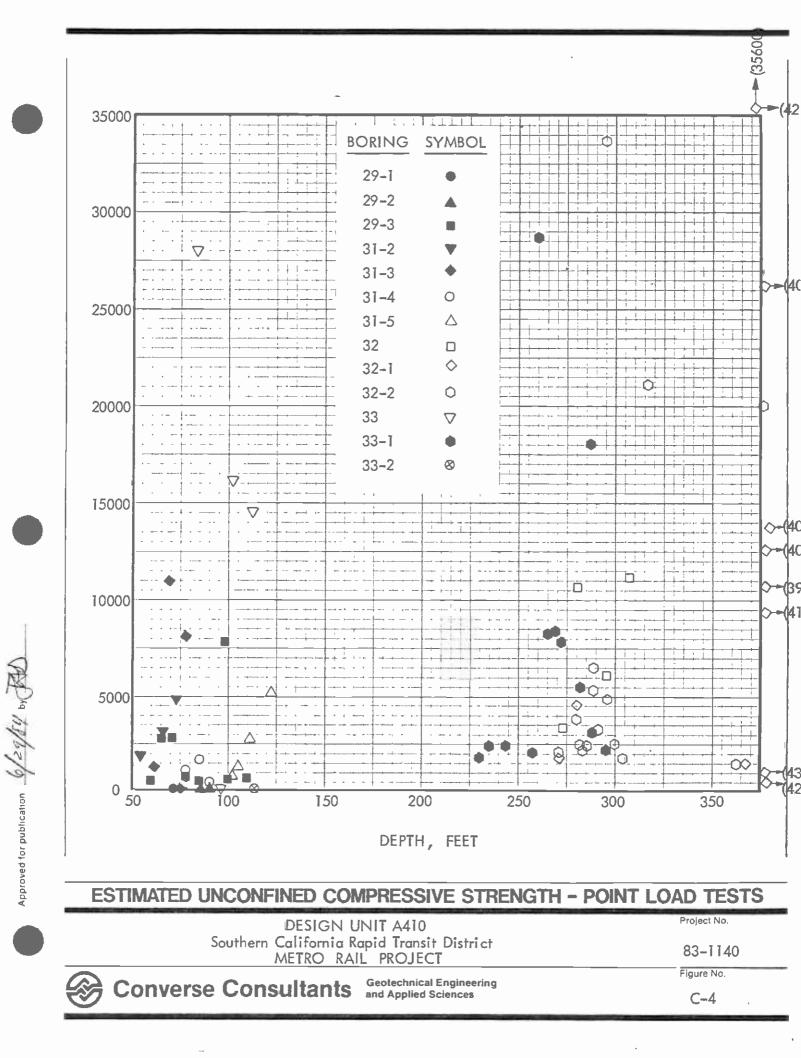

BASIC BEDROCK TYPE	BORING	DEPTH (ft)	UNCONFINED COMPRESSIVE STRENGTH (psi)	ESTIMATED UNCONFINED COMPRESSIVE STRENGTH FROM POINT LOAD TESTS* (psi)
Basalt (CEG-32	255	3268	
		258	1285	
		266	1521	
		272	1222	
		273		3400
		275	4208	
		280	6007	10,700 (unfractured)
Basalt		284	2903	
		288	5292	
$FUNNEL GRADE \pm \rightarrow $	* * *	293	3576	
		295		6100
		299	4604	
		305	9521	
		307		11,200 (unfractured)
		308	2625	
		312	1639	
		320	2708	
		329	4194	

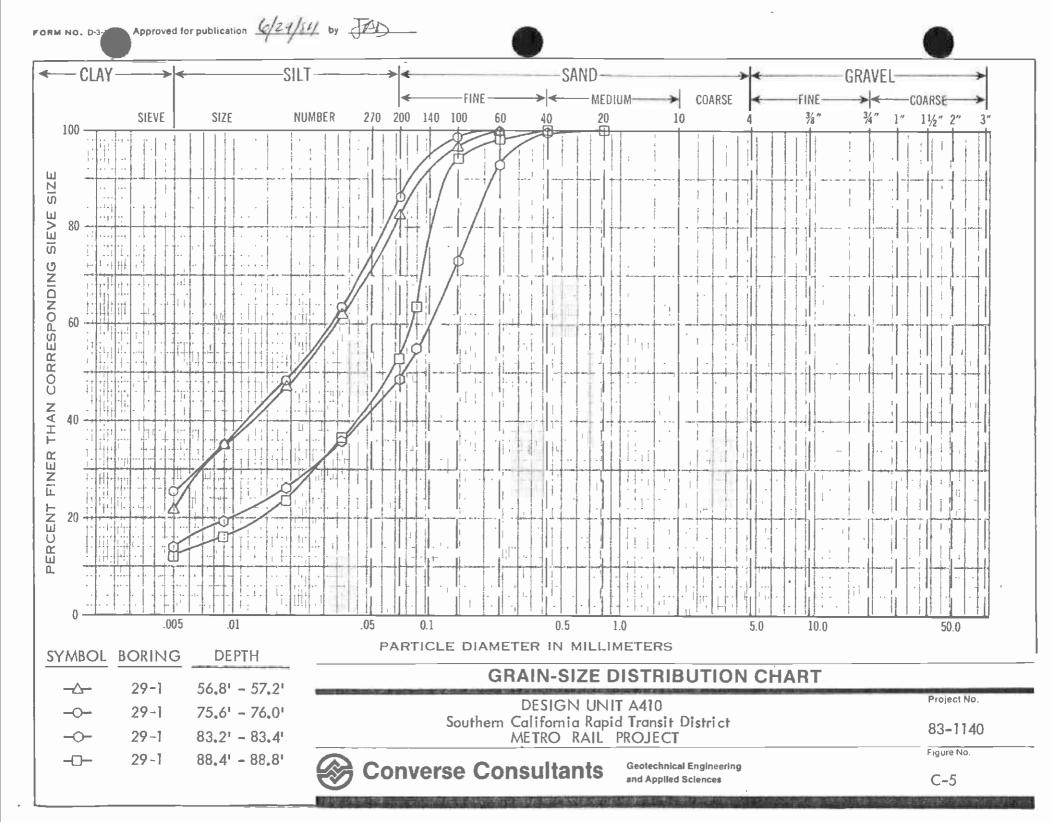
	BASIC BEDROCK TYPE	BORING	DEPTH	UNCONFINED COMPRESSIVE STRENGTH (psi)	ESTIMATED UNCONFINED COMPRESSIVE STRENGTH FROM POINT LOAD TESTS* (psi)
	Sandstone/Conglomerate	32-2	261	2333	
			270		1900
			280		3800
			282	•	2400
			283		2200
			282		2400
			286	354	
			288		5300
			289		6500
			290		33,600 (granite cobble)
ALL ABOVE TUNNEL GRADE	* * * * * * * * * * * *	+ + +	291		3350
			296		4800
			299		2500
			304		1800
			316		21,100 (granite cobble)
			353	549	
			360	1160	
			362		1400
			373	1257	
			394		19,900 (chert cobble)
	Basalt Dike		407	2965	

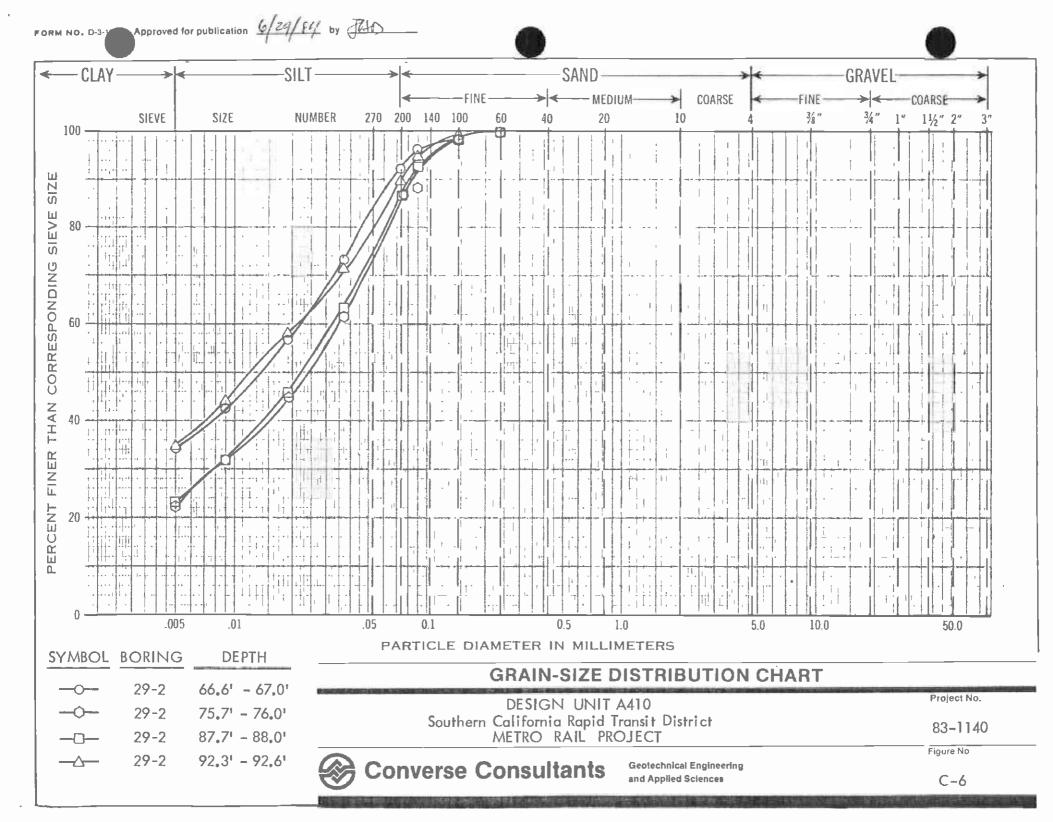

	BASIC BEDROCK TYPE	BORING	DEPTH (ft)	UNCDNFINED COMPRESSIVE STRENGTH (psi)	ESTIMATED UNCONFINED COMPRESSIVE STRENGTH FROM POINT LOAD TESTS* (psi)
	Sandstone/Conglomerate	CEG-32A	217	2951	
			238	1090	
			245	4111	
			247	1819	
			254	1847	-
FUNNEL GRADE ±	* * * * * * * * * * * * * * * * * * *	$\rightarrow \rightarrow \rightarrow \rightarrow$	260	653	
			295	472	
	Siltstone/Claystone/	CEG-33	82	110	
	Sandstone with Conglomerate interbeds		84		28,100 (quartzite)
			86	212	
			96	63	
TUNNEL GRADE \pm \rightarrow	\rightarrow	$\rightarrow \rightarrow \rightarrow \rightarrow$	97		118
			102		16,300 (conglomerate)
			110	71	
			112		14,600 (quartzite)

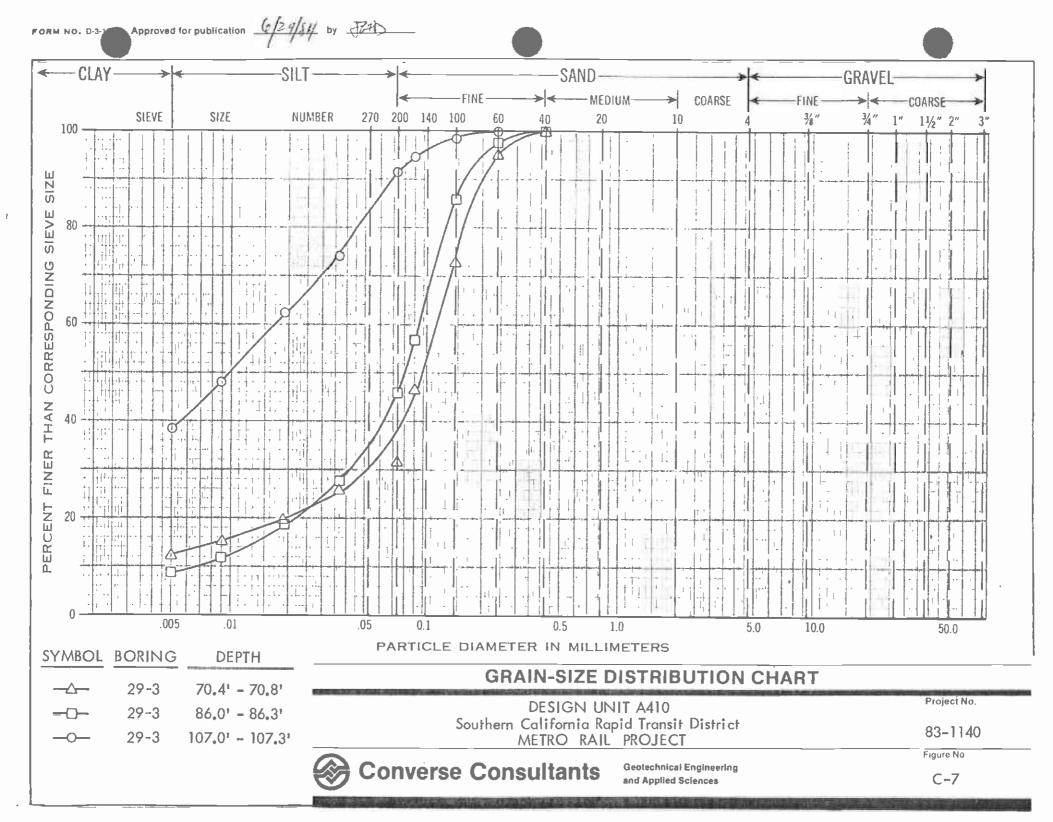
	BASIC BEDROCK TYPE	BORING	- DEPTH <u>(ft)</u>	UNCONFINED COMPRESSIVE STRENGTH (psi)	ESTIMATED UNCONFINED COMPRESSIVE STRENGTH FROM POINT LOAD TESTS* (psi)
	Sandstone/Siltstone	33-1	5	28	
			10	35	
			230	90	1800
			234	1500	
			235		- 2400
			240	257	
			244		2450
			245	799	
			250	951	
			253	1486	
			257		2100
			258	1555	
TUNNEL GRADE ±	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 	* * * *	260		28,700 (granite cobble)
			263	2604	
			265		8200
	Sandstone/Siltstone wit Conglomerate Interbeds	:h	266	2750	
	-		268		8300
			270	1986	
			273	778	7800
			277	1500	
			280		2500
			281	1063	
			283		5500
			287		18,000 (granite cobble)
			289		3100
			291	2729	
			293	701	
			295		2200
			300	1806	
			306	1194	

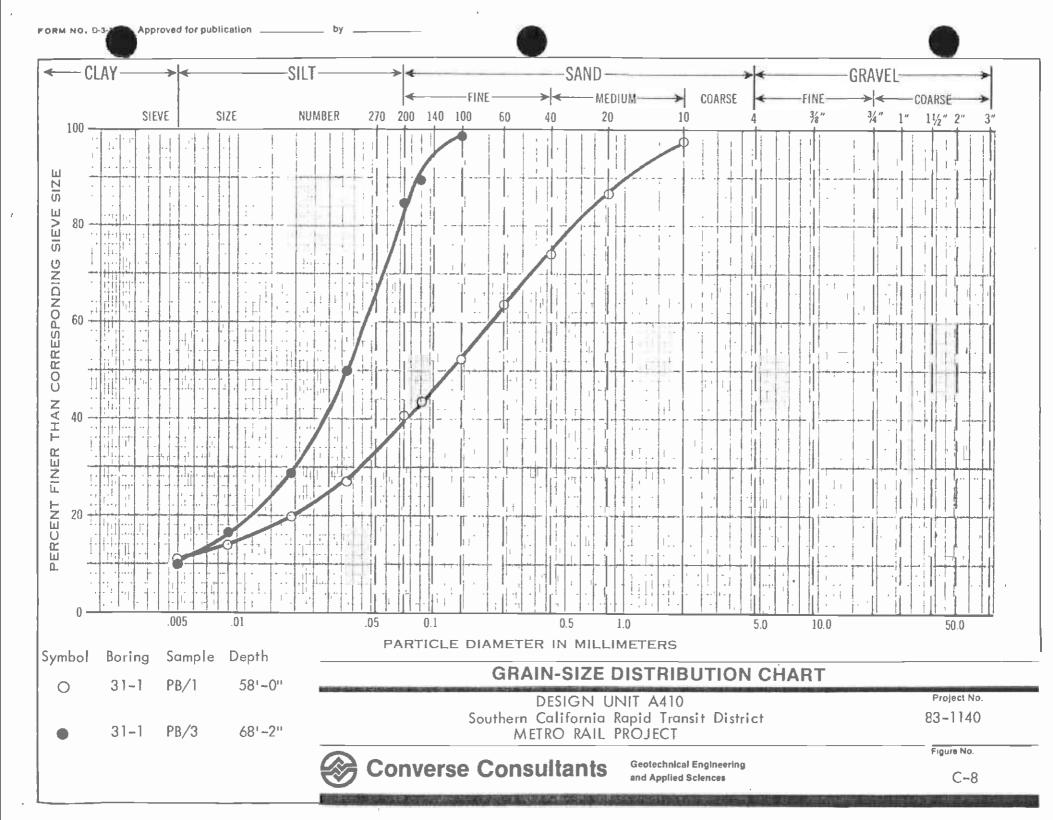

	BASIC BEDROCK TYPE	BOR I NG	DEPTH (ft)	UNCONFINED COMPRESSIVE STRENGTH (psi)	ESTIMATED UNCONFINED COMPRESSIVE STRENGTH FROM POINT LOAD TESTS* (psi)
	Sandstone/Siltstone	33-2	52		90
			60	49	
TUNNEL GRADE \pm	* * * * * * * * * * * * * * * * *	$\rightarrow \rightarrow \rightarrow \rightarrow$	91		250
			110	132	
			114		- 80
			120	111	
			122	104	

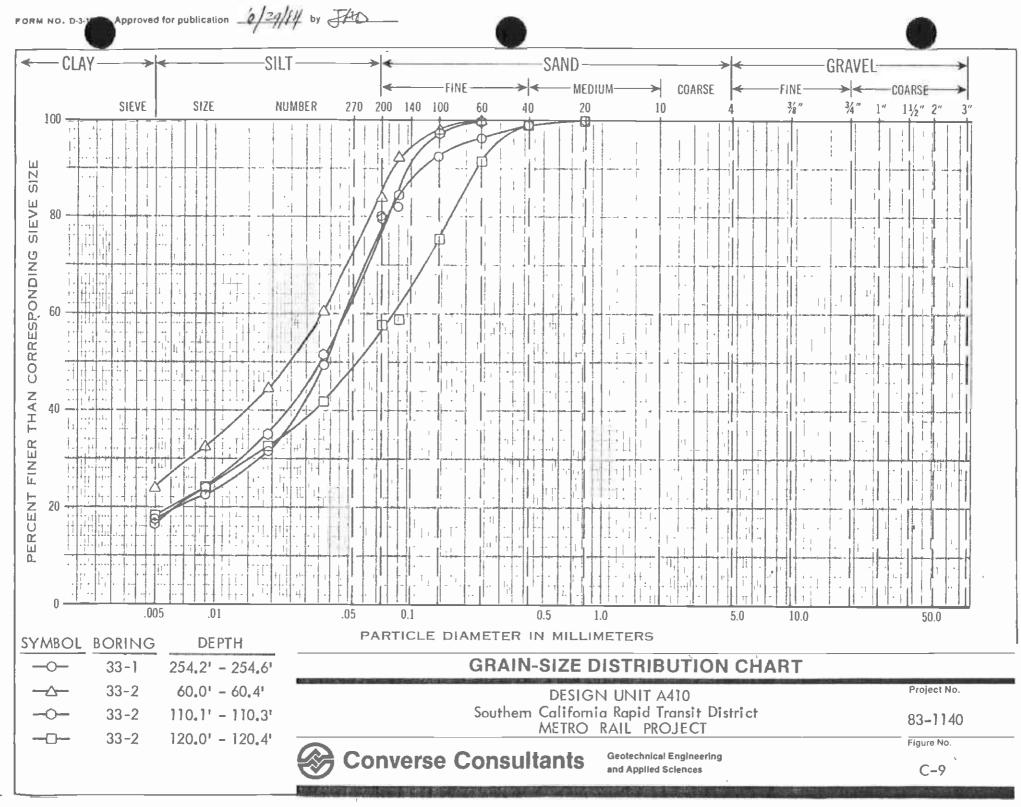

Approved for publication 1/29/60/ by 200




Approved for publication 6/29/6/ by By




Approved for publication 6/29/6:64 200



les.

Appendix D

Water Quality Analysis

APPENDIX D WATER QUALITY ANALYSIS

D.1 RESULTS

Water samples were taken from Borings CEG-29, CEG-30, CEG-31, CEG-32, CEG-32A and CEG-33 during the 1981 investigation and Borings 29-1, 29-2, 29-3, 30B, 33-1 and 33-2 during the 1984 investigation. The purpose was to evaluate water chemicals that could have significant influence on design requirements and to identify chemical constituents for compliance with EPA requirements for future tunneling activities. The chemical constituents tested are attached.

D.2 FIELD PROGRAM

The boreholes were flushed and established as piezometers. At a later date (often several weeks) the established piezometer holes were again flushed and cleaned out. Upon achieving a clean hole, water samples were collected with an air-lifting procedure from various depths within the borehole. The water samples were collected in sterilized one-quart glass containers which were properly identified and marked in the field. The water samples were delivered to both Jacobs Laboratories and Brown and Caldwell Consulting Engineers for testing.

Converse Ward Davis Dixon

Lab No. P81-03-017-6

No. Samples :	7
Sampled By :	Client
Brought By :	Client
Date Received:	3-3-81

. •

Sample labeled: HOLE 29

Conductivity: 8,220 µ mhos/cm Turbidity: . NTU		pH 8.0 @ 25°C pHs @ 60°F (15.6°C) pHs @ 140°F (60°C)
Cations determined:	Milligrams per liter (ppm)	Milli-equivalents per liter
Calcium, Ca Magnesium, Mg Sodium, Na Potassium, K	43 20 2,025 14	2.16 1.65 88.09 0.36 Total 92.26
Anions determined: Bicarbonate, as HCO ₃ Chloride, Cl Sulfate, SO ₄ Fluoride, F ⁴ Nitrate, as N	385 1,066 2,600 0.8 0.2	6.31 30.06 54.16 0.04 0.01
Carbon dioxide, CO ₂ , Calc. Hardness, as CaCO ₃ Silica, SiO ₂ Iron, Fe Manganese,Mn Boron, B	6 190 31 < 0.01 0.08 2.6	Total 90.58
Total Dissolved Minerals (by addition: HCO ₃ -> CO ₃)	5,996	

+

_

-ANALYSIS OF WATER SAMPLES FROM CONVERSE WARD DAVIS DIXON

Sample labeled: Hole 30		No. Samples : 4 Sampled By : Client Brought By : Client Date Received: 3-19-81
Conductivity: 880 µ mhos/cm Turbidity: NTU		pH 7.9 @ 25°C pHs @ 60°F (15.6°C) pHs @ 140°F (60°C)
Cations determined:	Milligrams per liter (ppm)	Milli-equivalents per liter
Calcium, Ca Magnesium, Mg Sodium, Na Potassium, K	41 17.5 142 2.1	2.05 1.44 6.18 0.05 Total 9.72
Anions determined:		
Bicarbonate, as HCO ₃ Chloride, Cl Sulfate, SO ₄ Fluoride, F ⁴ Nitrate, as N	283 29 202 0.96 2.5	4.64 0.82 4.21 0.05 0.04
		Total 9.76
Carbon dioxide, CO ₂ , Calc. Hardness, as CaCO ₃ Silica, SiO ₂ Iron, Fe Manganese, Mn Boron, B Total Dissolved Minerals,	5.2 187 32 0.42 < 0.05 1.14 620	
(by addition: $HCO_3 \xrightarrow{->CO_3}$)		

GENERAL MINERAL ANALYSIS*

٠

.

	BROWN AND CALDWEL CONSULTING ENGINEERS ANALYTICAL SERVICES DIVISION 373 SOUTH FAIR OAKS AVE. PASADENA, CA 91105 PHONE (213) 795-7553	L -	Log No. Date Sampled Date Received Date Reported	P83-02-162-3 2/23/83
	Converse Consultants 126 West Del Mar Avenue Reported To: Pasadena, CA 91105	· 	ŝ	000
cc.			Labra	tory Director

Sample Description	83-110	1-21	вн 30-в -24.5'			
Anions	Miligrams per liter	Milliequiv. per liter	Determination	Milligrams per liter	Determination	Milligr per li
Nitrate Nitrogen (as NO ₃)	71	1.14	Hydroxide Alkalinity (as CaCO ₃)	0.0		
Chloride	103	2.91	Carbonate Alkalinity (as CaCO ₃)	8.0		
lfate (as SO ₄)	440	9.23	Bicarbonate Alkalinity (as CaCO ₃)	462		
Bicarbonate (as HCO ₃)	560	9.23	Calcium Hardness (as CaCO ₃)	460		
Carbonate (as CO ₃)	4.9	0.16	Magnesium Hardness (as CaCO ₃)	360		
Total Milliequivalents per	_iter	22.67	Total Hardness (as CaCO ₃)	820		
Cations	Milligrams per liter	Milliequiv. per liter	Iron			
Sodium	_140	6.18	Manganese *			
Potassium	1.4	0.04	Copper			
Calcium	190	9.28	Zinc	,		
Magnesium	87	7.16	Foaming Agents (MBAS)			
Total Milliequivalents per	Liter	22.66	Dissolved Residue, Evaporated @ 180°C	1290		
*Conforms to Title 22, Californ (California Domestic Water Qu	a Administrativ	e Code	Specific Conductance, micromhos @ 25°C	1730_	рН 7,6_	

(California Domestic Water Quality and Monitoring Regulationsl

-

.

Converse Ward Davis Dixon	Lab No. P81-03-017-1
	No. Samples : 7 Sampled By : Client Brought By : Client Date Received: 3-3-81
Sample labeled: HOLE 31	

.

.

			-	
Conductivity: 811 Turbidity:	µ mhos/cm NTU			@ 25°C @ 60°F (15.6°C) @ 140°F (60°C)
		Milligrams per liter (ppm)	-	lli-equivalents per liter
Cations determined:				
Calcium, Ca Magnesium, Mg Sodium, Na Potassium, K		15 1.8 157 3.0		0.75 0.15 6.83 0.08
			Total	7.81
Anions determined:				
Bicarbonate, as HCC Chloride, Cl Sulfate, SO ₄ Fluoride, F Nitrate, as N	3	167 50 161 0.9 2.4		2.74 1.41 3.35 0.05 0.17
			Total	7.72
Carbon dioxide, CO Hardness, as CaCO Silica, SiO ₂ Iron, Fe Manganese, Mn Boron, B	, Calc.	< 1 45 25 2.12 < 0.01 0.58		
Total Dissolved Miner (by addition: HCO.		511		

Converse Ward Davis Dixon

-

Lab No. P81-03-017-2

.

.

- -

No. Samples : 7 Sampled By : Client Brought By : Client Date Received: 3-3-81

•

Sample labeled: HOLE 32

Conductivity: 666 Turbidity:	µ mhos/cm NTU			8 @ 25°C @ 60°F (15.6°C) @ 140°F (60°C)
		Milligrams per liter (ppm)	M	illi-equivalents per liter
Cations determined:				
Calcium, Ca Magnesium, Mg Sodium, Na Potassium, K		3.3 1.8 135 3.0		0.16 0.15 5.87 0.77
			Total	6.95
Anions determined: Carbonate, CO ₃ Bicarbonate, as HCO ₃ Chloride, Cl Sulfate, SO ₄ Fluoride, F Nitrate, as N		55 163 37 121 1.3 1.5		1.83 1.16 1.04 2.52 0.07 0.11
			Total	6.73
Carbon dioxide, CO ₂ , Hardness, as CaCO ₃ Silica, SiO ₂ Iron, Fe Manganese, Mn Boron, B	Calc.	< 1 16 30 110 0.74 1.14		
Total Dissolved Minera (by addition: HCO ₃		587		

Converse Ward Davis Dixon			Lab No. P81-03-152-4
Sample labeled: Ho	ole 32A Oakshire		No. Samples : 4 Sampled By : Client Brought By : Client Date Received: 3-19-81
Conductivity: 1, Turbidity:	,200 µ mhos/cm . NTU		 pH 8.0 @ 25°C pHs @ 60°F (15.6°C) pHs @ 140°F (60°C)
		Milligrams per liter (ppm)	Milli-equivalents per liter
Cations determined			
Calcium, Ca Magnesium, Mg Sodium, Na Potassium, K		91 46 152 5.7	4.53 3.78 6.61 0.15
		·	Total 15.07

Anions determined:

Bicarbonate, as HCO3 Chloride, Cl Sulfate, SO Fluoride, F⁴ Nitrate, as N

Carbon dioxide, CO₂, Calc. Hardness, as CaCO₃ Silica, SiO₂ Iron, Fe Manganese, Mn Boron, B

(by addition: $HCO_3 \rightarrow CO_3$)

Total 3.7 417 12 0.10 < 0.05 0.32

260

434

940

62

0.59

0.5

Total Dissolved Minerals,

. 1

4.26

1.74

9.04

0.04

0.01

15.09

Converse Ward Davis Dixon Lab No. P81-03-017-3 No. Samples : 7 Sampled By : Client Brought By : Client Date Received: 3-3-81

. -

.

Sample labeled: HOLE 33

ipereg:	HULL	22	

Conductivity: 2,130 µ mhos/cm		рН 7.2@25°C. рНѕ @60°F (15.6°C)
Turbidity: NTU		pHs @ 140°F (60°C)
Cations determined:	Milligrams per liter (ppm)	Milli-equivalents per liter
Calcium, Ca Magnesium, Mg Sodium, Na Potassium, K	198 98 145 5.8	9.88 8.06 6.31 0.15 Total 24.40
Anions determined:		
Bicarbonate, as HCO ₃ Chloride, Cl Sulfate, SO ₄ Fluoride, F ⁴ Nitrate, as N	474 94 693 0.6 0.3	7.77 2.66 14.44 0.03 0.00 Total 24.90
Carbon dioxide, CO ₂ , Calc. Hardness, as CaCO ₃ Silica, SiO ₂ Iron, Fe Manganese, Mn Boron, B	43 898 31 < 0.01 < 0.01 0.66	
Total Dissolved Minerals, (by addition: HCO ₃ -> CO ₃)	1,504	

Converse Ward Davis Dixon		Lab No. P81-02-123-5
	-	No. Samples : 6 Sampled By : Client Brought By : Client Date Received: 2-12-81
Sample labeled: HOLE 33		
Conductivity: 1,710 µ mhos/cm		- рН 7.5 @ 25°С́ рНs @ 60°F (15.6°С
Turbidity: NTU		pHs @ 140°F (60°C)
	Milligrams per liter (ppm)	Milli-equivalents per liter
Cations determined:		
Calcium, Ca Magnesium, Mg Sodium, Na Potassium, K	94 68 186 5.3	4.69 5.59 8.09 0.14
		Total 18.51
Anions determined:		
Bicarbonate, as HCO ₃ Chloride, Cl Sulfate, SO ₄ Fluoride, F ⁴ Nitrate, as N	329 60 538 0.7 2.7	5.39 1.70 11.21 0.04 0.19
		Total 18.53
Carbon dioxide, CO ₂ , Calc. Hardness, as CaCO ₃ Silica, SiO ₂ Iron, Fe Manganese, Mn Boron, B	15 515 27 < 0.01 < 0.01 0.38	
Total Dissolved Minerals, (by addition: HCO ₃ -> CO ₃)	1,154	

.

.

Converse 126 West	N AND CAI CONSULTING ENGINE TICAL SERVICES 3 SOUTH FAIR OAKS PASADENA. CA 911 PHONE (818) 795-75 (213) 681-4655 Consultants Del Mar Boul California	evard 91105		Log No Date Sample Date Receive Date Reporte No. 83-1140- ce No. 2631,	d 05-14-84 d 05-14-84 d 06-11-84	
cc. <u>Log No.</u> 05-132-1 Boring 29-1 05-132-2 Boring 29-2 05-132-3 Boring 29-3 05-132-4 Boring 33-1 05-132-5 Boring 33-2		Sample	Description	RECEIVER	ý	
	Concentrati = 29- 05-132-1	on: mg/L (un 29-2 05-132-2	nless otherw 29-3 05-132-3	ise indicate 33-1 05-132-4	d) 33-2. 05-132-5	
pH (units)	7.6	6.4	7.3	7.4	8_2	
Total Dissovled Solids	2400	1200	2400	1400	680	
Sulfate	1000	300	1300	460	10	
Boron	2.4	1_4	1.3	0.62	0.85	
Aluminum	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	
Barium	0.07	< 0.07	0.07	< 0.07	< 0.07	

Appendix E Pump Test Results

APPENDIX E PUMP TEST RESULTS

E.1 INTRODUCTION AND SUMMARY

A pump test was performed about 750 feet west of the proposed location of the Universal City Station to provide data for construction dewatering. Two pump tests were run at the same well to determine aquifer properties and boundary conditions and to confirm test results. The location of the pumping well is shown on Drawing 6 (Pump Test Well PT-2).

The methodology used for the test consisted of constant discharge tests with time-drawdown measurements in the observation wells. These measurements were plotted on log-log paper as drawdown versus t/r^2 where t = time in days and r = the radial distance of the observation well from the pumped well in feet. The data plots for the test were matched to a family of type curves by Newman (1975) for wells fully penetrating an unconfined aquifer. Under these conditions the typical log of drawdown versus the log of time response is an S-shaped curve with delayed drainage causing a flattening of the curve between early and late responses. Data plots are presented at the end of this appendix for each test along with matching curves, formulas used, and computations. Aquifer test data sheets for each test and observation well are also included in this appendix.

E.2 SITE CONDITIONS

The location of the multiple well pump test for Universal City Station is north of the end of Bluffside Drive as shown on Drawing 2. The test well was located in the southeast corner of a parking lot and two observation wells were located to the east in Weddington Park. Bedrock penetrated in the wells consists of sandstone of the Topanga Formation. The sandstone was encountered at depths ranging from 63 feet (at PT-2) to 48 feet (at OW-2) and was penetrated only a few feet.

The sandstone is overlain by alluvium of an old Los Angeles River channel that ranges in composition from sandy clay to clean sand and gravel. These deposits appear to be irregular in thickness and are probably lenticular. A clean sand and gravel bed that appears to be continuous between the test well and the two observation wells to the east was selected for aquifer testing. At test well PT-2, the sand and gravel is 12.5 feet thick, overlain by 2.5 feet of fine sand for a total aquifer thickness of 15 feet. Above the fine sand is 18 feet of unsaturated silt and clay. Underlying the sand and gravel aquifer is 30 feet of sandy clay which has a relatively low permeability.

At Observation Well OW-1, which is 66 feet east of PT-2, the aquifer is 12 feet thick. At Observation Well OW-2, the aquifer is 13 feet thick. OW-2 is 166 feet east of PT-2. The aquifer occurs at depths between 18 and 35 feet where penetrated by the three wells.

The static water level is close to the top of the aquifer at PT-2 and a few feet above the top of the aquifer in the two observation wells. The aquifer is under slight artesian pressure. The areal extent of the aquifer is unknown, but geologic boundaries are expected to be close because of the narrow sinuous nature of the stream channel deposits.

E.3 WELL CONSTRUCTION AND DEVELOPMENT

Well PT-2 was drilled by the cable tool method to a depth of 63 feet. The driven 12-inch casing was perforated from 20 to 33 feet with 12 punched slots per foot. The slots are 1-1/4 inches by 5/32 inch and are in staggered rows. The two observation wells were drilled by the rotary wash method. PVC casing 4 inches in diameter was installed in the 6-inch boring with a pea gravel filter and surface seal installed in the annulus. Originally, these wells were completed to bedrock with perforated casing. Later, they were backfilled and sealed with cement grout to a depth of approximately 35 feet.

All of the wells were developed to flush mud and cuttings and to provide hydraulic communication with the aquifer. The 12-inch well was surged with a bailor and then developed for two days with the test pump. The limited available drawdown (<15 feet) made well development difficult. Drawdown measurements for the test well are not available and the hydraulic efficiency of this well is unknown.

E.4 PUMP TESTING PROCEDURE

Because of the expected boundary effects, two relatively short duration, constant discharge tests were conducted. The first test was run on April 14, 1983 for approximately 695 minutes at an average discharge rate of 30 gpm. The discharge, however, fluctuated between 25 and 45 gpm. The second test was performed on April 16, 1983, also at an average discharge of 30 gpm, for approximately 470 minutes as a check for the first test. Also, there was a broken water line near OW-2 during the first test that could have caused some recharge in the area of this well.

The test well was pumped with a lineshaft turbine pump and discharges were measured with an orifice plate and a bucket. Water was discharged into a storm drain.

Drawdowns were measured in the two observation wells with Stevens Recorders. Times were recorded manually on the chart paper at intervals to provide suitable logarithmic distributions.

Recovery measurements were made after the first test but the results were not useful. There was a very long time lag in water level responses partially because of the relatively long distance to observation wells and the relatively low pumping rate. A much higher test well yield was expected and utility lines were encountered at the intended location of OW-2 forcing it to be placed further from the test well. Also, there appeared to be a delayed response especially in OW-1, due to incomplete well development. The far well (OW-2) responded quicker than the near well (OW-1). This trend should have been reversed.

E.5 TEST INTERPRETATIONS

Time-drawdown data were plotted on log-log graphs as shown on the interpretation charges. Figure E-1 shows the plots for the first test for both observation wells. The log of drawdown(s) is plotted against t/r^2 where t is in days and r is the radial distance from the pumped well to the observation well in feet. These data plots were matched to the artesian type curve and appropriate match points were selected to determine values of s and t/r^2 for corresponding values of W(µ) and 1/µ. Calculations for transmissivity (T) and storativity (S) are shown. Figure E-2 shows data plots, match points, and calculations for the second test for both observation wells.

During the first test, both data plots have good initial matches with the artesian type curve (see Figure E-1). Also, both wells show responses to a barrier boundary in the latter part of the test. Water level responses indicate an increased rate of drawdown as the boundary is encountered as shown by the upward deflection on the data plot. Relatively poor matches were obtained during the second test, especially for OW-1 (see Figure E-2). The boundary effect was not well defined during the second test, in part due to the shorter duration of the test. Also, there was poor consistency in the shape of the responses that should have been identical. At least part of this inconsistency was probably due to the difficulty in maintaining a constant discharge during both tests. Both plots indicate delayed responses which was especially severe for OW-1. The delayed response merged with the boundary effect which makes data from OW-1 unreliable.

A check interpretation is shown on Figure E-3 which shows distance drawdown plots for both tests. The first test was influenced by boundary effects resulting in a relatively low transmissivity. The second test is probably high in terms of transmissivity. However, the average of these two interpretations is probably reasonable. Table E-1 summarizes the more reliable test results.

TEST	OBSERVATION	CURVE MATCH	TRANSMISSIVITY (gpd/ft)	AVERAGE HYDRAULIC CONDUCTIVITY (gdp/ft ²)	STORATIVITY
1st	OW-1	Artesian T.C.	22,920	1,910	0.059
1st	OW-2	Artesian T.C.	24,557	1,889	0.014
2nd	Ow-1		POOR MATCH	- NOT VALID	
2nd	OW-2	Artesian T.C.	28,650	2,203	0.008
1st & 2nd	OW-1, OW-2	Dist. d.d. (two tests)	19,293 (average)	1,543 (average)	0.008

TABLE E-1 RESULTS OF PUMP TEST PT-2

The mean transmissivity from Table E-1 is approximately 24,000 gpd/ft and the mean hydraulic conductivity is about 1,900 gpd/ft² (\cong 9.0 x 10⁻² cm/sec). Storativities are relatively high for initial responses suggesting unconfined conditions. As these deposits are dewatered, a specific yield value will apply that is considerably higher than the computed values of storativity. Specific yields of 0.20 to 0.25 are probably reasonable.

E.6 COMMENTS ON TEST RESULTS

Distance to the observed barrier boundary were not computed. This can be done, but it would not apply at the Universal City Station excavation. Barrier boundaries will have a beneficial influence on construction dewatering. Boundary effects may reduce the effective transmissivity by a factor of 3 to 4 depending on distances involved from the dewatering system to the boundaries.

The transmissivity data and average hydraulic conductivities appear quite reasonable in spite of delayed responses of OW-1 and the less than planned stress on the aquifer. Prior to well development, the anticipated pumping rates were several hundred gallons per minute and observation well spacings were determined on that basis. In retrospect, spacings of about 50 and 25 feet would have been better for the 30 gpm pumping rate and the thinner than expected aquifer.

Aquifer thickness is somewhat different at the construction site. However, the computed average hydraulic conductivity of 1,900 gpd/ft² is probably reasonable for the sands and gravels encountered at the Station site. Transmissivity can be estimated by multiplying the hydraulic conductivity times the aquifer thickness (clean sands and gravels). The silts and clays will of course have much lower hydraulic conductivities (by several orders of magnitude).

It is beyond the scope of this report to recommend specific dewatering systems. However, the limited aquifer thickness (i.e., up to 16 feet of sands and gravels overlying the Topanga Formation bedrock) at the Station site, suggests that well points would appear applicable. If wells are used, regardless of type, the limited available drawdown will require development of efficient wells. This requires well screens with adequate open areas along with good well development techniques.

1 THER TOLD DATA SHELT

Peservation Well No. 00-1
Test Well No. Universal City Station
Static Water Level 17.95
Radius from Pumped Well 62.1

Project No. E167	?
Date of Test 04/1	4/83
Observed By TDH	
Average Discharge	30 gpm

.Water Level Drawdown, s t t t/r^2 Time days min. feet feet Remarks 7:40 a 0 17.950 0.0 - -1.74x10³4.51x10⁷ 2.5 17.955 0.005 6.94x10³ 1.80x10⁶ 10 17.960 0.010 1.39×10^{2} 3.60×10^{6} 17.970 8:00 20 0.020 1.67×10^{2} 4.33×10⁶ 24 17.975 0.025 8:04 1.88×10^{2} 4.88 $\times 10^{6}$ 17.980 8:07 27 0.030 2.08x10² 5.39x10⁶ 17.990 0.040 8:10 30 $2.29 \times 10^{2} 5.94 \times 10^{6}$ 33 17.990 0.040 8:13 2.50×10^2 6.48x10⁶ 18.005 0.055 8:16 36 $2.78 \times 10^{2} / 7.21 \times 10^{6}$ 18.010 0.060 8:20 40 3.06×10^{2} 7.93×10⁶ 44 18.010 0.060 8:24 $3.33 \times 10^{2} 8.63 \times 10^{6}$ 8:28 48 18.020 0.070 $3.61 \times 10^{2} 9.36 \times 10^{6}$ 52 18.030 0.080 8:32 3.89x10² 1.01x10⁵ 8:36 56 18.035 0.085 4.17×10^{2} 1.08x10⁵ 0.100 18.050 8:40 60 1.19x10⁵ 4.58x10² 18.060 0.110 8:46 66 5.00×10^{2} 1.30 $\times 10^{5}$ 72 18.070 0.120 8:52 5.42×10^{2} 1.41×10⁵ 78 18.080 0.130 8:58 5.83x10² 1.51x10⁵ 18.090 9:04 84 0.140 6.32x10² 1.64x10⁵ 18.100 0.150 91 9:11 1.80x10⁵ 6.94×10^{2} 18.125 9:20 100 0.176 7.85x10² 2.04x10⁵ 18.150 0.200 113 9:33

-

11 No. <u>1. 1</u>.

Ĵ

•	··· ··	t		1/r ²	hater level	i zaudoun, s	
		min.			feet	feet	Remarks
	9:10	120	†	2.16x10 ⁵		0.220	
	9:50	130	9.03x10 ²		4	0.240	
	10:00	140	9.72 $\times 10^{2}$	2.52x10 ⁵	18.220	0.270	
	10:20	160	1.11×10 ¹	2.88x10 ⁵	18.250	0.300	
	10:40	180	1.25x10 ¹	3.24x10 ⁵	18,290	0.340	
	11:00	200	1.39×10^{1}	3.60x10 ⁵	18.330	0.380	
	11:20	220	1.53x10 ¹	3.97x10 ⁵	18.370	0.420	
	11:43	243	1.69x10 ¹	4.38x10 ⁵	18.410	0.460	
	12:00	260	1.81x10 ¹	4.69x10 ⁵	18.450	0.500	
	12:30	290	2.01x10 ¹	5.21x10 ⁵	18.490	0.540	
	1:00	320	2.22x10 ¹	5.76x10 ⁵	18.550	0.600	
	1:30	350	2.43x10 ¹	6.30x10 ⁵	18.610	0.660	
-	2:00	380	2.64x10 ¹	6.85x10 ⁵	18.650	0.700	
	2:30	410	2.85x10 ¹	7.39x10 ⁵	18.690	0.740	
	3:00	440	3.06x10 ¹	7.93x10 ⁵	18.740	0.790	
	4:00	500	3.47x10 ¹	9.00x10 ⁵	18.830	0.880	
	4:30	530	3.68×10^{1}	9.54x10 ⁵	18.860	0.910	
-	5:15	575	3.99x10 ¹	1.03x10 ⁴	18.920	0.970	
-	6:00	620	4.31x10 ¹	1.12x10 ⁴	18.980	1.030	
-	7:00	680	4.72x10 ¹	1.22x10 ⁴	19.060	1.110	
-	7:15	695	4.83x10	1.25x10 ⁴	19.080	1.130	2
-							
-							
-							·
-							
-							
-						<u> </u>	
-							
_]						

E-6

ANULER DEST INTA SHEFT

Observation Well No. <u>OW-2</u>
Test Well No. Universal City Station
Static Water Level 15.61
Radius from Pumped Well 161.9

Project No. E167	
Date of Test_04/14/83	
Observed By TDH	
Average Discharge 30 gpm	

Time	t min.	t days	t/r ²	Water Level feet	Drawdown, s feet•	Remarks
7:40	0			15.610	0.0	
10:49	9	6.25x10 ³	2.38x10 ⁷	15.615	0.005	
10:51	11	7.63x10 ³	2.91x10 ⁷	15.627	0.017	
8:00	20	1.39x10 ²	5.30x10 ⁷	15.629	0.019	
_8:10	30	2.08x10 ²	7.95x10 ⁷	15.632	0.022	
8:20	40	2.78×10^{2}	1.06x10 ⁶	15.640	0.030	
8:30	50	3.47×10^{2}	1.32x10 ⁶	15.652	0.042	
8:35	55	3.81x10 ²	1.45x10 ⁶	15.660	0.050	
8:40	60	4.17x10 ²	1.59x10 ⁶	15.664	0.054	
8:50	70	4.86x10 ²	1.85x10 ⁶	15.680	0.070	
8:55	75	5.20x10 ²	1.98x10 ⁶	15.685	0.075	
9:00	80	5.55x10 ²	2.12x10 ⁶	15.693	0.083	
9:10	90	6.25x10 ²	2.38x10 ⁶	15.705	0.095	
9:20	100	6.94x10 ²	2.65x10 ⁶	15.711	0.101	
9:30	110	7.63x10 ²	2.91x10 ⁶	15.719	0.109	
9:40	120	8.33x10 ²	3.18x10 ⁶	15.725	0.115	
9:50	130	9.03×10^{2}	3.45x10 ⁶	15.733	0.123	
10:00	140	9.72 $\times 10^2$	3.71x10 ⁶	15.743	0.133	
10:20	160	1.11x10 ¹	4.23x10 ⁶	15.759	0.149	
10:40	180	1.25x10 ¹	4.77x10 ⁶	15.771	0.161	
11:00	200	1.39 $\times 10^{1}$	5.30x10 ⁶	15.789	0.179	
11:22	2 22	1.54x10 ¹	5.88x10 ⁶	15.809	0.199	

E-7

÷.,

- P.,	 .`	n	of	2
				10 A

						2	· · · · · · · · · · · · · · · · · · ·
	Time	t : : : : : .	t days	1/r ²	feet	Druwdban, s feet	Remarls
	11:45	245	1.70×10^{1}	6.49×10 ⁶	15.829	0.219	
	12:00	260	1.81x10 ¹	6.91x10 ⁶	15.836	• 0.226	
	12:30	290	2.01x10 ¹	7.67x10 ⁶	15.860	0.250	
	1:00	320	2.22x10 ¹	8.47x10 ⁶	15.868	0.258	
	1:30	350	2.4 <u>3x10</u> 1	<u>9.27x1</u> 0 ⁶	15.871	0.261	
	2:00	380	2.64x10 ¹	1.01x10 ⁵	15.871	0.261	
	2:30	410	2.85x10 ¹	1.09x10 ⁵	15.889	0.279	
	_3:00	440	3.06x10 ¹	1.17x10 ⁵	15.911	0.301	
	4:00	500	3.47x10 ¹	1.32x10 ⁵	15.956	0.346	
	4:30	530	3.68x10 ¹	1.40x10 ⁵	16.010	0.400	
	5:15	575	3.99x10 ¹	1.52x10 ⁵	16.070	0.460	
	6:00	620	4.31x10 ¹	1.64x10 ⁵	16.120	0.510	
	7:00	680	4.72x10 ¹	1.80x10 ⁵	16.190	0.580	-
	7.15	695	4.83x10 ¹	1.84x10 ⁵	16.210	0.600	
					_		
							I
-							
-							
-							
_							
_							
_							
_						· .	

· 1 `...

1

_

ASDELL TEST DATA SHEET

Observation Well No. OW-1
Test Well No. Universal City Station
Static Water Level 18.04
Radius from Pumped Well 62.1

· '.

.

Project No	E167
Date of Test_	04/16/83
Observed By	TDH
Average Disch	arge 30 gpm

Time	t min.	t days	t/r ²	Water Level feet	Drawdown, s feet.	Remarks
8:40 a	0			18.040	0.0	
8:51	11		1.98x10 ⁻⁶	18.050	0.010	
8:59	19	-2 1.32x10	3.42x10 ⁻⁶	18.060	0.020	
9:06	26	1.81x10 ²	4.69x10 ⁻⁶	18.065	0.025	
9:13	33	2.29x10 ²	5.94x10 ⁻⁶	18.070	0.030	
9:17	37	2.57x10 ²	6.66x10 ⁻⁶	18.075	0.035	
9:21	41	2.85x10 ²	7.39x10 ⁻⁶	18.080	0.040	
9:28	48	3.33x10 ²	8.6 <u>3x10⁻⁶</u>	18.085	0.045	
9:39	59	4.10x10 ²	1.06x10 ⁻⁵	18.090	0.050	
9:51	71	4.93x10 ²	1.28x10 ⁻⁵	18.100	0.060	
9:59	79	5.49x10 ²	1.42x10 ⁻⁵	18.110	0.070	
10:04	84	5.83x10 ²	1.51x10 ⁻⁵	18.120	0.080	
10:10	90	6.25x10 ²	1.62×10^{-5}	18.130	0.090	
10:15	95	6.60x10 ²	1.71x10 ⁻⁵	18.135	0.095	
10:20	100	6.94x10 ²	1.80x10 ⁻⁵	18.145	0.105	
10:30	110	7.64×10^{2}	1.98x10 ⁻⁵	18.160	0.120	
10:45	125	8.68x10 ²	2.25x10 ⁻⁵	18.180	0.140	
11:00	140	9.72x10 ²	2.52x10 ⁻⁵	18.190	0.150	
11:20	160	1.11x10 ¹	2.88×10 ⁻⁵	18.210	0.170	
11:40	180	1.25x10 ¹	3.24x10 ⁻⁵	18.235	0.195	
12:00	200	1.39x10 ¹	3.60x10 ⁻⁵	18.260	0.220	
12:30	230	1.60x10 ¹	4.15x10 ⁻⁵	18.290	0.250	

E-9

1 - 4 101 July 1 - 1

14,4 <u>- 15 - 2</u>

		the second s				
. A	t nin.	t di ys	1/r2	Water Level feet	bravdovn, s feet	Remarks
1:00	260	h. \$1x10 ⁻¹		18.340	0.300	
1:30	290	2.01x10 ⁻¹	5.21x10 ⁻⁵	18.370	- 0.330	
2:00	320	2.22x10 ⁻¹	5.76x10 ⁻⁵	18.400	0.360	
2:35	355	2.47x10 ⁻¹	6.40x10 ⁻⁵	18.450	0.410	
3:00	380	2.64×10^{-1}	6.85x10 ⁻⁵	18.490	0.450	
4:05	445	3.09x10 ⁻¹			0.520	
4:30	470	3.26×10^{-1}	7		0.540	
				1		
·				-		

ARTICLE TE TIDATA CHEFT

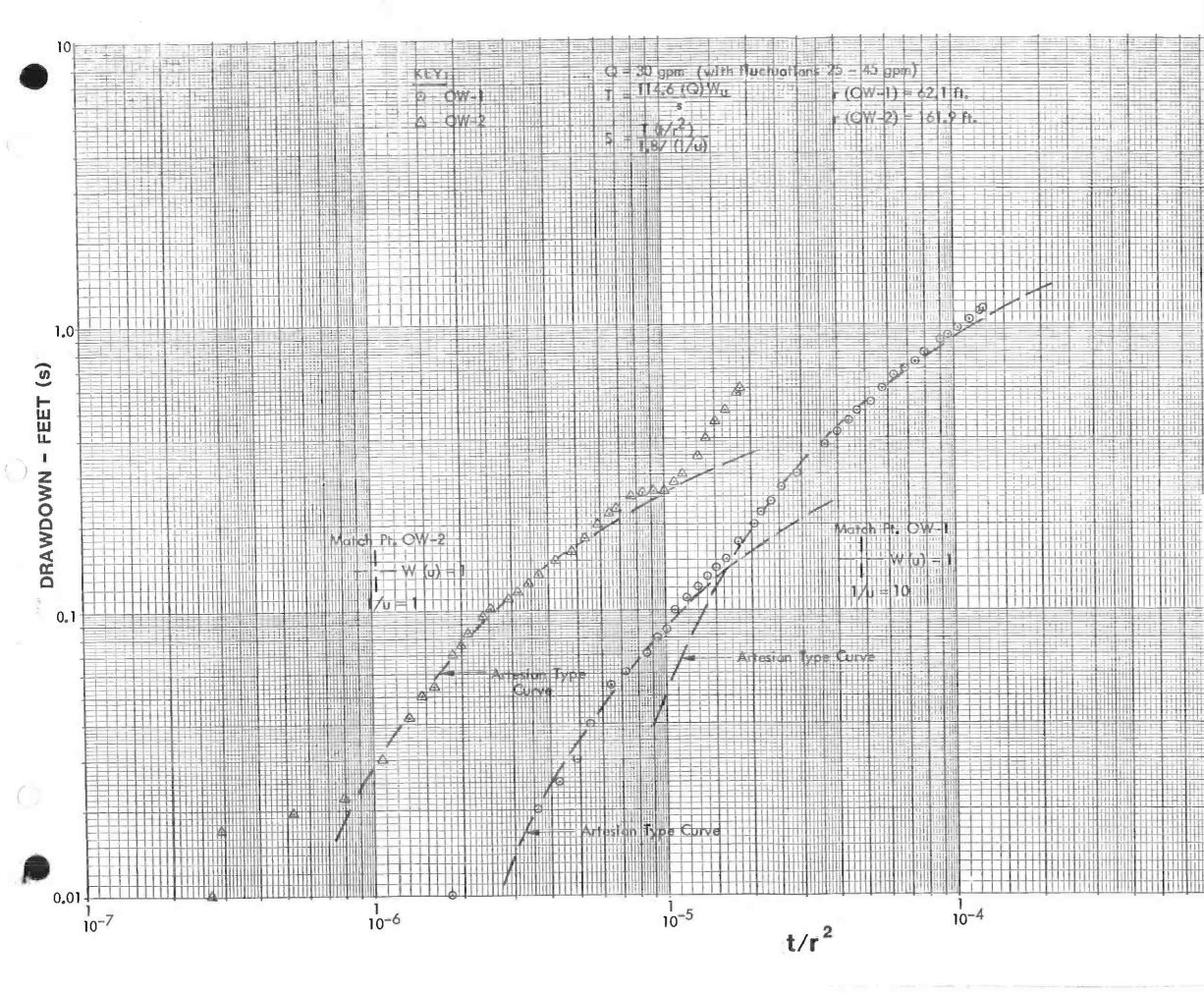
Observation Kell No. OW-2
Test Well No. Universal City Station
Static Water Level 15.52
Radius from Pumped Well 161.9

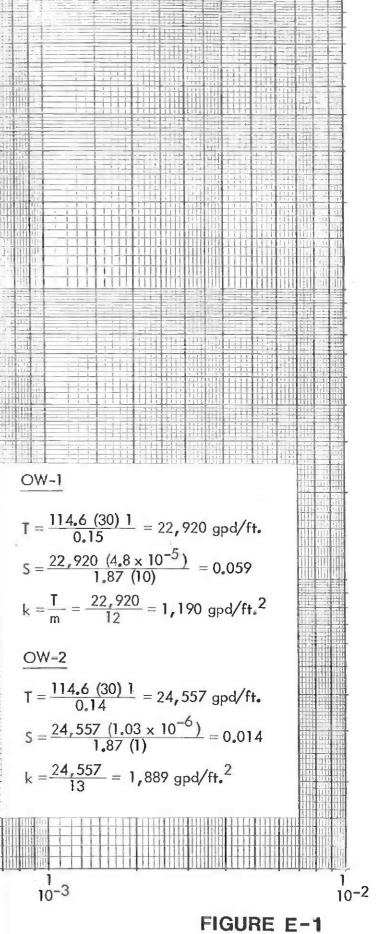
.

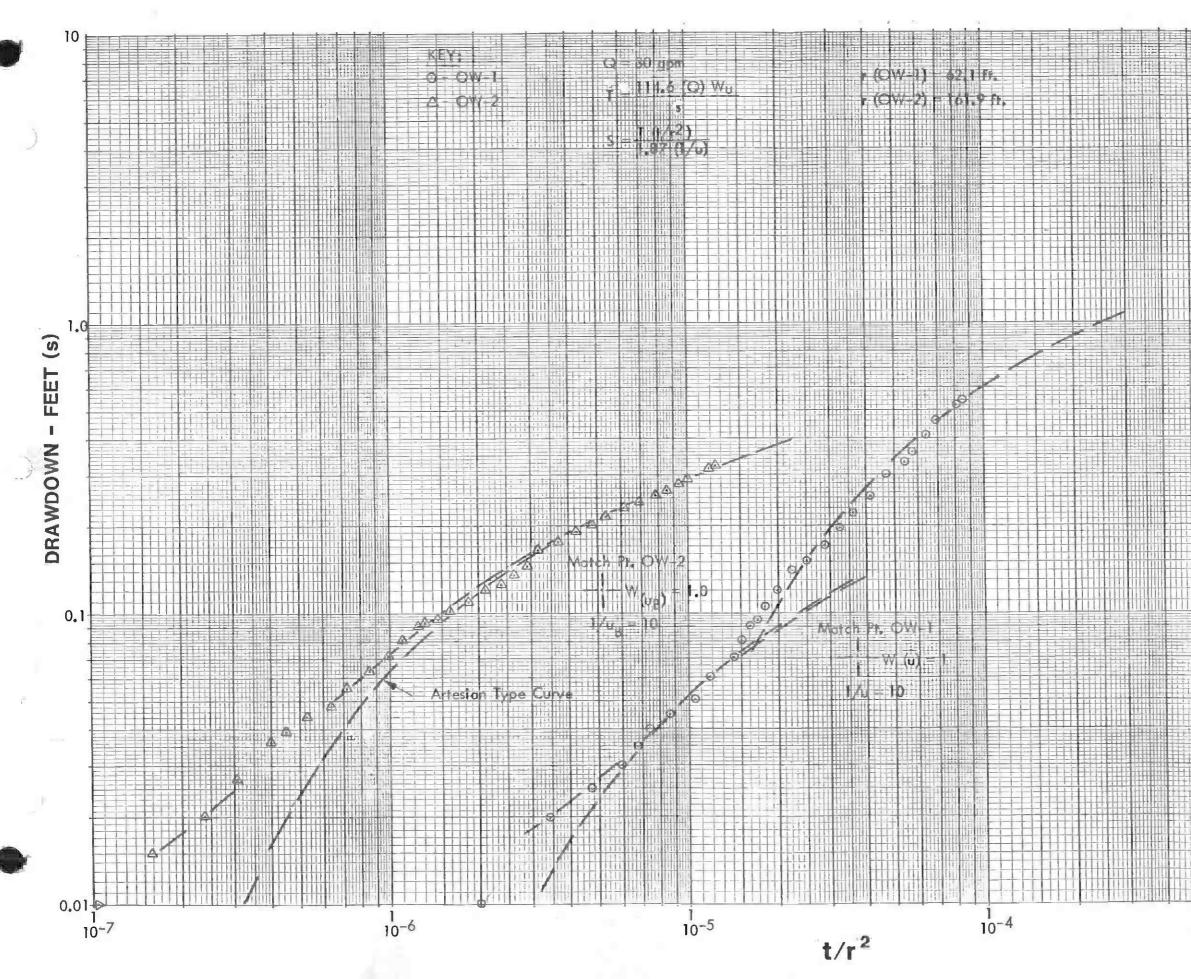
1

Project No	E167
Date of Test_	04/16/83
Observed By	TDH
Average Disch	arge 30 gpm

Time	t min.	t days	t/r ²	Water Level feet	Drawdown, s feet .	Remarks
8:40	0			15.520		·
8:41	1	6.94x10 ⁴	2.65x10 ⁻⁸	15.525	0.005	
8:44	4	2.78x10 ³	1.06x10 ⁻⁷	15.530	0.010	
8:46	6	4.17x10 ³	1.59x10 ⁻⁷	15.535	0.015	
8:49	9	6.25x10 ³	2.38x10 ⁻⁷	15.540	0.020	
_8:52	12	8.33x10 ³	3.18x10 ⁻⁷	15.547	0.027	
8:55	15	1.04×10^{2}	3.97x10 ⁻⁷	15.556	0.036	
8:57	17	1.18x10 ²	4.50x10 ⁻⁷	15.559	0.039	
9:00	20	1.39x10 ²	5.30x10 ⁻⁷	15.564	0.044	
9:04	24	1.67×10^{2}	6.37x10 ⁻⁷	15.568	0.048	
9:07	27	1.88x10 ²	7.17x10 ⁻⁷	15.575	0.055	
9:12	32	2.22x10 ²	8.47x10 ⁻⁷	15.583	0.063	
9:17	37	2.57x10 ²	9.80x10 ⁻⁷	15.591	0.071	
9:22	42	2.92×10^2	1.11x10 ⁻⁶	15.600	0.080	
9:27	47	3.26x10 ²	1.24×10^{-6}	15.610	0.090	
9:30	50	3.47×10^2	1.32x10 ⁻⁶	15.612	0.092	
9:35	55	3.82×10^{2}	1.46x10 ⁻⁶	15.615	0.095	
9:40	60	4.17×10^{2}	1.59x10 ⁻⁶	15.621	0.101	
9:50	70	4.86x10 ²	1.84x10 ⁻⁶	15.629	0.109	
10:00	80	5,56x10 ²	2.12x10 ⁻⁶	15.640	0.120	
10:10	90	6.25x10 ²	2.38x10 ⁻⁶	15.645	0.125	
10:20	100	6.94x10 ²	2.65x10 ⁻⁶	15.655	0.135	


Page 21 of 21


ime	t min.	t Lays	t/r ²	fect	Irowdown, s feet	Remarks
10:30	110	64×10^{2}	2.91xT0 ⁻⁶	15.665	0.145	
10:45	125	5.68x10 ²	3.31x10 ⁻⁶	15.685	0.165	
11:00	140	9.72x10 ²	3.71x10 ⁻⁶	15.695	0.175	
11:20	160	1.11x10 ¹	4.23x10 ⁻⁶	15.710	0.190	
11:40	180	1.25x10 ¹	4.77 x 10 ⁻⁶	15.720	0.200	
12:00	200	1.39x10 ¹	5.30x10 ⁻⁶	15.735	0.215	
12:30	230	1.60x10 ¹	6.10×10^{-6}	15.750	0.230	-
1:00	260	1.81x10 ¹	6.91x10 ⁻⁶	15.760	0.240	
1:30	290	2.01x10 ¹	7.67x10 ⁻⁶	15.775	0.255	
2:00	320	2.22x10 ¹	8.47x10 ⁻⁶	15.785	0.265	
2:35	355	2.47×10^{1}	9.42x10 ⁻⁶	15.800	0.280	
3:00	380	2.64x10 ¹	1.01x10 ⁻⁵	15.810	0.290	
4:05	445	3.09x10 ¹	1.18x10 ⁻⁵	15.835	0.315	
4:30	470	3.26x10 ¹	1.24x10 ⁻⁵	15.840	0.320	


64. J. S.

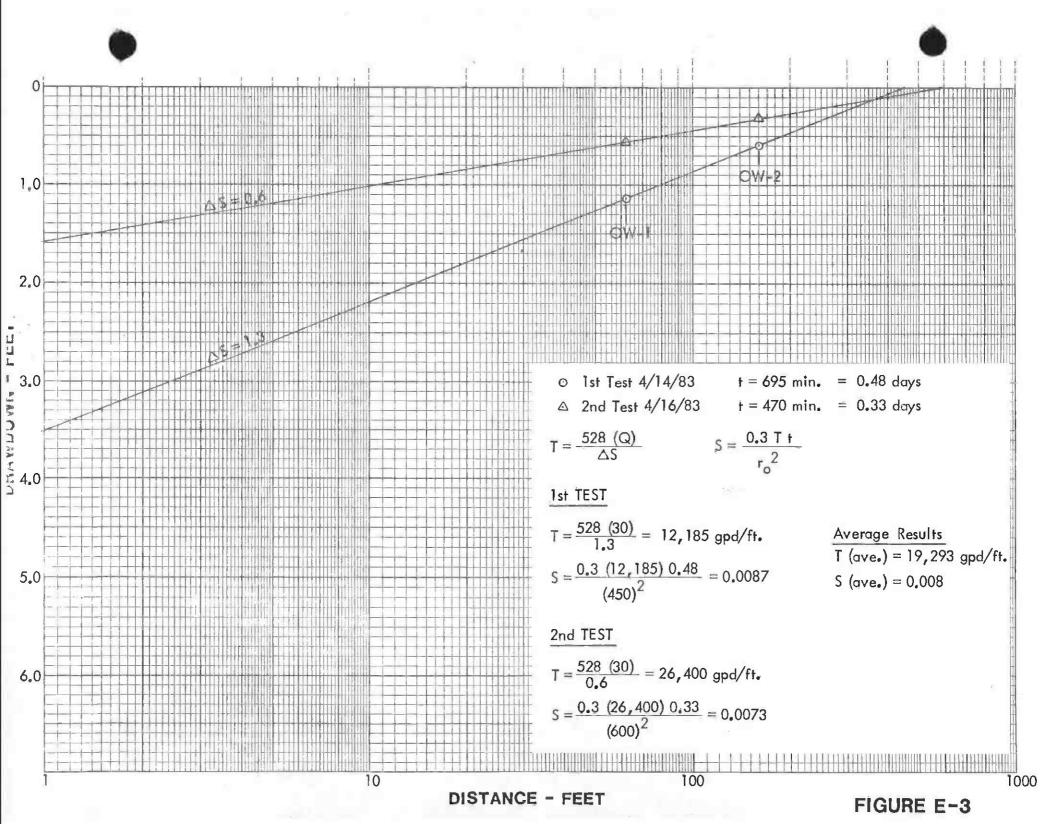
.

÷ .

$$\frac{OW-1}{I = \frac{114,6}{0,07}} = 49,114 \text{ gpd/ft.}$$

$$S = \frac{49,114}{1.87(10)} = 0.097$$

$$k = \frac{49,114}{1.2} = 4,093 \text{ gpd/ft.}^{2}$$


$$\frac{OW-2}{I_{2}} = \frac{114,65(30)}{1.87(10)} = 28,650 \text{ gpd/ft.}$$

$$S = \frac{28,650}{1.87(10)} = 0.008$$

$$k = \frac{28,650}{1.87(10)} = 0.008$$

$$k = \frac{28,650}{1.87(10)} = 2,203 \text{ gpd/ft.}^{2}$$

FIGURE E-2

Appendix F

Previous Tunnelling Experience

Section 6.0: Previous Tunneling-Experience in Area

Los Angeles is one of the world's largest cities in area, and with a metropolitan population of over seven million people. More than 60 tunnels, with total length greater than 50 miles, have been bored within the city limits (Proctor, 1973). This history of local tunneling experience was reviewed, with particular attention to case histories that involved geologic formations or settings similar to those anticipated along the Metro Rail alignment. The tunnels selected for detailed study and presented herein are:

- Metropolitan Water District of Southern California (MWD) San Fernando Tunnel
- MWD Newhall Tunnel (LAC)
- City of Los Angeles Sewer Tunnel
- MWD Hollywood Tunnel
- Los Angeles County Flood Control District (LACFCD) Sacatella Tunnel
- MWD Tonner Tunnel

The use of case histories can provide general information on the response of the materials to excavation, methods of excavation and support, construction problems, rates of advance and costs. However, overall success or failure of each tunnel project was dependent on the site-specific geology, methods of excavation and support employed, and organization of the contractor.

6-1 MWD SAN FERNANDO TUNNEL

6.1.1 Facts and Figures

Tunnel Length	29,100 ft (5.5 miles)
Tunnel Diameter	22 ft 0.D. excavated; 18 ft I.D. concrete lined
initial Support	Precast concrete segmented ring 4 segments/ring; segments 8 in, thick & 4 ft wide
Excavation Method	Digger-type Robbins excavator mounted in a shield (the last 1,000 ft were conventional drill & blast)
Geology	Soft sandstone & siltstone (Pico Formation) & Old Alluvium
Eventual Use	MWD water supply tunnel
Contractor	Lockheed Shipbuilding & Construction Company Seattle, Washington
Bid Price	\$19,346,800 on February 20, 1969
Estimated Bid Completion Time	1,360 working days
Tunneling Period	January 1970 to November 1975; gas explosion stoppe work for 27 months

6.1.2 Major Progress, Prior to Ground Water Problem

During the latter period of the first 17,000 feet of tunneling, record advances were made using a Robbins-built shield, swinging and sliding boom with a rotatable digging head:

> 104 feet in one 8-hour shift 277 feet in one 3-shift day 1,077 feet for a 5-day week 3,500 feet for one month.

A special tunnel-liner erector installed 4-foot-long concrete segments at a rate of 12 per hour over an 80-hour week to support the shield's 144-hour weekly operation (Construction Methods and Equipment, January 1971, p. 1).

Excavated material consisted of dry and water-bearing Old Alluvium sand, with minor gravel and cobbles, lightly cemented to the extent that slight ripping was required.

6.1.3 Ground Water in Old Alluvium

Just west of the North Olive View fault (see Figure 6-1) substantial amounts

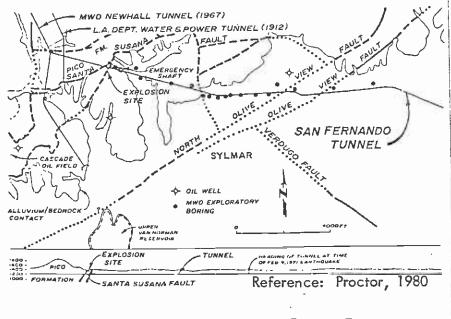


Fig.6-1 Map and section along part of the San Fernando Tunnel.

of water (1,400 gpm peak inflow) were forecast and encountered in the Old Alluvium. In this area, tunnel cover was about 140 feet. Prior to encountering this water, rate of advance was 150 to 200 feet per 3-shift day; in the water zone, the advance rate was still a respectable 60 feet per 8-hour shift; the other two shifts drilled horizontal dewatering holes ahead of the shield.

CWDD/ESA/GRC 1-82

The following are excerpts from <u>California Builder and Engineer</u>, March 26, 1971:

- In late 1970, the excavation encountered perched ground water that sprayed the miners with water under slight pressure.
- Water pressure was relieved by three-inch borings drilled horizontally ahead of the excavator 150 to 250 feet.
- Two-inch perforated plastic pipe was inserted to drain ahead of the heading. This reduced the digging to a single shift per day and slowed progress considerably.

6.1.4 Solution to Ground Water Problem

(The following are excerpts from B.P. Boisen of A.A. Mathews, Inc., Memorandum, March 22, 1971, p. 5).

There are several perched water tables in the tunnel area, and test holes by the owner had pinpointed them before Lockheed Shipbuilding & Construction Co. (LSCC) started work. The solution was horizontal dewatering because an impervious stratum just beneath the tunnel grade would have made dewatering by wells ineffective. Drilling ahead of the shield brought the water around it and into the tunnel where it could be pumped out.

- Horizontal holes were drilled from 150 to 250 ft ahead of the shield, i.e., starting about 30 ft back of the face, running as close to the tunnel edge as possible. The drill stem cut a 4-in-diameter hole and 10-ft-long, 1.5-in-diameter hollow slotted plastic pipe sections were driven inside the drill stem.
- Water drained into the pipe slots and into the tunnel. There, a pair of pumps discharged the water into a surface flood control channel and through holes drilled down from a street above.

6.1.5 Effects of San Fernando Earthquake

On February 9, 1971, a 6.4 Richter Magnitude earthquake occurred, with an epicenter only a few miles from the San Fernando Tunnel. The following was noted from excerpts of Engineering News Record, June 24, 1971, p. 25:

- The tunnel did not suffer any major damage, however, the shield was squeezed laterally and tightly bound in place. It took two weeks to free the shield by jetting along the skin at three o'clock and nine o'clock.
- Tunnel work continued, with all workmen on hand, after a three-day shutdown to assess damage.
- When level coordinates were shot from undisturbed benchmarks, it showed that the east portal elevation was 7.2 ft higher than its original position. The gate structure shaft, about midway through the tunnel, was 2.5 ft higher. And the west portal, where the bore ties into Magazine Canyon shaft and Newhall Tunnel, was up 1.25 ft.

- There were no visible changes in the tunnel, largely due to the articulated precast tunnel supports. The segments are independent of each other, and there was opportunity for movement.
- Nearly 3.5 miles of tunnel were finished when the quake struck and the 7-ft uplift can be absorbed in moving individual segments such a slight amount that it would not be detected by the naked eye.

6.1.6 Caving Problems

(The following are excerpts from B.P. Boisen of A.A. Mathews, Inc., Memorandum, March 22, 1971, p.'4).

In the Old Alluvium west of the North Olive View fault, where the ground water was encountered, the contractor was plagued with problems. Approximately nine times there were runs at the face of several thousand gallons of water, sand and gravel. A number of times a cave would develop up to 40 feet above the shield. When the shield had advanced beyond these runs, the contractor would drill a hole from the surface and drop sand into the void. Grout was then pumped into the sand. On one occasion, a 10-ft-diameter cave worked its way to the surface of Foothill Boulevard. The contractor poured sand into the void and added a surcharge of sand about 8 feet above the street. The next day the sand had settled to around 12 feet below the street.

The shield was equipped with six breast doors that were used to support the upper half of the face. Generally the contractor advanced the shield through these troublesome zones with the breast doors closed and the apron full of muck. This then imposed a greater thrust on the precast segments during shoves. This was when the contractor started using 10 inch-thick segments (instead of original 8 inch-thick segments) to develop the thrust necessary to shove the shield.

6.1.7 Fatal Gas Explosion

(The following are excerpts from R.J. Proctor, 1980, "San Fernando Tunnel Explosion", <u>Underground Space</u>, v. 4, no. 4, p. 217-219).

At 12:30 a.m. on the morning of June 24, 1971, a fatal gas explosion occurred in a Los Angeles area tunnel. Of the heading crew, 17 workers died and one survived. The explosion halted work for 2 1/2 years due to settlement discussions and new contractual agreements. Only 2,500 feet remained to "holethrough" the 5.5-mile tunnel. The explosion occurred near the Santa Susana fault (see Figure 6-1). Several events occurred that provided evidence of a possible gas hazard. The MWD geologic report, given with the specifications to all bidders, warned of the possibility of encountering oil and/or gas in the western part of the tunnel route. This warning was based on:

- * producing oil fields in the region, one within 1.7 miles
- oil and tar seeps in the area
- the presence of Pico Formation sandstone, a known producer of oil in the western part of the tunnel route

- * the presence of oil and gas in two nearby tunnels The L.A. Dept. of Water and Power's Newhall Tunnel in 1912, and the MWD's Balboa Tunnel in 1967
- the location of the Santa Susana fault, which acts as an oil trap for the nearby Cascade oil field
- several months prior to the explosion, the contractor posted a notice that stated "expect explosive gas ahead"
- one day before the explosion, a core with "kerosene or diesel smell" was extracted from the face
- one day before the incident, a minor gas explosion occurred that sent four miners to the hospital.

Work resumed 27 months after the disaster, and was completed in November 1975. Most of the interval was spent working out an agreement between the owner and the contractor on procedures and costs, but without the admission of liability by either side.

To complete the tunnel, a board of tunnel consultants (J. Barry Cooke, Lyman D. Wilbur and J. Donavan Jacobs) was convened. Their recommendations, all of which were complied with, included:

- increasing the ventilation system from the rated 35,000 cfm to 70,000 cfm
 [This can move air down the tunnel at the rate of 200 ft per min.]
- building a remote hydraulic system to power the repaired boring machine
- installing a multiple-head constant monitoring system for gas, plus two full-time sniffer men
- drilling at all times during tunnel excavation at a minumum of 20 ft into the face [Contractor elected to drill 80-ft holes and use up 60 ft before redrilling.] Four holes should be drilled into the face while in the Santa Susana fault zone. [Clay in the fault planes may accumulate gas behind them.]
- limiting daily advances to 20 ft [After this restriction and the TBM were removed, maximum progress was no more than 25 ft daily.]
- drilling a ventilation shaft 150 ft deep, and incorporating a rescue chamber and emergency ladder 600 ft back of the heading.

The following are excerpts from B.P. Boisen of A.A. Mathews, Inc., Memorandum, March 27, 1974, p. 2-3:

After the explosion, and upon resumption of tunneling, with increased ventilation gas monitors did not detect concentrations greater than 7 percent LEL, and gas was not encountered when the heading was beyond the Santa Susana fault zone and into the siltstones, sandstones and conglomerates of the Pico Formation.

In the opinion of B.P. Boisen of A.A. Mathews, successful tunneling in gassy conditions is possible and can be attributed to:

Adequate Ventilation	90%
Constant Testing and Monitoring	9%
Use of Permissible Equipment	1%

The 1% of success due to using permissible equipment is the major cost factor and is looked upon with the most dislike.

6.2 MWD NEWHALL TUNNEL

6.2.1 Facts and Figures

Tunnel Length	3.5 miles (Magazine Canyon to City of Newhall)
Tunnel Diameter	26 ft 0.D. excavated; 20.5 ft 1.D.
Initial Support	Steel ring beams & wood lagging; also precast concrete lining 3 segments/ring, 12 in. thick & 4 ft wide
Excavation Method	By Kiewit: a Calweld oscillating cutter head TBM (8000 ft) By Dixon: a Calweld rotary cutter head TBM (10,000 ft)
Geology	Hard to soft sandstone (Pico Formation) & gravelly, cobbly sandstone (Saugus Formation) with oil seeps
Eventual Use	MWD water supply tunnel
Contractor	L.E. Dixon Co., Arundel Corp., MacDonald & Kruse, Inc., & Peter Kiewit Sons' Co. (joint venture)
Bid Price	\$35,000,000 awarded June 1966
Tunneling Period	1966-1970

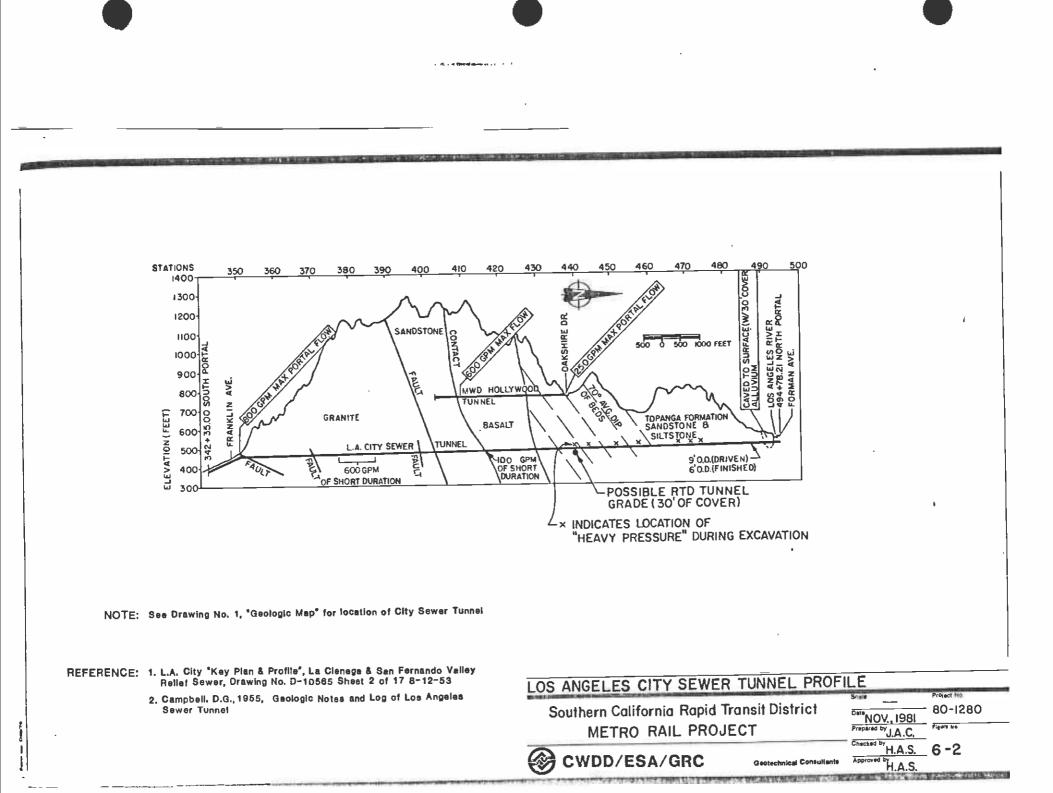
6.2.2 Excavation Progress

(The following are excerpts from Maynard M. Anderson, <u>Civil Engineering</u>, Sept 1970, p. 69).

- After rotary boring 10,000 feet, the contractor chose to abandon the "mole", since the weakly consolidated sedimentary rock would frequently slough ahead and above the cutting wheel, stalling the machine and necessitating extensive hand-cribbing of the overbreak. Despite this set-back, the average driving rate was probably better than what it would have been with conventional tunneling. Through ideal ground for the "mole" [CWDD note: in dry, moderately consolidated siltstone and sandstone], it bored over 100 ft in a single 3-shift day.
- Later [September 1969] the contractor started a second heading using a Calweld oscillating mining machine. This machine is mounted in a 26-ft O.D. full-circle shield that thrusts against a tunnel support system almost identical to the Tabor (MEMCO) tunnel lining. Excellent progress was made ... about 100 ft per working day ... through soft but wellstanding sedimentary rock.

(The following are excerpts from LeVitt, R.R. of A.A. Mathews, Inc., Memorandum. June 2, 1970, p. 3-4).

- Some sandstone at the face was so hard that it was broken down only by the shearing action of the drag cutters on the [oscillating] cutter head ... lenses of cobbles were noted in the face and these were being sheared off or dislodged with some difficulty ... the contractor has not experienced any severe ground water conditions ... the ground generally has been a fine-grained dense sandstone with a very low percolation rate;
- Pushing the Calweld rotary shield through the earth required a very heavy thrust [nearly 4,000 tons] against a firm base. The contactor felt the walls of the bore were too soft to serve as such a base, therefore, it was decided to axially thrust against the tunnel support system. This necessitated moving the wooden lagging from outside to between the circular steel ribs, where the "tight" lagging would provide support for the forward thrust of the shield.


6.3 LAC (LA CIENEGA - SAN FERNANDO VALLEY) SEWER TUNNEL

Tunnel Length	2.8 miles
Tunnel Diameter	9.0 ft O.D. excavated
Initial Support	4 in. steel ribs & wood lagging; when soft ground encountered, steel liner plates
Excavation Method	Conventional jumbo drill & blast
Geology	Conglomerate, Sandstone, Shale (Topanga formation) 8,000 ft Granite 4,700 ft Basalt 1,200 ft Young Alluvium 430 ft 14,330 ft
Eventual Use	Sewer tunnel, City of Los Angeles
Contractor	L.E. Dixon Co.; Ilning, Kemper Construction Co.
Bid Price	\$3,200,000
Tunneling Period	1954-56

6.3.1 Facts and Figures

6.3.2 Relation to Metro Rail Alignment

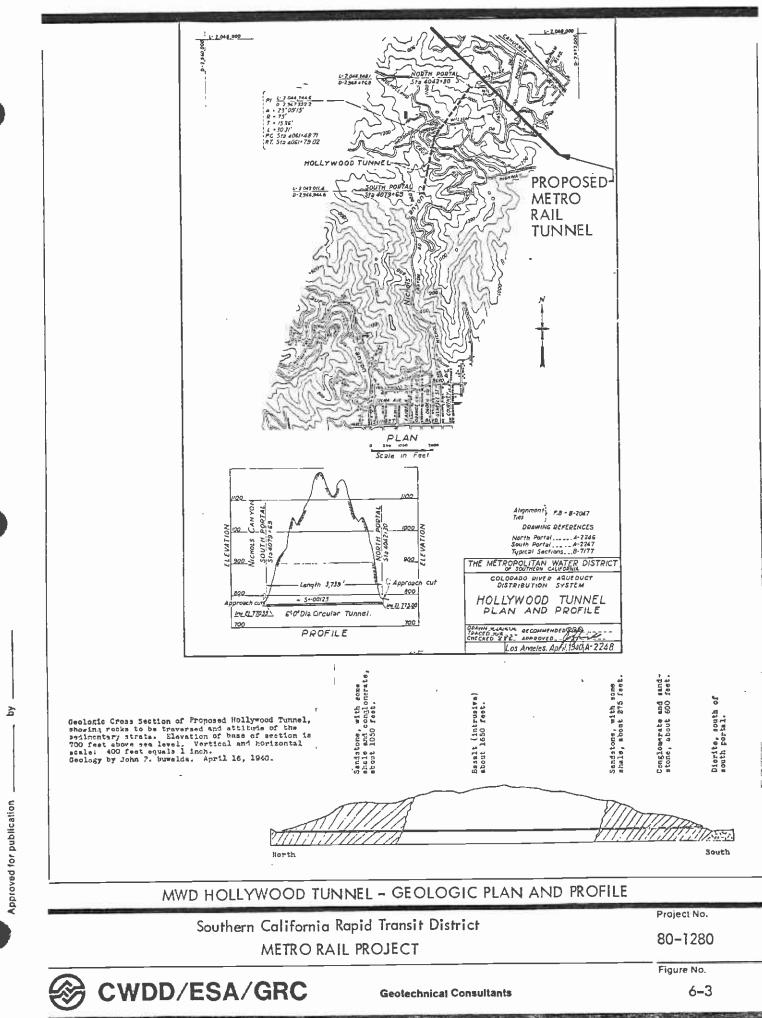
Except for the granite, Reach 7 of the Metro Rail alignment will pass through geologic formations similar to those encountered in this tunnel. Reach 7 is also very close to the Los Angeles City Sewer Tunnel (see Drawing 1 for location and Drawings 2 and 11 for subsurface relationships). Some recorded ground water inflows and geologic formations are presented in the profile on Figure 6-2.

This sewer tunnel encountered inflows greater than 100 gpm for a few hours to one day at seven locations along its 2.8-mile length. Maximum water flow from the down gradient south Portal was reported to be 1,200,000 gallons per day (gpd), or 800 gpm, but averaged 400,000 gpd (see Figure 6-2). Based on the final selected tunnel grade, the Metro Rail alignment will probably pass under the existing Los Angeles City Sewer tunnel. "Heavy ground pressures" were reported in the shaley parts of the Topanga Formation and in the sheared granite.

6.3.3 Problems in "Muddy" Young Alluvium - North End

The contractor installed steel ribs and lagging progessing southerly to Station 491+33 near the Los Angeles River at North Hollywood. At this point, under shallow cover, a wet, muddy Young Alluvium channel was encountered which had not been indicated in the geologists' report. The formation was chiefly mud, and the loads imposed on the steel ribs caused some sets to fail. This created an emergency condition, causing caving to the surface (see Figure 6-2) and the contractor installed heavy timber sets. This proved successful.

6.4 MWD HOLLYWOOD TUNNEL


6.4.1 Facts and Figures

Tunnel Length	0.7 miles
Tunnel Diameter	8.0 ft
Initial Support	Steel ribs & wood lagging
Excavation Method	Drill & blast
Geology	Conglomerate, Sandstone, Shale (Topanga formation) 1,600 ft Basalt 2,100 ft 3,700 ft
Eventual Use	MWD water supply tunnel
Contractor	J.F. Shea Co., Inc.
	\$190,000
Tunneling Period	June 1940 - May 1941

6.4.2 Relation to Metro Rail Alignment

The Hollywood Tunnel is located approximately 400 feet above the proposed Metro Rail alignment (see Drawing 1 for location). The basalt unit was mostly hard and dense and was described as good blasting rock (but contains soft ash and volcanic breccia layers, as revealed in logs of the tunnel). Water seeps were common, and on one occasion a maximum temporary inflow of about 600 gpm was recorded at the sandstone/basalt fault contact at the north end. No major

CWDD/ESA/GRC 1-89

faults were encountered and no squeezing ground was encountered. A geologic profile and plan view are presented on Figure 6-3.

6.5 LACFCD SACATELLA TUNNEL

6.5.1 Facts and Figures

The following tunneling data were received in an oral communication in June 1981 with the contractor, Donald Glanville of Glanville Construction Company, and John E. Witte, Tunnel Consultant, as well as LACFCD Pre-construction "Geologic Report", dated December 26, 1973; and Victor L. Wright's "Pre-Bid Geologic Appraisal" report, dated July 1975.

Tunnel Length	0.6 miles
Tunnel Diameter	18 ft O.D. excavated; 14.5 ft I.D.
	Precast concrete liner (3 segments/ring)
Excavation Method	Digger Gradall & shield
Advance Rate	Maximum 32 ft/8-hr shift; average 15 ft
Geology	Claystone, siltstone & occasional interbeds of very hard "calcareous" cemented sandstone
Eventual Use	Storm drain, LACFCD
Contractor	Glanville Construction Co.
Bid Price	+\$4,000,000
Extras Awarded	+\$500,000
Tunneling Period	1975-77

6.5.2 Relation to Metro Rail Alignment

The Los Angeles County Flood Control District's (LACFCD) Sacatella Tunnel is in litigation for "changed (geologic) conditions" in the tunnel (settled) and at both portals (unsettled). For this reason, the LACFCD was reluctant to release information.

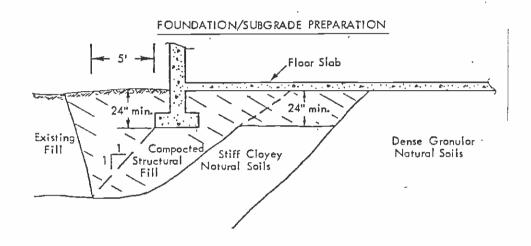
Geologic conditions and tunneling methods in this tunnel are very important to the Metro Rail alignment because:

• Tunnel was excavated in a "gassy" reach under Hoover Street, north of Wilshire Boulevard, in claystone, siltstone and sandstone of the Puente Formation (Unit C), at the location shown on Drawing 1.

Appendix G

Earthwork Recommendations

The following guidelines are recommended for earthwork associated with site development. Recommendations for dewatering and major temporary excavations are presented in the text.


- Site Preparation (surface structures): Existing vegetation, debris, and soft or loose soils should be stripped from the areas that are to be graded. Soils containing more than 1% by weight of organics may be re-used in planter areas, but should not be used for fill beneath building and paved areas. Organic debris, trash, and rubble should be removed from the site. Subsoil conditions on the site may vary from those encountered in the borings. Therefore, the soils engineer should observe the prepared graded area prior to the placement of fill.
- Minor Construction Excavations: Temporary dry excavations for foundations or utilities may be made vertically to depths up to 5 feet. For deeper dry excavations in existing fill or natural materials up to 15 feet, excavations should be sloped no steeper than 1:1 (horizontal to vertical).
- Structural Fill and Backfill: Where required for support of near surface foundations or where subterranean walls and/or footings require backfilling, excavated onsite granular soils or imported granular soils are suitable for use as structural fill. Loose soil, formwork and debris should be removed prior to backfilling the walls. Onsite soils or imported granular soils should be placed and compacted in accordance with "Recommended Specifications for Fill Compaction". In deep fill areas or fill areas for support of settlement-sensitive structures, compaction requirements should be increased from the normal 90% to 95% or 100% of the maximum dry density to reduce fill settlement.

Where space limitations do not allow for conventional backfill compaction operations, special backfill materials and procedures may be required. Sand-cement slurry, pea gravel or other selected backfill can be used in limited space areas. Sand-cement slurry should contain at least 1-1/2 sacks cement per cubic yard. Pea gravel should be placed in a moist condition or should be wetted at the time of placement. Densification should be accomplished by vibratory equipment; e.g., hand-operated mechanical compactor, backhoe mounted hydraulic compactor, or concrete vibrator. Lift thickness should be consistent with the type of compactor used. However, lifts should never exceed 5 feet. A soils engineer experienced in the placement of pea gravel should observe the placement and densification procedures to render an opinion as to the adequate densification of the pea gravel.

If granular backfill or pea gravel is placed in an area of surface drainage, the backfill should be capped with at least 18 inches of relatively impervious type soil; i.e., silt-clay soils.

^o Foundation Preparation: Where foundations for near surface appurtenant structures are underlain by existing fill soils, the existing fill should be excavated and replaced with a zone of properly compacted structural fill. The zone of structural fill should extend to undisturbed dense or stiff natural soils. Horizontal limits of the structural fill zone should extend out from the footing edge a distance equal to 5 feet or 1/2 the depth of the zone beneath the footing (a 1:1 ratio), whichever is larger. The structural fill should be placed and compacted as recommended under "Structural Fill and Backfill".

- Subgrade Preparation: Concrete slabs-on-grade for near-surface structures within the alluvium may be supported directly on undisturbed stiff or dense materials. The subgrade should be proof rolled to detect soft or disturbed areas, and such areas should be excavated and replaced with structural fill. If existing fill soils are encountered in near surface subgrade areas, these materials should be excavated and replaced with properly compacted granular fill. Where clayey natural soils (near existing grade) are exposed in the subgrade, these soils should be excavated to a depth of 24 inches below the subgrade level and replaced with properly compacted granular fill. Where dense natural granular soils are exposed at slab subgrade, the slab may be supported directly on these soils. All structural fill for support of slabs or mats should be placed and compacted as recommended under "Structural Fill and Backfill".
- Site Drainage: Adequate positive drainage should be provided away from the surface structures to prevent water from ponding and to reduce percolation of water into the subsoils. A desirable slope for surface drainage is 2% in landscaped areas and 1% in paved areas. Planters and landscaped areas adjacent to the surface structures should be designed to minimize water infiltration into the subsoils.

- Outility Trenches: Buried utility conduits should be bedded and backfilled around the conduit in accordance with the project specifications. Where conduit underlies concrete slabs-on-grade and pavement, the remaining trench backfill above the pipe should be placed and compacted in accordance with "Structural Fill and Backfill".
- Recommended Specifications for Fill Compaction: The following specifications are recommended to provide a basis for quality control during the placement of compacted fill.
 - 1. All areas that are to receive compacted fill shall be observed by the soils engineer prior to the placement of fill.
 - 2. Soil surfaces that will receive compacted fill shall be scarified to a depth of at least 6 inches. The scarified soil shall be moistureconditioned to obtain soil moisture near optimum moisture content. The scarified soil shall be compacted to a minimum relative compaction of 90%. Relative compaction is defined as the ratio of the inplace soil density to the maximum dry density as determined by the ASTM D1557-70 compaction test method.
 - 3. Fill shall be placed in controlled layers the thickness of which is compatible with the type of compaction equipment used. The thickness of the compacted fill layer shall not exceed the maximum allowable thickness of 8 inches. Each layer shall be compacted to a minimum relative compaction of 90%. The field density of the compacted soil shall be determined by the ASTM D1556-64 test method or equivalent.
 - 4. Fill soils shall consist of excavated onsite granular soils essentially cleaned of organic and deleterious material or imported soils approved by the soils engineer. All imported soil shall be granular and non-expansive or of low expansion potential (plasticity index less than 15%). The soils engineer shall evaluate and/or test the import material for its conformance with the specifications prior to its delivery to the site. The contractor shall notify the soils engineer 72 hours prior to importing the fill to the site. Rocks larger than 6 inches in diameter shall not be used unless they are broken down.
 - 5. The soils engineer shall observe the placement of compacted fill and conduct inplace field density tests on the compacted fill to check for adequate moisture content and the required relative compaction. Where less than 90% relative compaction is indicated, additional compactive effort shall be applied and the soil moisture-conditioned as necessary until 90% relative compaction is attained. The contractor shall provide level testing pads for the soils engineer to conduct the field density tests on.

Appendix H

Geotechnical Report References

REPORT No.	REPORT DATE	LOCATION	CONSULTANT
43	05/82	Southwest corner Lankershim & Hollywood Freeway	Woodward/Clyde
45	09/29/61	Universal Studios	L.T. Evans
46	10/27/65	Universal Studios	L.T. Evans
47	08/06/74	Universal Studios	L.T. Evans
48	06/03/76	Universal Studios	L.T. Evans

-

.

.

Appendix I Petrology

Appendix J: Petrology

J-1 INTRODUCTION

This appendix presents the results of the petrographic analyses performed by CWDD on selected rock samples obtained from Santa Monica Mountain cores in Borings CEG 30, 31, 32 and 32A. Petrographic descriptions of the thin sections examined are appended as pages 1068 through 1093.

The specific objectives of the petrograppic analyses were to:

- Verify and supplement field identification of lithologies and rock affinities;
- Provide additional data on the mineralogical and micro-structural characteristics of selected rock samples recovered from cores;
- * Compare and correlate lithologic characteristics of subsurface samples;
- Provide data to aid in interpretation of geologic relationships in the general vicinity of Borings CEG 30, 31, 32 and 32A.

J-2 PETROGRAPHIC PROCEDURE

Twenty-six rock samples obtained from Borings CEG 30, 31, 32 and 32A were selected for petrographic analyses. Thin sections were prepared by Von Hueue's Petrographic Thin Section Laboratory, Pasadena, California. Each rock sample was slabbed and trimmed, and the resulting rock chip was mounted on standard 27 and 46 mm glass slide(s). The mounted rock chip was then ground to a uniform thickness of 0.03 mm, polished and covered with a thin cover glass. If the rock sample was poorly consolidated, highly fractured or porous, it was impregnated with resin prior to preparation. The thin sections were routinely stained with sodium cobaltinitrate to aid in the identification of potash feldspars.

A petrographic polarizing microscope was used to examine the petrographic sections. The petrographic microscope is essentially a common-compound microscope modified for observation of the optical properties of non-opaque anisotropic minerals. It includes a rotating stage, an upper polarizer (commonly known as the analyzer) and a lower polarizer. Other accessories include an Amici-Bertrand lens, a condenser, and several varieties of compensating plates used in making optical determinations.

J-3 PETROGRAPHIC ANALYSES AND RESULTS

Systematic petrographic descriptions presented include rock name, approximate percentages of mineral constituents (visually estimated), texture, grain-size, structural features, and a brief description or characterization of the rock. The results of the petrographic analysis are presented on pages 1068 through 1093. Specialized petrographic nomenclature is used to describe various

CWDD/ESA/GRC II-1066

features useful in distinguishing rock types. Detailed treatment of this subject may be obtained from numerous reference texts; e.g., Williams, et al (1954). Sedimentary rocks were classified according to Folk (1974).

. -

J-4 CONCLUSIONS

. .

Based on the results of the petrographic analyses the basic rock names distinguished in each boring sampled are:

. •

Boring CEG No.	Rock Name	
30 (Odin at Cahuenga Blvd.)	Primarily fine sandstone (arkose), alternating with dolerite, amyndaloidal andesitic basalt	
31 (Hollywood Bowl Area)	Primarily sandstone (arkose) alternating with dolerite and fault-related mylonite at 138.7 ft	
32	Chiefly basalt and amygdaloidal vitrophyric basalt with sandstone interbed at 397.0 ft	
32A	Fine to pebbly sandstone; no basalt	

In summary, the predominant volcanic rock type analyzed is basalt, with minor (quantitatively less than 5%) dolerite and amygdaloidal andesitic basalt.

J-5 REFERENCES

Folk, R.L., 1974, Petrology of sedimentary rocks: Austin, Texas, Hemphill Publishing Company, 182 p.

Williams, F.J., Turner, F.S., and Gilbert, C.M., 1954, Petrography: W.H. Freeman and Company, Inc., 406 p.

Petrographic Report

Boring No. 30

		SHT. <u>1</u> Of <u>26</u>	_
Project Name: SCRTD - METRO RAIL PROJECT		Job No. 80-128	0
Date Sampled: An	nalysis By: Stephen M. Testa	Date : 04-13-8	1
Sample No. 30-69.0	Source: Depth 69.0 feet	•	
Location: Cahuenga Blvd.	north of Odin St.		
Megascopic Classificatio	n: FINE SANDSTONE		

PETROGRAPHIC ANALYSIS:

ROCK NAME: FINE SANDSTONE: SUBMATURE ARKOSE

MINERAL CONSTITUENTS:

Quartz	30	Organics	m
Feldspars		Sericite	m
Plagioclase	30	Amphibole	tr
Potassium Feldspar	20	Biotite	tr
Microcline	tr	Carbonate	tr
Lithic Fragments		Chiorite	tr
Sedimentary	-	Clay	tr
Volcanic	-	Clinopyroxene	tr
Metamorphic	-	Epidote	tr
Opaque Minerals	រា	Garnet	tr
		Muscovite	tr

DESCRIPTION:

Submature, angular to subangular, poorly sorted, fine-grained sandstone with silicafilled hairline fractures apparent. Stratification is accented by coaly seams of deep reddish-brown to black organic matter, probably derived from terrestrial, woody sources. Compaction deformation is mininal.

Quartz is characterized by slight to strong undulose extinction ranging from single grains to polycrystalline quartz of metamorphic origin. Polycrystalline quartz, included in the estimated modal quartz percentage, is distinguished by its crenulated interphase boundaries and strong undulose extinction. Boehm lamellar, indicative of intense strain deformation, is evident in some quartz grains. Potassium feldspar occasionally contains muscovite inclusions. Alteration products include partial sericitization of the feldspars and partial chloritization of biotite.

<u>Note</u>:

- m = minor constituents less than 5.0% in total volume.
- tr = trace constituents less than 1.0% in total volume.

Petrographic Report

Boring No. 30

SHT. 2 Of 26

Project Name: SCRTD - METRO RAIL PROJECT Job No.		Job No. 80-1280
Date Sampled:	led: Analysis By: Stephen M. Testa Date: (
Sample No. 30-114.5	Source: Depth 114.5 feet	
Location: Cahuenga Blvd. north of Odin St.		
Megascopic Classification: FINE SANDSTONE		

PETROGRAPHIC ANALYSIS:

ROCK NAME: FINE SANDSTONE: SUBMATURE LITHIC ARKOSE

MINERAL CONSTITUENTS:

Quartz	30
Feldspars	
Plagioclase	25
Potassium Feldspar	15
Microcline	tr
Lithic Fragments	
Sedimentary	-
Volcanic	20
Metamorphic	m
Opaque Minerals	m

Biotite	tr
Carbonate	tr
Chlorite	tr
Clay	tr
Epidote	tr
Garnet	tr
Muscovite	tr

DESCRIPTION:

Submature, angular to subangular, poorly sorted, fine-grained sandstone. No structural features apparent. Compaction deformation is mininal.

Quartz is characterized by slight to strong undulose extinction ranging from single grains to polycrystalline quartz of metamorphic origin. Numerous epidote inclusions are present in some potassium feldspar grains. Lithic constituents consist primarily of volcanic basalt fragments and subordinate schist fragments of metamorphic origin. The basalt rock fragments consist primarily of fine-grained hololycrystalline textures; plagioclase in some fragments is seen as randomly oriented laths with their interstices occupied by micro- to crypto-crystalline material, while others exhibit trachytic texture as a result of flow during emplacement. Albite quartz muscovite and quartz muscovite schists comprise the metamorphic rock fragments along with polycrystalline quartz previously mentioned. The metamorphic rock fragments are moderately foliated and totally recrystallized.

Note:

 \overline{m} = minor constituents less than 5.0% in total volume. tr = trace constituents less than 1.0% in total volume.

11-1069

Petrographic Report

Boring No. 30

SHT. <u>3</u> Of <u>26</u>

Project Name: SCRTD - METRO RAIL PROJECT		Job No. 80-1280	
Date Sampled: Analysis By: Stephen M. Testa Date:		Date: 04-13-81	
Sample No. 30-149.0	Source: Depth 149.0 feet		
Location: Cahuenga BI	vd. north of Odin St.		
Megascopic Classific	ation: FINE SANDSTONE		

PETROGRAPHIC ANALYSIS:

ROCK NAME: FINE SANDSTONE: CALCITIC SUBMATURE LITHIC ARKOSE

MINERAL CONSTITUENTS:

25
25
10
tr
-
10
5
25
tr
m

Amphibole	tr
Biotite	tr
Chlorite	tr
Clay	tr
Epidote	tr
Garnet	tr
Muscovite	tr
Organics	tr
-	

DESCRIPTION:

Submature, angular to subangular, poorly sorted, fine-grained sandstone. Poikilotropic calcite occurs as the cementing agent as well as irregular hairline fracture filling material. Compaction deformation is minimal.

Mineralogically, this rock sample is similar to sample number 30-114.5 with the exception to the preponderance of calcite. Polycrystalline quartz exhibiting strong undulose extinction is ubiquitous. Potassium feldspar grains occasionally contain inclusions of muscovite or epidote. Rock fragments of similar volcanic and metamorphic origin are also apparent.

Note:

m = minor constituents less than 5.0% in total volume. tr = trace constituents less than 1.0% in total volume.

Petrographic Report

Boring No. 30_

SHT. 4 Of 26

Project Name: SCRTD - METRO RAIL PROJECT		Job No. 80-1280
Date Sampled:	ampled: Analysis By: Stephen M. Testa Date: 04-13-8	
Sample No. 30-168.0	Source: Depth 168.0 feet	
Location: Cahuenga Blvd. north of Odin St.		
Megascopic Classification: DOLORITE		

PETROGRAPHIC ANALYSIS:

ROCK NAME: DOLERITE

MINERAL CONSTITUENTS:

Plagioclase (labradorite)	50
Augite	35
Chlorite	10
Opaque Minerals	m

DESCRIPTION:

Massive, medium-grained basalt characterized by holocrystalline subophitic texture; however, intergranular texture is also present. Plagioclase occurs as randomly oriented laths commonly exhibiting combined Albite-Carlsbad twinning with an anorthite content of An_{60} , that falling within the range of labradorite. Augite occurs as euhedral to subhedral crystals ranging in color from colorless to pinkish violet, suggesting the incorporation of Ti within its crystal structure during crystallization. Greenish brown chlorite occurs as a pseudomorph after olivine which has since been totally altered, and as an alteration product of augite. Randomly distributed equant grains and skeletal rods which penetrate nearby crystals characterize the opaque minerals. Based on mineralogy and texture, this basalt is classified as dolerite.

2.4

Petrographic Report

Boring No. 30

SHT. <u>5</u> Of <u>26</u>

tr tr tr tr tr tr

Project Name: SCRTD - METRO RAIL PROJECT		Job No. 80-1280	
Date Sampled: Analysis By: Stephen M. Testa Date:		Date: 04-13-81	
Sample No. 30-178.2	Source: Depth 178.2 feet		
Location: Cahuenga Blvd. north of Odin St.			
Megascopic Classifica	ition: FINE SANDSTONE		

PETROGRAPHIC ANALYSIS:

ROCK NAME: VERY FINE TO FINE SANDSTONE: SUBMATURE LITHIC ARKOSE

MINERAL CONSTITUENTS:

Quartz	20	Biotite
Feldspars		Clay
Plagioclase	35	Clinopyroxene
Potassium Feldspar	15	Epidote
Lithic Fragments		Muscovite
Sedimentary		Sphene
Volcanic	25	
Metamorphic	tr	
Calcite	25	
Opaque Minerals	m	

DESCRIPTION:

Submature, angular to subrounded, poorly sorted, very fine- to fine-grained sandstone. No structural features readily apparent. Compaction deformation is minimal.

Mineralogically, this rock sample is similar to sample numbers 30-114.5 and 30-149.0, with the exception to the lower modal of volcanic rock fragments.

Note: m = minor constituents less than 5.0% in total volume. tr = trace constituents less than 1.0% in total volume.

Petrographic Report

Boring No. 30

SHT. 6 Of 26

Project Name: SCRTD - METRO RAIL PROJECT	Job No. 80-1280			
Date Sampled: Analysis By: Stephen M. Testa	Date: 04-13-81			
Sample No. 30-190.0 Source: Depth 190.0 feet	٠			
Location: Cahuenga Blvd. north of Odin St.	•			
Megascopic Classification: DOLERITE				

PETROGRAPHIC ANALYSIS:

ROCK NAME: DOLERITE

MINERAL CONSTITUENTS:

Plagioclase (labradorite)	45
Augite	20
Chlorite	35
Opaque Minerals	
Iron Oxides	tr
Others .	tr

DESCRIPTION:

Massive, medium-grained basalt characterized by holocrystalline subophitic to ophitic texture. Plagioclase occurs as randomly oriented laths commonly exhibiting combined Albite-Carlsbad twinning with an anorthite content of An₅₈, that falling within the range of labradorite. Subhedral augite ranges in color from colorless to pinkish violet, suggesting the incorporation of Ti within its crystal structure during crystallization. The opaque minerals occur as randomly distributed equant grains occasionally showing skeletal growth. Brownish green chlorite exists as pseudomorphs after pre-existing olivine and in part as an alteration product of augite. In addition a fibrous form of green chlorite occuring in clusters and intermixed with the brownish green variety, is ubiquitous and probably resulted from continued hydrothermal alteration.

Based on mineralogy and texture, this sample is classified as dolerite. With the exception to being slightly coarser grained, it is similar both mineralogically and in part texturally to sample number 30-168.0

Note:

tr = minor constituents less than 1.0% in total volume.

Petrographic Report

Boring No. 30

SHT. 7 Of 26

Project Name: SCRTD - METR	Job No. 80-1280			
Date Sampled: Anal	ysis By: Stephen M. Testa	Date: 04-13-81		
Sample No. 30-206.0 So	urce: Depth 206.0 feet			
Location: Cahuenga Blvd. north of Odin St.				
Megascopic Classification: BASALT				

PETROGRAPHIC ANALYSIS:

ROCK NAME: AMYGDALOIDAL ANDESITIC BASALT

MINERAL CONSTITUENTS:

Plagioclase	30
Clinopyroxene	15
Chlorite	30
Calcite	m
Zeolites	15
Opaque Minerals	
Iron Oxides	m
Others	m

DESCRIPTION:

Massive, fine-grained vesicular basalt consisting of randomly oriented, partially chloritized lath-like plagioclase and partially to totally chloritized clinopyroxene. Crystals suspected of being olivine have been totally altered to chlorite. Interstices are filled with chlorite and/or a dark mesotasis comprised of dark brown glass and minute opaque granules. Irregular shaped amygdules up to 10mm in maximum dimension are commonly rimmed by a dark brown to black cryptocrystalline material, probably glass; filling material is a combination of chlorite, calcite and/or various zeolites including analcite. Due to the high degree of chloritization, probably the result of hydrothermal alteration, anorthite content of the plagioclase was underterminable. Thus, this rock sample is classified as basaltic andesite due to its textural similarities to the basalts and fine-grained andesites.

Petrographic Report

Boring No. 31

SHT. 8_Of 26

Project Name: SCRTD - METRO RAIL PROJECT		Job No. 80-1280	
Date Sampled:	Analysis By: Stephen M. Testa	Date: 04-09-81	
Sample No. 31-84.0	Source: Depth 84.0 feet		
Location: Cahuenga B			
Megascopic Classific			

PETROGRAPHIC ANALYSIS:

ROCK NAME: PEBBLY SANDSTONE: FOSSILIFEROUS IMMATURE VOLCANIC ARENITE

MINERAL CONSTITUENTS:

Lithic Fragments Matrix	60% 40%		
Lithic Fragments		Matrix	
Plagioclase	40	Cryptocrystalline material	65
Chlorite	25	Carbonate (microfossils)	15
Unknown	15	Plagioclase	10
Cryptocrystalline material	10	Quartz	m
Opaque minerals	m	Chlorite	tr
Zeolites	m	Muscovite	tr-
		Opaque minerals	† r -

DESCRIPTION:

Immature, angular to subangular, moderately sorted, fossiliferous, pebbly sandstone. Compaction deformation is minimal.

Lithic fragments are entirely volcanic in origin consisting of fine-grained amygdaloidal basalt rock fragments. Holocrystalline intersertal texture predominates evident by randomly oriented plagioclase laths in a groundmass of green chlorite, dark greenish brown cryptocrystalline material, and an optically undeterminable mineral specie, possibly of the zeolite variety. Zeolites, notably analcite, and radial fibrous chlorite also occur as secondary mineralization within the amygdules. The volcanic rock fragments are commonly zoned due to relatively less groundmass alteration along their respective rims.

The matrix consist primarily of micro- to cryptocrystalline material in part clay combined with organic matter. Microfossils are abundant and consist of foraminifera (uniserial and biserial varieties), in addition to mollusk and brachiopod fragments, and others.

Note: m = minor constituents less than 5.0% in total volume.

11-1075

Petrographic Report

Boring No. 31

SHT. 9 Of 26

-81

PETROGRAPHIC ANALYSIS:

ROCK NAME: MEDIUM SANDSTONE: SCHISTOSE SUBMATURE LITHIC ARKOSE

MINERAL CONSTITUENTS:

Quartz	15	
Feldspars		
Plagioclase	30	
Potassium Feldspar	m	
Lithic Fragments		
Sedimentary	-	
Metamorphic	-	
Volcanic	15	
Cryptocrystalline material	m	
Sericite	10	
Chlorite	20	

Amphibole	tr
Biotite	tr
Clay	tr
Clinopyroxene	tr
Epidote	tr
Opaque minerals	tr

DESCRIPTION:

Submature, angular to subrounded, poorly sorted, medium-grained sandstone. Mineralogically, this sample is similar to sample numbers 30-114.5 and 30-178-.2. Structurally, this sample is moderately schistose with irregularly spaced comminuted layers. These layers consist primarily of chlorite or sericite enclosing grains of quartz and plagioclase laths that have been rotated and aligned, respectively, parallel to the gliding surfaces.

Lithic fragments are entirely volcanic in origin, exhibiting typical volcanic textures. Polocrystalline quartz is abundant and indicative of a metamorphic origin but is included in the modal quartz percentage.

Note:

Petrographic Report

Boring No. <u>31</u>____

SHT. <u>10</u> Of <u>26</u>

Project Name: SCRTD - METRO RAIL PROJECT		Job No. 80-1280	
Date Sampled:	Analysis By: Stephen M. Testa	Date: 04-09-81	
Sample No. 31-133.6	Source: Depth 133.6 feet		
Location: Cahuenga BI			
Megascopic Classific			

PETROGRAPHIC ANALYSIS:

ROCK NAME: MEDIUM TO PEBBLY SANDSTONE: SEMI-SCHISTOSE SUBMATURE LITHIC ARKOSE

MINERAL CONSTITUENTS:

Quartz	20
Feldspars	05
Plagioclase	25
Potassium Feldspar	tr
Lithic Fragments	
Sedimentary	-
Volcanic	30
Metamorphic	tr
Chlorite	10

Cryptocrystalline material	ព
Opaque minerals	ព
Carbonate	m
Biotite	tr
Clinopyroxene	tr
Epidote	tr

DESCRIPTION:

Submature, angular to subrounded, poorly sorted, medium to granular sandstone. Mineralogically, this sample is similar to previously described submature lithic arkoses. Structurally, this sample differs in respect to a predominate semi-schistose cataclastic texture consisting of irregular gliding planes of finely comminuted layers.

Note:

Petrographic Report

Boring No. 31

SHT. <u>11</u> Of <u>26</u>

Date Sampled:	Analysis By: Stephen M. Testa	Date: 04-09-81
Sample No. 31-138.7	Source: Depth 138.7 feet	
Location: Cahuenga BI	vd. in front of Hollywood Bowl	-

PETROGRAPHIC ANALYSIS:

ROCK NAME: MYLONITE

MINERAL CONSTITUENTS:

Cryptocrystalline material	65
Plagioclase	20
Quartz	10
Opaque minerals	tr
Lithic fragments	tr
Potassium feldspar	tr
Biotite	tr
Clinopyroxene	tr
Epidote	tr
Hypersthene	tr

DESCRIPTION:

Cataclastic, schistose, intensely sheared, fine-grained rock characterized by fluxion structure. Wavy comminuted layers of varying thicknesses enclose porphyroclasts comprising about 40% in total volume. Cryptocrystalline material, consisting of a felty groundmass exhibits a preferred orientation parallel to the gliding surfaces. Grain fragments are enclosed and occasionally aligned parallel to the schistosity. Quartz grains are angular and exhibit microfracturing along with moderately altered plagioclase laths leaving trails of crushed particles.

Note:

tr = trace constituents less than 1.0% in total volume.

Petrographic Report

Boring No. 31

SHT. 12 Of 26

Project Name: SCRTD -	- METRO RAIL PROJECT	Job No. 80-1280
Date Sampled:	Analysis By: Stephen M. Testa	Date: 04-09-81
Sample No. 31-142.6	Source: Depth 142.6 feet	/
Location: Cahuenga Blv	vd. in front of Hollywood Bowl	-
Megascopic Classifica	ition: VERY FINE SANDSTONE	

PETROGRAPHIC ANALYSIS:

ROCK NAME: SILTY VERY FINE SANDSTONE: FOSSILIFEROUS SUBMATURE ARKOSE

MINERAL CONSTITUENTS:

Quartz	25	Amphibole	tr
Feldspars		Biotite	tr
Plagioclase	35	Chlorite	tr
Potassium Feldspar	10	Clay	tr
Muscovite	15	Epidote	tr
Organics	10	Opaque minerals	tr
Calcite	m	Sericite	tr

DESCRIPTION:

Stratified, submature, angular to subangular, fossiliferous, silty very fine-grained sandstone. Discordant irregular hairline veinlets are commonly filled with calcite. Stratification is accented by a preferred orientation of elongate minerals, notably muscovite, and by the ubiquitous occurence of discontinuous organic seams. Compactional deformation is minimal.

Quartz is commonly polycrystalline in nature. The feldspars show partial alteration to sericite and epidote. Foraminifers occur in trace amounts.

Petrographic Report

Boring No. 31___

SHT. 13 Of 26

Project Name: SCRTD - METRO RAIL PROJECT		Job No. 80-1280	
Date Sampled:	Analysis By: Stephen M. Testa	Date: 04-09-81	
Sample No. 31-149.9	Source: Depth 149.9 feet		
Location: Cahuenga Bl	vd. in front of Hollywood Bowl	-	
Megascopic Classific	ation: VERY FINE SANDSTONE		

PETROGRAPHIC ANALYSIS:

ROCK NAME: SILTY VERY FINE SANDSTONE: FOSSILIFEROUS SUBMATURE ARKOSE

MINERAL CONSTITUENTS:

Quartz	20
Feldspars	
Plagioclase	35
Potassium Feldspar	10
Carbonate	15
Organics	15

Muscovite m Amphibole tr Chlorite tr Epidote tr

DESCRIPTION:

Stratified, submature, angular to subangular, poorly sorted, fossiliferous, silty very fine-grained sandstone. Discordant irregular hairline veinlets are filled primarily with calcite in combination with subordinate zeolites and plagioclase. Stratification is accented by a preferred orientation of elongate minerals, notably muscovite, and by the ubiquitous occurence of discontinuous organic seams. Compaction deformation is moderate.

Mineralogically, similar to sample number 31-142.6, with the exception to a higher preponderance of foraminifera (10% to 13% in total volume) and organic matter. Randomly distributed foraminifers, including uniserial and biserial species, show microtized wall structures and typical chamber shapes. Other microfossils are also present.

<u>Note</u>:

Petrographic Report

Boring No. 31

SHT. <u>14</u> Of <u>26</u>

Project Name: SCRTD -	METRO RAIL PROJECT	Job No. 80-1280
Date Sampled:	Analysis By: Stephen M. Testa	Date: 04-10-81
Sample No. 31-168.6	Source: Depth 168.6 feet	
Location: Cahuenga BI	d. in front of Hollywood Bowl	

PETROGRAPHIC ANALYSIS:

ROCK NAME: DOLERITE

MINERAL CONSTITUENTS:

Plagioclase (labradorite)	65
Augite	30
Chlorite	m
Opaque Minerals	tr
Sericite	tr

DESCRIPTION:

Massive, fine-grained basalt consisting of randomly oriented lath-like plagioclase in an intergranular and occasional subophitic relationship with augite. Plagioclase phenecrysts are rare but, when present, show partial sericitization. Anorthite content of plagioclase is An₆₄, that falling within the range of labradorite. Randomly distributed subhedral augite crystals are slightly pleochroic, ranging in color from colorless to pinkish violet, suggesting incorporation of Ti within its crystal structure during crystallization. Augite occasionally occurs in radial clusters. Greenish brown chlorite occurs as an alteration product of augite and olivine. Crystals suspected of being olivine have been totally altered to chlorite. Chlorite also occurs as a coating along joint planes and in thin irregular veinlets, probably as a result of hydrothermal alteration.

Petrographic Report

Boring No. 32

SUT 15 OF 26

		<u>SHT</u>	
Project Name: SCRTD -	METRO RAIL PROJECT	Job No). 80-1280
Date Sampled:	Analysis By: Stephen M. Testa	Date:	04-10-81
Sample No. 32-77.6	Source: Depth 77.6 feet		••• <u>.</u>
Location: Cul de sac;	west end of Hillpark Drive		
Megascopic Classifica	tion: BASALT		
PETROGRAPHIC ANA	LYSIS:		معد و دی را ۲۰ مربع - مع ۲۰ مربع - می ۲۰ م
ROCK NAME: AMYGDALOIDAL	VITROPHYRIC BASALT		,
Palagonite	25		

DESCRIPTION:

Pumpellyite?

Massive, moderately fractured, fine-grained amygdaloidal basalt. Vitrophyric texture predominates consisting of randomly distributed blebs of pale yellow palagonite (fresh glass) enclosed by olive buff to reddish brown palagonite (altered glass) with ubiquitous perlitic cracks. Phenocrysts consist of euhedral to subhedral olivine, clinopyroxene and lath-like plagioclase microlites with an anorthite content of AN54, that falling within the range of labradorite. Amygdules up to 2mm in maximum dimensionare darkly rimmed and characterized by a concentric radial fibrous texture. Filling material consists of chlorite and/or zeolites including analcite and stilbite. Fibrous chlorite also occurs in thin irregular veinlets possibly intermixed with pumpellyite (?).

 \mathbf{T}

Note:

Petrographic Report

Boring No. 32

SHT. 16 Of 26

Project Name: SCRTD -	METRO RAIL PROJECT	Job No. 80-1280
Date Sampled:	Analysis By: Stephen M. Testa	Date: 04-10-81
Sample No. 32-131.0	Source: Depth 131.0 feet	
Location: Cul de sac;	west end of Hillpark Drive	-
Megascopic Classifica	tion: BASALT	

PETROGRAPHIC ANALYSIS:

ROCK NAME: AMYGDALOIDAL VITROPHYRIC BASALT

MINERAL CONSTITUENTS:

Palagonite	
fresh	45
altered	25
Plagioclase (labradorite)	10
Olivine	m
Clinopyroxene	m
Chlorite	10
Zeolites	m
Iddingsite	tr
Opaque Minerals	tr

DESCRIPTION:

Massive, moderately fractured, fine-grained amygdaloidal basalt. Very similar to sample number 32-77.6, with the exception to a greater abundance of modal fresh unaltered palagonite.

Petrographic Report

Boring No. 32

SHT. 17 Of 26

Project Name: SCRTD -	METRO RAIL PROJECT	Job No. 80-1280
Date Sampled:	Analysis By: Stephen M. Testa	Date: 04-10-81
Sample No. 32-152.0	Source: Depth 152.0 feet	
Location: Cul de sac;	west end of Hillpark Drive	
Megascopic Classifico	ition: BASALT	

PETROGRAPHIC ANALYSIS:

ROCK NAME: AMYGDALOIDAL HYALOPILITIC BASALT

MINERAL CONSTITUENTS:

Cryptocrystalline material	35
Plagioclase (labradorite)	35
Chlorite	15
Zeolites	10
Sideromelane (basic glass)	m
Opaque Minerals	tr

DESCRIPTION:

Massive, moderately fractured, fine-grained amygdaloidal basalt. Hyalopilitic intersertal texture predominates consisting of randomly oriented lath-like plagioclase microlites with interstices filled with a mesostatis of micro- to cryptocrystalline dark brown to black glass, chlorite and opaque crystallites. Plagioclase has an anorthite content of An₅₅, that falling within the range of labradorite. These laths are characterized by acute fibrous terminations. Concentric to irregular-shaped amygdules up to 2mm in maximum dimension are commonly filled with radial fibrous chlorite and/or zeolites including stilbite and analcite. Healed irregular veinlets are also filled primarily with zeolites with some chlorite which commonly enclose fragments of the matrix material.

Petrographic Report

Boring No. 32

SHT. 18 Of 26

Project Name: SCRTD - METRO RAIL PROJECT		Job No. 80-1280
Date Sampled:	Analysis By: Stephen M. Testa	Date: 04-10-81
Sample No. 32-175.0	Source: Depth 175.0 feet	
Location: Cul de sac;	west end of Hillpark Drive	
Megascopic Classific	ation: BASALT	

PETROGRAPHIC ANALYSIS:

ROCK NAME: AMYGDALOIDAL VITROPHYRIC BASALT

MINERAL CONSTITUENTS:

Palagonite	
fresh	25
altered	55
Plagioclase (labradorite)	10
Chlorite	m
Clinopyroxene	m
Olivine	m
Zeolites	m
lddingsite	tr
Opaque Minerals	tr

DESCRIPTION:

Massive, moderately fractured, fine-grained amygdaloidal basalt. Very similar to sample numbers 32-77.6 and 32-131.0 with a lesser abundance of modal fresh unaltered palagonite in comparison to sample number 32-131.0

Petrographic Report

Boring No. 32

SHT. 19 Of 26

Project Name: SCRTD - METRO RAIL PROJECT		Job No. 80-1280
Date Sampled:	Analysis By: Stephen M. Testa	Date: 04-10-81
Sample No. 32-248.0	Source: Depth 248.0 feet	···-
Location: Cul de sac;	west end of Hillpark Drive	
Megascopic Classific	ition: BASALT	

PETROGRAPHIC ANALYSIS:

ROCK NAME: AMYGDALOIDAL HYALOPILITIC BASALT

MINERAL CONSTITUENTS:

Cryptocrystalline material	- 30
Plagioclase (labradorite)	35
Chlorite	15
Zeolites	20
Sideromelane (basic glass)	m
Opaque Minerals	tr:

DESCRIPTION:

Massive, moderately fractured, fine-grained amygdaloidal basalt. Mineralogically and texturally similar to sample number 32-152.0.

Note: m = minor constituents less than 5.0% in total volume. tr = minor constituents less than 1.0% in total volume.

11-1086

. . .

Petrographic Report

Boring No. 32

· · · · · · · · · · · · · · · · · · ·	SHT. <u>20</u> Of <u>26</u>
Project Name: SCRTD - METRO RAIL PROJECT	Job No. 80-1280
Date Sampled: Analysis By: Stephen M. Testa	Date: 04-09-81
Sample No. 32-397.0 Source: Depth 397.0 feet	
Location: Cul de sac; west end of Hillpark Drive	
Megascopic Classification: VERY FINE SILTY SANDSTONE	

PETROGRAPHIC ANALYSIS:

ROCK NAME: SILTY VERY FINE SANDSTONE: FOSSILIFEROUS SUBMATURE ARKOSE

MINERAL CONSTITUENTS:

Quartz	20
Feldspars	
Plagioclase	35
Potassium Feldspar	m
Carbonate	15
Opaque minerals	m
Sericite	m

Chlorite tr Clay tr Epidote tr Muscovite tr Oganics tr

DESCRIPTION:

Submature, subangular to subrounded, poorly sorted, fossilliferous, silty very fine-grained sandstone. Compositional banding indicative of primary depositional features apparent. Moderately fractured with micro-offsets along discordant hairline fractures and incipient shear planes; fractures commonly filled with calcite. Compositional deformation is minimal. Fossiliferous material consists of numerous randomly distributed foraminifers including uniserial and biserial species showing microtized wall structures and typical chamber shapes. Other microfossils are also present.

Petrographic Report

Boring No. 32A

SHT. _21_Of _26___

Project Name: SCRTD - METRO RAIL PROJECT	Job No. 80-1280
Date Sampled: Analysis By: Stephen M. Testa	Date: 04-10-81
Sample No. 32A-117.5 Source: Depth 117.5 feet	
Location: Oakshire Dr., 155' east of Passmore Dr. intersection	
Megascopic Classification: FINE SANDSTONE	

PETROGRAPHIC ANALYSIS:

ROCK NAME: FINE SANDSTONE: CALCITIC SUBMATURE LITHIC ARKOSE

MINERAL CONSTITUENTS:

Quartz	- 30
Feldspars	
Plagioclase	30
Potassium Feldspar	15
Microcline	tr
Lithic Fragments	
Sedimentary	-
Volcanic	10
Metamorphic	tr
Calcite	10

Chlorite	tr
Ctay	tr
Epidote	tr
Muscovite	tr
Opaque minerals	tr

DESCRIPTION:

Submature, angular to subangular, poorly sorted, fine-grained sandstone. Numerous voids are apparent, comprising about 40% of the total surface area of the slide. Compaction deformation appears mininal. Mineralogically similar to previously described submature lithic arkoses.

Quartz is characterized by slight to strong undulose extinction and ranges from single grains to polycrystalline in nature, indicative of metamorphic origin. The feldspars contain numerous inclusions of muscovite and epidote. Lithic fragments, primarily of volcanic origin, are characterized by holocrystalline fine-grained textures. Remnant pore space has been filled with later sparry calcite cement.

Note:

tr = trace constituents less than 1.0% in total volume.

Petrographic Report

Boring No. 32A

SHT. 22_Of 26___

Date Sampled:	Analysis By: Stephen M. Testa	Date: 04-10-81
Sample No. 32A-252.4	Source: Depth 252.4 feet	
Location: Oakshire Dr	, 155' east of Passmore Dr. intersection	•

PETROGRAPHIC ANALYSIS:

ROCK NAME: FINE TO MEDIUM SANDSTONE: SUBMATURE LITHIC ARKOSE

MINERAL CONSTITUENTS:

Quartz	20	Amphibole	tr
Feldspars		Biotite	tr
Plagioclase	35	Calcite	tr
Potassium Feldspar	10	Chlorite	tr
Lithic Fragments		Epidote	tr
Sedimentary	-	Garnet	tr
Volcanic	25	Muscovite	tr
Metamorphic	m	Pumpellyite?	tr
Opaque Minerals		Sphene	tr
Pyrite	tr		
Others	m		

DESCRIPTION:

Submature, angular to subangular, poorly sorted, fine-grained sandstone. Compaction deformation is mininal. Mineralogically, this sample is similar to previously described submature lithic arkoses.

Petrographic Report

Boring No. 32A

SHT. 23 Of 26

Project Name: SCRTD -	METRO RAIL PR	0JECT	Job No	b. 80-1280
Date Sampled:	Analysis By:	Stephen M. Testa	Date:	04-10-81
Sample No. 32A-271.0	Source:	Depth 271.0 feet		
Location: Oakshire Dr.	, 155' east of	Passmore Dr. intersection		
Megascopic Classifica	Ition: SANDSTO	NE CONGLOMERATE		

PETROGRAPHIC ANALYSIS:

ROCK NAME: FINE TO PEBBLY SANDSTONE: SUBMATURE LITHIC ARKOSE

MINERAL CONSTITUENTS:

Quartz	15
Feldspars	
Plagioclase	30
Potassium Feldspar	10
Lithic Fragments	
Sedimentary	-
Volcanic	20
Metamorphic	15
Sericite	10
Calcite	m
Chlorite	m

Amphibole	tr
Biotite	tr
Epidote	tr
Opaque minerals	tr
. ,	

DESCRIPTION:

Submature, angular to subangular, moderately sorted, fine to pebbly sandstone. Compaction deformation is minimal. Lithic constituents consist primarily of volcanic rock fragments in association with subordinate metamorphic rock fragments. Mineralogically similar to previously described submature lithic arkoses. However, texturally, this sample is coarser grained.

Petrographic Report

Boring No. 32A

SHT. 24 Of 26

Project Name: SCRTD - METRO RAIL PROJECT		Job No. 80-1280		
Date Sampled:	Analysis By:	Stephen M. Testa	Date:	04-10-81
Sample No. 32A-320.5	Source:	Depth 320.5 feet		
Location: Oakshire Dr.	, 155' east of	Passmore Dr. intersection		
Megascopic Classifica	tion: SANDSTO	DNE CONGLOMERATE		

PETROGRAPHIC ANALYSIS:

ROCK NAME: FINE TO GRANULE SANDSTONE: SUBMATURE PHYLLARENITE

MINERAL CONSTITUENTS:

20
15
10
_
10
35
m
m

Biotite	tr
Chlorite	tr.
Epidote	tr
Garnet	tr
Opaque minerals	tr

DESCRIPTION:

Submature, angular to subrounded, moderately sorted, fine to pebbly sandstone. Quartz is typically polycrystalline. Lithic constituents consist primarily of totally recrystallized metamorphic rock fragments in association with subordinate volcanic fragments. A variety of textures is exhibited among the metamorphic rock fragments and includes a preferred orientation of elongate minerals, preferred crystal alignment, foliation, and fluxion structure; mineral assemblages include quartz-albite-garnet-biotite-chlorite-sericite and quartz-albite-muscovite. Calcite occurs as a remnant pore space filling cement.

II-1091

Petrographic Report

Boring No. 32A

SHIT.	25	_Of	26	
-------	----	-----	----	--

Project Name: SCRTD - METRO RAIL PROJECT		Job No. 80-1280		
Date Sampled: A	nalysisBy:	Stephen M. Testa	Date:	04-10-81
Sample No. 32A-346.2	Source:	Depth 346.2 feet		
Location: Oakshire Dr.,	1551 east of	Passmore Dr. intersection		
Megascopic Classificati	on: SANDSTO	NE CONGLOMERATE		-

PETROGRAPHIC ANALYSIS:

ROCK NAME: FINE TO PEBBLY SANDSTONE: SUBMATURE LITHIC ARKOSE

MINERAL CONSTITUENTS:

Quantz	25
Feldspars	
Plagioclase	10
Potassium Feldspar	25
Microcline	m
Lithic Fragments	
Sedimentary	-
Volcanic	-
Metamorphic	20
Sericite	10
Chlorite	m

Biotite	tr
Carbonate	tr
Muscovite	tr
Opaque minerals	tr
Sphene	tr

DESCRIPTION:

Submature, angular to subangular, moderately sorted, fine to pebbly sandstone. Microbrecciation of lithic clasts and microfracturing of mineral grains is suggestive of some cataclasis. Compaction deformation is mininal.

Quartz is characterized by angular grains that exhibit undulose extinction and commonly have been totally recrystallized. In addition to polycrystalline quartz, lithic rock fragments are entirely metamorphic and have undergone total recrystallization, exhibiting typical metamorphic textures.

Note:

Petrographic Report

Boring No. 32A

SHT. 26 Of 26

Project Name: SCRTD -	METRO RAIL PROJECT	Job No. 80-1280
Date Sampled:	Analysis By: Stephen M. Testa	Date: 04-10-81
Sample No. 32A-386.5	Source: Depth 386.5 feet	
Location: Oakshire Dr.	, 155' east of Passmore Dr. intersection	
Megascopic Classifica	Ition: SANDSTONE CONGLOMERATE	

PETROGRAPHIC ANALYSIS:

ROCK NAME: MEDIUM TO PEBBLY SANDSTONE: SUBMATURE LITHIC ARENITE

MINERAL CONSTITUENTS:

Quartz	15	Biotite	tr
Feldspars		Calcite	tr
Plagioclase	20	Chlorite	tr
Potassium Feldspar	10	Sphene	tr
Lithic Fragments			
Sedimentary	-		
Volcanic	45		
Metamorphic	-		
Opaque Minerals	m		

DESCRIPTION:

Submature, angular to subrounded, poorly sorted, medium to pebbly sandstone. Compaction deformation is minimal. This sample is characterized by abundant volcanic lithic rock fragments of varying textures. Sharp irregular depositional contact between the submature volcanic arenite and a silt very fine sandstone with abundant organics is apparent in the corner of the slide.

1