

Converse Consultants Earth Sciences Associates Geo/Resource Consultants

GEOTECHNICAL REPORT

METRO RAIL PROJECT Design Unit A415

ΒY

CONVERSE CONSULTANTS, INC. EARTH SCIENCES ASSOCIATES GEO/RESOURCE CONSULTANTS

MAY 1984

MTA LIBRARY

Funding for this Project is provided by grants to the Southern California Rapid Transit District from the United States Department of Transportation, the State of California and the Los Angeles County Transportation Commission.

> General Geotechnical Consultant Converse Consultants, Inc. 126 West Del Mar Boulevard Pasadena, California 91105 Telephone 213 795-0461

Converse Consultants Earth Sciences Associates Geo/Resource Consultants

May 18, 1984

Metro Rail Transit Consultants 548 South Spring Street Los Angeles, California 90013

Attention: Mr. B.I. Maduke, Senior Geotechnical Engineer

Gentlemen:

This letter transmits our final geotechnical investigation report for Design Unit A415 prepared in accordance with our Contract No. 503 agreement dated September 30, 1983 between Converse Consultants, Inc. and Metro Rail Transit Consultants (MRTC). This report provides geotechnical information and recommendations to be used by design firms in preparing designs for Design Unit A415.

Our study team appreciate the assistance provided by the MRTC staff, especially Mr. B.I. Maduke. We also want to acknowledge the efforts of each member of the Converse team, in particular Howard Spellman and Jim Doolittle.

Respectfully submitted,

for Robert M. Pride Senior Vice President

Converse Consultants, Inc.

RMP:h

MTA LIBRARY

General Geotechnical Consultant Converse Consultants, Inc. 126 West Del Mar Boulevard Pasadena, California 91105 Telephone 213 795-0461

Robert M. Pride Senior Vice President

This report has been prepared by CCI/ESA/GRC under the professional supervision of the principal soils engineer and engineering geologist whose seals and signatures appear hereon.

The findings, recommendations, specifications or professional opinions are presented, within the limits prescribed by the client, after being prepared in accordance with generally accepted professional engineering and geologic principles and practice. There is no other warranty, either express or implied.

Howard A. Spellman Principal Engineering Geologist

MTA LIBRARY

Table of Contents

TABLE OF CONTENTS

SECTION	1.0 1.1 1.2 1.3	EXECUTIVE SUMMARY1CONSTRUCTION CONSIDERATIONS1DESIGN CONSIDERATIONS1SEISMIC CONSIDERATIONS1
SECTION	2.0	INTRODUCTION 2
SECTION	3.0	SITE AND PROJECT DESCRIPTION 3
SECTION	4.0 4.1 4.2 4.3 4.4 4.5	FIELD EXPLORATION AND LABORATORY TESTING4GENERAL4BORINGS4GEOPHYSICAL MEASUREMENTS4GEOTECHNICAL LABORATORY TESTING4WATER QUALITY ANALYSES5
SECTION	5.0 5.1 5.2 5.3	SUBSURFACE CONDITIONS6GENERAL DESCRIPTION6ENGINEERING PROPERTIES OF SUBSURFACE MATERIALS6GROUND WATER10
SECTION	6.0 6.1 6.2	GEOTECHNICAL EVALUATION AND DESIGN CRITERIA FOR STATIONS.11GENERAL EVALUATION11EXCAVATION DEWATERING116.2.1 General116.2.2 Criteria for Dewatering Systems116.2.3 Induced Subsidence12
	6.3 6.4	UNDERPINNING CONSIDERATIONS
	6.5 6.6	INSTRUMENTATION OF THE EXCAVATION21FOUNDATION SYSTEMS226.6.1Main Stations226.6.2Support of Surface Structures22
	6.7 6.8	PERMANENT GROUND WATER PROVISIONS25LOADS ON SLAB AND WALLS256.8.1Hydrostatic Pressures256.8.2Permanent Static Lateral Pressures256.8.3Surcharge Loads27

.

•

.

٠

.

.

Page

TABLE OF CONTENTS

	SEISMIC CONSIDERATIONS	
	6.9.1 General	27
	6.9.2 Dynamic Material Properties	
	6.9.3 Liquefaction Potential	30
6.10	EARTHWORK CRITERIA	31
6.11	SUPPLEMENTARY GEOTECHNICAL SERVICES	31

REFERENCES

.

.

,

•

DRAWING	1	-	VICINITY MAP
DRAWING	2	-	LOCATION OF BORINGS AND GEOLOGIC SECTION
DRAWING	3	-	LOCATION OF BORINGS
DRAWING	4	-	SUBSURFACE SECTION A-A'
DRAWING	5	-	SUBSURFACE SECTION B-B'
DRAWING	б	-	GEOLOGIC EXPLANATION
APPENDIX	A		FIELD EXPLORATION
APPENDIX	В		GEOPHYSICAL EXPLORATION
APPENDIX	С		GEOTECHNICAL LABORATORY TESTING
APPENDIX	D		WATER QUALITY ANALYSIS
APPENDIX	Ε		TECHNICAL CONSIDERATIONS
APPENDIX	F		EARTHWORK RECOMMENDATIONS

. .

LIST OF FIGURES

.

•

FIGURE No.	TITLE
6-1	UNDERPINNING GUIDELINES - ADJACENT TO SHORING
6-2	LATERAL LOADS ON TEMPORARY SHORING IN ALLUVIUM
6-3	EXCAVATION DESIGN AT ALLUVIUM/BEDROCK CONTACT
6-4	ALLUVIUM TIEBACK ANCHOR SCHEMATIC
6-5	SPREAD FOOTING BEARING/SETTLEMENT ON ALLUVIUM
6-6	SPREAD FOOTING BEARING/SETTLEMENT ON COMPACTED FILL
6-7	LOADS ON PERMANENT WALLS
6-8	RECOMMENDED DYNAMIC SHEAR MODULUS RELATIONSHIPS
6-9	RECOMMENDED DYNAMIC DAMPING RELATIONSHIPS

Ł

LIST OF TABLES

.

.

,

.

,

.

•

TABLE No.	TITLE							
5-1	MATERIAL PROPERTIES SELECTED FOR STATIC DESIGN	7						
5-2	RQD VARIATIONS - BASALT	9						
5-3	GROUND WATER OBSERVATION WELL DATA	10						
6-1	RECOMMENDED DYNAMIC MATERIAL PROPERTIES FOR USE IN DESIGN	30						

Section 1.0

Executive Summary

1.0 EXECUTIVE SUMMARY

This report presents the results of our geotechnical investigation and engineering analyses for the A415 Design Unit of the Southern California Rapid Transit District's Metro Rail Project in Los Angeles. The A415 Design Unit consists of the Hollywood Bowl Station. The structure will be constructed by cut-and-cover methods and will extend to depths of about 55 to 100 feet below the existing ground surface. This report defines the subsurface conditions and provides recommendations for design and construction purposes for facilities shown on SCRTD drawings dated August 1983.

1.1 CONSTRUCTION CONSIDERATIONS

Excavation for construction will encounter a shallow depth of alluvium underlain by basalt bedrock. Considering the relatively open nature of the site, a sloped excavation may be used within the alluvium. Excavation within the basalt will likely require blasting, and support of vertical rock walls via rock bolts may be needed. Preconstruction dewatering should not be necessary; however, some ground water control may be required during construction.

1.2 DESIGN CONSIDERATIONS

The basalt rock at the subgrade elevation will provide a hard and uniform subgrade for support of the station structure with negligible settlement. Design lateral pressures for the permanent structure are provided in the report. Hydrostatic pressures are also provided for permanent design.

1.3 SEISMIC CONSIDERATIONS

Ground water levels measured at the site were within the bedrock which is not a liquefiable material. Alluvial soils are assumed to be non-saturated at this time because of the low current water levels. However, based on the conservative assumption of future higher water levels, a liquefaction evaluation was performed. The results of the liquefaction evaluation based on field correlations of SPT results and performance of granular soils indicate that the granular soils at the site have a low potential for liquefaction during a maximum design earthquake.

Design procedures and criteria for underground structures under earthquake loading conditions are defined in the SCRTD 1984 report entitled "Guidelines for Seismic Design of Underground Structures". Seismological conditions which may impact the project and the operating and maximum design earthquakes which may be anticipated in the Los Angeles area are described in the SCRTD report entitled "Seismological Investigations and Design Criteria" dated May, 1983. The 1984 report complements and supplements the 1983 report. Site specific static and dynamic properties for materials in design unit A415 are given in this report.

Section 2.0 Introduction

2.0 INTRODUCTION

This report presents the results of a geotechnical investigation for the A415 Design Unit which consists of the Hollywood Bowl Station. The work performed for this report includes borings, laboratory tests, engineering analysis, and the development of recommendations and general earthwork specifications for design and construction of the station. This Design Unit is a part of the 18.6-mile long Metro Rail Project (see Drawing 1, Vicinity Map).

Additional geotechnical information on the Metro Rail Project is included in the following reports, some of which may pertain to Design Unit A415.

- "Geotechnical Investigation Report, Metro Rail Project", Volume I -Report, and Volume II - Appendices, prepared by Converse Ward Davis Dixon, Earth Sciences Associates and Geo/Resource Consultants, submitted to RTD in November 1981. This report presents general geologic and geotechnical data for the entire project. The report also comments on tunneling and shoring experience and practices in the Los Angeles area.
- Seismological Investigation & Design Criteria Metro Rail Project", prepared by Converse Consultants, Lindvall Richter & Associates, Earth Sciences Associates and Geo/Resource Consultants, submitted to RTD in May 1983. This report presents the results of a seismological investigation.
- "Geologic Aspects of Tunneling in the Los Angeles Area" (USGS Map No. MF866, 1977), prepared by the U.S. Geological Survey in cooperation with the U.S. Department of Transportation. This publication includes a compilation of geotechnical data in the general vicinity of the proposed Metro Rail Project and this Design Unit.
- "Rapid Transit System Backbone Route", Volume IV, Book 1, 2 and 3, prepared by Kaiser Engineers, June, 1962 for the Los Angeles Metropolitan Transit Authority. This report presents the results of a Test Boring Program for the Wilshire Corridor and logs of borings.

The design concepts discussed in this report are based on the "Final Report for the Development of Milestone 10, CBD to North Hollywood Line Plans, Sheets 7 and 8, dated July 1983; and Preliminary Site Plans, Plans and Sections for Hollywood Bowl Station, dated August, 1983. The location and depth of the structure as indicated by the referenced plan is shown on Drawings 3 and 4. If the location or configuration of the proposed station is changed from that shown, this report will not be completely applicable to the changed conditions.

-2-

Section 3.0

Site and Project Description

3.0 SITE AND PROJECT DESCRIPTION

The Hollywood Bowl Station will be located within the major entertainment center area off the Hollywood Bowl Road as shown on Drawings 2 and 3. The area to the north of the Hollywood Bowl Station is Los Angeles County park-land. The surrounding developed areas are of mixed low- to medium-density residential developments.

The station entrance will be located close to the entrance to the Bowl, adjacent to the ticket offices. The station has been designed with a single mezzanine centered on the length of the station. There will be two escalators and two stairs from entry to mezzanine and from mezzanine to platform. Ancillary space will be provided at each end of the station, and a traction power substation will be located below grade over the ancillary space on the outbound end of the station.

-3-

Section 4.0

Field Exploration and Laboratory Testing

4.0 FIELD EXPLORATION AND LABORATORY TESTING

4.1 GENERAL

The information presented in this report is based primarily on the field and laboratory investigations performed in 1981 and 1983. This information was derived from field reconnaissance, borings, geologic reports and maps, ground water measurements, field geophysical surveys, ground water quality tests, and laboratory tests on soil and rock samples. References listed at the end of this report were utilized to complement and supplement the more recent information.

4.2 BORINGS

For the A415 investigation, a total of 12 borings were drilled at or near the proposed station site. The borings consisted of nine rotary wash holes numbered 29-3, 30-A and 31-1 through 31-7 drilled in 1983 and 1984, and rotary wash Borings CEG-30 and CEG-31 drilled in 1981. In addition, a man-size auger, Boring 30-B, was drilled in 1983. The locations of the borings are shown on Drawings 2 and 3, and the logs of the borings are provided in Appendix A. Ground water observation wells were installed in Borings 30, 30-A, 30-B, 31, 31-1, 31-2, 31-3 and 31-5. Section 5.3 presents a summary of ground water level measurements in these wells.

Another source of boring information is the U.S. Geological Survey paper, "Geologic Aspects of Tunneling in the Los Angeles Area" (USGS Map No. MF-866, 1977). The foundation investigation borings included in the USGS report for this area are not shown on our drawings and were not used because they were too shallow for proper interpretation of subsurface conditions along the proposed grade of the station excavation.

4.3 GEOPHYSICAL MEASUREMENTS

Downhole compression and shear wave velocity surveys were performed in Boring CEG-31 which was drilled during the initial 1981 investigation. The CEG-31 boring was drilled on the south side of the Hollywood Bowl Station. Appendix B summarizes the field geophysical survey procedures as well as the results of the velocity measurements.

4.4 GEOTECHNICAL LABORATORY TESTING

The laboratory program developed to test representative soil and rock samples consisted of classification tests, consolidation tests, static triaxial compression tests, unconfined compression tests, direct shear tests, and permeability tests. Appendix C summarizes the testing procedures and presents detailed results of the testing program.

4.5 WATER QUALITY ANALYSES

.

Chemical analyses were performed and selected parameters were evaluated on a water sample obtained in Boring CEG-31. The results of these tests are presented in Appendix D.

Section 5.0

Subsurface Conditions

5.0 SUBSURFACE CONDITIONS

5.1 GENERAL DESCRIPTION

During the field program for this investigation and neighboring design units, the contact between Young and Old Alluvium has been difficult to identify since the soils in these two deposits are generally very similar. However, considering the close proximity of the site to the Santa Monica Mountains, it is concluded that the alluvial deposits at the Hollywood Bowl site are relatively young (geologically speaking). Therefore, for purposes of this report, all references to alluvial deposits should be assumed to mean Young Alluvium.

Drawings 2 and 4 show generalized subsurface cross-sections through the proposed Hollywood Bowl Station. The subsurface profile at the Station site consists of predominantly coarse-grained alluvium which extends to depths of up to about 40 feet and overlies basalt bedrock. The alluvium encountered was primarily granular, loose to very dense, consisting of silty sands with traces of clay and fine gravel grading in places to sandy silt with clay. Clayey and silty gravels were also encountered in a number of the borings near the surface of the bedrock. These lenses were up to about 6 feet in thickness, and the gravel was derived from the basalt. The alluvium may also contain zones of cobbles and boulders, although none was encountered.

The bedrock surface slopes downward to the south and east. Depths to bedrock at the Station vary between about 20 feet at the northwest end to about 40 feet at Boring 31-3 near mid-length along the proposed Station structure (see Drawing 4). From Boring 31-3 southward to near the southeast end of the Station, the bedrock surface is generally level at about Elevation 480, and then the rock surface slopes up, rising to the ground surface about 50 feet southeast of the Station.

5.2 ENGINEERING PROPERTIES OF SUBSURFACE MATERIALS

For purposes of our engineering evaluation, the subsurface materials were grouped into two general subsurface units. These main subsurface units are the predominantly coarse-grained alluvium and the basalt bedrock of the Topanga Formation. Fill soils were not encountered in any of the borings drilled at this location.

The following paragraphs present engineering descriptions of each of the two main subsurface materials and engineering parameters assigned to these units for our analyses (see Table 5-1). The laboratory testing program and laboratory test results are presented in Appendix C.

Alluvium: The alluvium encountered at this site consisted primarily of silty, fine to medium sand with a trace of clay and fine gravel. However, at Boring 31-3, the material graded to a sandy silt with clay. The gravel content of the alluvium tends to increase within about 10 feet of the bedrock surface. Standard Penetration Test (SPT) results ranged from 5 to 77 in this soil unit but averaged approximately 33. Laboratory density tests carried out on samples from this unit generally indicated dry densities ranging between 95 and 105 pcf. Triaxial test results indicated effective stress friction angles of 32° to 33° and total stress

	GEOLOGIC UNIT				
MATERIAL PROPERTY	ALLUVIUM	TOPANGA BEDROCK			
Moist Density Above Ground Water (pcf)	120	155			
Saturated Density (pcf)	125	155			
Effective Stress Strength					
ø' (degrees)	33	-			
c' (psf)	200	-			
Total Stress Strength					
ø (degrees)	25	-			
c (psf)	500				
Average Unconfined Compressive Strength (ksf)	-	100 to 400 ^(b) 400 to 1,500 ^{(c}			
Permeability (cm/sec)	10 ⁻² to 10 ⁻⁴				
Poisson's Ratio (non-saturated)	0.35	- 0.35			
Initial Vertical Tangent Modulus (psf)	260 σ, (d)	-			

TABLE 5-1 MATERIAL PROPERTIES SELECTED FOR STATIC DESIGN

(a) The total stress parameters should be used to determine the increase in undrained strength with depth for use in undrained strength analyses.

(b) Intensely to moderately fractured.

(c) Moderately to little fractured.

⁽d) σ_{i} is the effective overburden pressure (psf) equal to effective density times overburden depth. Moist density should be used to determine σ_{i} above the water table and submerged density (saturated density minus water density) should be used for the effective density of soils below the water table.

friction angles of 24° to 25°. Direct shear test results were generally higher, with friction angles ranging from 29° to 45°. The strength values of Table 5-1 are somewhat lower than may be expected for "granular" alluvium due to the high silt content of the soils at this site. Undrained modulus values from triaxial tests exhibited a moderate increase with consolidation pressure. Permeability tests performed on silty sand specimens from this unit indicated permeabilities on the order of 10^{-3} to 10^{-4} cm/sec; however, the permeability of the more gravelly soils generally present at the base of the unit is considered to be 10^{-2} to 10^{-3} cm/sec.

Topanga Formation Bedrock: All the borings drilled at the site penetrated to varying depths into basalt bedrock of the Topanga Formation. Soft and deeply to moderately weathered basalt was encountered to depths of a few feet to 10 feet immediately below the alluvium. Below this depth, the basalt is "fresher", moderately hard to hard, moderately strong to strong, moderately to little weathered, intensely to little fractured material. The fractures are weakly to strongly cemented. The "fresher" bedrock rings with a hammer blow; a dull thud occurs from a hammer blow on weathered bedrock.

There are significant variations in Rock Quality Designations (RQD) at each boring. RQD, as defined in this report, is the percentage of core 4 inches or longer obtained from a coring run. About 95% of the recorded core breaks are due to weakly cemented natural fractures; the balance are mechanical breaks. Table 5-2 shows RQD variations in basalt at various depths.

In general, RQD is poor to fair at the south end of the station (Boring 31-2), and good to excellent near the north end of the station (Boring 31-5). We believe the RQD is better at the north end of the station because this end is farther from the Hollywood Bowl fault zone located just south of the site. Mountain building (uplift) forces that created the Santa Monica Mountains also contributed to discontinuities (fractures) in the basalt as evidenced by numerous weakly cemented, slickensided fracture surfaces in Borings 31-2 through 31-5.

Basalt in Borings 31-2 through 31-4 is intensely fractured (spaced 0.05 foot to 0.1 foot apart) to moderately fractured (spaced 0.5 foot to 1.0 foot apart). Basalt in 3-5 is moderately fractured to little fractured (spaced 1.0 foot to 3.0 feet apart). Fractures nearer the Hollywood Bowl fault zone are weakly cemented with soft, secondary minerals; for example, chlorite, talc, calcareous clay. Thus, cores break more easily, and the RQD is generally poor to fair. Fractures in Boring 31-5, farthest from the Hollywood Bowl fault zone, are more strongly cemented, predominantly with quartz. Thus cores do not break readily, and the RQD is generally good.

If compared to rock tunnelling conditions, we believe the following Terzaghi Rock Condition Numbers, as shown on Drawing 5, would apply to the basalt:

Borings 31-2, 31-3 and 31-4: Terzaghi No. 4 (moderately blocky and seamy) Terzaghi No. 5 (very blocky and seamy) Boring 31-5: Terzaghi No. 3 (massive, moderately jointed) Terzaghi No. 4 (moderately blocky and seamy)

-8-

TABLE 5-2

ROD VARIATIONS - BASALT

	RQD (%)	APPROXIMATE DEPTH INTERVAL (ft)	BORING No.	RQD (%)	APPROXIMATE DEPTH INTERVAL (ft)	BORING	RQD (%)	APPROXIMATE DEPTH INTERVAL (ft)	BORING No.	RQD (%)	APPROXIMATE DEPTH INTERVAL (ft)_
31-2	96	35 - 37	31-3	17	46 - 51	31-4	76	21 - 26	31-5	96	13 - 17
	41	37 - 42		68	51 - 56		84	26 - 32		100	17 - 27
	79	42 - 47		63	56 - 59		67	32 - 36		100	27 - 37
	0	47 - 51		68	59 - 64		58	36 - 41		98	37 - 45
Station Grade →	· 38	51 - 56		100	64 - 69		27	41 - 46		95	45 - 55
	28	56 - 59	Station Grade	÷ 83	69 - 74		33	46 - 51		79	55 - 65
	32	59 - 63		60	74 - 79		61	51 - 56		100	65 - 75
	77	63 - 70		92	79 - 84		60	56 - 61		95	75 - 80
	43	70 - 76		45	84 - 89		60	61 - 66		62	80 - 84
	75	. 76 - 82		65	89 - 90		69	66 - 71		82	84 - 88
	34	82 - 85		84	90 - 95		84	71 - 76		65	88 - 96
	19	85 - 90		96	95 - 100		54	76 - 81		93	96 - 105
			١				57	81 - 86		80	105 - 113
							75	86 - 91	Tunnel ·	→ 98	113 - 121
						Station Grade	÷ 90	91 - 100		87	121 - 131
						I				97	131 - 150

RQD AS RELATED TO ROCK-MASS PROPERTIES:

RQD (%)	DESCRIPT10N	APPROXIMATE EQUIVALENT FRACTURE SPACINC
0- 25 25- 30 30- 75 75- 90 90-100	Very poor Poor Fair Good Excellent	Intensely Closely Moderately Little Massive

.

-9-

-

Laboratory testing of the bedrock for this study has generally been limited to unconfined compression tests performed during this investigation and the 1981 investigation. The material properties presented in Table 5-1 are, therefore, based primarily on published data and limited laboratory test results for basalt.

5.3 GROUND WATER

Ground water levels in the vicinity of the station were measured in piezometers installed at Borings 30, 30-B, 31, 31-1 and 31-5. Table 5-3 presents ground water levels measured in these piezometers. Based on the results of these measurements, it appears that current ground water levels are within the bedrock and slope in a southward direction across the site at gradients of about 5% to10%, which is approximately the same as the average ground surface gradients. Drawings 2 and 4 show that current water levels range from about Elevation 515 feet at the northwest end of the site to about Elevation 475 at the southeast end of the Station site. Table 5-3 shows ground water levels measured in the piezometers have remained relatively constant, but no piezometer readings to date have been obtained during heavy rainfall periods.

No gas odors or unusual ground water conditions were noted during the field exploration program in the site area.

	GROUND WATER ELEVATION*									
	Init	ia	1981	1982		1983	1		84	
BORING	Elevation	Date	06717	04/28	02/24	10/24	12/20	02/13	05708	
30	454	03/03/81	456	453					455	
30-A		02/22/83								
30-В	442	02/23/83			445					
31	453	02/24/81		456				457	458	
31-1	453	10/06/83				· 453	453	453	454	
31-2	486	10/24/83								
31-3	470	10/09/83								
31-5	530	10/19/83				531	531	533	531	

TABLE 5-3 GROUND WATER OBSERVATION WELL DATA

*Rounded to the nearest foot

Section 6.0

Geotechnical Evaluation and Design Criteria for Stations

CCI/ESA/GRC

6.0 GEOTECHNICAL EVALUATION AND DESIGN CRITERIA FOR STATIONS

6.1 GENERAL EVALUATION

Construction of the Hollywood Bowl Station will involve excavation of alluvial soils and hard basalt rock to depths of 55 to 100 feet below the existing ground surface. Excavation within the alluvium may be shored or, considering the relatively open nature of the site, a sloped excavation may be used. Excavation of the basalt rock will likely require blasting. Shoring by means of rock bolts and wire mesh within the basalt may be required. Current ground water levels measured at the site are within the basalt and, therefore, preconstruction dewatering should not be required; however, some ground water control may be required during construction.

The basalt rock at the subgrade elevation will provide hard and uniform subgrade support for the proposed Station with negligible differential settlement. Lateral loads on the permanent structure will vary between that of the alluvial soils and that of the basalt. Seismic performance of the basalt will be governed by the local structure of the formation. The dynamic performance of this formation is discussed in the Southern California Rapid Transit District (SCRTD) 1984 report entitled "Guidelines for Design of Underground Structures".

The following subsections present more detailed evaluations and recommendations for design and construction of the Hollywood Bowl Station.

6.2 EXCAVATION DEWATERING

6.2.1 General

Considering that current ground water levels at the site are within the basalt bedrock below the alluvial soils, preconstruction dewatering in the alluvium is not anticipated. Current ground water levels within the basalt range from 25 to 65 feet above the proposed subgrade (see Drawings 2 and 4). The basalt encountered at the boring locations was intensely to little fractured (fracture spacing of 1/2 inch to 12 inches), but most of the fractures were well healed with hard mineral deposits. Some gravity seepage from the bedrock is expected as the excavation proceeds, but flow quantities should generally be moderate to low. Based on our current data, dewatering at this site could he handled by a drain and sump system within the excavation. Localized zones of high flow may be encountered, but these are expected to be of limited extent and would likely drain within a short period of time. Blasting may cause minor changes in ground water inflow.

6.2.2 Criteria for Dewatering Systems

It is understood that the contractor will be responsible for designing, installing, and operating a suitable construction dewatering system subject to review and acceptance by the Metro Rail Construction Manager. It is anticipated that a dewatering system will consist of drains and sumps at the base of the excavation. The system should satisfy at least the following criteria:

o

The sump system should have the capability of quickly increasing pumping capacity to handle zones of high flow.

- * The sump system should operate continuously.
- The sump system should include emergency power and backup pumps in case of power or equipment failure.
- Disposal of pumped water must be in accordance with all local ordinances.

6.2.3 Induced Subsidence

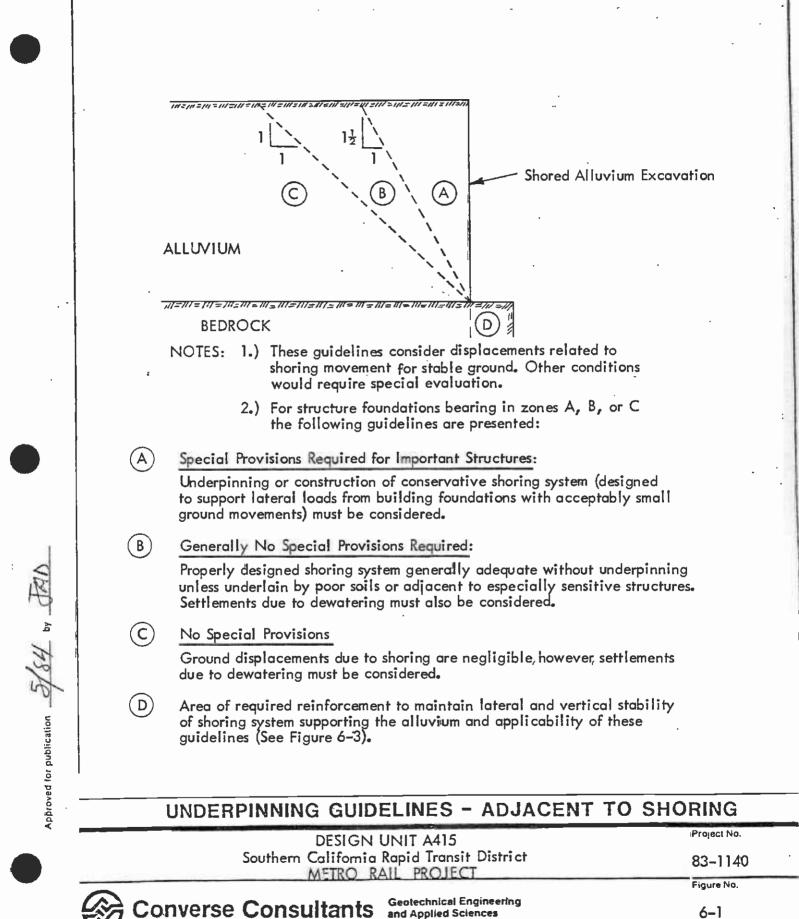
Due to the fact that current ground water levels are entirely within the relatively incompressible basalt rock, no significant subsidence due to dewatering is anticipated.

6.3 UNDERPINNING CONSIDERATIONS

Figure 6-1 presents general underpinning guidelines for building structures based on the depth of alluvium and the expected zone of influence from a shored excavation. Since the nearest significant structure (The Bowl) is more than 170 feet from the proposed Station, it is expected that the "Underpinning Report" for this Station will indicate that underpinning is not required. Therefore, no further discussion or recommendations for underpinning are presented herein.

6.4 . TEMPORARY EXCAVATIONS

6.4.1 General


The required A415 Station excavation will extend some 55 to 100 feet below the existing ground surface through alluvium and basalt rock. Alluvial soils are expected to range between 15 and 40 feet in thickness, and the top of basalt 30 to 80 feet above the proposed subgrade. Ground water levels are below the top of the basalt and, therefore, will not affect the excavation of the alluvium. We understand that the excavation support system will be chosen and designed by the contractor in accordance with specified criteria and subject to the review and acceptance by the Metro Rail Construction Manager.

6.4.2 Excavation within the Alluvium

6.4.2.1 General: Considering the current site conditions, excavation within the alluvium at the site could be either sloped or shored. A sloped excavation is considered feasible due to the absence of structures around the site and the relatively thin alluvium. A shoring method considered feasible would be soldier piles with lagging. Bracing systems are probably limited to tiebacks in soil, rock bolts in rock, and internal bracing.

> The following subsections present further evaluations and our recommendations for both sloped and shored excavations within the alluvium.

-13-

6.4.2.2 Sloped Excavation in Alluvium: Safe, stable construction slopes are the contractor's responsibility (refer to CALOSHA Article 6 1540d) and must be determined in the field based on actual construction conditions. However, for construction feasibility purposes, we have evaluated possible excavation slopes. Based on the field and laboratory investigation, it is our opinion temporary excavation slopes in natural alluvium may be made at slope ratios given in the table below:

SLOPE HEIGHT	MAXIMUM SLOPE RATIO*
(ft)	(horizontal:vertical)
<5	vertica)
5 to 20	1:1
20 to 40	1 1/4: 1
20 to 40	<u> </u>

* Slope ratio is assumed to be uniform from the top to toe of slope.

It should be noted that the recommended slope ratios are for uniform, dry (dewatered) slopes without surcharge; composite slopes or other conditions would require special evaluation. A setback (bench) should be provided between the toe of slope and the bedrock cut. The minimum setback should be 5 feet or 1/2 of the slope height, whichever is greater (see Figure 6-3b).

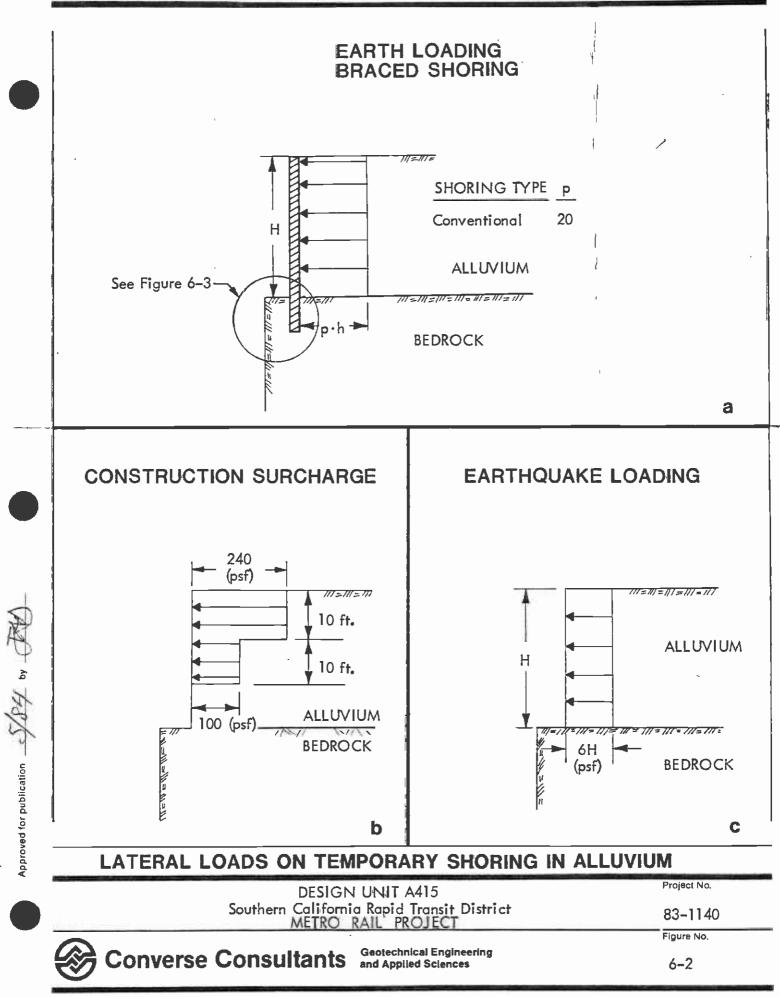
Field observations indicate that alluvial thickness on the existing slopes north of the site is very small. Therefore, it appears feasible to excavate the relatively minor amount of soil between the Station and toe of existing slope to expose the basalt bedrock and eliminate any alluvial slopes in those areas. If alluvial soils are removed along the east and north sides of the excavation, some provisions may be required to intercept surface drainage from the existing slopes along those sides.

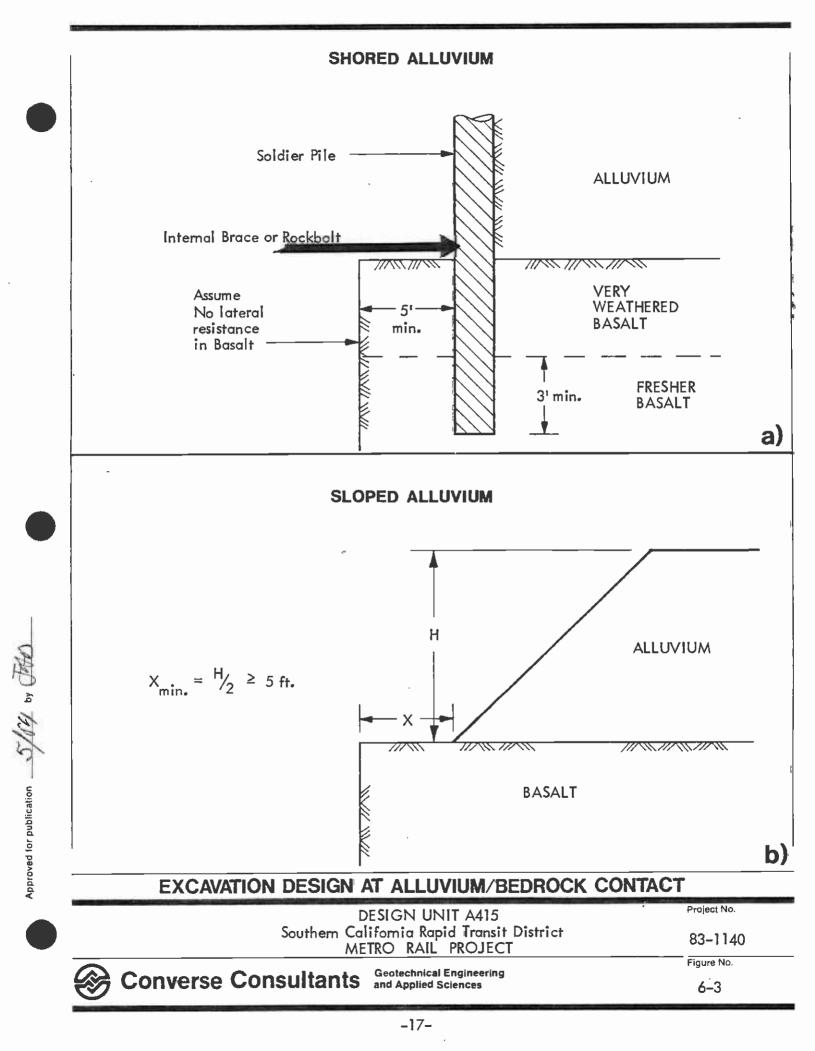
6.4.2.3 Shored Excavations in Alluvium: Shoring for support of the alluvium should be "toed" into the bedrock. This would require excavating a nominal distance into rock which may be very difficult.

Driven sheet pile shoring does not appear feasible at this site due to the expected difficulty in penetrating the basalt to provide a "toe-in" at the top of the basalt.

A soldier pile system is considered feasible for alluvium support, but the piles will encounter problems penetrating the basalt. The need for a stiff shoring system (such as a slurry wall) does not appear to exist at this site since no structures are within the zone of influence normally considered with such excavations.

Internal bracing would appear to be preferable over tiebacks from the installation standpoint due to the difficulty of penetrating the basalt. Consideration may be given to a combination of tieback support in the upper portion of the shoring and internal bracing in the lower portion. Considering the above-discussed items and local construction practice, we feel that a conventional soldier pile and lagging shoring system with tiebacks in the alluvium and/or internal bracing is the most likely shoring system to be used at this site. The following discussions and recommendations are, therefore, directed to a conventional soldier pile wall system. However, other shoring systems may be considered by the contractor, and further recommendations can be provided for such designs as required.


6.4.2.4 Alluvium Shoring Design Criteria: This section provides design criteria for a conventional soldier pile shoring system consisting of soldier piles and wooden lagging supported by tiebacks and/or internal bracing. The soldier piles are assumed to consist of steel W or H-sections installed in predrilled circular shafts. It is assumed that the drilled shaft will be filled with concrete. Thus, for computing the allowable loads, the piles were assumed to have circular concrete sections.


All shored soils at the site will require support between soldier piles to reduce loss of ground. Typically, wooden lagging is used although precast concrete or steel panels could also be used.

Specific shoring design criteria include:

- Design Wall Pressure: Figure 6-2a presents the recommended lateral earth pressure for temporary braced shoring walls within the alluvium. Construction surcharge pressures for a conventional shoring system are presented in Figured 6-2b. Appendix E.2 provides technical support for the recommended seismic pressures of Figure 6-2c. The full loading diagram above the bottom of the alluvium should be used to determine the design loads on tieback anchors. For computing design stresses in the soldier piles, the computed values can be multiplied by 0.8. For sizing lagging, the earth pressures can be reduced by a factor of 0.5.
- Pile Placement and Embedment: Soldier piles for support of alluvial soils should be placed back 5 feet or more from the edge of the planned bedrock cut line. All shoring piles must penetrate through any deeply weathered basalt and at least 5 feet into the fresher basalt (see Figure 6-3a). The allowable vertical bearing capacity for properly placed and embedded soldier piles is 30 ksf. No passive resistance should be assumed for the bedrock. All lateral resistance for the shoring should be provided entirely by the bracing system. A brace, internal struts or long rock bolts extending well into fresh basalt rock should be provided at the bedrock/alluvium interface.
- Pile Spacing and Lagging: The optimum pile spacing depends on many factors including soil type, soil loads, member sizes and costs. At the A415 site the alluvial soils encountered were generally silty sand and sandy silt and would be subject to ravelling and sloughing. Thus, it is recommended that the pile spacing be limited to about 8 feet and that continuous lagging

CCI/ESA/GRC

be placed to minimize ravelling of soils and loss of ground between soldier piles. The contractor should limit the temporarily exposed granular soil height to less than 3 feet to control ravelling problems.

- Excavation Stability: As part of the shoring design, stability calculations should be performed to verify that the shoring/tieback system has an adequate safety factor against deepseated failure through the alluvium or weathered bedrock horizons.
- 6.4.2.5 Internal Bracing: The contractor should not be allowed to extend the excavation through the alluvium an excessive distance below the lowest strut level prior to installing the next strut level. The maximum vertical distance depends on several specific details such as the design of the wall and the allowable ground movement. These details cannot be generalized. However, as a guideline, we recommend consideration of 12 feet as the maximum allowable vertical distance between struts.

In addition, the contractor should not be allowed to extend the excavation more than 3 feet below the designated support level before placing the next level of struts.

To remove slack and limit ground movement, the struts should be preloaded. A preload equal to 50% of the design load is normally desirable. The shoring design, preload procedures, and monitoring/ maintenance procedures must provide for the effects of temperature changes to maintain the shoring support.

6.4.2.6 Tieback Anchors: Numerous types of tieback anchors may be constructed, such as straight shaft friction anchors, belled anchors, high pressure grouted anchors, high pressure regroutable anchors, and others. Generally, in the Los Angeles area, high capacity straight shaft or belled anchors have been used in alluvial soils which are stable and dewatered.

> Actual tieback anchor capacity can only be determined in the field based on anchor load tests. For estimating purposes, we recommend that the capacity of drilled straight shaft friction anchors in alluvial soils at this site be computed based on the following equation:

> > $P = \pi DLq$

Where:

P = allowable anchor design load in pounds D = anchor diameter in feet L = anchor length beyond no load zone in feet q = soil adhesion in psf.

-18-

The design adhesion value (q) can be determined by:

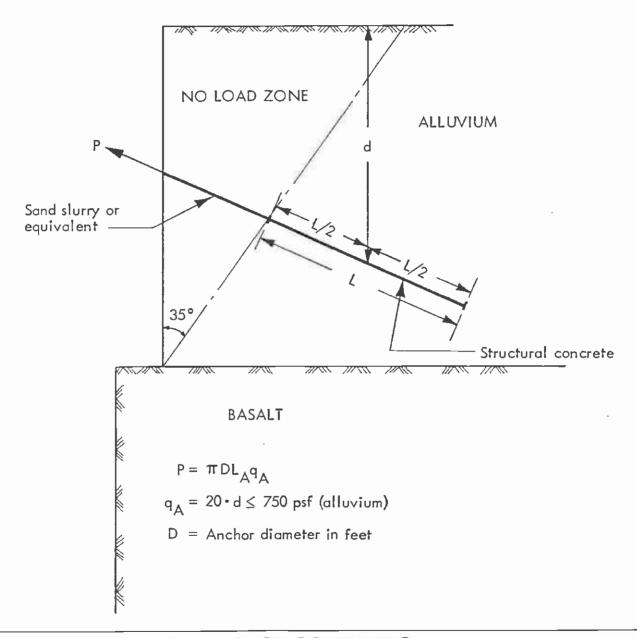
g = 20d < 750 psf (in dewatered alluvium)</pre>

Where:

d = average depth of the anchor in feet beyond the no-load zone; measured vertically from the ground surface.

Figure 6-4 illustrates the anchor design parameters

Allowable anchor capacity/length relationships for tieback types other than straight shaft friction anchors cannot be generalized. Design parameters for anchors such as high pressure grouted anchors and high pressure regroutable anchors must be based on experience in the field and on the results of test anchors.


For design purposes, it should be assumed that the potential wedge of failure behind the shored excavation is determined by a plane drawn at 35° with the vertical from the bottom of the alluvium. Only the frictional resistance developed beyond this no-load zone should be assumed effective in resisting lateral loads.

It is recommended that each tieback anchor be test loaded to 150% of the design load and then locked off at the design load. At 150% of the design load, the anchor deflection should not exceed 0.1 inches over a 15-minute period. In addition, 5% to 10% of the anchors should be test-loaded to 200% of the design load and then locked off at the design load. At 200% of design load the anchor deflections should not exceed 0.15 inches over a 15-minute period. The rate of deflection should consistently decrease during the test period. If the rate of deflection does not decrease the test should not be considered satisfactory.

6.4.3 Excavation within the Bedrock

Compressional wave velocities measured in Boring 31 (basalt) were about 9000 feet per second (Appendix B, Table B-1). This boring is near the Hollywood Bowl fault, where the basalt would be expected to be more fractured than the basalt to the north. The RQD in basalt cores is quite variable, both laterally and with depth (See Table 5-2). Based on limited geophysical data and RQD values, it is our opinion that excavation of basalt bedrock, in the main, will require blasting. However, because of numerous intervals of poor to fair RQD values caused by weakly cemented fractures, there should be several horizons that are rippable with very heavy duty grading equipment. The rock hardness horizons will vary laterally as well as with depth.

The excavation within the bedrock may be made with vertical sidewalls; however, a bench should be provided around the excavation perimeter to provide a setback from alluvium slopes and shoring (see Figure 6-3). Continuous observation by an engineering geologist should be made during bedrock excavation operations to observe the evaluate the exposed fracture patterns,

TIEBACK ANCHOR SCHEMATIC

Approved for publication 5/84 by Jad

DESIGN	UNIT A415	Project No.
	Rapid Transit District NL PROJECT	83-1140
		Figure No.
Converse Consultants	Geotechnical Engineering and Applied Sciences	6-4

evaluate the required rock bolt patterns and ground water seepage with respect to sidewall stability. Some spalling and pop-out failures should be expected due to stress relief within the bedrock. Rockbolt anchors and wire mesh should be used as required to support the sidewalls. A possible rockbolt system might consist of rockbolt anchors 10 feet in length spaced 10 feet on center. Final recommendations for rockbolt spacing and penetration should be provided by the field engineering geologist based on actual observed rock conditions during construction. Disturbance of the bedrock perimeter to a depth of 10 feet below the soldier piles should be prevented by rock bolting or other appropriate method.

6.5 INSTRUMENTATION OF THE EXCAVATION

In our opinion the proposed A415 excavation should be instrumented to reduce liability (by having documentation of performance), to validate design and construction requirements, to identify problems before they become critical, and to obtain data valuable for future designs. Instrumentation is also important due to the likelihood of blasting at this site.

We recommend the following instrumentation program be considered:

- Preconstruction Survey: A qualified civil engineer should complete a visual and photographic log of structures and paved areas adjacent to the site prior to construction. This will minimize the risks associated with claims against the owner/contractor. If substantial cracks are noted in the existing pavements or structures, they should be measured and periodically remeasured during the construction period.
- Surface Survey Control: It is recommended that several locations around the excavations be surveyed prior to any construction activity and then periodically to monitor potential vertical and horizontal movement to the nearest 0.01 feet. If shoring is used, survey markers should be placed at the top of soldier piles spaced no more than every fourth pile or 25 feet, whichever is less. Survey markers should also be established at the perimeter bedrock surface at 25-foot intervals.
- Blast Monitoring: We recommend that the effects of blasting be monitored both within the excavation and at the location of adjacent structures. Monitoring within the excavation should include measurements of acceleration and displacements at the excavation walls as well as careful inspection of the walls after blasting to detect any weakened areas which might become unstable. Monitoring outside the excavation should include measurements of acceleration, velocity and displacement at the locations of significant nearby structures, especially the bowl structure.
- Convergence Measurements: We recommend the use of tape extensioneters to measure the convergence between points at opposite faces of the excavation during various stages of excavation. These measurements provide inexpensive data to supplement survey information.
- ^o Measurement of Strut Loads: Where internal bracing is used, we recommend that the loads on at least four struts at each support level be monitored periodically during the construction period. These measurements provide

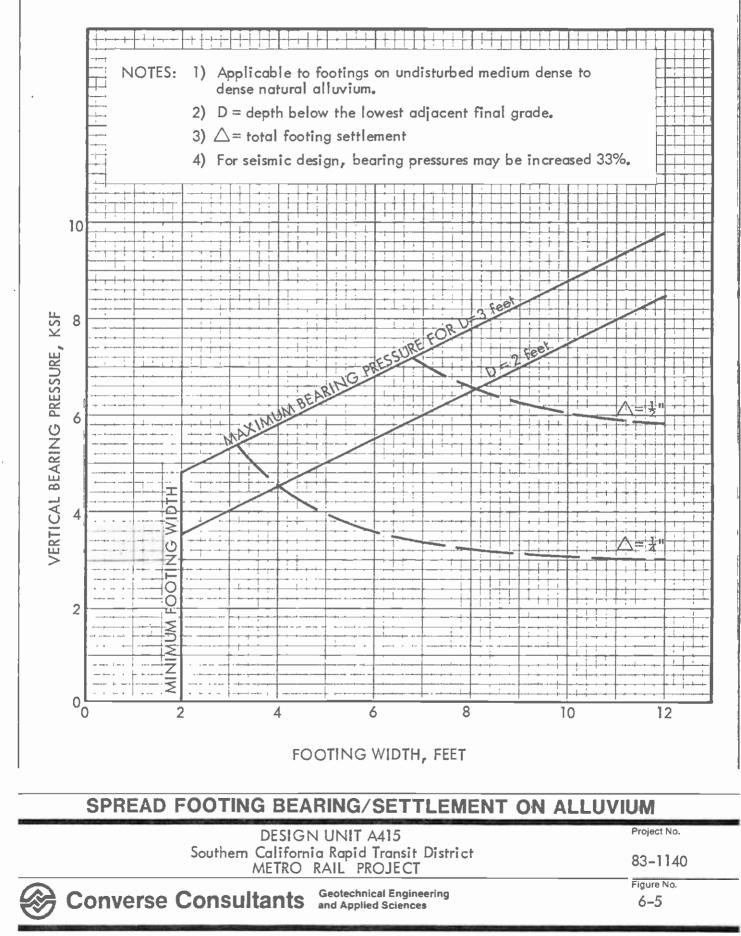
data on support loads and a forewarning of load changes which would result in excessive ground movements. There should be a means of measuring the strut temperature at the time of the load readings.

Frequency of Readings: An appropriate frequency of instrumentation readings depends on many factors including the construction progress, the results of the instrumentation readings (i.e., if any unusual readings are obtained), costs, and other factors which cannot be generalized. The devices should be installed and initial readings should be taken as early as possible. Readings should then be taken as frequently as necessary to determine the behavior being monitored. For ground movements this should be before and after any blasting and no greater than one to two-week intervals during the major excavation phases of the work. Strut load measurements should be more frequent, possibly even daily, when blasting or significant construction activity is occurring near the strut (such as excavation, placement of another level of struts, etc.).

The frequency of the readings should be increased if unusual behavior is observed.

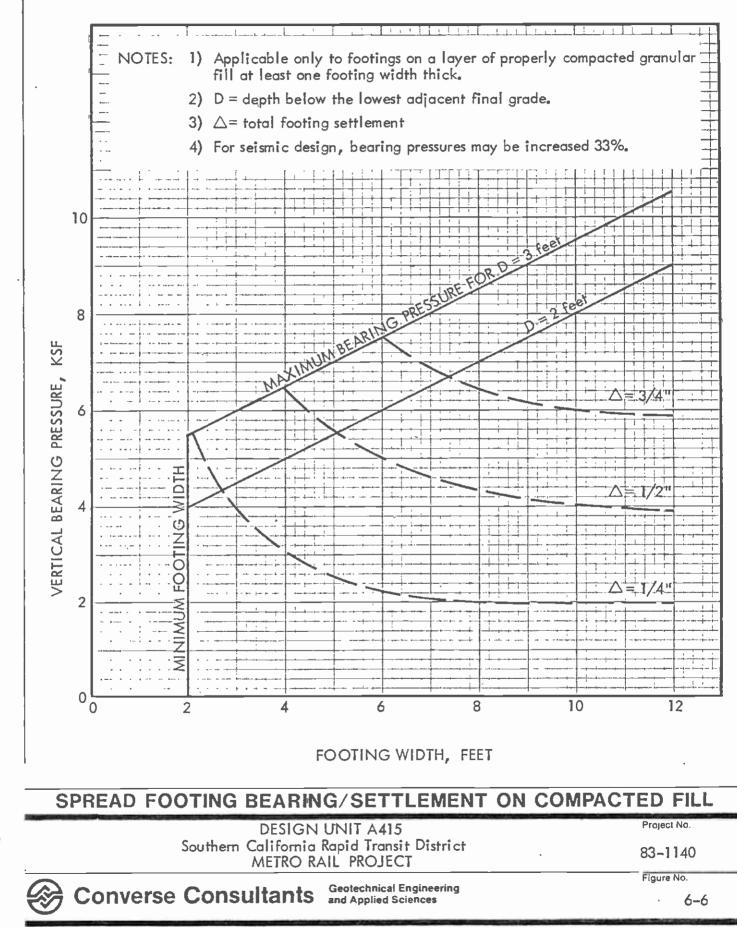
In our opinion, it is important that the installation and measurement of the instrumentation devices be under the direction and control of an experienced instrumentation engineer. Experience has shown when the instrumentation program has been included in the bid package as a furnish and install item, the quality of the work has often been inadequate such that the data are questionable. By defining Support Work (Contractor) and Specialist Work (Engineer) in the bid documents, RTD could allow the contractor to provide support to the Engineer in installing the instrumentation.

6.6 FOUNDATION SYSTEMS


6.6.1 Main Stations

0

It is understood that the proposed Hollywood Bowl Station will be supported on a thick base slab which will function as a rigid mat foundation. We estimate that the net mat foundation bearing pressures may range from about 1900 to 3300 psf, depending upon ground water conditions. In our opinion the Station can be adequately supported by the mat foundation on the bedrock. Total and differential settlements across the structure will be negligible due to the hard nature of the basalt subgrade.


6.6.2 Support of Surface Structures

Surface structures can be generally supported on conventional spread footings founded on undisturbed stiff or dense natural soils. If suitable natural soils do not exist at the surface structure site, footings may be founded on a zone of properly compacted structural fill (see Appendix E). Allowable bearing pressures and estimated total settlements of spread footings bearing on the natural alluvium or compacted fill can be determined based on Figures 6-5 and 6-6. These figures are based on analytical procedures and experience in the Los Angeles area but are generally conservative due to lack of detailed

Approved for publication

* Ant

Approved for publication 5/84 by 20

information on structural loadings and site conditions at specific surface structure locations. Detailed site specific studies should be performed to provide final design recommendations for individual structures.

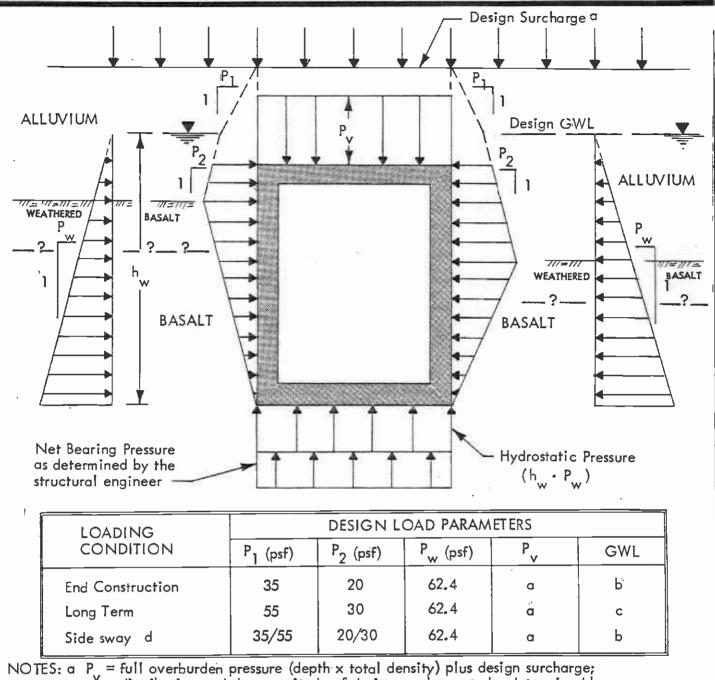
All spread footing foundations should be founded at least 2 feet below the lowest adjacent final grade and should be at least 2 feet wide. The bearing values shown on Figures 6-5 and 6-6 are for full dead load and frequently applied live load. For transient loads, including seismic and wind loads, the bearing values can be increased by 33%. Differential settlements between adjacent footings should be estimated as 1/2 of the average total settlements or the difference in the estimated total settlements shown on Figures 6-5 and 6-6, whichever is larger.

For design, resistance to lateral loads on surface structures can be assumed to be provided by passive earth pressure and friction acting on the foundations. An allowable passive pressure of 200 psf/ft may be used for the sides of footings poured neat against undisturbed alluvium or properly compacted fill. Frictional resistance at the base of foundations should be determined using a frictional coefficient of 0.4 with dead load forces.

6.7 PERMANENT GROUND WATER PROVISIONS

We understand that the Station will be designed to be water-tight and to resist the full permanent hydrostatic pressures. We recommend that full waterproofing be carried at least 5 feet above the recommended maximum ground water levels given in Section 6.8.

6.8 LOADS ON SLAB AND WALLS


6.8.1 Hydrostatic Pressures

As discussed in Section 5.3, the existing ground water levels are expected to range from about Elevation 475 at the southeast end of the Station to about Elevation 515 at the northwest end of the Station. Considering the relatively narrow width of the alluvial valley in which the site is located, significant fluctuations of ground water levels are assumed possible during periods of heavy rainfall. For purposes of this Design Summary, we will assume conservative water levels could occur at least temporarily. It is recommended that the following ground water levels be used for determining hydrostatic pressures:

L	ELEVATION		
Northwest Southeast			530 490

6.8.2 Permanent Static Lateral Pressures

Figure 6-7 presents average lateral pressure diagrams recommended for design of permanent subsurface walls. Lateral pressures within the bedrock were

distribution and the magnitude of design surcharge to be determined by section designer.

- b Designer should use a GWL (between the base of slab and long term water elevation) which will be critical for the loading condition.
- c Varies linearly from elev. 490 at the southeast end to elev. 535 at the northwest end.
- d Sidesway condition assumes "End Construction" pressure on one side of the structure and "Long Term" on the other.
- e Pressures in the basalt assume that the basalt is properly supported by rockbolting during excavation.

LOADS ON PERMANENT WALLS

DESIGN UNIT A415 Southern California Rapid Transit District METRO RAIL PROJECT

Project No. 83-1140

Figure No.

Approved for publication -5/84 by -B

Converse Consultants Geotechnical Engineer and Applied Sciences

Geotechnical Engineering

conservatively assumed to equal the lateral soil pressure at the bedrock surface, decreasing to zero at the base of the structure. Due to the possibility of adverse joint/fracture patterns in the bedrock, points of stress concentration on subsurface walls formed directly against the rock surface could develop over the long term or due to dynamic loadings. Placement of a soil backfill between the station walls and the bedrock surface would reduce the effects of stress concentrations.

Vertical earth pressures on the roof should be assumed equal to the full moist and/or saturated weight of overburden soil plus surcharge.

6.8.3 Surcharge Loads

Vertical surcharge loads due to possible future structures, surface traffic, etc. should also be included in roof design. In addition, consideration should be given to loads imposed by earthmoving equipment during backfill operations.

6.9 SEISMIC CONSIDERATIONS

6.9.1 General

Evaluation of the seismological conditions which may impact the project and the probable and maximum earthquakes which may be anticipated in the Los Angeles area are described in the SCRTD report entitled "Seismological Investigation and Design Criteria" dated May 1983. Design procedures and criteria for underground structures under earthquake loading conditions are defined in the SCRTD 1984 report entitled "Guidelines for Seismic Design of Underground Structures". The 1984 report complements and supplements the 1983 report and includes discussions of the seismic performance of the bedrock.

6.9.2 Dynamic Material Properties

Dynamic soil parameters will be required for input into the various types of design dynamic analyses. These include values of dynamic Young's modulus, dynamic constrained modulus, and dynamic shear modulus at low strain levels. In addition, certain types of equivalent linear analyses require the variation of dynamic shear modulus and soil hysteretic damping with shear strain.

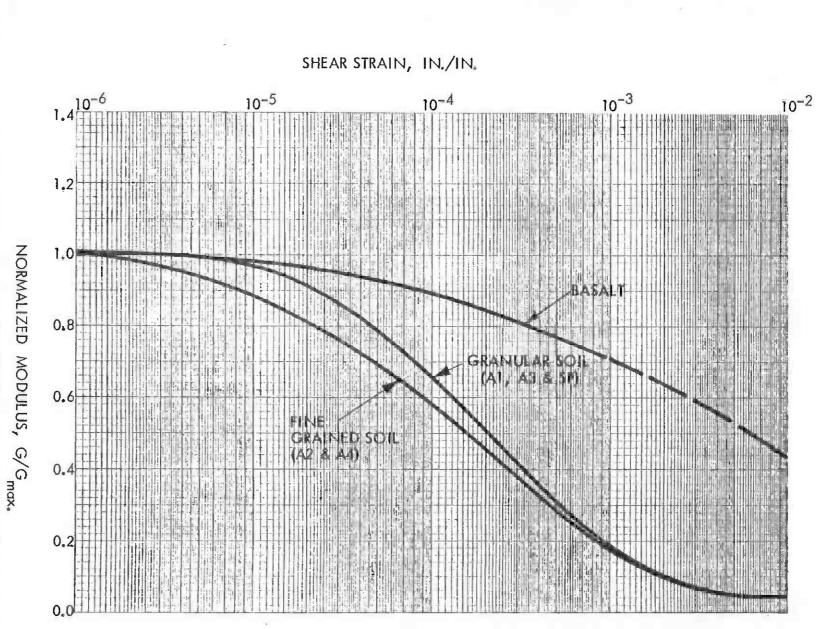
Average values of compression and shear wave velocities based on interpretation of limited downhole geophysical surveys performed in Boring CEG-28 and CEG-34 during the 1981 investigation are presented at the top of Table 6-1. These velocities have been used together with corresponding values of density and Poisson's ratio to establish appropriate modulus values at low strain levels. Computed moduli values for the alluvium and bedrock are tabulated in Table 6-1.

The variation of dynamic shear modulus, with shear strain is presented in Figure 6-8 for alluvial soils and basalt. Variation of the dynamic shear modulus is expressed as the ratio of the strain compatible modulus (G) to the very low strain modulus (G_{max}). Similar relationships for soil hysteretic damping are presented in Figure 6-9. The modulus and damping curves for soil

6-8

Figure No.

83-1140

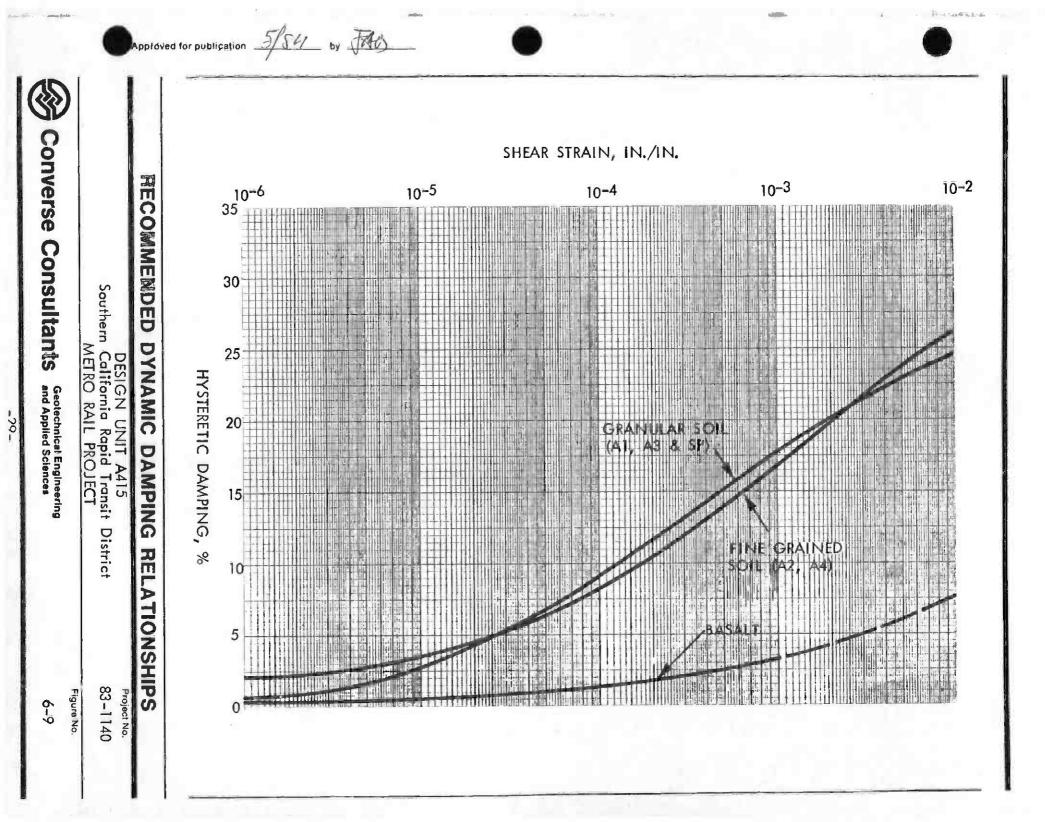

Project No.

DESIGN UNIT A415 Southern California Rapid Transit District METRO RAIL PROJECT

RECOMMENDED DYNAMIC SHEAR MODULUS RELATIONSHIPS

NORMALIZED

Approved for publication 5/84 by TRA



-28-

Converse

Consultants

Geotechnical Engineering and Applied Sciences

are based on dynamic laboratory tests performed during our 1981 investigation. Dynamic test results are presented in Vol. II, Appendix H of our 1981 report. Modulus and damping curves for the basalt were based on published data by Schnabel, Seed and Lysmer (1972)

RECOMMENDED DYNAMIC MATERIAL PRO	PERILES FOR USE	IN DESIGN	
		YOUNG ALLUVIUM (A ₁)	BEDROCK (Tb)
Average Compression Wave Velocity, V _c (ft/se	c) - moist - saturated	2000 5000	9000 9000
Average Shear Wave Velocity, Vs (ft/sec)		760	5000
Poisson's Ratio		*0.35	0.35
**Young's Modulus, E, (psi)	- moist - saturat e d	65,000	1,690,000 1,690,000
**Constrained Modulus, E _c , (psi)	- moist - saturated	104,000	2,700,000 2,700,000
**Shear Modulus, G _{max} , (psi)		15,000	835,000

TABLE 6-1 RECOMMENDED DYNAMIC MATERIAL PROPERTIES FOR USE IN DESIGN

* For saturated condition, use value of 0.45.

** Saturated values of modulus should be used for undrained loading conditions.

6.9.3 Liquefaction Potential

Generalized subsurface cross-sections are shown on Drawings 2 and 4. Measured ground water levels in the site area (as shown on Drawings 2 and 4) were within the bedrock and, therefore, the alluvial soils are assumed to be non-saturated. This is assumed to represent the norm at this site and, therefore, there would be no potential for liquefaction at this site under normal conditions.

The higher ground water levels recommended for permanent static design would indicate the lower portions of the alluvium to be saturated; however, this condition is conservative and has not been verified by existing piezometer data. In addition, it is anticipated that higher water levels would occur for only a short period during heavy rainfall. Notwithstanding these points, a simplified liquefaction evaluation was performed assuming a ground water level about 15 feet below the existing ground surface.

Liquefaction evaluation procedures were based on correlations of field Standard Penetration Tests (SPT) and performance of soils during previous earthquakes. The field Standard Penetration Tests made at this site during this geotechnical investigation were used for our evaluation of the liquefaction potential of the alluvial soils.

Our analysis of the SPT data was performed in accordance with the simplified procedures of Seed et al (1983). Corrected "N" values (normalized to 2 ksf overburden pressure) for five SPT tests in silty sand soils from Borings 31-2

and 31-4 ranged from a minimum of 31 to a maximum exceeding 75+, with an average of about 50+. Corrected "N" values recorded in Borings 31-3 and 31-6 were only 11 and 21 feet, respectively. Determination of dynamic strength was based on an M7.0 earthquake event. Results of the analyses indicated that, where corrected "N" values equaled 30 or greater, the soils would not liquefy during the maximum design earthquake (MDE).

Considering the results of the SPT analyses combined with the conservative assumption of high ground water levels and the expected short duration of same, it is our conclusion that the site would not be subject to significant liquefaction during the maximum design earthquake unless the unfavorable assumptions occurred at the same time.

6.10 EARTHWORK CRITERIA

Site development is expected to consist primarily of excavation for the subterranean structure but will also include general site preparation, foundation preparation for near surface structures, and backfill for subterranean walls and footings and utility trenches. Recommendations for dewatering and major temporary excavations are presented in Sections 6.2 and 6.4. Suggested guidelines for site preparation, minor construction excavations, structural fill, foundation preparation, subgrade preparation, site drainage, and utility trench backfill are presented in Appendix F. Recommended specifications for compaction of fill are also presented in Appendix F. Construction specifications should clearly establish the responsibilities of the contractor for construction safety in accordance with CALOSHA requirements.

Excavated granular alluvium (sand, silty sand) is considered suitable for re-use as compacted fill, provided it is at a suitable moisture content and can be placed and compacted to the required density. Excavated fine-grained soils are not considered suitable because these fine-grained materials will make compaction difficult and could lead to fill settlement problems after construction. If granular alluvium materials cannot be stockpiled, imported granular soils could be used for fill, subject to approval by the geotechnical engineer. Excavated bedrock materials are expected to consist of cobble- and boulder-sized angular fragments and would require special processing and compaction procedures to place properly.

6.11 SUPPLEMENTARY GEOTECHNICAL SERVICES

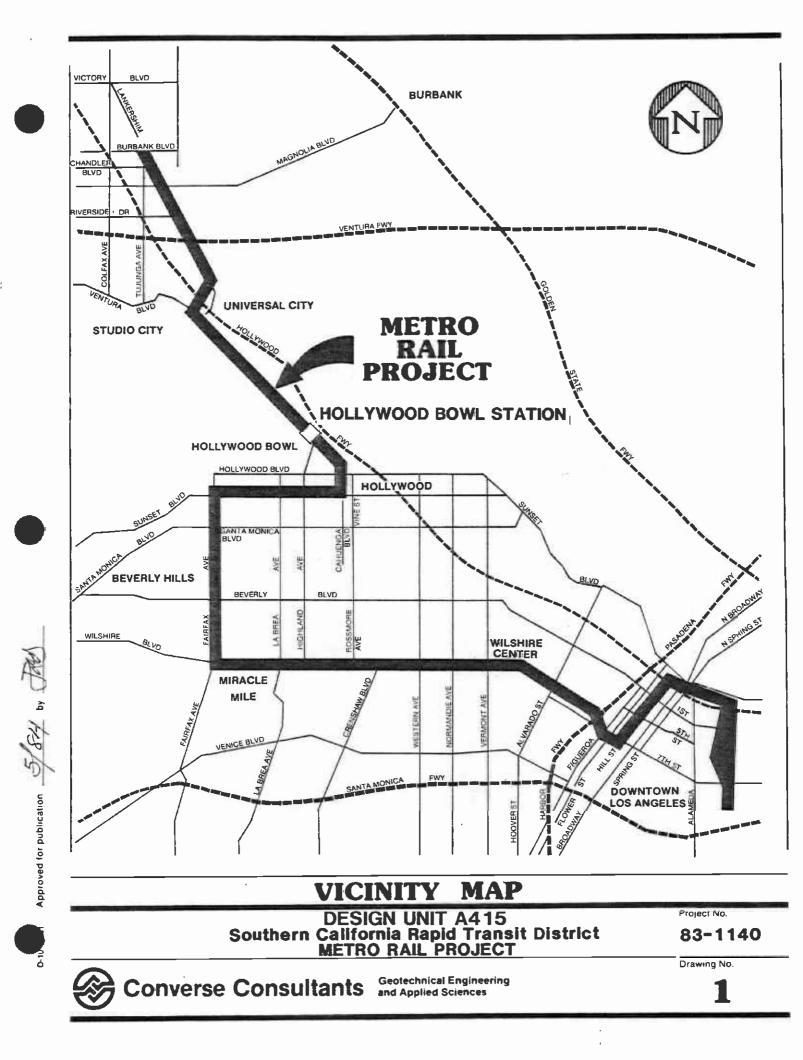
Based on the available data and the current design concepts, the following supplementary geotechnical services may be warranted:

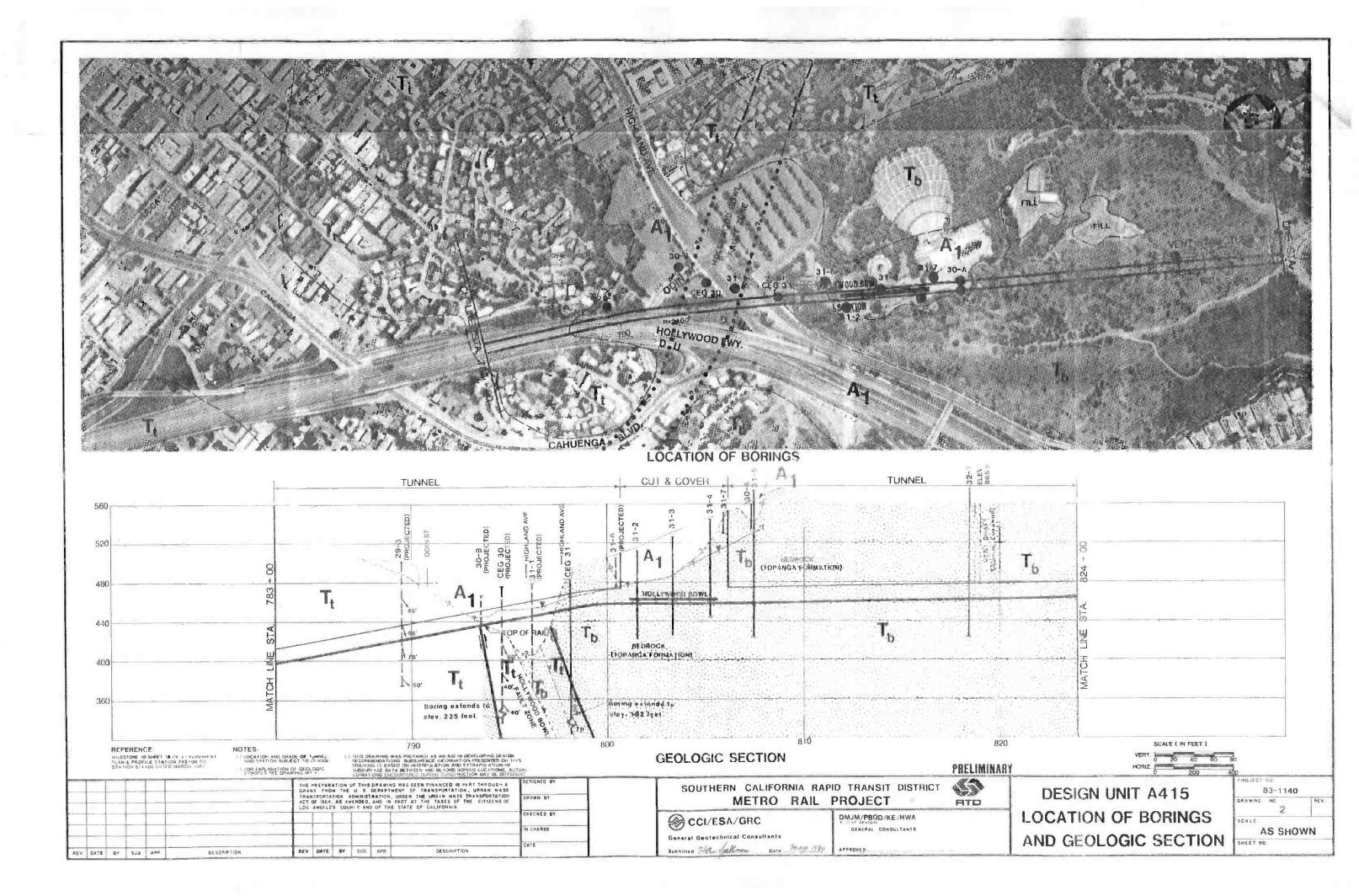
[°] <u>Observation Well Monitoring</u>: The ground water observation wells should be read several times a year until project construction and more frequently during construction if possible. These data will aid in confirming the recommended maximum design ground water levels. They will also provide valuable data to the contractor in determining his construction schedule and procedures.

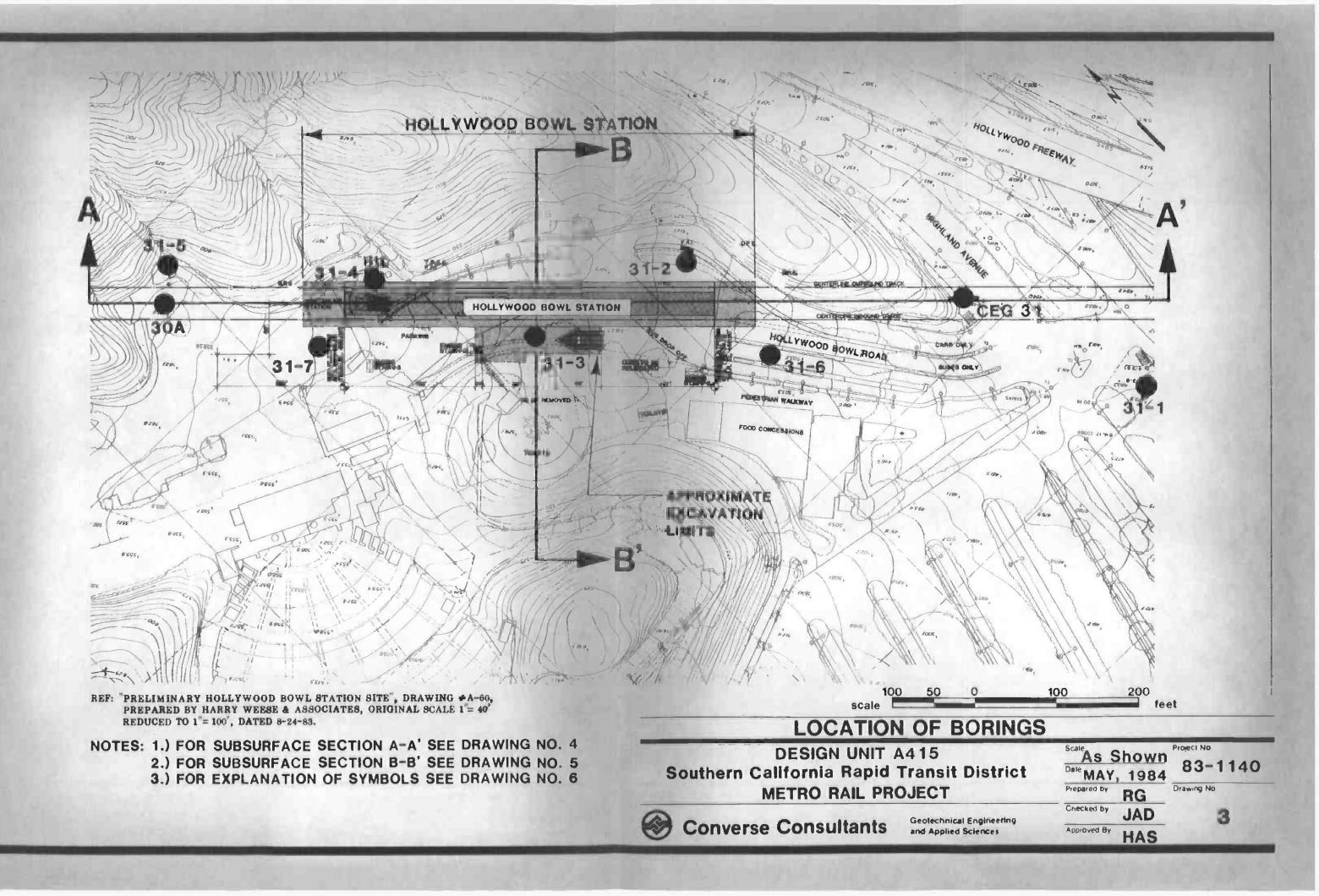
- Review Final Design Plans and Specifications: A qualified geotechnical engineer should be consulted during the development of the final design concepts and should complete a review of the geotechnical aspects of the plans and specifications.
- Shoring/Dewatering Design Review: Assuming that the shoring and dewatering systems are designed by the contractor, a qualified geotechnical engineer should review the proposed systems in detail including review of engineering computations. This review would not be a certification of the contractor's plan but rather an independent review made with respect to the owner's interests.
- Supplemental Investigation: Consideration should be given to performing supplemental geotechnical investigations at the sites of proposed peripheral at-grade structures near the station. The purpose of these studies would be to determine site specific subsurface conditions and provide site specific final design recommendations for these peripheral structures.
- Construction Observations: A qualified geotechnical engineer should be on site full time during installation of any shoring system, preparation of foundation bearing surfaces, and placement of structural backfills. The geotechnical engineer should also be available for consultation to review the shoring monitoring data and respond to any specific geotechnical problems that occur. A qualified engineering geologist should also be onsite full-time during excavation of the basalt. The engineering geologist should provide recommendations for supporting the rock walls as the excavation proceeds.

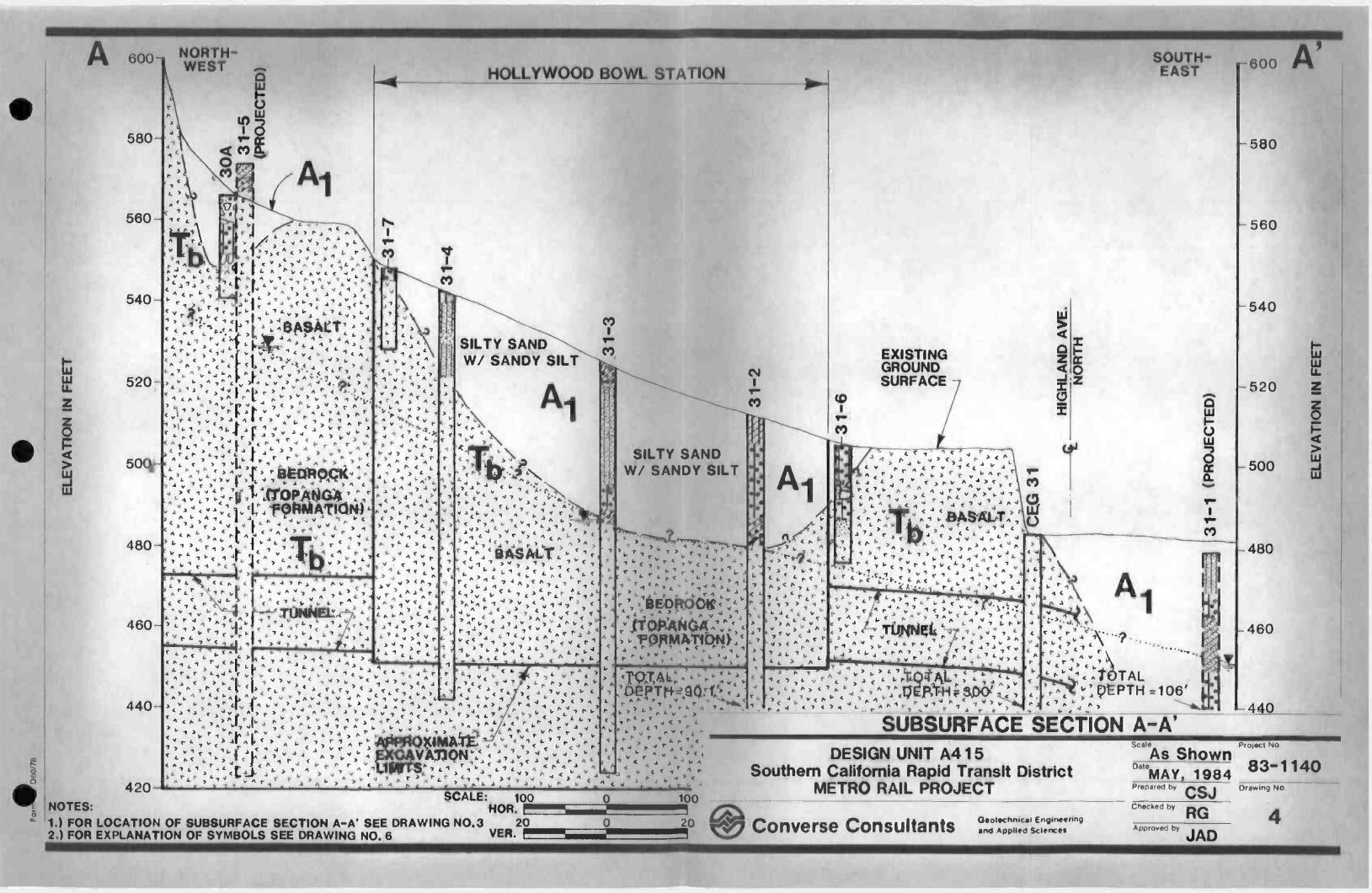
References

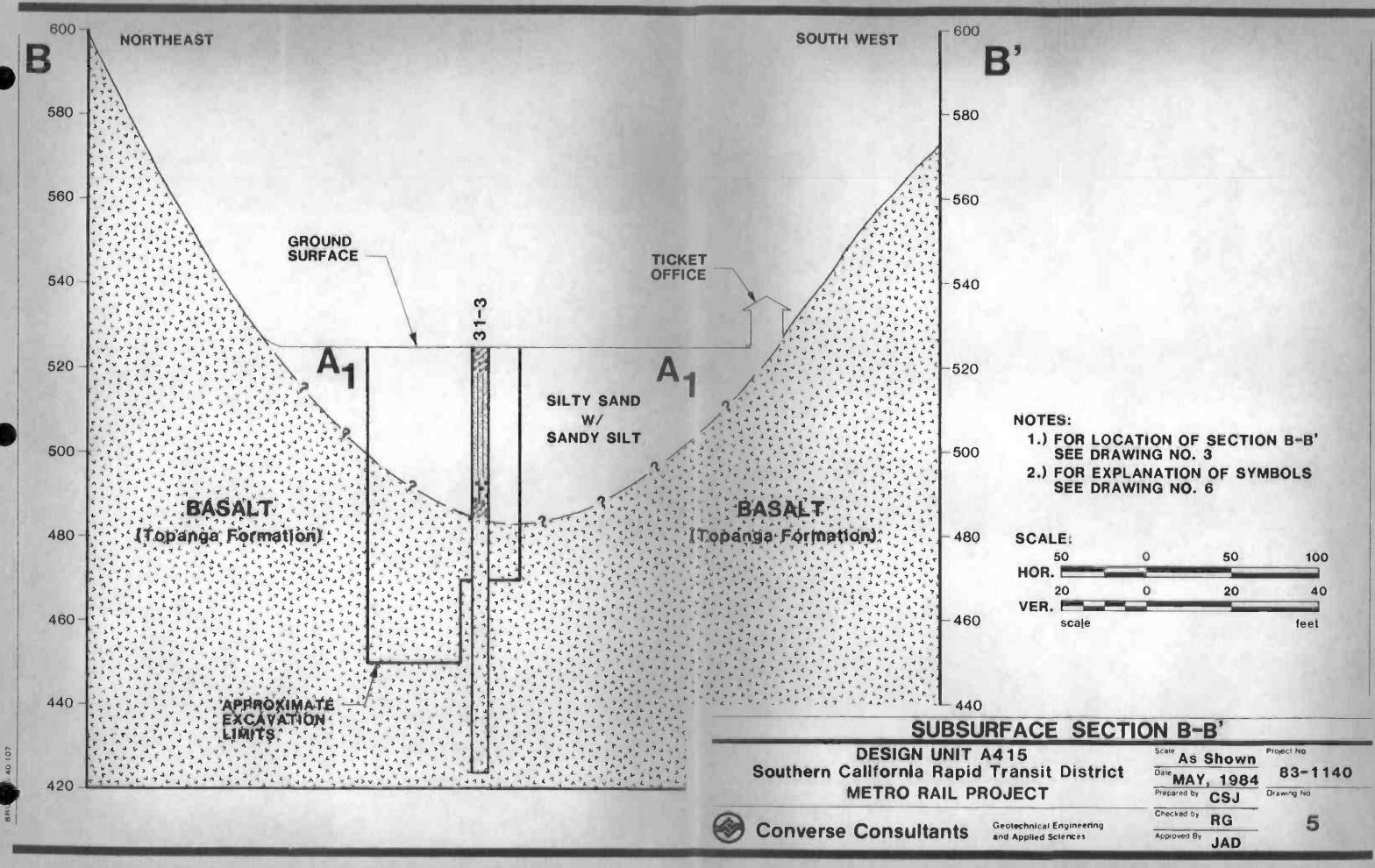
REFERENCES

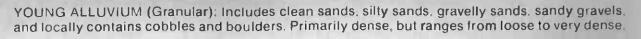

- CHAPMAN, K., Cording, E.J., and Schnabel, H., Jr., 1972, Performance of a Braced Excavation in Granular and Cohesive Soils: ASCE Specialty Conference on Performance of Earth and Earth-Supported Structures, Purdue University, Vol. III, pp. 271-293.
- CLOUGH, G.W., 1980, Slurry walls for underground tram facilities: U.S. Department of Transportation Report FHWA-TS-80-221.
- CLOUGH, G.W., Buchignani, A.L., 1981, Slurry walls in San Francisco Bay area: ASCE National Conference, New York, p. 81-142.
- CORDING, E.J., and O'Rourke, T.D., 1977, Excavation, ground movements, and their influence on buildings: American Soc. of Civil Engineers, Preprint, San Francisco.
- CORPS OF ENGINEERS, 1953, Technical Memorandum No. 3-357, March, 1953.
- CRANDALL, L.R., and Maljian, P.A., 1977, Use of earth anchors to restrict ground movements: Am. Soc. Civil Engineers, Preprint 2974, p. 1-27.
- DEPARTMENT OF THE INTERIOR, Bureau of Reclamation, 1963, Earth Manual.
- EVANS, L.T., 1968, Swell and settlement study Equitable Life Building, Los Angeles, California: Report by L.T. Evans, Inc.
- GOLDBERG, D.T., Jaworski, W.E., and Gordon, M.D., 1976, Lateral Support Systems and Underpinning: Federal Highway Administration, Offices of Research & Development, Vols. I, II, III.
- HARDIN, B.O., 1970, Suggested Methods of test for shear modulus and damping of soils by resonant column: ASTM Special Technical Publication 479.
- KISHIDA, H.J. 1969, Characteristics of liquified sand during Mino-Owari Tohnakai and Fukui earthquakes: Soils and Foundations, Japan, Vol. 9, No. 1, March, p. 79-92.
- LEE, K.L., and Fitton, J.A., 1968, Factors affecting the cyclic loading strength of soil, vibration effects of earthquakes in soils and foundations: American Society for Testing and Materials, Special Technical Publication 450.
- LOS ANGELES COUNTY FLOOD CONTROL DISTRICT, 1976, Hydrologic Report 1974-1975.
- MALJIAN, P.A., and Van Beveren, J.F., 1974, Tied-back deep excavations in Los Angeles area: Journal of Constr. Div., ASCE, Vol. 100 CO3, p. 337-356.
- MANA, A.I., Clough, G.W., 1981, Prediction of movements for braced cuts in clay: ASCE Geotechnical Journal, June.


- MATSUO, H., and O'Hara, S., 1960, Lateral earth pressures and stability of quay walls during earthquakes: Proceedings of Second World Conference on Earthquake Engineering, Tokyo, Japan.
- MONOBE, N., and Matsuo, H., 1929, On the determination of earth pressures during earthquakes: Proceedings, World Engineering Conference, Vol. 9, p. 176.
- NAVFAC, 1971, Design Manual 7-Soil mechanics, foundations, and earth structures: Department of the Navy, Naval Facilities Engineering Command.
- NAVFAC, 1982, Design Manual 7.1-Soil mechanics: Department of the Navy, Naval Facilities Engineering Command, May.
- NELSON, J.C., 1973, Earth tiebacks support excavation 112 feet deep <u>in</u> Civil Engineering: Am. Soc. Civil Engineers, Nov. 1973, p. 41-44.
- OKABE, S., 1926, General theory of earth pressure: Journal of Japanese Society of Civil Engineers, Vol. 12, No. 1.


PRAKASH, S., 1981, Soil dynamics: McGraw-Hill, New York.


- SCHNABEL, P., Seed, H.B., and Lysmer, J., 1972, Modification of seismograph records for effects of local soil conditions: Conference on Earthquake-Resistant Design of Engineering Structures, U.C. Berkeley, June 1972.
- SCHULTZ, M.S., 1981, An empirical investigation into the behavior of diaphragm walls, Masters Thesis, Massachusetts Institute of Technology.
- SEED, H.B., Idriss, I., Arango, I., 1983, Evaluation of Liquefaction Potential Using Field Performance Data: ASCE Journal of Geotechnical Division, Vol. 109, No.3, March 1983, p. 458-482.
- SEED, H.B, and Whitman, R.V., 1970, Design of earth retaining structures for dynamic loads in Ground and Design of Earth Retaining Structures: ASCE Specialty Conference on Lateral Stresses New York, p. 103-148.
- SEED, H.B. and Idriss, I.M., 1967, Analysis of soil liquefaction: Niigata Earthquake Journal of the Soil Mechanics and Foundations Division, ASCE Vol. 93, No. SM3, Proceedings Paper 5233, May, p. 83-108.
- WESTERGAARD, H.N., 1933, Water pressures on dams during earthquakes: Transactions, ASCE, p. 418-433.


YOUD, L.T., 1982, U.S. Geological Survey, Menlo Park; personal communication.



GEOLOGIC UNITS

SOFT GROUND TUNNELLING

YOUNG ALLUVIUM (Fine-grained): Includes clays, clayey silts, sandy silts, sandy clays, clayey sands. Primarily stiff, but ranges from firm to hard.

OLD ALLUVIUM (Granular): Includes clean sands, silty sands, gravelly sands, and sandy gravels. Primarily dense, but ranges from medium dense to very dense.

OLD ALLUVIUM (Fine-grained): Includes clays, clayey silts, sandy silts, sandy clays, and clayey sands. Primarily stiff, but ranges from firm to hard.

SAN PEDRO FORMATION: Predominantly clean, cohesionless, flne to medium-grained sands, but includes layers of silts, silty sands, and fine gravels. Primarily dense, but ranges from medium dense to very dense. Locally impregnated with oil or tar.

FERNANDO AND PUENTE FORMATIONS: Claystone, siltstone, and sandstone; thinly to thickly bedded. Primarily low hardness, weak to moderately strong. Locally contains very hard, thin cemented beds and cemented nodules.

ROCK TUNNELLING (Terzaghi Rock Condition Numbers apply)*

-Terzaghi Rock Condition Number

Approximate boundary between Terzaghi numbers

- TOPANGA FORMATION: Conglomerate, sandstone, and siltstone: thickly bedded: primarily hard and strong (Geologic symbol Tt).
- TOPANGA FORMATION: Basalt; intrusive, primarily hard and strong (Geologic symbol Tb).
 - **TERZACHI ROCK CONDITION NUMBERS:***
 - 1 Hard and intact
 - 2 Hard and stratified or schistose
 - 3 Massive, moderately jointed
 - 4 Moderately blocky and seamy
 - 5 Very blocky and seamy (closely jointed)
 - 6 Crushed but chemically intact rock or unconsolidated sand; may be running or flowing ground
 - 7 Squeezing rock. moderate depth
 - 8 Squeezing rock, great depth
 - 9 Swelling rock

In practice, there are not sharp boundarles between these categories, and a range of several Terzaghi Numbers may best describe some rock.

SYMBOLS

Geologic contact: approximately located; gueried where inferred

40

Fault (view in plan): dotted where concealed; gueried where inferred; (U) upthrown side, (D) downthrown side

Fault (view in geologic section): approximately located: queried where inferred; arrows indicate probable movement: attitude in profile is an apparent dip and is not corrected for scale distortion

Dip of bedding: from unoriented core samples: bedding attitudes may not be correctly oriented to the plane of the profile, but represent dips to illustrate regional geologic trends: number gives true dip in degrees, as encountered in boring

Ground water level: approximately located; queried, where inferred

- Boring CEG (1981)
- Boring CCI/ESA/GRC (1983)
- Boring Nuclear Regulatory Commission (1980)
- Boring Woodward-Clyde (1977)
- Boring Kaiser Engineers (1962)
- Boring Other (USGS 1977 and various foundation studies)
- NOTES: 1) The geologic sections are based on interpolation between borings and were prepared as an aid in developing design recommendations. Actual conditions encountered during construction may be different.
 - 2) Borings projected more than 100' to the profile line were considered in some of the interpretation of subsurface conditions. However, final interpretation is based on numerous factors and may not reflect the boring logs as presented in Appendix A.
 - 3) Displacements shown along faults are graphic representations. Actual vertical offsets are unknown.

GEOLOGIC EXPLANATION

DESIGN UNIT A415 Southern California Rapid Trans METRO RAIL PROJEC

Converse Consultants

HOLOCENE

PLEISTOCENE

PLIOCENE

MIOCENE

QUATERNARY

A1

A2

A3

A4

SP

C

3

2-5

1-5

	SILT
	CLAY
	SANDY SI
12	SANDY C
	CLAYEY S
202	SILTY CL
	SILTY SA
	CLAYEY S
	SAND
22	GRAVELL
On.	SANDY G
000	GRAVEL
4/2	GRAVELL
	TAR SILT
	TAR SAN
	FILL
11800 F - 1000 F - 1000 F	SILTSTO
	CLAYSTO
	INTERBE

BASALT

SHEAR ZONE

15	N/A			
ransit District	Date MAY, 198			
JECT	Prepared by	RG		
Geotechnical Engineering	Checked by	JAD		
and Applied Sciences	Approved By	HAS		

ILT LAY SILT AY ND SAND Y SAND RAVEL Y CLAY & CLAY NE

DNE

DDED SANDSTONE WITH SILTSTONE OR CLAYSTONE

SANDSTONE

SANDSTONE, CONGLOMERATE

CEMENTED ZONE

META-SANDSTONE

Project No

Drawing No.

83-1140

6

BRECCIA

....

Appendix A Field Exploration

APPENDIX A FIELD EXPLORATION

A.1 GENERAL

Field exploration data presented in this report for Design Unit A415 includes logs of borings drilled for the 1981 Geotechnical Investigation Report, and the 1983 and 1984 borings drilled for this A415 investigation. The specific boring logs included are summarized below:

<u>1981</u> CEG-30 and CEG-31

<u>1983</u>
 30-A, 30-B, 31-1 through 31-5

° 1984

0

29-3, 31-6 and 31-7

Locations of the borings are shown on Drawings 2 and 3. Ground water observation wells (piezometers) were installed in the borings listed in Section 5.4 (Table 5-1). Geophysical downhole surveys were made for the 1981 investigation at Boring CEG-31 within the A415 investigation site.

The borings were drilled to depths generally ranging from 20 to 300 feet, and penetrated through the limited amount of alluvium into the underlying bedrock of the Topanga Formation. All borings were sampled at regular intervals using the Converse ring sampler, pitcher barrel sampler and the standard split spoon sampler. Sample recovery was generally good in both the deeply weathered basalt bedrock and the alluvium. NX-diamond coring was used to drill through the and basalt rock formation.

The following subsections describe the field exploration procedures and provide explanations of symbols and notation used in preparing the field boring logs. Copies of the field boring logs are presented following the text of this appendix.

A.2 FIELD STAFF AND EQUIPMENT

A.2.1 Technical Staff

Members of the three firms (CCI/ESA/GRC) participated in the drilling exploration program. The field geologist continuously supervised each boring during the drilling and sampling operation. The geologist was also responsible for preparing detailed lithologic logs and for sample/core identification, labeling and storage of all samples, and installation of piezometer pipe, gravel pack and bentonite seals.

A.2.2 Drilling Contractor and Equipment

Most of the drilling was performed by Pitcher Drilling Company of East Palo Alto, California, with Failing 750 and 1500 rotary wash rigs, each operated by a two-man crew. A&W Drilling Company of Brea, California, also provided a Mayhew 1000 rotary wash rig and the man-sized bucket auger rig for the site drilling.

A.3 SAMPLING AND LOGGING PROCEDURES

Logging and sampling were performed in the field by the project geologists. The following describes sampling equipment and procedures and notations used on the lithologic logs to indicate drilling and sampling modes.

A.3.1 Sampling

In the overburden at about 10-foot intervals, the Converse ring sampler was driven using a down-hole 320-pound to 340-pound slip-jar hammer with an 18-inch drop. The Converse sampler was followed with a standard split spoon sample (SPT) driven with a 140-pound hammer with a 30-inch stroke. Where the alluvium and weathered Topanga Formation were encountered, the borings were generally continuously sampled using a Pitcher Barrel sampler and Converse ring sampler. NX coring was utilized in the hard Topanga bedrock.

The most common cause for loss of samples or altering the sample interval was when gravel was encountered at the desired sampling depth. Standard penetration blow count information can often be misleading in this type of formation, and it is difficult to recover an undisturbed sample. Therefore, at some locations, borings were advanced until drill response and cutting suggested a change in formation.

The following symbols were used on the logs to indicate the type of sample and the drilling mode:

Log Symbol	Sample Type	Type of Sampler		
B	Bag			
J	 Jar	Split Spoon		
С	Can	Converse Ring		
<u> </u>	Shelby Tube	Pitcher Barrel		
Box	Box	Pitcher Barrel, Core Barrel		

Log <u>Symbol</u>	Drilling Mode
AD	Auger Drill
RD	Rotary Drill
PB	Pitcher Barrel Sampling
SS	Split Spoon
DR	Converse Drive Sample
C	Coring

A.3.2 Field Classification of Soils

CRANIN AR COLLS

All soil types were classified in the field by the field geologist using the "Unified Soil Classification System". Based on the characteristics of the soil, this system indicates the behavior of the soil as an engineering construction material. (For a more complete discussion of the Unified Soil Classification System, refer to Corps of Engineers, Technical Memorandum No. 3-357, March 1953, or Department of the Interior, Bureau of Reclamation, Earth Manual, 1963.) Although particle size distribution estimates were based on volume rather than weight, the field estimates should fall within an acceptable range of accuracy. A description of the Unified Soil Classification Symbols used on the borings logs is presented in Table A-1 below.

	GRANULAR SOILS				
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION		
CW	Well-graded gravels, gravel-sand mixtures, little or no fines		Inorganic silts and very fine sands rock flour, silty or clayey fin sands, or clayey silts with sligh		
GP	Poorly graded gravels, gravel-sand mixtures, little or no fines		plasticity		
CM	Silty gravels, gravel-sand-silt	Ĉ CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy		
	mixtures		clays, silty clays, lean clays		
GC	Clayey gravels, gravel-sand-clay mixtures	0L	Organic silts and organic silty clays of low plasticity		
SW	Well-graded sands, gravelly sands, little or no fines	мн	Inorganic silts. micaceous or diato- maceous fine sandy or silty soils, elastic silts		
SP	Poorly graded sands, gravelly sands,	СН			
	little or no fines	CI	Inorganic clays of high plasticity, fat clays		
SM	Silty sands, sand-silt mixtures	0 H	Organic clays or medium to high		
SC	Clayey sands, sand-clay mixtures	0.1	plasticity, organic silts		
		Pt	Peat and other highly organic soils		

TABLE A-1 UNIFIED SOIL CLASSIFICATION SYMBOLS

CINC-CONINCD SOLLS

Table A-2 shows the correlation of standard penetration information and the physical description of the consistency of clays (hand-specimen) and the compactness of sands used by the field geologists for describing the materials encountered.

H-Values (blows/foot)	Hand-Specimen (clay only)	Consistency (clay or silt)		Compactness (sand only)	N-Values (blows/foot)
0 - 2	Will squeeze between fingers when hand is closed	Yery soft	İ	Very loose	0 - 4
2 - 4	Easily molded by fingers	Soft	11	Loose	4 - 10
4 - 8	Molded by strong pressure of fingers	Firm	1		++++
8 - 16	Dented by strong pressure of fingers	Stiff	1	Medium dense	10 30
16 - 32	Dented only slightly by finger pressure	Very stiff	1	Dense	30 - 50
32+	Dented only slightly by pencil point	Hard	1	Very dense	50+

A.3.3 Field Description of the Formations

The description of the formations is subdivided in two parts: lithology and physical condition. The lithologic description consists of:

- ° rock name;
- color of wet core (from GSA rock color chart);
- ^o mineralogy, textural and structural features; and
- ^o any other distinctive features which aid in correlating or interpreting the geology.

The physical condition describes the physical characteristics of the rock believed important for engineering design consideration. The form for the description is as follows:

Physical	condition:		fractured,	minimum	,
maximum _		mostly			hardness;
	strength;	•	weathered.		

Bedrock description terms used on the boring logs are given on Table A-3. In addition, the rock quality designation (RQD) based on core recovery is shown on the boring logs in the "Remarks" column. The RQD percentage represents the approximate percentage of intact pieces of core that are more than 10 cm (4 inches) long from a particular core run.

A.4 PIEZOMETER INSTALLATION

Piezometers were installed in borings 30, 30B, CEG-31, 31-1 and 31-5 located either at or in the vicinity of the Hollywood Bowl Station site. Procedures for piezometer installation were as follows:

A 2-inch diameter plastic ABS pipe was installed in the boring. At least the lower 20 feet of the ABS pipe was perforated, and the annulus of the boring around the perforated portion of the pipe was backfilled with a coarse sand/pea gravel aggregate. Concrete/bentonite slurry was used to backfill around the non-perforated portion of the pipe to prevent surface water from artificially recharging the gravel-packed hole or contaminating local ground water. After the piezometer was installed, the boring was flushed using air lift provided by a trailer-mounted air compressor. The piezometer was covered with a standard 7-inch diameter steel water meter cap held at surface grade by a grouted in-place 3- to 4-foot long, 5-inch diameter plastic sleeve. Ground water data obtained from the piezometers are presented in Section 5.3 of the text.

TABLE A-3	Bedrock	Description	Terms
-----------	---------	-------------	-------

	SIZE RANGE	REMARKS	REMARKS				
Crushed	-5 microns to 0.1 ft	Contains clay					
Intensely Fractured	0.05 ft to 0.1 ft	.05 ft to 0.1 ft Contains no clay					
Closely Fractured	0.1 ft to 0.5 ft						
Moderately Fractured	0.5 ft to 1.0 ft						
Little Fractured	1.0 ft to 3.0 ft						
Massive	4.0 ft and larger						
HARDNESS**	· .						
Soft - Res	erved for plastic materl	al					
<u>Friable</u> - <u>Eas</u>	ily crumbled or reduced	to powder by finders	· · ·				
Low Hardness - Can	be gouged deeply or car	ved with pocket knife					
Moderately Hard - Can	be readily scratched by	a knife blade; scratch leaves hea	vy trace of dust				
Hard T - Can	be scratched with diffi	culty; scratch produces little pow	der & is often faintly visible				
Very Hard - Can	not be scratched with kn	ife blade					
STRENGTH							
Plastic - E	asily deformed by finger	pressure					
<u> </u>							
	rumbles when rubbed with	fingers	•				
Friable - C	rumbles when rubbed with	fingers	·				
Friable - C Weak - L Moderately Strong - C	rumbles when rubbed with Infractured outcrop would Dutcrop would withstand a	l crumble under light hammer blows n few firm hammer blows before brea					
Friable - C Weak - U Moderately Strong - C	rumbles when rubbed with Infractured outcrop would Outcrop would withstand a Outcrop would withstand a	l crumble under light hammer blows I few firm hammer blows before brea I few heavy ringing hammer blows bi					
Friable - 0 Weak - U Moderately Strong - 0 Strong - 0 Very Strong - 0	rumbles when rubbed with Infractured outcrop would Outcrop would withstand a Outcrop would withstand a only dust & small fragmen	l crumble under light hammer blows I few firm hammer blows before brea I few heavy ringing hammer blows bi	at would yield, with difficulty,				
Friable - C Weak - U Moderately Strong - C Strong - C Very Strong - C	rumbles when rubbed with Infractured outcrop would Outcrop would withstand a Outcrop would withstand a only dust & small fragment Outcrops would resist hea & small fragments	l crumble under light hammer blows a few firm hammer blows before brei a few heavy ringing hammer blows bu ats	at would yield, with difficulty,				
Friable - C Weak - U Moderately Strong - C Strong - C Very Strong - 8 WEATHERING DECOMPOS	rumbles when rubbed with Infractured outcrop would Outcrop would withstand a Outcrop would withstand a only dust & small fragment Outcrops would resist hea & small fragments	I crumble under light hammer blows i few firm hammer blows before brei a few heavy ringing hammer blows bi its ivy ringing hammer blows & will yie DISCOLORATION of	At would yield, with difficulty, and with difficulty, only dust FRACTURE CONDITION All fractures extensively coated				
Friable - 0 Weak - 0 Moderately Strong - 0 Strong - 0 Very Strong - 0 WEATHERING DECOMPOS Deep - Moderate Very Strong - 3 Strong - 5 Strong - 6 Very Strong - 3 WEATHERING DECOMPOS Deep - 10 Stignt a - 5	rumbles when rubbed with Infractured outcrop would Outcrop would withstand a Outcrop would withstand a only dust & small fragmen Outcrops would resist hea & small fragments STTION	I crumble under light hammer blows i few firm hammer blows before bread i few heavy ringing hammer blows before bread its ivy ringing hammer blows & will yie DISCOLORATION of lay, etc. Beep & thorough Woderate or localized & intense	ut would yield, with difficulty, ald with difficulty, only dust				
Friable - 0 Weak - 0 Moderately Strong - 0 Strong - 0 Very Strong - 0 WEATHERING DEC0XPOS Deep - 1000000000000000000000000000000000000	crumbles when rubbed with Infractured outcrop would Outcrop would withstand a Outcrop would withstand a only dust & small fragment Outcrops would resist hea is small fragments STTION is to complete alteration is feldspars altered to construction of minerals, construction of minerals, construction	I crumble under light hammer blows i few firm hammer blows before breider i few heavy ringing hammer blows before breider its ivy ringing hammer blows & will yie DISCOLORATION of iay, etc. Deep & thorough Slight & intense	at would yield, with difficulty, ald with difficulty, only dust FRACTURE CONDITION All fractures extensively coatad with oxides, carbonates, or clay				

*Joints and fractures are considered the same for physical description, and both are referred to as "fractures"; however, mechanical breaks caused by drilling operation were not included.

**Scale for rock hardness differs from scale for soil hardness.

THIS BORING LOG IS BASED ON FIELO CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG 29-3

Proj:	ESIGN UNIT A415	Date Drilled	Drilled <u>3-12-14-84</u>		- 11-	Ground Elev. 5031	
Drill Rig	Failing 1500	Logged ByM. Sch		chulte	lter		Total Depth 126.0
Hole Dia	Hole Diameter <u>4 7/8</u> Hammer Weight &						"/140# @ 18"
DEPTH USCS	MATERIAL CLA	SSIFICATION		SAMPLE	NO.	DRILL	REMARKS
2 4		noderate yellowi and; stiff to ve ly moist to mois	ry			A	
6 5 5 8 5 5 0 8 5 5 0 8 7 5 0	6.5-8.0 <u>CLAYEY SAND</u> : o medium dense t moist to moist 8.0-11.5 SILTY SAND: m	to dense; slight t; trace of grav	brown ly el sh	C-1		DR A	
10	brown and n	ANDSTONE: light Tedium gray; sli Te; thinly lamin	ghtly	J-1		SS RD	
	cemented la Physical Co	ayers ondition: closel friable; deep to	y .	Box 1	1	С	3.2/3.5 recovery RQD = 0%
18-		ensely fractured able deep weathe	;		2		1.9/5.0 recovery Sheetof

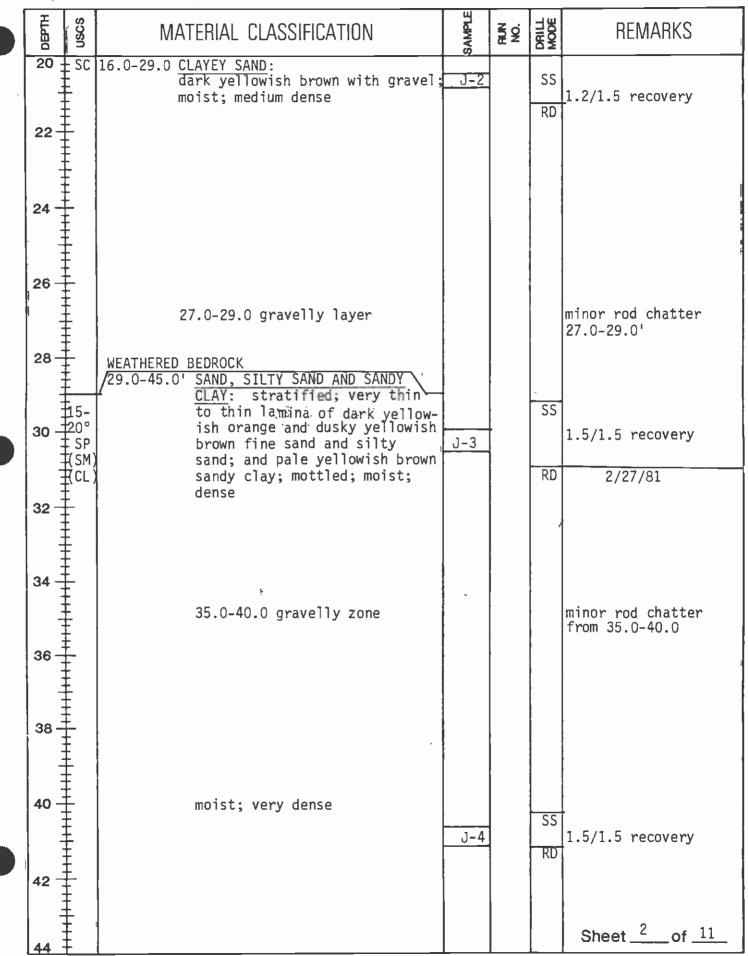
Proje	ct_	DESIGN UNIT A415 Date Drilled	3-12-	-13-84	ļ	Hole No29-3
ОЕРТН	nscs	MATERIAL CLASSIFICATION	SAMPLE	NON.	DRILL	REMARKS
20		11.5-126.0 SILTSTONE: continued			С	RQD = 20%
22		intensely fractured; soft; silt- stone with interbedded claystone	Box 1	3		1.5/3.0 recovery RQD = 50%
24				4		1.6/2.0 recovery RQD = 80%
28		intense to closely fractured		5		1.5/5.0 recovery RQD = 30%
30 11 1		30.0-34.0 SANDSTONE/SILTSTONE: moderate yellowish brown; dense; moist	Box 2	22		
32		Physical Condition: moderately fractured; friable; deeply weathered		6		1.7/2.5 recovery RQD = 68%
34 36		34.0-38.0 SILTSTONE: with interbedded sandstone, moderate yellowish brown; stiff; moist <u>Condition</u> : moderately fractured friable; deep to moderate weathering	3	7		1.2/1.5 recovery RQD = 48%
38		38.0-41.5 CLAYSTONE/SILTSTONE: dark gray; moist, very stiff Physical Condition: moderately		8		1.7/2.5 recovery RQD = 48%
40		fractured, friable, moderately weathered		9		2.5/4.0 recovery RQD = 63%
42		41.5-56.0 SANDSTONE/SILTSTONE: medium gray with moderate yellowish brown weathering and dark gray (siltstone) sandstone; thinly bedded; moderately fractured, low hardness; weak, mod. weathe	Box 3	10		3/12/84 Sheet _2 of _6

Project _	DESIGN UNIT A415 Date Drilled		3-84_		Hole No
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
44 ++++++++++++++++++++++++++++++++++++	SILTSTONE: thinly bedded, moderate to closely fractured, fragile; moderate weathering		10	С	3.0/3.5 recovery RQD = 26%
46	SANDSTONE/SILTSTONE (interbedded) grayish black to medium light gray, thinly bedded	Box 3			
48	Sandstone: moderately to little fractured, low to moderately hard, moderaterly strong, little weather- ing		11		4.1/4.5 recovery RQD = 75%
50	Siltstone: moderately to little fractured, low hardness, weak to moderately strong, little weather- ing				
52					slightly petrolifero
54	53.6 fractured zone in sandstone, little weathering		12		5.0/5.0 recovery RQD = 84%
56 +	56.0-63.5 SILTSTONE WITH SANDSTONE	Box 4			
58	Physical Condition: little fractured, low (siltstone) to moderately hard (sandstone), moderately strong, little to fresh weathering, very thinly bedded		13		5.0/5.0 recovery RQD = 72%
60					
62		Вох	14		5 0/5 0 200020
64	63.5-74.5 SANDSTONE: medium light gray, moderately hard to hard, medium to thickly bedded, little fractured to massive, moderately strong, fresh	5	74		5.0/5.0 recovery RQD = 86%
66			15		
68 +					Sheet <u>3</u> of <u>6</u>

1	Proje	ect _	DESIGN UN	NIT A415		Date Drilled	d	<u>3-1</u> 3-	14-84		Hole No	
	OEPTH	nscs	MA	TERIAL	CLASSIFIC	ATION		SAMPLE	RUN NO.	DRILL	REMAR	RKS
	68		63.5-74.5 <u>S</u>	ANDSTON	E: continu	ed		Box 5	15		4.6/5.0 record RQD = 66%	overy
	70 -	++++										
	72 -	┿ <mark>┿┲┿┿┿</mark> ┿┿ <mark>╵┿</mark>	l ł	nard, we		low-moderat rately stro		Box 6	16		4.0/5.0 reco RQD = 60%	overy
	74 -	┶ ┶ ┶ ┶ ┶ ┶ ┶ ┶ ┶ ┶	74.5-78.7	thinly closely	Taminated, fractured	NE: dark gr little to , moderatel strong, lit	y					
	76 -	╄ <mark>┥┥╸╸╸╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴</mark>			ing to fre				17		5.0/5.0 reco RQD = 84%	overy
	80 -			bedding moderat	, little f ely hard, to strong,	gray, medi ractured, moderately fresh, tra						
	82 -			91 4 7 2 1 ,	110 13 0			Box .7	18		4.75/5.0 rec RQD = 94%	covery
	84 -	+ + + + + + + + + + + + + + + + + + + +	84.5-86.5	thinly little	to very th	NE: dark gr inly lamina moderately sh, moist	ted,					
	86 -	*	86.5-88.5		NE: medium , massive,	gray, medi fresh	um		19		3.5/3.5 reco RQD = 97%	overy
•	88 -			to dark closely to mode	gray, thi to little	NE: medium nly laminato fractured, d, moderate	ed, low				3-13-84	
	92	+++++++++++++++++++++++++++++++++++++++		strong				Box	20		Sheet <u>4</u>	of <u>6</u>

Proje	ct _	DESIGN UNIT A415	Date Drilled	3-14	4-84		Hole_No
ретн	uscs	MATERIAL	CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
92			NE/SANDSTONE: continued bedded, little fractured	Box 8	20	С	4.5/4.9 recovery RQD: 67%
96		little	NE: medium light gray, fractured, moderately oderately strong, fresh		21		5.0/5.0 recovery RQD = 70%
100-		to dary moderate	DNE/SANDSTONE: medium gra gray, thinłý laminated, aly fractured, moderately crong, fresh, moist		22		5.0/5.0 recovery RQD = 52%
104					23		4.7/5.0 recovery RQD = 80%
108		106.5-108.5 soft	to low hardness				NQD - 00%
110	39°		ly fractured, moderately to soft	Box 10	24		4.9/5.0 recovery RQD = 78%
114-				i i	25		Sheet5_ of _6

Project _	DESIGN UNIT A415	Date Drilled	3-14	-84		Hole No	29-3
DEPTH	MATERIAL CLAS	SIFICATION	SAMPLE	RUN NO.	DRILL	REMA	rks
116 		closely fractured, soft, deep to		25		4.0/5.0 rec RQD = 72%	covery
120			Box 11	26		4.4/5.0 rec RQD = 60%	covery
122	122.0-124.5 intensely f to soft	ractured, friable					
124				27	-	1.4/1.4 reg RQD = 100%	
128	End of Boring 126.0' Flushed hole 3-15-84 Flushed hole. Perfor pressure test @ 50' a 1" PVC piezometer 0-46' non perforat 46-66' perforated	and 86'. Installed ted					
130	66-86' non perforated 86-126' perforated Backfilled with pea g	ated 1 (saw cut)					
132							
134							
138							
140						Sheet6	_of6


This boring lug is based on field classification and visual soil description, but is modified to include results of laboratory classification tests where available. This log is applicable only at this location and time. Conditions may differ at other locations or time.

BORING LOG CEG 30

Proj:DESIGN_UNIT_A415	<u>Date Drilled 2/26/8</u>	31-3/3/8		Ground Elev. 476
Drill RigB-40	Logged By <u>Steph</u>	en M. Te	sta	Total Depth251.01
Hole Diameter_NX	Hammer Weight &	Fall <u>14</u>	<u>0 16., 3</u>	0"
	CLASSIFICATION	SAMPLE	RUN NO. MODE	REMARKS
0.0-0.2 CONCRETE: SC 0.2-16.0 CLAYEY SAN grayish br 2	rown; moist		RD	clear day
10 continued;	moist; loose	J-1	SS RD	1.0/1.5 recovery
20				Sheet <u>1</u> of <u>11</u>

Project DESIGN UNIT A415 Date Drilled 2/26/81-2/27/81 Hole No. 30

		DESIGN UNIT A415 Date Drilled 2/				
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NON ON	DRILL	REMARKS
44		29.0-45,9 SAND, SILTY SAND AND SANDY CLAY (continued)			RD	
46						
48 -						
50		45.0-155.8 INTERBEDDED SANDSTONE AND SILT- STONE: wavy, parallel, alter- nating very thin to medium lamina of light olive-gray siltstone and dark yellowish orange fine sandstone; moist;		1	С	3.0/3.0 recovery
52		Physical Condition: massive; friable to low hardness; friable to weak strength; moderately weathered	Box #1			
54		· · · · · · · · · · · · · · · · · · ·		2		3.5/4.9 recovery
56 58		alternating very thin to medium				·.
60	30°	lamina of brownish black silt- stone and yellowish gray fine moderately weathered sandstone grading to fresh medium light gray sandstone		3		3.9/3.9 recovery
62		· ·				
64 j		primarily sandstone to 62.8 then primarily siltstone to 70.3'	Box	4		1.8/2.4 recovery
66			#2	5		3.5/3.5 recovery
68 -				6		Sheet 3_{-} of 11

Project ______ DESIGN UNIT A415 ______ Date Drilled ______ Hole No. 30

DEPTH		uscs	MATERIAL CLASSIFICATION	SAMPLE	NON.	DRILL	REMARKS
68 70			45.0-155.8 INTERBEDDED SANDSTONE AND SILT- STONE (continued): wavy para- Ilel alternating very thin to medium lamina of light olive gra siltstone and fine to coarse medium light gray sandstone	Box	б	С	3.4/3.4 recovery
72	2		<u>Physical Condition</u> : little fractured, moderately hard to hard; low to moderate strength; fresh 70.3-71.1 well cemented fine to		7		oil film in drilling water 1.5/1.9 recovery
74	يبيايين		medium sandstone; hard	Box #3	8		4.5/4.5 recovery
78	8 B				9		1.8/1.8 recovery
80	0				10		3.7/3.7 recovery
8:	4			Box			
8			87.7-89.7 fine to medium sand- stone also at 90.3 to 90.9, from 90.9 alternating sandstone	#4	11		pocket penetrometer ≻4.5 tsf 4.7/4.7 recovery
8	8	40	and siltstone		12		4.7/6.7 recovery
9	2						Sheet <u>4</u> of <u>11</u>

Project DESIGN UNIT A415 Date Drilled 2/27/81-2/28/81 Hole No. 30

	DEPTH	nscs	MAT	ERIAL CLASSIFICATION		SAMPLE	RUN NO.	DRILL	REMARKS
	92		45.0-155.8	INTERBEDDED SANDSTONE AND S STONE (continued):	ILT		12	C	
	94			92.4-93.8 fine to medium sa stone; alternating sandstor and siltstone from 93.8			13	1 	4.8/4.8 recovery
	96			Physical Condition: little	2	Box #5			
	98-			fractured; moderately hard hard; low to moderate strer fresh; tends to fracture along bedding planes			14		3.8/3.8 recovery
	100-	╪ ╞╞ ┍╋╋┾ <mark>╞╸</mark>							2-28-81
	102						15		heavy continuous rain 2.0/2.0 recovery
	104					Box #6	16		
	106-								5.0/5.0 recovery
	1 10-			110.3-118.0 primarily green	ish				
				gray fine to medium grained cemented sandstone with sil stone	vei t-	Box	17		5.0/5.0 recovery
						#7	18		1.0/1.0 recovery
	114-	<u>T</u> .		114.5-115.3 coarse sandston well cemented; moderately h	e; ard		19]	1.0/1.0 recovery
	116						20		Sheet <u>5</u> of <u>11</u>

HLGDO	nscs	MA	terial class	SIFICATION	SAMPLE	N. O.	DRILL	REMARKS
116	40°	45.0-155.8	STONE (conti		Box #7	20	С	3.0/3.0 recovery
118 -			nating very	avy parallel alter- thin to medium eenish gray sand- ltstone				
120-						21		4.0/5:0 recovery
122-			Physical Con	dition: little				
124-			fractured; m	oderately hard to moderate strength;		22		0.5/2.5 recovery
126-					Box #8	k	-	
128-						23		2.5/2.5 recovery
130-						24		pocket penetrometer
-			131.5 to 132 cemented gre stone	coarse well enish gray sand-		25		2.5/2.5 recovery 2.0/2.5 recovery
132-			closely frac	tured		26		1.5/2.0 recovery
134-					Box #9		•	
136-						27		3.0/3.0 recovery
138-			137.0-137.5 stone; litt	primarily sand- le fractured		28	-	
								Sheet $\frac{6}{-6}$ of $\frac{11}{-11}$

Project DESIGN UNIT A415 Date Drilled 2/28/81-3/2/81 Hole No. 30

DEPTIH	nscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
140 142 -		45.0-159.8 INTERBEDDED SANDSTONE AND SILT- STONE (continued): wavy, parallel, alternating very thin to medium lamina of green- ish gray fine to coarse sand- stone and brownish black silt- stone		28	С	5.0/5.0 recovery
144 - - 146 -	****	<u>Physical Condition</u> : moderately to closely fractured; moderate to low hardness; moderately strong; fresh	Box #10	29		5.0/5.0 recovery
148- 150-		148.5-152.8 fine to medium sand- stone		30		3-2-81 heavy rain until 11:00 a.m. 4.8/4.8 recovery
152 -		low hardness from 151.0'; close- ly fractured				4.0/4.0 Tecovery
154- - 156-	╹╹╹╹╹╹╹╹╹╹	155.8 to 156.4 clay shear zone	Box #11	31		4.5/4.5 recovery
158 -	╸╸	157.2 to 157.9 fine to medium well cemented sandstone; moderately hard		32		2.5/2.5 recovery
160-	+++	159.7-162.6 <u>CLAY_GOUGE</u> : dark greenish gray		33		3.2/3.2 recovery
162- 164	+++++++++++++++++++++++++++++++++++++++	162.6-171.3 <u>VOLCANIC BRECCIA</u> : dark green- ish gray; fine grained basalt fragments in a clay matrix	Box #12	34		Sheet _7 of

Proje	ct_	DESIGN UNIT A415	Date Drilled	3/2/8	1		Hole No
HLLABO	nscs	MATERIAL CLASS	SIFICATION	SAMPLE	RUN NO.		REMARKS
164	متعدا بيبها	162.6-171.3 VOLCANIC BRE	CCIA (continued):		34	С	3.0/3.0 recovery
168-					35		2.0/2.0 recovery
170-		168.5 to 170. intensely fra sided surface	ctured; slicken-	. Box #12	36		3.3/3.3 recovery
172		171.3-173.0 <u>SANDSTONE</u> : medium to c			37	,	1.7/1.7 recovery
174		in a clay ma	ne grained basalt trix; intensely to		38	g	1.7/1.9 recovery
176	•	closely frac 174.9-183.5 <u>SANDSTONE</u> : to coarse gra ly to intense		Box #13	39	•	3.1/3.1 recovery
178-						•	
180		2			40		4.6/4.6 recovery
182		183.5-251.0 <u>BASALT</u> : gre slickensided	eenish black; many				
184		Physical Cond	ition: crushed to		41		3.5/3.5 recovery
186-		closely fract hard; weak to moderately we	ured; moderately moderately strong; athered		42		1.9/1.9 recovery
188	<u> </u>						Sheet _8_ of <u>11</u>

•

Proje	ect 🔟	DESIGN UNIT A415	Date Drilled		1		Hole No
нцар	uscs	MATERIAL C	CLASSIFICATION	SAMPLE	NU.	DRILL	REMARKS
188		183.5-251.0 <u>BASALT</u> : numerous	greenish black; slickensided fractures	Box	43	С	3/3/81 3.3/3.3 recovery
190-		l little f	1.0 Physical Condition: ractured; moderately hard; moderately strong				
1 9 2-			" shear zone		44		1.7/1.7 recovery
- 194-				Box #15	45		
-							4.7/4.7 recovery
196-						-	
198-					46		
200-							4.1/4.1 recovery
202-		203.0-215	.0 intensely to closely		47		1.2/1.2 recovery
204-	┼┿┿┿┿	fractured	, numerous slickensides	Box #16	48		2.4/2.4 recovery
206-					49		1.2/2.6 recovery
208-		208.5-21 ly fract	2.0 crushed to intense- ured		50		1.5/1.9 recovery
210-					51		2.2/2.7 recovery
212							Sheet <u>9</u> of <u>11</u>

Ŧ	uscs		L L L L L	z.	出병	REMARKS
HL-BO	NSN .	MATERIAL CLASSIFICATION	SAMPLE	NON .	DRILL	
12.0	2	183.5-251.0 BASALT (continued):	Box #16	51		
	-		#16	52		
14.9	2		Box			
+	-	215.0-226.0 closely to moderate-	#17			2.4/3.0 recovery
	-	ly fractured with fault gouge		53		
16.0 7		and intensely fractured zones		53		2.2/2.4 recovery
	-	217.8 thin fault gouge zone				
18. 0	-			54		2.2/2.5 recovery
		219.0 and 214.5 fault gouge				
20_0	-			55	-	1.9/2.5 recovery
=	-			55	14	1.3/2.3 recovery
	-					
22.0	-	222.0-223.0 fault gouge				
				56		
24.0	-	224.0-225.0 gouge; intensely				
		fractured				2.0/2.0 recovery
26.0			Box #18	57		
20.34		226.0 very thin gouge zone 226.0-232.0 Physical Condition:				2.9/3.0 recovery
4		moderately fractured; hard;				
28. 4		strong; fresh				
-				58		
-						3.0/3.0 recovery
30 6 7						
				59	t	
						2.0/2.0 recovery
32.T						
				60	Ī	3.8/3.8 recovery
34_0	<u>-</u>		Roy	-		
111	Ē		Box #19			
-	F					Sheet <u>10</u> of <u>11</u>

HLLLL	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	MODE	REMARKS
236.6		Basalt (continued): <u>Physical Condition</u> : moderately fractured; hard; sttong; fresh	Box #19	60 61		1.1/1.2 recovery
238.0		239.8-240.6 intensely fractured		62		2.6/2.6 recovery
240.0	-			63		2.4/2.4 recovery
44. 01	.		Box #20	64		4.7/4.7 recovery
248.0	.	most fracture sets rehealed with silica		65		2.5/3.2 recovery
250.0	-	End of Boring 251.0'				
252.0	-	3/3/81; 3/4/81 E-log 3/4/81 water pressure test				hole cleaned out 2 times before comple ing E logs
256.0	-		•			
258-	-					

THIS BORING LOG IS BASED DN FIELD CLASSIFICATION AND VISUAL SDIL DESCRIPTION, BUT IS MODIFIED TD INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION ANO TIME. CONDITIONS MAY OIFFER AT OTHER LOCATIONS DR TIME.

BORING LOG 30-A

Proj:	DE	SIGN UNIT A415	Date Drilled	2/22/8	3		_	Ground Elev. 560'
Drill I	Rig .	Mayhew 1000	Logged By	G. Hal	bert			Total Depth
Hole	Dia	meter_4 7/8"	Hammer We	ight &	Fall S	PT 14	<u>0 1 b</u>	, 30" C-340 1b, 24"
DEPTH	uscs	MATERIAL CLA	SSIFICATION		SAMPLE	NO.		REMARKS
0 2 4		0.0-0.3 <u>AC PAVEMENT</u> 0.3-7.5 <u>GRAVELLY SAND</u> fine gravel (s grading finer with silty sar	lopewash)	with			RD	
	SM	ALLUVIUM 7.5-15.0 <u>SILTY SAND</u> : and black, me	lark yellowish edium dense, m	brown oist				
10-12-14-14-14-14-14-14-14-14-14-14-14-14-14-	SW	15.0-20.0 <u>GRAVELLY SAN</u> with fines	<u>ID</u> : dense, moi	st,	J-1		SS	1.2/1.5 recovery light chatter
20	ŧ							Sheet <u>1</u> of <u>2</u>

Proje	ct_	DESIGN UNIT A415	Date Drilled		2-83		Hole No	30A
DEPTH	uscs	MATERIAL CLA	SSIFICATION	C-1	NO.	DRILL	REMAR	RKS
20		BEDROCK 20.0-25.0 <u>BASALT</u> : oliv fractured, m friable to w	e black, intensely oderately weathered, eak strength				0.7/0.7 recov refusal at 7	/ery
24								
26		End of Boring 25.0'					No water enter while open. I with pea grav plugged with concrete.	Backfilled /el &
28						-		
30 -								
32								1
34								
36	~							
38		- -						
40 -				η				e.
42								r
44							Sheet _2	of

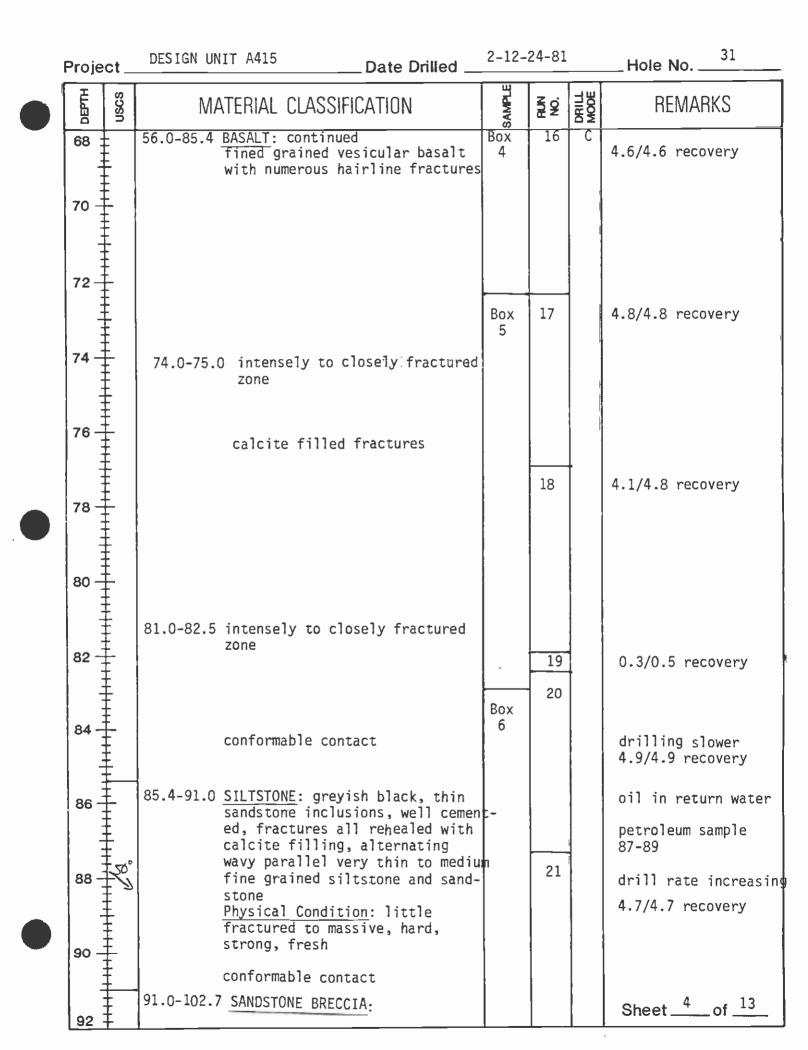
THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MOOIFIED TO INCLUGE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG 30-B

Proj: DESIGN UNIT A415 Date Drilled 2-23-83 Ground Elev. 4671 _____ Logged By __D. Gilette ____ Total Depth ___32.0' Drill Rig _____B. Auger Hole Diameter 36" Hammer Weight & Fall N/A DEPTH USCS MODE AMPL N S MATERIAL CLASSIFICATION REMARKS 0] 2[#] asphalt 0.0-0.2 ASPHALT OBSERVATION 0.0-11.0 slight FILL 0.2-9.0 SANDY CLAY: various shades of brown, HOLE - ND ravelling contains bottles, pipe, wood, very SAMPLES REQUIRED stiff, moist 11-32 hole stands well 2. GROUND WATER DATA -6 location and eatimated amount of seepae: 7.0 - roots and wood ±1.0 gpm from north ±0.5 gpm from south 8 CL 9.0-15.0 SANDY CLAY AND BOULDERS: dark F GP yellowish orange and light brown, 10-8-12" boulders (sandstone & basalt); very stiff, moist 12. 14 15.0-22.0 CLAY AND BOULDERS: medium light CL gray and light brown with fine 16sand and 10" boulders (basalt), stiff to very stiff, moist 18 Sheet 1 of 220

Pro	ject _	DESIGN UNIT A415	_Date Drilled	2-23	-83		Hole No
DEPTH	uscs	MATERIAL CLASSIFI	CATION	SAMPLE	NO.	DRILL	REMARKS
20		15.0-22.0 <u>CLAY</u> : (continued 22.0-27.5 <u>SANDY GRAVEL</u> : da contains cobbles wet	rk reddish brown	5			W.L. 21.7 after 20 hours
24							ground water seeps ir at bedrock contact
28 30	1 1 1 72° 1 1 3	BEDROCK 27.5-32.0 <u>SANDSTONE</u> : dark slightly weather hard	yellowish orange ed, moderately	5			hard drilling bedding dips 72° northerly not able to drill
32	-+++ +++	END OF BORING 30'	-				deeper, too hard 2-24-83 hole backfilled with native material
36	*****						
38	+++++++++++++++++++++++++++++++++++++++						
42	+++++++++++++++++++++++++++++++++++++++						Sheet _2_ of _2_

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.



BORING LOG CEG 31

Proj:	DES	SIGN UN	NIT A415	_ Date Drilled	2-1	2-24-8	1		Ground Elev.	482.0'
Drill Ri	ig	Mobil		Logged By						
Hole D	lam	eter_	3"	_ Hammer We	ight &	Fall _	140	lb,	30"	
	nscs	_	MATERIAL CL/	ASSIFICATION		SAMPLE	NON.	DRILL MODE	REMAR	<s< td=""></s<>
		D.2-0.6 BEDROCK	A <u>BASALT</u> : mode to light oli <u>Physical Con</u> able hardnes deeply weath <u>wesicular</u> , v filled with <u>Physical Con</u> closely frac hard, modera moderate wea planes commo	ve brown, fine esicules common chlorite and zo dition: intenso tured, moderato tely strong, do thering, fracto nly coated with (up to 3 mm) a	d, fri- ength, ength, ely to ely to ely to ely to ure h iron	J-1 d Box	1 2 3	RD SS RD C	0.3/0.3 recov rig chatter 0.0/1.0 recov 1.6/2.0 recov 0.0/1.0 recov	very very very smoother

Project _	DESIGN A415	Date Drilled	2-12-3	13-81		Hole No	31
DEPTH USCS	MATERIAL C	LASSIFICATION	SAMPLE	NON ON	DRILL	REMAR	<s S</s
20	vesicular <u>Physical Co</u> closely fra hard, moder	tinued ive brown, fine grained andition: intensely to actured, moderately ately strong, deeply	Вох		C		
24	weathered					0.1/0.4 recov	very
26	26.5-26.8 hard lens	i	J-2		SS RD		
28	29.0-29.5 hard						
30			<u>J-3</u>	-	SS RD	0.1/0.1 recov 2-12-81	very
32						2-13-81 5-8 min/ft di	rijjing
34	olive gr	ay and light olive brownish black				rate	
36	brown to	DIOWNISH DIACK	Box	6	С	2.5/3.0 recov	very
38							
40	altered c	glass fragments in live gray ground mass,		7		4.3/4.3 recov	very
	41.5-42.0 intensel binder		Box 2	8		Sheet _2c	of 13

Proje	ect _	DESIGN UNIT A415 Date Drilled	2-12	-13-8	1	Hole No31
ретн	nscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
44	E I	0.6-84.5 BASALT: continued	Box 2	8	С	4.7/4.7 recovery
46		45.0-46.0 fracture set, green basalt in- clusions increasing in frequency greyish blue green, rock becoming more competent, most freactures healed	, – , 9			
48 -				9		1.9/2.2. recovery
		Physical Condition: closely to moderately fractured, moderately				
		hard to hard, strong, little weathered		10		3.0/3.0 recovery
50 -		med filer ed				
-						
52 -	+		вох	11		1.7/1.7 recovery
-			DUX	11	-	1.//1./ recovery
-	*			10		0.0/0.0
54 -	Ī			12		2.9/3.3 recovery
56-		56.0-84.5 greyish blue green				
-		Physical Condition: closely				
-		to moderately fractured, moderately hard to hard, strong	2	?		
58 -		moderately weathered		13		5.0/5.0 recovery
-	Ŧ					
60 -						
	ŧ					
62 –	‡					
-	ŧ					
-	Ē		Box 4	14		2.7/2.7 recovery
64 -		64.0-65.0 extremely weathered zone, crushe to intensely fractured	d			
-	E E	65.0-85.4 breccia, well recemented				
66 -	<u>+</u> -			15		2.3/2.3 recovery
	ŧ					
	ŧ			16		Sheet <u>3</u> of <u>13</u>

Proj	ect _	DESIGN UNIT A415	Date Drilled	2-12-2	4-81		Hole No31
HLABI	USCS	MATERIAL CLASS	SIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
92 94 96		in a greyish matrix, thin stone and fin slightly meta Physical Cond	medium dark grey black fine grained inclusions of sand- e grained Porphyry	7	22	С	4.5/4.5 recovery
	I I I I I I I I I I I I I I I I I I I				23		1.0/1.0 recovery
98					24		4.9/4.9 recovery
100	++++	slickensides of fracture	present, infilling surface	g			
102							
104		sand, silts igneous gra volcanic an up to 1.5" <u>Physical Co</u> to little f	uartz sand, feldspa tone, sandstone and vels well cemented d granitic grains in diameter ndition: closely ractured, hard,	d	25		4.9/4.9 recovery
	‡ ‡	strong, fre	sn				
108		conformable	contact		26		4.7/4.7 recovery
110	***	fine graine inclusions	in greenish black d matrix, thin of sandstone and d porphyry slightly				minor rig chatter
112				Box	27	1	2.4/2.4 recovery
114		113.7-114.7 deeply wea	thered shear zone	9			
116		114.5-121.4 INTERBEDDE SILTSTONE:	D SANDSTONE AND dark gray to grey	ish			Sheet <u>5</u> of <u>13</u>

F	Proje	ct 🔜	DESIGN UNIT	A415	Da	ate Drilled	2-12-	24-81		Hole_No	
	DEPTH	uscs	MAT	erial cl	ASSIFICAT	FION	SAMPLE	RUN NO.	DRILL MODE	REMAF	₹KS
	116	60°	114.5-121.4	SILTSTONE black, we	: contin		Box 9	28	С	2.9/2.9 reco	overy
 -	118 -			70°, 20° filled, 7 clay coar	and 90°, 70° fractu ted, 90° f	20° clay re open and		29 30		1.0/1.0 reco 2.8/2.8 reco	-
-	120		120.8-121.4	fractured fresh	<u>Condition</u> 1, very ha	: moderately rd, strong,					
	122		121.4-141.6	METASANDS coarse sa quartz ce	<u>STONE</u> : med and∼50% q ement in f	ium gray, uartz, ractures	Box 10	31		1.2/1.2 reco	overy
	124	╸ ╸ ╸ ╸		moderate	ly fractur rong, fres		10	32		4.9/4.9 reco	overy
	126										
	128-	70'	128.5	4" coars	se grained	zone		33		1.8/1.8 reco	overy
	130-							34		2.9/2.9 reco	overy
	132-		131.5	lineate weakly	schistose grain siz		Box 11	35		4.6/4.6 reco	overy
	134-		135.0	grain s	size decre	ases					
	136-										~
	138-	+++++++++++++++++++++++++++++++++++++++						36			
	140		139.0-141.	O breccia	ted, close	ly fractured				Sheet6_	_of <u>_13</u>

Projec	ct _	DESIGN UNIT A415	Date Drilled	2-15-	16-8	1	Hole No
DEPTH	USCS	MATERIAL CLASSI	FICATION	SAMPLE	RUN. NO.	DRILL MODE	REMARKS
140		121.4-141.6 METASANDSTONE	: continued	Box11	36	С	4.4/4.4 recovery
142	-	141.6-151.2 <u>INTERBEDDED S</u> STONE: medium	ANDSTONE & SILT- gray to grayish		37		1.0/1.0 recovery
144		and calcite f <u>Physical Cond</u> to moderately to very hard.	ition: intensely fractured, hard strong, fresh, nsely fractured,	Box 12	38		4.8/4.8 recovery
146	70°						
148		149.0-150.7 little fract grained	ured, finer		39		3.8/3.8 recovery
152	-		black, fine to d, closely to ctured, primarily		40		0.2/1.4 recovery
154	- - - - - -	commonly show	g fracture planes ing slickenside. minor calcite	Box 13	41		2-16-81 1.8/2.2 recovery
156	-				42		.,2.4/2.8 recovery
158	- - - -	intensely fra	ition: closely to ctured, moderatel ely strong, fresh	Y	43		1.8/1.8 recovery
160	-				44		0.4/0.5 recovery
	-				45		1.2/2.0 recovery
162	-	60° fracture prominant	planes most	Box 14	46		0.7/0.7 recovery 1.5/1.9 recovery
164					4/		Sheet _7_ of <u>13_</u>

		DESIGN UNIT A415 Date Drilled		1.01		Hole No31
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	N OS	DRILL	REMARKS
164	Ē	151.7-190.8 BASALT: continued		47 48	с	0.7/1.0 recovery
		fracture planes straight to irregular, numerous hairline		49		0.5/1.0 recovery
166		fractures		50		0.8/1.2 recovery
168		Physical Condition: closely to intensely fractured, moderatel hard, moderately strong, fresh	y Box 14	51		2.0/2.5 recovery
170-				52		0.8/1.0 recovery
172-				53		0.0/1.4 recovery
174-			Box	54		1.7/3.0 recovery
-			15			
176-				55		2-17-81 0.7/1.0 recovery
-				56		1.0/1.0 recovery
178-				57		1.8/2.4 recovery
100						
180-				58		0.7/1.0 recovery
182				59		1.4/1.6 recovery
-				60		1.8/2.2 recovery
184-	‡ ‡					
-			Box 16	61		2.5/2.8 recovery
186-			10			
188				62	-	Sheet 8_of 13

Proje	ct	DESIGN UNIT A415 Date Drilled _	T 10	1		Hole No31
HLLADO	USCS	MATERIAL CLASSIFICATION	SAMPLE	N O	DRILL	REMARKS
188 -	Ē	151.2-190.8 BASALT: continued			С	
190 -				62		4.8/4.8 recovery
		190.8-260.7 <u>SILTSTONE AND SANDSTONE INTER</u> BEDS: primarily olive black,	-			
192		very thin to medium parallel lamina siltstone with sub- ordinate fine well cemented bluish gray sandstone, hair- line fractures apparent		63		oil film in drillin water 1.5/2.0 recovery
194-				64		pocket penetrometer >4.5 tsf 2.0/2.0 recovery
196-						
-				65		0.7/1.2 recovery
198		primarily brownish black silt stone and fine light bluish gray sandstone	-	66		4.5/4.8 recovery
200-						
202-		very thin to medium wavy lami	na			2-18-81
_						
204-		Physical Condition: moderatel fractured, moderate hard, wea to moderately strong, fresh, tends to fracture along beddi planes and healed fractures	k ng Box	67		4.2/4.2 recovery
206-			18		-	
202				68		0.9/1.0 recovery
208-				69		4.7/4.7 recovery
210-						
						Sheet <u>9</u> of <u>1</u>

DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	RUN.	DRILL	REMARKS
212		190.8-260.7 <u>SILTSTONE AND SANDSTONE INTER-</u> BEDS: continued	 Box 18	69 70		0.5/0.5 recovery
214 214		wavy alternating very thin to medium lamina of primarily brownish black siltstone and subordinate light bluish gray fine sandstone, numerous silica filled and hairline fractures	1	71		oil film in drillin water 4.1/4.8 recovery
218		<u>Physical Condition</u> : moderately fractured, moderately hard, weak to moderately strong, fresh, tends to fracture along bedding planes and healed fractures		72		pocket penetrometer >4.5 tsf 4.7/4.7 recovery
222	ليبيه والمحيد الم					
224			Box 20	73		4.3/4.8 recovery
226			-			
228		continued, fossiliferous silt- stone		74		2-23-81 0.5/0.5 recovery
230				75		4.9/4.9 recovery
232	┿╋┿┿┿┿┿┿ ┥					oil film in drillin
234			Box 21	76		water 5.0/5.0 recovery
-						Sheet <u>10</u> of <u>1</u>

Proje	ct _	DESIGN UNIT A415 Date Drilled		4-81		Hole No
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.		REMARKS
236		190.8-260.7 <u>SILTSTONE AND SANDSTONE INTER-</u> <u>BEDS</u> : continued		76	С	5.0/5.0 recovery
238-		Physical Condition: moderately fractured, moderately hard, weak to moderately strong, fresh, tends to fracture along bedding planes and healed fractures continued, fossiliferous, moderate yellowish brown silt-		77		3.5/3.5 recovery oil film in drillin water
242		stone inclusion at 239.5		78		1.5/1.6 recovery
244			Box 22	79		3.2/4.8 recovery
246						pocket penetrometer >4.5 tsf
248			N 1 1 1 1	80		2.8/2.8 recovery
250-						
252			Box	81		2.4/2.4 recovery
254-			23	82		4.7/4.7 recovery
256						
258	┿┿╋ ┿╋╋╋ ╋	grades sandier from 256.9		83		2-24-84 4.8/4.8 recovery
260			Box 2	4		Sheet <u>11</u> of <u>13</u>

DEPTH	nscs	MAT	ERIAL CLA	SSIFICATION	SAMPLE	N S	DRILL	REMARKS
법 260 -	ອັ -			AND SANDSTONE INTER			Ľäž C	
		-	BEDS: cont SANDSTONE:		to	83		4.8/4.8 recovery
262		262.1-265.1	rich, lowe CONGLOME <u>RA</u>	r contact 50° TE: greenish gray, to 10 mm max. dia		84		0.5/1.0 recovery
264	handreit		intensely ed), clast numerous V	fractured (clay fi s include. quartz, olcanics, grades to dstone with depth	ll- Box	85		4.5/4.5 recovery
266		265.1-300.0	fine grain erately to fracture p with chlor	rk greenish gray, ed, vesicular, mod closely fractured lanes commonly fil ite; slickenside	, led			loss of circulation water
268				t 20° to core axis airline fractures	2	86		4.8/4.8 recovery
270								
272				live black, fine to ined, vesicules	Box 25		-	pocket penetrometer 4.5 tsf
274						87		4.8/4.8 recovery
276								gas detector 0.0% L no gas encountered
278-								
280-					Box	88		4.8/4.8 recovery
282-					26			
-	‡ +					89		4.7/4.7 recovery
284	ŧ							Sheet <u>12</u> of <u>13</u>

Proje	ct 🔤	DESIGN UNIT A415	Date Drilled _	2-24	-81		Hole_No1
ретн	nscs	MATERIAL CI	ASSIFICATION	SAMPLE	NUN.		REMARKS
284 286		grained, fracture	continued ack, fine to medium moderately to closely d, numerous hairline d apparent	y Box 26	89	С	4.7/4.7 recovery
					90		0.9/0.9 recovery
288-					91		2.1/2.1 recovery
290					92		1.0/1.0 recovery
292				Box 27	93		1.9/1.9 recovery
294					94		1.5/3.4 recovery
296-							no recovery, mislatch of sample tube
298					95		0.0/4.0 recovery
300							2-24-81
302		138. <u>2-27-81</u> : Perf <u>2-28-81</u> : Piez	r pressure test conduct O' to 300.0' at 20, 40 ormed downhole geophyson ometer installation,	D and 6 s cs install	0 psi ed 18	¢.0'	s 51.0' to 138.0', and to 2" PVC perforated
304-		PVC 175. <u>3-2-81</u> : water	at the following inter O', backfilled hole w sampled	rvals: ith pea	80.0' grav	[to e]	100.0' and 155.0' to
306-							Sheet of
308	<u>+</u>						Sneet Of

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABDRATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT DTHER LOCATIONS OR TIME.

BORING LOG 31-1

Proj: DESIGN UNIT A415	Date Drilled	0/3/83-10/6	/83		Ground Elev. 479
Drill Rig Failing 750					
Hole Diameter_3"	Hammer Weig	ht & Fall 🚽	40 lb	5.,	30"
हिं ड्रि MATERIAL CLA	SSIFICATION	SAMPLE	NO.	DRILL MODE	REMARKS
<pre>0.0-0.2 ASPHALT AF 0.2-0.5 BASE ROCK ML/ ALLUVIUM SM 0.5-10.0 SANDY SILT/SI yellowish brow moist; stiff; 4</pre>	n with gravel;	(у		GB AD	
6.0-8.0 gravel	ly layer			RD	6.0-8.0 rig chatter
10 SM 10.0-16.0 <u>SILTY SAND</u> : gravel; moist	light brown wi ; medium dense	ith		SS RD	
14 16 16.0-29.0 <u>SANDY CLAY</u> : brown with gr	dusky yellowis avel; moist; fi	sh irm			Sheet <u>1</u> of <u>5</u>

Project DESIGN UNIT A415 Date Drilled 10/3/83-10/6/83 Hole No. 31-1

ниаа	nscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL MODE	REMARKS
20	CL L	16.0-29.0 <u>SANDY CLAY (continues as above):</u>			SS	
22					RD	,
24 -				i		
26						
28-	SM	29 0-48 0 STLTY SAND, dusky brown, moist.			-	
30 -		29.0-48.0 <u>SILTY SAND</u> : dusky brown; moist; loose; with gravel			SS	
32 -					RD	
34 -			•			
36 -						
38 -						
40 -		becoming medium dense			SS	
42 -					RD	
44						Sheet <u>2</u> of <u>5</u>

Project DESIGN UNIT A415 Date Drilled 10/3/83-10/6/83 Hole No. 31-1

DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
44 46 -	SM	29.0-48.0 <u>SILTY SAND (continued)</u> : 44.0-46.0 gravelly layer			RD	44.0-46.0 rig chatter
48 - 50 -		48.0-56.0 <u>SILTY SAND:</u> moderate brown and dark gray with gravel; moist; dense; trace organics and slight organic odor			SS	
52 -	┷┿┿┿┿┿┿┿┿┿┿				RD	
54 - 56 - 58 -		56.0-72.5 <u>CLAYEY SAND</u> : greenish black; wet; very dense	PB-1	1	PB	2.0/2.5 recovery
60 - 62 - 64 -	╺╻╿╸╸╸╵╵╵╵╵╵╵╵╵╵╵╵╵╵╵╵╵╵╵╵╵╵╵╵	64.0-65.0 gravelly layer	PB-2	2	РВ	1.5/2.5 recovery
66 - 68			PB-3	3		2.0/2.5 recovery Sheet <u>3</u> of <u>5</u>

Project DESIGN UNIT A415 _____ Date Drilled 10/3/83-10/6/83 ___ Hole No. 31-1

ОЕРТН	SSSU	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL MODE	REMARKS
68 - 70 -	SC IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	56.0-72.5 <u>CLAYEY SAND (continued)</u> :	PB-3	3	PB RD	
72 -		BEDROCK 72.5-106.0 BASALT: medium light gray; fine grained		4	PB	
74 -		Physical Condition: intensely fractured; low hardness; weak strength; deeply to moderately weathered	PB-4	5		1.5/2.5 recovery
76 -		dark gray, slightly clay, wet, firm to very stiff	PB-5			1.2/2.5 recovery
80 -			PB-6	6		0.9/2.5 recovery
82 -	┿┿┽╫╫╫┿ <mark>┥┿┿</mark>		ĩ		RD	
84 -	╻╻╻╻╻╻╻╻╻╻					
86 ·	***	87.0.00.1 shaan zonot, gravally				
88		87.0-90.1 shear zone: gravelly clay; moist to wet; stiff; color change to olive gray Physical Condition: crushed,			С	1.8/2.0 recovery
90 -		soft to low hardness; plastic to weak strength; deep weather- ing; some fractures filled with dark gray clay-moist; firm to very stiff	Box #1	2		2.0/2.0 recovery
92	Ŧ			3		Sheet <u>4</u> of <u>5</u>

Project DESIGN UNIT A415 Date Drilled 10/3/83-10/6/83 Hole No. 31-1

рертн	nscs	MATERIAL CLASSIFICATION	SAMPLE	N ON	DRILL	REMARKS
92 94 -		72.5-106.0 <u>BASALT (continued)</u> : color becoming mottled-dark greenish gray, greenish black, and gray- ish black <u>Physical Condition</u> : intensely fractured; moderate to low hardness; weak to moderate strength; moderate weathering	Box #1	3	С	3.5/3.7 recovery 4.4/4.4 recovery
98 -						drill rate = 20 min/ft
100-			Box #2	5	-	0.0/1.2 recovery drill rate = 8 min/ft 1.0/2.3 recovery drill rate = 22 min/ft
102-	╇┲┼┥ ┓┍┥┠╗┥┍┍ ┼	thin clay-filled fractures at 104', 105' 103.0-103.1 clay-filled shear zone		7	1	5 October 1983 6 October 1983 3.4/3.4 recovery
106~		Physical Condition: intensely to closely fractured; moderately hard; weak to moderately strong deeply to moderately weathered end of boring = 106.0'				flushed hole; set 2"
108- 110-	┥╸╸┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙	, ,				ABS piezometer from 0.0-106.0, perforated from 86.0-106.0. Pulled casing and backfilled with pea gravel. Sealed top (0.5-4.0) with con- crete. Cleaned site; covered hole with steel cap
112- 114-						
116				1		Sheet _5 _ of _5

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LDG IS APPLICABLE ONLY AT THIS LOCATION ANO TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG <u>31-2</u>

Proj:	DES	IGN UNIT A415	Date Drilled 10/2	2/83-10/	24/83		Ground Elev
		Failing 750					Total Depth _90.1
							0" SS; 320 1b @ 18" DR
DEPTH	NSCS	MATERIAL CLA		SAMPLE	RUN.		
0 2- 4-	ML SM7 ML GC	organics (root moist, firm 6.0-18.6 <u>SILTY SAND/S/</u> yellowish brow moist, medium 7.8-8.8 clave	gravel; dry; with tlets); becoming	C-1 J-1		GB AD DR AD SS AD RD SS RD RD	1.0/1.0 recovery 1.5/1.5 recovery 1.0/1.0 recovery 0.9/1.5 recovery
12-	┶╸╸╸╸			<u>C-3</u> J-3 C-4		DR RD SS RD DR RD	1.0/1.0 recovery 0.9/1.5 recovery 1.0/1.0 recovery
18-	SM7	18.6-24.6 <u>SILTY SANDA</u> yellowish bu	<u>SANDY SILT</u> : dark rown with gravel;	J-4	- - -	SS RD	0.75/0.75 recovery refusal at 9" Sheet 1_of _4

Project DESIGN UNIT A415 Date Drilled 10/22/83-10/24/83 Hole No. 31-2 SAMPLE DEPTH usos MODE NON O MATERIAL CLASSIFICATION REMARKS 20 ± SM/ RD 18.6-24.6 SILTY SAND/SANDY SILT (continued): moist; very dense/hard ±ML 19.1-19.2 lense of fine quartz sand 22 + C-50.9-0.9 recovery DR refusal @ 11" RD 24 -J-5 SS 0.6/0.6 recovery refusal @ 7" ±GC 24.6-30.0 CLAYEY GRAVEL: moderate yellow-RD ish brown; moist; very dense rig chatter 26 + 1 PB 28 **PB-1** 1.5/2.5 recovery 2 30 -‡ CL 30.0-32.3 SILTY CLAY: moderate yellowish brown; moist; hard with sand PB-20.5/2.5 recovery and gravel Pitcher tube end damaged BEDROCK 32 + 32.3-90.1 BASALT: mottled-dusky green and 3 medium dark gray; porphyritic; 1.9/2.5 recovery PB-3 much of basic glass devitrified; phenocrysts fine grained 34 pyroxene and plagioclase feldspar. Clasts of fresher basalt are set in matrix of more highly 4 altered basalt characterized by PB-41.2/1.2 recovery secondary minerals. Slickensides fairly common. Secondary minerals include quartz, chlorite and epidote. С 1 RQD = 96%Physical Condition: intensely 2.3/2.3 recovery to closely fractured; moderately hard; moderately strong; moderately weathered; thin calcite 2 0.3/0.3 recovery coatings on some fracture sur-40 faces, most fractures closed and Box healed. 3 #1 ROD = 41%2.8/2.8 recovery . . 5 Ξ. 42 -10/22/83 10/23/83 4 Sheet 2___ of 4

Project DESIGN UNIT A415 _____ Date Drilled 10/22/83-10/24/83 __ Hole No.31-2

		nscs	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
44			32.3-90.1 BASALT (continued): quartz, chlorite are most abundant vessicle, cavity, and fracture filling minerals. Some zones	Box #1	4	С	RQD = 79% 4.8/4.8 recovery
46	3 - - - - - - -	-	exhibit slickensides at various orientations including horizon- tal. Predominantly greenish black; minor brown orange and				
48			yellow iron oxide on fracture surfaces. 46.7-47.2 core is fractured	Box #2	5		RQD = 0% 3.6/3.6 recovery
50			47.2-49.9 core completely dis- aggregated into fragments				
52	2		49.9-50.5 disaggregated basalt and alteration product: clay- dusky green to greenish black; moist; stiff (shear zone) fine grained calcite on fracture surfaces		6		RQD = 38% 5.6/5.6 recovery
54	+ +		51.1-53.1 core disaggregated into fragments				
56			core gradually changes color from green to dark gray after removal from the hole				- -
58	w 1.11.11.1		decreasing slickensides basalt nearly completely altered	Box #3 -	7		RQD = 28% 2.9/2.9 recovery
60	.		61.6-62.4 dicagregated bacalt		8		RQD = 32% 4.1/4.1 recovery
62	2		61.6-62.4 disaggregated basalt- fragments			i i i i	
64	4			Box #4	9		RQD = 77% 6.9/6.9 recovery
6	6		calcite common on fracture surfaces				
6	8 -	Ŧ					Sheet3_ of4

Project DESIGN UNIT A415 Date Drilled 10/22/83-10/24/83 Hole No. 31-2

	ОЕРТН	nscs	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
	68		32.3-90.1 BASALT (continued):			С	
	70 -		some surfaces have a glossy sheen due to microcrystaline micaceous chlorite	Box #4	9		23 October <u>1983</u>
1							24 October 1983
	72		72.3-75.1 disaggregated zone with fragments		10		RQD = 43% 6.0/6.0 recovery
	74		core does not break cleanly, but makes hackly, uneven surface or disaggregates when struck with hammer	i			
	76 -		thin layers (0.05") of calcite ubiquitous on fracture surfaces	Box #5			
	78 -		disaggregated core may indicate fracture, shear, or fault zone		11		RQD = 75% 6.0/6.0 recovery
ļ	80 -						
	82 -		slickensides common; within 20° of horizontal				
	84 -				12		RQD = 34% 2.9/2.9 recovery
	- 86 -			Box #6			
	-				13		RQD = 19% 4.2/4.2 recovery
	88 -						
	90 -	*	end of boring 90.1'	Box #7	14		1.0/1.0 recovery RQD = 100%
	-			tremm cleane crete	d si	¢e; ∙	ack cement grout; opped hole with con- Sheet <u>4</u> of <u>4</u>
	92	+			<u> </u>	<u> </u>	

This Boring Log is based on field classification and visual Soil description, but is modified to include results of Laboratory classification tests where available. This log is applicable only at this location and time. Conditions May differ at other locations or time.

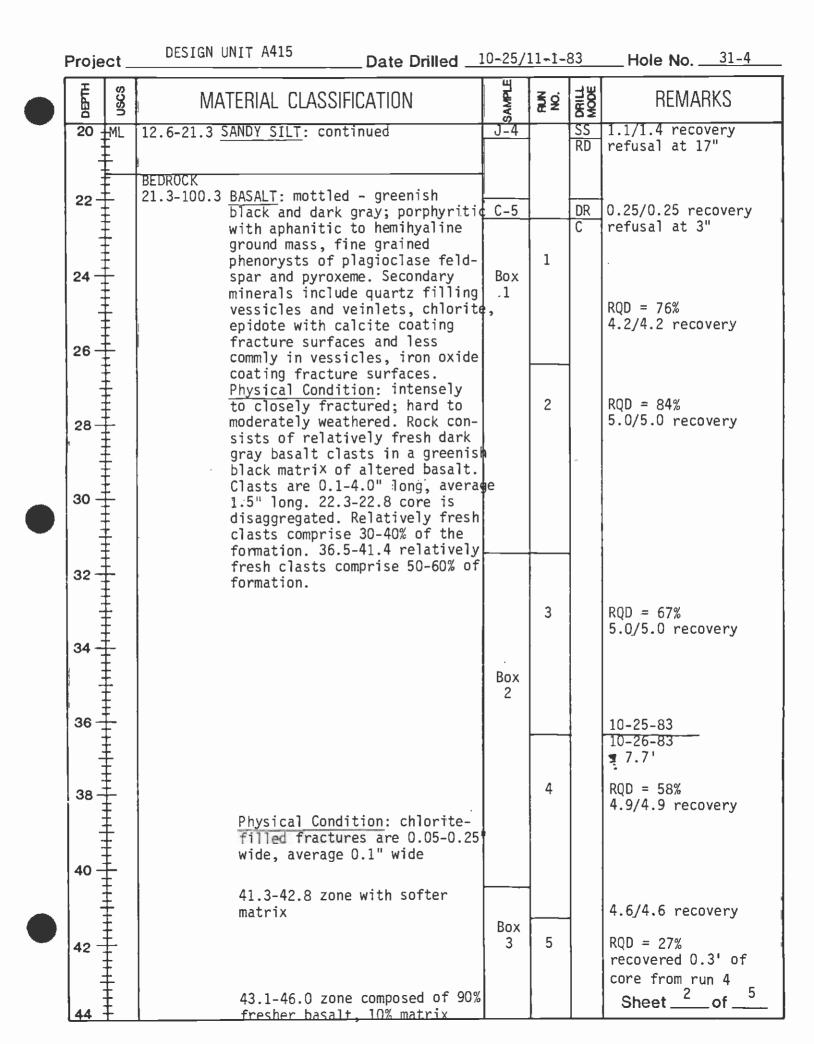
BORING LOG 31-3

Proj:	D	ESIGN UNIT A415						Ground Elev. 526.0
Drill	Rig .	Failing 750	Logged By	S. S1	aff			Total Depth
Hole	Diar	meter ^{NX}	Hammer Wei			140 1	bs,	30"
DEPTH	USCS	MATERIAL CLA			SAMPLE	RUN NO.	DRILL	REMARKS
2_		moist; firm	rate brown; wit		•		GB AD	
6-		becoming less 4.7-24.2 <u>SANDY SILT</u> : with gravel;		brown			RD	
8-					J-1		SS	1.0/1.5 recovery
10-					-		RD	
14-					PB-1	1	PB	1.5/2.5 recovery
		becoming ve	ry stiff					
16-	TSM ML)	becoming sa	ndier		J-2		SS	1.0/1.5 recovery
18-		19.5-19.8 g	cavel long				RD	rig chatter at 19.5'
20	‡	1 19.0-19.0 g	aver rens					Sheet <u>1</u> of <u>5</u>

Project _	DESIGN UNIT A415 Date Drilled		-9-83		Hole_No
DEPTH	MATERIAL CLASSIFICATION	SAMPLE	NOR ION	DRILL	REMARKS
20 ML	4.7-24.2 <u>SANDY SILT</u> : continued	lost		RD PB	0.0/2.5 recovery
24	24.2-27.0 <u>SANDY SILT</u> : dark yellowish brown; moist; stiff	PB-2			2.5/2.5 recovery
26 +		J-3		SS	0.75/1.5 recovery
28 - CL	27.0-29.4 <u>SILTY CLAY</u> : dark yellowish brown; moist; stiff			RD	10-6-83 10-7-83
30	29.4-35.6 <u>SANDY CLAY</u> : moderate brown; moist; with gravel; very stiff	PB-3		PB	2.5/2.5 recovery
32	becoming sandier	J-4		SS	1.0/1.5 recovery
				RD	
36-+- _{G(}	35.6-30.0 <u>CLAYEY GRAVEL</u> : moderate brown; moist; with sand; very dense				slight rig chatter
38		PB-4	- - - - -	PB	sporadic rig chatte 2.5/2.5 recovery
40 ++++++++++++++++++++++++++++++++++++	BEDROCK 39.0-100.1 BASALT: dusky yellowish green aphanitic to fine grained; some quartz-filled fractures Physical Condition: intensely fractured, fractures closed by secondary minerals (calcite, zeolite, quartz); moderately ha			SS RD	0.3/0.3 recovery refusal at 4"
44	moderately strong, moderately weathered				Sheet of

Ŧ						
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
44 =	-	39.0-100.1 BASALT: continued basalt is medium gray on fresh surfaces; porphyritic with fine grained plagioclase feldspar, pyroxene in aphanitic ground-	PB-5		PB	2.0/2.0 recovery disturbed
48 48 50	-	mass. <u>Physical Condition</u> : fractures to 1.0" wide commonly filled with secondary minerals includ- ing chlorite. Some zones crush- ed, with clay filling fractures some zones hard, strong, little weathered. Predominantly medium dark gray with highly altered	;	1	С	RQD of core was high but it disaggregates upon removal from barrel RQD = 17% 4.8/4.8 recovery
52		zones dusky yellowish green. Gray basalt clasts are hard, moderately strong in matrix of dark green alteration products that are low hardness, weak, feel soapy, display slickenside	S	2		RQD = 68% 5.0/5.0 recovery
54			Box 2	3		RQD = 63% 3.2/3.2 recovery
58		Hairline fractures common.				10-7-83
60		Basalt clasts are 0.05"-3.0" long; clasts compose 60-90% of the rock; very little calcite in this zone.		4		10-8-83 RQD = 68% 55' 7:00 10-8-83
62	-	This zone has~40% matrix of secondary minerals,~60% primary basalt clasts. Slickensides common on fracture surfaces.		- - - -		
64 <u>-</u> 66 <u>-</u>		More calcite filled fractures, matrix becoming strong. Clasts more completely altered.	Box 3	5		RQD = 100% 5.2/5.2 recovery
	-					Sheet <u>3</u> of <u>5</u>

DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
8 58 ±	ő -	39.0-100.1 BASALT: continued	Box	5	ľåž C	
	-		3			
ro –						RQD = 83% 4.8/5.0 recovery
Ĭ				6		4.0/3.0 10000015
72		72.1-72.9 open fractures to 1/2" wide, lines with quartz crystals up				
4		to 0.2" across; rock sheared, clay in shear zone				
74 -			Box		+	
			4			
76 –				7		RQD = 60%
						4.9/4.9 recovery
78						
1.1.1		white to light green calcite				DOD - 00%
30		coating fractures; clasts have reaction rims and are more	<u>ا</u>	8		RQD = 92% 5.0/5.0 recover
.		highly altered; slickensides; core breaks into jagged, hackl	1			
32 -		fragments when struck with hammer				
-						
84 -		gravish black, clay on	Box 5		4	
-		fractured surfaces, breccia decreasing rock becoming				RQD = 45%
86 -	-	basalt with secondary mineral filled fractures		9		4.6/4.6 recover
_						
- 88						10-8-83
	‡ +				1	10-9-83
				10		56' 7:10 10/9/ ROD = 65%
90 –		basalt is serpentinized; slickensides are common	Box	11		1.7/1.7 recover
-	ŧ					Sheet _4_ of


Project	DESIGN UNIT A415 Dat	e Drilled	10-6-	9-83		Hole No
DEPTH USCS	MATERIAL CLASSIFICATIO)N	SAMPLE	RUN NO.	DRILL	REMARKS
92	39.0-100.1 <u>BASALT</u> : continued brecciated zone 92.0	-93.0	Box 6	11	С	RQD = [:] 84% 5.0/5.0 recovery
94	white quartz and cal some fractures. Gree ary minerals can be with finnger nail	n second-	g			
96	considerable mottlir secondary minerals, quartz, calcite			12		RQD = 96% 4.9/4.9 recovery
98 +	slickensides rare		Box 7			
						10-9-83
	End of Boring 100.1'				1	Tremmied in two sacks cement to grout hole. Removed casing, back- filled with concrete to ground surface. Cleanded site.
104						
		·				
112						
116						Sheet <u>5</u> of <u>5</u>

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG 31-4

			ESIGN UNIT A415 Date I					Ground Elev
0	Drill	Rig _	Failing 750 Logge	ed By	aff			Total Depth <u>100.3'</u>
ł	lole	Dian	neter_NX Hamm	er Weight &	Fall 📑	3 <u>20</u> 1bs	,18	<u>DR/140 lbs, 30" SS</u>
	DEPTH	UBCS	MATERIAL CLASSIFICA	TION	SAMPLE	NO.	MODE	REMARKS
	0	ML	0.0-0.4 ASPHALT ALLUVIUM 0.4-3.2 <u>CLAYEY_SILT</u> : moderat brown; trace gravel	e yellowish			iB .D	
	2 -	(SM)	2.0 - becoming moist; incr content		C-1.	D	IR	1.0/1.0 recovery
	4 -	ML	3.2-10.8 <u>SANDY SILT</u> : moderat brown; moist; stiff	e yellowish ; with grave]	J-1		.D .S	1.5/1.5. 2000/02/
	-				J-1		.D	1.5/1.5 recovery
)	6-					-		
	8-		becoming very stif	fand	C-2		DR R	1.0/1.0 recovery
	10-		gravelly		J-2	s	s	1.2/1.5 recovery
	-	F GM	10.8-12.6 SILTY GRAVEL: mott yellowish brown an	d grayish with		R	٢D	rig chatter
	12-		sand, orange; mois becoming more silt 12.6-21.3 <u>SANDY SILT</u> : modera	y te yellowish	C-3	-)R	1.0/1.0 recovery
!	14-	+++++++++++++++++++++++++++++++++++++++	brown; with gravel	; moist; hard	J-3		RD SS	1.0/1.5 recovery
	16-		becoming wet; colo	r change to		F	2D	
	18-		shade between mode moderate yellowish content increasing	brown; gravel	C-4		DR RD	1.0/1.0 recovery rig chatter
	20		becoming hard	•	J-4		S	Sheet of

DEPTH	β N	1ATERIAL CLASSII	FICATION	SAMPLE	N ON		REMARKS
ă : 44 -		.3 BASALT: contin		1	5	ăž C	
		0 disaggregated		Box 3		L	
46		medium dark gr (manganese dio fracture surfa	xide) on some		6		RQD = 33%
		rare slickensi ~80% relativel	y fresh basalt				5.0/5.0 recovery drilling fluid is greenish gray
50	49.1-49.	loses much of	s of less resis- ore darkens and its green cast hours of exposure	2			
52 +		to air.		Box 4	7	-	RQD = 61% 4.8/4.8 recovery
54		rock breaks al surfaces when hammer	ong hackly, uneve struck with	s 2n 			
56							10-26-83 10-31-83 27.5
58		~90% relativel clasts,~10% a			8		RQD = 72% 5.0/5.0 recovery
60				Box 5			
62		fracture sur ~95% relativ ~5% secondar filling fra	ely fresh basalt y minerals (most	ŷ	9		RQD = 60% 5.0/5.0 recovery
64		set undeter have slicke ary mineral	minable, surfaces ensides in second- 's ively fresh basali		-		5.0,5.0 recovery
66 +		-Zom ditere	ω παιτιλ		10		RQD = 69%

Proje	ct_	DESIGN UNIT A415 Date Drilled		11-1-	83	Hole No31-4
рертн	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
68 70		21.3-100.3 <u>BASALT</u> : continued sJickensides on some fracture	Box 6	10	C	
72 -		surfaces - oriented close to horizontal. relatively fresh basalt clasts are angular to subrounded, mostly subangular; size range is 0.1"-6.0", average 0.6"		11		RQD = 84% 5.1/5.1 recovery
76		greenish gray, microcrystallin calcite coating many fracture surfaces in layers 0.01-0.1" thick	e Box 7	12		RQD = 54%
80		anahedral, white, quartz fill ing cavities and veinlets 0.1 0.5" thick, average 0.1" thic	-			4.8/4.8 recovery 10-31-83 11-1-83
82 -		slickensides continue calcite and chlorite present		13		₹ 28' RQD = 57% 4.9/4.9 recovery
84 - - 86 -	╺╻╻╻	on most fracture surfaces 60% relatively fresh clasts, 40% altered matrix	Box 8			•
88 -	┿┿┿┿┿┿┿┿┿	minor very fine grained, euhedral pyrite grains on some fracture surfaces		14		RQD = 75% 4.8/4.8 recovery
90 -	++ ++ ++ ++ ++ ++ ++ ++ ++ ++	alteration products coating fracture surfaces feel slippery	Box 9	15	-	
92	ŧ			10		Sheet of

Proje	ct _	DESIGN UNIT A415	Date Drilled	10-25/	11-1-8	33	Hole_No	31-4
рертн	nscs	MATERIAL CLASSIFIC	ATION	SAMPLE	RUN NO.	DRILL	REMARK	(S
92		21.3-100.3 <u>BASALT</u> : continue 70% relatively 30% altered mat	fresh clasts,	Box 9	15	С	RQD = 90% 4.9/4.9 recov	ery
96 - - 98 -		core tends to fr relatively fresh broken with hamm pyrolucite coati surfaces	clasts when er.		16		RQD = 88% 5.1/5.1 recov	'ery
100-				10			11-1-83	
102-		END OF BORING 100.3'					Tremmied in 2 cement grout. casing. Clear Covered hole steel street 11-6-83 removed stree capped with c	Removed med site. with cover. et cover,
- 106-				•				
108-								
110-	++++++++++++++++++++++++++++++++++++++							
1 12-	+++++++++++++++++++++++++++++++++++++++							
114-	+++++++++++++++++++++++++++++++++++++++						Shoot 5	of E
116	<u>+</u>						Sheet 5	

THIS BDRING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

20 7

weathered

BORING LOG 31-5

Proj: DESIGN UNIT A415	Date Drilled _10/9/8.	3-10/1	9/83		Ground Elev. 574
Drill Rig Failing 750	Logged By Steve	Slaff			Total Depth _150_0
Hole Diameter <u>NX</u>	Hammer Weight &	Fall 1	40 Ib	s @	30" SS; 320 lbs @ 18" DR
	RIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL MODE	REMARKS
2 4 CL 3.5-7.0 GRAVEL brown organ 6 BEDROCK	<u>ROCK</u> <u>CLAY:</u> grayish brown with ; dry, firm; minor organics; change to moderate yellowish at 1.0 <u>LY CLAY:</u> moderate yellowish ; moist, hard, with sand, minor ics <u>SALT:</u> brownish black, fine	<u>C-1</u> J-1		AD	1.0/1.0 recovery 1.5/1.5 recovery
8 Physic 10 fractu 10 friabl weather becoming 12 Basalt 14 fine of felds 16 waxy t	cal Condition: intensely ured (some fractures closed condary minerals), hardness- le, strength-friable, deeply ered, contains some clay. ing harder, stronger c: medium dark gray where a altered, greenish black altered grained, includes plagioclase bar, pyroxene, chlorite, ce, quartz. Minor unfilled cles. Altered zones with a to dull luster.	<u>C-2</u> Box #1	1	RD C	refusal at 5" 0.3/0.3 recovery 9 October 1983 10 October 1983 RQD = 96% 4.2/4.5 recovery
18 Basalt erate stront Altere tured,	cal Condition: : intensely fractured, mod- y hard to hard, moderately , moderately weathered. d Basalt: intensely frac- low to friable hardness, strength, little to moderately		2		RQD = 100% 9.7/9.7 recovery Sheet <u>1</u> of 7

Project DESIGN UNIT A415 Date Drilled 10/9/83-10/19/83 Hole No. 31-5

	HLL	nscs	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
	20 22		7.0-150.0 BASALT (continued): fractures straight to uneven, rarely curved. Some fractures filled with quartz, chlorite, epidote, from hairline width to 0.2".	Box #1		С	
	24		Most fractures closed. Rock tends to break along hackly, uneven surfaces and along frac- tures.		2		9.7/9.7 recovery
	26		predominant fractures dip 50°-60° from horizontal	Box #2			
	28		grayish yellow green, very fine grained calcite coats some frac- ture surfaces			-	RQD = 100%
D	30		rock is hard and strong where less altered				
	32		harder zone - higher proportion of fresh basalt to altered basalt		3		10.2/10.2 recovery
	34		quartz, chlorite, epidote	Box #3			
	36						10 October 1983 11 October 1983
	38-		rock is ~ 90% altered basalt, 10% fresh basalt				
	40		clasts of fresh basalt within altered basalt are 0.1"-8.0", have angular to rounded shape		4		RQD = 98% 8.3/8.3 recovery
	42			Box #4			
	44	<u>‡</u>					Sheet _2 of _7

Project DESIGN UNIT A415 ____ Date Drilled _____10/9/83-10/19/83 _ Hole No. _____31-5 ___

	рертн	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
	44		7.0-150.0 BASALT (continued): most frac- tures closed or very narrow	Box #4	4	С	
	46 -						
							RQD = 95%
	48 -						
	1 .	+++++++++++++++++++++++++++++++++++++++			5		10.0/10.0 recovery
	50 -						
	52 -		pyroxene and plagioclase feld- spar in a very fine grained groundmass				
	54 -			Box #5			
			thin calcite coating fracture surfaces	#J			
	56-						RQD = 79%
	58-		quartz filled vessicles and fractures up to 1.0" wide				
				•	6		10.1/10.1 recovery
	60 -						
;		*		Box			
	62 -			#6			
	64 -		predominant color: dark gray				
			Physical Condition: intensely to closely fractured, moderate-		ļ		11 October 1983 12 October 1983
	66 ⁻		ly hard to hard, moderately strong to strong, moderately				
	68		weathered. Nearly all frac- tures closed, filled with sec- ondary minerals. 2" wide quartz-filled cavity 67.5	Box #7	7		Sheet <u>3</u> _of <u>7</u>

Project DESIGN UNIT A415 Date Drilled 10/9/83-10/19/83 Hole No. 31-5

DEPTH	NSCS	MATERIAL CLASSIFICATION	SAMPLE	NON ON	DRILL	REMARKS
68 70 - 72 -		7.0-150.0 <u>BASALT (continued):</u>	Box #7	7		RQD = 100% 10.0/10.0 recovery
74 -	++++++++++++++++++++++++++++++++++++++	slickensides in chlorite show relative movement from horizon- tal plane to various orientations up to 60° from horizontal chlorite and other alteration				
76 -		products coating fracture sur- faces can be scratched with fingernail; have waxy luster and feel		8	-	RQD = 95% 4.2/4.5 recovery
80 -	┿╌┿┿┿┿┿┿┿┿┿┿┿┿	abundant chlorite-filled veinlets	Box #8			
82 -	+++++++++++++++++++++++++++++++++++++++	up to 0.15" wide some vessicles only partially filled with secondary minerals; color change to dark greenish	•	9		RQD = 62% 3.9/3.9 recovery
84 -		gray; very fine grained pyrite in matrix; pyrite more concen- trated on fracture surfaces 86.3-87.3 clay filled shear or		10		RQD = 82% 4.6/4.6 recovery
88 -	······	fracture zone; abundant very fine to fine grained pyrite, dark greenish gray clay, horizontal slickensides calcite coating fracture surfaces	Вох			
90 -	╺╺╺╺	in layers up to 0.1" thick	#9	11		RQD = 65% 7.3/7.3 recovery Sheet 4 of 7

Project ______ DESIGN_UNIT_A415 ______ Date Drilled 10/9/83 to 10/19/83 Hole No. _____31-5

	рертн	USCS	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL	REMARKS
	92		7.0-150.0 <u>BASALT (continues as above)</u> : 92.0-93.6 shear zone with brecciated rock, sand, silt, clay in fractures	Box #9	11	С	
	96		pyrite decreasing				
	98			Box			RQD = 93%
1	100-	┶ ┶ ┶ ┶ ┶ ┶ ┶ ┶ ┶ ┶ ┶ ┶ ┶ ┶ ┶ ┶ ┶ ┶ ┶		#10	12		9.5/9.5 recovery
	102				-	-	
	104	┝╋╋╋╋ ╋╋╋╋╋╋ ╋╋╋╋╋	tale on some fracture surfaces can be scratched with fingernail; quartz-filled cavities up to				
	106-	▼ + + + + + + + + + + + + +	0.4" wide	Box			RQD = 80%
	108-	+		#11	13		8.3/8.3 recovery
	1 10-	╸ ┥╺╺╶╼┥┥╼╼					
	112-		Physical Condition: intensely to				
	116	+++++++++++++++++++++++++++++++++++++++	closely fractured, moderately hard to hard, strong to moderate- ly strong, moderately weathered	Box #12	14		7.6/7.6 recovery Sheet <u>5</u> of 7

Project <u>DESIGN UNIT A415</u> Date Drilled <u>10/9/83 to 10/19/83</u> Hole No. <u>31-5</u>

	ОЕРТН	USCS	MATERIAL CLASSIFICATION	SAMPLE	NUN NO.		REMARKS
-	18		7.0 to 150.0 <u>BASALT (continued):</u> <u>Physical Condition (cont'd):</u> nearly all fractures are filled with secondary miner- als and closed	Box #12	14	С	RQD = 98%
1	22						RQD = 87%
	24			Box #13	15		10.2/10.2 recovery
	28-						
1	30-						
1	132-	┿╋╋╋	calcareous clay on some frac- ture surfaces, also calcite	Box			RQD = 97%
1	134-		quartz-filled fractures	#14	16	8	
1	136-		quartz=riffed fractures		10		9.6/9.6 recovery
þ	138- - 140			Box #15			Sheet <u>6</u> of <u>7</u>

Project <u>DESIGN UNIT A415</u> Date Drilled <u>10/9/83 - 10/19/83</u> Hole No. <u>31-5</u>

	_		•			
DEPTH	nscs	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
140		7.0-150.0 <u>BASALT (continued)</u> : 142.0 - 1" thick quartz-filled fracture	Вох	16	С	RQD = 96%
144		quartz-filled fractures up to 0.3" thick open fractures coated with secondary minerals	#15	17		8.7/8.7 recovery
148-			Box #16	18_		0.5/0.5 recovery
152-		END OF BORING 150.0'				terminated hole at 150.0; set 2" diameter ABS piezometer from surface to 150.0; back filled annulus with pea gravel; piezometer perforated from 110- 150; set 5" PVC sleeve from ground surface to 2.0; covered with steel street cap; cleaned site
164						Sheet _7of _7

THIS BORING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

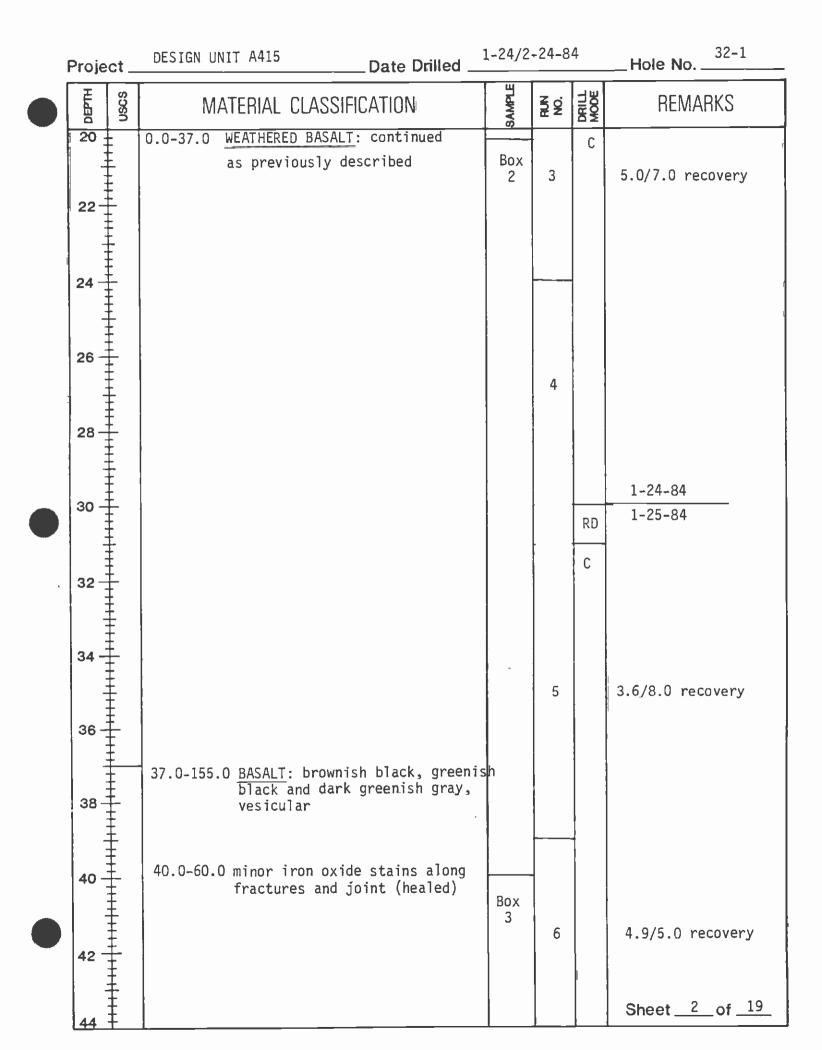
BORING LOG 31-6

Proj:	DESIGN UNIT	A415	Date Drilled	2/24/84				Ground Elev
Drill I	Rig Failing 15	500	Logged By	<u>Mark Sc</u>	<u>hluter</u>			Total Depth 29.0'
Hole	Diameter 4.7	7/8"	Hammer Wei	ght & I	Fall 32	25 lb	0.18	3", 140 15 @ 30"
рертн	N necs	ATERIAL CLAS	SSIFICATION		SAMPLE	RUN NO.		REMARKS
2-	SM FILL 0.3-6.0 <u>S</u> g	A.C. PAVEMENT SILTY SAND: mo slightly moist gravel; trace c and rootlets	to moist; trad	ce 🛛	C-1		C A DR 325 RD	
6- 8- 10-	Б m s GM 8.5-13.5 у	SILTY SAND/SAND prown to dark y medium dense/st slightly moist; SANDY <u>GRAVEL/S</u> vellowish brown moist	ellowish brown iff; moist to trace gravel	n; dusky	J-1 , C-2		SS 140 DR 325	0.5/1.5 recovery
12-	E'i m) <u>SILTY SAND</u> : medium brown; m vith gravel			C-3		RD DR 325 RD	variable rig chatter
16- 	Т у g	5 <u>SAND</u> : modera vellowish brown Fravel; medium Fravel content	; trace fines	and	J-2 C-4		SS 140 RD DR 325	0.6/1.5 recovery Sheet <u>1</u> of <u>2</u>

Project DESIGN UNIT A415 _____ Date Drilled _____2/24/84 _____ Hole No. ____31-6 SAMPLE DEPTH DRILL MODE USCS MATERIAL CLASSIFICATION REMARKS N S 20 Ξsw 18.0-22.5 SAND (continued): RD 22drill rig chatter ŧ BEDROCK DR 22.5-29.0 BASALT: dusky brown and grayish black; aphanitic to fine grain C-5 325 refusal @ 11" 24 + RD Physical Condition: intensely fractured; moderately to deeply DR refusal @ 6" weathered; soft C-6 325 significant drilling 26 25.0-28.0 moderately weathered; intensely fractured; moderately fluid loss in basalt RD formation hard, narrow to very narrow fracture walls with clay filling 28moderately to deeply weathered; DR C-7 325 intensely fractured END OF BORING 29.0' 30 -Passive Percolation Test: hole depth 29.0', 5" I.D. casing 13" above ground surface 32 34 36 38 38 38 water level fell 2.6' inside steel casing during 1 minute water level fell 10.8' below top of casing after 10 minutes 2-25-84 water level 26.5' below ground surface 40 -42 · Sheet 2 of 2

THIS BORING LOG IS BASED ON FIELO CLASSIFICATION AND VISUAL SDIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG 31-7


F	Proj:	DI	ESIGN UNIT A415	Date Drilled	2-2	25-84			Ground Elev
0	Drill F	Rig_	Failing 1500	Logged By	M. S	chluter			Total Depth
ł	lole	Diar	neter4 7/8"	Hammer Wei	ght &	Fall_	325#	018	<u>"/140#@30"</u>
	DEPTH	uscs	MATERIAL CLA	SSIFICATION		SAMPLE	NOR	DRILL	REMARKS
	2	SM	0.0-0.5 <u>A.C. PAVEMENT</u> 0.5-3.0 <u>SILTY SAND</u> : m medium dense;		loose	-		A	started drilling @ 0730
	4 6 8		fractured, c fractured wa weathered, m 5.0-10.0 very soft to highly weath	dition: intense losed-very nari lls, stained, m oderately hard	ely row nedium ike), illing			DR A DR A DR RD	drill rig chatter
	10- 12- 14-		weathered,	hered – medium medium – highl random, clay i	у	C-4		DR RD	varible drill rig chatter
	16		jagged edge	rock, highly fr es, secondary m chloriate, ep	acture ineral idote	0 0-5		DR	caving and sluffing into hole, added additional bentonite variable drill rig chatter heavy drill rig chatter Sheet <u>1</u> of <u>1</u>

THIS BDRING LOG IS BASED ON FIELD CLASSIFICATION AND VISUAL SOIL DESCRIPTION, BUT IS MODIFIED TO INCLUDE RESULTS OF LABORATORY CLASSIFICATION TESTS WHERE AVAILABLE. THIS LOG IS APPLICABLE ONLY AT THIS LOCATION AND TIME. CONDITIONS MAY DIFFER AT OTHER LOCATIONS OR TIME.

BORING LOG 32-1

Proj:	DESIGN UNIT A415	Date Drilled	1-24	4/2-24	-84		Ground Elev.	865.5'
Drill Rig		Logged By _					Total Depth _	442.0'
Hole Dia	meterNX	Hammer Weig	ght & I	Fall _	N/A	_		
DEPTH	MATERIAL CLA	SSIFICATION		SAMPLE	RUN NO.		REMARK	S
$\begin{array}{c} 39\\ \hline 0\\ \hline 10\\ \hline 12\\ \hline 14\\ \hline 16\\ \hline $	BEDROCK 0.0-37.0 WEATHERED BA brownish bla ish brown st stains) contains cla and exhibits to clay <u>Physical Con</u> intensely fr friable hard	<u>SALT</u> : dusky bro ick with dusky y creaks (iron ox y deposits in f feldspars weat dition: closely actured, soft t ness, friable s deeply weathere	yellow- ide ractur hering tering	es PB-1 Box 1	₹2 1 2 3	A RD PB	1.5/2.5 recov 4.8/5.0 recov 3.0/5.0 recov	ery Yery
20							Sheet <u>1</u> o	f <u>19</u>

HITADO	usçs	MATERIAL CLAS	SIFICATION	SAMPLE	NO.	DRILL MODE	REMARKS
44	۳ ۲			1			
44		little fract hard to hard	inued <u>dition</u> : moderate to ured; moderately ; moderately strong ittle weathered to		6	С	7.0/0.0 массисти
48				1	7		7.0/8.0 recovery
50		in a green	salt fragments set ground massl quartz resent; fractures infilling	Box 4			
52 54							
56	here here				8		8.0/8.0 recovery
58 58 60	ي ليديدا بيد ا	40.0-60.0 minor irc	on stains along				
62			and joints .	Box 5	9	•	61.2 shear zone 5.0/5.0 recovery
64 -							
66	64	1			10		6.0/6.0 recovery
	Ē						Sheet of

F	Proje	ct _	DESIGN UNIT A415	Date Drilled		2-24-8	34	Hole No
	DEPTH	nscs	MATERIAL CLASS	IFICATION	SAMPLE	RUN NO.	DRILL	REMARKS
-	68		37.0-155.0 <u>BASALT</u> : contir as previously		<u>Box 5</u> Box	10	С	6.0/6.0 recovery
ľ	70 -		70.0-71.0 fracture zone		6			
	72 -							
	74 -					11		5.0/5.0 recovery 1-27-84
	76 -		75.0 healed joint, (CaCO ₃				1-28-84
	78 -		78.0-83.0 shear zone, in contains fault	ron oxide staining t gauge	Box 7			
	80 -					12		7.5/9.0 recovery
	82 -							
	84 -							
	86 -		86.0-88.0 fracture zone			13		very hard drilling
	88 -	+++++++++++++++++++++++++++++++++++++++						
	90 -					14		
	92				Box 8			Sheet <u>4</u> of <u>19</u>

Project _	OESIGN UNIT A415 Date Drilled	1-24	/2-24	-84	Hole No
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL MODE	REMARKS
92 + + + + + + + + + + + + + + + + + + +	37.0- 155.0 <u>BASALT</u> : continued 93.0-102.0 zone of vertical fractures - 1/8" - CaCO ₃ healed	Box 8	14	С	7.0/7.0 recovery 1-28-84
96			15		4.0/4.0 recovery
98			16		4.0/4.0 recovery
100		Box 9	-	2 m	
102	103.0 slickensided surface				
106	106.0-107.0 randomly oriented fractures				
108	and joints	Box	17		9.9/10.0 recovery
1 10		10			
112	111.0-112.0 shear zone			_	
114			18		
116 +					Sheet <u>5</u> of <u>19</u>

Project _	DESIGN UNIT A415	Date Drilled		-24-8	4	Hole No	32-1
DEPTH USCS	MATERIAL CLASSI	FICATION	SAMPLE	RUN NO.	DRILL	REMA	RKS
116	37.0-155.0 <u>BASALT</u> : contin	ued	Box 10		С		
118	118.0-119.0 slickensides		Box 11	19		9.9/10.0 re	covery
120	120.0-121 vertical frac	tures					
122						1-29-84 1-30-84	
124	123.0-124.0 shear zone wi gouge	th CaCO ₃ fault					
126			Box 12	20		10.0/10.0 r	recovery
128							Ŭ
130							
132							
134							
136			Box 13	21		10.0/10.0	recovery
	138.0-140.0 fracture zone healed CaCO ₃	e, hackly surfaces					
140 +	· _ ·					Sheet6	_of

Project	DESIGN UNIT A415	Date Drilled	-1-24/	2-24-	84	Hole No	32-1
DEPTH	MATERIAL	CLASSIFICATION	SAMPLE	NO.	DRILL	REMA	rks
140	37.0-155.0 <u>BASALT</u> 140.0-141.0 shear		Box 13	21	С		
144	145.0-146.0 fract	ure zone	Box 14				
146				22		10.0/10.0 r	ecovery
148		ure zone, random orienta CaCO ₃					
150							
152							
154)9 155.0-169.0 <u>SHALE</u>	: medium gray and dark	Box 15	23		7.0/7.0 re	covery
	gray Physi moder hardn	<u>cal Condition</u> : (155-169) ately fractured, low less, moderate strength, e weathered					
	indud	cal Appearance: well rated with massive			-	1-30-84	
	bedd i	ng -					
162						Sheet7	_of <u>19</u>

-10]6	ct_	DESIGN UNIT A4	15	Date Drilled		2-24-8	34	Hole No	32-1
DEPTH	nscs	MATER	IAL CLASSIFIC	CATION	SAMPLE	NUS.	DRILL	REMA	RKS
164 166		155.0-169.0 <u>SH</u>	<u>{ALE</u> : continue	:d	Box 16	24	С	8.5/10.0 rec	covery
168									
170				sh black, green dark greenish ar	-				
172			fracture zone oriented frac intensely fra healed	tures and joint:	5,	25		9.0/10.0 re	ecovery
174		ĝ	iray	gray and dark'y	Box 17				
176		175.0 s	slickensides						
178				ish black, green					
180-	***	E E E E E E E E E E E E E E E E E E E	ish black and gray, vesicula Physical Cond to moderately	dark greenish ar ition: closely fractured, well t), moderately		26		6.9/7.0 re	covery
182	╈	5	weathered to	ong, little 🐪					
184 -					Box 18			1-31-84	_
186-		187.0-188.0 1	fractured zone	2		27	E	2-1-84	
188	Ŧ							Sheet _8	_of _ <u>19</u>

Project _	DESIGN UNIT	A415	_Date Drilled		/2-24-	-04	Hole No	32-1
DEPTH	MAT	ERIAL CLASSIFI	CATION	SAMPLE	NO.	DRILL	REMAR	RKS
188		BASALT: continu fracture zone, hackly surface	ed CaCO ₃ infilling	Box 18	27	С	10.0/10.0 r	ecover
192	195.0	slickensides		Box 19				
196								
200					28		9.5/10.0 r	ecover
204	203.5-204.	5 fracture zone fractured	, intensely	Box 20				
208					29		9.0/10.0 r	ecover
212	211.0-212.	0 fracture zone fractured	, intensely				Sheet 9	_of <u>19</u>

.

Project _	DESIGN UNIT A415	Date Drilled _	1-24/2-	24-84		Hole No	32-1
DEPTH USCS	MATERIAL CLASSIF	FICATION	SAMPLE	NON .	DRILL	REMA	RKS
212	179.0-442.0 <u>BASALT</u> : contin	núed	Box 21	29	С	9.0/10.0 re	covery
216	216.0-217.0 fractured zon	e, slickensides				2-1-84 2-7-84	
218							
220	221.0-224.0 fractured zon	e, closely		30		5.5/8.0 rec	covery
222	fractured, we]i healed (close	≥d)				
224			Box 22				
226							
228				31		5.1/8.0 reco	overy
230	· · · · ·						
232	233.0-234.0 fracture zon	e, slickensides		32			
234						Sheet 10	_of _ ¹⁹

Proj	ect _	DESIGN UNIT A415 Date Drilled	1-247	2-24-8	84	Hole No
DEPTH	MATERIAL CLASSIFICATION		SAMPLE	NO.	DRILL MODE	REMARKS
236	+++++++++++++++++++++++++++++++++++++++	179.0-442.0 BASALT: continued	Box 22	32	С	5.2/7.0 recovery
238	***		Box 23			2-7-84
240	· · · · · · · · · · · · · · · · · · · 					
242 244	+++++++++++++++++++++++++++++++++++++++	243.0-244.0 fracture zone		33		9.0/10.0 recovery
246			Box 24			
248 250	 • • • • • • • • • • • • • • • • • • •					
252		251.5-252.5 fracture zone, slickensides, closely fractured, well heale (closed)	Ğ	34		9.3/10.0 recovery
254	***					
256	**		Box 25		2	
258				35		2-8-84 2-9-84 Sheet <u>11</u> of <u>19</u>

	ct _			Date Drilled		1	T I	Hole No	
DEPTH	uscs	MA	TERIAL CLAS	SIFICATION	SAMPLE	N OY	DRILL	REMA	RKS
60		179.0-442.	0 BASALT: co	ntinued	Box 25		С		
62						35		9.0/10.0 re	cover
64-									·
-		264.5-265.	0 fracture z	one	Box 26				
266-									
268								268-269 ver drilling	y har
270-									
272-								-	
274					Box .27	36		10.0/10.0 r	ecove
276-									
278-									
-	<u>+</u> +	279.0	slickensid	les					
280-						37		4.0/4.0 re	cover
		282.0	CaCO ₂ on f	Fracture surfaces					
			J					2-9-84	_
-	ŧ				Box	38		2-10-84 Sheet <u>12</u>	

Project _	DESIGN UNIT A415	Date Drilled		/2-24	-84	Hole No	32-1
DEPTH	MATERIAL CLA	SSIFICATION	SAMPLE	RUN NO.	DRILL MODE	REMAF	KS
284 286 288 288	179.0-442.0 <u>BASALT</u> : c 285.5-289.0 shear zon slickensi fractured	e, trace clay, des, intensely	Box 28	38	С	8.5/10.0 red	covery
290			Box 29				
294	296.0 hackly	surface	1	39		10.0/10.0 r	ecovery
298		d, healed					
302	Physical moderate healed (<u>Condition (300-360)</u> ly fractured, well closed)	Box 30	40		2-10-84 2-11-84	
306	306.0-308.0 fracture fracture	zone, intensely d				Sheet 13	_of <u>19</u>

Project _	DESIGN UNIT A415 Date Drilled	1-24/2	2-24-8	4	Hole No	32-1
DEPTH USCS	MATERIAL CLASSIFICATION	SAMPLE	RUN NO.	MODE	REMARK	S
308 -	179.0-442.0 <u>BASALT</u> : continued	Box 30		С		
310	311.0-312.0 fracture zone		40		9.0/10.0 rec	overy
312		Box 31	-			
314	314.0-315.0 fracture zone					
316			41		10.0/10.0 re	covery
318						
320						
322		Box 32			2-11-84	
324					2-12-84	
326		•	42		7.8/8.0 reco	very
328						
330						
332			43		Sheet <u></u> o	f <u>19</u>

Proje	ct	DESIGN UNIT A415 Date Drilled		2-24-8	4	Hole No,32-1
DEPTH	uscs	MATERIAL CLASSIFICATION	SAMPLE	NO.	DRILL MODE	REMARKS
332		179.0-442.0 BASALT: continued	Box 33		С	
		331.5-333.0 fracture zone				
334						
				12		10.0/10.0 изсочени
336			1	43		10.0/10.0 recovery
338				ļ		
340						
540						2-12-84
342-		u				2-13-84
-						
344-						
			Box 34	44		10.0/10.0 recover
346			54			
348-						
350-	<u>+</u>					
-	F F					
352-						
354-	‡ +		Box 35	45		
						Sheet <u>15</u> of <u>19</u>
356	<u>+</u>			1		

Proje	ct_	DESIGN UNIT A415	Date Drilled	1-24/	2-24-	84	Hole No	32-1
DEPTH	nscs	MATERIAL CLASS	SIFICATION	SAMPLE	NUN.	DRILL	REMAR	3KS
356 358		179.0-442.0 <u>BASALT</u> : cont	inued	Box 35	45	С	9.9/10.0 re	covery
360		359.0-371.0 fracture zo <u>Physical Co</u> intensely t healed (clo	ondition (359-370): Fractured, well		- 		2-13-84	
362 364	· æ· <mark>↓ · · · · · · · · · · · · · · · · · ·</mark>			Box 36				
366				30	46		9.3/10.0 r	ecovery
368-	┿╌ ┨┥ ╋	Physical Co closely fra (closed)	ondition (370-424): actured, well heale	ed.				
372								
374-		375.0 slickensi		Box 37	47		7.0/8.0 re	covery
376-		378.0-378.5 facture zon	e, closely fracture	H 				
380					48		2-14-84 2-15-84 Sheet 16	_of <u>19</u>

Proje	ct _	DESIGN UNIT A415	Date Drilled	1-24/	2-24-8	84	Hole_No32-1
рертн	uscs	MATERIAL CLAS	SSIFICATION	SAMPLE	NO.	DRILL	REMARKS
380 		179.0-442.0 <u>BASALT</u> : cor 381.0-382.5 fracture zo fractured,		Box 37	48	С	9.0/10.0 recovery
384-				Box 38			
386		386.0 slickensid	des or hackly surfac	ce			
388							
390							
392				Box 39	49		9.0/10.0 recovery
394							5.0/10.0 1000001
396-							
398-						-	2-15-84
400					50		2-16-84
402							
404				Box 40			Sheet <u>17</u> of <u>19</u>

Pro	ject_	DESIGN UNIT A415	_Date Drilled			Hole No32-1		
DEPTH		MATERIAL CLASSIFI	CATION	SAMPLE	RUN NO.	DRILL	REMAR	IKS
404		179.0-442.0 <u>BASAL</u> T: contin 404.5-416.6 fracture zone	ued	Box 40		С		
406	5				50		9.1/10.0 rec	overy
408	3 						0.10.04	
	<u>+</u>				<u> </u>		2-16-84 2-21-84	
410				i.				
412	2			Box 41	51		9.5/10.0 re	coverv
414	\$ + + + + + + + + + + + + +	415.0 slickenside	S	н. -			, , , , , , , , , , , , , , , , , , , ,	
416	5 ++ ++ ++ ++							
418	8 + + + + + + +	418.0-419.0 fracture zone						
420		420.0-424.0 facture zone						
42:	2			Box 42	52		9.0/10.0 re	covery
424	4	Physical Cond intensely fra healed (close	<u>ition</u> (424-442): ctured, well d)					
420	6	426.0-429.0 fracture zone						
42	8 7						Sheet 18	of <u>19</u>

	Ргоје	ct _	DESIGN UNIT A415	_Date Drilled	1-24/2-	24-84	ļ.	Hoie No	32-1
	оертн	uscs	MATERIAL CLASSIF	ICATION	SAMPLE	RUN NO.	DRILL MODE	REMAR	KS
	428 430		179.0-442.0 <u>BASALT</u> : contin	ued	Box 42	52	С	2-21-84	•
	432				Box 43	53		7.5/8.0 rec	overy
	434								
	436 		436.5-437.1 fracture zone						
	450		440.0-442.0 fracture zone	-		54		4.6/5.0 re	covery
	440				44	 			
	442		END OF BORING 442.0'						
	444								
	446 448								
	452							Sheet <u>19</u>	of <u>19</u>

Appendix B

Geophysical Exploration

APPENDIX B GEOPHYSICAL EXPLORATION

B.1 DOWNHOLE SURVEY

B.1.1 Summary

Downhole shear wave velocity surveys were performed in Boring CEG-31 for Design Unit A415. Measurements were made at 5-foot intervals from the ground surface to depths of 115 feet. A description of the technique and a summary of the results are attached.

B.1.2 Field Procedure

Shearing energy was generated by using a sledge hammer source on the ends of a 4-by-6-inch timber positioned under the tires of a station wagon, tangential to the borehole. A 12-channel signal enhancement seismograph (Geometrics Model ES1210) allowed the summing of several blows in one direction when necessary to increase the signal-to-noise ratio. Shear waves were identified by recording wave arrivals with opposite first motions on adjacent channels of the seismograph.

B.1.3 Data Analysis

For the purpose of illustration, typical wave arrival records from a downhole geophysical survey are reproduced in Figure B-1. The timing line shows a 20 millisecond (MS) break at the end of the record, indicating that each vertical line is 10 MS. The time of the first arrivals of compressional shear energy is indicated by P and S, respectively. Wave arrival records similar to Figure B-1 were analyzed to estimate wave travel times and velocities for CEG-31.

B.1.4 Discussion of Results

Estimated velocity structures are Summarized in Table B-1. Velocity estimates are based on selection of linear portions of the downhole arrival time curves (see Figure B-2).

The error analysis performed for these surveys involved a least squares fit of these data by estimating the mean of the slope (\overline{V}) in Table B-1 and the standard deviation of this estimate of the slope. This estimate of the standard deviation was combined with an estimate of the overall accuracy to produce the best estimated velocity (V*). Vp* are the values to be used for studies of the response of these sites. N is the number of data points used for the straight line fit for each velocity estimate.

In general, the near-surface shear wave velocity to a depth of 30 feet was found to be approximately 1270 feet per second. To depths of about 115 feet, shear wave velocity estimates generally increased to 4800 feet per second.

-B1-

B.2 SEISMIC REFRACTION SURVEY

B.2.1 Summary

Seven seismic refraction lines were recorded in the vicinity of Hollywood Bowl during the months of February and March, 1981 at the locations shown on Figure B-3. The purpose of these lines was to delineate the alluvium/bedrock interface to evaluate evidence for fault offset in the area.

Seismic readings were recorded in both forward and reverse directions along all lines. Profiles showing subsurface velocity zones were constructed from interpretations of the data, and are presented in Figures B-4 through B-6.

A map showing the locations of the seismic refraction lines is presented on Figure B-3 of this Appendix.

Interpreted results indicate that Lines S-31, S-32, S-51 and S-52 were recorded in areas of near-surface weathered rock, and Lines S-35, S-36 and S-44 were recorded in areas underlain by alluvial deposits. The ground water table was observed at depths of 24 to 40 feet in the near-surface weathered rock areas and 8 to 34 feet beneath the ground surface in the alluvial areas surveyed. The only significant seismic refraction anomaly indicative of possible fault offset was observed beneath the northwest end of Line S-51.

B.2.2 Detailed Description

Seismic refraction Lines S-31, S-51 and S-52 were recorded in the more hilly portions of the Hollywood Bowl area.

As shown on the subsurface velocity profiles of Figures B-4 and B-5, the area beneath these lines is underlain by low velocity material (1,000 to 1,250 ft/sec) to depths of 3 to 14 feet beneath the ground surface. The low velocity zone is underlain by low to medium velocity material (2,160 to 2,830 ft/sec) to depths of 24 to 40 feet where medium velocity material (4,260 to 5,000 ft/sec) is encountered. The medium velocity zone extends at least to depths of 40 to 80 feet beneath Lines S-51 and S-52 and is underlain by high velocity material (12,120 to 12,990 ft/sec) at depths of 62 to 103 feet beneath Lines S-31 and S-32 extends to the maximum depth-limit of information obtained (about 105 feet).

The low velocity material is interpreted to represent residual soil and colluvial deposits. The low to medium velocity zone represents weathered bedrock, and the medium velocity zone represents saturated weathered bedrock. The high velocity zone is interpreted to represent competent bedrock. A vertical step anomaly with the northwest side up was observed beneath the northwest end of Line S-51.

Seismic refraction Lines S-35, S-36 and S-44 were recorded in the alluvial portion of the Hollywood Bowl area.

As presented on the cross sections of Figures B-5 and B-6, the area beneath these lines is underlain by low velocity material (970 to 1,330 ft/sec) to depths of 8 to 34 feet beneath the ground surface. Medium velocity material

(5,000 to 6,150 ft/sec) underlies the low velocity zone and extends to the depth-limit of information obtained (40 to 50 feet beneath Lines S-36 and S-44, and to depths of 66 to 85 feet beneath Line S-35. High velocity material (10,000 ft/sec) underlies the medium velocity zone beneath Line S-35 to the maximum depth-limit of information obtained (about 85 feet).

The low velocity zone is interpreted to represent unconsolidated alluvial deposits and fill. The medium velocity zone is interpreted to represent saturated alluvial deposits (and perhaps weathered bedrock beneath Line S-44). The high velocity zone represents competent bedrock.

BORING	DEPTH		COM	PRESSI	ONAL W	AVE			SHEA <u>R</u> I	NAVE_	
No.	(ft)	Vр	σρ	Ep	Np	Vp*	<u> </u>	σs	Es	Ns	Vs*
31	15- 30	3922	1253	196	5	3922±1450	1273	333	64	4	1270±400
	30-115	8788	1195	439	17	8790±1630	4842	190	240	18	4840±215

TABLE B-1 DOWNHOLE VELOCITIES

 $\bar{V}p$ = mean estimate of compressional wave velocity.

 $\overline{V}s$ = mean estimate of shear wave velocity.

Op = standard deviation of estimated compressional wave velocity.

Os = standard deviation of estimated shear wave velocity.

Ep = estimated accuracy of compressional survey.

Es = estimated accuracy of shear survey.

Np = number of points used for straight line fit of compressional wave.

Vp* = overall accuracy of compressional wave velocity estimate.

Vs* = overall accuracy of shear wave velocity estimate.

Ns = number of points used for straight line fit of shear wave velocity data.

-

Consultants Geotechnical Engineering and Applied Sciences

Converse

83-1140

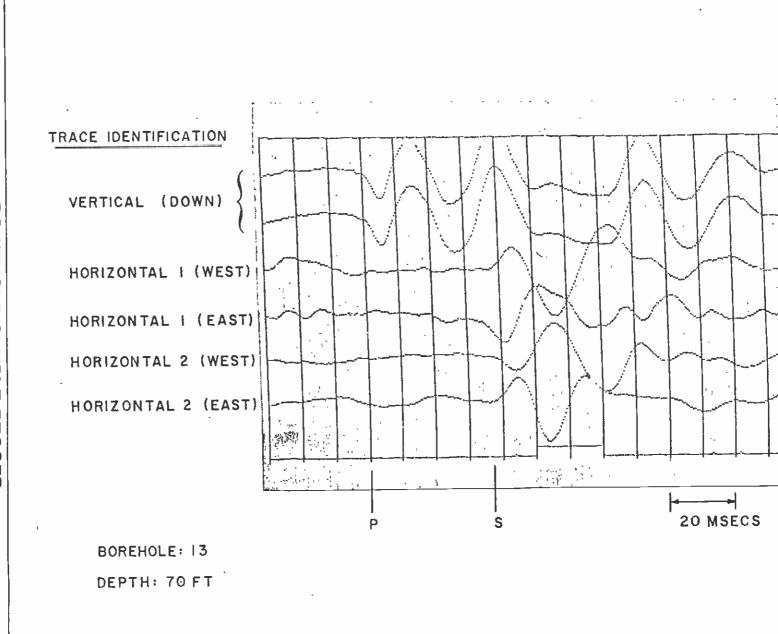
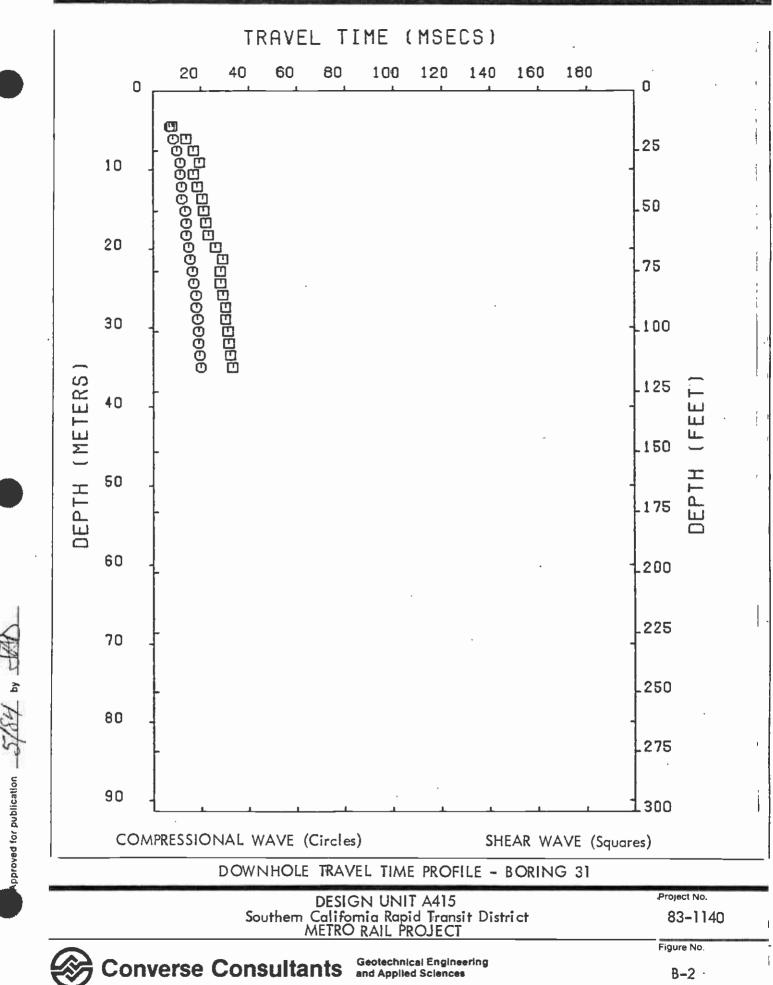
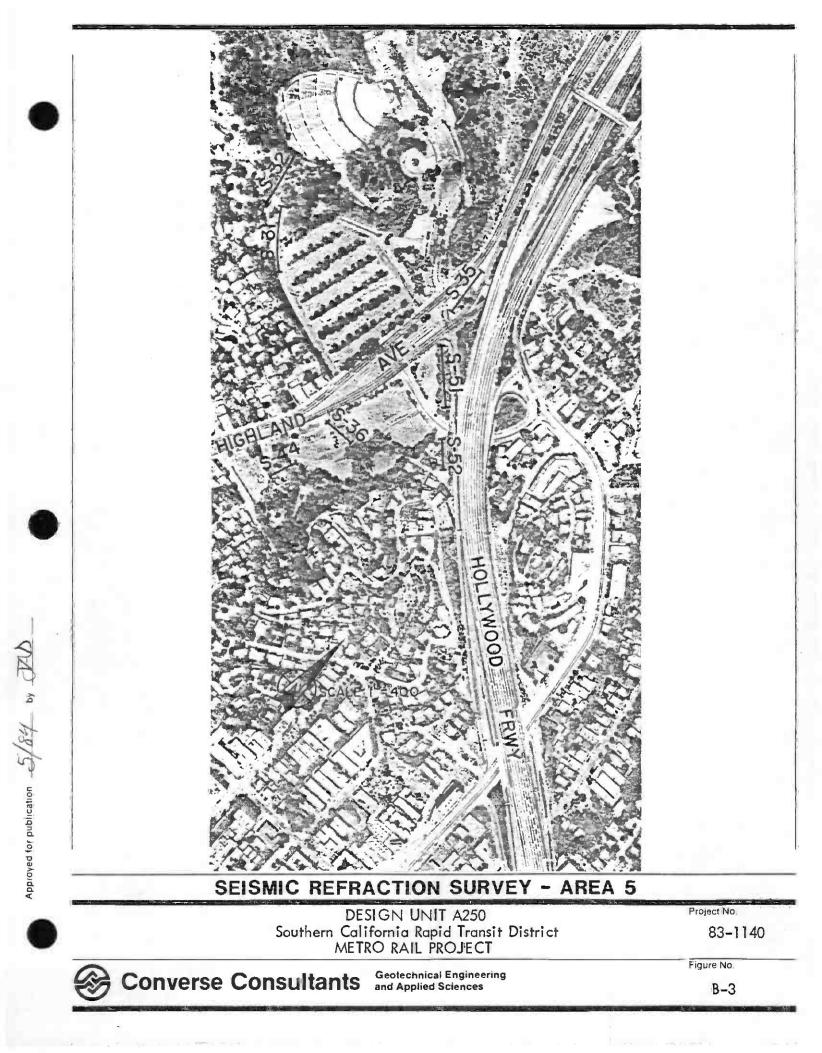

Project No.

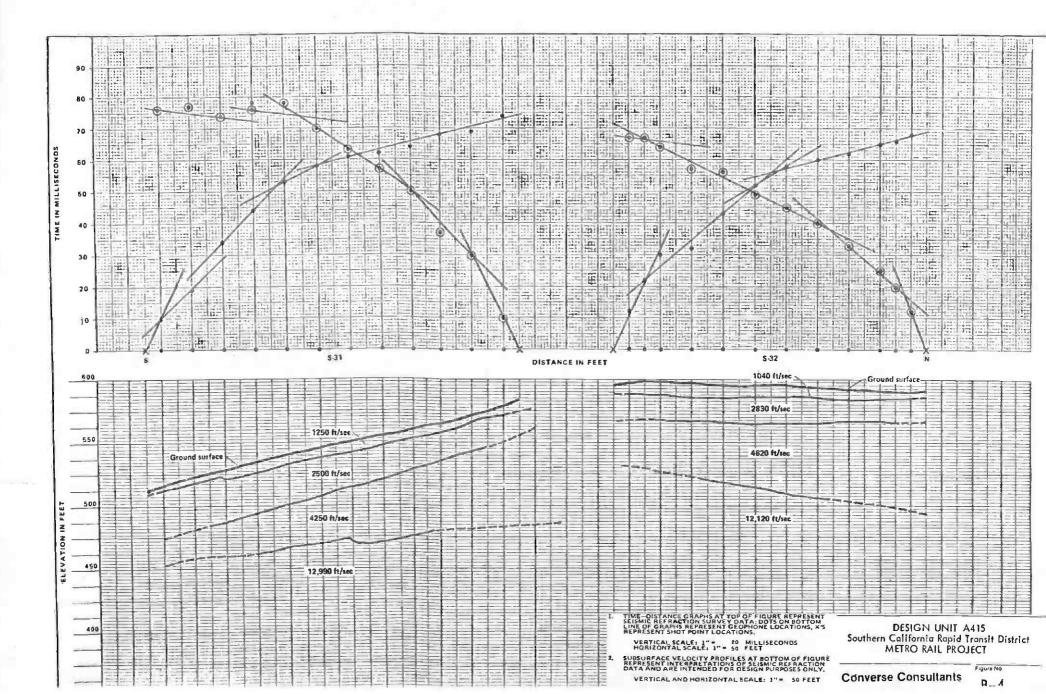
Figure No.

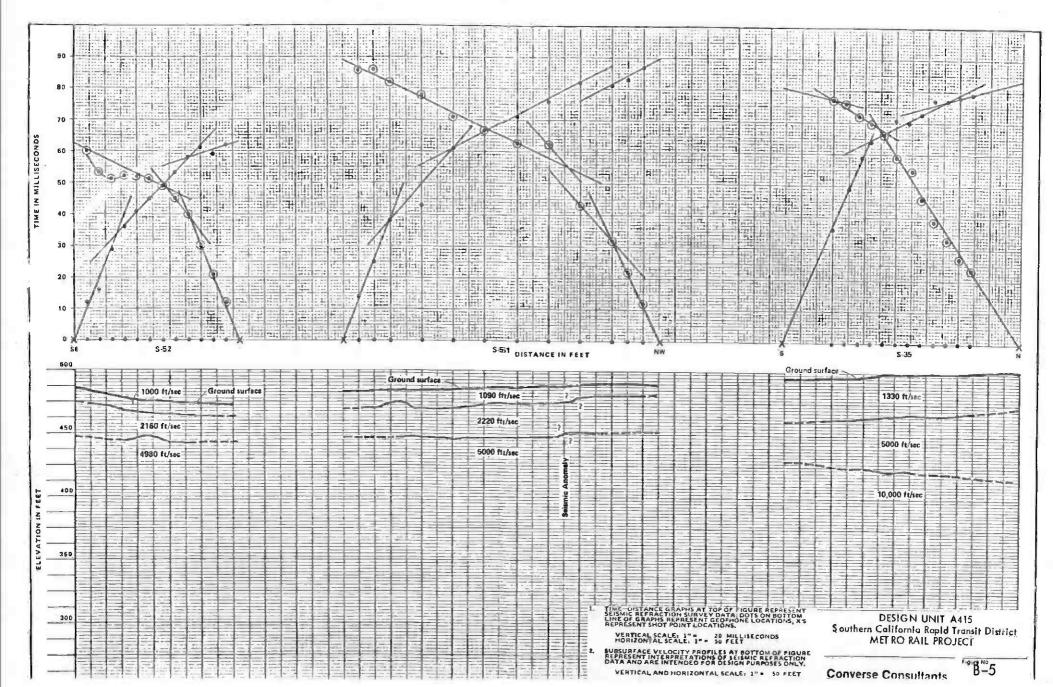
B-1

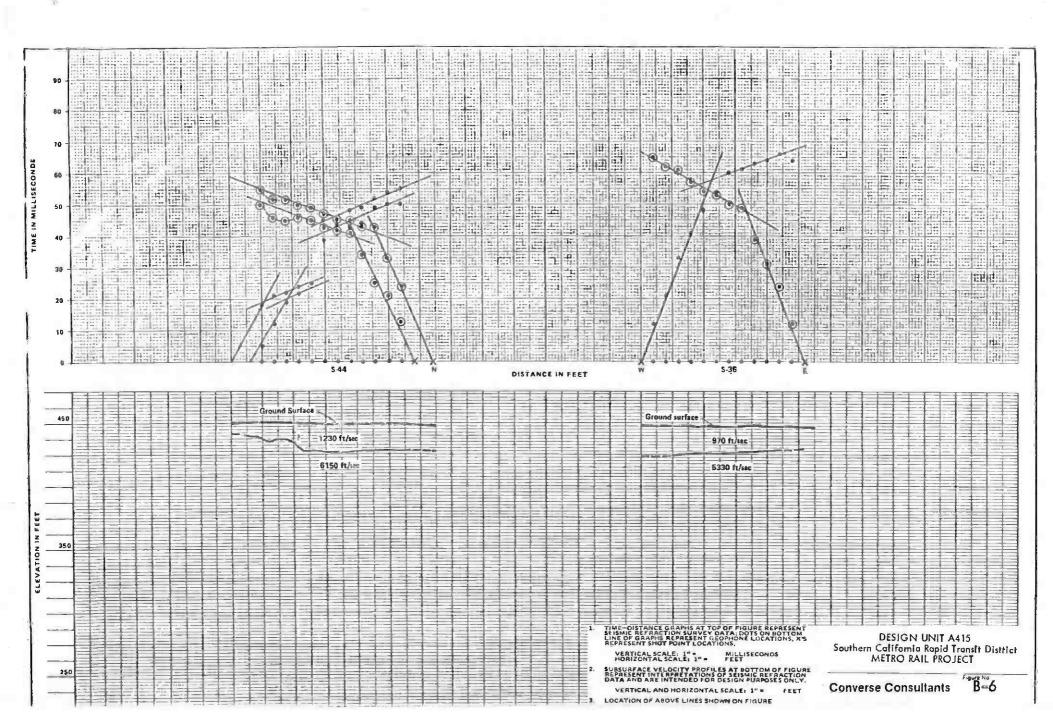

DESIGN UNIT A415 Southern California Rapid Transit District METRO RAIL PROJECT


DOWNHOLE SAMPLE RECORD

.


Approved for publication ______ by _____





Appendix C

Geotechnical Laboratory Testing

APPENDIX C GEOTECHNICAL LABORATORY TESTING

C.1 INTRODUCTION

This appendix presents laboratory geotechnical tests performed on selected soil and bedrock samples obtained from the borings drilled at the Hollywood Bowl Station site.

The soil tests performed may be classified into two broad categories:

- Index or identification tests which included visual classification, grain-size distribution, Atterberg Limits, moisture content, and unit weight testing;
- [°] Engineering properties testing which included triaxial compression, direct shear, consolidation and permeability.

The laboratory test data from the present investigation are presented in Table C-1. The geologic units listed in these tables are described in Section 5.0 of the report. Figures C-1 through C-5 summarize strength and modulus data for coarse-grained alluvium and the weathered bedrock at this site.

C.2 INDEX AND IDENTIFICATION

C.2.1 Visual Classification

Field classification was verified in the laboratory by visual examination in accordance with the unified Soil Classification System and ASTM D-2488-69 test method. When necessary to substantiate visual classifications, tests were conducted in accordance with the ASTM D-2478-69 test method.

C.2.2 Grain-Size Distribution

Grain-size distribution tests were performed on representative samples of the geologic units to assist in the soils classification and to correlate test data between various samples. Sieve analyses were performed on that portion of the sample retained on the No. 200 sieve in accordance with ASTM D-422-63 test method. Combined sieve and hydrometer analyses were performed on selected samples which had a significant percentage of soil particles passing the No. 200 sieve. Results of these analyses are presented in the form of grain-size distribution or gradation curves on Figures C-6 through C-8.

It should be noted that the grain-size distribution tests were performed on samples secured with 2.42- and 2.87-inch ID samplers. Thus, material larger than those dimensions may be present in the natural deposits although not indicated on the gradation curves.

C.2.3 Atterberg Limits

Atterberg Limit Tests were performed on selected soil samples to evaluate their plasticity and to aid in their classification. The testing procedure was in accordance with ASTM D-423-66 and D-424-59 test methods. Test results are presented on Figure C-9 and Table C-1.

C.2.4 Moisture Content

Moisture content determinations were performed on selected soil samples to assist in their classification and to evaluate ground water location. The testing procedure was a modified version of the ASTM D-2261 test method. Test results are presented on Table C-1.

C.2.5 Unit Weight

Unit weight determinations were performed on selected undisturbed soil samples to assist in their classification and in the selection of samples for engineering properties testing. Samples were generally the same as those selected for moisture content determinations.

The test procedure entailed measuring specimen dimensions with a precision ruler or micrometer. Weights of the sample were than determined at natural moisture content. Total unit weight was computed directly from data obtained from the two previous steps. Dry density was calculated from the moisture content found in Section C.2.4 and the total unit weight. Results of the unit weight tests are presented as dry densities on Table C-1.

C.3 ENGINEERING PROPERTIES: STATIC

C.3.1 Triaxial Compression

Consolidated undrained and unconsolidated undrained (quick) triaxial compression tests were performed on selected undisturbed soil samples. The tests were conducted in the following manner:

C.3.2 Consolidated Undrained (CU) Tests

- [°] The undisturbed test specimen was trimmed to a length to diameter ratio of approximately 2.0.
- ^o The specimen was then covered with a rubber membrane and placed in the triaxial cell.
- ° The triaxial cell was filled with water and pressurized, and the specimen was saturated using back-pressure.
- ° When saturation was complete, the specimen was consolidated at the desired effective confining pressure.
- After consolidation, an axial load was applied at a controlled rate of strain. In the case of the undrained test, flow of water from the specimen was not permitted, and the resulting pore water pressure change was measured.
- ° The specimen was then sheared to failure or until a maximum strain of 15% to 20% was reached.

Some of the tests were performed as progressive tests. The procedure was the same as above except that, when the soil specimen approached but did not reach failure (usually to peak effective stress ratio), the axial load was removed and the specimen was consolidated at a higher confining pressure. The axial load was again applied at a constant rate of strain, and the load was removed before the specimen failed. This process was repeated a third time at a still higher confining pressure, and the sample was loaded until failure occurred.

Results of the triaxial compression tests are presented on Figures C-10 and C-11.

C.3.3 Direct Shear

Direct shear tests were performed on selected undisturbed soil samples using a constant strain rate direct shear machine.

Each test specimen was trimmed, soaked and placed in the shear machine, a specified normal load was applied, and the specimen was sheared until a maximum shear strength was developed. Fine-grained samples were allowed to consolidate prior to shearing. The maximum developed shear strengths are summarized on Table C-1 and Figure C-3.

Progressive direct shear tests were performed on selected undisturbed samples of coarse-grained material. After the soil specimen had developed maximum shear resistance under the first normal load, the normal load was removed and the specimen was pushed back to its original undeformed configuration. A new normal load was then applied, and the specimen was sheared a second time. This process was repeated for several different normal loads. Results of the progressive direct shear tests are summarized on Table C-1 and Figure C-3.

C.3.4 Unconfined Compression

Unconfined compression tests were performed on selected samples of the basalt bedrock from the test borings for the purpose of evaluating the unconfined strength of the basalt. Results of the unconfined compression tests are presented on Table C-2 and on Figure C-5.

C.3.5 Consolidation

Consolidation tests were performed on selected undisturbed soil samples placed in 1 inch high by 2.42-inch diameter brass rings, or 3-inch diameter Shelby tubes trimmed to a 2.42-inch diameter.

Apparatus used for the consolidation test is designed to receive the 1 inch high brass rings directly. Porous stones were placed in contact with both sides of the specimens to permit ready addition or release of water. Loads were applied to the test specimens in several increments, and the resulting settlements recorded.

Results of consolidation tests on the undisturbed samples are presented on Figure C-12.

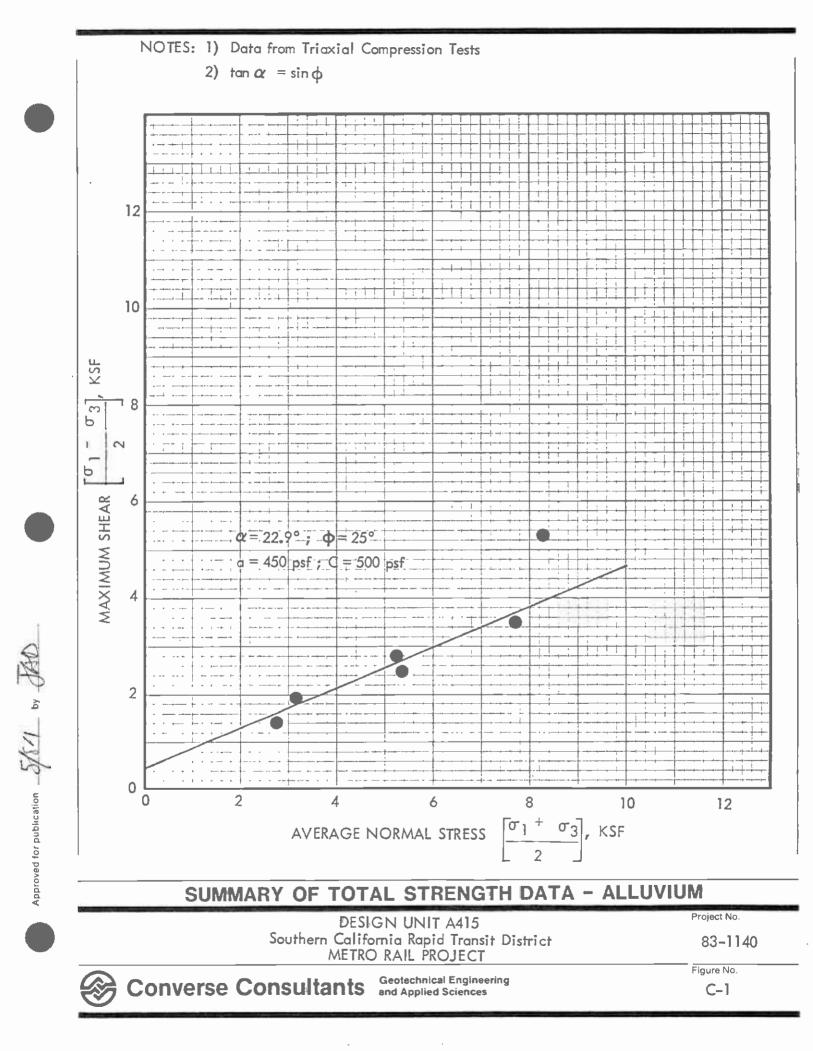
C.3.6 Permeability

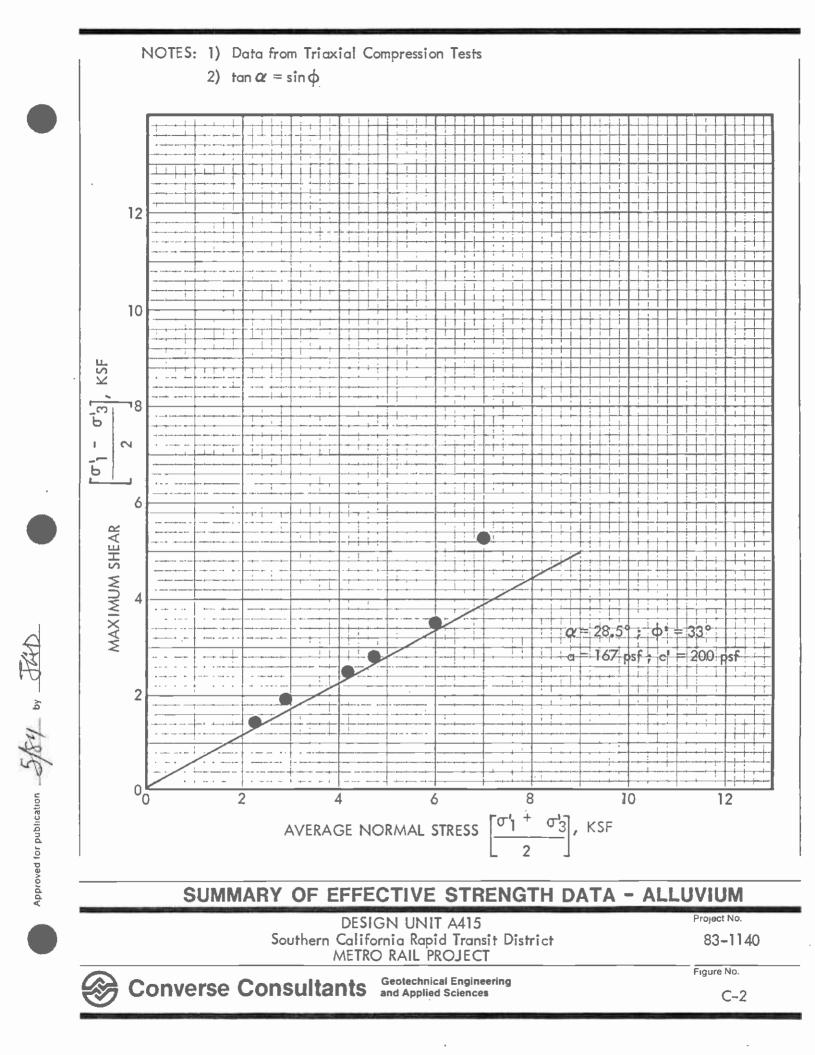
Permeability tests were performed on undisturbed specimens selected for testing, or in conjunction with the static and cyclic triaxial tests, using the same selected undisturbed samples of soil. Permeability was measured during back-pressure saturation by applying a differential pressure to the ends of the sample and measuring the resulting flow. Results of the tests are tabulated on Table C-1.

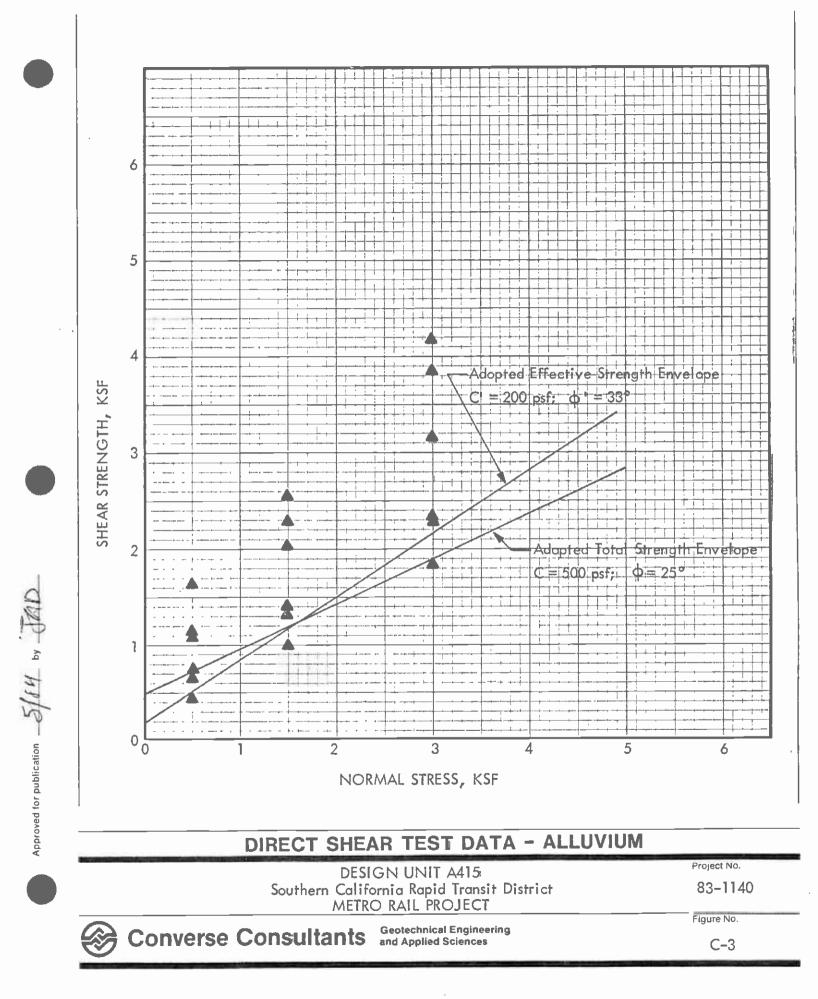
TABLE	C-1	LAB	ORATORY TEST DAT	A FO	R ALLU	VIUM												
BORING No.	PLE No.	(ft)		CEOLOGIC UNIT	DENS!TY (pcf)	MOISTURE CONTENT (%)		ATTERBERG LIMITS	Kv, COEFFICIENT OF PERMEABILITY (cm/sec) (Confining Pressure, psi)	URICONFINED COMPRESSIVE STRENCIH (ksf)	D I RECT STRENGT	Н	ONE-DIMENSIONAL SWELL (%) (Normal Load, ksf)	LL PRESSURE (ksf)	VE ANALYSIS	HYDROMETER AMALYSIS	DEDOMETER	TRIAXIAL COMPRESSION (Stages)
BOR	SAMPLE	OEPTH	VISUAL CLASSIFICATION	CEO	DRΥ	MOT	LL	PI	FER, FER, (Coi	UNC STR	ENVELOP ǿ, deg	E c, ksf	ONE (No	SWELL	SIEVE	ЮЛН	OED	TRU (St.
31-2	1	3	Sandy Silt	A ₂	89	14	43	11										
	2	8	Silty Sand	A ₁	92	23					29	0.20			x	x		
	3	13	Sandy Silt	- A ₂	95	21					32.5	0.45					X	
	4	18	Silty Sand	A ₁	99	22				·····					X	x	_	X(3)
	5	23	Silty Sand	A ₁	104	20			3.7×10 ⁻⁴		45	1.10			x			
31-3	J1	8	Sandy Silt	A ₂	-	22		·							x			
	J2	16	Sandy Silt	A ₂	*	25	38	8							x	X		
	J3	27	Sandy Silt	A2	*	28	39	11							x	X	_	
	J4	34	Silty Sand	A ₁	-	24							<u> </u>		x		_	
31-4	1	3	Silty Sand	A ₁	98	15	33	3			46	0.24			x	X		
	2	8	Sandy Silt	A ₂	104	16		NP		<u> </u>	39.5	0.75					X	
	3	13	Sandy Silt	A ₂	116	15					45.5	0.75			_		X	
	4	18	Sandy Silt	A2	98	27									X	X		X(3)
	5	22	-Disturbed-	_	-*	-												
				_														

.

ABLE	C-1	LAB	ORATORY TEST DAT	A FOF	ALLUV	/IUM										
BORING No.	SAMPLE No.	DEPTH (ft)	VISUAL CLASSIFICATION	GEOLOGIC UNIT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	ATTERBERG LIMITS	Kv, COEFFICIENT OF PERMEABILITY (cm/sec) (Confining Pressure, psi)	UNCONFINED COMPRESSIVE STRENGTH (ksf)	DIRECT SHEAR STRENGTH ENVELOPE ∳, deg c, ksf	ONE-DIMENSIONAL SWELL (%) (Normal Load, ksf)	SWÊLL PRESSURE (ksf)	SIEVE ANALYSIS	HYDROMETER ANALYSIS	OEDOMETER	TRIAXIAL COMPRESSION
-6	1	3	Silty Sand	A ₁	93	16	<u> </u>									
	2	9	Sandy Gravel	A	109	17										
	3	13	Silty Sand	A ₁	109	10										
	4	19	Silty Sand	Ā,	103	15							_			

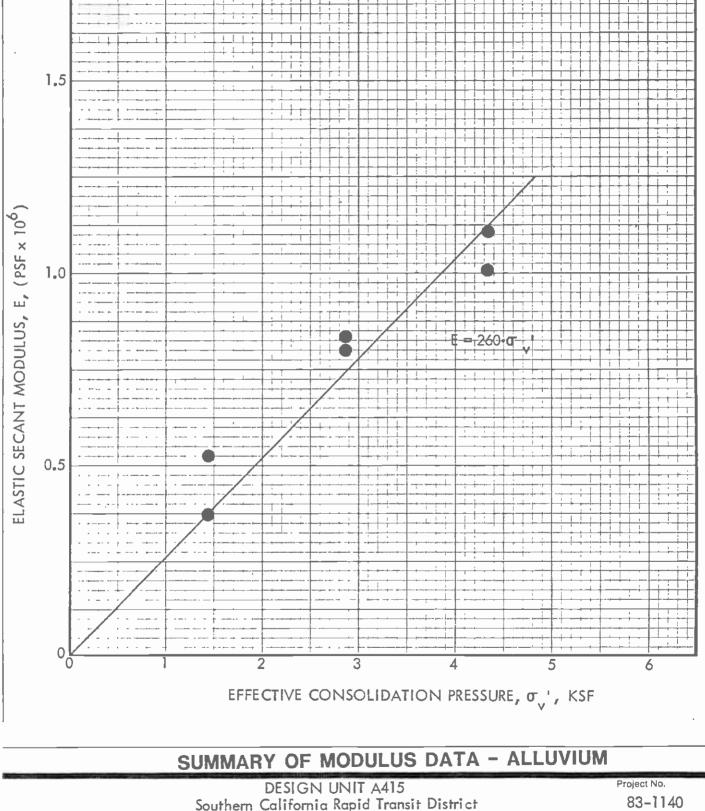

BORING	DEPTH (ft)	UNCONFINED COMPRESSIVE STRENGTH (ksf)
31-2	43	211
	54	114
	65	256
	68	240
	71	244
31-3	56	69
	61	122
	65	320
	67	268
	70	244
	73	142
	74	268
	76	49
	79	365
31-4	68	179
	69	130
	74	207
	76	61
	80	65
	84	61
	87	146
	89	284
	93	106
	96	256
31-5	102	284
	104	142
	107	414
	110	402
	117	532
	120	361
	125	581


.

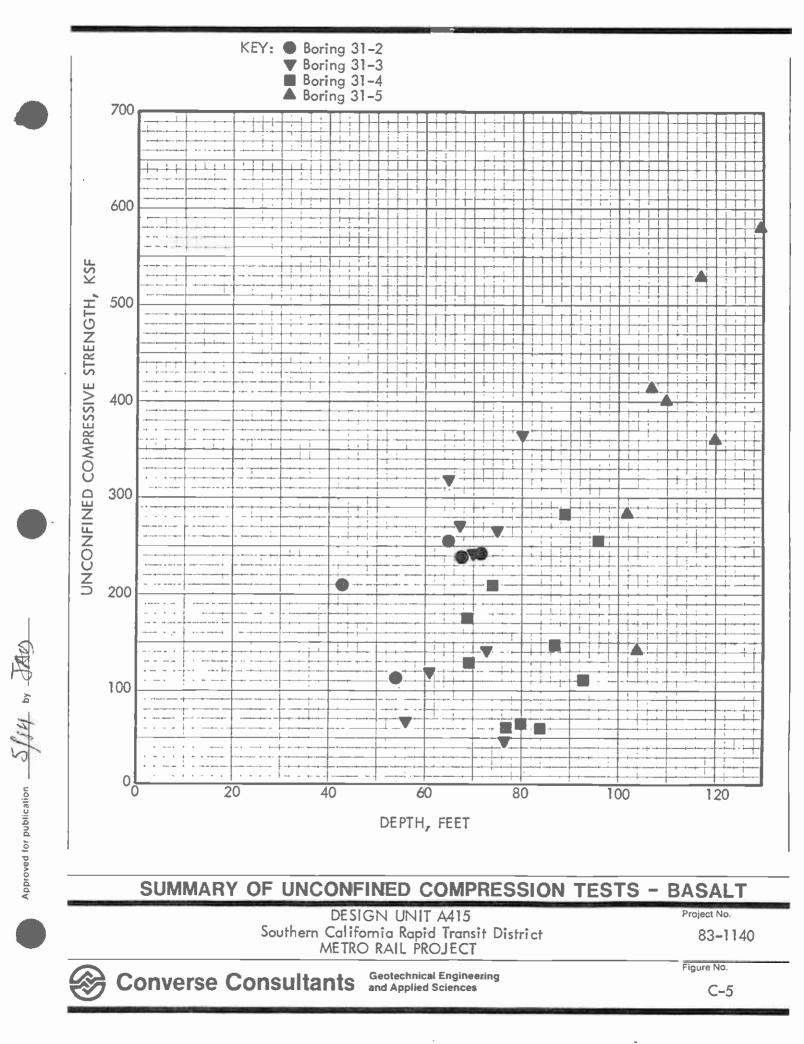

TABLE C-2 - UNCONFINED COMPRESSION TESTS ON BASALT NX CORES

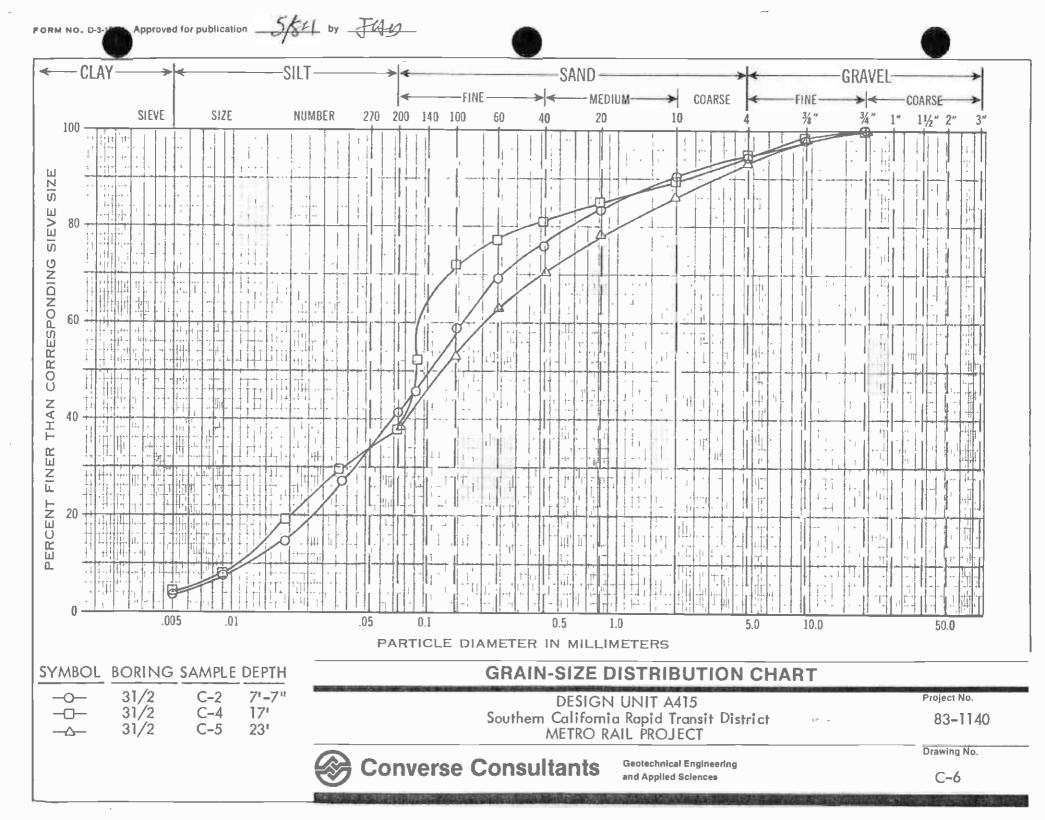
.

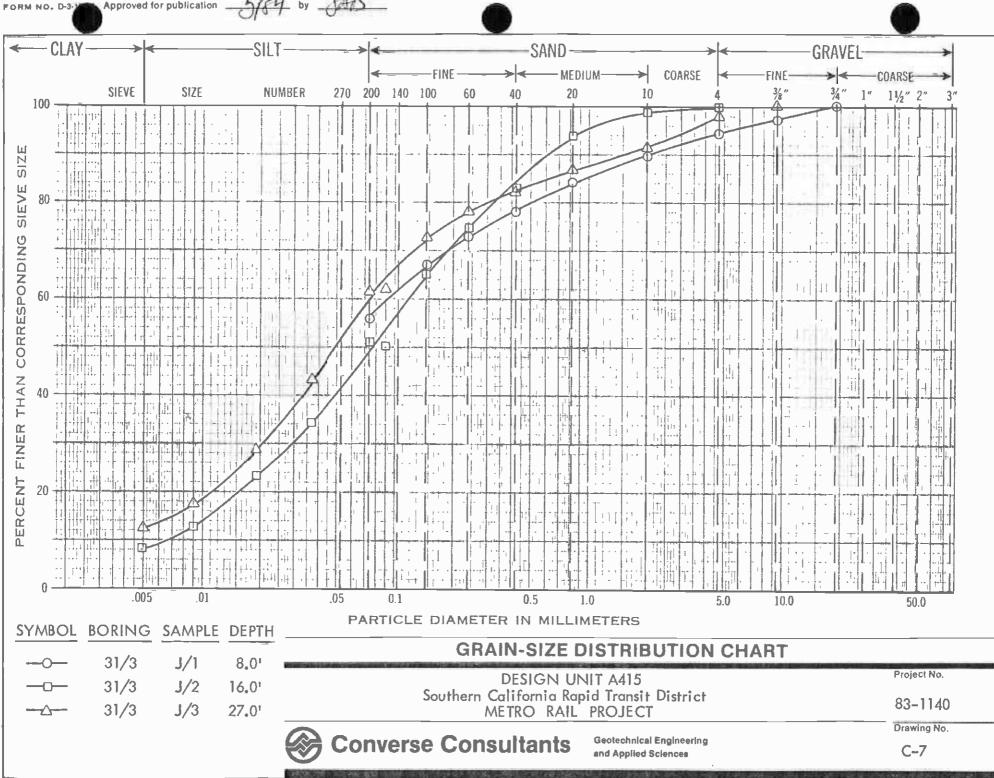
•



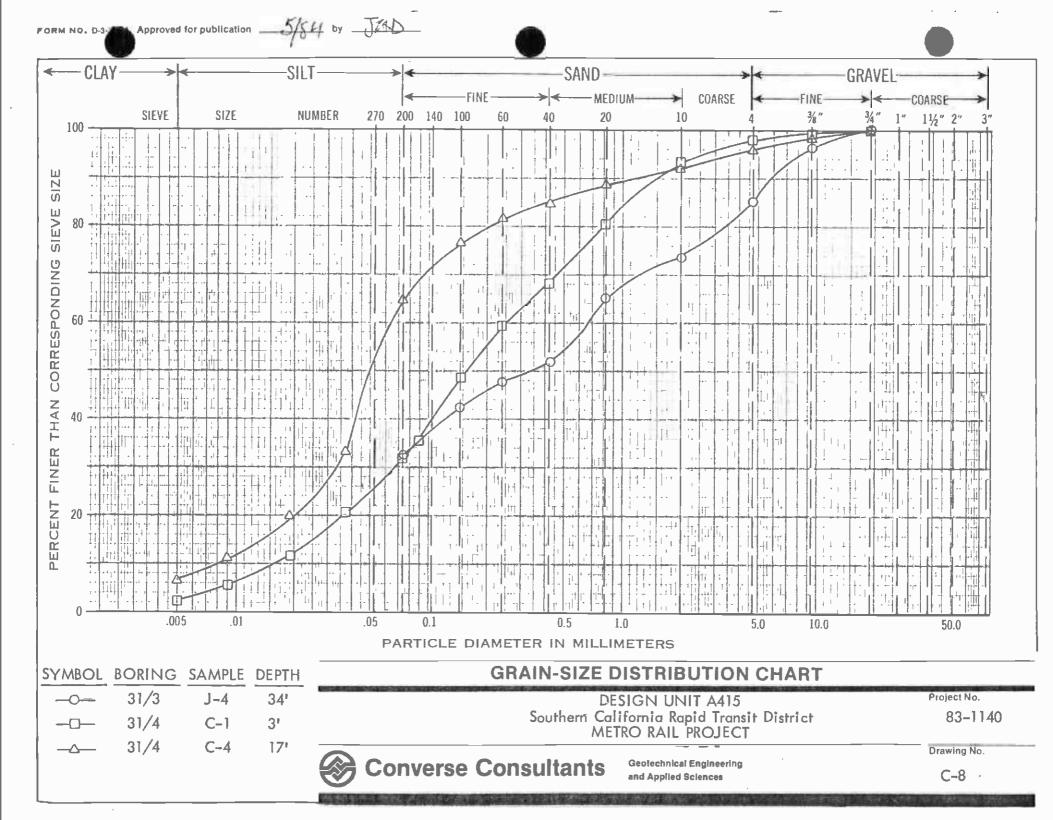
Approved for publication Sfelf by The

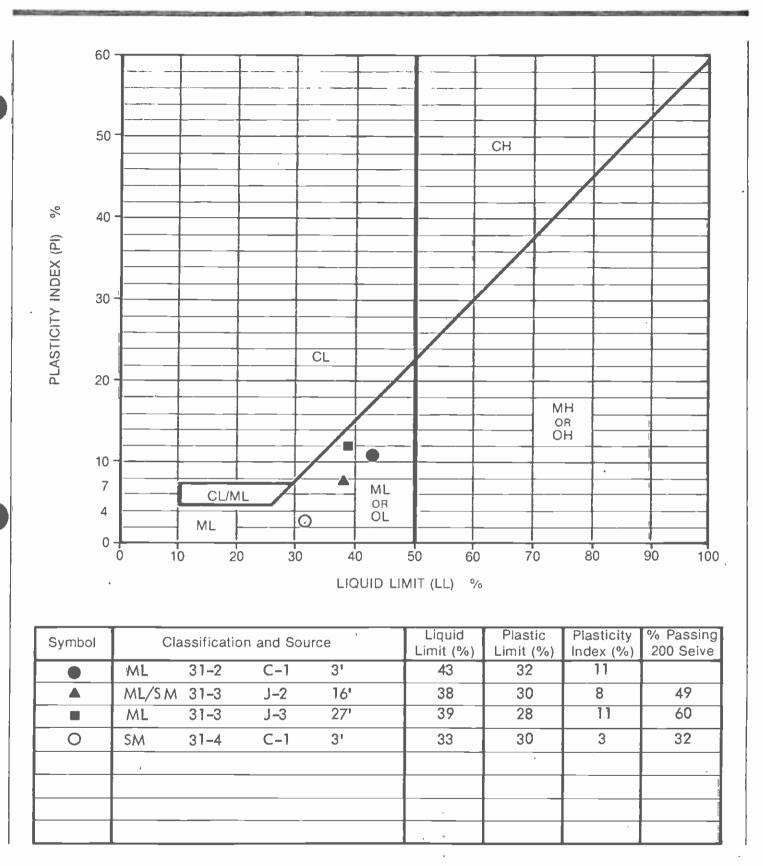



METRO RAIL PROJECT


Figure No.

Converse Consultants Geotechnical Engineering and Applied Sciences


C-4

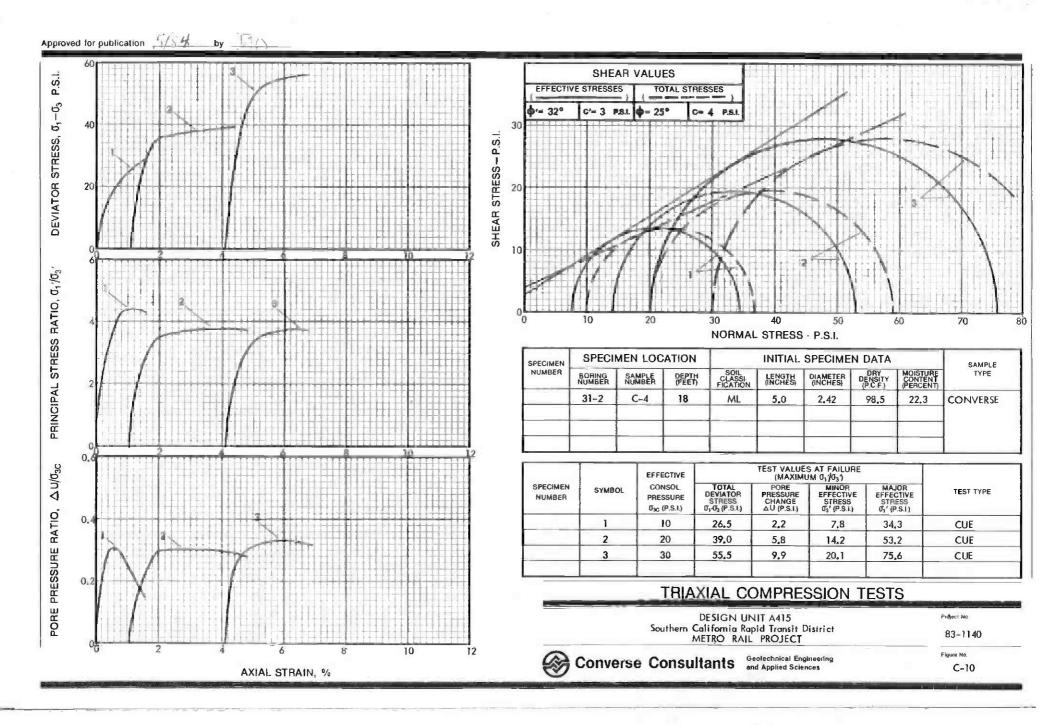


Approved for publication _5/64 by JAD

PLASTICITY CHART

DESIGN UNIT A415 Southern California Rapid Transit District METRO RAIL PROJECT Project No. 83-1140

(THAN AN TAS


9

Approved for publication

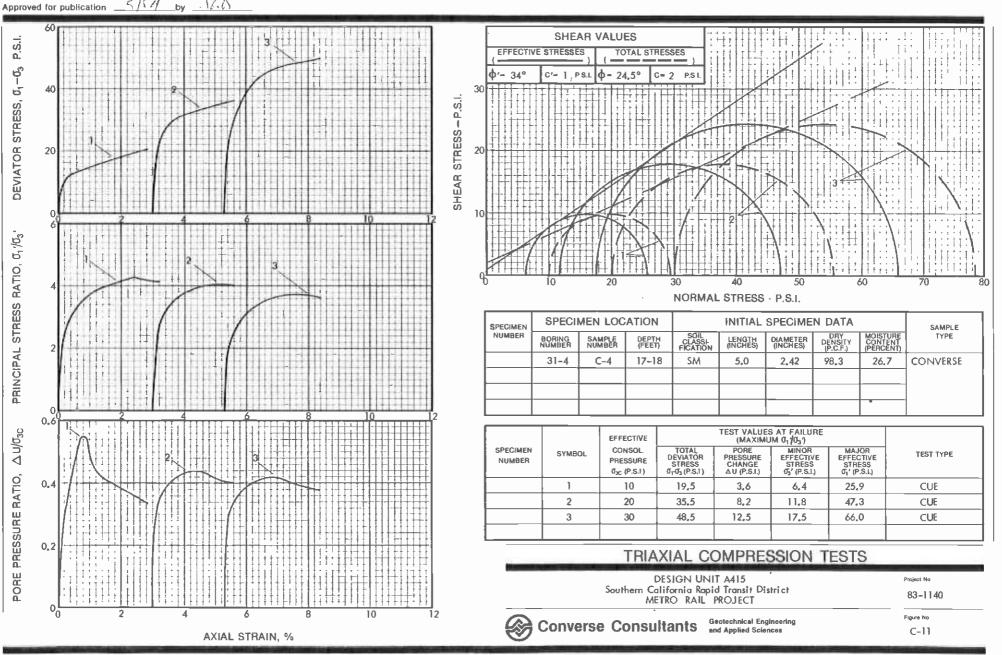
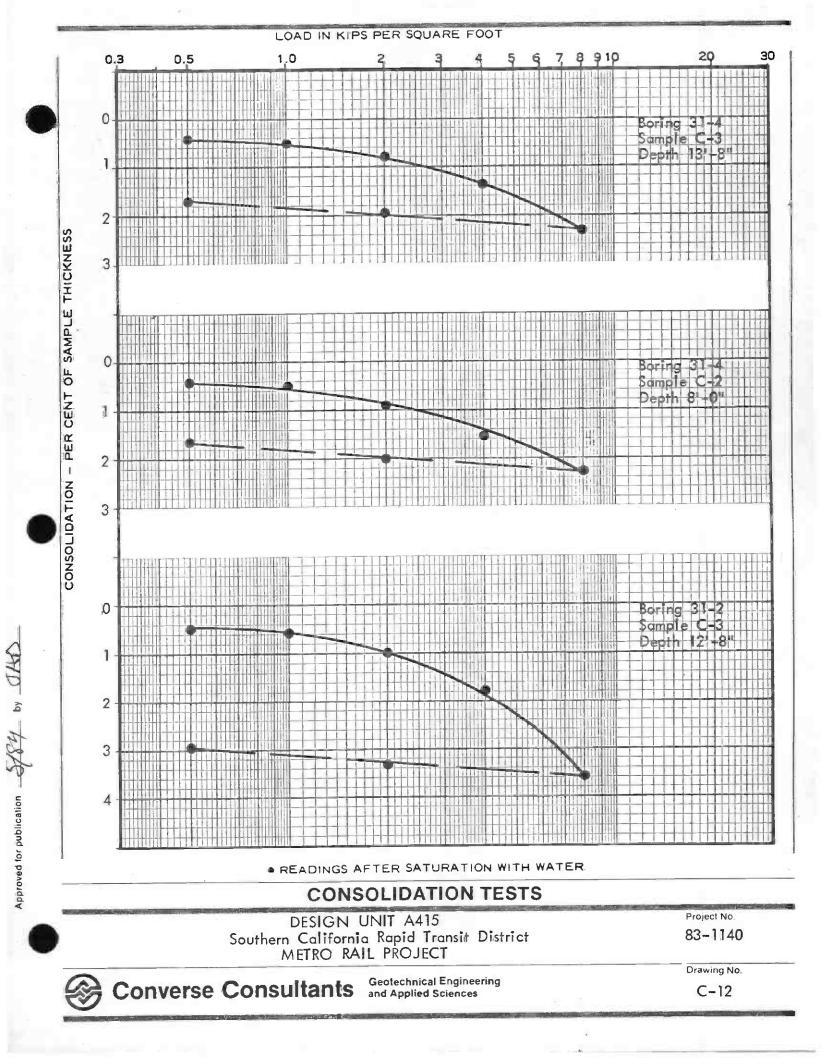

Converse Consultants Geotechnical Engineering and Applied Sciences

Figure No.


C-9

C

5/511 by .TG.D

Appendix D

Water Quality Analysis

APPENDIX D WATER QUALITY ANALYSIS

D.1 RESULTS

Water samples were taken from Boring CEG-31 during the 1983 investigation. The purpose was to evaluate water chemicals that could have significant influence on design requirements and to identify chemical constituents for compliance with EPA requirements for future tunneling activities. The chemical constituents tested are attached.

D.2 FIELD PROGRAM

The borehole was flushed and established as a piezometer. At a later date (often several weeks) the established piezometer hole was again flushed and cleaned out. Upon achieving a clean hole, water samples were collected with an air-lifting procedure from various depths within the borehole. The water samples were collected in sterilized one-quart glass containers which were properly identified and marked in the field. The water samples were delivered to Brown and Caldwell Consulting Engineers for testing.

-D1-

Converse Ward Davis Dixon

Lab No. P81-03-017-1

No. Samples : 7 Sampled By : Client Brought By : Client Date Received: 3-3-81

Sample labeled: HOLE 31-2"

Conductivity: 811	μ mhos/cm		pH 8.6 pHs pHs	@ 25°C @ 60°F (15.6°C) @ 140°F (60°C)
Turbidity:	NTU	Milligrams per liter (ppm)	•	lli-equivalents per liter
Cations determined:				
Calcium, Ca Magnesium, Mg Sodium, Na Potassium, K		15 1.8 157 3.0		0.75 0.15 6.83 0.08
			Total	7.81
Anions determined:				
Bicarbonate, as HCO ₃ Chloride, Cl Sulfate, SO ₄ Fluoride, F Nitrate, as N		167 50 161 0.9 2.4		2.74 1.41 3.35 0.05 0.17
			Total	7.72
Carbon dioxide, CO ₂ , Hardness, as CaCO ₃ Silica, SiO ₂ Iron, Fe Manganese, Mn Boron, B	Calc.	< 1 45 25 2.12 < 0.01 0.58		
Total Dissolved Minera (by addition: HCO ₃	ls, -> CO ₃)	511		

Appendix E

Technical Considerations

APPENDIX E TECHNICAL CONSIDERATIONS

E.1 SHORING PRACTICES IN THE LOS ANGELES AREA

E.1.1 <u>General</u>

Deep excavations for building basements in the Los Angeles area are commonly supported with soldier piles with tieback anchors. Three case studies involving deep excavations into materials similar to those anticipated at the proposed site are presented below.

E.1.2 Atlantic Richfield Project (Nelson, 1973)

This project involved three separate shored excavations up to 112 feet in depth in the siltstones of the Fernando Formation. The project is located just north of Boring CEG-9, and the proposed location of the 7th/Flower Station. Key elements of the design and construction included:

- Basic subsurface material was a soft siltstone with a confined compressive strength in the range of 5 to 10 ksf. It contained some very hard layers, seldom more than 2 feet thick. All materials were excavated without ripping, using conventional equipment. Up to 32 feet of silty and sandy alluvium overlaid the siltstone.
- Volume of water inflow was small and excavations were described as typically dry.
- Shoring system consisted of steel, wide flange (WF) soldier piles set in pre-drilled holes, backfilled with structural concrete in the "toe" and a lean concrete mix above. The soldier pile spacing was typically 6 feet.
- Tieback anchors consisted of both belled and high-capacity friction anchors.
- On the side of one of the excavations a 0.66H:1V (horizontal:vertical) unsupported cut, 110 feet in height, was excavated and sprayed with an asphalt emulsion to prevent drying and erosion.
- Timber lagging was not used between the soldier piles in the siltstone unit. However, an asphalt emulsion spray and wire mesh welded to the piles was used.
- The garage excavation (when 65 feet deep) survived the February 9, 1971 San Fernando earthquake (6.4 Richter magnitude) without detectable movement. The excavation is about 20 miles from the epicenter and experienced an acceleration of about 0.1g. The shoring system at the plaza, using belled anchors, moved laterally an average of about 4 inches toward the excavation at the tops of the piles, and surface subsidence was on the order of 1 inch; surface cracks developed on the street, but there was no structural damage to adjacent buildings. Subsequent shoring used high capacity friction anchors and reportedly moved laterally less than 2 inches.

E.1.3 Century City Theme Towers (Crandall, 1977)

This project involved a shored excavation between 70 and 110 feet deep in Old Alluvium deposits. Immediately adjacent to the excavation (about 20 feet away), was a bridge structure supported on piles 60 feet below the ground surface. The project is located about one mile west of Boring CEG-20 and the proposed location of the Fairfax Avenue Station. Key elements of the design and construction included:

- Basic subsurface materials were stiff clays and dense silty sands and sands. The permanent ground water table was below the level of the excavation, although minor seeps from perched ground water were encountered.
- Shoring system consisted of steel WF soldier piles placed in 36~inch diameter drilled holes spaced 6 feet on center.
 - As the excavation proceeded, pneumatic concrete was placed incrementally in horizontal strips to create the finished exterior wall. The concrete which was shot against the earth acted as the lagging between soldier piles.
 - Tieback anchors consisted of high-capacity 12- and 16-inch diameter friction anchors.
 - Actual load imposed on the wall by the adjacent bridge was computed and added to the design wall pressures as a triangular pressure distribution.
 - Maximum horizontal deflection at the top of the wall was 3 inches, while the typical deflection was less than 1 inch. Adjacent to the existing bridge, the deflections were essentially zero, with the tops of most of the soldier piles actually moving into the ground due to the high prestress loads in the anchors.
 - Survey of the bridge pile caps indicated practically no movement.

E.1.4 St. Vincent's Hospital (Crandall, 1977)

This project involved a shored excavation up to 70 feet deep into the claystones and siltstones of the Puente Formation. Immediately adjacent to the excavation (about 25 feet away) was an existing 8-story hospital building with one basement level supported on spread footings. The project is located about 1/3 mile north of Boring CEG-11 and the proposed location of the Alvarado Street Station. Key elements of the design and construction included:

- Basic subsurface materials were shale and sandstone, with a bedding dip to the south at angles ranging from 20° to 40°. Although the permanent ground water level was below the excavation level, perched zones of significant water seepage were encountered.
- Shoring system consisted of steel WF soldier piles placed in 20-inch diameter drilled holes spaced at 6 feet on center.
- Tieback anchors consisted of high-capacity friction anchors.

- Theoretical load imposed on the wall by the adjacent building was computed and added to the design wall pressure. The existing building was not underpinned; thus, the shoring system was relied upon to support the existing building loads.
- Shoring performed well, with maximum lateral wall deflection of about 1 inch and typical deflections less than 1/4 inch. There was no measurable movement of the reference points on the existing building.

E.1.5 Design Lateral Load Practices

Table E-1 summarizes the design lateral loads used for nine shored excavations in the general site vicinity. Based on these projects, the average equivalent uniform pressure for excavations in alluvium is 15.6H-psf (H = depth of the excavation). For excavations in the Puente or Fernando the average value used is 14.5H-psf.

According to Terzaghi and Peck's rules, the design pressure in granular soils would be equal to 0.65 times the active earth pressure. Assuming a friction angle of 37°, the equivalent design pressure should equal about 22H-psf. For hard clays, the recommended value ranges from 0.15 to .30 (equivalent rectangular distribution) times the soils unit weight or at least 18H-psf.

Thus, the local design practices are some 20% less than those indicated by Peck's rules.

	SHUKING L	UADS IN LUS ANGELES ANEA	
PROJECT LOCATION	EXCAVATION DEPTH (ft)	SOIL CONDITIONS	ACTUAL DESIGN PRESSURE (P)
Broadway Plaza Near 7th/Flower Station	15 to 30	Fill over Alluvium Sands	19.0H
500 South Hill	25	Fill over Sands & Gravel	22.0H
Tishman Building Wilshire/Normandie Station	25	Alluvium-Clays, Sand, Silt	19.0H
Equitable Life Wilshire/Mariposa Avenues	55	Alluvium Sand/Siltstone	20.0H
Arco Flower Stree <u>t/Sth to 6th</u>	70 to 90	Alluvium over Claystone	16.OH
Century City	<u>70 to 110</u>	Alluvium-Clays & Sands	18.0H
St. Vincent's Hospital Near 3rd & Alvarado	70	Thin Alluvium over Puente	15.OH
Oxford Plaza Near 7th/Flower	40	Fill & Alluvium over Siltstone	21.OH
Bank Building* 2nd & San Pedro	40	Alluvium (including Sand & Gravel over Siltstone)	20H

TABLE E-1 SHORING LOADS IN LOS ANGELES AREA

* Considerable caving problems were encountered installing tiebacks in dry gravelly deposits in one section of excavation.

Note:

1. All shoring systems were soldier piles.

2. All pressure diagrams were trapezoidal.

3. Equivalent pressure equals a uniform rectangular distribution.

E.2 SEISMICALLY INDUCED EARTH PRESSURES

The increase in lateral earth pressure due to earthquake forces has usually been taken into consideration by using the Monobe-Okabe method which is based on a modification of Coulomb's limit equilibrium earth pressure theory. This simple pseudo-static method has been applied to the design of retaining structures both in the U.S. and in numerous other countries around the world, mainly because it is simple to use. However, just as the use of the pseudostatic method is not really appropriate for evaluating the seismic stability of earth dams, those same shortcomings are also applicable when using the method to evaluate dynamic lateral pressures.

During an earthquake the inertia forces are cyclic in nature and are constantly changing throughout its duration. It is unrealistic to replace these inertia forces by a single horizontal (and/or vertical) force acting only in one direction. In addition, the selection of an appropriate value of the horizontal seismic coefficient is completely arbitrary. Nevertheless, the pseudo-static method is still being used since it provides a simple means for assessing the additional hazard to stability imposed by earthquake loadings.

Monobe-Okabe originally developed an expression for evaluating the magnitude of the total (static plus dynamic) active earth pressure acting on a rigid retaining wall backfilled with a dry cohesionless soil. The method was developed for dry cohesionless materials and based on the assumptions that:

- The wall yields sufficiently to produce minimum active pressures.
- ^o When the minimum active pressure is attained, a soil wedge behind the wall is at the point of incipient failure, and the maximum shear strength is mobilized along the potential sliding surface.
- The soil behind the wall behaves as a rigid body so that accelerations are uniform throughout the mass.

Monobe-Okabe's method gives only the total force acting on the wall. It does not give the pressure distribution nor its point of application. Their formula for the total active lateral force on the wall, P_{AE} , is as follows:

$$P_{AE} = 1/2\gamma H^2 (1-k_v) K_{AE}$$

Where:

$$K_{AE} = \frac{COS^{2} (\phi - \theta - \beta)}{COS \theta COS^{2}\beta COS (\delta + \beta + \theta) 1 + \left(\frac{\sqrt{SIN} (\phi + \delta) SIN (\phi - \theta - i)}{COS (\delta + \beta + \theta) COS (i - \beta)}\right)}$$

CCI/ESA/GRC

$$\theta = \tan^{-1} \frac{\kappa n}{1-\kappa v}$$

$$\gamma = \text{unit weight of soil}$$

$$\phi = \text{angle of internal friction of soil}$$

$$i = \text{angle of soil slope to horizontal}$$

$$\beta = \text{angle of wall slope to vertical}$$

$$k_{\text{h}} = \text{horizontal earthquake coefficient}$$

$$\kappa_{\text{v}} = \text{vertical earthquake coefficient}$$

$$\delta = \text{angle of wall friction.}$$

For a horizontal ground surface and a vertical wall,

 $i = \beta = 0$

The expression for K_{AF} then becomes,

$$KAE = \frac{COS^{2}(\phi-\theta-\beta)}{COS \ \theta \ COS \ (\delta+\theta) \ \left(1+\frac{\sqrt{SIN \ (\theta+\delta) \ SIN \ (\phi-\theta)}}{COS \ (\theta+\delta)}\right)^{2}}$$

The seismic component, ΔP_{AE} , of the total lateral load P_{AE} can be determined by the following equation:

$$\Delta P_{AF} = 1/2 \gamma \text{ (total) } H^2 \Delta K_{AF}$$

Where:

 $\Delta K_{\Delta F} = K_{AF}$ (static+seismic) - K_{AE} (static)

Inspection of actual acceleration time histories recorded during strong motion earthquakes indicates that the accelerations are quite variable both in amplitude and with time. For any given acceleration component the values fluctuate significantly during the entire duration of the record. Statistical analyses of the positive and negative peaks do indicate, however, that when one considers the entire record there are generally an equal number of positive and negative peaks of equal intensity. In the past it has been common practice to use the peak value of acceleration recorded during the earthquake as a value of engineering significance. However, this peak value might occur only once during the entire earthquake duration and is usually not representative of the average acceleration which might be established for the entire duration of shaking. It has been common practice in the past to ignore the effects of the vertical acceleration and to set the value of the vertical earthquake coefficient, k, equal to zero when using Monobe-Okabe's equation. This appears reasonable in the "light" of the above discussion since the vertical acceleration will act in upward direction about as often as it will act in the downward direction. It has also been common practice to set the value of the horizontal seismic coefficient, k, equal to the peak ground acceleration.

This is extremely conservative since the peak acceleration acts only on the wall for an instant of time. In addition, for a deep excavation the soil mass behind the wall will not move as a rigid body and will have a seismic coefficient significantly less than the peak ground acceleration (analogous to a horizontal seismic coefficient acting on a failure surface for an earth dam).

For evaluating dynamic earth pressures for this study, we recommend that the value of the horizontal seismic coefficient be taken equal to 65% of the peak ground acceleration and that the vertical seismic coefficient, k_v , be set equal to zero.

In a saturated soil medium the change in water pressure during an earthquake has usually been established on the basis of the method of analysis originally developed by Westergaard (1933). His method of analysis was intended to apply to the hydrodynamic forces acting on the fact of a concrete dam during an earthquake. However, it was used by Matsuo and O'Hara (1960) to determine the dynamic water pressure (due to the pore fluid within the soil) acting on quay walls during earthquakes, and has been used by various other engineers for evaluating dynamic water pressures acting on retaining walls backfilled with saturated soil. Unless the soil is extremely porous, it is difficult to visualize that the pore water can actually move in and out quick enough for it to act independently of the surrounding soil media. For most natural soils, the soil and pore water would move together in phase during the duration of the earthquake such that the dynamic pressure on the wall would be due to the combined effect of the soil and water. Thus, the total weight of the saturated soil should be used in calculating dynamic earth pressure values.

The Allowable Building Code stress increases for seismic loading (33%) translates into an allowable uniform seismic earth pressure on the temporary shoring of about magnitude 6H. This earth pressure corresponds to a seismic coefficient (K₁) of about 0.15g and a peak ground acceleration of about 0.23g (using the recommended procedures). Data from Part I Seismological Investigation indicates the 0.23g peak acceleration to have a probability of exceedance less than 5% during an average two-year period (a reasonable construction period). The average recurrence of this ground motion level was indicated to be about 100 to 150 years. Based on consideration of the above, the 6H uniform seismic pressure was recommended for design of the temporary wall (see Figure 6-5).

E.3 LIQUEFACTION EVALUATION METHODS

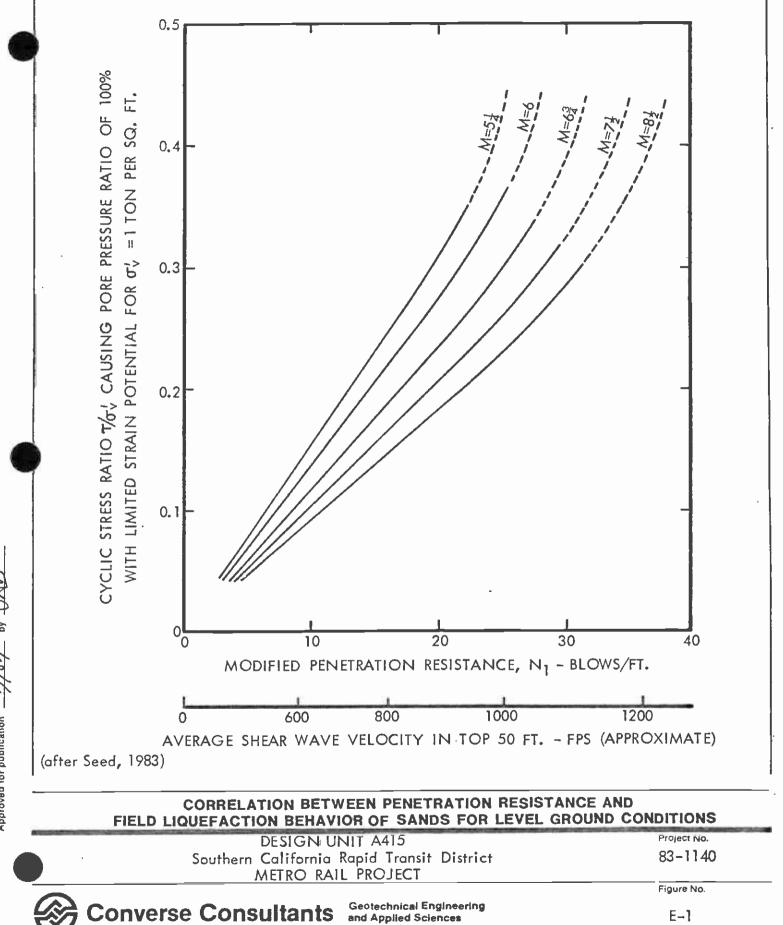
E.3.1 Standard Penetration Resistance

The use of the Standard Penetration Test (SPT) in estimating the liquefaction potential of saturated cohesionless soil deposits has been the topic of many previous investigations. Results of these investigations have recently been

summarized by Seed et al (1983). Basically, the method utilizes empirical relationships which have been developed from a comprehensive collection of SPT blow count data obtained from sites where liquefaction or no liquefaction was known to have taken place during past earthquakes. Empirical relationships that have been recently proposed by Seed et al. (1983) are shown in Figure E-1.

SPT data was obtained in four borings (31-2, 31-3, 31-4 and 31-6) drilled within the station limits. Due to the limited alluvium thickness, only nine tests were obtained below a depth of 15 feet in the three borings. Six SPT tests were performed in silty sand soils in Borings 31-2, 31-4 and 31-6. Most of the soils in Boring 31-3 were classified as sandy silt with clay (PI = 8 to 11); therefore, the two SPT tests in these soils in Boring 31-3 were not considered for our evaluation. However, the SPT test at 33 feet in Boring 31-3 was considered valid because the laboratory classification was silty sand with only slight plasticity.

Our analysis of the SPT data was performed in accordance with the simplified procedures of Seed et al (1983). Corrected "N" values (normalized to 2 ksf overburden pressure) for the five SPT tests in silty sand soils from Borings 31-2 and 31-4 ranged from a minimum of 31 to a maximum exceeding 75+, with an average of about 50+. The corrected "N" values for silty sands in Borings 31-3 and 31-6 were only 11 and 21, respectively. Determination of dynamic strength was based on an M7.0 earthquake event. Results of the analyses indicated that, where corrected "N" values equaled 30 or greater, the soils would not liquefy during the maximum design earthquake (MDE).


E.3.2 Shear Wave Velocity Measurements

Downhole measurements used for the determination of seismic wave velocities along the proposed SCRTD Metro Rail Project tunnel alignment were performed as part of the initial 1981 geotechnical investigation. The downhole survey was performed at Boring CEG-31. Shear wave velocities measured in the Alluvium (approximately the upper 30 feet of the borehole) was 1270 fps.

While shear wave velocity has not been as widely accepted in the past as SPT blow count data for estimating the liquefaction potential of a soil deposit, it has received some recent attention (Seed et al. 1983). Figure E-1 suggests that liquefaction potential at the site would be very low based on the shear wave velocities measured at CEG-31.

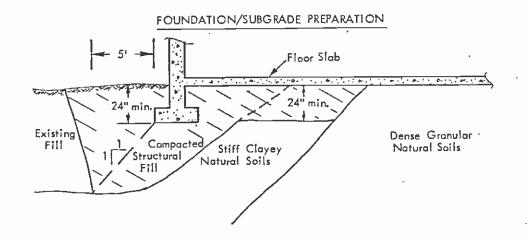
E.3.3 Conclusions

Based on the above considerations and comparisons, it is our judgement that the limited alluvial soil deposits would have low liquefaction potential during ground shaking from the maximum design earthquake. The low liquefaction potential of the alluvial soils is anticipated due to the low potential for high ground water combined with the generally high SPT blow counts of the sand soils and the clay content of the silt soils.

Appendix F

Earthwork Recommendations

The following guidelines are recommended for earthwork associated with site development. Recommendations for dewatering and major temporary excavations are presented in the text sections 6.2 and 6.4, respectively.


- Site Preparation (surface structures): Existing vegetation, debris, and soft or loose soils should be stripped from the areas that are to be graded. Soils containing more than 1% by weight of organics may be re-used in planter areas, but should not be used for fill beneath building and paved areas. Organic debris, trash, and rubble should be removed from the site. Subsoil conditions on the site may vary from those encountered in the borings. Therefore, the soils engineer should observe the prepared graded area prior to the placement of fill.
- Minor Construction Excavations: Temporary dry excavations for foundations or utilities may be made vertically to depths up to 5 feet. For deeper dry excavations in existing fill or natural materials up to 15 feet, excavations should be sloped no steeper than 1:1 (horizontal to vertical). Recommendations for major shored excavations are presented im Section 6.4.
- Structural Fill and Backfill: Where required for support of near surface foundations or where subterranean walls and/or footings require backfilling, excavated onsite granular soils or imported granular soils are suitable for use as structural fill. Loose soil, formwork and debris should be removed prior to backfilling the walls. Onsite soils or imported granular soils should be placed and compacted in accordance with "Recommended Specifications for Fill Compaction". In deep fill areas or fill areas for support of settlement-sensitive structures, compaction requirements should be increased from the normal 90% to 95% or 100% of the maximum dry density to reduce fill settlement.

Where space limitations do not allow for conventional backfill compaction operations, special backfill materials and procedures may be required. Sand-cement slurry, pea gravel or other selected backfill can be used in limited space areas. Sand-cement slurry should contain at least 1-1/2 sacks cement per cubic yard. Pea gravel should be placed in a moist condition or should be wetted at the time of placement. Densification should be accomplished by vibratory equipment; e.g., hand-operated mechanical compactor, backhoe mounted hydraulic compactor, or concrete vibrator. Lift thickness should be consistent with the type of compactor used. However, lifts should never exceed 5 feet. A soils engineer experienced in the placement of pea gravel should observe the placement and densification procedures to render an opinion as to the adequate densification of the pea gravel.

If granular backfill or pea gravel is placed in an area of surface drainage, the backfill should be capped with at least 18 inches of relatively impervious type soil; i.e., silt-clay soils.

Foundation Preparation: Where foundations for near surface appurtenant structures are underlain by existing fill soils, the existing fill should be excavated and replaced with a zone of properly compacted structural fill. The zone of structural fill should extend to undisturbed dense or stiff natural soils. Horizontal limits of the structural fill zone should extend out from the footing edge a distance equal to 5 feet or 1/2 the depth of the zone beneath the footing (a 1:1 ratio), whichever is larger. The structural fill should be placed and compacted as recommended under "Structural Fill and Backfill".

ο

- Subgrade Preparation: Concrete slabs-on-grade for near-surface structures within the alluvium may be supported directly on undisturbed stiff or dense materials. The subgrade should be proof rolled to detect soft or disturbed areas, and such areas should be excavated and replaced with structural fill. If existing fill soils are encountered in near surface subgrade areas, these materials should be excavated and replaced with properly compacted granular fill. Where clayey natural soils (near existing grade) are exposed in the subgrade, these soils should be excavated to a depth of 24 inches below the subgrade level and replaced with properly compacted granular fill. Where dense natural granular soils are exposed at slab subgrade, the slab may be supported directly on these soils. All structural fill for support of slabs or mats should be placed and compacted as recommended under "Structural Fill and Backfill".
- Site Drainage: Adequate positive drainage should be provided away from the surface structures to prevent water from ponding and to reduce percolation of water into the subsoils. A desirable slope for surface drainage is 2% in landscaped areas and 1% in paved areas. Planters and landscaped areas adjacent to the surface structures should be designed to minimize water infiltration into the subsoils.
- <u>Utility Trenches</u>: Buried utility conduits should be bedded and backfilled around the conduit in accordance with the project specifications. Where conduit underlies concrete slabs-on-grade and pavement, the

remaining trench backfill above the pipe should be placed and compacted in accordance with "Structural Fill and Backfill".

- [°] <u>Recommended Specifications for Fill Compaction</u>: The following specifications are recommended to provide a basis for quality control during the placement of compacted fill.
 - 1. All areas that are to receive compacted fill shall be observed by the soils engineer prior to the placement of fill.
 - 2. Soil surfaces that will receive compacted fill shall be scarified to a depth of at least 6inches. The scarified soil shall be moistureconditioned to obtain soil moisture near optimum moisture content. The scarified soil shall be compacted to a minimum relative compaction of 90%. Relative compaction is defined as the ratio of the implace soil density to the maximum dry density as determined by the ASTM D1557-70 compaction test method.
 - 3. Fill shall be placed in controlled layers the thickness of which is compatible with the type of compaction equipment used. The thickness of the compacted fill layer shall not exceed the maximum allowable thickness of 8 inches. Each layer shall be compacted to a minimum relative compaction of 90%. The field density of the compacted soil shall be determined by the ASTM D1556-64 test method or equivalent.
 - 4. Fill soils shall consist of excavated onsite granular soils essentially cleaned of orgamic and deleterious material or imported soils approved by the soils engineer. All imported soil shall be granular and mon-expansive or of low expansion potential (plasticity index less than 15%). The soils engineer shall evaluate and/or test the import material for its conformance with the specifications prior to its delivery to the site. The contractor shall notify the soils engineer 72 hours prior to importing the fill to the site. Rocks larger than 6 inches in diameter shall not be used unless they are broken down.
 - 5. The soils engineer shall observe the placement of compacted fill and comduct inplace field density tests on the compacted fill to check for adequate moisture comtent and the required relative compaction. Where less than 90% relative compaction is indicated, additional compactive effort shall be applied and the soil moisture-conditioned as necessary until 90% relative compaction is attained. The comtractor shall provide level testing pads for the soils engineer to conduct the field density tests on.

-F3-