Public Transit's Investment in Clean Air Technologies

Southern California Rapid Transit District

Cost Impacts of the 1990 Clean Air Act on the U.S. Transit Industry

A survey by the Southern California Rapid Transit District (SCRTD)

FLEET $\operatorname{costs}{ }^{1}$:

FUEL COSTS ${ }^{2}$:

FACILITY $\operatorname{costs}{ }^{3}$:
$\$ 7.4$ Billion (diesel)
$\$ 9.3$ Billion (methanol)
$\$ 9.9$ Billion (CNG)
$\$ 8.0$ Billion (particulate trap)
$\$ 185$ Million (diesel)
$\$ 536$ Million (methanol)
$\$ 240$
$\$ 12$ Million (Fuel storage system) ${ }^{4}$ $\$ 1.05$ - $\$ 1.15$ Million (methanol) ${ }^{5}$ $\$ 1.5-\$ 3.5$ Million (CNG) ${ }^{6}$
${ }^{1}$ Total estimated cost for national fleet of 39,000 buses. Fleet replacement normally scheduled over 12 years; the clean Air Act may accelerate replacement in some areas.
${ }^{2}$ Costs extrapolated to 1 billion miles for national fleet; data collected pre-Persian Gulf Crisis.
${ }^{3}$ Regional differences (municipal codes, environmental regulations and land acquisition requirements/prices) caused wide variances in survey results; therefore, no national conclusions were drawn for facility costs.
${ }^{4}$ Existing fuel storage systems at SCRTD will have to be either replaced or modified to meet new federal regulations for underground fuel storage tanks at a cost of $\$ 1.0$ million per fuel storage system, or approximately $\$ 12.0$ million for the SCRTD's 12 operating divisions.
${ }^{5}$ Added cost to construct a new methanol fueling facility at SCRTD. ${ }^{6}$ A new CNG fueling station for a large fleet operation (up to 250 buses).

ON THE U.S. PUBLIC TRANSIT INDUSTRY

SURVEY METHODOLOGY

Eighteen of the nation's largest public transit properties responded to the SCRTD's survey. These properties represent a total of 20,645 owned buses.

The survey made inquiries into three alternate fuels/low emissions related cost categories: 1) fleet costs, 2) fuel costs, and 3) facility costs.

These estimates were then extrapolated to represent all Metropolitan Standard Areas (MSAs) with populations greater than 750,000 and a national fleet of 39,000 buses traveling an estimated 1.0 billion miles per year.

Vehicle durability and overall maintenance costs were not included since adequate data are not yet available for this purpose.

BACKGROUND

In the summer of 1990, the Southern California Rapid Transit District (SCRTD) conducted a survey of U.S. public transit properties to quantify estimated costs to convert from diesel buses to alternate fuel/low emissions buses.

The survey also evaluated the cost to purchase and operate an alternate fuel/low emission transit bus fleet. In addition to fuel and fleet costs, transit properties were asked to estimate the costs of constructing or upgrading alternate fuel fueling facilities. Code interpretations, land costs, and lack of specific design guidance resulted in a wide range of cost estimates; therefore, survey findings for this category are generalized.

The cost estimates identified in this survey are based on limited testing of new, R\&D technologies. There is no mature or completely tested heavy-duty clean air transit bus technology currently available. With the exception of the SCRTD, which is operating various buses with all current technologies and has built methanol and compressed natural gas (CNG) refueling facilities, the survey results represent the best available cost estimates by various transit properties to convert their fleets based on their individual situation and local market availability of methanol, CNG and low sulfur diesel fuel. As the transit industry's experience with the new technologies increases, normal market pressure for lower costs and increased durability are anticipated.

This survey provides policymakers with the best available fleet data and cost estimates (as of summer 1990) to evaluate the impacts of the Clean Air Act on the U.S. public transit industry. The survey's findings demonstrate the urgent need for Congress to authorize and appropriate funds to comply with the federal mandates of the Act.

CO8T IMPACTS OF THE 1990 CLEAN AIR ACT

ON THE U.8. PUBLIC TRANSIT INDUSTRY

DESCRIPTION OF FLEET COST8

Transit fleet costs are usually associated with a 12-year bus life and replacement cycle. This means that the typical annual cash flow to replace a transit bus fleet could be the cost to replace 1/12 of the owned fleet each year. Under the clean air regulations that SCRTD operates under, these costs would be accelerated as we are obligated to achieve a goal of 100 percent conversion to low emission buses by the year 2000. As such, it will be necessary to increase bus capital spending to replace a given fleet in less than 12 years here at SCRTD. Local laws and conditions will affect these schedules on a national basis.

Based on the results of the survey, the estimated cost to replace a bus for each technology (1990 prices) would be: $\$ 190,000$ for diesel, $\$ 238,000$ for methanol, $\$ 254,000$ for CNG and $\$ 204,000$ for particulate traps. The total estimated costs for a national fleet of 39,000 buses would be $\$ 7.4$ billion for diesel, $\$ 9.3$ billion for methanol, $\$ 9.9$ billion for CNG and $\$ 8.0$ billion for particulate traps.

Based on SCRTD's experience with such technology, the estimated cost range for each alternate fuel bus is slightly lower than the survey except for particulate traps. Therefore, the following ranges of prices are estimated: a) methanol - the range is between $\$ 215,000$ and $\$ 230,000$ per bus, b) CNG - the range is between $\$ 230,000$ and $\$ 240,000$ per bus, and c) particulate traps - the range is between $\$ 200,000$ and $\$ 211,000$ per bus.

ON THE U.S. PUBLIC TRANSIT INDUSTRY

DESCRIPTION OF FUEL COSTE

Fuel cost data in this report were collected before the Persian Gulf Crisis. They represent annual operating budget expenditures at the SCRTD. When extrapolated to an estimated 1.0 billion miles for the national fleet, the survey results yield a total estimated fuel cost of $\$ 185$ million for diesel, $\$ 536$ million for methanol, $\$ 240$ million for CNG and $\$ 228$ million for particulate traps. These estimates will be refined as more experience is gained and may also be influenced by market conditions and public policy decisions.

DESCRIPTION OF FACILITY COSTS

The survey estimates for new fueling facilities vary widely depending on municipal codes, environmental regulations and land acquisition requirements and prices. No national conclusions were drawn due to the variance of the survey results and the regional nature of the situation. However, new federal regulations for underground fuel storage tanks will require significant expenditure of capital funds over the next eight years for all transit properties.

Existing fuel storage systems at SCRTD will have to be either replaced or modified to meet these new fuel tank regulations. These costs are estimated to be $\$ 1.0$ million per system or approximately $\$ 12.0$ million for the SCRTD's 12 operating divisions. It should be noted that when the fuel storage and dispensing systems have been upgraded to be in full compliance with the new regulations, they will be essentially compatible with methanol with minor modifications.

The cost increment to construct a new methanol fueling facility ranges between five and fifteen percent added cost over the same size diesel fuel facility or approximately $\$ 1.05$ to $\$ 1.15 \mathrm{million}$ per new methanol facility at SCRTD. The cost differential covers additional vapor recovery piping and upgraded material required in portions of the methanol systems. Based on experience at the SCRTD to date, other required facility changes relating to the use of methanol are minor.

The use of CNG fuel in transit buses requires a completely new fuel storage and dispensing system. The costs for a new CNG fueling station for a large fleet operation (up to 250 buses) will be in the rage of $\$ 1.5$ to $\$ 3.5$ million, depending on the fueling time requirements of the transit property (fast fuel is costly and slow fuel is relatively inexpensive).

Although the changes to the maintenance facility areas at SCRTD test divisions have been minor relative to CNG fueling, it is possible that regulatory agencies may require significant changes and improvement to ventilation and fire safety systems, a should a large number of buses by converted to CNG. This will be of major significance in colder climates where refueling and maintenance activities are typically performed indoors. These expenditures would be in areas such as explosion proof fixtures and special ventilation systems.

The use of CNG fuel will not obviate the need to expand capital funds for other underground tank improvements. This is due to the fact that a number of other products are stored in underground tanks at transit operating facilities including motor oil, transmission oil, antifreeze, waste oil, and waste fuel. A portion of the estimated $\$ 12.0$ million for fuel station improvements at SCRTD is for soil clean up that would be required even if the facilities were closed. This cost will obviously vary depending on code regulations, work environment and specific conditions encountered at each location.

OTHER POTENTIAL COSTS

It was noted earlier that the cost figures in this study do not reflect durability of equipment, "weight penalties" or losses in passenger capacity associated with operating transit buses on alternate fuels.

Life cycle cost durability information related to vehicle life cannot be made at this time due to relatively low mileage on test fleets. It is estimated that another $3-5$ years operational experience is needed before data on engine overhaul requirements, etc., can be determined with accuracy. As more experience is gained, engine durability forecasts will be attempted based on tear down measurements, oil analysis results and detailed investigations of engine failures.

A 1990-technology methanol bus weighs approximately 1600 lbs. more than a comparably equipped standard diesel bus while a CNG bus weighs approximately 2,800 lbs. more than the standard diesel bus. These buses have the same range as a diesel counterpart. However, the impact of added weight of the various alternate fuel transit bus technologies is being assessed. It is known that this weight increase adversely affects brake service, tire and transmission life and reduces passenger carrying capacities due to axle load limitations. Federal and state laws limit the total operating weight of a vehicle; therefore, if the weight of fuel increases, the passenger capacity must be reduced by a like weight value. A CNG fleet could require the purchase of up to 10 percent more vehicles in order to achieve passenger carrying capacity equal to a diesel fleet.

The vehicle weight increase associated with CNG will stress the importance of testing liquified natural gas (LNG) technology. This option is being explored by The Metropolitan Transit Authority of Harris County in Houston, Texas. LNG refueling rates and bus weight are attractive as compared to CNG so that a cost comparison between the two systems will eventually be necessary since achieving a fast fuel CNG capability is very expensive as well as the previously mentioned operational problems associated with weight.

During the final edits of this report, the Clean Air Act of 1990 was passed. The 1995 issue of having all rebuilt engines brought up to the new emission standards was not addressed, but will add significant costs to implementation of the act by the transit industry. Current experiments with retrofit technology methanol/Avocet, CNG and particulate traps are just beginning, with cost to retrofit vehicles in the $\$ 20,000$ to $\$ 40,000$ per bus range. No durability or life cycle data yet exists.

AGENCY NAME

Metropolitan Atlanta Rapid Transit Authority
San Mateo County Transit District
Chicago Transit Authority
Greater Cleveland Regional Transit Authority
Dallas Area Rapid Transit
Orange County Transit District
Southern California Rapid Transit District
Milwaukee County Transit System
New York City Transit Authority
New Jersey Transit
Alameda-Contra Costa Transit District
Southeastern Pennsylvania Transportation Authority

Sacramento Regional Transit District
Utah Transit Authority
Santa Clara County Transportation Agency
Municipality of Metropolitan Seattle
BI-State Development Agency
Washington Metropolitan Area Transit Authority

CITY, STATE

Atlanta, GA
Burlingame, CA
Chicago, IL
Cleveland, OH
Dallas, TX
Garden Grove, CA
Los Angeles, CA
Milwaukee, WI
New York, NY
Newark, NJ
Oakland, CA
Philadelphia, PA

Sacramento, CA
Salt Lake City, UT
Santa Clara, CA
Seattle, WA
St. Louis, MO
Washington, DC

ESTIMATEOCOST ANALYSIS FOR FLEET PURCHASE
(BASED ON 1990 PRICES)

11			replacement												
11		DIESEL	OIESEL	methanol \|	methanol	MEOH	CNG	CNG	CMG	\|Part trap	Part trap	trap \|			
11	fleet	BUS	FLEET	sus	fleet	π	Bus	fleet	\%	sus	FLEET	x Il			
11	SILE	\|PURCHASE	PURCHASE	PURCHASE	PURCHASE	Inc	PURCHASE	PURCHASE	INC	PURCHASE	PURCHASE	INC \\|			
mata \|		1704	\|\$200,000		\$340,800,000	\$230,000 \|	\$391,920,000	15x\|	\$290,000	\$494, 160,000 \|	45x\|	\$215,000	\$366,360,000	8x\|	
Milwaukee \|		535	\|\$200,000		\$107,000,000	\$250,000 \|	\$133,750,000	25x\|	\$250,000	\$133,750,000 \|	25x\|	\$225,000	\$120,375,000	13x\|	
SEPTA. \|		1441	\| $\$ 170,000$	\$244,970,000	\$204,000 \|	\$293,964,000 \|	20x\|	\$212,500	\$306,212,500 \|	25x\|	\$175,000	\$252,175,000	3x\|		
8i-state \|		655	\|\$200,000	\$131,000,000	\$240,000 \|	\$157,200,000	20x\|	\$275,000	\$180,125,000 \|	38x\|	\$240,000	\$157,200,000	20x\|1		
Chicago \|		2172	\|\$202,000	\$438,744,000	\$226,000 \|	\$490,872,000	12x\|	\$262,000	\$569,064,000 \|	30x\|	\$216,000	\$469,152,000	7x\|		
AC iransit \|		862	\| $\$ 179,000$	\$154,298,000	\$230,000 \|	\$198,260,000	28x\|	\$245,000	\$211,190,000 \|	37x\|	\$205,000	\$176,710,000	15x\|		
cleveland \|		741	\|\$225,000	\$166,725,000	\$270,000 \|	\$200,070,000	20x\|	\$250,000	\$185,250,000 \|	117\|	\$230,000	\$170,430,000	2x\|		
Utah TA II	440	\| 8180,000	\$79,200,000	\$230,000	\$101,200,000	28x\|	\$257,000	\$113,080,000 \|	43x\|	\$190,000	\$83,600,000	6x\|			
Santa Clara \|		515	\|\$210,000	\$108,150,000	\$290,000 \|	\$149,350,000	38x\|	\$290,000	\$149,350,000 \|	38x\|	\$250,000	\$128,750,000	19x\|		
Seattle \|		1060	\| $\$ 190,000$	\$201,400,000	\$230,000	\$243,800,000	21x\|	\$245,000	\$259,700,000 \|	29x\|	\$205,000	\$217,300,000	8×11		
atlanta RTA \|		683	\|\$166,000	\$113,378,000	\$226,000 \|	\$154,358,000	36x\|	\$241,000	\$164,603,000 \|	45x\|	\$191,000	\$130,453,000	15x\|		
nYCTA \|		3730	\|\$200,000		\$746,000,000	\$250,000	\$932,500,000	25x\|	\$250,000	\$932,500,000 \|	25x\|	\$200,000	\$746,000,000	0x\|	
WJT \|		2000	\|\$156,174	\$312,348,000	\$255,000	\$510,000,000	63x\|	\$266,174	\$532,348,000 \|	70x\|	\$170, 174	\$340,348,000	9x\|		
Dallas \|		650	\| $\mathbf{1 9 0 , 0 0 0}$	\$123,500,000	\$230,000	\$149,500,000	21x\|	\$250,000	\$162,500,000	32x\|	\$230,000	\$149,500,000	21x\|		
Samtrans \|		257	\| $\$ 180,000$	\$46,260,000	\$210,000	\$53,970,000	17X\|	\$210,000	\$53,970,000 \|	17x\|	\$190,000	\$48,830,000	6x\|		
Sacrame \|		200	18200,000	\$40,000,000	\$240,000	\$48,000,000	20x\|	\$270,000	\$54,000,000 \|	35x\|	\$220,000	\$44,000,000	10x\|		
OCTD II	500	\| $\$ 200,000$	\$100,000,000	\$240,000 1	\$120,000,000 \|	20x\|	\$250,000	\$125,000,000 \|	25x\|	\$210,000	\$105,000,000	5x\|			
SCRTO* \|		2500	\| 1890,000	\$475,000,000	\$230,000 \|	\$575,000,000 \|	21x\|	\$245,000	\$612,500,000 \|	29\%\|	\$205,000	\$512,500,000	8x\|		
												=			
total	20645		\$3,928,773,000		\$4,903,714,000	25\%		\$5,239,302,500	$33 \times$		\$4,218,683,000	77			
COST PER bus			\$190,301		\$237,526			\$253,781			\$204,344				
COST OVER OIESEL PER BUS			so		\$47,224			\$63,479			\$14,043				
national FLEET (39,000 BUSES)			\$7,421,755,728		\$9,263,494,599			\$9,897,447,203			\$7,969,418,116				
COST OVER OIESEL			\$0		\$1,841,738,871			\$2,475,691,475			\$547,662,388				

mational fleet
*actual costs

11	,													
11	\|oiesel		OIESEL	MEOH	METHANOL	MEOH \| CNG	CNG	CNG \| TRAP	PART TRAP	trap \|				
$1 \mid$ fleet	fuel I	TOTAL	\| FUEL	TOTAL	x \| fuel	TOTAL	x \| fuel	TOTAL	x II					
\|	mileage	\$/MI	FUEL costs	\$/MI	FUEL cosis	Inc \| \$/MI	FUEL COSTS	INC \| $\$ / \mathrm{MI}$	FUEL COSTS	Inc \|l				
mMata \|	52,830,694		\| 50.180		\$9,509,525	\| $\$ 1.210$	\$63,925,140 \|	572x\| 50.510	\$26,943,654 \|	183x\|\$0.230	\$12,151,060	288\|		
Milwaukee \|	20,134,612		\| 50.170		\$3,422,884	\| 80.640	\$12,886,152 \|	276x\|S0. 140	\$2,818,846 \|	-18\%\|\$0.180	\$3,624,230	6x\|		
SEPTA \|	41,000,000		\|\$0.194		\$7,954,000	\| $\$ 0.581$ \|	\$23,821,000	199\%\|\$0.219	\$8,979,000 \|	13x\| 50.230	\$9,430,000	19x\|		
Bi-State \|	24,000,000		\|\$0.127		\$3,048,000	\| 50.280	\$6,720,000 1	120x\|\$0.146		\$3,504,000 \|	15x\| 50.139	\$3,336,000	$9 \times 1 \mid$	
Chicago \|	75,000,000		\| 50.180		\$13,500,000	\|\$0.280	\$21,000,000	56x\|s0.103	\$7,725,000 \|	-43x\|\$0.220	\$16,500,000	22x\|		
AC Transit \|	$26,000,000$ \|	\|s0.193		\$5,018,000	\|\$0.879	\$22,854,000	355x\|\$0.204	\$5,304,000 \|	6x\|\$0.403	\$10,478,000	109x\|			
cleveland \|	24,744,160		\| 50.190		\$4,701,390	\|\$2.190	\$54,189,710 \|	1053x\|\$0.330	\$8,165,573 \|	74x\|\$0.290	\$7,175,806	53x\|		
Utah TA \|	14,957,000		\|s0.136		\$2,034, 152	\|\$0.284	\$4,247,788 \|	109\%\|\$0.236	\$3,529,852 \|	74x\| 50.174	\$2,602,518	288\|		
Santa Clara\|	23,700,000		\| 50.190		\$4,503,000	\| $\$ 0.700$	\$16,590,000	268x\|\$0.270		86,399,000 \|	42x\|\$0.240	\$5,688,000	26x\|	
Seattte \|	36,000,000		\|\$0.134		\$4,824,000	\|s0.441	\$15,876,000	229x\|s0.195	\$7,020,000	46x\|\$0.169	\$6,084,000	26x\|		
Attante RTA\|	28,702,099		\| 50.186		\$5,338,590	\|\$0.314	\$9,012,459 \|	69\%\|50.223	\$6,400,568 \|	20x\| 50.256	\$7,347,737	38x\|		
NYCTA $\quad\|\|104,100,000\|$	\| 50.249		\$25,920,900	\|\$0.587	\$61,106,700 \|	1366\| 50.260	\$27,066,000 \|	4x\|\$0.274	\$28,523,400	10x\|				
nJT \|	73,953,464		\| 50.140		\$10,353,485	\|s0.280	\$20,706,970	100x\|\$0.230	\$17,009,297 \|	64x\|\$0.180	\$13,311,624	29\%\|		
Oallas $\quad\|\mid 21,400,000$	\| 80.230		\$4,922,000	\|\$0.630	\$13,482,000	174x\| 50.160	\$3,424,000 \|	-30x\|\$0.250	\$5,350,000	9x\|				
Samtrans \|	7,372,747			\| $\$ 0.150 \mid$	\$1,105,912	\|\$0.900	36,635,472	500x\| 50.290	\$2,138,097 \|	93x\|\$0.200		\$1,474,549	33x\|	
Sacreme \|	8,611,000			\| 80.220		\$1,894,420	\|s0.320	\$2,755,520 \|	45x\|\$0.190	\$1,636,090 \|	-14x\|\$0.280		\$2,411,080	27x\|1
OCTO \|	$21,000,000 \mid$	\| 50.250		\$5,250,000	\|\$0.299	\$6,279,000 \|	20x\|\$0.286	\$6,006,000 \|	14x\|s0.275		\$5,715,000	10x\|		
SCRTO * \|	105,000,000		\|\$0.170		\$17,850,000	\|s0.370	\$38,850,000 \|	118x\|\$0.250	\$26,250,000 \|	47X\|\$0.190	\$19,950,000	12x\|1		
		-	,	,			\|r	s0.190	===========	====azra				
TOTALS 708,505,776		\$131,150,259		\$400,937,911	347\%	\$170,318,976	30%	\$161,213,004	23\%					
COST PER MILE		\$0.1851		\$0.5659		\$0.2404		\$0.2275						
COST OVER OfESEL per mile		$\mathbf{\$ 0 . 0 0 0 0}$		\$0.3808		\$0.0553		\$0.0424						
mational fleet (est. 1.0 Billion Miles))	\$185, 108, 242		\$565,892,227		\$240,391,796		\$227,539,436						
COST OVER OIESEL mational fleet		\$0		\$380,783,984		\$55,283,554		\$ $52,431,193$						

[^0] Methanol is currently a $\$ 0.51 / \mathrm{gal}$, therefore methanol cost per mile is now close to diesel cost per mile.

ESTIMATED COST ANALYSIS FOR FUELING FACILITIES(1990)

* actual costs

ALTERNATE FUELS/LOW EMISSIONS TECHNOLOGY COST ANALYSIS WORK SHEET

SOUTHERN CALIFORNIA RAPID TRANSIT DISTRICT
ALTERNATE FUELS SECTION JULY 1990

COMPANY:

NAME:

TITLE:

PHONE:

ALTERNATE FUELS/LOW EMIESIONS TECHNOLOGY COST ANALYBIS WORX BHEET

Introduction

The attached work sheet is designed to assist in deriving the range of cost incurred by purchasing and operating buses that utilize clean fuels, including; "clean diesel" (particulate trap technology), methanol and compressed natural gas. The work sheet also addresses the costs to convert existing capital stock to the above clean fuels.

The work sheet provides a methodology and includes certain cost factors, based on the Southern California Rapid Transit District's experience. However, much of the actual cost information will be specific to the individual operator's situation and is therefore left for each operator to address. These variations include regional differences in fuel costs, cold weather fueling requirements and availability of land for fueling and tank storage.

The total cost for an operator to comply with the provisions of the Clean Air Act will depend upon the operator's fleet replacement needs, as well as the final provisions of the legislation concerning the phase-in schedule and requirements concerning conversion of the existing fleet. The work sheet package includes tables to derive a very rough total cost range. These cost estimates will require fine tuning by the operator once the final provisions of the Clean Air Act are known.

Instructions

1. Steps 1 through 20 (pages 1-5) of the Alternative Fuels/Low Emissions Technologies Work Sheet are self explanatory.
2. Table A, "Clean Emissions Impact on Transit Buses" summarizes the results of the calculations in Steps 1 through 20 of the work sheet. The numbers and letters in parentheses reference the location within the work sheet where the information is derived.
3. Tables $B-E$ are rough estimates of the total cost of replacing and operating a fleet utilizing each respective fuel type; Table B is baseline diesel, Table C is diesel with a particulate trap, Table D is compressed natural gas and Table E is Methanol.
4. Complete the title sheet, including a phone number for a contact person.

Questions

If you have any questions regarding the questionnaire, please contact Vince Pellegrin, at (213) 972-5844, or David Meyers, at (213) 972-5866, in SCRTD's Alternative Fuels Section.

1. Please estimate the cost to build an average size fueling facility for your fleet operating on each of the following fuels.
a. Diesel \qquad
b. Methanol \qquad
c. Compressed Natural Gas (CNG) \qquad
d. Propane \qquad
e. Other \qquad
2. How many bus fueling facilities do you operate? \qquad
3. What is the underground storage capacity (gallons) of your average diesel fueling facility?
4. What is your average diesel bus mileage between refuelings?
5. Please estimate the initial purchase price for buses at your property using each of the following technologies.
a. Diesel \qquad
b. Diesel w/Particulate Trap \qquad
c. Methanol \qquad
d. Compressed Natural Gas (CNG) \qquad
e. Propane \qquad
f. Methanol w/Ignition Improver \qquad
g. Other \qquad

FUELS/LOW EMISSIONS TECHNOLOGIES WORK BHEET

6. Please estimate your total costs to convert an existing diesel bus to each of the following technologies. Include costs for both material and labor.
a. Diesel w/Particulate Trap \qquad
b. Methanol
c. Compressed Natural Gas (CNG)
d. Propane \qquad
e. Methanol w/Ignition Improver \qquad
f. Other \qquad
7. Please estimate the price each of the following fuels would cost you per gallon [per therm (100,000 Btu) for CNG]. Include the cost of delivery.
a. Diesel \qquad
b. Low Sulfur Diesel (<500 ppm)
c. Methanol \qquad
d. Compressed Natural Gas (CNG) \qquad
e. Propane \qquad
f. Other \qquad
8. Please estimate the impacts on the overall maintenance costs to your bus fleet (Decrease, Same, Slight Increase, Large Increase) operating each of the following technologies compared to the maintenance of your existing diesel fleet.
a. Diesel w/Particulate Trap \qquad
b. Methanol
c. Methanol w/Ignition Improver \qquad
d. Compressed Natural Gas (CNG) \qquad
e. Propane \qquad
f. Other \qquad

FUELS/LOW EMISSIONS TECHNOLOGIES WORK SHEET

9. Please estimate the cost impacts on the overall durability of your bus fleet (Increase, Same, Slight Decrease, Large Decrease) operating on each of the following technologies compared to the durability of your existing fleet.
a. Diesel w/Particulate Trap \qquad
b. Methanol \qquad
c. Methanol w/Ignition Improver \qquad
d. Compressed Natural Gas (CNG) \qquad
e. Propane \qquad
f. Other \qquad
10. How much do you spend on tires and brakes per year? \qquad
11. How many buses are in your fleet (Include spares)? \qquad
12. How many total miles does your fleet accumulate per year?
13. What is your fleet average diesel bus fuel economy (mpg)?
\qquad
14. What is the on-board diesel storage capacity (gallons) of your bus?
15. What is the tare weight of your diesel bus (Include full load of fuel)?

ALTERNATE FUELS/LOW EMISSIONS TECHNOLOGIES FOR SHEET

16. How many passengers does one of your diesel buses carry? (Include standees.)
17. Calculate bus weights for each of the following technologies (numbers in parentheses denote references within the work sheet to be used in the blanks).
a. Diesel $=\underbrace{}_{(15)}$. .
b. Particulate Trap $=$ \qquad lb. +350 lb. $=$ \qquad $1 b$.
c. $\mathrm{CNG}=$ \qquad lb. + (18 X \qquad)lb. = \qquad lb.
d. Methanol $=$ \qquad lb.+ (10.7 X \qquad)lb. $=$ \qquad lb.
18. Calculate bus passenger loading for each of the following technologies using the appropriate numbers shown.
a. Diesel $=\frac{\text { passengers }}{(16)}$ pall
b. Part. $\operatorname{Trap}=\frac{}{(16)}-\left[\left(\frac{(17 b)}{(17 a)}\right) / 150\right]=$ \qquad
c. ENG $=\frac{}{(16)}-\left[\left(\frac{}{(17 c)}-\frac{}{(17 a)}\right) / 150\right]=$
d. Methanol $\left.\left.=\overline{(16)}^{-\left[\left(\frac{}{(17 d)}-(17 a)\right.\right.}\right) / 150\right]=$ \qquad
19. Calculate brake/tire wear increase over diesel bus wear rate for each of the following technologies using the appropriate numbers shown. (Multiply results by 100).
a. Diesel $=$ Base
b. Part. Trap $=\left(\frac{}{(17 b)}-\frac{}{(17 a)}\right) / \frac{}{(17 a)}=\ldots \quad$ increase
c. $\mathrm{CNG}=$ (
)/- $=$ \qquad \% increase

ALTERNATE FUELS/LOW EMIS8IONS TECHNOLOGIES WORK 8HEET

19. (Continued)

$$
\text { d. Methanol }=\left(\sum_{(17 d)}^{-} \overline{(17 a)}\right) / Z_{(17 a)}=\ldots \text { increase }
$$

20. Calculate fuel consumption rates for each of the following technologies using the appropriate numbers shown.

$$
\text { a. } \text { Diesel }=\frac{}{(7 a)} / \frac{}{(13)}=\ldots \text { \$ per mile }
$$

b. Low s Diesel $=\frac{}{(7 b)} / \frac{}{(13)}=$ per mile
c. Part. Trap $=\frac{}{(20 b)} \times 1.1=\ldots$ per mile
d. Methanol $=\frac{}{(7 c)} /\left(\sum_{(13)} / 2.5\right)=\ldots$ per mile
e. $C N G=\frac{}{(7 d)} \times 1.3 /\left(\frac{}{(13)}\right)+.03=\ldots$ sper mile
f. Methanol W/Ignit. Imp. $=(.97 \mathrm{X} \underset{(7 \mathrm{c})}{ }+.49) /(]_{(13)}$ 2.5) $=\ldots$ per mile

TABLE A
CLEAN EMISSIONS IMPACT ON TRANSIT BUSES

		CLEAN DIESEL		CONVERSIONS			
	DIESEL	W/PART. TRAP	CNG	METHANOL	$\begin{gathered} \text { METH/ } \\ \text { AVOCET } \end{gathered}$	CNG	PART TRAP
FUEL FACILITIES	- $-1 \mathrm{a})^{-}$	- $-1 \mathrm{a})^{-}$	(1c)	--(1b)	- $-(1 \mathrm{~b})^{-}$	-(1c)	-(1a)
PASS. LOADING	- 18 - ${ }^{-1}$	$-\overline{-18 b)}$	$-\overline{18 c)}$	- $\left.\mathbf{(1 8}^{18}\right)^{-}$	$-\overline{(18 d)}{ }^{-}$	- -18 c)	$-\overline{-18 b)}$
FUEL COSTS	$-\square^{(208)}$	- $-20 \mathrm{c})^{-}$	- $20-7$	- (20d)	---7-	- (20e)	---7)
MAINTENANCE	Base_	-7 (8a)	---(8d)	---7-	---7-	---(8d)	---(8a)
BRAKE/TIRES	-7 (19a)	$-7{ }^{-19 b)}$	$-\overline{-19} \bar{c})$	- $\left.\mathbf{- 1 9}^{-19}\right)^{-}$	- $\mathbf{- 1 9 8}^{-1}$	- $\overline{(19} 9)$	-7 - 19 b$)^{-}$
INITIAL COST	-7 (6a)	$-{ }^{-7 b)^{--}}$	$--(5 d)$	$--7{ }^{-7}$	$-{ }^{-18)^{-}}$	$--(\bar{c})$	--- ${ }^{(8 \mathrm{a})}$
DURABILITY	Base	$\left.-{ }^{-9 \mathrm{a}}\right)^{-}$	-7 (9d)	-7 (9b)	$-7-19)^{--}$	- $-(9 \mathrm{~d})$	$\left.-7{ }^{-9 \mathrm{a}}\right)^{-}$
BUS WEIGHT	- (17 $^{\text {a }}{ }^{-}$	- $-17{ }^{\text {(17) }}$	$-\overline{17} \bar{c})^{-}$	- (17 $^{\text {d }}{ }^{-}$	$-\overline{(17 d)}{ }^{-}$	- $-17 \bar{c}$)	$-7(17)^{-}$

TABLE B

PROJECTED COSTS WORR EKEET BABELINE DIEBEL

CAPITAL COSTS

Total
$=$ \qquad

ANNUAL OPERATING COSTS

Fuel $=\frac{\mathrm{X}}{(20 \mathrm{a})} \mathrm{(12)}$	$=$
Brakes/Tires $=\frac{}{(10)}$	$=$

Total
$=$ \qquad

TABLE C

PROJECTED COSTS WORK SHEET
 O. E. M. PARTICULATE TRAP

CAPITAL COSTS

Vehicle $=\Pi_{(5 b)} \times$
Facility $=\frac{}{(1 a)} \quad \frac{}{(2)}$
$=$ \qquad
$=$ \qquad

Total
$=$ \qquad

ANNUAL OPERATING COSTS

Total
$=$ \qquad

$$
+\varlimsup_{(8 a)} \text { Maintenance }
$$

TABLE D

PROJECTED COSTS WORX SHEET
O. E. M. COMPRESSED NATURAL GAS (CNG)

CAPITAL COSTS

Total
$=$ \qquad

ANNUAL OPERATING COSTS

table E

PROJECTED COSTS WORK SHEET

O. E. M. METHANOL

$$
\begin{aligned}
& \text { Vehicle }=\frac{}{(5 c)} \times \frac{}{(11)} \\
& \text { Facility }=\frac{}{(1 b)} \times \frac{12)}{}
\end{aligned}
$$

$$
=
$$

\qquad

Total

$=$ \qquad

ANNUAL OPERATING COSTS

[^0]: * actual costs - Fuel cost based on July 1990 pre-Middle East crisis costs. LA (OCr 90) price is now $\mathbf{\$ 1 . 1 2 / g a l}$ for diesel \#2.

