Table of Contents

Executive Summary i
Key Metro Bus Findings ii
Key Metro Rail Fingings ii
introduction 1
Survey Methods 2
Sampling Plan 2
Approach to Sampling Bus Trips 2
Bus Trip Selection 2
Surveyor Assignments 3
On-Boord Survey Instrument 3
CATI Scripl 4
Survey Procedures 4
O/D Study 4
Transit Network Creatian 9
Meiro Bus Analysis 10
Metro Rail Analysis 42
Maps: Bus and Rail 53
Appendix A: Survey Cord 79
Appendix B: CATI Script 81

List of Tables and Figures

Table I: Data Elements and Coplure Melhod 3
Figure 2: Website Assignmen l Tool 5
Figure 3: Website Reporfing Tool 6
Figure 3: Survey Process Flow Chart 8
rable 2.1: Bus Clustered Roule Gools 10
Table 2.2: Bus Goals 14
Tobie 2.3: Cross-Tabulalion of Line by Time of Day 18
rable 2.4: Bus Response Rales 22
Table 2.5: Expansion of Bus Route Data 26
Table 2.6: Cross-Tabulation of Vehicle Ownership and Household Income 30
Figure 2.1: Dislribution of Origin Yrlp Purpose 30
Figure 2.2: Distribulion of Destination Trip Purpose 31
Table 2.7: Cross-Tobulation of Egress Mode by Access Mode 32
Figure 2.3: Distribution of Access Mode 32
Fgure 2.4: Distribution of Egress Mode 33
Table 2.8: Cross-Tabulation of Line by Tolal Vehicles Used 33
Figure 2.5: Vehicle Availability 37
Figure 2.6: Distribution of Fare 38
Figure 2.7: Distribution of Household Workers 38
Figure 2.8: Distribution of Valid Driver's License 39
Figure 2.9: Distribution of Employment Stalus 39
Figure 2.10: Distribution of Age 40
Figure 2.11: Distribution of Elhnicity 40
Figure 2.12: Distribution of Household Annual Income 41
Figure 2.13: Distribution of Language 41
rable 3.1: Rail Goals 42
Table 3.2: Cross-Tabulation of Line by Time of Day 42
rable 3.3: Rail Response Rales 43
rable 3.4: Expansion of Rail Line Data 43
Table 3.5: Cross-Tabulation of Vehicie Ownership and Household income 43
Figure 3.1: Distribution of Origin Yrip Purpose 44
Figure 3.2: Distribution of Destination Trip Purpose 45
Table 3.6: Cross-Tabulation of Egress Mode by Access Mode 46
Figure 3.3: Distribution of Access Mode 46
Figure 3.4: Dis'ribution of Egress Mode 47
Table 3.7: Cross-Tabulation of Line by Total Vehicles Used 47
Figure 3.5: Vehicle Availability 48
Figure 3.6: Distribution of Fare 48
Figure 3.7: Distribution of Household Workers 49
Figure 3.8: Distribution of Valid Driver's License 49
Figure 3.9: Distribution of Employment Status 50
Figure 3.10: Distribution of Age 50
Figure 3.11: Distribution of Elhnicity 51
Figure 3.12: Distribution of Household Annual Income 51
Figure 3.13: Distribution of Language 52
Figure A: English On-Board Survey Card (Metro Survey) 79
Figure 5: Spanish On-boord Survey Card (Melro Survey) 80

Executive Summary

This report documents the activities and findings for Phase II of the System-Wide On-Board OriginDestination Study. PTV NuStats, and its subcontractors (GeoStats, Maroon Society, and Temps Incorporated), executed this study on behalf of the Los Angeles County Matropolitan Transportation Authority (Metro). Phase I provided rigorous testing of the elements of user-completed paper surveys, the current state of the practice. Phase I also included the development of a new hybrid methodology which represents a significent advance in the state of the practice. This hybrid methodology is used for Phase II, a survey of Metro's entire bus and rail system. Both Phases I and II are partially funded through a Section 5339 Grant from the Federal Transit Administration (FTA)

During Pbase 1 of this study, PTV NuStats tested multiple survey instruments of varying length and offered different incentives to ascertain which instrument characteristics minimized respondent burden while increasing participation. The results of Phase I indicated respondents were more likely to participate and provide accurate information via a Computer Assisted Telephone Interview (CATL). Further improvement was gained through the interviewers' use of a project-specific tool (TripTracer Transit) to collect travel patterns of Metro passengers. During the interview process, data were subjected to real-time quality control procedures to ensure respondents provided accurate information and to identify and correct illogical trips.

The paper data collection was streamlined by replacing the lengthy twenty-item questionnaire typically used in on-board surveys with a brief, four-question instrument. Teams of locally hired surveryors collected boarding and alighting data, in addition to a passenger's contact information, using a postcardsized on-board survey card. The card used in this new approach offered two significant benefits. First, in previous survey efforts using the lengthy questionnaire, passengers traveling for a short period of time could not complete the questionnaire, resulting in missing data from this important group. In addition the card approach requires less of a passenger's time and significantly reduces the amount of critical missing data. The card data also made it posaible to weight the data using transit passenger's on- and off-stops.

The contact information provided on the card was used to contact respondents for a lengthier follow-up telephone interview. Then, using Computer-Assisted Telophone Interviewing (CATI) and PTV NuStats' spatial tool, TripTracer Transit, a respondent's trave! behavior was gathered while simultaneously providing real-time quality control measures to ensure the accuracy of the data.

A major focus of the study was to reach out to traditionally under-represented groups that constitute a large share of the Metro ridership. In a collaborative effort with Metro, PTV NuStats placed a premium on the ability for surveying teams to survey in Spanish. Not only did 50 percent of the surveyors speak Spanish, but also one-third of the counter/collector staff; as such, they were able to reach and assist this linguistically isolated demographic. The results of this concentrated effort were successful, specifically in assisting Metro with understanding this important demographic: approximately 41 percent of the bus sample was collected from the Spanish-speaking market. Most importantly, this methodology can be applied to other demographics-in future studies, Metro staff can identify geographic regions and apply a tirgeted sampling approach to match surveyors' Iinguistic abilities to specific markets.

Respondents were recruited on board the surveyed vehicle using a card, on which they recorded their contact information (name and phone number). Passengers were contacted within a twe-week window to collect the remainder of their travel behavior and demographic information. Because passengers rely heavily upon Metro's service and could make multiple trips per day, the card captured the passenger's trip purpose, which the respondent verified at the beginning of the interview.

This hybrid survey was conducted among passengers of all Metro's directly-operated local, limited, and express service; shuttle and circulator routes; and rapid and rail service. Bus data collection took place from January 11 through June 24, 2011, while the rail data collection took place from September 26
through November 1, 2011. A total of 33,782 fully weighted questionnaires, as included in the final data files, were collected. In addition to the origin-destination (O/D) on-board study, boarding and alighting pairs (B / A Pair) were also conducted for all surveyed routes in the system and collected 89,491 usable cards. The B/A Pair data will serve as a marginal datazet to be used for future weighting and expansion purposes as deemed necessary by Metro.

Key Metro Bus Findings

The completed project yielded over 27,000 survoys from fixed local routes, express service, and metro rapid servicc. The objectives of the full study were two-fold: 1) examine and confirm the travel behavior characteristics of Metro passengers, and 2) obtain the socio-economic characteristics of Metro passengers. The data weighting and expansion provide an appropriate representation of the Metro system.

Important findings from the analysis of the Metro bus system ridership are presented below:

- Forty-one percent of Metro bus passengers compland their survey in Spanish.
- Eight out of ten Metro bus passengers are from households with an annual income of less than \$25,000.
- Over half (56 percent) of Metro bus passengers are transit-captive riders (i.e., they are from households that did not have a vehicle available to complerir their one-way trip).
- Sixty-four percent of Metro bus passengers are employed, with 38 percent employed full-time.
- Three-quarters of Metro bus passengers do not possess a valid driver's license.
- Over two-thirds (68 percent) of Metro bus passengers reported their ethnicity as Hispanic and 17 percent listed Black/African-American.
- Eighty-eight percent of Metro bus passengers are between the ages of 18 and 64.
- Thirty-two percent of Metro bus passengers reported paying cash for their fare while thirty percent used a monthly pass.
- Travel behavior characteriatics of Metro bus passengers indicate that home and worls are the most prevalent trip origins and destinations.
\checkmark Forty-three percent of trips originate from home, 30 percent of trips originate from work, and both school and social/recreational account for six percent of origin trip purposes.
\checkmark The final destination for 44 percent of trips is home, whereas 28 percent end at work. Other popular destination trip attractions are social/recreational (eight percent of trips) and shopping (six percent).
\checkmark Fifty-two percent of Metro bus passengers made home-based work trips.
- Overall, 94 percent of Metro bus passengers reported walk as their mode of access and egress.
- Forty-one percent of Metro bus passengers made one transfer to complete their one-way trip, whereas 38 percent did not transfer.

Key Metro Rail Findings

The Metro rail survey produced 6,528 complete and usable records from the five rail Lines (Red, Blue, Green, Gold, and Purple) that service the Metro region.

- T'wenty-three percent of Metro rail passengers completed their survey in Spanish.
- Sixty-four percent of Metro rail passengers are from households with an annual income of less than $\$ 25,000$.
- Thirty-six percent of Metro rail passengers are transit-captive riders (i.e., they are from households that did not have a vehicle available to complete their one-way trip).
- Sixty-seven percent of Metro rail passengers are employed, with 46 percent employed full-time.
- Fifty-four percent of Metro rail passengers do not possess a valid driver's license.
- Fifty four percent of Metro rail passengers reported their ethnicity as Hispanic and 23 percent listed Black/African-American.
- Ninety-four percent of Metro rail passengers are between the ages of 18 and 64.
- Twenty-seven percent of Metro rail passengers reported paying cash for their fare and twentyseven percent used a monthly pass.
- Travel behavior characteristics of Metro rail passengers indicate that home and work are the most provalent trip origins and destinations.
\checkmark Forty-three percent of trips originate from home, 31 percent of trips originate from work, and college/university and social/recreational each account for eight percent of origin trip purposes.
\checkmark The final destination for 46 percent of thips is home, whereas 29 percent end at work. Other popular destination trip attractions are social/recreational (nine percent of trips) and college/universily (six percent).
\checkmark Fifty-one percent of Metro rail passengers made home-based work trips.
- Overall, three quarthrs of Metro rail passengers reported walk as their mode of access and egress.
- Thirty-seven percent of Metro rail passengers made one transfer to complete their one-way trip, whereas 26 percent did not transfer.

Introduction

PTV NuStats conducted the System-Wide On-Board Origin-Destination Survey (Metro Survey) of Los Angeles County Metropolitan Transportation Authority (Metro) passengers in 2011. This study provided information about transit passenger demographics and trip details. The Metro Survey was a systemwide study to permit an appropriate level of sampling to reflect all services, including new, expanded, and revised routes. In addition, a secondary survey collecting boarding and aliglting pairs (B/A Pair) from all surveyed routes was conducted.

PTV NuStats recognizes the bias that exists with on-board surveys, and developed an approach that would establish on-to-off pairs of passengers who participated in the survey by accepting the card. Not only did this data set include passengers who provided their travel behavior for their one-way trip, but also those who declined to participate in the full study. The results of the marginal data set will be used in future weighting applications to better understand passenger flows in the Metro transit system.

The Metro Survey was conducted among passengers of fixed-route bus and rail services for Metro using a self-administered approach for recruitment and a Computer Assisted Telephone Interview (CATI) for retrieval. Data collection was conducted on weekdays (Monday through Friday) from January 11 through November 1, 2011. (To prevent seasonality effects, surveying was not conducted during summer months.) A total of 33,782 usable bus and rail questionnaires were collected for this study. The final bus data files incorporated a total of 113,380 eligible hoardings for a response rate of 24 percent for the bus data set. The rail data set was comprised of 28,875 eligible boardings for a response rate of 23 percent.

This report summarizes the survey methods and 2011 Metro Survey findings, as well as the B/A Pair Survey. Chapter 2 provides a description of the sampling approach, survey instrument and procedures, project challenges and solutions, and weighting and expansion methodology. Chapter 3 provides detailed information for the variables collected during the Metro Survey.

Appendix A includes the English and Spanish survey instruments.

Survey Methods

Sampling Plan

A total of 166 Metro routes were sampled on weekdays covering all fixed-route bus and rail service. A sampling plan was designed at the route level and to provide a sample size adequate for analysis of weekday bus and rail service. The sampling goal was to collect 30,000 valid questionnaires for Metro routes, two percent of the average daily ridership. Survey data collection resulted in 33,782 valid questionnaires from Metro routes, or two percent of the average daily ridership.

The Metro Survey used a standard two stage sampling approach that consisted of sampling passengers and sampling vehicle trips. Every pisssenger over the age of 16 (determined by visual estimation) who boarded the sampled vehicle received a card. If the surveyor was not able to determine whether a passenger's age was over 16 by direct observation (which is the slindard procedure), the surveyor asked the boarding passenger if they were over 16 years old.

Approach to Sampling Bus Trips

Metro's consultant on this study, PTV NuStats, prepared a plan to sample weekday bus and rail trips to capture two percent of the average daily weekday ridership. The proposed sample plan was based on three main factors.

- First, the plan ensured that the sample adequately met data needa at the global level.
- Second, the plan ensured the collection of adequate samples at the various times of day. Times of day (TOD) are defined as AM Peak (6:00 a.m.-9:00 a.m.), Mid-day (9:01 a.m.-2:59 p.m.), PM Peak (3:00 p.m. $-7: 00 \mathrm{p} . \mathrm{m}$.), and Evening/Early Morning (7:01 p.m.-3:00 a.m.).
- Third, the plan ensurrd that Metro stalf would have the ability to segment the sample on key variables, such as rouls, day of the week, time of day, and direction.

The original sample plan was based on the average daily ridership from FY 2009 Metro's Automated Passenger Count (APC) system and was geared to capture 2 percent of passengers at the system level. The individual route goals are contained in Appendix A.

Bus Trip Selection

The number of sampled trips was calculated by assuming an average response rate of 15 percent; depending on service type and service period, of typical passenger loads by trip (this rate had to be lowered later in the study because of poor response rates on some routes). Thus, a route that had an average load of 500 passengers and made 10 trips a day was determined to have an average passenger load of 50 passengers per trip. Assuming the route had a sample goal of 50 valid questionnaires, it was determined that seven bus trips would need to be sampled to meet the requirements at an estimated 15 percent response rate ($500 / 10=50 \times .15=7.5 ; 50 / 7.5=6.7$ or 7). The number of trips sampled was rounded up to the nearest whole number for trip selection purposes.

Trips were clustered by block for the purpose of efficient use of surveyor labor. The use of clusters had the further advantage of de facto stratification by direction (i.e., most runs consist of bus trips alternately traveling inbound, outbound, etc.), stratification by time of day, and by route, if multiple routes were contained in a block.

Surveyor Assignments

The final sampling task was uploading the sampled bus trips to a Web-based field management system to create surveyor assignment sheets. The selected clusters of trips were drawn based on the following criteria to produce surveyor assignments:

- Consecutive trips within the same block/run
- The cluster of trips starting and ending at the same location
- If trips within the cluster were unique to the cluster

Surveyor assignment sheets were printed from the Web-based management system and included the organized trips to be sampled, along with the division address from which the assignment originated. The assignment sheets were also bar-coded to link them to the field management system.

On-Board Survey Instrument

Cards were designed in a two-sided $6^{\prime \prime}$ by $5.5^{\prime \prime}$ card-size format and printed on heavy card stock for easy distribution and completion. The card was pre-printed with a unique serial number and bar-code, which linked each card to a specific trip and vehicle boarding and alighting locations. Text on the card invited passengers to register to win a monetary prize, one of $21 \$ 500$ prizes, by providing their name and telephone number. The card was designed to obtain information in three major atargories: O/D trip purposes, contact information (name and telephone number), and the best time to call. As noted in Table 1.1, some of the tequired data elements were captured by means other than a question on the card. This approach had multiple benefits: (1) the shorter card enhanced response rates and (2) data quality was improved by citcumventing respondent-provided information. The card was available in two languages: English and Spanish.

On-board survey cards were developed such that they would be easy to administer, easy to comprehend, and, above all, collect data that supported the travel demand model. This type of card was used for the Metro Survey with great success. The simplicity of the card allowed for quick completion, particularly for those who rode a vehicle for a limited number of stops. In addition, the graphic instructions displayed the surveying steps for those who were not proficient in reading English or Spanish. Most importantly, the cards were serialized so that they could be traced back to the boarding and alighting location without having to ask the passenger. Each card was serialized, bar-coded, and packaged in bundles of 50 for ease of handling and tracking by the surveyors. See Appendix A for an example of the on-board survey card.

Table 1: Data Elements and Capture Method

Data Elements	Capture Method
Day of Yrave:	GPS-enhanced Palm device
Time of Trave!	GPS-enhanced Palm device
Route	GPS-enhanced Polm device
Direction	GPS-enhanced Paim device
Boorcing tocation	GPS-enhanced Poim device
Alighting Lacation	Callectar Provided [3/ person]
Questiannaire Language	Card
Origin Trip Purpose	Card
Destination Trip Purpose	Card
Telephone Type	Cord
Best Time to Call	Card

CATI Script

The survey instrument was designed as a CATI with 35 questions. Prior to data collection, Metro and PTV NuStats defined a complete interview as one with logical answers to the following questions: origin address, destination address, mode of access, mode of egress, thip purpose, and route sequence. Boarding and alighting information was also required for a survey to meet the definition of a complete. The boarding and alighting information was collected via the B / A Pair method of data collection: the boarding location was captured via PDA technology, and the alighting location was captured by the third person collector of cards on the vehicles (see CATI script. in Appendix B).

Survey Procedures

Labor Recruitment and Training

Surveyors were required to have lived in the service area and were screened to ensure they had good work habits, and were personable, honest, mature, and attentive to details. Surveyors were trained to read and understand assignment sheets and were taught basic survey procedures, etiquette, and how to approach passengers. Counters were trained in the use of the hand-held Palm devices, the ride count program, and on-board etiquette. Collectors were trained on how to obtain cards as passengers alighted the vehicle and how to deal with tequently asked questions. Following completion of initial assignments, surveyor teams were required to return to the survey command center where field coordinators verilied the accuracy of the surveyors' work. Assignments were then handed out for the next day.

O/D Study

At each stop, cards were distributed by the surveyor to all boarding passengers age 16 and older. Concurrently, a "counter" counted each boarding and alighting passenger. The Palm device recorded the location and time (artival and departure) at each bus stop, and counters entered the number of passengers boarding and alighting. Then the surveyor would communicate with the counter to establish which cards were distributed at a specific stop by entering the top card number into the unit prior to arrival at a vehicle stop linked a sequence of cards directly to a vehicle stop (using Metro's digitized bus stop list). The data were uploaded daily into a Web-based field management system designed to manage surveyor assignments, provide progress ceports and data summary tables, and monitor field staff performance.

Survey Administration

The full survey was managed by an in fueld survey team comprised of PTV NuStats field coordinators. Initial trainings were conducted January 24, 2011, prior to the start of data collection. Additional trainings were held during the data collection to account for staff attrition.

As assignments were handed out, information was updated in the Web-based field management system. When teams returned from an assignment, the field coordinator(s) checked the assignment results (i.e., quickly reviewed the cards to spot any glaring performance issues) and downloaded the passenger count data from the Palm devices. Feedback and additional training were provided when errors were found in the data. If important errors persisted, staff would be relieved of their services. The field coordinator updated the assignment status in the Web-based field management system and then handed out the next assignment. Once the completed assignments were reviewed, the cards went through the in-field editing process for inspection and coding prior to being scanned.

Figure 2: Website Assignment Tool

(1)
 Merro
 LA MTA OB 2009-Phase 3

Status Reporting

PTV NuState uses a transparent project-specific Website to monitor all phases of the data collection eflort. This critical management tool also allows PTV NuStats to share progress with Metro regarding line-level response rates, percentage of route goals completed, and surveyor-level response rates. The system integrates barcode technology to track each returned card with the specific "control file" information regarding a trip (boarding and alighting, route, direction, and time of day). The system also provides a means to track assignment completion to avoid unintentional over- or under-sampling of lines; this has proven to be a very effective schedule and cost-control mechanism. The Metro On-Board Survey project Websitc served as a central location for all assignment information. Reports were generated by the Website and disseminated by the PTV NuStats Project Manager for monitoring and for identifying surveying deficiencies for correction.

The surveyor manager prepared status reports from the Web-based field management system. This automated application conducted consistency checks, flagged problem records, and cleaned and purged flagged records. The field coordinator reviewed this information for accuracy in the status, response, and performance reports to the Web -based field management system.

Figure 3: Website Reporting Tool

In-Field Scanning

Following the team check-in, all returned cards were presented to the field coordinator for editing, correction, and scanning. Scanning in the field was introduced to reduce the time lag between when the card was administration and the first attempt at telephone follow-up. Prior to scanning, all cards were reviewed and sorted by language. Batches of 100 cards were created and scanned. All images were uploaded to a SQL Server located at PTV NuStats.

Sample Management, Loading, and Goals

Once sample was generated from the on-board effort, PTV NuStats` staff loaded the data into the VOXCO management software. This software allowed P'NV NuStats staff to monitor specific goals using route lines, sample type, and other predetermined targets provided by Metro. The sample management software ensured strategic release of sample for dialing to maintain an acceptable freshness period for retrieving survey information, as well as mange the number of attempts made on each individual record. This level of sample management; which includes prioritization, daily assignments, and goal stratification, enabled PTV NuStats to collect the most representative trip information possible.

CATI Interview

After the card was processed, it was loaded into the CATI program to contact the respondent within 48 72 hours of administration. The personal interview allows the respondent to take the survey at their convenience, as call back times were established by the respondent if they were not available during the initial call. Additionally, the respondent had the opportunity to ask the interviewer questions, making the interviewing process transparent, which helped to put the respondent's mind at ease regarding confidential information.

PTV NuStats recognizes that interviewer training is one of the most important tasks associated with a study of this type. Interviewer training lasted 14 hours over a three-day period. The interviewer training was divided into four segments: general project information, geography training, software training, and
trip collection. At the conclusion of the training, interviewers practiced collecting travel data over 50 different mock scenarios using the CATI/TripTracer Transit progran. Before an interviewer was allowed to dial on the project, they had to pass a project quiz to ensure they had a full understanding of the complexities they could encounter during the interviewing process.

Geocoding Tool

TripTracer Transit is PTV NuStats' proprietary software solution created specifically for transit onboard studies and used a transit network comprised of all transit providers and their lines in the Greater Los Angeles Region. This network was created for the Metro Survey using data provided by Metro. The transit network serves as a layer in the spatial TripTracer Transit program that allows for a rider's origin, destination, and all transit activity to be captured by assigning latitudinal and longitudinal coordinates to each location. The program allows the incorviewer to validate the reasonableness of all tiansfer activities with the respondent-provided O / D information by calculating the distance between each point. Additionally, if the rider is uneure of the route used in his/her trip but can provide the place name, landmark, or intersection; the interviewer can research the location using the Trip Tracer Transit software, which was designed to display all routes at the intersertion level.

Research Edit Check

Data was required to pass both an automated and manual checks for data integrity before being delivered. Cases that did not meet the appropriate criteria were resolved prior to being delivered. The quality assurance (QA) department implemented these checks as an additional tool to ensure continued data quality.

- Interviewers are individually updated regarding each of their completed records that fail the edit check process, and recejve additional QA support.
- Cumulative Edit Check results are used to determine problematic trends and initialize shift-based QA strategies to resolve them.
- Edit check statistics are used to provide the interviewer team with group-based feedback.

Survey Process Flow Chart

Figure 3 documents the various steps and conditions that occurred during the recruitment and retrieval stages of the Metro Survey.

Figure 3: Survey Process Flow Chart

KEY
Blue - Field Work
Pufple - PTV NuStats (Austin)

Survey Issues

Surveying out of the garage caused some complications. Due to surveying out of different garages throughout the $L A$ region, aurveyors would sometimes arrive for work after the bus left due to traffic congestion. The surveyor: would not know the amount of time needed to travel to a new location causing them to be tardy and misy their assignment.

Another issue that arose from surveying out of the garage was the time that bus drivers left for their shift. Assignments were created to follow driver pacldles. By using the driver paddles, survey teams were scheduled to arrive 5 minutes prior to the bus driver report time. The driver report time is typically 15 minutes prior to the time the bus was supposed to leave from the garage. Throughout tho project, some bus drivers would leave 30 minutes prior to the garage pull-out time. This would cause missed assignments because the survey team was not ready to be deployed.

Another issue was the need to return to garages, sometimes several times. If telephone surveying did not turn the collected card into completad surveys in a reasonable time frame, more cards had to be distributed and collected.

Transit Network Creation

One of the data elements needed to support the use of TripTracer in the collection of itineraries as part of the Metro Survey was a routable transit networb that could be connected to boarding and alighting stop ids identified using the fiold collection procedures. Numerous agencies besides Metro operate transit service in Los Angeles County. Two sources of data were available for building the network: exports from HASTUS and a data excract from MTA's trip planner system, called TripMaster.

In order to combine these two sources of transit network data GeoStats generated non-overlapping unique stop identifiers for the TripMaster and HASTUS datasets and a unform naming convention for the route names. This naming convention included a two letter abbreviation of the transit system followed by a dash and then a voute number. The combined data set consisted of all TripMaster routes, stops, and schedules except for bus routes serviced by Metro. Data on the MTA bus routes was instead generated by processing data from the HASTUS scheduting system.

Challenges arose when using the route numbers from the HASTUS schedule as some of them consisted of "child" routes that were only known outside the scheduling system by their parents' numbers. GeoStats obtained a table from Metro that provided the mapping between child and parent route numbers and applied it to the Metro bus routes. This allowed GeoStats to generate data collection assignments that could be used in the field and also itineraries to which participants could relate.

As schedules changed through the data collection period GeoStats updated the combined network data as needed. It is worth mentioning that the majority of the updates were done through the use of "pinks". These consisted of routes and route trips that were dropped from Metro's active service. GeoStats used these to generate updated schedule files that, were then used by NuStats to update TripTracer. Data from TripMaster remained stable throughout the field data collection effort and did not require updates.

Metro Bus Analysis

Table 2.1 documents the sample goals for the clustered routos that aerve the Metro region.

Table 2.1: Bus Clustered Route Goals

Route	Lines	Names	Number of Lines	Godil	Cluster
MT-. 2	2. 302	Pacific Polsades via Sunset B.	2	214	Mr. 2
MT-.. 4	4	Santa Morica via Santa Manica 81	1	153	MT-.. 4
Mr-10	10	Wert Hollywaad via Temple SI \& Melrose Av	1	153	MT- 10
MT-, 14	14	Beverly rilis vio Beverly 81	1	153	MT- 14
MT- 16	16.316	Century City via 3 a $\$$	2	214	MT-. 16
MT-18	18	Montebello wia 6 th 51 \& Whittier E :	1	153	MT- 18
MT- 20	20	Santa Monlea vio Withire Bl	1	153	MT- 20
MT-. 26	$\begin{aligned} & 26.51 .52 . \\ & 352 \end{aligned}$	Artesia Transil Center vio Avolon Bl	4	255	MT- 26
MT-. 28	28	Century City vio West Olympic BI	1	153	MT- 28
Mr-30	30	indiona Station via Picosi \& East ist Si	1	153	MT-30
MT-. 33	33	Sonta Morico vio venice Bl	1	153	MT. 33
MT- 35	35	Woshingtan/Foiffax fronsit Hub vio washington Bi	2	214	MT-. 35
MT-. 37	37	Woshington/Fgiffox Transit Hub via Adoms Bl	1	19	MT. 3 T
MT. 38	38	Wosinington/Foiffax vio W. Jefferson 3 I	1	153	MT-38
MT- 40	40.42	Gollerio via King / Le: Tijera/ Howthorne	2	387	MT-.40
MT. 45	$\angle 5$	Rosewood vio Broodway	1	153	MT-. 45
MT- 48	$\angle 8$	Avalon Station vio Moin St 2 South Son Pedro St	1	17	MT-. 48
MT-. 53	53	CSu Dominguez Hils vio Centrol Av	1	153	MT-. 53
MT-55	35.355	Imperial/Wilmington Station vio Compton AV	2	214	MT. 55
MT- 60	60	Artesio Station vio Long Beach $\mathrm{Bi}^{\text {a }}$	1	153	MT- 60
M-. 62	62	Howaion Garciens vio Telegroph Rd	1	153	MT- 62
MT. 66	66	Montebello vio 8th \& Olympic Bl	1	153	MT-. 66
MT. 68	68.84	Eogle Rock wo Eogle Rock BI	2	214	MT-. 68
MT-70	70	El Monte via Gorvey Ay	1	153	MT-70
MT-.71	71	Col Stote LA via Wooosh Av \& City Terrace Or	1.	153	MT-.71
MT-. 76	76	El monte wio Valley bi	1	153	MT-. 76
MT. 78	78.79 .378	Arcodio vio Las Tunos Or \& Huntington Dr	3	234	MT-78
MT-81	$\varepsilon 1$	Horbor Fwy Station via Figueroo	i	153	MT-.81
Mi-83	83	Eogle Rock via York Bl, Pasodeno Av	1	153	MT-. 83
MT. 90	90.91	Sunland vio Glencole Av/Foothill 81	2	214	MT-. 90
MT-. 82	92	Yo Burionk Stotion vio Glendole Bl/Bronci $\mathrm{Bl} /$ Glenoaks BI	1	153	M-. 92

Route	Lines	Names	Number of Lines	Gogl	Cluster
MT- 94	94	Sun valley via San Fernando Red	1	153	MT-94
MT-102	102	South Gate vio Coliseum $\$ 1$	1	153	MT-102
MT-105	105	Vernon vio to Cienego Bl \& Vernon Av	1	153	MT-105
MT-10S	108,358	Pico Rivera via Slouson Av	2	214	MT-108
MT-110	110	gell Gordens via Jefferson Bl/ Goge Av	1	153	MT-110
MT-111	111.311	Norwalk Station wa Forence Av	2	214	MT-111
MT-115	115	Nonwalk via Monchester. Firestone	1	153	MT-115
MT-117	117	Downey via Cenlury BI \& imperial Hwy	1	153	MT-1:7
MT-120	120	Whillwoad Moll via imperial Hwy	2	387	MT-120
MT-125	125	Norwalk Station vo Rosecrans AV	1	156	MT-125
MT-126	126	Howthame Statign vig Manhaltan Beach Bl	1	18	MT-126
MT-127	127	Downey via Campton BI \& Somersel BI	1	56	MT-127
MT-150	150.240	Conoga Park - Universol City Slotion	2	214	MT-150
MT. 152	152,353	Woodlond Hilts - North Hollywood Station	2	214	MT-152
M!-154	154	Burbank Station vic Burbonk 81 \& Oxnard 51	1	72	MT-154
MT-155	155.292	Burbank Siation vio Riverside Dr. Olive A,v. Glencaks 81	2	255	MT-155
MT-156	156. 656	Von Nuys, Hollywood. Panorama Cliy	2	214	MT-156
MT-158	158	Shermon Oaks vio Devonshire St, Woodmon Av	1	153	MT-158
MT-161	161	Warner Center vio Westoke Villoge. Agoura Hills. Colch	!	153	MT-161
MT-163	163.363	West Hills Mecical Center - Sun valley/North Hallywood	2	214	MT-163
MT-164	164	Burbonk Slotion vio victory Bi	1	153	MT-164
MT-165	165	Burbonk Slation vio Vonowen SI	1	153	MT-165
MT-166	166. 364	Sun Volley via Nordhoff 51, Osborne Si	2	214	MT-366
MT-169	169	Sunland vio Saticoy St. Sunland BI	1	153	MT-169
MT-175	175	Hollywood vio hyperion \& Fountain Av5	1	61	MT-175
MT-176	176	El monte Stotion via missian St \& Mission Dr	1	96	MT-176
MT-180	180. 181	Pasadeno va Los Felz BI \& Colorodo EI	2	214	MT-180
MT-183	183	Glendale Stolion via Magnollo BI	1	153	MT-183
MT-190	190. 194	Cal Poly Pomona vio Ramono BI \& valley bi	2	214	MT-190
MT-200	200	Expasilion Park vio Alvorodo SI \& Hoover ${ }^{\text {S }}$	1	153	MT-200
MT-201	201	Koreotown vio Sliver Loke BI	1	99	MT-201
MT-202	202	Wilmingtan via Alomedo $5 t$	1	31	MT-202
MT-204	204	Athens vio Vernoni A V	1	153	MT-204
MT-206	206	Athens vio Narmandie A.v	1	153	MT-206
MT-207	207	Athens vio Western Av	1	153	MT-207
MT-209	209	Athens va Van Ness Ave	1	69	MT-209
MT-210	210	Soulh Boy Gollerio via Crenshaw Bl	1	153	MT-210

Route	Lines	Names	Number of lines	Coal	Cluster
MT-21I	211, 215	Redondo Beoch vio Froine Av, Inglewood Av	2	93	MT-211
MT-212	212.312	Hawthorne Station vio Lo Breo Av	2	214	MT-212
MT-217	217	Faitax/Washington vio Hollywood BI \& Foiffox Av	1	153	MT-217
MT-220	220	Culver Cliy vio Robertson 81	1	41	MT-220
MT-222	222	Sun Volley - Hollywood	1	116	MT-222
MT-224	224	Sylmor Stotion -- Universal City Stalion	1	153	MT-224
MT-230	230	Studio Cily vio Lourel Conyon Bl	1	153	MT-230
MT-233	233	Sherman Ooks vio Von Nuys bl	1	153	MT-233
MT-234	234	Sherman Ooks vio Sepulveda BI, Brand BI	1	153	MT-234
MT-236	236. 237	Sylmor Station - Encino	2	214	MT-236
MT-239	239	Encino via Zelzah Av. White Oak Av	1	51	MT-239
MT-242	242.243	Waadland Hills via Tompo Av \& Winnelka Av	2	214	MT-242
MT-244	244. 245	Woodlond Hills via De Soto Av/Toponga Canyon Br	2	169	MT-244
MT-246	246.247	Arlesio Transit Center via Avolon BI	2	213	MT-246
MT. 251	251.252	Lynwood via Solo St	2	385	MT-251
MT-258	258	Paramouni va Fremant Av \& Eastern Av	1	152	MT-258
MT-260	260	Artesia Blue line Station wa Fair Oaks Av \& Atantic B	1	152	MT-260
M1-264	264, 267	Duarle: Aflodena / El Monle	2	213	MT-264
MT-265	265	Lakewood Center Mall via Paramount Bi	1	152	MT-265
MT-268	268	El Mante via Baldwin Av \& Washinglan Bl	1	152	MT-268
MT-287	287	The Shops al Montebello via Tyler Av \& Rush St	1	152	MT-287
MT-290	290	Sunland vio Foalhill 81	1	79	MT-290
MT-305	305	Westwood. Leimert Park. Willowbrook	1	152	MT-305
MT344	344	Palos Verdes vio Hawthorne Bl	1	152	MT-344
MT-439	439	Culver City Transil Center vial-10 Fwy	1	78	MT-439
MT-442	4.42	Howthorne Station via Monchester Bl.	1	38	MT-442
MT-44,	445	Horbor Fwy	1	108	MT-445
MT-450	450	San Pedro via Harbor Transilway	1	65	MT-450
MT-460	460	Disneyland via Harbar Transi wway \& I-105 Fwy	1	152	MT-480
MT-485	485	Alladena via Fremont Av \& Loke Av	1	152	MT-485
MT-487	487. 489	Slarro Modre Villo Statian to El Monte Station	2	213	MT-487
MT-534	534	Washington/Faitas Tronsil Hub vio Paclic Coast Hwy	1	152	MT-534
MT-550	550	Son Peoro via Harbor Transitway	1	152	MT-550
MT-577	577	Long Beach VA Medicol Center via l-605 Fwy	1	152	MT-577
MT-611	611	Huntington Park Shutte	1	152	MT-611
MT-612	612	South Gale Shutle	1	152	MT-612
MT-620	620	Bayle Helghts via Cesor Chovez Ave \& Stote St.	1	59	MT-620

Route	Lines	Names	Number of tines	Goal	Cluster
$M^{\top}-645$	645	Wamer Center vio valley Circle Bi, Mulhollond Dr	1	4)	MT. 645
MT-665	665	City Terroce shutile	1	69	MT-665
MT-585	685	Glassell Pork vio verduga Ra.	1	52	MT-685
Mi-687	086.687	Allodeno to Pasodeno	1	152	MT-687
Mr-704	704	Sonto Monica va Santa Manico el	1	152	MT-704
MT-705	705	Vernon vio lo Cienega BI	1	152	MT-705
MT. 710	710	South Bov Galleria vio Crenshow 81	1	152	MT-710
MT-720	720	Commerce vio Wishire 81 \& Whitier BI	1	152	MT-720
MT-728	728	Century City vio West Olympic BI	1	152	MT.728
MT-730	730	PicalRimpau via Pico Bl	1	152	MT-730
MT-733	733	Sonta Monica via Venice 8 !	1	152	MT-733
MT-734	734	Syimer Station vio Sepulvedo Bl	1	152	MT-734
M-740	740	Redondo Beoch vio Howthome BI, \& M. L. King 3i	1	152	MT-740
MT-741	74	Torzana vio Resedo BI	1	152	MT. 741
MT.745	745	Horbor Preeway Stotion vio Brocoway	1	152	MT. 745
MT-750	750	Universal City Siotion vio Ventura 31	1	152	MT-750
MT.75:	751	Huntington Pork vio 5010 $\$ 1$	1	152	MT-751
Mi. 754	754	Athens vio Vemmont A y	1	152	MT-754
MT-757	757	Crenshow Stotion va Western Av	1	152	MT-757
MT-760	760	Artesta Station via Long Beach Blvd.	1	152	MT-760
MT-761	761	Wesfwaod vio van Nuys bl, Sepulvedo 81	1	152	MT.76:
M-762	762	Artasio blue Une Stotion vio Attontic Bl^{\prime}	1	152	MT-762
M-.770	770	El Monte Station vio Gorvey \& Cesor E Chovez Avs	1	152	MT-770
M.780	780	Pasodena vic Foitax Av \& Hollywood \& Coloroda Bl	1	152	MT-780
Mi-794	794	Sylmor Station vo San Fernondo Ra	1	152	MT-794
MT-901	901	Metro Oronge Line	1	152	MT-901
MT-910	910	Metro Silver Une	1	152	MT.910

Table 2.2 documents the sample goals and the number of completed surveys for the individual bus routes that serve the Metro region. Throughout the entirety of the bus system, 27,254 surveys were collected and processed.

Table 2.2: Bus Goals

Route Type	Route Group	Lines	Route Name	Goal	Completes
Bus	MT-. 2	2. 302	Pocific Palisodes vio Sunset BI	208	180
Bus	MT-. 4	4	Santa Manica via Santa Monica Bil	188	162
8us	MT- 10	10	West Hallywood via Temple St \& Mielrose Av	188	180
Bus	MT- If	14	Beverly Hills via Beverly 81	188	225
Bus	MT- 16	16.316	Gentury City via 3rd SI	208	192
Bus	MT- 18	18	Montebelto vio 6 in 518 Whither Bl	188	363
Bus	MT- 20	20	Santa Monica vo Wlishire BI	188	207
Bus	MT-26	26.51.52.352	Artesio Transit Center via Avalon 81	248	999
Bus	MT-, 28	28	Century Cliy vio West Olympic Bi	188	245
Bus	MT- 30	30	Indiang Station via Pico 81 \& East Is S 1	188	198
Sus	MT- 33	33	Santo Monica via Venice 31	188	214
Bus	MT- 35	35	Washington/Fairfax Tronsit Hub vio Woshington Bl	208	430
Bus	MT- 37	37	Washingion/Foiftox Transit Hub via Adams Bl	20	133
Bus	MT- 38	38	Washington/Folriox via W. Jeftersan BI	188	242
Bus	MT- 40	40. 42	Golleria vio King / Le lijero / Howthome	376	341
Bus	MT- 45	45	Rosewood via Braadwoy	188	208
Bus	MT- 48	48	Avolon Station via Main st \& South San Pedrost	20	251
Bus	MT-. 53	53	CSU Dominguez Hills vio Central AV	188	413
Bus	M.T-, 55	55.355	Imperial/Wirnington Slation via Compton AV	208	323
3us	MT- 60	60	Artesio Station vio Long Beach Bl	188	351
Bus	MT- 62	62	Howaiion Gordens vio Teleçroph Rd	188	218
Bus	MT-36	66	Monlebello via 8ith 8. Olymplc 8i	188	223
Bus	MT-, 68	68.84	Eogle Rock vio Eogle Rock Bl	208	283
Bus	Mr-. 70	70	El Mante vio Goney Av	188	148
Bus	MT-. 71	71	Cal State LA vio Wabash Av \& City Terrace Dr	188	147
Bus	MT. 76	76	El Monte vio Valley 81	188	204
Bus	MT-. 78	78.79,378	Arcodio via Las Tunas Dr \& Huntingtan Dr	228	297
Bus	MT-. 81	81	Horbor Fwy Stalion via Figuerca	188	327
Bus	MT-83	83	Eogle Rock vio York Bl, Posodeno Av	188	198
Bus	MT-90	90.91	Suntand via Glendale Av/Foothill Bl	208	186
Bus	MT-. 92	92		188	263

Route Type	Route Group	Lines	Route Name	Goal	Completes
Bus	MT-94	94	Sun Valley via San Fernondo Rd	188	194
Bus	MT. 102	102	South Gate vio Coliseum \$t	188	336
Bus	Mr-105	105	Vemon via La Cienego BI \& Vemon Av	188	330
Bus	MT-108	108.358	Pico Rivera vio Slouson Av	208	183
Bus	MT-110	110	Bell Gardens via Jelferson BI/ Gage Av	188	214
Bus	MT-111	111.311	Norwolk Station vio Florence Av	208	269
Bus	MT-115	115	Norwolk vio monchester, Firesione	188	192
Bus	Mr-117	117	Downey vio Century Bl \& Imperial itwy	188	182
Bus	Mr-120	120	Whitiwood Moll vio Imperial Hwy	376	322
Bus	MI-126	126	Howthome Station via Monhation Beach Bi	21	22
Bus	MT-127	127	Downey vio Complon B \& Somersel Bl	68	48
Bus	MT-150	150,240	Conogo Park - Universal City Stalion	208	214
Bus	MT-152.	152.353	Woodlond Hills - North Hollywood Stotion	208	208
Bus	MT-154	154	Burbank Stotion via Burbonk BI \& Oxnara SI	88	33
Bus	MT-155	155. 292	Burbonk Stalion via Riverside Dr. Olive Av, Glenooks BI	248	209
Bus	MT-156	156.656	Van Nuys, Hollywood, Ponoroma City	208	122
Bus	MT-158	158	Shermon Oaks vio Devonshire St. Woodman Av	188	24.
Bus	MT-161	161	Womer Cenler via Westlake Villoge, Agouro Hills. Calab	168	172
8us	MT-163	163,363	West Hills Medical Center - Sun Volley/North Hollywood	208	233
Bus	MI-164	164	Burbonk Stolion via Victory El	188	198
Bus	MT-165	165	Surbank SIation via Vanowen 51	188	207
Bus	MT-166	166.364	Sun Valley vio Norohoff St. Osborne \$1	208	243
Bus	M1-169	169	Suniond via Solicay \$1, Sunland Bl	188	264
Bus	MT-175	175	Hollywood vio Hyperion \& Founloin Avs	75	79
Bus	MT-176	176	El Monte Station via Mussion St \& Mission Dr	118	117
Bus	MT-180	180.181	Pasadeno vio Los Feiz BI \& Colorado BI	208	284
Bus	MT-183	183	Glendale Stotion va Magnolio EI	188	114
Bus	MT-190	190.194	Col Poly Pomono vio Romono Bl \& Volley al	208	237
Bus	MT-200	200	Exposition Park via Alvarado 51 \& Hoover \$t	188	284
Bus	MT-201	201	Karealown wa Siver Loke Bl	121	219
Bus	MT-202	202	Witmington vio Alamedo \$1	38	24
Bus	MT-204	204	Athens via Vermant Av	188	191
Bus	MT-2.)6	206	Athens via Normondie Av	188	154
Bus	MT-207	207	Athens via Western Av	188	220
Bus	MT-209	209	Athens via Van Ness Ave	85	102
Bus	MT-210	210	South Bay Galleria via Crenshow Bl	188	178

Route Type	Route Grcup	Lines	Route Name	Godl	Completes
Bus	MT-211	211.215	Redondo Beach via Prairie Av, Inglewood Av	91	64
Bus	MT-212	212.312	Hawthorne Station via La Brea Av	208	234
Bus	MT-217	217	Fairfax/Woshington vo Hollywood BI \& Foitox Av	188	242
Bus	MT-220	220	Culver City via Robertson 31	50	62
Bus	MT-222	222	Sun Voley - Hollywoad	143	143
Bus	MT-224	224	Sylmor Station - Universal Cily Station	188	278
Bus	MT-230	230	Studio Clly vio Lourel Conyon BI	188	194
Bus	M1-233	233	Shermon Ooks vio Von Nuys BI	188	191
Bus	MT-234	234	Sherman Ooks vio Sepulvedo B1, Brond Bi	188	230
Bus	MT. 236	236.237	Sylmar Station - Encino	208	260
Bus	MT-239	239	Encino vio zelzoh Av, White Ook Av	62	67
Bus	MT-242	242. 243	Woodland Hils vio Tampo Av \& Winnetka Av	208	164
Bus	MT-244	244. 245	Woodland rilis vio De Soto Av/Topongo Conyon BI	207	233
Sus	MT-246	246. 247	Artesia Tronsit Center vio Avalon Bl	207	105
Bus	MT-25i	251, 252	Lynwood vlo Soto SI	374	554
Bus	MT-258	258	Poromount vio Fremont Av \& Eastern Av	187	227
Bus	MT-260	260	Arlesio Blue Une Stotion vio Foir Ooks Av \& Atlontic Bl	187	198
Bus	MT-264	264, 267	Duate: Altadeno / El Monte	207	197
Bus	MT-265	285	Lokewoad Center Moll via Faramount Bl	187	259
Bus	MT-268	268	E Monte vio Boldwin Av \& Woshington BI	187	129
Bus	MT-287	2 B 7	The Shops al Montebello via Tyler Av \& Rush $\$ 1$	187	101
Bus	MT-290	290	Suniand vio Foolhill ${ }^{\text {al }}$	97	119
Bus	MT-305	305	Westwood, Leimert Pork, Wllowbrook	187	224
Bus	MT-344	344	Polas Verdes via Hawthome 8\|	187	163
Bus	MT-439	439	Culver City Tronsit Center via l-10 Fwy	95	37
Bus	MT-442	4.42	Howthorne Station vio Monchester Bl.	22	33
Bus	MT-445	445	Harbor Fwy	133	106
Bus	M1-450	450	San Pedra via Harbar fransilwoy	80	46
Bus	MT-460	460	Disneylond via Haroor Tronsiwoy \& I-105 Fwy	187	196
Bus	MT-485	485	Alladeno vio Fremont Av \& Lake Av	187	294
Bus	MT-487	487.489	Stera Madre Villa Station ta EP Monte Station	207	221
Bus	MT. 534	534	Woshington/Fairlax Tronsit Hub vio Pacilic Coost Hwy	187	210
Bus	MT-550	550	San Pedro via Harbor Transitway	187	192
Bus	MT-577	577	Lang Beach VA Medical Cenler via l-605 Fwy	187	147
Bus	MT-611	611	Huntington Park Strutte	187	244
Bus	MT-612	612	South Gate Shutile	187	289

Route Type	Route Group	lines	Route Name	Goal	Completes
Bus	MT. 620	620	Boyie Heights vio Cesar Chovez Ave \& State St.	72	85
Bus	MT.645	645	Warner Center via Valley Circle BI. Mulholland Dr	50	39
Eus	MT-665	665	City Perroce Shutle	85	88
Bus	MT. 685	685	Glassell Pork vio Verduga Rd.	63	110
Bus	MT. 687	686.687	Altodena to Pasadeno	187	151
Bus	M. 7.704	704	Santo Manica via Sanio Manica Bl	187	252
Bus	MT-705	705	Vernon vo la Cienego 81	187	266
Bus	MT-710	710	South Boy Gallerio vio Crenshow 81	187	166
Bus	MiT-720	720	Commerce vio Wilshire B1 \& Whittier BI	187	287
Bus	MT-728	728	Century City vio West Olympic B!	187	248
Bus	MT-730	730	Pico/Rimpau via Pico Bl	187	185
Bus	MT-733	733	Sonto Monico via Venice BI	187	169
Bus	MT-734	734	Sylmor Station via Sepulvedo Bl	187	164
Bus	M 7.740	740	Redondo Beoch vio Howthorne BI \& \% M. L. King Bl	187	163
Bus	MT-741	741	Torzano via Reseda bl	187	303
Bus	MT. 745	745	Harbor Freewoy Stotion via Broadway	187	235
Bus	Mr-750	750	Universal Cily Station vio Venturo BI	187	216
Bus	Mr.751	751	Huntingtan Park via Salo St	187	268
Bus	MT-754	756	Athens vio Vermont Av	187	163
Bus	M1-757	757	Crenshow Station via Western Av	187	197
Bus	MT. 760	760	Arlesia Station via Long Beach Blva.	187	278
Bus	M1.761	761	Westwood vio von Nuys 8i, Sepulvedo Bl	187	185
Bus	M. 752	762	Artesia Blue Line Stotion vid Allontic Bl	187	164
Bus	M17.770	770	El Monte Stotion via Garvey \& Cesar E Chavez Avs	187	155
Bus	MT. 780	780	Pasodena vio fairfox Av \& Hallywoad \& Colorado Bi	187	290
Bus	Mr.794	794	Syimar Station vio Son Fernando Rd	187	202
Bus	MT-901	901	Metro Orange Une	187	210
Bus	MT-910	910	Metro Siver Lioe	187	171
Total				23.121	27.254

A cross-tabulation of line by time of day demonstrates the number of observations collected tor the Metro bus routes. The bus system was evenly sampled by time of day with a two percentage point diflerence between AM peak period (32 percent) and PM peak period (34 percent). Twenty-four percent of all trips were surveyed during the Mid-Day period.

Table 2.3: Cross-Tabulation of Line by Time of Day

Route Group	Lines	Time of Day								Total
		AN Peak		Mid-Day		PM Peak		Eve/Eorly AM		
		N	\%	N	\%	N	c\%	N	$\%$	
MT-.. 2	2. 302	47	26\%	63	35\%	62	34\%	8	4\%	180
MT-. 4	4	25	15\%	87	54\%	50	31%	-	-	162
MT- 10	10	31	17\%	16	9\%	99	55\%	34	19\%	180
MT-. 14	14	67	30\%	46	20\%	91	40%	21	9\%	225
MT- 16	16.316	49	26\%	108	56\%	35	18\%	-	-	192
MT-, 18	18	112	31%	131	36%	120	33\%	-	-	363
MT- 20	20	46	22\%	46	22\%	95	46\%	20	10\%	207
MT- 26	$\begin{aligned} & 26.51 \\ & 52.352 \end{aligned}$	452	45\%	291	29\%	201	20\%	55	6\%	999
MT. 28	28	101	41\%	55	22\%	89	36%	-	-	245
MT. 30	30	75	38\%	-	-	109	55\%	14	7\%	198
NTT. 33	33	59	28\%	95	44\%	52	24%	8	4\%	214
MT. 35	35	63	15%	210	49\%	127	30\%	30	7\%	430
MT- 37	37	66	50\%	-	-	52	38\%	15	11\%	133
MT-. 38	38	73	30\%	56	23\%	106	44\%	7	3\%	242
NT. 40	40.42	112	33\%	70	21\%	124	36\%	35	10\%	341
MT. 45	45	83	40\%	-	-	121	58\%	4	2\%	208
MT-. 48	48	80	32%	81	32\%	64	25\%	26	10\%	251
MT. 53	53	180	44\%	77	19\%	126	31\%	30	7\%	413
MT- 55	55. 355	111	34%	79	24%	126	39\%	7	2\%	323
MT. 60	60	83	24\%	78	22\%	180	51\%	10	3\%	351
MT-. 62	62	87	40\%	86	39\%	31	14\%	14	6\%	218
MT. 66	66	50	22\%	24	11\%	116	52\%	33	15\%	223
MT-. 68	68.84	86	30\%	113	40\%	80	28\%	4	1\%	283
MT. 70	70	33	22\%	61	41\%	39	26\%	15	10\%	148
MT. 71	71	49	33\%	65	44\%	26	18\%	7	5\%	147
MT. 76	76	65	32\%	74	36\%	62	30\%	3	1 \%	204
MT. 78	$\begin{aligned} & 78.79 . \\ & 378 \\ & \hline \end{aligned}$	81	27\%	100	34\%	108	36%	8	3\%	297
MT. 81	81	142	43\%	72	22\%	113	35\%	-	-	327
MT-. 83	83	65	33\%	28	14%	81	41\%	24	12\%	198

Route Group	Lines	Time of Day								Total
		AM Peak		Mid-Dey		PM Peak		Eve/Eorly AM		
		N	\%	N	\%	N	\%	N	\%	
MT- 90	90.91	33	18\%	54	29\%	72	39\%	27	15\%	186
MTE. 92	92	88	33%	63	24\%	68	26\%	44	17\%	263
MT- 94	94	102	53\%	17	9\%	36	19\%	39	20\%	194
MT-102	102	79	24\%	149	44\%	70	21\%	38	11\%	336
MT-105	105	96	29\%	100	30\%	114	35\%	20	6%	330
MT-108	108,358	106	58%	26	14%	51	28\%	-	-	183
MT-110	110	78	36%	93	43\%	43	20\%	-	-	214
MT-111	111.311	81	30\%	46	17\%	111	41%	$3)$	12\%	269
MT-115	115	46	24\%	46	24\%	83	43\%	17	9\%	192
MT-117	117	32	18\%	68	37%	82	45\%	-	\checkmark	182
MT-120	120	77	24\%	83	26\%	113	35%	49	15\%	322
MT-126	126	22	100\%	-	-	-	-	-	-	22
MT-127	127	-	*	21	44\%	27	56\%	-	-	48
MT-150	150.240	133	62\%	34	16\%	17	8\%	30	14\%	214
MT-152	152.353	37	18\%	130	63\%	34	16\%	7	3%	208
MT-154	154	-	-	12	36\%	21	64\%	-	-	33
MT-155	155.292	91	44\%	47	22\%	58	28%	13	6\%	209
MT-156	156,656	47	39\%	10	8\%	54	44\%	11	9\%	122
MT-158	158	50	21\%	82	34\%	96	40%	13	5\%	241
MT-161	161	65	38%	41	24\%	42	24\%	24	14\%	172
MT-i63	163.363	36	15\%	55	24%	107	46\%	35	15\%	233
MT-164	164	32	16\%	45	23\%	61	31\%	60	30\%	198
MT-165	165	54	26\%	54	26\%	56	27\%	43	21\%	207
MT-166	166.364	59	24%	61	25\%	93	38%	30	12%	243
MT-169	169	95	36%	84	32\%	76	29\%	9	3\%	264
MT-175	175	54	68\%	10	13%	15	19\%	-	-	79
MT-176	176	37	32\%	32	27\%	41	35\%	7	6\%	117
MT-180	180. 181	92	32\%	83	29\%	82	29\%	27	10\%	284
MT-183	183	46	40\%	16	14\%	52	46\%	-	-	114
MT-190	190, 194	83	35\%	77	32\%	69	29\%	8	3\%	237
MT-200	200	71	25\%	42	15\%	153	54\%	18	6\%	284
MT-201	201	74	34%	74	348	61	28\%	10	5\%	219
MT-202	202	3	21\%	-	-	17	71\%	2	8\%	24
MT. 204	204	54	28\%	21	11%	92	48\%	24	13\%	191
MT-206	206	110	71\%	2	1\%	16	10\%	26	17\%	154

Route Group	Lings:	Time of Day								Total
		AM Peak		Mid.Bay		PM Peok		Eve/Early AM		
		N	\%	N	$\%$	N	\%	N	\%	
MT-207	207	74	34\%	28	13\%	95	43\%	23	10\%	220
MT-209	209	18	18\%	25	25\%	54	53\%	5	5\%	102
MT-210	210	71	40\%	64	36%	43	24\%	,	-	178
MT-211	211.215	34	53\%	-	-	30	47\%	-	*	64
MT-212	212.312	52	22\%	15	6\%	115	49\%	52	22\%	234
MT-217	217	32	13%	80	33%	115	48\%	15	6%	242
MT-220	220	23	37%	21	34\%	16	26\%	2	3%	62
MT-222	222	26	18\%	14	10\%	86	60\%	17	12\%	143
MT-224	224	77	28\%	98	35\%	58	21\%	45	16\%	278
MT-230	230	73	38\%	39	20\%	77	40\%	5	3%	194
MT-233	233	19	10\%	76	40\%	93	49\%	3	2\%	191
MT-234	234	120	52%	53	23\%	18	8\%	39	17\%	230
MT-236	236.237	92	35\%	47	18\%	91	35\%	30	12\%	260
MT-239	239	33	49\%	3	4\%	31	46\%	-	-	67
MT-242	242.243	102	62\%	-	-	46	28\%	16	10\%	164
MT-244	244. 245	45	19\%	33	14\%	94	40\%	61	26\%	233
MT-246	246.247	27	26\%	12	11\%	44	42\%	22	21\%	105
MT-251	251, 252	193	35\%	109	20\%	193	35%	59	11\%	554
MT-258	258	74	33\%	69	30\%	66	29\%	18	8\%	227
MT-260	260	57	29\%	63	32\%	36	18\%	42	21\%	198
MT-264	264. 267	62	31%	61	31\%	72	37\%	2	1\%	197
MT-265	265	84	32\%	57	22\%	90	35\%	28	11\%	259
MT-268	268	42	33\%	45	35\%	34	26\%	g	6%	129
MT-287	287	25	25\%	35	35\%	40	40\%	1	1\%	101
MT-290	290	-	-	42	35\%	76	64\%	1	1\%	119
MT-305	305	72	32\%	42	19\%	88	39%	22	10\%	224
MT-344	344	66	40\%	11	7\%	65	40\%	21	13\%	163
MT-439	439	19	51\%	8	22\%	7	19%	3	8\%	37
MT-442	442	18	55\%	-	-	10	30\%	5	15\%	33
MT-445	445	43	41\%	14	13\%	27	25\%	22	21\%	106
MT-450	450	29	63\%	-	-	17	37%	-	-	46
MT-460	460	65	33%	82	42\%	31	16%	18	9\%	196
MT-485	485	99	34\%	91	31%	92	31\%	12	4\%	294
MT-487	487. 489	78	35%	61	28\%	70	32%	12	5%	221
MT-534	534	30	14\%	40	19\%	74	35\%	66	31%	210

Route Group	Lines	Time of Day								Total
		AMPeak		Mid-Day		PM Peok		Eve/Early AM		
		N	\%	N	\%	N	\%	N	\%	
MT-550	550	72	38\%	57	30%	40	21\%	23	12\%	192
MT-577	577	52	35\%	41	28%	46	31\%	8	5\%	147
MT-611	611	116	48\%	37	15\%	56	23\%	35	1.4\%	244
MT.612	612	112	39%	115	40\%	43	15\%	19	7\%	289
MT-620	620	15	18\%	48	56%	16	19\%	6	7\%	85
MT-64S	645	21	54\%	7	18\%	11	28\%	-	-	39
MT-665	665	40	4.5\%	3	3%	42	48%	3	3\%	88
MT-685	685	29	26\%	21	19\%	34	49\%	6	5\%	110
MT-687	686.687	46	30%	39	26\%	60	40\%	6	4\%	151
MT-704	704	104	41\%	54	21\%	94	37\%	-	-	252
MT. 705	705	157	59\%	36	14\%	54	20\%	19	7\%	266
MT-710	710	27	16\%	54	33\%	59	36\%	26	16\%	166
MT. 720	720	110	38\%	63	22\%	114	40\%	-	-	287
MT-728	728	82	33%	60	24\%	99	40\%	7	3\%	248
MT-730	730	98	53\%	27	15\%	49	26\%	11	6\%	185
MT-733	733	56	33\%	10	6%	74	44\%	29	17\%	169
MT-734	734	67	41\%	-	-	74	45\%	23	14\%	164
M 1.740	740	64	39%	-	-	67	41\%	32	20\%	163
MT-74	$74 i$	61	20\%	122	40\%	114	38\%	6	2\%	303
MT. 745	745	69	29%	29	12\%	120	51\%	17	7\%	235
MT-750	750	84	39%	34	16\%	80	37%	18	8\%	216
MT-751	751	67	25\%	50	19\%	146	54\%	5	2\%	268
Mi-754	754	78	48\%	-	-	85	52\%	-	-	163
MT-757	757	159	81\%	14	7\%	24	12\%	-	*	197
MT-760	760	87	31%	54	19\%	87	31\%	51	18\%	279
MT. 761	761	20	11\%	47	25\%	91	49\%	27	15\%	185
MT.762	762	42	26\%	33	20\%	58	35\%	31	19\%	164
MT. 770	770	66	43\%	30	19\%	56	36%	3	2\%	155
MT. 780	780	123	42\%	59	20\%	84	29\%	24	8\%	290
MT-794	794	93	46\%	37	18\%	40	20\%	32	16\%	202
MT-901	901	-	-	42	20\%	164	78\%	4	2\%	210
MT-910	910	45	26%	35	20\%	72	42\%	19	11\%	171
	Totor	8.974	33%	6.686	25\%	9.335	34%	2.259	8\%	27.254

Table 2.4 lists the cumulative response rates for the bus effort. The final response rate for bus collection was 24 percent. Route 202 (Wilmington via Alameda St) had the highest response vate at 89 percent, while route 901 (the Metro Orange Line) had the lowest response rate at 11 percent.

Table 2.4: Bus Response Rates

Route Type	Route Group	Lines	Roule Name	Surveyabie Boarcings	Completes	Response Rale
Bus	M.- .2	2. 302	Procitic Palisodes via Sunset Bl	449	180	40\%
Bus	MT-. 4	4	Santa Manica via Santa Manlca Bi	954	162	17\%
Bus	MT- 10	10	West Hollywoad via Temple Si \& Melrose Av	612	180	29\%
Bus	MT- 14	14	Beverly Hills vio Eeverly Bl	861	225	26\%
Bus	MT- 16	16.316	Century Qly via 3ra 51	932	192	21\%
Bus	MT- 18	18	Mantebello via 6 th St \& Whitier Bl	1,310	363	28%
Bus	MT- 20	20	Sonto monica vio Wilshire Bi	869	207	24\%
Bus	MT-, 26	$\begin{aligned} & 26.51 . \\ & 52.352 \end{aligned}$	Artesia Transit Center vio Avalon Bl	3.717	999	27\%
Bus	MT. 28	28	Century City vio West Olympic BI	1.183	245	21\%
Bus	MT- 30	30	Inciana Station via Pica B1 \& Easi Ist \$1	339	198	58\%
Bus	MT-. 33	33	Sonto Manica via venice BI	697	214	31%
Bus	MT-. 35	35	Wasnington/Fairfox Tronsit Hutb via Washington BI	2.216	430	19\%
Bus	MT-. 37	37	Woshington/Faiffox Tronsit Hub via Adams Bl	575	133	23\%
Bus	MT-. 38	38	Washingtan/Fairox vio W. Jefferson Bl	1.099	242	22\%
Bus	MT-. 40	40, 42	Gallerio via King / La lijera / Howthome	1,435	341	24\%
Bus	MT- 45	45	Rosewocd vio Broodwoy	786	208	26\%
Bus	MT-. 48	48	Avalon Stotion vio main St \& South San Pedro St	935	251	27\%
Bus	MT-. 53	53	CSU Dominguez Hills via Central Av	1.268	413	33\%
Bus	MT. 55	55.355	imperial/Wilmington Station via Compton Av	904	323	36\%
Bus	MT- 60	60	Arteska Station via Long beoch Bl	1.266	351	28%
Bus	MT- 62	62	Hawailon Gardens via Telegroph Rd	759	218	29\%
Bus	MT-. 66	66	Mantebello via 8ih \& Olympic Bl	919	223	24\%
Bus	MT. 68	68.84	Eagle Rock vio Eagle Rock 81	1.416	283	20\%
Bus	MT-. 70	70	El Monle via Garvey Av	782	148	19\%
Bus	MT-. 71	71	Cal State LA via Wabash Av \& City Terrace Dr	512	147	29\%
Bus	MT-. 76	76	El Monle via valley bi	1.326	204	15\%
Bus	MT-. 78	$\begin{aligned} & 78.79 . \\ & 378 \end{aligned}$	Arcada vio Los Tunas Dr \& Huntington Dr	2,033	297	15\%
Bus	MT. 8 !	81	Harbor Fwy Statian via Figueroa	1.488	327	22\%
Bus	MIT-83	83	Eogle Rock vio York BI, Pasadena AV	900	198	22\%
Bus	MT- 90	90.91	Suntond vio Glendole Av/Foothill BI	937	186	20\%
Bus	MT- 92	92	To Eurbonk Siotion via Glendale BI/Brand B!/Glenooks 31	840	263	31\%

Route Type	Route Group	Lines	Route Name	Surveyable Boardings	Completes	Response Rale
Bus	MT- 94	94	Sun Valley via San Femando Ra	1,320	19.4	15\%
Bus	MT-102	102	South Gate vio Colseumst	1.128	336	30%
Buis	MT-105	105	Vemon vio Lo Clenego Bi \& Vernon Av	1,223	3.30	27\%
Bus	NTT-108	108.358	Plco Rivera via Slouson Av	734	183	25\%
Bus	Mi-110	110	Bell Gardens vid Jelterson BI / Goge Av	828	214	26\%
Bus	MT-111	111.311	Nomalk Station via Florence Av	1.058	269	25\%
Bus	MT-115	115	Nonwalk vio Manchester, Firestone	641	192	30\%
Bus	MT-117	117	Downey vio Cenlury Bi \& Imperial Hwy	518	182	35\%
Bus	MT 120	120	Whittwood mall via imperiol Hwy	1.192	322	27\%
Bus	MT-126	126	Howhome Station via Monhatton Beach Bl	46	22	48\%
Bus	MT-127	127	Downey vio Compton Bl 8 Somerset Bl	141	48	34%
Bus	MT-150	150.240	Canogo Pars - Universal City station	1.016	21.4	21\%
Bus	MT-152	152.353	Woodlond Hils - North Hollywood Station	1.105	208	19\%
Bus	MT-154	154	Burbank Stationi via Burbank BI \& Oxnord St	191	33	17\%
Bus	MT-155	155.292	Burbank Stotion via Riverside Dr, Olive Av. Glenooks Bi	619	209	34%
Bus	MT-156	156.656	Van Nuys, Hollywood, Penorama City	329	122	37\%
Bus	MT-158	158	Sherman Oaks via Devonstire St, Woodmon Av	920	241	26\%
Bus	MT-161	161	Womer Center vio Westlake viliage. Agoura Hills. Colab	808	172	21\%
Bus	MT-163	163.363	West Hills Medical Center - Sun Volley/North Hollywood	1.261	233	18\%
Bus	MT-164	164	Burbank Station vio Victory Bi	1.323	198	15\%
Bus	MT-165	165	Burbank Station vio vanowen St	1.049	207	20\%
Bus	MT-166	166.364	Sun Volley vio Nordhott S.t. Oshorne St	1,058	243	23\%
Bus	MT-169	169	Sunland via Saticoy st, Sunland bi	1,184	264	22\%
Bus	M1-175	175	Hollywood vio Hyperion \& Fountain Avs	312	79	25\%
Bus	MT-176	176	El Monte Station via Mission 51 \& Mission Dr	486	117	24\%
Bus	MT-180	180.181	Pasadena via Los Felz 318 Colorodo 81	986	284	29\%
Bus	MT-183	183	Glendale Station va Magnolia 81	392	114	29\%
Bus	MT-190	190.194	Cal Paly Pomono via Ramono Bi \& Valley BI	1.308	237	18%
Bus	MT-200	200	Expositian Park via Alvarado St \& Hoover 51	1.561	28.4	18%
Eus	MT 201	201	Koreatown via Siver Lake BI	837	219	26\%
Bus	MT-202	202	Wilmington vio Alomedasi	27	24	89%
Bus	MT-204	204	Alhens via vermont $A v$	877	191	22\%
Bus	MT.206	206	Athens vio Nomande Av	1.163	154	13\%
Bus	MT-207	207	Alhens vio Westem Av	1.355	220	16\%
Bus	MT-209	209	Athans vio Van Ness Ave	346	102	29\%

Route Type	Route Group	Lines	Route Name	Surveyabie. Boarcings	Completes	Response Rate
Bus	MT-210	210	South Boy Gallerio vio Crenshow Bi	699	178	25%
Bus	MT-2I 1	211.215	Redondo Beoch vio Prairie Av, Inglewood Av	188	64	34%
Bus	MT-212	212,312	Howtharne Stotion via La Brea Av	1.124	234	21\%
Bus	MT-217	217	Foirfox/Wostington vio Hollywood 81 \& Fgirfox Av	1.631	242	15\%
Bus	MT-220	220	Culver Clity via Robertson 81	106	62	58\%
Bus	MT-222	222	Sun Valley - Hollywood	668	143	21\%
Bus	MT-224	224	Syimor Stalion - Universol Clity Stotion	1,155	278	24\%
Bus	MT-230	230	Stucio Cily vio Laurel Canyon Bl	1.010	194	19\%
Bus	MT-233	233	Shermon Ooks vio van Nuys Bl	695	191	27\%
Bus	MT-234	234	Shermon Ooks vio Sepulvedo B1, Brand BI	594	230	39%
Bus	MT-236	236. 237	Syimar Station - Encíno	1.027	260	25\%
Bus	MT-239	239	Encino via Zelzoh Av. White Ook Av	178	67	38\%
Bus	MT-242	242. 243	Woodiond Hills vio Tompo Av \& Winnetko Av	368	164	45\%
Bus	MT-244	244, 245	Woadiand Hills vio De Soto Av/Topango Conyon 81	1.117	233	21\%
Bus	MT-246	246.247	Artesio Tronsit Center vio Avalon Bl	347	105	30\%
Bus	MT-251	251. 252	Lynwood vio Solo \$1	2,84.4	554	19\%
Bus	MT-258	258	Paromount vio Fremont Av \& Ecstern Av	703	227	32\%
Bus	MT-260	260	Arlesio Blue Line Station via Foir Ooks Av \& Aliartic Bl	956	198	21\%
Bus	MT-264	264, 267	Duorte: Altodeno / Emonte	785	197	25\%
Bus	MT-265	265	Lakewood Center moll v/a Poramount BI	557	259	46\%
Bus	MT-268	268	E Mante via Baldwin Av \& Washington Bl	842	129	15\%
Bus	MT. 287	287	The Shops of monlebello via Tyler Av \& Rush Si	289	101	35\%
Bus	MT-290	290	Sunland vio Foothill Bl	723	119	16\%
Bus	MT-305	305	Westwaod, Leimert Park, Willowbrook	641	224	35\%
Bus	MT-344	344	Polos verdes wo Howthome BI	662	163	25\%
Bus	MT-439	439	Culver Clity Tronsit Center val 10 Fwy	126	37	29\%
Bus	MT-442	442	Howtharne Stotion via manchester il.	82	33	40\%
Bus	MT-445	445	Horbor Fwy	328	106	32\%
Bus	MT-450	450	San Pedra v/o Horbor Tronsl twoy	146	46	32%
Bus	MT-460	460	Disneylond vio Harbar Tronsitway \& 1-105 Fwy	674	196	29\%
Bus	MT-485	485	Allateno vio Fremont Av \& Loke Av	1.107	294	27\%
Bus	MT-487	487.489	Sierra madre Villo Station to El Monte Stallon	868	22.1	25\%
Bus	MT-534	534	washington/Faifax Transit Hub via Pacific Coast Hwy	1,152	210	18\%
Bus	MT-550	550	Son Pedro vio Harbor Transitwoy	640	192	30\%
Bus	MT-577	577	Long Eeach VA Medical Center via l-605 Fwy	702	147	21\%
Bus	MT-611	611	Huntington Park Shutte	811	244	30\%

Route Type	Route Group	Lines	Route Name	Surveyable Boardings	Completes	Response Rate
Sus	MT-612	612	South Gale Snutile	825	289	35%
Bus	MT-620	620	Boyle Heights via Cesar Chovez Ave \& Stote St.	131	85	65家
Bus	MT-645	645	Worner Center vio voley Circle BI. Mulholland Dr	1.41	39	28\%
Bus	MT. 665	665	City Terrace Shutile	258	88	34\%
8us	MT-685	685	Glassell Park vio verougo Ra.	417	110	26\%
Bus	MT-687	686.687	Altadenc to Pasaciena	630	151	24%
Bus	MT.704	704	Santo Monico vio Santo Monica 3l	906	252	28\%
Bus	MT-705	705	Vernon via Lo Cienego 81	1.226	266	22\%
Bus	MT.710	710	South Bay Galleria vic Crenshow 51	257	166	65\%
Bus	MT. 720	720	Commerce vio Wishire Bl \& Whittier ${ }^{\text {S }}$	945	287	30\%
Sus	MT. 728	728	Century City via West Olympic Bi	1.246	248	20\%
Bus	MT-730	730	Pico/Rimpau via Pico 8.	615	185	30\%
Bus	MTM73	733	Santa Monica via Venice 31	620	169	27\%
Bus	MT-734	734	Sylmar Station vio Sepulveda E!	681	164	24\%
Bus	MT-740	740	Redando Beoch vio Howthome BI, \& M. L. King 81	528	163	31\%
Bus	MT-741	741	Torzono vic Resedo B	1.259	303	24\%
Bus	MT-745	745	Harbor Freeway Statian via Bracdwoy	580	235	41\%
Bus	MT.750	750	Universat City Station vio Ventura Bl	956	216	23\%
8us	MT-751	751	Huntington Pork vio Solo \$t	1.214	288	22\%
Bus	MT-754	754	Athens vic Vermont Av	799	163	20\%
Bus	MT-757	757	Crenshaw Stction via Western Av	819	197	24\%
Bus	Mr-760	760	Artesio Station via Long Beoch Blvd.	839	279	33\%
Bus	M7-761	761	Westwood vio Von Nuys 8i, Sepulvedas:	1.318	185	14\%
Sus	MT-762	762	Artesic Blue line Stotion vio Atlontic Bl	696	164	24\%
Bus	MT-770	770	El Monte Stotion vio Gorvey \& Cesar EChavez Avs	749	155	2;\%
Bus	MT-780	780	Pasadena via Faiflax Av \& Hollywaod \& Calorado हl	1.077	290	27\%
Bus	MT. 794	794	Symor Station via Son Fernondo Rd	651	202	31\%
Bus	MT-901	901	Metro Orange Une	1.892	210	11\%
Bus	MT-910	910	Metro Siver Line	B99	171	19\%
Tolol				113.380	27.254	24\%

Table 2.5 documents the usable route observations and the bus population; it was expanded based on ridership figures from fiscal year 2010 . Bus data were weighted and expanded to a total population of $1,119,284$ from the 27,254 pieces of sample collected.

Table 2.5: Expansion of Bus Route Data

Route Type	Cluster Group	Total Usable Records	Total Expanded Data
Bus	MT-.. 2	180	21.141
Bus	MT-.. 4	162	20.582
Bus	MT- 10	431	13.916
Bus	Mr-14	358	21.372
Bus	MT-16	192	27.410
Bus	M- 18	363	26.174
Bus	M ${ }^{T}-20$	207	17.198
Bus	MT-26	999	29.986
Bus	MT- 28	245	8.931
Bus	Mi. 30	198	13.510
Sus	MT-33	214	12.287
Bus	MT-35	430	8.585
Bus	MT- 38	242	6.020
Bus	MT. 40	$34 i$	24.382
Bus	MT- 45	208	23.087
Bus	Mr. 53	413	14.154
Bus	MT- 55	323	10.859
Bus	Mi- 60	351	17.979
Bus	MT- 62	218	4.818
Bus	MT-66	223	20.617
Bus	MT-68	283	10.393
Bus	MT- 70	148	12.505
Bus	MT. 71	147	1.714
Bus	MT. 76	204	11.26 .
Bus	MT-. 78	297	11.870
Bus	MT. 81	327	17.445
Bus	MT-. 83	193	4.611
Bus	M-. 90	186	6.542
Bus	MT. 92	263	5.773
Bus	MT-94	194	6.604
8us	MT-102	336	1.663
Bus	MT. 105	330	12,654

Route Type	Custer Group	Total Usable Records	Total Expanded Data
Bus	MT-108	183	17.712
Bus	MT-110	214	10,087
Bus	MT-111	269	20.475
Bus	Mr-115	192	17.445
Bus	MT-117	182	9.671
Bus	MT-120	322	4.520
Bus	MT-126	22	229
Bus	MT-127	48	666
Bus	MT-150	214	12.175
Bus	MT-152	208	13.972
Bus	MT-154	33	1.088
Bus	MT-155	61	584
Bus	MT-156	122	1.805
Bus	MT-158	241	2.430
Bus	MT-161	172	1.438
Bus	MT-163	233	10.784
Bus	MT-164	198	8.156
Bus	MT-165	207	9,505
Bus	MT-166	243	7,326
Bus	MT-169	264	2,578
Bus	MT-175	79	658
Bus	M 7 -176	117	1.093
Bus	MT-180	284	11.509
Bus	MT-183	114	2.379
Bus	M'-190	237	8,609
Bus	MT-200	284	15,399
Bus	M7-201	219	1,122
Bus	MT-202	24	253
Bus	MT-204	354	51,366
Bus	MT-206	154	13.682
Bus	MT-207	417	37.894
Bus	MT-209	102	1.035
Bus	MT-210	178	14.627
Bus	MT-211	64	694
Bus	MT-212	234	13.293
Bus	MT-217	242	9.687

Route Type	Cluster Group	Total Usable Recoras	Total Expanded Data
Bus	MT-220	62	268
Bus	MT-222	143	1.347
Bus	MT-22.4	278	10.124
Bus	MT-230	194	5.049
Bu5	MT-233	191	12,683
Bus	MT-234	230	6.922
Bus	MT-236	260	2,767
805	MT-239	67	1.062
Bus	MT-242	164	2.413
Bus	MT-244	233	4,331
Bus	MT-246	105	3.311
Bus	MT-251	554	12.431
Bus	MT-258	227	1.722
Bus	MT-260	198	12.714
Bus	MT-264	197	4.135
Bus	MT-265	259	1.948
Bus	MT-268	129	2.371
Bus	MT-287	101	773
Bus	MT-290	119	1.216
Bus	MT-292	148	2.358
Bus	MT-305	224	2522
Bus	MT-344	163	1,851
Bus	MT-439	37	434
Bus	MT-442	33	230
Bus	MT-445	106	1.289
Bus	MT-450	46	833
Bus	MT-460	196	4,350
Bus	MI-485	294	2,694
Bus	MT-487	221	4,066
Bus	MT 534	210	2.848
Bus	MT-550	192	3.076
Bus	MT-577	147	769
Bus	MT.611	244	2.024
Bus	MT-612	289	1.637
Bus	MT-620	85	313
Bus	MT-64S	39	612

Route Type	Cluster Group	Total Usable Records	Total Expanded Data
Bus	MT-665	88	817
Bus	MT-685	110	68.4
Bus	MT-687	151	1,927
Bus	MT-704	252	11.938
Bus	MT-705	266	8.392
Bus	M ${ }^{\text {- }} \mathbf{7 1 0}$	166	7.942
Bus	MT-720	287	41,166
Bus	Mr-728	248	7.469
Bus	MT-730	185	5.153
Bus	MT-733	169	13.338
Bus	M1-734	164	3.811
Bus	M 7.740	163	8.739
Bus	MT-741	303	3.057
Bus	M-745	235	7.853
Bus	Mi-750	216	4.845
Bus	MT-751	268	6.568
Bus	M-760	279	8.914
Bus	M1.761	185	11.111
Bus	M-762	164	5.101
Bus	MT-770	155	9.293
Bus	MT. 780	290	10.676
Bus	MT.794	202	5.305
Bus	MT-901	210	24.965
Bus	Mi-910	171	8.538
	Tolal	27.254	1.119 .284

Table 2.6 shows the relationship between vehicle ownership and household income. Ninety percent of bus respondents who do not own vehiclos have an average annual income of less than $\$ 25,000$. Forty-six percent of bus respondents with four or more vehicles have an average annual income of more than $\$ 25,000$.

Table 2.6: Cross-Tabulation of Vehicle Ownership and Household Income

	Househoid income									Total
Ownership	$\begin{aligned} & \text { tess itanan } \\ & \$ 5,000 \end{aligned}$	$\begin{aligned} & \$ 5,000- \\ & \$ 9,999 \end{aligned}$	$\begin{aligned} & \$ 10,000- \\ & \$ 14.999 \end{aligned}$	$\begin{aligned} & \$ 15,000- \\ & \$ 24.999 \end{aligned}$	$\begin{aligned} & \$ 25.000- \\ & \$ 34.999 \end{aligned}$	$\begin{aligned} & \$ 35,000- \\ & \$ 49.999 \end{aligned}$	$\begin{aligned} & \$ 50.000- \\ & \$ 69.999 \end{aligned}$	$\begin{aligned} & \$ 70,000- \\ & \$ 134,000 \end{aligned}$	$\begin{aligned} & \$ 135,000 \\ & \text { or more } \end{aligned}$	
None	28.6\%	25.4\%	19.9\%	16.0\%	5.8\%	2.8\%	0.8\%	0.5\%	0.2\%	100.0\%
One	14.8\%	16.7\%	19.9\%	20.9\%	13.3\%	6.7\%	4.5\%	2.6\%	0.5\%	100.0\%
Two	14.4%	12.3\%	13.1\%	16.8\%	14.2\%	14.9\%	6.1\%	6.2\%	1.9\%	100.0\%
Three	14.2\%	8.1\%	10.4\%	21.7\%	11.8\%	9.5\%	7.3\%	13.6\%	3.6\%	100.0\%
Four or more	8.1\%	10.0\%	16.0\%	19.5\%	10.1\%	17.7\%	9.5\%	4.0\%	4.9\%	100.0\%
Total	22.6\%	20.8\%	18.7\%	17.5\%	9.0\%	5.8\%	2.8\%	2.2\%	0.7\%	100.0\%

Figure 2.1 shows the distribution of origin trip purpose for bus passengers. Forty-three percent of bus passengers' origin location was home. Respondents who were coming from school, either university or K. 12th grade, made up 10 percent of the bus population's origin purpose.

Figure 2.1: Distribution of Origin Trip Purpose

Forty-four percent of bus passengers' destination location was home, as illustrated in Figure 2.2. Social activities, shopping, medical, and civic activities made up 20 percent of passengers' destination purpose.

Figure 2.2: Disłribution of Destination Trip Purpose

Ninety-four percent of bus passengers walked from their oxigin location to their first bus/rail and walked after their final bus/xail to their destination location, as descrihed in Table 2.7.

Table 2.7: Cross-Tabulation of Egress Mode by Access Mode

	Access Mode									Total
Egress Mode	Walk Wheelchair	Bicycled	Dropped off	Drove cone and porked	Carpooled and parked	Taxi	Dial-ARide	$\begin{aligned} & \text { School } \\ & \text { Bus } \end{aligned}$	Other	
Walk/Wheelchair	94.3\%	0.1\%	20\%	0.5\%	0.0\%	0.0\%	0.0\%	0.0%	0.0\%	97.0\%
Bicycled	0.6\%	0.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.9\%
Drapped off	1.3\%	0.0\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	1.4\%
Drove alone and parked	0.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.7\%
Carpoaleo and parked	0.1%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%
Toxi	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Diol-A-Ride	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
School Bus	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0%
Other	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0%
Total	97.0\%	0.4\%	21\%	0.5\%	0.0\%	0.0\%	0.05	0,0\%	0.0\%	100.0\%

Figure 2.3 presents how Metro bus passengers access transit. Three percent of respondents used an auto to get from their origin location to their first bus or train, while the majority of passengers (97 percent) walked or biked.

Figure 2.3: Distribution of Access Mode

Figure 2.4 presents how Metro bus passengers egress transit. Two percent of respondents used an auto to get from their last bus or train to their final destination. The majority of passengers (98 percent) walked ox biked to their final destination after their last bus or train. The egress mode results generally mirror those for the access mode.

Figure 2.4: Distribution of Egress Mode

Table 2.8 illustrates the relationship between the bus route surveyed, and the total number of vehicles needed to complete respondents' one-way trips. Thirty-three percent of all bus passengers used a total of two vehicles, either bus or rail, to complete their one-way-trip. Forty-one percent of passengers used three or more vehicles to complete their trip.

Table 2.8: Cross-Tabulation of Line by Total Vehicles Used

Cluster Group	Total Vehicles Used				Total
	1	2	3	4 cr more	
Mi-.. 2	39.6\%	43.9%	10.9\%	5.6\%	100.0\%
MT-.. 4	51.5\%	36.3\%	9.4\%	2.7\%	100.0\%
Mr. 10	60.8\%	27.0\%	10.3\%	1.9\%	100.0\%
MT- 14	43.7\%	38.4%	16.6\%	1.4\%	100.0\%
MT. 16	43.5\%	38.3\%	14.8\%	3.4\%	100.0\%
MT. 18	49.1\%	32.9%	11.5\%	6.5\%	100.0\%
MT- 20	40.2\%	47.7\%	9.1\%	3.0\%	100.0\%
MT- 26	50.4\%	36.3\%	9.8\%	3.5\%	100.0\%
MT. 28	40.2\%	51.1\%	7.5\%	1.2\%	100.0\%
MT. 30	21.9\%	56.1\%	20.5\%	1.5\%	100.0\%
MT. 33	57.4\%	35.5\%	4.4\%	2.7\%	100.0\%
MT. 35	25.8\%	53.4%	17.1\%	3.7\%	100.0\%
MT. 38	36.1\%	39.7\%	20.4\%	3.8%	100.0\%
MT. 40	43.3\%	43.1\%	12.0\%	1.7\%	100.0\%
MT. 45	40.3\%	56.1\%	2.8\%	0.8\%	100.0\%

Cluster Group	Total Vehicles Used				Total
	1	2	3	4 cr mare	
MT-. 53	33.0\%	52.6\%	10.5\%	3.9\%	100.0\%
MT-. 55	55.2\%	33.1\%	9.9\%	1.7\%	100.0\%
MT- 60	32.1%	52.0\%	13.4\%	2.5\%	100.0\%
Mil- 62	46.7\%	41.4\%	8.6%	3.3\%	100.0\%
MT-. 66	54.3\%	33.8\%	11.8\%	0,2\%	100.0\%
MT-. 68	39.1%	34.3%	21.5%	5.1\%	100.0\%
MT- 70	37.4\%	47.9\%	11.8\%	2.9\%	100.0\%
MT-. 71	22.3\%	59.7%	12.6\%	5.5\%	100.0\%
MT- 76	46.1\%	36.7\%	13.9\%	3.3\%	100.0\%
MT-. 78	428\%	46.1\%	9.2\%	2.0\%	100.0\%
MT- $\mathrm{B1}$	49.5\%	37.2\%	10.7\%	2.5\%	100.0\%
MT- 83	42.4\%	40.6\%	13.1\%	3.9%	100.0%
MT. 90	49.7\%	35.3\%	13.8\%	1.1\%	100.0\%
MT. 92	41.4\%	39.5\%	13.8\%	5.4%	100.0\%
MTT. 94	31.1\%	50,0\%	17.4%	1.5\%	100.0\%
MT-102	49.8\%	34,4\%	11.4%	4.4\%	100.0\%
MT-105	22.4\%	52.3\%	21.2\%	4.2\%	100.0\%
MT-108	27.0\%	53.4\%	15.2\%	4.4\%	100.0\%
MT-110	41.4\%	42.1\%	14.6%	1.9\%	100,0\%
MT-111	24.4\%	49.3\%	22.7%	3.7\%	100.0\%
MT-115	39.0\%	37.6\%	18.0\%	5.4\%	100.0\%
MT: 17	35.9\%	44.9\%	14.8\%	4.4\%	100.0\%
MT-120	36.2%	44.2\%	14.8\%	4.8\%	100.0\%
MT-126	70.3%	7.6\%	12.6\%	3.4\%	100.0\%
MT-127	38.9\%	44.5\%	13.6\%	3.0\%	100.0\%
MT-150	43.2\%	32.4\%	17.0%	7.4\%	100.0\%
MT-152	48.8\%	37.2%	11.0\%	2.9\%	100.0\%
MT-154	47.8\%	27.4\%	10.8\%	14.0\%	100.0\%
MT-155	22.5\%	36.6%	34.4\%	6.6%	100.0\%
MT-156	20.0\%	38.8\%	32.0\%	9.2\%	100.0\%
MT-158	44.6\%	42.5\%	7.9\%	5.0\%	100.0\%
MT-161	27.7\%	42.3%	19.6\%	10.4%	100.0\%
MT-163	42.6\%	44.7\%	9.7\%	3.0\%	100.0\%
MT-164	58.3\%	31.2\%	7.9\%	2.5\%	100.0\%
MT-165	45.0\%	35.2\%	11.2\%	8.6\%	100.0\%
MT-166	40.7\%	43.1\%	12.7\%	3.4%	100.0\%
MT-169	65.8\%	23.6\%	6.8\%	3.9\%	100.0\%
MT-175	4.7\%	67.6\%	16.3\%	11.4%	100.0\%
MT-176	35.7\%	45.7\%	17.5\%	1.1\%	100.0\%
MT-180	40.6\%	39.1\%	14.9\%	5.3\%	100.0\%
MT-183	54.5\%	27.3\%	10.4%	7.8\%	100.0\%
MT-190	51.6\%	31.0\%	14.4\%	3.0%	100.0\%
MT-200	26.3\%	49.7\%	18.0\%	6.0\%	100.0\%

Cluster Group	Total Venicles Used				Total
	1	2.	3	4 or more	
Mr-20\%	49.6\%	37.5\%	8.6\%	4.3\%	100.0\%
MT-202	55.2\%	33.7\%	11.1%	0.0\%	100.0\%
MY.204	44.3%	41.2\%	11.7%	2.9\%	100.0\%
MT-206	28.9\%	61.9\%	6.5\%	2.7\%	100.0\%
MT-207	32.8\%	46.4\%	14.7\%	6.1\%	100.0\%
MT-209	35.9\%	40,1\%	15.8%	8.2\%	100.0\%
MT-210	30.9\%	43.9%	20.0\%	5.2\%	100.0\%
MT. 211	56.6\%	31.5\%	9.9\%	2.0\%	100.0\%
MT-212	26.9\%	53.3\%	17.3\%	2.5\%	100.0\%
MT-217	38.1\%	41.8%	14.9%	5.2\%	100.0\%
MT-220	28.7\%	53.0\%	16.1%	2.2\%	100.0\%
M1. 222	28.7\%	37.6\%	21.6%	12.1\%	100.0\%
MT. 224	28.7\%	39.0\%	25.2\%	7.2\%	100.0\%
MT-230	40.2\%	46.8\%	7.7\%	5.4\%	100.0\%
MT-233	38.7\%	47.0\%	10.0%	4.3\%	100.0\%
MI-234	42.8\%	40.6\%	11.9\%	4.6\%	100.0\%
MT-236	25.4\%	49.2\%	14.5\%	10.9\%	100.0\%
MT-239	68.0\%	28.6\%	3.4\%	0.0\%	100.0\%
MT-242	39.6\%	44.6\%	8.9\%	6.9\%	100.0\%
MT-244	45.1%	38.7\%	9.0\%	7.2\%	100.0\%
MT-246	61.3\%	19.9\%	9.0\%	9.8\%	100.0\%
MT-251	47.0\%	39.4\%	9.2%	4.4\%	100.0%
MT-258	47.08	43.7\%	8.2\%	1.1\%	100.0\%
MT-260	32.5\%	46.9\%	17.3\%	3.3\%	100.0\%
MT-264	51.3\%	37.9\%	8.1\%	2.6\%	100.0\%
MT-265	36.9%	36.0\%	13.5\%	13.6\%	100.0\%
MT-268	46.3\%	38.5%	10.8\%	4.4\%	100.0\%
MT-287	46.7\%	36.8\%	15.5\%	1.1\%	100.0\%
M 7 -290	52.3%	38.2%	6.6\%	2.9%	100.0\%
MT. 292	50.1\%	35.0\%	13.2\%	1.7\%	100.0\%
MT-305	46.9\%	38.1\%	9.7\%	5.3\%	100.0\%
MT-344	26.0\%	34.3\%	31.7%	8.0\%	100.0\%
MT-439	28.2\%	25.6\%	40.7\%	5.4\%	100.0\%
MT-442	49.5\%	46.0\%	4.5\%	0.0\%	100.0\%
MT.445.	22.1\%	43.2\%	21.6\%	13.2\%	100.0\%
MT-450	32.1%	17.0\%	35.3\%	15.5\%	100.0\%
MT-460	32.9\%	35.0\%	22.0\%	10.0\%	100.0\%
MT-485	41.2\%	39.2\%	15.2\%	4.4\%	100.0%
MT-487	43.5\%	38.3%	15.5\%	2.6\%	100.0%
MT-53.4	11.9\%	49.2\%	31.0\%	7.8\%	100.0\%
MT-550	46.6%	41.8%	8.5\%	3.1\%	100.0\%
MT-577	15.6\%	39.0\%	35.0\%	10.4\%	100.0\%
MT-6: 1	38.2\%	30.7%	19.0\%	12.1%	100.0\%

Cluster Group	Toial Vehicles Used				Total
	1	2	3	4 ormore	
MT-612	50.4%	26.9\%	18.9\%	3.8\%	100.0\%
MT-620	57.5\%	33.7\%	6.2\%	2.8\%	100.0\%
MT-645	36.2\%	31.0\%	30.0\%	1.9\%	100.0\%
MT-665	45.5\%	41.8%	7.5\%	5.2\%	100.0\%
MT-685	43.8\%	32.0%	22.4\%	1.8\%	100.0\%
MT-637	47.0\%	28.5\%	13.3\%	11.1\%	100.0\%
MT-704	42.7\%	40.2\%	14.7%	2.5\%	100.0\%
MT-705	29.9\%	40.3\%	19.2\%	10.6\%	100.0\%
MT-710	24.18	42.3\%	23.3\%	10.3\%	100.0\%
MT-720	40.3%	40.1\%	16.3\%	3.3\%	100.0\%
MT-728	42.2\%	43.7\%	9.7\%	4.4%	100.0\%
MT-730	42.6\%	32.8%	17.9\%	6.8%	100.0\%
MT-733	25.7\%	56.1\%	16.7\%	1.5\%	100.0\%
MT-734	21.2\%	56.3\%	15.2\%	7.3\%	100.0\%
MT-740	35.7\%	42.3\%	18.2\%	3.8\%	100.0\%
MT-741	18.1\%	44.9\%	18.9\%	18.1\%	100.0%
MT. 745	37.8%	47.9\%	12.1\%	2.2\%	100.0\%
MT. 750	17.5\%	44.4\%	23.4\%	14.7\%	100.0\%
MT.751	24.9\%	51.9\%	16.1%	7.1\%	100.0\%
MT-760	25.1\%	48.9\%	20.8\%	5.2\%	100.0%
MT-761	35.2\%	35.3\%	22.5\%	6.9%	100.0%
MT.762	28.4\%	49.0\%	17.0\%	5.7\%	100.0\%
MT. 770	36.1\%	45.3\%	18.8\%	1.8\%	100.0\%
MT. 780	22.3\%	43.6\%	24.6\%	9.5\%	100.0\%
MT-794	38.7\%	43.5\%	16.6%	1.2\%	100.0\%
MT-901	21.9\%	372%	26.9\%	14.0\%	100.0\%
MT.910	25.7\%	33.4\%	29.3\%	11.6%	100.0\%
Tolal	38.9\%	42.3\%	14.4\%	4.4\%	100.0\%

Figure 2.5 details the number of working vehicles available to the passenger. Passengers with fewer than two vehicles in their household made up 81 percent of the bus passenger population. Passengers with more than two vehicles in their household made up five percent of the bus passenger population.

Figure 2.5: Vehicle Avallability

Figure 2.6 docurents how bus passengers paid their fare. Fifty-three percent of bus passengers used day, weekly, or monthly passes to pay for their trip, while thirty-six percent of bus passengers paid their fare by cash or token.

Figure 2.6: Distrlbution of Fare

Figure 2.7 summarizes the number of full-time or part-time workers in a surveyed household. Cightyone percent of bus passengers have two or fewer employed household members. Bus passengers living in households with four or more employed members make up seven percent the ridership.

Figure 2.7: Distribution of Household Workers

45%	
40%	
35%	
30%	
25%	
20%	
15%	123%
10%	
5%	

Figure 2.8 characterizes bus passengers' driver's license status. Seventy-five percent of bus passengers do not possess a valid driver's license. There is a direct relationship between the number of bus passengers with no vehicles in their households, reported at 55 percent, and the number of bus passengers, two-thirds of the ridership overall, who do not possess a valid driver's license.

Figure 2.8: Distribution of Valid Driver's License

Bus passengers who participated in the survey specified their employment status as reported in Figure 2.9. Sixty-foul percent of bus passengers are employed either full- or part-time. Nineteen percent of bus passengers are students, while 10 percent of passengers are unemployed.

Figure 2.9: Distribution of Employment Status

Figure 2.10 shows the age distribution of bus passengers. A plurality of bus passengers (28 percent) are between the ages of 35 and 49 yrurs old. Forty-seven percent of bus passengers are younger than 35 , and 25 pereont of passongers are 50 yonrs of age or older.

Figure 2.10: Distribution of Age

Figure 2.11 shows the distribution of ethnicity of Metro bus passengers. Hispanics, at 67 percent of the ridership, make up the majority of bus passengers; African Anerican passengers make up the second largest group, at 17 percent of the ridership.

Figure 2.11: Distribution of Ethnicity

As seen in Figure 2.12, 80 percent of bus passengers' bousehold income is less than $\$ 25,000$ annually, while 6 percent or Metro passengers make an annual income of $\$ 50,000$ or more.

Figure 2.12: Distribution of Househoid Annual Income

Fifty-nine percent of bus surveys were completed in English, which is 18 percent lower than the rail data collection, at 77 percent.

Figure 2.13: Distribution of Language

Metro Rail Analysis

Table 3.1 documents the sample goals and the number of completed surveys for the individual rail lines that serve the Metro region. As directed by the FTA and Metro, PTV NuStats oversampled the Gold Line Lo oblain travel behaviors from passengers who access or egress the Gold Line between Mariachi Plaza and the Atlantic station.

Table 3.1: Rall Goals

Route Iype	Route	Route Name	Goal	Completes
Ral	801	Metro Blue Line	1.552	1.552
Ral	802	Mero Red Line	$2.29:$	2.297
Rall	803	Mero Green Line	776	776
Ral	804	Mero Gold Line	642	642
Rail	804	Mero Gold Line (Oversample)	500	517
Rail	805	Mera Purple Line	739	744
			Yotal	6.500

A cross tabalation of line by time of day demonstrates the number of observations collected for the Metro rail lines. The rail lines were evenly sampled by time of day with a 3 percentage point difference between AM peak period (27 percent) and PM peak period (30 percent). Thirty-nine percent of total trips were sampled during the Mid-Day period.

Table 3.2: Cross-Tabulation of Line by Time of Day

Line	Time of Day				
	AM Peak	Mid-Dcy	FM Peak	Eve/ Ealy AM	Total
801	359	697	479	17	1.552
802	675	764	715	143	2.297
803	265	279	163	69	776
804	205	469	433	52	1.159
805		235	322	157	30
	Total	1.739	2.531	1.947	311

The total response rate for the rail effort was 22 percent. The Green line had the highest response rate, at 27 percent, and the Purple line had the lowest response rate, at 11 percent.

Table 3.3: Rail Response Rates

Route lype	Route	Route Name	Surveyable Boardings	Complefes	Response Rate
Rail	801	Metro Blue tine	6.161	1.552	25.2%
Rail	802	Netro Red Line	10.515	2.297	21.8%
Rail	803	Metro Green Line	2.926	776	26.5%
Rail	804	Metro Gola Line	4.733	1.159	24.5%
Rail	805	Metro Purple Line	4.540	517	11.4%
		Tolal	28.875	6.301	21.8%

Table 3.4 documents the usable rail observations, which were expanded based on ridership figures from fiscal year 2010. The final rail observations were expanded to a total population of 297,167 from the 6,528 pieces of sample collected.

Table 3.4: Expansion of Rail Line Data

Route Type	Route	Route Name	Total Usab\% Records	Total Exponded Dola
Rail	801	Metro 3lue Line	1,552	76.908
Reil	802	Metra Redline	2.297	113.501
Rail	803	Metro Green Une	776	38.442
Rail	804	Metro Gold Line	1.159	31.828
Rail	805	Metro Puple Line	744	36.488
		Total	6.528	297.167

Table 3.5 shows the relationship between vehicle ownership and household income. Eighty-nine percent of rail respondents who do not own vehicles have an average annual income of less than $\$ 25,000$. Seventy-three percent of rail respendents with four or more vehicles have an average annual income of $\$ 25,000$ or more.

Table 3.5: Cross-Tabulation of Vehicie Ownership and Household Income

Vehicle Ownership	Household Income									Total
	$\begin{aligned} & \text { Less: } \\ & \text { than } \\ & \$ 5.000 \end{aligned}$	$\begin{aligned} & \$ 5.000- \\ & \$ 9.999 \end{aligned}$	$\begin{aligned} & \$ 10,000- \\ & \$ 14.999 \end{aligned}$	$\begin{aligned} & \$ 15,000 . \\ & \$ 24,999 \end{aligned}$	$\begin{aligned} & \$ 25,000- \\ & \$ 34.995 \end{aligned}$	$\begin{aligned} & \$ 35.000- \\ & \$ 49.999 \end{aligned}$	$\begin{aligned} & \$ 50,000- \\ & \$ 69,999 \end{aligned}$	$\begin{aligned} & \$ 70,000- \\ & \$ 134,000 \end{aligned}$	$\begin{aligned} & \$ 135,000 \\ & \text { or more } \end{aligned}$	
None	25.3\%	25.6%	22.2\%	15.7%	6.3\%	2.6\%	1.3\%	0.8\%	0.2\%	100.0\%
One	11.8\%	12.4%	16.4\%	19,4\%	11,5\%	11.3\%	8.6\%	7.1\%	1.5\%	100.0\%
Two	8.2\%	7.9\%	12.3\%	15.9\%	10.6\%	9.0\%	7.7%	19.4\%	8.9\%	100.0\%
Three	4.1\%	12.0\%	8.1%	9.7\%	11.7\%	16.0\%	9.6\%	19.1\%	9.8\%	100.0\%
Faut or more	4.6\%	4.5\%	9.4\%	8.2\%	7.6\%	5.5\%	18.7\%	25.4\%	16.1%	100.0\%
Total	15.2\%	159\%	16.8\%	16.3\%	9.3\%	7.7\%	6.1%	9,0\%	3.7\%	100.0\%

Figure 3.1 shows the distribution of origin trip purpose for rail passengers. Forty-three percent of rail passengers' origin location was home, while 31 percent of passenger trips originated from work or a work-related activity. An additional 11 percent of passengers were coming from school, either university or K-12th grade.

Figure 3.1: Distribution of Origin Trip Purpose

Forty-six percent of rail passengers' destination location was home, as shown in Figure 3.2 . Additionally, 29 percent of respondents used Metro's rail service to get to work or a work-related activity, while a combined 18 percent of passengers were traveling for social, shopping, medical, and civic activities.

Figure 3.2: Dlstribution of Destination Trlp Purpose

Table 3.6 examines the relationship of passengers' access and egress modes for their one-way trip. Seventy-five percent of rail passengers walked from their origin to their first vehicle and walked from their final vehicle to their destination. Other popular combinations were droppod off and walk/wheelchair, as well as walk/wheelchair and drive alone and parl, at 6 percent, reapectively.

Table 3.6: Cross-Tabulation of Egress Mode by Access Mode

Egress Mode	Access Mode									
	Woik/ Wheelchair	Bicycled	Dropped Of	Brove alone and parked	Carpooled and parked	Toxi	Dich-A-Ride	School Bus	Other	Total
Walk / Wheelchair	75.4\%	0.4\%	6.0\%	5.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	86.9\%
Bicycle	0.7\%	1.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	2.4\%
Picked Up	3.7%	0.0\%	0.4\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	4.1\%
Drive alone and pork	6.0\%	0.0\%	0.1\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	6.2\%
Corpool ond gark	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Tox	0.18	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1%
Dial-A-Ride	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
School Bus	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Other	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0.2\%
Total	86.0\%	2.1\%	6.5\%	5.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%	100.0%

Figure 3.3 presents how Metro rail passengers access transit. The access mode statistics indicate that the majority of passengers (86 percent) walked/wheelchaired, while 12 percent of respondents used an automobile to get from theix origin location to their first (Lransit) vehicle.

Figure 3.3: Distribution of Access Mode

Figure 3.4 presents how Metro rail passengers egress transit. Egress mode use is similar to that for access modes, indicating that Metro rail passengers rely heavily on walking to access service. Eightyseven percent of passengers reported they would walk/wheelchair to their final destination. One in 10 respondents used an automobile to get from their last transit vehicle to their final destination.

Figure 3.4: Disfribution of Egress Mode

Table 3.7 illustrates the relationship between the rail line surveyed and the total number of vehicles needed to complete a one-way trip. Thirty-six percent of all rail passengers used a total of two vehicles, either bus or rail, to complete their one-way-trip. Thirty-eight percent of passengers used three or more vehicles to complete their trip.

Table 3.7: Cross-Tabulation of Line by Total Vehicles Used

Line	Total Vehicles Used				
	1	2	3	4 ormore	Toiol
802	27.8%	37.0%	24.9%	10.3%	100.0%
803	25.6%	34.8%	24.0%	15.6%	100.0%
804	15.4%	36.0%	33.6%	15.0%	100.0%
605	39.8%	35.2%	17.8%	7.1%	100.0%
	21.4%	38.2%	25.0%	15.3%	100.0%
7 7otol	25.9%	36.0%	24.9%	13.2%	100.0%

Passengers with fewer than two vehicles in their household constitute 67 percent of the rail passenger population. More specifically, 36 percent of passengers reported not having access to a vehicle. Passengers with more than two vehicles in their household made up 10 percent of the rail passenger population.

Flgure 3.5: Vehicle Availabillty

Figure 3.6 documents how rail passengers paid their fare. Fifty-three percent of rail passengers used day, weekly, or monthly passes to pay for their trip. Of these, the monthly pass was the most often used: 27 percent reported using a monthly pass. In addition, 29 percent of rail passengers paid their fare by cash or token.

Figure 3.6: Dlstribution of Fare

Figure 3.7 summarizes the number of full-time or part-time workers in a surveyed household. Eighty. one percent of rail passengers belong to households in which two or fewer members are employed. Noarly 4 in 10 passengers surveyed reported at least one household worker, while only 6 percent of passengers belong to households with four or more employed members.

Figure 3.7: Distribution of Household Workers

Figure 3.8 shows rail passengers' driver's license status. Fifty-four percent of rail passengers do not possess a valid driver's license. There is a direct relationship between the number of rail passengers with no vehicles in their households, reported at 35 percent, and the majority of rail passengers who do not: possess a valid driver's license.

Figure 3.8: Distribution of Valld Driver's License

Rail passengers who participated in the survey specified their employment status as shown in Figure 3.9. Sixty-geven percent of rail passengers are employed either full- or part-time. Twenty percent of rail passengers are students, while 8 percent of passengers ave unemployed.

Figure 3.9: Distribution of Employment Status

Figure 3.10 shows the age distribution of rail passengers. A pluxality of rail passengers (27 percent) are between the ages of 35 and 49 years old. Fifty-four percent of rail passengers are younger than 35 years of age, and 19 percent of passengers are 50 years of age or older.

Figure 3.10: Distribution of Age

Figure 3.11 shows the distribution of ethnicity of Metro rail passengers. Fifty-four percent of passengers are Hispanic, while African Americans are the next largest group of rail passengers, at 23 percent.

Figure 3.11: Distribution of Ethnicity

Sixty-four percent of rail passengers' household income is less than $\$ 25,000$ annually. Passengers with annual incomes of $\$ 70,000$ or more make up 13 percent of the ridership.

Figure 3.12: Distribution of Household Annual Income

Seventy-seven percent of rail surveys were completed in English, which is 18 percentage points higher: than those collected from the bus riders, at 59 percent.

Figure 3.13: Distribution of Language

Maps: Bus and Rail

Bus - Spanish Language Destination

Rail - Work Origin

Rail - Home Origin

Rail - Work Destination

Rail - Home Destination

Rail - Origin Mode Walk

Rail - Origin Other Mode

Rail - Destination Mode Walk

Rail - Destination Other Mode

Rail - English Language Origin

Rail - English Language Destination

Rail - Spanish Language Origin

Rail - Spanish Language Destination

Bus - Work Origin

Bus - Home Origin

Bus - Work Destination

Bus - Home Destination

Bus - Origin Mode Walk

Bus - Origin Other Mode

Bus - Destination Mode Walk

Bus - Destination Other Mode

Legend
$=$

Bus - English Language Origin

Bus - English Language Destination

Bus - Spanish Language Origin

Bus - Spanish Language Destination

Appendix A: Survey Card

Figure 4: Engllsh On-Board Survey Card (Metro Survey)

Why do you use the bus or fraln? Lel us know to serve you better.

1. Where are pou soaing \boldsymbol{F} ROM now?

2. Where are you going 10 now?Work ar Work Reiped Sthool (K-12) (stdent ady)
Socol oc Revenonol My Home Other

Please provide us with your name, phone nomber and best time to call you. Once we complete the brief phone interview, you will be odded to 0 drowing for $\$ 500$! Thank you.

Hame

3 When is the best doy'time to coll poo?

Gribtedilingoulifs Canive Flengo hold ano fils crricur celur aly ey yever ofil

Figure 5: Spanish On-board Survey Card (Metro Survey)
¿Por qué uso usled el autobís o tren? Háganos saber como servife mejo

1. ¿DE donde viene usted en este momento?

O Trisbopo Relocionodo an el TrobcioHatel (luespedes salonente)

Escuile (K.12) (ostudartes salamente)Socid o Recrectivo

W. Hogo Oro
2. ¿ADÓMDE wo ea este nomenlo?
O
Orco \qquadHosel (hrospider solaneste)(oliegio o Uniervidod (esvidances swioneste) Comprs Aeropueno (passigeros sdamente)
favor de proporsionamos su nombre, aúmero de teléfono, y la aseior bora para ilamarle o usted. Una vez que complete una breve enirevista por telélono, justed seri induido/o en una rifo de $\$ 500$! Muchas grasias

Nombre

3. ¿Cuándo seria el mejor dia/hora para llamorle a usted?
Entre Semansfinde SemencDurante el DicPorlonsche

Metro Emodto b winamo Dutimo

Earcode

Appendix B: CATI Script

LACMTA Script 2011

Introduction
Hi this is
\qquad calling on behalf of Metro; may I speak with <RNAME>.

CONTINUE WTTH <RNAME>: You completed a survey on board a MTA <VTYPE> on <DATE>, You were on <ROUTE> <DIREC> at approximately <BTIME> traveling from <OPURP> to <DPURP>. We need to ask you some specific information on the locations at which you started and ended your travel as well as any transfers you made to complete the survey process. This won't take but a few minutes of your time. Once all answers have been verified, you will be placed in a drawing for $\$ 500$.
[AGE16] Are you at least 16 years of age or older?

Questions

IF <OPURP> and <DPURP> ARE BOTH HOME OR EITHER HAVE MULTIPLE RESPONSES OR EITHER IS BLANK OR EITHER IS 97 WITH A MISSING PURPO/PURPD, OTHERWISE SKIP TO Q3.

[OPURP]

1. Let me start by confirming some information that you provided in the survey form. Which of the following best matches the type of place you were coming from?
I Work or Work Related
2 School (K-12) (STUDENT ONLY)
3 Social or Recreational
4 Home (RESPONDENT HOME)
5 Hotel (GUEST ONLY)
6 College/University (STUDENT ONLY)
$7 \quad$ Shopping
8 Airport (AIRLINE PASSENGER ONLY)
97 Other (Specify): \qquad

[DPURP]

2. And, how about where you were going to? [PROBE IF THE SAME TYPE OF PLACE]

I Work or Work Related
2 School (K-12) (STUDENT ONLY)
3 Social or Recreational
4 Home (RESPONDENT HOME)
5 Hotel (GUEST ONLY)
6 College/University (STUDENT ONLY)
7 Shopping
8 Airport (AIRLINE PASSENGER ONLY)
97 Other (Specify): \qquad

[^0]this one-way trip. Let me start by verifying your boarding location-the location in which you were provided a paper survey by one of our interviewers.
<<<<<<<<<<<<<<<<<<<<<<Trip Tracer Section-See Short Sheet>>>>>>>>>>>>>>>>>>>>>>>>>
[TBCON]
3. First I show that you boarded the \langle VTYPE \rangle for this trip at $\langle T \mathrm{TBLO}\rangle$. Is this correct?
1 YES - SKIP TOQ5
2 NO - ADD location to Hotlist and move new location.4. IF NO: Where did you board the <VTYPE $>$? FIND LOCATION ON MAP
[TACON]
5. Next, I show that you got off the $<$ VTYPE $>$ at $<$ TTALO $>$. Is this correct?1 YES - SKIP TO Q72 NO - ADD location to Hotlist and move new location.
6. IF NO: Where did you get off the <VTYPE $>$? FIND LOCATION ON MAP

Now, I want to collect the information about your travel to the <VTYPE> on which you were surveyed.

LAMTA 2010 TripTracer Short Sheet

Now, I want to collect the information about your travel to the <VTYPE> on which you were surveyed.
7. Earlier, you informed us that you were coming from <OPURP>. What is the name and address of this place?

INTERVIEWER NOTE: COLLECT LOCATION AS WAYPOINT 1 in TT
8. So when you left <OPURP>, did you travel directly to <BOARDING> or did you travel to a different bus, rail stop, or parking location before arriving at <BOARDING>?

1 DIRECTLY TO BOARDING-ASK Q9
2 DIFFERENT BUS/RAIL- SKIP TO Q10
3 PARKING LOCATION- SKIP TO Q14
9. What method of transportation did you use to get from <OPURP> to <BOARDING>?

INTERVIEWER NOTE: EDIT THE MODE ON THE BOARDING LOCATION WAYPOINT TO THE MODE SPECIFIED BY RESPONDENT, THEN SKIP TO ALITEXT
10. What is the system and route of the transit stop you traveled to?

INTERVIEWER NOTE- USE THE "LINE NUMBER" SEARCH FIELD IN THE TRANSIT LINE LOOK UP TAB TO SELECT APPROPRIATE SYSTEM-LINE

10a Was this a bus or train?
11. Thank you sir/ma'am and what are the cross streets of this transit stop?

INTERVIEWER NOTE- USE THE "TRANSIT STOP NAME" SEARCH FIELD TO SELECT THE CORRECT TRANSIT STOP- ADD AS ORIGIN IN TRANSIT LINE LOOK UP TAB
12. Alright, and what were the cross streets of the transit stop you got off on?

INTERVIEWER NOTE- USE THE "TRANSIT STOP NAME" SEARCH FIELD TO SELECT THE CORRECT TRANSIT STOP- ADD AS DESTINATION IN TRANSIT LINE LOOK UP TAB. TT WILL PROMPT YOU TO COLLECT THE METHOD OF TRAVEL USED TO GET TO THE TRANSIT STOP COLLECTED IN Q10
13. Did you travel to another transit stop after this, or did you travel directly to <BOARDING> from here?

1 TRANSIT STOP-ASK QUESTIONS 10-13
2 DIRECTLY TO BOARDING- SKIP TO ALITEX

14 What is the address of this parking location?

INTERVIEWER NOTE- ADD THIS AS A WAYPOINT IN TT
15 What mode of transportation did you use when you traveled to the parking location?

INTERVIEWER NOTE- ENSURE CORRECT MODE IS RECORDED IN TT
16. Thank you sir/ma'am, and what mode of transportation did you use when you traveled from the parking location to <BOARDING>?

INTERVIEWER NOTE- ADJUST MODE OF BOARDING LOCATION ACCORDINGLY
ALITEX Alright sir/ma'm, as we confirmed earlier, once you left <BOARDING> you got off at <ALIGHTING>

Now, I want to collect the information about your travel to your final destination.
17. After you got off at <TTALO>, what did you do next? Did you travel directly to <DPURP > or did you travel to a different bus, rail stop, or parking location before arriving at <DPURP >?

1 DIRECTLY TO <DPURP>- SKIP TO Q24
2 DIFFERENT BUS/RAIL-CONTINUE WITH Q19
3 PARKING LOCATION- SKIP TO PARKING
19. What system and route did you transfer to? PLEASE SPECIFY SYSTEM NAME INSTEAD OF ABBREVIATION (e.g., Metro for MT, Culver City bus for CC, etc.)

INTERVIEWER NOTE- USE THE "TRANSIT STOP NAME" SEARCH FIELD TO SELECT THE CORRECT TRANSIT STOP-ADD AS LINE/ORIGIN IN TRANSIT LINE LOOK UP TAB
20. Thank you sir/ma'am and what are the cross streets of this transit stop?

INTERVIEWER NOTE- USE THE "TRANSIT STOP NAME" SEARCH FIELD TO SELECT THE CORRECT TRANSIT STOP- ADD AS ORIGIN IN TRANSIT LINE LOOK UP TAB

21 Alright, and what were the cross streets of the transit stop you got off on?
INTERVIEWER NOTE- USE THE "TRANSIT STOP NAME" SEARCH FIELD TO SELECT THE CORRECT TRANSIT STOP. ADD AS DESTINATION IN TRANSIT LINE LOOK UP TAB. TT WILL PROMPT YOU TO COLLECT THE METHOD OF TRAVEL USED TO GET TO THE TRANSIT STOP COLLECTED IN Q21
22. Did you travel to another transit stop after this, or did you travel directly to <DPURP > from here?
1 TRANSIT STOP Re-ask Q 19-22
2 NO-SKIP TO Q24
PARKING- What is the address of this parking location?
INTERVIEWER NOTE- ADD LOCATION AS A WAYPOINT IN TT
24. How did you travel from this location to your final destination?
ADJUST MODE ACCORDINGLY IN TT
26. What was the location of your final destination?
INTERVIEWER NOTE: ADD LOCATION AS FINAL WAYPOINT IN TT

BACK TO CATI

[DTRAN] Display of trip: route sequence, total buses, trains, and total vehicles, origin, destination, access, egress, and any additional TT notes
[BIKE]
27. Did you take your bike with you on the <VTYPE>?

1. Yes
2. No
3. DK/RF
I just have a few more questions for you.
[FARE]
4. How did you pay your fare for this trip?
5. Cash
6. Token
7. Day pass
8. Weekly pass
9. Monthly pass
10. Freeway express stamp
11. EZ Transit pass
12. EZ Premium stamp
13. Other (Specify):
\qquad
99 DK/RF
[O_FARE] Other Fare
[VEHAV]
14. How many working vehicles are available in your household?
NOTE DO NOT READ RESPONSE CATEGORIES IN CAPS

- NONE
1 ONE
2 TWO
3 THREE
4 FOUR OR MORE
$9 \mathrm{DK} / \mathrm{RF}$
[H.HWRK]

30. How many of the people in your household are employed full-time or part-time?
0 NONE
1 ONE
2 TWO
3 THREE
4 FOUR
5 FIVE OR MORE
9 DK/RF
[LICSE]
31. Do you have a valid driver's license?
32. Yes
33. No
$9 \quad \mathrm{DK} / \mathrm{RF}$
[EMPLY]
34. Are you...
35. Employed Full-time
36. Employed Part-Time
37. Student
38. Unemployed
39. Retired
40. Homemaker
41. $\mathrm{DK} / \mathrm{RF}$
[AGE]
42. What is your age? Is it....
43. Under 18
44. $18-24$
45. $25-34$
46. $35-49$
47. $50-64$
48. $65+$ years of age
49. $\mathrm{DK} / \mathrm{RF}$
[ETHNC]
50. What is your ethnicity? Do you consider yourself....
I. Asian
51. Hispanic
52. White
53. Black/African American
54. Native American
55. Other
99 DK/RF
[O_ETHNC] Other Ethnicity
[INCOM]
56. My last question is about your total household income in 2009. Into which of the followingcategories does your household fall? (IF NEEDED: Household income not only allows us toverify that we are including all types of households from the region, but it also has beenfound to be related to the types of trips households make.)
57. Less than $\$ 5,000$
58. $\$ 5,000$ to $\$ 9,999$
59. $\$ 10,000-\$ 14,999$
60. $\$ 15,000-\$ 24,999$
61. $\$ 25,000-\$ 34,999$
62. $\$ 35,000-\$ 49,999$
63. $\$ 50,000-\$ 69,999$
64. $\$ 70,000-\$ 134,999$
65. $\$ 135,00$ or more
$99 \mathrm{DK} / \mathrm{RF}$
Those are all the questions I have for you. Thank you very much for your time and for participating in this important survey. Have a great day!

[^0]: GO TO TT : SAY: For this survey, we will be using an interactive mapping tool to verify the origin and destination of the one-way transit trip you were surveyed on. In addition to this, we'll need to use the same tool to verify any additional bus or rail stops and parking locations you may have visited during

