

HE ---33353 .B8 T73 MAY 192006 1994

.

PROGRAM

High-Occupancy Vehicle Seminar

Los Angeles, California

June 5, 1994

Opening Remarks 8:30 - 8:45 a.m.

Session 1: Introduction 8:45 - 9:30 a.m. *Tim Lomax*

- Why Consider HOV Lanes?
- Role and Purpose of HOV Concepts
- Typical Markets Served
- Effectiveness of Treatments
- Examples of Successful Applications
- Inventory of Current Projects
- Questions and Discussion

Session 2: Planning - Part 1 9:30 - 10:00 a.m. Donald Samdahl and Kern Jacobson

- Typical Planning Issues
- Evaluation Criteria Usually Applied to Define Viability
- Identifying Alternative Treatments and Screening Alternatives
- Modeling of Demand and Traffic Impacts
- What Planning Lessons Have We Learned?
- Questions and Discussion

Break

10:00 - 10:15

Session 2: Planning - Part 2 10:15 - 11:00 a.m. High-Occupancy Vehicle Seminar Agenda Page 2

Session 3: Arterial HOV Treatments 11:00 - 11:30 a.m. Kern Jacobson

- Key Issues for Arterials
- Operational Objectives and Criteria
- Design Treatments
- Signal Priority Treatments
- Vehicle Identification and Control Strategies
- Implementation Issues
- Questions and Discussion

Lunch 11:30 - 12:30 p.m.

Session 4: Operations 12:30 - 1:45 p.m. Donald Samdahl and Kern Jacobson

- Eligibility and Periods of Operation
- Enforcement
- Incident Management
- Advanced Roadway Technology Applications
- Support Programs

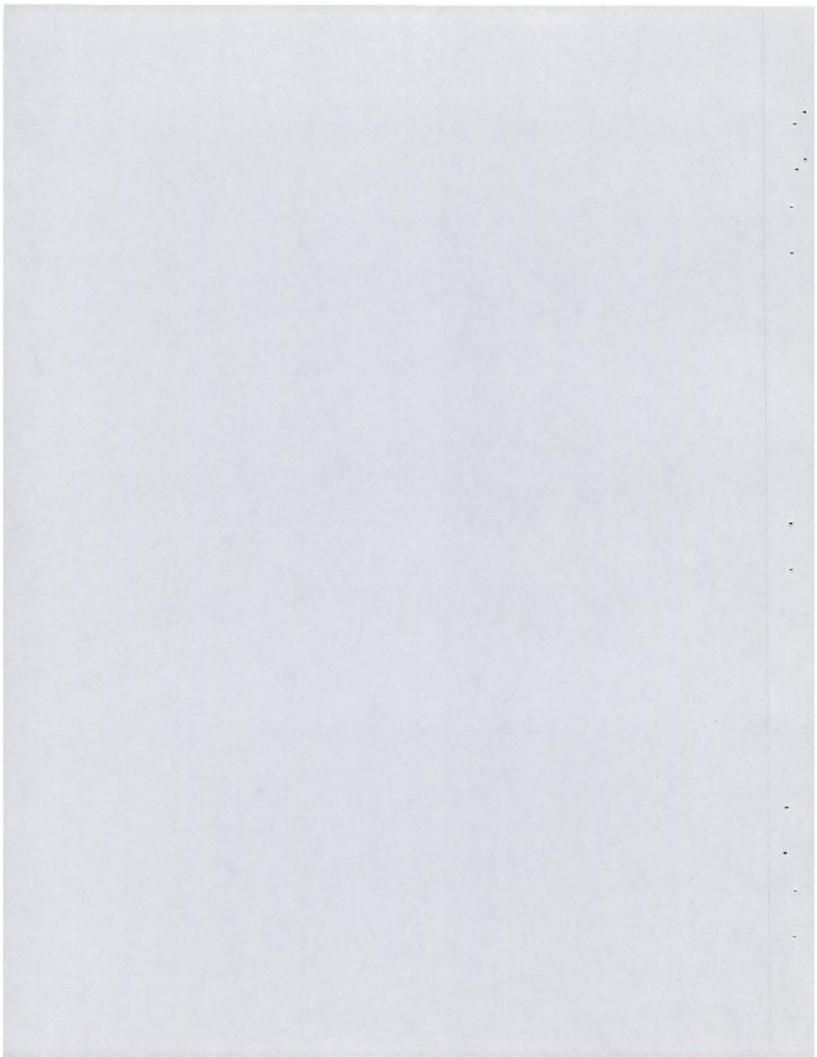
Break 1:45 - 2:00 p.m.

Session 5: Design 2:00 - 3:15 p.m. *Tim Lomax*

- Design Guidelines
- Cross Sections
- Access Treatment
- Other Considerations
 - □ Enforcement
 - □ Signing and Marking
 - □ Incident Management

High-Occupancy Vehicle Seminar Agenda Page 2

Session 6: Public Involvement and Marketing 3:15 - 4:15 p.m. *Heidi Stamm*


- Role of Public Involvement and Marketing
- Constituency Building
- Issues Influencing Bus/HOV Development Marketing
- Review of Experiences from Various Projects
- Questions and Workshop

Wrap Up 4:15 - 4:30 p.m.

HOV OVERVIEW

.(

HOV Operation Concepts

Reversible-Flow

Reversible-Flow Median Lane(s)

Two-Way (Concurrent Flow)

Two-Way Barrier-Separated Lanes (Also Buffer-Separated or Nonseparated Lanes)

Contraflow

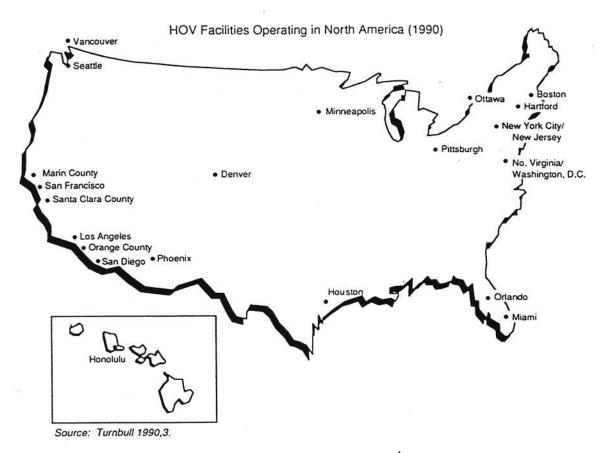
Pylons

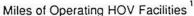
Peak Direction Off-Peak Direction Borrowed for HOVs

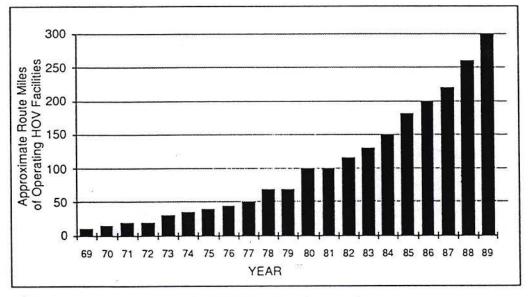
Queue Bypass

Metered Entry Ramp HOV **Bypass** Lane


Katy Transitway, Houston, Texas


El Monte Busway, Los Angeles, California




Route 495, New Jersey

Ramp meter bypass, California

¹ Data shown are for continuously operating HOV facilities either on freeways or in separate rights-of-way in North America. Mileage is not shown for HOV facilities that have been discontinued.

Source: Turnbull 1990, 4.

Figure 7 HOV Facilities Operating in North America (1990)

Operational Characteristics of Various Transit Technologies

HOV facility in freeway right-of-way

- Limited access (typically no on-line stations)
- Long distance trips
- Satisfies directional or bidirectional demand (depending on type)
- Can serve all forms of HOVs transit,
- vanpools, carpools
- Operating speed varies by user (express bus averages 65 to 90 KPH)

Commuter rail

- Limited access (station spacing typically 6.5 or more miles apart)
- · Long-distance trips
- Typically satisfies directional demand
- Can substitute for commuter bus and possibly other directional HOV modes, depending on trip destinations
- Operating speed averages 65 to 90 KPH

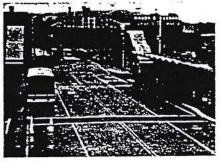
Busway in separate right -of-way

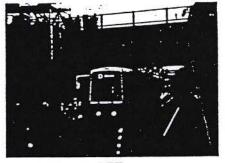
- Requires on-line stations
- Close station spacing (1.5 km or less)
- Intraurban trips (bidirectional demand)
- Replaces conventional bus routes on parallel city streets
- Operating speed averages 40 to 65 KPH

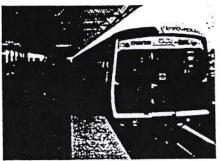
Light rail transit (LRT)

- Does not require separate right-of-way (can share street)
- Close station spacing (1.5 km or less)
- Intraurban trips (bidirectional demand)
- Replaces conventional bus routes on parallel city streets
- Operating speed averages 30 to 65 KPH

Heavy rail rapid transit (RRT)


- Requires separate right-of-way
- Station spacing usually close (1.5 km or less)
- Intraurban trips (bidirectional demand)
- Replaces conventional bus routes on parallel city streets
- Operating speed averages 40 to 65 KPH


HOV facility in freeway right-of-way


Commuter rail

Busways in separate right-of-way

Light rail transit (LRT)

Heavy rail rapid transit (RRT)

OPERATIONAL CHARACTERISTICS OF SELECTED FREEWAY/EXPRESSWAY HOV FACILITIES AS OF JUNE 1994

HOV Facility	Number of Lanes	Project Length (mi.)	HOV Operation Period	General Eligibility Requirements	Changes in Rules since Opening	
usway:						
Ottawa, Canada	1 anala disertian	20	04 5	Description		
Southeast Transitway	1 each direction 1 each direction	3.0 6.5	24 hours ¹ 24 hours ¹	Buses only	No	
West Transitway Southwest Transitway Pittsburgh, PA	1 each direction	2.5	24 hours ¹	Buses only Buses only	No No	
East PatWay	1 each direction	6.2	24 hours ¹	Dunan anh	Ma	
South PatWay	1 each direction	4.1	24 hours ¹	Buses only Buses only	No No	
Minneaplis, MN U of M intercampus busway	1 each direction	1.1	24 hours ¹	Buses only	No	
arrier-Separated: Two-Way Los Angeles, CA						
1-10 (El Monte)	1 each direction	4 (barriers) 8 (pylons)	24 hours ¹	3+ HOVs	Changed from buses only	
I-105/I-110 ramps	Connections to I-105 East and West	1.0	24 hours ¹	2+ HOVs	No	
I-10/I-710 ramps	1 each direction	1.5	24 hours ¹	3+ HOVs	Changed from	
Northern Virginia I-66	2-3 each direction	9.6	6:30-9am EB 4:00-6:30pm WB mixed-flow other times	3+ HOVs	buses only Changed operation period	
Seattle, WA I-90	1 each direction	1.5	24 hours	2+ HOVs	No	
arrier-Separated: Reversible-Flow Northern Virginia	M					
I-395 (Shirley)	2 (reversible)	11	6-9am NB, 3:30-6pm SB, mixed-flow other times	3+ HOVs	Changed from 4+	
Houston, TX						
I-10 (Katy)	1 (reversible)	13.0	5am-12noon, 2-9pm 5am-9pm WB Sat. 5am-9pm EB Sun.	3+ peak hours, 2+ other times	Opened for authorized buses and vanpools, lowered and raised since	
I-45 (Gulf) ³	1 (reversible)	12.13	5am-12noon, 2-9pm	2+ HOVs	No	
US 290 (Northwest)	1 (reversible)	13.5	5am-12noon, 2-9pm	2+ HOVs	No	
1-45 (North)	1 (reversible)	13.5	5am-12noon, 2-9pm	2+ HOVs	Changed operation periods, started with authorized buses and vanpools only	
US 59 (Southwest)	1 (reversible)	11.5	5am-12noon, 2-9pm	2+ HOVs	No	
San Diego, CA	2 (reversible)	8	6-9am, 3-6:30pm	2+ HOVs	No	
Minneapolis, MN I-394	2 (reversible)	5	6-10am, 2-7pm	2+ HOVs	No	
²ittsburgh, PA I-279/579 Norfolk, VA I-64	1 (reversible) 2 (reversible)	4.1 8	5am-noon, 2-8pm 5-8:30am WB 3-6pm EB mixed-flow	2+ HOVs 2+ HOVs	Changed from 3+ No	
Costle MA			other times			
Seattle, WA I-5 North Express Lanes	2-3 (reversible)	2.6 SB	5:00am-11:00am SB	21 101-	Changed from 2 + MD	
	w/mixed-flow	1.6 NB	12:00pm-4:00am NB	2+ HOVs	Changed from 3+ NB	
I-90	2 (reversible)	6.2	24 hours	2+ HOVs	No	
oncurrent-Flow: Buffer-Separate Vancouver, BC, Canada						
H-99	1 each direction	4 SB 1 NB	24 hours	Buses only	Νο	
Hartford, CT		200 - 200 - 200				
1-84	1 each direction	10	24 hours	2+ HOVs	Changed from 3+	
I-91	1 each direction	9	24 hours ¹	2+ HOVs	No	

Sec. Se

(Continued)

1.

OPERATIONAL CHARACTERISTICS OF SELECTED FREEWAY/EXPRESSWAY HOV FACILITIES AS OF JUNE 1994

HOV Facility	Number of Lanes	Project Length (mi.)	HOV Operation Period	General Eligibility Requirements	Changes in Rules since Opening
Honolulu, HI					
Moanaloa Fwy.	1 each direction	2.4	6-8am, 3:30-6pm	2+ HOVs	No
Kalanianaole Hwy.	1 (WB only)	2.0	5-8:30am	2+ HOVs	No
H-1	1 each direction	8	6-8am, 3:30-6pm	2+ HOVs	No
os Angeles, CA			e easil eree epin	2111010	110
SR 91	1 each direction	8	24 hours ¹	2+ HOVs	No
I-405	1 each direction	9.4	24 hours ¹	2+ HOVs	No
I-105	1 each direction	16.0	24 hours1 -	2+ Hovs	No
1-210	1 each direction	18.5	24 hours ¹	2+ HOVs	No
Drange County, CA				2111010	110
1-5	1 each direction	10	24 hours ¹	2+ HOVs	No
SR-55	1 each direction	11	24 hours ¹	2+ HOVs	No
1-405	1 each direction	24	24 hours ¹	2+ HOVs	No
SR-57	1 each direction	10	24 hours ¹	2+ HOVs	No
liverside County, CA, Rte. 91	1 each direction	8	24 hours ¹	2+ HOVs	No
anta Clara/San Mateo Counties, CA					
US 101	1 each direction	21	5-9am, 3-7pm	2+ HOVs	No
SR 237	1 each direction	6	5-9am, 3-7pm	2+ HOVs	No
SR 85	1 each direction	4	5-9am, 3-7pm	2+ HOVs	No
I-280	1 each direction	11	5-9am, 3-7pm	2+ HOVs	No
San Tomas Expy.	1 each direction	8	6-9am, 3-7pm	2+ HOVs	No
Montague Expy.	1 each direction	6	5-9am, 3-7pm	2+ HOVs	No
lameda County, CA					
I-880	1 each direction	5	5-9am, 3-7pm	2+ HOVs	No
I-80	1 each direction	12	5-10am, 3-6pm	2+ HOVs	No
Contra Costa County, CA I-580	1 each direction	6.1	7-8am, 5-6pm	2+ HOVs	No
farin County, CA					
US 101	1 each direction	13	6:30-8:30am 4:30-7:00pm	2+ HOVs	Changed from 3+
Phoenix, AZ			· · · · · · · · · · · · · · · · · · ·		
I-10	1 each direction	19	24 hours	2+ HOVs	Changed from 3+
SR-202	1 each direction	4	24 hours ¹	2+ HOVs	No
/iami, FL I-95	1 each direction	12	7-9am SB, 4-6pm NB	2+ HOVs	No
t. Lauderdale, FL I-95	1 each direction	27	7-9am, 4-6 pm	2+ HOVs	No
Drlando, FL I-4	1 each direction	30	7-9am SB, 4-6pm NB	2+ HOVs	No
Ottawa, Ontario, Canada	1 AMD - Lauldes LA		70		
Hwy 17 Rockville, MD	1 (WB shoulder only)	3	7-9am	Buses only	No
I-270 (eastern connection)	1 each direction	2.5	Peak periods only	2+ HOVs	No
Boston, MA, I-93 North Ainneapolis, MN, I-394	1 (SB only) 1 each direction	1.07 7	6:30-9:30am 6-9am EB, 4-7pm WB	2+ HOVs 2+ HOVs	Changed from 3+ No
Aorris County, NJ, I-80	1 each direction	11	Peak periods only	2+ HOVs	No
Jassau/Suffolk Counties, NY, I-495	1 each direction	10	Peak periods only	2+ HOVs	No
Nashville, TN, I-65	1 each direction	5.1	7-9am NB.	2+ HOVs	No .
lorthern Virginia			4-6pm SB	2	
I-95 (interim) ²	1 each direction ²	5 ²	6-9am, 3:30-6pm ²	3+ HOVs	No
I-66	1 each direction	7	NA	2+ HOVs	No
lorfolk/Virginia Beach, VA					
1-564	1 (EB only)	2	3-6pm EB	2+ HOVs	No
SR 44 (right shoulder)	1 each direction	4	5-8:30am WB 3-6pm EB	2+ HOVs	No
I-64	1 each direction	5	Peak periods only	2+ HOVs	Νο
Seattle, WA	12 GT 1422 WAX	201-2013	12 A.M. 14		124 - 046 III 1898-132
I-5 North of CBD	1 each direction	7.4 SB, 4.3 NB	24 hours ¹	2+ HOVs	Changed from 3+ NB&
I-90	1 (WB only)	7.3	24 hours ¹	2+ HOVs	G.P. lane conversion

(Continued)

OPERATIONAL CHARACTERISTICS OF SELECTED FREEWAY/EXPRESSWAY HOV FACILITIES AS OF JUNE 1994

HOV Facility	Number of Lanes	Project Length (ml.)	HOV Operation Period	General Eligibility Requirements	Changes in Rules since Opening
I-5 South of CBD	1 each direction	10.0 SB	24 hours ¹	2+ HOVs	Changed from 3+ NB&SB
I-405	1 each direction	10.6 NB 8.1 SB	24 hours ¹	2+ HOVs	No
0.0		8.6 NB	24 hours ¹	0.101/-	1 1-
SR 167 SR 520	1 (NB only) 1 (WB shoulder only)	1.1 2.3	24 hours ¹ 24 hours ¹	2+ HOVs 3+ HOVs	No Changed from bus-only in AM peak period
<u>contraflow</u> Honolulu, HI,					
Kalanianaole Hwy.	1	4.4 WB 1.0 EB	5-8:30am 4-6:30pm	2+ HOVs	Changed from 3+
Kahekili Hwy.	1 each direction	1.1	5:30-8:30am 3:30-7pm	2+ HOVs	No
Northern New Jersey	8	1212		-	3 . 3
Rte. 495 (Lincoln Tunnel)	1	2.5	6-10am EB	Buses only	No
New York Long Island Expy.	1	4	7-10am WB	Buses, vanpools, taxis	No
Dallas, TX	1 each direction	5.2WB, 3.3EB	6-9am, 4-7pm	2+ HOVs	Changed from 3+, extended AM period
Montreal, Quebec, Canada					
Champlain Bridge Rt. 10, 15, 20	1	4.3	6:30-9:30am NB 3:30-7pm SB	Buses only	Speed limit reduced
Queue Bypasses					
Bay Area, CA	3 (WB only)	0.9	6-9am, 3-6pm	3+ HOVs	No
Bay Bridge Toll Plaza, I-80		2	Peak periods	2+ HOVs	Changed from 3+
Dumbarton Bridge Toll Plaza, Rte. 8 San Mateo Bridge, SR-92	1 each approach	1	Peak periods	3+ HOVs	No
Various entry ramps	1 each appioach	0.1	When demand	2+ HOVs	No
vanous entry ramps	1	0.1	warrants	2111010	
Los Angeles and Orange Counties, CA	N		When demand		
Over 250 entry ramps	1	0.1	warrants	2+ HOVs	No
SR-14 Emergency bypass	1 (SB only)	5	24 hours	2+ HOVs	No
San Diego, CA	NSA 5994		When demand		
Various entry ramps	1	0.1	warrants	2+ HOVs	No
Denver, CO	1 (EB only)	4.1	6-9am	Buses only	No
U.S. 36, Boulder Turnpike Honolulu, HI, H-2	1 (SB only)	0.8	6-8am, 3:30-6pm	2+ HOVs	No
Minneapolis, MN		0.0	5 oun, 0.00-0pm		.19
Various entry ramps	1	0.2	Peak periods	2+ HOVs	No
Ft. Lee, NJ (New York City), I-95	1 (EB only)	1	7-9am	3+ HCVs	No
Northern New Jersey					
Rte. 495 (Lincoln Tunnel) Seattle, WA	1	0.3	6-10am	Buses only	No
SR 509	1 (NB shoulder only)	0.8	24 hours ¹	2+ HOVs	Changed from 3+
SR 526	1	0.5	Buses only	24 hours	No
Various entry ramps ⁴	1	0.1	24 hours	2+ HOVs	No
Ferry terminal docks	1	0.1	24 hours	Registered carpools only	No

¹ 7-day week; all others are 5-day week
 ² Interim operation
 ³ Includes 5-mile extension opened on March 14, 1994
 ⁴ Included are 23 metered ramps and 20 non-metered ramps

102P060L.wpc

LISTING OF PROPOSED MAJOR FREEWAY/EXPRESSWAY HOV FACILITIES AS OF JUNE 1994 (Listed by State/Province)

	Project Length (ml.)	Lane- miles	Anticipated Opening
Arizona, Phoenix			
Route Loop 202 (East Papago Freeway)	9	18	1992
I-10, extensions to concurrent-flow,buffer-separated lanes	8	16	1992-95
British Columbia, Vancouver, CANADA			191 G
H-7 (Barnet Highway), concurrent-flow lanes	6	NA	1993
Trans Canada Highway, concurrent-flow lanes	12	NA	Late 1990s
California, Bay Area			
US 101 (San Jose), extension to concurrent-flow lanes	7	14	1993
I-80/580, concurrent-flow lanes	NA	NA	Late 1990s
I-80 (Contra Costa), concurrent-flow lanes	35.2	70	Staged thru 1998
US 101 (Marin), extension to concurrent-flow lanes	3	6	Late 1990s
	NA	NA	Late 1990s
I-880 (Alameda) concurrent-flow lanes			
SR-4 (Contra Costa), queue bypass	0.5	0.5	1993 Lata 1000a
I-880 (Santa Clara), concurrent flow-lanes	10	20	Late 1990s
SR-237 (Santa Clara), concurrent-flow lanes	15	30	Mid-1990s
SR-85 (Santa Clara), concurrent-flow lanes	16	32	1994
SR-101 (Santa Rosa), concurrent-flow lanes	3	6	Late 1990s
California, Los Angeles			10000 ANNO 1
I-10 (San Bernardino), extension to concurrent-flow lanes	20.2	41	1999-2022
I-10 (Santa Monica), concurrent-flow lanes	9.3	18.6	2020
I-110 (Harbor), transitway and ramps	14	41	1995-2011
I-710 (Long Beach), concurrent-flow lanes	23	46	2006-2024
I-405, concurrent-flow lanes	49	98	1993-2002
	20	40	1996-1997
I-605, concurrent flow lanes	45.6	91.2	Staged 1999-2018
I-5, concurrent-flow lanes			
SR-2, concurrent-flow lanes	4.6	9.2	2004
SR-14, concurrent-flow lanes	36	72	1997-2002
SR-30, concurrent-flow lanes	8.3	16.6	1997-1999
SR-60, concurrent-flow lanes	30	60	Staged 1996-2006
SR-91, westbound concurrent-flow lane	14	18	1994
US 101, concurrent-flow lanes	37	74	2009-2024
SR-118, concurrent-flow lanes	11.4	22.8	1996
SR-134, concurrent-flow lanes	13	26	1995
SR-174, concurrent-flow lanes	6.1	12.2	1995
California, Orange County	0		
	36	72	1995-99
I-5, concurrent-flow lanes	3.3	12	1996
I-5, barrier-separated lanes			
Routes 55/405, 57/91 and 55/91, HOV interchanges	6	13	Mid/Late 1990s
SR-91, concurrent-flow lanes	19	38	1994
California, San Bernardino County			1000
I-10, concurrent-flow lanes	10	20	1999
SR-60, concurrent-flow lanes	10	20	1996
SR-71, concurrent-flow lanes	8	17	Mid/Late 1990s
SR-30, concurrent-flow lanes	22	44	Late 1990s
I-215, concurrent-flow lanes	4	8	
California, Riverside County			
SR-60, concurrent-flow lanes	20	39	Planning studies
SR-91, concurrent-flow lanes	11	21	Planning studies
I-215, concurrent-flow lanes	7	15	Planning studies
California, Sacramento			
Route 99, concurrent-flow lanes	11	22	1993
California, San Diego			
I-5, concurrent-flow lanes	21	42	Late 1990s
I-15, concurrent-flow lanes	12	24	Late 1990s

-{-

(Continued)

LISTING OF PROPOSED MAJOR FREEWAY/EXPRESSWAY HOV FACILITIES AS OF JUNE 1994 (Listed by State/Province)

	Project Length (mi.)	Lane- miles	Anticipated Opening
Colorado, Denver			
I-25, reversible-flow lanes and ramps	12	18	1995
Connecticut, Hartford I-84, WB concurrent-flow lane	1.5	1.5	1996-98
Florida, Ft. Lauderdale I-95, concurrent-flow lanes	29	58	Beyond 2000
Poo, concentent now rando	20		Deyond 2000
<u>Beorgía, Atlanta</u> HOV lane conversions on I-85, I-75	58	116	1995-1996
linois, Chicago	100		
I-55 (Stevenson Expy.) concurrent-flow lanes and ramps	13	26	1998-1999
faryland	1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	122,000,000	
I-270, concurrent-flow lanes	12+	24+	Mid/Late 1990s
SR-141, concurrent-flow lanes	NA	NA	Late 1990s
lassachusetts, Boston			
I-93 south, contraflow lane	6	12	1995
I-93 north, concurrent-flow lanes (extension)	1 4	1	1994
SR 3 south, concurrent-flow lanes	3	3	Late 1990s
I-93, reversible flow lane	8	8	2004
I-93 (Central Artery) concurrent-flow lanes	4-5	4.5	2004
linnesota, Minneapolis			
I-35W, concurrent-flow lanes	17	35	1994-1996
I-94, concurrent-flow lanes	35	70	Late 1990s
law Yask			
lew York I-495 (Long Island Expressway) concurrent-flow lanes	13	26	1995-99
I-287 (Cross Westchester Expressway) reversible-flow lane	5	10	Mid-1990s
Gowanus Expressway, concurrent-flow lanes	5	10	Mid-1990s
lew Jersey, Morris County I-287, queue bypasses, concurrent-flow lanes	21	42	staged 1996-1998
P207, queue bypasses, concurrent now rates	2.	42	staged 1990-1990
North Carolina, Charlotte		42	
US 74, reversible-flow lane	3.3	3.3	1998
Dintario, Toronto area, CANADA H-403 concurrent-flow lanes (outside)	1	2	Mid-1990s
H-403 concurrent-flow lanes (median)	5	10	Late 1990s
H-401, H-404, H-427 concurrent-flow lanes	Varies	Varies	Late 1990s
Ontario, Ottawa, CANADA	1- 1,200		O
Extensions to busway system	5+	10+	Staged thru 2000
Concurrent-flow freeway bus lanes	NA	NA	Mid-1990s
Pennsylvania, Pittsburgh			
Airport Busway	8	16	Mid-1990s
Pennsylvania, Philadelphia	13	26	Beyond 2000
I-95, reversible-flow lanes	13	20	Deyond 2000
Texas, Dallas	12		
I-635, concurrent-flow lanes	7	13	1995
I-35E, concurrent-flow lanes	8	15	Late 1990s
I-35E, US 67, contraflow lane, reversible ramps	8	12	Mid-1990s
I-30, contraflow lanes	3	6	Late 1990s

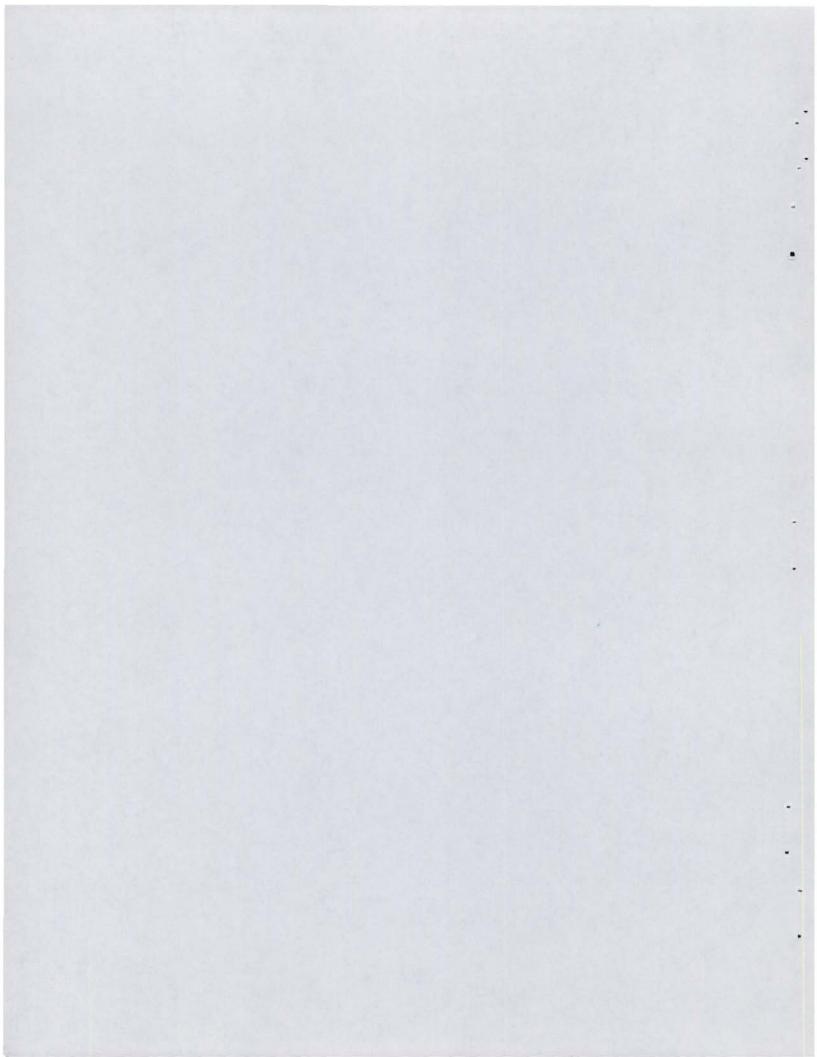
Texas, Houston

(Continued)

1.

LISTING OF PROPOSED MAJOR FREEWAY/EXPRESSWAY HOV FACILITIES AS OF JUNE 1994 (Listed by State/Province)

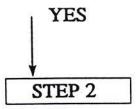
	Project Length (mi.)	Lane- miles	Anticipated Opening
US 59 (Southwest), reversible-flow lane	2	2	1996
US 59 (Eastex), reversible-flow lane and ramps	20	20	Staged 1995-2000
I-45 (North), extension to reversible-flow lane	6.2	6.2	Late 1990s
I-45 (Gulf), extension to reversible-flow lane	4	4	Mid-1990s
nia, Norfolk/Virginia Beach			
I-64, reversible-flow lanes	10	20	Mid-1990s
I-264, concurrent-flow lanes	4	8	1996
Route 44, concurrent-flow lanes	10	20	Mid-1990s
inia, Washington D.C. Area			
I-95, extension to reversible-flow lanes	19	38	Mid-1990s
I-66, concurrent-flow lanes	7.5	15	Mid-1990s
I-95/495 Capitol Beltway	20	40	1998 thru 2010
hington, Seattle/Tacoma/Everett			
I-405, extensions to concurrent-flow lanes	22	44	Staged thru 2000
I-5 south, extensions to concurrent-flow lanes	22	40	Staged thru 2000
I-5 north, extensions to concurrent-flow lanes	13	22	Staged thru 2000
I-90, concurrent-flow lanes ¹	7	7	1994
SR-520, concurrent-flow lanes	6	12	Staged thru 2000
SR-525, concurrent-flow lanes	3	6	Staged thru 2000
SR-167, extensions to concurrent-flow lanes	13	26	1996
SR-16, concurrent-flow lanes	15	30	Staged thru 2000
SR-526	1	1	2000


Four and a half miles of lane conversion opened WB. Remainder of project may also be converted lanes for the EB direction.

.

SESSION 2: PLANNING CONSIDERATIONS

•


.


TYPICAL PLANNING STEPS

STEP 1

- Does HOV make sense ?
- Are there other TDM/TSM measures that also make sense ?

- What HOV operation alternatives could address the problem(s) ?
 - Two-Way (Concurrent flow)
 - Reversible flow
 - Contraflow
 - Queue bypasses
- What design alternatives ?
 - Barriers
 - Buffer-separations
 - No physical separations

- 5¹

TYPICAL PLANNING STEPS

STEP 3

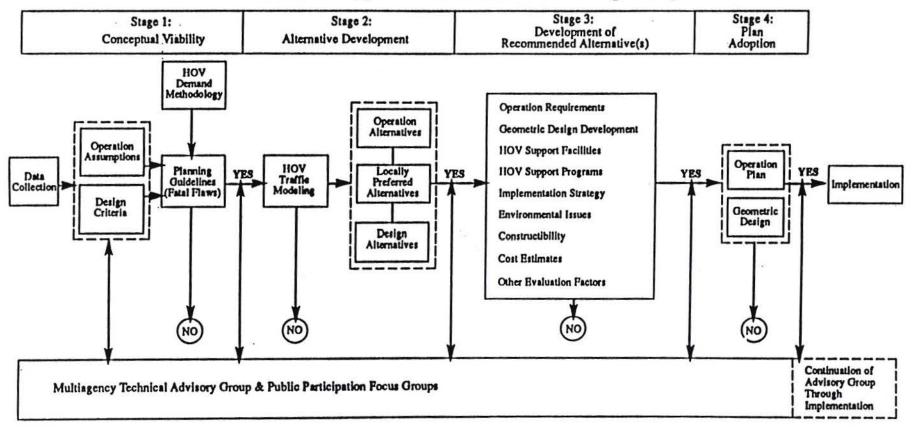
- What is the feasibility of identified alternatives ?
 - Public/agency support
 - Physical impacts
 - Enforceability
 - Incident management/safety
 - Environment
 - Market/technology compatibility
 - Cost effectiveness/funding practicality
- Access alternatives ?
 - At-grade with adjacent lanes
 - Grade-separated ramps
- What supporting needs for incident management, enforcement and collection/distribution ?
 - Shoulders
 - Dedicated enforcement areas
 - Park & ride lots, etc.

SHORTLIST TO RECOMMENDED ALTERNATIVES

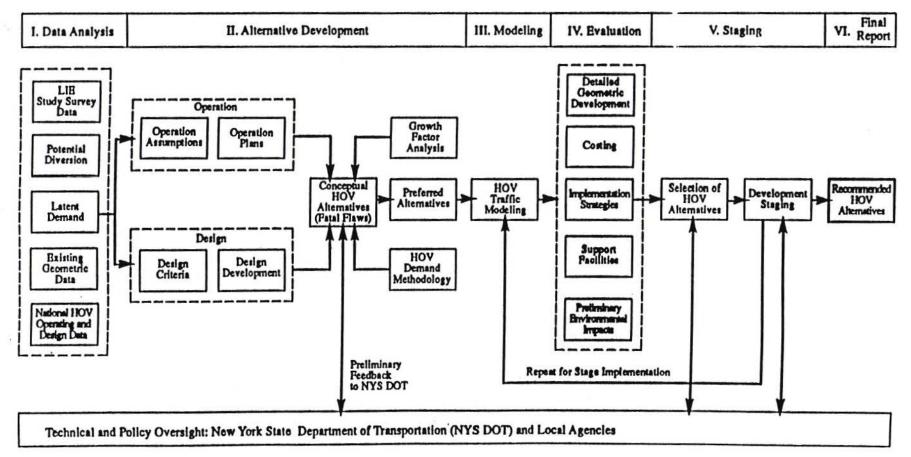
STEP 4

- Build consensus
- Adopt an HOV plan
- Identify a process for reassessing plan

Generie Approach to an HOV Planning Study


. .

Generic Approach to an HOV Planning Study


.

1

• • • •

Sample Planning Process for Long Island Expressway HOV Evaluation

4

.

1

1

.

÷.,

2-4

• •

Determining Conceptual Viability

The purpose of conceptual viability is to determine, at the earliest appropriate opportunity in a study process, if <u>any</u> HOV concepts make sense now or in the future.

Determination may be made by:

- Cursory investigation of existing and forecast traffic conditions
- Public attitudes/agency attitudes
- Affinities for transit and ridesharing
- Testing selected criteria with "rules of thumb," based on experiences elsewhere

Goals and Objectives

TRANSPORTATION GOAL	TRANSPORTATION OBJECTIVE	HOV PROJECT OBJECTIVE
 To maintain and/or im- prove the quality of transportation services on the existing trans- portation system. 	 To reduce the travel time required for the movement of persons and goods on the existing transportation system. To reduce the travel costs required for the movement of persons and goods on the existing transportation system. To improve the safety of the existing transportation system. To improve the security of the movement of persons and goods on the existing transportation system. To improve the security of the movement of persons and goods on the existing transportation system. To improve the comfort and convenience of the existing transportation system. To improve the reliability of the movement of persons and goods on the existing transportation system. 	 Improve trip time for HOV's. Maintain or improve non HOV trip time. Increase bus frequency in peak period without lowered occupancies. Reduce bus delays. Improve bus reliability. Improve service for transit dependents. Improve transit incentives for newly developed residential areas. Reduce occurrence of traffic accidents. Reduce injuries and deaths resulting from traffic accidents.
 To increase the efficiency of the existing transpor- tation system. 	 To reduce automobile usage in the immediate future. To increase transit patronage in the immediate future. To increase pedestrian and bicycle travel in the immediate future. To increase the person movement capacity of the existing transportation system to adequately serve demand. To increase transportation system productivity. 	 Provide an adequate level of enforcement. Increase number of carpools. Increase average vehicle occupancy. Increase transit patronage. Increase transit occupancy. Improve transit system productivity. Increase facility person throughput capacity.
 To minimize the cost to improve the quality of service on, and efficiency of, the existing transportation system. To minimize the undesirable environmental impacts of existing transportation facilities and services. 	 To minimize the operating costs and deficits of the existing transportation system. To reduce existing transportation system noise and vibration impacts. 	 Reduce the need for alternate facilities to accommodate current or future trip demands. Reduce transit operating costs. Reduce carpool operating costs. Reduce noise and vibration. Reduce air pollution. Reduce energy consumption.
 To promote desirable and minimize undesirable social and economic impacts of existing transportation facilities and services. 	 consumption. To provide adequate service to the transportation 	 Improve service for the transportation disadvantaged and transit dependent. Minimize disruption to goods movement. Improve center city environment and economic viability. Minimize disruption of access to adjacent businesses and residences.

1 i v i r

.

1 Y

. . . .

ELEMENTS OF AN HOV POLICY (Not Corridor or Project Specific)

PURPOSE AND ROLE OF HOV TREATMENT

 - (i.e. markets served, criteria for consideration, relation to other TSM/TDM measures)

ROLES OF VARIOUS AGENCIES

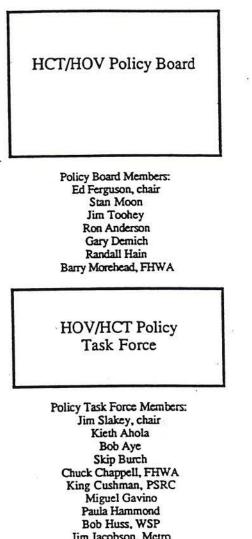
FUNDING AND IMPLEMENTATION RESPONSIBILITIES

REGIONAL PLAN

- criteria for funding and implementing plan

- setting priorities

OPERATION


- criteria for elegility
- criteria for operation periods
- enforcement
- incident management
- maintenance

DESIGN

- standards
- interim design policies
- staging

METHODS FOR UPDATING THE HOV POLICY

WSDOT Committee Structure and Responsibility

Bob Aye Skip Burch Chuck Chappell, FHWA King Cushman, PSRC Miguel Gavino Paula Hammond Bob Huss, WSP Jim Jacobson, Metro Jerry Lenzi Bill Mac Cully, CT Don Nelson Tim Payne, PT Dave Peach Toby Rickman Leslie Salisbury Ed Switaj, SED Helga Morgenstem

ad hoc HCT/HOV Issue Teams

1. 1. 1.

- Identify major HCT/HOV issues and assign to Policy Task Force (or Issues Team) for development of recommended resolution.
- Decree final decisions as they relate to policy and aspects of the state-owned portion of the HOV and future HCT systems, and initiate program implementation or change.
- Resolve funding and use of resource differences regarding WSDOT HOV and HCT programs.
- Create ad hoc Issue Teams and assign tasks for study (if needed).

At the pleasure of the Policy Board:

- Work HOV/HCT issues as assigned by Policy Board.
- Develop "white papers," recommending WSDOT actions and positions on these HOV and HCT issues.
- Serve as an advisory board; functioning between Policy Board, Issue Teams and others studying the issues.

Policy Task Force Support Staff: Jerry Ayres, principal Lois Anderson Rob Fellows Kim Henry Les Jacobson Ron Kuchenreuther, Metro Greg Lippincott John McLaughlin

Teams assigned to address specific tasks.

- Examples include:
 - HOV Issues Group (Core Lane Acceleration Committee)
 - I-5 North HOV 2+ Demonstration Steering Committee
 - Design Manual Revision Task Force
 - WSDOT Technical Review Team for HCT Planning
 - HOV Core Lane 2000 Financing Committee

updated 9/30/92

Support

, ر

- Local Agencies
- Users and Non-Users
- General Public
- Media
- Politicians

*

HOV Conceptual Viability Worksheet

Guidelines								
Numb	er Criteria	Met	Not Met					
Prin	nary Guidelines							
1	Congestion							
2	Travel Time Savings							
3	Person Throughput							
4	Vehicle Throughput (minimum)							
5	Capacity Improvement							
6	Local Agency/ Public Support							
7	Enforceability							
8	Cost Effectiveness							
9	Physical Roadway Characteristics							
Sec	ondary Guidelines							
10	Support Facilities		2					
11	Bottleneck Bypass *							
12	Safety							
13	System Development *							
14	Staging Improvements							
15	Environmental Enhancement							
16	Technology Compatibility *							

DATA COLLECTION

Freeway Applications

Mainline Pk Hour Volumes Average Vehicle Occupancy Average Travel Time Existing Geometrics Bus Usage Average Section Speeds

Arterial Applications

Pk Hour Intersection Counts Average Vehicle Occupancy Average Intersection Delay Existing Geometrics Bus Usage Signal Timing

Analysis Tools

- DEMAND ESTIMATION
 - Standard Modelling Packages (e.g. EMME/2)
 Apply mode split model to trip table and assign to network
 Poor estimation of mode shift
 - CRA Model Workbook Procedures Spreadsheet formulation Good estimation of mode shift within 1 year of opening
- COST EFFECTIVENESS
 - Cy Ulberg Model Fortran, See TRR 1181.

2.1 TITLE: Predicting HOV Facility Demand

- 2.2 PROBLEM: It is widely accepted that HOV ridership is a function of travel time savings over travel on congested roadways. However, predicting the ridership on HOV facilities, especially on a 20 year horizon, is less widely understood. For instance, clean air laws have prompted legislation that requires employers to promote transportation demand management programs. The likely spread of these programs and their effects is just beginning to be understood. In addition, marketing studies could improve our knowledge of mode choice decisions made in the presence of HOV lanes. For instance, previous research has shown that people make transportation decisions based on their perceived travel times. The differences between perceived and actual travel times can mean that models wrongly predict mode shift and HOV lane usage. In addition, knowledge about the differences would be useful in marketing HOV lanes. More information is needed on the correlation between ridership demand and travel time savings (real and perceived) as well as other contributing factors. Impacts of different occupancy requirements on HOV ridership are also required.
- 2.3 OBJECTIVE: Develop and evaluate methods to predict carpool and bus ridership on HOV facilities with sensitivity to general-purpose lane capacity, HOV occupancy requirements, peak period freeway congestion, transportation demand management programs, and better understanding of mode choice through market research.
- 2.4 KEY WORDS: HOV demand, HOV facility planning, transit ridership, mode choice modeling, transportation demand management, market research
- 2.5 RELATED WORK: Many planning models include some mode choice routine for predicting carpool and transit ridership. A few deal specifically with the impact of HOV lanes. The 1982 model developed by Charles Rivers Associates is in common use. There have been several studies of transportation demand management programs and their impact on mode choice, but little direct connection to HOV facilities.
- 2.6 URGENCY/PRIORITY: High. With the heightened emphasis on HOV lanes in the ISTEA legislation and Clean Air Act Amendments, inclusion of HOV lanes in regional transportation plans will only increase. More reliable methods of predicting HOV ridership must be developed to aid in successful projects being selected for future construction.
- 2.7 COSTS: \$250,000
- 2.8 USER COMMUNITY: FHWA, FTA, state and local transportation departments, consultants, transportation researchers
- 2.9 IMPLEMENTATION: Results of the research would be widely disseminated for integration into research and planning efforts.
- 2.10 EFFECTIVENESS: Improved HOV ridership predictions would aid in the determination of successful projects which in turn would result in more projects beings implemented with greater utilization and impact on urban mobility.

Worksheet for "Predicting Travel Volumes for HOV Priority Treatments" SAMPLE WORKSHEET Based on Charles River Associates, April, 1982 Report

ι

Worksheet # Initial/Before	Data		Worksheet ## HOV Policy		Worksheet # NPA Volume	3	Worksheet #7 Summary Results	
 V-o-npa	7275		Dein	3	DLTA-npa	-0.099		
V-o-pa	175		HOV Lgth	1.8			1. Volumes (Peak Hour)	
V-o-hov	0	Ť.	L-1-gp	3	V-1-npa	6554		
B-o-peb	16		L-1-hov	1			Carpools	
B-o-hov	0		C-1-gp	6000	If ForcdFlo (Boto Wksht 5	on HOV Lane	341
V-o-b	1500		C-1-hov	1500				
L-o-b	50		B-1-hov	16	Check v/c	1.092	Buses on HOV Lane	32
V-o-T	0		t-0-npa	13.5	lf >1,Redo Ir	om F36		
10-0.07			t-0-pa	13.5	w. ForcdFlo			
T-o-npa	28.5		t-o-b	13.5				
Т-о-ра	28.5				Chk S1gp	12.6	2. Total Travel Time on Highway (m	in)
T-o-hov			t-off-npa	15.0			1007 No. 1 1	1.0
T-o-b	28.5		t-off-pa	15.0	If about	12	Autos, Nonpriority	13.5
			t-off-b	15.0	Goto 5, If no	t redo		
S-o-gp	8				from G33 or	G36	HOV Lane	2.2
S-0-C			Worksheet #3	3				
S-o-b			Travel Times		Worksheet #	5		
					Priority Auto	Volume		
L-o-gp	3		T-1-b				3. Speeds (mph)	2)
L-o-hov	0		Est Spd	50	DLTA-pa	0.951		31
C-o-gp	6000		T-1-b	17.2			Genl Purpose Lanes	8.0
C-o-hov	0		Т-1-ра		V-1-pa	341	202223	22
			Est Spd	50			HOV Lane	50
			Т-1-ра	17.2	Check v/c	0.238		
		ForcdFlo	T-1-npa	28.5	If >.8 reduce	speed to		
		FreeFlo	S-1-gp	2.2	60 a	nd repeat		
			adjstd	12.0				
			T-1-npa	24.0	Worksheet #	6: Bus Volume		
		ChooseFo	rcdFlo(G31)orF	FreeFlo(G34)				
			T-1-npa	28.5	DLTA-b	0.054	2	
			S-1-gp	8	V-1-b	1581		5.
			EFCTR	1.03	B-1-hov	32		

.

PLANNING CONSIDERATIONS

Variable Definitions

2-15

* = Calculated by spreadsheet 1. Baseline (Initial/Before) Data 2. HOV Policy and Initial Calculations Defn Proposed carpool definition (people/veh) Peak Hour Volumes: HOV Lgth Length of proposed HOV lane V-o-npa Autos, nonpriority, vph Proposed supply/capacity: Autos, priority eligible, vph V-o-pa Number of gen'l purpose lanes V-o-hov Carpools on existing HOV Lane, vph L-1-gp Buses, priority eligible, bph L-1-hov Number of HOV lanes B-o-peb B-o-hov Buses on existing HOV Lane, bph C-1-gp Capacity of gen'l purpose lanes, vph C-1-hov Capacity of HOV lanes, vph Bus Passengers per hour, pph V-o-b B-1-hov Buses/hr if exogenously determined L-0-b Bus Load Factor, ppb Existing Travel Times over hwy bounded by HOV lanes: V-o-T Trucks, vph Total Ave Travel Time, door to door, peak hour: * Autos, nonpriority, min. t-o-npa * Autos, priority eligible, min. T-o-npa Autos, nonpriority, min. 1-0-pa Т-о-ра Autos, priority eligible, mln. t-o-b * Buses, min. Carpools on existing HOV lane, min. Existing Travel Times off hwy bounded by HOV lanes: T-o-hov t-off-npa * Autos, nonpriority, min. T-o-b Buses, min. Speeds, average peak hour: t-off-pa Autos, priority eligible, min. t-off-b * Buses, min. Gen'l purpose lanes, mph S-o-gp 3. Travel Time Estimates for forecast period S-0-C Existing HOV lane, carpools, mph S-o-b Existing HOV lanes, buses, mph Buses and autos on or eligible to use HOV lanes: T-1-b * Buses, min. Existing supply/capacity: T-1-pa * Autos (carpools), min. Number of gen'l purpose lanes L-o-gp Suggests 50 mph in absense of better data L-o-hov Number of HOV lanes Est Spd Autos on general purpose lanes: C-o-qp Capacity, gen'l purpose lanes, vph Capacity, HOV lanes, vph T-1-npa * Autos, nonpriority, min. C-o-hov S-1-gp * Speed in gen'l purpose lanes EFCTR * "Eligibility Factor"

4. Forecast of Nonpriority auto volume

5. Forecast of Priority Auto volume

V-1-pa

6. Forecast of Bus Volume DLTA-b

V-1-b

B-1-hov

DLTA-npa * Parameter calculated by spreadsheet V-1-npa * Nonpriority auto forecast, vph

DLTA-pa * Parameter calculated by spreadsheet

* Number of bus riders

* Priority auto volume in HOV lane (= carpools in HOV lane when L-o-hov=0)

* Parameter calculated by worksheet

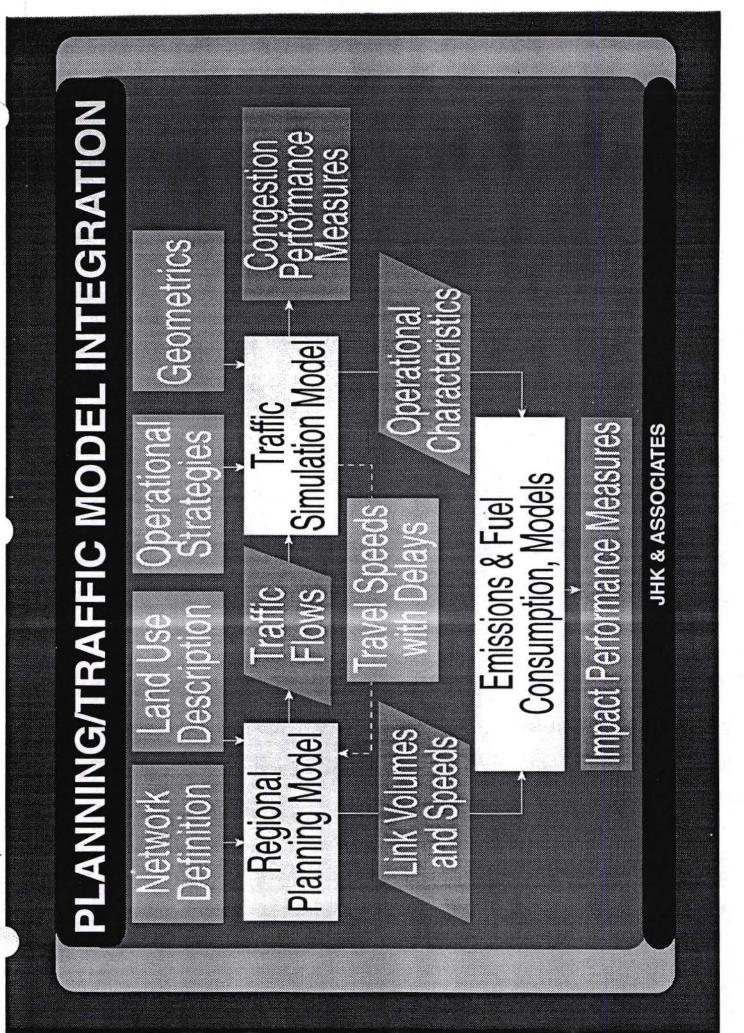
* Number of buses in HOV lane

PLANNING CONSIDERATIONS

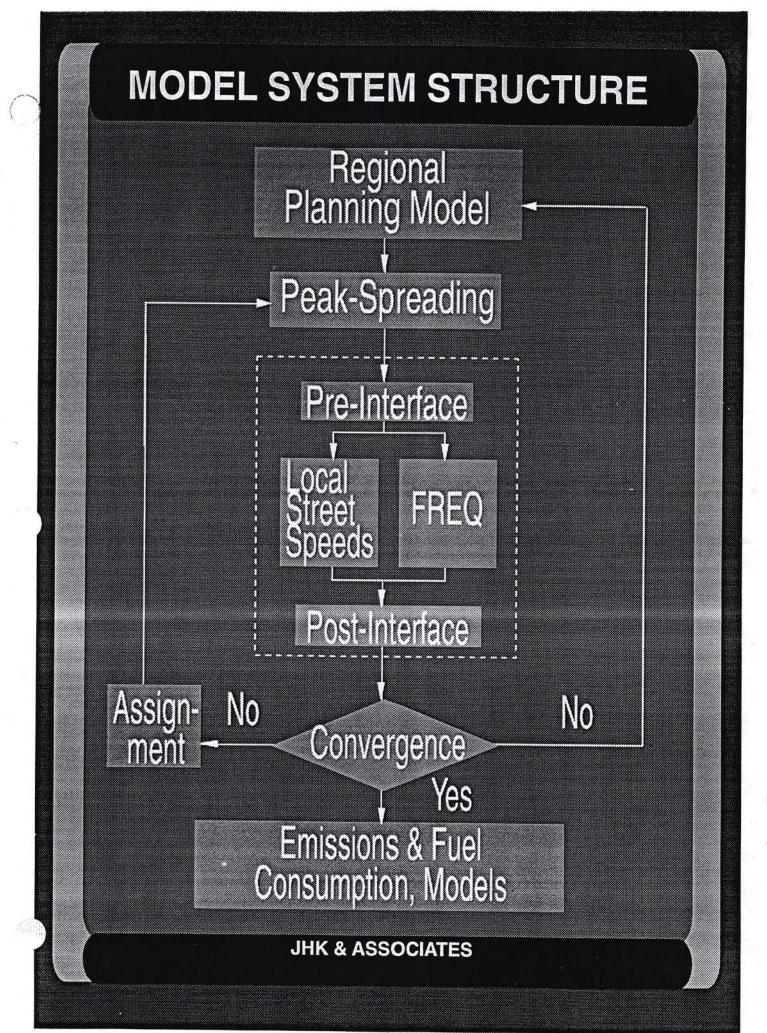
hk & associates

.

۴.


-7

-


I-880 DEMONSTRATION CORRIDOR HOV % Comparison AM Peak Hour

			Field S	Study	Planning Model	
Location	Dir	Source	Date	<u>% HOV</u>	<u>% HOV</u>	Difference
I-880 @ Farnsworth	NB	jhk/880	1992	14.0	11.6	-2.4
SR 238 (E of I-880)	WB	jnk/880	1992	10.3	12.6	2.3
SR 238 (E of I-880)	EB	jhk/880	1992	7.3	11.6	4.3
I-880 (from SR 92 to SR 238)	NB	Caltrans Caltrans jhk/880	1992 1992 1992	12.1	11.8	-0.2
I-880 (from SR 238 to SR 92)	SB	jhk/880 Caltrans	1992 1992	12.1 9.9	12.7	0.6
SR 92 (W of I-880)	WB	jhk/880 Caltrans	1992 1992	A PARTY OF A	12.6	1.3
SR 92 (W of I-880)	EB	jhk/880	1992	12.0	10.3	-1.7
SR 84 (W of I-880)	WB	Caltrans jhk/880		16.2 14.6	22.8	6.6
SR 84 (W of I-880)	EB	jhk/880	1992	15.0	13.2	-1.8
I-880 @ Paseo Padre Pkwy	NB	jhk/880	1992	13.2	12.2	-1.0
I-880 @ Paseo Padre Pkwy	SB	jhk/880	1992	13.7	13.3	-0.4

(#20026/Table 122.wld)

²⁻¹⁷

2-18

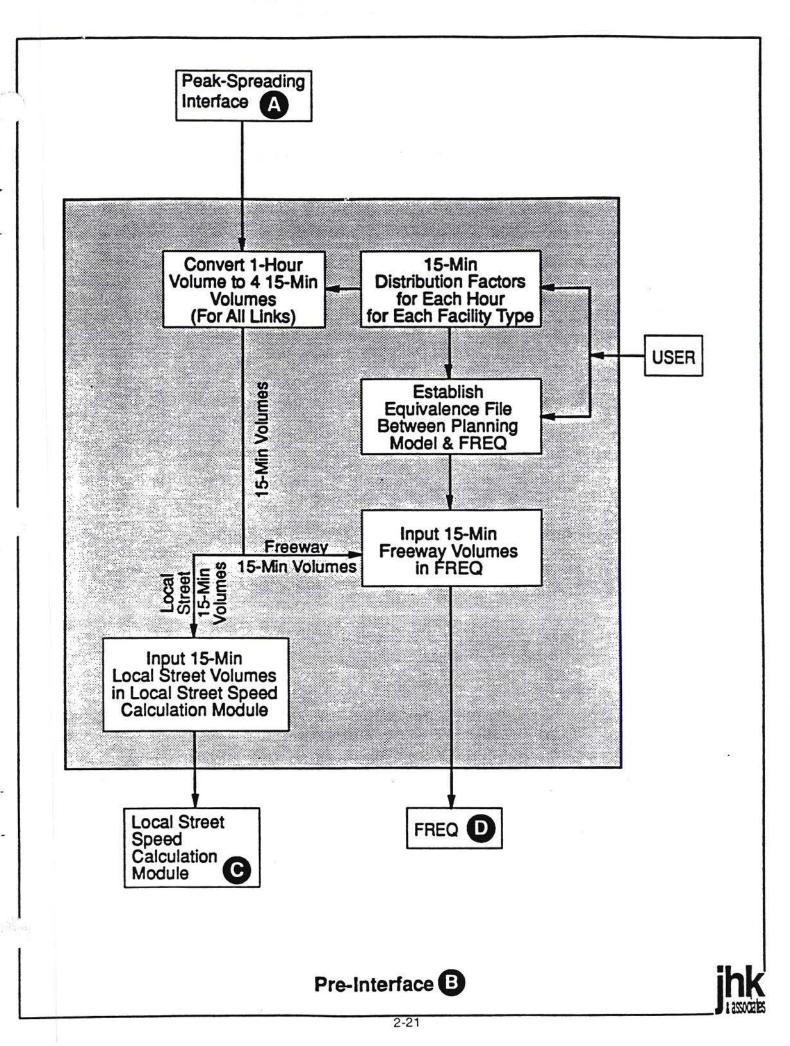
EXPERIMENTAL DESIGN

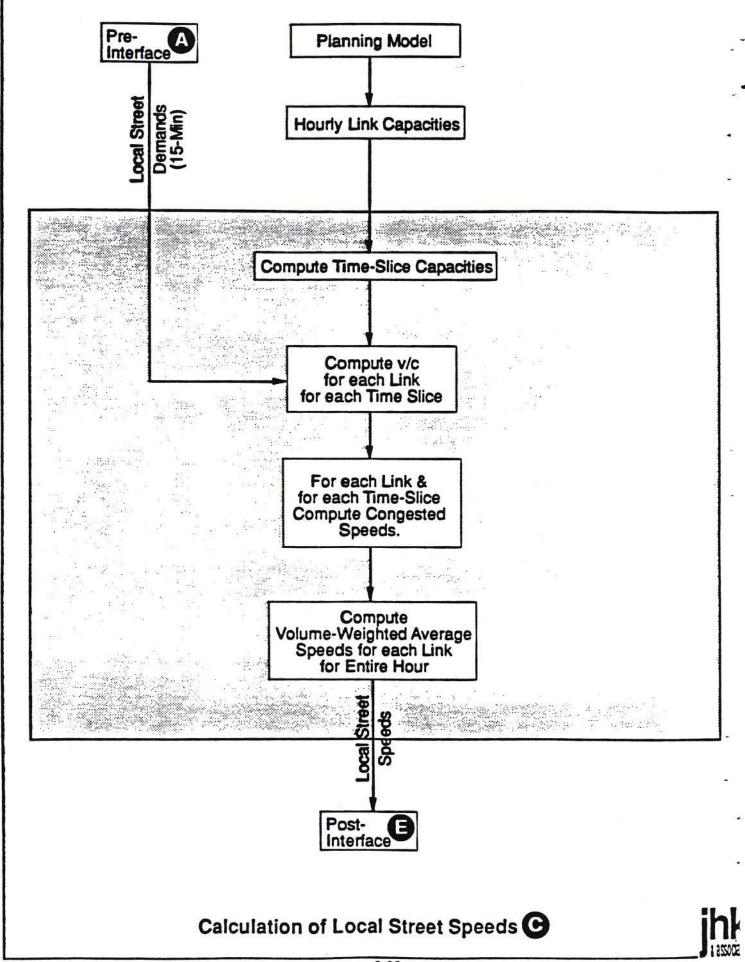
VMTFreeway0%6%VMTParallel0%-7%Arterial0%-5%Area Total0%0%Parallel0%0%Area Total0%0%Area Total0%0%Area Total0%0%Area Total0%0%Area Total0%0%Area Total0%0%Area Total0%0%Area Total0%0%	BASELINE BASEL	BASELINE W/ HOV LANE	BASELINE W/ HOV LANE & RAMP METERING
Parallel 0% Arterial 0% Area Total 0% Freeway 0% Area Total 0% Arterial 0% Arterial 0% Arterial 0%		3%	12%
Area Total 0% Freeway 0% Parallel 0% Arterial 0%		%	-12%
Freeway 0% Parallel 0% Arterial 0%		%	-4%
Arterial Area Total 0%		%	17%
otal 0%		%	16%
	0% 25	%	52%

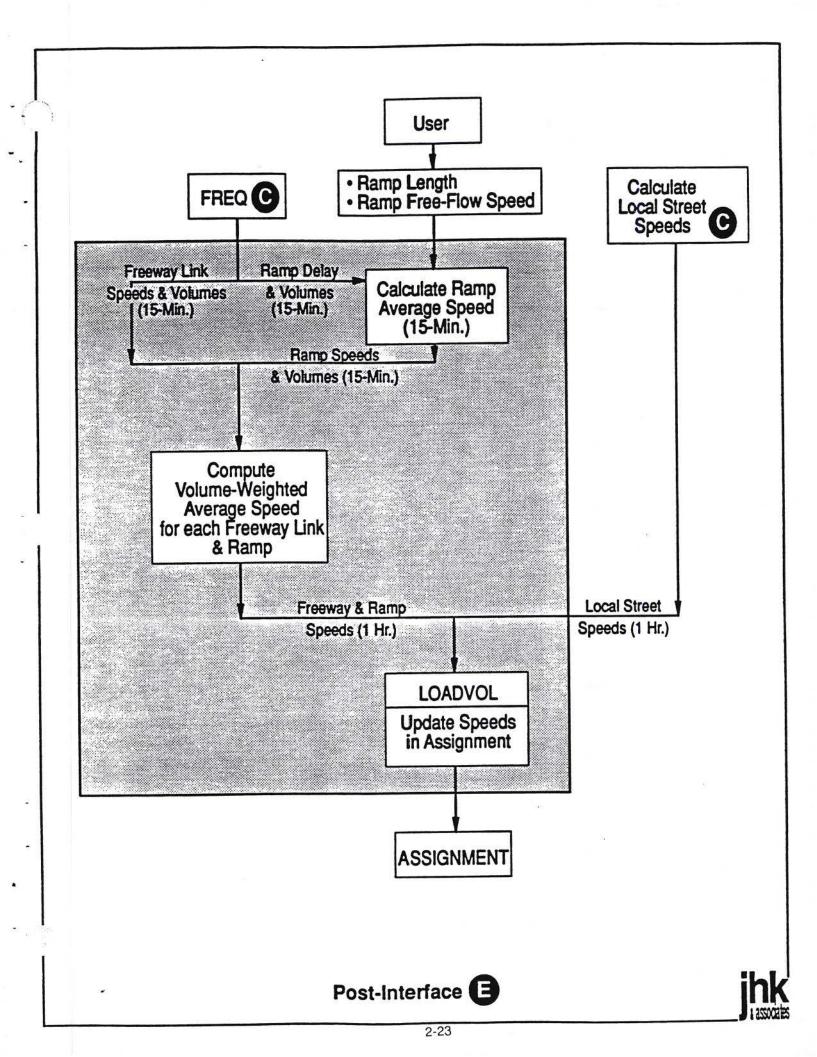
2-19

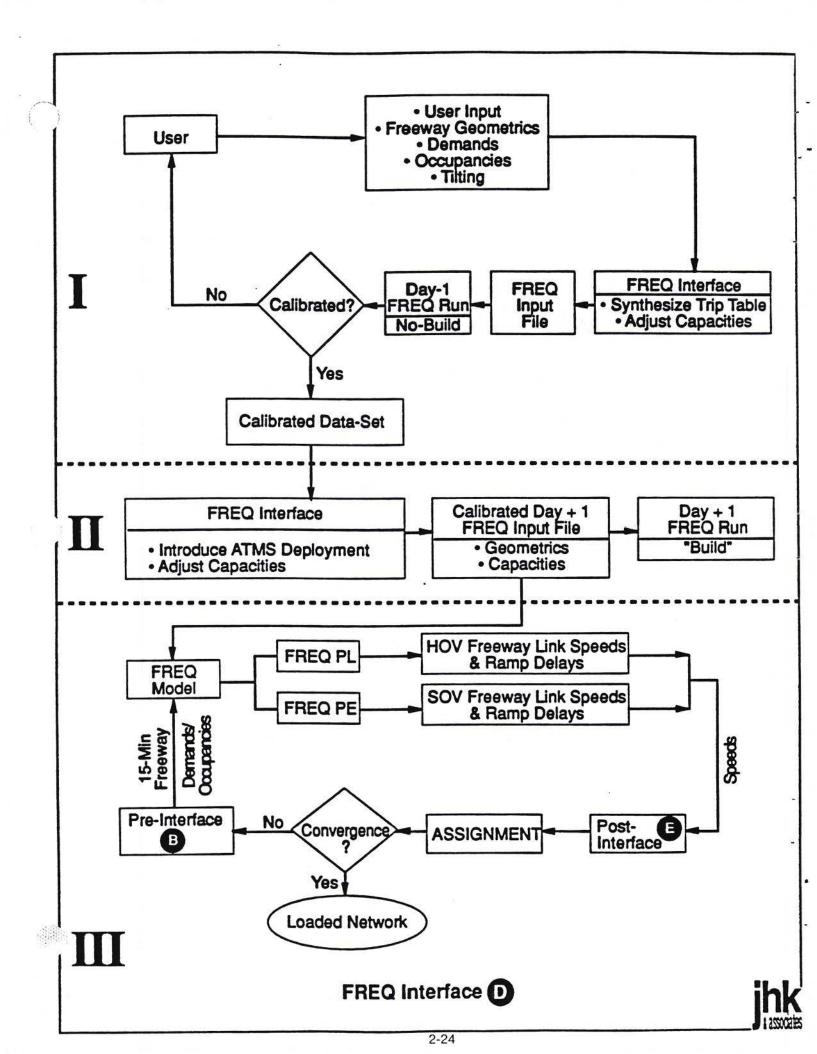
CALINK TESTS

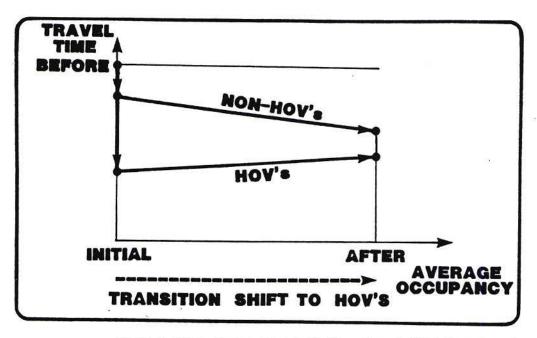
Performance of Convergence

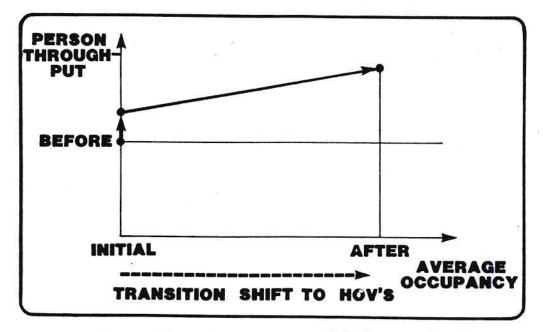

Model Framework Validation

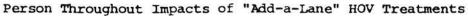

Improved Accuracy in Speed Estimation

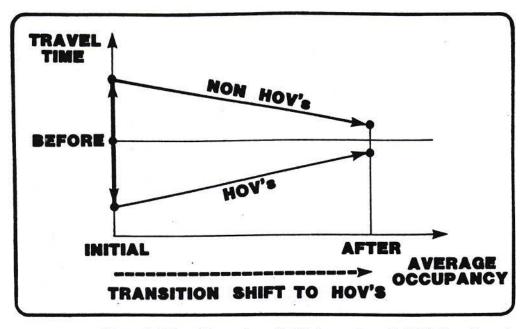

2-20


Reasonableness of Results

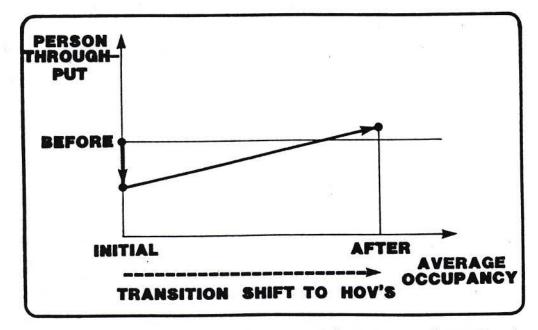

JHK & ASSOCIATES







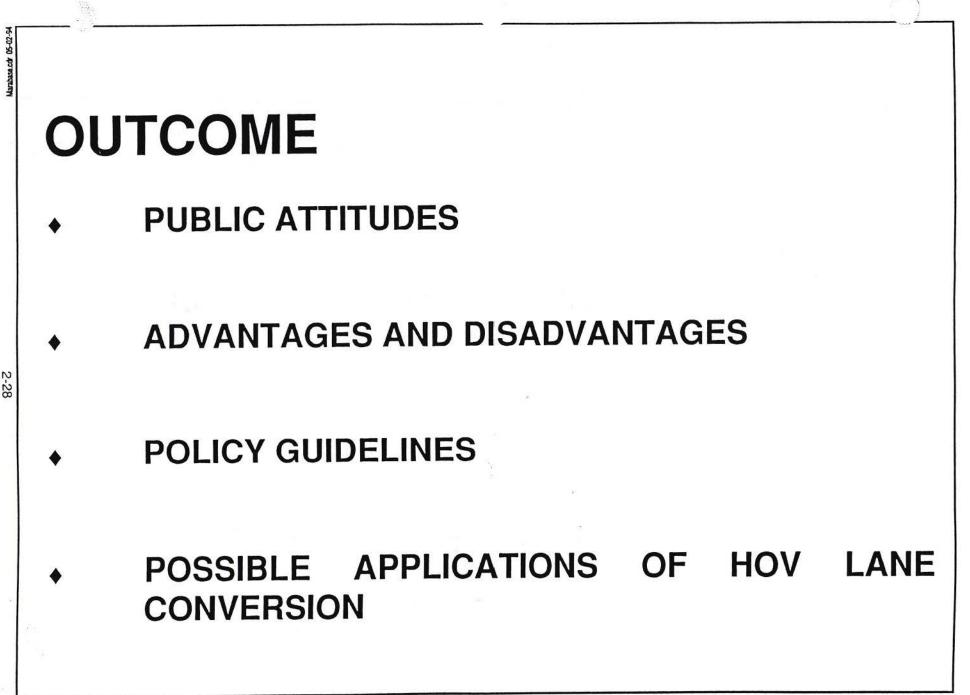
Travel Time Impacts of "Add-a-Lane" HOV Treatments



100

Travel Time Impacts of "Take-a-Lane" HOV Treatments

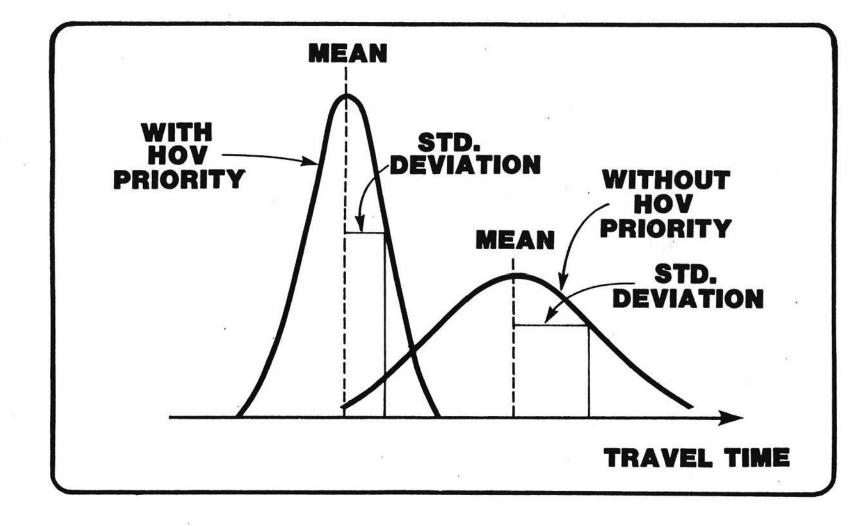
Person Throughput Impacts of "Take-a-Lane" HOV Treatments


1 .

LANE CONVERSION ISSUES

HOV BENEFITS

- IMPACTS ON OTHER TRAVELERS
- TRADEOFFS
 - SHORT AND LONG TERM IMPACTS
 - PUBLIC PERCEPTIONS
 - ROLE IN PUGET SOUND HOV SYSTEM



General Purpose to HOV Lane Conversion Analysis HOV Pre-Design Studies Puget Sound Region

Take-A-Lane Alternative

- SANTA MONICA EXPERIENCE
 - Converted 12.5 miles of left lane to 3+
 - 21 weeks in 1976
 - Very adverse media and commuter reaction
 - Set back HOV lanes in California 10 years
 - Studies showed increased person throughput & energy savings
- SEATTLE AREA STUDY
 - Computer simulations combined with capacity analysis
 - Relatively few opportunities exist without severe GP impact
 - Public opposition
 - Usually MOE's much better for add-a-lane alternative

Travel Time Reliability

2-30

ŝ

Comparison of HOV and Adjacent Mixed-Flow Facility Accident Rates

.

.

.

	Number of Accidents	Per Million Vehicle Miles
	HOV	Adjacent Mixed-Flow
8.	Lane(s)	Lanes
Barrier-Separated Facilities		
Houston, TX, I-10 (Katy)	1.0	2.4
Houston, TX, I-45 (North)	2.0	2.4
Los Angeles, CA, I-10 (El Monte)*	0.4	1.1
Virginia, I-395 (Shirley Highway,		
Washington, DC)	2.3	
Buffer-Separated and Nonseparated Facilities		
Seattle, WA, I-5 (median lanes)	3.2	2.1
I-405 (outside lanes)	3.6	1.3
Los Angeles, CA, I-10 (Santa Monica Freeway)	3.6	1.4
Marin County, CA, US 101	2.4	2.0
Miami, FL, I-95	1.9	3.6

-- Information not available.

. .

*Barrier-separated portion (downtown to I-710) only

Source: ITE, Effectiveness Report, 1986.

PARSONS BRINCKERHOFF 11/90

Component	Value	Comments
Delay	\$/hour	Any reduction in total freeway delay (travel time) can be converted to a benefit by applying a dollar value to a person's time.
Fuel Consumption	gals/hour	Gasoline saved because of decreased congestion is a benefit to motorists. A byproduct of reduced fuel consumption
	2 2 3	is the reduction of pollutants emitted into the atmosphere.
Bus Operating Cost Savings	\$/hour	Higher speeds on the HOV facility will mean that fewer bus hours are needed to provide the required service.

Possible Benefit Components for a Benefit/Cost Analysis

Source: AASHTO, HOV Guidelines, 1991; and Turnbull and Henk, 1990.

Possible Cost Components for a Benefit/Cost Analysis

Component	Value	Comments
Initial Capital	\$/year	This should include the costs for planning, designing and constructing the HOV facility. The costs should be annualized as a function of the projected lifetime of the facility.
Day-to-Day Operation	\$/year	Depending on the type of HOV facility, this should include costs for reversing one-way operation, setup and removal of pylons and/or barriers, incident response, manning of a central control center, enforcement, etc.
Bus Operation	\$/year	Implementation of an HOV facility will generally increase the number of buses needed on a day-to-day basis. This additional cost should be considered.
Maintenance	\$/year	Any additional maintenance cost for an HOV facility, especially a separated roadway, should be included in the analysis.

Source: AASHTO, HOV Guidelines, 1991; and Turnbull and Henk, 1990.

Elements of an HOV Plan

Sample Outline for an HOV Study Plan

Introduction

.

Background and Description of the Problem Purpose of Study Explanation of the HOV Concept and Its Study Potential

Planning Elements

Assumptions and Background Data Travel and Demand Characteristics Identification of Major Activity Centers Identification of HOV Criteria Assessment of General HOV Concept Viability

Operational Considerations

Operation Criteria Hours of Operation Directionality Limits of Treatment User Eligibility Enforcement Requirements Safety Incident Management Administration Future Capacity/Operation Issues Summary of the Selected Operation Concept(s)

Description of the Preferred Alternative(s)

Description of the System or Corridor Typical Design Ingress/Egress Support Facility Requirements Support Program Requirements Systemwide Features (where applicable) Conversion to Rail (where applicable)

Implementation

Phasing Scheduling Capital and Operating Costs and Funding

Checklist to Success

Characteristics for Successful HOV Facility Implementation

- Clear set of objectives and measures of success
- Develop the HOV lane as an additional lane
- Existing congestion in corridor (able to save 1/minute/mile & 5 to 8 minutes total)
- Projections for continued increase in demand
- Enforcement commitment/collaborative working relationships with enforcement agencies/ courts along the corridor
- Reason to believe you can get support from both agencies and public
- Reason to believe you can provide a lane that can be safely operated and enforced
- Policies and programs supporting transit use
- Rideshare program in corridor
- Successful HOV facilities already in operation in same corridor or adjacent corridors
- High existing volume of 2+ HOV's (700 or more vehicles per hour)
- Traffic system management system program already in place along the corridor
- ▼ High level of convenient transit service along the corridor (local/express/Park & Ride routes)
- Commute trip reduction legislation
- Existing communication network with employers along the corridor
- Collaborative working relationships with environmental agencies/groups along the corridor
- Collaborative working relationships with neighborhood/community groups along the corridor
- Collaborative working relationships with local jurisdictions/transit agencies/DOT's along the corridor
- Commitment to evaluation to accurately show benefits/disbenefits
- Origin-destination pattern that can benefit from the HOV lane

Legend

= Essential Characteristic

♥= Desirable Characteristic

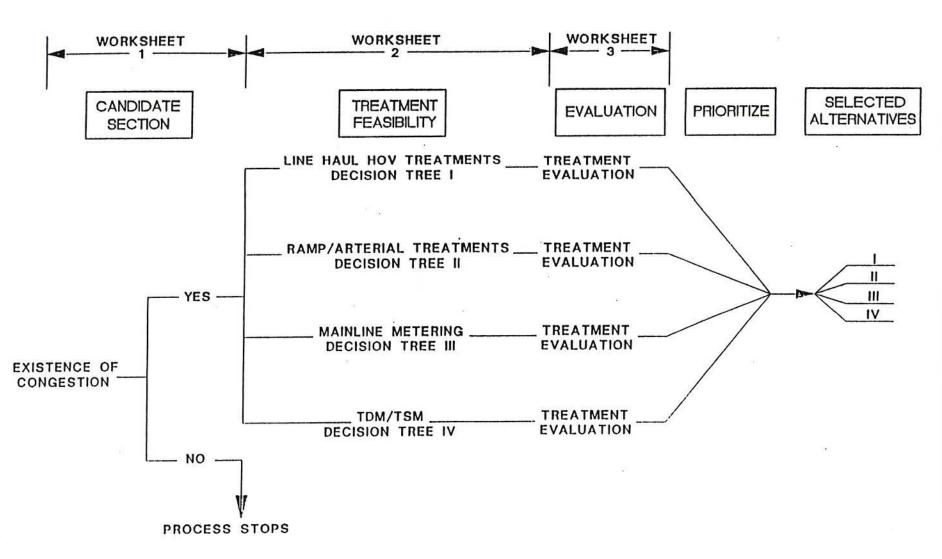
Potential Pitfalls to Successful HOV Facility Implementation

Converting existing general purpose lane to HOV lane which results in negative impacts * (increased accidents, increased travel time, etc.) in general purpose lanes or protest by the public High accident rate along the corridor that will not be improved by HOV lane Little support from enforcement authorities (State Police/Patrol, municipal judges/magistrates) ¥ Low existing volume of HOV's * Poor working relationships with local media ≭ Poor working relationships with neighborhood/community groups along the corridor * Poor working relationships with elected officials (especially critical during election years) * 0 Changing lane designation from general purpose to HOV during lane construction (example: begin construction as general purpose, change designation during construction phase to HOV) q Low level of transit service 0 Lack of transit funding 0 No/low level of support facilities A No incident management program in place 9 No/inadequate ridematching services 0 Poor pavement maintenance of existing facility that would not be helped by HOV lane construction

Legend

= Potential Fatal Flaw = Potential Flaw

= Possible Problem


What Have We Learned

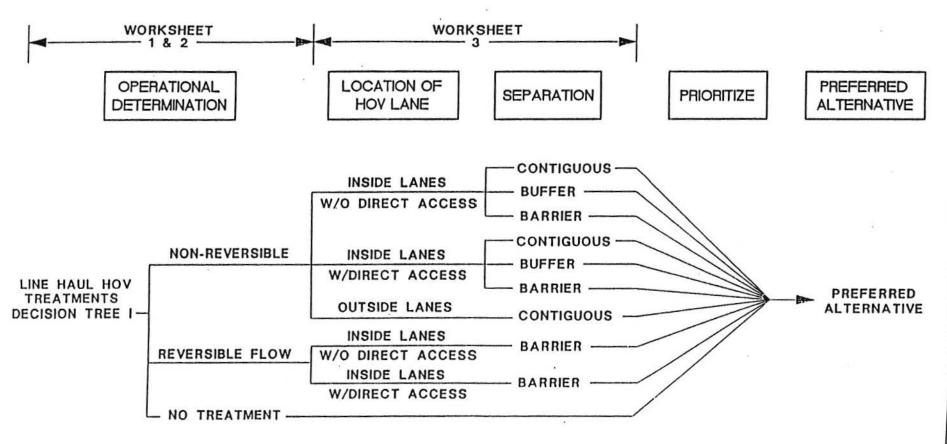
- Planning for "success" can vary from one locale to another.
- No single right answer
- HOV planning means more than just studying feasibility of lanes.
- Public and local agency involvement can be critical.
- Most effective treatments meet unique operational shortcomings.
- HOV should be part of a broader strategy to manage congestion.

Sample Project Process #1

:.

ALTERNATIVE SELECTION PROCESS - DECISION TREE I-IV

1

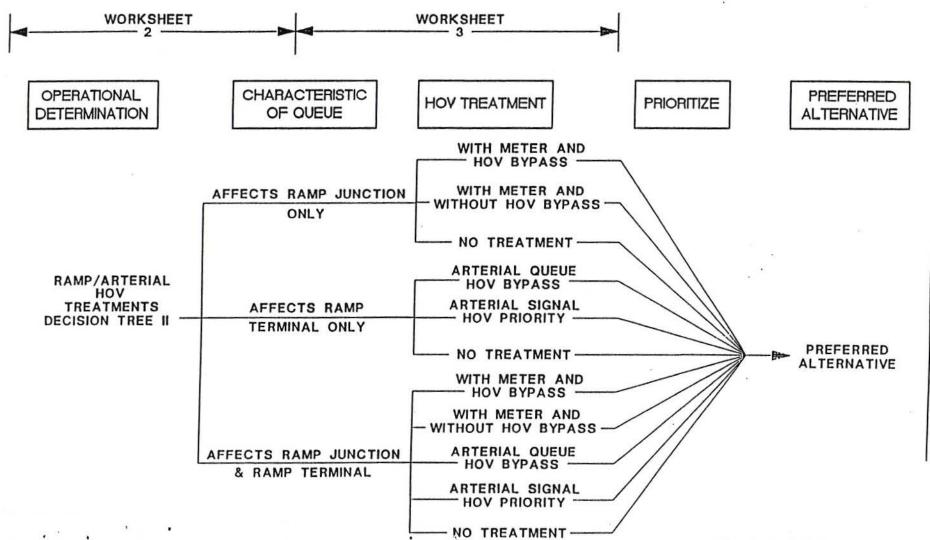

PLANNING CONSIDERATIONS

2-38

1

.

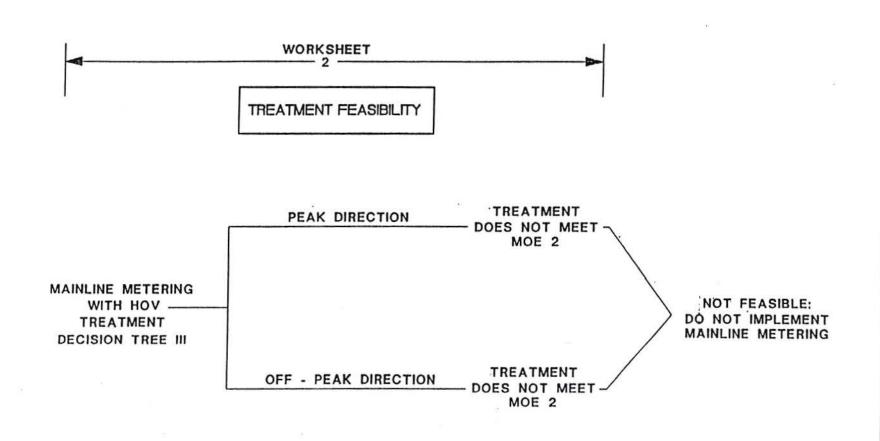
LINE HAUL HOV TREATMENTS - DECISION TREE I


PLANNING CONSIDERATIONS

2-39

.

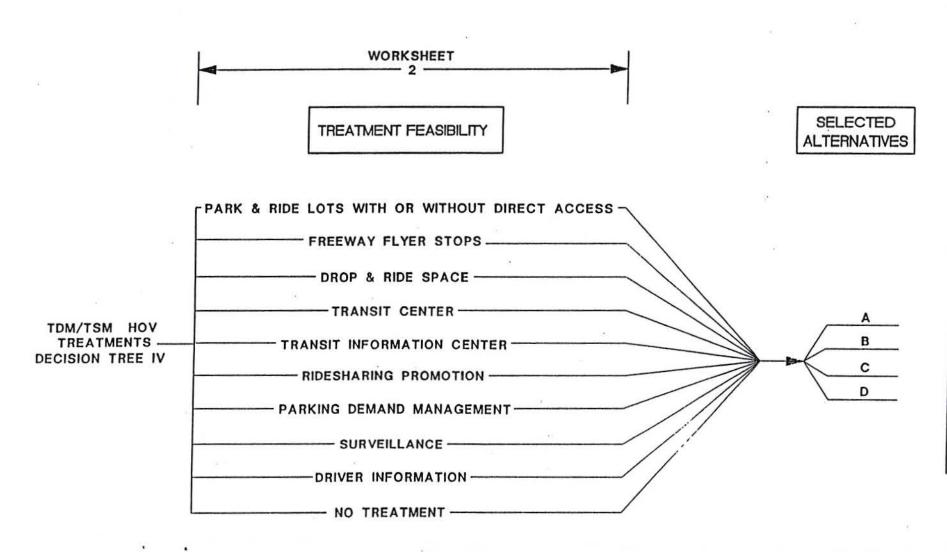
. .


RAMP/ARTERIAL HOV TREATMENTS - DECISION TREE II

2-40

PLANNING CONSIDERATIONS

MAINLINE METERING HOV TREATMENT - DECISION TREE III


MOE 2: MEASURE OF EFFECTIVENESS 2, IMPACT ON GENERAL PURPOSE LANES

2-41

÷±

.

TDM/TSM HOV TREATMENTS - DECISION TREE IV

÷.,

			1	1991			20	00			2	010			YEAR CRI	TERIA ME	r
			bound/ bound		thbound/ atbound		bound/ hbound		hbound/ Ibound	1000000000	bound/ hbound	[1] ************************************	bound/ bound		bound/ hbound	120000000000000000000000000000000000000	bound/ bound
	Segment	AM	PM	AM	РМ	AM	PM	AM	РМ	лм	РМ	AM	PM	AM	PM	АМ	РМ
1	SR 512, I-5 to Pacific Ave. (2.2 miles)					1413	R(1)	R(1)	R(1)		R(1)	R(1)			2000R	2000R	2000R
2	SR 512, Pacific Ave. to South Hill L/C (6.5 miles)							R(1)			R(2)	X 3.6 R(5)	R(2)		2010R	2010X 2000R	2010R
3	SR 512, South Hill I/C to SR 167 (3.3 miles)	R(1)			R(1)	R(2)	R(1)		R(2)	X 3.3 R(4)	X 0.9 R(3)	R(2)	X 1.9 R(6)	2010X 1991R	2010X 2000R	2010R	2010X 1991R
4	SR 167, SR 512 to SR 410 (1.1 miles)					R(1)	R(1)		X 1.1 R(2)	R(1)	X 1.1 R(1)	X 1.1 R(2)	X 1.1 R(2)	2000R	2010X 2000R	2010X 2010R	2000X 2000R
5	SR 167, SR 410 to Ellingson Rd. (5.2 miles)	R(1)				X 3.1 R(5)	lut Alat		X 5.2 R(5)	X 1.6 R(3)			X 5.2 R(5)	2000X 1991R			2000X 2000R
6	SR 167, Ellingson Rd. to SR 18 (1.9 miles)				R(1)	X 1.6 R(2)			X 1.6 R(2)	X 1.6 R(2)			X 1.9 R(3)	2000X 2000R			2000X 1991R
	Total Segments	2	0	0	2	4	3	2	5	4	4	4	5	N/A ·	N/A	N/A	N/A
	Total Length (20.2 miles)	0	0	0	0	4.7	0	0	7.9	6.5	2.0	4.7	10.1	N/A	N/A	N/A	N/A

PRIMARY ELIGIBILITY CRITERIA SCREENING EXISTENCE OF CONGESTION

X = Meets Threshold

R(x) = No. of Ramp Junctions Meeting Threshold L = Estimated Length of Congestion in Miles

? = Not Sure

2-43

Shaded Area = Threshold Not Met $N/\Lambda = Not Applicable$

PLANNING CONSIDERATIONS

W1020\ABJULST.TBS

	1991 & FUTURE	WORK	SHEET 2 - SECONDAI	RYELIGIBILITY	CRITERIA SCRE	EENING
	ent <u>I-5 to TNB</u> tion <u>EB & WB</u>		MEASURE	OF EFFECTIVE	INESS	
Level	Period <u>AM & PM</u> of estion <u>E/F</u> TREATMENT	MOE 2 IMPACT ON GENERAL .PURPOSE LANES	MOE 3 MIN. HOV LANE HOURLY VOLUME WITH 2+ HOV DEFINITION	MOE 4 _ GEOMETRIC FEASIBILITY	MEETS ELIGIBILITY CRITERIA	COMMENTS
LIN	E HAUL					
1	Inside HOV Lane With Direct Access Ramp	X	1991 AM X PM X 2000 AM X PM X 2010 AM X PM X	X	X	10
2	Inside HOV Lane Without Direct Access Ramp	x	x	x	x -	
3	Outside HOV Lane	x	x	X	X -	
4	Buffer Separated HOV Lane	x	X	x	x	
5	Barrier Separated HOV Lane(s)	X.	X	X	x	
6	Reversible HOV Lane	x	x	x	x	×
7	Mainline Queue HOV Bypass Lane	x	X	x	x	
8	Convert General Purpose Lane to HOV Lane (Take A Lane)		x	x		
RA	MP/ARTERIAL					
9	Ramp Queue HOV Bypass Lane	x	N/A	x	x	

	1991 & FUTURE	WORK	SHEET 2 - SECONDAI	RY ELIGIBILITY	CRITERIA SCRE	ENING
Segm Direct	ent <u>I-5 to TNB</u> tion <u>EB & WB</u>		MEASURE	OF EFFECTIVE	NESS	÷
Level	Period <u>AM & PM</u> of estion <u>E/F</u> TREATMENT	MOE 2 IMPACT ON GENERAL PURPOSE LANES	MOE 3 MIN. HOV LANE HOURLY VOLUME WITH 2+ HOV DEFINITION	MOE 4 GEOMETRIC FEASIBILITY	MEETS -ELIGBBILITY CRITERIA	COMMENTS
10	Ramp Metering With HOV Bypass Lane	x	N/A	X	x	. It
11	Arterial Queue HOV Bypass Lane	x	N/A	x	x	
12	Arterial Signal HOV Priority Treatment	X	N/A	x	x	
	INLINE TERING					
13	Mainline Metering With HOV Bypass Lane		x	x		
TD	M/TSM		漢			2
14	Transportation Demand Management (TDM)	X	N/A	x	x	51
15	Transportation System Management (TSM)	x	N/A	x		<i>2</i> 14
16	Public Transfer Facilities	x	N/A	x	X	· ·

X = Meets Threshold

N/A = Not Applicable

? = Not Sure

Shaded Area = Threshold Not Met

MOE 2 = Measure of Effectiveness 2, Impact on General Purpose Lanes

MOE 3 = Measure of Effectiveness 3, Minimum HOV Lane Hourly Volume with 2+ HOV Definition

MOE 4 = Measure of Effectiveness 4, Geometric Feasibility

HOV TREATMENT EVALUATION

Trea Dire Yr. Time	te <u>SR 16</u> nent <u>I-5 to TNB</u> atment <u>NON REVERSIBLE</u> ction <u>EB</u> 2000 a: AM/PM ASURE OF EFFECTIVENESS	Inside Lane w/o	1000	Dutelde Tano											
1	Existence of Congestion	1	1	1											
2	Impact on General Purpose Lanes	1	+	1										- 34	
3	HOV Lane Hourly Volume with 2+ HOV Definition														
4	Geometric Feasibility	1	-	1								•			
5	Travel Time Savings											4			
6	Person Thruput in HOY Lane									•					
7	Environmental Compatibility of Construction	1	-	1			ē.								
8	Safety Benefits	1	+	-											
9	Public Support	1	+	1											
10	Local Agency Support	1	1	1											
11	System Continuity Importance	+	+	• 1											
12	Enforceability	1	1		•	Ł			•						
13	Traffic Operations Benefits	1	+	-											
14	Impact on Mode Shift	1	1	1											
15	Compatibility with Land Use and Transportation Policies	1	•	1											
16	Cost														

1

4

\$

1

,

PLANNING CONSIDERATIONS

1

٠

۰.

•

MEASURES OF EFFECTIVENESS

r.

	MEASURE OF EFFECTIVENESS		MEASURE
1	Existence of Congestion		LOS E w/maximum of one segment on either side at LOS E or F
		√.	LOS F w/maximum of one segment on either side at LOS E or F
		+	LOS F segments on both sides at LOS E or F
2	Impact on General Purpose Lanes	•	Less than two lanes per direction or severe impact (severe reduction in speeds, clearly unsafe operation) except at TNB
		1	Two lanes per direction and low impact (noticeable reduction in speeds
		+	Two lanes per direction and no impact (general purpose lanes would operate as if the HOV treatment didn't exist.)
3	Minimum HOV Lane Hourly Volume with		Less than 180 vph
	2+ HOV Definition	1	180-300 vph
		+	300+ vph
4	Geometric Feasibility		Low feasibility
		1	Somewhat feasible
		+	Highly feasible (simple design, adequate right-of-way, little difficulty retrofitting, no serious geometric constraints).
5	Travel Time Savings (on mainline)		Less than 1.0 min/mile
		1	1.0 - 1.5 min/mile
		+	1.5+ min/mile
6	Person Thruput in HOV Lane	-	Less than 1800 pplph
		1	Between 1800 to 2200 pplph
		+	2200+ pplph
7	Environmental Compatibility of		Not compatible
	Construction	1	Compatible
	ж.	+	Highly compatible

PLANNING CONSIDERATIONS

2-47

•

.

	MEASURE OF EFFECTIVENESS		MEASURE
8	Safety Benefits	•	Extremely unsafe (little or no clearances/shoulders provided, extremely high potential for increase in accidents, incidents severely affect traffic flow).
		1	Somewhat safe
		+	Extremely safe (adequate clearances/shoulders provided, very low potential for increase in accidents, incidents have little to no effect on traffic flow).
9	Public Support	-	Low support
		1	Moderate support
	•	+	High Support
10	Local Agency Support		Low support
		1	Moderate support
		+	High support
11	System Continuity Importance		Treatment needed only on segment being studied
		1	Treatment needed on either side one segment away
		+	Treatment needed on either side of study segment
12	Enforceability		Low enforceability
		1	Moderately enforceable
	je. G	+	Highly enforceable (plenty of room for monitoring, apprehending violators or clearing incidents, clear delineation of HOV lane)
13	Traffic Operations Benefits	-	Low operations benefits
		1	Some operations benefits
	· · ·	+	Numerous operations benefits
14	Impact on Mode Shift	-	Low operations benefits
		1	Some operations benefits
		+	Numerous operations benefits

 \mathbf{t}

MEASURES OF EFFECTIVENESS

2-48

.

\$

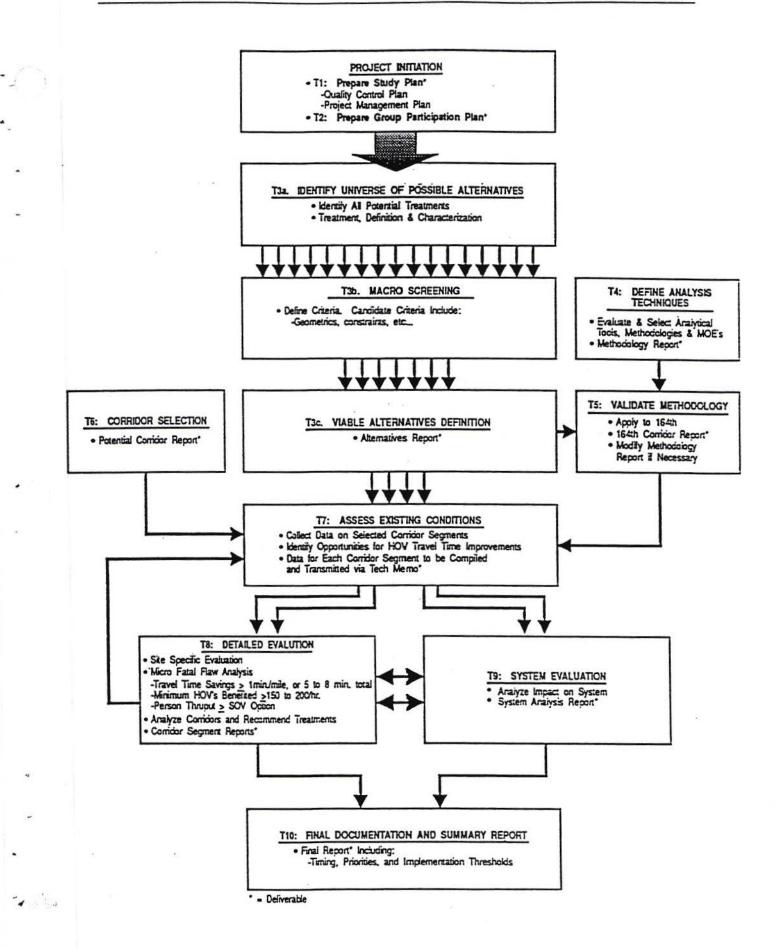
.

,

2

PLANNING CONSIDERATIONS

ă,


٠

۰.

MEASURES OF EFFECTIVENESS

	MEASURE OF EFFECTIVENESS		MEASURE	-
15	Compatibility w/Landuse and		Low compatibility	
	Transportation Policies	V	Moderate compatibility	
		+	High compatibility	
16	Cost		Low cost	
		1	Moderate cost	
		+	High cost	

Sample Project Process #2

*

Macro-Level Fatal Flaw Analysis

X = Treatment Has Potential to Meet the Criteria 0 = Treatment Has No Potential to Meet the Criteria

	TREATMENT	FINANCIAL VIABILITY	GEOMETRIC FEASIBILITY	FUNCTIONAL ADEQUACY	PUBLIC ACCEPTANCE
	Signal Priority Treatments	X	X	X	X
	Continuous Right-Side HOV Lanes	X	X	X	X
	Continuous Left-Side HOV Lanes	X	X	X	X
£	Reversible HOV Lanes w/ Signal Cntrl.	X	X	X	X
MEN	Signal Queue Jump	X	X	X	X
EAT	Double Left-Turn Lanes/One HOV Lane	X	X	X	X
PASSING TREATMENTS	SOV Turn Restrictions	X	X	X	X
NISS	Off-Route Alternatives	X	X	X	X
PA	Mid-Block "Gating" Signal	X	X	X	X
	New Corridor with HOV Emphasis	X	X	X	X
	HOV Support Measures & Facilities	X	X	X	X
	Convert Gen. Purp. Lanes to HOV Lanes	X	X	X	X
	х К				
2	Buffer-Separated HOV Lanes	0 -	X	X	X -
MEN	Barrier-Separated HOV Lane	0	X	X	X
EATI	Reversible HOV Lane w/ Moveable Barr.	0	0	X	X
G TR	Barrier-Separated Reversible HOV Lanes	X	0	X	X
FAILING TREATMENTS	Contra-Flow HOV Lanes	X	X	X	
FA	Bus Streets	0	0	X	0

Community Transit Arterial System HOV Study Validation of Analysis Methodolgy

MICRO-LEVEL FATAL FLAW SCREENING ANALYSIS

X = Treatment Has Potential to Meet the Criteria O = Treatment Has No Potential to Meet the Criteria

	Financial	Geometric	Fu	inctional Adequa		Public	
Treatment	Viability	Feasibility	eneral Adequac	Avg Person Delay	Persons/Hr	Safety	Acceptability
No Action Alternative	x	x	<u> </u>	x	<u>x</u>	x	x
Taditional Priority	X		X	X	X		x
Specialized Phasing	x	X	x	x	×	_ <u>x</u> _	x
HOV-Weighted OPAC-RT	X	X	x	X	x	X	x
Continuous Right Side HOV Lanes	X	X	x	x	x		x
Continuous Left Side HOV Lanes	X	X	x	x	x	×	X
ane Control for Reversible HOV Lanes	x	x	x	x	x	×	X
New Corridor with HOV Emphasis	x	x	x	x	x	x	X
Signal Queue Jump	x	x	x	x	x	x	x
DoubleTurn Lanes/One HOV Lane	x	x	· X	x	x	×	x
Special Access Provisions for HOVs	x	x	x	x	x	x	x
OV Turn Restrictions	x	x	0	0	0	x	0
)ff-Route Alternatives	0	0	0	0	0	x	x
referential Gating	x	X	x	0	0	x	x
onvert General Purpose Lanes	x	x	x	0	0	x	0

٤

		MOE 1	MOE 2	MOE 3	MOE 4	MOE 5	MOE 6	MOE 7	MOE 8	MOE 9	MOE 10	
Alternatives Surviving Macro-Level Screening	Corridor- Specific Fatal Flaw Screening Process (Pass or Fail)	HOV Travel Time Savings	Capacity in Person/Hour	Throughput in Person/Hour	Cost-Effectiveness	Tratific Operations	Safety	Supports Regional HOV Continuity	Enforceability	Local Agency Support	HOV Travel Tim e Reliability	Recommended ?
No Action	Pass	0	0	0	N/A	•	0	0	N/A	•	Ö	
Traditional Priority	Pass	•	0	0	•	0	0	0	0	0	•	
HOV-weighted OPAC-RT	Pass	•	0	0	•	•	0	0	G	•	•	V
Continuous Right-Side HOV Lanes	Pass	0	•	0	0	0	0	•	•	0	•	
Right-Turn Only Except HOV	Pass	0	•	0	0	0	G	•	•	0	•	
Continous Left-Side HOV Lanes	Pass	0	•	0	0	0	0	•	0	0	•	3
Lane Control for Reversible HOV Lanes	Pass	0	•	0	0	0	0	•	0	0		
New Corridor with HOV Emphasis	Pass	N/A	•	0	N/A	•	0	•	•	0	•	V
Signal Queue Jump/Specialized Phasing	Pass	0	0	0	•	0	0	0	0	0	•	
Double Turn Lanes/One HOV Only	Pass	0	0	0	•	0	0	0	0	•	0.	V
Special Access Provisions	Pass	•	0	0	•	0	0	•	•	•	•	V
Preferential Mod-Block "Gating"	Fall											and the second
SOV Turn Restrictions	Fall											
Convert General Purpose Lane	Fall											
Off-Route HOV Alternative	Fall											

mot improve of Effectiveness

Note: Recommendations are preliminary, pending results of simulation analysis.

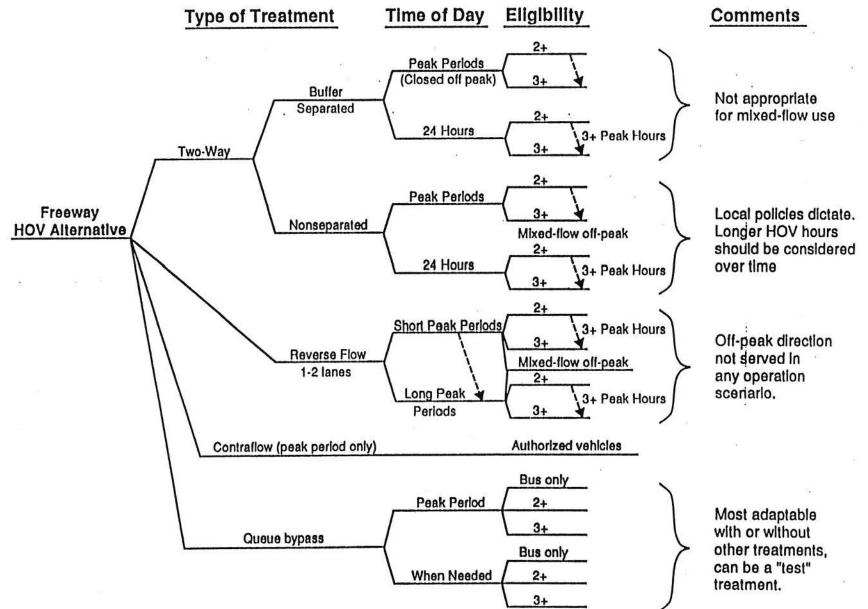
. .

LEGEND Least Elfective Most Effective O O O O O O N/A - Not Applicable

t

.

1


*

2-54

PLANNING CONSIDERATIONS

· · · ·

HOV Operational Decisions

PLANNING CONSIDERATIONS

SECOND STAGE PROBLEM STATEMENT

I. PROBLEM NUMBER: 95-B-8

II. TITLE: The Impacts of HOV Improvements on Air Quality

III. RESEARCH PROBLEM STATEMENT:

The impacts of HOV requirements on air quality are more complex and less well understood than other HOV impacts. The requirements of ISTEA and the Clean Air Act Amendments have created a critical research need to determine whether HOV facilities have a significant impact on reducing vehicle emissions, thereby influencing major investment decisions regarding HOV. Research is needed to quantify the vehicle occupancy/congestion tradeoffs involved in HOV lane implementation, and model the impacts of HOV lanes on air quality.

IV. RESEARCH PROPOSED

The objective of this research would be to develop standard methodologies for evaluating the emissions impacts of HOV lanes and networks; and to address other key issues. Issues to be resolved include:

- How to model HOV networks to estimate air quality
- Impacts of HOV facilities on traffic operations and air quality (e.g., ramp metering bypass, toil bypass, HOV lane merge/diverge and weave impacts on mixed flow traffic)
- Effects of supporting HOV services on air quality (e.g., ride matching services, park and ride lots, toll bypasses, ramp metering with HOV bypass, parking pricing)
- Impact of HOV facilities on air quality changes caused by land use patterns (e.g., trip length, density, sprawl)
- Effects of lane conversion compared to added HOV lane
- · Effects of HOV lanes compared to fixed rail transit systems
- Effects of HOV lanes on transit (e.g., "casual" carpooling, diversion from transit to HOV)
- Effects of vehicle size and weight (e.g., vanpools, carpools) on air quality on mainlines, ramps, and arterials
- · Effects of elevated versus at-grade HOV lanes
- · Effects of "induced" trips on air quality

The research will also validate the methods' accuracy through case study corridor measurements. The following tasks will be performed:

- Literature Search A literature search will be performed to assemble all relevant information on transportation/air quality relationships and impacts of HOV facilities.
- Develop Emissions Impacts Methodology A methodology will be developed to estimate impacts of HOV treatments on air quality emissions. The method should be sensitive to the issues identified above.

- 3. Test Sensitivity of Methodology - Tests will be performed to determine the sensitivity of the methodology to various HOV characteristics. The statistical variation in the estimates will be identified.
- 4. Conduct Case Study Measurements - The method's accuracy will be tested against actual before/after HOV case study measurements, where data are available.
- Report A report will be prepared documenting the study process, methodologies 5. developed, and results of the method validation.

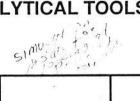
Related work to the proposed research includes the following:

- JHK & Associates, "Predicting the Impact of Transportation Control Measures on Travel Behavior and Pollutant Emissions";
- TTI, "Evaluation of the Houston High-Occupancy Vehicle Lane System";
- SYSTAN's "Evaluation of the Santa Monica Freeway Diamond Lanes';
- · California Air Resources Board, "High Occupancy Vehicle System Plans as Air Pollution Control Measures";
- · MTC, "Air Quality Impacts of a Regional HOV System";
- JHK & Associates, "Travel Demand and Simulation Modeling for Caltrans";
- · Cambridge Systematics, "Transportation Control Measures Information Documents"; and
- · Oak Ridge National Laboratory, "Network Performance Evaluation Model for Assessing the Impacts of High-Occupancy Vehicle Facilities".

ESTIMATE OF PROBLEM FUNDING AND RESEARCH PERIOD v.

Recommended Funding: Estimated funding for this project is \$350,000 for the tasks noted.

Research Period: The research should require approximately 18 months to complete


VI. URGENCY AND PAYOFF POTENTIAL

The need for this research is very high. The Clean Air Act has established deadlines that make this research critical. By law, air quality is a key element in future transportation decision-making, and accurate models are essential for projecting the impacts of transportation demand management decisions on air quality. Accurate models of the impact of HOV lanes on air quality will raise the quality of decisions-making at state and local levels and improve the accuracy of air quality modeling, which is becoming increasingly important in transportation planning. This will influence major investment decisions with federal funds, according to ISTEA and CAA requirements.

PERSON(S) DEVELOPING THE PROBLEM VII.

 $\{[a,b]\}_{i=1}^{n}$

Jonathan D. McDade Urban Mobility Specialist Federal Highway Administration, HPP-01 Leo W. O'Brien Federal Building, Room 719 Albany, New York 12207 518-472-4253, ext. 254 2-57

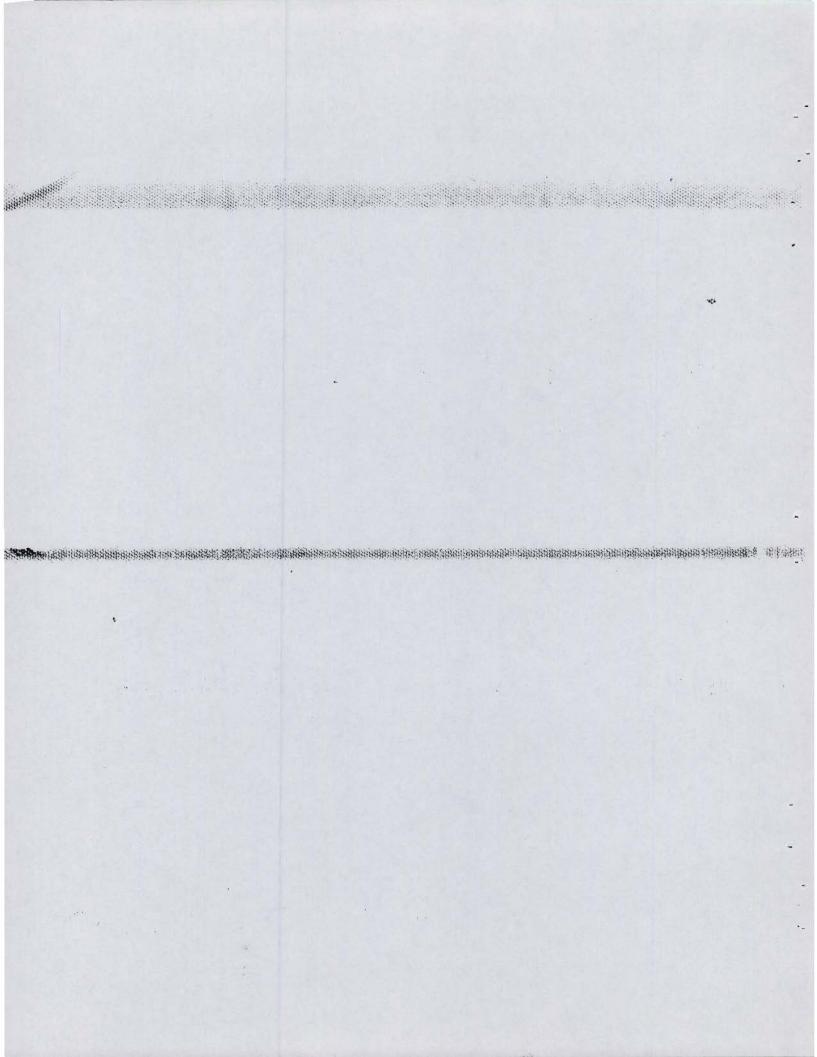
PROJECT TASKS	SPREAD SHEET	нсм	FRESYS	FREQ	FRESIM	TRANSYT
System-Wide Analysis		x	x			
HOV Lane Conversions	x	x	x	x		
Freeway to Freeway Interchanges				x	x	
HOV Lane Access Analysis		x	x	x		
Arterial Corridors		x				x
Air Quality & Energy				х		x

1

,

а т.

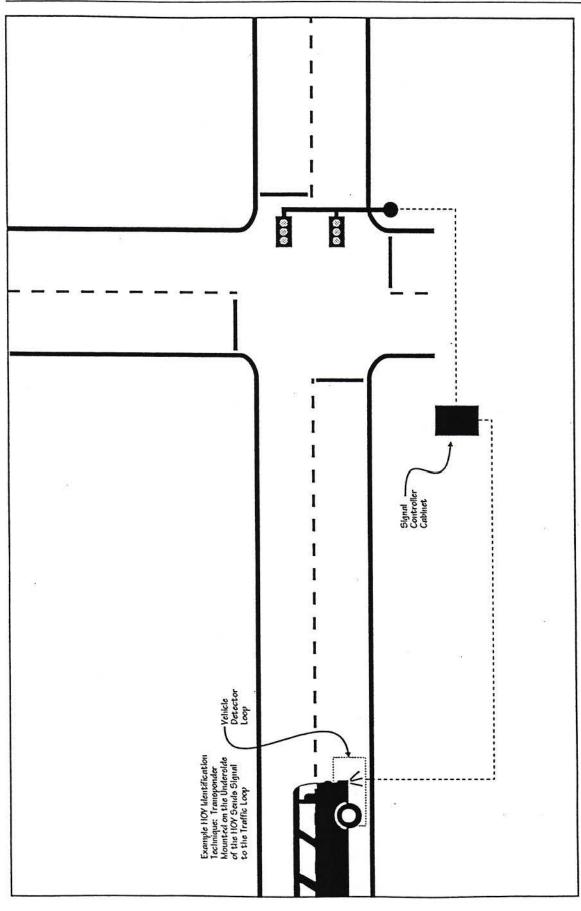
. .


}

· · · ·

CONSIDERATIONS FOR ARTERIALS

-()


 $\frac{1}{2} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$

KEY ISSUES

- Treatments Applicable to the Arterial Environment
 - Influence of Signalized Intersections
 - Multiplicity of Driveways/Side Friction
 - Re-entry from Bus Stops
 - Proximity of Adjacent Development
- Operational Objectives and Criteria Applicable to the Arterial Environment
- Integration of HOV Philosophies with State-of-the-Art Signal Control Strategies
- Consensus Building Among Various Constituencies
- Deterministic vs. Stochastic Analytical Tools
- Funding Viability

CONSIDERATIONS FOR ARTERIALS

Signal Priority Alternatives

Automatic Vehicle Identification Systems

Technology	Configuration	Functions Available	Compatibility with Carpools	Advantages	Disadvantages
Radio Frequency Transmission (RF)	Tags and readers or other roadside or in-pavement antenna; compatible with loop detectors.	ID only; two way communication; voice; transmission of information	Compatible with the use of tags	The most applicable equipment available; compatible with simple tags and more sophisticated systems; used for two-way communication; compatible with roadside or in- pavement antenna.	which can be transmitted with a loop configuration is limited.
Microwave	Tags and roadside readers; requires line-of- sight	Same as Radio Frequency Transmission	Compatible with the use of tags	Compatible with tags and two- way communication; transmission is at higher rates than RF.	Line-of-sight transmission, therefore signal can be screened by intervening vehicle; required power levels are high.
Optical/Infrared	Tags or bar-code tags; roadside readers; requires line-of-sight and good visibility.	ID only.	tags and bar codes	Compatible with tags/strict mounting requirements for tags and reader; can use bar codes,	
Surface Acoustical Waves (SAW)	Tags and roadside roaders.	ID only.	the second s	Same as for Optical except for use of har codes.	Insufficient accuracy,

÷

.

Alternative Signal Control Strategies

Strategy	Configuration	Function	AVI Technology	Advantages	Disadvantages
Traditional Premption	Local preemptor connected to controller; may be under system control.	Strict preemption.	Opticom; tag with roadside reader; loop detector with transponder on underside of vehicle.	Simple configuration; Inexpensive.	No flexibility of control; possible safety problems with shor t intervals; disruption of general purpose traffic can be severe; legislative prohibition.
Traditional Priority	Requires traffic control system modification.	Flexible priority treatment.	All of the above.	Very flexible control options; simple concept.	Requires customized equipment.
Specialized Phasing	HOV lane at signal.	Provides priority to HOV lane.	Standard loop detection.	High service level to HOVs.	Directly impacts general traffic movements; requires HOV lane.
OPAC-RT with HOV Preemption	standard controller with advanced	Strict preemption with facilitatod recovery.	Same as traditional preemption.	OPAC provides control efficiency to minimize negative preemption impacts.	New technology; disadvantages of preemption.
HOV-Weighted OPAC-RT		Minimizes person delay and stops/maximizes throughput.	Same as traditional preemption.	movement efficiency.	New technology; disadvantages of preemption.

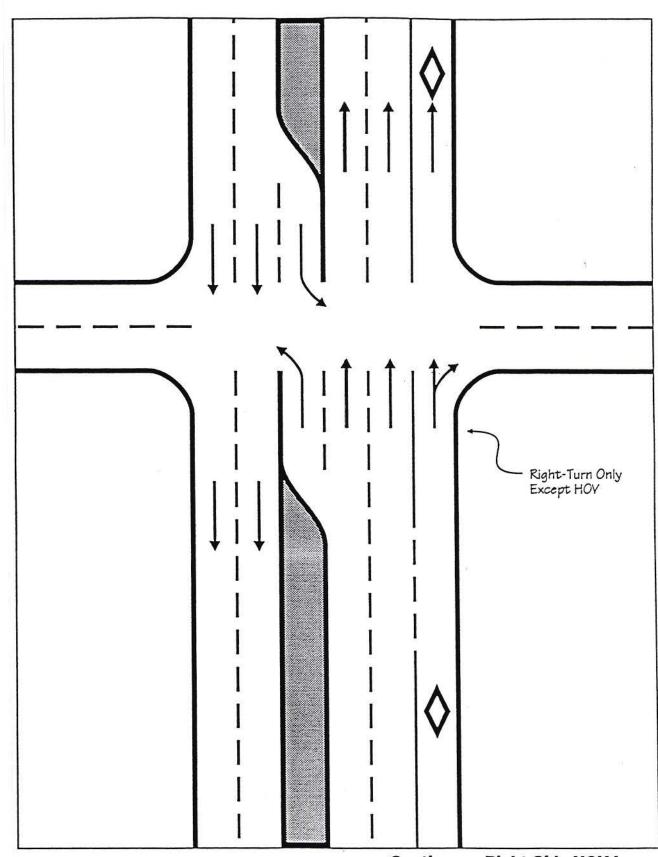
i.

2

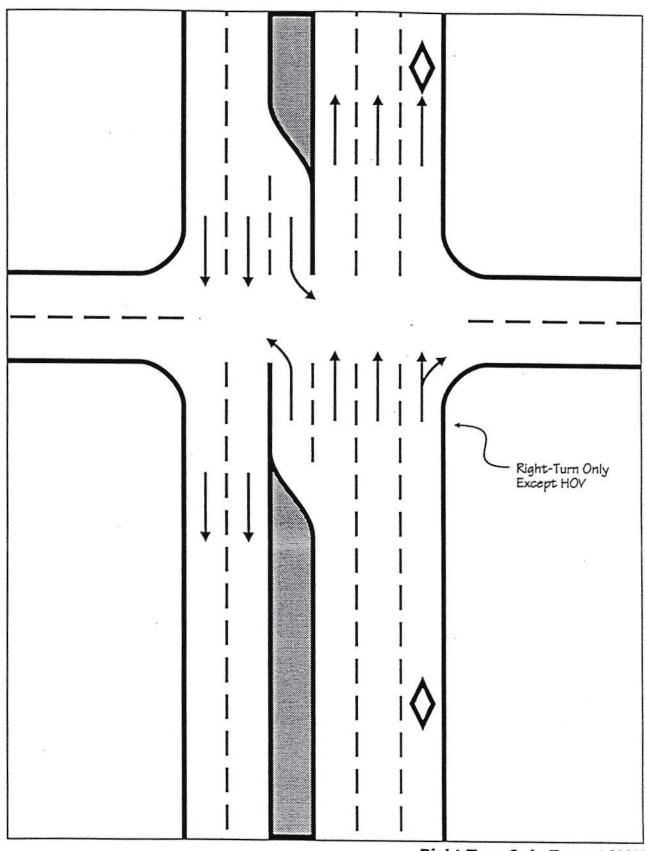
4

.

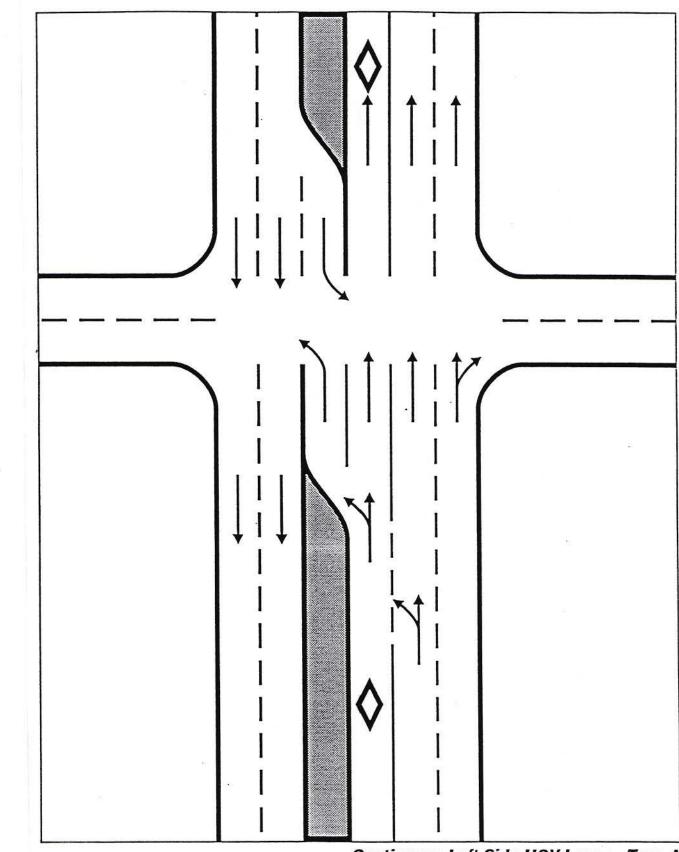
.

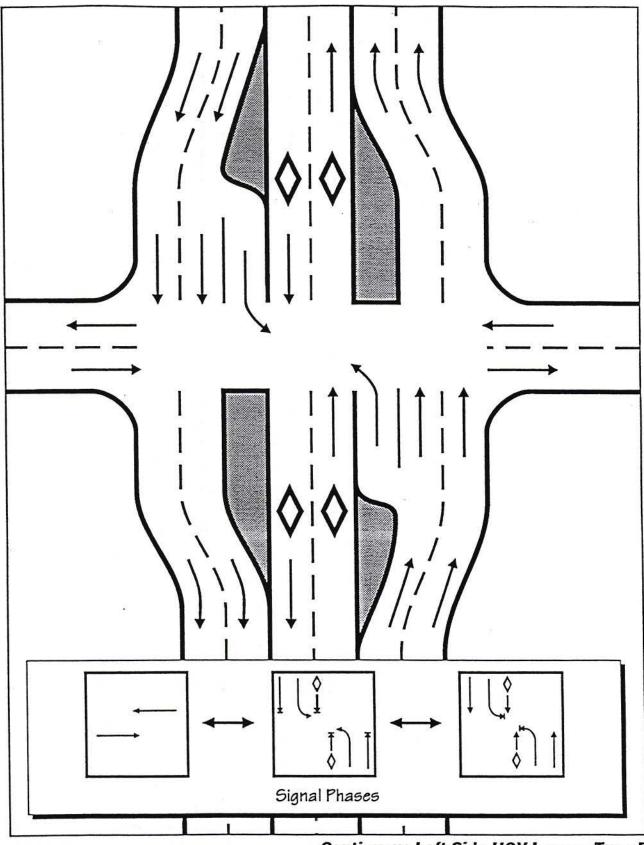

CONSIDERATIONS FOR ARTERIALS

.

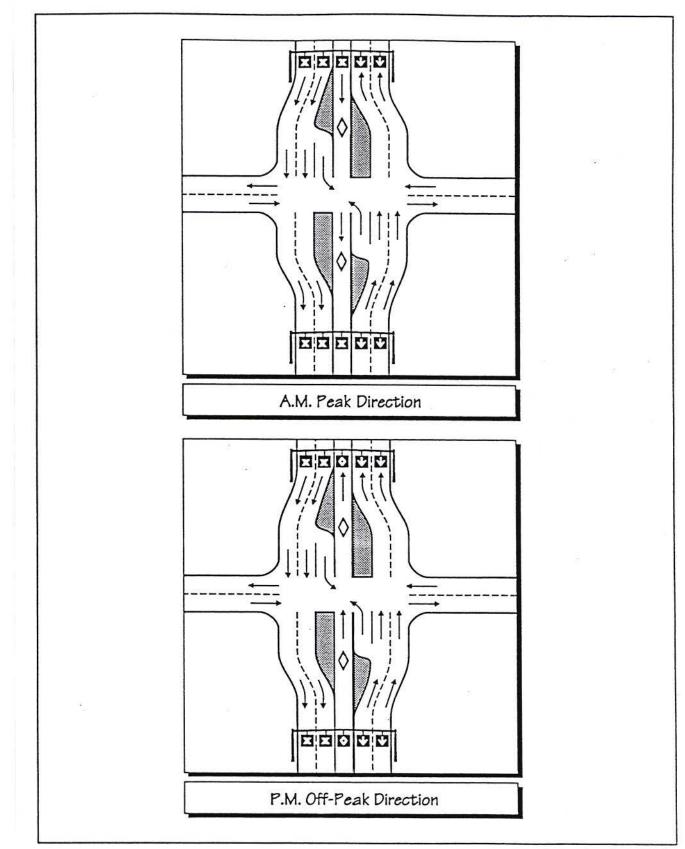

.

.

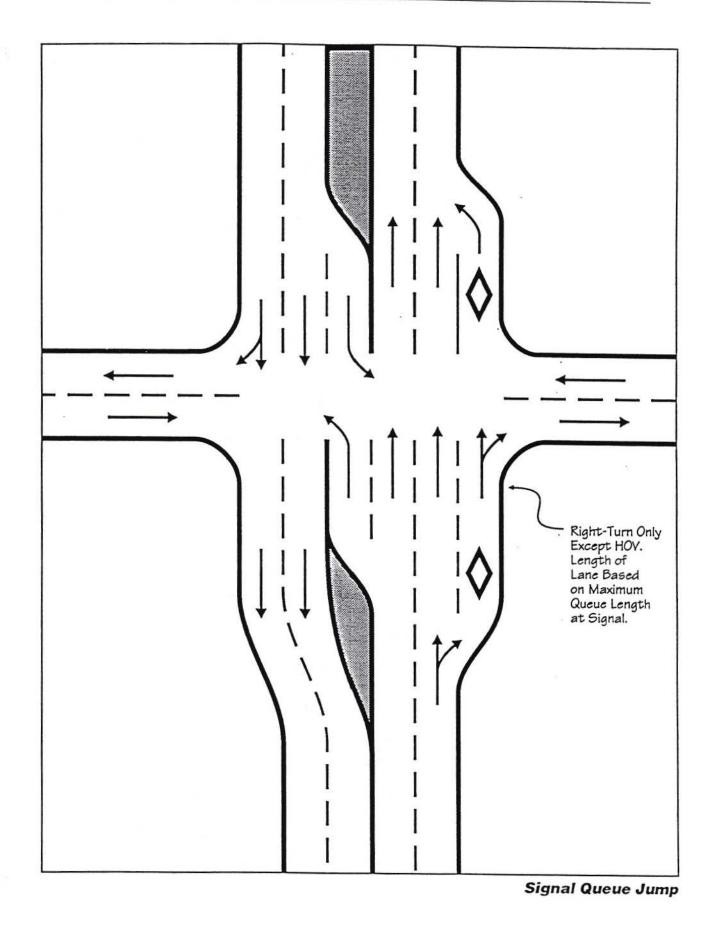


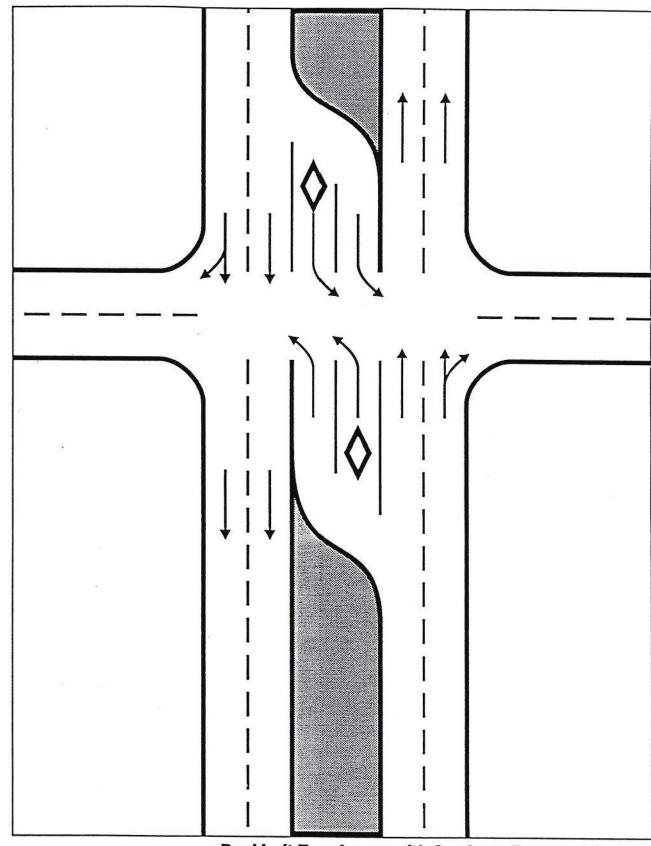

Continuous Right-Side HOV Lanes

Right-Turn Only Except HOV

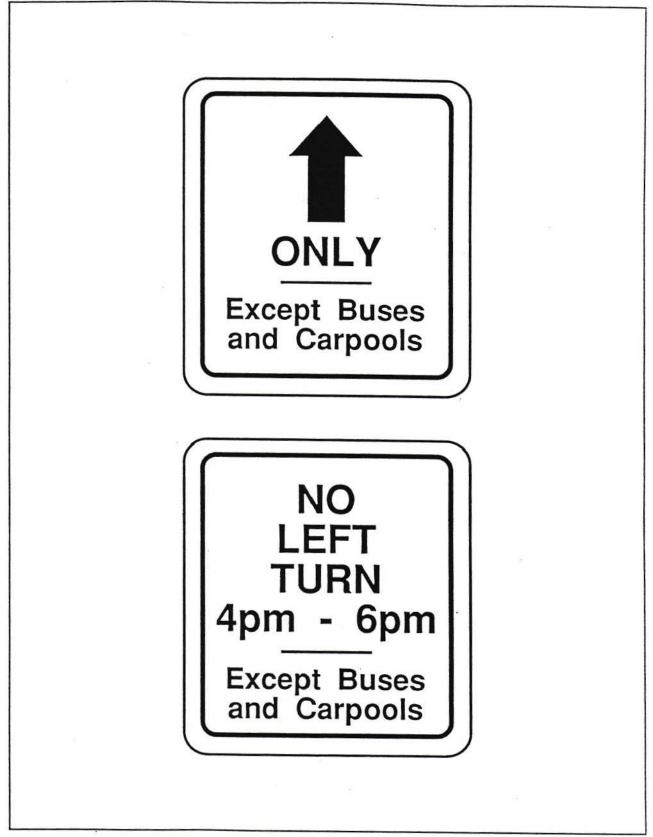


Continuous Left-Side HOV Lanes - Type A

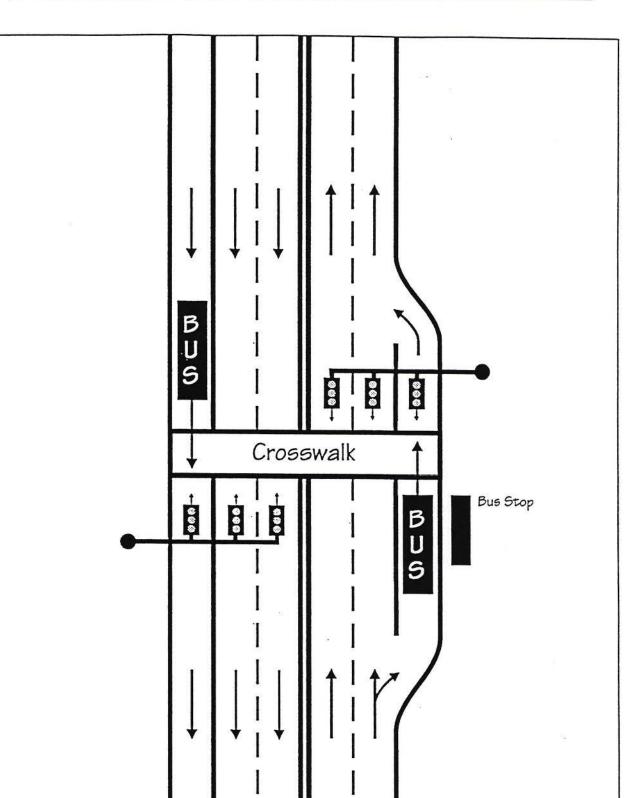


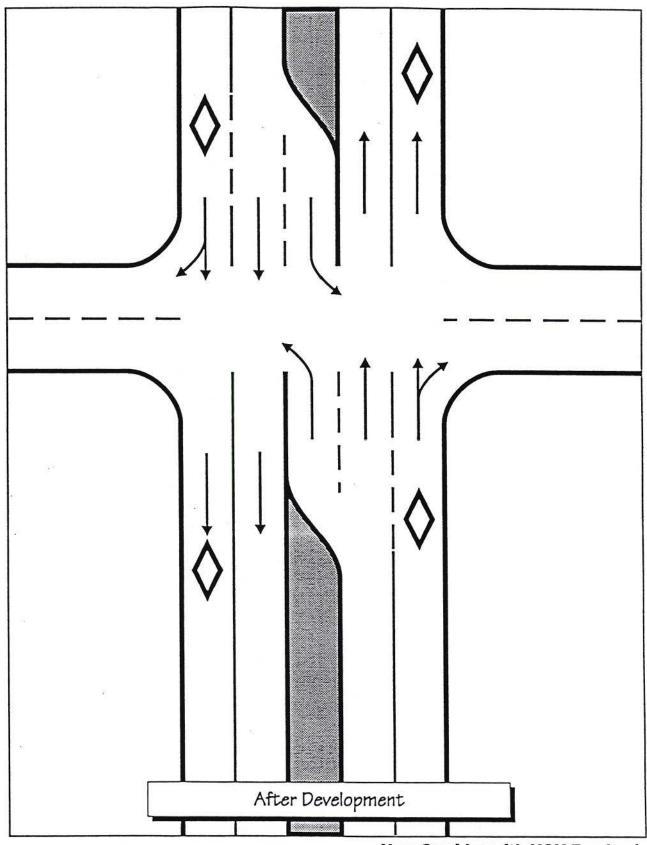

Continuous Left-Side HOV Lanes - Type B

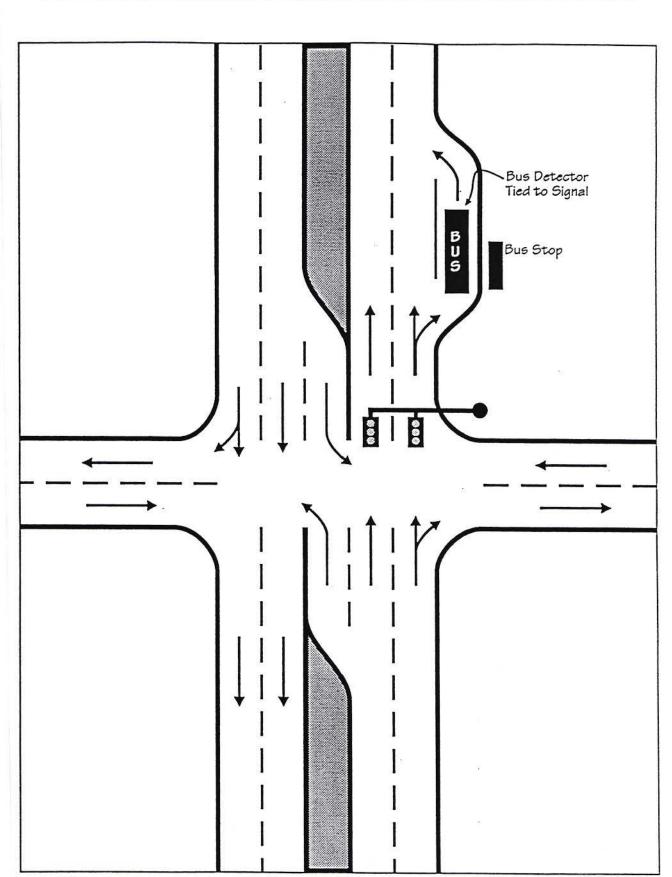
CONSIDERATIONS FOR ARTERIALS



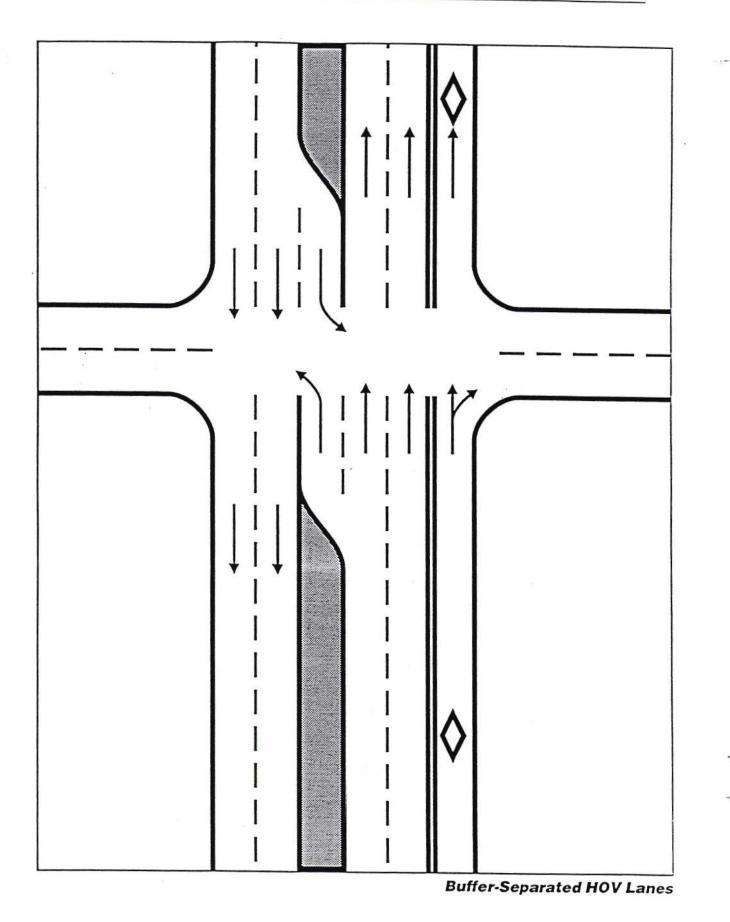
Reversible HOV Lanes with Signal Control



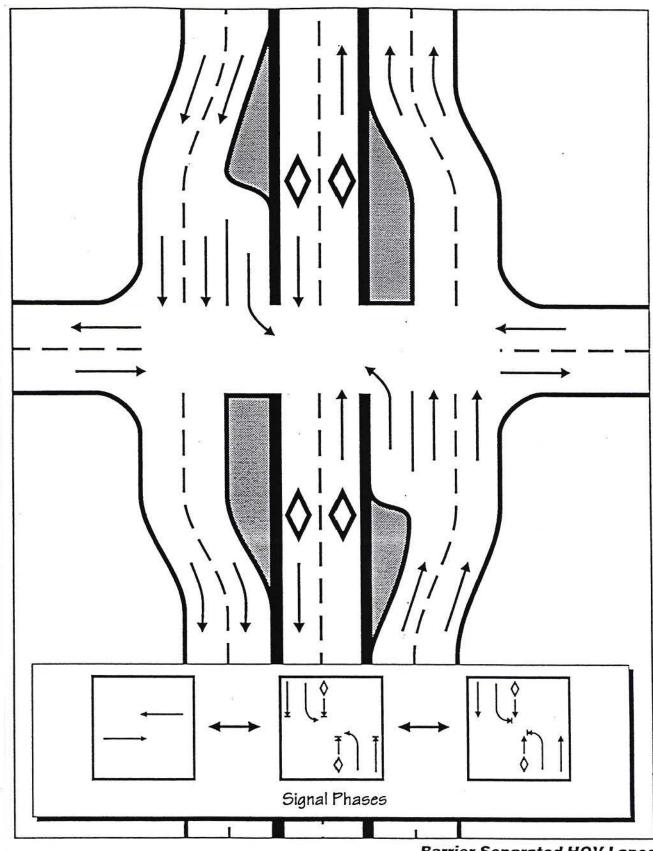

Dual Left-Turn Lanes with One Lane Reserved for HOV

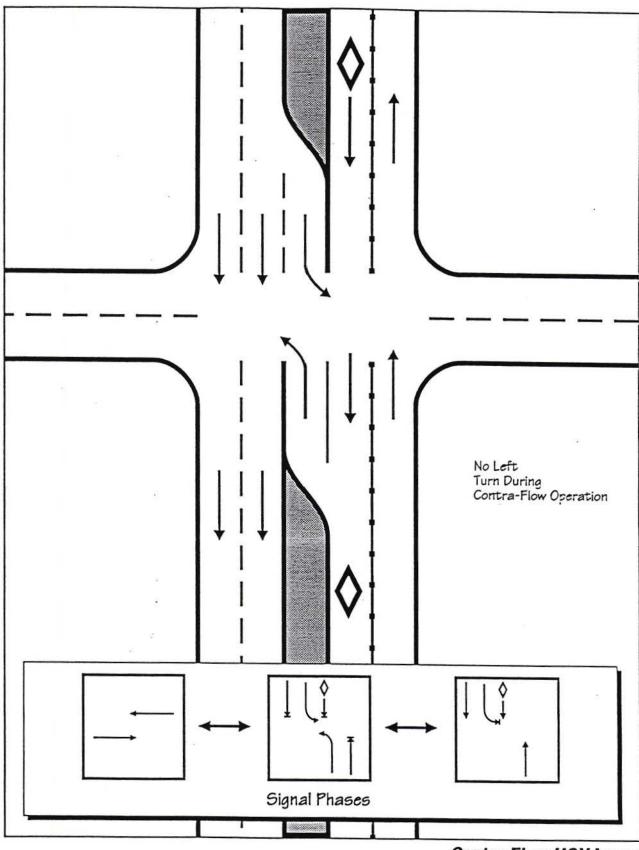

SOV Turn Restrictions

Mid-Block Preferential "Gating"



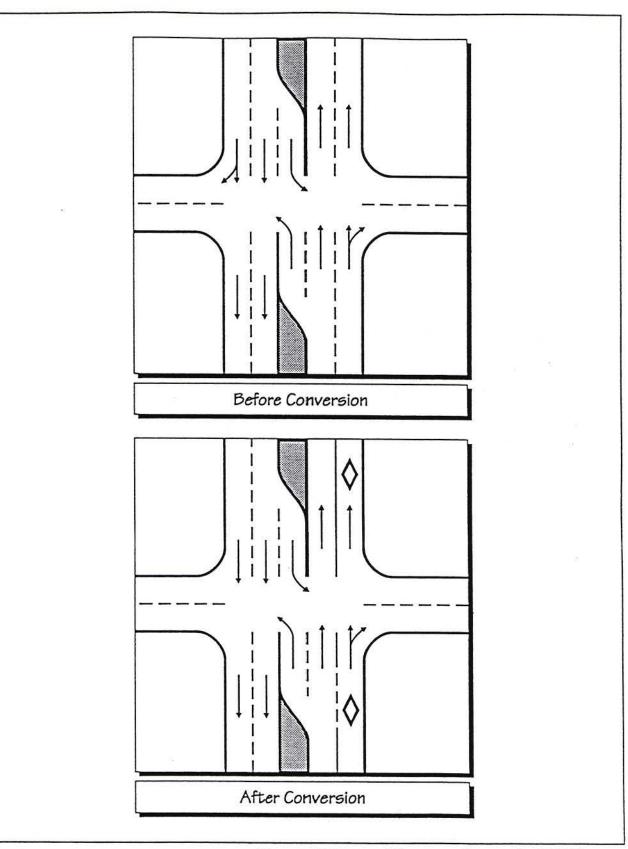
New Corridor with HOV Emphasis

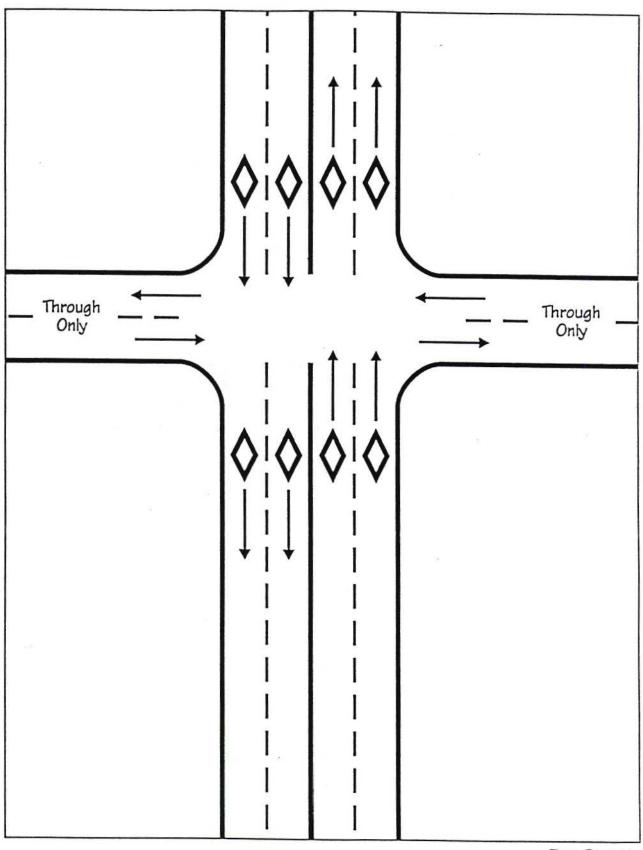



Bus Turnouts and Re-Entry of Traffic Flow

CONSIDERATIONS FOR ARTERIALS

3-16




Contra-Flow HOV Lanes

.

Convert General Purpose Lanes to HOV Lanes

Bus Streets

ARTERIAL HOV TREATMENTS

ANNOTATED BIBLIOGRAPHY

General, 11

ARTERIAL HOV TREATMENTS ANNOTATED BIBLIOGRAPHY

Batz, Thomas M., <u>High Occupancy Vehicle Treatments, Impacts, and</u> <u>Parameters (A Synthesis); Volume I - Procedures and Conclusions, Final</u> <u>Report</u>, FHWA/NJ-86-017-7767-1, New Jersey Department of Transportation, Division of Research and Demonstration, Trenton NJ, August 1986.

Details the findings of 256 past and present HOV treatments. Contains the procedures followed and the major conclusions found concerning 19 HOV treatment types. Also discussed are general parameters discovered for HOV effectiveness.

Benevelli, David A., Radwan, A. Essam, and Hurley, Jamie W., "Evaluation of a Bus Preemption Strategy by Use of Computer Simulation," <u>Transportation</u> Research Record, No. 906, 1983, pgs. 60 - 67.

Study of the effects of implementing a bus preemption strategy on an arterial corridor in Richmond, Virginia, using the Urban Traffic Control System/Bus Priority System microscopic traffic simulation model to simulate bus preemption system operation for various bus flow rates and bus stop locations.

Berg, William D., Smith, Robert L., Walsh, Thomas W., and Notbohm, Thomas N., "Evaluation of a Contraflow Arterial Bus Lane," <u>Transportation Research</u> Record, No. 798, 1981, pgs. 45 - 49.

Results of a 90-day experiment in Madison, WI in 1979 in which a contraflow arterial bus lane was closed and all buses were rerouted into mixed-traffic lanes on a parallel arterial.

Billheimer, John W., "Enforcement of TSM Projects," <u>Transportation Research</u> Record, No. 816, 1981, pgs. 58 - 65.

Covers the first six months of a two-year study to measure and evaluate the effects of different enforcement options, engineering features, and educational programs on violations rates for various TSM freeway strategies, and to trace the resulting impact of the rates on safety, freeway performance, and public attitudes.

Bowman, Dean, Miller, Craig, and Deuser, Bob, "Operations and Design Guidelines for Facilities for High-Occupancy Vehicles," <u>Transportation Research</u> <u>Record</u>, No. 757, 1980, pgs. 45 - 54.

Proposed design guidelines to enhance the safety of HOV preferential treatments, based on cause and effect relationships of accident patterns on 22 HOV projects which were examined in 1977.

Boyle, Daniel K., "Proposed Warrants for High-Occupancy-Vehicle Treatments in New York State," <u>Transportation Research Record</u>, No. 1081, 1986, pgs. 8 -18.

Proposes standardized warrants for the preliminary analysis of HOV projects, based on the before and after conditions of 25 HOV projects.

Bye, Larry L., Cooper, Frances A., Lightbody, James R., "Solving the Suburban Mobility Problem: Two Case Studies in the Application of Collaborative Problem-Solving Techniques," <u>Transportation Research Record</u>, No. 1156, 1988. pgs. 41 - 46.

Reviews two transportation planning projects which involved both the public and private sector in collaborative planning and consensusbuilding processes in Santa Clara County, CA: the Transportation 2000 project, and the Fremont-South Bay Alternative Analysis. Strategies include identifying stakeholders, one-on-one interviews, information management, facilitated small group sessions, working with the press, involving rank and file community members, and quantitative public opinion surveys.

Carson, C., et al., <u>Bus Signal Priority System Evaluation (for the City of Concord,</u> <u>California)</u>, TJKM, July 1978.

Casey, Robert F., Labell, Lawrence N., Prensky, Simon P., and Schweiger, Carol L., <u>Advanced Public Transportation Systems: The State of the Art</u>, DOT-VNTSC-UMTA-91-2, U.S. Department of Transportation, Urban Mass Transportation Administration, Washington DC, April 1991.

Contains results of a limited investigation of the adoption of advanced technology in public transportation service, focusing on some of the more innovative and comprehensive implementations. Sections on Market Development, Customer Interface, Vehicle Operations and

3-23

Communications, and HOV Facility Operations, and appendices on AVL systems nationwide and internationally.

Christiansen, Dennis L., Miller, Craig, Cunagin, Wiley, Bissell, Howard H., Rosenbaum, Merton J., "Priority for High-Occupancy Vehicles (HOV)", Chapter 8, <u>Synthesis of Safety Research Related to Traffic Control and Roadway</u> <u>Elements</u>, Volume I, FHWA-TS-82-232, U.S. Department of Transportation, Federal Highway Administration, Washington DC, December 1982, pgs. 8-1 - 8-20.

This chapter address nine alternative priority measures. For arterial streets: Signal Preemption Systems, Concurrent Flow Lanes, Contraflow Lanes, and Separate HOV facilities. For freeway-related applications: Priority Entry, Toll Plaza Lanes, Concurrent .Flow Lanes, Contraflow Lanes, and Separate HOV Facilities.

Crowell, William H., <u>Preferential Bus Lanes on Urban Arterials: Selected</u> <u>Studies on their Feasibility and Performance</u>, UMTA-NY-11-0014-79-2, U.S. Department of Transportation, Urban Mass Transportation Administration, Washington DC, December 1978.

Seeks to identify the possible impacts of priority techniques for buses on different groups, including adjacent commercial interests and other land use issues. Surveys North American cities to determine assessment methods, analyses a with-flow curb bus lane in Manhattan, and studies the causes of traffic delays and effectiveness of alleviating methods for express buses in Manhattan. Discusses lack of economic analyses.

Curtis, Owen, "The Hartford Study," <u>6th National Conference on High-Occupancy Vehicle Systems, 1992 Conference Proceedings</u>, Arterial Street HOV Applications, Ottawa, Ontario, Canada, October 25 - 28, Transportation Research Circular No. 409, June 1993, pg. 41.

An overview of a study examining possible links from a freeway HOV lane to the downtown area in Hartford, Connecticut.

ARTERIAL HOV BIBLIOGRAPHY

Davis, John Emery, <u>A Study of the Planned NE Pacific Street HOV Facility</u>, Master's Thesis, University of Washington, Department of Civil Engineering, Seattle WA, July 20, 1990.

Describes a study of the planned HOV improvement on NE Pacific Street in Seattle. Predicts impacts of the facility and makes recommendations to local agencies implementing the facility. Provides a basis for making methodological and planning recommendations applicable to other arterial HOV projects in the Seattle area. This project is part of a larger research effort investigating state-of-the-art techniques for providing HOV incentives on signalized arterials being conducted at the University of Washington by Dr. Nancy L. Nihan, and funded by WashDOT, TransNow, METRO, the City of Redmond, and the City of Kirkland. (See also citation by Nihan, below.)

Dewhurst, John, <u>High Occupancy Vehicles on Arterial Roads: 164th Street</u> <u>Example</u>, working paper, Sno-tran, Snohomish County WA, June 14, 1990.

Summarizes the findings of the investigation of HOV options on 164th Street in Mill Creek. Discusses HOV facilities background, HOV classifications, arterial street HOV planning considerations, bus priority principles, other arterial HOV facilities, and the applications to this corridor.

Elias, W. J., <u>The Greenback Experiment</u>, California Department of Transportation, April 1976.

Evans, Henry K., and Skiles, Gerald W., "Improving Public Transit through Bus Preemption of Traffic Signals, <u>Traffic Quarterly</u>, October 1970, pgs. 531-543.

Discusses major causes for slow travel of bus passengers, and the ways in which traffic signal priority systems could alleviate. Advocates orienting traffic signal control to the person rather than the vehicle. Discusses experiments with bus signal preemption in Los Angeles which resulted in savings for both total person delay as well as bus passenger delay.

Eyler, Dennis R., Beltt, Charleen Z., Borson, Richard D., "The I-394 Interim HOV Lane - a Valuable Construction Zone Traffic Management System," Institute of

Transportation Engineers Compendium of Papers, 1986.

Discusses the reconstruction of a principal arterial to downtown Minneapolis which began in 1985 in which five major intersections were controlled by multi-phase traffic actuated signal systems, and the effects on bus ridership, auto occupancy, and travel time savings during the first five months of operation.

Fausti, Charles J., Tremble, Kevin B., "Evaluation of HOV Facilities in the New York Metropolitan Region," <u>Institute of Transportation Engineers Compendium of Technical Papers</u>, 1981, pgs. 82 - 90.

Discussion of the 26 HOV facilities of the New York metropolitan region, dividing research into facilities implemented prior to and after 1973. Focuses on the shift in governmental response to priority facilities institution after the 1973 energy shortage.

Fisher, Ronald J., and Simkowitz, Howard J., <u>Priority Treatment for High</u> <u>Occupancy Vehicles in the United States - A Review of Recent and Forthcoming</u> <u>Projects</u>, Report No. UMTA-MA-06-0049-78-11, U.S. Department of Transportation, Urban Mass Transportation Administration, Washington DC., August 1978.

This report describes recent (in 1978) HOV preferential projects in the U.S., summarizes the results of the projects and draws implications, and outlines projects which are to be implemented over the new few years (from 1978.)

Gillis, R. Douglas, "Unlocking Arena Gridlock," <u>Civil Engineering</u>, February 1990, pgs. 43 - 45.

Short article regarding the Charlotte, North Carolina Coliseum's computerized, reversible lane system and how it is easing arena traffic jams.

Giummarra, George J., "Improvements to Tram Operations by Use of New Technology," <u>Compendium of Technical Papers. Institute of Transportation</u>

ARTERIAL HOV BIBLIOGRAPHY

Engineers, 60th Annual Meeting, Orlando FL, August 5 - 8, 1990, ITE Pub. No. PP-020, Washington DC, pgs. 466 - 470.

Describes special measures and technological developments introduced in Melbourne, Australia, to improve the operation and performance of tram services, including on-road techniques, new traffic signal technology, and efficiency benefits.

Gravelle, K. P., and Walker, Dr. C., "Technical Requirements for Effective Application of Automatic Vehicle Identification (AVI) Technology to Highway Systems," <u>Compendium of Technical Papers. Institute of Transportation</u> <u>Engineers</u>, 60th Annual Meeting, Orlando FL, August 5 - 8, 1990, ITE Pub. No. PP-020, Washington DC, pgs. 24 - 32.

Analyzes most important technical areas of consideration under free-flow traffic conditions to support the standardization of for technical standards for AVI technology.

de Groot, Peter W., and Carr, Gary W., "Metro Toronto's Transit Priority Process," <u>Compendium of Technical Papers. Institute of Transportation</u> <u>Engineers</u>, 60th Annual Meeting, Orlando FL, August 5 - 8, 1990, ITE Pub. No. PP-020, Washington DC, pgs. 456 - 460.

Outlines the process that has been set up to identify, evaluate, and implement transit priority measures in .

Huddy, Bob, "The Los Angeles Experience," <u>6th National Conference on High-Occupancy Vehicle Systems, 1992 Conference Proceedings</u>, Arterial Street HOV Applications, Ottawa, Ontario, Canada, October 25 - 28, Transportation Research Circular No. 409, June 1993, pg. 42 - 43.

An overview of the transit and transportation system in Southern California, including recent studies examining the use of arterial street HOV lanes.

Hunter, Kris, <u>HOV Treatments on SR 527</u>, research paper, University of Washington, Seattle WA, March 10, 1992.

Discussion of a planned arterial HOV treatment on SR 527, a principal arterial highway in urban Snohomish County. Covers community and traffic issues, applications of HOV treatments in Minneapolis, Denver and

3-27

Chicago, and different technologies available, with a look at Los Angeles and Bremerton.

Ingalls, Larry, Jacobson, Kern L., and Melone, Elthan H., <u>Alternatives for</u> <u>Providing Priority to High Occupancy Vehicles in the Suburban Arterial</u> <u>Environment</u>, presented at the 72nd Annual Meeting of the Transportation Research Board, Washington DC, January 1993; to be published in the Transportation Research Record.

Discusses the alternatives for providing HOV priority in an arterial environment that are currently under study in Snohomish County, Washington. Discusses all of the treatment options which have been used, identifies fatal flaws in some treatments, and discusses the advantages and disadvantages of treatments which show some potential for success.

Institute of Transportation Engineers, Technical Committee 6Y-19, "Planning Urban Arterial and Freeway Systems," <u>ITE Journal</u>, April 1985, pgs. 24 - 29.

This article is a summary of a larger report by the same name available through ITE. Covers considerations in planning urban arterial and freeway systems, the roles of arterial and freeways, land use and transportation relationships, communicating the role of the total roadway system to its users, the arterial and freeway system planning process, obtaining maximum efficiency from existing systems, the principles of transportation system management, and recommended policies for improvements in the planning and implementation of transportation facilities and services.

JHK and Associates, <u>Priority Treatment for High Occupancy Vehicles Project</u> <u>Status Report</u>, Interim Report, U.S. Department of Commerce National Technical Information Service No. PB-270 529, Federal Highway Administration Report No. FHWA-RD-77-56, Washington DC, March 1977.

This report is part of FHWA's Federally Coordinated Program research project 2D, "Research on Priority Techniques for High Occupancy Vehicles." Discusses the status of 14 preferential treatment projects for buses and carpools in the U.S., including physically separated bus and carpool lanes, contra-flow lanes, exclusive median with-flow lanes, bypasses of metered freeways ramps, and toll reductions for carpools.

ARTERIAL HOV BIBLIOGRAPHY

Jacobson, Kern, "Community Transit Study," <u>6th National Conference on High-Occupancy Vehicle Systems, 1992 Conference Proceedings</u>, Arterial Street HOV Applications, Ottawa, Ontario, Canada, October 25 - 28, Transportation Research Circular No. 409, June 1993, pg. 41.

Discussion of the Community Transit Study, a study examining arterial street HOV applications in Snohomish County, Washington.

Jacobson, Kern L., "Transit Signal Priority Treatments in the Puget Sound Region," <u>Pacific Rim TransTech Conference, Proceedings, Volume I, Advanced</u> <u>Technologies</u>, ASCE Third International Conference on Applications of Advanced Technologies in Transportation Engineering, Seattle, Washington, July 25 - 28, 1993, American Society of Civil Engineers, New York NY, pgs. 272 - 278.

Documents the work which has been done in the Puget Sound Region of Washington towards developing region-wide signal priority treatments.

Khasnabis, Snehamay, Reddy, Gangula V., and Hoda, Syed K., "Evaluation of the Operating Cost Consequences of Signal Preemption as an IVHS Strategy," <u>Transportation Research Record</u>, No. 1390, July 1993, pgs. 3 - 9.

Presents a new computer simulation model, PREEMPT, for depicting operating cost and ridership consequences of signal preemption in an urban bus corridor. Model has not yet been applied in an actual study.

Labrum, Willard D., "Application of NETSIM Computer Simulation Model to Traffic Control Problems," <u>TRB Special Report</u>, No. 194, 1981, pgs. 42 - 50.

Discusses history of the development of this model, also known as UTCS-1, and Utah's work with it in 1973 when trying to determine whether to use traffic-actuated intersection control or a fixed-time progressive arterial control. Also discusses its use in an urban grid study, pedestrian studies, a bus system study, an economic analysis, and in coordinated, actuated intersections of arterial/grid networks.

LaPlante, John, and Harrington, Tim, "Contraflow Bus Lanes in Chicago: Safety and Traffic Impacts," <u>Transportation Research Record</u>, No. 957, 1984, pgs. 80 - 90.

Study was in response to community belief that traffic congestion and pedestrian accidents had increased since installation of contraflow bus

3-29

lanes on four downtown Chicago streets in 1980 and 1981. Examines the effects of the installation and makes recommendations.

Lee, Leo K., Tighe, Warren, and Albers, Allen, "Traffic/LRT System Integration for the Blue Line in Los Angeles," <u>Compendium of Technical Papers. Institute of</u> <u>Transportation Engineers</u>, 60th Annual Meeting, Orlando FL, August 5 - 8, 1990, ITE Pub. No. PP-020, Washington DC, pgs. 163 - 167.

Overview of LRV-traffic interface and the development of special traffic signal software.

Levinson, Herbert S., and Menaker, Paul J., "A Proposed Transitway for 42nd Street," <u>ITE Journal</u>, March 1987, pgs. 17 - 20.

Discussion of several ideas for the creation of a transitway concept in downtown Manhattan. Covered are the various land uses in the corridor, traffic levels, future developments, the effects on pedestrians and pollution levels, and costs.

Maryland State Highway Administration, <u>MD 2 Bus Pre-Emption System, Anne</u> <u>Arundel County</u>, Final Report, Office of Traffic and Safety, Traffic Development and Support Division, October 1993.

This pre-emption system was placed into operation in July 1993, and this study was completed in October 1993. It looks at bus travel times, other vehicle travel times, and ridership numbers for both before and after system implementation. Also included is a discussion regarding bus driver observations, and an analysis of the impacts of the system on overall corridor operations.

McCormick Rankin, <u>Metropolitan Toronto High Occupancy Vehicle (HOV)</u> <u>Network Study, Summary Report</u>, Metropolitan Toronto Transportation Department, March 1992.

First in a series of reports including four technical reports and a bibliography. This overview has sections on Planning and Design Guidelines, HOV Experience and Opportunities, HOV Network Plan Development, HOV Priority and Incentive Program, and HOV Issues in Metropolitan Toronto, and ends up recommending that a HOV network should be established for Toronto.

Miller, C., et al., <u>Safety Evaluation of Priority Techniques for High-Occupancy</u> <u>Vehicles</u>, FHWA-RD-79-59, Federal Highway Administration, Washington DC, February 1979.

Miller, Craig and Deuser, Robert, "Enforcement Requirements for High-Occupancy Vehicle Facilities, <u>Transportation Research Record</u>, No. 816, 1981, pgs. 68 - 75.

Summarizes the findings of a research study conducted for the Federal Highway Administration. Research reviews enforcement of HOV facilities, identifies effective HOV enforcement techniques, develops model legislation for effective HOV enforcement, and prepares HOV enforcement guidelines. Sixteen projects in the U.S are discussed. Also conducts a legal review of six issues posed by these techniques.

Nihan, Nancy L., and Davis, John E., <u>HOV Improvements on Signalized</u> <u>Arterials: State-of-the-Art Review</u>, Draft Working Paper, Research Project No. GC8287, Task 17, Washington State Transportation Center, University of Washington, Seattle WA, May 15, 1990.

Part of the below research project. Primary objectives for this task were to investigate state-of-the art techniques for providing HOV incentives on arterial routes, and to generate ideas for HOV improvements applicable to urban corridors.

Nihan, Nancy L., Davis, John E., and Jacobson, Leslie N., "High-Occupancy Vehicle Improvements on Signalized Arterials," <u>Compendium of Technical</u> <u>Papers. Institute of Transportation Engineers</u>, 60th Annual Meeting, Orlando FL, August 5 - 8, 1990, ITE Pub. No. PP-020, Washington DC, pgs. 15 - 19.

Describes the problem, objectives, work plan and status of a research project underway at the University of Washington addressing the need to provide and understand HOV incentives on arterials. Presents the results of a review produced by the project team and draws some preliminary conclusions. (See also citation by Davis, above, and Nihan, above.)

Papacostas, C. S., "Capacity Characteristics of Downtown Bus Streets," <u>Transportation Quarterly</u>, October 1982, pgs. 617 - 630.

Describes a simulation model (BUSMALL) that was developed and validated in a experiment to estimate the bus capacity of Hotel Street

3-31

under existing conditions in Honolulu. Presents major results of the model's application for selected operational and control strategies.

Parsons Brinckerhoff Quade & Douglas, Inc., Patti Post & Associates, <u>Arterial</u> <u>High-Occupancy Vehicle Study, Final Report</u>, Southern California Association of Governments, May 1991.

This is an investigation of the design and operations of previously implemented arterial HOV facilities throughout the country, arterial HOV development guidelines created by this investigation, and the application of these guidelines to candidate corridor opportunities within Los Angeles.

Poch, Mark, <u>Planned High Occupancy Vehicle Improvements in Bellevue and</u> <u>Suggested HOV Strategies for Bellevue Arterials</u>, research paper, University of Washington, Seattle WA, March 1992.

Discusses planned HOV facilities for Bellevue, and different methods for providing preferential treatments for HOV's.

Rouphail, Nagui M., "Operational Evaluation of Bus Priority Strategies," Transportation Research Record, No. 944, 1984, pgs. 30 - 34.

This study evaluates the impact of the use of a contra-flow bus lane and signal settings based on minimizing passenger, as opposed to vehicular, delays. The operational setting is actual observations on a Chicago downtown street where a contra-flow bus lane was installed in 1980.

Royer, David C., "Integrating Transit and Urban Street Operations in the City of Los Angeles," <u>Compendium of Technical Papers. Institute of Transportation</u> <u>Engineers</u>, 60th Annual Meeting, Orlando FL, August 5 - 8, 1990, ITE Pub. No. PP-020, Washington DC, pgs. 12 - 13.

Discussion of the history and effects of the use of contra-flow lanes, transit signal preemption, and ramp metering in Los Angeles.

Schijns, Steve, "The Toronto Experience," <u>6th National Conference on High-Occupancy Vehicle Systems, 1992 Conference Proceedings</u>, Arterial Street HOV Applications, Ottawa, Ontario, Canada, October 25 - 28, Transportation Research Circular No. 409, June 1993, pgs. 41 - 42.

Presentation on the status of arterial street HOV projects in the Toronto, Canada area, including arterial street HOV lanes currently in operation and those in the planning and development stages.

Senn, Larry, <u>Safety Review of Arterial HOV Lanes in the Seattle Area</u>, working paper, TRAC, Seattle WA, February 15, 1991.

Review based on accident data over a five year period from three arterial HOV facilities: SR 99 NB between 115th and 145th, SR 522 NB between 135th and 147th, and SR 522 SB between 73rd and 145th. Roadway geometry and delineation and other related factors are discussed, as well as recommendations for safety improvements.

Shalaby, Amer S., and Soberman, Richard M., "Effect of With-Flow Bus Lanes on Bus Travel Times," TRB Preprint Paper No. 94-0604, TRB 73rd Annual Meeting, January 9-13, 1994, Washington, D.C.

Investigates the effect of an urban reserved bus lane on bus travel time on individual segments, as opposed to total travel time. Changes in segment time then related to characteristics and traffic regulations at respective segments.

Sibley, Scott W., "Netsim for Microcomputers," <u>Public Roads</u>, September 1985, pgs. 54 - 59.

Author has developed a version of NETSIM (UTCS-1) which can run off of PC's rather than mainframes. Discussion of new version, its advantages, limitations, requirements, and availability.

Southworth, Frank, and Westbrook, Fred, <u>Study of Current and Planned High</u> <u>Occupancy Vehicle Lane Use: Performance and Prospects</u>, DE86 004660, U.S. Department of Energy, December 1985.

Report details the results of a nationwide study of HOV lanes, including their characteristics, performance, and their traffic congestion mitigating and rideshare enhancing facilities.

Technology Sharing Program Office, <u>Priority Techniques for High Occupancy</u> <u>Vehicles: State-of-the-Art Overview</u>, DOT-TSC-OST-76-65, U.S. Department of Transportation, Washington DC, November 1975. Identifies and summarizes characteristics of 17 freeway and 37 city arterial priority techniques. Also covers planning, implementation guidelines, information sources, legal, financial and institutional considerations, and includes a transit authority, operating agency, and governmental unit directory.

Transpo Group, Inc., <u>Highway 99 High Occupancy Vehicle Study, Technical</u> <u>Report 1, Summary of the Literature Review and Existing Data Collection Efforts</u>, METRO, Seattle WA, January 11, 1991.

First of a series of four technical reports of the Highway 99 HOV Study. Summarizes results of a national and local literature review regarding HOV applications on arterials. It focuses on the definition and types of arterial HOV applications, warrants and guidelines used to determine whether an arterial HOV improvement should be implemented, performance measures used to evaluate the success of an application, and potential difficulties with implementation, design, and enforcement. Also includes information on planned improvements, traffic volumes, and level of service for the year 2000 for this corridor.

Transpo Group, Inc., <u>Draft Highway 99 High Occupancy Vehicle Study</u>, <u>Technical Report 2, Alternatives Evaluation and Preferred Alternative</u> <u>Recommendation</u>, METRO and Community Transit, Seattle WA, May 20, 1991.

Second of the above-mentioned series. Summarizes the results of the alternatives analysis using year 2000 operating conditions for the SR 99/Evergreen Way study corridor, between 145th and Casino Road in Everett.

Turnbull, Katherine F., International HOV Facilities, paper presented at the 71st Annual Meeting of the Transportation Research Board, Washington, DC, January 1992, Paper No. 920628, Texas Transportation Institute, College Station TX.

Provides an overview and description of HOV lanes in operation in non-North American countries. Compares similarities and differences between HOV projects in North America and other parts of the world. Makes suggestions for improving the exchange of information on international HOV projects.

ARTERIAL HOV BIBLIOGRAPHY

Turner, Shawn M., "High-Occupancy Vehicle Treatments on Arterial Streets," ITE Journal, November 1993, pgs. 22 - 29.

This article attempts to fill in the lack of guidelines for HOV faciliites on arterial streets. It contains a discussion of the major issues associated with arterial street HOV facilites for CBD's, freeway-to-arterial connections, and line-haul arterial streets.

Turnquist, Mark A., "Strategies for Improving Reliability of Bus Transit Service," <u>Transportation Research Record</u>, No. 818, 1981, pgs. 7 - 13.

Analyses and reports principal findings regarding four transit reliability improvement strategies: vehicle-holding, stops reduction, signal preemption, and exclusive right-of way.

Wattleworth, J. A., et al., <u>Evaluation of the NW 7th Avenue Express Bus and</u> <u>Priority System</u>, Reports I-1 through I-9, UMTA-FL-06-006, Urban Mass Transportation Administration, Washington DC, 1977.

Wheeler, Linda M., "Operation Green Light: A Comprehensive Plan to Combat Congestion in Northeastern Illinois, <u>Compendium of Technical Papers</u>. Institute <u>of Transportation Engineers</u>, 60th Annual Meeting, Orlando FL, August 5 - 8, 1990, ITE Pub. No. PP-020, Washington DC, pgs. 8 - 11.

Discussion of the Operation Green Light initiative underway in Illinois, an effort to involve all transit, highway and transportation planning agencies in resolving urban congestion. Specifically discussed are transit signal preemption and HOV treatments being recommended for demonstration projects.

Williams, Thomas, Haselkorn, Mark, and Alalusi, Kathy, <u>Impact of Second</u> <u>Priority Signal Preemption on Kitsap Transit and Bremerton Travelers, Draft,</u> Transportation Northwest, University of Washington, Seattle WA.

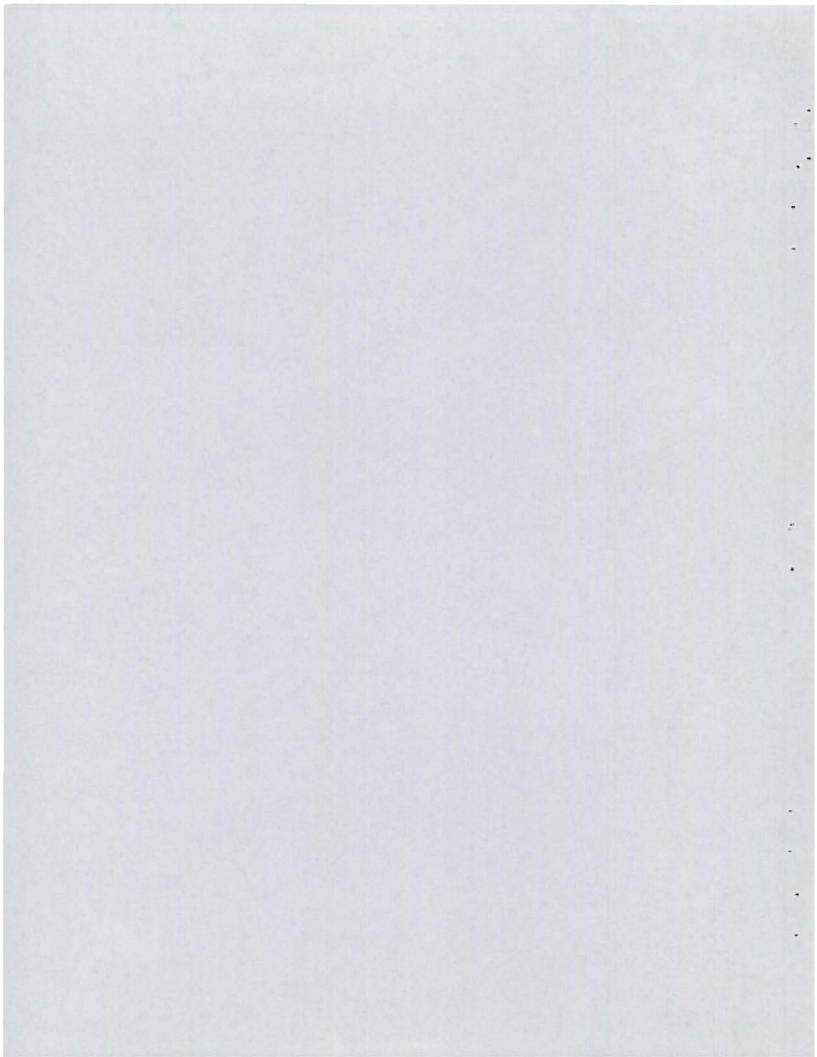
This nine-month study focused on four bus routes and eight intersections in Bremerton, Washington, attempting to assess the impact of a second priority signal preemption system on bus travel time and delay to automobiles at cross streets. Willis, Cecil O., "High-Occupancy Vehicle Considerations on an Arterial Corridor in Pensacola, Florida," <u>Transportation Research Record</u>, No. 722, 1979, pgs. 97 - 105.

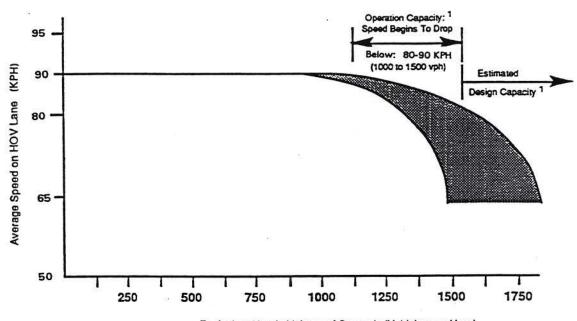
An arterial corridor study to determine the feasibility of implementing HOV priority techniques. Discusses the decisions made as to data collection, data analyses, alternatives selection, and the elimination of parts of the corridor from further consideration.

Yagar, Sam, "Efficient Transit Priority at Intersections," <u>Transportation Research</u> <u>Record</u>, No. 1390, July 1993, pgs. 10 - 15.

Discusses adverse affects of not including transit operations when modeling traffic flow and designing signal timing, and outlines fixed- and real-time methods for providing appropriate transit priority to reduce travel times for transit passengers SOV's alike.

Yedlin, M., et al., <u>Bus Signal Priority Strategies Review and State of the Art</u> <u>Assessment</u>, unpublished report, DOT-FH-11-9609, U.S. Department of Transportation, Washington DC, 1979.

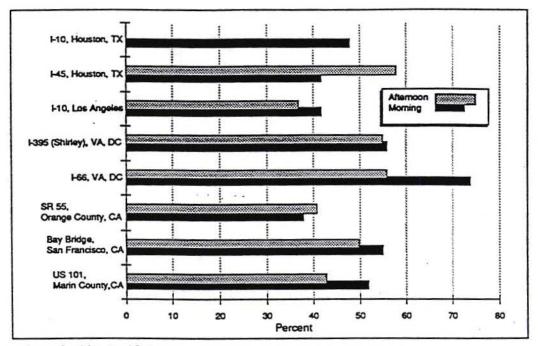

Yedlin, M., and Lieberman, E. B., "Analytic and Simulation Studies of Factors that Influence Bus-Signal-Priority Strategies," <u>Transportation Research Record</u>, No. 798, 1981, pgs. 26 - 29.


Presents two techniques to identify optimum conditions for implementation of bus-signal-priority strategies: an analytic model to compare the performance of bus systems operating with and without bus signal preemption, and the NETSIM model which has been modified to incorporate a bus-signal preemption strategy.

Zahavi, Yacov, and Roth, Gabriel, "Measuring the Effectiveness of Priority Schemes for High-Occupancy Vehicles," <u>Transportation Research Record</u>, No. 770, 1980, pgs. 13 - 21.

Discusses using the total distance traveled on a system per day by all travelers as a useful measurement of system output, and using the product of daily distance traveled and speed per household and per traveler as a useful measurement of mobility. Applies these measurements to the Singapore Area Licensing Scheme in June 1975.

HOV OPERATION



HOV Lane Speed/Volume Relationship

Equivalent Hourly Volume of Carpools (Vehicles per Hour)

¹Specific values depend on vehicle mix, type of facility and project geometrics. For definitions of terms, see Appendix A.

Source: Adapted from Mounce & Stokes 1985.

HOV Lane Volume Ratio of Peak Hour to Peak Period on Various Projects

Source: Cechini 1989 and Christiansen 1988.

	Public/ Private Transit Buses	School Buses	Vanpools	Carpools	Texi	Police	Emergency	Motor- cycles	Other Vehicles	Carpool Occupancy Requirements
BUSWAY FACILITIES IN SEPAR	ATE R.O.	N.		4						
Ottawa, Canada										
Southeast Transitway	x					x	x		Intercity Bus	NA
Other Transitways	x					x	x			
Pittsburgh, PA										
East PalWay	x					x	x			NA
South PatWay	x					x	x x		LRT	NA
FACILITIES IN FREEWAY R.O.W.										
Reversible-Flow Facilities										
Houston, TX										
I-45 (Gulf & North), US 290	x	x	x	x	×	x	x		Airport Bus	2+
I-10 (Katy)	X	x	x	x	x	х	x		Airport Bus	3+ AM peak, 2+ other times
 Minneapolis, MN, I-394 	x	x	x	x	×	x	x	×		2+
 San Diego, CA, I-15 	x	x	x	x	×	x	x	×		2+
 Northern Virginia (Washington, DC) 										
I-395 (Shirley)	X	x	×	x		x	x			3+
 Pillsburgh, PA, I-279 	×	×	x	x	×	×				3+
Two-Way Facilities										
 Los Angeles, CA, I-10 	x	x	x	х		x	x	x		3+
Northern Virginia, I-66	x	x	x	x		x	x			
Honolulu, HI, Moanalua Fwy.	x	x	x	x	x	x	×			2+
 Los Angeles, CA, Rie. 91 	x		×	×	x	x	x	x		2+
 Miami, FL, I-95 	x	X	x	x	x	x	x			2+
Orange County, CA, Rte. 55 & I-405		2.0	x	x	x	x	x	х		2+

.

Vehicles Allowed to Use High-Occupancy Vehicle Facilities

.

+

4

.

.

.

4-4

HOV Facility	Public/ Private Transit Buses	School Buses	Vanpools	Carpools	Taxi	Police	Emergency	Motor- cycles	Other Carpool Occupancy Vehicles Requirements
Two-Way Facilities (continue	d)								
 Santa Clara County, CA, US 101 									
San Tomas, others	х	x	×	××	x x	× ×	×	×	2+
Orlando, FL, I-4	х	х	x	×			×	×	2+
 Marin County, CA, US 101 	х	х	x	x	х	x	×	×	2+
 Seattle, WA 									
1-5	x	x	x	x	x	x	x	x	3+/2+
SR 520	х	х	х	x	x	x	x	x	2+
1-405, 1-90	x	X	x	x	x	X	x	x	2+
Hartford, CT									
1-84	x	X	x	x	x			x	3+
Phoenix, AZ, I-10	×	x	X	x				x	2+
Contraflow Facilities									
 New Jersey, Rte. 495 	222								a la companya da companya d
(Lincoln Tunnel)	x								Not applicable
 New York City, NY 	*								
Long Island Expressway	X	X	x		x	×	x		Not applicable
Gowanus Expressway	X	x	x		X	х	x		Not applicable

.

1

Vehicles Allowed to Use High-Occupancy Vehicle Facilities

,

.

\$

.

10.00

Ĩ.

.

.

•

Eligibility Issues

- Maximize People Moving Capacity
- Facilitate Car Pool Formation
- Level of Service in HOV lane (At least two levels higher than GP lanes)
- Empty Lane Syndrome (Minimum use 180 to 400 vph)
- Lane Capacity (500 to 1100 for right lane, 1500 to 1900 for left lane)
- Number of buses per hour
- · Quality of Geometrics
- · Radial vs. suburban facility
- Variation by time of day
- Other users (motorcycles, taxis, empty buses, emergency vehicles, trucks)

Comparison of User/Eligibility Trade-Offs

Primary User Definition*

Three or more (3+) during peak periods, two or more (2+) during offpeak periods

Two or more person (2+) vehicles

Three or more (3+) vehicles (or 4+)

Advantages .

- Allows for separate control of peak/off-peak period volumes once peak period exceeds design capacity
- More flexible than strict 2+ or 3+ definitions
- Easier to modify
- Promotes a broader distribution of peak period demand over a longer period
- Can be an intermediate step in gradually increasing overall occupancy requirements from 2+ to 3+
- Most frequently applied definition for opening new projects
- Easily understood
- Initial use generally meets minimum requirements
- Most flexible definition to encourage ridesharing
- Most appropriate for corridors with low bus transit affinities
- Suitable for 24-hour operation
- Adequately preserves future personmoving capacity for most projects
- Easily understood
- A more suitable long-term definition after an HOV market has been created with lower occupancy rules
- More suitable to peak periods only

Disadvantages

- Harder to understand
- Harder to enforce, promotes violations in transition periods
- May not be applicable from a corridor or regional perspective (justification for consideration may be a point-specific bottleneck)
- Limited experience (Virginia I-66 and Houston I-10)

- Can quickly overwhelm the facility's design capacity
- Difficult to alter once established (easier to lower than raise requirements)
- Limits the improvement in personcarrying capacities on most projects to no more than two equivalent mixed-flow lanes.
- Will not sustain an adequate initial perception of use on all projects
- Makes rideshare formation harder to achieve and sustain

Comparison of User/Eligibility Trade-Offs

Primary User Definition*

Bus only

Advantages

- Controlled user group that is easily managed
- Maximizes person-moving capacity
- Minimizes enforcement needs
- Works well in slower-speed busway environments on separate R.O.W. where public cannot perceive the facility as underutilized
- Potential to control use of HOV facilities that are not safe if opened to unfamiliar users (e.g., contraflow)
- More effective regulation of users, allowing for more precise design capacity management
- Minimizes enforcement needs
- Easier to modify definition without changing signs and rules

Disadvantages

- Speeds hard to sustain when volumes are high (greater than 200 vehicles per hour)
- Offers no benefits to other HOVs; ignores a potentially large market of users
- Not practical for most corridors
- Increases administrative costs for authorization procedures and training
- More difficult to communicate definition to the public
- Not consistent with general terminology used throughout the US
- Limited experience

Authorized vehicles only (usually buses, taxis, and possibly vanpools)

24 Hour vs Peak Period Only

- Off Peak Benefit to GP = ? (Contribute to Speeding?)
- Safety issues if geometric compromises
- Enforcement issues
- Signing complexities
- Incentive to HOV off peak
- Basic Philisophy (Does lane "belong" to HOV's?)

			Length	Facility	Hours of	
	HOV Facility	No. of Lanes	(ml.)	Shared	Operation	Status
Ŋ.	Miami, FL, I-95	1 each direction	7.5	Mixed-flow	7-9 am SB	Operational, not enforced
	Orlando, FL, I-4	1 each direction	6.2 NB 14.5 SB	Mixed-flow Mixed-flow	4-6 pm NB 7-9 am, 4-6pm	In operation
	Marin County, CA,				•	
	US 101	1 direction	3.7	Mixed-flow	6-9 am SB 4-7 pm NB	In operation
	Santa Clara County,	CA			• 10 10 10 10 10 10 10 10 10 10 10 10 10	
	1-280	1 each direction	10	Mixed-flow	5-9 am, 3-7 pm	In operation
	Rte. 237	1 each direction	4.5	Mixed-flow	5-9 am, 3-7 pm	In operation
	US 101	1 each direction	12 SB 11 NB	Mixed-flow	5-9 am, 3-7 pm	In operation
	San Tomas Expy.	1 each direction	8	Mixed-flow	6-9 am, 3-7 pm	In operation
	Montague Expy. San Francisco, CA	1 each direction	6	Mixed-flow	5-9 am, 3-7 pm	In operation
	Rte. 280	1 (SB only)	4	Mixed-flow	3-7 pm	In operation (temp.suspended 1990)
•	Fort Lee, NJ, I-95 (New York City)	1 (EB only)	. 1	Mixed-flow & right shoulder	7-9 am	In operation
•	Honolulu, HI					
	Moanalua Fwy.	1 each direction	2.3	Mixed-flow	6-8 am, 3:30-5 pm	In operation
•	Northern Virginia				8	
	I-95	1 each direction	l.	Mixed-flow	6-9 am, 3:30-6 pm	In operation

Selected HOV Operations Shared with Mixed-Flow Traffic

Source: Turnbull and Hanks 1990.

	HOV Facility	No. of Lanes	Length (mi.)	Shoulder Location	Hours of Operation	Status
1.	Miami, I-951	1 each direction	7.5	Median (inside)	7-9 am SB 4-6 pm NB	Shoulder converted to mixed-flow lane during off-peak ¹
2	Los Angeles, Rte. 91	1 (EB only)	8	Median (inside)	3-7 pm	Converted operation to 24 hours
3.	Seattie ² SR 520 I-405	1 (WB only) 1 each direction	3 6	Outside (right) Outside (right)	24 hours 24 hours	Both projects in operation as interim facilities

HOV Operations Using Available Shoulders -- Past and Present

¹Construction is now underway to add buffers and inside shoulders. ²Another interim right shoulder conversion is being implemented on I-5 south.

4-11

HOV ENFORCEMENT FACTORS

ENFORCEMENT AREAS

- Placement
- □ Safety

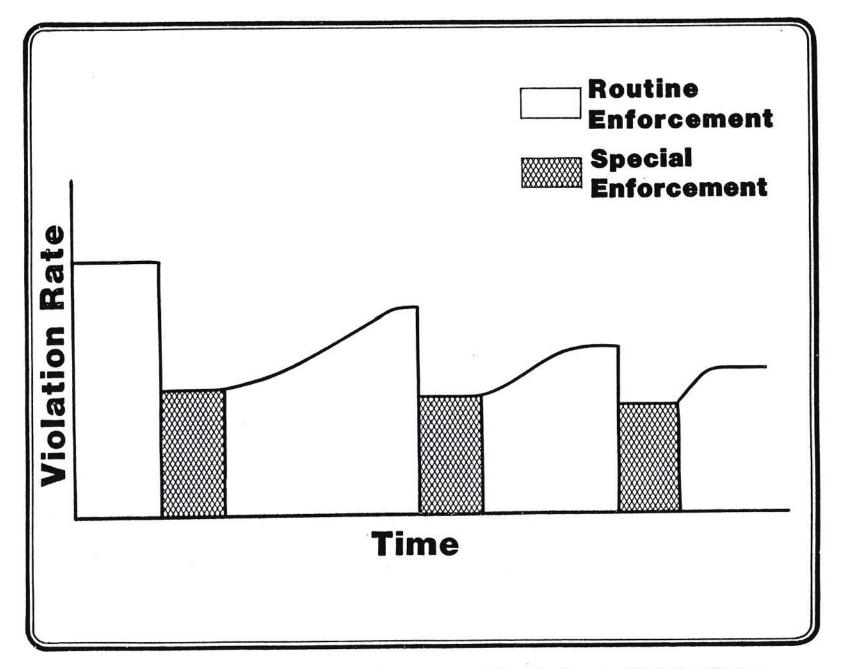
, , ,

z

- HOV SIGNING
- ENFORCEMENT POLICIES
- ENFORCEMENT AND SAFETY

KEYS TO EFFECTIVE HOV ENFORCEMENT

- ♦ LEVEL OF ENFORCEMENT IS DEPENDENT UPON FACILITY TYPE
- ♦ OFFICERS MUST HAVE SAFE AND CONVENIENT PLACES TO ENFORCE
- ♦ A HIGHLY VISIBLE ENFORCEMENT PRESENCE SHOULD BE MAINTAINED
- TRY TO DIVERT POTENTIAL VIOLATORS BEFORE THEY CAN TRAVERSE SOME PART OF AN HOV LANE
- INVOLVE ENFORCEMENT PERSONNEL DURING HOV PLANNING AND DESIGN


1

Source: Texas Transportation Institute (1988) WSDOT Design Manual (June 1989)

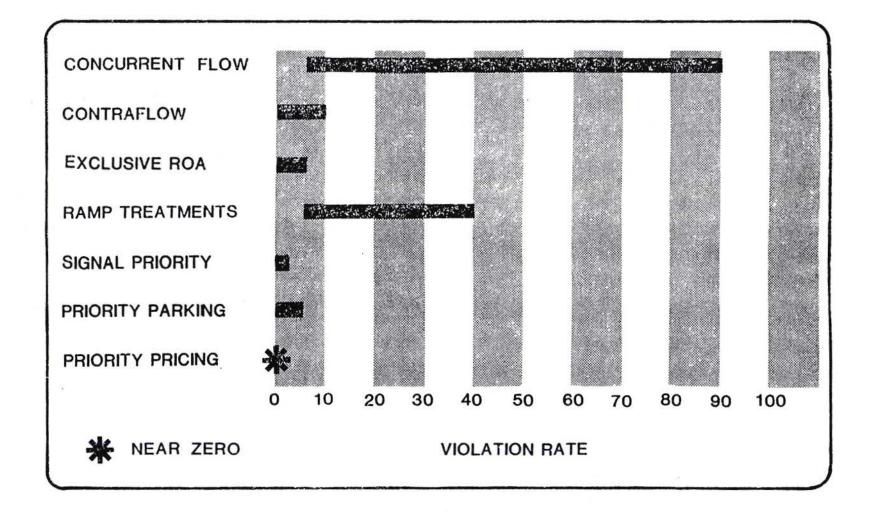
k associates

Aarabase.cdr 05-02

Safety and Enforcement Improvements Assessment HOV Pre-Design Studies Puget Sound Region

3 **1** 1

1


.

1

Effects of Selective Enforcement Strategies on Violation Rates

4-14

х к 1

Range of Violation Rates

١

.

ī.

4-15

	Full	Designated Enforcement Areas						
		At Entrance or Termination	Along Guideway	Designated Pad(s)	Self Enforcement	Citation by Mail	No Provisions	
REVERSIBLE								
Houston, TX I-45 (North) I-45 (Gulf) US-290 (NW) I-10 (Katy)		x x x x		x x			÷.	
Virginia (Washington, D.C.) I-395 (Shirley) I-66	x x				x	x		
San Diego, CA, I-15	x							
Pittsburgh, PA, 1-279	x							
Minneapolis, MN, I-394			×					
TWO-WAY								
Barrier-Separated								
Los Angeles, CA, I-10 (El Monte)	x							
Orange County, CA, I-5 (Proposed)	x		x					
Hartford, CN, I-91	x						x	
Buffer-separated and Nonseparated								
LA./Orange County I-405 SR 91	X¹		x			1991		
Santa Clara County, CA, US 101	x						x	
Marin County, CA, US 101							x	
Seattle, WA 1-405 SR 520 1-5					x x x		×××	
N. Virginia, I-95					x	x	x	
Miami, FL, I-95	2.42						x	
Phoenix, AZ, I-10	×						x	
CONTRAFLOW								
New Jersey, Route 495		x		x				
New York City, NY, Route 495 (UE)		x						
New York City, NY, Gowanus		x						

Enforcement Provisions Employed by Various HOV Projects

¹A short portion of this project has a wide buffer separation, but this area is not used for enforcement. Continuous shoulders are not available in all sections.

Source: Adapted from ITE Effectiveness of HOV Facilities 1986.

	Enforcement	Procedures	For	Selected	HOV	Projects
--	-------------	------------	-----	----------	-----	----------

				Det	ection		Apprehension/Citation					
HOV Facility	HOV Code*	Foot Patrol	Line Patrol	Mobile Patrol	Stationary Patrol	Hidden Enforcement	Standard Procedure	Stationary Apprehension	Wave-off Violator	Mail-out Warnings	Team Approach	
Washington, DC, I-395 (Shirley)	1A		x		x		x					
Houston, TX, I-10, I-45 (Katy and Gulf)	1A				x	N		×	x			
Los Angeles, CA, I-10 (El Monte)	1B		X				x					
Miami, FL, I-95	2		x				x					
Los Angeles, CA, Route 91	2		x			x	x	x				
Marin County, CA, US 101	2		X		x		×					
Minneapolis, MN, I-394	1,2		х		x		x					
New Jersey, Route 495 (Lincoln Tunnel)	3				x			x	x			
Minneapolis, MN, I-35W	4		x		x	x	x	x		x	x	
Los Angeles, CA, I-10 (Santa Monica)	4		x		x		x	x			×	
Seattle, WA, I-5	5		x	x	x	x	x			x		
San Francisco-Oakland Bay Bridge, CA	6	×	x		×		x	x		x	x	

.

Ç .

* HOV Code

1A Barrier-Separated Facility (Reversible-Flow)

1B Barrier-Separated Facility (Two-Way)

2 Buller-Separated or Nonseparated Facility (Two-Way)

3 Contraflow Facility

4 Entry Ramp with HOV Bypass

5 Direct Connection Access Ramp

6 Toll Plaza Queue Bypass Lane(s)

3 4 X

ъ

Sources: Miller et al., Enforcement, 1978; Turnbull and Hanks 1990; and project data.

· · · · · ·

Self-Enforcement Program Begun in the Seattle Area

Sign Of The Times

Times are changing. Sharing the ride is no longer just a vision of the future. It's the present. That's why the Washington State Department of Transportation developed new Transportation System Management (TSM) programs that support the Diamond Lanes. (These are also called "HOV lanes," for use by high-occupancy vehicles).

One element of the TSM program is Thanks for Being a HERO. The Department of Transportation, Metro, and the Washington State Patrol work together and with the public to discourage improper use of the special Diamond Lanes reserved for carpools, vanpools, buses, and motorcycles only!

The **HERO** program is an example of the ongoing commitment to the best management of our transportation system. The following pages of this brochure tell more about how to use these special lanes, and tell the story of other TSM techniques that make the best use of our existing transportation system.

Comments or questions are welcome. Please contact the: Washington State Department of Transportation 15325 S.E. 30th Place Bellevue, Washington 98007-6538 206 562-4000

Thanks For Being A HERO

Here's one we can all get involved in! By encouraging motorists to phone **764-HERO** when they see a vehicle (motorcycles are okay) with one occupant (or only two people in a car where three or more are required) in a Diamond Lane, we can all be winners! So exercise that memory . . . we need to know the license number of the

vehicle, plus a date, time, the location, number of people (children count!), and some description of the vehicle. Vehicle owners are informed by mail about the proper use of the lanes in order to deter repeat

violations. The Washington State Patrol is kept informed about repeating violators. Whenever possible, the State Patrol contacts them, or they are issued a moving violation on the road. Violation reports also help the Washington State Patrol determine where to focus officer enforcement.

Looking at 1987 records:

Less than five percent of those reported were reported a second time.

Fewer than one percent were reported three or more times!

Source: Reprinted from Seattle HOV Task Force Brochure, 1989

Enforcement Issues

- What is an acceptable violation rate? Example rates:
 - SR520: 24% of 300 vph (3+)
 - 1405 SB @ Kennydale: 8% of 600 (2+)
 - 1405 NB @ Kennydale: 18% of 600 (2+)
 - I5 @ NE175th (SB & NB): 15% of 450 (3+)
- Violation Rate vs. Compliance Rate
- HERO Program
 - 1500 calls per week
 - Violation rates before HERO = 17.3%
 - Violation rates 6 months after HERO = 8.5%
 - Violation rates 6 years after HERO= 15%
- Emphasis Enforcement

Summary of Enforcement-Related Information for Selected HOV Projects

				Ra	olation te ¹ (%)		1225 Nov 10		ned to ement	Enforcement Responsibility (agency)
HOV Facility		Method of Enforcement	Yearly Cost	Peak Hour	Peak Period	Fine Amount	Enforcement Features	Number of Persons	Adequate?	
F/	CILITY IN SEPARATE R	.o.w.								
•	Ottawa, Canada Pittsburgh, PA	Charged v:/trespassing Citation	\$200,000 \$100,000	1 1	1 1	\$53.75 \$300 + court	Use shoulder None	3 4	Yes Yes	Transit Transit
FA	CILITY IN FREEWAY R.C	o.w.								
Re	eversible-Flow									
•	Houston, TX I-45, I-10, US 290	Special citation areas, vehicles diverted	\$60,000	1	14am, 1pn	n \$ 75	Enforcement areas, widene or separate ramps to exit violators	ed 2	Yes	Transit
•	Virginia (Washington, DC) I-395 (Shirley)	Vehicles identified2	\$35,000 each officer	5	15	\$50	Shoulder, HERO program	2-5	No	State
•	Pittsburgh, PA, I-279	Vehicles stopped				\$82.50	Continuous shoulder	2222	Yes	State
	San Diego, CA, I-15	Vehicles stopped		3	5	\$246 + court	Shoulder	2	Yes	State
Tw	o-Way Barrier-Separate	ed								
•	Los Angeles, CA, I-10	Citation on HOV Shoulder	\$20,000	11	11	\$246 up + court	Wide shoulder on HOV lane	e 2	Yes	State
Tw	o-Way Buffer-Separate	đ								
•	Hartford, CT, I-84 Orange County, CA,	Citation on HOV buffer	***	•••		\$40	None			State
	Route 55 & I-405	Special citation areas	\$30,000	6	7	\$246 + court	Protected median areas	63	Yes	State
	Los Angeles, CA, Route 91	Special citation area	\$30,000	7		\$246 up + court		63	Yes	State
	Miami, FL, 1-95	Vehicles diverted, not enforced		40		\$43.50	None	10-123	Yes	State
	Ft. Lee, NJ, I-95	Vehicles stopped		30	30	\$50	None	1	Yes	State, Regional Aut
•	Honolulu, Moanalua Fwy.	Vehicles diverted	\$35,000	20	20	\$40	None	3	No	State
	Orlando, I-4 San Francisco, CA area (Santa Clara, Marin, San Francisco Counties)	Not enforced	0	75	75	\$43.50	None	0	No	State
	US 101, Rte. 237 Seattle, WA	Vehicles diverted	\$215,000	5	10	\$50-500	None	1-7	Yes	State
	I-54 and I-405	License plates		11	11	\$47	None		Yes	State
	SR 520	identified, routine, special, & HERO program		8	8	\$47	None		Yes	State

۲

.

,

Summary of Enforcement-Related Information for Selected HOV Projects

			Violation Rate ¹ (%)				Assign Enforce	Enforcement	
HOV Facility	Method of Enforcement	Yearly Cost	Peak Hour	Peak Period	Fine Amount	Enfo rcement Featur es	Number of Persons	Adequate1	Responsibility (agency)
Contraflow									
Honolulu, Kalanianaole Hwy.	Vehicles diverted	\$25,000	5-10		\$35	User permit	1	No	State
 New Jersey, I-495 (Lincoln Tunnel) New York City, NY 	Vehicles diverted	\$35,000				Vehicle check point and diversion lanes	3	Yes	State, Regional, Aut
Gowanus and L.I.E.	Stopped at termination			5.000	\$65	None	1 each	No	City
Queue Bypasses									
 San Francisco-Oakland 									
Bay Bridge, CA	Vehicles diverted	\$200,000	2	2	\$50-500	Wide shoulder	4	Yes	State
Los Angeles - ramp bypasses	Vehicles diverted		5	10	\$160	Wide shoulder	Varies	Yes	State
 Minneapolis - ramp bypasses 						Wide shoulder	Varies	Yes	State

.

f

---Data not available or not provided.
¹As a percentage of legal HOV traffic.
²Citations issued by mail.
³For entire freeway, not specifically HOV.
⁴Violation rates vary widely by location and time of day.

.

.

.

Source: Adapted from ITE, Guidelines for HOV, 1986, and Turnbull and Hanks 1990.

4-21

.

4

3

.

Enforcement Issues and HOV Lane Violations

Policy

1 WSDOT fully supports the HERO program to discourage improper use of HOV lanes by providing a telephone hotline citizens can use to report HOV lane violators. WSDOT will continue to promote the program in regions where HOV systems exist or are planned.

2 WSDOT encourages enforcement of the HOV lanes by the Washington State Patrol.

3 WSDOT recognizes the importance of enforcement when a HOV facility first opens and shall fund enforcement for the first six months of HOV lane operation.

4 WSDOT is committed to designing and constructing HOV facilities that incorporate safe enforcement features and solicit the Washington State Patrol's involvement in design and review of HOV lane development.

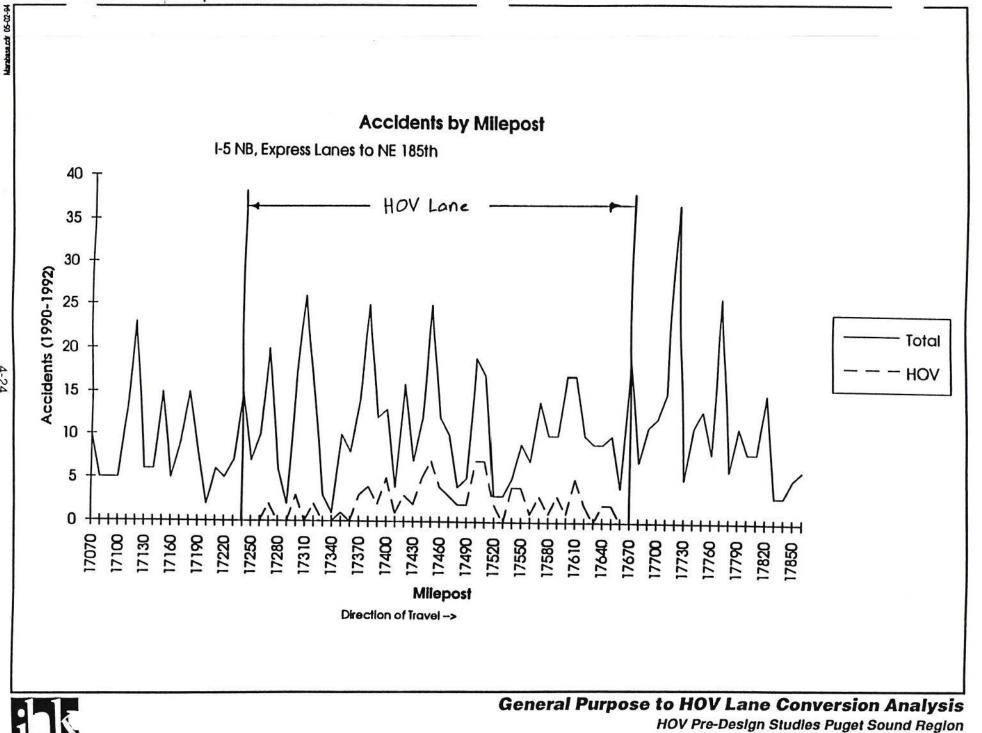
5 WSDOT shall keep regulations and signing clear and consistent to avoid driver confusion.

Source:

: "Washington State Freeway HOV System Policy", Executive Summary, WSDOT, November 1990

Safety and Enforcement Improvements Assessment HOV Pre-Design Studies Puget Sound Region

6 To deter violations, WSDOT shall assign a team to work with the Washington State Patrol to develop and propose legislation creating a separate citation category for HOV violations and which carries an increased, graduated penalty.


HOV SAFETY FACTORS

- HOV LANE DESIGN
- OPERATING CONDITIONS
- CONGESTION LEVELS
- HOV VOLUMES

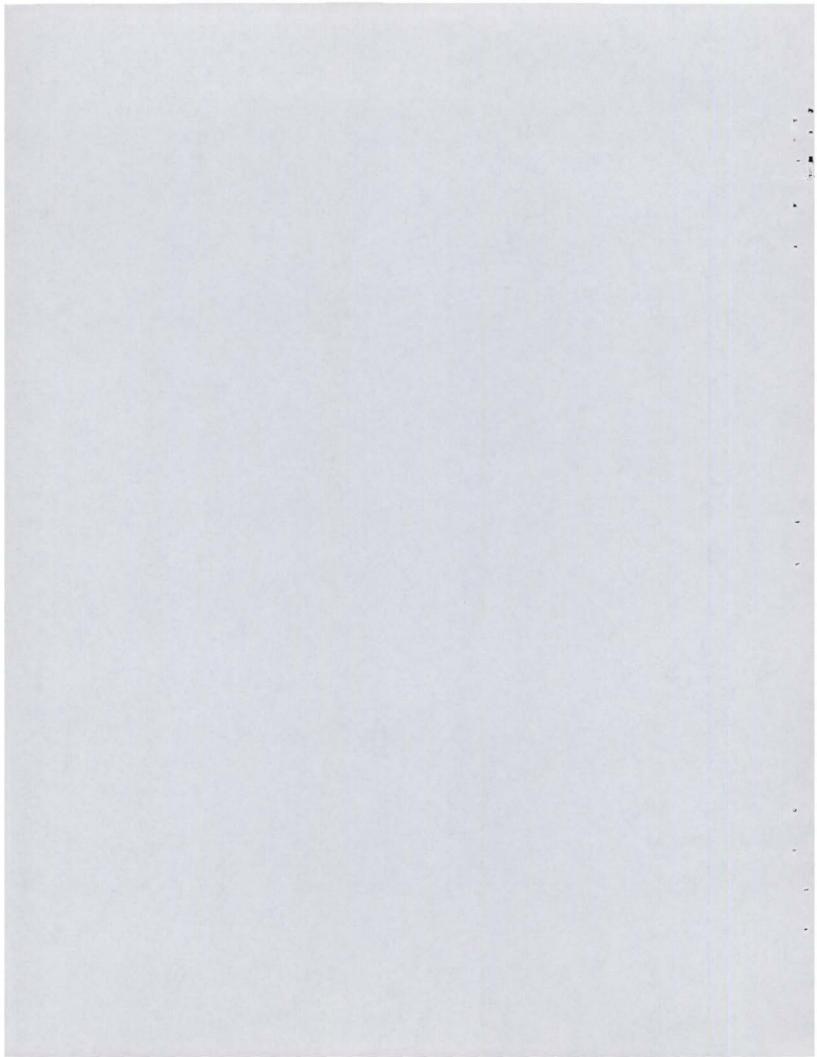
Safety and Enforcement Improvements Assessment HOV Pre-Design Studies Puget Sound Region

....

٠

4-24

HOV Facility	Use of Special Vehicles (For Emergency Response)	Emergency Detection & Accident Reporting Methods	Agency Responding to Emergencies
TWO-WAY BUSWAY IN	SEPARATE R.O.W.		
• Ottawa, Canada	No	Bus radios & transit personnel in marked vehicles	Local Police Transit supervisory & security personnel
 Pittsburgh, PA East Busway South Busway 	Dedicated agency tow trucks Dedicated agency tow trucks (not adequate to remove LRT blocking South Busway)	Bus radios Bus radios	Transit Police Transit Police
FACILITIES IN FREEWA Reversible-Flow Facilitie Houston, TX			
- Houston, 1X I-10 (Katy)	Short-wheelbase tow truck able to turn around	Bus radios & transit induction loops buried in pavement	Transit Police
I-45 (North)	Short-wheelbase tow truck able to turn around		Transit Police
• Virginia (Washington, DC) L395 (Shirley)	No	CCTV (closed-circuit TV) & use of variable message sign	State DOT & State Police s
Two-Way Barrier-Separa ● Los Angeles, CA, I-10 (El Mo		Bus radios, freeway surveillance system	 State Highway Patrol, Transit Police and State DOT incident response team
Two-Way Buffer-Separa			
 Honoluiu, HI, Moanalua Fwy Los Angeles, CA, Rte. 91 	r. No No	-	City Police State Highway Patrol & State DOT incident response team
 Miami, FL, I-95 Orange County, CA, Rte. 55 	No No	Bus radios, CB & mobile phone Same as general traffic	es State Highway Patrol State Highway Patrol & State DOT incident response team
Orlando, FL, I-4 San Francisco - Oakland Ba	-	Same as general traffic	State Highway Patrol
Bridge, CA	Tow Truck	Periodic phones Camera to be installed & linked variable message signs	d to
 Marin County, CA, US 101 	Transit tow trucks	Bus radios & flashing lights at HOV lane entrance	State Highway Patrol & Golden Gate Bridge, Highway & Transportation
• Seattle, WA			District
1-5	No	Bus radios, air traffic reporters, CCTV, electric surveillance	State Highway Patrol and incident mgt. teams
1-405	No	Bus radios, air traffic reporters CCTV, HAR	 State Highway Patrol and incident mgt. teams
Contraflow • Honolulu, HI, Kalanianaole • New Jersey, Rt. 495	Hwy. No	Same as general traffic	City Police
(Lincoln Tunnel)	Port Authority recovery vehicle	s CCTV. Bus radios on some coaches	Port Authority
 San Francisco, CA, US 101 (project terminated) 	Transit tow trucks	Bus radios & flashing lights at HOV lane entrance	State Highway Patrol & Golden Gate Bridge, Highway & Transportation District


Safety and Incident Response Characteristics of Selected HOV Facilities

- Data not available or not provided.

Source: Adapted from ITE, Effectiveness Report, 1986; Miller et al., Safety, 1979.

HOV FACILITY DESIGN

HOV FACILITY DESIGN

Line - haul

Collection and Distribution

Support facilities

DESIGN GUIDELINES

AASHTO

ITE

State DOTs

Local Agencies

Project Standards

Fuhs' Manual

DESIGN VEHICLE ENVELOPE

Desirable	Ultimate		
12 to 18 m	18.0 m		
2.6 m	2.6 m		
3.4 m	4.4 m		
15.6 m	16.5 m		
9.9 m	9.9 m		
1.1 m	1.1 m		
	12 to 18 m 2.6 m 3.4 m 15.6 m 9.9 m		

DESIGN TREATMENTS

Desirable

New Construction Reconstruction Initial Design Consideration

Reduced

Temporary Projects Interim Projects Limited Right-of-way

HOV CROSS SECTIONS

CROSS SECTION DESIGN CONSIDERATIONS

Type of Project

Pavement Width

Isolated Constraints

HOV CROSS SECTION TRADEOFFS

Line-haul or Isolated Locations

State or Federal Guidelines

Temporary/Interim or New Construction

TYPICAL CROSS SECTION GUIDELINES

· · · · · ·

Lane Width Desirable: 3.6 m Reduced: 3.3 m

Lateral Clearances

Desirable:	0.6 to 1.2 m or 3+	m
Reduced:	0.6 m	

Shoulders

Desirable:	3.0 to 3.6 m
Reduced:	2.4 to 3.0 m

REVERSIBLE FLOW HOV FACILITIES

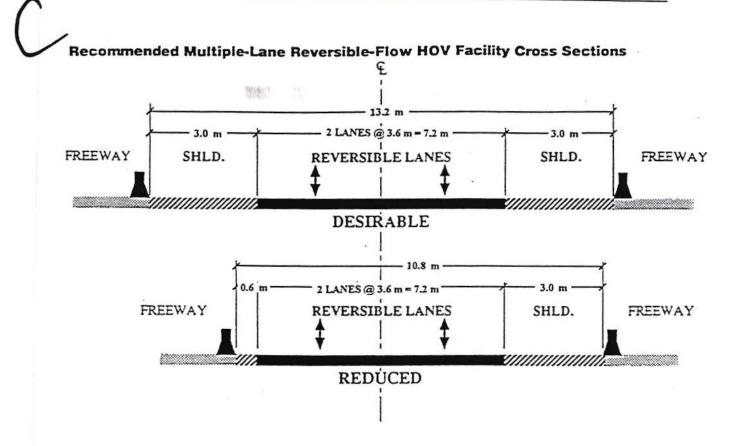
Significant Reconstruction

Barrier Separation

Bridge Columns

1.

Peak Direction Service

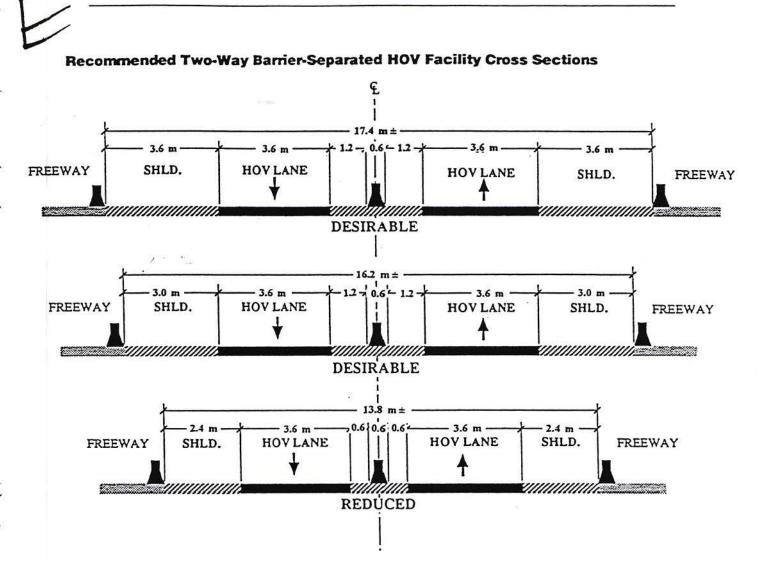

Recommended Single-Lane Reversible-Flow HOV Facility Cross Sections £ 1 3.6 m 2.4 m 2.4 m FREEWAY SHLD. REVERSIBLE LANE SHLD. FREEWAY DESIRABLE 66 1.5 m* 1.5 m FREEWAY SHLD. **REVERSIBLE LANE** SHLD. FREEWAY DESIRABLE 6.0 3.6 m 1.2 m SHLD. SHLD. FREEWAY **REVERSIBLE LANE** FREEWAY 111110 //////// REDUCED

* Lateral clearances may be combined to provide a dedicated 2.4 m shoulder on one side or the other.

5-11

HOV DESIGN

TWO-WAY BARRIER-SEPARATED HOV FACILITIES


Significant Reconstruction

Compatibility with Existing Cross Section

Operational Simplicity

Serves Suburban Development Pattern

Deadheading Bus Service

CONCURRENT FLOW HOV FACILITIES

Most Typical Application

Compatible with Bridge Columns

Peak / Off-peak Direction Service

Varying Width Lateral Clearances

CONCURRENT FLOW RIGHT SIDE vs. LEFT SIDE

Capacity Difference Right: 500 to 1100 vph Left: 1500 to 1900 vph


Accessibility to Buses Left side may require special access

Conflict with On/Off ramps

3

Average HOV Trip Length

H

Recommended Two-Way Buffer-Separated Concurrent HOV Facility Cross Sections

CONTRAFLOW HOV FACILITY

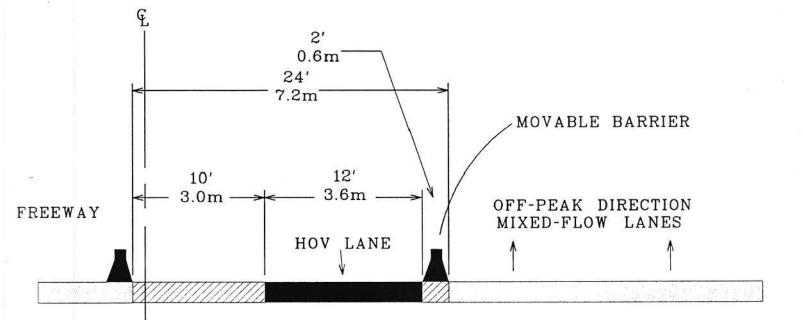
Directional Imbalance in Traffic Volume

Temporary Lane -Operating Costs may be a Concern

Coordination Between Agencies Planning Design Operation Enforcement Incidents

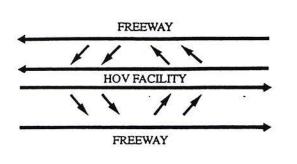
....

SEPARATION OF CONTRAFLOW HOV FACILITY

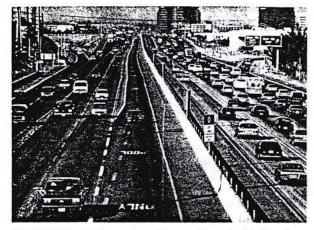

Pylons

Proven Technology Bus Oriented Requires Trained Drivers Visible Vehicles

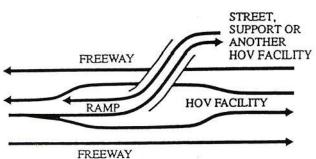
Movable barrier


Operated in Dallas, Texas for 2 Years Bus and Carpools Maximize Eligible Vehicles Positive Separation of Traffic 0

Recommended Contraflow HOV Facility Cross Section



HOV ACCESS


Types of Ingress/Egress

At-Grade with Adjacent Mixed-Flow Lanes

Route 55 at-grade access, Orange County, California

Direct Connections

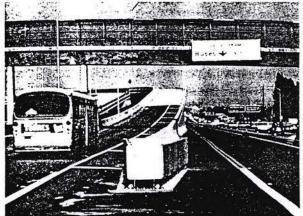
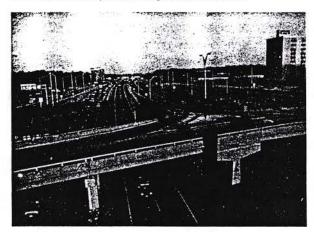
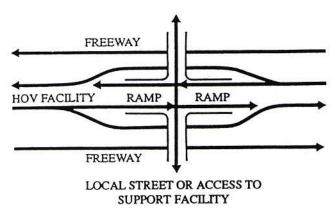




Photo: California DO'

I-10 Del Mar ramps, Los Angeles, California

I-395, Shirley Highway Ramp, Northern Virginia

GUIDELINES FOR APPLYING INGRESS/EGRESS TREATMENTS

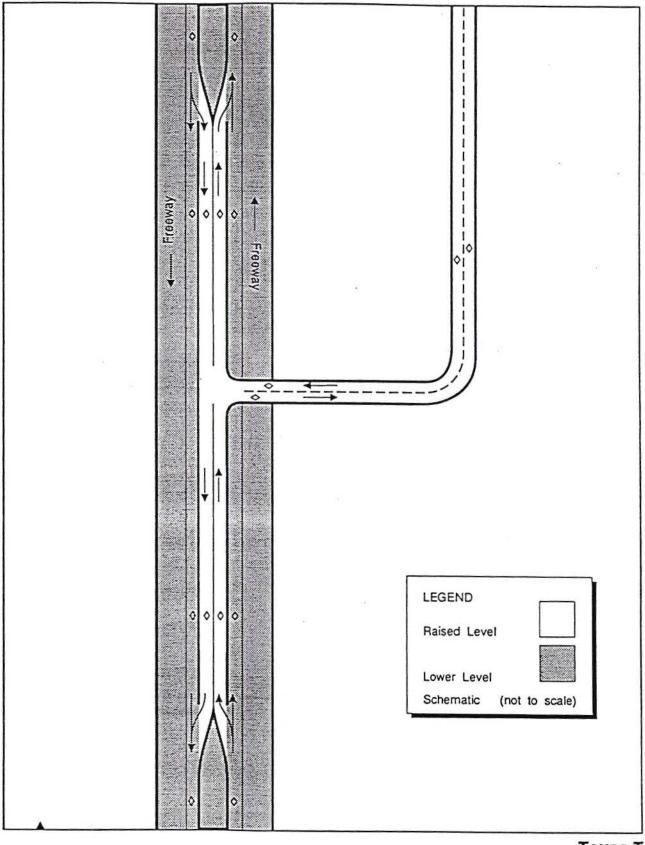
Objective	Type of Treatment ¹						
	At-grade slip ramp with freeway	Drop ramp or "T" ramp with street	Drop ramp or "T" ramp with P&R lot or transit station	Flyover ramp			
Frequent spacing (<3 miles)	+	+	+	-			
Maximize bus travel time savings	0	0	+	о			
User mix requirements:	-	+	+	-			
Buses only	+	+		+			
Buses and other HOVs	÷	+	-	+			
Primarily carpools and vanpools	+>.	+	-	+			
Safety	0	+	0	+			
Enforceability	18	+	+	0			
Fraffic regulation capability ²	-	+	+	+			
Capital Cost	+	0	0	-			
High vehicle volumes	Terminations + Intermediate sites -	+	-	+			
Low vehicle volumes	+	+	+				
High design speed	+	-	-	+			
Low design speed	-	+	+	NA			
Retrofit compatibility with existing freeway	+	+	0	0			
Flexibility to modify later	+	-	1 <u>11</u> 1	-			

Favorable +

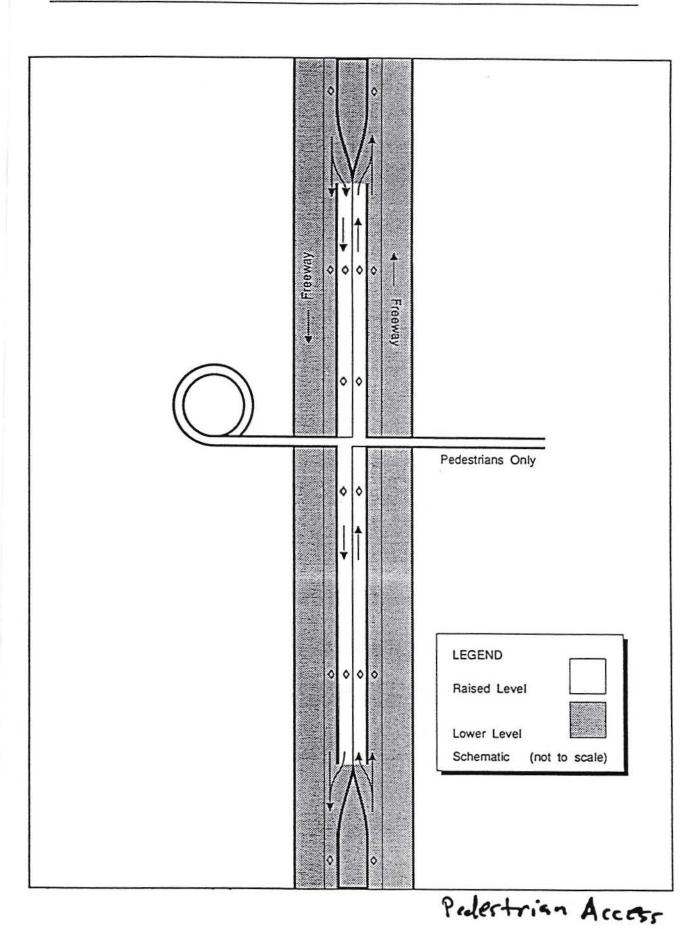
Neutral, often depends on the design or site specifics

Not favorable NA Not applicable

-


.

Not included are busway street intersections used for low-volume, bus-only operation in separate right-of-way. 1 2 Assumes use of meters to regulate entering flow of vehicles.

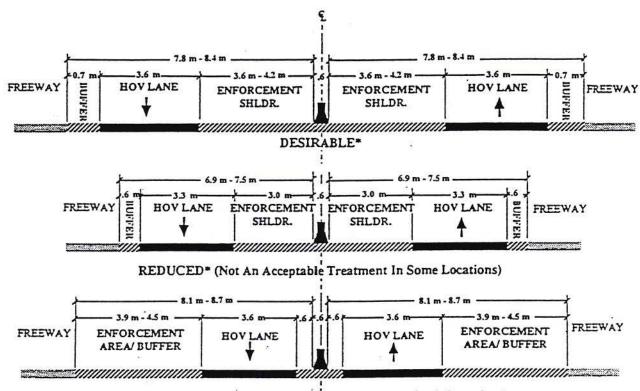

0

DIRECT ACCESS CONCEPTS

HOV DESIGN

Texas T

5-28

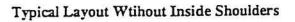

HOV DESIGN

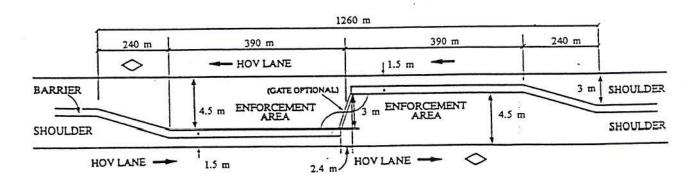
OTHER CONSIDERATIONS

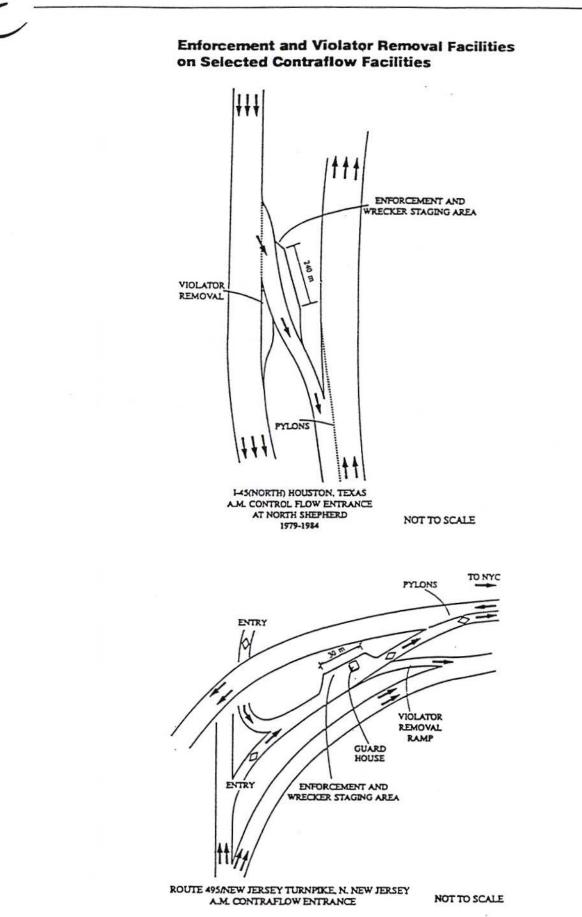
ENFORCEMENT SIGNING AND MARKING INCIDENT MANAGEMENT

HOV FACILITY ENFORCEMENT Type of HOV facility Enforcement Agency Policy Right-of-way and Budget Available High-tech Enforcement Strategies Dedicated Area vs. "Remainder" Locations Diversion Route at Access Points Low Speed Areas

High-Speed Enforcement Areas along Two-Way Buffer-Separated HOV Facilities


MARGINAL* (Not An Acceptable Treatment In Some Locations)


5-31



Typical Layout With Inside Shoulders

SIGNING AND MARKING

Diamond Symbol on HOV Signs

Overhead Mounting

Regulatory Information

Guide Sign Confusion

Canal .

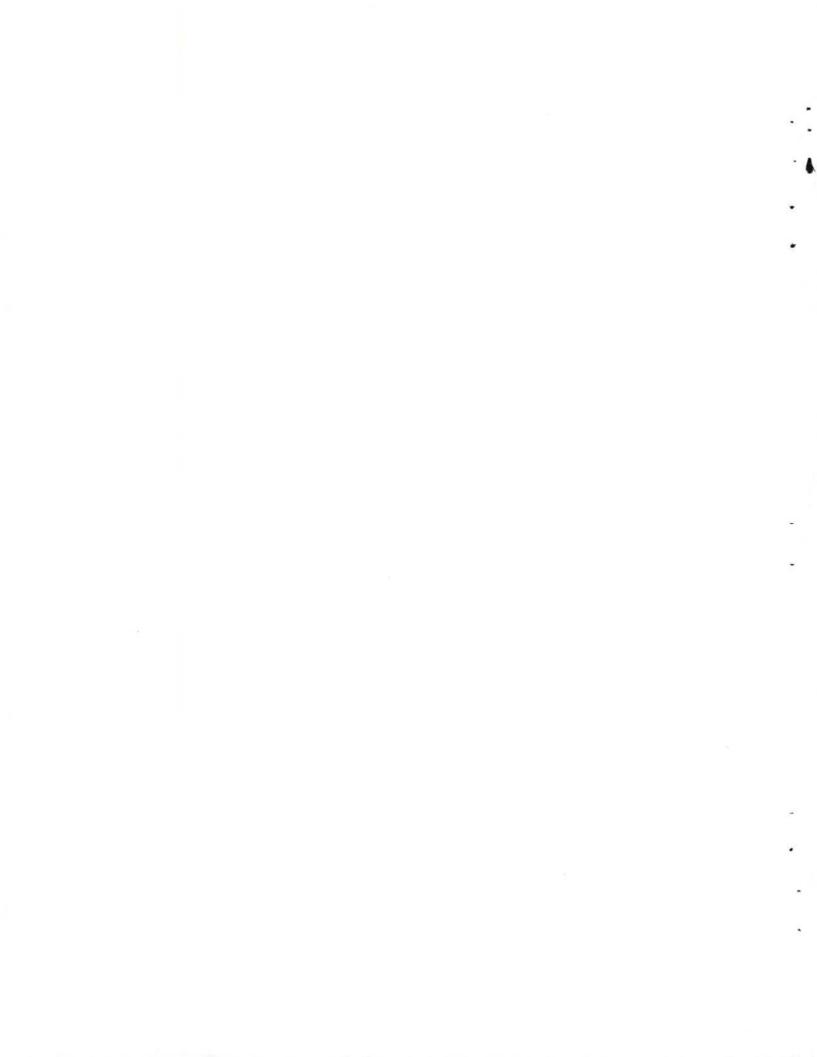
INCIDENT HANDLING PROVISIONS

Breakdown Shoulders

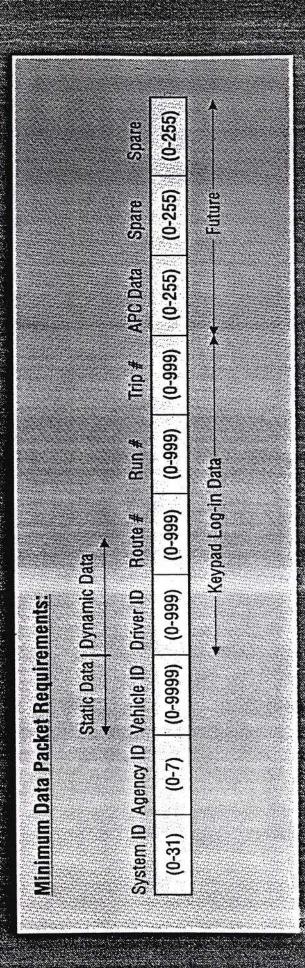
Surveillance and Communication

Intermediate Openings in Barrier

Special Vehicles

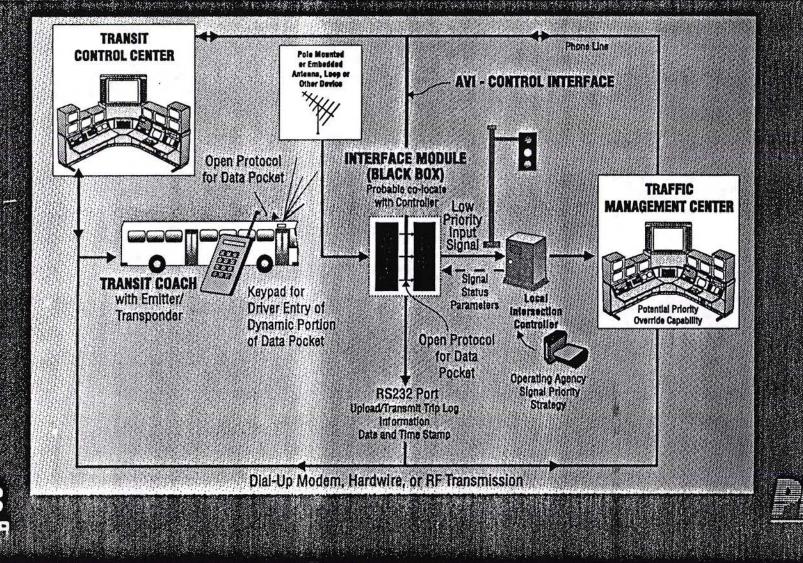

SESSION SUMMARY

Existing Design Guidelines


Design Applications

Relationship to Planning

Operational Effects of Design



TRANSIT PRIORITY SIGNAL SYSTEM CONFIGURATION: PUGET SOUND REGION

. .

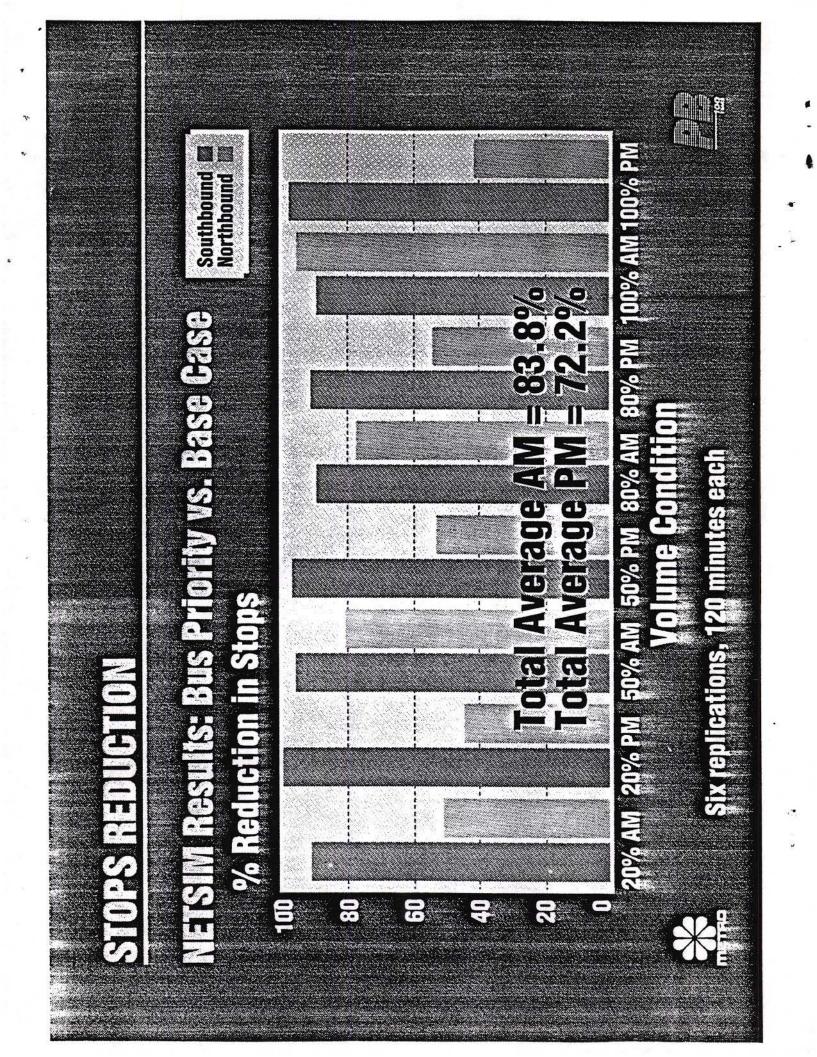
COST EFFECTIVENESS

Intersection LOS: B

	BUSES PER HOUR					
Passengers	2	4	6	8	10	
20	0.1	0.3	0.4	0.5	0.7	
30	0.2	0.4	0.6	0.7	1.0	
· 40	0.3	0.5	0.8	1.0	1.3	

Intersection LOS: C

	BUSES PER HOUR					
Passengers	2	4	6	8	10	
20	0.3	0.6	0.9	1.1	1.5	
30	0.5	0.9	1.4	1.7	2.3	
40	0.6	1.2	1.8	2.3	3.0	

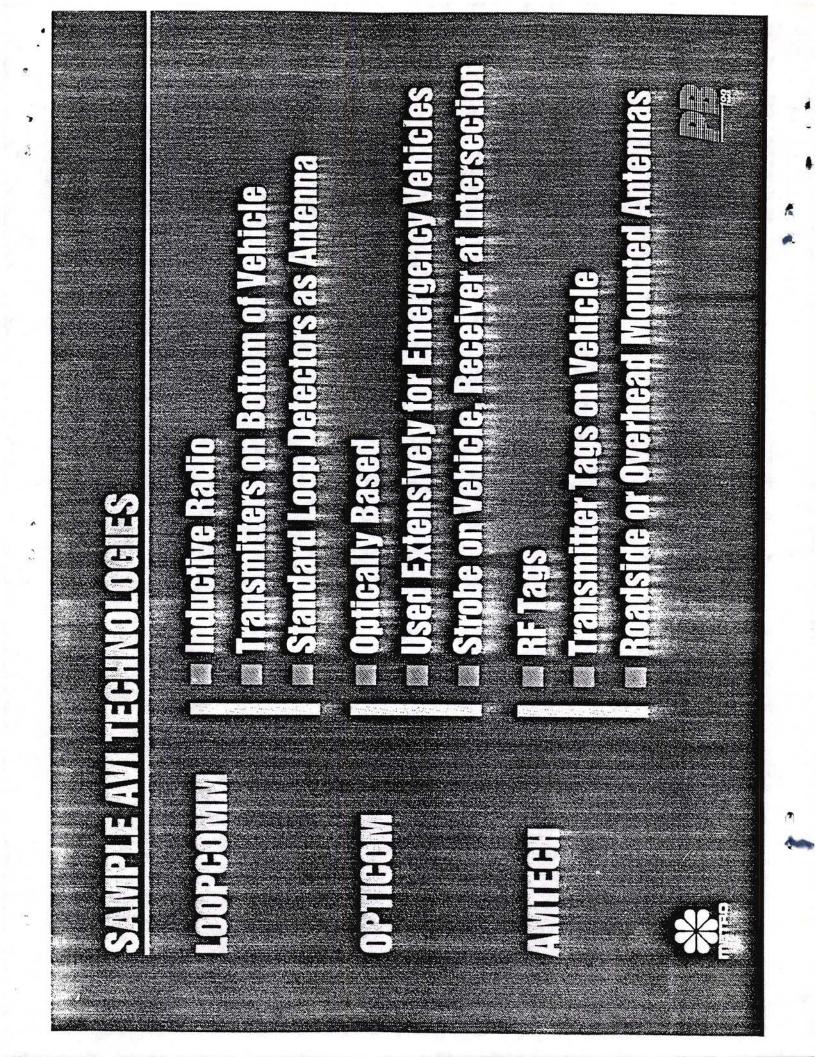

Intersection LOS: D

Al phant production of the second	BUSES PER HOUR					
Passengers	2	4	6	8	10	
20	0.4	0.8	1.3	1.6	2.1	
30	0.6	1.3	1.9	2.4	3.2	
40	0.8	1.7	2.5	3.2	4.2	

Intersection LOS: E

an Tangga Tao ang	BUSES PER HOUR				
Passengers	2	4	6	8	10
20	1.0	2.0	3.0	3.7	5.0
30	1.5	3.0	4.5	5.6	7.5
40	2.0	4.0	6.0	7.5	10.0

Conditional Preemption


Green Extension/Truncation

HOV-Weighted OPAG

