
TA 
1207 
• F'B3 

P· B 2 7 2 2 3 9 

Report No. UMTA-MD-06-0022-77-2 

S.C.R. T .0. UBRARY. 
A STATE-CONSTRAINED APPROACH 

TO VEHICLE-FOLLOWER CONTROL 

FOR SHORT-HEADWAY AGT SYSTEMS 

S.t.\ll .D. UB\\N\l 

A. J. PUE 

TECHNICAL REPORT 

AUGUST 1977 

Document is available to the public t hrough the 
National Technical Information Service, 

Springfield, V irginia 22161 

Prepared for 

DEPARTMENT OF TRANSPORTATION 
URBAN MASS TRANSPORTATION ADMINISTRATION 

Office of Research and Development 
Washington, D.C. 20590 



NOTICE 

This document is disseminated under the sponsor
ship of the Department of Transportation in the 
interest of information exchange. The United 
States Government assumes no liability for its 
contents or use thereof. 

S.C.R.T .D. LIBRARY 



Technical Report Documentation Page 
1. Report No. 2 . Government Acce-ssi on No. 3. Recip i ent ' s Cotolog No. 

UMTA-MD-06-0022-77-2 
4. T, tie ond Subt,tle 5. Report Dote 

A State-Constrained Approach To Vehicle-Follower Con
trol For Short-Headway AGT Systems 

6. Performing Orgoni zotion Code 

;--:7;-_-:-A-u,-:-h-or-;-(--:,)-----------------------------i 8 . Performi ng Orgonizoti on Report No . 

J. A. Pue 

9. Performing Orgon , 1ot1on Nome and Address 

The Johns Hopkins University 
Applied Physics Laboratory 
Johns Hopkins Road 
.Laurel~ryland 20810 
1 2. Sponsor,ng Agency Nome ond Address 

Department of Transportation 
Urban Mass Transportation Administration 
2100 Second Street, SW 
Washington, DC 20590 
15. Supplementory Notes 

16. Abstract 

10. Work Un,t No. ( TRAIS ) 

11 . C ontroct o, Gront No. 

DOT-UT-60042T 
13. Type of Report and Per iod Covered 

Final Report 

14. Sponsoring Agenc y Code 

Vehicle-following in an automated-guideway transit (AGT) system i s a longitu
dinal control scheme where the state of a gi ven vehicle is determined by the behavior 
of the preceding vehicle . At short time headways (0.5 to 3 s) a kinematic constraint 
on vehicle operation arises as a consequence of the velocity, acceleration, and jerk 
limits imposed t o assure passenger comfort . This constraint requires a trailing ve
hicle to maintain a spacing such that it may react to nominal (nonemergency) preced
ing-vehicle maneuvers without collision and without exceeding service jerk and ac
celeration limits . A nonlinear feedback controller is designed to force the vehicle 
to follow the kinema tically required spacing until the desired headway is attained . 
The design is based on a technique that uses an approximately optimal feedback con
trol with s t ate constraints . In addition, several suboptimal controls with reduce d 
informational requirements ar e presented, thus producing an easily instrumentable 
controlle r that pr ope rly r esponds to all possible nominal maneuvers of a preceding 
vehicl e. 

17. Key Words 

Optimal Control 
Automated-Guideway Transit 

~~onlinear Control 
Vehicle-Follower Control 

19. Securi ty Cla11il. (o f th,s report) 

Unclasified 

Form DOT F 1700.7 ce-72) 

18. Distribution Statement 

This document i s available to the 
public from the National Technical Infor
mation Service , Springfield, VA 22161. 

20 . Security Clo ud. (o f th,s page} 21, No. of Pagu 22. Pr,ce 

Unclass ified 128 

Reproduction of completed poge authorized 



0246J 

·1 :-~07 
+ Pfl.3 



THE J OHNS HOPKINS UNIVERSITY 

APPLIED PHYSICS LABORATORY 
LAUREL MARYLA ND 

ABSTRACT 

Vehicle-following in an automated - guideway transit (AGT) 
system is a longitudinal control scheme where the state of a given 
vehicle is determined by the behavior of the preceding vehicle . 
At short time headways (0.5 to 3 s) a kinematic constraint on 
vehicle operation arises as a consequence of the velocity, accel
eration, and jerk limits imposed to assure passenger comfort . 
This constraint requires a trailing vehicle to maintain a spacing 
such that it may react to nominal (nonemergency) preceding-vehicle 
maneuvers wi thout collision and without exceeding service jerk and 
acceleration limits . A nonlinear feedback controller is designed 
to force the vehicle to follow the kinematically required spacing 
until t he desired headway is a ttained. The design is based on a 
technique that uses an approximately optimal feedback contr ol with 
state constraints. In addition, several suboptimal cont rols with 
reduced informational requirements are presented, thus producing 
an easily instrurnentable controlle r that properly responds to all 
possible nominal mane uvers of a preceding vehicle. 
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FOREWORD 

This report documents an investigation into the automatic 
longitudinal control of vehicles using a vehicle-follower strategy 
in the short- headway range of operation (0.5 to 3 s). The work 
was carried out as part of the Au t omated Guideway Transit Technol
ogy Program under UMTA contract DOT-UT-60042T. 
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1. BACKGROUND 

Two basic philosophies for the longitudinal control of ve
hicles on a guideway have been proposed for the design of an auto
mated-guideway transit (AGT) sys tem. One philosophy , known as 
point-following, assigns a cell (or slot) to each vehicle. These 
cells are propagated along the guideway network at predetermined 
velocities and spacings while propulsion connnands are generated to 
keep each vehicle in its assigned cell. The other philosophy, an 
approach termed "vehicle-following, 11 was considered in this study. 
Vehicle- following employs communication between vehicles, so as 
to allow a vehicle to control its motion in accordance wi th the 
motion of its neighbors. 

Several inves tigators have shown the feasibility of this 
approach by using a linear, time- invariant regulator to control 
perturbations fr om a nominal ope rat ing condition. Levine and 
Athans (Ref . 1) use the linear optimal regulator to design a sys
tem in which each vehicle gener ates propulsion commands based on 
infonnation from all other vehicles in a string. I n Ref. 2, 
Athans e t al. reduce the complexi t y of this t echnique by applying 
the optimization procedure to smaller overlapping strings . Fin
ally, Cunningham and Hinman (Ref. 3) reduce the scheme to one in 
which vehicle control is based only on vehicle state and the state 
of the immediatel y preceding vehicle. This vehicle-following 
strategy is pursued by Brown in Ref . 4, while Ref . 5 deals with 

Ref. 1. W. S. Levine and 
Regulation of a String of Moving 
Control, Vol. AC-11, No. 3, July 

M. Athans, " On the Optima l Error 
Vehicles, " IEEE Trans . Autom . 
1966. 

Ref. 2 . M. Athans , W. S. Levine, and A. H. Levis, "On the 
Optimal and Suboptimal Position and Veloci t y Control of a String 
of High Speed Moving Trains , " MIT Electronic Sys t ems Laboratory 
Report PB 173640, Novembe r 1966. 

Ref. 3 . E. P. Cunningham and E. J . Hinman , "Approach to 
Velocity /Spacing Regulation and the Merging Problem in Automated 
Transportat ion," Joint Trans portation Enginee ring Conference , 
Chicago, IL, October 1970. 

Ref. 4. S. J . Brown, Jr ,, "Design of Car-Follower Type 
Control Systems with Finite Bandwidth Plants," Proc . Seventh 
Annua l Princeton Conference on Information Sci ences and Sy s tems, 
March 1973. 

Ref. 5 . R. E. Fenton et al., "Fundamental Studies in the 
Automatic Longitudina l Control of Vehi cl es ," DOT-TST-76-79 , July 
1975. 
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the design and testing of hardware systems. Recently it has been 
r ecognized (Ref. 6) that additional problems occur at very shor t 
time headways (i . e . , the time between successive vehicles passing 
a fixed poin t on the guideway) when one considers the large ini
tial conditions that may be p resent in a real system. 

Stupp, Chiu, and Brown (Ref. 6) have investigated the feasi
bi l ity of a vehicle-following system for headways of 0.4 to 3 sand 
speeds from 8 to 24 m/s. Their analysis was formulated in terms of 
a dual-mode con t rol that uses an open-loop velocity command to some 
des i red l i ne speed when vehicles are widely spaced and a closed
loop con trol for regulat ion when vehciles are closely spaced. In 
addition , each vehicle was required to observe specified jerk and 
acceleration limits in order to assure passenger safet y and com
fort. The limits were known a priori by each vehicle alt hough 
future maneuvers by a preceding vehicle were unknown to the trail
ing vehicle . As a result, a fundamental kinematic constraing 
arises due to the bounds on vehicle motion . This constraint dic
tates a minimum allowable spac ing between vehicles that is a func
tion of trailing vehicle state, preceding vehicle state, and the 
future maneuver capability of each vehicle. The kinematic con
straint had not been detected by earlier investigators primar ily 
because they had not considered the overtaking situation at very 
short headways . 

It is also shown (Ref. 6) that the kinematic constraint de
termines the point at which a vehicle must switch from a velocity
command mode to the closed-loop regulation mode of operation. As 
a result, t he bandwidth requirement for the closed- loop regulator 
at short headways was inconsistent with the large initial values 
of vehicle motion. That is, the system response t o these initial 
conditions typically l ed to violation of comfort criteria and t he 
kinematically required spacing . Inclusion of local acce l eration 
and jerk limit s in a time-invariant controller would, under cer
tai n conditions, lead to limit-cycle oscillations of the regulator. 
Consequently, a time-varie d gain approach was attempted in conjunc
tion with the local acceleration and jerk limits . Because no sys
tematic design procedure could be fotmd to serve as a basis for 
this design, it met with l i mited success . However , despite the 
inability of t he time- varied controller to achieve the kinemati
cally required minimum spacing, the mathematical formulation of 
this constraint (Ref.6) appears to be a notable contribution t o 
the definition of short- headway control problems. The key to the 
state-constrained approach to vehicle-follower control presented 
in this study is the explicit incorporation of this constraint 
function into the control law . The procedure used and the results 
of this investigation are summarized in Section 2. 

Ref. 6. G. B. Stupp, H. Y . Chiu, and S. J . Brown , "Feasi-
bility of Vehicle-Follower Controls for Short-Headway AGT Systems," 
APL/JHU TPR- 035, June 1976. 
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2. SUMMARY 

Any control system design requires an adequate formulation 
of the problem to ensure the proper system response in a realistic 
situation . A comprehensive mathematical des cription of the prob
l em may then be used to select an appropriate design technique. 
However, the solution must be commensurate with the ability of 
present technology to provide the accuracies necessary to meet the 
requirements of the original problem formulation. 

The first step in applying this procedur e to the design of 
a vehicle-following control system is to establish criteria for 
evaluating vehicle performance. Because o f the high cost o f guide
way construction , one measure of performance is the capacity of the 
sys t em or the ability to transport a given number of passengers per 
unit time along a given section of guideway . The specification of 
a short time headway (0.5 to 3 s between successive vehicles) is 
a i med at meetin g this condi tion. A second criterion is that of 
passenger comfort, which is generally expressed in terms of limits 
on vehicle acceler ation and jerk. Finally, the most important per
formance measure is passenger safety , thus placing collision avoid
ance as the chief goal during normal operation (emergency situa
tions may allow controlled collision). 

A typical approach taken by a control system designer is to 
express t he above c rite r ia in terms of physical variables that are 
related through different ial equations. A quadratic performance 
index is often used to weigh relatively the deviation from ideal 
performance vers us the l evels of control in the form of one compo
site expr ession. Optimal control theory then yields a solution 
that minimizes the quadratic pe rformance index subject to the con
straints imposed by the differential equations describing the 
physical properties of the system. 

The principal focus of this study is the r ecognition that 
the kinematic constraint (i. e ., an ine quality constraint on the 
state variables) must be included in the above problem formulation. 
Moreover, a convenient feature of the kinematic constraint i s that 
it is compatible with all of the performance criteria described 
above. As discussed in Section 1, the kinematic cons traint is a 
result of the fact that future mane uvers of a preceding vehi c l e 
are unknown by the trailing vehicle . Thus, the trailing vehicle 
must anticipate a worst- case maneuver under nomin a l ope rating con
ditions on the part of a preceding vehicle . A worst-case maneuver 
consists of a minimum-time decele r a tion to minimum line speed using 

- 15 -
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service limits (i.e., the jerk and acceleration limits that assure 
passenger comfort) . Hence, worst case is defined here for normal 
operation rather than emergency conditions. This anticipation of 
a worst-case maneuver translates to a required spacing such that 
the trailing vehicle may avoid collision by using its own full 
service-braking capability. Consequently, the kinematic constraint 
has all of t he ingredients of our stated performance criteria. It 
allows the smallest possible spacing (or largest system capacity) 
in order to prevent a vehicle from exceeding service limits in a 
nonemergency situation and avoid collision. We now see that the 
kinematic constraint is, in fact, a precise mathematical statement 
of our performance measures. 

The procedure used in this study is to combine the kinematic 
constraint (our performance criterion for transient phenomena, 
principally the over taking situation) and a quadratic performance 
index (the criteri on for steady-state perturbational phenomena) into 
an optimal control problem. However, the solution to such a problem 
is complex and requires a good deal of computation . Hence, in ac
cordance with our stated requirement of finding a solution in view 
of exis ting technology, an approximate solution is sought with the 
use of a p r eviously derived technique (Ref. 7). The method is based 
on a dual solution that may be summarized as follows. 

When the states of the trailing and preceding vehicle are 
such that violation of the kinematic constraint is not imminent, 
we use the well-known solution to the optimal control problem with 
quadratic performance index - a constant-gain linear regulator that 
ignores the kinematic constraint, When conditions change such that 
the kinematic constraint may be violated, a control that causes the 
vehicle t o follow precisely t he kinernatically r equired spacing is 
inplemented unt il it is determined that regulator control would 
again satisfy the constraint . A further approximation is presented 
whereby the linear regulator portion of the controller is eliminated. 
This requires some modification of the kinematic constraint but sim
plifies the control aspects with little degradation in performance . 
However, even v,ith this simplification, the informational require
ments for precisel y maintaining the kinematically required spacing 
include preceding vehicle velocity, acceleration, and jerk. To 
overcome this drawback, several suboptimal controllers are derived 
with the intent of simplifying the kinematic constraint so that the 
resulting control will always keep the vehicle outside the actual 
kinematic boundary, while requiring less computation and information. 

Ref. 7. G.N . Saridis and Z . V. Rekasius, "Design of Approxi-
mately Optimal Feedback Controllers for Systems with Bounded Stat es, " 
IEEE Trans. Autom. Control, Vol. AC-12, No . 4, August 1965. 
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The f inal result is an easily instrumentable controller r equiring 
only spacing and i ts derivatives (relative velocity and accelera
tion). 

Simulation studies are used to verify the effectiveness of 
the approach . First, the performance of the optimal and subopti
mal controls are compared in a t ypi cal overtaking maneuver . For 
exampl e, one maneuver is considered where two vehicles are ini
tially spaced at 100 m with t he preceding veh i c l e trave ling at 
10 m/s and the trailing vehicle traveling at 20 m/s (i .e., an init
tial headway of 5 s). For a desired headway of 0.5 s the optimal 
control requires 11.4 s to attain a headway of 0.55 s . Suboptimal 
cont rol I, which requires the same information as the optimal con
trol but with reduced computational complexity, per forms the maneu
ver in 15.0 s. Suboptimal control II is even less complex computa
tionally and, in addition, r equires only information of spacing, 
relative velocity, and relative acceleration, with a time of 
21. 5 s required to reach the 0 .55- s headway . Finally, suboptimal 
control III is a simplification over suboptima l control II in that 
one multiplication is removed from the computation. The time to 
reach the 0 . 55-s headway using suboptimal control III is 32 . 5 s . 
These results, in conjunction with other test cases in the study, 
poin t t o suboptimal control II as the bes t choice in terms of the 
trade-off between per formance and complexity . 

In addition to the overtaking maneuver, the various control 
laws are tested in a situation where the vehicles are initially at 
the des ired headway with a velocity of 10 m/s. The p r eceding ve
hicle then a cce lerates at t he j erk and acceleration limits to a 
velocity of 25 m/s and immediately decelerates back to 10 m/s. In 
all cases the trailing vehicle s uccessfully follows the preceding 
vehicle maneuver. The performance of the controllers in a five
vehicle string is the final subject of evaluation . Again, all 
maneuvers are performed in a smooth and satisfactory manner under 
a variety of ci rcumstances , 

The principal accomplishments of this work may be suTTilllarized 
as follows . 

1. Fo r the first time the s tate constraints inherent in a 
vehicle-following st rategy are expressed as part of the 
control scheme . The resulting control is a nonlinear 
function of states that constitutes a natura l way to 
conduct the transition between the modes of operation 
normally designed into a vehicle-fol lowing system. 
Thus, it affords a gener al formulation and systemat ic 
approach that designers may adapt for future work in 
this area . 

- 17 -
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2. Near-optimal performance may be obtained in that the 
spacing between vehicles is the minimum that allows 
safe and comfortable operation for all possible nomi
nal maneuvers of a preceding vehicle. 

3. An easily instrumentable controller is designed 
through simplification of t he kinematic constrain t. 
A particular control law is selected based on the 
trade-off between vehicle performance and controller 
complexity. 

4. Simulation studies have verified the effectiveness of 
the controllers in a variety of situations. 

The study represents the initial phase of an investigation 
that must be continued in order to determine the feasibility of 
implementing a state- constrained vehicle-following con troller into 
a real system. Thus, further work would include the following 
areas: 

1. Simulation studies with a r ealis tic vehicle mode l to 
determine the effects of parameter variation and ex
ternal forces such as wind gust , grade, and loading; 

2. Selection of sampling rates, quantization levels, and 
time delays that may be tolerated while maintaining 
acceptable performance, including the design of an on
board digital control le r using current mic roprocessor 
t echnology ; 

3. Study of the manner in which state measurement s are ob
tained, the requirements on the accuracy of these mea
surements, and the design of a wayside computer and 
communications system; and 

4. Application of this technique to other situations, 
such as merging and the injection of vehicles onto the 
guideway . 

The contents of this report ar e as fo llows: In Section 3 
the kinematic constraint is described in terms of two possible 
vehicle maneuvers, which yields a minimum allowable spacing as a 
function of vehicle states . Section 4 presents the design prob
lem by explicitly considering the jerk, acceleration, and kine
matic constraints . An approximately optimal regulator is then 
introduced as an easily instrumentable solution to the vehicle
following problem. The optimal control law on the kinematic 
boundary is formulated and then modified so the kinematic 
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boundary coincides with the desired spacing. Hence , the transi
tion controller wi ll act as a regulator at the nominal headway. In 
Sec tion 5 three subop timal control laws are derived from simplifi
cation of the kinematic constraint. These controls are suboptimal 
in the sense of reduced complexity and information r equirements, 
but they also result in reduced performance . A describing-func
tion analysis is used in Section 6 t o vali date the closed-loop 
stability of the suboptimal cont r ol s . The results of s imulate d 
t est cases are presented in Section 7. The headway profiles 
using the optimal and suboptimal controls are compared f or several 
overtaking maneuvers. Here , t he trade- o ff between vehicle perfor
mance and controlle r complexity is determined. The suboptimal 
controls are then implemented in the re gulat o r mode and in a five
vehicle string. 

- 19 -
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3. KINEMATIC BOUNDARY CONSTRAINT 

This section provides a mathematical description of the 
kinematic constraint so that the resulting constraint function may 
be incorporated into the control law. The kinematic constraint be
comes, in effect, the operating philosophy of a short-headway ve
hicle-following system and hence, because of its importance, the 
assumptions leading to its derivation will first be reviewed. 

The kinematic constraint is the result of fundamental charac
teristics of vehicle following; that is, future maneuvers of a pre
ceding vehicle are unknown by a trailing vehicle. Thus, safety 
considerations require that the trailing vehicle controller antici
pate a nonemergency minimum-time decele ration to minimum line s peed 
by the preceding vehicle at any time. A minimum-time deceleration 
is determined by the velocity, acceleration, and jerk limits im
posed on the system for passenger safety and comfort. Consequently, 
the maneuver capability of a given vehicle as defined by these 
limits yields a time and distance required for a vehi c le to decel
erate to a given speed. In view of this fact, a trailing vehicle 
traveling at a higher velocity than a preceding vehicle (i. e ., 
overtaking) will require a greater distan ce than the preceding ve
hicle to decelerate to minimum line speed. As a r esult, the trail
ing vehicle must maintain a spacing such that if the preceding 
vehicle should perform a minimum-time deceleration maneuve r, the 
trailing vehicle can avoid collision by using its full service
braking capability. An underlying as s umption in this argument is 
that the trailing vehicle adheres to its service limits . If the 
preceding vehicle brakes at s e rvice limits, t he trailing vehicle 
can avoid collision by applying emergency braking . Howeve r, it is 
desirable to avoid the use of emergency limits in nonemergency 
situations; therefore, the kinematic constraint described above 
is constructed. 

To illustrate the significance of the kinemati c constraint, 
consider two vehicles arbitrarily spaced at 25 m with the preced
ing vehicle traveling at 15 m/s and the trailing vehi cle traveling 
at 25 m/s (Fig. la) . If both vehicles decelera t e at their service 
limits to minimum line speed, the trailing vehicle r eaches 10 m/s 
at 6. 77 s (Fig. lb). However, since the distance r equired f or the 
trailing vehicle to reach 10 m/s is greater than the dis tance r e 
quired for the preceding vehicle, a collision would occ ur. As a 
result, an initial spacing of 48.5 m is r equire d (Fig . 2a). If 
both vehicles then decelerate to a minimum line s peed, the final 
spacing a t 6.77 sis 5 m (precisely the desired headway of 0.5 s ) 
as shown in Fig. 2b. Thus, for any spacing less than 48.5 rn the 
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Vp =15 m/s 
Ap =O 

0 
1----25 m---- a. Vehicle positions at t=O s 

Vp=10 m/s 
Ap=O 

0 
i.------75.0 m------i 

VT=10 m/s 
A =O T 

• 
1--------------118.5 m---------------i 

b. Vehicle posit ions at t =6. 77 s 

Fig. 1 Example Violating the Kinematic Constraint 

Vp=15 m/s 
A =O p 

0 
1---48.5 m---.i 

a. Vehicl e positions at t=O s 

Vp=10 m/s 
Ap=O 

0 
i--------75.0 m--------i 

1--------118.5 m-------~• 1--5 m 

b. Vehicle positions at t = 6.77 s 

Fig. 2 Example Satisfying the Kinematic Constraint 
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trailing vehicle cannot attain the desired 0.5- s headway. For 
spacings less than 46.5 m emergency limits would be required to 
prevent a collision (assuming a vehicle length of 3 m) . However, 
the use of emergency limits may be avoided if the trailing vehicle 
maintains the spacing as required for a given set of vehicle states. 

VEHICLE MANEUVER CAPABILITIES 

To develop a mathematical description of the kinematic con
straint, we first examine the maneuver capability of a given ve
hicle. As discussed above this maneuver capability is a function 
of the limits imposed on the system. These limits have been spe
cified for this study as follows: 

Service acceleration limit, A 2.6 mis 
2 

= 
s 

Service jerk limit, J 2.6 mis 
3 

= 
s 

Maximum guideway speed, V 25 mis max 

Minimum guideway speed, V = 10 mis min 

Although the above limits are somewhat higher than those presently 
achievable in a real system, it is felt they represent a good test 
for a controller design. 

Since both acceleration and jerk limits have been specifi ed , 
there are two possible minimum-time maneuver profiles that may oc
cur when a vehicle decelerates to a lower speed. They are shown 
as Maneuvers 1 and 2 in Fig. 3. In Maneuver 1 the initial accel
eration may be positive or negative and the accele ration profile 
always rea ches the negative acceleration limit. In the case of 
Maneuver 2 the initial acceleration is again eithe r positive or 
negative but the profile does not reach the negative acceleration 
limit. For a given set of vehicle states (acceleration and ve
locity) only one of the two possible maneuvers is applicable . 
This is shown in Fig, 3c, where each maneuver is associated with 
a region in the A-V plane. The acceptable r egion is bounded by 
the acceleration limits (As and -As) and the ve l ocity limits 
(Vmin and Vmax>· In addition, there are bounds near -As and Vmin 
and near As and Vmax that are associated with the jerk limits. 
The latter bound results from the fact that if the vehicle is at 
the maximum acceleration limit, As, braking must be applied at 
the negative jerk limit at some velocity less than Vmax in order 
not to exceed Vmax· The trajectory that satisfies this condition 
is shown in Fig. 3c and is given by the relationship 

- 22 -



THE JOHNS HOPKINS UNIVERSITY 

APPLIED PHYSICS LABORATORY 
LAUH(L MA R'l'LANO 

a. Maneuver 1 

A 

b. Maneuver 2 

A2 A ~ 
V=- -2J-+-J-+ Vmin A2 

s s V = - -- + Vmax 
+As .,_------1---------- 2Js 

\ 

\ CD 
\ 

, 
I 

v min I 
V , 

I vmax 
A2 ,<J) I I I V = 2J + Vmin I I I I s I I J= - JS I I / 

/ 
-As 

Switching Switch ing 
curveJ=+Js curve J = O 

c. Minimum-time phase traject ory 

Fig. 3 Minimum-Time Deceleration Maneuvers 
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A2 
V = - -

23 
+ V max 

s 

Similarly, if a vehicle is at the negative acceleration limit, it 
must begin accelerating at the positive jerk limit in order not 
to drop below minimum line speed . This condition is satisfied by 
the trajectory given by 

Various minimum-time traje ctories a re indicated by dashed 
lines in Fig. 3c. Suppose, for example, a vehicle has the accel
e ration and velocity as shown by point 1. In order to decelerate 
to Vmin in minimum time, the vehicle is immediately decelerated 
at the negative jerk limit and follows the paraboli c trajectory 
shown. When the vehicle reaches the lower boundary of the accept
able region, the jerk is switched to O and the vehicle follows 
the negative acceleration limit until the lower left boundary of 
the acceptable r egion is reached, At this point the positive jerk 
limit is applied until the vehicle reaches minimum line s peed. If 
the vehicle has an acceleration and velocity given by point 2 in 
the figure, the minimum-time trajectory does not inc lude the 
switching curve corresponding to zero jerk. Consequently, any com
bination of acceleration and velocity that results in a maneuve r 
jus t touching the negative acceleration limit specifies the trajec
tory separating Maneuvers 1 and 2. This traj ectory (Fig. 3c) is 
given by the relationship 

V = 
2 A 

2 

L +-s- + V 
2J J min 

s s 

The kinematic constraint may now be formulated with the aid 
of the above description of vehicle maneuverability . 

FUNCTIONAL DESCRIPTION 

In order t o describe functionally the kinematic requirement 
it is necessary to determine the distance in which a vehic le per
forms a minimum-time deceleration to minimwn line speed as a 
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function of current velocity and acceleration. This may be found 
by a repeated integration of the curves shown in Fig. 3. The re
sulting time and distance for each maneuver is given in Appendix A. 

Figure 4 illustrates the kinematic requirement as the re
quired spacing to prevent collision in the event of a minimum-time 
deceleration by the preceding vehicle, As shown in Fig. 4, this 
spacing is given in terms of the distance required for each vehicle 
to complete a maneuver to minimum line speed and the time in which 
each vehicle accomplishes the maneuver. Consequently, the minimum 
required spacing is given by 

s . = xP - x_ min -~ 

(1) 

T P T P 
The values of d , d t , and t are given by the relations in Ap-r r' r r 
pendix A and a r e a function of each vehicle's current velocity and 
acce l eration. 

In the overtaking s ituation the preceding vehicle is at a 
lower velocity than the trailing vehicle and will complete its 
maneuver to minimum line speed before the trailing vehicle reaches 

T p 
V . . Thus, the term Vi (t - t) represents the distance min m n r r 
traveled by the preceding vehicle at minimum line speed while the 
trailing vehic.le is still in the process of accomplishing its de
celeration maneuver. If, on the other hand, the trailing vehicle 
is at a lower velocity, this term will subtract from the overall 
required spacing. 

The t e r m hV . represents the desired spacing when both 
min 

vehicles are at V . with no accele r ation . Hence, it constitutes 
min 

a residual term which specifies the desi red spacing when the kine
matically required spacing i s 0. As a result, any suitable factor 
may be used (not necessarily hV . ). In fact, it will be shown 

min 
that using hVT rather than hV . simplifies the control problem. 

min 
Moreover, other vehicle-following strategies may be employed (e. g ., 
a policy of constant K-factor) through inclusion of the appropriate 
term in the const r aint function. 
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0 0 
1-----XT----i--------Smin---------1 

,__ ____________ Xp -------------►1--- d~ + V min I ti- t~)-

,___ _____________ d T -------------i- hV min-
r 

Fig. 4 Minimum Spacing as Required iJy Kinematics 

Consequently, the kinematic constraint may be formulated in 
terms of vehicle spacing, S, as follows: 

s. -ss:o 
min 

where Si is given by Eq. 1. 
mn 

(2) 

In summary, for a given set of vehicle stat es and ass uming 
that vehicles are constrained to operate within service jerk and 
acceleration limits, there is a minimum safe spacing be tween the 
trailing and preceding vehicle. If the spacing between vehicles 
is less than this spacing , the kinematic constraint is violated 
and the r e is a possibility of collision . That is, if the preced
ing vehicle should perform a minimum-time maneuver to minimum line 
speed, the trailing vehicle cannot attain the desired headway 
using service limits. Clearly, a controller must be designed to 
regulate to the desired headway but at the same time is must main
tain the proper spacing between vehicles when velocity errors be
come significant. The development in the following ?ections will 
demonstrate how the kinematic cons traint may be explicitly incor
porated into the control l aw and thus satisfy this objective . 
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4. OPTIMAL REGULATOR WITH STATE CONSTRAINTS 

The vehicle-following problem may be formulated into the 
optimal regulator solution with a linear plant and an infinite 
time integral quadratic performance index (Ref. 6) . That is, a 
plant of the form 

x = Ax + bu (3) 

is assumed where x is then-dimensional state vector, u is the 
scalar control, A is a constant n x n matrix and b is a con
stant n-dimensional vector. The performance index is of the stan
dard form 

(4) 

where Q is a constant positive semidefinite n x n matrix . The 
resulting regulator is a feedback controller designed t o maintain 
the system within an acceptable deviation from a nominal condition 
using acceptable amounts of control. This has been s hown to pro
duce satisfactory r esults for small initial conditions (Ref . 6). 
However, in the mode-transition (e.g., overtaking) problem where 
large initial condition errors are present, the resulting con
troller produces a response that exceeds the desired jerk, accel
eration, and kinematic limits . This is due to the large bandwidth 
requirements for short-headway operation (Ref. 6). 

Consequently, in designing a controller for the mode
transition problem, the jerk and acceleration limits and , in par
ticular, the kinematic constraint must be explicitly considered . 
Hence, the design problem may be des cribed in terms of Eqs . 3 
and 4 and a constraint vector denoted by 

_g_ (x) S Cl (5) 

whe re g(x) is a 3 x 1 vector consisting of the kinematic constraint, 
vehicle acceleration, and vehicle jerk, and a is a 3 x 1 constant 
vector . 

- 27 -



THE JOHNS HOPKINS UNIVERSITY 

APPLIED PHYSICS LABORATORY 
LAUREL MARVLA.-..:, 

The kinematic constraint is described by Eqs. 1 and 2. As 
a result, the constraint vector is given by 

c(~) 

g (~) = 

0 

A 
s 

J 
s 

where c(x) =Si - S (see Eqs. 1 and 2). 
T - mn p p 

and t as well as d and t are determined 
r r r 

= a (6) 

T 
However, recall that d 

r 
from one of two possible 

maneuvers (Fig. 3). Thus, the function c(~) comprises four dis
tinct forms, since each vehicle may have an acceleration and ve
locity that dictate either of the two maneuver profiles . Note 
that only one form is applicable for a given set of veh icle states. 

The minimization of Eq. 4 subject to Eqs. 3 and 6 necessi
tates computational complexity that would likely become prohibi
tive in terms of an on-board controller . Consequently, an alter
native solution that produces a near-optimal controller is pro
posed in the following section, 

APPROXIMATELY OPTIMAL FEEDBACK CONTROLLER WITH STATE CONSTRAINTS 

The transition controller is required to bring the system 
to a desired final state without exceeding predetennined bounds. 
Saridis (Refs. 7 and 8) presents a procedure based on observations 
of the geometric features of the optimal constrained trajectories. 
The general method will be summarized below; application to ve
hicle-following control will be presented in later paragraphs. 

Suppose a constrain t function is given by 

and we wish to minimi ze Eq. 4 subject to Eq. 3 and this scalar con
straint . The constant- gain f eedback solution of the unconstrained 

Ref. 8. G. N. Saridis, "On the Exact and Approximate Solu-
tions of the Otpimal Control Problem with Bounded State Variables, " 
Ph.D. dissertation, Purdue University, Lafayette, IN, August 1965. 
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problem may be found from the well known steady-state Ricatti equa
tion (Ref. 9). Consequently, the strategy is to implement the 
linear regulator while continuously monitoring c(~). Whenever the 
optimal unconstrained trajectories are found to be approaching the 
constraint boundary c(~) = a, a nonlinear control is introduced to 
cause the system to follow the boundary. The controller is 
switched back to its linear mode when the linear regulator would 
cause the state of the system to remain in the allowable re gion 
(i . e . , c(~) ~ a). These point s may be illustrated with the dia
gram shown in Fig. 5. The state space is divided into an allowable 
region and a region in which the constra int is violated. For an 
initial condition in the allowable region the system follows the 
optimal unconstrained tra jectory until it reaches the cons traint 
boundary. At this point the control is swi t ched in order to cause 
the system to follow the bound ary of the constraint region (i.e., 
the optimal constrained trajectory). When the linear regulator 
would cause the system to move off the constraint boundary into 
the allowable r egion a switch is made back to the optimal uncon
strained trajectory. The linear regulator then drives the system 
along the unconstrained path to the desi red final condition. 

The control that keeps the sys t em on the boundary is deter
mined by requiring the time derivative of c(~) t o be O when c(x) 
is equal to a. Thus 

~(x) = ( v'c ')~ 0 , 

where v' 
transpose . 

is the gradi ent operator and the prime ( ' ) r epresent s the 
Substituting for x fr om Eq. 3 we have 

or 

(7) 

where uB is the control required to ensure that c(~) remains con
stant. It is important to note that uB only keeps the system on the 
boundary but does n ot necessarily drive the system to the boundary. 
We may have c equal O for any value of c , but we would like to have 
c equal to O when c equal s a ; therefore we implement UB only when c 
equals a . If the optimal unconstrained trajec t orie s t end to exceed 
the boundary, then 

Re f. 9. A. Bryson and Y. Ho, Applied Optimal Control , J ohn 
Wiley & Sons , New York , 1975. 
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Allowable reg ion 
of state space 

Init ial 
point 

Unconstrained 
trajectory 

Region of state space 
vio lating constraint 

Fig. 5 Optimal Trajectory with State Constraints 

C > 0 

or 

Optimal 
constra ined 
trajectory 

where uR is the linear regulator control. If the regulator is 
driving the system away from the boundary into the allowable re
gion, then 

C. < 0 

or 
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In accordance with Ref. 7, we may now establish a nonlinear con
troller as follows: 

where uR is the uncons t rained linear regulator cont rol, uB is the 
optimal control law on the boundary, c(~) = a, and W(x) is a scalar 
weighting function given by 

0 c(x) :!:: 0 
or 

0 < c(~) ::!,;; a, Vc ' J½ + buR] :;: 0 

W(~) = 
c(x) - 8 8 < c(~) ::!,;; a, vc ' [½ + buR] > 0 a - 8 

Undefined C > a (8) 

whe r e o is a constant (o ~ a). The parameter o is introduced 
to alleviate the problem of switching from the linear mode (u = uR) 
t o the nonlinear mode (u = uB) . It provides a smooth and gradual 
switch by means of the weighting function W(~). For our specific 
problem, o will be selected f r om a stability analysis in Section 6 
in conjunction with a physical interpretation to be presented in 
the next section . 

In summary, the control u assumes the linear mode (u = uR) 
for all states s uch that c(x) ~ 8 ~ a or for a ll s tates such that 
the op tima l cons trained trajectory i s directed away from c (x) m a . 
The control ~ assumes the non l inear mode when the optimal uncon
strained trajectories t end to exceed the boundary c (x) = a. 

APPLICATION OF THE STATE-CONSTRAINED CONTROLLER TO 
THE VEHICLE- FOLLOWING PROBLEM 

We now return to the specific problem of vehicle-follower 
control by application of the technique discussed above . Initially , 
a triple-integration vehicle plant will be assumed. In addition , 
since the behavior of the preceding veh i cle is unknown, it is 
necessary to consider the pr eceding vehicle jerk as an additional 
input to the system. As a res ult, the uncoupled system to be con
trolled is given by 
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s 0 

VT 0 

A.r = 0 

VP 0 

~ 0 

X = 

- 1 0 

0 1 

0 0 

0 0 

0 0 

A 

1 0 s 0 

0 0 VT 0 

0 0 AT + 1 

0 1 VP 0 

0 0 ~ 0 

X + bJT 

The system is subject to the constraint of Eq . 

0 

0 

JT + 0 JP (9 ) 

0 

1 

+ dJP 

6; 

(10) 

wher e _g_ and a ar e 3 x 1 vect or s . The contr ol input J T, which 
keeps the system on the constraint boundary , is given by Eq . 7 with 
an addit ional term due to the preceding vehicle jer k . Therefore, 
for the ith constraint function of Eq . 10 we have 

The term dJp will be eliminated in Section 5 by derivi ng several 
suboptimal controls . The fi r st four controls as given by Eq. 11 
correspond t o the four dis t inct forms of the kinematic const raint 
function. The fifth control corresponds to the acceleration limit 
where g (x) = l~I ~ As . The jerk limit , IJTI ~ Js, may be satis
fied wi?h a saturation limiter at the jerk input. It is des irab l e 
that only one constraint boundary be encoun ter ed at a time . That 
is, if the system fo l lows one constraint element of Eq . 10 it does 
not violate any other cons t raint s . This will be true for the four 
kinematic constraint functions since only one can be valid for any 
particular set of vehicle states. Similarl y , the vehic le can be 
on either the jerk limit or the accele ration limit , but not both . 
The only case of concern is that the control r equired t o keep the 
vehicl e on the kinematic boundary may exceed jerk or ac celeration 
limits . Howev~r , since the formulation of the kinematic constrai nt 
function explicitly includes the jerk and acceleration capabilities 
of the vehicle it is r easonable to expect that the limits will no t 
be viol ated . 
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The overall control strategy is depicted by the system block 
diagram shown in Fig. 6. The constant feedback gains (k1, k2, k3, 
and k4) represent the optimal solution to the unconstrained prob
lem that was studied in Ref. 6. The block denoted by NL is the 
nonlinear transition mechanism discussed below . When the system 
is operating in its linear mode, NL= 1. 

The block denoted NL in Fig. 6 constitutes the transition 
controller shown in Fig. 7. The general technique of Saridis dis
cussed previously is applied twice in the t ransition mechanism ; 
the first applicat ion r esul t s in the kinematic boundary control 
and the second results in a block labeled "acceleration boundary 
controller." Although the principal element of the system is the 
kinematic boundary control we begin by discus s ing the accelera
tion boundary con troller , since this is a simpler application of 
the general technique. The input to this control element is the 
jerk command J1 (Fig. 7) . 

The acceleration boundary controller functions to maintain 
vehicle acceleration between -2.6 and +2.6 m/s2 . We know the jerk 
command should be O with an At of either +2.6 or - 2.6 m/s2, Thus, 
when J1 > 0 the system is approaching the upper bound of AT= 2.6 
m/s2 and when J1 < 0 the system is approaching AT= -2.6 m/s2 . 
Consequently, for the upper limit case we select a 02 such that 
when At> 62 we gradually reduce JT (throu~h the weighting func
tion W2(x)) until JT = 0 when AT= 2.6 mis . Thus, the system 
will remain on the limit (2.6 m/s 2) until J 1 < O; we may t hen set 
W2(~) = 0. Similarly, whenever AT< -c2 and the system is approach
ing the nega tive acce l eration limit (J1 < O) the weighting function 

NL 1 
s 

Fig. 6 System Block Diagram 
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Wz(~) is again introduced until JT = 0 when AT= - 2.6 m/s2. The 
switch in Fig. 7 indicates setting Wz(x) = 0 under the conditions 
noted. The acceler ation boundary con troller described above is 
the refore a form of Eq . 8 and may be summarized as follows: 

JT = JL (1 - W2 (~)) 

0 IATI < 0 
2 

or A > 
T 02' J :;; 0 

L 

w2 (~) or AT < - o 
2' J ~ 0 

L 

IAT I - 0 
2 

otherwise A - o 
s 2 

Note that for oz= As the acceleration boundary controlle r be
comes the usual cons trained-range integration process . We intro
duce oz only to make the limiting process more gradual . 

The saturation limiter preceding the accelerat ion boundary 
controller assures that the vehicle will remain within jerk limits, 
since 

The remaining portion of Fig . 7 comprises t he kinemati c 
boundary control . As discussed earlier, we introduce the control 
(uKB)i (the subscri.pt denotes kinematic boundary) wheneve r the 
cons traint function, ci(~), approaches 0 . The kinematic boundary 
control will maintain ci (~) at O unti l it is appropriate to 
switch back to the linear regulator. However, i n a r eal system, 
perturbations may cause ci(~) to excee d O. It will be shown that 
the controller o f Fig . 7 handles t his situation in addition to the 
control strategy outlined earlier . 

As shown in Fig . 7, the kinematic constraint function, 
ci(x), is continuously calculated f r om Eqs. 1 and 2 and the re
l ations listed in Appendix A. Note the output of the constraint 
calcul ati on i n Fig. 7 i s the negative of the kinematic constraint, 
-ci(~), with i = 1, 2, 3, and 4 (recall the kinematic constraint 
consists of four different functions of the vehicle states and 
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applicable at any given time accordin g t o the values of Ar , Vr, Ap, 
and Vp) . The app r opriate values of ci(_~_) and (uKB)i (as calculated 
from Eq. 11) f or a given set of vehicle states are then used as 
shown in Fig. 7. The result of the constraint calculation , - ci(x) , 
is an input to three nonlinearities and drives t he operation of the 
contro l ler as fol lows. If -ci (x) ~ o1 we are in a kinematically 
safe condition and the outputs of the top and bottom nonlinearities 
are equal to 1 while the center nonli nearity has an output of 0. 
Hence , the boundary control (uKB)i is multiplied by O and cancels 
itself at the summing j unction. The l inear regulator out put, uR , 
is al so mult iplied by 1 and becomes the jerk command, Jc . If 
ci(x) = 0 the output of all three nonlinearities is 0. As a result, 
the output of t he summing junction at Jc is (uKB)i, the control r e 
quired to maintain ci(~) at 0 . For O < -ci(x) ~ 01, we have a com
binat i on of the linear regulator control uR and the kinematic bound
ary control (uKB)i, given by the equation 

J 
C 

When - ci(~) ~ 0 we are in a kinematically uns afe condition . Conse
quently , a braking act ion will occur due t o the fo llowing operation 
of the controller . When -ci(~) ~ 03 the linear r egulat or command 
i s multiplied by O while the kinematic boundary control is multi
plied by 1, cancelling itself a t the summing j unc tion. Thus, the 
only output at Jc i s due to t he center nonlinearity , which provides 
a value -Js, the negative jerk limit . For values of t he constraint 
03 ~ - ci(x) ~ O, the jerk command is given by a linea r combination 
of -Js and the boundary contr ol (uKB) i: 

+ J 
s 

In summary, whenever vehicle spacing is greater than the kinemati
cally required spacing by a t least a distance 01 we use the linear 
regula t or j erk command (Fig . 8a). ~~en vehicle spac ing equals the 
kinema tica lly r equired s pacing we implement the cont rol (uKB)i that 
maintains this condition (Fig. 8b). Finally, i f vehicle spacing 
is l ess than t he kinematical ly r equi r ed s pacing by a distance 03, 
we appl y the full nega tive je rk command (Fig. 8c). 

To this poi n t we have assumed switch A is in the pos ition 
as shown in Fig. 7. This is true because, fo r large initial condi
tions such as in the case o f overtaking , the regulator command will 
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Optimal 
position 

◊ 
Kinematically 

6, ---------required spac ing 

a. Linear regu lator input 

b . Kinemat ic boundary control input, (uKB )i 

c. Negative jerk limit input, - J
5 

Fig. 8 Controller Commands 

be large and therefore t end to cause the vehicle to violate the 
kinematic constraint. In accordance with the control strat egy 
presented earlier and Eq. 8 with c > 0, and when - 01 ~ ci(~) ~ 0, 
switch A will then switch t o the position shown in Fig . 5. When 
the linear regulator would cause the system to move off the bound
ary into the allowabl e region (i . e ., c < 0 , - o ~ Ci~ 0) then a 
switch is made back to the linear r egulator. 

The final point to examine is how initially to switch on the 
r egulator. We will not consider the mechanism that switches the 
vehicle from an open- loop velocity command to a closed-loop jerk 
command . However, we will require th a t the controller provide a 
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0 jerk command at the switching time in order to reduce any unde
sirable transients . In addition, a reasonable choice for the 
switch time is when -ci(?S.) = 81 , That is, when the vehicle ap
proaches the kinematic boundary we swit ch from a velocity- command 
mode to a r egulation mode. Note from Fi g . 7 that if we were to 
simply switch in the controller as shown, a jerk command (Jc= uR) 
would result. Therefore, we would like to modify uR during this 
initial switch-on phase i n order to produce Jc= uR = 0 when 
-ci(x) = 81, but then gradually increase uR t o its full value. 
For example, we may use a value u'R given by 

Thus , when -ci(x) = 81 , then u'R = 0. As - ci(x) decreases to 0, 
u'R increases t o uR. When ci(?S.) is near Owe set u'R equal to UR 
for the remainder of the transition and in the subsequen t regula
tion mode. 

KINEMATIC BOUNDARY CONTROL AND MODIFICATION OF KINEMATIC CONSTRAINT 

As we have seen in the previous section, t he control that 
keeps t he vehicle on the kinematic boundary f or ms the principal 
portion of the transition controller. This control is obtained 
from Eq. 11: 

(u..) = -( c' .b)-l c'. [Ax+ dJP], i = 1, 2 , 3, 4, 
KB i 1 1 -

where, from Eqs. 1 and 2 , 

Ci(_~) dT - dp - V i ( t.T - tp) 3 4 = + hV i - S , i • 1, 2 • , . r r m n r r m n (12) 

As shown in Appendi x 
p p 

as well as d and t 
r r 

A the distance and time functions d! and t! 
depend on one of two possible maneuve r s , thus 

yielding four constraint f unctions and four corresponding controls . 

Equation 11 may be explici tly written in terms o f the par
tial derivatives compris i ng the gradien t of c (x) as f ollows . 
Fi r st, the gr adient i s given by: 
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j 1,2 
k = 1,2, 

where j and k denote one of the two maneuvers. Using Eqs. 9 
and 12 and substituting into Eq. 11, we have 

~B 

where 

al 

cldT 
r The e xpressions for av• 
T 

cl tT 
r 

av' 
T 

j = 1, 2, 

k = 1, 2, 

j = 1, 2 
k 1, 2, 

k = 1, 2, and 

j = 1, 2. 

(13) 

(13a) 

(13b) 

(13c) 

(13d) 

and 

r 
cli\, are given in Appendix B. In Section 5, it will be shown how 

the above control law may be simplified t o one expression to pro
duce a suboptimal control . 

Inspection of Eq . 13 reveals that it i s necessary that 

j = 1, 2 , (14) 
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if the system is to be controllable on the boundary. If we sub
stitute the appropriate expressions for Maneuver 2 given in Ap
pendix B into Eq. 13d and set VT= Vmin and AT= 0, the result in 

the condition of Eq. 14 is violated. This singularity at Vi m n 
may be removed through simple modification of the control law. 
The violation of Eq. 14 occurs when VT= Vmin and a cancellation 

results in Eq. 13d. Thus, if we vary V . as a function of VT so 
min 

that VT never equals Vmin' the cancellation will not occur. This 

may be accomplished with a function of the form 

V' = 
min 

V • 
min 

V
2 

- (V
2 

- V • ) 
min 

½ 
:min] 

min 

where v1 is selected to be slightly greater than Vmin' and v2 is 

slightly less than V .. Consequently, for VT greater than some 
min 

selected velocity, v1 , the V . used in calculating the kinematic 
min 

boundary control (Eq. 13) is the actual 
VT approaches the minimum line speed we 

minimum line speed. When 
use a new value, V' . , 

min 
for purposes of control calculation. Hence, for VT~ v1 , V' . 

min 
is given by the above equation until at VT= Vmin we have 

V'min = v2. For Vmin = 10 m/s, the values used for v1 and v2 are 

10.5 m/s and 9 m/s, respectively. For the suboptimal controls dis
cussed in Section 5 the condition of Eq. 14 holds for all values of 
VT and therefore it is unnecessary to use the above modification. 

As was indicated in the discussion of the kinematic boundary 
controller, we switch to the linear regulator whenever it tends to 
drive the system off the kinematic boundary into an acceptable re
gion. From Eq. 12 we see that this will occur whenever the preced
ing vehicle does not decelerate to minimum line speed but rather 
remains at some velocity VP that is greater than V .. As a re-

min 
sult, switching the regulator on will cause a transient and may 
even produce limit cycling. Hence, it would be desirable to modify 
the kinematic constraint (Eq. 12) such that the kinematic boundary 
will coincide with the nominal operating headway. That is, when 
the kinematic constraint (Eq. 12) so that the kinematic boundary 
will coincide with the nominal operating headway. That is, when 
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spacing as 
way , hVT. 
hVT in Eq. 

required by the constraint function is the desired head
This is easily accomplish ed by r eplac ing hV . with 

min 12, so we now have 

c. (x) = d T 
i - r l 

r 
V . (tT 

min r 
t p) h r + VT - S, i = 1, 2, 3, 4 . (15) 

This is acceptable , since hVT ~ hV min; therefore t he spacing when 

ci (x) = 0 is greater than the s pac ing r equired by our ori gi nal 
constrain t . Also note an additional term, hAT , t hat will result in 
t he numerato r of Eq . 13 . Since the nominal oper ating he adway is 
now on the kinemat i c boundary, the kinematic boundary control wi ll 
act t o maintain the desired headway and hen ce obviat e the linear 
r egul a t or s hown in Fig . 6. The input uR t o the transition con
troller may be replaced with a pos itive jerk command of 2,6 m/s 3 . 
Ther efor e , uR wi ll be present to drive the system to the kinematic 
boundary whenever ci (x) < 0. The controller then takes the basic 
structure shown in Fig. 9. The details o f switchin g from velocity
command to r egulati on mode have been l eft out of the diagram. In 
addition , we have select ed o1 = 03 = 6 while the acce l eration 
limite r is shown as a constrained r ange integration . Also note 
that the r a tio Js / 6 is, in effect, a controller gain that a ffects 
system res ponse and s tability. Thi s aspect will be discussed in 
Section 6 . 

The kinematic cons traint (£ = - c(l0) i s calculated as a 
function of preceding and trailing vehic l e s tates ( E denotes e rror 
between spacing and kinematicall y required spa cing). Similarly , 
the kinematic boundary control (uKB)i (i.e., the jerk required to 
keep £ constant) is cal culated as a f unc tion of preceding and 
trailing vehicle states . When E > 6 (or when c(~) < - 6) , the ve
hi cl e is i n a kinemati cally safe condit ion and the fu l l positive 
j e r k capability of t he veh i cle is commanded to the propulsion sys
t em. At the same time the boundary cont r ol is multiplied by 1 and 
thus cancels itself out at the s umming j unction . When E = 0, the 
commanded jerk input i s the kinematic boundary control, (uKB)i . 
When £ < - 6 (o r when c (x) > 6) t he vehicle is in a kinerna tically 
unsafe condit ion and the full negative jerk limit is commanded to 
the p r opulsion system. Again , when c(~) > 6 the boundar y con trol 
is multiplied by 1 and cancels itself a t the surnm~ng junc tion . 

In s ummary , E drives the system t o the kinematic spacin g 
and (uKB) i keeps the sys t em a t this spacing . The jerk limi ters and 
decelerati on limi t e r s following the summing junction a r e no t neces
sary in the optimal case since the control that keeps the vehicle 
on t he boundary will not exceed limits . However, the subop t imal 
con trols to be pr esen t ed r equire these limiters par ticularl y when 
switching occurs . 
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We will now compare the vehicle responses in an overtaking 
situation using the original constraint equation (Eq. 12) and the 
modified kinematic constraint. The trailing vehicle is traveling 
at 20 m/s while the preceding vehicle has a speed of 10 m/s and 
the initial spacing is set at 100 m. The r esulting response for 
a desired headway of 0.5 s using the optimal control is shown in 
Fig. 10. The spacing plot shows the actual vehicle spacing and 
the spacing as required by t he kinematic constraint (i.e., the 
spacing required to prevent collision in the event of a minimum 
time maneuver by the preceding vehicle; see Section 3) . In Fig. 10 
the preceding vehicle is traveling at minimum line speed and there
fore it is assumed that it will n ot decelerate. Thus, the trailing 
vehicle may precisely follow the on-limits trapezoidal deceleration 
profile to achieve the desir ed spacing. That is, it can wait until 
the last possible moment before reacting to the presence of the 
preceding vehicle. The modified optimal control response is shown 
in Fig. 11; note that the maintained spacing is s lightly larger 
than the required spacing. 

The comparison of headways for the two control s trategies is 
shown in Fig. 12. Here, headway is define d as spacing divided by 
trailing vehicle velocity; vehicle acceleration is not included in 
this definition. The apparently small degradation in performance 
as shown by Fig. 12 justifie d the adoption of Eq. 15 as the kine
matic constraint throughout the remainder of this r eport. 
The headway comparison is shown in Fig. 15. The ove rshoo t in the 
optimal r esponse is somewhat more accentuated with a 3-s headway 
than with 0 .5- s headway. However, the vehicle is decelerating a t 
this point and therefore the loss of headway is not as serious as 
it appears (recall that the headway calculation only involves ve 
locity). On the other hand, the modified optimal control will 
always keep the vehicle above the desired headway (in the overtak
ing situation) s i nce we have included the term hVT rathe r than 
hVmin in the constraint f unction. Hence , the vehicle will main tain 
a spacing of at l eas t hVT· 

Although the control s tra tegy described in this section will 
be called the optima l cont r ol, it is optimal on l y on the constraint 
boundary. However, since we have f urther con s trained the vehicle 
to operate in a velocity-command mode until the boundary is reached, 
the overall control law should provide a good approximation to the 
optimal. That is, the control whi ch takes the vehicle from -c(2S_) 
= 61 to c (2S_) = 0 i s the approximation suggested by Saridis . There
after , the control on the kinematic boundary is the optimal con
s trained traject ory. 
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5. SUBOPTIMAL VEHICLE CONTROL 

In this section we will investigate several suboptimal con
trol strategies that lead to considerable simplification of the 
controller described in Section 4. All of the suboptimal control
l ers presented are derived t o simplify the kinematic constraint 
so that the result ing control will always keep the vehicle out
side the actual kinematic boundary but will require less computa
tion and information. In all cases we will use the kinematic con
straint described at the end of Section 4, with desired f inal 
spacing of hVT rather than hV . . Consequently, the kinematic 

m1. n 
boundary controller will act as a regulator at nominal headway with 
the regulator of Fig. 5 replaced by a constant jerk command of 
+2.6 m/s3 (Fig. 9). This allows simplification of the controller 
without degradation in performance as shown by the examples in 
Section 4. 

SUBOPTIMAL CONTROL I 

The first simplification of the kinematic constraint assumes 
that the preceding vehicle will always decelerate to the negative 
acceleration limit even if the vehicle is traveling at minimum line 
speed, As a result, a lthough the actual minimum line speed remains 
the same, fo r purposes of control calculation we adop t a new mini
mum line speed that is less than the a c tual. Consequently, we 
need only consider Maneuver 1 in the kinematic constraint vector 

c(~) 0 

where c(_x) = dT - dp - V (tT - tp) + hVT - S, and dT, dp tT, 
r r min r r r r • r 

tp are given in Appendix A for Maneuve r 1. If we assume tha t a 
r 

vehicle traveling a t 10 m/s will de cele rate at the j e rk limit to a 
-2.6 m/s acceleration, the largest final v e locity it can have is 
7.4 m/s. As a result , consistent wi t h our ass umption for Maneu
ver 1 we may set Vi = 7 . 4 mis in the constraint equation although m n 
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our m1n1mum line speed is still 10 m/s. The control uKB is given 
in Eq. 13 with j , k = 1 (i .e ., using the partial derivatives for 
Maneuver 1 gi ven in Appendix B) . 

The computational r equirements a r e conside r ab ly less than 
those f or t he optimal but we still require measurements of all 
vehicle states (i.e., Vt, At, Vp, Ap, Jp, and S). Also note 
that the above con trol is identical to the optimal control for 
velocities great e r than 12.6 m/s (i. e ., velocities for which 
Maneuver 1 is applicable in the optima l control). 

SUBOPTIMAL CONTROL II 

The remaining suboptimal s trategi es are ob tained from sim
plification of the kinematic cons train t for suboptimal control I 
with the aim of only r equiring error states (i.e., spacing and its 
derivatives). Fi rst, we will examine the kinematic constraint in 
Sect ion 4. In terms of vehicle states it is giv en by: 

C (2:<_) (A 4 - ~ 4) 3 - ~3) 2 2 = 0 . 007 + 0.05 (AT + 0.1 (~ - AP) t 

+ 0 .0 74 (A.r2 
VT - ~

2 
VP) + 0 . 38 (~ T - ~ VP) + 0.5 (VT - VP) T 

0 . 19 2 2 (A.r - ~) 0 . 074 (A 2 - A.p 2) + (VT - VP) - 10 [0.38 + T 

+ 0. 38 (VT - VP) ] + hVT - s , (16) 

where we have used As= 2 . 6 m/s 2 , Js = 2 , 6 m/s 3 , and Vmin = 10 m/s . 

If we drop all acce l e r ation terms in the above constraint , 
the kinematic cons tra i nt becomes 

There is no guarantee that Eq . 17 sat isfies the kinemat ic con
st r a i nt . However, the additional s implif i cations to be shown be low 
and a comparison with the ori ginal const r aint in the next secti on 
will justify its use. 

Th e s econd term in Eq. 17 may be f a ctored to yield 
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Since we are interested in error states, the sum term Vt+ Vp may 
be eliminated by substituting VT+ V (where V = 25 m/s) to 
obtain max max 

This is permissible since VT~ V and the new required spacing 
max 

is greater than that required by Eq. 17. In order to formulate a 
jerk-corranand input from the above constraint it is necessary that 
c(~) contain a trailing-vehicle jerk term or, equivalently, that 
c(~) include an acceleration term. Thus, we simply add a constant 
times At to yield 

where k will be determined in Section 6. 

The corresponding control that keeps c(~) = 0 is then given 
by 

where and 

Note that Jp no longer appears in the expression for uKB since 
ac/cAp = 0 in Eq. 13. 

SUBOPTIMAL CONTROL III 

Equation 18 may be further simplified by substituting the 
value of V for VT in the second term. Again, this is valid max 
s ince VT~ V and therefore our new minimum spacing is greater max 
than that required by Eq. 18. As a result, we have 

(19) 
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and the corresponding control is given by 

1 
u = - - (- 6 A + hA__ - V) KB k E -i E . (20) 

Consequently, the control (Eq. 20), which keeps the vehicle on the 
kinemati c boundary defined by Eq. 19, becomes a l inear time-invari
ant feedback controller (assuming the veh icle is within jerk and 
acceleration limits). The transfer func t ion (Eq . 20) is 

G(s ) = 6s + 1 

ks
2 + ( 6 + h) s + 1 

(21) 

with a natural f r equency of 

and damping 

~ = 6 + h 

2\Jk 

We may now cal culate k based on s tring- stability requirements. 
The magnitude of the transfer is given by 

IG(j w) 1
2 

= 

6 j w + 1 

( 1 - kw 2) + j ( 6 + h ) w 

1 + 36 w2 

2 

1 + 36 w
2 

+ 12 hw2 + h2w2 - 2 kw2 + k2w4 (22) 

From Eq. 22 the magnitude of t he t rans f er will a l ways be less than 
1 if 
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which reduces to the requirement 

- 2k + 12h + h2 ~ 0 , 

or 

(2 3) 

It is desirable to h a ve k as large as possible t o reduce band
width and decrease the time in which a t r ansition will occur. For 
a headway of 0.5 s, a value of k = 2.0 has b een selec ted fo r both 
suboptimal controls II and III. Although there is no strict justi
fica tion fork= 2. 0 in s uboptimal control II, it seems a reasonable 
choice since the string stability requirement will still hold fo r 
10 ~ VT ~ 25 in the second term coeffi c i ent of Eq . 18. For example, 
if VT= 10 is subs tituted , Eq . 18 becomes 

and the corresponding control meets the above s tring-s t abili t y 
magnitude c riterion. Block diag r ams for suboptimal controls II 
and III with desi r ed headway equal to 0.5 s are shown in Figs . 16 
and 17, r espect ively . No t e that the acceleration a n d j e rk limiters 
are not shown. 

For a desired headway equal to 3 s the same l ogi c as ab ove 
may be followed to select a value of k. From Eq . 23 the string
stability requirement wil l be met a t h = 3 s for a n y value of 
knot exceed ing 22 . 5 . 

The major simpl ification in obtaining suboptima l controls 
II and III was to eliminat e t he acce leration t e rms in the con
str a int function for suboptimal control I. The r efore, t he valid
ity of subopt i mal controls II and III needs t o be established, 
since we have not yet no t ed the e ffe c t o f removing these terms. 
Conseque ntly, the kinematic constraint functions d e rived for sub 
optimal con trols II and III were t es t ed against the actua l kine
matic constraint fo r all poss ible combination s of preceding and 
trailing vehicle states within the designated limits. As might 
be expected, the actual constra int is violated for small velocity 
errors and large negative acceleration e rro r s , since s uboptimal 
controls II and III do not inc lude accelera tion error i n the con 
straint functions , The only concern i n violating t he k inematic 
constraint is that t he s uboptimal cont rolle r may be t urned on too 
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late and collision is then unavoidable. If the suboptimal control
l er is invoked outside the boundary, preceding-vehicle velocity 
changes will be followed and the danger of collision is not pres
ent. If we are to assume an overtaking situation with the trailing 
vehicle initially in velocity corrnnand mode with zero acceleration, 
it is assured the transition controller will be switched on outside 
the actual kinematic boundary using suboptimal controls II and III. 
Therefore, the approximations are justified for this case . 
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6. DESCRIBING FUNCTION STABILITY ANALYSIS 

Experimental evidence to be shown in Section 7 indicates 
there is no closed-loop stability problem with the nonlinear con
troller. This section will present analytic verification of stabil
ity for the suboptimal controllers, which are simple enough to allow 
a describing function analysis. We begin by deriving the describ
ing function for the basic dual-input controller nonlinearity. The 
derivation is greatly simplified through removal of jerk and accel
eration limiters. Hence, this removal represents a further approxi
mation in the analysis , but we retain the basic nonlinear feature 
of the controller. The dual-input static nonlinearity of the con
troller is then transformed into a single-input dynamic nonlinear
ity. As a result, the nonlinear and linear parts of the feedback 
loop may be separated. Consequently, the describing function (fre
quency dependent) may be plotted separately from the plot of the 
linear transfer on a Nichol ' s chart. The presence of limit cycles 
is then determined at intersection points of the linear and non
linear characteristics. 

The selection of the parameter 6 is shown ot be aided by 
the de scribing function analysis and is discussed later. It is 
pointed out that certain system considerations beyond closed-loop 
stability are involved in the selection of 6 . Consequently, at a 
headway of 0.5 sit is deduced that a value of 6 of approximately 
1 should prove satisfactory. The subsequent stability analysis 
demonstrates that a value of 6 = 1 provides sufficient stability . 

In discussion of suboptimal control III, the describing 
function i n conjunction with the Nichol ' s chart is used to verify 
the stability of suboptimal control III where the controller gains 
ar e selected for a 0.5-s headway. A small-signal linear analysis 
provides additional verification of stability. 

The stability of suboptimal control II is then studied in a 
similar manner. However, there is an additional nonlinearity in 
the form of a multiplier. The describing function of this nonlinear
ity is derived, and thus only the first harmonic of the multiplier 
output is considered. 

DESCRIBING FUNCTION DERIVATI ON 

The closed-loop stability of suboptimal controls II and III 
will be studied with the use of describing functions. Suboptimal 
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cont rol III i s shown in Fig. 17 whe r e the jerk and acceleration 
limiters have been removed to simplify the anal ysis . The non
linear portion of t he system is redrawn in Fig . 18 with the non
linearities in parallel, thus illustrating the describing fun c
tion derivation to be described be low. Suboptimal control II, 
which will be discussed later, contains the same basic non
linearity. A sinusoidal signal with a particular amplitude and 
phase will be assumed at each input to the nonlinearity. The out
put, Y, will be periodic and a function of the input amplitudes , 
Xi and X2, and the relative phase, e. The describing function 
of the nonlinearity is determined by the first term of the Fouri e r 
series of the output. That is, since Y is periodic it may be 
expressed as a Fourier series given by 

(X) 

y ( t) ao +J (a cos nwt + b sin nwt) 
n n 

n=l 

where 

T 
1 f Y(t) dt ao = 
T 

(24a) 

0 

T 
2 f Y(t) cos nwt dt a T n 

(24b) 

0 

T 

bb 
2 f Y(t) sin nwt dt = 
T 

(24c) 

0 

From Fig . 18, when Xi~ 6 , the output is given by 

+ x2 sin (w + e) , sin w ~ 0 (25a) 

Y(t) = 

+ x2 sin (w + 8), sin w < 0 (25b) 
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X 1 Sin t/J-----------'I~ 
v, 

X
2 

Sin ((/1+0) ------------- ------1,-------

Fig.18 Nonlinear Portion of System 

When X1 >~ the output is given by 

Y(t) = 

J 
s 

+ x2 sin (w + 0), 

+ x
2 

sin(~+ 0) , 

,___._ y 

(26a) 

(26b) 

(26c) 

-J 
s 

(26d ) 
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where 

Substituting Eqs. 25 and 26 into Eq. 24 with n = 1 we obtain the 
first harmonic of the output, given by 

[Y(t) ]n=l = 

where 

Ml = 

Nl = 

8 x
1
x

2 
cos 

31TL\. 

4 x
1
x

2 
s in 

31TL\. 

x2 cos e 
1T 

sin 

( 2 7a) 

( 27b) 

(28a) 

e 
(28b) 

e 
(28c) 

(28d) 

s in e 

We may now fo rm the describing func tion as the gain and phase of 
the output relative t o the input, X1 sin ~- First, the gain is 
gi ven by 
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1 [( XlJ )2 ; - __ s + X cos 8 - M 
x

1 
A 2 1 

The phase is given by 

(29a) 

x
1 

> t:,, • (29b) 

(30a) 

(30b) 

We will next consider how the describing function may be 
used to provide a closed-loop stability analysis of the system. 

DESCRIBING FUNCTION CHARACTERISTICS 

First note that the nonlinearity of Fig . 18 may be drawn as 
a single-input dynamic nonlinearity, as shown in Fig . 19. The 
trans fer function G(s) is selected so that the output becomes 
X2 sin (~ + 8), the second input to the static nonlinearity of 
Fig. 18. Consequently , the resulting closed loop may be easily 
separated into linear and nonlinear parts. Thus, we may determine 
gain and phase only due to the linear portion of the loop . Simi
larly, the gain and phase of the nonlinear portion is determined 
from the des cribing function as given by Eqs . 29 and 30. To in
vestigate stability, the magnitude-phase plot will be used as fol
lows. A sustained oscillation or limit cycle will exist whenever 
the characte ristic equation of the closed-loop trans fer fun c tion 
equals 0, or 

L(jw) N(A,w) ; - 1 , 

where L(jw) is the transfer function of the linear portion . This 
is equivalent to 
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L(j w) = 

G(s) 

Fig.1 9 Single- Input Dynamic Nonl inearity 

1 
N (A, w) 

Thus, we may separately plot the left- and r ight- hand sides of the 
above equation. The curve -1/N(A,w) then acts as the - 1 + jO point 
of a linear stability analysis plot . If an intersection of the t wo 
plots occurs at a particular frequency , a limit cycle will exis t . 
The stability of the limit cycle is determined by considering a 
perturbation in the amplitude of the l imit cycl e as follows. If 
an increase in amplitude causes a further increase in amplitude, 
the limit cycle is unstable . That is, if an increase in amp litude 
along -1/N(A,w) falls in a region to the right of the L(jw) cha r
acteristic, the limit cycle is unstable . If an increase in ampli
tude falls to the le f t of the linear characteristic, the limit 
cycle is stable. 

Before proceeding with stability analysis, some comments on 
the s e le ction of the value of 6 will be noted in the fol l owing 
discussion. 

SELECTION OF 6 

The primary purpose of the s t ability analysis is to deter
mine t he stability of the closed-loop sys tem as a function of the 
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parameter 6. Hence, we may select a value for 6 that yields a 
system with sufficient stability margin . However, a more direct 
way to select 6 is to consider the physical constraints in t he 
problem. 

Recall that e is defined as the difference between the 
actual spacing and the kinematically required spacing. Thus, 6 
is a measure of the deviation allowed from the desired spacing be
fore full braking (or full acceleration) is app lied. Suppose the 
desired headway is 0.5 s. Assuming a vehicle length of 3 m, the 
separation between vehicles at a minimum line velocity of 10 m/s 
is then 2 m. Consequently, it is readily apparent that we would 
like 6 to be smaller than 2 m, but at the same time a very small 
value of 6 would not be desirable since this would imply the 
necessity of a high sampling rate and possible noise problems . 
Hence, an intermediate value of 6 = 1 should prove satisfactory. 
In fact, experimental evidence has indicated that a value of 6 = 1 
provides good performance. 

The s tability analysis in the following discussion is in
tended to verify c losed- loop stability using the value of 6 = 1 . 
Moreover, from a stability viewpoint it will be shown we have a 
great deal of freedom in choosing 6. For the 3-s headway case a 
value of 6 = 15 is selected . 

SUBOPTIMAL CONTROL III 

To investigate the closed-loop stability of suboptimal con
trol III, we will f irst separate the diagram of Fig. 17 into non
linear and linear parts. This is most easily accomplished by 
breaking the l oop at the jerk mode (the point at the output of the 
nonlinearity summing junction). The loop can then be drawn as in 
Fig . 20, where G(s) of Fig. 19 is given by 

1 
G (s) = 

2 

2 6 . 5 s + s 

2 s
2 + 6.5 s + 1 

The technique outlined in the description of the nonlinear 
portion of the system will now be us ed to determine limit cycl es 
as a function of 6 , the value of e at which saturation occurs 
(as shown in Fig , 9). The magnitude phase plot for suboptimal 
control III is shown in Fig. 21 with 6 = 10 . The plot of the non
linear port ion i s shown for amplitudes of the input up to A= 100 
and for frequencies of 0.5, 1.5 , 2 . 5, 3.5, and 4 . 5 r ad/s . The 
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Fig. 21 Magnitude Phase Plot for Suboptimal Control Ill , A=10 
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linear characteristic, L(w), is shown for a frequency range of 
0.5 to 4 .5 rad/s. Extrapolating the curves shows that an unstable 
limit cycle will occur at a frequency less than 0.5 rad/sand an 
amplitude somewhat greater than A= 100. However, in view of the 
jerk and acceleration limits in the system, the advent of such 
amplitudes is impossible. Oscillations with amplitude less than 
the limit cycle amplitude will decay to 0. Therefore it is con
cluded that the system is stable with a good margjn. 

The magnitude phase plot with 6 = 1 is shown in Fig . 22. 
Again, the plot shows that an unstable limit cycle will occur at 
approximately 0.7 rad/sand an amplitude greater than A= 25. 
This is still well beyond the jerk and acceleration limits imposed 
on the system. Therefore, the selection of 6 = 1 provides suffi
cient stability. Additional verification will be shown by the 
(approximate) linear analysis in the following paragraphs . 

The magnitude phase plot with 6 = 0.1 is shown in Fig. 23. 
As the plot shows, the effect of the nonlinearity is essentially 
that of a relay, which is the result when 6 = O. With 6 = 0, the 
loop of Fig . 20 then be comes the linear portion followed by a non
linearity wi th describing fun ct ion 

N(A, w) = 
4J 

s 
TTA 

The frequency and amplitude of the limit cycle can be determined 
analytically by first de termining at what frequency the phase shift 
of the linear portion i s 180°. Hence . 

L(w) 2 (j w) 2 + 6.5(jw) + 1 = 
(j w) 3 

6.5 + 1 - 2 
2 

= j 2 3 w w 

2 
Solving 1 - 2w = 0 yields w = 0 . 7 rad/s. The amplitude of the 
limit cycle i s det ermined by setting the open-loop gain equal t o 
1 and solving for A: 

4J 
s 

,rA 
6. 5 

(0. 7)2 
1 . 
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Fig. 22 Magnitude Phase Plot for Suboptimal Control Ill, Ll=1 
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With J 5 = 2.6, A= 44. Consequently, the worst-case or limiting 
condition of~= 0 produces a limit cycle at 0.7 rad/s with an am
plitude of A = 44. The system will be s table with any positive 
value of 6 for signals well beyond the jerk and acceleration 
bounds of the system. Thus, we a re free t o select a value of 6 
based on system considerations such as headway and sampling rate. 

Linear Analysis 

A small-s ignal linear analysis of suboptimal control III 
may be accomplished by considering small perturbations in £ about 
£ = 0 . Consequently, the output of the multiplier in Fig. 20 is 
approximately 0 . Letting K = Js/6, the resulting open-loop trans
fer, G(s), for £<< 6 is then 

G(s) 
2 

= K 2 s + 6.5 s + 1 + 1_ 6 . 5 s + 1 
3 2 2 

s s 

= (3 , 25 + 2K) s
2 + (6.5 K + 0.5) s + K 

3 
s 

By the Routh Criterion, a system with the above open-loop transfer 
will be closed-loop stable if 

K > 0 

and 

K < (3.25 + 2K) (6.5 K + 0.5) . 

Since the first inequality implies the second , the system will be 
stable when K > O. The cutoff frequen cy for the open-loop trans
fer with K = 2.6 is found to be approximately 8.6 rad/s. The re
sulting phase margin is approximately 76°. Hence, f or small sig
nals the system has sufficient stability margin. 

STABILITY ANALYSIS OF SUBOPTIMAL CONTROL II 

The c losed-loop stability of suboptima l control II may be 
determined in a manner similar t o suboptimal control III. However, 
there is an additional nonlinearity (multiplier), as shown by the 
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block diagram in Fig. 16. As in the case of suboptimal control III, 
the loop will be broken fol lowing the nonlineari ty summing junction 
a t Jc in Fig. 16. The describing fun ctions for the transfer f r om 
Jc to s and from J c t o uKB wi ll now be derived. 

First , an input given by A sin wt will be ass umed at J c . 
Consequently, the signal at s is 

( A 2 A) + ( 0~; 
A + 1.4 A 

)sin wt € = - w3 +--;;;- cos wt 2 w 

0.19 A2 . 2 
4 

sin wt , (31) 
w 

and the s i gnal at uKB is 

A . wt+0.7A 0.19A
2

. sin cos wt -
3 

sin wt cos wt . 
2 w2 w w 

(32) 

Subs tituting Eq . 31 into Eqs . 24b and 24c, the de scribing fun c tion 
is given by 

N (A, w) 
1 

j al) = A (bl + 
€ 

1. 9 + . 
2 

1 = 2w - (33) -2 J 3 w w 

Substituting Eq . 32 into Eqs . 24b and 24c , the describing func~ion 
fo r uKB is given by 

N (A, w) 
uKB 

_ 1_ + 0 . 7 
j 

2 w2 w 

As a re s ult, we may detennine G(s) in the dynamic nonlinearity 
(Fig. 19) by dividing Eq . 34 by Eq. 33 to yield 
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G(s) = 
2 

0.7 s + 0.5 s 

2 s
2 + 1. 9 s + 1 

(35) 

The system may now be separated into nonlinear (describing func
tion) and linear parts to produce the loop shown in Fig . 24, which 
may be used for purposes of stability analysis. 

The magnitude-phase plots for values of 6 of 10, 1, and 
0 . 1 are shown in Figs. 25, 26, and 27, r espectively. The plot 
with 6 = 10 indi cates an unstable limit cycle at approximately 
A= 32 and w = 0.5 rad/s. The p l ots for 6 = 1 and A = 0.1 are 
nearly identical with unstable limit cycles indicated at approxi
mately A= 15 and w = 0.7 rad/s. Consequently , stability is not 
as sensitive to A, as in the case of suboptimal control III. Again, 
signals within the jerk and acceleration limits of the system will 
decay to 0 . As in suboptimal control III, the amplitude and fre
quency of the limit cycle for the condition 6 = 0 may be analyti
cally determined . The frequency at which the phase of the linear 
portion is 180° is given by 

Im[G(w)] = 1 - 2 2 
w = 0 

or 

w = 0 . 7 rad/ s . 

The amplitude of th e limit cycle is then found from 

or 

4J 
s 

TIA 
1.9 
w2 

= 1 

A= 12.8 . 

Although 6 = 0 would provide a stable system, a b ang-bang jerk com
mand i s undesirable in terms of passenge r comfort . Thus , a s e lec
tion of 6 = 1 s hould prove satisfactory. 

It has be en shown that suboptimal controls II and III are 
closed-loop stable in the range of jerk and a ccele ration limite d 
signals that would be expected in a vehic le-following system . The 
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analysis does not include the presence of the jerk and accelera
tion limiters; however, the design of the controller is based upon 
an explicit consideration of the jerk and acceleration capabili
ties of the vehicle . Thus, in normal operation, cormnanded jerk 
inputs should not exceed the jerk limit and the resulting accel
eration should not exceed the acceleration limit. Hence, the 
analysis in conjunction with previous experimental evidence indi
cates a stable controller. In addition, the analysis has indi
cated that for any positive value of ~ the system will be stable. 
Therefore, we are free to choose a value of t based on other sys
tem considerations. 
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7. COMPARISON OF SUBOPTIMAL CONTROLS 

A number of test cases have been simulated to demonstrate 
the performance of the optimal control (where "optimal" henceforth 
refers to the modified optimal of Section 4) and various subopti
mal controls discussed in previous sections. In this section, the 
suboptimal controls are (a) evaluated in terms of the headway pro
file for some typical maneuvers where the desired headway is 0.5 s, 
(b) shown to operate satisfactorily as a regulator at nominal head
way (for desired headways of 3 and 0 . 5 s), and (c) implemented in 
a five-vehicle s tring and show good performance (again for desired 
headways of 3 and 0 . 5 s). 

The pro cedure in obtaining the suboptimal controls and the 
differences between them are summarized in Fig . 28 for convenience. 

EVALUATION OF SUBOPTIMAL CONTROLS 

Three test cases are presented for the optimal control and 
suboptimal controls I, II, and III . The first case involves a 
simple transition where a trailing vehicle traveling at 20 m/s en
counters a preceding vehicle 100 m ahead with a speed of 10 m/s . The 
resulting response for a desired headway of 0.5 s using _the modi
fied optimal control is shown in Fig. 29. In the jerk, accelera
tion, and velocity curves the solid line denotes the preceding 
vehicle while the dashed line indicates the trailing vehicle. The 
plot of spacing shows both vehicle spacing and the spacing as re
quired by the original kinematic constraint (Eq. 12). The response 
curves for suboptimal controls I, II, and III are shown in Figs. 
30, 31, and 32 , respectively. A comparison of the headway profiles 
for each control law is shown in Fig. 33. As expected, it takes 
progressively l onger to complete th e transition as the control law 
becomes simpler . 

The second example is a similar overtaking s ituation with 
the trailing vehicle at 25 m/s, the preceding vehicle at 15 m/s, 
and an initial spacing of 100 m. At 10 s into the transition the 
preceding vehic le decelerates on limits to 10 m/s. The resulting 
responses of the optimal control and suboptimal controls I, II, 
and III are shown in Figs. 34, 35, 36, and 37, respectively . The 
comparison of headway profiles is shown in Fig. 38. 

Finally, the last case has both the trailing and preceding 
vehicles at a velocity of 25 m/s with an initi a l spacing of 50 m. 
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The preceding vehicle decelerates on limits to 10 m/s; the ensuing 
mode transitions are shown in Figs, 39, 40, 41, and 42 for the 
optimal control and suboptimal controls I, II, and III, respectively. 
The headway comparison is shown in Fig. 43. 

Table 1 summarizes the results of the above test cases in 
terms of the time required to attain 50% (0.75 s) and 10% (0.55 s) 
of the desired headway (h = 0.5 s) for each of the control laws 
discussed. Suboptimal control III requires approximately three 
times the amount of time for the optimal control to reach a head
way of 0.55 s for a typical maneuver. However, there is a signifi
cant difference between the times required to attain 0 .55-s and 
0.75-s headways for suboptimal control III. Consequently, the 
relative performance of suboptimal control III appears more satis
factory in terms of nulling large initial headway errors rather 
than the total time to acquire the desired headway. On the other 
hand, with a relatively small increase in complexity, suboptimal 
control II performs significantly better. Compared to the optimal 
control the time required t o attain a 0.55-s headway is approxi
mately twice as long for suboptimal control II. In addition, since 
the error states is the only informational requirement, suboptimal 
control II seems a good choice among the control laws that have 
been considered. 

TRANSITION CONTROLLER AS A REGULATOR 

At the end of Section 5 the kinematic constraint was reformu
lated such that the kinematic boundary coincides with the desired 
operating headway. As a result the control that keeps the vehicle 
on the kinematic boundary will act to maintain the desired headway 
in steady state (i.e., Vr = Vp, and Ar= Ap = 0). An example 
demonstrates this fact in Figs. 44, 45, and 46 using suboptimal 
controls I, II, and III, respectively, with a desirPd headway of 
0.5 s. Each vehicle is initially traveling at 10 m/s with a head
way of 0.5 s. The preceding vehicle accelerates on limits to 
25 m/s and then immediately decelerates back to 10 m/s. As shown 
in Figs. 44, 45, and 46, each control l aw performs satisfactorily 
in following lead-vehicle maneuvers. Note the drop in required 
spacing as the preceding vehicle acceler ates . This is a result of 
the preceding vehicle velocity becoming greater than the trailing 
vehicle velocity . Consequently, the distance required for the pre
ceding vehicle to decelerate to minimum line speed becomes greater 
than the distance required for a trailing vehicle t o decelerate to 
minimum line speed, The required spacing due purely to kinematics 
will become negative and the refore tend to cancel the r esidual de
sired spacing term, hVr, in the kinematic constraint function. The 
trailing vehicle will respond by accelerating until the spacing as 
required by kinematics is O and the residual desired spacing is 
acquired. 
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Table 1 

Comparison of Times to Attain 50 and 10% of a Desired 
Final Headway (0.5 s) for Various Control Laws 

Case 1 Case 2 

Percent of desired headway (%) 50 10 50 10 

Case 3 

50 10 

Headway (s) (0.75) (0.55) (0.75) (0.55) (O. 75) (0 .55: ) 

Optimal Control (s) 9.7 11.4 I 
' 

12.2 13.9 7.8 9.5 

Suboptimal Control I (s) 11.5 15.0 I 13.7 16.5 9.7 12.5 

Suboptimal Control II (s) 16.2 21.5 17.1 22.5 12.9 18.5 

Suboptimal Control III (s) 22.7 32.5 22. 7 32.5 17.7 27.5 
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The headway profiles for suboptimal controls I, II, and III 
are shown in Fig. 47 . The decreas e in headway for suboptimal con
trol I demonstrates its effectiveness in following preceding ve
hicle velocity changes . The results show that suboptimal control II 
is the most effective in maintaining the desired headway. 

The example is repeated f or a desired headway of 3 s using 
suboptimal controls I, II, and III in Figs . 48, 49, and 50, re
spectively. The headway comparison is shown in Fig. 51. 

CONTROLLER PERFORMANCE IN A FIVE-VEHICLE STRING 

The performance of the optimal and various suboptimal con
trols for a string of vehicles is shown through several examples 
in the following discussion. Suboptimal control I will be dropped 
from further consideration since it offers no advantage over the 
optimal control other than some r educed computational complexity. 
We will show three examples for desired headways of 0.5 and 3 s. 
The initial conditions for each example may be described with the 
aid of Fig. 52 with numerical values given in Table 2. 

The first example is a simple overtaking maneuver. The opti
mal control responses for headways of 0 .5 and 3 s are shown in 
Figs. 53 and 54, respectively. 

The second example is again a simple overtaking, but at 20 s 
into the transition the lead vehicle decelerates on limits to 10 m/s. 
The resulting responses with h = 0.5 s for the optimal control and 
suboptimal con trols II and III are shown in Figs. 55, 56, and 57, 
respe ctively. At a desired headway of 3 s the optimal control r e 
sponse is shown in Fig . 58 and suboptimal control II response is 
shown in Fig. 59 . 

Finally, an example with speed-up maneuvers will be shown. 
The initial conditions for example 3 are shown in Table 2 with all 
vehicles at the desired headway. At t = 0 the lead vehic le accel
erate s to 25 m/s and then immediately decelerates to 15 m/s. At 
t = 15 s the lead vehicle accelerates to 20 m/s and immediately 
decelerates to 10 m/s. The response curves for suboptimal control 
II are shown in Fig. 60 with h = 0.5 sand in Fig . 61 with h = 3 s. 

In all of the above cases the string response is satisfac
tory with no indication of instability. 
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8. CONCLUSIONS 

A vehic l e-f ollowing control law may be designed by explici tly 
considering the state constraints that define the capabilities of 
each vehicle. The imposed jerk and acceleration limits that assure 
passenger safety and comfort dictate a kinematic constraint, thus 
leading t o the nonlinear con troller derived in Section 4. The re 
sulting control law is optimal in the sense that the vehicle pre
cisely follows the spacing require d to prevent the possibility of 
collision. However, it is not minimum in time for any given ini
tial condition since we are constraining the vehicle to follow a 
velocity-command mode until it is necessary to swi t ch to the ve
hicle- following mode . Subsequently , as the vehicle transitions to 
the nominal headway, the control is then minimum time. 

We have also shown that the kinematic constraint may be 
modified to enabl e the cont r oller to act as a regulator a t nominal 
headway. The relatively small degradation in performance due to 
this modification for t ypical overtaking situat i ons warranted its 
adoption as what we term "optimal cont r ol. '' 

Although the optimal control law could be implemented in 
terms of the on-line computational requirements, several subopti-
mal contro l s were derived with the aim of reducing the informational 
r equirements. That is, optimal control requires preceding-vehicle 
velocity, acceleration , and jerk while the suboptimal needs only 
spacing, velocity error, and acceleration error in addition to trail
ing vehicle velocity and acce l eration . Each suboptimal cont r ol is 
based on successive simplification of the kinematic const r aint to 
produce a control such that t he maintained spacing is greater than 
the r equired spacing except at nominal headway, where they are equal. 
Suboptimal control III resulted in linear time- invariant feedback, 
which could be analyzed in the frequency domain to ensur e string 
s tability. The operation of suboptimal control III i s , in effect, 
to null the velocity e rror. Consequently, the kinematic constraint 
is satisfied while preceding vehicle maneuvers can be followed. I n 
terms of r educing headway , suboptimal control III was found to re
quire appr oximately two to three times the optimal-control time 
span for some overtaking s ituations. On the other hand, suboptimal 
control II requires less time (66% of suboptimal control III time) 
with only a small increase in complexity. Suboptimal control I re
quires no less information than the optimal but the computational 
complexity is somewhat simplified. Consequently , of the control 
laws considered, suboptimal control II seems t o be the most attrac
tive in terms of simplicity and performance. 
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In general, the kinematics associated with a vehicle-follow
ing automated-guideway transit system defines a constraint region 
in state space that may be used to generate control laws to follow 
the boundary of the allowable region. If a new boundary is defined 
within the allowable region, it may provide a simplification of 
the corresponding control and, therefore, may be a usable solu
tion. The viability of the solution depends upon the completeness 
of the original constraint definition . Thus, extension of the 
technique to problems such as merging requires a total description 
of the kinematic requirements involved . The kinematic require
ments will then dictate a control that assures safety and optimum 
performance. 
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9. RECOMMENDATIONS FOR FUTURE STUDY 

The technique presented in this study has been shown to 
admit a workable solution to the vehicle-following problem at 
short headways. However, additional verification of its applica
bility to a r eal sys t em leads to the suggested areas for investiga
tion outlined bel ow. 

Computer simulation studies should include a vehicle plant 
model in the system. The sensitivity of the resulting controller 
to parameter changes, wind, grade, and loading may then be eval
uated . 

The configuration of a controller in a real system through 
determination of digital-analog tradeoffs and vehicle- wayside con
trol allocation should be investigated. In particular, vehicle 
pe rformance may be evaluat ed in terms of implementation costs 
such as data rate, quantization error, and time delay. 

The problem of measurement accuracy affects the above two 
areas. That is, a trade- off exists between vehicle performance 
and the accuracy of wayside information (i.e., the accuracy of the 
absolute measurement rather than the effects of s ampling, quanti
zation, etc .). The resulting requirements will strongly affec t 
system costs and the manner in which measurements a re obtained . 

The use of thi s control technique in emer gency operation, 
merging, and injection of vehicles onto the guideway would pro
vide uniformity in control for all situations. Consequently , 
this suggests a s implified controller as opposed to a collection 
of ad hoc procedures to handle these various conditions . 
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Appendix A 

DISTANCE AND TIME REQUIREMENTS FOR A VEHICLE MANEUVER 

As discussed in Section 3 there are two possible on- limit 
vehicle maneuvers designated maneuvers 1 and 2 in Fig. 3. For a 
given vehicle acceleration, A, and velocity, V, the distance and 
time required t o attain a desired final velocity, Vf, is given 
below for each maneuver profile. In addition, the conditions that 
di ctate a particular maneuver are given in terms of A and V. 

MANEUVER 1: l A2 + J (V - Vf) ~ A 2 
2 s s 

A4 + _ 1_ A3 
A 

1 
A

2
V d 

1 + __ s_ A2 + = r 8A J 
2 3J 2 4J 2 2A J s s 

s s s s 

A v2 
2 

+AV + _s_ V vf Asvf 
+ - - - - + - -

J 2J 2A 2A 2J 
s s s s s 

A + A A2 V - vf s + t 
J + 2A J A t 

s s s s 

MANEUVER 2: 

d 
1 

(A - A') 3 +-A- (A - A'/ + y_ (A - A') = ---
r 6J 2 2J 2 J 

s s s 

A'3 A' 
[2~s (A2 - A' 2) +v] +--- -

3J 2 J 
s 

where s 

A' ,. ½ A2 l ½ = - + J (V - Vf) s 

A - 2A' t = r J 
s 
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Appendix B 

KINEMATIC BOUNDARY CONTROLS 

The control that keeps a vehicle on the kinematic boundary 
was given in Section 4 by Eq. 13. The control requires the partial 
derivative of the constraint ftmction with respect to each of the 
vehicle s tates, VT , Vp, AT, and Ap. For each vehicle, there is a 
set of partial derivatives co rresponding to each of the two possi
ble vehicle maneuvers. These may be calculat ed from the equations 
given in Appendix A as follows . 

MANEUVER 1: ..!_ A
2 

+ J (V - Vi ) ~ A 2 
2 s m n s 

adr 1 2 A As V 
A+-+ --+-~=2A J 

s s J 2J A s s s 

adr 1 
aA= 2A J 

s s 

A 
+ _ _ s _ A+ _ v_ 

2J 2 ASJS 
s 

cl t 
r 1 A 

~=J + AJ 
s s s 

MANEUVER 2: 

a<l 
r 

av 
A2 + ~ 

2J A' J 
A' - -- -

2J 
s 

V 
A' 

ad 
r 

3A 

at 
r 

av = 

s s 

1 

2J 
2

A' 
s 

A' 

A2 
+ -

J 2 
s 

AA' _!;!_ + :!_ 
- JA' - J A' J 

s s s 
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t 
r 

A = 1 
J 

s 

A' = -J 

A 
J A' 

s 

l A
2 + J (V - V . ) 

2 s min 
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A 
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_g_ ( x) 
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N(A, w) 

s 
p 

t 
r 

SYMBOLS 

prece din g vehi c le accele ration 

service acceleration limit 

trailing vehicle acceleration 

kinematic constraint function 

magnitude of c (~) at which full positive service jerk i s 
applied 

smoothing parameter in acce l eration limi t e r 

magnitude of c(~) a t which full negative service jerk is 
applied 

equa l t o o
1 

and o
3 

when o
1 

= o
3 

d i stance re qui r e d f or preceding vehicle t o decel erate to 
minimum line speed 

distance required for trailing vehicle to dece lerate t o 
minimum line speed 

constraint vector 

time headway 

preceding vehicle jerk 

service jerk limit 

trailing vehicle jerk 

sele c t ed gai n in suboptimal cont ro l ler 

describing function ; a function of input ampli t ude and 
freq uency 

vehicle sp ac ing 

time r equir ed fo r p r eceding vehicl e to decelerate to 
min imum line speed 

time r equi r ed for trailing vehicle to decelerate t o 
minimum line speed 
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nonlinear boundary control 

kinematic boundary control 

linear regulator control 

u' 

V 

R 
modified linear regulator control for switch-on 

vehicle velocity 

V max 

V 
min 

maximum line speed 

minimum line speed 

V' 
min modified minimum line speed to prevent singularity in 

control 

VP preceding vehicle velocity 

VT 

W(~) 

w
1 

(x) 

w2 (x) 

w
3

(x) 

trailing vehicle 

scalar weighting 

scalar weighting 

scalar weighting 

scalar weighting 

velocity 

function 

function 

function 

function 

¾ preceding vehicle position 

~ trailing vehicle position 

£ equal to -c(x) 

~ damping 

w natural frequency 
n 

for 

for 

for 

for 

"·'-'•' '· •. u. 
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dual mode controller 

uKB and negative c(x) 

acceleration limiter 

~Band positive c(x) 




