P日-275 $341 \ldots$ dot hs 803041

ACCIDENT INVOLVEMENT AND CRASH INJURY RATES
 BY MAKE, MODEL, AND YEAR OF CAR:

A FOLLOW-UP

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

02186
 HE
 5614.2
 . 1087

annual mileage in the post-energy crisis period.
The failure rates of the inspection items studied increased with increasing vehicle age and/or mileage, with headlight failure rates at least twice as great as those of any of the other items. The interaction between vehicle age and mileage on item failure rates found here is consistent with previous studies in this area.

METRIC CONVERSION FACTORS

Chapter Page
ACKNOWLEDGEMENTS $i 1$
I INTRODUCTION 1
II PROCEDURE 5
Accident Data File 5
Vehicle Registration File 11
Inspection File 13
Involvement Rates 15
Annual Mileage 16
Adjustments for Driver Age Differences 17
Comparison of Involvement Rates 21
III ANNUAL MILEAGE 25
Vehicle Size Comparisons 25
Body Style Comparisons 25
Make Comparisons 36
Annual Mileage Estimates: Initial vs.
Follow-up Study 40
IV CRASH COMPARISONS 43
v INSPECTION ITEM FAILURE RATES 67
Results 69
VI SUMMARY AND CONCLUSION 81
Annual Vehicle Mileage 82
Accident and Injury Rates 83
Failure Rates 84
Recommendations 84
REFERENCES 87
APPENDIX A. Estimation of Annual Mileage 89
B. Comparison of "Usable" and "Unusable" Receipts 95
C. Accident and Injury Frequencies and Rates 99

ACKNOWLEDGEMENTS

Special recognition and thanks are expressed to many individuals whose contributions made this report possible. Particular recognition is due the North Carolina Division of Motor Vehicles, and particularly Mr. J. G. Wilson and Mr. Carl Greeson of the License and Theft Section for arranging to collect motor vehicle inspection receipts on a statewide basis. The authors also wish to especially acknowledge Ms. Jane Stutts of HSRC for her considerable help throughout this project.

Special gratitude is extended to members of the HSRC computer staff, who have devoted many hours to this project. In particular, the authors wish to thank Ms. Anita Leung, Mr. Willie Fischer, and Mr. Eric Rodgman for their efforts.

Several individuals contributed greatly during the final phase of the report presentation. These include typists Ms. Peggy James and Ms. Donna Suttles and graphic artists Ms. Rebecca Stutts and Ms. Lauren Ogle.

Finally, the authors are greatly indebted to Mr. Donald F. Mela, the Contract Technical Manager, for his guidance throughout the project.

The final report, with whatever errors and omissions it may contain, is the responsibility of the authors.

I. INTRODUCTION

This report is a follow-up to a recent study (Dutt and Reinfurt, 1977) and presents estimates of annual mileages along with crash and injury rates for a number of vehicle makes and models. As previously, vehicle-specific accident and injury rates are compared. Also in this report, failure rates of four inspection items for vehicles undergoing periodic motor vehicle inspection are examined by vehicle size, age, and accumulated mileage.

The initial Dutt and Reinfurt (1977) report discussed different measures of exposure used in highway safety and their relative merits. It is the authors' opinion that, in spite of some drawbacks, vehicle miles of travel remains the most suitable and obtainable measure of exposure. It is easily quantifiable and is proportional to the frequency of occurrence of risk situations -- two essential characteristics for any meaningful measure of exposure.

To derive the required estimates, several data sources were tapped. The exposure information was derived from paired odometer readings from a statewide sample of inspection receipts for the month of December, 1975. Using the mileage information derived from inspection receipts along with corresponding registration and accident data provided by the N.C. Division of Motor Vehicles, it was possible to obtain the necessary vehicle-specific crash and injury rates.

In the current study, the exposure period extended from January 1, 1975, to December 31, 1975, corresponding to the post energy crisis period. In contrast, the exposure period for the initial study, from October 16, 1973 to October 15, 1974, encompassed most of the energy crisis. This allowed some interesting exposure comparisons between the two periods.

The results of the current follow-up study are quite consistent with the results presented in the intial report, with a few exceptions. Thus, for example, small cars for the most part continue to have higher injury rates and higher involvement rates permillion vehicle miles than full or
middle-sized cars. In terms of annual mileages, both studies indicate that in North Carolina older small-sized cars are relatively high mileage vehicles compared to full or middle-sized cars. However, a major exception in the follow-up report is that, for new model cars, the annual mileage for small-sized cars is lower than the annual mileages for the two other size groups. With this exception of new small-sized cars, regardless of car size, there was an increase in estimated annual mileage in the post energy crisis period. Evidently, this is a direct outgrowth of a diminishing concern of the motoring public over the continuing gasoline shortage.

Contrasting the involvement and injury rates for vehicles during the two exposure periods, the follow-up rates were found to be generally higher than the rates for the initial study. These higher accident and injury rates might be partially explained by the documented fact that more people were driving above the 55 mph speed limit after the energy crisis.

An examination of failure rates by vehicle size, age and accumulated mileage of four selected inspection items (headlights, stoplights, footbrakes, and tires) showed that failure rates increased with increasing age and/or mileage. Also, as expected, an interaction was found between vehicle age and mileage on failure rates.

Chapter II describes some of the procedures used in this study to estimate annual mileages, crash and injury rates and inspection failure rates by vehicle make and model year. The previous study (Dutt and Reinfurt, 1977) provides considerable details which are not repeated herein. In Chapter III, estimates of annual mileage by vehicle size and model along with the resulting comparisons are presented. Results of mileage comparisons for the two exposure periods are also included. Chapter IV presents comparisons of involvement ard injury rates by size, age, and body style of vehicle. Chapter V is a partial update of earlier work done at HSRC (Reinfurt and Pascarella, 1969; Reinfurt, House, and Levine, 1971). and contains a discussion of failure rates of some selected inspection items. Finally, Chapter VI summarizes some of the results of this study and includes recommendations for handling exposure
and accident data for future studies. Also included as a result of the investigation in Chapter V is a recommendation for consideration of a variable intensity inspection program for those states with periodic motor vehicle inspection.

II. PROCEDURE

In order to calculate the accident involvement or injury rates per million vehicle miles for any given vehicle make, three data elements are required. These are, first, the number of accidents and driver injuries assaciated with a particular make and model during a specified time period; second, the number of cars of that make and model registered during the same exposure period; and third, an estimate of the average mileage accumulated by these vehicles during the period.

The exposure period selected for the follow-up study extended from January 1, 1975 to December 31 , 1975. This corresponded to the post energy crisis period, while the exposure period for the initial study (October 16, 1973 - October 15, 1974) included the peak of the energy crisis. Thus, comparison of annual mileage and crash and injury estimates from the two studies should provide (to some extent at least) a measure of some of the effects of the energy crisis -- especially exposure differences.

As for the initial study, accident and injury frequencies were obtained from the accident data files of the North Carolina Division of Motor Vehicles. The registration counts were determined from the North Carolina vehicle registration file, and the accumulated mileages were estimated from a statewide sample of motor vehicle inspection receipts for December 1975. Each of these data elements required rather extensive processing as outlined in the sections below. For full details, see Dutt and Reinfurt (1977).

Accident Data File

The North Carolina accident file consists of crashes reported by North Carolina city and county police officers and state highway patrolmen. Among the items included in each record in the file is the Vehicle Identification. Number (VIN), which makes it possible to identify the various makes and thus to determine the number of crashes by vehicle make and model year groups.

As the exposure data essentially covered mileages accumulated over the period January 1, 1975 through December 31, 1975, the accidents
examined were those occurring during the same time period. When trucks, motorcycles, farm vehicles, bicycles and pedestrians were excluded along with those passenger cars with missing or incorrectly recorded VINs, the resulting file contained detailed accident information on approximately 140,000 passenger cars.

To examine possible biases arising from discarding accidents involving passenger cars with missing or unusable VINs, various characteristics of the two groups were compared. Tables 2.1-2.6 show that both groups of vehicles were similar in model year, dollar damage, vehicle severity (most severe vehicle occupant injury), and accident location by highway type distributions.

However, Table 2.2 comparing the vehicle damage severity rating (TAD) shows that the proportion of missing cases is much higher for bad VIN's. This might be explained by the fact that some enforcement agencies in a number of cities do not use the TAD system and also have relatively poor training programs. Thus, in addition to non-recording of TAD's, one would expect a lower reporting threshold for VINs, with their long string of alpha-numeric characters, from these agencies. This might account for the higher percentage of missing TAD's for the group of bad VIN's.

In Table 2.5 the proportion of vehicles with "0" occupancies is also much higher for the bad VIN's. These primarily involve parked vehicles where it is likely that the reporting officer did not have access to the driver's registration card, the usual source of VIN information. This might account for the relatively high proportion of vehicles with no occupants in the bad VIN group. With these two exceptions in Tables 2.2 and 2.5, the remaining distributions of good and bad VIN's are fairly similar. Thus, it can be assumed that, although the absolute accident involvement rates may be underestimated due to attrition in the numerators, their relative magnitudes are preserved.

For the crash rate comparisons, the accident variables considered were:
a) Type of involvement -- single vehicle accidents, multiple vehicle accidents, and all accidents combined.

Table 2.1. Model year distribution (percentage) for cars and station wagons.

Mode1 Year (as noted by investi- gating officer)	Good VIN	Bad VIN
1960	0.3	0.4
1961	0.6	0.6
1962	1.4	1.2
1963	2.3	2.0
1964	3.5	2.8
1965	5.3	4.5
1966	6.8	5.7
1967	7.1	6.2
1968	8.9	7.8
1969	10.1	8.4
1970	7.7	15.1
1971	9.5	7.9
1972	11.5	10.4
1973	11.5	11.5
1974	9.7	10.2
1975	3.9	5.3
Total	138,984	42,440

Table 2.2. TAD severity distribution (percentage).

TAD Rating	Good VIN	Bad VIN
Unknown	32.5	63.1
1	20.8	11.2
2	17.2	9.2
3	12.1	6.5
4	8.7	5.0
5	4.2	2.4
6	2.8	0.9
7	1.6	70,956
Total	139,068	

Table 2.3. Dollar damage distribution (percentage) for cars and station wagons.

Dollar Damage	Good VIN	Bad VIN
$0-199$	30.0	33.8
$200-399$	30.1	28.5
$400-699$	20.2	18.4
$700-999$	8.5	8.1
$1000-1499$	5.6	5.2
$1500-2499$	3.7	3.6
$2500-4999$	1.0	1.0
≥ 5000	0.8	70,956
Tota 1	139,068	

Table 2.4. Vehicle severity (most severe occupant injury) distribution (percentage) for cars and station wagons.

Vehicle Severity	Good VIN	Bad VIN
Fatal	0.4	0.4
A Class	2.9	2.8
B Class	8.9	8.9
C Class	10.3	10.2
No Injury	77.5	77.6
Total	130,036	54,612

Table 2.5. Vehicle occupancy distribution (percentage) for cars and station wagons.

Vehicle Occupancy	Good VIN	Bad VIN
0	6.5	23.1
1	55.0	45.1
2	22.8	18.9
3	8.5	6.9
4	4.3	3.7
5	1.8	1.4
6 and greater	1.0	1.0
Total	139,001	70,885

Table 2.6. Highway type distribution (percentage) for cars and station wagons.

Highway Type	Good VIN	Bad VIN
Interstate	1.6	1.5
U.S.	15.3	13.1
N.C.	10.6	8.7
Rural paved road	17.4	14.6
Rural unpaved road	1.5	1.4
City street	48.3	51.0
Private property	5.2	9.7
Total	138,733	70,787

b) Driver injury -- no injury (0), any injury (C, B, A, or K), and serious injury (A or K)
where

$$
0=\text { no injury (property damage only) }
$$

$C=$ slight injury
$B=$ moderate (but no incapacitating injury)

A = incapacitating injury
$K=$ fatal injury
(from the Manual on Classification of Motor Vehicle Traffic Accidents (ANSI D16.1), National Safety Council, Chicago, 1970.)
c) Vehicle severity (the injury level corresponding to the most severely injured occupant in the car) -- no injury, any injury, and serious injury.

In examining injury involvements, it was necessary to limit consideration to unbelted occupants. Otherwise, the evident protection offered by a given make and/or model year car might only be a reflection of particularly high belt usage (and correspondingly lower injury severities) for that make and/or model. Table 2.7 shows the distribution of belt usage by car size (luxury vs standard) and model year for the North Carolina data.

Finally, the Vehicle Identification Numbers (VIN's) from the accident records were decoded using a program developed by HSRC. The decoded vehicles were then assigned to one of 77 make/model groups (e.g., VW Beetle, Chevrolet Nova). Finally, the more common standard Chevrolet, Ford and Plymouth were additionally assigned to one of 21 body style groups (e.g., station wagon, 4-door sedan, 2-door cars).

As in the initial study, many individual vehicle makes were too few in number to enable any valid statistical comparison to be carried out. Hence, to obtain larger sample sizes, certain vehicle makes within given size groups were combined as shown in Table 2.8. The groups were formed from makes in that class with the largest number of

Table 2.7 Percentage belt usage by car size and model year.

Mode 1 Year	Luxury (e.g., Buick, Cadillac) \% Use	```Standard (e.g., Ford, Chevrolet) % Use```
1960	0.0	0.9
1961	5.6	2.8
1962	4.7	2.0
1963	3.2	1.5
1964	2.1	3.3
1965	5.9	4.4
1966	6.0	4.6
1967	8.0	5.6
1968	8.5	6.8
1969	9.8	8.7
1970	11.7	9.4
1971	15,4	10.1
1972	16.5	13.9
1973	21.6	19.0
1974	28.3	31.7
1975	30.6	38.1

registered vehicles. Thus, for example, full-sized cars include luxury, medium and standard-sized cars, while luxury cars in turn include big Buicks, Cadillacs, and big Pontiacs. For the remainder of this report, the reader should refer to this table to determine the vehicle makes included in a particular group.

Vehicle Registration File

In order to determine the total mileage for a given make and model car (say, 1974 VW Beetles) during the period under consideration, both the estimated annual mileage for that make and model based on inspection data and the total number of such vehicles on North Carolina roads during the period was needed. By necessity, due to the scope of this study, it must be assumed that the out-of-state mileages accumulated by North Carolina vehicles will be balanced by mileages accumulated in the state by out-of-state vehicles. The extent to which this assumption is valid was examined in the RTI study (White et al., 1975).

Table 2.8 Vehicle make and size groups.

In determining the total number of vehicles of a given make and model year combination exposed to accidents during the study period, HSRC used the statewide vehicle registration file maintained by the N.C. Division of Motor Vehicles. In the initial study (Dutt and Reinfurt, 1977), three vehicle registration files representing the beginning, middle and end of the exposure period were processed and a weighted registration count was derived for the various vehicle makes. Since processing an entire vehicle registration file to obtain the make-model frequencies is an expensive and time-consuming procedure, for the current follow-up study only one registration file from near the middle of the exposure period was used. (The extent to which this might affect the accident and injury rates was investigated in the initial report in Appendix G.where use of a single file was found to have no significant effect on the obtained rates other than for the newest model vehicles.) Due to administrative considerations, the registration file for May 5, 1975 was selected, although a file from the second week of June would have been preferable.

In the current follow-up study the registration frequencies for 1975 model year cars was unusually low due primarily to using the single registration file for the current model vehicles. This led to grossly inflated accident and injury rates. As a result, most of the comparisons in this report are confined to 1960-1974 model year cars. Inspection File

In North Carolina, the previous inspection date and odometer reading along with the current inspection date, odometer reading and license plate number are recorded on the inspection receipt at the time of each car's annual inspection (see Figure 2.1). Thus, these inspection receipts provide an invaluable source of data for estimating the annual mileage of vehicles.

For this project, the North Carolina Division of Motor Vehicles collected over 260,000 inspection receipts for December 1975 from some 6,000 inspection stations throughout the state. The relevant information from these receipts (e.g., license plate number, dates of previous and current inspections, previous and current odometer readings, vehicle type and the status of headlights, stoplights, footbrakes

Figure 2.1
North Carolina Motor Vehicle Inspection Receipt

NORTH CAROIINA DEPARTMENT OF MOIOR VEHICIES

COPY FROM PREVIOUS INSPECTION CERTIFICATE
MILEAGE Manth of Previous Inspection

16,925	0 Јی [FE [] man	\square april mar june	\square JuLv Dava $\square \mathrm{sept}$	\square ост \square мо⿱ Dose

SAFETV EQUIPMENT	APPROVED INITIALLY	initialley	COWMECTEO DURANE MNEFCT	8. armovero
HEADLIGHTS		\checkmark	\checkmark	
BEAM INDICATOR LIGHT	\checkmark			
PARKING LIGHTS	\checkmark			
LICENSE PLATE LIGHT	\checkmark			
TAILLIGHTS	\checkmark			
STOPLIGHTS	\checkmark			
CLEARANCE LIGHTS	\checkmark		'	
DIRECTIONAL SIGNALS	V			
FOOT BRAKE		\checkmark	\checkmark	
EMERGEMCY ERAKE	γ			
STEERING MECHANISM	1			
WINDSHIELD WIPER	$1 /$			
HORN	\checkmark			
TIRES	y			
REAR VIEW MIRRORS	\sim			
EXHAUST EMISSION CONTROLS	\checkmark			
EXHAUST SYSTEM		Defective	If defective, do not reject vehicle, Inform operator of condlition.	

and tires) was then keypunched and stored on tape. As the inspection mechanic frequently erred in recording the VIN (a lengthy alpha-numeric string of characters), it was necessary to derive the VIN from the license plate number. This fairly involved process entailed using the very lengthy registration and title files maintained by the North Carolina Division of Motor Vehicles.

Once the vehicle inspection file had the VIN appended to each inspection record, only the mileage covered between the two inspection dates and the corresponding time period needed to be ascertained for obtaining an estimate of annual mileage by vehicle make and model year. Appendix A describes details involved in this process.

It should be noted that, as in the initial effort, a disappointingly large proportion of the inspection receipts could not be used for one reason or another -- missing data, illegible entries, non-passenger car, etc. To ascertain that the resulting sample was not biased, the usable receipts were compared with the unusable receipts, primarily by vehicle type and model year. The details of the comparisons are presented in Appendix B. As previously, there are generally no important differences between the two groups.

Involvement Rates

The procedures described in the preceding sections were used to obtain data on accident involvements and injury frequencies, registration counts, and average annual mileages for the 77 HSRC make/model groups along with the additional 21 body style groups for 1960 to 1975 model years. From these data elements, accident and injury rates per million vehicle miles were determined. Thus, for example, the overall accident rate for 1974 VW 's was computed from the following expression.

$$
\text { Acc. Rate }(' 74 \mathrm{VW})=\frac{\binom{\text { Number of ' } 74 \mathrm{VW} \text { 's in accidents }}{\text { during the exposure period }}}{\left(\begin{array}{l}
\text { Number of '74 VW's } \\
\text { registered in N.C. } \\
\text { during the exposure } \\
\text { period }
\end{array}\right)\left(\begin{array}{l}
\text { Estimated average } \\
\text { mileage of } 174 \\
\text { VW's during the } \\
\text { exposure period }
\end{array}\right.} \times 10^{6}
$$

To obtain the single vehicle accident involvement of, for example, 1974 VW's required replacing the above numerator with "number of 1974 VW's involved in single vehicle accidents during the exposure period."

To enable comparisons of accident and injury rates for different vehicle sizes, the computer program was set up so that a variable number of make/model groups and/or model years could be combined. This was necessary because of a paucity of data for many of the groups. In addition, again due to the sparcity of inspection data in some of the less common groups, fitted estimates of the annual mileages were used in place of the observed average mileages.

Annual Mileage

As is illustrated in Table 2.9 (and was seen in Dutt, Reinfurt, 1977), the observed mileages based on the sample of inspection receipts

Table 2.9 Annual mileage of Standard Chevrolet -- observed vs. fitted (or smoothed).

Model Year	Sample Size	Observed Mileage	Fitted Mileage
1960	108	6194	6999
1961	131	6337	7322
1962	303	3092	7673
1963	382	9378	8053
1964	565	9405	8462
1965	623	9744	8900
1966	702	9381	9366
1967	696	9314	9861
1968	939	10079	10385
1969	887	10390	10938
1970	880	11291	11519
1971	458	11943	12129
1972	981	11870	12769
1973	999	13176	13436
1974	683	14617	14133
1975	252	15593	14858

are highly correlated with vehicle age. When there are ample observations, using the observed mileages would cause no difficulties. However, for many of the 77 HSRC groups and indeed for most of the 21 body style groups, the elapsed mileages derived from the inspection receipts are based on rather small sample sizes. In such cases, the observed annual mileages were replaced by "fitted" mileages. The fitted mileages were derived using least squares fitting techniques for those data points (model years) with adequate sample sizes. Thus, the make/model/year mileage estimates represent smoothed estimates.

Using the mid-point registration counts and the smoothed mileage estimates, along with the corresponding accident frequencies (e.g., overall, single vehicle), the derivation of the corresponding involvement rates is a straightforward process. Tables $2.10,2.11$, and 2.12 give illustrative results for various model year groups of standardsized cars (Ford and Chevrolet), luxury cars (Cadillac, Buick Electra, and Pontiac Bonneville), and subcompact cars (Vega, Pinto, Toyota, Datsun, and VW Beetle).

A discussion of mileage differences by size and/or age of vehicle is presented in Chapter III, while the comparison of involvement rates is detailed in Chapter IV. Throughout comparisons are made with the results obtained in Dutt, Reinfurt (1977). There is generally a reassuring consistency in the results which should be comparable. Of special interest is the comparison of average annual mileages for the two periods since the first included the peak period of the "energy crisis" while the latter contained exposure derived from the so-called "post-energy crisis" period.

Adjustments for Driver Age Differences:

Research has shown that younger drivers are more likely io we involved in accidents than other age drivers. The initial Dutt and Reinfurt (1977) study showed that in North Carolina in relation to their proportion in the driving population, younger drivers of both sexes are more involved in accidents than older drivers. Thus, if the proportion

Table 2.10 Standard Chevrolet and Ford.

Table 2.11 Luxury cars (Cadillac, Buick Electra, and Pontiac Bonneville).

Table 2.12 Subcompact cars (Vega, Pinto, Toyota, Datsun, and VW Beetle)

of young drivers varies substantially from one vehicle make to the next, then driver age is a factor that could differentially influence vehicle crash rates.

In the initial report two procedures were examined for taking into consideration driver characteristics when making accident rate comparisons. Neither seemed particularly satisfactory due to data limitations. Unfortunately, however, in the interim period, no additional suitable data source has become available, for example, to utilize in partitioning vehicle-specific exposure data by driver groups. Therefore, in the current study no attempt was made to adjust accident and injury rates for driver characteristics.

However, Table 2.13 (obtained from the North Carolina accident file for 1975) does show that the mean age of drivers involved in accidents for small-sized cars is consistently lower than the mean driver age for full or middle-sized cars. This should at least partially account for the higher involvement rates for small-sized cars. It also provides a plausible explanation for the especially high rates for the newer smallsized cars since the age differences (especially between full-sized and small-sized cars) become increasingly disparate.

Table 2.13 shows another interesting aspect of the vehicle size -accident driver age distribution. While the mean driver age is low for the intermediate model years for full and middle-sized cars and starts rising for the newer model years, the average driver age for accidentinvolved small cars remains fairly constant. Possibly this is primarily a function of the VW Beetle dominating this size class up until the 1970 model.

Comparison of Involvement Rates

Chapter IV presents involvement rates for a variety of make/model/ year combinations and results of statistical tests of significance for differences in rates by size of car, etc. The major assumption made in this analysis is that the number of involvements for a particular make/ model/year with a given exposure has a Poisson distribution. See Sichel (1965) for background information.

Table 2.13 Average driver age by model year for accidentinvolved full, middle, and small-sized cars.

Model Year	Vehicle Size								
	Full-Sized Cars			Middle-Sized Cars			Small-Sized Cars		
	Mean	Standard Deviation	$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$	Mean	Standard Deviation	Sample Size	Mean	Standard Deviation	Sample Size
1960	38.00	19.11	292	40.03	22.29	30	26.35	14.83	48
1961	37.40	19.71	474	34.39	18.08	128	26.54	12.63	67
1962	35.73	18.05	1,035	34.63	18.98	426	26.63	12.74	99
1963	35.28	18.03	1,695	34.75	19.13	683	28.57	14.14	179
1964	35.27	17.36	2,406	33.56	18.21	1,125	28.14	13.24	222
1965	35.48	17.10	3,220	29.92	16.02	1,995	27.62	12.90	376
1966	36.18	17.64	3,976	29.29	15.42	2,871	26.80	12.50	455
1967	36.34	17.13	4,131	28.99	14.91	2,613	27.67	12.55	496
1968	37.05	17.14	4,727	29.35	14.47	3,481	27.05	11.96	624
1969	37.73	16.59	5,324	29.50	14.89	3,845	27.46	11.81	843
1970	38.15	16.41	3,287	29.88	14.72	3,244	29.07	13.34	1,017
1971	39.35	16.28	3,772	30.54	14.69	3,168	27.68	11.96	2,508
1972	40.76	15.78	4,211	30.58	14.42	3,843	27.28	11.81	3,284
1973	40.85	15.33	4,113	30.27	14.02	3,784	26.77	10.97	3,262
1974	40.07	15.01	2,386	32.05	14.54	2,916	26.68	11.34	3,350
1975	40.79	15.06	1,093	34.06	14.88	1,022	26.75	11.15	-989
Overall	37.89	16.82	46,136	30.45	15.11	35,174	27.22	11.80	17,819

Specifically, for make/model/year group 1 and involvement type i (e.g., single vehicle accidents), let

$$
\begin{aligned}
& n_{1 i}=\text { number of invol vements } \\
& \hat{M}_{1}=\text { estinated annual mileage } \\
& N_{1}=\text { registration count }
\end{aligned}
$$

Then the accident involvement rate per million vehicle miles is given by

$$
{ }^{\lambda_{1 i}}=\frac{n_{1 i}}{\hat{M}_{1} N_{1}} \times 10^{6}
$$

and correspondingly for make/model/year group 2. Then $\rho_{i}=\frac{\lambda_{1 i}}{\lambda_{2 i}}$
provides a natural estimate of the relative performance of the two groups (i.e., a relative mean occurrence rate). Thus, for example, if $\rho_{i}<1$, then vehicle group 1 is less involved in accident type i than is vehicle group 2.

In Chapter IV, the hypotheses being tested are that $\rho_{i}=1$ although the confidence interval setup allows for more general hypotheses, i.e., $\rho_{i}=\rho_{0}$. Statistical details are more completely described in Appendix E in Dutt and Reinfurt (1977).

III. ANNUAL MILEAGE

This chapter presents annual mileage estimates by vehicle age, make and body style. The estimates were derived from information recorded on motor vehicle inspection receipts collected for the month of December 1975. Thus, the exposure period covered is approximately January 1, 1975 to December 31, 1975. The estimates are presented both in graphical and tabular form, and then compared with corresponding estimates from the initial study, which was based on the exposure period October 16, 1973, to October 15, 1974, encompassing the peak of the "energy crisis".

As mentioned in Chapter II, the annual mileage estimates are obtained using a least squares fit; however, in this section the various mileage comparisons are based on actual sample means from the inspection receipts. The comparison methodology is based on the procedure described by Snedecor and Cochran (1968).

Vehicle Size Comparisons

Tables 3.1-3.3 (Figures 3.1-3.3) present annual mileages for the various vehicle size categories. (Refer to Table 2.8 for a listing of the vehicle makes included in each category.) Table 3.1 (Figure 3.1) shows trends which are similar to those found in the initial study, with the older small-sized cars having higher annual mileages than full or middle-sized cars, and the newer small-sized cars having lower annual mileages than their larger counterparts.

Table 3.2 (Figure 3.2) compares the annual mileage estimates for luxury, medium and standard-sized cars, while Table 3.3 (Figure 3.3) presents the corresponding estimates for intermediate, compact and sub-compact-sized cars. The trends in these tables and graphs are again comparable to the trends in the initial study. A major exception would be the relatively lower mileages for the newer model subcompacts.

Body Style Comparisons

Tables 3.4 and 3.5 (Figures 3.4 and 3.5) compare the annual mileage estimates for sedans, hardtops and station wagons as well as two-door

Table 3.1 Annual mileage for full-sized, middle-sized, and small-sized cars by model year.

Model Year	Annual Mileage (in thousands)			Mileage Comparisons		
	Full (F)	Middle (M)	Small (S)	F-M	F-S	M-S
'60	6.6	6.9	9.2	*	S	S
'61	7.1	7.3	9.4	*	*	*
'62	7.5	7.5	9.6	*	S	S
'63	7.9	7.8	9.8	*	S	S
'64	8.3	8.4	10.0	*	*	*
'65	8.8	8.9	10.2	*	S	S
'66	9.2	9.2	10.3	*	*	*
'67	9.7	9.6	10.5	*	S	S
'68	10.3	10.0	10.8	*	S	*
'69	10.9	10.5	11.0	\star	*	*
'70	11.5	11.0	11.3	*	*	*
'71	12.1	11.7	11.6	*	*	*
'72	12.7	12.5	11.9	*	*	*
'73	13.4	13.2	12.2	*	*	*
'74	14.0	13.9	12.6	F	F	*
'75	14.6	14.9	13.1	*	F	M
'60-'65	8.1	8.3	9.9	*	S	S
'66-'70	10.4	10.2	10.9	*	S	S
'71-'75	13.1	12.9	12.1	*	F	M
Overall	10.9	11.0	11.7	*	S	S

*No significant difference at $\alpha=.05$;
F, M, S - vehicle having the higher annual mileage.

Figure 3.1 Annual mileage for full, middle, and small-sized cars and all cars combined.

Table 3.2 Annual mileage for luxury, medium, and standard cars by model year.

Model Years	Annual Mileage (in thousands)			Mileage Comparisons		
	Luxury (L)	Medium (M)	Standard (St)	L-M	L-St	M-St
'60	5.0	5.8	7.0	*	*	*
'61	6.1	6.5	7.3	*	*	*
'62	6.7	7.0	7.7	*	St	*
'63	7.3	7.5	8.0	*	St	St
'64	7.8	8.1	8.4	*	*	*
'65	8.4	8.6	8.8	*	*	*
'66	8.9	9.2	9.3	*	*	*
'67	9.5	9.8	9.8	*	*	*
'68	10.0	10.3	10.3	*	*	*
'69	10.6	10.9	10.9	*	*	*
170	11.1	11.4	11.6	*	*	*
'71	11.6	12.0	12.3	*	*	St
${ }^{1} 72$	12.2	12.6	12.9	*	St	*
'73	12.7	13.1	13.7	*	*	*
'74	13.1	13.7	14.4	M	St	*
${ }^{1} 75$	13.7	14.2	15.2	*	*	*
'60-'65	7.6	7.8	8.3	*	*	*
'66-'70	10.2	10.4	10.4	*	*	*
'71-'75	12.5	12.9	13.3	*	St	St
Overal 1	10.9	11.0	10.9	*	*	*

*No significant difference at $\alpha=.05$;
L,M,St - vehicle having the higher annual mileage

Figure 3.2 Annual mileage for luxury, medium, and standard-sized cars and all cars combined.

Table 3.3 Annual mileage for intermediate, compact and subcompact cars by mode1 year.

Model Years	Annual Mileage (in thousands)			Mileage Comparisons		
	Intermediate (I)	Compact (C)	Subcompact (Sc)	I-C	I-Sc	C-Sc
'60	--	6.9	9.2	--	$\overline{\mathrm{s}}{ }^{-}$	Sc
'61	6.4	7.4	9.4	*	Sc	9c
'62	7.6	7.5	9.6	*	Sc	Sc
'63	7.8	7.7	9.8	*	Sc	Sc
'64	8.5	8.2	10.0	*	Sc	Sc
'65	8.7	9.0	10.2	*	Sc	Sc
'66	9.0	9.5	10.3	*	*	*
'67	9.4	10.0	10.5	*	Sc	Sc
'68	9.9	10.3	10.8	*	*	*
'69	10.5	10.8	11.0	*	*	*
'70	11.1	10.9	11.3	*	*	*
'71	11.9	11.6	11.6	*	*	*
172	12.8	12.0	11.9	*	*	*
'73	13.6	12.4	12.2	1	I	*
174	14.5	13.0	12.6	I	I	*
175	15.5	13.1	13.1	1	I	*
'60-'65	8.4	8.2	9.9	*	Sc	Sc
'66-'70	10.1	10.3	10.9	*	Sc	Sc
'71-'75	13.4	12.3	12.1	I	I	*
Overall	11.3	10.6	11.7	I	Sc	Sc

*No significant difference at $\alpha=.05$
I, C,Sc - vehicle having the higher annual mileage.

Figure 3.3 Annual mileage for intermediate, compact, and subcompact cars and all cars combined.
and four-door standard-sized cars. As expected, standard-sized stationwagons have higher annual mileages than standard-sized sedans or hardtops. Also, new standard-sized four-door cars have higher annual mileages than their two-door counterparts.

Table 3.4 Annual mileage for standard-sized hardtops, sedans and stationwagons.

Mode1 Years	Annual Mileage (in thousands)			Mileage Comparisons		
	Hardtop (Ht)	Sedans (Se)	Station Wagon(SW)	$\mathrm{Ht}-\mathrm{Se}$	Ht-Sw	Se-Sw
'60	6.6	5.9	7.2	*	*	*
'61	7.4	6.5	7.5	*	*	*
'62	8.3	7.1	7.9	Ht	Ht	Sw
'63	8.6	7.7	8.3	*	*	*
'64	9.0	8.3	8.8	*	*	*
'65	9.3	8.9	9.3	*	*	*
'66	9.6	9.4	9.9	*	*	Sw
'67	9.9	10.0	10.5	*	*	*
'68	10.3	10.6	11.1	*	Sw	Sw
'69	10.7	11.2	11.7	*	*	*
170	11.3	11.9	12.3	*	*	*
'71	11.9	12.5	13.0	*	*	*
${ }^{1} 72$	12.5	13.0	13.6	*	*	Sw
'73	13.2	13.6	14.3	*	Sw	*
'74	14.0	14.0	15.0	*	Sw	Sw
'75	14.6	14.4	15.8	*	Sw	Sw
'60-'65	8.8	7.8	9.3	Ht		,
'66-'70	10.4	10.5	11.3	*	Sw	Sw
'71-'75	12.8	13.4	13.8	Se	SW	Sw
Overal1	10.8	10.8	11.9	*	Sw	Sw

*No significant difference at $\alpha=.05$
$\mathrm{Ht}, \mathrm{Se}, \mathrm{Sw}$ - vehicle size having the higher annual mileage.

Figure 3.4 Annual mileage for standard-sized station wagons, hardtops, and sedans and all cars combined.

Table 3.5 Annual mileages for standard-sized four-door and two door vehicles by model year.

Model Year(s)	Annual Mileage (in thousands)		Mileage Comparisons$4 \mathrm{~d}-2 \mathrm{~d}$
	Four-Door (4d)	Two-Door(2d)	
- 60	6.5	7.0	*
${ }^{6} 61$	6.8	7.2	*
'62	7.3	7.8	*
'63	7.7	8.2	2 d
'64	8.2	8.6	*
'65	8.8	9.1	2 d
'66	9.4	9.5	*
'67	9.9	10.0	*
'68	10.5	10.5	*
'69	11.2	10.9	*
170	11.8	11.4	*
'71	12.5	11.9	*
172	13.1	12.3	*
173	13.8	12.8	4d
174	14.6	13.2	4d
175	15.3	13.7	4d
'60-'65	8.1	8.5	2d
'66-'70	10.8	10.3	*
'71-'75	13.6	12.6	4d
Overall	11.1	10.5	4d

*No significant difference at $\alpha=.05$
2d,4d - vehicle size having the higher annual mileage.

Figure 3.5 Annual mileage for standard-sized four-door, two-door cars and all cars combined.

Make Comparisons

Tables 3.6 and 3.7 (Figures 3.6 and 3.7) show the annual mileages for a representative make from each of the six basic vehicle size groups (luxury, medium, standard, intemediate, compact and subcompact). Note, for example, that the VW has the highest annual mileage for all but the latest model years. However, since the sample sizes were very small, no statistical tests were carried out for any of these individual vehicle makes.

Table 3.6 Annual mileage for the luxury big Buick (Electra), medium Buick (Le Sabre), and standard Chevrolet (Impala).

Model Years	Annual Mileage (in thousands)		
	Big Buick (Electra)	Medium Buick (Le Sabre)	Standard Chevrolet (Impala)
'60	--	6.2	7.0
'61	6.5	6.8	7.3
'62	7.0	7.3	7.7
'63	7.6	7.8	8.1
'64	8.1	8.3	8.5
'65	8.7	8.8	8.9
'66	9.2	9.3	9.4
'67	9.7	9.8	9.9
'68	10.3	10.4	10.4
'69	10.8	10.9	10.9
'70	11.4	11.4	11.5
171	11.9	11.9	12.1
172	12.4	12.4	12.8
173	13.0	12.9	13.4
'74	13.5	13.4	14.1
'75	14.1	14.0	14.9
'60-'65	8.0	8.0	8.2
'66-'70	10.5	10.5	10.4
'71-'75	12.8	12.7	13.2
Overall	11.4	10.9	10.7

Figure 3.6 Annual mileage for big Buick, medium Buick, standard Chevrolet and all cars combined.

Table 3.7 Annual mileage for intermediate (Ford Fairlane), compact (Ford Falcon), and subcompact (V.W. Beetle).

Model Years	Annual Mileage (in thousands)		
	Intermediate Ford (Fairlane)	Compact Ford (Falcon)	Subcompact (V.W. Beetle)
'60	--	7.3	9.2
'61	--	7.6	9.4
'62	7.7	8.0	9.7
'63	7.9	8.3	9.9
'64	8.2	8.6	10.1
'65	8.5	9.0	10.4
'66	8.9	9.3	10.6
'67	9.5	9.6	10.8
'68	10.1	9.9	11.1
'69	10.8	10.3	11.3
170	11.6	10.6	11.5
171	12.5	10.9	11.8
'72	13.4	11.3	12.0
'73	14.5	11.6	12.2
'74	15.6	11.9	12.5
'75	16.9	12.2	12.7
'60-'65	8.1	8.3	10.0
'66-'70	10.3	10.2	11.1
'71-'75	14.2	11.4	12.1
Overall	11.8	10.1	11.3

Figure 3.7 Annual mileage for intermediate Ford, compact Ford, VW Beetle and all cars combined.

Annual Mileage Estimates:
Initial vs. Follow-up Study
As has been previously noted, the initial study gathered exposure data from October 16, 1973 to October 15, 1974, covering most of the "energy crisis" period, while the follow-up study was based on exposure data from January 1, 1975 to December 31, 1975 - the post "energy crisis" period. Thus, a comparison of mileage estimates from these two studies should serve as an indication of one effect of the fuel crisis on motor vehicle travel. In another HSRC report (Seila, Entsminger and Silva, 1977), the authors have outlined some of the problems that were encountered in using statewide gasoline consumption to measure changes in vehicle mileage. Using motor vehicle inspection receipts, however, provides a direct measure of the change in annual vehicle miles of travel which does not depend on such a gross measure as gasoline consumption which must make certain assumptions about "average" miles per gallon for the "average" vehicle on the road.

Table 3.8 compares the annual mileages for all vehicles for the initial and follow-up studies. The increase in annual mileages across the two exposure periods varies from over five percent for new cars to about 3.6 percent for the old models. Tables 3.9 - 3.11 make similar comparisons for full, middle and small-sized cars, respectively. Again, full and middle-sized cars show an increase in annual mileage, particularly for the newer model years. The reverse is true for the newer small-sized cars -- there was actually a decrease in mileage after the energy crisis. For the older small-sized cars, the drastic increase in mileage may be mostly a function of limited sample size.

Table 3.8 Annual mileage by age of vehicle for all cars combined.

Age of Vehicle	Model Year		Annual Mileage		Percent Change
	Follow-up	Initial Study	Follow-up	Initial Study	
1	1975	1974	14,115	13,259	+6.46
2	1974	1973	13,465	12,756	+5.56
3	1973	1972	12,969	12,155	+6.70
4	1972	1971	12,390	11,642	+6.43
5	1971	1970	11,778	11,088	+6.22
6	1970	1969	11,294	10,655	+6.00
7	1969	1968	10,758	10,191	+5.56
8	1968	1967	10,203	9,714	+5.03
9	1967	1966	9,685	9,323	+3.88
10	1966	1965	9,154	8,910	+2.74
11	1965	1964	8,677	8,410	+3.17
12	1964	1963	8,262	7,937	+4.09
13	1963	1962	7,776	7,493	+3.78
14	1962	1961	7,360	6,991	+4.92
15	1961	1960	6,981	6,355	+9.86
16	1960	--	6,490	,	--
1-5	'71-'75	'70-'74	12,750	12,087	+5.48
6-10	'66-'71	'65-'69	10,315	9,848	+4.74
11-15	'61-'65	'60-'64	8,152	7,866	+3.64

Table 3.9 Annual mileage by age of vehicle for full-sized cars.

Age of Vehicle	Model Year		Annual Mileage		Percent Change
	Follow, up	Initial Study	Follow-up	Initial Study	
1	1975	1974	14,573	14,112	+3.27
2	1974	1973	14,015	13,241	+5.84
3	1973	1972	13,383	12,474	+7.29
4	1972	1971	12,728	11,831	+7.58
5	1971	1970	12,112	11,222	+7.93
6	1970	1969	11,465	10,712	+7.03
7	1969	1968	10,867	10,240	+6.12
8	1968	1967	10,280	9,804	+4.85
9	1967	1966	9,744	9,380	+3.88
10	1966	1965	9,236	8,970	+2.96
11	1965	1964	8,754	8,518	+2.77
12	1964	1963	8,312	8,060	+3.13
13	1963	1962	7,882	7,596	+3.76
14	1962	1961	7,464	7,021	+6.31
15	1961	1960	7,071	6,476	+9.19
16	1960	--	6,598	,	--
1-5	'71-'75	'70-'74	13,060	12,333	+5.89
6-10	'66-'70	'65-'69	10,388	9,890	+5.04
11-15	'61-'65	'60-'64	8,199	7,939	+3.27

Table 3.10 Annual mileage by age of vehicle for middle-sized cars.

Age of Vehicle	Model Year		Annual Mileage		Percent Change
	Follow-up	Initial Study	Follow-up	Initial Study	
1	1975	1974	14,882	12,742	+16.79
2	1974	1973	13,861	12,315	+12.55
3	1973	1972	13,150	11,838	+10.65
4	1972	1971	12,457	11,402	+ 9.25
5	1971	1970	11,748	10,925	+ 7.53
6	1970	1969	11,034	10,561	$+4.48$
7	1969	1968	10,538	10,142	+ 3.90
8	1968	1967	10,029	9,739	+ 2.98
9	1967	1966	9,610	9,363	+ 2.64
10	1966	1965	9,244	9,030	+ 2.37
11	1965	1964	8,873	8,365	+ 6.07
12	1964	1963	8,383	7,867	+ 6.56
13	1963	1962	7,757	7,496	+ 3.48
14	1962	1961	7,511	7,040	+ 6.69
15	1961	1960	7,323	6,516	+12.38
16	1960	--	6,903	--	--
1-5	'71-'75	'70-'74	12,937	11,722	+10.37
6-10	'66-'70	'65-'69	10,182	9,829	+ 3.59
11-15	'61-'65	'60-'64	3,323	7,906	+ 5.27

Table 3.11 Annual mileage by age of vehicle for small-sized cars.

Age of Vehicle	Model Year		Annual Mileage		Percent Change
	Follow-up	Initial Study	Follow-up	Initial Study	
1	1975	1974	13,117	13,301	- 1.38
2	1974	1973	12,568	12,711	- 1.12
3	1973	1972	12,216	12,118	+ 0.81
4	1972	1971	11,895	11,624	+ 2.33
5	1971	1970	11,564	11,366	+ 1.74
6	1970	1969	11,331	10,995	+ 3.06
7	1969	1968	11,000	10,801	+ 1.84
8	1968	1967	10,835	10,463	+ 3.55
9	1967	1966	10,485	10,248	+ 2.31
10	1966	1965	10,295	10,002	+ 2.93
11	1965	1964	10,214	9,722	$+5.06$
12	1964	1963	9,967	9,424	+ 5.76
13	1963	1962	9,772	9,128	+ 7.05
14	1962	1961	9,648	8,605	+10.77
15	1961	1960	9,398	7,992	+17.59
16	1960	--	9,164	--	--
1-5	'71-'75	'70-'74	12,130	12,233	
6-10	'66-'70	'65-'69	10,886	10,593	+ 2.77
11-15	'61-'65	'60-'64	9,945	9,281	+ 7.15

IV. CRASH COMPARISONS

Accident involvement and injury rate comparisons are presented in this chapter for the various vehicle size groups and body style groups (for standard-sized cars). The size and body style groups are the same as those previously defined in Chapter II (see Table 2.8). In addition, overall accident and injury rates from the current study are compared with those from Dutt and Reinfurt (1977).

As in the initial study, the following accident and injury rates are examined:
a) Overall crash rate
b) Single vehicle crash rate
c) Driver injury (any)
d) Driver injury (serious; i.e., A or K)
e) Vehicle severity (any), where vehicle severity is the most serious injury sustained by any occupant in the vehicle
f) Vehicle severity (serious; i.e., A or K)

The comparisons in this chapter, based on tables presented in Appendix C, have been made using the statistical methodology presented in Appendix E of the initial report (Dutt and Reinfurt, 1977). The comparisons have been carried out at a 95 percent confidence level, and the letters indicate the vehicle makes, sizes or body styles which had significantly higher involvement or injury rates. Non-significant differences are indicated by asterisks(*), while hyphens indicate that the comparisons were not carried out -- due generally to inadequate sample sizes.

Table 4.1 and Figures 4.1-4.6 present the crash rate comparisons for full (e.g., Cadillac, 0lds 88, Standard Chevrolet); middle (e.g., Chevelle, Plymouth Valiant); and small-sized (e.g., VW Beetle, Ford Pinto) cars for each model year. In Table 4.2 this information is further broken down by the six vehicle size groups, necessitating (due to sample size limitations) the grouping of inclividual model years into three categories. Tables 4.3 - 4.8 present crash rate comparisons for selected vehicle makes within each of the six size groups, and Table 4.9 displays
the comparisons for various standard-sized body styles. Finally, Tables 4.10-4.12 compare accident and injury rates from the initial and follow-up studies by age of vehicle for all vehicle makes combined.

The accident and injury comparisons in this follow-up study indicate virtually the same trends as in the initial study. The overall and single vehicle involvement rates decrease for the newer model years, with this pattern being more pronounced for full-sized cars than for middle or small-sized cars. However, both driver injury and vehicle severity rates show a marked decline for all three vehicle sizes.

As in the initial study, the comparisons by body style for the standard-sized cars show that hardtop cars have significantly higher involvement and injury rates than either sedans or station wagons. Similarly, two-door standard-sized cars had higher involvement and injury rates than their four-door counterparts.

In comparing the involvement and injury rates for vehicles during the two study periods, the follow-up rates were found to be generally higher than the rates for the initial study. This is especially true of the two 'any injury' categories -- driver injury (any) and vehicle severity (any) -- and to some extent of the overall accident involvement rate.

As mentioned earlier, the initial study reflects conditions during the "energy crisis", while the follow-up study reflects "post-energy crisis" conditions. Thus, the higher accident and injury rates might be partially explained by the fact that more people were driving above the 55 mph speed limit in the latter exposure period.

Table 4.1 Accident and injury rate comparisons for full, middle, and small-sized cars.

華	Model		Rates		Rate	ompa	sons
U	Year	Full (F)	Middle (M)	Small (S)	F-M	F-S	M-S
	${ }^{1} 60$	5.60	2.94	6.16	F	*	S
	'61	6.53	5.74	5.93	*	*	*
	'62	6.68	5.71	5.64	F	*	*
	'63	6.19	5.89	5.40	*	*	*
	'64	6.20	6.10	5.38	*	F	*
	'65	6.18	6.70	5.86	M	*	M
	'66	6.01	6.99	5.48	M	*	M
	'67	5.95	6.82	5.18	M	F	M
	'68	5.30	6.96	5.34	M	*	M
	'69	5.14	6.84	5.35	M	*	M
	170	3.36	4.68	5.40	M	5	S
	'71	4.01	5.68	5.91	M	S	*
	172	3.61	5.03	6.46	M	S	S
	173	3.31	4.64	6.00	M	S	S
	${ }^{1} 74$	3.35	4.21	5.70	M	5	S
	'75	$(4.36)^{1}$	(5.28)	(11.36)	--	--	--
	Overall	4.60	5.60	6.00			
	'60	0.75	0.59	1.57	*	S	S
	'61	0.88	1.00	1.19	*	*	*
	'62	1.05	0.85	1.06	*	*	*
	'63	1.04	0.79	0.99	F	*	*
	'64	0.95	1.01	1.00	*	*	*
	'65	0.96	1.24	1.29	M	S	*
	'66	0.82	1.29	1.27	M	S	*
	'67	0.80	1.26	1.09	M	S	*
	'68	0.67	1.25	0.80	M	*	M
	'69	0.57	1.20	0.82	M	S	M
	'70	0.41	0.82	0.77	M	S	*
	'71	0.40	0.98	0.88	M	S	*
	${ }^{1} 72$	0.32	0.83	0.94	M	S	S
	'73	0.27	0.74	0.92	M	S	S
	'74	0.29	0.53	0.92	M	S	S
	'75	(0.35)	(0.65)	(1.99)	--	--	--
	Overall	0.55	0.94	0.96			

* Rates for ' 75 model vehicles are consistently inflated due to the underestimate of the registration frequency given by the mid-point registration file.

Table 4.1 Continued.

	Mode 1 Year	Rates			Rate Comparisons		
		Full (F)	Middle (M)	Small (S)	F-M	F-S	M-S
-	'60	0.97	0.59	1.57	*	*	S
	'61	1.07	1.90	1.73	M	*	*
	'62	1.38	1.18	1.70	*	*	*
	'63	1.16	1.24	1.15	*	*	\star
	'64	1.14	1.43	1.37	M	*	*
	'65	1.15	1.60	1.65	M	S	*
	'66	1.06	1.45	1.60	M	S	*
	'67	1.02	1.35	1.47	M	S	*
	'68	0.79	1.28	1.29	M	S	*
	'69	0.77	1.21	1.44	M	S	S
	'70	0.55	0.84	1.32	M	S	S
	171	0.56	1.05	1.34	M	S	5
	172	0.50	0.89	1.34	M	S	S
	173	0.45	0.84	1.27	M	S	S
	174	0.44	0.72	1.21	M	S	S
	'75	(0.57)	(0.83)	(2.70)	--	--	--
	Overall	0.73	1.06	1.37			
300000	'60	0.12	0.10	0.26	*	*	*
	'61	0.19	0.52	0.18	1	*	*
	'62	0.26	0.17	0.35	*	*	*
	'63	0.17	0.23	0.29	*	*	*
	'64	0.16	0.22	0.27	*	*	*
	'65	0.19	0.27	0.34	M	S	*
	'66	0.14	0.23	0.28	M	S	*
	'67	0.15	0.25	0.22	M	*	*
	'68	0.10	0.17	0.24	M	S	*
	'69	0.10	0.18	0.19	M	S	*
	'70	0.07	0.15	0.21	M	5	*
	'71	0.08	0.17	0.20	M	5	*
	${ }^{1} 72$	0.06	0.12	0.19	M	S	S
	173	0.06	0.10	0.17	M	S	S
	174	0.06	0.09	0.16	M	S	S
	'75	(0.08)	(0.13)	(0.38)	--	--	--
Overall		0.10	0.16	0.20			

Table 4.1 Continued.

	Mode 1 Year	Rates			Rate Comparisons		
		Full (F)	Middle (M)	Small (S)	F-M	F-S	M-S
容	'60	1.29	0.78	1.84	*	*	S
	'61	1.47	2.23	2.28	M	S	*
	'62	1.77	1.58	1.88	*	*	*
	'63	1.53	1.57	1.60	*	*	*
	'64	1.42	1.81	1.64	M	*	*
	'65	1.51	1.92	2.00	M	S	*
	'66	1.38	1.77	1.91	M	S	*
	'67	1.30	1.69	1.66	M	S	*
	'68	1.05	1.59	1.60	M	S	*
	'69	0.99	1.53	1.64	M	S	*
	170	0.70	1.05	1.56	M	S	S
	'71	0.74	1.30	1.61	M	S	S
	172	0.64	1.08	1.60	M	S	S
	${ }^{1} 73$	0.60	1.01	1.53	M	S	S
	174	0.61	0.87	1.43	M	S	S
	'75	(0.72)	(1.10)	(3.09)	--	--	--
	Overall	0.94	1.31	1.62			
n00000	-60	0.18	0.29	0.26	*	*	*
	'61	0.27	0.52	0.18			*
	'62	0.34	0.24	0.47	*	*	*
	'63	0.24	0.33	0.35	*	*	*
	'64	0.22	0.29	0.29	*	*	*
	'65	0.23	0.35	0.45	M	S	*
	'66	0.19	0.28	0.29	M	*	*
	'67	0.20	0.30	0.28	M	*	*
	'68	0.13	0.21	0.28	M	S	*
	'69	0.13	0.22	0.23	M	S	*
	'70	0.09	0.17	0.29	M	S	S
	'71	0.10	0.20	0.24	M	S	*
	172	0.07	0.16	0.22	M	S	S
	'73	0.08	0.13	0.21	M	S	S
	174 175	0.07	0.11	0.19	M	S	S
	Overall	0.13	0.20	0.24			

Figure 4.1 Overall accident rates for full, middle, and small-sized cars and all cars combined.

Figure 4.2 Single vehicle accident rates for full, middle, and small-sized cars and all cars combined.

Figure 4.3 Driver injury (any) rate for full, middle, and small-sized cars and all cars combined.

Figure 4.4 Driver injury (serious) rate for full, middle, and small-sized cars and all cars combined.

Figure 4.5 Vehicle severity (any) rate for full, middle, and small-sized cars and all cars combined.

Figure 4.6 Vehicle severity (serious) rate for full, middle,
and small-sized cars and all cars combined.

Table 4.2. Comparison of accident and injury rates for luxury, medium, standard, intermediate, compact, and subcompact cars.

Accident/ Injury Type	Model Years	Rates					
		Luxury (L)	Medium (M)	Standard (St)	Intermediate (I)	Compact (C)	Subcompact (Sc)
Overall	$\begin{aligned} & ' 60-' 65 \\ & ' 66-' 70 \\ & \text { '71-' } 74 \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 6.43 \\ & 5.34 \\ & 3.29 \\ & 4.46 \end{aligned}$	$\begin{aligned} & 6.66 \\ & 5.02 \\ & 3.08 \\ & 4.34 \end{aligned}$	$\begin{aligned} & 6.13 \\ & 4.97 \\ & 3.79 \\ & 4.71 \end{aligned}$	$\begin{aligned} & 6.53 \\ & 6.40 \\ & 4.40 \\ & 5.45 \end{aligned}$	$\begin{aligned} & 5.97 \\ & 6.12 \\ & 5.57 \\ & 5.86 \end{aligned}$	$\begin{aligned} & 5.66 \\ & 5.35 \\ & 6.01 \\ & 5.84 \end{aligned}$
Single Vehicle	$\begin{aligned} & \hline ' 60 '-65 \\ & ' 66-170 \\ & ' 71-174 \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 0.79 \\ & 0.58 \\ & 0.25 \\ & 0.44 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.57 \\ & 0.22 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 1.01 \\ & 0.65 \\ & 0.37 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 1.12 \\ & 0.59 \\ & 0.86 \end{aligned}$	$\begin{aligned} & 1.03 \\ & 1.15 \\ & 1.04 \\ & 1.08 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 0.90 \\ & 0.92 \\ & 0.93 \end{aligned}$
Driver Injury (Any)	$\begin{aligned} & \hline 60-' 65 \\ & ' 66-170 \\ & \text { '71-'74 } \\ & \text { Overall } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.06 \\ & 0.79 \\ & 0.40 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 1.12 \\ & 0.72 \\ & 0.39 \\ & 0.62 \end{aligned}$	$\begin{aligned} & 1.19 \\ & 0.84 \\ & 0.55 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 1.41 \\ & 1.14 \\ & 0.68 \\ & 0.94 \end{aligned}$	$\begin{aligned} & 1.47 \\ & 1.25 \\ & 1.17 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 1.40 \\ & 1.29 \\ & 1.32 \end{aligned}$
Driver Injury (Serious)	$\begin{aligned} & \text { '60-' } 65 \\ & ' 66-170 \\ & ' 71-174 \\ & \text { Overa11 } \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.09 \\ & 0.04 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.09 \\ & 0.05 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.12 \\ & 0.08 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.18 \\ & 0.08 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.20 \\ & 0.18 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.22 \\ & 0.18 \\ & 0.20 \end{aligned}$
```Vehicle Severity (Any)```	$\begin{aligned} & \text { '60-'65 } \\ & \text { ' } 66-' 70 \\ & \text { '71-' } 74 \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 1.37 \\ & 1.03 \\ & 0.54 \\ & 0.83 \end{aligned}$	$\begin{aligned} & 1.54 \\ & 0.92 \\ & 0.52 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 1.52 \\ & 1.08 \\ & 0.71 \\ & 1.01 \end{aligned}$	$\begin{aligned} & 1.79 \\ & 1.44 \\ & 0.84 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 1.79 \\ & 1.53 \\ & 1.39 \\ & 1.51 \end{aligned}$	$\begin{aligned} & 1.84 \\ & 1.65 \\ & 1.53 \\ & 1.58 \end{aligned}$
Vehicle Severity (Serious)	$\begin{aligned} & \text { '60-'65 } \\ & \text { '66-' } 70 \\ & \text { '71-' } 74 \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.12 \\ & 0.06 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.11 \\ & 0.06 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.15 \\ & 0.10 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.22 \\ & 0.11 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.24 \\ & 0.21 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.27 \\ & 0.21 \\ & 0.24 \end{aligned}$

Table 4.2. Continued.

		Rate Comparisons														
Injury Type	Year	L-M	L-St	L-I	L-C	L-Sc	M-St	M-I	M-C	M-Sc	St-I	St-C	St-Sc	I-C	$\mathrm{I}-\mathrm{Sc}$	C-Sc
Overall	$\begin{aligned} & \prime \\ & \text { '60-' } 65 \\ & ' 66-170 \\ & ' 71-' 74 \end{aligned}$	L L *	$\begin{aligned} & \mathrm{L} \\ & \mathrm{St} \\ & \mathrm{St} \end{aligned}$	$\begin{aligned} & \text { * } \\ & \text { I } \\ & \text { I } \\ & \text { I } \end{aligned}$	$\begin{aligned} & \star \\ & C \\ & C \\ & C \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \star \\ & \mathrm{Sc} \\ & \mathrm{SC} \end{aligned}$	$\begin{aligned} & M \\ & * \\ & \text { St } \\ & \text { St } \end{aligned}$	$\begin{aligned} & \text { * } \\ & \text { I } \\ & \text { I } \\ & \text { I } \end{aligned}$	$\begin{aligned} & M \\ & C \\ & C \\ & C \end{aligned}$	$\begin{aligned} & M \\ & \mathrm{Sc} \\ & \mathrm{Sc} \\ & \mathrm{Sc} \end{aligned}$	$\begin{aligned} & \hline \text { I } \\ & \text { I } \\ & \text { I } \\ & \text { I } \end{aligned}$	$\begin{aligned} & \star \\ & c \\ & C \\ & C \end{aligned}$	$\begin{aligned} & \text { St } \\ & \text { Sc } \\ & \text { Sc } \\ & \text { Sc } \end{aligned}$	I I C C	$\begin{aligned} & \mathrm{I} \\ & \mathrm{I} \\ & \mathrm{SC} \\ & \text { SC } \end{aligned}$	$\begin{aligned} & * \\ & c \\ & \text { Sc } \\ & \star \end{aligned}$
Single Vehicle	$\begin{aligned} & ' 60-' 65 \\ & \text { '66-' } 70 \\ & \text { '71-' } 74 \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	St St St St	I I I I	$\begin{aligned} & C \\ & C \\ & C \\ & C \\ & C \end{aligned}$	$\begin{aligned} & \mathrm{Sc} \\ & \mathrm{Sc} \\ & \mathrm{Sc} \\ & \mathrm{Sc} \\ & \hline \end{aligned}$	St St St St	I I I I	$C$ $C$ $C$ $C$	$\begin{aligned} & \mathrm{Sc} \\ & \mathrm{Sc} \\ & \mathrm{SC} \\ & \mathrm{Sc} \\ & \hline \end{aligned}$	$\begin{aligned} & * \\ & \mathrm{I} \\ & \mathrm{I} \\ & \mathrm{I} \\ & \hline \end{aligned}$	$\begin{aligned} & \star \\ & C \\ & C \\ & C \\ & \hline \end{aligned}$		$\begin{aligned} & \star \\ & \star \\ & \text { c } \\ & \text { C } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{Sc} \\ & \mathrm{Sc} \\ & \hline \end{aligned}$	$\begin{aligned} & \star \\ & c \\ & c \\ & c \\ & \hline \end{aligned}$
Driver Injury (Any)	$\begin{aligned} & ' 60-165 \\ & ' 66-170 \\ & ' 71-174 \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & * \\ & \star \\ & \text { * } \\ & \text { * } \end{aligned}$	$\begin{aligned} & \text { * } \\ & \text { * } \\ & \text { St } \\ & \text { St } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { I } \\ & \text { I } \\ & \text { I } \end{aligned}$	C C C C	Sc   Sc   Sc   Sc	$\begin{aligned} & \text { * } \\ & \text { St } \\ & \text { St } \\ & \text { St } \end{aligned}$	$\begin{gathered} \mathrm{I} \\ \mathrm{I} \\ \mathrm{I} \\ \mathrm{I} \end{gathered}$	$C$ $C$ $C$ $C$	$\begin{aligned} & \text { Sc } \\ & \text { Sc } \\ & \text { Sc } \\ & \text { Sc } \end{aligned}$	I I I I	$\begin{aligned} & C \\ & C \\ & C \\ & C \end{aligned}$	$\begin{aligned} & \mathrm{Sc} \\ & \mathrm{Sc} \\ & \mathrm{SC} \\ & \mathrm{SC} \end{aligned}$	$\begin{aligned} & \star \\ & \text { c } \\ & \text { C } \\ & \text { C } \end{aligned}$	Sc   Sc   Sc	Sc   Sc   Sc
Driver Injury (Serious)	$\begin{aligned} & ' 60-165 \\ & ' 66-170 \\ & \text { '71-174 } \\ & \text { Overall } \\ & \hline \end{aligned}$	*	$\begin{aligned} & \text { * } \\ & \star \\ & \text { St } \\ & \text { St } \end{aligned}$		$\begin{aligned} & * \\ & c \\ & C \\ & C \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Sc } \\ & \text { Sc } \\ & \text { Sc } \\ & \text { Sc } \end{aligned}$	St   St   St	$\begin{aligned} & * \\ & \mathrm{I} \\ & \mathrm{I} \\ & \mathrm{I} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Sc } \\ & \text { SC } \\ & \text { Sc } \\ & \text { Sc } \end{aligned}$	$\begin{aligned} & \star \\ & \text { I } \\ & \star \\ & \text { I } \\ & \hline \end{aligned}$	$\begin{aligned} & C \\ & C \\ & C \\ & C \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Sc} \\ & \mathrm{Sc} \\ & \mathrm{Sc} \\ & \mathrm{SC} \\ & \hline \end{aligned}$	$*$   $*$   $C$   $C$	$\begin{aligned} & \star \\ & \mathrm{Sc} \\ & \mathrm{Sc} \\ & \mathrm{Sc} \\ & \hline \end{aligned}$	$*$ $*$ $*$ $*$
```Vehicle Severity (Any)```	$\begin{aligned} & ' 60-165 \\ & \text { '66-' } 70 \\ & \text { '71-'74 } \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & \star \\ & \text { L } \\ & \star \\ & \star \end{aligned}$	$\begin{aligned} & \star \\ & \star \\ & \text { St } \\ & \text { St } \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{I} \\ & \mathrm{I} \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & C \\ & C \\ & C \\ & C \end{aligned}$	$\begin{aligned} & \text { Sc } \\ & \text { Sc } \\ & \text { Sc } \\ & \text { Sc } \end{aligned}$	$\begin{aligned} & \text { St } \\ & \text { St } \\ & \text { St } \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{I} \\ & \mathrm{I} \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & C \\ & C \\ & C \\ & C \\ & C \end{aligned}$	Sc   Sc   Sc   Sc	I I I	$\begin{aligned} & C \\ & C \\ & C \\ & C \end{aligned}$	$\begin{aligned} & \mathrm{SC} \\ & \mathrm{SC} \\ & \mathrm{SC} \\ & \mathrm{SC} \end{aligned}$	$*$ $*$ c c	Sc   Sc   Sc	$*$ $*$ Sc $*$
Vehicle Severity (Serious)	$\begin{aligned} & ' 60-' 65 \\ & ' 66-170 \\ & ' 71-174 \\ & \text { Overall } \end{aligned}$	* * *	$\begin{aligned} & \star \\ & \star \\ & \text { St } \\ & \text { St } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { I } \\ & \text { I } \\ & \text { I } \end{aligned}$	$\begin{aligned} & C \\ & C \\ & C \\ & C \end{aligned}$	$\begin{aligned} & \mathrm{Sc} \\ & \mathrm{Sc} \\ & \mathrm{Sc} \\ & \mathrm{Sc} \end{aligned}$	$\begin{aligned} & \text { St } \\ & \text { St } \\ & \text { St } \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{I} \\ & \mathrm{I} \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & C \\ & C \\ & C \\ & C \end{aligned}$	$\begin{aligned} & \text { Sc } \\ & \text { SC } \\ & \text { SC } \\ & \text { SC } \end{aligned}$	* * I	C C C C	$\begin{aligned} & \text { Sc } \\ & \text { Sc } \\ & \text { Sc } \\ & \text { Sc } \end{aligned}$	*	$\begin{aligned} & \star \\ & \mathrm{SC} \\ & \mathrm{SC} \\ & \mathrm{SC} \end{aligned}$	*

Note: For those cases where the rates are significantly different, generally the smaller vehicle in the comparison has higher overall and single vehicle accident rates along with elevated driver injury and vehicle severity rates.

Table 4.3 Comparison of accident and injury rates for luxury cars.

			Rat					Com	riso		
Injury Type	Years	Buick (B)	Pontiac (P)	Cadillac (C)	01ds (0)	B-P	B-C	B-0	P-C	P-0	C-0
	'60-'65	6.19	6.76	6.21	6.74	*	*	*	*	*	*
Overall	'66-' 70	5.24	5.50	5.33	5.20	*	*	*	*	*	*
	'71-'74	3.44	3.11	3.21	3.51	*	*	*	*	*	*
	Overall	4.40	4.68	4.34	4.31	*	*	*	P	P	*
	'60-'65	0.78	0.94	0.61	0.41	*	*	*	*	P	*
	'66-'70	0.56	0.66	0.53	0.57	*	*	*	*	*	*
Single Vehicle	'71-'74	0.23	0.22	0.31	0.26	*	*	*	*	*	*
	Overall	0.41	0.51	0.43	0.38	P	*	*	*	P	*
	'60-'65	0.84	1.29	0.95	0.61	*	*	*	*	P	*
Driver Injury	'66-'70	0.79	0.89	0.69	0.65	*	*	*	P	P	*
(Any)	'71-'74	0.40	0.35	0.43	0.50	*	*	*	*	0	*
	Overall	0.60	0.72	0.58	0.56	P	*	*	P	P	*
	'60-' 65	0.22	0.19	0.13	0.07	*	*	*	*	*	*
Driver Injury	'66-'70	0.08	0.12	0.07	0.07	*	*	*	*	*	*
(Serious)	'71-'74	0.05	0.02	0.06	0.08	*	*	*	*	0	*
	Overall	0.07	0.09	0.07	0.07	*	*	*	*	*	*
```Vehicle Severity (Any)```	'60-'65	1.09	1.66	1.25	0.95	P	*	*	*	*	*
	'66-170	1.03	1.15	0.91	0.91	*	*	*	P	*	*
	'71-74	0.56	0.50	0.54	0.64	*	*	*	*	*	*
	Overall	0.80	0.94	0.76	0.76	P	*	*	P	P	*
Vehicle Severity (Serious)	'60-'65	0.25	0.23	0.13	0.14	*	*	*	*	*	$\begin{aligned} & \star \\ & \star \\ & \star \\ & \star \end{aligned}$
	'66-'70	0.12	0.14	0.10	0.12	*	*	*	*	*	
	'71-'74	0.07	0.03	0.06	0.09	*	*	*	*	0	
	Overall	0.10	0.11	0.08	0.10	*	*	*	*	*	

Table 4.4 Comparison of accident and injury rates for medium-sized cars.

	Model Years	Rates				Rate Comparisons					
Injury Type		Buick (B)	Pontiac (P)	01 ds   (0)	Chrysler   (C)	$B-P$		B-C		P-C	O-C
Overall	'60-'65	6.45	6.75	6.82	5.79	*	*	*	*	P	0
	'66-'70	4.75	5.12	5.23	5.00	*	0	*	*	*	*
	'71-'74	3.15	2.84	3.25	3.52	B	*	c	0	C	*
	Overall	4.26	4.29	4.49	4.51	*	*	*	*	*	*
Single Vehicle	'60-'65	0.80	1.12	0.66	0.60	P	*	*	P	P	*
	'66-'70	0.52	0.59	0.61	0.53	*	*	*	*	*	*
	'71-'74	0.20	0.21	0.26	0.37	*	*	C	*	C	*
	Overall	0.41	0.48	0.45	0.48	*	*	*	*	*	*
Driver Injury (Any)	'60-'65	1.07	1.16	1.14	1.09	*	*	*	*	*	*
	'66-'70	0.68	0.78	0.71	0.81	*	*	*	*	*	*
	'71-'74	0.33	0.36	0.48	0.49	*	0	C	0	C	*
	Overall	0.58	0.63	0.66	0.72	*	*	C	*	*	*
Driver Injury (Serious)	'60-'65	0.19	0.13	0.19	0.20	*	*	*	*	*	*
	'66-'70	0.06	0.10	0.11	0.10	*	*	*	*	*	*
	'71-'74	0.04	0.04	0.06	0.07	*	*	*	*	*	*
	Overall	0.07	0.07	0.10	0.10	*	*	*	*	*	*
Vehicle Severity (Any)	'60-'65	1.50	1.50	1.64	1.32	*	*	*	*	*	*
	'66-'70	0.83	1.00	0.94	1.10	P	*	C	*	*	*
	'71-74	0.48	0.49	0.60	0.67	*	0	c	*	C	*
	Overall	0.76	0.83	0.87	0.96	*	0		*	C	*
Vehicle Severity (Serious)	'60-'65	0.24	0.17	0.21	0.27	*	*	*	*	*	*
	'66-'70	0.09	0.11	0.14	0.11	*	*	*	*	*	*
	'71-'74	0.05	0.05	0.08	0.09	*	*	*	*	*	*
	Overall	0.09	0.09	0.12	0.12	*	*	*	*	*	*

Table 4.5 Comparison of accident and injury rates for standard-sized cars.

Accident/   Injury Type	Model Years	Rates			Rate Comparisons		
		Chevrolet (C)	Ford (F)	Plymouth   (P)	C-F	C-P	F-P
Overall	$\begin{aligned} & ' 60-165 \\ & \text { '66-'70 } \\ & \text { ' } 71-174 \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 6.06 \\ & 4.88 \\ & 3.44 \\ & 4.58 \end{aligned}$	$\begin{aligned} & 6.39 \\ & 5.00 \\ & 4.02 \\ & 4.79 \end{aligned}$	$\begin{aligned} & 5.70 \\ & 5.18 \\ & 4.36 \\ & 4.97 \end{aligned}$	*	*      $p$   $P$	$\begin{aligned} & \mathrm{F} \\ & * \\ & \mathrm{p} \\ & \mathrm{p} \end{aligned}$
Single Vehicle	$\begin{aligned} & \text { '60-'65 } \\ & \text { '66-' } 70 \\ & \text { '71-'74 } \\ & \text { Overa11 } \end{aligned}$	$\begin{aligned} & 0.94 \\ & 0.62 \\ & 0.27 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 0.68 \\ & 0.43 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.69 \\ & 0.54 \\ & 0.66 \end{aligned}$	$\begin{aligned} & F \\ & * \\ & F \\ & F \end{aligned}$	*   *   P	F * *
Driver Injury (Any)	$\begin{aligned} & ' 60-165 \\ & ' 66-170 \\ & ' 71-' 74 \\ & \text { Overal1 } \end{aligned}$	$\begin{aligned} & 1.14 \\ & 0.83 \\ & 0.47 \\ & 0.76 \end{aligned}$	$\begin{aligned} & 1.26 \\ & 0.84 \\ & 0.62 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 1.24 \\ & 0.86 \\ & 0.60 \\ & 0.82 \end{aligned}$	$\begin{aligned} & * \\ & F \\ & F \end{aligned}$	* P P	*
Driver Injury (Serious)	$\begin{aligned} & ' 60-' 65 \\ & ' 66-170 \\ & ' 71-174 \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.10 \\ & 0.07 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.13 \\ & 0.08 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.12 \\ & 0.09 \\ & 0.12 \end{aligned}$	$\begin{aligned} & F \\ & F \\ & * \\ & F \end{aligned}$	*	*
$\begin{aligned} & \text { Vehicle Severity } \\ & \text { (Any) } \end{aligned}$	$\begin{aligned} & \text { '60-'65 } \\ & \text { '66-' } 70 \\ & \text { '71-74 } \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 1.48 \\ & 1.07 \\ & 0.62 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 1.59 \\ & 1.07 \\ & 0.81 \\ & 1.04 \end{aligned}$	$\begin{aligned} & 1.46 \\ & 1.11 \\ & 0.74 \\ & 1.03 \end{aligned}$	*	$\stackrel{\text { * }}{ }+$	*
Vehicle Severity (Serious)	$\begin{aligned} & ' 60-165 \\ & ' 66-' 70 \\ & \text { '71-'74 } \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.14 \\ & 0.08 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 0.29 \\ & 0.17 \\ & 0.11 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.16 \\ & 0.11 \\ & 0.16 \end{aligned}$	* * F	*	*

Table 4.6. Comparison of accident and injury rates for intermediate cars.

Accident/   Injury Type	Model Years	Rates				Rate Comparisons					
		Ford (F)	\|Chevelle   (C)	01ds   (0)	Pontiac (P)	F-C	F-0	F-P	C-0	C-P	0-P
Overall	$\begin{gathered} ' 60-165 \\ ' 66-170 \\ \text { '71-'74 } \\ \text { Overall } \end{gathered}$	$\begin{aligned} & 5.89 \\ & 6.12 \\ & 4.50 \\ & 5.25 \end{aligned}$	6.33 6.93 4.45 5.88	6.69 5.74 3.99 4.84	8.16 6.55 4.78 5.92	* c * C	0 $F$ $F$ $F$ $F$	P      *   P	* $C$ $C$ $C$	P C *	P p p P
Single Vehicle	$\begin{aligned} & ' 60-165 \\ & ' 66-170 \\ & ' 71-174 \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 0.92 \\ & 1.07 \\ & 0.58 \\ & 0.80 \end{aligned}$	1.14 1.27 0.65 1.01	1.10 0.87 0.45 0.65	1.21 1.17 0.74 0.99	$*$ C * C	* F F F	$*$ * P P	* C c C	*	$*$ $p$ $p$ $p$
Driver Injury (Any)	$\begin{aligned} & \text { '60-'65 } \\ & \text { '66-'70 } \\ & \text { '71-'74 } \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 1.40 \\ & 1.16 \\ & 0.70 \\ & 0.94 \end{aligned}$	1.15 1.24 0.73 1.03	1.63 0.97 0.56 0.78	1.73 1.10 0.77 1.01	* $*$ $\star$ c	* F F	* $*$ $*$	0 $C$ $C$ $C$ $C$	P * *	* * p
Driver Injury (Serious)	$\begin{aligned} & ' 60-165 \\ & ' 66-170 \\ & \text { '71-' } 74 \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.16 \\ & 0.07 \\ & 0.12 \end{aligned}$	0.23 0.21 0.10 0.17	$\begin{aligned} & 0.25 \\ & 0.14 \\ & 0.08 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.18 \\ & 0.09 \\ & 0.14 \end{aligned}$	* c ¢ C	*	* * *	* * c	* * *	* * *
```Vehicle Severity (Any)```	'60-' 65   '66-'70   '71-'74   Overall	$\begin{aligned} & 1.71 \\ & 1.51 \\ & 0.86 \\ & 1.19 \end{aligned}$	1.48 1.52 0.89 1.26	2.17 1.28 0.72 1.02	2.19 1.37 0.92 1.24	* * *	* F F	* $*$ $*$	0 $C$ $C$ $C$	P * *	$*$   $*$
Vehicle Severity (Serious)	$\begin{aligned} & \text { '60-' } 65 \\ & ' 66-170 \\ & \text { ' } 71-174 \\ & \text { Overall } \end{aligned}$	0.29 0.21 0.09 0.16	0.33 0.25 0.13 0.21	0.36 0.18 0.09 0.15	$\begin{aligned} & 0.32 \\ & 0.21 \\ & 0.12 \\ & 0.18 \end{aligned}$	*	*	*	*	*	*

Table 4.7 Comparison of accident and injury rates for compact cars.

		Rates				Rate Comparisons					
Injury Type	Years	$\underset{(\text { Ma) }}{\text { Maverick }}$	Mustang (Mu)	Nova (N)	Valiant (V)	Ma-Mu	$\mathrm{Ma}-\mathrm{N}$	Ma-V	Mu-N	Mu-V	N-V
Overall	'60-'65	4.96	7.58	6.13	6.12	Mu	N	V	Mu	Mu	*
	'66-'70	4.84	7.18	6.46	4.09	Mu	N	Ma	Mu	Mu	N
	'71-'74	5.88	7.25	5.82	4.48	Mu	*	Ma	Mu	Mu	N
	Overall	5.31	7.25	6.08	4.60	Mu	N	Ma	Mu	Mu	N
Single Vehicle	'60-'65	0.88	1.73	0.89	0.71	Mu	*	*	Mu	Mu	*
	'66-'70	0.75	1.50	1.23	0.53	Mu	N	Ma	Mu	Mu	N
	'71-'74	0.97	1.91	1.10	0.74	Mu	*	Ma	Mu	Mu	N
	Overall	0.88	1.61	1.11	0.69	Mu	N	Ma	Mu	Mu	N
Driver Injury (Any)	'60-'65	1.19	1.90	1.46	1.59	Mu	*	v	Mu	*	*
	'66-'70	0.92	1.49	1.43	0.73	Mu	N	*	*	Mu	N
	'71-74	1.30	1.35	1.25	0.90	*	*	Ma	*	Mu	N
	Overall	1.15	1.52	1.34	0.95	Mu	N	Ma	Mu	Mu	N
Driver Injury (Serious)	'60-'65	0.21	0.31	0.24	0.32	*	*	*	*	*	*
	'66-'70	0.16	0.25	0.22	0.06	Mu	*	Ma	*	Mu	N
	'71-7 74	0.18	0.17	0.21	0.14	*	*	*	*	*	N
	Overall	0.18	0.24	0.22	0.14	Mu	*	*	*	Mu	N
```Vehicle Severity (Any)```											
	'66-'70	1.14	1.80	1.75	0.92	Mu	N	*	*	Mu	N
	'71-'74	1.57	1.70	1.47	1.07	*	*	Ma	*	Mu	N
	Overall	1.40	1.84	1.62	1.15	Mu	N	Ma	Mu	Mu	N
Vehicle Severity (Serious)	'60-'65	0.27	0.39	0.32	0.35	*	*	*	*	*	*
	'66-'70	0.18	0.30	0.27	0.08	Mu	*	Ma	*	Mu	$N$
	'71-'74	0.22	0.24	0.26	0.16	*	*	*	*	*	N
	Overall	0.22	0.30	0.27	0.17	Mu	*	*	*	Mu	$N$

Table 4.8 Comparison of accident and injury rates for subcompact cars.

		Rates				Rate Comparisons					
Accident/   Injury Type	Model Years	$\begin{gathered} V W \text { Beett } \\ (B) \end{gathered}$	Toyota (T)	Pinto (P)	Vega (V)	B-T	B-P	B-V	T-P	T-V	P-V
Overal1	'60-'65	5.58	-- ${ }^{1}$	--	--	--	--	--	--	--	--
	'66-'70	4.91	6.96	--	--	T	--	--	--	--	--
	'71-'74	5.62	6.70	6.00	4.87	T	P	B	T	T	P
	Overal1	5.30	6.74	6.00	4.87	T	P	B	T	T	P
Single Vehicle	'60-'65	1.13	-- ${ }^{1}$	--	--	--	--	--	--	--	--
	'66-'70	0.83	1.09	--	--	T	--	--	--	--	--
	'71-'74	0.92	0.87	0.90	0.90	*	*	*	*	*	*
	Overall	0.91	0.90	0.90	0.90	*	*	*	*	*	*
Driver Injury (Any)											
	'60-'65	1.50	--1	--	--	--	--	--	--	--	--
	'66-'70	1.28	2.74	--		T	--	--	--	--	--
	'71-'74	1.35	1.35	1.27	1.01	*	*	B	*	T	P
	Overal1	1.35	1.40	1.27	1.01	*	*	B	*	T	P
Driver Injury (Serious)	'60-'65	0.30	-- ${ }^{1}$	--	--	--	--	--	--	--	--
	'66-'70	0.19	0.32	--	--	T	--	--	--	-	--
	'71-'74	0.16	0.20	0.17	0.16	*	*	*	*	*	*
	Overall	0.20	0.22	0.17	0.16	*	*	*	*	T	*
```Vehicle Severity (Any)```			--1								
	'66-'70	1.51	2.14	--	--	T	--	--	--	-	--
	'71-'74	1.62	1.63	1.47	1.24	*	*	B	*	T	P
	Overall	1.61	1.70	1.47	1.24	*	*	B	T	T	P
Vehicle Severity (Serious)	'60-'65	0.37	--1	--	--	--	--	--	--	--	--
	'66-'70	0.23	0.40	--	--	T	--	--	--	--	--
	'71-'74	0.19	0.23	0.21	0.20	*	*	*	*	*	*
	Overall	0.24	0.25	0.21	0.20	*	*	*	*	*	*

-Oniv 6 registered '60-'65 Toyotas.

Table 4.9. Comparison of accident and injury rates for standard-sized station wagons, sedans, hardtops; two and four-door cars.

Accident/ Injury Type	Mode 1 Years	Rates					Rate Comparisons			
		Station Wagon (Sw)	Sedan (Se)	Hardtop (Ht)	$\begin{gathered} \text { 2-Door } \\ (2 \mathrm{~d}) \end{gathered}$	$\begin{gathered} \text { 4-Door } \\ (4 d) \end{gathered}$	Sw-Se	Sw-Ht	Se-Ht	2d-4d
Overal 1	$\begin{aligned} & ' 60-165 \\ & ' 66-170 \\ & ' 71-174 \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 4.82 \\ & 4.10 \\ & 3.24 \\ & 3.92 \end{aligned}$	$\begin{aligned} & 5.97 \\ & 4.65 \\ & 3.83 \\ & 4.55 \end{aligned}$	$\begin{aligned} & 6.52 \\ & 5.30 \\ & 4.00 \\ & 5.02 \end{aligned}$	$\begin{aligned} & 6.74 \\ & 5.52 \\ & 4.12 \\ & 5.30 \end{aligned}$	$\begin{aligned} & 5.82 \\ & 4.54 \\ & 3.66 \\ & 4.38 \end{aligned}$	$\begin{aligned} & \text { Se } \\ & \mathrm{Se} \\ & \mathrm{Se} \\ & \mathrm{Se} \end{aligned}$	$\begin{aligned} & \mathrm{Ht} \\ & \mathrm{Ht} \\ & \mathrm{Ht} \\ & \mathrm{Ht} \end{aligned}$	Ht Ht Ht	$\begin{aligned} & 2 \mathrm{~d} \\ & 2 \mathrm{~d} \\ & 2 \mathrm{~d} \\ & 2 \mathrm{~d} \end{aligned}$
Single Vehicle	$\begin{aligned} & \text { '60-' } 65 \\ & \text { '66-'70 } \\ & \text { '71-'74 } \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.50 \\ & 0.29 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 0.58 \\ & 0.34 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 1.23 \\ & 0.73 \\ & 0.42 \\ & 0.70 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 0.81 \\ & 0.48 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.56 \\ & 0.33 \\ & 0.50 \end{aligned}$	$\begin{aligned} & \text { * } \\ & \text { * } \\ & \text { * } \\ & \text { * } \end{aligned}$	$\begin{aligned} & \mathrm{Ht} \\ & \mathrm{Ht} \\ & \mathrm{Ht} \\ & \mathrm{Ht} \end{aligned}$	Ht Ht Ht Ht	$\begin{aligned} & 2 \mathrm{~d} \\ & 2 \mathrm{~d} \\ & 2 \mathrm{~d} \\ & 2 \mathrm{~d} \end{aligned}$
Driver Injury (Any)	$\begin{aligned} & \hline 60-165 \\ & ' 66-170 \\ & ' 71-174 \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.60 \\ & 0.39 \\ & 0.61 \end{aligned}$	$\begin{aligned} & 1.08 \\ & 0.76 \\ & 0.54 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 0.93 \\ & 0.62 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 1.38 \\ & 0.98 \\ & 0.66 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 0.74 \\ & 0.50 \\ & 0.70 \end{aligned}$	Se Se Se	$\begin{aligned} & \mathrm{Ht} \\ & \mathrm{Ht} \\ & \mathrm{Ht} \\ & \mathrm{Ht} \end{aligned}$	$\begin{aligned} & \mathrm{Ht} \\ & \mathrm{Ht} \\ & \mathrm{Ht} \\ & \mathrm{Ht} \end{aligned}$	2d $2 d$ $2 d$ $2 d$
Driver Injury (Serious)		$\begin{aligned} & 0.15 \\ & 0.06 \\ & 0.06 \\ & 0.08 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.12 \\ & 0.08 \\ & 0.11 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.12 \\ & 0.08 \\ & 0.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.14 \\ & 0.10 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.10 \\ & 0.07 \\ & 0.10 \end{aligned}$	Se Se	Ht Ht	* $*$ $*$	2 d 2 d 2 d 2 d
Vehicle Severity (Any)	$\begin{aligned} & ' 60-' 65 \\ & ' 66-170 \\ & \text { '71-'74 } \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 1.24 \\ & 0.80 \\ & 0.51 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 1.41 \\ & 1.00 \\ & 0.72 \\ & 0.96 \end{aligned}$	$\begin{aligned} & 1.65 \\ & 1.18 \\ & 0.80 \\ & 1.12 \end{aligned}$	$\begin{aligned} & 1.75 \\ & 1.24 \\ & 0.83 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 1.39 \\ & 0.96 \\ & 0.67 \\ & 0.91 \end{aligned}$	$\begin{aligned} & \star \\ & \mathrm{Se} \\ & \mathrm{Se} \\ & \mathrm{Se} \end{aligned}$	Ht Ht Ht Ht	Ht Ht Ht Ht	$2 d$ $2 d$ $2 d$ $2 d$
Vehicle Severity (Serious)	$\begin{aligned} & ' 60-' 65 \\ & ' 66-170 \\ & ' 71-174 \\ & \text { Overall } \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.08 \\ & 0.07 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.16 \\ & 0.10 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.29 \\ & 0.17 \\ & 0.10 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.18 \\ & 0.12 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.14 \\ & 0.09 \\ & 0.13 \end{aligned}$	$\begin{aligned} & \text { * } \\ & \mathrm{Se} \\ & \mathrm{Se} \\ & \mathrm{Se} \end{aligned}$	$*$ Ht Ht Ht	Ht $*$ $*$ $*$	$2 d$ 2 d 2 d 2 d

Table 4.10. Comparison of total and sinqle vehicle accident rates by vehicle age for all vehicles combined -- initial and follow-up studies.

Age	Model Year		Accident Type				Rate Comparison	
	Initial (I)	$\begin{aligned} & \text { Follow-Up } \\ & (\mathrm{F}) \end{aligned}$		${ }^{1 / F)}$		(F)	Overall $\text { (I) }-(\mathrm{F})$	Single $(I)-(F)$
≤ 1	1974	1975	4.66	$(5.99)^{1}$	0.60	$(0.80)^{2}$	-	-
-2	1973	1974	4.17	4.19	0.53	0.55	*	*
3	1972	1973	4.32	4.21	0.54	0.56	I	*
4	1971	1972	4.53	4.57	0.59	0.61	*	*
5	1970	1971	4.32	4.91	0.57	0.69	F	F
6	1969	1970	5.22	4.07	0.77	0.62	I	I
7	1968	1969	5.56	5.71	0.79	0.84	F	F
8	1967	1968	5.62	5.84	0.85	0.89	F	*
9	1966	1967	5.78	6.13	0.85	1.00	F	F
10	1965	1966	5.96	6.16	0.90	0.96	F	*
11	1964	1965	5.83	6.25	0.85	1.00	F	F
12	1963	1964	5.73	6.07	0.88	0.93	F	*
13	1962	1963	5.89	5.95	0.91	0.92	*	*
14	1961	1962	5.80	6.23	0.93	1.02	*	*
15	1960	1961	5.74	6.25	0.77	0.98	*	*

${ }^{1}$ Rate is inflated due to consistent underestimation of the registration
counts in the denominator.

Table 4.11. Comparison of driver injury rates by vehicle age for all vehicles combined -- initial and follow-up studies.

Age	Model Year		Injury Type				Rate Comparison	
	Initial (I)	$\begin{aligned} & \text { Follow-Up } \\ & \text { (F) } \end{aligned}$	Dr. In (I)	$\begin{aligned} & (\text { Any }) \\ & (F) \end{aligned}$	Dr. In (I)	(Ser.) (F)	Dr. Inj (Any) $(\mathrm{I})-(\mathrm{F})$	Dr. Inj. (Ser.) (I)-(F)
≤ 1	1974	1975	0.38	(1.05)	0.07	$(0.17)^{1}$	-	$\bar{\square}$
-2	1973	1974	0.46	0.72	0.07	0.09	*	F
3	1972	1973	0.51	0.72	0.08	0.10	F	F
4	1971	1972	0.56	0.77	0.10	0.11	F	*
5	1970	1971	0.55	0.87	0.09	0.13	F	F
6	1969	1970	0.68	0.74	0.12	0.12	F	*
7	1968	1969	0.74	0.99	0.13	0.14	F	*
8	1967	1968	0.81	1.00	0.13	0.15	F	*
9	1966	1967	0.84	1.16	0.15	0.18	F	F
10	1965	1966	0.92	1.20	0.18	0.18	F	*
11	1964	1965	0.99	1.30	0.20	0.23	F	*
12	1963	1964	0.97	1.22	0.19	0.18	F	*
13	1962	1963	1.04	1.19	0.23	0.20	F	*
14	1961	1962	1.10	1.29	0.24	0.23	F	*
15	1960	1961	0.93	1.33	0.18	0.26	F	*

${ }^{1}$ Rate is inflated to consistent underestimation of the registration counts in the denominator.

Table 4.12. Comparison of vehicle severity rates by vehicle age for all vehicles combined -- initial and follow-up studies.

Age	Model Year		Injury Type				Rate Comparison	
	Initial (I)	$\begin{aligned} & \text { Follow-Up } \\ & \text { (F) } \end{aligned}$	Veh. S (I)	$\begin{aligned} & \text { ((Any) } \\ & \text { (F) } \end{aligned}$	Veh.Sev (I)	(Ser.) (F)	$\begin{aligned} & \text { Veh. Sev. (Any) } \\ & \text { (I)-(F) } \end{aligned}$	$\begin{aligned} & \text { Veh. Sev. (Ser.) } \\ & \text { (I)-(F) } \end{aligned}$
≤ 1	1974	1975	0.49	$(1.27)^{1}$	0.09	$(0.20)^{1}$	-	-
2	1973	1974	0.56	0.89	0.09	0.11	F	F
3	1972	1973	0.62	0.89	0.10	0.12	F	F
4	1971	1972	0.69	0.95	0.12	0.13	F	*
5	1970	1971	0.67	1.09	0.11	0.16	F	F
6	1969	1970	0.83	0.91	0.14	0.15	F	*
7	1968	1969	0.90	1.24	0.15	0.18	F	*
8	1967	1968	1.00	1.28	0.16	0.18	F	*
9	1966	1967	1.03	1.46	0.19	0.23	F	F
10	1965	1966	1.13	1.50	0.22	0.23	F	*
11	1964	1965	1.17	1.63	0.24	0.28	F	*
12	1963	1964	1.16	$1 . .54$	0.22	0.24	F	*
13	1962	1963	1.22	1.55	0.28	0.28	F	*
14	1961	1962	1.24	1.70	0.30	0.30	F	*
15	1960	1961	1.15	1.72	0.22	0.33	F	*

${ }^{1}$ Rate is inflated due to consistent underestimation of the registration counts in the denominator.

v. INSPECTION ITEM FAILURE RATES

A program of periodic motor vehicle inspection (PMVI) was initiated in North Carolina in 1966. The goal of this program is to reduce the number of mechanically unsafe vehicles on North Carolina roads and to thereby reduce the number of accidents that are primarily caused by mechanical failures. Figure 2.1 shows the items that are included in the PMVI program in North Carolina.

In this study, the analysis was restricted to four inspection items -headlights, stoplights, footbrakes and tires. It was felt that these items were among those items most likely to be associated with accidents caused by mechanical failures. This section presents the results of an investigation of failure rates and their relationship to vehicle size, age and mileage, where failure rate has been defined as the proportion of vehicles that did not meet the specifications described in the North Carolina Motor Vehicle Inspection Handbook. For the convenience of the reader, the North Carolina Safety Inspection Regulations governing these four inspection items are indicated below.

Headlights. Inspect and disapprove if:

(1) There are not at least two headlamps (at least four on dual headlamp systems which require four units) on all self-propelled vehicles except that motorcycles and motor-driven cycles need only one.
(2) Lens produces other than a white or yellow light. Any lens is cracked, broken, discolored, missing, or rotated away from the proper position, or any reflector is not clean and bright.
(3) The high beam -- low beam dimmer switch does not operate properly.
(4) Lights can be moved easily by hand, due to a broken fender or hose support, or if a good ground is not made by the mounting.
(5) Foreign material such as shields, half of lens painted, etc., placed on headlamp lens interferes with light beam of lamp.
(6) Lights are improperly aimed. A light testing machine or light testing chart must be used to determine this.
(7) Lights project a dazzling or glaring light when on low beam.

Stoplights. Inspect and disapprove if:
(1) Lens is cracked, discolored or of a color other than red, amber, or yellow.
(2) Light does not come on when pressure is applied to footbrake.
(3) It is not securely mounted so as to project a light to the rear.

Footbrakes. Inspect and disapprove if:
(1) When applying brakes to moving vehicle, braking force is not distributed evenly to all wheels originally equipped with brakes by the manufacturer. (Mechanic must drive vehicle to make this test. May be checked while driving vehicle forward into the inspection area.)
(2) There is audible indication (metal on metal) that brake lining is worn to the extent that it is no longer serviceable. (Wheel must be pulled and brake lining examined when this occurs.)
(3) Pedal reserve is less than $1 / 3$ of the total possible travel when the brakes are fully applied, or does not meet the manufacturer's specifications for power brakes or air brakes.
(4) Reservoir of master cylinder is not full.
(5) There is visible leakage or audible seepage in hydraulic, vacuuri or air lines and cylinders, or visible cracked, chafed, worn, or weakened hoses.
(6) Vehicle has any part of the brake system removed or disconnected.
(7) Brake pedal moves slowly toward the toeboard (indicating fluid leakage) while pedal pressure is maintained for one minute.

Tires. Inspect and disapprove if:
(1) Any tire is worn to where less than $2 / 32$ inch tread remains at three equally spaced intervals around the circumference of the tire when measured in two adjacent grooves nearest the center of the tire. (Exclusive of tire bars and tread wear indicators.) Any tire has a localized worn spot that exposes the cord.
(2) Any tire has cuts or snags in excess of one inch in any direction and deep enough to expose the cords.
(3) Any tire has a visible bump, bulge, or knot apparently related to tread or sidewall separation or partial failure of the tire structure including bead area.

Results
When crash and injury rates were being compared in Chapter IV, 1975 model vehicles were excluded from the comparisons. This was necessary, since as stated earlier, there appeared to be a problem in processing the registration files for the 1975 models. However, in this section the sample of inspection results is assumed to represent a random sample of all inspections carried out in North Carolina and hence the failure rate estimates should yield estimates of the condition of the entire fleet of N.C. autos and station wagons with respect to the condition of headlights, stoplights, footbrakes, and tires.

Figures 5.1-5.4 and Figures 5.5-5.8 present the various failure rates for full, middle and small-sized cars by model year and current odometer reading, respectively. These figures show that, in general, the failure rates for the four inspection items are highest for high mileage and/or older model vehicles. Similar results were obtained in previous HSRC reports (Reinfurt and Pascarella, 1969; Reinfurt, House and Levine, 1971). Tests of significance showed very few significant differences in defect rates for the three sizes within the same model year or mileage groups.

Note the initial decline in failure rates for stoplights and footbrakes for the lower mileage categories. Undoubtedly, many of these vehicles are older vehicles with recycled odometers and hence only appear

Figure 5.1 Headlight failure rates by model year for full, middle, and small-sized cars.

Figure 5.2 Stoplight failure rates by model year for full, widdle, and small-sized cars.

Figure 5.3 Footbrake failure rates by model year for full, middle and small-sized cars.

Figure 5.4 Tire failure rates by nodel year for full, middle, and small-sized cars.

Figure 5.5 Headlight failure rates by accumulated mileage for full, middle, and small-sized cars.

Figure 5.6 Stoplight failure rates by accumulated mileage for full, middle, and small-sized cars.

Figure 5.7 Footbrake failure rates by accumulated mileage for full, middle, and small-sized cars.

Fiqure 5. 33 Tire failure rates by accumulated mileage for lull, middle, and small-sized sars.
to be low mileage vehicles. Unfortunately, there is no precise mechanism for redistributing the recycled vehicles with their higher failure rates into the higher mileage categories (i.e., 100,000-plus miles).

Figures 5.9-5.12 show the failure rates for full, middle and small-sized cars by accumulated mileage for three model year groups (196065, 1966-70, and 1971-75). 01d vehicles with extremely low accumulated mileages were eliminated from this part of the analysis due to the likelihood of recycled odometers. Also excluded were vehicles with odometer readings greater than 100,000 miles.

Due to sample size limitations, the failure rates for all cars and station wagons combined (Figures 5.9a-5.12a) are the most reliable. The large deviations from say one mileage category to the next in the figures within car size are assumed to be mainly random fluctuations -- the general slopes of the curves and relative positions constitute the main significance of the graphs.

Figures 5.9 - 5.12 confirm the association between increasing defect rates and increasing vehicle mileage and/or age. As expected, these figures also show that the effect of mileage on vehicle defects is not the same across all model years, i.e., that there is an interaction between age and mileage on failure rates. Generally, it appears that the mileage effect is most pronounced for new cars and least pronounced for the oldest car groups. This is consistent with previous HSRC studies in this area.

In connection with this association between high failure rates and vehicle age and/or accumulated mileage, perhaps there is a need to introduce a variable intensity inspection program. Under such programs, the inspection of some items could be less rigorous for a new vehicle compared to an old or a high mileage vehicle. Thus, if more rigorous inspection tests and standards were set up, this program would call for a more in-depth inspection of those vehicles where more defects are likely to be found.

In terms of relative magnitudes of defect rates, headlights have by far the highest defect rates for all vehicle size groups. This probably

Accumulated Mileage (in thousands)

Figure 5.9 a-d. Headlight failure rates by model year and accumulated mileage for all vehicle makes and full, middle and small-sized cars.

Figure $5.10 \mathrm{a}-\mathrm{d}$. Stoplight failure rates by model year and accurmutated mileage for all vehicle makes and full, middle and small-sized cars.

Figure 5.11 a-d. Footbrake failure rates by model year and accumulated mileage for all vehicle makes and fill, middle, and small-sized cars.

Figure 5.12 a-d. Tire failure rates by model year and accumulated mileage for all vehicle makes and full, middle and small-sized cars.
indicates problems in the structural features of the systems such that the headlights are unable to maintain the required alignment.

Since one would expect similar item failure rates within model years across body styles (e.g., two-door vs. four-door standard-sized cars) as they probably would have the same basic lighting systems, brakes, etc., no attempt was made to compare failure rates for the various body style groups.

VI. SUMMARY AND CONCLUSION

This report is a follow-up on a recent study (Dutt and Reinfurt, 1977) and presents estimates of annual mileages for a number of vehicle makes and models, along with accident and injury rates per million vehicle miles for the various makes and model years. In addition, various item failure rates by vehicle size and age are presented for vehicles undergoing periodic motor vehicle inspection.

The exposure period covered by this follow-up study extended from January 1, 1975 to December 31, 1975. This corresponded to the post energy crisis period, while the exposure period (October 16, 1973 October 15, 1974) for the initial study encompassed the height of the energy crisis.

The estimates of annual mileages and failure rates were obtained from a statewide sample of motor vehicle inspection receipts representing primarily December, 1975 inspections. The derived estimated annual mileages for a large number of specific vehicle makes and models were then multiplied by the corresponding number of registered vehicles in the state to produce vehicle-specific fleet exposure estimates for the period under study.

In the initial report, the registration frequency utilized was a weighted average of registration counts from three different periods representing the beginning, middle and end of the exposure period. It was shown, however, that using a single registration count obtained from the middle of the exposure period did not alter the accident rates noticeably except for vehicles less than one year old. Consequently, in this follow-up study, a registration file from approximately the mid-point of the exposure period was used to determine the registration frequencies.

The 1975 North Carolina accident file provided information on the number and type of accidents along with extent of driver and occupant injury by vehicle make and model year. As in the previous study, overall accident rates for each make/model combination were found by dividing the total number of vehicles involved in accidents during the specified
time period by the estimated overall fleet mileage accumulated during that period. Similarly, driver injury rates were found by dividing the number of drivers involved in different injury categories by the overall fleet mileage accumulated for the given make/model combination during the exposure period.

Some of the results of the current study are highlighted below.

Annual Vehicle Mileage

As in the initial study, annual vehicle mileages were lower for the older model year cars. Thus, for example, the average annual mileage for all vehicle makes decreased from over 14,000 miles for 1975 models to less than 6,500 miles for 1960 models. This decreasing trend with increasing vehicle age was confirmed for all vehicle sizes and makes.

In comparing the annual mileage estimates by car size and body style, trends quite similar to those found in the initial study were observed. For example, old small-sized cars had higher annual mileages than old full or middle-sized cars, while the newer small-sized cars had lower annual mileages than their larger-sized counterparts. This last finding is in contrast to the previous study and may reflect the driving population switching back to the more comfortable, larger car for most of their driving; after all, the gas lines had disappeared and the motorist seemed accustomed by then to the higher gas prices. Whatever the reason, the newer ('70-'75) subcompacts had lower annual mileages than their larger counterparts.

Note that the estimates for older model subcompacts are essentially the estimates for VW Beetles, since during those years this was the only make of subcompact being sold in large numbers in the U.S.

Body style comparisons showed that most standard-sized station wagons again had higher annual mileages than standard-sized sedans or hardtops. Also, new standard-sized four-door cars had higher annual mileages than their two-door counterparts.

A comparison of the annual mileage estimates across the two exposureperiods showed an increase of over five percent for new cars and
approximately 3.6 percent for old cars for all makes combined. Similar comparisons showed that, for full and middle-sized cars, there was an increase in annual mileage, particularly for the newer model years. However, as stated previously, for new model small-sized cars there was a slight decrease in mileage in the second exposure period. These changes reflect some of the effects of the energy crisis on vehicle travel and evidently its differential effect on annual mileage by vehicle size.

Accident and Injury Rates

In the initial report, a major effort was made to take into consideration driver age-sex characteristics while making accident rate comparisons. The main obstacle to this effort was the lack of adequate data required for the adjustment procedures. In the current follow-up study, no attempt was made to adjust the accident and injury rates for driver characteristics since in the interim period no additional data source became available. However, an examination of driver age by car size for vehicles involved in accidents showed that the mean driver age for small-sized cars is lower than those for middle or full-sized cars. This most likely at least partially explains the higher involvement rates for small-sized cars.

The accident and injury comparisons in the present study indicate virtually the same trends as in the earlier report. The involvement rates -both overall and single vehicle -- decline for newer model cars with the trend being more pronounced for full-sized cars than for middle or smallsized cars. However, injury rates, including driver injury and vehicle severity measures, decreased for newer models across all vehicle sizes.

In contrasting accident and injury rates for different vehicle sizes for comparable model years, similar results were again obtained. Smallsized cars had not only higher injury rates (both driver injury and vehicle severity) but also higher involvement rates (both overall and single vehicle).

Comparisons by body style for the standard-sized cars showed that hardtops had significantly higher involvement and injury rates than either sedans or station wagons. Similarly, two-door standard-sized cars had higher involvement and injury rates than their four-door counterparts.

In comparing the accident and injury rates for vehicles across the two exposure periods, it was seen that the follow-up rates were generally
higher than the rates for the initial study. This is especially true for the two 'any injury' categories (driver and vehicle severity) -- and to some extent the overall accident involvement rate. These higher involvement and injury rates might be partially explained by the fact that more people were driving above the 55 mph speed limit in the latter exposure period which followed the energy crisis.

Failure Rates

In the current follow-up study, the failure rates of four inspection items -- headlights, stoplights, footbrakes and tires -- were investigated. The primary purpose was to study the relationship between item failure rates and vehicle size, age, and accumulated mileage. The failure rate was defined as the proportion of vehicles that did not meet the inspection specifications prescribed by the North Carolina Division of Motor Vehicles.

The results show that, in general, the failure rates for all four inspection items are highest for high mileage and/or older model cars. Also, there were very few significant differences in defect rates for the full, middle and small-sized cars within the same model year or mileage group. As expected, it was observed that the effect of mileage on vehicle defects is not the same across all model years, i.e., there is an interaction between age and mileage on failure rates.

Recommendations

The procedure used in the initial and follow-up studies for determining vehicle mileages from paired odometer readings currently appears to be the best method for gathering vehicle-specific exposure data. Unfortunately, this procedure is heavily dependent on current and past odometer readings being recorded by the inspection mechanic, and the two studies indicate that in North Carolina, with over 6000 inspection stations to monitor, a major portion of the inspection receipts have one or both mileages missing. Although a comparison of the usable and unusable receipts showed that the two groups were similar, a loss of data due to missing data elements unfortunately made for extremely small sample sizes
for many individual vehicle makes and model years. With such a large number of inspection stations involved, it appears unlikely that the percentage of usable inspection receipts could be increased dramatically.

A reasonable alternative could be to select a representative sample of inspection stations and to collect inspection receipts from these stations over a longer period of time, say six months. Special instructions could be given to each station and the quality of the receipts closely monitored during the data collection period.

Another problem has to do with discarding accident data due to incorrect reporting of VIN's by the investigating officer at the scene of an accident. Consequently, in processing the 1975 North Carolina accident file to determine the accident frequencies for the various vehicle makes and model years, a fairly large portion of the records had to be excluded. This problem could be alleviated to a great extent by using the license plate number (since it is easier to record and hence more likely to be correct) to obtain the VIN information through the registration file and then determine vehicle make and model year from that VIN. Thus, the numerators in the expressions for the accident rates would be inflated to represent more closely the true rates. However, for the initial and follow-up studies, the rejected records and the usable records were very comparable. Thus, although the absolute involvement and injury rates may have been underestimated, their relative magnitudes should have been preserved.

The relationship between increasing failure rates and vehicle age and/or mileage warrants consideration of some form of variable intensity inspection program. Under such a program old or high mileage vehicles would be more rigorously inspected than new or low mileage vehicles since more defects would be expected in the former group of vehicles.

REFERENCES

Dutt, A.K. and Reinfurt, D.W. Accident involvement and crash injury rates by make, model, and year of car. Chapel Hill: University of North Carolina Highway Safety Research Center, April 1977.

Reinfurt, D.W., House, E.G., and Levine, D.N. Periodic motor vehicle inspection in North Carolina: A follow-up study. Chapel Hill: University of North Carolina Highway Safety Research Center, November 1971.

Reinfurt, D.W. and Pascarella, E.A. Periodic motor vehicle inspection in North Carolina: A descriptive study. Chapel Hill: University of North Carolina Highway Safety Research Center, November 1969.

Seila, A.F., Entsminger, M.A. and Silva, C.Z. An examination of the lowered maximum speed limit and fuel shortage in North Carolina. Chapel Hill: University of North Carolina Highway Safety Research Center, June 1977.

Sichel, H.S. The statistical estimation of individual accident liability. Traffic Safety Research Review, 1965, 9, 8-15.

Snedecor, G.W. and Cochran, W.G. Statistical Methods. Ames, Iowa: The Iowa State University Press, 1968.

White, S.B., Clayton, C.A., Bressler, L.D. and Stewart, J.R. Improved exposure measurements. Research Triangle Park, N.C.: Research Triangle Institute, 1975.

Appendix A. Estimation of Annual Mileage.

Prior to computing the elapsed mileage between inspection dates (i.e., over the corresponding time period), various frequency tabulations were made to examine the distribution of vehicle type, odometer readings, and dates of inspection. Previous experience dictated that there would be problems with recycled odometers (i.e., those that have wrapped around), reversal of mileages (i.e., old mileage recorded as the current mileage), etc.

Table A. 1 presents the distribution of the sample by vehicle type and model year. Trucks and "Other" vehicles are excluded from the subsequent analysis. Some of the "Unknown" cars and station wagons were later classified into a make/model/year group through the license plate number and subsequent VIN decoding program.

Table A. 2 shows the distribution of cars and station wagons in a twoway table of past mileage versus present mileage. One would expect most of the vehicles to lie fairly close to the diagonal elements or below it. Table A. 2 does follow this general pattern except for (a) odometer wraparounds (these lie mostly at the intersections of columns 7, 8, 9, 10 and the first 3 rows); (b) reversal of past and present mileage by the inspection mechanic (this accounts for the relatively high frequencies in the cells just above the diagonal elements), and (c) inclusion of the fractional part of the odometer readings as an integer (this was reflected in the higher frequencies in the lower cells of the first three columns).

Figure A.l shows the algorithm used to salvage the recycled and odometer reversal cases and to compute the distance covered since the last motor vehicle inspection. This algorithm eliminates some records and the resulting sample distribution by make/model/year group was compared with the registration frequencies to ascertain that no serious biases were introduced in this redistribution process.

Table A. 3 shows the number of cars and station wagons distributed by the two inspection months. Although the inspection books were collected in January (representing December 1975 inspections), a fair number of

Table A.1. Distribution of vehicle type by model year as indicated on the inspection receipt (see Figure 2.1).

Vehicle Type Year	Auto	Station Wagon	Truck	Bus	Trailer	MotorCycle	Unknown	Total	(\%)
Unknown	15,803	1,554	5,122	109	225	203	1,210	24,226	(10.0)
Pre-' 60	2,073	119	3,861	144	197	10	, 370	24,226 6,774	(2.8)
'60	618	51	636	33	25	2	59	1,424	(0.6)
'61	956	108	668	35	30	2	82	1,881	(0.8)
'62	2,173	199	1,015	33	34	4	137	3,595	(1.5)
'63	3,443	293	1,257	29	44	3	244	5,313	(2.2)
'64	5,142	417	1,573	36	73	8	343	7,592	(3.1)
'65	7,187	565	1,849	31	71	9	433	10,145	(4.5)
'66	8,766	672	2,260	51	96	9	514	12,368	(5.1)
'67	9,167	716	2,271	45	99	9	565	12,872	(5.3)
'68	11,390	-830	2,530	45	128	16	630	15,569	(6.4)
'69	13,090	1,007	3,287	65	142	16	751	18,358	(7.5)
170	13,525	934	3,074	62	112	44	800	18,551	(7.6)
'71	11,970	1,092	2,745	47	102	70	735	16,761	(6.9)
'72	16,320	1,462	4,180	80	191	147	971	23,351	(9.6)
'73	17,313	1,675	4,682	86	197	201	1,087	25,241	(10.4)
$\begin{array}{r}174 \\ \hline \\ \hline\end{array}$	16,583 9,019	1,646 837	5,074	71 118	172	303	1,017	24,866	(10.2)
75	9,019	837	3,029	118	277	350	653	14,283	(5.9)
Total	164,583	14,177	49,113	1,120	2,215	1,406	10,406	243,170	(100.0)

Table A.l. Past mileage vs. present mileage frequency distribution (cars and station wagons).

	$\begin{gathered} 0 \\ \text { to } \\ 10,000 \end{gathered}$	$\begin{gathered} 10,001 \\ \text { to } \\ 20,000 \end{gathered}$	$\begin{aligned} & 20,001 \\ & \text { to } \\ & 30,000 \end{aligned}$	$\begin{gathered} 30,001 \\ \text { to } \\ 40,000 \end{gathered}$	$\begin{aligned} & 40,001 \\ & \text { to } \\ & 50,000 \end{aligned}$	$\begin{gathered} 50,001 \\ \text { to } \\ 60,000 \text { (6) } \end{gathered}$	$\begin{aligned} & 60,001 \\ & \text { to } \\ & 70,000 \end{aligned}$	$\begin{gathered} 70,001 \\ \text { to } \\ 80,000 \text { ed } \end{gathered}$	$\begin{aligned} & 80,001 \\ & \text { to } \\ & 90,000 \text { (9) } \end{aligned}$	$\begin{gathered} 90,001 \\ \text { to } \\ 100,000 \end{gathered}$	$\begin{gathered} 100,001 \\ \text { to } \\ 110,0000 \end{gathered}$	$\begin{gathered} 110,001 \\ \text { to } \\ 120,000 \end{gathered}$	$\begin{aligned} & 120,001 \\ & \text { to } \\ & \text { Greater } \end{aligned}$
$\begin{array}{cc} 0 \\ \text { to } & \\ 10,000 & \text { (1) } \\ \hline \end{array}$	3268	54	38	26	34	44	77	206	964	2445	11	2	10
	6094	2011	35	24	19	26	37	59	187	834	19	9	5
$\begin{gathered} \hline 20,001 \\ \text { to } \\ 30,000 \end{gathered}$	2047	6085	1746	18	18	10	28	22	50	162	6	8	17
	476	2494	5648	1644	33	15	15	25	22	36	-	3	16
$\begin{array}{cc} \hline 40,001 & \\ \text { to } & \\ 50,000 & \text { (5) } \\ \hline \end{array}$	166	412	2355	5306	1685	37	18	18	16	21	1	1	23
$\begin{array}{cc\|} \hline 50,001 & \\ \text { to } & \\ 60,000 & \text { (6) } \\ \hline \end{array}$	77	83	478	2019	5045	1739	28	20	17	17	-	2	22
60,001 t0 70,000 8	75	24	78	390	1972	4957	1809	25	22	16	-	2	17
	72	28	34	90	302	1605	4898	1719	32	17	-	-	28
$\begin{array}{ll\|} \hline 80,001 & \\ \text { to } \\ 90,000 & \text { (9) } \\ \hline \end{array}$	69	30	23	28	81	284	1524	4218	1473	19	1	-	18
$\begin{gathered} 90,001 \\ \text { to } \\ 100,000 \end{gathered}$	79	17	20	24	33	75	258	1408	3500	1132	5	2	16
$\begin{aligned} & 100,001 \\ & \text { to } \\ & 110,000 \end{aligned}$	8	0	0	0	0	0	1	18	54	169	19	2	20
$\begin{aligned} & 1110,001 \\ & \text { to } \\ & 120,000 \end{aligned}$	9	1	0	2	0	1	1	3	13	46	28	5	1
$\begin{aligned} & 120,001 \\ & \text { and } \\ & \text { Greater } \end{aligned}$	43	42	34	46	41	44	47	39	30	37	12	23	293

Figure A. 1 Flow chart for computing distance covered by cars and station wagons.

Table A.3. Frequency distribution of cars and station wagons by inspection months.

PRESENT	PREVIOUS INSPECTION MONTH													$\begin{aligned} & \text { Row } \\ & \text { Total } \end{aligned}$
INSPECTION MONTH	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Unknown ${ }^{1}$	
Jan.	9	2	0	0	0	1	0	0	1	3	3	19	5	43
Feb.	0	1	0	0	0	0	0	0	0	0	0	0	0	1
March	0	0	0	0	0	0	0	0 !	0	0	0	0	0	0
April	0	0	0	0	0	0	0	0	0	0	0	0	2	2
May	0	0	1	0	0	0	0	0	0	0	0	0	0	1
June	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Suly	0	0	0	0	0	0	0	0	0	0	0	0	4	4
Aug.	0	1	0	0	0	0	1	4	0	0	2	1	14	23
Sept.	0	2	0	0	1	1	1	$12(13$	27 (12)	0	0	1	17	62
vet.	2	0	1	0	0	2	3	1914	47(13)	193 (12)	7	3	75	352
iov.	4	9	11	5	15	8	1516	1815	$58(14)$	25213	1559(12)	10011	956	3010
Dec.	1406(11)	392	314	360	399	492 (18)	70917	1023 (16)	1805(15)	6419 (14)	36268 (13)	74014 (12)	51610	175210
Unknown	0	0	0	0	0	0	0	0	0	0	1	3	3	7
$\begin{gathered} \text { Colum } \\ \text { To:al } \end{gathered}$	1421	407	327	365	415	504	728	1076	1938	6867	37840	74141	52686	178715

'A large number of receipts lacked information on the previous inspection date. This is because the
receipts were not pre-screened (as previously) to eliminate those receipts with only one inspection date.
inspection receipts for other months were turned in also. It is sometimes impossible to ascertain whether the elapsed time was X months or $12+X$ months. The net result was that it was decided to consider only those vehicles inspected during the months enclosed within the doublelined cells. The corresponding time periods between inspections are circled in the upper right hand corner of each of these cells.

Appendix B. Comparison of "Usable" and "Unusable" Receipts

As a large proportion of the original inspection receipts were not usable in this study for a variety of reasons (e.g., illegible license plate number, missing odometer reading), it is critical to compare these groups to ensure that the sample of usable receipts is not a biased sample. The results of these comparisons (presented in this appendix) indicate that no serious biases should be present in the derived make/model annual mileages.

Table B.l shows the proportion of "missing" data elements for the rejected receipts. As expected, not recording the previous mileage was the most common missing item in these rejected receipts.

Table B. 1 Missing data percentage distribution for each required inspection item ($N=132,916$).

Data Item	Percentage Recorded	Percentage Missing
License Plate Number	63.9	36.1
Previous Mileage	8.0	92.0
Current Mileage Previous Inspection Date Current Inspection Date	92.3	7.3

Surprisingly, the license plate number was the next most often neglected entry.

Table B. 2 shows a comparison of the usable receipts versus the rejected receipts by vehicle type. The breakdown for the two groups is generally quite similar excepting a slightly higher proportion of autos in the unusable receipts.

Table B. 2 Percentage distribution of vehicle type for "usable" receipts and "unusable" receipts.

Vehicle Type	Usuable Receipts $(\%)$	Unusable Receipts $(\%)$
Auto	66.3	69.3
Station Wagon	5.7	6.0
Truck	19.7	20.8
Other	8.3	3.7
Total	132916	110254

As is discussed in Chapter III, the annual mileage accumulated by a vehicle is highly correlated with its age. Therefore, it is important, especially in the present case with such a large proportion of unusable receipts, that the distribution by age for the two groups ("usuable" and "unusable" receipts) be similar. Table B. 3 shows a comparison by model year for cars and station wagons for the "usable" and "unusable" receipts (excluding pre-1960 models).

Except for the 1975 model year, these distributions appear to be very comparable. The difference in the proportion of 1975 models is not unexpected since many of the "unusable" 1975 model receipts were for dealer autos which would not have old odometer readings, etc.

Failure rates of four inspection items (headlights, stoplights, footbrake, and tires) and their relationship to vehicle size, age, and mileage are presented in Chapter V. Since a large proportion of the inspection receipts collected were not usable for the study, it was necessary to compare the failure rates for the total sample of inspection receipts with the sample used in the study. Tables B. 4 and B. 5 present the various failure rates for the two groups of inspection receipts broken down by model year and current odometer readings. The corresponding rejection rates are most comparable in almost every case.

Table B. 3 Percentage distribution of cars and station wagons by model year for "usable" receipts and "unusable" receipts.

Mode1 Year	Usable Receipts $(\%)$	Unusable Receipts $(\%)$
1960	0.4	0.5
1961	0.6	0.7
1962	1.5	1.5
1963	2.3	2.5
1964	3.6	4.4
1965	5.0	4.8
1966	6.1	6.0
1967	6.5	7.5
1968	7.9	8.5
1969	9.2	8.7
1970	9.6	10.8
1971	8.4	11.9
1972	11.6	8.5
1973	12.1	
1974	11.2	
1975	4.1	

All of these comparisons suggest that the usable sample of inspection receipts is representative of the entire statewide sample. Thus, the derived make/model/year estimates of annual mileage and defect rates should yield unbiased estimates for the overall population.

Table B. 4 Failure rates for all inspection receipts and sample used in study by model year.

Model Years	No. of Inspection Receipts (N)		Headlights		Inspection Items				Tires	
	Sample	Total								
'60-'65	10,238	21,152	12.2	11.8	4.5	4.5	4.2	4.1	4.2	4.7
'66-'70	30,029	60,097	12.5	11.8	3.2	3.2	3.4	3.1	3.4	3.6
'71-'75	35,941	77,917	10.8	10.1	1.7	1.5	2.4	1.9	2.1	1.9

Table B. 5 Failure rates for all inspection receipts and sample used in study by current odometer reading.

Current* Odoemter Reading	No. of Inspection Receipts (N)		Headlights		Inspection Items				Tires	
	Sample	Total								
0-20	13,588	45,359	11.1	11.8	2.6	1.7	2.4	1.4	2.9	3.7
20-40	17,517	36,449	10.8	10.2	2.0	2.0	2.7	2.3	2.4	3.6
40-70	24,666	50,267	11.5	11.0	2.4	2.5	3.1	2.7	2.6	2.6
70-100	19,773	39,860	13.1	9.6	3.5	3.4	3.8	3.3	3.6	3.7
>100	664	1,809	10.7	10.1	3.0	3.2	3.9	2.3	2.4	3.8

*(in thousands of miles)

Appendix C. Accident and Injury Frequencies and Rates.

The tables in this appendix present the accident and injury frequencies and rates that form the basis for the analysis in this report. The individual makes included within a particular group are listed above each table. Because of space limitations tables with some model years combined together have been excluded, although many of the comparisons in Chapter IV have been based on combined data. For the convenience of the reader an index for tables in this section follows.

LIST OF TABLES
Page
All 77 vehicle makes combined 101
Full-sized cars 102
Middle-sized cars 103
Small-sized cars 104
Luxury cars 105
Medium-sized cars 106
Standard-sized cars 107
Intermediate-sized cars 108
Compact-sized cars 109
Subcompact cars 110
Standard-sized station wagons 111
Standard-sized sednas 112
Standard-sized hardtops 113
Standard-sized four-door cars 114
Standard-sized two-door cars 115
Big Buick 116
Cadillac 117
Oldsmobile 98 118
Big Pontiac 119
Chrysler 120
Medium Buick 121
Medium Oldsmobile 122
Medium Pontiac 123
Standard Chevrolet 124
Standard Ford 125
Standard Plymouth 126
Chevrolet Chevelle 127
Intermediate 0ldsmobile 128
Intermediate Ford 129
Intermediate Pontiac 130

LIST OF TABLES (Continued)

Page
Chevrolet Nova 131
Ford Maverick and Falcon 132
Ford Mustang 133
Plymouth Valiant 134
Chevrolet Vega 135
Ford Pinto 136
Datsun 137
Toyota 138
VW Beetle 139
VW Fastback 140

Overall table with all 77 individual makes combined.

Full-sized cars (Big Buick, Big Pontiac, Cadillac, Medium Buick, Medium 01dsmobile, Medium Pontiac, Standard Chevrolet, Standard Ford, Standard Plymouth).

Middle-sized cars (Chevrolet Chevelle, Intermediate Ford, Intermediate 0ldsmobile, Intermediate Pontiac, Chevrolet Nova, Ford Maverick, Ford Mustang, Plymouth Valiant).

Small-sized cars (Chevrolet, Vega, Ford Pinta, Datsun, Toyota, VW Beetle, VW Fastback).

Luxury Cars (Big Buick, Cadillac, Big Pontiac).

Medium-sized cars (Medium Buick, Medium 0ldsmobile, Medium Pontiac).

Standard-sized cars (Standard Chevrolet, Standard Ford, Standard Plymouth).

Intermediate-sized cars (Chevrolet Chevelle, Intermediate Ford, Intermediate 0ldsmobile, Intermediate Pontiac).

Compact-sized cars (Chevrolet Nova, Ford Maverick, Ford Mustang, Plymouth Valiant).

Subcompact cars (Chevrolet, Vega, Ford Pinto, Datsun, Toyota, VW Beetle, VW Fastback).

Standard-sized station wagons (Standard Chevrolet, Standard Ford).

Standard-sized sedans (Standard Chevrolet, Standard Ford).

Standard-sized hardtops (Standard Chevrolet, Standard Ford).

Standard-sized four door cars (Standard Chevrolet, Standard Ford).

Standard-sized two-door cars (Standard Chevrolet, Standard Ford).

Big Buick

Cadillac

Big Pontiac

Chrysler

Medium Buick

Medium Pontiac

Standard Ford

Standard Plymouth

Chevrolet Chevelle

Intermediate 01dsmobile

Intermediate Ford

	1	ACCIUENT TYPE					I	UPIVER INJUKY					1	VEHICLE SEVERITY					
	I																		
	1	Sivio．	I	Mult．	1		1	NOH5	1	Ar	1	ER	1	SONE	I	H $\%$		SER．	
	1	VEt．	1	1Eも．	1	IOIAL	1	10．－1	I	心山	I	S	1	18．J1	1	じ		1才」1．	
1560	1	＊＊＊＊	1	＊＊＊＊＊	1	＊＊＊＊＊	I	＊＊＊＊	－	＊＊＊＊	1	＊＊＊	1	＊＊＊＊	1	＊＊＊＊	1	＊＊＊＊＊	
1961	1	＊＊＊＊＊	I	＊＊	1	＊＊＊＊＊	1	＊＊＊＊＊	I	＊＊＊＊	I	＊＊＊	1	＊＊＊＊＊	1	＊＊＊	I	＊＊＊	
1962	1	． 53	I	4.71	1	5.60	1	4.35	r	． 95	I	． 21	1	4.23	I	1.37	I	． 21	1
1563	1	1.04	I	5.01	1	6.27	1	4． 78	？	1.29	I	． 31	1	4.76	I	1.51	I	． 41	I
	1		1				1		－		I		1		1		1		I
1964	1	1.04	1	4.39	1	5.55	I	4.00	J	1.56	1	． 24	I	3.69	1	1.86	1	． 27	
1565	1	． 91	1	4.69	1	6.03	I	4.41	i	1．81	I	． 21	1	4.09	I	1.95	1	． 24	1
1965	1	1.16	1	5.12	1	5.50	I	5.07	－	1.43	I	． 17	I	4.63	－	1.86	1	． 25	1
1967	1	1.27	I	4.36	1	6.34	I	5.18	̈	1.26	1	． 15	1	4.86	I	1.48	I	．23	1
	1		I		1		I		T		I		I		I		I		I
1963	1	1.42	I	5.86	1	7.62	I	6.10	1	1.53	1	． 16	I	5.58	I	2.05	1	． 2.9	1
1969	1	1.13	1	5.57	1	6.96	1	5.76	\％	1.20	I	． 19	1	5.40	I	1.56	I	． 27	I
1570	I	.54	I	2.83	1	3.48	1	2.87	I	． 62	I	.12	1	2.72	1	． 76	1	． 13	
2971	I	． 74	1	4.05	1	4.93	I	4.02	I	.91	I	． 13	1	3.79	1	1.14	I	． 15	I
	1		1		1		1		！				1		I		1		I
1972	I	． 66	1	4.23	1	5.13	I	4.42	I	.71	！	．08	I	4.22	I	． 90	I	.10	I
1573	1	． 54	I	3.50	1	4.20	I	3.52	T	－ 68	1	． 06	I	3.34	I	． 80	1	． 04	I
1974	1	． 42	1	3.21	I	3.84	I	3.28	：	.57	1	． 05	I	3.16	I	． 69	1	． 05	
1975	1	.57	I	4.07	1	4.82	1	3.00	I	1.02	I	． 22	1	3.66	I	1.16	1	.22	
	1		1		1		1		I				1		I		I		1

Intermediate Pontiac

Chevrolet Nova

Ford Maverick \& Falcon

Ford Mustang

Plymouth Valiant

Chevrolet Vega

Ford Pinto

Datsun

Toyota

VW Beetle

$H E=614=2 \cdot 1187$
Mutty mmitombk
02186

Acodemb involvement ard
crosh inimme retes bes make

SCRTD LIBRARY
425 SOUTH MAIN
LOS ANGELES, CA. 90013

