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CHAPTER 1

INTRODUCTION

In designing tunnel supports it is necessary to evaluate the
forces expected to develop in the support system as a result of the inter-
action that occurs between the support and the surrounding ground. The
magnitude and distribution of forces in the support system can be evaluated
by an analysis of the ground-support interaction. Such analyses can also
provide information about the stresses and deformations in the surround-
ing ground mass and, with certain analysis methods, the displacements of
the ground surface.

All these quantities are strongly dependent on the stress-strain-
time properties and geologic nature of the ground mass, the dimensions and
properties of the support, the initial stresses existing in the ground, the
method of excavation, and the type and manner of placement of the liner or
permanent support system.

The capability to perform analyses of ground-liner interaction
has increased steadily in recent years through the development of new an-
alytical solutions and modern numerical techniques such as the finite ele-
ment method. However, a great deal still needs to be done to explore the
full potential of such solution methods and to obtain results which can be
used in design of tunnel support systems.

Reported herein are the results of a study of ground-liner in-
teraction for tunnels. The main factors considered in this study were the
material properties of the ground and liner, tunnel depth, interaction be-

tween two parallel tunnels, position of liner installation relative to the



tunnel face, and the type of loading to which the liner is subjected.

The various methods available for the analysis of ground-liner
interaction are described in Chapter 2. A brief description of the types
of loading considered in this study is also given in this chapter.

Interaction due to excavation loading is considered in Chapters
3 through 6. Chapter 3 describes the results that can be obtained from
an analytical solution for deep tunnels. Shallow tunnels are considered
in Chapter 4, wherein the results obtained from a series of finite element
analyses of tunnels at various depths below the ground surface are present-
ed. Chapter 5 gives tne results of a study in which the actual advance-
ment of the tunnel through the ground mass was simulated. The axisymmet-
ric finite element an: yses performed for this investigation yielded in-
formation as to the longitudinal distribution of ground stresses and dis-
placements and liner forces and displacements for tunnels in which the
liner was installed right at the advancing face, a short distance behind
Fhe face, and far behind the face. Chapter 6 consists of a study of in-
teraction for the case of two parallel tunnels. The main arameters con- -
sidered in this investigation were the width of the pillar separaging the
tunnels and the sequence of excavation and liner installation for the two_
tunnels.

The results obtained from finite element analyses of ground-
liner interaction due o localized gravity loading are presented and dis-
cussed in Chapter 7. The main parameters considered in this series of
analyses were the matc.ial properties of the ground and liner and the dis-
tribution of the load acting on the liner.

Chapter 8 contains a summary of the work performed and the con-

clusions derived from the results obtained.



CHAPTER 2

REVIEW OF AVAILABLE METHODS FOR ANALYSIS OF

GROUND-LINER INTERACTION

2.1 GENERAL REMARKS

There are numerious analytical solutions and numerical tech-
niques available that can be, and have been, applied to the analysis of
ground-liner interaction. Each of these methods of analysis attempts to
simulate mathematically the response of the ground-liner system for a
range of possible conditions. Unfortunately, there is no one method that
can faithfully simulate all relevant details of the problem. All methods
are based on assumptions that are designed to reduce the complexity of the
problem to a sufficient degree so as to allow a solution to be obtained.
Some methods make more simplifying assumptions than others and, in general,
the more assumptions made the less accurately the procedure simulates the
real problem.

The majority of the analytical solutions have the advantage of
being straight forward and easy to use. They can usually be performed by
hand and seldom require the use of, and thus access to, large computer in-
stallations. The major disadvantage to these solution methods is that they
are necessarily ‘highly idealized. The results they yield must be care-
fully examined and applied with caution.

Numerical solution techniques, such as the finite element method,
have become quite popular in recent years, and for good reason. With the

finite element method almost any degree of simulation detail desired can be



achieved. At least, this is theoretically possible. However, as the de-
gree of simulation detail is increased, the complexity of the analysis al-
so increases. At one extreme are the highly detailed analyses which are
quite complex and thus difficult to perform and interpret. Such analyses
can be performed only with the most sophisticated‘finite element computer
programs, programs which require large and equally sophisticated computer
facilities. At the other extreme are the amalyses which provide solutioms
to a much more idealized form of the problem. Although these simplified
analyses can be inexpensive and easy to perform, they may provide no more
useful information than would be available from the analytical solutions.
As with the analytical methods, the results obtained from finite element
analyses can not be applied to the design of a tunnel system without first
being carefully evaluated with respect to the relationship between the
ground-liner system as simulated and as it exists in reality.
Indiscriminate use of any of the available methods of analysis
can lead to unfortunate consequences. It is important that the method
selected be applicable to the problem at hand. It is also important that
the results obtained from the analysis be interpreted properly. This re-
quires knowledge of both the anticipated tunneling conditions and the ad-

equacy of the analysis to simulate these conditionms.
2.2 LOADING CONDITIONS CONSIDERED

Ground-liner interaction is a consequence of the liner's resist-
ance to the movement of the surrounding ground mass, or portions thereof,
into the tunnel opening. These ground movements, or displacements, can be

initiated by events associated with the excavation and construction processes



or by events external to the ground-liner system.

The external loading to which a tunnel liner is subjected as a
result of its resistance to ground displacements depends on the nature and
source of these displacements. Three different loading conditions are con-
sidered in this investigation. These are called excavation loading, local-
ized gravity loading, and overpressure loading. The expressions, or names,
for these loading conditions are intended to be descriptive of the causative
factor that results in the inward ground displacement in each case.

Excavation of the tunnel opening alters the state of stress in
the ground mass surrounding the opening. As it adjusts to this new state
of stress the surrounding ground moves into the tunnel opening. If the
ground mass around the opening remains intact as this displacement occurs,
and if the tunnel liner is installed in time to resist this displacement,
the excavation loading condition will result. This loading conditiom is
illustrated in Fig. 2.1 which shows the longitudinal distribution of the
instantaneous radial ground displacements that occur in response to the
excavation of the opening for an hypothetical case. In this figure, the
solid curve represents the displacements that have occurred as the tunnel
face was advanced to point A. Similarily, the dashed curve represents the
distribution of displacements that will exist after the face is advanced to
point AA. If the liner is installed, in contact with the ground, at point
B just prior to advancement of the face from point A to point AA, the liner
will resist the additional ground displacement Ou and ground-liner inter-
action will result.

For the excavation loading condition the magnitude of the exter-

nal load that initially acts on the liner is related to the ratio up/ut,



[— Liner installed here
when face at A

FIGURE 2.1 GROUND DISPLACEMENTS RELEVANT TO THE EXCAVATION LOADING CONDITION



where up is the ground displacement that occurs prior to ground-liner con-
tact and u, is the total ground displacement that would have occurred if no
liner had been instalied. If a liner could be installed prior to any dis-
placement of the surrounding ground mass (up = Q) the initial external load
would exert a pressure on the liner equal to the insitu ground stress. At
the other extreme, if the surrounding ground mass achieved its new equilib-
rium state without coming into contact with the liner (up = ut) there would"
be no load applied to the liner and, thus, no ground-liner interaction.

It is clear that, for the excavation loading condition, ground-
liner interaction is a function of the position of liner installation with
respect to the face. Additionally, if the construction procedures are such
that an open gap (radial) is left between the liner and the ground mass, the
thickness of this gap will also influence the extent of interaction. If the
ground mass exhibits time-dependent (viscous) behavior the displacement u,
will consist of both instantaneous and time-dependent components and, the
magnitude of up will depend on such additional factors as time of ground-
liner contact and rate of tunnel advance.

Following excavation the distribution of stresses in the ground
mass around the tunnel opening can be such that the shear strength of the
soil or rock is exceeded to the extent that the earth's gravitational attrac-
tion is sufficient to cause portions of the material around the tunnel to
dislodge from the surrounding ground mass and displace, or fall, into the
opening. If this occurs after the tunnel liner is installed this material
will come to rest on or against the liner. The weight of this material,
which usually acts over only a portion of the liner circumference, con-

stitutes what is called herein the localized gravity load. In some soils



and fractured rock masses, ravel: g of material from around the opening
perimeter can gradually build up a large dead load on the liner. On a
larger scale, zones of high shear stress may develop above each side of

the opening (Hansmire, 1975) such that within these zones the shear strength
of the soil is exceeded, allowing the mass of soil between these zomes to
displace downward onto the liner. In discontinuous rock masses the possi-
bility exists for the displacement of rock blocks into the opening and on

to the liner. 1In such materials the shear strength and orientation, with
respect to the tunnel opening, of t& discontinuities are often of more
significance than the intact rock strength.

The overpressure loading condition is a result of the application
of an externally applied pressure (e.g., that due to the weight of new
surface structures or the pressure applied at the ground surface by a
nuclear blast) that mobilizes a system of vertical and horizontal stresses
in the ground mass surrounding the lined tunnel. Ground-liner interaction
results from the liner's resistance to the displacements the ground mass
undergoes in adjusting to these new stresses. This loading condition is
applicable only to existing tunnels and does not account for ground-liner
interaction resulting from the construction of the tunnel. The over-
pressure and excavation loading conditions are similar in that the ground
mass stress fields, and thus the forms of the inward ground displacements,
causing the two types of loading are similar. However, the magnitudes of
the liner forces and displacements resulting from ground-liner interaction
in the two cases are quite different because other aspects of the two load-
ing conditions are fundamentally different. These differences are discuss-

ed in the following sections of this chapter.



2.3 ANALYTICAL SOLUTIONS
2.3.1 EXCAVATION LOADING
SOLUTIONS BASED ON THE GROUND REACTION CURVE CONCEPT

The ground reaction curve (also called "ground unloading curve"
and "characteristic line") concept is one approach to the analysis of ground-
liner interaction. The ground reaction curve is the.pressure vs. displace-
ment curve for a tunnel opening in a given ground mass and for a given in
situ stress field. Only a two-dimensional section normal to the tunnel
axis and at a location far behind the tunnel face is considered. When such
a curve is used in combination with the pressure vs. displacement curve of
the tunnel liner, it allows the equilibrium value of ground pressure act-
ing on the liner to be determined. The early work that led to the develop-
ment of the ground reaction curve concept was performed by Labasse (1949),
Kastner (1962), and Pacher (1964). In recent years Rabcewicz (1969),
Lombardi (1970, 1973), Ladanyi (1974), and Daemen (1975) have refined and
extended the method to encompass a wide range of material behavior models
for the ground mass. Daemen (1975) presents a comphrehensive summary of
the development of the concept. The majority of this work has been con-
cerned with tunnels in rock and the influence of the broken rock zone
around the tunnel on liner loading. However, in most cases the solutions
can also be applied to tunnels in soils where, instead of brokem rock zones,
zones of plastic yielding form around the tunnels.

Analytical solutions which account for inelastic behavior of the

surrounding ground have, to date, been obtained only for the special case
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of an isotropic, or axisymmetric, insitu stress field, K, = 1. If applied
to a ground-liner system in which thein situ stress state is not axisym-
metric, Ko # 1, only th; average stresses can be considered and the equi-
librium state obtained is expressed in terms of the average ground and
liner response. For example, if thein situ stréss state is given by dv =
YH and dH = KBYH (Ko # 1), the solution only indicates that the average
pressure acting on the liner is some fraction of the quantity %(1 + Kb)YH.

The inability to consider conditions resulting in flexure of,
and thus the mobilization of bending moments in, the liner is the primary
shortcoming or disadvantage to this approach.

Solutions based on the ground reaction curve concept consist of
two sets of equations. These equations are derived for a unit thickness
cross section of the three~-dimensional ground-liner system. These two-
dimensional sections are oriented normal tg the longitudinal centerline of
the tunnel and are located at a point far behind the tunnel face. The con-
dition of plane strain is normally assumed. One set of equations defines
the displacement résponse of the tunnel support or liner to the application
of extermal pressure. The second set of equations defines the displacement
response of the tunnel opening to unloading. For a specific liner and
ground mass combination the ground reaction curve and the liner reaction
curve, obtained from the solution equations, are plotted together. The
point of intersection of these two curves defines the equilibrium state for
the conditions assumed and gives the magnitude of the ground pressure act-
ing on the liner and the displacement of the liner due to interactiom.
Hypothetical ground reaction and liner reaction curves are illustrated in

Fig. 2.2.
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a) Ground reaction curve + b) Liner reaction curve = c¢) Equilibrium state of the
lined tunnel opening

FIGURE 2,2 CONCEPTUAL LINER AND GROUND REACTION CURVES
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The ground reaction curves ABC and AB'C', Fig. 2.2a, represent
the relatioqship between the magnitude of an internal pressure applied to
the perimeter of the tunnel opening and the resulting radial displacement
of the opening. The curve ABC represents the instantaneous response of the
opening, while AB'C' gives the long term response. The difference between
these two curves reflects the loss of strength with time experienced by the
surrounding ground mass. The dashed lines indicate that similar curves
exist for conditions intermediate to those of the short term and long term.
the shape of the ground reaction curve is a function of the stress-strain-
time and shear strength properties of the ground mass. For example, por-
tions AB and AB' of the curves represent linear elastic response of the
ground mass, while portions BC and B'C' represent elasto-plastic response.
The curves intersect the horizontal axis (points C and C'), indicating that
the opening would be stable without internal support. In order for stability
to be achieved the ground mass surrounding the opening must retain sufficient
shear strength in the form of cohesion. For an unstable opening the decreas-
ing pressure-displacement curve would never reach the horizontal axis, in-
dicating that the opening would eventually close without some form of inter-
nal support being provided. Ladanyi (1974) presented a solution that allows
consideration of either a linear or non-linear elastic-plastic yield crite-
rion, volume dilation in the zone of broken rock around the opening, and
rock strength decrease with time. The strength loss with time is not ac-
counted for directly in the equations. Rather, the ground reaction curves
for later times are obtained by inserting in the equations reduced or re-
sidual values for the rock stress-strain and shear strength parameters. A

set of curves, such as those in Fig. 2.2a, is obtained. Daemen (1975) pre-



13

sented a solution that allows consideration of the influence of a pro-
gressive, strain dependent strength decrease during rcck failure. His model
assumes an exponential strength decrease beyond the peak shear strength
value. The resulting equations are quite lengthy and complex.

The liner reaction curve, Fig. 2.2b, represents the relationship
between the magnitude of the external pressure applied to the tunnel liner
and the radial displacement of the liner. The shape and slope of this curve
are functions of the stress-strain properties and dimensions of the liner.
For an incompressible liner the curve is a vertical straight line. Daemen
(1975) presents liner reaction curve equations for continuous concrete or
shotcrete liners, blocked steel sets, and rock bolt support systems.

In fig. 2.2c the ground reaction and liner reaction curves have
been combined to obtain the equilibrium state of the lined tunnel opening.
For this example it is assumed that the liner is installed in contact with
the surrounding ground immediately after all instantaneous displacement, u*,
has occurred (Note: The instantaneous displacement u* occurs within a short
distance behind the tunnel face. Because the solution considers only cross
sections far behind the face, the displacement occurring before liner in-
stallation cannot be less than u*). With commencement of the time-~dependent
ground displacements, pressure is gradually built up on the liner. This
pressure increases, following the liner reaction curve, until it equals the
magnitude of the internal opening pressure required to halt further dis-
placement of the surrounding ground. The resulting state of equilibrium
between ground and liner is given by the intersection of the two curves.

Had the liner been incompressible (vertical broken line) there would have

been no additional displacement of either the ground or liner, and thus
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there would have been no interaction. The equilibrium pressure acting on
such a liner, P*, represents the maximum possible pressure on a liner in-
stalled when u = u*. Figure 2.2c shows that, for a compressible liner,
ground-liner interaction does occur and results in the additiomal ground-
liner displacement ) and the reduction of the pressure from the potential
maximum value P* down to the lesser value Pz .

From the equilibrium pressure value the magnitude of the circum-
ferential compressive force, i.e., thrust, in the liner can easily be calcu-
lated (T = 1} a, where a = liner radius). Because the magnitude of the pres-

sure 1s assumed to be constant around the liner, there are no bending mo-

ments or shear forces.
GROUND-LINER INTERACTION FOR THE CIRCULAR TUNNEL IN ELASTIC GROUND

Despite the fact that the ground surrounding a tunnel usually
does not behave as an elastic material, several analytical solutions for
ground-liner interaction based on the assumption of elastic ground behavior
have been proposed. Justification for this assumption is usually based on
the argument that the details of the true ground conditions are usually not
sufficiently well known to warrent the use of the more complex analytical
models for ground behavior, which are themselves no more than idealizationms
of actual ground behavior. In addition, the point is made that solutions
based on elasticity theory can be derived so as to take into comnsideration
in situ stress states other than Ko = 1. Thus, these solutions allow deter-
mination of the complete response of the liner, i.e., the distributiomns of
thrust, bending moments, shear forces, and displacements around the liner,

for K, £ 1.
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Like the ground reaction curve solutions the elastic solutions
are two-dimensional, plane strain solutions that can be applied only to
tunnels located at great depth where the influence of the ground surface
boundary and the increase of insitu stress with depth from crown to invert
is negligible. Because it is assumed that the ground behaves elastically
and since the problem is reduced to two dimensions, it is necessary to
assume that the liner is installed in contact with the surrounding ground
mass prior to any displacement of the ground mass. Therefore, it is neces-
sary to assume that the liner is installed before excavation of the tunnel.
Such a construction sequence is certainly not common, but it is also not
impossible. Large diameter tunnels to be located in poor ground could be
constructed by mining, and backfilling with concrete, a series of small
diameter drifts around the perimeter of the tunnel to form the liner. This
would then be followed by excavation of the soil from within the completed
liner. Small diameter conduits installed through high fills by the pipe-
jacking method also follow a similar type of construction sequence. Liners
as large as 10 ft (3 m) in diameter have been installed by the jacking met-
hod. Since the ground displacements occurring ahead of the tunnel face are
usually small relative to the potential total displacements, these solutions
approximate the case of a liner installed right at the face (or slightly
behind the face if measures are taken to limit ground displacements).

The ,elastic ground-liner interaction solutions for K° # 1 can be
conveniently separated into two catagories on the basis of the types of
interaction problems to which they apply. Work by Morgan (1961), Muir Wood
(1975), and Curtis (1976) resulted in the solution to the problem of a lined

tunnel constructed in a stressed ground mass (excavation loading condition).
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Solutions by Burns and Richard (1964) and Dar and Bates (1974) are applic-
able to the problem of a lined tunnel located in a ground mass that is sub-
jected to an extermally applied pressure at the ground surface (overpressure
loading condition). This pressure is applied after the tunnel is construct-
ed and in situ stresses are not considered. The Burns and Richard and the
Dar and Bates solutions, while for the same problem, yield slightly different
results for certain ground-liner combinations. These differences arise be-
cause Burns and Richard used extensional shell theory to model the liner
while Dar and Bates used elasticity theory to model both the ground and the
liner. In the autumn of 1975 the writer modified both the Burmns and Richard
and the Dar and Bates derivations to obtain solutions for the excavation
loading condition. Upon publication of the Curtis paper early in 1976, it
was found that the equations of the modified solutions were quite similar
to, and yielded essentially the same results as, the Curtis solution equa-
tioms.

Figure 2.3 illustrates the distribution of in situ radial and shear
stresses around an imaginary circle representing the location of the tunnel
in the undisturbed ground mass. The corresponding distributions of stresses
that act on the liner, prior to removal of the ground inside the liner, are
not necessarily the same as those shown because these "initial" stresses are
influenced by the shear strength at the ground-liner interface. The ground-
liner interaction solutions normally consider only the two extreme interface
conditions. These are:

1. The No Slippage Condition - If the interface shear strength

everywhere exceeds the insitu shear stress, there is no slip-

page at the interface.
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Distributions shown for Ko = %

1 + K0 1 - Ko
g_. = YH(T) - YH(--—Z--—) cos 26

1 - Ko
T = YH( ) sin 28

0 2

FIGURE 2.3 DISTRIBUTION OF IN SITU RADIAL AND SHEAR STRESSES
FOR K #1
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2. The Full Slippage Condition - If the interface shear strength
is zero the liner offers no resistance to tangential displace-
ment of the ground at the interface and full slippage occurs.

The "initial" radial and shear stresses acting on the liner are the same as
those shown in Fig. 2.3 only if the no slippage condition is satisfied. If
this condition is not satisfied, i.e., if any amount of slippage occurs, the
"initial" stress distribution will be different from that shown. For the
full slippage condition the shear stresses go to zero and the radial stress-
es Increase around the crown and invert and decrease around the springlines.

The initial work in the derivation of the solution for a limed
tunnel constructed in a stressed ground mass was done by Morgan (1961).
Morgan assumed the full slippage condition and considered only the inter-
action due to the distortional component of an assumed radial stress dis-
tribution. Thereafter several commentators observed that Morgan's derivation
contained a basic error related to the required stress-strain relations for
the case of plane strain. Muir Wood (1975) presented a paper in which this
error was corrected and the solution was extended to include the uniform
component of the radial stress distribution (solutions for the distortional
and uniform components were derived separately as allowed by the principle
of superposition).

The Morgan and Muir Wood derivations for distortional loading pro-
ceed from an assumed distortion of the shape of a circular, incompressible
liner and an assumed initial pressure distribution. Unfortunately, the
resulting solution equations are not correct because the assumed initial
pressure distribution is not correct for the slippage condition at the

ground-liner interface considered. Both Morgan and Muir Wood assumed that
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for the full slippage condition the initial distribution of radial pressures
acting on the liner is the same as shown in Fig. 2.3 for thein situ stresses.
However, as previously discussed, this is not the case. For full slippage
the distortional component of the radial pressure is greater, by some un—
known amount, than that shown in Fig. 2.3. Thus, the Muir Wood solution

for distortional loading underestimates the magnitude of liner bending mo-
ments. However, his solution for the uniform component of loading is cor-
rect since interaction due to this type of loading is independent of the
slippage condition.

In a discussion of Muir Wood's paper, Curtis (1976) pointed out
the above mentioned error and proposed an alternate derivation that yielded
the correct equations. Considering only the distortional components of
loading, Curtis derived solutions for both the full slippage and no slippage
conditions. Thus, the complete solutions for both interface conditions can
be obtained by combining the Curtis equations for distortiomal loading and
the Muir Wood equations for uniform loading.

Both Muir Wood (1975) and Curtis (1976) presented equations for
interface conditions intermediate to the full slippage and no slippage con-
ditions. To obtain these solutions the expression for the "initial" shear
stresses acting on the liner for the no slippage condition, ¥ , = 1T =

TO 6

LyH(1 - Ko)sin 26 , was replaced by £, < S sin20 , where S is the interface

]
shear strength. While this approach provides a means of obtaining a solu-
tion, it does not accurately reflect the complex redistribution of stress

that would occur with partial slippage. It seems reasonable to expect that

only those shear stresses in excess of the shear strength would be reduced

in magnitude and that the reduction of these stresses would lead to increases
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of the adjacent shear stresses which were initially less than the shear
strength. Thus, it is not 1likely that the new distribution of shear stress
could be expressed in terms of as simple a function of 6 as sin®.

The Burns and Richard (1964) and Dar and Bates (1974) ground-liner
interaction solutions are similar in that both were derived for the problem
of a deep circular tunnel in an unstressed medium which is subsequently
loaded by a ground surface overpressure (one-~dimensional loading for which
the lateral stress ratio is a function of Poisson's ratio of the medium,

K = vm/(l - vm)). They differ in that Burns and Richard used elasticity
theory to model the ground mass and extensional shell theory to model the
liner, while Dar and Bates used elasticity theory to model both the ground
mass and the liner. The Burns and Richard equations yield the liner response
at equilibrium in terms of thrusts and bending moments, whereas the Dar and
Bates equations give the radial and circumferential stresses in the liner.
Because of assumptions made in the derivation with respect to the liner,

the Burns and Richard solutibn is applicable only to liners of small thick-
ness relative to their radius. The two solutions yield essentially the same
results for thin liners, but for thick liners the results can be quite dif-
ferent.

Hoeg (1968) presented a set of equations for the ground mass stress-
es and displacements that accounts for ground-liner interaction under con-
ditions of overpressure loading. This solution corresponds to that given
by Burns and Richard (1964). However, it must be noted that while the Hoeg
solution, as given, is correct for the no slippage condition, it is incor-
rect for the full slippage condition. HGeg maintains that the full slippage

and no slippage solutions differ only in the expressions for three constants
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that appear in the one set of equations given for ground mass stresses and
displacements. Actually, the stress and displacement equations for no slip-
page are not identical to those for the full slippage conditiom. The>stress
and displacement equations given by HSeg are correct for the no slippage con-
dition, but they cannot be used for the full slippage condition.

As previously mentioned, the writer has modified the Burns and
Richard (1964) and Dar and Bates (1974) solutions to obtain the equivalent
solutions for the problem of a lined tunnel inserted in an already stressed
ground mass. With the exception of only a few significant changes the der-
ivations of the modified solutions are identical to those for the original
solutions. The derivations for a total of eight different ground-liner in-
teraction solutions are given in Appendix A. The final equations of each
of these solutions are presented in Appendix B. The solutions derived con-
sist of the following: solutions for thin liners subjected to overpressure
loading under conditions of no slippage and full slippage (these solutionms
correspond to those given by Burns and Richard, 1964); solutions for thin
liners subjected to excavation loading under conditions of no slippage and
full slippage (these solutions are similar to those obtained by combining
the work of Muir Wood, 1975, and Curtis, 1976); solutions for thick liners
subjected to overpressure loading under conditions of no slippage and full
slippage ( the solution for no slippage corresponds to that which can be
obtained frém the work of Dar and Bates, 1974); and solutions for thick liners
subjected to excavation loading under.conditions of no slippage and full

slippage.
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LINER INSTALLED CLOSE TO THE TUNNEL FACE

The longitudinal distribution of radial ground displacements, at
the radial distance a, for an unsupported tunnel in an elastic medium is
illustrated for a hypothetical case in Fig. 2.4. 1In this figure it can be
seen that at points more than about one tunnel diameter ahead of the face
no displacements have occurred, while at a distance of approximately two
diameters behind the face full displacement, w , has occurred. At any
point between ~D and 2D, u a= e~ up, where up is the displacement that has
already occurred at that point and uy 1s the remaining displacement that
will occur when the tunnel face is advanced far beyond its present location.
The pressure that will act on the liner section installed near the face
position shown, after the face has been advanced at least 2D beyond the
point of liner installation, is directly proportional to the ratio ud/ut.

In terms of the displacement up, the pressure is proportional to the quant-
ity (1 - "p/ut)'

The ground reaction curve solutions and the elastic, Ko # 1 solu-
tions just described are all two-dimensional, plane strain solutions that
are not applicable within the zone of three-dimensional stress and long-
itudinal variation of instantaneous displacement that exist around the
tunnel face. If applied to liners installed near the tunnel face the elastic
solutions overestimate the pressures acting on the liner because they assume
no prior displacements (liner installed before excavation) and therefore
cannot account for the relaxation of the ground that would occur ahead of
the point of liner installation. It would appear that the ground reaction

curve solutions would necessarily underestimate the pressure on the liner

because they assume that all of the instantaneous ground displacements occur
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before the liner is installed and this would not be the case if the liner
were installed within the three-dimensional zone.

However, both approaches to the interaction problem could be
applied to liners installed close to the tunnel face if a relationship
between 1) liner location relative to the face and 2) the ground displace-
ment u.p at that location could be established. For the ground reaction
curve approach this relationship would be needed to determine the correct
position of the liner reaction curve relative to the instantaneous ground
reaction curve (the P = ( position of the liner reaction curve between the
origin and point C in Fig. 2.2).

The relationship between potential liner pressure and the prior
displacement of the tunnel opening, Up» plots as a straight line for elastic
behavior, as shown in Fig. 2.5 (line AC). This curve corresponds to the
ground reaction curve for the instantaneous displacements of an opening in
an elastic medium, and can be used, in combination with a liner reaction
curve, in a similar manner. For the case illustrated in Fig. 2.5 the line
DB is the liner reaction curve. (Note: If point D is located at the origin
of axes, the case corresponds to liner installed far ahead of face - 2-D
elastic K° # 1 solutions; if point D is located at or to the right of point
C, corresponds to liner installed far behind face - ground reaction curve
solutions). Here it is assumed that the liner is installed right at the
tunnel face. Thus, the displacement that has already occurred is u, = ug.
As the tunnel is advanced beyond this point the liner resists the additional
displacement Uy allowing only the displacement u, to occur before a con-
dition of equilibrium is achieved. Because the displacement u, = ug occured

before the liner was installed, the maximum pressure that could have acted
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Points on curve A - C represent maximum potential
pressure, PZ s that can act on liner installed
after displagement up has occurred.
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on the liner was only PZp’ not the full insitu pressure ED. Interaction
between the ground and the compressible liner led to the further reduction
of pressure to PE at equilibrium.

The relationship between ?@ and LY illustrated in Fig. 2.5 for a
specific case (up = uf), can be generalized in equation form. Using the

Lamé equations for an elastic thick-wall cylinder, Daemen (1975) derived

the following expression:

PZ ER 1
3 0= Q- T (v (e’ (2.1
(o] t 1 + /e o_@. ’e
Mo o e - e

To obtain this equation two thick-wall cylinders are considered.
One cylinder, representing the liner, has an outer radius of a and an inner
radius of (a - t). The second cylinder, representing the ground mass, has
an inner radius of a and an outer radius of b such that b>> a. If the
liner is installed at the point indicated in Fig. 2.4 it will resist the

displacement Yy when the face is advanced. At equilibrium the ground-liner

interface pressure is gﬂ' The displacement of the liner, 92’ is obtained

from consideration of the first cylinder, which is subjected to an external

pressure of Pe = P, and an internal pressure of P.1 = 0. The displacement

b4

of the ground mass that the liner has prevented, upr’ is obtained from

consideration of the second cylinder, which is subjected to an internal
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pressure of Pi = PZ' Equation 2.1 is obtained by substituting the expres-
sions for these displacements into the relation u, = uz + upr' In this

relation 4y is some fraction (1 - up/ut) of the total displacement ut; the
expression for u, being obtained from consideration of the second of the
above cylinders when it is subjected to an external pressure of Pe = Po and
an internal pressure of Pi = 0.

- Equation 2.1 can also be obtained by modifying the derivation of
the thick liner solution for excavation loading to actount for the prior
displacement up; The corresponding equation for a thin liner, obtained by

similarly modifying the derivation of the thin liner solution for excava-

tion loading, is:

P u
£ = a-B —r = » (2.2)
o ut _J-n . 1 r—a

1+ T N E; (1 - VZ) e

The in situ ground pressure is denoted by Po (for Kb 1). Typical curves
of 5 /Po vs. uI/utvdbtained from these equations are illustrated in Fig. 2.6.
The liner pressure for a given prior displacement is indicated by the inter-
section of the vertical line located at u.p/ut and the P‘Z/Po vs. u.p/ut line.
The equations, and thus Fig. 2.6, do not give the liner displacement, 5
resulting from interaction.

If the relationship between position of liner installation and

prior displacement is available, Fig. 2.5 or Eqms. 2.1 or 2.2 can be used

to determine the equilibrium liner pressure for a given position of liner
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installation. Figure 2.7 gives the liner pressure for liner sections in-
stalled at various distances, %g, from the tunnel face. The curves can
also be interpreted as the longitudinal distribution of pressure on a con-
tinuous liner that extended all the way to the tunnel face before excava-
tion was resumed. The up/u% vs. z curve was obtained from Fig. 2.4.

Although Fig. 2.5 and Eqns. 2.1 and 2.2 are useful as a means of
illustrating the nature of the relationship between the position, relative
to the tunnel face, at which a liner is installed, %Z’ and the resulting
ground pressure that acts on the liner, such methods are useless without
prior knowledge of the relationship between up and z. For the examples just
considered the up-— z relationship was obtained from Fig. 2.4 which, however,
is not applicable to the general case of an advancing lined tunnel. The
problem is that the up - 2z relationship is a function of zz.

The displacement distribution of Fig. 2.4 is valid for a lined
tunnel only if liner installation always occurs at a distance greater than
2D behind the advancing face. As far as ground-liner interaction (with
respect to instantaneous ground displacement) is concerned, this is a triv-
1al case because at this distance behind the face all of the ground dis-
placements have occurred (Fig. 2.4) and there can be no interaction. The
up - z relationship for an unlined tunnel, Fig. 2.4, can be applied only to
the following special case. If face advance was halted while liner instal-
lation continued until the tunnel was lined up to the face, the up - z re-~
lationship from Fig. 2.4 could be used to determine the longitudinal dis-
tribution of pressure that would act on the length of liner 0 < z < 2D (as

shown in Fig. 2.7) after the face had been advanced a distance of at least

2D beyond the end of the liner. For the general problem of the advancing
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tunnel interaction will occur only if, as the face is advanced, new sections
of liner are continually installed at a distance of less than 2D behind the
face. However, the resulting interaction inhibits the ground displacement
(up) ahead of the liner, causing the longitudinal displacement distribution
(the up - z relationship) to be different from that shown in Fig. 2.4 for
an unsupported tunnel.
It would seem reasonable to expect that any method employed to

determine the correct u, -z relationship for use in Fig. 2.5 of Eqmns. 2.1
or 2.2 would also yield the %Z -3 relationship, thereby eliminating the

need for Fig. 2.5 or Eqns. 2.1 and 2.2 as a means of determining Pz vs. z,.

2.3.2 LOCALIZED GRAVITY LOADING

As described in Section 2.2, localized gravity loading occurs
when portions of the surrounding ground mass dislodge and come to rest on
or against the tunnel liner. Most of the literature on the subject of this
type of loading is devoted to empirical methods for correlating ground (rock)
mass characteristics and support requirements. Terzaghi (1946), Barton, et
al.(1974) and Wickham, et al. (1974) have presented ground mass classifica-
tion systems for use in estimating the magnitude of the support pressure re-
quired to stabilize openings in the various types of ground. As these meth-
ods have developed over the years they have come to include more and more
of the details of the rock mass characteristics. As an example, Barton, et
al. (1974) give the following empirically derived expression for the re-
quired roof support pressure:
/3

b= (2/3) Q'

roof (2.3)
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where Q, the rock mass quality factor, is a function of six parameters.
These parameters are: the RQD index value, the number of joint sets, the
roughness of the weakest joints (Jr), the degree of alteration or filling
along the weakest joints, and two additional parameters which account for
the source of the rock load and for water inflow.

Analytical solutions for consideration of interaction between the
gravity loaded liner and the surrounding ground mass are few in number. The
graphical-analytical solution technique given by Procter and White (1946)
and the three solutions (Bodrov-Gorelik, Polygonal Method, Bougayera) des-
cribed by Széchy (1966) are probably the best known and most widely used.
Each of these solution methods requires prior knowledge of the distribution
and magnitude of the pressure that the gravity load imposes on the liner.
Thus, in order to analyze ground-liner interaction for a given ground-liner
system, empirical methods such as those mentioned above must first be used

to estimate the active pressure on the liner.
2.4 NUMERICAL TECHNIQUES - THE FINITE ELEMENT METHOD

Among the many numerical techniques available, the finite element
method is emerging as the most likely candidate for analysis of ground-
liner interaction and underground construction problems in general. There
are numerous finite element programs available that can be used to analyze
this type of problem. Some of the significant aspects of the various pro-
cedures that have been used are described in the following discussion of

finite element simulation of ground-liner interactionm.
2.4.1 EXCAVATION LOADING

The task of accurately simulating the ground-liner interaction



33

problem is an extremely complex one and the state of the art of the finite
element method does not permit consideration of all the relevant details of
the problem. However, most of the important aspects can be considered with
many of the available programs. A finite element mesh of the region which
contains the tunnel can be developed and analyzed for simulation of the
excavation and construction process. Nonlinear and time-dependent ground
behavior as well as many additional degrees of analytical refinement can be
introduced in the analysis to the extent allowed by practical limitations
imposed by the computer capabilities, and the theoretical limitations im=~
posed by insufficient knowledge of material behavior or how to model such
behavior.

In the finite element simulation of underground structures three
phases of analysis can be differentiatéd, each representing a distinct stage
under significantly different conditionms.

a. Initial Phase. The aim of this phase of analysis is to dup-

licate, as closely as possible, in the finite element mesh
the initial state of stress existing in the ground prior to
construction.

b. Construction Phase. This phase of analysis starts with the

initial state of stress present in the mesh and proceeds to
simulate the actual sequence of excavation and construction.

c. Operation Phase. The purpose of this phase is the analysis

of the completed structure subjected to the various loading
conditions that may arise during the life of the structure.
The first step in the analysis of an underground structure is the

development of an appropriate mathematical model of the system to be analyzed.
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The finite element model necessarily covers a finite region while modeling
what in reality can be assumed to be a half space. Only a limited number

of boundary conditions are available which can be imposed on the outer
boundaries of such a finite region. The most important considerations are
the choice of an adequate region for modeling and the type of boundary con-
ditions to use so as to minimize the effect of the artificial boundaries

on the quantities of interest. For a deep opening a region extending to a
distance of a few opening widths in each direction seems sufficient. If the
source df action is within the region, then fixed boundary conditions can
be used, whereas the force boundary condition is the obvious choice for an-
alysis of the effect ofin situ stresses. In the case of near surface open-
ings the region of analysis should extend to the ground surface. In situa-
tions where surface displacements are of interest, the lateral extent of the
region is determined by the depth of the opening as well as the opening
width.

Material behavior of the medium also becomes a factor in deter-
mination of the region of .analysis in certain caées. When the medium is
modeled as a nonlinear or elasto-plastic material, and the zone of plastic
yield or nonlinear behavior reaches or closely approaches an artificial
boundary, the results should be regarded with suspicion, because the arti-
ficial boundary will most likely have influenced the response of the sys-
tem.

Prior to simulation of construction the insitu stress conditions
should be represented in the mathematical model as closely as possible.
This is a difficult task and in some cases it is impossible to model the

truein situ stress condition even if it can be determined in the field. 1In
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such cases it becomes necessary to compromise and use approximate values
for the initial stress conditions. Generally, the insitu stress condition
is achieved by applying the weight of the medium as a body force to the
pre—-excavation configuration of the region of the ground mass to be an-
alyzed. Additional types of loading may be present, such as that due to
the weight of adjacent surface structures and/or the presence of tectonic
forces, and these can be included through the use of boundary forces.

For deep openings the weight of the medium containe& within the
bounded finite element mesh may be negligible compared to the st;esses due
to the total overburden. In such cases the full overburden stress can be
applied as a force boundary condition and the self-weight of the medium
encompassed by the finite element mesh can be neglected.

The coefficient of lateral stress, KB’ arising from the self-~
weight of a linear medium, becomes a function of Poisson's ratio, v, when
the lateral boundaries are constrained against horizontal movement. Under
these conditions the value of K5 will vary from one forv = 0.5 to zero for
v = 0. To simulate values of RB independent of v a force boundary condition
must be applied to reflect the appropriate values of the lateral stresses.
When the material properties of the medium vary with depth, such as in a
layered system, a lateral force boundary condition appears to be the only
way to obtain a uniform value of Ré. The boundary conditions used in the
first step of analysis to simulate the insitu stress conditions may have to
be modified in subsequent steps for simulation of comstruction, in order to
reflect the restraining effects of the medium outside the boundaries.

The technique for the simulation of construction using the finite

element method was initially developed by Clough and Woodward (1967) in an
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analysis of the construction of earth dams. The technique has been used for
the analysis of numerous geotechnical problems involving the simulation of
excavation as well as construction. The simulation technique has been used
in the analysis of the incremental construction of earth dams (Kulawy, et
al., 1969), large open excavations (Duncan and Dunlop, 1968), and braced
excavations (Christian and Ing, 1973, and O'Rourke, 1975).

The purpose of the analysis of the excavation process is to deter-
mine the change of state (displacements, strains, stresses) resulting from
the removal of a stressed portion of the system. Before excavation (pre~
excavation stage) certain stresses act on the surface which is to form the
boundary of the excavated region. These stresses vanish upon the completion
of excavation (post-excavation stage) if no internal support or pressure is
immediately applied. Using the finite element method, some researchers (e.g.,
Christian and Ing, 1973) have simulated the process of excavation by com-
puting the forces acting on the excavation surface at the pre-excavation
stage and subsequently applying the opposite of these forces to the model
of the post-excavation stage which is formed by the removal of the excavated
portion. However, such techniques can be used only in linear analyses and
involve awkward and lengthy multistage computer analyses of the different
stages of excavation and construction.

A more general approach to the simulation of excavation and con-
struction is to treat the problem as a nonlinear one. The source of non-
linearity in this case is the change of the geometry of the system. There~
fore, a general solution scheme for nonlinear problems can be used. Using
such a procedure nonlinear material behavior can be considered along with

the change of geometry resulting from excavation and construction in a
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unified manner. For the portions of the system to be excavated or construct-
ed, elements are assigned initially and the analysis is carried out in steps
similar to incremental nonlinear analysis. The elements in the portions to
be excavated are active originally and at a designated step when excavation
is to take place these elements are deactivated, i.e., they are not assembl-
ed in the remainder of the analysis. The construction of support systems

is simulated using a reverse process; the elements are initially inactive
and they are activated at a designated step when the installation of the
support structure is to take place. The activated elements may already be
stressed to simulate prestressing, such as is the case with pretensioned
rock bolts. The installation and removal of a temporary support system can
be simulated be activating elements at one step and subsequently deactivat-
ing them at a later designated step to simulate the removal of the tempor-
ary structures.

In the analysis of tunnels the simplest and least expensive model
is that which considers a two-dimensional, plane strain section of the tunnel
in the plane which is perpendicular to the axis of the tunnel. A simulation
analysis can be performed on this model. However, if the tunnel is to be
excavated full face the analysis consists of just two steps. At the first
step the insitu stress condition is simulated and at the next step the ele-
ments within the tunnel are deactivated to simulate excavation and the liner
elements are activated to simulate liner installation. The ground-liner
interaction takes place at the second step. If excavation and liner place-
ment are performed at two separate steps, no ground-liner interaction will
occur.

Although this type of two-dimensional analysis may provide some
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useful information and have the additional attraction of simplicity, it does
not correspond to the true development of deformations and stress changes
during the process of tunnel construction. At a cross section on the tunnel
line, as the tunnel face approaches and passes, the stress changes and de-
formations develop gradually. When the liner is installed behind the face
at this cross section, some displacement of the ground mass has already oc-
curred prior to the start of interaction. This effect cannot easily be
taken into account in a two-dimensional analysis. Another important effect
which cannot be modeled in two-dimensional analyses is the fact that as the
tunnel face advances, the excavation is done in a zone ahead of the face in
which the stress condition has already been modified by the approach of the
face.

In order to consider such effects, it is necessary to perform a
three-dimensional simulation of tunnel construction. In such an analysis
the ground mass is modeled as a three~dimensional body and the actual ex-
cavation of the tunnel, and liner installation with the advancement of the
tunnel face, is simulated.

However, even with the present state of the finite element method
and computer technology three-dimensional analyses for simulation of tunnel
construction can be quite expensive due to the size of the mesh required and
the large number of construction steps required in the analysis. While this
approach may be feasible for study of underground structures on a case by
case basis, parametric studies, requiring numerous analyses, of the general
problem appear to be impractical at this time.

A compromise can be made by assuming the coefficient of lateral

stress, K_, to be equal to one. For this special case the problem reduces

o)
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to a manageable axisymmetric form with the axis of symmetry coinciding with
the tunnel centerline. The cost of such an analysis is comparable to that
of two-dimensional, plane strain analyses. This is, of course, a reasonable
approximation for moderately deep tunnels where the ground surface effects
are negligible.

The response of the ground-liner system as obtained from the finite
element analysis of ground-liner interaction is strongly influenced by the
sequence of events simulated in the analysis. This is illustrated in the
following discussion of two such simulation sequences.

One approach to the finite element analysis of ground-liner inter-
action that has been used frequently in the past does not include simulation
of excavatipn and construction. In this type of analysis the finite element
mesh is generated with the tunnel and liner alfeady in place. Interaction
occurs when the boundary forces are applied. The sequence of events as sim-
ulated in this type of analysis is illustrated in Fig. 2.8a. This type of
analysis is only appropriate if the overpressure loading condition is being
considered. Analyses of this type cannot be used to investigate interaction
resulting from excavation loading.

If the excavation loading condition is to be considered the finite
element analysis must include the simulation of excavation and construction
as previously described in the discussion of the three phases of analysis.
The sequence of events as simulated in this type of analysis is illustrated
in Fig. 2.8b.

The liner thrusts resulting from these two types of analysis (with
and without simulation of construction) are shown in Fig. 2.9 as functions

of the compressibility ratio, C, and for various values of Poisson's ratio
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of the medium. The compressibility ratio is a measure of the relative
stiffness of the medium and the liner (Peck, et al., 1972) given by the

foilowing equation.

Em Ez t
C AT a-y /(1-v>"; (2.4)

The radial displacements resulting from these two types of analysis are
summarized in Fig. %.10.

It can be seen from these figures that without simulation of con-
struction the liner thrusts and radial displacements are consistently higher,
especially for low values of the compressibility ratio which correspond to
a stiff liner in soft ground. It is also interesting to note that the
Poisson's ratio of the medium has significant effect on the results. It is
only for an incompressible medium (vm = 0.5) that the two analyses give the
same radial displacement and liner thrust.

The differences in the results obtained from the two types of
analysis can be attributed to the differences in the ground displacements
the liner must resist in each. Considering an unlined opening, Fig. 2.11
shows that the analysis sequence for simulation of excavation yields the
total displacement u, in going from the imaginary circle in step 1 to the
stable opening at the end of step 3. This displacement is composed of two
components, u, = u, + ugs where uy is the displacement of the imaginary

t

circle caused by the application of the insitu stresses in step 2, and u,
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is the displacement caused by the creation of the opening in step 3. When
simulation of construction is not included in the analysis of a lined open-
ing, the liner must resist the full displacement u . When simulation of
construction is analyzed, the displacement u, occurs before the the tunnel
is created, and thus the liner must resist only the displacement uo. The
displacement u is, of course, a function of Poisson's ratio of the ground
mass, vm, and for vm = 0.5, ui = 0.

Figures 2.8, 2.9, and 2.10 and the above discussion apply to two-
dimensional, plane strain finite element analyses. However, these comments
also apply to the differences between the original and modified Burns and
Richard (1964) and Dar and Bates (1974) closed form analytical solutions
previously described. The original solutions (overpressure loading) corres-
pond to the finite element analyses that do not simulate construction. The
modified solutions (excavation loading) correspond to the finite element
analyses that do simulate construction.

The influence of the simulation of the longitudinal excavation and
construction of tunnels on the results of analysis is shown in Fig. 2.12.
One curve in this figure shows the liner thrust obtained when no excavation
was simulated; the insitu stresses were applied to the mesh which already
contained the tunnel with the liner extended to within one tunnel radius of
the face. The final (far behind the face) thrust value for this case is
equal to the two-dimensional analysis result with no excavation simulation.
The second curve in this figure is the result of an analysis in which ex-
cavation and construction of the support was simulated in one step; i.e., in
one step all the elements within the tunnel were deactivated and all liner

elements were activated. The final value of the thrust in this case is
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equal to the value given by the two-dimensional analysis with simulation

of excavation. The last curve in Fig. 2.12 is the result of an analysis

in which excavation of the tunnel and placement of the liner were simulated
as occurring in small steps to reflect the true process of tunnel construc-
tion with gradual advancement of the tunnel face. Each step of the analysis
consisted of advancing the tunnel face and the leading edge of the liner
along the centerline by a distance equal to one half of the tunnel radius.
The dramatic reduction of the thrust in this case as compared to the thrust
values obtained in the other cases is the result of the displacements taking
place ahead of the liner.

These examples clearly demonstrate the strong influence of con-
struction process simulation on the results obtained from analyses of ground-
liner interaction. A true measure of the ground-liner response for excava-
tion loading can only be determined if the construction process is simulated
as closely as possible in the analysis.

It is a well established fact that when soil is modeled as a lin-
early elastic material, the results of the analysis are approximate in that
they do not reflect the true material behavior of soils which exhibit strong
nonlinearity. To discuss the effects of nonlinear soil behavior on the re-
sults of numerical simulation of ground-liner interaction, results are pre~
sented from analyses in which the soil was assigned elasto-plastic material
properties with a Drucker-Prager (1952) yield condition. This yield condi-

tion is given by the following equation:

,/__Jz taJy -k =0 (2.5)
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in which J1 and J2 are the first invarient of the stresses and the second
invarient of the deviatoric stresses, respectively, and ¢ and k are material
constants,

Shown in Fig. 2.13a, for two-dimensional, plane strain analyses,
are typical plastic yield zones that form around an unlined and a lined
tunnel when the excavation and liner installation are simulated. For the
unlined tunnel, when the excavation is simulated by deactivating the elements
within the tunnel, a large plastic zone develops due to lack of intermal
support. This large plastic zone strongly influences the stress distribu-
tion around the tumnnel and gives much larger displacement of the tunnel
perimeter than the elast : analysis. When a lined tunnel is simulated, ex-
cavation and liner insté lation occur simultaneously; in one step the ele-
ments within the tunnel are deactivated and the liner elements are activated.
As a result the zone of plastic yield is very small and has very little ef-
fect on the tunnel behavior. 1In this type of analysis the stiffness of the
liner is an additional parameter influencing the extent of plastic yield.

A relatively stiff liner may prevent yielding entirely, in which case the
elasto~plastic analysis would give results dentical to those of a linear
elastic analysis.

The plastic yield zones, around an unlined and a partially lined
tunnel, resulting from the simulation of longitudinal excavation and liner
placement are shown in Fig. 2.13b. As can e seen, in both the unlined and
lined cases the plastic yield zones develop gradually as the tunnel face
advances, and continue to ‘expand within some distance behind the face, con-
sistent with the material properties assigned to the soil and with support

conditions. Nonlinear soil behavior can a significant effect on the results
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of simulation analyses and this effect is more drastic, but rational, when
the longitudinal process of tunnel construction is simulated.

The above exar les illustrate the inadequacy of the standard two-
dimensional finite element ar .ysis s a tool for simulation of tummel con-
struction and the resulting ground-liner interaction. The ground around
real tunnels almost always un :rgoes some displacement and stress change
prior to coming into contact .th the limer. This prior ground disturbance
results in the formation of a plastic zome around the tunnel ahead of ground-
liner contact. Figure 2.13 s ws that the two-dimensional analysis, because
it assumes no prior ground di :urbance, severly underestimates the extent
of plastic yielding around th 1lined tunnel. Because of this, the two-
dimensional analysis does not adequately account for the influence of non-
linear ground behavior on liner response. This indicates that attempts to
increase the utility of the two-dimensional analysis (of lined tunnels) by
introducing the additional refinement of nonlinear ground mass behavior
will not be successful. In order to fully exploit the available nonlinear
ground behavior models in the analysis of this type of problem the longi-

tudinal effects must be taken into consideration.
2.4.2 LOCALIZED GRAVITY LOADING

The ground-liner interaction problem for localized gravity loading
is usually reduced to a highly idealized form for numerical analysis. At
the present state of the art of numerical ar .ysis methods it is not normal-
ly practical to include in an interaction analysis simulation of the details
of the rock mass characteristics and the mechanical processes that result

in separation of soil or rock from the surrounding ground mass.
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Figure 2.l4a illustrates a cross section through an hypothetical
rock mass which contains three intersecting joint sets; one parallel to the
plane of the cross section and two normal to the cross section. Figure
2.14b shows that upon excavation and construction of a tunnel through this
rock mass a number of rock blocks have loosened and come to rest on the
liner. This load has forced the crown inward, away from the surrounding
rock, and the invert and springlines outward, against the surrounding rock.
The result is a complex distribution of active (rock load) and passive, or
interaction, pressures acting on the liner. The magnitude and distribution
of the active pressure are functions of the rock jointing (spacing, orienta-
tion, conitinuity, and shear strength of the joints), thein situ stress
field, and the methods and details of the congtruction procedure. The dist-
ribution and magnitude of the passive pressures are functions of the active
pressures, the rigidity and stiffness of the liner, the shear strength of
the rock-liner contact, and the pressure-deformation response of the sur-
rounding rock mass.

Figure 2.l4c 1llustrates the problem as commonly analyzed. The
simulated ground-liner system consists of a two-dimensional, plame strain
section normal to the tunnel axis containing a liner embedded in a homo-
geneous, elastic ground mass. The factors important to the formation of
the loosened rock mass and the physical presence of this material on the
liner are usually not simulated in the numerical analysis. These factors
must, of course, be considered prior to analysis in order to estimate the
extent of active pressure on the liner, and those factors that affect the
deformational response of the surrounding rock can be indirectly accounted

for when the deformation modulus and Poisson's ratio values are assigned to
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the simulated ground mass. The surrounding rock mass can be modeled by an
assemblage of finite elements (Dixon, 1973, Mohraz, et al., 1975) or by a
system of elastic springs (Dixon, 1971, Bawa and Bumanis, 1972, Brierly,
1975). This second model is similar to the Winkler-type foundation used
for the analysis of beams on elastic foundations. The mass of rock resting
on, and thereby applying the active pressure to, the liner is simulated by
a system of forces applied to the nodal points of the liner, The liner
usually consisting of an assemblage of beam elements.

It is important that the analysis provide for separation of the
liner from the surrounding medium in the region of loading. If separation
is not allowed a portion of the applied load will be transmitted by tension
across the ground-liner contact. If this occurs the active load will be
shared by the ground and the liner instead of being carried entirely by the
liner. 1If the rock mass is modeled by a system of springs, separation can
be insured by solving the problem in a series of two or more analyses. After
each analysis the springs are checked to determine if they are in compression
or tension. All springs found to be in tension are removed and the analysis
is repeated with the new configuration. The problem is solved when all re-
maining springs are in compression. If the rock mass is modeled by finite
elements a third type of element must be inserted between the liner and rock
elements to allow separation. Dixon (1973) used stiff one~dimensional bar
(spring) elements. With this type of element the procedure for obtaining a
solution is the same as that just described; two or more separate analyses
are required. The interaction analyses for localized gravity loading des-
cribed in Chapter 7 utilized a special "joint" element (Goodman, 1968) that

has zero tensile strength and which offers no resistance to separation of
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liner elements from the rock elements. The advantage gained by using this
type of element is that the analysis can be performed in just one computer

run instead of several as is required for the spring models.
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CHAPTER 3

TUNNELS IN ELASTIC GROUND: ANALYTICAL SOLUTION FOR EXCAVATION LOADING

3.1 GENERAL REMARKS

Peck (1969) provides an excellent description of the basic con-
cepts of ground-liner interaction. The analytical solutions derived in
Appendix A constitute generalizations of the two special case solutions
(i.e., for perfectly flexible and perfectly rigid liners) discussed by Peck
in that they allow consideration of liners of intermediate flexibilities
and stiffnesses.

The analytical solutions for excavation loading assume a lined
tunnel is to be constructed in a ground mass subjected to a system of insitu
stresses as illustrated in Fig. 3.la. In the rectangular coordinate system
one of the principal stresses 1s assumed to act in the vertical direction
and the remaining two principal stresses act in horizontal directions, one
being perpendicular and the other parallel to the longitudinal axis of the
tunnel. The magnitude of the vertical stress is equal to the weight of the
overburden, YH, where H is the depth from the ground surface to the tunnel
axis. The magnitude of the horizontal stress is equal to the coefficient
of earth pressure at rest, Ko’ times the vertical stress. The increase of
stress from the tunnel crown to the invert is not considered. Thus, the
solutions apply only to deep tunnels. The insitu stress state in terms of
the polar coordinate system is also given in Fig. 3.la. The dashed circle
of radius r = a in the figure represents the future location of the lined

tunnel.
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These solutions further assume that excavation and liner instal-
lation occur instantaneously and simultaneously so that no ground displace-
ment or relaxation occurs prior to ground-liner contact and interaction.

An alternate assumption is that given by Peck (1969), i.e., the liner is
installed first, without disturbing the ground outside or inside the liner,
and the ground inside is removed. This approach can be approximated in
reality for large diameter tunnels by constructing the liner in a series of
small diameter drifts around the circumference of the tunnel and then ex-
cavating the soil core.

In this chapter ground-liner interaction is examined on the basis
of the information obtained from the analytical solutions derived in Appendix
A for thin liners subjected to excavation loading (equations of solutions

3 and 4 in Appendix B).
3.2 EXTERNAL PRESSURES ACTING ON THE LINER
3.2.1 INSITU STRESSES AND THE GROUND-LINER INTERFACE CONDITION

Figure 3.1b illustrates the distributions of tangential shear and
radial normal stresses that, in the undisturbed ground mass, act on the
cylinder of ground to be excavated and replaced by the liner. Except for
one special case, when the liner is installed the surrounding ground mass
will no longer be in equilibrium and ground displacements will occur. These
displacements lead to distributions of external pressures acting on the liner
that are different from those shown in Fig. 3.lb.

The distributions of external pressures acting on the liner are
determined by the extent of the liner's resistance of ground displacements

(i.e., interaction between ground and liner). Thus, the external pressure
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distributions are functions of the relative stiffnesses of the liner and

the ground mass (expressed in terms of the compressibility ratio, C, and
flexibility ratio, F; see Appendix A) and the magnitude of the ground-

liner interface shear strength (Si)’ in addition to the nature of the in situ
stress state (Ko). As Peck (1969) points out, the cross sectional shape of
the tummel and liner can also be a factor, but this is not considered herein
because the analytical solutions are limited to liners of circular shape.

In regard to the ground-liner interface shear strength, the analyt-
ical solution considers only the two extreme conditions. The no slippage
condition assumes, in effect, infinite shear strength at the interface.

This condition is applicable, however, whenever the finite shear strength
exceeds the greatest mobilized shear stress (Si > Tmax)' The full slippage
condition assumes zero shear strength (Si = 0) and pproximates the condition
of very low shear strength relative to the potential shear stresses (Si<<t).

In general, the two interfacial shear strength conditions yield
decidedly different external liner pressure distributions. There are, how-
ever, certain special cases for which the value of S.l is of no consequence.
The first of these is the case in which the shape of the tunnel opening and
liner is matched to the insitu stress state (Ké), for example, the circular
shape and Ko = 1. The second case is that of the liner which is perfectly
flexible and perfectly ¢ 1ipressible (F = C =x). Such a liner offers no
resistance to the deform :ion of the surrounding ground mass and, thus, no
external pressures can be mobilized.

Discussion of the external pressure distributions is facilitated
by comparing these distributions with the distributions of insitu stresses

acting, in the undisturbed ground mass, on the cylinder of ground to be
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replaced by the liner.
3.2.2 LINER PRESSURES FOR THE FULL SLIPPAGE CONDITION

Because the shear strength at the ground-liner interface is zero
for the full slippage condition there are no external shear stresses acting
on the liner. This leaves only the radial pressures to be considered, and
all of the theoretically possible radial pressure distributions can be sepa-
rated into six distinct classes, three of which are special cases. These
six classes are:

1. The pressure distribution for the special case of a perfectly

rigid and incompressible liner (F = C = 0).

2. Those pressure distributions that are intermediate to the
F=C =  distribution and the in situ radial stress distribu-
tion.

3. The pressure distribution that is identical to the insitu
radial stress distribution.

4. Those pressure distributions characterized by crown and invert
pressures less than the in situ magnitude and springline pres-
sures greater than insitu (for Ko < 1; if Ko > 1 relation~
ships are reversed).

5. Those distributions of radial pressures which at every loca-
tion are less than the corresponding in situ pressure.

6. The zero magnitude pressure distribution for the special case
of a perfectly flexible and compressible liner (F = C = ).
This is a special case of the class 5 distributions.

Figure 3.2 illustrates, for Ko < 1, the radial pressure distributions
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of classes one and four.

Part a of Fig. 3.2 shows the distribution of radial pressures
acting on a perfectly rigid and incompressible liner. It can be seen that
the radial pressures around the crown and invert of the liner are greater
than the corresponding insitu stresses, while the radial pressures in the
vicinity of the springlines are less than the corresponding insitu stresses.
In order for the pressure distribution acting on the liner to be different
from the insitu stress distribution, ground displacements must occur after
the liner is installed. Because it is not possible for this liner to deform
it is somewhat surprising to find a pressure distribution different from
the insitu distribution. However, the fact that there is a difference, as
well as the nature of the difference, is explained by the effects of the full
slippage condition assumed.

For this special case the difference between the insitu and liner
pressure distributions is entirely the result of the ground displacements
that occurred because slippage was allowed at the ground-liner interface.

As a result of this slippage, the ground mass has moved inward toward the
top and bottom of the liner, tangentially from the crown and invert toward
the springlines, and outward away from the liner in the vicinity of the
springlines. Note that while both radial and tangential displacements occur
in the surrounding ground mass, right at the ground-liner interface only
tangential displacements are allowed. Relative to the insitu radial stress-
es, the liner pressures are of greater magnitude around the crown and invert
because of the inward ground displacement there; and the liner pressures are
of lesser magnitude around the springlines because of the outward ground

movement there.
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The class 2 liner radial pressure distributions are characterized
by crown and invert pressures less than those for F = C = 0, but greater
than the correspondingin situ stresses and by springline pressures greater
than those for F = C = 0, but less than the correspondingin situ stresses.
Examination of the analytical solution equations for the full slippage
condition reveals that such distributions can result if, and only if,
0<F< (2 - 3vm) Liners with flexibility ratio values in this range would
be relatively inflexible and incompressible. Most realistic liner and ground
mass combinations will not satidfy this condition.

The class 3 pressure distributions, which are identical to the in
situ radial stress distributions (Pr = dr), can occur if, and only if, F =
0.5 and Vp = 0.5.

A typical example of the class 4 liner pressure distribution is
illustrated in Fig. 3.2b. For Ko < 1 the radial pressure exerted by the
ground mass causes the crown and invert of the liner to displace inward.

In addition, the compressional and flexural stiffnesses of the liner are
such that this movement of the crown and invert forces the springlines to
displace outward against the adjacent ground. Inward displacement of the
crown and invert allows dissipation of some of the potential ground dis-
placements at these locations and thus, the external pressure there de-
creases in magnitude. Outward d splacement of the springlines mobilizes
passive pressures against these portions of the liner. Deformation of the
liner continues, with decreasing crown and invert pressures and increasing
springline pressures, until an equil: rium state is achieved between the
distribution of external pressures and the distribution of internal liner

forces and bending moments. The analytical solution equations have not
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revealed specific ranges of C and F values that must be satisfied in order
to obtain the pressure distributions of class 4 other than that ¥ > (2 - 3vm)
is required. It would seem however that the liner must be fairly flexible
and yet relatively incompressible.

The class 5 external pressure distributions include all those dist-
ributions for which the pressure magnitudes are everywhere less than the
corresponding insitu radial stress magnitudes. In order for a distribution
of this type to occur, the liner springlines as well as the crown and invert
must displace inward. This displacement pattern indicates that the liner

must be highly compressible.
3.2.3 LINER PRESSURES FOR THE NO SLIPPAGE CONDITION

Figure 3.3 illustrates a typical distribution of external radial
and shear pressures acting on a liner for the no slippage condition.

It was mentioned previously that there is only one special case
for which no ground displacements occur after liner installation and, con-
sequently, for which the distribution of pressures acting on the liner are
identical to thein situ stress distributions. It is the no slippage require~
ment that makes this special case possible. This case can occur only if the
liner is perfectly rigid and incompressible (F = C = 0) and only if the
shear strength at the ground-liner interface everywhere exceeds the shear
stress existing at that location in the undisturbed ground mass (the analyt-
ical solution's no slippage condition). Metaphorically speaking, when such
a liner is installed (under the conditions assumed herein) the surrounding
ground mass is unaware that a core of soil has been removed and replaced by

the liner. The equilibrium of the ground mass remains undisturbed and the
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external pressures that act on the liner are identical to those that acted
on the core of soil the liner replaced (Fig. 3.1b and dashed curves in Fig.
3.3).

A liner that is not perfectly rigid and incompressible (F # O,

C # 0) will be forced to deform by the surrounding ground mass. Because of
the no slippage condition the liner will resist tangential as well as radial
displacements and, as a result, the liner will be subjected to both external
shear stresses and radial normal stresses. The distribution of these ex-
ternal pressures will be different from the distribution of the insitu
stresses (Fig. 3.3).

Figure 3.3 illustrates two interesting points concerning the ex-
ternal pressure distributions for the no slippage condition. First, it is
possible for the external shear stresses acting on the liner to be greater
in magnitude than thein situ shear stresses. Second, it is possible to
begin with anin situ stress state characterized by Ko < 1 and yet end up
with radial pressures acting on the liner that are smaller at the crown and
invert than at the springlines.

Examination of the analytical solution equations for the no slip-
page condition reveals that the relationship between the magnitude of the
shear stresses acting on the liner, ?re, and the magnitude of the in situ

shear stress, T_., is a function of the relative stiffnesses of the ground

o

and liner (expressed in terms of C and F). Inorder for any one of the three

possible relationships (?r >, =, 0Or < Tre) to hold, the Cand F values must
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For large values of F the required value of C is approximately three. The
F and C values for most ground-liner combinations are such that @re > Tfe

results. Note that while it is possible to have ?re = Tfe for certain com-
binations of C and F values other than F = C =0, the corresponding liner-
in gituradial stress relationship for these nonzero C and F values will

be of the form P_ # g_. It is possible to have both ¥ =T and P_= O
T r T 6 T

8 r

only when F = C = 0.

It is difficult to visualize the process by which the external
shear stresses acting on the liner attain magnitudes in excess of the in
situ shear stress magnitudes because both potential and actual radial and
tangential displacements of the ground and liner are involved. It is some~
what easier to see how it is possible to obtain radial liner pressures at
the crown and invert that are smaller than the radial pressures at the spring-
lines (for Ko <1). Prior to liner deformation the radial pressure acting
on the liner is the same as thein situ radial stress that acted on the soil
core that was removed. Inward displacement of the crown and invert reduces
the radial pressures at these locations, while outward displacements of the
springlines increases the radial pressures around the springlines. Simulta-
neously, however, the ground mass at the ground-liner interface is attempt-
ing to displace tangentially -- for Ko < 1, from crown and invert toward the
springlines. However, because of the no slippage condition only a portion
of this displacement (that equal to the tangential displacement of the liner)
is allowed to occur. Aside from the mobilization of the external shear

stresses, T the prevention of the remaining portion of the potential

5’

ground mass tangential displacement has the effect of reducing the tendency

for inward ground displacement at the crown and invert and outward ground
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displacement at the springlines. The reduced tendency for inward ground

displacement at the crown and invert (equivalent to starting with smaller
potential ground displacements for the liner to resist) results in smaller
external radial normal pressures at these locations than would be the case
for the full slippage condition. Similarly, the reduced tendency for out-
ward ground displacement at the springlines results in larger radial pres-

sures at these locations than would exist for the full slippage condition.

As shown in Fig. 3.3 the no slippage requirement can result in
radial pressures at the crown and invert, Pr(C—I), that are less than the
springline pressures, Br(SL), when Ko < 1., It appears that this will gen-
erally be the case since all that is required for Pr(C-I) < Pr(SL) is that
[F - 1.501 - ZVHPC] >2. Most of the possible C and F combinations can
easily satisfy this requirement. On the other hand, in order for Pr(C-I) >
Pr(SL) it is necessary that [F - 1.5(1 - ZvHPC] < 2., This is a very res-
trictive requirement that can be satisfied only by a relatively rigid linmer,

a liner with a flexibility ratio in the range 0< F < (x2).
3.3 LINER FORCES, BENDING MOMENTS, AND DISPLACEMENTS
3.3.1 DISTRIBUTION ARQOUND THE LINER

The external pressures acting on the liner must, of course, be
balanced by the forces and bending moments within the liner. Figure 3.4
illustrates the nature of the liner thrust and bending moment distributioms,
as well as the distributions of radial displacement, for two different in
situ stress conditions and for both the no slippage and full slippage con-

ditions.
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As in Figs. 3.1 through 3.3, the distributions shown in Fig. 3.4
are symmetrical about a vertical plane through the tunnel centerline. In
addition, because the analytical solution assumes the tunnel to be located
at great depth, i.e., assumes the variation of insitu stress with depth
from crown to invert to be negligible, the distributions are also symmetri-
cal about a horizontal planme through the tunnel centerline.

The effect of the Ko value on the distributions of liner thrusts,
moments and displacements, as illustrated in Fig. 3.4,‘15 straight forward
and self explanatory. The differences between corresponding distributions
for the no slippage and full slippage conditions illustrates the effect of
external shear stresses on liner response.

The external pressure distributions shown in Figs. 3.2b and 3.3
are for Ko = 0.5 and the same combination of liner and ground mass material
properties as the distributions of Fig. 3.4. The no slippage condition ra-
dial pressure distribution of Fig. 3.3 indicates that the radial pressures
at the crown and invert are less than those at the springlines. Thus, the
radial pressures alone mobilize thrusts in the liner that are greater at
the crown and invert than at the springlines. However, the external shear
stresses, which are also acting on the liner, mobilize negative thrusts
(tension) at the crown and invert and positive thrusts (compression) at the
springlines. The total thrust distribution (Ko = 0.5) in Fig. 3.4 shows
that when the thrust contributions of the exteranl shear stresses and radial
pressures are combined the resulting total thrust at the crown and invert
is smaller than that at the springlines, as would be expected for Ko < 1,
Figure 3.4 also shows that the effect of the external shear stresses is great

enough so that the crown and invert thrusts for no slippage are smaller than
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those for the full slippage condition, while at the springlines the rela-
tionship is reversed. This result is not immediately obvious from exam-
ination of Fig. 3.3.

Liner bending moments are related to liner distortion. Thus, the
distributions of liner radial displacements and bending moments, given in
Fig. 3.4, are of similar form. This figure shows that the distortion of the
liner is greater for the full slippage condition than it is for the no slip-
page condition. This result is obtained because for full slippage the crown
and invert of the liner must resist greater ground displacements than for
the no slippage condition; while at the same time at the springlines the
ground provides less resistance to the outward movement of the liner than
it does for the no slippage condition.

The distributions of liner thrusts, bending moments, and radial
displacements given in Fig. 3.4 were obtained for a specific combination of
parameter values describing the properties of the liner and surrounding
ground mass. Had a different combination of material properties been se-
lected, a different set of curves would have been obtained. However, this
second set of curves would have differed from that shown only in magnitude.
The general shapes of the curves of Fig. 3.4 apply to all material property

combinations.

3.3.2 VARIATION WITH THE GROUND-LINER COMPRESSIBILITY AND FLEXIBILITY RATIOS

Peck, et al., (1972) and Mohraz, et al., (1975) have illustrated
the effect of material properties of the liner and ground mass on the mag-
nitude of liner thrusts, moments, and radial displacements for the full

slippage and no slippage conditions, respectively. In the figures presented
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in these papers the liner and ground mass properties were conveniently com-
bined in the form of the compressibility, C, and flexibility, F, ratios.
However, the analytical solution used by the above authors was essentially
that of Burns and Richard (1964) (the overpressure loading solution altered
to remove the restriction to only one-dimensional loading) which does not
apply to the case of a tunnel being constructed in an initially stressed
medium (excavation loading). Presented here, in Figs. 3.5 through 3.8, are
the corresponding figures (liner moments, thrust, and radial displacements
versus the flexibility and compressibility ratios) obtained from the analyti-
cal solutions for a thin liner subjected to excavation loading derived in
Appendix A.

The curves shown here are similar in form to those given by Peck,
et al., (1972) and Mohraz, et al., (1975). However, the overpressure and
excavation loading solutions yield results that differ in magnitude by an
amount that varies with the value of Vo In general, the overpressure load-
ing solution overestimates the magnitudes of liner forces, moments, and dis-
placements when applied to the problem considered herein (see Figs. 2.9 and
2.10).

Curves of maximum moment coefficient (M/yHa®) versus flexibility
ratio (F) for K, = 0.5 and 2.0 and for the full slippage and no slippage
conditions are given in Fig. 3.5. The maximum moments occur at the crown,
invert, and springlines. The curves shown represent absolute values of the
moment coefficient. According to the sign convention adopted herein (Fig.
A.4), for Ko < 1 moments at the springlines are positive while those at the
crown and invert are negative. The positive-negative signs for Ko > 1 are

the opposite of those for KO < 1.
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Figure 3.5 shows that the moment coefficient decreases rapidly as
the flexibility ratio increases from zero to about 20. Thereafter there is
a further, but much more gradual, reduction of the moment coefficient with
increasing F; however, this is of little consequence since for F > 20 the
moment coefficients are very small. For K =0.5and F2 17.5 the maximum
bending moment in the liner is less than one percent of YHa .

The curves in Fig. 3.5 provide further illustration of the state-
ment made previously, in discussion of Fig. 3.4, that the no slippage con-
dition yields slightly smaller bending moments than the full slippage con-
dition. For F = 0 (perfectly rigid liner) the no slippage moment coefficient
is eight percent less than the full slippage value. For F = 100 the dif-
ference has increased only to nine percent, but for F = 100 the moment
coefficient values are so small that the difference is of little conse-
quence. For F =« (perfectly flexible liner), of course, both the no slip-
page and full slippage conditions yield the same moment coefficient value,
that being zero.

As noted in Fig. 3.5 the curves shown apply only for omne value of
the compressibility ratio (C = 0.4) and one value of Poisson's ratio of the
ground mass (vm = 0.4). TFortunately, however, neither of these parameters
has that great of an effect on the moment coefficient and the curves shown
give a good approximation of the curves that would be obtained for any other
possible C and Vi values.

Variation of the liner thrust coefficient (T/yHa) with the flex-
ibility ratio is illustrated in Fig. 3.6 for Kb = 0.5 and 2.0 and for the
full and no slippage conditions. The figure shows this variation for both

the maximum and mipimum thrust coefficients. For K.0 < 1 the maximum thrust
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occurs at the springlines (s) and the minimum thrust occurs at the crown
and invert (c). For Kb > 1 the locations of the extreme values are reversed.

Examination of the analytical solution equations for the thrust
coefficient (See Sections B.3.3 and B.4.3) reveals several interesting facts
that help to explain the curves in Fig. 3.6. These equations consist of two
terms. The first term is independent of § (circumferential location) and
represents the average liner thrust. The second term is a function of © and
gives the variation of thrust magnitude with circumferential location. Be-
cause the average thrust is also independent of the flexibility ratio, in
Fig. 3.6 the average thrusts would plot as horizontal lines (not shown)
located at (T/yHa) = 1.4 for Ko = 2.0 and at (T/YHa) = 0.7 for Kb = 0.5.
What Fig. 3.6 really shows then is the variation of the second of the thrust
equation terms with flexibility ratio.

With increasing F the second term in the full slippage thrust
equation rapidly approaches zero (i.e., no variation of thrust magnitude
with location around the liner circumference). Likewise, the second term
in the no slippage thrust equation rapidly approaches a constant value (0)
with increasing F. For F greater than 10 or 20 the second term of the thrust
coefficient, thus the total thrust coefficient, 1s essentially independent
of the value of the flexibility ratio. Thus, for large F values liner thrust
can be approximated by the following simplified expressions for the thrust
coefficient:

Full Slippage Condition:

5(1 + K )
1+ (1- va)C

T

(;ﬁ;

) (3.1
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No Slippage Condition:

T 5(1 +K)) 5(1 - K)(3 - 4v)
Wod = T+a@-2c * Foav_+(1- vy o082 (3.2)

The curves in Fig. 3.6 apply only for one value of the compress-
ibility ratio (C = 0.4). Unlike the moment coefficient, the thrust coef-
ficient can be significantly affected by changes in the value of C. Figure
3.7 1illustrates the variation of the thrust coefficient with compressibility
ratio.

The average thrust term, which is a function of C but not F, is
the term most strongly influenced by the compressibility ratio. The second
term of the full slippage condition thrust equation is independent of C.
While the second term of the no slippage condition equation is a function
of both F and C, it is influenced only slightly by the compressibility ratio.
Thus, the variation of (T/yHa) with C shown in Fig. 3.7 is primarily the
variation of the average thrust term.

Only curves for two different flexibility ratio values (F = 2 and
10) are given in Fig. 3.7. Because the thrust coefficient rapidly approaches
a constant value with increasing F, all full slippage curves for F > 10 fall
between the two dashed F = 10 curves. Similarly, all no slippage curves for
F > 10 plot just slightly inside the two continuous F = 10 curves.

Note that, in effect, the Ko value magnifies the variation with C
and, the differences between the full and no slippage conditions. The var-
iation is a minimum for K, = 1l and increases as the value of K, is increased

or decreased.
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Although not shown, the thrust coefficient also exhibits a sig-
nificant variation with Poisson's ratio of the ground mass, vm. The curves
of Fig. 3.6 should be shifted upward (higher thrusts) for v, > 0.4 and
downward (lower thrusts) for v < 0.4. The evident curvature and slope of
the curves in Fig. 3.7 would be increased (C of greater influence) for v, <
0.4 and decreased for v, > 0.4. All of the curves in Fig. 3.7 revert to
horizontal lines (thrust coefficient independent of C) for v, = 0.5. This
occurs because all of the C terms in the thrust coefficient equations are
multiplied by the expression (1 - va). Inclusion of the (1 - 2Vm) ex-
pression is the analytical solution's method of providing a solution for
the special case of an incompressible (vm = 0.5) medium.

The variation of the vertical and horizontal diameter change
coefficients (AD/D)/(YH/Em) with flexibility ratio is shown in Fig. 3.8 for
Ko = 0.5 and 2.0 and for both the full slippage and no slippage conditionms.
Positive coefficient values indicate a diameter increase and negative values
indicate a diameter decrease or shortening.

Like the moment coefficient (Fig. 3.5), the diameter change coef-
ficient is relatively insensitive to the degree of slippage that occﬁrs at
the ground-liner interface. Like the thrust coefficient (Fig. 3.6), the
diameter change coefficient is essentially independent of the flexibility
ratio for F > 10 or 20.

The average diameter change coefficients for the two Ko values are
indicated by the horizontal broken lines. These average values are given
by the first term of the full and no slippage condition equations (both
equations have the same first term) which is independent of the flexibility

ratio. The average diameter change coefficient values are negative because
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the liners are compressible (C > 0).

The horizontal and vertical diameter change coefficient curves
are symmetrical about the average value lines. The difference between the
average value and either the horizontal or vertical diameter value is the
magnitude of the second term in the diameter change coefficient equations.
Thus, Fig. 3.8 illustrates the variation with F of these second terms. Un-
like the second term of the full slippage thrust equation which rapidly ap-
proached a value of zero with increasing F, the second terms of both the
full and no slippage condition diameter change equations approach a constant
value other than zero.

Note that the diameter parallel to the maximum insitu stress di-
rection shortens more than the diameter parallel to the minimum insitu stress
direction lengthens. Here, this is a direct result of the compressibility
of the liner., If either the liner or the ground mass were incompressible
(C =0 or Vo = 0.5, respectively; average diameter change = 0) one diameter
would increase by the same amount the other decreased.

The diameter change coefficient is more sensitive than the moment
coefficient, but less sensitive than the thrust coefficient, to variation
of the compressibility ratio and Poisson's ratio of the ground mass. Of
these two parameters, Vi is probat 7 the more significant because it affects
the sensitivity of the diameter change coefficient to both the compressibil-
ity ratio and, to a lesser degree, the flexibility ratio.

Radial displacements of the crown, invert and springlines can be
obtained from Fig. 3.8 by replacing AD/D in the diameter change coefficient
by ur/a and thereby obtaining the radial displacement coefficient. Positive

values indicate outward di: lacement while negative values indicate inward
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displacement.

The variation of the liner transverse shear forces (V) with the
flexibility or compressibility ratios has not been plotted. However, the
maximum transverse shear coefficient's variation with flexibility ratio can
be obtained from Fig. 3.5 by noting that V = (1/a) @M/36) which gives
(V/YHa) = (2a)(M/YHa ). All comments in the discussion of Fig. 3.5 apply

to the maximum transverse shear coefficient also.

3.3.3 VARIATION WITH THE LINER RADIUS-TO-THICKNESS RATIO AND THE GROUND-

LINER MODULUS RATIO

Figures 3.5 through 3.8 are of interest because they provide an
indication of how liner flexibility and compressibility affect liner behavior.
However, by grouping the ground mass and liner parameters together in the
form of the flexibility and compressibility ratios the influence of each of
the individual parameters has been obscured. In addition, these figures
tend to give the impression that the C and F values can be selected or
determined independently of each other when in reality they are interrelated.
Normally, changing one ratio value (by changing liner thickness, for ex-
ample) results in a change in the other ratio value. While it is possible
to alter the value of F while keeping C constant (or vice versa), this re-
quires careful adjustment of two or more ground and/or liner parameter val-
ues. Manipulations of this nature can yield C and F combinations that are
theoretically possible but totally unrealistic in terms of real ground-liner
systems.

The figures that follow avoid these difficulties. These figures

give the variation of the various components of liner response with the liner
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radius-to-thickness ratio (a/t) and the ground-liner modulus ratio (qn/Eo),

where,

E . (1- vz)
¢ = ‘15"?'(1 + (1 = 2v) 33
E 2(1 - v®

B, c2y3,
Ez (t) a- vm)

"y
]

(3.4)

Plotting the variations in this way allows direct assesment of the influence
of the individual parameters. Also, since the (a/t) and (Em/Ez) ratios con-
sist of familiar parameters the figures cannot easily be misinterpreted.
Figure 3.9 gives he variation of the liner thrust coefficient
with (a/t) and (Em/Ez)' For the purpose of illustration the total thrust
has been separated into its two components. The average thrust, given by

the first term in the thru: equation, is represented by T, in the top chart

1
of Fig 3.9. This thrust component is independent of liner flexibility. The
curves in the chart for T1 apply to both the full slippage and no slippage
conditions. The lower chart in Fig. 3.9 is for Tys the second term in the
thrust equation and the term that, when multiplied by cos 26 , gives the
variation of thrust with location around the liner circumference. There

are two sets of curves in 1 is chart. The continuous curves apply for the
no slippage condition and the dasl d curves apply for the condition of full

slippage at the ground-liner interface.

The average thrust compc« ent, Tl’ exhibits significant variation
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with the liner radius-to-thickness ratio (within the range of a/t consid-
ered) only if the modulus ratio is greater than 0.0001. If (Em/Ez) < 0.0001

the average thrust component is essentially, T, = 0.75 YHa for all (a/t).

1
This is a reflection of the fact that for (%“/EZ)AS 0.0001 (and for a/t <
250, at least) the liner is essentially incompressible relative to the ground
mass. At the other extreme, if (EH/Ez)‘Z 1.0 and (a/t) > 50 the liner is
so compressible, relative to the ground mass, that Il ~ 0.

The bottom chart in Fig. 3.9 shows that the range of (En/Ez) and
(a/t) values within which these ratios significantly influence the magnitude
of the variable thrust component, Té, depends on the slippage condition at
the ground-liner interface. This range is relatively small for the full
slippage condition. For all (qn/Ez) > 0.1 the liner is so flexible, relative
to the surrounding ground, that, regardless of the liner's thickness, T2 ~ 0.
If the modulus ratio is reduced to 0.0001, (a/t) values up to about 50 will
yield T2 magnitudes significantly greater than zero. The variable thrust
component exhibits greater variation with (a/t) and <En/E£) if the no slip-
page condition applies. Like the average thrust component, the variable
thrust component for the no slippage condition 1is essentially zero for all
(gn/Ez) > 1.0 and (a/t) > 50 (curve for Em/E£ = 1.0 not shown). If <En/E£)
equals 0.0001, L, is essentially a constant for all values of (a/t) > 50.
Curves for (qnlge) < 0.0001 —— for both the full and no slippage conditions
— are similar in form to those of (qn/gz) = 0.0001, but shifted to the
right. The amount of shift increases as the modulus ratio approaches zero.
For the limiting case of (qh/gz) =0, T2 is independent of (a/t) and
(TZ/YHa) = 0,250 and 0.135 for the no slippage and full slippage conditions,

respectively.
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Given a specific ground mass (qm) and tunnel radius (a), Fig. 3.9
shows that by reducing the liner thickness and/or the liner modulus the com-
pressibility of the liner can be increased with a resulting reduction of
liner thrusts. Such attempts at thrust reduction can be counterproductive,
however. Figure 3.10 shows that, while reducing the liner thickness reduces
liner thrusts, it increases the circumferential stress in the liner (Fig.
3.10 assumes a continuous liner of uniform cross section). This occurs be-
cause the cross sectional area of the liner decreases faster than the thrust
as the liner thickness is reduced. Too great of a reduction can yield com-
pressive stresses in excess of the compressive strength of the liner. An-
other possible approach would be to keep the liner thickness constant and
reduce the modulus of the liner in order to increase the modulus ratio and
thereby reduce the liner thrust. Because the liner thickness remains con-
stant the liner stresses (due to thrust) also would be reduced. However,
reduction of Ez would undoubtedly cause a reduction of the liner's com-
pressive strength also. Thus, care would have to be taken to insure that
liner strength was not reduced to a magnitude less than that of the reduced
stresses.

Variation of the maximum bending moment coefficient (and maximum
transverse shear force coefficient) with (a/t) and (Emlgz) for the full
slippage and no slippage conditions is illustrated in Fig. 3.11. The plot~-
ted curves show that by reducing either liner thickness or modulus, and there-
by increasing liner flexibility, the liner bending moments (and shear forces)
can be significantly reduced. It can be seen that the full and no slippage
conditions give nearly the same bending moment and shear force values.

Throughout the range of (a/t) and (Em/Ez) considered in Fig. 3.11, the no
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slippage values are, on average, approximately five percent less than the
full slippage values. The maximum difference occurs for (Em/Ez) = 10-'S and
(a/t) = 250, and amounts to approximately nine percent.

Figure 3.12 illustrates the variation of liner stresses due to
bending with (a/t) for several values of the modulus ratio. It can be seen
that reduction of liner modulus always leads to smaller bending stresses.
For (%nlﬁz) greater than approximately 0.005, reducing liner thickness also
always leads to smaller bending stresses, but for (a/t) > 50 the stress re-
ductions, and the stresses themselves, are very small. For (%n/gz) values
less than approximately 0.005, the curves indicate an initial stress in-
crease up to a peak value and then a stress decrease as (a/t) is increased
from initially very small values. For a continuous liner of uniform cross
section the bending stresses are given by O = Mc/I = 6M/t? . Thus, the in-
itial bending stress increase with increasing (a/t) can be explained by the
fact that as the liner thickness i1s reduced the t2 term initially decreases
faster than the bending moment.

In Fig. 3.13 the liner stresses (full slippage condition) due to
thrust and bending have been combined to give the maximum and minimum liner
stresses. The curves show the variation of these stresses with liner radius-
to-thickness ratio for several values of the modulus ratio. For K, <1 the
maximum stresses occur at the inner surface of the liner springlines and the
minimum stresses occur at the inner surfaces of the crown and invert. 1In
the lower range of (a/t) values the bending stresses predominate and the
total stress curves exhib: initial peaks followed by stress decreases. As
(a/t) is increased further stress decrease is halted (minimum stresses be-

come positive) and the stresses begin to increase in magnitude again. At
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these higher (a/t) values the bending stresses have been reduced to such

an extent that the compressive stresses due to thrust now predominate. The
dashed curves for the minimum liner stresses show that as (Em/Ez) is de-
creased the range of (a/t) values which yield tensile stresses in the crown
and invert increases.

Given the compressive and tensile strengths of a liner material,
the appropriate maximum and minimum stress curves can be used to estimate
the range of acceptable liner thicknesses.

The variation of the diameter change coefficient, QﬁD/D)(YH/Em),
with the liner radius-to-thickness ratio,(a/t), and the ground-liner modulus
ratio, (En/Ez)’ is shown in Fig. 3.14. As was done with the thrust coef-
ficient, the diameter change coefficient has been separated into its two
components. The average diameter change, given by the first term in the
radial displacement equation, is given in the top chart of Fig. 3.14 and is
denoted by the subscript 1. This component is independent of liner flex-
ibility and the slippage condition at the ground-liner interface. The se-
cond term in the radial displacement equation is denoted by the subscript 2.
This is the term that, when multiplied by cos 26, gives the variation of
radial displacement with the location around the liner circumference. This
component of the total diameter change coefficient is considered in the low-
er chart of Fig 3.14. The dashed curves apply for the full slippage condi-
tion and the continuous curves apply for the no slippage conditionm.

The top chart in Fig. 3.14 shows that if (Em/Ez) < 0.0001 the liner
is essentially incompressible QﬁDlzf 0) and thus the (a/t) ratio has little
effect on the average displacement. As the modulus ratio is increased the

liner (regardless of its a/t value) becomes more compressible and the value



92

250

50

0.5

”~

-z = z-_l_'aﬁ-d-.' F P S A X X

0.15

0.5 v_=0.40 v
m £

Full slippage

No slippage

g

Average values (top chart) are for both
no slippage and full slippage conditions

!
I
0.1 F = AD - AD AD 5 -
= total ~ 1 2 €Os ®
0.0 1 I 1 ]
0 50 100 150 200 250
a/t
FIGURE 3.14 VARIATION OF DIAMETER CHANGE COEFFICIENT WITH (a/t)

AND (Em/Ez)



93

of (a/t) becomes more significant. Further increase of (Em/Ez) eventually
causes the liner compressibility to become so great that the (a/t) ratio
value is again of little significance. For (Em/Ez) = 1 alteration of the
(a/t) value has essentially no effect on the average displacement unless it
is reduced to (a/t) < 50.

The lower chart in Fig. 3.14 shows that if (a/t) > 50 the liner
is very flexible regardless of the modulus ratio value (down to 0.0001, at
least). For a given modulus ratio value, (a/t) must be reduced below 50
(how far below depends on the Em/Ez value) before a significant reduction
can be made in the magnitude of the variable component of displacement.

The curves in Figs. 3.9 through 3.14 were obtained for Ko = 0.5,
Vo = 0.4 and vz = 0.15, and, strictly speaking, are not applicable for other
values of these parameters. However, the value of \)}Z has little influence
on the results obtained from the analytical solution equations, and for any
\)}Z value within the range encompassing the usual liner materials the figures
presented can be used without adverse effect. Additionaly, the figures can
easily be extended to apply for other K, values by multiplying the values
taken from the figures by one of two simple correction factors. If the
magnitude of the term considered does not vary with 6, the correction factor

is (1 + Ko)/l.S. For example,

5 1L+KX, 0
b = ok (3.5)

(for ‘any Ko) (from Fig. 3.9)

I1f the magnitude of the term considered varies with 6, the correction factor

is 2(1 - Ko). For example,
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M
{ory = 21 - K) {57z} . (3.6)
YHa }(for any Ko) o “YHa (from Fig. 3.1l1)

The use of the curves presented in Figs. 3.9 through 3.14 is not advisable
for Vo values significantly different rom Vo ™ 0.4. For Vo values outside
the range 0.35 < vy < 0.45 the values 1iken from these figures should be
adjusted by means of the appropriate Vo correction factor.

Congidering the complexity of the ground-liner interaction problem
the analytical solution is remarkably uncomplicated and simple to use. Un-
fortunately, because of the many simplifying assumptions that were necessary
in order to obtain the solution, it is directly applicable to few real tun-
neling situations. On the positive side, however, it does seem to have some
potential for use as a means of quickly and easily obtaining numerical values
for the important parameters describing liner response. If these values are
then conscientiously evaluated with the method's limitations in mind they
can yield useful estimates of probable liner behavior for a given set of

conditions.
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CHAPTER 4

FINITE ELEMENT ANALYSIS OF SHALLOW TUNNELS

4.1 GENERAL REMARKS

Application of the analytical solutions for ground-liner inter-
action is restricted to tunnels located at great depth below the ground
surface. This restriction is imposed because these solutions do not take
into consideration two factors that can have significant influence on the
behavior of shallow lined tunnels. These factors are:

1. The proximity of the ground surface free boundary.

2. The variation of stress magnitude with depth from the tunnel
crown to the invert. Assuming a horizontal ground surface
and stresses due to the weight of the overburden in a homo-
geneous ground mass, the stresses exhibit a linear increase
with depth and no horizontal variation.

The Kirsch and Lamé solutioms, which have been applied to the un-
lined tunnel problem (Obert and Duvall, 1967) are also restricted to deep
tunnels for these same reasons. However, the analytical solutions applic-
able to the shallow unlined tunnel case (circular opening near a horizontal
boundary in an elastic half-space) that are available (Savin, 1968, and
Mindlin, 1940) indicate that for depths greater than one or two tunnel dia-
meters the influence of the above factors is negligible. There are no an-
alytical solutions of the ground-liner interaction problem for shallow
tunnels to give an indication of the variation of liner behavior with tunnel
depth. Therefore, the finite element method was used to investigate this

problem.
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4.2 METHOD OF ANALYSIS

Figure 4.1 illustrates the finite ¢ sment mesh used to simulate
the ground mass in this study (liner elements not shown). The two-dimen-
sional, plane strain analyses assumed linear elastic stress-strain behav-
ior for both the liner and the ground mass. Additionally, the ground mass
was assumed to be isotropic and homogeneous. Values of the relévant in situ
stress state, material property and dimensional parameters are given in the
figures that summarize the results of the analyses.

Because the problem is symmetrical about a vertical plamne through
the tunnel axis, only half of the region was analyzed. The mesh shown was
generated with the tunnel opening and liner in place so that each analysis
could be performed in just one solution step. Thein situ stress state was
introduced into the mesh by applying, at the perimeter of the tunnel open-
ing, a distribution of pressures corresponding to that in the undisturbed
ground mass.

Both the no slippage and full slippage conditions were considered.
To simulate the full slippage condition the mesh was generated with a small
gap between the ground elements and the liner elements. Ground and liner
were connected by means of one-dimensional bar elements. These elements
allowed radial pressures, but not shear stresses, to be transmitted from
ground to liner and vice versa. The cross sectional areas of the bars were
selected such that the ars "filled" the gap between ground liner. However,
it was found that with these dimensions the bar element stiffnesses had to
be selected carefully in order to avoid distorting the amalysis results.
Initial analyses (later discarded) indicated that assigning liner stress-

strain properties to the bar elements was equivalent to increasing the
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thickness of the liner by an amount equal to the thickness of the gap.
Correct results were obtained by assigning to the bar elements the same
elastic properties as those of the surrounding rock mass.

A total of six analyses were performed for each of the full slip-
page and no slippage conditions. Tunnel depth-to-diameter ratios of H/D =
5.0, 4.0, 3.0, 2.0, and 1.0 were analyzed. Analyses for H/D >> 5.0 were
also performed. The depth, H, is measured from the ground surface to the
tunnel centerline. Thus, for H/D = 1.0 the depth of cover over the tunnel
crown is equal to one tunnel radius.

The displacement boundary conditions imposed on the finite element
mesh were such that the left and bottom boundaries were completely fixed,
while the top boundary (ground surface) was free and the right boundary
(plane of synmetry) was allowed only vertical displacements. As generated
the finite element mesh was set up for H/D = 5.0. To analyze the case of a
very deep tunnel (H/D >> 5.0) the top boundary (not the ground surface in
this case) was completely fixed against displacement and the distribution
of pressures applied around the tunnel opening was specified so that there
was no variation of pressure with depth. For the H/D values of 5.0 through
1.0 the pressure distribution was adjusted to reflect the appropriate tunmel
depth. In addition, for H/D < 5.0 elements in the top part of the mesh were
assigned activity numbers such that the correct number of element layers
were turned off during each analysis to yield the correct depth of cover for

that analysis.
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4.3 INFLUENCE OF TUNNEL DEPTH ON LINER RESPONSE

4.3.1 LINER THRUSTS

Variation of the liner thrust coefficient with tunnel depth is
illustrated in Fig. 4.2 for several locations around the liner and for both
the no slippage and full slippage conditions. The continuous curves for the
no slippage condition show that as H/D is reduced from very large values the
springline thrust coefficient remains essentially constant until a value of
H/D = 3.5 is reached. Thereafter, the magnitude of this coefficient grad-
ually decreases. At H/D = 2.0 the coefficient value is just two percent
less than the deep tunnel value, while at H/D = 1.0 it is 12 percent less.

For deep tunnels the maximum liner thrust occurs at the springlines
(for Ko <1). This was found to be the case for H/D > 3.5 also. However,
as H/D is reduced,furthef the stress increase from crown to invert causes
the location of maximum thrust to shift. As noted in Fig. 4.2 the angular
distance from the springlines to the location of maximum thrust is given by
. For H/D = 3.0, 2.0, and 1.0 the maximum thrust was found to be located
at @ ~ 5, 10, and 25 degrees, respectively. As can be seen in Fig. 4.2 the
magnitude of the maximum thrust coefficient exhibits even less variatiom.
with depth than does the springline coefficient.

The no slippage condition curves for the crown and invert thrust
coefficients show the greatest variation with depth. As H/D is reduced the
invert thrust coefficient increases. This should be expected since the pres-
sures acting on the liner are greatest at the invert and smallest at the
crown. These pressure differences increase as tunnel depth is reduced. It
is also apparent that the crown and invert thrust coefficients approach the

deep tunnel value only gradually as H/D is increased.
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The broken curve labeled A in Fig. 4.2 gives the variation with
H/D of the average liner thrust coefficient. This curve applies for both
the no slippage and the full slippage conditions.

The dashed curves in Fig. 4.2 give the variation of the liner
thrust coefficients with tunnel depth for the full slippage case. There is
essentially no variation of liner thrust coefficient magnitude for H/D > 2.
It would appear that slippage occurring at the ground-liner interface trans-
forms the unsymmetrical insitu stress distribution into a distribution of
external pressures that is symmetrical about a horizontal plane through the
tunnel centerline. This would account for the fact that at all depths the
maximum thrusts occur at the springlines, and also for the fact that at all
depths the crown and invert thrusts are equal. The significance of the dot-

ted curve in Fig. 4.2 is discussed in Section 4.4.
4.3.2 LINER BENDING MOMENTS

Figure 4.3 shows the variation with tunnel depth of the crown,
springline and invert bending moment coefficients. While the slippage con-
dition at the ground-liner interface influences the magnitude of the moment
coefficjents, it has little effect on the variation of the moment coefficient
magnitude with depth.

For shallow tunnels the largest bending moment occurs at the invert
and the smallest moment occurs at the crown. As H/D is increased the dif-
ferences between the maximum and minimum moments and the intermediate spring-
line value is gradually reduced. It appears that the deep tumnel case is
attained at a shallower depth for the full slippage condition than it is for

the no slippage condition. However, it is clear that this depth is greater
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than H/D = 5.0 for both interface conditions. The springline moment coef-
ficient, on the other hand, exhibits relatively little variation with tun-
nel depth and rapidly approaches the deep tunnel value. For all H/D > 2.0
this coefficient is essentially constant and equal to the deep tunnel case

value.
4.3.3 LINER STRESSES

In Fig. 4.4 the thrust coefficients of Fig. 4.2 and the moment
coefficients of Fig. 4.3 have been combined to give the liner stress coef-
ficients. The curves illustrate the variation with tunnel dep?h of the
maximum and minimum circumferential liner stresses at the crown, spring-
lines, and invert for the full slippage and no slippage conditions. At the
crown and invert the maximum and minimum stresses occur at the outer and
inner liner surfaces, respectively. At the springlines the maximum stresses
occur at the inner surfaces of the liner and the minimum stresses occur at
the outer surfaces. For this particular ground-liner combination (C = 0.32
and F = 32.0) both maximum and minimum stresses are compressive.

For the full slippage condition both the maximum and minimum (least
compressive) liner stresses occur at the invert. This is understandable,
because at all tunnel depths the maximum bending moment is located at the
invert, and while the invert thrust is the minimum liner thrust it is only
slightly less than the other thrust values.

Figure 4.4 also shows that for the no slippage condition the max-
imum and minimum liner stresses are located at the springlines and crown,
respectively. Actually, for H/D < 3.5 the true maximum stress is slightly

larger than the springline stress and is located slightly below the spring-
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lines (same location as maximum thrust, Fig. 4.2). For H/D = 1.0 the max-
imum stress is approximately six percent greater than the springline stress
and is located approximately a = 25 degrees below the springlines.

The curves of Fig. 4.4 show that if the deep tunnel analysis
(either finite element or analytical solutions) were to be applied to a
shallow tunnel it would yield a conservative estimate of the maximum liner

stress, but an unconservative estimate of the minimum stress.
4.3.4 LINER DISPLACEMENTS

Figure 4.5 illustrates the variation of the horizontal and vert-
ical diameter change coefficient with tunnel depth. As in the case of the
bending moments, the slippage condition at the ground-liner interface in-
fluences the magnitude of the diameter change coefficients, but not their
variation with depth. For all H/D > 2.0 both horizontal and vertical dia-
meter change coefficients are essentially constant and equal to the deep
tunnel case values. The vertical diameter change coefficient represents
an average of the crown and invert displacements and therefore does not give
a true indication of the variation of these displacements with tunnel depth.
To illustrate this variation Fig. 4.6 has been provided.

Figure 4.6 shows that the variation with tunnel depth of the crown
and invert displacement coefficients is quite pronounced, relative to the
variation of the vertical diameter change coefficient. For a very deep
tunnel the active pressures acting downward on the top of the liner are
equal to the active pressures acting upward on the bottom of the liner, and,
as a result, the crown and invert are both forced inward the same amount.

At shallow depths the active pressures acting downward on the top of the
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liner are less than the actilve pressures acting upward on the bottom of the
liner. 1In the interaction process required to eliminate this imbalance the
invert displaces upward more than the crown displaces downward. In the
terms of Fig. 4.6 the inward displacement of the invert exceeds the inward
displacement of the crown. At very shallow depths (here, H/D < 1.5 - 1.75)
the downward active pressure 1s so sms L, relative to the upward active
pressure, that the entire liner is shi ted upward. At these depths, not

or y is the upward (inward) displacement of the invert quite large, but the
crown is also forced upward (outward). Of course, the magnitudes of these
liner displacements would be reduced if some ground displacements were al-~
lowed to occur prior to installation of the liner. The significance of the

broken line curves in Fig. 4.6 1s discussed in Section 4.4.
4.4 DISCUSSION OF RESULTS

The various curves in Figs. 4.2, 4.3, 4.5, and 4.6 provide an in-
dication of the relative influence of the two previously mentioned factors
(proximitﬁ of the ground surface boundary and stress increase with depth)
that affect shallow, but not deep, tunnels. In these figures the normal-
ized curves for liner response at the springlines would be independent of
the increase of stress with depth from crown to invert. In addition, the
average thrust coefficient curve in Fig. 4.2 should also be independent of
this factor. Thus, these curves give the average influence of the ground
surface boundary on liner response. They indicate only the average because
the influence of che surface boundary should change slightly from crown to
invert, being greatest at the crown and least at the invert. All curves

for liner response (thrust, moment, displacement) at the crown and invert
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reflect the combined influence of both factors. To isolate the effect of
the stress increase with depth, the effect of the ground surface boundary
must be subtracted out of these curves (Note: Because only the springline

or average influence of the ground surface boundary is available, its sub-
traction from the combined total at crown and invert removes most, but not
all, of the ground surface boundary influence at these locations). For the
no slippage thrust coefficient curves of Fig. 4.2 the ground surface bound-
ary effects can be removed by first drawing in an additional curve that
exhibits the same variation with H/D as the springline and average thrust
coefficient curves (dotted curve in Fig. 4.2). Points on this additiomal
curve are obtained by multiplying the values of points on the average thrust
coefficient curve by 0.73 (for the very deep tunnel, crown and invert thrust
are 73 percent of the average thrust magnitude). The curves can also be
obtained by multiplying values of points on the springline curve by 0.57.
Differences between the crown and invert curves and this curve are due to
the influence of the increase of stress with depth. The dashed curves in
Fig. 4.2 for the full slippage condition indicate that for this slippage
condition and this particular ground-liner combination the liner thrust
coefficient is essentially independent of the stress increase with depth
from crown to invert.

The variation of springline bending moment coefficient with tunnel
depth, as shown in Fig. 4.3, is due almost entirely to the effect of the
ground surface boundary. The variation of the crown and invert bending
moments with tunmnel depth is due to the combined effects of both the ground
surface boundary and the stress increase with depth. Thus, an estimate of

the stress increase with depth effect on crown and invert moment coefficients
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can be obtained by noting the difference between corresponding points on the
crown and springline curves and the invert and springline curves.

In Fig. 4.5 the variation with H/D exhibited by both the horizontal
and vertical diameter change coefficient curves is due solely to the in-
fluence of the ground surface boundary. Points on the vertical diameter
change coefficient curves represent averages of the crown and invert dis-
placement coefficients and thus the effect due to stress increase with depth
has been eliminated.

In Fig. 4.6 the curves for crown and invert displacement coef-
ficients reflect the influence of both the ground surface boundary and the
stress increase with depth. Differences between these curves and an addi-
tional curve (broken line curves shown), obtained by transfering the vertical
diameter change coefficient curve of Fig. 4.5 to this figure, represent the
effect of the stress increase with depth on the crown and invert displace-
ment coefficients.

In summary, examination of the curves presented suggests the
following:

1. The influence of the ground surface boundary on liner response

is small for all H/D > 1.0 and negligible for all H/D > 2.0,
and

2. the influence of the stress increase with depth from crown to

invert is greater than the influence of the ground surface
boundary and remains at a significant level to a much greater

depth.
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CHAPTER 5

FINITE ELEMENT ANALYSIS OF ADVANCING TUNNELS

5.1 GENERAL REMARKS

At every stage of the advancement of a tunnel three distinct zomes
of stresses and displacements in the ground can be distinguished. Far ahead
of the tunnel face the ground mass remains undisturbed:; the state of stress
isin situ and no displacements have taken place. Far behind the face all
the possible displacements have occurred and the state of stress in the
ground and the liner has approached a final equilibrium, independent of the
position of the tunnel face. In a zone around the tunnel face, extending
to several radial distances ahead and behind the face, the state of stress
is essentially three-dimensional and there is a longitudinal variation of
ground displacements. As the tunnel face advances, assuming the ground
conditions do not change, the spatial extent of this three-dimensional stress
zone remains unaltered and its longitudinal position advances.

The initial loading to which any tuanel liner is subjected is
strongly influenced by the amount of ground displacement that occurs before
the liner and the ground mass come into contact and begin to interact.

Since these displacements change with time and position along the axis of
the advancing tunnel, the time and position of liner installation are im-
portant considerations in any analysis undertaken to estimate support load-
ing. One of the major deficiencies that the majority of the two-dimensional
methods of analysis (analytical and numerical) have in common is the inabil-
ity to properly take into consideration the position of liner installation.

Behavior of the ground-liner system within the three-dimensional
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zone around the tunnel face, of course, can not be considered by two-dimen-
sional analyses, because these analyses, by definition, are applicable only
for cross sections far from the tunnel face. However, the greatest diffi-
culty that must be faced in using the two-dimensional approach is the deter-
mination of the relationship between pos tion of liner installation and the
amount of ground displacement occurring ahead of the liner. Two-dimensional
analyses (e.g., those obtained with the analytical solution as in Chapter 3
and the finite element analyses of Chapter 4) which avoid this problem by
assuming that no prior displacements occur overestimate the magnitude of

the ground pressures that act on the liner. In addition, finite element
analyses in which inelastic ground behavior is to be considered will yield
misleading results if the correct magnitude of prior displacement is not
considered, because the extent of plastic yielding is related to the amount
of ground disturbance (prior displacement) allowed.

In regard to the xtent of prior displacements, the general case
corresponds to that of a liner of intermediate flexibility and compressibility
installed some distance behind the tunnel face such that a small gap (e.g.,
thickness of a tunneling shield's tailskin) is left between the liner and
the ground. The total radial displacement that occurs before ground-liner

equilibrium is reached is then Ug + w + u.g + s where

[=1
]

radial displacement occurring ahead of the face

f

u = radial displacement occurring between the face and the
point of installation

u.g = radial .splacement occurring at the point of installation

before the gap is filled

u. + u + u.g prior displacements
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%2 = radial displacement of the liner under load.
The equilibrium ground pressure decreases as the ratio (uf-+ u, + ug'+ qz)/upo
increases from zero to one. The displacement upo is the total potential
ground displacement. Assuming the tunnel opening remains stable, the in-
itial (end of construction) liner load is zero if uf.+ u, + Ug = Ug, (1.e.,
if all ground displacements occur before ground-liner contact). However,
if the ground mass exhibits time-dependent behavior the pressures acting on
the liner may increase in the months and years following construction. For
some soils the ground pressure may increase to a magnitude corresponding to
the full overburden pressure.

Figure 5.1 illustrates the relationship between prior displace-
ments and the resulting ground pressure acting on the liner for three dif-
ferent cases. The curve ABC illustrates the relationship between potential
ground pressure and prior radial ground displacement. The shape of this
curve is a function of the stress-strain-strength properties of the ground
mass. Here, the ground (assumed to be an elasto-plastic material) remains
elastic if displacements in excess of those required to reach point B are
not allowed. If internal support is not provided to halt displacement be-
yond point B a plastic zone forms around the tunnel and the additional plas-
tic displacements change the ground reaction curve from a straight line to
a curve with decreasing negative slope. 1In this case the curve intersects
the horizontal axis indicating that the opening would be stable without in-
ternal support (since time-dependent behavior is not considered this curve
says nothing about the long term stability of the opening). The solid,
straight line curve rising from the horizontal axis to intersect the ground

reaction curve represents the reaction of the liner to load. The liner
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reaction curve shown is for a liner of intermediate compressibility and
thus it has a finite, nonzero slope. If the liner was perfectly incom-
pressible (C = 0) its reaction curve would be vertical. At the other
extreme, a perfectly compressible (C = «) liner would be represented by a
horizontal line along the horizontal axis (no resistance to ground dis-
placements).

Part a of Fig. 5.1 illustrates the case in which no prior dis-
Placements are allowed. The pressure acting on the liner at equilibrium,
Pl’ is determined solely by the interaction (indicated by the displace-
ment gz) that occurs between the liner and ground mass. This is the case
considered in Chapter 3 with the modified analytical solution and in Chap-~
ter 4 with the two-dimensional, plane strain finite element analyses. The
condition of no prior displacement is rarely satisfied because there is al-
most always some ground displacement ahead of the tunnel face. In Fig. 5.1b

this displacement has been designated u In this case it is assumed that

£
the liner is installed right at the tunnel face such that the tunnel is kept
fully lined as it 1s advanced. Because some displacement has occurred be-
fore the liner was installed, the equilibrium pressure, PZ’ is less than Pl'
If the liner is installed some distance behind the face additional ground
displacement, uu, will occur before interaction between ground and liner
can begin. Fig. 5.lc shows that this additional displacement leads to the
even smaller equilibrium pressure, P3.

Figure 5.1 illustrates the misleading results that can be obtained
when prior displacements are ignored in the analysis of a tunneling situation

in which the liner is installed some distance behind the face. Note also,

in Fig. 5.1a, that despite the fact that the ground mass exhibits elasto-
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plastic behavior which could easily be modeled with the finite element method,
a finite element analysis that did not consider prior displacements would
yield the same results for both elastic and elasto-plastic ground behavior.

It should be emphasized that the difficulty with most analyses that
reduce the tunnel problem to two dimensions is not that they cannot account
for prior displacements, but that they cannot account for the relationship
between prior displacements and the position of liner installation that de-
termines the magnitude of the prior displacements. As Fig. 5.1 implies,
analytical solutions based on the ground reaction curve can account for prior
displacements through the use of displacement terms such as ug and U The
analytical solutions for excavation loading can be modified to account for
prior displacements (but only for the elastic case, of course). It is con-
ceivable that two-dimensional, plane strain finite element analyses could
also be modified to allow given amounts of ground displacement before inser-
tion of the liner. However, in each of these approaches it is not possible
to determine the correct amount of prior displacements to allow without con-
sidering the longitudinal effects of the three-dimensional problem which
control the ground stresses and displacements ahead of the tunnel liner.

To investigate the influence of the behavior of the ground mass
ahead of the tunnel liner on liner response, a finite element study was per-
formed in which the actual advancement of the tumnel through the ground mass
was simulated. Summarized in Table 5.1 are the various cases analyzed and
the material properties used in each analysis.

With respect to liner installation, three conditions were simulated.
In a third of the analyses it was assumed that the liner was continually in-

stalled right at the advancing tunnel face; in the remainder of this chapter
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TABLE 5.1

MATERIAL PROPERTIES

c

Case Vi psi kPa () ﬂg_
degrees a

A 0.40 - - — 0
B 0.40 — — -— 1
c 0.40 - - - >>1
D 0.49 14 96.5 0 0
E 0.49 14 96.5 0 1
F 0.49 14 96.5 0 >>1
G 0.40 14 96.5 30 0
H 0.40 14 96.5 30 1
I 0.40 14 96.5 30 >>1

Initial stress state: dr = de = dz =YH = 83,33 psi (575 kPa), Trz = 0
Soil modulus: Em = 5000 psi (34.5 MPa)

Liner properties: Ez =2 x 106 psi (1380 MPa), Vo = 0.15

Liner thickness: t = 1 ft (0.305 m)

Tunnel diameter: D = 20 ft (6.1 m)
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this is referred to as a "fully lined" tunnel. An additional third of the
analyses assumed that the liner extended to a distance of one tunnel radius
behind the face; this is referred to as a '"partially lined" tunnel. In the
remaining analyses it was assumed that the liner was installed at a point
far behind the face; this is referred to as an '"unlined" tunnel because all
ground displacements occur before the liner is installed. The last column
in Table 5.1 indicates these three conditions; zu/a being zero, one, or much
greater than one, where zu is the distance between the leading edge of the
liner and the tunnel face and a is the tunnel radius.

Two types of stress~strain behavior were considered for the sur-~
rounding ground mass; linear elastic and elastic-perfectly plastic. 1In the
elasto-plastic analyses a modified Drucker-Prager yield condition (see Sec-
tion 5.2.3) was used, with the additional material parameters being the
cohesion, ¢, and the angle of internal friction, ¢. Two values for the
friction angle were considered; ¢ = 0 and ¢ = 30 degrees. The liner, assumed
to be concrete, was assigned linearly elastic material properties which were
not varied.

In order to avoid the considerable difficulty and expense involved
in the performance of a large number of fully three-dimensional finite ele-
ment analyses, only the special case of axially symmetric loading was con-
sidered. The ground mass within which the tunnel was to be constructed was
modeled by an appropriate axisymmetric finite element mesh with the axis of
symmetry coinciding with the centerline of the circular tunnel. The in situ
stress state was assumed to be isotropic (Ko = 1).

Because of the restrictions on geometry and loading the axisymmet-

ric analysis cannot be applied to shallow tunnels. It is not possible to
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simulate the boundary effects imposed by the ground surface nor the increase
of stress with depth from crown to invert that become significant at shallow
depth. Thus, these analyses correspond to the special case of a deep tunnel

(depth > several diameters).
5.2 METHOD OF ANALYSIS
5.2.1 THE FINITE ELEMENT MESH

The quadrilateral, isoparameteric axisymmetric finite elements
(Zienkiewicz, 1971) used in this study are circular rings, called toroidal
elements (Fig. 5.2a). Although an assemblage (mesh) of these elements can
be constructed in a wide variety of forms, here a simple solid cylindrical
shape (Fig. 5.2b) was considered the most suitable for the problem at hand.
The position of any point within such a mesh is defined by the cylindrical
coordinates; r, & and z. When such a mesh is subjected to axially symmetric
.loading the problem becomes mathematically two-dimensional. Because of
symmetry, the stress components are independent of the angular (8) coordinate
and, thus, all derivatives with respect to & vanish and the compomnents v, Yrg®
Y , T ., and T are zero. The nonzero stress components are dr, c

6z" 16 6z

and T, (see Fig. 5.2¢).

e’ dz’

Figure 5.3 represents the upper half of a longitudinal cross sec-
tion through a typical finite element mesh used in this investigation. Bound-
ary stresses were applied so as to achieve an initial uniform isotropic stress
state throughout the mesh, Gr = Ge = Gz = YH, where ¥ is the unit weight of
the ground mass and H is the depth of the tunnel axis below the ground sur-

face. At the beginning of each analysis all elements were assigned soil

properties. The shaded elements in Fig. 5.3 are the soil elements which
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FIGURE 5.2 AXISYMMETRIC FINITE ELEMENT (a), CONCEPTUAL AXISYMMETRIC
FINITE ELEMENT MESH AS USED HERE (b), AND NON-ZERO
STRESS COMPONENTS (c)
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were "excavated" to form the tumnel. The elements with diagonals indicate

the positions where liner elements were '"installed" after excavation.

5.2.2 EXCAVATION AND LINER INSTALLATION SEQUENCE

Each analysis consisted of a series of solution steps in which
the mesh and/or its boundary conditions were modified so as to simulate
advancement of the tunnel through the soil. In step one the boundary forces
were applied to the mesh, all elements of which were assigned soil proper-
ties. At the end of this step the mesh represented a fully stressed, un-
disturbed ground mass. The first excavation into this ground mass occurred
in step two when the first set of soil elements was removed. Also in this
step the force boundary condition along the right boundary was replaced by
a displacement boundary condition to prevent longitudinal displacements
there and to maintain the stress field in the mesh. If the tunnel was to
be lined a liner element was inserted at this step (fully lined case) or the
- following step (partially lined case). In each of the remaining steps the
tunnel was advanced a distance equal to the length of the next ring of soil
elements. These steps, which constitute an incremental analysis .of the
geometrically nonlinear problem, are carried out internally by the computer
program GEOSYS (Ghaboussi and Ranken, 1974).

The excavation and construction sequence 1is achieved through the
deactivation or activation of the elements involved. When the mesh is gen-
erated all elements (soil and liner) are assigned to the positions that they
are to occupy at one time or another throughout the analysis. An activity
number is assigned to each element that will be removed from or added to the

mesh. The activity number indicates the gtep at which the element will be
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removed or added. 1In the case of excavation, the soil elements involved
have the appropriate material properties and contribute to the global
stiffness of the system up to the indicated step, beyond which the contri-
bution of these elements to the global stiffness of the system is zero.
The reverse of this procedure is applied to those elements (liner) to be

added to the mesh.
5.2.3 MATERIAL BEHAVIOR MODELS

Linear elastic and elastic-perfectly plastic (elasto-plastic)
material behavior models were considered in this Iinvestigation. The elasto-
plastic model utilized by the finite element program GEOSYS is a mudified
form of the .Drucker-Prager (1952) model which is, in turn, a three-dimen-
sional generalization of the Mohr-Coulomb failure criterion. The modified
Drucker-Prager failure criterion is given as follows (compressive stresses

taken as positive here):

For J, < m, 2(1-'1-—; )+k-,,/J—é=0 (5.1)

For J;>m L +k=4J5 = 0 (5.2)

The quantity J1 is the first invarient of the stress tensor. The quantity

Jé is the second invarient of the deviatoric stress tensor. For small values

of J1 the yield surface corresponds closely to that of the Drucker-Prager

model wherein the failure envelope varies linearly with confining pressure,

J As J, increases in magnitude, the modified yield function diverges from

1° 1

the Drucker-Prager line and gradually approaches the Mises yield function
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at m., For Jl.Z.m the shear strength is a constant, Smax’ independent of
confining pressure. For the majority of soils whose shear strength is a
function of the angle of internal friction, ¢, this latter condition is
achieved only at exceedingly high confining pressures, much higher than
those encountered in most underground construction projects.

The yield surface is defined within the finite element program
by specifying values for the three parameters k, £, and m. These material
constants are functions of the shear strength parameters ¢ and ¢ and the

maximum shear strength, Smax’ as shown in the following equatioms:

Kk = 3¢ (5.3)
;9 + 12 tan§¢

g = Smax-k (5.4)

mo= X% (5.5)
(o4

a = tang (5.6)

J9 + 12 tan°@

In the ¢ # 0 analyses performed for this study the J1 values were quite
small relative to m and thus the relevant portion of the yield surface close-
ly approximated that of Drucker-Prager. For the @ = 0 analyses, Smax =k =
c = cohesion and the yield function corresponded to that of Mises.
The ¢ = 0 assumption is valid only for saturated soils and only

for as long as the moisture content of the soil remains unchanged. Any change
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in moisture content would be accompanied by a change in effective stresses
and would introduce an effective frictional component of shear strength.
Thus, the results from an amalysis that assumes ¢ = 0 apply only to the
short term behavior of a tunnel. Theoretically, the ¢ = 0 analysis could
be used for any saturated soil. However, this type of analysis becomes
practical only if the permeability of the soil is low enough so that the
condition of no change in moisture content is satisfied for a reasonable
length of time. A soil composed of particles larger than silt size would
experience a change of water content almost immediately upon excavation.
Thus, the ¢ = 0 analysis would not be justified for such a soil. However,
most clays and some silts possess sufficiently small permeabilities so that
the no drainage condition can be satisfied for a time (days or weeks) after

excavation. It is to these soils that this type of analysis can be applied.

5.3 RESULTS OF ANALYSIS

5.3.1 GENERAL

The results obtained from the finite element analyses performed
in this investigation are presented in this section. The following data
are provided:

-- configuration of the plastic zone (elasto-plastic analyses)

-- distribution of soil stresses

~— distribution of soil displacements

-- radial displacements of the actual and projected tumnel wall

-~ longitudinal displacements of a reference cross section as

the tunnel approaches

-~ liner thrust
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It should be pointed out here that minor distortions of the data
due to boundary and other procedural effects have been removed in order to
isolate and clarify the information related solely to the behavior of an

advancing tunnel.
5.3.2 PLASTIC YIELD ZONES

The plastic yield zones obtained for the fully lined, partially
lined, and unlined tunnels are illustr :ed in Fig. 5.4.

The plastic zone for the fully lined tumnel is confined to a rela-
tively small region just ahead of the face. Behind the face the liner pro-
vides enough support to the soil so that the stresses do not change very
much from their free field values. The changes that do occur are not great
enough for the resulting stress difference or shear stress to exceed the
shear strength of the soil. |

A considerably larger plastic zone is obtained for the partially
lined tunnel. For this case the unsupported length of tunnel just behind
the face allows sufficient redistribution of stresses in the soil to cause
yielding out beyond the tunnel perimeter. The effect of the linmer in this
case 1is to halt further yielding beyond that which has already taken place
ahead of it. Very little, if any, 3 21ding occurs behind the liner.

The plastic zones shown in Fig. 5.4b and 5.4c, to the extent they
exist, are similar in shape to those obtained for the unlined tunnels shown
in Fig. 5.4a. The effect of the liner is to reduce the size of the plastic
zone that forms behind its leading end and to increase the longitudinal ex-
tent of the plastic zone ahead of tI face.

The effect of the liner, once it is installed, on the extent of
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plastic yielding (and ground displacements and stresses) depends, of course,
on the compressibility of the liner (flexibility also if K.0 # 1). In these
analyses the ground-liner compressibility ratio was quite small, indicating
a nearly incompressible liner. For la: ear compressibility ratios the extent
of yielding behind the leading edge of the liner would be greater. However,
over the range of realistic compressibility ratio values the influence of

liner compressibility is of minor significance compared to the effect that

position of liner installation has on t e extent of the plastic zome.
5.3.3 SOIL STRESSES

The distributions of stresses in the soil surrounding the tunnel
are shown in Figs. 5.5 and 5.6 for the cases of fully lined and partially
lined tunnels, respectively. These are results from analyses D and E of
Table 5.1 in which the soil was assigned values of ¢ = 14 psi (96.5 kPa)
and ¢ = 0.

Stresses in the soil change from their undisturbed, free field
values when displacements toward the tunnel are allowed. For the fully
lined case the liner permitted only a small amount of radial displacement
to occur after the liner was installed. Thus, this type of deformation
contributed little to the stress redistributions shown in Fig. 5.5. The
relatively large displacements, both radial and longitudinal, that occurred
ahead of the face and liner were the major causes of the stress changes
observed both ahead and behind the tunnel face (the tunnel is advanced
through a zone of altered stresses).

One effect of the liner is to reduce the magnitude of stresses in

a zone immediately ahead of the face from their free field values to an extent
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greater than that observed for an unlined tunnel. This is especially true
for the radial (dr) and circumferential (de) stresses. It was observed
that the stresses in this zone are further reduced when plastic yielding is
concentrated in a zone just ahead of the face, as in the case D shown in
Fig. 5.5.

For the fully lined case, the stresses in the soil surrounding
the tunnel behind the face are controlled primarily by the magnitude of the
stresses ahead of the face. It is assumed in these analyses that the tunnel
and liner are advanced simultaneously and that this advancement takes place
in a series of steps, each of which occurs instantaneously. When the tunnel
is advanced a portion of the soil in the altered stress zone ahead of the
face is removed and an additional length of liner is installed. Since these
operations occur instantaneously, no stress changes can occur in the soil
around the newly excavated volume of soil until after the liner is in place.
Then, sinée the liner is relatively stiff it deforms only a small amount,
resulting in only a slight change in the stresses. Thus, the stresses be-
hind the face are only slightly different from those immediately ahead of
the face.

The stress distributions for the partially lined tunnel are given
in Fig. 5.6. If the tunnel is left unlined for a distance of only one tun-
nel radius behind the face, as in this figure, the disruption of the initially
undisturbed stress state that results due to the presence of the tunnel close-
ly approximates that found for an unlined tunnel. This is expected, since
the results for the unlined tunnel cases indicate that most of the radial
displacements occur within a zone immediately behind the face (note the steep

slopes of the dashed curves in Fig. 5.9). When the radial extent of plastic
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yield is small this zone extends only one to two tunnel radii behind the
face. Up to 80 percent of the total displacements occur within this zone.
Since, in the partially lined tunnel case, the majority of the displace-
ments have occurred before the liner is installed, the amount of soil-
liner interaction is small and the liner has little effect on the stresses
in the soil. Thus, there is little difference between the stress distribu-
tions obtained for this partially lined tunnel case (liner installed ome
tunnel radius behind face) and the unlined tunnel case.

As expected, plastic yielding reduces stress magnitude, relative
to the stresses obtained from eléstic analyses, in the immediate vicinity
of the tunnel opening -- in both radial and longitudinal (ahead of face)

directions.
5.3.4 DISPLACEMENTS

Displacements of the surrounding soil due to the advancement of
a fully lined tunnel (analysis D) are given in Fig. 5.7. The displacements
that the soil mass experiences when the tunnel is advanced through oniy a
short distance are given in part b of this figure. These incremental dis-
placements are very small at most points throughout the medium. It is only
in one small region, just ahead of the tunnel face, that these movements
attain significant magnitudes. The directions of the arrows in Fig. 5.7b
indicate that movement is toward the tunnel face, the only unsupported por-
tion of the tunnel opening. Additional radial displacements behind the face
are prevented by the liner in this case.

Although the majority of the incremental displacements are so small

that they do not show up in Fig. 5.7b, they cannot be ignored. A tunnel is
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driven in a series of short advances, and it is the small displacements
from each advance that are superimposed such that they combine to give the
displacements shown in Fig. 5.7a.

Two significant features of the total displacement patterns can be
seen in Fig. 5.7a. First is the fairly large displacements that occur ahead
of the tunnel face. Appreciable displacements occur up to about three tun-
nel diameters of the face. It appears that the displacements are concent-
rated along the path of least resistance, which in this case is towards the
unsupported tunnel face. This soil movement towards the face in a zone
ahead of the face results in unusually large components of longitudinal dis-
placements behind the face, which is the second significant feature of the
soil displacement pattern. In fact, almost no appreciable displacement
variations occur behind the leading edge of the liner; when a stiff liner
is installed up to the face, it acts to '"freeze" soil displacements at the
values they had just before the face passed.

The distributions of total and incremental displacements for the
partially lined tunnel (analysis E) are given in Fig. 5.8. Because the
amount of unsupported tunnel surface area is greater, the soil displacements
in the vicinity of this tuneel are larger than those obtained for the fully
lined tunnel. This is true for both the incremental and total displacements.

Part a of Fig. 5.8 shows again that the stiff liner halts further
displacements of the soil behind its leading edge. In this case, however,
because of the unsupported tunnel wall more radial displacement occurs ahead
of the liner than occurred in the fully lined tunnel case. Thus, the radial
components of the displacements at locations far behind the face for this

case are intermediate between those for the completely lined and unlined
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tunnels.

The radial displacements of th( fully and partially lined tunnel
openings are shown in Fig. 5.9. The dashed curves represent the displace-
ments of the corresponding unlined tunnels. The two sets of solid curves
give the total displacement of the soil . d liner.

Figure 5.9 shows that the radial displacements of the fully lined
tunnels are considerably smaller than th. displacements of the unlined
tunnels. Also, it is clear that most of 'he displacements occur ahead of
the leading edge of the liner. The actu . displacement of the limer is very
small and there is little variation with position along the tunnel axis.
This is primarily due to the stiffness of the liner.

The corresponding displacements for the partially lined tunnel are
also given in Fig. 5.9. Here the radial lisplacements are much larger, in-
dicating that an unlined gap of only one radius length can significantly
affect these displacements. Again, almc-: all of the displacements occur
ahead of the liner. In front of the tur~2l face there is very little dif-
ference between the displacement for the j»artially lined tunnel and the un-
lined tunnel.

The longitudinal displacements of a reference cross section as the
tunnel approaches are given in Fig. 5.10 for the fully and partially lined
tunrels in an elasto-plastic medium. Also shown are the displacements
associated with the unlined tunnel in the same medium.

Longitudinal displacements for the lined tunnels generally exceed
those of the unlined tunnel, with cne exception. Longitudinal displacements
of the tunnel face (z* = 0) for the fully lined tunnel are less than those

of the unlined tumnel. This indicates that the liner can have a restraining
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effect on longitudinal as well as radial displacements.

The maximum displacement occurred at the centerline of the par-
tially lined tunnel and was approximately four percent of the tunmnel radius.
This compares to a maximum of two percent of the radius obtained in the
linear elastic analysis.

When the longitudinal displacement curves for the three fully
lined tunnel analyses (linear elastic, elasto-plastic - ¢ = 0, elasto-
plastic - @ # 0) are considered together im Fig. 5.11la, it is clear that as
the size of the plastic zone ahead of the tunnel increases the displacements
at all z* increase. The longitudinal displacements for amnalysis G (¢ # 0)
are everywhere greater than those for analysis A (no plastic zone) and the
displacements for analysis D (@ = 0) are everywhere greater than those for
analysis G. For the partially lined tunnels a similar relationship holds
only within the plastic zomes (see z /a = 0, Fig. 5.11b). In the elastic
regions beyond the plastic zones the longitudinal displacements from the
elasto-plastic analyses are smaller than the corresponding displacements

from the linear elastic analyses.
5.3.5 LINER THRUST

The longitudinal distributions of liner thrust for both the fully
and partially lined tunnels are given in Fig. 5.12. In addition, the thrusts
predicted by two two-dimensional, plane strain solutions are shown at the
far right in this figure.

In the fully lined case, support provided by the soil ahead of the
tunnel face reduces the external load and thus the thrust in the liner near

the face. The effect of this natural support rapidly decreases with distance
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behind the face resulting in an increase of liner thrust. At distances
greater than approximately one tunnel diameter behind the face liner thrust
is independent of longitudinal position.

For the partially lined tunnel the weight_of the unsupported soil
is transmitted by arching to both the ground ahead of the face and the for-
ward end of the liner. Thus, that portion of the liner installed last
carries the greatest load. With increasing distance behind the end of the
liner, the thrust decreases to a minimum value.

Figure 5.12 shows that after the face and liner have advanced one
or two diameters beyond a given point the liner thrust at that point has
stabilized and is no longer influenced by what takes place ahead of the
liner.

The magnitude of the thrust‘that remains in the liner is a function
of the amount of radial displacement that has occurred both before and after
the liner was installed. If no displacements whatsoever are allowed, the
liner thrust should correspond to that due to the full overburden pressure,
T.= YHa.

As shown in Fig. 5.12, the two-dimensional, plane strain solution
with simulation of excavation (finite element analysis or analytical solution
for excavation loading) yields higher values of liner thrust than the fully
lined tunnel analysis. This is because the two-dimensional analyses do not
consider the ground displacements occurring ahead of the tunnel face. The
two-dimensional analysis that does not simulate excavation (finite element
analysis in which overburden stress is applied to boundary of mesh with
tunnel and liner already in place, or analytical solution for overpressure

loading) yields an even more unrealistic value for liner thrust.
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The values of liner thrust for various analyses are summarized

in Table 5.2.
5.4 ADDITIONAL COMMENTS ON RESULTS OBTAINED

5.4.1 LONGITUDINAL EXTENT OF TRANSITION ZONE OF THREE-DIMENSIONAL
RESPONSE AROUND THE TUNNEL FACE

TUNNEL LINED FAR BEHIND FACE OR UNLINED

An attempt was made to estimate the longitudinal extent of the
zone around the heading of a circular tunnel (for K, = 1) within which the
ground mass stress and radial displacement magnitudes are functions of the
longitudinal position relative to the position of the tunnel face. It is
difficult to delineate precise boundaries that separate this transition zone
from the undisturbed ground ahead of the tumnel and the final equilibrium
state behind the face, because these boundaries are not indicated by abrupt
changes in medium behavior. The change from one state or type of behavior
to the next is very gradual. Nevertheless, the picture obtained from the
available data is that of a transition zone of three-dimensional response
extending over a total distance of approximately six times the maximum radius
of the plastic zone, R, that forms around the unlined tunnel. If no plastic
yielding occurs this distance is approximately 6a, where a is the radius of
the tunnel. Figure 5.13 illustrates the longitudinal extent of the zone and
its relationship to the position of the advancing tunnel lace.

To arrive at the indicated transition zone boundaries the distances
from the tunnel face to 1) the point where the ground mass was first dis-
turbed from its original equilibrium and 2) the point at which final equil-

librium was attained were estimated from the stress and displacement data.
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TABLE 5.2

VALUES OF THE LINER THRUST COEFFICIENT, T/YHa

Fully Lined Partially Lined 2-D 8olutions

Stress-

strain Leading Leading " +
Behavior End Max. Final End Max. Final A B
Linear-

elastic .570 950 .875 .425 .425 .290 .983 1.179%
Elasto-

plastic 725 .925 .800 .780 .780 .450 .984 1.004
¢ =0
Elasto-

plastic .590 .930 .875 .350 .350 . 300 .983 1.179
¢ ¢40

*
Excavation simulated

+ No excavation simulation
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This data was obtained from analyses F and I previously described, and from
four additional analyses of unlined tunmnels (F1, F2, F3, and Il) the mat-
rial properties for which are summarized in Table 5.3. The distances obtain-
ed are given in Table 5.4. For analyses F, Fl and Il the length of the
finite element mesh was not sufficient to encompass the entire transition
zone (e.g., the radius of the plastic zone was still increasing at the mesh
boundary, seven tunnel radii behind the face). It was possible to estimate
most of the values of the indicated distances for analyses Fl and Il, but

for analysis F the length of tunnel considered was much too short to make
any reasonable estimates.

The quantities Z, and Zf ({.e., distance ahead of face to first

i
stress change, and distance behind face to point where stresses become in-
dependent of face position, respectively) were obtained from the distributions
of ground mass stresses. All of the stresses @E, de, dz, Trz) for a given
analysis did not always indicate precisely the same values for Z.1 and Zf.
Therefore, these quantities are given as ranges of values in Table 5.4.

For each analysis the radial distribution of ground mass stresses,
size of the plastic zone, and magnitude of tunnel wall displacements were
examined for points far behind the tunnel face beyond the transition zone.

It is in this region, previously described as the zone of final equilibrium,
that the available analytical solutions for elasto-plastic stress-strain
behavior, such as those given by Deere, et al. (1969) and Ladanyi (1974) are
supposedly applicable.

Normalized values for the maximum plastic zone radius, R, and maxi-

mum radial displacement of the tunnel wall, u, obtained from the finite ele-

ment analyses are compared to values calculated from the analytical solutioms
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TABLE 5.3

Cc

Case Vo psi kPa deéiees
F 0.49 14 96.5 0

Fl 0.49 28 153 0

F2 0.49 31.5 217 0

F3 0.49 37 255 0

I1 0.40 14 96.5 15

I 0.40 14 96.5 30

Additional data same as given in Table 5.1
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TABLE 5.4

DATA DEFINING EXTENT OF THREE-DIMENSIONAL ZONE -
TUNNEL UNLINED OR LINED FAR BEHIND FACE

Z. Z Z A
Analysis % 3(—?—) :5 —;— —;I; —a't:
F Length of tunnel considered much too short to make an estimate
F1” 2.55 7.65 8 8.0 8.0 8
F2 2.25 6.75 6-7 - 6.5 6-7
F3 1.75 5.25 4-5 5.5 5.5 4-5
Il* 2.6 7.8 8-9 -— 8.0 7-8
I 1.5 4.5 4=5 4.5 4.5 4-5

ol

Estimated values
Z., = distance ahead of face to first stress change
Z = distance behind face to maximum radial displacement
Z_ = distance behind face to maximum radius of plastic zone

Zp = distance behind face to point where ground stresses become
independent of face position
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in Table 5.5. As in Table 5.4, values for finite element analyses F, Fl,
and Il are estimates. The ''greater than" symbols in front of the values

from finite element analyses F and Il indicate that these quantities had
not, within the length of tunnel considered, sufficiently approached a maxi-
mum value for an estimate to be made.

In general, the finite element results are in good agreement with
those given by the analytical solutions for unlined openings. It is felt
that this lends credibility to both solution techniques and, at the same
time, provides an indication that the finite element results for the tran-

sition zone are reasonable.

TUNNEL LINED CLOSE TO THE FACE

Similar observations for the tunnel lined near the face indicate
that the liner signifijcantly influences the longitudinal extent of the tran-
sition zone. It is estimated that this zone extends out ahead of the tunnel
face to a distance of approximately three times the radius of the plastic
zone that forms around the lined tunmnel. Thus, this distance is a function
of the position of liner installation, relative to the face, and the stiff-
ness of the liner as well as the magnitudes of the insitu stresses and the
shear strength of the ground mass. Behind the tunnel face the transition
zone seems to extend only to a distance of one tunnel radius behind the
leading edge of the liner. However, this estimate is based on the analysis
of a relatively stiff liner and it may be that for a more compressible

liner this distance would be larger.
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TABLE 5.5

COMPARLSON OF RESULTS FROM FINITE ELEMENT AND ANALYTICAL
SOLUTIONS FOR A TUNNEL LINED FAR BEHIND THE FACE

R/a u/a

Analysis F.E. C.F. F.E. C.F.
F >6.0 12.0 >.125 .325

' Fl 2.55 2.7 .053 .055
F2 2.25 2.25 ———— .045

F3 1.75 1.88 .034 .036

Il 2.6 2.55 >.088 .103

I 1.5 1.5 .043 .050

F.E. = Axisymmetric finite element analysis, points far behind face

C.F. = Two-dimensional closed form analytical solutions (e.g., Deere,
et al, 1969, and Ladanyi, 1974)
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5.4.2 GROUND LOSS INTO TUNNEL

Longitudinal displacements of the ground into the tunnel face and
radial displacements occurring ahead of the face result in overexcavation,
i.e., removal of a volume of ground greater than the undisturbed tunnel
volume (area of face times length of advance). The volume of overexcavation
plus the volume of ground that displaces radially into the tunnel behind the
face constitute the volume of lost ground which contributes to settlements
of the ground surface above the tunnel.

Table 5.6 gives the overexcavation volumes obtained from the par-
tially and fully lined tunnel analyses, along with those from the correspond-
ing unlined tunnel analyses. The volumes per unit length of tunnel have
been expressed as percentages of the full tunnel volume per unit length.

As shown in Table 5.6 the total volume of overexcavation has been divided
into two components; one resulting from longitudinal displacement toward
the tunnel face (column heading "Long.'") and another resulting from radial
displacements ahead of the face (column heading "Rad.").

The data indicate that the volume of overexcavation increases as
the shear strength of the ground mass decreases. There is little difference
between the total volumes obtained from the unlined and partially lined
tunnel analyses, but when the tunnel is fully lined the total volume of
overexcavation is sharply reduced. Note also that for the fully lined
tunnel analyses approximately 65 percent of the total volume resulted from
longitudinal displacements ahead of the face.

Hansmire (1975) gives values of lost ground volumes calculated

from field measurements of displacements around tunnels in various types of
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TABLE 5.6

VOLUME OF OVEREXCAVATION

Unlined Partially Lined Fully lined

Stress-Strain
Behavior Long. Rad. Total Long. Rad. Total Long. Rad. Total

Linear Elastic 1.2 1.4 2.6 1.3 1.4 2.7 0.9 0.5 1.4

Elasto-plastic
=0 2.1 2.4 4.5 2.2 2.5 4.7 1.2~ 0.8 2.0

Elasto-plastic
¢ = 30 2.2 1.6 3.8 1.9 1.5 3.4 1.1 0.5 1.6

Expressed as a percentage of tunnel volume/unit length
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ground, and discusses in detail the various sources of lost ground (one of
which is overexcavation) and the relationship between ground lost into the

tunnel and settlement of the ground surface.
5.4.3 GROUND-~LINER INTERACTION

It is clear from the discussion in Section 2.3.1 and the results
presented in this chapter that the methods and details of construction,
principally the position of liner installation relative to the face, can
strongly influence the magnitude of the initial excavation loading ground
pressure on the liner (initial = just after construction). One of the
primary advantages to be gained by using the three-dimensional or axi-
symmstric f{nitc element analyses with simulation of comstruction 1is the
direct consideration of these factors.

Two-dimensional solutions (analytical and finite element with
construction simulation) yield results that compare favorably with the fully
lined tunnel case because the displacement these solutions ignore, that
which occurs ahead of the face, is quite small when the liner is kept up to
the face. However, the same two-dimensional solutions considerably over-
estimate liner thrust and displacement for the partially lined tumnel cases
because the displacements they do not account for are quite large in these
cases.

Two-dimensional solutions modified to account for prior displace-
ments (Secti&n 2.3.1) tend to underestimate the pressure on the liner, and
thus liner thrust and displacement, if based on the longitudinal displace-
ment distribution of the unlined tunnel. This can be illustrated by exam-

ining the results from analyses of cases A, B, and C. From the longitudinal
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distribution of displacements obtained from case C it was found that at the
face and at a point one radius behind the face, up/ut = (0,32 and 0.85, re-
spectively. Sﬁbstituting these values into Eqn. 2.2 it is found that the
liner thrust coefficients (?Za/Poa = T/¥ Ha) for the fully lined and par-
tially lined tunnels should be 0.668 and 0.147, respéctively. Thus, this
approach significantly underestimates the values, 0.875 and 0.290, found
when actual advancement of the tunnel was simulated. Figure 5.9 shows the
longitudinal displacement distributions that should have been used instead
of the displacements for the unlined ;unnel. As was mentioned in Section
2.3.1 the analyses that give these displacements also give the liner re-
sponse, eliminating the need for solution methods such as Eqn. 2.2.

Three-dimensional finite element analyses, of which the axisymmet-
ric is a special case, allow a more complete treatment of the advancing
tunnel problem than is possible with two-dimensional methods. However, as
was learned during the course of this investigation, simply expanding the
analysis to three dimensions is not sufficient. Also important are such
factors as simulation of the advancement of the tunnel (as was illustrated
in Fig. 2.12) and, in certain cases, the details of excavation and liner
installation.

Most soft ground tunnels are constructed with the aid of a tunnel-
ing shield behind or within which the liner is assembled and then installed.
The shield and the method of liner installation, in the way that they affect
radial ground displacements, are important to liner performance.

The importance of the construction details in analysis of soil-
liner interaction is demonstrated here through the consideration of two case

studies where field data were available. This is accomplished by comparison
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of the results from analyses of advancing tunnels with displacement data
reported by Ward (1969) and Muir Wood (1969) for two tunmels in London Clay.
The radial displacements obtained from the finite element analyses were, of
course, a function of the elastic modulus assigned to the simulated ground
mass. The modulus values assumed in these analyses are within the range of
values given by Ward (1971) for London Clay. The object of these comparisons
is a qualitative study of the shield-liner-ground behavior interrelationship,
rather than an attempt at analytical reproduction of field data.

The comparison with Ward's data (1969) is shown in Fig. 5.14. None
of the displacement distributions from the lined tunnel analyses would fit
the measured data unless an unreasonably low modulus was assumed for the clay.
Instead, it was found that the best agreement was obtained with the displace-
ments from the unlined tunnel analyses (broken and dashed curves). This is
not too suprising when the stiff nature of the London Clay, the details of
the shield, and the method of liner installation are considered. The shield
was fabricated with a bead 9 in. long by 0.5 in. thick (23 cm x 1.3 cm)
around the upper 300 degrees of its cutting edge. In addition, the cast
iron liner was normally assembled within the shield, leaving a 1.5 in. (3.8
cm) gap between the liner and the claywhen the shield advanced. This void
was filled with cement grout soon after the shield advanced.

The measured displacements given in Fig. 5.14 are for a point
1.6 ft (49 cm) outside the tunnel springline, but they clearly show the
effects of these construction details. The first radial displacements occur
about one tunnel diameter ahead of the face, but they remain small (uf) un;
til the bead on the shield passes, whereupon they almost double as the clay

moves into the void behind the bead. The restraining effect of the shield
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on the displacements is clearly indicated, but it is also apparent that the
shield only delays and does not prevent further displacement (uu). Figure
5.14 shows that as the tail of the shield passes, the clay begins to move
again, this time into the gap left by the skin of the shield (ug). It ap-
pears that these additional displacements occur either before the grout is
injected or before it has had time to set. Once the grout does set the liner
becomes effective and begins to take on load. The additional displacement,
gz, of the liner then occurs. It is not clear from the data at what point
the liner becomes effective, so it is difficult to estimate up from the
displacement curve.

The comparison with Muir Wood's data (1969) is shown in Fig. 5.15.
Here it was found that the best agreement was obtained with the displacements
from the partially lined tunnel analyses (liner one radius behind face).
Typical displacements for an unlined tunnel analysis are shown in Fig. 5.15.
It can be seen that it significantly overestimates the displacements behind
the tunnel face.

Relative to the maximum measured value, the displacements occurring
ahead of the tunnel are quite large. However, as the shield's cutting edge
passes the soil is pushed outward again. This suggests the presence of a
bead or similar protrusion on the forward end of the shield. In terms of
the ground displacement-ground pressure relationship, the reduced radial
displacement at the face was taken as ug rather than the maximum displace-
ment occurring ahead of the face. The subsequent rapid inward displacement
over the length of the shield indicates that the clay moved into a void
space there. This displacement corresponds to u, - For this tunnel each

ring of precast concrete segments was expanded against the soil after leaving
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leaving the shield. Thus, the liner becomes effective almost immediately
and the potential displacement ug is essentially eliminated. Almost all
displacements occurring behind the shield correspond to u, .

It appears that analyses based on the assumption that the shield
acts as an extension of the liner (tunnel lined to face) would have under-
estimated the ground displacements and thus overestimated the initial ground
pressures acting on the liner in these two cases.

In general, however, the importance of the aéove construction de-
tails also depends on the behavior of the ground mass. 1In the above examples
the soill was very stiff and possessed a relatively high shear strength.

Thus, at the depths considered little or no plastic yielding occurred and

the potential total displacement, upo’ was small. The void spaces between
the soil and shield-liner were large compared to upo and thus the shield
and liner did little to prevent displacement before a major portion of upo
had occurred. A shield with given bead and tailskin thicknesses (tb, ts)
will not hold the potential displacements u, and ug to less than their maxi-
mum values (function of soil properties) unless (tb + ts) < (uu + ug)m .

ax
In the first example above, (tb + ts) Z_(uu + u ) and thus the shield

g’ max
and liner had almost no effect on the ground displacements. In the second
~ example ts’ and thus ug, was effectively zero, but tb_z u, and so the shield
did little to prevent the displacement U

In summary, the following can be stated. In order to correctly
model a givén tunneling problem with the finite element method the ground
conditions, shield configuration, and method of liner installation must be

considered. One way of doing this, of course, is to directly model these

factors. However, it 1s a considerable task to effectively model the shield
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and details of liner installation, and so a reasonable approach is to adjust
the position of the simul: ed liner with respect to the face to correspond
to the anticipated behavior of the real tunnel. The length of unlined tun-
nel that should be left between the face and the liner depends on the rela-
tive magnitudes of the two quantities (tb + ts) and-(uu + ug)max' It is
only when the above factors combine to yield (tb + ts) << (uu + ug)max that
the assumption of the shield acting as an extension of the liner is valid.
If there is no gap between the liner and the soil (ug = 0) the
liner becomes effective immediately after leaving the shield. Thus, if the
shield does nothing at all to prevent radial displacements this system could
be modeled by assuming the liner extends to within a shield's length of the
tunnel face. At the other extreme, if there are no voids around the shield,

or a void is present but t << U, it could be assumed that the shield acts

b

as an extension of the ] aier and the system could be modeled by extending

the simulated liner up to the face.



161

CHAPTER 6

FINITE ELEMENT ANALYSIS OF TWO PARALLEL TUNNELS -~ EXCAVATION LOADING

6.1 GENERAL REMARKS

The construction of a tunmel modifies the state of stress and
displacement in a zone around the tunnel. The size of this zone depends
on: ground conditions -- type of soil or rock, in situ stresses, and prop-
erties of the medium; geometric parameters —- depth and radius of the tun-
nel; and characteristics of the support system. If two parallel tunnels
are constructed far apart such that their zones of influence do not over-
lap, then the individual tunnels can be considered separately and analyzed
as such. However, if the zones of influence of the two tunnels overlap,
the behavior of each of the tunnels will be different from that of a single
tunnel, as some degree of interaction between the two tunnels will take
place. Interaction of thevtunnels will affect the state of stress and dis-
placement around the tunnels, ground surface displacements, and support
loads. It can generally be expected that the surface settlements resulting
from the construction of two tunnels will be greater than the sum of the
settlements resulting from each tunnel alone. The stress distribution
around two tunnels and support loads are too complex to lend themselves to
a general statement and they require a comphehensive study.

There are two distinct problems related to the design and con-
struction of two parallel tunnels in soft ground: a) additional loads and
distortions are imposed on the lining of the first tunnel due to passage
of the second tunnel, and b) the ground settlements due to excavation of

the second tunnel may be appreciably greater than those that occurred during
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excavation of the first tunnel, and may result in damage to structures and
utilities at the ground surface.

In the design and construction of two parallel tumnels, designers
must determine whether or not the distortions and load increases on the
lining of the first tunnel due to passage of the second tunnel will be
great enough to cause unacceptable damage to the lining. In many cases,
the installation of the per inent lining for the first tumnel is delayed
until after the second tunnel has passed. Finite element analyses provide
a means of evaluating the influence of the excavation of the second tunnel
on the loads and distortions of the first.

Ground settlements due to excavation of a second tunnel are usuall:
greater than the settlements due to excavation of the first tumnel for two
reasons: a) the first tunnel may disturb the soil around and above the secomn
tunnel so that the soil will be weaker and have a greater tendency to dis-
place into the second tunnel as it is mined, or the soil will have increased
in volume during passage of the first tunnel and will undergo volume de-
creases during passage of the second tunnel, and b) the pillar betweeh the
two tunnels will be more highly stressed and less c;nfined than the abut-
ments adjacent to single tunnels. The pillar will therefore undergo greater
vertical compression than the abutments of a single tunnel.

Linear elastic finite element analyses do not model the disturb-
ance of the soil and volume ¢ anges in the soil as they occur around tunnels
in real soils. However, the results from this type of analysis can be used
to investigate the compressi 1 of the pillar and abutments around two par-
allel tunnels and its influe¢ :e.on ground movement. Linear analyses will

therefore be of use in evalt :ing field measurements and determining if the
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additional ground movements due to the excavation of two parallel tunnels
are related to pillar compression or to other causes.

An important factor that will affect the distribution of stresses
and displacements around the two tunnels is the sequence of excavation and
liner installation in each tunnel. Regarding the sequence of constructionm,
the following situations are considered herein:

1. Two tunnels constructed simultaneously - In this case, the

conditions encountered by each tunnel will be similar barring
some possible cross variation of the ground or surface condi-
tions. Ideally this case will be symmetric about a vertical
plane passing through the mid-distance between the two tun-
nels. The tunnels will be advancing through stressed media
with the stress and displacement conditions ahead of the
tunnels altered by the approach of both the tunnels.

2., Second tunnel constructed adjacent to an existing tunnel - In

this case, the second tunnel is constructed within a medium
which has higher stresses than encountered at the same loca-
tion if the first tunnel was not present. Also, the material
properties of the medium may have been modified by the first
tunnel. The construction of the second tunnel will change
the support load on the first tunnel.

In the case of two tunnels being driven simultaneously, the faces
of the two tunnels need not necessarily be at the same longitudinal position;
the face of one tunnel can be ahead of the face of the second tunnel by a
certain distance. This may well be the rule raﬁher than the exception, as

two tunnels cannot be expected to advance at the same rate.
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The results of Chapter 5 have shown that a transition zone of
three-dimensional stress exists immediately ahead and behind the face of
an advancing tunnel. The size of this zone depends on the type of medium
and the support condition. The zone of significant stress and displacement
changes can be considered to be approximately three tunnel radii ahead of,
and also behind, the face when the ground remains elastic and the tunnel is
unlined. Based on this information, the following cases can be considered
regarding the distance between the faces of two tunnels. If the distance
along the tunnel line between the faces of two tunnels is less than three
tunnel diameters, the zones of influence around the tunnel faces overlap
and interaction between the tunnels is taking place at the tunnel faces,
Fig. 6.la. The state of stress near the face of each tunnel is clearly a
function of longitudinal position and any two—-dimensional analysis of this
case will suffer from drastic approximations. When the distance between
the faces of the two tunnels is about one tunnel diameter or less, the
stress condition around the tunnels can be reasonably comnsidered to be the
same, as in case 1 discussed above, and a two-dimensional analysis may be
a good approximation.

For the case of the distance between the tunnel faces being greater
than three tunnel diameters, the zones of influence around the tunnel faces
are separated, Fig. 6.1b. This case is similar to case 2 discussed above
and which is illustrated in Fig. 6.lc. The first tunnel encounters stress
conditions, and produces distributions of stresses and displacements in its
zone of influence, identical to that of a single tunnel. The second tunnel
encounters a stress field which has beenmodified by the passage of the first

tunnel and it is subjected to support loads which are basically different
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than those of the first tunnel. The passing of the second tunnel itself

also alters the stress condition and modifies the support load in the first

" tunnel. The tendency is for increase in the support loads due to the pass-

ing of an adjacent tunnel.

The subject of interaction between parallel tunnels has been
studied by several authors who have reported the results of field measure-
ments or analytical studies of the problem. This brief discussion of some
of the literature on the subject is not intended as a comprehensive review
and must be considered incomplete.

Barla and Ottoviani (1974) have used the finite element method to
study the case of two parallel unlined tunnels excavated simultaneously.
They used linear elastic and nonlinear variable moduli material properties
in their analyses. They reported results of a parametric study which covered
a range of geometric parameters of: depth to diameter ratios of 0.75 to 3.0;
pillar width to diameter ratios of 0.25 to 1.0;'and two tunnel diameter
values of 19.7 and 39.4 ft (6 and 12 m). Their results seem to indicate
that the interaction between two tunnels becomes negligible for values of
the pillar width to tunne diameter ratio of W/D = 1.0 or greater. They re-
port large stresses in the zone between the two tunnels for small values of
pillar width ratios, W/D < 0.5. Zones of tensile stresses develop around
the tunnels at shallow d¢ ths, H/D < 1.0.

feck, et al., (1969) have discussed the problem of two parallel
or intersecting tunnels of different diameters at adjacent or stacked rela-
tive positions. They have given some general guidelines for liner design
for two tumnel systems.

Fotieva and Sheinin (1966) have developed a method for analysis
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of a tunnel driven adjacent to an existing lined tunnel. They have applied
this method of analysis to an example problem of a lined tumnel of 19.7 ft
(6 m) diameter at a depth of 118 ft (36 m). The medium and the liner were
assigned elastic material properties of rock and concrete, respectively.

A second tunnel of the same diameter was excavated adjacent to this existing
tunnel at a central distance of 26 ft (8 m) which gave a pillar width to
tunnel diameter ratio of W/D = 0.33. The driving of the second tunnel
caused additional stresses in the liner of the existing tunnel equivalent
to a maximum thrust coefficient of T/YHa = 0.24 and a maximum moment coef-
ficient of M/yHa® = 0.0053. These are significant additional liner forces
which occur on the pillar springline of the first tunnel.

Several researchers have reported the results of displacement
measurements made during and following coustruction of two or more parallél
tunnels. Deere, et al., (1969) gave an excellent summary of the data avail-
able prior to 1969. In most cases measurements were made as a second tunnel
was driven past a test section set up in an existing tumnel or in one
whose heading was a considerable distance ahead of the test section.

Ward and Thomas (1965) reported om two parallel tunnels constructed
in London Clay. These particular tunnels were lined with precast concrete
segments which had a thickness of 9 in. (23 cm). The tunnels were approxi-
mately 13 ft (4 m) in diameter and were separated by a pillar of 8 ft (2.4 m)
minimum thickness (W/D = 0.6). Passage of the second tunnel caused an addi-
tional maximum distortion of the first tunnel of AD/D = 0.12 percent. In
addition, the average radial pressure acting on the first tunnel was in-
creased by 8.33 psi (57 kPa). After 40 months the total maximum distortiom

of the first tunnel was 0.32 percent and the total average radial pressure
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was estimated to be approximately 48 psi (331 kPa).

Terzaghi (1942) reported measurements taken on tunnels constructed
in Chicago Clay. These tunnels had a horseshoe shaped cross section and
were lined with steel ribs and liner plates. The tunnels were 20 ft (6.1 m)
in diameter and were constructed at a distance of 28.5 £t (8.7 m) center-to-
center, giving a pillar wi :h of 8.5 ft (2.6 m) and W/D = 0.425. As the
second tunnel was mined past, the springline nearest the second tunnel dis-
placed outward 0.2 in. (5 mm) while ' e opposite springline moved outward
only 0.04 in. (1 mm). This yielded a distortion of the first tunnel of
AD/D = 0.10 percent.

Contact pressures between the soil and the concrete invert of the
first tunnel were measured using Carlson cell slabs. As the second tunnel
passed on the north side, the contact pressure under the north rib of the
first tunnel increased and thereafter remained greater than that under the
south rib which was farthest from the second tunnel.

Settlements of the street irface were also recorded as the two
tunnels were advanced. Different settlement profiles were obtained for
different spacings between the two tunnels. When the tunnels were con-
structed so that there was no pillar between them (W/D = 0), settlements
due to the first tunnel were consistgntly greater than those due to the
second tunnel. Ground displacements around the second tunnel were re-
stricted by the presence of the fir: tunnel's liner. When the tunnels
were mined leaving a pillar between hem (W/D = 0.425) support provided by
the first tunnel's liner was not available. Instead the clay above the
second tunnel had to be supported by the relatively weak clay pillar. As

a result, settlements due i the second tunnel were everywhere greater than
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those due to the first tunnel.

Recently, Sauer and Jonuscheit (1976) have reported stress measure-
ments in the pillar separating two parallel tunnels in rock. The two tunnels
were driven simultaneously and the stresses were measured as the tunnel head-
Ings approached the test section. Some of these stress measurements are com-
pared with the results of the present study in later sections of this chapter.

Presented in this chapter are the results of a study on the behav-
ior and interaction of two parallel circular tunnels. The objectives of
this research are:

1. The study of the interaction of two parallel tunnels and the

effect of such interaction on stresses and displacements
around the tunnels and on support loads.

2, The parametric study of two tunnel systems to determine the
effect of various parameters such as distance between the
centers of the tunnels, depth, and construction sequence.

This is accomplished by performing a series of finite element analyses of
the two tunnel system for ranges of various parameters and using the con-
struction simulation technique. The results are presented in two sections.
In the first section the main parameter under study is the width of the
pillar between the two tunnels. In the second section the influence of the
sequence of construction of the two tunnels is discussed. In both sections

the effects of the tunnel depth and support conditions are also considered.

6.2 METHOD OF ANALYSIS

6.2.1 THE FINITE ELEMENT MESH

It is known that the stress condition around the face of a tunnel
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is three-dimensional, and only a three-dimensional analysis can directly
give an accurate picture of tunnel behavior. Unfortunately, at present
such analyses are very costly and difficult to perform. For some problems,
such as that of a single tumnel of circular cross section, the difficulties
can be greatly reduced by considering the axisymmetric case. However, this
approach is obviously not available for the study of two tunnel systems.
For the type of study performed here, for which a large number of analyses
are required, it is not economically feasible to conduct three-dimensional
analyses. Therefore, this investigation was restricted to two-dimensional,
plane strain analyses. Fortunately, information obtained from two-dimen-
sional analyses can be useful when evaluated in combination with the know-
ledge of the effects that can occur at the tunnel face.

A schematic representation of the problem along with the symbols
used for various dimensions in this study are given in Fig. 6.2. For the
study of the influence of pillar width, it was assumed that the two tunnels
were constructed simultaneously, thus making the problem symmetrical about
a vertical plane through the pillar centerline. This approach has the ad-
vantage of reducing the region analyzed by one half. The disadvantage is
that it allows consideration of only two construction sequences. To study
the influence of construction sequence it was necessary to analyze the entire
region. The number of analyses of this type were held to a minimum by con-
sidering only one pillar width.

Finite element meshes, composed of two-dimensional, plane strain,
quadrilateral finite elements with four corner nodes, were developed for an
appropriate region of the ground mass containing the two tunnels. Typical

plots of the automatically generated finite element meshes for half the
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region and the whole region are shown in Figs. 6.3 and 6.4, respectively.

Initially the finite element model is subjected to the self weight
of the medium to simulate the in situ stress condition. At this stage the
base of the finite element model has a displacement boundary condition allow-
ing horizontal movement but restricting vertical displacement, and the sides
have a force boundary condition, consisting of a triangular force distribu-
tion corresponding to the lateral stresses resulting from the weight of the
medium. By varying the rate of increase of this boundary lateral force with
depth different Ko conditions can be simulated. A value of K.o = 0.5 was
used throughout this study.

The excavation of the tunnel(s) is achieved at subsequent steps of
the analysis. At the excavation step the base and sides of the finite ele-
ment mesh are fixed and no further movements are allowed. The only excep-
tion is when just half of the region is analyzed. Then the vertical bound-
ary representing the plane of symmetry is allowed vertical movements.

Using a two-dimensional, plane strain model, the excavation of a
tunnel is simulated by deactivating the elements within the tunnel peri-
meter. This way a full face excavation is simulated. Regarding the liner
placement in a two-dimensional model, the options are limited to two extreme
conditions: either the elements comprising the tunnel liner are activated
at the same step as the excavation is simulated; or, they are activated at
a subsequent step of the analysis. In the first case it is assumed that no
displacements take place prior to the liner coming into contact with the
surrounding medium. This case approximates the installation of the tunnel
liner right at the tunnel face in a manner such that ground displacements

are held to a minimum. In the second case it is assumed that all of the
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potential instantaneous displacements of the medium occur prior to the liner
coming into contact with the surrounding medium. This case can be considered
to simulate either, the installation of the liner far behind the tunnel face,
outside the zone of instantaneous displacements; or, the installation of the
liner near the face but such that no measures are taken to prevent occurrance
of the instantaneous ground displacements before ground-liner contact. For
the first case the tunnel is referred to as being fully lined. For the sec-
ond case the tunnel can be referred to as being unlined, because these analy-
ses consider only the instantaneous displacements of the medium and with re-
spect to these displacements the simulated tunmels of this case are effect-

ively unlined.
6.2.2 MATERIAL BEHAVIOR MODELS

For the majority of the analyses performed the ground mass was
assumed to be linear elastic. Some selected cases were also analyzed with
elasto-plastic properties for the ground mass. For these analyses the modi-
fied Drucker-Prager yield condition, as described in Section 5.2.3, was

utilized.
6.2.3 CONSTRUCTION SEQUENCE

Basically, two types of sequence of excavation and liner placement
are considered. For the case of simultaneous excavation of two tunnels only
half of the region is analyzed and only two cases are considered: both
tunnels are lined far behind the face; or both tunnels are lined right at
the face (the liners are placed instantaneously upon excavation). In the

case of two tunnels being excavated at different stages, the whole region
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containing the two tunnels is used in the analysis and the number of possible
construction sequence combinations is greater. The sequences of excavation
and liner placement considered in this study are given in Table 6.1. It is
important to note that in the case of the liner being installed at the head-
ing, the two-dimensional analyses do not account for the ground displace-
ments that occur ahead of the tunnel heading and therefore can only be con-

sidered approximations.
6.3 RESULTS OF ANALYSIS
6.3.1 INFLUENCE OF PILL: WIDTH

In the first part of this study it is assumed that the two tunnels
are being advanced together at or near the same rate, such that the two head-
ings are adjacent or separated by only a small longitudinal distance (< 1D).
For this condition it is reasonable to consider the problem to be one of
simultaneous excavation of the two tunnels. For simultaneous excavation
the problem is symmetrical about a vertical plane through the pillar center-
line and only half the region needs to be analyzed. Both tunnels were assumed
to be either lined right at the face (lined tunnel analyses) or far behind
the face (unlined tunnel analyses).

Two tunnel depth, H, to diameter, D, ratios were considered: H/D =
1.5 for a shallow tunnel with depth of cover equivalent to one tunnel dia-
meter, and H/D = 5.5 for a moderately deep tummnel with a depth of cover
equivalent to five tunnel diameters. Tunnel depth, H, is measured from the
ground surface to the tunnel axis. Three values of pillar width, W, were

considered: W/D = 1.0, 0.5, and 0.25.



TABLE 6.1

SEQUENCES OF CONSTRUCTION

Case

Simulation Step 1’
Excavation of
First Tunnel

Simulation Step 2
Excavation of
Second Tunnel

Conditions Modeled

line first tunnel

line first tunnel

first tunnel
unlined

first tunnel
unlined

line second tunnel

second tunnel
unlined

line first and
second tunnels

line first tunnel,
second tunnel
unlined

Existing first tunnel with permanent lining
or first tunnel heading far ahead of second
tunnel heading with lining installed at the
heading. Second tunnel lined at the heading.

Same as case A, but second tunnel lined far
behind the heading.

First tunnel lined far behind the heading,
but ahead of the second tunnel heading.
Second tunnel lined at the heading.

Same as case C, but second tunnel lined far
behind the heading.

LLT
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STRESSES AROUND TWO PARALLEL TUNNELS

It is assumed that the in situ stresses in the undisturbed medium
(prior to tunnel excavation) are due to the self weight of the medium. Thus,
at any given point the maximum principal stress is vertical and has a mag-
nitude of P = dV =Yz, where ¥ 1s the unit weight of the medium and z is the
depth of the point below the ground surface. Similarly, the minimum prin-
cipal stress is horizontal and has a magnitude of Q = dH = K.Yz, where K.o is
the coefficient of earth pressure at rest. The distribution of in situ
principal stresses thus consists of a set of horizontal contour lines show-
ing a linear increase of magnitude with depth. Creation of one or more
openings (tunnels) in the medium will alter these distributions in a region
around the openings.

Figures 6.5 and 6.6 show the distribution of stresses around two
parallel unlined tunnels and two parallel lined tunnels, respectively. The
distributions of the maximum and minimum principal stresses and the maximum
shear stresses in a region around the tumnels are shown by non-dimension-
alized stress contours (stress at a point divided by YH, where H is the
depth to the tunnel axes). Here the stress distributions are symmetrical
about a vertical plane through the pillar centerline and, thus, stresses
around the right tunnel only are shown.

From the unlined tunnel analysis it was found that to the right
of the tunnel axis (as in Fig. 6.5) the stress distributions are very similar
to those for a single tunnel. For a single unlined opening and Ko = 0.5 the
maximum principal stress concentration at the springline is P/YH = 2.5 and
at the crown and invert P/YH = 0.5. Figure 6.5, which is for the narrowest

pillar considered, shows that the maximum ‘:incipal stress concentrations
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FIGURE 6.6 STRESS DISTRIBUTIONS AROUND TWO
TUNNELS (H/D = 5.5, W/D = 0.25)
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at the abutment springline and the crown and invert do not differ appreciably
from these values. For the wider pillars the differences are even less.

The stress distributions obtained from one of the analyses for
which it was assumed that both tunnels were lined are shown in Fig. 6.6.

It was assumed in the lined tunnel analyses that tunnel excavation and liner
installation occur instantaneously and simultaneously. For this reason
relaxation of the medium surrounding the tunnel is a minimum in these analyses.
What stress redistribution that does occur is directly related to deformation
of the liners. There would be no changg in the stress distributions from

the in situ state if the liners were perfectly rigid and incompressible (all
analyses assume the no slippage condition at the ground-liner interface).

The stress distributions in Fig. 6.6 were selected for presenta-
tion because they demonstrate the greatest amount of interaction of all the
lined tunnel analyses performed. However, as with the unlined tunnels the
interaction that has occurred has had little effect on the distribution of
stresses to the right of the tumnnel axis.

As would be expected, the stress distributions for both the un-
lined and lined tunnel cases differ most from those for single tunnels in
the vicinity of the pillar and the pillar springlines of the two tunnels.
Pillar stresses from the two tunnel analyses are summarized in Fig. 6.7.

In this figure horizontal and vertical stresses, GH and dv, normalized with
respect to YH, are given for points at the center and edge of the pillar.

Figure 6.7 shows that for the unlined tunnels the vertical stress
is maximum at point B and minimum at point A, while the horizontal stress
is maximum at point A and minimum (zero) at point B. For the lined tunnels
both the vertical and horizontal stresses are maximum at point B and minimum

at point A,
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The numbers given along the right side of Fig. 6.7 represent the
stress coefficient values that apply when the pillar width has been increased
to such an extent that the two tunnels no longer interact. Relative to these
values the curves indicate that at a pillar width ratio of one the condition
of independent behavior of the two tunnels has almost been achieved. It
appears, however, that a pillar width ratio of at least two would be re-
quired before all indications of interaction disappear.

Also shown in Fig. 6.7 are stress coefficient values obtained from
Savin's (1968) solution for an infinite medium containing two unreinforced
circular openings. Agreement between the two solution techniques is very
good.

The results of field measurements of stresses at the center of the
pillar, reported by Sauer and Jonuscheit (1976), are also shown in Fig. 6.7.
These tunnels had a diameter of 25.25 ft (7.7 m) and were const:ucted in
rock at a depth to diameter ratio of H/D = 2.4 with a pillar width to dia-
meter ratio of W/D = 0.71. The in situ horizontal and vertical stresses in
the rock mass were approximately equal (K.o = 1). The measured horizontal
and vertical stresses at the center of the pillar appear to agree well with
the finite element results (for 1(.o = ] the finite element analyses, which
assumed Ko = 0.5, would have given.dH/YH = 1.0). Measurements of stresses
near the pillar springlines were also reported by Sauer and Jonuscheit.
However, the final vertical stresses were less than the in situ stress
which is in contradiction to the finite element results. This reduction
of stresses can be attributed to rock loosening during excavation, a phe-
nomenon not simulated in the analyses.

Interaction between the two tunnels is most severe for the unlined

tunnel case. As the spacing between two such tunnels is reduced, the vertical
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stress in the pillar increases rapidly while the horizontal confining stress
approaches zero. While the unconfined strength of the medium may be suf-
ficient to withstand the stress concentrations mobilized around a single
tunnel, or two widely spaced parallel tunnels, st;bility of the pillar, and
thus of the two openings, is likely to be jeopardized by the large stress
differences that result for a narrow pillar.

Interaction between two lined tunnels was also evident from the
analyses performed. For this case, however, the pillar stresses were con-
trolled by the deformation of the tunnel liners, and because the liner dis-
placements were small, the changes in medium stresses were also small. Fig-
ure 6.7 shows that as pillar width is reduced there is a gradual increase
of vertical stresses in the pillar. However, this increase is matched by
a corresponding increase of horizontal stresses. Thus, the stress differ-
ence is almost unaffected by pillar width. The high horizontal stresses
in the pillar result because under the Ko = 0.5 stress condition the pillar
springlines of the two liners are forced outward, toward each other, thus
causing horizontal compression of the pillar.

Figure 6.8 illustrates the extent of the plastic zones that form
around the unlined and lined tunnels when the analyses consider a medium
assigned elasto-plastic material properties. For the lined tunnel analyses
it was assumed that excavation and liner installation occur simultaneously
and therefore that no re ixation of the medium is allowed prior to liner
installation. Under these conditions plastic zone formation is tied directly
to liner deformation. A relatively stiff and inflexible liner may prevent
yielding entirely. Here the liner was sufficiently flexible to allow a

small amount of yielding to occur. Had the liner been more flexible , or
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had a small amount of ground relaxation been allowed prior to liner instal-

lation, the extent of the resulting plastic zone would be somewhere between

the two extremes shown in Fig. 6.8.
TUNNEL DISPLACEMENTS

Normalized displacements of the unlined and lined tunnel openings
for the symmetrical case are plotted in Figs. 6.9 through 6.12 (for right
hand tunnel only). Also shown in these figures are the corresponding single
tunnel displacements. Note that because the displacements of the unlined
tunnels were so much larger than those of the lined tunnels two different
displacement scales are used.

Figures 6.9 and 6.10 show that as the pillar width between two
unlined tunnels is reduced, the downward displacements of the upper half of
the tunnels increase. This is a result of the vertical compression of the
pillar, which is greater for a narrow pillar than for a wide pillar. Above
the springlines there 1s little difference between the displacements for
W/D = 1.0 and those for a single tunnel when the tunnels are located at a
shallow depth. However, for deep tunnels this difference is more pronounced,
indicating that the minimum pillar width at which the two tunnels can be
said to act independently of each other increases with depth of the tunnels.
Pillar width seems to have its greatest effect on the vertical displacement
component. The greatest variation of horizontal displacements occurs on
the pillar side of the tunnel where there is slightly less inward displace-
ment as the pillar width is reduced. Pillar width has almost no effect on
displacements in the lower right hand quadrant of the tunnels.

Figure 6.11 gives the displacements of the shallow (H/D = 1.5)

lined tunnels. At this depth the weight of the overburden is not sufficient
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to prevent the upward 1 se of the liner. This effect is more pronounced
for two parallel tunnels than for a single tunnel. It is also clear that
the upward displacement is greater for a narrow pillar than for a wide
pillar, and that the pij lar springline ¢ the liner moves upward more than
the abutment springlii .

.splacements of the deep (H/D = 5.5) lined tunnels are given in
Fig. 6.12. At this depth the weight of the overburden is great enough to
prevent the rise of the liner and a more symmetrical deformed liner shape
results. At this depth the interaction of two parallel lined tunmnels is
indicated primarily by the horizontal displacements of the liner next to
the nillar. This effect is also observed for the shallow tunnels (Fig.
6.11). Un :r the K° condition assumed, a tunnel liner will be forced out-
ward at the springlines until sufficient passive pressure is built up to
balance the vertical pressures acting at the crown and invert. This re-
action is indicated by the single tunnel displacements in Figs. 6.11 and
6.12. These figures also indicate that when two parallel lined tunnels are
constructed simultaneously with a pillar width of approximately one tunnel
diameter or less they will interact so as to yield smaller outward displace-
ment of the tunnels' pillar springlines than would result for a single tun-
nel. In addition, the necessary passive pressure at the two pillar spring-
lines is mobilized with less displacement of each springline as the pillar
width 1s reduced.

Tunnel displacements obtained from the corresponding elasto-plastic

analyses are given in Fig. 6.10. It can be seen that the plastic yielding
illustrated in Fig. 6.8 has led to increased displacements at all points

around the unlined tunnel perimeter for both the single tunnel and two

tunnel (W/D = 0.5) cases.
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The effect of pillar width on tunnel displacements is also illus-
trated in Fig. 6.13 in which the horizontal and vertical diameter change
coefficients have been plotted versus W/D. The resulting curves show again
that for unlined tunnels the vertical diameter change is much larger than,
and is influenced to a greater degree by pillar width than, the horizontal
diameter change. On the other hand, for the lined tunnels the vertical
and horizontal diameter changes are approximately equal in magnitue (but of
opposite sign) and equally influenced by pillar width.

Diameter change coefficients for the two elasto-plastic analyses
(single tunnel and two parallel tunnels with W/D = 0.5) of unlined tunnels
are also given in Fig. 6.13. It can be seen that the additional displace-
ments due to plastic yielding are much greater around the springlines than
around the crown and invert. The elasto-plastic ADH is approximately 130
percent greater than the ela :ic value, while the elasto-plasticADV is
only about 20 percent greater than the elastic value. The additional dis-
placements around the ¢ ringlines are so much greater than those around the
crown and invert because, as Fig. 6.8 shows, there is much more plasfic
yielding around the springli :s.

In each plot of Fi , 6.13 the corresponding values for a single
tunnel, which 1s equivalent to either of t1v v 1ely spaced parallel tumnels,
are given along the right-hand side. Convergence of the plotted curves to
these values provides an in¢ :zation of the pillar width required to elim-
inate interaction, with res) :t to diameter changes at least, between two
parallel tunnels. Most of * 2 curves have almost reached the single tunnel
values at W/D = 1.0. And it appears that if the curves were extrapolated

beyond W/D = 1.0, they would all reach the single tunnel values at pillar
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widths of no more than W/D = ,0. The cur s also indicate that the pillar
width required to eliminate interaction is greater for deep tunnels than it

is for shallow tunnels.
LINER FORCES AND MOMENTS

Under the condition of simultaneous construction assumed in this
part of the study the interaction between two parallel tunnels leads to
distributions of liner forces and moments - at, in general, do not differ
greatly from the distributions for a single tunnel. Maximum normalized
liner force and moment coefficients are su warized in Table 6.2.

Interaction between the two tunnels led to only slightly larger
thrust values at most points around the liners. Relative to the single
tunnel case the greatest thrust increases occi red in the vicinity of the
pillar side of the crown and nverf. However, in all cases the maximum
thrust occurred at or near the pillar springline, and here the changes were
.small. Table 6.2 shows that »>r two shallow tunnels the maximum thrust
values were actually less than the single tunnel maximum, while for two
deep tunnels the maximum thrust was only sligl ly larger than that for a
single tunnel at the same dej] h.

The liner bending 1 ment distributions, shown in Fig. 6.14 and
Table 6.2, exhibit the great: : variation from the single tumnel case, but
the general trend is toward : aller, not larger, bending moments due to
interaction. The interaction effect on be !ing moments is greatest at the
liners' pillar springlines wl re reduced displacements have led to a sig-
nificant reduction in mc 'nts. However, at the liner invert, where the
maximum bending moments are : bilized, the moments have been reduced to a

lesser extent.
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TABLE 6.2

MAXIMUM LINER FORCE AND MOMENT COEFFICIENTS

T/YHa M/Y Ha® V/NHa
Shallow Deep Shallow Deep Shallow Deep
Single tunnel .859 .871 -.0105 -.0099 -.0237 -.0218
W/D = 1.0 .834 .866 -.0091 -.0088 -.0220 -.0214
W/D = 0.5 .837 .881 -.0086 -.0088 -.0214 -.0205

W/D = 0.25 .853 .905 .0083 .0087 -,0211 -.0205
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SURFACE DISPLACEMENTS

For two adjacent and parallel tunnels it seems reasonable to
expect that the settlements at the ground surface would consist of two
components. The first component would be equal to the settlements re-
sulting from the superposition of the two single tunnel settlement troughs,
assuming that the two tunnels are so spaced that their individual troughs
overlap. The second component would consist of additional settlements
resulting from interaction of the two tunnels (pillar shortening, increased
crown displacements), assuming that the two tunnels are close enough toget-—
her so that interaction will occur. These two components are illustrated
in Fig. 6.15.

The additional settlement due to two tunnel interaction is illust-
rated in Figs. 6.16 and 6.17 wherein the surface displacement profiles ob-
tained from the finite element analyses are compared to profiles obtained
by superposing two single tunnel settlement curves. Settlements were norma-
lized with respect to Smax'which is the maximum settlement from the single
tunnel analyses.

Figure 6.16 gives the comparison for the analyses of shallow,
unlined tunnels at three different pillar widths. This figure indicates
that the additional surface settlement due to interaction between the two
tunnels is small at a pillar width ratio of W/D = 1.0, but increases as
the pillar width is decreased. The pattern of increasing additional set-
tlements over the tunnel crown (x/a = 0) corresponds to the pattern of
the vertical diameter changes shown in Fig. 6.13.

The comparison for the analyses of deep, unlined tumnels is shown

in Fig. 6.17. Here the additional surface settlement due to two tunnel
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interaction also increases as the pillar width decreases. However, the
amount of additional settlement for W/D = 1.0 is already quite large and
there is only a slight increase as the pillar width is reduced. This
pattern can be related to the relationships between displacements of the
tunnel openings and pillar width in Fig. 6.10 and between vertical dia-
meter change and pillar width in Fig. 6.13. Because of the depth of these
tunnels the width of the individual ssttlement troughs is large and, for
two parallel tunmnels at the spacings considered, tha amount of overlap at
the ground surface is extensive.

Interaction effects on ground surface displacements can also be
illustrated by examining the settlement trough volumes (Hansmire, 1975).
The ratio obtained by dividing the interaction settlement volume by the
settlement volume for a single tunnel, AV/VS, was calculated for the un-
lined tunnel analyses. The interaction settlement volume is obtained by
subtracting the settlement volume for two single tunnels from the settle-
ment volume for the two tunnel case. These ratios are plotted versus
pillar width in Fig. 6.18. The curves also show that the additional set-
tlements due to two tunnel interaction increase as the pillar width is
reduced. The data indicate that the volume ratio is greater for deep
tunnels than for shallow tunnels. If this relatioship is valid it means
that the deeper two tunnels are to be located the wider the the pillar
between them must be if no interaction, with respect to surface displace-~
ments, is to occur. In Fig. 6.18 the absence of interaction effects on
surface settlements is indicated by AV/VE = 0. The trend of the shallow
tunnel curve suggests that this condition is satisfied at a pillar width

ratio of approximately W/D = 2.0. The deep tunnel curve indicates a much
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wider separation is required before interaction effects on surface displace-
ments cease.

Also shown in Fig. 6.18 are the volume ratios calculated by
Hansmire (1975) from field measurements of surface settlement over two
parallel tunnels constructed in Washington, D. C. The data from the
Washington Metro indicates that the interaction settlement volume ratio,
AV/VS, for dense sands is two to three tijmes larger than predicted from
elastic theory. The differepze is primarily due to soil volume decreases
and disturbance that occurred in the sands and gravels but which were not

modeled by the elastic analyses.
6.3.2 INFLUENCE OF CONSTRUCTION SEQUENCE

In this section the behavior of the two tunnel system is studied
for various sequences of construction of the two tunnels. The emphasis
here is on the case of a tunnel being constructed parallel and adjacent to
an existing tunnel, or the case of two tunnels being constructed simultan-
eously with the heading of the first tunnel far ahead of the heading of the
second tunnel. Both of these two tunnel systems behave similarily and no
distinction is made between them subsequently in this study.

Each of these analyses consisted of three solution steps. 1In the
first step the initial stress state was simulated. The initial stress state
consisted of the vertical and horizontal stresses caused by the weight of
the medium with the coefficient of lateral stress Ko = 0,5 used in all the
cases. The two subsequent steps simulated the excavation of the tunnels and
liner installation.

Four sequences of construction and lining of the two tunnels are
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possible. These construction sequences are given in Table 6.1. In the
last column of the table are given the actual conditions to which the
analyzed sequences correspond.

All the cases in Table 6.1 were analyzed for a shallow tunnel
with depth to diameter ratio of H/D = 1.5 and a deep tunnel with H/D = 5.5.
In all the cases a central distance of 1.5 diameters was used. This is
equivalent to a pillar width to diameter ratio of W/D = 0.5. While linear
elastic material properties were assigned to both the medium and liner in
all cases, case B was also analyzed with elasto-plastic properties assigned

to the medium.
STRESSES AROUND TWO TUNNELS CONSTRUCTED SEPARATELY

It is generally expected that the stresses at the abutment side
of each tunnel will differ omly slightly from those of a single tunnel.
However, on the pillar side of each tunnel higher stresses are expected, as
the two tunnels interact. The degree of overstress in the pillar, to a
varying extent, depends on a combination of factors sueh as depth, tunnel
diameter, pillar width, and the support condition which in these analyses
are equivalent to the fully lined or unlined conditions. The sequence of
construction also has some influence on the stress condition in the pillar.

For cases A and D the stress distributions around the tunnels
resemble closely those of two lined and two unlined tunnels, respectively,
as simulated in the previous section of this chapter; being almost symmet-
rical about a vertical plane bisecting the pillar. 1In case D the first
tunnel is excavated and left unlined with the resulting stress distribution

of a single tunnel. At the end of this step the liner is installed but



205

remains stress free until the next step when the second tunnel is excavated
and left unlined. The excavation of the second tunnel only slightly modi-
fies the stresses around the first tunnel because the liner in this tunnel
inhibits further displacements and stress changes. A similar situation
exists in analysis case A but with both the tunnels lined at the time of
excavation.

The final stress distributions around two deep tunnels for cases
B and C are shown in Figs. 6.19 and 6.20, respectively.

In case B the first tunnel was excavated and lined, and subse-
quently the second tunnel was excavated, but left unlined. The medium
stresses around the first tunmnel are similar to those found when both tunnels
are lined, and the stresses around the second tunnel bear some resemblance
to those stresses found when both tunnels are unlined. It is evident, how-
ever, that each tunnel has had an effect on the other and that interaction
between the two tunnels has taken place resulting in new stress distribu-
tions .

A similar effect is observed for the stresses in the medium
surrounding the two tunnels of case C. Figure 6.20 shows that although
both tunnels were lined in this analysis the stress distributions are al-
most mirror images of those in Fig. 6.19. This occurs because the liner
of the first tunnel was not installed until after all medium displacements
associated with the creation of this opening had occurred. The second
tunnel was lined immediately upon excavation.

The distributions of stresses around two shallow tunnels for the
case B construction sequence are given in Fig. 6.21. The influence of the

ground surface can be seen be comparing Figs. 6.21 and 6.19. Although
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FIGURE 6.20 STRESS DISTRIBUTION FOR CASE C (SEE TABLE 6.1),
H/D = 5.5



For each plot top boundary
represents ground surface.

FIGURE 6.21 STRESS DISTRIBUTIONS FOR CASE B (SEE TABLE 6.1),
H/D = 1.5
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there are many similarities in form of the distributions for the shallow
and deep cases, there is a greater range of normalized magnitudes associated
with the shallow tunnels. This is because the stress increase with depth
over a given vertical distance (e.g., one tunnel diameter) is more pro-
nounced near the ground surface than at great depth. Figure 6.21 illust-
rates the presence of two small regions of tensile minimum principal stress,
one at the ground surface and the other at the crown of the unlined tunnel.
Similar tensile stress regions were observed for all shallow tunnel analyses
that considered unlined tunnels. These stresses were always of very small
magnitude, usually less than 1.0 psi (7 kPa) and never greater than 2.0 psi
(14 kPa). The tensile stresses above the crown of the unlined tunnels are
oriented in a nearly radial direction and act in combination with relatively
small circumferential stresses. Figure 6.21 shows only one zone of tensile
stresses at the ground surface. There were usually two such zones observed,
symmetrically located to the left and right of the unlined tunnels. These
tensile stresses are undoubtedly the result of the lateral (horizontal) com-
ponent of the surface displacements.

The zones of plastic yielding that formed around the tunnels in
the elasto-plastic analysis of case B are shown in Fig. 6.22. In this
analysis the first tunnel was lined simultaneously with excavation. The
liner provided sufficient support to the medium to prevent yielding initially.
When the second tunnel, which was left unlined, was excavated the medium
surrounding it yielded. This induced additional displacement of the liner
of the first tunnel and the two small zones of yielding on the left side of
this tunnel. Increased horizontal passive pressures exerted by the outward

deflecting right springline of the liner helped keep the stress difference
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small in a region right next to the springline. As a result the medium
did not yield at that location. The implications of the plastic yielding

on the behavior of the two tunnel system will be discussed in later sectionms.
DISPLACEMENTS OF AN EXISTING TUNNEL DUE TO SECOND TUNNEL

The displacements of a tunnel can be separated into two components;
the overall displacement of the tunnel as a rigid body; and, relative dis-
placements or distortions of the tunnel liner shape. The overall displace-
ment of a tunnel can be defined by the centerline shift along horizontal
and vertical directions. In a single tunnel the centerline shifts upward.
This upward shift is caused by an upward force resultant, due to excavation
of the tunnel, which acts on the ground mass and is always present in the
analysis when the weight of the medium is considered. The magnitude of this
upward shift diminishes with increasing depth. The tunnel shape distortions
can best be specified by two diameter change values; horizontal diameter
change at springline level; and, vertical diameter change. In a single tun-
nel, for Ko < 1, the springlines tend to move outward resulting in horizon-
tal diameter increase, but the crown and invert tend to move inward causing
a vertical diameter decrease.

The passing of a second tunnel causes some additional displacement
in the liner of the existing tunnel. The final displacements of the existing
tunnel after the excavation of the second tunnel are given in Fig. 6.23 for
two depths for the cases A and B. It can be seen from Fig. 6.23 that the
excavation of the second tunnel causes some significant additional displace-
ments in the liner of the first tunnel, especially in the region around the

pillar springline of the liner. The values of the diameter change and
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centerline shift for the cases A and B along with the single tunnel values

are given in Table 6.3. It can be seen that, relative to the single tunnel
case, case B, in which the second tunnel was left unlined, produces additional
displacements of opposite sign to those of case A, in which the second tunnel
was lined upon excavation. Also, in case A the centerline shifts away from
the pillar, but in case B the centerline shift is towards the pillar.

The additional displacements due to the second tunnel in case A
tend to reduce the displacement of the existing tunnel (compare single tun-
nel and case A in Table 6.3) due to the fact that the second tunnel is lined
upon excavation, providing lateral support to the pillar. The deformation
of the pillar under the added load due to excavation of the second tunnel
tends to push the existing tunnel away from the pillar and create the favor-
able displacement condition.

In the case B the second tunnel is left unlined after excavation,
thus the pillar displaces toward the second tunnel causing additional dis-
placements which increase the original displacements of the existing tunnel
(compare case B and single tunnel in Table 6.3). This is an unfavorable
displacement condition for the existing tunnel.

The displacements of the second tunnel depend on the stress in~-
crease caused by the first tunnel in the zone that the second tunnel is to
be excavated in. The magnitude of these stress increases are related to the
amount of medium displacements allowed during the construction of the first
tunnel; the more displacements allowed in the first tunnel, the higher the
stresses are in the zome through which the second tunnel is to be excavated.
For this reason the second tunnel in case C shows higher displacements than

the fisrt tunnel (referring to liner displacements).
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TABLE 6.3

TUNNEL DISPLACEMENTS DUE TO PASSAGE OF SECOND TUNNEL

Horizontal Vertical )rizontal Vertical
Case H/D Diametir Diametgr Centerline Centerline
Change Change™ shife* Shift ™"
Single 1.5 1.037 -1.330 -— 0.533
Tunnel
5.5 1.086 -1.381 - 0.088
A 1.5 0.707 -1,015 0.112 0.979
5.5 0.869 -1.215 0.180 0.148
B 1.5 1.344 -1.600 -0.165 0.567
5.5 1.535 -1.803 -0.220 -0.053
5.5# 1.910 -2.064 -0.222 -0.134

Displacements given in the form of normalized coeil icients, (6/a)/(YH/MC),
where MC = constrained modulus.

Positive values mean diameter increase

Positive values mean shift away from pillar

Positive values mean upward shift

Elasto-plastic analysis

(Cases A and B are described in Table 6.1).
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In summary, the magnitude and direction of the additional dis-
placements imposed on the liner of an existing tunnel due to the excavation
of an adjacent parallel tunnel strongly depend on the support conditions
and the magnitude of displacements allowed in the second tunnel. The most
favorable condition for the first tunnel displacements occurs in case A.
However, in the analysis of this case no displacements are allowed in the
second tunnel prior to ground-liner contact and this can not be expected
to occur in reality. As the heading of the second tunnel advances, a cer-
tain amount of displacement does occur ahead of the heading. Any amount
of additional displacements allowed during the construction of the second
tunnel before the liner in this tunnel becomes effective is likely to ad-

versely affect the liner in the existing tunnel.

CHANGES IN LINER FORCES DUE TO SECOND TUNNEL

The bending moments and thrust in the liner of the existing tunnel
after excavation of the second tunnel are shown in Fig. 6.24. Also shown in
this figure are the liner forces for the existing tunnel prior to excavation
of the second tunnel (identical to liner forces in a single tunnel). It can
be seen that the magnitudes of the bending moments and thrusts in the exist-
ing tunnel are modified by the passing of the second tunnel and that the
most significant changes occur in a region around the pillar springline (PSL).
Again, the magnitude of displacements in the second tunnel strongly influ-
ences the changes of liner forces in the existing tunnel. 1In case A, where
the liner in the second tunnel restricts the medium displacements, there is
a reduction of moments in the existing tunnel, whereas in case B, where the

second tunnel is left unlined and no restrictions are imposed on the medium
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displacements, the bending moments in the pillar springline are increased
by almost 70 percent and the thrust increases by 18 percent (H/D = 5.5).

The additional bending moments and thrusts in the existing tunnel
due to excavation of the second tunnel are shown in Fig. 6.25 for all the
cases listed in Table 6.1. For the cases C and D, the liner for the first
tunnel is activated in the analysis only when the second tunnel is being
excavated, therefore the only liner forces present are caused by the passage
of the second tunnel and these are the values shown in Fig. 6.25. This fig-
ure clearly shows the completely opposite nature of the liner force changes
in cases A and C where the second tunnel is lined as opposed to cases B and
D where the second tunnel is unlined, again emphasizing the importance of
the displacement control during the construction of the second tunnel.

Also shown in Fig. 6.25 are the results for case B when the medium
is assigned elasto-plastic properties. This elasto-plastic analysis exhibits
the same pattern of moment and thrust change as in case B with elastic proper-
ties. However, the magnitudes of the liner bending moment changes at PSL
are much greater in this casej; about 150 percent increase as compared with
70 percent for the elastic analysis.

The bending moments and thrusts for the second tunnel are shown
in Fig. 6.26. Only in cases A and C was the second tunnel lined upon ex-
cavation. From Fig. 6.26 it can be expected that the liner forces in the
second tunnel will be somewhat different than the liner forces in a single
tunnel. However, the differences are small. It is also seen from this
figure that the magnitude of medium displacements allowed during the ex-
cavation of the first tunnel have some influence on the expected liner

forces in the second tunnel (case A as compared to case C).
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SURFACE SETTLEMENTS DUE TO SECOND TUNNEL

It is generally expected that the surface displacements result-
ing from the excavation of the second tunnel should be somewhat greater
than the surface displacements caused by a single tunnel. This can be
attributed to interaction between the second tunnel and the first tunnel
(primarily pillar shortening) and to the disturbance of the ground caused
by excavation of the first tumnel. This disturbance takes the form of
altered stresses, i.e., stress differences greater than in situ, and reduced
shear strength of the ground through which the second tunnel is mined. The
larger stress differences and reduced shear strength result in vertical
compression of the ground on either side of the second tumnel that is
greater than that for a single tunnel. Also, the displacements into the
second tunnel are larger than for a single tunnel driven through undisturbed
ground. The larger displacements at the tunnel level are translated into
surface settlements for the second tunnel which are greater than the settle-
ments for a single tunnel.

Most of the cases analyzed here, with the exception of case C, do
not exhibit any significant amount of additional displacements of the ground
surface due to excavation of the second tunnel over an equivalent single
tunnel. This can be attributed to the fact that linear elastic material
properties are used and, in the case of lined tunnels, the displacements
that would normally occur prior to liner installation are not considered.
However, when the medium is assigned elasto-plastic material properties
the analysis shows that the excavation of the second tunnel causes sig-
nificant additional displacements.

The surface displacements for case B with elasto-plastic material



221

properties are shown in Fig. 6.27. Since the first tunnel is lined, the
settlement trough for this tunnel is much narrower than the settlement
trough over the second tunnel, which is considered to be an unlined tunnel.
The additional settlements due to the second tunnel appear to be maximum
over the pillar, but fairly wide spread. The maximum settlement due to

the second tunnel is 13 percent greater than the maximum settlement for a
single tunnel. As the depth of the tunnels decrease the additional settle-

ments are expected to be more concentrated over the second tunnel.



0 -6 -4 -2 0 2 4 6
I | ! | | I I
0.2 —
0.4 —
0.6 -
Single Unlined
., 0.8 . . Tunnel _
2 Single Lined
w 1.0 |_Tunnel _
~ .
» Settlement
|.2 Due To
' Second Tunnel

K \ Additional

—_—y r_n _ ___ Settlement Due
First K Second To Interaction
Tunnel Tunnel

| | 1' | | | |

FIGURE 6.27 GROUND SURFACE SETTLEMENT TROUGHS OVER TWO TUNNELS,
CASE B, ELASTO-PLASTIC (SEE T """~ 6.1)

(44



223

CHAPTER 7

FINITE ELEMENT ANALYSIS OF GROUND-LINER INTERACTION

FOR LOCALIZED GRAVITY LOADING

7.1 GENERAL REMARKS

If the tunnel liner does not come into contact with the surround-
ing ground until after all or most of the instantaneous ground displacements,
of the type illustrated in Fig. 2.1 of Chapter 2, have occurred the initial
pressures acting on the liner due to excavation loading will be nonexistent
or very small. Such a liner can still be subjected to significant external
pressures as a result of events occurring over either the short term or long
term that affect the ground mass surrounding the tunnel. Such events include
the passage of an adjacent parallel tunnel, additional, time-dependent inward
movement of the surrounding ground mass, the application of an external pres-
sure at the ground surface resulting in the overpressure loading condition
at the tunnel level, and the development of what is called herein the local-
ized gravity loading condition.

Following excavation the distribution of stresses in the ground
mass surrounding the tunnel opening can be such that the shear strength of
the soil or rock is exceeded to the extent that the force of gravity is suf-
ficient to cause portions of the soil or rock to be dislodged and fall onto
the liner. The weight of this material, which usually comes to rest on or
against only a portion of the liner circumference, constitutes the localized
gravity load.

The distributions and magnitudes of the external pressures applied

to the liner for the localized gravity loading and excavation loading condi-
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tions are quite different. Thus, it is reasonable to expect that liner
responses for the two types of loading are also quite different. A liner
designed for excavation loading may not be suitable for conditions that
correspond more closely to those of localized gravity loading.

Presented in this chapter are the results of a finite element
study of localized gravity loading induced ground-liner interaction for a
circular tunnel. The objective of this research was the determination of
liner response as a function of ground and liner stress-strain properties
for various gravity loading distributions and a range of flexibility and
compressibility ratio values. Although the results obtained are)directly
applicable only to the ground-liner systems and conditions analyzed, a pro-
cedure is given for estimation of liner response for other ground-liner
combinations and other, more complex, loading distributions.

The results presented in the following sections of this chapter
were obtained from a series of two-dimensional, plane strain, linear elastic
‘finite element analyses of a circular tunnel. Like the analytical solutions
described by Széchy (1966) and the finite element work of Dixon (1971) the
analyses did not simulate the actual development of the localized-gravity
load on the liner. Instead, as illustrated in Fig. 2.14 of Chapter 2, the
localized gravity load was modeled by applying forces to the liner elements
in the finite element mesh. In this investigation of the general problem
the distribution and magnitude of the load were treated as variables for
study. The other varjiables considered were the ground-liner flexibility
and compressibility ratios. Although these ratios were derived for ground
and liner behavior under conditions of excavation loading and, strictly

speaking, have no meaning for localized gravity loading, they provide a
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convenient means for expressing the elastic stress-strain properties and
dimensions of the liner and surrounding ground mass.

Initial analyses of both the full slippage and no slippage ground-
liner interface conditions indicated that, in general, the full slippage
condition yielded the most unfavorable distributions of liner forces and
moments. Therefore, only the full slippage condition was given further
consideration.

In all analyses it was assumed that the localized gravity load
exerted a uniform vertical pressure over a given portion of the liner.
However, it is shown that the principle of superposition can be used to
obtain approximate results for nonuniform loadings. In addition, results
in the form of liner thrust and bending moments are presented in chart
form to allow determination of these values, by interpolation, for com-

pressibility and flexibility ratio combinations other than those analyzed.

7.2 METHOD OF ANALYSIS

7.2.1 THE FINITE ELEMENT MESH

The finite element mesh used in this study is illustrated in
Fig. 7.1. It is a circular mesh with its outer boundary completely fixed.
Because the presence of the ground surface was not simulated, the influence
of this boundary is not included in the results of analysis. However, due
to ,the nature of the problem it is doubtful that the ground surface bound-
ary would have much influence on liner response beyond that which, for
shallow tunnels, affects the formation of the localized gravity load acting
on the liner.

For the localized gravity loading condition, as analyzed, it is
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FIGURE 7.1 FINITE ELEMENT MESH FOR LOCALIZED GRAVITY LOADING
ANALYSES
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important that the liner be 2llowed to separate from the surrounding
ground mass in the area of the applied load. Under actual conditions
separation occurs within the ground mass above the liner. For the ideal-
ized model analyzed the mass of material resting on the liner is simulated
by a distribution of forces applied to the liner elements, while the ground
mass elements around the liner are left intact. Thus, separation in the
model occurs at the ground-liner interface. If separation is not allowed
in the analysis the applied load is carried by both the liner and the
adjacent ground (in tension) instead of by the liner alone.

To insure the proper separation, and slippage condition, a special
type of finite element, here called an interface element (Goodman, 1968;
Ghaboussi, et al., 1973), was inserted between the liner elements and the
ground elements around the perimeter of the liner. The properties of these
elements can be specified so as to obtain any desired combination of normal
stress-normal strain response (including zero tension) and shear stress-

shear strain response (including full slippage).

7.2.2 THE GEOMETRY OF LOADING

The localized gravity load acting on a liner can be described by
a set of four parameters; 0., B, A and P. The parameters o, 8, and A define
the extent, position and direction of loading and P represents the magnitude
of the pressure exerted on the liner by the localized gravity load. 1Imn

greater detail, these parameters are defined as follows:

a = angle encompassing that portion of the liner subjected to
external pressure, P
B = angle measured counter-clockwise from horizontal (right spring-

line) to ¢ bisector
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A = angle measured counter-clockwise from horizontal to line
along which the external pressure, P, acts
P = W/A, where W is the applied force (weight) and A is the area,

in plane normal to direction of loading, over which the force
is applied.
These parameters are illustrated in Fig. 7.2.

In all of the finite element analyses performed it was assumed
that 8 = A = 90 degrees. That is, that the applied pressure, P, acts ver-
tically downward and symmetrically about a vertical plane through the tun-
nel centerline.

Because the analyses did not consider the ground surface boundary
and because it was assumed that the surrounding ground mass was homogeneous
and isotropic, the results obtained from the analysis of a given loading
geometry are also valid for certain other loading geometries, as illustrated
in Fig. 7.3. Any number of other loading geometries (B and A values) can be
obtained from a single case analyzed by rotating the distributions of liner
response obtained for that case through the appropriate angle p. Thus, in
Fig. 7.3 the liner responses at points A, A', and A", for example, are all
the same. Note that rotation does not alter the value of 0 nor the relation-

ship between B and A.

7.3 RESULTS OF ANALYSIS

7.3.1 GENERAL

In this investigation of ground-liner interaction under conditionms

of localized gravity loading the main parameters considered were the geometry
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FIGURE 7.2 PARAMETERS DEFINING THE GECMETRY OF LOADING
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of loading (principally the value of o) and the relative stiffnesses and
flexibilities of the ground and liner (expressed in terms of the compress-
ibility and flexibility ratios C and F). Four o values (@ = 180, 120, 90,
and 60 degrees), three C values (C = 0.04, 0.32 and 2.56), and five F values
(F =4, 16, 32, 128 and 512) were considered.

An initial series of analyses (o = 180 degrees, C = 0.32, F = 32)
was performed to determine the influence of the slippage condition at the
ground-liner interface on liner response; and to illustrate the diffenence
between results obtained from a) analyses in which ground-liner separation
in the area of loading was allowed and b) analyses in which this separation
was not allowed.

Figure 7.4 illustrates the distributions of liner thrust and bend-
ing moments obtained from analyses of the full slippage and no slippage
conditions. It can be seen that the full slippage condition yielded bend-
ing moments of approximately twice the magnitude of those obtained for the
no slippage condition. In addition, the external shear stresses acting on
the liner under the condition of no slippage resulted in liner thrusts that
were greater than the full slippage values in the vicinity of the crown and
less than the full slippage values everywhere else. The difference between
the full and no slippage thrusts is greater at the invert than at the crown
because the no slippage external shear stresses act over the entire lower
half of the liner but only over a portion of the upper half due to separa-
tion of the liner from the ground mass there.

Figure 7.5 illustrates the importance of including liner separa-
tion in the analysis of localized gravity loading. In the analysis in which

no separation was allowed a significant portion of the applied load was
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FIGURE 7.4 DISTRIBUTIONS OF LINER THRUST AND MOMENT FOR LOCALIZED
GRAVITY LOADING FROM ANALYSES OF THE FULL AND NO
SLIPPAGE CONDITIONS (SEPARATION ALLOWED)
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transmitted across the ground-liner interface to the ground above the liner
instead of being carried entirely by the liner, resulting in a serious un-

derestimation of liner thrusts and bending moments.
7.3.2 VARIATION OF LINER RESPONSE WITH LOADING GEOMETRY

Distributions of liner displacements, external passive pressures
(Pp), thrusts and bending moments typical of those obtained from the analyses
of localized gravity loading are illustrated in Fig. 7.6.

The angular extent of liner separation from the surrounding ground
mass (separation angle, Q) is defined by that portion of the liner over
which Pp = 0. It was found that the extent of gravity loading, i.e., the
value of o, has little influence on the separation angle, which in Fig. 7.6
is approximately 2 x 60 = 120 degrees. This angular distance is much more
sensitive to liner flexibility and compressibility than it is to the value
of €. As liner flexibility is increased the separation angle becomes smaller.
As liner compressibility is Increased the separation angle becomes larger.

Because a large portion of the upper half of the liner is free of
passive pressure, the smallest thrusts occur in this portion of the liner.
For symmetrical loading, as considered here, the minimum thrust occurs at
the crown. Because of the large displacements allowed by separation in the
vicinity of the applied load, distortion of the liner shape and, thus, bend-
ing moments are quite large in this portion of the liner. The maximum bend-
ing moment occurs at the crown for symmetrical loading. Below the spring-
lines there is little distortion of the liner shape and the distribution of
passive pressure is quite uniform. Thus, in this part of the liner the

bending moments are small and there is little variation of thrust magnitude.
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Figure 7.7 gives the thrust and bending moment distributions ob-
tained from finite element analyses of five different q values. As shown
in the figure it was found that as o was reduced from 180 degrees the maxi-
mum bending moment (located at crown) was not affected until g was reduced
to less than 60 degrees. This was also found to be true for the second
largest moment value. However, as o dropped below 120 degrees the location
of the second largest moment (approximately 60 degrees either side of the
crown for g = 180 and 120 degeees) began to shift to a position closer to
the crown.

Thrust in the upper half of the liner remained essentially un-
changed until 0 was reduced to values below 90 degrees. In contrast, in
the lower half of the liner there is a much more linear relationship be-
tween the value of @ (which is proportional to the total load, or weight,
carried by the liner) and the thrust magnitude.

Figure 7.7 suggests that if the gravity load exerts a uniform
pressure, P, over a portion of the liner, i.e., a < 180 degrees, one can
simply assume that @ = 180 degrees and be assured the results so obtained
will be conservative if, in reality, o < 180 degrees. This approach is
made especially attractive by the fact that it is often difficult to pre-
dict beforehand a true o value. However, as will be illustrated in a later
section of this chapter, if the actual loading does not exert a uniform
pressure on the liner, it is possible to obtain a decidedly unconservative
estimate of liner response by assuming an average, uniform vertical pres-

sure acting over 180 degrees.
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FIGURE 7.7 DISTRIBUTIONS OF LINER THRUST AND MOMENT FOR FIVE
DIFFERENT ¢ VALUES
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7.3.3 VARIATION OF LIN. . RESPONSE WITH RELATIVE STIFFNESSES AND FLEXIBILITIES

OF LINER AND GROUND

Figure 7.8 illustrates the variation of liner thrust and bending
moments with flexibility ratio (for three different compressibility ratios)
as determined from the finite element analyses. The curves given are for
a = 180 degrees. Curves for the other & values (120, 90 and 60 degrees)
are quite similar to those for @ = 180 degrees and, therefore, are not
shown. As indicated in the figure, the maximum thrust is located at or
near the springlines, the minimum thrust is located at the crown, and the
maximum bending moment occurs at the crown. The curves for C = 2.56 are
not extended below F = 10 because it 1is highly unlikely that a ground- iner
system having a compressibility ratio of 2.56 would have a flexibility ratio
smaller than ten.

Figure 7.8 indicates that both crown and springline thrusts increase
with increasing flexibi ity ratio and decrease with increasing compressibility
ratio. The maximum bending moment, on the other hand, decreases with increas-
ing flexibility ratio and increases with increasing compressibility ratio.

The variations of thrust and moment with the flexibility and com-
pressibility ratios, F and C, are related to the variation with C and F of
the passive pressures acting on the liner. If C is held constant and F is
increased the separation angle, (2, decreases. The more uniform distribution
of external pressures (Pp and P) results in smaller bending moments. Also,
the additional passive pressures acting above the springlines increase the
crown and springline thrusts. If F is held constant and C is increased the
separation angle increases. This leads to a less uniform distribution of

external pressures and thus to larger bending moments. The reduction of
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passive pressures acting above the springlines is reflected in smaller crown
and springline thrusts.

Figure 7.9 gives the variation of the vertical and horizontal dia-
meter changes with F and C for a = 180 degrees. For relatively inflexible
liners the horizontal and vertical diameter changes are nearly equal, espe-
cially if the liner 1is also relatively incompressible. However, for flex-
ible liners the vertical diameter change is much larger than the horizontal.

The vertical diameter change increases with both increasing F and
increasing C and is much more sensitive to the compressibility ratio than
are the thrusts and moments. The horizontal diameter change increases with
increasing flexibility ratio and decreases slightly with increasing compres-

sibility ratio.

7.4 DISCUSSION OF RESULTS

7.4.1 PROCEDURE FOR ESTIMATING THRUST AND MOMENT

In the finite element study of ground-liner interaction for local-
ized gravity loading reported herein distributions of liner thrusts and bend-
ing moments were obtained for a limited number of compressibility and flex-
ibility ratio combinations. On the basis of this data a procedure was for-
mulated for estimating liner thrusts and moments for any combination of C
and F values within the ranges: 0.01 < C < 3.0 and 1 < F < 1000. With this
procedure it is possible to estimate liner thrusts and moments at 24 locations
(every 15 degrees) around the circumference of the liner for any of four dif-
ferent O values (a = 180, 120, 90 and 60 degrees). This procedure requires
the use of the equations, tables, and charts given in the remaining pages

of this section.
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Liner thrusts are obtained from the following equation:

t

(T/Pa)i,j = (B) -+ (F!) - mC (7.1)

i,3 1,3

where,
T/Pa = thrust coefficient

Bt = base value of (T/Pa), given in Table 7.2

FL = factor required to account for liner flexibility,
given in Figs. 7.10 through 7.13

C = compressibility ratio

m = factor required t account for loading geometry,
given in Table 7.1

i = number from 1 to 4 specifying value being considered
(1=1, a=180° 1 =2, a=120° i =3, a = 90°;
i=14, a=60°

j = number from 1 to 13 specifying location of point around
liner circumference being considered (points located
every 15°; j = 1 = crown, j = 7 = springline, j = 13 =
invert; points 14 through 24 are not necessary because
the loading considered is symmetrical)

TABLE 7.1

VALUES OF m FOR USE IN EQUATION 7.1

i o m

(degrees)

1 180 0.035

2 120 0.033

3 90 0.028

4 60 0.021
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TABLE 7.2

BASE VALUES OF THE THRUST COEFFICIENT FOR USE IN EQUATION 7.1

j (B 5 (B, 5 (B3, 5 By, 5

a = 180° a = 120° a = 90° e = 60°
1 .540 .540 .520 440
2 .582 .582 .563 .483
3 712 712 .700 .621
4 .872 .872 .849 .671
5 _1.015 .997 .873 .653
6 1.068 .989 .833 .653
7 1.084 .964 .817 .619
8 1.083 .960 .815 .615
9 1.080 .957 .814 614
10 1.079 .957 .813 .613
11 1.078 .957 .812 .613
12 1.077 .957 .811 .613
13 1.076 .957 .810 .613
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LINER BENDING MOMENTS

Liner bending moments are obtained from the following equation:

1.11
M/Pa®), . = (M) + (3.53C ) M. ) (7.2)
i,] £/, . cf’/. .
1,] 1,]
where,
(M/Pa®) = moment coefficient
Mf = moment coefficient as a function of flexibility
ratio only, given in Figs. 7.14 through 7.17
Mcf = factor required to account for liner compressibility,

given in Figs. 7.18 through 7.21.

Equations 7.1 and 7.2 and the associated tables and charts yield
only approximate results because, 1) they are based on a limited amount of
data and 2) they express the variation of thrust and moment with F and C in
a somewhat simplified manner. However, as long as theilr use is confined to
the ranges of C and F values previously given, these equations will yield
thrust and moment values that fall within a few percentage points of the
values obtained from finite element analyses of the type performed in this

investigation.

7.4.2 TLINER THRUSTS AND MOMENTS FOR NONUNIFORM LOCALIZED GRAVITY LOADING

By superposing the results from two or more loading geometries
(uniform pressure) it is possible to estimate the distributions of liner
thrusts and bending moments for localized gravity loads that result in
nonuniform distributions of active pressure on the liner. If the pressures

exerted on the liner by each of the loads to be superposed are not the same
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the thrust and bending moment at a given location are obtained thusly;

-3
]

Pla (T/Pa)a1 + P2a ('1‘/Pa)a2 R (7.3)

=
l

Plaa(M/Paz)al + ]’,Za"a(}'I/Paz)a2 + oiieiiieen (7.4)

where the thrust and moment coefficients for each O are obtained from

Eqns. 7.1 and 7.2, respectively. However, because the localized gravity
loading ground-liner interaction problem is geometrically nonlinear (i.e.,
nonlinear with respect to geometry of loading and the resulting extent of
ground-liner separation) the superposition method can, at best, only approxi-
mate the results that would be obtained from an actual finite element an-
alysis of the nonuniform loading. This is illustrated by the following two

examples.
Example 1:

The geometry of loading considered in the first example is illust-
rated in Fig. 7.22. Three uniform and symmetrical pressure distributions
are to be added together to give a nonuniform, but still symmetrical, pres-
sure distribution. For thig case it is assumed that ground-liner flexibility
and compressibility ratios are F = 10.0 and C = 0.214, respectively. Table
7.3 gives the calculations for the thrust and moment at the crown. Figures
7.23 and 7.24 compare the thrust and moment distributions obtained from the
superposition calculations to those obtained from the finite element analysis
of the nonuniform loading. Because the loading is symmetrical, the distri-

butions are given for one half of the liner only. These figures show that,
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@ = 60°, B =X =90°

P=5.0 psi = 34.5 kPa
a=90°, B=X=9° P=3.0 psi = 20.7 kPa
a = 120°, B =X = 9°, P= 2.0 psi = 13.8 kPa

FIGURE 7.22 NONUNIFORM PRESSURE DISTRIBUTION CONSIDERED IN
SUPERPOSITION EXAMPLE 1



TABLE 7.3

SUPERPOSITION CALCULATIONS FOR CROWN THRUST AND MOMENT GIVEN LOADING OF FIGURE 7.22

CROWN THRUST:

o P (s, x B> - mw" = (1/pa) T = Pa(T/Pa)
(degrees) (psi) (kPa) (1b/1n) (kN/m)
120 2.0 13.8 <540 772 .006 411 99 17.3
90 3.0 20.7 .520 .756 .005 .388 140 24.5
60 5.0 34.5 440 .732 .004 .318 191 33.5
T(Crown) = ¥ = 430 75.3
CROWN MOMENT :
a P Mo+ ( 3.53ct 1« M) = (M/pd) M = Pa®(M/Pa?)
(degrees) (psi) (kPa) (1b-in/in) (kN-m/m)
120 2.0 13.8 -.0943 .6376 -.00308 -.0963 -2773 -12.3
90 3.0 20.7 -.0929 .6376 -.00292 -.0948 ~4095 -18.2
60 5.0 34.5 -.0887 .6376 -.00239 ~.0902 -6494 -28.9

M(Crown) = ¥ = -13362 -59.4

a= 120 in. = 3.05 m

122
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in this case, the superposition method yielded very good results. It is
apparent, however, that the superposition method slightly overestimated the

thrust magnitudes and slightly underestimated the bending moment magnitudes.
Example 2:

The loading considered for this example is shown in Fig. 7.25 and
the calculations for the crown thrust and moment are given in Table 7.4.
Crown thrust and moment values for the a = 60 degrees, B = A = 45 degrees
loading were obtained from location j = 22 of the available @ = 60 degrees,
B = A = 90 degrees loading geometry (clockwise rotation through 45 degrees
changes B and A from 90 to 45 degrees and moves location j = 22 to the crown
position). However, for the symmetrical @ = 60 degrees loading case the
liner response at location j = 22 is the same as that at location j = 4 and
thus, this value of j was used in the calculations. Thrust and moment dis-
tributions obtained from the superposition calculations and from the finite
element analysis of this nonuniform loading are compared in Figs. 7.26 and
7.27. It is readily appgrent from these figures that, in this case, the
superposition method has significantly overestimated thrust magnitudes and
underestimated bending moment magnitudes.

Both nonuniform loading examples indicate that the superposition
method gives a good estimate of the distribution of liner thrusts and bend-
ing moments, but, with regard to magnitudes, tends to overestimate thrusts
and underestimate moments. It appears that the problem with magnitudes can
be attributed to 1) the relationship between separation angle, (2, and thrust
and moment magnitudes, and 2) the difference between the separation angles
given by the superposition method, Qs’ and the actual finite element analysis,

Q..
a
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60°, B = A = 45°
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FIGURE 7.25 NONUNIFORM PRESSURE DISTRIBUTION CONSIDERED
IN SUPERPOSITION EXAMPLE 2



TABLE 7.4

SUPERPOSITION CALCULATIONS FOR CROWN THRUST AND MOMENT GIVEN LOADING OF FIGURE 7.25

CROWN THRUST:

942

a P ( B, X Fé ) q.cl'n = (T/Pa) T = Pa(T/Pa)
(degrees) (psi) (kPa) (1b/1in.) (kN/m)
180" 2.5 17.2 .540 1.0 .016 .524 157 27.5
60 7.5 51.7 .671 1.0 .010 .661 595 104.2
T(Crown) = % = 752 131.7
CROWN MOMENT :
1.11 3 _ 2 2
a p Mo+ (3.53C x M) = (4/Pa®) M = Pa®(M/PaZ®)
(degrees) (psi) (kPa) (1b-in./in.) (kN-m/m)
180 2.5 17.2 -.0596 1.635 —.00268 ~.0640 -2304 -10.3
60" 7.5 51.7 .0424 1.635 .00057 .0433 4680 20.8
M(Crown) = L = 2376 10.5
=
j=1
ol
j=22=4

a = 120 in. = 3.05 m
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When two or more uniform loading geometries are superposed the
resulting separation angle, Qs’ is determined by the extent to which the
various separation angles superposed overlap. This is illustrated in'Fig.
7.28. The actual separation angle, Qa, obtained from a finite element
analysis falls in the range QS < Qa < ' as shown in Fig. 7.28. An approxi-
mate value for Qa is the average of QS and Q°'.

From the relationship between separation angle and liner thrust
and moment magnitude, as described in the discussion of Fig. 7.8, it can be
expected that, because QS <'Qa the superposition method will, as found in
the above two examples, underestimate bending moment magnitudes and over-
estimate thrust magnitudes. The amount by which the superposition results
are in error can be related to the difference between QS and Qa, which can,
in turn, be related to the difference between the B values of the various
loading geometries superposed.

The analyses of the various uniform and symmetrical loading geom-
etries considered herein (o = 180, 120, 90 and 60 degrees) indicated that
for a given F and C combination the separation angle decreased only slightly
as a was reduced from 180 to 60 degrees. Thus, if the B values of the var-
ious loading geometries superposed are equal their separation angles will
overlap only slightly and QS ~ Qa. This was the case for example 1 where
superposition yielded very good results. As the difference in S values in-
creases, thé amount of separation angle overlap and, thus, the difference
between Qs and Qa, increases. In example 2, where superposition did not
yield good results, the difference bétween the B values of the two loading
geometries superposed was 45 degrees, and it was found that QS ~ 75 degrees

and Qa ~ 120 degrees. On the basis of a limited amount of data it appears
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that the superposition method will yield good results if the B values of
the various loading geometries superposed differ by no more than 30 degrees.

Most of the available methods for estimating the magnitude of the
localized gravity load assume that load results in a uniform vertical pres-
sure over the entire upper half of the liner (0 = 180 degrees). This assump-
tion can lead to erroneous estimates of liner response if the loading is
actually nonuniform. In Figs. 7.23 and 7.24 thrust and moment distributions
are given for a uniform average vertical pressure over the upper half of the
liner. By comparing these data points (triangles) to those for the actual
nonuniform loading it can be seen that the assumed uniform average loading
significantly underestimates both thrusts and moments in the upper half of
the liner where the critical thrust and moment combinations occur. Of course,
the differences between these data depend on the magnitude of the assumed
average pressure, Pave'

In example 2 the O = 180 degrees loading represents the weight of
rock in the loosened zone around the tunnel that may eventually have to be
carried by the liner. The @ = 60 degrees loading represents the load im-
posed on the liner by a large rock block that has dislodged and come to rest
against the liner. In Figs. 7.26 and 7.27 thrust and bending moment distri-
butions are also given for the @ = 180 degrees loading only (triangles). By
comparing the triangular and filled circular data points it is clear that if
the effect of the rock block was not taken into consideration the liner

thrusts and moments would be greatly underestimated.

7.4.3 COMPARISON OF LINER THRUSTS, MOMENTS AND STRESSES FOR LOCALIZED

GRAVITY LOADING AND EXCAVATION LOADING

A tunnel liner subjected to localized gravity loading responds
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quite differently than does a similar liner subjected to excavation loading.
Figures 3.4 and 7.6 illustrate the differences between the circumferential
distributions of liner thrusts, moments and displacements for the two types
of loading.

The variation of liner thrust and moment with compressibility and
flexibility ratios is also quite different for the two types of loading.
The analytical solution for excavation loading under conditions of full
slippage indicates that moments can be reduced with little change in thrust
by making the liner more flexible (Figs. 3.5 and 3.6). If the liner is made
more compregsible the thrusts will be reduced (Fig. 3.7) with no change in
moments. By making the liner both more flexible and more compressible the
surrounding ground éan be made to carry a greater proportion of the potential
load (both thrusts and moments are reduced, but at the expense of increased
liner displacements). This 1s not the case with localized gravity loading
for which, once it develops, the load remains constant. Changes in liner
compressibility and flexibility alter only the distribution of external
passive pressures acting on the liner and thereby the proportions of ﬁhe
total load carried in thrust and bending moments. Figure 7.8 shows that
more flexible liners have smaller moments but larger thrusts than less flex-
ible liners. Conversely, more compressible liners have smaller thrusts but
larger moments than less compressible liners.

Figures 7.29 through 7.32 illustrate the variation of liner (crown)
thrusts, moments and circumferential stresses with the liner radius-to-thick-
ness ratio (a/t) for several values of the medium~to-liner modulus ratio

(qn/gz) for both localized gravity and excavation loading. The excavation

loading curves were obtained from the analytical solution discussed in
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Chapter 3, assuming Ko = 0.5. The localized gravity loading curves were
obtained from Eqns. 7.1 and 7.2, assuming O = 180 degrees. Points on these
curves were obtained by first calculating the flexibility and compressibility
ratios, given a/t and qnlgz' The F and C values were then used in Eqms. 7.1
and 7.2 and the related tables and charts. Certain combinations of a/t and
%n/gz yielded F values outside the range of the charts (1 < F < 1000). These
portions of the curves in Figs. 7.29 and 7.30 are shown as dashed lines, in-
dicating that they consist of extrapolated and/or estimated, rather than
directly calculated, points. The dashed portions of the localized gravity
loading curves in Figs. 7.31 and 7.32 were obtained from calculations based
on the dashed portions of the curves in Figs. 7.29 and 7.30.

Figures 7.31 and 7.32 show that the stress coefficients for local-
ized gravity loading (0/P) are much larger in magnitude than those for ex-
cavation loading (g/YH). However, the relative magnitudes of the stresses
for the two types of loading depend on the magnitudes of P and YH. Usually,
YH will be much larger than P. These same two figures show that the range
of a/t values over which tensile (negative) stresses will result at the
crown is much larger for localized gravity loading than it is for excavation

loading.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

Interaction between tunnel liner and surrounding ground mass has
been examined both analytice Ly and numerically (finite element-method) for
various loading conditions and construction sequences.

The general class of ground-liner interaction problems can be
divided into three catagories on the basis of the type of loading to which
the tunnel liner is subjected. In this investigation three loading types,
or conditions, were considered. These are the overpressure loading condi-
tion, the excavation loading condition, and the localized gravity loading
condition.

The overpressure loading condition results when the ground-liner
system 1s subjected to an externally applied pressure at the ground surface.
In the analysis of this type of interaction problem the in situ ground
stresses are neglected and © e lined tunnel is assumed to be present within
the ground mass before the overpressure is applied to the system. This
loading condition was discussed briefly in Chapter 2. Also, derivations of
analytical solutions for this loading condition were given in Appendix A.

Whereas analyses of the overpressure loading condition are appli-
cable only to existing lined tunnels, analyses of the excavation loading
condition yield the interaction response of the ground and liner resulting
from construction of the tunnel. In order for ground-liner interaction due
ﬁo the excavation loading condition to occur the liner must be astalled
such that it resists some or all of the inward displacements of the ground

mass arising from excavation of the tunnel opening. Excavation loa ing
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ground-liner interaction was considered in some detail in this investigation.
Analytical solutions applicable to certain special cases of this loading
condition were derived and presented in Appendicies A and B and discussed

in Chapters 2 and 3. The results of finite element analyses of interaction
due to excavation loading were presented in Chapter 4 for shallow tunnels
and in Chapter 6 for the case of two adjacent parallel tunnels. The ex-
cavation loading condition was also considered in Chapter 5, where the re-
sults from finite element analyses that simulated the advancement of the
tunnel through the ground mass were presented and discussed.

For the excavation loading condition it is assumed that the ground
around the perimeter of the tunnel opéning remains intact, and that the ground
displaces inward, en masse, against the liner. For the localized gravity
loading condition, on the other hand, it is assumed that the ground does not
remain intact. Instead, it is assumed that the shear stresses mobilized in
the ground mass due to excavation of the opening, relative to the ground's
shear strength, are such that the force of gravity is sufficient to cause
portions of this ground to dislodge and fall onto the liner. The weight of
this material, which usually comes to rest on or against only a portion of
the liner's circumference, constitutes the localized gravity load. The re-
sults from a number of finite element analyses of this loading condition
were presented and discussed in Chapter 7.

Various solution methods available for the analysis of ground-liner
interaction were briefly reviewed in Chapter 2.‘ These include the analytical
solutions based on the ground reaction curve concept, the analytical solutions
for circular tunnels in elastic ground, and the finite element method.

Ground-liner interaction resulting from the overpressure loading
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condition can be analyzed by both the finite element method and the analyt-
ical solutions derived for this type of loading. If inelastic stress-strain
behavior of the ground mass is to be considered the finite element method
must be used. However, for this type of interaction problem the surrounding
ground will exhibit significant inelastic behavior only if the magnitude of
the overpressure is quite high and the liner is sufficiently flexible and
compressible so that large liner displacements and distortions occur. In
most cases this problem can be adequately examined with the analytical
solutions for elastic ground proposed by Burns and Richard (1964) and Dar
and Bates (1974). The derivations of these solutions are given in Appendix
A and the resulting equations are summarized in Appendix B.

Analytical solutions, such as those described by Széchy (1966) and
Procter and White (1946), are available for analysis of ground-liner inter-
action resulting from the localized gravity loading condition. A more de-
tailed analysis of this type of interaction problem can be achieved through
the use of numerical techniques such as the finite element method. However,
because of the many variables that would have to be considered in order to
perform a realistic simulation of this loading condition, even the finite
element method falls short of allowing a truely comprehensive treatment of
all facets of this problem. Thus, in most cases, this type of problem must
be reduced to an idealized form more conducive to analysis, as was done in
the finite element study of this loading condition presented in Chapter 7.

As was shown in Chapters 2 and 5 the extent of ground-liner inter-
action resulting from the excavation loading condition is strongly dependent
on the amount of ground displacement occurring prior to ground-liner contact

relative to the potential total displacement. Maximum interaction occurs if
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there are no prior displacements, i.e., 1f the liner must resist the total
potential displacement. There is no interaction if all ground displacements
occur before ground-liner contact is established.

Each of the three solution methods previously mentioned can be
used to analyze this form of the interaction problem. Solutions based on
the ground reaction curve concept allow consideration of inelastic and time-
dependent material behavior models for the ground mass. However, these
solutions do not allow consideration of the distortional component of load-
ing and the resulting liner bending moments and shear forces. Conversely,
the analytical solutions for a circular tunnel in elastic ground can account
for both the uniform and distortional components of loading, but are re-
stricted to, elastic ground behavior. The finite element method, of course,
allows consideration of both nonuniform loadings and inelastic and/or time-
dependent ground behavior.

The response of a tunnel liner to interaction with the surrounding
ground mass was examined in Chapter 3 for the case of excavation loading as
given by the analytical solutions derived in Appendix A for thin liners.
These solutions give the liner forces, moments and displacements as functions
of the ground-liner compressibility and flexibility ratios. It was found
that the liner bending moments are quite sensitive to the flexibility of the
liner; and that, in the lower range of flexibility ratio values (0 < F < 20)
small increases of liner flexibility result in significant reductions of
bending moments. Liner thrusts are more sensitive to liner compressibility
than they are to liner flexibility; and larger compressibility ratio values
correspond to lower thrust magnitudes. Also illustrated in Chapter 3 were

AN

the variations of liner forces, displacements and circumferential stresses
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with the liner radius-to-thickness ratio, a/t, for several values of the
ground-liner modulus ratio, Em/%z' Again, these curves were obtained from
the "thin liner'" analytical solutions for excavation loading derived in
Appendix A. The figures presented show that liner thrusts and bending
moments can be significantly reduced by reducing the liner thickness and/or
modulus (thereby making the liner more flexible and compressible). However,
reduction of liner thickness always leads to increased liner displacements
and, except for a narrow range of a/t values, increased liner stresses.
Reduction of liner modulus, as may be possible for concrete liners, results
in lower strgsses, but such action would also be accompanied by reduced
compressive strength for this type of liner. Liner modulus reduction also
always leads to increased liner displacements.

Because of the initial assumptions involved in the formulation of
the analytical solutions for excavation loading ground-liner interactionm,
the application of these solutions is supposedl§ restricted to tunnels lo-
cated at great depth below the ground surface. However, similar restrictions
afe necessarily applied . to the solutions for stresses and displacements
around unlined openings; and yet it is commonly held that these solutions
can be applied to openings at depths as shallow as one or two opening dia-
meters. In order to determine whether or not the depth restriction on the
lined tunnel solutions could be similarily relaxed a finite element study
of shallow lined tunnels was undertaken.

The results of this study, which were presented in Chapter 4, were
obtained from finite element analyses of lined tunnels located at various
depths of burial (H/D = 1.0 - 5.0). Except for the depth factor these analyses

were equivalent to the analytical solutions for excavation loading.
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It was found that there are two factors that can significantly
influence the behavior of shallow lined tunnels. These factors are the
proximity of the ground surface boundary and the increase of in situ stress
with depth from the tunnel crown to the invert. In general, the results
obtained from the analyses performed indicated that, with respect to liner
thrusts, moments and displacements, the first of these factors is less
significant than the second. The influence of the ground surface boundary
on liner response is small for 1.0 < H/D < 2.0 and negligible for all H/D <
2.0. The influence of the stress increase with depth from crown to invert
is greater than the influence of the ground surface boundary, at least for
H/D > 1.0 and remains at a significant level to a much greater depth.

For the ground-liner system considered the influence of the in situ
stress increase from crown to invert was greatest for the no slippage con-
dition. This difference between the liner respomnses for the full and no
slippage conditions is especially evident when liner thrusts are considered.
It is less evident when liner bending moments and displacements for the two
interface conditions are compared.

When liner thrusts, moments and radial displacements are considered
the effect of the in situ stress increase with depth is so great at shallow
depths that it appears the analytiéal solutions should not be used for H/D>
4 or 5. However, when the thrusts and moments are combined to yield the
liner circumferential stresses a considerably different picture is obtained,
especially if only the maximum and minimum circumferential stresses are con-
sidered. It was found that, due to the nature of the depth variations of
thrusts and moments, these stresses change very little with tumnel depth for -

H/D > 2. Thus, on the basis of the results obtained from the analyses
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performed, it is concluded that the analytical solutions for excavation
loading will yield good values of the 1 timum and minimum liner circum-
ferential stresses for all H/D > 2 and reasonably good values of liner
thrusts, moments and displacements for all H/D > 4 or 5.

Analytical solutions such as those derived in Appendix A for ex~
cavation loading are often criticized because they consider only a two-
dimensional cross section of the ground-liner system and because they do

not account for inelastic behavior of the surrounding ground ma: . However,

as long as these solutions are used pri erly this criticism is not warrented.

The analytical solutions for excavation loading were derived for
the special case ¢ a tunnel constructed such that the liner is installed
first (e.g., by a series of drifts around the perimeter of the tunnel),
followed by the excavation of the soil core inside the liner. For | 1s con-
struction sequence ground-liner interaction results because of the imbalance
between the stresses on the inside (zero) and the outside (in situ stress
state) of the liner. The full magnitude of the in situ stress is properly
taken into account because there has been no optunity for significant
relaxation of the surrounding ground mass. At a given point along the tun-
nel line interaction does not commence until the excavation face approaches;
and it is not complete until the face 5 mined a sufficient distance past
this point. Within this transition zone, which exists because of the in-~
fluence of the core of soil ahead of the face, there are three-dimensional
(radial, circumferential and longitudinal) variations of stresses and dis-
placements; and the analytical solutions do not apply here. However, full
development of liner forces and-displacements only occurs behind ti s zome,

where interaction is complete (liner carrying entire load) and the stresses
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and displacements no longer exhibit three-dimensional variations. Because
the ground-liner system, at the points where interaction is complete, ex-
hibits only two-dimensional (radial and circumferential) variations of
stresses and displacements, the analytical solutions for excavation loading
are directly applicable to this problem.

The inability of the analytical solutions to account for inelastic
behavior of the ground mass should not, in most cases, be a serious disad-
vantage if these solutions are properly applied to only the special case
conditions for which they were derived (i.e., liner installed before excava-
tion of the soil core). For this special case the liner is in place before
the equilibrium of the surrounding ground mass is disturbed. Once this
equilibrium is disturbed, by excavation of the soil core, the liner, unless
it is quite flexible and compressible, will provide sufficient restraint to
prevent significant inelastic behavior from occurring.

Unfortunately, the analytical solutions for excavation loading
are quite susceptible to misuse. There is a tendency for these solutions
to be applied, without complete regard to their limitations with respect to
construction sequence, to all problems of this type. This leads to the in-
appropriate use of these solutions in the consideration of tunnels con-
structed by more conventional means, i.e., construction sequences consisting
of excavation followed by liner installation. As was illustrated by the
results from axisymmetric finite element analyses presented in Chapter 5,
for this type of construction sequence the behavior of a lined tunnel is
strongly influenced by the ground displacements that occur before the liner
comes into contact with the ground mass. When displacements of the ground

mass prior to ground-liner contact are allowed to occur the interaction
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problem becomes much too complex to be roperly considered by solution
methods that assume the problem to be two~dimensional and elastic.

The resu ts presented in Chapter 5 indicate that the response of
the liner to interaction is a function of the relative magnitudes of the
ground displacemer s that occur ahead of the liner and the displacements
that would occur if no liner was installed. In turn the magnitude of the
prior displacements, and the behavior of the ground mass ahead of the liner
in general, is a function of the position of liner installation relative to
the position of the tunnel face; and, to a lesser extent, the flexibility
and compressibility of the liner. Thus, the maximum liner thrust, as an
example, results when the liner is installed right at the tunnel face (this
maximum value is still less than that given by the analytical solution be-
cause of the ground displacements occurring ahead of the face). If the
liner is installed far enough behind ' e face, beyond the point where full
ground displacement has occurred, there is no interaction because ' e liner
remains unloaded (this is assuming that the unlined portion of the tunnel
remains stable and that the ground mass does not exhibit time-dependent
behavior). 1In addition, it was shown that the extent of inelastic ground
mass behavior increases as the distancebbetween the advancing face and the
point of liner installation is increased. Results obtained from the elasto-
plastic analyses indicate that by installing a relatively stiff liner right
at the face (or limiting displacements by some other means) the formation
of plastic zones around the tunnel can be prevented. However, the results
also indicate th : if a length of tunnel behind the face equal to one tunnel
radius is left unlined the resulting relaxation of the ground mass can be

sufficient to mobilize enough plastic yielding to significantly alter linmer
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response relative to that obtained from elastic analyses (if the shear
strength of the soil is sufficiently low relative to the shear stresses
mobilized so that yielding will occur).

In the analysis of a lined tunnel constructed by conventional
methods simulation of the physical advancement of the tunnel through the
ground mass is just as important as consideration of three-dimensiomnal
behavior in the vicinity of the tunnel face. This point was clearly dem-
onstrated in the discussion of Fig. 2.11, the data for which was obtained
in the investigation described in Chapter 5. Simulation of tunnel advance-
ment 1s especially critical if elasto-plastic behavior of the ground mass
is to be considered because such gimulation is required in order to obtain
full development of the plastic zone around the tunnel.

On the basis of the results obtained from the investigation de-
scribed in Chapter 5 it can be concluded that the behavior of a lined tun-
nel constructed by conventional methods cannot be accurately determined
from any solution method that does not consider the three-dimensional nature
of the problem and the actual advancement of the tunnel through the ground
mass. This means that anything less than a fully three-dimensional finite
element analysis will yield only approximate results. Because such analyses
are extremely expensive and difficult to perform, especially if inelastic
behavior and construction simulation are to be considered, the necessity
for accepting approximate results seems inevitable in most cases.

The axisymmetric finite element analysils represents a reasonable
alternative to the fully three-dimensional analysisi With this type of
analysis it 1s possible to consider material behavior other than elastic

and‘to simulate tunnel advancement and construction. However. shallow
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tunnels cannot be considered, -and if the problem being studied is not truely
axially symmetric the information obtained from this type of analysis is of
somewhat limited usefulness.

Two-dimensional finite element analyses allow consideration of
inelastic and time-dependent material behavior. These analyses are not
limited to axially symmetric conditions, but they cannot properly account
for the three-dimensional effects or the advancement of the tumnel through
the ground mass. Although it is possible for these analyses to be per-
formed such that a given amount of ground displacement prior to ground-
liner contact is introduced into the analysis, this can only be done by
utilizing special techniques that greatly increase the difficulty of per-
forming the analysis. In addition, without access to three-dimensional
analyses the magnitude of this prior displacement can only be crudely ap-
proximated (see discussion of Figs. 2.4 - 2.6).

Two-dimensional analytical solutions such as those based on the
ground reaction curve concept also allow consideration of inelastic and
time-dependent behavior, .but the number of available material behavior
models is rather limited, and only axially symmetric conditions can be con-
sidered. While it is easier to introduce a given amount of prior displace-
ment in these analyses than it is in the two-dimensional finite element
analyses, again the magnitude of this displacement connot be determined on
a rational basis.

At the very bottom of the list of solution methods suitable for
the interaction analysis of tunnels constructed by conventional methods are
the two~dimensional, elastic analytical solutions for excavation loading

derived in Appendix A. Although these solutions can be modified to account



299

for prior displacements, such modification adds little to their usefulness
because they are limited to comsideration of elastic behavior. In addition,
as was the case with the other two-dimensional methods of analysis discussed
above, these modified equations, of themselves, provide no means for cor-
rectly determining the magnitudes of these prior displacements.

Despite the fact that the analytical solutions for excavation load-
ing were not defived for, and, therefore, are theoretically not directly
applicable to, the general case of a lined tunnel constructed by conventional
methods, it would seem that they could serve a useful purpose for the pre-
liminary analysis of many such cases. For example, the data presented in
Fig. 5.12 suggests that, while these solutions do not account for prior dis-
placements or inelastic behavior of the ground mass, they provide upper
bound values for the initial (end of construction) liner response. Addition-
ally, while the analytical solutions may significantly overestimate the
initial liner response, the.ensuing time-dependent behavior of the ground-
liner system may, for some soils, result in thrust magnitudes more nearly
in line with the analytical solution values. Because these solutions assume
that pressures corresponding to the full overburden stress act on the liner
it should only be in certain special cases (e.g., squeezing or swelling
ground) that they would underestimate liner response to interaction. Thus,
it would seem that, in addition to being directly applicable to the specific
problem for which they were derived, the analytical solutions for excavation
loading also provide a convenient means for obtaineng at least a first ap-
proximation of liner response for many of the interaction problems that con-
sider a lined tunnel constructed by conventional methods. It must be em—-

phasized, however, that such use of these solutions has no theoretical basis
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and is, in the strictest sense, inappropriate.

As described in Chapter 6, a series of finite element analyses
was per.ucmed to study the behavior of a system of two parallel tunnels.
Quantities of interest in the analysis of two tunnel systems are; stresses
around the two tu 1e]l , especially in the pillar separating the two tunnels;
tunnel displaceme :s; liner forces; and the ground surface displacements.
The main parameters considered in this study were; tunnel depth, width ¢
the pillar separating the two tunnels, the tumnnel support conditions, se-
quence of construction of the two tunnels, and, to some extent, the in-
fluence of plastic yielding in the ground mass.

The f: ite lement analyses performed in this study indicated
that interaction between two paréllel tunnels influences groun stresses,
tunnel displacements and liner forces in only a relatively small region
around the pillar that separates the tunnels, and that these interaction
effects decrease as the pillar width is increased. Response of the two
tunnel system at tun :1 depth, over the range of pillar widths considered
herein, suggests that interaction effects are small at a pill: wi :ﬁ to
tunnel diameter rati of one; and that at a W/D value of approximately two
the two tunnels shot 1 behave independently of each other.

Interaction between the two tunnels also influences the displace-
ments of the ground surface above the tunnels. Vertical compreésion (short-
ening) of the pillar separating the tunnels gives rise to additional settle-
ments. Pillar comp ssion increases as the pillar width is reduced and/or
as the depth is increased. For shallow tunnels the additional interaction
settlements are confined to a relatively narrow zone above the pillar and

the two tunnels. However, for deep tunnels lateral spreading of vertical
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ground displacements with increasing distance above the tunnels results in

a very wide settlement trough with an almost uniform distribution of addi-

i e e et

tional interaction settlements. The analyses performed in this study in-
dicate that for shallow tunnels, with depth to diameter ratio of H/D = 1.5,
a pillar width ratio of approximately two should be sufficient to eliminate
the additional interaction settlements. The data also suggest, however,
that for relatively deep tunnels (H/D = 5.5) a much greater tunnel spacing
would be required to achieve this goal.

The results of the finite element analyses of various sequences

of construction indicate that the construction of a tunnel parallel and ad-

Jacent to an existing tunnel causes additional displacements and liner forces

~ J—

FEE—EEE_SEEEEEEEJEEEEEEJ The magnitudes of these changes strongly depend on
the width of the pillar separating the two tunnels and the displacements al-
lowed in the construction of the second tunnel. Two extreme cases were con-
sidered; in one case the second tumnel was lined upon excavation, in the
other case the second tunnel was left unlined. When the second tunnel was
lined the changes caused by the second tunnel resulted in a more favorable
condition in the existing tunnel. However, when the second tunnel was left

unlined significant increases of displacements and forces in the liner of

the existing tunnel occurred in the vicinity of the pillar springline.

i
cause at least some, if not large, ground movements associated with excava-
tion of the second tunnel can be expected to occur for real tumnels in soil,
the analyses that assume the second tunnel to be unlined more closely ap-
proximate the real tunnel situation.

It was also shown that some of the analyses indicate that the ex-

cavation of the second tunnel causes greater ground surface settlement than
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would a single tunnel. This is especially so when plastic yielding occurs
in the medium and displ :ements are allowed prior to the liner becoming ef-
fective.

It should be inted out that the analyses performed did not in-
clude simulation of the large displacements and volume changes in the soil
that are often associat 1| with excavation and construction of tunnels in

isoft ground. Thus, the results of these analyses represent lower bounds
ifor the interaction effects (e.g., effect on existing tunnel due to passage

‘of second tunnel at a given pillar width and additional surface settlements

1
i
|arising from interaction between two tunnels) for two parallel tunnels.

‘ Ground-1li :r 1teraction for localized gravity loading was consid-
ered in Chapter 7. In 1is investigation the distribution and magnitude of
the localized gravity load were treated as variables for study. The other
variables considere were the ground-liner flexibility and compressibility
ratios. In all analyses it was assumed that the weight of the material
resting on the liner exerted a uniform pressure over a given portion of the
liner. However, it was shown that the principle of superposition can be used,
within limits, to cons: 2r nonuniform loadings. In addition, results in the
form of liner thrust and bending moment coefficients were presented in chart
form to allow determin: ion of these values, by interpolation, for compress-
ibility and flexibi Lty ratio combinations other than those specifically
analyzed.

Results obta: ad from the finite element analyses indicated that,
for a uniform vertical ravity load symmetrical about the tunnel crown, the

maximum bending moment and the minimum thrust both occur at the crown. Be-

low the springlines thi e is little variation of thrust and bending moment
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magnitudes with circumferential location; the moments here are very small
whereas the thrusts are at or near their maximum magnitude. Thus, in terms
of circumferential stresses the critical section is located at the crown
where both the maximum and minimum liner stresses occur.

It was found that liner thrusts tend to increase with increasing
flexibility ratio and decrease with increasing compressibility ratio. Liner
bending moments, on the other hand, tend to decrease with increasing flex-
ibility ratio and increase with increasing compressibility ratio.

Magnitudes of liner thrust, moments and displacements were found
to increase linearly with the magnitude of the pressure exerted on the liner
by the localized gravity load throughout the range of pressures considered
(up to 20 psi = 138 kPa).

An initial series of symmetrical loading analyses considered a
range of values for the circumferential extent or distribution of the vert-
ical gravity load; from o = 180 degrees to & = 30 degrees (where a = 180
degrees indicates that the load is distributed over the entire upper half
of the liner). The results from these analyses indicate that there is little
variation of liner response within the range 180 > o > 60 degrees. The
variation that does occur is such that conservative results can be obtained
by assuming that g = 180 degrees.

The magnitudes and distributions of liner forces and moments, and
thus stresses, resulting from the localized gravity loading condition are
considerably different from those mobilized by the general form of the ex-
cavation loading condition. Thus, where conditions are such that either or
both types of loading can occur, interaction analyses for both should be

performed.
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can not be applied to the design or evaluation of a tunnel support system
‘without first being carefully evaluated with respect to the differences be-
tween the ground-liner system as simulated and as it exists in reality.
Indiscriminate use of any of the available methods of analysis
can lead to erroneous conclusions with respect to the real tunnel behavior.
It is important that the method of analysis selected be applicable to the
problem being considered. It is also important that the results obtained
from the . -alysis be properly interpreted. This requires knowledge of both
the anticipated tunneling conditions and the adequacy of the analysis to

simulate these conditions.
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APPENDIX A

DERIVATION OF ANALYTICAL SOLUTIONS FOR

GROUND-LINER INTERACTION

A.l INTRODUCTION

Analytical solutions for ground-liner interaction have been available
in the literature for a number of years. Of particular interest here are the
solutions derived by Burms and Richard (1964) and Dar and Bates (1974). Unfor-
tunately, these solutions only consider overpressure loading; and, therefore,
are not applicable to | nnel liners subjected to excavation loading. However,
on the basis of this previous work the writer has derived the corresponding
solutions for excavation loading. Presented herein, in some detail, are the
derivations of these solutions for excavation loading, along with derivations
that yield the solutions obtained by Burns and Richard (1964) and Dar and
Bates (1974). The final equations of each of these solutions are given separ-
ately in Appendix B.

Derivations are given for a total of eight analytical solutions for
ground-liner interaction. These solutions are categorized as illustrated by
the chart in Fig. A.l. Note that according to is classification system Burns
and Richard gave two solutic 3 (1 and 2 in Fig. A.l) and Dar and Bates gave one
solution (i.e., they briefly 2scribed the derivation of solution 5, but did not
give the final equations).

Solutions obtained by combining the theory of elasticity and thin
shell theory are here called "thin liner" solutions. Solutions based entirely

on the theory of elasticity ‘e called "thick 1 er" solutions. Although both



Ground-Liner

Interaction
Solutions
Thin Thick
Liners Liners
Overpressure Excavation Overpressure Excavation
Loading Loading Loading Loading
No Full No Full No Full No Full
Slippage Slippage Slippage Slippage Slippage Slippage Slippage Slippage
1 2 3 4 5 6 7 8

FIGURE A.1l

CATEGORIZATION OF ANALYTICAL SOLUTIONS GIVEN FOR GROUND-LINER INTERACTION --
CIRCULAR TUNNEL IN ELASTIC GROUND
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types of solution can be applied to liners of any thickness, only the "thick
liner" solu;ions are theoretically correct for all liner thicknesses. However,
the equations of these solutions are quite lengthy relative to the equations
of the "thin liner" solutions, and if a thin liner is being considered it is
much easier to use the "thi 1. er" solutions. In gemeral, if t/a < 0.10 the
two solution types will give essentially the same results. Thus, if t/a < 0.10
the "thin liner" solutions n e used. If t/a > 0.10 the "thick liner" solu-
tions should be used.

Both "thin liner" and "thick liner" solutions give the gro id mass

stresses (drm’ g T ) a . displacements (um, gn). Liner response is given

om’ ‘TOm
in terms of forces (T, V, M) a1 displacements (uz, vz) by the "thin liner"

solutions, and in terms of stresses (drz’ dez,’trez) and displacements (uz, vz)

by the "thick liner" solutioms.

The "thin liner" and "thick liner" solutions are subdivided into two
groups on the basis of the type of loading considered; overpressure loading and
excavation loading. For overpressure loading it is assumed that the lined tun-
nel is an existing structure wt :h, along with the surrounding ground mass, is
subjected to a uniform pressure, Po’ applied at the ground surface. In situ
stresses present in the gro d ass prior to construction of the tunnel are not
considered. For excavation loading it is assumed that the lined tqnnel is in-
serted in an already stressed 1 situ stress state) ground mass. For this type
of loading it is necessary to assume that either 1) the liner is installed after
excavation, but in such a mann¢ that no ground displacements occur prior to
interaction, or 2) the liner is installed before excavation of the soil core
and that interaction does not occur until this core is removed.

Interaction between the liner and the surrounding ground mass is
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influenced by the magnitude of the shear stresses mobilized at the contact or
interface between liner and ground. Unfortunately, it is not presently possible
to obtain an exact solution which would account for the general case of shear
stresses in excess of the shear strength over only a portion of the interface.
Only the two extreme conditions will be considered here. It is possible to
obtain a solution for what is called the no slippage condition by assuming that
the interface shear strength everywhere exceeds the mobilired shear stress. For
this condition the tangential displacements of the liner and the ground mass are
everywhere equal at the interface (vz = v for alle atr = a). At the other
extreme, if it is assumed that the interface shear strength is everywhere zero,
there will be no resistance to slippage (VZ # v oatr= a). The solution that
can be obtained for this condition is called the full slippage condition solu-
tion.

All eight solutions assume that the ground mass extends to infinity
in all directions, and therefore they are applicable only to deep tunnels.
However, in effect, it is not necessary to consider the ground surface to be
located at infinity. As illustrated in Chapter 4, tunnels located at depths
greater than five tunnel diameters (H/D > 5) behave essentially like very deep
tunnels. For 2 < H/D < 5 the analytical solutions can be used if the results

obtained are evaluated in accordance with the shallow depth effects.
A.2 GENERAL EQUATIONS FOR STRESSES AND DISPLACEMENTS IN A LINEAR-ELASTIC MATERIAL
A.2.1 GENERAL COMMENTS

Before the individual solutions can be derived the general equations
for stresses and displacements in an elastic medium must be determined. For

the "thin liner" solutions these equations are used only for the ground mass.
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For the "thick liner" solutions the behavior of both the liner and the ground
mass are obtained from these equations.

It is assumed that the characteristics of the ground-liner system are
such that the problem can be considered to be one of plane strain. Because a
circular liner is being congidered the polar coordinate system will be used.
Thus, the derivations that follow will yield two-dimensional, plane strain
solutions given in plane polar coordinates. It is also assumed that the elastic
solids considered are ideally isotropic and homogeneous. It is assumed that
the ground-liner system is subjected to a uniform stress field applied far from
the center of the tunnel, and that this stress distribution is symﬁetrical about
both the horizontal and vertical axes (Fig. A.2).

The necessary and sufficient conditions which the components of stress,
strain, and displacement must satisfy in order to obtain a solution of an elas-
ticity problem are the following:

a. The strain-displacement relations

b. The stress-strain relations

c. The equilibrium conditioms

d. The compatibility conditions

e. The boundary conditions at the exterior
surfaces of the body.

The three strain-displacement equations in plane polar coordinates are:

= Qu
Er = 37 (A.1a)
u 1 3v
= ==
€e r T30 (A.1b)
- Ll3u ov _ v
Yre = 36 + il (A.1c)
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The three stress-strain equations in plane polar coordinates are:

EEBLA - v, - vo,] (4.22)

m
[

5 = (-1-%—"—)[(1 - Vg, - va_] (A.2b)

m
f

1l+y

2 E ) re

Yo (A.2c)

The equilibrium equations are obtained by considering the normal and
shear stresses acting on a small element of the body. It is required that the
sum of opposing forces in both the radial direction and the circumferential
direction equal zero. The resulting equilibrium equations in plane polar co-

ordinates (for zero body forces) are:

Te} g_.-d ol
T T 8 .1 18 _

dr T T e T 0 (A.3a)
-Tef 3 2

10 ro re _

38 T5r T < 0 (A.3b)

In plane polar coordinates the compatibility equation in terms of the

strains is obtained from the strain-displacement equations (Eqns. A.l) and is

2 2 2
aryr§=aer+ra:€e_r_a_e_r (a0
d8dr 2 2 ar :
36 dr

By substituting the stress-strain equations (Eqns. A.2) into Eqn. A.4 the
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compatibility equation in terms of the stresses is obtained for plane polar

coordinates. This equation is

2 2

d 139 139
=+ +=)@._+09) = 0 (A.5)
arz rzaez T dr T o)

Thus, the solution of two-dimensional (plane polar coordinates) prob-
lems in elasticity theory reduces to solving the two differential equations of
equilibrium (Eqns. A.3) and the differential equation of compatibility (Eqn. A.5).
The resulting constants of integration are evaluated by means of the boundary
conditions.

A solution is obtained by finding a set of stress components (dr, de,
1%6) that satisfy the boundary conditions and Eqns. A.3 and A.5. The usual

procedure, assuming zero body forces, is as follows:

1., introduce a new function called the Airy stress function,
#(r,6),

2. express the stress components in terms of this function
so that the equilibrium equations (Eqns. A.3) are satisfied,

3. wuse the compatibility equation (Eqn. A.5) to find the
expression for ¢ in terms of r, 6, and a number of
constants of integration,

4. wuse the boundary conditions to find expressions for the

constants of integration.

Once this has been done the stress function is completely defined, and as a
consequence the stresses and, by means of the stress-strain equations (Eqns. A.2)
and the strain-displacement equations (Equs. A.l), the displacements are deter-

mined.
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A.2.2 DERLIVATION OF THE APPROPRIATE AIRY STRESS FUNCTION, ¢ (r,6)

At this point it is necessary to find the Airy stress functiom, ¢,
that applies for each partic .ar problem being considered. Fortunately, since
the eight solutions sought here are simil: (differ only with respect to "in-
terior" boundary conditions) one stress f1 ction can be used for all eight.
(Note: The same stress function can be used for the problem of an unlined cir-
cular opening.)

The stress components (br, de,‘tre) expressed in terms of the Airy
stress function so that the equilibrium equations (Eqns. A.3) are satisfied

are:

- 199,139
O’r = Tar T 2.2 (A.6a)
T~ 36
2
o = 9—% (A.6Db)
ar
- -8 (1299
Tre = T 35T 30 (A.6c)

Substitution of Eqns. A.6a and 6b into the compatibility equation

(Eqn. A.5) yields

2 2 2 2

d 1 3 13 .,123¢ . 123% 3%, .
CS+5E5+=2E + = + ) = 0 (A7)
Brz r 562 T 3r’'r ar r2 662 ar2

The expression for ¢ is obtained by solvi: this equation.
The solution to Eqn. A.7 can be btained by the method of separation

of variables. Let

#(r,8) = R() A(O) (A.8)
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where R(r) is a function of r only and A(f) is a function of § only.
Substitution of Eqn. A.8 into Eqn. A.7 and expansion of the result

gives

(LR, 2R LR, 1 dRy,
dr4 r dr3 r2 dr2 r3 dr-
2 2 4
Ar2 R 2 @R 4R R g
+ S S-S ettt 7O (4.9)
ds™ r~ dr T T r d8

Total derivative symbols are used because R = f(r) only and A\ = £(&) only.

We must now find R(r) and A(8) using Eqn. A.9 and the stress conditions
at infinity. Because of the assumption of linearity the principle of super-
position can be utilized and the stress system (Fig. A.2) separated into two

component parts as shown in Fig. A.3.

In Figs. A.2 and A.3 the stresses at infinity are given in terms of

carteasion coordinates, giving

The following equations are used to transform these stresses to plane polar

coordinates.
d. = ¢ cosze + g sinze +T__sin2p | (A.10a)
T X y Xy '
o] = Jd sinze + g cosze - T sin28 (A.10b)
) X y Xy



v
I
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I—,(ov+c;H) I1+J dv
= L - - =
J = %(gy - o) I-J =gy

FIGURE A.3 STRESS FIELD DIVIDED INTO TWO COMPONENT PARTS
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T = Lk - i T
- 2(0‘y dx)51n29 + xycosZG

Thus, we have

2

2 ,
dr = dHcos o + dV51n 6
. 2 2
de = dH51n 6 + dvcos ]
= L - 3
Trg = 2(6V dH) sin 26

Usi ; the trigonometric identities

we obtain,

co§26 = %(1 + cos28) and sinze
- L L -

0& = 2(dH + OV) + 2(dH OV)COSZO
Y 1 -

dy = 5(dy + 9y) + %(g, - gydcos 28
= L - 3

Tre = z(dv dH)51n29

= %(1 - cos26)

(A.10c)

(A.11a)

(A.11b)

(A.110)

Usin the relations given in Fig. A.3 these equations become, for Fig. A.3a,

dr = I - Jdcos2p
de = I + Jcos26
T = Jsin 26

o

(A.12a)

(A.12b)

(A.120)



322

The stress condition in Fig. A.3b is given by

6. = 1 (A.13a)
gy = I (A. 3b)
g - 0O (A.13c)

The stress condition in Fig. A.3c is given by

dr = = Jcos28 (A.143)
de = Jcos 26 (A.14b)
Tre = Jsin26 (A.1l4c)

The principle of superposition also applies to the stress function,
¢(r,6).A Thus, we can find the ¢1(r,e) = Rl(r) xl(e) that applies for Fig. A.3b
and Eqns. A.13, and the ¢2(r,6) = Rz(r) xz(e) that applies for Fig. A.3c and
Eqns. A.l4, and then add these expressions to get the @(r,6) that applies for

Fig. A.3a and Eqns. A.12.

¢(r,6) = ¢1(r,6) + ¢2(I‘,9) (A.15)

DETERMINATION OF ¢1(r,9)

From Fig. A.3b and Eqns. A.13 we see that the stresses are independent
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of 8. Thus, in Eqn. A.8 Xl(e) must be a constant, giving
¢1(r,e) = Rl(r)[Constant] (A.1l6)

This also means that all derivatives of xlce) with respect to 6 must be zero.

As a result of this requirement Eqn. A.9 here reduces to

4 3 2

de 2dR1 1dR1 1dR1
LT3 "3 S <O

dr dr T dr T

The expression for Rl(r) is obtained by successive integration of this equation.

The result of such integration is

r2+clogr + ¢

2
T logr + c2 3

Rl(r) = c

1 4 °

where cq through c, are the constants of integration. Substituting this ex-

pression into Eqn. A.l6 we get

¢1(r,6) [clrzlogr' + czr2 +c,logr + caj[Constant]

3

3,(,0) A.%logT + AT + AlogT + A, (A.17)

1 2 3
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DETERMINATION OF ®,(r,8)
Now consider the stress state given by Fig. A.3c and Eqns. A.l4. It
can be shown that XZ(G) = cos 20 (Timoshenko and Goodier, 1970). Thus, Eqn. A.8

is of the form
¢2(r,e) = Rz(r)cos 26 (A.18)

Substituting R = Rz(r) and A = cos 26 into Eqn. A.9, dividing through

by cos 26 and collecting terms we obtain

d%R_(1) 43R_(1) d%R_(1) dR_(T)
2 7 48,y g 4Ry g 4R,y
dr dr T dr T

Equation A.19 is an ordinary differential equation with variable
coefficients which can be reduced to a linear differential equation with con-

stant coefficients by introducing a new variable, t, such that

t dt

1

t = logr or r = e

-e

The chain rule for differentiation with respect to the second variable gives

dR_(r) dR,(t)
2 _1°72
dr T dt (4.21a)
dsz(r) 1 dsz(t) dRZ(t)]
= - (A.21b)
dr2 r2 dt2 dt
3 3 2
d’R.(1) d R_(t) d°R () dR_(t)
___25_., - J%{ 23 -3 22 + 2 gt ] (A.21¢)

dr r dt dt
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a%R_(1) d*r_(t) 3R 4%R_(1) dR_(t)
2 Al 2T g2 g2 2
dr4 r4 dt4 dt3 dt2 de

Substituting Eqns. A.21 into Eqn. A.19 and collecting terms we get,

a*R_(t) a3r_(t) d%R_(t) dR_(t)
2 2 2 2 _
e 3 -4 7 tTl—g =0
dt dt dt
Now let
Rz(t) = &Pt

and note that

dRZ(t) _ ept
ac .~ P
2

d Rz(t) - 2 pt

—3 o = P
dt

3

d RZ(t) 3 pt

—3 = pe
dt

4

d Rz(t) 4 pt

— % = Pe
dt

(A.21d)

(A.22)

(A.23)

Thus, by substituting Eqn. A.23 into Eqn. A.22 and dividing through by ept ve

obtain

P4 - 4p3 - 4p2 + 16p = 0

(A.24)
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The roots of this equation can be found by following the procedure outlined

in Selby (1973). The four roots are:

o
]
&~
o
]
[ )
o
it
o
o
B
)
[S)

From Eqn. A.23 we find

R(E) = it (A.25a)
Ry () = e?t (A.25b)
R(t) = e 2F (A.25¢)
Rz(t) = %% = 1 (A.25d)

It can be shown that each of Eqns. A.25 satisfies Eqn. A.22. The r ght side
of each of Eqns. A.25 can be multiplied by an arbitrary constant and these

equations will still satisfy Eqn. A.22.

4t

Rz(t) = dle (A.263a)
R (o = 2t

2 t) dze (A.26b)
R (D) = d3e'2t (A.260)
Rz(t) = d4 (A.26d)

Because each of Eqns. A.26 satisfies Eqn. A.22, the sum of these equations will

also satisfy that equation. Thus, we can obtain
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_ 4t 2t -2t
Rz(t) = dle + dze + d3e + d4 (A.27)

Substituting Eqn. A.27 into Eqn. A.2la we obtain

dRz(r)
dr

Hy

4d,e%t + 20 e2" - 24 e-Zt]

1 2 3 (A.28)

From Eqn. A.20 we have that

Raising each side of this equation

4t 4
e = T
2t 2
= T
o2t o 2

Substituting these equalities into Eqn. A.28 we get

dR. (1) d
2 _ 3 oo 3
o = Adlr + 2d2r 2 r3

Integrating this equation with respect to r and substituting in new symbols for

the constant coefficients we have (after rearragning terms)

B
Rz(r) = B r2 + 2 + B_+ B r4

1 2 ¥ B3+ B, (4.29)
: r
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Substituting Eqn. A.29 into Eqn. A.18 we get

2 B 4
¢2(r,e) = (Blr +';§ + B3 + B4r ) cos 28 (A.30)

EXPRESSION FOR #(r,8)

Substitution of Eqns. A.17 and A.30 into Eqn. A.15 gives the general

expression for the stress function.

2 2
#(r,8) = (Alr logr + A2r + A3logr + A4) +
2 B 4
+ (Blr + ;5 + B3 + B4r ) cos 28

The fourth term on the right side of this equation, A4, can be deleted since
it is a function of neither r nor 6. Thus, the final expression for the Airy

stress function that is appropriate for the problems to be considered is

#(r,8) = (A1r210g1'+ A2r2 + A3logr) +
2 5 4
+ (Blr + ;5 + B3 + B4r ) cos 28 (A.31)

A.2.3 GENERAL EQUATIONS FOR STRESSES AND DISPLACEMENTS

Using Eqns. A.1l, A.2, A.6, and A.31 the general expressions for the
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stresses and displacements can now be obtained.

Substituting Eqn. A.31 into each of Eqns. A.6 we find the stress

equations.

A, 6B, 4B,

op = [8;(2logr + 1) + 24, + 5] - [28, + —* + —Jcos 26 (A.32a)
T r T
A3

de = [Al(Zlogr + 3) + 2A2 -‘;5] +
68, )

+[28, + = + 128,17 cos 26 (A.32b)
6B, 2B
- -=2_23 29
Ty = [28, e + 6B,r°] sin 20 (4.32¢)

By substituting Eqns. A.l into Eqns. A.2 we obtain the stress-dis-
placement relations that can be used to find the displacements. The stress-

displacement relations are:

du _ ,l1+V

3 = oLl - v - vo] (A.332)
M+ = EEHa - g, - vo,] (A.33b)
1 du AV v 1+vy
TS tECT AT, (A.33c)

By substituting Eqns. A.32 into Eqns. A.33 and performing the necessary integ-

rations we obtain the general expressions for the displacements, which are
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1 + v A
u = (O {[(1 - 2v)4,(210gr - 1) - 2vA; + 201 - 204, - —] -
r
2B, 4B, )
- [231 - -;Z. - -—(r2 1-V) + 4B,T Jeos 207 +
+ Aosine-+ Bocose (A.34a)
v = D@ - wa 0]+

2B 2B

+ [:231 + 42 - —-—(1 - 2v) + 2(3 - 2v)B T :|31n29} +

T

+ Aocos g - 3031n o+ Cor (A.34b)

where Ao, Bo’ and Co are the additional constants of integration that result.
Equations A.32 and A.Z{ are the generalized stress and displacement
equations used in the derivations of the eight solutions considered here. For
the '"thin liner" solutions these equations must be combined with the equations
for a thin shell. For the "thick liner" solutions these equations are suffi-
cient. For each different solution the constants of integration in Eqns. A.32
and A.34 are evaluated on the basis of the boundary conditions that apply for

that particular problem.
A.3 SOLUTIONS FOR A THIN LINER
A.3.1 GENERAL COMMENTS

The "thin liner" solutions are obtained by combining the generalized

stress and displacement equations for the ground mass (Section A.3.2) with the
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equations for a thin shell (Section A.3.3) in accordance with the appropriate
boundary conditions.

The positive sign conventions and the relevant geometrical quantities
adopted for these solutions are illustrated in Fig. A.4. As shown in this
figure the radius of the tunnel is measured to the outer surface of the liner
(a = Rc) rather than to the mid-thickness of the liner (a = Rn?' This 1is an
arbitrary selection based on the boundary conditions required (e.g., at r = a,
u = ub) in the derivations. As a result of this selection a descrepancy
arises because the liner thrusts, shears, bending moments, and displacements
should be evaluated at a = qn’ not at a = Ro' However, because the liner is
thin (t << a) there is little difference between Rm and Ro and it makes little

difference which value of a is used.

A.3.2 EQUATIONS FOR GROUND MASS STRESSES AND DISPLACEMENTS IN TERMS OF STRESS

FUNCTION CONSTANTS

Equations A.32 and A.34 represent the generalized equations for
stresses and displacements, respectively, in an elastic body. The equations
for stresses and displacements in the elastic ground mass surrounding the
tunnel are obtained from these equations by invoking the following two

conditions:

- = L - L -

G, = don = 2(dv + dH) 2(dv dH) cos 26 (A.11a)
- = L 1 -

de = dem = 2(cfv + dH) + 1(dv crH) cos 26 (A.11b)
— = Ll - i

Tre = Trem = 2(dv dH)51n26 (A.11c)



FIGURE A.4 POSITIVE SIGN CONVENTIONS

- "THIN LINER'" SOLUTIONS

[AX3
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2) v = v = 0, for @ = — (n=0,1,2,3,.....)

By substituting Eqns. A.32 into Eqns. A.ll and setting r =o; and by setting

8 = nn/2 in Eqn. A.34b and equating the result to zero for n = 0 and n = 1 we

find that
A1 = 0
= X
AZ - 2(dv + dH)
A3 = unknown = L
- L -
B2 = unknown = J
B3 = unknown = N
B4 = 0
A = 0
o
B = 0
o
C = 0
o

Substituting chese values for the coefficients back into Eqns. A.32

and A.34 we obtain the fcllowing:

L 6J . 4N

drm = [lzz(o‘v + o’H) + r—zj - [:Lz(o'v - dH) + -r—a + -r—zj cos 286 (A.35a)
6, = [%6, +d) - =]+ [5G0, - d.) +2]cos 20 (A.35b)
om 2% T % T 2 S A .
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Teom = 5oy - o) = & - B sin2g (A.35¢)
T T

1+v L

u = ("Ezr—ﬂ(r){[%(dv +o(1 = 2v ) - ;3] -
2] _ 4N
- [5Coy - o - i ?(1 - v_)]cos 26} (A.35d)

1+v

I e (U CRE I f‘}; - %(1 - 2v_)]'sin 26) (a.35¢)

OVERPRESSURE LOADING

For the solutions that consider an existing tunnel such that the
ground-liner system is subjected to an overpressure, Po’ applied at the ground

surface we have

g = P and of = KP

It should be noted that, while for this type of loading the lateral displacement

constraint is usually assumed, requiring

the following derivations ¢ the overpressure loading solutions yield equations
that allow the selection of K and Vi values that are independent of each oi er
if this is deemed appropriate.

In terms of P° and K the general equations for ground mass stresses

and displacements for overpressure loading are the following:
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P P
o L o 6J 4N
O = [(7)(1 + K) + ‘r—2:| - [(—2")(1 -K) + :Z + :5] cos 26 (A.36a)
Po L Po 6J
Ogm = [P+ - ?] +[Pa-x+ -r—a-]cos 26 (A.36b)
Po 6J 2N
Toom = [ =K - =%~ S]sin2e (A.36c)
T T
1 + Vm Po L
4 = CEOOIA Y 0A -2 - 5] -
Fa 2J 4N
-lxda-o - - -]:—2-(1 - v )]cos 26} (A.364)
1+v P
v, = ( E m)(r){l:(7°)(1 - K) + fi— - f‘%ﬂ - 2v )] sin26] (A.36¢e)

EXCAVATION LOADING

For solutions that consider excavation loading we have

dV = YH and dH = Koyﬂ
where,
Y = unit weight of the ground mass,
H = tunnel depth, measured from the ground surface

to the tunnel centerline,

K, = coefficient of earth pressure at rest

The generalized ground mass stress equations for excavation loading
can be obtained by substituting these expressions for dV and GH into Eqns. A.36a,

b and ¢. In order to obtain the corresponding displacement equations, Eqns.
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A.36d and e require further modification. ! '@ excavation loading it is assumed
that the liner is installed in an already stressed medium. Thus, some displace-
ment of the ground mass will already have occurred prior to excavation and con-
struction of the tunnel. These are the "in .tu" displacements resulting from
the application of the in ¢ tu stresses (Eqr . A.ll) to the initially stress
free ground mass. These displacements are ¢ :ained from Eqns. A.35d and e by
assuming that the ground mass is intact (no innel opening) and that at r = 0,

up = vp = 0. By inserting these values into Eqns. A.35d and e we find

and that the "in situ" displacements are (in terms of Jy and Jp)

1+v
upe = (@ {Daoy + o = 2 D] - [y - g)]cos 20} (A.37a)
m
1+v,
vy = ( E M) {[kCo, - o) ]sin20) (A.37b)

Thus, the correct expressions for the ground mass displacements are obtained by
subtracting Eqns. A.37a and from Eqns. A.35d and e, respectively, and then
substituting YH for Jy and KBYH for dH.

In terms of YH and K° the general excavation loading equations for the

ground mass stresses and displacements are

H L H 6 . 4N

o = [EDa+x)+ =1- [EDa-x) + St leesze (as)
H L H 6J

Ggm = [EDA +K) - ;—2-] +[E&a-x) + ;Z]°°S 20 (A.38b)

T T
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1+y

(

[
I

‘“)(r){[- —] [2J 21 - v )Jcos 26} (A.38d)

L+ 23
L= )( ){[ :5(1 - 2v_)]sin 26} (A.38e)

<
|

A.3.3 EQUATIONS FOR A THIN SHELL (LINER)

For the "thin liner'" solutions relationships between liner thrust and
shear forces, bending moments, displacements, and external pressures (See Fig.
A.4) are taken from thin shell theory (Fligge, 1973). These relationships are
given below in terms of plane polar coordinates.

The relationships between liner thrust, shear, and moments and ex-

ternal pressures acting on the liner are

3T M _ 2
a35 "3 - a ¥r9 (A.392)
éz! + aT = a2P (A.39D)

2 T
386

3T _

From Eqns. A.39a and ¢ it can be shown that

e (A.39d)

S

<
"
o |-

The relationships between liner thrust, moments and displacements are

% e 2

EAdv E 1 3%

.2L1__& _&ﬁ —Z

alse Tl ST aezj (4.402)



338

E*I azu
M = —%{u,@ +-;—2&] (A.40Db)
a ¢

The relationships between liner displacements and external pressures

acting on the liner are obtained from Eqns. A.39 and A.40.

3°v du 2
__é& + _a.e& = -2 N (A.41a)
38 E A
2
v E*I a“u azu 2
Eg‘+u ++2{——£4+2-4£+u£] = —a;-Pr (A.41Db)
2 EAa” 36 30 E,A

*
In the above equations E£ represents the liner modulus for plane-

strain,
E

E;=__&2_,
Qa- vz)

and (assuming the liner is of rectangular cross-section of uniform thickness, t,
in the radial direction and unit thickness, b = 1, in the longitudinal direction),

A = t = cross-sectional area

I= t3/12 = moment of inertia
If the liner consists of discrete members (i.e., is not continuous in the long-
itudinal direction)
A
-
L

Iu
A = and I = T

where Au and Iu are the cross~sectional area and moment of inertia, respectively,

of the member and L is the length in the longitudinal direction of that member.
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A.3.4 THE LINER-GROUND MASS COMPRESSIBILITY AND FLEXIBILITY RATIOS

The mechanics of the "thin liner" solution derivations and the form
of the resulting final equations are significantly simplified by the use of what
are called the compressibility (C) and flexibility (F) ratios, where C is a
measure of the extensional stiffness of the surrounding medium relative to that
of the liner and F is a measure of the flexural stiffness ?f the surrounding
medium relative to that of the liner. The derivation of the expressions for
these ratios is given by Peck, Hendron, and Mohraz (1972).

The resulting expressions are given as

E

.

2

SRR E 1 - vH

¢ = —% — = @Olgoa Ty yJ
A : n n

(1 - vf) 2

(A.42a)

Z"EE"> (1 - v
1+v E 2(1 - v
F o= T = ('E_m)(%)3[ ST

IR A O £ m

Q- v;) 2>

(A.42D)

To express these ratios in terms of the liner radius-to-thickness ratio (a/t)
it is necessary to assume that the liner is continuous in the longitudinal
direction and of rectangular cross-section with uniform thickness.

By rearranging the terms in Eqns. A.42 we have that

3 1+ vm
2 - 6F(——E—") (A.433)
E I m

y/

a 1 + vm
- = A-2)C C—F) (A.43Db)

E A m
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A,3.,5 SOLUTION NO.1: OVERPRESSURE LOADING -~ NO SLIPPAGE CONDITION

The additional boundary conditions that apply for this problem require

that at 1 = a,

u =y (BC1)
v, o= '& (BC2)
O = Pr (BC3)
Tom = Fro (BC4)
From Eqn. A.4la we have

2

a‘{z‘bi‘l - _a_zg‘

an a6 EEA TH

We get the following from boundary conditions BCl, 2 and 4 and

from Eqn. A.36e,

1+ Vi
v, = gD [(—-)(1 - + & - B1 - 2y )Tsin2e)
B a a
from Eqn. A.36d,
1+ Vo
u = ( ¢ ){[(-—0(1 + K)(1 - 2v ) - ——] -
m
- [(—-—)(1 -1 - & - 21 - v )Jeos 26)
a a
from Eqn. A,36c,
Po 6J
Ty = [(759(1 K- —'—-151 20
a a
from Eqn. A.43D,
a 1+V
— = (I =-2v)C(—
?%A m

(A.41a)
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Substituting these expressions into Eqn. A.4la, performing the indicated

differentiations, and rearranging terms we find

(1 -2v )C -2 P 6(1 - 2v )C + 12 3
N o= o )c ¥ BV I»a -0 - Gay )c ¥ oy ](") (al.1)
From Eqn. A.41b we have
* 4 2
v EI du 3 u 2
-—e-z—+u2 + —% 50 f+2 jza +uwl = S (A.41D)
E Aa“ 28 36 2 EA
2 2
The expressions for vz, uz, apd a/EEA are given above. From Egns. A.43 we

have

* %
E I E I E 1+ vV (1 - 2v.)C
b4 - (AN - [l m - ___m = m
* 2 7 A - [EF(1 + v » La 2v) C (% )] = 6F
EzAa a EzA m m

From BC3 and Eqn. A.36a we have

P P
[ +K + i] - [ -0 + &+ Beos 26

a a

After substituting all of these expressions into Egqn. A.41b, performing the
required differentiations, and rearranging terms we obtain an equation of the
form

X = Y cos?28
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where X and Y are constants (i.e,,do not contain r or 68). In order for this
equality to hold for all values of § we must have X = Y = 0,
From the requirement that X = 0 we find the first expression for a stress

function constant. This expression is

Po 2
L = - (7?)(1 + K)a Ln (Al.23)

where,

(1 - va)c
Lo (1 - va)(C -1 -(Q - ZvHQ- oF
n (1 - va)C
1+ Q- va)c + 3

Note that by substituting in the expressions for C and F (Eqns. A.42) we

find that

(1 - 2v)C
m _ 1,82
6F - (12)(a)

For the "thin liner" solutions we have assumed that (t/a) < 0.10. Thus

(1 - va)c
—_— < . .
F ax 0.00083

Because this term will always have a very small value, setting it equal to

zero here will not significantly alter the solution. Thus we have

(1- va)(C -1

b T T A - e (A1.20)
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From the requirement that Y = 0 we have

P
o]
= - K)[2F - 3(1 - 2v )C + 2(1 - 2vm)<:F] +

+ (Z[12F + 6(1 - 2v)C + 12Q1 - 2v )CF] +
a

+ (—Nz-)[Sva +12(1 - v (1 = 2v )C + 8(1 - va)CF] = 0
a

Substituting the expression for N as a function of J (Eqn. Al.1) into this

equation and collecting terms we find that

Po 4
J = -3(750(1 - Ka I (A1.323)
where,
[(1-2v) - 0O - 51 - v )% + 2
T T TG -2v) + (T - 2vJCF + 5G - 6v (1 - 2v € + (6 - 8y

(Al1.3b)

Substituting Eqns. Al.3a and b back into Eqn. Al.1 and collecting terms

we find
Po 2
N = =~ (——2—)(1 - K)a'N (Al.42)
where,
[1+ 1 -2v)cTF - 50 - 2v )¢ - 2
N = — — e - —
n L(3 2v ) + (1 2vm)c]F +%(5 - 6v )(1 - 2v )C + (6 - 8v )

(A1.4b)
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Now that expressions have been obtained for the three nonzero stress
function constants, the final equations for ground mass stresses and dis-
placements are obtained by direct substitution of Egns. Al.2a, 3a, and 4a
into Eqns. A.36., The boundary conditions BC3 and BC4 then yield the equations
for the external pressures acting on the liner. Similarily, BC]l and BC2 allow
determination of the final equations for liner displacements. The final
equation for liner bending oments is obtained by substituting the resulting
expression for uz into Egqn., A.40b., Then the equations for liner thrust and
shear forces can be obtained from Eqns. A.39b and d, respectively.

All of the final equations for Solution No. 1 are presented in Section

B.1 of Appendix B.

A,3.,6 SOLUTION NO. 2 ¢ OVERPRESSURE LOADING - FULL SLIPPAGE CONDITION

The additional boundary conditions that apply for this problem require

that at r = a,

um = uz (BC1)
drm = Pr (BC2)
Toom = Fpg = O (BC3)

Thus, from BC3 and Eqn. A.36c we have that

Poa2 3J
Dm0 -5 (42.1)

N = (

From BC3 and Eqn. A.4la we have

2
S i A
2 %]

06
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Integrating this equation with respect to § twice we find that

v, = =fyde + £,(x)e + £,(r)

From BC1 we have that for r = a, u, is given by Eqn, A.36d. Substituting this

2

expression for 92 into the above equation for VE performing the indicated
integration, and invoking the requirement that Yﬁ = 0 for 8 = nn/2 (where
*
n = O, 1’ 2’ 3’ .c-ooo) we find that
1+v
£ = (—gH@la -2 )(—)(1 + K) _,_3
m a
fz(r) = 0

Thus, the above equation for YZ can be rewritten as follows:

1 + v
v, +Jude = —(a)[(1 - 2v )(——)(1 +K) - —]}(e)

m

Taking the partial derivative with respect to 8 of each term in this equation

we find that

avk 1 Vo
%+, = D@la- 2 )(—)(1 +K) - —-]
m a

s

The resulting expression for v, is

L

Lry 4N
v, = )<)[( D1 -1 - 2 - B - v )]sin2e
a a
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Substituting this result into Eqn. A.41b we have

4 2
1 + Vo a u,
><a>[<1 - 2v )(—-)(1 +K) - —-] ——[ -+, ]
Z ae ae
2
= 2P
EzA

The following equations are obtained from the boundary conditions and

from Eqn. A.36d,

1 v P
B (a) [+ KA -2v) - 5] -

£ E_ 22

- [(—-)(1 -x) -2 —2—(1 - v ) Jeos 26

a a
from Eqn. A.36a,

P L Po 6J
P = [(755(1 + K) +j;§] - [(1{9(1 K) + ;Z + ;‘]COSZ@

from Eqn. A.43D,

1+vV

= - (a-2)c—DH
m E
E A m
4
from Eqns. A.43a and b,
Ezl ) (1 - 2vm)C
* 2 6F
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After substituting all of these equations into the above equation, taking the

required derivatives, and rearranging terms we obtain an equation of the form

X = Ycos26

where X and Y are constants (i.e., do not contain r or 8). In order for this
equality to hold for all values of § we must have X =Y = 0,
From the requirement that X = 0 we obtain the same result as in the

derivation of the first solution (See page 342 , Section A.3.5). That is, that

P

L = = (7°)(1 + K)azL (A2.2a)
f
where,
(1~ va)(C - D

From the requirement that Y = 0 we find

P
(—29)(1 - K3 - 2Fr] - ia[e + 12F | - %[12(1 - v+ 8F] = 0
a a

Substituting the expression for N as a function of J (Eqn. A2.1) into this

equation and collecting terms we find that

P

I o= DA - K)a“Jf (A2.32)
where,
2F + (1 - 2vm)
J (A2,3b)

f 2F + (5 - 6vm)
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Substituting Eqns. A2.3 back into Eqn. A2.1 and collecting terms we find

P
N o= - (DA - K)asz (A2.42)
where,
_ 2F - 1
T T G- ey (A2.4D)

Now that expressions have been obtained for the three nonzero stress
function constants, the final equations for ground mass stresses and dis-
placements are obtained by direct substitution of Eqns. A2.2a, 3a, and 4a
into Eqns. A.36, The boundary conditions BC2 and BC3 then yield the equations
for the external pressures acting on the liner. Similarily, BC1 allows
determination of the final equation for the liner radial displacements. The
equation for liner tangential displacements is obtained by substituting
Eqns. A2.3a and 4a into the equation for \/ given at the bottom of page 345.
Substitution of the final equation for u, into Eqn. A.40b yields the equation
for liner bending moments. Then the equations for liner thrust and shear
forces can be obtained from Eqns. A.39b and d, respectively.,

All of the equations for Solution No. 2 are presented in Section B,2

of Appendix B.

A,3,7 SOLUTION NO. 3 s+ EXCAVATION LOADING - NO SLIPPAGE CONDITION

The additional boundary conditions that apply for this problem require

that at Tt = a,
(BC1)

%
v = % (BC2)



drm = Pr (BC3)
'trem = Tre (BC4)
From Eqn. A.41a we have
2
v du 2
é3+ Sei = ___a* :Ere (A.413)
30 EzA

We get the following from the boundary conditions and

from Eqn. A.38e,

1+v
_ n 23 2N, .
v, = (—— Y (a){[ 7~ (1 2vm):’sln 26}
m a a
from Eqno A.38d’
1+ v
m L 2J 4N
u = (—E'——)(a){[- —5] + [_Z + (1 - vm)]cos 26}
m a a a
from Egqn. A.38c,
= Ty, - -8 2N,
o = K¢ 52(1 = K 3 2]51n 28
a a
from Eqn. A.43b,
a 1+ vy
— = (A -2v)c( )
E m

Substituting these expressions into Eqn. A.4la and collecting terms we find

(1 - va)C H 6(1 - 2v )C + 12
N =[G 2v)C + 8vm]( 201 -k - =y )c ¥ By ](_) (43.1)
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From Eqn. A.,41b we have

v E;I al‘u/E 321.1/e a2

St U, t TR Tt 2 2+u£]=TPr (A.41b)
E_Aa~ 36 36 E A
p/ p/

The expressions for vz, Uy and a/E;A are given above. From Eqns. A.43 we have

E I ) (1-2vm)c

* 2 7 6F

EzAa

From BC3 and Eqn. A.38a we have

H L H 6] 4N
p.o= [ +K) + ?] - [BHa -k + =t ?]cos 26

After substituting all of these expressions into Eqn. A.41b, taking the

required derivations, and rearranging terms we obtain an equation of the form
X = Y cos28

where X and Y are constants (i.e., do not contain r or 8), In order for this
equality to hold for all values of § we must have X = Y = 0,

From the requirement 1at X = 0 we find that

L = - (%*—)(1 + 7 )aZL: (A3.22)

where,

- (1-2v)¢C

n (1 - va)c
1+ (1-2 ) + e
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As was done in the previous derivations we set

(1 - 2vm)C

6F =0

to obtain

" (1-2v )¢

From the requirement that Y = 0 we find

yH -
SO+ k)HL(L - 2v HeF] +

J
*-a—al:6}:“ +3(1 - 2v )C + 6(1 - 2vm)CF] +
N
+ ;3£4va + 6(1 - Vm)(l - va)c + 4(1 - 2vm)CF] = 0

Substituting the expression for N in terms of J (Eqn. A3.1) into this equation

and collecting terms we find that

3= - 5@Ha -k (A3.32)

where,

[2v_+ (1 - 2v )CF + (1 - v )(1=-2v)C
J" = . m m m - m
n L(3 - v ) + (1 - 2vm)rc]_1-"+g(5 = 6v (1 - 2v)C + (6 - 8v)

(A3.3b)

Substituting Eqns. A3.3a and b back into Eqn., A3.1 and collecting terms

we find the expression for N,
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_ -1 ﬁ _ 2.5
N = 5 ( 5 (1 Ko)a N (A3.43)
where,
o [3+201 -2y )CcTF + 51 - 2v )¢

n - (G2 )+ (T-2v)CF + 55 - v )1 - 2v 3C + (6 - Bv)

(A3.4b)

Now that expressions have been obtained for the three nonzero stress
function constants, the final equations for ground mass stresses and dis-
placements are obtained by direct subatitution of Eqns. A3.2a, 3a, and 4a
into Eqns. A.38., The boundary conditions BC3 and BC4 then yield the equations.
for the external pressures acting on the liner. Similarily, BC1 and BC2
allow determination of the final equations for liner displacements. The
final equation for liner bending moments is obtained by substituting the
resulting expression for u/g into Eqn.A.40b. then the’'equations for liner
thrust and shear forces can be obtained from Eqns. A.39b and d, respectively.

All of the final equations for Solution No. 3 are presented in Section B.3

of Appendix B.

A.,3.8 SOLUTION NO. 4 : EXCAVATION LOADING - FULL SLIPPAGE CONDITION

The additional boundary conditions that apply for this problem require

that at r = a,

u- = u}Z (BCL)
drm = Pr (BC2)
TESm = ?re = 0 (BC3)

From BC3 and Eqn. A.38c we find that
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2
- (YHa_ - -3
N = ( 2 ) (1 Ko) 2 (A4,1)

From Eqn. A.41a and BC3 we have

2%v. au
2 2
36

Integrating this equation with respect to 6 twice we find

v, = - fuxde + fl(r)e + fz(r)

From BC1l we have that for r = a, uz

2 into the above equation for vy performing the indicated

integration, and invoking the requirement that vy = 0 for 6 = nw/2 (where

is given by Eqn. A.38d. Substituting this

expression for u

.

n= 0, 1, 2, 3, vs o0 l) we find thatﬁ-

1L+v L
£ = - —FO@]
m a

|
(@]

fz(r)

thus, the above equation for v_ can be rewritten as follows:

£
1 +v
m L
v, J“uzde = - {(T)(a)[?]}e

ala

“The resulting expression for v)Z is
1 +v
= - (—Dyeayr2d | 4N ;
v, = ( E_ )(Z)Ea4 + a2(1 vm)151n26
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Taking the partial derivative with respect to 6 of each term in this equation

we find that

av)8 1+ Vo L
Sty = - @]
m a

Substituting this result into Eqn. A.41b we have

x4 2

1+ Vo L Ey:I 3 U, 3 u, a2
S @l m T 2 ] = Sy
m a Al 08 06 EzA

The following equations are obtained from the boundary conditions and

from Eqn. A.38d,

1+ v
L 2J 4N
u, = (Tﬂ)(a){[- -—2-] + [—-Z + =1 - vm)]cos 26}
m a a a
from Eqn. A.38a,
- [H L el - & | 4N
p.o= [BHa+x)+ azj [ -k + x + alz]cos 26

from Eqn. A.43Db,

a L+
— = Q-2
EIA m

from Eqns. A.43a and b,

EJZI i} (1 - 2vm)C
E:Q'Aaz 6F

After substituting all of these expressions into the above equation,

taking the required derivatives, and rearranging terms we obtain an equation
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of the form

X = Y cos28

where X and Y are constants (i.e., do not contain r or 8). In order for this
equality to hold for all values of 6 we must have X = Y = 0,
From the requirement that X = 0 we obtain the same result as in the

derivation of the third solution. That is, that

- - X_}i 2%
L L + K )a"L; (A4.23a)
where,
A T el (a4.2b
£~ Tn 1+ (1T-2v)C 24-20)

(See page 351 , Section A.3.7)

From the requirement that Y = 0 we find

('Yzﬁ)(l - Ko)[F] + %[3 + 6F ] + lz[zm +6(L-v)] =0

a a

Substituting the expression for N in terms of J (Eqn. A4.1) into this equation

and collecting terms we find

s - 4%
J = ( 2)(1 Ko)a Jf (A4, 3a)
where,
* F+(1=-v)
¢ = F T 5= 6v ) (44.30)

Substituting Eqns. A4.3a and b back into Eqn. A4.1 we find the expression
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for N.
_ - L Xﬂ _ b
N = 2( 2 )(1 Ko)a Nf (Al&.l&a)
where,
* 4F + 1
Ne T OIF T G- ev) (A4.4D)

Now that expressions have been obtained for the three nonzero stress
function constants, the final equations for ground mass stresses and dis-
placements are obtained by direct substitution of Egns. A4.2a, 3a, and 4a
into Eqns. A.38., The boundary conditions BC2 and BC3 then yield the equations
for the external pressures acting on the liner., Similarily, BC1l allows
determination of the final equation for the liner radial displacements., The
equation for liner tangential displacements is obtained by substituting
Eqns. A4,3a and 4a into the equation for v giveh at the bottom of page 353.

)
Substitution of the final equation for QE into Eqn. A.40b yields the equation
for liner bending moments. Then the equations for liner thrust and shear
forces can be obtained from Egqns. A.39b and d, respectively.

All of the final equations for Solution No. 4 are presented in Section

B.4 of Appendix B,
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A4 SOLUTIONS FOR A THICK LINER
A.4,1 GENERAL COMMENTS

The "thick liner'" solutions are obtained by combining the generalized
stress and displacement equations for the ground mass (Section A.3.2) and the
corresponding equations for the liner (Section A.4.3) in accordance with the
appropriate boundary conditions. Both sets of equations are obtained from
Eqn. A.32 and A.34,.

The positive sign conventions and the relevant geometrical quantities

adopted for these solutions are illustrated in Fig. A.5.

A.4.2 EQUATIONS FOR STRESSES AND DISPLACEMENTS IN THE SURROUNDING GROUND MASS

IN TERMS OF STRESS FUNCTION CONSTANTS

The equations for stresses and displacements in the elastic ground mass
surrounding the tunnel were derived in Section A.3.2. The resulting Eqns. A.36
(page 335 ) apply in the case of overpressure loading, while for excavation

loading Eqns. A.38 (page 336) must be used.
A.4.3 EQUATIONS. FOR STRESSES AND DISPLACEMENTS IN THE LINER IN TERMS OF
STRESS FUNCTION CONSTANTS

The general equations for liner stresses and displacements are obtained

from Eqns. A.32 and A.34 by invoking the following two conditions:
1 T =T, where Rigr_<_ Ro

2) V'z =0 f0r6=‘n?w (n=0, 1) 2) 3, -..-.--)



At point As At point B

“;N‘ ‘Az % /m

rop Troy Trem\ / Tom
G

/ \“ 4 \ Yom

FIGURE A.5 POSITIVE SIGN CONVENTIONS - "THICK LINER" SOLUTIONS

86GeE
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Only the second of these requirements allows determination of values for the
constants of integration. After substitution of 6 = nwv/2 in Eqn. A.34b and

equating the result to zero for n = 0 and 1 we have

A =

1 0
A2 = unknown = Q
A3 = unknown = S
B1 = unknown = W
B2 = unknown = X
B3 = unknown = Y
B4 = unknown = Z
A = 0

o
B = 0

o
C = 0

o

Substituting these values for the constants back into Eqns. A.32 and A.34,

along with r = r, , we obtain the general equations for liner stresses and

2
displacements.,
= Sq. 68X 4y
Oy = [2q + rzj (2w + = + 2 os 29 (A.44a)
2 2 £
S 6X 2
Oy = [2Q - —5] + [2W + =t 122r£]c0529 (A.44b)
T T
2 2
_ U6 2y 2,
Ty = L2W =T - 55+ 6l ]sin2e (A.44c)

)
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1+ \)’g S
u, = (—%—-)(rz) [2¢1 - 2v£)Q - *5] -
T
2
- [zw - 2% - ﬁ%(l - yz) + 4yéZ2§]cosZG (A.44d)
r r
2 2
v, = (i:?’-)(r)[2W+2—X-g¥'(1-2v)+2(3-2 )Zr2Jsin26 (A.44e)
= E 2 4~ 2 0 Vg eTy Jsin e
£ r’g Ib

A.4,4 COMMENTS ON METHOD OF DERIVATION

Solutions for the thick liner problems are obtained from Eqns. A.36 or
A.38, Eqns. A.44, and the appropriate boundary conditions. In each derivation
these equations and conditions are used to obtain nine equations in nine
unknowns {(the constants of integration remaining in the equations already
given), Each derivation then follows the procedure outlined below,

The nine equations can be seperated into three groups, as follows:

1) Three equations in the: three unknowns L, Q, and S. These
equations can be solved by direct substitution.

2) Four equations in the four unknowns J, N, X, and Y. &hese
equations are too complex to be easily solved by direct
substitutiony hus, use is made of Cramer's Rule (See, for
example, Kreyszig, 1967).

3) The remaining two equations give the unknowns W and Z as
functions of X and Y. Thus, once X and Y have been found
W and 2 are obtained by direct substitution,

The use of Cramer's . le requires the solution of a number of determinants.
Because such solutions involve rather lengthy calculations, the procedure is
briefly described here rather than given for each derivation in the sections

that follow,.



For four unknowns the four simultaneous equations

The four unknowns are

where,

then given by

11

21

31

41

12
22
32

42

361

o) o ULJU o2

Ule

13

23

33

43

14

24

34

44

can be written as follows:

(A.45)
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and,

b1 212 %3 %
b2 Cf22 a3 P
1T Py 33 333 33
by w2 %3 24

Similarily, D, is obtained by replacing the second column of D by b, ‘through b

2

D3 by replacing the third column and D

1

4 by replacing the fourth column,

A,4.,5 SOLUTION NO. 5 3 OVERPRESSURE LOADING - NO SLIPPAGE CONDITION

The additional boundary conditions that apply for this problem requires

that

at rB = R.l ’ drz = 0 (BC1)

< = BC
ol 0 (BC2)
at rz = R0 =T, drJZ = drm (BC3)
TI‘@JZ = 'Crem (BC4)
u, = up (BC5)
v, = Vg (BC6)

From BC1 and Eqn. A.44a we obtain two equations (because drz = 0 for

all values of cos 26 ) which yield

s = - 2QR§ (A5.1)

4°
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ki
w = - % - -Z—ZY: (AS.Z)
R R’
1 1

From BC2 and Eqn. A.44c we find that

+ o

W
3R*  3R?
1 1

Substituting the expression for W (Eqn. A5.2) into this equation we obtain

(A5.3)

From BC3 and Eqns. A.44a and A.36a we find that

P
N+ = (Par +H
R R
o o
and,
6X = 4Y P0 6J 4N
WA+ g = (PA-O g
R R R R
o] (o] o} o

Substituting the expression for S (Eqn. AS5.1) into the first of these

equations and rearranging terms we find that

P
_ (-9 2 2 .
L = (-50(1 + K)R0 + ZQalR.1 (AS.43)
where,
Ro 2
@ = [(ﬁz) - 1] (A5.4b)

Substituting the expression for W (Eqn. A5.2) into the second of the
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above equalities and rearranging terms we obtain

3a 20 P
2 1 3 2 0
(DX + (=Y + I+ (N = - (1 - K) (A5.5a)
Ra R2 Ro R2 4
o o
where,
R 4
a6, = [ - 1] (A5.5b)

From BC4 and Eqns. A.44c and A.36c we obtain the following equation:

P

M- H a2 = Pa-n-E-Z
R® R R® R

(o] (o] o] o]

Substituting the expressions for Z (Eqn. A5.3) and W (Eqn. A5.2) into this

equation and rearranging terms we obtain

<—3§)x f Sy v Br e Gy - <—P—°)<1 - K) (A5.62)
R& R2 R& R2 4
(o] (o] (o] (o]
where,
Ro 6 Ro 4
a, = (27 - 7 - 1] (A5 .6b)
1 1
R R
4 2
a, = [3<-R-; - zcﬁ—‘f) - 1] (A5.6¢)

From BC5 and Eqns. A.44d and A.36d we obtain the following two equations.

(&>[z( - 2v)Q - 2] = (f%[(il( + K) ( —zv>-—L—]
%, 1 -2y TN 20 (1 1 w T2
O (o]
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0 2X 4Y 2
(el b R2(1 vt 4\:EZRO]
(o) (o)

R P
0 0 2J 4N
GO -0 == - 51 - )]
m Ro Ro

Note that the following substitutions have been made

1+ v 1+v

-2y - 1 my _ _1

(= 2G and (=) = 3
1 2 m m

where G is the shear modulus (or modulus of rigidity) which is given by

E

¢ = 2(1 + v)

Substituting the expression for S (Eqn. A5.1) into the first of the above

equalities and rearranging terms we find

Q = )(R°)2< ! )[( 2)(1 + KL - 2v ) = ——] (A5.72)

O

where,

R
15 = (- 29)ED% + 1] (45.70)
1

Substituting the expressions for W (Eqn. AS.2) and Z(Egqn. A5.3) into the

second of the above equations and rearranging terms we obtain

g G 2a, 2(1 = v ) P
<—’1‘><——)x olowy Y+ <——>J t [k = (PA-K (5.8
R

z R z
o o

where,

Ro 6 R 4
a = [av, @7 - 3D - 1] (A5.8b)
1 1
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Ro 4 Ro 2
[sz(—ﬁ-_l-) - (R_i) - (1 - vz)] (A5.8¢)

From BC6 and Eqns. A.44e and A.36e we have that

2Y 2
)[zw+ 7 - (1= 2v) + 203 - ZVZ)ZROJ
z R R
(o) o
%o 2N
% )[( (1=K + = = —<R2 1-2v)]
(o) o

Substituting the expressions for W (Eqn. A5.2) and Z (Eqn. A5.3) into this

equation and rearranging terms we find

G 0 (1 - Zv ) Po
& )( )x + ( 2 ( DY - (—)J + [—————]N = (721 -K (A5.9a)
z R z R R
[o]
where,
R 6 R 4
ag = [203 - ZvZ)(R—‘_’) - 3D + 1] (A5.9a)
1 : 1
Ro 4 Ro 2
o = [(3- 2v£)(-§;) - Z(R—i) - Q- ZVZ)] (A5.9¢)

Substitution of Eqn. AS5.4a into Eqn. AS5.7a yields .the expression for

the constant Q.

Po R 2 EL
Q = QA+ K)(-g‘f) - v, (A5.10a)
where,
Q = _1 (A5,10Db)
n Qz
(—)b1 + b2
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and

Ro 2
by = o = [(g;) - 1] (A5.10¢)

R
b, = g [ - 2v£)(§§92 + 1] (A5.10d)

Substitution of Eqns. A5.10a and b into Eqn. A5.4a yields the expression

for the constant L.

P
= (2 2
L = (2)(1+K)ROLn (A5.11a)
where, G
- £ -
(1 va)(Gm)b1 b,
L = (A5.11b)
n Gz
(TP * P,
m

Substitution of Eqns. A5.10a and b into Eqn. AS5.1 yields the expression

for the constant S,
Gy 2
s = - P (A+KQ - vm)(Gm)Rosn (A5.12a)

where,

s = Q = —it— (A5.12b)

G
A
(Gm)bl * b,

Equations AS5.5a, 6a, 8a, and 9a can be solved for X, Y, J, and N by

using Cramer's Rule (See Section A4.4), From these equations we have that
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L. LM T N 1
- ’ - ’ = ’ =
SR 12 5 2 13 ° 4 1w T 2
(o] (o] o (o]
L. . R B |
, - s - » -
21 = T4 22 = 72 23 = L& 24 = 2
[0} o] (o] o]
G « G 2a 2(1 - v)
;= @D 5 oap = @ 5 oay = o oy, = 7
Z R 2 R R R
[0} [0} o] [0}
o e NS A s
- H - H - 1 -
41 G,Z Rl& 42 G,Z R2 43 R4 44 R2
(o] [0} o] [0}
P
N ) ) - (91 -
and, -b; = b, = by = b = 721 - K

Solving for each of the required determinants we obtain the following

results.

D = -3(‘&11)2(12-12) {(3 - 4y )(Gi)zb + Z(i)[b - 2v b ] + b } (A5.13a)

= 92 o m Gm 3 Gm 4 m5 6 o13a
where,
Ro 2 4
by = [(ﬁ? - 1] (45.13b)
Ro 6 RO 4 Ro 2
b, = L5 - eyED0 + 5 - 2ED - (- 2EDT

R
+ (3 - Z\jz)][(R—o)z - 1] (A5.13c)
i
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R 6 R 4 R 2 R 2
by = [(3-4v)IED” + 3" - 3 + 1D - 1] (A5.13)
i i i i
R R R
- - N - 2y0.9y6 _ 04
b = [(3 AYB)(Ri) + 4(3 6v£ + AYE)(Ri) 6(Ri) +
Roy2
+ 4+ (3 - )] (a5.13¢)
i
G _g .G
D, = =3P (1-K(1 - vEER O, + 1) (AS.142)
£ m
where,
Ro.4
b7 = [(R_o_) - 1] (A5.14b)
1
Rt
g = "[(3- “Vz)(f) + 1] (A5.14c)
1
Cn =10, 5
Dy = SRS R - GO, ){(z,;*’;)bg + 043 (45.152)
where,
R 6
by = [§D° - 1] (A5.15b)
1
Rou6
b, = [(3- “Vz)(f) + 1] (A5.15¢)
1
P G G G
= (3(=2y(1 - K)(By2(R™8y (L2 £ - -
Dy = PR -OEHIE Gy + “cm>[b11 8y b.,] - b.)
(A5.16a)
where,
Ro 8 Ro 6 R 4
b, = [(- sz)(R—i) + 42 - vz)(q) - 27 - zwz)(g‘j) +

R
a2+ Q- )] (as.16n)
i
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Ro 6 Ro 4
by, = (1= v)ILED" - 7]
1 1
P G G G
= =3(=2)(1 - K) (B 2R™10y{(L)2 Lyy o -
b, = AP - ROEIR, >{(Gm> by + 20y, be}

where,

R Ro 4 R

1 R,
i i

(A5.16¢)

(A5.173)

R
= - 28 96 _ 42 92 -
b, = [ DT+ DT - DT+ AT (- 2]

(A5.17b)

From these expressions for the determinants we can now obtain the

expressions for the four constants X, Y, J, and N,

! D G
I - - N
X = 5 = PQ-KQ "m)(cm)Roxn
-where, G
2
(Gm)b7 + b8
n T Gp 2 )
(3 = 4v ) (D% + 2D [, = 2v b ]+ b,
m m
D G
= -2 - _ _ - A
Yy = 2 = 22 (1-K00-v) (cm>R<2>Yn
where, G
2
(cm>b9 * P10
Yn = Gz 2 Gz
(3 - av ()%, + 267 [b, - 2v b ] + b,

m m

(A5.18a)

(A5.18b)

(A5.19a)

(A5.19b)
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D3 Po 4
- —= = =Ll (= -
J = 3 5 ( 2)(1 K)Ran (AS5.20a)
where,
G G
WA L -
(Gm) by + 2(Gm)|:b11 8vby,] -
J = (AS5.20Db)
n i 2 G
(3 = 4y )(E) %, + 2(g9[b, - 2v b ] + b,
m m
D P
- 4 - (91 - 2
N o= 5 = (A -KRN (A5.21a)
where,
L2y o z(G’% - b
G~ 3 G P13 6
Noo= G (A5.21b)
(3 - 4v )(-—) b + 2( )[b - 2y b ]+ b,

Substitution of the expression for X (Eqns. A5.18) and Y (Eqns, A5,19)

into Egns. A5.2 and A5,3 yields the expressions for the constants W and Z.

G

Wos P(1-K01 - vm)(?f;)wn (45.22a)
where, Qg
| @04 * By
W= = (A5.22b)
(3 - 4y ) ”) by + 2 i)[ba - 2v b ]+ b,
and,

R

b, = [ciq>8 - 3D - 4=2%] (A5.22¢)
16 - LR R, R, recc
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Ro 8 Ro 4 Ro 2
bg = [¢(3 - hvz)(ﬁ-i-) - 3(§-i-) + A(R—i) ] (A5.22d)
o
Z = -2P(1-K)(1- \am)(G )(;2-) (A5.233)
i
where, G
[(5&) - 1o,
z = b (A5.23b)
n Gp.2 Sy
(3 - zwm)(q) by + 2(Gm)[b4 - 2v bl + b,
and,
Ro 4 Ro 2
b16 = [(ﬁ;) - (ﬁ;D ] (A5,23c)

Now that expressions have been obtained for the nine unknown constants,
these expressions can be substituted back into Eqns. A.36 and A.44 to obtain
the final equations for liner and ground mass stresses and displacements.

These equations are given in Section B,5 of Appendix B.

A.4,6 SOLUTION NO. 6 : OVERPRESSURE LOADING - FULL SLIPPAGE CONDITION

The additional boundary conditions that apply for this problem require
that

atr = R, , g = 0 (BCD)

T = 0 (BC2)
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at r£ = Ro =T, drz = drm (BC3)
u£ = u (BC4)

= BCS

Trap 0 (BC5)

‘c‘rem = 0 (BCE))

From BC1 and Eqn. A.44a we obtain two equations which yield

S = -2QR§ (46.1)
W o= = é% -'2% (A6.2)
R} RS
1 1

From BC2 and Eqn. A.44c we find that

X

+
3Ré
1

-
3R?
i

|

Substituting the expression for W (Eqn. A.6.2) into this equation we obtain

X

(46.3)
R
1

+

(3]
1]
o R

From BC3 and Eqns. A.44a and A.36a we find that

P

N+ = P+

R R

(o] o
and,

6X 4Y Po 6J 4N
M+ =+= = (7)(1—K)+—4+—2-

R R R R

(o} (o} (o} o)
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Substituting the expression for S (Eqn. A6.1) into the first of these

equations and rearranging terms we find that

Po 2 2
L = -(?;)(1 + K)Ro + 2Q81Ri (A6,4a)
where,
Ro 2
B, = [(-ﬁ-_l-) - 1] (A6.4D)

Substituting the expression for W (Eqn. A6.2) into the second of the

above equations and rearranging terms we obtain

38 28 P
2 1 3 2 o
(DX + DY+ (DT + (SN = -9 -K) (A6,5a)
L r2 R4 2 4 a
[o] (o] [o] [
where,
Ro 4
B, = [ - 1] (A6.5b)
1

From BC4 and Eqns. A.44d and A.36d we obtain the following two equalities

(See p. 365)

Ro S Ro Po L
(55—9[2(1 - ZVZ)Q -‘;5] = (55—9[(7?)(1 + K)(1 - 2vm) - “5]
£ o m o
(—R-°—>[zw-2’i-ﬂ<1 - v )+ 4y ZR%Y] =
26, e g2 Vo Vg ¢fod T
(o] (o]
R P
= GOIEda-© - -8aq - y)]
m R R

[0} o
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Substituting the expression for S (Eqn. A6.1) into the first of these

equalities and rearranging terms we find

(—&x > %5 >[( (1 + K1 - 2v) -—-] (A6.62)

O

Q
where,

R
B, = [(1- 2v£)(§-‘_3)2 + 1] (A6.6b)
1

Substituting the expression for W (Eqn. A6.2) and Z (Eqn. A6.3) into the

second of the above equalities and rearranging terms we obtain

G B G 2B 2(1 = v) P
DX+ DY+ DI+ [N = (P06
G &2 Gy R
° o o o
where,
Ro 6 Ro 4 =
B, = Lav, D" -3@D" - 1] (A6.75)
1 1
R 4 R 2
Bs = v, - @ -a-vp] (86.7c)
1 1

From BC5 and Eqn. A.44c we have

3X Y 2

W=~~~ -— 4+ 3ZR® = 0
Ra R2 o]
o o

Substituting the expressions for W (Eqn, A6.2) and 2 (Eqn. A6.3) into this

equation and collecting terms we obtain

3B B
(—-—)X + ( )Y = 0 (A6,8a)
R R_

(o] (o]
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where,
Ro 6 Ro 4
B, = L2 - " - 1] (46.80)
i i
Ro 4 Ro 2
57 = [3(§T9 - 2(§TD - 1] (A6.8c)
i i

From BC6 and Eqn. A.36c we have

3 1 Po
(=)JI + (=N = (1 -k (A6.9)
Ra R2 4
o 0
Substitution of’Eqn° A6,4a into Eqn., A6.6a yields the expression for

the constant Q.

Po Eg 2 GZ
Q = (7-)(1+K)(Ri) (1-vm)(G—m)Qf (A6.10a)
where,
Q, = 1 (A6.10b)
£ E& .
(=9d, +d
G 1 2
and,
Ro 2
d = B = [(ﬁi-) - 1] (A6.10c)
Ro 2
d, = By = [(1-2v£)(§) + 1] (46.10d)

Substitution of Eqns., A6.10a and b into Eqn. A6.4a yields the expression for
the constant L,

P
- (O 2
L = (DA +ORL, (A6.11a)
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where, C
- £ -
(1 Zvng(Gn?dl d2

Lf = @ (A6.11b)
_4

(G )d1 + d
m

2

Substitution of Eqns. A6.10a and b into Egqn. A6.1 yields the expression

for the constant S.

G

- - - _Ayr2
S = Po(l + K)(1 vm)(Gm)Rosf (A6.12a)
where,
S = Q. = —————to (A6,12b)
f f Gz .
(D4, + 4y
m

Equations A6.5a, 7a, 8a, and 9 can be solved for X, Y, J, and N by

using Cramer's Rule (See Section A.4.4), Where,

L 2B 1 N N 3
- ’ - ’ - s -
11 R 12 R2 13 R 14 =2
[o] [o] (o] (o]
31 ° (gﬂ)(%) 33 T (i_rn)(i%i) ioa3 < ’lZ P8, T ES"'—'z'l)ﬁ)'
4 R £ R R R
o] o] (o] o]
— is—é » - f—z— - — O . 3 O
3y T % i85 T T i 433 = o33, T
R R
[o] (o]
_ . . 2, . 1
3, = 0 3oa,, =0 i3, T b’ 844 T )
(o] (o]
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and,

P
_ - - (9 - . =
~b, = b, = b, = (4)(1 K) 3 b3 0

Solving for each of the required determinants we obtain the following

results.,
Gm -12 G£
D = -3d1('(-;-;)(Ro {5 - 6vm)('§;)d3+d4} (A6.13a)
where,
Ro. 2 3
d, = [ -1] (A6,13b)
i
Ro 6 Ro 4 Ro 2
4, = [(3- 2v‘£)(§) +3(5 - 6vz)(§:) + 3(3 - zvz)(-}? +
+ (5 - 6\)2)] (A6,13c)
D, = -3d1Po(1 - K)(1 - vm)(R;S) {ds} (A6.143a)
where,
Ro2
d5 = [3(§-9) + 1] (A6.14b)
i
_ _ _ -10
D, = 9d;P (1 K)(1 = v (R, ){d6} (A6,15a)
where,

Ro 4 Ro 2
d, = [2D7 + T+ 1] (A6.15Db)
1 1



o
I

and,

o
"

3, Lo Sn, -8 Gy
~(4,HA - K)(E?(Ro y{(1 - 2vm)(5;n-)d3 +4d,]

0 m =10 G£
“3d1(159(1 - K)(E—D(Ro ){(E;Dd3 - da}

(A6,16)

(A6.17)

From these expressions for the determinants we can now obtain the

expressions for the

four constants X, Y, J, and N,

G
- - Ly g4
P(1-K(Q1 "m)(cm)Roxf

G
L
6vm)(Gm)d3 +d

G
3P (1 - (1 - v) (L
3L - A = v D R,

G
6v,) (Ei')d3 +d

L (.9 - 4
5D - VR

2
2vm)(Gm)d3 + d

- L _
X = D =
where,
Xf =
(5 -
-
= 35 =
where,
Yf =
5 -
P
- D
where,
(1 -
Jf =
(5 -

G
6v.) (E-l;)d3 +d

(A6.18a)

(A6.18Db)

(A6.19a)

(A6,19b)

(A6.20a)

(A6.20D)
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D P
- 4 _ (O - 2
N = > = (2)(1 K)RoNf
G
L -
(Gm)d3 d,
N, =

G
- L
(5 6vm)(Gm)d3 +d,

(A6.21a)

(A6,21Db)

Substitution of the expressions for X (Eqns. A6.,18) and Y (Eqns. A6.19)

into Eqns. A6,2 and A6.3 yields the expressions for the constants W

where,

and,

where,

and,

G
_ - - 2
W = 3Po(1 K)(1 vmg(GHRWf

d;

G
- L
(5 6vm)(Gm)d3 +d,

R R R
4, = [(ﬁ-‘.l)6 + (§—"’-)" + 2(R—f’)2]
1 1 1
e
2 = -2 (1-K1 -y
m R,
1
d
_ 8
z, =

G
- L
(5 6VnP(Gn3d3 + d4

R R
4, = [+ 3D%]
1 1

d 2,

(A6,223a)

(A6.22b)

(A6.,22c)

(A6,233)

(A6.23Db)

(A6.23c)
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Now that expressions have been obtained for the nine unknown constants,
these expressions can be substituted back into Eqns. A.36 and A.44 to obtain
the final equations for liner and ground mass stresses and displacements.

These equations are given in Section B.6 of Appendix B,

A,4,7 SOLUTION NO. 7 : _EXCAVATION LOADING - NO SLIPPAGE CONDITION

The additional boundary conditions that apply for this problem require

that
at r, = Ri’ drz = 0 (BC1)
= BC
Toop 0 (BC2)
at rz = Ro = r, drz = drm (BC3)
Tror = Trom (BC4)
u, = up (BCS)
VZ = Vm (BC6)

From BC1 and Eqn. A.44a we obtain two equations which yield

s = -2QR§ (A7.1) .
W = -.3_2. -Z_’Zf (A7.2)
R R
1 1

From BC2 and Eqn. A.44c we find

Z = -2%+-—XZ-—E2-
R, 3R, 3R]
1 1 1
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Substituting the expression for W (Eqn. A7.2) into this. equation we obtain

z = 2—’6(+-YZ (47.3)
ré g
1 1

From BC3 and Eqns. A.44a and A.38a we find that

0+ = ADa+x)+S
RZ 2 o RZ
(o] o
and,
M+ R o By -x)+ G
R* R ° R’ R
o o (o] (o]

Substituting the expression for S (Eqn. A7.1) into the first of these

equalities and rearranging terms we find that

L = -(-Yzﬂ)(l + Ko)Ri + 2Q61R§ (A7.4a)
where,
Ro 2
61 = [(R—l) - 1] (A7.4b)

Substituting the expression for W (Eqn. A7.2) into the second of the

above equalities and rearranging terms we obtain

3% 20

2 1 3 258 = -8 o o
(RA)X + (RZ)Y + (R“)J + (RZ)N = (4)(1 Ko) (A7.5a)
(o] (o] (o] (o}

where,
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R

5, = (& 417 (A7.5D)
1

From BC4 and Eqns. A.44c and A.38c we obtain the following equations

R R R R
(o] o o (o]

Substituting the expressions for W (Eqn. A7.2) and Z (Eqn. A7.3) into this

equation and rearranging terms we obtain

38 )

3 4 3 v = By, -

(R“>x + (R2>Y + (R“)J + (RZ)N = (4)(1 Ko) (A7.6a)

[o] (o] [o] o]
where,

Ro 6 Ro 4

6, = D7 - G- 1] (A7.6b)
1 1
Ro 4 Ro 2

6, = [3(§;) - Z(R_i> - 1] (A7.6c)

From BC5 and Eqns. A.44d and A,38d we obtain the following two equations

(See p. 365),

Ro S Ro [ L]
(== 21 -2y )Q - | = GAL-—5
202 [ 2 jo ZGm Ri

and,

R
—(—2 - 22X _ I YC 4 29 _
Gl -5, - (L= vy + 4 ZR]]
2 R R
(o} (o} R

o2l INRVAY
GOE + -2
m R R

(e}
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Substituting the expression for S (Eqn. A7.1) into the first of these

equalities and rearranging terms we find

G R
@ = -] (A7.72)
m i 5 R
(o)
where,
Ro 2
bg = [(1-zv£)(R—i) +1] (A7.7Db)

Substituting the expressions for W (Egqn. A7.2) and Z (Eqn. A7.3) into

the second of the above equalities and rearranging terms we obtain

Gm 66 Gm 267 1 2(1 - Vm)
(EIRPX+ (AT + (I + [ 5 = 0 (A7.8a3)
2 R 2 RS R R,
where,

R 6 Ro 4

8 = [“"z('R—? - 3(R—i) - 1] (A7.8b)
Ro 4 Ro 2

5, = [Vl(ﬁ? - (R—i) - Q- "z)] (A7.8¢)

From BC6é and Eqns. A.44e and A.38e we have

R

o 2X 2Y 29

(ZGR)[ZW i R P RS R YZRZ] =
(o} (o]

R
0. 2] 2N

Gl - -5
m R R

(o]

Substituting the expressions for W (Eqn. A7.2) and Z (Eqn. A7.3) into

this equation we obtain
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G, 6 (1-2y)
D DX + ( >< DY - (7 + =] = o (47.9a)
) R R® R
[o] (o]
where,
R 6 Ro 4
6 = [23 - 2v£)(R—:) - 3(R_‘1) + 1] (A7.9b)
Ro 4 Ro 2
8, = L3~ 2P - 2T - - vy ] (A7.9¢)

Substituting Eqn. A7.4a into Eqn. A7.7a we find the expression for the

constant Q.

H G 2-’-
@ = 5Ha +kE >< )Q (A7.10a)
where,
Q‘A = L (A7.10Db)
n G % %
)b_ + b
n 1 2
and,
* Ro 2
b, = & = [(R—i) - 1] (A7.10¢)
* Ro 2
b, = & = [(I-sz)(q) +1] (A7.104)

Substituting Eqns. A7.10a and b into Eqn. A7.4a we obtain the expression

for the constant L,

L = - )(1+K)R2'L (A7.11a)

where,
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2
~

% b,
L. -2 (A7.11b)
n Gz % %
TP " P

m

Substituting Eqns. A7,10a and b into Eqn. A7,1 we obtain the expression

for the constant S,

G
S 2:! & *
S = DA FKIEIRS, (47.12a)
where,
S* = Q* = —_l (A7.12b)
n n E& * * )
(Gm)bl P

'.Equations A7.,5a, 6a, 8a, and 9a can be solved for the constants X, Y, J,

and N by using Cramer®'s Rule (See Section A.4.4). Where,

L% e . .3 . .2
- b = b - 2 =
11 R4 12 r2 13 R4 14 p2
(o) (o) (o)
L2 A T T
- ’ - ’ - ’ -
21 R4 22 R2 23 R4 24 RZ
(o) (o) (o) (o)
) <‘§E><6—2 ioagp T (%n_)(i?) S oag = p 3 oAy, = = -2 =
2 R 2 R R R
(o] (o] (o] (o]
G 6 G 8 (1 -2v)
8 m 9 1 m
a,, = (DD 3 3, = (DD 3 a, = -—; a, =
41 G, gh 42 G, g2 43 R 44 B2
(o) (o] (o) (o)
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and,

b. = b. = ({ﬂ)u-xo) 5 by, = b, = 0

Solving for each of the required determinants we obtain the following

Tesults.
D = -3(3“-1)2(R-12) (3 - 4y )(ﬁ) 2% 4 z(ﬁ) [bF = 2v bi] +'b.} (A7.13a)
- G2 o m Gm 3 Gm 4 “'m’s 6 Mt
where,
* Ro 2
by = [(gi-) -17T (A7.13b)
s - v )26 4 (5 ~o) ~o)2
b, = [« VPR G IEDT - (- 2y ED
Ra 2
+(3 - Zvl)][(R—? - 1] (A7.13¢)
* Ro 6 Ro 4 Ro 2 Ro 2
bs = [(3-av)ED° + 3" - 3D + 1D - 1] (A7.13d)
i i i i
R R
o - 98 - 2,06 _
b, = [(3 avz)(Ri) +4(3 - oy, “‘Vz)(Ri)
Ro 4 Ro 2
- 6(ED T+ 4T+ (3 - 4v£):| (A7.13e)
i i
p. = -&Hya-x)H)3-4 )(E@)(R‘a{(gﬁ-b*+b*} (A7.142)
1 = TRQEHA =K, "', o Gm)7 8 -14a
where,
* Ro 4
b, = [(F_l-) - 1] (A7.14d)

R
b, = [(3- 4v£)(R—°)4 + 1] (A7.14c)
i
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p. = 3¥H - k)3 -4y )(E’%(R'm){(fz—)b* + b0 ) (A7.15a)
2 = 2 o m G o G "% " "10 e 10a
where,
* Ro 6
by = [(ﬁ? - 1] (A7,15b)
* _ Ro)6
by = [(3—4v£)(—§; + 1] (A7,15c¢)
D, = -(3><ﬁ><1-x>(5£’>2(f<‘8> (5% bo. + 16v b7+ b.]  (A7.16
3 = ~P5 G, o{GmEII 16v; 01, *+ 6] +162)
where,
R R R
* o, 6 0.4 0,2
b, = (& - (A1 - 8D + (T -4y +
1 1 1
Ro2
+ (3 - “"z)][(ig) - 1] (a7.16)
i
* Ro 6 Ro 4
b, = (1- vz)[(gi—) - (-ﬁi—) ] (A7.16¢)
D, = 3(ﬁ>(1-1<)(g”l)2(f<‘1°) (E’L)b* + b)Y (A7.17
o = 33 e o {Gm 137 P -172)
where,
R R R
* _0,6 - 0.4 _ 0.2
b3 = LD+ - et + - wpEd

R
+ (3 - 4v£)][(R—?)2 - 1] (A7.17b)
1

From these expressions for the determinants we can now obtain the

expressions for the four constants X, Y, J, and N,



where,

where,

where,

where,
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*

G
LYy - - AL
5 ( > (1 Ko)(s avm)(cm)aoxn

Go 3 *
(E“9b7 + by
m

(3 - 4V )(~L9 b, + 2(—&0[b - 2v by ]+ by
D G
-2. - _YJ_{, - - _z_ 2 b3
3 ( 2)(1 Ko)(3 AVHQ(GHRROYH
Gg %* *
(E“Obg + by
m
fz_ 2. % fz_ * =% %
(3 = 4y ) (@) Dy + 229 [b, = 2v b ]+ b,
m m
Dy
2 = x& )(l-K)RJ
5
G )[b11 + 16 b e b6
_ _z_ 2. % _L ki - % %
(3 = 4y ) %y + 2@ [b, 2y bo ]+ by
m m
D
_4 _ YH 2.
D @ - KORN
6 s
(G )b13 + b6
m
EL 2.% EL % % %
(3 - Avmem) by + z(Gm>[b4 - 2y bg ] + b,

(A7.183)

(A7.18b)

(A7,.,19a)

(A7.19b)

(A7.20a)

(A7.20b)

(A7.213)

(A7.21b)



Substitution of the expressions for X (Eqns. A7.18) and Y (Eq:
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« A7.19)

into Eqns. A7.2 and A7,3 yields the expressions for the constants W and Z.

where,

and,

where,

and,

G
oty - = vy (it
W= R KIG - avp DN

G %* *
. @ %% * P15
W =
n EL 2 % EL * % *
(3 - Avm)(Gm) by + 2(Gm)[b4 - 2v b ]+ b,
R R R
%* 8 0\ 4 2
b, = (@7 + 3D - 4d]
1 1 1
* - R R R
bys = L3 - ayED® - 3D + 4@2%]
1 1 1
G, z
z = -(3§5(1.- K@ - Avm)(giﬁ(-éb
m R}
1
G
_L _ *
. [(Gm) 1],
n T EL.Z * SL %* * %
(3 - “"m)(cm) by + 2(Gm) [b, - 2v_bo ]+ b,
R R
* _0\4 _ 02
bl = I:(Ri) (Rfl’) ]

(A7.22a)

(A7.22b)

(A7.22c)

(A7.224d)

(A7.23a)

(A7.23b)

(A7.23c)

Now that expressions have been obtained for the nine unknown constants,

these expressions can be substituted back into Eqns. A.44 and A.38 to obtain
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the final equations for the liner and ground mass stresses and displacements.,

These equations are given in Section B.7 of Appendix B,

A.4,8 SOLUTION NO. 8 : EXCAVATION LOADING - FULL SLIPPAGE CONDITION

The additional boundary conditions that apply for this problem require

that
at r, = R, Oy = O (BC1)
T%GZ = 0 (BC2)
at rz = R0 = r, drz = drm (BC3)
uz = u (BC4)
Tog = O (BC5)
1}6m = 0 (BC6)

From BC1 and Eqn. A.44a we obtain two equations which yield

s = -zqai (A8.1)
W = _2)2 - .2_32f (48.2)
RY R
1 1

From BC2 and Eqn. A.44c we find that

X
3R%
1

M

zZ =
3R?
1

..)Sg+
R,
1

Substituting the expression for W (Eqn. A8.2) into this equation we obtain
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R, R,
1 1

From BC3 and Eqns. A.44a and A.38a we find that

S . o L
0+ = EDA+K) +

R2 R2
(o] (o]
and,
2w+%—+4—§= (-Yzﬂ)(l-K)+%+4—§
R R °© g R
(o] (o] (o] (o]

Substituting the expression for S (Eqn. A8.1) into the first ot these

equalities and rearranging terms we find

B 2 2
L = ( 2)(1 + KO)Ro + 2Q)\1Ri (A8.43)
where,

Ro.2
[ - 1] (A8.4D)
1

Substituting the expression for W (Eqn. A8.2) into the second of the

above equalities and rearranging terms we obtain

3\ 2\
2 1 3 2
(—Z-)X + (—'Z-)Y + (—a)J + (—Z)N = -(%H)(l - Ko) (A8.5a3)
R R R R
o o o
where,
Ro 4
A, = [(Ei_) -1] (A8.5b)

From BC4 and Eqns., A.44d and A.38d we obtain the following two
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equalities (See p, 365).
Ro S Ro L
(?G—)[:Z(l - 2y, )Q - "'2"] = (ZT)[-—EJ
2 Ro m R

-G - B -1 - v)H)E sy Y] =
R

R . 2
o o

2J 4N
GPEa- 7

Substituting the expression for S (Eqn. A8,1) into the first of these

equalities and rearranging terms we find

¢ R
= (i
@ = EBEGOLF] (A8.62)
m 1 3 R
(o]
where,
Ro 2
A = [ - sz)(iz) + 1] (A8.6b)

Substituting the expressions for W (Eqn. A8.2) and Z (Eqn, A8,3) into
the second of the above equalities and rearranging terms we obtain
Ay 2, 2(1 - v )
( )(—)X + ( ) ( )Y + (—)J + [-——]N = 0 (A8,7a)
£ R Z Ro R

where,

s
|

R, R,
[z;vz(R—‘_’) - (gD - 1] (A8.7b)
1 1

Ro 4 _l_l_g 2
Ag = [vz('-R—i) - (Ri) - (1 - y)] (48,7¢)
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From BC5 and Eqn. A.44c we have

3X Y 2

W = =~ -« — 4+ 3ZR = 0
R4 R2 o
o o

Substituting the expression®for W (Eqn. A8.2) and Z (Eqn. A8.3) into this

equation and collecting terms we obtain

3K6 k7
X+ (Y = 0 (A8.8a)
R R
o o
where,
Ro 6 R 4 ,
A = 26 -(5_9) - 1] (A8,8b)
i i
R R
o. 4 0.2
A, = [3(;) - 247 - 1] (A8.8¢c)
i i
From BC6 and Eqn. A.38c we hLave
3. e L N
(R4)3+(R2)N = (A =-K) (A8.9)
o

Substitution of Eqn. A8.4a into Eqn. A8.6a yields the expression for

the constant Q.

YH o2, %, %
Q= 3EPHa +KO)(R—:) (_G;)Qf‘ (A8.102)
where,
w5 _ 1
Q = T (A8.10b)

G
A = *
(Gm)dl *d
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and,

Rar2
d; = A = [(R—‘i’) - 1]

[=3
n
>J
|

Ro)2
3 = [A=- 290D +1]
1

Substitution of

for the constant L.

_  _(YH *
L= -+ kR
where,
*
. T
f GB 3 *
G4+ 4,

m

(A8.10¢)

(A8.104d)

Eqns. A8.10a and b into Eqn. A8.4a yields the expression

(A8.11a)

(A8.11b)

Substitution of Eqns. A8.10a and b into Eqn. A8.1 yields the expression

for the constant S,

G
N - L *
S = =( 2)(1 + Ko)(G )ROSf
m
where,
* * 1
S¢ = Qg

*

G
_&_ *
(Gm)dl )

(A8.12a)

(A8,12b)

Equations A8.5a, 7a, 8a, and 9 can be solved for the constants X, Y, J,

and N by using Cramer's Rule (See Section A.4.4).

Where,



L L2 i - R
- » - » - » -
11 R4 12 RZ 13 R4 14 RZ
o o o o
G -
2 R 2 R R R
o o o
- ﬁ 'y - ﬁ . -— 0 - - 0
%31 T e P2 T2 - P a3, T
o o
- o -— o - i ° - L
3, = 0 33, =0 33,3 T b 44 = r2
o o
and,
- =‘ - LH - . - -—
b, b, ( 4)(1 KD 3 b, b, 0
Solving for each of the required determinants we obtain the following
results.
% Gm -2 5 N 9@ % . %
D = -3d,FOR, Y{(5 - ev N (gDd, +d,] (A8,13a)
2 m
where,
* Ro 2 3
d; = [ -17] (A8.13b)
i
* Ro 6 Ro 4 Ro 2
d, = [(3 - 2v£)(§'-) + 305 - 6y (g) + 303 -2y +
i i i
+ (5 - 6v£)] (A8,13c)
D, = -Gad&ha - k)G - av)HRY ) (a8.142)
1 2771 2 o m "o 5 *
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where,

% R 2

d5 - [3(%) +1:| (A8,14b)

_ 2 *L _ _ -10 *

b, = a0 - k)G - w)HRI (4] (a8.152)
where,

* Ro 4 R 2

. = [ch;l) +<R—fl’) + 1] (A8,15b)

D, = -Dd &g -« )(i“-)(R's){Z(l -V )(fz—)d* + 4 (A8.16)

3 7 27271 2 ) Gz o m’ "G 3 4 *
and,

p, = a g -« )(G—mxa‘m){(&—)d* + 2473 (48.17)

4 7 277102 o 92 o G ’~3 4 :

From these expressions for the determinants we can now obtain the
expressions for the four constants X, Y, J, and N.

D G 2

- L - .M - - Lp8e®
X = -k - K]

(A8.183a)

where,

s
«

ds
X, = (A8.18b)

G
_Z_ % %*
6\)m)(Gm)d3 + d

~
wvi
1

4

D G
= =2 = -S&&q - - 2yr%y*
Y = 5 o= -EA -k 4vm)(Gm)R§Yf (A8.192)



where,

where,

where,

d*
G

*

- 6y ) (Lya’
5 - 6v) Dy +

D
- 3 _ .xyH - 4 ;%
J = 5 = 5( 2)(1 Kb)RoJf
-Gx_ *+ %
E 2(1 - v )(E9d; + 4,
f - m
E& b *
(5 - 6vm)(G )d3 +d,
m
Py YH 2%
= — = &L= -
G
_Z.. % *
. Eod; *+ 4,
N, = o
f

s
Ly

EL *
(5 - 6\)m)(Gm)d3 +4q,
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(A8.19b)

(A8.20a)

(A8.20Db)

(A8.21a)

(A8.21b)

Substitution of the expressions for X (Eqns. A8,18) and Y (Eqns. A8.19)

into Eqns. A8.2 and A8.3 yields the expressions for the constants W and Z.

where,

G

- St - - v ) (W
Hos @EA - KG - DV

*
d,

G
- R *
(5 6vm)(Gm)d3 + d4

(A8.22a)

(A8,22b)
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where,

and,
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R R R
% o. 6 o, 4 0,2
d; = [+ @+ 2D7]
, i i i
G Z*
L - - DAY
Z = 2(2)(1 Ko)(3 Avm)(G ) ( 2)
m R,
i
d*
Z-.'c - 8
f E’L k3 *
(5 - 6\)m)(G )d3 +d,
m
R R
* _o.4 _ 0.2
dg = [(Ri) + 3(R_1) ]

(A8,22¢c)

(A8,23a)

(A8.23Db)

(A8.23c)

Now that expressions have been obtained for the nine unknown constants,

these expressions can be substituted back into Eqns. A.44 and A.38 to obtain

the final equations for the liner and ground mass stresses and displacements.

These equations are given in Section B.8 of Appendix B,
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APPENDIX B

FINAL EQUATIONS OF THE ANALYTICAL SOLUTIONS
FOR GROUND-LINER INTERACTION

B.,1 SOLUTION NO, 1 t+ OVERPRESSURE LOADING - NO SLIPPAGE CONDITION - THIN
LINER

B.1.1 EXTERNAL PRESSURES ACTING ON LINER

P

B.o= ({1 +01-L7-a-0[1-37 -4 Jeos2o)
PO

T, = (U -1+ 35 + 2N Jsin263

B.1.2 LINER DISPLACEMENTS

Poa 1+ Vo, .
u, = £ M+ -2vyc1~L ]~
- (1 -K(B[1-JI =~ 2N TFos26]
Poa 1+ Vi
v, = ¢ E {1 -1 -J +2(1 - 2v)N Tsin26}

B.1.3 LINER THRUST, SHEAR, AND MOMENTS

P a
O+ -1 ]+ -K[1+J Tos26]

=]
n

P a
~(5{(1 - K[1-J_ -2 in26)

<
|
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P a2 (1 - 2v )C

> {1 + K1 -1 ]+

L - - -
+50 -1 -7 - 2N Jeos2e )

B.1.4 GROUND MASS STRESSES AND DISPLACEMENTS

P
o) a2
Iy = P+ -1.O]-
a. 4 a2
-1 -K[1-33." - N (D cos 26)
Po a, 2 a. 4
Oom = Sia+v+r O]+ a- K[1 - 3, Jeos 267
T, = (i){(l -[1 + 3. A% + 28 3% Jsin20)
TOM 2 nr n't’ °
Por L+ m a, 2
u = (5 {1+l -2v) +L D] -
- -1+ 3 A%+ a1 - v AP Tos 203
P r + v
vo= (———0( Hia -1 -7 (i) +2(1 = 298 &) 2Jsin 26)
m

B.,1.5 CONSTANTS

(1 - va)(C -1
n 1+ (1-2v)C

(1 - 2v )1 - OJF - %1 -~ va)zc +2
n - [G=2v )+ Q-2v)CF + 55 - 6v)(1-2v)C+ (6~ 8v)
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[1+@=-2v)CTF - %1 - 2v)C -2
n - [C3- 2v) + (1 -2v)CJF + 5(5 - 6v )(1 - 2v )C + (6 - 8v )

Expressions for C and F are given on page 338 in Appendix A, Positive

sign conventions are illustrated in Fig. A.4, Appendix A,
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B.2 SOLUTION NO. 2 s+ OVERPRESSURE LOADING - FULL SLIPPAGE CONDITION - THIN
LINER

B.2.1 EXTERNAL PRESSURES ACTING ON LINER

P
B, = P +of1-1.]-301-K[1 - I Jcos 26]

?re

B.2,2 LINER DISPLACEMENTS

Poa 1+ vy
y = FIEEHarla-vpelh -] -
m
- (1 - K@O[1 - 3 Jeos 263
Poa 1 + vm
v, = (‘5-9(*—32:-9{(1 - @[ - Jf]sinze}

B.2.3 LINER THRUST, SHEAR, AND MOMENTS

P a
) {a -+l -1+ a -1l -, Jos2e)

T -
v o= =(pa){(1-K[1- 7 ]sin26}
Poa2 - 2y C
Moo= (S{AQ+rRO—F—I1 -1 ]+ Q- K1 - 7 Jeos 26)
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B.2.4 GROUND MASS STRESSES AND DISPLACEMENTS

P
0 = {1+ O1- LB -
- (1 -1+ 3Jf(%)4 - 4Nf(%)2:}cos 26

Po a\ 2 a. b

Oom = LA +O[1+ L]+ (1 - K[1 + (D Jeos 26]
Po a\ b a2

Tom = LA -BOL1- 30D + 28.(DH T sin 20}

Por 1+ vm a2
R X {1+ (- 2v) + L] -

- -1 - Jf(%)4 + 4(1 - Vm)Nf(‘%)zjcos 26}

Por 1+v a 2

v = (T)(—f;—m) {1 -1+ Jf(;) + 2(1 - va)Nf(-;-b Jsin 26}

B.2.5 CONSTANTS

(1 -2v)(C ~-D
L. = m
f + (1 - va)c
2F + (1 - 2v)
J. = It
£ 2F + (5 - 6v)
— 2F - 1
£ 2F+(5-6v)

Expressions for C and F are given on page 338 in Appendix A. Positive

sign conventions are illustrated in Fig. A.4 of Appendix A.
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B.3 SOLUTION NO. 3 3 EXCAVATION LOADING - NO SLIPPAGE CONDITION - THIN LINER

B.3.1 EXTERNAL PRESSURES ACTING ON LINER

P = (125) {(L+x)[1 - L::] - (1 -x)[1+ 3J: - ZN::]cos 2y}
H ¥ H*a
.y = (%fﬂ[(l - Ko)[l -3+ Nn]31n29}

B.3.2 LINER DISPLACEMENTS

YHZ")( ){(1+K)[L] (1-K)(F)[1+J - N ]cosze}

~F

1+v
g P £ ){(1-1<>EJ + (1= 2y )N ]smze}

B.3,3 LINER THRUST, SHEAR, AND MOMENTS
YHa * *
T = ({4 K[1 - Ln] + (1 - Ko)[l - Jn]cosze}

vV = -(%) {a1 - Ko)[l + J:\- N:]sin 26}

*
L

* *
1 - -
51 -K)J[1+J - N TJos26)

B.3.4 GROUND MASS STRESSES AND DISPLACEMENTS

YH *.oa.2:"
GO { +K) (1 - L (D) ]-

rm

*,?-_ 4 _ -.':—a. 2 :
- (1=K) [1+ 33 D 2§ (D Fos 20}
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* 2 % 4
g = (-%"1){(1 +KO[1+ Ln(%) J+-x)[1+ BJn(%) Jeos 26}
H *alb . *Fa 24,
Toon = ADa-x ol - 3 A + 1% Jsin2e)

[+
[

<1-“£)( ){(1+1<)[L< 227 o
m

% 4 * 2
+ 1=k IED® - 201 - v N (D Jeos 26)
H +
v = (3L55< —miG -k DA% + (1 - 29 N (3 sin2e)
m

B.3.5 CONSTANTS

x (1 -2y )C

T TR0

N [va + (1 - 2vm)C]F +(1 -y = 2v)C

n L(3=2v) + (1 -2y )CJF +%5(5 - 6y )(1 - 2v )C + (6 = 8y )
« [3+2(1-2v)CTF + %1 - 2v )¢

"o T TG -2v) * (- 2v)CF * 55 - 6v (I - 2v)C + (6 - 8y )

Expressions for C and F are given on page 338 in Appendix A. Positive

sign conventions are illustrated in Fig. A.4 of Appendix A,
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B.4 SOLUTION NO. 4 3 EXCAVATION LOADING - FULL SLIPPAGE CONDITION -~ THIN
LINER

B.4.1 EXTERNAL PRESSURES ACTING ON LINER

* *
P.o= (-Yzﬁ) {A+x)[1-L.7-30-K)[1 - 2] Tos 26}

?re

B.4.,2 LINER DISPLACEMENTS

1+y * * i
u, = (l‘;—a)( E B +KRI[L] = (1 =K1 - 2I Fos B
1+ 4
v (—‘%)(—ﬁ) {(1 - K )(D[1 - 23} kin26)

B.4.3 LINER THRUST, SHEAR, AND MOMENTS

% %
T = (lﬂz—a){(l +k)[1 - Lf] + (-1 - 2Jf]cos 29}

vV = —(11-{2-9-) {1 - Ko)[l - 2J:]s'm 26}
xHa2 L: %
Moo= SO KD [E]+ =K )[1 - 23, TFos 26]

B.4.4 GROUND MASS STRESSES AND DISPLACEMENTS

aly

et = 1% a2
Om = GHA + XD - 1.B] -

m f

* a4 * a2 .
- Q- kol + 633" - V(2 Jeos 26
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H * a2 * a4

Oom = L+ K[+ LD T+ (1 - KO[1 + 63D Jeos 203
. H *ab %3 2+

Trom = E{ -k )1 - 63D + N3 Tsin20)

c
1

1+y
- Hr m *.a,2
. = O —goiax KL D] +

+ (1= kO[297BD% - 201 - v NI P Teos 26)
* 4
v = (--)( ){(1 K[27, <’=‘7 + (- 2N, <—> 2Jsin 20}
m

B.4.5 CONSTANTS

L* _ (1 - va)C

f - 1+ (1-2v)C
m

E F+(1-v)

f 2F + (5 - 6vm)

N* _ 4F + 1

f - 2F + (5 - 6vm)

Expressions for C and F are given on page 338 in .-Appendix A, Positive

sign conventions are illustrated in Fig. A.4 of Appendix A,
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B.5 SOLUTION NO, 5 3 OVERPRESSURE LQADING - NO SLIPPAGE CONDITION - THICK
LINER

B.5.1 LINER STRESSES AND DISPLACEMENTS

G R R
2 2
o, = Po(g:u " {1+ 08 % - 7] -
Ro 4 Ro 2
=21 - KW+ 3X (D7 - 4Y (797 kos 26)
2 2
e
o, = -&>(1 - v {(1 + K5 [(——) + (2D ]+
2
- Boy4 _ 2.2
+2(1 - KW+ 3xn(r£) 1zzn(Ri> Jeos 203
JL R
Tror = )(1 = v {2(1 - K)[w - 3X (—;) +
R T
+ :n{n(-r—‘l)2 - 6Zn(§?.“)2]sin 20}
£ 1
Pr R R
y = EDa -yl fa- 2V£)(‘§'iq)2 - (;‘-’92] -
. Ro 4 Ro
- 21 -0, - KD a1 v}z)Yn(g) - 4y 2 (-’L> Tos 26)
r R 2
v, ( )(1- v {21 - W +X(—;) +z(1-zv£>yn<;£9) -

T
_ _ 2827
2(3 2v£)zn(Ri) Jsin 26}
B.5.2 GROUND MASS STRESSES AND DISPLACEMENTS

Po Ro 2
Om = G+ +1 D]

Ro 4 Ro 2
-(1-0h - 35 (D" + 4N (=2 Fos 26)
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g —(—Pﬂ{ + KL L<59>2]+< K[ 31<§-‘—"‘] 6}
om = 2)(1 )l-nr 1 - KLl - nr) cos 2

Po Ro 4 Ro 24 .
DA - vl + 3 D7 - 28 () ]sin 26}

rom
Por Ro 2
u = (-43;){(1 + KO- 2v) - L (] -
Ro 4 R 2
- -0+ I3 DT -4 - v )N (D Teos 20)
- G - 001 - 5D - 21 - 290 DT sin20)
Ym * 4G n' Yo’ VT sin

B.5.3 CONSTANTS

G
(1 - 2vm)(5i‘)b1 - b,

L
SR T
m
G G
£y2 L - -
G0 + 2g0leyy - Bypbyp] - v
= - .
: R
(3 - av )%, + 26z90b, - 2v b] + b,
m m
G G
22 & -
(T)75 + 2D 5 - by
N = = =
n G

)
(3 - avm)(G—m-) by + 2(5;)[134 - vabs] + b
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1
G
L
@GP * P
m
G
A
@ %1 * P1s
3,2 >3
(3 - 4vm)(Gm) by + Z(Gm)[ba 2v b, ] + b,
G
e
Gy * Py
m
252,k »
3 - 4vm)(Gn3 by + 2(Gm)[b4 2v b ] + b
G
A
(ZObg + b0
m
B2y 4 ok
(3 - Avm)(Gm? by + Z(Gm)[b4 = 2v b ]+ b
2
[.(Gm) = 1]b16
Ey2y 4 pke |
(3 - Avm)(Gm) by + 2(Gm)[b4 2v b, ]+ b,
R
(D2 - 1]

1

R 2
[(1 - zvz)(f) + 1]
1

R
[(§?)2 -7

1
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R 6 R 4 R )
b, = [(5- 6, )-(ﬁ-?) + (5 - 2\}8)(#) - (1 + ZVB)(ET) +
Ro 2
* (G- 2y )][(E?) - 1]
Bn6 o aciand _ 4 l0y2 Ro\2
b, = [(3- IEHT 3(R.) - 3D+ 1][(R.) - 1]
1 1 1 1
b, = [(3- 4y )(-R'“‘)8 + 4(3 - 6V, + 4\)2)(59-)6 - 6(-R—Q)“ +
6 2R, 2 2R, R,
1 i i
R N2
*AEDT + (3 - 4v,) ]
1
o6
1
R4
bg = [(3- sz)(ﬁ-? + 1]
R
6
by = [P -1]
1
R 6
by = [(3 - éwz)(E:) +1]
R 8 Ro6 R
by, = [(1 - 2v£)(gci’) + 4(2 - %)(Ri) - 207 - 4\)3)(3_? +

R 2
+ A(E? + (1 - 2\)2)]
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Ro 6 Ro 4
a -y - @)
1 1

P2 ~
R R R R
o, 8 0,6 0.4 0,2
by = [ -29y)GED" +ay @7 - 6" + 4" + (1 - 2y) ]
1 1 1 1
R R R
by, = [E%+ 3D - 4]
1 1 1
R R R
b = (G- ayED® - 36D + 4@d?]
i i i
R R
b = (@Y - @7
1 1

Positive sign conventions are illustrated in Fig. A.5 of Appendix A
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B.,6 SOLUTION NO. 6 s OVERPRESSURE LOADING - FULL SLIPPAGE CONDITION - THICK
LINER

B.6.1 LINER STRESSES AND DISPLACEMENTS

EL Ro 2 Ro 2
O, = Po(Gm)(l -y {1+ K)Sf[q;;) - (D] -
Ro 4 Ro 2
= 6(1 = K)[W, + X (D)7 - 2.(79) Jeos 26]
2 2
EL Ro 2 Ro 2
gy = P°<Gm)(1 - vy {a+ K)Sf[(R_i) + (;;) 1+
Ro 4 £L 2
© (1 = KW, X (DT = 2250 Jeos 26)
) i
T = P(?L)( - v){(1 - [W -X(L)“-w{(&)z-
oL on 1= v, f frz frz
r .
2.
- Zf(ﬁz;) Fin26)
Por Ro 2 R 2
u = (-—J-Zcm>(1 - v (@ 08 La - 2v)dEHT (f) ]-
- 201 - K[, - X % 4 61 - v D2 -
1- £ 0T, 1=y T,

r
2
- 2y, zf(ﬁf;) Tos 20}
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Porz Ro 4 Ro'2
v, = (e - v {201 - K[, + X (3D + 31 - 2y 07D -
m 2 )2

T
2- .
- (3 - 2v£)zf(-I{:) Jsin26)

Be6,2 GROUND MASS STRESSES AND DISPLACEMENTS

Po Ro 2 Ro 4
Iem = LA +BO[1+1 (D]~ - K)[l + 330 ¢

Ro 2
+ ANf(—r-) Jeos 263

F Ro 2 Ro 4
A+ RO = L]+ (1= K1+ 375" TFos 20)

Igm =
Po Ro 4 Ro 2

Tom = G -0[1 - 35D - W 5D Jsin2e)

Por Ro 2
u = (4—Gm'){(1 + K[ - 2v)) = L ] -

- K J(SQ“-A(- )N(-Ii‘22 2
(1 =K1 - I 1 - v N () Jeos 26)

Por Ro 4 R0 24 .

v, = (E-;){(l - K1 + 37 - 2(1 - 2v )N ()" Jsin 20}
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B.6.3 CONSTANTS

G
(1 - zvm)(E&Ddl -4
m

2
L =
f G
L
(G )d1 + d2
m
S
(1 - va)(G )d3 +4d,
J_ = i
f A
(5 - 6vm)(G )d3 + d4
m
G
A -
(cm)d3 d,
Nf =

G
- »a
(s 6Vm)(Gm)d3 +d

s = — 1

f G
A
(EId; *+ 4,
m
W = %
f A
(5 = 6vm)(G )d3 + d4
m
X = d5
: Y
(5 - 6vm)(G )d3 + d4
m
d,
Yf = —

G
- L
(5 6vm)(Gm)d3 + d4
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dg

G
- L
(5 va)(Gm)dB + da

Ro.2
i

[= 7
H]

=]
i

Roy2
2 = La-2)0EH° +1]

[(3 -2 >(Eﬂ>6 +3(5 - & )(R—°>“ +3(3 -2 )(5—9)2 + (5= 6y)
4 2 7R, 2R, Ve R, v7]

[= )
i

R
[3(§‘1)2 + 1]

-
1
R 4 R 2
dg = [2GD" + @7 + 1]
1 1
R R R -
4 = [@°+ @+ 29 ]
1 1 1
R R
a4 = [(?54*3(??2]
1

Positive sign conventions are illustrated in Fig. A.5 of Appendix A,
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B.7 SOLUTION NO. 7 : EXCAVATION LOADING — NO SLIPPAGE CONDITION — THICK
LINER

B.7.1 LINER STRESSES AND DISPLACEMENTS

G R R
= (MH L *re9y2 _ (927 _
0., = Ol +r)s [T - 7]
m i £
v e Ro 4 % Ro 2
= (3 -4y )1 =KW+ 3Xn(;£-) - AYn(-%-) Jeos 263
G R R
= (H L =22 4, (=22
gy = (PIEHA+K)S [GIT+ (] +
m i AL
% x Ro 4 * Ty 2
+ (3 -4y )1 - KW+ 3xn(-§-) - 1ZZH(R‘1) Tos 26}
G R R
= (M L - - * o e ¥y #0032 _
Ty = G Y {(3 - 4v )1 Ko)[wn K (DT +2Y ()
m )4 2
e 2Jsin 29
nRi) sin 29
YHr R R
- 2 * _ 0.2 _0\29 _
u o= (O +r)s [ - 2v)ED° + (7]
m i 2
) % % Ro 4 * Ro 2
- (3 - 4v)(1 - Ko)[wn - Xn(‘r;’) +4(1 - \)Z)Yn(g) -

T
# 5 2
- 4y, Zn(%i-) Teos 203
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Hr, * x* R s xRy
(acm){(3 - 4vm)(1 - Ko)[Wn + Xn(;;) +2(1 - 2\)/‘Z )Yn(;;) -

% 5y 2
- 2(3 - ZVz)Zn(R_i) Jein 263

B.7.2 GROUND MASS STRESSES AND DISPLACEMENTS

o = ){(1 + k)1 - 2] -
« o 4 = Ro 2
- (1= KO[1 + 3 (D" - 4N (2 Jeos 26}
YH * Ro 2 * Ro 4
g = P+ K[+ L (7] + (1 -KI[1 + 37 (" Jeos 26]
T —(ﬁ{(-K)'-BJ*(L)‘W ”(32'2}
Tom 2) 1 o) El nr 2Nn r) :|31n ®
YHr o
o= G >{<1+K>[L (—) 21+ (1 - kD"
* Ro 2
= 41 = VN () Jeos 26}
v_ o= (YHr){(l - K )[J ( ) +2(1 - 2y )N (—) ]smzej}

m
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B.7.3 CONSTANTS

o
1}

w
(]

G
_l % * *
(Gm)[b11 + 16v b, + by

G G
‘ 2 * * *. *
(3 - & )(é) by + Z(Ei)[:% 2v ba] + by

G
_& * *
(Gm)b13 + by

G .G
_ _& 2. * _& * - *. *
(3 = 4v) (5 )%y + z(Gm)[b4 2v_bo] + b,

1

*

@
_&*
(Gm?b1 + b,

G
* %
(Gm)b14 * bys

G G
- Ly2p* Ayp* - *
(3 4vm)(Gm) by + 2(Gm)[b4 2v b.] + b

*

G
_& *
(Gm)b7 *+ bg

wts
a

G, ,: G,
2 * * *
(3 - “Vm“ai‘) by + Z(Eﬁ)[ba -2 bi]+ b

%

G -
-i r.3
(G )b9, + b10

T

G G
- g32, * ANFr® o *
(3 4vm)(Gm> by + 2(5;9[b4 2v_b.] + b
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G *
[(Ei) - 105,

*

G G
2% L 2Ly ¥ - 2y b
(3 - ‘*"m)(ai‘) by + 2Gb, = 0p05] + b

R
(D% - 1]

i
Roy2
[(1- 29D + 1]
1

R
(% -1]"

i

Ro 6 Ro 4 Ro 2
[¢s - 6v£)(§;) + (5 - sz)(R—i) -(1+ 2v£)(R—i) +

Ro 2
+ (3~ 2v£)][(R—i) -

R R, R, R,
(63 - awpED” + 3" = 3 + 1gd® - 1]

Ro.8 2, (0,6 Roya
[(3- 4vz)(R—i) *+4(3 - 6v, + 4v£)(§-_1-) - 6(§'i'> +

R

+ 4(R—f’)2 + (3= 4]
1

Rt
[(R—:) - 1]
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R
* o\ 4
by = [(3- th)(-l;;) + 1]
R
b: = [(R—?)G— 1]
1
* Ro 6
bip = [(3-4v£)(§'_1') + 1]
R R R
* L [(=° - - —Oy4 - 92
b, = [(Ri) (11 8"2)(R-1) + (7 sz)(Ri) +
R 2 -
+(3 - lwz)][(R—?) - 1]
1
R R
* 6 4
b, = (1-v[ED° - @]
1 1
R R R
* _o.6 _ _0.4 _ _0,2
by = [(Ri> + ( ‘“’z)(R-l) + (7 lwz)(Ri) +
Ro 2
+ G-I - 1]
1
R R R
* 0,8 0.4 0,2
b, = LG + 36D - &g
1 1 1
R R R
% 0.8 o\ 4 0,2
b5 = [(3-4v£)(R—i) - 3(R_i) +4(—R—i-)]

. R
16 I:(R_o)a - 9%
i i

b

Positive sign conventions are illustrated in Fig. A.5 of Appendix A.
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B.8 SOLUTION NO. 8 s+ EXCAVATION LOADING — FULL SLIPPAGE CONDITION — THICK
LINER

B.8.1 LINER STRESSES AND DISPLACEMENTS

Q
1]

G R R
My L =22 - (=927 -
e Ko)sftcRi) (rz) ]

Ty
¥ % Ro 4 3 Ro 2
- 3(3 - 4y )1 - 1<o)[wf + Xf(g) - 2Y£(;;) Teos 263
G R R
= L *r=2y2 , (92
Gpp = PG+ RIS [ED+ D]+
m 1 2
3 ( o ekt EQ 4 * Ty 24
+3(3 - 4y )(1 = K[! £t f(rz) - 2zf(Ri) Jeos 263
ﬁ ‘Gz_ % % Ro 4
Top = € 2)(Gm)£3(3 - 4y )1 - KO [W, - Xf(-r;) +
R T
% 2 * 24 .
+ Yf(;g) - chﬁg) Jsin 26}
2 1
YHr R R
= (—d *roq - Oy2 | (0427 _
u, = <4Gm)£<1+1<0)sf[<1 GO (rz) i

* * Roo « B2
- (3 -4y - 1<0)[3wf - xf(;z—> + 6(1 - v, )Yf(};) -

T
% 2
- 2v£zf(§i-) Tos 26}
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_ YHI' * % Ro 4
v, = (—Lacm){“ - 4v )(1 - Ko)[3Wf + xf(?z_) +
% Ro 2 % i 2
+3(1 - 2v£)Yf(;;) - (3 - 2v£)zf(Ro) Jsin 26}
B.8,2 GROUND MASS STRESSES AND DISPLACEMENTS
YH * Ro 2 * Ro 4
O = G +KH[1-L.(7] - -KI[1+ 39D -
* Ro 2
- 2Nf(?') Teos 29}
YH x B0 2 « Bo4
Som = GO +RI[1 + L]+ (1 - KO[1 + 39.() Jeos 26}
T = @ -x Y1 - w*{(z)“ + N*(EQ)Z in2¢)
Tem 2 o’ L1 f'r fr:lsu1e
YHr * Ro 2 * Ro 4
u = (E-r_n-){(l + KI[L D]+ (1 - KO -
k3 Ro 2
- 2(1 - vm)Nf(—r—) ]cos 26}
vo= QR - KOUTEDY 4 (1 - 2v IN22sin 26)
m 4Gm o°-f r m’ " f r) sin



425

B.8.3 CONSTANTS

*
* dz
L =
; (E&)d* + d*
G’"1 2
m
)(E& * 4 d*
) 2(1 - v (G )d3 4
J. = L
f G
_ _& * *
(5 6vm)(G )d3 + d4
m
G
_& * *
. T4y * 2d,
Il m
Ng = G
_ _& * *
(5 6vm)(G )d3 + d4
m
*
S¢ = T .
_& %* *
T4, * 4,
m
*
3 d7
We = G
_ _Z, *® *
(5 6vm)(G )d3 + da
m
*
* d'5
X =
f G, >
m
d*
*
_ 6
Yo =

G
_ J * *
(5 6vm)(Gm)d3 +d,
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d*
zg = :
_ _& * %
(5 - 6v (G4, + 4,
m
R
* 0,2
a, = [ -1]
1
* 5 fgz+
g, = [Q- "z)(Ri) 1]
R
* 0,2 3
dy = [('ﬁ'.-) -
1
R R R
* - o\ 6 o\ 4 0,2
4, = [(B-: PRI - PRI 306 - 0T+ (5 - 6v,)]

Ro 2
- dg = [3(R—i) + 1]

[«
H

¢ [2<)+(°>+1]

d. = [(-556 + (-—D + 2( ]

o,
w

R R
dy = [D*+ 37
i i

Positive sign conventions are illustrated in Fig. A.5 of Appendix A,
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