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CHAPTER 1 

INTRODUCTION 

In designing tunnel supports it is necessary to evaluate the 

forces expected to develop in the support system as a result of the inter­

action that occurs between the support and the surrounding ground. The 

magnitude and distribution of forces in the support system can be evaluated 

by an analysis of the ground-support interaction. Such analyses can also 

provide information about the stresses and deformations in the surround­

ing ground mass and, with certain analysis methods, the displacements of 

the ground surface. 

All these quantities are strongly dependent on the stress-strain­

time properties and geologic nature of the ground mass, the dimensions and 

properties of the support, the initial stresses existing in the ground, the 

method of excavation, and the type and manner of placement of the liner or 

permanent support system. 

The capability to perform analyses of ground-liner interaction 

has increased steadily in recent years through the development of new an­

alytical solutions and modern numerical techniques such as the finite ele­

ment method. However, a great deal still needs to be done to explore the 

full potential of such solution methods and to obtain results which can be 

used in design of tunnel support systems. 

Reported herein are the results of a study of ground-liner in­

teraction for tunnels. The main factors considered in this study were the 

material properties of the ground and liner, tunnel depth, interaction be­

tween two parallel tunnels, position of liner installation relative to the 
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tunnel face, and the type of loading to which the liner is subjected. 

The various methods available for the analysis of ground-liner 

interaction are described in Chapter 2. A brief description of the types 

of loading considered in this study is also given in this chapter. 

Interaction due to excavation loading is considered in Chapters 

3 through 6 . Chapter 3 describes the results that can be obtained from 

an analytical solution for deep tunnels. Shallow tunnels are considered 

in Chapter 4, wherein the results obtained from a series of finite element 

analyses of tunnels at various depths below the ground surface are present­

ed. Chapter 5 gives the results of a study in which the actual advance­

ment of the tunnel through the ground mass was simulated. The axisymmet­

ric finite element anal yses performed for this investigation yielded in­

formation as to the longitudinal distribution of ground str esses and dis­

placements and liner forces and displacements for tunnels in which the 

liner was installed right at the advancing face, a short distance behind 

the face, and far behind the face. Chapter 6 consists of a study of in­

teraction for the case of two parallel tunnels. The main parameters con­

sidered in this investigation were the width of the pillar separating the 

tunnels and the sequence of excavation and liner installation for the two 

tunnels. 

The results obtained from finite element analyses of ground­

liner interaction due to localized gravity loading are presented and dis­

cussed in Chapter 7. The main parameters considered in this series of 

analyses were the material properties of the ground and liner and the dis­

tribution of the load acting on the liner. 

Chapter 8 contains a summary of the work performed and the con­

clusions derived from the results obtained. 
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CHAPTER 2 

REVIEW OF AVAILABLE METHODS FOR ANALYSIS OF 

GROUND-LINER INTERACTION 

2.1 GENERAL REMARKS 

There are numerious analytical solutions and numerical tech­

ni ques available that can be, and have been, applied to th~ analysis of 

gr ound-liner interaction. Each of these methods of analysis attempts to 

simulate mathematically the response of the ground-liner system for a 

range of possible conditions. Unfortunately, there is no one method that 

can faithfully simulate all relevant details of the problem. All methods 

are based on assumptions that are designed to reduce the complexity of the 

problem to a sufficie~t degree so as to allow a solution to be obtained. 

Some methods make more simplifying assumptions than others and, in general, 

the more assumptions made the less accurately the procedure simulates the 

real problem. 

The majority of the analytical solutions have the advantage of 

being straight forward and easy to use. They can usually be performed by 

hand and seldom require the use of, and thus access to, large computer in­

stallations. The major disadvantage to these solution methods is that they 

are necessarily ·highly idealized. The results they yield must be care­

fully examined and applied with caution. 

Numerical solution techniques, ~uch as the finite element method, 

have become quite popular in recent years, and for good reason. With the 

finite element method almost any degree of simulation detail desired can be 
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achieved. At least, this is theoretically possible . However, as the de­

gree of simulation detail is increased, the complexity of the analysis al­

so increases. At one extreme are the highly detailed analyses which are 

quite complex and thus difficult to perform and interpret. Such analyses 

can be performed only with the most sophisticated finite element computer 

programs, programs which require large and equally sophisticated computer 

facilities. At the other extreme are the analyses which provide solutions 

to a much more idealized form of the problem. Although these simplified 

analyses can be inexpensive and easy to perform, they may provide no more 

useful information than would be available from the analytical solutions. 

As with the analytical methods, the results obtained from finite element 

analyses can not be applied to the design of a tunnel system without first 

being carefully evaluated with respect to the relationship between the 

ground-liner system as simulated and as it exists in reality. 

Indiscriminate use of any of the available methods of analysis 

can lead to unfortunate consequences. It is important that the method 

selected be applicable to the problem at hand. It is also important that 

the results obtained from the analysis be interpreted properly. This re­

quires knowledge of both the anticipated tunneling conditions and the ad­

equacy of the analysis to simulate these conditions. 

2.2 LOADING CONDITIONS CONSIDERED 

Ground-liner interaction is a consequence of the liner's resist­

ance to the movement of the surrounding ground mass, or portions thereof, 

into the tunnel opening. These ground movements , or displacements, can be 

initiated by events associated with the excavation and construction processes 
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or by events external to the ground-liner system. 

The external loading to which a tunnel liner is subjected as a 

result of its resistance to ground displacements depends on the nature and 

source of these displacements. Three different loading conditions are con­

sidered in this investigation. These are called excavation loading, local­

ized gravity loading, and overpressure loading. The expressions, or names, 

for these loading conditions are intended to be descriptive of the causative 

factor that results in the inward ground displacement in each case •. 

Excavation of the tunnel opening alters the state of stress in 

the ground mass surrounding the opening. As it adjusts to this new state 

of stress the surrounding ground moves into the tunnel opening. If the 

ground mass around the opening remains intact as this displacement occurs, 

and if the tunnel liner is installed in time to resist this displacement, 

the excavation loading condition will result. This loading condition is 

illustrated in Fig. 2.1 which shows the longitudinal distribution of the 

instantaneous radial ground displacements that occur in response to the 

excavation of the opening for an hypothetical case. In this figure, the 

solid curve represents the displacements that have occurred as the tunnel 

face was advanced to point A. Similarily, the dashed curve represents the 

distribution of displacements that will exist after the face is advanced to 

point AA. If the liner is installed, in contact with the ground, at point 

B just prior to advancement of the face from point A to point AA, the liner 

will resist the additional ground displacement 6u and ground-liner inter­

action will result. 

For the excavation loading condition tne magnitude of the exter­

nal load that initially acts on the liner is related to the ratio u /u, 
. p t 
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where u is the ground displacement that occurs prior to ground-liner con-p 

tact and ut is the total ground displacement that would have occurred if no 

liner had been installed. If a liner could be installed prior to any dis­

placement of the surrounding ground mass (up= 0) the initial external load 

would exert a pressure on the liner equal to the in situ ground stress. At 

the other extreme, if the surrounding ground mass achieved its new equilib-

rium state without coming into contact with the liner (up= ut) there would 

be no load applied to the liner and, thus, no ground-liner interaction. 

• 

It is clear that, for the excavation loading condition, ground­

liner interaction is a function of the position of liner installation with 

respect to the face. Additionally, if the construction procedures are such 

that an open gap (radial) is left between the liner and the ground mass, the 

thickness of this gap will also influence the extent of interaction. If the 

ground mass exhibits time-dependent (viscous) behavior the displacement ut 

will consist of both instantaneous and time-dependent components and, the 

magnitude of u will depend on such additional factors as time of ground-p 

liner contact and rate of tunnel advance. 

Following excavation the distribution of stresses in the ground 

mass around the tunnel opening can be such that the shear strength of the 

soil or rock is exceeded to the extent that the earth's gravitational attrac­

tion is sufficient to cause portions of the material around the tunnel to 

dislodge from the surrounding ground mass and displace, or fall, into the 

opening. If this occurs after the tunnel liner is installed this material 

will come to rest on or against the liner. The weight of this material, 

which usually acts over only a portion of the liner circumference, con­

stitutes what is called herein the localized gravity load. In some soils 
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and fractured rock masses, raveling of material from around the opening 

perimeter can gradually build up a large dead load on the liner. On a 

larger scale, zones of high shear stress may develop above each side of 

the opening (Hansmire, 1975) such that within these zones the shear strength 

of the soil is exceeded, allowing the mass of soil between these zones to 

displace downward onto the liner. In discontinuous rock masses the possi­

bility exists for the displacement of rock blocks into the opening and on 

to the liner. In such materials the shear strength and orientation, with 

respect to the tunnel opening, of the discontinuities are often of more 

significance than the intact rock strength. 

The overpressure loading condition is a result of the application 

of an externally applied pressure (e.g., that due to the weight of new 

surface structures or the pressure applied at the ground surface by a 

nuclear blast) that mobilizes a system of vertical and horizontal stresses 

in the ground mass surrounding the lined tunnel. Ground-liner interaction 

results from the liner's resistance to the displacements the ground mass 

undergoes in adjusting to these new stresses. This loading condition is 

applicable only to existing tunnels and does not account for ground-liner 

interaction resulting from the construction of the tunnel. The over­

pressure and excavation loading conditions are similar in that the ground 

mass stress fields, and thus the forms of the inward ground displacements, 

causing the two types of loading are similar. However, the magnitudes of 

the liner forces and displacements resulting from ground-liner interaction 

in the two cases are quite different because other aspects of the two load­

ing conditions are fundamentally different. These differences are discuss­

ed in the following sections of this chapter. 
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2.3 ANALYTICAL SOLUTIONS 

2.3.1 EXCAVATION LOADING 

SOLUTIONS BASED ON THE GROUND REACTION CURVE CONCEPT 

The ground reaction curve (also called "ground unloading curve" 

and "characteristic line") concept is one approach to the analysis of ground­

liner interaction. The ground reaction curve is the pressure vs. displace­

ment curve for a tunnel opening in a given ground mass and for a given in 

situ stress field. Only a two-dimensional section normal to the tunnel 

axis and at a location far behind the tunnel face is considered. When such 

a curve is used in combination with the pressure vs. displacement curve of 

the tunnel liner, it allows the equilibrium value of ground pressure act-

ing on the liner · to be determined. The early work that led to the develop­

ment of the ground reaction curve concept was performed by Labasse (1949), 

Kastner (1962), and Pacher (1964). In recent years Rabcewicz (1969), 

Lombardi (1970, 1973), Ladanyi (1974), and Daemen (1975) have refined and 

extended the method to encompass a wide range of material behavior models 

for the ground mass. Daemen (1975) presents a comphrehensive summary of 

the development of the concept. The majority of this work has been con­

cerned with tunnels in rock and the influence of the broken rock zone 

around the tunnel on liner loading. However, in most cases the solutions 

can also be applied to tunnels in soils where, instead of broken rock zones, 

zones of plastic yielding form around the tunnels. 

Analytical solutions which account for inelastic behavior of the 

surrounding ground have, to date, been obtained only for the special case 
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of an isotropic, or axisymmetric, in situ stress field, K = 1. If applied 
0 

to a ground-liner system in which the in situ stress state is not axisym-

metric, K ; 1, only the average stresses can be considered and the equi-o 

librium state obtained is expressed in terms of the average ground and 

liner response. For example, if the in situ stress state is given by oV = 

Yli and 08 = K YH (K ; 1), the solution only indicates that the average 
0 0 

pressure acting on the liner is some fraction of the quantity ½(1 + K )yH. 
0 

The inability to consider conditions resulting in flexure of, 

and thus the mobilization of bending moments in, the liner is the primary 

shortcoming or disadvantage to this approach. 

Solutions based on the ground reaction curve concept consist of 

two sets of equations. These equations are derived for a unit thickness 

cross section of the three-dimensional ground-liner system. These two­

dimensional sections are oriented normal to the longitudinal centerline of 

the tunnel and are located at a point far behind the tunnel face. The con­

dition of plane strain is normally assumed. One set of equations defines 

the displacement response of the tunnel support or liner to the application 

of external pressure. The second set of equations defines the displacement 

response of the tunnel opening to unloading. For a specific liner and 

ground mass combination the ground reaction curve and the liner reaction 

curve, obtained from the solution equations, are plotted together. The 

point of intersection of these two curves defines the equilibrium state for 

the conditions assumed and gives the magnitude of the ground pressure act­

ing on the liner and the displacement of the liner due to interaction. 

Hypothetical ground reaction and liner reaction curves are illustrated in 

Fig. 2. 2. 
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The ground reaction curves ABC and AB'C', Fig. 2.2a, represent 

the relationship between the magnitude of an internal pressure applied to 

the perimeter of the tunnel opening and the resulting radial displacement 

of the opening. The curve ABC represents the instantaneous response of the 

opening, while AB'C' gives the long term response. The difference between 

these two curves reflects the loss of strength with time experienced by the 

surrounding ground mass. The dashed lines indicate that similar curves 

exist for conditions intermediate to those of the short term and long term. 

the shape of the ground reaction curve is a function of the stress-strain­

time and shear strength properties of the ground mass. For example, por­

tions AB and AB' of the curves represent linear elastic response of the 

ground mass, while portions BC and B'C' represent elasto-plastic response. 

The curves intersect the horizontal axis (points C and C'), indicating that 

the opening would be stable without internal support. In order for stability 

to be achieved the ground mass surrounding the opening must retain sufficient 

shear strength in the form of cohesion. For an unstable opening the decreas­

ing pressure-displacement curve would never reach the horizontal axis, in­
dicating that the opening would eventually close without some form of inter­

nal support being provided. Ladanyi (1974) presented a solution that allows 

consideration of either a linear or non-linear elastic-plastic yield crite­

rion, volume dilation in the zone of broken rock around the opening, and 

rock strength decrease with time. The strength loss with time is not ac­

counted for directly in the equations. Rather, the ground reaction curves 

for later times are obtained by inserting in the equations reduced or re­

sidual values for the rock stress-strain and shear strength parameters. A 

set of curves, such as those in Fig. 2.2a, is obtained. Daemen (1975) pre-
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sented a solution that allows consideration of the influence of a pro­

gressive, strain dependent strength decrease during reek failure. His model 

assumes an exponential strength decrease beyond the peak shear strength 

value. The resulting equations are quite lengthy and complex. 

The liner reaction curve, Fig. 2.2b, represents the relationship 

between the magnitude of the external pressure applied to the tunnel liner 

and the radial displacement of the liner. The shape and slope of this curve 

are functions of the stress-strain properties and dimensions of the liner. 

For an incompressible liner the curve is a vertical straight line. Daemen 

(1975) presents liner reaction curve equations for continuous concrete or 

shotcrete liners, blocked steel sets, and rock bolt support systems. 

In fig. 2.2c the ground reaction and liner reaction curves have 

been combined to obtain the equilibrium state of the lined tunnel opening. 

For this example it is assumed that the liner is installed in contact with 

* the surrounding ground inunediately after all instantaneous displacement, u, 

* has occurred (Note: The instantaneous displacement u occurs within a short 

distance behind the tunnel face. Because the solution considers only cross 

sections far behind the face, the displacement occurring before liner in-

* stallation cannot be less than u ). With conunencement of the time-dependent 

ground displacements, pressure is gradually built up on the liner. This 

pressure increases, following the liner reaction curve, until it equals the 

magnitude of the internal opening pressure required to halt further dis­

placement of the surrounding ground. The resulting state of equilibrium 

between ground and liner is given by the intersection of the two curves. 

Had the liner been incompressible (vertical broken line) there would have 

been no additional displacement of either the ground or liner, and thus 



14 

there would have been no interaction. The equilibrium pressure acting on 

* such a liner, P , represents the maximum possible pressure on a liner in-

* stalled when u • u. Figure 2.2c shows that, for a compressible liner, 

ground-liner interaction does occur and results in the additional ground­

liner displacement 'i and the reduction of the pressure from the potential 

* maximum value P down to the lesser value P
1

• 

From the equilibrium pressure value the magnitude of the circum­

ferential compressive force, i.e., thrust, in the liner can easily be calcu­

lated (T • P
1 

a, where a• liner radius). Because the magnitude of the pres­

sure is assumed to be constant around the liner, there are no bending mo­

ments or shear forces. 

GROUND-LINER INTERACTION FOR THE CIRCULAR TUNNEL IN ELASTIC GROUND 

Despite the fact that the ground surrounding a tunnel usually 

does not behave as an elastic material, several analytical solutions for 

ground-liner interaction based on the assumption of elastic ground behavior 

have been proposed. Justification for this assumption is usually based on 

the argument that the details of the true ground conditions are· usually not 

sufficiently well known to warrent the use of the more complex analytical 

models for ground behavior, which are themselves no more than idealizations 

of actual ground behavior. In addition, the point is made that solutions 

based on elasticity theory can be derived so as to take into consideration 

in situ stress states other than K = l. Thus, these solutions allow deter-
o 

mination of the complete response of the liner, i.e., the distributions of 

thrust, bending moments, shear forces, and displacements around the liner, 
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Like the ground reaction curve solutions the elastic solutions 

are two-dimensional, plane strain solutions that can be applied only to 

tunnels located at great depth where the influence of the ground surface 

boundary and the increase of insitu stress with depth from crown to invert 

is negligible. Because it is assumed that the ground behaves elastically 

and since the problem is reduced to two dimensions, it is necessary to 

assume that the liner is installed in contact with the surrounding ground 

mass prior to any displacement of the ground mass. Therefore, it is neces­

sary to assume that the liner is installed before excavation of the tunnel. 

Such a construction sequence is certainly not common, but it is also not 

impossible. Large diameter tunnels to be located in poor ground could be 

constructed by mining, and backfilling with concrete, a series of small 

diameter drifts around the perimeter of the tunnel to form the liner. This 

would then be followed by excavation of the soil from within the completed 

liner. Small diameter conduits installed through high fills by the pipe­

jacking method also follow a similar type of construction sequence. Liners 

as large as 10 ft (3 m) in diameter have been installed by the jacking met­

hod. Since the ground displacements occurring ahead of the tunnel face are 

usually small relative to the potential total displacements, these solutions 

approximate the case of a liner installed right at the face (or slightly 

behind the face if measures are taken to limit ground displacements). 

The .elastic ground-liner interaction solutions for K I 1 can be 
0 

conveniently separated into two catagories on the basis of the types of 

interaction problems to which they apply. Work by Morgan (1961), Muir Wood 

(1975), and Curtis (1976) resulted in the solution to the problem of a lined 

tunnel constructed in a stressed ground mass (excavation loading condition). 
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Solutions by Burns and Richard (1964) and Dar and Bates (1974) are applic­

able to the problem of a lined tunnel located in a ground mass that is sub­

jected to an externally applied pressure at the ground surface (overpressure 

loading condition). This pressure is applied after the tunnel is construct­

ed andinsitu stresses are not considered. The Burns and Richard and the 

Dar and Bates solutions, while for the same problem, yield slightly different 

results for certain ground-liner combinations. These differences arise be­

cause Burns and Richard used extensional shell theory to model the liner 

while Dar and Bates used elasticity theory to model both the ground and the 

liner. In the autumn of 1975 the writer modified both the Burns and Richard 

and the Dar and Bates derivations to obtain solutions for the excavation 

loading condition. Upon publication of the Curtis paper early in 1976, it 

was found that the equations of the modified solutions were quite similar 

to, and yielded essentially the same results as, the Curtis solution equa­

tions. 

Figure 2. 3 illustrates the distribution of in situ radial and shear 

stresses around an imaginary circle representing the location of the tunnel 

in the undisturbed ground mass. The corresponding distributions of stresses 

that act on the liner, prior to removal of the ground inside the liner, are 

not necessarily the same as those shown because these "initial" stresses are 

influenced by the shear strength at the ground-liner interface. The ground­

liner interaction solutions normally consider only the two extreme interface 

conditions. These are: 

1. The No Slippage Condition - If the interface shear strength 

everywhere exceeds the in situ shear stress, there is no slip­

page at the interface. 
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2. The Full Slippage Condition - If the interface shear strength 

is zero the liner offers no resistance to tangential displace­

ment of the ground at the interface and full slippage occurs. 

The "initial" radial and shear stresses acting on the liner are the same as 

those shown in Fig. 2.3 only if the no slippage condition is satisfied. If 

this condition is not satisfied, i.e., if any amount of slippage occurs, the 

"initial" stress distribution will be different from that shown. For the 

full slippage condition the shear stresses go to zero and the radial stress­

es increase around the crown and invert and decrease around the springlines. 

The initial work in the derivation of the solution for a lined 

tunnel constructed iu a stressed ground mass was done by Morgan (1961). 

Morgan assumed the full slippage condition and considered only the inter­

action due to the distortional component of an assumed radial stress dis­

tribution. Thereafter several commentators observed that Morgan's derivation 

contained a basic error related to the required stress-strain relations for 

the case of plane strain. Muir Wood (1975) presented a paper in which this 

error was corrected and the solution was extended to include the uniform 

component of the radial stress distribution (solutions for the distortional 

and uniform components were derived separately as allowed by the principle 

of superposition). 

The Morgan and Muir Wood derivations for distortional loading pro­

ceed from an assumed distortion of the shape of a circular, incompressible 

liner and an assumed initial pressure distribution. Unfortunately, the 

resulting solution equations are not correct because the assumed initial 

pressure distribution is not correct for the slippage condition at the 

ground-liner interface considered. Both Morgan and Muir Wood assumed that 
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for the full slippage condition the initial distribution of radial pressures 

acting on the liner is the same as shown in Fig. 2.3 for thein situ stresses. 

However, as previously discussed, this is not the case. For full slippage 

the distortional component of the radial pressure is greater, by some un­

known amount, than that shown in Fig. 2.3. Thus, the Muir Wood solution 

for distortional loading underestimates the magnitude of liner bending mo­

ments. However, his solution for the uniform component of loading is cor­

rect since interaction due to this type of loading is independent of the 

slippage condition. 

In a discussion of Muir Wood's paper, Curtis (1976) pointed out 

t he above mentioned error and proposed an alternate derivation that yielded 

the correct equations. Considering only the distortional components of 

loading, Curtis derived solutions for both the full slippage and no slippage 

conditions. Thus, the complete solutions for both interface conditions can 

be obtained by combining the Curtis equations for distortional loading and 

the Muir Wood equations for uniform loading. 

Both Muir Wood (1975) and Curtis (1976) presented equations for 

interface conditions intermediate to the full slippage and no slippage con­

ditions. To obtain these solutions the expression for the "initial" shear 

stresses acting on the liner for the no slippage condition, %re =~re= 

½YH(l - K
0
)sin 20 , was replaced by %re < S sin 20 , where S is the interface 

shear strength. While this approach provides a means of obtaining a solu­

tion, it does not accurately reflect the complex redistribution of stress 

that would occur with partial slippage. I.t seems reasonable to expect that 

only those shear stresses in excess of the shear strength would be reduced 

in magnitude and that the reduction of these stresses would lead to increases 
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of the adjacent shear stresses which were initially less than the shear 

strength. Thus, it is not likely that the new distribution of shear stress 

could be expressed in terms of as simple a function of e as sin21. 

The Burns and Richard (1964) and Dar and Bates (1974) ground-liner 

interaction solutions are similar in that both were derived for the problem 

of a deep circular tunnel in an unstressed medium which is subsequently 

loaded by a ground surface overpressure (one-dimensional loading for which 

the lateral stress ratio is a function of Poisson's ratio of the medium, 

K = v /(1 - v )). They differ in that Burns and Richard used elasticity m m 

theory to model the ground mass and extensional shell theory to model the 

liner, while Dar and Bates used elasticity theory to model both the ground 

mass and the liner. The Burns and Richard equations yield the liner response 

at equilibrium in terms of thrusts and bending moments, whereas the Dar and 

Bates equations give the radial and circumferential stresses in the liner . 

Because of assumptions made in the derivation with respect to the liner, 

the Burns and Richard solution is applicable only to liners of small thick­

ness relative to their radius. The two solutions yield essentially the same 

results for thin liners, but for thick liners the results can be quite dif­

ferent. 

Hoeg (1968) presented a set of equations for the ground mass stress­

es and displacements that accounts for ground-liner interaction under con­

ditions of overpressure loading. This solution corresponds to that given 

by Burns and Richard (1964). However, it must be noted that while the Hoeg 

solution, as given, is correct for the no slippage condition, it is incor­

rect for the full slippage condition. Hoeg maintains that the full slippage 

and no slippage solutions differ only in the expressions for three constants 
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that appear in the one set of equations given for ground mass stresses and 

displacements. Actually, the stress and displacement equations for no slip­

page are not identical to those for the full slippage condition. The stress 

and displacement equations given by Hoeg are correct for the no slippage con­

dition, but they cannot be used for the full slippage condition. 

As previously mentioned, the writer has modified the Burns and 

Richard (1964) and Dar and Bates (1974) solutions to obtain the equivalent ' 

solutions for the problem of a lined tunnel inserted in an already stressed 

ground mass. With the exception of only a few significant changes the der­

ivations of the modified solutions are identical to those for the original 

solutions. The derivations for a total of eight different ground-liner in­

teraction solutions are given in Appendix A. The final equations of each 

of these solutions are presented in Appendix B. The solutions derived con­

sist of the following: solutions for thin liners subjected to overpressure 

loading under conditions of no slippage and full slippage (these solutions 

correspond to those given by Burns and Richard, 1964); solutions for thin 

liners subjected to excavation loading under conditions of no slippage and 

full slippage (these solutions are similar to those obtained by combining 

the work of Muir Wood, 1975, and Curtis, 1976); solutions for thick liners 

subjected to overpressure loading under conditions of no slippage and full 

slippage ( the solution for no slippage corresponds to that which can be 

obtained from the work of Dar and Bates, 1974); and solutions for thick liners 

subjected to excavation loading under . conditions of no slippage and full 

slippage. 
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LINER INSTALLED CLOSE TO THE TUNNEL FACE 

The longitudinal distribution of radial ground displacements, at 

the radial distance a, for an unsupported tunnel in an elastic medium is 

illustrated for a hypothetical case 1n Fig. 2.4. In this f igure it can be 

seen that at points more than about one tunnel diameter ahead of the face 

no displacements have occurred, while at a distance of approximately two 

diameters behind the face full displacement, "\: , has occurred. At any 

point between -D and 2D, u - u - u, where u is the displacement that has d t p p 

already occurred at that point and ud is the remaining displacement that 

will occur when the tunnel face is advanced far beyond its present location. 

The pressure that will act on the liner section installed near the face 

position shown, after the face has been advanced at l eas t 2D beyond the 

point of liner installation, is directly proportional t o the ratio ud/ut. 

In terms of the displacement u, the pressure is proportional to the quant-p 

ity (1 - up/ut). 

The ground reaction curve solutions and t he elastic, K
0 

I 1 solu­

tions just described are all two-dimensional, plane str ain solutions that 

are not applicable within the zone of three-dimensi onal stress and long­

itudinal variation of instantaneous displacement t hat exist around the 

tunnel face. If applied to liners i nstalled near t he t unnel face the elastic 

solutions overestimate the pressures acting on the l i ner because they as sume 

no prior displacements (liner installed before excavation) and ther ef ore 

cannot account for the relaxation of the ground that woul d occur ahead of 

the point of liner installation. It would appear that the ground react i on 

curve solutions would necessarily underestimate the pressure on t he liner 

because they assume that all of the instantaneous ground displacements occur 
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before the liner is installed and this would not be the case if the liner 

were installed within the three-dimensional zone. 

However, both approaches to the interaction problem could be 

applied to liners installed close to the tunnel face if a relationship 

between 1) liner location relative to the face and 2) the ground displace­

ment up at that location could be established. For the ground reaction 

curve approach this relationship would be needed to determine the correct 

position of the liner reaction curve relative to the instantaneous ground 

reaction curve (the P = 0 position of the liner reaction curve between the 

origin and point C in Fig. 2.2). 

The relationship between potential liner pressure and the prior 

displacement of the tunnel opening,~' plots as a straight line for elastic 

behavior, as shown in Fig. 2.5 (line AC). This curve corresponds to the 

ground reaction curve for the instantaneous displacements of an opening in 

an elastic medium, and can be used, in combination with a liner reaction 

curve, in a similar manner. For the case illustrated in Fig. 2.5 the line 

DB is the liner reaction curve. (Note: If point Dis located at the qrigin 

of axes, the case corresponds to liner installed far ahead of face - 2-D 

elastic K f 1 solutions; if point Dis located at or to the right of point 
0 

C, corresponds to liner installed far behind face - ground reaction curve 

solutions). Here it is assumed that the liner is installed right at the 

tunnel face. Thus, the displacement that has already occurred is up= uf. 

As the tunnel is advanced beyond this point the liner resists the additional 

displacement ud, allowing only the displacement ul to occur before a con­

dition of equilibrium is achieved. Because the displacement up= uf occured 

before the liner was installed, the maximum pressure that could have acted 
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on the liner was only P,ep' not the full insitu pressure P
0

• Interaction 

between the ground and the compressible liner led to the further reduction 

of pressure to Pi at equilibrium. 

The relationship between P
1 

and up, illustrated in Fig. 2.5 for a 

specific case (up= uf), can be generalized in equation form. Using the 

Lame equations for an elastic thick-wall cylinder, Daemen (1975) derived 

the following expression: 

p,e 
p 

0 

= 
u 

( l - _£) • l 
ut 

1 
+ l+v1 . Em. (l-2v,e) + (l-t/a) 2 

l+vm E,e 1.(2 - t/a) 
a 

(2 .1) 

To obtain this equation two thick-wall cylinders are considered. 

One cylinder, representing the liner, has an outer radius of a and an inner 

radius of (a - t). The second cylinder, representing the ground mass, has 

an inner radius of a and an outer radius of b such that b >> a. If the 

liner is installed at the point indicated in Fig. 2.4 it will resist the 

displacement ud when the face is advanced. At equilibrium the ground-liner 

interface pressure is P
1

• The displacement of the liner, u
1 

, is obtained 

from consideration of the first cylinder, which is subjected to an external 

pressure of Pe= P1 and an internal pressure of Pi = O. The displacement 

of the ground mass that the liner has prevented, upr' is obtained from 

consideration of the second cylinder, which is subjected to an internal 
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pressure of Pi= P
1

• Equation 2.1 is obtained by substituting the expres­

sions for these displacements into the relation ud a u
1 

+ upr· In this 

relation ud is some fraction (1 - up/ut) of the total displacement ut; the 

expression for ut being obtained from consideration of the second of the 

above cylinders when it is subjected to an external pressure of Pe= P
0 

and 

an internal pressure of P i = 0. 

Equation 2.1 can also be obtained by modifying the derivation of 

the thick liner solution for excavation loading to ac~ount for the prior 

displacement u. The corresponding equation for a thin liner, obtained by 
p 

similarly modifying the derivation of the thin liner solution for excava-

tion loading, is: 

:L = p 
0 

u ( 1 - ...E.) • _____ .._,;1;,.._ ___ _ 

ut l+v..e Em 
1 + ---- • - • (1 - v ) 

1 + "'m E1 l 
-~ 

t 

(2.2) 

The in situ ground pressure is denoted by P (for K = 1). Typical curves 
0 0 

of ) /P
0 

vs. uJut obtained from these equations are illustrated in Fig.' 2.6. 

The liner pressure for a given prior displacement is indicated by the inter­

section of the vertical line located at up/°t and the P1 /P
0 

vs. up/°t line. 

The equations, and thus Fig. 2.6, do not give the liner displacement, u1 , 

resulting from interaction. 

If the relationship between position of liner installation and 

prior displacement is available, Fig. 2.5 or Eqns. 2.1 or 2.2 can be used 

to determine the equilibrium liner pressure for a given position of liner 
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installation. Figure 2.7 gives the liner pressure for liner sections in­

stalled at various distances, z , from the tunnel face. The curves can 
1 

also be interpreted as the longitudinal distribution of pressure on a con-

tinuous liner that extended all the way to the tunnel face before excava­

tion was resumed. The up/ut vs. z curve was obtained from Fig. 2.4. 

Although Fig. 2.5 and Eqns. 2.1 and 2.2 are useful as a means of 

illustrating the nature of the relationship between the position, relative 

to the tunnel face, at which a liner is installed, z1 , and the resulting 

ground pressure that acts on the liner, such methods are useless without 

prior knowledge of the relationship between up and z. For the examples just 

considered the up - z relationship was obtained from Fig. 2.4 which, however, 

is not applicable to the general case of an advancing lined twmel. The 

problem is that the up - z relationship is a function of z
1

. 

The displacement distribution of Fig. 2.4 is valid for a lined 

tunnel only if liner installation always occurs at a distance greater than 

2D behind the advancing face. As far as ground-liner interaction (with 

respect to instantaneous ground displacement) is concerned, this is a triv­

ial case because at this distance behind the face all of the ground dis­

placements have occurred (Fig. 2.4) and there can be no interaction. The 

u - z relationship for an unlined tunnel, Fig. 2.4, can be applied only to p 

the following special case. If face advance was halted while liner instal-

lation continued until the tunnel was lined up to the face, the u - z re-p 

lationship from Fig. 2.4 could be used to determine the longitudinal dis-

tribution of pressure that would act on the length of liner O < z _:S 2D (as 

shown in Fig. 2.7) after the face had been advanced a distance of at least 

2D beyond the end of the liner. For the general problem of the advancing 
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tunnel interaction will occur only if, as the face is advanced, new sections 

of liner are continually installed at a distance of less than 2D behind the 

face . However, the resulting interaction inhibits the ground displacement 

(u) ahead of the liner, causing the longitudinal displacement distribution 
p 

(the u - z relationship) to be different from that shown in Fig. 2.4 for p 

an unsupported tunnel. 

It would seem reasonable to expect that any method employed to 

determine the correct up - z relationship for use in Fig. 2.5 of Eqns. 2.1 

or 2.2 would also yield the P1 - ~ relationship, thereby eliminating the 

need for Fig. 2.5 or Eqns. 2.1 and 2.2 as a means of determining P1 vs . z1 . 

2.3.2 LOCALIZED GRAVITY LOADING 

As described in Section 2.2, localized gravity loading occurs 

when portions of the surrounding ground mass dislodge and come to rest on 

or against the tunnel liner. Most of the literature on the subject of this 

type of loading is devoted to empirical methods for correlating ground (rock) 

mass characteristics and support requirements. Terzaghi (1946), Barton, et 

al.(1974) and Wickham, et al. (1974) have presented ground mass classifica­

tion systems for use in estimating the magnitude of the support pressure re­

quired to stabilize openings in the various types of ground. As these meth­

ods have developed over the years they have come to include more and more 

of the details of the rock mass characteristics. As an example, Barton, et 

al. (1974) give the following empirically derived expression for the re­

quired roof support pressure: 

p = (2/J) Q-1/3 
roof r 

(2.3) 
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where Q, the rock mass quality factor, is a function of six parameters. 

These parameters are: the RQD index value, the number of joint sets, the 

roughness of the weakest joints (J ), the degree of alteration or filling 
r 

along the weakest joints, and two additional parameters which account for 

the source of the rock load and for water inflow. 

Analytical solutions for consideration of interaction between the 

gravity loaded liner and the surrounding ground mass are few in number. The 

graphical-analytical solution technique given by Procter and White (1946) 

and the three solutions (Bodrov-Gorelik, Polygonal Method, Bougayera) des­

cribed by Szechy (1966) are probably the best known and most widely used. 

Each of these solution methods requires prior knowledge of the distribution 

and magnitude of the pressure that the gravity load imposes on the liner. 

Thus, in order to analyze ground-liner interaction for a given ground-liner 

system, empirical methods such as those mentioned above must first be used 

to estimate the active pressure on the liner. 

2.4 NUMERICAL TECHNIQUES - THE FINITE ELEMENT METHOD 

Among the many numerical techniques available, the fin~te element 

method is emerging as the most likely candidate for analysis of ground­

liner interaction and underground construction problems in general. There 

are numerous finite element programs available that can be used to analyze 

this type of problem. Some of the significant aspects of the various pro­

cedures that have been used are described in the following discussion of 

finite element simulation of ground-liner interaction. 

2.4.1 EXCAVATION LOADING 

The task of accurately simulating the ground-liner interaction 
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problem is an extremely complex one and the state of the art of the finite 

element method does not permit consideration of all the relevant details of 

the problem. However, most of the important aspects can be considered with 

many of the available programs. A finite element mesh of the region which 

contains the tunnel can be developed and analyzed for simulation of the 

excavation and construction process. Nonlinear and time-dependent ground 

behavior as well as many additional degrees of analytical refinement can be 

introduced in the analysis to the extent allowed by practical limitations 

imposed by the computer capabilities, and the theoretical limitations im­

posed by insufficient knowledge of material behavior or how to model such 

behavior. 

In the finite element simulation of underground structures three 

phases of analysis can be differentiated, each representing a distinct stage 

under significantly different conditions. 

a. Initial Phase. The aim of this phase of analysis is to dup­

licate, as closely as possible, in the finite element mesh 

the initial state of stress existing in the ground prior to 

construction. 

b. Construction Phase. This phase of analysis starts with the 

initial state of stress present in the mesh and proceeds to 

simulate the actual sequence of excavation and construction. 

c. Operation Phase. The purpose of this phase is the analysis 

of the completed structure subjected to the various loading 

conditions that may aris~ during the life of the structure. 

The first step in the analysis of an underground structure is the 

development of an appropriate mathematical model of the system to be analyzed. 
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The finite element model necessarily covers a finite region while modeling 

what in reality can be assumed to be a half space. Only a limited number 

of boundary conditions are available which can be imposed on the outer 

boundaries of such a finite region. The most important considerations are 

the choice of an adequate region for modeling and the type of boundary con­

ditions to use so as to minimize the effect of the artificial boundaries 

on the quantities of interest. For a deep opening a region extending to a 

distance of a few opening widths in each direction seems sufficient. If the 

source bf action is within the region, then fixed boundary conditions can 

be used, whereas the force boundary condition is the obvious choice for an­

alysis of the effect ofinsitu stresses. In the case of near surface open­

ings the region of analysis should extend to the ground surface. In situa­

tions where surface displacements are of interest, the lateral extent of the 

region is determined by the depth of the opening as well as the opening 

width. 

Material behavior of the medium also becomes a factor in deter­

mination of the region of .analysis in certain cases. When the medium is 

modeled as a nonlinear or elasto-plastic material, and the zone of plastic 

yield or nonlinear behavior reaches or closely approaches an artificial 

boundary, the results should be regarded with suspicion, because the arti­

ficial boundary will most likely have influenced the response of the sys-

• tem. 

Prior to simulation of construction the insitu stress conditions 

should be represented in the mathematical model as closely as possible. 

This is a difficult task and in some cases it is impossible to model the 

true in situ stress condition even if it can be determined in the field. In 
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such cases it becomes necessary to compromise and use approximate values 

for the initial stress conditions. Generally, the in situ stress condition 

is achieved by applying the weight of the medium as a body force to the 

pre-excavation configuration of the region of the ground mass to be an­

alyzed. Additional types of loading may be present, such as that due to 

the weight of adjacent surface structures and/or the presence of tectonic 

forces, and these can be included through the use of boundary forces. 

For deep openings the weight of the medium contained within the 

bounded finite element mesh may be negligible compared to the stresses due 

to the total overburden. In such cases the full overburden stress can be 

applied as a force boundary condition and the self-weight of the medium 

encompassed by the finite element mesh can be neglected. 

The coefficient of lateral stress, K, arising from the self-o 

weight of a linear medium, becomes a function of Poisson's ratio, v, when 

the lateral boundaries are constrained against horizontal movement. Under 

these conditions the value of K
0 

will vary from one for v = 0. 5 to zero for 

V = 0. To simulate values of K independent of v a force boundary condition 
0 

must be applied to reflect the appropriate values of the lateral stresses. 

When the material properties of the medium vary with depth, such as in a 

layered system, a lateral force boundary condition appears to be the only 

way to obtain a uniform value of K
0

• The boundary conditions used in the 

first step of analysis to simulate the insitu stress conditions may have to 

be modified in subsequent steps for simulation of construction, in order to 

reflect the restraining effects of the medium outside the boundaries. 

The technique for the simulation of construction using the finite 

element method was initially developed by Clough and Woodward (1967) in an 
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analysis of the construction of earth dams. The technique has been used for 

the analysis of numerous geotechnical problems involving the simulation of 

excavation as well as construction. The simulation technique has been used 

in the analysis of the incremental construction of earth dams (Kulawy, et 

al., 1969), large open excavations (Duncan and Dunlop, 1968), and braced 

excavations (Christian and Ing, 1973, and O'Rourke, 1975). 

The purpose of the analysis of the excavation process is to deter­

mine the change of state (displacements, strains, stresses) resulting from 

the removal of a stressed portion of the system. Before excavation (pre­

excavation stage) certain stresses act on the surface which is to form the 

boundary of the excavated region. These stresses vanish upon the completion 

of excavation (post-excavation stage) if no internal support or pressure is 

immediately applied. Using the finite element method, some researchers (e.g., 

Christian and Ing, 1973) have simulated the process of excavation by com­

puting the forces acting on the excavation surface at the pre-excavation 

stage and subsequently applying the opposite of these forces to the model 

of the post-excavation stage which is formed by the removal of the excavated 

portion. However, such techniques can be used only in linear analyses and 

involve awkward and lengthy multistage computer analyses of the different 

stages of excavation and construction. 

A more general approach to the simulation of excavation and con­

struction is to treat the problem as a nonlinear one. The source of non­

linearity in this case is the change of the geometry of the system. There­

fore, a general solution scheme for nonlinear problems can be used. Using 

such a procedure nonlinear mate~ial behavior can be considered along with 

the change of geometry resulting from excavation and construction in a 
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unified manner. For the portions of the system to be excavated or construct­

ed, elements are assigned initially and the analysis is carried out in steps 

similar to incremental nonlinear analysis. The elements in the portions to 

be excavated are active originally and at a designated step when excavation 

is to take place these elements are deactivated, i.e., they are not assembl­

ed in the remainder of the analysis. The construction of support systems 

is simulated using a reverse process; the elements are initially inactive 

and they are activated at a designated step when the installation of the 

support structure is to take place. The activated elements may already be 

stressed to simulate prestressing, such as is the case with pretensioned 

rock bolts. The installation and removal of a temporary support system can 

be simulated be activating elements at one step and subsequently deactivat­

ing them at a later designated step to simulate the removal of the tempor­

ary structures. 

In the analysis of tunnels the simplest and least expensive model 

is that which considers a two-dimensional, plane strain section of the tunnel 

in the plane which is perpendicular to the axis of the tunnel. A simulation 

analysis can be performed on this model. However, if the tunnel is to be 

excavated full face the analysis consists of just two steps. At the first 

step the in situ stress condition is simulated and at the next step the ele­

ments within the tunnel are deactivated to simulate excavation and the liner 

elements are activated to simulate liner installation. The ground-liner 

interaction takes place at the second step. If excavation and liner place­

ment are performed at two separate steps, no ground-liner interaction will 

occur. 

Although this type of two-dimensional analysis may provide some 
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useful information and have the additional attraction of simplicity, it does 

not correspond to the true development of deformations and stress changes 

during the process of tunnel construction. At a cross section on the tunnel 

line, as the tunnel face approaches and passes, the stress changes and de­

formations develop gradually. When the liner is installed behind the face 

at this cross section, some displacement of the ground mass has already oc­

curred prior to the start of interaction. This effect cannot easily be 

taken into account in a two-dimensional analysis. Another important effect 

which cannot be modeled in two-dimensional analyses is the fact that as the 

tunnel face advances, the excavation is done in a zone ahead of the face in 

which the stress condition has already been modified by the approach of the 

face. 

In order to consider such effects, it is necessary to perform a 

three-dimensional simulation of tunnel construction. In such an analysis 

the ground mass is modeled as a three-dimensional body and the actual ex­

cavation of the tunnel, and liner installation with the advancement of the 

tunnel face, is simulated. 

However, even with the present state of the finite eleme?t method 

and computer technology three-dimensional analyses for simulation of tunnel 

construction can be quite expensive due to the size of the mesh required and 

the large number of construction steps required in the analysis. While this 

approach may be feasible for study of underground structures on a case by 

case basis, parametric studies, requiring numerous analyses, of the general 

problem appear to be impractical at this time. 

A compromise can be made by assuming the coefficient of lateral 

stress, K
0

, to be equal to one. For this special case the problem reduces 
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to a manageable axisymm.etric form with the axis of symmetry coinciding with 

the tunnel centerline. The cost of such an analysis is comparable to that 

of two-dimensional, plane strain analyses. This is, of course, a reasonable 

approximation for moderately deep tunnels where the ground surface effects 

are negligible. 

The response of the ground-liner system as obtained from the finite 

element analysis of ground-liner interaction is strongly influenced by the 

sequence of events simulated in the analysis. This is illustrated in the 

following discussion of two such simulation sequences. 

One approach to the finite element analysis of ground-liner inter­

action that has been used frequently in the past does not include simulation 

of excavat~pn and construction. In this type of analysis the finite element 

mesh is generated with the tunnel and liner already in place. Interaction 

occurs when the boundary forces are applied. The sequence of events as sim­

ulated in this type of analysis is illustrated in Fig. 2.8a. This type of 

analysis is only appropriate if the overpressure loading condition is being 

considered. Analyses of this type cannot be used to investigate interaction 

resulting from excavation loading. 

If the excavation loading condition is to be considered the finite 

element analysis must include the simulation of excavation and construction 

as previously described in the discussion of the three phases of analysis. 

The sequence of events as simulated in this type of analysis is illustrated 

in Fig. 2.8b. 

The liner thrusts resulting from these two types of analysis (with 

and without simulation of construction) are shown in Fig. 2.9 as functions 

of the compressibility ratio, C, and for various values of Poisson's ratio 



Step I : Unstressed 
Region of Analysis 

(a) 

Step I : Unstressed 
Region of Analysis 

( b) 

40 

Step 2: I nstal I 
Tunnel and Liner 

Step 2 : Apply 
Stresses ( in situ) 

yH 

Step 3: Apply 
Stresses 

Step 3'. lnstal I 
Tunnel and Liner 

FIGURE 2.8 SEQUENCE OF ANALYSIS FOR, (a) WITHOUT SIMULATION OF 
CONSTRUCTION, (b) WITH SIMULATION OF CONSTRUCTION 

yH 



T 
yHa 

41 

l.6r---,-----r----r----,----------

1.2 

0.8 

0.6 

0.4 

0.2 

Without Simulation of 
Construction 

--- With Simulation of 
Construction 

vm= 0,50 vm= 0.49 

vm = 0,40 

llm : 0.30 

--- ....... ..._ 
..._ ---....... ---......._ ..._ __ 

---

0~--~--~--_J_ __ __,l. ___ L_ _ __J 

0 2 3 4 5 6 
Compressibility Ratio, C 

FIGURE 2.9 VALUES OF THRUST COEFFICIENT FROM ANALYSES WITH 
AND WITHOUT SIMULATION OF CONSTRUCTION 



42 

of the medium. The compressibility ratio is a measure of the relative 

stiffness of the medium and the liner (Peck, et al., 1972) given by the 

following equation. 

C = Em / E,e t _(_l_+_v_)_(~l---2v-) .~(-1----~v-~~)·~ (2.4) 
m m A, 

The radial displacements resulting from these two types of analysis are 

su1IDI1arized in Fig. 2.10. 

It can be seen from these figures that without simulation of con­

struction the liner thrusts and radial displacements are consistently higher, 

especially for low values of the compressibility ratio which correspond to 

a stiff liner in soft ground. It is also interesting to note that the 

Poisson's ratio of the medium has significant effect on the results. It is 

only for an incompressible medium (v = 0.5) that the two analyses give the 
m 

same radial displacement and liner thrust. 

The differences in the results obtained from the two types of 

analysis can be attributed to the differences in the ground displacements 

the liner must resist in each. Considering an unlined opening, Fig. 2.11 

shows that the analysis sequence for simulation of excavation yields the 

total displacement ut in going from the imaginary circle in step 1 to the 

stable opening at the end of step 3. This displacement is composed of two 

components, ut = ui + u
0

, where ui is the displacement of the imaginary 

circle caused by the application of the in situ stresses in step 2, and u 
0 



u,/a 
yH/Mc 

u,/a 
yH/Mc 

43 

3r----,----..-----------------

2 

0 
0 

3 

2 

Without Simulation of Construction 

K = I 
0 

2 3 4 
Compressibility Ratio,C 

With Simulation of Construction 

K0 = I 

Compressibility Ratio, C 

5 6 

0.20 

FIGURE 2.10 VALUES OF RADIAL DISPLACEMENT COEFFICIENT FROM 
ANALYSES WITH AND WITHOUT SIMULATION OF CONSTRUCTION 



Step 1 

,---, 
/ ' 

/ ' 
I \ 

I \ 

' I \ I 
\ / 
' / ' / ..... _ --

Step 2 Step 3 

u. 
✓-~-;:;~ / 1 _,/ _ ..... 

'/ ' ,, ti'' ,, / " ,, ,, 
II I\ 
\I II 
,, I/ 
~ // 

~..... /11 

''::::.-..:-_,,,..._;,,,'/ 

Step 1 : Unstressed region of analysis - finite element mesh composed entirely of "ground" elements 

Step 2 : Apply boundary forces (or body forces) to mobilize in situ stress field in mesh 

Step 3 : "Excavate" opening 

FIGURE 2.11 GROUND DISPLACEMENTS FOR ANALYSIS OF UNLINED OPENING WITH SIMULATION OF CONSTRUCTION 

.p. 

.p. 



45 

is the displacement caused by the creation of the opening in step 3. When 

simulation of construction is not included in the analysis of a lined open­

ing, the liner must resist the full displacement ut. When simulation of 

construction is analyzed, the displacement u. occurs before the the tunnel 
i 

is created, and thus the liner must resist only the displacement u. The 
0 

displacement u. is, of course, a function of Poisson's ratio of the ground 
i 

mass, v , and for v = 0.5, u. = O. m m i 

Figures 2.8, 2.9, and 2.10 and the above discussion apply to two-

dimensional, plane strain finite element analyses. However, these comments 

also apply to the differences between the original and modified Burns and 

Richard (1964) and Dar and Bates (1974) closed form analytical solutions 

previously ~escribed. The original solutions (overpressure loading) corres­

pond to the finite element analyses that do not simulate construction. The 

modified solutions (excavation loading) correspond to the finite element 

analyses that do simulate construction. 

The influence of the simulation of the longitudinal excavation and 

construction of tunnels on the results of analysis is shown in Fig. 2.12. 

One curve in this figure shows the liner thrust obtained when no excavation 

was simulated; the insitu stresses were applied to the mesh which already 

contained the tunnel with the liner extended to within one tunnel radius of 

the face. The final (far behind the face) thrust value for this case is 

equal to th~ two-dimensional analysis result with no excavation simulation. 

The second curve in this figure is the result of an analysis in which ex­

cavation and construction of the support was simulated in one step; i.e., in 

one step all the elements within the tunnel were deactivated and all liner 

elements were activated. The final value of the thrust in this case is 
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equal to the value given by the two-dimensional analysis with simulation 

of excavation. The last curve in Fig. 2.12 is the result of an analysis 

in which excavation of the tunnel and placement of the liner were simulated 

as occurring in small steps to reflect the true process of tunnel construc­

tion with gradual advancement of the tunnel face. Each step of the analysis 

consisted of advancing the tunnel face and the leading edge of the liner 

along the centerline by a distance equal to one half of the tunnel radius. 

The dramatic reduction of the thrust in this case as compared to the thrust 

values obtained in the other cases is the result of the displacements taking 

place ahead of the liner. 

These examples clearly demonstrate the strong influence of con­

struction process simulation on the results obtained from analyses of ground­

liner interaction. A true measure of the ground-liner response for excava­

tion loading can only be determined if the construction process is simulated 

as closely as possible in the analysis. 

It is a well established fact that when soil is modeled as a lin­

early elastic material, the results of the analysis are approximate in that 

they do not reflect the true material behavior of soils which exhibit strong 

nonlinearity. To discuss the effects of nonlinear soil behavior on the re­

sults of numerical simulation of ground-liner interaction, results are pre­

sented from analyses in which the soil was assigned elasto-plastic material 

properties with a Drucker-Prager (1952) yield condition. This yield condi­

tion is given by the following equation: 

(2.5) 
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in which J and J are the first invarient of the stresses and the second 
1 2 

invarient of the deviatoric stresses, respectively, and a and k are material 

constants. 

Shown in Fig. 2.13a, for two-dimensional, plane strain analyses, 

are typical plastic yield zones that form around an unlined and a lined 

tunnel when the excavation and liner installation are simulated. For the 

unlined tunnel, when the excavation is simulated by deactivating the elements 

within the tunnel, a large plastic zone develops due to lack of internal 

support. This large plastic zone strongly influences the stress distribu­

tion around the tunnel and gives much larger displacement of the tunnel 

perimeter than the elastic analysis. When a lined tunnel is simulated, ex­

cavation and liner installation occur simultaneously; in one step the ele­

ments within the tunnel are deactivated and the liner elements are activated. 

As a result the zone of plastic yield is very small and has very little ef­

fect on the tunnel behavior. In this type of analysis the stiffness of the 

liner is an additional parameter influencing the extent of plastic yield. 

A relatively stiff liner may prevent yielding entirely, in which case the 

elasto-plastic analysis would give results identical to those of a linear 

elastic analysis. 

The plastic yield zones, around an unlined and a partially lined 

tunnel, resulting from the simulation of longitudinal excavation and liner 

placement are shown in Fig. 2.13b. As can be seen, in both the unlined and 

lined cases the plastic yield zones develop gradually as the tunnel face 

advances, and continue to ·expand within some distance behind the face, con­

sistent with the material prope~ties assigned to the soil and with support 

conditions. Nonlinear soil behavior can a significant effect on the results 
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of simulation analyses and this effect is more drastic, but rational, when 

the longitudinal process of tunnel construction is simulated. 

The above examples illustrate the inadequacy of the standard two­

dimensional finite element analysis as a tool for simulation of tunnel con­

struction and the resulting ground-liner interaction. The ground around 

real tunnels almost always undergoes some displacement and stress change 

prior to coming into contact with the liner. This prior ground disturbance 

results in the formation of a plastic zone around the tunnel ahead of ground­

liner contact. Figure 2.13 shows that the two-dimensional analysis, because 

it assumes no prior ground disturbance, severly underestimates the extent 

of plastic yielding around the lined tunnel. Because of this, the two­

dimensional analysis does not adequately account for the influence of non­

linear ground behavior on liner response. This indicates that attempts to 

increase the utility of the two-dimensional analysis (of lined tunnels) by 

introducing the additional refinement of nonlinear ground mass behavior 

will not be successful. In order to fully exploit the available nonlinear 

ground behavior models in the analysis of this type of problem the longi­

tudinal effects must be taken into consideration. 

2.4.2 LOCALIZED GRAVITY LOADING 

The ground-liner interaction problem for localized gravity loading 

is usually reduced to a highly idealized form for numerical analysis. At 

the present state of the art of numerical analysis methods it is not normal­

ly practical to include in an interaction analysis simulation of the details 

of the rock mass characteristics and the mechanical processes that result 

in separation of soil or rock from the surrounding ground mass. 
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Figure 2.14a illustrates a cross section through an hypothetical 

rock mass which contains three intersecting joint sets; one parallel to the 

plane of the cross section and two normal to the cross section. Figure 

2.14b shows that upon excavation and construction of a tunnel through this 

rock mass a number of rock blocks have loosened and come to rest on the 

liner. This load has forced the crown inward, away from the surrounding 

rock, and the invert and springlines outward, against the surrounding rock. 

The result is a complex distribution of active (rock load) and passive, or 

interaction, pressures acting on the liner. The magnitude and distribution 

of the active pressure are functions of the rock jointing (spacing, orienta­

tion, conitinuity, and shear strength of the joints), the in situ stress 

field, and -the methods and details of the construction procedure. The dist­

ribution and magnitude of the passive pressures are functions of the active 

pressures, the rigidity and stiffness of the liner, the shear strength of 

the rock-liner contact, and the pressure-deformation response of the sur­

rounding rock mass. 

Figure 2.14c illustrates the problem as commonly analyzed. The 

simulated ground-liner system consists of a two-dimensional, plane strain 

section normal to the tunnel axis containing a liner embedded in a homo­

geneous, elastic ground mass. The factors important to the formation of 

the loosened rock mass and the physical presence of this material on the 

liner are usually not simulated in the numerical analysis. These factors 

must, of course, be considered prior to analysis in order to estimate the 

extent of active pressure on the liner, and those factors that affect the 

deformational response of the surrounding rock can be indirectly accounted 

for when the deformation modulus and Poisson's ratio values are assigned to 
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the simulated ground mass. The surrounding rock mass can be modeled by an 

assemblage of finite elements (Dixon, 1973, Mohraz, et al., 1975) or by a 

system of elastic springs (Dixon, 1971, Bawa and Bumanis, 1972, Brierly, 

1975). This second model is similar to the Winkler-type foundation used 

for the analysis of beams on elastic foundations. The mass of rock resting 

on, and thereby applying the active pressure to, the liner is simulated by 

a system of forces applied to the nodal points of the liner, The liner 

usually consisting of an assemblage of beam elements. 

It is important that the analysis p~ovide for separation of the 

liner from the surrounding medium in the region of loading. If separation 

is not allowed a portion of the applied load will be transmitted by tension 

across the ground-liner contact. If this occurs the active load will be 

shared by the ground and the liner instead of being carried entirely by the 

liner. If the rock mass is modeled by a system of springs, separation can 

be insured by solving the problem in a series of two or more analyses. After 

each analysis the springs are checked to determine if they are in compression 

or tension. All springs found to be in tension are removed and the analysis 

is repeated with the new configuration. The problem is solved when all re­

maining springs are in compression. If the rock mass is modeled by finite 

elements a third type of element must be inserted between the liner and rock 

elements to allow separation. Dixon (1973) used stiff one-dimensional bar 

(spring) elements. With this type of element the procedure for obtaining a 

solution is the same as that just described; two or more separate analyses 

are required. The interaction analyses for localized gravity loading des­

cribed in Chapter 7 utilized a special "joint" element (Goodman, 1968) that 

has zero tensile strength and which offers no resistance to separation of 
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liner elements from the rock elements. The advantage gained by using this 

type of element is that the analysis can be performed in just one computer 

run instead of several as is required for the spring models. 
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CHAPTER 3 

TUNNELS IN ELASTIC GROUND: ANALYTICAL SOLUTION FOR EXCAVATION LOADING 

3.1 GENERAL REMARKS 

Peck (1969) provides an excellent description of the basic con­

cepts of ground-liner interaction. The analytical solutions derived in 

Appendix A constitute generalizations of the two special case solutions 

(i.e., for perfectly flexible and perfectly rigid liners) discussed by Peck 

in that they allow consideration of liners of intermediate flexibilities 

and stiffnesses. 

The analytical solutions for excavation loading assume a lined 

tunnel is to be constructed in a ground mass subjected to a system of in situ 

stresses as illustrated in Fig. 3.la. In the rectangular coordinate system 

one of the principal stresses is assumed to act in the vertical direction 

and the remaining two principal stresses act in horizontal directions, one 

being perpendicular and the other parallel to the longitudinal axis of the 

tunnel. The magnitude of the vertical stress is equal to the weight of the 

overburden, YH, where His the depth from the ground surface to the tunnel 

axis. The magnitude of the horizontal stress is equal to the coefficient 

of earth pressure at rest, K, times the vertical stress. The increase of 
0 

stress from the tunnel crown to the invert is not considered. Thus, the 

solutions apply only to deep tunnels. The in situ stress state in terms of 

the polar coordinate system is also given in Fig. 3.la. The dashed circle 

of radius r = a in the figure represents the future location of the lined 

tunnel. 
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These solutions further assume that excavation and liner instal­

lation occur instantaneously and simultaneously so that no ground displace­

ment or relaxation occurs prior to ground-liner contact and interaction. 

An alternate assumption is that given by Peck (1969), i.e., the liner is 

installed first, without disturbing the ground outside or inside the liner, 

and the ground inside is removed. This approach can be approximated in 

reality for large diameter tunnels by constructing the liner in a series of 

small diameter drifts around the circumference of the tunnel and then ex­

cavating the soil core. 

In this chapter ground-liner interaction is examined on the basis 

of the information obtained from the analytical solutions derived in Appendix 

A for thin _Jiners subjected to excavation loading (equations of solutions 

3 and 4 in Appendix B). 

3.2 EXTERNAL PRESSURES ACTING ON THE LINER 

3. 2.1 IN SITU STRESSES AND THE GROUND-LINER INTERFACE CONDITION 

Figure 3.lb illustrates the distributions of tangential shear and 

radial normal stresses that, in the undisturbed ground mass, act on the 

cylinder of ground to be excavated and replaced by the liner. Except for 

one special case, when the liner is installed the surrounding ground mass 

will no longer be in equilibrium and ground displacements will occur. These 

displacements lead to distributions of external pressures acting on the liner 

that are different from those shown in Fig. 3. lb. 

The distributions of external pressures acting on the liner are 

determined by the extent of the liner's resistance of ground displacements 

(i.e., interaction between ground and liner). Thus, the external pressure 
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distributions are functions of the relative stiffnesses of the liner and 

the ground mass (expressed in terms of the compressibility ratio, C, and 

flexibility ratio, F; see Appendix A) and the magnitude of the ground-

liner interface shear strength (S.), in addition to the nature of the in situ 
i 

stress state (K ). As Peck (1969) points out, the cross sectional shape of 
0 

the tunnel and liner can also be a factor, but this is not considered herein 

because the analytical solutions are limited to liners of circular shape. 

In regard to the ground-liner interface shear strength, the analyt­

ical solution considers only the two extreme conditions. The no slippage 

condition assumes, in effect, infinite shear strength at the interface. 

This condition is applicable, however, whenever the finite shear strength 

exceeds the greatest mobilized shear stress (S. > L ). The full slippage 
i max' 

condition assumes zero shear strength (Si = 0) and :approximates the condition 

of very low shear strength relative to the potential shear stresses (Si<<'9. 

In general, the two interfacial shear strength conditions yield 

decidedly different external liner pressure distributions. There are, how­

ever, certain special ca~es for which the value of Si is of no consequence. 

The first of these is the caseinwhich the shape of the tunnel opening and 

liner is matched to the insitu stress state (K ), for example, the circular 
0 

shape and K
0 

= 1. The second case is that of the liner which is perfectly 

flexible and perfectly compressible (F = C =00). Such a liner offers no 

resistance to the deformation of the surrounding ground mass and, thus, no 

external pressures can be mobilized. 

Discussion of the external pressure distributions is facilitated 

by comparing these distributions with the distributions of in situ stresses 

acting, in the undisturbed ground mass, on the cylinder of ground to be 
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replaced by the liner. 

3.2.2 LINER PRESSURES FOR THE FULL SLIPPAGE CONDITION 

Because the shear strength at the ground-liner interface is zero 

for the full slippage condition there are no external shear stresses acting 

on the liner. This leaves only the radial pressures to be considered, and 

all of the theoretically possible radial pressure distributions can be sepa­

rated into six distinct classes, three of which are special cases. These 

six classes are: 

1. The pressure distribution for the special case of a perfectly 

rigid and incompressible liner (F = C = O). 

2. Those pressure distributions that are intermediate to the 

F = C = 

tion. 

distribution and the in situ radial stress distribu-

3. The pressure distribution that is identical to the insitu 

radial stress distribution. 

4. Those pressure distributions characterized by crown and invert 

pressures less than the in situ magnitude and springline pres­

sures greater than in situ (for K < l; if K > 1 relation-o 0 

ships are reversed). 

5. Those distributions of radial pressures which at every loca­

tion are less than the correspondinginsitu pressure. 

6. The zero magnitude pressure distribution for the special case 

of a perfectly flexible and compressible liner (F = C = 00). 

This is a special case of the class 5 distributions. 

Figure 3.2 illustrates, for K < 1, the radial pressure distributions 
0 
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of classes one and four. 

Part a of Fig. 3.2 shows the distribution of radial pressures 

acting on a perfectly rigid and incompressible liner. It can be seen that 

the radial pressures around the crown and invert of the liner are greater 

than the correspondinginsitu stresses, while the radial pressures in the 

vicinity of the springlines are less than the corresponding in situ stresses. 

In order for the pressure distribution acting on the liner to be different 

from the in situ stress distribution, ground displacements must occur after 

the liner is installed. Because it is not possible for this liner to deform 

it is somewhat surprising to find a pressure distribution different from 

the insitu distribution. However, the fact that there is a difference, as 

well as the nature of the difference, is explained by the effects of the full 

slippage condition assumed. 

For this special case the difference between the in situ and liner 

pressure distributions is entirely the result of the ground displacements 

that occurred because slippage was allowed at the ground-liner interface. 

As a result of this slippage, the ground mass has moved inward toward: the 

top and bottom of the liner, tangentially from the crown and invert toward 

the springlines, and outward away from the liner in the vicinity of the 

springlines. Note that while both radial and tangential displacements occur 

in the surrounding ground mass, right at the ground-liner interface only 

tangential displacements are allowed. Relative to theinsitu radial stress­

es, the liner pressures are of greater magnitude around the crown and invert 

because of the inward ground displacement there; and the liner pressures are 

of lesser magnitude around the ~pringlines because of the outward ground 

movement there. 
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The class 2 liner radial pressure distributions are characterized 

by crown and invert pressures less than those for F = C = O, but greater 

than the corresponding i n situ stresses and by springline pressures greater 

than those for F = C = O, but less than the corresponding in 8itu stresses. 

Examination of the analytical solution equations for the full slippage 

condition reveals that such distributions can result if, and only if, 

0 < F < (2 - 3v ). Liners with flexibility ratio values in this range would 
m 

be relatively inflexible and incompressible . Most realistic liner and ground 

mass combinations will not satidfy this condition. 

The class 3 pressure distributions, which are identical to the in 

situ radial stress distributions (Pr= or), can occur if, and only if, F = 

0.5 and v = 0.5. 
m 

A typical example of the class 4 liner pressure distribution is 

illustrated in Fig. 3.2b. For K
0 

< 1 the radial pressure exerted by the 

ground mass causes the crown and invert of the liner to displace inward. 

In addition, the compressional and flexural stiffnesses of the liner are 

such that this movement of the crown and invert forces the springlines to 

displace outward against the adjacent ground. Inward displacement of the 

crown and invert allows dissipation of some of the potential ground dis­

placements at these locations and thus, the external pressure there de­

creases in magnitude. Outward displacement of the springlines mobilizes 

passive pressures against these portions of the liner. Deformation of the 

liner continues, with decreasing crown and invert pressures and increasing 

springline pressures, until an equilibrium state is achieved between the 

distribution of external pressures and the distribution of internal liner 

forces and bending moments, The analytical solution equations have not 
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revealed specific ranges of C and F values that must be satisfied in order 

to obtain the pressure distributions of class 4 other than that F > (2 - 3V ) 
m 

is required. It would seem however that the liner must be fairly flexible 

and yet relatively incompressible. 

The class 5 external pressure distributions include all those dist­

ributions for which the pressure magnitudes are everywhere less than the 

corresponding in situ radial stress magnitudes. In order for a distribution 

of this type to occur, the liner springlines as well as·the crown and invert 

must displace inward. This displacement pattern indicates that the liner 

must be highly compressible. 

3.2.3 LINER PRESSURES FOR THE NO SLIPPAGE CONDITION 

Figure 3.3 illustrates a typical distribution of external radial 

and shear pressures acting on a liner for the no slippage condition. 

It was mentioned previously that there is only one special case 

for which no ground displacements occur after liner installation and, con­

sequently, for which the distribution of pressures acting on the liner are 

identical to theinsitu stress distributions. It is the no slippage require­

ment that makes this special case possible. This case can occur only if the 

liner is perfectly rigid and incompressible (F = C = 0) and only if the 

shear strength at the ground-liner interface everywhere exceeds the shear 

stress existing at that location in the undisturbed ground mass (the analyt­

ical solution's no slippage condition). Metaphorically speaking, when such 

a liner is installed (under the conditions assumed herein) the surrounding 

ground mass is unaware that a core of soil has been removed and replaced by 

the liner. The equilibrium of the ground mass remains undisturbed and the 
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external pressures that act on the liner are identical to those that acted 

on the core of soil the liner replaced (Fig. 3.lb and dashed curves in Fig. 

3.3). 

A liner that is not perfectly rigid and incompressible (F # 0, 

C # 0) will be forced to deform by the surrounding ground mass. Because of 

the no slippage condition the liner will resist tangential as well as radial 

displacements and, as a result, the liner will be subjected to both external 

shear stresses and radial normal stresses. The distribution of these ex­

ternal pressures will be different from the distribution of the insitu 

stresses (Fig. 3.3). 

Figure 3.3 illustrates two interesting points concerning the ex­

ternal pressure distributions for the no slippage condition. First, it is 

possible for the external shear stresses acting on the liner to be greater 

in magnitude than the in situ shear stresses. Second, it is possible to 

begin with anin situ stress state characterized by K < 1 and yet end up 
0 

with radial pressures acting on the liner that are smaller at the crown and 

invert than at the springlines. 

Examination of the analytical solution equations for the no slip­

page condition reveals that the relationship between the magnitude of the 

shear stresses acting on the liner, ~re' and the magnitude of the in situ 

shear stress, ~re, is a function of the relative stiffnesses of the ground 

and liner (expressed in terms of C and F). In order for any one of the three 

possible relationships (~ >,=,or<~ ) to hold, the Cand F values must re re 
satisfy a certain condition. The relationships and the corresponding con-

ditions are: 

For ~re{:} 're' nrust have C {~} [ 6F ] 
2F + 5 - 6v 

m 
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For large values of F the required value of C is approximately three. The 

F and C values for most ground-liner combinations are such that %re> ~re 

results. Note that while it is possible to have ire= ~re for certain com­

binations of C and F values other than F = C =O, the corresponding liner­

in situradial stress relationship for these nonzero C and F values will 

be of the form P ~ d. It is possible to have both i = ,:- and P = dr r r re re r 

only when F = C = O. 

It is difficult to visualize the process by which the external 

shear stresses acting on the liner attain magnitudes in excess of the in 

situ shear stress magnitudes because both potential and actual radial and 

tangential displacements of the ground and liner are involved. It is some­

what easier to see how it is possible to obtain radial liner pressures at 

the crown and invert that are smaller than the radial pressures at the spring­

lines (for K < 1). Prior to liner deformation the radial pressure acting 
0 

on the liner is the same as the in situ radial stress that acted on the soil 

core that was removed. Inward displacement of the crown and invert reduces 

the radial pressures at these locations, while outward displacements of the 

springlines increases the radial pressures around the springlines. Simulta­

neously~ however, the ground mass at the ground-liner interface is attempt­

ing to displace tangentially -- for K < 1, from crown and invert toward the 
0 

springlines. However, because of the no slippage condition only a portion 

of this displacement (that equal to the tangential displacement of the liner) 

is allowed to occur. Aside from the mobilization of the external shear 

stresses, ire' the prevention of the remaining portion of the potential 

ground mass tangential displacement has the effect of reducing the tendency 

for inward ground displacement at the crown and invert and outward ground 
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displacement at the springlines. The reduced tendency for inward ground 

displacement at the crown and invert (equivalent to starting with smaller 

potential ground displacements for the liner to resist) results in smaller 

external radial normal pressures at these locations than would be the case 

for the full slippage condition. Similarly, the reduced tendency for out­

ward ground displacement at the springlines results in larger radial pres­

sures at these locations than would exist for the full slippage condition. 

As shown in Fig. 3.3 the no slippage requirement can result in 

radial pressures at the crown and invert, P (C-I), that are less than the 
r 

springline pressures, P (SL), when K < 1. It appears that this will gen-
r o 

erally be the case since all that is required for Pr(C-I) < Pr(SL) is that 

[F - 1.5(1 - 2\1 )C] >2. Most of the possible C and F combinations can 
m 

easily satisfy this requirement. On the other hand, in order for P (C-I) > r 

P (SL) it is necessary that [F - 1.5(1 - 2v )CJ< 2. This is a very res-
r m 

trictive requirement that can be satisfied only by a relatively rigid liner, 

a liner with a flexibility ratio in the range O < F < (~2). 

3.3 LINER FORCES, BENDING MOMENTS, AND DISPLACEMENTS 

3.3.1 DISTRIBUTION AROUND THE LINER 

The external pressures acting on the liner must, of course, be 

balanced by the forces and bending moments within the liner. Figure 3.4 

illustrates the nature of the liner thrust and bending moment distributions, 

as well as the distributions of radial displacement, for two different in 

situ stress conditions and for both the no slippage and full slippage con­

ditions. 



Moment 

68 

Thrust 

K = 2.0 K = 
0 0 

No slippage 

Full slippage 

Radial Displacement 

FIGURE 3.4 DISTRIBUTIONS OF LINER THRUSTS, MOMENTS AND 
RADIAL DISPLACEMENTS 



69 

As in Figs. 3.1 through 3.3, the distributions shown in Fig. 3.4 

are symmetrical about a vertical plane through the tunnel centerline. In 

addition, because the analytical solution assumes the tunnel to be located 

at great depth, i.e., assumes the variation of insitu stress with depth 

from crown to invert to be negligible, the distributions are also symmetri­

cal about a horizontal plane through the tunnel centerline. 

The effect of the K value on the distributions of liner thrusts, 
0 

moments and displacements, as illustrated in Fig. 3.4, is straight forward 

and self explanatory. The differences between corresponding distributions 

for the no slippage and full slippage conditions illustrates the effect of 

external shear stresses on liner response. 

The external pressure distributions shown in Figs. 3.2b and 3.3 

are for K = 0.5 and the same combination of liner and ground mass material 
0 

properties as the distributions of Fig. 3.4. The no slippage condition ra-

dial pressure distribution of Fig. 3.3 indicates that the radial pressures 

at the crown and invert are less than those at the springlines. Thus, the 

radial pressures alone mobilize thrusts in the liner that are greater at 

the crown and invert than at the springlines. However, the external shear 

stresses, which are also acting on the liner, mobilize negative thrusts 

(tension) at the crown and invert and positive thrusts (compression) at the 

springlines. The total thrust distribution (K = 0.5) in Fig. 3.4 shows 
0 

that when the thrust contributions of the exteranl shear stresses and radial 

pressures are combined the resulting total thrust at the crown and invert 

is smaller than that at the springlines, as would be expected for K < 1. 
0 

Figure 3.4 also shows that the effect of the external shear stresses is great 

enough so that the crown and invert thrusts for no slippage are smaller than 
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those for the full slippage condition , while at the springlines the rela­

tionship is reversed. This result is not immediately obvious from exam­

ination of Fig. 3.3. 

Liner bending moments are related to liner distortion. Thus, the 

distributions of liner radial displacements and bending moments, given in 

Fig. 3.4, are of similar form. This figure shows that the distortion of the 

liner is greater for the full slippage condition than it is for the no slip­

page condition. This result is obtained because for full slippage the crown 

and invert of the liner must resist greater ground displacements than for 

the no slippage condition; while at the same time at the springlines the 

ground provides less resistance to the outward movement of the liner than 

it does for the no slippage condition. 

The distributions of liner thrusts, bending moments, and radial 

displacements given in Fig. 3.4 were obtained for a specific combination of 

parameter values describing the properties of the liner and surrounding 

ground mass. Had a different combination of material properties been se­

lected, a different set of curves would have been obtained. However, this 

second set of curves would have differed from that shown only in magnitude. 

The general shapes of the curves of Fig. 3.4 apply to all material property 

combinations. 

3.3.2 VARIATION WITH THE GROUND-LINER COMPRESSIBILITY AND FLEXIBILITY RATIOS 

Peck, et al., (1972) and Mohraz, et al., (1975) have illustrated 

the effect of material properties of the liner and ground mass on the mag-

nitude of liner thrusts, moments, and radial displacements for the full 

slippage and no slippage conditions, respectively. In the figures presented 
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in these papers the liner and ground mass properties were conveniently com­

bined in the form of the compressibility, C, and flexibility, F, ratios. 

However, the analytical solution used by the above authors was essentially 

that of Burns and Richard (1964) (the overpressure loading solution altered 

to remove the restriction to only one-dimensional loading) which does not 

apply to the case of a tunnel being constructed in an initially stressed 

medium (excavation loading). Presented here, in Figs . 3.5 through 3.8, are 

the corresponding figures (liner moments, thrust, and radial displacements 

versus the flexibility and compressibility ratios) obtained from the analyti­

cal solutions for a thin liner subjected to excavation loading derived in 

Appendix A. 

The curves shown here are similar in form to those given by Peck, 

et al., (1972) and Mohraz, et al., (1975). However, the overpressure and 

excavation loading solutions yield results that differ in magnitude by an 

amount that varies with the value of v • In general, the overpressure load-
m 

ing solution overestimates the magnitudes of liner forces, moments, and dis-

placements when applied to the problem considered herein (see Figs. 2.9 and 

2.10). 

Curves of maximum moment coefficient (M/yHa2
) versus flexibility 

ratio (F) for K
0 

= 0,5 and 2.0 and for the full slippage and no slippage 

conditions are given in Fig. 3.5. The maximum moments occur at the crown, 

invert, and springlines. The curves shown represent absolute values of the 

moment coefficient. According to the sign convention adopted herein (Fig. 

A.4), for K < 1 moments at the springlines are positive while those at the 
0 

crown and invert are negative. The positive-negative signs for K > 1 are 
0 

the opposite of those for K < 1. 
0 
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Figure 3.5 shows that the moment coefficient decreases rapidly as 

the flexibility ratio increases from zero to about 20. Thereafter there is 

a further, but much more gradual, reduction of the moment coefficient with 

increasing F; however, this is of little consequence since for F > 20 the 

moment coefficients are very small. For K = 0. 5 and F > 17 • 5 the maximum 
0 

bending moment in the liner is less than one percent of y Ha • 

The curves in Fig. 3.5 provide further illustration of the state­

ment made previously, in discussion of Fig. 3.4, that the no slippage con­

dition yields slightly smaller bending moments than the full slippage con­

dition. For F = 0 (perfectly rigid liner) the no slippage moment coefficient 

is eight percent less than the full slippage value. For F = 100 the dif­

ference has increased only to nine percent, but for F = 100 the moment 

coefficient values are so small that the difference is of little conse­

quence. For F = oo (perfectly flexible liner), of course, both the no slip­

page and full slippage conditions yield the same moment coefficient value, 

that being zero. 

As noted in Fig. 3.5 the curves shown apply only for one value of 

the compressibility ratio (C = 0.4) and one value of Poisson's ratio of the 

ground mass (v = 0.4). Fortunately, however, neither of these parameters 
m 

has that great of an effect on the moment coefficient and the curves shown 

give a good approximation of the curves that would be obtained for any other 

possible C and vm values. 

Variation of the liner thrust coefficient (T/yHa) with the flex­

ibility ratio is illustrated in Fig. 3.6 for K = 0.5 and 2.0 and for the 
0 

full and no slippage conditions. The figure shows this variation for both 

the maximum and minimum thrust coefficients. For K
0 

< 1 the maximum thrust 
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occurs at the springlines (s) and the minimum thrust occurs at the crown 

and invert (c). For K > 1 the locations of the extreme values are reversed. 
0 

Examination of the analytical solution equations for the thrust 

coefficient (See Sections B.3.3 and B.4.3) reveals several interesting facts 

that help to explain the curves in Fig. 3.6. These equations consist of two 

terms. The first term is independent of e (circumferential location) and 

represents the average liner thrust. The second term is a function of e and 

gives the variation of thrust magnitude with circumferential location. Be­

cause the average thrust is also independent of the flexibility ratio, in 

Fig. 3.6 the average thrusts would plot as horizontal lines (not shown) 

located at (T/yHa) = 1.4 for K
0 

= 2.0 and at (T/YHa) = 0.7 for K
0 

• 0.5. 

What Fig. 3.6 really shows then is the variation of the second of the thrust 

equation terms with flexibility ratio. 

With increasing F the second term in the full slippage thrust 

equation rapidly approaches zero (i.e., no variation of thrust magnitude 

with location around the liner circumference). Likewise, the second term 

in the no slippage thrust equation rapidly approaches a constant value C>O) 

with increasing F. For F greater than 10 or 20 the second term of the thrust 

coefficient, thus the total thrust coefficient, is essentially independent 

of the value of the flexibility ratio. Thus, for large F values liner thrust 

can be approximated by the following simplified expressions for the thrust 

coefficient ·: 

Full Slippage Condition: 

(..L) 
yHa = 

¼(l + K) 
0 

1 + (1 - 2v )C 
m 

(3.1) 



No Slippage Condition: 

= 
½(l + K) 

0 

1 + (1 - 2v )C 
m 

+ 
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\(1 - K )(3 - 4v) o m 
3 - 2v + ( 1 - 2v )C • cos 29 

m m 
(3.2) 

The curves in Fig. 3.6 apply only for one value of the compress­

ibility ratio (C = 0.4). Unlike the moment coefficient, the thrust coef­

ficient can be significantly affected by changes in the value of C. Figure 

3.7 illustrates the variation of the thrust coefficient with compressibility 

ratio. 

The average thrust term, which is a function of C but not F, is 

the term most strongly influenced by the compressibility ratio. The second 

term of the full slippage condition thrust equation is independent of C. 

While the second term of the no slippage condition equation is a function 

of both F and C, it is influenced only slightly by the compressibility ratio. 

Thus, the variation of (T/yHa) with C shown in Fig. 3.7 is primarily the 

variation of the average. thrust term. 

Only curves for two different flexibility ratio values (F = 2 and 

10) are given in Fig. 3.7. Because the thrust coefficient rapidly approaches 

a constant value with increasing F, all full slippage curves for F > 10 fall 

between the two dashed F = 10 curves. Similarly, all no slippage curves for 

F > 10 plot just slightly inside the two continuous F = 10 curves. 

Note that, in effect, the K value magnifies the variation with C 
0 

and, the differences between the full and no slippage conditions. The var-

iation is a minimum for K
0 

= 1 and increases as the value of K
0 

is increased 

or decreased. 
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Although not shown, the thrust coefficient also exhibits a sig­

nificant variation with Poisson's ratio of the ground mass, v • The curves 
m 

of Fig. 3.6 should be shifted upward (higher thrusts) for v > 0.4 and 
m 

downward (lower thrusts) for v < 0.4. The evident curvature and slope of 
m 

the curves in Fig. 3.7 would be increased (C of greater influence) for vm < 

0.4 and decreased for v > 0.4. All of the curves in Fig. 3.7 revert to 
m 

horizontal lines (thrust coefficient independent of C) for vm • 0.5. This 

occurs because all of the C terms in the thrust coefficient equations are 

multiplied by the expression (1 - 2Vm). Inclusion of the (1 - 2V) ex­m 

pression is the analytical solution's method of providing a solution for 

the special case of an incompressible (Vm • 0.5) medium. 

The variation of the vertical and horizontal diameter change 

coefficients (~D/D)/(yH/E) with flexibility ratio is shown in Fig. 3.8 for 
m 

K
0 

= 0.5 and 2.0 and for both the full slippage and no slippage conditions. 

Positive coefficient values indicate a diameter increase and negative values 

indicate a diameter decrease or shortening. 

Like the moment coefficient (Fig. 3.5), the diameter change coef­

ficient is relatively insensitive to the degree of slippage that occurs at 

the ground-liner interface. Like the thrust coefficient (Fig. 3.6), the 

diameter change coefficient is essentially independent of the flexibility 

ratio for F > 10 or 20. 

The average diameter change coefficients for the two K values are 
0 

indicated by the horizontal broken lines. These average values are given 

by the first term of the full and no slippage condition equations (both 

equations have the same first term) which is independent of the flexibility 

ratio. The average diameter change coefficient values are negative because 
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the liners are compressible (C > 0). 

The horizontal and vertical diameter change coefficient curves 

are symmetrical about the average value lines. The difference between the 

average value and either the horizontal or vertical diameter value is the 

magnitude of the second term in the diameter change coefficient equations. 

Thus, Fig. 3.8 illustrates the variation with F of these second terms. Un­

like the second term of the full slippage thrust equation which rapidly ap­

proached a value of zero with increasing F, the second terms of both the 

full and no slippage condition diameter change equations approach a constant 

value other than zero. 

Note that the diameter parallel to the maximum insitu stress di­

rection shortens more than the diameter parallel to the minimum insitu stress 

direction lengthens. Here, this is a direct result of the compressibility 

of the liner. If either the liner or the ground mass were incompressible 

(C = 0 or vm = 0.5,respectively; average diameter change= 0) one diameter 

would increase by the same amount the other decreased. 

The diameter change coefficient is more sensitive than the moment 

coefficient, but less sensitive than the thrust coefficient, to variation 

of the compressibility ratio and Poisson's ratio of the ground mass. Of 

these two parameters, v is probabl y the more significant because it affects 
m 

the sensitivity of the diameter change coefficient to both the compressibil-

ity ratio and, to a lesser degree, the flexibility ratio. 

Radial displacements of t he crown, invert and springlines can be 

obtained from Fig. 3.8 by replacing~D/D in the diameter change coefficient 

by u /a and thereby obtaining the r adial displacement coefficient. Positive r 

values indicate outward displacement while negative values indicate inward 
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displacement. 

The variation of the liner transverse shear forces (V) with the 

flexibility or compressibility ratios has not been plotted. However, the 

maximum transverse shear coefficient's variation with flexibility ratio can 

be obtained from Fig. 3.5 by noting that V = (1/a) @M/oe) which gives 

(V/YHa) = (2a)(M/YHa ). All comments in the discussion of Fig. 3.5 apply 

to the maximum transverse shear coefficient also. 

3.3.3 VARIATION WITH THE LINER RADIUS-TO-THICKNESS RATIO AND THE GROUND­

LINER MODULUS RATIO 

Figures 3.5 through 3.8 are of interest because they provide an 

indication of how liner flexibility and compressibility affect liner behavior. 

However, by grouping the ground mass and liner parameters together in the 

form of the flexibility and compressibility ratios the influence of each of 

the individual parameters has been obscured. In addition, these figures 

tend to give the impression that the C and F values can be selected or 

determined independently of each other when in reality they are interrelated. 

Normally, changing one ratio value (by changing liner thickness, for ex­

ample) results in a change in the other ratio value. While it is possible 

to alter the value of F while keeping C constant (or vice versa), this re­

quires careful adjustment of two or more ground and/or liner parameter val­

ues. Manipulations of this nature can yield C and F combinations that are 

theoretically possible but totally unrealistic in terms of real ground-liner 

systems. 

The figures that follow avoid these difficulties. These figures 

give the variation of the various components of liner response with the liner 



82 

radius-to-thickness ratio (a/t) and the ground-liner modulus ratio (E /E ), 
m :e 

where, 

C 
E (1 - v2 ) 

= J! . ..2.. & 
En t ( 1 + \I ) ( 1 - 2\1 ) 

N m m 
(3. 3) 

F (3.4) 

Plotting the variations in this way allows direct assesment of the influence 

of the individual parameters. Also, since the (a/t) and (Em/E
1

) ratios con­

sist of familiar parameters the figures cannot easily be misinterpreted. 

Figure 3.9 gives the variation of the liner thrust coefficient 

with (a/t) and (Em/E1). For the purpose of illustration the total thrust 

has been separated into its two components. The average thrust, given by 

the first term in the thrust equation, is represented by T
1 

in the top chart 

of Fig 3.9. This thrust component is independent of liner flexibility. The 

curves in the chart for T1 apply to both the full slippage and no slippage 

conditions. The lower chart in Fig. 3.9 is for T2, the second term in the 

thrust equation and the term that, when multiplied by cos20, gives the 

variation of thrust with location around the liner circumference. There 

are two sets of curves in this chart. The continuous curves apply for the 

no slippage condition and the dashed curves apply for the condition of full 

slippage at the ground-liner interface. 

The average thrust component, T
1

, exhibits significant variation 
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with the liner radius-to-thickness ratio (within the range of a/t consid­

ered) only if the modulus ratio is greater than 0.0001. If (Em/E
1

) ~ 0.0001 

the average thrust component is essentially, T
1 

= 0.75 YHa for all (a/t). 

This is a reflection of the fact that for (E /E~) < 0.0001 (and for a/t < 
ID h -

250, at least) the liner is essentially incompressible relative to the ground 

mass. At the other extreme, if (EJE1),::: 1.0 and (a/t) > SO the liner is 

so compressible, relative to the ground mass, that 1,_ ~ O. 

The bottom chart in Fig. 3.9 shows that the range of (Em/E
1
) and 

(a/t) values within which these ratios significantly influence the magnitude 

of the variable thrust component, Tz, depends on the slippage condition at 

the ground-liner interface. This range is relatively small for the full 

slippage condition. For all (~/E
1

) =::._ 0.1 the liner is so flexible, relative 

to the surrounding ground, that, regardless of the liner's thickness, T2 ~ O. 

If the modulus ratio is reduced to 0.0001, (a/t) values up to about 50 will 

yield T2 magnitudes significantly greater than zero. The variable thrust 

component exhibits greater variation with (a/t) and (Em/E
1
) if the no slip­

page condition applies. Like the average thrust component, the vari~ble 

thrust component for the no slippage condition is essentially zero for all 

(Eii,/E,e) ~ 1.0 and (a/t) > SO (curve for Em/E,e = 1.0 not shown). If (Em/E1) 

equals 0.0001, 'S is essentially a constant for all values of (a/t) > SO. 

Curves for (Em/E
1

) < 0.0001 - for both the full and no slippage conditions 

-- are similar in form to those of C\/E,e) = 0.0001, but shifted to the 

right. The amount of shift increases as the modulus ratio approaches zero. 

For the limiting case of C\!E1 ) = 0, T2 is independent of (a/t) and 

(T
2
/YHa) = 0.250 and 0.135 for the no slippage and full slippage conditions, 

respectively. 
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Given a specific ground mass (Em) and tunnel radius (a), Fig. 3.9 

shows that by reducing the liner thickness and/or the liner modulus the com­

pressibility of the liner can be increased with a resulting reduction of 

liner thrusts. Such attempts at thrust reduction can be counterproductive, 

however. Figure 3.10 shows that, while reducing the liner thickness reduces 

liner thrusts, it increases the circumferential stress in the liner (Fig. 

3.10 asst.nnes a continuous liner of uniform cross section). This occurs be­

cause the cross sectional area of the liner decreases faster than the thrust 

as the liner thickness is reduced. Too great of a reduction can yield com­

pressive stresses in excess of the compressive strength of the liner. An­

other possible approach would be to keep the liner thickness constant and 

reduce the modulus of the liner in order to increase the modulus ratio and 

thereby reduce the liner thrust. Because the liner thickness remains con­

stant the liner stresses (due to thrust) also would be reduced. However, 

reduction of E
1 

would undoubtedly cause a reduction of the liner's com­

pressive strength also. Thus, care would have to be taken to insure that 

liner strength was not reduced to a magnitude less than that of the reduced 

stresses. 

Variation of the maximum bending moment coefficient (and maximum 

transverse shear force coefficient) with (a/t) and (Em/E
1

) for the full 

slippage and no slippage conditions is illustrated in Fig. 3.11. The plot­

ted curves show that by reducing either liner thickness or modulus, and there­

by increasing liner flexibility, the liner bending moments (and shear forces) 

can be significantly reduced. It can be seen that the full and no slippage 

conditions give nearly the same bending moment and shear force values. 

Throughout the range of (a/t) and (Em/E
1

) considered in Fig. 3.11, the no 
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slippage values are, on average, approximately five percent less than the 

full slippage values. The maximum difference occurs for (Em/E
1

) 
-s 

= 10 and 

(a/t) = 250, and amounts to approximately nine percent. 

Figure 3.12 illustrates the variation of liner stresses due to 

bending with (a/t) for several values of the modulus ratio. It can be seen 

that reduction of liner modulus always leads to smaller bending stresses. 

For (Em/E
1

) greater than approximately 0.005, reducing liner thickness also 

always leads to smaller bending stresses, but for (a/t) > 50 the stress re­

ductions, and the stresses themselves, are very small. For (Em/E
1

) values 

less than approximately 0.005, the curves indicate an initial stress in­

crease up to a peak value and then a stress decrease as (a/t) is increased 

from initially very small values. For a continuous liner of uniform cross 

section the bending stresses are given by d =Mc/I= 6M/t!'. Thus, the in­

itial bending stress increase with increasing (a/t) can be explained by the 

fact that as the liner thickness is reduced the t2 term initially decreases 

faster than the bending moment. 

In Fig. 3.13 ;he liner stresses (full slippage condition) due to 

thrust and bending have been combined to give the maximum and minimum liner 

stresses. The curves show the variation of these stresses with liner radius­

to-thickness ratio for several values of the modulus ratio. For K
0 

< l the 

maximum stresses occur at the inner surface of the liner springlines and the 

minimum stresses occur at the inner surfaces of the crown and invert. In 

the lower range of (a/t) values the bending stresses predominate and the 

total stress curves exhibit initial peaks followed by stress decreases. As 

(a/t) is increased further stress decrease is halted (minimum stresses be­

come positive) and the stresses begin to increase in magnitude again. At 
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these higher (a/t) values the bending stresses have been reduced to such 

an extent that the compressive stresses due to thrust now predominate. The 

dashed curves for the minimum liner stresses show that as (Em/E
1

) is de­

creased the range of (a/t) values which yield tensile stresses in the crown 

and invert increases. 

Given the compressive and tensile strengths of a liner material, 

the appropriate maximum and minimum stress curves can be used to estimate 

the range of acceptable liner thicknesses. 

The variation of the diameter change coefficient, (Lill/D)(YH/Em)' 

with the liner radius-to-thickness ratio,(a/t), and the ground-liner modulus 

ratio, (E /E ), is shown in Fig. 3.14. As was done with the thrust coef-
m ! 

ficient, the diameter change coefficient has been separated into its two 

components. The average diameter change, given by the first term in the 

radial displacement equation, is given in the top chart of Fig. 3.14 and is 

denoted by the subscript 1. This component is independent of liner flex­

ibility and the slippage condition at the ground-liner interface. These­

cond term in the radial displacement equation is denoted by the subscript 2. 

This is the term that, when multiplied by cos 20, gives the variation of 

radial displacement with the location around the liner circumference. This 

component of the total diameter change coefficient is considered in the low­

er chart of Fig 3.14. The dashed curves apply for the full slippage condi­

tion and the continuous curves apply for the no slippage condition. 

The top chart in Fig. 3.14 shows that if (Em/E
1

) < 0.0001 the liner 

is essentially incompressible (.e:.o
1

~ 0) and thus the (a/t) ratio has little 

effect on the average displacement. As the modulus ratio is increased the 

liner (regardless of its a/t value) becomes more compressible and the value 
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of (a/t) becomes more significant. Further increase of (Em/E
1

) eventually 

causes the liner compressibility to become so great that the (a/t) ratio 

value is again of little significance. For (Em/E
1

) = 1 alteration of the 

(a/t) value has essentially no effect on the average displacement unless it 

is reduced to (a/t) < 50. 

The lower chart in Fig. 3.14 shows that if (a/t) > 50 the liner 

is very flexible regardless of the modulus ratio value (down to 0.0001, at 

least). For a given modulus ratio value, (a/t) must be reduced below 50 

(how far below depends on the Em/E
1 

value) before a significant reduction 

can be made in the magnitude of the variable component of displacement. 

The curves in Figs. 3.9 through 3.14 were obtained for K = 0.5, 
0 

vm = 0.4 a~~ v£ = 0.15, and, strictly speaking, are not applicable for other 

values of these parameters. However, the value of v£ has little influence 

on the results obtained from the analytical solution equations, and for any 

v£ value within the range encompassing the usual liner materials the figures 

presented can be used without adverse effect. Additionaly, the figures can 

easily be extended to apply for other K
0 

values by multiplying the values 

taken from the figures by one of two simple correction factors. If the 

magnitude of the term considered does not vary with e, the correction factor 

is (1 + K )/1.5. For example, 
0 

Tl 
lyHa} 

(for · any K ) 
0 

= 
1 + K T

1 ( o)f-} 
1.5 "YHa (f F. ram 1.g. 

( 3.5) 
3.9) 

If the magnitude of the term considered varies withe, the correction factor 

is 2(1 - K
0
). For example, 
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= 2(1 - K
0
){Y:a2} 

(from Fig. 3.11) 
( 3. 6) 

The use of the curves presented in Figs. 3.9 through 3.14 is not advisable 

for v values significantly different 
m 

the range 0.35 < v < 0.45 the values 
- m-

from vm • 0.4. For v values outside 
m 

taken from these figures should be 

adjusted by means of the appropriate v correction factor. 
m 

Considering the complexity of the ground-liner interaction problem 

the analytical solution is remarkably uncomplicated and simple to use. Un­

fortunately, because of the many simplifying assumptions that were necessary 

in order to obtain the solution, it is directly applicable to few real tun­

neling situations. On the positive side, however, it does seem to have some 

potential for use as a means of quickly and easily obtaining numerical values 

for the important parameters describing liner response. If these values are 

then conscientiously evaluated with the method's limitations in mind they 

can yield useful estimates of probable liner behavior for a given set of 

conditions. 
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CHAPTER 4 

FINITE ELEMENT ANALYSIS OF SHALLOW TUNNELS 

4. 1 GENERAL REMARKS 

Application of the analytical solutions for ground-liner inter­

action is restricted to tunnels located at great depth below the ground 

surface. This restriction is imposed because these solutions do not take 

into consideration two factors that can have significant influence on the 

behavior of shallow lined tunnels. These factors are: 

L The proximity of the ground surf ace free boundary. 

2. The variation of stress magnitude with depth from the tunnel 

crown to the invert. Assuming a horizontal ground surface 

and stresses due to the weight of the overburden in a homo­

geneous ground mass, the stresses exhibit a linear increase 

with depth and no horizontal variation. 

The Kirsch and Lame solutions, which have been applied to the un­

lined tunnel problem (Obert and Duvall, 1967) are also restricted to deep 

tunnels for these same reasons. However, the analytical solutions applic­

able to the shallow unlined tunnel case (circular opening near a horizontal 

boundary in an elastic half-space) that are available (Savin, 1968, and 

Mindlin, 1940) indicate that for depths greater than one or two tunnel dia­

meters the influence of the above factors is negligible. There are no an­

alytical solutions of the ground-liner interaction problem for shallow 

tunnels to give an indication of the variation of liner behavior with tunnel 

depth. Therefore, the finite element method was used to investigate this 

problem. 
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4.2 METHOD OF ANALYSIS 

Figure 4,1 illustrates the finite element mesh used to simulate 

the ground mass in this study (liner elements not shown). The two-dimen­

sional, plane strain analyses assumed linear elastic stress-strain behav­

ior for both the liner and the ground mass. Additionally, the ground mass 

was assumed to be isotropic and homogeneous. Values of the relevant in situ 

stress state, material property and dimensional parameters are given in the 

figures that summarize the results of the analyses. 

Because the problem is symmetrical about a vertical plane through 

the tunnel axis, only half of the region was analyzed. The mesh shown was 

generated with the tunnel opening and liner in place so that each analysis 

could be performed in just one solution step. Thein situ stress state was 

introduced into the mesh by applying, at the perimeter of the tunnel open­

ing, a distribution of pressures corresponding to that in the undisturbed 

ground mass. 

Both the no slippage and full slippage conditions were considered~ 

To simulate the full slippage condition the mesh was. generated with a small 

gap between the ground elements and the liner elements. Ground and liner 

were connected by means of one-dimensional bar elements. These elements 

allowed radial pressures, but not shear stresses, to be transmitted from 

ground to liner and vice versa. The cross sectional areas of the bars were 

selected such that the bars "filled" the gap between ground liner. However, 

it was found that with these dimensions the bar element stiffnesses had to 

be selected carefully in order to avoid distorting the analysis results. 

Initial analyses (later discarded) indicated that assigning liner stress­

strain properties to the bar elements was equivalent to increasing the 
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thickness of the liner by an amount equal to the thickness of the gap. 

Correct results were obtained by assigning to the bar elements the same 

elastic properties as those of the surrounding rock mass. 

A total of six analyses were performed for each of the full slip­

page and no slippage conditions. Tunnel depth-to-diameter ratios of H/D a 

5.0, 4.0, 3.0, 2.0, and 1.0 were analyzed. Analyses for H/D >> 5.0 were 

also performed. The depth, H, is measured from the ground surface to the 

tunnel centerline. Thus, for H/D = 1.0 the depth of cover over the tunnel 

crown is equal to one tunnel radius. 

The displacement boundary conditions imposed on the finite element 

mesh were such that the left and bottom boundaries were completely fixed, 

while the top boundary (ground surface) was free and the right boundary 

(plane of synmetry) was allowed only vertical displacements. As generated 

the finite element mesh was set up for H/D = 5.0. To analyze the case of a 

very deep tunnel (H/D >> 5.0) the top boundary (not the ground surface in 

this case) was completely fixed against displacement and the distribution 

of pressures applied around the tunnel opening was specified so that there 

was no variation of pressure with depth. For the H/D values of 5.0 through 

1.0 the pressure distribution was adjusted to reflect the appropriate tunnel 

depth. In addition, for H/D < 5.0 elements in the top part of the mesh were 

assigned activity numbers such that the correct number of element layers 

were turned off during each analysis to yield the correct depth of cover for 

that analysis. 
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4.3 INFLUENCE OF TUNNEL DEPTH ON LINER RESPONSE 

4.3.1 LINER THRUSTS 

Variation of the liner thrust coefficient with tunnel depth is 

illustrated in Fig. 4.2 for several locations around the liner and for both 

the no slippage and full slippage conditions. The continuous curves for the 

no slippage condition show that as H/D is reduced from very large values the 

springline thrust coefficient remains essentially constant until a value of 

H/D = 3.5 is reached. Thereafter, the magnitude of this coefficient grad­

ually decreases. At H/D = 2.0 the coefficient value is just two percent 

less than the deep tunnel value, while at H/D = 1.0 it is 12 percent less. 

(for K 
0 

For deep tunnels the maximum liner thrust occurs at the springlines 

<1). This was found to be the case for H/D > 3.5 also. However, 

as H/D is reduced _further the stress increase from crown to invert causes 

the location of maximum thrust to shift. As noted in Fig. 4.2 the angular 

distance from the springlines to the location of maximum thrust is given by 

a. For H/D • 3.0, 2.0, and 1.0 the maximum thrust was found to be located 

at a~ 5, 10, and 25 degrees, respectively. As can be seen in Fig. 4.2 the 

magnitude of the maximum thrust coefficient exhibits even less variation . 

with depth than does the springline coefficient. 

The no slippage condition curves for the crown and invert thrust 

coefficients show the greatest variation with depth. As H/D is reduced the 

invert thrust coefficient increases. This should be expected since the pres­

sures acting on the liner are greates~ at the invert and smallest at the 

crown. These pressure differences increase as tunnel depth is reduced. It 

is also apparent that the crown and invert thrust coefficients approach the 

deep tunnel value only gradually as H/D is increased. 
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The broken curve labeled A in Fig. 4.2 gives the variation with 

H/D of the average liner thrust coefficient. This curve applies for both 

the no slippage and the full slippage conditions. 

The dashed curves in Fig. 4.2 give the variation of the liner 

thrust coefficients with tunnel depth for the full slippage case. There is 

essentially no variation of liner thrust coefficient magnitude for H/D > 2. 

It would appear that slippage occurring at the ground-liner interface trans­

forms th~ unsymmetrical in situ stress distribution into a distribution of 

external pressures that is symmetrical about a horizontal plane through the 

tunnel centerline. This would account for the fact that at all depths the 

maximum thrusts occur at the springlines, and also for the fact that at all 

depths the crown and invert thrusts are equal. The significance of the dot­

ted curve in Fig. 4.2 is discussed in Section 4.4. 

4.3.2 LINER BENDING MOMENTS 

Figure 4.3 shows the variation with tunnel depth of the crown, 

springline and invert bending moment coefficients. While the slippage con­

dition at the ground-liner interface influences the magnitude of the moment 

coefficients, it has little effect on the variation of the moment coefficient 

magnitude with depth. 

For shallow tunnels the largest bending moment occurs at the invert 

and the smallest moment occurs at the crown. As H/D is increased the dif­

ferences between the maximum and minimum moments and the intermediate spring­

line value is gradually reduced. It appears that the deep tunnel case is 

attained at a shallower depth for the full slippage condition than it is for 

the no slippage condition. However, it is clear that this depth is greater 
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than H/D = 5.0 for both interface conditions. The springline moment coef­

ficient, on the other hand, exhibits relatively little variation with tun­

nel depth and rapidly approaches the deep tunnel value. For all H/D > 2.0 

this coefficient is essentially constant and equal to the deep tunnel case 

value. 

4.3.3 LINER STRESSES 

In Fig. 4.4 the thrust coefficients of Fig. 4.2 and the moment 

coefficients of Fig. 4.3 have been combined to give the liner stress coef­

ficients. The curves illustrate the variation with tunnel depth of the 

maximum and minimum circumferential liner stresses at the crown, spring­

lines, and invert for the full slippage and no slippage conditions. At the 

crown and invert the maximum and minimum stresses occur at the outer and 

inner liner surfaces, respectively. At the springlines the maximtm1 stresses 

occur at the inner surfaces of the liner and the minimum stresses occur at 

the outer surfaces. For this particular ground-liner combination (C = 0.32 

and F • 32.0) both maximum and minimum stresses are compressive. 

For the full slippage condition both the maximum and minimum (least 

compressive) liner stresses occur at the invert. This is understandable, 

because at all tunnel depths the maximum bending moment is located at the 

invert, and while the invert thrust is the minimtm1 liner thrust it is only 

slightly less than the other thrust values. 

Figure 4.4 also shows that for the no slippage condition the max­

imum and minimum liner stresses are located at the springlines and crown, 

respectively. Actually, for H/D < 3.5 the true maximum stress is slightly 

larger than the springline stress and is located slightly below the spring-
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lines (same location as maximum thrust, Fig. 4.2). For H/D = 1.0 the max­

imum stress is approximately six percent greater than the springline stress 

and is located approximately a= 25 degrees below the springlines. 

The curves of Fig. 4.4 show that if the deep tunnel analysis 

(either finite element or analytical solutions) were to be applied to a 

shallow tunnel it would yield a conservative estimate of the maximum liner 

stress, but an unconservative estimate of the minimum stress. 

4.3.4 LINER DISPLACEMENTS 

Figure 4.5 illustrates the variation of the horizontal and vert­

ical diameter change coefficient with tunnel depth. As in the case of the 

bending moments, the slippage condition at the ground-liner interface in­

fluences the magnitude of the diameter change coefficients, but not their 

variation with d~pth. For all H/D > 2.0 both horizontal and vertical dia­

meter change coefficients are essentially constant and equal to the deep 

tunnel case values. The vertical diameter change coefficient represents 

an average of the crown and invert displacements and therefore does not give 

a true indication of the variation of these displacements with tunnel depth. 

To illustrate this variation Fig. 4.6 has been provided. 

Figure 4.6 shows that the variation with tunnel depth of the crown 

and invert displacement coefficients is quite pronounced, relative to the 

variation 0£ the vertical diameter change coefficient. For a very deep 

tunnel the active pressures acting downward on the top of the liner are 

equal to the active pressures acting upward on the bottom of the liner, and, 

as a result, the crown and invert are both forced inward the same amount. 

At shallow depths the active pressures acting downward on the top of the 
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liner are less than the active pressures acting upward on the bottom of the 

liner. In the interaction process required to eliminate this imbalance the 

invert displaces upward more than the crown displaces downward. In the 

terms of Fig. 4.6 the inward displacement of the invert exceeds the inward 

displacement of the crown. At very shallow depths (here, H/D < 1.5 - 1.75) 

the downward active pressure is so small, relative to the upward active 

pressure, that the entire liner is shifted upward. At these depths, not 

only is the upward (inward) displacement of the invert quite large, but the 

crown is also forced upward (outward). Of course, the magnitudes of these 

liner displacements would be reduced if some ground displacements were al­

lowed to occur prior to installation of the liner. The significance of the 

broken line curves in Fig. 4.6 is discussed in Section 4.4. 

4.4 DISCUSSION OF RESULTS 

The various curves in Figs. 4.2, 4.3, 4.5, and 4.6 provide an in­

dication of the relative influence of the two previously mentioned factors 

(proximity of the ground surface boundary and stress increase with depth) 

that affect shallow, but not deep, tunnels. In these figures the normal­

ized curves for liner response at the springlines would be independent of 

the increase of stress with depth from crown to invert. In addition, the 

average thrust coefficient curve in Fig. 4.2 should also be independent of 

this factor. Thus, these curves give the average influence of the ground 

surface boundary on liner response. They indicate only the average because 

the influence of ~he surface boundary should change slightly from crown to 

invert, being greatest at the crown and least at the invert. All curves 

for liner response (thrust, moment, displacement) at the crown and invert 
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reflect the combined influence of both factors. To isolate the effect of 

the stress increase with depth, the effect of the ground surface boundary 

must be subtracted out of these curves (Note: Because only the springline 

or average influence of the ground surface boundary is available, its sub­

traction from the combined total at crown and invert removes most, but not 

all, of the ground surface boundary influence at these locations). For the 

no slippage thrust coefficient curves of Fig. 4.2 the ground surface bound­

ary effects can be removed by first drawing in an additional curve that 

exhibits the same variation with H/D as the springline and average thrust 

coefficient curves (dotted curve in Fig. 4.2). Points on this additional 

curve are obtained by multiplying the values of points on the average thrust 

coefficient curve by 0.73 (for the very deep tunnel, crown and invert thrust 

are 73 percent of the average thrust magnitude). The curves can also be 

obtained by multiplying values of points on the springline curve by 0.57. 

Differences between the crown and invert curves and this curve are due to 

the influence of the increase of stress with depth. The dashed curves in 

Fig. 4.2 for the full slippage condition indicate that for this slippage 

condition and this particular ground-liner combination the liner thrust 

coefficient is essentially independent of the stress increase with depth 

from crown to invert. 

The variation of springline bending moment coefficient with tunnel 

depth, as shown in Fig. 4.3, is due almost entirely to the effect of the 

ground surface boundary. The variation of the crown and invert bending 

moments with tunnel depth is due to the combined effects of both the ground 

surface boundary and the stress increase with depth. Thus, an estimate of 

the stress increase with depth effect on crown and invert moment coefficients 



110 

can be obtained by noting the difference between corresponding points on the 

crown and springline curves and the invert and springline curves. 

In Fig. 4.5 the variation with H/D exhibited by both the horizontal 

and vertical diameter change coefficient curves is due solely to the in­

fluence of the ground surface boundary. Points on the vertical diameter 

change coefficient curves represent averages of the crown and invert dis­

placement coefficients and thus the effect due to stress increase with depth 

has been eliminated. 

In Fig. 4.6 the curves for crown and invert displacement coef­

ficients reflect the influence of both the ground surface boundary and the 

stress increase with depth. Differences between these curves and an addi­

tional curve (broken line curves shown), obtained by transfering the vertical 

diameter change coefficient curve of Fig. 4.5 to this figure, represent the 

effect of the stress increase with depth on the crown and invert displace­

ment coefficients. 

following: 

In summary, examination of the curves presented suggests the 

1. The influence of the ground surface boundary on liner response 

is small for all H/D > 1.0 and negligible for all H/D > 2.0, 

and 

2. the influence of the stress increase with depth from crown to 

invert is greater than the influence of the ground surface 

boundary and remains at a significant level to a much greater 

depth. 



111 

CHAPTER 5 

FINITE ELEMENT ANALYSIS OF ADVANCING TUNNELS 

5.1 GENERAL REMARKS 

At every stage of the advancement of a tunnel three distinct zones 

of stresses and displacements in the ground can be distinguished. Far ahead 

of the tunnel face the ground mass remains undisturbed·; the state of stress 

isin situ and no displacements have taken place. Far behind the face all 

the possible displacements have occurred and the state of stress in the 

ground and the liner has approached a final equilibrium, independent of the 

position of the tunnel face. In a zone around the tunnel face, extending 

to several radial distances ahead and behind the face, the state of stress 

is essentially three-dimensional and there is a longitudinal variation of 

ground displacements. As the tunnel face advances, assuming the ground 

conditions do not change, the spatial extent of this three-dimensional stress 

zone remains unaltered and its longitudinal position advances. 

The initial loading to which any tu.mel liner is subjected is 

strongly influenced by the amount of ground displacement that occurs before 

the liner and the ground mass come into contact and begin to interact. 

Since these displacements change with time and position along the axis of 

the advancing tunnel, the time and position of liner installation are im­

portant considerations in any analysis undertaken to estimate support load­

ing. One of the major deficiencies that the majority of the two-dimensional 

methods of analysis (analytical and numerical) have in common is the inabil­

ity to properly take into consideration the position of liner installation. 

Behavior of the ground-liner system within the three-dimensional 
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zone around the tunnel face, of course, can not be considered by two-dimen­

sional analyses, because these analyses, by definition, are applicable only 

for cross sections far from the tunnel face. However, the greatest diffi­

culty that must be faced in using the two-dimensional approach is the deter­

mination of the relationship between position of liner installation and the 

amount of ground displacement occurring ahead of the liner. Two-dimensional 

analyses (e.g., those obtained with the analytical solution as in Chapter 3 

and the finite element analyses of Chapter 4) which avoid this problem by 

assuming that no prior displacements occur overestimate the magnitude of 

the ground pressures that act on the liner. In addition, finite element 

analyses in which inelastic ground behavior is to be considered will yield 

misleading results if the correct magnitude of prior displacement is not 

considered, because the extent of plastic yielding is related to the amount 

of ground disturbance (prior displacement) allowed. 

In regard to the extent of prior displacements, the general case 

corresponds to that of a liner of intermediate flexibility and compressibility 

installed some distance· behind the tunnel face such that a small gap (e.g., 

thickness of a tunneling shield's tailskin) is left between the liner and 

the ground. The total radial displacement that occurs before ground-liner 

equilibrium is reached is then uf + uu + ug + u1 , where 

uf = radial displacement occurring ahead of the face 

u = radial displacement occurring between the face and the 
u 

point of installation 

u = radial displacement occurring at the point of installation 
g 

before the gap is filled 

uf + uu + ug = prior displacements 
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u = radial displacement of the liner under load. ,e 

The equilibrium ground pressure decreases as the ratio (u f + uu + u g + ~ ) /upo 

increases from zero to one. The displacement upo is the total potential 

ground displacement. Assuming the tunnel opening remains stable, the in­

itial (end of construction) liner load is zero if uf + uu + ug = upo (i.e., 

if all ground displacements occur before ground-liner contact). However, 

if the ground mass exhibits time-dependent behavior the pressures acting on 

the liner may increase in the months and years following construction. For 

some soils the ground pressure may increase to a magnitude corresponding to 

the full overburden pressure. 

Figure 5.1 illustrates the relationship between prior displace­

ments and the resulting ground pressure acting on the liner for three dif­

ferent cases. The curve ABC illustrates the relationship between potential 

ground pressure and prior radial ground displacement. The shape of this 

curve is a function of the stress-strain-strength properties of the ground 

mass. Here, the ground (assumed to be an elasto-plastic material) remains 

elastic if displacements in excess of those required to reach point Bare 

not allowed. If internal support is not provided to halt displacement be­

yond point Ba plastic zone forms around the tunnel and the additional plas­

tic displacements change the ground reac~ion curve from a straight line to 

a curve with decreasing negative slope. In this case the curve intersects 

the horizontal axis indicating that the opening would be stable without in­

ternal support (since time-dependent behavior is not considered this curve 

says nothing about the long term stability of the opening). The solid, 

straight line curve rising from the horizontal axis to intersect the ground 

reaction curve represents the reaction of the liner to load. The liner 
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reaction curve shown is for a liner of intermediate compressibility and 

thus it has a finite, nonzero slope. If the liner was perfectly incom­

pressible (C = 0) its reaction curve would be vertical. At the other 

extreme, a perfectly compressible (C = oo) liner would be represented by a 

horizontal line along the horizontal axis (no resistance to ground dis­

placements). 

Part a of Fig. 5.1 illustrates the case in which no prior dis­

placements are allowed. The pressure acting on the liner at equilibrium., 

P
1

, is determined solely by the interaction (indicated by the displace-

ment u
1

) that occurs between the liner and ground mass. This is the case 

considered in Chapter 3 with the modified analytical solution and in Chap­

ter 4 with the two-dimensional, plane strain finite element analyses. The 

condition of no prior displacement is rarely satisfied because there is al­

most always some ground displacement ahead of the tunnel face. In Fig. 5.lb 

this displacement has been designated uf. In this case it is assumed that 

the liner is installed right at the tunnel face such that the tunnel is kept 

fully lined as it is advanced. Because some displacement has occurred be­

fore the liner was installed, the equilibrium pressure, P2 , is less than P1 • 

If the liner is installed some distance behind the face additional ground 

displacement, u, will occur before interaction between ground and liner 
u 

can begin. Fig. 5.lc shows that this additional displacement leads to the 

even smaller equilibrium pressure, P3 • 

Figure 5.1 illustrates the misleading results that can be obtained 

when prior displacements are ignored in the analysis of a tunneling situation 

in which the liner is installed some distance behind the face. Note also, 

in Fig. 5.la, that despite the fact that the ground mass exhibits elasto-
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plastic behavior which could easily be modeled with the finite element method, 

a finite element analysis that did not consider prior displacements would 

yield the same results for both elastic and elasto-plastic ground behavior. 

It should be emphasized that the difficulty with most analyses that 

reduce the tunnel problem to two dimensions is not that they cannot account 

for prior displacements, but that they cannot account for the relationship 

between prior displacements and the position of liner installation that de­

termines the magnitude of the prior displacements. As Fig. 5.1 implies, 

analytical solutions based on the ground reaction curve can account for prior 

displacements through the use of displacement terms such as uf and uu. The 

analytical solutions for excavation loading can be modified to account for 

prior displacements (but only for the elastic case, of course). It is con­

ceivable that two-dimensional, plane strain finite element analyses could 

also be modified to allow given amounts of ground displacement before inser­

tion of the liner. However, in each of these approaches it is not possible 

to determine the correct amount of prior displacements to allow without con­

sidering the longitudinal effects of the three-dimensional problem which 

control the ground stresses and displacements ahead of the tunnel liner. 

To investigate the influence of the behavior of the ground mass 

ahead of the tunnel liner on liner response, a finite element study was per­

formed in which the actual advancement of the tunnel through the ground mass 

was simulated. Summarized in Table 5.1 are the various cases analyzed and 

the material properties used in each analysis. 

With respect to liner installation, three conditions were simulated. 

In a third of the analyses it was assumed that the liner was continually in­

stalled right at the advancing tunnel face; in the remainder of this chapter 
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TABLE 5.1 

MATERIAL PROPERTIES 

C 

Case \J psi kPa 
m 

A 0.40 

B 0.40 

C 0.40 

D 0.49 14 96.5 

E 0.49 14 96.5 

F 0.49 14 96.5 

G 0.40 14 96.5 

-
H 0.40 14 96.5 

I 0.40 14 96.5 

Initial stress state: d r =d e =d =YH=83.33 z 

Soil modulus: E = 5000 psi (34.5 MPa) 
m 

¢ ,.eu 

degrees a 

0 

1 

>>l 

0 0 

0 1 

0 >>l 

30 0 

30 1 

30 >>l 

psi (575 kPa), ~ = 0 rz 

6 
Liner properties: E,.e = 2 x 10 psi ( 1380 MP a), v ,.e = 0 .15 

Liner thickness: t = 1 ft (0.305 m) 

Tunnel diameter: D = 20 ft (6.1 m) 
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this is referred to as a "fully lined" tunnel. An additional third of the 

analyses assumed that the liner extended to a distance of one tunnel radius 

behind the face; this is referred to as a "partially lined" tunnel. In the 

remaining analyses it was assumed that the liner was installed at a point 

far behind the face; this is referred to as an "unlined" tunnel because all 

ground displacements occur before the liner is installed. The last column 

in Table 5.1 indicates these three conditions; z /a being zero, one, or much 
u 

greater than one, where Z is the distance between the leading edge of the 
u 

liner and the tunnel face and a is the tunnel radius. 

Two types of stress-strain behavior were considered for the sur­

rounding ground mass; linear elastic and elastic-perfectly plastic. In the 

elasto-plastic analyses a modified Drucker-Prager yield condition (see Sec­

tion 5.2.3) was used, with the additional material parameters being the 

cohesion, c, and the angle of internal friction,¢• Two values for the 

friction angle were considered; ¢ = 0 and¢= 30 degrees. The liner, assumed 

to be concrete, was assigned linearly elastic material properties which were 

not varied. 

In order to avoid the considerable difficulty and expense involved 

in the performance of a large number of fully three-dimensional finite ele­

ment analyses, only the special case of axially symmetric loading was con­

sidered. The ground mass within which the tunnel was to be constructed was 

modeled by an appropriate axisymmetric finite element mesh with the axis of 

symmetry coinciding with the centerline of the circular tunnel. The in situ 

stress state was assumed to be isotropic (K = 1). 
0 

Because of the restrictions on geometry and loading the axisymmet-

ric analysis cannot be applied to shallow tunnels. It is not possible to 
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simulate the boundary effects imposed by the ground surface nor the increase 

of stress with depth from crown to invert that become significant at shallow 

depth. Thus, these analyses correspond to the special case of a deep tunnel 

(depth> several diameters). 

5.2 METHOD OF ANALYSIS 

5.2.1 THE FINITE ELEMENT MESH 

The quadrilateral, isoparameteric axisymmetric finite elements 

(Zienkiewicz, 1971) used in this study are circular rings, called toroidal 

elements (Fig. 5.2a). Although an assemblage (mesh) of these elements can 

be constructed in a wide variety of forms, here a simple solid cylindrical 

shape (Fig. 5.2b) was considered the most suitable for the problem at hand. 

The position of any point within such a mesh is defined by the cylindrical 

coordinates; r, e and z. When such a mesh is subjected to axially symmetric 

loading the problem becomes mathematically two-dimensional. Because of 

symmetry, the stress components are independent of the angular (0) coordinate 

and, thus, all derivatives with respect toe vanish and the components v, Yre' 

Yez' ~re' and Tez are zero. The nonzero stress components are Or, o
0

, Oz, 

and L (see Fig. 5.2c). rz 

Figure 5.3 represents the upper half of a longitudinal cross sec-

tion through a typical finite element mesh used in this investigation. Bound-

ary stresses were applied so as to achieve an initial uniform isotropic stress 

state throughout the mesh, d = o
9 

=- d = YH where Y is the unit weight of r z ' 

the ground mass and His the depth of the tunnel axis below the ground sur-

face. At the beginning of each analysis all elements were assigned soil 

properties. The shaded elements in Fig. 5.3 are the soil elements which 
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FIGURE 5.2 AXISYMMETRIC FINITE ELEMENT (a), CONCEPTUAL AXISYMMETRIC 
FINITE ELEMENT MESH AS USED HERE (b), AND NON-ZERO 
STRESS COMPONENTS (c) 
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were "excavated" to form the tunnel. The elements with diagonals indicate 

the positions where liner elements were "installed" after excavation. 

5.2.2 EXCAVATION AND LINER INSTALLATION SEQUENCE 

Each analysis consisted of a series of solution steps in which 

the mesh and/or its boundary conditions were modified so as to simulate 

advancement of the tunnel through the soil. In step one the boundary forces 

were applied to the mesh, all elements of which were assigned soil proper­

ties. At the end of this step the mesh represented a fully stressed, un­

disturbed ground mass. The first excavation into this ground mass occurred 

in step two when the first set of soil elements was removed. Also in this 

step the force boundary condition along the right boundary was replaced by 

a displacement boundary condition to prevent longitudinal displacements 

there and to maintain the stress field in the mesh. If the tunnel was to 

be lined a liner element was inserted at this step (fully lined case) or the 

following step (partially lined case). In each of the remaining steps the 

tunnel was advanced a distance equal to the length of the next ring of soil 

elements. These steps, which constitute an incremental analysis .of the 

geometrically nonlinear problem, are carried out internally by the computer 

program GEOSYS (Ghaboussi and Ranken, 1974). 

The excavation and construction sequence is achieved through the 

deactivation or activation of the elements involved. When the mesh is gen­

erated all elements (soil and liner) are assigned to the positions that they 

are to occupy at one time or another throughout the analysis. An activity 

number is assigned to each element that will be removed from or added to the 

mesh. The activity number indicates the step at which the element will be 
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removed or added. In the case of excavation, the soil elements involved 

have the appropriate material properties and contribute to the global 

stiffness of the system up to the indicated step, beyond which the contri­

bution of these elements to the global stiffness of the system is zero. 

The reverse of this procedure is applied to those elements (liner) to be 

added to the mesh. 

5.2.3 MATERIAL BEHAVIOR MODELS 

Linear elastic and elastic-perfectly plastic (elasto-plastic) 

material behavior models were considered in this investigation. The elasto­

plastic model utilized by the finite element program GEOSYS is a modified 

form of the .,Drucker-Prager (1952) model which is, in turn, a three-dimen­

sional generalization of the Mohr-Coulomb failure criterion. The modified 

Drucker-Prager failure criterion is given as follows (compressive stresses 

taken as positive here): 

For !(l - l1 - Jmll2) + k - ./J1 = 0 (5 .1) 

!+k-./J1 = 0 (5.2) 

The quantity J 1 is the first invarient of the stress tensor. The quantity 

J2 is the second invarient of the deviatoric stress tensor. For small values 

of J
1 

the yield surface corresponds closely to that of the Drucker-Prager 

model wherein the failure envelope varies linearly with confining pressure, 

J
1

. As J
1 

increases in magnitude, the modified yield function diverges from 

the Drucker-Prager line and gradually approaches the Mises yield function 
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at m. For J 1 > m the shear strength is a constant, S , independent of 
- max 

confining pressure. For the majority of soils whose shear strength is a 

function of the angle of internal friction,¢, this latter condition is 

achieved only at exceedingly high confining pressures, much higher than 

those encountered in most underground construction projects. 

The yield surface is defined within the finite element program 

by specifying values for the three parameters k, z, and m. These material 

constants are functions of the shear strength parameters¢ and c and the 

maximum shear strength, Smax' as shown in the following equations: 

k 

m 

a. 

= S - k max 

= l&. 
a. 

= 
tan¢ 

J9 + 12 tan2¢ 

(5. 3) 

(5. 4) 

(5.5) 

(5. 6) 

In the¢; 0 analyses performed for this study the J 1 values were quite 

small relative tom and thus the relevant portion of the yield surface close-

ly approximated that of Drucker-Prager. For the ¢ = 0 analyses, S = k = 
max 

ca cohesion and the yield function corresponded to that of Mises. 

The¢= O assumption is valid only for saturated soils and only 

for as long as the moisture content of the soil remains unchanged. Any change 
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in moisture content would be accompanied by a change in effective stresses 

and would introduce an effective frictional component of shear strength. 

Thus, the results from an analysis that assumes¢= 0 apply only to the 

short term behavior of a tunnel. Theoretically, the¢= 0 analysis could 

be used for any saturated soil. However, this type of analysis becomes 

practical only if the permeability of the soil is low enough so that the 

condition of no change in moisture content is satisfied for a reasonable 

length of time. A soil composed of particles larger than silt size would 

experience a change of water content almost immediately upon excavation. 

Thus, the¢= 0 analysis would not be justified for such a soil. However, 

most clays and some silts possess sufficiently small permeabilities so that 

the no drainage condition can be satisfied for a time (days or weeks) after 

excavation. It is to these soils that this type of analysis can be applied. 

5.3 RESULTS OF ANALYSIS 

5.3.1 GENERAL 

The results obtained from the finite element analyses performed 

in this investigation are presented in this section. The following data 

are provided: 

configuration of the plastic zone (elasto-plastic analyses) 

distribution of soil stresses 

distribution of soil displacements 

radial displacements of the actual and projected tunnel wall 

longitudinal displacements of a reference cross section as 

the tunnel approaches 

liner thrust 
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It should be pointed out here that minor distortions of the data 

due to boundary and other procedural effects have been removed in order to 

isolate and clarify the information related solely to the behavior of an 

advancing tunnel. 

5.3.2 PLASTIC YIELD ZONES 

The plastic yield zones obtained for the fully lined, partially 

lined, and unlined tunnels are illustrated in Fig. 5.4. 

The plastic zone for the fully lined tunnel is confined to a rela­

tively small region just ahead of the face. Behind the face the liner pro­

vides enough support to the soil so that the stresses do not change very 

much from their free field values. The changes that do occur are not great 

enough for the resulting stress difference or shear stress to exceed the 

shear strength of the soil. 

A considerably larger plastic zone is obtained for the partially 

lined tunnel. For this case the unsupported length of tunnel just behind 

the face allows sufficient redistribution of stresses in the soil to cause 

yielding out beyond the tunnel perimeter. The effect of the liner in this 

case is to halt further yielding beyond that which has already taken place 

ahead of it. Very little, if any, yielding occurs behind the liner. 

The plastic zones shown in Fig. 5.4b and 5.4c, to the extent they 

exist, are similarinshape to those obtained for the unlined tunnels shown 

in Fig. 5.4a. The effect of the liner is to reduce the size of the plastic 

zone that forms behind its leading end and to increase the longitudinal ex­

tent of the plastic zone ahead of the face. 

The effect of the liner, once it is installed, on the extent of 
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plastic yielding (and ground displacements and stresses) depends, of course, 

on the compressibility of the liner (flexibility also if K ; 1). In these 
0 

analyses the ground-liner compressibility ratio was quite small, indicating 

a nearly incompressible liner. For larger compressibility ratios the extent 

of yielding behind the leading edge of the liner would be greater. However, 

over the range of realistic compressibility ratio value.s the influence of 

liner compressibility is of minor significance compared to the effect that 

position of liner installation has on the extent of the plastic zone. 

5.3.3 SOIL STRESSES 

The distributions of stresses in the soil surrounding the tunnel 

are shown in Figs. 5.5 and 5.6 for the cases of fully lined and partially 

lined tunnels, respectively. These are results from analyses D and E of 

Table 5.1 in which the soil was assigned values of c = 14 psi (96.5 kPa) 

and¢ = O. 

Stresses in the soil change from their undisturbed, free field 

values when displacements toward the tunnel are allowed. For the fully 

lined case the liner permitted only a small amount of radial disp~acement 

to occur after the liner was installed. Thus, this type of deformation 

contributed little to the stress redistributions shown in Fig. S.S. The 

relatively large displacements, both radial and longitudinal, that occurred 

ahead of the face and liner were the major causes of the stress changes 

observed both ahead and behind the tunnel face (the tunnel is advanced 

through a zone of altered stresses). 

One effect of the liner is to reduce the magnitude of stresses in 

a zone immediately ahead of the face from their free field values to an extent 



I ~ CTr lyH r T I "T I l T I T I I 
I I I 

I -

/ ----- 0.99 -

~ I 1 1 _ 
V.~I / - 0.9"' ~'\. / -,'------:jno:~-q(~~t _::;;; _::;;; +-F -~~-~=r~~::::J 

CT9lyH 
- 1,01 

.... v-
/ 

I 1.05 
V ~ ~ 1.10 ../ • .... 

L, I /1 '·?7'4\Hi1 6 ,· ~ - 0.50 - l ~ [j_ l'-0.50 

"'z /yH 

0.75 0.75 

Trz/yH 

~ .. , 
V" f'.-... n9 

/ ............. 

\. ~--o ol.9-.: "-

...... 
~ 

• I 
·1-::,,,,,, 

- "T 

0.50 0.25 

FIGURE 5.5 DISTRIBUTION OF STRESSES AROUND A FULLY LINED TUNNEL IN 
ELASTO-PLASTIC MEDIUM,¢• 0 (ANALYSIS D) 

---

: 

-

--

-

.... 
N 
\0 



o-r/yH 

1.01 
,,,,,,,.... 

I / 

\ 0 .9«) 
~ 

~) /"' 
0.95 

' 
......... 

~ 

, 
' V - 0 ,90 

\ I ~ V () i " 

' j~ 
Vo,50 

~~ (i. -- 0 .50 
0 ,90 

Trz /yH 

at;y' 
~ "' I/ \ 

~ I 
.,,.. 

"" 

\ of -
I 'J.1/ .. 

" \. -.... 
I 

--~ 
"--

0.50 

FIGURE 5.6 DISTRIBUTION OF STRESSES AROUND A PARTIALLY LINED TUNNEL 
IN ELASTO-PLASTIC MEDIUM, ¢ • 0 (ANALYSIS E) 

-

-

-

-

~ 
vJ 
0 



131 

greater than that observed for an unlined tunnel. This is especially true 

for the radial (dr) and circumferential (d
0

) stresses. It was observed 

that the stresses in this zone are further reduced when plastic yielding is 

concentrated in a zone just ahead of the face, as in the case D shown in 

Fig. 5.5. 

For the fully lined case, the stresses in the soil surrounding 

the tunnel behind the face are controlled primarily by the magnitude of the 

stresses ahead of the face. It is assumed in these analyses that the tunnel 

and liner are advanced simultaneously and that this advancement takes place 

in a series of steps, each of which occurs instantaneously. When the tunnel 

is advanced a portion of the soil in the altered stress zone ahead of the 

face is removed and an additional length of liner is installed. Since these 

operations occur instantaneously, no stress changes can occur in the soil 

around the newly excavated volume of soil until after the liner is in place. 

Then, since the liner is relatively stiff it deforms only a small amount, 

resulting in only a slight change in the stresses. Thus, the stresses be­

hind the face are only slightly different from those immediately ahead of 

the face. 

The stress distributions for the partially lined tunnel are given 

in Fig. 5.6. If the tunnel is left unlined for a distance of only one tun­

nel radius behind the face, as in this figure, the disruption of the initially 

undisturbed stress state that results due to the presence of the tunnel close­

ly approximates that found for an unlined tunnel. This is expected, since 

the results for the unlined tunnel cases indicate that most of the radial 

displacements occur within a zone immediately behind the face (note the steep 

slopes of the dashed curves in Fig. 5.9). When the radial extent of plastic 
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yield is small this zone extends only one to two tunnel radii behind the 

face. Up to 80 percent of the total displacements occur within this zone. 

Since, in the partially lined tunnel case, the majority of the displace­

ments have occurred before the liner is installed, the amount of soil­

liner interaction is small and the liner has little effect on the stresses 

in the soil. Thus, there is little difference between the stress distribu­

tions obtained for this partially lined tunnel case (liner installed one 

tunnel radius behind face) andtheunlined tunnel case. 

As expected, plastic yielding reduces stress magnitude, relative 

to the stresses obtained from elastic analyses, in the immediate vicinity 

of the tunnel opening 

directions. 

5.3.4 DISPLACEMENTS 

in both radial and longitudinal (ahead of face) 

Displacements of the surrounding soil due to the advancement of 

a fully lined tunnel (analysis D) are given in Fig. 5.7. The displacements 

that the soil mass experiences when the tunnel is advanced through oniy a 

short distance are given in part b of this figure. These incremental dis­

placements are very small at most points throughout the medium. It is only 

in one small region, just ahead of the tunnel face, that these movements 

attain significant magnitudes. The directions of the arrows in Fig. 5.7b 

indicate that movement is toward the tunnel face, the only unsupported por­

tion of the tunnel opening. Additional radial displacements behind the face 

are prevented by the liner in this case. 

Although the majority -0f the incremental displacements are so small 

that they do not show up in Fig. 5.7b, they cannot be ignored. A tunnel is 
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driven in a series of short advances, and it is the small displacements 

from each advance that are superimposed such that they combine to give the 

displacements shown in Fig. 5.7a. 

Two significant features of the total displacement patterns can be 

seen in Fig. 5.7a. First is the fairly large displacements that occur ahead 

of the tunnel face. Appreciable displacements occur up to about three tun­

nel diameters of the face. It appears that the displacements are concent­

rated along the path of least resistance, which in this case is towards the 

unsupported tunnel face. This soil movement towards the face in a zone 

ahead of the face results in unusually large components of longitudinal dis­

placements behind the face, which is the second significant feature of the 

soil displacement pattern. In fact, almost no appreciable displacement 

variations occur behind the leading edge of the liner; when a stiff liner 

is installed up to the face, it acts to "freeze" soil displacements at the 

values they had just before the face passed. 

The distributions of total and incremental displacements for the 

partially lined tunnel (analysis E) are given in Fig. 5.8. Because the 

amount of unsupported tunnel surface area is greater, the soil disp~acements 

in the vicinity of this tuneel are larger than those obtained for the fully 

lined tunnel. This is true for both the incremental and total displacements. 

Part a of Fig. 5.8 shows again that the stiff liner halts further 

displacements of the soil behind its leading edge. In this case, however, 

because of the unsupported tunnel wall more radial displacement occurs ahead 

of the liner than occurred in the fully lined tunnel case. Thus, the radial 

components of the displacements at locations far behind the face for this 

case are intermediate between those for the completely lined and unlined 
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tunnels. 

The radial displacements of the fully and partially lined tunnel 

openings are shown in Fig. 5.9. The dashed curves represent the displace­

ments of the corresponding unlined tunnels. The two sets of solid curves 

give the total displacement of the soil and liner. 

Figure 5.9 shows that the radial displacements of the fully lined 

tunnels are considerably smaller than the displacements of the unlined 

tunnels. Also, it is clear that most of the displacements occur ahead of 

the leading edge of the liner. The actual displacement of the liner is very 

small and there is little variation with position along the tunnel axis. 

This is primarily due to the stiffness of the liner. 

The corresponding displacements for the partially lined tunnel are 

also given in Fig. 5.9. Here the radial displacements are much larger, in­

dicating that an unlined gap of only one radius length can significantly 

affect these displacements. Again, almost all of the displacements occur 

ahead of the liner. In front of the tunnel face there is very little dif­

ference between the displacement for the partially lined tunnel and the un­

lined tunnel. 

The longitudinal displacements of a reference cross section as the 

tunnel approaches are given in Fig. 5.10 for the fully and partially lined 

tum.els in an elasto-plastic medium. Also shown are the displacements 

associated with the unlined tunnel in the same medium. 

Longitudinal displacements for the lined tunnels generally exceed 

those of the unlined tunnel, with ,ne exception. Longitudinal displacements 
~ 

of the tunnel face (z~ = O) for the fully lined tunnel are less than those 

of the unlined tunnel. This indicates that the liner can have a restraining 
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effect on longitudinal as well as radial displacements. 

The maximum displacement occurred at the centerline of the par­

tially lined tunnel and was approximately four percent of the tunnel radius. 

This compares to a maximum of two percent of the radius obtained in the 

linear elastic analysis. 

When the longitudinal displacement curves for the three fully 

lined tunnel analyses (linear elastic, elasto-plastic - ¢ = 0, elasto­

plastic - ¢; 0) are considered together in Fig. 5.lla, it is clear that as 

the size of the plastic zone ahead of the tunnel increases the displacements 

at all z increase. * The longitudinal displacements for analysis G (¢ + 0) 

are everywhere greater than those for analysis A (no plastic zone) and the 

displacements for analysis D (¢ • 0) are everywhere greater than those for 

analysis G. For the partially lined tunnels a similar relationship holds 

* only within the plastic zones (see z /a= O, Fig. 5.llb). In the elastic 

regions beyond the plastic zones the longitudinal displacements from the 

elasto-plastic analyses are smaller than the corresponding displacements 

from the linear elastic analyses. 

5.3.5 LINER THRUST 

The longitudinal distributions of liner thrust for both the fully 

and partially lined tunnels are given in Fig. 5.12. In addition, the thrusts 

predicted by two two-dimensional, plane strain solutions are shown at the 

far right in this figure. 

In the fully lined case, support provided by the soil ahead of the 

tunnel face reduces the external load and thus the thrust in the liner near 

the face. The effect of this natural support rapidly decreases with distance 
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behind the face resulting in an increase of liner thrust. At distances 

greater than approximately one tunnel diameter behind the face liner thrust 

is independent of longitudinal position. 

For the partially lined tunnel the weight of the unsupported soil 

is transmitted by arching to both the ground ahead of the face and the for­

ward end of the liner. Thus, that portion of the liner installed last 

carries the greatest load. With increasing distance behind the end of the 

liner, the thrust decreases to a minimum value. 

Figure 5.12 shows that after the face and liner have advanced one 

or two diameters beyond a given point the liner thrust at that point has 

stabilized and is no longer influenced by what takes place ahead of the 

liner. 

The magnitude of the thrust that remains in the liner is a function 

of the amount of radial displacement that has occurred both before and after 

the liner was installed. If no displacements whatsoever are allowed, the 

liner thrust should correspond to that due to the full overburden pressure, 

T = YHa. 

As shown in Fig. 5.12, the two-dimensional, plane strain solution 

with simulation of excavation (finite element analysis or analytical solution 

for excavation loading) yields higher values of liner thrust than the fully 

lined tunnel analysis. This is because the two-dimensional analyses do not 

consider the ground displacements occurring ahead of the tunnel face. The 

two-dimensional analysis that does not simulate excavation (finite element 

analysis in which overburden stress is applied to boundary of mesh with 

tunnel and liner already in place, or analytical solution for overpressure 

loading) yields an even more unrealistic value for liner thrust. 
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The values of liner thrust for various analyses are summarized 

in Table 5.2. 

5.4 ADDITIONAL COMMENTS ON RESULTS OBTAINED 

5.4.1 LONGITUDINAL EXTENT OF TRANSITION ZONE OF THREE-DIMENSIONAL 
RESPONSE AROUND THE TUNNEL FACE 

TUNNEL LINED FAR BEHIND FACE OR UNLINED 

An attempt was made to estimate the longitudinal extent of the 

zone around the heading of a circular tunnel (for K = 1) within which the 
0 

ground mass stress and radial displacement magnitudes are functions of the 

longitudinal position relative to the position of the tunnel face. It is 

difficult to delineate precise boundaries that separate this transition zone 

from the undisturbed ground ahead of the tunnel and the final equilibrium 

state behind the face, because these boundaries are not indicated by abrupt 

changes in medium behavior. The change from one state or type of behavior 

to the next is very gradual. Nevertheless, the picture obtained from the 

available data is that of a transition zone of three-dimensional response 

extending over a total distance of approximately six times the maximum radius 

of the plastic zone, R, that forms around the unlined tunnel. If no plastic 

yielding occurs this distance is approximately 6a, where a is the radius of 

the tunnel . Figure 5.13 illustrates the longitudinal extent of the zone and 

its relationship to the position of the advancing tunnel lace. 

To arrive at the indicated transition zone boundaries the distances 

from the tunnel face to 1) the point where the ground mass was first dis­

turbed from its original equilibrium and 2) the point at which final equil­

librium was attained were estimated from the stress and displacement data. 
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TABLE 5.2 

VALUES OF THE LINER THRUST COEFFICIENT, T/YHa 

Fully Lined Partially Lined 2-D Solution• 
Stress-
strain Leading Leading 

* B+ Behavior End Max. Final End Max. Fi.Dal A 

Linear-
elastic .570 .950 .87S .425 .425 .290 .9SJ 1.179 

Elaato-
plastic .725 .925 .800 .780 .780 .45-0 .984 1.004 
¢ - 0 

Ela.sto-
plastic .590 .930 .875 .350 .3S0 .JOO .913 1.179 
¢ ,; 0 

* Excavation simulated 

+ 
No excavation simulation 
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This data was obtained from analyses F and I previously described, and from 

four additional analyses of unlined tunnels (Fl, F2, F3, and Il) the mat­

rial properties for which are summarized in Table 5.3. The distances obtain­

ed are given in Table 5.4. For analyses F, Fl and Il the length of the 

finite element mesh was not sufficient to encompass the entire transition 

zone (e.g., the radius of the plastic zone was still increasing at the mesh 

boundary, seven tunnel radii behind the face). It was possible to estimate 

most of the values of the indicated distances for analyses Fl and Il, but 

for analysis F the length of tunnel considered was much too short to make 

any reasonable estimates. 

The quantities z
1 

and Zf (i.e., distance ahead of face to first 

stress change, and distance behind face to point where stresses become in­

dependent of face position, respectively) were obtained from the distributions 

of ground mass stresses. All of the stresses (dr, de, dz' ~rz) for a given 

analysis did not always indicate precisely the same values for Zi and Zf. 

Therefore, these quantities are given as ranges of values in Table 5.4. 

For each analysis the radial distribution of ground mass stresses, 

size of the plastic zone, and magnitude of tunnel wall displacem~nts were 

examined for points far behind the tunnel face beyond the transition zone. 

It is in this region, previously described as the zone of final equilibrium, 

that the available analytical solutions for elasto-plastic stress-strain 

behavior, such as those given by Deere, et al. (1969) and Ladanyi (1974) are 

supposedly applicable. 

Normalized values for the maximum plastic zone r adius, R, and maxi­

mum radial displacement of the tunnel wall, u, obtained from the finite ele­

ment analyses are compared to values calculated from the analytical solutions 
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TABLE 5.3 

MATERIAL PROPERTIES FOR THE UNLINED TUNNEL ANALYSES 

C 

¢ 
Case \I psi kPa degrees 

m 

F 0.49 14 96.5 0 

Fl 0.49 28 193 0 

F2 0.49 31.5 217 0 

F3 0.49 37 255 0 

I1 0.40 14 96.5 15 

I 0.40 14 96.5 30 

Additional data same as given in Table 5.1 
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TABLE 5.4 

DATA DEFINING EXTENT OF THREE-DIMENSIONAL ZONE -
TUNNEL UNLINED OR LINED FAR BEHIND FACE 

Z. z z 
R 3 (~) Analysis 1. u r 
a a a a a 

F Length of tunnel considered much too short to make an 

* Fl 2.55 7.65 8 8.0 8.0 

F2 2.25 6.75 6-7 6.5 

F3 1. 75 5.25 4-5 5 . 5 5.5 

* I1 2.6 7.8 8-9 8.0 

I 1.5 4.5 4-5 4.5 4 . 5 

* Estimated values 

z . = distance ahead of face to first stress change 
1. 

z = distance behind face to maximum radial displacement u 

Zr = distance behind face to maximum radius of plastic zone 

zf = distance behind face to point where ground stresses become 
independent of face position 

zf 
a 

estimate 

8 

6-7 

4-5 

7-8 

4-5 
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in Table 5 . 5. As in Table 5.4, values for finite element analyses F, Fl , 

and 11 are estimates. The "greater than" symbols in front of the values 

from finite element analyses F and 11 indicate that these quantities had 

not, within the length of tunnel considered, sufficiently approached a maxi­

mum value for an estimate to be made. 

In general, the finite element results are in good agreement with 

t hose given by the analytical solutions for unlined openings. It is felt 

that this lends credibility to both solution techniques and, at the same 

time , provides an indication that the finite element results for the tran­

sition zone are reasonable. 

TUNNEL LINED CLOSE TO THE FACE 

Similar observations for the tunnel lined near the face indicate 

that the liner significantly influences the longitudinal extent of the tran­

sition zone. It is estimated that this zone extends out ahead of the tunnel 

face to a distance of approximately three times the radius of the plastic 

zone that forms around the lined tunnel. Thus, this distance is a function 

of the position of liner installation, relative to the face, and the stiff­

ness of the liner as well as the magnitudes of the in situ stresses and the 

shear strength of the ground mass. Behind the tunnel face the transition 

zone seems to extend only to a distance of one tunnel radi us behind the 

leading edge of the liner. However, this estimate is based on the analysis 

of a relatively stiff liner and it may be that for a more compressible 

liner this distance would be larger. 
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TABLE 5.5 

COMPARISON OF RESULTS FROM FINITE ELEMENT AND ANALYTICAL 
SOLUTIONS FOR A TUNNEL LINED FAR BEHIND THE FACE 

R/a u/a 

F.E. C.F. F.E. C.F. 

> 6.0 12.0 > .125 .325 

2.55 2.7 .053 .055 

2.25 2.25 .045 

1.75 1.88 .034 .036 

2.6 2.55 > .088 .103 

1.5 1.5 .043 .050 

F.E. • Axisymmetric finite element analysis, points far behind face 

C.F. = Two-dimensional closed form analytical solutions (e.g., Deere, 
et al, 1969, and Ladanyi, 1974) 
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5.4.2 GROUND LOSS INTO TUNNEL 

Longitudinal displacements of the ground int.o the tunnel face and 

radial displacements occurring ahead of the face result in overexcavation, 

i.e., removal of a volume of ground greater than the undisturbed tunnel 

volume (area of face times length of advance). The volume of overexcavation 

plus the volume of ground that displaces radially into the tunnel behind the 

face constitute the volume of lost ground which contributes to settlements 

of the ground surface above the tunnel. 

Table 5.6 gives the overexcavation volumes obtained from the par­

tially and fully lined tunnel analyses, along with those from the correspond­

ing unlined tunnel analyses. The volumes per unit length of tunnel have 

been expressed as percentages of the full tunnel volume per unit length. 

As shown in Table 5.6 the total volume of overexcavation has been divided 

into two components; one resulting from longitudinal displacement toward 

the tunnel face (column heading "Long.") and another resulting from radial 

displacements ahead of the face (column heading "Rad."). 

The data indicate that the volume of overexcavation increases as 

the shear strength of the ground mass decreases. There is little difference 

between the total volumes obtained from the unlined and partially lined 

tunnel analyses, but when the tunnel is fully lined the total volume of 

overexcavation is sharply reduced. Note also that for the fully lined 

tunnel analyses approximately 65 percent of the total volume resulted from 

longitudinal displacements ahead of the face. 

Hansmire (1975) gives values of lost ground volumes calculated 

from field measurements of displacements around tunnels in various types of 
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TABLE 5.6 
i, 

VOLUME OF OVEREXCAVATION 

Unlined Partially Lined Fully lined 
Stress-Strain 

Behavior Long. Rad. Total Long. Rad. Total Long. Rad. Total 

Linear Elastic 1.2 1.4 2.6 1.3 1.4 2.7 0.9 0.5 1.4 

Elasto-plastic 
¢ = 0 2.1 2.4 4.5 2.2 2.5 4.7 1.2 0.8 2.0 

Elasto-plastic 
¢ • 30 2.2 1.6 3.8 1.9 1.5 3.4 1.1 0.5 1.6 

, .. 
Expressed as a percentage of tunnel volume/unit length 
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ground, and discusses in detail the various sources of lost ground (one of 

which is overe.xcavation) and the relationship between ground lost into the 

tunnel and gettlement of the ground surface. 

5.4.3 GRDUND-LINElt INT!RACTION 

It is clear from the discussion in Section 2.3.1 and the results 

presented in this chapter that the methods and details of construction, 

principally the poaition of liner installation relative to the face, can 

strongly influence the magnitude of the initial excavation loading ground 

pressure oa the linar (initial• just after construction). One of the 

priaary advantaae• to be gained by uaing the three-dimensional or axi­

sywaetric finite element analyses with simulation of construction is the 

direct considaratiou of these factors. 

Two-dimeneional solutions (analytical and finite element with 

construction simulation) yield results that compare favorably with the fully 

lined tunnel case because the displacement these solutions ignore, that 

which occurs ahead of the face, is quite small when the liner is kept up to 

th• face. However, the same two-dimensional solutions considerably over­

estimate liner thrust and displacement for the partially lined tunnel cases 

because the displacements they do not account for are quite large in these 

cases. 

Two~dimensional solutions modified to account for prior displace­

ments (Section 2.3.1) tend to underestimate the pressure on the liner, and 

thu.9 liner thrust and displacement, if based on the longitudinal displace­

ment distribution of the unlined tunnel. This can be illustrated by exam­

ining the results from analyses of cases A, B, and C. From the longitudinal 
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distribution of displacements obtained from case Cit was found that at the 

face and at a point one radius behind the face, u /u s 0.32 and 0.85, re-
p t 

spectively. Substituting these values into Eqn. 2.2 it is found that the 

liner thrust coefficients (P
1

a/P
0

a = Ttt'Ha) for the fully lined and par­

tially lined tunnels should be 0.668 and 0.147, respectively. Thus, this 

approach significantly underestimates the values, 0.875 and 0.290, found 

when actual advancement of the tunnel was simulated. Figure 5.9 shows the 

longitudinal displacement distributions that should have been used instead 

• 
of the displacements for the unlined tunnel. As was mentioned in Section 

2.3.1 the analyses that give these displacements also give the liner re­

sponse, eliminating the need for solution methods such as Eqn. 2.2. 

Three-dimensional finite element analyses, of which the axisymmet­

ric is a special case, allow a more complete treatment of the advancing 

tunnel problem than is possible with two-dimensional methods. However, as 

was learned during the course of this investigation, simply expanding the 

analysis to three dimensions is not sufficient. Also important are such 

factors as simulation of the advancement of the tunnel (as was illustrated 

in Fig. 2.12) and, in certain cases, the details of excavation and liner 

installation. 

Most soft ground tunnels are constructed with the aid of a tunnel­

ing shield behind or within which the liner is assembled and then installed. 

The shield and the method of liner installation, in the way that they affect 

radial ground displacements, are important to liner performance. 

The importance of the construction details in analysis of soil­

liner interaction is demonstrated here through the consideration of two case 

studies where field data were available. This is accomplished by comparison 
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of the results from analyses of advancing tunnels with displacement data 

reported by Ward (1969) and Muir Wood (1969) for two tunnels in London Clay. 

The radial displacements obtained from the finite element analyses were, of 

course, a function of the elastic modulus assigned to the simulated ground 

mass. The modulus values assumed in these analyses are within the range of 

values given by Ward (1971) for London Clay. The object of these comparisons 

is a qualitative study of the shield-liner-ground behavior interrelationship, 

rather than an attempt at analytical reproduction of field data. 

The comparison with Ward's data (1969) is shown in Fig. 5.14. None 

of the displacement distributions from the lined tunnel analyses would fit 

the measured data unless an unreasonably low modulus was assumed for the clay. 

Instead, it was found that the best agreement was obtained with the displace­

ments from the unlined tunnel analyses (broken and dashed curves). This is 

not too suprising when the stiff nature of the London Clay, the details of 

the shield, and the method of liner installation are considered. The shield 

was fabricated with a bead 9 in. long by 0.5 in. thick (23 cm x 1.3 cm) 

around the upper 300 degrees of its cutting edge. In addition, the cast 

iron liner was normally assembled within the shield, leaving a 1.5 in. (3.8 

cm) gap between the liner and the claywhenthe shield advanced. This void 

was filled with cement grout soon after the shield advanced. 

The measured displacements given in Fig. 5.14 are for a point 

1.6 ft (49 cm) outside the tunnel springline, but they clearly show the 

effects of these construction details. The first radial displacements occur 

about one tunnel diameter ahead of the face, but they remain small (uf) un­

til the bead on the shield passes, whereupon they almost double as the clay 

moves into the void behind the bead. The restraining effect of the shield 
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on the displacements is clearly indicated, but it is also apparent that the 

shield only delays and does not prevent further displacement (u ). Figure 
u 

5.14 shows that as the tail of the shield passes, the clay begins to move 

again, this time into the gap left by the skin of the shield (u~. It ap­

pears that these additional displacements occur either before the grout is 

injected or before it has had time to set. Once the grout does set the liner 

becomes effective and begins to take on load. The additional displacement, 

u
1

, of the liner then occurs. It is not clear from the data at what point 

the liner becomes effective, so it is difficult to estimate u1 from the 

displacement curve. 

The comparison with Muir Wood's data (1969) is shown in Fig. 5.15. 

Here it was found that the best agreement was obtained with the displacements 

from the partially lined tunnel analyses (liner one radius behind face). 

Typical displacements for an unlined tunnel analysis are shown in Fig. 5.15. 

It can be seen that it significantly overestimates the displacements behind 

the tunnel face. 

Relative to the maximt.nn measured value, the displacements occurring 

ahead of the tunnel are quite large. However, as the shield's cutting edge 

passes the soil is pushed outward again. This suggests the presence of a 

bead or similar protrusion on the forward end of the shield. In terms of 

the ground displacement-ground pressure relationship, the reduced radial 

displacement at the face was taken as uf rather than the maximt.nn displace­

ment occurring ahead of the face. The subsequent rapid inward displacement 

over the length of the shield indicates that the clay moved into a void 

This displacement corresponds to u . 
u 

space there. For this tunnel each 

ring of precast concrete segments was expanded against the soil after leaving 
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leaving the shield. Thus, the liner becomes effective a lmos t innnediately 

and the potential displacement u is essentially eliminated . Almost all 
g 

displacements occurring behind the shield correspond to u
1

. 

It appears that analyses based on the assumption t hat the shield 

acts as an extension of the liner (tunnel lined to face) would have under­

estimated the ground displacements and thus overestimated t he initial ground 

pressures acting on the liner in these two cases. 

In general, however, the importance of the above construction de­

tails also depends on the behavior of the ground mass . In the above examples 

the soil was very stiff and possessed a relat i vely high shear strength. 

Thus, at the depths considered little or no plastic yieldi ng occurred and 

the potent~al total displacement, u , was small. The void spaces between po 

the soil and shield-liner were large compared to u and t hus the shield po 

and liner did little to prevent displacement before a maj or portion of upo 

had occurred. A shield with given bead and tailskin t h icknes ses (tb, t
5

) 

will not hold the potential displacements u and u to less than their maxi-u g 

mum values (function of soil properties) unless (tb +t s)< (uu + ug)max' 

In the first example above, (tb + t) > (u + u) and t hus the shield 
s - u g max 

and liner had almost no effect on the ground displacements . In the secorid 

example t , and thus u, was effectively zero, but t b > u and so the shield 
s g - u 

did little to prevent the displacement u. u 

Iri summary, the followi~g can be stated. In order t o correctly 

model a given tunneling problem with the finite element method the ground 

conditions, shield configuration, and .method of liner i ns t allation must be 

considered. One way of doing this, of course, is to dire ctly model these 

factors. However, it is a considerable task to effect ive ly model the shield 
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and details of liner installation, and so a reasonable approach is to adjust 

the position of the simulated liner with respect to the face to correspond 

to the anticipated behavior of the real tunnel. The length of unlined tun­

nel that should be left between the face and the liner depends on the rela­

tive magnitudes of the two quantities (tb + t) and (u + u) • It is s u gmu 

only when the above factors combine to yield (tb +ts)<< (u + u) that u gmu 

the assumption of the shield acting as an extension of the liner is valid. 

If there is no gap between the liner and the soil (u = 0) the g 

liner becomes effective immediately after leaving the shield. Thus, if the 

shield does nothing at all to prevent radial displacements this system could 

be modeled by assuming the liner extends to within a shield's length of the 

tunnel face. At the other extreme, if there are no voids around the shield, 

or a void is present but tb << uu, it could be assumed that the shield acts 

as an extension of the l i ner and the system could be modeled by extending 

the simulated liner up to the face. 
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CHAPTER 6 

FINITE ELEMENT ANALYSIS OF TWO PARALLEL TUNNELS - EXCAVATION LOADING 

6.1 GENERAL REMARKS 

The construction of a tunnel modifies the state of stress and 

displacement in a zone around the tunnel. The size of this zone depends 

on: ground conditions -- type of soil or rock, in situ stresses, and prop­

erties of the medium; geometric parameters - depth and radius of the tun­

nel; and characteristics of the support system. If two parallel tunnels 

are constructed far apart such that their zones of influence do not over­

lap, then the individual tunnels can be considered separately and analyzed 

as such. However, if the zones of influence of the two tunnels overlap, 

the behavior of each of the tunnels will be different from that of a single 

tunnel, as some degree of interaction between the two tunnels will take 

place. Interaction of the tunnels will affect the state of stress and dis­

placement around the tunnels, ground surface displacements, and support 

loads. It can generally be expected that the surface settlements resulting 

from the construction of two tunnels will be greater than the sum of the 

settlements resulting from each tunnel alone. The stress distribution 

around two tunnels and support loads are too complex to lend themselves to 

a general statement and they require a comphehensive study. 

There are two distinct problems related to the design and con­

struction of two parallel tunnels in soft ground: a) additional loads and 

distortions are imposed on the lining of the first tunnel due to passage 

of the second tunnel, and b) the ground settlements due to excavation of 

the second tunnel may be appreciably greater than those that occurred during 
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excavation of the first tunnel, and may result in damage to structures and 

utilities at the ground surface. 

In the design and construction of two parallel tunnels, designers 

must determine whether or .not the distortions and load increases on the 

lining of the first tunnel due to passage of the second tunnel will be 

great enough to cause unacceptable damage to the lining. In many cases, 

the installation of t he permanent lining for the first tunnel is delayed 

until after the second tunnel has passed. Finite element analyses provide 

a means of evaluating the influence of the excavation of the second tunnel 

on the loads and distortions of the first. 

Ground settlements due to excavation of a second tunnel are usuall: 

greater than the settlements due to excavation of the first tunnel for two 

reasons: a) the first tunnel may disturb the soil around and above the secon< 

tunnel so that the soil will be weaker and have a greater tendency to dis­

place into the second tunnel as it is mined, or the soil will have increased 

in volume during passage of the first tunnel and will undergo volume de­

creases during passage of the second tunnel, and b) the pillar between the 

two tunnels will be more highly stressed and less confined than the abut­

ments adjacent to single tunnels. The pillar will therefore undergo greater 

vertical compression than the abutments of a single tunnel. 

Linear elastic f i nite element analyses do not model the disturb­

ance of the soil and volume changes in the soil as they occur around tunnels 

in real soils. However, the results from this type of analysis can be used 

to investigate the compression of the pillar and abutments around two par­

allel tunnels and its influence ,on ground movement. Linear analyses will 

therefore be of use in evalua ting field measurements and determining if the 
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additional ground movements due to the excavation of two parallel tunnels 

are related to pillar compression or to other causes. 

An important factor that will affect the distribution of stresses 

and displacements around the two tunnels is the sequence of excavation and 

liner installation in each tunnel. Regarding the sequence of construction, 

the following situations are considered herein: 

1. Two tunnels constructed simultaneously - In this case, the 

conditions encountered by each tunnel will be similar barring 

some possible cross variation of the ground or surface condi­

tions. Ideally this case will be symmetric about a vertical 

plane passing through the mid-distance between the two tun­

nels. The tunnels will be advancing through stressed media 

with the stress and displacement conditions ahead of the 

tunnels altered by the approach of both the tunnels. 

2. Second tunnel constructed adjacent to an existing tunnel - In 

this case, the second tunnel is constructed within a medium 

which has higher stresses than encountered at the same loca­

tion if the first tunnel was not present. Also, the material 

properties of the medium may have been modified by the first 

tunnel. The construction of the second tunnel will change 

the support load on the first tunnel. 

In the case of two tunnels being driven simultaneously, the faces 

of the two tunnels need not necessarily be at the same longitudinal position; 

the face of one tunnel can be ahead of the face of the second tunnel by a 

certain distance. This may well be the rule rather than the exception, as 

two tunnels cannot be expected to advance at the same rate. 
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The results of Chapter 5 have shown that a transition zone of 

three-dimensional stress exists immediately ahead and behind the face of 

an advancing tunnel. The size of this zone depends on the type of medium 

and the support condition. The zone of significant stress and displacement 

changes can be considered to be approximately three tunnel radii ahead of, 

and also behind, the face when the ground remains elastic and the tunnel is 

unlined. Based on this information, the following cases can be considered 

regarding the distance between the faces of two tunnels. If the distance 

along the tunnel line between the faces of two tunnels is less than three 

tunnel diameters, the zones of influence around the tunnel faces overlap 

and interaction between the tunnels is taking place at the tunnel faces, 

Fig. 6.la. The state of stress near the face of each tunnel is clearly a 

function of longitudinal position and any two-dimensional analysis of this 

case will suffer from drastic approximations. When the distance between 

the faces of the two tunnels is about one tunnel diameter or less, the 

stress condition around the tunnels can be reasonably considered to be the 

same, as in case 1 discussed above, and a two-dimensional analysis may be 

a good approximation. 

For the case of the distance between the tunnel faces being greater 

than three tunnel diameters, the zones of influence around the tunnel faces 

are separated, Fig. 6.lb. This case is similar to case 2 discussed above 

and which is illustrated in Fig. 6.lc. The first tunnel encounters stress 

conditions, and produces distributions of stresses and displacements in its 

zone of influence, identical to that of a single tunnel. The second tunnel 

encounters a stress field which hasbeenmodified by the passage of the first 

tunnel and it is subjected to support loads which are basically different 
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than those of the first tunnel. The passing of the second tunnel itself 

also alters the stress condition and modifies the support load in the first 

tunnel. The tendency is for increase in the support loads due to the pass­

ing of an adjacent tunnel. 

The subject of interaction between parallel tunnels has been 

studied by several authors who have reported the results of field measure­

ments or analytical studies of the problem. This brief discussion of some 

of the literature on the subject is not intended as a comprehensive review 

and must be considered incomplete. 

Barla and Ottoviani (1974) have used the finite element method to 

study the case of two parallel unlined tunnels excavated simultaneously. 

They used linear elastic and nonlinear variable moduli material properties 

in their analyses. They reported results of a parametric study which covered 

a range of geometric parameters of: depth to diameter ratios of 0.75 to 3.0; 

pillar width to diameter ratios of 0.25 to 1.0; and two tunnel diameter 

values of 19.7 and 39.4 ft (6 and 12 m). Their results seem to indicate 

that the interaction be~ween two tunnels becomes negligible for values of 

the pillar width to tunnel diameter ratio of W/D = 1.0 or greater. They re­

port large stresses in the zone between the two tunnels for small values of 

pillar width ratios, W/D ~ 0.5. Zones of tensile stresses develop around 

the tunnels at shallow depths, H/D ~ 1.0. 

Peck, et al., (1969) have discussed the problem of two parallel 

or intersecting tunnels of different diameters at adjacent or stacked rela­

tive positions. They have given some general guidelines for liner design 

for two tunnel systems. 

Fotieva and Sheinin (1966) have developed a method for analysis 
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of a tunnel driven adjacent to an existing lined tunnel. They have applied 

this method of analysis to an example problem of a lined tunnel of 19.7 ft 

(6 m) diameter at a depth of 118 ft (36 m). The medium and the liner were 

assigned elastic material properties of rock and concrete, respectively. 

A second tunnel of the same diameter was excavated adjacen~ to this existing 

tunnel at a central distance of 26 ft (8 m) which gave a pillar width to 

tunnel diameter ratio of W/D = 0.33. The driving of the second tunnel 

caused additional stresses in the liner of the existing tunnel equivalent 

to a maximum thrust coefficient of T/yHa = 0.24 and a maximum moment coef­

ficient of M/yHa2 = 0.0053. These are significant additional liner forces 

which occur on the pillar springline of the first tunnel. 

Several researchers have reported the results of displacement 

' 
measurements made during and following construction of two or more parallel 

tunnels. Deere, et al., (1969) gave an excellent summary of the data avail­

able prior to 1969. In most cases measurements were made as a second tunnel 

was driven past a test section set up in an existing tunnel or in one 

whose heading was a considerable distance ahead of the test section. 

Ward and Thomas (1965) reported on two parallel tunnels constructed 

in London Clay. These particular tunnels were lined with precast concrete 

segments which had a thickness of 9 in. (23 cm). The tunnels were approxi­

mately 13 ft (4 m) in diameter and were separated by a pillar of 8 ft (2.4 m) 

minimum thickness (W/D = 0.6). Passage of the second tunnel caused an addi­

tional maximum distortion of the first tunnel of 6.D/D = 0.12 percent. In 

addition, the average radial pressure acting on the first tunnel was in­

creased by 8.33 psi (57 kPa). After 40 months the total maximum distortion 

of the first tunnel was 0.32 percent and the total average radial pressure 

' 
· , 
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was estimated to be approximately 48 psi (331 kPa). 

Terzaghi (1942) reported measurements taken on tunnels constructed 

in Chicago Clay. These tunnels had a horseshoe shaped cross section and 

were lined with steel ribs and liner plates. The tunnels were 20 ft (6.1 m) 

in diameter and were constructed at a distance of 28.5 ft (8.7 m) center-to­

center, giving a pillar width of 8.5 ft (2.6 m) and W/D • 0.425. As the 

second tunnel was mined past, the springline nearest the second tunnel dis­

placed outward 0.2 in . (5 mm) while the opposite springline moved outward 

only 0.04 in. (1 mm). This yielded a distortion of the first tunnel of 

~D/D = 0.10 percent. 

Contact pressures between the soil and the concrete invert of the 

first tunnel were measured using Carlson cell slabs. As the second tunnel 

passed on the north side, the contact pressure under the north rib of the 

first tunnel increased and thereafter remained greater than that under the 

south rib which was farthest from the second tunnel. 

Settlements of the street surface were also recorded as the two 

tunnels were advanced. Different settlement profiles were obtained for 

different spacings between the two tunnels. When the tunnels were con­

structed so that there was no pillar between them (W/D • 0), settlements 

due to the first tunnel were consistrntly greater than those due to the 

second tunnel. Ground displacements around the second tunnel were re­

stricted by the presence of the firs t tunnel's liner. When the tunnels 

were mined leaving a pillar betNeen t hem (W/D a 0.425) support provided by 

the first tunnel's l i ner was not available. Instead the clay above the 

) second tunnel had to be support~d by the relatively weak clay pillar. As 

a result, settlements due to the second tunnel were everywhere greater than 
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those due to the first tunnel. 

Recently, Sauer and Jonuscheit (1976) have reported stress measure­

ments in the pillar separating two parallel tunnels in rock. The two tunnels 

were driven simultaneously and the stresses were measured as the tunnel head­

ings approached the test section. Some of these stress measurements are com­

pared with the results of the present study in later sections of this chapter. 

Presented in this chapter are the results of a study on the behav­

ior and interaction of two parallel circular tunnels. The objectives of 

this research are: 

1. The study of the interaction of two parallel tunnels and the 

effect of such interaction on stresses and displacements 

around the tunnels and on support loads. 

2. The parametric study of two tunnel systems to determine the 

effect of various parameters such as distance between the 

centers of the tunnels, depth, and construction sequence. 

This is accomplished by performing a series of finite element analyses of 

the two tunnel system for ranges of various parameters and using the con­

struction simulation technique. The results are presented in two sections. 

In the first section the main parameter under study is the width of the 

pillar between the two tunnels. In the second section the influence of the 

sequence of construction of the two tunnels is discussed . In both sections 

the effects of the tunnel depth and support conditions are also considered. 

6.2 METHOD OF ANALYSIS 

6.2.1 THE FINITE ELEMENT MESH 

It is known .that the stress condition around the face of a tunnel 
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is three-dimensional, and only a three-dimensional analysis can directly 

give an accurate pi cture of tunnel behavior. Unfortunately, at present 

such analyses are very costly and difficult to perform. For some problems, 

such as that of a s i ngle tunnel of circular cross section, the difficulties 

can be greatly reduced by considering the axisymmetric case. However, this 

approach is obviously not available for the study of two tunnel systems. 

For the type of study performed here, for which a large number of analyses 

are required, it i s no t economically feasib l e to conduct three-dimensional 

analyses. Therefore, this investigation was restricted to two-dimensional, 

plane strain analyses . For t unately, information obtained from two-dimen­

sional analyses can be useful when evaluated in combination with the know­

ledge of the effects that can occur at the tunnel face. 

A schematic repres entation of the problem along with the symbols 

used for various dimensions in this study are given in Fig. 6.2. For the 

study of the influence of pillar width, it was assumed that the two tunnels 

were constructed simultaneously, thus making the problem symmetrical about 

a vertical plane t hrough the pillar centerline. This approach has the ad­

vantage of reduc i ng the region analyzed by one half. The disadvantage is 

that it allows consideration of only two construction sequences. To study 

the influence of constr uction sequence it was necessary to analyze the entire 

region. The number of anal yses of this type wer e held to a minimum by con­

sidering only one pillar width. 

Finite el ement meshes, composed of two-dimensional, plane strain, 

quadrilateral finite elements with four corner nodes, were developed for an 

appropriate region of the ground mass containing the two tunnels. Typical 

plots of the automa tically generated finite element meshes for half the 
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region and the whole region are shown in Figs. 6.3 and 6.4, respectively. 

Initially the finite element model is subjected to the self weight 

of the medium to simulate the in situ stress condition. At this stage the 

base of the finite element model has a displacement boundary condition allow­

ing horizontal movement but restricting vertical displacement, and the sides 

have a force boundary condition, consisting of a triangular force distribu­

tion corresponding to the lateral stresses resulting from the weight of the 

medium. By varying the rate of increase of this boundary lateral force with 

depth different K conditions can be simulated. A value of K = 0.5 was 
0 0 

used throughout this study. 

The excavation of the tunnel(s) is achieved at subsequent steps of 

the analysis. At the excavation step the base and sides of the finite ele­

ment mesh are fixed and no further movements are allowed. The only excep­

tion is when just half of the region is analyzed. Then the vertical bound­

ary representing the plane of symmetry is allowed vertical movements. 

Using a two-dimensional, plane strain model, the excavation of a 

tunnel is simulated by deactivating the elements within the tunnel peri­

meter. This way a full face excavation is simulated. Regarding the liner 

placement in a two-dimensional model, the options are limited to two extreme 

conditions: either the elements comprising the tunnel liner are activated 

at the same step as the excavation is simulated; or, they are activated at 

a subsequent step of the analysis. In the first case it is assumed that no 

displacements take place prior to the liner coming into contact with the 

surrounding medium. This case approximates the installation of the tunnel 

liner right at the tunnel face in a manner such that ground displacements 

are held to a minimum. In the second case it is assumed that all of the 
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potential instantaneous displacements of the medium occur prior to the liner 

coming into contact with the surrounding medium. This case can be considered 

to simulate either, the installation of the liner far behind the tunnel face, 

outside the zone of instantaneous displacements; or, the installation of the 

liner near the face but such that no measures are taken to prevent occurrance 

of the instantaneous ground displacements before ground-liner contact. For 

the first case the tunnel is referred to as being fully lined. For the sec­

ond case the tunnel can be referred to as being unlined, because these analy­

ses consider only the instantaneous displacements of the medium and with re­

spect to these displacements the simulated tunnels of this case are effect­

ively unlined. 

6.2.2 MATERIAL BEHAVIOR MODELS 

For the majority of the analyses performed the ground mass was 

assumed to be linear elastic. Some selected cases were also analyzed with 

elasto-plastic properties for the ground mass. For these analyses the modi­

fied Drucker-Prager yield condition, as described in Section 5.2.3, was 

utilized. 

6.2.3 CONSTRUCTION SEQUENCE 

Basically, two types of sequence of excavation and liner placement 

are considered. For the case of simultaneous excavation of two tunnels only 

half of the region is analyzed and only two cases are considered: both 

tunnels are lined far behind the face; or both tunnels are lined right at 

the face (the liners are placed instantaneously upon excavation). In the 

case of two tunnels being excavated at different stages, the whole region 
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containing the two tunnels is used in the analysis and the number of possible 

construction sequence combinations is greater. The sequences of excavation 

and liner placement considered in this study are given in Table 6.1. It is 

important to note that in the case of the liner being installed at the head­

ing, the two-dimensional analyses do not account for the ground displace­

ments that occur ahead of the tunnel heading and therefore can only be con­

sidered approximations. 

6.3 RESULTS OF ANALYSIS 

6.3.l INFLUENCE OF PILLAR WIDTH 

In the first part of this study it is assumed that the two tunnels 

are being advanced together at or near the same rate, such that the two head­

ings are adjacent or separated by only a small longitudinal distance(< lD). 

For this condition it is reasonable to consider the problem to be one of 

simultaneous excavation of the two tunnels. For simultaneous excavation 

the problem is symmetrical about a vertical plane through the pillar center­

line and only half the region needs to be analyzed. Both tunnels were assumed 

to be either lined right at the face (lined tunnel analyses) or far behind 

the face (unlined tunnel analyses). 

Two tunnel depth, H, to diameter, D, ratios were considered: H/D • 

1.5 for a shallow tunnel with depth of cover equivalent to one tunnel dia­

meter, and H/D = 5.5 for a moderately deep tunnel with a depth of cover 

equivalent to five tunnel diameters. Tunnel depth, H, is measured from the 

ground surface to the tunnel axis. Three values of pillar width, W, were 

considered: W/D = 1.0, 0.5, and 0.25 . 



Case 

A 

B 

C 

D 

Simula.tion Step 1 
Excavation of 
First Tunnel 

line first tunnel 

line first tunnel 

first tunnel 
unlined 

first tunnel 
unlined 

TABLE 6.1 

SEQUENCES OF CONSTRUCTION 

Simulation Step 2 
Excavation of 
Second Tunnel 

line second tunnel 

second tunnel 
unlined 

line first and 
second tunnels 

line first tunnel, 
second tunnel 
unlined 

Conditions Modeled 

Existing first tunnel with permanent lining 
or first tunnel heading far ahead of second 
tunnel heading with lining installed at the 
heading. Second tunnel lined at the heading. 

Same as case A, but second tunnel lined far 
behind the heading. 

First tunnel lined far behind the heading, 
but ahead of the second tunnel heading. 
Second tunnel lined at the heading. 

Same as case C, but second tunnel lined far 
behind the heading. 

..... 
-..J 
-..J 
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STRESSES AROUND TWO PARALLEL TUNNELS 

It is assumed that the in situ stresses in the undisturbed medium 

(prior to tunnel excavation) are due to the self weight of the medium. Thus, 

at any given point the maximum principal stress is vertical and has a mag­

nitude of P • dv = yz, where Y is the unit weight of the medium and z is the 

depth of the point below the ground surface. Similarly, the minimum prin­

cipal stress is horizontal and has a magnitude of Q = dH = ~Yz, where K
0 

is 

the coefficient of earth pressure at rest. The distribution of in situ 

principal stresses thus consists of a set of horizontal contour lines show­

ing a linear increase of magnitude with depth. Creation of one or more 

openings (tunnels) in the medium will alter these distributions in a region 

around the openings. 

Figures 6.5 and 6.6 show the distribution of stresses around two 

parallel unlined tunnels and two parallel lined tunnels, respectively. The 

distributions of the maximum and minimum principal stresses and the maximum 

shear stresses in a region around the tunnels are shown by non-dimension­

alized stress contours (stress at a point divided by YH, where His the 

depth to the tunnel axes). Here the stress distributions are synnnetrical 

about a vertical plane through the pillar centerline and, thus, stresses 

around the right tunnel only are shown. 

From the unlined tunnel analysis it was found that to the right 

of the tunnel axis (as in Fig. 6.5) the stress distributions are very similar 

to those for a single tunnel. For a single unlined opening and K
0 

= 0.5 the 

maximum principal stress concentration at the springline is P/YH = 2.5 and 

at the crown and invert P/YH = 0.5. Figure 6.5, which is for the narrowest 

pillar considered, shows that the maximum principal stress concentrations 
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at the abutment springline and the crown and invert do not differ appreciably 

from these values. For the wider pillars the differences are even less. 

The stress distributions obtained from one of the analyses for 

which it was assumed that both tunnels were lined are shown in Fig. 6.6. 

It was assumed in the lined tunnel analyses that tunnel excavation and liner 

installation occur instantaneously and simultaneously. For this reason 

relaxation of the medium surrounding the tunnel is a minimum in these analyses. 

What stress redistribution that does occur is directly related to deformation 

of the liners. There would be no change in the stress distributions from 

the in situ state if the liners were perfectly rigid and incompressible (all 

analyses assume the no slippage condition at the ground-liner interface). 

The stress distributions in Fig. 6.6 were selected for presenta­

tion because they demonstrate the greatest amount of inter&ction of all the 

lined tunnel analyses performed. However, as with the unlined tunnels the 

interaction that has occurred has had little effect on the distribution of 

stresses to the right of the tunnel axis. 

As would be expected, the stress distributions for both the un­

lined and lined tunnel cases differ most from those for single tunnels in 

the vicinity of the pillar and the pillar springlines of the two tunnels. 

Pillar stresses from the two tunnel analyses are sununarized in Fig. 6.7. 

In this figure horizontal and vertical stresses, OH and dV' normalized with 

respect to yH, are given for points at the center and edge of the pillar. 

Figure 6.7 shows that for the unlined tunnels the vertical stress 

is maximum at point Band minimum at point A, while the horizontal stress 

is maximum at point A and minimum (zero) at point B. For the lined tunnels 

both the vertical and horizontal stresses are maximum at point Band minimum 

at point A. 
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The numbers given along the right side of Fig. 6.7 represent the 

stress coefficient values that apply when the pillar width has been increased 

to such an extent that the two tunnels no longer interact. Relative to these 

values the curves indicate that at a pillar width ratio of one the condition 

of independent behavior of the two tunnels has almost been achieved. It 

appears, however, that a pillar width ratio of at least two would be re­

quired before all indications of interaction disappear. 

Also shown in Fig. 6.7 are stress coefficient values obtained from 

Savin's (1968) solution for an infinite medium containing two unreinforced 

circular openings. Agreement between the two solution techniques is very 

good. 

Jhe results of field measurements of stresses at the center of the 

pillar, reported by Sauer and Jonuscheit (1976), are also shown in Fig. 6.7. 

These tunnels had a diameter of 25.25 ft (7.7 m) and were const~ucted in 

rock at a depth to diameter ratio of H/D = 2.4 with a pillar width to dia­

meter ratio of W/D = 0.71. The in situ horizontal and vertical stresses in 

the rock mass were approximately equal (K = 1). The measured horizontal 
0 

and vertical stresses at the center of the pillar appear to agree well with 

the finite element results (for K
0 

= 1 the finite element analyses, whicb 

assumed K
0 

= 0.5, would have given 08 /YH ~ 1.0). Measurements of stresses 

near the pillar springlines were also reported by Sauer and Jonuscheit. 

However, the final vertical stre~ses were less than the in situ stress 

which is in contradiction to the finite element results. This reduction 

of stresses can be attributed to rock loosening during excavation, a phe­

nomenon not simulated in the analyses. 

Interaction between the two tunnels is most severe for the unlined 

tunnel case. As the spacing between two such tunnels is reduced, the vertical 
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stress in the pillar increases rapidly while the horizontal confining stress 

approaches zero. While the unconfined strength of the medium may be suf­

ficient to withstand the stress concentrations mobilized around a single 

tµnnel, or two widely spaced parallel tunnels, stability of the pillar, and 

thus of the two openings, is likely to be jeopardized by the large stress 

differences that result for a narrow pillar. 

Interaction between two lined tunnels was also evident from the 

analyses performed. For this case, however, the pillar stresses were con­

trolled by the deformation of the tunnel liners, and because the liner dis­

placements were small, the changes in medium stresses were also small. Fig­

ure 6.7 shows that as pillar width is reduced there is a gradual increase 

of vertical stresses in the pillar. However, this increase is matched by 

a corresponding increase of horizontal stresses. Thus, the stress differ­

ence is almost unaffected by pillar width. The high horizontal stresses 

in the pillar result because under the K = 0.5 stress condition the pillar 
0 

springlines of the two liners are forced outward, toward each other, thus 

causing horizontal comp~ession of the pillar. 

Figure 6.8 illustrates the extent of the plastic zones that form 

around the unlined and lined tunnels when the analyses consider a medium 

assigned elasto-plastic material properties. For the lined tunnel analyses 

it was assumed that excavation and liner installation occur simultaneously 

and therefore that no relaxation of the medium is allowed prior to liner 

installation. Under these conditions plastic zone formation is tied directly 

to liner deformation. A relatively stiff and inflexible liner may prevent 

yielding entirely. Here the liner was sufficiently flexible to allow a 

small amount of yielding to occur. Had the liner been more flexible, or 
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had a small amount of ground relaxation been allowed prior to liner instal­

lation, the extent of the resulting plastic zone would be somewhere between 

the two extremes shown in Fig. 6.8. 

TUNNEL DISPLACEMENTS 

Normalized displacements of the unlined and lined tunnel openings 

for the synnnetrical case are plotted in Figs. 6.9 through 6.12 (for right 

hand tunnel only). Also shown in these figures are the corresponding single 

tunnel displacements. Note that because the displacements of the unlined 

tunnels were so much larger than those of the lined tunnels two different 

displacement scales are used. 

Figures 6.9 and 6.10 show that as the pillar width between two 

unlined tunnels is reduced, the downward displacements of the upper half of 

the tunnels increase. This is a result of the vertical compression of the 

pillar, which is greater for a narrow pillar than for a wide pillar. Above 

the springlines there is little difference between the displacements for 

W/D = 1.0 and those for a single tunnel when the tunnels are located at a 

shallow depth. However, for deep tunnels this difference is more pronounced, 

indicating that the minimum pillar width at which the two tunnels can be 

said to act independently of each other increases with depth of the tunnels. 

Pillar width seems to have its greatest effect on the vertical displacement 

component. The greatest variation of horizontal displacements occurs on 

the pillar side of the tunnel where there is slightly less inward displace­

ment as the pillar width is reduced. Pillar width has almost no effect on 

displacements in the lower right hand quadrant of the tunnels. 

Figure 6.11 gives the displacements of the shallow (H/D = 1.5) 

lined tunnels. At this depth the weight of the overburden is not sufficient 



Scale: 

o/a 
yH/t\ 

0 2 

187 

4 

-+- Single tunnel 
o W/0 = l .0 

D W/0 = 0. 5 

tl W/0 = 0.25 

FIGURE 6.9 UNLINED TUNNEL DISPLACEMENTS FOR 
THE SYMMETRICAL CASE (H/D • 1.5) 



... 
0 

a. 

Scale 

8/a 
yH/Mc 

0 2 4 
I I I 

188 

-+- Single Tunnel 

o W/0 = 1.0 

o W/0 =0.5 
--1:l-- W/ D = 0.25 

-•- W/0 = 0.5, Elasto- Plastic 

FIGURE 6.10 UNLINED TUNNEL DISPLACEMENTS FOR 
THE SYMMETRICAL CASE (H/D • 5.5) 

-C: 
Q) 

E -::::, 
.0 
<( 



Scale: 

ofa 
yH/Mc 

0 l 

189 

2 

- Single tunnel 
o W/0 = 1.0 

o W/0 = 0. 5 

6 vJ/D = 0. 25 

FIGURE 6.11 LINED TUNNEL DISPLACEMENTS FOR 
THE SYMMETRICAL CASE (H/D • 1.5) 



190 

to prevent the upward rise of the liner. This effect is more pronounced 

for two parallel tunnels than for a single tunnel. It is also clear that 

the upward displacement is greater for a narrow pillar than for a wide 

pillar, and that the pil lar springline of the liner moves upward more than 

the abutment springline . 

Displacements of the deep (H/D • 5.5) lined tunnels are given in 

Fig. 6.12. At this depth the weight of the overburden is great enough to 

prevent the rise of the liner and a more symmetrical deformed liner shape 

results. At this depth the interaction of two parallel lined tunnels is 

indicated primarily by the horizontal displacements of the liner next to 

the ~illar. This effect is also observed for the shallow tunnels (Fig. 

6.11). Under the K
0 

condition assumed, a tunnel liner will be forced out­

ward at the springlines until sufficient passive pressure is built up to 

balance the vertical pressures acting at the crown and invert. This re­

action is indicated by the single tunnel displacements in Figs. 6.11 and 

6.12. These figures also indicate that when two parallel lined tunnels are 

constructed simultaneously with a pillar width of approximately one tunnel 

diameter or less they will interact so as to yield smaller outward displace­

ment of the tunnels' pillar springlines than would result for a single tun­

nel. In addition, the necessary passive pressure at the two pillar spring­

lines is mobilized with less displacement of each springline as the pillar 

width is reduced. 

Tunnel displacements obtained from the corresponding elasto-plastic 

analyses are given in Fig. 6.10. It can be seen that the plastic yielding 

illustrated in Fig. 6.8 has led to increased displacements at all points 

around the unlined tunnel perimeter for both the single tunnel and two 

tunnel (W/D = 0.5) cases. 
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The effect of pillar width on tunnel displacements is also illus­

trated in Fig. 6.13 in which the horizontal and vertical diameter change 

coefficients have been plotted versus W/D. The resulting curves show again 

that for unlined tunnels the vertical diameter change is much larger than, 

and is influenced to a greater degree by pillar width than, the horizontal 

diameter change. On the other hand , for the lined tunnels the vertical 

and horizontal diameter changes are approximately equal in magnitue (but of 

opposite sign) and equally influenced by pillar width. 

Diameter change coefficients for the two elasto-plastic analyses 

(single tunnel and two parallel tunnels with W/D = 0.5) of unlined tunnels 

are also given in Fig. 6.13. It can be seen that the additional displace­

ments due to plastic yielding are much greater around the springlines than 

around the crown and invert. The elasto-plastic A°tt is approximately 130 

percent greater than the elastic value, while the elasto-plastic .ta.Dy is 

only about 20 percent greater than the elastic value. The additional dis­

placements around the springlines are so much greater than those around the 

crown and invert because, as Fig. 6.8 shows, there is much more plastic 

yielding around the springlines. 

In each plot of Fig. 6.13 the corresponding values for a single 

tunnel, which is equivalent to either of two wi dely spaced parall el tunnels, 

are given along the right-hand side. Convergence of the plotted curves to 

these values provides an indi cation of t he pillar width required to elim­

inate interaction, with respect to di ameter changes at least, between two 

parallel tunnels. Most of the curves have almost reached the single tunnel 

values at W/D = 1.0. And it appears that if the curves were extrapolated 

beyond W/D = 1.0, they would all reach the single tunnel values at pillar 
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widths of no more than W/D = 2.0. The curves also indicate that the pillar 

width required to eliminate interaction is greater for deep tunnels than it 

is for shallow tunnels. 

LINER FORCES AND MOMENTS 

Under the condition of simultaneous construction assumed in this 

part of the study the interaction between two parallel tunnels leads to 

distributions of liner forces and moments that, in general, do not differ 

greatly from the distributions for a single tunnel. Maximum normalized 

liner force and moment coefficients are summarized in Table 6.2. 

Interaction between the two tunnels led to only slightly larger 

thrust values at most points around the liners. Relative to the single 

tunnel case the greatest thrust increases occurred in the vicinity of the 

pillar side of the crown and invert. However, in all cases the maximum 

thrust occurred at or near the pillar springline, and here the changes were 

.small. Table 6.2 shows that for two shallow tunnels the maximum thrust 

values were actually less than the single tunnel maximum, while for two 

deep tunnels the maximum thrust was only slightly larger than that for a 

single tunnel at the same dep th. 

The liner bending moment distributions, shown in Fig. 6.14 and 

Table 6.2, exhibit the greatest variation from the single tunnel case, but 

the general trend is toward smaller, not larger, bending moments due to 

interaction. The interaction effect on bending moments is greatest at the 

liners' pillar springlines where reduced displacements have led to a sig­

nificant reduction in moments. However, at the liner invert, where the 

maximtnn bending moments are mobilized, the moments have been reduced to a 

lesser extent. 
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TABLE 6.2 

MAXIMUM LINER FORCE AND MOMENT COEFFICIENTS 

T/yHa M/(~ V/(Ha 

Shallow Deep Shallow Deep Shallow Deep 

Single tunnel .859 .871 -.0105 -.0099 -.0237 -.0218 

W/D = 1.0 .834 .866 -.0091 -.0088 -.0220 -.0214 

W/D = 0.5 .837 .881 -.0086 -.0088 -.0214 -.0205 

W/D = 0.25 .853 .905 -.0083 -.0087 -.0211 -.0205 
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SURFACE DISPLACEMENTS 

For two adjacent and parallel tunnels it seems reasonable to 

expect that the settlements at the ground surface would consist of two 

components. The first component would be equal to the settlements re­

sulting from the superposition of the two single tunnel settlement troughs , 

assuming that the two tunnels are so spaced that their individual troughs 

overlap. The second component would consist of additional settlements 

resulting from interaction of the two tunnels (pillar shortening, increased 

crown displacements), assuming that the two tunnels are close enough toget­

her so that interaction will occur. These two components are illustrated 

in Fig. 6.15. 

The additional settlement due to two tunnel interaction is illust-

rated in Figs. 6.16 and 6.17 wherein the surface displacement profiles ob­

tained from the finite element analyses are compared to profiles obtained 

by superposing two single tunnel settlement curves. Settlements were norma-

lized with respect to S which is the maximum settlement from the single 
max 

tunnel analyses. 

Figure 6.16 gives the comparison for the analyses of shallow, 

unlined tunnels at three different pillar widths. This figure indicates 

that the additional surface settlement due to interaction between the two 

tunnels is small at a pillar width ratio of W/D = 1.0, but increases as 

the pillar width is decreased. The pattern of increasing additional set­

tlements over the tunnel crown (x/a = 0) corresponds to the pattern of 

the vertical diameter changes shown in Fig. 6.13. 

The comparison for the analyses of deep, unlined tunnels is shown 

in Fig. 6.17. Here the additional surface settlement due to two tunnel 
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interaction also increases as the pillar width decreases. However, the 

amount of additional settlement for W/D = 1.0 is already quite large and 

there is only a slight increase as the pillar width is reduced. This 

pattern can be related to the relationships between displacements of the 

tunnel openings and pillar width in Fig. 6.10 and between vertical dia­

meter change and pillar width in Fig. 6.13. Because of the depth of these 

tunnels the width of the individual ssttlement troughs is large and, for 

two parallel tunnels at the spacings considered, tha amount of overlap at 

the ground surface is extensive. 

Interaction effects on ground surface displacements can also be 

illustrated by examining the settlement trough volumes (Hansmire, 1975). 

The ratio obtained by dividing the interaction settlement volume by the 

settlement volume for a single tunnel, t:::.V/V, was calculated for the un-
s 

lined tunnel analyses. The interaction settlement volume is obtained by 

subtracting the settlement volume for two single tunnels from the settle­

ment volume for the two tunnel case. These ratios are plotted versus 

pillar width in Fig. 6.18. The curves also show that the additional set­

tlements due to two tunnel interaction increase as the pillar width is 

reduced. The data indicate that the volume ratio is greater for deep 

tunnels than for shallow tunnels. If this relatioship is valid it means 

that the deeper two tunnels are to be located the wider the the pillar 

between them must be if no interaction, with respect to surface displace­

ments, is to occur. In Fig. 6.18 the absence of interaction effects on 

surface settlements is indicated by t:::.V/V = O. The trend of the shallow 
s 

tunnel curve suggests that this condition is satisfied at a pillar width 

ratio of approximately W/D = 2.0. The deep tunnel curve indicates a much 



(/) 

> 
' > 
<J 

202 

2.0r------,-----~-------------

1.5 

1.0 

0.5 

Analysis 
Field Measurement 
Hansmire (1975) 

...... 

-0-E lasto -Plastic 
H/0 = 5.5 

...... , 0 

' ,s, ,-0 ' ,, ,~d 
' 0 '0 

'a-- ' 
00 'n, 

----:--0--
HID =t.S 

00~--~.,__,---~---...L...------L----....J 
0.25 0.50 0.75 1.00 1.25 

W / D 

FIGURE 6.18 INTERACTION SETTLEMENT VOLUME AT GROUND SURFACE 
VERSUS PILLAR WIDTH 



203 

wider separation is required before interaction effects on surface displace-

ments cease. 

Also shown in Fig. 6.18 are the volume ratios calculated by 

Hansmire (1975) from field measurements of surface settlement over two 

parallel tunnels constructed in Washington, D. C. The data from the 

Washington Metro indicates that the interaction settlement volume ratio, 

6V/V, for dense sands is two to three tjmes larger than predicted from 
s 

elastic theory. The differen ~e is primarily due to soil volume decreases 

and disturbance that occurred in the sands and gravels but which were not 

modeled by the elastic analyses. 

6.3.2 INFLUENCE OF CONSTRUCTION SEQUENCE 

In this section the behavior of the two tunnel system is studied 

for various sequences of construction of the two tunnels. The emphasis 

here is on the case of a tunnel being constructed parallel and adjacent to 

an existing tunnel, or the case of two tunnels being constructed simultan­

eously with the heading of the first tunnel far ahead of the heading of the 

second tunnel. Both of these two tunnel systems behave similarily and no 

distinction is made between them subsequently in this study. 

Each of these analyses consisted of three solution steps. In the 

first step the initial stress state was simulated. The initial stress state 

consisted of the vertical and horizontal stresses caused by the weight of 

the medium with the coefficient of lateral stress K = 0.5 used in all the 
0 

cases. The two subsequent steps simulated the excavation of the tunnels and 

liner installation. 

Four sequences of construction and lining of the two tunnels are 
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possible. These construction sequences are given in Table 6.1. In the 

last column of the table are given the actual conditions to which the 

analyzed sequences correspond. 

All the cases in Table 6.1 were analyzed for a shallow tunnel 

with depth to diameter ratio of H/D = 1.5 and a deep tunnel with H/D = 5.5. 

In all the cases a central distance of 1.5 diameters was used. This is 

equivalent to a pillar width to diameter ratio of W/D = 0.5. While linear 

elastic material properties were assigned to both the medium and liner in 

all cases, case B was also analyzed with elasto-plastic properties assigned 

to the medium. 

STRESSES AROUND TWO TUNNELS CONSTRUCTED SEPARATELY 

It is generally expected that the stresses at the abutment side 

of each tunnel will differ only slightly from those of a single tunnel. 

However, on the pillar side of each tunnel higher stresses are expected, as 

the two tunnels interact. The degree of overstress in the pillar, to a 

varying extent, depends on a combination of factors sueh as depth, tunnel 

diameter, pillar width, and the support condition which in these analyses 

are equivalent to the fully lined or unlined conditions. The sequence of 

construction also has some influence on the stress condition in the pillar. 

For cases A and D the stress distributions around the tunnels 

resemble closely those of two lined and two unlined tunnels, respectively, 

as simulated in the previous section of this chapter; being almost symmet­

rical about a vertical plane bisecting the pillar. In case D the first 

tunnel is excavated and left unlined with the resulting stress distribution 

of a single tunnel. At the end of this step the liner is installed but 
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remains stress free until the next step when the second tunnel is excavated 

and left unlined. The excavation of the second tunnel only slightly modi­

fies the stresses around the first tunnel because the liner in this tunnel 

inhibits further displacements and stress changes. A similar situation 

exists in analysis case A but with both the tunnels lined at the time of 

excavation. 

The final stress distributions around two deep tunnels for cases 

Band Care shown in Figs. 6.19 and 6.20, respectively. 

In case B the first tunnel was excavated and lined, and subse­

quently the second tunnel was excavated, but left unlined. The medium 

stresses around the first tunnel are similar to those found when both tunnels 

are lined, and the stresses around the second tunnel bear some resemblance 

to those stresses found when both tunnels are unlined. It is evident, how­

ever, that each tunnel has had an effect on the other and that interaction 

between the two tunnels has taken place resulting in new stress distribu­

tions • 

A similar effect is observed for the stresses in the medium 

surrounding the two tunnels of case C. Figure 6.20 shows that although 

both tunnels were lined in this analysis the stress distributions are al­

most mirror images of those in Fig. 6.19. This occurs because the liner 

of the first tunnel was not installed until after all medium displacements 

associated with the creation of this opening had occurred. The second 

tunnel was lined immediately upon excavation. 

The distributions of stresses around two shallow tunnels for the 

case B construction sequence are given in Fig. 6.21. The influence of the 

ground surface can be seen be comparing Figs. 6.21 and 6.19. Although 
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there are many similarities in form of the distributions for the shallow 

and deep cases, there is a greater range of normalized magnitudes associated 

with the shallow tunnels. This is because the stress increase with depth 

over a given vertical distance (e.g., one tunnel diameter) is more pro­

nounced near the ground surface than at great depth. Figure 6.21 illust­

rates the presence of two small regions of tensile minimum principal stress, 

one at the ground surface and the other at the crown of the unlined tunnel. 

Similar tensile stress regions were observed for all shallow tunnel analyses 

that considered unlined tunnels. These stresses were always of very small 

magnitude, usually less than 1.0 psi (7 kPa) and never greater than 2.0 psi 

(14 kPa). The tensile stresses above the crown of the unlined tunnels are 

oriented in a nearly radial direction and act in combination with relatively 

small circumferential stresses. Figure 6.21 shows only one zone of tensile 

stresses at the ground surface. There were usually two such zones observed, 

symmetrically located to the left and right of the unlined tunnels. These 

tensile stresses are undoubtedly the result of the lateral (horizontal) com­

ponent of the surface displacements. 

The zones of plastic yielding that formed around the tunnels in 

the elasto-plastic analysis of case Bare shown in Fig. 6.22. In this 

analysis the first tunnel was lined simultaneously with excavation. The 

liner provided sufficient support to the medium to prevent yielding initially. 

When the second tunnel, which was left unlined, was excavated the medium 

surrounding it yielded. This induced additional displacement of the liner 

of the first tunnel and the two small zones of yielding on the left side of 

this tunnel. Increased horizontal passive pressures exerted by the outward 

deflecting right springline of the liner helped keep the stress difference 
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FIGURE 6.22 PLASTIC YIELD ZONE AROUND TWO TUNNELS 
FOR CASE B (SEE TABLE 6.1) 
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small in a region right next to the springline. As a result the medium 

did not yield at that location. The implications of the plastic yielding 

on the behavior of the two tunnel system will be discussed in later sections. 

DISPLACEMENTS OF AN EXISTING TUNNEL DUE TO SECOND TUNNEL 

The displacements of a tunnel can be separated into two components; 

the overall displacement of the tunnel as a rigid body; and, relative dis­

placements or distortions of the tunnel liner shape. The overall displace­

ment of a tunnel can be defined by the centerline shift along horizontal 

and vertical directions. In a single tunnel the centerline shifts upward. 

This upward shift is caused by an upward force resultant, due to excavation 

of the tunnel, which acts on the ground mass and is always present in the 

analysis when the weight of the medium is considered. The magnitude of this 

upward shift diminishes with increasing depth. The tunnel shape distortions 

can best be specified by two diameter change values; horizontal diameter 

change at springline level; and, vertical diameter change. In a single tun­

nel, for K < 1, the springlines tend to move outward resulting in horizon-o 

tal diameter increase, but the crown and invert tend to move inward causing 

a vertical diameter decrease. 

The passing of a second tunnel causes some additional displacement 

in the liner of the existing tunnel. The final displacements of the existing 

tunnel after the excavation of the second tunnel are given in Fig. 6.23 for 

two depths for the cases A and B. It can be seen from Fig. 6.23 that the 

excavation of the second tunnel causes some significant additional displace­

ments in the liner of the first tunnel, especially in the region around the 

pillar springline of the liner. The values of the diameter change and 
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centerline shift for the cases A and B along with the single tunnel values 

are given in Table 6.3. It can be seen that, relative to the single tunnel 

case, case B, in which the second tunnel was left unlined, produces additional 

displacements of opposite sign to those of case A, in which the second tunnel 

was lined upon excavation. Also, in case A the centerline shifts away from 

the pillar, but in case B the centerline shift is towards the pillar. 

The additional displacements due to the second tunnel in case A 

tend to reduce the displacement of the existing tunnel (compare single tun­

nel and case A in Table 6.3) due to the fact that the second tunnel is lined 

upon excavation, providing lateral support to the pillar. The deformation 

of the pillar under the added load due to excavation of the second tunnel 

tends to push the existing tunnel away from the pillar and create the favor­

able displacement condition. 

In the case B the second tunnel is left unlined after excavation, 

thus the pillar displaces toward the second tunnel causing additional dis­

placements which increase the original displacements of the existing tunnel 

(compare case Band single tunnel in Table 6.3). This is an unfavorable 

displacement condition for the existing tunnel. 

The displacements of the second tunnel depend on the stress in­

crease caused by the first tunnel in the zone that the second tunnel is to 

be excavated in. The magnitude of these stress increases are related to the 

amount of medium displacements allowed during the construction of the first 

tunnel; the more displacements allowed in the first tunnel, the higher the 

stresses are in the zone through which the second tunnel is to be excavated. 

For this reason the second tunnel in case C shows higher displacements than 

the fisrt tunnel (referring to liner displacements). 
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TABLE 6.3 

TUNNEL DISPLACEMENTS DUE TO PASSAGE OF SECOND TUNNEL 

Horizontal 
Case H/D Diameter 

Change 7( 

Single 1.5 1.037 
Tunnel 

5.5 1.086 

A 1.5 0.707 

5.5 0.869 

B 1.5 1.344 

5.5 1.535 

5. 5# 1.910 

Vertical 
Diameter 
Change * 

-1.330 

-1. 381 

-1.015 

-1.215 

-1. 600 

-1.803 

-2.064 

Horizontal 
Centerline 

Shift+ 

0.112 

0.180 

-0.165 

-0.220 

-0.222 

Vertical 
Centerl3-.9.e 

Shift"" 

0.533 

0.088 

0.979 

0.148 

0.567 

-0.053 

-0.134 

Displacements given in the form of normalized coefficients, (6/a)/(YH/M ), 
C where M = constrained modulus. 

C 

* Positive values mean diameter increase 

+ Positive values mean shift away from pillar 

Positive values mean upward shift 

Elasto-plastic analysis 

(Cases A and Bare described in Table 6.1). 
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In summary, the magnitude and direction of the additional dis­

placements imposed on the liner of an existing tunnel due to the excavation 

of an adjacent parallel tunnel strongly depend on the support conditions 

and the magnitude of displacements allowed in the second tunnel. The most 

favorable condition for the first tunnel displacements occurs in case A. 

However, in the analysis of this case no displacements are allowed in the 

second tunnel prior to ground-liner contact and this can not be expected 

to occur in reality. As the heading of the second tunnel advances, acer­

tain amount of displacement does occur ahead of the heading. Any amount 

of additional displacements allowed during the construction of the second 

tunnel before the liner in this tunnel becomes effective is likely to ad­

versely affect the liner in the existing tunnel. 

CHANGES IN LINER FORCES DUE TO SECOND TUNNEL 

The bending moments and thrust in the liner of the existing tunnel 

after excavation of the second tunnel are shown in Fig. 6.24. Also shown in 

this figure are the liner forces for the existing tunnel prior to excavation 

of the second tunnel (identical to liner forces in a single tunnel). It can 

be seen that the magnitudes of the bending moments and thrusts in the exist­

ing tunnel are modified by the passing of the second tunnel and that the 

most significant changes occur in a region around the pillar springline (PSL). 

Again, the magnitude of displacements in the second tunnel strongly influ­

ences the changes of liner forces in the existing tunnel. In case A, where 

the liner in the second tunnel restricts the medium displacements, there is 

a reduction of moments in the existing tunnel, whereas in case B, where the 

second tunnel is left unlined and no restrictions are imposed on the medium 
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displacements, the bending moments in the pillar springline are increased 

by almost 70 percent and the thrust increases by 18 percent (H/D = 5.5). 

The additional bending moments and thrusts in the existing tunnel 

due to excavation of the second tunnel are shown in Fig. 6.25 for all the 

cases listed in Table 6.1. For the cases C and D, the liner for the first 

tunnel is activated in the analysis only when the second tunnel is being 

excavated, therefore the only liner forces present are caused by the passage 

of the second tunnel and these are the values shown in Fig. 6.25. This fig­

ure clearly shows the completely opposite nature of the liner force changes 

in cases A and C where the second tunnel is lined as opposed to cases Band 

D where the second tunnel is unlined, again emphasizing the importance of 

the displacement control during the construction of the second tunnel. 

Also shown in Fig. 6.25 are the results for case B when the medium 

is assigned elasto-plastic properties. This elasto-plastic analysis exhibits 

the same pattern of moment and thrust change as in case B with elastic proper­

ties. However, the magnitudes of the liner bending moment changes at PSL 

are much greater in this case; about 150 percent increase as compared with 

70 percent for the elastic analysis. 

The bending moments and thrusts for the second tunnel are shown 

in Fig. 6.26 . Only in cases A and C was the second tunnel lined upon ex­

cavation. From Fig. 6.26 it can be expected that the liner forces in the 

second tunnel will be somewhat different than the liner forces in a single 

tunnel. However, the differences are small. It is also seen from this 

figure that the magnitude of medium displacements allowed during the ex­

cavation of the first tunnel have some influence on the expected liner 

forces in the second tunnel (case A as compared to case C). 



0 
0 

218 

1.0 
I \ 

HID= 5.5 / \ 

Cose 8 ?ct/ B-·, \ 
Elasto- Plastic /~ \ \ 

I/---,\ \ ,,, ~ 

Cases A,8,C and D 
Given in Table 6.1 

'\"' ; \', ____ p 

\ ''---1 
\ I 

-1.0-----"---------'-----~----i-:::-..:~--J---...L-----I 
ASL IN PSL CR ASL 

0.2r-----.---..-----,---~~---,-----,--------

0.1 

Cases A,8,C and D 
Given in Table 6.1 

8, Elasto - Plastic 

-O. I '--------------i.---..1.---.....1----.1......--~--__,JL---
ASL IN PSL CR 

FIGURE 6.25 ADDITIONAL LINER FORCES IN EXISTING TUNNEL DUE TO 
EXCAVATION OF SECOND TUNNEL 

ASL 



219 

1.6 
H/ D = 5.5 I. 5 

CR 

)PSL 1.2 Single Tunnel 0 

Case A -- t:. .ASL,,.-

Case C 
,, □ 

0.8 \ 'm 
~\ 

,,j 
IN 

~ 
I 

0.4 
0 1 0 ~ 

0 
)( 

N 
0 
:I: >-.. -0.4 

' ~ 
-0.8 

□ -1.2 

-1.6 
ASL IN PSL CR ASL 

(a} Moment 

1.2 

1.0 

0.8 

0 
:I: 0.6 >-.. 
' t-

0.4 H /D = 5.5 1.5 ~ 

Sii:tgle Tunnel 0 Case A and C Given 

0.2 Case A -- 6 in Table 6.1 
Case C ------ 0 

o-----------~---------------...... _________ ...._ __ --' 
ASL IN PSL CR ASL 

(b} Thrust 

FIGURE 6.26 LINER FORCES FOR SECOND TUNNEL 



220 

SURFACE SETTLEMENTS DUE TO SECOND TUNNEL 

It is generally expected that the surface displacements result­

ing from the excavation of the second tunnel should be somewhat greater 

than the surface displacements caused by a single tunnel. This can be 

attributed to interaction between the second tunnel and the first tunnel 

(primarily pillar shortening) and to the disturbance of the ground caused 

by excavation of the first tunnel. This disturbance takes the form of 

altered stresses, i.e., stress differences greater than in situ, and reduced 

shear strength of the ground through which the second tunnel is mined. The 

larger stress differences and reduced shear strength result in vertical 

compression of the ground on either side of the second tunnel that is 

greater than that for a single tunnel. Also, the displacements into the 

second tunnel are larger than for a single tunnel driven through undisturbed 

ground. The larger displacements at the tunnel level are translated into 

surface settlements for the second tunnel which are greater than the settle­

ments for a single tunnel. 

Most of the cases analyzed here, with the exception of case C, do 

not exhibit any significant amount of additional displacements of the ground 

surface due to excavation of the second tunnel over an equivalent single 

tunnel. This can be attributed to the fact that linear elastic material 

properties are used and, in the case of lined tunnels, the displacements 

that would normally occur prior to liner installation are not considered. 

However, when the medium is assigned elasto-plastic material properties 

the analysis shows that the excavation of the second tunnel causes sig­

nificant additional displacements. 

The surface displacements for case B with elasto-plastic material 
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properties are shown in Fig. 6.27. Since the first tunnel is lined, the 

settlement trough for this tunnel is much narrower than the settlement 

trough over the second tunnel, which is considered to be an unlined tunnel. 

The additional settlements due to the second tunnel appear to be maximum 

over the pillar, but fairly wide spread. The maximum settlement due to 

the second tunnel is 13 percent greater than the maximum settlement for a 

single tunnel. As the depth of the tunnels decrease the additional settle~ 

ments are expected to be more concentrated over the second tunnel. 
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CHAPTER 7 

FINITE ELEMENT ANALYSIS OF GROUND-LINER INTERACTION 

FOR LOCALIZED GRAVITY LOADING 

7. 1 GENERAL REMARKS 

If the tunnel liner does not come into contact with the surround­

ing ground until after all or most of the instantaneous ground displacements , 

of the type illustrated in Fig. 2.1 of Chapter 2, have occurred the initial 

pressures acting on the liner due to excavation loading will be nonexistent 

or very small. Such a liner can still be subjected to significant external 

pressures as a result of events occurring over either the short term or long 

term that affect the ground mass surrounding the tunnel. Such events include 

the passage of an adjacent parallel tunnel, additional, time-dependent inward 

movement of the surrounding ground mass, the application of an external pres­

sure at the ground surface resulting in the overpressure loading condition 

at the tunnel level, and the development of what is called herein the local­

ized gravity loading condition. 

Following excavation the distribution of stresses in the ground 

mass surrounding the tunnel opening can be such that the shear strength of 

the soil or rock is exceeded to the extent that the force of gravity is suf­

ficient to cause portions of the soil or rock to be dislodged and fall onto 

the liner. The weight of this material, which usually comes to rest on or 

against only a portion of the liner circumference, constitutes the localized 

gravity load. 

The distributions and magnitudes of the external pressures applied 

to the liner for the localized gravity loading and excavation loading condi-
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tions are quite different. Thus, it is reasonable to expect that liner 

responses for the two types of loading are also quite different. A liner 

designed for excavation loading may not be suitable for conditions that 

correspond more closely to those of localized gravity loading. 

Presented in this chapter are the results of a finite element 

study of localized gravity loading induced ground-liner interaction for a 

circular tunnel. The objective of this research was the determination of 

liner response as a function of ground and liner stress-strain properties 

for various gravity loading distributions and a range of flexibility and 

compressibility ratio values. Although the results obtained are directly 

applicable only to the ground-liner systems and conditions analyzed, a pro­

cedure is given for estimation of liner response for other ground-liner 

combinations and other, more complex, loading distributions. 

The results presented in the following sections of this chapter 

were obtained from a series of two-dimensional, plane strain, linear elastic 

' finite element analyses of a circular tunnel. Like the analytical solutions 

described by Szechy (1966) and the finite element work of Dixon (1971) the 

analyses did not simulate the actual development of the localized -gravity 

load on the liner. Instead, as illustrated in Fig. 2.14 of Chapter 2, the 

localized gravity load was modeled by applying forces to the liner elements 

in the finite element mesh. In this investigation of the general problem 

the distribution and magnitude of the load were treated as variables for 

study. The other variables considered were the ground-liner flexibility 

and compressibility ratios. Although these ratios were derived for ground 

and liner behavior under conditions of excavation loading and, strictly 

speaking, have no meaning for localized gravity loading, they provide a 
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convenient means for expressing the elastic stress-strain properties and 

dimensions of the liner and surrounding ground mass. 

Initial analyses of both the full slippage and no slippage ground­

liner interface conditions indicated that, in general, the full slippage 

condition yielded the most unfavorable distributions of liner forces and 

moments. Therefore, only the full slippage condition was given further 

consideration. 

In all analyses it was assumed that the localized gravity load 

exerted a unifom vertical pressure over a given portion of the liner. 

However, it is shown that the principle of superposition can be used to 

obtain approximate results for nonuniform loadings. In addition, results 

in the fom of liner thrust and bending moments are presented in chart 

fom to allow detemination of these values, by interpolation, for com­

pressibility and ;lexibility ratio combinations other than those analyzed. 

7.2 METHOD OF ANALYSIS 

7.2.1 THE FINITE ELEMENT MESH 

The finite element mesh used in this study is illustrated in 

Fig. 7.1. It is a circular mesh with its outer boundary completely fixed. 

Because the presence of the ground surface was not simulated, the influence 

of this boundary is not included in the results of analysis. However, due 

to ,the natu~e of the problem it is doubtful that the ground surface bound­

ary would have much influence on liner response beyond that which, for 

shallow tunnels, affects the formation of the localized gravity load acting 

on the liner. 

For the localized gravity loading condition, as analyzed, it is 
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important that the liner be allowed to separate from the surr ounding 

ground mass in the area of the applied load. Under actual condi t ions 

separation occurs within the ground mass above the liner. For the ideal­

ized model analyzed the mass of material resting on the l i ner i s simulated 

by a distribution of forces applied to the liner elements, while t he ground 

mass elements around the liner are left intact. Thus, separati on in the 

model occurs at the ground-liner interface. If separati on i s no t allowed 

in the analysis the applied load is carried by both the l iner and the 

adjacent ground (in tension) instead of by the liner alone. 

To insure the proper separation, and slippage condi t i on, a special 

type of finite element, here called an interface element (Goodman, 1968; 

Ghaboussi, et al., 1973), was inserted between the liner e lements and the 

ground elements around the perimeter of the liner. The properties of these 

elements can be specified so as to obtain any desired combination of normal 

stress-normal strain response (including zero tension) and shear s tress­

shear strain response (including full slippage). 

7.2.2 THE GEOMETRY OF LOADING 

The localized gravity load acting on a l i ner can be described by 

a set of four parameters; a. , ~ , A and P. The parameters a. , ~ , and A define 

the extent, position and direction of loading and P represents the magnitude 

of the pressure exerted on the liner by the localized gravi t y load. In 

greater detail, these parameters are defined as follows: 

a. = angle encompassing that portion of the liner subjected to 

external pressu_re, P 

~ = angle measured counter-clockwise from horizontal (right spring­

line) to a. bisector 
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A= angle measured counter-clockwise from horizontal to line 

along which the external pressure, P, acts 

P = W/A, where Wis the applied force (weight) and A is the area, 

in plane normal to direction of loading, over which the force 

is applied. 

These parameters are illustrated in Fig. 7.2. 

In all of the finite element analyses performed it was assumed 

that S =A= 90 degrees. That is, that the applied pressure, P, acts ver­

tically downward and synnnetrically about a vertical plane through the tun­

nel centerline. 

Because the analyses did not consider the ground surface boundary 

and because it was assumed that the surrounding ground mass was homogeneous 

and isotropic, the results obtained from the analysis of a given loading 

geometry are also valid for certain other loading geometries, as illustrated 

in Fig. 7.3. Any number of other loading geometries (Sand A values) can be 

obtained from a single case analyzed by rotating the distributions of liner 

response obtained for that case through the appropriate angleµ. Thus, in 

Fig. 7.3 the liner responses at points A, A', and A", for example, are all 

the same. Note that rotation does not alter the value of a nor the relation­

ship between Sand A. 

7.3 RESULTS OF ANALYSIS 

7.3.1 GENERAL 

In this investigation of ground-liner interaction under conditions 

of localized gravity loading the main parameters considered were the geometry 
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of loading (principally the value of a) and the relative stiffnesses and 

flexibilities of the ground and liner (expressed in terms of the compress­

ibility and flexibility ratios C and F). Four a values (a= 180, 120, 90, 

and 60 degrees), three C values (C = 0.04, 0.32 and 2.56), and five F values 

(F = 4, 16, 32, 128 and 512) were considered. 

An initial series of analyses (a= 180 degrees, C = 0.32, F = 32) 

was performed to determine the influence of the slippage condition at the 

ground-liner interface on liner response; and to illustrate the diffenence 

between results obtained from a) analyses in which ground-liner separation 

in the area of loading was allowed and b) analyses in which this separation 

was not allowed. 

~igure 7.4 illustrates the distributions of liner thrust and bend­

ing moments obtained from analyses of the full slippage and no slippage 

conditions. It can be seen that the full slippage condition yielded bend­

ing moments of approximately twice the magnitude of those obtained for the 

no slippage condition. In addition, the external shear stresses acting on 

the liner under the condition of no slippage resulted in liner thrusts that 

were greater than the full slippage values in the vicinity of the crown and 

less than the full slippage values everywhere else. The difference between 

the full and no slippage thrusts is greater at the invert than at the crown 

because the no slippage external shear stresses act over the entire lower 

half of the 'liner but only over a _portion of the upper half due to separa­

tion of the liner from the ground mass there. 

Figure 7.5 illustrates the importance of including liner separa­

tion in the analysis of localized gravity loading. In the analysis in which 

no separation was allowed a significant portion of the applied load was 
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transmi tted across the ground-liner interface to the ground above the liner 

instead of being carried entirely by the liner, resulting in a serious un­

derestimation of liner thrusts and bending moments. 

7.3 . 2 VARIATION OF LINER RESPONSE WITH LOADING GEOMETRY 

Di stributions of liner displacements, external passive pressures 

(P ) , thrusts and bending moments typical of those obtained from the analyses p 

of localized gravity loading are illustrated in Fig. 7.6. 

The angular extent of liner separation from the surrounding ground 

mass (separation angle, n) is defined by that portion of the liner over 

which P = 0. It was found that the extent of gravity loading, i.e., the 
p 

value of a, has little influence on the separation angle, which in Fig. 7.6 

is approximately 2 x 60 = 120 degrees. This angular distance is much more 

sensitive to liner flexibility and compressibility than it is to the value 

of a . As liner flexibility is increased the separation angle becomes smaller. 

As liner compressibility is increased the separation angle becomes larger. 

Because a large portion of the upper half of the liner is free of 

passive pressure, the smallest thrusts occur in this portion of the liner. 

For symmetrical loading, as considered here, the minimum thrust occurs at 

the crown. Because of the large displacements allowed by separation in the 

vicinity of the applied load, distortion of the liner shape and, thus, bend­

i ng moments are quite large in this portion of the liner. The maximum bend­

ing moment occurs at the crown for symmetrical loading. Below the spring­

lines t here i s little distortion of the liner shape and the distribution of 

passive pressure is quite uniform. Thus, in this part of the liner the 

bending moments are small and there is little variation of thrust magnitude. 
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Figure 7.7 gives the thrust and bending moment distributions ob­

tained from finite element analyses of five different a values. As shown 

in the figure it was found that as a was reduced from 180 degrees the maxi­

mum bending moment (located at crown) was not affected until a was reduced 

to less than 60 degrees. This was also found to be true for the second 

largest moment value. However, as a dropped below 120 degrees the location 

of the second largest moment (approximately 60 degrees either side of the 

crown for a= 180 and 120 degeees) began to shift to a position closer to 

the crown. 

Thrust in the upper half of the liner remained essentially un­

changed until a was reduced to values below 90 degrees. In contrast, in 

the lower half of the liner there is a much more linear relationship be­

tween the value of a (which is proportional to the total load, or weight, 

carried by the liner) and the thrust magnitude. 

Figure 7.7 suggests that if the gravity load exerts a uniform 

pressure, P, over a portion of the liner, i.e., a~ 180 degrees, one can 

simply assume that a= 180 degrees and be assured the results so obtained 

will be conservative if, in reality, a< 180 degrees. This approach is 

made especially attractive by the fact that it is often difficult to pre­

dict beforehand a true a value. However, as will be illustrated in a later 

section of this chapter, if the actual loading does not exert a uniform 

pressure on the liner, it is possible to obtain a decidedly unconservative 

estimate of liner response by assuming an average, uniform vertical pres­

sure acting over 180 degrees. 
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7.3.3 VARIATION OF LINER RESPONSE WITH RELATIVE STIFFNESSES AND FLEXIBILITIES 

OF LINER AND GROUND 

Figure 7.8 illustrates the variation of liner thrust and bending 

moments with flexibility ratio (for three different compressibility ratios) 

as determined from the finite element analyses. The curves given are for 

a• 180 degrees. Curves for the other a values (120, 90 and 60 degrees) 

are quite similar to those for a• 180 degrees and, therefore, are not 

shown. As indicated in the figure, the maximum thrust is located at or 

near the springlines, the minimum thrust is located at the crown, and the 

maximum bending moment occurs at the crown. The curves for Cs 2.56 are 

not extended below F • 10 because it is highly unlikely that a ground-liner 

system having a compressibility ratio of 2.56 would have a flexibility ratio 

smaller than ten. 

Figure 7.8 indicates that both crown a~d springline thrusts increase 

with increasing flexibility ratio and decrease with increasing compressibility 

ratio. The maximum bending moment, on the other hand, decreases with increas­

ing flexibility ratio and increases with increasing compressibility ratio. 

The variations of thrust and moment with the flexibility and com­

pressibility ratios, F and C, are related to the variation with C and F of 

the passive pressures acting on the liner. If C is held constant and Fis 

increased the separation angle, n, decreases. The more uniform distribution 

of external pressures (Pp and P) results in smaller bending moments. Also, 

the additional passive pressures acting above the springlines increase the 

crown and springline thrusts. If Fis held constant and C is increased the 

separation angle increases. This leads to a less uniform distribution of 

external pressures and thus to larger bending moments. The reduction of 
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passive pressures acting above the springlines is reflected in smaller crown 

and springline thrusts. 

Figure 7.9 gives the variation of the vertical and horizontal dia­

meter changes with F and C for a= 180 degrees. For relatively inflexible 

liners the horizontal and vertical diameter changes are nearly equal, espe­

cially if the liner is also relatively incompressible. However, for flex­

ible liners the vertical diameter change is much larger than the horizontal. 

The vertical diameter change increases with both increasing F and 

increasing Candis much more sensitive to the compressibility ratio than 

are the thrusts and moments. The horizontal diameter change increases with 

increasing flexibility ratio and decreases slightly with increasing compres­

sibility ratio. 

7.4 DISCUSSION OF RESULTS 

7.4.1 PROCEDURE FOR ESTIMATING THRUST AND MOMENT 

In the finite element study of ground-liner interaction for local­

ized gravity loading reported herein distributions of liner thrusts and bend­

ing moments were obtained for a limited number of compressibility and flex­

ibility ratio combinations. On the basis of this data a procedure was for­

mulated for estimating liner thrusts and moments for any combination of C 

and F values within the ranges: 0.01 $ C $ 3.0 and 1 $ F $ 1000. With this 

procedure it is possible to estimate liner thrusts and moments at 24 locations 

(every 15 degrees) around the circumference of the liner for any of four dif­

ferent a values (a= 180, 120, 90 and 60 degrees). This procedure requires 

the use of the equations, tables, and charts given in the remaining pages 

of this section. 
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LINER THRUST 

where, 

Liner thrusts are obtained from the following equation: 

(T/Pa). . • 
1., J 

(B ) • (F') 
t . . t . . 

1.,J 1.,J 

T/Pa = thrust coefficient 

- m.Cl.11 
1. 

Bt = base value of (T/Pa), given in Table 7.2 

F' = 
t factor required to account for liner flexibility, 

given in Figs. 7.10 through 7.13 

C • compressibility ratio 

m = factor required to account for loading geometry, 
given in Table 7.1 

(7 .1) 

i • number from 1 to 4 specifying value being considered 
(i = 1, a= 180°; i • 2, a= 120°; i = 3, a= 90°; 
i .. 4, a • 60°) 

j • number from 1 to 13 specifying location of point around 
liner circumference being considered (points located 
every 15°; j • 1 • crown, j = 7 = springline, j = 13 • 
invert; points 14 through 24 are not necessary because 
the loading considered is symmetrical) 

TABLE 7.1 

VALUES OF m FOR USE IN EQUATION 7.1 

i a m 
(degrees) 

1 180 0.035 

2 120 0.033 

3 90 0.028 

4 60 0.021 
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TABLE 7.2 

BASE VALUES OF THE THRUST COEFFICIENT FOR USE IN EQUATION 7.1 

j 
(Bt)l,j (Bt)2,j (Bt) 3, j (Bt) 4, j 

a.= 180° a. - 120° a. - 90° a. - 60° 

1 .540 .540 .520 .440 

2 .582 .582 .563 .483 

3 . 712 . 712 .700 .621 

4 .872 .872 .849 .671 

5 1.015 .997 .873 .653 .... 

6 1.068 .989 .833 .653 

7 1.084 .964 .817 .619 

8 1.083 .960 .815 .615 

9 1.080 .957 .814 .614 

10 1.079 .957 .813 .613 

11 1.078 .957 .812 .613 

12 1.077 .957 .811 .613 

13 1.076 ,957 .810 .613 
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LINER BENDING MOMENTS 

where, 

Liner bending moments are obtained from the following equation: 

(M/Pa2 ). • = 
l., J 

(M/Pa2 ) = moment coefficient 

(3.53c1•11)•(M ) cf . . 
l.,J 

= moment coefficient as a function of flexibility 
ratio only, given in Figs. 7.14 through 7.17 

(7. 2) 

factor required to account for liner compressibility, 
given in Figs. 7.18 through 7.21. 

Equations 7.1 and 7.2 and the associated tables and charts yield 

only approximate results because, 1) they are based on a limited amount of 

data and 2) they express the variation of thrust . and moment with F and C in 

a somewhat simplified manner. However, as long as their use is confined to 

the ranges of C and F values previously given, these equations will yield 

thrust and moment values that fall within a few percentage points of the 

values obtained from finite element analyses of the type performed in this 

investigation. 

7.4.2 LINER THRUSTS AND MOMENTS FOR NONUNIFORM LOCALIZED GRAVITY LOADING 

By superposing the results from two or more loading geometries 

(uniform pressure) it is possible to estimate the distributions of liner 

thrusts and bending moments for localized gravity loads that result in 

nonuniform distributions of active pressure on the liner. If the pressures 

exerted on the liner by each of the loads to be superposed are not the same 
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the thrust and bending moment at a given location are obtained thusly; 

T = P1a (T/Pa)al + P2a (T/Pa)az + ......... . (7.3) 

(7 .4) 

where the thrust and moment coefficients for each a are obtained from 

Eqns. 7.1 and 7.2, respectively. However, because the localized gravity 

loading ground-liner interaction problem is geometrically nonlinear (i.e., 

nonlinear with respect to geometry of loading and the resulting extent of 

ground-liner separation) the superposition method can, at best, only approxi­

mate the results that would be obtained from an actual finite element an­

alysis of the nonuniform loading. This is illustrated by the following two 

examples. 

Example 1: 

The geometry of loading considered in the first example is illust­

rated in Fig. 7.22. Three uniform and symmetrical pressure distributions 

are to be added together to give a nonuniform, but still symmetrical, pres­

sure distribution. For this case it is assumed that ground-liner flexibility 

and compressibility ratios are F = 10.0 and C = 0.214, respectively. Table 

7.3 gives the calculations for the thrust and moment at the crown. Figures 

7.23 and 7.24 compare the thrust and moment distributions obtained from the 

superposition calculations to those obtained from the finite element analysis 

of the nonuniform loading. Because the loading is symmetrical, the distri­

butions are given for one half of the liner only. These figures show that, 
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a. = 600, 13 = A = 90° 

p = s.o psi = 34 .S kPa 

a= 90°, 13 = A = 90°, p = 3.0 psi = 20. 7 kPa 

I a= 120°, 13 = A = 90°, p = 2.0 psi = 13.8 kPa I 

+ 
F = 10.0 C • 0.214 

FIGURE 7.22 NONUNIFORM PRI:;SSURE DISTRIBUTION CONSIDERED IN 
SUPERPOSITION EXAMPLE 1 



TABLE 7.3 

SUPERPOSITION CALCULATIONS FOR CROWN THRUST AND MOMENT GIVEN LOADING OF FIGURE 7.22 

CROWN THRUST: 

a p ( Bt X F') - mCl.ll = (T/Pa) T = Pa{TLPa} 
(degrees) (psi) (kPa) t 

(lb/in) (kN/m) 

120 2.0 13.8 .540 • 772 .006 .411 99 17.3 

90 3.0 20.7 .520 .756 .005 .388 140 24.5 

60 5.0 34.5 .440 .732 .004 .318 191 33.5 

T(Crown) =Ea 430 75.3 N 

" I-' 

CROWN MOMENT: 

a p Mf + ( 3.53C 1.ll X Mcf) = (M/Pce) M = Pa 2 (M/Pce) 
(degrees) (psi) (kPa) (lb-in7in) (kN-m7m5 

120 2.0 13.8 -.0943 .6376 -.00308 -.0963 -2773 -12.3 

90 3.0 20.7 -.0929 .6376 -.00292 -.0948 -4095 -18.2 

60 5.0 34.5 -.0887 .6376 -.00239 -.0902 -6494 -28.9 

M(Crown) = ~ = -13362 -59.4 

a= 120 in.= 3.05 m 



1000 

800 

,....,, 
~ 
~ 600 
.0 
,-I 
'-J 

f-< 

.. 
.µ 
Cl) 

e 400 
.c 
f-< 

200 

0 

f:j,, 

l 2 

-----o----- from superposition calculations 

-------from finite element analysis 

f:j,, 

3 4 5 

uniform loading: a= 180°, ~=A = 90°, 
p = p 

ave 

6 7 8 9 10 11 

Circumferential Location, j 

12 

175 

150 

125 

100 

75 

50 

25 

0 
13 

FIGURE 7.23 THRUST DISTRIBUTIONS OBTAINED FROM SUPERPOSITION CALCULATIONS AND FINITE 
ELEMENT ANALYSIS - EXAMPLE 1 

H 
::r 
8 
C/l 
rt .. 
H 

r--. 
:>;' z N 

--.J - N s 
'-../ 



10000 

8000 

6000 

4000 

,,...,. 
~ 2000 

•M -~ 
•M 
I 

0 .0 
,-1 

'-" 

~ .. 
µ -2000 
~ 
<11 
s 
0 

-4000 ~ 

tlO 
~ 

•M 
"Cl 
~ -6000 
<11 
ii::i 

-8000 

-10000 

-12000 

-14000 

FIGURE 7.24 

2 

~ 

4 5 6 7 11 12 

45 

40 

30 

20 

10 

0 

Circumferential Location, j -· =---~----=='-10 

-----<>------from superposition calculations 

-------from finite element analysis 

~ unifonn loadings a= 180°, ~=A = 90°, 
p :c p 

ave 

-20 

-30 

-40 

-so 

-60 

MOMENT DISTRIBUTIONS OBTAINED FROM SUPERPOSITION CALCULATIONS AND FINITE 
ELEMENT ANALYSIS - EXAMPLE 1 

t,j 
(l) 

g_ 
I-'· 
::l 

OQ 

~ 

~ 
(l) 
::l 
rt .. 
~ N 

--.J ,,...,. l,) 
::,;-
z 
I s -s 

'-' 



274 

in this case, the superposition method yielded very good results. It is 

apparent, however, that the superposition method slightly overestimated the 

thrust magnitudes and slightly underestimated the bending moment magnitudes. 

Example 2: 

The loading considered for this example is shown in Fig. 7.25 and 

the calculations for the crown thrust and moment are given in Table 7.4. 

Crown thrust and moment values for the a• 60 degrees, S = A z 45 degrees 

loading were obtained from location j • 22 of the available a= 60 degrees, 

S = A 2 90 degrees loading geometry (clockwise rotation through 45 degrees 

changes Sand A from 90 to 45 degrees and moves location j = 22 to the crown 

position). However, for the symmetrical a• 60 degrees loading case the 

liner response at location j • 22 is the same as that at location j • 4 and 

thus, this value of j was used in the calculations. Thrust and moment dis­

tributions obtained from the superposition calculations and from the finite 

element analysis of this nonuniform loading are compared in Figs. 7.26 and 

7.27. It is readily apparent from these figures that, in this case, the 

superposition method has significantly overestimated thrust magnitudes and 

underestimated bending moment magnitudes. 

Both nonuniform loading examples indicate that the superposition 

method gives a good estimate of the distribution of liner thrusts and bend­

ing moments, but, with regard to magnitudes, tends to overestimate thrusts 

and underestimate moments. It appears that the problem with magnitudes can 

be attributed to 1) the relationship between separation angle, .0, and thrust 

and moment magnitudes, and 2) the difference between the separation angles 

given by the superposition method, .0
8

, and the actual finite element analysis, 

~-
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TABLE 7.4 

SUPERPOSITION CALCULATIONS FOR CROWN THRUST AND MOMENT GIVEN LOADING OF FIGURE 7.25 

CROWN THRUST: 

a p 
(degrees) (psi) (kPa) 

( Bt X F' ) - qiel.11 = (T/Pa) T = Pa{TLPa} t 
(lb/in.) (kN/m) 

..,., 
180 2.5 17.2 .540 1.0 .016 .524 157 27.5 

;';-/; 

60 7.5 51.7 .671 1.0 .010 .661 595 104.2 

T(Crown) = E = 752 131. 7 

CROWN MOMENT: 

a p Mf + ( 3.53Cl.ll X Mcf ) = (M/Pa 2
) M = Pa2 ~M/Pa 2

) 
(degrees) (psi) (kPa) (lb-in./in.) (kN-m/m) 

j; 

180 2.5 17.2 -.0596 1.635 -.00268 -.0640 -2304 -10.3 
.. ka/, 

60 7.5 51.7 .0424 1.635 .00057 .0433 4680 20.8 

M(Crown) = E = 2376 10.5 

··;'~ 

j = 1 
·;';-/; 

j "" 22 = 4 

a= 120 in. = 3.05 m 

N ....., 
0\ 
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When two or more uniform loading geometries are superposed the 

resulting separation angle, n, is determined by the extent to which the 
s 

various separation angles superposed overlap. This is illustrated in Fig. 

7.28. The actual separation angle, n, obtained from a finite element 
a 

analysis falls in the range ns < na < n• as shown in Fig. 7.28. An approxi-

mate value for na is the average of ns and n•. 

From the relationship between separation angle and liner thrust 

and moment magnitude, as described in the discussion of Fig. 7.8, it can be 

expected that, because n < n the superposition method will, as found in 
s a 

the above two examples, underestimate bending moment magnitudes and over-

estimate thrust magnitudes. The amount by which the superposition results 

are in err~r can be related to the difference between n and n, which can, 
s a 

in turn, be related to the difference between the S values of the various 

loading geometries superposed. 

The analyses of the various uniform and symmetrical loading geom­

etries considered herein (n = 180, 120, 90 and 60 degrees) indicated that 

for a given F and C combination the separation angle decreased only slightly 

as n was reduced from 180 to 60 ,degrees. Thus, if the S values of the var­

ious loading geometries superposed are equal their separation angles will 

overlap only slightly and n ~ n. This was the case for example 1 where 
s a 

superposition yielded very good results. As the difference in~ values in-

creases, the amount of separation angle overlap and, thus, the difference 

between n and n, increases. In example 2, where superposition did not 
s a 

yield good results, the difference between the~ values of the two loading 

geometries superposed was 45 degrees, and it was found that n ~ 75 degrees 
s 

and n ~ 120 degrees. On the basis of a limited amount of data it appears 
a 
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that the superposition method will yield good results if the~ values of 

the various loading geometries superposed differ by no more than 30 degrees. 

Most of the available methods for estimating the magnitude of the 

localized gravity load assume that load results in a uniform vertical pres­

sure over the entire upper half of the liner (a= 180 degrees). This assump­

tion can lead to erroneous estimates of liner response if the loading is 

actually nonuniform. In Figs. 7.23 and 7.24 thrust and moment distributions 

are given for a uniform average vertical pressure over the upper half of the 

liner. By comparing these data points (triangles) to those for the actual 

nonuniform loading it can be seen that the assumed uniform average loading 

significantly underestimates both thrusts and moments in the upper half of 

the liner where the critical thrust and moment combinations occur. Of course, 

the differences between these data depend on the magnitude of the assumed 

average pressure, P • ave 

In example 2 the a= 180 degrees loading represents the weight of 

rock in the loosened zone around the tunnel that may eventually have to be 

carried by the liner. The a= 60 degrees loading represents the load im­

posed on the liner by a large rock block that has dislodged and come to rest 

against the liner. In Figs. 7.26 and 7.27 thrust and bending moment distri­

butions are also given for the a• 180 degrees loading only (triangles). By 

comparing the triangular and filled circular data points it is clear that if 

the effect of the rock block was not taken into consideration the liner 

thrusts and moments would be greatly underestimated. 

7.4.3 COMPARISON OF LINER THRUSTS, MOMENTS AND STRESSES FOR LOCALIZED 

GRAVITY LOADING AND EXCAVATION LOADING 

A tunnel liner subjected to localized gravity loading responds 
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quite differently than does a similar liner subjected to excavation loading. 

Figures 3.4 and 7.6 illustrate the differences between the circumferential 

distributions of liner thrusts, moments and displacements for the two types 

of loading. 

The variation of liner thrust and moment with compressibility and 

flexibility ratios is also quite different for the two types of loading. 

The analytical solution for excavation loading under conditions of full 

slippage indicates that moments can be reduced with little change in thrust 

by ·making the liner more flexible (Figs. 3.5 and 3.6). If the liner is made 

more compressible the thrusts will be reduced (Fig. 3.7) with no change in 

moments. By making the liner both more flexible and more compressible the 

surrounding ground can be made to carry a greater proportion of the potential 

load (both thrusts and moments are reduced, but at the expense of increased 

liner displacements). This is -not the case with localized gravity loading 

for which, once it develops, the load remains constant. Changes in liner 

compressibility and flexibility alter only the distribution of external 

passive pressures acting on the liner and thereby the proportions of the 
; 

total load carried in thrust and bending moments. Figure 7.8 shows that 

more flexible liners have smaller moments but larger thrusts than less flex­

ible liners. Conversely, more compressible liners have smaller thrusts but 

larger moments than less compressible liners. 

Figures 7.29 through 7.32 illustrate the variation of liner (crown) 

thrusts, moments and circumferential stresses with the liner radius-to-thick­

ness ratio (a/t) for several values of the medium-to-liner modulus ratio 

(Em/E
1

) for both localized grav~ty and excavation loading. The excavation 

loading curves were obtained from the analytical solution discussed in 
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Chapter 3, assuming K = 0.5. The localized gravity loading curves were 
0 

obtained from Eqns. 7.1 and 7.2, assuming a= 180 degrees. Points on these 

curves were obtained by first calculating the flexibility and compressibility 

ratios, given a/t and ~/E
1

. The F and C values were then used in Eqns. 7.1 

and 7.2 and the related tables and charts. Certain combinations of a/t and 

E /E yielded F values outside the range of the charts (1 ~ F ~ 1000). These 
m t 

portions of the curves in Figs. 7.29 and 7.30 are shown as dashed lines, in-

dicating that they consist of extrapolated and/or estimated, rather than 

directly calculated, points. The dashed portions of the localized gravity 

loading curves in Figs. 7.31 and 7.32 were obtained from calculations based 

on the dashed portions of the curves in Figs. 7.29 and 7.30. 

Figures 7.31 and 7.32 show that the stress coefficients for local­

ized gravity loading (d/P) are much larger in magnitude than those for ex­

cavation loading (d!YH). However, the relative magnitudes of the stresses 

for the two types of loading depend on the magnitudes of P and YH. Usually, 

YH will be much larger than P. These same two figures show that the range 

of a/t values over which tensile (negative) stresses will result at the 

crown is much larger for localized gravity loading than it is for excavation 

loading. 
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 

Interaction between tunnel liner and surrounding ground mass has 

been examined both analytically and numerically (finite element method) for 

various loading conditions and construction sequences. 

The general class of ground-liner interaction problems can be 

divided into three catagories on the basis of the type of loading to which 

the tunnel liner is subjected. In this investigation three loading types, 

or conditions, were considered. These are the overpressure loading condi­

tion, the excavation loading condition, and the localized gravity loading 

condition. 

The overpressure loading condition results when the ground-liner 

system is subjected to an externally applied pressure at the ground surface. 

In the analysis of this type of interaction problem the in situ ground 

stresses are neglected and the lined tunnel is assumed to be present within 

the ground mass before the overpressure is applied to the system. This 

loading condition was discussed briefly in Chapter 2. Also, derivations of 

analytical solutions for this loading condition were given in Appendix A. 

Whereas analyses of the overpressure loading condition are appli­

cable only to existing lined tunnels, analyses of the excavation loading 

condition yield the interaction response of the ground and liner resulting 

from construction of the tunnel. In order for ground-liner interaction due 

to the excavation loading condition to occur the liner must be i nstalled 

such that it resists some or a~l of the inward displacements of the ground 

mass arising from excavation of the tunnel opening. Excavation loading 
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ground-liner interaction was considered in some detail in this investigation. 

Analytical solutions applicable to certain special cases of this loading 

condition were derived and presented in Appendicies A and Band discussed 

in Chapters 2 and 3. The results of finite element analyses of interaction 

due to excavation loading were presented in Chapter 4 for shallow tunnels 

and in Chapter 6 for the case of two adjacent parallel tunnels. The ex­

cavation loading condition was also considered in Chapter 5, where the re­

sults from finite element analyses that simulated the advancement of the 

tunnel through the gro~d mass were presented and discussed. 

For the excavation loading condition it is assumed that the ground 

around the perimeter of the tunnel opening remains intact, and that the ground 

' displaces inward, en masse, against the liner. For the localized gravity 

loading condition, on the other hand, it is assumed that the ground does not 

remain intact. Instead, it is assumed that the shear stresses mobilized in 

the ground mass due to excavation of the opening, relative to the ground's 

shear strength, are such that the force of gravity is sufficient to cause 

portions of this ground to dislodge and fall onto the liner. The weight of 

this material, which usually comes to rest on or against only a portion of 

the liner's circumference, constitutes the localized gravity load. The re­

sults from a number of finite element analyses of this loading condition 

were presented and discussed in Chapter 7. 

Various solution methods available for the analysis of ground-liner 

interaction were briefly reviewed in Chapter 2. These include the analytical 

solutions based on the ground reaction curve concept, the analytical solutions 

for circular tunnels in elastic ground, and the finite element method. 

Ground-liner interaction resulting from the overpressure loading 



290 

condition can be analyzed by both the finite element method and the analyt­

ical solutions derived for this type of loading. If inelastic stress-strain 

behavior of the ground mass is to be considered the finite element method 

must be used. However, for this type of interaction problem the surrounding 

ground will exhibit significant inelastic behavior only if the magnitude of 

the overpressure is quite high and the liner is sufficiently flexible and 

compressible so that large liner displacements and distortions occur. In 

most cases this problem can be adequately examined with the analytical 

solutions for elastic ground proposed by Burns and Richard (1964) and Dar 

and Bates (1974). The derivations of these solutions are given in Appendix 

A and the resulting equations are summarized in Appendix B. 

Analytical solutions, such as those described by Szechy (1966) and 

Procter and White (1946), are available for analysis of ground-liner inter­

action resulting from the localized gravity loading condition. A more de­

tailed analysis of this type of interaction problem can be achieved through 

the use of numerical techniques such as the finite element method. However, 

because of the many variables that would have to be considered in order to 

perform a realistic simulation of this loading condition, eveµ the finite 

element method falls short of allowing a truely comprehensive treatment of 

all facets of this problem. Thus, in most cases, this type of problem must 

be reduced to an idealized form more conducive to analysis, as was done in 

the finite element study of this loading condition presented in Chapter 7. 

As was shown in Chapters 2 and 5 the extent of ground-liner inter­

action resulting from the excavation loading condition is strongly dependent 

on the amount of ground displacement occurring prior to ground-liner contact 

relative to the potential total displacement. Maximum interaction occurs if 
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there are no prior displacements, i.e., if the liner must resist the total 

potential displacement. There is no interaction if all ground displacements 

occur before ground-liner contact is established. 

Each of the three solution methods previously mentioned can be 

used to analyze this form of the interaction problem. Solutions based on 

the ground reaction curve concept allow consideration of inelastic and time­

dependent material behavior models for the ground mass. However, these 

solutions do not allow consideration of the distortional component of load­

ing and the resulting liner bending moments and shear forces. Conversely, 

the analytical solutions for a circular tunnel in elastic ground can account 

for both the uniform and distortional components of loading, but are re­

stricted tq, elastic ground behavior. The finite element method, of course , 

allows consideration of both nonunif0rm loadings and inelastic and/or time­

dependent ground behavior. 

The response of a tunnel liner to interaction with the surroundi ng 

ground mass was examined in Chapter 3 for the case of excavation loading as 

given by the analytical solutions derived in Appendix A for thin liners. 

These solutions give the liner forces, moments and displacements as functions 

of the ground-liner compressibility and flexibility ratios. It was found 

that the liner bending moments are quite sensitive to the flexibility of the 

liner; and that, in the lower range of flexibility ratio values (0 ~ F ~ 20) 

small increases of liner flexibility result in significant reductions of 

bending moments. Liner thrusts are more sensitive to _liner compressibility 

than they are to liner flexibility; and larger compressibility ratio values 

correspond to lower thrust magnitudes. Also illustrated in Chapter 3 were 

the variations of liner forces, displacements and circumferential stresses 

• 
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with the liner radius-to-thickness ratio, a/t, for several values of the 

ground-liner modulus ratio , Ern/E
1

• Again, these curves were obtained from 

the "thin liner" analytical solutions for excavation loading derived in 

Appendix A. The figures presented show that liner thrusts and bending 

moments can be significantly reduced by reducing the liner thickness and/or 

modulus (thereby making the liner more flexible and compressible). However, 

reduction of liner thickness always leads to increased liner displacements 

and, except for a narrow range of a/t values, increased liner stresses. 

) Reduction of liner modulus, as may be possible for concrete liners, results 

I 
\ 
) 

in lower stresses, but such act~on would also be accompanied by reduced 

compressive strength for this type of liner. Liner modulus reduction also 

always leads to increased liner displacements. 

Because of the initial assumptions involved in the formulation of 

the analytical solutions for excavation loading ground-liner interaction, 

the application of these solutions is supposedly restricted to tunnels lo­

cated at great depth below the ground surface. However, similar restrictions 

are necessarily applied -to the solutions for stresses and displacements 

around unlined openings; and yet it is commonly held that these solutions 

can be applied to openings at depths as shallow as one or two opening dia­

meters. In order to determine whether or not the depth restriction on the 

lined tunnel solutions could be similarily relaxed a finite element study 

of shallow lined tunnels was undertaken. 

The results of this study, which were presented in Chapter 4, were 

obtained from finite element analyses of lined tunnels located at various 

depths of burial (H/D = 1.0 - 5.0). Except for the depth factor these analyses 

were equivalent to the analytical solutions for excavation loading. 
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It was found that there are two factors that can significantly 

influence the behavior of shallow lined tunnels. These factors are t he 

proximity of the ground surface boundary and the increase of in s i tu stre s s 

with depth from the tunnel crown to the invert. In general, the results 

obtained from the analyses performed indicated that, with respect to liner 

thrusts, moments and displacements, the first of these factors is less 

significant than the second. The influence of the ground surface boundary 

on liner response is small for 1.0 < H/D < 2.0 and negligible for all H/D < 

2.0. The influence of the stress increase with depth from crown to invert 

is greater than the influence of the ground surface boundary, at least fo r 

H/D > 1.0 and remains at a significant level to a much greater depth. 

For the ground-liner system considered the influence of the in situ 

stress increase from crown to invert was greatest for the no slippage con­

dition. This difference between the liner responses for the full and no 

slippage conditions is especially evident when liner thrusts are considered . 

It is less evident when liner bending moments and displacements for the t wo 

interface conditions are compared. 

When liner thrusts, moments and radial displacements are considered 

the effect of the in situ stress increase with depth is so great at shallow 

depths that it appears the analytical solutions should not be used for H/D > 

4 or 5. However, when the thrusts and moments are combined to yield the 

liner circumferential stresses a considerably different picture is obtained, 

especially if only the maximum and minimum circumferential stresses are con­

sidered. It was f ound that, due to the nature of the depth variations of 

thrusts and moments, these s t resses change very little with tunnel depth f or 

H/D > 2. Thus, on the basis of the results obtained from the analyses 
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performed, it is concluded that the analytical solutions for excavation 

loading will yield good values of the maximum and minimum liner circum­

ferential stresses for all H/D > 2 and reasonably good values of liner 

thrusts, moments and displacements for all H/D > 4 or 5. 

Analytical solutions such as those derived in Appendix A for ex­

cavation loading are often criticized because they consider only a two­

dimensional cross section of the ground-liner system and because they do 

not account for inelastic behavior of the surrounding ground mass. However~ 

as long as these solutions are used properly this criticism is not warrented. 

The analytical solutions for excavation loading were derived for · 

the special case of a tunnel constructed such that the liner is installed 

first (e.g., by a series of drifts around the perimeter of the tunnel), 

followed by the excavation of the soil core inside the liner. For this con­

struction sequence ground-liner interaction results because of the imbalance 

between the stresses on the inside (zero) and the outside (in situ stress 

state) of the liner. The full magnitude of the in situ stress is properly 

taken into account because there has been no op@-tunity for significant 

relaxation of the surrounding ground mass. At a given point along the tun­

nel line interaction does not commence until the excavation face approaches; 

and it is not complete until the face is mined a sufficient distance past 

this point. Within this transition zone, which exists because of the in­

fluence of the core of soil ahead of the face, there are three-dimensional 

(radial, circumferential and longitudinal) variations of stresses and dis­

placements; and the analytical solutions do not apply here. However, full 

development of liner forces and -displacements only occurs behind this zone, 

where interaction is complete (liner carrying entire load) and the stresses 

I 

! 
l 
I 
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and displacements no longer exhibit three-dimensional variations. Because 

the ground-liner system, at the points where interaction is complete, ex­

hibits only two-dimensional (radial and circumferential) variations of 

stresses and displacements, the analytical solutions for excavation loading 

are directly applicable to this problem. 

The inability of the analytical solutions to account for inelastic 

behavior of the ground mass should not, in most cases, be a serious disad­

vantage if these solutions are properly applied to only the special case 

conditions for which they were derived (i.e., liner installed before excava­

tion of the soil core). For this special case the liner is in place before 

the equilibrium of the surrounding ground mass is disturbed. Once this 

equilibrium is disturbed, by excavation of the soil core, the liner, unless 

it is quite flexible and compressible, will provide sufficient restraint to 

prevent significant inelastic behavior from occurring. 

t Unfortunately, the analytical solutions for excavation loading 

~ are quite susceptible to misuse. There is a tendency for these solutions 

t to be applied, without complete regard to their limitations with respect to 

~ construction sequence, to all problems of this type. This leads to the in­

appropriate use of these solutions in the consideration of tunnels con­

structed by more conventional means, i.e., construction sequences consisting 

of excavation followed by liner installation. As was illustrated by the 

results from axisymmetric finite element analyses presented in Chapter 5, 

for this type of construction sequence the behavior of a lined tunnel is 

strongly influenced by the ground displacements that occur before the liner 

comes into contact with the ground mass. When displacements of the ground 

mass prior to ground-liner contact are allowed to occur the interaction 
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problem becomes much too complex to be properly considered by solution 

methods that assume the problem to be two-dimensional and elastic. 

The results presented in Chapter 5 indicate that the response of 

the liner to interaction is a function of the relative magnitudes of the 

ground displacements that occur ahead of the liner and the displacements 

that would occur if no liner was installed. In turn the magnitude of the 

prior displacements, and the behavior of the ground mass ahead of the liner 

in general, is a function of the position of liner installation relative to 

the position of the tunnel face; and, to a lesser extent, the flexibility 

and compressibility of the liner. Thus, the maximum liner thrust, as an 

example, results when the liner is installed right at the tunnel face (this 

maximum value is still less than that given by the analytical solution be­

cause of the ground displacements occurring ahead of the face). If the 

liner is installed far enough behind the face, beyond the point where full 

ground displacement has occurred, there is no interaction because the liner 

remains unloaded (this is assuming that the unlined portion of the tunnel 

remains stable and that the ground mass does not exhibit time-dependent 

behavior). In addition, it was shown that the extent of inela~tic ground 

mass behavior increases as the distance between the advancing face and the 

point of liner installation is increased. Results obtained from the elasto­

plastic analyses indicate that by installing a relatively stiff liner right 

at the face (or limiting displacements by some other means) the formation 

of plastic zones around the tunnel can be prevented. However, the results 

also indicate that if a length of tunnel behind the face equal to one tunnel 

radius is left unlined the result i ng relaxation of the ground mass can be 

sufficient to mobilize enough plastic yielding to significantly alter liner 
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response relative to that obtained from elastic analyses (if the shear 

strength of the soil is sufficiently low relative to the shear stresses 

mobilized so that yielding will occur). 

In the analysis of a lined tunnel constructed by conventional 

methods simulation of the physical advancement of the tunnel through the 

ground mass is just as important as consideration of three-dimensional 

behavior in the vicinity of the tunnel face. This point was clearly dem­

onstrated in the discussion of Fig. 2.11, the data for which was obtained 

in the investigation described in Chapter 5. Simulation of tunnel advance­

ment is especially critical if elasto-plastic behavior of the ground mass 

is to be considered because such simulation is required in order to obtain 

full deveL.>pment of the plastic zone around the tunnel. 

On the basis of the results obtained from the investigation de­

scribed in Chapter 5 it can be concluded that the behavior of a lined tun­

nel constructed by conventional methods cannot be accurately determined 

from any solution method that does not consider the three-dimensional nature 

of the problem and the actual advancement of the tunnel through the ground 

mass. This means that anything less than a fully three-dimensional finite 

element analysis will yield only approximate results. Because such analyses 

are extremely expensive and difficult to perform, especially if inelastic 

behavior and construction simulation are to be considered, the necessity 

for accepting approximate results- seems inevitable in most cases. 

The axisynnnetric finite element analysis represents a reasonable 

alternative to the fully three-dimens'ional analysis!. With this type of 

analysis it is possible to consider material behavior other than elastic 

and to simulate tunnel advancement and construction. However. shallow 
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tunnels cannot be considered, and if the problem being studied is not truely 

axially symmetric the information obtained from this type of analysis is of 

somewhat limited usefulness. 

Two-dimensional finite element analyses allow consideration of 

inelastic and time-dependent material behavior. These analyses are not 

limited to axially symmetric conditions, but they cannot properly account 

for the three-dimensional effects or the advancement of the tunnel through 

the ground mass. Although it is possible for these analyses to be per­

formed such that a given amount of ground displacement prior to ground­

liner contact is introduced into the analysis, this can only be done by 

utilizing special techniques that greatly increase the difficulty of per­

forming the analysis. In addition, without access to three-dimensional 

analyses the magnitude of this prior displacement can only be crudely ap­

proximated (see discussion of Figs. 2.4 - 2.6). 

Two-dimensional analytical solutions such as those based on the 

ground reaction curve concept also allow consideration of inelastic and 

time-dependent behavior, . but the number of available material behavior 

models is rather limited, and only axially symmetric conditions can be con­

sidered. While it is easier to introduce a given amount of prior displace­

ment in these analyses than it is in the two-dimensional finite element 

analyses, again the magnitude of this displacement connot be determined on 

a rational basis, 

At the very bottom of the list of solution methods suitable for 

the interaction analysis of tunnels constructed by conventional methods are 

the two-dimensional, elastic analytical solutions for excavation loading 

derived in Appendix A. Although these solutions can be modified to account 
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for prior displacements, such modification adds little to their usefulness 

because they are limited to consideration of elastic behavior. In addition, 

as was the case with the other two-dimensional methods of analysis discussed 

above, these modified equations, of themselves, provide no means for cor­

rectly determining the magnitudes of these prior displacements. 

Despite the fact that the analytical solutions for excavation load­

ing were not derived for, and, therefore, are theoretically not directly 

applicable to, the general case of a lined tunnel constructed by conventional 

methods, it would seem that they could serve a useful purpose for the pre­

liminary analysis of many such cases. For example, the data presented in 

Fig. 5.12 suggests that, while these solutions do not account for prior dis­

placements or inelastic behavior of the ground mass, they provide upper 

bound values for the initial (end of construction) liner response. Addition­

ally, while the analytical solutions may significantly overestimate the 

initial liner response, the ensuing time-dependent behavior of the ground­

liner system may, for some soils, result in thrust magnitudes more nearly 

in line with the analytical solution values. Because these solutions assume 

that pressures corresponding to the full overburden stress act on the liner 

it should only be in certain special cases (e.g., squeezing or swelling 

ground) that they would underestimate liner response to interaction. Thus, 

it would seem that, in addition to being directly applicable to the specific 

problem for which they were derived, the analytical solutions for excavation 

loading also provide a convenient means for obtaineng at least a first ap­

proximation of liner response for many of the interaction problems that con­

sider a lined tunnel constructed by conventional methods. It must be em­

phasized, however, that such use of these solutions has no theoretical basis 
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and is, in the strictest sense, inappropriate. 

As described in Chapter 6, a series of finite element analyses 

was per~v~-med to study the behavior of a system of two parallel tunnels. 

Quantities of interest in the analysis of two tunnel systems are; stresses 

around the two tunnels, especially in the pillar separating the two tunnels; 

tunnel displacements; liner forces; and the ground surface displacements . 

The main parameters considered in this study were; tunnel depth, width of 

the pillar separating the two tunnels, the tunnel support conditions, se­

quence of construction of the two tunnels, and, to some extent, the in­

fluence of plastic yielding in the ground mass. 

The finite element analyses performed in this study indicated 

that interaction between two parallel tunnels influences ground stresses, 

tunnel displacements and liner forces in only a relatively small region 

around the pillar that separates the tunnels, and that these interaction 

effects decrease as the pillar width is increased. Response of the two 

tunnel system at tunnel depth, over the range of pillar widths considered 

herein, suggests that interaction effects are small at a pillar widt~ to 

tunnel diameter ratio of one; and that at a W/D value of approximately two 

the two tunnels shoul d behave independently of each other. 

Interaction between the two tunnels also influences the displace­

ments of the ground surface above the tunnels. Vertical compression (short­

ening) of the pillar separating the tunnels gives rise to additional settle­

ments. Pillar compression increases as the pillar width is reduced and/or 

as the depth is increased. For shallow tunnels the additional interaction 

settlements are confined to a ~elatively narrow zone above the pillar and 

the two tunnels. However, for deep tunnels lateral spreading of vertical 
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ground displacements with increasing distance above the tunnels results in 

a very wide settlement trough with an almost uniform distribution of addi-
--------·----·---........ -.. -______..---._~ 

tional interaction settlements. The analyses performed in this study in­

dicate that for shallow tunnels, with depth to diameter ratio of H/D = 1.5, ----------------
a pillar width ratio of approximately two should be sufficient to eliminate 

the additional interaction settlements. The data also suggest, however, 

that for relatively deep tunnels (H/D = 5.5) a much greater tunnel spacing 

would be required to achieve this goal. 

The results of the finite element analyses of various sequences 

of construction indicate that the construction of a tunnel parallel and ad--------
jacent to an existing tunnel causes additional displacements and liner forces ------- - .. ---·•·- -··-·· _____ ,___ _____ _;::,__ ____________ _ 
in the existing tunnel. The magnitudes of these changes strongly depend on 

the width of the pillar separating the two tunnels and the displacements al­

lowed in the construction of the second tunnel. Two extreme cases were con-

sidered; in one case the second tunnel was lined upon excavation, in the 

other case the second tunnel was left unlined. When the second tunnel was 

lined the changes caused by the second tunnel resulted in a more favorable \ 

condition in the existing tunnel. However, when the second tunnel was left 

unlined significant increases of displacements and forces in the liner of 

the existing tunnel occurred in the vicinity of the pillar springline. Be-

cause at least some, if not large, ground movements associated with excava- I 
tion of the second tunnel can be expected to occur for real tunnels in soil, 

the analyses that assume the second tunnel to be unlined more closely ap­

proximate the real tunnel situation. 

It was also shown that some of the analyses indicate that the ex­

cavation of the second tunnel causes greater ground surface settlement than \ 



302 

would a single tunnel. This is especially so when plastic yielding occurs 

in the medium and displacements are allowed prior to the liner becoming ef­

fective. 

It should be pointed out that the analyses performed did not in­

clude simulation of the large displacements and volume changes in the soil 

that are often associated with excavation and construction of tunnels in 

soft ground. Thus, the results of these analyses represent lower bounds 

for the interaction effects (e.g., effect on existing tunnel due to passage 

of second tunnel at a given pillar width and additional surface settlements 

arising from interaction between two tunnels) for two parallel tunnels. 

Ground-liner interaction for localized gravity loading was consid­

ered in Chapter 7. In this investigation the distribution and magnitude of 

the localized gravity load were treated as variables for study. The other 

variables considered were the ground-liner flexibility and compressibility 

ratios. In all analyses it was assumed that the weight of the material 

resting on the liner exerted a uniform pressure over a given portion of the 

liner. However, it was shown that the principle of superposition can be used, 

within limits, to consider nonuniform loadings. In addition, results in the 

form of liner thrust and bending moment coefficients were presented in chart 

form to allow determination of these values, by interpolation, for compress­

ibility and flexibility ratio combinations other than those specifically 

analyzed. 

Results obtained from the finite element analyses indicated that, 

for a uniform vertical gravity load symmetrical about the tunnel crown, the 

maximum bending moment and the minimum thrust both occur at the crown. Be­

low the springlines there is little variation of thrust and bending moment 
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magnitudes with circumferential location; the moments here are very small 

whereas the thrusts are at or near their maximum magnitude. Thus, in terms 

of circumferential stresses the critical section is located at the crown 

where both the maximum and minimum liner stresses occur. 

It was found that liner thrusts tend to increase with increasing 

flexibility ratio and decrease with increasing compressibility ratio. Liner 

bending moments, on the other hand, tend to decrease with increasing flex­

ibility ratio and increase with increasing compressibility ratio. 

Magnitudes of liner thrust, moments and displacements were found 

to increase linearly with the magnitude of the pressure exerted on the liner 

by the localized gravity load throughout the range of pressures considered 

(up to 20 pj,i • 138 k.Pa). 

An initial series of symmetrical loading analyses considered a 

range of values for the circumferential extent or distribution of the vert­

ical gravity load; from a= 180 degrees to a• 30 degrees (where a= 180 

degrees indicates that the load is distributed over the entire upper half 

of the liner). The results from these analyses indicate that there is little 

variation of liner response within the range 180 >a> 60 degrees. The 

variation that does occur is such that conservative results can be obtained 

by assuming that a= 180 degrees. 

The magnitudes and distributions of liner forces and moments, and 

thus stresses, resulting from the localized gravity loading condition are 

considerably different from those mobilized by the general form of the ex­

cavation loading condition. Thus, where conditions are such that either or 

both types of loading can occur, interaction analyses for both should be 

performed. 
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Each of the solution methods applicable to the analysis of ground­

liner interaction discussed herein attempts to mathematically simulat e the 

response of the ground-liner system for a range of possible conditions. How­

ever, while most soluti on methods include consideration of the most important 

aspects of the ground-l iner interaction process, none of these methoas can 

accurately simulate all of the details relevant to the problem. All solution 

methods are necessarily based on simplifying assumptions that are designed 

to reduca the compl exit y of the interaction problem to a sufficient 4egree 

so as to allow a soluti on to be obtained. Some methods require more sim­

plifying assumptions than others and, in general, the more assumptions made 

the less accurately the procedure simulates the real conditions. 

The majority of the available analytical solutions have the advan­

tage of being strai ght forward and easy to use. The major disadvantage to 

these solution methods is that they only consider an highly idealized form 

of the real problem. Numerical solution techniques, such as the finite 

element method, allow much more detailed simulations. However, as the de­

gree of simulation detail is increased, the complexity of the analysis also 

increases. At one extr eme are the highly detailed analyses which are quite 

complex and thus difficult to perform and interpret. Such analyses can be 

performed only with the most sophisticated finite element computer programs, 

programs which require large and equally sophisticated computer facilities. 

At the other extreme are the analyses which provide solutions to a much more 

idealized form of the problem. Although these simplified analyses can be 

inexpensive and easy to perform, they may provide no more useful information 

than would be available from the closed form analytical solutions. As with 

the analytical methods, the results obtained from finite element analyses 
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can not be applied to the design or evaluation of a tunnel support system 

without first being carefully evaluated with respect to the differences be­

tween the ground-liner system as simulated and as it exists in reality. 

Indiscriminate use of any of the available methods of analysis 

can lead to erroneous conclusions with respect to the real tunnel behavior. 

It is important that the method of analysis selected be applicable to the 

problem being considered. It is also important th~t the results obtained 

from the ~ -alysis be properly interpreted. This requires knowledge of both 

the anticipated tunneling conditions and the adequacy of the analysis to 

simulate these conditions. 
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APPENDIX A 

DERIVATION OF ANALYTICAL SOLUTIONS FOR 

GROUND-LINER INTERACTION 

Analytical solutions for ground-liner interaction have been available 

in the literature for a number of years. Of particular interest here are the 

solutions derived by Burns and Richard (1964) and Dar and Bates (1974). Unfor­

tunately, these solutions only consider overpressure loading; and, therefore, 

are not applicable to tunnel liners subjected to excavation loading. However, 

on the basis of this previous work the writer has derived the corresponding 

solutions for excavation loading. Presented herein, in some detail, are the 

derivations of these solutions for excavation loading, along with derivations 

that yield the solutions obtained by Burns and Richard (1964) and Dar and 

Bates (1974). The final equations of each of these solutions are given separ­

ately in Appendix B. 

Derivations are given for a total of eight analytical solutions for 

ground-liner interaction. These solutions are categorized as illustrated by 

the chart in Fig. A.I. Note that according to this classification system Burns 

and Richard gave two soluti ons (1 and 2 in Fig. A.I) and Dar and Bates gave one 

solution (i.e., they briefly described the derivation of solution 5, but did not 

give the final equations). 

Solutions obtained by combining the theory of elasticity and thin 

shell theory are here called "thin liner" solutions. Solutions based entirely 

on the theory of elasticity are called "thick liner" solutions. Although both 
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types of solution can be applied to liners of any thickness, only the "thick 

liner" solutions are theoretically correct for all liner thicknesses. However, 

the equations of these solutions are quite lengthy relative to the equations 

of the "thin liner" solutions, and if a thin liner is being considered it is 

much easier to use the "thin liner" solutions. In general, if t/a < 0.10 the 

two solution types will give essentially the same results. Thus, if t/a < 0.10 

the "thin liner" solutions can be used. If t/a > 0.10 the "thick liner" solu­

tions should be used. 

Both "thin liner" and "thick liner" solutions give the ground mass 

stresses (orm' oem' "t"rem) and displacements (um' vm). Liner response is given 

in terms of forces (T, V, M) and displacements (u,e, v,e) by the "thin liner" 

solutions, and in terms of stresses (or,e' oe,e' ~re,e) and displacements (u,e, v,e) 

by the "thick liner" solutions. 

The "thin liner" and "thick liner" solutions are subdivided into two 

groups on the basis of the type of loading considered; overpressure loading and 

excavation loading. For overpressure loading it is assumed that the lined tun­

nel is an existing structure which, along with the surrounding ground mass, is 

subjected to a uniform pressure , P , applied at the ground surface. In situ 
0 

stresses present in the ground mass prior to construction of the tunnel are not 

considered. For excavation loading it is assumed that the lined tunnel is in­

serted in an already stressed (in situ stress state) ground mass. For this type 

of loading it is necessary to assume that either 1) the liner is installed after 

excavation, but in such a manner that no ground displacements occur prior to 

interaction, or 2) the liner is installed before excavation of the soil core 

and that interaction does not occur until this core is removed. 

Interaction between the liner and the surrounding ground mass is 
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influenced by the magnitude of the shear stresses mobilized at the contact or 

interface between liner and ground. Unfortunately, it is not presently possible 

to obtain an exact solution which would account for the general case of shear 

stresses in excess of the shear strength over only a portion of the interface. 

Only the two extreme conditions will be considered here. It is possible to 

obtain a solution for what is called the no slippage condition by assuming that 

the interface shear strength everywhere exceeds the mobili~ed shear stress. For 

this condition the tangential displacements of the liner and the ground mass are 

everywhere equal at the interface (v ,e = vm for all 0 at r = a). At the other 

extreme, if it is assumed that the interface shear strength is everywhere zero, 

there will be no resistance to slippage (v
1 

I vm at r = a). The solution that 

can be obtained for this condition is called the full slippage condition solu­

tion. 

All eight solutions assume that the ground mass extends to infinity 

in all directions, and therefore they are applicable only to deep tunnels. 

However, in effect, it is not necessary to consider the ground surface to be 

located at infinity. As illustrated in Chapter 4, tunnels located at depths 

greater than five tunnel diameters (H/D > 5) behave essentially like very deep 

tunnels. For 2 < H/D < 5 the analytical solutions can be used if the results 

obtained are evaluated in accordance with the shallow depth effects. 

A.2 GENERAL EQUATIONS FOR STRESSES AND DISPLACEMENTS IN A LINEAR-ELASTIC MATERIAL 

A.2.1 GENERAL COMMENTS 

Before the individual solutions can be derived the general equations 

for stresses and displacements in an elastic medium must be determined. For 

the "thin liner" solutions these equations are used only for the ground mass. 
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For the "thick liner" solutions the behavior of both the liner and the ground 

mass are obtained from these equations. 

It is assumed thatthecharacteristics of the ground-liner system are 

such that the problem can be considered to be one of plane strain. Because a 

circular liner is being considered the polar coordinate system will be used. 

Thus, the derivations that follow will yield two-dimensional, plane strain 

solutions given in plane polar coordinates. It is also assumed that the elastic 

solids considered are ideally isotropic and homogeneous. It is assumed that 

the ground-liner system is subjected to a uniform stress field applied far from 

the center of the tunnel, and that this stress distribution is symmetrical about 

both the horizontal and vertical axes (Fig. A.2). 

The necessary and sufficient conditions which the components of stress, 

strain, and displacement must satisfy in order to obtain a solution of an elas­

ticity problem are the following: 

a. The strain-displacement relations 

b. The stress-strain relations 

c. The equilibrium conditions 

d. The compatibility conditions 

e. The boundary conditions at the exterior 

surfaces of the body. 

The three strain-displacement equations in plane polar coordinates are: 

E = OU 
(A. la) r or 

Ee = .!:! + l ov (A. lb) r r oe 

yre l OU + ov V (A. le) = - -r oe or r 
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x, y : carteasian coordinates 

r, e : polar coordinates 

origin of coordinate system corresponds to centerline 
of tunnel 

FIGURE A.2 STRESS FIELD TO WHICH GROUND-LINER SYSTEM IS 
SUBJECTED 
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The three stress-strain equations in plane polar coordinates are: 

Er (1 + \1)[(1 - v)dr - \Ide] (A.2a) = E 

Ee 
(1 + v)[(l - v)oe - vor] (A.2b) = E 

Yre = 2( l + \I) 
E re (A.2c) 

The equilibrium equations are obtained by considering the normal and 

shear stresses acting on a small element of the body. It is required that the 

sum of opposing forces in both the radial direction and the circumferential 

direction equal zero. The resulting equilibrium. equations in plane polar co­

ordinates (for zero body forces) are: 

Zld d - de Q 

--E.+ r + 1 __!]_ 0 (A. 3a) = Zl r r r zie 

lode ~ 2 re 
0 (A. 3b) - + +-- = r zie Zlr r 

In plane polar coordinates the compatibility equation in terms of the 

strains is obtained from the strain-displacement equations (Eqns. A.1) and is 

2 
Q ryre 

Q ezi r (A. 4) 

By substituting the stress-strain equations (Eqns. A.2) into Eqn. A.4 the 
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compatibility equation in terms of the stresses is obtained for plane polar 

coordinates. This equation is 

2 2 
<L + ..1. _o - + l .L)(o + o ) = o 
or2 r2 002 r or r e (A.S) 

Thus, the solution of two-dimensional (plane polar coordinates) prob­

lems in elasticity theory reduces to solving the two differential equations of 

equilibrium (Eqns. A.3) and the differential equation of compatibility (Eqn. A.S). 

The resulting constants of integration are evaluated by means of the boundary 

conditions. 

A solution is obtained by finding a set of stress components (or' o
0

, 

-rr
0

) that satisfy the boundary conditions and Eqns. A.3 and A.S. The usual 

procedure, assuming zero body forces, is as follows: 

1. introduce a new function called the Airy stress function, 

¢ (r ,e), 

2. express the stress components in terms of this function 

so that the equilibrium equations (Eqns. A.3) are satisfied, 

3. use the compatibility equation (Eqn. A.S) to find the 

expression for ¢ in terms of r, e , and a number of 

constants of integration, 

4. use the boundary conditions to find expressions for the 

constants of integration. 

Once this has been done the stress function is completely defined, and as a 

consequence the stresses and, by means of the stress-strain equations (Eqns. A.2) 

and the strain-displacement equations (Equs. A.l), the displacements are deter­

mined. 
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A.2.2 DERIVATION OF THE APPROPRIATE AIRY STRESS FUNCTION, ¢ (r,0) 

At this point it is necessary to find the Airy stress function, ¢ , 

that applies for each particular problem being considered. Fortunately, since 

the eight solutions sought here are similar (differ only with respect to "in­

terior" boundary conditions) one stress function can be used for all eight. 

(Note: The same stress function can be used for the problem of an unlined cir­

cular opening.) 

The stress components (dr, de , --ere) expressed in terms of the Airy 

stress function so that t he equilibrium equations (Eqns. A.3) are satisfied 

are: 

d = 1~+..l..~ (A. 6a) 
r r or r 2 0 02 

de = ~ (A. 6b) 
or

2 

't"re = o 1 ~ - t:<r oe) (A. 6c) 

Substitution of Eqns. A.6a and 6b into the compatibility equation 

(Eqn. A.5) yields 

(A. 7) 

The expression for ¢ is obtained by solving this equation. 

The solution to Eqn. A.7 can be obtained by the method of separation 

of variables. Let 

¢ (r,e) = R(r) A(0 ) (A. 8) 
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where R(r) is a function of r only and A(0) is a function of 0 only. 

Substitution of Eqn. A.8 into Eqn. A.7 and expansion of the result 

gives 

R ct\ +--- = 
r 4 

d0
4 

0 (A. 9) 

Total derivative symbols are used because R = f(r) only and A= f(e) only. 

We must now find R(r) and A(0) using Eqn. A.9 and the stress conditions 

at infinity. Because of the assumption of lineari t y the principle of super­

position can be utilized and the stress system (Fig. A.2) separated into two 

component parts as shown in Fig. A.3. 

In Figs. A.2 and A.3 the stresses at infinity are given in terms of 

carteasion coordinates, giving 

, , '1:: = o. xy 

The following equations are used to transform these stresses to plane polar 

coordinates . 

2 . 2 
+ 't sin 20 dr = oxcos e + d sin e y xy 

(A. lOa) 

. 2e 2 - t sin 20 de = d sin + d cos 0 
X y xy 

(A. lOb) 
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-r = ½(d - d ) sin 20 + -r cos 20 re y X Xy 

Thus, we have 

2 . 20 
dr = dHcos 0 + dySl.n 

de 
. 20 2 = dHsl.n + dycos 0 

'tre = ½Cdv - dH) sin 20 

Using the trigonometric identities 

we obtain, 

... 2 
cos e 

dr = 

de = 

'T 
re = 

= ~(l + cos 20) and . 20 s 1. n 

~(dH + dy) + ~(dH - dv)cos 20 

~(dH + dv) + ~Cdv - dH)cos 20 

~(dv - dH) sin 20 

(A. lOc) 

= ~(l - cos 20) 

(A. lla) 

(A. llb) 

(A. llc) 

Using the relations given in Fig. A.3 these equations become, for Fig. A.3a, 

dr = I - Jcos 20 (A .12a) 

de = I + J cos 20 (A.12b) 

'tre = J sin 20 (A.12c) 
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The stress condition in Fig. A.3b is given by 

d = I r (A.13a) 

de = I (A.13b) 

"t 
re = 0 (A.13c) 

The stress condition in Fig. A.3c is given by 

d = r - J cos 20 (A.14a) 

de = J cos 20 (A.14b) 

"'C're = J sin 20 (A.14c) 

The principle of superposition also applies to the stress function, 

¢ (r,0). Thus, we can find the ¢1 (r,0) = R1(r) A1 (e) that applies for Fig. A.3b 

and Eqns. A.13, and the ¢ 2 (r,0) = R2 (r) A
2

(0) that applies for Fig. A.3c and 

Eqns. A.14, and then add these expressions to get the ¢(r,0) that applies for 

Fig. A.3a and Eqns. A.12. 

(A.15) 

DETERMINATION OF ¢1 (r,0 ) 

From Fig. A.3b and Eqns. A.13 we see that the stresses are independent 
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of e . Thus, in Eqn. A.8 \ 1(e) must be a constant, giving 

(A .16) 

This also means that all derivatives of Al (0) with respect toe must be zero. 

As a result of this requirement Eqn. A.9 here reduces to 

4 3 2 
d R1 2 d R1 l d R1 l dRl 
--+-------+--- = 0 
dr4 r ctr3 r2 ctr2 r3 dr 

This equation can be rewritten as 

1 ~ ..A_J--1 d dRl ] 
r ctr1-l.ctr1-r ~~) } = 0 

The expression for R1 (r) is obtained by successive integration of this equation. 

The result of such integration is 

= 

where c1 through c4 are the constants of integration. Substituting this ex­

pression into Eqn. A.16 we get 

= (A .17) 
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DETERMINATION OF ¢2(r,0) 

Now consider the stress state given by Fig. A.3c and Eqns. A.14. It 

can be shown that A2 (0) = cos 20 (Timoshenko and Goodier, 1970). Thus, Eqn. A.8 

is of the form 

= (A.18) 

Substituting R = Rz(r) and A= cos 20 into Eqn. A.9, dividing through 

by cos 20 and collecting terms we obtain 

= 0 (A.19) 

Equation A.19 is an ordinary differential equation with variable 

coefficients which can be reduced to a linear differential equation with con­

s tant coefficients by introducing a new variable, t, such that 

t = log r or t r = e ; 
dt 1 

= dr r 
(A.2O) 

The chain rule for differentiation with respect to the second variable gives 

ctRz<r) l dR2(t) 
(A.2la) = dr r dt 

ct2R
2
(r) 2 

ctRz<t) l d R2(t) 
= ~ - dt ] (A.2lb) 

ctr
2 

r
2 

ctt
2 

ct
3
R/r) 

3 ct2R
2
(t) dR/t) l d Rz<t) 

dr
3 = 7L 3 - 3 

ctt
2 + 2 dt ] (A.2lc) 

r dt 
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(A.2ld) 

Substituting Eqns. A.21 into Eqn. A.19 and collecting terms we get, 

= 0 (A. 22) 

Now let 

(A.23) 

and note that 

ctR
2

( t) 
pept = dt 

ct2R
2

( t) 
2 pt = P e 

ctt2 

ct
3

RzC t) 3 pt 

ctt 3 = p e 

ct
4

RzC t) 

ctt4 = 4 pt 
P e 

pt 
Thus, by substituting Eqn. A.23 into Eqn. A.22 and dividing through bye we 

obtain 

(A.24) 
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The roots of this equation can be found by following the procedure outlined 

in Selby (1973). The four roots are: 

p = 4, p = 2, p = o, p .. -2 

From Eqn. A.23 we find 

R/t) 
4t 

(A.25a) = e 

R/t) 
2t 

(A.25b) = e 

R/t) 
-2t 

(A.25c) = e 

R/t) 
Ot 

1 (A.25d) = e = 

It can be shown that each of Eqns. A.25 satisfies Eqn. A.22. The r ght side 

of each of Eqns. A.25 can be multiplied by an arbitrary constant and these 

eql!4tions will still satisfy Eqn. A.22. 

R/t) ct
1

e 4t 
(A.26a) = 

R/t) ct
2

e 2t 
(A.26b) = 

R
2
(t) ct 3e -2t 

(A.26c) = 

R/t) = d4 (A.26d) 

Because each of Eqns. A.26 satisfies Eqn. A.22, the sum of these equations will 

also satisfy that equation. Thus, we can obtain 
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R () = d 4t + d 2t + d -2t + d 2 t 1 e 2e 3e 4 (A. 27) 

Substituting Eqn. A.27 into Eqn. A.2la we obtain 

(A.28) 

From Eqn. A.20 we have that 

t 
e = r. 

Raising each side of this equation to the appropriate power we can obtain 

4t 4 
e = r 

2t 2 
e = r 

-2t -2 
e = r 

Substituting these equalities into Eqn. A.28 we get 

dR/r) 

dr = 

Integrating this equation with respect tor and substituting in new symbols for 

the constant coefficients we have (after rearragning terms) 

= (A.29) 
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Substituting Eqn. A.29 into Eqn. A.18 we get 

= 
2 B2 4 

(B
1
r + - + B + B

4
r ) cos 20 

r2 3 
(A. 30) 

EXPRESSION FOR ¢(r,0) 

Substitution of Eqns. A.17 and A.3O into Eqn. A.15 gives the general 

expression for the stress function. 

¢(r,0) 2 2 
+ A4) + = (A1r log r + A2r + A3 log r 

+ (Blr2 
B2 4 

+ 2 + B3 + B 4r ) cos 20 
r 

The fourth term on the right side of this equation, A4 , can be deleted since 

it is a function of neither r nor 0. Thus, the final expression for the Airy 

stress function that is appropriate for the problems to be considered is 

¢(r,0) = 

(A. 31) 

A.2.3 GENERAL EQUATIONS FOR STRESSES AND DISPLACEMENTS 

Using Eqns. A.1, A.2, A.6, and A.31 the general expressions for the 
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stresses and displacements can now be obtained. 

Substituting Eqn. A.31 into each of Eqns. A.6 we find the stress 

equations. 

(A, 32a) 

(A,32b) 

"C = re (A.32c) 

By substituting Eqns. A.l into Eqns. A.2 we obtain the stress-dis­

placement relations that can be used to find the displacements. The stress­

displacement relations are: 

OU 1 + V [ vd0] (A, 33a) = ( E ) (1 - v)dr -or 

~ + ov) r u oe = (
1

; V)[Cl - v)de - Vdr] (A. 33b) 

1 ou + ov _ V zcl + v)~ (A. 33c) = roe or r E re 

By substituting Eqns. A.32 into Eqns. A.33 and performing the necessary integ­

rations we obtain the general expressions for the displacements, which are 
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(1; v)(r)[[(l -u = 2v) A
1 

( 2 1 og r - 1) 

_ 2B 2 _ 4B 3 2 
- [2B 1 4 fl - v) + 4vB4r Jcos2e} + 

r r 

+ A sin 0 + B cos 0 
0 0 

(A. 34a) 

2B
2 

2B
3 2 + [2B 1 + - - f 1 - 2v) + 2(3 - 2v)B

4
r J sin 20) + 

r 4 r 

+ A cos 0 - B sin 0 + C r 
0 0 0 

(A. 34b) 

where A, B , and C are the additional constants of integration that result. 
0 0 0 

Equations A.32 and A. 34 are the generalized stress and displacement 

equations used in the derivations of the eight solutions considered here. For 

the "thin liner" solutions these equations must be combined with the equations 

for a thin shell. For the "thick liner" solutions these equations are suffi­

cient. For each different solution the constants of integration in Eqns. A.32 

and A.34 are evaluated on the basis of the boundary conditions that apply for 

that particular problem. 

A.3 SOLUTIONS FOR A THIN LINER 

A.3.1 GENERAL COMMENTS 

The "thin liner" solutions are obtained by combining the generalized 

stress and displacement equations for the ground mass (Section A.3.2) with the 
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equations for a thin shell (Section A.3.3) in accordance with the appropriate 

boundary conditions. 

The positive sign conventions and the relevant geometrical quantities 

adopted for these solutions are illustrated in Fig. A.4. As shown in this 

figure the radius of the tunnel is measured to the outer surface of the liner 

(a• R,) rather than to the mid-thickness of the liner (a= RJ, This is an 

arbitrary selection based on the boundary conditions required (e.g., at r = a, 

urn =- '}) in the derivations. As a result of this selection a descrepancy 

arises because the liner thrusts, shears, bending moments, and displacements 

should be evaluated at a• I\n, not at a= R
0

• However, because the liner is 

thin (t << a) there is little difference between R and R and it makes little rn o 

difference which value of a is used. 

A.3.2 EQUATIONS FOR GROUND MASS STRESSES AND DISPLACEMENTS IN TERMS OF STRESS 

FUNCTION CONSTANTS 

Equations A.32 and A,34 represent the generalized equations for 

stresses and displacements, respectively, in an elastic body. The equations 

for stresses and displacements in the elastic ground mass surrounding the 

tunnel are obtained from these equations by invoking the following two 

conditions: 

1) at r • oo, 

dr = drm = ½(dV + o'H) - ½(dv - d
8

) cos 20 (A.lla) 

de = 0ern = ½<ov + o'H) + ½Cov - d
8

) cos 20 (A. llb) 

"'C = 'T = ½(dv - dH) sin 20 re rem (A,llc) 
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for (n • 0,1,2,3, ••••• ) 

By substituting Eqns. A.32 into Eqns. A.11 and setting r =oo; and by setting 

0 = nn/2 in Eqn. A.34b and equating the result to zero for n = 0 and n = 1 we 

find that 

Al = 0 

A2 = ~(dy + dH) 

A3 = unknown = L 

Bl = ½(dy - dH) 

B2 = unknown = J 

B3 = unknown = N 

B4 = 0 

A = 0 
0 

B = 0 
0 

C = 0 
0 

Substituting ~hese values for the coefficients back into Eqns. A.32 

and A.34 we obtain the fullowing: 

[½Cd + d) + .h.] - [~(d - d) 6J 4N] (A. 35a) drm = + 4 + 2 cos 20 V H 2 V H 
r r r 

[\Cdy + dH) - ~] + [\Cdy - dH) 6JJ (A.35b) 00m = + 4 cos 20 
r r 
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,: [~(d - d) 6J 2N] . (A.35c) = - - - - s1n2e rem V H 4 2 r r 

1 + \I 
+ d )(1 - 2\1) - l] u = ( m)(r){[~(dv m E H m 2 m r 

- [~(d - d ) V H 
- 2J - ~l 

r4 r2 
- \I ) ] COS 29} m (A.35d) 

1 + \I 
+ 2J _ 2N(l _ V = ( m)(r){[~(dv - dH) 2\1 ) J sin 29} (A. 3Se) m E 4 2 m m r r 

OVERPRESSURE LOADING 

For the solutions that consider an existing tunnel such that the 

ground-liner system is subjected to an overpressure, P, applied at the ground 
0 

surface we have 

= p 
0 

and = KP 
0 

It should be noted that, while for this type of loading the lateral displacement 

constraint is usually assumed, requiring 

K = 1 - \I m 
, 

the following derivations of the overpressure loading solutions yield equations 

that allow the selection of Kand \Im values that are independent of each other 

if this is deemed appropriate. 

In terms of P
0 

and K the general equations for ground mass stresses 

and displacements for overpressure loading are the following: 
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drm = 
p L p 6J 4N] [C i°)(l + K) + 2 ] - [C 

2
°)(1 - K) + 4 + 2 cos 20 

r r r 
(A. 36a) 

0em = 
po L p 6J] 

[CT)(l + K) - 2J + [C 2°)(1 - K) + 4 cos 20 
r r 

(A. 36b) 

-r = rem 

p 
[ (-2)(1 - K) - 6J - 2N] sin 20 

2 4 2 
r r 

(A.36c) 

1 + \J p 
u = ( m)(r){[( 20)(1 + K)(l - 2vm) - 12] m E m r 

p 

- lJ. - ~1 - [(-2)(1 - K) - v ) ] cos 20} 2 4 2 m r r 
(A.36d) 

1 + \J p 
+ k! - 1¥<1 V = ( m)(r){[C 

2
°)(1 - K) - 2v )]sin20} m E 4 2 m (A. 36e) 

m r r 

EXCAVATION LOADING 

where, 

For solutions that consider excavation loading we have 

OV = yH and = K yH 
0 

Y = unit weight of the ground mass, 

H = tunnel depth, measured from the ground surface 

to the tunnel centerline, 

K0 = coefficient of earth pressure at rest 

The generalized ground mass stress equations for excavation loading 

can be obtained by substituting these expressions for Ov and OH into Eqns. A.36a, 

band c. In order to obtain the corresponding displacement equations, Eqns. 
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A.36d and e require further modification. For excavation loading it is assumed 

that the liner is installed in an already stressed medium. Thus, some displace­

ment of the ground mass will already have occurred prior to excavation and con­

struction of the tunnel. These are the "in situ" displacements resulting from 

the application of the in situ stresses (Eqns. A.11) to the initially stress 

free ground mass. These displacements are obtained from Eqns. A.35d and e by 

assuming that the ground mass is intact (no t unnel opening) and that at r • 0, 

um• vm • O. By inserting these values into Eqns. A.35d and ewe find 

L = J = N = 0 , 

and that the "in situ" displacements are (in terms of dv and d8 ) 

1 + \I 

umi = ( E m)(r)[[~(dv + d8)(1 - 2vm)] - [\(dv - d8)Jcos 20} (A.37a) 
m 

1 + V 

vmi = ( E m)(r)[[~(dv - d8) J sin 20} (A.37b) 
m 

Thus, the correct expressions for the ground mass displacements are obtained by 

subtracting Eqns. A.37a and b from Eqns. A.35d and e, respectively, and then 

substituting YR for dv and K
0

YH for O'H° 

In terms of YR and K the general excavation loading equations for the 
0 

ground mass stresses and displacements are 

O'rm = [(.Y!!)(l + K ) + .1_] - [(.Y!!)(l - K ) + 6J + 4N
2

] cos 20 
2 o r2 2 o r4 r 

"t" rem 

= 

= 

[(Yf)(1 + K
0

) - \J + [<¥)(1 - K
0

) + ~] cos 20 
r r 

[(.Y!!)(l - K) - 6J - 2N]sin29 
2 o 4 2 r r 

(A. 38a) 

(A. 38b) 

(A. 38c) 
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1 + \I L 2J 4N 
( E m)(r)[[- 2 ] + [4 + 71 - \lm)]cos 29} 

m r r r 

l+v 2J 2N 
( E m)(r)[[4 -z<1 - 2vm)Jsin29} 

m r r 

A.3.3 EQUATIONS FOR A THIN SHELL (LINER) 

(A.38d) 

(A. 38e) 

For the "thin liner" solutions relationships between liner thrust and 

shear forces, bending moments, displacements, and external pressures (See Fig. 

A.4) are taken from thin shell theory (Flugge, 1973). These relationships are 

given below in terms of plane polar coordinates. 

The relationships between liner thrust, shear, and moments and ex­

ternal pressures acting on the liner are 

oT oM 2 
aae - ae = a ~re 

0~ + aT = a
2

P 
oe

2 r 

V 
_ oT = a~re oe 

From Eqns. A.39a and cit can be shown that 

v = l oM 
a oe 

(A. 39a) 

(A. 39b) 

(A.39c) 

(A. 39d) 

The relationships between liner thrust, moments and displacements are 

2 
o u£ 

+-] 
oe

2 
(A.4Oa) 
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M (A.40b) 

The relationships between liner displacements and external pressures 

acting on the liner are obtained from Eqns. A.39 and A.40. 

(A.41a) 

2 
= 

....s:__ p .,. 
E~A 

r 
(A.4lb) 

* In the above equations Ez represents the liner modulus for plane-

strain, 

and (assuming the liner is of rectangular cross-section of uniform thickness, t, 

in the radial direction and unit thickness, b = 1, in the longitudinal direction), 

A• t = cross-sectional area 

I= t 3/12 = moment of inertia 

If the liner consists of discrete members (i.e., is not continuous in the long­

itudinal direction) 

A = 
A 

u 
L and I = 

I 
u 

L 

where A and I are the cross-sectional area and moment of inertia, respectively, 
u u 

of the member and Lis the length in the l ongitudinal direction of that member. 
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A.3.4 THE LINER-GROUND MASS COMPRESSIBILITY AND FLEXIBILITY RATIOS 

The mechanics of the "thin liner" solution derivations and the form 

of the resulting final equations are significantly simplified by the use of what 

are called the compressibility (C) and flexibility (F) ratios, where C is a 

measure of the extensional stiffness of the surrounding medium relative to that 

of the liner and Fis a measure of the flexural stiffness of the surrounding 

medium relative to that of the liner. The derivation of the expressions for 

these ratios is given by Peck, Hendron, and Mohraz (1972). 

The resulting expressions are given as 

C = 

F = 

E 
m 

(1 + V )(1 - 2V) 
m m 

E 
m 

(1 + V ) 
m 

(A.42a) 

(A.42b) 

To express these · ratios in terms of the liner radius-to-thickness ratio (a/t) 

it is necessary to assume that the liner is continuous in the longitudinal 

dir ection and of rectangular cross-section with uniform thickness. 

By rearranging the terms in :Eqns. A.42 we have that 

3 1 + V 
..L. = 6F( m) 

·k E 
E ,e I m 

(A.43a) 

l + V 
a 

(1 - 2v ) C ( m) = E 
E;A 

m 
m 

(A.43b) 
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A.3.5 SOLUTION NO. l: OVERPRESSURE LOADING - NO SLIPPAGE CONDITION 

The additional boundary conditions that apply for this problem require 

that at r = a, 
u = u£ (BCl) m 

V = v£ (BC2) m 

drm = p (BC3) r 

~ = rem Tre (BC4) 

From Eqn. A.4la we have 

We get the following from boundary conditions BCl, 2 and 4 and 

from Eqn. A.36e, 
l + \/ P 

v,£ = ( E m) ( a)L [ ( 20) (1 - K) 
m 

+ 
2i - 2

~(1 ... 2\/m)]sin2e} 
a a 

from Eqn. A.36d, 
1 + \) p 

u£ = ( E m)(a)([( 20)(1 + K)(l - 2\/m) - \J -
m a 

p 

- [C 2°)(1 - K) -
2i -71 - \/m)]cos 20} 
a a 

from Eqn. A.36c, 

[ po 6J 2N] . C2 )Cl - K) - 4 - 2 s1.n2e 
a a 

from Eqn. A.43b, 

l + \/ 
= ( l - 2\/ ) C ( m) 

m E 
m 

(A.4la) 
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Substituting these expressions into Eqn. A.4la, performing the indicated 

differentiations, and rearranging terms we find 

N = 
( l - 2 V ) C - 2 P 6 ( l - 2v ) C + 12 J 

[2(1 - 2vm)C + 8v ]( 2°)(1 - K) - [2(1 - 2vm)C + 8v ](2) 
m m m m a 

From Eqn. A.4lb we have 

2 

(Al .1) 

a p = -.': r 
(A.4lb) 

E!l 

The expressions for v
1

, u
1

, and a/E;A are given above. From Eqns. A.43 we 

have 

E l + V 

[-b{ m ) ][( 1 - 2v ) C ( m)] 
(1 - 2v )C 

m 
= = 6F l + V m E m m 

From BC3 and Eqn. A.36a we have 

p = 
r 

[ 
po L ] [ po 6J 4N]c 

C2 )Cl+K) + 2 - (2 )(1-K) + 4 + 2 os2e 
a a a 

= 6F 

After substituting all of these expressions into Eqn. A.4lb, performing the 

required differentiations, and rearranging terms we obtain an equation of the 

form 

X = Y cos 20 
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where X and Y are constants (i.e.,do not contain r or 9). In order for this 

equality to hold for all values of ewe must have X = Y = O. 

From the requirement that X = 0 we find the first expression for a stress 

function constant. This expression is 

where, 

L 

L 
n 

= 

= 
(1 - 2v )(C - 1) - (1 

m 

( 1 - 2v )C 
m 

- ZVm) 6F 
(1 - 2v )C 

1 + (1 - 2vm)C + --
6
-F_m_ 

(Al .2a) 

Note that by substitutrng in the expressions for C and F (Eqns. A.42) we 

find that 

(1 - 2v )C 
m 

6F = 

For the "thin liner" solutions we have assumed that (t/a) < 0.10. Thus 

( 1 - 2v )C 
[ 

6
F m ~ax< 0.00083. 

Because this term will always have a very small value, setting it equal to 

zero here will not significantly alter the solution. Thus we have 

L = 
n 

(1 - 2v ) (C - 1) 
m 

1 + (1 - 2v )C 
m 

(Al.2b) 
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From the requirement that Y =Owe have 

p 

( 2°)(1 - K)[2F - 3(1 - 2vm)C + 2(1 - 2Vm)CF] + 

+ ( 14) [12F + 6(1 - 2vm)C + 12(1 - 2vm)CF J + 
a 

+ ( N2)[8v F + 12(1 - v )(1 - 2v )C + 8(1 - 2v )CF] = 0 m m m m 
a 

Substituting the expression for N as a function of J (Eqn, Al,l) into this 

equation and collecting terms we find that 

where, 

J 

J = 
n 

(Al, 3a) 

[Cl - 2v )(1 - C)]F - %(1 - 2v ) 2c + 2 m m 
[C3 - 2v) + (1 - 2v )C]F + %CS - 6v )Cl - 2v )C + (6 - 8v) m m m m m 

(Al ,3b) 

Substituting Eqns, Al,3a and b back into Eqn, Al,l and collecting terms 

we find 

where, 

N = 

N 
n 

= 

(Al,4a) 

[1 + (1 - 2v )C]F - %(1 - 2v )C - 2 m m 
[C3 - 2v) + Cl - 2v )C]F + %CS - 6v )(1 - 2v )C + (6 - sv) m m m m m 

(Al,4b) 
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Now that expressions have been obtained for the three nonzero stress 

function constants, the final equations for ground mass stresses and dis­

placements are obtained by direct substitution of Eqns. Al.2a, 3a, and 4a 

into Eqns. A.36. The boundary conditions BC3 and BC4 then yield the equations 

for the external pressures acting on the liner. Similarily, BCl and BC2 allow 

determination of the final equations for liner displacements. The final 

equation for liner bending moments is obtained by substituting the resulting 

expression for u1 into Eqn. A.40b. Then the equations for liner thrust and 

shear forces can be obtained from Eqns. A.39b and d, respectively. 

All of the final equations for Solution No. 1 are presented in Section 

B.1 of Appendix B. 

A.3.6 SOLUTION NO. 2 t OVERPRESSURE LOADING - FULL SLIPPAGE CONDITION 

The additional boundary conditions that apply for this problem require 

that at r = a, 

u = u£ m 

o'nn = p 
r 

't'rem = ~ = re 

Thus, from BC3 and Eqn. A.36c we have that 

N = 
P a2 

0 3J 
(-4-)(1 - K) - 2 

a 

From BC3 and Eqn. A.4la we have 

= 0 

0 

(BCl) 

(BC2) 

(BC3) 

(A2. 1) 



345 

Integrating this equation with respect toe twice we find that 

= 

From BCl we have that for r = a, u£ is given by Eqn. A.36d. Substituting this 

expression for ~ into the above equation for v£ , performing the indicated 

integration, and invoking the requirement that v£ = 0 fore = nrr/2 (where 
1( 

n = O, 1, 2, 3, •••••• ) we find that 

1 + V P 
fl(r) = ( E m)(a)[(l - 2vm)( 2o)(l + K) - 12] 

m a 

Thus, the above equation for v£ can be rewritten as follows: 

= 
1 + V P 

(( E m)(a)[(l - 2vm)( 2°)(1 + K) - 1;J}(e) 
m a 

Taking the partial derivative with respect toe of each term in this equation 

we find that 

1 + V P 
= ( E m)(a)[(l - 2vm)( 2o)(l + K) - 12] 

m a 

7: 
The resulting expression for v£ is 

= 
1 + V P 

( m)(~)[(-..£)(1 - K) - 2J - 4N(l - v )]sin2e 
E 2 2 4 2 m 

m a a 
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Substituting this result into Eqn. A.4lb we have 

1 + \) p 
( E m)(a)[(l - 2vm)( 20)(1 + K) - L2] + 

m a 

The following equations are obtained from the boundary conditions and 

from Eqn. A.36d, 

1 + \) p 
= ( E m)(a) [(-2.)(1 + K)(l - 2v) - l!..J 

2 m 2 

from Eqn. A.36a, 

m a 

p 
- [(-2) ( 1 - K) 

2 
2J - - -4 
a 
~ l - v ) ]cos 20 

2 m 
a 

p 
r = 

p L p 6J 4N] [c 22)c1 + K) + 2 ] - [c t)c1 - K) + 4 + 2 cos 20 
·a a a 

from Eqn. A.43b, 

1 + \) 
= ( l - 2v ) C ( m) 

m E 
m 

from Eqns. A.43a and b, 

( l - 2v )C 
m 

6F 



347 

After substituting all of these equations into the above equation, taking the 

required derivatives, and rearranging terms we obtain an equation of the form 

X = Y cos 20 

where X and Y are constants (i.e., do not contain r ore). In order for this 

equality to hold for all values of ewe nrust have X = Y = O. 

From the requirement that X = 0 we obtain the same result as in the 

derivation of the first solution (See page 342 , Section A.3.5). That is, that 

where, 

p 

L = - ( 2°)(1 + K)a2Lf 

= L = n 

( 1 - 2v ) ( C - 1) 
m 

l + ( 1 - 2v )C 
m 

From the requirement that Y = 0 we find 

p 

( 2°)(1 - K)[3 - 2F] -
3
4[6 + 12F] - N2[12Cl - vm) + 8F] = 0 

a a 

(A2 .2a) 

A2.2b) 

Substituting the expression for N as a function of J (Eqn. A2.l) into this 

equation and collecting terms we find that 

J = 

where, 

= 
2F + ( 1 - 2v ) 

m 
2F + (5 - 6v) 

m 

(A2. 3a) 

(A2.3b) 
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Substituting Eqns. A2.3 back into Eqn. A2.l and collecting terms we find 

N = 

where, 

= 
2F - l 

2F + (5 - 6v) 
m 

(A2.4a) 

(A2.4b) 

Now that expressions have been obtained for the three nonzero stress 

function constants, the final equations for ground mass stresses and dis­

placements are obtained by direct substitution of Eqns. A2.2a, 3a, and 4a 

into Eqns. A.36. The boundary conditions BC2 and BC3 then yield the equations 

for the external pressures acting on the liner. Similarily, BCl allows 

determination of the final equation for the liner radial displacements. The 

equation for liner tangential dispiacements is obtained by substituting 

Eqns. A2.3a and 4a into the equation for v1 given at the bottom of page 345. 

Substitution of the final equation for u1 into Eqn. A.4Ob yields the equation 

for liner bending moments. Then the equations for liner thrust and shea~ 

forces can be obtained from Eqns. A.39b and d, respectively. 

All of the equations for Solution No. 2 are presented in Section B.2 

of Appendix B. 

A.3.7 SOLUTION NO. 3 z EXCAVATION LOADING - NO SLIPPAGE CONDITION 

The additional boundary conditions that apply for this problem require 

that at r = a, 
u 

m 

V 
m 

= 

= 

(BCl) 

(BC2) 



From Eqn, A,41a we have 

2 
o VJ, + OU& = 

00
2 oe 
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= p 
r 

We get the following from the boundary conditions and 

from Eqn. A.38e, 

l + V 2J 2N 
= ( E m)(a)[[4 - ~1 - 2vm)]sin2e} 

m a a 

from Eqn. A. 38d, 

from Eqn, A,38c, 

= [C..Y!!) ( 1 - K ) -
6J - ZN]sin 20 

2 0 4 2 
a a 

from Eqn, A.43b, 

1 + V 
a 
-1: 

E A 
= ( 1 - 2v ) C ( m) 

m E 
m 

(BC3) 

(BC4) 

(A ,4la) 

Substituting these expressions into Eqn. A,4la and collecting terms we find 

N = (A3. 1) 
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From Eqn. A.4lb we have 

1·c 

= 
2 

a p 
r (A.4lb) 

The expressions for v£, u£, and a/E£A are given above. From Eqns. A.43 we have 

= 
( l - 2v )C 

rn 
6F 

From BC3 and Eqn, A.38a we have 

Pr = [C-~)(l + K
0

) + \J - [C7)(l - K
0

) + 
6i + 

4
~]cos 29 

a a a 

After substituting all of these expressions into Eqn. A.4lb, taking the 

required derivations, and r earranging terms we obtain an equation of the form 

X = Y cos 29 

where X and Y are constants (i.e., do not contain r or 9). In order for this 

equality to hold for all values of 9 we must have X = Y = O. 

From the requirement t hat X = 0 we find that 

L = - (.Y.!:!) ( l + K ) a2L i: (A3,2a) 
2 o n 

where, 

";'\ 
( l - 2\1 )C 

m L = ( l - 2\1 )C n 
l + (1 - 2\1 )C + m 

m 6F 
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As was done in the previous derivations we set 

to obtain 

L = 
n 

( 1 - 2v )C 
m 

(1 - 2v )C 
m 

1 + (1 - 2v )C 
m 

6F = 0 

From the requirement that Y = 0 we find 

(..Y!:!
2
8)(1 + K )[(1 - 2V )CF]+ o m 

~ 1
4[6F + 3(1 - 2Vm)C + 6(1 - 2Vm)CF] + 

a 

+ 1;,[2 4V F + 6(1 - v )(1 - 2v )C + 4(1 - 2v )CF] = 0 - m m m m 
a 

(A3.2b) 

Substituting the expression for Nin terms of J (Eqn. A3.1) into this equation 

and collecting terms we find that 

J = (A3. 3a) 

where, 

[2v + (1 - 2v )c]F + (1 - v )(1 - 2v )C m m m · m 
2V) + (1 - 2V )C]F+~(S - 6v )(1 - 2v )C + (6 - 8v) m m- . m m m 

(A3.3b) 

Substituting Eqns. A3.3a and b back into Eqn. A3.1 and collecting terms 

we find the expression for N, 
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N = 
H 2 ,"r 

- \(..Y.!!2 )(1 - K )a N' 
o n (A3.4a) 

where, 

-/( [3 + 2(1 - 2v )C ]F + ¼Cl - 2v )C m m 
N 

n - [(3 - 2v) + (1 - 2v )C]F + \(5 - 6v )(1 - 2v )C + (6 - Bv) m m m m m 

(A3 .4b) 

Now that expressions have been obtained for the three nonzero stress 

function constants, the final equations for ground mass stresses and dis­

placements are obtained by direct subatitution of Eqns. A3.2a, 3a, and 4a 

into Eqns. A.38. The boundary conditions BC3 and BC4 then yield the equations 

for the external pressures acting on the liner. Similarily, BCl and BC2 

allow determination of the final equations for liner displacements. The 

final equation for liner bending moments is obtained by substituting the 

resulting expression for u
1 

into Eqn.A.4Ob. then the 'equations for liner 

thrust and shear forces can be obtained from Eqns. A.39b and d, respectively . 

All of the final equations for Solution No. 3 are presented in Section B.3 

of Appendix B. 

A.3.8 SOLUTION NO. 4 z EXCAVATION LOADING - FULL SLIPPAGE CONDITION 

The additional boundary conditions that apply for this problem require 

that at r = a, 
u = ul m 

Cf = p 
rm r 

"'t'rem = ~ 

From BC3 and Eqn. A.38c we find that 

= re 0 

(BCl) 

(BC2) 

(BC3) 



N = 
2 

(~) (1 - K ) 
4 o 

3J 
2 

a 

From Eqn. A.4la and BC3 we have 
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Integrating this equation with respect toe twice we find 

= 

(A4 .1) 

From BCl we have that for r = a, u1 is given by Eqn. A.38d. Substituting this 

expression for u
1 

into the above equation for v1 , performing the indicated 

integration, and invoking the requirement that v1 = 0 fore= n~/2 (where 

·k 
n = O, 1, 2, 3, ••••.)we find that 

thus, the above equation for v
1 

can be rewritten as follows: 

l + vm L 
= - ( C E ) ( a) [ 2]} e 

m a 

.,. 
"the resulting expression for v

1 
is 

= 
l + V 

- ( m)(~)[2J + 4N(l - v )]sin 20 
E 2 4 2 m 

m a a 
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Taking the partial derivative with respect toe of each term in this equation 

we find that 

= 
1 + V L 

- ( E m)(a)[·z] 
m a 

Substituting this result into Eqn. A.4lb we have 

2 o u,e 
2-- + un] • 

ae 2 ..{, 

2 
a p 

r 

The following equations are obtained from the boundary conditions and 

from Eqn. A.38d, 

= 
l + V L [2J 4N ] 

( E m)(a)([- 2 ] + 4 + 2 o - vm) cos ze} 
m a a a 

from Eqn. A.38a, 

P = [(Y!!)(l + K) + ...h.J- [c-Y!!)(l - K) + 63 + 4N7...os2e 
r 2 o 2 2 o 4 zY 

a a a 

from Eqn. A.43b, 

1 + V a 
(1 - 2v ) C ( m) 

7: = m E 
E£A m 

from Eqns. A.43a and b, 
.. k 

E ,e I 
= 

(1 - 2v )C 
m 

.,. 2 
E;Aa 

6F 

After substituting all of these expressions into the above equation, 

taking the required derivatives, and rearranging terms we obtain an equation 
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of the form 

X = Y cos 20 

where X and Y are constants (i.e., do not contain r ore). In order for this 

equality to hold for all values of ewe must have X = Y = O. 

From the requirement that X = 0 we obtain the same result as in the 

derivation of the third solution. That is, that 

(A4. 2a) 

where, 

"';'( ·k ( 1 - 2v )C 
m 

Lf = L = + (1 - 2v )C n 1 m 
(a4.2b) 

(See page 351 , Section A.3.7) 

From the requirement that y = 0 we find 

(7)(1 - K
0
)[F] + ¾3 + 6F] + -;c4F + 6(1 - vm)] = 0 

a a 

Substituting the expression for Nin terms of J (Eqn. A4.l) into this equation 

and collecting terms we find 

J = 

where, 

= 
F + ( 1 - vm) 

2F + (5 - 6v) 
m 

(A4.3a) 

(A4.3b) 

Substituting Eqns. A4.3a and b back into Eqn. A4.1 we find the expression 



for N. 

N = 

where, 

4F + 1 
2F + (S - 6v) 

m 
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(A4.4a) 

(A4.4b) 

Now that expressions have been obtained for the three nonzero stress 

function constants, the final equations for ground mass stresses and dis­

placements are obtained by direct substitution of Eqns. A4.2a, 3a, and 4a 

into Eqns. A.38. The boundary conditions BC2 and BC3 then yield the· equations 

for the external pressures acting on the liner. Similarily, BCl allows 

determination of the final equation for the liner radial displacements. The 

equation for liner tangential displacements is obtained by substituting 

Eqns. A4.3a and 4a into the equation for v
1 

given at the bottom of page 353. 

Substitution of the final equation for u
1 

into Eqn. A.40b yields the equation 

for_ liner bending moments. Then the equations for liner thrust and shear 

forces can be obtained from Eqns. A.39b and d, respectively. 

All of the final equations for Solution No. 4 are presented in Section 

B.4 of Appendix B. 
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A.4 SOLUTIONS FOR A THICK LINER 

A.4.1 GENERAL COMMENTS 

The ''thick linet'' solutions are obtained by combining the generalized 

stress and displacement equations for the ground mass (Section A.3.2) and the 

corresponding equations for the liner (Section A.4.3) in accordance with the 

appropriate boundary conditions. Both sets of equations are obtained from 

Eqn. A.32 and A.34. 

The positive sign conventions and the relevant geometrical quantities 

adopted for these solutions are illustrated in Fig. A.S. 

A.4.2 EQUATIONS FOR STRESSES AND DISPLACEMENTS IN THE SURROUNDING GROUND MASS 

IN TERMS OF STRESS FUNCTION CONSTANTS 

The equations for stresses and displacements in the elastic ground mass 

surrounding the tunnel were derived in Section A.3.2. The resulting Eqns. A.36 

(page 335 ) apply in the case of overpressure loading, while for excavation 

loading Eqns. A.38 (page 336) Im.1st be used. 

A.4.3 EQUATIONS . FOR STRESSES AND DISPLACEMENTS IN THE LINER IN TERMS OF 

STRESS FUNCTION CONSTANTS 

The general equations for liner stresses and displacements are obtained 

from Eqns. A.32 ·and A.34 by invoking the following two conditions: 

1) r = r, where R. < r < R 
£ i 0 

2) nTr 
for e = 2 (n = 0, 1, 2, 3, •••••.• ) 



At point As At point Ba 

dYX-1 
"'rat ~AYrat 
k ~at 

r...e 

YXm 
"<ramXAX ,cram 

~ ""

0 am 

FIGURE A.5 POSITIVE SIGN CONVENTIONS - "THICK LINER" SOLUTIONS 

B 

w 
VI 
00 



359 

Only the second of these requirements allows determination of values f or t he 

constants of integration. After substitution of e = n~/2 in Eqn. A.34b and 

equating the result to zero for n = 0 and 1 we have 

Al = 0 

A2 = unknown = Q 

A3 = unknown = s 

Bl = unknown = w 

B2 = unknown = X 

B3 = unknown = y 

B4 = unknown = z 

A = 0 
0 

B = 0 
0 

C = 0 
0 

Substituting these values for the constants back into Eqns. A. 32 and A. 34 , 

along with r = r
1

, we obtain the general equations for liner str esses and 

displacements. 

or! = [2Q + s2] - [ 6X 4Y} 2W + 4 + 2 OS 20 (A . 44a) 
r! r! r! 

de£ = [2Q - 8
2

] + [2w + 6X + 12Zr~]cos 20 (A . 44b) 
4 

r! r! 

't' = [2w - 6X _ 2Y + 6Zr}Jsin 20 (A . 44c) 
re1 4 2 

r! r! 



= 

= 
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1 + V 

( E 1 ) ( r~) [2( 1 - 2v )Q - _§_] -
:e k _£ 2 

r,£ 

A.4.4 COMMENTS ON METHOD OF DERIVATION 

(A.44d) 

Solutions for the thick liner problems are obtained from Eqns. A.36 or 

A.38, tqns. A.44, and the appropriate boundary conditions. In each derivation 

these equations and conditions are used to obtain nine equations in nine 

unknowns (the constants of integration remaining in the equations already 

given). Each derivation then follows the procedure outlined below. 

The nine equations can be seperated into three groups, as follows: 

1) Three equations in the- three unknowns L, Q, and S. These 

equations can be solved by direct substitution. 

2) Four equations in the four unknowns J, N, X, and Y. These 

equations are t oo complex to be easily solved by direct 

substitution; t hus, use is made of Cramer's Rule (See, for 

example, Kreyszig, 1967). 

3) The remaining two equations give the unknowns Wand Z as 

functions of X and Y. Thus, once X and Y have been found 

Wand Z are obtained by direct substitution. 

The use of Cramer's Rule requires the solution of a number of determinants. 

Because such solutions involve rather lengthy calculations, the procedure is 

briefly described here rather than given for each derivation in the sections 

that follow. 
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For four unknowns the four simultaneous equations can be written as follows: 

a
11

X + al2y + al3J + al4N = bl 

a2lx + a22y + a2i + a24N = b2 

(A.45) 
a3lx + a32y + a333 + a34N = b3 

a4lx + a42y + a433 + a44N = b4 

The four unknowns are then given by 

X = 
Dl 
D 

y 
D2 

= D 

J 
D3 

= D 

N 
D4 

= D 

where, 

all al2 al3 al4 

D 
a21 a22 a23 a24 

= 

a31 a32 a33 a34 

a41 a42 a43 a44 
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and, 

bl al2 al3 al4 

b2 a22 a23 a24 

Dl = 
b3 a32 a33 a34 

b4 a42 a43 a44 

Similarily, D
2 

is obtained by replacing the second column of D by bl ·through b
4

, 

D
3 

by replacing the third column and D
4 

by replacing the fourth column. 

A.4.5 SOLUTION NO. 5 OVERPRESSURE LOADING - NO SLIPPAGE CONDITION 

The additional boundary conditions that apply for this problem requires 

that 

at r,e = R. , dr,e = 0 
l 

(BCl) 

'T = 0 re,e 
(BC2) 

at r,e :R = r , o'r,e = d 
0 rm (BC3) 

"t"re,e = "'C' 
rem 

(BC4) 

u,e = u m 
(BCS) 

V £ = V m 
(BC6) 

From BCl and Eqn. A.44a we obtain two equations (because dr,e = 0 for 

all values of cos 29 ) which yield 

S = - 2QR~ 
l 

(AS .1) 
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W = _ 3X _ 2Y 

R~ R~ 
(AS. 2) 

1. 1. 

From BC2 and Eqn. A.44c we find that 

z X 
= -+ R? 

y w 
3R~ - 3R~· 

1. 1. 1. 

Substituting the expression for W (Eqn. AS.2) into this equation we obtain 

and, 

z 

From BC3 and Eqns. A.44a and A.36a we find that 

p 
( 20)(1 + K) + ..1.. 

R2 
0 

(AS .3) 

Substituting the expression for S (Eqn. AS.1) into the first of these 

equations and rearranging terms we find that 

L (AS .4a) 

where, 

(AS .4b) 

Substituting the expression for W (Eqn. AS.2) into the second of the 
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above equalities and rearranging terms we obtain 

3a. 2a 
c-f-)x + c--1->Y + c/ )J + c.1..)N = 

R R
2 

o R
2 

0 0 0 

where, 

p 
0 

- (-)( l - K) 
4 

(AS .Sa) 

(AS.Sb) 

From BC4 and Eqns. A.44c and A.36c we obtain the following equation: 

2W - 6X - 2Y + 6ZR2 
R4 R2 o 

= 

0 0 

Substituting the expressions for Z (Eqn. AS.3) and W (Eqn. AS.2) into this 

equation and rearranging terms we obtain 

3a. a. 
( 34)J + ( ..l.) N 

p C--f) X + ( ~)Y + 
0 

= (-)(1 - K) 
R R R R2 4 (AS. 6a) 

0 0 0 0 

where, 

R R 

0.3 = [2(-2-)6 c.....£)4 - 1] R. R. (AS. 6b) 
l. l. 

R R 

0.4 = [3(R~ 4 2(_£) 2 - 1] R. (AS.6c) 
l. l. 

From BCS and Eqns. A.44d and A.36d we obtain the following two equations. 

R 
(--2...)[2(1 - 2V )Q - 2-..] = 

2G,e £ R2 
0 
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Ro [ 2X 4Y 2 (-) 2W - - - -(1 - V) + 4v ZR] = 
2G ,e R 4 R 2 ,e ,e o 

0 0 

= 
R p 

(-o ) [ ( ~) ( 1 - K) - 2J - 4N ( 1 - V ) ] 
2Gm 2 R4 R2 m 

0 0 

Note that the following substitutions have been made 

1 + V 

and ( m) 
E 

m 

= _l_ 
2G 

m 

where G is the shear modulus (or modulus of rigidity) which is given by 

G 
E 

= 2( 1 + v) 

Substituting the expression for S (Eqn. AS.1) into the first of the above 

equalities and rearranging terms we find 

Q = (AS.7a) 

where, 

R 

as = [Cl - 2v1)(R~)
2 

+ 1] 
l 

(AS.7b) 

Substituting the expressions forW (Eqn. AS.2) and Z(Eqn. AS.3) into the 

second of the above equations and rearranging terms we obtain 

where, 

R 
3(-2)

4 
- 1] 

R. 
l 

p 
= (~)(l - K) 

4 
(AS. 8a) 

(AS. 8b) 
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(AS. 8c) 

From BC6 and Eqns. A.44e and A.36e we have that 

Ro [ 2X 2Y 2 (-) 2W + - - ~l - 2v,e) + 2(3 - 2v,e)ZR
0

] = 
2G,e R4 R2 

0 0 

Substituting the expressions for W (Eqn. AS.2) and Z (Eqn. AS.3) into this 

equation and rearranging terms we find 

where, 

Ro 6 
a.8 = [2(3 - 2\1 )(-) -,e R. 

l 

Ro 4 
~ = [(3 - 2v )(-) -,e R. 

l 

R 
3(R~)4 + 1] 

l 

R 
2(....2)2 -(1-2v,e)] R. 

1 

p 
0 (-)(1 - K) 

4 
(AS. 9a) 

(AS. 9a) 

(AS.9c) 

Substitution of Eqn. AS.4a into Eqn. AS.7a yields .the expression for 

the constant Q. 

(AS. 10a) 

where, 

1 (AS. lOb) 
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and 
R 

bl = al = [C_Q) 2 - 1] 
R. 

l. 

(AS.lOc) 

[Cl -
Ro 2 

+ 1] b2 = as = 2v .e) CR.) 
l. 

(AS.lOd) 

Substitution of Eqns. AS.lOa and b into Eqn. AS.4a yields the expression 

for the constant L. 

where, 

p 
L = ( 

2
°)(1 + K)R2L 

o n 

L = 
n 

G 
(l - 2V )(_:::g_)b - b 

m G 1 2 
m 

(AS. lla) 

(AS.llb) 

Substitution of Eqns. AS.lOa and b into Eqn. AS.1 yields the expression 

for the constants. 

s = 
G 

- P (1 + K)(l - V )(_£_)R2s 
o m G o n 

(AS, 12a) 
m 

where, 

1 (AS.12b) 

Equations AS.Sa, 6a, 8a, and 9a can be solved for X, Y, J, and N by 

using Cramer's Rule (See Section A4.4). From these equations we have that 
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p 

= ( 40) (1 - K) 

2(1 - V ) 
m 

Cl - 2v ) 
m 

Solving for each of the required determinants we obtain the following 

results. 

where, 

R 
1]4 b3 = [C-9.) 2 -

R. (AS.13b) 
l 

R Ro 4 R 

b4 = [cs - 6~)(R~)6 + (S - 2v£ ) CR.) - (1 - 2~ )(R ~) 2 + 
l l l 

R 
+ ( 3 - 2 v ) J[ ( -9./ - 1] 

£ R. 
],. 

(AS. 13c) 
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R R R R 
bs = [(3 - 4v )(-2.)

6 + 3(-2.)
4 

- 3(-2) 2 + 1][(-2) 2 - 1] 
1, R. R. R. R. 

l l l l 

(AS .13d) 

R 
+ 4(R0

)
2 + (3 - 4v )] (AS.13e) 

i 1, 

G G 

D1 = -3P
0

(1 - K)(l - vm)(G_((R:
8
)((~)b7 + b8} (AS .14a) 

where, 

R 

b7 = [c-2) 
4 

- 1] (AS.14b) R. 
l 

R 

b8 = '[(3 - 4v )(R
0

)
4 + 1] (AS .14c) 

1, i 

G G 

D2 6P ( 1 - K) (1 - m -10 ( ...J,_ } (AS. 15a) = vm)(G)(Ro ) (G )b9 + blO 
0 

1, m 

where, 

R 

b9 = [c-2) 
6 

- 1] (AS.lSb) R. 
· 1 

R 

blO = [(3 - 4\1 )(-2)
6 + 1] (AS. 15c) 

1, R. 
l 

(AS .16a) 

where, 

Ro 6 Ro 4 
4(2 - \I)(-) - 2(7 - 4\1 )(-) + 

1, R. 1, R. 
l l 

R 2 
+ 4(R~) + (1 - 2v

1
)] (AS.16b) 

l 
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where, 

From these expressions for the determinants we can now obtain the 

expressions for the four constants X, Y, J, and N. 

where, 

where, 

= Dl = X D 

X = n 

= D2 
y D 

G 
P ( l - K) ( l - v ) ( _!) R 4x 

o m G o n 
m 

(AS,16c) 

(AS.17a) 

(AS, 18a) 

(AS, 18b) 

(AS .19a) 

y = 
n 

(AS, 19b) 



where, 

where, 

J = 

J = 
n 

N = 

N = n 

D4 
= D 

(3 -
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(AS .20a) 

(AS. 20b) 

p 
( 20) (1 - K)R2N (AS.2la) o n 

G Gl 
(..!..) 2b + 2Cc) bl3 - b 

G 3 6 m m 
(AS.2lb) 

Gl G £ 2 
4 vm) CG) b3 + 2(G) [b4 - 2vmbS] + b6 m m 

Substitution of the expression for X (Eqns. AS.18) and Y (Eqns. ASol9) 

into Eqns. AS.2 and AS.3 yields the expressions for the constants Wand z. 

where, 

and, 

Gl 
W = P (1 - K)(l - V )(-G )W o m n 

w = 
n 

m 
(AS .22a) 

(AS.22b) 

(AS.22c) 
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and, 
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R R 
3(R o)4 + 4(-2)2] 

i Ri 

z 
G Z 

= - 2P (1 - K)(l - v )(..:!)(~) 
o m G R2 

z = 
n 

m . 
1 

(AS.22d) 

(AS.23a) 

(A5.23b) 

(AS. 23c) 

Now that expressions have been obtained for the nine unknown constants, 

these expressions can be substituted back into Eqns. A.36 and A.44 to obtain 

the final equations for liner and ground mass stresses and displacements. 

These equations are given in Section B.S of Appendix B. 

A.4.6 SOLUTION NO. 6 OVERPRESSURE LOADING - FULL SLIPPAGE CONDITION 

The additional boundary conditions that apply for this problem require 

that 

= R. 
1 

= 0 

= 

(BCl) 

0 (BC2) 
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at r,,e = R = r, o'r,,e = d (BC3) 
0 rm 

u,,e = u (BC4) 
m 

"t're ,,e = 0 (BCS) 

"C'rem = 0 (BC6) 

From BCl and Eqn. A.44a we obtain two equations which yield 

s = 

w = 

-2QR~ 
l. 

3X 2Y ----4 R. 
l. 

From BC2 and Eqn. A.44c we find that 

z X Y W 
= -+-----

R~ 3R~ 3R~ 
l. l. l. 

(A6 .1) 

(A6. 2) 

Substituting the expression for W (Eqn. A.6.2) into this equation we obtain 

and, 

z = 2X + L 
R~ R~ 

l. l. 

From BC3 and Eqns. A.44a and A.36a we find that 

2Q + 2... = 
R2 

0 

p 
( 20) ( l + K) + ~ 

R2 
0 

(A6.3) 
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Substituting the expression for S (Eqn, A6,l) into the first of these 

equations and rearranging terms we find that 

p 
2 

L = -( ;)(l + K)R! + 2Ql:\Ri (A6 ,4a) 

where, 

R 

~l = [c-2) 2 - 1] 
R. (A6 ,4b) 

l. 

Substituting the expression for W (Eqn, A6,2) into the second of the 

above equations and rearranging terms we obtain 

3~ 21:, 
c-f)x + c-j-)Y + c-+)J + c.1..)N = 

R R R R2 
0 0 0 0 

where, 

= 

p 
0 -(-)(1 - K) 

4 
(A6,Sa) 

(A6,5b) 

From BC4 and Eqns, A,44d and A,36d we obtain the following two equalities 

(See p. 365) 

R 
(-2...)[2(1 - 2v )Q - 2-] = 

2G J, J, R2 
0 

R p 

<
2
c°)[( 

2
°)(1 + K)(l - 2v) - ..1...] 

m m R2 
0 

Ro [ 2X 4Y 2] (-) 2W - - - ~ 1 - \I )+ 4v ZR = 
2GJ, R4 R2 J, :e o 

0 0 

= 
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Substituting the expression for S (Eqn. A6.1) into the first of these 

equalities and rearranging tenns we find 

Q = (A6. 6a) 

where, 

(A6.6b) 

Substituting the expression for W (Eqn. A6.2) and Z (Eqn. A6.3) into the 

second of the above equalities and rearranging terms we obtain 

where, 

Ro 6 R 
S4 = [4v_l~) 3(_.£_)4 - 1] R. 

l. l. 

Ro 4 R 
Ss = [ V /R.) (--9.) 2 -(1-v)] R. ,e 

l. l. 

From BCS and Eqn. A.44c we have 

p 
0 (-)( 1 - K) 

4 
(A6. 7a) 

(A6.7b) 

(A6. 7c) 

Substituting the expressions for W (Eqn. A6.2) and,l, (Eqn. A6.3) into this 

equation and collecting terms we obtain 

(A6. 8a) 
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where, 
R R 

~6 = [2(-2) 6 - (-2)4 - 1] R. R. (A6. 8b) 
1 1 

R R 

~7 = [3(-2.) 4 2(-2) 2 - 1] R. R. (A6. 8c) 
1 1 

From BC6 and Eqn. A.36c we have 

p 
= ( 40) ( 1 - k) (A6.9) 

Substitution of Eqn. A6.4a into Eqn. A6.6a yields the expression for 

the constant Q. 

p R G,£ 
Q = (-2) ( 1 + K) ( .....Q) 2( 1 - vm) (G)Qf 2 R. (A6.10a) 

1 m 

where, 

Qf 
1 

= 
~ (G )dl + d2 

(A6.10b) 

m 

and, 

R 

dl = ~l = [ (_Q.)2 - 1] R. 
1 

(A6.10c) 

R 
d2 = ~3 = [Cl - 2v,£)(R~)2 + 1] 

1 

(A6.10d) 

Substitution of Eqns. A6.10a and b into Eqn. A6.4a yields the expression for 

the constant L. 

p 

L = ( 2°)(1 + K)R!Lf (A6. lla) 



where, G 
Cl - 2vm) CG ..e)d1 

m 
- d 

2 
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(A6.llb) 

Substitution of Eqns. A6.10a and b into Eqn. A6.l yields the expression 

for the constant S. 

(A6.12a) 

where, 

1 (A6.12b) 

Equations A6.5a, 7a, 8a, and 9 can be solved for X, Y, J, and N by 

using Cramer's Rule (See Section A.4.4). Where, 

= 0 

. , 

= 

= 0 

2(1 - V) 
m 

= 0 = 0 



and, 
-b 

1 
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Solving for each of the required determinants we obtain the following 

results. 

(A6.13a) 

where, 

(A6.13b) 

(A6.13c) 

Dl = -3d
1

P (1 - K)(l - v )(R-8) [d5} (A6. 14a) o m o 

where, 

R 
dS = [3(....Q.) 2 + 1] (A6.14b) R. 

l. 

D2 = 9dlP (1 - K)(l - v )(R-lO)[d
6

} (A6.1Sa) 
o m o 

where, 

R R 
d6 = [2(-2) 4 + (_£)2 + 1] (A6.15b) R. R. 

l. l. 
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and, 

po Gm -10 G ,.e 
D4 = -3d (-)(1 - K)(-)(R ) [(-)d - d4} 

1 2 G ,.e o Gm 3 

From these expressions for the determinants we can now obtain the 

expressions for the four constants X, Y, J, and N. 

X 
Dl 

P (1 - K)(l - ~ 4 = = vm)(G )RoXf D 0 m 

where, 

xf 
dS 

= G 
(5 - 6vm)(t)d3 + d4 

m 

D2 G 
y = = -3P (1 - K)(l - v )(..J.)Rly D o m G o f m 

where, 

yf 
d6 

= 
~ (5 - 6vm)(G )d3 + d4 

m 

D3 p 
J = = \( 20)(1 - K)R:Jf D 

where, 
G,.e 

(1 - 2vm)(G)d3 + d4 

Jf 
m = 
~ (5 - 6vm)(G )d3 + d4 

m 

(A6.16) 

(A6.17) 

(A6.18a) 

(A6.18b) 

(A6.19a) 

(A6.19b) 

(A6.20a) 

(A6.20b) 
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N = (A6.21a) 

where, 

(A6.21b) 

Substitution of the expressions for X (~qns. A6.18) and Y (Eqns. A6.19) 

into Eqns. A6.2 and A6.3 yields the expressions for the constants Wand z. 

G 
w = 3P/1 - K)(l - vm)(t,)wf (A6.22a) 

m 

where, 

wf 
d7 

(A6 .22b) = G 
(5 - 6vm) C-t,) d3 + ct4 m 

and, 

R R R 
d7 = [C-2) 6 + (-2)4 + 2(R~ 2] (A6. 22c) R. R. 

l l l. 

G Zf 
z = -P (1 - K) ( 1 - \I ) ( _.e.) (-) (A6.23a) 

0 m Gm R~ 
l. 

where, 

zf 
d8 

(A6.23b) = G 
(5 - 6vm)(cf)d3 + d4 

m 

and, 

R R 

d8 = [(R~) 4 + 3(-2) 2] (A6.23c) 
R. 

l. l. 



381 

Now that expressions have been obtained for the nine unknown constants, 

these expressions can be substituted back into Eqns. A.36 and A.44 to obtain 

the final equations for liner and ground mass stresses and displacements. 

These equations are given in Section B.6 of Appendix B • 

A.4.7 SOLUTION NO. 7 . EXCAVATION LOADING - NO SLIPPAGE CONDITION 

The additional boundary conditions that apply for this- problem require 

that 
= 

= 

R., 
l 

R 
0 

= r, 

dr,R, 

Tr0 ,R, 

dr,R, 

1:'re ,R, 

u,R, = 

v,R, = 

= 0 (BCl) 

= 0 (BC2) 

= cf (BC3) rm 

= "Lrem (BC4) 

u (BCS) 
m 

V (BC6) m 

From BCl and Eqn. A.44a we obtain two equations which yield 

s = -2QR~ 
. l 

w 3X 2Y = 
R2 R~ 

l l 

From BC2 and Eqn. A.44c we find 

z X y 
= -+--

R~ 3R~ 
l l 

w 
3R~ 

l 

(A 7 .1) . 

(A 7. 2) 
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Substituting the expression for W (Eqn. A7.2) into this equation we obtain 

and, 

z = 2X + ..J_ 
R~ R~ 

l l 

From BC3 and Eqns. A.44a and A.38a we find that 

(ili) ( 1 + K ) + 12 
2 o R 

0 

( .:di) (1 - K ) 
2 0 

6J 4N +-+-
R4 R2 

0 0 

(A 7. 3) 

Substituting the expression for S (Eqn. A7.1) into the first of these 

equalities and rearranging terms we find that 

-(.i'.!:!) (1 + K )R2 + 2 (A7.4a) L = 2Qo 1Ri 2 0 0 

where, 

R 
01 = [(~)2 - 1] (A7.4b) R. 

l 

Substituting the expression for W (Eqn. A7.2) into the second of the 

above equalities and rearrangi ng terms we obtain 

where, 

30 
<-f)x + 

R 
0 

20 
<-t)Y + 

R 
0 

= -(.Yli_)(l - K ) 
4 o 

(A7.Sa) 
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(A7.Sb) 

From BC4 and Eqns. A.44c and A.38c we obtain the following equation: 

Substituting the expressions for W (Eqn. A7.2) and Z (Eqn. A7.3) into this 

·equation and rearranging terms we obtain 

36 6 
( 34)J + (--1.) N c-Y.!!) ( 1 c--!-)x + ( ~)Y + = - K ) 

R R R R2 4 0 
(A7.6a) 

0 0 0 0 

where, 

R R 

63 = [2(-2.) 6 - c-2) 4_ 1] R. R. (A7.6b) 
1. 1. 

R R 

64 = [3(-2) 4 2(-2) 2 - 1] R. R. (A7.6c) 
1. l 

From BCS and Eqns. A.44d and A.38d we obtain the following two equations 

(See p. 365). 

R L 
c-2..)[ --J 

2Gm R2 
0 

and, 
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Substituting the expression for S (Eqn. A7.l) into the first of these 

equalities and rearranging terms we find 

Q (A7. 7a) 

where, 

= (A7. 7b) 

Substituting the expressions for W (Eqn. A7.2) and Z (Eqn. A7.3) into 

the second of the above equalities and rearranging terms we obtain 

G O Gm 20 7 2( l - V ) 
(....l!!)(-2.)x + ( )( )Y ( 1

4
)J + [ m 7.., = O 

G" R4 ~ -2 + 2 JL' 
,,, ,2 · 'R R R 

0 0 0 0 

(A7. 8a) 

where, 

R 6 R 
06 = [4v/R~ 3(_£)4 - 1] R. 

1. 1. 

(A7.8b) 

Ro 4 R 
07 = [v /R.) c-2.) 2 -(1-v)] R. 1 

1. 1. 

(A7.8c) 

From BC6 and Eqns. A.44e and A.38e we have 

Ro 2X 2Y 2 
(-)[2W + - - (1 - 2v )- + 2(3 - 2v

0 
)ZR

0
] = 

2G R4 .e R2 ,,, 
1 

0 0 

= 
Ro 2J 2N 

(-)[- - (1 - 2v )-] 
2Gm R4 m R2 

0 0 

Substituting the expressions for W (Eqn. A7.2) and Z (Eqn. A7.3) into 

this equation we obtain 
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(A7. 9a) 

where, 

Ro 6 R 
68 = [2(3 - 2v )(-) - 3(R~)4 + 1] 

1, R. (A7.9b) 
l. l. 

Ro 4 R 

69 = [(3 - 2v )(-) - 2(-2.) 2 - ( 1 - 2v ) ] 
1, R. R. 1, 

(A7.9c) 
l. l. 

Substituting Eqn. A7.4a into Eqn. A7.7a we find the expression for the 

constant Q. 

H Gl, R 2 .,_ 
Q = 1'(-~) ( 1 + K ) (-) (-2.) Q,. 2 2 o G R. n (A7.10a) 

m l. 

where, 

* 1 
Qn = 

Gi, i: i: 
(G)bl + b2 

m 

(A7.10b) 

and, 

-!: 
R 

bl = 61 = [(-2) 2 1] R. (A7.10c) 
l. 

-J: 

65 [o -
Ro 2 

1] b2 = = 2\11, ) (if'") + (A7.10d) 
l. 

Substituting Eqns. A7.10a and b into Eqn. A7.4a we obtain the expression 

for the constant L. 

L = -(Y2H)(l + K )R2r.i: 
o o n (A7. lla) 

where, 



L 
· n = 

386 

(A7. llb) 

Substituting Eqns. A7.10a and b into Eqn. A7.l we obtain the expression 

for the constants. 

s = 
H G 2 .,_ 

-(Y!!) (1 + K ) (~)R S,. 
2 o G o n (A7 .12a) 

m 

where, 

·;( -1: 1 s = Qn = 
n (?)b; + 

41: b2 
(A7 .12b) 

m 

.Equations A7.Sa, 6a, 8a, and 9a can be solved for the constants X, Y, J, 

and N by using Cramer's Rule (See Section A.4.4). Where, 

= 

= 

= 

. , 

; 

= 

= 

= 

= 

= _ _l_. 
R4' 

0 

= 

= 

2(1 - \I) 
m 

( 1 - 2\1 ) 
m 



387 

and, 

-b = b2 = (-x!i)(l - K) 1 4 0 

Solving for each of the required determinants we obtain the following 

results. 

where, 

(A7. 13b) 

-1~ Ro 6 Ro 4 Ro 2 Ro 2 
b5 = [C3 - 4v )(-) + 3(-) - 3(-) + 1][C-) - 1] ,e R. R. R. R. 

1. 1. 1. 1. 

(A7.13d) 

G G 

D1 = -(1)(-Y!!)(l - K )(3 - 4v )(~(R-8) [(...L)b * + b*} (A7. 14a) 
2 2 o mG o G 7 8 

,e m 

where, 

~'( 
R 

b7 = [(~)4 - 1] (A7,14b) R. 
1. 

7( R 4 
b8 = [ ( 3 - 4 v,e ) ( R ~) + 1] ( A7 .14c) 

1. 



388 

(A7. 15a) 

where, 

(A7. 15b) 

(A7.15c) 

3 H G2 8 G i· ' · 
D

3 
= -(-)(:e)(l - K )(...!!::) (R- )[(..:&..)[b. + 16vmb·l.:Z] + b.

6
,:} (A7.16a) 

2 . 2 o G..e o Gm 11 

where, 

where, 

Ro 6 Ro 4 Ro 2 
= [<-) - (11 - 8v )(-) + (7 - 4v )(-) + 

R. ..e R. ..e R. 
l l l 

R 2 
+ (3 - 4V..e) ][CR~) - 1] 

l 

R 6 R 4 
= ( l - V ) [ ( _.£) - ( -2.) ] 

:t R. R. 
l l 

From these expressions for the determinants we can now obtain the 

expressions for the four constants X, Y, J, and N. 

(A7,16b) 

(A7.16c) 

(A7. 17a) 



where, 

where, 

where, 

where, 
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X = DDl = \(,Y!:!2H)(l - K )(3 - 4V )(.::e_G )R4X* 
o m o n 

.,_ 
x" = 

n 

m 

(3 -

D2 YH G 2 .,_ 
y = = -(-)(1 - K )(3 - 4v )(...LG )Ry" 

D 2 o m on 

-1: 
y = 

n 

J = 
n 

N = 

* N = 
n 

m 

(A 7 .18a) 

(A7.18b) 

(A7.19a) 

(A7 .19b) 

(A7 .20a) 

(A7 .20b) 

(A7 .2la) 

(A7 .2lb) 
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Substitution of the expressions for X (Eqns. A7.18) and Y (Eqns. A7.19) 

i nto Eqns. A7.2 and A7.3 yields the expressions for the constants Wand z. 

where, 

and, 

wher e , 

and, 

G * W = 1: ( )ii) ( 1 - K ) ( 3 - 4 V ) ( ...l_) W 2 2 o m G n 
m 

* w = n 

* 
R R R 

b14 = [(R7 
8 

+ 3(-2) 4 4(R~2] R. 
l. l. l. 

-!( ~ Ro 8 R R 

blS = [(3 - 4v,e) <-R:-) 3(-2) 4 + 4(-2) 2] 
R. R. 

z 

i, 

= -(~(1 
2 

z = n 

l. l. l. 

* G Z 
- K )(3 - 4V )(.:&_)(~ 

o m Gm R~ 
l. 

G * [<t-) - 1}16 
m 

(A7.22a) 

(A7 .22b) 

(A7.22c) 

(A7 .22d) 

(A7 .23a) 

(A7 .23b) 

(A7.23c) 

Now that expressions have been obtained for the nine unknown constants, 

t hese expressions can be substituted back into Eqns. A.44 and A.38 to obtain 



391 

the final equations for the liner and ground mass stresses and displacements. 

These equations are given in Section B.7 of Appendix B. 

A.4.8 SOLUTION NO. 8 1 EXCAVATION LOADING - FULL SLIPPAGE CONDITION 

The additional boundary conditions that apply for this problem require 

that 

at r
1 = R., dr,e = 0 (BCl) 

l. 

't"re..e = 0 (BC2) 

at r
1 = R = r, dr,e = d (BC3) 

0 rm 

u ,e = u (BC4) 
m 

1:re,e = 0 (BCS) 

'Trem = 0 (BC6) 

From BCl and Eqn. A.44a we obtain two equations which yield 

s = -2QR~ 
l. 

(A8. 1) 

w 3X 2Y 
= -- --

R~ R~ 
(A8.2) 

l. l. 

From BC2 and Eqn. A.44c we find that 

z X Y W 
= -+-----

R~ 3R~ 3R~ 
l. l. l. 

Substituting the expression for W (Eqn. A8.2) into this equation we obtain 

• 



and, 

z 2X Y 
= -+-

R6 R4 
i i 
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From BC3 and Eqns. A.44a and A.3Sa we find that 

2Q +~ = (.Y!i)(l+K) + 1:... 
R2 2 0 R2 

0 0 

2W 6X 4Y (~) ( l - K ) + 6J + 4N +-+- = 
R4 R2 2 0 R4 R2 

0 0 0 0 

(AS. 3) 

Substituting the expression for S (Eqn. AS.l) into the first of these 

equalities and rearranging terms we find 

L = 

where, 

= 

-(YH)(l + K )R2 + 2QA1R21· 
2 0 0 

R 2 
[<~ - 1] R. 

1 

(AS.4a) 

(AS.4b) 

Substituting the expression for W (Eqn. AS.2) into the second of the 

above equalities and rearranging terms we obtain 

3A 2;\. 
c-f)x + c-f)Y + < 34)J + c.1..)N 

R R R R2 
= -(~(l - K ) 

2 0 
(AS.Sa) 

0 0 0 0 

where, 

= (AS.Sb) 

From BC4 and Eqns. A.44d and A.3Sd we obtain the following two 
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equalities (Seep, 365), 

R 

( 
2
c° ) [ 2 ( l - 2v ) Q - i] 
,e i, R2 

0 

Ro 2X 
-(-)[2w - - -(1 

2G R4 
,e 0 

Substituting the expression for S (Eqn. A8.l) ~nto the first of these 

equalities and rearranging terms we find 

G R 
Q = -< _g_) < ....2.) 2 <-1-) [ l J 

., Gm Ri 2>..3 R2 
(A8.6a) 

0 

where, 

R 

>..3 = [( l - 2\1,e) (R~) 2 + 1] 
l 

(A8.6b) 

Substituting the expressions for W (Eqn. AS.2) and Z (Eqn. A8,3) into 

the second of the above equalities and rearranging terms we obtain 

(AS. 7a) 

where, 

R 6 R 

"4 = [4v (~ - 3(~4 - 1] ,e R. R. 
l l 

(AS. 7b) 

R 4 R 

"s = [ \I (....Q) - (....Q) 2 -(1-v)] 
,e R. R. i, 

l l 

(A8. 7c) 
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From BCS and Eqn. A.44c we have 

3X Y 2 
W - - - - + 3ZR = 0 

R4 R2 o 
0 0 

Substituting the expression~for W (Eqn. A8.2) and Z (Eqn. A8.3) into this 

equation and collecting terms we obtain 

(A8. 8a) 

where, 

R R 
1.6 = . [2(_£) 6 - c--2)4 - 1] R. R. (A8.8b) 

l l 

R R 
1.7 • [3(_£)4 2(-2) 2 - 1] R. R. (A8.8c) 

l l 

From BC6 and Eqn. A.38c we t ave 

(A8. 9) 

Substitution of Eqn. A8.4a into Eqn. A8.6a yields the expression for 

the constant Q. 

Q (A8.10a) 

where, 

1 (A8.10b) 
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and, . 

-:,': R 
dl = t..l = [c--2)2 - 1] R. 

l. 

(AB.lOc) 

'i: 
[Cl -

Ro 2 
+ 1] d2 = t..3 = 2v

1 
) (R.) 

l. 

(AB. 10d) 

Substitution of Eqns. AB.lOa and b into Eqn. AB.4a yields the expression 

for the constant L. 

(AB. Ua) 

where, 

= (AB. llb) 

Substitution of Eqns. AB.lOa and b into Eqn. AB.l yields the expression 

for the constants. 

s = 
H Go 2 .,_ 

-c-Y!!)(l + K )(.A....)R s" 
2 o G o f 

(AB.12a) 
m 

where, 

1 (AB.12b) 

Equations AB.Sa, 7a, Ba, and 9 can be solved for the constants X, Y, J, 

and N by using Cramer's Rule (See Section A.4.4). Where, 
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3t..2 2)..1 3 2 
all = . 

a12 = ; a13 = ; a14 = 
R4 

I 
R2 R4 R2 

0 0 0 0 

G 1. G 2>..5 -1. 
2(1 - \/ ) 

(~) (_i) (~(-) 
m 

a21 = ; a22 = . 
a23 = . 

a24 = 
G..e R4 G..e R2 

I 
R4 

I 
R2 

0 0 0 0 

3)..6 t-.7 
0 0 a31 = ; a32 = . 

a33 = . 
a34 = 

R4 R2 
I I 

0 0 

0 0 
3 -1. 

a41 = ; a42 = . 
a43 = . 

a44 = I 
R4 

I 
R2 

0 0 

and, 

-b =· b4 = (.Y!!,) ( 1 - K ) . b2 = b3 = 0 
1 4 0 

I 

Solving for each of the required determinants we obtain the following 

results. 

(A8. 13a) 

where, 

(A8. 13b) 

+ (5 - 6\/,.e)] (A8. 13c) 

(A8.14a) 
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where, 

where, 

and, 

From these expressions for the determinants we can now obtain the 

expressions for the four constants X, Y, J, and N. 

where, 

D1 -­
X = D 

.,_ x; = 

(5 -

H G,, 4 .,_ 
\ ( Y

2 
) ( 1 - K

0
) ( 3 - 4 V ) (-,(, ) R X,. 

m G o f 
m 

(A8. 14b) 

(A8. !Sa) 

(A8.15b) 

(A8.16) 

(A8. 17) 

(A8.18a) 

(A8.18b) 

(A8.19a) 
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where, 

(A8.19b) 

(5 -

J 
D3 

¼C\!!)Cl - K )R
4
J; (A8. 20a) = = D 0 0 

where, 
G -/( 
J... * 

'/( 2(1 - Vm)(G )d3 + d4 
Jf = m 

~ '/( 

(A8.20b) 

* (5 - 6Vm)(G )d3 + d4 
m 

N 
D4 YH ~-1( 

(A8.21a) = = -¼(-) (1 - K )R D 2 0 0 f 

where, 
~ 'I: 'I: 

* 
(G )d3 + d4 

m 
Nf = (A8. 21b) G · 

(5 - 6Vm) Cf-)d; + d: 
m 

Substitution of the expressions for X (Eqns. AS.18) and Y (Eqns. A8.19) 

into Eqns. A8.2 and A8.3 yields the expressions for the constants Wand z. 

w = (A8.22a) 

where, 

(A8.22b) 

(5 -
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and, 

= (A8.22c) 

-/( 

-~(T) ( l 
G Z 

z = - K )(3 - 4V )(_g_)(...f) (A8.23a) 
0 m Gm R~ 

l 

where, 
-/: 

1: d8 
zf = (A8.23b) 

.)_ -/: * (5 - 6vm) (G )d3 + d4 
m 

and, 

-/: 
R R 

d8 = [(--2)4 + 3(_£)2] (A8.23c) 
.., R. R . 

l l 

Now that expressions have been obtained for the nine unknown constants, 

these expressions can be substituted back into Eqns. A.44 and A.38 to obtain 

the final equations for the liner and ground mass stresses and displacements. 

These equations are given in Section B,8 of Appendix B, 
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APPENDIX B 

FINAL EQUATIONS OF THE ANALYTICAL SOLUTIONS 

FOR GROUND-LINER INTERACTION 

B.l SOLUTION NO. 1 a OVERPRESSURE LOADING - NO SLIPPAGE CONDITION - THIN 

LINER 

B.1.1 EXTERNAL PRESSURES ACTING ON LINER 

p 

Pr = ( 2°)[(1 + K)[l - Ln] - (1- K)[l - 3Jn - 4Nn]cos2e} 

p 

= c
2
°)[(1-K)[1+3J +2N]sin20} 

n n 

B.1.2 LINER DISPLACEMENTS 

= 

= 

P a l + V · 

( ~ ) ( E m) [ ( 1 + K) [ ( l - 2 V m) C J[ l - L n] -
m 

- ( 1 - K) (F) [1 - J - 2N ]cos 20 } 
n n 

P a 1 + V 

(+)( E m)[(l - K)[l - Jn + 2(1 - 2Vrn)Nn]sin20} 
rn 

B.1.3 LINER THRUST, SHEAR, AND MOMENTS 

p a 
T = (7)[(1 + K)[l - Ln] + (1 - K)[l + Jn]cos20} 

P a 
V = -C-f--)[(1 - K)[l - Jn - 2Nn] sin20) 
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Pa2 (1-2v)C 
M = (+)[(1 + K)~ 6F m ][1 - Ln] + 

+ \(1 - K)[l - J - 2N Jcos2e} 
n n 

B,1.4 GROUND MASS STRESSES AND DISPLACEMENTS 

p 

= ( 
2
°)[(1 - K)[l + 3J (~

4 
+ 2N (a) 2]sin2e} 

n r n r 

Pr l + v 
u = (-2...

2 
)( E m)[(l + K)[(l - 2v) + L (~) 2] -

m m n r 
m 

Pr l+v 4 2 
v = (-02 )( E m)((l - K)[l - J (~ + 2(1 - 2v )N (~) ]sin2e} m nr' m nr 

m 

B,1,5 CONSTANTS 

( l - 2\1 ) (C - 1) 
L = 

n 
m 

1 + (1 - 2\1 )C 
m 

[Cl - 2v )(1 - C)]F - \(1 - 2v )
2c + 2 

Jn = [(3 - 2v) + (1 - 2v )CjF + \(5 - 6v )(1 - 2v )C + (6 - 8v) 
m m m m m 

m m 



N = n 
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[1 + (1 - 2v )C]F - ½Cl - 2v )C - 2 rn rn 
.,..[ .... ( 3---2v__,..)_+ _(,_1--_2_v_) c-] .... F--+ ½ ( 5 - 6 v ) ( 1 - 2 v ) C + ( 6 - 8 v ) 

rn rn m rn rn 

Expressions for C and F are given on page 338 in Appendix A. Positive 

sign conventions are illustrated in Fig. A.4, Appendix A. 
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B.2 SOLUTION NO. 2 1 OVERPRESSURE LOADING - FULL SLIPPAGE CONDITION - THIN 

LINER 

B.2.1 EXTERNAL PRESSURES ACTING ON LINER 

p 

Pr = ( 2°)[(1 + K)[l - Lf] - 3(1 - K)[l - Jf]cos 20} 

t = 0 re 

B.2.2 LINER DISPLACEMENTS 

P a 1 + V 

= (7)( E m)[(l + K)[(l - 2vm)c][1 - Lf] -
m 

- ( 1 - K) ( 2F) [ 1 - J f} os 2 0} 

P a 1 + V 
= (7)( E m)[(l - K)(F)[l - Jf]sin2e} 

m 

B.2.3 LINER THRUST, SHEAR, AND MOMENTS 

p a 
T = ( ~ )[(l + K)[l - Lf] + (1 - K)[l - Jf}os2e} 

P a2 (1 - 2v )C 
M = (+)[(l + K)[ 6F m ][1 - Lf] + (1 - K)[l - Jf]cos2e} 



404 

B.2.4 GROUND MASS STRESSES AND DISPLACEMENTS 

Bo2.5 

p 

rl = (-2){(1 ~ K)[l - L (~) 2] -
vrm 2 f r 

-r 
rem 

[ a 4 a 2]c } - ( 1 - K) 1 + 3J /r) - 4N/r) OS 2e 

p 

= ( 2°){(1 + K)[l + L/:)
2

] + (1 - K)[l + 3J/:) 4
]cos 20} 

Pr 1 + V 

um = ( ~ )( E m){(l + K)[(l - 2vm) + Lf(:)
2

] -
m 

CONSTANTS 

( 1 - 2v ) (C - 1) 
Lf 

m = ( 1 - 2v )C 1 + m 

2F + (1 - 2v ) 
Jf 

m = 2F + (5 - 6v ) 
m 

Nf 
2F - 1 = 2F + (5 - 6v ) 

m 

Expressions for C and F are given on page 338 in Appendix A. Positive 

sign conventions are illustrated in Fig. A.4 of Appe.ndix A. 
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B.3 SOLUTION NO. 3 1 EXCAVATION LOADING - NO SLIPPAGE CONDITION - THIN LINER 

B • 3 • 1 EXTERNAL PRES SURES ACT ING ON LINER 

B.3.2 LINER DISPLACEMENTS 

u = 
£ 

YH l+v -1-· .,_ -1-· 
(-2a)( E m)[(l + K )[L ]-Cl - K )(F)[l + 1" - N']cos2e} 

o n o n n 
m 

V 
£ 

B.3.3 LINER THRUST, SHEAR, AND MOMENTS 

B.3.4 GROUND MASS STRESSES AND DISPLAC-EMENTS 

'l':a4 7:a2 
- ( 1 - K ) [1 + 3J (-) - 2N (-) }os 29} 

o n r n r 
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YHr 1 + \Im "'· a 4 ~-: a 2 
v = ( ) (--) ( ( l - K ) [ J .. ( -) + ( 1 - 2 v ) N ( -) ]sin 2 e} m 2 E o nr m nr 

m 

B.3.5 CONSTANTS 

* L 
n 

= 
(1 - 2v )C 

m 
l + (1 - 2v )C 

m 

[ 2v + Cl - 2v )C]F + (1 - v )(1 - 2v )C * m m rn rn 
Jn = [(3 - 2v) + (1 - 2v -)CJF + ¼CS - 6v )Cl - 2v )C + (6 - 8v) 

m m rll m rn 

* 
[3 + 2(1 - 2v )C]F + ¼Cl - 2v )C m m 

Nn = LC3 - 2v ) + (1 - 2v )C]F + 1:2(5 - 6v )(1 - 2v )C + (6 - 8v ) m · rn rn rn rn 

Expressions for C and Fare given on page 338 in Appendix A. Positive 

sign conventions are illustrated in Fig. A.4 of Appendix A. 
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B.4 SOLUTION NO. 4 s EXCAVATION LOADING - FULL SLIPPAGE CONDITION - THIN 

LINER 

B.4.1 EXTERNAL PRESSURES ACTING ON LINER 

~ = 0 re 

B.4.2 LINER DISPLACEMENTS 

Bo4.3 LINER THRUST, SHEAR, AND MOMENTS 

V = 

B.4.4 GROUND MASS STRESSES AND DISPLACEMENTS 

[ '°'a4 ~·•a2 
- (1 - K ) 1 + 6Jf(-) - 2Nf(-) ]cos 20} o r r 
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[ * a 4 * a 2] + (1 - K ) 2Jf(-) - 2(1 - V )Nf(-) cos 29} o r rn r 

B,4,5 CONSTANTS 

* 
(1 - 2v )C rn 

Lf = 1 + (1 - 2v )C rn 

J; 
F + ( 1 - vrn) 

= (5 - 6v ) 2F + 
m 

* '4F + 1 
Nf = 2F + (5 - 6v ) 

m 

Expressions for C and Fare given on page 338 in -Appendix A, Positive 

sign conventions are illustrated in Fig, A,4 of Appendix A. 
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B.5 SOLUTION NO. 5 1 OVERPRESSURE LOADING - NO SLIPPAGE CONDITION - THICK 

LINER 

B.5.1 LINER STRESSES AND DISPLACEMENTS 

't"re..e 

G R 
= P (..:l..G )(1 - v) {(l + K)S [CR0

)
2 

o m n . 
m 1 

- 2(1 - K) [Wn + 

G 
= P (_:g_)(l -

o G 
m 

G R 
= P c...LG )(1 - v) {2(1 - K)[w - 3X c-2)

4 + 
o m n n r 

m ..e 
R 2 r 2 

+ 2Y (-2) - 62 ( _LR ) ]sin 2 9 } 
n r..e n i 

p r 
= c-2...L)c1 -2G 

m 

R R 
{ [ · o 2 o 2] v ) ( l + K) S ( l - 2 V ) ( -R ) + (-) -

m n ,.e i r..e 

. R4 R2 r2 
- 2(1 - K) [W - X (-2) + 4(1 - v )Y (-2.) - 4v Z (_g_) }os 29} 

n n r ..e n r ,.e n R . 
..e ..e 1 

B.5.2 GROUND MASS STRE.SSES AND DISPLACEMENTS 

Ro 2 
+ 2(1 - 2v )Y (-) 

..e n r..e 

r 2 
- 2(3 - 2v )Z (_LR ) ]sin 2 0) 

,£ n . 
1 
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p R R 
4 = (

2
°)((1 + K)[l - L (-2)

2] + (1 - K)[l - 3J (-2) ]cos20} 
n r n r 

"(" 
rem 

B.5.3 CONSTANTS 

L = 
n 

J = 
n 

N = 
n 

R 4 R 2 
- (1 - K)[l + J (-2) - 4(1 - \J )N (-2) ]cos 20} 

n r m n r 



s = n 

w = 
n 

X = 
n 

z = n 

1 

R 
= [(--2)2 - 1] bl R. 

l 

R 2 
b2 = [Cl - 2vi )(R~) + 1] 

l 

R 
it b3 = [(_£)2 -

R. 
l 

411 
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R R 
b4 = [(5 - 6v

1 
)(t2°)

6 + (5 - 21 )(~) 4 

i i 

R 
- Cl+ 2v1 )Cif"l + 

i 
R 

+ (3 - 2\11 )][~it)2 - 1] 
i 

R 
b

6 
= [(3 - 4v

1 
)(-t)

8 
+ 4(3 - 6v£ 

l. 

R 
b7 = [C"f) 4 

- 1] 
l. 

R 
b 8 = [ ( 3 - 4 \1£ ) (~ 4 + 1] 

l. 

R 
blO = [(3 - 4\11 )(~6 + 1] 

l. 

R 8 
= [( 1 - 2v )(~ + 4(2 -

£ R. 
l. 

R 6 R 4 
V )(--2) - 2(7 - 4V )(~ + 
1 R. £ R. 

l. l. 

R 2 
+ 4(~ + Cl - 2v ) J 

R. £ 
l. 
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R 6 R 4 
= c1 - v ) [c.....2.) - c.....2.) J :e R. R. 

l. l. 

R R 
6 ( R ~) 

4 
+ 4 ( R ~) 

2 
+ ( 1 - 2 v1 ) ] 

l. l. 

Positive sign conventions are illustrated in Fig. A.S of Appendix A 
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B.6 SOLUTION NO. 6 1 OVERPRESSURE LOADING - FULL SLIPPAGE CONDITION - THICK 

LINER 

B.6 . 1 LINER STRESSES AND DISPLACEMENTS 

Go R 2 R 2 
= P c--4'-) c 1 - . v ) cc 1 + K) s [c -2) - c-2) J -o G m f R. r 

m l 1, 

R 4 R 2 
- 6( 1 - K) [wf + X/r;) - 2Y/r

1
°) }os 2 e} 

G 
= p (~)(1 -

o G 
m 

p r 
= c-2...L.) c1 -2G 

m 

R 4 
- 2(1 - K)[3W - X (-2) + 6(1 -

. . f f r
1 
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P r R 
= ( 2~

1 )(1 - vm)(2(1 - K)[3Wf + Xf(r
0
)

4 
+ 3(1 -

m ,e 

Ro 2 
2v )Y (-) -

,e f r,e 

- (3 -
r 2 

2V,e )Z/f) ]sin 20} 
l. 

,B.6.2 GROUND MASS STRESSES AND DISPLACEMENTS 

P R R 
O'rm = ( 20) ( ( 1 + K) [1 + L/ ro) 2] - ( 1 - K) [1 + 3J / ro) 4 + 

R 2 
+ 4N/ r

0
) }os 20} 

P R R 
o

0
m = ( 2°)((1 + K)[l - L/ r°) 2J + Cl - K)[l + 3J/ r0

)
4
}os 20} 

pr R 
2 

um = ( 4~ )((1 + K)[(l - 2vm) - Lf( r
0

) ] -
m 

R 4 
- (1 - K)[l - J (--2) - 4(1 -f r 

R 2 
v )Nf(-2.) Jcos20} m r 
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B.6.3 CONSTANTS 

G 
(1 - 2v )(....l...)d - d2 m G l 

Lf 
m = G 

Cf )ctl + d2 
m 

G 
(1 - 2Vm)Cf)ct 3 + d4 

Jf 
m = G 

(5 - 6Vm)Cf)ct3 + d4 
m 

l. (G )d3 - d4 

Nf 
m = G 

(5 - 6V m) (t-) ct
3 

+ ct
4 

m 

(5 -



d 

R 
dl = [(f)2 - 1] 

l 

R 

d2 = [ ( 1 - 2V1 ) (f") 2 + 1] 
i 
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R R R 
d4 = [(3 - -2v )(_Q_)

6 + 3(5 - w )(-2.)
4 + 3(3 - lv )(R0

)
2 + (5 - 6v

0
)] 

1 Ri 1 Ri 1 i ,(, 

Positive sign conventions are illustrated in Fig. A.5 of Appendix A. 
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EXCAVATION LOADING - NO SLIPPAGE CONDITION - THICK 

LINER 

B.7.1 LINER STRESSES AND DISPLACEMENTS 

* * Ro 4 * Ro 2 - (3 - 4v )(1 - K )[w + 3X (-) - 4Y (-) Jcos29} 
m on nr

1 
nr

1
. 

H
G .,_R

2 
R

2 = c-~L.) ( .l) [ ( 1 + K ) s "[ ( ---2.) + ( -2.) ] + 
. 2 G . o n R. r.e 

m l. • 

122:ct) 2}os 29} 
l. 

.,_ r 2 
- 6Z

0

(_g_R ) ]s i n29} 
n . 

l. 

.,_ r 2 
- 4':e z/f) }os 29} 

l. 
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yHr1, * ·k Ro 4 ·k Ro 2 
v

0 
= (-

4
G )((3-4v)(l-K)[W +X(-) +2(1-2v)Y(-) -

N m m o n n r
1 

:£ n r
1 

B.7.2 GROUND MASS STRESSES AND DISPLACEMENTS 

d rm 

... Ro 4 ... Ro 2 
- (1 - K )[1 + 3JA(-) - 4N °(-) ]cos 20} 

o n r n r 

YH * R 4 -!: Ro 2 
= C-

2
) [Cl - K )[1 - 3J (~ + 2N (-) ]sin 20} o n r n r 
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B.7.3 CONSTANTS 

* L n 

* J = n 

* N = n 

* s = n 

* w = n 

* X = n 

* y = n 

l 

:&. * * (G )bl+ b2 
m 

:&. * * (G )bl4 + blS 
m 

G 2 * G * 
(3 - 4vm)(f) b3 + 2(f)[b4 -

m m 

~ * * (G )b7 + b8 
m 

G . 
2

:... G- * 
(3- 4v )(.:.!) bA + 2(.:.!)[b -

m G 3 G 4 
m m 

~ * * (G )b9 + blO 
m ' 

G 2 * G£ * (3 - 4v )(.:&.) b + 2(-)[b -
m G 3 G 4 

m m 

2vmb;J + b: 

* .,_ 
2vmb5] + b; 

2vmb;] + b: 



* z = 
n 

* R 2 
bl = [(--2) - 1] R. 

l. 

* R 2 
b2 = [(1 - 2v,e)(r) + 1] 

l. 

* 
R 

b3 = [(--2)2 _ 1] 4 
R. 

l. 

R 8 * b6 = [(3 - 4v ,e)(R~) + 4( 3 -
l. 

* 
R 

b7 = [(--2)4 - 1] 
R. 

l. 
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2 Ro 6 R 
6(_£)4 6v,e + 4v,e)(R.) + R. 

l. l. 

R 
+ 4(R~)

2 + (3 - 4v1)] 
l. 



* R 4 
b8 = [(3 - 4v )(R0

) + 1] 
i, i 

* R 6 
b

9 
= [(....2.) - 1] R. 

l 

R 6 
= [(....2.) - (11 -R. 

1 

R 6 R 4 
= ( 1 - V ) [ ( ....2.) - ( -2) ] ,e R. R. 

1 l 
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Ro 6 Ro 4 Ro 2 
= [(-) + (1 - 4v )(-) + (7 - 4v )(-) + R. i, R. i, R. 

l 1 1 

R 2 
+ (3 - 4v1)][CR~) - 1] 

1 

Posi t ive sign conventions are illustrated in Fig. A.5 of Appendix A. 
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B.8 SOWTION NO. 8 1 EXCAVATION LOADING - FULL SLIPPAGE CONDITION - THICK 

LINER 

B.8.1 LINER STRESSES AND DISPLACEMENTS 

* * Ro 4 * Ro 2 
- 3(3 - 4v )(1 - K )[wf + Xf(-) - 2Yi-(-) ]cos ze} 

m o ~ r ~ 

vr.t G .,_ .,_ R 4 
::: (-'.!!)(l)[3(3 - 4v )(1 - K )[w" - x"(-2) + 

2 G m o f fr 
m 1 

.,_R 2 .,_r 2 
+ y"(-2) - z?f) ]sin 2e} 

f r
1 1 

.,_ r 2 
2v

1 
z;<f-) }os 2e} 

l. 
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yHr -1,- ... R 4 "n = (~
4
G )[(3 - 4v )Cl - K )[3wf' + xf"c-2) + 

,{, m m o r1 

-1( Ro 2 ... .l 2 
+ 3(1 - 2v )Y (-) - (3 - 2v

0 
)Z/R ) ]sin 2e} 

1 f ~ ,{, 0 

B.8.2 GROUND MASS STRESSES AND DISPLACEMENTS 

.,. R 2 
- 2N/ r

0
) }os 2e} 

R 
... 0 2 

- 2(1 - v )Nf"(-) }:os 2e} m r 



B.8.3 CONSTANTS 

* Lf = 

* Jf = 

-1, 

Nf = 

* sf = 

* wf = 

* xf = 

* d2 

~ * * (G )dl + d2 
m 

~ * * 2(1 - vm)(G )d3 + d4 
m 

G * * (5 - 6vm) <f )d3 + d4 
m 

* ~ * (G )d3 + 2d4 m 

(5 - .:t * * 6vm)(G )d3 + d4 
m 

1 

~ * * (G )dl + d2 
m 

(5 -

(5 -

(5 -

* d7 

~ * * 6vm)(G )d3 + d4 
m 

* d5 

G,.e * * 
6vm)(G)d3 + d4 

m 

* d 
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(5 -

* R 4 R 2 
d

6 
= [2(-2) + (-2) + 1] 

R. R. 
l l 

Positive sign conventions are illustrated in Fig. A.5 of Appendix A. 
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