
S.C.R.T.D. LIBRARY

characteristics of urban transportation systems

S.C.R.T.D. LIBRARY

a handbook for transportation planners

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of technology sharing. The United States Government assumes no liability for its contents or use; neither does it endorse products or manufacturers. Trade or manufacturers' names appear only because they are considered essential to the object of this report.

The authors wish to state that the contents of this report reflect their own views, and they alone are responsible for the facts and accuracy of the material presented. The contents do not necessarily reflect the official views or policy of the Department of Transportation, nor does this report constitute a standard, specification or regulation.

Technical Report Documentation Page

1. Report No.	2. Government Acces	sion No. 3.	Recipient's Catalog I	۱۰.	
UMTA-IT-06-0049-79-1	Replaces PB 2	33 580/AS			
4. Title and Subtitle		Report Date			
Characteristics of Urban Transportation Systems -			June 1979		
A Handbook for Transportation Planners			Performing Orgonizati	ion Code	
7. Author(s)			Performing Organizati	on Report No.	
D. B. Sanders and T			UMTA-IT-06-	-0049-79-1	
 assistance from K. Bhatt an 9. Performing Organization Name and Addres 			Work Unit No. (TRAI	and the second se	
De Leuw, Cather & Company,		, with			
contributions from The Urba	in Institute, U	MTA and FHWA	Contract or Grant No	».	
			DOT-UT-20019		
12. Sponsoring Agency Nome and Address			Type of Report and F	Period Covered	
U.S. Department of Trans	portation				
Urban Mass Transportation		on	FINAL REPORT		
400 Seventh Street, S.W.		14	Sponsoring Agency C	Code	
Washington, D. C. 20590 15. Supplementary Notes					
16. Abstract *This report consists of a handbook to be used by transportation planners and urban specialists for estimating system parameters for conventional transportation technology. Three modes are evaluated: rail transit, local bus and bus rapid transit, and highway systems. Each mode contains an assessment of the following seven selected supply parameters: speed, capacity, operating cost, energy consumption, pollutant emissions, capital costs, and accident frequency. These parameters are organized as proxy variables in describing the characteristics of each transport mode. Each mode has an analogous Appendix section whereby these parameters are evaluated in further detail and for particular geographic areas. Two additional Appendix sections contain all references used in the tables/ figures and a general bibliography for further information. The report is a part of the Urban Transportation Planning System (UTPS) of UMTA and FHWA and complements the previously distributed UTPS handbooks: <u>Characteristics of Urban Transportation Demand (CUTD)</u> Available on the UTPS distribution tape and from NTIS as UMTA-IT-06-0049-78-1 <u>Traveler Response to Transportation System Changes</u> Limited copies available from FHWA (HHP-22) or from NTIS as PB 265 830/AS *This report is an update of earlier reports of the same title which					
available from UM UTPS distribution	TA (UPM-20), from h tape.	TIS as PB 233 580/AS,			
Commuter Rail Transit Ope Bus & Bus Rapid Transit En Roadway Transport Po	eed, Capacity erating Cost ergy Consump. llutant issions uency 20. Security Clean	National Tech Springfield,	the Public th	tion Service,	
Unclassified	Unclassif				

the share the second second second

Report No. UMTA-IT-06-0049-79-1

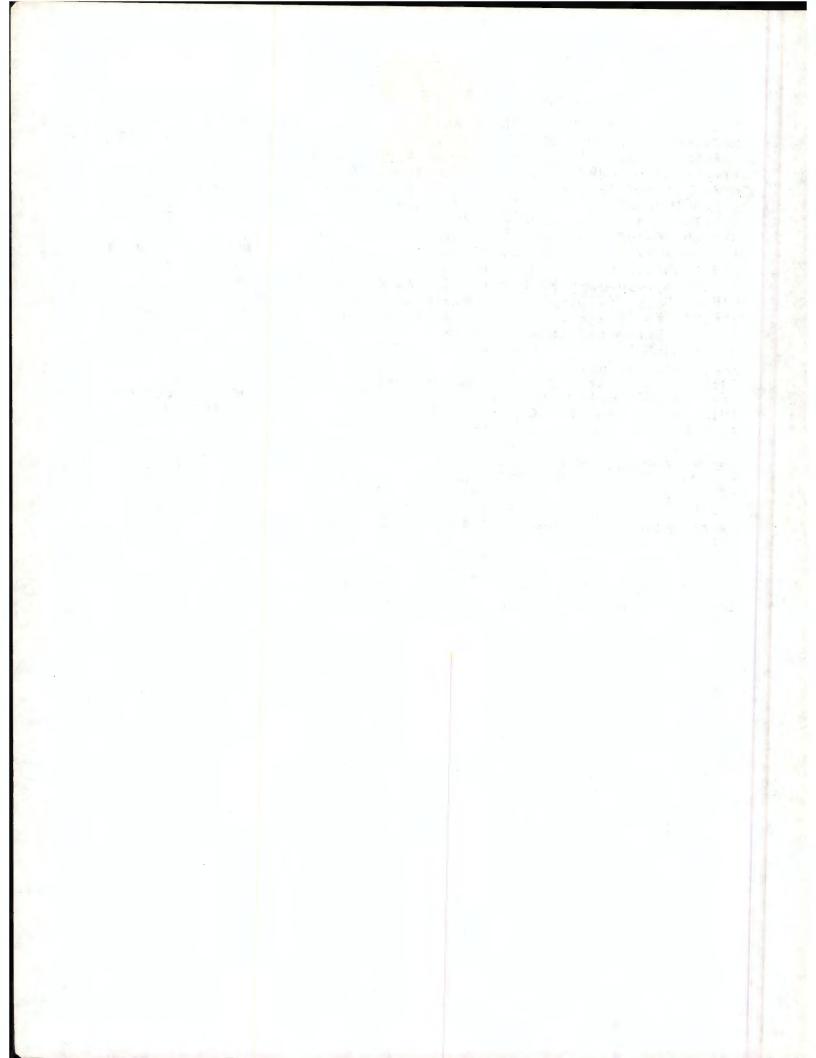
CHARACTERISTICS OF URBAN TRANSPORTATION SYSTEMS

A Handbook For Transportation Planners

THE U.S. DEPARTMENT OF TRANSPORTATION

Urban Mass Transportation Administration Federal Highway Administration Office of the Secretary June 1979

	032:1	
	HE 308 .C52 1979 c.1	


ACKNOWLEDGMENTS

THE MATERIAL REPORTED HEREIN WAS DEVELOPED IN TWO SEPARATE STUDIES. DE LEUW, CATHER AND COMPANY, FOR PART OF THE URBAN MASS TRANSPORTATION ADMINISTRATION (UMTA) TRANSPORTATION PLANNING SYSTEM (UTPS) PROJECT, WAS RESPONSIBLE FOR THE FIRST STUDY. THE URBAN INSTITUTE, UNDER A CONTRACT WITH THE FEDERAL HIGHWAY ADMIN-ISTRATION AND THE OFFICE OF THE SECRETARY, PRODUCED A DOCUMENT ENTITLED "A COMPARATIVE ANALYSIS OF TRANSPORTATION COSTS" AS THE SECOND OF THE TWO STUDIES. BOTH STUDIES, FOR THE PURPOSE OF THIS REPORT, WERE CONSOLIDATED BY DE LEUW, CATHER AND COMPANY WITH ASSISTANCE FROM THE URBAN INSTITUTE. SINCE ITS ORIGINAL PUBLI-CATION AS A HARD COPY REPORT. IT HAS BEEN INCORPORATED INTO THE UTPS DOCUMENTATION SYSTEM. REVISIONS HAVE BEEN MADE AS NEEDED BY THE STAFFS OF THE OFFICE OF PLANNING METHODS AND SUPPORT OF UMTA AND OF DELEUW CATHER AND COMPANY. THIS PRESENT REVISION HAS BEEN UNDERTAKEN BY THE DELEUW CATHER COMPANY AND ROCK CREEK ASSOCIATES.

SPECIAL ACKNOWLEDGEMENT SHOULD BE MADE OF THE OFFICE OF PLANNING METHODS AND SUPPORT OF UMTA AND STAFF FOR RECOGNIZING THE NEED FOR THIS PROJECT AND FOR CLOSE AND VALUABLE SUPERVISION, PARTICULARLY T. HILLEGASS FOR HIS MANY VALUABLE SUGGESTIONS.

THE AUTHORS WOULD LIKE TO THANK K. BHATT OF THE URBAN INSTITUTE FOR MANY OF HIS IDEAS AND THE USE OF HIS RESEARCH. OTHERS WHO SHOULD BE SINGLED OUT FOR THEIR CONTRIBUTIONS TO THIS REPORT ARE R. DIAL, L. QUILLIAN AND S. ZIMMERMAN (UMTA); D. GENDELL, L. SKINNER, J. RYAN AND A. KANE (FHWA); AND R. SCHOFER (NATIONAL BUREAU STANDARDS).

OTHER AGENCIES WHOSE WORK IS USED ARE THE AMERICAN PUBLIC TRANSIT ASSOCIATION, AMERICAN ASSOCIATION OF RAILROADS, THE INSTITUTE FOR RAPID TRANSIT, AND NUMEROUS TRANSIT COMPANIES AND OTHER PUBLIC AGENCIES REFERRED TO HEREIN.

CUTS_COMMENT/UPDATE_EORM

THIS MANUAL IS CONTINUOUSLY REVISED TO REFLECT NEW INFORMA-TION ON TRANSPORTATION SYSTEM CHARACTERISTICS AS IT BECOMES AVAILABLE TO UMTA. TO ASSIST IN THIS REVISION PROCESS, PLEASE SEND ANY COMMENTS YOU MAY HAVE TO THE FOLLOWING ADDRESS, USING THIS FORM:

> ROBERT B. DIAL, DIRECTOR UFFICE OF PLANNING METHUDS AND SUPPORT UTP-10 URBAN MASS TRANSPORTATION ADMINISTRATION U.S. DEPARTMENT UF TRANSPORTATION 400 SEVENTH STREET, S.W. WASHINGTON, D.C. 20590

DATA IN QUESTION:

CUTS VERSION DATE:

PAGE NUMBER:

TABLE OR FIGURE TITLE:

TABLE OR FIGURE NUMBER:

COMMENTS INCLUDING REFERENCE(S):

NAME:

AFFILIATION:

ADDRESS:

PHONE:

TABLE OF CONTENTS

ACKNOWLEDGMENTS 3 COMMENTS/UPDATE FORM 4 TABLE OF CONTENTS 5 LIST OF TABLES 7 DEFINITION OF TERMS 10 PROJECT STAFF 14 CHAPTER

I	INTRODUCTION ORGANIZATION OF HANDBOOK USE OF THE HANDBOOK	I = 1 I = 2 I = 3
II	RAPID, COMMUTER, AND LIGHT RAIL TRANSIT SPEED CAPACITY OPERATING COST ENERGY CONSUMPTION POLLUTION EMISSIONS NOISE CAPITAL COST ACCIDENT FREQUENCY	II- 1 II- 2 II- 7 II- 9 II-12 II-15 II-21 II-22 II-27
III	LOCAL BUS AND BUS RAPID TRANSIT SPEED CAPACITY OPERATING CUST ENERGY CONSUMPTION POLLUTANT EMISSIONS CAPITAL COST ACCIDENT FREQUENCY	III- 1 III- 2 III- 3 III- 7 III- 8 III-12 III-14 III-19
IV	AUTOMOBILE-HIGHWAY SYSTEM SPEED CAPACITY OPERATING COST ENERGY CONSUMPTION POLLUTANT EMISSIONS CAPITAL COST ACCIDENT FREQUENCY	1V- 1 IV- 2 IV- 7 IV-10 IV-12 IV-24 IV-32
v	ACTIVITY CENTER SYSTEMS	V- 1
VI	PEDESTRIAN ASSISTANCE SYSTEMS	VI- 1

5

PAGE

APPENDICES

APPENDIX A:	MISCELLANEOUS SUPPORTING MATERIAL
APPENDIX B:	RAPID RAIL AND COMMUTER RAIL TRANSIT
APPENDIX C:	LOCAL BUS AND BUS RAPID TRANSIT
APPENDIX D:	AUTOMOBILE-HIGHWAY SYSTEM
APPENDIX E:	ACTIVITY CENTER SYSTEMS
APPENDIX F:	PEDESTRIAN ASSISTANCE SYSTEMS
APPENDIX G:	REFERENCES USED IN TABLES
APPENDIX H:	GENERAL BIBLIOGRAPHY

6

14

. 4

TABLE NO. TITLE

_	
2-1.	TYPICAL RAIL RAPID SPEEDS
2-2.	
2-3.	
2-4.	
2-5.	THEORETICAL RAIL TRANSIT SERVICE VOLUME
	AND SEAT CAPACITY.
2-6.	RAIL RAPID TRANSIT OPERATING COSTS
2-7.	COMMUTER RAIL OPERATING COSTS
	LIGHT RAIL TRANSIT OPERATING COSTS
2-9.	ELECTRIC RAIL RAPID TRANSIT ENERGY CONSUMPTION
2-10.	DIESEL COMMUTER RAIL TRANSIT ENERGY CONSUMPTION
2-11.	ELECTRIC LIGHT RAIL TRANSIT ENERGY CONSUMPTION
2-12.	MAGNITUDE OF POLLUTANTS GENERATED BY RAIL RAPID
C-1C.	TRANSIT POWERED BY ELECTRICAL ENERGY
2=13.	MAGNITUDE OF POLLUTANTS GENERATED BY LIGHT RAIL
2-13.	TRANSIT POWERED BY ELECTRICAL ENERGY
2-14	MAGNITUDE OF POLLUTANTS GENERATED BY COMMUTER
2-14.	
	RAIL DIESEL LOCOMOTIVE
2-15.	NATIONAL DISTRIBUTION OF FUEL SOURCES FOR
• • • •	ELECTRIC POWER GENERATION
2-16.	NATIONAL COMPOSITE OF POLLUTANTS GENERATED BY
	FUEL SOURCES FOR RAIL RAPID TRANSIT
2-17.	NATIONAL COMPOSITE OF POLLUTANTS GENERATED BY
	FUEL SOURCES FOR LIGHT RAIL TRANSIT
2-18.	RAPID RAIL NOISE EXPOSURE
2-19.	RAPID AND LIGHT RAIL TRANSIT LAND COSTS
2-20.	RAIL RAPID TRANSIT CONSTRUCTION COSTS
2-21.	LIGHT RAIL TRANSIT CONSTRUCTION COSTS
2-22.	SAMPLE RAIL RAPID TRANSIT ROLLING STOCK COSTS
2-23.	SAMPLE COMMUTER RAIL TRANSIT ROLLING STOCK COSTS
2-24.	
2-25.	RAIL RAPID TRANSIT ACCIDENTS - VEHICLE AND PASSENGER
2=26.	COMMUTER RAIL ACCIDENTS
2-27.	LIGHT RAIL TRANSIT ACCIDENTS
3-1.	TYPICAL BUS SPEEDS
3-2.	BUS SERVICE VOLUME PER LANE - THEORETICAL
,	AND OBSERVED
3-3.	BUS AND PASSENGER SERVICE VOLUMES AT
	BUS BOARDING STOPS
3-4.	
3 10	UNDER PLATOON OPERATION
3-5.	
3-6.	
	FUEL CONSUMPTION FOR MINI AND MID-SIZED BUSES
3-8.	
3-0.	
	BUSWAY LAND COSTS
3=10.	
3-12.	
5-15.	IMPLEMENTATION AND OPERATING COST FUR RESERVED
7 4 4	FREEWAY BUS LANES
	CAPITAL COSTS OF MOTOR BUSES
5=15.	BUS TRAFFIC ACCIDENTS (PASSENGER ACCIDENTS)

4-1.	MAJOR ASSUMPTIONS IN CALCULATING CAPACITY
	AND AVERAGE SPEED
4-2.	CAPACITY AND AVERAGE SPEED ON VARIOUS ROADWAYS
4-3.	VEHICLE OPERATING COST ON FREEWAYS
	VEHICLE OPERATING COST ON ARTERIALS
	VEHICLE GASOLINE CONSUMPTION ON FREEWAYS
	VEHICLE GASOLINE CONSUMPTION ON ARTERIAL STREETS
4-7.	POLLUTANTS EMITTED ON FREEWAYS
4-8.	POLLUTANTS EMITTED ON ARTERIAL STREETS
4-9.	SIMPLIFIED ESTIMATION TECHNIQUE FOR CARBON MONOXIDE
	CONCENTRATIONS NEAR HIGHWAY FACILITIES
4-10.	EXPRESSWAY AND FREEWAY LAND COSTS
	ARTERIAL LAND COSTS
4-12.	EXPRESSWAY AND FREEWAY CONSTRUCTION COSTS
4-13.	ARTERIAL CONSTRUCTION COSTS
	ANNUAL COST OF MAINTENANCE
4-15.	SURFACE PARKING COSTS
	UNDERGROUND STRUCTURE PARKING COSTS
4-17.	MULTI-LEVEL STRUCTURE PARKING COSTS
	URBAN ACCIDENT FREQUENCY ON SURFACE STREETS
4-19.	COST OF ACCIDENTS
	COMPOSITE VEHICLE ACCIDENT COSTS
4-21.	TYPES OF MOTOR VEHICLES INVOLVED IN ACCIDENTS
5-1.	ACTIVITY CENTER SYSTEMS - VEHICLE CAPACITIES
5-2.	ACTIVITY CENTER SYSTEMS - SPEEDS, HEADWAYS,
	AND DWELL TIMES
5-3	ACTIVITY CENTER SYSTEMS - CAPACITIES
	ACTIVITY CENTER SYSTEMS CAPITAL COSTS
5-5.	PERCENTAGE CONTRIBUTION TO TOTAL SYSTEM
5-5.	CONSTRUCTION COST
	ACTIVITY CENTER SYSTEMS STATION COSTS
	ACTIVITY CENTER SYSTEMS VEHICLE COSTS
	ACTIVITY CENTER SYSTEMS GUIDEWAY COSTS
6-1.	SPEED OF WALKING
6-2.	PRACTICAL OPERATING CAPACITY OF STANDARD
	TURNSTILES
6-3.	PEDESTRIAN STAIR SPEEDS
6-4.	MAXIMUM STAIRWAY CAPACITY
6-5.	ESCALATOR CAPACITIES AND BOARDING TIMES
6-6.	MOVING WALKWAY CAPACITIES
	ELEVATOR CAPACITY CONSIDERATIONS
	ELEVATOR CAPACITIES
	ELEVATOR SPEEDS
6=10	PEDESTRIAN ASSISTS CAPITAL AND MAINTENANCE
0-10.	COSTS
A-1.	TYPICAL AMORTIZATION PERIODS
A-2.	COMPOSITE PRICE INDEXES FOR SELECTED VEHICLES AND
A-C.	
	GUIDEWAYS
A-3.	COST INDEX OF RAILROAD MATERIAL AND WAGE RATES
	CONSUMER PRICE INDEX FOR TRANSPORTATION GOODS
	LOCAL TRANSIT WAGE RATE INDEXES
	LOCAL TRANSIT AVERAGE WAGE RATES
A-7.	HIGHWAY AND STREET CONSTRUCTION HOURLY
	WAGE RATES
B-1.	EXTENT OF RAIL RAPID SYSTEMS
	TYPICAL EXISTING RAIL RAPID SPEEDS
	THEORETICAL EQUATIONS FOR DETERMINING AVERAGE
	RAIL SPEEDS

THEORETICAL EQUATION FOR DETERMINING RAIL 8-4. TRANSIT CAPACITIES SERVICE VOLUME OF TYPICAL RAIL RAPID TRANSIT 8-5. LINES (PEAK HOUR) SERVICE VOLUME OF TYPICAL LIGHT RAIL TRANSIT B-6. SYSTEMS RAIL RAPID TRANSIT SYSTEM OPERATING COSTS B-7. 8-8. COMMUTER RAIL OPERATING COSTS LIGHT RAIL TRANSIT OPERATING COSTS B-9. TYPICAL RAPID RAIL TRANSIT LINE CONSTRUCTION **B-10**. COSTS COST AND CHARACTERISTICS OF RAIL RAPID TRANSIT 8-11. ROLLING STOCK B-12. COST OF COMMUTER RAIL ROLLING STOCK C=1. CENTRAL BUSINESS DISTRICT BUS LANES C-2. ARTERIAL BUS LANES BUS ECONOMIC AND PERFORMANCE CHARACTERISTICS C=3. EXISTING OR PROPOSED BUSWAY CONSTRUCTION COSTS C=4. C-5. BUS TRAFFIC ACCIDENTS **BUS PASSENGER ACCIDENTS** C-6. DESIGN CAPACITY OF SIGNALIZED INTERSECTIONS -D-1. ONE-WAY STREET - NO PARKING DESIGN CAPACITY OF SIGNALIZED INTERSECTIONS -D-2. ONE-WAY STREET - PARKING ONE SIDE ONLY DESIGN CAPACITY OF SIGNALIZED INTERSECTIONS -0-3. **ONE-WAY STREET - PARKING BOTH SIDES** DESIGN CAPACITY OF SIGNALIZED INTERSECTIONS -D-4. TWO-WAY STREET - NO PARKING DESIGN CAPACITY OF SIGNALIZED INTERSECTIONS -0-5. TWO-WAY STREET - WITH PARKING HOURLY DISTRIBUTION OF ACCIDENTS D=6. D-7. TYPES OF URBAN ACCIDENTS SYSTEM DESCRIPTIONS E=1. ACTIVITY CENTER SYSTEMS IN USE, FOR DEMONSTRATION, E-2. OR UNDER CONSTRUCTION VARIABLE SPEED MOVING WALKS F=1.

9

DEFINITION OF TERMS

AMORTIZATION PERIOD - THAT TIME PERIOD OVER WHICH A CAPITAL COST ITEM IS FULLY DEPRECIATED.

ARTERIAL STREET - A MAJOR HIGHWAY, PRIMARILY FOR THROUGH TRAFFIC, CHARACTERIZED BY A HIGH CAPACITY AND UNLIMITED ACCESS TO ADJACENT STREETS.

ARTICULATED BUS - A TYPE OF MOTORIZED BUS WHOSE LENGTH (SEAT CAPACITY) IS INCREASED BY THE ADDITION, BY FLEXIBLE JOINT, OF EITHER ANOTHER BUS OR SECTION OF A BUS.

BERTH - A SEPARATE BUS PASSENGER HANDLING PLATFORM CHARACTERIZED BY ITS CONFIGURATION (PARALLEL TO THE PLATFORM OR SAWTOOTH IN DESIGN).

BTU - AN ACRONYM FOR BRITISH THERMAL UNIT: A UNIT OF HEAT EQUAL TO ABOUT 252 CALORIES; THAT QUANTITY OF HEAT REQUIRED TO RAISE THE TEMPERATURE OF ONE POUND OF WATER ONE DEGREE FAHRENHEIT.

BUS PLATOON - SEVERAL BUSES OPERATING TOGETHER AT THE SAME TIME AND OVER THE SAME ROUTE.

BUS RAPID TRANSIT - A BUS OPERATION GENERALLY CHARACTERIZED BY OPERATION ON AN EXCLUSIVE RIGHT-OF-WAY WHERE HIGH SPEEDS CAN BE MAINTAINED.

BUS WAGON (JITNEY) - A TYPE OF BUS DESIGNED TO CARRY 8-12 PERSONS IN LOW PASSENGER DEMAND SITUATIONS; ALSO REFERRED TO AS A VAN.

BUSWAY - A GRADE SEPARATED RIGHT-OF-WAY USED EXCLUSIVELY BY BUSES.

CAPACITY - THE MAXIMUM NUMBER OF VEHICLES OR PASSENGERS WHICH CAN REASONABLY BE EXPECTED TO PASS OVER A FACILITY DURING A GIVEN TIME PERIUD.

CAPITAL COST - THAT MONETARY COST ASSOCIATED WITH INITIATING A PARTICULAR TRANSPORT OPERATION INCLUDING, FOR EXAMPLE, LAND, CONSTRUCTION, AND FLEET, BUT NOT INCLUDING OPERATING COSTS OR MAINTENANCE.

CAR-MILES (BUS-MILES) - THE SUM OF THE DISTANCES (IN MILES) EACH RAIL CAR (BUS) TRAVELS DURING ITS TRANSPORT FUNCTION.

CBD - CENTRAL BUSINESS DISTRICT: THAT CENTRAL PORTION OF A MUNICIPALITY IN WHICH THE DOMINANT LAND USE IS INTENSIVE BUSINESS ACTIVITY.

COMMUTER RAIL - TRANSIT SERVICE OPERATED BY RAILROADS OR TRANSIT AGENCIES CONNECTING NEARBY SUBURBAN AREAS WITH THEIR CENTRAL CITIES AND USING A RIGHT-OF-WAY WHICH MAY ALSO SERVE FREIGHT AND INTERCITY RAIL. CUT AND COVER - CONSTRUCTION OF AN UNDERGROUND FACILITY BY EXCAVATING AND REFILLING.

DEFAULT VALUE - A DESIGN VALUE BASED UPON SUBSTANTIAL EXPERIENCE OR STUDY CONCLUSIONS TO BE USED FOR ESTIMATING PARAMETERS, GIVEN THE LACK OF MORE DEFINITE INFORMATION.

DWELL TIME - THE PERIOD PRECISELY MEASURED FROM THE TIME A BUS OR TRAIN BERTHS AT A STATION UNTIL THE TIME IT LEAVES.

EXPRESS BUS - A BUS SERVICE USUALLY NOTED BY A SINGLE PASSENGER PICK-UP POINT AND DISCHARGE POINT(S); ALSO NOTED FOR ITS NON-STOP OPERATION BETWEEN ORIGIN AND DISCHARGE POINT(S).

EXPRESSWAY - A DIVIDED HIGHWAY FOR THROUGH TRAFFIC WITH FULL OR PARTIAL ACCESS CONTROL AND GENERALLY WITH GRADE SEPARATIONS AT MAJOR INTERSECTIONS.

FREEWAY - A DIVIDED HIGHWAY FOR THROUGH TRAFFIC WITH FULL ACCESS CONTROL AND GRADE SEPARATION AT ALL INTERSECTIONS.

FRINGE AREA - THAT PORTION OF A MUNICIPALITY IMMEDIATELY OUTSIDE THE CBD WHICH IS CHARACTERIZED BY BUSINESS, INDUSTRIAL, SERVICE, AND SOME RESIDENTIAL ACTIVITY.

INTERRUPTED FLOW - A CONDITION IN WHICH A VEHICLE TRAVERSES A FACILITY AND IS REQUIRED TO STOP OR SLOW DOWN FOR TRAFFIC SIGNALS, FREQUENT INTERSECTIONS, SIGNS, ETC.

LEVEL OF SERVICE - ANY COMBINATION OF OPERATING CONDITIONS OF A GIVEN FACILITY THAT ALLOW IT TO ACCOMMODATE TRAFFIC VOLUMES.

LIGHT RAIL - A TYPE OF TRANSIT SERVICE WITH CARRYING CAPACITY GENERALLY IN BETWEEN THE CAPACITIES OF BUS AND CONVENTIONAL RAPID TRANSIT, CHARACTERIZED BY A STREETCAR-TYPE RAILWAY ON CITY STREETS OR EXCLUSIVE PRIVATE RIGHT-OF-WAY; FORMERLY KNOWN AS "TROLLEY CAR" OR "SUBWAY-SURFACE".

LOCAL BUS - A BUS WHICH PICKS UP PASSENGERS AND DISCHARGES THEM AT FREQUENT, DESIGNATED STOPS.

LOCAL STREET - A STREET OR ROADWAY USED PRIMARILY FOR ACCESS TO ACTIVITIES ON LAND ADJACENT TO IT.

MAJOR WIDENING - ROADWAY CONSTRUCTION TO WIDEN EXISTING ROADWAY TO ACCOMMODATE EXPECTED TRAFFIC.

MEZZANINE AREA - THE PART OF A TRANSIT STATION WHICH IS A PASSENGER COLLECTION AREA SEPARATED FROM THE TRANSPORTATION RIGHT-OF-WAY.

MINIBUS - A CLASS OF BUS WITH LOW PASSENGER CAPACITIES (8-20) AND OPERATING FLEXIBILITY.

NEW ROADS - ROADWAY CONSTRUCTION WHERE NO ROADWAY EXISTS.

NONPROGRESSIVE SIGNAL SYSTEM - A SIGNAL SYSTEM IN WHICH THE SUCCESSIVE SIGNAL FACES CONTROLLING A GIVEN STREET ARE NOT COORDINATED.

OPERATING COST - THOSE RECURRING COSTS IN TRANSPORTATION SYSTEMS WHICH INCLUDE DRIVER WAGES (IF APPLICABLE), SALARIES OF ADMIN-ISTRATIVE OFFICERS, MAINTENANCE, FUEL (POWER), TAXES, INSURANCE, AND SUPPLIES, BUT NOT DEPRECIATION OR INTEREST PAYMENTS.

OPERATING SPEED - THE HIGHEST OVERALL SPEED AT WHICH A VEHICLE CAN BE SAFELY OPERATED UNDER THE TRAFFIC AND ENVIRONMENTAL CONDITIONS WHICH IT ENCOUNTERS.

OBD - OUTLYING BUSINESS DISTRICT: THAT PORTION OF A MUNICIPALITY NORMALLY SEPARATED FROM THE CBD AND FRINGE AREA AND WHERE THE CHIEF LAND USE IS BUSINESS ACTIVITY; CHARACTERIZED BY ITS OWN TRAFFIC CIRCULATION SUPERIMPOSED ON SOME THROUGH TRAFFIC.

PEAK HOUR FACTOR - A RATIO OF THE TRAFFIC VOLUME OCCURRING DURING THE PEAK HOUR TO THE MAXIMUM RATE OF FLOW DURING A SPECIFIED TIME WITHIN THE PEAK HOUR.

PRICE INDEX - AN INDEX OF ANNUAL PRICES FOR A SPECIFIED SET OF YEARS EXPRESSED AS A RATIO TO A SELECTED BASE PRICE.

PROGRESSIVE SIGNAL SYSTEM - A SIGNAL SYSTEM IN WHICH THE SUCCESSIVE SIGNAL FACES CONTROLLING A GIVEN STREET ARE COORDI-NATED TO GIVE VEHICLES THE OPPORTUNITY TO PASS THROUGH AT A FIXED SPEED WITHOUT STOPPING.

RAIL RAPID TRANSIT - A PASSENGER-CARRYING RAIL SYSTEM ON AN EXCLUSIVE RIGHT-OF-WAY WHICH GENERALLY SERVES ONE CONTIGUOUS URBAN AREA.

RAIL TRANSIT - A GENERIC TERM WHICH INCLUDES RAIL RAPID TRANSIT, LIGHT RAIL AND COMMUTER RAIL SYSTEMS, AND AUXILIARY SERVICES.

RECONSTRUCTION - ROADWAY CONSTRUCTION ON AN EXISTING ROADWAY OR PARTIALLY WHERE NO ROADWAY EXISTS; MAJOR UPGRADING OF A FACILITY.

RESERVED BUS LANE - LANES ON ROADWAYS RESERVED EXCLUSIVELY FOR BUSES AND THEIR OPERATION, ON FREEWAYS, MAJOR ARTERIAL STREETS, OR LOCAL STREETS.

RESIDENTIAL AREA - THAT PORTION OF A MUNICIPALITY IN WHICH THE DOMINANT LAND USE IS RESIDENTIAL. SMALL BUSINESSES MAY ALSO BE INCLUDED.

ROADWAY DESIGN SPEED - A SPEED SELECTED IN ADVANCE SO THAT ALL COMPONENTS OF A SYSTEM CAN BE DESIGNED TO ALLOW SAFE OPERATION AT THAT SPEED.

ROLLING STOCK - ANY VEHICLE CAPABLE OF OPERATING ON THE RIGHT-OF-WAY PROVIDED.

ROUTE (BUS) - A DESIGNATED PATH OVER WHICH A BUS OR FLEET OF BUSES IS ASSIGNED, WITH STOPS FOR SERVING PASSENGERS.

SERVICE VOLUME - THE MAXIMUM NUMBER OF VEHICLES THAT CAN PASS A GIVEN POINT DURING A SPECIFIED TIME PERIOD AT A DESIRED LEVEL OF SERVICE.

SIGNAL PRE-EMPTION - AN ELECTRO-MECHANICAL DEVICE IN A VEHICLE WITH WHICH THE DRIVER CAN ALTER, WITHIN PREDETERMINED BOUNDS, THE SIGNAL CYCLE.

STATIONS - TWO TYPES: OFF-LINE AND ON-LINE. THE FORMER IS A STATION IN WHICH THE VEHICLE STOP IS NOT PART OF THE MAIN LINE. THE LATTER IS A STATION IN WHICH THE VEHICLE STOP IS ON THE MAIN LINE.

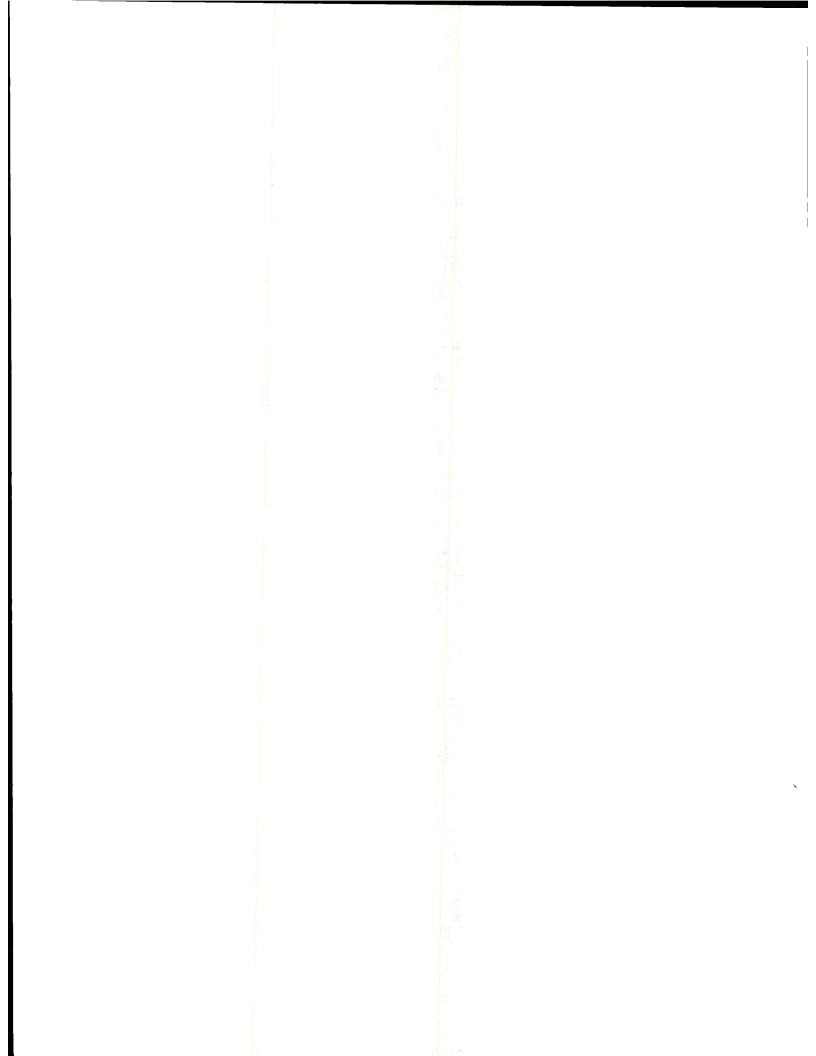
TRANSPORTATION COSTS - THAT PART OF OPERATING COSTS WHICH INCLUDES THE COST OF CONDUCTING TRANSPORTATION: DRIVER WAGES, SUPER-VISION, FUEL, AND ASSOCIATED ADMINISTRATIVE COSTS DIRECTLY RELATED TO OPERATION.

UNINTERRUPTED FLOW - A CONDITION IN WHICH A VEHICLE ON A RIGHT-OF-WAY IS NOT REQUIRED TO STOP OR SLOW DOWN DUE TO SIGNALS, SIGNS, OR OPPOSING INTERSECTIONS.

WATT - A UNIT OF POWER WHICH CAN PROVIDE A CURRENT OF ONE AMPERE WITH ONE VOLT; IT IS APPROXIMATELY 1/746 HORSEPUWER.

PROJECT STAFF

AUTHORS


J. J. HINKLE (DE LEUW, CATHER AND COMPANY)

D. B. SANDERS (DE LEUW, CATHER AND COMPANY)

R. H. WATKINS (RUCK CREEK ASSOCIATES)

CONTRIBUTORS

K. BHATT (THE URBAN INSTITUTE)
W. H. DIETRICH (DE LEUW, CATHER AND COMPANY)
J. F. FIELD (DE LEUW, CATHER AND COMPANY)
J. M. KOWOLASKI (ROCK CREEK ASSOCIATES)
T. A. REYNEN (DE LEUW, CATHER AND COMPANY)
W. R. WOLFE (ROCK CREEK ASSOCIATES)

CHAPTER I

INTRODUCTION

IN ANY ANALYSIS OF TRANSPORTATION SYSTEMS, WHETHER FOR LONG OR SHORT RANGE PLANNING, THE PLANNER MUST BE ABLE TO ADEQUATELY DESCRIBE A PROPOSED TRANSPORT SYSTEM TO EVALUATE IT PROPERLY. THE LITERATURE OFFERS MANY TOOLS AND METHODOLOGIES FOR PORTRAYING OPERATING, ENVIRONMENTAL, DEMAND, CONSTRUCTION, AND OTHER CHARACTERISTICS OF INDIVIDUAL AND INTEGRATED TRANSPORT TECHNOLOGIES. OFTEN, HOWEVER, THE DATA PRESENTED ARE OUT-OF-DATE, INCONCLUSIVE, CONFUSING, OR MERELY LOCAL IN NATURE. THE VERY NUMBER OF SOURCES CONFUSES RATHER THAN HELPS IN A SEARCH FOR PERTINENT INFORMATION, AND THE GREAT VARIETY OF SOURCES CAN PRODUCE STATISTICS OFTEN UNRELIABLY OR MISLEADINGLY COMPARED OR GROUPED BECAUSE OF MEASUREMENT OR DEFINITIONAL DIFFERENCES.

THE OBJECTIVE OF THIS DOCUMENT IS TO PROVIDE A SINGLE REFERENCE SOURCE FOR THE MOST IMPORTANT (FOR EVALUATION) PERFORMANCE CHARACTERISTICS OF FOUR CONTEMPORARY URBAN TRANSPORTATION SYSTEMS (RAIL, BUS, HIGHWAY-AUTOMOBILE AND MIXED MODE, AND PEDESTRIAN ASSISTANCE SYSTEMS) IN A FORMAT THAT LENDS ITSELF TO EASY REFERENCE. A FIFTH MODE, THE ACTIVITY CENTER SYSTEM, HAS BEEN ADDED: PEOPLE MOVER SYSTEMS INSTALLED AT AIRPORTS, ZOOS, AMUSEMENT PARKS, ETC. THIS HANDBOOK ASSESSES ONLY THE SUPPLY OR PERFORMANCE ASPECT OF URBAN TRANSPORTATION. THIS HANDBOOK DOES NOT DEAL EXPLICITLY WITH PASSENGER DEMAND, BUT ASSESSES ONLY THE SUPPLY OR PERFORMANCE CHARACTERISTICS OF URBAN TRANSPORTATION SYSTEMS. THE SEVEN SUPPLY PARAMETERS CHOSEN FOR THIS REPORT ARE:

SPEED AVERAGE MAXIMUM CAPACITY (SERVICE VOLUME) VEHICLE PERSON **OPERATING COST (VEHICLE)** ENERGY CONSUMPTION (VEHICLE OR SOURCE) POLLUTION EMISSION (VEHICLE OR SOURCE) NOISE CAPITAL COST LAND CONSTRUCTION VEHICLE ACQUISITION ACCIDENT FREQUENCY

ORGANIZATION OF HANDBOOK

THE MATERIAL IN THIS HANDBOOK COMES FROM MANY SOURCES, AS THE REFERENCES INDICATE. IT IS A SERIES OF INDEPENDENT, SELF-DESCRIPTIVE TABLES FOR THE FOLLOWING CONVENTIONAL TRANSPORT MODES:

RAIL TRANSIT (COMMUTER, RAPID, AND LIGHT)

LOCAL BUS AND BUS RAPID TRANSIT AUTOMOBILE-HIGHWAY SYSTEM (AUTOMOBILES AND OTHER VEHICLES) ACTIVITY CENTER SYSTEMS PEDESTRIAN ASSISTANCE SYSTEMS

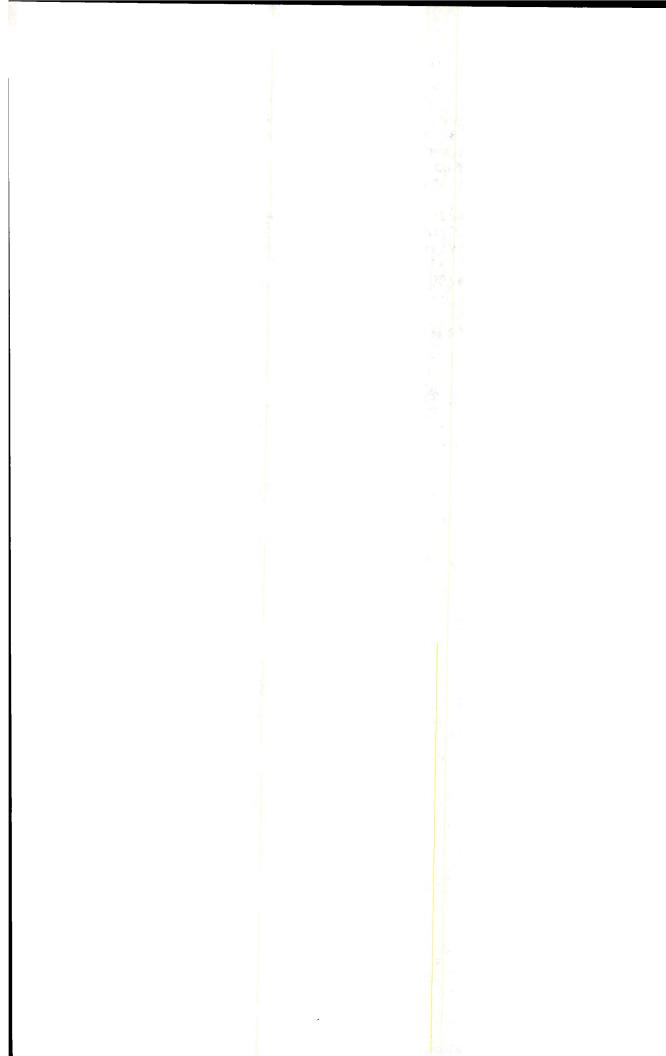
EACH OF THE ABOVE TRANSPORT MODES IS TREATED IN ITS OWN CHAPTER ACCORDING TO THE SEVEN SUPPLY PARAMETERS. FURTHERMORE, PARAMETERS ARE TYPICALLY DISCUSSED AT SEVERAL LEVELS OF DETAIL TO ASSIST THE URBAN PLANNER IN CHARACTERIZING A PARTICULAR TRANSPORT MODE. THESE LEVELS ARE:

DEFAULT VALUE, RANGE OF VALUES, AND THEORETICAL VALUE.

THE DEFAULT VALUE IS A DESIGN VALUE TYPICAL OF THE VALUE, CONDITIONS BEING DESCRIBED. IT IS USUALLY A MEAN OR MEDIAN VALUE AND OFTEN REFLECTS SUBSTANTIAL EMPIRICAL OBSERVATIONS. IT CAN BE USED BY PLANNERS WHERE SITE-SPECIFIC DETAILS ARE NOT AVAILABLE. FOR EXAMPLE, THE AVERAGE OVERALL COMMUTER RAIL SPEED IS 36 MPH (SEE TABLE 2-2).

THE <u>RANGE OF VALUES</u> SHOWS THE HIGH AND LOW VALUES OF A PARA-METER ALLOWING SENSITIVITY ANALYSES TO BE PERFORMED IN THE EVALUATION PHASE. OFTEN IT IS INDICATED WHICH PARTICULAR SYSTEMS EXHIBIT CERTAIN VALUES, AND PLANNERS CAN USE THIS INFOR-MATION TO CHOOSE MORE ACCURATE VALUES. IN CASES IN WHICH RANGES OF VALUES AND "DEFAULT" SINGLE VALUES ARE PRESENTED, THE USER SHOULD CHECK THE RANGE BEFORE USING A DEFAULT VALUE TO DECIDE IF THE VARIATION DEMANDS MORE SITE-SPECIFIC DETAILS.

AT TIMES, NEITHER THE DEFAULT VALUE NOR THE RANGE OF VALUES IS ADEQUATE, THEN THE <u>THEORETICAL</u> VALUE CAN BE USED. IT IS USUALLY A CONVENIENT MATHEMATICAL FORMULA WHICH THE PLANNER CAN SOLVE TO OBTAIN A THEORETICAL PARAMETER SUCH AS CAPACITY.


SUFFICIENTLY DETAILED QUALIFICATIONS ARE GIVEN WITH EACH TABLE TO MAKE THIS HANDBOOK NEARLY SELF-CONTAINED, YET COMPLETE SOURCE INFORMATION IS GIVEN TO SIMPLIFY THE PROBLEMS OF THE USER WHO REQUIRES FURTHER INFORMATION. EACH SECTION DEALING WITH CONVENTIONAL TRANSPORT HAS ITS OWN APPENDIX WHERE THE MORE IMPORTANT SITE-SPECIFIC INFORMATION IS LISTED. IN ADDITION, TWO OTHER APPENDICES CONTAIN REFERENCES AND A GENERAL BIBLI-OGRAPHY. A LIST OF KEY TERMS AND THEIR DEFINITIONS APPEARS AT THE BEGINNING OF THIS HANDBOOK.

USE OF THE HANDBOOK

AS IN THE USE OF OTHER HANDBOOKS OR MANUALS OF THIS TYPE, CARE MUST BE EXERCISED. THIS HANDBOOK IS SPECIFICALLY FOR USE BY TRANSPORTATION PLANNERS IN THE EVALUATION OF ALTERNATIVE SYSTEMS. THE VALUES AND RELATIONSHIPS PRESENTED ARE PURPOSELY SIMPLIFIED. IN MANY CASES, THEREFORE, THEY ARE NOT SUFFICIENTLY REFINED FOR USE IN SUCH STUDIES AS TRANSIT OPERATION ANALYSIS, TRAFFIC ENGINEERING, OR DETAILED DESIGN. THE HANDBOOK CANNOT BE USED WITHOUT COMPREHENSIVE UNDERSTANDING OF THE TRANSPORT SYSTEM BEING ANALYZED. IT IS ESPECIALLY IMPORTANT THAT THE TABLES OR FIGURES USED DESCRIBE THE PARAMETER IN QUESTION ADEQUATELY. FOR EXAMPLE, IN TABLE 3-11 OR 3-12, THE BUSWAY CONSTRUCTION COSTS ASSUME A CROSS SECTION WIDTH. OTHER NECESSARY PARAMETERS SUCH AS POLLUTION AND ENERGY CONSUMPTION MAY DEPEND ON THE OPER-ATING CHARACTERISTICS OF THE BUSWAY AS DEFINED BY THE CROSS SECTION ASSUMED. THE PLANNER WHO USES THIS HANDBOOK SHOULD BE AWARE OF THESE ASSUMPTIONS AND CHECK THEM AGAINST HIS KNOWLEDGE OF THE SYSTEM UNDER ANALYSIS.

OBVIOUSLY, VALUES WILL NEED ADJUSTMENT AS TIME PASSES, SINCE THEY ARE STATED IN TERMS OF 1976 PRICES. LOCAL KNOWLEDGE OF WAGE RATES, ENERGY TYPE AND AVAILABILITY, GEOGRAPHY, ARE ONLY SOME FACTORS IMPORTANT TO ACCURATE ANALYSIS. (SOME TRANSPOR-TATION LABOR AND CONSTRUCTION COST INDICES ARE PRESENTED IN APPENDIX A.)

ALL TABLES ARE UPDATED TO 1976 (UNLESS OTHERWISE INDICATED).

CHAPTER II

RAPID RAIL, COMMUTER RAIL, AND LIGHT RAIL TRANSIT

THIS CHAPTER CONTAINS A SET OF UPDATED (JULY, 1976) QUANTITATIVE VALUES FOR THE SEVEN SUPPLY PARAMETERS SELECTED TO CHARACTERIZE FIXED RAIL TRANSIT SYSTEMS: SPEED, CAPACITY, OPERATING COST, ENERGY CONSUMPTION, POLLUTION (EMISSIONS AND NOISE), CAPITAL COSTS, AND ACCIDENT FREQUENCY. EVERY EFFORT WAS MADE TO PROVIDE DIFFERENT VALUES OR TABLES FOR RAPID RAIL, COMMUTER RAIL, AND LIGHT RAIL TRANSIT SYSTEMS, ALTHOUGH THIS COULD NOT BE COMPLETED FOR ALL THE PARAMETERS. APPENDIX B SHOULD BE CONSULTED FOR CASE OR CITY-SPECIFIC INFORMATION.

IN THIS CHAPTER THERE ARE SEVERAL REFERENCES TO THE INSTITUTE OF RAPID TRANSIT (IRT) AND THE AMERICAN TRANSIT ASSOCIATION (ATA). IN 1974 THESE ORGANIZATIONS MERGED TO FORM THE AMERICAN PUBLIC TRANSIT ASSOCIATION (APTA). REQUESTS FOR SOURCES FROM IRT AND ATA SHOULD BE MADE TO APTA, 1100 17TH STREET, SUITE 1200, WASHINGTON, D.C., 20036.

II- 1

II- 2

TABLE 2-1

TYPICAL RAIL RAPID SPEEDS (1973)

AVERAGE STATION SPACING	RANGE OF AVERAGE SPEEDS(1)
(MILES)	(MPH)
0-1	20-25
1-2	35-40
2-3	45-50
OVER 3	50-55
DEFAULT VALUE	35-40

- (1) THESE SPEEDS REFLECT CURRENT OR EXPECTED RAIL RAPID TECHNOLOGY; THEY INCLUDE ESTIMATES OF TYPICAL DWELL TIMES.
- NOTE: SEE TABLE B-2 IN THE APPENDIX AND FIGURE B-1 IN THE CUTS MANUAL FOR EXISTING RAIL RAPID SPEEDS VERSUS STATION SPACING; SEE FIGURE B-2 IN THE CUTS MANUAL FOR CONTEMPORARY RAIL RAPID SPEEDS.
- SOURCES: METROPOLITAN ATLANTA RAPID TRANSIT AUTHORITY, UNPUBLISHED DATA, ATLANTA, GEORGIA, 1973

PORT AUTHORITY TRANSIT CORPORATION, UNPUBLISHED DATA, PHILADELPHIA, PENNSYLVANIA, 1973

WASHINGTON METROPOLITAN AREA TRANSIT AUTHORITY, UNPUBLISHED DATA, WASHINGTON, D.C., 1973

BAY AREA RAPID TRANSIT DISTRICT, UNPUBLISHED DATA, SAN FRANCISCO, CALIFORNIA, 1973

TYPICAL COMMUTER RAIL SPEEDS (1973)

AVERAGE STATION SPACING RANGE OF AVERAGE SPEEDS(1) (MILES) (MPH) --------------_____ 20-30 0-2 2-3 28-35 33-40 3-5 5-6 38-45 DEFAULT VALUE 36

- (1) THESE SPEEDS REFLECT CURRENT EXISTING COMMUTER RAIL SPEEDS; SPEEDS INCLUDE TYPICAL DWELL TIMES.
- NOTE: ABOVE DATA BASED ON ANALYSES OF THE PENN CENTRAL, PENNSYLVANIA-READING SEASHORE LINES, SOUTHERN PACIFIC, CHESSIE SYSTEM, MTA, AND SEVERAL LINES OF THE SOUTHEASTER PENNSYLVANIA TRANSPORTATION AUTHORITY.
- SOURCES: PLANNING RESEARCH CORPORATION SYSTEMS SCIENCE COMPANY, "A METHODOLOGY FOR CONDUCTING ECONOMIC AND DEMAND ANALYSES OF NEW SYSTEMS," MARCH, 1973

JOURNAL OF URBAN TRANSPORTATION CORPORATION, MODES OF IRANSPORTATION: SOURCES OF INFORMATION ON URBAN IRANSPORTATION, NEW YORK, AUGUST, 1965

STANFORD RESEARCH INSTITUTE, U.S. PASSENGER IRANS= PORIATION: AN INVENIORY OF RESOURCES AND AN ANALYSIS OF CAPABILITIES OF SEVERAL MODES, MENLO PARK, CALIFORNIA, MARCH, 1967

TABLE 2-3

TYPICAL LIGHT RAIL SPEEDS (1973)

AVERAGE STATION SPACING(MILES)	RANGE OF SPEEDS(1)	DEFAULT SPEED(1)
0-0.25 0.25-0.50	9.9-14.3 9.3-18.6	12.6 13.5
DEFAULT VALUE		13.0

- (1) BASED ON LIGHT RAIL SPEED DATA FROM ROTTERDAM, DUSSELDORF, FRANKFURT (30-40 PERCENT GRADE SEPARATED), STUTTGART (40 PERCENT GRADE SEPARATED), HANOVER, GOTHENBURG (70 PERCENT GRADE SEPARATED), COLOGNE (63 PERCENT GRADE SEPARATED), AND BIELEFELD (40 PERCENT GRADE SEPARATED).
- NOTE: LIGHT RAIL DATA FROM U.S. CITIES (BOSTON, NEW ORLEANS, PITTSBURGH, SAN FRANCISCO, PHILADELPHIA, AND CLEVELAND) INDICATE SPEEDS OF 6-11 MPH IN MIXED TRAFFIC AND 10-20 MPH ON PARTIAL GRADE SEPARATION. WITH AN EXCLUSIVE ROW, SEE TABLE 2-4.
- SOURCE: VUCHIC, VUKAN, LIGHT RAIL TRANSIT SYSTEMS A DEFINITION AND EVALUATION, U.S. DEPARTMENT OF TRANSPORTATION, OCTOBER, 1972

TABLE 2-4

RAIL TRANSIT SPEEDS THEORETICAL CALCULATIONS (FULLY GRADE SEPARATED)

		STATION SPACING (MILES)					
		0.5	1.0	1.5	2,0	2.5	3.0
MAXIMUM SPEED CHIEVED	DWELL TIME						
(MPH)	(SECONDS)		A 	VERAGE	SPEED	(MPH)	(1)
50	0 10 20 30	24.8	40.6 36.5 33.1 30.3	40.1 37.3		41.5	42.7
60	0 10 20 30	30.0	45.0 40.0 36.0 32.7	45.0	48.0	50.0 47.4	51.4 49.1
70	0 10 20 30	36.7 30.5 26.1 22.8	48.2 42.5 38.0 34.4	53.7 48.9 44.8 41.4		55.6 52.4	57.5 54.7
80	0 10 20 30		50.2 44.1 39.3 35.4		56.8 52.7		62.9 59.4
90	0 10 20 30	36.7 30.5 26.1 22.8	51.4 45.0 40.0 36.0	60.0 54.0 49.1 45.0	65.5 60.0 55.4 51.4		67.5 63.5

1

(1) ASSUMES ACCELERATION AND DECELERATION RATES OF 3.0 MPHPS ON TANGENT TRACK ALIGNMENT WITH 0% GRADES.

NOTE: FOR FORMULA SPECIFICATION, SEE TABLE B-3; FOR GRAPHS OF ABOVE DATA, SEE FIGURES B-3 TO B-7 IN THE CUTS MANUAL.

II= 5

BART, WITH A MAXIMUM ALLOWABLE SPEED OF 80 MPH (AVERAGE RUN OF 47 MPH), HAS AN AVERAGE 10 SECOND STATION DWELL TIME; CHICAGO, WITH A MAXIMUM ALLOWABLE SPEED OF 70 MPH (AVERAGE RUN 30 MPH), HAS AN AVERAGE 20 SECOND DWELL TIME; MBTA (RED LINE), WITH A MAXIMUM ALLOWABLE SPEED OF 70 MPH (AVERAGE RUN 32 MPH), HAS AN AVERAGE 15 SECOND DWELL TIME; NEW YORK SECOND AVENUE, WITH A MAXI-MUM ALLOWABLE SPEED OF 70 MPH (AVERAGE RUN OF 28 MPH), HAS AN AVERAGE 30 SECOND DWELL TIME; PATCO, WITH A MAXI-MUM ALLOWABLE SPEED OF 75 MPH (AVERAGE RUN 39 MPH), HAS AN AVERAGE 20 SECOND DWELL TIME; AND WASHINGTON, WITH A MAXIMUM ALLOWABLE SPEED OF 80 MPH, HAS NO OBSERVED AVERAGE DWELL TIME.

SOURCE: LANG, A., AND SOBERMAN, R., <u>URBAN RAIL IRANSII: IIS</u> <u>ECONOMICS AND TECHNOLOGY</u>, MIT PRESS, CAMBRIDGE, MASSACHUSETTS, 1964

> TRANSPORTATION SYSTEMS CENTER, <u>SAFETY AND AUTOMATIC IRAIN</u> <u>CONTROL FOR RAIL RAPID IRANSII SYSTEMS</u>, U.S. DEPARTMENT OF TRANSPORTATION, JULY, 1974

II- 7

TABLE 2-5

THEORETICAL RAIL TRANSIT SERVICE VOLUME AND SEAT CAPACITY

		LENGT	H OF TRAINS (FEET)
		150(1)	400(2)	750(3)
	ACCELERATION (FPS(SQUARED)	TRAINS PER HO	UR(SEATED PER	SONS PER HOUR)
10	2 3 4		72(30240) 80(33600) 87(36540)	69(48300)
20	2 3 4	76(10640) 81(11340) 85(11900)	60(25200) 66(27720) 70(29400)	52(36400) 58(40600) 62(43400)
30	2 3 4	62(8680) 66(9240) 68(9520)	51(21420) 55(23100) 58(24360)	45(31500) 50(35000) 53(37100)
40	2 3 4	53(7420) 56(7840) 57(7980)	45(18900) 48(20160) 50(21000)	
50	2 3 4	46(6440) 48(6720) 49(6860)	40(16800) 42(17640) 44(18480)	
DEFAULT VAL	.UE = = = = = =	40 TRAINS PER	HOUR	

(1) ASSUMES TWO CARS PER TRAIN (150 FEET) WITH 70 SEATS PER CAR.
(2) ASSUMES SIX CARS PER TRAIN (450 FEET) WITH 70 SEATS PER CAR.
(3) ASSUMES TEN CARS PER TRAIN (750 FEET) WITH 70 SEATS PER CAR.

NOTES: DATA INCLUDE ON-LINE STOPS. FOR APPROXIMATELY COMPARABLE BUS FIGURES, SEE TABLE 3-4 FOR BUSES OPERATING IN PLATOONS WITH ON-LINE STOPS. NOTE THAT FOR RAIL, LINE VOLUME CONTROLS, WHILE FOR BUS, BOARDING VOLUME CONTROLS.

SEE TABLE 2-4 FOR EXAMPLES OF PRESENT TRANSIT DWELL TIMES.

FOR FORMULA SPECIFICATION, SEE TABLE 8-4.

NUMBERS IN PARENTHESES ARE ASSUMED SEATED PASSENGERS CARRIED PER HOUR; IF STANDEES ARE INCLUDED, VALUES CAN BE INCREASED BY 3-4 TIMES (SEE TABLES B-5 AND B-6).

TABLE 3-4 (FOR BUSES) IS ANALOGOUS TO THE ABOVE TABLE.

THIS TABLE CAN BE USED TO ESTIMATE LIGHT RAIL SERVICE VOLUMES BY USING 10-30 SECOND DWELL TIMES, 3-4 FPS SQUARED ACCELERATION, AND 150 FOOT TRAIN LENGTHS OR APPLYING FORMULA (TABLE B-4) FOR PARTICULAR VALUES.

SOURCE: LANG, A., AND SOBERMAN, R., <u>URBAN RAIL IRANSII: IIS</u> <u>ECONOMICS AND IECHNOLOGY</u>, MIT PRESS, CAMBRIDGE, MASSACHUSETTS, 1964

TABLE 2-6

RAIL RAPID TRANSIT OPERATING COSTS

VALUE(1,2)	MAINTE- NANCE UF WAYS AND STRUC- TURES	MAINTE- Nance of Vehicles	POWER	TRANSPOR- TATION	GENERAL AND ADMINI- STRATIVE	TOTAL
			(PER CA	R-MILE)		
DEFAULT	\$0.37	\$0.31	\$0.32	\$1.00	\$0.40	\$2.40
RANGE	\$0.19- \$0.92	\$0.26- \$0.59	\$0.14- \$0.40	\$1.53- \$1.30	\$0.33- \$1.93	\$1.88= \$3.90

- (1) BASED ON DATA CULLECTED FROM FIVE U.S. RAIL RAPID TRANSIT SYSTEMS FOR 1975 AND ADJUSTED TO REFLECT 1976 PRICES; THE SYSTEMS INCLUDED: PATH, MTA, CTA, SEPTA, AND PATCO.
- (2) MAINTENANCE OF WAYS AND STRUCTURES INCLUDES COSTS OF CONSTRUC-TION, MAINTENANCE, INJURIES, ETC., ASSOCIATED WITH THIS PART OF THE OPERATION. MAINTENANCE OF VEHICLES INCLUDES COSTS OF ROLLING STOCK AND LABOR. POWER INCLUDES COSTS OF YARD AND LINE POWER REQUIRED. TRANSPORTATION INCLUDES COSTS IN LABOR ASSOCIATED WITH DISPATCHING, PROVIDING OPERATORS, AND MATERIAL FOR PROVIDING TRAINS. GENERAL AND ADMINISTRATIVE INCLUDES COSTS FOR ADVERTISING, EMPLOYEE BENEFITS, ADMINISTRATIVE, ETC. DEPRECIATION AND INTEREST ARE NOT INCLUDED. FOR EXACT DEFI-NITION CONSULT APTA IRANSIT OPERATING REPORT.
- SOURCES: AMERICAN PUBLIC TRANSIT ASSOCIATION, <u>IRANSIL OPERATING</u> <u>REPORI</u>, 1976, WASHINGTON, D.C.

WELLS, J., ASHER, N., FLOWERS, M., ET AL, <u>ECONOMIC</u> <u>CHARACIERISIICS OF THE URBAN PUBLIC TRANSPORTATION</u> <u>INDUSTRY</u>, INSTITUTE FOR DEFENSE ANALYSES, FEBRUARY, 1972

INSTITUTE FOR RAPID TRANSIT (NOW APTA), <u>IRANSIT CAR DATA</u> BODK III, WASHINGTON, D.C., 1971

BHATT, K., AND ULSSON, M., "ANALYSIS OF SUPPLY AND ESTIMATES OF RESOURCE COSTS," <u>IECHNICAL REPORT 2</u>, THE URBAN INSTITUTE, WASHINGTON, D.C., NOVEMBER, 1973

TABLE 2-7

COMMUTER RAIL OPERATING COSTS

VALUE (1,2)	MAINTE- NANCE OF ROADWAYS AND STRUCTURES	MAINTE- NANCE OF EQUIP- MENT	TRANS- Porta- Tion	TRAFFIC	OTHER.	TOTAL
		(PER C	AR-MILE)			
DEFAULT	\$0.44	\$0.88	\$3.10	\$0.04	\$0,23	\$4.69
RANGE	\$0.22- \$0.95	\$0.51- \$1.29	\$2.02- \$4.32	\$0.01-\$0.07	\$0.13- \$0.22	\$3.09- \$6.45

- (1) BASED ON DATA COLLECTED FROM 10 U.S. COMMUTER RAIL SYSTEMS FOR THE PERIOD 1972 AND ADJUSTED TO REFLECT 1976 PRICES.
- (2) MAINTENANCE ON ROADWAY AND STRUCTURES INCLUDES CONSTRUCTION, MAINTENANCE, INJURIES, AND RIGHTS-OF-WAY. MAINTENANCE OF EQUIPMENT INCLUDES ROLLING STOCK, MACHINERY, AND INJURIES. TRANSPORTATION INCLUDES LABOR, YARD SUPPLIES, POWER, INJURIES, AND OTHER ITEMS RELATED TO SUPPLYING TRANSPORT. TRAFFIC INCLUDES ADVERTISING, HEALTH AND WELFARE, ETC. OTHER INCLUDES TRAVEL, LEGAL, OFFICE SUPPLIES, AND LABOR IN ADMINISTRATIVE OFFICES.
- NOTE: THE ABOVE OPERATING COST TABLE FOLLOWS THE FORMAT OF THE UNIFORM SYSTEM OF ACCOUNTS FOR RAILROAD COMPANIES AS REGULATED BY THE INTERSTATE COMMERCE ACT, 1961.

SEE TABLE B-8 FOR OPERATING COST INVENTORY OF 10 COMMUTER RAIL SYSTEMS.

SOURCE: INTERSTATE COMMERCE COMMISSION, "ANNUAL OPERATING REPORTS," WASHINGTON, D.C., 1972

II- 11

TABLE 2-8

LIGHT RAIL TRANSIT OPERATING COSTS

VALUE (1,2)	MAINTEN- ANCE OF WAYS AND STRUCTURES	MAINTEN- ANCE OF VEHICLES	POWER	TRANS- PORTA- TION	GENERAL AND ADMINIS- TRATIVE	TOTAL
		()	PER CAR-M	ILE)		
DEFAULT RANGE	\$0.51 \$0.23- \$0.70	\$0,42 \$0,20- \$0,56	\$0.30 \$0.10- \$0.43	\$0.97 \$0.78- \$1.17	\$0.62 \$0.48- \$0.89	\$2.82 \$2.19- \$3.08

(1) BASED ON DATA COLLECTED FROM FOUR U.S. LIGHT RAIL TRANSIT SYSTEMS FOR 1975 AND ADJUSTED TO REFLECT 1976 PRICES; SYSTEMS INCLUDE NEWARK, NEW ORLEANS, PHILADELPHIA, AND SHAKER HEIGHTS.

(2) MAINTENANCE OF WAYS AND STRUCTURES INCLUDES COSTS OF CONSTRUC-TION, MAINTENANCE, INJURIES, ETC., ASSOCIATED WITH THIS PART OF THE OPERATION; MAINTENANCE OF VEHICLES INCLUDES COSTS OF ROLLING STOCK AND LABOR; POWER INCLUDES COST OF YARD AND LINE POWER REQUIRED; TRANSPORTATION INCLUDES COSTS IN LABOR ASSOCI-ATED WITH DISPATCHING, PROVIDING OPERATORS AND MATERIAL FOR PROVIDING TRAINS; AND GENERAL AND ADMINISTRATIVE INCLUDES COSTS FOR ADVERTISING, EMPLOYEE BENEFITS, ADMINISTRATIVE, ETC. OPERATING COSTS DO NOT INCLUDE DEPRECIATION OR INTEREST PAYMENTS. FOR EXACT DEFINITION, CONSULT APTA <u>IRANSII OPERA</u>-<u>IING REPORIS</u>.

SOURCE: SEE TABLE B-9

ELECTRIC RAIL RAPID TRANSIT ENERGY CONSUMPTION

	DEFAULT VALUE	RANGE OF VALUES
ELECTRICAL(1)	ENERGY CONSUMPTION	ENERGY CONSUMPTION(2)
ENERGY SOURCE	(PER CAR-MILE)	(PER CAR-MILE)
COAL	4.10 POUNDS	3.65-8.20 POUNDS
NO. 6 FUEL OIL	0.35 GALLONS	0.33-0.37 GALLONS
DIESEL FUEL	0.37 GALLONS	0.35-0.39 GALLONS
GASOLINE	0.41 GALLONS	0.39-0.44 GALLONS
FURNACE OIL	0.38 GALLONS	0.36-0.40 GALLONS
KEROSENE	0.40 GALLONS	0.37-0.44 GALLONS
NATURAL GAS	48.00 CUBIC FEET	42.00-53.00 CUBIC FEET
MANUFACTURED GAS	96.00 CUBIC FEET	80.00-132.00 CUBIC FEET

- (1) AVERAGE CONSUMPTION FOR RAIL TRANSIT SYSTEMS IS ABOUT 5.3 KILOWATT-HOURS PER CAR-MILE.
- (2) BASED ON 1960 DATA FROM THE FOLLOWING RAIL TRANSIT SYSTEMS: CLEVELAND, TORONTO, PHILADELPHIA, CHICAGO, AND NEW YORK.

SOURCES: FINK, D.G., AND CARROLL, J.M., <u>SIANDARD HANDBOOK FOR</u> <u>ELECIRICAL ENGINEERS</u>, MCGRAW-HILL, NEW YORK, 1963

> WELLS, J.D., ASHER, N.J., FLOWERS, M.R., ET AL, <u>ECONOMIC</u> <u>CHARACIERISIICS OF THE URBAN PUBLIC TRANSPORTATION</u> <u>INDUSTRY</u>, INSTITUTE FOR DEFENSE ANALYSES, WASHINGTON, D.C., FEBRUARY, 1972

LANG, A.S., AND SOBERMAN, R.M., <u>URBAN RAIL IRANSII: IIS</u> <u>ECONOMICS AND TECHNOLOGY</u>, MIT PRESS, CAMBRIDGE, MASSACHUSETTS, 1964

DIESEL COMMUTER RAIL TRANSIT ENERGY CONSUMPTION

VALUE	DIESEL CONSUMPTION
	<u>(PER_CAR-MILE)</u>
DEFAULT	1.9 GALLUNS
RANGE	1.4-2.4 GALLONS

SOURCE: DELEUW, CATHER AND COMPANY, <u>ENERGY ANALYSIS OF URBAN</u> <u>PASSENGER IRAVEL ALIERNATIVES</u>, WASHINGTON, D.C., APRIL, 1974

ELECTRIC LIGHT RAIL TRANSIT ENERGY CONSUMPTION

ELECTRICAL	DEFAULT VALUE	RANGE OF VALUES
ENERGY SOURCE(1)	ENERGY CONSUMPTION	N ENERGY CONSUMPTION
وربي بندي عندي نزدقات جربين ين قابوه قابوه	<u>(PER_CAR_MILE)</u>	(PER_CAR-MILE)
CŪAL	3.18 POUNDS	2.83-6.36 POUNDS
NO. 6 FUEL OIL	0.27 GALLONS	0.26-0.29 GALLONS
DIESEL FUEL	0.29 GALLONS	0.27-0.30 GALLONS
GASOLINE	0.32 GALLONS	0.30-0.34 GALLONS
FURNACE OIL	0.29 GALLONS	0.28-0.31 GALLONS
KEROSENE	0.31 GALLONS	0.29-0.34 GALLONS
NATURAL GAS	37.20 CUBIC FEET	32.55-41.08 CUBIC FEET
MANUFACTURED GAS	74.40 CUBIC FEET	62.00-102.30 CUBIC FEET

(1) AVERAGE CONSUMPTION FOR LIGHT RAIL TRANSIT SYSTEMS IS ABOUT 4.1 KILOWATT-HOURS PER CAR-MILE. DEFAULT VALUE AND RANGE OF VALUES BASED ON THIS EFFICIENCY FACTOR APPLIED TO TABLE 2-9.

NOTE: NEWARK USES 4.68; PITTSBURGH, 7.89; NEW ORLEANS, 4.10; SHAKER HEIGHTS, 4.26 KILOWATT-HOURS PER MILE.

SOURCES: FINK, D.G., AND CARROLL, J.M., <u>SIANDARD HANDBOOK FOR</u> <u>ELECIRICAL ENGINEERS</u>, MCGRAW-HILL, NEW YORK, 1963

> WELLS, J.D., ASHER, N.J., FLOWERS, M.R., ET AL, <u>ECONOMIC CHARACIERISTICS OF THE URBAN PUBLIC TRANS-</u> <u>PORIATION INDUSTRY</u>, INSTITUTE FOR DEFENSE ANALYSES, WASHINGTON, D.C., FEBRUARY, 1972

LANG, A.S., AND SOBERMAN, R.M., <u>URBAN RAIL IRANSIT: IIS</u> <u>ECONOMICS AND IECHNOLOGY</u>, MIT PRESS, CAMBRIDGE, MASSACHUSETTS, 1964

AMERICAN TRANSIT ASSOCIATION (NOW APTA), <u>IRANSIT</u> <u>OPERATING REPORT</u>, WASHINGTON, D.C., 1973

II- 15

TABLE 2-12

MAGNITUDE OF POLLUTANTS GENERATED BY RAIL RAPID TRANSIT POWERED BY ELECTRICAL ENERGY(1)

	ELECTRICAL ENERGY SOURCE				
		NATURAL	RESIDUAL(2)		
	COAL	GAS	OIL		
	(GRAMS/)	(GRAMS/)	(GRAMS/)		
POLLUTANT	(CAR-MILE)	(CAR-MILE)	(CAR-MILE)		
****	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
CARBON MUNOXIDE (CO)	0.4536	NEGL.	0.0068		
HYDROCARBONS (HC)	0.1860	NEGL.	0.5443		
OXIDES OF NITROGEN (NOX)	18,5976	9.5256	17.6904		
OXIDES OF SULFUR (SOX)	69.8544	0.0095	13,6080		
ALDEHYDES	0.0045	0.0240	0.1043		
PARTICULATES	146.5128	0.3629	1.7237		
TOTALS	235.6089	9.9220	33.6775		

(1) ASSUMES 5.3 KWHR/CAR-MILE, .5% SULFUR CONTENT FOR OIL, AND 10% ASH CONTENT FOR COAL.

(2) RESIDUAL OIL INCLUDES FUEL OIL AND FURNACE OIL.

- NOTE: THE TYPE, AGE, CONTROL DEVICES, AND LOCATION OF THE POWER GENERATING PLANT CAN MAKE A LARGE DIFFERENCE IN THE QUANTITIES OF POLLUTANTS EMITTED. THESE RATES ASSUME NO STACK (SCRUBBER) CONTROLS FOR THE GENERATING PLANT. IF STACK CONTROLS WERE PLACED ON THE PLANT TO REDUCE SOX AND PARTICULATES BY A CERTAIN PERCENTAGE, THE RATES FOR SOX AND PARTICULATES SHOULD BE REDUCED BY THAT PERCENT-AGE - E.G., A 50 PERCENT CAPTURE OF SOX AND PARTICULATES WOULD REDUCE THE SOX AND PARTICULATE EMISSION RATES 50 PERCENT. STACK CONTROLS WOULD CAUSE A NEGLIGIBLE RE-DUCTION IN THE NOX RATES AND NO REDUCTION IN THE CO, HC, AND ALDEHYDE POLLUTION RATES.
- SOURCE: WELLS, J.D., ASHER, N.J., FLOWERS, M.R., ET AL, <u>ECONOMIC</u> <u>CHARACIERISIICS DE THE URBAN PUBLIC TRANSPORIATION</u> <u>INDUSIRY</u>, INSTITUTE FOR DEFENSE ANALYSES, WASHINGTON, D.C. FEBRUARY, 1972

MAGNITUDE OF POLLUTANTS GENERATED BY LIGHT RAIL TRANSIT POWERED BY ELECTRICAL ENERGY (1)

ELECTRICAL ENERGY NATURAL RESIDUAL(2) COAL GAS OIL (GRAMS/) (GRAMS/) (GRAMS/) POLLUTANT(3) (CAR-MILE) (CAR-MILE) (CAR-MILE) CARBON MONOXIDE (CO) 0.3515 NEGL. 0.0053 HYDROCARBONS (HC) NEGL. 0.1442 0.4218 OXIDES OF NITROGEN (NOX) 14.4131 7.3823 13.7101 OXIDES OF SULFUR (SOX) 54.0383 0.0074 10.5462 ALDEHYDES 0.0035 0.0186 0.0808 PARTICULATES 113.3401 0.2812 1.3359 TUTALS 182.2907 7.6895 26.1001

(1) ASSUMES SINGLE CAR OPERATION, 4.1 KWHR/CAR-MILE, 0.5% SULFUR CONTENT FOR OIL, AND 10% ASH CONTENT FOR COAL.

- (2) RESIDUAL OIL INCLUDES FUEL OIL AND FURNACE OIL.
- (3) DEFAULT VALUE AND RANGE OF VALUES ARE BASED ON THIS EFFICIENCY FACTOR APPLIED TO TABLE 2-11.
- NOTE: THE TYPE, AGE, CONTROL DEVICES, AND LOCATION OF THE POWER GENERATING PLANT CAN MAKE A LARGE DIFFERENCE IN THE QUANTITIES OF POLLUTANTS EMITTED. THESE RATES ASSUME NO STACK (SCRUBBER) CONTROLS FOR THE GENERATING PLANT. IF STACK CONTROLS WERE PLACED ON THE PLANT TO REDUCE SOX AND PARTICULATES BY A CERTAIN PERCENTAGE, THE RATES FOR SOX AND PARTICULATES SHOULD BE REDUCED BY THAT PERCENT-AGE - E.G., A 50 PERCENT CAPTURE OF SOX AND PARTICULATES WOULD REDUCE THE SOX AND PARTICULATE EMISSION RATES 50 PERCENT. STACK CUNTROLS WOULD CAUSE A NEGLIGIBLE REDUC-TION IN THE NOX RATES AND NO REDUCTION IN THE CO, HC, AND ALDEHYDE POLLUTION RATES.

II- 16

MAGNITUDE OF POLLUTANTS GENERATED BY COMMUTER RAIL DIESEL LUCOMOTIVE (1970)

POLLUTANT	MAGNITUDE (GRAMS/MILE)

CARBON MONOXIDE (CO)	30.8
HYDROCARBONS (HE)	22.0
OXIDES UF NITROGEN (NOX)	33.0
OXIDES OF SULFUR (SOX)	28.6
ALDEHYDES	1.8
PARTICULATES	11.0
ORGANIC ACIDS	3.1

NOTE: DATA ARE BASED ON WEIGHTING FACTORS APPLIED TO ACTUAL TESTS CONDUCTED AT VARIOUS LOAD AND IDLE CONDITIONS WITH AN AVERAGE GROSS VEHICLE WEIGHT OF 30 TONS AND FUEL CONSUMPTION OF ABOUT 5.0 MILES PER GALLON.

DATA ARE BASED ON AN AVERAGE SULFUR CONTENT OF 0.50 PERCENT.

SOURCE: UNPUBLISHED TEST DATA ON LOCOMOTIVE ENGINES. GENERAL MOTURS CORPORATION, WARREN, MICHIGAN, JULY, 1970.

II- 17

NATIONAL DISTRIBUTION OF FUEL SOURCES FOR ELECTRIC POWER GENERATION (1) (1950~1975)

EUEL SOURCE	1950	1955	1960	<u>1965</u>	<u>1970</u>	<u>1975</u>
COAL	47.1	55.1	53.6	54.5	45.2	44.7
HYDRO	29.2	20.7	19.3	18.4	16.9	15.8
NATURAL GAS	13.5	17.4	21.0	21.0	24.6	15.7
RESIDUAL OIL(2)	10.3	6.8	6.1	6.1	12.0	15.1
NUCLEAR				an 48	1.5	8.9

- (1) FUSSIL FUEL PROVIDES OVER 80 PERCENT OF POWER NEEDED FOR RAIL TRANSIT SYSTEMS. EACH LOCATION, HOWEVER, SHOWS ITS OWN CHARACTERISTICS, AND THUS THERE IS A LARGE VARIANCE IN THIS FIGURE. IN CHICAGO, FOR EXAMPLE, IN 1971, COAL SUPPLIED 54-59 PERCENT OF POWER, NUCLEAR 30-35 PERCENT, OIL 7 PERCENT, AND NATURAL GAS 4 PERCENT FUR TRANSIT SYSTEMS.
- (2) RESIDUAL OIL INCLUDES FUEL OIL AND FURNACE OIL.

SOURCE: U. S. STATISTICAL ABSTRACT, 1976

II- 19

TABLE 2-16

NATIONAL COMPOSITE OF POLLUTANTS GENERATED BY FUEL SOURCES FOR RAIL RAPID TRANSIT (1) (1972)

	FUEL				
	CUAL	NATURAL GAS	RESIDUAL OIL(2)	AVERAGE Pollutants generated	
POLLUTANT	(GRAMS/) (CAR-MILE)	(GRAMS/) (CAR-MILE)	(GRAMS/) (CAR-MILE)	(GRAMS/) (CAR-MILE)	
CARBON MONOXIDE (CO)	0.2000	0.0000	0.0011	0.2011	
HYDROCARBONS (HC)	0.0820	0.0000	0.0849	0.1669	
OXIDES OF NITROGEN (NOX)	8.2015	2.0480	2,7597	13.0092	
OXIDES OF SULFUR (SOX)	30.8057	0.0020	2.1228	32.9305	
ALDEHYDES	0.0020	0.0052	0.0163	0.0235	
PARTICULATES	64.6121	0.0780	0.2689	64.9590	

- (1) THIS TABLE WAS CALCULATED BY MULTIPLYING THE NUMBER OF GRAMS OF PULLUTANTS PER CAR-MILE FOR EACH ENERGY SOURCE (1972) GIVEN IN TABLE 2-12 BY THE PERCENT OF ELECTRICITY GENERATED BY THAT ENERGY SOURCE AS GIVEN IN TABLE 2-15. IT WAS ASSUMED THAT NO POLLUTANT EMISSIONS RESULTED FROM GENERATING ELECTRICITY BY WATER, AND NUCLEAR ENERGY AIR POLLUTION WAS MINIMAL. (2) RESIDUAL OIL INCLUDES FUEL OIL AND FURNACE OIL.

SAMPLE CALCULATION

AVERAGE CO/CAR-MILE=(.4410)(.4536)+(.2150)(NEGL.)+(.1560)(.0068)= 0.2011 GRAMS/CAR-MILE

NATIONAL COMPOSITE OF POLLUTANTS GENERATED BY FUEL SOURCES FOR LIGHT RAIL TRANSIT (1) (1972)

		FUEL		
	CŪAL	NATURAL GAS	RESIDUAL OIL(2)	AVERAGE Pollutants generated
POLLUTANT	(GRAMS/) (CAR-MILE)	(GRAMS/) (CAR-MILE)	(GRAMS/) (CAR-MILE)	(GRAMS/) (CAR-MILE)
CARBON MONOXIDE (CO)	0.1550	0.0000	0.0008	0.1558
HYDROCARBONS (HC)	0.0636	0.0000	0.0658	0.1294
OXIDES OF NITROGEN (NOX)	6.3562	1.5872	2.1388	10.0822
OXIDES OF SULFUR (SOX)	23.8379	0.0016	1.6452	25.4779
ALDEHYDES	0.0015	0.0040	0.0126	0.0181
PARTICULATES	49.9830	0.0605	0.2084	50.2519

- (1) THIS TABLE WAS CALCULATED BY MULTIPLYING THE NUMBER OF GRAMS OF POLLUTANTS PER CAR-MILE FOR EACH ENERGY SOURCE (1972) GIVEN IN TABLE 2-13 THE PERCENT OF ELECTRICITY GENERATED BY THAT ENERGY SOURCE AS GIVEN IN TABLE 2-15. IT WAS ASSUMED THAT NO POLLUTANT EMISSIONS RESULTED FROM GENERATING ELECTRICITY BY WATER, AND NUCLEAR ENERGY AIR POLLUTION WAS MINIMAL.
- (2) RESIDUAL OIL INCLUDES FUEL OIL AND FURNACE OIL.

SAMPLE CALCULATION

AVERAGE CO/CAR=MILE=(.4410)(.3515)+(.2150)(NEGL.)+(.1560)(.0053) = 0.1558 GRAMS/CAR=MILE

RAPID RAIL NOISE EXPOSURE

FACILITY	IN SUBWAY (DBA) (1)	AT STATION (DBA) (2)	AT GRADE INSIDE VEHICLE (DBA) (3)	AT GRADE OUTSIDE VEHICLE (DBA) (4)
MBTA	97	ال الله الله الله الله الله الله الله ا		
CTS	89-98	82-106		
NYTA	90-98	78-108	83	
TORONTO	84-90	84-96	up 🕶	79
PARIS(RUBBER TIRE)	81-89	68-101		
PARIS(STEEL WHEEL)	99	81-108		
SOAC			61-72	72-82
METRO(WASHINGTON)(5)	75-77			

(1) MEASUREMENTS TAKEN INSIDE VEHICLE.

(2) MEASUREMENTS TAKEN AT STATION OUTSIDE VEHICLE FOR TRAINS PASSING THROUGH AND STOPPING/STARTING.

(3) MEASUREMENTS TAKEN ON AT-GRADE, TANGENT SECTION, WELDED RAIL, INSIDE VEHICLE.

(4) MEASUREMENTS TAKEN ON AT-GRADE, TANGENT SECTION, WELDED RAIL 50 FEET FROM VEHICLE.

(5) NOISE SPECIFICATIONS.

NOTE: NOISE READINGS DEPEND ON MANY FACTORS INCLUDING SPEED, TRAIN LENGTH, TYPE OF TRACK, OVERHEAD STRUCTURES; NOISE DECAYS AS A FUNCTION OF DISTANCE.

> EXISTING LIGHT RAIL SYSTEMS TYPICALLY GENERATE NOISE LEVELS BETWEEN 68-80 DBA AT THE SURFACE AND 50 FEET FROM THE VEHICLE; EXISTING COMMUTER RAIL SYSTEMS TYPICALLY GENERATE NOISE LEVELS BETWEEN 70-75 DBA INSIDE VEHICLE AT HIGH SPEEDS AND 80-90 DBA AT THE SURFACE AND 50 FEET FROM THE VEHICLE.

SOURCES: OPERATIONS RESEARCH INCORPORATED, <u>COMPARISON OF NOISE</u> <u>AND_VIBRATION_LEVELS_IN_RAPID_TRANSIT_VEHICLE_SYSTEMS</u>, NCTA_TECHNICAL_REPORT, APRIL, 1964

> BOEING VERTOL COMPANY, <u>SOAC - SIAIE-OF-IHE-ARI CAR</u> <u>DEVELOPMENI PROGRAM</u>, PHILADELPHIA, PENNSYLVANIA, APRIL, 1974

WYLE LABORATORIES, <u>IRANSPORIATION NOISE AND NOISE FROM</u> EQUIPMENT POWERED BY INTERNAL COMBUSTION ENGINES, WASHINGTON, D.C., DECEMBER, 1971

RAPID AND LIGHT RAIL TRANSIT LAND COSTS (SMILLION PER MILE)

POPULATION GROUPS (1000'S)

LOCATION(1)	UNDER	50-100	100-250	250 - 500	500-1000	OVER 1000

CBD FRINGE RESIDENTIAL	1.05 1.05 0.93	1.05 1.05 0.93	1.26 1.14 1.05	1.58 1.26 1.05	2.10 1.58 1.34	3.24 2.10 1.87

(1) BASED ON DATA EXTRAPOLATED FROM HIGHWAY LAND COSTS AND EXPRESSED IN TERMS OF TWO-TRACK RAIL FACILITIES WHERE AT GRADE AND OPEN CUT RIGHTS-OF-WAY CROSS SECTIONS AVERAGE 36 FEET AND ELEVATED. CUT AND COVER, AND TUNNELING CROSS SECTIONS AVERAGE 30 FEET.

- NOTE: CAUTION IS ESPECIALLY WARRANTED IN USING THE FIGURE FOR CBD LOCATION IN SMSA'S WITH POPULATIONS OVER ONE MILLION SINCE THERE IS A WIDE VARIATION IN ACTUAL VALUES.
- SOURCE: BHATT, K., "CAPACITY AND COST INPUTS FOR COMMUNITY AGGREGATE PLANNING MODEL (CAPM)", THE URBAN INSTITUTE, WASHINGTON, D.C., DECEMBER, 1973

SKINNER, L., COSIING URBAN IRANSPORTATION ALTERNATIVES, U.S. DEPARTMENT OF TRANSPORTATION, FEDERAL HIGHWAY ADMINISTRATION, WASHINGTON, D.C.

II- 23

TABLE 2-20

RAIL RAPID CONSTRUCTION COSTS

	FACILITY			
LOCATION/TYPE	LINE (S MILLION/MI)	STATION (\$ MILLION)		
INTENSÉ DÉVÉLOPMENT				
CUT AND COVER	87.4	12.2		
ROCK TUNNEL	37.3	7.4		
EARTH TUNNEL	37.8	/ • 4		
ELEVATED	13.0	4.0		
AVERAGE DEVELOPMENT				
CUT AND COVER	60.9	9.9		
ROCK TUNNEL	21.5	3.7		
EARTH TUNNEL	28.9			
SURFACE	11.1	3.6		
SPARSE DEVELOPMENT				
CUT AND COVER	25.1	9.5		
ELEVATED	6.7	3.0		
SURFACE	3.3	2.0		
		_		

NOTE: ABOVE COSTS ARE BASED ON TWO-TRACK SYSTEMS WITH 600-FOOT STATIONS. 1976 COST DATA.

TUNNELING COSTS VARY GREATLY WITH GEOLUGICAL CONDITIONS.

SOURCE: SKINNER, L., <u>COSIING URBAN IRANSPORIATION ALTERNATIVES</u>, U.S. DEPARTMENT OF TRANSPORTATION, FEDERAL HIGHWAY ADMINISTRATION, WASHINGTON, D.C.

LIGHT RAIL TRANSIT CONSTRUCTION COSTS (PER MILE)

+	FACILITY TYPE	DEFAULT VALUE (SMILLION)	RANGE OF VALUES(<u>\$MILLION)</u>		
	AT GRADE	1.2	0.4-2.0		
	ELEVATED	13.4	7.9=19.2		
	BORED TUNNEL(1)	VARIES WITH	GEOLOGIC CONDITIONS		
	STATION (EACH) AT GRADE ELEVATED SUBWAY	0.1 2.0 13.4	0.0-0.2 0.9-3.2 11.8-14.8		

- (1) COSTS VARY GREATLY WITH GEOLOGIC CONDITIONS. RESEARCH UNDERWAY IS REPORTED TO YIELD RELATIONSHIPS THAT CAN BE PRESENTED IN FUTURE UPDATES OF THIS HANDBOOK.
- NOTE: ABOVE COSTS ARE EXPRESSED IN TERMS OF 1976 PRICES AND ARE BASED ON A TWO-TRACK SYSTEM. THEY HAVE BEEN PRO-JECTED FROM A 1973 BASE USING THE ENGINEERING NEWS RECORD GENERAL CONSTRUCTION INDEX. LINE COSTS DO NOT INCLUDE STATIONS OR RIGHTS-OF-WAY.
- SOURCE: KRZYCAKOWSKI, R., AND HENNEMAN, S., <u>CRIIERIA FOR FUNDING</u> <u>URBAN RAIL IRANSII SYSIEMS</u>, INTERPLAN CORPORATION, MARCH, 1974

II- 25

TABLE 2-22

SAMPLE RAIL RAPID TRANSIT ROLLING STOCK COSTS (1969-1974)

MANUFACTURER (PURCHASER)	SEATS	WEIGHT (TONS)	COST	SIZE OF	DATE OF
CANADIAN VICKERS (MUCT)	40	30	\$354,609	423	1974
BOEING VERTOL (CTA)	48-50	23	\$316,000	100	1974
HAWKER-SIDDELEY (TTC)	78	28	\$288,665	88	1973
ROHR (BART)	72	29	\$390,000	100	1973
BOEING VERTOL (CTA)	48-50	23	\$294,000	100	1973
PULLMAN (MBTA)	60-64	31	\$230,132	80	1973
PULLMAN (NYCTA)	70-76	43-45	\$275,381	745	1972
ROHR (BART)	72	29	\$370,000	100	1972
ROHR (WMATA)	80	36	\$305,333	300	1972
HAWKER-SIDDELEY (TTC)	83	28	\$155,945	76	1971
PULLMAN (CTS)	80	32	\$251,950	10	1970
HAWKER-SIDDELEY (PATH)	35	30	\$191,304	46	1970
GENERAL STEEL (NYCTA)	72=76	42-44	\$206,595	300	1969
ROHR (BART)	72	29	\$268,000	250	1969
	UOTT CAU	COST		VOTO AND	

SOURCE: <u>RAIL IRANSIT CAR COSIS: A REVIEW ANALYSIS AND</u> <u>PROJECTIONS</u>, SOUTHERN CALIFORNIA ASSOCIATION OF GOVERNMENTS, LOS ANGELES, CALIFORNIA, MAY, 1975.

SAMPLE COMMUTER RAIL TRANSIT ROLLING STOCK COSTS (1972-1975)

MANUFACTURER (PURCHASER)	SEATS	WEIGHT (IDNS)	COST	SIZE OF ORDER	DATE OF <u>ORDER</u>
 (E. L.)	70	51	\$478,125 (EST.)	160	1975
HAWKER-SIDDELEY (G. O.)	94	34	\$241,152	30	1975
GENERAL ELECTRIC (READING)	129	38	\$728,000	70	1975
HAWKER-SIDDELEY (G. D.)	94	34	\$200,960	30	1973
BUDD (CABS) BUDD (TRAILERS) (CMSTPP)	155 161	64 60	\$372,000 \$352,000	2 3	1973 1973
GENERAL ELECTRIC (NH/M. T. A.)	120	46	\$639,000	100	1973
GENERAL ELECTRIC/ HUDD (L. I./M. T. A.)	120	46	\$300,000	150	1973
BUDD (CABS) BUDD (TRAILERS) (BN)	1 39 145	67 65	\$416,118 \$378,166	20 5	1972 1972
GENERAL ELECTRIC/ BUDD (P. C./M. T. A.)	122	46	\$312,000	50	1972
PULLMAN (CABS) PULLMAN (TRAILERS) (E. L.)	104 108	37 37	\$258,000 \$218,000	11 39	1972 1972
GENERAL ELECTRIC/ BUDD (P. C./M. T. A.)	122	46	\$245, 000	48	1972
GERNERAL ELECTRIC (READING)	129	64	\$388,888	14	1972
	<u>NS</u> , SOUT	HERN CALL	REVIEW ANAL Fornia ASSO California,	CIATION OF	

SAMPLE LIGHT RAIL TRANSIT ROLLING STOCK COSTS

TYPE OF CAR (PURCHASER)	SEATS	AXLES	COST(1)	NO. OF Cars	DATE
می الانک خت رزیدوی میجنود مد برو	ها دوري بالحي		ميد مثبرتك فيه منجعاه جرب	ACQUIRED	جدين جدين
ASEA (MELBOURNE)	48	4	\$120,000	100	MARCH, 1973
DUWAG RHEIN (GERMANY)	72	6	\$481,000	28(2)	UNKNOWN
TATRA K2 (CZECHOSLOVAKIA)	49	6	\$113,000- \$121,000	329(2)	UNKNOWN
TATRA KT4D (CZECHOSLOVAKIA)	26-38	4	\$108,000- \$119,000	2	UNKNOWN
U. S. STANDARD LIGHT RAIL	68	6	\$328,000	150	1973

 (1) UNIT COSTS DEPEND ON NUMBER OF CARS ORDERED, PASSENGER AMENITIES, SIZE, ELECTRONIC EQUIPMENT, ETC.
 (2) TOTAL CARS IN USE.

SOURCE: LIGHT RAIL TRANSIT, <u>LEA IRANSII COMPENDIUM</u>, VOLUME 1, NUMBER 5, HUNTSVILLE, ALABAMA, 1974 UNPUBLISHED'DATA, OFFICE OF TRANSIT ASSISTANCE, UMTA

NOTE: 1976 BID PRICES FOR LIGHT RAIL TRANSIT CARS ARE GENERALLY IN THE \$6-800,000 RANGE.

RAIL RAPID TRANSIT ACCIDENTS - VEHICLE AND PASSENGER (1971-1972)

VALUE	YEAR	TRANSIT ACCIDENTS (PER MILLION TRAIN MILES) (1)	ON-BOARD PASSENGER INJURIES (PER MILLION TRAIN MILES) (2)	IN-STATION PASSENGER INJURIES (PER MILLION TRAIN MILES) (3)	TOTAL PASSENGER INJURIES (FATALITIES) (PER MILLION TRAIN MILES) (4,5,6)
DEFAULT	1971	2,84	35.64	128.64	164.28(.7004)

DEFAULT	17/1	2,04	33 8 0 4	120.04	104.20(./004)
RANGE	1971	1.24-17.80	12.04-57.44	44.04-192.56	56.08-250.00
DEFAULT	1972	3.00	29,92	124.00	153.92(.7004)
RANGE	1972	0.84-18.88	6.84-53.68	42.52-190.72	49.36-244.40

- (1) INCLUDES VEHICLE ACCIDENTS WHICH INVOLVE COLLISION WITH PEDESTRIANS, COLLISION WITH OTHER VEHICLES AND OBJECTS, DERAILMENTS, AND ACCIDENTS INVOLVING THIRD RAILS/OVERHEAD WIRES, ETC.; BASED ON 4 CARS PER TRAIN.
- (2) INCLUDES PASSENGER ACCIDENTS AND FATALITIES WHICH INVOLVE BOARDING/ALIGHTING, DOOR RELATED, AND ALL ON-BOARD INCIDENTS; SEPARATE FATALITY COUNT FOR THIS CATEGORY NOT AVAILABLE; BASED ON 4 CARS PER TRAIN.
- (3) INCLUDES PASSENGER ACCIDENTS AND FATALITIES WHILE OFF TRAIN BUT WHILE ON: STAIRS, ESCALATORS, MEZZANINES, TURNSTILES, CORRIDORS/PASSAGES, PLATFORMS, TRACKS, AND ALL OTHERS; SEPARATE FATALITY COUNT NOT AVAILABLE FOR THIS CATEGORY; BASED ON 4 CARS PER TRAIN.
- (4) INCLUDES TOTAL ACCIDENTS OCCURRING ON AND OFF TRAIN WITH FATALITIES INCLUDED IN DATA BUT SEPARATELY DEFINED; BASED ON 4 CARS PER TRAIN.
- (5) NUMBERS IN PARENTHESES ARE PASSENGER FATALITIES; SEE NOTE BELOW.
- (6) THE INJURY AND FATALITY ACCIDENT RATES ARE MUTUALLY EXCLUSIVE, I.E. FATAL ACCIDENTS ARE NOT INCLUDED IN INJURY CALCULATIONS.

NOTE: ABOVE DATA BASED ON FOLLOWING RAIL RAPID TRANSIT SYSTEMS: PATH, MTA, CTA, MBTA, SEPTA, TTC AND MUCTC; INJURIES TO PERSONS OTHER THAN PASSENGERS ARE NOT INCLUDED.

> ABOVE DATA INCLUDE PASSENGER FATALITIES. FOR A SEPARATE INVENTORY OF FATALITY RATES THE FOLLOWING MAY BE USED: PASSENGER FATALITIES IN TRANSIT VEHICLES (0.0336 PER MILLION CAR MILES) AND PASSENGER FATALITIES NOT ON TRANSIT VEHICLES (.6668 PER MILLION CAR MILES). THESE RATES ARE BASED ON AN ANALYSIS OF EIGHT TRANSIT PROPERTIES (CTA, CTS, MBTA, MTA, PATH, PATCO, SEPTA, AND BART) FOR 1972 AND 1973, AND ARE BASED ON 4 CARS PER TRAIN.

SOURCES: AMERICAN PUBLIC TRANSIT ASSOCIATION, <u>ACCIDENI SUMMARY</u> <u>REPORIS</u>, WASHINGTON, D.C., 1971-1972

> INSTITUTE FOR RAPID TRANSIT, <u>MONIHLY ACCIDENT AND INJURY</u> <u>REPORIS</u>, WASHINGTON, D.C., 1972-1973

COMMUTER RAIL ACCIDENTS (1971-74)

	TOTAL ACCIDENTS							
		PORTED	RATES PÈR MILLION PAS- SENGER MI					
COMPANY	ITIES	RIES	MILES (MILLIONS)					
BOSTON AND MAINE		11	341.8		.0322			
CENTRAL RAILROAD UF NEW JERSEY	1	35	449.1	.0022	.0779			
LONG ISLAND	5	228	6669.9	.0007	.0342			
PENN CENTRAL	19	441	6662.0	.0029	.0662			
ERIE-LACKAWANNA	4	128	1348.2	.0030	.0949			
CHICAGO AND								
NORTH WESTERN	1	42	2112.1	.0005	.0199			
READING COMPANY	5	45	751.8	.0027	.0599			
SOUTHERN PACIFIC	16	162	587.2	.0272	.2759			
CHICAGO, ROCK Island & Pacific	3	54	465.5	.0064	.1160			

DEFAULT VALUE

.0026 .0591

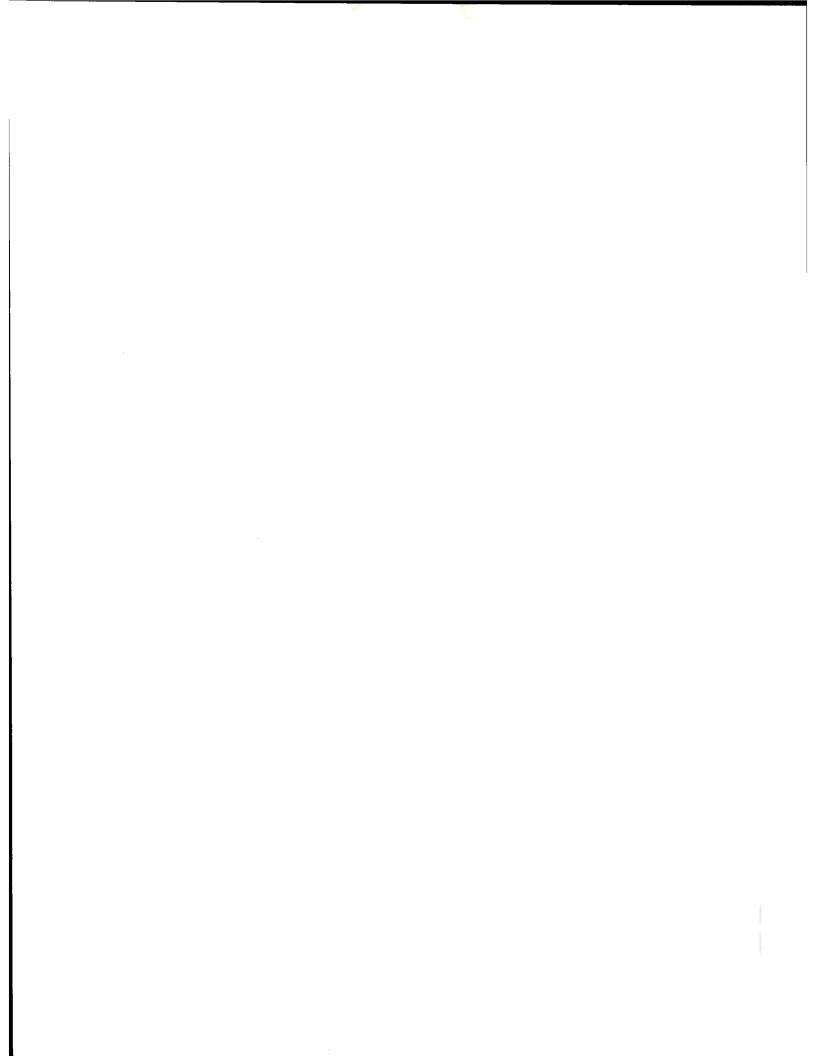
NOTE: DOES NOT INCLUDE INJURIES AND FATALITIES TO EMPLOYEES OR OTHER PERSONS INVOLVED WHO ARE NOT PASSENGERS.

FATAL ACCIDENTS ARE NOT INCLUDED IN INJURY RATE CALCULATIONS.

INJURY RATE FOR PASSENGERS MAY BE LOWER FOR NEW SYSTEMS SINCE MANY OF THE ABOVE ACCIDENTS WERE CAUSED BY DEFECTS IN EQUIPMENT/MAINTENANCE OF ROLLING STOCK AND STRUCTURES. ABOVE ACCIDENTS CAUSED BY NEGLIGENCE OF EMPLOYEES (7.6 PERCENT); DEFECTS OR EQUIPMENT FAILURES (21.4 PERCENT); IMPROPER MAINTENANCE (15.1 PERCENT); AND OTHER (55.9 PERCENT).

SOURCE: FEDERAL RAILRUAD ADMINISTRATION, <u>SUMMARY AND ANALYSIS</u> <u>DE ACCIDENIS UN RAILROADS IN THE UNITED STATES</u>, ACCIDENT BULLETINS 140-143, U.S. DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., 1971-75

II- 31


TABLE 2-27

LIGHT RAIL TRANSIT ACCIDENTS (1971-73)

		IRANSII AC	CIDENIS_(PER	MILLIUN IRA	IN_MILES) (1)
VALUE	YEAR	COLLISION	DERAILMENT	DIHER	IDIAL
DEFAULT	1971	124.05	4.62	1.02	129.69
RANGE	1971	61.82-193.65	0.73-6.63	0.74-1.23	63.29-201.51
DEFAULT	1972	147.14	6.57	0.87	154.58
RANGE	1972	60.86-227.06	0.74-10.59	0.61-1.11	62.21-238.76
DEFAULT	1973	155.82	6.51	4.31	166.64
RANGE	1973	51.51-243.99	5.65-13.22	0.31-13.22	57.47-270.43

		PASSENGER_A	CCIDENTS (PE	R_MILLION_IR	AIN_MILES) (2)
VALUE	YEAR	BOARDING/	STRUCK BY	ON-BOARD	TOTAL
		ALIGHIING	DOORS	متاريب ببانين بالمتا فترابين	بالم والأفائلية ليواديون
DEFAULT	1971	17.14	7.20	21.68	46.02
RANGE	1971	4.80-29.48	2,13-12,28		14.83-77.22
DEFAULT	1972		6.09	34.82	62.07
RANGE	1972	3.44=38.88	1.63-10.54	8.49-61.15	13.56-110.57
DEFAULT	1973	7.29	5.96	25,95	39.20
RANGE	1973	3.71-10.87	3.49-8.42	7.45-44.45	14.65-63.74

- (1) INCLUDES ALL VEHICLE ACCIDENTS WHILE CONDUCTING REVENUE OR NON-REVENUE SERVICE; BASED ON ANALYSIS OF 4 TRANSIT PROPER-TIES: BOSTON, PHILADELPHIA, TORONTO, AND NEW ORLEANS.
- (2) INCLUDES ALL PASSENGER ACCIDENTS WHILE CONDUCTING REVENUE SERVICE; USED TOTAL MILES; BASED ON LIGHT RAIL IN TORONTO AND NEW ORLEANS.
- NOTE: SEPARATE INFORMATION ON FATAL ACCIDENTS IS NOT AVAILABLE. HOWEVER, THESE RATES INCLUDE FATAL ACCIDENTS. ABOVE ANALYSIS ASSUMES 1 CAR PER TRAIN FOR LIGHT RAIL.
- SOURCE: AMERICAN TRANSIT ASSOCIATION (NOW APTA), <u>COMPARATIVE</u> <u>OPERATING ACCIDENT RATES</u>, WASHINGTON, D.C., 1971-72

CHAPTER III

LOCAL BUS AND BUS RAPID TRANSIT

THIS CHAPTER CONTAINS A SET OF QUANTITATIVE VALUES FOR THE SEVEN SUPPLY PARAMETERS SELECTED TO CHARACTERIZE MOTORIZED BUS TRANSPORT: SPEED, CAPACITY, OPERATING COST, ENERGY CONSUMPTION, POLLUTANT EMISSIONS, CAPITAL COST, AND ACCIDENT FREQUENCY. IN SOME CASES, BUSES HAVE BEEN TREATED WITHOUT REGARD TO VARIATIONS IN SIZE AND FUNCTION. THIS IS NOT TRUE IN RELATION TO SPEED, CAPACITY, ENERGY CONSUMPTION, AND POLLUTANT EMISSION, WHERE SOME DISTINCTIONS ARE MADE ACCORDING TO BUS TYPE AND FUNCTION. APPENDIX C SHOULD BE CONSULTED FOR MORE DETAILED AND SPECIFIC INFORMATION.

TABLE 3-1

TYPICAL BUS SPEEDS

		(MPH)
TYPE OF SERVICE PE	AK	OFF-PEAK

LOCAL BUS (SMALL CITY) ON COLLECTOR STREET 1	0	12
LUCAL BUS (LARGE CITY) ON COLLECTOR STREET	5	7
LOCAL BUS IN BUS LANE UN COLLECTOR STREET(1)	8	10(2)
LOCAL BUS ON ARTERIAL STREET(3) 10	-11	13-15
LOCAL BUS ON ARTERIAL RESERVED LANE(4) 1	5	17(5)
EXPRESS BUS ON FREEWAY 3	0	45
EXPRESS BUS IN FREEWAY BUS LANE 4	5	45(6)

(1) DATA REFLECT SPEEDS IN LARGE SIZED CITIES: RESERVED CURB, MEDIAN, AND CONTRA-FLOW BUS LANES AS WELL AS BUS STREETS.

- (2) NOT USUALLY OPERATED IN OFF-PEAK HOURS; ESTIMATED AT 10 MPH.
- (3) DATA REFLECT SPEEDS IN SMALL AND LARGE SIZED CITIES.
- (4) DATA REFLECT SPEEDS IN LARGE SIZED CITIES: RESERVED CURB, MEDIAN, AND CONTRA-FLOW BUS LANES.
- (5) NOT USUALLY OPERATED IN OFF-PEAK HOURS; ESTIMATED AT 17 MPH.
- (6) NOT USUALLY OPERATED IN OFF-PEAK HOURS; ESTIMATED AT 45 MPH.
- NOTE: SEE TABLES C-1 AND C-2 FOR SITE SPECIFIC SPEEDS ON BUS LANES.
- SOURCES: LEVINSON, H., HUEY, W., SANDERS, D., WYNN, H., <u>BUS USE OF</u> <u>HIGHWAYS: SIAIE DF IHE ARI</u>, NATIONAL COOPERATIVE HIGHWAY RESEARCH REPORT 143, WASHINGTON, D.C., 1973

LEVINSON, H., AND SANDERS, D., <u>RESERVED BUS LANES ON</u> <u>URBAN FREEWAYS: A MACRO MODEL</u>, HIGHWAY RESEARCH BOARD, WASHINGTON, D.C., JANUARY, 1974

AMERICAN TRANSIT ASSOCIATION (NOW APTA), TRANSIL DPERATING REPORTS, WASHINGTON, D.C., 1971-1972

III = 3

TABLE 3-2

BUS SERVICE VOLUME PER LANE THEURETICAL AND OBSERVED

TYPE OF CONDITION	NUMBER OF BUSES (PER HOUR)	HEADWAY (SECONDS)	NUMBER(1) OF PERSONS (PER HOUR)	THEORETICAL OR OBSERVED
UNINTERRUPTED FLOW ON TEST TRACK(A)	1450	2.5	72,500	OBSERVED (2)
HIGHWAY CAPACITY MANUAL FREEWAY - LEVEL OF SERVICE D (A)	940	3.8	47,000	THEORETICAL
DOT - CHERNIACK ITE (1963) (A)	720	5.0	36,000	THEORETICAL (3)
HIGHWAY CAPACITY Manual Freeway - Level of Service C (A)	690	5.1	34,500	THEURETICAL
I-495 EXCLUSIVE BU Lane (New Yürk-New Jersey) (A)	S 490	7.4	26,350	OBSERVED
ARTERIAL BUS LANE	B) 170	21.2	8,500	OBSERVED (4)
CBD CURB BUS LANE(B) 160-120	23.0-30.0	8,000-6,000	OBSERVED (5)
BUS LANE - ON LINE STOPS(B)	120	30.0	6,000	THEORETICAL (6)
HIGHWAY CAPACITY Manual - Arterial Bus Lane (B)	120	30.0	6 ₉ 000	THEORETICAL
CBD BUS STREETS, CONTRA FLOW, MEDIAN LANES (B)	100	36.0	5,000	OBSERVED (7)

- (1) ASSUMING A CAPACITY OF 50 PERSONS PER BUS.
- (2) OBSERVED AT THE GENERAL MOTORS PROVING GROUNDS UNDER IDEAL CONDITIONS; NO TRAFFIC FLUCTUATION AND PERFECT GEOMETRICS, 1964.
- (3) THEORETICAL POLICY ESTABLISHED IN 1963.
- (4) ON HILLSIDE AVENUE, QUEENS, NEW YORK.
- (5) HIGHEST RECORDED TO DATE.
- (6) 20 SECOND ON-LINE STUPS, 10 SECOND STATION CLEARANCE, PERFECT HEADWAY GEOMETRICS.
- (7) HIGHEST RECORDED TO DATE.
- (A) THESE OPERATIONS DD NOT INCLUDE ON-LINE BUS STOPS.
- (B) THESE OPERATIONS INCLUDE ON-LINE BUS STOPS.
- NOTE: ABOVE DATA REPRESENT ONE LANE ONLY.

SEE TABLE 3-4 FOR SERVICE VOLUME ON A BUS PLATFORM UNDER PLATOON OPERATIONS.

SOURCE: LEVINSON, H., HOEY, W., SANDERS, D., WYNN H., <u>BUS USE OF</u> <u>HIGHWAYS: SIAIE OF THE ARI</u>, NATIONAL COOPERATIVE HIGHWAY RESEARCH REPORT 143, WASHINGTON, D.C., 1973

III= 5

TABLE 3-3

BUS AND PASSENGER SERVICE VOLUMES AT BUS BOARDING STOPS

	DUO	CUMULATIVE TOTAL PASSENGERS PER HOUR				CUMULATIVE TOTAL BUSES PER HOUR			
TYPE OF FARE PAYMENT	BUS LOADING CONDITION (1)	NUM		F BER 2)	THS	NUMBE	R OF (3		RTHS
			2				2		
PAY UPON BOARDING -1 DOOR AVAILABLE	ON-LINE OFF-LINE	650 650	1140 1200	1460 1750	1620 2240	13 13	23 24	30 35	33 45
PREPAYMENT -1 DOOR AVAILABLE	ON-LINE OFF-LNE	950 950		2140 2570		19 19	34 36	43 52	48 66
PREPAYMENT -2 DOORS AVAILABLE	ON-LINE OFF-LINE	1550 1550	2710 2870	3490 4190	3830 5350	31 31	54 58	70 84	77 107

- (1) ON-LINE LOADING: PASSENGERS BOARD BUSES WHILE THE BUSES ARE STILL IN THE MAIN ROADWAY: OFF-LINE LOADING: BUS BERTHS LOCATED OFF THE MAIN ROADWAY WHERE A BUS, ONCE LOADED, CAN PULL OUT AND INTO THE TRAFFIC STREAM.
- (2) PASSENGER RATES ACCOUNT FOR EXPECTED INTERNAL IMPEDANCES, PEAK 20-MINUTE DEMAND, INEFFICIENCIES IN BERTH LOADING CAPABILITIES.
- (3) BASED ON 50 PASSENGERS PER BUS.
- SOURCE: WILBUR SMITH AND ASSOCIATES, "DESIGN AND ANALYSIS OF BUS AND TRUCK ROADWAY SYSTEMS IN URBAN AREAS," DRAFT REPORT, NEW HAVEN, CONNECTICUT, NOVEMBER, 1973

III = 6

TABLE 3-4

SERVICE VOLUME OF A BUS LOADING PLATFORM UNDER PLATOON OPERATION

		NUMBER	OF BUSES IN PL	ATOON
		4(1)	8(2)	12(3)
		<pre>< 1 / P</pre>		
MAXIMUM SPEED	DWELL			
OF BUS PLATOON	TIME	BUS SERVICE VOLUME		
(MPH)	(SECONDS)	(SEATED	PASSENGERS PER	R HOUR)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			*****	
30	20	304(6080)	464( 9280)	552(11040)
30	40	220(8800)	360(14400)	456(18240)
60	20	240(4800)	360(7200)	456( 9120)
60	40	184(7360)	288(11520)	360(14400)

- (1) ASSUMES FOUR BUSES PER PLATOON CAPABLE OF BOARDING ONE RIDER PER SECOND.
- (2) ASSUMES EIGHT BUSES PER PLATOON CAPABLE OF BOARDING ONE RIDER PER SECOND.
- (3) ASSUMES TWELVE BUSES PER PLATOON CAPABLE OF BOARDING ONE RIDER PER SECOND.
- NOTE: USUALLY BUS PASSENGERS KNOW WHERE TO STAND AT THE PLATFORM AND ARE ENCOURAGED TO FORM WAITING LINES TO MINIMIZE BOARDING DELAY.

TABLE 2-5 (FOR RAIL TRANSIT) IS ANALOGOUS TO THE ABOVE TABLE; BUS CAPACITY, WHEN ON-LINE STOPS ARE INCLUDED, IS RESTRAINED BY THE BOARDING TIME IF LOADING OCCURS THROUGH A NORMAL SIZED DOOR; RAIL CAPACITY IS CONSTRAINED BY ON-LINE CONDITIONS SUCH AS STATION SPACING, ACCELERATION, MAXIMUM SPEED, ETC.

SOURCE: GENERAL MOTORS RESEARCH LABORATORIES, <u>BUS OPERATIONS IN</u> <u>SINGLE LANE PLATOONS AND THEIR VENILATING NEEDS FOR</u> <u>OPERATIONS IN TUNNELS</u>, GMR~808, WARREN, MICHIGAN, 1968

III**-** 7

#### TABLE 3-5

# BUS OPERATING COSTS

POPULATION Service Area	OPERATION COST PER BUS MILE				
	DEEAULI	2-SIGMA_RANGE	ENTIRE RANGE	NUMBER	
OVER 2,500,000	\$2.09	\$1.25 <del>-</del> \$2.95	\$1.13- \$3.74	9	
750,000- 2,500,000	\$1,49	\$1.28- \$2.70	\$1.15 \$2.12	24	
100,000- 750,000	\$1.11	\$0.79- \$1.42	\$0.63- \$1.56	39	
UNDER 100,000	\$0.88	\$0.75- \$1.00	\$0.56- \$1.00	13	

NOTE: COST ELEMENTS: MAINTENANCE OF GARAGE AND EQUIPMENT, 18%; TRANSPORTATION, 57%; STATION AND ADVERTISING, 2%; INSURANCE AND SAFETY, 6%; GENERAL AND ADMINISTRA-TIVE, 11%; TAXES AND RENTS, 6%. DATA DO NOT INCLUDE DEPRECIATION OR INTEREST.

DATA PROJECTED FROM A 1975 BASE TO A 1976 LEVEL USING THE CONSUMER PRICE INDEX.

SOURCE: AMERICAN PUBLIC TRANSIT ASSOCIATION, IRANSII OPERAIING REPORI, WASHINGTON, D.C., 1976

#### TABLE 3-6

### BUS FUEL CONSUMPTION FOR LARGE SIZED BUSES (GALLONS PER VEHICLE-MILE)

	ROADWAY GRADE (PER CENT)				
VEHICLE SPEED (MPH)	0	2	3	5	
5	0.446	0.552	0.606	0.775	
10	0,251	0.327	0.376	0.485	
15	0.193	0.268	0.313	0.408	
20	0.167	0.247	0.290	0.386	
25	0.156	0.241	0.288	0.403	
30	0.154	0.202	0.317	N/A	
35	0.095	0.173	N/A	N/A	
40	0.108	0.186	N/A	N/A	
, 45	0.123	0.206	NZA	N/A	

NOTES: ABOVE DATA BASED ON STANDARD GMC 51-SEAT PASSENGER BUS EQUIPPED WITH STANDARD DIESEL ENGINE (6Y71N/C5I).

SEE TABLE C-3 FOR SPECIFIC BUS ECONOMIC AND PERFORMANCE CHARACTERISTICS.

SOURCE: GENERAL MOTORS CORPORATION TRUCK AND COACH DIVISION, "VEHICLE DYNAMICS SIMULATION MODEL," PONTIAC, MICHIGAN, 1974

III- 9

#### TABLE 3-7

#### FUEL CONSUMPTION FOR MINI AND MID-SIZED BUSES (GALLONS PER VEHICLE-MILE)

VEHICLE SPEED	FUEL CONSUMPTION	ON LEVEL ROADWAY		
(MPH)	MINIBUS(1)	MIDSIZE(2)		
5	0.437	0.222		
10	0.474	0.128		
15	0.266	0.105		
20	0.134	0.091		
25	0.139	0.078		
30	0.149	0.072		
35	0.158	0.079		
40	0.168	0.082		
45	0.119	0.089		
50	0.132	0.093		
55	0.143	0.102		
60	0.155	0.107		

- (1) ABOVE DATA BASED ON STANDARD GMC VAN EQUIPPED WITH 12 SEATS AND A GASOLINE ENGINE (MODEL 366).
- (2) ABOVE DATA BASED ON MIDSIZE GMC 33-SEAT PASSENGER BUS EQUIPPED WITH A DIESEL ENGINE (DH 478).
- SOURCE: GENERAL MOTORS CURPORATION TRUCK AND COACH DIVISION, "VEHICLE DYNAMICS SIMULATION MODEL," PONTIAC, MICHIGAN, 1974

# TABLE 3-8

## BUS FUEL CONSUMPTION (PER VEHICLE-MILE) (1973)

TYPE OF BUS TRIP	(MILES) (	ISTANCE	RUS SIZE	TYPE OF FUEL	FUEL CON- SUMP- TION (GAL- LONS PER VEHI- CLE MILE)	TOTAL FUEL CON÷ SUMP- TION PER TRIP (GAL- LONS)
RESIDENTIAL COLLECTION/ DISTRIBUTION	(1)	3.0 (1)	JITNEY - 5 PASSENGERS	GASOLINE	0.093	0.279
			BUS WAGON - 8 Passengers	GASOLINE	0.111	0.333
			MINIBUS - 19 Passengers	GASOLINE	0.154	0.462
			NORMAL BUS - 50 PASSENGERS	DIESEL	0.193 (4)	0.579
LINE HAUL SURFACE ARTERIAL	1.5-5.0 (2,3)		BUS CARRYING 50 Passengers	DIESEL	0.167	0.334
EXCLUSIVE BUSWAY	7.0-9.0 (2.3)	8.0 (2,3)	BUS CARRYING 50 PASSENGERS	DIESEL	0.123 (6)	0.984
CBD COLLECTION/ DISTRIBUTION	1.0-6.0 (1)	3.0 (1)	NORMAL BUS - 50 PASSENGERS	DIESEL	0.251 (7)	0.753

- (1) MEYER, J.R., KAIN, J.F., AND WOHL, M., <u>IHE URBAN</u> <u>IRANSPORIATION PROBLEM</u>, HARVARD UNIVERSITY PRESS, CAMBRIDGE, MASSACHUSETTS, 1966.
- (2) WILBUR SMITH AND ASSUCIATES, <u>EUTURE HIGHWAYS AND URBAN</u> <u>GROWIH</u>, NEW HAVEN, CONNECTICUT, 1961.
- (3) LEVINSON, H., HOEY, W., SANDERS, D., WYNN, H., <u>BUS USE OF</u> <u>HIGHWAYS: STATE OF THE ART</u>, NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM, REPORT 143, WASHINGTON, D.C., 1973.
- (4) ASSUMES AN AVERAGE SPEED OF 15 MPH.
- (5) ASSUMES AN AVERAGE SPEED OF 25 MPH.
- (6) ASSUMES AN AVERAGE SPEED OF 45 MPH.
- (7) ASSUMES AN AVERAGE SPEED OF 10 MPH.
- NOTE: AN AVERAGE TRIP USING A NORMAL BUS AND INVOLVED IN RESIDENTIAL AND CBD COLLECTION/DISTRIBUTION AND LINE HAUL (ON AN EXCLUSIVE BUSWAY) WOULD USE 2.316 GALLONS OF DIESEL FUEL OVER A TOTAL DISTANCE OF 14.0 MILES.

SEE TABLE C-3 FOR SPECIFIC BUS ECONOMIC AND PERFORMANCE CHARACTERISTICS.

SOURCES: WELLS, J., ASHER, N., FLOWERS, M., ET AL, <u>ECONOMIC</u> <u>CHARACIERISIICS OF THE URBAN PUBLIC TRANSPORIATION</u> <u>INDUSIRY</u>, INSTITUTE FOR DEFENSE ANALYSES, FEBRUARY, 1972

> GENERAL MOTORS CORPORATION, TRUCK AND COACH DIVISION, "VEHICLE DYNAMICS SIMULATION MODEL," PONTIAC, MICHIGAN, 1974

# TABLE 3-9

# BUS POLLUTANT EMISSIONS (1973)

TYPE OF TRIP Range of Trip	TYPE	POLLUTANTS			
BUS SIZE	FUEL	CARBON MONOXIDE GR/MI	HYDRO- Carbons Gr/mi	OXIDES OF NITROGEN GR/MI	
	***			******	
RESIDENTIAL 1-5 MI TRIPS(1)					
5 PASS(4)	GSL	68.95	9.53	4.54	
8 PASS(4)	GSL	94.46	13.06	6.22	
19 PASS(4)	GSL	119.97	16.58	7.90	
50 PASS(5)	DSL	10.90	14.70	13.84	
LINE HAUL 1.5-5 MI TRIPS(2,3) SURFACE ARTERIAL BUS ON ARTERIAL STREET, MIXED TRAFFIC50 PASS(5	) DSL	10.90	14.70	13.84	
7-9 MI TRIPS(2,3) EXCLUSIVE BUSWAY BUS ON EXCLUSIVE BUSWAY50 PASS (CRUISE ONLY)	DSL	10,54 (5)	11.69 (6)	8.53 (6)	
CBD 1-6 MI TRIPS(1) NORMAL BUS 50 PASS(5)	DSL	10.90	14.70	13.84	

- (1) MEYER, J.R., KAIN, J.E., AND WOHL, M., <u>IHE URBAN</u> <u>IRANSPORIATION PROBLEM</u>, HARVARD UNIVERSITY PRESS, CAMBRIDGE, MASSACHUSETTS, 1966.
- (2) WILBUR SMITH AND ASSOCIATES, "FUTURE HIGHWAYS AND URBAN GROWTH," NEW HAVEN, CONNECTICUT, 1961.
- (3) LEVINSON, H., HOEY, W., SANDERS, D., WYNN, H., <u>BUS USE OF</u> <u>HIGHWAYS: STATE OF THE ART</u>, NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM REPORT 143, WASHINGTON, D.C., 1973
- (4) ESTIMATED FROM TRANS-AUTOMOBILE DATA ASSUMING 20 MPH SPEED LIMIT AND ADJUSTING FOR APPROXIMATE VEHICLE WEIGHT.
- (5) ESTIMATED FROM WELLS, J.D., ET AL, <u>ECONOMIC CHARACTERISTICS DE</u> <u>THE URBAN PUBLIC TRANSPORTATION INDUSTRY</u>, INSTITUTE FOR DEFENSE ANALYSES, ARLINGTON, VIRGINIA, FEBRUARY, 1972, USING A SPEED OF 25 MPH.
- (6) SAME AS (5) EXCEPT WITH A SPEED OF 45 MPH.
- NOTE: POLLUTION RATES ARE FOR 1973; AFTER 1975 THESE MUST BE CHECKED TO ENSURE RATES MEET EPA GUIDELINES.

TO OBTAIN TOTAL POLLUTANTS EMITTED, THE GRAMS PER MILE PER POLLUTANT CAN BE MULTIPLIED BY THE AVERAGE DISTANCE THE BUS TRAVELS.

SOURCE: WELLS, J., ASHER N., FLOWERS, M., ET AL, <u>ECONOMIC</u> <u>CHARACIERISIICS OF THE URBAN PUBLIC TRANSPORTATION</u> <u>INDUSIRY</u>, INSTITUTE FOR DEFENSE ANALYSES, FEBRUARY,1972

#### III = 14

#### TABLE 3-10

#### BUSWAY LAND COSTS (MILLIONS OF DOLLARS PER MILE)

# POPULATION GROUPS (1000'S) LOCATION(1) UNDER 50 50-100 100-250 250-500 500-1000 OVER 1000 CBD 1.15 1.15 1.37 1.72 2.30 2.54 FRINGE 1.15 1.15 1.24 1.37 1.72 2.29 RESIDENTIAL 1.02 1.02 1.15 1.47 2.04

- (1) THESE ESTIMATES ARE BASED ON LAND NEEDED FOR TWO 12-FOOT WIDE BUS LANES, 8-FOOT SHOULDERS ON EACH SIDE, AND A ONE-FOOT MEDIAN (TOTAL CROSS SECTION 41 FEET). SMALLER CROSS SECTIONS WOULD COST PROPORTIONATELY LESS.
- NOTE: LAND COSTS ESTIMATED FROM TYPICAL URBAN FREEWAY LAND COSTS AND ADJUSTED TO REFLECT BUSWAY CROSS SECTION REQUIREMENTS; EXPRESSED IN TERMS OF 1976 COSTS.
- SOURCE: BHATT, K., "CAPACITY AND COST INPUTS FOR COMMUNITY APPROACH PLANNING MODEL (CAPM)," THE URBAN INSTITUTE, WASHINGTON, D.C., DECEMBER, 1973

SKINNER, L., <u>COSIING URBAN IRANSPORTATION ALTERNATIVES</u>, U.S. DEPARTMENT OF TRANSPORTATION, FEDERAL HIGHWAY ADMINISTRATION, WASHINGTON, D.C., FORTHCOMING, 1977

III- 15

#### TABLE 3-11

BUSWAY CONSTRUCTION COST - AT GRADE FACILITY (MILLIONS OF DOLLARS PER MILE)

POPULATION GROUPS (1000'S)							
LOCATION(1)	UNDER 50	50-100	100-250	250-500	500-1000	OVER 1000	
CBD FRINGE RESIDENTIAL	3.38 2.31 2.01	3.38 2.01	3.48 2.44 2.01	3.57 2.64 2.11	3.70 3.05 2.31	4.03 3.89 2.72	

- (1) THESE ESTIMATES ARE BASED ON THE COST OF CONSTRUCTION REQUIRED FOR TWO 12-FOOT WIDE BUS LANES, 8-FOOT SHOULDERS ON EACH SIDE, AND A ONE-FOOT MEDIAN (TOTAL CROSS SECTION 41 FEET). SMALLER CROSS SECTIONS WOULD COST PROPORTIONATELY LESS.
- NOTE: CONSTRUCTION COSTS ESTIMATED FROM TYPICAL URBAN FREEWAY LAND COSTS AND ADJUSTED TO REFLECT BUSWAY CROSS SECTION REQUIREMENTS; PROJECTED FROM A 1973 BASE TO 1976 USING THE FEDERAL HIGHWAY ADMINISTRATION COMPOSITE CONSTRUCTION INDEX. DOES NOT INCLUDE LAND COSTS (SEE TABLE 3-10) OR STATION COSTS (ESTIMATED AT \$200-300,000 EACH).

SEE TABLE C-4 FOR SPECIFIC EXISTING OR PROPOSED BUSWAY CONSTRUCTION COSTS BY LOCATION.

SOURCES: BHATT, K., "CAPACITY AND COST INPUTS FOR COMMUNITY AGGREGATE PLANNING MODEL (CAPM)," THE URBAN INSTITUTE, WASHINGTON, D.C., DECEMBER, 1973

> WILBUR SMITH AND ASSOCIATES, "DESIGN AND ANALYSIS OF BUS AND TRUCK ROADWAY SYSTEMS IN URBAN AREAS," PHASE I, NEW HAVEN, CONNECTICUT, NOVEMBER, 1973

#### **TABLE 3-12**

BUSWAY CONSTRUCTION COST - UNDERGROUND FACILITY (MILLION \$ PER MILE)

		TYPE OF	CONSTRUCTIO	N(1)	
STATION FREQUENCY PER MILE	SHALLOW COV		CUT AND WITH ME		BORED TUNNEL
	ON-LINE(2)	OFF-LINE(3)	ON-LINE(2)	OFF-LINE(3)	
1 2 3 4	32.9 33.9 35.0 36.0	33.7 35.4 37.5 39.6	40.3 41.5 42.7 43.9	41.2 42.7 44.5 46.6	

(1) THESE ESTIMATES ARE BASED ON A TWO-LANE BUSWAY WITH NO MEDIAN OR ADJACENT SHOULDERS; APPROXIMATE CROSS SECTION IS 24 FEET. COSTS INCLUDE VENTILATION AND LIGHTING, ROADWAY, STATION, AND CONTINGENCIES (AT 15 PERCENT OF COST).

- (2) BUS STOPS ARE ALONG THE MAIN ALIGNMENT.
- (3) BUS STOPS ARE OFF THE MAIN ALIGNMENT.
- NOTE: PROJECTED FROM A 1973 BASE TO 1976 USING THE ENGINEERING NEWS RECORD GENERAL CONSTRUCTION INDEX. DOES NOT INCLUDE LAND COSTS (SEE TABLE 3-10).

THE ABOVE DATA REFLECTS A SMALLER CROSS SECTION WIDTH THAN SOME OF THE PRECEDING TABLES; CARE MUST BE EXERCISED IN ASSIGNING AN AVERAGE SPEED TO THIS TYPE OF FACILITY, SINCE BUSES WILL BE OPERATING WITHOUT THE ADVANTAGE OF SHOULDERS AND MEDIAN STRIPS.

SOURCE: WILBUR SMITH AND ASSOCIATES, "DESIGN AND ANALYSIS OF BUS AND TRUCK ROADWAY SYSTEMS IN URBAN AREAS," NEW HAVEN, CONNECTICUT, NOVEMBER, 1973

III- 17

#### TABLE 3-13

#### IMPLEMENTATION AND OPERATING COSTS FOR RESERVED FREEWAY BUS LANES

FACILITY	LENGTH (MILES)	START-UP Custs (\$)	ANNUAL(1) OPERATING COSTS (\$)
S. E. BOSTON EXPRESSWAY	8.4	45,000	183,000
I-495 (NEW YORK-NEW JERSEY)	2.5	917,000(2)	262,000
LONG ISLAND EXPRESSWAY	2.0	66,000	196,000
SAN FRANCISCO-OAKLAND BAY BRIDGE	1.0	76,000	16,000
MARIN COUNTY CORRIDOR (US=101)	5.0	262,000	
SEATTLE BLUE STREAK (I-5)	8.5	769,000	

- (1) ANNUAL OPERATING COSTS INCLUDE ONLY THE COSTS OF PROVIDING THE FACILITY; THEY DO NOT INCLUDE VEHICLE OPERATING COSTS.
- (2) INCLUDES SOPHISTICATED TRAFFIC SIGNALS AND IMPROVED PARKING FACILITIES.
- NOTE: ALL RESERVED FREEWAY BUS LANES ARE LABOR INTENSIVE IN THAT MAINTENANCE, PULICE, AND SAFETY CREWS ARE NEEDED TO OPEN AND CLOSE THE BUS LANES DURING THE HOURS OF OPERATION. PRICES ARE PROJECTED 1976 DOLLARS, USING THE CONSUMER PRICE INDEX.
- SOURCE: LEVINSON, H., HOEY, W., SANDERS, D., WYNN, H., <u>BUS USE OF</u> <u>HIGHWAYS: SIAIE OF IHE ARI</u>, NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM REPORT 143, WASHINGTON, D.C., 1973

#### TABLE 3-14

#### CAPITAL COSTS OF MOTOR BUSES

TYPE OF BUS	DEFAULT VALUE	RANGE OF VALUES
JITNEY 5 PASSENGERS	\$ 8,000	\$
BUS WAGON 10 PASSENGERS	16,000	13,000 - 20,000
MINIBUS 15-20 PASSENGERS	28,000	23,000 - 38,000
MIDSIZE BUS 25-33 PASSENGERS	44,000	34,000 - 38,000
NORMAL BUS 40-41 PASSENGERS	56,000	44,000 - 68,000
LARGE NORMAL BUS 47-51 PASSENGERS	66,000	50,000 - 70,000
ARTICULATED BUS 70 PASSENGERS	167,000	

- NOTE: COSTS VARY ACCORDING TO NUMBER OF VEHICLES ORDERED, INTERIOR FINISH, ENGINE SPECIFICATIONS, AND AIR CONDITIONING CAPACITY.
- SOURCE: UNPUBLISHED OFFICE OF TRANSIT ASSISTANCE DATA ON 263 BUS PURCHASES FROM OCTOBER 1971 TO MARCH 1977 PROJECTED TO A 1976 COST BASIS.

III- 19

#### TABLE 3-15

#### BUS VEHICLE ACCIDENTS (PASSENGER ACCIDENTS) PER MILLION BUS MILES (1971-1972)

	******	PUP	ULATION RANG		
VALUE	0-100	100-250	250-500	500-1000	OVER 1000
DEFAULT	82.55	56.60	58.84	48.16	67.16
	(12.20)	(16.13)	(17.15)	(18.76)	(21.50)
RANGE	.03-	19.21-	18.99-	3.91-	16.23-
	254.07	154.42	93.54	111.83	108.14
	(0.83+	(3.78-	(0.42-	(1.82-	(5.61-
	37.42-)	34.40)	109.24)	49.24)	33.94)

#### NOTE: ABOVE DEFAULT VALUES ARE WEIGHTED AVERAGES (WEIGHTED BY THE TOTAL LINE-MILES OPERATED BY EACH COMPANY).

BUS TRAFFIC ACCIDENTS INCLUDE COLLISIONS WITH PEDESTRI-ANS, OTHER BUSES, VEHICLES, AND MISCELLANEOUS OBJECTS.

BUS PASSENGER ACCIDENTS INCLUDE ACCIDENTS INVOLVING BOARDING, ALIGHTING, DOOR-RELATED, AND ALL RECORDED ON-BOARD ACCIDENTS; FATALITIES ARE INCLUDED.

FATALITIES PER MILLION BUS-MILES OPERATED IS APPROXIMATE-LY 0.088; THIS FIGURE REPRESENTS ABOUT TWO-THIRDS OF ALL TRANSIT MILES OPERATED IN THE UNITED STATES, INCLUDING ZONE AT-GRADE RAILROAD TROLLEY TYPE OPERATIONS.

SEE TABLES C-5 AND C-6 FOR VARIATION ON ACCIDENT STATISTICS BY YEAR (1971-72).

#### SOURCES: AMERICAN PUBLIC TRANSIT ASSOCIATION, <u>ACCIDENI</u> <u>OPERATING STATISTICS</u>, WASHINGTON, D.C., 1971-1972

NATIONAL SAFETY COUNCIL, <u>ACCIDENT FACIS</u>, CHICAGO, ILLINOIS, 1965-72

#### CHAPTER IV

#### AUTOMOBILE-HIGHWAY SYSTEM

THIS CHAPTER CONTAINS A SET OF QUANTITATIVE VALUES FOR SELECTED SUPPLY PARAMETERS USED TO CHARACTERIZE AUTOMOBILE-HIGHWAY SYSTEMS (I.E., AUTOMOBILE AND TRUCK TRAFFIC): SPEED, CAPACITY, OPERATING COST, ENERGY CONSUMPTION, POLLUTANT EMIS-SIONS, CAPITAL COST, AND ACCIDENT FREQUENCY. IN MOST CASES THIS SECTION PRESENTS MEASURES FOR AUTOMOBILES, TRUCKS, AND FOR A MIXED TRAFFIC STREAM. APPENDIX D CONTAINS SUPPORTING MATERIAL AND MORE SPECIFIC AUTOMOBILE-HIGHWAY SYSTEM INFORMATION.

## MAJOR ASSUMPTIONS IN CALCULATING CAPACITY AND AVERAGE SPEED AS SHOWN IN TABLE 4-2

*****	+	****		
FACILITY TYPE	   +	LO	CATION	
	I CENTRAL I BUSINESS I DISTRICT	FRINGE	I RESIDEN- I TIAL I	I OUTLYING Business District
	IUNINTERRUPTED FLOW LANES EACH DIRECTION L2-FOOT LANE WIDTH L4-FOOT LATERAL CLEARANCE FROLLING TERRAIN PEAK HOUR FACTOR0.85 50 MPH DESIGN SPEED		70 MPH DESIGN SPEED	60 MPH DESIGN SPEED
WAY   	3 LANES EACH DIRECTION 11-FOOT LANE WIDTH 5 PERCENT THRU BUSES 10 PERCENT TURNS CYCLE LENGTH 90 SECONDS PEAK HOUR FACTOR0.85 ACCELERATION 4 MPHPS AMBER TIME 5 SECONDS 50 MPH DESIGN SPEED 2 SIGNALS/MILE (G/C65)	(G/C=,75)	1 SIGNAL/MILE (G/C75)   60 MPH DESIGN SPEED   	MILE

I	۷	-	3
---	---	---	---

PARKING      	TRUCKS 10 PERCENT TURNS (BOTH) CYCLE LENGTH 60 SECONDS PEAK HOUR FACTOR0.85	30 MPH 3 SIGNALS/ MILE (G/C60) 24-FOOT APPROACH WIDTH UP TO 70 BUSES/HOUR	MILE (G/C65)	MAXIMUM SPEED 25 MPH 3 SIGNALS/ MILE (G/C60) 24-FODT APPROACH WIDTH
ARTERIALI TWO-WAY   WITHOUT    PARKING   	BUSES/HOUR UP TO 35 BUSES/HOUR MAXIMUM SPEED 25 MPH 5 SIGNALS/MILE (G/C55) 22-FOOT	I APPROACH I WIDTH IMAXIMUM SPEED I30 MPH	I APPROACH I WIDTH IMAXIMUM SPEED I35 MPH	22-FOOT APPROACH WIDTH MAXIMUM SPEED 25 MPH 3 SIGNALS/ MILE (G/C60)
	APPROACH WIDTH NO PARKING UP TO 65 BUSES/HOUR MAXIMUM SPEED 25 MPH 5 SIGNALS/MILE	I APPROACH I WIDTH IPARKING I ONE SIDE IMAXIMUM SPEED I30 MPH	I APPROACH I WIDTH IPARKING I ONE SIDE IMAXIMUM SPEED I 35 MPH I 2 SIGNALS/ I MILE	30-FOOT APPROACH WIDTH PARKING BOTH SIDES MAXIMUM SPEED 25 MPH UP TO 110 BUSES/HOUR 3 SIGNALS MILE (G/C60)

T

NOTE: ALL DATA BASED ON 1,000,000 POPULATION.

THE ASSUMPTIONS FOR EACH FACILITY TYPE (FREEWAY, EXPRESS-WAY, AND ARTERIAL) ARE LISTED ONLY ONCE UNLESS THE ASSUMPTION(S) CHANGES; I.E., THE TABLE IS READ HORIZONTALLY BY FACILITY; ALL CLASSES OF ARTERIALS ARE TREATED SIMILARLY.

SOURCE: BASED ON ASSUMPTIONS FROM HIGHWAY RESEARCH BOARD, <u>HIGHWAY</u> <u>CAPACITY MANUAL</u>, 1965, WASHINGTON, D.C., 1965 

CAPACITY	AND	AVERAGE	SPEED	ON	VARIOUS	ROADWAYS	
		PER	LANE				

FACILITY TYPE	LOCATION						
	CENTRAL BUSINESS DISTRICT	FRINGE	RESIDENTIAL	OUTLYING BUSINESS DISTRICT			
	CAPACITY(1) 1750 VPH V/C SPEED (MPH) (2)	CAPACITY(1) 1750 VPH V/C SPEED (MPH) (2)	CAPACITY(1) 1750 VPH V/C SPEED (MPH) (2)	CAPACITY(1) 1750 VPH V/C SPEED (MPH) (2)			
FREEWAY	0,00 48 0,50 38 0,75 33 1,00 28	0.00 48 0.50 38 0.75 33 1.00 28	0.00 67 0.50 57 0.75 50 1.00 34	0.00 58 0.50 48 0.75 41 1.00 30			
	800 VPH	1000 VPH	1100 VPH	1000 VPH			
EXPRESSWAY	0.00 37 0.50 34 0.75 33 1.00 31	0.00 44 0.50 38 0.75 35 1.00 32	0.00 47 0.50 44 0.75 41 1.00 38	0.00 37 0.50 34 0.75 33 1.00 31			
	***************************************		+				
	400 VPH	550 VPH	I 550 VPH	550 VPH			
ARTERIAL TWO-WAY WITH PARKING	0.00 17-22 0.50 17-20 0.75 15-15 1.00 12-12	0.00 25-29 0.50 20-27 0.75 18-25 1.00 15-15	0.00 28-32 0.50 25-30 0.75 23-28 1.00 15-15	0.00 22-24 0.50 20-22 0.75 18-18 1.00 13-13			
	600 VPH	800 VPH	1 800 VPH	800 VPH			
ARTERIAL TWO-WAY WITHOUT PARKING	0.00 17-22 0.50 17-20 0.75 15-15 1.00 12-12	0.50 20-27 0.75 18-25	0,50 25-30	0.50 20-22 0.75 18-18			
		550 VPH	1 900 VPH	650 VPH			
ARTERIAL ONE-WAY	0.00 17-22 0.50 17-20 0.75 15-15 1.00 12-12	0.00 25-29 0.50 20-27 0.75 18-25	I 0.00 28-32 I 0.50 25-30 I 0.75 23-28	0.00 22-24 0.50 20-22 0.75 18-18			

(1) CAPACITY CALCULATED AT LEVEL OF SERVICE E; ABSOLUTE CAPACITY.

(2) FIRST VALUE SHOWS SPEED ASSUMING LACK OF COURDINATED SIGNAL PROGRESSION: SECOND VALUE SHOWS SPEED ASSUMING FULL SIGNAL PROGRESSION.

NOTE: SEE TABLE 4-1 FOR MAJOR ASSUMPTIONS.

SEE TABLES D-1 TO D-5 IN THE APPENDIX AND FIGURE D-1 IN THE CUTS MANUAL FOR DETAILED CAPACITY CALCULATIONS OF ARTERIAL STREETS.

SOURCE: BASED ON HIGHWAY RESEARCH BOARD, <u>HIGHWAY CAPACITY MANUAL</u>, 1965, WASHINGTUN, D.C., 1965

#### TABLE 4-3

#### VEHICLE OPERATING COST ON FREEWAYS (1) (CENTS PER VEHICLE MILE)

	AVERAGE SPEED (MPH)							
VEHICLE	60	55	50	45	40	35	30	25
SUBCOMPACT	6.36	5.92	5.67	5.42	5.36	5,25	5.20	5.23
COMPACT	7.65	7.09	6.78	6.49	6.39	6.28	6,22	6.24
STANDARD AUTO	9.58	8.93	8,56	8.19	8.07	7.93	7.85	7.87
2 TON TRUCK	11.18	10.35	9.84	9,38	9,22	9.11	8,93	8.94
6 TON TRUCK	22.20	20.58	19,26	17.89	17.13	16.50	15.84	15.48
20 TON (GASOLINE) TRUCK	51.02	46.53	43.91	39.68	39.19	36.63	34.79	33.47
25 TON (DIESEL) TRUCK	58,43	49.48	46.02	42.16	40.67	38.96	36.89	35.57
COMPOSITE Vehicle(2)	12,34	11.34	10.77	10.15	9.92	9.67	9.44	9.36

- (1) DATA ARE BASED ON TYPICAL ROADWAY SEGMENTS WHICH REFLECT VARI-OUS CURVES, GRADES, SLOWDOWNS, STOPS, ETC. STATE AND FEDERAL TAXES ARE NOT INCLUDED IN THESE COSTS; A FUEL PRICE OF 52.4 CENTS PER GALLON IS ASSUMED. THE EFFECTS OF ADDING TAXES OR OTHER PRICE CHANGES CAN BE DETERMINED BY MULTIPLYING THE FUEL CONSUMPTION RATE IN TABLE 4-5 BY THE PRICE DIFFERENCE AND ADDING THE RESULTS TO THOSE PRESENTED HERE.
- (2) COMPUSITE VEHICLE IS MADE UP OF 48.16% STANDARD, 24.92% COM-PACT, 9.96% SUBCOMPACT, 6.81% TWO-TON TRUCKS, 3.26% SIX TON TRUCKS, 3.29% TWENTY TON TRUCKS, AND 3.60% TWENTY-FIVE TON TRUCKS.

- NOTE: DATA ARE FROM A 1974 BASE UPDATED TO 1976 USING THE CONSUMER PRICE INDEX OVERALL PRIVATE TRANSPORT INDEX. COSTS INCLUDE MAINTENANCE, TIRES, OIL, GASOLINE, AND TRAVEL RELATED DEPRECIATION.
- SUURCE: BLOOM, KENT, <u>IRANS-URBAN COMPUTER MODEL (OPGAS)</u>, FEDERAL HIGHWAY ADMINISTRATION, U.S. DEPARTMENT OF TRANSPORTA-TION, WASHINGTON, D.C., APRIL, 1973

#### VEHICLE OPERATING COST ON ARTERIALS(1)

	COST - CENTS PER MILE (2)					
AVERAGE SPEED (MPH)	35	30	25	20	15	
SUBCOMPACT	9.15	9.10	8.90	8.47	8.53	
COMPACT	10.95	10.92	10.65	10.15	10.22	
· ·						
STANDARD AUTO	13.81	13.76	13.43	12.79	12.87	
2 TON TRUCK	16.01	15.81	15.36	14.58	14.59	
6 TON TRUCK	31.20	30.66	30.52	23.74	26.86	
20 TON (GASULINE) TRUCK	87.34	84.94	79.57	75.64	68.82	
25 TON (DIESEL) TRUCK	100.10	97.34	90.92	86,52	77.60	
COMPOSITE VEHICLE (3)	15.64	15.48	14.98	14.13	14.08	

(1) DATA ARE BASED ON TYPICAL ROADWAY SEGMENTS WHICH REFLECT VARIOUS CURVES, GRADES, SLOWDOWNS, STOPS, ETC.

- (2) STATE AND FEDERAL TAXES ARE NOT INCLUDED IN THESE COSTS: A FUEL PRICE OF 52.4 CENTS PER GALLON IS ASSUMED IN THESE CALCU-LATIONS. THE EFFECTS OF ADDING TAXES OR OTHER PRICE CHANGES CAN BE DETERMINED BY MULTIPLYING THE FUEL CONSUMPTION RATE IN TABLE 4-6 BY THE PRICE DIFFERENCE AND ADDING THE RESULTS TO THOSE PRESENTED HERE.
- (3) COMPOSITE VEHICLE IS MADE UP OF 10% SUBCOMPACT, 25% COMPACT, 48.32% STANDARD, 10.41% TWO TON TRUCKS, 3.56% SIX TON TRUCKS, 1.44% TWENTY TON TRUCKS, AND 1.27% TWENTY-FIVE TON TRUCKS.
- NOTE: DATA ARE FROM A 1972 BASE UPDATED TO 1976 USING THE CONSUMER PRICE INDEX OVERALL PRIVATE TRANSPORT INDEX. COSTS INCLUDE MAINTENANCE, TIRES, OIL, GASOLINE, AND DEPRECIATION.
- SOURCE: BLOOM, KENT, <u>IRANS-URBAN COMPUTER MODEL (DPGAS)</u>, FEDERAL HIGHWAY ADMINISTRATION, U.S. DEPARTMENT OF TRANSPORTA-TION, WASHINGTON, D.C., APRIL, 1973

#### TABLE 4-5

#### VEHICLE GASOLINE CONSUMPTION ON FREEWAYS (GALLONS PER VEHICLE MILE)

	AVERAGE SPEED (MPH)								
VEHICLE	65	60	55	50	45	40	35	30	25
SUBCOMPACT Automobile	•0497	.0453	.0420	.0395	.0379	.0371	.0358	.0354	.0356
COMPACT AUTOMOBILE	.0667	.0608	.0563	.0531	.0504	.0498	.0481	.0475	.0478
STANDARD AUTOMOBILE	.0825	.0752	.0696	.0656	.0623	.0616	.0594	.0587	.0591
2 TON Light Duty Truck	.0999	.0851	.0740	.0663	.0608	.0577	.0522	• 0'549	.0554
6 TŨN SINGLE UNIT TRUCK	•1437	•1347	.1259	.1200	.1158	.1148	.1147	.1152	.1173
20 TON Gasoline Truck	.3500	.3554	.3332	.2799	.2985	.2968	.2963	.2970	.3052
25 TON DIESEL TRUCK	.2339	.2382	.2289	.2188	.2102	.2094	.2076	.2056	.2062
MIXED VEHICLE(2)	.0927	.0864	.0801	.0743	.0716	.0707	.0687	.0683	.0690
(1) DATA BASE	D ON 1	YPICAL		NAY SEG	MENTS	мнтсн			0118

- DATA BASED ON TYPICAL ROADWAY SEGMENTS WHICH REFLECT VARIOUS CURVES, GRADES, STOPS PER MILE, TRAFFIC DENSITIES, ETC.
   DATA BASED ON VEHICLE MIX OF 83.04% AUTOMOBILES, 6.81% TWO TON TRUCKS, 3.26% SIX TON TRUCKS, 3.29% TWENTY TON TRUCKS, 3.60% TWENTY-FIVE TON TRUCKS. THE AUTOMOBILE MIX IS 58%, 30%, AND 12% FOR STANDARD, COMPACT, AND SUBCOMPACT, RESPECTIVELY.
- SOURCE: BLOOM, KENT, <u>IRANS-URBAN COMPUTER MODEL (OPGAS)</u>, FEDERAL HIGHWAY ADMINISTRATION, U.S. DEPARTMENT OF TRANSPORTA-TION, WASHINGTON, D.C., APRIL, 1973

#### TABLE 4-6

# VEHICLE GASOLINE CONSUMPTION ON ARTERIAL STREETS (1974)

	CONSUMPTION - GALLONS PER MILE (1)						
AVERAGE SPEED (MPH)	45	40	35	30	25	20	15
SUBCOMPACT AUTOMOBILE	.0544	.0540	.0538	.0543	.0540	.0522	.0529
COMPACT Automobile	.0730	.0724	.0721	.0729	.0724	.0701	.0710
STANDARD AUTOMOBILE	.0902	.0895	.0892	.0901	.0895	.0866	.0877
2 TON LIGHT DUTY TRUCK	.0811	.0782	.0726	.0791	•0786	.0774	.0804
6 TON SINGLE UNIT TRUCK	.1697	.1709	.1787	.1854	.1873	.1830	.1853
20 TON GASOLINE TRUCK	.5434	.5385	•5553	.5639	•5559	.5268	.5378
25 TON DIESEL TRUCK	•3663	.3656	.3782	.3867	.3801	.3572	•3462
MIXED VEHICLE(2)	.0941	.0933	.0931	.0950	.0943	.0910	.0924

 DATA BASED ON TYPICAL ROADWAY SEGMENTS WHICH REFLECT VARIOUS CURVES, GRADES, STOPS PER MILE, TRAFFIC DENSITIES, ETC.
 DATA BASED ON VEHICLE MIX OF 83.32% AUTOMOBILES, 10.41% TWO TON TRUCKS, 3.56% SIX-TON TRUCKS, 1.44% TWENTY TON TRUCKS, AND 1.27% TWENTY-FIVE TON TRUCKS. THE AUTOMOBILE MIX IS 58% FOR STANDARD, 30% FOR COMPACT, AND 12% FOR SUBCOMPACT.

SOURCE: BLOOM, KENT, <u>IRANS-URBAN COMPUTER MODEL (OPGAS)</u>, FEDERAL HIGHWAY ADMINISTRATION, U.S. DEPARTMENT OF TRANSPORTA-TION, WASHINGTON, D.C., APRIL, 1973

#### TABLE 4-7(A)

#### COMPOSITE POLLUTANT EMISSION FACTORS (1977) FREEWAYS AND SURFACE ARTERIALS (1)

		AUTOS			TRUCKS (2)	
		**********	OXIDES			OXIDES
	CARBON	HYDRO-	0F	CARBON	HYDRO-	OF
SPEED	MONOXIDE	CARBONS(3)	NITROGEN	MONOXIDE	CARBUNS(3)	NITROGEN
(MPH)	(GR	AMS PER MILE	)	(GR	AMS PER MILE	)
60.0	24.13	4.10	4.88	65.96	6.59	13.19
55.0	28.75	4.40	4.32	61.75	6.74	11.51
50.0	30.40	4.51	4.04	59.02	6.85	10.44
45.0	31.60	4.61	3.89	58.59	7.06	9.75
40.0	33.93	4.79	3.80	61.08	7.48	9.28
35.0	38.02	5.09	3.68	66.92	8.15	8,93
30.0	44.00	5.52	3.52	76.61	9.16	8,65
25.0	51.88	6.08	3.31	91.16	10.62	8.44
20.0	62.41	6.83	3.08	112.97	12.81	8.35
15.0	79.37	8.04	2.90	148.12	16.38	8.48

NOTE: THESE NOTES APPLY TO ALL 4-7 TABLES (A) THROUGH (D)

- (1) EMISSIONS INCLUDE COLD STARTS, HOT SOAKS, HOT OPERATION, AND DIURNAL EVAPORATION.
- (2) THE ASSUMED TRUCK VEHICLE MIX IS 30.2% LIGHT DUTY TRUCKS (≤6000 LBS.), 30.2% LIGHT DUTY TRUCKS (>6000 LBS.), 23.4% HEAVY DUTY TRUCKS (GASOLINE), AND 16.1% HEAVY DUTY TRUCKS (DIESEL). THE MIX OF AUTOS BY TYPE IS AS IN MOBIL1. IN COMPUTING & COMPOSITE VEHICLE, THE OVERALL VEHICLE MIX MAY BE ASSUMED 80.2% AUTOS AND 19.2% TRUCKS.
- (3) HYDROCARBON EMISSIONS INCLUDE REACTIVE HYDROCARBONS ONLY: METHANE EXCLUDED.

NOTE:THE FULLOWING PARAMETERS WERE USED IN GENERATING THESE FACTORS:<br/>TEMPERATURE:75 DEGREESCOLD START(NON-CATALYST) VMT:18.4% OF NON-CATALYST AUTO VMTHOT START(NON-CATALYST) VMT:20.0% OF NON-CATALYST AUTO VMTHOT STABILIZED(NON-CATALYST) VMT:20.0% OF NON-CATALYST AUTO VMTCOLD START(CATALYST) VMT:26.0% OF CATALYST AUTO VMTHOT START(CATALYST) VMT:26.0% OF CATALYST AUTO VMTHOT START(CATALYST) VMT:26.0% OF CATALYST AUTO VMTHOT STABILIZED(CATALYST) VMT:12.4% OF CATALYST AUTO VMTHOT STABILIZED(CATALYST) VMT:61.6% OF CATALYST AUTO VMT

SOURCE: ENVIRONMENTAL PROTECTION AGENCY, "MOBILE SOURCE EMISSION FACTORS," WASHINGTON, DC, MARCH 1978.

## TABLE 4-7(B)

#### COMPOSITE POLLUTANT EMISSION FACTORS (1982) FREEWAYS AND SURFACE ARTERIALS (1)

	AUTOS			TRUCKS (2)		
			OXIDES			OXIDES
	CARBON	HYDRO-	0 <b>F</b>	CARBON	HYDRO-	OF
SPEED	MONOXIDE	CARBONS(3)	NITROGEN	MONOXIDE	CARBONS(3)	NITROGEN
(MPH)	( GR	AMS PER MILE	)	(GR	AMS PER MILE	)
60.0	14.37	1.97	3.59	58,96	4.35	13.52
55.0	18.20	2.16	3.15	58,42	4.51	11.24
50.0	19.39	2.24	2.93	57.61	4.61	9.82
45.0	19.90	2.29	2.82	57.95	4.79	8.93
40.0	21.14	2.39	2.75	60.51	5.12	8.34
35.0	23,65	2,57	2.65	65.84	5.67	7.93
30.0	27.51	2.82	2.52	74.35	6.48	7.64
25.0	32,60	3.16	2_34	86.62	7.66	7.47
20.0	39.03	3.60	2.15	104.07	9.38	7.45
15.0	48.69	4.28	1.99	130.82	12.11	7.70

#### TABLE 4-7(C)

#### COMPOSITE POLLUTANT EMISSION FACTORS (1987) FREEWAYS AND SURFACE ARTERIALS (1)

		AUTOS		TRUCKS (2)		
			OXIDES			OXIDES
	CARBON	HYDRO-	OF	CARBON	HYDRO-	OF
SPEED	MONOXIDE	CARBONS(3)	NITROGEN	MONOXIDE	CARBONS(3)	NITROGEN
(MPH)	( GR	AMS PER MILE	)	(GR	AMS PER MILE	)
60.0	7.99	0.92	2.81	39.21	2.08	10.16
55.0	10.26	1.04	2.46	40.33	2.24	8.41
50.0	10.93	1.09	2.29	40.46	2.35	7.33
45.0	11.15	1.12	2.20	40.93	2.48	6.65
40.0	11.78	1.17	2.14	42.73	2.72	6.19
35.0	13.12	1.28	2.07	46.35	3.11	5.87
30.0	15.22	1.43	1.96	52.02	3.69	5.64
25.0	17.96	1.64	1.81	59.99	4.51	5.49
20.0	21.35	1.90	1.65	70.90	5,69	5.45
15.0	26.31	2.29	1.52	87.05	7.48	5.61

## TABLE 4-7(D)

## COMPOSITE POLLUTANT EMISSION FACTORS (1995) FREEWAYS AND SURFACE ARTERIALS (1)

		AUTOS			TRUCKS (2)	
	CARBON	HYDRO-	OXIDES	CARBON	HYDRO-	OXIDES
SPEED	MONOXIDE	CARBONS(3)		MONOXIDE	CARBUNS(3)	
(MPH)		AMS PER MILE			AMS PER MILE	
			/			
60.0	6.06	0.67	2.56	26.48	0.97	6.52
55.0	7.71	0.78	2.32	27.56	1.10	5.56
50.0	8.19	0.81	2.15	27.82	1.19	4.96
45.0	8.35	0.84	2.07	28.14	1.31	4.58
40.0	8.80	0.89	2.01	29.24	1.50	4.31
35.0	9.77	0.97	1.94	31.44	1.81	4.09
30.0	11.28	1.10	1.84	34.88	2.28	3.91
25.0	13.25	1.27	1.70	39.64	2.97	3.75
20.0	15.68	1.49	1.55	45.91	3.94	3.64
15.0	19.22	1.81	1.42	54.74	5.38	3.63

#### TABLE 4-8(A)

## POLLUTANT EMISSION FACTOR COMPONENTS (1) (1977)

#### A. EMISSIONS FROM HOT STABILIZED OPERATION FREEWAYS AND SURFACE ARTERIALS

		AUTOS			TRUCKS (2)	
			OXIDES		****	OXIDES
	CARBON	HYDRO-	0 <b>F</b>	CARBON	HYDRO-	OF
SPEED	MONOXIDE	CARBONS(3)	NITROGEN	MONOXIDE	CARBONS(3)	NITROGEN
(MPH)		AMS PER MILE	)======	(GR	AMS PER MILE	)
-						
60.0	19.11	1.87	4.72	65.96	4.17	13.19
55.0	22.64	2.14	4.23	61.75	4.32	11.51
50.0	24.08	2.25	3,97	59.02	4.43	10.44
45.0	25.30	2.33	3.83	58,59	4.64	9.75
40.0	27.49	2.50	3.73	61.08	5.08	9.28
35.0	31,15	2.78	3.63	66.92	5.73	8,93
30.0	36.44	3.17	3.48	76.61	6.74	8,65
25.0	43.48	3.68	3.30	91.16	8.20	8.44
20.0	53,11	4.37	3.09	112.06	10.39	8,35
15.0	68,94	5.47	2.92	148.12	13,96	8.48

#### B. EMISSIONS FROM AUTU STARTS

PERCENT OF TRIPS		EMISSIONS	
STARTING	CARBON	HYDRO-	OXIDES OF
COLD(4)	MONOXIDE	CARBONS(3)	NITROGEN
	GRAMS PER	TRIP	
0	15.5	3.9	4.6
10	33.6	4.9	4.6
20	51.9	5.9	4.6
30	69.9	6.9	4.5
40	89.0	7.8	4.5
50	107.	8.8	4.4
60	126.	9.8	4.4
70	143.	10.7	4.4
80	161.	11.7	4.3
90	180.	12.7	4.3
100	198.	13.6	4.3

#### C. OTHER EMISSIONS

- 1. HOT SOAK EMISSIONS (HC) : 11.8 G/AUTO TRIP
- 2. DIURNAL EVAPORATIVE EMISSIONS (HC) : 19.4 G/AUTO/DAY
- 3. DIURNAL EVAPORATIVE EMISSIONS (HC) : 21.0 G/TRUCK/DAY

#### NOTE: THESE NOTES APPLY TO ALL 4-8 TABLES (A) THROUGH (D)

- (1) MOBILE SOURCE EMISSIONS ARE GENERATED IN FOUR WAYS:
  - 1. FROM VEHICLES TRAVELING IN HOT, STABILIZED MODE; THAT IS, AFTER THE ENGINE AND CATALYTIC CONVERTER (IF ANY) HAVE WARMED UP TO THEIR MOST EFFICIENT OPERATING TEMPERATURE RANGE. (CO, HC, AND NOX EMISSIONS.)
  - 2. FROM VEHICLE STARTS; ADDITIONAL EMISSIONS ARISE WHEN AN ENGINE IS STARTED, REGARDLESS OF THE TRAVEL DISTANCE. (CO, HC, AND NOX EMISSIONS.)
  - 3. FROM HOT SOAKS; WHEN AN ENGINE IS TURNED OFF, HYDRO-CARBONS ARE EVAPORATED FROM UNBURNED FUEL IN THE CRANKCASE (HC ONLY).
  - 4. FROM DIURNAL EVAPORATION: DAILY TEMPERATURE CYCLES CAUSE EVAPORATION OF HYDROCARBONS FROM FUEL TANKS, WHETHER OR NOT THE VEHICLES ARE USED. (HC ONLY)

PREVIOUS EMISSIONS ESTIMATES HAVE BASED ALL FACTORS SOLELY ON VMT (AS IN TABLE 4-7). A MORE SATISFACTORY APPROACH IS TO COMPUTE EACH COMPONENT SEPARATELY USING DATA IN TABLE 4-8. NOTE THAT THE COMPONENTS EMPLOY DIFFERENT BASES:

- * HOT OPERATION EMISSIONS ARE PER VMT
- * VEHICLE START EMISSIONS ARE PER TRIP
- * HOT SOAK EMISSIONS ARE PER TRIP
- * DIURNAL EMISSIONS ARE PER VEHICLE

THE MIX OF AUTOS AND TRUCKS IS AS IN TABLES 4-7.

- (2) BECAUSE OF DATA LIMITATIONS, IT IS CURRENTLY IMPOSSIBLE TO SPLIT TRUCK START-UP AND HOT SOAK EMISSIONS FROM HOT STABI-LIZED EMISSIONS. THEREFORE, THESE TRUCK FACTORS INCLUDE THREE COMPONENTS, EXCLUDING ONLY DIURNAL EMISSIONS.
- (3) HYDRO CARBON EMISSIONS INCLUDE REACTIVE HYDROCARBONS ONLY; METHANE IS EXCLUDED.
- (4) FOR VEHICLES WITH CATALYTIC CONVERTERS, ANY ENGINE STARTED MORE THAN ONE HOUR SINCE ITS LAST OPERATION IS CLASSIFIED IN THE COLD START MODE. FOR NON-CATALYTIC VEHICLES, THE INTER-VAL IS 4 HOURS. IN THE ABSENCE OF LOCAL DATA, A DEFAULT VALUE OF 53 PERCENT COLD STARTS MAY BE USED FOR 1977. THIS VALUE INCREASES WITH CALENDAR YEAR AS THE AUTO FLEET IS INCREASINGLY POPULATED BY CATALYST-EQUIPPED VEHICLES.
- NOTE: ALL FACTORS HAVE BEEN COMPUTED FOR AN ASSUMED TEMPERATURE OF 75 DEGREES FAHRENHEIT.

SOURCES: ENVIRONMENTAL PROTECTION AGENCY, "MOBILE SOURCE EMIS-

SION FACTORS," WASHINGTON, DC; MARCH 1978.

FEDERAL HIGHWAY ADMINISTRATION, "HOW TO PREPARE THE TRANSPORTATION PORTION OF YOUR STATE AIR QUALITY IMPLE-MENTATION PLAN," WASHINGTON, DC; NOVEMBER 1978.

## TABLE 4-8(B)

## POLLUTANT EMISSION FACTOR COMPONENTS (1) (1982)

## A. EMISSIONS FROM HOT STABILIZED OPERATION FREEWAYS AND SURFACE ARTERIALS

		AUTOS		TRUCKS (2)			
			OXIDES			OXIDES	
	CARBON	HYDRO-	OF	CARBON	HYDRO-	0 <b>F</b>	
SPEED	MONOXIDE	CARBONS(3)	NITROGEN	MONOXIDE	CARBONS(3)	NITROGEN	
(MPH)	(GR	AMS PER MILE	)=====	(GR	AMS PER MILE	)	
				-		-	
60.0	8,32	0.61	3.19	58,96	2,97	13,52	
55.0	11.89	0.78	2.82	58.42	3.13	11.24	
50.0	12,96	0.84	2.62	57.61	3.23	9.82	
45.0	13.20	0.88	2.51	57.95	3.41	8,93	
40.0	14.02	0.96	2.44	60.51	3.74	8.34	
35.0	15,95	1.09	2.35	65.84	4.29	7.93	
30.0	19.10	1.29	2.23	74.35	5.10	7.64	
25.0	23.29	1.56	2.07	86.62	6.28	7.47	
20.0	28.38	1.89	1.88	104.07	8.00	7.45	
15.0	35,53	2.38	1.69	130.82	10.73	7.70	

## B. EMISSIONS FROM AUTO STARTS

PERCENT OF TRIPS		EMISSIONS	
STARTING	CARBON	HYDRO-	OXIDES OF
COLD(4)	MONOXIDE	CARBONS(3)	NITRUGEN
	GRAMS PER	TRIP======	
0	9,8	3.1	2.1
10	22.7	3.6	2.3
20	35.4	4.2	2.5
30	48.3	4.8	2.6
40	61.1	5.4	2.8
50	73.9	6.0	2.9
60	87.0	6.6	3.1
70	99.0	7.2	3.2
80	112.	7.8	3.4
90	124.	8.3	3.5
100	137.	8.9	3.7

## C. OTHER EMISSIONS

1.	HOT SOAK EMISSIONS (HC)	:	6.0	G/AUTO TRIP
2.	DIURNAL EVAPORATIVE EMISSIONS (HC)	:	9.3	G/AUTO/DAY
3.	DIURNAL EVAPORATIVE EMISSIONS (HC)	:	14.0	G/TRUCK/DAY

(4) -----<u>64</u> PERCENT COLD STARTS------

## TABLE 4-8(C)

## POLLUTANT EMISSION FACTOR COMPONENTS (1) (1987)

#### A. EMISSIONS FROM HOT STABILIZED OPERATION FREEWAYS AND SURFACE ARTERIALS

		AUTOS			TRUCKS (2)	
	CARBON	HYDRO-	OXIDES OF	CARBON MONOXIDE	HYDRO- CARBONS(3)	OXIDES OF NITROGEN
SPEED (MPH)	MONOXIDE	CARBONS(3) AMS PER MILE	NITROGEN		AMS PER MILE	
60.0	3,55	0,25	2.51	39.21	1.54	10.16
55.0	5.54	0.35	2.21	40.33	1.70	8.41
50.0 45.0	6.09 6.11	0.39	2.05 1.96	40.46 40.93	1.81 1.94	7.33 6.65
40.0	6.39	0.44	1.90	40.73	2.18	6,19
35.0	7.25	0.50	1.83	46.35	2.57	5.87
30.0 25.0	8.72 10.67	0.60 0.74	1.73 1.60	52.02 59.99	3.15 3.97	5.64 5.49
20.0	12.89	0.90	1.44	70.90	5.15	5.45
15.0	15.73	1.13	1.28	87.05	7.04	5.61

#### B. EMISSIONS FROM AUTO STARTS

PERCENT OF TRIPS			
STARTING	CARBON	HYDRO-	OXIDES OF
COLD(4)	MONOXIDE	CARBONS(3)	NITROGEN
	GRAMS PER	TRIP	
0	9.7	3.3	1.2
10	19.2	3.6	1.4
20	28.7	4.1	1.6
30	38.2	4.4	1.8
40	47.6	4.8	2.0
50	57.1	5.2	2.1
60	66.5	5.6	2,3
70	76.4	6.0	2.5
80	85.4	6.4	2.7
90	95.4	6.8	2.9
100	105.0	7.2	3.1

## C. OTHER EMISSIONS

1.	HOT SOAK EMISSIONS (HC)		:	2.2 G/AUTO TRIP
2.	DIURNAL EVAPORATIVE EMISSIONS (	(HC)	1	3.1 G/AUTO/DAY
3.	DIURNAL EVAPORATIVE EMISSIONS	(HC)	:	7.5 G/TRUCK/DAY

(4) -----67 PERCENT COLD STARTS-----

## TABLE 4-8(D)

#### POLLUTANT EMISSION FACTOR COMPONENTS (1) (1995)

#### A. EMISSIONS FROM HOT STABILIZED OPERATION FREEWAYS AND SURFACE ARTERIALS

	_	AUTOS			TRUCKS (2)	
			OXIDES		**********	OXIDES
	CARBON	HYDRO-	0 <b>F</b>	CARBON	HYDRO-	0 <b>F</b>
SPEED	MONOXIDE	CARBONS(3)	NITROGEN	MONOXIDE	CARBONS(3)	NITROGEN
(MPH)	(GR	AMS PER MILE	)	(GR	AMS PER MILE	)
		• • •				( ==
60.0	2.01	0.16	2.38	26.48	0.75	6.52
55.0	3.30	0.23	2.09	27.56	0.88	5.56
50.0	3.64	0.26	1.93	27.82	0.97	4.96
45.0	3.62	0.27	1.85	28.14	1.09	4.58
40.0	3,75	0.29	1.80	29.24	1.28	4.31
35.0	4.24	0.34	1.73	31.44	1.59	4.09
30.0	5.11	0.41	1.63	34.88	2.06	3.91
25.0	6.26	0.50	1.50	39.64	2.75	3.75
20.0	7.52	0.61	1.35	45.91	3,72	3.64
15.0	9.02	0.77	1.20	54.74	5.16	3.63

#### B. EMISSIONS FROM AUTO STARTS

PERCENT OF TRIPS	EMIS	SSIONS	
STARTING	CARBON	HYDRO-	OXIDES OF
COLD(4)	MONOXIDE	CARBONS(3)	NITROGEN
	GRAMS PER	TRIP	********
0	11.1	3.7	1.2
10	20.4	4.0	1.4
20	29.7	4.4	1.6
30	39.0	4.8	1.8
40	48.3	5.1	2.0
50	57.6	5.5	5.2
60	66.9	5.9	2.4
70	76.2	6.2	2.7
80	85.5	6.6	2.9
	•		
90	94.8	7.0	3.1
100	104.0	7.3	3.3

## C. OTHER EMISSIONS

1.	HOT SOAK EMISSIONS (HC)	1	1.1	G/AUTO TRIP
2.	DIURNAL EVAPORATIVE EMISSIONS (HC)	:	1.1	G/AUTO/DAY
3.	DIURNAL EVAPORATIVE EMISSIONS (HC)	:	2.2	G/TRUCK/DAY

(4) -----68 PERCENT COLD STARTS-----

#### EXPRESSWAY AND FREEWAY LAND COSTS (MILLION \$ PER LANE MILE)

		POPULATION GROUPS (1000'S)				)	
FACILITY TYPE	LOCATION	0- 50	50- 100	100- 250	250- 500	500- 1000	OVER 1000
NEW ROADS(1)	CBD	0.47	0.47	0.56	0.71	0.94	1.45
	FRINGE	0.47	0.47	0.51	0.56	0.54	0.94
	RESIDENTIAL	0.42	0.42	0.47	0.47	0.60	0.84
RECONSTRUCTION(2)	CBD	0.47	0.47	0.56	0.67	0.90	1.36
	FRINGE	0.25	0.25	0.28	0.30	0.37	0.47
	RESIDENTIAL	0.21	0.21	0.22	0.25	0.26	0.34
MAJOR WIDENING(2)	CBD	0.37	0.37	0.39	0.45	0.51	0.67
	FRINGE	0.18	0.18	0.22	0.26	0.31	0.45
	RESIDENTIAL	0.05	0.05	0.79	0.12	0.21	0.39

NOTE: 1976 COST DATA.

(1) THIS ASSUMES THAT NO LAND HAS BEEN PURCHASED BEFOREHAND.

(2) THIS ASSUMES OWNERSHIP OF MOST LAND NEEDED.

NOTE: THE ABOVE DATA REFLECT A PER LANE COST.

SOURCE: BHATT, K., AND OLSSON, M., <u>CAPACITY AND COST INPUTS FOR</u> <u>COMMUNITY AGGREGATE PLANNING MODEL (CAPM)</u>, WORKING PAPER 5002-3, THE URBAN INSTITUTE, WASHINGTON, D.C., DECEMBER, 1973

> SKINNER, L., <u>COSIING URBAN TRANSPORATION ALTERNATIVES</u>, U.S. DEPARTMENT OF TRANSPORTATION, FEDERAL HIGHWAY ADMINISTRATION, WASHINGTON, D.C.

#### TABLE 4-10

#### ARTERIAL LAND COSTS (MILLION \$ PER LANE MILE)

		POPULATION GROUP (1000'S)					
FACILITY TYPE	LOCATION	0- 50	50- 100	100-250	250- 500	500- 1000	0VER 1000
NEW ROADS(1)	CBD	0.42	0.42	0.47	0.54	0.68	0.98
	FRINGE	0.38	0.38	0.41	0.43	0.51	0.64
	RESIDENTIAL	0.22	0.22	0.24	0.25	0.28	0.35
RECONSTRUCTION(2)	CBD	0.14	0.14	0.14	0.17	0.18	0.25
	Fringe	0.12	0.12	0.12	0.13	0.14	0.18
	Residential	0.09	0.09	0.09	1.12	0.13	0.14
MAJOR WIDENING(2)	CBD	0.21	0.21	0.25	0.30	0.43	0.71
	Fringe	0.21	0.21	0.25	0.29	0.31	0.42
	Residential	0.12	0.12	0.13	0.14	0.21	0.34

NOTE: 1976 COST DATA.

(1) THIS ASSUMES THAT NO LAND HAS BEEN PURCHASED BEFOREHAND.

(2) THIS ASSUMES OWNERSHIP OF MOST LAND NEEDED.

NOTE: THE ABOVE DATA REFLECT A PER LANE COST.

SOURCE: BHATT, K., AND OLSSON, M., <u>CAPACITY AND COSI INPUTS FOR</u> <u>COMMUNITY AGGREGATE PLANNING MODEL (CAPM)</u>, WORKING PAPER 5002-3, THE URBAN INSTITUTE, WASHINGTON, D.C., DECEMBER, 1973

> SKINNER, L., <u>COSIING URBAN IRANSPORATION ALIERNATIVES</u>, U.S. DEPARTMENT OF TRANSPORTATION, FEDERAL HIGHWAY ADMINISTRATION, WASHINGTON, D.C.

#### EXPRESSWAY AND FREEWAY CONSTRUCTION COSTS (MILLION \$ PER LANE MILE)

	POPULATION GROUP (1000'S						)	
FACILITY TYPE	LOCATION	0- 50	<b>50-</b> 100	100- 250	250- 500	500 <del>-</del> 1000	OVER 1000	
NEW ROAD	CBD	1.36	1.36	1.40	1.44	1.49	1.62	
	FRINGE	0.93	0.93	0.98	1.06	1.23	1.57	
	RESIDENTIAL	0.81	0.81	0.81	0.85	0.93	1.10	
RECONSTRUCTION(1)	CBD	1.47	1.47	1.48	1.49	1.55	1.65	
	FRINGE	0.81	0.81	0.84	0.85	0.89	0.93	
	RESIDENTIAL	0.67	0.67	0.68	0.72	0.79	0.89	
MAJOR WIDENING	CBD	1.41	1.41	1.44	1.57	1.66	1.94	
	Fringe	1.02	1.02	1.06	1.15	1.36	1.74	
	Residential	0.81	0.81	0.85	0.92	1.04	1.28	

NOTE: 1976 COST DATA.

(1) COSTS OF PERIODIC RESURFACING ARE INCLUDED IN THESE FIGURES.

NOTE: THE ABOVE DATA REFLECT A PER LANE COST.

COSTS ARE NOT BROKEN DOWN BY DESIGN TYPE (E.G., AT GRADE, ELEVATED, ETC.) BUT REFLECT THE AVERAGE OF THESE BY POPULATION GROUP.

SOURCE: BHATT, K., AND OLSSON, M., <u>CAPACITY AND COSI INPUTS FOR</u> <u>COMMUNITY AGGREGATE PLANNING MODEL (CAPM)</u>, WORKING PAPER 5002-3, THE URBAN INSTITUTE, WASHINGTON, D.C., DECEMBER, 1973

> SKINNER, L., <u>COSIING URBAN IRANSPORATION ALTERNATIVES</u>, U.S. DEPARTMENT OF TRANSPORTATION, FEDERAL HIGHWAY ADMINISTRATION, WASHINGTON, D.C.

#### ARTERIAL CONSTRUCTION COSTS (MILLION \$ PER LANE MILE)

		POPULATION GROUPS (1000'S				3)	
FACILITY TYPE	LOCATION	0- 50	50- 100	100- 250	250- 500	500- 1000	OVER 1000
NEW ROADS	CBD	0.43	0.43	0.47	0.51	0.60	0.73
	Fringe	0.38	0.38	0.39	0.43	0.47	0.60
	Residential	0.34	0.34	0.35	0.38	0.43	0.50
RECONSTRUCTION(1)	CBD	0.43	0.43	0.46	0.47	0.52	0.64
	FRINGE	0.39	0.39	0.41	0.43	0.46	0.51
	RESIDENTIAL	0.37	0.37	0.38	0.38	0.41	0.43
MAJOR WIDENING	CBD	0.43	0.43	0.47	0.51	0.55	0.72
	FRINGE	0.41	0.41	0.43	0.45	0.51	0.59
	RESIDENTIAL	0.41	0.41	0.43	0 45	0.51	0.59

(1) COSTS OF PERIODIC RESURFACING ARE INCLUDED IN THESE FIGURES.

NOTE: COSTS PROJECTED FROM A 1973 BASE TO A 1976 LEVEL USING THE FHWA FEDERAL AID HIGHWAY CONSTRUCTION INDEX.

THE ABOVE DATA REFLECT A PER LANE COST.

COSTS ARE NOT BROKEN DOWN BY DESIGN TYPE (E.G., AT GRADE, ELEVATED, ETC.) BUT REFLECT THE AVERAGE OF THESE BY POPULATION GROUP.

SOURCE: BHATT, K., AND OLSSON, M., <u>CAPACITY AND COSI INPUIS FOR</u> <u>CUMMUNITY AGGREGATE PLANNING MODEL (CAPM)</u>, WORKING PAPER 5002-3, THE URBAN INSTITUTE, WASHINGTON, D.C., DECEMBER, 1973

IV- 27

TABLE 4-13 ANNUAL COST OF MAINTENANCE (\$ PER LANE MILE)

	TYPE OF M	AINTENANCE	
FACILITY TYPE	GENERAL	LIGHTING	TOTAL
EXPRESSWAYS	\$2860	\$2490	\$5350
ARTERIALS	\$1470	\$ 580	\$2050
RESIDENTIAL AND CBD STREETS	\$1100	\$1050	\$2150

- NOTE: DATA EXPRESSED IN TERMS OF 1976 COSTS. THESE FIGURES DO NOT INCLUDE PERIODIC RESURFACING COSTS. PERIODIC RESURFACING IS INCLUDED IN REHABILITATION COSTS OF TABLES 4-12 AND 4-13.
- SOURCE: BHATT, K., AND OLSSON, M., "ANALYSIS OF SUPPLY AND ESTIMATES OF REVENUE COSTS," TECHNICAL REPORT 2, THE URBAN INSTITUTE, WASHINGTON, D.C., NOVEMBER, 1973

SKINNER, L., <u>COSIING URBAN TRANSPORATION ALTERNATIVES</u>, U.S. DEPARTMENT OF TRANSPORTATION, FEDERAL HIGHWAY ADMINISTRATION, WASHINGTON, D.C.

#### SURFACE PARKING COSTS

	LAND AND	
	CONSTRUCTION	
LAND CUST	COST(1)	ANNUAL OPERATING COST(2)
PER SQ FT	PER STALL	PER STALL
		*******
\$15	\$5,380	\$325
12	4,380	290
10	3,720	265
8	3,060	240
5	2,080	205
2	1,080	165
1	760	155

(1) COSTS INCLUDE IMPROVEMENT COSTS AND PRORATED LAND COSTS BASED ON A 330 SQUARE FOOT STALL.

- (2) INCLUDES PROPERTY TAXES.
- NOTE: DATA PROJECTED FROM 1970 BASE TO 1976, USING ENR CON-STRUCTION INDEX FOR CONSTRUCTION EXPENDITURE AND USING CONSUMER PRICE INDEX FOR OPERATING COSTS.
- SOURCES: PARKING STANDARDS REPORT, PARKING STANDARDS DESIGN ASSOCIATES, LOS ANGELES, 1971

#### UNDERGROUND STRUCTURE PARKING COSTS(1)

PARKING METHOD	CONSTRUCTION COST PER STALL	ANNUAL OPERATING Costs per stall
SELF PARK - SINGLE DEPTH(2)	\$7,320	\$305
SELF PARK - TANDEM	6,100	280
ATTENDANT ASSIST - TANDEM	6,100	315
ATTENDANT PARK - TANDEM	6,100	360

(1) COSTS INCLUDE CONSTRUCTION COSTS, BASED ON 330 SQUARE FOOT STALL.

(2) SINGLE DEPTH STALL IS 360 SQUARE FEET.

- NOTE: COSTS UPDATED TO 1976 FROM 1970 BASE, USING THE ENR CONSTRUCTION INDEX FOR CONSTRUCTION EXPENDITURES AND THE CONSUMER PRICE INDEX FOR OPERATING COSTS.
- SOURCE: PARKING STANDARDS REPORT, PARKING STANDARDS DESIGN ASSOCIATES, LOS ANGELES, 1971

## TABLE 4-16

#### MULTI-LEVEL STRUCTURE PARKING COSTS

	TOT	AL COST P	ER STALL	(1)	
		NUMBER O	F LEVELS		
LAND COST PER SQ FT	3	5		9	ANNUAL OPERATING(2) COST PER STALL
\$150	\$18,150	\$12,050	\$9,720	\$8,650	\$505
125	15,400	10,400	8,540	7,730	460
100	12,650	8,750	7,360	6,820	410
80	10,450	7,430	6,420	6,080	375
60	8,250	6,110	5,480	5,350	335
40	6,050	4,790	4,535	4,620	295
20	3,850	3,470	3,590	3,880	260
10	2,750	2.810	3,120	3,520	240
5	2,200	2,480	2,890	3,330	230
2	1,870	2,280	2,740	3,220	225

(1) COSTS INCLUDE CONSTRUCTION AND PRORATED LAND COSTS BASED ON A 330 SQUARE FOOT STALL.

(2) INCLUDES PROPERTY TAXES.

- NOTE: DATA PROJECTED FROM 1970 BASE TO 1976, USING ENR CONSTRUCTION INDEX FOR CONSTRUCTION EXPENDITURES AND USING CONSUMER PRICE INDEX FOR OPERATING COSTS.
- SOURCE: PARKING STANDARDS REPORT, PARKING STANDARDS DESIGN ASSOCIATES, LOS ANGELES, 1971

#### TABLE 4-17

## URBAN ACCIDENT FREQUENCY ON SURFACE STREETS PER MILLION VEHICLE MILES (1967-1970)

	rs rs)			
FACILITY	PROPERTY DAMAGE(1)	INJURY	FATALITY	TOTAL
FREEWAY	4.028	.642(1.025)	.016(0.019)	4.686(1.044)
ARTERIAL	16.523	1.644(2.650)	.029(0.032)	18.196(2.682)
LOCAL	16,523(2)	2.477(3.646)	.028(0.030)	19.028(3.676)

- (1) THE NUMBER OF PROPERTY DAMAGE ACCIDENTS WAS MULTIPLIED BY 2.94 TO ACCOUNT FOR UNREPORTED ACCIDENTS; PERSON ACCIDENTS ARE NOT INCLUDED IN THIS CATEGORY.
- (2) LACKING DATA FOR LOCAL STREETS, IT HAS BEEN ASSUMED THAT LOCAL AND ARTERIALS HAVE THE SAME PROPERTY DAMAGE RATE.
- NOTE: NUMBERS IN PARENTHESES ARE THE NUMBERS OF PERSONS IN-VOLVED IN THE PARTICULAR TYPE OF ACCIDENT IN QUESTION; DATA REFLECT NATIONAL AVERAGES FROM 1967-1970 AND IN-CLUDE A MIXED TRAFFIC STREAM (TRUCKS, BUSES, AUTOMOBILES, ETC.)
- SOURCES: FEDERAL HIGHWAY ADMINISTRATION, "FATAL AND INJURY ACCIDENT RATES ON FEDERAL AID AND OTHER HIGHWAY SYSTEMS," U.S. DEPARTMENT OF TRANSPORTATION, 1973.

GENDELL, D.S., "ACCIDENT RATES AND COSTS," TRANS TECHNICAL NOTES, U.S. DEPARTMENT OF TRANSPORTATION, FEDERAL HIGHWAY ADMINISTRATION, SEPTEMBER, 1971

IV- 32

IV- 33

#### TABLE 4-18

-

#### COST OF ACCIDENTS

	DIRECT COSTS PER ACCIDENT (1976 DOLLARS)					
ACCIDENT TYPE	AUTOM	OBILE	TRUCK			
	URBAN	RURAL	URBAN	RURAL		
FATAL NONFATAL INJURY PROPERTY DAMAGE	\$27,515 4,830 599	\$27,703 5,961 731	\$24,529 2,593 405	\$28,353 6,672 861		

- NOTE: THESE COSTS REPRESENT DIRECT COSTS UNLY (MEDICAL EXPENSES AND VEHICLE REPAIR) DERIVED FROM AN ANALYSIS OF ILLINOIS DATA. DISCOUNTED FOREGONE EARNINGS AND VALUE OF LIFE ARE NOI INCLUDED. COSTS HAVE BEEN CUNVERTED FROM AN INVOLVEMENT TO AN ACCIDENT BASE. 1969 BASE FIGURES PROJECTED TO 1976 USING CONSUMER PRICE INDEX.
- SOURCE: GENDELL, D.S., "ACCIDENT RATES AND COSTS," TRANS TECHNICAL NOTES, FEDERAL HIGHWAY ADMINISTRATION, SEPTEMBER, 1971

#### TABLE 4-19

# COMPOSITE VEHICLE ACCIDENT COSTS

	DIRECT COSTS PER ACCIDENT (1976 DOLLARS)			
ACCIDENT TYPE		URBAN	RURAL	
		SURFACE ARTERIAL	FREEWAY	OTHER ARTERIAL
FATAL NONFATAL INJURY PROPERTY DAMAGE		\$27,328 4,789 585	\$27,798 6,062 750	\$27,785 6,050 747

- NOTE: THE COSTS IN THIS TABLE HAVE BEEN DERIVED BY WEIGHTING THE COSTS IN TABLE 4-19 IN PROPORTION TO THE VEHICLES WHICH ARE AUTOMOBILES OR TRUCKS BY FACILITY AND AREA TYPE.
- SOURCE: GENDELL, D. S., "ACCIDENT RATES AND COSTS," TRANS TECHNICAL NOTES, FEDERAL HIGHWAY ADMINISTRATION, SEPTEMBER, 1971

# TABLE 4-20

# TYPES OF MOTOR VEHICLES INVOLVED IN ACCIDENTS (1974)

	FATAL	ALL	PERCENT OF
ТҮРЕ	ACCIDENTS	ACCIDENTS	REGISTRATION
TYPE	(PERCENT)	(PERCENT)	(PERCENT)
PASSENGER CAR	71.3	82.7	77.7
TRUCK	20.1	13.7	18.4
TAXICAB	0.4	0.6	0.2
MOTORCYCLE	5.7	1.5	3.7
OTHER	2.5	1.5	DATA NOT
			AVAILABLE

SDURCE: NATIONAL SAFETY COUNCIL, "ACCIDENT FACTS," 1975 EDITION

#### CHAPTER V

#### ACTIVITY CENTER SYSTEMS

THIS CHAPTER CONTAINS A SET OF VALUES FOR PARAMETERS THAT CHARACTERIZE ACTIVITY CENTER SYSTEMS. ACTIVITY CENTER SYSTEMS ARE A NEW CLASS OF TRANSPORTATION SYSTEM. BECAUSE OF THE RAPIDLY CHANGING STATE OF THE ART FOR THESE SYSTEMS, AND THE RELATIVE RARENESS OF INSTALLATIONS, TWO POINTS MUST BE MADE. THE DATA ARE LIMITED, AND THOSE PRESENTED MUST BE USED WITH CARE. DATA ARE PRESENTED ONLY FOR SYSTEMS WHICH ARE ACTUALLY IN USE, UNDER CONSTRUCTION, OR FOR WHICH FIRM QUOTES FOR CONSTRUCTION HAVE BEEN SUBMITTED. THE SET OF ACTIVITY SYSTEMS CENTERS INCLUDED HERE IS NOT EXHAUSTIVE, BUT REPRESENTS THOSE NOW AVAILABLE FOR INSTALLATION. ACTIVITY CENTER SYSTEMS - VEHICLE CAPACITIES(1)

		CAPACITY Range 4-	-PERSONS	VEHICLE CAPAC	-
	SEALED SI	LANDING	TOTAL Crush <u>Capacity</u>	MAX. NUMBER OF VEHICLES <u>IN TRAIN</u>	CRUSH TRAIN CAPACIIY
AIRTRANS	16	24	60	2	120
ACT	10	14	30	1	30
DASHAVEYOR I	40	20	60	4	240
DASHAVEYOR II	45	55	100	4	400
MORGANTOWN	8	7	21	1	21
SKYBUS - TAMPA	0	100	100	1	100
SKYBUS - SEATA	C 12	90	102	2	204
JETRAIL	6	9	15	1	15
CARVEYOR	6	6	12	1	12
ROHR P	6	6	14	3 (THE STANDARD UNIT)	42
ROHR N	75	0	75	2	150
ROHR M(2)	26	28	54	4	216

(1) REFER TO APPENDIX E FOR A DETAILED DESCRIPTION OF EACH SYSTEM.

NOTE: TABLE 5-2 TOGETHER WITH THIS TABLE WILL ENABLE A ROUGH CALCULATION TO BE MADE OF THE THEORETICAL MAXIMUM LINE CAPACITY FOR A SYSTEM:

> (MAX TRAIN CAPACITY) MAX CAPACITY = (MIN HEADWAY)

TABLE 5-3 GIVES THE REPORTED CAPACITY FOR EACH OF THE SYSTEMS.

THE NUMBER OF VEHICLES NEEDED TO HANDLE THE CAPACITY WILL BE A FUNCTION OF AVERAGE SPEED, LENGTH OF ROUTE, DWELL TIME, AND VEHICLE MAINTENANCE REQUIREMENTS. IT IS CALCULATED AS:

REQUIRED VEHICLES = (REQUIRED CAPACITY PER HOUR) (TRAIN CAPACITY X AVERAGE SPEED)

(NUMBER OF VEHICLES PER TRAIN) X (LENGTH OF ROUTE) X

(MAINTENANCE FACTOR)

THE MAINTENANCE FACTOR IS THAT PROPORTION BY WHICH THE FLEET MUST BE INCREASED TO ALLOW FOR REGULARLY SCHEDULED MAINTENANCE. IN THIS FORMULA THE AUGMENTATION OF THE FLEET BY 5% TO ACCOUNT FOR THIS WOULD YIELD A MAIN-TENANCE FACTOR OF 1.05.

SOURCES: DE LEUW, CATHER & COMPANY ET AL, <u>AUIOMAIED SMALL VEHICLE</u> <u>EIXED GUIDEWAY SYSIEMS SIUDY</u>, TWIN CITIES METROPOLITAN TRANSIT COMMISSION, 1975

> CASEY, ROBERT, <u>SUMMARY DAIA FOR SELECTED NEW URBAN</u> <u>IRANSPORTATION SYSTEMS</u>, DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., NOVEMBER, 1972

LEA TRANSIT COMPENDIUM, N.D. LEA TRANSPORTATION RESEARCH CORPORATION, 1974

ACTIVITY CENTER SYSTEMS - SPEEDS, HEADWAYS, AND DWELL TIMES(1)

ISPEED RANGE 12-50 MPHI IHEADWAY RANGE 5-105 SECI IDWELL TIME RANGE 15-45 SECI

SYSTEM	CRUISE SPEED(2) MPH	MIN. HEADWAY SEC	MIN. DWELL TIME SEC
AIRTRANS	17	18	30
ACT	30	5	20
DASHAVEYOR I	30	15	15-20
DASHAVEYOR II	50	15	15-20
MORGANTOWN	30	15	15
SKYBUS - TAMPA	30	70	30
SKYBUS - SEATAC	30	105	45
JETRAIL	15	18	20
CARVEYOR	15	4.5	18-28
ROHR P	12	60	N.A.
ROHR M/N	30	60	30

 (1) REFER TO APPENDIX E FOR A DETAILED DESCRIPTION OF EACH SYSTEM.
 (2) CRUISE SPEED IS THE SPEED AT WHICH THE VEHICLE NORMALLY OPERATES WITH NO ACCELERATION OR DECELERATION. AVERAGE SPEED WILL BE DETERMINED BY STATION SPACING, ACCELERATION RATES, AND SUCH FACTORS AS SWITCHING SPEED (THIS MAY BE QUITE LOW; E.G., AIRTRANS=8 MPH, DASHAVEYOR=7.5 MPH).

- NOTE: THESE ARE REPORTED VALUES AND SHOULD BE TREATED WITH CAUTIOUS SKEPTICISM.
- SOURCES: DE LEUW, CATHER & COMPANY ET AL, <u>AUIOMAIED_SMALL_VEHICLE</u> <u>FIXED_GUIDEWAY_SYSIEMS_SIUDY</u>, TWIN CITIES AREA METRO-POLITAN TRANSIT COMMISSION, 1975

CASEY, ROBERT, <u>SUMMARY DAIA FOR SELECTED NEW URBAN</u> <u>IRANSPORIATION SYSTEMS</u>, DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., NOVEMBER, 1972

LEA TRANSIT COMPENDIUM, N.D. LEA TRANSPORTATION RESEARCH CORPORATION, 1974

ACTIVITY CENTER SYSTEMS - CAPACITIES(1) RANGE OF INSTALLED SYSTEMS - 800-9,000 PASSENGERS/HR . IRANGE OF THEORETICAL SYSTEMS - 2,000-96,000 PASSENGERS/HRI THEORETICAL MAXIMUM(3) REPORTED/INSTALLED(2) LINE CAPACITY SYSTEM CAPACITY (PASSENGER/HR) (PASSENGER/HR) AIR TRANS 9.000 24.000 ACT(4) 800 21,600 DASHAVEYOR I(4) 7.200 57,600 DASHAVEYOR II N.A. 96,000 MORGANTOWN 5,040 5.040 SKYBUS - TAMPA 5.150 5.040 7,000 SKYBUS - SEATAC 4,800 3.000 JETRAIL 2,000 CARVEYOR N.A. 9,600 ROHR P 2,160 2,520 ROHR N(4) 7.800 9.000 ROHR M 13,000 N.A.

(1) REFER TO APPENDIX E FOR A DETAILED DESCRIPTION OF EACH SYSTEM.

- (2) REPORTED/INSTALLED CAPACITIES ARE FLOWS REALIZED GIVEN THE PARTICULAR CONFIGURATION OF THE SYSTEM IN TERMS OF STATION SPACING, ACCESS/EGRESS, ETC.
- (3) CALCULATED USING VALUES IN TABLES 5-1 AND 5-2 AND FORMULA

(4) VALUES WERE CALCULATED FROM INSTALLATION DATA.

SOURCES: DE LEUW, CATHER & COMPANY ET AL, <u>AUTOMATED SMALL VEHICLE</u> <u>EIXED GUIDEWAY SYSTEMS STUDY</u>, TWIN CITTES AREA METRO-POLITAN TRANSIT COMMISSION, 1975

> CASEY, ROBERT, <u>SUMMARY DAIA FOR SELECIED NEW URBAN</u> <u>IRANSPORIATION SYSTEMS</u>, DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., NOVEMBER, 1972

LEA TRANSIT COMPENDIUM, N.D. LEA TRANSPORTATION RESEARCH CORPORATION, 1974

V- 5

#### ACTIVITY CENTER SYSTEMS CAPITAL COSTS(1)

IRANGE (\$ MILL/MILE)|
| .8 - 11.0 |
+

NAME OF SYSTEM	YEAR	COST PER LANE MILE(2) ( <u>\$ MILL/MILE)</u>	SIZE OF INSTALLATION (MILES)
AIRTRANS	1972	2.7	13
SKYBUS - TAMPA	1968	4.1	1.35
SKYBUS - SEATAC	1969	3.1	1.71
JETRAIL(3)	-	1.2	1.4
MORGANTOWN	1973	11.0	5.5
DASHAVEYOR	1973	4.0	3
ACT - FAIRLANE	1974	4.0	1
ACT - BRADLEY	1973	6.8	.69
ACT - EL PASO	1974	9.3	1.5
ROHR M-N SERIES(3)	1972	1.0	1
ROHR P SERIES(3)	1971	.8	1
CARVEYUR (SEATAC QUOTE)	1968	2.8	1.71
CARVEYOR (TAMPA QUOTE)	1969	3.4	1.35

(1) REFER TO APPENDIX E FOR DETAILED DESCRIPTION OF EACH INSTALLATION.

 (2) THESE COSTS HAVE BEEN BASED ON SINGLE LANE GUIDEWAY. WHERE DOUBLE GUIDEWAY COSTS WERE QUOTED, THEY WERE DIVIDED BY TWO TO DERIVE A SINGLE GUIDEWAY COST. THE ONLY DOUBLE GUIDEWAY COSTS TREATED IN THE ABOVE TABLE WERE FOR THE CARVEYOR SYSTEMS.
 (3) BASED ON UNIT PRICES.

NOTE: COSTS INCLUDE VEHICLES, TERMINALS, GUIDEWAY, COMMUNICA-TIONS AND CONTROL, MAINTENANCE SHOP, AND STORAGE YARDS; DO NOT INCLUDE ROW ACQUISITION, SITE CLEARING, DIFFICULT CONSTRUCTION PROBLEMS, OR OPERATING COSTS. SOURCES: DE LEUW, CATHER & COMPANY ET AL, <u>AUIOMAIED SMALL VEHICLE</u> <u>EIXED GUIDEWAY SYSIEMS SIUDY</u>, TWIN CITIES AREA METROPOL-ITAN TRANSIT COMMISSION, 1975

> CASEY, ROBERT, <u>SUMMARY DAIA FOR SELECIED NEW URBAN</u> <u>IRANSPORIATION SYSTEMS</u>, DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., NOVEMBER, 1972

LEA TRANSIT COMPENDIUM, N.D. LEA TRANSPORTATION RESEARCH CORPORATION, 1974

SIBLEY, KEITH, <u>MASS TRANSIT TECHNOLOGY: A COMPREHENSIVE</u> <u>SURVEY OF VEHICULAR HARDWARE</u>, RENSSELAER POLYTECHNIC INSTITUTE, TROY, N.Y., 1973

PERCENTAGE CONTRIBUTION TO TOTAL SYSTEM CONSTRUCTION COST

ITEM	AVERAGE CONTRIBUTION	RANGE
GUIDEWAY AND ELECTRIFICATION		<u>33-78</u>
VEHICLES	16	1-39
STATIONS MARDS AND SHORE	14	3-28
YARDS AND SHOPS	5	4-7
COMMUNICATIONS AND CONTROL	10	2-26

SOURCES: DE LEUW, CATHER & COMPANY ET AL, <u>AUIOMAIED SMALL VEHICLE</u> <u>EIXED GUIDEWAY SYSIEMS SIUDY</u>, TWIN CITIES AREA METROPOL-ITAN TRANSIT COMMISSION, 1975

> CASEY, ROBERT, <u>SUMMARY DAIA FOR SELECTED NEW URBAN</u> <u>IRANSPORIATION SYSTEMS</u>, DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., NOVEMBER, 1972

LEA IRANSIT COMPENDIUM, N.D. LEA TRANSPORTATION RESEARCH CORPORATION, 1974

SIBLEY, KEITH, <u>MASS IRANSII IECHNOLOGY: A COMPREHENSIVE</u> <u>SURVEY DE VEHICULAR HARDWARE</u>, RENSSELAER POLYTECHNIC INSTITUTE, TROY, N.Y., 1973

V÷ 9

TABLE 5-6 ACTIVITY CENTER SYSTEMS STATION COSTS

> | RANGE | |\$20,000 - \$1,000,000| +-----+

SYSTEM	COST
MORGANTOWN	\$400,000-\$1,000,000
SKYBUS	\$5,000-\$100,000
JETRAIL	\$20,000
CARVEYOR	\$250,000

NOTE: SEE TABLE 5-4 FOR DATE OF COST.

And the second second and the second s

SOURCES: DE LEUW, CATHER & COMPANY ET AL, <u>AUTOMATED SMALL VEHICLE</u> <u>EIXED GUIDEWAY SYSTEMS STUDY</u>, TWIN CITTES AREA METRO-POLITAN TRANSIT COMMISSION, 1975

> CASEY, ROBERT, <u>SUMMARY DAIA FOR SELECIED NEW URBAN</u> <u>IRANSPORIATION SYSTEMS</u>, DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., NOVEMBER, 1972

LEA IRANSII COMPENDIUM, N.D. LEA TRANSPORTATION RESEARCH CORPORATION, 1974

SIBLEY, KEITH, <u>MASS IRANSII IECHNOLOGY: A COMPREHENSIVE</u> <u>SURVEY OF VEHICULAR HARDWARE</u>, RENSSELAER POLYTECHNIC INSTITUTE, TROY, N.Y., 1973

#### ACTIVITY CENTER SYSTEMS VEHICLE COSTS

IRANGE S PER VEHICLEI 1 4,000 - 250,000 I

SYSTEM	COST PER VEHICLE	COST PER PASSENGER SPACE AT CRUSH CAPACITY
DASHAVEYOR I	\$75,000-\$125,000	\$1,250-\$2,090
DASHAVEYOR II	\$100,000-\$150,000	\$1,000-\$1,500
MORGANTOWN	\$150,000	\$7,140
SKYBUS	\$250,000	\$2,500-\$2,800
CARVEYOR	\$4,000-\$8,000	\$333-\$667
ROHR M-N	\$120,000-\$160,000	\$1,500-\$2,000
ROHR P	\$8,400	\$600
JETRAIL	\$35,000	\$2,333

NOTE: REFER TO APPENDIX & FOR DETAILED SYSTEM DESCRIPTION.

SOURCES: DE LEUW, CATHER & COMPANY ET AL, <u>AUTOMATED SMALL VEHICLE</u> <u>EIXED GUIDEWAY SYSTEMS STUDY</u>, TWIN CITTES AREA METROPOL-ITAN TRANSIT COMMISSION, 1973

> CASEY, ROBERT, <u>SUMMARY DATA FOR SELECTED NEW URBAN</u> <u>IRANSPORTATION SYSTEMS</u>, DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., NOVEMBER, 1972

LEA IRANSII COMPENDIUM, N.D. LEA TRANSPORTATION RESEARCH CORPORATION, 1974

SIBLEY, KEITH, <u>MASS_IRANSIT_IECHNOLOGY: A COMPREHENSIVE</u> <u>SURVEY OF VEHICULAR HARDWARE</u>, RENSSELAER POLYTECHNIC INSTITUTE, TROY, N.Y., 1973

ACTIVITY CENTER SYSTEMS GUIDEWAY COSTS

IRANGE \$MILL/PER LANE MILEI . 3 MILL - 11.0 MILL I

COST/LANE MILE SYSTEM ACT \$3 MILL MORGANTOWN \$11 MILL JETRAIL S.4 MILL DASHAVEYOR S2 MILL SKYBUS \$2.6 MILL \$2-4 MILL/DOUBLE TRACK CARVEYOR ROHR P S.3 MILL ROHR M/N(1) S.3 MILL

(1) DOES NOT INCLUDE INSTALLATION COST.

NOTE: GUIDEWAY COSTS ONLY ARE PRESENTED HERE. SEE TABLE 5-4 FOR TOTAL SYSTEM COST.

> THESE COSTS ARE NOT DIRECTLY COMPARABLE BECAUSE SOME COSTS INCLUDE ELECTRIFICATION AND CONTROL EQUIPMENT WHILE OTHERS DU NOT.

SOURCES: DE LEUW, CATHER & COMPANY ET AL, <u>AUTOMATED SMALL VEHICLE</u> FIXED GUIDEWAY SYSTEMS STUDY, TWIN CITIES AREA METROPOL-ITAN TRANSIT COMMISSION, 1975

(c) the main of the second se second sec CASEY, ROBERT, <u>SUMMARY DAIA FOR SELECIED NEW URBAN</u> <u>IRANSPORIATION SYSTEMS</u>, DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., NOVEMBER, 1972

LEA TRANSIT COMPENDIUM, N.D. LEA TRANSPORTATION RESEARCH CORPORATION, 1974

SIBLEY, KEITH, <u>MASS_IRANSIT_IECHNOLOGY:</u> <u>A_COMPREHENSIVE</u> <u>SURVEY_OF_VEHICULAR_HARDWARE</u>, RENSSELAER_POLYTECHNIC INSTITUTE, TROY, N.Y., 1973

#### CHAPTER VI

## PEDESTRIAN ASSISTANCE SYSTEMS

THIS CHAPTER PRESENTS SOME CAPACITY, COST, AND OPERATING CHARACTERISTICS OF PEDESTRIAN ASSISTANCE SYSTEMS. SYSTEMS IN THIS CATEGORY INCLUDE ELEVATORS, ESCALATORS, AND MOVING WALKWAYS.

#### TABLE 6-1

## SPEED OF WALKING

SPE	<u>ED</u>	PERCENT OF	CUMULATIVE
EEEI PER MINUIE	MILES_PER_HOUR	POPULATION	_PERCENI
LESS THAN 120	LESS THAN 1.36	0	0
120-180	1.36-2.05	8	8
180-210	2.05-2.39	11	19
210-240	2.39-2.73	16	35
240-270	2.73-3.07	20	55
270-300	3.07-3.41	20	75
300-330	3.41-3.75	13	88
330-360	3.75-4.09	9	97
360-390	4.09-4.43	3	100

AVERAGE SPEED = 262 FEET/MINUTE OR 2.98 MILES/HOUR

SOURCE: JACKSON AND MORELAND, "THE FEASIBILITY STUDY OF MOVING WALKWAYS," BOSTON REDEVELOPMENT AUTHORITY, JANUARY, 1971

PRACTICAL OPERATING CAPACITY OF STANDARD TURNSTILES

TYPE OF TURNSTILE	CAPACITY (PERSONS PER MINUTE)
REGISTERING: FREE ADMISSION WITH TICKET COLLECTOR	40-60 25-35
CASHIER OPERATED COIN OPERATED LOW: SINGLE SLUT MULTIPLE FARE	12-18 25-50 15-25
COIN OPERATED (7 FT.) HIGH	10-15
NON-REGISTERING: LOW TRAFFIC CONTROLLER 7 FT. HIGH TRAFFIC CONTROLLER (ROTO-GATE)	40-60 25-40

SOURCE: BAERWALD, JOHN, EDITOR, "TRAFFIC ENGINEERING HANDBOOK," INSTITUTE OF TRAFFIC ENGINEERS, WASHINGTON, D.C., 1965

## PEDESTRIAN STAIR SPEEDS HORIZONTAL TIME-MEAN-SPEEDS (FEET/MINUTE)

	0		STAIR			INDOOR	-	
AGE_GROUP	<u> </u>	EED Down	SIEPS UP	<u>ZMINUIE</u> DOWN	<u> </u>	EED DOWN		ZMINUIE DOWN
29 AND UNDER 30-50 Over 50	115 114 83	160 153 117	117 116 84	163 160 119	108 99 83	149 127 108	116 106 89	160 136 116
AVERAGE	113	150	115	153	100	132	107	141

(1) 6" RISER, 12.0" TREAD, 27 DEGREE ANGLE.
(2) 7"'RISER, 11.25" TREAD, 32 DEGREE ANGLE.

SOURCE: FRUIN, J.J., <u>PEDESIRIAN PLANNING AND DESIGN</u>, METROPOLITAN ASSOCIATION OF URBAN DESIGNERS AND ENVIRONMENTAL PLAN-NERS, INC., CHURCHILL, N.Y., 1971

## MAXIMUM STAIRWAY CAPACITY (PPM/FT)(1)

UP	DOWN
-	
18.9	20.0

# (1) VALUES IN PEDESTRIANS/MINUTE/FOOT OF STAIR WIDTH.

SOURCE: FRUIN, J.J., <u>DESIGNING FOR PEDESIRIANS - A LEVEL OF</u> <u>SERVICE CONCEPI.</u> A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY, POLYTECHNIC INSTITUTE OF BROOKLYN, BROOKLYN, NEW YORK, 1970

## ESCALATOR CAPACITIES AND BOARDING TIMES

CAPACITY

INCLINE SPEED(1)				
(FEET PER MINUTE)	90	120	90	120
WIDTH AT HIP (INCHES)	32	32	48	48
WIDTH AT TREAD (INCHES)	24	24	40	40
MAXIMUM THEORETICAL CAPACITY				
(PERSONS/HOUR)	5,000	6,700	8,000	10,700
NOMINAL CAPACITY(2)				
(PERSONS/HOUR)	3,750	5,025	6,000	8,025
NOMINAL CAPACITY				
(PERSONS/MINUTE)	63	84	100	133

 (1) INCLINE SPEED 90 FEET PER MINUTE IS 68 STEPS PER MINUTE. INCLINE SPEED 120 FEET PER MINUTE IS 89 STEPS PER MINUTE.
 (2) NOMINAL CAPACITY IS 75% OF THEORETICAL MAXIMUM CAPACITY.

BOARDING TIME (SECONDS)

	LIGHI_I	RAFEIC	<u>HEAVY_IRAEEI</u> C
NO	BAGGAGE	BAGGAGE	NO BAGGAGE
	.98	1.05	1.17

SOURCE: FRUIN, J.J., <u>PEDESIRIAN PLANNING AND DESIGN</u>, METROPOLITAN ASSOCIATION OF URBAN DESIGNERS AND ENVIRONMENTAL PLANNERS, INC., CHURCHILL, N.Y., 1971

MOVING WALKWAY CAPACITIES(1)

TREADWAY INCLINE SPEED FEET/MINUTE	MAXIMUM CAPACITY PERSONS/ MINUTE (PERSONS/ HOUR)	MAXIMUM CAPACITY PERSONS/ MINUTE PER FOOT OF WIDJH (PERSONS/HOUR PER FOOT OF WIDTH)	NOMINAL CAPACITY(2) PERSON8/ MINUTE (PERSONS/ HOUR)
0 DÉGREE INCLINE 18 5 DEGREE INCLINE 14 10 DEGREE INCLINE 13 15 DEGREE INCLINE 12	0 186 (11,180) 0 173 (10,400)	72 (4,320) 56 (3,354) 52 (3,120) 50 (3,000)	180 (10,000) 140 (8,400) 130 (7,800) 125 (7,500)

(1) 40-INCH NOMINAL WIDTH (2 PERSONS PER 1.5 FOOT TREADWAY). SPEED, ANGLES, AND CAPACITIES WILL VARY WITH WIDTH PER ASA 17.1 (CODE) PART XIII.

(2) NOMINAL CAPACITY IS 75% OF THEORETICAL MAXIMUM CAPACITY.

SOURCE: STRAKOSCH, G., <u>VERIICAL IRANSPORTATION, ELEVATORS AND</u> ESCALATORS, OTIS ELEVATOR CO., WILEY, N.Y., 1967

# ELEVATOR CAPACITY CONSIDERATIONS

BUILDING TYPE	POPULATION SERVED	IDESIRABLE DIRECTIONAL I CAPACITY I	IDESÍRABLE IFREQUENCY I
	ISQ.FT.OF USABLE AREA I I	(A)DIVERSIFIED TEN- ANTS 11-12.5% POPULATION SERVED PER 5 MIN. (B)SINGLE PURPOSE TENANTS 12.5-18% POPULATION SERVED PER 5 MIN.	30 SECONDS
	11.5 TO 2 PERSONS PER BEDROOM	IS-7% POPULATION ISERVED PER 5 MIN.	
MOTELS AND Hotels	I (A)CONVENTION TYPE HOTELS 1.5-1.9 PERSONS PER ROUM AT 85-95% OCCUPANCY I (B)MOTELS, LIMITED SERVICE HOTELS, 1.3-1.5 PERSONS PER ROOM AT 60-75% OCCUPANCY	ISERVED PER 5 MIN. I I I I	40-90 ISECONDS; ITARGET 50 ISECONDS I
	(A)PEDESTRIAN TRAFFIC 3.0-3.5 PERSONS PER BED (B)EQUIPMENT TRAFFIC 4 VEHICLES PER 1 100 BEDS	ISERVED PER 5 MIN. I 1100% OF VEHICLES PER	1

SOURCE: VERTICAL TRANSPORTATION 1974, OTIS ELEVATOR COMPANY, 1973

# VI- 7

## ELEVATOR CAPACITIES

	UGGESTED ELEVATOR CAPACITIES(PERSONS_PER_CAR)
APARTMENT	8
APARTMENT AND SMALL FACTO	RY 13-16
APARTMENT AND OFFICE	16
SMALL OFFICE AND FACTORY	20
OFFICE/HOTEL	20
LARGE OFFICE	23-27
STORE	23

NOTE: THE NUMBER OF SHAFTS REQUIRED IS USUALLY CALCULATED IN A COST MINIMIZATION FORMAT GIVEN STANDARDS OF SERVICE TO BE PROVIDED. THE NUMBER OF SHAFTS IS A FUNCTION OF THE KIND OF MOTOR USED (GEARLESS, GEARED, HYDRAULIC), THE PEAK DEMAND TO BE SERVED, THE NUMBER OF FLOORS IN THE BUILDING, AND THE ACCESS TO ELEVATORS (SINGLE DECK, DOUBLE DECK). IN GENERAL TERMS IT IS EXPRESSED AS:

SHAFTS =

(PEAK DEMAND(PERSONS/MIN))X(FLOORS IN BUILDING)X(FLOOR HEIGHT(FT)) (CAR CAPACITY(PERSONS/CAR))X(AVERAGE CAR SPEED (FEET PER MINUTE))

X (ACCESS FACTOR)

THE ACCESS FACTOR ACCOUNTS FOR THE POSSIBILITY OF SIMULTANEOUS LOADING AT DIFFERENT FLOORS. THE AVERAGE CAR SPEED WILL DEPEND ON THE DISTRIBUTION OF DEMAND, THE NUMBER OF STOPS, THE FLOOR HEIGHT, ETC., WHICH WILL VARY FROM FACILITY TO FACILITY. IT IS NOT THE OPERATING SPEED PRESENTED IN TABLE 6-9.

SOURCE: VERIICAL TRANSPORTATION 1974, OTIS ELEVATOR COMPANY, 1973

# ELEVATOR SPEEDS

TYPE OF MOTOR	RANGE OF SPEEDS AVAILABLE (EEEI_PER_MINUIE)	COMMENTS
HYDRAULIC	75	MAXIMUM RISE 40 FEET.
HYDRAULIC	125	MAXIMUM RISE 40 FEET.
GEARED	150	( ( THESE ARE THE
GEARED	200	( STANDARD SPEED ( RANGES.
GEARED	350	(
GEARLESS	500	SPEEDS ABOVE 400 FPM Are used for large
GEARLESS	600	MULTI-STORY BUILDINGS AND COST \$8,000-
GEARLESS	700 UP TO 1600(1)	\$12,000 MORE PER UNIT

- (1) SPEEDS ABOVE 700 FPM AND RISES OF 300 FEET REQUIRE SPECIAL EQUIPMENT.
- SOURCE: <u>VERIICAL TRANSPORTATION 1974</u>, OTIS ELEVATOR COMPANY, 1973 DISCUSSION WITH WESTINGHOUSE ELEVATOR, WASHINGTON, D.C., 1975

# PEDESTRIAN ASSISTS CAPITAL AND MAINTENANCE COSTS

ESCALATOR (1975)

WIDTH	RISE	CAPITAL COST	MAINTENANCE COST
INCHES	FEET		S PER MONTH
32	13-14	<b>\$70,000-\$76,000</b>	100-200
48	13-14	\$78,000-\$81,000	100-200
48	30(1)	\$195,000-\$260,000	200-400

ELEVATOR (1975) FOR A STANDARD 10-12 STORY APPLICATION 4 ELEVATOR UNITS, 200-350 FPM

CAPITAL COST/UNIT(2)	MAINTENANCE/UNIT
	************
\$70,00 <mark>0-\$76</mark> ,000	\$250-\$350 PER MONTH

	MOVING WALKWAY	
WIDTH	CAPITAL COST	MAINTENANCE
26 INCHES	\$1000-\$1750/LINEAR FT.	\$50-\$150 PER MONTH
40 INCHES	\$1750-\$2200/LINEAR FT.	\$50-\$150 PER MONTH

- (1) A TYPICAL SUBWAY APPLICATION, WITH SPECIAL SAFETY FEATURES.
- (2) FOR SPEEDS ABOVE 350 FEET PER MINUTE THE COST WOULD BE \$9,000-\$13,000 MORE. FOR EACH ADDITIONAL FLOOR THE COST WOULD BE \$2,000-\$3,000.

SOURCE: OTIS ELEVATOR COMPANY, WASHINGTON, D.C., 1977

WESTINGHOUSE ELEVATOR, WASHINGTON, D.C., 1977

# APPENDIX A

# MISCELLANEOUS SUPPORTING MATERIAL

## TYPICAL AMORTIZATION PERIODS FOR SELECTED VEHICLES AND GUIDEWAYS

	AMORTIZATION
	PERIOD
	(YEARS)
	هد چيد <del>اين بين يو</del> خين ويدي ميد در
RAIL RAPID TRANSIT	
TRACK	20-25
STRUCTURES	50-60
CARS	25-30
COMMUTER RAIL	
TRACK (NO FREIGHT SERVICE)	20-25
STRUCTURES	50-60
CARS	40
ENGINES	30
LIGHT RAIL	
TRACK	20-25
STRUCTURES	50-60
CARS	20-30
BUS	
NORMAL COACH	10-15
DIAL-A-BUS (HEAVY)	6
D <mark>IAL-A-BUS (LIGHT)</mark>	3
AUIOMOBILE	
LARGE	10
MEDIUM	10
SMALL	10
RDADWAYS BRIDGES	30
FREEWAY	20
EXPRESSWAY	20
CAPREDOMAT	20

COMPOSITE	PRICE	INDEXES
(1967	BASE)	

YEAR	CONSUMER	FHWA	FHWA	ENR	ENR
	PRICE	CONSTRUCTION	MAINTENANCE	CONSTRUCTION	GENERAL
	INDEX	INDEX	Index	INDEX	INDEX
1960	88.7	80.1	78.3	83.3	76.9
1961	89.6	80.7	79.8	84.6	79.1
1962	90.6	83.8	82.1	86.3	81.4
1963	91.7	86.4	84.3	88.5	84.1
1964	92.9	86.9	86.3	91.1	87.4
1964 1965 1966 1967 1968	94.5 97.2 100.0 104.2	90.3 96.1 100.0 103.4	89.7 97.8 100.0 102.8	93.3 97.2 100.0 107.4	90.8 95.4 100.0 107.8
1969	109.8	111.8	110.4	117.7	118.7
1970	116.3	125.6	116.8	124.4	128.9
1971	121.3	131.7	122.7	140.5	146.8
1972	125.0	138.2	131.7	155.2	163.0
1973	133.1	152.4	141.8	168.4	176.5
1974	147.7	201.8	158.7	178.3	188.2
1975	161.2	203.8	173.0	193.3	205.9
1976	170.5	199.3	188.1	210.9	223.4

SOURCES: U.S. DEPARTMENT OF LABOR, <u>CHARIBOOK ON PRICES.</u> <u>WAGES</u>, <u>AND PRODUCTIVITY</u>, WASHINGTON, D.C., FEBRUARY, 1977

> FEDERAL HIGHWAY ADMINISTRATION, <u>PRICE IRENDS FOR</u> <u>FEDERAL-AID HIGHWAY CONSTRUCTION</u>, U.S. DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., FEBRUARY, 1977

> FEDERAL HIGHWAY ADMINISTRATION, "HIGHWAY MAINTENANCE AND OPERATION COST TREND INDEX", U.S. DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., FEBRUARY 10, 1977.

U.S. BUREAU OF THE CENSUS, <u>STATISTICAL ABSTRACT OF</u> <u>THE UNITED STATES: 1963-76</u>. WASHINGTON, D.C., 1976.

# COST INDEX OF RAILROAD MATERIAL AND WAGE RATES (1967 BASE)

YEAR	FUEL	MATERIAL AND_SUPPLY	WAGES
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975	93.3 95.6 97.2 100.0 103.5 106.7 110.5 114.6 117.1 136.5 272.0 321.9	94.2 94.9 96.5 100.0 102.6 105.5 109.4 113.5 118.1 122.9 142.1 190.2	86.3 90.9 93.9 100.0 105.1 112.2 122.7 136.8 149.5 164.4 173.4 190.8
1976	350.1	203.2	209.3

SOURCE: ASSOCIATION OF AMERICAN RAILROADS, <u>INDICES OF RAILROAD</u> <u>MAIERIAL PRICES AND WAGE RAIES</u>, ECONOMICS AND FINANCE DEPARTMENT, WASHINGTON, D.C., FEBRUARY, 1977

# CONSUMER PRICE INDEXES FOR TRANSPORTATION GOODS (1967 BASE)

YEAR	OVERALL PRIVATE TRANSPORT INDEX(1)	AUTO REPAIRS AND MAINTENANCE	NEW AUTOMOBILE PRICE INDEX	GASOLINE PRICE INDEX	LOCAL TRANSIT FARES
1954	80.3	74.8	94.3	82.5	60.9
1955	78.9	76.5	90.9	83.6	63.4
1956	80.1	79.5	98.5	86.5	65.9
1957	84.7	82.4	98.4	90.0	67.9
1958	87.4	83.7	101.5	88.8	72.0
1959	91.1	85.5	105.9	89.9	74.2
1960	90.6	87.2	104.5	92.5	77.1
1961	91.3	89.3	104.5	91.4	80.5
1962	93.0	90.4	104.1	91.9	83.7
1963	93.4	91.6	103.5	91.8	85.6
1964	94.7	92.8	103.2	91.4	87.6
1965	96.3	94.5	100.9	94.9	89.4
1966	97.5	96.2	99.1	97.0	93.4
1967	100.0	100.0	100.0	100.0	100.0
1968	103.0	105.5	102.8	101.4	105.9
1969	106.5	112.2	104.4	104.7	114.4
1970	111.1	120.6	107.6	105.6	134.5
1971	116.6	129.2	112.0	106.3	143.4
1972	117.5	135.1	111.0	107.6	150.1
1973	121.5	142.2	111.1	118.1	150.1
1974	144.6	164.4	123.7	152.3	147.6
1975	157.6	163.2	134.0	157.5	170.3
1976	171.4	194.4	140.4	181.2	175.8

(1) BASED ON NEW AUTO, OLD AUTO, GASOLINE, OIL, TIRES, REPAIRS AND MAINTENANCE, INSURANCE, REGISTRATION, AND PARKING. SEE INDICES.

SOURCES: BUREAU OF LABOR STATISTICS, <u>HANDBOOK OF LABOR</u> <u>STATISTICS</u>, 1974, U.S. DEPARTMENT OF LABOR, WASHINGTON, D.C., 1976

> BUREAU OF LABOR STATISTICS, <u>CPI_DEIAILED_REPORT_EOR</u> DECEMBER. 1976, WASHINGTON, D.C.

## LOCAL TRANSIT WAGE RATE INDEXES INDEXES(1) OF UNION HOURLY WAGE RATES OF LOCAL-TRANSIT OPERATING EMPLOYEES (1967 = 100)

DATE	INDEX	DATE	INDEX
1929: MAY 15	22.3	1953: JULY 1	55.3
1930: MAY 15	22,5	1954: JULY 1	58.0
1931: MAY 15	22.5	1955: JULY 1	59.8
1932: MAY 15	22.1	1956: JULY 1	62.1
1933: MAY 15	(2)	1957: JULY 1	64.7
1934: MAY 15	21,5	1958: JULY 1	68.6
1935: MAY 15	22.2	1959: JULY 1	71.2
1936: MAY 15	22.4	1960: JULY 1	73.9
1937: MAY 15	23.5	1961: JULY 1	76.7
1938: JUNE 1	24.2	1962: JULY 1	79.9
1939: JUNE 1	24.4	1963: JULY 1	82.9
1940: JUNE 1	24.6	1964: JULY 1	86.2
1941: JUNE 1	25.6	1965: JULY 1	89.8
1942: JULY 1	27.4	1966: JULY 1	93.7
1943: JULY 1	29.2	1967: JULY 1	100.0
1944: JULY 1	29.4	1968: JULY 1	106.6
1945: JULY 1	29.7	1969: JULY 1	115.0
1946: JULY 1	34.9	1970: JULY 1	125.2
1947: OCT. 1	39.4	1971: JULY 1	135,8
1948: OCT. 1	43.3	1972: JULY 1	144.9
1949: OCT. 1	45.1	1973: JULY 1	155.4
1950: OCT. 1	47.2	1974: JULY 1	173.3
1951: OCT. 1	50.3	1975: JULY 1	192.9
1952: OCT. 1	54.1	1976: JULY 1	205.1

- (1) INDEX SERIES DESIGNED FOR TREND PURPOSES. PERIODIC CHANGES IN UNION WAGE RATES ARE BASED ON COMPARABLE QUOTATIONS FOR THE VARIOUS OCCUPATIONS IN CONSECUTIVE PERIODS, WEIGHTED BY NUMBER OF UNION MEMBERS REPORTED AT EACH QUOTATION IN THE CURRENT SURVEY PERIOD.
- (2) INFORMATION NOT AVAILABLE.
- SOURCE: U.S. DEPARTMENT OF LABOR, <u>UNION WAGES AND HOURS: LOCAL-</u> <u>IRANSII OPERAIING EMPLOYEES</u>, JULY 1, 1975, BULLETIN 1818, WASHINGTON, D.C.

#### TABLE A=6

### LOCAL TRANSIT AVERAGE WAGE RATES, JULY 1, 1976 (AVERAGE HOURLY UNION WAGE RATES OF LOCAL-TRANSIT OPERATING EMPLOYEES)

		INCREASE JULY 1,	
CLASSIFICATION	HOURLY(1) Average	CENTS PER Hour	PERCENT
ALL LOCAL-TRANSIT OPERATING Employees	\$6.58	33	5.3
OPERATORS OF SURFACE CARS AND BUSES ELEVATED AND SUBWAY OPERATORS	\$6.53 \$6.97	34 29	5.5 3.6

- (1) WAGE RATES USED IN THE CALCULATION OF THESE AVERAGES REPRESENT THOSE AVAILABLE AND PAYABLE ON JULY 1, 1976, AND DO NOT INCLUDE INCREASES MADE LATER THAT ARE RETROACTIVE TO JULY 1 OR BEFORE.
- SOURCE: U.S. DEPARIMENT OF LABOR. UNION WAGES AND HOURS: LOCAL= IRANSIT OPERATING EMPLOYEES, JULY 1, 1976, BULLETIN 40. 1974, WASHINGTON, D.C.

HIGHWAY AND STREET CONSTRUCTION HOURLY WAGE RATES

YEAR	HOURLY RATE (\$)
	****
1958	2.43
1959	2,55
1960	2.67
1961	2.81
1962	2.88
1963	3.01
1964	3.14
1965	3.27
1966	3.41
1967	3.57
1968	3.90
1969	4.19
1970	4.51
1971	4.91
1972	5.12
1973	5.12
1974	5.84
1975	6.31
1976	6.73

SOURCE: U.S. DEPARTMENT OF LABOR, <u>EMPLOYMENT AND EARNINGS</u>. 1909-76, BULLETIN 1312-9, WASHINGTON, D.C., MARCH 1976 APPENDIX B

RAPID RAIL AND COMMUTER RAIL TRANSIT

T	A	B	L	E	8-	1
---	---	---	---	---	----	---

# EXTENT OF RAIL RAPID SYSTEMS (1974)

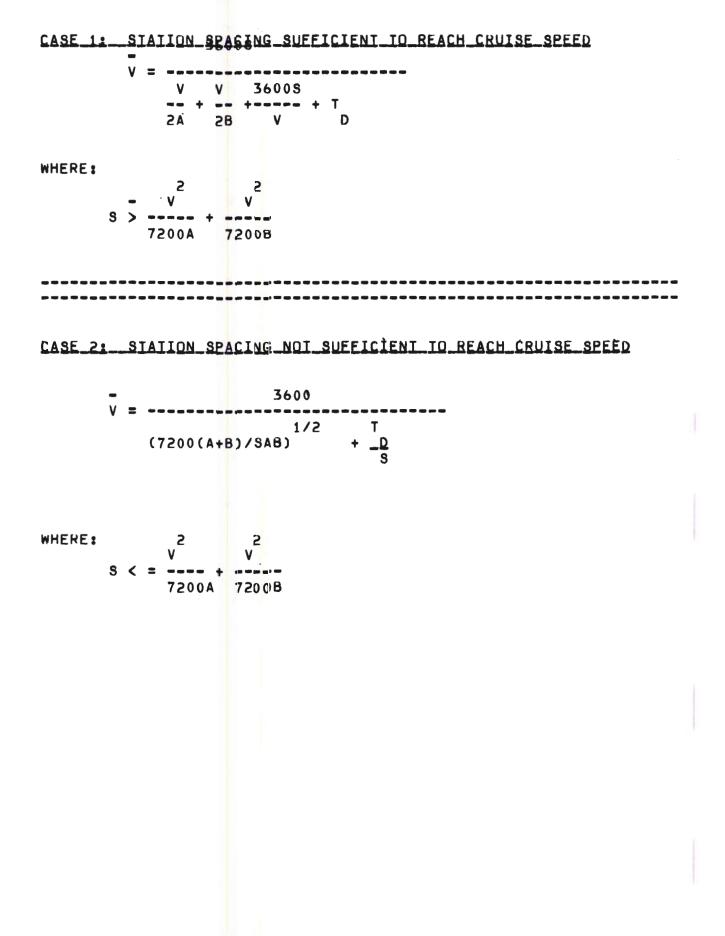
LOCATION	ROUTE MILES
	OE_IRACK_
LONDON	252.0
NEW YORK	231.73
TOKYO	171.7
PARIS Moscow	154.0
CHICAGO	98.0
SAN FRANCISCO	89.0
HAMBURG	75.0 55.6
W BERLIN	48.8
OSAKA	43.5
STOCKHOLM	42.9
BOSTON	38.6
LENINGRAD	30.2
MADRID	29.9
PHILADELPHIA	29.0
BARCELONA	24.8
TORONTO	23.8
OSLO	21.7
ATHENS	20.2
BUENOS AIRES	19.6
CLEVELAND VIENNA	19.0
MONTREAL	16.6
ROME	16.1 6.8
GLASCOW	6.6
BUDAPEST	6.3
КҮОТО	2.2

SOURCE: JANE'S WORLD RAILWAYS AND RAPID IRANSII SYSIEMS 1974-1975, ED. BY PAUL GOLDSACK JANE'S YEARBOOKS, 1975

#### TABLE B-2

## TYPICAL EXISTING RAIL RAPID SPEEDS

		AVERAGE SPEED	AVERAGE Station Spacing
LOCATION	EACILIIY	_(MPH)_	(MILES)
NEW YORK	IND-6TH-8TH AVE, EXPRESS	24.5	1.3
NEW YORK	IRT-LEXINGTON AVE. EXPRESS	19.6	1.0
NEW YORK	IND-8TH AVE. EXPRESS	28.7	1.6
NEW YORK	IRT-7TH AVE. EXPRESS	19.5	0.8
TORONTO	YONGE STREET SUBWAY	17.6	0.5
CHICAGO	CONGRESS STREET EXPRESSWAY	24.5	0.5
CLEVELAND	RAPID TRANSIT LINE	28.0	1.2
CHICAGO	CTA-DAN RYAN LINE	30.00	
BOSTON	MBTA (RED LINE)	32.0	0.8-1.27 (1)
PHILADELPHIA	PATCO (LINDENWOLD)	39.0	0.19-3.20
SAN FRANCISCO	BART	47.0	0.35-5.85 (1)


(1) DIFFERENT SECTIONS OF THESE LINES HAVE DIFFERENT AVERAGE STATION SPACING.

SOURCE: INSTITUTE OF TRAFFIC ENGINEERS, "CAPACITY AND LIMITATIONS OF URBAN TRANSPORTATION MODES," WASHINGTON, D.C., 1965

> TRANSPORTATION SYSTEMS CENTER, <u>SAFETY AND AUIOMATIC</u> <u>IRAIN CONTROL FOR RAIL RAPID IRANSII SYSTEMS</u>, U.S. DEPARTMENT OF TRANSPORTATION, JULY, 1974

#### TABLE B-3

# THEORETICAL EQUATIONS FOR DETERMINING AVERAGE RAIL SPEEDS



# WITH:

A	=	ACCELERATION RATE (CONSTANT)(MPHPS)
в	<b>\$</b> .	DECELERATION RATE (CONSTANT) (MPHPS)
v	=	CRUISING (MAXIMUM) SPEED (MPH)
S	Ħ	STATION SPACING (MILES)
T D	=	DWELL TIME (SECONDS)
v	=	AVERAGE SPEED (MPH)

Y

TABLE B-4

THEORETICAL EQUATION FOR DETERMINING RAIL TRANSIT CAPACITIES

$$H = T + 2 (L/A) + R$$

WHERE:

- H = TRAIN HEADWAY (SECONDS)
- T = DWELL TIME (SECONDS); TYPICAL AVERAGE DWELL TIMES RANGE FROM 10 TO 30 SECONDS FOR NEW RAIL RAPID TRANSIT SYSTEMS
- L = LENGTH OF TRAIN (FEET); OFF PEAK TRAIN LENGTHS ARE TYPICALLY 150 FEET; PEAK ARE 750 FEET
- A = AVERAGE ACCELERATION OR DECELERATION (FEET PER SECOND); 3 MPH/SEC IS A TYPICAL VALUE
- R = EMERGENCY RESPONSE TIME (SECONDS); RANGES FROM 5.0 SECONDS FOR FULLY AUTOMATIC SYSTEMS, TO 10 SECONDS FOR SEMI-AUTOMATIC, TO 20 SECONDS FOR COMMUTER RAILROADS.
- SOURCE: LANG, A., AND SOBERMAN, R., <u>URBAN RAIL IRANSII: IIS</u> <u>ECONOMICS AND IECHNOLOGY</u>, MIT PRESS, CAMBRIDGE, MASSACHUSETTS, 1964

B= 7

TABLE B-5

SERVICE VOLUME OF TYPICAL RAIL RAPID TRANSIT LINES (PEAK HOUR)

LOCATION- FACILITY	TRAINS PER HOUR	HEADWAY (SECONDS)	CARS PER TRAIN	CARS PER HOUR	PER	FING CA PER TRAIN		ACTUAL PASS- ENGER LOADS
NEW YORK- IND-6TH-8TH- AVE. EXPRESS	32	112	10	320	60	600	19,200	61,400
NEW YORK- IRT-LEXINGTON AVE. EXPRESS	31	116	9	279	40	360	11,160	44,510
NEW YORK- IND-8TH AVE. Express	30	120	10	300	60	600	18,000	62,030
NEW YORK- IRT - 7TH AVE. EXPRESS	24	150	9	216	40	360	8,640	36,770
TORONTO- Yonge St. Subway	28	128	8	224	62	496	13,888	35,166
CHICAGO Congress st. Expressway	25	144	6	150	49	294	7,350	10,376
CLEVELAND <del>-</del> RAPID TRANSIT LINE	20	180	6	120	53	318	6,360	6,211
PHILADELPHIA Patco	30	120	6	180	80	480	14,400	36,000
SAN FRANCISCO Bart(1)	6	600	10	60	72	720	4,320	12,720
BOSTON MBTA - RED LIN	E 15	240	4	60	64	256	3,840	14,340
CHICAGO Dan Ryan L <mark>ine</mark>	30	120	8	240	50	400	12,000	24,000

(1) HEADWAYS TO BE IMPROVED AFTER OPENING OF TRANSBAY TUNNEL.

SOURCE: INSTITUTE OF TRAFFIC ENGINEERS, <u>CAPACITY AND LIMITATIONS</u> DE URBAN IRANSPORTATION MODES, WASHINGTON, D.C., 1965

> TRANSPORTATION SYSTEMS CENTER, SAFETY AND AUTOMATIC IRAIN CONTROL FOR RAIL RAPID IRANSII SYSTEMS, U.S. DEPARTMENT OF TRANSPORTATION, JULY, 1974

### TABLE B-6

SERVICE VOLUME (	OF TYP:	ICAL LIGHT	RAIL	TRANSIT	SYSTEMS	(PEAK	HOUR)
------------------	---------	------------	------	---------	---------	-------	-------

LOCATION	VEHICLES Per_hour	HEADWAY(1) (Seconds)	ACTUAL PASSENGER_LOADS	AVERAGE TRIP LENGTH <u>(MILES)</u>
COLOGNE	59	61	9600	3.2
ROTTERDAM	37	97	4600	
DUSSELDORF	92	39	14000	2.9
FRANKFURT	23	157	8200	2.7
STUTTGART	40	90	1200	3.5
HANOVER	80	45	18000	3.4
GOTHENBURG	88	41	7200	2.7
BIELEFELD	24	150	4300	2.5

(1) ABOVE NUMBERS ARE BASED ON A SINGLE ONE-WAY TRACK; AS SERVICE VOLUME INCREASES, SPECIAL SIGNALS ARE NECESSARY.

SOURCE: VUCHIC, V., <u>LIGHI RAIL IRANSII SYSTEMS - A DEFINITION AND</u> EVALUATION, U.S. DEPARTMENT OF TRANSPORTATION, OCTOBER, 1972

### RAIL RAPID TRANSIT SYSTEM OPERATING COSTS CENTS PER CAR-MILE (PERCENT OF SYSTEM COST)

	MAINTENANCE	NE	W_YORK	CHICAGO	PHILA- DELPHIA	PAIH	PAICO	AVERAGE
С	OF WAYS AND		38	19	68	92	26	37
	STRUCTURES		(16)	(10)	(17)	(24)	(8)	(15)
0								
	MAINTENANCE		31	35	54	40	26	31
S	OF VEHICLES		(13)	(19)	(14)	(10)	(8)	(13)
T	POWER		34	14	40	29	35	32
			(14)	(7)	(10)	(7)	(10)	(13)
						•		
_	TRANSPORTATION		104	72	136		53	100
Ι			(43)	(38)	(35)	(28)	(16)	(42)
_								
T	GENERAL AND		33	49	92	117		40
_	ADMINISTRATIVE		(14)	(26)	(24)	(31)	(58)	(17)
Ε								
	TOTAL		239		390	388	333	240
M			(100)	(100)	(100)	(100)	(100)	(100)
			F #F0					
	CAR MILES (IN THOUSANDS)	50	5,458	49,343	14,560	10,657	4,193	
	(IN THOUSANDS)							
	ANNUAL PASSEN-	1 07	7,595		54,757	79 7/IA	11 120	
	GER MILES (IN	1,07	19373		J99131 .	50,540	11,120	
	THOUSANDS)							
		0000		COMO OF	4074 00			

NOTE: EXPRESSED IN TERMS OF 1976 COSTS. NUMBERS IN PARENTHESES ARE PERCENTS OF TOTAL COST BY SPECIFIC CATEGORY.

SOURCE: AMERICAN PUBLIC TRANSIT ASSOCIATION, IRANSII OPERATING REPORTS, 1976.

### TABLE B-8

# COMMUTER RAIL OPERATING COSTS (1973)

	COST CATEGORY (DOLLARS PER CAR-MILE, 1973)							
	MAI	MAINTÉNANCE						
RAILROAD(1)	WAY	EQUIPMENT	TRANS- PORTATION			TOTAL		
BOSTON AND MAINE	\$.25	\$.81	\$2.31	<b>S</b> .01	\$.17	\$3.55		
CENTRAL OF New Jersey	.16	.30	.95	.01	.13	1.55		
CHICAGO, MILWAUKEE, ST. PAUL,								
AND PACIFIC	.42	.28	2.02	.07	.24	3.03		
CHICAGO Northwestern	.13	.32	1.01	.03	.11	1.59		
CHICAGO, Rock Island,								
AND PACIFIC	.19	.57	1.40	.05	.28	2.49		
ERIE LACKAWANNA	.15	.40	1.20	.01	.18	1.94		
ILLINDIS CENTRAL	.46	.59	1.82	.03	.22	3.12		
LONG ISLAND	0.41	0.68	1.34	.01	.27	2.71		
READING COMPANY	.33	.47	1.46	.05	.16	2.47		
SOUTHERN PACIFIC	.76	.75	2.14	.02		3.67		
AVERAGE (ALL RAILROADS)	\$,33	\$,52	\$1.57	\$.03	\$.20			

(1) DATA REFLECT 1973 COSTS.

SOURCE: INTERSTATE COMMERCE COMMISSION, <u>ANNUAL OPERATING REPORTS</u>, WASHINGTON, D.C., 1972

## LIGHT RAIL TRANSIT OPERATING COSTS CENTS PER CAR-MILE (PERCENT OF SYSTEM COSTS)

с 0	MAINTENANCE OF WAYS AND STRUCTURES	NEWARK 23 (11)	NEW DRLEANS 70 (23)	<u>SEPIA</u> 69 (23)	SHAKER <u>HEIGHIS</u> 30 (11)	AVERAGE 51 (18)
S T	MAINTENANCE OF VEHICLES	20 (9)	32 (10)	56 (19)	41 (15)	42 (15)
	POWER	23 (11)	10 (3)	43 (15)	24 (9)	30 (10)
I	TRANSPORTATION	101 (45)	107 (35)	78 (27)	117 (41)	97 (34)
T E	GENERAL AND Administrative	52 (24)	89 (28)	48 (16)	68 (24)	62 (23)
м	TOTAL	219 (100)	308 (100)	294 (100)	280 (100)	282 (100)
	CARS OWNED	30	35	64	57	
	CAR-MILES	576,822	629,059	1,550,000	1,044,480	
	ANNUAL PASSENGERS 2	,197,429	4,247,348	5,053,602	3,611,973	

NOTE: 1975 DATA ADJUSTED TO 1976 COSTS.

SOURCE: AMERICAN PUBLIC TRANSIT ASSOCIATION, <u>IRANSII OPERATING</u> <u>REPORTS</u>, WASHINGTON, D.C., 1976

TYPICAL RAPID RAIL TRANSIT LINE CONSTRUCTION COSTS (MILLIONS OF DOLLARS)

TYPE OF CONSTRUCTION (LOCATION)	APPROXIMATE Route miles	COST PER(2) Route Mile
TUNNEL CHICAGO-CONGRESS-DEARBORN LINES	4.0	34.6
CHICAGO-KENNEDY LINE	1.0	34.4
CUT AND COVER		
NEW YURK-63RD STREET LINE	6.0	64.2
NEW YORK-2ND AVENUE LINE	6.0	64.3
-2ND AVENUE LINE	3.6	71.4
AT GRADE		
CHICAGO-EISENHOWER LINE	9.0	7.5
CHICAGO-DAN RYAN LINE	9.5	7.0
CHICAGO-KENNEDY LINE	4.2	7.0
STATION(1)		
CENTRAL AREAS	100 AV1 100	12.1
FRINGE AREAS		2.6

(1) ASSUMES STATION LENGTHS OF ABOUT 800 FEET.

(2) INCLUDES ALL LINE COSTS SUCH AS SIGNALLING, COMMUNICATIONS, LIGHTING, POWER, AND STATION COSTS (EXCEPT WHERE ISOLATED IN ABOVE TABLE).

NOTE: ABOVE DATA EXPRESSED IN TERMS OF 1976 PRICES.

LOW TUNNELLING COSTS COMPARED WITH CUT AND COVER OCCUR BECAUSE THE FORMER ARE CONSTRUCTED ONLY IN CERTAIN SOIL/ ROCK FORMATIONS.

SOURCES: BHATT, K., AND OLSSON, M., "ANALYSIS OF SUPPLY AND ESTIMATES OF RESOURCE COSTS," URBAN INSTITUTE, TECHNICAL REPORT NO. 2, WASHINGTON, D.C., NOVEMBER, 1973

WASHINGTON METROPOLITAN AREA TRANSIT AUTHORITY, WASHINGTON, D.C., 1973

COST AND CHARACTERISTICS OF RAIL RAPID TRANSIT ROLLING STOCK

PART I. IDENTIFIC	ATION INFORMATI	<b>ON</b>	
DATE DELIVERY ORDERED DATE		ORDERED BY	REFERENCE
1950		BOSTON METROPOLITÀN TRANSIT AUTHORITY	
1950-51	ST. LUUIS	CHICAGO TRANSIT AUTHORITY	2
1952	GLOUCESTER Ry. Carriage & Wagon Co.	TORONTO TRANSIT COMMISSION	3
1952 & 1954	GLOUCESTER Ry. Carriage & Wagon Co.	TORONTU TRANSIT COMMISSION	4
1953 & 1954	ST. LÜUIS	CHICAGO TRANSIT COMMISSION	5
1954	ST. LOUIS	CLEVELAND TRANSIT SYSTEM	6
1954	ST. LOUIS	CLEVELAND TRANSIT SYSTEM	7
1955	GLOUCESTER Ry. Carriage & Wagun Co.	TORONTO TRANSIT COMMISSION	8
1955 & 1956	ST. LOUIS	CHICAGO TRANSIT AUTHORITY	9
1956 & 1957	ST. LOUIS	CHICAGO TRANSIT AUTHORITY	10
1956 & 1957	PULLMAN- Standard	METROPOLITAN TRANSIT AUTHORITY BOSTON	11
1957	ST. LOUIS	CLEVELAND TRANSIT SYSTEM	12
1957	ST. LOUIS	CLEVELAND TRANSIT SYSTEM	13

B- 15

1957		ST. LOUIS	PORT AUTHORITY TRANS-HUDSON CORP.	14
1957		ST. LOUIS	PORT AUTHORITY TRANS-HUDSON CORP.	15
1958		ST. LOUIS	CHICAGO TRANSIT AUTHORITY	16
1958		ST. LOUIS	CHICAGO TRANSIT AUTHORITY	17
1959		BUDD	PHILADELPHIA TRANSPORTATION COMPANY	18
1959		BUDD	PHILADELPHIA TRANSPORTATION COMPANY	19
1962		MONTREAL Locomotive	TORONTO TRANSIT COMMISSION	20
1962		PULLMAN- Standard	MASSACHUSETTS BAY TRANSIT AUTHORITY	21
1963		PULLMAN- Standard	CHICAGO TRANSIT AUTHORITY	22
1963		CANADIAN Vickers	MONTREAL TRANSPORTATION COMMISSION	23
1963		CANADIAN VICKERS	MONTREAL TRANSPORTATION COMMISSION	24
1964		HAWKER- SIDDELEY	TORONTO TRANSIT COMMISSION	25
1964		ST. LOUIS	PORT AUTHORITY TRANS-HUDSON CORP.	26
1964		ST. LOUIS	PORT AUTHORITY TRANS-HUDSON CORP.	27
1966		PULLMAN- STANDARD	CLEVELAND TRANSIT SYSTEM	28
1966		ST. LOUIS	PORT AUTHORITY TRANS-HUDSON (A CARS)	29
1966		ST. LOUIS	PORT AUTHORITY TRANS-HUDSON (C CARS)	30
1966	IN OPERA- TION FEB. 1969	BUDD	PORT AUTHORITY TRANSIT CORP.	31
1966		HAWKER- SIDDELEY	MONTREAL	32

B- 16

1967	JUNE 1969	BUDD	CHICAGO TRANSIT AUTHORITY	33
1968	IN OPERA- TION SEP. 1969	PULLMAN- STANDARD	MASSACHUSETTS BAY TRANSIT AUTHORITY	34
1969		ROHR	BAY AREA RAPID TRANSIT District	35
1969	SUMMER 1971	ROHR	BAY AREA RAPID TRANSIT DISTRICT (B-CARS)	36
1970		PULLMAN- Standard	CLEVELAND TRANSIT SYSTEM	37
1970		HAWKER- SIDDELEY	TORONTO TRANSIT COMMISSION	38
1970		HAWKER- SIDDELEY	PORT-AUTHORITY TRANS-HUDSON (A CARS)	39
1972	SUMMER 1974	ROHR	WASHINGTON METROPOLITAN AREA TRANSIT AUTHORITY	40
1972		PULLMAN- Standard	NYC-MTA	41
1972	1973-1974	ROHR	BAY AREA RAPID TRANSIT DISTRICT	42

B- 17

PART II. COST AND CHARACTERISTICS DATA

	I CURRENT I DOLLARS	I 1976 I DOLLARS	ITYPE OF	ISEATS PER I CAR		IEMPTY WEIGHT	MPH MAXI- MUM SPEED
1	49,958   	116,061	STEEL	I		IA CAR 47,7001 Ib Car 53,6521 I	
2		84,164 89,011	ALUMINUM	I	L.48'3"  H.11'10"  W.9'4"	40,500	
3	76,950   	121,273   	STEEL	I	L.57' H.11'11' W.10'4"		
4	96,000	204,796   	ALUMINUM	I	IL.57' IH.11'11" IW.10'4"	73,440	
5	61,444	130,182  131,262  132,007		1	L.48'3"  H.11'10"  W.9'4"	42,000   	
6	61,433   	95,651	STEEL	I		IA CAR 54,658 Ib Car 53,652 I	
7	70,676	150,097   	STEEL	I	IL.48'9" IH.11'9" IW.10'4"	56,620 1	
8	88,920 1	189,450   	STEEL	1	IL.57' IH.11'11" IW.10'4"	82,750 76,700	
9	68,648   	145,135   	IALUMINUM	B-51		IA CAR 40,800 Ib Car 40,300 I	
10	61,882	141,578  127,211  129,213 	I	I	H.11'10"  W.9'4"	IA CAR 42,600 IA CAR 44,400 IB CAR 42,250 IB CAR 43,900	
11	-	154,650  164,989 		I		IA CAR 57,540 Ib Car 58,620 I	
12	76,409	154,874   	I STEEL	I		IA CAR 53,245 IB CAR 53,990 I	
				•			

<b>B</b> -	18
------------	----

14       86,000   174,314   STEEL       44   L.51'3"   66,000   H.11'8"   H.8'10"   H.8	13	83,117   	168,470	STEEL		L.48'9"  H.11'9"  W.10'4"	57,050	
1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	14	86,000	174,314	STEEL		IH.11'8"	66,000	
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	15	96,000	194,583	STEEL	l	H.11'8"	68,000	
1       72,8621143,8081       1       1H.11'10"1       44,600       1         18       97,6161191,0681STAIN-       \$4       L.55'4"1       51,300       55         18       97,6161191,0681STAIN-       \$4       L.55'4"1       51,300       55         19       188,7561173,7261STAIN-       56       L.55'4"1       48,730       55         19       189,013174,229LESS       1H.12'9"1       1(1)         101       1STEEL       1W.9'1"       1(1)         20       107,0971202,0291ALUMINUMI       84       L.74'9"1       59,700       50         1       1       1       1H.12'9"1       1(1)         21       109,6261206,8001       STEEL       54       L.69'10"1       71,650       55         1       1       1       1H.12'0"1       46,890       65       69,500       1(1)         22       105,500196,5701ALUMINUMI       A-471L.48'3"       46,890       65       1(1)       1(1)         23       1133,8681249,4261       STEEL       40       1L.55'5"       60,000       50         1       1       1       1H.12'       1       1(1)       1(1)         24       16,9731143,4181       <	16	77,564	153,089	ALUMINUM	8-51	H.11'10"		
1       ILESS       IH.12'9"       (1)         19       ISTEEL       IW.9'1"       48,730       55         19       ISTEEL       IW.9'1"       48,730       55         19       ISTEEL       IW.9'1"       1       1         20       I107,0971202,0291ALUMINUMI       84       IL.74'9"       59,700       50         1       ISTEEL       IW.9'1"       1       1       1       1         20       I107,0971202,0291ALUMINUMI       84       IL.74'9"       59,700       50         1       I       IH.11'11"       1       1       1       1       1         21       I109,6261206,8001       STEEL       54       IL.69'10"       71,650       55         1       I       IH.12'6"       69,500       1       1       1       1         22       I105,5001196,5701ALUMINUMI       A=47IL.48'3"       46,890       65       65       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	17	1 72,8621	143,808			H.11'10"	I 44,600 I	50
1       89,013 1174,229 ILESS       1       14.12'9" I       1       1         20       1107,097 1202,029 IALUMINUMI       84       IL.74'9" I       59,700       50         1       1       1       14.11'11" I       1       1         20       1107,097 1202,029 IALUMINUMI       84       IL.74'9" I       59,700       50         1       1       1       14.11'11" I       1       11         21       109,626 1206,800 I       STEEL       54       IL.69'10" I       71,650       55         1       1       1       14.12'6" I       69,500       1       1       1         22       1105,500 1196,570 IALUMINUMI       A-47 IL.48'3" I       46,890       65       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	18	97,616	1 1	LESS	L 28	IH.12'9"	51,300	
21       109,6261206,8001       STEEL       54       1L.69'10"1       71,650       55         1       1       1       1H.12'6"1       69,500       55         1       1       1       1H.12'6"1       69,500       55         22       1105,5001196,5701ALUMINUMI       A-471L.48'3"1       46,890       65         1       1       1       1H.12'0"1       1       1         23       1133,8681249,4261       STEEL       40       1L.56'5"1       60,000       50         1       1       1       1H.12'       1       1       1       1       1         23       1133,8681249,4261       STEEL       40       1L.56'5"       60,000       50       50         1       1       1       1H.12'       1       1       1       1       1         24       76,9731143,4181       STEEL       40       1L.53'10"1       44,000       50       50         1       1       1       1H.12'       1       1       1       1       1         25       198,9201181,8811ALUMINUMI       83       1L.74'9"1       55,340       50       50         1       1	19	88,756 89,013	174,229	LESS		IH.12'9"	48,730   	
22       105,500,196,570,1ALUMINUMI       A-471L.48'3"       46,890       65         23       1133,868,249,426,1       STEEL       40,1L.56'5"       60,000       50         23       1133,868,249,426,1       STEEL       40,1L.56'5"       60,000       50         24       176,973,1143,418,1       STEEL       40,1L.53'10",1       44,000       50         24       176,973,1143,418,1       STEEL       40,1L.53'10",1       44,000       50         1       1       1       1       1       1       1         25       198,920,1181,881,ALUMINUM,1       83,1L.74'9",1       55,340       50         1       1       1       1       1       1         26       111,485,204,985,1ALUMINUM,1       43,1L.51'3",1       58,400       70	20	107,097   	202 <mark>,</mark> 029	ALUMÌNUM	1	H.11'11"	-	-
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	21	109,626   	206 <mark>,</mark> 8001	STEEL	I	IH.12'6"		55
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	22	105,500   	196,570	ALUMINUM	B-51	IH.12'0"	46,890   	
1     1     1     1     1     1     1     1       25     1     98,9201181,8811ALUMINUMI     83     1L.74'9"     1     55,340     1     50       1     1     1     1     1     1     1     1     1       25     1     98,9201181,8811ALUMINUMI     83     1L.74'9"     1     55,340     1     50       1     1     1     1     1     1     1     1     1       26     1111,4851204,9851ALUMINUMI     43     1L.51'3"     1     58,400     70       1     1     1     1     1     1     1     1	23	133,868   	249,426	STEEL	i .	IH.12'	60,000   	50
I     I     IALLOY     I     IH.11'11"I     I     (1)       I     I     I     IW.10'4"I     I       26     I111,485I204,985IALUMINUMI     43     IL.51'3"I     58,400     70       I     I     I     I     IH.11'8"I     I	24	76,973   	143,418	STEEL	I	IH.12'	44,000 1	
I I I IH.11'8" I I	25	98,920   			I	IH.11'11"		
	2.6	1111,485 1 1	204,985   	I ALUMINUM I	I	H.11'8"	58,400	70

8-	19
----	----

27	98,729	181,531	ALUMINUM	I	L.51'3"    H.11'8"    W.9'3"	55,800	70
28	171,208		STAIN- LESS STEEL & FIBER- IGLASS	i	L.70'3" H.12' W.10'5"	64,775	55
29	128,925	.	ALUMINUM & FIBER- Iglass	ł	IL.51'3"  H.11'8"  W.9'3"	58,000	70
30	116,890	1	ALUMINUM 1& FIBER- IGLASS	I	L.51'3"    H.11'8"    W.9'3"	55,300	70
	191,000 (SNGLE) 178,000 (PAIR)	  312,959	ILESS	1	L.67'10"   H.12'4"  W.10'2"	79,500 74,800	75
32	120,000	210,984	ALUMINUM	8-80     	IL.76'9" IEND 147'9" IINTER IH.6'9" IW.10'4"	62,300 (END) 61,500	55
33	125,000	t	ISTAIN- ILESS ISTEEL	I B-51	L.48'3"    H.12'    W.9'4"	44,500	70
	171,292  (SNGLE)  161,105  (PAIR)	  264,136	ALUMINUM I	I	L.69'10"  H.12'4"  W.10' 	•	70
35	233,100	1362,779 1	ALUMINUM	I	L.75'  H.10'6"  W.10'6"	56,500	80
36	229,900   		IALUMINUM IALLOY	I	L.70'  H.10'6"  W.10'6"	55,000	80
37	251,950	I	ISTÀIN- ILESS ISTEEL	1	IL.70'3"  H.12'0"  W.10'5"	64,000	55
38	151,210	222,131	I AL UMINUM	I	IL.74'9" IH.11'11" IW.10'4"	55,500	55

39	184,000       		ALUMINUM ISTAIN- ILESS ISTEEL ITRIM	l	L.51'3"  H.11'  W.9'3"   	59,000	70
40	1306,000   	417,384		I	L.75*  H.10'  W.10'		75
41	1298,000	406,472			IL.75'	1	
42	370,000		ALUMINUM ALLOY	l	IL.75' IH.10'6" IW.10'6"	56,500   	80

(1) THESE CARS ARE CAPABLE OF HIGHER SPEEDS, BUT CONTROLS ARE SET TO CUT OFF AT APPROXIMATELY THE SPEED INDICATED. SOURCES: INSTITUTE FOR RAPID TRANSIT (NOW APTA), "POST-WAR RAPID TRANSIT CARS," <u>DAIA BOOK ONE</u>, APRIL, 1962, AND <u>DAIA BOOK</u> <u>IWO</u>, SECOND EDITION, APRIL, 1965

> IRT, RAPID TRANSIT CAR <u>DATA BOOK THREE</u>, 1971. IRT DIGESTS AND IRT NEWSLETTERS, 1971-1972

WALL SIREEI JOURNAL, OCTOBER 2, 1972, P. 8

# TABLE B-12

COST	OF	COMMUTER	RAIL	ROLLING	STOCK		
(1965-1971)							

		(1905-1)	9/1)	•		
	ILENGTHI I(FEET)			IWEIGHT I(LBS.)	-	ICOST/CAR
CHICAGO	85	10.00	15.83		155	\$200,000
C & NW				(3) 1122,020	161	\$180,487
	   		   	(4) 1122,020 1 (4)	161 	  \$169,770 
CHICAGO	1 85	10.00	15.83		155	\$212,236
ROCK ISLAND				(3) 1122,020 (4)	161 	\$190,264
CHICAGO	1 85	10.50		•	152	\$307,564
ILLINOIS CENTRAL				I(EST.) I		
CHICAGO	l 85	10.00	15.19			\$245,307
BURLINGTON NORTHERN			   	(3)  110,000   (4)	•	\$225,857
MONTREAL	+	10.00	15.19			\$294,800
CANADIAN Pacific Rail				(3) 1110,000 (4)		\$227,200
NEW YORK	1 85	10,50	13.00	91,600	118	\$220,000
LONG ISLAND Railroad (MTA)				   		\$225,000
NEW YORK- North Jersey	85 	10.50	12.67	114,883 	118	\$276,265
N.J.DOT- Penn central- Jersey Arrow				,     		
PHILADELPHIA	+	10,13	12.7	104,000	122	\$251,250
SEPTA	l 1		}   -	1	1	
TORONTO	l 85	10.00	12.19	68,000	+   94	\$210,000
GO TRANSIT				(1)   88,000	l 194	\$220,000
CANADIAN NATIONAL				(2)  (SELF <b>-</b>		
	 +		 	IPOWERED	) t====+	 

NOTE: COST DATA WERE COLLECTED BETWEEN 1965-1971.

SOURCE: OFFICE OF SYSTEMS ANALYSIS AND INFORMATION, <u>1972 NATIONAL</u> <u>IRANSPORIATION NEEDS STUDY: COST ESTIMATES FOR URBAN</u> <u>PUBLIC TRANSPORTATION</u>, U.S. DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., JULY, 1971

ومقادية متدورة والمروات المردية بالرواد والمروان

APPENDIX C

LOCAL BUS AND BUS RAPID TRANSIT

## CENTRAL BUSINESS DISTRICT BUS LANES

		APPROXIMATE	
	LENGTH OF	AVERAGE	DATE OF
LOCATION AND STEEET	BUS LANES	SPEED	SURVEY
	(MILES)	(MPH)	
ATLANTA, GEORGIA			
PEACHTREE STREET	0.30	5.7	1958
BALTIMORE, MARYLAND			
PACA STREET	0.36	5.0	1958
	V	5.0	1/50
CHICAGO, ILLINOIS			
WASHINGTON STREET	0.60	6.3	1971
	-	-	
NEWARK, NEW JERSEY			
MARKET STREET	0.34	6.0	1969
NEW YORK, NEW YORK			
5TH AVENUE	2.50	11.6	1969
MADISON AVENUE	1.12	1.9	1969
SAN FRANCISCO, CALIFORNIA O'FARREL STREET	0.65	7.3	1071
GEARY STREET	1.20	7.3	1971 1971
GEART STREET	1.20	/•5	19/1
VANCOUVER, B.C.			
GEORGIA STREET	0.80	10.7	1967
	• <b>u</b> - •		
WEIGHTED AVERAGE	0.87	9.4	
	-		

SOURCE: WILBUR SMITH AND ASSOCIATES, "DESIGN AND ANALYSIS OF BUS AND TRUCK ROADWAY SYSTEMS IN URBAN AREAS, PHASE I," NEW HAVEN, CONNECTICUT, NOVEMBER, 1973

## ARTERIAL BUS LANES

		APPROXIMATE	
	LENGTH OF	AVERAGE	DATE OF
LOCATION AND STREET	BUS LANE	SPEED	SURVEY
	(MILES)	(MPH)	
NEW YORK, NEW YORK			
2ND AVENUE	1.90	13.9	1969
1ST AVENUE	1.90	17.5	
TORONTO, ONTARIO			
EGLINTON AVENUE	1.40	14.3	1972
EGLINTON AVENUE	2.00	18.2	1972
DUBLIN, IRELAND			
FAIRVIEW DISTRICT	1.20	11-1	1971
WEIGHTED AVERAGE	1.68	15.4	

SOURCES: WILBUR SMITH AND ASSOCIATES, "DESIGN AND ANALYSIS OF BUS AND TRUCK ROADWAY SYSTEMS IN URBAN AREAS, PHASE I," NEW HAVEN, CONNECTICUT, NOVEMBER, 1973

> AMERICAN PUBLIC TRANSIT ASSOCIATION, <u>IRANSII OPERAIING</u> <u>REPORIS</u>, WASHINGTON, D.C., 1971-72

# BUS ECONOMIC AND PERFORMANCE CHARACTERISTICS

			ERATION IN Hour Per Se	ECOND	ERATION IN MPHPS	
VEHICLE_IYPE	ENGINE	<u>0-10MPH</u>	10-30MPH	<u>30-50MPH</u>	(1)	
DIESEL BUS			1.43 2.22			C O N B
GASOLINE BUS	GASOLINE	2.50	1.50	0.60	2-3	ТΕ
GAS TURBINE BUS	TURBINE	2.00(2)	2.00(2)	1.00(2)	2=3	IL NO UW
TROLLEY BUS	ELECTRIC	3.00(2)	2.00(2)	1.00(2)	2-3	E D
TRANSBUS (SPECIFICATION)	ANY TYPE	2.22	2.30	0.92	2-3	0
***************						
		0	YPICAL FUEL CONSUMPTION			
VEHICLE TYPE	ENGINE	101	RBAN RURAL		POTENTIAL	
DIESEL BUS	GM V6-71 GM V8-71		.5MPG .6MPG		MEDIUM MEDIUM	C O N B
GASOLINE BUS	GASOLINE	55 3.	.3MPG	HIGH	MEDIUM	TE
GAS TURBINE BUS	TURBINE	70(2) 3.	.0MPH	MEDIUM	LOW	
TROLLEY BUS	ELECTRIC		-3 NHR/MI	NONE	NONE	E D
TRANSBUS (SPECIFICATION)	ANY TYPE		DT PECIFIED		LOW	

C -	5
-----	---

		ودنية بي الكريز الكري الد	CAPITAL_COSI	
VEHICLE TYPE	ENGINE	VEHICLE		
DIESEL BUS		\$40,000 42,000	NOT REQUIRED NOT REQUIRED	\$1,565 C 1,565 O N
GASOLINE BUS	GASOLINE	38,500	NOT REQUIRED	1,175 T
GAS TURBINE BUS	TURBINE	50,000	NOT REQUIRED	
TROLLEY BUS	ELECTRIC	50,000 (4)	\$50,000/MILE	U 270 E D
TRANSBUS (SPECIFICATION)	ANY TYPE	N. A.	NOT REQUIRED	N. A.
		OPERATI	NG COSTS PER V	EHICLE-MILE (7
VEHICLE TYPE	ENGINE	FUEL	MAINTENANCE	
DIESEL BUS			\$0.10 0.10	
GASOLINE BUS	GASOLINE	0.17	0.20	N.A. (11)
GAS TURBINE BUS	TURBINE	0.12	0.20 (8)	N.A. (11)
TROLLEY BUS	ELECTRIC	NONE	0.10(9)	\$0.03 (12)
TRANSBUS (SPECIFICATION)	ANY TYPE	N.A.	N . A .	N.A.

- (1) LIMITED BY COMFORT AND SAFETY OF STANDING PASSENGERS.
- (2) ESTIMATED BY EXTRAPOLATING AVAILABLE DATA.
- (3) EXHAUST EMISSIONS: HIGH FAILS FEDERAL 1974 REQUIREMENTS. MEDIUM - MEETS FEDERAL 1974 REQUIREMENTS. LOW - MEETS CALIFORNIA 1975 REQUIREMENTS.
- (4) NOT MANUFACTURED IN U.S.A. HISTORICALLY COST OF TROLLEY BUSES HAS BEEN COMPETITIVE WITH DIESEL BUSES.
- (5) PER FOOT OF TWO-LANE TUNNEL, 28-FOOT WALL-TO-WALL SECTION.
- (6) INCLUDES DUCTWORK AND BUILDING.
- (7) EXCLUDES DRIVERS' WAGES, OVERHEAD AND DEPRECIATION, WHICH WILL DEPEND ON OPERATING POLICY, MANAGEMENT, AND LOCATION RATHER THAN VEHICLE TECHNOLOGY.
- (8) ESTIMATED TO BE TWICE DIESEL BUS MAINTENANCE.
- (9) ASSUMES MAINTENANCE COMPARABLE TO DIESEL BUS.
- (10) ASSUMING 300 VEHICLES PER HOUR IN BOTH DIRECTIONS PAST A POINT AND FOUR STATION STOPS PER MILE.
- (11) VENTILATION FAN POWER REQUIREMENTS PER PEAK HOUR VEHICLE-MILE.
- (12) APPROXIMATELY SAME AS DIESEL FUEL.

SOURCES: BOOZ-ALLEN APPLIED RESEARCH, "TRANSIT BUS PROPULSION SYSTEMS, STATE OF THE ART," TRANSBUS DOCUMENT TR72-002, AUGUST, 1972

> HOFFMAN, G.A., "BUS DESIGN IMPROVEMENTS FOR THE BENEFIT OF NON-USERS," INSTITUTE OF TRAFFIC AND TRANSPORTATION ENGINEERING, UCLA, 1969

# EXISTING OR PROPOSED BUSWAY CONSTRUCTION COSTS

	CONSTRUCTION COSTS			
	LENGTH (MILES)	COST (\$1,000,000)	COST/ MILE	BASIC CONFIG- URATION
EAST-WEST TRANSITWAY (1) MILWAUKEE (PROPOSED)	8.0	\$40.2	\$5.0	AT GRADE
SAN BERNARDINO BUSWAY (2) LOS ANGELES (EXISTING)	11.0	54.0	4.9	AT GRADE
CROSSTOWN BUSWAY (3) CHICAGO (PROPOSED)	20.0	97.2	4.8	AT GRADE
SOUTH PATWAYS (4) PITTSBURGH (PROPOSED)	4.0	16.8	4.2	AT GRADE
NORTH CENTRAL BUSWAY (5) DALLAS (PROPOSED)	10.0	32.2	3.2	PARTIALLY ELEVATED
EAST PATWAYS (6) PITTSBURGH (PROPOSED)	8.0	21.4	2.7	AT GRADE
KCI TRANSITWAY (6) Kansas City (Proposed)	19.0	29.5	1.6	AT GRADE
CANAL LINE BUSWAY (7) NEW HAVEN (PROPOSED)	13.3	15.0	1.1	AT GRADE
PENN CENTRAL BUSWAY (8) Dayton (proposed)	7.5	4.8	0.7	AT GRADE
SHIRLEY BUSWAY (9) WASHINGTON, D.C.(EXISTIN	5.0 G)	2.8	0.7	AT GRADE
<ol> <li>45 FOOT AVERAGE BUSWAY</li> <li>PARTIAL USE OF SOUTHER BUSWAY WIDTH</li> <li>SLIGHT CUT AND FILL; 4</li> <li>PARTIAL USE OF EXISTIN</li> <li>33 FOOT AVERAGE BUSWAY</li> <li>36 FOOT AVERAGE BUSWAY</li> <li>USE OF EXISTING ROW; 5</li> <li>USE UF EXISTING ROW; 3</li> <li>12-28 FOOT AVERAGE BUS</li> </ol>	N PACIFIC 4 FOOT AV G TUNNEL; WIDTH WIDTH 0 FOOT AV 2-42 FOOT	ERAGE BUSWAY W 36 FOOT AVERA ERAGE BUSWAY W AVERAGE BUSWA	IDTH GE BUSW	AY WIDTH

NOTE: THE ABOVE CONSTRUCTION COSTS ASSUME A VARIETY OF CROSS SECTION DIMENSIONS.

SOURCES: WILBUR SMITH AND ASSOCIATES, "DESIGN AND ANALYSIS OF BUS AND TRUCK ROADWAY SYSTEMS IN URBAN AREAS," NEW HAVEN, CONNECTICUT, NOVEMBER, 1973

> LEVINSON, H., HOEY, W., SANDERS, D., WYNN, H., <u>BUS USE ON</u> <u>HIGHWAYS: STATE OF THE ART</u>, NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM REPORT 143, WASHINGTON, D.C., 1973

## BUS TRAFFIC ACCIDENTS (PER MILLION BUS-MILES)

			POPULAT	ION RANG	E (1000'S	)
YEAR	VALUE	0-100			500- 1000	
1971	DEFAULT	72.73	55.49	54.85	48.15	67,58
	RANGE	6.85- 254.07	21.13 <del>-</del> 143.89	22.52- 93.54	6.74- 111.83	16.23- 105.17
	NO. OF BUS Companies sampled	11	16	18	20	19
1972	DEFAULT	91.16	57.61	62.31	48.17	66.73
		•03 <del>-</del> 123.21	19.21- 154.42	18.99- 93.18	3.91 <del>-</del> 93.44	17.64- 108.14
	ND. OF BUS CUMPANIES SAMPLED	1,1	17	18	20	19
WEIGH	IED_AVERAGE					
	DEFAULT	82,55	56.60	58.84	48.16	67.16
	RANGE	.03- 254.07	19.21- 154.42			

NOTE: WEIGHTED AVERAGE (WEIGHTED BY THE NUMBER OF LINE-MILES OF EACH BUS COMPANY) CHOSEN AS THE DEFAULT VALUE, ASSUMING ACCIDENTS ARE A FUNCTION OF TIME OR DISTANCE SPENT ON THE ROAD.

> BUS TRAFFIC ACCIDENTS INCLUDE COLLISIONS WITH PEDESTRIANS, OTHER BUSES, AND OTHER VEHICLES AND OBJECTS.

SOURCE: AMERICAN TRANSIT ASSOCIATION, <u>ACCIDENT_OPERATING</u> <u>STATISTICS</u>, WASHINGTON, D.C., 1971-72

#### BUS PASSENGER ACCIDENTS (PER MILLION BUS-MILES)

		F	OPULATIO	N RANGE	(1000'S)	
YEAR	VALUE	0-100		250- 500		OVER 1000
	* = = = =					
1971	DEFAULT	14.18	15.55	18.69	19.78	21.08
	RANGE			2.04- 34.34		
	NO. OF BUS		58451	0780 <del>7</del>		JJ 8 / 7
	COMPANIES SAMPLED	11	16	16	20	10
1972	DEFAULT	10.38	16.66	15.81	17.73	22.05
	RANGE			0.42- 109.24		
	ND. OF BUS		24840	10/024		23+03
	COMPANIES SAMPLED	11	17	16	20	10
AVERAGE OF	DEFAULT	12.20	16.13	17.15	18.76	21.50
ABOVE	RANGE			0.42- 109.24		

NOTE: WEIGHTED AVERAGE (WEIGHTED BY THE NUMBER OF PASSENGERS CARRIED BY EACH BUS COMPANY) CHOSEN AS THE DEFAULT VALUE, ASSUMING PASSENGER ACCIDENTS ARE A FUNCTION OF DEMAND.

BUS PASSENGER ACCIDENTS INCLUDE BOARDING, ALIGHTING, DOOR RELATED, AND ALL RECORDED ON-BOARD ACCIDENTS.

FATALITIES ARE INCLUDED IN THE ABOVE DATA.

SOURCE: AMERICAN TRANSIT ASSOCIATION (NOW APTA), <u>ACCIDENI</u> <u>OPERAIING SIAIISIICS</u>, WASHINGTON., D.C., 1971-72 APPENDIX D

AUTOMOBILE-HIGHWAY SYSTEM

# TABLE D-1

## DESIGN CAPACITY(VPH) (1) OF SIGNALIZED INTERSECTIONS LEVEL OF SERVICE 'C' (2) ONE-WAY STREET OPERATION IN CBD. (3)

		INTERSEC	TION APP	RÚACH WI	DTH - NO	PARKING		
G/C	20'	221	24'	26'	271	30'	33'	
0.20	325	355	375	415	445	500	540	
0.25	400	440	470	520	545	620	670	
0.30	475	530	570	625	650	740	810	<b>C</b>
0.33	530	575	630	680 740	715	815	890	C
0.35	560	630	670 740	840	760 865	865 980	945	
0.40	640 770	700	760	940	970	1120	1070 1215	N B T E
0.45 0.50	730	800 875	860 955	1045	1075	1240	1340	TE
0.55	810 890	975	1060	1150	1200	1360	1480	NO
0.60	960	1050	1150	1255	1300	1480	1600	UW
0.66	1060	1160	1255	1375	1430	1625	1775	Ε.
0.70	1130	1230	1330	1460	1515	1725	1875	D
0.75	1210	1320	1435	1565	1630	1860	2020	12
0.80	1300	1410	1530	1675	1730	1985	2150	
0.90	1455	1590	1710	1880	1945	2220	2420	
1.00	1615	1760	1905	2090	2165	2475	2690	
					DTH - NO	PARKING		
G/C						PARKING		
G/C					DTH - NO	PARKING		
0.20	36 ' 600	40 ¹ 665	44 '  7 3 0	48 '  805	DTH - NO 50' 835	PARKING 55' 910	60' 	
0.20	36' 600 750	40 ' 665 835	44' 730 915	48' 805 1000	DTH - NO 50' 835 1050	PARKING 55' 	60' 1000 1250	
0.20 0.25 0.30	36' 600 750 900	40' 665 835 1000	44' 730 915 1100	48' 805 1000 1200	DTH - NO 50' 835 1050 1255	PARKING 55' 910 1145 1360	60' 1000 1250 1500	
0.20 0.25 0.30 0.33	36' 600 750 900 990	40' 665 835 1000 1100	44' 730 915 1100 1215	48' 805 1000 1200 1330	DTH - NO 50' 	PARKING 55' 910 1145 1360 1510	60' 1000 1250 1500 1650	
0.20 0.25 0.30 0.33 0.35	36' 600 750 900 990 1050	40' 665 835 1000 1100 1160	44' 730 915 1100 1215 1275	48' 805 1000 1200 1330 1400	50' 	PARKING 55' 910 1145 1360 1510 1600	60' 1000 1250 1500 1650 1750	
0.20 0.25 0.30 0.33 0.35 0.40	36' 600 750 900 990 1050 1190	40'  665 835 1000 1100 1160 1320	44' 730 915 1100 1215 1275 1455	48' 805 1000 1200 1330 1400 1600	50' 835 1050 1255 1375 1465 1660	PARKING 55' 910 1145 1360 1510 1600 1820	60' 1000 1250 1500 1650 1750 2000	
0.20 0.25 0.30 0.33 0.35 0.40 0.45	36' 600 750 900 990 1050 1190 1350	40' 665 835 1000 1100 1160 1320 1500	44' 730 915 1100 1215 1275 1455 1650	48' 805 1000 1200 1330 1400 1600 1805	DTH - NO 50' 835 1050 1255 1375 1465 1660 1880	PARKING 55' 910 1145 1360 1510 1600 1820 2055	60' 1000 1250 1500 1650 1750 2000 2250	
0.20 0.25 0.30 0.33 0.35 0.40 0.45 0.50	36' 600 750 900 990 1050 1190 1350 1490	40' 665 835 1000 1100 1160 1320 1500 1660	44' 730 915 1100 1215 1275 1455 1650 1830	48' 805 1000 1200 1330 1400 1600 1805 2020	DTH - NO 50' 835 1050 1255 1375 1465 1660 1880 2090	PARKING 55' 910 1145 1360 1510 1600 1820 2055 2280	60' 1000 1250 1500 1650 1750 2000 2250 2500	
0.20 0.25 0.30 0.33 0.35 0.40 0.45 0.50 0.55	36' 600 750 900 990 1050 1190 1350 1490 1650	40' 665 835 1000 1100 1160 1320 1500 1660 1830	44' 730 915 1100 1215 1275 1455 1650 1830 2010	48' 805 1000 1200 1330 1400 1600 1805 2020 2205	50'  835 1050 1255 1375 1465 1660 1880 2090 2300	PARKING 55' 910 1145 1360 1510 1600 1820 2055 2280 2510	60' 1000 1250 1500 1650 1750 2000 2250 2500 2750	
0.20 0.25 0.30 0.33 0.35 0.40 0.45 0.50 0.55 0.60	36' 600 750 900 990 1050 1190 1350 1490 1650 1800	40' 665 835 1000 1100 1160 1320 1500 1660 1830 2000	44' 730 915 1100 1215 1275 1455 1650 1830 2010 2200	48' 805 1000 1200 1330 1400 1600 1805 2020 2205 2410	50' 	PARKING 55' 910 1145 1360 1510 1600 1820 2055 2280 2510 2740	60' 1000 1250 1500 1650 1750 2000 2250 2500 2750 3000	
0.20 0.25 0.30 0.33 0.35 0.40 0.45 0.50 0.55 0.60 0.66	36' 600 750 900 990 1050 1190 1350 1490 1650 1800 1965	40'  665 835 1000 1100 1160 1320 1500 1660 1830 2000 2180	44' 730 915 1100 1215 1275 1455 1650 1830 2010 2200 2415	48' 805 1000 1200 1330 1400 1600 1805 2020 2205 2410 2650	50' 50' 835 1050 1255 1375 1465 1660 1880 2090 2300 2510 2750	PARKING 55' 910 1145 1360 1510 1600 1820 2055 2280 2510 2740 3000	60' 1000 1250 1500 1650 1750 2000 2250 2500 2750 3000 3295	
0.20 0.25 0.30 0.33 0.35 0.40 0.45 0.50 0.55 0.60 0.66 0.70	36' 600 750 900 990 1050 1190 1350 1490 1650 1800 1965 2085	40' 665 835 1000 1100 1160 1320 1500 1660 1830 2000 2180 2320	44' 730 915 1100 1215 1275 1455 1650 1830 2010 2200 2415 2560	48' 805 1000 1200 1330 1400 1600 1805 2020 2205 2410 2650 2800	50' 50' 835 1050 1255 1375 1465 1660 1880 2090 2300 2510 2750 2930	PARKING 55' 910 1145 1360 1510 1600 1820 2055 2280 2510 2740 3000 3180	60' 1000 1250 1500 1650 1750 2000 2250 2500 2500 2750 3000 3295 3480	
0.20 0.25 0.30 0.33 0.35 0.40 0.45 0.50 0.55 0.60 0.66 0.70 0.75	36' 600 750 900 990 1050 1190 1350 1490 1650 1800 1965 2085 2250	40' 665 835 1000 1100 1160 1320 1500 1660 1830 2000 2180 2320 2490	44' 730 915 1100 1215 1275 1455 1650 1830 2010 2200 2415 2560 2750	48' 805 1000 1200 1330 1400 1600 1805 2020 2205 2410 2650 2800 3010	DTH - NO 50'  835 1050 1255 1375 1465 1660 1880 2090 2300 2510 2750 2930 3140	PARKING 55' 910 1145 1360 1510 1600 1820 2055 2280 2510 2740 3000 3180 3430	60' 1000 1250 1500 1650 1750 2000 2250 2500 2750 3000 3295 3480 3755	
0.20 0.25 0.30 0.33 0.35 0.40 0.45 0.50 0.55 0.60 0.66 0.70 0.75 0.80	36' 600 750 900 990 1050 1190 1350 1490 1650 1800 1965 2085 2250 2400	40' 665 835 1000 1100 1160 1320 1500 1660 1830 2000 2180 2320 2490 2660	44' 730 915 1100 1215 1275 1455 1650 1830 2010 2200 2415 2560 2750 2925	48' 805 1000 1200 1330 1400 1600 1805 2020 2205 2410 2650 2800 3010 3200	50'  835 1050 1255 1375 1465 1660 1880 2090 2300 2510 2750 2930 3140 3350	PARKING 55' 910 1145 1360 1510 1600 1820 2055 2280 2510 2740 3000 3180 3430 3645	60' 1000 1250 1500 1650 1750 2000 2250 2500 2750 3000 3295 3480 3755 4000	
0.20 0.25 0.30 0.33 0.35 0.40 0.45 0.50 0.55 0.60 0.66 0.66 0.70 0.75 0.80 0.90	36' 600 750 900 990 1050 1190 1350 1490 1650 1800 1965 2085 2250 2400 2690	40' 665 835 1000 1100 1160 1320 1500 1660 1830 2000 2180 2320 2490 2660 2980	44' 730 915 1100 1215 1275 1455 1650 1830 2010 2200 2415 2560 2750 2925 3295	48' 805 1000 1200 1330 1400 1600 1805 2020 2205 2410 2650 2800 3010 3200 3600	50'  835 1050 1255 1375 1465 1660 1880 2090 2300 2510 2750 2930 3140 3350 3755	PARKING 55' 910 1145 1360 1510 1600 1820 2055 2280 2510 2740 3000 3180 3430 3645 4100	60' 1000 1250 1500 1650 1750 2000 2250 2500 2750 3000 3295 3480 3755 4000 4500	
0.20 0.25 0.30 0.33 0.35 0.40 0.45 0.50 0.55 0.60 0.66 0.70 0.75 0.80	36' 600 750 900 990 1050 1190 1350 1490 1650 1800 1965 2085 2250 2400	40' 665 835 1000 1100 1160 1320 1500 1660 1830 2000 2180 2320 2490 2660	44' 730 915 1100 1215 1275 1455 1650 1830 2010 2200 2415 2560 2750 2925	48' 805 1000 1200 1330 1400 1600 1805 2020 2205 2410 2650 2800 3010 3200	50'  835 1050 1255 1375 1465 1660 1880 2090 2300 2510 2750 2930 3140 3350	PARKING 55' 910 1145 1360 1510 1600 1820 2055 2280 2510 2740 3000 3180 3430 3645	60' 1000 1250 1500 1650 1750 2000 2250 2500 2750 3000 3295 3480 3755 4000	

D- 3

(1) THE DESIGN CAPACITIES INDICATED FOR LEVEL OF SERVICE 'C' ARE BASED ON THE FOLLOWING 'AVERAGE CONDITIONS': 5% TRUCKS AND THROUGH BUSES Α. 10% RIGHT TURNS Β. 10% LEFT TURNS С. METRO POPULATION SIZE 250,000(4) WITH CORRESPONDING PEAK D. HOUR FACTOR OF 0.85(5) (2) TO OBTAIN DESIGN CAPACITIES OTHER THAN LEVEL OF SERVICE 'C'. MULTIPLY VOLUMES SHOWN BY THE FOLLOWING FACTORS: I LEVEL OF APPROACH WIDTH 20' 25' 30' 35' 40' ISERVICE 50' 60' ł 1.12 1.09 1.07 1.07 1.08 1.11 1.15 1.13 1.12 1.12 1.13 1.15 1.13 D Ł E 1.17 ł 1 (3) TO OBTAIN DESIGN CAPACITIES FOR AREAS OTHER THAN CBD. MULTIPLY VOLUMES SHOWN BY THE FOLLOWING FACTORS: +------+ I AREA I FACTOR I I CBD 1 1.00 | FRINGE 1 1.10 I OBD 1.10 I RESIDENTIALI 1.20 +____ (4) TO OBTAIN DESIGN CAPACITIES FOR METRO POPULATION SIZES OTHER THAN 250,000, MULTIPLY THE VOLUMES BY THE FOLLOWING FACTORS: +----+ I METRO POPULATION SIZE | FACTOR | -------------+------+ OVER 1,000,000 1 1.20 L 1,000,000 | 1.15 | 750,000 | 1.10 500,000 1 1.05 1 I 1.00 0.95 175,000 0.90 100,000 1 1 50,000 I 0.85 ł +----+ (5) TO OBTAIN DESIGN CAPACITIES FOR PEAK HOUR FACTOR OTHER THAN 0.85. DIVIDE THE VOLUME SHOWN BY 0.85 AND MULTIPLY THE RESULT BY KNOWN OR MEASURED PHF.

- NOTE: TO CORRECT FOR BUSES, SEE APPENDIX, FIGURE D-1, IN CUTS MANUAL.
- SOURCE: TABLES PREPARED BY M. P. O'DWYER FROM J. E. LEISCH NOMOGRAPHS AND 1965 HIGHWAY CAPACITY MANUAL

#### TABLE D-2

## DESIGN CAPACITY(VPH) (1) OF SIGNALIZED INTERSECTIONS LEVEL OF SERVICE 'C' (2) ONE-WAY STREET OPERATION IN CBD. (3)

INTERSECTION APPROACH WIDTH - PARKING - ONE SIDE ONLY

	INTERSECTION	AFFRUACH WIDT	H - FARRING - U	
G/C	20' 22' 30'	32' 38' 41'	44' 48' 52'	56' 58' 60'
0.20	160 200 325	355 450 500		730 760 790
0.25	200 250 405	450 555 625		
0.30	250 305 490	540 680 755		1095 1145 1185
0.33	270 330 535	590 745 820		1200 1250 1300
0.35	290 355 565	625 780 870		1265 1320 1370 1450 1510 1570
0.40	330 400 650 370 455 735		1080 1210 1335	1635 1700 1770
0.45 0.50	370 455 735 415 505 815			1815 1900 1970
0.55				2000 2080 2160
0.60				2180 2270 2360
0.66				2380 2500 2600
0.70				2540 2650 2745
0.75				2730 2850 2955
0.80				2900 3035 3140
				3280 3415 3550
1.00	830 1020 1630	1790 2235 2485	2720 3030 3335	3640 3800 3935
-				
			* = * * * * * * * = = * * = = *	
(1) THE	E DÉSIGN CAPACII	IES INDICATED	FOR LEVEL OF SË	RVICE 'C' ARE
BAS	SED ON THE FOLLO	WING 'AVERAGE	CONDITIONS':	
Α.	5% TRUCKS AND	) THROUGH BUSES		
в.	10% RIGHT TURN	IS		
С.	10% LEFT TURNS	3		
D.			0 (4) WITH CORR	ESPONDING PEAK
	HOUR FACTOR OF			
(2) TO	OBTAIN DESIGN C	APACITIES OTHE	R THAN LEVEL OF	SERVICE 'C',
	TIPLY VOLUMES S			
•				***********
	EVEL OF	APPROACH W	101H 35' 40'	
	SERVICE 20'			
	D 1.07 E 1.10		1.12 1.14 1.18 1.20	
	OBTAIN DESIGN (			
	TIPLY VOLUMES S			
MOL				•
		AREA I FA	CTOR I	
	+			
		CBD   1	.00	
			.00 I	
			.20 I	
			.20 I	
	+		+	

# (4) TO OBTAIN DESIGN CAPACITIES FOR METRO POPULATION SIZES OTHER THAN 250,000, MULTIPLY THE VOLUMES BY THE FOLLOWING FACTORS:

I METRO POPULATION SIZE	FACTOR I
I OVER 1,000,000 I I 1,000,000	1.20
1 750,000	1.10 I
1         500,000         1           1         250,000         1	1.00
1 175,000 1 100,000	0.95
50,000   +	0.85    +

(5) TO OBTAIN DESIGN CAPACITIES FOR PEAK HOUR FACTOR OTHER THAN 0.85, DIVIDE THE VOLUME SHOWN BY 0.85 AND MULTIPLY THE RESULT BY KNOWN OR MEASURED PHF.

- NOTE: TO CORRECT FOR BUSES, SEE APPENDIX, FIGURE D=1, IN CUTS MANUAL.
- SOURCE: TABLES PREPARED BY M. P. O'DWYER FROM J. E. LEISCH NOMOGRAPHS AND 1965 HIGHWAY CAPACITY MANUAL

## TABLE D-3

DESIGN CAPACITY (VPH) (1) OF SIGNALIZED INTERSECTIONS LEVEL OF SERVICE 'C' (2) ONE-WAY STREET OPERATION IN CBD. (3)

INTERSECTION APPROACH WIDTH - PARKING BOTH SIDES

G/C	26' 27	281 36	38' 40	46' 49	521 56	60'
0.20	185 20	5 220 349	5 380 41	.0 500 54	5 590 64	5 705
0.25	230 25					
0.30	280 31	0 335 520				5 1065
0.33	315 34					
0.35	330 37			25 895 97 30 1020 111	5 1050 1150	
0.40 0.45	380 42 435 47			0 1160 125		
0.50	475 52			0 1260 140		
0.55	525 57	5 620 970		5 1400 153		
0.60	580 63			0 1530 167		
	635 69			0 1680 184 0 1775 195		
0.70 0.75	670 73 725 80			0 1910 210		
0.80	760 84	5 905 1400	0 1530 166	5 2040 223	5 2400 261	5 2850
0.90	870 95	5 1020 1580	0 1725 187	0 2290 250	5 2695 293	5 3200
1.00	970 105	5 1140 1769	5 1920 208	30 2550 279	5 2995 327	0 3570
BAS A. B. C. D.	ED ON THE 5% TRUCK 10% RIGHT 10% LEFT METRO POP	FOLLOWING S AND THROU TURNS TURNS	'AVERAGE JGH BUSES ZE 250,000	FOR LEVEL ( CONDITIONS	':	
				R THAN LEV	EL OF SERV	ICE 'C',
				LLOWING FA		- •
+						+
IS	EVEL OF ERVICE	25'	APPROACH W 30' 35'	40'	50' 60	· ·
1	D			1.18	1.22 1.2	5 1
1	E	1.25 1	.25 1.25	5 1.27	1.32 1.3	7
				AREAS OTHE		•
		I AREA	+   F	ACTOR I		
		I CBD I FRING I OBD I RESID	ENTIALI	1.00   1.00   1.15   1.25		

+----+

(4) TO OBTAIN DESIGN CAPACITIES FOR METRO POPULATION SIZES OTHER THAN 250,000, MULTIPLY THE VOLUMES BY THE FOLL' WING FACTORS:

I METRO POPULATION SIZE	I FACTOR I
I OVER 1,000,000	1 1.20
I 1,000,000	1 1.15
I 750,000	1 1.10
I 500,000	1 1.05
I 250,000	1 1.00
I 175,000	1 0.95
100,000	0.90
50,000	0.85

(5) TO OBTAIN DESIGN CAPACITIES FOR PEAK HOUR FACTOR OTHER THAN 0.85, DIVIDE THE VOLUME SHOWN BY 0.85 AND MULTIPLY THE RESULT BY KNOWN OR MEASURED PHF.

- NOTE: ' TO CORRECT FOR BUSES, SEE APPENDIX, FIGURE D=1, IN CUTS MANUAL.
- SOURCE: TABLES PREPARED BY M. P. O'DWYER FROM J. E. LEISCH NOMOGRAPHS AND 1965 HIGHWAY CAPACITY MANUAL

TABLE D-4

DESIGN CAPACITY(VPH) (1) OF SIGNALIZED INTERSECTIONS LEVEL OF SERVICE 'C' (2) TWO-WAY STREET OPERATION IN CBD. (3)

INTERSECTION APPROACH WIDTH - NO PARKING

									-
G/C	10'	11'	12'	13!	18	20!	22'	24'	
						*****			
0.20	130	145	155	175	245	265			
0.25	155	175	200	210	300	335	375	410	
0.30	190	220	240	260	370 400	405	460 500	500 550 C	
0.33 0.35	210 ⁻ 215	235 255	255 280	275 300	400	435 470	535	575 0	
0.35	255	280	310	345	500	540	610	660 N	
0.45	290	325	355	400	555	615	680	750 T	
0.50	325	360	400	435	620	675	765	835 I	
0.55	355	400	430	460	680	740	840	915 N	
0.60	390	430	470	520	740	810	915	1000 T	
0.66	440	500	545	600	830	900	1020	1100 U	
0.70	450	500	550	600	860	945	1060	1155 E	
0.75	480	545	600	650	920	1015	1140	1240 D	
0.80	515	570	625	695	1000	1090	1215	1330	
0.90	585	645	715	775	1110	1215	1380	1490	
1.00	645	715	790	855	1230	1355	1530	1655	
									-
						OTH - NO			-
G/C	26'	י 27	30'	33'	36!	40 *		48 '	
		****							
0.20	360	375 465			495	550 685	600 750	650 815	
0.25	455 550	465 570	520 630	570 690	620 750	830	905	980	
0.30 0.33	600	620	680	750	815	905	980	1075	
0.35	635	660	730	800	860	960	1055	1150	
0.40	725	750	835	910	1000	1100	1200	1310	
0.45	820	850	940	1030	1120	1240	1355	1470	
0.50	910	950	1040	1140	1240	1380	1510	1650	
0.55	1005	1040	1150	1260	1360	1515	1660	1805	
0.60	1100	1135	1255	1370	1490	1650	1805	1960	
0.66	1210	1255	1390	1505	1640	1815	1990	2160	
0.70	1270	1320	1460	1600	1730	1925	2105	2295	
0.75	1370	1415	1565	1710	1850	2060	2260	2455	
0.80	1460	1510	1675	1825	1980	2200	2400	2620	
0.90	1640	1700	1880	2055	2220	2470	2700	2940	
1.00	1825	1885	2080	2280	2480	2200 2470 2740	3000	3265	
8/ A 8/ - C	SED ON 5% TR 10% RJ 10% LE	THE FOL RUCKS AN GHT TUR EFT TURN	LOWING ID THROU INS IS	'AVERAG JGH BUSE	SE CONDI Is	LEVEL OF Itions': Nith Cori			
5									

HOUR FACTOR OF 0.85(5)

D- 8

D-	9

(2) TO OBTAIN DESIGN CAPACITIES OTHER THAN LEVEL OF SERVICE 'C', MULTIPLY VOLUMES SHOWN BY THE FOLLOWING FACTORS: ILEVEL OF APPROACH WIDTH ISERVICE 10' 15' 20' 25' 30' 35' 40' 50' 60' 1 D 1.14 1.14 1.14 1.14 1.15 1.16 1.17 1.18 1.20 I 1 E 1.20 1.20 1.20 1.20 1.21 1.23 1.25 1.27 1.30 1 ---+ (3) TO OBTAIN DESIGN CAPACITIES FOR AREAS OTHER THAN CBD, MULTIPLY VOLUMES SHOWN BY THE FOLLOWING FACTORS: I AREA I FACTOR I +_______ I CBD | 1.00 I FRINGE 1 1.25 1 I 080 1.25 1 | RESIDENTIAL! 1.25 1 +_____ (4) TO OBTAIN DESIGN CAPACITIES FOR METRO POPULATION SIZES OTHER THAN 250,000, MULTIPLY THE VOLUMES BY THE FULLOWING FACTORS: +---+ I METRO POPULATION SIZE | FACTOR | ____+ OVER 1,000,000 | 1,20 | 1,000,000 I 1,15 I 1 1.10 750,000 1 500.000 1 1.05 250,000 1 1.00 175,000 1 0.95 1 100,000 1 0.90 1 50,000 1 0.85 1 

- (5) TO OBTAIN DESIGN CAPACITIES FOR PEAK HOUR FACTOR OTHER THAN 0.85, DIVIDE THE VOLUME SHOWN BY 0.85 AND MULTIPLY THE RESULT BY KNOWN OR MEASURED PHF.
- NOTE: TO CORRECT FOR BUSES, SEE APPENDIX, FIGURE D-1, IN CUTS MANUAL.
- SOURCE: TABLES PREPARED BY M. P. O'DWYER FROM J. E. LEISCH NOMOGRAPHS AND 1965 HIGHWAY CAPACITY MANUAL

D- 10

## TABLE D-5

#### DESIGN CAPACITY(VPH) (1) OF SIGNALIZED INTERSECTIONS LEVEL OF SERVICE 'C' (2) TWO-WAY STREET OPERATION IN CBD. (3)

INTERSECTION APPROACH WIDTH - WITH PARKING

G/C	20'							36'				
0.20	200		240		270		335	360	400			
0.25	245	275	295		340	380	415	455	500	550	600	
0.30	300		365		405	455	500	550	605	660	725	
0.33 0.35	330 345		400 420	435 460	445 470	500 535	550 580	600 630	665 700	720	795 845	
0.40	400		490		545	610	665				965	
0.45	445		550	595	610	680					1095	
0.50	500		605		685	765		910				
0.55	550	610	670		750			1000				
0.60 0.66	600 655		730		815			1100 1195				
0.88	700		800 850					1270				
0.75	750	835	910	990	1010	1140	1250	1380	1505	1645	1815	
0.80	800	900	970	1060	1090	1215	1330	1455	1615	1755	1935	
0.90	900	1005 1	095	1190	1225	1370	1500	1645	1800	1970	2170	
1.00												
	· -											
A. B. C.	E DESIG SED ON 5% TR 10% RI 10% Le Metro	THE FORUCKS A GHT TU FT TUR	ILLOW IND T IRNS INS	NING ' THROUG	AVERA SH BUS	GE CO BES	ONDITI	(ONS':				
0.		ACTOR										
(2) TO										ERVIC	CE 'C',	
	LTIPLY											
•	LEVÉL C			AP								1
1.8	SERVICE	z 2	20 '	251	3	50 '	35 '			50'	60'	 
l I	D. E	1.	06 10	1.09		11	1.14	1.1	7 1	.22	1.24 1.34	Ì
+++												-+
<b>(3)</b> TO										C.B.(	).,	
MUL	LTIPLY	VOLUME	S SH	IOWN B	BY THE	FOLL	OWING	FACT	ORS:			
			+	REA	) = + + - + 	ÉAC	TOR	•+				
			+===		, 			•				
			I CB		1		,00	1				
				INGE	I		25	1				
					 		25	1				
			+	SIDEN	IIIAL1	1.	25	•				
								*				

# (4) TO OBTAIN DESIGN CAPACITIES FOR METRO POPULATION SIZES OTHER THAN 250,000, MULTIPLY THE VOLUMES BY THE FOLLOWING FACTORS:

,				
t I	METRO POPULATION SIZE	E	FACTOR	I
- T	OVÉR 1,000,000	ļ	1.20	
	1,000,000 750,000		1.15	l l
1	500,000	1	1.05	1
i	175,000	i	0.95	i
1	100,000 50,000	1	0.90 0.85	1
+		-+-		-+

(5) TO OBTAIN DESIGN CAPACITIES FOR PEAK HOUR FACTOR OTHER THAN 0.85, DIVIDE THE VOLUME SHOWN BY 0.85 AND MULTIPLY THE RESULT BY KNOWN OR MEASURED PHF.

- NOTE: TO CORRECT FOR BUSES, SEE APPENDIX, FIGURE D=1, IN CUTS MANUAL.
- SOURCE: TABLES PREPARED BY M. P. O'DWYER FROM J. E. LEISCH NOMOGRAPHS AND 1965 HIGHWAY CAPACITY MANUAL

# TABLE D-6

# HOURLY DISTRIBUTION OF ACCIDENTS - 1972

HOURS	FATAL ACCIDENTS (PERCENT)	ALL ACCIDENTS (PERCENT)
MIDNIGHT TO 3 A.M. 3 A.M. TO 6 A.M. 6 A.M. TO 9 A.M. 9 A.M. TO NOON NOON TO 3 P.M.	14.6 5.9 7.2 8.8 11.9	7.0 2.7 6.2 12.4 17.2
3 P.M. TO 6 P.M.	18.2	24.8
6 P.M. TO 9 P.M.	17.8	15.1
9 P.M. TO MIDNIGHT	15.6	10.6

## TABLE D-7

# TYPES OF URBAN ACCIDENTS - 1972

	FATAL ACCIDENTS (PERCENT)	ALL ACCIDENTS (PERCENT)
PEDESTRIAN	39.9	3.0
INTERSECTION	15.1	1.1
NON INTERSECTION	24.8	1.9
TWO MOTOR VEHICLE	32.2	85.2
INTERSECTION	18.1	36.5
NON INTERSECTION	14.1	48.7
OTHER COLLISIONS	13.8	5.7
INTERSECTION	3.6	1.7
NON INTERSECTION	10.2	4.0
NON COLLISION	14.1	6.1
RAN OFF ROAD	12.1	4.9
OTHER	2.0	1.2

SOURCE: NATIONAL SAFETY COUNCIL, "ACCIDENT FACTS," 1973 EDITION.



## APPENDIX E

# ACTIVITY CENTER SYSTEMS

E- 1

## TABLE E-1

# SYSTEM DESCRIPTIONS

	+		
SYSTEM NAME AND LOCATION		DESCRIPTION	COST
DALLAS-FT. WORTH	ILTV AERO- IAEROSPACE I(JAN.1974) I I I I I	13 MILE OF ONE-WAY GUIDE IGUIDEWAY,51 PASSENGER IVEHICLES, 17 UTILITY IVEHICLES, 14 PASSENGER ISTATIONS, 5 BAGGAGE/MAIL ISTOPS, 9 SUPPLY STOPS, I9 TRASH STOPS, A CENTRAL ICONTROL FACILITY. GUIDE- IWAY IS 20% AT GRADE, I80% ELEVATED.	IS4.5 MILL FOR MAIN- ITENANCE IFACILITY
FAIRLANE SHOPPING CENTER, DEARBORN MICHIGAN	IFORD I(UNDER CON- ISTRUCTION, ITO BE COM- IPLETED I1975)	TWO VEHICLES TO SHUTTLE 3200 FT. PEAK CAPACITY 500 PASS/HR. TRAVEL TIME 71 SEC, DWELL 25 ISEC, AVERAGE SPEED 19 MPH	
ACT BRADLEY INTER- NATIONAL AIRPORT, HARTFORD, CONN.	IFORD I(UNDER CON- ISTRUCTION, ITO BE COM- IPLETED I1975)	ITWO 24 PASSENGER IVEHICLES TO SHUTTLE 3/4 IMILE. CAPACITY 800 PER IHOUR. 50% ELEVATED IGUIDEWAY	1
ACT El Paso, Texas; Juarez, Mexico	IFORD I(UNDER CON- ISTRUCTION)	ISYSTEM TO SPAN RIU Igrande, Four vehicles	\$14-15 MILL
TORONTO ZOO	ICORP. I(UNDER CON- ISTRUCTION,	THREE MILES OF SINGLE GUIDEWAY. FOUR STATIONS 24 FORTY-PASSENGER IVEHICLES FOR TWO AND IFOUR VEHICLE TRAINS	
TAMPA AIRPORT, Florida	IWESTING- IHOUSE I(BEGAN ISERVICE	7132 FT OF SINGLE LAND GUIDEWAY, 8 VEHICLES AND ICONTROL SYSTEMS, 64 IPLATFORM DUORS, 5 MAIN- ITENANCE FACILITIES	

MILL ED ON T CES)
ILL ED ON T CES
MILL
MILL
MILL
MILL

#### TABLE E-2

#### ACTIVITY CENTER SYSTEMS IN USE, FOR DEMONSTRATION, OR UNDER CONSTRUCTION

ZOO/PARK/AMUSEMENT_PARK TORONTO ZOO DASHAVEYOR ATLANTIC CITY, N. J. ROHR J SAN ANTONIO, TEXAS, HEMISFAIR ROHR J PALISADES PARK, N. J. ROHR J LAKE GEAUGA. OHIO ROHR J BRONX ZOU, N. Y. CITY ROHR J OKLAHOMA STATE FAIR GROUNDS ROHR K OCEAN CITY. MD. ROHR K WILDWOOD, N. J. ROHR K DUTCH WONDERLAND, LANCASTER, PA. ROHR K SAN DIEGO WILD ANIMAL PARK ROHR N MONTREAL EXPO UNIMOBIL HERSHEY PARK. PA. UNIMOBIL CHARLOTTE, N. C. UNIMOBIL YATSU PARK IN CHIHA PIE VONA BUSCH GARDENS, WILLIAMSBURG, VA. SKYBUS L. A. COUNTRY FAIRGROUND DASHAVEYOR DISNEYLAND, CALIFORNIA WEDWAY/CARVEYOR DISNEYWORLD. FLORIDA ALWEG/MONORAIL DEMONSIBATION_IRACKS CHERRY HILL TEST FACILITY, DEARBORN, MICHIGAN ACT ANN ARBOR, MICHIGAN DASHAVEYOR PONTIAC, MICHIGAN INSTA GLIDE KOWASAKI KCV MITSUBISHI MAT MINI MONORAIL TOSHIBA JAPAN/TOHU CAR MFG. PARATRAN POMA 2000 FRANCE/GRENOBLE CAPE MAY COUNTY AIRPORT. N.Y. ROHR J CAPE MAY COUNTY AIRPORT, N.Y. ROHR K CAPE MAY COUNTY AIRPORT, N.Y. ROHR M BEDFORD. MASSACHUSETTS STARRCAR GRENOBLE TELERAIL MUNICH TRANSURBAN UNIFLOW MINNEAPOLIS URBA 30 FRANCE FRANCE VAL JAPAN/TOYOKAWA VONA SOUTH PARK, PA. SKYBUS AERIAL TRANSIT HAMMOND, INDIANA SYSTEM--PULLMAN EL SEGUNDO AEROSPACE--SCALED ORLY AIRPORT ARAMIS HAGEN CABINENTAXI TOKYO CVS GARLAND. TEXAS MONOCAB CHULA VISTA, CALIF. MONOCAB GOMETZ, FRANCE AEROTRAIN AIRPORTS DALLAS-FORT WORTH AIRTRANS

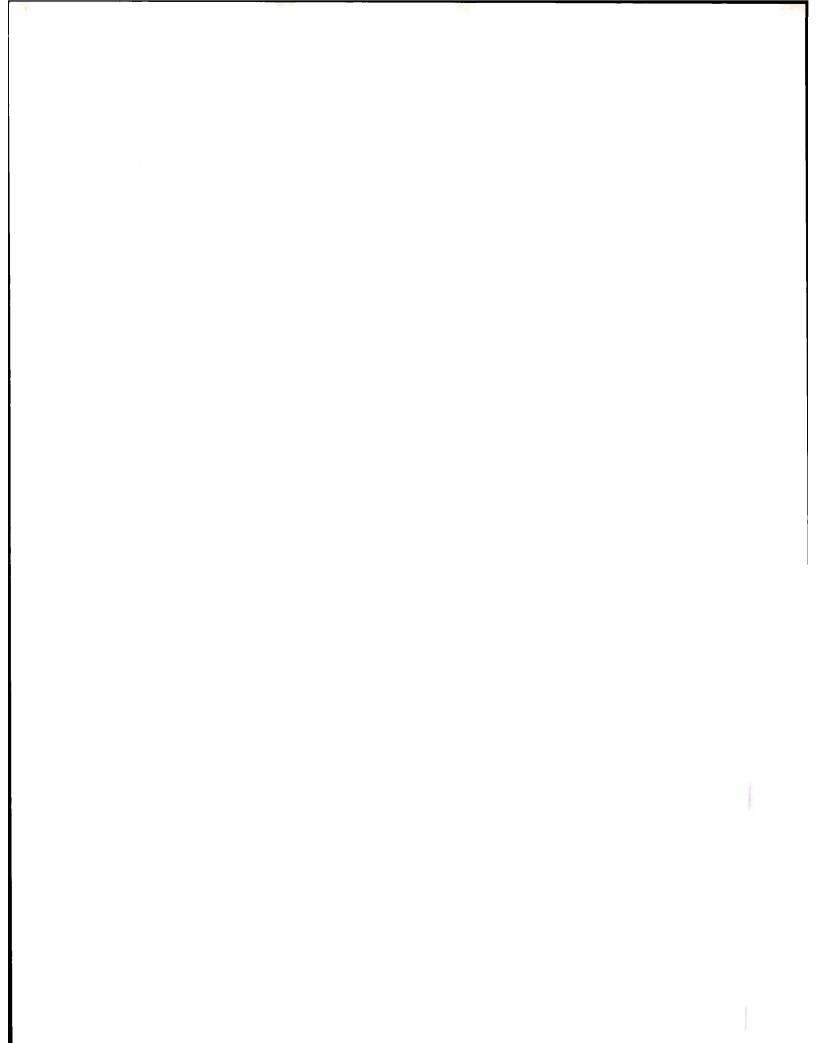
BRADLEY, HARTFORD, CONN. HOUSTON TAMPA, FLURIDA SEA-TAC/SEATTLE, WASH. MIAMI LOVE FIELD, DALLAS HANEDA LINE, TOKYO	ACT ROHR P Skybus Skybus Skybus Jetrail Alweg
<u>Shopping ceniers</u> Fairlane, dearborn, michigan Honolulu, hawaii	ACT Rohr
<u>COMMUNIIIES</u> EL PASO/JUAREZ LILLE/VILLENEUVE-D'ASCG NANCY, FRANCE ORLEANS, FRANCE	ACT VAL TTI/DTIS AEROTRAIN

## APPENDIX F

# PEDESTRIAN ASSISTANCE SYSTEMS

F= 1

## TABLE F-1


# SELECTED MOVING WALKWAYS (LOCATIONS AND PARAMETERS)

	TYPE OF APPLICATION					
		COMMUTER			PUBLIC	
CITIES: DOMESTIC	CBD	STATION	AIRPORT	CAMPUS	PARKS/ZOOS	
AKRON	X	X	X			
ATLANTA						
AKRON	X	X		X		
ATLANTA	X		X			
BOSTON	X	X	X	X		
CHIAAGO			X			
CLEVELAND	X					
COLUMBUS	X					
HARTFORD	X					
HOUSTON	X		X			
INGLEWOOD	X				C	
LAS VEGAS	X		X		0	
LOS ANGELES	X		X		N	
MIAMI	X		X		Т	
MINNEAPOLIS					XI	
NEW YORK	X	X	X		X N	
PHILADELPHIA	X				U	
PITTSBURGH	X				E	
PORTLAND	X				D	
RESTON		X				
SAN DIEGO	X				B	
SAN FRANCISCO	X		X		Ε	
SAN JOSE	X			X	L	
SEATTLE			X		0	
ST. LOUIS			X		W	
WASHINGTON		×				
CIIIES: FOREIGN MANCHESTER, ENG. MONTREAL, CAN. MUNICH, GERMANY PARIS, FRANCE	X		X X			
OTTAWA, CAN. Toronto, Can.	x x					

F=	3
----	---

	TYPICAL PARAMETERS					
. · · ·	SYSTEM	OPERATING SPEED	CARRYING CAPACITY			
<u>CIIIES:_DOMESIIC</u> Akron Atlanta	LENGTH (FT) 600-3600 1300	(FT/SEC) 1.5-15	(PASS/HR) 5000			
BOSTON CHICAGO CLEVELAND	1300-5600	6.5-15	3000-14000			
COLUMBUS Hartford	2800		5000			
HOUSTON INGLEWOOD Las vegas Los Angeles	2500	1.5-15	4000-6000			
MIAMI MINNEAPOLIS	1300	6.0				
NEW YORK PHILADELPHIA PITTSBURGH PORTLAND RESTON SAN DIEGO	1100	1.5-15	10000			
SAN FRANCISCO SAN JOSE SEATTLE ST. LOUIS WASHINGTON	600-1300 4000	1.5-9	<b>B</b> AAA			
<u>CITIES: EDREIGN</u> MANCHESTER, ENG. MONTREAL, CAN. MUNICH, GERMANY		L	•			
PARIS, FRANCE Ottawa, Can.	600-2900	1.5-15	20000			
TORONTO, CAN.	13000					

SOURCE: <u>PROCEEDINGS DE IHE WORKSHOP ON MOVING WAY IRANSPORIATION</u> <u>SYSIEMS</u>, HELD AT BOSTON, MASSACHUSETTS, NOVEMBER, 1973



APPENDIX G

REFERENCES USED IN TABLES

#### REFERENCES USED IN TABLES

ALAMEDA-CONTRA COSTA TRANSIT DISTRICT, UNPUBLISHED DATA, OAKLAND, CALIFORNIA, 1972-73

AMERICAN TRANSIT ASSOCIATION, ACCIDENT SUMMARY REPORTS, WASHINGTON, D.C., 1971-72

AMERICAN TRANSIT ASSOCIATION, TRANSIT OPERATING REPORTS, WASHINGTON, D.C., 1971-72

ASSOCIATION OF AMERICAN RAILROADS, INDICES OF RAILROAD MATERIAL PRICES AND WAGE RATES, ECONOMICS AND FINANCE DEPARTMENT, WASHINGTON, D.C., OCTOBER, 1974

BAERWALD, JOHN, EDITOR, TRAFFIC ENGINEERING HANDBOOK, INSTITUTE OF TRAFFIC ENGINEERS, WASHINGTON, D.C., 1965

BAY AREA RAPID TRANSIT DISTRICT, OPERATING STATISTICS AND UNPUBLISHED DATA, SAN FRANCISCO, CALIFORNIA, 1973

BHATT, K., AND OLSSON, M., "ANALYSIS OF SUPPLY AND ESTIMATES OF RESOURCE COSTS," TECHNICAL REPORT 2, THE URBAN INSTITUTE, WASHINGTON, D.C., NOVEMBER, 1973

BHATT, K., "CAPACITY AND COST INPUTS FOR COMMUNITY AGGREGATE PLANNING MODEL (CAPM)," THE URBAN INSTITUTE, WASHINGTON, D.C., DECEMBER, 1973

BLOOM, KENT, TRANS-URBAN COMPUTER MODEL (OPGAS), FEDERAL HIGHWAY ADMINISTRATION, U.S. DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., APRIL, 1973

BOEING VERTOL COMPANY, SUAC - STATE-OF-THE-ART CAR DEVELOPMENT PROGRAM, PHILADELPHIA, PENNSYLVANIA, APRIL, 1974

BOYD, J.H., ASHER, N.J., AND WETZLER, E.S., EVALUATION OF RAIL RAPID TRANSIT AND EXPRESS BUS SERVICE IN THE URBAN COMMUTER MARKET, INSTITUTE FOR DEFENSE ANALYSES, ARLINGTON, VIRGINIA, 1973

BUREAU OF LABOR STATISTICS, CPI DETAILED REPORT FOR OCTOBER, 1974, WASHINGTON, D.C.

CASEY, RUBERT, SUMMARY DATA FOR SELECTED NEW URBAN TRANSPORTA-TION SYSTEMS, DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., NOVEMBER, 1972

CHICAGO TRANSIT AUTHORITY, OPERATING STATISTICS AND UNPUBLISHED DATA, CHICAGO, ILLINOIS, 1972-73

CLEVELAND TRANSIT SYSTEM, OPERATING STATISTICS AND UNPUBLISHED DATA, CLEVELAND, OHID, 1973

CURRY, DAVID A., AND ANDERSON, DUDLEY G., PROCEDURES FOR ESTIMATING HIGHWAY USER COSTS, AIR POLLUTION, AND NOISE EFFECTS, NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM REPORT 133, HIGHWAY RESEARCH BOARD, WASHINGTON, D.C., 1972

CUTS MANUAL, SANDERS, D.B., AND REYNEN, T.A., CHARACTERISTICS OF URBAN TRANSPORTATION SYSTEMS: A HANDBOOK FOR TRANSPORTATION PLANNERS (CUTS MANUAL), U.S. DEPARTMENT OF TRANSPORTATION, FEDERAL HIGHWAY ADMINISTRATION, WASHINGTON, D.C., MAY, 1974

DAVIS, R., AND WEINER, E., A REVIEW OF BUS AND RAIL RAPID TRANSIT, OFFICE OF THE SECRETARY OF TRANSPORTATION, U.S. DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., JUNE, 1972

DE LEUW, CATHER & COMPANY, ÊT AL, AUTOMATED SMALL VEHICLE FIXED GUIDEWAY SYSTEMS STUDY, TWIN CITIES AREA METROPOLITAN TRANSIT COMMISSION, 1975

FEDERAL HIGHWAY ADMINISTRATION, "FATAL AND INJURY ACCIDENT RATES ON FEDERAL-AID AND OTHER HIGHWAY SYSTEMS," U.S. DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., 1973

FEDERAL HIGHWAY ADMINISTRATION, "FINAL ENVIRONMENTAL IMPACT STATEMENT, AIR QUALITY GUIDELINES," DEPARTMENT OF TRANSPORTA-TION, WASHINGTON, D.C., SEPTEMBER, 1974 FEDERAL HIGHWAY ADMINISTRATION, SUMMARY AND ANALYSIS OF ACCIDENTS ON RAILROADS IN THE UNITED STATES, ACCIDENT BULLETINS 139-141,

U.S. DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., 1970-72 FINK, D.G., AND CARROLL, J.M., STANDARD HANDBOOK FOR ELECTRICAL ENGINEERS, MCGRAW-HILL, NEW YORK, 1963

FRUIN, J.J., PEDESTRIAN PLANNING AND DESIGN, METROPOLITAN ASSOCIATION OF URBAN DESIGNERS AND ENVIRONMENTAL PLANNERS, INC., CHURCHILL, N.Y., 1971

GENDELL, D.S., "ACCIDENT RATES AND COSTS," TRANS TECHNICAL NOTES, U.S. DEPARTMENT OF TRANSPORTATION, FEDERAL HIGHWAY ADMINISTRA-TION, WASHINGTON, D.C., SEPTEMBER, 1971

GENERAL MOTORS CORPORATION TRUCK AND COACH DIVISION, "VEHICLE DYNAMICS SIMULATION MODEL," PONTIAC, MICHIGAN, 1974

GENERAL MOTORS CORPORATION, UNPUBLISHED TEST DATA (LOCOMOTIVE ENGINES), WARREN, MICHIGAN, JULY, 1970

GENERAL MOTORS RESEARCH LABORATORIES, BUS OPERATIONS IN SINGLE LANE PLATOONS AND THEIR VENTILATING NEEDS FOR OPERATIONS IN TUNNELS, GMR-808, WARREN, MICHIGAN, 1968

HEAVY RAIL TRANSIT, LEA TRANSIT COMPENDIUM, VOLUME 1, NUMBER 6, HUNTSVILLE, ALABAMA, 1974

HIGHWAY RESEARCH BOARD, HIGHWAY CAPACITY MANUAL, 1965, SPECIAL REPORT 87, WASHINGTON, D.C., 1965

HOFFMAN, G.A., "BUS DESIGN IMPROVEMENT FOR THE BENEFIT OF NONUSERS," INSTITUTE OF TRAFFIC AND TRANSPORTATION ENGINEERING, UCLA, 1969

INSTITUTE FOR RAPID TRANSIT, TRANSIT CAR DATA BOOK III, WASHINGTON, D.C., 1971

INSTITUTE OF TRAFFIC ENGINEERS, "CAPACITY AND LIMITATIONS OF URBAN TRANSPORTATION MODES," WASHINGTON, D.C., 1965

INTERSTATE COMMERCE COMMISSION, "ANNUAL OPERATING REPORTS," WASHINGTON, D.C., 1972

ISMART, DAVE, "TRANS TECHNICAL STUDY, MASS TRANSIT POLLUTION AND ENERGY CONSUMPTION RATES," FEDERAL HIGHWAY ADMINISTRATION, U.S. DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., MARCH, 1973

JACKSON AND MORELANG, THE FEASIBILITY STUDY OF MOVING WALKWAYS, BOSTON REDEVELOPMENT AUTHORITY, JANUARY, 1971

JOURNAL OF URBAN TRANSPORTATION CORPORATION, MODES OF TRANSPORTA-TION: SOURCES OF INFORMATION ON URBAN TRANSPORTATION, NEW YORK, AUGUST, 1965

KRZYCAKOWSKI, R., AND HENNEMAN, S., CRITERIA FOR FUNDING URBAN RAIL TRANSIT SYSTEMS, INTERPLAN CORPORATION, MARCH, 1974

LANG, A.S., AND SOBERMAN, R.M., URBAN RAIL TRANSIT: ITS ECONOMICS AND TECHNOLOGY, MIT PRESS, CAMBRIDGE, MASSACHUSETTS, 1964

LEA TRANSIT COMPENDIUM, N. O. LEA TRANSPORTATION RESEARCH CORPORATION, 1974

LEVINSON,H., HOEY, W., SANDERS, D., WYNN,H., BUS USE OF HIGHWAYS: STATE OF THE ART, NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM REPORT 143, WASHINGTON, D.C., 1973

LEVINSON, H., AND SANDERS, D., RESERVED BUS LANES ON URBAN FREEWAYS: A MACRU MODEL, HIGHWAY RESEARCH BOARD, WASHINGTON, D.C., JANUARY, 1974

LIGHT RAIL TRANSIT, LEA TRANSIT COMPENDIUM, VOLUME I, NUMBER 5, HUNTSVILLE, ALABAMA, 1974

LISTON, L.L., AND GAUTHIER, C.L., "COST OF OPERATING AN AUTOMOBILE," U.S. DEPARTMENT OF TRANSPORTATION, FEDERAL HIGHWAY ADMINISTRATION, WASHINGTON, D.C., APRIL, 1972 MASSACHUSETTS BAY TRANSPORTATION AUTHORITY, OPERATING STATISTICS

AND UNPUBLISHED DATA, BOSTON, MASSACHUSETTS, 1972-73

METROPOLITAN ATLANTA RAPID TRANSIT AUTHORITY, OPERATING STATISTICS AND UNPUBLISHED DATA, ATLANTA, GEORGIA, 1972

MEYER, J.R., KAIN, J.R., AND WOHL, M., THE URBAN TRANSPORTATION PROBLEM, HARVARD UNIVERSITY PRESS, CAMBRIDGE, MASSACHUSETTS, 1966

MONTREAL URBAN COMMUNITY TRANSIT COMMISSION, OPERATING STATISTICS AND UNPUBLISHED DATA, MONTREAL, CANADA, 1972-73

NATIONAL SAFETY COUNCIL, ACCIDENT FACTS, CHICAGO, ILLINOIS, 1965-72

NEW YORK CITY TRANSIT AUTHORITY, OPERATING STATISTICS AND UNPUBLISHED DATA, NEW YORK, N.Y., 1972-73

OFFICE OF THE SECRETARY OF TRANSPORTATION, 1972 NATIONAL TRANS-PORTATION STUDY: COST ESTIMATES FOR URBAN PUBLIC TRANSPORTA-TION, U.S. DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., 1971

OFFICE OF SYSTEMS ANALYSIS AND INFORMATION, RAIL RAPID TRANSIT, U.S. DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., SEPTEMBER, 1971

OPERATIONS RESEARCH INCORPORATED, COMPARISON OF NOISE AND VIBRATION LEVELS IN RAPID TRANSIT VEHICLE SYSTEMS, NCTA TECHNICAL REPORT, APRIL, 1969

PASSENGER TRAVEL ALTERNATIVES, WASHINGTON, D.C., APRIL, 1974

PLANNING RESEARCH CORPORATION SYSTEMS SCIENCE COMPANY, "A METHODOLOGY FOR CONDUCTING ECONOMIC AND DEMAND ANALYSES OF NEW SYSTEMS," MARCH, 1973

PORT AUTHORITY TRANS HUDSON, OPERATING STATISTICS AND UNPUBLISHED DATA, NEW YORK, N.Y., 1972-73

PORT AUTHORITY TRANSIT CORPORATION, OPERATING STATISTICS AND UNPUBLISHED DATA, PHILADELPHIA, PENNSYLVANIA, 1973

SIBLEY, KEITH, MASS TRANSIT TECHNOLOGY, A COMPREHENSIVE SURVEY OF VEHICULAR HARDWARE, RENSSELAER POLYTECHNIC INSTITUTE, TROY, N.Y., 1973

SOUTHEASTERN PENNSYLVANIA TRANSPORTATION AUTHORITY, OPERATING STATISTICS AND UNPUBLISHED DATA, PHILADELPHIA, PENNSYLVANIA, 1973

SPECIAL AREA ANALYSIS COMPUTER PROGRAM SAPOLLUT, FEDERAL HIGHWAY ADMINISTRATION, U.S. DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., AUGUST, 1974

STANFORD RESEARCH INSTITUTE, U.S. PASSENGER TRANSPORTATION: AN INVENTORY OF RESOURCES AND AN ANALYSIS OF CAPABILITIES OF SEVERAL MODES. MENLO PARK. CALIFORNIA. MARCH. 1967

STRAKOSCH, G., VERTICAL TRANSPORTATION, ELEVATORS AND ESCALATORS, OTIS ELEVATOR CO., WILEY, N.Y., 1967

TALLAMY, BERTRAM D. ASSOCIATES, "INTERSTATE HIGHWAY MAINTENANCE REQUIREMENTS." NCHRP SPECIAL REPORT 42, WASHINGTON, D.C., 1967

TORONTO TRANSIT COMMISSION, OPERATING STATISTICS AND UNPUBLISHED DATA, TORONTO, CANADA, 1972-1973

U.S. DEPARTMENT OF LABOR, CHARTBOOK ON PRICES, WAGES, AND PRODUCTIVITY, WASHINGTON, D.C., FEBRUARY, 1975

U.S. DEPARTMENT OF LABOR, EMPLOYMENT AND EARNINGS, BULLETIN 1319-9, WASHINGTON, D.C., 1974

U.S. DEPARTMENT OF LABOR, UNION WAGES AND HOURS: LOCAL-TRANSIT OPERATING EMPLOYEES, JULY 1, 1973, BULLETIN 1819, WASHINGTON, D.C.

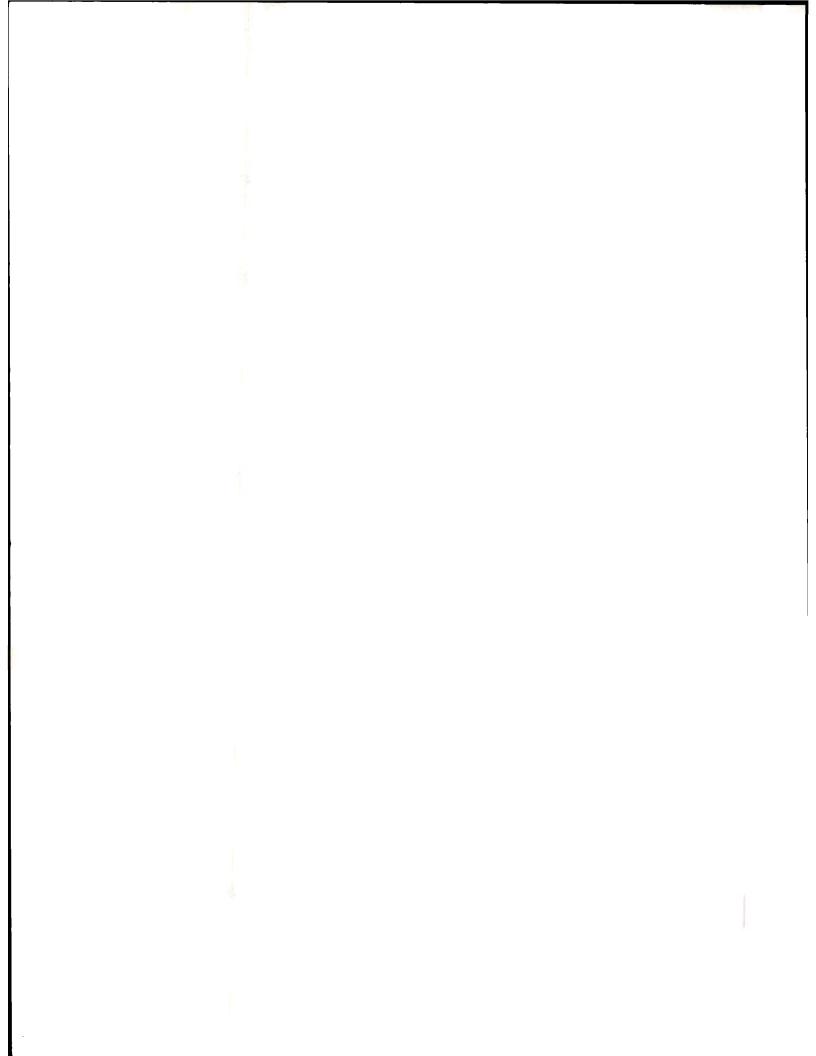
U.S. DEPARTMENT OF TRANSPORTATION, THE EFFECT OF SPEED ON AUTOMOBILE GASOLINE CONSUMPTION RATES, WASHINGTON, D.C., OCTOBER, 1973 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, AN INTERIM REPORT ON MOTOR VEHICLE EMISSION ESTIMATION, WASHINGTON, D.C., JANUARY, 1973

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, COMPILATION OF AIR POLLUTANT EMISSION FACTORS, WASHINGTON, D.C., FEBRUARY, 1972 U.S. STATISTICAL ABSTRACTS. 1973

VERTICAL TRANSPORTATION 1974, DTIS ELEVATOR CO., 1973

VUCHIC, VUKAN, LIGHT RAIL TRANSIT SYSTEMS - A DEFINITION AND

EVALUATION, U.S. DEPARTMENT OF TRANSPORTATION, OCTOBER, 1972 WASHINGTON METROPOLITAN AREA TRANSIT AUTHORITY, UNPUBLISHED DATA, WASHINGTON, D.C., 1973


WELLS, J., ASHER, N., FLOWERS, M., ET AL, "ECONOMIC CHARACTERISTICS OF THE URBAN PUBLIC TRANSPORTATION INDUSTRY," INSTITUTE FOR DEFENSE ANALYSES, ARLINGTON, VIRGINIA, FEBRUARY, 1972

WILBUR SMITH AND ASSOCIATES, FUTURE HIGHWAYS AND URBAN GROWTH, NEW HAVEN, CONNECTICUT, 1961

WILBUR SMITH AND ASSOCIATES, "DESIGN AND ANALYSIS OF BUS AND TRUCK ROADWAY SYSTEMS IN URBAN AREAS," WORK PROGRAM PHASES 1 AND 2, STATE OF THE ART REVIEW, NEW HAVEN, CONNECTICUT, 1973

WILBUR SMITH AND ASSOCIATES, THE POTENTIAL FOR BUS RAPID TRANSIT, THE AUTOMOBILE MANUFACTURER'S ASSOCIATION, DETROIT, MICHIGAN, FEBRUARY, 1970

WYLE LABORATORIES, TRANSPORTATION NOISE AND NOISE FROM EQUIP-MENT POWERED BY INTERNAL COMBUSTION ENGINES, WASHINGTON, D.C., DECEMBER, 1971



GENERAL BIBLIOGRAPHY

APPENDIX H

H- 1

#### GENERAL BIBLIOGRAPHY

BHATT, K., AND OLSSON, M., "ANALYSIS OF SUPPLY AND ESTIMATES OF RESOURCE COSTS," TECHNICAL REPORT 2, THE URBAN INSTITUTE, WASHINGTON, D.C., NOVEMBER, 1973

BHATT, K., "CAPACITY AND COST INPUTS FOR COMMUNITY AGGREGATE PLANNING MODEL (CAPM)," THE URBAN INSTITUTE, WASHINGTON, D.C., DECEMBER, 1973

BOOZ-ALLEN APPLIED RESEARCH, "TRANSIT BUS PROPULSION SYSTEMS, STATE OF THE ART," TRANSBUS DOCUMENT TR-72-002, AUGUST, 1972

BOYD, J.H., ASHER, N.J., AND WETZLER, E.S., EVALUATION OF RAIL RAPID TRANSIT AND EXPRESS BUS SERVICE IN THE URBAN COMMUTER MARKET, INSTITUTE FOR DEFENSE ANALYSES, ARLINGTON, VIRGINIA, DRAFT, 1973

CLAFFEY, P.J., "RUNNING COSTS OF MOTOR VEHICLES AS AFFECTED BY ROAD DESIGN AND TRAFFIC," NCHRP REPORT 111, 1971

COBURN, T.H., "BUS PRIORITY EXPERIMENT ON TEST TRACK," BUS PRIORITY SYMPOSIUM, TRANSPORT AND ROAD RESEARCH LAB, ENGLAND, FEBRUARY, 1972

CURRY, DAVID A., AND ANDERSON, DUDLEY G., PROCEDURES FOR ESTIMATING HIGHWAY USER COSTS, AIR POLLUTION, AND NOISE EFFECTS, NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM REPORT 133, HIGHWAY RESEARCH BOARD, WASHINGTON, D.C., 1972

DAVIS, ROBERT, AND WEINER, EDWARD, A REVIEW OF BUS AND RAIL TRANSIT, OFFICE OF THE SECRETARY OF TRANSPORTATION, WASHINGTON, D.C., JUNE, 1972

DIVISION OF EMISSION CONTROL TECHNOLOGY, "AUTOMOBILE EMISSION CONTROL," U.S. ENVIRONMENTAL PROTECTION AGENCY, ANN ARBOR, MICHIGAN, FEBRUARY, 1973

FINK, D.G., AND CARROLL, J.M., STANDARD HANDBUOK FOR ELECTRICAL ENGINEERS, MCGRAW HILL, NEW YORK, 1973

GENDELL, D.S., "ACCIDENT RATES AND COSTS," TRANS TECHNICAL NOTES, U.S. DEPARTMENT OF TRANSPORTATION, FEDERAL HIGHWAY ADMINISTRA-TION, WASHINGTON, D.C., SEPTEMBER, 1971

GENERAL MOTORS RESEARCH LABORATORIES, BUS OPERATIONS IN SINGLE LANE PLATOONS AND THEIR VENTILATING NEEDS FOR OPERATION IN TUNNELS, GMR-808, WARREN, MICHIGAN, 1968

GLENNON, JOHN C., AND STOVER, VERGIL, A SYSTEM TO FACILITATE BUS RAPID TRANSIT ON URBAN FREEWAYS, TEXAS TRANSPORTATION INSTITUTE, U.S. DEPARTMENT OF TRANSPORTATION, UMTA, WASHINGTON, D.C., DECEMBER, 1968

HERMAN, R., LAM, T., AND ROTHERY, R., "FURTHER STUDIES ON SINGLE-LANE BUS FLOW; TRANSIENT CHARACTERISTICS," TRANSPORTATION SCIENCE, MAY, 1970

HIGHWAY RESEARCH BOARD, HIGHWAY CAPACITY MANUAL, 1965, SPECIAL REPORT 87, WASHINGTON, D.C., 1965

HOFFMAN, G.A., "BUS DESIGN IMPROVEMENTS FOR THE BENEFIT OF NON-USERS," INSTITUTE OF TRAFFIC AND TRANSPORTATION ENGINEERING, UCLA, 1969

INSTITUTE OF PUBLIC ADMINISTRATION AND TEKNEKRON, INC., "EVALUATING TRANSPORTATION CONTROLS TO REDUCE MOTOR VEHICLE EMISSIONS IN MAJOR METROPOLITAN AREAS," WASHINGTON, D.C., MARCH, 1972

INSTITUTE OF TRAFFIC ENGINEERS, "CAPACITY AND LIMITATIONS OF. URBAN TRANSPORTATION MODES," WASHINGTON, D.C., 1965

ISMART, DAVE, "TRANS TECHNICAL STUDY, MASS TRANSIT - POLLUTION AND ENERGY CONSUMPTION RATES," FEDERAL HIGHWAY ADMINISTRATION, WASHINGTON, D.C., MARCH, 1973 JOURNAL OF URBAN TRANSPORTATION CORPORATION, MODES OF TRANSPORTA-TION: SOURCES OF INFORMATION ON URBAN TRANSPORTATION, NEW YORK, AUGUST, 1965

- LANG, A.S., AND SOBERMAN, R.M., URBAN RAIL TRANSIT: ITS ECONOMICS AND TECHNOLOGY, MIT PRESS, CAMBRIDGE, MASSACHUSETTS, 1964
- LEVINSON, H., HOEY, W., SANDERS, D., WYNN,H., BUS USE OF HIGHWAYS: STATE OF THE ART, NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM REPORT 143, WASHINGTON, D.C., 1973
- LEVINSON, H., ADAMS, C., HOEY, W., AND SANDERS, D., "PLANNING AND DESIGN GUIDELINES FOR EFFICIENT BUS UTILIZATION OF HIGHWAY FACILITIES," FINAL DRAFT REPORT, NCHRP 8-10, WASHINGTON, D.C., 1973
- LEVINSON, H., AND SANDERS, D., RESERVED BUS LANES ON URBAN HIGHWAYS: A MACRO MODEL, HIGHWAY RESEARCH BOARD, WASHINGTON, D.C., JANUARY, 1974
- LISTON, L.L., AND GAUTHIER, C.L., "COST OF OPERATING AN AUTOMO-BILE," U.S. DEPARTMENT OF TRANSPORTATION, FEDERAL HIGHWAY ADMINISTRATION, APRIL, 1972
- MEYER, J.R., KAIN, J.F., AND WOHL, M., THE URBAN TRANSPORTATION PROBLEM, HARVARD UNIVERSITY PRESS, CAMBRIDGE, MASSACHUSETTS, 1966
- MILLER, JAMES H., AND REA, JOHN C., "A COMPARISON OF COST MODELS FOR URBAN TRANSIT," PRESENTED AT 52ND MEETING OF HIGHWAY RESEARCH BOARD, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA, JANUARY, 1973
- NATIONAL SAFETY COUNCIL, ACCIDENT FACTS, CHICAGO, ILLINDIS, 1965-1972
- OFFICE OF AIR PROGRAMS, COMPILATION OF AIR POLLUTION EMISSION FACTORS, U.S. ENVIRONMENTAL PROTECTION AGENCY, RESEARCH TRIANGLE PARK, NORTH CAROLINA, FEBRUARY, 1972
- OFFICE OF THE SECRETARY OF TRANSPORTATION, 1972 NATIONAL TRANSPORTATION STUDY: COST ESTIMATES FOR URBAN PUBLIC TRANSPORTATION, U.S. DEPARTMENT OF TRANSPORTATION, WASHINGTON, D.C., 1971
- O'LEARY, K., LIFF, S., LUTHER, E., ET AL, "DEVELOPMENT OF AN AIR POLLUTION GENERATING MODEL (APGM) FOR TRANSIT SYSTEMS," PLANNING RESEARCH CORPORATION AND ALAN M. VOORHEES AND ASSOCIATES. WASHINGTON, D.C., JULY, 1972
- PLANNING RESEARCH CORPORATION SYSTEMS SCIENCE COMPANY, "A METHODOLOGY FOR CONDUCTING ECONOMIC AND DEMAND ANALYSES OF NEW SYSTEMS," MARCH, 1973
- RALLIS, TOM, CAPACITY OF TRANSPORT CENTRES: PORTS, RAILWAY STATIONS, ROAD HAULAGE CENTRES AND AIRPORTS, REPORT 35, TECHNICAL UNIVERSITY OF DENMARK, COPENHAGEN, DENMARK, 1967
- R.H. PRATT ASSOCIATES, LOW COST URBAN TRANSPORTATION ALTERNATIVES: VOLUME I-II, KENSINGTON, MARYLAND, JANUARY, 1973
- REED, MARSHALL F., JR., COMPARISON OF URBAN TRAVEL ECONOMIC COSTS, HIGHWAY USERS FEDERATION, WASHINGTON, D.C., FEBRUARY, 1973
- ROESS, R.P., "OPERATING COST MODELS FOR URBAN PUBLIC TRANSPORTA-TION SYSTEMS AND THEIR USE IN ANALYSIS," HIGHWAY RESEARCH BOARD, WASHINGTON, D.C., JANUARY, 1974
- SCHEEL, J.W., AND FOOTE, J.E., COMPARISON OF EXPERIMENTAL RESULTS WITH ESTIMATED SINGLE LANE BUS FLOW THROUGH A SERIES OF STATIONS ALONG A PRIVATE BUSWAY, GENERAL MOTORS CORPORATION RESEARCH PUBLICATION GMR-888, WARREN, MICHIGAN, MAY, 1969

SCHEEL, J.W., AND FODTE, J.E., BUS OPERATION IN SINGLE LANE PLATOUNS AND THEIR VENTILATION NEEDS FOR OPERATION IN TUNNELS, RESEARCH LABORATORIES, GENERAL MOTORS CORPORATION, RESEARCH PUBLICATION GMR-808, WARREN, MICHIGAN, SEPTEMBER, 1968

STANFORD RESEARCH INSTITUTE, U.S. PASSENGER TRANSPORTATION: AN INVENTORY OF RESOURCES AND AN ANALYSIS OF CAPABILITIES OF SEVERAL MODES, MENLO PARK, CALIFORNIA, MARCH, 1967

TALLAMY, BERTRAM D., ASSOCIATES, "INTERSTATE HIGHWAY MAINTENANCE REQUIREMENTS," NCHRP SPECIAL REPORT 42, WASHINGTON, D.C., 1967

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, COMPILATION OF AIR POLLUTANT EMISSION FACTORS, WASHINGTON, D.C., FEBRUARY, 1972

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, AN INTERIM REPORT ON MOTOR VEHICLE EMISSION ESTIMATION, WASHINGTON, D.C., JANUARY, 1973

WELLS, J., ASHER, N., FLOWERS, M., ET AL, "ECONOMIC CHARACTERISTICS OF THE URBAN PUBLIC TRANSPORTATION INDUSTRY," INSTITUTE FOR DEFENSE ANALYSES, ARLINGTON, VIRGINIA, FEBRUARY, 1972

WILBUR SMITH AND ASSOCIATES, "DESIGN AND ANALYSIS OF BUS AND TRUCK ROADWAY SYSTEMS IN URBAN AREAS," WORK PROGRAM PHASES 1 AND 2, STATE OF THE ART REVIEW, NEW HAVEN, CONNECTICUT, JUNE 27,1973 WILBUR SMITH AND ASSOCIATES, FUTURE HIGHWAYS AND URBAN GROWTH, NEW HAVEN, CONNECTICUT, 1961

WILBUR SMITH AND ASSOCIATES, THE POTENTIAL FOR BUS RAPID TRANSIT, THE AUTOMOBILE MANUFACTURER'S ASSOCIATION, DETROIT, FEBRUARY, 1970

WINFREY, ROBLEY, ECONOMIC ANALYSIS FOR HIGHWAYS, INTERNATIONAL * TEXTBOOK COMPANY, SCRANTON, PENNSYLVANIA, 1969

QU.S. GOVERNMENT PRINTING OFFICE: 1979-281-568/213