SLRV ENGINEERING TESTS AT DEPARTMENT OF TRANSPORTATION TRANSPORTATION TEST CENTER FINAL TEST REPORT Volume II - Performance and Power Consumption Tests

Prepared by
Boeing Vertol Company
Surface Transportation Systems
Philadelphia, PA 19142

JUNE 1979
FINAL REPORT

THROUGHIHE NATIONAL TECIHNILAI
INFORMATIUNSERVICE, SHRINGFIELE.
VIRGINIA 22161

> Prepared for
> U,S SEPARTMENT OF TRANSPORTATION URBAN MASS TRANSPORTATION ADMINISTRATION Office of Technology Development and Deployment Office of Rail and Construction Technology
> Washington, D.C. 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report

Section Page

1. INTRODUCTION 1-1
2. ACCELERATION TESTS 2-1
2.1 Summary 2-1
2.2 Test Description 2-1
2.3 Test Instrumentation 2-2
2.4 Test Procedures 2-2
2.5 Test Data 2-2
3. DECELERATION TESTS 3-1
3.1 Summary 3-1
3.2 Test Description 3-1
3.3 Test Instrumentation 3-1
3.4 Test Procedures 3-1
3.5 Test Data 3-3
4. TRACTION RESISTANCE (DRIFT) TESTS 4-1
4.1 Summary 4-1
4.2 Test Description 4-1
4.3 Test Instrumentation 4-1
4.4 Test Procedures 4-1
4.5 Test Data 4-2
5. SPIN/SLIDE CONTROL SYSTEM TESTS 5-1
5.1 Summary 5-1
5.2 Acceleration Test Description 5-1
5.3 Instrumentation 5-2
5.4 Test Procedures 5-2
5.5 Test Data 5-3
5.6 Deceleration Test Description 5-3
5.7 Instrumentation 5-6
5.8 Test Procedure 5-6
5.9 Test Data 5-7
6. POWER CONSUMPTION TESTS 6-1
6.1 Summary 6-1
6.2 Test Description 6-1
6.3 Instrumentation 6-2
6.4 Test Procedures 6-2
6.5 Test Data 6-2
Figure Page
2-1 Typical Maximum Acceleration Data 2-5
2-2 Acceleration Versus Speed as a Function of Controller Position 2-6
2-3 Control Linearity 2-7
2-4 Effects of Control on Time, Distance, and Speed-to-Accelerate Characteristics 2-8
2-5 Acceleration Versus Car Speed as a Function of Car Weight 2-9
2-6 Car Weight Effects on Time, Distance, and Speed to Accelerate 2-10
2-7 Acceleration Versus Speed as a Function of Line Voltage 2-11
2-8 Voltage Effects on Time, Distance, and Speed to Accelerate 2-12
3-1 Effects of Controller Position on Blender Braking 3-4
3-2 Control Linearity. 3-5
3-3 Effect of Controller Position on Blended Braking Stopping Distance from 50 mph 3-6
3-4 Effects of Car Weight and Controller Position on Blended Braking 3-7
3-5 Effect of Car Weight on Blended Braking Stopping Distance 3-8
3-6 Deceleration of AWO Car in Dynamic Braking at Normal Track Voltage 3-9
3-7 Dynamic Brake Control Characteristics 3-10
3-8 Dynamic Brake Stopping Distances 3-11
3-9 Emergency Braking Deceleration Profile (AW3) 3-12
4-1 Drift Tests, Single Car, AW2. 4-3
4-2 Drift Tests, Single Car, AW2. 4-4
4-3 Drift Tests, Single Car, AW3. 4-5
4-4 Drift Tests, Two-Car Train, AW2 4-6
Figure Page
4-5 Drift Tests, Two-Car Train, AW2 4-7
4-6 Drift Tests, Two-Car Train, AW2 4-8
4-7 Motor Brush Friction and Windage Losses 4-9
4-8 Train Resistance, Single Car 4-10
5-1 SLRV Slip-Spin Acceleration Performance 5-5
5-2 SLRV Slip-Spin Deceleration Performance $5-9$
6-1 Killowatt-Hours/Car Mile Comparison 6-8
6-2 Thermocouple Locations 6-10
6-3 Simulated N-Line Duty Cycle at TTC Pueblo, Ground Brush Heat Shield Temperature 6-11
6-4 Typical SLRV Line Current Record 6-12
LIST OF TABLES
Table Page
2-1 Acceleration Test Data Recording 2-1
2-2 Performance Tests: Magnetic Tape Records, Tape A 2-3
2-3 Performance Tests: Magnetic Tape Records, Tape B 2-4
3-1 Deceleration Tests 3-2
5-1 Summary of Slip-Spin Test Results 5-2
5-2 Sample Calculation, Slip-Spin System Performance 5-4
5-3 Sample Calculation, SLRV Slip-Slide Performance 5-8
5-4 Summary of Slip-Slide System Efficiency in Braking 5-10
5-5 Slip-Slide Test Results, Blended Braking 5-11
5-6 Slip-Slide Test Results, Friction Brakes Only 5-12
6-1 SLRV Duty Cycle Simulation 6-3
Table Page
6-2 Summary of Simulated N-Line Duty Cycle 6-6
6-3 Effect of Kilowatt-Hour Energy Consumption Due to Line Voltage Variation 6-6
6-4 Summary of Undercar Equipment Temperatures 6-9

1. INTRODUCTION

The United States Standard Light Rail Vehicle (SLRV) is currently in production at the Boeing Vertol Company for the Massachusetts Bay Transportation Authority and the San Francisco Municipal Railway. In order to develop a data base for quantitative comparison of the SLRV with other railcars and systems, testing was performed at the Rail Transit Test Track at Pueblo to the requirements of the TSC General Vehicle Test Plans (GSP-064).

1.1 SLRV ENGINEERING TEST PROGRAM

The general objective of the SLRV engineering test program was to:
Establish a data baseline for the SLRV obtained in accordance with the General Vehicle Test Plans.

Provide further experience in the use of the General Vehicle Test Plans in testing Urban Rail Vehicles.

Conduct GSP-064 testing, when appropriate, in conjunction with ongoing qualification testing to minimize cost of data collection.

This report of the SLRV Engineering Tests is contained in four volumes.

Volume I Introduction
Volume II Performance and Power Consumption Tests
Volume III Ride Quality, Noise and Radio Frequency Interference Tests
Volume IV Data Logs

2. ACCELERATION TESTS

2.1 SUMMARY

Objective

The objective of the acceleration tests was to determine the SLRV acceleration characteristics, control response, line voltage, and load compensation effects throughout the operating range of the car.

Procedure

General Vehicle Test Plan P-2001-TT Baseline Test Procedure was integrated into the overall tests required for the qualification testing on three prototype SLRV vehicles.

Test Sequence

Data was recorded during acceleration testing in each of the test conditions listed in Table 2-7.
TABLE 2-1. ACCELERATION TEST DATA RECORDING

- AWO Car Weight	SF0002 Test 37	Records 4.8	Single Car SF0002
	SF0002 Test 58	Records 1-4	2.Car Train MB0002/SF0002
	SF0002 Test 59	Records 1-4	
- AW2 Car Weight	SF0002 Test 23	Record 6-12	Single Car SF0002
	SF0002 Test 25	Records 1-10	Single Car
	SF0003 Test 30	Records 11-15	$\begin{aligned} & \text { 2-Car Train } \\ & \text { SF0003/MB0002 } \end{aligned}$
	SF0003 Test 31	Records 6-9	
- AW3 Car Weight	SF0002 Test 35	Records 2	Single Car
	SF0002 Test 74	Records 3, 4	
	SF0002 Test 68	Records 22, 23	$\begin{aligned} & \text { 2-Car Train } \\ & \text { SF0002/MB0002 } \end{aligned}$
	SF0003 Test 32	Records 1-4	2-Car Train SF0003/MB0002

Data was recorded at four controller inputs, three line voltages and three car weights. Data was also recorded for 2 car train units. All acceleration data has been recorded on magnetic tape. Single car data has been analyzed and is presented elsewhere in this section.

2.2 TEST DESCRIPTION

In general, acceleration testing consisted of accelerating the car to its maximum achievable speed on level tangent track at various combinations of master controller inputs, car weights, and track voltage. Runs were made in both directions over the same section of track. During
the acceleration, various car and traction system parameters were recorded to determine the characteristics of system operation.

2.3 TEST INSTRUMENTATION

The parameters listed in Tables 2-2 and 2-3 were recorded for all the acceleration testing. Two tapes were run in conjunction, cross referenced by the time signal, the event marker, the controller position signal and the longitudinal acceleration signals. The data recording equipment for the SLRV testing consisted of two tape decks, three oscillographs and separate signal conditioning for each type of test required. Descriptions of parameters, sensors, and calibrations are contained in Volume ! of this report.

The quick look stripouts were used to validate instrument operation, define various time constants, define 'IHR|G' times for selection of data samples for analysis, and provide a check on calibration constants being utilized.

2.4 TEST PROCEDURES

The actual test procedures used during the SLRV testing were as defined by General Vehicle Test Plan for urban rail transit cars (UMTA-MA-06-0025-75-14) both for the preliminary pretest procedure and for the procedure at the test zone. For this series of tests it was not necessary to run any split tests - all accelerations were from zero to the desired maximum speed. Using the generalized acceleration procedures the following conditions were tested:

$$
\begin{aligned}
& \text { Controller Inputs }-25 \%, 50 \%, 75 \%, 100 \% \text { Power } \\
& \text { Track Voltages (Volts nominal) }-700,575,475 \\
& \text { Car Weights (Pounds) - } 69,130 \text { (AWO) (+ crew), 82,500 (AW2), 100,945 (AW3) }
\end{aligned}
$$

The car was accelerated at the desired conditions with fixed input command.

2.5 TEST DATA

Data reduction was performed directly upon selected samples from oscillograph records and strip-outs from magnetic tape records of the test runs. Figure $2 \cdot 1$ presents typical data obtained from a maximum acceleration test of an 82,500-pound car.

Figure 2-2 presents a summary of SLRV acceleration data at four master controller inputs throughout the speed range of the car. A comparison of measured control linearity with design characteristics is contained in Figure 2-3. The resulting time-speed-distance characteristics for the four controller inputs are shown in Figure 2-4. The SLRV control system provides essentially proportional (i.e., proportional to 100 -percent capability) acceleration control throughout the speed range.

From Figure 2-1, the acceleration jerk rate and control dead-time for a master controller input of 100 percent may be obtained. For 100 -percent (full acceleration) input the total dead-time is 2.5 seconds and the jerk rate is $2.66 \mathrm{mph} / \mathrm{sec}^{2}$.

The SLRV was tested at three car weights: AWO - 69,130 pounds (empty car plus equipment plus crew), AW2 - 82,500 pounds (car plus 100 passengers), and AW3-100,945 pounds (car plus crush load). Figure $2-5$ presents the acceleration data at three weights. As expected, the maximum acceleration decreases with increasing vehicle weight.

Time-speed-distance characteristics are shown in Figure 2-6.
The SLRV was designed for a normal operating track voltage of 575 volts. The propulsion system's sensitivity to off-design voltages (nominal 700 volts and 475 volts) was tested at AW2 (82,500 -pound car weight) under full accelerating current demand. Figure 2-7 presents a summary of acceleration data at three voltage levels throughout the speed range of the car. The time-speed-distance characteristics associated with each voltage level are presented in Figure 2-8.

TABLE 2-2. PERFORMANCE TESTS: MAGNETIC TAPE RECORDS, TAPE A

Channel No.	Parameter	R Cal Volts	R Cal (Equiv Eng Units)	Quick-Look Use
1	Time (IHRIG)			x
2				
3	Axle Speed No. 1	10 V DC	49 mph	x
4	Axle Speed No. 2	10 V DC	49 mph	x
5	Control Setting	10 V DC	10 volts	x
6	Long. Accel	(0.342g)	7.5 mphps	x
7	Line Voltage	-10 V DC	2,000 volts	X
8	Brake Cylinder Press. No. 3	-	850.8 psi	X
9	Motor Field Current	$-10 \vee D C$	30 mps	x
10	Line Current No. 1	252 mV	1,000 amps	x
11	Event Marker		$10 \mathrm{~V}=\mathrm{ON}$	x
12	Brake Cylinder Press. No. 1		838.5 psi	x
13	Motor Armature Current	-10 V DC	1,000 amps	x
14	Line Current No. 2	252 mV	750 amps	x

Record Mode FM; Tape Speed 71/2 ips

TABLE 2-3. PERFORMANCE TESTS: MAGNETIC TAPE RECORDS, TAPE B

Channel No.	Parameter	R Cal Volts	RCal (Equiv Eng Units)	Quick-Look Use
1	Time (IHRIG)	-	-	X
2				
3	Axle Speed No. 3	10 V DC	49 mph	x
4	Axle Speed No. 4	10 V DC	49 mph	x
5	Control Setting	10 VDC	10 volts	X
6	Long. Accel	(0.342g)	7.5 mphps	X
7	Slip/Slide Ident	10 V DC	$\begin{aligned} & 10 \mathrm{~V}= \\ & \text { Slip/Slide } \end{aligned}$	X
8	Friction Brake Control A	10 VDC	$10 \mathrm{~V}=$ No Brake	X
9	Slip/Slide Ident	10 VDC	$\begin{aligned} & 10 \mathrm{~V}= \\ & \text { Slip/Slide } \end{aligned}$	x
10	Dynamic Brake Feedback	10 VDC	$10 \mathrm{~V}=100 \%$	x
11	Slip/Slide Ident	10 V DC	$\begin{aligned} & 10 \mathrm{~V}= \\ & \text { Slip/Slide } \end{aligned}$	x
12	Friction Brake Control B	10 V DC	$10 \mathrm{~V}=$ No Brake	x
13	Event Marker	10 V DC	$10 \mathrm{~V}=\mathrm{ON}$	X
14	Brake Cylinder Press No. 2	-	842.6 psi	

Record Mode FM; Tape Speed 7½ ips

NOTES
535 VOLTS
CAR WEIGHT = 82,500 POUNDS (AW2) DIRECTION NORTH
TEST 25, RECORD 2

Figure 2-1. Typical Maximum Acceleration Data

TEST 23

Figure 2-2. Acceleration vs Speed as a Function of Controller Position (82,500-Pound Car, Nominal Volts)

Figure 2-3. Control Linearity

Figure 2-4. Effects of Control on Time, Distance, and Speed-to-Accelerate Characteristics (82,500-Pound Car, Nominal Volts)

Figure 2-5. Acceleration Versus Car Speed as a Function of Car Weight

$$
\begin{array}{lr}
\bigcirc & 82,500 \text { POUNDS, NORTH, } 563 \mathrm{VDC}, \text { TEST 37, RECORD } 4 \\
0 & 82,500 \text { POUNDS, NORTH, } 535 \mathrm{VDC}, \text { TEST } 25, \text { RECORD } 2 \\
+ & 100,945 \text { POUNDS, NORTH, } 542 \mathrm{VDC}, \text { TEST 35, RECORD } 2
\end{array}
$$

Figure 2-6. Car Weight Effects on Time, Distance, and Speed to Accelerate

Figure 2-7. Acceleration Versus Speed as a Function of Line Voltage

$$
\begin{array}{ll}
\bigcirc & 696 \mathrm{VDC}, \text { TEST } 25, \text { RECORD } 9 \\
\bigcirc & 535 \mathrm{VDC}, \text { TEST } 25, \text { RECORD } 2 \\
+\quad 452 \mathrm{VDC}, \text { TEST } 25, \text { RECORD } 4
\end{array}
$$

Figure 2-8. Voltage Effects on Time, Distance, and Speed to Accelerate (82,500-Pound Car)

3.1 SUMMARY

Objective

The objective of the deceleration testing was to determine the overall characteristics and stopping distances associated with the four SLRV braking modes (blended, dynamic only, service friction only, emergency) throughout the operating range of the car.

Procedure
General Vehicle Test Plans P-3001-TT, P-3002-TT, P-3003-TT, and P-3004-TT baseline test procedures were integrated into the overall tests required for the qualification testing on three prototype SLRV vehicles.

Test Sequence
Data was recorded during acceleration testing in each of the test conditions listed in Table 3-1. Data was recorded at four controller input voltage levels and three car weights. Add itionally, data for two car trains was also recorded. All deceleration data has been recorded on magnetic tape. Analyzed single car data is presented elsewhere in this section.

3.2 TEST DESCRIPTION

In general, deceleration testing consisted of bringing the car to rest from various initial speeds on level, tangent track at various combinations of master controller inputs, car weights, and braking modes. Runs were made in both directions over the same section of track. During the deceleration, various car and traction system parameters were recorded to determine the characteristics of system operation.

3.3 TEST INSTRUMENTATION

The parameters listed in Tables 2-2 and 2-3 were also recorded for all the deceleration testing. Two tapes were run simultaneously, cross-referenced by time signal, event marker, controller position signals, and deceleration signals. The data recording equipment for the SLRV testing consisted of two tape decks, three oscillographs, and separate signal conditioning for each type of test required. Descriptions of parameters, sensors and calibrations are contained in Volume I of this report. The quick look strip-outs were used to validate operation, to define various time constants, define IRIB times for selection of data samples for analysis, and to provide a check on calibration constants being employed.

3.4 TEST PROCEDURES

The actual test procedures used during the SLRV testing were as defined by "General Vehicle Test Plan (GVTP) for Urban Rail Transit Cars", (UMTA-MA-06-0025-75-14). Using the generalized braking procedures, the following conditions were tested:

TABLE 3-1. DECELERATION TESTS

TEST SET NO.	TEST NAME	WEIGHT	IESINO.	RECORO NO	TAPE NOS	NOTES
P. 3001	Sewemat on blended Bras	AWO	37	11-23	A 3.83	
		AW2	23	1727	A 2, R 2	
			82	$3 \cdot 8$	A9.8.9	2 Cu
			86	47	A.1. A11	2 Cur
		An3	69	118	AGEE	
			74	1. 7	A 8 P8	
			$3215=31$	$5 \quad 12$	$\text { A } 15 \text { E } 15$	2 Cur
			81	16	49.89	2 Cur
			5	$\cdots 14.1620$	A1. $\mathrm{B}^{\text {1 }}$	
P-3002	Deceleration Friction Brks	Awo	37	$24 \quad 29$	A3R3	
			38	112	$A 4 \mathrm{B4}$	
			66	611	AS.ES	2 Car
			$3313+3$	19	A :5 E 15	$2 \mathrm{Cin}^{\text {r }}$
		AW2	23	$30 \quad 37$	A2 B2	
			82	$23 \quad 25$	$49 \mathrm{B9}$	2 Cur
			86	911	$A^{\circ} \mathrm{i}$ B 11	2 Cur
		AW3	35	3946	$A 3 B 3$	
			77	- 8	A 8 B 8	2 Cur
P 3003	Deceleration Dundeme Brhas	AWO	6	911	A 1, B 1	
			38	1926	A A, B4	
			39	13	A 4. B $¢$	
			66	15	A $5 . \mathrm{Bb}$	2 Cur
		AW2	24	$91 /$	$42 \mathrm{B2}$	
			82	$29 \quad 31$	A9,89	2 Car
		AW3	69	3546	A6. B ¢	
			E	28		Vis megtape
P. 3004	Decelerat on Emersgency Bra	AWO	39	2133	A 5134	
			66	1217	AS.B5	2 Ca
		AW 2	24	1825	- $2, \mathrm{B2}$	
			82	27. 28	A 9, B9	2 Car
			34 (5Г3)	1120	A $15, \mathrm{~B} 15$	
			31 (SF3)	15	A 15, B 15	2 Сar
		AW3	35	524	A 3. B 3	
			$1 /$	27	A 8. BE_{8}	2 Car
			81	715	A 9, B9	$\begin{aligned} & 2 \text { Ciar } \\ & \text { (modifiec } \end{aligned}$

Controller Inputs - 25\%, 50\%, 75\%, 100\%
Car Weights (Pounds) - 69,130 (+ crew), 82,500, 100,945
The car was decelerated at the desired conditions with fixed input commands.

3.5 TEST DATA

Data reduction was performed directly upon selected samples from oscillograph records and strip-outs from magnetic tape records of the test runs. All records are available for reduction and analysis as deemed necessary.

Blended Braking

Figure 3-1 presents a summary of blended braking test data over the range of car speeds and controller inputs. The relatively flat curves indicate that satisfactory blending of the dynamic and service friction braking systems is obtained. As shown in Figure 3.2 the control linearity is within the 10 percent (full scale) tolerance band applied to the design characteristic.

Figure $3-3$ presents the time and distance to stop from 50 mph for a range of controller positions.
The effect of car weight on deceleration rate at two control inputs is shown in Figure 3-4. As expected an increase in car weight results in a slight decrease in deceleration rate. The data for a car weight of AW2 was not included, due to the relative closeness of the AWO and AW3 data. The time and distance to stop from various initial speeds for two car weights are presented in Figure 3-5. The effect of the car weight is quite slight.

Dynamic Braking

The service friction brakes were disabled for these tests. Figure 3-6 presents the deceleration rate and control linearity of the dynamic brakes. Time, distance and speed to decelerate are shown in Figure 3-7, while Figure 3-8 presents stopping distances from various initial speeds.

Emergency Braking

Figure 3-9 presents both the braking rates throughout the SLRV's speed range, and the total time to stop.

Figure 3-1. Effects of Controller Position on Blended Braking (100,945-Pound Car)

Figure 3-2. Control Linearity

Figure 3-3. Effect of Controller Position on Blendea' Braking Stopping Distance from $50 \mathrm{mph}, 100,945-\mathrm{Pound}$ Car (AW3)

Figure 3-4. Effects of Car Weight and Controller Position on Blended Braking

Figure 3-5. Effect of Car Weight on Blended Braking Stopping Distance

Figure 3-6. Deceleration of 69,130-Pound Car (AWO) in Dynamic Braking at Nominal Track Voltage

Figure 3-7. Dynamic Brake Control Characteristics Time, Distance, and Speed to Declerate (AWO, 69,130-Pound Car)

Figure 3-8. Dynamic Braking, Stopping Distances, Control Characteristics (AWO, 69,130-Pound Car)

Figure 3-9. Emergency Braking Deceleration Profile (AW3, 100,945-Pound Car)

4. TRACTION RESISTANCE (DRIFT) TESTS

4.1 SUMMARY

Objective

The objective of the traction (train) resistance testing was to determine the traction resistance of the SLRV for use in the analysis of adhesion test data, to check the coefficients used to calculate the design performance of the vehicle and as a baseline for analysis of the vehicle tractive and braking effort values.

Procedure
General Vehicle Test Plan P-4001-TT Baseline Test Procedure was used for both single and two-car tests.

Test Sequence
Single Car - Test Run 25, Records 1 through 8 (Car SF-0003)
Two-Car Train - Test Run 30, Records 2 through 9 (Cars SF-0003, MB-0002)

Status

The drift tests were conducted on the 6th and 15th of June 1976 at the DOT TTC facility in Pueblo, Colorado. Tests were conducted utilizing a range of entry speeds from 50 mph to 5 mph on cars adjusted to the AW2 specified weight of 82,500 pounds.

4.2 TEST DESCRIPTION

The SLRV SF-0003 car was tested on the level tangent section of the test track, following the Drift Test Procedure, SLRV-P-4001-TT. Tests to determine the single car resistance were performed during Test 25, Records 1 through 8, on June 6, 1976, at the AW2 car weight. Twocar train drift tests were performed during Test 30, Records 2 through 9, on June 15, 1976.

4.3 TEST INSTRUMENTATION

The parameters instrumented and recorded during the drift tests were the same as those recorded during the other performance testing. Tables 2-2 and 2-3 present the listing of instrumented data channels and the various locations of the recorded data.

4.4 TEST PROCEDURES

The tests were performed at drift entry speeds of $50,40,30$ and 5 mph (15 mph with two-car test). Each test was conducted from the north and south directions. The fairing through the test data is representative of the north and south direction since there was zero wind. The scatter of the test data is due to the sensitivity of the differential speed and differential time calculations performed to obtain the train resistance.

As specified in the GVTP, the train resistance is calculated at

$$
T R=\frac{a}{21.95}[W+e w]
$$

where $W=$ The test vehicle weight in pounds
ew = The equivalent weight of rotating parts in pounds and
a = The measured deceleration rate in miles per hour per second
for the tested vehicle at AW2.

$$
\begin{aligned}
& \text { Then } W=82,500 \text { pounds and } \\
& \mathrm{ew}=7,095 \text { pounds. }
\end{aligned}
$$

The test fairing presented in Figure 4-1 was derived from the fairing presented in Figure 4-2 excluding the gearbox, motor brush, friction and windage losses. The calculations utilized the following information provided by Garrett AiResearch:
a. Watt losses for motor, friction and windage losses as a function of motor rpm, as shown in Figure 4-3.
b. Horsepower losses =

```
\(5.7 \times 10^{-4} \mathrm{~N}+1.64 \times 10^{-5}(\mathrm{~N})^{2}+1.39 \times 10^{-5}(\mathrm{~N})^{0.85} \mathrm{~T}\)
where \(\mathrm{N}=\) Axle rpm (from vehicle speed)
    \(\mathrm{T}=\) Axle torque (utilizing test train resistance)
```

The estimated train resistance is based on the Davis equation coefficients:

$$
\begin{aligned}
& \mathrm{TR}=1.3 \mathrm{~W}+29 \mathrm{n}+.045 \mathrm{WV}+[(.0024)+(\mathrm{N}-1)\{.00034)] \mathrm{AV}^{2} \\
& \text { where } \mathrm{TR}=\text { train resistance in pounds } \\
& \mathrm{W}=\text { weight per train in tons } \\
& \mathrm{n}=\text { number of axles } \\
& \mathrm{V}=\text { train speed in mph } \\
& \mathrm{N}=\text { number of cars in train. } \\
& \mathrm{A}=\text { frontal area of lead car, } 90 \mathrm{ft}^{2}
\end{aligned}
$$

4.5 TEST DATA

Reproductions of the acquired test data are shown in Figures 4-4 and 4-5 for single car drifting, and Figures 4.6 and $4-7$ for drifting of a two-car train. The resolution of the results of these two test sets into train resistances are presented in Figures 4-3 and 4-8, respectively.

The train resistance derived from test data is approximately 85 pounds higher than the estimated values below base speed, providing a slightly higher rolling resistance. Above 20 mph the test fairing is in reasonable agreement with the estimated train resistance.

The test results indicate that the predictions made by Boeing Vertol for energy consumption on the actual N -line duty cycle were not influenced by use of the estimated train resistance (an input for energy consumption calculations) since there is no great difference between estimated and test data. The Δ train resistance of 85 pounds reduces the acceleration rate by 0.02 mphps or requires a 0.7 -percent increase in tractive effort to maintain the 2.8 mphps acceleration rate of an AW2 car.

Figure 4-1. Drift Tests, Single Car (AW2) (Test 25 R. 1-4)

Figure 4-2. Drift Tests, Single Car (AW2) (Test 25 R. 5-8)

Figure 4-3. Drift Test, Single Car, Puebio Test Center

Figure 4-4. Drift Tests, Two-Car Train (AW2) (Test 30 R.2-5)

Figure 4-5. Drift Tests, Two-Car Train (AW2) (Test 30 R.6-9)

NOTES

1. TRAIN RESISTANCE INCLUDES GEARBOX \& MOTOR BRUSH FRICTION \& WINDAGE
2. TEST 30
3. REC 2-9
4. CAR WT AW2
5. SF $0003 \&$ MB 0002
6. DOT-TTC PUEBLO

Figure 4-6. Drift Test, Two-Car Train

NOTES

1. MOTOR RPM $=71.98 \times \mathrm{MPH}$
2. $\mathrm{HP}=\frac{\mathrm{KW}}{0.746}$
3. LOSSES QUOTED BY GARRETT AIRESEARCH

Figure 4-7. Motor Brush Friction and Windage Losses

Figure 4-8. Train Resistance, Single Car

5. SPIN/SLIDE CONTROL SYSTEM TESTS

5.1 SUMMARY

Objective
The objective of the spin/slide protection system testing is to determine the efficiency of the SLRV spin/slide protection system throughout the speed range of the car in both drive and brake modes on wetted rail.

Procedure

The procedures used during the acceleration testing were those laid down in the General Vehicle Test Plan, Test Set P-2011-TT. During the deceleration testing the procedures were those specified in General Vehicle Test Plan, Test Set P-3011-TT and included both blended and friction only braking modes.

Test Sequence

Spin/slide testing was accomplished using car SF-0002 with initial speeds of from 20 to 50 mph for the braking and up to 45 mph for the acceleration tests. Testing was conducted with the car at the AWO weight (69,130 pounds). As specified, the tests were conducted on both dry and wet rails (various levels of wetting agents were used to reach the reported wet condition).

Status

The tests were conducted in conjunction with the qualification testing of the SLRV at Pueblo, Colorado, in March 1976. Braking tests were conducted with full service friction only, full service blended, and partial blended braking. Continuous slides were achieved in full service only braking conditions. The slip/slide efficiency measured during the deceleration tests exceeded the system design goal of 75 percent.

Acceleration tests were conducted with full acceleration starting from zero car speed and attaining up to 45 mph car speed. However, spin conditions above base speed were not encountered. The slip/spin protection system performance exhibited during these tests exceeds the design goal of 40 percent.

5.2 ACCELERATION TEST DESCRIPTION

This section contains SLRV test data on the slip-spin system acceleration performance. The wheel slip-spin protection system is designed to detect and control wheels spins whether random or synchronous. The system is operative for all acceleration commands. Upon detection of a wheel spin during acceleration, wheel control is maintained by simultaneously removing the current to the series connected traction mono-motors on the end trucks, on a non-jerk-limited basis, until the spin is corrected. Following correction, tractive effort is automatically reapplied under jerk-limited control. The tests of the slip-spin acceleration performance are intended to show satisfactory system functional capability and efficiency.

The wheel slip-spin acceleration performance data was acquired in Tests 64 and 65 with SF0002 car at AWO car weight. These tests have been performed pursuant to General Vehicle Test Procedures, specific test set, SLRV-P-2011-TT. The testing was conducted at DOT TTC Pueblo, Colorado, during March 1976.

5.3 INSTRUMENTATION

The parameters instrumented and recorded during the slip/spin tests were the same as those recorded during the other performance testing. Tables 2-2 and 2-3 present the listing of instrumented data channels and the various locations of the recorded data. The axle speeds were used to identify the presence of spins/slides and the accelerometer peaks were used to define available adhesion levels. In acceleration testing, the velocity recorded on the center truck is taken as true velocity since it is unpowered.

5.4 TEST PROCEDURES

To acquire slip-spin acceleration performance data, 12 runs were conducted with fulf acceleration during Tests 64 and 65. Of these runs, four runs exhibit wheel spins, but only three runs contain wheel spins over a significant speed range from the initial start at zero speed through about base speed. However, an instrumentation malfunction reduced the number of runs that could be anafyzed to only two (Run 31 of Test 64, and Run 22 of Test 65). Although testing was conducted up to 45 mph , wheel spin did not occur much beyond base speed. In view of the difficulty encountered in generating wheel spins at full acceleration, testing at partial acceleration was not conducted,

Further details of the slip-spin events are summarized in Table 5-1.
A concise description of the data reduction methodology for determining slip-spin efficiency follows. The slip-spin efficiency (η) is defined as:

$$
\eta=\frac{\left(\bar{a}_{\mathrm{a}}\right) \quad \text { Average car acceleration } \times 100}{\left(\bar{a}_{\mathrm{m}}\right) \quad \text { Maximum average acceleration for the available adhesion }}
$$

To determine the average car acceleration, the following expression is used:

$$
\left(\bar{a}_{\mathrm{a}}\right)=\frac{\mathrm{V}_{\mathrm{a}}{ }^{2}}{2 \times \mathrm{S}_{\mathrm{a}}}
$$

TABLE 5-1. SUMMARY OF SLIP-SPIN TEST RESULTS

Test No.	Run No.	Speed Range (mph)	Slip-Spin Efficiency (\%)	Actuał Distance Traveled (ft)	Minimum Theor Distance Traveled (ft)	Average Car Acce: (mphps)	Average Peak Accel (mphps)
64	31	0-11.3	49.3	95.5	47.1	0.97	1.99
65	22	0-16.4	45.9	184.5	84.7	1.07	2.33

V_{a} is the velocity attained at the end of the acceleration run. For these tests, V_{a} is selected as the speed beyond which spins do not occur - about base speed. S_{a} is the distance the car travels in accelerating from an initial speed to V_{a} speed.

To determine S_{a}, the actual distance traveled during the acceleration run, the speed signal of one axle of the non-motored center truck is integrated numerically over the speed range from zero to V_{a} speed. The speed signals from the axles on the center truck represent true car speed during acceleration runs since they are unpowered and cannot spin.

To determine the maximum average acceleration which available adhesion will support, the following expression is used:

$$
\left(\bar{a}_{m}\right)=\frac{\mathrm{V}_{\mathrm{a}}^{2}}{2 \times \mathrm{S}_{100 \%}}
$$

$\mathrm{S}_{100 \%}$ represents a theoretical minimum distance to accelerate from zero speed to V_{a} speed, based on the peak acceleration rates exhibited during the acceleration run. The $\mathrm{S}_{100 \%}$ distance is computed by double numerical integration of the acceleration level defined by the locus of peak acceleration rates corresponding to maximum available adhesion.

A sample calculation using this methodology is shown in Table 5-2 for Test 64 Run 31. Also, time histories of the acceleration and axle speed for this event are shown in Figure 5-1. The V_{a} speed and locus of peak acceleration rates are illustrated.

The slip-spin efficiency is calculated to be 49.3 percent for Run 31 of Test 64 , and 45.9 percent for Run 22 of Test 65 and exceeds the specification requirements (40 percent) by a margin of 23-15 percent. The SLRV slip-spin systems performance exceeds specification goals by at least 15 percent.

5.5 TEST DATA

The section of the SLRV Technical Specification that is applicable to wheel slip-spin acceleration performance is reproduced below:

Slip-Spin Efficiency is defined as the average car deceleration or deceleration rate (mphps) expressed as a percentage of the rate which available adhesion is capable of supporting during any continuous sequence of the wheel slip-spin protection system. The efficiency of the Light Rail Vehicle wheel slip-spin system shall be at least 40 percent in acceleration and 75 percent in braking over the speed range between maximum and approximately 5 mph .

5.6 DECELERATION TEST DESCRIPTION

This section contains SLRV qualification test data on slip-slide deceleration performance. The SLRV wheel slip-slide protection system is designed to detect and control wheel slips whether random or synchronous. It is functional under all service braking commands but is inoperative during emergency braking conditions. Under detection of a wheel slip during braking, the

TABLE 5-2. SAMPLE CALCULATION, SLIP-SPIN SYSTEM PERFORMANCE (TEST 64, RUN 31, FULL ACCELERATION)

Accelerate from zero speed to $\mathrm{V}_{\mathrm{a}}=16.5 \mathrm{ft} / \mathrm{sec}(11.25 \mathrm{mph})$. Calculation for S_{a} : actual distance traveled based on the center truck wheel speed signal.

Time (sec)	V_{ave} $(\mathrm{ft} / \mathrm{sec})$	S (ft)
$0-1$	2.5	2.5
$1-2$	4.5	4.5
$2-3$	6.	6.
$3-4$	7.5	7.5
$4-5$	8.5	8.5
$5-6$	10.5	10.5
$6-7$	11.5	11.5
$7-8$	13.5	
$8-9$	14.5	
$9-10$	16.5	$S_{a}=$
		95.5 ft

then, the average car acceleration is:

$$
\bar{a}_{\mathrm{a}}=\frac{(16.5)^{2}}{2 \times 95.5}=1.42 \mathrm{ft} / \mathrm{sec}^{2}(0.97 \mathrm{mphps})
$$

Calculation for $S_{100 \%}$: minimum theoretical distance traveled from the acceleration record using the locus of peak rates

Time	$a_{a v e}$ (sec)	V_{1} $\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$	V_{2} $(\mathrm{ft} / \mathrm{sec})$	$\mathrm{ft} / \mathrm{sec})$	$\mathrm{ft} / \mathrm{sec})$
$0-1$	3.2	0	3.2	1.6	
(ft)					

then the average peak acceleration is:

$$
\bar{a}_{\mathrm{m}}=\frac{(16.5) 2}{2 \times 47.1}=2.89 \mathrm{ft} / \mathrm{sec}^{2}(1.97 \mathrm{mphps})
$$

Hence the slip-spin efficiency is:

$$
\eta=\frac{\left(\bar{a}_{a}\right)}{\bar{a}_{m}}=\frac{1.425}{2.89}=49.3 \%
$$

NOTES

TEST 64, RECORD 31
AWO CAR WEIGHT
DOT-TTC PUEBLO, COLORADO

ACCELERATION

Figure 5-1. SLRV Slip-Spin Acceleration Performance

$$
5-5
$$

dynamic braking effort is eliminated and wheel slip control is maintained by the friction brake only, on a per-truck basis. Detection is achieved on a per-truck basis for the motored trucks and on a per-axle basis for the center truck.

The wheel slip-stide deceleration performance data was obtained in tests 63, 64, and 65 with SF0002 car at AWO car weight. The tests have been performed in accordance with Boeing Document D334-10059-1, Standard Light Rail Vehicle Test Procedures, specific test set: SLRV-P-3100-TT. The testing was conducted at DOT TTC Pueblo, Colorado, during March 1976.

5.7 INSTRUMENTATION

The parameters instrumented and recorded during the slip/spin braking tests are as recorded for the acceleration tests and other performance testing (see Tables 2-2 and 2-3).

5.8 TEST PROCEDURE

The portion of the SLRV Technical Specification that pertains to wheel slip-slide deceleration performance is restated below.

Slip-spin efficiency is defined as the average car deceleration or acceleration rate (mphps) expressed as a percentage of the rate which available adhesion is capable of supporting during any continuous sequence of the wheel slip-spin protection system. The efficiency of the Light Rail Vehicle wheel slip-spin system shall be at least 40 percent in acceleration and 75 percent in braking over the speed range between maximum and approximately 5 mph

A brief description of the data reduction methodology employed to determine slip-slide efficiency follows.

The slip-slide efficiency (η) is defined as:

$$
\eta=\frac{\left(\bar{a}_{\mathrm{b}}\right) \text { Average car acceleration } \times 100}{\left(\bar{a}_{\mathrm{m}}\right) \text { Maximum average acceleration for the available adhesion }}
$$

To determine the average car acceleration, the following expression is used:

$$
\left(\bar{a}_{\mathrm{b}}\right)=\frac{\mathrm{V}_{\mathrm{B}}^{2}}{2 \times \mathrm{S}_{\mathrm{B}}}
$$

V_{B} is the velocity at the instant that the first wheel slip occurs and S_{B} is the stopping distance from that same effective brake point. The velocity V_{B} is read directly from the output of the oscillograph instrumentation system based on the wheel speed signals from either axle of the center truck.

To determine S_{B}, the stopping distance from the instant that the first wheel slip occurs or effective brake distance, the transition distance from the brake entry point to the brake point is subtracted from the measured stopping distance S_{D}.

Car stopping distance S_{D} is measured by means of a surveyor's chain from the point of initial brake entry, which is prior to the instant that the first wheel slip occurs, to the point where the car comes to rest. The point of initial brake entry corresponds to the initiation of blended or friction only braking commands.

The transition distance is obtained from the output of the oscillograph instrumentation system as the product of the average of the brake entry and brake speeds and the transition time interval between these events.

To determine the maximum average acceleration which available adhesion will support, the following expression is used:

$$
\left(\bar{a}_{m}\right)=\frac{V_{B}^{2}}{2 \times S_{100 \%}}
$$

$\mathrm{S}_{100 \%}$ represents a theoretical minimum stopping distance from the brake point based on the peak deceleration rates exhibited during the braking event. The $\mathrm{S}_{100 \%}$ distance is computed by double numerical integration of the deceleration level defined by the locus of peak deceleration rates corresponding to maximum available adhesion.

A sample calculation using this methodology is shown in Table 5-3 for Test 64, Run 15. Also, time histories of the acceleration and axle speed for this event are shown in Figure 5-2. The brake entry point, brake point, transition interval, and locus of peak deceleration rates are illustrated.

5.9 TEST DATA

The summary shown in Table 5-4 illustrates that the slip-slide performance requirements are satisfied, since the minimum recorded efficiency is 76.3 percent.

The results displayed in Table 5-4 represent the extremes encountered from among all the test runs for which slides were obtained. In some cases, slides were not developed continuously throughout the braking event and may have occurred for one truck only. As a result, analysis of this data yields high slip-slide system efficiencies. An example of this is Test 64 Run 22 where at 22 mph the slip-slide efficiency with only one slide on the A-end truck is 90.5 percent. For the substantial number of tests where continuous slides are encountered throughout the braking event on all trucks, a slip-slide efficiency of 76.3 to 81.1 percent for full service blended braking and 78 to 87.5 percent for full service friction only braking is achieved over the surveyed speed range of 20 to 50 mph . Substantially, all slides were developed randomly; however, two synchronous slides were experienced in Test 63 Run 16, a full service friction only braking condition. For this test condition with synchronous slides, the slip-slide efficiency is 82.5 percent. Further slip-slide test results are reported in Tables 5-5 and 5-6.

Several tests were conducted using partial blended braking modes (75,50 , and 25 percent of full service blended braking) but wheel slides did not occur.

TABLE 5-3. SAMPLE CALCULATION SLRV SLIP-SLIDE PERFORMANCE (TEST 64 RUN 15 FULL SERVICE BLENDED BRAKING)

Measured Stopping Distance, $\mathrm{S}_{\mathrm{D}}=1,125 \mathrm{ft}$
$V_{3 \mathrm{e}}=73.33 \mathrm{ft} / \mathrm{sec}$
$V_{B}=72.16 \mathrm{ft} / \mathrm{sec}$
Transition Time $=0.6997 \mathrm{sec}$
Transition Distance $=0.6997 \times 1 / 2(73.33+72.16)=50.9 \mathrm{ft}$
Stopping Distance from "brake" point $=1125-50.9=1074.1 \mathrm{ft}$
Average Car Deceleration:

$$
\left(\bar{a}_{\mathrm{a}}\right)=\frac{(72.16)^{2}}{2 \times 10.74 .1}=2.42 \mathrm{ft} / \mathrm{sec}(1.65 \mathrm{mphps})
$$

Average Demonstrated Adhesion,

$$
\mu_{B}=\frac{2.42}{32.2}=0.075
$$

Calculation for $\mathrm{S}_{100 \%}$ and $\overline{\mathrm{a}}_{\mathrm{m}}$, Max Average Deceleration that available adhesion will support

Time (sec)	Decel $(\mathrm{ft} / \mathrm{sec})$	V_{1} $(\mathrm{ft} / \mathrm{sec})$	V_{2} $(\mathrm{ft} / \mathrm{sec})$	\bar{V} $(\mathrm{ft} / \mathrm{sec})$	$\mathrm{ft})$ (ft)
$0-11$	2.9	72.16	40.26	56.2	618.2
$11-12$	3.0	40.26	37.26	38.76	38.76
$12-13$	3.05	37.26	34.21	35.74	35.74
$13-14$	3.15	34.21	31.06	32.64	32.64
$14-15$	3.30	31.06	27.76	29.41	29.41
$15-16$	3.40	27.76	24.36	26.06	26.06
$16-17$	3.50	24.36	20.86	22.61	22.61
$17-18$	3.60	20.86	17.26	19.06	19.06
$18-19$	3.60	17.26	13.67	15.47	15.47
$19-20$	3.60	13.67	10.06	11.87	11.87
$20-21$	3.70	10.06	6.36	8.21	8.21
$21-22$	3.80	6.36	2.56	4.46	4.46
$22-23$	3.90	2.56	0	1.28	1.28
				$S_{100 \%}=$	863.77 ft

Max Average Deceleration

\bar{a}_{m}	$=\frac{(72.16\}^{2}}{2 \times 863.77}=3.01 \mathrm{ft} / \mathrm{sec}(2.06 \mathrm{mphps})$
Max Available Adhesion	$=\frac{3.01}{32.2}=0.094$
Slip-Slide Efficiency, $\eta \quad$	$=\frac{2.42 \times 100}{3.01}=80.4$ percent

Figure 5-2. SLRV Slip-Slide Deceleration Performance

TABLE 5-4. SUMMARY OF SLIP-SLIDE SYSTEM EFFICIENCY IN BRAKING

Item		SLRV Spec	Test Result
Braking Mode			
Full-Service Blended:	20 mph	75%	$76.3-90.5$
	30 mph	75%	$77.7-82.8$
	40 mph	75%	$81.1-87.2$
	50 mph	75%	$80.4-85.4$
Full-Service Friction Only:	20 mph	75%	$87.5-95$
	30 mph	75%	$80.5-88.4$
	40 mph	75%	$78.5-85.9$
	50 mph	75%	$78.0-86.0$

5.10 CONCLUSION

The SLRV slip-slide system performance exceeds specification goals.

TABLE 5-5. SLIP/SLIDE TEST RESULTS, BLENDED BRAKING

Test No.	Test Speed (mph)	Effic	μ Avail.	μ Demo	Trans Time (sec)	S_{T} Trans Dist (ft)	$\begin{aligned} & V_{E} \\ & (\mathrm{ft} / \mathrm{sec}) \end{aligned}$	$\begin{aligned} & V_{\mathrm{B}} \\ & (\mathrm{ft} / \mathrm{sec}) \end{aligned}$	$\begin{aligned} & S_{\mathrm{B}} \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{100 \%} \\ & (\mathrm{ft}) \end{aligned}$	S_{p} Measured (ft)	Comments
64-14	50	81.2	0.119	0.097	0.947	67.78	72.6	70.54	797.2	647.5	865	A \& B Truck, No Slides Mid Stop
64.15	50	80.4	0.94	0.075	0.699	50.9	73.3	72.2	1074.1	863.8	$\uparrow 125$	
64-16	30	79.7	0.100	0.080	0.58	24.6	42.8	41.9	340.4	271.2	365	A Truck, No Slides Last 2 sec
$64-17$	30	77.7	0.113	0.088	0.548	23.2	42.8	41.9	310.8	241.5	334	
64-18	30	82.8	0.118	0.098	0.757	32.2	42.8	42.2	$28 \uparrow .8$	233.3	314	A Truck, No Slides Last 3 sec
64.19	30	80.8	0.118	0.096	0.639	27.3	43.3	42.2	288.7	233.3	316	A Truck, No Slides Last 3 sec
64.20	30	80.9	0.117	0.095	0.731	30.3	41.4	41.4	274.7	226.5	310	A Truck, No Slides Last 3.5 sec
64.21	20	76.3	0.106	0.081	0.626	16.9	27.3	26.8	138.1	105.4	155	
64-22	20	90.5	0.122	0.110	0.509	14.4	28.4	28.3	112.6	102.0	127	One Slide Only, A Truck
64.23	20	81.5	0.113	0.092	0.548	15.7	29.0	28.3	135.3	110.3	151	
64.24	20	78.0	0.115	0.089	0.60	16.9	28.3	27.9	135.0	105.4	152	
64-25	20	78.9	0.113	0.089	0.516	15.0	29.3	29.0	147.0	116.0	162	
64.34	50	83.8	0.122	0.102	0.626	44.3	71.8	69.6	734.7	616.1	779	A Truck, One Slide Only
64-35	50	85.4	0.114	0.098	0.718	51.1	71.8	70.5	788.9	673.8	840	A Truck, One Stide Only
64.36	50	81.7	0.117	0.096	0.621	44.2	71.8	70.5	805.8	658.5	850	A Truck, No Slides Last 15 sec
64.37	40	81.1	0.120	0.097	0.72	40.5	56.1	55.7	496.5	402.9	537	A Truck, 2 sec Lockup
65-10	40	87.2	0.104	0.090	0.88	52.5	60	59.3	602.5	525.3	655	
65-11	40	80.4	0.104	0.084	0.71	42.3	59.8	59.5	654.7	525.6	697	
65-12	40	80.7	0.102	0.082	0.80	47.8	60	59.5	672.2	542	720	
65-13	40	84.8	0.097	0.082	0.68	40	59.5	59.0	656	556	696	
65-14	40	82.5	0.096	0.080	0.56	33.5	60	59.5	692.5	571	726	

TABLE 5-6. SLIP/SLIDE TEST RESULTS, FRICTION BRAKES ONLY

6. POWER CONSUMPTION TESTS

6.1 SUMMARY

Objective

The objective of the power consumption testing is to determine the SLRV energy consumption while operating on a sample service route at a defined level of schedule performance. The tests are designed to provide a measure of car schedule performance, power consumption, and overall traction system efficiency.

Procedure

General Vehicle Test Plan PC-5011-TT baseline test procedure was used to obtain energy consumed during the duty cycle testing.

Test Sequence

Primary duty cycle testing was conducted using car SF0003 as follows:
Single Car (AW2) Blended Braking - 575V Nominal - Test 38, Record 3

- 480V Nominal - Test 36, Record 16
- 750 V Nominal - Test 37, Record 4

Single Car (AW2) Friction Brakes Only - 575V Nominal -- Test 38, Record 4

Status

Test data were obtained from a sequence of vehicle excursions simultating a scheduled route having 93 station stops and which also simulated both surface and subway operation at maximum speeds of 26 mph and 50 mph , respectively.

A vehicle loaded to the AW2 configuration (82,500 pounds) was used and the energy consumed during the duty cycle was recorded manually from an instrument channel which combined line volts, line amps, and time with a digital counter (0.1 kw -hr) as readout.

Undercar equipment temperatures were also recorded during the synthetic route tests.

6.2 TEST DESCRIPTION

The simulated N -line duty cycle testing was performed on the DOT TTC facility in Pueblo, Colorado, following the SLRV-PC-5011-TT procedure. The 1 -hour duty cycle utilizing a nominal 575 line volts was accomplished during Test 38, Record 3, for full service blended braking and again during Test 38, Record 4, for friction only braking on June 25, 1976.

A two-hour blended braking duty cycle was performed with the line voltage adjusted to provide a maximum of 750 volts during Test 37, Record 4, on June 24, 1976. Testing with a minimum of 475 volts was accomplished during Test 36, Record 6, on June 23, 1976.

The simulated N -line duty cycle was developed for the DOT TTC testing based on the Garrett AiResearch simulated N -line test reported in the Combined Systems Laboratory Test document 74-10394, June 2, 1974. The effect of grades was included in the AiResearch simulation, whereas the DOT TTC simulation is mostly level tangent track.

6.3 INSTRUMENTATION

The instrumentation parameters recorded during energy consumption testing consisted of the basic performance parameters plus one channel combining line volts, line amps, and time with a digital counter (0.1 kw -hr) as quick-look readout.

In addition, undercar equipment temperatures were recorded in 20 locations.

6.4 TEST PROCEDURES

During the period January 20, 1976, through February 13, 1976, the following air flow measurements were taken in plane with the brake gride:

With the SLRV A end leading, the relative airflow one foot in front of the brake grid is 60 to 70 percent of car velocity one foot to the rear of the brake grid, the airflow is approximately 50 percent of car velocity at all speeds between 0 and 50 mph

With the SLRV B end leading, the relative airflow one foot in front of the brake grid is 90 to 95 percent of car velocity one foot to the rear of the brake grid the airflow is approximately 50 percent of the car velocity at all speeds between 0 and 50 mph

The manner in which the N -line duty cycle simulation was performed is presented in Table 6-1 and includes the track profile over which the duty cycle was performed.

6.5 TEST DATA

A summary of the one-hour simulated N -line duty cycle, with blended brakes, is presented in Table 6-2 and includes the number of surface stops and number of subway stops, maximum speeds for the surface and subway runs, station dwell times, trip time and energy consumption. The Boeing Vertol prediction of the energy consumption utilizing the DOT TTC track profile is presented for comparison with the Test 38 , Record 3 energy consumption. The Boeing Vertol prediction provided an energy consumption of 9.97 kw -hr/car mile over a total distance of 13.93 miles, whereas the energy consumption obtained from Test 3B, Record 3 was 10.21 kw -hr/car mile for a total distance of 14.49 miles. Correcting the test data for a total distance of 13.39 miles, for a comparison with the predicted value, yields an energy consumption of 9.81 kw -hr/car mile. This compares to the Boeing predicted kw -hr/car mile of 9.97 for the test conditions.

The effect on energy consumption due to performing the duty cycle at the maximum line voltage of 750 volts and the minimum line voltage of 480 volts is presented in Table 6.3. The

TEST DESCRIPTION

Start duty cycle at station $285+00$; run vehicle clockwise (N); end clockwise operation at station $380+00$ (catenary starts at station $279+00$, ends at $385+00$)

38 Station Stops, Maximum Speed 26 mph
19 Clockwise Direction - Start at station 285; accelerate to 26 mph ; initiate braking to complete start-to-stop run within 500 feet; end 19 th stop at station 380.

19 Counterclockwise Direction - Start at station 380; end 19th stop at station 285.
12 Station Stops, Maximum Speed 50 mph
3 Clockwise Direction - Start at station 285, accelerate to 50 mph ; cruise approximately 10 seconds at 50 mph ; initiate braking to complete start-to-stop run within 3000 feet; end 3rd stop at station $375+00$.

3 Counterclockwise Direction - Start at station $375+00$; end 3rd stop at station $285+00$.

Repeat clockwise and counterclockwise runs to complete 12 stops from 50 mph ; end 12 th stop at station $285+00$.

43 Station Stops, Maximum Speed 26 mph
19 Clockwise Direction - Start at station 285; end 19th stop at station 380.
19 Counterclockwise Direction - Start at station 380, end 19th stop at station 285.
5 Clockwise Direction - Start at station 285; end 5th stop (and duty cycle) at station $310+00$.

Notes:

1. Station Dwells: 8.5 sec at 26 mph Station Stop
15.0 sec at 50 mph Station Stop
2. Brake Marks for 26 mph Entry Speed: 175 ft from Station Stop Brake Marks for 50 mph Entry Speed: 600 ft from Station Stop
3. Station stops were marked by white stakes, brake marks for 26 mph stops by red stakes, and brake marks for 50 mph stops by yellow stakes.
4. Test Set Number: SLRV-PC-5011 TT

TABLE 6-1. Continued

STATION STOPS AND BRAKE MARKS - 26-MPH STOPS					
CLOCKWISE (NORTH)			COUNTERCLOCKWISE (SOUTH)		
	Station	Brake Marks		Station	Brake Marks
Start	28500		Start	38000	
	28825	*		37675	*
Stop 1 -	29000		Stop 1--	37500	
	29325	*		37175	*
Stop $2-$	29500		Stop $2-$	37000	
	29825	*		36675	*
Stop 3-	30000		Stop 3-	36500	
	30325	*		36175	*
Stop 4-	30500		Stop 4-	36000	
	30825	*		35675	*
Stop 5-	31000		Stop 5 -	35500	
	31325	*		35175	*
Stop 6-	31500		Stop 6-	35000	
	31825	*		34675	*
Stop 7-	32000		Stop 7-	34500	
	32325	*		34175	*
Stop 8 -	32500		Stop 8 -	34000	
	32825	*		33675	*
Stop 9 -	33000		Stop 9 -	33500	
	33325	*		33175	*
Stop $10-$	33500		Stop 10 -	33000	
	33825	*		32675	*
Stop 11 -	34000		Stop 11 -	32500	
	34325	*		32175	*
Stop 12 -	34500		Stop 12 -	32000	
	34825	*		31675	*
Stop 13 -	35000		Stop $13-$	31500	
	35325	*		31175	*
Stop 14 -	35500		Stop 14 -	31000	
	35825	*		30675	*
Stop 15 -	36000		Stop 15 -	30500	
	36325	*		30175	*
Stop 16 -	36500		Stop 16 -	30000	
	36825	*		29675	*
Stop 17 -	37000		Stop $17-$	29500	
	37325	*		29175	*
Stop 18 -	37500		Stop 18 -	29000	
	37825	*		28675	*
Stop 19 -	38000		Stop 19 -	28500	

TABLE 6-1. Continued

TABLE 6-2. SUMMARY OF SIMULATED N-LINE DUTY CYCLE on TTC TRACK PUEBLO, SINGLE CAR, AW2 CAR WEIGHT

	SLRV Test 38 Rec 3 Simulated N-Line	Boeing Vertol Prediction STC Track
	Pueblo	STC Track
Surface Run No.	81	81
Maximum Speed (mph)	26	26
Station Dwell (sec)	8.5	9
Subway and Tunnel Run No.	12	12
Maximum Speed (mph)	50	50
Station Dwell (sec)	15	9
Total Distance (mi)	14.49	13.93
Total Dwell Time (sec)	868	837
Round Trip Time (mph)	58.17	52.94
Average Speed (mph)	14.9	15.8
Energy Consumption	9.81^{1}	
(kw-hr/car mile)		9.97

Notes:

1. Test data corrected for total distance of 13.93 miles for comparison with Boeing Vertol prediction.
2. Boeing Vertol prediction for actual N -line profile is 11.68 kw -hr/car mile.
3. Garrett Airesearch Combined Systems Laboratory Test Report (74-10394, 2 July 1974) simulated N -fine test results for energy consumption is 11.92 kw -hr/car mile.

TABLE 6-3. EFFECT ON KILOWATT-HOUR ENERGY CONSUMPTION dUE TO LINE VOLTAGE VARIATION

AW2, Simulated N-Line Duty Cycle at Pueblo TTC

Test/Rec	Type Duty Cycle	Líne Voltage Drop at Base Initial Speed	Station Stops	Time (sec)	Distance (miles)	$\begin{aligned} & \mathrm{Kw} \\ & \mathrm{Hr} \end{aligned}$	$\frac{\mathrm{Kw}-\mathrm{Hr}}{\text { Car Mile }}$
38/3	Blended Brake	$\begin{array}{lr} 630 & 560 \\ \text { (Nominal } 575 \text {) } \end{array}$	93	3490	14.49	148	10.21
38/4	Friction Brake	630560	93	3558	14.49	152	10.49
37/4	Blended Brake	$\begin{aligned} & 740 \quad 655 \\ & (\text { Max Volt) } \end{aligned}$	$\begin{array}{r} 93 \\ 186 \end{array}$	$\begin{aligned} & 3720 \\ & 7154 \end{aligned}$	$\begin{aligned} & 14.49 \\ & 28.98 \end{aligned}$	$\begin{aligned} & 159 \\ & 323 \end{aligned}$	$\begin{aligned} & 10.97 \\ & 22.29 \end{aligned}$
36/6	Blended Brake	$\begin{aligned} & 540 \quad 475 \\ & (\text { Min Volt) } \end{aligned}$	$\begin{array}{r} 93 \\ 186 \end{array}$	$\begin{aligned} & 3481 \\ & 6950 \end{aligned}$	$\begin{aligned} & 14.49 \\ & 28.98 \end{aligned}$	$\begin{aligned} & 137 \\ & 279 \end{aligned}$	$\begin{array}{r} 9.45 \\ 19.25 \end{array}$

maximum/minimum line voltage duty cycle station stops were increased to 186, rather than the 93 N -line stops, for a total running time of close to two hours. However, data are also presented at the end of the 93rd stop for comparison with the 1 -hour duty cycle at the nominal 575 volts. The summary of the effect on energy consumption due to line voltage variation includes the following: type of duty cycle (blended or friction braking), the drop from the initial line voltage as the car accelerates to base speed, stations stops, trip time, distance, kwhr , and kw -hr/car mile. A graphical presentation is also included in Figure 6-1 for a visual portrayal of the almost linear increase in energy consumption with increasing line voltage.

The undercar equipment temperatures are presented in Table 6-4 for the 2-hour duty cycles utilizing maximum and minimum line voltage and the two 1 -hour duty cycles for blended and friction braking. An automatic temperature recorder, with a maximum capability of $500^{\circ} \mathrm{F}$, was used to monitor 18 thermocouples located on the underside, inside, and on top of the vehicle, as shown in Figure 6-2. The temperature data presented are the initial and maximum temperatures reached during the simulted N -line duty cycles.

Figure 6-3 presents the temperatures reached on the ground brush heat shield on the center truck during the blended brake duty cycle, Test 38 , Record 3, and on the end truck during the friction brake duty cycle, Test 38 , Record 4. This temperature was recorded manually utilizing a meter, since it was expected that the temperature on the end truck would exceed $500^{\circ} \mathrm{F}$ during the friction brake duty cycle; however, as shown in Figure 6-3 the maximum temperature was $410^{\circ} \mathrm{F}$.

An oscillograph time history of line current is provided in Figure 6-4 for a typical station-tostation run, top speed 26 mph . The average line current draw was 738 amps during acceleration and 27 amps during blended braking.

The corrected value of 9.81 kw -hr/car mile obtained during the simulted N -line duty cycle at the DOT TTC facility agreed closely with the Boeing Vertol prediction of 9.97 kw -hr/car mile.

As a result of the duty cycle testing the level of confidence in the Boeing Vertol prediction of 11.68 kw -hr/car mile for the actual N -line duty cycle has been greatly increased. The Boeing Vertol prediction is slightly lower than the Garrett AiResearch prediction of 11.92 kw-hr/car mile.

The rms armature current for the simulated N -line duty cycle on the DOT TTC facility at Pueblo was calculated from data obtained using a meter similar to the kw-hr meter providing test results in amp^{2}-hr. A value of $255 \mathrm{amp}^{2}$-hr was recorded during the 1 -hour blended braking duty cycle, Test 38 Record 3, providing an rms armature current of 513 amp . The Boeing Vertol prediction of an rms armature current of 620 amp was determined using the actual N -line profile. Therefore, no comparison is being made for the rms armature current since the test result of 513 amp does not include grade effect.

Figure 6-1. Kilowatt-Hours/Car Mile Comparison for 93 Station Stops, 14.49 Miles

TABLE 6-4. SUMMARY OF UNDERCAR EQUIPMENT TEMPERATURES

Location	Channel Number	Temperature ${ }^{\left({ }^{\circ} \mathrm{F}\right)}$							
		Two-Hour Duty Cycle 8 lended Brakes				One. Hour Dutv Cycle			
						Blended Brakes 7 est 38 Rec 3 Line Volt 575V		Fricion Brake Ifest 38 Ruc 4 Line Volt 575 V	
		Test 36 Minimurm Lin	Rec 16 Volt (480V)	Test 37 Mirimum Lire	Ree: 4 Volt (750V)				
		Initial Temp	Max Temp	Initial Terme	Max Temp	Initial Temp	Max Temp	\|nitial Temp	Max Ternp
Chopper Box Outlet Air	1	64	95	96	102	88	107	103	102
Traction Motor - Outlet Air	2	80	127	89	138	85	129	123	143
Traction Motor Frame	3	80	129	82	131	78	123	129	121
PCU. 1 Outside Air	4	80	103	94	114	88	111	111	113
PCU. 2 Outside Alr	5	65	88	87	105	82	107	102	104
LVPS	6	70	95	83	100	82	103	102	102
Input Reactor	7	70	170	81	161	81	161	133	$15 /$
Smoothing Reactor	8	65	135	82	143	78	130	119	133
Compressor Air	9	80	101	100	123	100	120	111	111
Brake Resistor	12	60	125	85	163	85	160	86	96
On Bottom of	13	58	134	86	157	86	142	89	96
Heat Shield	14	56	135	88	157	88	148	92	97
Transmission Oil Drain Pluy	15	95	199	122	215	108	185	175	197
Ambient Air Under Car	16	59	83	83	97	79	103	95	97
8 End Traction Mtr Blower Frame	17	69	93	87	106	83	105	98	106
Filter Cap on A1 Mod Assy (PCU.1)	18	70	98	86	102	83	103	102	102
Wire Bundle in LRN 329	19	88	93	113	133	92	115	107	127
Ambient Air Under Car	20	59	82	83	99	80	107	85	98

TOP VIEW

Figure 6-2. Thermocouple Locations

Figure 6-3. Simulated N-Line Duty Cycle at TTC Pueblo. Ground Brush Heat Shield Temperature

SF0003, AW2, 575V
TEST 38, BLENDED BRAKE

Figure 6-4. Typical SLRV Line Current Record

