
UMTA-VA-06-0065-80-1

DETAILED DESIGN FOR A MIS FOR THE
SOUTHERN CALIFORNIA RAPID TRANSIT DISTRICT

OCTOBER 1980

PREPARED FOR:
U.S. DEPARTMENT OF TRANSPORTATION

URBAN MASS TRANSPORTATION ADMINISTRATION
Office of Technology Development and Deployment

Washington, D.C. 20590

,

This document was disseminated under the sponsorship
of the U.S. Department of Transportation in the
interest of information exchange. The United States
Government assumes no liability for its contents or
use thereof. The United States Government does not
endorse products or manufacturers. Trade or manufac­
turer's names appear herein solely because they are
considered essential to the object of this report.

T ec1'nlcol ~eport Documentation Page
1. Rer,on He. 2. Gc.vernme;,t Acce11ion No. 3 . Recip ie,.t ' 1 Catalog No .

UMTA- VA- 06- 0065- 80- 1

- , . Title ond S..bti tl e 5, Repo rt Date

Detailed Design for a MIS fo r the
Southern California Rapid Transit Distric t

OCTOBER 1980:<.-- :-:----- - ~
~ P;rlorming Orgoni zoti on Cod•

t--::-- --:-,------------------------------1 8 . Performing Orgon i zotion Report No . 7. Authorl a)

John S . Ludwick, Jr.
9. Perlormin1 Orgon i zation Nome one! Add res s

The MITRE Corporation, Metrek Division
1820 Dolley Madison Boulevar d
McLean, Virginia 22 102

~-- - - - - - - ----- ------------ - ------1 12, Sponaoro"t Agency Name ond Addres1

U.S . Depa r tment of Tr ansporta t ion
Ur ban Mass Transportation Admi nistra t i on
Office of Technology Devel opment and Deployment
Was hing t on . D. r. . ? n 'lQ()

15. Supp leme,, tory Note•

Gr ound Tr ansporta tion Systems
Project Number : 124 2B

16. Ab1tro ct

MTR-80W84

10 . Wor~ Un it No. (TRAIS)

11 . Conlroct o r Gront No .

DOT-UT-90006
13. Type o f Report ond Peri o d Covered

1,. Sponsori ng A11enc y Code

An Automa t ic Vehic l e Monitoring System (AVM) being installed in Los Angeles
will r ecord a l a r ge amount of opera t ional data t ha t can later be used for
management report s. The software r equired to provide this func tion is
described and s tructured pseudo- code of the pr ocesses and det ailed file
descriptions a r e given .

17. Ke y w.,,h

Automatic Vehicle ~foni toring , Bus
Transit Management Information System,
Software Des i gn

18 , Di 1tri bution Stat..,...,,

Available to the Public through the
National Technical Information Service ,
Springfield, Virginia 22161.

19. Se c:urHy Cluai f. (of t+. i a report) 20 . Securi ty Cloaaif. (of thi s poge) 21. No. of Pog.. 22. P ri ce

Uncludfied Unclassified

Form DOT f 1700.7 Cl-72> Reproduction of complatod poge outhorl aad

() .
'-.'l-, . r-m

'""" Ql.
t·..) °'

METRIC CONVERSION FACTORS

Approximate Conversions t o Metric Measures "' ::: Approximate Conversions from Metric Measures

- "' "' Symbol Whu Yn Know Multiply by To Find Symbol

Symbol When You Know Multiply by To Find Symbol - ---
;.

- - LENGTH
~

LENGTH - -- mm mill imeters 0.04 inches ,n
a, - cm centimeters 0 .4 inches ,n

- m me1ers 3.3 feet ft
,n inches · 2.5 centimeters cm ----
fl fee1 30 c ent imeters cm - ~ m meters 1.1 yards yd

km k I laneters 0.6 miles mi
yd yards 0 .9 meter~ m

m, miles 1.6 kilometers km

= AREA
AREA :e -

,nz
"' - - cm2 square cen1Imeters 0. 16 square inche s ,nz

squa,e inches 6 .5 squl!lre centimeters cm2 :!? m' square meter s 1.2 square yards vd'
tt' square 1eet 0,09 square meter s mz - - km' square k I lome tcrs 0 .4 square mi l es mi2

yd2 square yards 0.8 square mernr s m2 - ! ha hectares {10,000 m2J 2.5 a cres
m,z square miles 2.6 square k ilometers ""'' 0 -

acres 0.4 hectare s ha -.. :::
MASS (weight)

w
MASS (wei!!!L,_ - 00 - ~

Ol ounces 28 grams
g grams 0.035 ounces Ol (D

g -
~ =

kg kilograms 2.2 poonds lb ex:>
lb pounds 0.45 k 1l0tJrams kg

short ions 0.9 Ionnes I - I tonnes (1000 kg) 1.1 short tons

-
(2000 lbl ...

~

VOLUME VOLUME
a,

tsp Ieasp00f'ls 5 mlllihters ml - ml ml lh l 1ters 0.03 fluid ounces ti oz
- .. I l i tet'S 2.1

Tbsp t ablespoons 15 m, llil11crs ml - pin1S pl

ti oz f lutd ounces 30 m1ll1 l 11ers ml "" - I l i1ers 1.06 quarts qi
-

C cups 0 .24 liter s I ~- ~
I l iters 0.26 Q.ll lons gol

Pl p,n1s 0,47 liters I --- m' cu bic meIers 35 cubic feet 11'

qi quarts 0.95 li ter s I - - --- m' cubic meters 1.3 cubic yards yd 3

gal gallons 3.8 l i ter s I

••' cubic l eet 0.03 cub,c meter s m' - -
vd

3 cubic vards 0,76 cubic meter s
.,., ., "' TEMPERATURE (exact)

-
TEMPERATURE (exact) - .. "c Celsius 9/ 5 lthon Fahfenhe, t

.,
- t empMature add 321 temper ature

., Fahrenhei t 5 9 latter Celsius •c - ,.,
temperature subtrac t ing temperawrc - • r

32) -- • r 32 98-6 'l12
"' - -40 0

140 I I
8

~ I ~ I l~O I I
16 0

I 2~ ~ - I I I I I I I I

• I •II ~ '} ') 4 , _. • l • • ~ •, f • tr"lt'' •.• • ,1r1 '-'J"~••·,, ,., ,11'1o! -VI I" ch•l,l lo•j1 l,)L,. ,•-., -...•c NBS ~.h~1.. P 11Dt . ::'.::tu. ; - I I I I I I I I I
n

1 I I I
8 0 100 20 40 6 0

Un,I!-, ot fole 4'"': :-. J • d \1~~v• .. ~ - ;,, t• ,:.!~ . ~u C dt,, •U l\ou. CI) '\) : au. ,. -- - •o -20 0
~ - ~ •c 37 •c

-

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS
LIST OF TABLES

1.

2.

INTRODUCTION

PROGRAM DESCRIPTIONS

2.1 Form AVM Files

2.1. l Gould For tran Prog r ams

2 .1.1. 1
2.1.1.2
2. 1.1. 3

Input
Oulput
Processing

2. 1. 2

2 .1. 2 . 1

Select and Sort

Select

2. 1. 2 .1.1
2.1.2 .1.2
2.1.2.1.3

2 .1. 2. 2

2 .1. 2 . 2.1
2. 1. 2 . 2 . 2
2.1.2.2.3

Input
Output
Processing

Sort

Input
Output
Processing

2 .1. 3 Updale Perf Tapes

2 .1. 3 . l Form TP-Trip Fi l e

2.1.3. l.l
2 .1. 3 .l. 2
2.1.3 . l.3

Input
Output
Processing

2 .1. 3 . 2

2 .1. 3 . 2.l

Form New Summary Tape
'

Form Daily Aggregat e Fi l e

2 .1. 3 . 2.1.1 Form Dail y Section 15 Aggregate File

iii

vii
vii

1- l

2- l

2- l

2- 1

2-10
2-10
2-11

2-11

2-11

2-11
2-11
2-11

2-11

2- 11
2-11
2-14

2-14

2-14

2-14
2-14
2-14

2-15

2-15

2-18

2.1.3.2.1.1.1
2.1.3.2.1.1.2
2.1.3.2.1.1.3

TABLE OF CONTENTS (CONTINUED)

Input
Output
Processing

2.1.3.2.1.2

2.1.3.2.1.2.1
2.1.3.2.1.2.2
2.1.3.2.1.2.3

Form Daily Run Aggregate File

Input
Output
Processing

2.1.3.2.1.3

2.1.3.2.1.3.1
2.1.3.2.1.3.2
2.1.3.2.1.3.3

Form Daily Ridership Aggregate File

Input

2.1.3.2.1.4

2.1.3.2.1.4.1
2.1.3.2.1.4.2
2.1.3.2.1.4.3

2.1.3.2.1.5

2.1.3.2.1.5.1
2.1.3.2.1.5.2
2.1.3.2.1.5.3

2.1.3.2.1.6

2.1.3.2.1.6.1
2.1.3.2.1.6.2
2.1.3.2.1.6.3

Output
Processing

Form Daily Schedule Deviation Aggregate File

Input
Output
Processing

Form Daily Overload Aggregate File

Input
Output
Processing

Form Daily Layover Aggregate File

Input
Output
Processing

2.1. 3 .2.2

2. 1. 3 .3

2.1.3.3.1
2.1.3.3.2
2.1.3.3.3

Update Summary Files

2.1.3.4

Form New Perf Data Base Tape

Input
Output
Processing

Form Daily Exception Reports

iv

2-19
2-19
2-19

2-19

2-19
2-19
2-20

2-20

2-20
2-21
2-21

2-21

2-21
2-24
2-24

2-24

2-24
2-24
2-24

2-24

2-2 5
2-25
2-25

2-25

2-26

2-26
2-26
2-26

2-26

3.

TABLE OF CONTENTS (CONTINUED)

2 .1. 3.4.l

2. 1.3 . 4 . 1.1
2 . 1.3.4 .1. 2
2 .1.3.4.1.3

Form Dai ly Schedul e Devia tion Exceptio n Report

Input:
Out put
Processing

2.1.3 .4.2

2 .1. 3 .4.2.l
2.1.3.4.2.2
2 . 1.3.4 . 2.3

Form Daily Over l oad Exception Repo rt

Input
Output
Processing

2.1. 4 Update Trouble Tape

2 . 1.4 . l Sort

2.1.4.l. l Input
2.1.4.1.2 Output
2.1.4 .l.3 Processing

2.1.4 . 2 Fo rm Ou tput Troub l e

2.1.4 .2.1 Input
2 .1.4.2.2 Out put
2 .1.4. 2 .3 Proces sing

Reports

2.1.4 .3

2 .1. 4 . 3.1
2 .1.4 . 3.2
2.1.4 . 3.3

Form New Troub le Tape

Input
Output
Process ing

2 . 2 Form Summary Reports

PROGRAM LOGIC

APPENDIX A - FILE CONTENTS

APPE~DIX B - DETAILED LOGIC

B.l

B . 1.1
B. 1.2

Form AVM Files

Gould Fortran Programs
Select and Sort

V

2-2 7

2-2 7
2-27
2-27

2-27

2-2 7
2- 27
2-28

2-2 8

2-28

2-28
2-28
2- 28

2-28

2- 28
2-29
2- 29

2-29

2-29
2-29
2-29

2- 29

3- l

A- 1

B- 1

B-2

B-2
B- 2

TABLE OF CONTENTS (Concluded)

B.1.3 Update Perf Tapes

B. 1. 3 .1
B.1.3.2

Form TP-Trip File
Form New Summary Tape

B.1.3.2.1

B.1.3.2.1.1
B.1. 3 .2. 1.2
B.1.3.2.1.3
B.1.3.2.1.4
B.1.3.2.1.5
B.1.3.2.1.6

Information common to Aggregate programs

Form Dail y-Section-15-Aggrega te File
Form Daily-Run-Aggregate File
Form Daily-Ride-Aggregate Files
Form Daily-Shed-Dev-Aggregate File
Form Daily-Overload-Aggregate File
Form Daily-Layover-Aggregate File

Update B.1.3.2.2

B.1.3 . 3
B. 1. 3. 4

Form New- Perf-Data-Base Tape
Form Daily Exception Reports

B.1.3.4.1
B.1.3.4 . 2

For m Daily Schedule Deviation Report
Form Daily Overload Report

B.2 Common Report Progr am Contents (reports 2.1
through 2 . 6)

vi

B-2

B-3
B-6

B-6

B-8
B-11
·B-15
B-2O
B-23
B-26

B-29

B-31
B-32

B-32
B-34

B-36

Figure Number

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12

Table Numbers

2-1
2-2

LIST OF ILLUSTRATIONS

MIS Data Flow
Process 1: Form AVM Files
Process 2: Form Output Reports
Process 1.2: Select and Sort
Process 1.3: Update Perf Tapes
Process 1.3.2: Form New Summary Tape
Process 1.4: Update Trouble Tape
Process 1: Expanded
Summary Tape Layout
Basic Standee Computations
Standee Cycle Illustration
Example of Sequence of Report Data

LIST OF TABLES

Block Header Record (Tracked Bus File)
Bus Stop Record (Tracked Bus File)

vii

2- 2
2- 3
2- 4
2- 5
2- 6
2- 7
2- 8
2- 9
2-16
2-22
2-23
2-30

2-12
2-13

1. INTRODUCTION

A demonstration of an Automatic Vehicle Monitoring (AVM) system,
sponsored by the Urban Mass Transportation Administration
(UMTA), is being performed in Los Angeles, with approximately
200 bus es and four lines of the Southern California Rapid
Transit District (SCRTD). Although the primary purpose of the
system is to determine the effectiveness of various on-line
contr ol strategies, a large amount of data is recorded daily and
can be used to provide management information. A prev ious
Working Paper (WP-79W00738) detailed r equirements for MIS
r eports us ing AVM data, and a later letter (W24-5026) presented
a preliminary desi gn that would provide the r equired data.

This document expands the preliminary design to a detailed
design. In Section 2, the latest data flow diagrams are given,
and the inputs, outputs, and process ing r equired by each process
are described. Section 3 discusses the structured approach and
conven t ions of the pseudo-code used to describe the processing.
Appendix A alphabetically presents the contents of the files and
some of the tab l es r efe rred to in Section 2 and Appendix B
pre sents the detailed pseudo-code described in Section 3.

The contents of this document inc lude revisions bas ed on
discuss ion with SCRTD personnel of an earlie r draft copy; it ts
anticipated that further refinements will result during the
implementation phase.

1-1

2. PROGRAM DESCRIPTIONS

The pr ograms required t o process the AVM log tape and eventually
provide MIS reports are described her e. The general format is
to di scus s the required inputs to each program, the resultant
outputs and the processing r equired. The programs follow from
the data f l ow diagrams developed during the preliminary design,
a l t hough some of the processes in that document have been
furthe r decomposed and some modifications have been made.
F i gure 2- 1 s hows the first level processes, Figure 2-2 and 2-3
s how the second l eve l, and Figures 2-4 through 2-7 show the
third and l ower leve l s . Figure 2-8 shows an expansion o f
Process 1 : Form AVM Files .

2 . 1 Form AVM Files

To summarize the processe s involved (see Figure 2-2), the daily
AVM log tape is processed by Gould Fortran programs, forming
data files which are f urther selected, sorted and processed by
Cobol programs . A r e search tape is formed including all of the
AVM data bus stop; this will probably r equire a new tape every
day. A daily TP-tr ip file is formed, including, for each time
point on each trip, the basic information that i s needed to
l ater provide MI S r eports. For each re port that is t o be
pr ovided, a sepa rate daily aggr egate file is formed from the
TP-trip file and is used to update a summary tape, which
maintains statistical data f r om the beginning of the desired
time period t o the present . At any time, the summary tape can
be accesse d by r e port programs to format and provide fina l
totals .

In general, the program names used a r e the same as the processes
on the data flow diagrams. As there are a large numbe r of files
involved, and they are referred to not only in this section, but
also in the next, the de tails are not given he re, but are
provided i n the Appendix, where the files and some tab l es ar e
presented in alphabet ical order.

2 .1.l Gou ld Fort r an Programs

A set of programs has been developed by Gould to read the AVM
log t ape a nd fo rm a se t of fil e s that they will later use to
de t e rmine the ef fectiveness of various control strategies.
Although the programs we re not or i ginally intended for use at
SCRTD, a Fortran compil e r is ava ilable on the Univac system, and
it shou ld be poss ible to use the same programs pe rhaps with a
few modific a tions t o accommodate diffe r ences betwee n the
di fferent Fo rtran impleme ntations . Although al l the data

2-1

AVM-Log-Tape

Fir st-Day-Sel ections

Cross- Ref- Tables

Form
AVM
Files
1.

Data- Base- Tapes

Form
Output
Reports
2.

FIGURE 2-1. MIS DATA FLOW

2-2

Report-Dat a- Tapes

Tracked-Bus-File

AVM-log-tapc

trouble-report-file ordered-bus-stop-file

old- trouble- DB- tape old-perf- DB- tape old-perf-summary- tape

new-perf-summary- tape

new-troubl e-DB-tape new-pert-DB-tape

FIGURE 2-2. PROCESS 1: FORM AVM FILES

2- 3

Summary-Tape

Form
Sect ion
Report
2 . 1

Form
Running
Time Report
2 . 2

Form
Ridership
Reports
2. 3

Form
Sch Dev
Report
2.4

Form
Overload
Report
2.5

Form
Layover
Report
2 . 6

FIGURE 2-3. PROCESS 2: FORM OUTPUT REPORTS

2- 4

t racked- bus-f i l e

Selec t
1. 2 .1

bus - s t op-by-line

:r esear ch ·tape

Sor t by
Direc tion,
Trip
1. 2 . 2

Orde r ed-bus-stop- f i l e

FIGURE 2-4. PROCESS 1.2: SELECT AND SORT

2- 5

ordered- bus­
stop-file

old-perf-summary-tape

TP-trip-fil e

o l d- perf-DB-tape

new-perf-sullDllary-tape new-perf-DB-tape

daily-exception-reports

FIGURE 2-5. PROCESS 1.3: UPDATE PERF TAPES

2-6

f irs t - day- select i ons

old-name- s ummar y

dai l y-name-aggr egat e

old- name- summary- data

where name S15
Run
Ride
Sch Dev
Over l oad
Layover

Name Summar y
Fi l e

1.3. 2 . 2

new- name- summary- file

FIGURE 2-6. PROCESS 1.3.2: FORM NEW SUMMARY TAPE

2-7

Trouble -

Reports

Sort By
Trouble
Report II
1.4.1

Format
and Output
Reports
1. 4 . 2

old- trouble-DB-tape

Form New
Trouble
Tape
1.4. 3

new- trouble-DB-tape

Daily-Reports

FIGURE 2.7. PROCESS 1.4: UPDATE TROUBLE TAPE

2-8

r e • e arc:h-t• pe

•
traclted-bus- fUc t>us- uop-hy-1 lne

/
or da:red-bue-etop-f 1 h :

t rouble-repon-f 1 le

N
I

'°

old-trouble-D1-L•pe

da 11 y-exc:ep t 1on- reporu ncn,- perf- D8- tape

daily-repor t•

nu ,- t r oubl e-DI-tape Nev-n~ -•u..ary-file

FIGURE2-8. PROCESS 1, EXPANDED

available from these programs are not needed to satisfy
reporting requirements, it is less complicated to use the
existing programs to form files which will then be read by Cobol
programs developed by SCRTD than to build a new set of programs
from scratch to provide just the data needed. Also, all the
data provided by one of the Gould files will be sorted and
copied onto a tape which will be available for later analysis by
researchers.

2.1.1.1 Input

The AVM log tape is the primary input. It is possible that some
control data will also need to be provided.

2 .1 .1 . 2 Output

Four types of files can be provided. Two types of files are
appropriate; the other two, which are not yet defined in detail,
are not needed here and will not be output . This will be
accomplished by skipping calls in the main program or by
providing dummy JCL when the job is run. The files useful for
MIS purposes, the Trouble Report File and the Tracked Bus Data
File, will be stored on disk for later processing. The Trouble
Report File consists of all closed trouble reports, written in
1200 (2-byte) word blocks, each block containing a separate
trouble report. Since trouble reports may not appear sequen­
tially (by number) on the raw tape, the first block of this file
will contain block pointers indexed by trouble report number
(i . e . , word 13 of block 1 contains the block number of trouble
report 13). The Tracked Bus Data File contains a time history
of bus transactions at each stop on each AVM line. It is
organized into 2,040 word blocks; each block contains 51 logical
records 40 words in length. There are four record types:

1 . Block Header Record--First 40 words of each
block, providing common information,

2 . Bus Stop Record--Primary data on a bus trans­
action at a stop .

3. Bus Assignment/Pullout Record--Data on line/
run assignments, pullouts and pullins. and

4. Dispatcher Action Record--Describes completed
AVM function key actions by dispatcher.

2-10

Each of these r ecords is defined in detail in Table 2-1 and
Table 2-2. Records are not so rted and appear in the order in
which the event occurred regardless of r ecord type or context.

2 .1.1. 3 Process ing

The de tails of t he process ing have been provided by Gould to
SCRTD and are not within the scope of this document.

2 . 1.2 Se l ect and Sort

Although the data in the Tracked Bus File are in time sequential
orde r , later processing is faci litated if the data r ecords are
orde r ed, from ma j or to minor : bus line, bus direction , bus trip
a nd time at bus stop . Rather than do one large sort on what may
be ove r 80,000 records per day, a two-s t ep process will be
pe r fo rmed.

2.1.2.l Select

2 .1. 2. 1.l Input

The Tracked Bus Data File, previous l y described, is the input,

2 .1. 2.1.2 Output

Four files will be created, one fo r each AVM line, called here
Bus Stop By Line . The four files will be copi ed, one aft er the
other to form the research tape .

2.1.2.l.3 Processing

The first Block Heade r Record s r ead will provide data fo r the
Bus Stop Record Header . Later ones will be ignored as will Bus
Assignment/Pullout Records and Dispatcher Action Record s; onl y
Bus Stop Records will be read a nd written into the appropriate
file.

2.1.2.2 Sort

2.1 . 2 . 2. l Input

Each of the four Bus Stop By Line files wil l be used as input,
one at a t ime .

2 .1. 2 . 2 . 2 Output

A s ing l e fi le, the Order e d Bus Stop Fil e .

2- 11

!

l

2

3

4

5

6

7

8

9

10

11

12

13

14

15

TABLE 2-1 - BLOCK HEADER RECORD (TRACKED BUS FILE)

BLOCK HEADER RECORD (1ST 40 WDS OF EACH BLOCK)

DESCRlPTION MNEMONIC UNITS FORMAT NOTES

Time of Day TODl 12 Starting Time (AVM
System Time) Of This

TOD2 12 Block
TOD3 12

Dat e MO 12 1-12
DAY 12 1- 31
YR 12 79 , 80 , 81

Day of Week A4 M,T, W,T , F , s, s

Wea ther A2 CL , RA, CY , FG

A'/1-1 Test Period 12 # of 2 wk TP Since
Start of Exps.

Day of TP 12 # of Day this TP (1-14)

t'ne Number I3 RTD Line Number

/ Schedule Number IS RTD Schedule Number

AVM Configuration 12 1- 4

(Repeated for)
Each AVM Tes t
Line

SOURCE : Gould , Inc.

2- 12

TABLE 2-2- BUS STOP RECORD (TRACKED BUS FILE)

1
2
3

DESCRI PTION

Time of Day

4 Line II

5 Run //

0 Bus II
7 Trip II
8 Direc t Code

9 Or igi n Code
10 Destinati on Code

l Stop ii
L Time Point Code

3
4

5
6

7
8
9

20
1
2

3

4

5

Sched . Deviation
Sched . Adj ustment

Sched. Headway
Headway Deviation

Passengers On- Boar d
Passenger s Boarding
Passenger s Alighting
Tota l Boardings
Tota l Alightings
Passenger s On-Board

Leader
Load Difference

Running Time I ncre­
ment

Passenger Waiting
Time

MNEMONIC

TODl
TOD2
TOD3

LI

RU

BU
TRP
DIR

oc
DC
STP
TPC

SDEV
SADJ

SIIDW
DIIDW

POB
PB
PA
TB
TA
POBL

PDIF

RTS

PWT

6 Passenger Tr ip Lot PTL
7 Passenger Tr ip Time PTT
8 Passenger Trip Delay PTD
9 Tactical Si t Code

30 TRBL REPORT f (Open)
1 SPM Position

2 Tactics in Effect 1
3 2
4 3
5 Other - - Llplink /Dnlink Flgs
6
7
8
9

40

UNITS FORMAT NOTES

Hrs . I2
Mins . I 2
Secs. I2

Secs
Secs

Secs
Secs

Secs

Secs

10 Ft
Secs
Secs

2-13

I3

I S

I4
14
12

I2
12
14
12

15
15

15
15

I3
I3
I3
I3
I3
I3

I3

IS

I S

I S
I .5
15
I2
13
11

12
I2
12
Bl6

Milit ary Time

RTD Line O (On Which
Bus is Oper ating)
RTD Run II (or LI/RU
fo r)
RTD Bus II
RTD Trip 0
RTD DIR CODE
1 • N 3 • S 13 ,31 RND
2 • E 4 • W 24 , 42 TRIPS
COL U of ORIG . From Sched.

" DEST .
RTD STOP II
If stop i s TP, RTP COL U

As Adj us t ed, From TOD
(As Spec i f i ed by Di s pa t ch­
er)
As Adjusted

At Arrival at th i s St op
At t h i s Stop

For Trip

At Arr ival at thi s St op

POB-POBL

From Last Stop

PB x (SHOW-DHDW) x 0 . 4

POB x Disc . f r om las t stop
POB x RTS
(PB- PA) x SDEV
1-11
1-999
0-7 0 • Off , 7 =

MSP MSGS + Vo i ce/

2.1.2.2.3 Processing

The Univac sort utility will be used to sort the records by
direction and trip. As they have already been separated by line
the files can simply be concatena ted after sorting. As the
records are originally in time sequence, after sorting by
direction and trip, they would still be in time sequence within
trips, if the Univac sort utility were "stable". As it has been
learned that the sort is not stable, the sort will have to be by
direction, trip and time.

2.1 . 3 Update Perf Tapes

This is the most complex process of the four second level
processes in Form AVM Files. First a file is formed that
includes data only at time points, but includes enough data to
provide all required output reports. This file is then appended
to previous Detailed Data Base files to form a New Perf Data
Base Tape. It is also used to form a New Summary Tape,
described later, and to form Daily Exception Reports for
schedule deviations and for overloading .

2.1.3.1 Form TP-Trip File

2 .1. 3.1. 1 Input

The Ordered Bus Stop File.

2.1. 3.1 . 2 Output

The TP-Trip File, including for each trip, the direction, run
andbus numbers, for each time point during the trip , the time at
the time point, the adjusted schedule deviation, number of
passengers aboard at that time point, number of passengers on
and off between the time point and the previous one, the maximum
number of passenge rs aboard at any bus stop between time points
and the number of the bus stop where that maximum occurs .

2.1. 3.1.3 Processing

The Ordered Bus Stop records are read one at a time and at each
bus stop the maximum number of passengers aboard since the last
time point is updated, as well as the identification of the
maximum passe nger bus stop . At each time point, the number of
passengers boarding and alighting since the last time point 1s
computed by subtracting, from the latest totals, the totals
recorded at the previous time point. The adjusted schedule
deviation is taken as the schedule deviation plus the schedule

2-14

adjustment. Passengers aboard is taken directly from the bus
stop record time. To allow later determination of layover time
and run time to the first time point, data from the first and
last bus stop records received during a bus trip are also saved,
with unique identifiers stored instead of the time points.

2.1.3.2 Form New Summary Tape

This is the most complex process among the second level process
in Figure 2-5, and is further decomposed in Figure 2-6.
Basically, a two-part procedure is followed to create each new
s ummary file: first, the daily TP-Trip File is read and the
data processed to provide statistics aggregated in the same
format as is presently provided on the Old Summary Tape. The
Daily Aggregate File is then read along with the Old Summary
File of the same type; corresponding data elements (i.e ., the
same line, direc tion, day-of-week aggregation, time-of-day
aggregation, and time point) are combined, and a New Summary
File is written.

Figure 2- 9 shows the general layout of the various files and
headers on the Summary Tape. It is anticipated that a given
s ummary tape will accumulate data over a monthly period,
although other periods could also be used. The Summary Tape
will remain essential l y the same length after each update, as
new data is combined with previous data in each file, not
appended to it; t herefore there is no real limit on how long a
given summary tape can be used to accumulate data. The first
day of a summary, the files to be included are selected and the
aggregation periods and limits required by each are provided as
inputs. That data is then included in the header of each
summary fi le, and is read and used to control the aggregation
and selection for the rest of the summary time period. That is,
the files selected to be summarized and the criteria to be used
for each remain the same for a given summary period, but may be
changed at the beginning of the next period.

2.1.3.2.1 Form Daily Aggrega te File

A different program of this type is r equi red for each of :
Section 15, Running Time, Ridership (two types), Schedule
Deviation, Overloading (in addition to daily Schedul e Deviation
and Ove rloading Reports, the data for which are not summarized
here) .

2-15

Summar y Tape:

Tape Header

File 1 Header

File 1

File 2 Header

File 2

-- ~

File n Header

File n

FI.GURE 2-9. SUMMARY TAPE LAYOUT

2- 16

In general, all programs of this type operate in th e same manner
and provide an output similar to that shown in the Apendix for
the summary files. The weather- condition and school-condi t ion
pertain t o the entire day's ope r ation. The day-interval and
time-interval refer to the manner in which the data are
aggregated and will be further described below.

To all ow flexib ility in choice of aggregation per iod, an
a pproach using user-defined table input has been chosen. The
layout of the time-of-day (TOD) table is shown in the Appendix.
A TOD code first indicates if aggregation by time period is
desir ed, or whether all trips are to be individually saved. If
aggregation is t o be performed, the table-length tells how many
table entri es fol low. Each entry consists of a finish-time for
an interval (the start- time is assumed to be the previous
finish-time; the first start-time is assumed as 4:00 as SCRTD
def ines the ir shcedule day t o begin at 4:00 A.M. The day and
date saved in various headers refer to the beginning of the
schedule day) . For example, the entries 5:00, 6:00, 7:00, 7:20,
7:40, 8 :00 would define:

Time-Interval Times Included

1 4:00 5:00

2 5 :00 6:00

3 6:00 7:00

4 7:00 7:20

5 7:20 7:40

6 7 :40 8:00

The time at wh ich a trip begins determines the time-interva l
into which that trip falls, and summations, averages or maximums
are ca rried out over all data occuring in that time interva l.
As the TOD-table will be included in the Old Summary File header
after its information, the same time intervals will be used to
create each lat e r Aggregation File, until the next pe riod
beg ins .

A s i milar t echnique is use d for day-of-week (DOW) aggregation,
only here the days need not be contiguous. The Appendix s hows
the fo rmat of the DOW-table, which has a DOW-code to indicate if
the re wi ll be aggr egations or whethe r each day s hould be handled
individually; and a table-length if there is to be aggregation.

2- 17

In orde r t o accommoda t e all the possibiities of aggregation that
may be des ired , each table entry includes seven positions,
corresponding t o day of the week (Monday= 1, Sunday= 7). A
non-zero table e ntry indicates that that day will be included in
the aggregation for that day-interval, e.g . ,

1 1
1 1 1

1 1

would accumulate Monday and Friday as day-interval 1 , Wednesday
through Thursday as day-interval 2 and Saturday and Sunday as
day-interval 3 . As e ach Aggregation File involves only one
day' s data, there is no DOW aggregation performed during this
process; it occurs during the Update Summary process .

The use of table input t o define aggregation int ervals allows as
much flexibility as the use r des ires , without having to modify
the programs .

Although the computations r equired t o f orm the various dail y
aggr ega te files ar e different, the t echnique is basically the
same in each case . Individual r eco rds are r ead from the TP-Trip
File, the necessary computations are performed, sometimes
involving data from the pr evious t i me point , as well as the
current one, and the resulfs are used t o update the e lement of a
vector corresponding to that time point. When the next record
read is for a new trip, the start time is checked to determine
if a new time interval has been entered. If not, processing
proceeds as before with the same elements being updated by new
data; if so, statistics are computed for each vector e l ement
written out, and computations for the new time interval are
begun. In addition to between-time-point computations, trip
totals are comput ed and stor ed as the last TP element . In the
detailed descriptions that follow, only the computational
differences will be discussed.

2 .1. 3.2.1.1. Form Daily Section 15 Aggregate File

Data on passenger ridership i s r equired yearly in UMTA Section
15 r e ports. All the needed data can be derived from AVM data,
and simulation us ing actual passe nger l oadings from SCRTD Line
44 has s hown that accuracy r equirements can be met using
passenger l oadings onl y at time points.

2-1 8

2.1.3.2.1.1.1 Input

The TP-Trip File.

2.1 .3. 2.1.1.2 Output

The SIS-Aggrega te Files containing passengers boarded, bus
miles, passenger miles, bus minutes, passenger minutes, capacity
miles, seat miles and bus trips.

2.1.3.2.1.1.3 Processing

The DOW-code and TOD-code are determined by UMTA reporting
requirements: for weekdays, all trips in the AM-peak, midday,
PM-peak and night (as specified by SCRTD) are aggregated; for
Saturday and Sunday (separately), only all-day totals are used.
Individual TP-trip records are read and desired measures are
computed and summed until the line, direction or time interval
changes, wh en an ou tput record is written. Passengers boarded
is dir ectl y available from the input, the average number of
passengers aboard between time points is computed from the
passengers aboard at this and the previous time points and
multiplied by the time and distance between time points to get
passenger minutes, passenger miles and bus miles, and a table is
r eferenced t o find capacity miles and seat miles. The number of
bus trips is incremented each time the first time point of a new
trip is read.

2 .1. 3.2.1 . 2 Form Daily Run Aggregate File

2.1.3.2.1.2.l Input

The TP-Trip File.

2.1.3.2.1.2.2 Output

The Daily Run Aggregate File and the Daily Layove r Aggregate
File . The Run File provides scheduled running time and
deviation from scheduled running time between time points, from
the start of the trip to the first time point (if the first bus
stop on a trip is not a time point), and from the first to last
bus stop of a trip. If time-of-day aggregation is specified,
mean values a r e computed for scheduled run time and run time
deviation and the standard deviation of the run time is also
found . The inclusion of the run time standard deviation allows
schedulers to better determine a run time that can be attained
by most buses and to determine route segments that may require
special service under certain conditions. Th e Layover File
includes time information at the first and last bus stop of each
trip.

2-19

2.1.3.2.1.2.3 Processing

The basic processing has already been described. The actual run
time is computed as the time at this point minus the time at the
previous point. The scheduled time at each point is determined
by adding the time at each point to the adjusted schedule
dev iation at that point. The scheduled run time is then
computed as the scheduled time at this point minus the schedule d
time at the previous point and the run time deviation is
computed as the sch edul ed run time minus the actual run time.
If time-of-day aggregation is being performed, the trip vector
accumulates the sums of scheduled run times, run time deviations
a nd run times squared as well as the sample size for each time
point. When the time interval, direction or line changes, the
averages are computed by dividing the sums by the sample sizes,
and the s tandard deviation of the run time is also computed.

A separate file is used for data that can be us ed t o compute
l ayover information, eve n though this could be considered to be
part of r unning time data, because layover data could not easily
be computed at the same time as the other run time data. That
is, l ayover time is not directly available from the data given ;
it can be comput ed by first reordering the TR-Trip Records by
line, direction and run number (they are presently ordered by
line, direc tion and trip number) . Then, for all trips in each
run, the last bus stop reco rd containing actual time and
adjusted schedule deviation, will be immediately followed by the
f irst bus stop r ecord of the next trip for that bus and the
actual and scheduled layover times can be computed from them.
However, r ather than r esort the who l e file, skip most of the
records and go through many of the same computations as have
already been done to form th e Run Ag gr ega t e Fi le , it was decided
to write ou t the pertinent records as they are being processed
for the Run File. A late r sort will be much quicker with fewer
and shorter records and desired aggregations can be performed
independently of those chosen for the Run File .

2 .1. 3 . 2.1 . 3 Form Daily Ridership Aggregate File

This fi l e is later accessed by two report generating programs to
construct detailed and summary r eports providing ridership data.

2 .1.3. 2 .1. 3.1 I nput

The TP-Trip File. A table correlating number of seats and bus
capacity with bus number and a table giving distance between
time points i s also needed .

2-20

2.1 . 3.2 .1. 3.2 Output

The Daily Ride Aggregate File. It summarizes, at each time
point, the number of passengers aboard, the number of passengers
on and off, the maximum aboard between time points and the bus
stop at which the maximum occurred. It also includes the time
with standees, in increments of five persons, and trip totals of
passe nger trips, passenge rmiles, passenger-miles per passenger
trip, load fac t or, standee minutes and standee minutes per
s tandee.

2.1. 3 .2.1.3.3 Processing

The first group of data is directly available from the TP-Trip
File. The passenger miles are computed in the same manner as
for the Sec tion 15 data, and the same principle is used to
compute the standee minutes; that is the number of passengers
be tween time points is assumed to be fit by a straight line
between the number of passenger s a t t he time points. The time
with standees is determined by the amount of time that the
passe nger straight line is above the horizontal line represent­
ing the number of seats . The area formed by that part of the
passe nger straight line that is above the horizontal seat line
gives standee minutes, and this number divided by the time
between time points gives the average number of standees .
Figur e 2-10 shows the relationship of the basic quantities
invo lved, for conditions in which there ar e standees.

The computation of standee minutes per standee is more complex,
as it first requires the determination of the average number of
stand ees during a "standee cycle," which begins whenever there
are s tandees and ends whenever there are no standees remaining.
In Figure 2-11, there are three standee cyc l es . At the end of
e ach cyc l e the average number of standees is found by dividing
the standee minutes in the cycle by the total time with
s tandees .

2 . 1 . 3.2.1 . 4 Form Dai l y Schedule Deviation Aggregate File

This file stores the sum of the numbe r of schedule deviations in
one-minute intervals for all trips in the chosen time intervals .
Wh en the output r e port is later run, the numbers are converted
to pe rcentages.

2.1.3.2.1 . 4 .1 Input

The TP- Trip file .

2- 21

excess­
psgrs {

pmax

~~ir seat s

[7::1 standee­
[L.I mins

diff

prev- new-
time time

'----....,---1
time- over

'---....,,,_./
time-diff

psgr- { pma x

pmin +-------.t"'-'

seats

pr ev­
t ime

time- over

prev-
time

~

new­
time

time-over

time -d iff

FIGURE 2·10. BASIC STANDEE COMPUTATIONS

2- 22

new-
time

N
I

N
w

t
Passengers

Seats

1 2 3 4 5 6 7 8 9 10 11

Time Point Number

FIGURE2-11. STANDEE CYCLE ILLUSTRATION

2.1.3.2.1.4.2 Output

The Schedule Deviation Aggregate File including, for each time
point, a 22 element vector storing schedule deviation histogram
data from minus to plus ten minutes, (including a less than -10
element and a greater than +10 element). The limits can be
changed if desired.

2.1.3.2.1.4.3 Processing

Individual TP-trip records are read and the adjusted schedule
deviation is examined to determine which histogram element
should be incremented. When line, direction or time-interval
changes , an output record is written.

2.1 .3.2.1.5 Form Daily Overload Aggregate File

This fi l e, originally specified in WP79W00738, has been changed
to provide additional data. It now includes, in a similar
fashion to the schedule deviation report just described, load
factor data in .1 increments.

2.1.3.2.1.5.1 Input

The TP-Trip File. A table to provide the capacity of each bus
is aslso r equired .

2.1.3.2.1.5.2 Output

The Daily Overload Aggregate File, including, for each time
point, a 21 element vector storing the number of bus trips in
the appropriate l oad-factor interval. The load factor limits
can be changed if desired.

2.1.3.2.1.5.3 Processing

Individual TP-trip records are read and the average load between
time point s is found from the number of passengers aboard at
this and the previous time points. The load factor is computed
using the bus capacity from the load-table and the appropriate
e l ement of the overload hi stogram is incremented. When line,
direction or time-interval changes, an output record is written.

2.1.3.2.1.6 Form Daily Layover Aggregate File

The Layover File formed during the running of the Run program is
sorted by line, direction, and run and then used to de t ermine
the sch eduled layover time and the layover deviation.

2-24

2.1.3.2.1.6.1 Input

The Layover File, consisting of only "first-bus-stop" and
"last-bus-stop" records from the TP-trip file.

2 .1.3.2.1.6.2 Output

The daily Layover Aggregate File.

2.1.3.2.1.6.3 Processing

The records are r ead one at a time; as the file only includes
"first bus stop" and "last bus stop" records for each trip, each
time a new record is different from the previous record (unless
the run also changes) the scheduled layover time and layover
time deviation are computed from the actual times and the
adjusted schedule deviations or time interval at each bus stop .
The scheduled layover time and layover deviation are added to
previous values until the line , direction or time interval
changes, when average s are formed and written out .

2. 1. 3 .2. 2 Update Summary Files

The format of the data in the daily output aggregate files is
the same as that of the old summary tape data. Consequently, a
standard "maste r file update" can be performed. A record is
read from each file; if the old summary record key is less than
the aggregate record key, the old summary record is written as a
new summary record and another old summary record is read. If
the keys are the same, the data from the aggregate record is
combined with the o ld summary r ecord , e.g . , updating an average
or total, and a new aggregate record is read. If the old
summary r ecord is greater than the aggrega te record, the
aggregate r ecord is written as the new summary record and a new
aggregate record is read. The key is composed of the line,
direction, day-interval, and time-interval of trip (depending on
whether time of day aggregation is being performed). As the end
of either file is reached, the key for that file is set to
"high-values", the highes t collating value for the given Cobol
implementation and, from the above description, it can be seen
that the rest of the remaining file will be read and written .
When both keys are high-values, the job is completed. As each
aggregate file contains data from a single day, only those
summary r eco rds corresponding t o that day-interval are changed.

2-25

The method in which the data is combined depends upon the manner
in which the data is presently aggregated. Most of the data are
simply sums, e.g., bus miles, sample size, standee time;
therefore the combining process simply consists of adding the
daily aggregate to the old summary to form the new summary.
There is also one case where only a extreme value, the maximum
number of passengers aboard between time points, is saved. In
this case, a simple comparison between the aggregate maximum and
the old summary maximum is used to determine the new summary
maximum. (The associated maximum passenger bus stop is also
selected at this time.) Other types of aggregation are required
to handle averages, used in the cases of run time, layover time
and load factor; and variance, used in the case of run time.
Slightly more processing is required here to form the new
summary average from the old summary average, the aggregate
average, and the sample sizes--the algorithm to accomplish this
is given in Section 3.

Figure 2-6 shows the contents of the updated files and the
method used to combine the aggregate and summary files. The
same update program, using different data definitions, should be
able to be used to update all of the files.

2 .1.3.3 Form New Perf Data Base Tape

2.1.3.3.1 Input

The Old Perf Data Base Tape and the newly formed TP-Trip File
are inputs. The Old Perf Data Base Tape includes a tape header
telling the dates included, followed by each included day's
TP-Trip File and associated date header.

2.1.3.3.2 Output

The New Perf Data Base Tape. It is the same format as the Old
Perf Data Base Tape.

2.1.3.3.3 Processing

The old tape header is read, updated and written to the new
tape. All of the following records are r ead and rewritten to
the new tape, a date header is formed and written, and the
entire TP-Trip File is written after it.

2.1.3.4 Form Daily Exception Reports

These are of two types, schedule deviation and overloading.
Each TP-Trip record is checked to determine if the adjusted
schedule deviation indicates that a bus is too far ahead of or
behind schedule (separate limits for each), or has a passenger

2-26

load that is greater than a user-selected load factor. For each
out-of-tolerance point, data for the preceding and following
buses is also output.

2.1.3.4.1 Form Daily Schedule Deviation Exception Report

2.1.3.4.1.1 Input

The TP-Trip File and user provided early limit and late limit.

2 .1. 3.4 .1. 2 Output

The Daily Schedule Deviation Exception Report is printed. The
contents of this report include scheduled time and schedule
deviation at the time point for the out-of-tolerance trip and
for preceding and following trips. An example of an output
displaying information of this type, developed by Gould, is
shown in the Appendix.

2.1.3.4.1.3 Processing

The TP-Trip File is read one record at a time until three trips
have been read, Time point data for each trip are stored in a
separate vector. The adjusted schedule deviation at each time
point in the second vector is checked against the limits; if a
limit is exceeded, the data stored for that time point in e ach
of the three trip vectors are printed. When all of the time
points in the second vector have been checked, the contents of
the second vector are placed in the first vector, those of the
third vector are placed in the second vector, and a new trip is
read into the third vector. Modifications in this process are
required to account for the first and last trips on a given line
and direct ion.

2.1.3.4.2 Form Daily Overload Exception Report

2.1 . 3 . 4 . 2 .1 Input

The TP-Trip File and user-provided load-factor limit. A bus
number to bus capacity table is also required .

2.1.3.4.2.2 Output

The Daily Overload Exception Report is printed. The contents of
this report include the time-point time, l oad factor and number
of passengers over the load factor limit for the out-of­
tolerance trip and for preceding and fo llowing trips. Format of
this report i s simi lar to the Daily Schedule Deviation Report
shown in the Appendix.

2-27

2.1.3.4.2.3 Processing

The same general technique used in Schedule Deviation
processing, checking the second of three trip vectors for out­
of-tolerance condition, is used here. Slightly more processing
is required here, however, as different buses may have different
capacitites and the load factor is specified as a percent of
capacity. Therefore, as each trip is read, t he capacity of the
given bus is looked up in a table. As each time point record is
read the maximum passengers between time points is divided by
the capacity to determine the maximum load factor .

The load factor is later compared to the load factor limit and
information on that time point as well as the preceding and
following buses at that time point are printed out.

2.1.4 Update Trouble Tape

The Trouble Report File generated by the Gould Fortran programs,
ordered by time, is first sorted by Trouble Report Number. The
resultant Ordered Trouble Report File is appended to the Old
Trouble Data Base Tape in a similar manner as was done with the
Perf Data Base Tape. Based on routing data included in the
trouble reports the Ordered Trouble Report File is also used to
produce a daily set of output reports which are sent to
specified users.

2.1.4.1 Sort

2.1.4.1.1 Input

The Trouble Report File, produced daily by the Gould Fortran
programs.

2.1.4.1.2 Output

The Ordered Trouble Report File.

2 . 1.4.1.3 Processing

Sort by Trouble Report Number.

2.1.4 . 2 Form Output Trouble Reports

2 . 1.4.2.l Input

The Ordered Trouble Report File .

2-28

2.1.4.2.2 Output

Daily Trouble Report Reports. The Appendix shows the format of
the trouble reports presented on a Dispatcher's display. The
same format will be used for the output report.

2.1.4.2.3 Proc essing

The Trouble Reports will be read and, based on the distribution
codes included, written to separate files. Each file will then
be read, the data elements formatted as previously shown, and a
separate report (which may contain multiple copies) printed for
each distribution code.

2.1.4.3 Form New Trouble Tape

2.1.4.3.1 Input

The Ordered Trouble Report File and the Old Trouble Report File.

2.1.4.3.2 Output

The New Trouble Report File.

2.1.4.3.3 Processing

The Old Trouble Tape Header is read, and the dates included are
updated with today's date. The header is then written to the
New Trouble Report Tape, followed by all the tape records on the
Old Trouble Report Tape. A header is created and written with
data corre sponding to today ' s parameters, followed by all
records in the Ordered Trouble Report File.

2 . 2 Form Summary Reports

At any time, summary reports may be run from data on the Perf
Summary Tape, as the daily update programs incorporate the
lat est day ' s date into the previous summary. Depending on the
initial choice of day-of-week and time-of-day aggregation each
fil e 's data may include anything from each trip for each day of
the week (an unlikely choice) to daily aggregations aggregated
over the whole week--in effect, one line of data. In general,
something in between will be specified, and Figure 2-12 shows
the general format and order of the output for: DOW--weekdays,
and . weekends; TOD- -AM peak, midday, PM-peak and night. The

2- 29

Line

Line 41

Southbound

Weekly

Li ne 41

Northbound

Weekly

L--------------------......_
•
•
•

[

L1ne44 J
Northbound

•

•

Southbound

Weekdays

Weekends

TPl TP2 TPn Tri p

AM Peak -- -- -- --
Midday -- -- -- - - -PM Peak -- -- -- --
Night -- -- -- --
All Day -- -- -- ---- -- -- --
41

Northbound
>--

Weekdays

TPl TP2 TPn Trip
Alo Peak -- -- -- --
Mi dday -- -- -- --
PM Peak -- -- -- --
Night -- -- -- ---- -- -- --All Day -- -- -- --

FIGURE 2-12. EXAMPLE OF SEQUENCE OF REPORT DATA

2-30

-

first"page" includes, for line 41, northbound, weekdays, data
for each time point by time interval, and a daily total, or
average, as the case may be. The next page provides the same
data for the same line and direction, but for weekends. The
next two pages provide the same order of information for the
southbound trips, followed by the other lines, in order.

All this data can be provided merely by formatting the data in
the summary files. To get a weekly aggregation for each line,
direction time interval, etc. in the same order as shown, the
data is sorted again, by line, direction, time-interval or trip,
and day-interval. The records are now read and aggregated by
time point until the line, direction, trip or time-interval
changes, at which time the weekly aggregate is written. A
simpler technique could be used, storing data in arrays as they
are read and aggregating them properly at the end of the file;
however, to accommodate the possibility that 2,000 trips may
have to be handled requires inordinately large arrays. In any
case, as the files will be substantially condensed by the time
this processing needs to be done, the time to sort and process
should be minimal.

The Schedule 15 and Ride Trip Reports contain data that can be
me aningfully combined further, to form line and system totals.
That is, passenger miles or standee minutes during the AM-peak
for line 41 and for the entire (AVM-equipped) system are valid
measures, whereas average run times or schedule deviations have
meaning when r e f e rred to a particular route configuration.
Therefore, these reports will be further aggregated whereas the
others will stop as previously described.

2-31

3. PROGRAM LOGIC

The logical procedures required to implement the programs
described in Section 2 are detailed in Appendix B. In general,
a structured approach is used; that is only sequential
statements (including Calls), If ••• Else , For i = n1 to
nz, Do ••• While or Repeat ••• Until (in the former, the
specified condition is tested before the included code is
performed; in the latter, the test is performed afterwards) are
included. A Cobol-oriented approach is used, although the
statements used may not be directly implementable in standard
Cobol. One such statement is Assignment By-Name, borrowed from
PL/I, to indicate that all of the values of the variab l es in one
data structure that have the same name as variables in the
second data structure are replaced by the values of the second
set of variables. Too, arrays (tables, in Cobol) are often
used to aggregate data for al l time points in successive trips
until a control variable changes , with separate rows of the
array being maintained for time interval aggregation, direction
aggregation and line aggregation . As an update to a time
interval aggregation is always accompanied by an update to each
of the others, this is indicated by replacing the "row" index by
* For example:

calc-run-time(*,new-TP) = calc-run-time(*,new-TP) + run-time

adds "run-time" t o "column" new-TP of all "rows" of calc-run­
time. When delineating lines of text,* means the included text
is comme nt. The symbols+, x and/ refer to addition, multi­
plication and division; subtraction is spelled out as "minus"
due to the possibility of confusion with the many hypenated
variable names. Periods are used to indicate the logical end of
compound statements; in more complex instances, "Ends" are also
used.

In general, the meaning of the various conventions should be
clear when the program descriptions are being read, at least
after a few of them have been studied. Also, as much as
possible, the logic of t he different programs is the same, with
only the computations of the pertinent measures being different.
This is particularly true with all of the programs of a given
t ype , that is those that form daily-aggregate files are very
similar, whil e the various update and report program descrip­
tions are virtually identical . Even among the different types
of programs, a similar program sequence is used, and the deter­
mination of control breaks is based on the comparison of "keys"
of the new and previous records. A key, defined at the begin­
ning of each program description, is composed of various data
that can be used to indicate that the end of a line, direction,

3- 1

trip, time interval, etc . has been reached, requiring some sort
of summary and reinitializat ion processing . When the end of an
input file has been reached, high-values are placed in the key,
and are used to control the finish of t he program.

3-2

APPENDIX A - FILE CONTENTS

The contents of the files described in Section 2 and 3

are defined here, in alphabetical order. In general, each file

includes a header, a key and data. Some notational conventions

are :

= means is equivalent t o

+ means and

[] means either-or

{} means iterations of the component enclosed

() means the enclosed component is optional.

The iteration limits are included below and above the braces,

unless they are obvious.

As the format of the data in the Aggregate Files is the

same as the (Old and New) Summary Files, only the summary files

are given. (The headers are slightly different, as the summary

headers a l so provide data on aggregation limits. Also, instead

of writing out the contents of the Report Print Files, examples

of the output format are given.)

A-1

BASIC-OPERATING-SCHEDULE (AVM Log Tape)

Heading

+ Schedule

=line+ schedule+ direction+
date-created+ date effective+
time-pt= numbers+
time-pt-names+
notes

={Trip+ Run+ Pull-Out-Time+
Pull-Out-Division+ Misc.+
Schedule-Times+ Nxclue + }
Next-Code+ Next-Time

+ ({subheading/note/blank})

+ End-of-Direction

+ End-of-Division

NOTE: Ordered by division line, direction,
heading, schedul e , end-of-division

A-2

A
B
C

~F
G

H

I

Header +

BUS-STOP-BY-LINE

{

lines
{

bus-stop
data }}

Heade r = f ile-ID+ date + day + weather+
school

data = bus - s top-re cord f rom tracked-bus-file

A- 3

DAY OF WEEK (DOW) TABLE

table-length 7
DOW-code+ t ab le-length+ { { indicator (j) } }

1 j = 1

Where:

j corresponds to day-of-week:

1 = Monday, 7 = Sunday

indicator (j) = 0 or l;

data for all days whose indicator= 1
will be aggregated

{

ALL, if want all days individually
DOW-code=

INT, if want day-of-week

A-4 ·

Header +

LAYOVER SUMMARY

{ key+ data}
trips

header = file-ID+ DOW-table+ TOD-table+ weather code+
school- code

key line+ direction+ day-int+ (time-int)+
(tr ip)

data= sched-layover + l ayover-dev + sampl e -size

NOTE : Either time-int or trip-int present, but not
both

A- 5

ORDERED BUS STOP

Header + { { record } }

trips TPs

Header= file-ID + date +day+ weather+ school

Record= same as tracked-bus record

NOTE: Ordered by line, direction, trip.

A-6

OVERLOAD SUMMARY

Header + { key+ data }
trips

Header= file-ID+ load-factor-threshold+ DOW-table
+TOD-table+ weather-code+ school- code

key= line + direc tion+ day-int+ time-int

2.0
data= TP + { buses-in-load-factor-int }

0

NOTE : . 1 load fac t or increments--20 intervals
+ 1 interval fo r >2. 0 .

A-7

PERF DATA BASE

end-date
File-Header + { date-header+ {

s tart-date trips

{ record }}

TPs

file-header file-ID+ start-date+ end-date

date-header = date+ day+ weather+ school

record same as TP-trip record

A-8

RESEARCH TAPE

Ide ntical t o Ordered Bus Stop File

A- 9

:r
0
&

0
'Z

0
◄
0
-'
ac ..
e z
◄
&.

0
%
... 0

"' ◄ :s:,..o
•CO ,.. z

.... ..,o:,,
-•:zo
u:,-•

ooz
z z. -.., ...
... &
:::,
0

• 0
o•
◄-
"' .., ac
◄-z
cu
0 a •

..
:r
◄ z
z
:::, -..
z -

..
;
• ... •

.. --zw-..... -o• •z-
◄ I z. - • -

1!!
.. -­&%w­.,_.,.

• -o• wa,z

RIDE DETAILED REPORT

·············------~---·-.
~------------------------•NM-••••••·-••·•••·••···· -i•..,!~ ················-········ z r• ~. ~~-~-·-"-~~~~---·~-~---·­r ... • • I • • • ••••••••• • ••• • • • • • • •• •

. _, ________________________ _

W I

·¥ zrz ~=--­•-&
• 4 I --. uzw ... -

Z•W •--o• ~az ..
I C I,

z11z• ... - -z:z..,. ••
•o
•Z

..1-Z & z
c.,=,--•-z

A .. -­w:w-­_..,

-N••~-·~~~~---·-··~---··­• . •••"N~~~~~•4•~~~~·•·~•-•------------~-------------•·•·••••••••N•••N••••-~•-•
••-••••••o••••••-••••••••
-~"~••---~~-•••••-•N•••••
-------------------------······•••~~-~N-~•N·~-~---•
·------------------------~~-~--•~N•-~~•~····~---•-• ~-•---~--~~~•·········~·----~••••••••··•~M~-~-----• -................. . ••••·•••••••••••N••••••••
•••••~4•0•0-~•••-••~~•••• -..... fl'IZ-'O• o .. z­

- Ct -z •••••••000000•-••--•o••••o
z-::1• ..,_._ 111ft
S' u
0' --...
czsz
u:::,--••& ..
z -­C%W ..
o~w . -~-a• -az-
.J CI

~◄w-• zu:it•
WI - ..
Z:Zt-• I .. -...... ... - ozaz

"::. --•- z
...

. z -­•:w-........ -w-0• •:az ...
0 ◄ I

ll I z•
wa- 9' z:z•••
-◄ -" .,
ozza
..12--••z

• • ... o ••

•-••o~-••"••~•~---•N-••••
•-•••~•••o•••••N--•••••••

~~····•~~--"N-·•·-~~•-··· . ~-~•····~••·••~•~-~-~••··
······················~--....... _______ .. -······-· .. -
•••••••••••••••••••o•••••

t•••-•o••ov•••~-•N-••••••• .
••••o••••••••••••••••••••

------·------~~~---~----­...............
·----------------------·-
♦ --~•-·•N•~•·••·•-N•••N~-• ~·····••~-••····-····•~•-
------·---------·------~­.
•••••••••o•••••••••••••••

-----------------······~-. -.............
----------·--------------•••••o••••••••o••••••••••
•••••o••••••••o•••••••••• ··~N••~~~--~·----•N~~·-·~ . --NN-~N---•-•---~--~N~••· ----------------------
O••~-"-•-N-N~-•~~•--•N--­---

A t~•~~~"~~~•~•••~o••~~•-•••
~~w•~ ~~~~ -~~ •-~~.~~•~-~-•-%&.a•- - - - --- - ---- -- - - -- - - - ----
u~-••►-~•••••-~~~~•••~~~••-~• •O:I ---------------N-

A- 10

Q ... -z -C ..
... ..
◄
a
% • -..
X -»
C 1§ -... ...
0

~ X u .. g;
-'
% 0
0 Cl) •

leader +

header

RIDE DETAILED SUMMARY

{ { key + data } }
trips TPs

file-ID+ DOW-table+ TOD-table+
weather-code+ school-code

key = line+ direction+ day-int+ (time-int)
+ (trip)

data = TP + psgrs-boarding- bet-TPS + psgrs­
alighting-bet-TPs + max pasgrs-be t-TPs +

{standee-time} + sample-size

0-5 s tandees
5-10 standees
> 10 standees

A-11

• ,_ .
• z• . Oe ar • ... 0 0 ~ •c• a: • • ... 0 ,.. -· ,.._,.,o "' -- ~co ,c -. • »• ,.. z: IZ . -· ... "'C,:, ... cs . -·· - ... zo > ... • u. u:,-e cm . :::) . 00~ z
• Cl• Z~<C- :, ,cu • =· ... lC ow ::, lC O • • • 0 "' la . :::) .
• :,e
• C •

RI DE- TRIP- REPORT

• ~ .. -0

Q
~ -•
...
s ---

• •C
LO
::, ...
uu
UC
Olo.

C
•O a ...
.. u
O ◄ I
.Jlo..

' •• ... a: .. ::,
co .. x

'
•.J ... -.. z,
J

......_ __ .,.
• • 191 Nf't

..,..,,_.,... -"'~·~ ,.. ._.

......
lft4"0f"lll'I
•N-tin.-.
---- 1ft .

......

...... Ne• """'··­.. a-,.., ... -"'-
... c ·-... ·-c:, o-.a-.o
WO l"lll'INNf'I• ... :

I "' _..,
,c .., ..,_
"' lC

"'
.-,,-GNN
_.,.41V,N
ooi,.-..,.,.,.., ...

' ,-
0 ... '

• L I
"' • X - I

i~!.:
~ '
,c - "' - • ._ ... t ,.,_.,.
0.0' ... '
~ ,., ... "' ...
C 11'1 ._,. ,,__,.

•Z •••a,• 00 _, ...
.......
ft -----..........

0 _ _.NN
0 I I I I I - ---·­" ... -----..........
"' z llll: llll: ►
- --~◄ ◄ ~ 0

-. OL%
0 • ..,

x-x--~ -cx .. z ..

A-12

---.... ----...
IIIC
111::J
-'O
-%
z' · --◄ ◄
"'' , ...
-a:
w:> .., ..
-z:
z'
' . ·-....

• • l:: C (.!) %0
o-
-u

~ u
o::, i:.:: :::i OU
..10 0
• • U)

•

header +

header

RIDE TRIP SUMMARY

{ key + data}
trips

file-ID + DOW-table+ TOD-table+ weather­
code + school~code

key = line+ direc tion+ day- int+ (time-int)+
(trip)

data psgr-trips + psgr-mis +load- factor +
standee- mis+ sample-size

A-13

--1

- C ..
C 0 • 0 0 ... C
L Gt 1t ... - Q ... " C ... C ::,

z,.,o o• • ,z 0 ·-► z C Q .. -wo=, "'C 0 .. --za ~ ...
.j u:,,-• ca C
,c ::,oz z ...
z zzc- L
◄ • u ... ,z ::,w::, >ltQ :r - a ...
::,
0 • •

RUN REPORT

:II ... I
::,z1 ·-· ...

... • 01
z I -... - • Z I

01 •
z ... , N

CII ::, Z I -·-· ••.n•• - .,. I -----... ..
-o ·--·· z• _.,
... I 01 N,,._ ..
zz • :~
•u

a z -►•• .. - 0 • .J

ZWI _.._
U::) Z I ~--· ---·· ·- -· .J

• I_ I
... .-\ __ ,_

z• "- I ··--· !1 0. ..
I

.. z
z .fl'\lift,,,_

.j a ..
u

... zw f"'t ,.,

.. =>.,.
CZ - ,..z

a --- :ir
z - ... -WIN-•
....j Q
zu
0 • ---

.j z
C ~ ..
u

zzw " • ::, z
oc- ••••• -.j

-◄ ·----ZU, .. f"I-•
"' I zz 0

oa
W.J I ••N•N - z • N• ... •N

0 • 0 I •
,..

•
Z ZW I,_.,.
•:)&I••••• _. • .,. I --N•-.. _ _, ► I -0 -· Z I -._

WO 0 zz
-◄J -- . ..,, z -ri1••·

0 0 -- "' .J

a•••••• 0 • --·----­.... .-..
WI ---N
&. •••••• •••••• ':---·- ---···--·· ...

A-14

..

.j
C ..
0 -
C

-..
,..::,o -.o

z .
• I z c .. z
-.:»o

.........
I • • • • • ···-·-­..........
I,.,

CIW I •••llf'IAI ..,, ~ .._
e..-o • •••N• Z I

• I .. .
WI% lfll.,_..,_,,.
◄ ... % I • • • • •
a..a.o I •wt•f"'l-

1

lrL--.1•,-•••
_, _ __, I • • • • • &.•o•••o•,.

- I• •flN4'
.. z I•"'•••
CW Z I • • • • •

. L~O I •• ,_,...,_
I e•4t9'1YI

twt••--,-·
• C I • • • • •

X.:t. •-.o ••
w::> • ,-,
:,,. X t

I VI I •"NW'lt't
• W I • • • • •

X:...at;n••r'l­
w- -,....
>Z:I "'

W .._ I
L O WI I

•fl. I••--• _, •X-t f"I
z owe•
- z>..,, ...

.. _,I.__.. •• ,.
wzx ••••••
>:)-1 •• Na•
cca-1 ••tn4•

-J ' ,..
◄ 11.1 ... •wt••
~ ... ·"·"-· 001
• I

, t ... , - ... -C I _..._._..,_.
,-zt-.e'4'Ne
001 N

0
0 -• ..
L

!t -..

• ••••,.
--NN

t t I I t ··---

RUN SUMMARY

header + { { key + data} }
trip TPs

header = file- ID+ DOW-table+ TOD-table+
weather- code + school-code

key line+ direction+ day-int+ (time-int)
+(trip)

data = TP + shed- run-time t run-time-dev +
(run-time-dev-shed-dev) + sample-size

A-15

>
I
°'

SCHEDULE DEVIATION REPORT FOR SCHEDULING DEPARTNENT
FOR 01-09-19

PAGE 0001 --------- ---- ·- -JAN 10,1979

LINE 041

RUN 01 ·

EARLY THRESHOLD

· DIVISioN ·--oz----,us NUNIIER 7200

NNISS
01100 LATE THRESHCLD

NNIS9
10100

•·-·--··-•---·- ------- ---- ------

DIRECTION NORTHBOUND

TIHEPOINT TRIP
(DEVIATED) . NUNB

Al.llARADO/P ICO 1070
NONTAN,VLIBERTY
ALVARAD0/6TH 1080
ALVARADO/PICO -· 1090
ALVIIRA00/6Tlt

DRIVER NUMBER 6407

THIS RU,.

SCHEDULE DEPARTURE RENARKB
DEPART DEVIATION ------·-·-- _ ...;_

HR: NN:ss NN:ss

06 00 30
06 20 00
07 23 30
OB 33 JO
08 40 30

♦01133
♦01 : 45
♦01:45
-11:JO
-13130

--· - -- --------------------- - - --
· PREVIOUS RUH- - -· --- - ----,,yx_"l.:OIUNO "RUN _ _ _

SCHEDULE DEPARTURE
DEPART DEVIATIO~

HR:NNISS NN ISS

05139:30
06100100
07:12130
OSl20:30
00 127 :30

0 100 -
o:oo
0 100

♦02 100 -
♦02130

SCHEDULE DEPARTIM
-- DEPART - DEVIATIO

HRINNIBS KNISS

06128130 0100
06140100 0100
07131100 0100

. 08147100 - - 0100 .
08153130 0100

ALVARAD0/ 6TH 1150 13150:oo 13150130 ♦01145 13135100 13135130 0100 14104100 14104130 ' 0 100

DIRECTION SOUTHBOUND

ALVARADO/ BEVERLY 1070
ALVARAD0/6TH
ALVARADO/PICO 1080
SANI<AR 8/F IGUEROA

06 26100··-06 26130 ~ ♦01:30 ·- ·--------- - - - - 06105100 - 06105130 - 0l~Ulff46"r0-0-,,-ofl4711>0-"-~
06 29100 06 29130 +02:00 06108100 06108130 0100 06149100 06149130 0100
07 53100 07 53: 30 -11130 07142100 07142130 -06115 01103100 08103130 0100
OB 09100 08 17:00 - -05130 ·----------- 07158:oo 08104100 "- -01130 ·- oe11t100- 01130100 -- .0100·

SANBARB/FIGUEROA 1150 14140100 14154 100 ♦01130

>
14125:00 14 142100 0100 14155100 15109 100 0100

SOURCE: GOULD , Inc .

"'
~

Sa ?
~b ,~
01-l

~~
t:-' z
o< I
1 0

~~
i!i~

Ee
0

~

0-
0 a:
oO
0 ...
0 ... 0
0 a: = . - 0
0, C
OU
oz Z '"'O " • ac O ◄
0,..,
• QC -we,:,11, . .., --za
0 :c u ::,-~x
oQ .:>a.:&.
0 .. :Z:~•-
0 "' a: . _, :, . :, "' oO
0
0 :c
OU
0"'

SCHEDULED DEVIATION SUMMARY REPORT
OVERLOAD SUMMARY SIMILAR

...
z
0

:: ..
>
QC,
.,c
:a>
oa: ... • z- -oz •
c:z:r:
--ow
>Z-..m ... I :c
o- "' u
""" "' _,_

0 :, :c
a-.. -:c .
u ..
...
0 -

"' "' ..
:,
oz .. .

0

. -I • . - - - -. -. - - -·=------
-- . -. --zz ---------••N•-·-­•

z •
zo
"' ..
0 •

..
0 Z z _,
-o
OU cz ..,_
a: ...

I

"'I 19 I z, .. _ I
Z I

- -_______ ,...r,

~:.:=•••••aN:.
I oz,

COi ,·
%ZI _,

Ill _, I
UI

:z

C

"' .. -z
o..oa:

:ZO •oooaoeaftil ..,_ ...
o--a: .. _,
W ◄ -:zu

..
0
z­
oz
.. z ... :,

..
z.,
.. z
_, z
_, 0 _ ..
• •

o•o•oc.,,oo•

----·""'· ..
Z: I WI_.._...,

WO I -_,_ I
=>- I :ZOODOOOOO
0-c1w..-------­w- I~
X>IOo••- .. _,..•r'I .., ... ,
"'O I

A-17

I
I .
I
~

-:
: - - - -

=-----............. --

:

:
:
:

: - = : - =

--····· ----
:

--
-- :

- --- - ---- - -
- - --- - --

- --- - ---- ----- - - -------------- --- - ----'°'•V'l•--N ------

: : : :

- .. - : - :

: = :
- - -..........

- : = .,...,. ___ ..,

-•-Nf'I•~

0000000 aoooo«
--►---- -----w ..
N-o-fllif,-.4' .,,.,.. •• 0

z-z

z
0

z
... ...
0

. ...
:c

:r ~
0

"' Iii u
0 ~

~
::,
0

0 Vl

•

SCHEDULE DEVIATION SUMt-1ARY

header + { { key + data } }
trips TPs

header = file-ID+ DOW-table+ TOD-table

key = line+ direction+ day- int+ time-int

t = +t 2
data = TP + { buses-in-sched-dev- int} +

t = -t
1

sample- size

NOTE: 1 minute sched. dev. intervals

-10 min .

22 intervals

+10 min.

A-18

SECTION 15 SUMMARY

header+ {key + data }

header = file-ID+ DOW-table + TOD-table

key line + direction+ day-int +
time - i nt

data = psgrs-boarded +bus-trip-dist ance+
psgr- mi +bus-trip-time + psgr-min +
capacity- mi+ seat- mi+ bus-trips

NOTE : DOW-table & TOD- tabl e specified by
UMTA

Weekdays, Sat ., Sun.
AM-peak , Mid-day, PM-peak, Night

A- 19

SIGNPOST-TABLE-1 . ~SlGNTB) . (AVM Log 1ape)

x-coord + y-coord +distance+
east- code+ line+
east-chain+ west-chain+
north-chain+ south- chain

NOTE:

0 1 entry per signpost

0 "chain" valttes tell
between this SP and
each direc tion

(917)

how many records
the next one in

0 ordered by north-code, then east-code

A- 20

SIGNPOST-TABLE-2 (SNGTBL) (AVM Log Tape)

number-east-codes-for-this- north-code+
SIGNTB-pointer-to-start-of- north-codes

NOTES:

o 255 entries-one for each possible
north code. Their order defines a
given north code .

o This table used as a key into SIGNTB.

A- 21

SUMMARY TAPE

Header ID + s tart-da t e + end-date

+ (Section- 15- Summary)

+ (Run- Surmnary)

+ (Ride-Detailed- Summary)

+ (Ride-Trip-Summary)

+ (Sched- Dev-Summary)

+ (Overload- Surrnnary)

+ (Layover-Surrmary)

A-22

TIME OF DAY (TOD) TABLE

table-length

TOD-code+ table-length+ { end-time }

i = 1

TOD-code =

ALL, if each trip i s to be included
separately

INT, if trips are to be aggregated
over time intervals

A- 23

TP-TRIP

header + { { key + data } }

trips TPs

header= file-ID+ date+ day+ weather+ school

key line+ directio~ ~ trip

data = run+ bus + TP + time + sched-dev +
psgrs-on-between-TPs + psgrs-off-bet-TPs +
psgrs-aboard + max-psgrs-bet-TPs +
max-psgr-bus-stop

A-24

TRACKED BUS (AVM Log Tape-Type 3 File)

block header + {[bus-stop I bus-assnment/pullout l

dispatcher-action]}

block header = AVM-block-start-time +date+ day+
weather+ {line+ sched + AVM-config}
lines

bus- stop time+ line+ run+ bus+ trip+
direction+ origin+ destination+
stop+ TP + sched-dev + sched-adj +
s hed-hywy + hdwy dev + psgr-aboard +
psgrs-boarding + pasgrs-alighting +
total-boardings+ total-alighting+
psgrs-on- leader +load-di££+ run-time+
psgr-wait + psgr-mi + psgr-trip-time +
psgr-trip-delay +tactical-code+
trouble-report+

3
SPM-position +l {tactics}+ other-flags

A-25

TABLE

VEHI CLE: 3108 DIV: 99 CALL

LINE / RUN: l 76-12
OPE RAT OR ID: xxxx CHI/ XX TRBL

ACCIDENT EMERGENCY ?

N I'lJURIES SAS ALARM
TRTD AT SCNE AS SAULT-OPER:
REFERRED AID ASS AUL T-PSGR:
TO HOSPITAL ROBBERY
AMB ULAN CE ?
WHICH HOSP? MI S CEL LA.'IY?

ALTERATION
WI TNESSES? DISTURBA.l';CE
PHOTOS? INl'ORMATION
BUS l'()VIN G? INTOX-PSGR
BUS DAMAGE LOST ARTI CLE:

LOST PSGR
MISSILES
VANnALIS'1

Lines 23- 40

SUMMARY:

Line's 42-52

SERVICE DELAY: xxxx
NEW BUS NO. XXXX WCATION:

l'ORHAT E. TROURLE REPORT (C:S-10)

TROUBL!;; RE!'ORT # 999
'JI5D, '10. 99

(LOCATION: IHL5H/WSTRN STATTJS: Ell3BL Tl!-£: 1159A

LOCATIO'l: XXXXXX."'.XXXX T RS L TI HE : XX'1:XX CLRD: xx.xxx

OPERATION5 7 HAI'ITENANCE I' ROB LE !-5 7

BLOCKADE AIR COND • .-AREBOX : EN<:INE
CANCELLATION: AIR LEAi(: HEAJ)SIGN: HOT
OETOUR AIR PRllSS • HEATER l'mR
LATE WM DSPLY : HORN STALL
our LATE AVM OTHER: LiffiTS K•USSIO'l
OVERLOAD BATTERY HD/ TL CLTOl
PADOLEBOARI) BELL(Y..IS INSIDE LEA.'<
TRANSFERS BRAKES MARKER S!!IFT
ZONE CHF. C!<S DEFROS'!'RS · MIRROR SLil'S

nlll!CTIONI,.; OIL LEA.'< RADIO
ILLNESS? DIRTY BUS : OIL PRES NO RX

!)O()R-ENTR: TIRES NO TX
PASSENr.ER IY)OR-EXIT • WATER LK BEEPS
OPERATOR 1./IPF.RS :
REl'ERREO AID : OTH<: R 'iAINT:

Tt'l0 0 RTETJ BY TO TIME
xxxxx XXXXXXXY XXXXXXXX XXXXX

XXXXXXXXXXXX TJIR: xxu TIHE : xxxxx
REl'LACE ? X TURN!lACK? X OllB ? X RELAY ? X

COPIES :

SOURCE: GOULD, Inc .

A-26

TROUBLE REPORT (AVM Log Tape-Type 2 File)

n
bl ock-poi nter + {

1

data }

n
block-pointer = { bl ock-numb er-of-ith-trouble

i=l

renort }

data = t rouble- report-text

A-27

VEHICLE-LOCATION-AND-STATUS (CLST) (AVM Log Tape)

VLST 1 = vehicle+ line+ run + bus-type

VLST 2 = for-internal-use- only

6 {schedule-deviation-thresholds} +
1 computed-sched-deviation +

VLST 3 =
1 {display-sched-thresholds}
3

VLST 4 = bus + line +run+ veh- ID +bus-type+
status

NOTES:

• Random route+ 41 + 44 + 89 + 83

• 1 entry per vehicle (220 total)

• vehicle-ID not the same as vehicle- number

A-2/J

APPENDIX B - DETAILED LOGIC

The processes required to form the files defined in

Appendix A are detailed here. The numbering system corres­

ponds to that used in Section 2. For example, B.1.3.1,

"Form FSTRIP Files" is described in Section 2.1.3.1 and refers

to the process with the same name, numbered 1.3.1, shown in

the "balloon chart11 of Figure 2-5.

B-1

B.1 For■ AV~ Files.

Pertinen~ logical procedures co■prising this major ■odule
are des crited telov.

B.1.1 Gould Fortran Progra ■s.

As this ■odule has been separately developed and documented
by Gould, details of the logical processes are not given here .

B.1.2 Select and ~ort.

Do While records exist

Read tracked-bus Intc te■p.
Select; (record-type) :

Case (block-header):
If t his is first block-header read Then

Write bus - stop-header From teap.

Case(bus-stop-record):
Write bus-stop-by-line (line) Pro■ te ■p.

Endselect.

l!ndd o.

Por all line s
Sort tus-stop-by-line(line) By direc tion, trip, time.

Concatenate bus-stop-header vith
bus-stop-by-line(all-lines) to form ordere d-bus-stop fil e .

B.1. 3 Update perf tapes.

!he detailed processes comprising this ■odule are
descrited telov.

B- 2

B.1.3.1 For■ TP-!rip Pile

Program Variables:

header
id
date
day
school
weather

new
Jcey

line
direction
trip

data1
time
run
t:us
TP
adj-sched-dev
psgrs-aboard

data2
stop
sched-adjust
psgrs-boarding
psgrs-aligh-t:ing
total-on
total-off

prev: same as above

out
k e y
data1
calc

sched-dev
psgrs-on
psgrs-off
max-p,gr s
max-psgr-stop

• other data from *
* ordered-bus-stop *
* file not used *

save
total-on
total-off

*
*

to compute total psgrs
on/off between TPs

max
max-ps gr s
max-psgrs-s~op

B- 3

,.
*

Main:

Call process-header.
Call initialize.
Call Frocess-data.

Process-Header:

Read ordered-bus-stoF Into header.
id= 'IP-trip-id.
Write 'IP-trip Prem header.

Initialize:

Read ordered-bus-stof into new
at end Call error1.

prev = new.
Call trip-begin.
save = prev By-Name .

Process-Data:

Do While ne v-key ~= high-values

Do While new-key= prev-key

Frev = new.
Call stop-update.
If frev-'IF -,= 0

Call TP-update.
Read ordered-tus-stop into nev

at end new-key= high-val ues.

Call trip-end.
Call trip-t:egin.

B-4

Stop-Update:

If prev-psgrs-aboard > max-psgrs
max-psgrs = prev-psgrs-aboard
max-psgr-stop = prev-stop.

TP-Update:

psgrs-on = prev-total-on minus save-total-on.
psgrs-off = prev-total-off minus save-total-off.

• Compute psgrs aboard when bus leaves stop •
sched-dev = adj-sched-dev minus sched-adj.
psgrs-aboard = psgrs-aboard + psgrs-boarding minus

psgrs-alighting.
out= prev By-Name.
calc = max By-Name.
save= prev By-Name.
Write TP-trip From out.
max= 0.

* First and last bus stop data saved (for trip, layover
ti mes) , even if they' re not time points •

Trip-Begin:

out :;: o.
max= O.
out= prev By-Name.
out-TP = begin-code.
Write TP-trip From out.

'Irip-End:
out= prev By-Name.
out-TF = end-code.
Write TP-trip Prom out.
If new-key~= high-values

prev = new
Read ordered-tus-stop Into new.

B-5

E.1.3.2 For■ Mev Su ■■ary '!ape.

'Ihe detailed processes co■prising this module are
described J::elov.

B.1 .3.2. 1 Infor■ation co■■on to Aggregate progra ■s.

Input Variables (fro ■ TP-trip file) :

DEV
key

line
direction
trip

data1
run
l:us
'Ip

data2
ti ■e
sched-adj
adj-s ched-dev

data3
ps grs -on
psgrs-off
psgrs-aboard
■ ax-psgrs

■ax-psgrs-stop

prev: sa■ e as nev

Header variatles :

header 1
id
begin-date
end-date
DO'ii-code
TOO-code
veather-code
s chool-code

Process-Header:

beader2
id
date
day
veatber
school

If ••-su■mary exists Bead su ■mary Into header1.
• First day of nev s u ■■ary tape •

Else Read s election-criteria Into beader1.
Read TP-trip Into header2.
If veather- code = all or veather = veather-code

If school- code = all or school = school-code
header 2-id = ••-aggregate-id
Wri te •• - aggregate From header2
Return. • Continue processing •

Else terminate proc e ssing.

B- 6

• Selection criteria not •
• satis fied by today's •
* conditions •

*

Time-Int-Table{new-data2,new-key):

Determine which time interval a given trip start time is in;
the trip-table gives a "~hantom start time" for each bus
that does not start its trip at the beginning of the line

time-check= trip-table(new-key).

* If new-trip is in table Then
time-check= ~hantom-start-time.

*

Else time-check= 0. *

If time-check= 0 Then
sched-time = nev-time + sched-dev
time-int= 1OD-table(scbed-time).

Else time-int = 1OD-table(time-check).

1OD-table chooses the prop€r TCD-interval based on the
originally-chosen aggregaticn intervals *

B-7

*

B.1.3.2.1.1 Form Daily-section-15-Aggregate File

Program Varial::les:

*
II<

*
*
*

cut
key

line
direction
day-int
time-int

data
psgrs-l::oarded
l:us-miles
psgr-miles
l::us-mins
psgr-mins
capacity-miles
seat-miles
bus-trips * samflE size*

calc (4)
data (same as above)

calc (i, j)
i = 1 - time interval er trip aggregation

2 - direction aggregation
3 - line aggregation
4 - s yst e m aggregation

!'lain:

Call frocess-header.
Call initialize.
Call frocess-data.

Initialize:

calc = 0.
Bead 1P-trip In to prev At end Call e rr1.
Bead ~P-trip Into new At end Call err2.
Call aggregate-begin.

B-8

*
*
•
*
•

Process-Cata:

Do While nev-key ~= high-values
Do While nev-key = prev-key

Call co■ fute.
prev = nev.
Read TP-trip Into nev At end nev-key = high values.

Call trip-end.
Call system-contrcl-break.
End.

Aggrega te-Begin :

* Initialize out-key data •
out= 0 .
out-day-int= day-table(header-day).
out-time-int= time-int-tatle(nev-data2,nev-key).
out-line= new-line.
out-direction= new-direction.

Compute:

calc-psgrs-boarded(*) = calc-fsgrs-boarded (*) + psgrs-on(nev-TP).
avg-psgrs = (psgrs -aboard(frev-TP) + psgrs-aboard(nev-TP)) / 2.
miles= distance-table(prev-TF,nev-1P).
mins = new-time minus prev-time.
calc-bus-mins (*) = calc-bus-11ins (*) + mins.
calc-bus-miles (*) = calc-bus-miles (*) + miles.
calc-psgr- ■ iles(*) = calc-psgr-miles(*) + (avg-psgrs x miles).
calc-psgr-mins(*) = calc-psgr-mins(*) + (avg-psgrs x ■ins).
seats = seat-ta tle(bus).
capacity= seats .
calc-capacity- ■ iles(*) = calc-capacity-miles(*) + (capacity x miles).
calc-seat- ■iles(*) = calc-seat- ■iles(*) + (seats x miles).

B- 9

Trip-End:

• When new r eco rd is from different trip, line or direction, •
* perform necessary summaries *

calc-bus-trips (•) = calc-bus-trips (*) + 1.
t ime-int= time-int-table(nev-data2,new-key).
If new-line~= prev-line

Call line-central-break.
Else If new-direction~= prev-direction

Call direction-control-break.
Else If ti■ e-int ~= out-time-int

Call time-ccntrol-treak.
* Otherwise, perform no additional processing *

•

•

Have first record in ne w trip--read another
If new- key~= higb-values

Call aggregate-tegin
prev = ne w
Read TP-trip Into new At end Call err3.

Line-control-Ereak:
Ca ll direction-control-treak.
out-direction= line-agg-code.
Call output (3) •

Directicn-Contrcl-Break:
Call time-control-break.
out-time-int = dir-agg-time-ccde.
Call o utput (2).

1ime -ccntrcl-Ereak:
Call output (1).

Syste m- Contro l-Break :
out-line = s yste m-agg-code.
Call output (4).

Output(i):

Writ e output •
out = calc (i) Ey-Na me.
Write Section- 15-aggregate From out.
calc (i) = 0.

B-10

*

B.1.3.2.1.2 Form Daily-Run-Aggregat€ Fil€

Program Variables:

*
*
*

out
key

line
dir€ction
day-int
(time-int)
(trip)

da t a
'IP
sched-run-time
run-time-dev
adj-run-time-d€v
run-time-dev-var
s ami:le- s ize

calc(2 ,trip-agg-code)
data (s ame as al::ove)

calc (i, j)

*
*

layover output format
same as input

i = 1 - time interval or trip aggregation
2 - direction aggregation

save

11ain:

tim e
s ched-dev
adj-scbed-dev

Call process-header.
Call initialize.
Call process-data.

Initialize :

calc = O.
Re ad 'IP-trip Into prev At end Call err1.
Read 'IP-trip Into new At end Call err2.
Call aggregate-begin.

B- 11

•
*
*

*
*

Process-Data:

Do While nev-key ~= high-values
Do While nev-key = prev-key

Call compute.
prev = nev.
Read TP-trip Into nev At end nev-key = high values.

Call trip-end.
End.

Aggregate-Begin:

• Initialize out-key data •

•

out= 0.
out-day-int= day-table(header-day).
If TOO-code~= all

out-ti ■e-int = ti■e-int-table(nev-data2,nev-key).
Else out-trip= new-trip.
out-line= nev-line.
out-direction= new-direction.

compute:

save 'first bus stop• data fro■ trip totals
If prev-TP = begin-code

sa ve= prev By-Na■e

Write layover fro■ prev.

•

* Check for •last bus s top' •
If new-TP = end-code

Write layover Fro■ new
Return.

• co■ pute times and add to previously saved ones •
run-time= nev-ti ■e minus prev-time.
sched-time = (nev-ti■e + nev-sched-dev) ■inus

(prev-time ♦ prev-sched-dev).
adj-sched-ti■e = (new-ti ■e + nev-adj- sched-dev) ■inus

(pre v-ti■e + prev-adj-sched-dev).
dev = sched-time minus run-time.
adj-dev = adj-sched-time minus run-time.
ca lc-sched-run-ti ■e(•,new-TP) = calc-sched-run-ti■e(*,nev-TP) ♦

sched-ti■e.
calc-run-ti ■e-dev(*,nev-TP) = calc-run-ti■e-dev(*,nev-TP) + dev.
calc-adj-run-ti ■e-dev(•,nev-TP) calc-adj-run-time-dev(•,nev-TP) +

adj-dev.
calc-run-time-dev-var(*,nev-TP} = calc-run-ti■e-dev-var(•,nev-TP) +

dev••2.
calc-sa ■ple-size(•,new-TP) = calc-sa■ple-size(*,nev-TP) + 1.

B-12

Trip-End:

* When nev record is from different trip, line or direction, *
* perform necessary summaries *

*

run-time= prev-time minus save-time.
s ched-time = (prev-time + prev-sched-dev) minus

(save-time+ save-sched-dev).
adj-sched-time = (prev-time + prev-adj-sched-dev) minus

(save-time+ save-adj-sched-dev).
dev = sched-time minus run-time.
adj-dev = adj-sched-time minus run-time.
calc-scbed-run-time(*,trip-agg-code) =

calc-sched-run-time(*,trip-agg-code) + scbed-time.
calc-run-time-dev(*,trip-agg-code) =

calc-run-time-dev(*,trip-agg-code) + dev.
calc-adj-run-time-dev(*,trip-agg-code) =

calc-adj-run-time-dev(*,trip-agg-code) + adj-dev.
calc-run-time-dev-var(*,trip-agg-code) =

calc-run-time-dev-var(*,trip-agg-code) + dev**2.
calc-sample-size(*,trip-agg-code) =

calc-sample-size(*,trip-agg-code) + 1.
time-int= time-int-table(nev-data2,new-key).

If new-line~= prev-line or new-direction
Call direction-control-break.

Else If time-int~= out-time-int or
TOD -code= all
Call time-c ontrol-break.

Otherwise, pe rform no further processing •

~= prev-direction

* Have first r ecord in new trip--read another *
If new-key~= high-values

prev = new
Call aggregate-tegin
Read TP-trip Into ne w At e nd Call err3.

Direction-Control-Break:
Call time-control-brea k.
If TOD-code= all out-trip = dir-agg-trip-code.
Else out-time-int= dir-agg-time-code.
Call output (2).

!ime-Control-Ereak:
Call output(1).

B-13

Output (i):

* Form averages and output •
For j = 1 to trip-agg-code

If calc-saaple-size(i,j) > 0
calc-sched-run-tiae(i,j) = calc-sched-run-time(i,j) /

calc-sa■ple-size(i,j)
calc-run-tiae-dev-var(i,j) = (calc-run-tiae-dev-var(i,j)

■inus calc-run-ti ■e-dev(i,j)**2) / calc-sample-size(i,j)
calc-run-ti■e-dev(i,j) = calc-run-ti■e-dev(i,j) /

calc-sa■ple-size(i,j)
out = calc (i, j) By-Mame
Wr ite run-aggregate fro■ out.

calc(i,•) = O.

B-14

B.1.3.2.1.3 For■ Daily-Ride-Aggregate Files

Progra■ Variables:

•
* •
* •

out 1
key

out
key

out2
key

line
direction
day-int
(time-int)
(trip)

data

data
'Ip
psgrs-on
psgr s-of f
■ax-i:sgrs

111 ax-psgr- s top
standees
standee-t ime (3)
■ ins-vi-standees
sa■ ple-size

calc1 (2,trip-agg-code)
data (s a ■ e a s above)

calc (i, j)

psgr-trips
psgr-ailes
load-factor
standee- ■ins
st-■in-per-st
bus-trips • saaple-size•

calc2 (4)
data (same as above)

+ standee s

save
load

i = 1 - time interval or trip aggregation
2 - direction aggregation

* •
"' •
*

3 - line aggregaticn
4 - syste m aggregation

!!ain:

Call process-header.
Call initialize .
Call Frocess-data .

Initialize :

calc1, ca l c2 , sa ve = O.
Read 1P- tri p In t o prev At end Call err 1.
Read 'IP-trip In to new At e nd Call err2.
Call aggrega te-cegin.

B-15

Process-Cata:

Do While nev-key ~= high-values
Do While nev-key = prev-key

Call COfflFUtE.
prev = new.
Read TP-trip Into new At end new-key= high values.

Call trip-end.
Call system-ccntrcl-treak.
End.

Aggregate-Begin:

seats= seat-tatle(bus).
st-min2, min2 = 0.

* Initialize out-key data *
out, out1, out2 = 0.
out-day-int= day-tahle(header-day).
If !CC-code~= all

out-time-int= time-int-tatle(new-data2,new-key).
Flse out-trip = new-triF.
out-line= new-line.
out-direction = new-direction.

B-16

co■pute:

• Detailed Ridership Computations •

*

•

•

calc 1-psgrs-on (•, nev-'IP) = calc1-psgrs-cn (* ,nev-'IP) +
new-i:sgrs-on.

calc1-psgrs-off (*,nell-'IP) = calc1-psgrs-off (*,new-'IP) +
n ev-psgrs-off.

If nell- ■ax-psg r s > calc1-max-i:sgrs(*,nev-'IP)
calc1-■ax-psgrs(•,nev-'IF) = nev-■ax-Fsgrs
calc1-■ax-stop(*,nev-'IF) = nev-■ax-stop.

calc1-sa ■ple-size(•,nev-TP) = calc1-sa ■i:le-size(•,nev-T~ + 1 •

Trip Ridership Co■ i:utations (others at end)
■iles = distance-table(pre v-'IF,nev-TP).
mins = nev-ti■e minus prev-time.

•
avg-psgrs = (prev-psgrs-aboard + new-psgrs-aboard) / 2.
save-load(*) = s ave-load(*) + avg-psgrs.
ca l c2-psgr- mile s (*) = calc2-psgr- ■iles(*)
calc2-psgr- ■ins(*) = calc2-psgr-■ins(*) +
calc2-psgr-trii:s (*) = calc2-psgr-trips (*) +

+ (avg- psgr s x miles) .
(avg-psgrs x ■ins).

psgrs-on.

Compute Standee Data (trip-agg-code saves -r:rip su ■ s)
If (pre v-psgrs-aboard or nell-FSgrs-aboard) > seats

Call compute-standee s

•

calc1-standees(*,nev-1P) = calc1-standees(*,nev-'IP)
Trip standees calculated at central break •

+ s tandees

calc1-mins-vi-standees(*,new-TP) = calc1-mins-vi-standees(*,new-TP)
min s -wi-standees

calc1-■ ins-wi-standees(*,triF-agg-code) =
calc1-mins-vi-standees(•,trip-agg-code) + ■ins-vi-standees

calc2-standee- ■ ins(*) = calc2-standee-mins (*) + mins-vi-standees

* Accumulate passenger-minutes-Fer-standee data •

st- ■in2 = s t-min2 + standee-mins
■ in2 = min2 + ■ ins-lli-standees
If ne v-psgrs - atoard < seats

calc2-standees (*) = calc2-standees(*) + (st-min2 / min2)
st-min2, min2 = O

fndif

• Separate standee- ■ins according to nu■ber of standees •
If standee -mins < 5

ca lc1- standee-time(*,nev-'IP,1) = calc1-standee-time(*,new-TP,1) +
standee-mins

calc1-standee-ti ■e(•,trip-agg-code,1) =
calc 1-standee- time(*,triF- agg-code,1) + standee- min s .

Else If standee s> 10

Endif.

calc1-standee-ti ■e(*,nev-TP,3) =
ca l c 1-standee-time (*,nev-'IP,3) + standee-mins

calc1-standee-ti■e(*,triF-agg-code,3) =
calc1-standee-time(*,trip-agg-code,3) + standee-min s .

Else calc1-standee-ti ■e (*, nell - 'IP, 2) =
calc1-standee-time(*,new-'IP,2) + standee-mins

calc1-standee-ti ■e(*,trip-agg-code,2) =
calc1-standee-ti■e(*,trip-agg-code,2) + standee-mins.

B-17

co■pute-Standees:

p ■in = ■in(prev-psgrs-aboard,nev-psgrs-atoard).
p ■ax = max(prev-psgrs-aboard,nev-psgrs-aboard).
psgr-diff = p•ax ■ inus p■in.
ti ■e-diff = nev-ti■e ■inus Fiev-ti ■e.

If (p ■in and F ■ ax) > seats
ti ■e-over = ti ■e-diff.
standee- ■ins = ((psgr-diff/2.) + (p ■ in ■ inus seats)) x

time-over.
Else excess-psgrs = pmax ■inus s eats

ratio-ov e r = e xcess-Fsgr s / psgr-diff
time-ove r= time-diff x ratio-over
standee-mins = (excess-ps grs x time-over) / 2.

If ti■e-diff > 0
s tandees = standee-■ins / ti ■e-diff.

Else standees= O.

mins- vi-standees = time-over.

'Iri F-Fnd:

• When nev record is fro■ different trip, line or direction,
perfor■ necessa ry su■■aries •

calc2-bus-trips (*) = calc2-bus-trips (*) ♦ 1.
ti ■e-int = ti■e-int-table(nev-data2,nev-key).
If new-line~= prev-line

Call line-central- break.
Else If new-direction~= prev-direction

Call direction-control-break.
Else If ti■e-int ~= out-ti■e-int or

ti■e-ccde = all
Call ti■e-control-break.

• Otherwise, perform no further processing •

• Have first record in nev trip--read another
If nev-key ~= high-values

Call aggregate-begin
prev = nev
Read TP-trip Into nev At end Call err3.

Line-control-Break:
Call direction-control-break.
out-direction = l i ne-agg-code.
Call output (3).

B-10

*

Direct ion-control-Ereak:
Call ti■e-control-break.
If TOD-code = all out-trip= dir- agg- t rip-code.
Els e out-ti■e-int = dir-agg-ti ■e-code.
Call output (2) •

Time-Ccntr ol-Ere ak:
Call output (1).
sa ve = 0.

System-Ccn trol - Eread :
out-line= s y ste ■-agg-code.
Call output (4).

Output (i):

* Write out data *
* Output - 2 data •

avg-loa d = s ave-load(i) / calc2-sample-size(i).
calc2-load-factor(i) = avg-load/ seats.
If calc2-standees(i) > 0 The n

calc2-st-min-per -st(i) = calc2-standee- ■ ins(i) / calc2-standees(i).
out2 = ca l c2 Ey-Name.
calc1-standees(i,trip-agg-code) = ca l c2-standees (i).
Write ride -trip-aggregate from out2.
calc2 (i) = 0.

* o ut put- 1 data •

If i <= 2 • f or ride-detailed file, only outpu t for
* ti me E direc t ion control breaks (line
* and system totals ■eaningless)

For j = 1 to trip-agg-code
If calc 1- sa ■ple-size(i,j) > 0 The n

out 1 = ca l c 1 (i, j) By-Name
Write ride-detail-aggregate from out.

ca lc1 (i,•) = O.

B-19

*
•
*

B.1.3.2.1.4 For■ Daily-Sched-Dev-Aggregate File

Program Variatles:

• • •
• •

out
key

line
direction
day-int
time-int

data
'Ip
hi st (2 2)
sa■ple-size

calc(2 ,trip-agg-code)
data (sa ■ e as above)

calc (i, j)
i 1 - ti ■e interval or

* calc-hist (i,j,k) •

* note: there is a *
• calc-hist (i,j,k) •

trip aggregation
2 - direction aggregation

j = TP
k = histogram interval

!'lain:

Call Frocess-header .
Call initialize.
Call Frocess-data.

Initialize:

calc = 0.
Read 1P-trip Into prev ,tend Call errl.
Read 1P-trip Into nev At end Call err2 .
Call aggregate-tegin.

Process-Data:

Do While nev-key ~= high-values
Do While nev - ke y = prev-key

Call co■ Fute .
prev = nev.

•
* • • •

Read TP-trip Into ncv At end nev-key = high values.

Call trip-end.
End.

B-20

Aggregate-Begin:

• Initialize out- key data •
out = 0.
out-day-int = day-table(header-day).
out-ti ■e-int = time-int-tatle(nev-data2,nev-key).
out-line= nev-line.
out-direction = new-direction.

compute:

calc- s a ■ ple- size(•,new-TP) = calc-sample-size(•,new-TP) + 1.
* Find bistogra■ interval for scbed-dev •

If nev-adj-scbed-dev < -10
calc-bis t(•,nev-TP,1) = calc-his t(•,nev-TF,1) + 1.

Flse If nev-adj-sched-dev > +10
calc-bis t(•,nev-TP,22) = calc-hist(*,nev-TP,22) + 1.

Else index = integer(nev-adj-scbed-dev) + 12
calc -bis t (* ,new-TP, index) = ca le-hist(* ,new-TP ,index) + 1.

Trip-End:
• Wh e n nev r ecord i s from different trip, line or direction, •
• perform nece~sary summarie s •

•

•

ti ■e- int = time-int-table (ne w- dat a2,nev-key).
If new-line~= prev-line or new-direction~= prev-direction

Call directicn-control-treak.
Else If t ime- int ~= out- time- int

Call time-c ontrcl-treak.
Otherwise, perfo rm no processing *

Have fir s t r e cord in ne w trip--read ano~her
If new-key~= high-values

Call a ggregate-begin
pre v = new
Re ad TP - trif Into new At e nd Call e rr3.

Direc tion-contrc l - Ereak:
Call time-con t r o l-break.
out-time-int = dir-agg-time-c cde .
Call output (2).

Time- Ccnt rol- Ereak:
Call ou t put (1).

IJ-21

*

Output (i):

For j = 1 to trip-agg-code
If calc-samFle-size(i,j) > 0

calc-his~(i,j,•) = calc-bist(i,j,*) / calc-sample-size
out = calc (i,j) Ey-Name
Write sched-dev-aggregate from out.

calc(i,*) = 0.

B-22

B.1.3.2.1.5 Form Daily-ov~rload-Aggregate File

Program Varial:les:

* •
•

out
key

line
direction
day-int
ti ■e-int

data
'Ip
hist(10)
sample-size

calc(2,trip-agg-code)
data (same as al:ove)

calc(i,j)

Main:

i = 1 - time inter~~l or trip aggregation
2 - direction aggrega t ion

Call Frocess -header.
Call initialize.
Call Frocess -da t a.

Initialize :

calc = 0.
Be ad iP-trip Into prt7 At end Call err1.
Read 1P-tri p Into ne w A~ e nd Call e rr2.
Call aggregate-tegin.

Process- Ia ta:

Do While ne w-key~= ~i g h-values
Do While new-key= pre v-ke y

Call comFu~e.
pre v = new.

• •
•

Read TP-trip Into new At end ne w-key = high value s .

call trip-end.
En d .

B-23

Aggregate-Begin:

• Initialize out-key data •
out= 0.
capacity = seat-tatle!tus).
If time-code = all

out-ti ■e-int = time-iot-tatle(nev-data2,nev-key).
Flse out-trip= new-trip.
out-day= day-tatle(beader-day).
out-line = new-line.
out-direction= new-direction.

Compute:

• Find load factor between time pcints •
a vg-lcad = (pre v-psgrs-aboard +

new-fsgrs-aboard) / 2.
l oad-factor= avg-load/ capacity.
calc-sa ■ple-size(•,new-'IF) = calc-sample-size(•,new-'IF) + 1.

• Find histogram interval •
index = load-factor-tatle(load-factor).
calc-b ist (•, ne11-'I F ,index) = calc-hist (•, new-'IP, index) + 1.

'Irip-Fnd:

• When new record is from different trip, line or direction, *
• output averages •

If new-line~= prev-line or new-direction~= prev-direction
Call direction-contrcl-treak.

Else Call time-contrcl-trEak.

* Have first record in new trif--read another *
If new-key~= high-values

Call aggregate-begin
pre v = ne w
Read TP-trip Into new At end Call err3.

Direction-Control-Break:
Call time-control-break.
ou t- ti me-int = dir-agg-time-ccde.
Call o utput (2) .

'Iime-Contro l-Ereak:
Call output (1).

B-24

Output (i):

• Write output •
If calc-sa ■ ple-size(i) > 0

calc-hist(i,j,*) = calc-hist(i,j,•) / calc-sa■ ple-size(i,j)
out = calc (i, j) Ey-Na ■e

Write overload-aggregate from out.
calc(i,*) = O.

B-25

B.1.3.2.1.6 Form Daily-Layover-Aggregate File

Program Variatles :

* •
*

~odification of us ual input record definition:

new
key

line
direction
run

* file nov sorted in same *
• order as key •

trip
data

tus
'Ip

prev jsame as above)

out
key

line
direct ion
day-int
(time- int)
(tri F)

data
sched- l ayo ver
layover-dev
sample-siz e

calc (2)
data (s ame as abo ve)

calc (i)
i = 1 time interval or tr ip aggregation

2 - direc t ion aggregation

!'la in:

Call process -header.
Call initialize.
Call process-data.

Initialize:

ca l c = 0 .
Read TP-trip Into pr€v At end Call err 1.
Read TP-trip Into ne w At end Cal l err2 .
Call aggregate-tegi n.

B-26

* ...
•

Process-Data:

Do While nev-key , = high-value s
Do While nev-key = frev-key

frev = nev.
Read TP-trip Into nev At end nev-key = high values.

Call trip-end.
End.

Aggregate-Begin:

* Initialize out-key data •
out= 0.
out-day-int= day-table(header-day).
If TCD-code ,= all

o ut-time-int = time-int-table(new-data2,nev-key).
Else out-trip= ne w-trip.
out-line= new-line.
out-direction= new-direction.

Trip-End :

• Wh e n ne w record is fr om different trip, line, run or *
* direction, per form necessary su ■ maries *

If ne w- r un = prev-run
layover= new- t ime minu s pr e v-time
calc- sched-layover(*) = calc-sched-layover(*) +

((ne w- t ime + ne w-ad j -sched-dev) minus
(pre v-time + prev- adj- sche d- de v))

calc-layover-dev(•) = calc-layover-dev(•) +
(laycver mi nus ca l c-sched-layover(*))

calc-sample-size(•) = calc-s ample-siz e (•) + 1.

time-int= t ime -int-tatl e (new-data2,new-key).
If new-line,= prev-line or new-direction,= prev-direction

Call direc tion-control-break.
Else If time-int,= out-time-int or

ne w-run,= prev-run or
TC D-code = all

Call time-contrcl-break.
• Ot herwise , perform oo further proces sing •

* Ha ve first record in new trip--r ead anothe r *
If new -ke y ,= high-values

Call aggrega t e-tegin
pre v = ne w
Read !P-trip Into new At end Call e rr 3.

B-27

*

Direction-Contrcl-Ereak:
call time-central-break.
If TOD-code= all out-trip= dir-agg-trip-code.
Else out-time-int= dir-agg-time-ccde.
Call output(2).

rime-Control-Ereak:
Ca.11 output (1).

Output (i):

Form averages and cutput •
If calc-s ami:le- si ze (i) > 0

calc-scbed-layover(i) = calc-sched-layover(i) /
sample-size(i)

calc-layover-dev(i} = calc-layover-dev(i) /
sample-size (i)

out = calc (i) By-Name.
Write layove r-aggregate from out.

calc (i) = O.

B-28

B.1.3.2.2 Update

The tvo input files {aggregate and old-sum■ary) and the
output file (nev-sum■ary) have the same format.

!lain.:

Call process-header.
Call initialize.
Call process-data.

Initialize:

Read aggregate Into aggregate At end Call err1.
Read old- s ummary Into summary At end Call err2.

Process- Cata:
Do While aggregate-key~= high-value s and

s ummary-key~= high-values

Update:

If sum ■ary-key < aggregate-key
Write nev-su~mary From s ummary
Read old-summary Into summary

At end su ■ mary-key = high-values.

Else If s ummary-key = aggregate-key
Call update
Read aggregate Into aggregate

At end aggregate-key= high-values.

Else Write new-summary From aggregate
Read aggregate Into aggregate

At end aggregate-key= high-values.

For i = 1 to max-summary-elements

If s ummary-element(i) i s a s um
s ummary-e l e ment (i) = s ummary-ele ment (i) +

agg-element(i).

Else If s ummary-e leme nt(i) i s an average or percentage
old-size= s ummary-sample-size(i)
o ld-avg = suRmary-avg(i)
Call average(old-size,old-avg,

agg- s amrle-size (i) ,agg-avg (i),
summary- samrle- s ize(i) , s um ■ary-avg(i))

nev-av g = s ummary-a vg(i).

B-29

• When a variance is updated, previous step vill have updated
the average (new) pertaining to that variable *

Else If su■■ary-element(i) is a variance
old-var= su ■■ary-var(i)

call Variance(old-size,old-avg,old-var,
agg-sa ■ple-size (i) ,agg-avg (i) ,agg-var (i),
su ■■ ary-sa■ple-size(i) ,new-avg,
su■mary-var (i)).

Else If summary-element(i) is an extreme
If agg-ele ■ent(i) is more-extreme-than

su ■■ary-element(i)
summary-element(i) = agg-element(i).

Average(old-size,old-avg,addl-size,addl-avg,new-size,nev-avg):

• 11ethod to UFdate an existing average (old) when another
average (addl) becomes available) *

new-size = cld-size + addl-size.
If new-size> 0 Then

x12 = old-avg minus addl-avg
n23 = addl-size / new-size
new-avg = old-avg ainus (n23 x x12).

Else Call error-handling.

Variance(old-size,old-avg,old-var,addl-size,addl-avg,addl-var,
new-size,ne w-avg,uew-var):

* Method to UFda":e an e xisting variance (old) vben
another (addl) becomes available•

ne w-size = old-size+ addl-size.
If nev-size > 0 !hen

x13sg = old-avg**2 minus nev-avg**2
x12sg = old-avg**2 minus addl-avg**2
v12 = old-var ■inus addl-var
n23 = addl-size / ne w-si ze
nev-var = old-var + x13sq minu s (n23 x (v12 + x12sq)).

El se Call error-handling.

B- 30

B.1.3.3 Form Nev-Ferf-Data-Ease Tape.

Read old-perf-data-base header.
Read TP-trip beade~.

Form nev-perf-data-base header From
. old-perf-data-base header and 1P-trip header.

Write nev-ferf-data-base header.

Do ihile old-perf-data-base records exist
Bead old-pe rf-data-tase Into temp.
Write new-perf-data-base Prom temp.

Enddo.

Do jhile TP-trip records exist
Bead rP-trip Into temp.
Write nev-perf-data-base From temp.

Enddo.

B-31

B.1.3.4 Form Daily Exceftion Reports.

!he detailed processes co ■prising this ■odule are
descrited below.

B. 1.3.4. 1 Form Daily Schedule Deviation Report

Program Variables:

save(3,trip-agg-code)
TP

!'lain:

time
adj-sched-dev
passengers-atoard

li ■ it
ear ly
late

Call process-header,
Ca ll i ni tiali ze.
Call Frocess-data.

Initialize:

Read se lection-criteria into limit.
Read !P-trip into new

at end Call error1.
prev = new.
Call read-three-trifs.
If new-key = high- value s Call error2.
Cal l first-trip.

Process-Data:

Do While new-key~= high-values

• Trip cha nges handled in read-trip *
Do While ne w- line= prev-line

and new-direction= prev-direction

Call c heck-tolerances .
sa v e (1,*) = sa ve(2 ,*).
save (2,*) = save (3 ,*).
p re'V = ne w.
Call read-trip(]).

Ca 11 l a s t-trip.

B-32

Read-'Ihree-'Irips:

limit-count= 0.
:e:ave = 0.
Call read-trip(1).
Call read-trip(2).
Call read-trip (3).

Read-Trii: (i):

• assu■es at least 3 trips in•
• a given line & direction •

Do While new-key= prev-key

prev = new.
If prev-TP ,= begin-code and prev-'IP , = end-code

save (i,prev-'IP) = prev Ey-Name.
Read TE-trip Into new

at end new-key = high-values.

Check-'Iolerance:e::

For i = 1 to trip-agg-code

If save-sched-dev (2,i) < early or
save-:e:ched-dev(2,i) > late

Write prev-key, save (2,i), save (1,i), save (3,i)
limit-count= limit-count+ ,.

Firs t-Trip:

For i = 1 to trip-agg-code

If save-scbed-dev (1 ,i) < early or
sa ve-sched-dev (1, i) > late

Writ e prev-key, save(1), 'first-trip', save(2)
limit-c ount = limit-count+ ,.

last-Trip:

Call check- tolerances .
Fo r i = 1 t o trip-agg-code

If s ave-sched-dev (3,i) < early or
sa ve-sched-dev (3, i) > late

Write prev-lcey, save(3,i), save(2,1), 'last-trip'
limit-count = limit-count +1.

Write prev-line, prev-direction, limit-count.
If new- key,= high-value:e:

prev = new.
Cdll r ead-three-trif s
Call fir s t-trip.

B-33

E.1.3.4.2 Form Daily Overload Report

Program Variables:

11ain:

save(3,trip-agg-code)
TP
time
adj-scbed-dev
max-psgrs
max-psgr-stop
excEss-psgrs

overload-percent

Call process-h€ader.
Call initialize.
Call process-data.

Initialize:

Bead selecticn-criteria In t o overload-percEnt.
Re ad !P-trip into new

at end Call errcr1.
prev = new.
Call read-three-trips.
If new-key = high-values Call error2.
Call first-trip.

Proce ss-Data:

Do While new-key~= high-values

* Trip changes handled in read-trip *
Do While new-line= prev-line

and new-direction= prev-direction

Call check-toleraP.ces.
s ave(1,*) = save(2,*).
save(2,*) = save(3,*).
prev = new.
call read-trip(3).

Call las t-trip.

B-34

Eead-Three-Trips:

li ■it-count = O.
save= 0.
Call read-trip(1).
Call read-trip(2) •

. call read-trip (3) •

Fe ad-Trip (i) :

Do While new-key= prev-key

prev = nev.
capacity= seat-table(prev-bus).
load-li ■it = overload-percent x capacity.
If prev-1P ~= begin-code and prev-1P ~= end-code

save(i,prev-1P) = prev By-Na■ e
If prev- ■ax-psgrs > load-limit

save-excess-psgrs = prev-■ ax-psgrs minus load-li■it.
Read 1F-trip Into nev

at end new-key = high-values.

Check-Tolerances:

For i = 1 to trip-agg-code

If save-excess-psgrs (2, i) > 0
Write pre v-Jcey, save(2,i), save(1,i), save (3 , i)
limit-count= limit-count+ 1.

First-Trip:

For i = 1 to trip-agg-code

If sa v e-excess-psgrs (1,i) > load-limit
Write prev-key, save (1), 'first-trip', sa ve(2).
limit-count = limit-count+ 1.

last-Trip:

Call chec k-tolerances.
For i = 1 to trip-agg-code

If savE-sched-dev (3 ,i) < early or
s ave-sched-dev(3,i) > late

irite prev-key,save(3,i), save (2,i), 'last-trip '
li ■it-count = li ■ it-count + 1.

Write prev-line, prev-direction, limit- c ount.
If new-key~= high-valuEs

prev = new.
Call read-three-trips
Call first-trip.

B-35

B.2 Common ReFort Program Contents (reForts 2.1 through 2.6)

Input file structure is identical to the output file stucture
of given su mmary file:

ne w
key

key1
line
direction
day-int

key 2
(time-int)
(trip)

data (varies with

prev: sa me as above.

ca lc

* either time-int or trip *
• will be present; not bot h•

file)

data (s ame as above)

'!here are two
out- i:rin t:
out- week:

cutFuts:
print line

s ummarized weekly data, same
format a s input. It i s accumulated
wh en t he DCi out put s are being printed;
then i s later read and printe d.

Output data line st ruct ure includes same data (except
FOss ibly fer sample-si z e).

'dat a ' cons ists o f £cu r t yFes:
1. s um s (i ncludes s am f le sizes)
2. a ve r ages or percentages
3 . variances
4. e xtremes

'Iherefore , additional data of t he sa me type can be
incorpora t ed by:

1. adding addl- s um s tc old- s ums
2. Calling I average' (described later), with t he old

and addl averages (or percentages) and s ample sizes
3 . Calling "variance (descrited lat e r), with the old

and addl averages, variances and s amFle sizes.
4. comFarin g old and addl extremes

B-36

The format of the summary files are given here; the
data fields that are averages or percentages are
indicated by 'a/F', those that are variances are
indicated by •v•; those that are extremes are
indicated by •e•; the remaining ones are sums .

Section-15-Aggregate Pile

Frogram Variables:

out
key

line
direction
day-int
time-int

data
psgr s -toarded
bus-miles
psgr-miles
bus-mins
psrg-mins
capacity-miles
seat-miles
bus-trips • samfle si2e

Daily-Run-Aggregate File

Frcgram Variacles:

out1
key

line
direction
day-int
(time-int)
(trip)

da t a
'Ip

a/p sched-run-time
a/p run-time-dev
a;p adj-run-time-dev
v run-time-dev-var

samfle-size

B-37

*

Daily-Bide-Aggregate Piles

Frogra■ Variacles:

out1
key

out
key

e
e

line
direction
day-int
(ti ■e-int)
(trip)

data
'Ip
psgrs-on
psgrs-off
■ax-p, grs

■ ai:-p sgr-stop

standees
standee-ti■e (3)
■ in s-~i-standees

sa■ i:l e-si 2e

Daily-Sched-Dev-Aggregate File

Irogra ■ Variatles:

o ut
key

line
direction
day-int
ti■ e-int

data
TP

a/p bist(22)
sami:le- si2e

B-38

out2
key
data

psgr-trips
psgr-■iles

a/p load-factor
standee-■ins
st- ■in-per-st
bus-trips * sa■ple si~e *

Daily-Overload-Aggregate File

Program Variatles:

out
key

line
direction
day-int
time-int

data
'Ip

a/p hist(10}
sami:le-size

Daily-layover-Aggregate File

Prcgram Variables:

out
key

line
direction
day-int
(ti 1e- int}
(trip}

data
a/p scbed-layover
a/p layover-dev

sami:le-si2e-

l'!a in:

Call process-header.
Call initiali2e(summary).
Call process-data (summary).
Call process-week.
Call initialize(week).
Call process-data (veek).

B-39

Initialize (file):

Reset out-print, out-week (to zercs or blanks).
calc = 0.
Eead file into new.
pre v = new.
Call print-header (nev-key).

Process-Data (file):

Do While new-key~= high-values
Do While new-key= prev-key

~ove prev-data Into proper column of out-print.
prev = new.
Read file Into new At end new-key= high-values.

Call print-line.

Prin t- line:

increment print-line-counter.
If print-line-counter> page-size

Call print-header (pr e v-key).
Frint out-print.
Bes et out-print.
If new-key~ = high-values

If nev-key1 ~= prev-key1
Call Frint-beader(new-key).

prev = new.

Print-Header(key):

• Prints formatted key items and other rela~ed data (e.g.,
time point names as well as numbers *

Print key-header.
print-line-counter= 0.

B-40

Frocess-week:

* If there is more than one day-of-week category,
also want a weekly aggregate, in same format as
for individual COW 'fages• *

If header-DOW-code= all Return.
Call sort-for-day.
Call initialize(summary).

Do While new-key2 ~= high-values
Do While nev-key2 = Frev-key2

Call update.
prev = new.
Read sum ■ary into new At end new-key2 = high-values.

Call write-week.

Write-Week:

out-week-key= prev-key.
out-week-day-int= day-agg-code.
out-week= calc By-Name.
Write week From out-vtek.
calc = 0.
prev = new.

Sort-For-Day:

* Reorder •summary• so can add successive records (until
time-int/trip changes) to get weekly totals •

Fevind s ummary.
If !OD-code= all

Sort by lir.e, direction, trip, TF, day-int.
Else Sort by line, directicn, time-int, TP, day-int.

Update:

For i = 1 to max-data-element s

If prev-data-element(i) i s a s um
calc-da ta-element (i) = calc-data-element (i) +

pre v- data-element (i).
Else If prev-data-eleme nt(i) i s an a verage or percentage

cld-size = ca l c - sample-size(i)
cld-avg = calc-avg(i)
Call average(old- size,old-avg,prev-sample-size (i),

pre v-avg (i) ,calc-sa mple-size (i) ,cal c -avg (i))
ne11-avg = ca le-avg (i).

B-41

Else If prev data ele■ent(i) is a variance
old-var= calc-var(i)
Call variance(old-size,old-avg,old-var,

prev-sa ■ ple-size(i) ,prev-avg(i),prev-var(i)
calc-sa ■ple-size(i) ,nev-avg,calc-var(i)).

Else If prev-data-ele ■ent(i) is an extreme
If prev-data-ele ■ent(i) more-extre■e-than

calc-data-ele ■ent(i)
calc-data-ele ■ent(i) = prev-data-element{i).

Avera ge(old-size,old-avg,addl-size,addl-avg,nev-size,nev-avg):

* l'letho d t o upd ate an existing average (old) when
anothe r avera ge (addl) becomes availat:le) *

ne w-s i ze = cld-size + addl-size.
If new- si ze> 0 !hen

x1 2 = old-avg ■inus addl-avg
n 23 = addl-size / ne w- s ize
ne v-avg = o ld-avg minus n23 x x12.

Else Call error-handling.

Varia nce (old-siz e ,old- avg ,old-var,addl-size,addl-avg,addl-var,
ne w-size,new-avg,nev-var):

* l'let hod to update an existing variance (old) vben
another (add l) becomes available•

new-size= c ld-size + addl- s ize.
If ne w- s ize> 0 !hen

x1 3sg = old-av g** 2 minus nev-avg**2
x1 2sq = old-avg** 2 minu s addl-avg••2
v1 2 = o l d- var mi nu s addl-var
n23 = addl - size / ne v-s iz e
new-var = o l d-var+ x1 3sg minu s (n23 x (v12 + x12 s q)).

Els e Call error- han dl ing .

i3- 42

