

Technicol Report Documentation Page

1. Report Ne.

UMT/ 'A-06-0065-80-1

2. Geovernment Accession Na.

3. Recipient’'s Caroleg No.

4. Title and Subritle

Detailed Design for a MIS for the

Southern California Rapid Transit District

1. ~-dtn

g s

___OCTOBER 1980

| 6. Performing Organiration Code

8. Performing Organization Report No.

7. Authoria)

John S. Ludwick, Jr.

MTR-80WB4

9. Purforming Orgonizotion Name and Address

1820 Dolley Madison Boulevard
McLean, Virginia 22102

The MITRE Corporation, Metrek Division

10, Work Unit Ne. {TRAIS)

11. Contract ar Gront No,

AT_TrT Q 0006

~]

~. syww or neport and renod Covered

12, Spnnlonug Agency Nome ond Address

U.S. Department of Transportation

Washington, D.C. 20590

Urban Mass Transportation Administration
Office of Technology Development and Deployment

14. Sponsoring Agency Code

15. Supplementary Notes

Ground Transportation Systems
Project Number: 1242B

16, Abstroct

management reports.

descriptions are given.

An Automatic Vehicle Monitoring System (AVM) being installed in Los Angeles
will record a large amount of operational data that can later be used for
The software required to provide this function is
described and structured pseudo-code of the processes and detailed file

17, Koy Wordy
Automatic Vehicle Monitoring, Bus
Transit Management Information System,
Software Design

18, Diswibution Statement
Available to the Public through the
National Technical Information Service,
Springfield, Virginia 22161,

19. Security Classil. (of this report)

Unclassified

20, Security Classif, (ol this poge)

Unclassified

2i. No. of Poges 22. Price

Form DOT F 1700.7 (s-72)

Reproduction of completed poge outherized

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS
LIST OF TABLES

L.

2.

INTRODUCTION

PROGRAM DESCRIPTIONS

2.1 Form AVM Files

2.1.1 Gould Fortran Programs
Input

1
2 Qulput
3 Processing

.1.1
1.1
1.1

[N T N]

2.1,2 Select and Sort
2.1.2.1 Select
2.1.2.1.1

2.1.2.1.2 Output
2.1.2.1.3 Processing
2.1.2.2 Sort

2.1.2.2.1

2.1.2.2.2 Output
2.1.2.2.3 Processing
2.1.3 Update Perf Tapes

2.1.3.1 Form TP-Trip File
2.1.3.1.1

2.1.3.1.2 OQutput
2.1.3.1.3 Processing

2.1.3.2 Form New Summary Tape

2.1.3.2.1 Form Daily Aggregate File

2.1.3.2.1.1 Form Daily Section 15 Aggregate File

iii

Page

vii
vii

2-10
2-10
2-11

2-11
2-11
2-11
2-11
2-11
2-11
2-14
2-14
2-14
2-14

2-14
2-14

2-18

TABLE OF CONTENTS (CONTINUED)

2.1.3.2.,1.1.1 Imput
2.1.3.2.1.1.2 Output
2.1.3.2.1.1.3 Processing

2,1.3.2.1.2 Form Daily Run Aggregate File

2 1 302.102 l Inpul.
2.1.3.2.1.2.2 Output
2.1.3.2.1.2.3 Processing

2.1.3.2.1.3 Form Daily Ridership Aggregate File

2.1.3.2.1.3.1 Input
2.1.3.2.1.3.2 Qutput
2.1.3.2.1.3.3 Processing

2.1.3.2.1.4 Form Daily Schedule Deviation Aggregate File

2.1.3.2.1.4.1 TInput
2.1.3.2.1.4.2 Output
2.1.3.2.1.4.3 Processing

2.1.3.2.1.5 Form Daily Overload Aggregate File

2.1.3.2.1.5.1 Input
2.1.3.2.1.5.2 Qutput
2.1.3.2.1.5.3 Processing

2.1.3.2.1.6 Form Daily Layover Aggregate File

2.1.3.2.1.6.1 Input
2.1.3.2.1.6.2 Output
2.1.3.2.1.6.3 Processing

2.1.3.2.2 Update Summary Files
2.1.3.3 Form New Perf Data Base Tape
1.3.3.1 Input

«1.3.3.2 Output

1.3.3.3 Processing

(ST
a

2.1.3.4 Form Daily Exception Reports

iv

Page
2-19
2-19
2-19
2-19
2=-19
2-19
2-20
2-20
2-20
2-21
2-21

2

21
2-21
2-24
224
2-24
2-24
2-24
2-24
2-24
2-25
2-25
2-25
2-25
2-26
2-26
2-26
2-26

2-26

TABLE OF CONTENTS (CONTINUED)

Page

2.1.3.4.1 Form Daily Schedule Deviation Exception Report 2-27

2.1.3.4.1.1 Ioput 2-27
2.1.3.4.1.2 QOutput 2-27
2.1.3.4.1.3 Processing 2-27
2.1.3.4.2 Form Daily Overload Exceplion Report 2-27
2.t.3.4.2,1 Input 2-27
2.1.3.4.2,2 Outputl 2-27
2.1.3.4.2.3 Processing 2-28
Z.1.4 Update Trouble Tape 2-28
2.1.4.1 Sort 2-28
2.1.4.1.1 Input 2-28
2.1.4.1.2 Output 2-28
2.1.4.1.3 Processing 2-28
2.1.4.2 Form Qutput Trouble Reports 2-28
2.1.4.2.1 Input 2-28
2.1.4.2.2 Output 2-29
2.1.4.2,3 Processing 2-29
«1.4.3 Form New Trouble Tape 2-29
2.1.4.3.1 Input 2-29
2.1.4.3.2 Output 2-29
2.1.4.3.3 Processing 2-29

2.2 Form Summary Reports 2-29

3. PROGRAM LOGIC 3~ 1
APPENDLX A - FILE CONTENTS A- 1
APPLNDIX B ~ DETATLED LOGIC B- 1
3.1 Form AVM Files B-2

B.1.1 Gould Fortran Programs B
B.1.2 Select and Sort B-
v

o

[==]

B.

e~ Ble=Rl v R v v = R e

.1
1

2

TABLE OF CONTENTS (Concluded)

.3 Update Perf Tapes

.3.1 Torm TP-Trip File
.3.2 Form New Summary Tape

.3.2.1 Information common to Aggregate programs

Form Daily-Section-15-Aggregate File
Form Daily-Run-Aggregate File

Form Daily-Ride-Aggregate Files

Form Daily-Shed-Dev-Aggregate File
Form Daily-Overload-Aggregate File
Form Daily-Layover-Aggregate File

W W W W
b b
MR RN RN
P . e .
e
T v v . .
oo EwWNE

.3.2.2 Update

.3.3 TForm New-Perf-Data-Base Tape
.3.4 TForm Dalily Exception Reports

3.4.1 Form Daily Schedule Deviation Report
3,4.2 Form Daily Overload Report

Common Report Program Contents (reports 2.1
through 2.6)

vi

Figure Number

LIST OF ILLUSTRATIONS

2-1 MIS Data Flow

2-2 Process 1: Form AVM Files

2-3 Process 2: Form Qutput Reports

2-4 Process 1.2 Select and Sort

2-5 Process 1.3 Update Perf Tapes

2-6 Process 1.3.2: Form New Summary Tape

2-7 Process 1.4 Update Trouble Tape

2-8 Process 1: Expanded

2-9 Summary Tape Layout

2-10 Basic Standee Computations

2-11 Standee Cycle Illustration

2-12 Example of Sequence of Report Data
LIST OF TABLES

Table Numbers
2-1 Block Header Record (Tracked Bus File)
2-2 Bus Stop Record (Tracked Bus File)

vil

INTRODUCTION

A demonstration of an Automatic Vehicle Monitoring (AVM) system,
sponsored by the Urban Mass Transportation Administration
(UMTA), is being performed in Los Angeles, with approximately
200 buses and four lines of the Southern California Rapid
Transit District (SCRTID). Although the primary purpose of the
system is to determine the effectiveness of various on-line
control strategies, a large amount of data is recorded daily and
can be used to provide management information. A previous
Working Paper (WP-79W00738) detailed requirements for MIS
reports using AVM data, and a later letter (W24-5026) presented
a preliminary design that would provide the required data.

This document expands the preliminary design to a detailed
design. In Section 2, the latest data flow diagrams are given,
and the inputs, outputs, and processing required by each process
are described. Section 3 discusses the structured approach and
conventions of the pseudo-code used to describe the processing.
Appendix A alphabetically presents the contents of the files and
some of the tables referred to in Section 2 and Appendix B
presents the detailed pseudo-code described in Section 3.

The contents of this document include revisions based on
discussion with SCRTD personnel of an earlier draft copy; it is
anticipated that further refinements will result during the
implementation phase,

1-1

PROGRAM DESCRIPTIONS

The programs required to process the AVM log tape and eventually
provide MIS reports are described here, The general format is
to discuss the required inputs to each program, the resultant
outputs and the processing required. The programs follow from
the data flow diagrams developed during the preliminary design,
although some of the processes in that document have been
further decomposed and some modifications have been made.
Figure 2-1 shows the first level processes, Figure 2-2 and 2-3
show the second level, and Figures 2-4 through 2-7 show the
third and lower levels., Figure 2-8 shows an expansion of
Process 1: Form AVM Files.

2.1 Form AVM Files

To summarize the processes involved (see Figure 2-2), the daily
AVM log tape is processed by Gould Fortran programs, forming
data files which are further selected, sorted and processed by
Cobol programs. A research tape is formed including all of the
AVM data bus stop; this will probably require a new tape every
day. 4 daily TP-trip file is formed, including, for each time
point on each trip, the basic information that ig needed to
later provide MIS reports. For each report that is to be
provided, a scparate daily aggregate file is formed from the
TP-trip file and is used to update a summary tape, which
maintains statistical data from the beginning of the desired
time period to the present. At any time, the summary tape can

be accessed by report programs to format and provide final
totals,

In general, the program names used are the same as the processes
on the data flow diagrams. As there are a large number of files
involved, and they are referred to not only in this section, but
also in the next, the details are not given here, but are
provided in the Appendix, where the files and some tables are
presented in alphabetical order.

2.1.1 Gould Fortran Programs

A set of programs has been developed by Gould to read the AVM
log tape and form a set of files that they will later use to
determine the effectiveness of various control strategies.
Although the programs were not originally intended for use at
SCRTD, a Fortran compiler is available on the Univac system, and
it should be possible to use the same programs perhaps with a
few modifications to accommodate differences between the
different Fortran implementations. Although all the data

-1

Cross—Ref~Tables

AVM-Log-Tape
—
First-Day-Selections »
Data-Base-Tapes Report-Data-Tapes

Form
Cutput

Reports
2.

Qutput-Reports

FIGURE 2-1. MIS DATAFLOW

2-2

Gould
Fortran

Programs
1.1

AVM-log-tape

v

Tracked-Bus-File

trouble-report-file

old-trouble-DB-tape

Update
Trouble
Tape

1.4

4

ordered-bus-stop-file
_— _

old-perf-DB-tape old-perf-summary-tape

new-trouble-PDB-tape

Update
Pert
Tapes
1.3

new-perf-summary-tape

new-pert-DBE-tape

FIGURE 2-2, PROCESS 1: FORM AVM FILES

2-3

Form
Section 15
Report
2.1

Form
Running
Time Report
2.2

Form
Ridership
Reports

2.3

Summary-Tape

Form
Sch Dev
Report

2.4

Form
Qverload
Report

2.5

Form
Layover
Report

2.6

FIGURE 2-3. PRO(SS2:FOF |OUTPUT REPORTS

2-4

tracked-bus-file

bus-stop~-by-line

Sort by
Direction,
Trip
1.2.2

Ordered-bus-stop-file

research tape

FIGURE 2-4. PROCESS 1.2: SELECT AND SORT

2-5

ordered-bus-
stop~file

TP-trip-file

——

old-perf-summary-tape

old-perf-DB-tape

thresholds

Form New

Summary Egr¥ New
Tape Form Daily ape
1.3.2 Exception 1.3.3

Reports
1.3.4

new-perf-DB-tape

new-perr-summary-tape

daily-exception-reports

FIGURE 2-5. PROCESS$1.3:L)A._ PERF TAPES

2-6

first-day-selections

old-name-summary header

2.

©)

Form
Daily
Name
Agpregate
1.3.2.1

TP-trip-file

daily-name~aggregate

old-name-summary-data

Update
Name Summary
File
1.3.2.2

new-name-summary-file

wiere name = 515
Run
Ride
Sch Dev
Overload
Layover

FIGURE 2-6. PROCESS 1.3.2: FORM NEW SUMMARY TAPE

2-7

old-trouble-DB-tape

Sort By Form New

T le -
rouble Trouble Trouble)

Report # Tape

Reports
1.4.1 1.4.3

new-trouble-DB-tape

Format

and Qutput
Reports

1.4.2

\\\\‘\\n__ Paily-Rep :ts
>

FIGURE2.7. PROCESS1.4:L DATE TROUBLE TAPE

2-8

6-C

research-rape

/_.———D

ordered-ous-srop-file

tracked-bus-file bus-stop-hv-line

Sort By
Dicection,
Trip
1.2.2

AVM-log-tape

trouble-report-fiie TP-trip-file

old -name-gupmary-header old-perf-DB-tape

firrt~day-selections

Sorc By
Trouble

Fore

Form Daily

Daily Form New
Report Kame ::cegiion DB Tape
Number Aggregate PortE 1.1.3

Repoz
1.a.1 1.3.2.1 1.3.4

Cruss-Ref-Tables

old-trouble-DB-tape daily-namc-aggregate

dnlly-exception-reparts new—peri-Di-tape

vld-name-summary-data
Format _—

and Outpur
Reporta
1.4.2

Updace
Name

daily-reports

new-trouble-DB-tape New-name -summary-tile

FIGURE 2-8. PROCESS 1, EXPANDED

available from these programs are not needed to satisfy
reporting requirements, it is less complicated to use tt
existing programs to form files which will then be read by Cobol
programs developed by SCRTD than to build a new set of programs
from scratch to provide just the data needed. Also, all the
data provided by one of the Gould files will be sorted and
copied onto a tape which will be available for later analysis by
regearchers.

2.1.1.1 1Inp—*

The AVM log tape is the primary input. It is possible that some
control data will also ‘:ed to be provided.

2,1.1.2 QOutput

Four types of files can be provided. Two types of files are
appropriate; the other two, which are not yet defined i detail,
are not needed here and will not be output. ..is will be
accomplished by skippir calls in the main program or t
providing dummy JCL when the job is run. The files useful for
MIS purposes, the Trout 2 Report .le and the Tracked Bus Data
File, will be stored on disk for iter processing. The Trouble
Report File consists of all close trouble reports, written in
1200 (2-byte) word blocks, each block containing a separate
trouble report. Since rouble reports may not appear s juen-—
tially (by number) on the raw tape, the first block of 1is file
will contain block pointers indexed by trouble report number
(i.e., word 13 of block 1 contains the block number of rouble
report 13). The Tracked Bus Data File contains a time history
of bus transactions at each stop on each AVM line. It is
organized into 2,040 word blocks; each block contains 51 logical
records 40 words in length. There are four record types:

1. Block Header Record--First 40 words of each
block, providing common information,

2. Bus Stop Record--Primary data on a bus trans-—
action at a stop,

3. Bus Assignment/Pullout Record--Data on line/
run assignments, pullouts and pullins, and

4, Dispatcher Action Record--Describes completed
AVM function key actions by dispatcher.

2-10

Each of these records is defined in detail in Table 2-1 and
Table 2-2. Records are not sorted and appear in the order in
which the event occurred regardless of record type or context,

2.1.1.3 Processing

The details of the processing have been provided by Gould to
SCRTD and are not within the scope of this document.

2.1.2 Select and Sort

Although the data in the Tracked Bus File are in time sequential
order, later processing is facilitated if the data records are
ordered, from major to minor: bus line, bus direction, bus trip
and time at bus stop. Rather than do one large sort on what may
be over 80,000 records per day, a two-step process will be
performed.

2.1.2.1 Select

2,1,2,1.1 Input

The Tracked Bus Data File, previously described, is the input,

2.1.2.1.2 OQutput

Four files will be created, one for each AVM line, called here
Bus Step By Line. The four files will be copied, one after the
other to form the research tape.

2.1.2.1.3 Processing

The first Block Header Records read will provide data for the
Bus Stop Record Header, Later cnes will be ignored as will Bus
Assignment/Pullout Records and Dispatcher Action Records; only

Bus 5top Records will be read and written into the appropriate
file,

2.1.2.2 Sort

2.1.2,2,1 Input

Each of the four Bus Stop By Line files will be used as input,
one at a time.

2.1.2.2.2 Output

A single file, the Ordered Bus Stop File.

2-11

TABLE 2-2- BUS STOP RECORD {TRACKED BUS FILE)

OV ®~ PR

F

DESCRIPTION MNEMONIC UNITS FORMAT NOTES
1 Time of DNay TODL Hrs. 12 Military Time
2 TOD2 Mins. 12
3 TOD3 Secs. I2
Line # LI 13 RTD Line # (On Which
Bus 1s Operating}
5 Run # RY LS RTD Run # (or LI/RU
for)
s Bus # BU T4 RTD Bus #
7 Trip & TRP 14 RTD Trip #
B Direct Code DIR 12 RTC DIR CODE
1 =N 3 =25 13,31 RND
2=E 4 =W 24,42 TRIPS
Origin Code oc 12 CDOL # of ORIG. From Sched.
Destination Code LC 12 " " " DEST. " "
Stap 4 STE 14 RTD STOF #
Time Paint Code TrPC 12 If stop 1s TP, RTP COL #
Sched. Deviation SDEV Secs I5 48 Adjusted, From TOD
Sched. Adjustment SADJ Sees I3 (As Specified by Dispatch-
er)
Sehed. Headway SHDW Secs I3 4s Adjusted
Headway Deviation DHDW Secsy I5
Passengers On-Board FOB I3 At Arrival at this Stop
Passengers Boarding PB 13 At this Stop
Passengers Alighting PA I3 o
Total Boardings TB I3 For Trip
Total Alightings TA 13 " "
Passengers On-Board POBL I3 At Arrival at this Stop
Leader
road Difference POIF I3 POB-POEL
Running Time Incre- RT3 Sccs I35 From Last Stop
ment
5 Passenger Walting PWI Secs IS PD x (SHDW-DHDW) x 0.4
Time
& Passenger Trip Lot PFTL 10 Ft 15 FOB x Dist, from last stop
7 Passenger Trip Time PTT Secs 15 POB x RTS
3 Fasscnger Trip Delay PTD Secs 15 (PB-FA} x SDEV
9 Tactical Sit Cade 12 1-11
el TREI REPURT # {Open) 13 1-99%
1 SPHM Toslition I1 0-7 0 = Off, 7 =
Tacties in Effect 1 12 MSP MS5GS + Voice/
2 12
3 12
Other ——lplink/Dnlink Flgs Bl6

2.1.2.2.3 Processing

The Univac sort utility will be used to sort the records by
direction and trip. As they have already been separated by line
the files can simply be concatenated after sorting, As the
records are originally in time sequence, after sorting by
direction and trip, they would still be in time sequence within
trips, if the Univac sort utility were '"stable". As it has been
learned that the sort is not stable, the sort will have to be by
direction, trip and time,

2.1.3 Upda*~ P¢-¢ Tap~-

This is the most complex process of the four second lev |
processes in Form AVM Files, First a file is formed that
includes data only at time points, but includes enough data to
provide all required output reports. This file is then appended
to previous Detailed Data Base files to form a New Perf Data
Base Tape. It is also used to form a New Summary Tape,
described later, and to form Daily Exception Reports fc

schedule deviations and for overloading.

2.1.3.1 Form TP-Trip File

2.1.3.1.1 Input

The Ordered Bus Stop File.

201.3-1-2 Output

The TP-Trip File, including for each trip, the direction, run
andbus numbers, for each time point during the trip, the time at
the time point, the adjusted schedule deviation, number of
passengers aboard at that time point, number of passengers on
and off between the time point and the previous one, the maximum
number of passengers aboard at any bus stop between ti points
and the number of the bus stop where that maximum occurs.

2.1,3.1.3 Processing

The Ordered Bus Stop records are read one at a time ar at each
bus stop the maximum number of passengers aboard since the last
time point is updated, as well as the identification of the
maximum passenger bus stop., At each time point, the number of
passengers boarding and alighting since the last time point is
computed by subtracting, from the latest totals, the totals
recorded at the previous time point. The adjusted schedule
deviation is taken as the schedule deviation plus the schedule

2-14

ad justment. Passengers aboard is taken directly from the bus
stop record time. To allow later determination of layover time
and run time to the first time point, data from the first and
last bus stop records received during a bus trip are also saved,
with unique identifiers stored instead of the time points.

2.1.3.2 Form New Summary Tape

This is the most complex process among the second level process
in Figure 2-5, and is further decomposed in Figure 2-6.
Basically, a two-part procedure is followed to create each new
summary file: first, the daily TP-Trip File is read and the
data processed to provide statistics aggregated in the same
format as is presently provided on the Old Summary Tape. The
Daily Aggregate File is then read along with the 0ld Summary
File of the same type; corresponding data elements (i.e., the
same line, direction, day-of-week aggregation, time-of-day
aggregation, and time point) are combined, and a New Summary
File is written,

Figure 2-9 shows the general layout of the various files and
headers on the Summary Tape., It is anticipated that a given
summary tape will accumulate data over a monthly period,
although other periods could also be used. The Summary Tape
will remain essentially the same length after each update, as
new data is combined with previous data in each file, not
appended to it; therefore there is no real limit on how long a
given summary tape can be used to accumulate data. The first
day of a summary, the files to be included are selected and the
aggregation periods and limits required by each are provided as
inputs, That data is then included in the header of each
summary file, and is read and used to control the aggregation
and selection for the rest of the summary time period, That is,
the files selected to be summarized and the criteria to be used
for each remain the same for a given summary period, but may be
changed at the beginning of the next period.

2.1.3.2.1 Form Daily Aggregate File

A different program of this type is required for each of:
Section 15, Running Time, Ridership {two types), Schedule
Deviation, Overloading (in addition to daily Schedule Deviation
and Overloading Reports, the data for which are not summarized
here}.

Summary Tape:

Tape Header

File 1 Header

File 1

File ? Header

File 2

—

"--——\-_____-q

File n Header

File n

FIGURE 2-9. SUMMARY TAPE LAYOUT

2-16

In general, all programs of this type operate in the same manner
and provide an output similar to that shown in the Apendix for
the summary files. The weather—condition and school-condition
pertain to the entire day's operation. The day-interval and
time-interval refer to the manner in which the data are
aggregated and will be further described below.

To allow flexibility in choice of aggregation period, an
approach using user-defined table input has been chosen. The
layout of the time-of-day (TOD) table is shown in the Appendix.
A TOD code first indicates if aggregation by time period is
desired, or whether all trips are to be individually saved. If
aggregation is to be performed, the table-length tells how many
table entries follow, Each entry consists of a finish-time for
an interval (the start-time is assumed to be the previous
finish-time; the first start-time is assumed as 4:00 as SCRTD
defines their shcedule day to begin at 4:00 A.M. The day and
date saved in various headers refer to the beginning of the
schedule day). For example, the entries 5:00, 6:00, 7:00, 7:20,
7:40, 8:00 would define:

Time-Interval Times Included
1 4:00 5:00
2 5:00 6:00
3 6:00 7:00
4 7:00 7:20
5 7:20 7:40
6 7:40 8:00

The time at which a trip begins determines the time-interval
into which that trip falls, and summations, averages or maximums
are carried out over all data occuring in that time interval.

As the TOD-table will be included in the 0ld Summary File header
after its information, the same time intervals will be used to
create each later Aggregation File, until the next period
begins,

A similar technique is used for day-of-week (DOW) aggregation,
only here the days need not be contiguous. The Appendix shows
the format of the DOW-table, which has a DOW-code to indicate if
there will be aggregations or whether each day should be handled
individually; and a table-length if there is to be aggregation.

2-17

In order to accommodate all the possibiities of aggregation that
may be desired, each table entry includes seven positions,
corresponding to day of the week (Monday = 1, Sunday = 7). A
non-zero table entry indicates that that day will be inc ded in
the aggregation for that day-interval, e.g.,

would accumulate Monday and Friday as day-interval 1, Wednesday
through Thursday as day-interval 2 and Saturday and Sunday as
day-interval 3. As each Aggregation File involves only one
day's data, there is no DOW aggregation performed during this
process; it occurs during the Update Summary process.

The use of table input to define aggregation intervals allows as
much flexibility as the user desires, without having to dify
the programs.

Although the computations required to form the various d .ly
aggregate files are different, the technique is basically the
same in each case. Individual records are read from the TP-Trip
File, the necessary computations are performed, sometime
involving data from the previous time point 1s well as t
current one, and the results are used to update the elem 1t of a
vector corresponding to that time point. When the next record
read is for a new trip, the start time is checked to determine
if a new time interval has been entered. If not, proces .ng
proceeds as before with the same elements being updated by new
data; if so, statistics are computed for each vector el¢ :nt
written out, and computations for the new time interval are
begun. In addition to between-time-point computations, rip
totals are computed and stored as the last TP element. In the
detailed descriptions that follow, only the computation:
differences will be discussed.

2.1.3.2.1.1., Form Daily Section 15 Aggregate File

Data on passenger ridership is required yearly in UMTA { :tion
15 reports. All the needed data can be derived from AVM data,
and simulation using actual passenger loadings from SCRT Line
44 has shown that accuracy requirements can be met using
passenger loadings only at time points.

2-18

2.1.3.2.1.1.1 TInput

The TP-Trip File.

2.1.3.2.1.1.2 OQutput

The S15-Aggregate Files containing passengers boarded, bus
miles, passenger miles, bus minutes, passenger minutes, capacity
miles, seat miles and bus trips.

2.1.3.2.1.1.3 Processing

The DOW-code and TOD-code are determined by UMTA reporting
requirements: for weekdays, all trips in the AM-peak, midday,
PM-peak and night (as specified by SCRTD) are aggregated; for
Saturday and Sunday (separately), only all-day totals are used.
Individual TP-trip records are read and desired measures are
computed and summed until the line, direction or time interval
changes, when an output record is written. Passengers boarded
is directly available from the input, the average number of
passengers aboard between time points is computed from the
passengers aboard at this and the previous time points and
multiplied by the time and distance between time points to get
passenger minutes, passenger miles and bus miles, and a table is
referenced to find capacity miles and seat miles. The number of
bus trips is incremented each time the first time point of a new
trip is read.

2,1.3.2.1.2 Form Daily Run Aggregate File

2.1.3.2.1.2.1 Tnput

The TP-Trip File.

2.1,3.2.1.2.2 OQutput

The Daily Run Aggregate File and the Daily Layover Aggregate
File. The Run File provides scheduled running time and
deviation from scheduled running time between time points, from
the start of the trip to the first time point (if the first bus
stop on a trip is not a time point), and from the first to last
bus stop of a trip. If time-of-day aggregation is specified,
mean values are computed for scheduled run time and run time
deviation and the standard deviation of the run time is also
found. The inclusion of the run time standard deviation allows
schedulers to better determine a run time that can be attained
by most buses and to determine route segments that may require
special service under certain conditions. The Layover File
includes time information at the first and last bus stop of each
trip.

2-19

2.1.3.2.1.2.3 Processing

The basic processing has already been described. The actual run
time is computed as the time at this point minus the time at the
previous point. The scheduled time at each point is determined
by adding the time at each point to the adjusted schedule
deviation at that point. The scheduled run time is then
computed as the scheduled time at this point minus the scheduled
time at the previous point and the run time deviation is
computed as the scheduled run time minus the actual run time.

1f time-of-day aggregation is being performed, the trip vector
accumulates the sums of scheduled run times, run time deviations
and run times squared as well as the sample size for each time
point. When the time interval, direction or lime changes, the
averages are computed by dividing the sums by the sample sizes,
and the standard deviation of the run time is also computed.

A separate file is used for data that can be used to compute
layover information, even though this could be considered to be
part of running time data, because layover data could not easily
be computed at the same time as the other run time data. That
is, layover time is not directly available from the data given;
it can be computed by first reordering the TR-Trip Records by
line, direction and run number (they are presently ordered by
line, direction and trip number). Then, for all trips in each
run, the last bus stop record containing actual time and
adjusted schedule deviation, will be immediately followed by the
first bus stop record of the next trip for that bus and the
actual and scheduled layover times can be computed from them,
However, rather than resort the whole file, skip most of the
records and go through many of the same computations as have
already been done to form the Run Aggregate File, it was decided
to write out the pertinent records as they are being processed
for the Run File. A later sort will be much quicker with fewer
and shorter records and desired aggregations can be performed
independently of those chosen for the Run File.

2.1.3.2.7 3 Form D'y P®idership Agg-~~ate File

This file is later accessed by two report generating programs to
construct detailed and summary reports providing ridership data.

2.1.% 72,1,3.1 TInput

The TP-Trip File. A table correlating number of seats and bus
capacity with bus number and a table giving distance between
time points 1s also needed.

2-20

2.1.3.2,1.3.2 Output

The Daily Ride Aggregate File. It summarizes, at each time
point, the number of passengers aboard, the number of passengers
on and off, the maximum aboard between time points and the bus
stop at which the maximum occurred. 1t also includes the time
with standees, in increments of five persons, and trip totals of
passenger trips, passengermiles, passenger-miles per passenger
trip, load factor, standee minutes and standee minutes per
standee.

2.1,3.2.1.3.3 Processing

The first group of data ig directly available from the TP-Trip
File. The passenger miles are computed in the same manner as
for the Section 15 data, and the same principle is used to
compute the standee minutes; that is the number of passengers
between time points is assumed to be fit by a straight line
between the number of passengers at the time points. The time
with standees is determined by the amount of time that the
passenger straight line is above the horizontal line represent-—
ing the number of seats. The area formed by that part of the
passenger straight line that is above the horizontal seat line
gives standee minutes, and this number divided by the time
between time points gives the average number of standees.
Figure 2-10 shows the relationship of the basic quantities
involved, for conditiong in which there are standees.

The computation of standee minutes per standee is more complex,
as it first requires the determination of the average number of
standees during a '"standee cycle," which begins whenever there
are standees and ends whenever there are no standees remaining.
In Figure 2~11, there are three standee cycles. At the end of
each cycle the average number of standees is found by dividing
the standee minutes in the cycle by the total time with
standees,

2.1.,3.2,1.4 Form Daily Schedule Deviation Aggregate File

This file stores the sum of the number of schedule deviations in
one-minute intervals for all trips in the chosen time intervals,
When the output report is later run, the numbers are converted
to percentages.

2,1.3.2.1.4,1 Input

The TP~-Trip file.

2-21

pmax

psgr-
EXCEeSS— diff
psgrs seats 4 — — — = - —
puin
prev- new- prev- new-
time time time time
time-over time-over
\—“‘-~————J k______\y,_______l
time-diff time~-d1iff
A standee—
/’ minsg
pmax
pPsSgL—
d1ff ‘\\\
poin §
seats —pr — — — — 4 :)\\ &
prev- new-—
time time
— —
time-over
FIGURE 2-10. BASIC STANDEEC IPUTATIONS

2=22

A

T

Passengers

-
-

Time Point Number

FIGURE 2-1t. STANDEE CYCLE _LUSTRATION

2.1.3.2.1.4.2 Qutput

The Schedule Deviation Aggregate File including, for each time
point, a 22 element vector storing s¢ :dule deviation histogram
data from minus to plus ten minutes, (ncluding a less than -10
element and a greater than +10 elemer }, The limits can be
changed if desired.

71 3,2,1.4 ? Processing

Individual TP-trip records are read : 1 the adjusted schedule
deviation is examined to determine wt “th histogram element
should be incremented, When line, d: =zction or time-interval
changes, an output record is written.

2.1.3.2.1.5 Form Daily Overload Agg pgate File

This file, originally specified in W..3W00738, has been changed
to provide additional data. It now includes, in a similar
fashion to the schedule deviation re: rt just described, load
factor data in .l increments.

2.1.3.2,1.5.1 TInput

The TP-Trip File. A table to provide the capacity of each bus
is aslso required.

2.1.3.2.1.5.2 OQutput

The Paily Overload Aggregate File, i :luding, for each time
point, a 21 element vector storing t : number of bus trips in
the appropriate load-factor interval. The load factor limits
can be changed if desired.

2.1.3.2.1.5 ? P-ocessing

Individual TP-trip records are read 1d the average load between
time points is found from the number of passengers aboard at
this and the previous time points. 1e load factor is computed
using the bus capacity from the loac :able and the appropriate
element of the overload histogram is incremented. When line,
direction or time~interval changes, 1 output record is written,

2.1.3.2,1.6 ©~-m Daily Layover Agg: iatr Tile

The Layover File formed during the : nning of the Run program is
sorted by line, direction, and run . d then used to determine
the scheduled layover time and the layover deviation,

2-24

2,1,3.2.1.6.1 Input

The Layover File, consisting of only "first-bus-stop' and
"last-bus-stop" records from the TP-trip file,

2.1.3.2.1.6.2 Output

The daily Layover Aggregate File.

2.1.3.2.1.6.3 Processing

The records are read one at a time; as the file only includes
“first bus stop" and "last bus stop" records for each trip, each
time a new record is different from the previous record (unless
the run also changes) the scheduled layover time and layover
time deviation are computed from the actual times and the
adjusted schedule deviations or time interval at each bus stop.
The scheduled layover time and layover deviation are added to
previous values wuntil the line, direction or time interval
changes, when averages are formed and written out.

2.1.3.2.2 Update Summary Files

The format of the data in the daily output aggregate files is
the same as that of the old summary tape data, Consequently, a
standard "master file update" can be performed. A record is
read from each file; if the old summary record key is less than
the aggregate record key, the old summary record is written as a
new summary record and another old summary record is read. If
the keys are the same, the data from the aggregate record is
combined with the old summary record, e.g., updating an average
or total, and a new aggregate record is read. If the old
summary record is greater than the aggregate record, the
aggregate record is written as the new summary record and a new
aggregate record is read., The key is composed of the line,
direction, day-interval, and time-interval of trip (depending on
whether time of day aggregation is being performed). As the end
of either file is reached, the key for that file is set to
"high-values', the highest collating value for the given Cobol
implementation and, from the above description, it can be seen
that the rest of the remaining file will be read and written.
When both keys are high-values, the job is completed. As each
aggregate file contains data from a single day, only those
summary records corresponding to that day-interval are changed.

2-25

The method in which the data is combined depends upon the manner
in which the data is presently aggregated. Most of the data are
simply sums, e.g., bus miles, sample size, standee time;
therefore the combining process simply consists of adding the
daily aggregate to the old summary to form the new summary.
There is also one case where aly a extreme value, the maximum
number of passengers aboard between time points, is saved. In
this case, a simple comparison between the aggregate maximum and
the old summary maximum is used to determine the new summary
maximum, (The associated maximum passenger bus stop is also
selected at this time.)} Other types of aggregation are required
to handle averages, used in the cases of run time, layover t ime
and load factor; and variance, used in the case of run time.
Slightly more processing is required here to form the new
summary average from the old summary average, the aggregate
average, and the sample sizes--the algorithm to accomplish this
is given in Section 3.

Figure 2-6 shows the contents of the updated files and the
method used to combine the aggregate and summary files. The
same update program, using different data definitions, should be
able to be used to update all of the files.

2.1.3.3 Torm New Perf ™-ta Base Tape

2,1.3.3.1 Input

The 0ld Perf Data Base Tape and the newly formed TP-Trip File
are inputs. The Old Perf Data Base Tape includes a tape header
telling the dates included, followed by each included day's
TP-Trip File and associated date header,

2.1.3.3.2 Output

The New Perf Data Base Tape. It is the same format as the 0ld
Perf Data Base Tape.

2.1.3.3.3 Processing

The old tape ‘:ader is read, updated and written to the new
tape. All of the following records are read and rewritten to
the new tape, a date header is formed and written, and the
entire TP-Trip File is written after it,

2.1.3.4 Form P~*ly Exception Re~~~ts

These are of two types, schedule deviation and overloading.
Each TP-Trip record is checked to determine if the adjusted
schedule deviation indicates that a bus is too far ahead of or
behind schedule (separate limits for each), or has a passenger

2-26

load that is greater than a user-selected load factor. For each
out-of-tolerance point, data for the preceding and following
buses is also output.

2.1.3.4.1 Form Daily Schedule Deviation Exception Report

2,1.3.4.1,1 TInput

The TP-Trip File and user provided early limit and late limit.

2.1.3.4.1.2 Qutput

The Daily Schedule Deviation Exception Report is printed. The
contents of this report include scheduled time and schedule
deviation at the time point for the out-of~tolerance trip and
for preceding and following trips. An example of an output
displaying information of this type, developed by Gould, is
shown in the Appendix.

2.1.3.4,1.3 Processing

The TP-Trip File is read one record at a time until three trips
have been read. Time point data for each trip are stored in a
separate vector. The adjusted schedule deviation at each time
point in the second vector is checked against the limits; if a
limit is exceeded, the data stored for that time point in each
of the three trip vectors are printed. When all of the time
points in the second vector have been checked, the contents of
the second vector are placed in the first vector, those of the
third vector are placed in the second vector, and a new trip is
read into the third vector. Modifications in this process are
required to account for the first and last trips on a given line
and direction.

2.1.3.4.2 Form Daily Overload Exception Report

2,1.3.4.2.1 TInput

The TP-Trip File and user-provided load-factor limit. A bus
number to bus capacity table is also required.

2.1.3.4.2.2 OQutput

The Daily Overload Exception Report is printed. The contents of
this report include the time-point time, load factor and number
of passengers over the load factor limit for the out-of-
tolerance trip and for preceding and following trips. Format of
this report is similar to the Daily Schedule Deviation Report
shown in the Appendix.

2-27

2.1.3.4.2.3 Processing

The same general technique used in Schedule Deviation
processing, che: ing the second of three trip vectors for out-
of-tolerance condition, is used here. Slightly more processing
is required here, however, as different buses may have different
capacitites and the load factor is specified as a percent of
capacity., Therefore, as each trip is read, the capacity of the
given bus is looked up in a table. As each time point record is
read the maximum passengers between time points is divided by
the capacity to determine the maximum load factor.

The load factor is later compared to the load factor limit and
information on that time point as well as the preceding and

following buses at that time point are printed out.

2.1.4 Update Trouble Tape

The Trouble Report File generated by the Gould Fortran programs,
ordered by time, is first sorted by Trouble Report Number. The
resultant Ordered Trouble Report File is appended to the 0Old
Trouble Data Base Tape in a similar manner as was done with the
Perf Data Base Tape. Based on routing data included in the
trouble reports the Ordered Trouble Report File is also used to
produce a daily set of output reports which are sent to
specified users.

2.1.4.1 Sort

2.1.4.1.1 Input

The Trouble Report File, produced daily by the Gould Fortran
programs.

2.1.4,1.”7 Qutput

The Ordered Trouble Report File,

2.1.4.1.3 Processing

Sort by Trouble Report Number.

2.1.4.2 For~ Jutput T"-~-ble Rep~-*s

2.1.4.2.1 Input

The Ordered Trouble Report File,

2-28

2.1.4.2.2 Output

Daily Trouble Report Reports. The Appendix shows the format of
the trouble reports presented on a Dispatcher's display. The
same format will be used for the output report,

2.1.4.2.3 Processing

The Trouble Reports will be read and, based on the distribution
codes included, written to separate files. Each file will then
be read, the data elements formatted as previously shown, and a
separate report (which may contain multiple copies) printed for
each distribution code.

2.1.4.3 Form New Trouble Tape

2.1.4.3.1 Input

The Ordered Trouble Report File and the 0ld Trouble Report File.

2.1.4.3.2 Qutput

The New Trouble Report File.

2.1.4.3.3 Processing

The 0ld Trouble Tape Header is read, and the dates included are
updated with today's date. The header is then written to the
New Trouble Report Tape, followed by all the tape records on the
0ld Trouble Report Tape. A header is created and written with
data corresponding to today's parameters, followed by all
records in the Ordered Trouble Report File.

2.2 Form Summary Reports

At any time, summary reports may be run from data on the Perf
Summary Tape, as the daily update programs incorporate the
latest day's date into the previous summary. Depending on the
initial choice of day-of-week and time-of-day aggregatiom each
file's data may include anything from each trip for each day of
the week (an unlikely choice) to daily aggregations aggregated
over the whole week--in effect, one line of data. In general,
something in between will be specified, and Figure 2-12 shows
the general format and order of the output for: DOW--weekdays,
and weekends; TOD--AM peak, midday, PM-peak and night. The

2-29

Line 41
Southbound

Weekly

Line 41
Nerthbound

Weekly

Line 44
Northbound

Southbound

Weekdays

Weekends

TFLl Trip

AH Peak
Hidday
PM Peak
Night
All Day

Ik
Ik
1]

Line 41

Northbound

Weekdays

Am Peak
Midday
PM Feak
Hight
4ll Day

-
bal
-
-

allE
sk

FIQURE 2-12. EXAMPLE OF SEQUENCE OF REPORT DATA

2-30

first'page' includes, for line 41, northbound, weekdays, data
for each time point by time interval, and a daily total, or
average, as the case may be. The next page provides the same
data for the same line and direction, but for weekends. The
next two pages provide the same order of information for the
southbound trips, followed by the other lines, in order.

All this data can be provided merely by formatting the data in
the summary files. To get a weekly aggregation for each line,
direction time interval, etc. in the same order as shown, the
data is sorted again, by line, direction, time-interval or trip,
and day-interval. The records are now read and aggregated by
time point until the line, direction, trip or time-interval
changes, at which time the weekly aggregate is written. A
simpler technique could be used, storing data in arrays as they
are read and aggregating them properly at the end of the file;
however, to accommodate the possibility that 2,000 trips may
have to be handled requires inordinately large arrays. In any
case, as the files will be substantially condensed by the time
this processing needs to be done, the time to sort and process
should be minimal,

The Schedule 15 and Ride Trip Reports contain data that can be
meaningfully combined further, to form line and system totals.
That is, passenger miles or standee minutes during the AM-peak
for line 41 and for the entire (AVM-equipped) system are valid
measures, whereas average run times or schedule deviations have
meaning when referred to a particular route configuration,
Therefore, these reports will be further aggregated whereas the
others will stop as previously described,

2-31

PROGRAM LOGIC

The logical procedures required to implement the programs
described in Section 2 are detailed in Appendix B, In general,
a structured approach is used; that is only sequential
statements (including Calls), If . . . Else, For i = ny to

ny, Do ., . ., While or Repeat . . . Until (in the former, the
specified condition is tested before the included code is
performed; in the latter, the test is performed afterwards) are
included. A Cobol-oriented approach is used, although the
statements used may not be directly implementable in standard
Cobol. One such statement is Assignment By-Name, borrowed from
PL/I, to indicate that all of the values of the variables in one
data structure that have the same name as variables in the
second data structure are replaced by the values of the second
set of variables, Too, arrays (tables, in Cobol) are often
used to aggregate data for all time points in successive trips
until a control variable changes, with separate rows of the
array being maintained for time interval aggregation, direction
aggregation and line aggregation. As an update to a time
interval aggregation 18 always accompanied by an update to each
of the others, this is indicated by replacing the "row" index by
*, For example:

calc-run-time(* ,new=TP) = calc-run-time(*,new-TP) + run-time

adds "run-time" to '"'column'' new-TP of all "rows" of calc-run~-
time. When delineating lines of text, * means the included text
is comment. The symbols +, x and / refer to addition, multi-
plication and division; subtraction is spelled out as "minus"
due to the possibility of confusion with the many hypenated
variable names, Periods are used to indicate the logical end of
compound statements; in more complex instances, "Ends" are also
used.

In general, the meaning of the various conventions should be
clear when the program descriptions are being read, at least
after a few of them have been studied. Also, as much as
possible, the logic of the different programs is the same, with
only the computations of the pertinent measures being different.
This is particularly true with all of the programs of a given
type, that is those that form daily-aggregate files are very
similar, while the various update and report program descrip-
tions are virtually identical. Even among the different types
of programs, a similar program sequence 1is used, and the deter-
mination of control breaks is based on the comparison of "keys"
of the new and previous records. A key, defined at the begin-—
ning of each program description, is composed of various data
that can be used to indicate that the end of a line, direction,

3-1

trip, time interval, etc, has been reached, requiring some sort
of summary and reinitialization | ocessing, When the end of an
input file has been reached, high-values are placed in the key,
and are used to control the fini: of the program,

3-2

APPENDIX A - FILE CONTENTS

The contents of the files described in Section 2 and 3
are defined here, in alphabetical order. In general, each file

includes a header, a key and data. Some notational conventions

are.

= means is equivalent to

+ means and

[] means either-or

{} means iterations of the component enclosed

() means the enclosed component is optional.

The iteration limits are included below and above the braces,
unless they are obvious.

As the format of the data in the Aggregate Files is the
same as the (0ld and New) Summary Files, only the summary files
are given. (The headers are slightly different, as the summary
headers also provide data on aggregation 1limits. Also, instead
of writing out the contents of the Report Print Files, examples

of the output format are given)

BASIC-OPERATING-SCHEDULE (AVM Log Tape)

Heading

+ Schedule

NOTE:

line + schedule + direction +
date~created + date effective +
time-pt = numbers +
time-pt-names +

notes

I
oT aws>

Trip + Run + Pul -Out-Time +
Pull-Out-Division + Misc., + H
Schedule~Times + Nxclue +

Next-Code + Next-Time }

+ ({subheading/note/blank})

+ End-of-Direction I

+ End-of-Division

Ordered by division line, directiom,
heading, schedule, end-of-division

BUS-STOP-BY~LINE

Header + { { data }}
lines bus—-stop
Header = file-ID + date + day + weather +

school

data bus-stop-record from tracked-bus-file

DAY OF WEEK (DOW) TABLE

table-length 7
DOW-code + table-length + { { indicator (j)} }

1 j=1
Where:
j corresponds to day-of-week:
1 = Monday, 7 = Sunday
indicator (j) = 0 or 1;

data for all days whose indicator =1
will be aggregated

ALL, if want all days individually
DOW-code =

I !, if want day-of-week

LAYOVER SUMMARY

{ key + data }

Header ,
trips

header = file-ID + DOW-table + TOD-table + weather code +
school-code

key = line + direction + day-int + (time-int) +
(trip)

data = sched-layover + layover-dev + sample-size

NOTE: Either time-int or trip-int present, but not
both

Header

Header

Record

NOTE:

It

+

ORDERED BUS STOP

{ { record 11

trips TPs

file-ID + date + day + weather + school

same as tracked-bus record

Ordered by line, direction, trip.

A-6

OVERLOAD SUMMARY

Header + { key + data }
trips
Header = file-1ID + load~factor-threshold + DOW-~table

+ TOD-table + weather-code + school-code

key = 1line + direction + day-int + time-int
2.0
data = TP + { buses-in-load-factor-int }
0
NOTE: .1 load factor increments——20 1intervals

+ 1 interval for »2.0.

PERF DATA BASE

end-date
File-Header + { date-header + | { record }}

start~date trips TPs

file-header file-ID + start-date + end-date

date-header date + day + weather + school

record same as TP-trip record

RESEARCH TAPE

Identical to Ordered Bus Stop File

RIDE DETAILED REPORT

WO d0d9N0Ss

031H1ud INY SIIOHYIS HILIA SdIu] 230M1 AHOs

8°0 #°F P°0 Z°11 &°9 &% €0 "9 BT0 E*® 0% BPEOBCOR A% IS 1'% [§ It eired
0 #° 90 9°pl %R 4R BTG 'Y MM RN I LA LI I L I Al B A)] 11 wei e
T #°0 a9 +°fl 19 0% m*% 9°} °8 #°0 %9 210 0*0 0*e I°L 8t IR R ERY
%0 @9 0°0 $°H0 ¥CR® R0 T'0 1*s 0°8 0°0 #°® BP0 #°0 0 0t's 0 L Al 4 | 4 1ot
8°0 0 B°8 VLT 4°0 0°0 ('8 S°9 €0 10 T°L 0°0 00 e*d %% ¢°¢ 221 vl stied
€°8 @°a 3ca gogl ' 2°0 0 (°*9 £°0 2°0 €' 0°0 €'0 C'0 9°F 0% 8%y €€t 1 §s1S§
[]] [AL 20N AN B L4 BN M *°0 ¥°0 KL 80 00 R0 2°6 0°0 #%0 Ll | LI 4 201
9 40 C°0 ecwl 0’0 (*8 2°0 vw-» B*L f1*0 S$°L 0@ 1*e 1's 16 8'e e°0 l 1 82151
1°9 4°1 9*p @'l T°'t #°% % &"% P50 80 &% e*e 20 @0 vCID 00 %0 B 2 § sty
0°0 B*0 0D S'S| 0*a etk 1'e %% '8 0°Z 'R O8*0 "0 I°9 Bt B8 B0 D [M| H [X3N]}
90 4°0 4D ST 0CR 0RO R'e (4 0°0 £°0 YL o0 10 E°0 b6 0°% 0%] [1) vl 22l
[A4 I L4 B LY B LY 4 BN A4 BN B B A4 BN R | $*0 ¥0 §°® 078 ¥'0 S50 ¥ 0TO O [I | gt 1t ossict
[L I A I . B R N I A s°9 0 S0 $°® 29 0@ #*0 40 ¥R R0 e 1} $ b0} § [141
PO 1'0 20 6°v) 90 v 1°t 1°0 070 C°% or@ 8°0 #°0 &% 9°0 0°F #°0 S0 @ evild
00 90 L8 Tt 0%y e 9y 8°0 0°0 EB'9 B0 0°F 6°0 SR 8¢ 8cp 80 #er At @)
'8 #°0 T°0 ZT°CT 0°0 £y 4t 1°0 C°0 ['9 @re 4 g*® &L 4to o'p 40 °10 4 vt
0 0'9 tte Ltcr e vy 2°0 BTO 978 L°% B°0 6°s 9°0 2°F *% 4°¢ 09 91 It 2drel
tF 0"8 £Cr L°Ct e vee (°t 000 0°0 [°9 0°0 €°0 0°0 ¥'@ ' @*F #°0 §'f1 v CC18
(A4 BN L4 B AX B L4 O M | 'y v'i B 1@ %'9 ete 0'0 et TR 8'D 8'0 0°@ 2'el 1 201]
10 ' b8 0°21 08 "% 00 £'0 +*°8 &°9 #70 D00 't B°O AR ' 0'0 W2t £l Cs18
8°0 o'% 0°% I'TI 8*p P9 0°1 %0 0°0 9% 90 00 1% %R #t0 R°0 B0 [A B] It cze
1°0 1°9 1°¢ 'Cl 9" [34 2N ¥ | 0°0 P°8 4°9 9% (e 88 E£°6 0% 00 0@ 2l tt sl
2" C'9 w'e 47t 0°10 L4 I A] 70 0'0 . 9L 4% 06°¢ 0% BT M0 0D 070 L34} * (LA NE
%0 2% C°8 2°%1 ®%» "0 &0 0 1°F 2*M 0*h 80 ete e [I R I A B 2 1 L2 TN
B0 Bt 2°% 8% #°9 e L1 0°8 B'B VL 4°0 0% 9°% 4L 0'0 0'¢ e 9til el (b
i 1 *MIM &11 ot-9 6-1 °MiM oM Iwily

<11 01=% B=1 °WI¥ «t] 07-9 S=1 °NIN <1 ¢01=9 S=1 °*NI¥ <Il oi-9 §-1 °HIW «{] #1-9 &~
S2IONVIE ¥ Miz SAI0NYLS ¢ 1wl $370mMVIS O INiL 1330NY LS § Ml $230nYLE 0 Fvll . s2jonvis ¥ il W i1e20

HiIR IWIL .. N HitA nt) Lyl Hilm 3wil L1 HIEA Wil LGl HLIR JWIL Lyl HLTM 2AWIL L UL oIS
o JaoR~NWINITY INIV~48 NOINDTDD 49 NOEHITII-41YD HNOJDIYI-HAIECN HAT2SOM=-0NYINIDY
1NN S 8 1NIWe2Y Y InpeIs £ INFWDDS ALy Ll F]] . U Indnels

ANYHMNS 41N)

Fisl UIEWIINA
Wod SI0VYEIAY LYONIIN.

annoenl
ovod BMIOYIH
£y 3)jnowH
OWlIH AL1D NI3NO
CERANOPRIREBAGRPARBROOUD
1H043H DNIQYOY HIONISETA
T9eNanEPElRERRRRROARY

A-10

leader

header

key

data

RIDE DETAILED SUMMARY

{ { key + data } }
trips TPs

file-ID + DOW-table + TOD-table +
weather-code + school-code

line + direction + day-int + (time-int)
+ (trip)

TP + psgrs-boarding-bet-TPS + psgrs-
alighting-bet-TPs + max pasgrs-bet-TPs +

{%tandee-time} + sample-size

0-5 standees
5-10 standees
> 10 standees

RIDE-TRIP-REPORT

L3414
9°v2
70
s°1e
[AR
Ha13v4
sedNIJD

£vet
[T]
T*at
'° 2y
(1]
¥oliovi
20Y01

°sts $TNtn
$7(5 97090

6°olt 9 29cl
I I N3 1T
A TR I LYY
sunoM $3N
~*$S¥Yd ~°SSV4

WO 1dDd00S

5007 X SUNOM=1YIS/SUNCH="88Vd » HO1IVS 4NIIDee
n0el ¥ SFVIN-1YIS/GINN="ES¥d = HOLDYVS OYDTe

grestl L°228lt " 1651 gool 86t92=0 19 AvVO VY

el 12sc - m W e51%2-0 191 IHPIN
L AFLT 1 egve 1 ¥ic sy GEvL1~0 150 NVId Wd
1*1vs 61989 ' 09 ive $51%1=0 18 AVOOINM
L 113 s$'Cloy @ L 114 s $6IF ~0 9 NYId WY
SunoH LERIL sdidl 440 WO q0lvid il
=1¥35 -_¢un "HIA Iviol viol

40 *OM

§IV10} ONlwdd IW1)

9161 ¥IEWIIT
vhd SIGYHIAY AYONIIA

aNnoeNt
avod ODNjOYIH
ty 31noy
oWliIn ALY NIZND

TERVRARRARERSARUARAANONERPD
inodIv ALTALIIN00Rd F1N0OW
sevgridvnes ' JeespevEneeen

A-12

RIDE TRIP SUMMARY

header + { key + data }

trips
header = file-ID + DOW-table + TOD-table + weather-
code + school-code
key = line + direction + day-int + (time-int) +
(trip)
data = psgr-trips + psgr-mis + load-factor +

standee-mis + sample-size

A-13

RUN REPORT

il
L0

'y L°% '3 &'87 C'lec " ¥ruy Lot w00z
$7 It y'ee Ly st 1 #coy 901 v (2
'y 9 Ly 19 v 1 9*26 &L sl
oy 1% g*e9 §°(t C'evd vt §6y 209 190
'y [A | L & L 24 r'Re 4 £*4% GIC CEY
440 . WO Jj0 NO NG SunnH SITIM SJTWE IMILl 440 NO
(UNEH="KIA DVIN="HIA . JINL “HIA, -'H3A «~"HIA *HIA NNW IvlOl vi0)
¥id *83vd ' ¥4 *BEVL ' W4 TREV) 40 CON v
$Iviol 0ol¥dd INIL.
i TPT WD
o'yl oS4l [T3] Fild [31 4 e L 121 (4%] 141 t 14
11} [1] 4] [14 1°s 11 (14 i [}] (1]
T1E 1] 34 B ') B 1 €r €2 13 CR I 1 zet
LRI S TR | (52 B 4 TR 14 | 1y 08 0 X N L] 113
. (3.1 1" I* " et N 1] £ 13 H
440 no MIL Jp0 NO il 2io wa kIl J40 NO i1 440 (1
Chl'] " Nnm NNy NNW
08 1A00=NWMII INIV=d8 NOINITD 4% HOINITI=417¥2 WHO 1 TWI-NATIS0N
s 1NIN918 : * INTWE3S € INTFHDIS T LHINORS

ARYNNNS 001¥1d FNIL

181 WIAWDIIA
¥O04 SI0TYNMIAY AVONTIN

aNnoent
ovoy OW[OYVIN
€y JINONH
O¥LIM ALTID HNIING

sesnibabsEdTaudRBRURI R
1H0Jd2¥ $1SLIYNY J1N0W
dseddsnenscdabonerevs

.

[3 10224]
e51v2-0
85111=0
(S 2130
45IT ~8

2]

19 AYO WV
9] lHOIN
Rl Y34 wd
14 AYOOINW
¥ ¥vld WY

golIvId INIL

12 et e

$° 11 9 it

1°11 &f n"r

il a0 NO

LO)

HATISON-OKYINI0Y
1 LuIKels

1

Sd0anos

55020 19
819 3-9 108
es140-0 151
S1vi=9 1
851k =0 1Y

aciwdd i

A-14

RUN SUMMARY

header + { { key + data } 1}
trip TPs
header = file-ID + DOW-table + TOD-table +
weather-code + school-code
key = line + direction + day-int + (time-int)
+(trip)
data = TP + shed-run-time + run-time-dev +

(run-time-dev-shed-dev) + sample-size

A-15

91-v

JAR 1001779
LINE 041
RUN 01 T
DIRECTION MNORTHROUND

TIHEPOINT TRIP
— {DEVIATED) NUME
ALVARADO/PICO 1070
MONTANA/LIBERTY
ALVARADD/STH 1080
ALVARADD/PICO 1090
ALVYARADD/&TH

DRIVER WUMBER 4407

ALVARADO/&TH

DIRECTION SOUTHBOUND

ALVARADO/BEVERLY 1070
ALYARADD/STH
ALVARADD/PICO
SANItARB/F IGUEROA

1080

SANBARB/F IGUERDA 1150
>

SOURCE: GOULD, Inc.

1150 13i50:00

0461241007

04129100
07133100
08:07:00

14140100

FOR 01-09-7%

MN188
EARLY THRESHOLD 01100 LATE THRESHILD

CDIVIBION 02— "BUS NUMBER 7200

THIS RUm

BCHEDULE
DEPART
HR:HMN:ISS

DEPARTURE REMARKS .
DEVIATION — ="~ "TUTTTT T
HNISS
04100130 T
04:20:00
07:23:30
08133130
08:40130

+01133
+01:43
+01:43
~11:30
=-13130

13150130 +01143

06124130 #0130 T T
04129130 +02:00
07:33:130 -11130
08:17:00° -05130

14t34:100 401130

SCHEDULE DEVIATION REPORT FOR SCHMEDULINO DEPARTMENT

PAGE 0001

MM1S8
10100

SCHEDULE DEPARTURE
DEPART DEVIATION

HR!HNIBSE HN188
05139130 000
04:00100 0100
07:12130 0t00

08:20:30 402100 —
08127130 +02130

13135100 13135330 0100

"PREVIDUB RUM™ ~ — 777 777 FOLLOWINDG RUN

ECHEDULE DEPARTUR
~~ DEPART = DEVIATIO

LLHL L] HMiES
0432630 otoo
04340100 Q100
07131100 0100
08147:00 — T 0100°
08133130 0100

_ 14104100 14704130 __ 0300

04305100 04303130 ~ 0100 D3145700° DAI4TIOO T OIOD

04108100
07142100
07i58t00

0408130 0100
07142130 -041130
08104100 "~01:30

14323300 14142100 0100

04149100 04149130 0100
09103100 08103130 __ 0300
08119100 0B130100 0100

14155100 13109100 olob

HVI1IKIS-XTIVA-AVOTaIAD

IM0d9d RTIVA-MOIIVIAAQ-3TNAEHOS

SCHEDULED DEVIATION SUMMARY REFORT

OVERLOAD SUMMARY SIMILAR

M ¥

ITTN]
il
ey m g
[IITR Y LT]
L8 1 e
my

LI LY LT LR P I PY T T]
* '
'y et $1
[} INTITHTITITITIIR 3
1A " 9
LIRIE B9
il [OIIELE |
ot oy

il g e n LR

A ny "2 [] []

]]]]]

]] ’ [] [

] [] []]]

» [} (] []]

]] » [] L]

)] [} [] []

" t "t [] []
NROINARGT NIINLY SOHINGS WOLNITD YINWO YD LIWHNS
IHYNDS [MHNEIAOE T on1QVIY v OHIGY3IH T ONLOvad Y oMlOviy

SiINlIndIwWlL

Pist HiGWIDIO
L. LF}
SIYAHIING NIM=T MIHLIA
SHOTIYAUISAO NOPLYIAJG FTINATIHIS 40 9

HY 34 wd
OMNOAN |
oYow DNfOY Y
€y 3Inny
QuiIN L1123 NIIND

1H0d3¥ IINIHINAY ITNTIHIS

(RN RN ZIRR SRR NEREL Y]

W} TEDEN0S

NDI1iND 430 .u:__ HO $3L0HI0«

ne 11 6iap
[N} ol 01
i1 [] |
it [} 1
ng] ¥
L 1
IESasraNe -
nea s 04 ¢
e Ul y Ot t N
[T TIT B € ot 2z |1
et T ol M
EITU LI 1 ol o
0 oLt
. 1 012 4
(2 11}
TR 2 ol 1
TR € 0l y N
e y 01§ ¥
me ¢ ol 3
[] 9 o1 ~
0 L oL e W —
. R oole 1 !
. ¢ 0L 0f n <
[} ol Hlag
DHIWOAR NOT1VIAIO
Y SHYITIIA 2N0IHIS

SCHEDULE DEVIATION SUMMARY

header + { { key + data } }
trips TPs
header = file-ID + DOW-table + TOD-table
key = 1line + direction + day-int + time-int
t = +t:2
data = TP + { buses-in-sched-dev-int } +
t = =
‘1

sample-size

NOTE : 1l minute sched. dev.
-t = ~10 min. 1
1
+t2 = +10 min.

-

A-18

intervals

22 intervals

SECTION 15 SUMMARY

header + { key + data }

header = file-ID + DOW-table + TOD-table
key = line + direction + day-int +
time-int
data = psgrs-boarded + bus-trip-distance +

psgr-mi + bus-trip-time + psgr-min +
capacity-mi + seat-mi + bus~trips

NOTE: DOW-table & TOD-table specified by
UMTA

Weekdays, Sat., Sun.
AM-peak, Mid-day, PM-peak, Night

A-19

SIGNPOST-TABLE-1 (SIGNTB) (AVM Log Tape)

x-coord + y-coord + distance +
east-code + line +

east-chaln + west-chain +
north-chain + south~chain

NOTE :
o 1 entry per signpost (917)
o '"chain" values tell how many records
between this SP and the next one in

each direction

o ordered by north-code, then east-code

SIGNPOST-TABLE-2 (SNGTBL) (AVM Log Tape)

number-east-codes-for-this-north-code +
SIGNTB-pointer-to-start-of-north-codes

NOTES:
o 255 entries-one for each possible
north code. Their order defines a

given north code.

o This table used as a key into SIGNTB.

A-2]1

Header

SUMMARY TAPE

ID + start-date + end—date
{Section-15-Summary)
(Run—-Summary)
(Ride-Detailed-Summary)
(Ride-Trip-Summary)
{Sched-Dev-Summary)
{Overload-Summary)

{Layover-Summary)

A-22

TIME OF DAY (TOD) TABLE

table-length
TOD-code + table-length + { end-time }

i=1

ALL, if each trip is to be included
separately

TOD-code

I
A

INT, if trips are to be aggregated
over time interwvals

4-23

TP-TRIP

header + { { key + data } }
trips TPs
header = file-ID + date + day + weather + school
key = line + direction + trip
data = run + bus + TP + time + sched-dev +

psgrs-on-between—TPs + psgrs—off-bet-TPs +
psgrs—aboard + max-psgrs—-bet-TPs +
max-psgr-bus-stop

A-24

TRACKED BUS (AVM Log Tape-Type 3 File)

block header + {[bus—stop |bus-assnment/pullout
dispatcher-action]}

block header

AVM-block-start-time + date + day +
weather + {line + sched + AVM-config!
lines

bus-stop time + line + run + bus + trip +
direction + origin + destination +

stop + TP + sched~dev + sched-adj +
shed-hywy + hdwy dev + psgr-aboard +
psgrs-boarding + pasgrs—alighting +
total-boardings + total-alighting +
psgrs-on-leader + load-diff + run-time +
psgr-wait + psgr-mi + psgr-trip-time +
psgr-trip-delay + tactical-code +
trouble-report +

3
SPM-position +1 {tactics} + other-flags

A-25

TABLE FORMAT E. TROURLE REPDRT ((CS-10)

TROUBLE REPORT # 999

nIse, NO. 99
VEHICLE : 3108 DIV: 99 CALL (LOCATINN: WILSH/WSTRN STATNS: ER3BL TIME: 11594
LINE/RIN: 176-12
OPERATOR ID: ¥XXX CH# XX TRBL LOCATION: XXUXXXNXXXK TRBL TIME: XXYNX CLRD: XK
ACCTDENT : EMERGENCY? @ OPERATINNS? : MAINTENANCE PROBLEMS?
¥ INJURIES : SAS ALARM BLAMKANE : AIR COND * TFAREBOX : EKGINE
TRTD AT SCNE ASSAULT-0PER: CANCELLATION: AIR LEAK : HEANSIGN: HAT
REFERRED AID ASSAULT-PSGR: NETAQUR H ALR PRISS+- HEATER POWR
TO HOSPITAL @ ROBBERY : LATE : 4VM DSPLY: HORW : STALL
AMBULANCE ? ; 0T LATE : AVM OTHER: LIGHTS KMISSION
WHICH H0SP? MISCELLANY? : OVERLOAD : BATTERY + HD/TL : CLTCH
: PADDLEBOARD @ BELLOWS : INSIDE : LEAK :
ALTERATION TRANSFERS : BRAKES * MARKER : SYIPT
WITNESSES? : DISTURBANCE : ZONE CHECXS : DEFROSTRS: MIRROR : SLIPS
PHOTOS ? : INFORMATION - PRECTIUNL: OIL LEAK RADIN
BUS MOVING? INTOX-PSGR ILLNESS? : DIRTY BUS: OITL PRES D RX
BUS DAMAGE : LOST ARTLI DOR-ENTR: TIRES ND TX
LOST PSGR . PASSENCER N MNR-EXIT:* WATER 1K BEFPS
MISSILES : NRERATNR : YIPERS
VANDALISM REFERRED AID: OTHFR MAINT:
Lines 23-40
S UMMARY qEDHRTEN BY TO TIME
KCCOKEKY XXOORY NXXXX XXX
Lines 42-52
SERVICE DELAY: XXXX
NEW BTS NO. XXX LOCATI : AAAKAXKKKXK DIR: XXY¥ TIME: XXAXX

.

REPLACE? X TURNSACK? X DHE? X RELAY? X
COPLES: : : H : H

SOURCE: GCOULD, Inc.

A-26

TROUBLE REPORT (AVM Log Tape-Type 2 File)

n
block-pointer + { data }

1

n
block-pointer { block-number—of—ith—trouble

i=1

report }

data trouble-report-text

A=27

VEHICLE-LOCATION-AND-STATUS (CLST) (AVM Log Tape)

VLST 1 = vehicle + line + run + bus-tyj
VLST 2 = for-internal-use-only
6 ,schedule-deviation-thresho. 3} +
1 "computed-sched-deviation +
VLST 3
1 {display-sched-thresholds}
3
VLST 4 = bus + line + run + veh-ID + bus-type +
status
NOTES:

e Random route + 41 + 44 + 89 + 83
e 1 entry per vehicle (220 tot:)

e vehilcle-ID not the same as v icle-number

A-28

APPENDIX B - DETAILED LOGIC

The processes required to form the files defined in
Appendix A are detailed here. The numbering system corres-
poﬁds to that used in Section 2. For example, B.1l.3.1,

"Form FSTRIP Files" is described in Section 2.1.3.,1 and refers
to the process with the same name, numbered 1.3.1, shown in

the '"balloon chart" of Figure 2-5.

B.1 Form AVYM iles.
Pertinent logical procedures comprisi: this major module
are descrited Ltelow.
B.1.1 Gould Fortran Prograsds.
As this wodule has been separately : velcoped and documented

by Gould, details of the logical processes are not given here.
B.1.2 Select and Sort.

Do While records exist

Read tracked-bus Intc temp.
Select (record-type) :

Case (block-header):
If this is first block-header read Then
Write bus-stop-header From temp.

Case (bus—-stop-record):
Write bus-stop-by-line (line} rom tenp.

Endselect.
Enddo.

For all lines
Sort kus-stop-by-line(line) By direction, trip, time.

Concatenate bus-stop-header with
bus-stop-by-line (all-lines) to form ordered-bus-stop file.
B.1.3 Update perf tapes.

The detailed processes cosprising this module are
descriked Lelow.

B.1.3.1

Program Variables:

header
id
date
day
school
weather

new
key
line
direction
trip
data1
time
Tun
kus
TP

Form TP-Trip File

* other data from &
* ordered-bus-stop *
* file pnot used *

adj-sched-dev
psgrs-aboard

data?2
stop

sched-adjust
psgrs—boarding
psgrs—aligh*ing

total-on
total-off

prev:

out

key

datal

calc
sched-dev
psgrs-on
psgrs-off
max-gsgrs

same as above

max-psgr-stop

save
total-on
total-off

maXx
max-psgrs
max—psgrs-stop

* to compute total psqgrs
* on/off between TPs

B-3

 J
x

Main:
Call process—header.

Call initialize.
Call rrocess-data.

Process—Header:
Read ordered-bus-stop Into header.
id = TP-trip-id.
Write TP-trip Frcm header.
Initialize:

Read ordered-bus-stof into new
at end call errori.

prev = new.
Call trip-tegin.
save = prev By—Name.

Process-Data:
Do While new-key -= high-values
Do While new—-key = prev-key

Lrev = new.
Call stop-update.
If rrev-TF -= 0
Call TP-update.
Read ordered-tus-stop into new
at end new-key = high-values.

Call trip-end.
Call trip-tegin.

Stop-Update:

If prev-psgrs-aboard > max-psgrs
max-psgrs = prev-psgrs-aboard
max-psgr-stop = prev-stop.

TP-Update:

psgrs-on = prev—-total-on minus save-total-on.

psgrs—-off = prev-total-off minus save-total-off.
Compute psgrs aboard when bus leaves stop #*

sched-dev = adj-sched-dev minus =ched-adj.

psgrs—aboard = psgrs-aboard + psgrs-boarding minus

psgrs=alighting.

out = prev By-Name.

calc max By—Name.

save pPrev By-Name.

Write TP-trip From out.

max = 0.

o

First and last bus stop data saved (for trip, layover
times), even if they're not time points #*

Trip-Begin:

out = 0.
max = 0.
out = prev By-Name.

out-TP = begin-code.
Write TP-trip From out.

Trip-End:
out = prev By-Name.
out—-TF = end-code.
Write TP-trip From out.
If new-key -= high-values
prev = new
Read ordered-tus-stop Into new.

B.1.3.2 PForm New Sumasary Tape.

The detailed processes cosprising this module are
described telow.

B.1.32.2.% Information comeon to Aggregate prograas.
Input Variables (from TP-trip file):

new

key
line
direction
trip

datan
run
ktus

time

sched-adj

adj-sched-dev
data3

psgrs-on

psgrs-off

gsgr=-aboard

BaX-F£gLs

max-psgrs-stop

prev: SAal€E as New

Header variakles:

header1 header2
id id
begin-date date
end-date day
DO¥-code weather
TOD-code school

wecather-code
schuol-code

Process-Header:

If *#-gsymmary exists Read =ugpary Into header?.
First day of new summary tape *

El=e Read selection-criteria Into header?.

Fead TP-trip Into headerz2.

If weather-code = all or weather = weather—-code

If school-cot = all or school = school-code

header2-id = *#*-aggregate-id
Write #*®*-aggregate From header2

Return. * Continue processing *

Plse terminate processing. * Selection criteria not =
* catisfie Ly today's *

* conditions *

B-6

Tise—-Int-Table (new-data?,new-key):

* Determine which time interval a given trip start time is in:
the trip-table gives a "fphantom start time" for each bus
that does not =start its trip at the keginpeing of the line

time-check = trip-table(new-key).
* If new-trip 1s in table Then

time-check = rhantom-start-time.
Else time-check 0. &

If time—-check = 0 Then
sched-time = new-time + sched-dev
time-int = TCD-table(sched-time).
Flse *+ime-int = 1CD-table(time-check).

* TOD-table chooses the proper TCD-interval based on the
originally-chosen aggregaticn intervals *

B.1.3.2.1.1 Fore Daily-Section-15-Aggregate File

L0 B BN B

Program Variatles:

cut

key
line
direction
day-int
time-int

data
psgrs-ktoarded
Fus-miles
psgr-miles
tus-mins
psgr-mins
capacity-miles
seat-miles
bus-trips * sapmple =ize *

calc (4)
data (same as above)

calc (i,)
i = 1 - time interval cr trip aggregation
2 - direction aggregation
3 - line aggregaticn
4 - system aggregation

Main:
Call process-header.
Call initialize.
Call procecss-data.
Initialize:
calc = 0.
Fead TP-trip Into prev At end call errl.

fead TP-trip Into new At end Call err2.
Call aggregate-begin.

B-8

[S I IR

Process-Lata:

Do While new-key -= high-values
Do While new-ke€y = prev-key

Call compute.
Prev = new.
Read TP-trip Into new At end newv-key = high values.

Call trip-end.
Call system-contrcl-tkreak.
End.

Aggregate-Beqgin:

* Ipitialize out-key data =
out = 0.
out-day-int = day-tatle (header-day).
out-time-int = time-int-taktle {new-data2,new-key).

out-line = pew-line.
out-direction = new-direction.
Compute:
calc-psgrs-boarded {(*) = calc~rsgrs-boarded{(®) + psgrs-on (new-TP).

avg-psgrs = (psqgrs—akoard(rrev-TP) + psgrs—-aboard(new-TP}) / 2.
miles = distance-table(prev-TE,new-TP).
mins = new-time minus prev-time.

calc-bus-mins(*) = calc-bus-mins(*) + mins.

calc-tus-piles (*) = calc-bus-miles(*) + milecs.

calc-psqr-ailes(*) = calc-psgr-miles(*) + (avg-pegrs x miles).
calc-psgr-mins (*) = calc-psqgr-mins(*) + (avg-psgrs ¥ wins).

ceats = seat-tatble (bus).

capacity = seats=s.

calc-capacity-miles(*) = calc-capacity-miles(*) ¢+ (capacity x miles).
calc-seat-miles(*) = calc-seat-miles(*) + [seats x miles).

Trip-End:

When new record ies from different trip, line or direction,
perform nececcary summaries
calc-bus-trips(®*) = calc-bus-trips{*) + 1.
time-int = time-ipt-table(new-data2,nev-Kkey).
If new-line -~= prev-line
Call line-ccntrol-break.
Flse If new-direction -= prev-direction
Call direction-cantrol-break.
Flse If time-int == out-time-int
Call *ime-ccntrol-treak.
Otherwise, perform no additianal processing *

Have first record in new trip--read another x
If new-key -= high-values
Call aggregate-kegin
PLE€vY = new
Read TP-trip Into new At end Call err3.

Line—-Ccntrol-EBreak:
Call direction-control-treak.
out-direction = line-agg-ccde.
Call output(3).

Directicn—Contrcl-Break:
Call time-cantrol-treak.
out-time-int = dir-agg-time-ccde.
Call output({2).

Time—-Ccntrcl-Freak:
Call output(1).

System-Control-Break:
out-line = system-agg-code.
Call output(4).

Output {i):

Write outrut *
out = calc (i) Ey-Name.
Write Section-1tt-aggregate From out.
calec({i) = 0.

B.1.3.2.1.2 Form Daily-Run-Aggregate File
Program Variables:

out * Jayover ocutput format *
key * same as input *
line
direction
day-int
(time~-int)
(trip)
data
TP
sched-run—-time
Tun-time-dev
adj-run—-time-dev
run~-time-dev-var
sample-size

calc(2,trip~agg-code)
data (same as akove)

* calc (i, J) *
* i =1 - time interval or trip aggregation *
* 2 - direction aggregation *
£ave
time

sched-dev
adj-sched-dev

Main:
Call process-header.
Call dinitialize.
Call process-da*a.
Initialize:
calc = 0.
Read TP-trip Into prev At end Call erri.

Read TP-trip Intc new A+ end Call err2.
Call aggregate-ktegin.

B-11

Process—Data:

Do While new-key ~= high-values
Do While pew-key = prev-key

Call compute.
prev = new.
Read TP-trip Into new At end new~key = high values.

Call trip-end.
Fnd.

Aggregate—-Begin:

Initialize ocut-key data *
out = 0.
out-day-int = day-table (header-day).
If ToD-code -~= all
out-time-int = time-int-table(new-data2,new-key).
Plse out-trip = mew-trip.
cut-line = new-line.
cut-directicn = new-direction.

Compute:

Save 'first bus stop' data from trip totals b
If prev-TP = begin-code
Save = prev By-Name
¥rite layover from prev.

Check for 'last bus stop’ *
If new-1P = end-code
Write layover From nevw
Return.

Compute times and add to previously saved cnes *

run-time = new~time minus prev-time.

sched-time = (new-time + new-sched-dev) minus
{prev-time + prev-sched-dev).

adj-sched-time = (new-time + new-adj-sched-dev) minus
{prev-time + prev-adj-sched-dev).

dev = sched-time minus run-time.

adj-dev = adj-sched-time minus run-time.

calc-sched-run-time {*,new-TP) = calc-sched-run-time {*,nev-TP) +
sched-time.

calc-run-time-dev {¥,nev-TP) = calc-rtun—time-dev (®*,nev-TP) + dev.

calc-adj-run-time-dev{*,new-TP) = calc-adi-run-time-dev{*,new~-TPF)
adj-dev.

calc-run-time-dev-var (*,new-TP) = calc-run-time-dev-var (*,new-~TP)

dev**2,
calc-sample-size {(*,nevw-TP) = calc-sample~size(*,nev-TP) + 1.

B-12

+

L 3

Trip-End:

* When nev record is from different trip, line or direction, *
& perform necessary summaries *

run-time = prev-time minus save-tinme.
sched-time = (prev-time + prev-sched-dev) nminus
{save-time + save-sched-dev).
adj~sched-time = (prev-time + prev-adj-sched-dev) minus
(save-time + save-adj-sched-dev).
dev = sched-time minus run-time.
adj-dev = adj-sched-time minus run-time.
calc-sched-run-time (*,trip~agg-code) =
calc-sched-run-time (*,trip-agg-code}) + sched-time.
calc-run-time-dev (*,trip-agg-code) =
calc-run-time-dev (*,trip-agg-code) + dev.
calc—adj-run-time-dev(*,trip-agg-code) =
calc-adj-run-time-dev(*,trip-agg-code) + adj-dev.
calc-run-time-dev-var (*,trip-agg-code) =
calc-run—time-dev-var (*,trip-agg-code) + dev#**2,
calc-sample-size (*,trip-agg-code) =
calc-sample-size (*,trip-agg-code) + 1.
time-int = time-int-table(new-data2,nev-key).

If nev-line - = prev-line or new-direction -= prev-direction
Call direction-control-break.
Flse If time-int == out-time-int or
TOD-code = all
Call time-control-treak.
* Otherwise, perform no further processing *

* Have first record in newv trip--read another *
If new-key -~= high-values
prev = new
Call aggregate-tegin
Read TP-trip Into new At end Call err3.

Direction-Control-Break:
Call time-control-break.
I1f TOD-code = all out-trip = dir-agg-trip-code.
Else out-time-int = dir-agg-time-code.
Call output({2).

Time-Control-Break:
Call output (1).

Output (i) :

Fore averages and output *
For 7 = 1 to trip-agg-code
If calc-sample-size{i,j) > O

calc-sched-run-time (i, j) = calc-sched-tun-time(i,]) /
calc-sample-size (i,)
calc-run-time-dev-var(i,j) = (calc-run-time-dev-var (i,

pinus calc-run-time-dev(i,})**2) / calc-sample-size(i,})
calc-run-time-dev{i, i} = calc-tun-time-dev(i,j) /
calc-sample-size (i,)
out = calc({i,j) By-Nanme
Write run-agqgregate from out.
calc{i,*} = 0.

B-14

B.1.3.2.1.3 Form Daily-Ride-2ggregate Piles

Program Variables:

out1 out out?

key key key
line data
direction psgr-trips
day-int psgr-miles
{time-int) load-factor
{trirp) standee-pins

st-min-per-st

data bus-trips #* sample-size®
1P
psgrs-on
psqrs-off
BAX-[SqrE
Rax—psgr-stop
standees
standee-time (3)
mins-vi-stapdees
sample-size

calci{2,trip-agg-code) calc2(u)
data (same as above) data (=ame as above)

+ standees

save
load
* calc(i,d) *
* i = 1- time interval or trip aggregation *
* 2 - direction aggregation *
* 3 - line aggregaticno *
* 4 - system aggregation ‘
Main:

Call process-header.
Call ipitialize.
Call groce=ss-data.

Initialize:

calcl, calc2, save = (.

Bead TP-trip Into prev At end Call erri.
Read TP-trip Intc new At end Call err?.
Call aggregate-teqgin.

Procescs—Tata:

bo While new-key -= high-values
Do While new-key = prev-key

Call compute.
EI€ev = newW.
Read TP-trip Into new At end new—-key = high values.

Call trip-end.
Call systea-ccntrcl-treak.
End.

Aggregate-Begin:

seats = seat-tatle (bus).
st=-min2, minZz = 0.
* JInitialize out-key data *
out, outl, outzZ = 0.
out-day-int = day-tahle(header-day).
If TCC-code -~= all
out-time-int = time-int-tatle(new-dataZ,new-key).

Flse out—-trip = mew-trig.
out—line = new-line.
out-direction = pew~-direction.

compute:

Detailed Ridership Computations *
calc1-psgrs-on{*,new-TP) = calci1-psgrs-co(*,new-TF) +
new-pESgrs-on.
calcl-psgrs—off (*,new-TP) = calcl-psgrs-off (¥,new-1TP) +
new-psqgrs-off.
If new-max-psgrs > calcl-max-gsqgrs(*,nev-TPF)
calcl1-max-psgrs (*,nev-TF) = Dew—-Bax-gs=qrs
calcl-pax-=top{*,new-1F) neEv-maxX~-Stop.
calci-sample-size (*,new—1TP) calcl-canmple-=ize (*,new-TP) + 1.

noa

Trip Ridership Computations (others at end) *
miles = distance-table (prev-TF,new-TP).
mins = new-time minus prev-tinme.
avg-psgrs = {prev-psgrs-aboard + new-psgrs-aboard) / 2.

save-load(*) = save-locad(*) *+ avg-psgrs.
calc2-psgr-miles (*} = calc2-psgr-miles(%) + ({avg-psqgrs x miles).
calc2-psgr-mins(*) = calc2-psgr-mins(*) + (avg-psgrs x mins).
calc2-psgr—trigs{*}) = calc2-psgqr-trips(*) + psqgrs—on.

Corpute Standee Data {(trir-agg-code saves trip suams) ™

I1f (prev-psqre-aboard or new-gsgrs-abcard) > seats
Call compute-standees
calcl-standees (*,new-TP) = calcl-standees (*,pev—-TP} + standees
Trip standees calculated at ccntrol break *

calcl-mins—vi-standees (¥ ,new-TP) = calcl1-mins-wi-standees (*,nev-TP)
mins-vwi-standees
calc1-mins-vwi-standees(*,trig-agg-code) =
calci1-pins-vi-standees(*,trip-agg-code) + mins-wi-standees
calc2-standee-wins (*) = calc2-standee-mins(*) + mins-wi-standees

Accumulate passenger-minutes-per-standee data *

st-minZ = st-minZ 4+ standee-mins

win2 = min2 + mins-wi-standees

I1f pnew-psgre-atoard < ceats
calc2-standees {*) = calcZ-standees (v} + (st-min2 / min2)
st-min2, ®in2 =0

Endif

Separate standee-mins according to number of standees *
I1f =tandee-pins < 5
calci1-standee—-time(*,new-TP,1)= calc1-cstandee-time (*,new-TP,1} +
standee-mins
calc1-standee-time (*,trip-agg-code, 1) =
calcil-standee-time (¥ ,trig-agg-code,1) ¢ standee-mins.
Else If standees > 10
calci-standee-time (*,new-TP,3) =
calcl-standee-time(*,nev-TP,3) + standee-pins
calci-standee-tiee (*,trigp-agg-code,3) =
calci1-standee-time (*,trip-agg-code,3) + standee-mins.
Else calcl-standee~time (¥,new-TP,2) =
calcl-standee-time (*,new-1P,2) + standee-mins
calc1-standee—time {* ,trip—agg—code,2) =
calcl1-standee-time (*,trip-agg-code,2) + standee-mins.
Endif.

Compute—Standees:

pwin = min({prev-psgrs-aboard,nev-psgrs-aktoard).
ppax = max{prev-psgrs-aboard,nev-psgrs-aboard).
psgr-diff = peax mipus pmwin.

time~diff new-time minus prev-time.

If (pmip and pmax) > seats
time-over = time-diff.

standee-mins = ({psgr-diffs2.) + (pwin aminus seats)) x
time-OvVeEr.
Plse excess-psgrs = pmay minus seats
ratio-over = excess-psqgrs / psgr-diff
time-over = time-diff x ratio-over
standee-mins = {excess-psgrs x time-over) / 2.

If time-diff > 0
standees = standee-mins ;s time-diff.
El=e =tandees = (.

pins-wi-standees = time-over.

Trig-¥nd:

fWhen new record is from differenmt trip, lime or direction,
perform necessary supmaries
calc2-bus-trips(*) = calc2-bus-trips{*) + 1.
time~-int = time-ipnt-taktle{new-data2,pev-key}.
If new-line -= prev-line
Call line-ccntrol-break.
Plse If pew-direction =~= prev-direction
Call direction-control-break.
Else If time-int == out-time-int or
time~ccde = all
Call time-control-kreak.
» Othervise, perform no further processing *

* Have first record in new trip--read another *
If new-key ~= high-values
Call aggregate-begin
PIEV = new
Read TP-trip Into rew At end Call erri.

Line-Control-Break:
Call directicon-control-treak.
out-direction = line-agg-code.
Call output(3).

Direction—-Control-Ereak:
Call time-control-break.
If TOD-code = all out-trip = dir-agg-trip-code.
Else cut-time-int = dir-agg-time-code.
Call output{2).

Time—Ccntrol—-Ereak:
Call cutput(1).
cave = 0,

System—Ccntrol-Bread:
out-line = system-agg-code.
Call ocutput {4) -

Output (i) :
* Write out data *
* Output-2 data *

avg-lcad = save-load (i} / calc2-sample-size(i).
calc2-load-factor(i) = avg-load / seats.
If calc2-standees{i) > 0 Then
calc2-st-min-per-st (i) = calc2-standee-mins (i) / calc2-standees(i).
out2 = calc2 By-Hame.
calcti-standees{i,trip-agg-code) = calc2-standees(i).
Write ride-trip-aggregate from out2.
calc2(i) = 0.

* Output-1 data *
If i <= 2 * for ride-detailed file, only output for =
* time £ direction control breaks (line *
* and system totals meaningless) -

For 1 = 1 to trip-agg-cade
If calcl-sample-size(i,J) > 0 Then
out1 = calc1(i,j) By-Nanme
Write ride-detail-aggregate from out.
calct(i,*) = 0.

B.1.3.2.1.4 Pore Daily-Sched-Dev-Aggregate File
Program Variatles:

out

key
line
direction
day-int
time-int

data
1P
hist {22} * calc-hist(i,j, k) *
cample~size

calc{2,trip-agg-code)
data {same as above) * pote: there is a =
* calc-hist{i,j,k) *

» calc (i,) *
» i = 1 - time interval or trip aggregation *
* 2 — direction aggregation *
] j:Tp]
» k¥ = histogram interval »

Main:

Call fprocess-header.
Call initialize.
Call grocess-data.

Initialize:
calc = 0.
Read TP-trip Into prev At epd Call err1?.
Read 7TP-trip Into new At end Call err2.
Call aqggregate-tegin.

Process—-Tata:

Do While new-key == high-values
Co While pew-key = prev-key

Call compute.
Prev = new.
Read TP-trip Into ncw At end new-key = high values.

Call trip-end.
End.

B-20

Aggqregate—-Begin:

Initialize out-key data »
out = Q.
cut-day-int = day-table{header-day).
pyt-time-ipnt = time-int-takle (new-data2,neu-key}.
out-line = new-line.
out-direction = new-direction.

Compute:

calc-sample-size (*,new-1P} = calc-sample-size(*,nev-TF) ¢ 1.
Find histograe interval for sched-dev -
If nevw-adi-sched-dev < -10
calc-hist (*,new-TF,1) = calc-hist({*,new-TE,1) + 1.

Flse If nev-adj-sched-dev > +10
calc-hist (*,new-TP,22) = calc=-hist {*,new-TP,22) + 1.

Else index = integer {nev-adj-sched-dev) + 12
calc-hist (*,new-1TP,index) = calc~hist (*,nev-TP,index} + 1.

Trip-Fnd:
When new record iz from different trip, line or direction, *
perform necessary summaries

time-int = time-ipt-table (new-data2,nevw-key).
If nev—line -= prev-line or nev-directiom -~= prev-direction
Call directicn-control-treak.
Flse If time-int -= out-time-int
Call time-contrcl-treak.
Otherwise, perfora no processing -

Have first record in new trip--read another *
If new-key -~= high-valyes
Call aggregate-kegin
Erev = new
Read TP-trip Intec new At end Call err3.

Directicn-Contrcl-FEreak:
Call time-control-tbreak.
out-time-int = dir-aqg-time-ccde.
Call outputi{2).

Time—-Ccntrol-EBreak:
Call cutputi(l).

Cutput (i):

For § = 1 to trip-agg-code
If calc-samrle-size(i,j) > 0
calc-hist (i,j,*) = calc-hist(i,j,*) / calc-sample-size
out = calc(i,j) By-Name
Write sched-dev-aggregate from out.
calc{i,*) = 0.

B.1.3.2.1.5 Form Daily-Overload-Aggregate File
Program Variatles:

out

key
line
direction
day-int
time-int

data
TP
bist (10)
sample-size

calc{2,trip-agg-code)
data ([same as albove)

* calc (i, *

¥ i = 1 - time interval or *trip aggregation =

- 2 - direction aggregation *
Main:

Call process-header.
Call initialize.
Call rrocess-data.

Initialize:

calc = 0.
Read TP-trip Intc prev At end Call erri.
Read TP-trip Into new A* end Call err2.

Call aggregate~-tegin.

Process-Lata:

Do While new-ke€y == high-values
Do While new-key = prev-key

Call compu*e.

PLEV = Dew.
Read TP-trip Into new At end new-key = high values.

Call trip-end.
End.

3-23

Aggregate-Begin:

Initialize out—-key data *
out = 0.
capacity = seat~-tatlellkus).
If time-code = all
out-time-int = time-int-taktle(new-data2,nev-key).
Plese out-trip = new-trip.
out-day day-tatle{header-day).
out-line = new-line.
ogut-direction = new-direction.

Compute:

Find load factor between time pcints *
avg-lcad = (prev-psgrs-aboard +
new-psgrs-aboard) / 2.
load-factor = avg-load s capacity.
calc~-sample-size {*,new—TF) = calc-sample-size {*,new-TP)

Find histogram interval +*
index = load-factor-tatle{load-factor).
calc-bist (*,new—-TF,index) = calc-hist {*,nev-TP,index) +
Trip—-End:

®When new record i= from different trip, line or direction,
output averages

1.

*
®

If new-line == prev-line or new-direction == prev-direction

Call direction-cecntrcl-Lkreak.
Else Call time-ccntrcl-treak.

Have first record in new trip--read another *
If new~-key == high-values
Call aggregate-tegin
EI€EV = new
Read TP-trip Intec new At end Call err3.

Directicn-Contrecl-Break:
Call time-control-btreak.
ocut-time-int = dir-agg-time-ccde.
Call output{2).

Time-Ccntrol-Preak:
Call output(1).

Outrut (i) :

Write cutput *
If calc-sample-size(i) > 0
calc-hist(i,j,*) = calc-bist (i,j,*) s calc-sample-size(i,})
out = calc(i,j) By-Name
Write overload-aggregate from out.
calc(i,*) = 0.

B-25

B.1.3.2.1.6 Porm Daily-Layover-Aggregate File

L

Program VYarialtles:
Modification of usual input record definition:

new

key
line * file now sorted in
direction * order as key
run
tTip

data
kus
1P

prev (same as above}

out
key
line
direc*tiaon
day-int
(time-int)
{trig)
data
sched-layover
layover-dev
sample-cize
calc (2)
data (same as above)
calc (i)
i = 1 - time interval or trip aggregation

2 - direc*tion aggregation

Main:

Call process-header.
Call initialize.
Call process-data.

Initialize:
calc = 0.
Read TP-trip Into prev At end Call erri.

Fead TP-trip Into new At end Call errl.
Call aggregate-tegin.

B-26

sape

#*

Process-Data:

Do While new-key -~= high-values
Do While new-key = prev-key

Frev = new.
Bead TP-trip Into nev At e€nd new-key = high values.

Call trip-ernd.
End.

Aggregate-Begin:

Initialize cut-key data *
out = Q.
out-day-int = day-takle{header-day).
If TCD-code == all
out-time-int = time-int-table (new~-data2,nevw—key).
Flse out-trip = new-trig.
out~line = new-line.
out-direction = new-directicn.

Trip-End:

Rhen new record is from different trip, line, rum or *
direction, perform necessary summaries *

If nev-run = Erev-run

layover = new-time minus prev-time

calc-sched-layover (*) = calc-sched-layover({*) +
{{nev-time + new-adj-sched-dev) minus
(prev—-time + prev-adj-sched-dev))

calc-layover-dev(*) = calc-layover-dev (%) +
{laycver minus calc-sched-layover (*))

calc~sample-size {*} = calc-sample-size(=) + 1.

time—-int = time-int-tatle (newv-data?,new-key).
If new-line -= prev-line or new-direction -= prev-direction
Call direction-control-break.
Else If time-int -~= oQut-time-int or
new-run == prev-run or
ICC-cade = all
Call time-ccntrcl-break.
Ctherwise, perforn po further processing *

Have first record in new trip--read ano*ther *
If new-key -= high-values
Call aggregate-tegin
prev = new
Read TP-trip Intc new At end Call err3.

B-27

Direction—-Contrcl-EBreak:
Call time-ccntrol-break.

If TOD-code = all out-trip
Else out-time-int = dir-agg-tin -ccde.

Call output{2).

Time-Contraol—-Ereak:
Call ocutput{(l).

Qutput (i) :

Form averages and cutput
If calc-=sample-size({i) >
calc-sched-layover (i)
sagple-size (i)
calc-layover—-dev (i) =
sample~cize (i)

out = calc (i) By-Name.

a
0

= di -agg-trip-coade.

calc-sched-layover (i)

calc-layover—-dev (i) /

Write layover-aggregate fro out.

calc{i) = 0.

B-28

/

B.1.3.2.2 Update

The two input files ({aggregate and ocld-summary) and the
output file {new-summary) have the same format.

Main:

Call process-header.
Call initialize.
Call process-data.

Initialize:

Read aggregate Into aggregate At end Call erri.
Read old-sumpary Intco summary At end Call err2.

Process—TLata:
Do While aggregate-key -= high-values and
supmary-key -= high-values

If summary-key < aggregate-Xey
Write nev-suamary From supBary
Read cld-summary Into summary
At end summary-key = high-values.

Else If summary-key = aggregate-key
Call update
Fead aggregate Into aggregate
At end aggregate-key = high-values=s.

Else Write new-summary From aggreqgate
Read aggregate Into aggregate
At end aggregate-key = high-values.

Update:

For i = 1 t¢ max-suppkary-elements

If summary-element {i) is a sunm
supmary-element (i) = summary-element{i) +

agg-element (i) .

Else If summary-element (i) is an average or percentage
cld-size = summary-sample-size(i)

cld-avg = suemary-avg{i)

Call averaye {old-size,o0ld-avg,
agg-sample-csize (i) ,agg-avg{i),
summary-csanfle-size (i) ,summary-avg{i))

new-avqg = sumbary-avg (i) .

B-29

* wWhen a variance is updated, previous step will have updated
the average {(new)} pertaining to that variable =*

Else If summary-element (i} is a variance
old-var = susmary-var (i)

Call Variance (ocld-size,old-avg,cld-var,
agg-cample-size (i) ,agg-avg(i) ,agg-var (i),
sugmary-sample-size (i) ,nev-avg,
susmary-var {i)) -

Flse If summary-elepent (i) is an extrene
If agg-element{i) is more-extreme-than
sumamary-€lement (i)
summary-element (i) = agg-element (i).

Average(old—size,old-avg,addl-size,addl—avg,neu-size,neu—avg):

* Method to update an existing average (old) when another
average ({addl) becomes available) *

new-size = cld-size + addl-size.
If new-cize > 0 Then
x12 = pld-avqg minus addl-avg
n23 = addl-size s new-cize
new-avg = old-avg minus (n23 x x12).

Else Call error-handling.

Variauce(old—size,old-avg,old—var,addl-size,addl-avg,addl-var,
new-size,nev—-avg,deW—var):

* Method to upda*e anm existing variance (o0ld) when
another {(addl) becomes available *

new-size = cld-size + addl-size.
If new-size > 0 Then

x13sg = old-avg**2 mpipyuc new-avg**2

x12sq = old-avg**2 minuz addl-avg¥*?2

v12 = old-var wminus addl-var

n23 = addl-size s new-size

new-var = old-var + x13=sq minus (n23 x (v12 + x12sq)).

Flse Call error-handling.

B.1.3.3 Form New-Ferf-Data-PFase Tape.

Read old-perf-data-base header.
Read TP-trip header.

Form nev-perf-data-base header FPron
old-perf-data-base header and TF-trip header.
Write nev-perf-data-base header.

Lo While old-perf-data-base records exist
BRead old-rerf-data-kase Into temp.
Write new-perf-data-kacse From temp.

Fnddo.

Do While TP-trip records exist

Read TP-trip Into tenmg.

Write new-perf-data-base From temp.
Enddo.

B.1.3.4 Fornm Daily Prception Reports.

The detailed processes comprising this module are
descrited telow.

B.1.3.4.1 Porm Daily Schedule Deviation Report
Program Variables:

save(3,trip-agg-code}
TF
time
adj-ceched-dev
passengers-akoard

limit
early
late

Main:

Call process~header,
Call initialize.
Call fprocess-data.

Initialize:

Read selecticn-criteria into limit.
Read TP-trip into new

at end Ccall errorl.
prev = new.
Call read-three-trigs.
If nev-key = bhigh-values Call error2.
Call first-trip.

Process—-Data:
Do While new-key —-= high-values

Trip changes bandled in read-trip *
Do While mew-line = prev-line
and new-direction = prev-direction

Call check=-tolerances.
save(1,¥) save (2,%).
save(2,*) cave{3,*).
PTEY = NewW.

call read-trip().

Call last-trip.

Read-Three-Trirps:

limit-count = 0.

cave = 0.

Call read-trip(1}- * assumes at least 3 trips in *
Call read-trip(2). * a given line & direction *

Call read-+rip(3).

Fead-Trip(i):
Do While new-key = prev-key

pPrev = new.
If prev-TP == begin-code and prev-1IP -= end-code
save (i,prev-TP) = prev By-Name.
Read TF-trip Intc new
at end new-key = high-values.

Check-Tolerances:
For i = 1 to trip-agg-code

If save-sched-dev(Z,i) < early or
save-=ched~dev (2,i) > late

Write prev-key, save({2,i}), save(1,i), save(3,i)
limit-count = limit-count + 1.

First-Trip:
For i = 1 to trip-agg-code

If save-sched-dev(1,i} < early or
save-sched-dev(1,i) » late

Write prev-key, save(t), ‘'first-+rip', cave(2)
limit-count = limit-count + 1.

ILast-Tricg:

Call check-tolerances.
For i = 1 to trip-agg-code

I1f save-sched-dev(3,i} < early or
cave-sched-dev {3,i) > late
Write prev-key, save(3,i), save(2,1), flast-trip!
limit-count = limit-count +t.
Write prev-line, prev-direction, limit-count.
If new-key -~= high-values
FTE€EV = newv.
Call read-three-trige
Call first-trip.

BP.1.3.4.2 Form Daily Overload Report
Program Variables:

save(3,trip-agg-code)
TP
time
adqj-sched-dev
max-psqgrs
max-psgr-stor
€XCESS—pPsQrs

overload-percent

Main:

Call process-header.
Call initialize.
Call process-data.

Initialize:

Read selecticn-criteria In*o overload-percent.
RFead TP-trip into new
at end call errcrt.
Erev = new.
Call read-three- rigs.
If new-key = high-values Call error2.
Call first-trip.

Process—-Lata:
Do While new-key == high-values

Trip changes handled in read-trip *
Do While new-line = prev-line
and new-direction = prev-direction

Call check-tolerances.
save (1,%*) cave (2, ,*).
save(2,%) cave (3,*).
ETEV = D€V,

Call read-trip(3).

I H

Call last-trip.

Eead-Three-Trirps:

limit-count = 0.
save = 0.

Call read-trip(1).
Call read-trip(2}.
call read-trip(3).

Bead-Trip{i):
Do WRhile new-key = prev-key

PL€V = Dew.
capacity = seat~takle{prev-bus).
load-limit = overload-percent x caracity.
If prev-TP -= begin-code and prev-1P == end-code

save (i,prev-1P) = rrev Hy—-Name

If prev-max-psgrs > load-limit

cave-eXCesSsS-[FSYrs = prev-max-psgrs minus load-limit.

Read TE-trip Into mnew

at end new-Xey = high-values.

Check-Tolerances;
For i = 1 to trip-agg-code

If save-excess-psgrs(2,1i) > 0
Write prev-key, save(2,i), save(1,i), save(3,i)
limit-count = limit-count + 1.

First-Trip:
For i = 1 to trip-agg-code

If save-excess-psgrs(1,1i) > load-limit
Write prev-key, save (1}, *first-trip', save(2}.
limit-count = limit-count + 1.

last-Trip:

Call check-tolerances.
For i = 1 to trip-agg-code

If save-sched-dev(3,i) < early or
save-sched-dev (3,i) > late
Write prev-key,save(3,i), save(2,i}, "last-trip'
ligit-count = limit-count + 1.
Write prev-line, prev-direction, limit-count.
If new-key -= high-values
Prev = mnew.
Call read-three-trigs
Call first-trip.

B-35

BE.2 Common Rerort Program Contents (reports 2.1 through 2.6)

Input file structure is identical to the output file stucture
of given summary file:

newv
key
key1
line
direction
day-int
key2
{time-int) * gither time-int or +rip *
(trip) * will be present; not both *
data {varies with file)

prev:; same as abave.

calc
data (same as above)

There are two cutputs:
out—grint: print line
out-week: summarized weekly data, samre
format as input. It is accumulated
when the DCW outputs are being printed;
+then i= later read and printed.

Outuvut data line structure includes came data (except
rossibly fcr sample-size).

1data' concsists of fcur tygpes:
1. sums (includes csample sizes)
2. averages or percentages
3. variances
q. €itremes
Therefore, additional data of *he same type can be
incorparated by:
1. adding addl-sums tc old-sums
2. Calling 'average' (described later), with the old
and addl averages (or percentages) and sample sizes
3. Calling "variance (descrited later), with the old
and addl averages, variances and sample csizes.
4, caomparing old and addl extremes

The format of the =sumpary files are given here; the
data fields that are averages or percentages are
indicated by 'a/p'; those that are variances are
indicated by 'v'; those that are extremes are
indicated by 'e'; the reraining ones are sums.

Section-15-Agqreqate File
Frogram Variables:

out

key
line
direction
day-int
time-int

data
psgre-kcarded
bus-miles
psgr—-miles
bus-mins
psrg-mins
capacity-miles
seat-piles
bus-trips * sample size *

Daily-Run-Aggregate File
Frcgram Varialtles:

cut1l
key
line
direction
day-int
(time-int)
(trip)
data
TP
a/p sched-run-time
a/p run-time-dev
a/sp adj-rtun-time-dev
v run-time-dev-vazx
sample-cize

B-37

Daily-Fide-Aggregate Files
Frogram Variatbles:

out1 out
key key
line
direction
day-int
(time—int)
{trifp)

data

TE
pPsSgrs—on
psgrs-off

e BAX~ESQLS

€ max-psgr-stop
standees
standec—tinme {3)
mins-wi-standeecs
samgle-size

Daily-sched-Dev~-Aggregate File
Frogram Variakles:

out

key
line
direc*tion
day-int
time-int

data
TE

a/g hist(22)

sanple-size

B-38

a/p

out?

key

data
psgr-trips
Psgr-uniles
load-factor
standee-mins
st-sin-per-st
bus-trips * sa#mple size *

Daily-Overload-2ggregate Pile
Frogram Varialkles:

out

key
line
direction
day-int
time-int

data
TP

a/p hist {10}

samrle-size

Daily-Iayover-Aggregate File
Prcgram Variables:

out
key
line
direc+icn
day~-int
{tire-int)
(trip)
data
a/p sched-layaover
a/r laycver-dev
sample-cize

Main:

Call procesc-header.

Call initialize(summary).
Call process-data(summary).
Call procescs-week.

Call initialize (week).

Call process-data (week) .

B-39

Initialize (file):

Feset out-print, ocut-week ({to zercs or klanks).

calc = (.
Fead file into new.
FLE€EVY = NEW.

Call rrint-header (new-key).

Process-Data{file} :

Do While new-key -= higk-values
Do While new-key = prev-key

Move rrev-data Into proper column of ovt-print.
PI€EV = NEW.
Read file Intc new At end new-key = high-values.

Call primt-line.

Print-line:

increment print-line-counter.
If print-line-counter > page-size

Call print-header (prev-key).
Frint out-rrint.
Feset cut-print.
If new-key -= high-values

If new-keyl -= prev-keyl

Call rrint-header (nevw-key).

FTEV = NEW.

Print-Header (key):

Prints formatted key items and other related data (e.qg.,
time point names ac well as pumbers #

Print key-header.

ETint-line-counter = 0.

B-40

Frocess-week:

If there is more than one day-of-week category,
also want a weekly aggreqate, in same format as
for individual COW 'fages' *

If header-DOW-code = all Returnm.

Call sort-for-day.

Call initialize(summary).

Do While new-key2 -= high-values
Do While new-keyvy2 = prev-key2

Call update.
ETev = new.
Read summary into new At e€nd new-key2 = high-values.

Call write-week.

Arite-Week:

out-vweek-key = prev-key.

out-week-day-int = day-agg-code.

out-veek = calc By-Name.

Write week From out-week.

calec = 0.
= newv.

Sort-fFor-Day:

Reorder 'summary® so can add =zuccessive records (until
time-int/trip changes) to get weekly totals =
Fewind summary.
If T00-code = all
Sort by lire, direction, trip, TE, day-int.
Else Sort by line, directicn, time-int, TP, day-int.

Update:
For 1 = 1 to max~data-elements

If prev-data-element (i) is a =um
calc-data-element (i) = calc-data~element (i)} +
prev-data-element (i).

Else If prev-data-element (i) is an average or percentage
cld-size = calc-sample-size(i)
cld-avg = calc-avg(i)
Call average {old-size,old-avg,prev-sanple-size (i),

prev-avg{i),calc-sample-size (i) ,calc-avg(i))

Dew-avg = calc-avg(i}.

B-41

Else If prev data element{i) is a variance

old-var = calc-var (i)

Call variance (old-size,o0ld-avg,old-var,
prev-sample-size (i} ,prev-avg (i) ,prev-var (i)
calc-sanple-csize (i} ,new—avg,calc-var (i)).

Else If prev-data-element (i) is an extreme
If prev-data-element (i) more-extreme-than
calc-data-element (i)
calc-data-element {i) = prev-data-element{i).

Average (0ld-size,cld-avg,addl-size,addl-avg,nev-size,nev-avg):

* Method to update an existing average {qld) when
another average ({addl) beccmes available) *

new—size = cld-size + addl-size.
If new-=ize > (O Then
112 = old-avg mipus addl-avg
n23 = addl-size / mew-csize
new-avg = old-avg minus n23 x x12.

Else Call error-handling.

Variance {old-size,0ld-avg,old-var,addl-=size,addl-avg,addl-var,
new-sizZe,new-avg,new-var):

*# Method to ypdate an existing variance (old) when
another (addl) becomes available *

new-size = c¢cld-size + addl-size.
If new-cize > (0 Then

x13sq = old-avg**2 minus new-avg=*%x?

112sq = old~avg**2 minus addl-avg**Z

v12 = old-var minus addl-var

n23 = addl-size / nevw-size

new-var = old-var + x13=sq minus (n23 x (v12 + x12sq)).

Else Call error-handling.

B-42

