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EXECUTIVE SUMMARY 

There is a continuing need to design more efficient, minimum 

cost supporting structures for guideway transit systems. Since 

such guideway structures typically represent about 35 percent 

of the total design life cost of urban mass transit systems, 

there are great potential dollar savings if optimal structural 

design methodologies are employed. Such methodologies are 

investigated here. Calculations lead to continuous, elevated 

spans of least overall weight, which also implies lower costs 

for materials if standard construction practices are followed. 

Calculations also lead to balanced peak stress in these spans, 

subjected to both dead weight loading and live or transit 

vehicle loading. In addition, the spans' rms vertical de­

flection response under the transit vehicle is kept to a 

minimum, and in this way high degrees of passenger ride comfort 

are achieved. The highlights of this four-part study are 

summarized. 

1. DYNAMICS OF NEAR-OPTIMAL SPANS WITH 

MOVING LOADS 

In this Chapter, optimal pier spacings are predicted for 

uniform, continuous spans based on equal peak moments (stresses) 

at midspan. Under a range of vehicle speeds, these spans are 

near-optimal. The loading is a constant point force, repre­

senting a relatively light-weight, short vehicle (4 to 7 m 

long) on a long, clear span (25 to 35 m long). Continuous 

spans with up to 11 supports, or N = 10 segments, are inves­

tigated. Some results are summarized in Figure 1. This 

shows that the choice of a continuous span configuration in­

stead of a series of simple spans of the same total length and 

stiffness, can lead to a 20 to 30 percent reduction in peak 

moment, depending on whether the piers are evenly spaced or 

optimally spaced, respectively. 

1 



Figure 1 
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The general dynamic response analysis and the laboratory exper­

imental validations of these results for optimal, uniform 

guideways comprise the main part of this chapter. For instance 

the peak moment responses for the four-span configuration as a 

function of nondimensional vehicle speed are shown in Figure 2. 

Results clearly show an excellent agreement between theory and 

experiment, as well as an increased efficiency (lower moment) 

for the spans with optimal or near-optimal pier spacing. A 

last conclusion is that the rms deflections under both point 

loads and split or tandem loads can result in lower rms 

vertical deflections for the vehicle, thus indicating improved 

ride quality. 
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Figure 2 
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2. NEAR-OPTIMAL INERTIALESS SPANS 

In this Chapter, the results are similar to those found in 

Chapter l; but the mathematical span model is different. Here, 

the transit mass is always much larger than the segment mass .of 

a uniform, continuous, inertialess span. Physically, of 

course, this corresponds to a short but relatively heavy tran­

sit vehicle on a long, light-weight span. Critical span 

responses (peak deflections and moments are evaluated numer­

ically as a function of a dimensionless velocity parameter, 

V, for spans of order N from one to six. A comparison of 

peak moments for several span configurations is shown in 

Figure 3. The continuous spans with optimal pier spacing 

clearly exhibit superior performance or smaller moments, when 

compared to those with even support spacing; and all contin­

uous spans are superior in this respect to the simple span. 

3 
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3. OPTIMAL RESPONSE FOR GUIDEWAYS 

WITH MULTIPLE DISTRIBUTED PARAMETERS 

In this Chapter, systematic studies are made of the three­

parameter problem: the ·spans' pier spacing, bending stiff­

ness and unit mass are all allowed to vary from segment to 

segment; but are held constant in any one span segment. The 

dynamic problem is completely reformulated and solved numer­

ically, where all span inertia effects are included for 

constant speed transit loads of constant intensity. A new 

measure of span efficiency, ~ , is defined as a linear com­

bination of four weighted, dimensionless span characteristics: 

the peak dynamic stress; the peak live load stress difference 

between span segments; the rms vertical deflection under 

the transit load; and the total span mass. For a fixed set of 

distributed parameters, for a vehicle at constant design speed, 
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a minimum ~ is sought, subjected to practical constraints 

such as stress, deflection and construction techniques. A 

continuous, three-span configuration is chosen to illustrate 

the direct-search methodology for evaluating relative effi­

ciencies of alternative designs. Results are presented as 

three-dimensional, computer graphic isometric displays. For 

instance, Figure 4 shows that the ~ surface does have a 

well-defined minimum for a particular set of (X,Y) coordinate 

parameters corresponding to bending stiffness and support 

spacing distributions for a three-span "I" beam guideway. From 

such studies it is concluded that structural efficiencies can 

be increased up to 33 percent compared to simple span counter­

parts. Finally, these efficiencies are most sensitive to the 

pier spacing parameters and the least sensitive to the 

stiffness distribution parameters. 
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4. ALTERNATIVE, HIGH EFFICIENCY DESIGNS 

FOR THE DUKE UNIVERSITY GUIDEWAYS 

To illustrate the design methodologies, precast, concrete, 

elevated guideways with "H"-shaped cross sections are proposed 

as practical alternatives to a successful state-of-the-art 

reference design: the transit system at Duke University. 

Typical alternative configurations are shown in Table below, 

where weight reductions of 30 to 40 percent are shown to be 

possible. 

Weight reductions for alternative "H" guideways, 

compared to the Duke University system 

WT. TOTAL WT. LIFT WT. 

10 31b 10 3N 
CHANGE CHANGE 

Design percent percent 

Normal Strength simple support 57.7 257 -30.l 42.5 
'CJ shored 53.2 

111 
237 -35.6 31.4 

0 
,-j High Strength simple support 53.2 237 -35.6 31.4 

Ill~ 
shored 50.9 226 -38.4 25.7 

... = 
C/J Prestressed no transfer -~ (both simple rebar 59.5 265 -28.0 46.9 

supports) transfer rebar 51.6 230 -37.5 27.4 

Normal Strength simple support 55.4 246 -32.9 36.8 
'CJ shored 49.0 218 -40.7 21.0 
QI 

.... '0 

.... 111 High Strength simple support 49.0 218 -40.7 21.0 
.Q .... 0 
... '0 ,-j shored 47.3 210 -42.7 16.8 

0 
e 

Prestressed simple support 47.4 211 -42.3 17.8 

It is concluded that the most efficient designs are 

continuous span configurations with a minimum number of pier 

supports, properly spaced so that balanced stresses are 

achieved. The proper balance of span length, stiffness and 

unit mass distribution is ultimately up to the individual de­

signer whose judgement must be tempered by specific and 

sometimes subtle constraints. The methodologies presented 

herein should greatly aid the designer in producing 

advanced-concept, minimum cost, urban transit structures with 

high strength to weight ratios, which also have aesthetic 

appeal and afford a high degree of ride comfort. 
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1. DYNAMICS OF NEAR-OPTIMI!.L SPANS 

WITH MOVING LOADS 

INTRODUCTION 

There is a continuing need to design efficient supporting 

structures with minimal vibration response for use in modern 

transit vehicle systems. Related literature published in the last 

ten years emphasizes the dynamic interactions of beam-type guide­

ways with captive vehicles [1.4], [1.7], Il.8], with an added 

emphasis on the optimization of transit vehicle parameters to keep 

vehicle vibrations within bounds of ride comfort Il.1], [1.9]. The 

thrust herein is different. It focuses on continuous beam-type 

guideway configurations designed for balanced static stresses and 

for minimal vibration amplitudes imparted to the transit vehicles. 

Consider a series of uniform, simple beams, each of length t 

and stiffness EI, placed end-to-end and subjected to a vertical 

static load distribution. It is well known that the peak bending 

moments (and stresses) can be reduced in this guideway configuration 

by requiring span continuity across the interior supports. For 

instance, for a three-span continuous beam (N=3), simply supported 

at its extreme ends, and with evenly spaced supports, the peak mid­

span moments for a single point force P (located consecutively in 

spans one, two and three} are given by 0.80M , 0.7M and 0.80M , ss ss ss 

respectively. Here, M (=Pt/4) is the peak reference moment for ss 

the simple span. Similar fractional reductions in peak, midspan 

moments for up to N=lO are listed in Table 1.1 for a point load 

(~ype A}; and in Table 1.2 for two loads, each of intensity P/2 and 

1-1 



TABLE l.l~eak static midspan values of M/Mss for N continuous 
spans with supports equally spaced, with a single 
point load. 

N, 
SPAN 
TYPE n=l,N 

1 1 
3 0.800 
4 0.798 
5 0.798 
6 0.798 
7 0.798 
8 0.798 
9 0.798 

10 0.798 

n=2,N-l 

---~ 
0.700 
0.692 
0.692 
0.692 
0.692 
0.692 
0.692 
0.692 

n=3,N-2 n=4,N.-3 n;:: 5, N"'4 

~--- .... ---
0.800 
0.692 0.798 .... .----
Q.684 0.692 0.798 
0.684 0.684 0~692 

·o.684 0.682 0,684 
0.684 0.682 0.682 
0.684 0.682 o.682 
0.684 0.682 o. 6.82 

TABLE 1.2 Peak static midspan values of M/M for N continuous 
spans with supports equally spacea~ with two loads 
P/2 spaced at i/4 

N, 
SPAN 
TYPE n=l,N 

1 0.750 
3 0.587 
4 0.587 
5 0.587 
6 0.587 
7 0.587 
8 0.587 
9 0.587 

10 0.587 

n=2 ,N-1 

0.487 
0.481 
0.481 
0.481 
0.481 
0.481 
0.481 
0.481 

n=3,N-2. n=4,N-3 n=5,N-4 

0.587 
0.481 0.587 
0.474 0.481 0.587 
0.473 0.473 0.481 
0.473 0.473 0.473 
0.473 0.473 0.473 
0.473 0.473 0.473 
0.473 0.473 0.473 
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separated by t/4 (Type B). As one would expect, peak static 

moments are further reduced by splitting the load. Calculations 

were based on a finite element computer program Il.6]. 

These results suggest the use of even more "efficient" con­

tinuous spans, or ones which would equalize and further reduce the 

peak moments and deflections under moving loads. Such a reduction 

in bending moment due to "live" load could lead to a span config­

uration with less material as compared to a common configuration: 

simple spans placed end-to-end. Higher efficiency spans involve a 

fine tuning of the support spacings and ultimately a non-constant 

stiffness and mass distribution. The dynamics of near-optimal 

spans based on static loading are analyzed herein to determine 

continuous span behavior, such as critical moments and rms deflec­

tion under transit loads. Finally, these analytical results are 

validated in certain cases by laboratory-scale experiments. Since 

the presentation of all data is in nondimensional form, the re­

sults are directly useful in design. 

NEAR-OPTIMAL SPANS FOR STATIC LOADING 

The continuous span reference configurations chosen for 

dynamic analysis are defined as follows. See Figure 1.1. 

(1) The extreme ends rest on simple supports. 

(2} Vertical displacements are zero at all supports. 

(3) Continuity of slope and moment are maintained at all 

interior supports. 

(41 Each N-span configuration has a fixed total length 

L-aNt where i is the mean span length between consecutive 

supports. 
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(5) The support spacings are defined by the multipliers f , n 

normally in the range 0.85 < f < 1.15, where n 

N 

L =Ni= :E 
n=l 

f ,Q, n 

(6) The multipliers for each n span are calculated from clas­

sical (static) beam theory, based on the requirement 

that the peak midspan moments are all equal, for a 

single, vertical point load traversing at crawl speed. 

As a consequence of this definition, each reference guideway 

is symmetric about its midlength so that the multipliers are re­

lated by fn = fN+l-n (n = 1,2, •.. ,N). 

Calculations of multiplier sets (f1 ,f2 , •.• fN) for N=3 through 

10 were made using a finite elements program {1.6] and a direct 

search, trial and error procedure. For each N, the multipliers 

were adjusted until the peak midspan moments in all spans were 

equal within a tolerance of 0.1 per cent. The multiplier sets for 

eight span configurations N=3 through 10, are listed in Table 1.3. 

It is observed that for all N, the extreme end spans are shorter 

by 19 to 20% compared to the longest interior spans. 

Table 1.4 shows the peak midspan moments calculated for these 

near-opti:mum spans subjected to Types A and B load configurations 

at crawl speed. Although the multipliers f were based on the n 

single load, the partitioning of this load as noted yielded peak 

midspan moments which were equal within a tolerance of 0.3 percent. 

Again, the effect of dividing the load was to reduce the magnitude 

of thi·s peak moment (from 0.764M to 0.548M for N=3, for in-ss ss 
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y y 

----------L• N..t -----➔ 

Figure 1.1 Nonperiodic, continuous beam model 

TABLE 1. 3 Span length mul tipliex-s fn,for near~optimal con<:" 
figurations 

N, 
SPAN 
TYPE n=l,N n=2,N,-l n=3,N~2 n=4,N'"'3 n;:::;5 ,N""'4 

3 0.937 1.126 0.937 ..----
4 0.910 1.090 1,090 0.910 
5 0.896 1.070 1.068 1.070 0,896 
6 0.885 1.059 1.056 1.056 1. 059 
7 0.876 1.051 1.049 1.048 1.049. 
8 0.870 1.046 1,043 1.041 1.043 
9 0.867 1.0415 1.0375 1.036 1,036 

10 0.864 1.037 1.033 1.033 1, 03.3 

TABLE 1.4 Peak static midspan value~ of M/Mss for near,-optimal 
configurations, with a point load P u:ow Al and a 
split load P/2 spaced at 1/4 (row Bl 

LOAD 
TYPE 3 

A 
B 

.764 

.548 

4 

.743 

.528 

5 

.729 

.517 

N ·SPAN TYPE 
6 7 

.722 

.515 

1-5 

.716 

.503 

8 

.711 

.499 

9 

,708 
.496 

10 

.705 

.493 



stance). For both load configurations, as N approaches 10, the 

reduction in peak moment becomes less and less significant. 

Figure 1.2 summarizes these trends. Note that as much as a 

20 percent moment reduction, compared with simple spans, can be 

achieved by employing continuous spans with equal spacings; but 

for the near optimal spacings of Table 1.2, the reduction may be 

as high as 30%: 

It should be emphasized that the continuous spans labeled 

"near-optimal", based on the equalization of peak midspan moments 

are meant for comparison purposes only. For design, one must pro­

ceed with caution. For instance, these midspan data give the 

absolute peak moments in all but the two extreme end spans. In 

these latter spans, the peak moments never exceed by more than 4 

percent those at midspan; and occur under the load, located between 

0.41 and 0.51, measured from the extreme end of the support. Table 

1.5 shows such data from which absolute peak moments can be calcu­

lated using the corresponding data of the previous tables. As the 

speed of the load increases above the crawl speed, dynamic span 

effects cause the peak moments to move closer to and even beyond 

the midspan location- [1. 7] • The midspan is thus the common and 

convenient reference point chosen here for study of both static 

and dynamic efficiency of continuous spans. 

DYNAMIC MODEL AND SYSTEM PARAMETERS 

The well-known Bernoulli-Euler equation of motion, 

4 
EI !_y + m 

ax4 

1-6 
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Figure 1.2 
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TABLE 1.5 Percent increase of peak, static M/M values over 
the midspan values in Tables 1.1, 1.2~s and 1.4 

SUPPORT LOAD N, SPAN TYPE 
SPACING TYPE 3 4 5 6 7 8 9 

EVEN A 2.5 2.6 2.6 2.6 2.6 2.6 2.6 
EVEN B 3.8 3.8 3.8 3.8 3.8 3.8 3.8 
OPTIMAL A 2.1 1.9 2.2 2.1 1.8 1.8 2.0 
OPTIMAL B 4.0 4.0 3.9 2.5 3.8 3.6 3.8 
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is used to model the vertical deflection y = y(x,t) of a uniform, 

undamped, elastic beam guideway with nonperiodic supports shown 

in Figure 1.1. The mass per unit length ism. 

Consider first a special case. For a simply supported beam, 

initially flat and at rest, and subjected suddenly to a constant 

vertical point force P, traveling at constant speed, the solution to 

equation (1.1) is derived elsewhere [1.5]. Cast in nondimensional 

form for reference purposes the dynamic deflection y, and bending 

moment, M(=EI a2y/i3x2), can be written as 

y 

M 

Mss 

00 

sin (mnZ) - -- sin(rn p~Z/w) l w 2 . l 
Gm ( X, Z) = -rn---.-4 ...,~,,...

1
-_-w...,2~1

-(.,...p-.2,...:-"!,~,.,..,) ],..------- • sin (rnn X) 

(1.2a) 

(1.2b) 

(1.2c) 

where Yss=PR. 3/48EI, where EI is the stiffness and where O < Z < 1. 

The free vibration bending frequencies are written as 

p = (A R.) 2 ( EI ) ½ rn rn _ i4 . rn 
(1.3) 

where the frequency parameter ts 

Am!= mn , m=l,2,3, •••• (1. 4) 

and where the reference (fundamental} frequency pis given by equa­

tions Cl.3) and (1.41 when m=l. 

These results show that the responses at material point X=x/t 

for a po±nt load at position Z = vt/t depend only on the nondimen-

1-8 



sional frequency parameter u/p, where w=TI v/t defines the transit 

frequency. For K tandem point forces at constant speed, the solu­

tions to equation (1.ll can be superimposed [1.7]. Thus, the 

additional system parameters are the (K-1) spacing ratios (sk/t), 

where s 1 ,s2 , ••• sk-l are spaces between equal consecutive loads of 

magnitude P/K. 

For N uniform, continuous, nonperiodic spans modeled by equa­

tion (1.1), subject to the same boundary conditions defined for 

the near-optimal static spans, and subject to the loadings just 

described, there are only two additional nondimensional parameters: 

N and the corresponding set of span length multipliers (f
1
,f2 , •.• 

fN}. The four sets of nondimensional system parameters needed for 

dynamic response studies of near optimal spans are thus summarized. 

w/p = transit frequency ratio 

sk/t = the CK-1) spacing ratios for K tandem loads, P/K. 

N = number of spans in guideway of total length L 

f 1 ,f2 , •.• ,fN = span length multipliers, Table 1.3. 

Before proceeding to the dynamic analysis of nonperiodic 

spans, it is important to point out that two basic assumptions are 

invoked to model transit vehicles as point loads. The first is 

that the sum of all vehicle mass on any guideway section between 

supports, at any time, should always be much less than the mass of 

that span. It was found experimentally for periodic spans [1.8] 

that if this peak mass ratio is less than 0.1 and also if w/P<0.7 

(the second assumptionl then one is justified in modeling sprung, 

wheeled vehicles as constant point forces to accurately predict 

beam guideway dynamic responses. 
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The purpose of the analysis which follows is to show the ex­

tent to which critical dynamic moments for both the evenly-spaced 

and for near optimal continuous spans can be reduced below those 

of the simple span counterpart. The latter reference responses, 

based on equations (1.2b) and (1.2c) show both the peak midspan 

moment response (X=l/2) and the peak moment response under the 

point load (X=Z}, Figure 1.3. Note that the latter responses are 

equal to or greater than those at midspan for w/p ~ 0.72. Finally, 

although w/p ~ 0.3 for current guideways limited to 80 km/hr 

vehicles, values of w/p approaching 0.7 may soon be a reality for 

future rapid transit vehicles approaching 450 km/hr. 

FREE VIBRATIONS OF NON-PERIODIC SPANS 

The free vibration frequencies and mode shapes needed to cal­

culate the response of the near optimum static designs are dis­

cussed elsewhere Il.2]. Briefly, the method involves transfonning 

the governing homogeneous form of equation (1.1) into a local 

coordinate system z such that 

z = x for 

z = X - 21
fj-1 

j=l 

0 < x ~ fit l 
for n = 2,3,.,.Nl 

(1. 5) 

where N is the number of spans in the continuous guideway of length 

L-N.t, with the set of multipliers (f1 ,f2 ,· ••• ,fN) applied to the 

average span length~- For free, hannonic vibrations, F(x,t)=0 

in equation (1.1), which, with equations (1.5), reduces to 

4 
d Ym n lz) 

dz;i 
4 

"m Ym,n {z) • 0 (1. 6) 
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Figure 1.3 
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TABLE 1.6 Typical values for 'Ami 

SIMPLE 
SPAN 

1T 

41T 

51T 

61T 

71T 

N=3 
EQUAL SPANS 

3.14l59 
3.56562 
4.28836 

6.28319 
6.70722 
7.42995 

9.42478 
9.84881 
10.5715 

12.5664 
12.9904 
13.7131 

15,7080 
16.1320 
16.8547 

18.8496 
19.2736 
19.9963 

21.9911 
22,4152 

1-11 

N=3, 
OPTIMAL Sl?ANS 

3.08833 
3.74124 
4.19443 

6.07527 
7.04105 
7.37685 

9.00790 
10,32241 
10.62833 

11.92428 
13.57136 
13.91087 

14,85856 
16.75506 
17.20711 

17,85148 
19~83728 
20.50701 

20.94409 
22. 82260' 



where n=l,2, ••• N designates the span segment and m=l,2,3, ••• desig­

nates the mode number. The free vibration frequencies are defined 

by equation (1.31, where the frequency parameters, 11. Jl, are not 
m 

given by equation (1.41; but are calculated as follows. For a 

particular set tm,n} in an N span system, the general solution to 

equation (1.5} describing the mode shapes is given by 

Ym,nlz) • ACln,n) cosh ?.mz + Bun,n) sinh ·).mz 

+ C (Jn,n) cos imz + D f,n,nl stn_ ~z 
(1.7) 

By applying the boundary and continuity conditions defined previous­

ly for the near-optimal spans, to equation (1.7), the relationships 

oetween the constants on any two consecutive spans becomes 

where 

A (m, n) • -c (JD,nl 

B(xn,nl = 

D(m,n) = 

C (m,n} cosh (Amfn1l - C CJll,n+ll 

sinh C,.mfn1l 

C(m,n+l) - C(m,n) cos (11. f 1) 
m n 

C(m,n)•w(m,n) - C(m,n+l)•[8(m,n) + 8(m,n+l)] 
+ C(m,n+2)•w(m,n+l) = 0 

8(m,n) = 

w(m,n) = 

coth (A f 1) - cot(A f 1) m n m n 
csch(A f 1) - csc(A f 1) m n m n 

(1.Sa) 

(1.Sb) 

(1.Sc) 

(1. Sd) 

(I.Se) 

(1. Sf) 

Thus, for a fixed Nanda known set of multipliers (f1 ,f2 , ••• fN), 

equation (1. 8dl with equations (1. Se) and (1. Sf), form a set of 

GJ-1). homogeneous algebraic equations in C(m,2), C{m,3), •.•. C(m,N) 
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The consecutive roots Ai of the determinant of order (N-1), 
m 

formed from the coefficients of these unknown C(m,n) coefficients, 

yield the consecutive system frequencies through equation (1.3). 

With these roots and equations (1.8), the free vibration modes 

found from equation (1.7) within an arbitrary constant, which is 

set equal to unity. 

A numerical procedure utilizing an IBM 370/165 digital com­

puter was developed to calculate the frequency parameters and mode 

shapes. Table 1.6 shows typical results for N=3, both for equally 

spaced supports and for the near-optimum case defined by Table 1.3. 

The latter spans show a depressed fundamental frequency since 

A1i = 3.0883 <~;and both show a cluster of two frequencies be­

tween each consecutive frequency of the simple span. For N spans, 

there are (N-1) frequencies in such a cluster. Such frequency 

parameters and mode shapes are•utilized in the forced vibration 

analysis which follows. 

FORCED VIBRATION RESPONSE 

The theory of normal mode analysis for a specified force dis­

tribution F Cx,t). applied to a linear structure is well-known [l. 3]. 

In this problem, a mode shape Ymtx), valid for all modes at every 

point on the N-span beam guideway is constructed from the sum of 

individual span mode shapes, or 

N 
Ym(x) = LYm n(z) 

n=l ' 
(1.9) 

For a vertical point force of constant magnitude P, starting at 

x=0 at t=0 and traveling at a constant horizontal speed v over the 
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guideway, the loading term is given by 

F (x, t) = P (x - vt) 

where the total load on the system is 
L 

P'(x,t) = f P6 (x - vt)dx = l P 
0 0 

, 0 ~ vt < L 

, otherwise 

(1.10) 

(1.11) 

Both the loading and the deflection are expanded in a series of 

normal modes Ym{x): 

. a:, 

F (x, t} = Lpm(t} Ym(x) (1.12a} 

m=l 
m 

y (X, t} = 'l:°m<t) Ym(x} 

m=l 
(1.12b) 

Equations (1.12} are substituted into equation {1.1); the resulting 

equation is multiplied by Y.(x); each term is integrated over the 
J 

interval O < x < L; use is made of the orthogonality of the modes: 

L 

f Ym(x) 

0 
for m=j 

With equations (.l. 9 l , (1.11 l and Cl .13 l it fallows 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

Based on the free vibration frequency parameters, Ami' and the 
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corresponding mode shapes, y (z), the normalizing factor, I , m,n m 

of equation (1.16), the overall mode shape of equation (1.9), and 

the loading term of equation (1.15) were all calculated; then the 

ordinary differential equation (1.14) was solved for zero initial 

conditions corresponding to an initially flat, motionless system, 

and the deflection response was calculated from equation (1.12b). 

The moment response was calculated from 

CID 

M(x,t).= EI Lom(t) ym 
11(xl 

m=l 

(1.17) 

For a string of r constant tandem loads, Fi, at constant speed, 

the only change from the above procedure is that °mCt) is now cal­

culated from 

r 

-LI · ~F.Y (x.) 
mm £.Jim 1. 

±=l 
(1.18) 

where Ym(xi) is the amplitude of them-th mode under load Fi. 

THEORETICAL AND EXPERIMENTAL RESULTS 

The above results for the free vibration mode shapes, the 

frequency parameters and the forced span vibration responses were 

formulated into a Fortran IV algorithm. An IBM 370/165 digital 

computer was utilized to calculate time histories of bending 

moments and vertical deflections, both at selected span locations 

and also under each load. The midspan moment time histories were 

selected as the critical points for this study since such results 

could be compared most easily to experimental measurements. 

Typical numerical results for Type A loading are shown in 

F~gures 1.4 through 1.9., which depict envelopes of the peak midspan 
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Figure 1.4 

Figure 1.5 
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Figure 1. 6 
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Figure 1.8 

Figure 1.9 
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moments for N=3 through 6, 8 and 10 respectively. Similar data 

for Type B loading are shown in Figures 1.10 through 1.15 for the 

same N values. It was found that for NM=20 modes, suitable con­

vergence was obtained. For the near-optimal spans (the solid 

lines), the span length multipliers are given by Table 1.3; and 

for even pier spacings (the broken lines}, these multipliers are 

all unity. For a fixed N and w/p, the ordinate M (normalized to 

the simple span moment} corresponds to the highest dynamic moment, 

comparing moments among midspans. This peak either occurred dur­

ing the time 0<t<L/v, when the load was traversing length L; or 

during free vibration, t>L/v. 

These Figures do not show several facts. First, in the limit 

of zero transit speed (w/P + 0}, the midspan moments are all equal 

for the near optimal configurations; but in all configurations, 

these peak dynamic moments vary and shift from those near the 

entrance span to the exit span as w/p approaches 0.7. Second, 

these peak moments do not always represent the absolute peak 

moments in the system. These latter moments occur within a range 

of± 10 percent of midspan depending upon n, N and w/p; but the 

absolute peak moments were calculated and were found to never 

exceed by more than 8 percent those depicted in Figures 1.4 

through 1.15. 

These Figures do show, by comparison with Figure 1.3, that 

at least a 20 percent reduction in peak midspan moments may be 

achieved by utilizing continuous rather than simple spans in the 

range 0<w/p<0.3; that an even higher reduction is achieved near 

w/p=0.5; and that continuous span moments approach and then exceed 
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the absolute peak simple span ratio of 1.55 as w/p approaches and 

then exceeds 0.7. However, for w/p<0.6, the near-optimal spans 

always give dynamic moment reductions. 

To validate the above analysis, an experimental program was 

undertaken. Details of the experimental system in which laboratory­

scale multiple spans, instrumented with midspan strain gages to 

give a measure of midspan moment during the passage of a point 

load, are documented elsewhere (1.8]. In Figures 1.4 through 1.15, 

the experimental valu~s (triangles for the near-optimal and 

circles for the evenly spaced configurations) usually lie a little 

above their respective theoretical curves; but none-the-less fol­

low the predicted dynamics quite closely. In each of these Fig­

ures, the percent rms deviation of a set of experimental values 

from its counterpart predicted curve, is noted. To arrive at 

these deviations, it was assumed that the possible error in 

measuring load speed (or the abscissa, w/p) was the same as the 

possible error in measuring midspan strain (or the ordinate, 

'M/Mssl• Thus, the deviation was based on the least distance of a 

data point from its predicted curve. The deviations for Type A 

loadings were generally lower (1.8 to 7.5 percent) than for those 

for Type B loadings (4.1 to 10.5 percent). This was probably 

because the Type A loading more closely approximated a constant 

point force, where the ratio of transit mass to span mass between 

consecutive supports was about 0.15. For Type B loading, this 

ratio, including both transit loads, was about 0.2, which accen­

tuated the vertical inertia effects of this transit load, making 

the effective span loading deviate somewhat more from its "dead 
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load" value. Nevertheless, with the cluster of deviations about 

5 percent, these experiments do serve to validate the theoretical 

results quite satisfactorily. 

SPAN DESIGN FOR RIDE COMFORT 

An important consideration in span configuration design is 

the effect of span vibrations on the passing vehicle. It is well 

known, for instance, that a comfortable ride means that the verti­

cal acceleration felt by the passenger should not exceed 0.0Sg's, 

on the average, for harmonic vibrations in the range of 5 hz 

(1.1]. To calculate such heave accelerations, one must specify 

both the span and vehicle suspension configuration [1.9]. Without 

becoming vehicle-specific, however, it is proposed herein to de­

fine therms vertical span deflection, y , under the single rms 

load P (Type A} or under the leading load P/2 (Type B) as an 

approximate measure of input vehicle excitation and relative ride 

comfort when comparing alternative span configurations. The idea 

seems reasonable: that minimizing yrms for fixed values of L, 

EI, m and w/p, would produce lower amplitudes of excitation and 

thus higher ride comfort for a particular vehicle. Also, as 

Yrms approaches zero, the ride becomes ever more smooth. 

With these ideas in mind, one can use the calculated values 

of y (normalized toy ) shown in Figures 1.16 and 1.17 as rms ·· ss 

relative guides in choosing span configurations. For instance, 

compared to a series of five simple spans each of length i and 

stiffness EI, its counterpart continuous configurations all give 

a higher ride quality in the range of 0<w/p<0.S, since yrms is 
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from 30 to 40% lower. Also, the near-optimal spans yield slight­

ly lower values of Yrms than their evenly spaced counterparts if 

w/p<0.6. It is noted that y decreases as N increases at con-rms 

stant w/p; and decreases when the load is split. The curves for 

N=4 and 6 through 9 are not shown (for clarity} but these do lie 

between the sets shown. Finally, consistent with the moment re­

sponse studies, deflection responses exceed those of the simple 

span for w/p above about 0.7. 

CONCLUSIONS 

In conclusion, the choice of a continuous span configuration 

instead of a series of simple spans of the same total length and 

stiffness, can lead to a 20 to 30 percent reduction in peak 

dynamic moment, depending on whether the span piers are evenly 

spaced or optimally spaced respectively, as long as w/p<0.6. In 

this range of transit frequency ratio, the values of y under 
rms 

the point load and the split load are considerably reduced by 

employing continuous rather than simple span configurations. The 

reduction in dynamic moment and yrms achieved by employing the 

opt:i'.mal spans can lead to span weight reduction, increased ride 

comfort and more aesthetic structures for modern transit systems. 
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2. NEAR-OPTIMAL, INERTIALESS SPANS 

INTRODUCTION 

For the near-optimal beam-type elevated guideway configurations 

of Chapter 1, the transit mass m
0 

was assumed to be small compared 

to the span mass m
1 

between two adjacent supports, or m
0

/m1 <<1. The 

purpose of this Chapter is to investigate the responses for these 

same near-optimal spans under another extreme assumption: that the 

span has negligible inertia. That is, the transit mass is much larg­

er than the span mass, or m
0

/m
1

>>1. It is noted that in both extreme 

cases, the same set of optimal span multipliers (f1 ,f2 , •.. fn), by 

definition, produce equal midspan moments for m
0 

at crawl speed 

[2.1]. 

The first solutions to the moving mass on an inertialess, simple 

beam was reported by Stokes in 1849 [2.2]. In the present study, 

this problem is generalized to include an N-span continuous beam with 

simple supports at the extreme ends and with arbitrary pier spacing. 

The problem is reduced to a pseudostatic one where the trajectories 

of the transit mass are described by an ordinary differential equa­

tion with variable coefficients and with prescribed initial condi­

tions for each span segment. The curvatures of these trajectories 

determine the dynamic moments, set up essentially by the "centrifugal" 

forces of m. For a given guideway configuration, it is shown that 
0 

the dynamic loading can be described by a single nondimensional 

load-speed parameter, v. Within the practical limitations of design, 

the results show that improved,guideway efficiency is achieved by 

employing the same span length multipliers to both classes of moving 
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MATHEMATICAL FORMULATION 

The general, continuous span configuration is defined in Figure 

2.1, with the usual assumptions of deflection, slope and moment con­

tinuity across the fixed, interior supports. Also shown in this 

Figure is the free body sketch of the transit mass, located at dis­

tance z from the left end and moving with a constant horizontal 

speed v. At any given instant of time t, the deflection curve of 

the beam is y(x,z) and the load trajectory is described by y(z) where 

X = Z. 

Newton's second law applied tom is 
0 

Q - m g 
0 

( 2 .1) 

where Q is the vertical load on the beam. Since v = dz/dt, it fol­

lows that 

dx =~dz= 
dt dz dt 

dy 
v dz 

d 2y __ d d 
dt2 dt (v *) = V ~Z (~) 

( 2. 2) 

( 2. 3) 

With Eq. (2.3), the equation governing the motion of m becomes: 
0 

2 d 2y 
Q = m

0
g + m v 

o dz2 

2 2 where d y/dz is the curvature of the mass trajectory. 

( 2. 4) 

The beam responses are derived from elementary theory using 

Macauley's notation [2.3]. For an N~span beam of uniform stiffness 

EI, with reaction forces at the supports, left to right, defined as 

R
0

,R1 , ... ~, the equations for moment and deflection are given 

respectively by 
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~g 

~Q 

Z- -A-4. y 

._ ______ z 

X 

Figure 2.1 Continuous, inertialess beam with a constant 

speed point mass load 
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M(x,z) 1 =Rx - Q<x - z> + 
0 

N-1 

6EI·y(x,z) = R
0

x
3 

- Q<x - z>
3 + ~ Rn(c 

n=l 

(2.5) 

Here, the moment and deflection at x = o are zero, corresponding to 

a simple end s~pport; c
0 

is a constant; and (f1 ,f2 , ... fN) are the 

span length multipliers. The Macauley bracket convention is defined 

as follows, where a is a real number and mis a positive integer. 

m <a> = 0 if a< 0 
( 2. 7) 

There are N deflection boundary conditions yet to be satisfied, or 

= y(f1 t + f 2 t + ... fN_ 1 t) = y(L) = 0 
There are two equations of static equilibrium, or 

N 

~Rn-Q=O 

n=O 

( 2. 8) 

(2.9a) 

( 2. 9b) 

When the (N + 2) equations given by Eqs. (2.8) and (2.9) are applied 

to Eq. (2.6), the (N + 2) unknowns (R
0

,R1 , ... ~;c
0

) · can be found in 

terms of the location z of load Q. 

From these results, the trajectory equations are obtained. To 

do this, first define the nondimensional coefficients which are in­

dependent of Q: 

C = c /Q 
0 

S l = R /Q, m= m m = 1,2, •. . J (2.10) 
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The moment under Q and the load trajectory are then evaluated from 

Eq. (2.5) and (2.6), respectively, where x = z. Using Eqs. (2.10), 

these results are 

( 2. 11) 

(2.12) 

Now, eliminate the unknown load Qin Eq. (2.12) by substitution, 

using Eq. (2.4). The resulting differential equation is written in 

nondimensional form based on the following reference parameters for 

a simple span with load mg at the middle. 
0 

= 

3 m g Q, 
0 

48EI' 

m g Q, 
0 

-4-

peak midspan deflection l 

peak midspan moment ! 
The nondimensional system parameters are defined. 

v = ( :: 2 y 5) 
112 

, dimensionless velocity l 
Y(Z) = y(Z)/ys, dimensionless trajectory ( 

z = z/Q,, dimensionless load coordinate } 

The result is 

where 

F ( Z) =CZ+ S z3 
1 

Y (Z) 1 

8V2F(Z) - v2 

N-1 

+ L 5n+l ~-
n=l 

2-5 

(2.13) 

(2.14) 

( 2 .15) 

(2.16) 



To obtain unique solutions to the governing differential equa­

tion {2.15), two initial conditions need to be prescribed at the 

beginning of each span segment. If the whole span is initially flat 

and horizontal when Z = 0, it will be so for Z = f 1 , f 1 + f 2 , ... L, 

as well, since the beam is inertialess. The initial conditions at 

the beginning of each span segment n are: 

Y{Z) 
.0 

dY{Z) 
0 

= 0; dZ = 0 

where, for n = 1,2,3, ... N, respectively: 

N-1 

zo = o, fl' {fl+ f2) t••·L 
m=l 

f 
m 

{2.17) 

{2.18) 

As mentioned previously, the coefficients {S1 ,s2 , ... SN+l;C) 

depend only on z, N and the prescribed set of span multipliers. 

These are calculated as follows. Apply each of the N conditions of 

Eq. (2.8) to Eq. (2.6). Then eliminate~ between Eqs. {2.9a) and 

{2.9b). The result is {N + 1) algebraic equations which, with the 

definitions of Eqs. {2.10), involve the {N + 1) unknowns {s1 ,s2 , ••. 

SN;C). One of these equations is 

{2.19) 

When Eq. {2.19) is substituted into the remaining N equations, the 

result in matrix form is 

{2.20) 

Here, the column vector.of the unknowns is 

{2.21) 

where {T) denotes transpose. The nonzero elements of the {NxN) co­

efficient matrix A are given by 
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all = N 

j-1 

alj = N - L f j = 2,3, .•. N m 
m=l 

f. 3 
i 2,3, ... N a .. = = l.l. l. 

(2.22) 

= ( tfm)3 i 

fl 
2 

Lfm i 2,3, ... N ail = 

m=l m=l 

= (tfm)3 i = 3,4,5, ..• N 
a .. 

l.J j = (i - 1) m=J 

The loading vector is given by 

(2.23) 

where 

(2.24) 

i = 2,3, ... N 

The results obtained so far are summarized. For an N-span con­

tinuous beam with a fixed set of span multipliers (f1 ,f2 , ... fN) and 

a fixed velocity parameter V, the deflection response to the moving 

point mass is given by solving Eq. (2.15) with Eq. (2.16) and initial 

conditions of Eqs. (2.17) and (2.18). For each location Z of the 

transit mass, the variable coefficients (S 1 ,s2 , .•. SN;C) are found 

from solutions of Eqs. (2.20) - (2.24). With the solution Y(Z), the 

beam load Q is calculated from the dimensionless form of Eq. (2.4) 

together with Eqs. (2.15) and (2.16), or 
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'I 

__Q_ = Y(Z) 
m

0
g 8F(Z) (2.25) 

With this last result, along with Eqs. (2.11), (2.13) and (2.14), the 

nondimensional span moment under the transit mass (the peak span 

moment) is found, or 

~ 
N-1 

M _ Y(Z) ~ - 2F(Z) slz + L 
ss n=l 

n 

z - Lfm 
m=l 

SIMPLE SPAN RESPONSES 

(2.26) 

For the special case of the simple span, N = f 1 = 1 and O < Z 

< 1. The trajectory equation (2.15) is solved where Eqs. (2.16) -

(2.26) become: 

F (Z) = (1 - Z) z 3 + Z (1 - Z) [ (1 - Z) 
2 

- 1] 

d Y( 0) 
Y ( o, = 0; dZ = 0 

C = (1 - Z)3 - (1 - Z) 

all = 1 

Fl = Sl = 1 - z 

M _ Y(Z) 
Mss - 2F(Z)Z(l - Z) 

(2.27) 

Numerical results for the trajectories were obtained using the 

integration package EPISODE [2.4] and an IBM 370/165 digital com­

puter. Figure 2.2 shows trajectories for several values of the speed 

parameter ranging from the crawl speed (V = 0) to a critical value 

(V = 0.316). The reason for considering the latter value "critical" 

will be discussed presently. These results agree with those obtained 
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by Stokes [2.2], who correctly interpreted the regions of positive 

deflections (the dots for Y > 0) as unreal, since this implies a 

negative or upward Q load in this region. This phenomenon is a con­

sequence of the inertialess beam assumption, which breaks down as 

m
0 

comes close to the right support. The peak (negative) deflections 

are considered accurate, however, for O < Z < 0.9 where m
0

/m
1

>>1. 

Figure 2.3 shows the peak deflection at midspan as a function 

of V. The comparison of the present results with those of Stokes 

[2.2] is excellent. However, the approximate solution suggested by 

Timoshenko for design purposes is not very accurate and not neces­

sarily conservative, since Fig. 2.2 shows that the peak deflections 

do not occur at midspan. Timoshenko's approximate formula for mid­

span deflections is 

(2.28) 

Further numerical results showing the absolute peak deflection 

and moment variations with Vin simple spans are discussed in the 

following section. 

RESPONSES OF EVEN AND NEAR-OPTIMAL SPANS 

A general computer program was written to calculate the re­

sponse trejectories for continuous spans up to N = 10, with arbitrary 

pier spacings. At each increment of z, usually 0.01, the coeffi­

cients (S 1 ,s2 , •.• SN;C) were calculated from Eqs. (2.19) and (2.20); 

and the EPISODE subroutine [2.4] was employed to solve Eqs. (2.15) 

and (2.16), with boundary conditions of Eqs. (2.17) and (2.18). For 

a given N, the span multipliers were all chosen as unity for evenly 

spaced supports; or as the near optimal values for spans symmetric 
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about the middle (x = L/2), as listed in Table 1.3. 

Several deflection trajectories for span segment five of a six­

span, near-optimal beam are shown in Fig. 2.4. Span segment five 

is depicted because this one produced the highest values of deflec­

tion of any segment. Note its similarity to Fig. 2.2. Again, the 

dots for positive Y(Z) should not be considered since negative Q 

values are disallowed. The significant result here is that the peak 

values of Y(Z), by comparison with those of the simple span, are 

drastically reduced: from about 1.7 to 1.0 over the range of V shown. 

The summary of results useful for design are presented in Figs. 

2.5 and 2.6. Figure 2.5 shows the absolute peak value for the de­

flection trajectories in the range O 2 Z 2 N, corresponding to N 

values of 1 through 6, and plotted as a function of the dimensionless 

velocity parameter. The peak of each of the five trajectories of 

Fig. 2.2 for the simple span are represented, for instance, in curve 

(a); and the peaks of Fig. 2.4 are represented in curve (g). In 

curves (b) and (c), the pier supports are evenly spaced, so all the 

span multipliers are unity. The broken curves, (d) - (g), are based 

on the near-optimal spacings. Except for curve (d), the three-span 

optimal configuration curves (e), (f) and (g) show a uniform improve­

ment (less peak deflection) than their counterparts, curve (c). 

Obviously, any of the multiple spans is a vast improvement over the 

simple span. 

Figure 2.6, calculated from Eq. (2.26), shows the uniform reduc­

tions in the peak span moments as one proceeds from the simple span, 

curve (a); .to the multiple spans with even supports, N = 2 through 

6; and to the near-optimal configurations, curves (d) and (e). The 

curves for the near-optimal, N = 4 and N = 5 configurations are not 
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shown for clarity; but do lie between the curves (d) and (e). As 

Vis increased to the critical value of 0.316, the peak moment oc­

curs closer and closer to one of the pier supports lying just ahead 

of the transit mass, regardless of the span segment. As indicated 

by the sample deflection trajectories of Figs. 2.2 and 2.4, the 

curvatures become tighter and tighter near this pier support. For 

V > 0.316, the trajectories near the supports become positive, the 

bending moments approach unboundedness and the mathematical model 

with the inherent assumption of an inertialess beam, completely 

breaks down. The inclusion of beam inertia in the multiple spans 

would undoubtedly obliterate this erratic and unbounded behavior for 

V > 0.316; but for values of V < 0.316 the results are conservative 

from the design point of view, just as Stokes pointed out for simple 

spans [2.2]. 

CONCLUSIONS 

The limitations of the mathematical model consisting of an in­

ertialess beam with a relatively massive transit point load are well 

recognized. However, the calculated results for peak span deflection 

and moment responses are valid and conservative from the design view­

point if the velocity parameter is less than about 0.3. Finally, 

compared to a simple span, significant reductions in these responses 

are achieved in continuous spans with N > 3, using the near-optimal 

pier spacings of previous studies. 
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3. OPTIMAL RESPONSE FOR GUIDEWAYS WITH MULTIPLE DISTRIBUTED 

PARAMETERS 

INTRODUCTION 

In the design of multiple span, continuous, beam-type guide­

ways with transit loading, the choice of the most efficient sets 

of distributed parameters: pier spacing, bending stiffness and 

unit mass, can be difficult and time consuming. As shown in 

Chapters 1. and 2., even the choice of efficient structural con­

figurations allowing for the variation of just one set of dis­

tributed parameters, the pier spacing, can be a formidable task. 

To systematically study this three-parameter problem, both a new 

dynamic span analysis and a new definition of span efficiency are 

needed. As in Chapter 1, this reformulated dynamic analysis in­

cludes the effects of a single or multiple point forces of con­

stant intensity to simulate a vehicle or vehicles in tandem, at 

constant speed. The new measure of span efficiency is ~, de­

fined as a linear combination of four weighted, dimensionless 

span characteristics: the peak dynamic stress; the peak live 

load stress difference between span segments; therms vertical 

deflection under the transit point load; and the total span mass. 

For a fixed set of distributed parameters, for a vehicle at a 

fixed design speed, a minimum ~ is sought, subjected to practi­

cal constraints such as stress, deflection and construction 

techniques. A continuous, three span-configuration is chosen to 

illustrate the direct-search methodology for evaluating relative 
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efficiencies of alternative designs. Results are presented as 

three-dimensional, computer-drawn isometric plots showing the 

effects of the three sets of distributed parameters as well as 

vehicle speed on span efficiency. 

DYNAMIC ANALYSIS 

Figure 3.1 illustrates a three-span continuous, beam-type 

guideway with the three design parameters defined for each of 

its span segments. In general, n designates the span segment 

number where n = 1·,2, .•. ,N and where N is the total number of 

spans. The span segment length is fni, where i is the mean 

segment length and L = Ni is the overall length. The stiffness, 

Ein' and mass per unit length, m, are constant over each span n 

segment, but do vary among segments. Here, x is the global 

longitudinal coordinate and zn is the local or segment coordi­

nate. 

The mathematical model for these studies is the Bernoulli­

Euler equation, applicable to each span segment, describing the 

transverse displacement, v = v{x,t), 

EI n 

[3.1]. That is 

(3.1) 

where q = q{x,t) is the transverse load per unit length. The 

local coordinates are related to x by 
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Figure 3.1 A typical continuous, 3-span beam with distributed 

parameters 
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n-1 

zn = x - L 
j=l 

f,i 
J 

n = 1,2, •.• N 

For free, harmonic vibrations, assume 

v(x,t} = y(x)sin pt 

(3.2) 

( 3. 3) 

where p is a frequency parameter. When Equation (3.3) is sub­

stituted into the homogeneous form of Equation (3.1} correspond­

ing to q = O, the result is 

d4 
>..4y ~ - = 0 

dx4 (3.4} 

where 

- p2 
A4 

m 
= n ( 3. 5) 

EI n 

The general solution to Equation (3.4) is 

y = A cosh AX+ B sinh AX+ C cos AX+ D sin AX (3.6) 

where the constants (A, B, C, D, A} are determined for each span 

segment by applying the appropriate boundary and continuity 

conditions at the segment junctions (the pier supports). These 

conditions are summarized in terms of the local coordinates, zn, 

defined by Equation (3.2). 
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rigid pier supports: 

= 0 at 

slope continuity at interior supports: 

= 

moment continuity at interior supports: 

EI n 

z = f t n n 

= Ein+l 

2 
d Yn+l 

2 
dzn+l 

simply supported extreme ends: 

= = 0 

( 3. 7a) 

( 3. 7b) 

(3.7c) 

( 3. 7 d) 

For mode number m and span segment n, Equation (3.6) is re­

written as 

y(m,n) = A(m,n) • cash A(m,n)zn + B(m,n) • sinh A(m,n)zn 

( 3. 8) 

+ C(m,n) • cos A(m,n)zn + D(m,n) • sin A(m,n)zn 

When Equations (3.7) are applied to Equation (3.8), the relation­

ships among the constants are derived, or 
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A(m,n) = -C(m,n) 

B (m,n) 1 [-C (m,n+l) ;\ 
2 

(m,n+l) Ein+l = G (m,n) 

+ C(m,n);\ 2 (m,n)Ein cosh ;\(m,n)fnt] 

D(m,n) 1 2 = H(m,n) [C(m,n+l);\ (m,n+l)Ein+l 

2 cos ;\ (m,n) f t] - C(m,n);\ (m,n)Ein n 

C(rn,n)ijJ(m,n) - C(m,n+l) 
2
m,n n e(m,n) r2 ( +l) EI +l 

;\ (m,n) EI n 

+ A (m,n+l) e (m,n+l)l + C (m,n+2) A 2 (m,n+2) 
;\ (m,n) 'J ;\ (m,n) (m,n+l) • 

where 

G(m,n) 

H(m,n) 

e(m,n) = 

1jJ (m,n) = 

Ein+2 
• --- ijJ(m,n+l) = 0 

Ein+l 

= ;\ 2 (m,n)EI sinh ;\(m,n)f t 
n n 
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( 3. 9a) 

( 3. 9b) 

(3.9c) 

( 3. 9d) 

(3.10a) 

(3.10b) 
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The assumption of simple supports for the extreme end spans is 

a practical boundary condition that allows for thermal expansions. 

This condition leads to 

C(m,1) = C(m,N+l) = 0 (3.12) 

The span frequencies and mode shapes can now be calculated 

for a given set of system parameters: N, m, EI , fn' and L, n n 

where n = 1,2, ••• N. The recursion formula Equation (3.9d), 

with Equations (3.11) and (3.12), form a set of (N-1) homo­

geneous, algebraic equations in the constants C(m,2) through 

C(m,N). By setting the determinant of these coefficients equal 

to zero, the consecutive positive roots corresponding to 

m = 1,2,3, .•• yield the frequency parameters 

A(m,l) ,A(m,2) , •.. A(m,N). The m characteristic system frequencies 

are then expressed by Equation (3.5), or 

1 

= tin A 4 (m,n)j 2 
Pm -

m n 

(3.13) 

Then the mode shapes y(m,n) of Equation (3.8) are calculated as 

follows: set C(m,2) = 1 arbitrarily; calculate the remaining 

(N-1) coefficients C(m,n) from Equations (3.9d) and (3.12); 

then calculate A(m,n), B{m,n) and D(m,n) from Equations 

(3.9a), (3.9b) and (3.9c), respectively. 

With these results it is now possible to solve Equation 

(3.1) subject to a point force, F0 , moving at constant speed, v. 
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The normal mode method is used (3.2]. It is summarized as fol­

lows. Express the mode shape Ym(x) for the total system of 

length L as the sum of the individual span segment mode 

shapes, or 

N 

Ym (x) = I y (m,n) 
n=l 

( 3 .14) 

Expand the solution and the applied load, respectively, in the 

following series: 

00 

v(x,t) = I 
m=l 

Q (t)Y (x) m m 

1 q ( X, t) 
in (x) n 

00 

= I Pm(t) Ym(x) 

m=l 

From Equation (3.4), using Equation (3.13), the relationship 

4 
= A (m,n) Ym (x) 

(3.15) 

(3.16) 

is valid for all mode shapes associated with the defined boundary 

conditions. When Equations (3.15) and (3.16) are substituted 

into Equation (3.1), and Equation (3.13) is used again, it follows 

that 

(3.17) 

where (•) is the operator d/dt. The right hand side of 
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Equation (3.17) is found by multiplying Equation (3.16) by 

mn(x) and the mode shape function, Yk{x), and integrating the 

result over the whole beam length, 0 < x < L. Then the ortho­

gonality condition is used, or 

The result, valid for all loadings, is 

where 

N 

E (m, n) = 2 
n=l 

-m n J
fon R, 

y 2 (m,n)dz 

if k f m 

(3.18) 

if k = m 

( 3. 19) 

(3.20) 

In the special case of a vertical point force of constant 

magnitude F0 , starting at x = 0 at t = O, and traveling at 

a constant horizontal speed v, the loading is expressed as 

q(x,t) = F • o (x - vt) 
0 

where the total load on the beam is given by 

JLO F 0 • o(x - vt)dx = 
0 < vt < L 

otherwise 
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With Equations {3.21) and {3.22), Equation {3.19) is evaluated, 

or 

FO Ym{vt) 

E(m,n) 
(3.23) 

These results are summarized. The vertical span deflection 

v{x,t) is found from numerical solutions of Equation (3.17) for 

Qm(t), with p (t) 
m 

given through Equations (3.20), (3.23); with 

Ym(x) given by Equation {3.14); and with the mode shapes y(m,n) 

and corresponding frequencies, Pm• In calculating numerical 

solutions of Equation (3.17), zero initial conditions are assumed, 

compatible with a span system initially flat and at rest. That 
. 

is, v(x,O) = av{x,0)/at = O, or Qm{O) = Qm{O) = O. The 

associated bending moments in each span segment n can then be 

calculated from 

Mn{x,t) = EI n 

co d2 Ym {x) 

L Qm {t) dx2 
m=l 

{3.24) 

with which bending stresses are found using elementary theory. 

In the more general case of several tandem point forces of 

constant magnitude and constant speed, superposition holds and 

Equation {3.17) becomes 

a 

Qm { t) + p ! Qm { t) = L Fi • Y m {xi) 

i=l 

is the amplitude of them-th mode under force 
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and "a" is the number of point forces on the guideway. The rest 

of the analysis in which the deflection and moment responses 

are calculated then proceeds as in the case of the single point 

force outlined above. For multiple transit loads, care must be 

taken to impose the compatible initial conditions to each span, 

each time a new load enters. Indexing schemes to account for 

these details in computer-aided calculations are well documented 

[3.3]. 

It should be noted that mode shapes for a special class of 

beam configurations can not be obtained from the above formula­

tion. Excluded are beams defined by either of the two following 

configurations. 

- - -(1) fl= f 2 = ... fN; m1 = m2 = ~ and 

EI 1 = EI 2 = EIN 

(2) all odd N > 3 configurations with a symmetric dis-

tribution of 

point, x = L/2 • 

and EI n about the beam center-

If either of these conditions are met, then 

).(m,n) • f .Q, = 1r, 21r, 31r, .•• n 

This leads to H(m,n) = 0 in Equation (3.10b), undefined values 

for D(m,n) in Equation (3.9c) and undefined mode shapes, 

y(m,n). Special cases of uniform beams with symmetric distribu-

tions of about X = L/2 where - - -
ml= m2 = ..• m6 and 

EI 1 = EI 2 = ..• EI 6 are considered elsewhere [3.4]. However, for 
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the design of equal span segment structures, the present analysis 

and computer code can still be used to obtain approximate 

answers if the segment lengths are allowed to vary from equality 

by just two or three percent. This computer program is described 

in the Appendix. 

EXPERIMENTAL VALIDATIONS OF THE ANALYSIS 

The above analysis and corresponding computer program were 

validated experimentally for a special case. The overall labora­

tory experimental system used has been described elsewhere [3.5]. 

For the test case, the three-span steel beam configuration shown 

in Figure 3.2 was chosen: a design whose center span had a mass 

and stiffness each 80 percent of the equal end spans. As in the 

analysis, the extreme ends were simply supported. With a straight­

forward static calculation, it can be shown that this test beam 

has a near-optimal or balanced stress design. That is, the peak 

bending stresses at the midspans, corresponding to a transit 

point force at crawl speed, are all equal, or very nearly so. 

In a series of experiments, the test beam was subjected to 

an approximately constant point force at constant speed v; and 

simultaneously the time history of each midspan strain was 

measured. This strain was converted to a bending moment, M, 

using the appropriate value of stiffness, EI ; and this moment n 

was normalized by the peak moment Mss of a simple span of the 

same segment length t, where Mss = F 0t/4. 
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Figure 3.2 Continuous beam selected for laboratory-scale experiments 
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Figure 3.3 shows a typical time history of M at the 

middle of span one. It is observed that the measured points 

(circles} agree well with the behavior predicted by the analysis 

based on a 20 mode solution. The transit frequency ratio for 

Figure 3.3, corresponding to v = 26.0 ft/sec. is w/p = 0.82, 

where w is the transit frequency: 

TTV 
w = T 

and p is the simple span reference frequency: 

2 
TT 

p = ~ = 19. 92 rad/sec 

(3.26} 

(3.27} 

As discussed previously (3.5], the peaks of the moments 

obtained from such curves as Figure 3.3, plotted as a function 

of the system parameter w/p, are useful for design purposes. 

Such curves are shown in Figures 3.4 through 3.6, corresponding 

to spans one through three. The model test data is again in 

good agreement with the computer calculations, which serves to 

validate the mathematical analysis. 

OPTIMIZATION FUNCTIONS AND REFERENCE CONFIGURATIONS 

A rational definition of a optimal guideway with three 

sets of distributed parameters: (f1 ,f2 , ..• fN}, (EI 1 ,EI 2 , •.• Ein} 

and (m1 ,m2 , .•• ~} is needed for efficient computer-aided studies 

of alternative configurations. This leads to an optimization 
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function, ~, defined as a linear combination of four of the most 

important system characteristic ratios, or 

{3.28) 

where the weighting coefficients ck {k = 1,2,3,4) are arbitra-
4 

rily chosen subjected to the restraint that l ck= 4. In the 

first ratio, am is the calculated peak midspan stress response 

considering all span segments. In the second ratio, tam is the 

calculated difference between am and the peak midspan stress 

occurring in the least stressed span segment. In the third 

-ratio, y is the calculated rms vertical deflection under the 

transit point load. In the fourth ratio, M is the total mass 

of the whole beam, given by 

N 

M = 2 
n=l 

-m • f i n n {3.29) 

In each term of Equation {3.28), the normalizing factor, sub­

scripted r, is the counterpart quantity for an arbitrary, non-

optimal reference guideway configuration. If 

= 1, then ¢ = 4 for the reference configuration and a ¢ less 

than 4 indicates a superior or more efficient structure than the 

reference case. It is observed that the a Aa and M terms m' u m 

of ¢ are measures of the efficient use of the structural 

material. That is, am indicates the strength required of the 
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material; ~cr is a measure of the live load stress distribution; 
m 

and M is the total dead load of the structure. The remaining 

term, the rms deflection, is a measure of structural performance 

-as it affects the transit vehicle. That is, low values of y 

imply that low amplitude levels of vertical excitation are im­

parted to the vehicle. For a constant w/pr ratio, this implies 

a high level of passenger ride comfort [3.4]. 

In a typical optimization study, N, Land v (remain 

fixed). Then the terms of ~ are calculated and configurations 

producing minimum ~ values are sought, consistent with mate­

rial stress limits, deflection constraints and construction 

practice. Of course, the optimal configuration is tempered by 

the distribution of ck, which reflects a designer's percep­

tion of the relative importance of the four terms to overall 

structural performance. 

In the numerical studies which follow, the arbitrary refer­

ence configuration, subscripted r in the ~ function, was 

based on the laboratory model test facility at Duke University. 

In this three-span test configuration, all of the spans are of 

equal length, t, and the unit mass, rn, and stiffness, EI , r n 
are constant throughout. These and other pertinent reference 

parameters are summarized in Table 3.1. All sets of the 

three distributed system parameters (pier spacing, 
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Table 3.1 Reference configuration 

N = 3, number of span segments 

fl = 60 in, span segment length 

4 lb-in2 , span stiffness EI = 2.44 x 10 , r 

FO = 2.63 lb, transit point load 

- -4 2 2 span mass per unit length. m = 4.58 x 10 lb sec /in, r 

Pr = 20 rad/sec, fundamental span frequency 

V = 1. 0 ft/sec; 9.54 ft/sec; 15.9 ft/sec, vehicle speeds 

w/p = 0. 03 ; 0.3 ; 0.5, crossing ratio 
r 
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stiffness and unit mass) used to define alternative span confi­

gurations in later studies, are defined as multiples of these 

reference configuration parameters. Also, all system responses, 

including the ¢ surfaces, are presented as nondimensional 

quantities based on the laws of similitude (3.6]. For these 

reasons, all calculated results based on this reference configu­

ration are applicable to full-scale designs as well. For instance, 

the reference point load "vehicle" speeds of 1.0, 9.54 and 15.9 

ft/sec correspond, respectively, to w/p values of 0.03 (crawl r 

speed), 0.3 and 0.5. These transit frequency ratios cover the 

range of practical, full-scale designs. Thus, in a prototype 

span where t = 70 ft and p = 20 rad/sec, the prototype vehicle 

speed for w/p = 0.3 would be 133 ft/sec or 90.7 mph. 

SELECTED CLASSES OF SPAN CONFIGURATIONS 

Three general classes of three-span configurations were 

selected for the optimization studies. In all three classes, 

symmetry about the midlength x = L/2 is imposed for the support 

spacing, bending stiffness and unit mass. Thus, f 1 = f 3 and 

- -£ 2 = 3 - 2£1 ; EI 1 = EI 3 ; and m1 = m
3

. 

For a Class A configurations, a solid, rectangular span 

cross section is assumed and the span depth, h, is taken as con­

stant throughout its entire length, L. The experimental span of 

Figure 3.2 is a Class A configuration, for instance. In these 

spans, the ratios of unit mass, stiffness and section modulus, 

Sn= 2 In/h, between adjacent segments are all equal, or 
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- -
m2 m2 

= = = = - -
ml m3 

where a is a constant. In Class A, 72 sets of parameters dis­

tributions were investigated, corresponding to 9 different support 

spacings, each applied to 8 different constants a, all for a 

fixed value of w/p • These configurations are summarized in 
r 

Table 3.2 where the coordinates (X,Y) designate the parameter 

set used in the later presentations of results. 

For Class B configurations, the span cross section is as­

sumed to be an "I" beam, or a series of "I" beams side by side, 

each with negligible web thickness. In these spans, the unit 

- - -mass remains fixed, or m1 = m
2 

= m
3

; and the flange area and 

shape remain constant over the entire length, L. However, the 

beam depths between adjacent span segments are h and Sh, re-

spectively, where f3 is a constant. For these cross sections, 

the stiffnesses vary approximately as the square of the beam depth, 

or 

and the section moduli vary linearly with beam depth, or 

Table 3.2 shows the matrix of the 72 sets of parameters studied 

for Class B configurations, with their (X,Y) coordinate designa­

tions. 

3-23 



Table 3.2 Matrix of distributed parameters used in optimization studies of 
three-span continuous beams 

C X MASS DISTRIBUTION STIFFNESS DISTRIBUTION 
L 
A COORD. !!l. !!2. !!l. Bl1 ;12 Els f, SUPPORT SPACINGS 
s Bir Elr n 
s mr mr mr r 

4 .6 l .6 .6 l .6 f1 - f2 - f3 
3 .1 l .1 .1 l .1 

• l HI Hi HI HI 
2 .8 l .8 .8 l .8 ... ... ... ... Hi HI HI ... ... ... 

A l .9 l .9 .9 l .9 I I I I 
I I I ... ... ... ... 

REF. SPAN 0 1 1 1 l 1 1 . • • . • . . 
N ... ... 0 \0 co ..... 

-1 1 .9 l 1 .9 1 UI UI 

-2 1 .8 l l .8 l HI HI Hi 
HI HI HI Hi N N N 

-3 l .1 l l .1 ,1 N N N N 
I I I 

I I I I 

4 l l l .6 l .6 
... ... ... . . . . . . . 

0\ ..... co \0 N ~ 0\ 
3 l 1 l .1 l . • 1 
2 1 l 1 .8 1 .8 HI HI HI HI HI HI HI ... ... ... ... ... ... ... 
l l l l .9 1 .9 I I I I I I I 

B 0 1 1 1 l 1 1 ... ... ... ... REF. SPAN . . . . . . . \0 co ..... 
-1 l l 1 l .9 1 N ... ... 0 

UI UI 

-2 l l l l .8 1 

-3 l l 1 l .1 l 

4 .6 1 .6 1 1 1 
3 .1 1 .1 l l l 
2 .8 1 .8 l l l 

C 1 .9 l .9 l l 1 
0 1 1 l l l l REF. SPAN 

-1 1 .9 l 1 l l 
-2. l .8 l l 1 l 
-3 l .1 1 l l l 

Y, SPACING PARAMETER COORDINATE: -4 -3 -2 -1 0 1 2 3 

1-24 

HI ... 
I . 
0\ 

HI 
N 

I ... . 
co 

HI ... 
I . 
0\ 

4 



For Class C configurations, the cross sections were chosen 

so that both the bending stiffness and the section modulus are 

uniform through the entire length, L. There, the unit mass in 

adjacent span segments is allowed to change, or 

where y is a constant. As for Class A and B configurations, 

Table 3.1 shows the same 9 sets of spacing parameters, each applied 

to 8 configurations of different unit mass distributions. It is 

recognized that Class C designs may be, for the most part, the 

least practical of the three classes considered. However, there 

may be merit in Class C designs in particular instances. If 

adverse resonances are predicted in a certain, continuous span 

design, these resonance amplitudes could be reduced or eliminated 

by the addition of dead weight in selected span segments without 

changing the bending stiffnesses. 

The guideways selected for study and the reasons for their 

selection are summarized. The general guideway type is N = 3. 

Investigated are 216 distinct configurations (Table 3.1), with 

72 configurations in each of Class A, Band c. In each class, 

the reference configuration is the same, defined by the parameter 

coordinate (X,Y) = (0,0) in Table 3.1. To include the effects 

of the transit speed of the point load, three values of w/Pr' are 

selected for each configuration: 0.03 (crawl speed), 0.3 and 

0.5. This raises the total number of computer simulations to 648. 

In each simulation, the total mass, the critical span responses 
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and ~ are calculated. The justification for limiting the numer­

ical studies to this range of parameters is simply one of computa­

tional economy. Nonetheless, the results which follow illustrate 

the methodology and should indicate trends applicable to future 

optimization studies of higher N guideways, with intermediate 

values of w/pr. For instance, such trends were very clear in pre­

vious studies _ [3. 4] -for a single distributed parameter where the 

optimum pier spacings changed very little from N = 3 to N = 10; 

and where the peak span responses were not only continuous in the 

range O < w/p < 0.5, but were reduced with the use of optimum 

pier spacings. 

NUMERICAL RESULTS AND CONCLUSIONS 

To obtain numerical results, use was made of the facilities 

at the Triangle University Computation Center located in Research 

Triangle Park, N. C. The digLtal system consisted of two IBM 

370/165 computers coupled with an AMDAHL 470/V8 computer. The 

isometric surfaces describing the components of ~ were generated 

on a Complot DP-7 plotter using SAS/GRAPH software [3.7]. Calcu­

lated for each of the 648 simulations was the time history of each 

midspan deflection and bending moment; each peak midspan response; 

and each normalized component of the optimization function ~, 

Equation (3.28). In all cases, 600 integration steps were used to 

solve Equation (3.17) numerically; and the truncation of the series 

of Equation (3.15) and Equation (3.24) at m = 20 modes was found 

to give adequate convergence for the responses. 
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The results are presented as computer generated surfaces, 

Z = Z(X,Y), shown in Figures 3.7 through 3.26. For each class of 

problems (A, B or C), the coordinates (X,Y) representing the 

distribution of system parameters, is given in Table 3.1. The 

coordinates (X,Y) = (0,0) always represent the reference span; 

and Y always represents support spacing parameter. The calcu­

lated ordinate Z represents one of five quantities: a term of 

function itself, where = 1. For each numbered 

Figure, there are two perspectives of the same Z(X,Y) surface, 

(a) and (b), representing a rotation difference about the verti­

cal axis of 25 degrees and a tilt above the Y-axis of 10 degrees. 

The calculated surfaces for Class A configurations (solid, 

rectangular cross sections with varying segment widths) are shown 

in Figures 3.7 through 3.11, based on w/p = 0. 03. r 
The total span 

mass surface, Figure 3.7 is calculated directly from Equation 3.29 

using the preselected values of Table 3.1, where Z = M/M < 1. r 

The computed surfaces for crm/crr, ~crm/~crr, y/yr, and ¢ in 

Figures 3.8 through 3.11, respectively, clearly show that the 

selected pier spacing parameter dominates the computed responses. 

Comparing these surfaces, it is seen that the maximum stress dif­

ference surface, Z = ~crm/crr of Figure 3 .9, overshadows the others 

in height, reaching a peak of 17.8 at (X,Y) = (4,-4). Thus, the 

~a /a surface dominates the response behavior of the~ m r function 

of Figure 3.11. The y/yr surface, Figure 3.10, has the least 

effect on ¢. It is recalled that ¢ = 4 corresponds to the 

reference configuration. Figure 3.11 shows a minimum value of the 
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optimization function, where ¢ = 3.08 at {X,Y) = {-2,0). Thus, 

at least a 23 percent improvement in guideway efficiency over the 

reference configuration is possible. A "fine tuning" of the dis­

tributed parameters about these {X,Y) coordinates may improve 

this efficiency even further. 

The calculated responses for Class B configurations {"I" 

beams of variable depth and constant flanges) are shown in Figures 

3.12 through 3.15. Not shown is the uniform, total mass surface, 

which is a horizontal plane, or Z = M/Mr = 1. Inspection of 

these response surfaces representing a /a , ~a /~a , y/y and m r m r r 

¢, respectively, reveals trends similar to the corresponding 

Class A surfaces. That is, the y parameter has the largest in-

fluence on these responses; y/yr of Figure 3.14 has the least 

affect on ¢ and the high levels of the ~om/~or responses, 

Figure 3.13 dominate the ¢ function, Figure 3.15. Here, the 

minimum is ¢ = 3.13 at {X,Y) = {-3,0), indicating a 21.7 per­

cent improvement in design efficiency for these parameter coordi­

nates. 

The calculated responses for Class C configurations {uni­

form stiffness, variable unit mass) are shown in Figures 3.16 

through 3.19, corresponding to surfaces a /a , ~a /~a , y-/y-
m r m r r 

and ¢. This total mass surface, the same as for Class A, is 

shown in Figure 3.7. As in the Class A and B studies, w/p = 0.03. r 

There is one main difference between the four response surfaces 

here and the corresponding ones of Class A and B: the maximum 

stress surface,. Figure 3.16 is much flatter for negative values 

of Y. From Figure 3.19, the minimum of the optimization function 
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is ~ = 2.67 at (X,Y) = (4,0), representing a 33.3 percent im­

provement over the reference configuration. 

Considering all of the results presented in Figures 3.8 

through 3.19, it is apparent the parameter coordinates for opti­

mal configurations are well depicted by the minimums of therms 

deflection surfaces. The numerical accuracy of these smooth 

surfaces is certain since the series for deflection are ·strongly 

convergent. It may be that some of the jagged peaks in the stress 

surfaces are artificial due to series which are less strongly 

convergent; or the peaks may be a true resonance phenomenon, 

unobliterated by the time averaging used to calculate y/yr. 

At any rate it appears that the y/yr surfaces are logical in­

dicators of optimal parameter coordinates. For this reason, these 

surfaces are used to demonstrate the effects of higher vehicle 

speeds or transit frequency ratios on optimal spans. 

Each of the Figures 3.20 through 3.25 show therms 

deflection surfaces for w/p = 0.03, 0.3 and 0.5. Figures 3.20 
r 

and 3.21, respectively, show two perspectives (a) and (b) of the 

same Class A configuration data; the counterpart views - for Class 

Bare Figures 3.22 and 3.23; and for Class Care Figures 3.24, 

and 3.25. The most salient feature of all.of these plots is the 

manner in which the edges where y is a minimum curl up as w/p 
r 

increases. This indicates that relatively long end spans are 

much less desirable for higher vehicle speeds than for lower 

vehicle speeds. A comparison of Figures 3.20, 3.22 and 3.24 (or 

3.21, 3.23 and 3.25) suggests that structural efficiency or y/yr 

is much more sensitive to changes in mass distribution than stiff-
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ness distribution. That is, the slopes of the surfaces are usually 

steeper along the mass direction, Figure 3.24, than along the stiff­

ness direction, Figure 3.22. Finally, for all three transit ve­

hicle speeds, the more efficient configurations are generally the 

ones with a greater unit mass on the extreme end spans than on 

the center one; and the pier spacings are such that the end spans 

are somewhat shorter than the center one. This is seen in Figures 

3.24 and 3.25 for Class C configurations, for instance, where a 

minimum rms deflection has the parameter coordinates of X = -2 

or -3 and Y = 1. 

The main purpose in presenting the above results was toil­

lustrate a methodology for optimal or efficient guideway design. 

In a strict sense, one should apply these data only to N = 3 

configurations, based on the defined Classes A, Band C. An actual 

guideway composed only of several, parallel "I" beams could be 

close to Class B configurations; but if these beams were topped 

with a concrete bridge deck which added significant stiffness, 

then the above results for Class C could not be used. Such a new 

class of problems could readily be defined, however, and the 

methodology described could then lead to optimal configurations. 

Reasonable estimates of efficient designs are often possible 

with a relatively crude mesh of the three design parameters. That 

is, interpolation of therms deflection surfaces is a promising 

prospect. Viewing Figures 3.20, 3.22 and 3.24 as a group, it is 

seen that Class A surfaces are a crude "average" of those for 

Classes Band C. Thus it is possible for a structural designer, 

given a particular three-span beam, to estimate the effect of 
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varying either its cross sectional shape or its material, on its 

rms deflection. For example, assume that a three-span beam with 

a pier spacing equivalent to Y = 1 is to be designed for a 

vehicle speed in the range of the transit frequency ratio of 

w/p = 0.3. By studying Figures 3.22 and 3.24 (or Figures 3.23 

and 3.25), one observes that an approximate minimum for the y/yr 

surface has the stiffness distribution (Class B configuration) of 

X = XB = 4; and a unit mass distribution (Class C configuration) 

of X =Xe= -3. For a given preliminary guideway design, an 

absolute minimum of the y/yr surface would then be sought (for 

a fixed Y) by varying XB about around 4 and Xe around -3, 

subject to all system constraints. It appears, in this case, 

that the stiffness of the center span segment, or XB' would be 

increased somewhat; and the unit mass of the two end span segments 

would be higher than the center one, amounting to an increase in 

the Xe parameter. 

It is concluded that these three-span parametric studies 

serve as a basis for the optimal dynamic design of higher order, 

continuous, beam guideways. The three key parameters governing 

the structural efficiency of higher N guideways are also the 

pier spacing, the beam stiffness distribution and the unit mass 

distribution. For N = 3, the structural efficiencies, which are 

increased in the range of 21 to 33 percent, are the most sensitive 

to pier spacing and the least sensitive to span stiffness distri­

bution. This trend will probably carry over to higher N con­

figurations as well. The computer program, described in the 

Appendix, can be used to verify these trends to quantify and 
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then "fine tune" the distributions of the three parameters needed 

for high efficiency guideways. 
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LIST OF SYMBOLS FOR CHAPTER 3 

A - coefficient of mode shape equation 

a - number of point forces 

B - coefficient of mode shape equation 

C - coefficient of mode shape equation 

c - coefficient of optimization equation 

D - coefficient of mode shape equation 

E - normalizing factor 

EI - bending stiffness 

F - magnitude of point force 

f - span length factor 

G - transcendental factor 

H - transcendental factor 

h - depth of beam 

I - moment of inertia 

L - total structure length 

l - average span length 

M - bending moment 

m - mode number 

m - mass per unit length 

N - number of spans 

n - individual span number 

P - loading parameter 

p - fundamental beam frequency 

Q modal amplitude 

q - transverse load per unit length 



r - subscript for reference values 

s - section modulus 

t - time 

v - velocity 

v - transverse displacement 

X - plotting parameter 

x global space variable 

Y - when subscripted: mode shape function 

when unsubscripted: plotting parameter 

y - global space variable 

-y - rms deflection under load 

z - plotting parameter 
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S - cross section variation coefficient 
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o - Dirac delta 

0 - transcendental factor 

A - frequency parameter 

cr - maximum stress 

~ - optimization function 

$ - transcendental factor 
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4. ALTERNATIVE, HIGH EFFICIENCY DESIGNS 

FOR THE DUKE UNIVERSITY GUIDEWAYS 

INTRODUCTION 

The most efficient structures have the highest possible ratios 

of strength to weight, consistent with the system constraints. 

Investigated here are methodologies which can achieve highly effi­

cient guideway designs for modern transit systems. Consideration 

is given to the practical constraints of material strength, dynamic 

loading, fabrication and erection. By way of illustration, precast, 

concrete, elevated guideways with "H"-shaped cross sections are pro­

posed as practical alternatives to a successful state-of-the-art 

reference design, the transit system at Duke University. With some 

alternative configurations, 35 percent weight reductions are achieved, 

with an additional 8 percent reduction when rationally modified load 

factors are employed. In general, the most efficient designs use a 

minimum number of pier supports, properly spaced for continuous span 

configurations so that balanced stress is achieved. The implications 

of minimizing guideway costs through weight reduction are apparent. 

The guideway structure typically represents as much as 35 

percent of the total design life cost for urban mass transit 

systems, de Silva and Wormley, [4.2]. This proportional cost 

may be reduced for elevated guideway spans by employing highly 

efficient structural designs compatible with the loading of only 

one particular type of vehicle. Any such guideway designs, 
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whether of prestressed concrete, steel or a combination of these 

materials, also involve consideration of practical constraints 

such as the material strength, the building site, aesthetics, 

vibrations affecting ride comfort, the construction or erection 

procedure and the fabrication process. The highest efficiency 

designs are defined as those which, when subjected to such con­

straints, achieve the maximum possible ratios of span bending 

resistance to the total weight of all spans and their supporting 

piers. In high efficiency designs, the cross sectional area 

and the number of pier supports are both minimized while the 

fundamental bending frequency is maximized, Touma and Wilson, 

[4.5]. Continuous spans also promote high design efficiency, 

where up to 30 percent reduction in peak live load moment, com­

pared to peak moments in end-to-end simple spans, can be achieved 

if optimal pier spacing is utilized, Wilson and Barbas, [4.7]. 

There is a broad class of elevated guideway systems for which 

guideway-vehicle dynamics, or inertial load interactions, are of 

secondary importance in the guideway design process. TWo criteria 

are needed to define such a system to which static design pro-

cedures are applicable, Wilson, [4.6]. First, the mass m of all 
V 

moving vehicles on any one span of length i (the length between 

consecutive pier supports) must be less than 30 percent of that 

span mass, m; or m /m <0.3. Second, for a vehicle of constant 
S V S 

speed v, the ratio of the vehicle passage frequency, v/2t, to the 
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fundamental guideway frequency p (hz) in transverse vibration, 

must be less than 20 percent, or 0.42p>v. Considered herein are 

several alternative, high efficiency concrete guideways which 

obey this static design criteria. Starting with an existing 

Automated Guideway Transit (AGT) system as the reference case, 

two methodologies leading to high structural efficiency are 

illustrated and some generalizations are deduced for use in future 

transit structure design. 

REFERENCE DESIGN 

About thirty rapid transit structural systems were imple­

mented during the 1970's, De Leuw, [4.1]. Of these, the AGT 

elevated concrete section at the Duke University Medical Center 

(DUMC) was chosen as the reference design, Theumer, [4.4]. Fig-

ure 4.1 shows the cross section of this eight-span, continuous 

guideway with uniformly spaced pier supports. The shaded section 

is the precast, prestressed, double tee girder. The unshaded 

portions, including the horizontal levitation surface for the 

air cushion vehicle and the side guidance walls for the vehicle 

steerage wheels, are cast-in-place. The important design charac­

teristics of the DUMC system are summarized. 
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EI 4.98 X 10ll lb-in 
2 = span bending stiffness 

(1.43 X 109 2 N-m} 

Q, = 56 ft pier spacing, on centers 

(17.1 m) 

m = 222 lb sec2/in s 
span mass of length i 

(3. 89 X 10 4 kg) 

m 
V 

= 39.9 lb 2;· sec in single vehicle mass 

(6.99 X 10 3 kg) 

'IT (Eii}l/2 = 4.27 hz p = 
212 m fundamental guideway frequency 

V = 

s 

25 mph vehicle design speed 

(40. 2 km/hr) 

From these data, m /m = 0.18<0.3; and 0.4Q,p = 65.2 mph>25 mph. 
V S 

Thus, for a single vehicle in transit, guideway-vehicle inter-

action dynamics are insignificant in the reference guideway design 

and the vehicle can be accurately represented by vertical loads 

of constant magnitude. In fact, the reference design was based 

on a uniform pressure of 880 lb/ft (1.28 x 10 4 N/m), the live 

loading L necessary to levitate a three vehicle train of mass 3m 
V 

extending for 52.5 ft (16m) total length. This same three vehicle 

loading configuration was used in all of the alternative span 

design studies below. 

PARAMETERS AND METHODOLOGIES IN EFFICIENT DESIGN 

There are many possible parameters and approaches to consider 

in the design of efficient structures. One might consider alterna­

tive vehicle steerage-guideway interfaces to reduce or eliminate 
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the "outside-above" sidewall. Since such alternatives, shown in 

Figure 4.2, would mean a reference vehicle redesign, they are not 

considered here. The pier support columns (except for spacing) 

and foundation designs are also left unaltered. The three parame­

ters which are accounted for herein are: material strength; 

vehicle loading factors; and construction or erection methodology, 

including alignment. Critical combinations of these parameters, 

tempered with practical considerations of fabrication, lead to 

cross sectional shapes and pier spacings with higher structural 

efficiency than the reference design. 

To provide a wide range of alternatives to the reference 

guideway design, the following strategy is employed. First, de­

signs are generated based on existing loadings as defined in 

AASHTO Bridge Design Specifications. From this point, the search 

for more efficient designs takes two paths: group I designs in­

volving the search for minimum cross sectional areas, keeping the 

reference span lengths the same; and group II designs involving 

the search for the minimum number of pier supports while keeping 

both the total elevated length and the beam cross sectional area 

the same. After these studies are exhausted, the two paths are 

repeated with a revised and more realistic vehicle loading criteria. 

Finally, the effect of the construction methodology of shoring 

beams at midlength during erection is investigated. A matrix of 

this overall approach applied to the DUMC guideway is summarized 

in Table 4 .1. 

Certain assumptions and modifications are common to all four 

design regimes. The primary simplifying assumption is that the 
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elevated structure consists only of straight spans, although the 

reference structure includes one horizontal and one vertical curve. 

Designs produced under this assumption are applicable to the major 

portion of the structure. Modifications required to produce curved 

alignments are discussed presently. Another minor assumption con­

cerning alignment is that the overall length of the structure is 

chosen as 450 ft (137 m) instead of 448 ft (136.5 m) when .investi­

gating the most efficient pier spacings. An important modification 

common to all alternative designs is that the cross section has 

the form of a precast "H" shaped beam, possibly with diaphrams in 

the lower half of the beam at spacings appropriate to restrain 

warping. See Figure 4.3. The new shape makes the sidewalls and ride 

surface integral with the rest of the cross section. In this way, 

the side walls no longer only provide lateral vehicle steerage 

control, but provide additional and significant bending resistance. 

Due to the nature of an air cushion suspension, probably no modi­

fication or addition to the precast ride surface would be required 

after erection of alternative designs. In all cases, advantage is 

taken of the high tolerances available in plant controlled precast 

concrete to help assure a comfortable ride. 

With this overview of the basic assumptions and the design 

strategy, a further look at the three basic design parameters is 

in order. 

Material parameter. Materials investigated for minimal 

weight structures are limited to those required to produce 

normally reinforced or prestressed concrete. Thus, valid compar­

sons can be made to the reference design of similar materials. 
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Within this framework, three options are investigated: "normal" 

strength reinforced concrete; "high 11 strength reinforced concrete; 

and prestressed concrete. The normal strength design will use a 

twenty-eight day concrete strength of 4000 psi (12 X 10 6 N/m
2

) 

and steel yield strength of 60 ksi 6 2 (414 X 10 N/m). A 6000 psi 

(18 X 10 6 
N/m

2
) concrete and 80 ksi (552 X 10 6 N/m2 ) steel will 

be assumed for the high strength design. The prestressed design 

will employ 5000 psi (15 x 10 6 N/m2 ) concrete and 270 ksi (1862 x 

106 N/m2 ) ultimate prestressing steel. These are the same parame­

ters used to design the double tee beams of the reference design. 

Use of high strength materials in a concrete design is a desirable 

feature. The dead load of a concrete structure is usually a 

significant portion of the final loading condition. High strength 

concrete allows the designer to produce a cross section capable 

of resisting the same loads as a normal strength design but at an 

appreciable saving in dead load. This weight savings will result 

in a reduction in load on the high strength design, thus implying 

even further savings. Use of prestressed concrete is most de­

sirable when live load deflections control the design. A properly 

conceived prestressed beam will not crack under service loads. 

This allows the moment of inertia of the full concrete section to 

resist deflection. 

Load factor parameter. Initially, designs are based on the 

same load definitions as the reference design, a design which 

employed the 1973 AASHTO Bridge Design Specification as well as 

the 1974 and 1975 Interim Specifications. The controlling equation 

in this case is: 
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Ultimate Load= l.3(D+l.25(L+I)) 

D = dead load 

L = live load 

I= impact= .2SL 

Here, the live load is multiplied by a factor of 1.25 squared. 

One of these l.25's is to account for "impact." Impact may 

consist of load increases due to dynamic interaction between a 

relatively massive, rapidly moving load and a relatively light­

weight and flexible supporting structure; or dynamics associated 

with braking; or even the dynamic effect of a large truck driving 

into a pot hole in the bridge deck. The other 1.25 factor accounts 

for a variety of uncertainties in highway bridge live loadings 

such as temporary "overloads" due to unusual vehicles and eccen­

tricity of lane loading. The reason for eliminating the first 

dynamic factor of 1.25 to account for guideway-vehicle interactions 

has already been justified for the reference design and will be 

assumed for minimal weight alternative designs. Since the guideway 

is designed for a single vehicle type, and those vehicles are 

levitated by cushions of air, the need for the second AASHTO 

dynamic impact factor of 1.25 is also questionable. However, 

since braking loads through the use of skids may afford some 

impact, the extent of which still needs experimental verification, 

the following equation probably represents a reasonable lower 

bound for alternative DUMC guideway designs. The 1.3 safety 

factor on ultimate or collapse load is maintained throughout. 

Ultimate Load= 1.3(D+l.1L) 
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Construction or erection methodology. Construction of the 

reference guideway is first summarized. The precast double tee 

beams were placed end-to-end on the piers, each forming a simple 

span. A block of concrete was then cast at the interior supports 

(see Figure 4.4) to produce the continuous, eight-span configuration. 

Then the levitation surface and side walls were cast. This method 

of construction effectively freezes the simple beam bending moment 

of the double tee dead load into the final structure. Figure 4.5 

illustrates the breakdown of the existing dead load moment. Note 

that the double tee simple beam moment has a significant if not 

controlling effect on the final girder design. 

Now consider an alternative: temporary shoring during con­

struction. A temporary support at midspan can reduce the "frozen 

in" maximum positive moment due to dead load by approximately 

one half. Use of shoring, however, is a very site-dependent propo­

sition. For example, should the location of a temporary support 

be in the middle of a busy street this type of construction would 

not be viable. At the site of the reference design, however, 

there are no such objections to shoring. Thus, an attractive 

reduction in dead load moments is possible. Note, however, that 

a central temporary support produces negative midspan moments. 

This is not necessarily consistent with the philosophy of the 

reference design. Prestressed girders generally are proportioned 

so that the stress on the top fiber of the beam is nearly zero 

under dead load. Therefore a negative midspan moment would result 

in relatively high concrete tensile stresses, a very undesirable 

situation. This condition could be alleviated by using normal 
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reinforcing in the top fiber to take the construction related 

tensile load. Concrete cracking would still have to take place 

in order to mobilize the strength of the added top steel. Possible 

detremental effects of this cracking on prestressing steel must be 

considered. At any rate, temporary shoring at midspan reduces 

the construction moments to those associated with a two-span con­

tinuous beam with span lengths one half that of the simple beam. 

This reduces the maximum construction moment to one forth the 

unshored case. It is noted that the maximum construction moment 

is now negative and the maximum positive moment due to construction 

is now less than 15 percent of the simple beam moment. 

Now one is faced with the problem of determining the built-in 

moments related to shored construction. In this procedure, instead 

of freezing moments into the final structure, one is effectively 

building in the end rotations of the beams. Therefore, the built­

in moments can be found by superimposing the dead load moment of 

the continuous beam with that of a beam subjected to a fixed end 

rotation. Fixed end rotations result in a beam subjected to pure 

bending. The magnitude of this bending moment is easily calculated 

from the classical relation between moment, bending stiffness 

and radius of curvature. Figure 4.6 reflects these concepts. The 

amount of end rotation can be controlled to achieve minimum built 

in stresses by an upward displacement of the beam at its central 

shore. This displacement can be easily controlled by the proper 

use of hydraulic jacks. A doubly reinforced "H" is easily 

adapted to the above type of construction. The horizontal 
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symmetry of the "H" allows it to resist positive and negative 

moments equally. 

Now examine the bending moments at the interior supports 

that come about from temporary shoring, and their overall effect 

on the final structure. Simply supported construction will 

theoretically result in no moment whatsoever at interior supports. 

It is obvious that temporary central supports will result in 

negative dead load moments at these support locations, of the 

same magnitude as the maximum positive dead load moments produced. 

Proper detailing of beam to beam connections can easily cope with 

this situation. A detail similar to that of Figure 4.4 essentially 

constitutes a radical increase in the compression flange of the 

cross section. All that remains is to insure a proper joining of 

tension steel in order to resist relatively large negative moments. 

This can be accomplished by using a mechanical coupling, welding 

(not the preferred choice), or lap splicing. See Figure 4.7 

As a final comment on construction of the proposed precast "H" 

consider the problems associated with lifting the beams. Since 

the side walls and riding surface are now integral parts of the 

beam,the weight of precast. "H" that must be lifted may be greater 

than lifts associated with the reference design, for the same span 

length. However, when the final inplace weights of the two 

structures are compared, the "H" is significantly lighter. If 

central shoring is used as a means of construction, pick-up points 

for the beam must be located with care. Lifting the beam by its 

ends would result in subjecting the girder to simple beam bending 

thus defeating the purpose of central shoring. The diaphrams in 
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the lower half of the "H" present attractive pick-up locations. 

FABRICATION 

Fabrication of an "H" may be somewhat more complex 

than fabricating a double tee. Both are relatively simple open 

shapes. It may be economically desirable for the diaphrams in 

the lower half of the "H" to be deleted in favor of increased 

torsional capacity in the sides of the "H" and/or increased bend­

ing capacity of the "H's" horizontal slab. This would result in 

increased material cost; but by simplifying the form work, the 

price of fabrication is reduced. For certain sections of guideway, 

the "beefed up" simple "H," without diaphrams, may prove to be 

the most economical choice. Note that if the diaphrams are re­

moved, pick-up points on the beams must be carefully selected and 

stability during lifting must be given further consideration. 

Probably the tradeoffs in cost will be such that relatively 

straight, precast sections would be more economical to fabricate 

without diaphrams. 

Forming of curved section of "H" shaped guideway may take 

many approaches depending on the nature of the curves involved. 

The choice of a specific forming system will be determined by the 

economics of the individual construction situation. As an example, 

consider a guideway system layed out using a restricted number of 

specific curves. Then only a few separate sets of forms or per­

haps even one form based on the "modular tooling" concept may prove 

to be most desirable for precasting all elevated sections of the 

system, De Leuw, et al, (4. l].. Modular tooling uses one large 
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form that contains all phases of the typical geometric alignment 

employed in the guideway layout. See Figure 4.8. Beams are then 

cast in the appropriate section of the form that corresponds to 

the curvature of guideway desired. Guideway layouts of limited 

horizontal curvature may also provide vehicle designers with in­

formation beneficial to the tuning of lateral vehicle suspensions 

for increased ride comfort. 

If a sufficiently large section of elevated guideway with 

varying alignment is required, then precasting the beams with ad­

justable forms may prove the most economical means of fabrication. 

For instance, the monorail beams for the Walt Disney World people 

mover were cast using adjustable forms to produce varying horizontal 

and vertical curves as well as various superelevations (Most, 1972). 

Adjustable forms were also used to fabricate the Dallas Fort Worth 

airport and Dearborn, Michigan's Fairlane guideways. For a system 

with only a few curves or for unique alignments, a fully cast-in­

place or a combination of precast and cast-in-place construction 

may prove the most cost-effective means of fabrication. A fully 

cast-in-place system may take advantage of the diaphrams in the 

"H" by using a pan type forming system. Curvature would be pro­

duced by proper angling of pans and then adding the upper side 

walls. See Figure 4.9. 

RESULTS: PARTICULAR ALTERNATIVE DESIGNS 

Since the "H" shaped guideway cross section appears practical 

both from the fabrication and construction viewpoints, it is em­

ployed as the basis for the alternative designs. 
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The bending calculations for normally reinforced beams are based 

on ACI publication SP-17(73). The formulas used are summarized. The 

ultimate moment capacity is given by 

where 

and 

and 

M = FK u . u 

F = bd
2

/12000 

K u 

w = 
A f 

s y. 
bd f I , <P = 0 • 9 • 

C 

( 4. 1) 

(4.2) 

( 4. 3) 

( 4. 4) 

The units used are; b, din inches, f', f in pound per square inch, 
C y 

A in square inches and M in kip-feet (10 31b-ft). s u 

The bending calculations for prestressed beams are based on 

the Portland Cement Association's publication Notes on ACI 318-77. 

The formulas used are summarized. The ultimate moment capacity is 

given by 

where 

and 

M = A f (d - .059 n ps ps 

A f 
ps ps) 
bf' 

C 

f = f · ( 1 - 0. 5w ) 
ps pu pu 

w = pu 

A f 
ps pu 
bdf' 

C 

Units should be in a consistent system, i.e., inches and pounds. 
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Table 4.2 summarizes the numerical results for the group I 

designs defined in Table 4.1. Formulas on which all dalculations 

are based are Eqs. (4.1)-(4.7) above. The greatest weight 

savings for the two different loading conditions considered were 

for the prestressed design placed as simply supported beams; and 

for the high strength, normally reinforced beam using central 

shoring during construction. Note that two different prestressed 

senarios were considered under group Ia. First a beam that did 

not require any additional reinforcement to accommodate stresses 

at transfer, was sized. A prestressed beam based on absolute 

minimum weight was then generated assuming that sufficient rebar 

for transfer stresses could be provided. These two designs provide 

upper and lower weight bounds for an actual prestressed girder. 

Therefore, a possible increase in weight by five to fifteen percent 

of the value given in group Ib (prestressed) of Table 4.2 would be 

indicative of a more realistic beam. 

The normally reinforced girders were assumed to be singly 

reinforced. All designs were based only on bending resistance. 

Should deflections control the design of these beams, an approp­

riate increase in weight should be considered. The following 

procedure was used to obtain the parameters listed in Table 2. 

First, a thickness of four inches was assumed for the horizontal 

slab portion of the "H" section. Values of b/2, the desired 

side wall thickness, and dT, the total section depth, were chosen. 

With these parameters fixed, a total dead load was calculated. 

This dead load and the known live load were combined by the 
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Table 4.2. Weight changes for group I alternative "H" 
guideways, compared to the reference case 

WT. b d A 

Design 10 31b 10 3N in cm in cm 
. s2 
in 

Normal Strength simple support 57.7 257 12 30.5 39 99.1 7.16 
shored 53.2 237 12 30.5 33 83.8 6.34 

High Strength simple support 53.2 237 12 30.5 33 83.8 5.70 
shored 50.9 226 12 30.5 30 76.2 4.75 

Pres tressed no transfer 
(both simple rebar 59.5 265 10 25.4 39 99.1 1.84 
supports) transfer rebar 51.6 230 10 25.4 39 99.1 1.84 

Normal Strength simple support 55.4 246 12 30.5 36 91.4 6.39 
shored 49.0 218 10 25.4 33 83.8 4.85 

High Strength simple support 49.0 218 10 25.4 33 83.8 4.79 
shored 47.3 210 10 25.4 30 76.2 3.81 

Prestressed simple support 47.4 211 8 20.3 36 91.4 1.53 

or A TOTAL WT. LIFT WT. 
ps CHANGE CHANGE 

cin2 percent percent 

46.2 -30.1 42.5 
40.9 -35.6 31.4 

36.8 -35.6 31.4 
30.6 -38.4 25.7 

11.9 -28.0 46.9 
11.9 -37.5 27.4 

41.2 -32.9 36.8 
31.3 -40.7 21.0 

30.9 -40.7 21.0 
24.6 -42.7 16.8 

9.9 -42.3 17.8 



appropriate loading equation to obtain the maximum ultimate mid­

span moment in the beam. To determine the bending capacity of 

the girder, the cross sectional area of steel (A for nonprestressed s 

or A for prestressed) and an appropriate distance from extreme ps 

fiber to steel centroid, d, were selected. Finally the bending 

resistance and ultimate moment were compared to check the adequacy 

of the design for stress. 

Investigation of a maximum span length approach to efficient 

designs in group II did not yield results as varied as the least 

weight spans in group I. Essentially only one more efficient 

configuration resulted from all the possible design parameters. 

This was a four span structure with two end spans of 100 ft (30.5 m) 

each and two central spans of 125 ft (38.1 m). Here end spans 20 

percent shorter than main spans were employed in an attempt to 

balance maximum positive dead load moments. There are two reasons 

for the lack of variety in these latter results. First is the 

overriding effect of dead load moments as span length increases. 

This had a neutralizing effect on the reduced live load moments. 

Under the assumption that the end spans were eighty percent of 

main spans, where the total guideway length was 450 ft (137 m), 

the next longer span possible after the 125 ft (38.1 m) maximum 

already considered was 173 ft (52.7 m). This latter length 

results in a dead load moment which is not practical. The second 

factor controlling the efficient choice of the number of long span 

designs was that no consideration was given to shored construction. 

For spans of 100 ft (30.5 m) and longer, use of more than one 

temporary support may improve structural efficiency. Since 
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investigation of multiple shoring locations and ever increasing 

span lengths would only serve to cloud the comparison with the 

reference structure, only simply supported construction of long 

spans in group II was considered. 

For the 125 ft- (38 .1 m) length, many designs using the ref­

erence design weight per unit beam length are possible. However, 

one should realize that fabrication, transportation and erection 

of such a girder would be extremely difficult. On the other hand 

the use of the 56 ft (17.1 m) span length involves an unnecessary 

amount of foundation work. Thus, the most efficient alternative 

design would be both lighter in weight and longer in span. The 

possibility of "fine-tuning" such structural designs is clearly 

indicated by these results. 

The results of the maximum span and minimum weight calculation 

were checked to determine if vehicle-guideway dynamic interaction 

was as insignificant as assumed. The minimum weight designs all 

had frequencies on the order of 4 hz, thus bearing out the assump­

tion of minimal interaction as discussed in the Introduction. 

Although the maximum span designs resulted in fundamental guideway 

frequencies approximately one half that of the reference design, 

the critical vehicle speed above which dynamic interactions become 

significant was again well above the 25 mph (40.2 km/hr) reference 

design limit. In both cases also, m /m remained below the 0.3 
V S 

value, thus justifying the static design procedures used for the 

alternative designs. 

Finally, the authors wish to emphasize that these hypothetical 

studies were made purely for the purpose of illustrating a design 
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methodology. Such studies should not at all detract from the 

excellent state-of-the-art DUMC facility used as a reference case. 

CONCLUSIONS 

In order to improve the structural efficiency of a concrete 

guideway which employs an outside-above vehicle interface, con­

sideration should be given to the bending resistance offered by 

the guide walls. The way to mobilize this added resistance is to 

cast the guide walls as an integral part of the guideway cross 

section. Combining a modified "H" cross section with a proper 

choice of construction method results in a 30 to 35 percent weight 

savings in the superstructure over the reference design. With a 

rational reduction in load factors, an additional eight to ten 

percent weight reduction is achieved. Efficiency of a guideway can 

also be improved by decreasing the number of pier supports re­

quired. For instance, with the modified "H" cross section which 

has the same total weight as the reference superstructure, span 

lengths twice that of the reference design are practical. In 

general, the proper balancing of weight and span length is up to 

the individual designer whose judgement must be tempered by the 

specific and sometimes subtle constraints. The important point is 

that the percent of total guideway weight reduction is a common 

measure of cost reduction used in construction cost estimating. Thus, 

if fabrication and erection costs remain constant, the minimum weight 

design implies the minimum cost design. 
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LIST OF SYMBOLS FOR CHAPTER 4 

Aps Area of prestressing steel 

As Area of nonprestressed reinforcing steel 

b Width of compression flange 

D Dead load 

d Depth of reinforcing steel centroid from extreme fiber 

~ Total depth of beam 

EI Bending stiffness 

F A flexural coefficient 

f 1 
28 day concrete compressive strength 

C 

f Prestressing force 
ps 

fpu Ultimate strength of prestressing steel 

f Yield strength of nonprestressed reinforcing steel 
y 

I Impact load 

Ku A strength coefficient 

L Live load 

i Span length 

Mn Ultimate bending resistance of prestressed beam 

ms Span mass 

M Ultimate bending resistance of nonprestressed beam 
u 

m Vehicle mass 
V 

p Guideway frequency (hz) 

v Vehicle speed 

~ Capacity reduction factor 

w Ratio of tensile and compressive stress for nonprestressed 
beams 

wpu Ratio of tensile and compressive stress for prestressed beams 
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APPENDIX - DESCRIPTION OF COMPUTER PROGRAMS 

A listing of each of the following computer programs, writ­

ten in Fortran IV, can be obtained from the Principal Inves­

tigator, James F. Wilson, Structural Dynamics Laboratory, 

Department of Civil Engineering, Duke University, Durham, 

N. C. 27706. 

1. PROGRAM I. This program calculates the dynamic responses 

of continuous, uniform spans of up to N = 6 using the 

normal mode method. The supports are evenly spaced. The 

loading is a single, vertical point force of constant 

intensity, traveling at constant speed. Span inertia is 

included. 

2. PROGRAM II. This program calculates the dynamic responses 

of continuous, uniform spans of up to N = 10 using the 

normal mode method. The supports are evenly spaced. The 

loading can be from two to ten vertical point forces, 

all of equal magnitude and constant intensity, at arbi­

trary, fixed spacings, and at constant speed. Span 

inertia is included. 

3. PROGRAM III. This program is identical to PROGRAM I, 

with a single exception: the pier support spacing is 

arbitrary. 

4. PROGRAM III-N. This program is identical to PROGRAM II, 

with a single exception: the pier support spacing is 

arbitrary. 

5. PROGRAM IV. This program calculates the dynamic 

responses of continuous spans up to N = 10 using the 

normal method. The supports are unevenly spaced; and 

both the stiffness EI and mass per unit length m can 

be different, segment to segment. The loading can be 

from two to 10 vertical point forces, all of equal 



magnitude and of constant intensity, at arbitrary, 

fixed spacings and at constant speed. Span inertia is 

included. 

6. MASS. This program calculates the dynamic deflection 

and moment under a single moving mass load. The verti­

cal inertia effects of the moving mass are included; 

but the span inertia effects are neglected. The program 

EPISODE, Reference [2.4], is used to solve the 

differential equation. 




