DEVELOPMENT OF TRANSIT BUS COMPONENT FAILURE STATISTICS FROM CONVENTIONAL BUS CARD RECORDS

Maria Kosinski James F. Foerster Floyd G. Miller

University of Illinois - Chicago
Urban Transportation Center
P. 0 Box 4348

Chicago IL. 60680

FEBRUARY, 1982
FINAL REPORT
This document is available to the U.S. public through the National Technical Information Service, Springfield, VA 22161

Prepared for
U.S. DEPARTMENT OF TRANSPORTATION URBAN MASS TRANSPORTATION ADMINISTRATION OFFICE OF POLICY RESEARCH UNIVERSITY RESEARCH AND TRAINING PROGRAM WASHINGTON, DC. 20590
TL.
242
-1゙68
$v .1$

TI.
232
-1468
v. 1

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

Technical Kepart Documentatian Page

15. Supplementair Notes
10. Abalract

A fundanental requirement for the application of reliability engineering techniques is the existence of information on component fallure probability density functions. This information is routinely generated in life-testing programs conducted by some industries, but little fallure c'ata has been collected or analyzed by thẹ transit industry. This report illustrates procedures for developing failure distributions from conventional bus card record-.keeping systems. Using actual dats from a major U.S. transit property, the report demonstrates the computational steps necessary to convert failure and survivor counts into cumulative failure probabilities when the components of interest have variable accumulated mileages. The procedure is applicable even if some components have not been run to failure. The use of the resulting distribution to set or evaluate maintenance and replacement targets is also illustrated.
17. Kay Worda
bus maintenance planning, component failure rates, bus card records
18. Distibution Stotement

Document is available to the U.S. Public through the National Technical Information Service, Springfield, VA 22161 •
MIİ: CuqivessiveraciJas

810.ad				
		M-ty is	Te lias	$x_{1}=1.1$
	*	156GIH		
-	-n.	-2.5	s-r-m...	c
*	4	30	40.tancos.	cm
\sim	vers.	- 9	-10.0	-
-	-m.	13	*rames	0
	AREA			
${ }^{1}$	-	-5		\cdots
n^{2}	+10.0.	-	Mareombis	${ }^{2}$
${ }^{3}$	- - - - :-3.	0.8	- - - - -	2
$-{ }^{1}$		2.0	H-abliumans	-
	∞ い。	0.4	-rues	\cdots
	$\underbrace{\text { 4ASI }}$ (mainal)		-	-
9	-maner	27	000	8
\pm	;ancs	46	A.amen	4
			comes	
	VOIUME			
-	10.0.pens	-	a.althers	-1
ins	Wc.eomsers	16	a.isionem	\cdots
\% 0	10nacmes	30	-110.1008	\cdots
$\stackrel{\square}{5}$	-		h.10.	\bigcirc
\cdots	-n"	0.1	**)	-
98	+10	4.0	1.1.0.4	1
-1	9+140.0.	1.0	1010. ${ }^{\text {c }}$	\cdots
.4 ${ }^{4}$	Cuectard	a 31	cubecmeras	0
	cutce voise	-.rs	cuacmalos	0^{2}
	TEMPERAIURE \{ExAE]			
\because	10norata	S.9.4.:-	Cons.us	${ }^{*}$ c
		maisil.ng 111		

Page
I. Introduction 1
II. Development of Data Base from Existing Maintenance Records. 2
III. Analysis of Data. 5
IV. Discussion 10
V. Examples of Use of the Results in
Analysis of Management Decisions 19
VI. Guidelines for Implementation. 23
Appendix A: Frequency of Failures 26 A
Appendix B: Survivor Frequency 31
Appendix C: Probability of Failures and Cumulative Failure Graphs 35
Appendix D: Sample Calculations 53

LIST OF TABLES

Page
TABLE 1. A/C Transit Unit Exchange Program................................. 3
TABLE 2. Bus Components Studied 4
TABLE 3. Frequency of Unit Replacement by Division 13
TABLE 4. Frequency of Unit Replacement by Reason for Replacement. 14
TABLE 5. Component Failure Statistics 15
TABLE 6. Comparison of Probabilities of Failure with Existing Inspection Guidelines 17
TABLE 7. Examples of Recommended Mileage Intervals with Associated Cumulative Probabilities of Failure Between . 3 and . 5 22
LIST OF EXHIBITS
EXHIBIT 1. Frequency Bar Chart for Clutch Failures. 7
EXHIBIT 2. Frequency Bar Chart for Surviving Clutches 9
EXHIBIT 3. Cumulative Probability Fuction for Failure of Clutch 11
EXHIBIT 4. Use of Cumulative Failure Graphs to Evaluate Inspection Targets 19

I Introduction

A. Purpose

The purpose of this report is to demonstrate the feasibility and utility of determining the probabilities of failure for various major bus components and systems from existing maintenance records. These probabilities are of interest in management decision-making because they can be used to determine inspection mileages for the components, (inspections being a key factor in an effective preventive maintenance program) and optimal replacement intervals (see Foerster et al, 1981). The process for determining the failure probability distributions is demonstrated using maintenance data from the Alameda-Contra Costa Transit District. This process is perfectly general and is suitable for application at other systems were maintenance records are available.
B. Framewo rk of Report

The report is divided into five major sections. Section II describes the development of the data base which is used to demonstrate the process. Included in this section is a general background of the Alameda-Contra Costa Transit District and a detailed description of data obtained from their existing maintenance record system. Section III describes the process of analyzing the data. This includes the determination of the miles to failure for each component, the development of survival counts for each component, and the utilization of this information to determine failure probabilities as a function of mileage and the derivation of cumulative failure probability distributions. Section IV gives a summary and evaluation of the data developed in the analysis. Section V contains a discussion of the results and provides examples of the types of conclusions which may be drawn from the analysis of failure data. Finally, Section VI restates the procedure for extracting data from existing records, analyzing the data and evaluating maintenance intervals from the information obtained. This gives a basic outline of the procedures that are needed to implement the failure analysis methodology at other transit systems.
C. Overall Conclusions

The procedures and applications illustrated in the remainder of the report demonstrate that:

1. Standard bus maintenance record keeping procedures are compatible with the requirements of reliability analysis techniques.
2. The data needed are easy to extract from existing records.
3. The analytical methods required can be applied using widely available general purpose computer packages.
4. Graphical displays facilitate the analysis of the failure data.
5. The results of the analysis can provide insight into the appropriateness of existing or proposed maintenance policies.

II. Development of Data Base From Existing Maintenance Records

A. Background

The Alameda-Contra Costa Transit District, hereafter referred to as A/C Transit, operates a fleet of 813 buses in the Oakland, California area; most of the vehicles are $G M$ coaches. A / C transit routes provide service to three general areas. Routes run between Oakland and downtown San Francisco, Oakland and its surrounding suburbs, and Oakland and the Concord-Pleasant Hills area some 30 miles away.

The A/C transit district maintains buses at four divisions located in and around Oakland. Buses are assigned to a division and serviced at that division's garage. Exceptions to this would be major breakdowns while a bus was in service, in wich case the repair would be done at or by the nearest division.

A/C Transit inspects major components such as differentials, generators, starters, air compressors, blowers and brake valves and diaphragms on a regular basis according to prearranged guidelines (Table 1). These components are then changed as the foreman deems necessary. Inspections and repairs are also initiated by operator reports of obvious defects or possible problems which are discovered during the Operation of the bus.

After a foreman decides that the replacement of a component is necessary and the component is replaced, a Mechanical Department Work Report is filled out listing the bus number, the date of the repair, the unit or units replaced and the reasons(s) for the repair. This information is then transferred monthly to a bus maintenance history record along with the end-of-month mileage. It is from these bus histories that the data base for this project was developed.

B. Description of Data

Of the 813 buses in operation at A/C transit as of November, 1980, 263 were randomly selected for the study. All buses chosen were GMC V-6 Detroit diesels, models SDH-4501, TDH-5304, TDH-4516, TDH-5301, TDH-5305, TDH-4517, TDH-4519, T6H-4523 and T6H-5305. The information gathered for most buses covered five to ten years of operation, although 15 full bus histories were taken and 40 shorter two to three year histories were obtained.

Data concerning the replacement of 17 major components was obtained from these histories. These components are listed in Table 2. With the exception of engine work done under the major or semi-overhaul categories, all units are considered replaced in totality when they are reported on the bus history. Distinctions are not made as to whether the unit being replaced failed because of an internal defect, normal wear, or an accident; these could not be determined from these records. Also, no distinction is made as to whether a component is a new or rebuilt part.

Table 1
A/C Transtt Unit Exdiange Program

					-	Insp	tion	leages					Air		
							- -		Brake	Qulck	Brake	Brake	Change	Cotrp.	Shift
Vehicle								Seral-	Appl. Valve	Release	e Diaph-	Relay	Shutter-	Head	Gov-
Nurber	Hyd	Tra	Diff.	Gener.	Starter	Ait. Comp.	Blower				ragm				
100-179 (A/C	See	Noce	400,000	275,000	150.000	250,000	300,000	250.000	250,000	-	100.000	250,000	-	-	36,000
180-299		"	800.000	275.000	150,000	250,000	300,000	250,000	250,000	-	100.000	250,000	-	-	36,000
300-354	\cdots	\cdots	700.000	275.000	150.000	250,000	300,000	250,000	250,000	-	*100,000	250,000	-	-	36,000
400-4:9	\cdots	\cdots	400,000	275,000	150,000	250,000	300,000	250,000	250.000	-	100,000	250,000	-	-	36,000
500-:24	\square	"	400,000	275,000	150.000	250,000	300,000	250,000	250,000	-	100,000	250.000	-	-	36,000
625-550	น	\cdots	700,000	275,000	150.000	250.000	300,000	250,000	250.000	*	* 75,000	250,000	-	-	-
200-764	0	\cdots	450,000	275,000	150.000	250,000	300.000	250,000	250.000	*	* 100,000	250,000	-	-	36,000
765-559	"	\square	700.000	275,000	150.000	250,000	300.000	250,000	250.000	*	**100,000	250,000	-	-	36,000
825-864															
900-329	\square	\because	700,000	275.000	150,000	250,000	300.000	250.000	250,000	*	** 75.000	250,000	-	-	36.000
930-999	\cdots	"	700,000	275,000	150,000	250,000	300,000	250,000	250,000	-	100.000	250,000	-	-	36,000
3:c-77	\square	"	250.000	275,000	60,000	250,000	-	200.000	250,000	-	100.000	250.000	100,000	-	36,000
2000-2049	"	"	± 200.000	250,000	60,000	250,000	200,000	200,000	250,000	200,000	150,000	250,000	100,000	-	18,000
2100-2120	-	"	*200.090	250,000	60,000	250,000	200,000	200.000	250,000	-	100.000	250.000	100,000	-	18,000

NOTES

Hiere one brake diaphragm on an axle needs changing, always change the other diaphragm on the same axle.
Differentials will be changed only as required for leaking and nolsy.
**Coaches 330 thru 364 , 625 thru 680 and 780 thru 809 and 900 thru 929 have the Dn- 3 Brake diaphragms installed on rear uieels, and should be changed every 75,000 mlles.

The table above shows minimum unit mileages at which units on coaches should be thoroughly inspecfed and checked to determine if at this mileage the units should be removed for overhaul. After inspection, if it is thought possible to obtain additional mileage before overhaul without the possibility of damage to the unit, then the unit should be flagged for each additional major inspection, and again re-inspected thoroushly to see if the unit in question will be able to continue to run satisfactorily. It is during this high rileafe period that the Superintendent and his foremen must watch those units very closely. Should it be necessary to remove a unit for mileage unaer those indicated, the yellow defect tag shoula show in detail the reason therefore. Semi-overhauls should be based on engine mileage and performsnce.

The data obtained for each replacement of the 17 components under study was as follows:

1. The division to which the bus was assigned (2, 3, or 4).*
2. The bus identification number.
3. The date of replacement.
4. The mileage at the end of the month in which the unit was changed.
5. The unit which failed
6. The reason given for initiating the inspection which lead to the unit replacement.

The reasons for initiating an inspection were coded as follows:

1. Mileage - Routine check as per pre-arranged schedule
2. Operator - Operator initiated inspection stemming from problem encountered while bus was in use
3. Inspector - Mechanic initiated check
4. Breakdown/Road Call - Major breakdown requiring service on site.
5. NA - Information not available

III Analysis of Data

This section describes the procedures used for the initial analysis of the data. Detailed discussion of these results are in the following sections. The analysis was done using the Statistical Analysis System (SAS) Version 79.5.

A. Development of Failure Mileage

The basic items of interest in this study are the failure rate of each component and the functional relationship between the probability of failure for any given unit and the number of miles operated. Thus the main focus in the analysis of the data is the mileage that each unit attained before it was replaced because failure seemed likely or because the unit actually failed. For convenience, we will use the term "failed" interchangably with "replaced in anticipation of failure."

The miles to failure for each component was computed as follows. For each type of unit in each bus the incidents of failure were sorted in chronological order and the mileage for the first incident of failure was subtracted from the second, the second from the third and so on to determine the mileage between replacements. This convention is reasonable since A / C routinely inspects units both at set mileages and upon the basis of operator reports and closely monitors their performance. Thus any replacement is likely to indicate that the unit has reached or is about to reach the end of its useful life.

* Due to time and monetary constraints, information could not be obtained from division 6 which services 10% of A/C transit's fleet. We feel that this exclusion does not negatively affect the validity of the data or conclusions developed from it.

At this point, in order to facilitate analysis, the miles to failure were categorized into intervals of tens of thousands of miles. For example, if the miles to failure for one observation of a unit were 27,850 , then the interval in which it failed, which will now be referred to as its FI (or failure interval) value, would be:

$$
\frac{27850}{10000}=2.785 \quad \text { Rounding, FI }=3
$$

Because of the system of rounding employed, this FI value of 3 means that the unit failed (or was replaced) somewhere between 25,001 and 35,000 miles. Thus for all values of FI 0 , FI $\times 10000$ is the middle of the 10000 mile interval in which the unit was replaced or failed. ($F I=$ 0 indicates that the unit falled during the first 5,000 miles of operation).

One feature about this method should be mentioned: because of the record-keeping procedure, the mileages used to determine the miles to failure were the end-of-month mileages for the month in wich the unit failed. Thus the mileage at failure may differ somewhat from the end of month mileage. In the most extreme cases this difference, for a unit that failed at the beginning of the month, would be the average monthly mileage for that bus. This average monthly mileage for the buses studied ranged from 3000-4300 miles.

The frequency of a unit failing during a given interval can be meaningfully displayed in histograms (charts 1-17 in Appendix A) Most of these exhibit the characteristic properties of classic failure curves. That is, an initial period of high failure due to manufacturing defects is followed by a stable rate of failure due to random processes, with a marked increase in failures as the unit approaches its design limit and wear and tear begin to take their toll.

Exhibit 1 depicts a frequency bar chart for failures of the clutch. This chart is similar to chart 5 in Appendix A. The large number of failures in the $0-15,000$ mile interval probably represents the failures due to defects. Later failures represent the result of random failures.
B. Determination of Survival Counts

The analysis so far has centered on unit fallures and their frequencies. Much more meaningful information can be obtained from the probabilites of failure for each unit. In order to calculate these probabilities, however, the number of units surviving into and beyond the interval when a failure occurred has to be determined. This is particularly important when analyzing operational data because not all units operate to the point of failure. The following section describes the procedure used to determine the number of these surviving units.

First, for those buses for which full histories were obtained, a case representing replacement at zero miles was created for each unit.

This provided a starting point from which the 17 original units on the bus could be observed. This was necessary because bus records typically contain only instances of servicing and failure, not normal operation. For instance, if the differential on a bus was the original factory part Which had never failed, and its original installation or manufacture had not been noted, it would not be counted among the survivors.

The second step in determining the number of survivors and the mileage reached was to determine when a unit was replaced for the last time on a particular bus and to extrapolate, using the last available mileage (regardless of unit), the number of miles to which the unit had survived at the date of data collection. For each unit of each bus the last occurrence of a replacement was found. The corresponding mileage was then subtracted from the last mileage recorded for that bus. From the date of the mileage which corresponded to the last time the bus was being serviced, an estimate of the miles operated from that day to the day of data collection on April 30,1981 could be made. This was done by calculating the number of intervening days and multiplying by 133.33 miles/day. (This figure is that used by A / C transit as its daily average operating mileage for its entire fleet). A sample calculation illustrating this process is shown in Example 1 , Appendix D.

Through this process, the mileage and frequency distribution for the surviving units was obtained by the same method used for units that failed. These miles of survival have been categorized into intervals in exactly the same way that the miles to failure were categorized. The results of this process can be seen in Appendix B. Charts 1-17 in the Appendix represent the frequency of a unit surviving to that interval. Exhibit 2 is an example of the frequency bar chart for surviving clutches. This chart is similar to chart 5 in Appendix B.

C. Development of Failure Probabilities as a Function of Mileage

Using the frequencies of unit failure and unit survival the conditional failure probability distribtion functions for each of the 17 units can be determined. This probabilty of failure in any FI interval, given that the units survived into the interval, can be stated as:

$$
P\left(\text { failure } \mid M_{i} \leqslant x<M_{i+1}\right)=\frac{a}{a+b+c}=P(f \mid F I)
$$

where M_{i} and M_{i+1} are the mileage corresponding to the beginning and end of any interval FI . (For example if $\mathrm{FI}=1$ then $M_{i}=5000$ and $M_{i+1}=$ 15000); and
x is the miles that the unit has run
a is the number of failures in the M_{i} to M_{i+1} interval
b is the number of units which failed for $X \quad M_{i+1}$
c is the number of units which survived beyond the M_{1} M_{i+1} interval and which were never observed to fait.

Exhibit 2: Frequency Bar Chart for Surviving Clutches

The probability of a unit surviving to M_{i+1} given that it has not failed prior to M_{i} is $1-P(f \quad F I)$. These numbers can be found in tables $1-17$ of Appendix C. A complete example of this calculation can be found in Appendix D, Example 2. The complete results of these calculations for each unit are in Appendix C.
D. Development of Cumulative Failure Probability Functions.

The cumulative failure probabilty distribution function for each unit may now be determined from the above conditional distribution function.

Let:

$$
\begin{aligned}
P(f \quad F I) & =\text { Prob (Failure in interval FI given that } \\
& \text { the unit has survived to mileage FI), and } \\
P_{0} & =\text { Prob (failure in lst interval) }
\end{aligned}
$$

Then by simple probability theory,

$P_{i}=$	Prob (failure before or in the ith interval),
$=$	(Probabillty that the unit survived to
	interval 1) x (Probability that unit failed in
	interval 1) + (Probability unit failed before
	interval I)

Or

$$
P_{1}=\left(1-P_{i-1}\right) P(f \quad F I=1)+P_{i-1}
$$

These cumulative probabilities are listed in Appendix C, along with the conditional probabilities. A sample calculation is given in Appendix D, Example 3. Graphs $1-17$ of Appendix C give a visual representation of these cumulative probability functions.

Exhlbit 3 depicts the cumulative probability distribution function for clutches. As seen in the exhlbit the curve rises steeply between $0-60,000$ miles, levels off slightly between $60,000-170,000 \mathrm{miles}$ and gradually approaches 1 beyond 170,000 miles.

IV Discussion and Evaluation of the Data
This section contains detalled discussions of the results obtained from the analysis of the primary data. While the discussions put forth in this section center around A/C Transit, it should be noted that they are presented as examples of the types of conclusions which may be drawn from an application of the previously described analysis of maintenance data. The first subsection contains general comments about the quality of the data base and recommendations for improving record keeping procedures. The second subsection discusses the calculation of mean miles to failure and associated confidence intervals for each component. The third subsection contains an evaluation of the reliability of the failure probability density functions.

Cumulative Probability Distribution
:Function for Failure of Clutch

The overall quality and consistency of the data obtained from A/C Transit reflects well kept maintenance records. The data does show, however, some trends which may be indicative of scheduling or record keeping problems. While the rather random method of selecting buses for the study leads to a somewhat uneven distribution of the data among the three divisions and makes strict comparisons of maintenance actions with numbers of vehicles assigned to each division difficult, the relative proportion of work done on specific units at each division should be close to the overall percentage of the total work done at the division. As an example of this type of analysis, division 2 accounted for 43% of the observations in the data base. Division 2 was responsible for 54\% of all work done on differentials, 55% of the work done on air compressors, rear brake diaphragms, and front brakes, and only 32% of the rear brake work. Similar, but much less striking examples of this pattern can be found in Table 3 which shows the frequency of unit replacements by division, with the row percentages representing the proportion of unit replacements done at a particular division. The discrepancies noted may be caused by a lack of manpower or parts at one or more of the divisions, scheduling problems, or substantial differences in wear patterns between divisions; different terrain, route type and usage may also account for some of the discrepancies. Alternatively, record keeping variances may account for part of the apparently disproportionate work loads. These considerations are beyond the scope and purpose of this report, but should be considered as an area for further study.

An analysis of the reasons listed for work being done provides little useful information. As can be seen from the frequencies in Table 4 , those replacements which had no reason given accounted for 68% of all the observations. Much of the missing data results from the one year retention period assigned to defect records, and the separation of bus cards and unit room records. Another explanation may be ambiguity about procedures. For example, if a driver informs a mechanic of a possible problem and during the course of investigating the complaint several parts are found to need replacement, it is unclear what reason should be listed for their replacement: operator initiated? or inspection? These questions too are beyond our current purpose of illustrating procedures for developing component failure statistics.

B. Mean Miles to Failure and Confidence Intervals

Table 5 displays the mean, standard deviation, variance, and number of observed failures for each of the 17 components being studied. Since the chances of a unit failing at exactly this estimated mean are close to zero, a more useful statistic, which can be derived from the information in Table 5, is the confidence interval. The confidence interval, as the name implies, is an interval centered around an estimated mean which has a known probability of including the true population mean. Using the assumption that the failures would be normally distributed if a large enough sample could be obtained, a 95% confidence interval was constructed for each component. That is, assuming normality, there is a .95 probability that the interval

Table 3
Frequency of Dait
Beplacement by Division

FREQUEMCY PERCENT ROW PCT COLUN PCT	Division			TOTAL
	$\overline{2}$	3	4	
	UNIT			
I Major Overtaul	32	32	7	71
	0.33	0.33	0.07	0.72
	45.07	45.07	9.86	
	0.78	0.91	0.33	
2 Semi Ovechan 1	108	56	29	193
	1.10	0.57	0.30	1.97
	55.9	29.02	15.03	
	2.57	1.50	1.38	
3 Differential	42	30	6	78
	0.43	0.31	0.06	0.80
	53.85	38.46	7.69	
	1.00	0.86	0.29	
4 Transmission	200	212	79	491
	2.04	2.16	0.81	5.01
	40.73	43.18	16.09	
	4.77	6.05	3.77	
5 Clutch	360	310	165	835
	3.67	3.16	1.68	8.52
	43.11	37.13	19.76	
	8.58	8.84	7.86	
6 Starter	267	238	85	590
	2.72	2.43	0.87	5.02
	45.25	40.34	14.41	
	6.36	6.79	4.05	
7 Generator	164	111	66	341
	1.67	1.13	0.67	3.48
	48.09	32.55	19.35	
	3.91	3.17	3.15	
8 slover	140	94	31	265
	1.43	0.96	0.32	2.70
	52.83	35.47	11.70	
	3.34	2.68	1.48	
-				
9 Alf Compreacor	173	87	52	312
	1.77	0.89	0.53	3.18
	55.45	27.88	16.67	
	4.12	2.48	2.48	
TO Pront Brake D1aphrage	245	129	99	474
	2.01	1.32	1.01	4.84
	51.90	27.22	20.89	
	5.86	3.68	4.72	
II Rear BrakeDiaphraga	302	148	98	548
	3.08	1.51	1.00	5.59
	55.11	27.01	17.88	
	7.20	4.22	4.67	
12 Brake Applicator Value	121	55	45	221
	1.23	0.56	0.46	2.26
	54.75	24.89	20.35	
	2.88	1.57	2.14	
$\begin{gathered} \hline 13 \text { Brake Relay } \\ \text { Value } \end{gathered}$	89	52	42	133
	0.91	0.53	0.43	1.87
	8.63	28.42	22.95	
	2.12	1.48	2.00	
$\begin{aligned} & 14 \begin{array}{c} \text { Right Front } \\ \text { Brake } \end{array} \end{aligned}$	315	154	102	571
	3.21	1.57	1.04	5.83
	55.17	25.97	17.86	
	7.51	4.39	4.86	
15 Left Froat Brake	313	154	102	569
	3.19	1.57	1.04	5.81
	55.01	27.07	17.9	
	7.46	4.39	4.85	
$\begin{gathered} \overline{16 \text { Bight Rear }} \begin{array}{c} \text { Brake } \end{array} \\ \hline \end{gathered}$	659	820	542	2021
	3.19	1.57	1.04	20.52
	55.01	27.07	17.93	
	7.45	4.39	4.85	
17 Left Rear Brake	665	824	548	2037
	6.79	8.41	5.59	20.79
	32.65	40.45	25.90	
	15.85	23.50	26.12	
TOTAL	4196	3506	2098	9800
	42.82	35.78	21.41	100.00

Frequency of Unit Replacemat
by Reacon fot Rep lecement

Table 5
Component Failure Statistics

* Many of the vehicle histories indicated that overhauls and differential replacements had not occured. The mean values for these two systems, therefore, should not be viewed as descriptive of the entire fleet of vehicles
** Front and rear brakes are changed in pairs; discrepancies may be due to sample variations.
contains the true population mean. These intervals are listed in Table 5. Sample calculations and formulae used are given in Example 4 of Appendix D.
C. Evaluation of the Probability Distribution Functions for Component Failures

Two items should be noted with regard to the probability distribution functions whose derivation was discussed in section III D. The limited number of observed failures for major overhauls and differentials, 20 and 31 respectively, provide inadequate samples with Which to derive a complete probability distribution. These components are discussed in qualitative terms throughout this discussion. Any quantitative use of this information should be discouraged since the failure probability distributions are not complete.

The second point which should be noted is that several of the cumulative distribution functions for the failure of a component do not reach the value of 1 which would be expected. The reason for this is twofold. First, convergence to 1 is only assured as the running time of each component approaches infinity. While most of the components have sample sizes large enough for relatively accurate estimations of their probabilities of failure, they have not necessarily been run long enough to guarantee convergence of the probability distribution to 1.0 . Secondly, although the time frame covered in the data that is used in this report is a large one, averaging ten years per bus, it is by no means large enough to extend beyond the life of the odd component that far exceeds.its expected performance. The occasional component that survives far beyond its expected lifetime because of a fortuitous combination of manufacturing, operation, and routine maintenance conditions would be observed on the extreme right of the cumulative probability curves if enough data over an extended time period could be obtained. An example of this can be seen in graph 5, Appendix C in one clutch that was reported to have run almost a miliion miles before failure. This extends the graph substantially beyond the point where approximately 97% of the clutches would already have failed. Extreme cases such as this should be viewed suspiciously since inaccurate records may fail to note a replacement and thus generate a "supercomponent". In all other cases these extreme lifetimes have been omitted from the graphs but can be found in the tables listing the probabilities of failure by intervals which are also in Appendix C.

V. Examples of Use of the Results in Analysis of Management Decision

This section of the report provides examples of the types of conclusions which may be drawn from results previously described and their implications with regard to inspection schedules.

A. Evaluation of Current Intervals

One way to use the data from the previous analysis in conjunction with currently existing maintenance guidelines is illustrated in Table 6 . Table 6 lists ten of the seventeen components under study. These are the ten components for which A / C transit currently has specified minimum unit mileages to inspection and/or replacement. The mileages, listed

Table 6
Comparison of Probabilities of Failure With Existing Inspection Guidelines

Component	A/C	corresponding	cumulative
	minimum miles to	FI	failure
	initial inspection*	value	probability
Semi Overhaul	250,000	25	0.5695
Differential	400,000-700,000**	40-20	
Starter	150,000	15	0.7749
Generator	275,000	27	0.8650
Blower	300,000	30	0.8211
Air Compressor	250,000	25	0.8362
Front Brake Diaphragm	100,000	10	0.6119
Rear Brake Diaphragm	75,000	7	0.5469
Brake Applicator Valve	250,000	25	0.8120
Brake Relay Valve	250,000	25	0.6807
*See Table l Section II			
** Varies by model			
** The cumulative proba This component is on	iity differential fa changed upon failur	ilure is 0.661 e.	$350,000 \text { miles }$

for each component, are taken from Table ($1 \mathrm{~A} / \mathrm{C}$ Transit's unit change table). Table 6 also includes the cumulative probability of failure before or in the interval FI that correspond to the minimum inspection/replacement mileage set by A / C transit. Comparison of these values by component suggests that the mileages specified by A/C Transit for the inspection of their units may be too high in some cases in light of the maintenance history of the fleet.

Specifically, the minimum miles indicated for the inspection of the generator, air compressor, brake applicator value, and blower coincide with $.86, .84, .81$, and .82 probabilities of failure at or before the minimum inspection/replacement mileage, respectively. The $150,000 \mathrm{mile}$ figure for the starter corresponds to a cumulative probability of failure of .77. Thus, according to the A / C schedule, the first inspections of these parts occur after $77-86 \%$ of them have already failed.

The mileages for the brake relay valve, front brake diaphragm, and semi-overhaul, which correspond to $.68, .61$, and .57 cumulative failure probabilities, respectively, represent slightly better assumptions about the lifetime mileage of these components, but even these figures indicate that the parts may not be inspected until more than half have failed. The mileages indicated for the inspection of the differential, namely the $400,000-700,000$ range, vary by bus model. The small number of observed differential failures make quantifiable comparisons tenuous. It does appear, however, that these mileage figures may also be overestimated since the mean miles to fallure for the limited observed sample was 169,000 , less than one half of the lowest mileage listed in the exchange table.

The mileage indicated for the inspection of the rear brake diaphragms is supported by historical data. The 75,000 mile figure corresponds to a .55 cumulative probability of failure. Thus, assuming that inspection should be undertaken when the probability of a unit failing is approximately between . 3 and . 5 , the figure appears fairly accurate.

The interpretive process can be facilitated by graphical presentation of the data. For example, Exhibit 4 shows the cumulative probability of fallure for starters as a function of mileage, along with the current inspection interval. The graphical display indicates that the current inspection schedule is associated with a . 77 likelihood of failure before inspection. Management might choose to alter its inspection policy in light of this result if starter fallures are particularly troublesome.

B. Using Failure Probability to Set Intervals

The cumulative failure probabilities just mentioned can be used to set service intervals directly. This method is based on using the cumulative probability of failure as a basis for determining an optimal mileage interval for the inspection of components. This method could be used to check existing inspection standards or to develop new guidelines.

The probabilities of failure used to determine the inspection intervals will vary between systems depending on the resources, failure modes, management policies, and assumptions made about the system under consideration. A . 3 to . 5 probability of failure was used for illus-

EXHIBIT 4
USE OF CUMULATIVE FAILURE GRAPHS TO EVALUATE INSPECTION TARGETS

trative purposes under the assumption that the initial inspection of a part and its possible replacement should be carried out before the probability of failure reaches 0.5. This is reasonable if the main reasons for inspecting units are safety and preventive maintenance in order to avoid breakdowns and excessive overtime of maintenance crews.

What constitutes a reasonable criterion depends on how critical the $u_{n}{ }^{i t}$ is to the operation of the system. This probability should also be high enough to justify the inspection costs and the possible replacement costs of the unit. These costs for A/C transit were not available at the time of this study. While the target value may vary for some of the units in this study, the .3 probability of failure was chosen as an illustrative value. This is not to say that it is a definitive criterion at wich inspections should begin; rather it is a reasonable starting point.

Once the probabilities for the inspection intervals are decided, the mileages for inspection may be determined from the graphs of the cumulative probabilities of failure for each component. These mileages can be read directly from the graphs, given the probabilities desired. This is illustrated with reference to starters in Exhibit 5. This Figure again shows the cumulative failure probability function, but this time emphasis is given to the mileages associated with the . 3 and . 5 probability of failure. These indicate that a $85,000-110,000$ starter inspection mileage window would be used under a policy calling for inspection at the stated cumulative failure probabilities. Table 7 gives an example of the type of inspection guideline which may be developed from this method of maintenance data analysis. The intervals shown represent the mileages at which $30-50 \%$ of the units are expected to have failed. For an effective preventive maintenance program, based on the previous assumptions and on the historical data from A/C Transit, the initial inspection of the various units should occur at or near the beginning of the interval and definitely before the upper bound is reached. Due to the lack of information available, no recommendations can be given for major overhauls and differentials. In the case of differentials, however, inspections may be required at more frequent intervals than those stated on the unit change table.

C. Use of Data to Analyze Cost-Failure Tradeoffs

A third use of the failure distributions is the setting of cost-effective service policies which specifically take into account the costs, both monetary and demand related, of breakdown vs. preventive maintenance. This requires consideration of manpower availability, component and labor costs, and peak hour requirements as well as failure data. The approach has been documented by Herniter et al (1977) and analyzed by Foerster et al (1981) in prior work. The major problem with the technique was found to be failure data availability. The procedures used for keeping records at A / C Transit and the methods for developing the needed failure distributions discussed in this report suggest that the method can be operationalized easily and without the need for additional recordkeeping activities.

USE OF CUMULATIVE FAILURE GRAPH TO SET INSPECTION TARGETS

TABLE 7
Example of Recommended Mileage Intervals with Associated Cumulative Probabilities of Failure Between . 3 and . 5

	Recommended Inspection Interval (miles)	Cumulative of	Probability Component
Semi Overhaul	$190,000-220,000$.31	-.45
*Transmission	$60,000-95,000$.33	-.48
*C1utch	$30,000-50,000$.36	-.49
Starter	$80,000-110,000$.32	-.51
Generator	$80,000-150,000$.34	-.51
Blower	$120,000-170,000$.34	-.48
Air Compressor	$110,000-160,000$.33	-.46
Front Brake Diaphragm	$80,000-95,000$.33	-.48
Rear Brake Diaphragm	$50,000-60,000$.30	-.51
Brake Applicator Valve	$80,000-140,000$.28	-.43
Brake Relay Valve	$180,000-230,000$.31	-.46
* Right Front Brake	$40,000-60,000$.30	-.49
* Left Front Brake	$40,000-60,000$.30	-.49
* Right Rear Brake	$10,000-15,000$.41	-.51
* Left Rear Brake	$10,000-15,000$.41	-.51
* = changed and inspected as needed under current policy			

V Guidelines for Implementation

Implementation of the methods used in this report is relatively simple, following the steps as outlined in the preceeding sections. A summary of these steps follows.

A. Data Base Selection

The quality of the data base will be a key factor that determines the reliability of the conclusions formed by this analysis. The following points should be considered in selecting a data base.

1. The data base should cover a time span sufficiently large enough to insure the replacement of most of the units under consideration in the majority of buses surveyed.
2. The data base should be built upon a reliable maintenance record keeping system. The information needed to follow the procedures given in this report include a bus identification number, date of replacement, unit replaced, and mileage either at replacement or at the end of the month in wich the unit was replaced, the former being preferable. Information regarding place of maintenance and reason for maintenance should be included if general trends in maintenance scheduling are of interest.
3. The date base should contain information taken from buses which are relatively representative of the entire fleet. That is, the buses surveyed should not be exclusively from any one geographic or division of the system but should be selected randomly on a system-wide basis.

B. Development of Failure Curves

The initial analysis of the data may be done using any standard statistical analysis package that has sorting, recoding, variable-lagging, and new record creation capabilities. The steps required are the same regardless of the package used. These steps are:

1. Historical starting points are created for all units in buses for which full maintenance histories have been obtained. These starting points consist of a record of replacement at zero mileage in order to take into account the original equipment on the buses.
2. Determine how many miles each observed unit ran before failure or replacement occurred. This is done by sorting the data by bus number, then by unit within each bus, then by ascending mileage within each unit. The miles to failure can then be obtained by calculating the differences in the mileage between the replacements of units as discussed in section 3 A.
3. After the miles to failure for each observation have been determined, the mean miles to failure for each component, the number of observations for each unit, and the standard deviation are calculated.
4. The observed miles to failure are categorized into intervals of 10,000 miles by dividing the miles to failure for each observation by 10,000 . A consistent method of rounding should be used so that all observations may be placed in an integer interval.
5. The frequency of observations within each interval is then determined for each unit under consideration.
6. Next, the number of surviving units observed and the miles they survived are determined. This is accomplished by calculating the difference between the mileage of the last observation of a unit on a bus and the last mileage recorded for the bus and adding the estimated miles the bus was run between the last recorded mileage and the time of data collection as shown in example 1 appendix D.
7. The survival mileages are then categorized into 10,000 mile intervals as in step 4.
8. The frequencies of observations of surviving units within each interval are then determined for each unit.
9. A 95% confidence interval for the mean miles to failure is constructed for each unit. showing less than 1% * of survivors in the top mileage category as described in example 4 of appendix D.
10. The conditional probability distribution function for each unit is then calculated for each 10,000 mile interval. This is done by dividing the number of units which failed in an interval by this number plus the number of units which survived past this interval plus the number of units which failed after this interval. This follows the sample calculation in example 2 of Appendix D.
11. The cumulative probability distribution functions for each unit can then be determined from the probabilities calculated in step 10. A sample calculation of this is given in Example 3 of Appendix D.
[^0]
C. Determination of Maintenance Intervals

The determination of mileage intervals at which specified maintenance inspections andor replacement should occur is currently a rather hueristic process involving managerial judgement with respect to the optimal balance of acceptable probability of failure and the cost of servicing the vehicles. The steps described below give the information necessary to compare different inspection mileages and the associated cumulative probabilities of failure at or before the inspection target. It is left to the individual to determine the acceptable probability interval that will be used to find the mileage recommendations, but the data derived from the failure analysis can influence this decision. The steps necessary to obtain the comparisons are as follows:

1. The currently used standards should be checked for reasonableness. This can be done by finding the cumulative probability of fallure of each unit under currently used inspection guidelines. If these probabilities of failure seem unreasonably high for first inspections, then this process should be continued to determine new intervals. If the inspection mileages
accurately reflect the operational goals of the system, then no further analysis is required.
2. If acceptable probabilities of failure are not found in the above step, then candidate mileage intervals may be determined by deciding on acceptable probabilities of failure and working backwards from the cumulative probability distribution functions for each unit to find the corresponding inspection mileage.
3. If time estimates and cost data are available, true cost-minimizing solutions can be found using suitable computer programs.

Bibliography

Foerster, J. F. Miller, F., and Muthukumaran, N. Implementing Cost Effective Service Interval Planning Methods for Bus Transit Vehicles: A Case Study, University of Illinois-Chicago Circle, 1981.

Herniter, J. D., Rosenthal, S. R., and Wellan, V. P. The Development of a Computer System for the Cost-Effective Maintenance of Rail Equipment in Urban Mass Transit Systems, USDOT Report No. UMTA-MA-11-0027, 1977.

Lindyren, Bennard W. Statistical Theory. 3rd ed. New York: MacMillan Publishing Co., Inc., 1968.

Mayer, Raymond R. Production and Operations Management. 3rd ed. New York: McGraw - Hill Book Co., 1971.

Maynard, H. B. ed. Industrial Engineering Handbook 3rd ed. New York: McGraw - Hill Book Co., 1971.

Morlok, Edward K. Introduction to Transportation Engineering and Planning. New York: McGraw - Hill Book Co., 1978.

Springer, C. H., Herliky, R. E., Mall, R. T., and Beggs, R. I. Statistical Inference. Homewood: Richard D. Irwing Inc., 1966.

Appendix A
Frequency of Eailures

Each of the seventeen graphs in this Appendix presents the number of components failing in a particular FI (failure interval). The midpoint indicated on the graphs is the middle of the 10,000 mile interval in wich the units failed. For instance if the midpoint of an interval containing five failures is listed as 40 , this indicates that the five units failed between 395,000 and 405,000 miles.

AIR COMPRESSOR FAILURES

REAR RRAKE DIAPHRAM FAILURES

FRONT BRAKE DIAPHRAM
FAILURES

BRAKE APPLICATOR VALVE FAILURES

REAR BRAKES FAILURES

Appendix B Survivor Frequency

The following graphs indicate the number of vehicle components which had reached mileages associated with the listed FI intervals at the time of data collection without experiencing failure.

REAR BRAKES


```
Appendix C
    Probability Distribution Functions for the
    Failure of units in any given interval and
    Cumulative Probability Distribution Functions
        for the Failure of units before or in a given
        interval.
    The following abbreviations are used throughout this Appendix.
    FI = mileage interval midpoint ( x 104)
P (f|FI) = Probability of failure in interval FI given that
    the unit survived to interval FI.
    P}=|\mathrm{ Probability of unit failure in or before interval
    FI; cumulative probabilities.
    A = # of units that failed in FI
    B = # of units that failed after FI
C = # of units that survived beyond FI and
    were near observed to fail.
Note: Vertical lines indicate threshold mileages for components routinely inspected by \(A / C\) Transit
```


Unit 5
Cumulative Probability Distribution Function for Failure of Clutch

Cumulative Probability Distribution Function

Cumulative Probability Distribution Function

Cumulative Probability Distribution Function for Failure of Brake Relay Valve

Cumulative Probability Distribution Function

Cumulative Probability Distribution Function for Failure of Left Front Brake

Appendix D

Sample Calculations

Sample Calculation of mileage accumulated by surviving unit.

```
bus #107 Unit - transmission
```

month, day and year of last transmission replacement	$10-8-80$
mileage at last transmission replacement	$1,239,271=M_{t}$

month, day and year of last replacement of any kind $\quad 3 / 14 / 81=M_{L}, D_{L}, Y_{L}$
mileage of last replacement of any kind
$1,262,324=M_{A}$
$\begin{array}{lll}\text { date of data collection } & 4 / 30 / 81 \\ \text { average miles /day } & = & 133.3\end{array}$
miles last transmission replacement has survived $=$
$M_{A}-M_{t}+133.3\left(\left(81-Y_{L}\right) \times 365+\left(4-M_{L}\right) \times 30+\left(30-D_{L}\right)\right)=$
$1,262,324-1,239,271+133.3((81-81) \times 365+((4-3) \times 30)+(30-14))=29184$

```
Sample calculation of conditional probability distribution function for the
failure of a unit in an interval FI.
Unit 5 - Clutch
FI = 5 interval = 45,000-55,000
a=50 (from graph 4 appendix C, failures in interval 5)
b = 224 (from graph 4 appendix C, sum of failures in intervals FI 6.)
c = 150 (from graph 4 appendix C, sum of surviving units in intervals 5.)
P (failure in interval 5 unit survived to interval 5)
=P(f|5)= a_ 50 = 0.1179
    a + b + c 50+224+150
```


Example 3

Sample calculation of cumulative probability distribution function for the failure of a unit before or in interval FI.

Unit 5 - Clutch
$1=5$
$P(f \mid F=5)=0.1179$

$P_{1}=\left(1-P_{i-1}\right) P(f \mid F=i)+P_{i-1}$
$P_{5}=(1-0.4237)(0.1179)+0.4237$
$=0.4917$

Sample calculation of confidence interval
For further information on the construction and derivation of confidence intervals particularly as illustrated below please see Satistical Inference by Springer, Herliky, Mall, and Beggs. Richard D. Irwin Inc. 1966.

Unit 4 - transmission
mean $=\mathbf{~} \quad 86,499.9$
standard deviation $=\quad=84,617.4$
number of observations $=302$
the limits of a confidence interval are defined as

$$
\begin{equation*}
L= \pm Z_{p}(\sigma / n) \tag{1}
\end{equation*}
$$

where Z_{p} is the standard normal variable for which the probability of Z less than Z_{p} is p. Thus for a 95% confidence interval (1) becomes $\mathrm{L}= \pm 1.96(\sigma / \mathrm{n})$
since $Z .025=Z .975=1.96$
from (2) and previous information the 95% confidence interval for mean miles to transmission failure is

$$
86,499.9 \pm 1.96 \frac{(84,617.4)}{302}
$$

or ($76,956-96,043$)

[^0]: *chosen to represent an arbitrarily small number

