
HE
t-47.6
.S97
v.3

U.S. Department
of Transportation

March 1983

S.C.R.T .D. LIBRARY

Systan's Macro·
Analytic Regionwide
Transportation Model

Program Maintenance
Manual

- • - -~ • _;,.:;... - oJ .

..;.. :::-_;~-.:- · ·- ~ :. -·-

. .

. ' ' c.• .· - -...::.· CC\

.. ' :-,,::,."· ' - _:;:.. ·_ -- ~
. . . '•.

.....

v -:J

S.C.R.T.D. LIBRARY

Systan's Macro-Analytic
Regionwide Transportation
Model: Program
Maintenance Model

Final Report
March 1983

Prepared by
Andy Canfield and Wei-Yue Lim
Systan, Inc.
343 Second Street
Los Altos, California 94022

Prepared for
Office of Technical Assistance
Urban Mass Transportation Administration
Washington, D.C. 20590

and

Office of Technology and Planning Assistance
Office of the Secretary of Transportation
Washington, D.C. 20590

DOT-I-83-59

05 800

HE
147+6
.S97
v . 3

PREFACE

SYSTAN's Macro-Analytic Regionwide Transportation (SMART) model is a
sketch planning tool for evaluating public transportation alternatives
for metropolitan areas. The model and its doc~entation were developed
as part of the Paratransit Integration Program sponsored by the Office
of Bus and Paratransit Technology and the Urban Mass Transportation
Administration and by the Office of Technology and Planning Assistance
of the Office of the Secretary of Transportation. The Paratransit Inte­
gration Program is concerned with the development and application 0f
macro-analytic techniques for policy and preliminary planning at the
local level.

The SMART model documentation consists of three volumes:

Application Manual: This report describes the use of the model
to formulate, evaluate, and compare public transit options for
urban regions. It discusses the structure of the model and the
purpose of each major component. It also includes detailed applica­
tion information for four case studies. The document is designed
for use by transit planners who must assess the suitability of
the model and, if appropriate, use it to investigate urban trans­
portation alternatives.

User's Guide: This document focuses on the preparation and for­
matting of data for use in the model. Examples are presented,
and error messages are explained. T~e doc~ent builds on material
in the Applications Manual and is required to run the SMART com­
puter program.

Program Maintenance Manual: This manual describes the internal
structure of the computer program, including module structure
and linkage and data structures. It includes material on installa­
tion and on potential model alterations. Written for the skilled
FORTRAN programmer, each installation of the SMART model computer
program should have at least one copy of this manual.

The SMART computer program was written by Andrew J. Canfield. Site
applications were performed by Carolyn Fratessa and Dr. Wei-Yue Lim.
All work was performed under the di~ection of Dr. Paul S. Jones. SYSTAN
gratefully acknowledges the technical and administrative guidance and
support of Edward Neigut and Michael Markowski of UMTA. Many other
UMTA and DOT staff members have given freely of their time and skill
to offer valuable input to the work. However, SYSTAN is solely respon­
sible for the results.

iii

CONTENTS

PREFACE . .

1. INTRODUCTION

Notes on the Contents
System Summary

2. DATA STRUCTURES .

CED.PARAMETERS (CBDPRM)
DEMAND
DOOR.TO.DOOR.PARAMETERS (DORPRM)
DEMAND.PARAMETERS (DPARM)
DUMPER.PARAMETERS (DPRPRM)
FEEDER.PARAMETERS (FDRPRM)
FIXED
FRITZ
INPUT.RECORD (INREC) . .
INPUT.OUTPUT.CONTROLS (IOCON)
LINKER.PARAMETERS (LKRPRM)
MODE.DEFINITIONS (MODDEF)
MODES.SELECTED (MODSEL)
RESULTS (RESULT) . . .
SHORTEST.ROUTES (ROUTES) .
URBAN.DEFAULT (UDEFLT) .
URBAN.STRUCTURE (USTRUC)
Standard Indexes

3. PROGRAM STRUCTURE .

Urban Structure Subsystem
Demand Subsystem
FEEDER Subsystem
DUMPER Subsystem
CBD Subsystem
LINKER Subsystem
DOOR.TO.DOOR Subsystem .
REGION Subsystem
Results Printing Subsystem

4. MACHINE INDEPENDENCE AND INSTALLATION

Extensions to FORTRAN-66 .

V

. iii

1-1

1- 1
1-1

2-1

2-4
2-5
2-6
2-7
2-8
2-9

2-10
2-12
2-13
2-14
2-15
2-16
2-18
2-21
2-22
2-24
2-26
2-29

3-1

3-1
3-4
3-6
3-8
3-8

3-11
3-11
3-14
3-16

4-1

4-1

Specific Violations of FORTRAN-66
Program Size
Accuracy

5. PROGRAM ALTERATIONS

Defaults
Size Limits
Module Replacements
Modal Analysis Modules
Demand Generation
LINKER Express Status Determination
Adding Mode Types
Adding Modal Parameters

APPENDIX A. INDIVIDUAL MODULE DESCRIPTIONS .

APPENDIX B. MODULE CROSS-REFERENCE ..

APPENDIX C. DATA STRUCTURE REFERENCES

vi

4-2
4-3
4-3

5-1

5-1
5-1
5-4
5-5
5-6
5-7
5-7
5-8

A-1

B-1

C-1

LIST OF EXHIBITS

Figure

2 .1. PRINCIPAL INFORMATION PATHS

3 .1. PROGRAM STRUCTURE SYMBOLS

3.2. URBAN STRUCTURE SUBSYSTEM

3 .3. DEMAND SUBSYSTEM.

3.4. FEEDER SUBSYSTEM

3. 5. DUMPER SUBSYSTEM

3 .6. CBD SUBSYSTEM

3.7. LINKER SUBSYSTEM

3 .8. DOOR.TO.DOOR SUBSYSTEM

3.9. REGION SUBSYSTEM

3.10. RESULTS PRINTING SUBSYSTEM

vii

~

2-3

3-2

3-3

3-5

3-7

3-9

. 3-10

3-12

• 3-13

3-15

.. 3-17

1. INTRODUCTION

1.1 NOTES ON THE CONTENTS

The variabl es, modules and data structures used in SMART are
identified in two different ways. The first is a title which is
unrestricted in length, and which may contain capital letters, periods
and question marks. This title is chosen to reflect the contents of the
variable or data structure or the function of the module. Thus
HAVE.DEMAND.ALREADY? is a logical variable which, if set to .TRUE.,
indicates that demand matrices have been generated and do not need to be
recomputed. DOOR.TO.DOOR.RUN is a subroutine that performs a
door-to-door analysis between two zones based on a user card request.
FORTRAN, however, cannot accept names of this type, so abbreviatons are
usually needed in the program. The actual FORTRAN name for the variable
HAVE.DEMAND.ALREADY? is HDEMND and for the subroutine DOOR.TO.DOOR.RUN
is DORRUN. In this document, both names will usually be given to
identify the item, first the title and then, in parentheses, the FORTRAN
name; for example, FEEDER.HEADINGS (FDRHED). When the title and FORTRAN
name are the same (as for the data structure DEMAND) the FORTRAN name
will not be repeated in parentheses. Occasionally only the FORTRAN name
is given.

1.2 SYSTEM SUMMARY

The following analytical routines are the core of the program:

1. FEEDER block;

2. LINKER block;

3. DUMPER block;

4. CBD block;

5. DOOR.TO.DOOR (DOOR) block; and

6. REGIONWIDE (REGI ON) block.

To supplement these, there are several supporting blocks:

7. The urban structure operations, including modules which load the
default network, modify the structure based on card input, and
generate basic data such as shortest routes when needed.

1-1

8. Travel demand modules load and adjust demand parameters, create
demand through generation or reading a file, and alter demand
data in response to overriding user specifications.

9. Mode maintenance routines select tr3vel modes for analysis and
alter selected or default parameters.

10. Print results.

Overall program control is maintained by
SMART.MAIN.PROGRAM (SMARTAJC) . This module is the main program, and
operates primarily by repetitively reading a keyword card from the input
stream and then calling the appropriate subroutine to handle it. In
some instances, where the task to be performed is relatively simple,
SMART .MAIN. PROGRAM (SMARTAJC) its elf performs the requested operation,
such as altering a model parameter.

Each analysis block operates in the following manner:

1. All information on the keyword card is checked for completeness
and correctness; analysis is suppressed if errors have been
encountered, either in this card or in some preceeding card.

2. Appropriate transport modes are selected by default if they have
not not already been selected.

3. The selected transport modes are modeled and performance measures
are calculated;

4. Results are combined by direction and printed.

Generally, card checking and result reporting are performed by one
module, mode selection by another routine, and modal analysis by several
modules, one for each distinct transport mode.

1-2

2. DATA STRUCTURES

SMART uses 17 common blocks to control its data. This chapter
gives the details on these data structures, and on the standard indexes
used in SMART. The common blocks may be catagorized as follows:

1. Urban Structure:

a) URBAN.DEFAULT (UDEFLT) - default structure data

b) URBAN.STRUCTURE (USTRUC-) - structure description

c) SHORTEST.ROUTES (ROUTES) - node-to-node routes

2. Travel modes:

a) MODE.DEFINITIONS (MODDEF) - mode type descriptions

b) MODES.SELECTED (MODSEL) - selected mode descriptions

3. Demand:

a) DEMAND.PARAMETERS (DPARM) - demand generator controls

b) DEMAND - actual demand on system

4. Analysis options - These structures are used mostly to pass
information from the controlling RUN routine to the results
printing HEADING routine. They are:

5.

a) FEEDER.PARAMETERS (FDRPRM)

b) LINKER.PARAMETERS (LKRPI"1)

c) DUMPER.PARAMETERS (DPRPRM)

d) CBD.PARAMETERS (CBDPRM)

e) DOOR.TO.DOOR.PARAMETERS (DORPRM)

Other data structures:

a) INPUT.OUTPUT.CONTOLS (IOCON) - contains I / O units, etc.

b) INPUT.RECORD (INREC) - contains the keyword and fields from
the current keyword control card.

2-1

c) FIXED - named program constants which cannot be changed by the
user.

d) FRITZ - miscellaneous parameters, such as transit mode shares.

e) RESULT - mode l results

Exhibit 2.1 shows the major paths that information takes through
the data structures of SMART. For example, INPUT.RECORD (INREC) can
affect URBAN.DEFAULT (UDEFLT) . URBAN.DEFAULT (UDEFLT) does not directly
influence RESULTS (RESULT) . However, its current values are used in
filling in the URBAN.STRUCTURE (USTRUC) block. The values in
URBAN.STRUCTURE (USTRUC) are basically what is written into the archive
files when a PUTNET card is encountered. As you can see from the
diagram, the urban structure description affects almost everything in
SMART.

2-2

IN l'<-E C

EX HIBIT 2.1

PP TNrIPAL 11'-'F ClP l\l'A nrn,1 PA Tl-lS

l lDE FL T

-----~
t lSTPt lr·

ROl lTES

2-3

FIX ED

FRIT7

MODD EF

MODSEL

ARC HIVE
F IU: S

CBDPRM

DPRPRM

DORPRM

FDRPRM

LKRPRM

n EMAND r------------

RESULT

2.1 CBD.PARAMETERS (CBDPRM)

This data structure contains the following parameters for the CBD
analysis:

CBD.ZONE (CBDZON) (integer)

WALK.DISTANCE.FOR.AUTO (CWDATO) (real)
WALK.DISTANCE.FOR.CARPOOL (CWDCPL) (real)

The FORTRAN COMMON block definition is:

C DATA STRUCTURE CBDPRM AS OF 07 / 12 / 79
COMMON/ CBDPRM / CBDZON, CWDATO, CWDCPL
REAL CWDATO, CWDCPL
INTEGER CBDZON

C DATA STRUCTURE CBDPRM END

2-4

2.2 DEMAND

This data structure contains the system demand which SMART will
model. All the demand-producing code exists only to fill DEMAND. The
DEMAND data structure contains:

HAVE.DE!v'.AND.P.LREADY? (HDEMND) (logical)

For each time period,

Fo~ each direction (l=out,2=in) ,
For each zone,

RESIDENTIAL.VOLUME (VRES(TIME,DIR,ZONE)) (real)
ACTIVITY.CENTER.VOLUME (VACT(TIME,DIR,ZONE)) (real)

For each origin node,
For each destination node,

TRIP.VOLUME (ODM(TIME,NODE1,NODE2)) (real)

For each Direction,
on each link,

AUTO.TRAFFIC.VOLUME (TRAFIC(TIME,DIR,LINK)) (real)
(assuming 0% transit mode share)

For each Linker mode catagory,
(assuming 100% transit mode share)

TRANSIT.TRAFFIC.VOLUME (TRANLD(TIME,DIR,LINK,MCAT)) (real)
TRANSIT.BOARDINGS (TRANON(TIME,DIR,LINK,MCAT)) (real)
TRANSIT.DROPOFFS (TRANOF(TIME,DIR,LINK,MCAT)) (real)

TOTAL.SYSTEM.DEMAND.RATE (SYSDEM(TIME)) (real)

Note that all volumes are in units of trips per minute.

The FORTRAN COMMON block definition is:

C DATA STRUCTURE DEMAND AS OF 07/27/79
COMMON / DEMAND / HDEMND, VRES(3,2,100), VACT (3,2,100) ,

1 ODM (3,50,50) , TRAFIC (3,2,100) , TRANLD (3,2,100,3),
2 TRANON (3,2,100,3) , TRANOF (3,2,100,3) , SYSDEM (3), HTRLOD,
3 IGDEM (3)

REAL VRES, VACT, ODM, TRAFIC, TRANLD, TRANON, TRANOF, SYSDEM,
1 IGDEM

LOGICAL HDEMND,HTRLOD
REAL GDEM (14708)
EQUIVALENCE (HDEMND,GDEM (l))

C GDEM IS USED ONLY BY PUTNET AND GETNET
C DATA STRUCTURE DEMAND END

2-5

2.3 DOOR.TO.DOOR.PARAMETERS (DORPRM)

This structure cont ains the pa~ameters needed for a card-initiated
door-to-door analysis. It contains:

DOOR.TO.DOOR.ORIGIN.ZONE (ORGZON) (integer)
DOOR.TO.DOOR.DESTINATION.ZONE (DESZON) (integer)

FEEDER.ORIGIN.ZONE? (FEDORG) (logical)
FEEDER.DESTINATION.ZONE? (FEDDES) (logical)

For each zone,
DOOR.TO.DOOR.CED.MODE (DCMODE (ZONE)) (integer)
DOOR.TO.DOOR.FEEDER.MODE (DFMODE (ZONE)) (integer)
DOOR.TO.DOOR.DUMPER.MODE (DDMODE (ZONE)) (integer)

LINKER.MODE.CATEGORY (LCAT) (integer)

The FORTRAN COMMON block definition is:

C DATA STRUCTURE DORPRM AS OF 09/ 06 / 79
COMMON / DORPRM / ORGZON, DESZON, DCMODE (l OO) , DFMODE (lO O) ,

1 DDMODE (lOO) , LCAT, FEDDES, FEDORG
INTEGER ORGZON, DESZON, DCMODE, DFMODE, DDMODE,

2 LCAT
LOGICAL FEDDES, FEDORG

C DATA STRUCTURE DORPRM END

2-6

2.4 DEMAND.PARAMETERS (DPARM)

This structure provides storage for demand generation parameters.
It was designed to accomodate a wide variety of demand generation
procedures. Thus, while the default procedure may use these vectors for
particular purposes, there is no real limit on how another generation
procedure may use these same vectors. This structure contains:

HAVE .DEMAND. PARAMETERS? (HDPARM) (logi cal)

For each parameter (up to 5) ,
for each zone,

ZONAL.DEMAND.PARAMETER (ZDPARM (l-5,ZONE)) (real)
Default methodology uses:

1 as population density
2 as employment density
3 as average commute length
4 as average non-commute home-based trip length
5 as average non-home based work trip length

For each parameter,
For each ring,

DEFAULT.ZONAL.DEMAND.PARAMETER (DZDPRM (l-5,RING)) (real)

For each time period
For each direction,

For each trip type (up to 3) ,
TIME.PROPORTION (TPROP (TIME,DIR,TTYPE)) (real)

EXTRA.DEMAND . PARAMETERS (DXPARM (l-8)) (real)
Default methodology uses:

1 as commute trips per day per unit population.
2 as non-commute home-based trips per day

per unit population.
3 as non-home based work trips per day

per unit employment.

The FORTRAN COMMON block definition is:

C DATA STRUCTURE DPARM AS OF 03 / 22 / 79

C

COMMON / DPkRM / HDPARM, ZDPARM (S,100) , DZDPRM (S,8) ,
1 TPROP (4,2,3) , DXPARM (8)

REAL ZDPARM, DZDPRM, TPROP, DXPARM
LOGICAL HDPARM

DATA STRUCTURE DPARM END

2-7

2.5 DUMPER.PARAMETERS (DPRPRM)

This data structure contains the parameters needed to run a
card-initiated DUMPER analysis:

DUMPER.ZONE (DPRZON) (integer)

DUMPER.TRANSIT.FRACTION (DPRTF) (real)
which is the fraction of transit trips desiring
coll ection or distribution by DUMPER.

WALK.DISTP.NCE.FOR.AUTO (DWDATO) (real)
WALK.DISTANCE.FOR.CARPOOL (DWDCPL) (real)
WALK.DISTANCE.FOR.FIXED.ROUTE.BUS (DWDFRB) (real)

The FORTRAN COMMON block definition is:

C DATA STRUCTURE DPRPRM AS OF 07 / 19/ 79
COMMON / DPRPRM / DPRZON,DPRTF,DWDFRB,DWDATO, DWDCPL
REAL DPRTF,DWDFRB,DWDATO,DWDCPL
INTEGER DPRZON

C DATA STRUCTURE DPRPRM END

2-8

2.6 FEEDER.PARA.~ETERS (FDRPRM)

This data structure contains the parameters for a card-initiated
FEEDER analysis:

FEEDER.ZONE (FDRZON) (integer)
FEEDER.ANALYSIS.TYPE (FDRP.TP) (integer)
FEEDER.DENSITY.RP.TIO (FDRDRA) (real)
FEEDER.SUBAREA.RATIO (FDRARA) (real)

The FORTRAN COMMON block definition is:

C DATA STRUCTURE FDRPRM AS OF 04 / 12/ 79
COMMON / FDRPRM / FDRZON, FDRATP, FDRDRA, FDRARA
REAL FDRDRA, FDRARA
INTEGER FDRZON, FDRATP

C DATA STRUCTURE FDRPRM END

2-9

2.7 FIXED

This data structure contains certain items which might have been
coded as constants in the SMART program. Because, at the time of
writing SMART, there was some question about the exact values to be
used, we coded these items as variables that are initialized in BLOCK
DATA and never changed. This allows one to modify them without changing
dozens of lines of program code. Nonetheless, these items are not as
easily changed as are common model parameters. They are, in some sense,
FIXED parameters. This structure includes:

ALPHA (real)
BETA.OVER.TWO (BETA02) (real)

LOCAL.DISTANCE.FRACTION (LOCDIS) (real)
LOCAL.DISTANCE.FRACTION.FOR.CBD (LOCDIC) (real)

AUTO.TRIPS.PER.DAY (ATPDAY) (real)

FRACTION.OF.USEABLE.ROAD (FROAD) (real)

The FORTRAN COMMON block definition is:

C DATA STRUCTURE FIXED AS OF 07 / 12/ 79
COMMON / FIXED / ALPHA, BETA02, LOCDIS, ATPDAY, LOCDIC, FROAD
REAL ALPHA, BETA02, LOCDIS, ATPDAY, LOCDIC, FROAD

C DATA STRUCTURE FIXED END

When waiting times are somewhat controlled, but still contain
random factors (as for instance coordinated transfer times) SMART uses
the formula:

wait time= alpha+ beta* headway / 2.

where alpha= 1.71 minutes and beta= 0.57. These terms are
incorporated into ALPHA and BETA.OVER.TWO (BETA02) .

SMART assumes that the average length of a residential trip in a
zone, from the residential location to the point where traffic enters
and leaves the network, is 0.67 times the length of a side of the square
zone. Although a strictly uniform rectiliniar model would use 0.75
times the zone side length, 0.67 was chosen to reflect the tendency of
activity to collect near the network. This factor is found in LOCDIS
and LOCDIC.

In order for SMART to allocate the capital cost of an automobile
properly, it must make some assumption about how many trips the average
car makes in a day. AUTO.TRIPS.PER.DAY (ATPDAY) is the assumed number
of one-way trips the average auto makes per day, and is currently 2.3 .

Smead's equation for CBD congestion makes certain assumptions about
road width, auto parking areas, etc., which determine the fraction of

2-10

total land which is taken up by traffic lanes. This fraction is in
FRACTION . OF.USEABLE.ROAD (FROAD) . 1

1 Srneed, R.J., "Traffic Studies and Urban Congestion," Journal of
Transport Economics and Policy, January 1968.

2-11

2.8 FRITZ

This data structure contains miscellaneous items which somehow
didn't quite fit anywhere else. The name reflects the structure's lack
of central theme. It contains:

For each time period,
TIME.PERIOD.LENGTH (TIMLEN (TIME)) (real)

NUMBER.OF.MODE.SHARES (NMSI) (integer)

For each time period,
for each mode share index,

TRANSIT .MODE.SHARE (TMS (TIME,MSI)) (real)

CARPOOL.FRACTION (CPFRAC) (real)
CARPOOL.TIME.FACTOR (CPTIME) (real)

WALKING.SPEED (WSPEED) (real)

The FORTRAN COMMON block definition is:

C

C

DATA STRUCTURE FRITZ AS OF 06/ 26/79
COMMON / FRITZ / TIMLEN (4) , NMSI, TMS (3,6) , CPFRAC, CPTIME,

1 WSPEED
REAL TIMLEN, TMS, CPFRAC, CPTIME, WSPEED
INTEGER NMSI

DATA STRUCTURE FRITZ END

2-12

2.9 INPUT.RECORD (INREC)

This data structure contains the fields from the latest keyword
card read (except for columns 73/80, which are read only for printing) .
It contains:

KEYWORD (KEYWRD) (character)
CARD.FIELDS (FIELDS (l-8)) (character)

The FORTRAN COMMON block definition is:

C DATA STRUCTURE INREC AS OF 03 / 16 / 79
COMMON / INREC / KEYWRD, FIELDS(8)
DOUBLE PRECISION KEYWRD, FIELDS

C DATA STRUCTURE INREC END

2-13

2.10 INPUT.OUTPUT.CONTROLS (IOCON)

This data structure contains information related to input / output,
principally I / 0 units and report format controls. The count of the
number of errors encountered is in this data structure because any
module detecting an error must both count it and print a diagnostic
message. The contents are:

CARD.INPUT.UNIT (CARDUN) (integer)
PRINTING.UNIT (PRNTUN) (integer)
GET.NETWORK.UNIT (GNETUN) (integer)
PUT.NETWORK.UNIT (PNETUN) (integer)
READ.DEMANDS.UNIT (RDEMUN) (integer)
WRITE.DEMANDS.UNIT (WDEMUN) (integer)

NUMBER.OF.LINES.PER.PAGE (LPP) (integer)
NUMBER.OF.LINES.THIS.PAGE (LINES) (integer)
CURRENT.PAGE.NUMBER (PAGENO) (integer)
REPORT.TITLE (TITLE (l-8)) (character)
REPORT.SUBTITLE (STITLE (l-8)) (character)
TODAYS.DATE (DATE) (character)

NUMBER.OF.ERRORS (ERRORS) (integer)

The FORTRAN COMMON block definition is:

C DATA STRUCTURE IOCON OF 04 / 14 / 80
COMMON / IOCON / TITLE (8) , STITLE (8) , DATE, CARDUN, PRNTUN,

1 GNETUN, PNETUN, LPP, LINES, PAGENO, ERRORS, RDEMUN,
2 WDEMUN

DOUBLE PRECISION TITLE, STITLE, DATE
INTEGER CARDUN, PRNTUN, GNETUN, PNETUN, LPP, LINES, PAGENO,

1 ERRORS, RDEMUN, WDEMUN
C DATA STRUCTURE IOCON END

It is quite likely that, when installing SMART on a particular
computer, the initialization for the input / output units will have to be
changed. They are presently set to CARDUN = 5 and PRNTUN = 6, which is
normal but by no means universal.

2-14

2.11 LINKER.PARAMETERS (LKRPRM)

This data structure holds any parameters needed for a
card-initiated LINKER analysis. It contains:

ORIGIN.NODE (ONODE) (integer)
DESTINATION.NODE (DNODE) (integer)

The FORTRAN COMMON block definition is:

C DATA STRUCTURE LKRPRM AS OF 06 / 14 / 79
COMMON / LKRPRM / ONODE, DNODE
INTEGER ONODE, DNODE

C DATA STRUCTURE LKRPRM END

2-15

2.12 MODE.DEFINITIONS (MODDEF)

This data structure defines the types of modes that SMART can
model, including default parameter values. It contains:

NUMBER.OF.DEFINED.MODES (NDMOD) (integer)

For each defined mode,
TYPE.IDENTIFIER (DMIDNT (DMOD)) (character)
MODE.LABEL (DMLABL (l-4,DMOD)) (character)
FEEDER.MODE? (DMFEDR (DMOD)) (logical)
LINKER.MODE? (DMLNKR (DMOD)) (logical)
DUMPER.MODE? (DMDMPR (DMOD)) (logical)
CED.MODE? (DMCBD (DMOD)) (logical)

COST (DMC (DMOD)) (r eal)
COST.PER.VEHICLE (DMCV (DMOD)) (real)
COST.PER.VEHICLE.MINUTE (DMCVH (DMOD)) (real)
COST.PER.VEHICLE.MILE (DMCVM (DMOD)) (real)
COST.PER.ROUTE.MILE (DMCRM (DMOD)) (real)

UNCONGESTED.LOCAL.SPEED (DMSPED (DMOD)) (real)
MINIMAL.STOP.TIME (DMSTPT (DMOD)) (real)
ADDITIONAL.STOP.TIME.PER.PASSENGER (DMSTPP(DMOD)) (real)

MILES.PER.GALLON.AT.LOCAL.SPEED (DMMPG (DMOD)) (real)
MPG.CURVE.SHAPE.PARAMETER (DMMPGX (DMOD)) (real) (unused)

VEHICLE.CAPACITY.OR.LOADING (DMVCAP (DMOD)) (real)

MINIMUM.HEADWAY (DMHWMN (DMOD)) (real)
MAXIMUM.HEADWAY (DMHWMX (DMOD)) (real)
MAXIMUM.ROUTE.SPACING (DMRSMX(DMOD)) (real)
STOP.SPACING (DMSTPS (DMOD)) (real)

CAR.EQUIVALENTS.PER.VEHICLE (DMCRPV(DMOD)) (real)

FRACTION.WHO.WALK (DMFWLK(DMOD)) (real) (unused)
FRACTION.WHO.PARK (DMFPRK (DMOD)) (real) (unused)

For each time period,
TRAIN.SIZE (DMTRAN (TIME,MOD)) (real)
SUBSCRIPTION.SERVICE? (DMSUB (T IME,MOD)) (logical)

TRANSFER .COORDINATI ON (DMTCRD (DMOD)) (integer)
whose codes signify the following wait times:
1 = RANDOM (headway/2)
2 = TIMED (alpha+beta*headway/ 2)
3 = THROUGH (no wait time)

2-16

The FORTRAN COMMON block definition i s:

C DATA STRUCTURE MODDEF AS OF 06 / 26 / 79
COMMON / MODDEF / DMIDNT (8) , DMLABL (4 , 8) , NDMOD, DMFEDR (8) ,

1 DMLNKR (8) , DMDMPR (8) , DMCBD (8) , DMC (8) , DMCV (8),
2 DMCVH (8) , DMCVM (8) , DMCRM (8) , DMSPED (8) , DMSTPT (8) ,
3 DMSTPP (8) , DMMPG (8) , DMMPGX (8) , DMVCAP (8) ,
4 DMHWMN (8) , DMm;;.:x c 8) , DMRSMX c 8) , DMSTPS c 8) ,
5 DMCRPV (8) , DMFWLK (8) , DMTRAN (3 , 8) , DMSUB (3,8) , DMTCRD (8),
6 DMFPRK (8)

DOUBLE PRECISION DMIDNT , DMLABL
REAL DMC, DMCV, DMCVH , DMCVM, DMCRM, DMSPED , DMSTPT, DMSTPP,

1 DMMPG, DMMPGX , DMVCAP, DMHWMN, DMHWMX, DMRSMX,
2 DMSTPS, DMCRPV, DMFWLK, DMTRAN, DMFPRK

INTEGER NDMOD, DMTCRD
LOGICAL DMFEDR, DMLNKR, DMDMPR, DMCBD, DMSUB

C DATA STRUCTURE MODDEF END

MPG.CURVE.SHAPE.PARAMETER (DMMPGX) was established to vary fuel
mileage with speed. Currently SMART uses a single fuel consumption in
miles-per-gallon, without adjustment.

FRACTION.WHO.WALK (DMFWLK) and FRACTION.WHO.PARK (DMFPRK) are
leftovers from an abandoned methodology. They were part of the effort
to model walking in DUMPER and CBD, and are no longer used. These
vectors are unused in that they have the following activity:

1. There is a vector in MODE.DEFINTI ONS (MODDEF) and a corresponding
vector in MODES .SELECTED (MODSEL) .

2. The modal definition vector is initialized in BLOCK DATA.

3. When a mode is selected, the subroutine NEW.MODE (NEWMOD)
transfers the value from the modal definition vector to the modal
selection vector.

4. PRINT.MODAL.PARAMETERS (PMODES) may or may not print the value.

5. No other module in SMART accesses either of the vectors.

2-17

2.13 MODES.SELECTED (MODSEL)

This data structure contains the specifications of the selected
modes. It contains:

AUTO.MODE.NUMBER (JAUTO) (integer)
CARPOOL.MODE.NUMBER (JCARPL) (integer)
FIXED.ROUTE.BUS.MODE.NUMBER (JFRB) (integer)
FLEXIBLE.ROUTE.BUS.MODE.NUMBER (JFLEX) (integer)
HEAVY .RAIL.M01JE.NUMBER (JHRAIL J (integer)
LIGHT.RAIL.MODE.NUMBER (JLRAIL) (integer)
AUTOMATED.GUIDEWAY.MODE.NUMBER (JAGT) (integer)
PRIVATE.AUTO.TRANSIT.MODE.NUMBER (JPAT) (integer)

NUMBER.OF.MODES.SELECTED (NMOD) (integer)
MAXIMUM.NUMBER.OF.MODES.SELECTED (MXMOD) (integer)

For each selected mode,
MODE.IDENTIFIER (MIDENT(MOD)) (character)
MODE.TYPE (MTYPE(MOD)) (integer)

which is one of the above travel mode numbers.
MODE.LABEL (MLABL(l-4,MOD)) (character)
MODE.SUBROUTINE (MSUBR(MOD)) (integer)

iwhose codes are:
l = FEEDER
2 = LINKER
3 = DUMPER
4 = CBD
5 = REGION totalling area
6 = DOOR.TO.DOOR totalling

COST (MC(MOD)) (real)

area

COST.PER.VEHICLE (MCV(MOD)) (real)
COST.PER.VEHICLE.MINUTE (MCVH(MOD)) (real)
COST.PER.VEHICLE.MILE (MCVM(MOD)) (real)
COST.PER.ROUTE.MILE (MCRM(MOD)) (real)

UNCONGESTED.LOCAL.SPEED (MSPEED(MOD)) (real)
MINIMAL.STOP.TIME (MSTOPT(MOD)) (r eal)
ADDITIONAL.STOP.TIME.PER.PASSENGER (MSTOPP(MOD)) (real)

MILES.PER.GALLON.AT.LOCAL.SPEED (MMPG(MOD)) (real)
MPG.CURVE.SHAPE.PARAMETER (MMPGX(MOD)) (real) (unused)

VEHICLE.CAPACITY.OR.LOADING (MVCAP(MOD)) (real)

MINIMUM.HEADWAY (MHWMIN(MOD)) (real)
MAXIMUM.HEADWAY (MHWMAX (MOD)) (real)
MAXIMUM.ROUTE.SPACING (MRSMAX(MOD)) (real)
STOP.SPACING (MSTOPS (MOD)) (real)

CAR.EQUIVALENTS.PER.VEHICLE (MCARPV(MOD)) (real)

FRACTION.WHO.WALK (MFWALK(MOD)) (real) (unused)

2-18

FRACTION.WHO.PARK (MFPARK (MOD)) (real) (unused)

For each time period,
TRAIN.SIZE (MTRAIN (TIME,MOD)) (real)
SUBSCRIPTION.SERVICE? (MSUB (TIME,MOD)) (logical)

SUPPRESS.ANALYSIS? (MNORUN (MOD)) (logical)

TRANSFER.COORDINATION, (MTCORD <MOD)) (integer)
whose codes (and wait times) are:

1 = RANDOM (headway/ 2)
2 = TIMED (alpha+beta*headway/ 2)
3 = THROUGH (no wait time)

For each primary analysis type (FEEDER, LINKER, DUMPER, and CBD) ,
SELECT.DEFAULTS? (SMDSEL (l-4)) (logical)

For each zone,
DESIGNATED.FEEDER.MODE (ZFMODE (ZONE)) (integer)
DESIGNATED.DUMPER.MODE (ZDMODE(ZONE)) (integer)
DESIGNATED.CED.MODE (ZCMODE (ZONE)) (integer)

The FORTRAN COMMON block definition is:

C DATA STRUCTURE MODSEL AS OF 06 / 26 / 79
COMMON / MODSEL / MIDENT (25) , MLABL(4,25) , NMOD, MXMOD,

1 MTYPE(25) , MSUBR (25) , MC (25) , MCV (25) , MCVH (25) , MCVM(25) ,
2 MCRM (25) , MSPEED (25) , MSTOPT (25) , MSTOPP (25) , MMPG (25) ,
3 MMPGX(25), MVCAP (25) , MHWMIN(25) , MHWMAX (25) ,
4 MRSMAX(25) , MSTOPS (25) , MCARPV (25) , MFWALK (25) ,
5 MTRAIN (3,25) , SMDSEL (4), MNORUN (25) , MSUB(3,25) ,
6 MTCORD (25) , MFPARK (25) , JAUTO, JCARPL, JFRB, JFLEX,
7 JHRAIL, JLRAIL, JAGT, JPAT, ZFMODE (lOO) , ZDMODE (lOO) ,
8 ZCMODE (lOO)

DOUBLE PRECISION MIDENT, MLABL
REAL MC, MCV, MCVH, MCVM, MCRM, MSPEED, MSTOPT, MSTOPP, MMPG,

1 MMPGX, MVCAP, MHWMIN, MHWMAX, MRSMAX, MSTOPS,
2 MCARPV, MFWALK, MTRAIN, MFPARK

INTEGER NMOD, MXMOD, MTYPE, MSUBR, MTCORD, JAUTO, JCARPL,
1 JFRB, JFLEX, JHRAIL, JLRAIL, JAGT, JPAT, ZFMODE, ZDMODE,
2 ZCMODE

LOGICAL SMDSEL, MNORUN, MSUB
C DATA STRUCTURE MODSEL END

The variables <travel>.MODE.NUMBER (J----) do double duty. First,
they are the codes found in the vector MODE.TYPE (MTYPE). Second, they
are indexes into the vectors in MODE.DEFINITIONS (MODDEF) . All modules
use these variables to decode mode types, thereby making it easier to
add new mode types, to delete mode types, or to re-order existing mode
types (for which there should be no need, since no code depends upon the
relative ordering of the mode types).

2-19

Please see the discussion of the MODE.DEFINITIONS (MODDEF) data
structure for an explanation of the unused vectors.

SUPPRESS.ANALYSIS (MNORUN) is required becau se there are s i tuations
v-·here not all selected modes can be modelled at the same time . SMART
needed a mechanism to shut off selected modes and turn them back on at
will. For example, in a regionwide ana lysis, FEEDER will be called to
model service in each zone , using the des ignated FEEDER service type for
that zone. During this analysis, other selected FEEDER service types
must be deactivated.

SELECT.DEFAULTS (SMDSEL) is the mechani sm by which the user can
prevent default mode selection when he/ she wants to model only certain
specifically selected modes. Because it only prevents selection of the
defaults, it has no effect if t he defaults have already been selected.
SMP.RT currently provides no method by which the user can turn default
selection back on.

This data structure also contains the vectors that give the
designated FEEDER, DUMPER, and CBD mod es for each zone . The vectors
contain values which are indexes in t o the rest of the MODSEL structure.
Because they are indexed by ZONE , these vectors constitute the only
interconnection between urban structure and modes selected.

2-20

2.14 RESULTS (RESULT)

All the computational effort in SMART exists to produce values in
this data structure. It contains:

For each time period,
for each direction, *

for each transit mode share a lt ernative,
for each selected mode,

COST.PER.TRIP (COST (TIME,DIR,MSI,MOD)) (real)
TRAVEL.T IME (TTIME (TIME,DIR,MSI,MOD)) (real)
TRP.VEL.TIME.STD.DEV (TTIMED (TIME,DIR,MSI,MOD)) (real)
FUEL.CONSUMPTION.PER.TRIP (FUEL (TIME,DIR, MSI,MOD)) _(real)
FLEET.SIZE (F LEET (TIME,DIR,MSI,MOD)) (real)
HEADWAY (HEADWY (TIME,DIR,MSI,MOD)) (real)
AVERAGE.LOADING (LOADNG (TIME,DIR,MSI, MOD)) (real)
VEHICLE.MILES.PER.MINUTE (VMPM (TIME,DIR,MSI,MOD)) (real)
PICKUPS.PER.MINUTE (V PPM (TIME,DIR,MSI,MOD)) (real)

LINKER.EXPRESS.BUS? (EXPRES (TIME,DIR,MSI)) (logical)

* For FEEDER, DUMPER, and CBD modes, direction 1 is ou tbound
and direction 2 is inbound.

For LINKER modes, direction 1 is for the se l ected trip, and
direction 2 is for the reverse trip.

For all modes, direction~ is an accumulation area used by
the driver routine to sum findings accross both
directions or, for REGION, accross the entire system.

The FORTRAN COMMON block definition is:

C DATA STRUCTURE RESULT AS OF 07 / 12/ 79
COMMON / RESULT / COST (3,3,6,25), TTIME (3,3,6,25),

1 TTIMED (3,3,6,25) , FUEL (3,3,6,25) , FLEET (3,3,6,25) ,
2 HEADWY (3,3,6,25) , LOADNG (3,3,6,25) , VMPM (3,3,6,25) ,
3 VPPM (3,3,6,25) , EXPRES (3,3,6)

REAL COST, TTIME, TTIMED, FUEL, FLEET, HEADWY, LOADNG, VMPM,
1 VPPM

LOGICAL EXPRES
C DATA STRUCTURE RESULT END

2-21

2~15 SHORTEST.ROUTES (ROUTES)

This data structure ho l ds the routes which lead f rom one network
node to another. It contains:

HAVE.SHORTEST.ROUTES.ALREADY? (HROUTS) (logical)

For each origin node,
For each destination node,

LAST.AUTO.ROUTE.LINK (ROUTL (NODE2,NODE1)) (integer)
AUTO.ROUTE.DISTANCE (ROUTD (NODE2,NODE1)) (real)

NUMBER.OF.TRANSIT.ROUTE.LEGS (NLEG) (integer)
For each transit route leg,

TRANSIT.ROUTE.LINK (TLINK (LEG)) (integer)
TRANSIT.ROUTE.DIRECTION (TDIR (LEG)) (integer)
TRANSIT.ROUTE.MODE.CATAGORY (TMCAT (LEG)) (integer)

The FORTRAN COMMON block definition is:

C DATA STRUCTURE ROUTES AS OF 06 / 18/ 79

C

COMMON / ROUTES / HROUTS, ROUTL(50,50) , ROUTD (50,50), NLEG,
1 TLINK (lOO) , TDIF (lOO) , TMCAT(lOO)

REAL ROUTD
INTEGER ROUTL, NLEG, TLINK, TDIR, TMCAT
LOGICAL HROUTS

DATA STRUCTURE ROUTES END

The logical switch HAVE.SHORTEST.ROUTES.ALREADY? (HROUTS) refers to
the automobile shortest routes only. Transit routes are re-calculated
whenever one is needed.

Auto shortest routes are encoded in the matrix
LAST.AUTO.ROUTE.LINK (ROUTL) . Note that the destination is the first
index, and the origin the second. Although this seems backwards, it
arises because our shortest routes routine operates on one origin at a
time. The resultant vector is one column of this matrix (FORTRAN stores
matrices by columns) . For a given origin, the routes to the
destinations form a tree, and the segments of that tree are stored in
ROUTL . Thus one can only trace a route backwards. It is done with the
following algorithm:

1. set current node to destination node.

2. if current node is origin node, terminate; otherwise:

3. obtain link number from LAST.AUTO.ROUTE.LINK (ROUTL) .

4. next node number is whichever endpoint of the current link does
not match the current node.

5. do whatever needs done for this link

2-22

6. set current node to next node, and go back to step 2.

Although this technique of handling shortest routes may seem strange, it
requires considerably less memory than other methods. Because data
requirements are order (N**2) , (Order (N**3) in some alternate
techniques) , red~cing the size of shortest route storage was a major
concern.

Unlike auto shortest routes, only one transit route is stored at a
time. Hence any transit route needed is generated wherr it i s required.
By definition the transit route can extend from one node to the same
node -- in this case, the number of transit route legs (NLEG) is zero.

2-23

2.16 URBAN.DEFAULT (UDEFLT)

This structure contains most of the information needed to generate
a ring/ corridor network. The contents are:

MAXIMUM.NUMBER.OF.RINGS (MXRING) (integer)
For each r ing,

RI NG.OUTER.RADIUS (RADIUS (RING)) (real)
DEFAU LT.OUTER.RADIUS (DRADUS (RING)) (real)
DEFAULT.PARKING.COST (DZPARK (RING)) (real)

MAXIMUM.NUMBER.OF.CORRIDORS (MXCOR) (integer)
For each corridor,

CORRIDOR.ANGLE (ANGLE (COR)) (real)

For each possible default link,
DEFAULT.LINK . IDENTIFIER (DLIDNT (DLINK)) (character)

For each possible default node,
DEFAULT.NODE.IDENTIFIER (DNIDNT (DNODE)) (character)

For each possible default zone,
DEFAULT.ZONE.IDENTIFIER (DZIDNT (DZONE)) (character)

For radial (1) and circumferential (2) highways,
DEFAULT.LINK.TYPE (DLTYPE (l-2)) (integer)
DEFAULT . NUMBER.OF.LANES (DLLANS (l-2)) (real)
DEFAULT.DIAMOND.LANE? (DLDMND (l-2)) (logical)
DEFAULT.LIGHT.RAIL? (DLLRAL (l-2)) (logical)
DEFAULT.HEAVY.RAIL? (DLHRAL (l-2)) (logical)
DEFAULT.SPEED (DLSPED (l-2)) (real)
DEFAULT.LIGHT.RAIL.SPEED (DLLSPD (l-2)) (real)

The FORTRAN COMMON block definition is:

C DATA STRUCTURE UDEFLT AS OF 05 / 19/ 79
COMMON / UDEFLT / DLIDNT (lOO) , DNIDNT (SO) , DZIDNT(lOO) ,

1 MXRING, RADIUS (8) , MXCOR, ANGLE (6) ,
2 DLTYPE (2) , DLLANS (2) , DLDMND (2) , DLLRAL (2) , DLHRAL (2) ,
3 DZPARK (8) , DRADUS (8) , DLSPED (2) , DLLSPD (2)

DOUBLE PRECISION DLIDNT, DNIDNT, DZIDNT
REAL RADIUS, ANGLE, DLLANS, DZPARK, DRADUS, DLSPED, DLLSPD
INTEGER MXRING, MXCOR, DLTYPE
LOGICAL DLDMND, DLLRAL, DLHRAL

C DATA STRUCTURE UDEFLT END

Notice that the actual number of rings and corridors is missing.
Even after the network is generated, LINKSET, ZONESET, and ZDPSET cards
need these values to translate ring and corridor numbers into link or
zone indexes. Consequently, NRING and NCOR must be archived with the
network. All the values in URBAN.DEFAULT (UDEFLT) are used only at that
i nstant whan the default network is generated.

2-24

Both vectors for ring radius must be initialized to the same
default values.

The default link, node, and zone ider.tifiers are stored in the
vectors as they would be in the actual identifier arrays for a full
ring/ corridor system (with the maximum number of each) .

2-25

2. 17 URBAN.STRUCTURE (USTRUC)

This data structure defines the geographic characteristics of the
system being modelled. It contains:

HAVE.URBAN .STRUCTURE .ALREADY? (HUSTRC) (logical)

URBAN. STRUCTURE.TYPE (UTYPE) (integer)
whose codes are:
1 = ring / corridor system
2 = arbitrary network

If this is a ring/ corridor structure,
NUMBER.OF .RINGS (NRING) (integer)
NUMBER.OF.CORRIDORS (NCOR) (integer)

MAXIMUM.NUMBER.OF.LINKS (MXLINK) (integer)
NUMBER.OF.LINKS (NLINK) (integer)
For each LINK,

LINK.IDENTIFIER (LIDENT (LINK)) (character)
LINK.TYPE (LTYPE (LINK)) (integer)

whose codes are:
0 = missing
1 = freeway
2 = arterial

NUMBER.OF.LANES (LLANES (LINK)) (real)
DIAMOND.LANE? (LDMND (LINK)) (logical)
LIGHT.RAIL? (LLRAIL (LINK)) (logical)
HEAVY.RAIL? (LHRAIL (LINK)) (logical)
LENGTH ~LLENTH (LINK)) (real)
UNCONGESTED.AUTO.SPEED (LSPEED (LINK)) (real)
LIGHT.RAIL.SPEED (LLSPED (LINK)) (real)
For each end of the lihk,

NODE.AT . END (LNODE (l-2,LINK)) (integer)

For each non-null link type (l=freeway,2=arterial),
CAPACITY.PER.LANE (CAPPLN (l-2)) (real)

MAXIMUM.NUMBER.OF.NODES (MXNODE) (integer)
NUMBER.OF . NODES (NNODE) (integer)
For each node,

NODE.IDENTIFIER (N IDENT (NODE)) (character)
LINK.CONNECTIONS.LIST.START (NODPP (NODE)) (integer)
ZONE.CONNECTIONS.LIST.START (NODZPP (NODE)) (integer)
For each entry in the links connections list,

LINK . CONNECTED.TO (NODP (l,IPP)) (integer)
NODE.CONNECTED.TO (NODP (2,IPP)) (integer)

For each entry in the zones connections list,
ZONE.CONNECTED.TO (NODZP (IPP)) (integer)

MAXIMUM.NUMBER.OF.ZONES (MXZONE) (integer)
NUMBER.OF.ZONES (NZONE) (integer)
For each zone,

ZONE.INDENTIFIER (ZIDENT (ZONE)) (character)

2-26

NODE.CONNECTED.TO (ZNODE (ZONE)) (integer)
ZONE.TYPE (ZTYPE (ZONE)) (integer)

whose codes are:
1 = CBD
2 = non-CBD
3 = zone to ignore

ZONE .S I ZE (ZS I ZE (ZONE)) (real)
ZONE.SIDE . LENGTH (ZSIDE (ZONE)) (real)
ZONE .PARK ING.COST (ZPARK (ZONE)) (real)

The FORTRAN COMMON block definition is:

C DATA STRUCTURE USTRUC AS OF 05 / 19/ 79
COMMON / USTRUC / LIDENT (lOO) , NIDENT(SO) , ZIDENT(lOO),

1 HUSTRC, MXLINK, NLINK, LTYPE (lOO) , LLANES(lOO) ,
2 LDMND (lOO) , LLRAIL (lOO) , LHRAIL (lOO) , LLENTH (lOO) ,
3 LNODE (2,100) , CAPPLN (2) , MXNODE, NNODE, NODPP(Sl),
4 NODZPP (Sl) , NODP (2,200) , NODZP (lOO) , MXZONE,
5 NZONE, ZNODE (lOO) , ZTYPE (lOO) , ZSIZE (lOO) , ZPARK.(100),
6 UTYPE, ZSIDE (lOO) , NRING, NCOR, LSPEED (lOO) , LLSPED (lOO)

DOUBLE PRECISION LIDENT, NIDENT, ZIDENT
REAL LLANES, LLENTH, CAPPLN, ZSIZE, ZPARK, ZSIDE, LSPEED,

1 LLSPED
INTEGER MXLINK, NLINK, LTYPE, LNODE, MXNODE, NNODE, NODPP,

1 NODZPP, NODP, NODZP, MXZONE, NZONE, ZNODE, ZTYPE, UTYPE,
2 NRING, NCOR

LOGICAL HUSTRC, LDMND, LLRAIL, LHRAIL
REAL GNET (2614)
EQUIVALENCE (GNET (l) ,LIDENT (l))

C DATA STRUCTURE USTRUC END

The method used to encode the interconnections between links and
nodes and zones is efficient but not at all obvious. Imagine a vector
which contains an entry for each node. That entry is a list of the
links which are attached to that node. Such a vector cannot be
implemented direc t l y in FORTRAN, since each element of the vector is a
list (array) . We could have used a matrix where each row represented a
node and the columns listed the links. Such a matrix would require as
many columns as the maximum number of links attached to any one node.
This would result in a lot of wasted space, since most nodes have far
fewer than the maximum attached links. We have implemented this
links-l i sting vector by us i ng an array as if it consisted of a fixed
numbe~ of rows, each containing a variable number of columns. NODP
contains a segment for each node, and the segment begins at NODPP (NODE)
and goes through NODPP (NODE+l) -1. Each row in this segment of NODP
refers to one link attached to this node; NODP (l,?) gives the index of
the link, and NODP (2,?) gives the index of the node on the other end of
the link. Every link appears twice in NODP, and thus NODP must be
dimensioned 2 by 2*MXL I NK . To find the segment used, we start at
NODPP (NODE) and go through NODPP (NODE+l) -1, even if NODE= MXNODE.
Hence NODPP must be dimensioned by MXNODE+l. A similar process uses
NODZPP (NOOE) through NODZPP (NODE+l) -1 as a segment of NODZP (?) , which in

2-27

\
\

turn lists the zones attached to each node. In this way we need no
restriction on the connectivity of the system. Although all this
information duplicates data contained in the arrays LNODE and ZNODE, it
can be easily processed by node and thereby saves much searching time .

•

2-28

2.18 STANDARD INDEXES

We have tried, throughout SMART, to use consistent index names.
Most modules declare a set of s t andard indexes, whether they are all
used or not. Additional indexes are cr~ated as needed by appending to
the standard index a one-digit suffix, such as LEGl and LEG2 coming from
LEG. The standard indexes are:

CARD.INPUT.FIELD (FLD)

LINK

NODE
FROM.NODE (NODEl)
TO.NODE (NODE2)

ZONE
FROM.ZONE (ZONEl)
TO.ZONE (ZONE2)

TIME.OF.DAY.INDEX (TIME)

DIRECTION (DIR)
For FEEDER, DUMPER, and CBD, direction 1 is outbound

and direction 2 is inbound.
For LINKER modes, direction 1 is selected trip and

direction 2 is reverse trip.
For links, directions 1 and 2 are arbitrary.
For output matrices, direction 3 is an accumulation area.

BACK.POINTER.INDEX (IPP)

TRIP.TYPE (TTYPE)

TRANSIT.MODE (MOD)
DEFINED.TRANSIT.MODE (DMOD)

CHARACTER.GROUP (CHAR)

MODE.SHARE.INDEX (MSI)

LINKER.TRANSIT.MODE.CATAGORY (MCAT)
Fixed Route Bus= 1
Light Rail = 2
Heavy Rail= 3

TRANSIT.ROUTE.LEG (LEG)

The FORTRAN declaration of these standard indexes is:

C DATA STRUCTURE STDIND AS OF 06 / 18/ 79
INTEGER FLD, LINK, NODE, ZONE, NODEl, NODE2, ZONEl, ZONE2,

1 TIME, DIR, IPP, TTYPE, MOD, DMOD, CHAR, MSI, MCAT, LEG
C DATA STRUCTURE STDIND END

2-29

3. PROGRAM STRUCTURE

Each SMART module is designed to operate as independently as
possible in the performance of a specific task. Most of these modules
can be grouped into one of nine major subsystems. The following
sections present brief descriptions each of those subsystems. The
symbols used in the program structure diagrams are explained in Exhibit
3.1

3.1 URBAN STRUCTURE SUBSYSTEM

Exhibit 3.2 shows the modules which maintain the urban structure.
Keywords that define the urban network structure will activate the
PROCESS.NETWORK (PRONET) module. This module controls network
parameters such as ring radii, zone size, and link length. It examines
all information on urban-related cards and prints error messages if
mistakes are located. Depending on the modifications required, it may
need to access such routines as UNDEFINE.NETWORK (UNFLAG) ,
GENERATE.URBAN.STRUCTURE (GUSTRC) , UPDATE.LINK (UPDLNK) ,
UPDATE.ZONE (UPDZON) , LINK.NUMBER (LINKNO) , and ZONE.NUMBER (ZONENO) to
help with the network modifications. Changes to radii, number of rings
and corridors, and angles are made by PRONET itself, and no other
modules are necessary. However, if the URBAN or NULLNET keywords are
encountered, PRONET must call UNDEFINE.NETWORK (UNFLAG) to clear all
previous urban parameters and to issue warning messages.

For zone or link updating, SMART requires that the updates be made
to an existing structure. Therefore, PRONET checks the
HAVE.URBAN.STRUCTURE.ALREADY? (HUSTRC) indicator, which is a member of
the URBAN.STRUCTURE (USTRUC) data structure. If HUSTRC is .FALSE., no
network exists and PRONET must call GENERATE.URBAN.STRUCTURE (GUSTRC) to
initialize the network. If a NULLNET card is in effect, then it is
initialized to an empty network, with zero zones, nodes, and links. If
a NULLNET card is not active, it is initialized to a ring/ corridor-type
system using the current values for the number of rings and corridors
and ring radii and corridor angles.

Each zone or link has a unique index. For a ring/ corridor
structure, this index can be computed from the ring number, corridor
number, number of rings and zones, and the left / right or
radial / circumferential location description. This happens in the
modules ZONE.NUMBER (ZONENO) and LINK.NUMBER (LINKNO) , and in
NODE.NUMBER (NODENO) for nodes, when a ring/ corridor system is created
or when LINKSET or ZONESET cards are encountered. When a zone or link
identifier is given, on the ONEZONE or ONELINK cards,
LIST.LOOKUP (LISTS) must be used to find the index in the list of

3-1

EXHIBIT 3.1

PROGRAM STRUCTURE SYMBOLS

A single-walled box represents a module; for example, REGION appears as:

REGION

Module activations, either through a CALL statement or a function reference,
appear as arrows from the activator to the activated. For example, REGION calls
PRINT.REGION.PARAMETERS (PREGN):

~
I PREGN I

If there are other activations of this module not shown on this diaqram the
activated module appear with a circle on its corner. For example, REGION is one
of many modules which calls ENSURE.MODE (ENSMOD):

REGION

ENSMOD

When the activated or activator is part of some other subsystem, then the
subsystem name appears in a double-walled bax. For example, REGION calls
FEEDER. In the REGION diagram, there appears:

REGION

In the Feeder diagram, there appears:

11 REGION 11

♦ I FEEDER

An activation of a separate subsystem hown in a diagram never shows all the
possible ways that subsystem can be activated. Hence all double-walled boxes have
an implied attached circle.

The module SMART.MAIN.PROGRAM (SMARTAJC) appears in all subsystem
diagrams except the one for results printing, which is activated only through one of
the other subsystems.

3-2

w
I

w

UNFLAG UPDLNK

EXHIBIT 3.2

URBAN STRUCTURE SUBSYSTEM

SMARTAJC

PRONET PRNNET

UPDZON

identifiers. Once the link or zone is known, UPDLNK and UPDZON will be
called to make the requ i red modificat ions. Zone and link
characteristics are modified only by the UPDATE.LINK (UPDLNK) and
UPDATE.ZONE (UPDZON) routines which are cal led on l y by PRONET. Options
and paramet ers are examined, and zone and link characteristics are set
accord i ngly .

No modification s to the network can be made unti l
GENERATE.URBAN.STRUCTURE (GUSTRC) has been invoked and
HAVE.URBAN.STRUCTURE (HUSTRC) set to .TRUE . Once thi s is done, and
until the next URBAN or NULLNET card is encountered, SM .. ll.RT will avoid
any network regeneration, which would erase the network modifications
made already.

Link, zone and node pointers are se t up by subroutine
BACK.POINTER (BAKPNT) . These pointer s are necessary for finding routes
through the network.

Note tht GUSTRC is called, not only by PRONET, but by other
routines as well. In particular , it is accessed by any module which
requires that an urban structure be present before computations can be
performed.

3.2 DEMAND SUBSYSTEM

This subsystem, shown in Exhibit 3.3, can be roughly separated into
three segments: one dealing with demand parameters, one dealing with
demand generation, and one dealing wi th demand volume updating . Default
demand parameters are contained in the matrix
DEFAULT.ZONAL.DEMAND.PARAMETERS (DZDPARM) and the vector
EXTRA.DEMAND.PARAMETERS (DXPARM) , assigned to zones by module
GENERATE.DEMAND.PARAMETERS (GDPARM) and updated by subroutine
PROCESS.DEMAND.PARAMETERS (PRODP) . All demands and trip volumes are
either read in from an external file or calculated from zonal demand
parameters, which contain information on zonal population and employment
density, trip generation rates, and trip lengths. The default demand
generation procedure is subroutine GENERATE.DEMAND (GDEMND) , which
computes trip rates from the zone's population, employment, and demand
parameters, and distributes them to destination zones based on an
exponentially decreas i ng function of dis t ance. External demand data are
read by subroutine READ.DEMAND (READEM). All trip volume updating is
done by module PROCESS.VOLUME.CHANGES (PROVOL) .

Before demand parameters can be changed, two tasks must be
completed : An urban structure must be avai lable, and default demand
parameters must have been assigned. Two variables indicate whether
these tasks have been attended to:
HAVE.URBAN.STRUCTURE.ALREADY? (HUSTRC) and
HAVE.DEMAND.PARAMETERS? (HDPARM) . Both are logical variables, the
former in the data structure URBAN.STRUCTURE (USTRUC) and the latter in
DEMAND.PARAMETERS (DPARM) . If HUSTRC is .TRUE., an urban structure is

3-4

f~EADEM

ID EMND DE MVO L

EX~IBIT 3. 3

OEf\l' ANI:: SUBSY STErv'

SMARTA JC

EJ

3- 5

PP rwn1

C TRLOD

B

ZONEN O

available and complete; if it is .FALSE., SMP.RT has not yet created the
urban network, and GUSTRC must be called. Similarly, if HDPARM is
.TRUE., demand parameters have been assigned; otherwise, they have not
been loaded yet, and GDPARM must be called.

For the ring/ corridor structure, demand parameters are assigned on
the basis of ring / corridor location; that is, whether the zone is in
Ring 1, 2, 3 and so forth, while arbitrary network dem&nd parameters are
all defaulted to Ring 3 default values. ZONE .NUMBER (ZOHENO) is used by
GDPARM to determine the zone index of each ring / corridor zone.

Demand volumes are obtained either th~ough the default generation
procedure in GENERP.TE.DEMANDS (GDEMND) , frcm an external file through
subroutine READ.DEMAND (READEM) , or through a special demand generation
procedure installed by a programmer (see the chapter 'PROGRAM
ALTERATIONS') . In any case, routes must have already been generated
because they relate node-to-node traffic to link traffic. For demand
generation procedures, demand parameters must also have been loaded.
Therefore, if they are unavailable, GENERATE.ROUTES (GROUTS) or
GENERATE.DEMAND.PARAMETERS (GDPARM) must be called to perform the
required computations. Any demand-producing module will call
INITIALIZE.DEM.AND (IDEMND) to set all demands initially to zero, then
compute (for generation) or read in (for READEM) the trip distribution
and aggregate it using the DEMAND.VOLUME (DEMVOL) procedure.

Modifications to trip volume are made by subroutine
PROCESS. VOLUME. CHANGES (PROVOL) I which is called only by
SMART.MAIN.PROGRAM (SMARTAJC) . This module first ensures that an urban
structure and demand volumes already exist (if not , it calls GUSTRC and
GDEMND) . Then it introduces the changes requested by the input cards.
For transit link traffic changes through the TRAFFIC card, it may have
to call the GENERATE.TRANSIT.LOAD (GTRLOD) routine to compute initial
transit loads before making modifications.

3.3 FEEDER SUBSYSTEM

The FEEDER subsystem is portrayed in Exhibit 3.4 The driving
routine is the FEEDER.RUN (FDRRUN) module, which is invoked only by
SM..~RT.MAIN.PROGRP.M (SMART.A.JC) upon encountering the FEEDER keyword. The
FDRRUN module checks all input information, loads default modes if the
automatic mode selection process is in effect, and suppresses analysis
if errors have been found. FDRRUN calls FEEDER to perform the actual
zonal analysis, then sums the output from the FEEDER routine to obtain
bidirectional totals. Printing routines are then called to display the
results of the model.

The first task of FEEDER is to call
ENSURE.MODES.SELECTIONS (ENSMOD) to ensure that at least one auto, one
carpool, and one transit mode have been selected for analysis. If a
CORRIDOR analysis is required, FEEDER ensures light-rail selection as
well. Modal parameters for any newly selected mode are initialized in

3-6

l,J
I

-.J

1

I PF fl)P I

n

I PMQ[)ES l

'
PP INT

R OI 'TINES

' '
I FORHED I

• n

HEADING I

Slv1Ar'T.'.\,W I

,w

I F[)PRl 1N I
I

EX HJPIT 3.4

F EEOEP Sl IR SYSTEN'

!

T
1 N EIVMOL) r

' ' I r-0Rt1 Tn I I FORCPL I

I c1v1ALL n f.- '\ ' ' '

r.~ I TPFUEL ' ' ,,

" I FORIV'IX !
~ r

11 rinn1, II

' ! 11 REG ION 11

I F EEDER I
I

' ' I Fr1PPL\T I I rnP1 HR I I H)R I- L '< I I f--DRLRL I

I
' ' ' ' '

' '

subroutine NEW.MODE (NEWMOD) . FEEDER then calls the individual transit
mode routines to compute performance measures.

Individual mode routines are FEEDER.AUTO (FDRATO) ,
FEEDER.CARPOOL (FDRCPL) , FEEDER.PRIVATE.AUTO (FDRPAT) ,
FEEDER.FIXED.ROUTE.BUS (FDRFRB) , FEEDER.FLEXIBLE.ROUTE (FDRFLX) , and
FEEDER.LIGHT.RAIL (FDRLRL) . These contain the mathematical
relationships that form the basis for FEEDER system analysis. They
access several modules that help in computing performance measures:
CAPITAL.MAINTENANCE.ALLOCATION (CMALLO) , TRIP.FUEL (TPFUEL) ,
FEEDER.MIX.DENSITY.RESULTS (FDRMIX) , which properly sum and average
results from FEEDER dual density analyses, and
AVERAGE.STANDARD.DEVIATIONS (AVGDEV) , which computes the standard
deviation of travel time for dual density analyses.

FEEDER.HEADINGS (FDRHED) and HEADINGS (HEADNG) are called by print
routines to display heading labels.

3.4 DUMPER SUBSYSTEM

The DUMPER subsystem, shown in Exhibit 3.5, is structured in much
the same way as the FEEDER block. It is somewhat less complex, since
there are fewer modes to model, and it does not have to contend with
dual density analyses. The individual mode routines consist of
DUMPER.AUTO (DPRATO) , DUMPER.CARPOOL (DPRCPL) , and
DUMPER.FIXED.ROUTE.BUS (DPRFRB). These contain the mathematical
relationships that form the basis for modeling and evaluating DUMPER
service. They access the modules TRIP.FUEL (TPFUEL) , which computes
fuel consumption measures, and CAPITAL.MAINTENANCE.ALLOCATION (CMALLO),
which allocates capital and maintenance costs across the different time
periods in a day.

3.5 CBD SUBSYSTEM

The CBD block, which also resembles the FEEDER subsystem, is shown in
Exhibit 3.6 There are four individual mode routines: CBD.AUTO (CBDATO) ,
CBD.CARPOOL (CBDCPL) , CBD.FIXED.ROUTE.BUS (CBDFRB) , and
CBD.AUTOMATED.GUIDEWAY.TRANSIT (CBDAGT), which contain the mathematical
relationships that describe system operations. Two modules found here
have no corresponding FEEDER version: CONGESTED.ZONE.SPEED (CZSPED) and
AGT.EFFECTIVE.VELOCITY (AGTVEL) . CZSPED calculates the congested
vehicle speed based on CBD traffic volume and Smeed 's congestion
relation. 1 AGTVEL, accessed only by CBDAGT, computes AGT vehicle speed
based on station . spacing. TRIP.FUEL (TPFUEL) and
CAPITAL.MAINTENANCE.ALLOCATION (CMALLO) are used for computing fuel

1 Smeed, R.J., "Traffic Studies and Urban Congestion," Journal of
Transport Economics and Policy, January 1968.

3-8

w
I

IO

~

I Pm ,t,.,rR I
'

PR!Nl
ROli TIN ES

~
it " t I DP RH[rl I

n

H[,-l.,DING l

EXHIBIT 3.~

rn •~,.PEP Sl.1RSYSTEtv1

(_ ooni, J

J sMTXLl ____ ~ I II REG IO N II
l nP'H> <,N I I l

••
I I f)l lt.,.,PE F< l

t ' ENStv<OO

NEWtv<Or>
t ~ Ir

I DPRA TO I I i Jl"f' (' PI I I [)PP! fJ f"\ I

--1"1 I TPF LJEI L
J

_1\ I r r-.,A1 1 ,-

I'\

I ,;vcoEv j

w
I

t-'
0

I SMAR TAJC I
,

EX HIBIT 3.6

CBD SUBSYSTEtv'

I f'ff•P I

.------41 ['H i,i'l IN 1-I----- I II '""'0 " II
~

I PCl30 I
'

PR H·iT
ROl !TINES

I PMODES ~

' • •
L CBOHEO J

~ n
HEADINr. I

,
I AVGDEV I

~
0 I [Nor.'t'I' J E

~ n

[NEWM;D-l

~ ~

L CBDAT_oJ I CBOCPL l L=RD~~~ L ~flDAGT I
_O

I TPFl IE I , .. I) I) I > > I

_O

I r7SPE.O J .. I I I

n
j rrvAI 1 n

_O

l ACTVl:.L

consumption and cost allocation.

3.6 LINKER SUBSYSTEM

This subsystem is diagrammed in Exhibit 3.7 Upon encountering the
LINKER keyword, SMART.MAIN.PROGRAM (SMARTAJC) activates the
LINKER.RUN (LKRRUN) routine, which coordinates SMART's LINKER analysis
procedures. This module checks the input data and suppresses analysis
if errors are found. It also checks transit loads and, if they are
undefined, GENERATE.TRANSIT.LOAD (GTRLOD) will be called to compute
transit pick-ups, drop-offs and loading for all network links. Next,
TRANSIT.ROUTE (TRANRT) is called to compute the transit route between
the origin and destination nodes specified on the keyword card. LINKER
is then called to perform line-haul analysis. Results from this routine
are summed and printed by LINKER.RUN (LKRRUN) through the printing
routines.

LINKER'S first task is to ensure that an urban structure and a set
of demand volumes have been generated. If not, it calls the
GENERATE.URBAN.STRUCTURE (GUSTRC) and GENERATE.DEMAND (GDEMND)
procedures to compute the required inputs.
ENSURE.MODES.SELECTIONS (ENSMOD) is called to make certain that at least
one auto and one carpool mode have been selected. All newly selected
modes will have their parameters initialized by subroutine
NEW.MODE (NEWMOD) . LINKER then examines each leg on the shortest
interconnecting path and ensures that its mode category has been
selected. Line-haul performance measures for automobiles and carpools
are obtained by calling subroutine LINKER.CAR (LKRCAR). Apart from the
differing demand rates and vehicle speeds (carpools can use preferential
lanes) , the LKRCAR subroutine handles both modes in the same manner.
Next, LINKER computes transit demand and determines if it is large
enough to justify express bus service between the designated nodes. It
calls TRANSIT.NEEDS (TRANED) to compute headways, loads, speeds, times
and other transit performance measures. Outputs are then allocated by
mode categories, and an appropriate portion is billed to trips made
between the designated origin and destination modes. Congested link
speeds are computed by subroutine CONGESTED.LINK.SPEED (CLSPED) , which
is called by both TRANED and LKRCAR.

Subroutines LINKER.HEADINGS (LKRHED) and HEADINGS (HEADNG) are
called by the printing routines to display heading information.

3.7 DOOR.TO.DOOR SUBSYSTEM

These modules are shown in Exhibit 3.8 Once the DOOR keyword is
encountered, the DOOR.TO.DOOR subsystem uses subroutine
DOOR.TO.DOOR.R~N (DORRUN) to ensure that urban structure and demand
volumes have been generated. If not, DORRUN calls the
GENERATE.URBAN.STRUCTURE (GUSTRC) and GENERATE.DEMAND (GDEMND)

3-11

w
I

I-'
N

Pl . !I~ P l)Olf\.:T

r.>· "' ! ' Tlr-- ·F :

H EAD ING

SMARTA.X::

i l• ' l ./1·' 1 ,, ,.1

AVr.D EV

F.: X ..-iTPTT 3. 7

1..I1'1K EP St 1RSYSTEIV

~ ..--------,
Ti! A i'i f<T

TPFLtEL

r! SPE D

r rviAU n

r!('I JP

I INl<r_R

LKRCAR

w
I

t---'
w

POOOR

P•.•r.nE.S

St.• ARTA J C

nnRRI 'N

HF,, r111,1r,

EXHIBTI 3.8

ODOR. TO.DOOR SUBSYSTEfv1

nnnR

GJSMOO r. TRLOtl noRSUI\< B E]

i'IFV/M0(")

Tl' A~!RT

procedures to create the required data. All inputs on the DOOR card are
checked, and analysis is suppressed if errors are found. DORRUN calls
subroutine DOOR.TO.DOOR (DOOR) to compute door-to-door performance
measures. These are displayed by DORRUN through the printing routines.

Module DOOR calls ENSURE.MODES.SELECTIONS (ENSMOD) to ensure that
at least one auto, one carpool, and one transit mode are selected for
analysis. All newly selected modes have their parameters initialized in
subroutine NEW.MODE (NEWMOD) . If LINKER transit loads have not yet been
generated, DOOR will call GENERATE.TRANSIT.LOAD (GTRLOD) to compute
vehicle loading. TRANSIT.ROUTE (TRANRT) will also be called to generate
the door-to-door line-haul route. DOOR creates four "dummy" modes for
storage allocation: AUTO.TOTAL (ATOTOT) , CARPOOL.TOTAL (CPLTOT) ,
TRANSIT.TOTAL (TRNTOT) , and MODE.TOTAL (MODTOT) . The first three
accummulate results from origin to destination for the corresponding
modes; the last creates a temporary storage location to record
separately the performance measures of the origin and destination zone
transit service. In the event that the origin and the destination have
the same mode (for example, both have FEEDER fixed-route bus) , this
extra location assures that the performance measures of both modes will
be saved (by time, direction and the mode share index) and available for
later use. The FEEDER and DUMPER or CBD subsystems are called to
calculate zonal measures, depending on the type of origin and
destination zones. Results from the zonal analysis are added up in
subroutine DOOR.TO.DOOR.SUM (DORSUM). LINKER is then called to compute
line-haul measures, and these are added to the zonal outputs to provide
a door-to-door picture of urban travel.

One of the resulting performance measures is passenger pick-ups per
minute. For DOOR, this should be the zone-to-zone demand rate.
However, to minimize storage requirements, this statistic is not saved
by the demand generation procedures of SMART, and hence cannot be
printed. Instead, subroutine PRINT.DOOR.TO.DOOR.PICKUPS (PDORPK)
displays the total number of outbound and inbound trips (pick-ups) in
the origin/destination zones and pick-ups on the interconnecting links.
These flows are, of course, larger than the volume of zone-to-zone
trips, since they include trips between other origins and destinations
as well.

3.8 REGION SUBSYSTEM

The REGION modules are shown in Exhibit 3.9 The tasks in this
subsystem are coordinated or performed by subroutine REGION. To perform
a regionwide analysis, an urban structure and demand volumes must first
have been specified. If they are not, REGION will call the
GENERATE.URBAN.STRUCTURE (GUSTRC) and GENERATE.DEMAND (GDEMND)
procedures to create the required data. For each zone, REGION ensures a
designated transit mode. If no transit mode has been designated, REGION
will select fixed-route bus. For each basic analysis type, exactly one
auto and one carpool mode will be selected. REGION also creates three
"dummy" modes: AUTO.TOTAL (ATOTOT), CARPOOL.TOTAL (CPLTOT), and

3-14

SMAR TAJC

t
REG ION

EXHIPIT 3.9

PFC IOI'! St 1RSYSTEtv'

NEWMOD

FEEDER

DUMPER

,nD

GTRLOD f
'· -rs~ 1 ~I ! 1-, f
TRAN ED

T'°F I F;l r
•LSPED f◄
RGNSUM

PREGN

!'PIN T
D fll !TrNES

3-15

}

.. , T 0 L'lt-'.PT f

}

}
t,i-. 1 nf'FS

~-•ace s
Se!Pction

7onal
..\r.ci!yse s

"'-iet w o rk

Tr<tnsi t
Analyses

~let work
Automobile
Analyses

Results
D..ccumula t ion

Pr 1ntinq

TRANS I T.TOTAL (TRNTOT) to provide space for summing modal outputs.
ATOTOT cont~ins total regionwide performance measures for auto modes;
CPLTOT for carpool mode; and TRNTOT for transit modes. Although the
moda l parameter s f or these dummy modes are unused, parameter values are
set in subroutine NEW.MODE (NEWMOD) for these dummy modes since some
FORTRAN monitors obj ect t o uninitialized var i ables.

Depending on t he zone t ype, either FEEDER and DUMPER or CBD will be
called t o perform t he actual zonal analys i s. Once zonal outputs have
been generated , REGION.MODAL.SUM (RGNSUM) is called to accummulate
results of the zonal analysis.

If link loads are absent, REGION will call
GENERATE.TRJI.NSIT.LOAD (GTRLOD) to compute the required loading. Since
loading depends on the transit routes selected between nodes, GTRLOD
must access subroutine TRANSIT.ROUTE to get routes. For each link and
for each loaded LINKER transit mode, REGION calls module
TRANSIT . NEEDS (TRANED) to compute performance measures for that link.
Temporal allocation of costs is determined by module
CAPITAL.MAINTENANCE.ALLOCATION (CMALLO) , while the function
TRIP.FUEL (TPFUEL) and CONGESTED.LINK.SPEED (CLSPED) calculate fuel
consumption and congested link speed, respectively. For the LINKER auto
and carpool modes, performance measures are calculated directly in
REGION.

Fi nally , all regionwide results are printed.

3 .9 RESULTS PRINT I NG SUBSYSTEM

The modules which print SMART's findings are shown in Exhibit 3.10,
and their interconnections indicated. This subsystem consists primarily
of PRINT.COST (PCOST) , PRINT.TRAVEL.TIME (PTTIME) ,
PR INT.FUEL.CONSUMPTION (PFUEL) , PRINT.FLEET.SIZE (PFLEET) ,
PRINT.HEADWAY (PHEDWY) , PRINT.VEHICLE.LOADING (PLOAD) ,
PRINT.VEHICLE.MILES (PVMPM) , and PRINT.PICKUPS (PVPPM) . In general , all
of these routines are used for all of the results printing by all of the
analysis routines (FEEDER, DUMPER, CBD, LINKER, DOOR, and REGION). The
exception s are : PRINT.PICKUPS (PVPPM) is not used by DOOR.TO.DOOR,
which calls PRI NT.DOOR.TO . DOOR.PICKUPS (PDORPK) instead. Also, LINKER
calls PRINT.EXPRESS . STATUS (PRINEX) to show whether line-haul
f ixed-route buses are multi-stop or express.

The heading rout i nes LINKER.HEADINGS (LKRHED) ,
FEEDER.HEADINGS (FDRHED) , DUMPER.HEADINGS (DPRHED) ,
CBD . HEADINGS (CBDHED) , REGIONWIDE.HEADINGS (RGNHED) , and
DOOR.TO.DOOR.HEADINGS (DORHED) are called by the printing routines,
depending upon which analysis block invoked the print. The method used
i s to pass the name of the printing subroutine as a parameter to each of
t he results printing modules. The overall heading for the SMART model
i s pr i nted by subroutine PAGE.HEADINGS (HEADNG) .

3-16

w
I

I-'
-...J

EXHIBIT J.10

RESULTS PRINTING SUBSYSTEM

PFUEL

CBDHED

Note that the LINKER subsystem does not call PLOAD, and that the DOOR
subsystem does not call PVPPM.

Actual calls to the heading routines follow the same pattern as the calls to the
. print routines (e.g., CBDHED is called if and only if the print routine was activated
by the CBD subsystem.)

PVPPM

4. MACHINE INDEPENDENCE AND INSTALLATION

SMART code standards were selected for:

• Portability;

• Reliability; and

• Low execution cost.

A truly portable program is one that is machine-independent and that can
be transferred from one computer or input / output device to its
functional equivalent without any reprogramming or variation in results.
This ideal state can never be completely realized in a program of the
size and complexity of SMART, even though every effort has been made to
increase its portability. The basis for the FORTRAN used in SMART is
A.rr.erican National Standards Institute (ANSI) report X3.9-1966, commonly
known as FORTRAN-66. Certain extensions to that standard were used to
increase program reliabi l ity, where these extensions are believed to be
widely available. Also, some functions can only be performed reasonable
efficiently by machine-dependent code, but equivalent code exists for
virtually all computers.

4.1 EXTENSIONS TO FORTRAN-66

The following extensions to FORTRAN-66 are used in SMART:

1. Hollerith literals may be enclosed in apostrophes (single
quotes).

2. An array may be initialized in a DATA statement by merely giving
its name, with the number of values equal to the number of
elements in the array.

3. Double-precision variables are assumed to hold at least eight
characters. No assumption is made about the total number of
characters, the placement of these characters, or the padding.
Character-containing variables are only compared for equal or not
equal.

4. FORTRA~-66 requires that both subprograms and COMMON blocks be
overlayable . hll SMART subprograms are overlayable (that is,
none remember data from one call to the next) . However, no
COMMON block is overlayable; each must remain in core during the
entire program execution. On any machine, there should be a way
to ensure this, at least by adding otherwise unnecessary
declarations to the main program.

4-1

5. The maximum number of dimensions for any array i n SMART is 4,
whereas FORTRAN-66 permits no more than 3. Affected arrays are
those that contain performance and output measures from the
model, such as cost, fuel consumption, vehicle loading, and so
forth. These are dimensioned by time of day , direction, mode
share index, and mode.

4.2 SPECIFIC VIOLATIONS OF FORTRAN-66

1. Every module begins with the statement:
IMPLICIT LOGICAL* 1 (A-Z) .

This permits compile-time detection of most spelling errors. The
default is never deliberately used, and these statements may be
removed if necessary.

2. The main program contains an END= option on the read statement,
as does the module READDEM. SMART specifications require
end-of-file indicator records, so these END= uses function only
to allow SMART, rather than the operating system, to detect the
error. The END= options may be removed, with no affect on the
processing of correct input decks.

3. The module MKREAL is machine-dependent. This subroutine examines
an eight character field, stored in a DOUBLE PRECISION variable,
and returns the equivalent real value. It is, in effect, a
core-to-core read with format FS. O. The error indicator that is
returned if the field is not nµmeric is only used for detecting
user errors. Thus MKREAL would be adequate, if not pleasant to
use, if it simply aborted when an error was detected. In an
extreme case, MKREAL could be implemented using the following
very slow code:

WRITE (unit, 210) DWORD
210 FORMAT (AS)

REWIND unit
READ (unit,220) VALUE

220 FORMAT (FS.0)
ERROR=.FALSE.

4. LIST.LOOKUP (LISTS) is moderately machine-dependent. This
dependency arises because the list is allowed to contain zero
entries, and the list is not always the same length. One FORTRAN
monitor may require it to be dimensioned to NELE (the number of
elements in the list) even though NELE is sometimes zero. Other
monitors may insist that it be dimensioned to the largest
possible length, such as 9999, even though the array is actually
smaller than that. Some monitors will not accept either
declaration, but will tolerate a declaration of (1) as an
indication of a dynamic dimension. Some experimentation may be
needed to see what your run-time monitor can live with.

4-2

5. GETDAT returns the current date in eight characters, of the form
"MM/ DD/ YY." This is very system-dependent. The field is used
only for printing, so GETDAT may return eight blanks, in which
case the printout will be undated.

6. In the archived network/ demands system, speed is achieved by
equating real vectors to the entire data structures and using
unformatted I / O for that vector. The size of the vector assumes
that DOUBLE PRECISION variables are twice as large as REAL
variables, and that INTEGER and LOGICAL variables are the same
size as REAL variables. If this is not the case, the length of
arrays GDEM in DEMAND and GNET in URBAN.STRUCTURE (USTRUC) must
be changed.

4.3 PROGRAM SIZE

SMART is a rather large program. The data structures occupy 38,000
words, and the executeable code approximately 60,000 words. On an
IBM/37O-type system, using the FORTRAN H compiler with full
optimization, total module size, including data, program code, and
FORTRAN monitor, was 361,112 bytes (90,278 words). When the WATFIV
debugging compiler was used, total memory required shot up to over
720,000 bytes.

In most runs, not all blocks are executed. Hence, memory
requirements can be reduced via overlay techniques. In such a case, the
following guidelines are useful:

1. COMMON blocks must be part of the root segment.

2. Overlay segment boundaries can generally follow analysis block
boundaries.

3. A regionwide analysis could become extremely expensive, since it
repeatedly calls on most of the other blocks.

4.4 ACCURACY

SMART was developed on an IBM/ 37O-type system. On these computers,
single-precision floating point numbers have 21 to 24 bits (6 to 7
decimal digits) of accuracy, depending on the value. This is about the
minimum accuracy found on any computers, and SMART had no trouble with
truncations or round-off errors. Thus the floating point word size
should not be a consideration on any machine.

However, IBM/ 37O-type systems allocate 31 bits for the value of an
integer, plus one sign bit. Some systems default to only 15 bits f or
integer magnitudes. Although no problems are forseen in such a case,

4-3

such a conversion has not been tested and the installer is advised to
proceed with caution.

4-4

5. PROGRAM ALTERATIONS

Great care has been exercised in the design of the SMART model to
giv e it sufficient breadth and depth to handle a large variety of urban
transpor t problems without any changes to the code. Nonetheless,
si t uations may arise that require alterations to the SMART program in
order to obtain a more satisfactory representation of the urban travel
problem under study. For example, one case arose wherein traffic
patterns on highways were so unusual that SMART's standard
congestion/ speed relation was unable to reflect the situation
adequately. One module had to be replaced to handle the problem.

SMART's design is highly modular, with each module's task precisely
defined and isolated. Thus, many changes to the program can be easily
made because they are localized and affect only one or two modules.
Other changes are spread throughout the program and, because of complex
interdependencies, are risky as well as difficult to implement. Any
change, however minor, will involve a certain amount of risk and, hence,
should be avoided unless it improves program performance substantially.

One can make a variety of changes to SMART. This chapter discusses
the changes that are most likely to be needed, and which can be
accomplished without major expense.

5.1 DEFAULTS

Perhaps the easiest changes to SMART constitute alterations to the
default values of parameters. However, such changes are rarely needed,
since the user can override default values whenever needed. The values
in the data structure FIXED cannot be reset by the user, and so it may
at times be necessary to change these fixed parameters. Cost parameters
are the most likely candidates for change. If inflation continues,
these parameter defaults may need regular updating.

5.2 SIZE LIMITS

SMART limits the number of nodes, zones, links and other entities
that it will handle. Initial limits have been set by SYSTAN to achieve
the flexibility needed for realistic representation of a variety of
urban settings. In its present form, SMART's data structures occupy
38,000 words of storage, and the object code requires roughly 60,000
additional words. With this large space usage, one hesitates to make
iny changes that would increase memory requirements.

5-1

Many of the data structure arrays, such as the number of selected
links and zones, are dimensioned to certain maxima. Some of these
maxima can easily be modified, while others are less accessible. Those
that are not very accessible, such as the number of time periods or the
number of LINKER mode categories, are so embedded in the code that only
detailed alteration of the program can change them. Attempts to modify
these parameters are discouraged, and we will not discuss such complex
changes in this manual. Limits that can easily be modified include
MAXIMUM.NUMBER.OF .ZONES (MXZONE) , MAXIMUM.NUMBER.OF .LINKS (MXLINK) ,
MAXIMUM.NUMBER.OF.NODES (MXNODE) , MAXIMUM.NUMBER.OF.CORRIDORS (MXCOR) ,
MAXIMUM.NUMBER.OF.RINGS (MXRING) , and MAXIMUM.NUMBER.OF.MODES (MXMOD) .

The process of increasing a SMART limit can be outlined as follows:

1. Identify all related limits which must be raised as well. For
example, if the maximum number of zones is increased, chances are
that the maximum number of nodes will have to be increased.

2. Identify all the arrays in the data structures which need to be
expanded to accommodate the increase. At this time you can
estimate the impact on SMART memory requirements. It may be
necessary to limit size of the increase to keep the program
within the space limitations of your computer.

3. Construct new COMMON block definitions for each of the affected
data structures.

4. Insert the new definition into any module which references the
structure (s) , replacing the old definition, and re-compile those
modules. The appendix "DATA STRUCTURE REFERENCES" identifies all
modules so affected.

5. Locate any arrays local to a module which depend on a particular
limit, and alter them. These are relatively rare in SMART;
those which do exist are identified in this chapter.

6. Alter the BLOCK DATA subroutine, both to change the value of the
limit and to specify initialization for the newly created array
elements, if any.

The largest arbitrary network consists of 100 links, 50 nodes, and
100 zones. The largest ring/ corridor structure consists of 8 rings and
6 corridors. Such a structure has 84 links, 43 nodes, and 85 zones.
For the ring/ corridor structure, we must always ensure that:

MXLINK > (MXRING - 1) * 2
MXNODE > (MXRING - 1) * MXCOR + 1
MXZONE > (MXRING - 1) * MXCDR * 2 + 1

Equality can hold for an exact ring/ corridor structure; if additional
zones, links, or nodes are to be added, forming a composite network, the
limits must be raised. For example, if we have an eight-ring,

5-2

six-corridor structure, and two extra zones are to be added, MXZONE must
be at least ((8-1) *6*2+1) +2 = 87.

MAXIMUM.NUMBER.OF.NODES (MXNODE) is the most important variable to
examine because of its non-linear effect on storage requirements. There
are three arrays whose size is proportional to the square of MXNODE.
ORIGIN.DESTINATION.MATRIX (OD~) is dimensioned by the number of time
periods and the maximum number of nodes squared, and is found in the
DEMAND structure. LAST.AUTO.ROUTE.LINK (ROUTL) and
AUTO.ROUTE.DISTANCE (ROUTD) are both dimensioned by the maximum number
of nodes squared, and are found in the structure
SHORTEST.ROUTES (ROUTES) . The number of time periods is fixed at three;
therefore, ODM contains 3 * MXNODE**2 elements, while ROUTL and ROUTD
each contain MXNODE**2. The total number of elements involved here is
therefore 5 * MXNODE**2. The current limit on MXNODE is 50. If this
limit is raised from 50 to, for example, 51, (5 * 51**2) - (5 X 50**2) =
505 words will be added to SMART in these matrices alone . This is a
large increase relative to the very minor increase in MXNODE. If we
increase MXNODE by 50%, to 75, the total storage required for these
arrays jumps from 12,500 words to 28,125 words, increasing SMART's total
memory requirements by about 15%. Some other arrays are affected
linearly, such as DEFAULT.NODE.IDENTIFIER (DNIDNT) , which contains the
default names of the nodes.

MAXIMUM.NUMBER.OF.MODES (MXMOD) is also critical to program size.
It is important because nine of the ten arrays in RESULTS are
dimensioned 3 by 3 by 6 by MXMOD. Therefore, increasing by 1 the
maximum number of modes able to be analyzed in each run will require 486
additional words of storage for results. Data structure
MODES.SELECTED (MODSEL) adds another 33 variables, largely through its
modal parameter arrays such as COST.PER.VEHICLE.MILE (MCVM) and
UNCONGESTED.LOCAL.SPEED (MSPEED) . These modal parameters are passed to
subroutine PRINT.MODAL.PARAMETERS (PMODES) , where they are stored in the
local array MPARM, which is dimensioned to 20 * MXMOD. Hence, when
MXMOD is increased by 1, PMODES requires another 20 elements. Other
local arrays bring the total additional requirement of core storage to
551 computer words. Thus, for small increases in limits, MXMOD is
almost as critical as MXNODE in determining core requirements. Its
importance relative to MXNODE decreases at large limit increases, since
MXNODE is the only major limit with quadratic effec t on memory.

The bounds on MXLINK and MXZONE are much less cr itical. Increasing
the limit on MXLINK by 1 increases the number of array elements and
words of storage by 80, with the greatest increase being contributed by
data structure DEMAND through the arrays AUTO.TRAFFIC.VOLUME (TRAFIC) ,
TRANSIT.TRAFFIC.VOLUME (TRANLD) , TRANSIT.BOARDINGS (TRANON) , and
TRANSIT.DROPOFFS (TRANOF) . These contribute 60 of the 80 additional
elements. Other data structures affected by MXLINK include
SHORTEST.ROUTES (ROUTES) , URBAN.DEFAULT (UDFLT) ,
URBAN.STRUCTURE (USTRUC) , and a local array, XIMP , of the module
GENERATE.SHORTEST.ROUTES (GROUTS) . Because each link is assigned a
default value in array DEFAULT.LINK.IDENTIFIER (DLIDNT) , increasing
MXLINK will require that DLIDNT be expanded and the additional links be
initialized in the BLOCK DATA subroutine.

5-3

Increasing the limit on MXZONE by 1 contributes 36 additional words
of storage to the program. The principal increase comes from the arrays
RESIDENTIAL.VOLUME (VRES) and ACTIVITY.VOLUME (VACT) in data structure
DEMAND, with each array requiring 6 new elements. Other data structures
affected are DOOR.TO.DOOR.PARAMETERS (DORPRM) ,
DEMAND.PARAMETERS (DPARM) , MODES.SELECTED (MODSEL),
URBAN.DEFAULT (UDEFLT) , and URBAN.STRUCTURE (USTRUC) . Local arrays
affected are DMAX, EMPL, POP, TDIST, and ZONSEG in module
GENERATE.DEMAND (GDEMND) and FEED in module DOOR.TO.DOOR (DOOR) .

MAXIMUM .NUMBER.OF.RINGS (MXRING) and
MAXIMUM.NUMBER. OF.CORRIDORS (MXCOR) have negligible direct effects on
storage requirements. However, remember that an increase in either of
these wi ll probably require an increase in the number of links, nodes,
and zones allowed, and these increases will have major effects.
Extending the maximum number of rings by 1 adds 8 array elements, while
extending the maximum number of corridors by 1 adds only 1 array
element. Since all these array elements are single-precision real
variables, they require the same increase in the number of words of
storage. The data structures affected by MXRING include
DEMAND.PARAMETERS (DPARM) and URBAN.DEFAULT (UDFLT) . Only UDEFLT is
affected by MXCOR. All affected arrays will require new initializations
in the BLOCK DATA subroutine. Note that the RING.OUTER.RADIUS (RADIUS)
and DEFAULT.OUTER.RADIUS (DRADUS) arrays in UDEFLT must be initialized
identically. No local arrays are affected by these limits.

The above discussion shows that MXNODE is the most crucial factor
in determining array storage requirements. From the viewpoint of
storage, therefore, any increase in network detail should concentrate on
increasing the number of links, zones, rings and corridors, and not on
increasing the number of nodes. By the same token, decreasing storage
requirements is more effective by decreasing the maximum number of nodes
and modes analyzable in any one run than by decreasing any other limit.

5.3 MODULE REPLACEMENTS

Although any SMART module can be replaced by a module which
performs an equivalent task, in most cases the task performed is so
complex that complete replacement would be very expensive. The
following modules, though, are relatively simple and/ or isolated from
the rest of SMART, and thus are prime candidates for replacement:

1. AGT.EFFECTIVE.VELOCITY (AGTVEL) computes the average speed of an
AGT vehicle from the AGT system route spacing. The average speed
includes slow-down and start-up time, but not any station dwell
time. AGTVEL necessarily incorporates many assumptions about
operating characteristics, such as motor torque, vehicle weight,
top speed, and traction. This module can easily be replaced to
incorporate either other assumptions or a different methodology.
Be forewarned, however, that if the new methodology requires more
information than is currently available to AGTVEL, other SMART
code will have to be changed to maintain that information.

5-4

2. CONGESTED.LINK.SPEED (CLSPED) computes the resultant actual speed
on a link from the link characteristics and the assumed transit
mode share. Code relating to finding car-equivalents and number
of non-diamond lanes will probably need to be retained, but the
formula relating congestion to speed can easily be moctified or
replaced. Be sure that, no matter what happens, link speed never
drops to zero.

3. CAPITAL.MAINTENANCE.ALLOCATION (CMALLO) incorporates rules for
allocating daily charges to transit trips. While the rules used
in SMART are meant to be fair (trips pay for excess capacity)
they are not universal truths. Some people may wish to
incorporate a different cost allocation scheme.

4. CONGESTED.ZONAL.SPEED (CZSPED) implements Smead's equation for
finding the congested traffic speed in a CBD. Other formulations
would : equire different versions of CZSPED .

5. TRANSIT.ROUTE (TRANRT) is perhaps the prime candidate for
replacement. Its function is to decide on a transit route from
one node to another node. The current algorithm is very
simplistic. Note, however, that this module is called NNODE**2
times, and thus expensive code can get very expensive indeed.

By route, we mean a series of link/direction/mode catagories.
SMART has been carefully designed to accept almost any type of
transit routing, with the following restrictions:

All patrons travelling from one node to another node
must take the same transit route -- one cannot send one
percentage one way and another percentage another way.
Similarly, the route cannot change by time of day.

Patrons returning take the same route in the reverse
order.

The procedure supplied with SMART follows the auto shortest
route, using the highest-numbered available transit mode catagory
(heavy rail in preference to light rail, light rail in preference
to buses). This results in only one mode on each link getting
any demand, and it also produces a lot of transfers.

5.4 MODAL ANALYSIS MODULES

Most of SMART is structured so that individual modes are handled in
separate subroutines. Consequently, changes to the methodology are
clearly located and isolated. These modules are:

1. CBD.AGT (CBDAGT)

5-5

2. CBD.AUTO (ACBATO)

3. CBD.CARPOOL (CBDCPL)

4. CBD.FIXED.ROUTE.BUS (CBDFRB)

5. DUMPER.AUTO (DPRATO)

6. DUMPER.CARPOOL (DPRCPL)

7. DUMPER.FIXED.ROUTE.BUS (DPRFRB)

8. FEEDER.AUTO (FDRATO)

9. FEEDER.CARPOOL (FDRCPL)

10. FEEDER.FLEXIBLE.ROUTE.BUS (FDRFLX)

11. FEEDER.FIXED.ROUTE.BUS (FDRFRB)

12. FEEDER.LIGHT.RAIL (FDRLRL) (Note that altering light rail to
service an entire zone instead of just a corridor is a much more
extensive change.)

13. FEEDER.PRIVATE.AUTO.TRANSIT (FDRPAT)

Any change to LINKER methodology is much more difficult, since actual
analyses are divided among several LINKER and regionwide modules.

5.5 DEMAND GENERATION

SMART has been designed to facilitate incorporating alternative
demand generation procedures. It is not even necessary to replace the
default procedure. Merely code a subroutine which produces a series of
calls to DEMAND . VOLUME (DEMVOL), and incorporate its name into the
module GENERATE.DEMAND.REQUESTED (GENDEM). The procedure may make use
of any available SMART data, but should alter nothing. Although the
entire data structure DEMAND.PARAMETERS (DPARM) is available for passing
parameters, problems may arise when different procedures require
different parameters, and the default values for one are meaningless for
another. Examine carefully the code for GENERATE.DEMAND (GDEMND) ,
noting all of the dimensions of the problem. It is also possible to
replace GDEMND with your own module, but that is not recommended.

5-6

5.6 LINKER EXPRESS STATUS DETERMINATION

LINKER chooses to run express (non-stop) buses on any route when
the demand between the designated origin and destination nodes results
in capacity-constrained service (buses are full). This is accomplished
through the following statement in module LINKER:

EXPRES(TIME,DIR,MSI) = (DEM(OIR)*MHWMAX(MOD) .GE. MVCAP(MOD))

If the demand per minute in any direction multiplied by the maximum
headway (which gives the load on the bus) is greater than the bus
capacity, then -- for that period, direction and mode share -- EXPRES is
.TRUE. and buses run non-stop. This rule is based solely on demand
between the two designated nodes, even though patrons may be taking
buses for only part of the route (buses in the first half, light rail in
the other), and real buses might be able to pick up additional
passengers traveling elsewhere. This rule was adopted for three
principal reasons:

1. SMART does no vehicle routing. Thus it cannot know whether one
link constitutes a continuation of another link, or a separate
side-road.

2. In order to identify all travelers who could in theory benefit
from non-stop service on the current route, SMART would have to
look at all possible node pairs to determine which pairs might
contribute to express bus loading. To control run costs, we have
striven mightily to avoid execution code which runs as the square
of the network size.

3. On a regionwide basis, the effects of running express buses is
not significant. Such buses, while used more efficiently on the
given route, cause inefficiencies in bus use on related routes.

The only easy way to change the rule for express bus determination is to
operate express busses if the passenger load reaches some fixed
proportion of capacity, say 80\. This will have little effect in most
situations.

5.7 ADDING MODE TYPES

Adding a new FEEDER,
to attempt. Adding a new
should not be attempted.
to LINKER modes.

DUMPER, or CBD mode type is a reasonable thing
LINKER mode type is nearly impossible, and
Hence the following discussion will not apply

The folowing steps must be taken to add a new mode type for FEEDER,
DUMPER, or CBD:

l. Increase by l the size of the arrays in
MODE.DEFINITIONS (MODDEF). Then the initialization of these

5-7

arrays must be expanded to define default parameter values for
the new mode type. MXDMOD initialization will have to be
increased by 1 .

2. A new mode number variable, similar to JAUTO, JCARPL, JFRB, etc.
must be added to the MODES.SELECTED (MODSEL) structure, and
initialized in BLOCK DATA to the default mode index of the new
mode type.

3. Any modules which access either of the above data structures will
have to have the structure declaration replaced, and the module
recompiled. While this will include a great many SMART modules,
it can, in most cases, be done automatically with a good text
editor.

4. Any analysis package which is supposed to be able to model the
new mode must be changed. Usually, this will require adding only
one line of code, such as:

IF (MTYPE(MOD) .EQ. JSWIM) CALL DPRSWM(••.)

and then writing a new modal subroutine.

5. Examine the subroutine PROCESS.MODES (PROMOD). This module
handles updating modal parameters. Significantly, it contains
some tests when particular parameters or values make no sense for
a particular mode. You may wish to insert some test of this
type.

No other changes should be necessary.

5.8 ADDING MODAL PARAMETERS

Oddly enough, it is more complicated in SMART to add new modal
parameters than it is to add new mode types. This is because new
parameters require new arrays, and new code to maintain those arrays,
while new mode types simply require expanding existing arrays.

Currently, MODDEF and MODSEL contain arrays corresponding to known
parameters. There is one array for the parameter vehicle speed (DMSPED
in MODDEF and MSPEED in MODSEL), one array for the parameter vehicle
capacity (DMVCAP in MODDEF and MVCAP in MODSEL), and so forth. Each new
modal parameter that is defined will need new arrays declared in MODDEF
and MODSEL. For example, we may have a new parameter NOISE. For this
parameter, we may be define the arrays as DMNOIS in MODDEF and MNOISE in
MODSEL.

The subroutine PRINT.MODAL.PARAMETERS (PMODES) contains an array
MPARM which is dimensioned 20 by MXMOD. The first dimension gives the
maximum number of modal parameters; the second gives the maximum number
of modes. The first dimension size would have to be increased if more

5-8

than 20 parameters were to be used in SMART. SMART currently has 19
modal parameters, so that one new parameter can be added without
changing the array. Other changes required in PMODES are changi ng the
number of parameters NPARM and the number of labels NLBL in the DATA
statement from 19 to the correct number of parameters, and ass i gning
these additional parameters to MPARM in the DO l oop terminated at
statement number 2000.

NEW.MODE (NEWMOD) contains an assignment statement for each modal
parameter, a statement which loads the current defau l t value. Any
additional parameters wi ll have to have a new NEW.MODE stat ement.

PROCESS.MODES (PROMOD) contains the code to update modal parameter
values depending on the user input. For a new modal parameter, a new
option will need to be defined for the MODEPARM card, and PROMOD altered
to process the option. Examine existing code to see how the new code
should look and fit in. Note that PROMOD first looks for options with
no trailing value needed, and then checks other options in the order of
increasing restrictions on the allowable values. New code wil l have to
go into this series in the correct place.

Naturally, any modal analysis routine which is supposed to
incorporate the new parameter must be modified accordingly.

5-9

S.C.R.T .D. LIBRAR~

