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PREFACE 

SYSTAN's Macro-Analytic Regionwide Transportation (SMART) model is a 
sketch planning tool for evaluating public transportation alternatives 
for metropolitan areas. The model and its doc~entation were developed 
as part of the Paratransit Integration Program sponsored by the Office 
of Bus and Paratransit Technology and the Urban Mass Transportation 
Administration and by the Office of Technology and Planning Assistance 
of the Office of the Secretary of Transportation. The Paratransit Inte­
gration Program is concerned with the development and application 0f 
macro-analytic techniques for policy and preliminary planning at the 
local level. 

The SMART model documentation consists of three volumes: 

Application Manual: This report describes the use of the model 
to formulate, evaluate, and compare public transit options for 
urban regions. It discusses the structure of the model and the 
purpose of each major component. It also includes detailed applica­
tion information for four case studies. The document is designed 
for use by transit planners who must assess the suitability of 
the model and, if appropriate, use it to investigate urban trans­
portation alternatives. 

User's Guide: This document focuses on the preparation and for­
matting of data for use in the model. Examples are presented, 
and error messages are explained. T~e doc~ent builds on material 
in the Applications Manual and is required to run the SMART com­
puter program. 

Program Maintenance Manual: This manual describes the internal 
structure of the computer program, including module structure 
and linkage and data structures. It includes material on installa­
tion and on potential model alterations. Written for the skilled 
FORTRAN programmer, each installation of the SMART model computer 
program should have at least one copy of this manual. 

The SMART computer program was written by Andrew J. Canfield. Site 
applications were performed by Carolyn Fratessa and Dr. Wei-Yue Lim. 
All work was performed under the di~ection of Dr. Paul S. Jones. SYSTAN 
gratefully acknowledges the technical and administrative guidance and 
support of Edward Neigut and Michael Markowski of UMTA. Many other 
UMTA and DOT staff members have given freely of their time and skill 
to offer valuable input to the work. However, SYSTAN is solely respon­
sible for the results. 
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1. INTRODUCTION 

1.1 NOTES ON THE CONTENTS 

The variabl es, modules and data structures used in SMART are 
identified in two different ways. The first is a title which is 
unrestricted in length, and which may contain capital letters, periods 
and question marks. This title is chosen to reflect the contents of the 
variable or data structure or the function of the module. Thus 
HAVE.DEMAND.ALREADY? is a logical variable which, if set to .TRUE., 
indicates that demand matrices have been generated and do not need to be 
recomputed. DOOR.TO.DOOR.RUN is a subroutine that performs a 
door-to-door analysis between two zones based on a user card request. 
FORTRAN, however, cannot accept names of this type, so abbreviatons are 
usually needed in the program. The actual FORTRAN name for the variable 
HAVE.DEMAND.ALREADY? is HDEMND and for the subroutine DOOR.TO.DOOR.RUN 
is DORRUN. In this document, both names will usually be given to 
identify the item, first the title and then, in parentheses, the FORTRAN 
name; for example, FEEDER.HEADINGS (FDRHED). When the title and FORTRAN 
name are the same (as for the data structure DEMAND ) the FORTRAN name 
will not be repeated in parentheses. Occasionally only the FORTRAN name 
is given. 

1.2 SYSTEM SUMMARY 

The following analytical routines are the core of the program: 

1. FEEDER block; 

2. LINKER block; 

3. DUMPER block; 

4. CBD block; 

5. DOOR.TO.DOOR (DOOR ) block; and 

6. REGIONWIDE (REGI ON ) block. 

To supplement these, there are several supporting blocks: 

7. The urban structure operations, including modules which load the 
default network, modify the structure based on card input, and 
generate basic data such as shortest routes when needed. 
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8. Travel demand modules load and adjust demand parameters, create 
demand through generation or reading a file, and alter demand 
data in response to overriding user specifications. 

9. Mode maintenance routines select tr3vel modes for analysis and 
alter selected or default parameters. 

10. Print results. 

Overall program control is maintained by 
SMART.MAIN.PROGRAM ( SMARTAJC ) . This module is the main program, and 
operates primarily by repetitively reading a keyword card from the input 
stream and then calling the appropriate subroutine to handle it. In 
some instances, where the task to be performed is relatively simple, 
SMART .MAIN. PROGRAM ( SMARTAJC ) its elf performs the requested operation, 
such as altering a model parameter. 

Each analysis block operates in the following manner: 

1. All information on the keyword card is checked for completeness 
and correctness; analysis is suppressed if errors have been 
encountered, either in this card or in some preceeding card. 

2. Appropriate transport modes are selected by default if they have 
not not already been selected. 

3. The selected transport modes are modeled and performance measures 
are calculated; 

4. Results are combined by direction and printed. 

Generally, card checking and result reporting are performed by one 
module, mode selection by another routine, and modal analysis by several 
modules, one for each distinct transport mode. 
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2. DATA STRUCTURES 

SMART uses 17 common blocks to control its data. This chapter 
gives the details on these data structures, and on the standard indexes 
used in SMART. The common blocks may be catagorized as follows: 

1. Urban Structure: 

a ) URBAN.DEFAULT (UDEFLT ) - default structure data 

b ) URBAN.STRUCTURE (USTRUC-) - structure description 

c ) SHORTEST.ROUTES (ROUTES) - node-to-node routes 

2. Travel modes: 

a ) MODE.DEFINITIONS (MODDEF ) - mode type descriptions 

b ) MODES.SELECTED (MODSEL ) - selected mode descriptions 

3. Demand: 

a ) DEMAND.PARAMETERS (DPARM) - demand generator controls 

b ) DEMAND - actual demand on system 

4. Analysis options - These structures are used mostly to pass 
information from the controlling RUN routine to the results 
printing HEADING routine. They are: 

5. 

a ) FEEDER.PARAMETERS (FDRPRM) 

b ) LINKER.PARAMETERS ( LKRPI"1) 

c ) DUMPER.PARAMETERS (DPRPRM ) 

d ) CBD.PARAMETERS (CBDPRM) 

e) DOOR.TO.DOOR.PARAMETERS (DORPRM) 

Other data structures: 

a ) INPUT.OUTPUT.CONTOLS (IOCON ) - contains I / O units, etc. 

b ) INPUT.RECORD (INREC) - contains the keyword and fields from 
the current keyword control card. 
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c ) FIXED - named program constants which cannot be changed by the 
user. 

d ) FRITZ - miscellaneous parameters, such as transit mode shares. 

e ) RESULT - mode l results 

Exhibit 2.1 shows the major paths that information takes through 
the data structures of SMART. For example, INPUT.RECORD ( INREC ) can 
affect URBAN.DEFAULT (UDEFLT ) . URBAN.DEFAULT (UDEFLT ) does not directly 
influence RESULTS (RESULT ) . However, its current values are used in 
filling in the URBAN.STRUCTURE (USTRUC ) block. The values in 
URBAN.STRUCTURE (USTRUC ) are basically what is written into the archive 
files when a PUTNET card is encountered. As you can see from the 
diagram, the urban structure description affects almost everything in 
SMART. 
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2.1 CBD.PARAMETERS (CBDPRM) 

This data structure contains the following parameters for the CBD 
analysis: 

CBD.ZONE (CBDZON) ( integer ) 

WALK.DISTANCE.FOR.AUTO (CWDATO) (real) 
WALK.DISTANCE.FOR.CARPOOL (CWDCPL ) (real ) 

The FORTRAN COMMON block definition is: 

C DATA STRUCTURE CBDPRM AS OF 07 / 12 / 79 
COMMON/ CBDPRM / CBDZON, CWDATO, CWDCPL 
REAL CWDATO, CWDCPL 
INTEGER CBDZON 

C DATA STRUCTURE CBDPRM END 
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2.2 DEMAND 

This data structure contains the system demand which SMART will 
model. All the demand-producing code exists only to fill DEMAND. The 
DEMAND data structure contains: 

HAVE.DE!v'.AND.P.LREADY? ( HDEMND) (logical ) 

For each time period, 

Fo~ each direction ( l=out,2=in ) , 
For each zone, 

RESIDENTIAL.VOLUME (VRES(TIME,DIR,ZONE )) (real) 
ACTIVITY.CENTER.VOLUME (VACT(TIME,DIR,ZONE)) ( real) 

For each origin node, 
For each destination node, 

TRIP.VOLUME (ODM(TIME,NODE1,NODE2)) (real) 

For each Direction, 
on each link, 

AUTO.TRAFFIC.VOLUME (TRAFIC(TIME,DIR,LINK)) (real) 
(assuming 0% transit mode share) 

For each Linker mode catagory, 
(assuming 100% transit mode share) 

TRANSIT.TRAFFIC.VOLUME (TRANLD(TIME,DIR,LINK,MCAT)) (real) 
TRANSIT.BOARDINGS (TRANON(TIME,DIR,LINK,MCAT)) (real) 
TRANSIT.DROPOFFS (TRANOF(TIME,DIR,LINK,MCAT )) ( real) 

TOTAL.SYSTEM.DEMAND.RATE ( SYSDEM(TIME )) ( real) 

Note that all volumes are in units of trips per minute. 

The FORTRAN COMMON block definition is: 

C DATA STRUCTURE DEMAND AS OF 07/27/79 
COMMON / DEMAND / HDEMND, VRES(3,2,100), VACT ( 3,2,100 ) , 

1 ODM ( 3,50,50 ) , TRAFIC (3,2,100 ) , TRANLD (3,2,100,3), 
2 TRANON ( 3,2,100,3 ) , TRANOF (3,2,100,3 ) , SYSDEM (3), HTRLOD, 
3 IGDEM ( 3 ) 

REAL VRES, VACT, ODM, TRAFIC, TRANLD, TRANON, TRANOF, SYSDEM, 
1 IGDEM 

LOGICAL HDEMND,HTRLOD 
REAL GDEM ( 14708 ) 
EQUIVALENCE ( HDEMND,GDEM (l)) 

C GDEM IS USED ONLY BY PUTNET AND GETNET 
C DATA STRUCTURE DEMAND END 
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2.3 DOOR.TO.DOOR.PARAMETERS (DORPRM ) 

This structure cont ains the pa~ameters needed for a card-initiated 
door-to-door analysis. It contains: 

DOOR.TO.DOOR.ORIGIN.ZONE (ORGZON ) ( integer ) 
DOOR.TO.DOOR.DESTINATION.ZONE (DESZON ) ( integer ) 

FEEDER.ORIGIN.ZONE? ( FEDORG ) ( logical ) 
FEEDER.DESTINATION.ZONE? ( FEDDES ) ( logical ) 

For each zone, 
DOOR.TO.DOOR.CED.MODE ( DCMODE ( ZONE )) ( integer ) 
DOOR.TO.DOOR.FEEDER.MODE (DFMODE ( ZONE )) ( integer ) 
DOOR.TO.DOOR.DUMPER.MODE (DDMODE ( ZONE )) ( integer ) 

LINKER.MODE.CATEGORY ( LCAT ) ( integer ) 

The FORTRAN COMMON block definition is: 

C DATA STRUCTURE DORPRM AS OF 09/ 06 / 79 
COMMON / DORPRM / ORGZON, DESZON, DCMODE ( l OO ) , DFMODE ( lO O) , 

1 DDMODE ( lOO ) , LCAT, FEDDES, FEDORG 
INTEGER ORGZON, DESZON, DCMODE, DFMODE, DDMODE, 

2 LCAT 
LOGICAL FEDDES, FEDORG 

C DATA STRUCTURE DORPRM END 

2-6 



2.4 DEMAND.PARAMETERS (DPARM ) 

This structure provides storage for demand generation parameters. 
It was designed to accomodate a wide variety of demand generation 
procedures. Thus, while the default procedure may use these vectors for 
particular purposes, there is no real limit on how another generation 
procedure may use these same vectors. This structure contains: 

HAVE .DEMAND. PARAMETERS? ( HDPARM ) (logi cal ) 

For each parameter (up to 5) , 
for each zone, 

ZONAL.DEMAND.PARAMETER ( ZDPARM ( l-5,ZONE )) ( real ) 
Default methodology uses: 

1 as population density 
2 as employment density 
3 as average commute length 
4 as average non-commute home-based trip length 
5 as average non-home based work trip length 

For each parameter, 
For each ring, 

DEFAULT.ZONAL.DEMAND.PARAMETER (DZDPRM ( l-5,RING ) ) (real) 

For each time period 
For each direction, 

For each trip type (up to 3 ) , 
TIME.PROPORTION (TPROP (TIME,DIR,TTYPE )) ( real ) 

EXTRA.DEMAND . PARAMETERS (DXPARM ( l-8 )) ( real ) 
Default methodology uses: 

1 as commute trips per day per unit population. 
2 as non-commute home-based trips per day 

per unit population. 
3 as non-home based work trips per day 

per unit employment. 

The FORTRAN COMMON block definition is: 

C DATA STRUCTURE DPARM AS OF 03 / 22 / 79 

C 

COMMON / DPkRM / HDPARM, ZDPARM ( S,100 ) , DZDPRM ( S,8 ) , 
1 TPROP ( 4,2,3 ) , DXPARM ( 8) 

REAL ZDPARM, DZDPRM, TPROP, DXPARM 
LOGICAL HDPARM 

DATA STRUCTURE DPARM END 
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2.5 DUMPER.PARAMETERS (DPRPRM ) 

This data structure contains the parameters needed to run a 
card-initiated DUMPER analysis: 

DUMPER.ZONE (DPRZON ) ( integer ) 

DUMPER.TRANSIT.FRACTION (DPRTF ) ( real ) 
which is the fraction of transit trips desiring 
coll ection or distribution by DUMPER. 

WALK.DISTP.NCE.FOR.AUTO (DWDATO ) ( real ) 
WALK.DISTANCE.FOR.CARPOOL (DWDCPL ) ( real ) 
WALK.DISTANCE.FOR.FIXED.ROUTE.BUS (DWDFRB ) ( real ) 

The FORTRAN COMMON block definition is: 

C DATA STRUCTURE DPRPRM AS OF 07 / 19/ 79 
COMMON / DPRPRM / DPRZON,DPRTF,DWDFRB,DWDATO, DWDCPL 
REAL DPRTF,DWDFRB,DWDATO,DWDCPL 
INTEGER DPRZON 

C DATA STRUCTURE DPRPRM END 
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2.6 FEEDER.PARA.~ETERS (FDRPRM ) 

This data structure contains the parameters for a card-initiated 
FEEDER analysis: 

FEEDER.ZONE (FDRZON ) ( integer ) 
FEEDER.ANALYSIS.TYPE (FDRP.TP ) ( integer ) 
FEEDER.DENSITY.RP.TIO (FDRDRA ) ( real ) 
FEEDER.SUBAREA.RATIO (FDRARA ) ( real ) 

The FORTRAN COMMON block definition is: 

C DATA STRUCTURE FDRPRM AS OF 04 / 12/ 79 
COMMON / FDRPRM / FDRZON, FDRATP, FDRDRA, FDRARA 
REAL FDRDRA, FDRARA 
INTEGER FDRZON, FDRATP 

C DATA STRUCTURE FDRPRM END 
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2.7 FIXED 

This data structure contains certain items which might have been 
coded as constants in the SMART program. Because, at the time of 
writing SMART, there was some question about the exact values to be 
used, we coded these items as variables that are initialized in BLOCK 
DATA and never changed. This allows one to modify them without changing 
dozens of lines of program code. Nonetheless, these items are not as 
easily changed as are common model parameters. They are, in some sense, 
FIXED parameters. This structure includes: 

ALPHA (real ) 
BETA.OVER.TWO (BETA02 ) ( real ) 

LOCAL.DISTANCE.FRACTION (LOCDIS) (real) 
LOCAL.DISTANCE.FRACTION.FOR.CBD ( LOCDIC ) ( real ) 

AUTO.TRIPS.PER.DAY (ATPDAY ) (real) 

FRACTION.OF.USEABLE.ROAD (FROAD ) (real ) 

The FORTRAN COMMON block definition is: 

C DATA STRUCTURE FIXED AS OF 07 / 12/ 79 
COMMON / FIXED / ALPHA, BETA02, LOCDIS, ATPDAY, LOCDIC, FROAD 
REAL ALPHA, BETA02, LOCDIS, ATPDAY, LOCDIC, FROAD 

C DATA STRUCTURE FIXED END 

When waiting times are somewhat controlled, but still contain 
random factors (as for instance coordinated transfer times ) SMART uses 
the formula: 

wait time= alpha+ beta* headway / 2. 

where alpha= 1.71 minutes and beta= 0.57. These terms are 
incorporated into ALPHA and BETA.OVER.TWO (BETA02 ) . 

SMART assumes that the average length of a residential trip in a 
zone, from the residential location to the point where traffic enters 
and leaves the network, is 0.67 times the length of a side of the square 
zone. Although a strictly uniform rectiliniar model would use 0.75 
times the zone side length, 0.67 was chosen to reflect the tendency of 
activity to collect near the network. This factor is found in LOCDIS 
and LOCDIC. 

In order for SMART to allocate the capital cost of an automobile 
properly, it must make some assumption about how many trips the average 
car makes in a day. AUTO.TRIPS.PER.DAY (ATPDAY ) is the assumed number 
of one-way trips the average auto makes per day, and is currently 2.3 . 

Smead's equation for CBD congestion makes certain assumptions about 
road width, auto parking areas, etc., which determine the fraction of 
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total land which is taken up by traffic lanes. This fraction is in 
FRACTION . OF.USEABLE.ROAD (FROAD ) . 1 

1 Srneed, R.J., "Traffic Studies and Urban Congestion," Journal of 
Transport Economics and Policy, January 1968. 
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2.8 FRITZ 

This data structure contains miscellaneous items which somehow 
didn't quite fit anywhere else. The name reflects the structure's lack 
of central theme. It contains: 

For each time period, 
TIME.PERIOD.LENGTH (TIMLEN (TIME )) ( real ) 

NUMBER.OF.MODE.SHARES (NMSI ) ( integer ) 

For each time period, 
for each mode share index, 

TRANSIT .MODE.SHARE (TMS (TIME,MSI ) ) (real) 

CARPOOL.FRACTION (CPFRAC) (real) 
CARPOOL.TIME.FACTOR (CPTIME ) (real) 

WALKING.SPEED (WSPEED ) ( real ) 

The FORTRAN COMMON block definition is: 

C 

C 

DATA STRUCTURE FRITZ AS OF 06/ 26/79 
COMMON / FRITZ / TIMLEN ( 4) , NMSI, TMS (3,6 ) , CPFRAC, CPTIME, 

1 WSPEED 
REAL TIMLEN, TMS, CPFRAC, CPTIME, WSPEED 
INTEGER NMSI 

DATA STRUCTURE FRITZ END 
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2.9 INPUT.RECORD ( INREC ) 

This data structure contains the fields from the latest keyword 
card read (except for columns 73/80, which are read only for printing ) . 
It contains: 

KEYWORD (KEYWRD ) (character ) 
CARD.FIELDS (FIELDS ( l-8 )) (character ) 

The FORTRAN COMMON block definition is: 

C DATA STRUCTURE INREC AS OF 03 / 16 / 79 
COMMON / INREC / KEYWRD, FIELDS(8) 
DOUBLE PRECISION KEYWRD, FIELDS 

C DATA STRUCTURE INREC END 
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2.10 INPUT.OUTPUT.CONTROLS ( IOCON ) 

This data structure contains information related to input / output, 
principally I / 0 units and report format controls. The count of the 
number of errors encountered is in this data structure because any 
module detecting an error must both count it and print a diagnostic 
message. The contents are: 

CARD.INPUT.UNIT (CARDUN ) ( integer ) 
PRINTING.UNIT ( PRNTUN ) ( integer ) 
GET.NETWORK.UNIT (GNETUN ) ( integer ) 
PUT.NETWORK.UNIT ( PNETUN ) ( integer ) 
READ.DEMANDS.UNIT (RDEMUN ) ( integer ) 
WRITE.DEMANDS.UNIT (WDEMUN ) ( integer ) 

NUMBER.OF.LINES.PER.PAGE (LPP ) (integer) 
NUMBER.OF.LINES.THIS.PAGE ( LINES ) ( integer) 
CURRENT.PAGE.NUMBER ( PAGENO ) ( integer) 
REPORT.TITLE (TITLE ( l-8 )) (character) 
REPORT.SUBTITLE ( STITLE ( l-8 )) (character ) 
TODAYS.DATE (DATE ) (character ) 

NUMBER.OF.ERRORS (ERRORS) ( integer) 

The FORTRAN COMMON block definition is: 

C DATA STRUCTURE IOCON OF 04 / 14 / 80 
COMMON / IOCON / TITLE ( 8) , STITLE ( 8 ) , DATE, CARDUN, PRNTUN, 

1 GNETUN, PNETUN, LPP, LINES, PAGENO, ERRORS, RDEMUN, 
2 WDEMUN 

DOUBLE PRECISION TITLE, STITLE, DATE 
INTEGER CARDUN, PRNTUN, GNETUN, PNETUN, LPP, LINES, PAGENO, 

1 ERRORS, RDEMUN, WDEMUN 
C DATA STRUCTURE IOCON END 

It is quite likely that, when installing SMART on a particular 
computer, the initialization for the input / output units will have to be 
changed. They are presently set to CARDUN = 5 and PRNTUN = 6, which is 
normal but by no means universal. 
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2.11 LINKER.PARAMETERS ( LKRPRM ) 

This data structure holds any parameters needed for a 
card-initiated LINKER analysis. It contains: 

ORIGIN.NODE (ONODE ) ( integer ) 
DESTINATION.NODE (DNODE ) ( integer ) 

The FORTRAN COMMON block definition is: 

C DATA STRUCTURE LKRPRM AS OF 06 / 14 / 79 
COMMON / LKRPRM / ONODE, DNODE 
INTEGER ONODE, DNODE 

C DATA STRUCTURE LKRPRM END 
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2.12 MODE.DEFINITIONS (MODDEF ) 

This data structure defines the types of modes that SMART can 
model, including default parameter values. It contains: 

NUMBER.OF.DEFINED.MODES (NDMOD ) ( integer ) 

For each defined mode, 
TYPE.IDENTIFIER (DMIDNT (DMOD )) (character ) 
MODE.LABEL (DMLABL ( l-4,DMOD )) (character ) 
FEEDER.MODE? (DMFEDR (DMOD )) ( logical ) 
LINKER.MODE? (DMLNKR (DMOD ) ) ( logical ) 
DUMPER.MODE? (DMDMPR (DMOD ) ) (logical ) 
CED.MODE? (DMCBD (DMOD ) ) ( logical ) 

COST (DMC (DMOD) ) (r eal ) 
COST.PER.VEHICLE (DMCV (DMOD )) (real) 
COST.PER.VEHICLE.MINUTE (DMCVH (DMOD )) ( real ) 
COST.PER.VEHICLE.MILE (DMCVM (DMOD) ) ( real) 
COST.PER.ROUTE.MILE (DMCRM (DMOD )) (real) 

UNCONGESTED.LOCAL.SPEED ( DMSPED (DMOD )) ( real ) 
MINIMAL.STOP.TIME (DMSTPT (DMOD )) (real) 
ADDITIONAL.STOP.TIME.PER.PASSENGER (DMSTPP(DMOD)) (real) 

MILES.PER.GALLON.AT.LOCAL.SPEED (DMMPG (DMOD )) (real) 
MPG.CURVE.SHAPE.PARAMETER (DMMPGX (DMOD )) (real) (unused) 

VEHICLE.CAPACITY.OR.LOADING (DMVCAP (DMOD )) (real) 

MINIMUM.HEADWAY (DMHWMN (DMOD )) (real) 
MAXIMUM.HEADWAY (DMHWMX (DMOD )) (real) 
MAXIMUM.ROUTE.SPACING (DMRSMX(DMOD)) (real) 
STOP.SPACING (DMSTPS (DMOD )) ( real ) 

CAR.EQUIVALENTS.PER.VEHICLE (DMCRPV(DMOD)) (real) 

FRACTION.WHO.WALK (DMFWLK(DMOD )) ( real ) ( unused ) 
FRACTION.WHO.PARK (DMFPRK (DMOD )) ( real ) ( unused ) 

For each time period, 
TRAIN.SIZE (DMTRAN (TIME,MOD )) ( real ) 
SUBSCRIPTION.SERVICE? (DMSUB (T IME,MOD )) ( logical ) 

TRANSFER .COORDINATI ON (DMTCRD (DMOD )) ( integer ) 
whose codes signify the following wait times: 
1 = RANDOM (headway/2) 
2 = TIMED (alpha+beta*headway/ 2 ) 
3 = THROUGH (no wait time) 
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The FORTRAN COMMON block definition i s: 

C DATA STRUCTURE MODDEF AS OF 06 / 26 / 79 
COMMON / MODDEF / DMIDNT ( 8 ) , DMLABL ( 4 , 8) , NDMOD, DMFEDR (8) , 

1 DMLNKR ( 8 ) , DMDMPR ( 8) , DMCBD ( 8) , DMC (8) , DMCV (8), 
2 DMCVH ( 8) , DMCVM ( 8 ) , DMCRM ( 8 ) , DMSPED ( 8 ) , DMSTPT ( 8 ) , 
3 DMSTPP ( 8 ) , DMMPG ( 8 ) , DMMPGX ( 8 ) , DMVCAP (8 ) , 
4 DMHWMN ( 8 ) , DMm;;.:x c 8 ) , DMRSMX c 8 ) , DMSTPS c 8 ) , 
5 DMCRPV ( 8 ) , DMFWLK ( 8 ) , DMTRAN ( 3 , 8 ) , DMSUB ( 3,8 ) , DMTCRD ( 8), 
6 DMFPRK ( 8 ) 

DOUBLE PRECISION DMIDNT , DMLABL 
REAL DMC, DMCV, DMCVH , DMCVM, DMCRM, DMSPED , DMSTPT, DMSTPP, 

1 DMMPG, DMMPGX , DMVCAP, DMHWMN, DMHWMX, DMRSMX, 
2 DMSTPS, DMCRPV, DMFWLK, DMTRAN, DMFPRK 

INTEGER NDMOD, DMTCRD 
LOGICAL DMFEDR, DMLNKR, DMDMPR, DMCBD, DMSUB 

C DATA STRUCTURE MODDEF END 

MPG.CURVE.SHAPE.PARAMETER (DMMPGX ) was established to vary fuel 
mileage with speed. Currently SMART uses a single fuel consumption in 
miles-per-gallon, without adjustment. 

FRACTION.WHO.WALK ( DMFWLK ) and FRACTION.WHO.PARK (DMFPRK ) are 
leftovers from an abandoned methodology. They were part of the effort 
to model walking in DUMPER and CBD, and are no longer used. These 
vectors are unused in that they have the following activity: 

1. There is a vector in MODE.DEFINTI ONS (MODDEF ) and a corresponding 
vector in MODES .SELECTED (MODSEL ) . 

2. The modal definition vector is initialized in BLOCK DATA. 

3. When a mode is selected, the subroutine NEW.MODE ( NEWMOD) 
transfers the value from the modal definition vector to the modal 
selection vector. 

4. PRINT.MODAL.PARAMETERS ( PMODES ) may or may not print the value. 

5. No other module in SMART accesses either of the vectors. 
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2.13 MODES.SELECTED (MODSEL) 

This data structure contains the specifications of the selected 
modes. It contains: 

AUTO.MODE.NUMBER (JAUTO ) (integer) 
CARPOOL.MODE.NUMBER ( JCARPL ) (integer) 
FIXED.ROUTE.BUS.MODE.NUMBER ( JFRB ) ( integer) 
FLEXIBLE.ROUTE.BUS.MODE.NUMBER ( JFLEX ) (integer ) 
HEAVY .RAIL.M01JE.NUMBER (JHRAIL J ( integer ) 
LIGHT.RAIL.MODE.NUMBER (JLRAIL) ( integer) 
AUTOMATED.GUIDEWAY.MODE.NUMBER (JAGT ) ( integer ) 
PRIVATE.AUTO.TRANSIT.MODE.NUMBER ( JPAT) (integer ) 

NUMBER.OF.MODES.SELECTED (NMOD) ( integer ) 
MAXIMUM.NUMBER.OF.MODES.SELECTED (MXMOD ) (integer ) 

For each selected mode, 
MODE.IDENTIFIER (MIDENT(MOD)) (character ) 
MODE.TYPE (MTYPE(MOD)) (integer ) 

which is one of the above travel mode numbers. 
MODE.LABEL (MLABL(l-4,MOD)) (character) 
MODE.SUBROUTINE (MSUBR(MOD)) (integer ) 

iwhose codes are: 
l = FEEDER 
2 = LINKER 
3 = DUMPER 
4 = CBD 
5 = REGION totalling area 
6 = DOOR.TO.DOOR totalling 

COST (MC(MOD)) (real) 

area 

COST.PER.VEHICLE (MCV(MOD)) (real) 
COST.PER.VEHICLE.MINUTE (MCVH(MOD)) (real) 
COST.PER.VEHICLE.MILE (MCVM(MOD)) (real) 
COST.PER.ROUTE.MILE (MCRM(MOD)) (real) 

UNCONGESTED.LOCAL.SPEED (MSPEED(MOD)) (real) 
MINIMAL.STOP.TIME (MSTOPT(MOD)) (r eal) 
ADDITIONAL.STOP.TIME.PER.PASSENGER (MSTOPP(MOD)) (real) 

MILES.PER.GALLON.AT.LOCAL.SPEED (MMPG(MOD)) ( real ) 
MPG.CURVE.SHAPE.PARAMETER (MMPGX(MOD)) (real) (unused) 

VEHICLE.CAPACITY.OR.LOADING (MVCAP(MOD)) (real) 

MINIMUM.HEADWAY (MHWMIN(MOD )) (real ) 
MAXIMUM.HEADWAY (MHWMAX (MOD)) (real) 
MAXIMUM.ROUTE.SPACING (MRSMAX(MOD)) (real) 
STOP.SPACING (MSTOPS (MOD)) (real) 

CAR.EQUIVALENTS.PER.VEHICLE (MCARPV(MOD )) (real) 

FRACTION.WHO.WALK (MFWALK(MOD ) ) (real) (unused) 

2-18 



FRACTION.WHO.PARK (MFPARK (MOD ) ) ( real ) (unused ) 

For each time period, 
TRAIN.SIZE (MTRAIN (TIME,MOD )) ( real ) 
SUBSCRIPTION.SERVICE? (MSUB (TIME,MOD )) ( logical ) 

SUPPRESS.ANALYSIS? (MNORUN (MOD ) ) ( logical ) 

TRANSFER.COORDINATION, (MTCORD <MOD )) ( integer ) 
whose codes (and wait times ) are: 

1 = RANDOM (headway/ 2 ) 
2 = TIMED (alpha+beta*headway/ 2 ) 
3 = THROUGH (no wait time ) 

For each primary analysis type (FEEDER, LINKER, DUMPER, and CBD ) , 
SELECT.DEFAULTS? ( SMDSEL ( l-4 )) ( logical ) 

For each zone, 
DESIGNATED.FEEDER.MODE ( ZFMODE ( ZONE )) ( integer ) 
DESIGNATED.DUMPER.MODE (ZDMODE(ZONE )) ( integer ) 
DESIGNATED.CED.MODE ( ZCMODE ( ZONE )) ( integer ) 

The FORTRAN COMMON block definition is: 

C DATA STRUCTURE MODSEL AS OF 06 / 26 / 79 
COMMON / MODSEL / MIDENT ( 25 ) , MLABL(4,25 ) , NMOD, MXMOD, 

1 MTYPE(25 ) , MSUBR ( 25 ) , MC (25 ) , MCV ( 25 ) , MCVH ( 25 ) , MCVM(25 ) , 
2 MCRM ( 25 ) , MSPEED ( 25 ) , MSTOPT ( 25 ) , MSTOPP ( 25 ) , MMPG ( 25 ) , 
3 MMPGX(25), MVCAP ( 25 ) , MHWMIN(25 ) , MHWMAX ( 25 ) , 
4 MRSMAX(25 ) , MSTOPS ( 25 ) , MCARPV ( 25 ) , MFWALK ( 25 ) , 
5 MTRAIN ( 3,25 ) , SMDSEL ( 4), MNORUN ( 25 ) , MSUB( 3,25 ) , 
6 MTCORD (25 ) , MFPARK ( 25 ) , JAUTO, JCARPL, JFRB, JFLEX, 
7 JHRAIL, JLRAIL, JAGT, JPAT, ZFMODE ( lOO ) , ZDMODE ( lOO ) , 
8 ZCMODE ( lOO ) 

DOUBLE PRECISION MIDENT, MLABL 
REAL MC, MCV, MCVH, MCVM, MCRM, MSPEED, MSTOPT, MSTOPP, MMPG, 

1 MMPGX, MVCAP, MHWMIN, MHWMAX, MRSMAX, MSTOPS, 
2 MCARPV, MFWALK, MTRAIN, MFPARK 

INTEGER NMOD, MXMOD, MTYPE, MSUBR, MTCORD, JAUTO, JCARPL, 
1 JFRB, JFLEX, JHRAIL, JLRAIL, JAGT, JPAT, ZFMODE, ZDMODE, 
2 ZCMODE 

LOGICAL SMDSEL, MNORUN, MSUB 
C DATA STRUCTURE MODSEL END 

The variables <travel>.MODE.NUMBER (J---- ) do double duty. First, 
they are the codes found in the vector MODE.TYPE (MTYPE). Second, they 
are indexes into the vectors in MODE.DEFINITIONS (MODDEF ) . All modules 
use these variables to decode mode types, thereby making it easier to 
add new mode types, to delete mode types, or to re-order existing mode 
types (for which there should be no need, since no code depends upon the 
relative ordering of the mode types). 
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Please see the discussion of the MODE.DEFINITIONS (MODDEF ) data 
structure for an explanation of the unused vectors. 

SUPPRESS.ANALYSIS (MNORUN ) is required becau se there are s i tuations 
v-·here not all selected modes can be modelled at the same time . SMART 
needed a mechanism to shut off selected modes and turn them back on at 
will. For example, in a regionwide ana lysis, FEEDER will be called to 
model service in each zone , using the des ignated FEEDER service type for 
that zone. During this analysis, other selected FEEDER service types 
must be deactivated. 

SELECT.DEFAULTS ( SMDSEL ) is the mechani sm by which the user can 
prevent default mode selection when he/ she wants to model only certain 
specifically selected modes. Because it only prevents selection of the 
defaults, it has no effect if t he defaults have already been selected. 
SMP.RT currently provides no method by which the user can turn default 
selection back on. 

This data structure also contains the vectors that give the 
designated FEEDER, DUMPER, and CBD mod es for each zone . The vectors 
contain values which are indexes in t o the rest of the MODSEL structure. 
Because they are indexed by ZONE , these vectors constitute the only 
interconnection between urban structure and modes selected. 
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2.14 RESULTS (RESULT ) 

All the computational effort in SMART exists to produce values in 
this data structure. It contains: 

For each time period, 
for each direction, * 

for each transit mode share a lt ernative, 
for each selected mode, 

COST.PER.TRIP (COST (TIME,DIR,MSI,MOD )) ( real ) 
TRAVEL.T IME (TTIME (TIME,DIR,MSI,MOD )) (real ) 
TRP.VEL.TIME.STD.DEV (TTIMED (TIME,DIR,MSI,MOD )) ( real ) 
FUEL.CONSUMPTION.PER.TRIP ( FUEL (TIME,DIR, MSI,MOD ) ) _(real ) 
FLEET.SIZE (F LEET (TIME,DIR,MSI,MOD ) ) ( real ) 
HEADWAY ( HEADWY (TIME,DIR,MSI,MOD )) (real ) 
AVERAGE.LOADING ( LOADNG (TIME,DIR,MSI, MOD )) ( real ) 
VEHICLE.MILES.PER.MINUTE (VMPM (TIME,DIR,MSI,MOD )) ( real ) 
PICKUPS.PER.MINUTE (V PPM (TIME,DIR,MSI,MOD ) ) (real ) 

LINKER.EXPRESS.BUS? ( EXPRES (TIME,DIR,MSI )) ( logical ) 

* For FEEDER, DUMPER, and CBD modes, direction 1 is ou tbound 
and direction 2 is inbound. 

For LINKER modes, direction 1 is for the se l ected trip, and 
direction 2 is for the reverse trip. 

For all modes, direction~ is an accumulation area used by 
the driver routine to sum findings accross both 
directions or, for REGION, accross the entire system. 

The FORTRAN COMMON block definition is: 

C DATA STRUCTURE RESULT AS OF 07 / 12/ 79 
COMMON / RESULT / COST (3,3,6,25 ), TTIME (3,3,6,25), 

1 TTIMED (3,3,6,25 ) , FUEL ( 3,3,6,25 ) , FLEET (3,3,6,25 ) , 
2 HEADWY (3,3,6,25 ) , LOADNG (3,3,6,25 ) , VMPM (3,3,6,25 ) , 
3 VPPM (3,3,6,25 ) , EXPRES ( 3,3,6 ) 

REAL COST, TTIME, TTIMED, FUEL, FLEET, HEADWY, LOADNG, VMPM, 
1 VPPM 

LOGICAL EXPRES 
C DATA STRUCTURE RESULT END 
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2~15 SHORTEST.ROUTES (ROUTES ) 

This data structure ho l ds the routes which lead f rom one network 
node to another. It contains: 

HAVE.SHORTEST.ROUTES.ALREADY? (HROUTS ) ( logical ) 

For each origin node, 
For each destination node, 

LAST.AUTO.ROUTE.LINK (ROUTL (NODE2,NODE1 )) ( integer ) 
AUTO.ROUTE.DISTANCE (ROUTD (NODE2,NODE1 )) ( real ) 

NUMBER.OF.TRANSIT.ROUTE.LEGS (NLEG) ( integer ) 
For each transit route leg, 

TRANSIT.ROUTE.LINK (TLINK ( LEG )) ( integer ) 
TRANSIT.ROUTE.DIRECTION (TDIR ( LEG )) ( integer ) 
TRANSIT.ROUTE.MODE.CATAGORY (TMCAT ( LEG )) ( integer ) 

The FORTRAN COMMON block definition is: 

C DATA STRUCTURE ROUTES AS OF 06 / 18/ 79 

C 

COMMON / ROUTES / HROUTS, ROUTL(50,50 ) , ROUTD ( 50,50), NLEG, 
1 TLINK ( lOO ) , TDIF ( lOO ) , TMCAT(lOO ) 

REAL ROUTD 
INTEGER ROUTL, NLEG, TLINK, TDIR, TMCAT 
LOGICAL HROUTS 

DATA STRUCTURE ROUTES END 

The logical switch HAVE.SHORTEST.ROUTES.ALREADY? ( HROUTS) refers to 
the automobile shortest routes only. Transit routes are re-calculated 
whenever one is needed. 

Auto shortest routes are encoded in the matrix 
LAST.AUTO.ROUTE.LINK (ROUTL ) . Note that the destination is the first 
index, and the origin the second. Although this seems backwards, it 
arises because our shortest routes routine operates on one origin at a 
time. The resultant vector is one column of this matrix (FORTRAN stores 
matrices by columns ) . For a given origin, the routes to the 
destinations form a tree, and the segments of that tree are stored in 
ROUTL . Thus one can only trace a route backwards. It is done with the 
following algorithm: 

1. set current node to destination node. 

2. if current node is origin node, terminate; otherwise: 

3. obtain link number from LAST.AUTO.ROUTE.LINK (ROUTL ) . 

4. next node number is whichever endpoint of the current link does 
not match the current node. 

5. do whatever needs done for this link 
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6. set current node to next node, and go back to step 2. 

Although this technique of handling shortest routes may seem strange, it 
requires considerably less memory than other methods. Because data 
requirements are order (N**2 ) , (Order (N**3 ) in some alternate 
techniques ) , red~cing the size of shortest route storage was a major 
concern. 

Unlike auto shortest routes, only one transit route is stored at a 
time. Hence any transit route needed is generated wherr it i s required. 
By definition the transit route can extend from one node to the same 
node -- in this case, the number of transit route legs (NLEG ) is zero. 
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2.16 URBAN.DEFAULT (UDEFLT ) 

This structure contains most of the information needed to generate 
a ring/ corridor network. The contents are: 

MAXIMUM.NUMBER.OF.RINGS (MXRING ) ( integer ) 
For each r ing, 

RI NG.OUTER.RADIUS (RADIUS (RING )) ( real ) 
DEFAU LT.OUTER.RADIUS (DRADUS (RING )) (real ) 
DEFAULT.PARKING.COST (DZPARK (RING )) (real ) 

MAXIMUM.NUMBER.OF.CORRIDORS (MXCOR ) ( integer ) 
For each corridor, 

CORRIDOR.ANGLE (ANGLE (COR)) (real ) 

For each possible default link, 
DEFAULT.LINK . IDENTIFIER (DLIDNT (DLINK )) (character ) 

For each possible default node, 
DEFAULT.NODE.IDENTIFIER (DNIDNT (DNODE )) (character ) 

For each possible default zone, 
DEFAULT.ZONE.IDENTIFIER (DZIDNT (DZONE )) (character ) 

For radial ( 1 ) and circumferential ( 2 ) highways, 
DEFAULT.LINK.TYPE (DLTYPE ( l-2 )) ( integer ) 
DEFAULT . NUMBER.OF.LANES (DLLANS ( l-2 )) ( real) 
DEFAULT.DIAMOND.LANE? (DLDMND ( l-2 )) ( logical) 
DEFAULT.LIGHT.RAIL? (DLLRAL ( l-2 )) (logical ) 
DEFAULT.HEAVY.RAIL? (DLHRAL ( l-2 )) ( logical ) 
DEFAULT.SPEED (DLSPED ( l-2 )) ( real) 
DEFAULT.LIGHT.RAIL.SPEED (DLLSPD ( l-2 )) ( real ) 

The FORTRAN COMMON block definition is: 

C DATA STRUCTURE UDEFLT AS OF 05 / 19/ 79 
COMMON / UDEFLT / DLIDNT ( lOO ) , DNIDNT ( SO ) , DZIDNT(lOO ) , 

1 MXRING, RADIUS ( 8) , MXCOR, ANGLE ( 6 ) , 
2 DLTYPE ( 2) , DLLANS (2 ) , DLDMND ( 2 ) , DLLRAL ( 2 ) , DLHRAL ( 2 ) , 
3 DZPARK (8) , DRADUS ( 8) , DLSPED ( 2) , DLLSPD ( 2 ) 

DOUBLE PRECISION DLIDNT, DNIDNT, DZIDNT 
REAL RADIUS, ANGLE, DLLANS, DZPARK, DRADUS, DLSPED, DLLSPD 
INTEGER MXRING, MXCOR, DLTYPE 
LOGICAL DLDMND, DLLRAL, DLHRAL 

C DATA STRUCTURE UDEFLT END 

Notice that the actual number of rings and corridors is missing. 
Even after the network is generated, LINKSET, ZONESET, and ZDPSET cards 
need these values to translate ring and corridor numbers into link or 
zone indexes. Consequently, NRING and NCOR must be archived with the 
network. All the values in URBAN.DEFAULT (UDEFLT ) are used only at that 
i nstant whan the default network is generated. 
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Both vectors for ring radius must be initialized to the same 
default values. 

The default link, node, and zone ider.tifiers are stored in the 
vectors as they would be in the actual identifier arrays for a full 
ring/ corridor system (with the maximum number of each ) . 
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2. 17 URBAN.STRUCTURE (USTRUC ) 

This data structure defines the geographic characteristics of the 
system being modelled. It contains: 

HAVE.URBAN .STRUCTURE .ALREADY? (HUSTRC ) ( logical ) 

URBAN. STRUCTURE.TYPE (UTYPE ) ( integer ) 
whose codes are: 
1 = ring / corridor system 
2 = arbitrary network 

If this is a ring/ corridor structure, 
NUMBER.OF .RINGS (NRING ) ( integer ) 
NUMBER.OF.CORRIDORS (NCOR ) ( integer ) 

MAXIMUM.NUMBER.OF.LINKS (MXLINK ) ( integer ) 
NUMBER.OF.LINKS (NLINK ) ( integer ) 
For each LINK, 

LINK.IDENTIFIER ( LIDENT (LINK )) (character ) 
LINK.TYPE ( LTYPE ( LINK )) ( integer ) 

whose codes are: 
0 = missing 
1 = freeway 
2 = arterial 

NUMBER.OF.LANES ( LLANES (LINK )) ( real ) 
DIAMOND.LANE? ( LDMND ( LINK )) ( logical ) 
LIGHT.RAIL? (LLRAIL ( LINK )) ( logical ) 
HEAVY.RAIL? (LHRAIL ( LINK )) ( logical ) 
LENGTH ~LLENTH ( LINK )) (real ) 
UNCONGESTED.AUTO.SPEED (LSPEED ( LINK )) (real) 
LIGHT.RAIL.SPEED ( LLSPED ( LINK )) (real ) 
For each end of the lihk, 

NODE.AT . END ( LNODE ( l-2,LINK )) ( integer ) 

For each non-null link type ( l=freeway,2=arterial), 
CAPACITY.PER.LANE (CAPPLN ( l-2 )) ( real ) 

MAXIMUM.NUMBER.OF.NODES (MXNODE ) ( integer ) 
NUMBER.OF . NODES (NNODE ) ( integer ) 
For each node, 

NODE.IDENTIFIER (N IDENT (NODE )) (character ) 
LINK.CONNECTIONS.LIST.START (NODPP (NODE )) ( integer ) 
ZONE.CONNECTIONS.LIST.START (NODZPP (NODE ) ) ( integer ) 
For each entry in the links connections list, 

LINK . CONNECTED.TO (NODP ( l,IPP )) ( integer) 
NODE.CONNECTED.TO (NODP (2,IPP )) ( integer ) 

For each entry in the zones connections list, 
ZONE.CONNECTED.TO (NODZP ( IPP ) ) ( integer ) 

MAXIMUM.NUMBER.OF.ZONES (MXZONE ) ( integer ) 
NUMBER.OF.ZONES (NZONE ) ( integer ) 
For each zone, 

ZONE.INDENTIFIER ( ZIDENT (ZONE )) (character ) 
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NODE.CONNECTED.TO ( ZNODE (ZONE )) ( integer ) 
ZONE.TYPE (ZTYPE ( ZONE )) ( integer ) 

whose codes are: 
1 = CBD 
2 = non-CBD 
3 = zone to ignore 

ZONE .S I ZE (ZS I ZE ( ZONE)) (real ) 
ZONE.SIDE . LENGTH ( ZSIDE ( ZONE )) (real ) 
ZONE .PARK ING.COST (ZPARK (ZONE )) ( real ) 

The FORTRAN COMMON block definition is: 

C DATA STRUCTURE USTRUC AS OF 05 / 19/ 79 
COMMON / USTRUC / LIDENT ( lOO ) , NIDENT(SO ) , ZIDENT(lOO), 

1 HUSTRC, MXLINK, NLINK, LTYPE ( lOO ) , LLANES(lOO ) , 
2 LDMND ( lOO) , LLRAIL ( lOO ) , LHRAIL ( lOO ) , LLENTH ( lOO ) , 
3 LNODE ( 2,100 ) , CAPPLN (2 ) , MXNODE, NNODE, NODPP(Sl), 
4 NODZPP (Sl ) , NODP ( 2,200 ) , NODZP ( lOO ) , MXZONE, 
5 NZONE, ZNODE ( lOO ) , ZTYPE ( lOO ) , ZSIZE ( lOO ) , ZPARK.(100), 
6 UTYPE, ZSIDE ( lOO ) , NRING, NCOR, LSPEED ( lOO ) , LLSPED ( lOO ) 

DOUBLE PRECISION LIDENT, NIDENT, ZIDENT 
REAL LLANES, LLENTH, CAPPLN, ZSIZE, ZPARK, ZSIDE, LSPEED, 

1 LLSPED 
INTEGER MXLINK, NLINK, LTYPE, LNODE, MXNODE, NNODE, NODPP, 

1 NODZPP, NODP, NODZP, MXZONE, NZONE, ZNODE, ZTYPE, UTYPE, 
2 NRING, NCOR 

LOGICAL HUSTRC, LDMND, LLRAIL, LHRAIL 
REAL GNET ( 2614 ) 
EQUIVALENCE (GNET ( l ) ,LIDENT ( l )) 

C DATA STRUCTURE USTRUC END 

The method used to encode the interconnections between links and 
nodes and zones is efficient but not at all obvious. Imagine a vector 
which contains an entry for each node. That entry is a list of the 
links which are attached to that node. Such a vector cannot be 
implemented direc t l y in FORTRAN, since each element of the vector is a 
list (array) . We could have used a matrix where each row represented a 
node and the columns listed the links. Such a matrix would require as 
many columns as the maximum number of links attached to any one node. 
This would result in a lot of wasted space, since most nodes have far 
fewer than the maximum attached links. We have implemented this 
links-l i sting vector by us i ng an array as if it consisted of a fixed 
numbe~ of rows, each containing a variable number of columns. NODP 
contains a segment for each node, and the segment begins at NODPP (NODE) 
and goes through NODPP (NODE+l ) -1. Each row in this segment of NODP 
refers to one link attached to this node; NODP ( l,? ) gives the index of 
the link, and NODP (2,? ) gives the index of the node on the other end of 
the link. Every link appears twice in NODP, and thus NODP must be 
dimensioned 2 by 2*MXL I NK . To find the segment used, we start at 
NODPP (NODE ) and go through NODPP (NODE+l ) -1, even if NODE= MXNODE. 
Hence NODPP must be dimensioned by MXNODE+l. A similar process uses 
NODZPP ( NOOE ) through NODZPP (NODE+l ) -1 as a segment of NODZP ( ? ) , which in 
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turn lists the zones attached to each node. In this way we need no 
restriction on the connectivity of the system. Although all this 
information duplicates data contained in the arrays LNODE and ZNODE, it 
can be easily processed by node and thereby saves much searching time . 

• 
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2.18 STANDARD INDEXES 

We have tried, throughout SMART, to use consistent index names. 
Most modules declare a set of s t andard indexes, whether they are all 
used or not. Additional indexes are cr~ated as needed by appending to 
the standard index a one-digit suffix, such as LEGl and LEG2 coming from 
LEG. The standard indexes are: 

CARD.INPUT.FIELD ( FLD ) 

LINK 

NODE 
FROM.NODE (NODEl ) 
TO.NODE (NODE2 ) 

ZONE 
FROM.ZONE ( ZONEl ) 
TO.ZONE ( ZONE2 ) 

TIME.OF.DAY.INDEX (TIME ) 

DIRECTION (DIR ) 
For FEEDER, DUMPER, and CBD, direction 1 is outbound 

and direction 2 is inbound. 
For LINKER modes, direction 1 is selected trip and 

direction 2 is reverse trip. 
For links, directions 1 and 2 are arbitrary. 
For output matrices, direction 3 is an accumulation area. 

BACK.POINTER.INDEX ( IPP ) 

TRIP.TYPE (TTYPE ) 

TRANSIT.MODE (MOD ) 
DEFINED.TRANSIT.MODE (DMOD) 

CHARACTER.GROUP (CHAR ) 

MODE.SHARE.INDEX (MSI ) 

LINKER.TRANSIT.MODE.CATAGORY (MCAT ) 
Fixed Route Bus= 1 
Light Rail = 2 
Heavy Rail= 3 

TRANSIT.ROUTE.LEG ( LEG ) 

The FORTRAN declaration of these standard indexes is: 

C DATA STRUCTURE STDIND AS OF 06 / 18/ 79 
INTEGER FLD, LINK, NODE, ZONE, NODEl, NODE2, ZONEl, ZONE2, 

1 TIME, DIR, IPP, TTYPE, MOD, DMOD, CHAR, MSI, MCAT, LEG 
C DATA STRUCTURE STDIND END 
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3. PROGRAM STRUCTURE 

Each SMART module is designed to operate as independently as 
possible in the performance of a specific task. Most of these modules 
can be grouped into one of nine major subsystems. The following 
sections present brief descriptions each of those subsystems. The 
symbols used in the program structure diagrams are explained in Exhibit 
3.1 

3.1 URBAN STRUCTURE SUBSYSTEM 

Exhibit 3.2 shows the modules which maintain the urban structure. 
Keywords that define the urban network structure will activate the 
PROCESS.NETWORK (PRONET ) module. This module controls network 
parameters such as ring radii, zone size, and link length. It examines 
all information on urban-related cards and prints error messages if 
mistakes are located. Depending on the modifications required, it may 
need to access such routines as UNDEFINE.NETWORK (UNFLAG ) , 
GENERATE.URBAN.STRUCTURE (GUSTRC ) , UPDATE.LINK (UPDLNK ) , 
UPDATE.ZONE ( UPDZON ) , LINK.NUMBER ( LINKNO ) , and ZONE.NUMBER ( ZONENO ) to 
help with the network modifications. Changes to radii, number of rings 
and corridors, and angles are made by PRONET itself, and no other 
modules are necessary. However, if the URBAN or NULLNET keywords are 
encountered, PRONET must call UNDEFINE.NETWORK (UNFLAG ) to clear all 
previous urban parameters and to issue warning messages. 

For zone or link updating, SMART requires that the updates be made 
to an existing structure. Therefore, PRONET checks the 
HAVE.URBAN.STRUCTURE.ALREADY? ( HUSTRC) indicator, which is a member of 
the URBAN.STRUCTURE (USTRUC ) data structure. If HUSTRC is .FALSE., no 
network exists and PRONET must call GENERATE.URBAN.STRUCTURE (GUSTRC) to 
initialize the network. If a NULLNET card is in effect, then it is 
initialized to an empty network, with zero zones, nodes, and links. If 
a NULLNET card is not active, it is initialized to a ring/ corridor-type 
system using the current values for the number of rings and corridors 
and ring radii and corridor angles. 

Each zone or link has a unique index. For a ring/ corridor 
structure, this index can be computed from the ring number, corridor 
number, number of rings and zones, and the left / right or 
radial / circumferential location description. This happens in the 
modules ZONE.NUMBER ( ZONENO) and LINK.NUMBER ( LINKNO ) , and in 
NODE.NUMBER (NODENO ) for nodes, when a ring/ corridor system is created 
or when LINKSET or ZONESET cards are encountered. When a zone or link 
identifier is given, on the ONEZONE or ONELINK cards, 
LIST.LOOKUP ( LISTS ) must be used to find the index in the list of 
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EXHIBIT 3.1 

PROGRAM STRUCTURE SYMBOLS 

A single-walled box represents a module; for example, REGION appears as: 

REGION 

Module activations, either through a CALL statement or a function reference, 
appear as arrows from the activator to the activated. For example, REGION calls 
PRINT.REGION.PARAMETERS (PREGN): 

~ 
I PREGN I 

If there are other activations of this module not shown on this diaqram the 
activated module appear with a circle on its corner. For example, REGION is one 
of many modules which calls ENSURE.MODE (ENSMOD): 

REGION 

ENSMOD 

When the activated or activator is part of some other subsystem, then the 
subsystem name appears in a double-walled bax. For example, REGION calls 
FEEDER. In the REGION diagram, there appears: 

REGION 

In the Feeder diagram, there appears: 

11 REGION 11 

♦ I FEEDER 

An activation of a separate subsystem hown in a diagram never shows all the 
possible ways that subsystem can be activated. Hence all double-walled boxes have 
an implied attached circle. 

The module SMART.MAIN.PROGRAM (SMARTAJC) appears in all subsystem 
diagrams except the one for results printing, which is activated only through one of 
the other subsystems. 
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identifiers. Once the link or zone is known, UPDLNK and UPDZON will be 
called to make the requ i red modificat ions. Zone and link 
characteristics are modified only by the UPDATE.LINK ( UPDLNK) and 
UPDATE.ZONE (UPDZON ) routines which are cal led on l y by PRONET. Options 
and paramet ers are examined, and zone and link characteristics are set 
accord i ngly . 

No modification s to the network can be made unti l 
GENERATE.URBAN.STRUCTURE (GUSTRC ) has been invoked and 
HAVE.URBAN.STRUCTURE ( HUSTRC ) set to .TRUE . Once thi s is done, and 
until the next URBAN or NULLNET card is encountered, SM .. ll.RT will avoid 
any network regeneration, which would erase the network modifications 
made already. 

Link, zone and node pointers are se t up by subroutine 
BACK.POINTER ( BAKPNT ) . These pointer s are necessary for finding routes 
through the network. 

Note tht GUSTRC is called, not only by PRONET, but by other 
routines as well. In particular , it is accessed by any module which 
requires that an urban structure be present before computations can be 
performed. 

3.2 DEMAND SUBSYSTEM 

This subsystem, shown in Exhibit 3.3, can be roughly separated into 
three segments: one dealing with demand parameters, one dealing with 
demand generation, and one dealing wi th demand volume updating . Default 
demand parameters are contained in the matrix 
DEFAULT.ZONAL.DEMAND.PARAMETERS (DZDPARM ) and the vector 
EXTRA.DEMAND.PARAMETERS (DXPARM ) , assigned to zones by module 
GENERATE.DEMAND.PARAMETERS (GDPARM) and updated by subroutine 
PROCESS.DEMAND.PARAMETERS ( PRODP ) . All demands and trip volumes are 
either read in from an external file or calculated from zonal demand 
parameters, which contain information on zonal population and employment 
density, trip generation rates, and trip lengths. The default demand 
generation procedure is subroutine GENERATE.DEMAND (GDEMND ) , which 
computes trip rates from the zone's population, employment, and demand 
parameters, and distributes them to destination zones based on an 
exponentially decreas i ng function of dis t ance. External demand data are 
read by subroutine READ.DEMAND (READEM). All trip volume updating is 
done by module PROCESS.VOLUME.CHANGES ( PROVOL ) . 

Before demand parameters can be changed, two tasks must be 
completed : An urban structure must be avai lable, and default demand 
parameters must have been assigned. Two variables indicate whether 
these tasks have been attended to: 
HAVE.URBAN.STRUCTURE.ALREADY? ( HUSTRC ) and 
HAVE.DEMAND.PARAMETERS? ( HDPARM ) . Both are logical variables, the 
former in the data structure URBAN.STRUCTURE (USTRUC ) and the latter in 
DEMAND.PARAMETERS (DPARM ) . If HUSTRC is .TRUE., an urban structure is 
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available and complete; if it is .FALSE., SMP.RT has not yet created the 
urban network, and GUSTRC must be called. Similarly, if HDPARM is 
.TRUE., demand parameters have been assigned; otherwise, they have not 
been loaded yet, and GDPARM must be called. 

For the ring/ corridor structure, demand parameters are assigned on 
the basis of ring / corridor location; that is, whether the zone is in 
Ring 1, 2, 3 and so forth, while arbitrary network dem&nd parameters are 
all defaulted to Ring 3 default values. ZONE .NUMBER ( ZOHENO ) is used by 
GDPARM to determine the zone index of each ring / corridor zone. 

Demand volumes are obtained either th~ough the default generation 
procedure in GENERP.TE.DEMANDS (GDEMND ) , frcm an external file through 
subroutine READ.DEMAND (READEM ) , or through a special demand generation 
procedure installed by a programmer ( see the chapter 'PROGRAM 
ALTERATIONS' ) . In any case, routes must have already been generated 
because they relate node-to-node traffic to link traffic. For demand 
generation procedures, demand parameters must also have been loaded. 
Therefore, if they are unavailable, GENERATE.ROUTES (GROUTS ) or 
GENERATE.DEMAND.PARAMETERS (GDPARM ) must be called to perform the 
required computations. Any demand-producing module will call 
INITIALIZE.DEM.AND ( IDEMND ) to set all demands initially to zero, then 
compute (for generation ) or read in ( for READEM) the trip distribution 
and aggregate it using the DEMAND.VOLUME (DEMVOL) procedure. 

Modifications to trip volume are made by subroutine 
PROCESS. VOLUME. CHANGES ( PROVOL ) I which is called only by 
SMART.MAIN.PROGRAM ( SMARTAJC ) . This module first ensures that an urban 
structure and demand volumes already exist ( if not , it calls GUSTRC and 
GDEMND ) . Then it introduces the changes requested by the input cards. 
For transit link traffic changes through the TRAFFIC card, it may have 
to call the GENERATE.TRANSIT.LOAD ( GTRLOD ) routine to compute initial 
transit loads before making modifications. 

3.3 FEEDER SUBSYSTEM 

The FEEDER subsystem is portrayed in Exhibit 3.4 The driving 
routine is the FEEDER.RUN (FDRRUN ) module, which is invoked only by 
SM..~RT.MAIN.PROGRP.M ( SMART.A.JC ) upon encountering the FEEDER keyword. The 
FDRRUN module checks all input information, loads default modes if the 
automatic mode selection process is in effect, and suppresses analysis 
if errors have been found. FDRRUN calls FEEDER to perform the actual 
zonal analysis, then sums the output from the FEEDER routine to obtain 
bidirectional totals. Printing routines are then called to display the 
results of the model. 

The first task of FEEDER is to call 
ENSURE.MODES.SELECTIONS ( ENSMOD ) to ensure that at least one auto, one 
carpool, and one transit mode have been selected for analysis. If a 
CORRIDOR analysis is required, FEEDER ensures light-rail selection as 
well. Modal parameters for any newly selected mode are initialized in 

3-6 



l,J 
I 

-.J 

1 

I PF fl)P I 

n 

I PMQ[)ES l 

' 
PP INT 

R OI 'TINES 

' ' 
I FORHED I 

• n 

HEADING I 

Slv1Ar'T.'.\,W I 

,w 

I F[)PRl 1N I 
I 

EX HJPIT 3.4 

F EEOEP Sl IR SYSTEN' 

! 

T 
1 N EIVMOL) r 

' ' I r-0Rt1 Tn I I FORCPL I 

I c1v1ALL n f.- '\ ' ' ' 

r.~ I TPFUEL ' ' ,, 

" I FORIV'IX ! 
~ r 

11 rinn1, II 

' ! 11 REG ION 11 

I F EEDER I 
I 

' ' I Fr1PPL\T I I rnP1 HR I I H)R I- L '< I I f--DRLRL I 

I 
' ' ' ' ' 

' ' 



subroutine NEW.MODE ( NEWMOD ) . FEEDER then calls the individual transit 
mode routines to compute performance measures. 

Individual mode routines are FEEDER.AUTO (FDRATO ) , 
FEEDER.CARPOOL ( FDRCPL ) , FEEDER.PRIVATE.AUTO (FDRPAT ) , 
FEEDER.FIXED.ROUTE.BUS ( FDRFRB ) , FEEDER.FLEXIBLE.ROUTE ( FDRFLX ) , and 
FEEDER.LIGHT.RAIL (FDRLRL ) . These contain the mathematical 
relationships that form the basis for FEEDER system analysis. They 
access several modules that help in computing performance measures: 
CAPITAL.MAINTENANCE.ALLOCATION (CMALLO ) , TRIP.FUEL (TPFUEL ) , 
FEEDER.MIX.DENSITY.RESULTS ( FDRMIX ) , which properly sum and average 
results from FEEDER dual density analyses, and 
AVERAGE.STANDARD.DEVIATIONS (AVGDEV ) , which computes the standard 
deviation of travel time for dual density analyses. 

FEEDER.HEADINGS ( FDRHED ) and HEADINGS ( HEADNG ) are called by print 
routines to display heading labels. 

3.4 DUMPER SUBSYSTEM 

The DUMPER subsystem, shown in Exhibit 3.5, is structured in much 
the same way as the FEEDER block. It is somewhat less complex, since 
there are fewer modes to model, and it does not have to contend with 
dual density analyses. The individual mode routines consist of 
DUMPER.AUTO (DPRATO ) , DUMPER.CARPOOL (DPRCPL ) , and 
DUMPER.FIXED.ROUTE.BUS (DPRFRB). These contain the mathematical 
relationships that form the basis for modeling and evaluating DUMPER 
service. They access the modules TRIP.FUEL (TPFUEL) , which computes 
fuel consumption measures, and CAPITAL.MAINTENANCE.ALLOCATION (CMALLO), 
which allocates capital and maintenance costs across the different time 
periods in a day. 

3.5 CBD SUBSYSTEM 

The CBD block, which also resembles the FEEDER subsystem, is shown in 
Exhibit 3.6 There are four individual mode routines: CBD.AUTO (CBDATO ) , 
CBD.CARPOOL (CBDCPL ) , CBD.FIXED.ROUTE.BUS (CBDFRB ) , and 
CBD.AUTOMATED.GUIDEWAY.TRANSIT (CBDAGT), which contain the mathematical 
relationships that describe system operations. Two modules found here 
have no corresponding FEEDER version: CONGESTED.ZONE.SPEED (CZSPED) and 
AGT.EFFECTIVE.VELOCITY (AGTVEL ) . CZSPED calculates the congested 
vehicle speed based on CBD traffic volume and Smeed 's congestion 
relation. 1 AGTVEL, accessed only by CBDAGT, computes AGT vehicle speed 
based on station . spacing. TRIP.FUEL (TPFUEL) and 
CAPITAL.MAINTENANCE.ALLOCATION (CMALLO) are used for computing fuel 

1 Smeed, R.J., "Traffic Studies and Urban Congestion," Journal of 
Transport Economics and Policy, January 1968. 
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consumption and cost allocation. 

3.6 LINKER SUBSYSTEM 

This subsystem is diagrammed in Exhibit 3.7 Upon encountering the 
LINKER keyword, SMART.MAIN.PROGRAM (SMARTAJC ) activates the 
LINKER.RUN ( LKRRUN ) routine, which coordinates SMART's LINKER analysis 
procedures. This module checks the input data and suppresses analysis 
if errors are found. It also checks transit loads and, if they are 
undefined, GENERATE.TRANSIT.LOAD (GTRLOD ) will be called to compute 
transit pick-ups, drop-offs and loading for all network links. Next, 
TRANSIT.ROUTE (TRANRT ) is called to compute the transit route between 
the origin and destination nodes specified on the keyword card. LINKER 
is then called to perform line-haul analysis. Results from this routine 
are summed and printed by LINKER.RUN ( LKRRUN ) through the printing 
routines. 

LINKER'S first task is to ensure that an urban structure and a set 
of demand volumes have been generated. If not, it calls the 
GENERATE.URBAN.STRUCTURE (GUSTRC ) and GENERATE.DEMAND (GDEMND ) 
procedures to compute the required inputs. 
ENSURE.MODES.SELECTIONS ( ENSMOD ) is called to make certain that at least 
one auto and one carpool mode have been selected. All newly selected 
modes will have their parameters initialized by subroutine 
NEW.MODE (NEWMOD ) . LINKER then examines each leg on the shortest 
interconnecting path and ensures that its mode category has been 
selected. Line-haul performance measures for automobiles and carpools 
are obtained by calling subroutine LINKER.CAR ( LKRCAR). Apart from the 
differing demand rates and vehicle speeds (carpools can use preferential 
lanes ) , the LKRCAR subroutine handles both modes in the same manner. 
Next, LINKER computes transit demand and determines if it is large 
enough to justify express bus service between the designated nodes. It 
calls TRANSIT.NEEDS (TRANED ) to compute headways, loads, speeds, times 
and other transit performance measures. Outputs are then allocated by 
mode categories, and an appropriate portion is billed to trips made 
between the designated origin and destination modes. Congested link 
speeds are computed by subroutine CONGESTED.LINK.SPEED (CLSPED ) , which 
is called by both TRANED and LKRCAR. 

Subroutines LINKER.HEADINGS ( LKRHED) and HEADINGS (HEADNG ) are 
called by the printing routines to display heading information. 

3.7 DOOR.TO.DOOR SUBSYSTEM 

These modules are shown in Exhibit 3.8 Once the DOOR keyword is 
encountered, the DOOR.TO.DOOR subsystem uses subroutine 
DOOR.TO.DOOR.R~N (DORRUN ) to ensure that urban structure and demand 
volumes have been generated. If not, DORRUN calls the 
GENERATE.URBAN.STRUCTURE (GUSTRC ) and GENERATE.DEMAND (GDEMND ) 
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procedures to create the required data. All inputs on the DOOR card are 
checked, and analysis is suppressed if errors are found. DORRUN calls 
subroutine DOOR.TO.DOOR (DOOR ) to compute door-to-door performance 
measures. These are displayed by DORRUN through the printing routines. 

Module DOOR calls ENSURE.MODES.SELECTIONS (ENSMOD ) to ensure that 
at least one auto, one carpool, and one transit mode are selected for 
analysis. All newly selected modes have their parameters initialized in 
subroutine NEW.MODE (NEWMOD ) . If LINKER transit loads have not yet been 
generated, DOOR will call GENERATE.TRANSIT.LOAD (GTRLOD ) to compute 
vehicle loading. TRANSIT.ROUTE (TRANRT ) will also be called to generate 
the door-to-door line-haul route. DOOR creates four "dummy" modes for 
storage allocation: AUTO.TOTAL (ATOTOT ) , CARPOOL.TOTAL (CPLTOT ) , 
TRANSIT.TOTAL (TRNTOT ) , and MODE.TOTAL (MODTOT ) . The first three 
accummulate results from origin to destination for the corresponding 
modes; the last creates a temporary storage location to record 
separately the performance measures of the origin and destination zone 
transit service. In the event that the origin and the destination have 
the same mode (for example, both have FEEDER fixed-route bus ) , this 
extra location assures that the performance measures of both modes will 
be saved (by time, direction and the mode share index ) and available for 
later use. The FEEDER and DUMPER or CBD subsystems are called to 
calculate zonal measures, depending on the type of origin and 
destination zones. Results from the zonal analysis are added up in 
subroutine DOOR.TO.DOOR.SUM (DORSUM). LINKER is then called to compute 
line-haul measures, and these are added to the zonal outputs to provide 
a door-to-door picture of urban travel. 

One of the resulting performance measures is passenger pick-ups per 
minute. For DOOR, this should be the zone-to-zone demand rate. 
However, to minimize storage requirements, this statistic is not saved 
by the demand generation procedures of SMART, and hence cannot be 
printed. Instead, subroutine PRINT.DOOR.TO.DOOR.PICKUPS (PDORPK) 
displays the total number of outbound and inbound trips (pick-ups ) in 
the origin/destination zones and pick-ups on the interconnecting links. 
These flows are, of course, larger than the volume of zone-to-zone 
trips, since they include trips between other origins and destinations 
as well. 

3.8 REGION SUBSYSTEM 

The REGION modules are shown in Exhibit 3.9 The tasks in this 
subsystem are coordinated or performed by subroutine REGION. To perform 
a regionwide analysis, an urban structure and demand volumes must first 
have been specified. If they are not, REGION will call the 
GENERATE.URBAN.STRUCTURE (GUSTRC ) and GENERATE.DEMAND (GDEMND ) 
procedures to create the required data. For each zone, REGION ensures a 
designated transit mode. If no transit mode has been designated, REGION 
will select fixed-route bus. For each basic analysis type, exactly one 
auto and one carpool mode will be selected. REGION also creates three 
"dummy" modes: AUTO.TOTAL (ATOTOT), CARPOOL.TOTAL (CPLTOT), and 
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TRANS I T.TOTAL (TRNTOT ) to provide space for summing modal outputs. 
ATOTOT cont~ins total regionwide performance measures for auto modes; 
CPLTOT for carpool mode; and TRNTOT for transit modes. Although the 
moda l parameter s f or these dummy modes are unused, parameter values are 
set in subroutine NEW.MODE (NEWMOD ) for these dummy modes since some 
FORTRAN monitors obj ect t o uninitialized var i ables. 

Depending on t he zone t ype, either FEEDER and DUMPER or CBD will be 
called t o perform t he actual zonal analys i s. Once zonal outputs have 
been generated , REGION.MODAL.SUM (RGNSUM ) is called to accummulate 
results of the zonal analysis. 

If link loads are absent, REGION will call 
GENERATE.TRJI.NSIT.LOAD (GTRLOD ) to compute the required loading. Since 
loading depends on the transit routes selected between nodes, GTRLOD 
must access subroutine TRANSIT.ROUTE to get routes. For each link and 
for each loaded LINKER transit mode, REGION calls module 
TRANSIT . NEEDS (TRANED ) to compute performance measures for that link. 
Temporal allocation of costs is determined by module 
CAPITAL.MAINTENANCE.ALLOCATION (CMALLO ) , while the function 
TRIP.FUEL (TPFUEL ) and CONGESTED.LINK.SPEED (CLSPED ) calculate fuel 
consumption and congested link speed, respectively. For the LINKER auto 
and carpool modes, performance measures are calculated directly in 
REGION. 

Fi nally , all regionwide results are printed. 

3 .9 RESULTS PRINT I NG SUBSYSTEM 

The modules which print SMART's findings are shown in Exhibit 3.10, 
and their interconnections indicated. This subsystem consists primarily 
of PRINT.COST (PCOST ) , PRINT.TRAVEL.TIME (PTTIME ) , 
PR INT.FUEL.CONSUMPTION ( PFUEL ) , PRINT.FLEET.SIZE ( PFLEET ) , 
PRINT.HEADWAY ( PHEDWY ) , PRINT.VEHICLE.LOADING ( PLOAD ) , 
PRINT.VEHICLE.MILES ( PVMPM ) , and PRINT.PICKUPS (PVPPM ) . In general , all 
of these routines are used for all of the results printing by all of the 
analysis routines (FEEDER, DUMPER, CBD, LINKER, DOOR, and REGION). The 
exception s are : PRINT.PICKUPS (PVPPM ) is not used by DOOR.TO.DOOR, 
which calls PRI NT.DOOR.TO . DOOR.PICKUPS ( PDORPK ) instead. Also, LINKER 
calls PRINT.EXPRESS . STATUS ( PRINEX ) to show whether line-haul 
f ixed-route buses are multi-stop or express. 

The heading rout i nes LINKER.HEADINGS ( LKRHED ) , 
FEEDER.HEADINGS (FDRHED ) , DUMPER.HEADINGS (DPRHED ) , 
CBD . HEADINGS (CBDHED ) , REGIONWIDE.HEADINGS (RGNHED ) , and 
DOOR.TO.DOOR.HEADINGS (DORHED ) are called by the printing routines, 
depending upon which analysis block invoked the print. The method used 
i s to pass the name of the printing subroutine as a parameter to each of 
t he results printing modules. The overall heading for the SMART model 
i s pr i nted by subroutine PAGE.HEADINGS (HEADNG ) . 
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4. MACHINE INDEPENDENCE AND INSTALLATION 

SMART code standards were selected for: 

• Portability; 

• Reliability; and 

• Low execution cost. 

A truly portable program is one that is machine-independent and that can 
be transferred from one computer or input / output device to its 
functional equivalent without any reprogramming or variation in results. 
This ideal state can never be completely realized in a program of the 
size and complexity of SMART, even though every effort has been made to 
increase its portability. The basis for the FORTRAN used in SMART is 
A.rr.erican National Standards Institute (ANSI ) report X3.9-1966, commonly 
known as FORTRAN-66. Certain extensions to that standard were used to 
increase program reliabi l ity, where these extensions are believed to be 
widely available. Also, some functions can only be performed reasonable 
efficiently by machine-dependent code, but equivalent code exists for 
virtually all computers. 

4.1 EXTENSIONS TO FORTRAN-66 

The following extensions to FORTRAN-66 are used in SMART: 

1. Hollerith literals may be enclosed in apostrophes ( single 
quotes). 

2. An array may be initialized in a DATA statement by merely giving 
its name, with the number of values equal to the number of 
elements in the array. 

3. Double-precision variables are assumed to hold at least eight 
characters. No assumption is made about the total number of 
characters, the placement of these characters, or the padding. 
Character-containing variables are only compared for equal or not 
equal. 

4. FORTRA~-66 requires that both subprograms and COMMON blocks be 
overlayable . hll SMART subprograms are overlayable (that is, 
none remember data from one call to the next ) . However, no 
COMMON block is overlayable; each must remain in core during the 
entire program execution. On any machine, there should be a way 
to ensure this, at least by adding otherwise unnecessary 
declarations to the main program. 
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5. The maximum number of dimensions for any array i n SMART is 4, 
whereas FORTRAN-66 permits no more than 3. Affected arrays are 
those that contain performance and output measures from the 
model, such as cost, fuel consumption, vehicle loading, and so 
forth. These are dimensioned by time of day , direction, mode 
share index, and mode. 

4.2 SPECIFIC VIOLATIONS OF FORTRAN-66 

1. Every module begins with the statement: 
IMPLICIT LOGICAL* 1 ( A-Z ) . 

This permits compile-time detection of most spelling errors. The 
default is never deliberately used, and these statements may be 
removed if necessary. 

2. The main program contains an END= option on the read statement, 
as does the module READDEM. SMART specifications require 
end-of-file indicator records, so these END= uses function only 
to allow SMART, rather than the operating system, to detect the 
error. The END= options may be removed, with no affect on the 
processing of correct input decks. 

3. The module MKREAL is machine-dependent. This subroutine examines 
an eight character field, stored in a DOUBLE PRECISION variable, 
and returns the equivalent real value. It is, in effect, a 
core-to-core read with format FS. O. The error indicator that is 
returned if the field is not nµmeric is only used for detecting 
user errors. Thus MKREAL would be adequate, if not pleasant to 
use, if it simply aborted when an error was detected. In an 
extreme case, MKREAL could be implemented using the following 
very slow code: 

WRITE (unit, 210 ) DWORD 
210 FORMAT (AS ) 

REWIND unit 
READ ( unit,220 ) VALUE 

220 FORMAT (FS.0 ) 
ERROR=.FALSE. 

4. LIST.LOOKUP ( LISTS ) is moderately machine-dependent. This 
dependency arises because the list is allowed to contain zero 
entries, and the list is not always the same length. One FORTRAN 
monitor may require it to be dimensioned to NELE ( the number of 
elements in the list ) even though NELE is sometimes zero. Other 
monitors may insist that it be dimensioned to the largest 
possible length, such as 9999, even though the array is actually 
smaller than that. Some monitors will not accept either 
declaration, but will tolerate a declaration of ( 1 ) as an 
indication of a dynamic dimension. Some experimentation may be 
needed to see what your run-time monitor can live with. 
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5. GETDAT returns the current date in eight characters, of the form 
"MM/ DD/ YY." This is very system-dependent. The field is used 
only for printing, so GETDAT may return eight blanks, in which 
case the printout will be undated. 

6. In the archived network/ demands system, speed is achieved by 
equating real vectors to the entire data structures and using 
unformatted I / O for that vector. The size of the vector assumes 
that DOUBLE PRECISION variables are twice as large as REAL 
variables, and that INTEGER and LOGICAL variables are the same 
size as REAL variables. If this is not the case, the length of 
arrays GDEM in DEMAND and GNET in URBAN.STRUCTURE (USTRUC ) must 
be changed. 

4.3 PROGRAM SIZE 

SMART is a rather large program. The data structures occupy 38,000 
words, and the executeable code approximately 60,000 words. On an 
IBM/37O-type system, using the FORTRAN H compiler with full 
optimization, total module size, including data, program code, and 
FORTRAN monitor, was 361,112 bytes (90,278 words). When the WATFIV 
debugging compiler was used, total memory required shot up to over 
720,000 bytes. 

In most runs, not all blocks are executed. Hence, memory 
requirements can be reduced via overlay techniques. In such a case, the 
following guidelines are useful: 

1. COMMON blocks must be part of the root segment. 

2. Overlay segment boundaries can generally follow analysis block 
boundaries. 

3. A regionwide analysis could become extremely expensive, since it 
repeatedly calls on most of the other blocks. 

4.4 ACCURACY 

SMART was developed on an IBM/ 37O-type system. On these computers, 
single-precision floating point numbers have 21 to 24 bits (6 to 7 
decimal digits) of accuracy, depending on the value. This is about the 
minimum accuracy found on any computers, and SMART had no trouble with 
truncations or round-off errors. Thus the floating point word size 
should not be a consideration on any machine. 

However, IBM/ 37O-type systems allocate 31 bits for the value of an 
integer, plus one sign bit. Some systems default to only 15 bits f or 
integer magnitudes. Although no problems are forseen in such a case, 
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such a conversion has not been tested and the installer is advised to 
proceed with caution. 
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5. PROGRAM ALTERATIONS 

Great care has been exercised in the design of the SMART model to 
giv e it sufficient breadth and depth to handle a large variety of urban 
transpor t problems without any changes to the code. Nonetheless, 
si t uations may arise that require alterations to the SMART program in 
order to obtain a more satisfactory representation of the urban travel 
problem under study. For example, one case arose wherein traffic 
patterns on highways were so unusual that SMART's standard 
congestion/ speed relation was unable to reflect the situation 
adequately. One module had to be replaced to handle the problem. 

SMART's design is highly modular, with each module's task precisely 
defined and isolated. Thus, many changes to the program can be easily 
made because they are localized and affect only one or two modules. 
Other changes are spread throughout the program and, because of complex 
interdependencies, are risky as well as difficult to implement. Any 
change, however minor, will involve a certain amount of risk and, hence, 
should be avoided unless it improves program performance substantially. 

One can make a variety of changes to SMART. This chapter discusses 
the changes that are most likely to be needed, and which can be 
accomplished without major expense. 

5.1 DEFAULTS 

Perhaps the easiest changes to SMART constitute alterations to the 
default values of parameters. However, such changes are rarely needed, 
since the user can override default values whenever needed. The values 
in the data structure FIXED cannot be reset by the user, and so it may 
at times be necessary to change these fixed parameters. Cost parameters 
are the most likely candidates for change. If inflation continues, 
these parameter defaults may need regular updating. 

5.2 SIZE LIMITS 

SMART limits the number of nodes, zones, links and other entities 
that it will handle. Initial limits have been set by SYSTAN to achieve 
the flexibility needed for realistic representation of a variety of 
urban settings. In its present form, SMART's data structures occupy 
38,000 words of storage, and the object code requires roughly 60,000 
additional words. With this large space usage, one hesitates to make 
iny changes that would increase memory requirements. 

5-1 



Many of the data structure arrays, such as the number of selected 
links and zones, are dimensioned to certain maxima. Some of these 
maxima can easily be modified, while others are less accessible. Those 
that are not very accessible, such as the number of time periods or the 
number of LINKER mode categories, are so embedded in the code that only 
detailed alteration of the program can change them. Attempts to modify 
these parameters are discouraged, and we will not discuss such complex 
changes in this manual. Limits that can easily be modified include 
MAXIMUM.NUMBER.OF .ZONES (MXZONE ) , MAXIMUM.NUMBER.OF .LINKS (MXLINK ) , 
MAXIMUM.NUMBER.OF.NODES (MXNODE ) , MAXIMUM.NUMBER.OF.CORRIDORS (MXCOR ) , 
MAXIMUM.NUMBER.OF.RINGS (MXRING ) , and MAXIMUM.NUMBER.OF.MODES (MXMOD ) . 

The process of increasing a SMART limit can be outlined as follows: 

1. Identify all related limits which must be raised as well. For 
example, if the maximum number of zones is increased, chances are 
that the maximum number of nodes will have to be increased. 

2. Identify all the arrays in the data structures which need to be 
expanded to accommodate the increase. At this time you can 
estimate the impact on SMART memory requirements. It may be 
necessary to limit size of the increase to keep the program 
within the space limitations of your computer. 

3. Construct new COMMON block definitions for each of the affected 
data structures. 

4. Insert the new definition into any module which references the 
structure ( s ) , replacing the old definition, and re-compile those 
modules. The appendix "DATA STRUCTURE REFERENCES" identifies all 
modules so affected. 

5. Locate any arrays local to a module which depend on a particular 
limit, and alter them. These are relatively rare in SMART; 
those which do exist are identified in this chapter. 

6. Alter the BLOCK DATA subroutine, both to change the value of the 
limit and to specify initialization for the newly created array 
elements, if any. 

The largest arbitrary network consists of 100 links, 50 nodes, and 
100 zones. The largest ring/ corridor structure consists of 8 rings and 
6 corridors. Such a structure has 84 links, 43 nodes, and 85 zones. 
For the ring/ corridor structure, we must always ensure that: 

MXLINK > (MXRING - 1) * 2 
MXNODE > (MXRING - 1) * MXCOR + 1 
MXZONE > (MXRING - 1) * MXCDR * 2 + 1 

Equality can hold for an exact ring/ corridor structure; if additional 
zones, links, or nodes are to be added, forming a composite network, the 
limits must be raised. For example, if we have an eight-ring, 
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six-corridor structure, and two extra zones are to be added, MXZONE must 
be at least (( 8-1 ) *6*2+1 ) +2 = 87. 

MAXIMUM.NUMBER.OF.NODES (MXNODE ) is the most important variable to 
examine because of its non-linear effect on storage requirements. There 
are three arrays whose size is proportional to the square of MXNODE. 
ORIGIN.DESTINATION.MATRIX (OD~ ) is dimensioned by the number of time 
periods and the maximum number of nodes squared, and is found in the 
DEMAND structure. LAST.AUTO.ROUTE.LINK (ROUTL ) and 
AUTO.ROUTE.DISTANCE (ROUTD ) are both dimensioned by the maximum number 
of nodes squared, and are found in the structure 
SHORTEST.ROUTES (ROUTES ) . The number of time periods is fixed at three; 
therefore, ODM contains 3 * MXNODE**2 elements, while ROUTL and ROUTD 
each contain MXNODE**2. The total number of elements involved here is 
therefore 5 * MXNODE**2. The current limit on MXNODE is 50. If this 
limit is raised from 50 to, for example, 51, ( 5 * 51**2 ) - ( 5 X 50**2 ) = 
505 words will be added to SMART in these matrices alone . This is a 
large increase relative to the very minor increase in MXNODE. If we 
increase MXNODE by 50%, to 75, the total storage required for these 
arrays jumps from 12,500 words to 28,125 words, increasing SMART's total 
memory requirements by about 15%. Some other arrays are affected 
linearly, such as DEFAULT.NODE.IDENTIFIER (DNIDNT ) , which contains the 
default names of the nodes. 

MAXIMUM.NUMBER.OF.MODES (MXMOD ) is also critical to program size. 
It is important because nine of the ten arrays in RESULTS are 
dimensioned 3 by 3 by 6 by MXMOD. Therefore, increasing by 1 the 
maximum number of modes able to be analyzed in each run will require 486 
additional words of storage for results. Data structure 
MODES.SELECTED (MODSEL ) adds another 33 variables, largely through its 
modal parameter arrays such as COST.PER.VEHICLE.MILE (MCVM ) and 
UNCONGESTED.LOCAL.SPEED (MSPEED ) . These modal parameters are passed to 
subroutine PRINT.MODAL.PARAMETERS ( PMODES ) , where they are stored in the 
local array MPARM, which is dimensioned to 20 * MXMOD. Hence, when 
MXMOD is increased by 1, PMODES requires another 20 elements. Other 
local arrays bring the total additional requirement of core storage to 
551 computer words. Thus, for small increases in limits, MXMOD is 
almost as critical as MXNODE in determining core requirements. Its 
importance relative to MXNODE decreases at large limit increases, since 
MXNODE is the only major limit with quadratic effec t on memory. 

The bounds on MXLINK and MXZONE are much less cr itical. Increasing 
the limit on MXLINK by 1 increases the number of array elements and 
words of storage by 80, with the greatest increase being contributed by 
data structure DEMAND through the arrays AUTO.TRAFFIC.VOLUME (TRAFIC ) , 
TRANSIT.TRAFFIC.VOLUME (TRANLD ) , TRANSIT.BOARDINGS (TRANON ) , and 
TRANSIT.DROPOFFS (TRANOF ) . These contribute 60 of the 80 additional 
elements. Other data structures affected by MXLINK include 
SHORTEST.ROUTES (ROUTES ) , URBAN.DEFAULT (UDFLT ) , 
URBAN.STRUCTURE ( USTRUC ) , and a local array, XIMP , of the module 
GENERATE.SHORTEST.ROUTES ( GROUTS ) . Because each link is assigned a 
default value in array DEFAULT.LINK.IDENTIFIER ( DLIDNT ) , increasing 
MXLINK will require that DLIDNT be expanded and the additional links be 
initialized in the BLOCK DATA subroutine. 
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Increasing the limit on MXZONE by 1 contributes 36 additional words 
of storage to the program. The principal increase comes from the arrays 
RESIDENTIAL.VOLUME (VRES) and ACTIVITY.VOLUME (VACT) in data structure 
DEMAND, with each array requiring 6 new elements. Other data structures 
affected are DOOR.TO.DOOR.PARAMETERS (DORPRM ) , 
DEMAND.PARAMETERS (DPARM ) , MODES.SELECTED (MODSEL), 
URBAN.DEFAULT (UDEFLT ) , and URBAN.STRUCTURE (USTRUC ) . Local arrays 
affected are DMAX, EMPL, POP, TDIST, and ZONSEG in module 
GENERATE.DEMAND (GDEMND ) and FEED in module DOOR.TO.DOOR (DOOR ) . 

MAXIMUM .NUMBER.OF.RINGS (MXRING) and 
MAXIMUM.NUMBER. OF.CORRIDORS (MXCOR ) have negligible direct effects on 
storage requirements. However, remember that an increase in either of 
these wi ll probably require an increase in the number of links, nodes, 
and zones allowed, and these increases will have major effects. 
Extending the maximum number of rings by 1 adds 8 array elements, while 
extending the maximum number of corridors by 1 adds only 1 array 
element. Since all these array elements are single-precision real 
variables, they require the same increase in the number of words of 
storage. The data structures affected by MXRING include 
DEMAND.PARAMETERS (DPARM ) and URBAN.DEFAULT (UDFLT ) . Only UDEFLT is 
affected by MXCOR. All affected arrays will require new initializations 
in the BLOCK DATA subroutine. Note that the RING.OUTER.RADIUS (RADIUS) 
and DEFAULT.OUTER.RADIUS (DRADUS) arrays in UDEFLT must be initialized 
identically. No local arrays are affected by these limits. 

The above discussion shows that MXNODE is the most crucial factor 
in determining array storage requirements. From the viewpoint of 
storage, therefore, any increase in network detail should concentrate on 
increasing the number of links, zones, rings and corridors, and not on 
increasing the number of nodes. By the same token, decreasing storage 
requirements is more effective by decreasing the maximum number of nodes 
and modes analyzable in any one run than by decreasing any other limit. 

5.3 MODULE REPLACEMENTS 

Although any SMART module can be replaced by a module which 
performs an equivalent task, in most cases the task performed is so 
complex that complete replacement would be very expensive. The 
following modules, though, are relatively simple and/ or isolated from 
the rest of SMART, and thus are prime candidates for replacement: 

1. AGT.EFFECTIVE.VELOCITY (AGTVEL) computes the average speed of an 
AGT vehicle from the AGT system route spacing. The average speed 
includes slow-down and start-up time, but not any station dwell 
time. AGTVEL necessarily incorporates many assumptions about 
operating characteristics, such as motor torque, vehicle weight, 
top speed, and traction. This module can easily be replaced to 
incorporate either other assumptions or a different methodology. 
Be forewarned, however, that if the new methodology requires more 
information than is currently available to AGTVEL, other SMART 
code will have to be changed to maintain that information. 
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2. CONGESTED.LINK.SPEED (CLSPED) computes the resultant actual speed 
on a link from the link characteristics and the assumed transit 
mode share. Code relating to finding car-equivalents and number 
of non-diamond lanes will probably need to be retained, but the 
formula relating congestion to speed can easily be moctified or 
replaced. Be sure that, no matter what happens, link speed never 
drops to zero. 

3. CAPITAL.MAINTENANCE.ALLOCATION (CMALLO) incorporates rules for 
allocating daily charges to transit trips. While the rules used 
in SMART are meant to be fair (trips pay for excess capacity) 
they are not universal truths. Some people may wish to 
incorporate a different cost allocation scheme. 

4. CONGESTED.ZONAL.SPEED (CZSPED) implements Smead's equation for 
finding the congested traffic speed in a CBD. Other formulations 
would : equire different versions of CZSPED . 

5. TRANSIT.ROUTE (TRANRT) is perhaps the prime candidate for 
replacement. Its function is to decide on a transit route from 
one node to another node. The current algorithm is very 
simplistic. Note, however, that this module is called NNODE**2 
times, and thus expensive code can get very expensive indeed. 

By route, we mean a series of link/direction/mode catagories. 
SMART has been carefully designed to accept almost any type of 
transit routing, with the following restrictions: 

All patrons travelling from one node to another node 
must take the same transit route -- one cannot send one 
percentage one way and another percentage another way. 
Similarly, the route cannot change by time of day. 

Patrons returning take the same route in the reverse 
order. 

The procedure supplied with SMART follows the auto shortest 
route, using the highest-numbered available transit mode catagory 
(heavy rail in preference to light rail, light rail in preference 
to buses). This results in only one mode on each link getting 
any demand, and it also produces a lot of transfers. 

5.4 MODAL ANALYSIS MODULES 

Most of SMART is structured so that individual modes are handled in 
separate subroutines. Consequently, changes to the methodology are 
clearly located and isolated. These modules are: 

1. CBD.AGT (CBDAGT) 
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2. CBD.AUTO (ACBATO) 

3. CBD.CARPOOL (CBDCPL) 

4. CBD.FIXED.ROUTE.BUS (CBDFRB) 

5. DUMPER.AUTO (DPRATO) 

6. DUMPER.CARPOOL (DPRCPL ) 

7. DUMPER.FIXED.ROUTE.BUS (DPRFRB) 

8. FEEDER.AUTO (FDRATO) 

9. FEEDER.CARPOOL (FDRCPL ) 

10. FEEDER.FLEXIBLE.ROUTE.BUS (FDRFLX) 

11. FEEDER.FIXED.ROUTE.BUS (FDRFRB) 

12. FEEDER.LIGHT.RAIL (FDRLRL) (Note that altering light rail to 
service an entire zone instead of just a corridor is a much more 
extensive change.) 

13. FEEDER.PRIVATE.AUTO.TRANSIT (FDRPAT) 

Any change to LINKER methodology is much more difficult, since actual 
analyses are divided among several LINKER and regionwide modules. 

5.5 DEMAND GENERATION 

SMART has been designed to facilitate incorporating alternative 
demand generation procedures. It is not even necessary to replace the 
default procedure. Merely code a subroutine which produces a series of 
calls to DEMAND . VOLUME (DEMVOL), and incorporate its name into the 
module GENERATE.DEMAND.REQUESTED (GENDEM). The procedure may make use 
of any available SMART data, but should alter nothing. Although the 
entire data structure DEMAND.PARAMETERS (DPARM) is available for passing 
parameters, problems may arise when different procedures require 
different parameters, and the default values for one are meaningless for 
another. Examine carefully the code for GENERATE.DEMAND (GDEMND ) , 
noting all of the dimensions of the problem. It is also possible to 
replace GDEMND with your own module, but that is not recommended. 
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5.6 LINKER EXPRESS STATUS DETERMINATION 

LINKER chooses to run express (non-stop) buses on any route when 
the demand between the designated origin and destination nodes results 
in capacity-constrained service (buses are full). This is accomplished 
through the following statement in module LINKER: 

EXPRES(TIME,DIR,MSI) = (DEM(OIR)*MHWMAX(MOD) .GE. MVCAP(MOD)) 

If the demand per minute in any direction multiplied by the maximum 
headway (which gives the load on the bus) is greater than the bus 
capacity, then -- for that period, direction and mode share -- EXPRES is 
.TRUE. and buses run non-stop. This rule is based solely on demand 
between the two designated nodes, even though patrons may be taking 
buses for only part of the route (buses in the first half, light rail in 
the other), and real buses might be able to pick up additional 
passengers traveling elsewhere. This rule was adopted for three 
principal reasons: 

1. SMART does no vehicle routing. Thus it cannot know whether one 
link constitutes a continuation of another link, or a separate 
side-road. 

2. In order to identify all travelers who could in theory benefit 
from non-stop service on the current route, SMART would have to 
look at all possible node pairs to determine which pairs might 
contribute to express bus loading. To control run costs, we have 
striven mightily to avoid execution code which runs as the square 
of the network size. 

3. On a regionwide basis, the effects of running express buses is 
not significant. Such buses, while used more efficiently on the 
given route, cause inefficiencies in bus use on related routes. 

The only easy way to change the rule for express bus determination is to 
operate express busses if the passenger load reaches some fixed 
proportion of capacity, say 80\. This will have little effect in most 
situations. 

5.7 ADDING MODE TYPES 

Adding a new FEEDER, 
to attempt. Adding a new 
should not be attempted. 
to LINKER modes. 

DUMPER, or CBD mode type is a reasonable thing 
LINKER mode type is nearly impossible, and 
Hence the following discussion will not apply 

The folowing steps must be taken to add a new mode type for FEEDER, 
DUMPER, or CBD: 

l. Increase by l the size of the arrays in 
MODE.DEFINITIONS (MODDEF). Then the initialization of these 
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arrays must be expanded to define default parameter values for 
the new mode type. MXDMOD initialization will have to be 
increased by 1 . 

2. A new mode number variable, similar to JAUTO, JCARPL, JFRB, etc. 
must be added to the MODES.SELECTED (MODSEL) structure, and 
initialized in BLOCK DATA to the default mode index of the new 
mode type. 

3. Any modules which access either of the above data structures will 
have to have the structure declaration replaced, and the module 
recompiled. While this will include a great many SMART modules, 
it can, in most cases, be done automatically with a good text 
editor. 

4. Any analysis package which is supposed to be able to model the 
new mode must be changed. Usually, this will require adding only 
one line of code, such as: 

IF (MTYPE(MOD) .EQ. JSWIM) CALL DPRSWM( ••. ) 

and then writing a new modal subroutine. 

5. Examine the subroutine PROCESS.MODES (PROMOD). This module 
handles updating modal parameters. Significantly, it contains 
some tests when particular parameters or values make no sense for 
a particular mode. You may wish to insert some test of this 
type. 

No other changes should be necessary. 

5.8 ADDING MODAL PARAMETERS 

Oddly enough, it is more complicated in SMART to add new modal 
parameters than it is to add new mode types. This is because new 
parameters require new arrays, and new code to maintain those arrays, 
while new mode types simply require expanding existing arrays. 

Currently, MODDEF and MODSEL contain arrays corresponding to known 
parameters. There is one array for the parameter vehicle speed (DMSPED 
in MODDEF and MSPEED in MODSEL), one array for the parameter vehicle 
capacity (DMVCAP in MODDEF and MVCAP in MODSEL), and so forth. Each new 
modal parameter that is defined will need new arrays declared in MODDEF 
and MODSEL. For example, we may have a new parameter NOISE. For this 
parameter, we may be define the arrays as DMNOIS in MODDEF and MNOISE in 
MODSEL. 

The subroutine PRINT.MODAL.PARAMETERS (PMODES) contains an array 
MPARM which is dimensioned 20 by MXMOD. The first dimension gives the 
maximum number of modal parameters; the second gives the maximum number 
of modes. The first dimension size would have to be increased if more 
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than 20 parameters were to be used in SMART. SMART currently has 19 
modal parameters, so that one new parameter can be added without 
changing the array. Other changes required in PMODES are changi ng the 
number of parameters NPARM and the number of labels NLBL in the DATA 
statement from 19 to the correct number of parameters, and ass i gning 
these additional parameters to MPARM in the DO l oop terminated at 
statement number 2000. 

NEW.MODE (NEWMOD) contains an assignment statement for each modal 
parameter, a statement which loads the current defau l t value. Any 
additional parameters wi ll have to have a new NEW.MODE stat ement. 

PROCESS.MODES (PROMOD) contains the code to update modal parameter 
values depending on the user input. For a new modal parameter, a new 
option will need to be defined for the MODEPARM card, and PROMOD altered 
to process the option. Examine existing code to see how the new code 
should look and fit in. Note that PROMOD first looks for options with 
no trailing value needed, and then checks other options in the order of 
increasing restrictions on the allowable values. New code wil l have to 
go into this series in the correct place. 

Naturally, any modal analysis routine which is supposed to 
incorporate the new parameter must be modified accordingly. 
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