e

U.S.Department of
Transportation

¢S SCRTD. LIBRARY

icrocomputers
in transportation

Commercial Software
Applications For
Paratransit

~—0—-L< —

UMTA Technical Assistance Program

NOTICE

This document is disseminated under the sponsorship of the
Department of Transportation in the interest of information
exchange. The United States Government assumes no liability
for it contents or use thereof.

The United States Government does not endorse manufacturers
or products. Trade names appear in the document only because
they are essential to the content of the report.

This report is being distributed through the U.S. Department
of Transportation’s Technology Sharing Program.

DOT-1-84- 51

Commercial Software
Applications for Paratransit

Final Report
July 1984

Prepared by

Dynatrend, Incorporated

21 Cabot Road

Woburn, Massachusetts 10801

Prepared for

Office of Methods and Support

Urban Mass Transportation Administration
Washington, D.C. 20590

Distributed in Cooperation with
Technology Sharing Program
Office of the Secretary of Transportation

DOT-1-84-51

07280

TECHNICAL REPORT STANDARD TITLE PAGE

ljopo" No. 2. Government Accessior HE 3. Recipient's Catalog No.
DOT-1-84-51 e MA-06-0039-84-1
4. Title ond Subtitle 1984 5. Report Date
i July 1984
Commercial Software App] ications for Par: 6. Performing Orgonization Code
7. Author's) 8. Performing Organization Report No.
M. R. Cutler, A. Cabrera, P. A. Monahan, L. J. Harmon
9. Performing Orgonization Name ond Address 10. Work Unit No.
DYNATREND INCORPORATED
21 Cabot Rd. 11. Contract or Grant No.
Woburn, MA 10801 DTRS-57-83-C-00109
13. Type of Report and Period Covered
12. Sponsoring Agency Name ond Address User Manual
U.S. Department of Transportation July 1984
Urban Mass Transportation Administration
400 Seventh Street, S.W. V4. Bpewnering Agiony Cobe
Washington, D.G. 20590 UMTA

15. Supplementary Notes

*Project Manager. This document is being distributed in cooperation with the

Technology Sharing Program of the Office of the Secretary
of Transportation.

16. Abstract

This report is a User Manual for the application of commercially available
software products to paratransit management. An extensive case study, using
the microcomputer database manager, R:base 4000, is documented. It discusses
the manual recordkeeping and operational demands placed on paratransit
agencies and how these functions can theoretically be automated. It then
describes in detail the automation of specific functions including scheduling;
client and vehicle recordkeeping; and report generation for billing and
performance measurement. Other options are discussed more generally. Data
from an actual paratransit operation are used to perform all data processing
functions. The focus is on the use of relational database management
software. Spreadsheet, word processing and graphics applications are also
discussed. Information is provided on how to select software and on how

to customize generic software products for specific applications.

17. Key Words) 18. Distribution Statement
microcomputers, commercial software Availability is unlimited. Document
packages, record-keeping, billing, is being released to the National
scheduling, spreadsheets, word Technical Information Service,
processing, graphics, generic Springfield, Virginia 22161 for sale

A_m.f.tmr;e_p.r:o.duc.ts_r____ to the U.S, public,

19. Security Classif. (of this report 20. Security Clessif. (of this poge) 21. No. of Pages | 22, Price

unclassified unclassified 181

Form DOT F 1700.7 (s-69)

° PREFACE

This report examines the application of commercially available software to
paratransit management. An extensive case study, using the microcomputer
database manager, R:base 4000, is documented. This project was funded by
the U.S. Department of Transportation, Urban Mass Transportation
Administration, Office of Methods and Support. The work was performed by
DYNATREND Incorporated, under contract to the Transportation Systems
Center (TSC).

We would like to acknowledge the support of Mr. Tom Hillegass who directed
this project for UMTA, and Mr. Paul Bushueff from TSC. The DYNATREND
Project Manager was Mr. Marc Cutler. Technical support was provided by
Mr. Antonio Cabrera and Ms. Patricia Monahan of DYNATREND, and by

Mr. Lawrence Harman of Call-A-Ride of Barnstable County. The report uses
for case study purposes, actual paratransit operating data supplied by

Mr. Harman.

Chapter 1.0 describes the manual recordkeeping and operating demands
placed on a paratransit agency using Call-A-Ride (CAR) as a model. It
also presents a theoretical framework for automating these functions.
Chapter 2.0 represents the core of report. It describes in detail the
process of using specific software products to automate functions such as
scheduling; client and vehicle recordkeeping; and report generation for
billing and performance measurement. The focus of this section is on the
use of R:base 4000, a relational database management software product.
Also discussed more briefly are spreadsheets, word processing and graphics
applications. All data processing functions and computer products were
generated using the actual data supplied by CAR. Chapter 3.0 discusses,
in considerably less detail, other automation options available to users.

This report does not constitute an endorsement of any product or group of
products. Given the highly volatile software market, and the range of
user applications, users are encouraged to conduct their own in-depth
review before selecting a software package for use in their agency.
Appendix A provides information to assist users in this process.

Appendices are also provided on the use of floppy disks; customizing the
software to better perform specific functions; screen forms to assist
users in replicating the functions described in the manual; blank forms
for future use; and an update on recent changes in R:base 4000,

Note: In a separate but coordinated project, a similar client file,
scheduling and reporting system has been developed using the
popular DBASE II microcomputer database management program. All
the user programs and documentation for this menu-driven system are
available from the Government for a nominal copying fee. (This
does not include the DBASE II program itself, which is a
proprietary product and must be purchased elsewhere for about
$500.) This system is offered as a fully operable example, to be
customized by the paratransit operator with the help of a local
consultant or other support person skilled in DBASE II
implementation. Contact the Transportation Systems Center at
(800)225-1612 and ask about "SST" for information.

Section

1.0

2.0 AUTOMATING THE

2.1

2.2

TABLE OF CONTENTS

PARATRANSIT MANAGEMENT: MANUAL RECORDKEEPING AND THE POTENTIAL
FOR AUTOMATION ® 0 00 0000 000000 000000 0O OO L0000 OO0 00NN LNSEONSE OSSN PSOSD

1.1 CALL-A-RIDE'S MANUAL RECORDKEEPING AND REPORTING
REQUIREMENTS ® 00 0000 0000 00000000 O OO 00NN 0NN NSOLSSEPSNTPS OSSN

BACKGROUND ccececeececccccccsocssoscscacscscccasnsss
CLIENT RECORDS ccecoceccosoccccccccssosscsosccsscscne
VEHICLE SCHEDULING ceccecceccceccscccccccscococscnns
VEHICLE OPERATING STATISTICS cceeccecccccsccccscccss
CLIENT/AGENCY BILLING eccocccsccccocscscccscscsocess
BUDGET PREPARATION ccccccecccecscssocccccvccsncccnes
REPORTING REQUIREMENTS AND PROGRAM EVALUATION

1.2 MICROCUMPUTER APPLICATIONS FOR PARATRANSIT ceeeeeeccccces oo

2.3
.2.4

CONCEPTUAL DESIGN ©® 0 0 0 00 0 00 000D OO OO LN NOONOS NSNS
Relational DBMS Files and Applications .eeeeececccecs

1.2’1.1 VEhiC]e SChEdU]ing @0 0000000000000 OROLOLOLOONELS
1.2.2.2 Bi]]ing ©0 000000000 0000000000000000COLOOCLELES
1.2-2.3 Report Generation ©0 00 0000000000000 00000O0GCTS

Spreadsheet Files and Applications ...eceececccenccs
Word Processing and Graphics Files and Applications.

CAR DATA BASE © 00 000000000009 00000000000000000000000

INTRODUCTION 00 0 0000000000000 000000 0000000000000 00000000000000

1 Selection of SoTEWATre .esccssvsorcunssensuscsnsmussnsnine
2 Instructional APDrodch sssissessssesssesanssnnessasiane
»3 User Environment .cecescsssconssssrssssenesssnnosssonne
4 Organization of Chapter cccecesessesss DU —

USING R:BASE TO SET-UP A DATA BASE ccccecccccccccscccsccascansne

2'201 The RZbaSE Manua] @000 0000000000000 00000000000000000000
2.2.2 Un-SCf’een He]p ee e oo o0 e 0 0000000000000 00 00000 0000000000
202.3 HOW R:base NOFkS 0000000000000 0000000000000000000000000

StrUCture © 0 0600000000000 0000000000000000000O0O0CO

. |

odet ENLEring/ERItITg wonensssmomwsnwmnmsnnsme ns s
6353 MOGES suvsvneensgonsensusenesvssesesesesssspows
3.4 Editing and Syntax MesSSagesS seeeeeecssccns PR
+3:5 Special Functions .eessssnessasmssssnsannsasns

Page

1-1

TABLE OF CONTENTS (Continued)

Section Page
2.2.4 COﬂCEth&]]Z]ng the Data Base ® 0020000000000 000006000000 2-9
2.2.5 Creating a Data Base .cecee cessans sessssces cesssscccsns 2-10

2.2.5.1 Accessing a Data BasSe seusssuvssssseessis sewee L-12
2.2.5.2 Establishing Attributes .e.eees. T 2-13
202.5 3 DEfining RE]ationS eos e 00000000000 e 00000000000 2'16
2 2.5 4 Defining Ru]es oo e e o000 000000000 ®e0o 00000000 oo o0 2‘16
2.2.5.5 PaSSWOFdS ©e0 00 0000000000000 000000OCOEGEIEES eo 0000 e 2-19
202.5.6 Ending Data Base DEfinition ee 000000000 2'19
2 2-5.7 Creating Additiona] RE]ationS 0000000000000 00 2—19
2.2.5.8 Altering Data Base Structure 895 RS S 2-23
2.2.6 Entering and Changing Data ..eveeeecee I T 2-25
2.2.6.1 Entering Data ® e 000 00 00 ® © 000 09 0 00 00000000 0C OGO 2-25
2.2.6.2 Changing and Deleting Datad ceesessssssnsescsns £-28
2.3 APPLYING R:BASE TO TRIP SCHEDULING eeeevcsccans B 2-30
2.3.1 Step 1: Establishing Base Relations (FilesS) eeececesss 2-30
2.3.2 Step 2: Load Prsched File ..xiswsssesovsavmmosswswosss 2430
2.3.3 Step 3: Projecting Date-Specific Prsched Files ..evecee 2-32
2.3.4 Step 4 (Optional): Project/Edit Prschedn Files for
Rest of Month ® 0 0 0 0 5 00 00O 00O SO0 O OSSN e 2_34
2.3.5 Step 5: Loading Real Time TripsS «esscscsessesuvs sensases £2=34
2.3.6 Step 6: Combining Prschedn and Realtime Relations 2-37
2.3.7 Step 7: Generating Vehicle Schedules ..eeeeeesccececses 2-38
2.3.8 Step 8: Combining Daily SchedulesS eceeeecececces essses 2-38
2.4 REPORT GENERATIUN ® ® © 00 00 0 00 0P 000 OO OO OO O OGO O PSSO SO ® © 0 090 000 68 0 0 2-40
2.4.1 Measuring Performance through an R:base Report ..ceee.. 2-40
2.4.1.1 Context @0 cee 0000000000000 se s o0 o000 00c00 00000 2-40
2-4-1.2 Defining a Report @00 000 000000 e0e 00000000 2‘44
2.4.1.3 Editing/Creating a Report .eceeceeee cessssssses 2-46
2.4.1.4 Def‘in‘ing Variab]es ® 0 0 0 00 000 00 000 0° 0000009 0000 00 2_47
2.4.1.5 Locating Attributes and VariableS cececcececcs 2-50
2.4.1.6 Marking the Report Layout ® © 00 00000000000 00000 2-50
2.4.1.7 Page Size ® 0 0 00 000 00000000 OO OO N OR OO OO OSSN GSDOD LN 2-51
2.4.1'8 Printing a Report ® 0 0 9 9009 020 0000 00 0°0 00O PO PSS OGDS 2_51
2:84.1.9 Deleting @ REPOrL suwsesiosssesesssssiosssssnsss 2-51

iv

TABLE OF CONTENTS (Continued)

Section Page
2uhee Bther Uses Tor REPOPES ssssewensnsnssmess somens senmesss 2-91
2-4.2.1 R'idef‘Sh'ip Ana]ySiS ooooooooo e0 0000 e0e0 00000000 2-51
2.4.2‘2 Invoicing ® 00000000 000 00 00 ® 5 9 0 0 00 0000000000 0 2-51
2.4.2.3 Disaggregating Performance StatisticsS ceeeeeee 2-52
2.4.2.4 Using Select to Generate OQutput ...c.... ssness £wD8
2.5 OTHER APPLICATIONS SOFTWARE +eevse Wit YFDEE 53 T e 4 84 AR R e sans £=05
2.5.1 Spreadsheets 9 0 0.0 5 00 9 0000000000 BNNe PPN ® 0 00 000000000 2-55
2.5.1.1 Using Spreadsheets for Financial Planning 2-56
2.5.1.2 Using Spreadsheets for Budget Management 2-60
2.5.1.3 Using Spreadsheets for Performance Measurement 2-63
2.5.2 Graphic Applications sssssssssssssssnens sapnseasRNErEs £=0D
2.5.3 Integrating R:base with a Word Processing Program 2-68
3.0 USER UPTIONS 0 0000000000000 0000 ® 0 5 0 0000 00 00 ® 0 0000 00000000000 ® 0 0 000 3-1
3.1 VARIATIONS ON CHAPTER 2.0 APPLICATIUNS seceeccococcscosccsacns 3-1
3.1.1 Genera] Operating PFOCedUreS ©0 0000000000000 000600000O0O0S 3"1
3.1.1.1 Service Type ® 0 0 00 0 0 00 0000000 O NSO LOEOENEPOLEPEEDS ° 3_1
3.1.1.2 Service Level Requirements ...eeeececcees sanesr I-&
3.1.1.3 Location of Scheduling/Dispatching Functions . 3-3
3010104 Custo[ner Interaction ooooooo P00 0000000000000 00 3"4
3'1.2 Fi]e Attr‘ibutes S 9 0 0 000 00 000 0000000 ENE DN NS ® 8 000 00 00 00 3-5
3.1.2.1 Choice of Key Fie]ds ® 0 0 00009 00000000 000000000 3_5
3.1.2.2 C]ient SpeC'if'iC FiE]dS ooooo ®e 0000000000000 3"'5
3.1.2.3 Tr.ip SpEC'if'iC Fie]ds e 00000 eesveoe e0 0000 s00ee 3-6
3.1.2.4 Vehicle Specific FieldS ceeeeececconcennes cees 3-8
3.1.3 Reporting Requirements .eeeeecescccess CEma NS s cnay S8
3.2 OTHER DATA BASE APPLICATIONS SEE SRS TR R E IR E SN 3-10
3+241 Financial Management eeeeesssosssosesssssessssss essses 3-10
3.2.2 Paer]] ® 0 0.0 0.0 00 0.0 00 0000 0 000000 O OO0 e NSO RSSE NSO ONDS e e 00 3-10
3'2.3 Personne] Fi]es 9 0 0 0 0 000 0PSO PO OO O NSNS PSP ® 9 000 000 3_11
3.2.4 Fixed Asset Inventory ceeeeees “eececcssssesssssssssscsces 3-11
3.2.5 Complaints, Incidents, and AcCldents ssssessssnvssssves 3-12

AEEendix

APPENDICES

A SELECTING A DATA BASE MANAGER cevececeens cesense

>>>Jl>>>>
NOoO o, wn

PRIORITIES AMONG THE SELECTION CRITERIA sessovsscsscssanososes
SOFTWARE AVAILABLE ® 9 9 0 000 00 00000080000 ® 9 0 0 0 0 0000080000 BRSO NSRS

REVIEW PROCEDURES ¢evesecccsccanscsns ceseces
BACKGROUND ON DBMS CONCEPTS .eeeeeeececenns
CHARACTERISTICS OF A GOOD DBMS .ievececnne .

SELECTION CRITERIA ©© 0000000000000 00000600000000000000000000000

CHARACTERISTICS OF SPECIFIC DBMSS sevevesns

B USING R:BASE ON FLOPPY DISKS eeveeecenens cesenes

C CUSTOMIZING R:BASE ceceececscocccccscascoccsnnee

STEP 1 - DEFINE THE APPLICATIUN TO CUSTOMIZE seveveeeans cevese
STEP 2 - CREATE THE COMMAND FILES AND LOCAL VARIABLES .eevesns

STEP 3-REVIEW AND TEST e e eecso0s0eo0000 000
SUMMARY © 0000060000000 00000006000600600006000000

e 0000000000000 000 0

------------------ .

D SCREEN FORMS ssecoscvcnssese cecscsecscesscsesne ceee

RELATIONS 0000000000000 0000000000 seeeovo000oe
RULES ooooo ©® 0 0000000000000 LRI) eeeecoooe

FORMS ee 000000000000 00 e 0000000000000 000 0000

REPURTS 0000000000000 00000000000 ee 0000000
COMPLETE MASTER CLIENT FILE cececececccccne

E BLANK FORMS 0000000 0000000000000 0OLOOEOGELOTDLES CRC I)

F-1
F-2
F-3
F-4
F-5

R:BASE FEATURES ® 9 0009 % 0" 0 0SSNSO ® 0000 000

INTRODUCTION ceocscocscscsscosscnsssscccses

LOCAL VARIABLES e 0000000000000 000000000 e e oo °

CONDITIONAL PROCESSING ccseceecsessscccoces
FILE PROCESSING ® 0 9 00000000 0000000 0000000000
NEW RELATIONAL COMMAND +seveeececesosnansnss

vi

o0 0000 e00000 0000000

>J>J>J'>J>3>:|>
L WNN -

NOoOOophpwNhe— O

1

NFOOWONOOTPRPWNHFOCWOUCNO O WNEFO

LIST OF FIGURES

Sample Client ReCOrd .essvsssevsssvsnssnns sesasesessesREEBEBERSOOS
Preliminary Scheduling Procedure, Pre- Scheduled TPIPS ssssassssnns
Preliminary Scheduling Procedure, Dial-a-Ride TripsS cececececcceee
Manual Paratransit Scheduling Procedure .eececececceccccccccsccccsss
Sample Daily Vehicle Schedule ..ieeeesceccccecccoscosascosconscnnee
Sample Vehicle Operations Report ssesssscesssvscsssovnasonsonssssns
Sample AGENCY INDVOICE sesevusssssocsssssssosssensssnesesRssnassssss
Hourly Vehicle Utilization Chart by Program ..e.eeeeccecccccccccces
Sample Weekly Vehicle Utilization Chart by Program ...ecceeecececes
sample Statistical RepOrt sssessssssssssnssssnnsssssnssssanuesves
Conceptual Design of Microcomputer Applications .sceeeeccceccsccoes
Automated Vehicle Scheduling Procedure ..eeeeeececcccccscccsccscscne
Automated Client/Agency Billing Procedure .cccececcccosscscsssssse
Automated Vehicle Operations RepOrt ceesesscocnasennonssosnosossss
Automated Vehicle Maintenance and Repair Report .ceeeeccecescccces
Automated Passenger Operations RepoOrt .eeeececececcccsccoscccsccne
Automated Fleet Operations REpOrt cscssssevsesecessssvissasovsnse
THE STRUCTURE OF R:BASE 4000 seeeeeeesccocnccnacens T T
RiBASE PROMPT »eimninenmmwomsmsnmmsonesmesonss 9 AR A
R:BASE MODE PROMPTS .tveeeecccncas SRR RS E SN T EI AT C
SYNTAX MESSAGE ceeevescescsccaccsnnne T T L T Ty m——— SRS N
CREATING A DATA BASE teceeeeceocccsconcans P — R
RiBASE TIERS sessvivssssnnsissnnsssssvrsnsnnss e e epp
ATTRIBUTE DEFINITION FOR VEHICLE SCHEDULE FILES wuessmmasnnsnanwuns
DEFINING A RELATION sasewvsssenvesnivsnssneossnsumunesponensssnosss
RULES DEFINITION FORMATS cveeeecccsccnnne S P T eI pRp e
RULE OPERATORS sessvsnscsannsnsnnns o R 6 8 R
DEFINING RULES FOR CAR wviomswwwinwenmemwnwmoms s snsesn smesswsemsses
VEHIGLE SCHEDULE GUODES ssssvennsssssasonsresinsinss TP
DEFINING PASSWORDS «evees —— ¥ B R R J B A
DEFINING PRSCHED seevsssnsenssns N O L R
PRSCHED RELATION sssssssverssvsonasssmonssssssssesssnos o u s BREFRE
RULES FOR CAR DATA BASE ceveeeceecccnncans N B
DELETE RULES COMMAND . .ommenssmmssnsnmeenssmsnwaonneswseessssnesos
DELETING AND ADDING KEYS CUMMANDS ssosssesnsssssvesnsononsssnsasss
RENBMING COMMARDS o5 5 5 5 viomm s monmn wmmnime o oo wosin o » 38 5906 § Am0 S 55 5 W5 b
PROJECT COMMAND o Np e AR EE SR AR
UNION COMMAND sessosesssnsssssnnesssnnense P EE R SE NS CRP OB GG
ENTERING FORMS DEFINITION 0 B O K R T A S R
SAMPLE. FORM i niwoomwommn w0 imm oo n s 6 0 im0 000 6 3% 000 68 S0 -
CHANGE AND EBIT COMMANDS sossvsnsssnssssssonsssnsnossssnoosssnasss
DELETE COMMANDS +eeececscosccsncnns SR W & 8 S & e AR B U
USING R:BASE FOR TRIP SCHEDULING R R ———
MASTER CLIENT FILE sossswuvsonvnsosssonvonsnssssvnsssnss R
SAMPLE VEHICLE SCHEDULE sevwsssonavsssovonanesanses SRR 55 TS
RIDERSHIP REPORT ("TRIPS") ceeeccecscvccscocecssscscsssscssssccsce
INVOICE REPORT ("MEDBILL") sssssososssnssenvnes SRS BT
VEHICLE STATISTICS REPORT ("VEHSTATS") seecececcesscscscococnccsne
ENTERING THE REPORT MODULE sewmamiownanmonsnswonssenssssnsnssssmws .

vii

©
<%}
l‘c"n

| SRR I I N D N N N U N N N N N S U R I N |
DO PLPWHFOOOOPWC

1
WCWWN NN NNNNNE =000 NO NN NNN NN R === OO N

L R R O e e
CORPOTTAPPLPPWWNFOOXEENNOWN -

NNNNNNNNNNNNNNNNNNNNNI\:I"\)NNNNNNNN!—‘H!—'H'—'!—‘HF—‘D—‘I—‘HHH!—'!—‘I—‘D—'

1
Pl e e
w N =

2-44

LIST OF FIGURES (Continued)

Figure

2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45
2-46
2-47
2-48
2-49
2-50

T
—

OOGOO?OOOOO
R OONOOOTS, WN -
- O

(el el wwll ew el e il ew ll wo Jl e
1
OCONOOL P WM

VEHOPS RELATION cosennvansnoensensncsnsncnsnssonsnns A
REPORT GENERATION PROCESS ¢eececccscccsecs cecsessase cessscessssces
LAYOUT FOR REPORT “VEHSTATS" secsssossssvesssnsssssnssssnnsssssnns
MANUALLY LAYING OUT THE REPORT DESIGN cesesscessesecnes ces
VARTABLES FOR "VWEHSTATS" REPORT cussssswoosonsmosessnsssnons cecenne
CITY IRVOICE ("CITYBILL") wewsssnnscssswmonss cescsssesessescrsese ces
CLIERT BELL ("BILL"] ssssmssewnssnesesssnessneni cescecsvscssescns
DISAGGREGATED VEHICLE STATISTICS eeevecescnnes ceessssecssssessense
VEHICLE MASTER REPORT ceeeeeess cecsecssssssssssns cecscccsscrsenons
SPREADSHEET DESIGN sesesvcccocccsass teessssccsessesesssssrstesesns
FINANCIAL PLANNING ceesesceecrscsscsscssnssnns A
BUDGET MANAGEMENT .sssevssoncsssnssvssncssesnaus cecsesas cecceceens
BUDGET MANAGEMENT = Il cecececccccccccssscces cessescescescssrsensnse
PERFORMANCE MEASUREMENT cecececccccsccces cessceccsvrsceccsscssns ces
CAR'S RIDERSHIP CHARACTERISTICS sssssssansesssvssnsossasnssisssnas
COMPARING CAR'S INCOME/EXPENSE/VEHICLE HOURS BY PROGRAM ..ceeveees
FILE OUTPUT COMMAND ccescocecccssocecs ceccssssssvcsene cecses cecevee
SAMPLE OQUTPUT FILE eececvcsccess teescesessrsssssesrsssssrsnesens .o
REARRANGING THE OUTPUT FILE WITH PERFECT WRITER ceveveeececenennss
SAMPLE LETTER WITH PERFECT WRITER COMMANDS e
FINAL SAMPLE LETTER «eeveee.e ceeccese A cessceses

POPULAR DBMSS 00 0000000000000 0000000000000 000000000 e 00000000000

COMMAND FILE “CHOICES1.CMD" cecevcceccceccccss cecsescescrstssesnes
TEXT FILE “MENU1.DAT" ..eeceves ceesessescscssscsse A
COMMAND FILE "CHECK.CMD" .eieeveecccencnss cecesesssssse S
COMMAND FILE "ADD.CMD" waucssusnosnunsnsnnmnssownesensnssssonssssss
TEXT FILE “ADDTXT.DAT" .sscssessovonsass cecsescsccnns S
COMMAND FILE "CHOICES2.CMD" ceecescssesccesccnssnns cecscsces
TEXT FILE "MENUZ.DAT" sunsnsssmsusscssssswnsssnmevsnnonsssvnsssows
COMMAND FILE "UPDATE.CMD" .cuveeceeccesccns ceeseecescrscssessssnas
COMMAND FILE “UPDATZ.CMD" sssisnsssnsnssassnnsisnsnnsssnsssssnssss
TEXTFILE "MESSAGE.DAT" swansussnsenwwnxs ceecsecssesssessssesrssene
SUMMARY OF CUSTOMIZING tXAMPLE ceecesesseecssssssesetsscestssssnoss

MSCLIENT RELATION ceeeeens cecessscscess teecescescescsesctsssssssnsee
PRSCHED RELATION <ecececscescsccscsscsssss cecsccssscsscessssssssns
REALTIME RELATION cccocccccccsccccsces secescsssens cecsscescesssens
VSCHED RELATION cseecescoscscscoscssseseccscans ceesscsscssscssscne
VEHOPS RELATION secececes cececccecsstsscsessrssssessresssescres coe
VMASTER RELATION sevecieceecensne cescessecsresrsessvsssssesessssses
RULES ceceecenncss ceccsesssesscssssessseessne cesssesescssssssesses
CLIENT FORM cocecsccccscesccccscoscesaasescsasaccassccnsnsnnse coee
SCHEDULE FORM ccececvcccssccssccccnccnss cececssees sressessasnssRes

viii

R FRFFOONNOERED

1
sA O

GUGCIOCJC(:C‘
RN W

NN O

LIST OF FIGURES (Concluded)
Figure Page

RTSCHED FORM ..ceevseoncssenscsccsansese cecscscns cescessscssscssss D=13
OPERATE FORM .ecececccccccsccccscessossescsssssscscscssssscscssses D-13
VEHSTATS REPURT cescscescosscsssscssescsssscssscses cecscsces eesess D-15
TRIPS REPORT ssscoesosssssses A ceececcscescssssccens «ee D-15
CLFILE REPORT seccoccecescsscscsccccnsnoscsnasne cescvcvens esescssece D-16
BILL REPORT seveees seesesssssnssss cecsssesses cescsecsccscrsssssans D-16
CITYBILL REPORT seceeccccevccccococesccscosscscsccasssssscssscsssces D=17
MEDBILL REPORT A eeseses D-17
VEHSCHED REPORT scccscecsccccscsss tecesscsccsscsscscsssscsscsssses D-18
MASTER CLIENT FILE cecececccccescccssccccccccscccscssccsssccossces D-20

COOOOC OO COoOCT
]

L e R e S

COoO~NOT TP wWwN—C

ATTRIBUTE DEFINITION FORM © 000000000 0000000000000000000000000000600 E-
MANUALLY LAYING OUT THE REPORT DESIGN @0 0000000000000 0000000000000 E

mm
1
N —

LIST OF TABLES
Table Page

DATA BASE SPECIFICATIUNS © 900009 000000000000000000000000000000O0CO0COCO0CS
D

2-3
BMS CHARACTERISTICS eec0ceo0c00 000 @eeec0ecevcsooe @0 00000 ev0evos00c00 0 A-6

2-1
A-1

ix

1.0 PARATRANSIT MANAGEMENT: MANUAL RECORDKEEPING AND THE POTENTIAL FOR
AUTOMATION

This section describes the manual recordkeeping demands placed on a
paratransit agency and presents a theoretical model for automating these
functions. The description of the manual recordkeeping system is based on an
actual paratransit operator, Call-A-Ride of Barnstable County (CAR). CAR
serves as a case study throughout the remainder of this Manual.

1.1 CALL-A-RIDE'S MANUAL RECORDKEEPING AND REPORTING REQUIREMENTS

1.1.1 Background

Between 1975 and 1979, CAR, a private non-profit corporation, provided
consolidated human services transportation for residents of Cape Cod. General
public transportation service was initiated in 1978.

CAR's service area included fifteen towns and covered approximately 394 square
miles. For the first four months of 1978, twenty-five vehicles were in
operation. In May of that year, the number of vehicles in-service was reduced
to fourteen. Approximately 10,000 trips per month were provided to
destinations such as health care facilities, congregate meal sites, adult day
care centers, and special education facilities. In addition, deliveries of
food for a "meals-on-wheels" program were made by CAR.

CAR's annual operating costs for this consolidated human services
transportation program averaged about $213,000. Funding was obtained from a
variety of federal, state, and local sources, including: Section 16(b)(2);
Titles III, VII (Older Americans Act), XIX, XX (Social Security Act);
Massachusetts Chapter 766; and CETA.

A1l information pertaining to CAR's daily operations (vehicle schedules,
maintenance and repair records, and operations reports; client trip requests)
and more permanent data (client record file) was compiled, recorded, and
updated manually, as is the case in most paratransit organizations. Invoices,
requests for funding, and periodic statistical reports were also prepared
manually by extracting information from paper files. The following
subsections provide an overview of these recording and reporting functions in
order to identify the specific types of information that CAR and other
paratransit agencies need to record and store, and the uses to which that
information is put in the management of paratransit operations.

1.1.2 Client Records

The client record file contains a permanent record of information about each
client or passenger who uses or has used a paratransit agency's services.
Included is information such as: name, address, phone number; birthdate;
passenger classification; Medicaid, Title XX, or other funding source
authorization or number; and any special needs or other comments.

In a manual system of recordkeeping, the client record file is usually stored

on cards similar to the one shown in Figure 1-1, and contains a record of each
trip taken by a client as well as his/her personal data. Records for new

1-1

E EH H NU PHONE # MALE/FEMALE
CASE CLOSED: REASON

NAME DATE —

ADDRESS

MEOICAID # - 5 s - -

TITLE XX # DATE EXPIRED

DATE| #| TRIP DATE| # | TRIP DATE | # | TRIP DATE | # | TRIP
|
L
|

FIGURE 1-1: SAMPLE CLIENT RECORD

1-2

clients are added to the file at the time of an initial trip request. In the
CAR system, all client records were updated at the conclusion of each day of
operations, so that current information on trips taken by each client was
available at all times.

The principal reasons for recording client trip and personal data are 1) to
form the basis for client-specific billing; 2) to supply client-specific
documentation for audit purposes; 3) to provide a monthly count of
unduplicated passengers for Section 16(b)(2) reports; and 4) to aid in the
preparation of driver itineraries.

1.1.3 Vehicle Scheduling

The process used for the manual scheduling of daily paratransit vehicle trips
is depicted in Figures 1-2, 1-3, and 1-4. In the CAR model, the scheduling
process follows one of two paths, depending on whether the trip is pre-
scheduled (a standing appointment usually between a client's home and a human
services agency activity center) or a dial-a-ride request.

In the pre-scheduled mode (Figure 1-2), a trip request is received through a
program or agency or directly from a client. The dispatcher then follows the

steps listed below:

e Identify client and verify eligibility

e Determine trip date parameters: for example, trips for medical
purposes such as physical therapy or chemotherapy/radiation treatment
typically have specified start and end dates, and may need to meet
strict time requirements for arriving at the facility.

e If the client is new to the system, enter client data into the client
record file; i.e, fill out a client record card.

e Go to schedule process.

In the demand-responsive mode (Figure 1-3), an individual phones the
paratransit agency with a request for a one-time trip, and the preliminary
scheduling procedure is as follows:

e Identify client and verify eligibility

e Determine trip purpose: does the request fit the agency's priority
trip requirements (e.g., medical)?

e If client is a new user, fill out a client record card.

® Go to schedule process.

At this point in the construction of a vehicle schedule, the steps followed in
the pre-scheduled and dial-a-ride modes are identical (Figure 1-4):

Determine passenger classification, e.g., elderly, elderly/handi-
capped, non-elderly/handicapped, non-elderly/non-handicapped.

Enter day of trip on dispatcher schedule or trip request form.

Enter inbound origin, destination, and appointment time, if any.
Determine approximate inbound pick-up time.

Note any special equipment or assistance needed: does the client use a
wheelchair? Does he/she need assistance negotiating steps?

1-3

‘ STARTA)

\
ADVANCE

SCHEDULE
MODE

i

ID
CLIENT

Y

DETERMINE
TRIP
DATE
PARAMETERS

CLIENT
RECORD

FIGURE 1-2: PRELIMINARY SCHEDULING PROCEDURES, PRE-SCHEDULED TRIPS

STARTB
L

D-A-R
SCHEDULE
MODE

J

ID
CLIENT

Y

DETERMINE
TRIP
PURPOSE

Lex

CLIENT
RECORD

FIGURE 1-3: PRELIMINARY SCHEDULING PROCEDURES, DIAL-A-RIDE TRIPS

9-1

REVIEW
ALT.VEH.SCHED.
FOR
REVISION OF

®

DETERMINE
PASSENGER
CLASSIFICATION
DETERMINE
EST.

ENTER OUTBOUND
DAY OF P/U TIME
TRIP
ENTER
ENTER OUTBOUND WILL CLIENT
INBOUND DESTINATION TRY ALT. DATE
ORIGIN AND/OR TIME?
REVIEW
ENTER / VEH. SCHED.(S)
INBOUND FOR
DESTINATION OUTBOUND
& ASSIGNMENT
APPT. TIME
REVIEW
ALT.VEH SCHED,
FOR
REVISION OF
SCHED

P/U
TIME
TRIP DATA " BOOK TRIP
ON I T0
VEH. SCHED VEH. SCHED TR BE TRIP
SCHEDLD, L

\
DETERMINE

DETERMINE
APPROX.
INBOUND

SPECIAL
EQUIP./ASST.
POSTED AFTER v
CLIENT TRIP ACCOMPLISHED
FILE FROM DISPATCHER'S WILL CLIENT
TRY ALT. DATE
AND/OR TIME?

DETERMINE SCHEDULE
VEHICLES
ASSIGNED TO
SECTOR/CORRIDOR
CLIENT END
/L RECORD

FIGURE 1-4: MANUAL PARATRANSIT SCHEDULING PROCESS

e Review schedules of vehicles assigned to appropriate zone for inbound
assignment.

e If possible, schedule trip; if not, rearrange vehicle schedules to
accommodate trip or arrange alternate day and/or time with client.

e Determine outbound destination and approximate pick-up time*.

e Review schedules of vehicles assigned to appropriate zone for outbound
assignment.

e If possible, schedule trip; if not, rearrange vehicle schedules to
accomnodate trip or arrange alternate day and/or time with client.

e Enter trip data on vehicle schedule.

¢ Record trip data on client record card.

A sample vehicle schedule format is displayed in Figure 1-5. In the CAR
system, all vehicle schedules are photocopied at the end of the day so that
one copy can be given to the driver of each vehicle as an itinerary while the
original record remains on file at the dispatch center.

1.1.4 Vehicle Operating Statistics

In the CAR model, daily and weekly vehicle condition and mileage reports (see
Figure 1-6) are completed by each driver. These reports are used to collect
data pertaining to vehicle miles by contract or program (as required for
billing purposes), and the cost and quantity of gas and oil used. An attempt
was made on the part of CAR's management to minimize data collection by
vehicle operators, thereby allowing them to concentrate on providing safe and
effective transportation service for CAR's clients.

1.1.5 Client/Agency Billing

As do most paratransit agencies incurring costs of providing service that are
reimbursable on a client-specific basis, CAR tracked individual client trips
so as to be able to bill human service organizations accurately for the CAR
services utilized by each organization's clients. Therefore, monthly or
quarterly invoices were derived manually from the client record file.

Figure 1-7 is an example of an invoice for special education program trips
prepared using data contained in the client record file - in this case,
passenger-miles traveled based on the number of trips and the accumulated
mileage between the origins and destinations listed on each client's record.

On the basis of past service utilization, expected passenger-miles for the
upcoming quarter were calculated for each client whose trips were paid for by
the Cape Cod Collaborative. The town in which each client's trip originated
was noted. Passenger-miles for each town were summed. Finally, the costs of
providing this transportation service were allocated among the member towns in
proportion to each town's share of the total passenger-miles. For instance,

*Given the rural nature of the Cape Cod service area and CAR's operating
philosophy (guarantee every return trip, make all operating decisions as early
as possible, but remain flexible), the agency's practice was to book each
return trip at the time of the initial trip request.

1-7

CALL-A-RIDE OF Bari{ BLE COUNTY, IXC.

DIS(CHER'S_SCHEDULE

Time Codss: X = Drop-Off Program Codes:
P = Pick-Up (Trip Purpose)
Persca Codes: E = Elderly(60+ years) ’g 4
Bo—/g, F = Elderly-Handicapped 3 6-/r
F- m H « Moa-Blderly-Handicapped a“ - ,(

M. g

HC =« Health Care
N = Site Nutritioa

MW « Meals-On-Wheels
St = Special Education

FT « Special Education Field Trips
GT = Group Trip for the Elderly

ADC « Adult Day Care

n."‘

P A1
gL NFSDAY

_‘:,*-:",‘5

v
>

DATE

CJAN 3 1979

DL « Dialysis
2 .3
TIME NAME AND ADIRESS Eg PHONB EE DESTINATION COMMENTS
5 ACOO S sk mz AN, \ i
i ‘ 4’311—‘\@"#’ 1
n Fl pa e i
edal, 3008 A
v X hgoiz: . A o
Y \/..;“5(3‘1'
¥ Y . =
I L4 B P T
ok # 244 I‘ﬂ l\ A g — e —— S5 e
I L. PR -
- 1 an.:ll 3 _
A £ fn)--' A3
A 4PN T2 . -1 ;
a ¥l hdns f v "3 I ’
* fmes
W IR Rapr ey |
“ iy f ,?‘, ¢ 1 a ,,I
J 3 .
} : S e e oo e e S
-."1(“ - o el —- ro :
I e = 2 bl e, E o o e ——
|] o8 i }
! | |
= o T
s e s . |
_ — L — e
1
e bl s v R -
{
I&.ﬁ:u.’ﬂl;:’ - —_ B - S e
(LAY PL cape . i i (.. o
9% ¥ Ol 1
;ﬁ.‘%.‘_f_{_ .-rvﬁ . R - PR
’4.1‘7.¢'8 _.L--.. B L J—— - .
ide r. _E_.;"..w.;'l(I 1 SEUSS— ——
G 4 W R I] R
v (] dotsyed PR— .
o) ety xS ——
FN {7 LS S IR R WY ——
bl 1 we3-€ S [S N N S
\ LIS -
s i) rerss-R A é _—
ol T
- t) 'l\l‘v gs,jﬁ N Te———
' 1 L.f\.‘.’u iy = A S s i 5
| [:,.‘..‘.I.'.ij S R S — .
&
Bl psicm o1 e . I = .
Ll L

FIGURE 71—5: SAMPLE DAILY VEHICLE SCHEDULE

1-8

E-WSY

6-1

‘797~472a’
CALL-A-RIIE OF RARNSTABLE COUNTY, INC, / 7 959 ?M

DRIVER'S DAILY & WEEKLY VEHICLE CONDITION & MILEAGE REPORT cf%?(?

Gasoline & Cost Per Gals. Date: Wk. Ending_3-c)3 Mobil No.”

Mon.3-/9 Tues., 3-),0 Wed. .3 -}/ Thur. 3 2. Fri.3’c;'__3
A. Cost].n0 A. Costy3.50 A. Cost/).00 A. Costys.00 A. CostyS.00

B. Gals.|2'¢ B. Gals./%:3 B. Gals.30.3 B. Gals./3:5 B. Gals.Q(:3

0il - Cost Per Quart Location tﬁ?-ﬁhﬁl/l—

Mon. Tues. Wed. Thur. Pri.
A. Cost A. Cost A. Cost A. Cost A. Cost

B. Qts. B. Qts. B. Qts. B. Qts._____ B. Qts.

Prorr.un: . Prozr-m: : Pro; riun; =D
O Sprcalld | TS iNededign |0 Cegiavlleleds speciod B
[oéx‘{;gr?J Tour 2 b'l‘our i l'our 2 Tour 1 'our 2 . \50
e Ct.rt 62’2 ("3 b50R .
flond:y I'inish A6 4 28] b[ojz‘:)' . pe -1 Ll
ronay[2trt [BbhAG 15 1RALNS VWIS N
Minish([Lf L3OO 657[7 5. bb/IdX G

' PR, sturt a) bi 4

dednesdiy Minich 8'10 bj“a'_

Phursdu Stirt | Cibj-—- llj"‘—‘*

LTS | Finionfh h743 eI EL j___.._

Pridey [SLSRt GNJ‘{L“ il B INELT
Z“lnlih_D,,_&_u - 73111]

Start -

I'inich|

sturt

"inish .

Saturdyy

Cundry

FIGURE 1-6: SAMPLE VEHICLE OPERATIONS REPORT

EXHIBIT III-A-4
2375 Tyanough =d.,byanmie, M (OR01 (617)779-2496

AT ey Barnstazie C ot WA DRV K LR R X Tyt TniAe v

May 31, 1978

INVOICE

For trzrsportation services to be provided to the
Cape Cod Ccllabciative from June 1, 1378 through fugust
31, 1378:

b,

N

b\'ate?‘.am...........n--......u.. S 9
BOUTN® sccocevovcccocassscsccans S,

Hashpeeu..........-............ $3557.
Bé:f‘.stiblfco—ooo..--o-s-n-o-oto' 53,3.‘5.“
VazmoUuthe s sesasscness o s 666006 8 53,530.40

Dennisececscecccsccccccsscscscee 31,882
ChathaMecccecccsssrccccccscvccee £612.96

TATAL $12,680.00

7~ a
/"\M 24 Z{«éﬁm%

Lawrence J. Haﬁﬁ.an, General Nanager

FIGURE 1-7: SAMPLE AGENCY INVOICE

1-10

EXHIBIT III-A-4

(CONTINUED)
;'?'_‘ Floanne= _:5-591_:5-_;;5_i£: zzguntes-Nilee for Foorer :-é;‘.*.‘, 1578

Zrpected 2-way Tctal ath
MNime Pzoz:zam 4th Gtre lMilee Quartar T own

Days ger Day Yilesg

Joe H. vi/cs 12 51 612 Wareham
David C. 1% /H 65 87 5659 Wareham
Sly D. NS/C2 12 18 216 Bourne
Linda B. W/H 65 70 4550 Sourne
Shontell S NH 11 27 297 Mashpee
Betty B. ‘N /H 6% 3% 2271% Mashpee
Byrhara Ce PV 65 57 370% Ba-nstatle
Rcger B, PV 6% 53 357% Barnstable
Calvin M, Y 65 43 279% Barnstable
Barbara S, 4 65 43 279% Sarns“sble
Joyce H. 4 6% 39 253% Barnstable
Linda R. PV 65 €9 £28% Yarn:ith
Harcy S. PV 65 71 4R1% Yarznuth
Scott G. W /H 6% 22 1430 Yazneuth
Mary O. W/H 6% 20 1300 Yarmouth
Scott S. M /H 65 14 510 Yarmouth
Alex F. N /H 65 16.4 1066 Yarmouth
Nancy G. N /H 65 8.4 546 Yarmouth
8rian K. LNP/H 12 24 258 Yarrauth
Sartacza D. INP/H 12 24 288 Yarmouth
Diane L. TWF, 12 24 288 Yarmouth
Terry 0. W /H 6% 14,4 936 Yarmouth
Joyce K, W /0 65 43,4 2821 Dennis
Mary C. Wi /H 65 38 2470 Dennis
Carrol R. W/H 65 28 1820 Dennis
Phillip J. N /H 65 20.8 1352 Dennis
Frank D. 1M /0 65 7.8 1807 Chatham
Ann D. w/0 65 20.2 1313 Chatham
Jecry W. W /0 65 16 1C40 Chatham

FIGURE 1-7:

SAMPLE AGENCY INVOICE (cont'd)

1-11

EXHIBIT III-A-4
(CONCLUDED)

Cape Cod Collaborative

Cost Alloca2tion - 4th Quarter

Passenger-Miles Proportion of

Town 4th Qtr. Total Miles Cost
Wareham 6,267.0 0.108 $1,369.44
Bourne 4,766.0 0.082 1,039.76
Mashpee 2,572.0 0.044 557.92
Barnstable 15,405.0 0.267 3,383.56
Yarmouth 16,15%2.0 0.280 3,550.40
Cennis 8,463.0 0.147 1,863.96
Chatham 4,160.0 0.072 912,96

TOTALS 57,78%.0 1,000 $12,680.00

® Six passengers will be transported for only the first two
weeks of “he fourth quarter due to the completion of the school
year. The program cost for this summer schedule is estimated to
be $12,680.00 or 22¢ per passenger-mile., Total program cost for
the FY78 program is $65,824.58.

® The increased proportion of cost for the Town of Yarmouth
reflects the relocation of a former Wareham passenger and the
addition of one passenger.

FIGURE 1-7: SAMPLE AGENCY INVOICE (concl'd)

1-12

Wareham, with 10.8% of the total passenger-miles, was assessed 10.8% of the
total cost of providing this transportation service, or $1,369.

This invoice is but one example of the various billing formats and procedures
specified contractually by the administrators of CAR's different funding
sources. Transportation services provided under some programs were
reimbursable at a negotiated rate per vehicle hour (nutrition program) or per
unit cost of authorized service (Medicaid Title XX trips). Other funding
sources provided operating assistance to CAR in grant form (Title III).

Complicating the billing process further were conflicts between the client
eligibility and authorization policies of various funding sources and the
differences in the billing cycles of the agencies involved. Given all these
billing complexities, maintenance of an up-to-date client record file
containing accurate information on each client and the details of his/her
utilization of CAR's services was absolutely essential to the smooth
administrative and financial functioning of the organization.

1.1.6 Budget Preparation

It is important to note at the outset that the brief review of CAR's budgeting
process presented in this subsection focuses on the types of data required to
produce a paratransit agency budget, rather than CAR's particular budgeting
techniques or philosophy.

The preparation of CAR's annual combined program operating budget began with a
mapping of each vehicle's expected schedule by time of day and program, as
illustrated below in Figure 1-8.

VEHICLE NO. TIME OF DAY
89] 9-10 |1041 112 121 | 12 | 23 | 34 | 45 | 586
A1 D—R HEALTH CARE ADULT DAY CARE
1 | Py
A |
A2 SHELTERED
WORKSHOPS | D-R HEALTH CARE
| o] o
A3 D—R HEALTH
. | CARE B THERAPY "
| -
A4 ADULT DAY
CARE | DIALYSIS D—R HEALTH CARE

FIGURE 1-8. HOURLY VEHICLE UTILIZATION CHART BY PROGRAM

This chart was then collapsed into a daily/weekly utilization chart, such as
the one shown in Figure 1-9. The vehicle utilization chart represented an
analysis of the characteristics of present and prospective programs to
determine vehicle availability, the spatial relationships between clients and
service facilities, and required service levels (in terms of person trips) for
each. In addition to serving as a planning tool for maximizing vehicle

1-13

EXWIBIT [1-E-3

p1-1

VEHICLE UTILIZATION CHART rcantinaed)
c 0 @ &
>) [+] > @ Q - =
ol = le..] % s s | 22 82| 833 Totsl
o vt > Py [SRVIRY) Qv >
Yahixte [o i pancrints ass| 2 |38s5| = %8 8= | 3% | 38| 25% Yéulcie
Cods ehicle Description x = <“0 a w5 3 £9 335 5§£ Hours
Al 1976 Dodge Maxivan s . -
gg?&mxmﬂ) 10 (4 days/wk.
ge Maxivan
A2 (ramp-equipped) ’ o 8
1976 Dodge Maxivan
i (;%t;mmx - 5 2 10 (& deys/wk.
| dge Maxivan
o (ramo-equipped) 3.6 2| 2.4 10 (4 doys/wk.
AS (776 Dodge Maxtvan | y ¥ x x|x x § x x|[sPafe Buls x x[x x § x x [x x x x x x
1979 Dodge Maxivan
> (11{t-soulopeq) 4 8 4) a
1973 Volkswagen Bus
o2 (7-passener) %8 1 148 :
1977 Dodge Maxivan
- (12-pagsenger) ‘ 4 3 3.3 10 (4 days/wk.)
1977 Dodge Maxivan
B4 (18- z) 4.5 i) 2 7
85 1977 Dodge Maxivan
(12-passenger) : 6
c1 1976 Dodge Maxivan
(l?-Fg!;egger] 7 7
c2 1973 Volkswagen Bus
(7-passenqer 6 6
c3 1977 Dodge Maxivan
(11ft-equipped) 4 4
1979 Volk swagen Bus
C4 (F:nessences’ x x x| x x § x x|x x x|sPagE BUS x x[x X § X X[x X X XXX
TOTALS 18.6 S 12 2.4 22 10.5 10.% 4 é 91

CALL-A-RIDE OF BARNSTABLE COUNTY, INC.

FY 79 VORK PROGRAM

FIGURE 1-9: SAMPLE WEEKLY VEHICLE UTILIZATION CHART BY PROGRAM

utilization and allocating driver time, this chart provided a mechanism
through which to allocate indirect costs and multi-program direct costs to
funding sources in the budgeting process.

Based on the vehicle utilization chart, direct costs by program (e.g., health
care, nutrition) were estimated. Indirect costs were then estimated and
allocated among programs according to each program's share of total direct
costs. Finally, estimated income by program was determined.

In order to construct such a budget, CAR utilized extensive data pertaining to
vehicle utilization, service utilization, income, and expenditures by program.

1.1.7 Reporting Requirements and Program Evaluation

As an operator of vehicles purchased with Section 16(b)(2) funds, CAR was
required to complete and submit the statistical report displayed in Figure
1-10 to the Massachusetts Executive Office of Transportation and Construction
(EOTC) every month. This report is a typical example of the data collection
and reporting requirements placed on paratransit agencies by funding sources
for monitoring and evaluation purposes.

1.2 MICROCOMPUTER APPLICATIONS FOR PARATRANSIT

As evidenced in the preceding sections, information management is an essential
function in the delivery of paratransit service. Complete and accurate
records must be maintained on passengers, trips, and vehicles in order to: 1)
provide service to clients, and 2) facilitate the agency's accounting and
financial management activities.

Because of the amount of information to be maintained in the data base of a
typical paratransit organization such as CAR, and because of the inter-
relationships that exist between data files, one of the most useful pieces of
microcomputer software for an organization to acquire is a relational data
base management system (DBMS). Other valuable computing tools are spread-
sheet, word processing and graphics packages. The organization of these four
software packages into a system of microcomputer-based paratransit management
applications is discussed in more detail in the following subsections.

1.2.1 Conceptual Design

A relational DBMS, as opposed to a file management system, treats data as if
it were stored in tabular form, recognizing the relationships between data
items and data sets. Information is contained in fields (such as a client's
name); records consist of fields that are related to each other (a client's
name, address, phone number, passenger classification, ID number, and so
forth). Files are made up of records that share the same field structure
(i.e., a paratransit agency's master client file). A collection of related
files is a data base (i.e., master client file, vehicle schedule file, vehicle
operations file, etc.).

In any data base, different files may contain common fields, or fields that

are dependent on each other for definition. A relational DBMS is capable of
manipulating fields and files in two unique ways, due to its tabular

1-15

EXHIBIT III-B=-1
Call-i=~Ride of Sarnstuble County, Ianc.
HONTHLY STATISTICAL REPORT
Health Care and lutrition Transportation Services

Prepered ty_ sl X (Taddcs Month, Year_\Juge /978
A
I. g g;cs STATISTICS 5Y FUNDING SOURCE
J. Health Care Tramsportation Y, 1II
/.

1. #UNDUPLICATED passengers this month 31

2, # Mew passengers this month

3. # Year-to-date UIDUPLICATED passengers

3. # WNDUPLICATED eldsrly this moath Ig

S. # UNDUPLICATZD elderly-handic d this manth 33
oy &

6, # UNDUPLICATED non-elderly nandicapped this month
- 8 Eutritian Transportation

el
i

1. # UNDUPLICATEZD passengers this month l
2, # New passengers this month j‘i‘?"‘
3, 7* Year-to-date UNDUPLICATED passengers 370
4, # UNDUPLICATED elderly this moath 196
S. # UNDUPLICATED elderlv-hundicapped this manth Y-
o N @n_qzct___orsmncz BY FUNDING SOURCE
Ae Health Care Tramsportation T. III 4X XX_ TOTAL
1. # Of one-way medical trips this month 736 S6a E—; 1921
2. # Of elderly medical trips this month 33 3 70
3, # Of eldsrly-hondicapved medical trips this month 32y 55 <«
4. # Of non-oIdnrly handicapped med. trips this month g 187 o
S. # Of no-shows this month
6, # Of not possible trips this month o
7, W QF missed tMps This ™MeaTh .
No. of Passencers 1'oe of one—w trips
(K &4 oO—-4
24 5 =i0
=] 1= 15
| 2 [-20
LZ il
TRIP ORICINS
Sarnstable 49/ izshpee G5
Bourne 2C 4 Orleans 4 4
3rewstar e} P'town
Chatham S Sandwich S
Dennis |0 S Truro
Eastham liellfleet
Falmouth 2% E Yarmouth ‘i i
Harwich i)

-3. RKutrition Tramsportation
l. # Of conzregate nutrition trips this month
2, i/ Of shopping assistance tTips this month 32
3, 4/ Of home delivery trips this month 2
4, 7 Of other trips this month ?é 3534

S. #* Of no-ehows this month

113, VEHICLE STATISTICS RUTRITION
= s Hu.dth Sitee Food Del.
1, Total mileu driven i(,324,2 e 5844 4.872.1
2. Averauge miles driven per vehicle
per day i28.6% 57. 96 44, 29
J. Total vehicle-hours ©04.0 467.3 295. 7

FIGURE 1-10: SAMPLE STATISTICAL REPORT

1-16

organization of data. First, separate files containing common fields can be
merged, allowing access to a great deal of related data at one time. For
instance, a daily vehicle operations file and a vehicle maintenance and repair
file, each including a field for vehicle ID number, could be joined in order
to determine operating cost by vehicle. Or, a vehicle schedule file
containing a client ID number field could be merged with the master client
file, also containing client ID number, so that detailed information on an
individual client and his/her trips could be used for billing purposes.

Second, changing a field in one file in a relational DBMS automatically causes
all identical fields in other files to be changed accordingly. Thus, changing
or updating a field that appears in several files, such as client ID number,
can be accomplished with a single command. For more detailed information on
the different types of data base management software, see Appendix A,
“Selecting a Data Base Manager".

Automation of the paratransit agency management functions described in Section
2.0 should be centered around relational DBMS files and applications, but
would also involve the development of spreadsheet, word processing, and
graphics.

The overall organization of a microcomputer-based automated system is
illustrated in Figure 1-11, which indicates the primary files to be developed
for use by each software component. The ideal automated system would use an
integrated software package whose relational DBMS, spreadsheet, word
processing, and graphics programs each generate files that can be read and
utilized by the other programs with the least amount of user intervention.
(See Appendix A for the pros and cons of currently available levels of
integration in microcomputer software.)

1.2.2 Relational DBMS Files and Applications

The files to be created and maintained in the relational DBMS are shown in
Figure 1-11. They include:

e Master Client File: a list of all present and past paratransit
service users, including such pertinent data as address, phone number,
age, passenger classification, Medicaid number, human services agency
authorization, and special instructions.

e Master Vehicle File: a record of all vehicles purchased, inc]uding
Ticense number; serial number; year, make, and model; engine s1ze
owner; conversion 1nformat1on, and purchase date.

® Pre-scheduled Trips File: a "dummy" file for a day(s) of pre-
scheduTed trips for each vehicle, which can be edited (to alter
individual vehicle assignments and service date) and merged with the
active data base to be used in the preparation of daily vehicle
schedules.

e Daily (real time) Vehicle Schedule File: a record of daily vehicle
trips, including vehicle and client ID numbers, scheduled pick-up and
drop-off times, origin and destination addresses, passenger
classification, trip purpose, and special needs.

1-17

81-1

RELATIONAL DATABASE APPLICATIONS

SPREADSHEET APPLICATIONS

(DAILY)
{BALLYE (DAILY) VEHICLE FINANCIAL PROGRAM
VEHICLE VEHICLE MAINT. & EVALUATION
SCHEDULE OPERATIONS :
EDL ol REPAIR FILE

FILE

MASTER BUDGET
CLIENT PROJECTION
FILE FILES

PRE-SCHED MASTER
TRIPS VEHICLE
FILE FILE
PROGRAM
CONSTANTS
FILE
GRAPHICS APPLICATIONS
FIN. MGMT/
PASS. OPS. FLEET OPS. PROG.
GRAPHICS GRAPHICS EVALUATION
FILE FILE GRAPHICS
FILE
FIGURE 1-11:

WORD PROCESSING APPLICATIONS

MISC
FILE

STANDARD
CORRESPOND. FORMAT
FILE FILE

CONCEPTUAL DESIGN OF MICROCOMPUTER APPLICATIONS

e Daily Vehicle Operations File: daily operating statistics for each
vehicle in-service, including driver and vehicle ID numbers; starting
and ending mileage; start time and end time; quantity and cost of
fuel, oil, coolant, and transmission fluid used; necessary repairs or
road calls; and contract vehicle hours. The vehicle operations report
is filled out by each driver during his/her daily run and entered into
the data base later.

e Daily Vehicle Maintenance and Repair File: a record of maintenance
and repairs performed on each vehicle, including a description of work
done, cost of parts and labor, and vendor.

These files would be used alone and in combination to produce driver
itineraries, client/agency invoices, and management tools such as operations
reports, vehicle maintenance reports, and ridership reports, as described
below.

1.2.2.1 Vehicle Scheduling

Figure 1-12 depicts the various DBMS files that would be used to create daily
vehicle schedules.

First, the scheduler creates or edits the pre-scheduled trips file for the
particular day/month/year, and adds the pre-scheduled trips for that date to
the vehicle schedule file. Then, in an iterative process at appropriate
intervals, he/she reviews the schedules of suitable vehicles and adds
real-time dial-a-ride trip requests for the service date to the vehicle
schedule file. Information on new clients is added to the master client file,
and information from the updated file on both current and new clients is added
to the vehicle schedule file. The next step is to prepare daily individual
vehicle schedule reports for the service date from the vehicle schedule file,
a copy of which is given to the driver to serve as his/her itinerary. At the
conclusion of the day's operations, the scheduler updates, or edits, the
vehicle schedule file for that day.

It is important to note that the assignment of trips to each vehicle is still
done by the scheduler. In this system, the microcomputer software is used
only to handle the information necessary for vehicle scheduling quickly and
efficiently, thereby making the scheduler's job easier.

1.2.2.2 Billing

Figure 1-13 illustrates the interaction of DBMS files to produce client or
agency invoices. Using the data listed below from each file, the paratransit
agency's financial management staff would be able to generate standard
invoices for prescribed periods (e.g. monthly) for program activity in
accordance with contractual billing rates.

1-19

PRE-SCHED,

CRT TRIPS e COMMON ORIGINS/
SCREEN FILE PROGRAM DEST. CODES
FORMS & CONSTANTS | o LOCATION/
REPORT MILEAGE TABLES
{
DATA i
ENTRY
e LOOK UP REGULAR Y
CLIENT INFO. CLIENT DAILY
(WINDOW?) EILE VEHICLE]
e ADD NEW CLIENT SCHEDULE

INFO.

SCHEDULING PROCEDURE:

Scheduler creates/edits a PRE-SCHED. TRIPS FILE for date: yr/mo/day

Scheduler adds PRE-SCHED. TRIPS for date to VEH. SCHED. FILE

At appropriate intervals, scheduler adds D-A-R TRIPS to VEH.SCHED. for date: yr/mo/day

At appropriate intervals, scheduler prepares DAILY VEH. SCHED. REPORTS (for ea. veh.)
for date (copy to driver)

At conclusion of day of operation, scheduler updates/edits VEH. SCHED. FILE for date.

© OO

FIGURE 1-12: AUTOMATED VEHICLE SCHEDULING PROCEDURE

1-20

SORT

VEHICLE
OPERATIONS
FILE

(MASTER)
CLIENT
FILE

SCREEN

REPORT

1

INVOICE

PROGRAM
CONSTANTS
FILE

VEHICLE
SCHEDULE
FILE

BY:PROGRAM/CLIENT
PROGRAM/VEH. HOUR
PROGRAM/VEH. MILE

e Provides financial mgmt. staff with standardized reports (invoices) for prescribed periods
for program activity in accordance with contractual billing rates.

FIGURE 1-13:

1-21

AUTOMATED CLIENT/AGENCY BILLING PROCEDURE

e Master Client File: client name, address, and ID number; Title XIX,
XX, Medicaid, or other agency number.

e \Vehicle Schedule File: client ID number, origin and destination, trip
purpose, date of trip.

e \Vehicle Operations File: contract vehicle hours, vehicle miles, date.

e Program Constants File: origin/destination codes, mileage, trip
purpose codes.

1.2.2.3 Report Generation

Figures 1-14 through 1-17 provide examples of the ways in which the relational
DBMS files can be used to combine system data in meaningful ways to support
the paratransit manager's decision-making capabilities and reporting
requirements.

In Figures 1-14 and 1-15, the daily vehicle operations file and the daily
vehicle maintenance and repair file, respectively, are compiled and organized
into daily, monthly, year-to-date, or annual overall system reports.

As shown in Figure 1-16, data from the daily vehicle operations file, the
vehicle master file, and the daily vehicle maintenance and repair file can be
combined to form a fleet operations report for a daily, monthly, year-to-date
or annual time frame.

A passenger operations or ridership report can be generated using data from
the daily vehicle operations file and the daily vehicle schedule file, again
on a daily, monthly, year-to-date or annual basis (Figure 1-17).

1.2.3 Spreadsheet Files and Applications

Microcomputer spreadsheet programs are effective financial management tools.
The most useful generic application is in the area of budget preparation and
management. The ability of spreadsheets to instantly recalculate an array of
values based on a change in one value enables a manager to rapidly update
budgetary figures, and to conduct an endless series of "what if" exercises
with budgetary projections. Most spreadsheet packages also contain various
pre-formatted accounting applications such as payroll; income tax; income and
expense statements; cash flow assessment; and accounts payable and receivable.

1.2.4 Word Processing and Graphics Files and Applications

Depending on the level of integration existing between the automated system's
relational DBMS, spreadsheet, word processing, and graphics programs, reports
and presentation materials can be generated from a paratransit agency's
operations files with varying degrees of user intervention.

1-22

CRT

SCREEN
FORM/

REPORT

VEHICLE

(DAILY)
OPERATIONS
FILE

DATA ENTRY

VEHICLE
OPERATIONS
REPORT

e Allows ops. mgmt. person to build, edit, and generate reports from (DAILY) VEH. OPS. FILE

FIGURE 1-14: AUTOMATED VEHICLE OPERATIONS REPORT

1-23

CRT

SCREEN
FORM & PROGRAM [® MAINT./REPAIR CODES

(DAILY)
VEHICLE
DATA Baif ‘ M:EI;IT.&
ENTRY AIR
FILE
\
VEHICLE — DAILY
MAINTENANCE — MONTHLY
REPORT - ¥-TD
' — ANNUAL

e Maint. person(s) can build, edit, generate report(s) from VEHICLE MAINT, & REPAIR FILE

FIGURE 1-15: AUTOMATED VEHICLE MAINTENANCE AND REPAIR REPORT

1-24

VEHICLE VEHICLE
(DAILY) (DAILY)

OPS SCHED

FILE FILE

Y
PASSENGER - lagll\:-:HLY
OPERATIONS -
REPORT Y-T-D
- ANNUAL

e Ops. mgmt. person can generate (daily, monthly, Y-T-D, annual) reports on ridership

FIGURE 1-16: AUTOMATED PASSENGER OPERATIONS REPORT

1-25

VEHICLE

(MASTER)
FILE
A PROGRAM
CONSTANTS
\
VEHICLE VEHICLE
DAILY (DAILY)
‘ ’ MAINT. &
REPAIR
FILE
Y
FLEET — DAILY
OPERATIONS = MONTHLY
REPORT ~ YTD
— ANNUAL

e Operations mgmt. person can generate (daily, monthly, Y-T-D, annual) reports on ridership

FIGURE 1-17: AUTOMATED FLEET OPERATIONS REPORT

1-26

At the highest level of integration, provided by a fully integrated software
package, information from data files (such as the daily vehicle schedule file,
for instance) can be transferred to the graphics program for organization and
graphic presentation. Next, the illustrations can be combined with
descriptive text in the word processing program to produce a complete report
on vehicle utilization by transportation program for review by funding source
administrators or board members.

At the Towest level of integration, provided by separate relational DBMS,
spreadsheet, word processing, and graphics programs that are capable of
reading and writing files in the same standard format, generation of
descriptive graphics with accompanying text requires some amount of user
intervention to convert files into the standard format.

The specific files to be maintained in the word processing and graphics
programs would depend on the individual paratransit agency's particular
reporting needs, but some typical examples are listed below:

Word Processing

e Correspondence File
e Standard Report Format File
e Miscellaneous File

Graphics

Passenger Operations Graphics File
Fleet Operations Graphics File
Financial Management Graphics File
Program Evaluation Graphics File

1-27

2.0 AUTOMATING THE CAR DATA BASE
2.1 INTRODUCTION

This chapter describes the process of using data management and other
applications software to automate the management functions of a paratransit
agency. The focus is on the data base management software (DBMS). This
section discusses the selection of software products; the instructional
approach taken in the chapter; the user environment; and the organization of
the chapter.

2.1.1 Selection of Software

For the task of automating the CAR data base we have selected Microrim's
relational data base manager R:base 4000. As discussed in Section 1,0, the
advantage of a relational data base compared to a traditional file management
system is the capability of "relating" different files. For example, data
from two different files can be joined together to create a third file. Also,
data records in separate files with common fields of information can be
updated or deleted simultaneously.

While we are highly enthusiastic about the potential applications of
relational data managers to transit management, this document does not in any
way constitute an endorsement of a specific product. In using R:base 4000 to
automate the case study data base, we engaged in a learning process in which
we discovered the product's strengths and weaknesses. We discuss both
candidly in this manual and provide suggestions for overcoming the weaknesses
and taking advantage of the strengths. Funding limitations prohibited
similarly intense examinations of competitive products.

The selection of a data base manager is not a decision to be taken lightly.
They can cost anywhere from $400 to $800 and there is no money back
guarantee. The software industry is highly volatile. New, innovative
products are announced almost weekly. Products are sent into the marketplace
with bugs which do not become apparent until field testing. Each product has
unique strengths and weaknesses which require that the selection process be
responsive to the specific needs of the transit agency.

We strongly urge any transit agency interested in using a data base manager to
conduct their own selection process and evaluation. To assist agencies in
doing so, we have provided in Appendix A of this manual suggestions for how to
conduct a software procurement process; criteria to utilize in evaluating data
base management software; and information on a variety of competitive products
which you might want to consider. While this document is clearly written to a
specific piece of software (R:base 4000), we believe that the generic approach
described herein will be helpful to users interested in applying any data base
management software to paratransit management.

In addition to the data base management software itself, this section will
also discuss the integration of data base management with other software
applications such as spreadsheets, word processing, and graphics.

2-1

For these other functions, we have used Perfect Calc, Perfect Writer, and Fast
Graphs. Again, our use of these products does not constitute an endorsement
over the many similar products in the marketplace. In addition, the use of
this software in conjunction with R:base 4000 does not constitute a
recommendation as to the effectiveness of these products as an integrated
package. To the contrary, Perfect Calc is not one of R:base's recommended
spreadsheets and integration is in fact cumbersome.

2.1.2 Instructional Approach

The purpose of this chapter is to assist the professional transit manager in
applying a data base management system to his or her own management problems.
It is NOT a replacement for the manual and tutorial which accompanies the
software. Rather, it is intended to function as a bridge between the manager
and the software manual. Software manuals are written for generic
applications. This manual is written for the sole purpose of applying R:base
4000 to paratransit management. In doing so, we provide both a conceptual
framework and specific instructions for using R:base 4000. These instructions
are intended as examples and are not all inclusive. We have not replicated
the R:base manual. We do think we have made it easier to use and to apply to
this specific function.

The authors of this document are transit professionals who have learned to use
applications software to solve transit management problems. We are NOT
computer professionals. We have written this manual for people like us.

In writing instructions for R:base 4000, we assume that the audience has
little or no experience in the use of data base management software. We do
assume, however, that the user is familiar with common data processing terms
and with the operation of their hardware system. We hope that in combination,
this manual and the R:base manual will enable a transit manager to perform the
basic functions of R:base 4000. Some of the more complex functions may
require greater data processing expertise. In any event, the user will be on
much firmer ground in understanding the functions which R:base can perform,
and working with a data processing professional in tailoring the system to
their needs.

The focus of this document is clearly on the application of data base
management software. This type of software is the most complex to use among
the most widely applied software. Therefore, our treatment of the other
applications software discussed in this manual (spreadsheets, word processing
and graphics) is more cursory and assumes that the basics of using these
programs can be mastered by following the manuals and tutorials which
accompany them. Somewhat more detail is provided on spreadsheets than on the
other two applications. Our emphasis will be on the application of this
software in conjunction with a data base manager.

A final point which needs emphasis is that the case study data should be
viewed as hypothetical. The reasons for using data from an actual transit
system were to develop a realistic case study, and to avoid the necessity of
developing a data base from scratch. This data dates from 1979 and was
generated by a unique transit system operating in a unique environment. The
user should concentrate on the applications, and not the data.

2.1.3 User Environment

R:base is available for use on a variety of hardware and operating systems.
Operating systems include the following:

MS-DOS Release 1.1 (or higher)
PC-DOS Release 1.1 (or higher)
CTOS Release 8.0 (or higher)
BTOS Release 8.0 (or higher)

R:base requires 256K bytes of memory for operation. Hardware with 128K can be
easily expanded at reasonable cost to 256K by means of expansion boards. We
developed this prototype on a Columbia VP microcomputer using MS-D0OS 2.0.
R:base can utilize any 80 or 132 column ASCII printer compatible with your
hardware. We recommend a printer with a 132 column capability given the types
of reports you are likely to produce. The printer which we employed is an 80-
column printer with an optional 132-column small type. This accounts for the
different size printing in some of our outputs.

One of the major selling points of R:base is its tremendous capacity
potential. This is illustrated in Table 2-1.

TABLE 2-1. DATA BASE SPECIFICATIONS

Maximum number of files per data base 40

Maximum number of fields per data base 400

Maximum record size 1530 characters
Maximum records per file 2.5 billion*
Maximum records per data base 100 billion*
Maximum command line input 1600 characters

*or limited by the file size of your operating system

It is the rare paratransit system indeed which would run up against the limits
of R:base's theoretical capacity. Of more practical concern is how to tap
this capacity. This prototype was developed using two floppy disk drives.
Since the R:base diskette must occupy one drive at all times, and has limited
writing space, the user is limited to the capacity of a single diskette at any
one time. We found this capacity sufficient to build a one-week data base for
a five-vehicle system. It might have been possible to go as high as two
weeks. Ideally, records should be stored in monthly increments to coincide
with typical scheduling, invoicing, and recordkeeping procedures. This would
not be feasible using R:base for more than a 1-3 vehicle system (depending on
ridership levels).

There are two solutions to this problem. One is to store data on multiple
floppy disks. We found this process to be cumbersome and do not recommend
it. The alternative and recommended solution is to use a hard disk. A

recommended hard disk has a capacity of 20,000,000 (20 megabytes) bytes of
memory compared to 360,000 for a floppy disk. While expensive, prices are

2-3

falling and represent a modest increment to the overall cost of your system.
In the course of this manual, we do provide guidance on operating with floppy
disks. Appendix B provides more detailed space management instructions,

Another of R:base's advantages is its user friendliness. Most data entry can
be accomplished through a series of prompts which clearly call for specific
pieces of data. Many user decision points provide menus of clearly defined
choices (hence, the term menu-driven). Commands can be given in standard (if
somewhat stilted) English sentences.

Due to these features, R:base can literally be taken off-the-shelf and used as
is. However, transit systems with a large number of data entry clerks may
desire additional customization to further simplify and standardize data
entry. An example of customization is provided in Appendix C.

This Manual is based on R:base 4000 version 1.0l1. However, during the latter
stages of this project (April 1984), an updated version (1.11) was issued by
the manufacturer. The new version is completely compatible with the version
used in this Manual. It also includes several improvements and enhancements.
The customizing example used in Appendix C is based on the newer version as
these features were not available in the old version. In addition, Appendix F
provides a brief description of other program improvements.

2.1.4 Organization of Chapter

The remainder of this chapter is organized into four parts. Section 2.2
describes how to begin working with R:base and setting up a data base.
Section 2.3 provides a description of how to use R:base to accomplish the
day-to-day scheduling function. Section 2.4 explains how to generate
end-of-the-month reports. Section 2.5 discusses the application of
spreadsheet, word processing, and graphics software.

Throughout this chapter, examples are displayed of screen forms, command
formats, and reports. Appendix D contains all such formats, illustrating how
to set-up an entire data base for paratransit management. Appendix E contains
blank copies of format sheets for reproduction and use in your own agency.

2.2 USING R:BASE TO SET-UP A DATA BASE
This section provides information on the following:

The organization of the R:base manual
On-Screen Help provided by R:base

The structure of R:base
Conceptualizing a Data Base
Constructing a Data Base

Entering Data

Several conventions are followed throughout the remainder of the manual.
Information which must be input into the computer by the user appears either
within a figure or in quotation marks. Except for one occasion which is
clearly distinguished, the user does not input quotation marks. They are
present for clarification only. If a generic term is used to which the user
must apply a specific value (i.e., attribute name), the generic term is
underlined. Information which the user may optionally input appears in
parentheses. Computer-generated responses which will appear on the user's
screen are typed in bold face.

2.2.1 The R:base Manual

The R:base Manual has several important features of which the user should be
aware at the start of the process. These include the following:

e A tutorial provides both written documentation and a diskette which
takes the user through the development of a small data base. This
tutorial is available separately for a small fee and provides the user
with a good sense of the operation of R:base. The diskette contains a
small data base on which the user performs a series of functions. One
weakness in the tutorial is that the example does not complete a full
cycle back to the starting point. Thus, a second employee would not
be able to simply pick it up and run through it from the start. The
initial user must acquire sufficient familiarity with R:base to return
the data base to its original format for others to use.

e An insert at the front of the manual discusses quirks in the software
and changes which have been made since the last complete update of the

manual. We recommend that the user write these changes directly into
the body of the text.

e The body of the manual containing the following sections:

- Introduction

- Data Base Structure

- Data Input

- Data Inquiry

- Reports

- Data Modification

- Relational Operations
- Transportability

- Customization

e An appendix providing an extremely useful summary of R:base commands.
e An appendix containing a glossary of commonly used terms.

e An appendix providing explanations of both generic and command-
specific error messages.

e An appendix providing instructions on the use of the RBEDIT function
for generating and editing ASCII command and data files.

2-5

e An appendix containing instructions for starting and installing R:base
under a specific operating system.

® An index.

2.2.2 0On-Screen Help

In addition to its extensive written documentation, R:base also contains two
on-screen assistance formats. These are the "help" and "prompt" modes. The
help mode provides on-screen descriptions by command. Prompt is designed to
assist the user in formatting commands and data entry. Section 2.2.3
describes how to access these modes.

We found that these modes are helpful for the new user. However, after two
weeks of intensive usage, we found that the "help" mode had very little to
tell us that we didn't already know (which isn't to say that we weren't having
problems!). We also found the “prompt" mode to be a cumbersome method of data
definition and entry compared to other modes which will be discussed below.
This was particularly true of large (yet typical) files.

2.2.3 How R:base Works

2.2.3.1 Structure
There are four key terms involved in understanding the structure of R:base:

Data Base
Relation (file)
Attribute (field)
Row (record)

These elements are displayed graphically in Figure 2-1.

The basic unit of organization is the data base. All related information must
be housed within a single data base! There is no interaction between
different data bases. For most paratransit agencies, it should be possible to
house all related data in one data base, given that a single data base can
hold 100 billion records in 40 separate files.

DATA BASE

Relation #1 Relation #2

Attribute #1 Attribute #2| | Attribute #1 Attribute #2

FIGURE 2-1. THE STRUCTURE OF R:BASE 4000

A relation is synonymous with a data file. A single relation contains a set
of closely interrelated data which the user would file together and keep
separate from other information in a manual system. Examples include a client
file and a vehicle schedule file. Each R:base data base can contain up to 40
relations.

An attribute is synonymous with a single field of data in a relation (file).
For example, client ID number and last name would be typical attributes
(fields) in a master client relation (file). Each data base can contain up to
400 attributes. Each attribute can be associated with more than one relation
permitting integration and update across relations (files). This is a major
advantage over the file manager type of software.

A row is a single data record across a number of attributes in a relation.
For example, all the data in the master client relation pertaining to any one
client constitutes a row. R:base has a theoretical capacity of 2.5 billion
rows per relation, and 100 billion rows per data base.

2.2.3.2 Entering/Exiting

Entering R:base requires two distinct actions (which are contained on 2
separate diskettes in the floppy version). Type "rbase" in response to your
operating system prompt. The rbase logo (a giant "R") will appear on the
screen with instructions to insert the second diskette and then press any
key. This will cause the program to load. When the program has loaded, you
will receive the R:base prompt shown in Figure 2-2.

R>

FIGURE 2-2. R:BASE PROMPT

To exit R:base, simply type "exit" in response to the R:base prompt. This
will return you to the disk operating system. No command is necessary to save
input. All input is automatically written to disk and saved.

2.2.3.3 Modes

Once inside R:base, you have the option of entering one of four special
function modes, or of remaining in the main R:base module. The four special
modes are as follows:

e Help: The help mode provides on-screen instructions for the operation
of R:base. To enter, type "help" for an overview of all R:base
commands, or “help command name" for instructions regarding a specific
command .

e Prompt: The prompt mode provides menu-driven choices for performing
R:base functions. To enter, type "prompt" for a listing of all
commands, or "prompt command name" for a specific command prompt.

e Define: The define mode must be entered to establish or modify your
data base. When establishing a new data base, enter "define data base
name". When modifying an existing data base which you are already
inside, simply enter "define". A detailed description of the process
for establishing a data base is contained in Section 2.2.5.

e Load: The load mode is one of four methods for entering data into
R:base. We found it to be highly inefficient except for very small
data files. We will focus on what we consider to be the preferred
method of data loading in Section 2.2.6. To enter, type "load".

Upon receiving the appropriate entrance command, R:base will respond with a
new prompt which will be the first letter of the mode you have entered. Thus,
users can always tell what mode they are in. Figure 2-3 displays the possible
R:base prompts. To leave a mode and return to the general R:base system, type
"end". (Note that to leave a mode, you type "end". To leave R:base entirely,
you "exit™.)

H> éhe]p)
P> (prompt)
D> (

L> (

FIGURE 2-3. R:BASE MODE PROMPTS
2.2.3.4 Editing and Syntax Messages
You can use your screen editor to correct typing mistakes. An incorrectly

entered command will receive a syntax message displaying the correct command
format as shown in Figure 2-4.

SYNTAX
The syntax for the SELECT command is:
SELECT (attnamel attname 2 ...) FROM relname (SORTED BY ...) (WHERE)

Attribute types may have "=s" appended for summations or "n" when
specifying a display width

FIGURE 2-4. SYNTAX MESSAGE

The syntax message will be followed by the appropriate prompt to enable you to
resume input. We did find on a few occasions that grievous input errors were

2-8

unrecognizable to the syntax error response system and bombed out the

program.

While no data was lost, it was necessary to reload the program and

start again.

2.2.3.5

Special Functions

There are several functions with which the user will need to become familiar

for the

efficient operation of R:base. These include the following:

Set: The set command enables the user to alter a variety of default
procedures. For example, line width can be changed from 80 columns to

132 simply by entering "set width 132". Output can be sent to the
printer instead of the terminal by entering "Output printer". All
default values return after exiting R:base and must be changed again
in the next session.

List: There are several "list" commands which enable the user to view
the structure of the data base which is being created. These commands
include the following:

- Listrel: Lists the names of all relations

- Listatt: Lists the names and characteristics of all attributes

- Listrel all: Lists all relations and all features of each relation
except rules

Show: The show command enables the user to view the status of
functions subject to the set command. It can also display any rules
which the user has established for the data base (see Section 2.2.5).

Long Commands: A plus sign (+) is used to continue a command which
exceeds 80 columns in length. Before reaching the end of the line,
enter a blank space and then "+", Hit return and continue the command
on the next Tline.

Multiple Commands: A semicolon (;) can be used to separate multiple
commands entered on the same line.

Reusing the Previous Line: R:base always remembers the last line,
whether a command or data entry. You may reuse one or more items from
your last entry by using the following notations:

Notation Meaning

* Causes the corresponding input field to be repeated

*n Causes the corresponding next "n" items to be repeated
L Causes the corresponding item and all remaining items

to the end of the line to be repeated

2.2.4 Conceptualizing the Data Base

Prior to initiating any work on the computer, the user should first outline
manually the structure of the data base which will be created. This process
involves the following steps:

2-9

e Determine what relations (files) will be needed to contain your data
in a logical fashion.

e Assign attributes (fields) to each relation, paying particular
attention to the potential for using common attributes across
relations, and determine which are the key attributes for accessing
purposes.

e Determine what rules, if any, will be employed to control the
consistency and accuracy of data entry.

e Determine where passwords will be necessary to provide security for
the data base.

In this prototype, we have created the following relations:

e Master Client File ("msclient") provides a permanent record of each
client.

® Pre-Schedule Trip File ("prsched") provides a listing of regularly
scheduled trips on a monthly basis. This relation should provide
sufficient information for dispatchers to use in scheduling and for
drivers to use in running routes.

e Real Time File ("realtime") contains the same format as the
pre-schedule file, but will contain only true dial-a-ride trips as
they are requested.

e Vehicle Schedule File ("vsched") contains all trips scheduled during
tThe course of a month by combining the preschedule and real time
files.

e Vehicle Operations File ("vehops") contains information on daily
vehicle operations such as miles travelled, service hours, fuel and
maintenance expenses.

e Master Vehicle File ("vmaster") is a permanent record of each vehicle
operated by the agency.

The order in which relations are established is not important, although
typically you would begin with the master client and vehicle files. All
command and screen formats needed to create each prototype relation are
contained in Appendix D. Section 2.2.5 will provide a narrative description
of how to create the vehicle schedule files. Section 2.2.6 will describe how
to enter data into these files. Section 2.3 will explain how the two vehicle
schedule files will interact to assist the agency in the performance of the
vehicle scheduling function.

2.2.5 Creating a Data Base

This section provides a step-by-step description of the creation of a data
base. All commands used to establish the sample relation are summarized in
Figure 2-14 at the end of the section. The process of creating a data base is
summarized in Figure 2-5 below:

2-10

DEFINE/OPEN DATA
BASE

DEF INE
ATTRIBUTES

i

ASSOCIATE ATTRIBUTES
WITH A RELATION

DEFINE
RULES

Y

DEFINE
PASSWORDS

[

END (RETURN TO
R:BASE MODE)

FIGURE 2-5. CREATING A DATA BASE

2-11

2.2.5.1 Accessing a Data Base

The first step in creating a data base is to give it a name. We have called
our data base "CAR" (short for Call-A-Ride of Barnstable County). All names
in R:base (data bases, relations and attributes) are limited to a maximum of
eight characters, and may not contain blanks. If you are using the floppy
disk version, you will want to create your data base on the "b" drive, since
the R:base diskette occupies the default, or "“a" drive. To input on the "b"
drive, you must enter "b:" prior to the data base name. This leaves only six
more characters for the data base name ("b:" is essentially read as part of
the name). Thus, we established our data base by entering the following:

R> "define b:car"
D>

R:base will respond with the D> prompt, indicating that you are now in the
define mode. To enter this data base in the future, you will type "open
b:car". If everything is alright, R:base will respond Data Base Exists. To
alter the definition of a pre-existing data base, simply enter "define" after
you have opened the data base.

Everything you do in R:base will be done in the context of a single data
base. Therefore, each session at the computer must begin with the command to
either open an already existing data base, or define a new one. If you enter
anything else, R:base will respond Data base does not exist. Thus, using
R:base should be thought of as a three-tiered process as displayed in Figure
2-6.

Operating System

R:base

Data Base (Open or Define)

R:base Mode

Define Help

Prompt Load

FIGURE 2-6. R:BASE TIERS
First, you enter R:base from the operating system by loading the disks. You

can do only one of two things at this point, open or define a data base. Once
done, you can proceed to the inner core where you can remain in the general

2-12

R:base mode to perform a variety of functions, or enter one of the four
specialized modes. Two additional modes (forms and reports), will be
introduced later.

After defining a data base, you will want to create a password to limit access
to it. Enter "owner password name" in response to the define prompt (D>). In
order to access the data base in the future, you will need to enter "user
password name" after opening the data base and receiving the Data Base Exists
response. We have defined the following password:

R> "Owner Marc"
Keep track of your passwords. In the interest of security, R:base can't tell
you what they are.

2.2.5.2 Establishing Attributes

Once inside the define mode, the first step will be to define attributes
(fields). You can define all the attributes which you will use in the entire
data base, or only those which will be associated with one specific relation.
Additional attributes can be added to the data base at any time and associated
with whichever relations are appropriate. We recommend establishing one
relation and its associated attributes at a time.

Before sitting down at the computer to define attributes, we recommend laying
them out manually first, as shown in Figure 2-7. Each record in this relation
will have a potential value for each one of these attributes. A blank form
has been provided in Appendix E for the user to reproduce and employ in their
work.

2-13

Attribute Name Type Length|Key
Trip Date Tripdate | date
Vehicle Number veh# text 2
Client ID clientid | text 4 key
Last Name lastname | text 15
First Name frstname | text 10
Pick-Up Time putime integer
Address address | text 15
City city text 10
Destination destinat | text 15
Number of Trips trip# integer
Round Trip ? rt text 1
Round Trip Time rttime integer
Passenger Classification|paxclass | text 3
Trip Purpose trippurp | text 3
Payment Code paycode | text &
Special Needs specneed | text 10
Edit Date editdate | date

FIGURE 2-7. ATTRIBUTE DEFINITION FOR VEHICLE SCHEDULE FILES

Each attribute definition contains four possible elements:

e Name - This is a maximum eight-character label which you give to each
attribute. The name should make sense to you and be easy to remember.

o Type - There are six attribute types. Simply enter the name of the
appropriate type as follows:

- Date: Dates are entered in a default format of mm/dd/yy. This can
be changed to any other combination through the set command.

- Dollar: Represents dollar amounts (assumes two decimal places).
- Integer: Represents whole numbers up to nine places.

- Time: Represents the time in hh/mm/ss format. Twenty-four hour
military time must be used.

- Real: Represents whole numbers with decimals.
- Text: Represents everything else (all alphanumeric entries).

o Length - The number of columns set aside for each attribute's data
entry. The user defines length only for text attributes. All other
attribute lengths are established by default. The text default,
requiring no user entry, is "8" characters. To enter a length, simply
type in the number of columns desired.

o Key - Keys identify attributes through which the user desires to
access data. The use of key attributes is OPTIONAL. In R:base, data
can automatically be accessed through ALL attributes. The only
advantage of a key attribute is that it accesses data faster. The
only disadvantage of using keys occurs if you are using floppy disks.
Keys occupy substantial disk space which you can ill-afford in the
floppy disk mode. If your data base is small enough to warrant using
floppy disks, it is doubtful that you need the speed advantage of
keys. (In Appendix B, we discuss how to calculate required disk
storage space.) We have designated a single key attribute,
“clientid", throughout the CAR data base.

The attributes composing the two vehicle schedule files (pre-scheduled trips
and real time), are displayed in Figure 2-7. Most of the information is
self-explanatory. Client ID number has been established as the key field.
Depending on how the user most frequently accesses data, last name might be a
better choice for a key field.

Round-trip data is included for two reasons. Including both trips on one
record greatly reduces data entry time and disk storage space. Since all the
other data is the same, why enter it twice?

The "number of trips" attribute is essentially a "counter" for producing
reports which can analyze how many trips were taken in various categories.

2-14

This process is explained in Section 2.4. The number entered in this
attribute would normally be "1" (one-way trip) or "2" (round-trip), unless the
client was accompanied by an escort.

“Paycode" enables you to tag each trip record for later billing purposes.
"Specneed" provides any unusual information about the client (medication,
structural problems at the home, disabilities, etc.) which a driver will need
to know.

Our selection of attribute "types" requires some explanation. Although
certain entries may consist of all numerals and be thought of as an "integer"
or "real", (such as vehicle number and client ID), we have entered them as
“text". Text has the advantage of allowing the user to define field length
(and thus limiting data base size to the minimum required to receive the
data). There is no disadvantage in doing this so long as you do not plan to
perform any arithmetic function on the data. Although client ID is a number,
you would never add two client ID's together. Thus, they can be safely called
text fields.

We have also chosen to define the time fields as "integers" instead of
“times". The reason is unique to R:base which defines time as hours:minutes:
seconds. It is the rare transit authority which schedules vehicles to the
second. If the time definition is used, seconds (even "00") must be entered.
This imposes an unnecessary data entry burden and increases the size of the
data base. By using "integer" we can also eliminate the colons. Thus, 10:00
a.m. is entered as "1000".

To begin defining attributes, type "attributes" in response to the "D>" prompt
(note the common sense nature of most R:base commands). Then enter one
attribute to a line exactly as shown in Figure 2-7, leaving one blank space
between each item in the definition.

We strongly urge you to examine each attribute definition carefully before
moving on to the next line. You cannot go back to correct a previous line.
The process of revising attributes is extremely poor and is a major weakness
of R:base. Similarly, you should know what attributes you intend to include
in each relation before starting. The process of revising data base structure
is defined in Section 2.2.5.8.

R:base may contain records which have up to 1530 columns. It is unlikely that
you will want to create a record of anywhere near this length. You should
keep in mind that you can never view more than 132 columns on the screen or in
print at any one time. If you have a standard 80 column screen, the remaining
columns will be wrapped around into a second line. Wide carriage printers can
print 132 columns across. Some 80 column printers have a small type mode
which prints 132 columns. You will usually not need to see all attributes at
once. If you would like to be able to do so, the attribute lengths which you
associate in a relation cannot exceed 132 columns. Each attribute type has
the following default length:

2-15

e Date 8
e Dollar 21
e Integer 9
® Real 16
e Text 8
o Time 8

In counting up total attribute length, remember that if the attribute name
exceeds the length of the attribute field, you must add the columns occupied
by the name which will appear horizontally as headings at the top of the
screen or page. Thus, although Client ID has a data field length of 4
columns, the label "clientid" occupies eight columns.

While you most likely won't need to see all attributes at any one time,
certain attributes are likely to be called up frequently. For example, in
scheduling, you need to see pick-up time, address, destination, return-time,
etc. You should carefully consider the use to which the relation will be put
before defining its attributes. Any attribute which you will need to call up
frequently and quickly should be located in the first 132 columns of the
relation. See Section 2.3.5 on scheduling dial-a-ride trips for further
discussion of this issue. The customizing features described in Appendix C
provide further suggestions on overcoming these limitations.

2.2.5.3 Defining Relations

Upon completing attribute definition, enter "relations" to initiate relation
definition. On the next line, enter the name of your relation and the
attributes with which it is associated as shown in Figure 2-8.

D> relations

D> prsched with tripdate veh# clientid lastname +

D> frstname putime address city destinat trip# rt +
D> rttime paxclass trippurp paycode specneed editdate

FIGURE 2-8. DEFINING A RELATION

You must use the word "with" between the relation name and the first
attribute.

We have now created a relation called "prsched", associated with 17
attributes. Note the use of a plus sign (+) to continue the definition
process across three lines. Attributes can be associated with a relation in
any order. However, the order in which the attributes are listed in Figure
2-8 is the order in which data entry will take place. We therefore recommend
listing the attributes in an order which makes logical sense for data entry.

2.2.5.4 Defining Rules
Data entry rules are a valuable tool for controlling the accuracy of the data
entry process. To begin rules definition, enter "rules". On the following

lines, enter your rules in one of the following two formats displayed in
Figure 2-9.

2-16

(1) "Error Message" attribute name (in relation name) +
EQ value (and/or attribute name ----)
NE
QT
GE
LT
LE
CONTAINS
EXISTS

(2) "“Error Message" attribute name 1 in relation name +
eqa attribute name 2 1n relation name and/or
nea
gta
gea
1ta
lea

FIGURE 2-9. RULES DEFINITION FORMATS

In example (1), an attribute is being measured against a specific value. In
example (2), two attributes are being measured against each other. The
relation name in example (1) is optional (hence it appears in parentheses) and
is only required if the attribute is associated with more than one relation.
The error message should be clearly understandable to the data entry
personnel. It must be entered in quotation marks. This is the only input
form which requires quotation marks. Figure 2-10 defines the arithmetic
operator abbreviations used in rules definitions. Figure 2-11 illustrates the
rules commands entered for the relation "prsched" for the prototype data base.

EQ = equals = EQA

NE = not equal = NEA

GT = greater than = GTA

GE = greater than or equal to = GEA
LT = less than = LTA

LE = less than or equal to = LEA
CONTAINS = contains a test value
EXISTS = field must contain data

FIGURE 2-10. RULE OPERATORS

2-17

“"Passenger code is incorrect" paxclass eq e or paxclass +
eq eh or paxclass eq h or paxclass eq weh or paxclass eq wh

“Trip code is incorrect" trippurp eq hc or trippur eq nu +
or trippurp eq mow or trippurp eq se or trippurp eq ft +
or trippurp eq gt or trippurp eq adc or trippurp eq dil
“Trip time is too early!" putime ge 0700

“Round trip code is incorrect" rt eq y or rt eq n

FIGURE 2-11. DEFINING RULES FOR CAR

In the example shown in Figure 2-11, a data entry clerk will be prevented from
entering incorrect codes for passenger class, trip purpose, or round-trip. In
the Tatter case, the data must read either "y" (yes) or "n" (no). Figure 2-12
displays the definitions of the two other codes which we have created for this'
relation. Similarly, a dispatcher will be prevented from scheduling a trip
before 7:00 a.m. Should an incorrect entry be made, the designated error

message will appear on the screen.

Passenger Classification Trip Purpose
e = elderly hc = health care
h = handicapped nu = nutrition
eh = elderly/handicapped mow = meals on wheels
wh = wheelchair handicapped|se = special education
weh = wheelchair elderly ft = field trip
handicapped gt = group trip
adc = adult day care
dl = dialysis

FIGURE 2-12. VEHICLE SCHEDULE CODES

One should note that error messages are typically stated as negative
conditions (i.e., something is incorrect) to inform the user that a mistake
has been made. However, generating the message requires a series of positive
conditions. In the first example in Figure 2-11, you must "tell" R:base what
the correct conditions are to enable it to recognize a mistake. Thus, the
string of conditions following the error message should be read as "paxclass
(must) equal e", etc.

The rules command displays two important features of all R:base string type
commands. First, the maximum number of conditions which can be strung
together is ten (10). Second, the command language is a little stilted in
that attribute names must be repeated for each condition. Whereas one might
in normal conversation say that paxciass must equal e, h, eh, wh, or weh, in
R:base one must repeat "paxclass" for each condition. Failure to do so will
generate an error and syntax message.

2-18

In stringing several conditions together, you must exercise great care in the
proper use of "and/or". The use of "and" creates a series of conditions all
of which must be satisfied or an error will be generated. The use of "or"
creates a series of conditions of which only one need be true. "And" and "or"
conditions can be combined within a single string of conditions.

2.2.5.5 Passwords

The final step in database definition is assigning passwords to specific
relations (as opposed to the data base as a whole). There are two kinds of
relational passwords, RPW (read passwords) and MPW (modify passwords). Read
passwords permit the user to read data but not modify it. Modify passwords
permit the user to both read and modify data. Passwords are entered in the
following format:

D> Passwords
D> RPW for prsched is Tony
D> MPW for prsched is Patti

FIGURE 2-13. DEFINING PASSWORDS
2.2.5.6 Ending Data Base Definition

Following password definition, enter "end" to leave the define mode and return
to the general R:base module (but still within the data base which you have
just defined). If there are any attributes which have not been associated
with a relation, you will be warned by R:base that the attribute will be lost
if you leave the define mode without associating it with a relation. For this
reason, we recommend defining attributes for one relation at a time. If there
are no problems, you will receive the response End R:base Data Base
Definition.

Figure 2-14 displays the complete process of establishing the data base "CAR"
and the relation named "prsched". You can check on the data base which you
have just created by entering "listrel prsched". Figure 2-15 displays the
hardcopy print-out of the response. You can view all the rules created for a
database by entering "show rules". Figure 2-16 displays the response. Rules
6, 7, 8, and 9 were created for the relation "prsched".

Whenever you end a major step, such as defining a relation or entering data,
we recommend that you exit R:base and make a copy of your data base using the
copy function of your operating system. Be sure to copy the three *.RBS files
associated with your data base. See Appendix B for a description of R:base
file structure.

2.2.5.7 Creating Additional Relations

Additional relations can be created within the CAR data base by following the
procedure described above. Simply "open b:car" and enter "define". Your next
step depends on the attributes of the relation which you are planning to
create. For example, the relation "realtime" will have the exact same

2-19

R>

D>
D>
D>
D>
D>
D>
D>
D>
D>
D>
D>
D>
D>
D>
D>
D>
D>
D>
D>
D>
D>

D>
D>
D>
D>
D>
D>
D>
D>
D>
D>
D>
D>

R>

Define b:car

Database exists

owner marc

attributes

tripdate date

veh# text 2

clientid text 4 key

lastname text 15

frstname text 10

putime integer

address text 15

city text 10

destinat text 15

trip# integer

rt text 1

rttime integer

paxclass text 3

trippurp text 3

paycode text 4

specneed text 10

editdate date

relations

prsched with tripdate veh# clientid lastname frstname putime +
address city destinat trip# rt rttime paxclass trippurp paycode +
specneed editdate

rules

"Passenger code is incorrect" paxclass eq e or paxclass eq eh +
or paxclass eq h or paxclass eq weh or paxclass eq wh

“Trip code is incorrect" trippurp eq hc or trippurp eq nu or +
trippurp eq mow or trippurp eq se or trippurp eq ft or trippurp +
eq gt or trippurp eq adc or trippurp eq dl

“Round trip code is incorrect" rt eq y or rt eq n

“Trip time is too early!" putime ge 0700

passwords

rpw for prsched is Tony

mpw for prsched is Patti

end

End R:base Data Base Definition

FIGURE 2-14. DEFINING PRSCHED

2-20

Relation:
Read Password:
Modify Password:

UONOUD> W - %

- A pa b pa A e
PN -O

prsched

YES
YES

Attributes

Name
tripdate
veh#
clientid
lastname
fratname
address
city
paxclass
specneed
put ime
dest inat
rt
rttime
trip#
trippurp
paycode

Type
DATE
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
INTEGER
TEXT
TEXT
INTEGER
INTEGER
TEXT
TEXT

Length

1

2

4
18
10
15
12

3
12

(5
D o e U] e

value(s)

characters
characters
characters
characters
characters
characters
characters
characters
value(s)

characters
characters
value(s)

value(s)

characters
characters

Attributes
Name Type
editdate DATE

FIGURE 2-15.

2-21

Length

1 value(s)

PRSCHED RELATION

Key

yes

Key

RULE checking = ON
RULE 1 zip ge 020Q
and zip le Q2939
Message:Zip code is incorrect

RULE e clientid IN msclient nea clientid IN msclient
Message:Client ID is a duplicate

RULE 3 paxclass exis
Message:Missing passenger classification

RULE & putime ge 2700
Message:Trip time is too early!

RULE 7 rt eq vy

or rt egn
Message:Round trip code is incorrect
RULE a8 paxclass eq e
ar paxclass eq eh
or paxclass eq h
o paxclass eq weh
oy paxclass eq wh
Message:Passenger code is incorrect
RULE 9 trippurp eq hec
or trippurp eqg nu
or trippurp eq now
or trippurp eq se
or trippurp eq ft
o trippurp eq gt
or trippurp eq adc
or trippurp eq dl
Message:Trip code is incorrect

RULE 1@ endhour IN vehops gta sthour IN vehops
Message:End hours must be greater than start hou
RULE 11 endmile IN vehops gta stmile IN vehops
Message:End miles must be greater than start mil
RULE 12 endmile IN vehops gta stmile IN vehops
Message:End miles must be greater than start mil
RULE 13 endhour IN vehops gta sthour IN vehops

Message:End hours must be greater than start hou

FIGURE 2-16. RULES FOR CAR DATA BASE

2-22

characteristics as prsched (only the data will be different). To create
realtime, you can immediately enter "relations" and associate realtime with
the attributes you just created for prsched. It will then be necessary to
re-enter rules and passwords.

On the other hand, the master client relation (called msclient) will have some
of the same attributes as the schedule relations (such as clientid and
lastname) but also new attributes (such as birthdate, zip code, and sex). In
this case, you would first define the new attributes (you don't need to
redefine existing attributes). You would then associate the new relation
msclient with the appropriate attributes (both new and previously defined).

2.2.5.8 Altering Data Base Structure

Once the data base structure has been created, it is not an easy process to
change it. That is why we stress conceptualizing the data base and defining
attributes on paper first. Nevertheless, changes will often be necessary. Of
course, new relations can be established at any time and loaded with data from
scratch. Other, more complicated restructuring procedures are described
briefly below:

e Rules: Rules cannot be changed, they can only be deleted and
rewritten. Note in Figure 2-16 that there are no rules numbers 4 and
5. They contained errors and were deleted. To delete a rule, enter
the command displayed in Figure 2-17.

R> Delete rows from RBSRULES where numrule eq n

FIGURE 2-17. DELETE RULES COMMAND

e Keys: Keys assigned to specific attributes can be deleted and new
keys can be added. These commands are displayed in Figure 2-18.

R> Build key for attribute name in relation name
R> Delete key for attribute name in relTation name

FIGURE 2-18. DELETING AND ADDING KEYS COMMANDS

e Renaming Features: Relation, attribute and owner names can be changed
by means of the commands displayed in Figure 2-19.

2-23

R> Rename attribute name to new attribute name (in relation name)
R> Rename relation relation name to new relation name
R> Rename owner owner name to new owner name

FIGURE 2-19. RENAMING COMMANDS

Redefining an Attribute: In order to redefine an attribute (for
example, to change the length of a text field), you must create a new
relation with the corrected attribute and unload the data in the old
relation to a temporary storage file while you make the change, then
reload the data to the new relation. This is a cumbersome, time
consuming procedure described in Section 2.4.2 of the R:base manual.
This procedure is a major weakness of R:base. You should make every
effort to correctly define attributes in the first place.

Deleting Attributes from a Relation: The removal of an attribute from
a relation entirely is considerably easier than altering an

attribute. The project command, as shown in Figure 2-20, enables you
to create a new relation containing all or only some of the attributes
of an old relation. The project command plays an important role in
setting up the scheduling system explained in Section 2.3.

R> Project new relation name from relation name using (all) +
(attribute name 1) (attribute name 2) ----

FIGURE 2-20. PROJECT COMMAND

Adding Attributes to a Relation: Attributes can be added to a
relation by means of the union command. This command can also be used
to combine two existing relations as will be shown in Section 2.3.
Define the new attributes and associate them with a new relation.
Then, use the union command to combine the existing relation and the
new relation as shown in Figure 2-21.

R> Union relation name 1 with relation name 2 forming
relation name 3.

FIGURE 2-21. UNION COMMAND

Once the combined relation is formed, you may want to remove the old
relations. This process is explained below. You must add data to the
new attributes. This can be done by means of the load module (see
Section 2.2.6).

Removing Relations: You may have no use for an old relation,
particularly after creating a new relation through the project or
union commands. To remove a relation, simply enter "remove relation

2-24

name". R:base will respond Press [Return] to remove the relation
relation name. Press [ESC] to stop the command. This response gives
you a second chance before taking the drastic step of killing an
entire relation.

e Reload Data Base: When you delete elements of a data base, the space
they occupied remains filled. This is particularly significant when
you replace a relation through the union or project commands. Even
after deleting the old relation, the disk space which it occupied
remains full. This can be a major problem when using floppy disks.
This problem can be resolved by reloading the entire data base
(individual relations cannot be reloaded). To reload, simply enter
"reload new data base name". If you are using floppy disks, you can
reload to either the a or b drives, depending on which has more blank
space. The second R:base diskette (which will be in drive a) has
about 150K bytes available. If you reload onto the R:base diskette,
you will Tater want to copy it back to your data disk using your
operating system's copy function. If you reload to drive b, you must
specify "b:" before the new data base name.

Prior to reloading on either drive, be certain that you have enough
storage space for both the old and new data bases. Appendix B
discusses storage space requirements. You will need sufficient space
only to accommodate the size of the new, reorganized data base which
will be smaller than the original data base. If you attempt to reload
without sufficient disk space, you will kill the data base. Be
certain you have a back-up copy.

12.2.6 Entering and Changing Data

There are four methods of loading data into an R:base relation: (1) the load
module; (2) the prompt (load) module; (3) the forms module; and (4) data from
a file outside of R:base. The latter is a specialized function beyond the
scope of this documentation. We will assume that you will be loading data
originally into R:base. Of the three methods for doing so, forms is by far
superior. Forms represents, in effect, a fifth mode to go along with prompt,
help, load and define. Section 2.2.6.1 describes how to enter data, while
Section 2.2.6.2 describes how to change data.

2.2.6.1 Entering Data

The focus of this section will be on entering data by means of the forms
mode. In order to enter data by means of the prompt mode, enter "prompt load"
and follow the directions within prompt. To enter data by the load module,
enter "load" to access the load mode. Then enter each record attribute by
attribute leaving a blank space between each value. At the end of each
record, hit “return" and begin again on the next line. The disadvantage of
this method is that you have no prompts and must keep a list of attributes at
hand for reference. In a large relation with many attributes, this can
obviously cause problems. You can also not return to a previous line for
corrections, but must leave the load module and employ one of the change
functions described in Section 2.2.6.2.

2-25

The advantage of the forms mode is that you can create a customized data entry
form for each relation, thus ensuring consistent and accurate data entry by
your staff. Figure 2-22 describes how to enter the forms definition mode.

R> forms
Begin R:base Forms Definition
Enter form name: Schedule
Enter relation name: prsched
Create or edit your form, push [ESC] when done

FIGURE 2-22. ENTERING FORMS DEFINITION

As is shown, each form must be named and associated with one (AND ONLY ONE)
relation. This is a weakness in that we desired to use the same form to enter
data in both prsched and realtime (since they had the same structure). We had
to create the same form twice.

Once inside forms definition, you will be faced with a blank screen on which
to design a data entry form. Use your computer's cursor control and screen
editing functions to design a form. Remember, this form is for internal use
only and should be designed to facilitate the ease of data entry. There are
really only two constraints on your design. You must leave enough space
between data items to accommodate the desired maximum length of each attribute
value. Secondly, data entry will occur in the order in which you associated
attributes with a relation in the define mode. You should probably set up
your form in the same order. Otherwise, the cursor will jump randomly from
one item to another instead of proceeding in sequence. This will slow down
data entry.

Figure 2-23 displays the form called "schedule", which we created to enter
data into the relation prsched. As you can see, we attempted to group related
data. Trip data and vehicle # appear on the first line, separated from the
client data which is grouped together following the blank line. The next
group of data is related to the specific trip. This is followed by trip
purpose and payment. The last line includes only edit date. Note that you
should use terms which are meaningful to the data entry personnel, and not
necessarily your defined attribute names. "S" and "E" indicate the starting
and ending points for each field's data entry (see below).

Trip Date S E Vehicle # SE

Client ID S E Last Name S E Firast Name S E
Address S E City S E

Passenger Class S E Special Needs S E

Pick-Up Tire S E Destination S E

Round Trip? E Return Time S E

Trip # S E

Trip Purpose S E Payment S E

Edit Date S E

FIGURE 2-23. SAMPLE FORM

2-26

You can check on your form structure by entering “select all from forms" while
in the R:base mode. In addition to the visual layout displayed in Figure
2-23, you will also receive a numeric layout description.

Once you have completed form design, hit [ESC] to receive the following menu
at the top of the screen:

E(dit), L(ocate attributes), Q(uit):

This is the first of a series of menus which you will receive within forms.

To chose an option, enter its first letter and press return. If you are not
satisfied with the design of your form, enter "E" and and return to form
design. Otherwise, enter "L". You will receive the following response in our

sample case:
Current location for veh# - K(eep), S(et or change), D(elete):

Veh# is the first attribute associated with the relation prsched. You will
want to locate it following "vehicle#" on the form. Enter "S" (set). You
will receive the following instruction:

Current location for veh# - Move cursor to start location and press (S)

Place the cursor a few spaces after vehicle# where you would like data entry
to start (hence the S). Enter "S" to mark this position. The cursor will
then move automatically to the last possible end position for that piece of
data as defined by you in attributes. In the case of veh#, the maximum length
is "2". You will then receive the following prompt:

Current location for veh# - Move cursor to end location and push [E]

Most likely, you will want to locate E at the maximum length you have
established for the attribute. You do have the option, however, of changing
it. After entering "E", you will be returned to the set menu to repeat the
process for each attribute in turn. When all attributes have been located,
you will be returned to the main forms menu.

If you want to relocate any attributes, enter "L" and return to the locating
function. You will be prompted with the name of each attribute in turn. If
you do not want to change its location, enter "K" (Keep) and proceed to the
next attribute. If you do want a change, enter "S" (set or change) and locate
it as before. Unfortunately, you must proceed through all attributes in this
fashion even if you only want to change one.

Once your form is completely as you want it, enter "Q" to quit forms and
return to the main R:base module. Data entry is now a simple process. Type
“enter schedule" (schedule is our form name) and the form will appear on
screen. A bar shaped cursor will appear in the assigned space for our first
attribute, veh#. Enter the data and hit [return]. The cursor will
automatically move to the next attribute in sequence. It is impossible to
enter data which exceeds the assigned length of each attribute. You may leave
attribute fields blank unless you established a rule requiring an entry (the
"exists" operator). After entering a single record (all attributes), you will
receive the following menu:

2-27

A(dd this data), R(euse data after adding) E(dit), Q(uit)

If you enter "A", the data will be written to disk and a blank form will
reappear for your use. (You may hear the computer writing to disk, although
sometimes it may store several records in memory before writing. This helps
to speed up the process.) If you enter "R", the data will also be written,
but you will receive a form containing all the data you just entered. This is
a highly desirable feature which allows you to change a small number of data
items. For example, suppose you were booking the same trip for one client
everyday of the month. Instead of retyping all the client data, you would
simply need to reenter trip date. Move the cursor around to the attribute you
want to change, leaving everything else untouched. In this case, you would
only need to change the "day" in trip date. You can use your screen editor to
move around within the bar cursor, changing individual characters rather than
the whole entry. The use of this feature can greatly reduce the time involved
in data entry.

If you realize you have made a mistake, enter "E" to edit the record before
writing it to disk. When you complete the data entry session, enter "Q" to
quit to the main R:base module.

If you had established rules for this relation during the definition phase,
you will receive an error message should you try enter data which violates a
rule. The data will not be written to disk until you correct the error.
R:base itself will also spot data errors such as incorrectly formatted dates
or times. For example, R:base knows that the 06 month has only 30 days, and
the 02 month has only 28 except for certain years in which it has 29. This
feature will spare you the embarrassment of scheduling a trip for June 31!

2.2.6.2 Changing and Deleting Data
Data can be changed in R:base by going back and editing the forms which you

created, or by using the change command. The format of these two commands is
shown in Figure 2-24.

R> Change attribute name to value (in relation name)* where ---
R> edit using form name (sorted by ---) (where ---)

*You only need to enter the relation name in commands of this
type if the attribute is associated with more than one relation,
but you want to change the value in only one relation.

FIGURE 2-24. CHANGE AND EDIT COMMANDS

The advantage of the change command is that you can pinpoint exactly which
records you want to change. The disadvantage is that you have no form or
prompts for reference. On the other hand, the edit command enables you to
make changes right on your form. The disadvantage is that you have to sort
through one record at a time.

2-28

Suppose you prescheduled one week worth of trips for a client and the client
wanted to change the pick-up time (putime) from 0830 to 0930 for each day.
This change could be accomplished by one change command as follows:

R> "change putime to 0930 in prsched where clientid eq 0140 and tripdate eq +
R> 05/01/79 or tripdate eq 05/02/79 or tripdate eq 05/03/79 ---"

As with all R:base conditional string commands, you are limited to a maximumn
of ten "where" conditions. The arithmetic operators ("eq") are the same
throughout R:base as shown previously in Figure 2-10. Again, the English is a
little stilted in that you have to repeat the attribute name ("tripdate") for
each "where" condition. The disadvantage of not having any prompts is
apparent in a lengthy entry such as our example. If you make one little
typing mistake, you will receive a syntax error message and have to enter the
entire sentence again.

Note the use of "and" and "or" in the "where" clause. You only want to change
records which contain the clientid "0140". Thus, this condition is followed
by "and". However, any one of the tripdate conditions can satisfy your
requirements (you could search long and hard for a single record which
contains a trip on more than one day). Thus, each tripdate condition is
joined by an "or". Remember, you cannot exceed ten conditions in one change
command. If you have more than ten conditions, you must initiate a second
change command.

If you use the form edit command to change this example, you would have to
change the pick-up time on ten separate records but first you will have to
find the records by using the sort and where commands as follows:

R> "edit using schedule sorted by tripdate where clientid eq 0140"

The sort command will place the records for which you are looking first in
sequence. It may not always be possible to bring the exact records you want
to change to the forefront, which means you will have to flip through records
you don't want to change to find the ones you do want to change.

Sorts will take place in ascending order (a,b,c ... or 1,2,3) unless otherwise
specified. To sort in descending order, enter =d following the sort attribute
("tripdate =d"). Be sure to leave a blank space after the attribute name so
R:base doesn't think the "=" sign is part of the name. You can sort by more
than one attribute, with the first one listed taking precedence. Sorts
temporarily occupy disk space (see Appendix B), so don't sort for the fun of
it!

Complete records can be deleted quite easily from R:base. The two delete
commands are displayed in Figure 2-25.

R> Delete duplicates from relation name
R> Delete rows from relation name where ---

FIGURE 2-25. DELETE COMMANDS

2-29

The first case is the specialized event of entering a record twice. The
"delete duplicates" command will automatically recognize and delete any
duplicates. The "delete rows" command will delete specific records defined by
you using the "where" clause.

You should now have a fairly thorough understanding of using R:base. Sections
2.3 and 2.4 will discuss more specifically the application of these functions
to paratransit management.

2.3 APPLYING R:BASE TO TRIP SCHEDULING

The trip scheduling function provides an excellent example of the power and
benefits of data base management software such as R:base 4000. This section
explains how to use R:base to perform this function. This process is
summarized ygraphically in Figure 2-26.

2.3.1 Step l: Establishing Base Relations (Files)

The first step is to establish two base relations into which you will enter
trip data. In this prototype, we have named these relations "prsched" and
“realtime". The techniques for defining these relations and entering data
into them was described in detail in Section 2.2. These relations will have
identical structures (attributes, rules and forms). The only difference
between them will be in the data entered. The "prsched" relation will contain
trips which are prescheduled some significant amount of time before they are
to take place. The "realtime" relation will contain true dial-a-ride trips as
they are called in.

Typically, demand-responsive operators will have a base of regular trips which
changes little from day-to-day or even month-to-month. Mrs. Jones always goes
to the nutrition site (or adult care center, dialysis facility, doctor, etc.)
every Monday, Wednesday, and Friday at 11:30. It was the philosophy of our
case study operator, Call-A-Ride, to schedule as many trips in this fashion as
possible. In effect, a stable route structure was created with certain
individuals and trips always assigned to the same vehicle. They would then
"fill-in" with true dial-a-ride trips.

The advantages of this technique is in the creation of a stable, dependable,
cost-effective route structure. You are essentially using the preschedule
function to maximize vehicle load factors. A second major benefit of using a
preschedule file will be to greatly reduce data entry requirements since most
of the information for each trip will need to be entered only once, rather
than 20-30 times a month. The initial data entry requirements can often be a
major disincentive to automation. The disadvantage of prescheduling is the
constraints in service availability placed on the occasional dial-a-ride
passenger. While the balance between prescheduled and dial-a-ride trips is a
lTocal operational decision, we strongly recommend the use of a preschedule
file for at ieast some trips.

2.3.2 Step 2: Load Prsched File

The next step involves loading data into the prsched file. This relation
should be thought of as a "dummy file" which will contain all possible

2-30

Realtime

Step 1:

i

Step 5:
Load Realtime
(as trips are

< -~ Define Base
Files

called in)
Check
Prschedn for
Trip
Availability
: delete
Step 6 = Step 6:
Project Rtime | Create Vschedn
for dayn union File
Step 7:

Generate Daily
Vehicle Schedule

Step 8:
Union
Vsched Files

FIGURE 2-26.

2-31

Repeat
Each
Day

USING R:BASE FOR TRIP SCHEDULING

Prsched
(dummy)

Step 2:
Load
Prsched

\

Step 3:
Project Prschedn
Files for One
Week and Edit

Optional

Y

Step 4:
Project Prschedn
Files for One
Month and Edit

prescheduled clients. All data for each client should be entered (using the
form "Schedule™) as you will want it to appear on a vehicle schedule, except
tripdate. Tripdate is, at this point, the true dummy feature in that it
doesn't matter what date you enter. Most of this data will never change.
Instead of entering it separately for each day of the month in which the
client rides, you will enter it only once.

We recommend editing the dummy prsched file on a monthly basis. A month is a
standard operating time frame. Accounting and reporting procedures are
typically performed on a monthly basis. Client schedules will also often
conform to monthly parameters, particularly if clients change travel patterns
on a seasonal basis as is true of our case study. Therefore, prior to the
beginning of each month, you should edit the dummy prsched file, deleting and
adding clients as appropriate.

2.3.3 Step 3: Projecting Date-Specific Prsched Files

To use the dummy prsched file, you will first need to project out of it a
series of date specific files. This can be done in a number of ways. If each
day of the week has a fairly unique trip pattern, you may want to project five
new files, one for each day of the week. Or, you may have a Monday/Wednes-
day/Friday and Tuesday/Thursday trip pattern which would require only two
separate files. In this example, we created a separate file for each day of
the week.

To project your new files, enter the following for each new file you wish to
create:*

R> "project prschedn from prsched using all"

This command will cause a series of new files called prschedl, prsched2, etc.,
to be created out of the dummy prsched file. The new files will contain all
the attributes of prsched ("using all"). In place of the "n" in "prschedn",
assign a unique numeric value (i.e., 1, 2, 3, etc.) for each prsched file

which you project.

You are now ready to edit each new relation. All records will need to be
assigned specific trip dates. In our sample case, prschedl represents Monday
(day 1) trips. Monday's date is 05/07/79. We would therefore enter the
following:**

R> “change tripdate to 05/07/79 in prschedl"

*When you project a new relation out of an existing one, no features of the
original file such as forms, rules or keys are projected. Only the
attributes and data are projected. Since you will not actually enter data
into these files, the absence of these features is insignificant. You do
have to be careful that in editing (see below) you don't violate any of your
data entry rules.

**You must use the change command to accomplish this. You cannot "edit
forms" because the form "schedule" is associated only with the prsched dummy
file.

2-32

This will assign the correct trip date to all records in prschedl. It is
important to specify the relation name (prschedl), otherwise tripdate will be
changed in all relations. It is not necessary to specify any "where"
conditions because you want to change all records in prschedl. Change the
other prschedn files to the appropriate dates in the same way for the first
week of the month.

You will next need to go back into each file and delete or change individual
records. Remember, each prschedn file contains all possible prsched records
housed in the dummy prsched file. But you know that many of these clients do
not ride on Mondays (or M-W-F depending on how you are doing it). You need to
delete these records from prschedl as shown below:

R> "delete rows from prschedl where clientid eq 0007 or +
clientid eq 0043 or clientid eq 0101"

Again, be certain to include the relation name ("prschedn") to avoid deleting
the records from all files. You are limited to ten (10) "where" conditions
per delete command. Also, make certain you join the conditional "where"
string with "or's". The computer will search long and hard for a record that
contains both clientid 0007 and clientid 0043. You may also want to change

pick-up times or other attributes on certain records.

Due to the Timitation of ten conditions in each string command, editing the
prschedn files can be time consuming if your preschedule is highly variable
from day-to-day. If you anticipate the need to make many changes from
day-to-day in your preschedule file, we recommend adding a date code attribute
to the preschedule file.

This attribute could work in several ways. For example, suppose most of your
trips conformed to a M-W-F (Monday, Tuesday, Wednesday) or T-Th trip pattern.
You could create a one-column attribute with data entry limited to "1" (for
M-W-F trips) or "2" (for T-Th). Then, when projecting your prschedn files,
simply enter:

R> "project prschedn from prsched using all where +
datacode eq 1"

Then, you would simply need to change the trip date as before and edit the few
trips which will inevitably change or be canceled from week to week. If your
trip patterns are really unique to each day and/or client, you might want to
create a more complex code. You could, for example, create a numeric code for
every possible travel combination for the five days (i.e., M =1, M-T = 2,
M-T-W = 3, etc.). When projecting files for each day, make sure your "where"
clause contains all possible codes for travel on that day.

Perform this function on each prschedn file. You have now completed
prescheduling for the first week of the month. Of course, as the month
proceeds, there will certainly be ad hoc changes to the preschedule. Mrs.
Jones will become i1l and cancel, etc. These changes can be entered into the
appropriate prschedn file as the month proceeds.

2-33

2.3.4 Step 4 (Optional): Project/Edit Prschedn Files for Rest of Month

The timing for the performance of this step depends on how far in advance you
want to be able to schedule real time trips. To schedule real time trips
(Step 5) you need a base of prescheduled trips around which to plug in the
dial-a-ride trips. You now have that base for one week. If that is
sufficient, you should skip this step and proceed to Step 5.

If, however, you want to schedule dial-a-ride trips further in advance, you
must project additional prschedn files out of the existing ones. For example,
suppose we want to have a prescheduling base for the entire month and we are
using an individual file for each day of the week. After you have edited
prschedl, the Monday (or day 1) file, you must project a new file out of it
for the following Monday. You will then edit this file for the correct
tripdate. You will repeat this process two more times for the remaining two
Mondays in the month. You will then repeat the process for each day of the
week until you have 20 or so active prschedn files, one for each service day
of the month. Projecting a new file requires a single command and takes
little time. The alternative is to enter each prescheduled trip every time it
is scheduled during the month, an extremely time-consuming process.

This method has operational advantages but R:base disadvantages. The further
in advance you schedule dial-a-ride trips, the more they become almost like
prescheduled trips. This will enhance the efficiency of your operation. The
R:base disadvantage is that instead of having five active prsched files, you
have twenty. That represents a substantial increase in storage requirements.

2.3.5 Step 5: Loading Real Time Trips

There are two factors involved in loading real time trips. These are checking
for vehicle availability and client eligibility. Trip requests can be checked
against the prschedn files to determine vehicle availability for a specific
date. The more you have organized your service pattern into a series of
informal routings, the easier it will be to check on vehicle availability
since you will know what vehicle to look at for a specific trip type or area.
You can access a specific vehicle schedule by means of the "select" command as
follows:

R> "Select all from prschedn sorted by putime where veh# eq Al"

This will display the prescheduled trips for vehicle Al on the date of the
prschdn file. Since you can only view 132 columns at a time, it is important
that if your schedule relations exceed 132 columns, trip schedule information
such as pick-up time, location, destination, and round-trip appear in the
first 132 columns*. Otherwise, you will have to list each attribute you want
to view instead of typing "select all". This would be uncomfortably time
consuming with a live client on the line.

*Even though your screen may only display 80 columns on a single line, the
remaining columns will be "wrapped around" into a second line immediately
below the original line.

2-34

Even before checking for service availability, you will want to determine
client eligibility. Client eligibility can be checked by means of the master
client file which will be the first relation you will create in designing your
data base. You will want to check on client eligibility each time a real time
trip request is called in.

Figure 2-27 displays a report generated from the master client relation called
“msclient". The process of report generation will be described in Section
2.4. The complete client file for the case study data base is displayed in
Appendix D.

This report contains all the information needed for a dispatcher (or trip
scheduler) to perform two functions: 1) book a specific trip into the
realtime file, and 2) check client eligibility.

Each dispatcher should have a hard-copy client file for reference at their
work station. In many cases, we think this is actually faster than looking

up the client record in the computer and displaying it on screen.
Nevertheless, if you prefer to operate in the latter fashion, a specific
client record can be called up by using the "select" command as follows:

R> "Select all from msclient where clientid eq 0032"

Client records can also be viewed even more efficiently by means of the
customizing features described in Appendix C.

You will most likely chose to select client records by client ID or last

name. We recommend client ID since it is guaranteed to be unique. Again, you
must be sure that the attributes you need to see are within the first 132
columns, or use the customizing features described in Appendix C.

As can be seen from the client file report, we have requested (when printing
the report) that it be sorted alphabetically by last name. Alternately, you
might want to sort by client ID. However, many clients don't know or remember
their ID numbers so we tend to favor an alphabetical sort by last name for
this purpose.

The information from last name through special needs (specneeds) will enable
you to book a trip in "realtime" without asking the client anything except
destination and trip purpose. The remaining items will enable the dispatcher
to check eligibility. These items include specific program ID number (in this
case medicaid and Title XX); Title XX available units; a termination date; and
a termination reason. As you can see in Figure 2-27, several clients are no
longer eligible.

Once you have checked on client eligibility and the availability of service,
you can then enter the trip into "realtime" using the form "schedule" created

for that purpose.

2-35

Last Name First Name
Rbbott Catherine
Allen Helen
Ailenson Herbert
fAries Rose
Armas Marie
Ruld brace
Auld Nellie
Avallon Kathieen
Baker John
Barrett Robert
Battis Edith
Bensten Ellen
Beraan Helen
Biden Manuel
Boggs Vickie
Boisvert Mildred
Boren Hilda
Boyc Thomas
Bradley Ruth
Buckiey karguerite
Buckner Marion
Buckner Eliza
Bumders Bianche
Busheuff Kary
Cabrera Florence
Caliahan thur
Carmichaei Lillian
Chaffee Claire
Chiles Bertha
Clark Paula
Clear Rlice
Clemens Vanessa
Cohen Dora
Considine Gladys
Craing Helen
Craig Alice
Crawford Alida
Curren Cindy
Cutler Miriam
Davis Evelyn
Denny Charles

ID
0064
8146
0154
0077
8071
0031
8149
0e7e
8e0:
8123
8135
029
0206
8150
812e
0256
8148
2:60
0041
0291
2042
802!
8143
0157
8i62
049
0027
0845

8118
0164

2019
8133
o817
8103
8142

8182

MASTER CLIENT FILE

c u

1 n

a i

] t
Address City s SpecNeed Medé# XX# s Terw Date Term Why? EditDate
9782 Bridge Yarmouth e no phone 85/31/719 woved 85/3:/79
50 Lawtner Centervill eh 628982 @5/85/79
55 Rustown Cotuit weh 251753 38 ©9/30/79 @5/14/79
15 Frinoewood Dennis e medicatio 05/83/13
12 Snow Denniis e 85/16/79
27 Tealford Dennis eh 019952 275743 22 @8/31/79 05/15/73
{88 San Marcus Falmouth eh 043984 956433 34 09/38/79 o5/11/718
{ Vickie Dennis e structure 5/17/713
65 Bass Dennis = 085/81/79
66 Kerwood Falwouth e 293173 85/11/75
481 Dates Hyannis weh 986152 85/15/79
4 Beachway Hyannis eh structure 85/12/73
23 Sheryl Yarmouth e wmedicatio 86/11/79
29 Coronation Falmouth eh @5/12/713
13 Dyer Pocasset eh 4708145 95/17/719
3 Riford Dennis [85/85/75
1@ Downing Falmouth e 85/31/79 overdue bill @5/31/79
59 Rstor Sandwich eh 85/19/7S
5 Ryan Yarmouth eh 05/23/79
188 Syracuse Falmouth e escort 05/13/79
196 Sandra Yarmouth h @5/24/73
189 Lance Hyannis eh 81722¢ 111341 12 05/83/73
128 Ocean Ave Falmouth eh 822116 05/85/79
4 Point East Bourne eh wmwedicatio 920527 @5/17/719
73 Larry Bourne weh 695168 85/21/79
688 Mercedes Yarmouth e 05/84/75
19 Fairhaven Yarmouth e 85/12/719
9 Woodwind Dennis 2 167177 497833 @2 @5/31/79 85/38/75
25 Eastwood Harwich e 5/@5/79
1578 Samuell Falwouth h 144202 85/28/73
89 Eastwood Mashpee eh 5/31/79
43 Harper Yarmouth e 176443 5@ 12/31/79 @5/12/719
38 Lucille Yarmouth e 85/87/719
15 Healy Yarmouth h 278766 85/31/79 deceased 85/31/719
79 Sidney Falmouth eh medicatio 876847 277433 43 ©1/31/88 05/88/79
584 University Harwich e 85/85/79
5 Little Pocket VYarmouth e 85/21/79
62 Parkhurst Falmouth h 909556 @5/83/75
21 Woodale Yarmouth e 415443 0 84/38/79 85/16/79
201 Bella Vista Dennis e 85/28/19
79 Patty Yarmouth e 05/88/79

FIGURE 2-27. MASTER CLIENT FILE

2-36

Should a client's status change as a result of the telephone conversation, the
dispatcher should immediately update the client record. For example, suppose
Downey's trip request exhausts her 2 remaining units of Title XX eligibility.
After booking the trip, the dispatcher would enter the following:

R> “change XXunits to 0 in msclient where clientid eq 0097"
R> "change editdate to 05/16/79 in msclient where clientid eq 0097"

Other information regarding the client such as address, classification
(someone could cross the elderly threshold), last name (change in marital
status), or special needs might also require updating. This can be
accomplished by means of the "change" command as shown above or by using the
customizing features described in Appendix C. Whenever a client file is
updated, it is important to change the edit date as well in order to provide
an audit trail.

Updating fields in the client master file demonstrates the true power of a
relational data base. For example, suppose that you have already prescheduled
a number of trips for a client who then moves (a not unlikely occurrence).

You will not want to go back into each vehicle schedule file and change the
address. Since the address field is shared by almost all relations in our
data base, they will all be updated automatically when you make the initial
change in the master client file. Only a data base with relational features
will function in this manner.

An alternative method of scheduling dial-a-ride trips would be to dispense
with the realtime file completely and load these trips directly into the
prschedn file of the appropriate date. While this method has some advantages
in simplifying the process, it has one major disadvantage. To schedule trips
into prschedn files directly, you would need to create a data entry form for
each prschedn file or load data without a customized form. If you want to
book trips a month in advance, you would have to create 20 or so forms, a
time-consuming task. Remember, each form is associated with one and only one
relation. We consider lToading without a customized form to be a serious
problem.

2.3.6 Step 6: Combining Prschedn and Realtime Relations

You are now ready to begin combining prescheduled and real time trips which
have been scheduled prior to day 1 of the month. This process should be
initiated at the cut-off point for the acceptance of real time reservations.
This is usually 24-hours in advance of the trip date.

Project out of your "realtime" file a file containing only trips for day 1.
Use the following command:

R> "Project rtime from realtime using all where tripdate eq 05/07/79"
Next, union rtime with the prschedn file for day 1 as follows:

R> "Union prschedl with rtime forming vschedl"

2-37

The "vschedn" file will be the final repository of all trip information for
the month. In the above command, you do not need to specify attributes. If
none are specified, "all" is assumed by R:base.

You now have a file ("vschedn") containing all trips (both prescheduled or
real time) for the first day of the month (or 05/07/79 in our sample data).
You will have no further use for the "rtime" file since these trips now reside
in "vschedn". Remove this relation as follows:

R> "Remove rtime"

You will also, at this point, have no further use for the prschedl file since
its trips also reside in the "vschedn" file. If you performed step 4 and
projected new file(s) out of prschedl, you can now delete it by entering
“remove prschedl". If, however, you are working one week at a time, you will
now want to prepare "prschedl" for use on the next appropriate day. In our
sample, that day would be Monday, 05/14/79, since we assume that trip patterns
for each day of the week are substantially the same from week to week. Change
the records in prschedl as follows:

R> "change tripdate to 05/14/79 in prschedl"
Change individual records as needed.
You will follow the same procedure on each subsequent day. For example, on
day 2 you will "union" prsched2 with the new rtime file for day 2 forming

vsched?.

2.3.7 Step 7: Generating Vehicle Schedules

Once you have combined all trips for a specific day in the vschedn file, you
will want to produce vehicle schedules for use by drivers and dispatchers.
Figure 2-28 displays an example of a vehicle schedule. As you can see, this
has been sorted by pick-up time and includes all information necessary for
drivers and dispatchers to perform their jobs.

The next section, 2.4, describes in detail the process of report generation.
After performing the functions described in that section, this report could be
generated with the following command:

R> "Print reportname sorted by putime where veh# eq Al+
R> and tripdate eq 05/07/79"

The key point is that you want to print a separate report for each vehicle for
each day to tear off and hand to the appropriate driver. This is accomplished
through a series of "where" conditions.

2.3.8 Step 8: Combining Daily Schedules

As the month proceeds, you will be creating a vschedn file for each day
containing all the prescheduled and real time trips for that day. At some
point in the process, you will need to combine these daily schedule files so
that you end up with a single trip file at the end of each month. This file

2-38

ver[CLE SCHEDULE
Venicie #: Al
Date: ©5/37/75

Time Last Nawe First Name Address Cizy Destination RT Tiue Class Purocse Suecial Needs
708 Ailen Helen 59 Lawtrer Centervliie Dialysis eh ¢l

700 Sandman Theresa 1597 Vinewood Hyannis Dialysis A ol siructure
900 Tower Nichoias 27 Breaker Focasset 5CH 1988 wen ade

998 Craig Helen 79 Sidney Falwoutn ECH 1382 en ade negication
999 Sherman Milton 1 Cold Ricge Bourre BCH 5gd e adc medication
90 Barrett Robert 66 Kenwood Falmouth BCH 1592 e aac

915 Lapon Peter 1581 Beacon Falmouth CH 158 en acc

915 Pryor fvis 18 Piigrim Pocasset BCH 1583 en ace

938 Luger Johin Fishfry Falmouth ECH 1588 wh &CC

932 Matnias Milton 29 N Pocasset BCH 1382 wh ade

943 Cabrera Florence 13 Larry Bourne BCH (906 wen ade

945 Seal Marie 72 Moreland Zanterviie BCAH 1308 en adc

16@¢ Biden Manuei €9 Coronation Faimoutn BCH 1198 eh ne

1002 Curren Cindy 62 Parinurst Falmoutn Dr Halzarth 1128 ac

1@ Cabrera Fiorence 13 Larry Bourne Fal Hosoifal 118 wen ne

11338 Griffin Genaviev 4 Popay Faimouth ral rosnitai Wi e he

i20@ Stanley Harriet 191 Hill 6len Falmoutn Fal hospital 1388 weh ne

FIGURE 2-28. SAMPLE VEHICLE SCHEDULE

2-39

will serve as the basis for most of the end-of-the-month reports generated in
Section 2.4. These daily files can be combined in one session at the end of
the month or periodically during the month. We recommend combining these
files on a daily basis beginning on day 2 when you will first have two files.
Again, you will need to use the union command to combine two relations to form
a third. You can only union two relations in one command in R:base as
follows:

R> "union vschedl with vsched2 forming vsched3"

After completing this union, you will have no further use for the old vschedn
files. They should be deleted using the "remove relation name" command.

If you use floppy disks, you will want to consider "reloading" the data base

each time you delete records or relations. This reduces the overall size of

the data base. However, in order to reload, you will need space on the disk

equal to the size of the original data base minus whatever you deleted. This
issue is discussed more fully in Appendix B.

This process illustrates the obvious limitations of the floppy disk approach.
Each time you project new files or union to create a third file, you
tremendously decrease available disk space. We were able to perform this
function for a one-week period in a five vehicle system. We may have had
enough room for two weeks.

2.4 REPORT GENERATION

The ability to generate reports, both the print-out of a vehicle schedule
shown in Figure 2-28 and end of the month statistical summaries, is a second
powerful feature of R:base. Figures 2-29, 2-30, and 2-31 display three
examples of "end-of-the-month" reports which can be generated by R:base.

The report displayed in Figure 2-29 is part of a monthly statistical analysis
of ridership by passenger classification. This report indicates that 48 trips
were accounted for during the week of May 7-11, 1979, by passengers classified
as "weh" (wheelchair, elderly handicapped). Figure 2-30 displays a bill
accounting for all medicaid trips during the same time period. This report
also computes the total cost of these trips. Figure 2-31 displays a report
which compiles various performance measurements. Because it uses the most
report features, we will use this report to explain the report generation
process in Section 2.4.1. In Section 2.4.2, we will discuss some other
aspects of report generation demonstrated in Figures 2-28, 2-29, and 2-30.

A11 report formats are contained in Appendix D.

2.4.1 Measuring Performance through an R:base Report

2.4.1.1 Context

Report generation should ideally take place at the end of the month. When you
have completed a monthly cycle of scheduling as described in Section 2.3, you
should generate reports for the month. If you are using floppy disks, you may
need to generate reports more frequently so that you can remove the data and
clear disk space.

2-40

RIDERSHIP BY CLIENT

ID Last Name First Name Address City Class Purpose Pay Trip Date Trip# Edit Date
212 Guitierez isabelle 14 Marigoid Yarasiouth weh he biil @5/08/79 2 24/308/79
012 Guttierez Isabelle 14 Marigold Yarmouth weh he biil @5/1e/79 2 24/30/79
@12 Gutfierez Isabelie 14 Marigold Yarmouth weh he bill @5/11/79 2 B4/38/79
8016 Locke Cathleen 17 Fringewood Yarmouth weh he bill @5/11/79 1 25/93/79
9834 Theoboic Roger 134 Forest kyannis weh he fare @5/10/79 1 25/88/19
0105 Stapleton Elizabeth 29 Olson Dennis weh nonu 85/28/79 2 24/30/79
2185 Stanleton Elizabeth 29 Gison Dennis weh o onu 95/89/73 2 84/38/79
9105 Stapleton Elizabeth 29 Clson Dennis weh o 85/11/19 2 @4/38/79
0134 Tower Nicholas 27 Breaker Pocasset weh ade ade @5/@7/79 2 04/36/79
2134 Tower Nicholas 27 Breaker Pocasset weh adc adc @5/@9/79 2 24/38/719
0134 Tower Nicholas 27 Breaker Pocasset weh acc adc @5/18/79 2 4/308/19
8139 Stanley Harriet 191 Hill Blen Falmouth weh he bill @5/87/79 2 24/30/79
8139 Staniey Harriet 191 Hill Glen Falmouth weh he bill ©5/@8/75 2 4/38/79
9133 Stanley Harriet 191 Hill Glen Falmouth weh he bill @85/@9/73 e 04/30/79
8139 Stanley Harriet 191 Hill Glen Falmouth weh he bill @5/18/79 2 04/30/79
8139 Stanley Harriet 191 Hiil Glen Falmouth weh he bill @5/11/79 2 04/30/79
8154 Allenson Herbert 59 Rustown Cotuit weh he XX 25/08/79 2 04/38/79
8154 Allenson Herbert 55 Rustown Cotuit weh e xx 85/18/79 2 £4/30/79
0162 Cabrera Fiorence 13 Larry Bourne weh hc med 85/07/79 2 04/38/79
0162 Cabrera Florence 73 Larry Bourne weh ade adc 05/87/79 2 85/85/79
8162 Cabrera Florence 73 Larry Bourne weh he med @3/88/79 2 84/38/79
0162 Cabrera Florence 73 Larry Bourne weh he med @5/09/79 2 04/38/79
0162 Cabrera Florence 73 Larry Bourne weh he wed @5/18/79 2 04/38/19
8162 Caorera Florence 13 Larry Bourne weh he med 05/11/79 e 24/38/79
165 Opie Catherine 21 Cabot Cotuit weh hc bill @5/08/79 2 0c/@3/19

TOTAL TRIPS: 48

FIGURE 2-29. RIDERSHIP REPORT ("TRIPS")

2-41

219952
21995a
V43904
27020
272982
72982
72380
Q72981
igeagee
12esee
167177
398792
398790
398792
398790
398790
S@9556
S02556
S@9556
SB9S56
5@9556
541275
543987
628982
6c898c
628982
628982
628982
695160
695160
6951602
695160
695160

Laat Name

Remy
Donadio
Donadio
Donadio
Donadio
FPeeke
Peeke
Chaffee
Sandman
Sandman
Sandman
Sandman
Sandman
Curren
Curren
Curren
Curren
Curren
Rice
Warner
Alien
Allen
Allen
ARllen
Allen
Cabrera
Cabrera
Cabrera
Cabrera
Cabrera

TOTAL TRIPS:

COST:

463. 750

MEDICAID INVOICE

Month:

First Name

Grace
Nellie
Marie
Ethel
Ethel
Ethel
Ethel
Mary
Mary
Claire
Theresa
Theresa
Theresa
Theresa
Theresa
Cindy
Cindy
Cindy
Cindy
Cindy
Aaraon
Nellie
Helen
Helen
Helen
Helen
Helen
Florence
Florence
Florernce
Florence
Florerice

FIGURE 2-30.

May

Trip Date
S/ a8/73
@s/1@a/79
sS/a8/79
2s/711/779
QsS/a9/773
AS/a7/72
DS/10/72
S5/11/79
QAS/a7/79
RS/08/79
2S/28/72
BS/28/79
RS/22/79
Rs5/@7/79
as5/11/79
RS5/1@/79
QS/11/79
sS/ia/79
asS/a7/72
asS/28/73
as/a9/779
RS/25/73
RS/a3/79
RS/ 23/79
as/11/72
RS/87/79
RS/71a/73
as/a8/73
RS/a3/79
sS/1/73
S/ 08/73
RS/11/79
asS/a7/73

2-42

CCH

Fal Hospital

CCH

Forndville
Pondville
Dondville
Fondville
Dr Rerry
Dr Berry

Dy Malomey

Dialysis
Dialysis
Dialysis
Dialysis
Dialysis

Hosp
Hosp
Hoso
Hosp

Dr
Dr
Dy
Dr
Dr
Bre
Dy

Halgarth
Halgarth
Halgarth
Halgarth
Halgarth

wster Marnor

Copp

Dialysis
Dialvysis
Dialysis
Dialvsis
Dialysis

Fal
Fal
Fal
Fal
Fal

Hospital
Hospital
Hosoital
Hospital
Hospital

INVOICE REPORT ("MEDBILL")

R R R i T Tt R v B N T 3 T Y R e e e I e YR YO ¥ I R VI E Y A O 3 O

Fay
med
med
med
med
med
mec!
med
med
med
mect
med
mecl
med
med
med
med
med
med
med
med
med
med
med
mec
med
med
med
med
med
med
med
mec
med

Veh# Trip Date Hours Miles Fuel
AL B5/@7/79 1.8 245.0 18.9
At @5/28/79 2.6 125.0 15.8
A1 85/99/79 1.6 136.0@ 9,20
Al #5179 8.8 149 3.08
Al B5/14/78 0.8 139.9 9.0
e 35/e7/79 8,58 295.0 20,9
2 Qc/es/73 8.58 2ee.9 26.9
R @3/09/73 8.75 272.@ 1.8
R2 @5/10/78 8.25 200.0 28.2
R /118 8,58 380.0 17.5
R3 @S/e7/79 .25 138.8 el.3
A3 25/e8/79 7.85 186,90 17,9
A3 85/@9/79 8.5 227.0 2.7
A3 85/18/79 7.25 152.0 18.5
A3 85/11/78 B.75 139.2 14,5
B4 @3/87/79 6.80 98.82 1.1
B4 @5/@8/79 6.8 97.% 18.1
B4 D5/09/79 8.88 111.0 7.08
B4 @5/18/79 6.88 74,00 8.00
B4 ¥/U1/79 6.58 184.0 8.00
ce 985/07/79 8.20 380.0 11.4
e @&s/08/79 7.0 137.0 2.4
G2 @85/9/79 8.75 301.0 7.5
2 es/1e/79 8.7 128.0 1.8
ce @85/t1/79 7.25 190.0 7.48
Total: 204, 4325, 08
fAverage MPG:

Miles/Trip: 9.018
Trips/Mile: 8.111
Trips/Hour: 2,356

FIGURE 2-31.

VEHICLE STATISTICS

Cost
8.500
11.56
8. %08
8. 500
7. 508
16. 8@
16. 38
8.888
15.75
14,15
17.00
16,08
17.50
15,00
12.35
8.258
8.250
6. 000
7.000
7.008
9.258
10.10
14,25
9. 00
6. 008

275,590

MPE

22. 84
7.911

1511

15.67
15, 44
14,95
9.6635
24,73
9. 91
17.14
6.479
6. 857
10.46
8.216
3.586
9.783
9. 684
15.86
9.250
13.08
26.32
11.85
17.28
11.64
2e.27

338.0

13.5

1.5

1.25

2.9

Repair

radiator

windshield wipe
inspection

replace tire

VEHICLE STATISTICS REPORT ("VEHSTATS")

2-43

Cost

43.00

23.75
2. 600

160.9

178.75

2.4.1.2 Defining a Report

The report definition process is very similar to the forms definition process,
with some added capabilities. Like forms definition, report definition is a
unique R:base mode, the sixth which has been defined. You enter the reports
module in the same way you enter the forms module. These commands are shown
in Figure 2-32.

R> Reports
Begin R:base reports definition
Enter report name: vehstats
Enter relation name: vehops
E(dit report), L(ocate), M(ark), D(efine), S(et), H(elp), Q(uit)

FIGURE 2-32. ENTERING THE REPORT MODULE

You are now faced with the main reports module menu. Figure 2-33 displays the
characteristics of the relation vehops (vehicle operations), for which the
report "vehstats" (vehicle statistics) will be generated. Figure 2-34
outlines the report generation process in the order in which we recommend
proceeding.

Name Attribute Type Length Key

Vehicle # Veh# text 2
Operations Date Opsdate date

Driver # driver# text 2
End Mile endmile integer

Start Mile stmile integer
Operation Miles opsmile real

End Hour endhour integer

Start Hour sthour integer
Operation Hours opshour real

Fuel Quantity fuelqty real

Fuel Cost fuelcost real

MPG mpg real

0il Quantity oilqty integer

0il Cost oilcost real

Repair repair text 15
Repair Cost repcost real

Edit Date editdate date

FIGURE 2-33. VEHOPS RELATION

This relation contains a feature not previously discussed. That feature is
the "assign" command. Several of the attributes in vehops represent the
result of performing an arithmetic function on two other attributes. For
example, opsmile (operation miles) equals endmile minus (-) st(art) mile.
Opshour works in the same way. These values can be entered directly by

2-44

Edit or Create
Report
(E)

Y

Define
Variables

(D)

Y

Locate Attributes
and Variables

(L)

Mark
Report

(M)

\

Set
Page Size

(S)

Quit to
R:base Module

(Q)

FIGURE 2-34. REPORT GENERATION PROCESS

2-45

personnel or R:base can compute them. In the case of opshour, we chose direct
entry since we made all time attributes "real" instead of "time". It was
therefore necessary to convert time values (0830 hours) to real numbers (8.5
hours).

In the case of opsmile, however, we instructed R:base to do the computing.
This can be done as follows:

R> "Assign opsmile to endmile - stmile in vehops"

Thus, opsmile will equal end mile minus start mile. Incidentally,
anticipating this function, we made a rule in vehops that end mile must be
greater than start mile. Note that you must leave a space on either side of
the arithmetic operator or R:base will read it as part of the attribute and
tell you that no such attribute exists. We instructed R:base to compute "mpg"
in a similar fashion:

R> "Assign mpg to opsmile/fuelqty"”

The assign command can add (+), subtract (-), multiply (x), divide (/), and
calculate percentages (%). You can not only compare one attribute (endmile)
to another (stmile) as above, but compare attributes to a specific value or
two values to each other. For example, we could have assigned opsmile to
"endmile - 100" or to “250 - 100". If you change any attribute
characteristics, make certain you also change any "assign” command to reflect
these changes.

2.4.1.3 Editing/Creating a Report

You will design a report exactly as you defined a form. Keep in mind,
however, that a report is intended for external uses and not internal data
entry. This difference may impact your design choices. Figure 2-35 displays
the design layout for the report "vehstats". "S" and "E" define the data
entry areas as on forms. The letters in the left-most column delineate
headings, detail and footing (see below). You can check your report design
layout by entering "select all from reporter". You must select "all". This
design layout is organized in the same way as the forms design layout,
providing not only a visual picture of the layout (as shown on Figure 2-35),
but a numeric layout description as well.

2-46

B VEHICLE STATISTICS

H

H Veh# Trip Date Hours Miles Fuel Cost L4 0il Cost Repair Cost
H —_— e — e cme— —— —
D &€ s E S8 E S E S E § E S8 E E 8§ E 8§ E § E
F

F

F

F

F Total: § E S E 5 E 8§ E § E
F

F Average MPG: § E

F

F Miles/Trip: § E

F

F Trips/Mile: S E

F

F Trips/Hour: S E

FIGURE 2-35. LAYOUT FOR REPORT "VEHSTATS"

Because a report is for external use, you will probably want to pay a little
more attention to the design process than was the case in designing forms. We
recommend laying out your design manually first as shown in Figure 2-36 for
the report "vehstats". We have provided blank layout forms for your use in
Appendix E. You want to be sure to leave enough room for the maximum length
of your data fields and not exceed a total width of 132 columns. If at any
time you lose track of the attributes in your report, press "F3" for a
display. Hit [ESC] to return to report generation.

2.4.1.4 Defining Variables

In addition to locating attributes as was done in forms, reports also enables
you to define new variables and calculate their values. Variables defined in
the "vehstats" report shown in Figures 2-31 and 2-36 include sums for hours,
miles, fuel cost, mpg, and repair costs; and calculation of average mpg,
miles/trip, trips/mile, and trips/hour. You are limited to ten variables on
any one report, which is why we did not sum fuel consumption or oil cost.

Summing across in R:base is very cumbersome because you can only sum 2
attributes/values at a time. Thus, if we wanted to sum all the cost factors
in Figure 2-31 across one record, we would have to sum the first two, obtain a
total, add it to another, etc. Each step would use up one of our ten
permitted variables. Given these limitations, it is much more efficient to
transfer this data to a spreadsheet (see Section 2.5).

2-47

8v-¢

ATTRIBUTE |DATA|BEGIN|END BEGIN| END
LINE |OR VARIALBE|LINE|NAME |NAME|NAME |DATA |DATA|DATA
FIELD NAME NUMBER | NAME NOS.|COL. |COL.|WIDTH{COL. |COL.|WIDTH|REPORT COMPUTATION
Vehicle Statistics 3 -— - 46 | 63 | 18
Veh # 5 veh# 7 4 7 4 5 6 2
Tripdate 5 opsdate 7 11 | 19 9 11 18 8
Hours 5 opshour 7 23 | 27 5 23 27 5
Miles 5 opsmile 7 32 | 36 5 31 36 6
Fuel 5 fuelqty 7 41 | 44 4 41 45 5
Cost 5 fuelcost 7 50 | 53 4 50 55 6
MPG 5 mpg 7 60 | 62 3 60 64 4
011l 5 oilqgty 7 69 | 71 3 70 70 1
Cost 5 oilcost 7 77 | 80 4 17 81 5
Repair 5 repair 7 87 | 92 6 87 |101 | 15
Cost 5 repcost 7 107 |110 4 1107 |111 5
TOTAL: 33 -- -- 5110 6
sumhours 33 23 27 5 |sum of opshour
summiles 33 3l 36 6 |sum of opsmile
sumflcst 33 50 56 7 |sum of fuel cost
summpg 33 60 64 5 |[sum of mpg
sumrep 33 76 81 6 |[sum of repcost
Average MPG: 35 avempg 35 5 |16 12 31 35 5 |summpg/count
Miles/Trip: 37 miletrip 37 5 (16 12 31 36 6 |summiles/480
Trips/Mile: 39 tripmile 39 8 |15 11 31 36 6 |480/summiles
Trips/Hour: 41 triphour 41 5 |15 11 23 27 5 1480/sumhours

FIGURE 2-36.

MANUALLY LAYING OUT THE REPORT DESIGN

To access the define function, enter "D". You will be presented with the
following choices: D(efine),R(edefine),Q(uit). Enter "D" again to define new
variables for the first time. You will receive the following response:
Expression. The "expression" will consist of the variable name equal to a
combination of attributes and/or values in an arithmetic expression. Setting
variable expressions is done exactly the same way as "assigning" computational
values to attributes. Variable names, 1like all R:base names, cannot exceed 8
characters. Be certain to leave blank spaces on either side of the arithmetic
operator.

We defined the variables in the Vehicle Statistics report as shown in Figure
3-37. A listing of variables can be obtained at anytime while within the
report mode by pressing the "F3" key. Press [ESC] to return to reports
definition.

summpg = sum of mpg
sumflcst = sum of fuel cost
summiles = sum of opsmile
sumhours = sum of opshour
sumrep = sum of repcost
count = count +1

avempg = summpg / count
miletrip = summiles / 480
tripmile = 480 / summiles
triphour = 480 / sumhours

FIGURE 2-37. VARIABLES FOR "VEHSTATS" REPORT

The format of the sum variables is self-evident. The "count" variable is
necessary to calculate average mpg. Average mpg equals the sum of all mpgs
divided by the number of occurrences. In the vehops relation (unlike the
schedule relations which contained the attribute "trip#"), we did not provide
any mechanism for counting occurrences. Therefore, the count function must be
established during variable definition.

The final three performance measurements in Figure 2-37 demonstrate the
interaction of an attribute and a value. "480" is the total number of trips
taken during the specific time period. We generated this number by means of
the ridership report ("trips") shown in Figure 2-29. If we don't specify any
“where" conditions, we will receive a report of all trips taken and a
summation of the total number. We have then taken that number, "480" and
entered it into the definition of the "vehstats" report. This value would, of
course, need to be changed each month. Instructions for revising variable
expressions appear in Section 2.4.2.3 below.

2-49

2.4.1.5 Locating Attributes and Variables

After defining your variables (if any), you will proceed to locate both
attributes and variables on the report form. This is accomplished exactly as
it was in forms. In addition to being prompted with the name of each
attribute, you will also be prompted with the name of each variable which you
defined.

We caution you on the location of real values (numbers with decimals). It is
tricky to obtain the exact number of decimal places which you want to see on
the report. It requires you to have a good idea of how many places will be
occupied by the whole number. For example, you will naturally want a monetary
value to have two decimal places. If you anticipate that the whole number
will occupy two places, you should assign five columns from the start to the
end of the value. This will work fine if you are right and the number is
99.74 (5 places including the decimal point). If, however, the number
actually exceeds one hundred, it will read 101.7.

2.4.1.6 Marking the Report Layout

Each line of a report can be designated as either "heading" "detail" or
“footing". Upon entering the "M(ark)" function, you will find the cursor in
the left-most column. Use your cursor controls to move up and down along this
column to mark lines.

Heading and footing lines contain information which you will want to appear on
every page of a multi-page report. Not surprisingly, the heading is at the
top and the footing is at the bottom. In the vehicle statistics report, the
title, headings, and underlining should be designated with an "H" for

heading. In addition, if you want a blank line between the title and
headings, you must also designate that line with an "H". The footing lines
begin at "total" and go to the bottom. If you want a blank line between the
data and the footing, you should designate the line above "total" with an "F"
as well as all the other footing lines.

Detail lines contain only data. In a report of this type, you need only
designate one line as (D)etail. If you designated a second line as detail,
your report would have a blank line between each line of detail. In some
cases, you might want to do that, depending on the amount of data you
anticipate. Do not try to create a blank line between the detail and the
footing by adding an extra "D" line. Rather, you should add an extra "F"
line.

Once you have marked a line, you can't immediately change it. We found this

quite annoying. You must leave the mark function and then come back to it,
whereupon all your marks will have been erased and you can start again.

2-50

2.4.1.7 Page Size

The default report page length is 58 lines. To alter it, enter "S" and then
the number of lines you desire in response to the prompt:

Current number of lines is 58: New Number:
2.4.1.8 Printing a Report

The command to print a report is “print reportname". You may attach the usual
sort and where clauses. In our example, fﬁe command will read:

R> "Print vehstats sorted by veh# opsdate"
2.4.1.9 Deleting a Report
Reports may be deleted using the following command:
R> "Delete rows from reporter where rname = reportname"

2.4.2 Other Uses for Reports

In addition to the use of reports for performance measurement and vehicle
schedules, a variety of other functions can also be generated as described
below.

2.4.,2.1 Ridership Analysis

As shown in the report called "trips" (Figure 2-29), ridership can be analyzed
in any way chosen by the user. In this example, we have requested to see
trips taken by clients classified as wheelchair elderly handicapped (weh).

The command to generate this report is as follows:

R> "Print trips sorted by clientid tripdate where paxclass eq weh"

If we had attached no "where" condition, all trips taken during the specified
time period would have been included.

This report illustrates the use of an attribute which can function as an
internal counter. The attribute "trip#" assigns a numeric value to each
record (1 = one-way trip; 2 = round trip). By simply defining a summation
variable in reports ("sumtrips = sum of trip#"), R:base will calculate the
total number of all trips, or trips disaggregated however we chose to do so.

2.4.2.2 Invoicing
Figure 2-30 demonstrates the use of reports to prepare an invoice for a human
service program. This report, called "medbill", provides the information

requested by the agency in order to reimburse the transit operation. It is
sorted by medicaid# as this is most relevant to the recipient agency.* Total

*Tn order to produce this report, med# was added to the vsched file. We
should have included it in the base files from the start.

2-51

trips are again calculated using the "trip#" attribute. Cost is determined by
assigning a value to the cost of a trip and defining it as part of a variable
in reports ("cost = sumtrips x 8.75"). The report can be generated by the
following command:

R> "Print medbill sorted by med# tripdate where paycode eq med"

A1l the data shown on the report is generated by that command. We have
entered the month "May" directly during the report design process. This can
be easily edited at billing time each month.

Figures 2-38 and 2-39 demonstrate other examples of invoice reports. Figure
2-38 is an invoice sent to a city for trips taken by residents of the city and
not covered by a human service program. Note the use of the footing to
explain the various codes used on the invoice to its recipients. Note also
that the name of the city, "Dennis", is entered by the report function as
follows:

R> "Print citybill sorted by clientid tripdate where city eq +
R> Dennis and paycode eq bill"

By changing the name of the city in the "where" clause, you can generate a
distinct bill, properly labelled, for each political jurisdiction in your
service area.

Figure 2-39 demonstrates an example of a client bill. Note again the
explanatory material in the footing. A separate bill can be generated for
each client by using "clientid" in the where condition as follows:

R> "Print bill sorted by tripdate where clientid eq 0001 and +
R> paycode eq bill"

Note also in all three examples the use of the attribute "paycode" in the
where clause to ensure that only trips billable to a particular institution or
person are selected.

2.4.2.3 Disaggregating Performance Statistics

In the example shown in Figure 2-31 and used as the basis for Section 2.4.1,
we chose to generate aggregate performance measurements for all vehicles.
While this data is important, you will also probably want to view this
information disaggregated by vehicle. This would enable you to isolate such
events as poor load factors, high repair costs, poor fuel mileage, etc.

A weakness of R:base is the lack of a "subtotal" function which would enable
you to accomplish this disaggregation on a single report. The only way to
accomplish this function is to use the "where" clause to create a series of
reports by vehicle. A sample is shown in Figure 2-40, created by the
following command:

R> "Print vehstats sorted by opsdate where veh# eq Al"

2-52

CITY RSSESSMENT
City: Dennis

Destination

Tripé Class Purpose Pay

Month: May

ID Last Name First Name Address Tripdate
2001 EHaker John 63 Bass 05/87/79
8201 Baker John 65 Bass 25/@8/79
0001 Baker John 63 Bass 25/@9/79
20@1 Baker John £5 Bass 25/10/79
200! Baker John b5 Bass e5/11/7%
Me8 Forris Ethel £ Swesiwater 25/97/79
2056 Boisvert ¥ildrecd 3 Rlford 25/11/79
TOTAL TRIPS: 14

TOTAL COST: 122,50

Purpose Code: ac = health care; nu
i = field trips; ot

Passenger Code:
weh = wheeichair elderiy handicapped.

FIGURE 2-38.

CLIENT BILL
Month: May

Pondvilie Hosp
Pondviile Hosp
Pondville Hosp
Pondvilie Hosp
Pondvilie Hosp
D, Fitch

Dr Brinkerhoff

CITY INVOICE ("CITYBILL")

2 2 hc bill
2 e he bill
2 e he bill
2 e he bill
e e he biil
2 e he bill
2] he pill

nutrition site; mow = meals on wheels; se = special education ;
group trips: ade = aduif day care; dl = diaiysis.

= elderly; h = handicapoed; en = elderly handicapped; wh = wheelchair handicapoed;

Name: Baker Jizhr ID: @@zl

Address: 65 Bass Crty: Dermmis

Trip Date Destination Purpose Trip# Paycode
05/@7/79 Pondville Hosp he e bill
25/08/79 Pondville Hosp he 2 bill
05/09/79 Pondville Hosp he 2 bill
05/10/79 Pondville Hosp he e bill
05/11/79 Pondville Hosp he 2 bill
TOTAL TRIPS: 10

TOTAL COST: 10. 2@

Purpose Code: hc=health carej nu=site nutritionj mow=meals on wheels;
se=special education; ft=field trips; gt=group trips;

Trip# equals the number of trips taken on a given day.

bus both ways, - If you were accompanied by an

escort,

adc=adult day carej

trip# will equal
the escort’s trips will also be counted.

FIGURE 2-39.

lle"-

dl=dialysis

If you rode the

CLIENT BILL ("BILL)"

2-53

VEHICLE STATISTICS

Veh# Trip Date Hours Miles Fuel Cost MPG 0il Cost Repair Cost

s e - B e— v o -

AL @5/87/79 18.6 249.9 1.9 8.568 2c.84 2 2.16 radiator 45.00
At @5/08/79 10.8 125.0 15.8 11.56 7.911
At @5/09/79 1.0 136.0 9.0 8.000 15.11
Al 85/18/79 0.0 141.0 9.00 8. 200 15.67
At es/11/79 1e.¢ 139.0 9.00 7.502 13, 44

Total: 2.8 790.000 43.5688 76.98 45. 008
Average MPG: 15.4

Miles/Trip: 4,113

Trips/Mile: 0. 243

Trips/Hour: 3.848

FIGURE 2-40. DISAGGREGATED VEHICLE STATISTICS

Before printing reports like this, however, you may need to modify some of the
variables. As you recall, we generated the performance measurements in Figure

2-31 by using the total number of trips "480", as an absolute value in
defining the report variables. This value must be changed to reflect trips
associated with each vehicle.

First, use the "trips" report to generate this data as follows:
R> "Print trips where veh# eq Al"

Next, enter the D(efine) mode of reports and enter "R". The screen will list
all variables and prompt you as follows: variable name: Enter the previously
defined name of the variables which you want to change. You will receive the
following prompt: S(et), D(lete), Q(uit). Type "S" and enter the new
variable expression. In this example, we would substitute the value "192"
(the number of trips accounted for by vehicle # Al) for the value "480" (the
total number of trips).

2.4.2.4 Using Select to Generate Qutput

As discussed earlier (see Section 2.3.5), you can output data very simply by
means of the select command. The disadvantage of select is that you have no
way to design a clear and aesthetically pleasing report. However, in the case
of a very small data base which changes rarely, the select function may be
perfectly adequate. An example is demonstrated in Figure 2-41. This report
is simply a listing of all vehicles owned by the agency. Given the amount and
stability of the data, it hardly seems worth the effort to define a report.
You will have to live with no titles or footings, and headings which are your
attribute names. This "report" would be generated as follows:

R> "Select all from vmaster sorted by veh#"

2-54

veh# vehid lick yrafg make wodel engsz title lien purdate radio access wchair

Al -8 Bus®7 1976 Dodge B30@ 318CID Elder Serv EOTC 04/20/76 y y 3
A2 -8 Busc®8 1976 Dodge B30@ 318CID -Elder Serv EOTC 84/20/76 y y 3
A3 -2 Bus289 1976 Dodge B30@ 318CID Elder Serv EOTC 84/20/76 y y 3
B4 -2 B37209 -9 Dodge B30@ 368CID Merchants none 9/01/78 y n]
] 2 B78563 1974 Volks wagon UMK Elder Serv none 10/01/74 y n [}

FIGURE 2-41. VEHICLE MASTER REPORT
2.5 OTHER APPLICATIONS SOFTWARE

This section describes the uses which can be made of three other types of
applications software in paratransit management. These are spreadsheet,
graphics, and word processing programs. As mentioned at the outset, the
intent of this section is primarily to illustrate applications, and not to
provide the type of detailed instructions provided in Sections 2.1 - 2.4.
These programs are, for the most part, easy to use. The most detail is
provided on the steps involved in using spreadsheets. This instruction is not
specific to any one spreadsheet product since they all function in basically
the same way. The major task in learning to use them is becoming familiar
with their commands.

2.5.1 Spreadsheets

A spreadsheet is simply an electronic method of data manipulation. The
spreadsheet program which we have used for this application is called "Perfect
Calc". It is identical in function to such programs as "Visi Calc" and
"Multiplan". Some spreadsheet programs, such as "Lotus 1-2-3", combine
graphics and word processing capabilities in one integrated package.

A spreadsheet functions as a two-dimensional data array as shown in Figure
2-42 (see next page). Each array consists of vertical columns and horizontal
rows. Perfect Calc has a single spreadsheet capacity of 50 columns and 250
rows of data.

The great advantage of a spreadsheet is its ability to instantly recalculate
data. By constructing a series of simple arithmetic formulas, the sSpreadsheet
will recalculate all designated values the moment you change one piece of

data.

2-55

a b (& d e f g h i etc.

FIGURE 2-42. SPREADSHEET DESIGN

Below, we describe three spreadsheet applications: financial planning, budget
management, and performance measurement. The most detailed explanation of the
steps involved in using a spreadsheet is provided in Section 2.5.1.2, using
spreadsheets for budget management.

2.5.1.1 Using Spreadsheets for Financial Planning

Figure 2-43 contains a spreadsheet which we have established to plan CAR's
budget for the upcoming fiscal year. All the data is contained on a single
spreadsheet and is completely interactive. This spreadsheet will enable the
manager to conduct an endless series of "what if" scenarios in developing a
budget. For example, suppose the manager does a first run-through and
discovers a negative funding imbalance of $10,000. The manager might in
effect say to him or herself "what if I could set an extra $10,000 from Title
III, or what if I cut $10,000 from driver salaries"? By simply inputting
these values, all totals will be recalculated on the spreadsheet.

There are four components to this spreadsheet model:

e I. Direct Expenses - Direct expenses are allocated among programs by
function. In allocating these costs, the manager uses his or her
operational knowledge to assign costs. For example, trips to
nutrition sites are often much longer than trips to health care
facilities. Therefore, a greater share of drivers costs are allocated

2-56

CAR PROGRAM BUDGETS

I DIRECT EXPENSES

Category Nutri Health Therapy ADC Dialysis Sp Ed Med/Bos Med/Pd TOTAL
I. Direct Costs
A. Personnel
Dispatcher 2465 5164 3n 913 216 886 1135 484 11560
Drivers 3739 19372 4820 12609 2313 10602 4280 6420 97455
Sub-Drivers 3602 4312 1338 2743 787 2027 38 329 15568
Fringe 6123 3883 886 209% 3% 1768 1330 1261 17579
TOTAL R 49229 32651 7341 18361 3628 15283 7047 8694 142154
B. Other Direct
Equipment 1440 8@ 20 520 120 480 168 280 4000
Bas/Dil 9000 5000 1250 3250 750 3000 1000 1750 25002
Maintenance 3600 2080 560 1300 300 1200 499 700 10002
Insurance 10187 9659 1415 3679 849 33% 1132 1981 28298
Licenses 117 65 i6 42 ie 39 i 23 325
Communicat ions 2460 2688 452 617 432 693 532 470 8560
Space 1808 1820 259 650 i 600 208 350 5000
Utilities 909 500 185 323 75 380 100 175 2500
]
TOTAL B 29594 17812 4206 10383 2684 9708 3957 5729 83683
TOTAL DIRECT (A&B) 78733 90963 11547 28744 6312 24911 10684 14423 225837

FIGURE 2-43. FINANCIAL PLANNING

2-57

Description

A1 Dodge Maxi (76) (lift)
A1 Dodge Maxi (76) (ramp)
A3 Dodge Maxi (76) (1ift)
A4 Dodge Maxi (76) (ramp)
Bi Dodge Maxi (79) (1ift)
B2 Volks Bus (74) (7)

B3 Dodge Maxi (77) (12)
B4 Dodge Maxi (77)

BS Dodge Maxi (77) (12)
C1 Dodge Maxi (76) (12)
C2 Volks Bus (74) (7)

C3 Dodge Maxi (77) (lift)
SPARE

SPARE

Total Vehicle Hours

% of Total Vehicle Hrs

Category

II. Indirect
A. Personnel
General Manager
Financial Manager
Program Rssistant
Clerk/Typist
Training

TOTAL A

B, Other
Travel
Printing/Supplies
Advertising
Legal/Rudit
Postage

TOTAL B

TOTAL INDIRECT (A&B)

vutei

3.5

i

Nutri

4718

267

16730

T14

1071

2607

21357

Health Therapy ADC Dialysis

3.0
3.0
3.e
3.6

18.6

20, 44

Health

218

1887
154

FIGURE 2-43.

Ila

VEHICLE HOUR CHART

5.9
3.0
5.0 2.0
2.0 2.4
3.9
5.5
2.8
5.0 12.0 2.4 18.5
S.49 13.19 2.64 11,54
IIb INDIRECT EXPENSES
Therapy ADC Dialysis
1060 2544 59 2226
726 1742 348 1524
550 1321 264 1156
57 1217 3 1065
41 9 e) 87
2885 6923 1385 6058
5 132 26 115
110 264 33 23
27 66 13 58
165 39 g 346
44 185 21 %R
401 193 R
3286 7886 15717 6908
FINANCIAL

2-58

4.9

4.0

440

nings 8§ uwHifE

K

B

Sp Ed Med/Bos Mad/Pd

6.0

6.8

6.59

Sp Ed Med/Bos Med/Pd

1R

198

481

PLANNING (Cont'd)

9.0

109.0

TOTARL

19289
13218
18816

9231

3%

ITT INCOME

Funding Source Nutri Health Therapy ADC Dialysis Sp Ed Med/Bos Med/Pd TOTAL
Title III 20000 20000
Title VII 72990 72900
Title XIX 10000 10000 10000 6000 2000 46008
Title XX 168009 1500 1500 1000 22000
Nursing Homes 12000 12000
Schools 27000 27080
CETA 6573 5490 7630 19695
Donations 5000 2000 2000 1000 6000 5000 21000
Rehabilitation 2000 2000
CCRTA 18685 20357 39042
Other 4000 4080

0
TOTAL INCOME 183160 68357 13500 33500 8000 29000 13499 16630 285637
% of Total Income 36.12 23.93 473 11.73 2.80 10.15 4.72 5.82
TOTAL EXPENSES(I&IIb) 100090 62786 14833 36630 7889 31811 13233 18366 285637
% of Total Expenses 35.84 21.98 5.19 2.8 2.7 11.14 4,63 6.43
BRLANCE -3070 -5571 1333 3130 -111 2811 -257 1736)

FIGURE 2-43. FINANCIAL PLANNING (Conc'd)

2-59

to nutrition trips. On the other hand, since most nutritional trips
are prescheduled, they are less of a burden on dispatchers than are
health care trips. Both the horizontal and vertical totals are
automatically calculated by the spreadsheet as a result of simple
summation formulas created by the user.

e II (A& B) Vehicle Hour Chart and Indirect Expenses - These two parts
of the spreadsheet are interactive with each other. In Ila, the
manager allocates each vehicle's service hours to specific programs.
Through the use of a formula, the spreadsheet will calculate the
percentage of total vehicle hours accounted for by each program.

These percentages are then used to calculate indirect expenses on part
[Ib. The manager first determines the total cost of each function.
Since indirect expenses do not vary by program like direct expenses
(the General Manager does not necessarily spend more time on one
program than another), it does not make sense to individually assign
these costs. Instead, each program is assigned the percentage of
indirect costs represented by their percentage of total vehicle

hours. Thus, nutrition accounts for 35.71% of the vehicle hours, it
will account for the same percentage of each indirect expense item.
These values will be automatically calculated by applying in a formula
the appropriate percentage to the total cost of each item.

e III. Income - The final component of this spreadsheet performs the
same type of calculation on the income side of the ledger. Then,
income can be contrasted with expenses. The spreadsheet will combine
the values previously determined for total indirect and direct
expenses, and then compare this new value to the total income line.
The bottom line is the balance. As one would hope in establishing a
budget, the value in the lower right-hand corner is "0", meaning that
total anticipated expenses equal total income. In reaching this
figure, however, you can see along the bottom line that each program
is slightly out of balance to some extent. This is inevitable,
although the manager might well be concerned about the $5571 deficit
in health care financing.

Once established, this spreadsheet can be used year after year by simply
changing the values as needed. Through simple commands, new lines or columns
can be added or deleted. It is also easy to alter the width of columns.

2.5.1.2 Using Spreadsheets for Budget Management

The spreadsheet developed in Section 2.5.1.1 was a relatively static document,
developed once a year and then set aside until the following year. The
spreadsheet shown in Figure 2-44 is an active document to be employed during
the course of a fiscal year to track the agency's progress toward the
previously established budgetary goals. A more detailed explanation of how to
construct and use this spreadsheet is provided below.

The construction of the spreadsheet in Figure 2-44 is a relatively straight-
forward task. The first step, as in the development of a data base, is to
conceptualize the substance and design of the spreadsheet. In this case, our

2-60

19-¢

Category

Elder Services(III & VID)
Title XIX

Cape Cod Collab (Schools)
Nursing Homes
Foundat ions (Donate)
Contributions (Other)
CCRTA

CETA

Rehabilitation

Total

Expenses
Salaries
Fringe Benefits
Postage
Printing & Office
Insurance
Vehicle Sas & 0il
Vehicle Maintenance
Travel
Uilities
Rent (space)
Telephone
Other (Rudit, Adv, Lisc)

TOTAL
BALANCE

CAR INCOME EXPENSE REPORT RPRIL
Health Care Therapy Adult Day Care Dialysis Nutrition/MON Special Ed Nursing Home Other
2640, 65 7522, 55
1000.80 1000.00 2000. 90 500. 90
3874.48
5.0
350. 00
S0.0
3640. 65 1000, 08 2008. 9@ 500. 00 7522, 55 3874.40 1007.99 5.0
2332. 64 878.93 1597.97 691.72 4141, 10 1591. 40 64.29
411.18 106.17 1%.18 .18 993.65 2.8
26.36 0.48 1.08 e.27 o.08 [N
8.% 0.64 1.51 9.38 22.65 23.83
29.80 0.0 0.0 8.9 0.9 333,94
.89 138.52 1342 142.97 2.8 3.3
0.00 n.et 425.68 338,51 7.9 337.5
4.50 0.0 e.0 .00 0.9 0.8
12.68 4.23 18. 04 249 30.25 9.64
72.80 24,48 58.00 14.40 174,80 .68
270. 46 47,93 282. 40 1.9 544, 42 358,67
0.5 0.0 0.0 0.0 8.0 0.0
3436. 26 1578.31 2626.28 1254, 97 6613.88 3854, 39 64.29 0.9
204,39 -578.31 —626.28 -T54.97 998.67 82e.01 942,71 50,00

FIGURE 2-44,

BUDGET MANAGEMENT

Mothly Tosal Prior Total New Total Budgeted Amount Balance
18163.29 18600, 00 28%3.20 114900.00 85936. 89
4500.00 28234, 42 24734, 42 46000.00 21265,58
B840 16827.28 19981.68 2700000 7098, 2

57.00 21751 2234,51 12000. 00 9765.49
950.00 2400.00 3350. 00 21000.00 17650. 00
5.0 628,00 678.09 4004.09 332,09
.o 7110827 7114827 9200 -32106.27
.0 0.0 Y 19695. 00 19635. 88
'Y .0) 200090 200,00
19594.60 131415.48 15101008 28563708 134626.%2
1129715 74001. 09 8098.15 7707589 98976. 85
1799.18 7167.89 896.18 1757309 8612.82
.19 400,00 28,19 599, 00 7.8
57.53 1378.00 1435.53 6000. 00 4564, 47
630, 74 15694, 00 16324, 74 28298, 00 11973.26
738.23 14053.00 1479123 25000. 99 16288, 77
27,78 13662.00 15859, 78 10000. 00 -5859, 78
A5 426,09 43.50 100000 569,50
69.25 1588, 80 1657.25 2500. 99 82,75
400.08 2393.00 279.08 5000, 08 282,00
1425.83 538400 689983 8560, 88 1750, 17
0.0 14,70 14,70 382500 310,30
18628.33 136985.78 155614.08 285637.00 130822.9
9%6.22 -5578.22 4604, 00 0.0 -4604, 00

objective is to track income and expenses by transportation category. We want
to accomplish this tracking on a monthly and year-to-date (YTD) basis on the
same spreadsheet.

Most spreadsheet programs offer a variety of design options which can be
implemented by simple commands. For example, in Perfect Calc, the user may 1)
change the width of columns; 2) justify (left or right) or center entries; and
3) determine the display format (i.e., number of decimal places, etc.). In
this example, the "category" column has been widened; the column headings have
been centered; and a standard two decimal display format selected. Ideally,
the user should make this type of design selection at the beginning of the
process. Changes can, however, be made at any time either globally
(throughout the spreadsheet) or column/line specific.

The user enters data into the spreadsheet simply by typing the appropriate
letters/numerals. If the first digit is a letter, the program will
automatically assume that a "label" is being entered. If the first digit is a
numeral, the program will assume “"number". The user should follow specific
spreadsheet conventions for combining letters and numerals in a single data
entry.

In Perfect Calc, active data entry appears in the lower left-hand corner of
the screen. This entry can be inserted into the spreadsheet by hitting
“return" or any of the cursor control keys. The entry will immediately
reappear on the spreadsheet at the position where the cursor had been located.

There are several common spreadsheet features of which users should be aware.
As spreadsheets grow in size, the user will need to "move around" the
spreadsheet quickly and efficiently. This can be accomplished either by
moving the entire spreadsheet so that a different portion is visible on the
screen (or "window"), or by moving the cursor to different locations on the
spreadsheet. Spreadsheets can be moved up and down, or side to side. The
cursor can usually be moved to the beginning or end (or top or bottom) of
lines and columns, or to any specific location on the spreadsheet. These
movements can be accomplished by means of single cemmands. Perfect Calc has
the added feature of being able to divide the screen in half either vertically
or horizontally. In Figure 2-44 this would permit the user to view the
“category" and "new total" columns simultaneously (for example).

Efficient editing is a major selling point of spreadsheets. Columns and lines
can be added or deleted, causing the rest of the spreadsheet to adjust in
response. Data entry items can be edited so that a single digit can be
corrected without retyping the whole item. Data items can also be easily
deleted.

Spreadsheets perform their basic computational function by means of simple
arithmetic formulas inserted by users. To create a formula, it is necessary
to enter the formula "mode". In Perfect Calc, this is accomplished by
entering "=". Formulas are created by means of column and line coordinates.
For example, in Figure 2-44, the amounts in the "Monthly Total" column would
be obtained by summing the values in the previous columns. In Perfect Calc,
columns are referenced by letters and lines by numerals. Thus, the first

Monthly Total amount ($10163.20) appears in column "j" on line "7" (including

2-62

blank lines, underlining, and titles). Thus, by positioning the cursor at
this location and entering the formula mode, the user will receive the
following prompt: j7=. The user would then enter the following formula:
"sum (b7:i7)". This formula, in Perfect Calc, instructs the program to add
all the values between "b7" and "i7".

Of course, you will want to replicate this formula across each line of data.
Again, this can be easily accomplished by means of a series of commands. The

formula does not need to be reentered line-by-line by the user.

This spreadsheet is intended to assist the manager in tracking funds on an
accrual basis. An important feature of managing a government funded program
is the wide disparity in time between when income and expenses are "accrued"
and when they are translated into “cash-in" and "cash-out". This makes it
difficult for the manager to track progress toward predefined budgetary goals.

The spreadsheet in this example enables the manager to track expenditures both
by transportation program (the vertical columns) and by budget line item (the
horizontal rows). One can observe several significant trends on this
spreadsheet. Most significantly, expenses are outstripping income by $4604 as
of April. (The CAR fiscal year ran from October 1 to September 30, so this
represents one month more than half a year.) Contributions from Elder
Services ($28,963) are far behind the projected pace ($114,900). This gap has
been filled in by the CCRTA which has already provided almost double ($71,148)
its anticipated contribution ($39,042). No funding at all has been received
from CETA and Rehabilitation.

On the expense side, salaries are running slightly behind the budgeted pace
($86,098 to $177,075 for the whole year). On the other hand, the energy
crisis of 1979 has impacted fuel costs (already $14,791 out of $25,000
budgeted) and the age of CAR's fleet has finally caught up with it as
maintenance costs ($15,859) have already exceeded the budgeted amount
($10,000). A manager, observing these latter two trends, might have taken the
step of reducing labor costs to stay within the total budget. In this way,
managers are able to know at all times where they stand in relation to overall
budgetary goals and constraints.

The spreadsheet in Figure 2-45 performs a similar function by looking at a
different set of categories. This spreadsheet tracks actual cash flow, as
opposed to accrued expenses. Like the spreadsheet in Figure 2-44, it can be
created once at the beginning of the fiscal year with new data added each
month. Assets and liabilities will be totalled each month and compared in the
“cash balance" line. The cash balance for all of the months will be summed
and reflected in the bottom line "net balance for year".

2.5.1.3 Using Spreadsheets for Performance Measurement

The spreadsheet shown in Figure 2-46 uses some of the same statistics
developed in the R:base report called "vehstats".

2-63

CAR

CASH BALANCE

Novesber December January February March

April

Category October

Current Assets

Checking Account 3330. 84
Savings Account 5187.08
Petty Cash 30,90
Fixed Assets

Office Equipment 1610. 02
Vehicle Equipment 479.17
Other Assets

Security Deposits 1688. 28
Accounts Receivable 14767, 00
TOTAL ASSETS: 27892. 89

Current Liabilities/Funds

Payroll Taxes Wh 1629. 12
Adv from Elder Serv 60600, 80
Uncollectable Medicaid 2573.08
Capital Equip Fund 10000, 80
Accounts Payable

Loan Payable 5968, 80

Advance from CCRTA

TOTAL LIABILITIES/FUNDS 26162.98

CASH BALANCE 929. 11

NET BALANCE FOR YERR 2821.39

FIGURE 2-45.

2763.68
4253. B4
30.00

1610. 20
479.17

1688. 00
9588. 80

20412.69

1763.10
£002. 00
2973.08
10000. 00

3960. 80

2629. 98

‘5684- 29

381.89
4261.84
30.00

1178.84
354. 17

1369. 00
31807.00

39382. 74

1598. 34
£000. 00
1671.49
10000, 00
6067. 64
12206. %

37544, 39

1ml ﬁ

B8467.94
306. 14
30. 00

1178. 84
354.17

1369. 09
26261.80

39967. 29

1687.57
6000. 20
1671.49
100600, 60

12296. %2

31485. 98

B8481.11

2-64

6586. 74
397.18
Ml w

1178. 84
354,17

1369. 00
28361.00

38276, 93

1668. 92
6002, 00
1671. 49
10000. 00
2995. 80
12206. %2

34334, 33

3742, 60

2872.09
508.53
ml m

1178.84
35. 17

1369. 0@
49830, 00

39162.63

2429.71
6000, 20
1671.49
10000, 00
14240, 09
17206. 92
13900. 00

65444, 12

-6285. 49

BUDGET MANAGEMENT - I1I

May June

12000.00 10000. 20

July

1eea. 20

VEHICLE STATISTICS MAY
Vehicle # Hours Miles Fuel 0il F&0 Cost MPG Rep Cost

)| 50. 00 79.08 53.78 2.00 43.72 14.71 45,90
R 42.50 1273.00 89.60 2.0 73.58 14.21

A3 39.50 762.00 93.50 75.85 8.15 25. 75
B4 32.50 484.00 43.20 35.50 11.20 100, @2
2 39.75 1016.88 059.79 2.08 48.60 17.8

Total 204,25 4325.00 339.70 6.00 279,25 1273 170.75
FIGURE 2-46. PERFORMANCE MEASUREMENT

As should be apparent by now, our spreadsheet program is far more nimble and
versatile at performing arithmetic calculations than is R:base. Other data
base managers such as Knowledgeman are far stronger in this area than is
R:base, but they tend to be much harder to use. The user must determine which
characteristic is more important for their own uses, and how best to perform
each function. No data base manager is as good at calculations as spreadsheet
programs unless, as in the case of Knowledgeman, they integrate a spreadsheet
right into the program.

The extent of integration between a data base manager and a spreadsheet
program depends on the characteristics of each program. If integration
requires little manipulation, it may be worthwhile to attempt to transfer data
directly between the two programs. That was not the case with R:base and
Perfect Calc, however, so we took this data off of R:base reports and entered
it manually into Perfect Calc. On the other hand, our word processing
program, Perfect Writer, works quite well with R:base and we provide in
Section 2.5.3 an example of moving data directly between these two programs.

2.5.2 Graphic Applications

The next two figures demonstrate the tremendous potential of graphics
software. In Figure 2-47, we have used our graphics program to produce a pie
chart of some data generated by the R:base report "trips". As you recall (see
Section 2.4.2.1), this report could generate ridership statistics
disaggregated in any fashion we chose. In this case, we have analyzed the
data by passenger classification. By entering this data into Fast Graphs, we
were able to obtain a graphic portrayal of CAR's ridership characteristics for
the case study week of May 7-11, 1979.

The three dimensional bar graph in Figure 2-48 is based on the Perfect Calc
financial planning spreadsheet displayed in Figure 2-43. This file assigned
percentages of total expenses, total income, and vehicle hours to each
program. As we can see in this graph, there are no gross anomalies present in
the allocation of costs, expenses and vehicle hours.

Again, the degree of integration between graphics and other applications

software varies greatly. In most cases, Fast Graphs can read a Perfect Calc
file. However, despite being sold as an integrated package, we discovered

2-65

PASSENGERS BY CLASS - MAY 1979
437

TR 18y,

B ety

Elderly Handicapped

Handicapped

Wheelchair Handic.
Wheelch, Elderly Hdc

FIGURE 2-47. CAR'S RIDERSHIP CHARACTERISTICS

2-66

=3 2 =i =T

CAR PROGRAM BUDGETS

A
/
///7
% { / i /
35 / /
T) 7 /
20 //
13 / /
1@
]
0 -
Nutri Heal th Therapy ADC Dialysis Other

CATEGORIES

B/ of Total Uehicle Hrs 04 of Total Income B% of Total Expenses

FIGURE 2-48.

COMPARING CAR'S INCOME/EXPENSE/VEHICLE HOURS BY PROGRAM

2-67

that Fast Graphs was not compatible with our printer (which is compatible with
Perfect Calc), and could not read Perfect Calc values which had been generated
by formula as opposed to direct data entry. These problems have been
corrected in an updated version.

Lotus 1-2-3 provides a completely integrated spreadsheet and graphics
capability, but a far weaker word processing program than Perfect Writer (see
the following section).

2.5.3 Integrating R:base with a Word Processing Program

Since R:base has the capability of writing ASCII data files (using the
"output" command), most word processing programs can automatically (i.e.,
without any modification) read those files, and manipulate them using its own
set of command. Thus, data stored in the R:base master client file, such as
names, addresses and other client information, can be transferred to a word
processing program without retyping the data.

This characteristic enables us to integrate both programs in order to produce
personalized documents that are basically created using "Perfect Writer", but
that also use sets of data (or a few pieces of data) created by, and stored
in, R:base.

Unfortunately, the integration is not always 100% perfect. Some manipulation
(i.e. "reformatting") of the file created by R:base is necessary to adapt it
to the needs of the word processing program. This is the case in the example
presented below, using the program "Perfect Writer".

Suppose that our purpose is to write some personalized letters to all those
CAR patrons whose Title XX units are about to expire, and we want to inform
them of this situation. We need the following pieces of information from
R:base:

first and last names
address

city and zip code

Title XX units remaining

A1l these items are stored in R:base in the relation called "msclient" under
the attribute names "frstname", "lastname", "address", "city", "zip" and
“"xxunits" respectively. Use the "output" and "select" commands (inside
R:base) as shown in Figure 2-49 to write an ASCII file called "b:text.mss"
that contains all those fields with the information for which you are
looking. This file is immediately accessible by Perfect Writer, typing the
command (in MS-DOS): "A> "pw b:text.mss".

R> output b:text.mss with terminal
R> select frstname lastname address city zip xxunits +

R> from msclient where xxunits le 02

FIGURE 2-49. FILE OUTPUT COMMAND

2-68

File output is shown in Figure 2-50:

frstname lastname address city zip xxunits
Claire 0’ Rourke Windmill Villag Dennis 22638 22
Ethel Downey 109 Upper Ct Dennis 22638 ",

FIGURE 2-50. SAMPLE OUTPUT FILE

Once inside Perfect Writer (and inside the b:text.mss file), we manipulate the
file, using Perfect Writer commands, until the appearance of it is as shown in
Figure 2-51. In doing so, we have created two separate files called
b:testl.mss and b:test2.mss. Each file contains the data for one client. The
manipulation consists of using the perfect writer editing functions to group
the words and sentences, and adding the following Perfect Writer commands:

e String
e Flushleft
o Value

A brief description of these Perfect Writer commands is provided at the end
of this Section.

@STRING (address="Claire 0'Rourke @STRING (address="Ethel Downey

Windmill Village 129 Upper Ct.

Dennis, MA 82638") Dennis, MA B32638")

@STRING (xx="082") ESTRING (xx="@2")

@STRING (name="Ms. 0O’ Rourke") BSTRING (name="Ms. Downey")

@FLUSHLEFT{®VALUE (address) } @FLUSHLEFT{@®VALUE (address) >
b:teStl.mss b:test2.mss

FIGURE 2-51. REARRANGING THE OUTPUT FILE WITH PERFECT WRITER

Once these two files have been created, we also use Perfect Writer to create
the body of our letter. The letter is contained in the file "b:mail.mss".
This letter is shown in its preformatted Perfect Writer format in Figure
2-52. MWith this letter edited, our task is completed. The result, a
personalized letter, is shown in Figure 2-53. The name and address of the
client, as well as the number of Title XX units remaining were taken directly
out of the R:base relation "msclient".

Following is a brief description of the Perfect Writer commands which appear
in Figure 2-52.

e Include (filename.mss) instructs Perfect Writer to insert the file
named between the parentheses into the text of the file being
printed. Don't forget the disk drive extension "b:". Following the
insertion of the file defined in this manner, Perfect Writer continues
printing the letter file "b:mail.mss". Our one-time R:base file is
now inserted into this Perfect Writer file.

2-69

BRPAGEFOOTING ()
BFINCLUDE (b:testi. mss)

EBFLUSHRIGHT{April 1, 1984}

EFLUSHLEFT{Dear GVALUE (name) 1}

This letter is to inform you that you have only EBVALUE (xx) Title
XX units left for your use in utilizing our services.

Sirce we can not provide you with more transportation services
once the units are totally consumed, we urge you to contact your
Human Services Representative to authorize more Title XX units
for your use.

We thank you for your understanding, and hope we will hear from
you soon so that we may continue to meet youwr tramsportation rneeds.

EFLUSHLEFT (Sincerely yours,)

Perfect Writer Version 1.20 (Wrap) mail: B:MAIL.MSS -Q%—
(c) 1983, Perfect Saftware Inc. ——- Type ESC ? for help

FIGURE 2-52. SAMPLE LETTER WITH PERFECT WRITER COMMANDS

2-70

April 1, 1984

Dear Ms. -

This letter is to inform you that you have only 02 Title XX units
left for your use in utilizing our services.

Since we can not provide you with more transportation services
once the units are totally consumed, we urge you to contact your
Human -Services Representative to authorize more Title XX unite for
your use.

We thank you for your understanding, and hope we will hear from

you soon so that we may continue to meet your tranasportation
needs.

Sincerely yours,

General Manager
CAR

FIGURE 2-53. FINAL SAMPLE LETTER

2-71

String/Value (variable name - string text). The string command (as

shown in Figure 2-51) assigns a definition (string text) to a variable
name. The value command inserts that definition into the text. Thus,
values have been assigned in Figure 2-51 to the variable names "xx"
and "name". The value for "name" is inserted into the salutation of
the letter. The value for "xx" (the number of remaining Title XX
units for the addressee) is inserted directly into the appropriate
location in the body of the text.

e Pagefooting suppresses the printing of page numbers.

Flushleft aligns the text enclosed by parentheses to the left-hand
margin.

2-72

3.0 USER OPTIONS

The purpose of this chapter is to provide the user with a variety of options
for the use of data base management software in paratransit management.
Section 3.1 below ("Variations on Chapter 2.0 Applications") describes some
options which the user might want to consider in designing their data base
management system. This section covers only those applications discussed in
Chapter 2.0 ("Automating the CAR data base"). Of necessity, instructions for
implementing these options are brief and completely non-R:base specific. The
user who has absorbed the information in Chapter 2.0 should be able, with the
assistance of a specific software manual, to apply these options using any
similar piece of software.

Section 3.2 below ("Other Data Base Applications") is intended to provide the
user with a brief overview of some other potential applications which were not
discussed in Chapter 2.0

3.1 VARIATIONS ON CHAPTER 2.0 APPLICATIONS

In this section, we discuss options based on the general operating procedures

of the user agency; the attributes (fields) available for inclusion in
relations (files); and desired reporting requirements.

3.1.1 General Operating Procedures

Four issues present themselves regarding the general operating procedures of
the user agency: 1) the type of transportation service being offered; 2)
service level requirements; 3) the location of the scheduling/dispatching
function; and 4) the degree of interaction with a live customer on the
telephone. Each is discussed below.

3.1.1.1 Service Type

While Chapter 2.0 was written specifically for the standard demand-responsive
model of many origins and many destinations, it could be easily adapted to any
client-specific paratransit mode. For example, checkpoint and route deviation
have become increasingly popular hybrid models between the standard forms of
demand-responsive and fixed-route service. In checkpoint service, some
passengers are picked-up at designated gathering spots (i.e., bus stops),
while others are picked-up in a demand-responsive mode. Similarly, route
deviation services offer to deviate off of a fixed-route to pick-up passengers
in response to phone-in demand.

In both cases, the pre-scheduled files used in Chapter 2.0 could be replaced
with route-specific schedule files. These files would provide a dispatcher
with a written "picture" of the standard route to be operated by each
vehicle. Information might include scheduled stops, roads traversed, major
activity centers, etc. When a demand-responsive call is received, the
operator, instead of checking the prescheduled file for vehicle availability
as in Chapter 2.0, would check the vehicle schedule files and book the trip
accordingly. A report could then be generated in the same way as in Chapter
2.0, showing each driver their particular routing for the day.

3-1

3.1.1.2 Service Level Requirements

A great deal of emphasis is placed in Chapter 2.0 on the advantages of
prescheduling standing trips to take maximum advantage of automated scheduling
systems. There are two reasons for this recommendation. First, by
prescheduling the bulk of trips, a stable route structure can be developed
which is familiar to customers, drivers, and dispatchers alike. This tends to
assure the most reliable service for the most regular customers, a worthy goal
of any business. Second, by requiring a minimum of 24-hour in-advance
reservations for non-prescheduled trips, the user will have sufficient time to
solidify routings for the next day and provide each driver with a hard copy
schedule print-out.

Before undertaking the use of data base management software for scheduling
purposes, the user must confront the issue of service level requirements.
There are two predominant trends in the paratransit field today. One theory
advocates ever increasing advanced scheduling to better match the service
predictability and reliability of the fixed-route. This tendency accounts for
the increasing popularity of the checkpoint and route deviation models
discussed above. The other theory advocates the elimination of all
prescheduling requirements to better emulate the spontaneous nature of riding
a fixed-route. This latter approach requires a far greater investment in the
scheduling process in order to maintain desirable vehicle load factors and
schedule predictability.

The choice of one model over the other depends on which element of the
fixed-route service the user values most highly - predictability/reliability,
or the lack of advanced planning needed by a customer to use it. We think the
choice may depend on the agency's client base. The prescheduling model best
serves the regular rider. The occasional rider must fit into a schedule built
around the needs of the regular users. This model is most appropriate for the
system which is still primarily client/agency specific (closer to a Section
16(b)(2) system than a true Section 18 general public system). Most of this
system's riders will be regular users and should receive priority service.

The real time model places the occasional user on an equal footing with the
regular riders. This is clearly more appropriate as the system moves toward a

more truly "open to the general public" status.

Both models require the user to make several choices prior to automating the
scheduling function. First, you must select a cut-off time for real time
trip reservations. Given the preference of our case study operator for the
prescheduling model, we imposed the standard 24-hour advance reservation
requirement in the system we established in Chapter 2.0. This is really the
bare minimum amount of time needed to print-out driver schedules at the end of
each day. In a system with more than a few vehicles, this could prove quite
tense. If the emphasis is on prescheduling, we recommend considering a
48-hour cut-off. However, if the emphasis is on obtaining true "real time"
operation, you may want to eliminate advance reservation requirements
entirely.

3-2

Second, you need to consider how to group your prescheduled trips. In Chapter
2.0, we recommend two options; each day of the week or a MWF/TTh pattern. Of
course, any such pattern is feasible given the demands of your system. You
might also want to consider incorporating an "every other week" element if
that fits your service pattern. The simpler the pattern (such as MWF/TTh),
the easier it is to perform the prescheduling function (since you need to
create fewer unique files). However, if your trip pattern does not conform to
such a simple model, you won't gain anything by trying to over-simplify it.

The third factor to consider is how far in advance to ﬁreschedule.
Operationally, the further in advance, the better (although we don't recommend

more than a month because there are apt to be too many changes). In Chapter
2.0, we discussed prescheduling at one week and one month intervals. Since
you will need to maintain a preschedule file for each active date, the further
in advance you preschedule, the greater will be the demand on your disk
storage space. It is hard to imagine prescheduling for a month without hard
disk capability.

The real time scheduling model also presents the user with several cptions.
Given the reduced amount of routing regularity inherent in this model, more
pressure will be placed on the operator to "hunt-out" the best vehicle
schedule among several likely options. Since you will want to accomplish this
search interactively with the customer on the telephone, it must be
accomplished rapidly. We strongly recommend that the schedule search be
customized so that the operator can simply respond to a series of menu-driven
prompts. See Appendix C for a description of customizing R:base.

The user must also consider the necessity of a high-quality communication
system so that dispatchers can inform drivers of real time schedule changes.

3.1.1.3 Location of Scheduling/Dispatching Functions

The user needs to evaluate where to locate the scheduling and dispatching
functions. Chapter 2.0 was written for the small system with a single user
station. The user may require more than one station at a single site to
handle demand. If the agency provides transportation over a large service
area, it may want to decentralize scheduling and dispatching. Similarly, if
service is provided by a consortium of providers, these functions may be
institutionally decentralized.

This issue will lead the user to a consideration of the potential and
desirability of a multi-user system. Multi-user applications with
microcomputers (as opposed to minicomputers and mainframes), is still in its
infancy. Nevertheless, if your demand is sufficient to warrant providing
several clerks/dispatchers with simultaneous access to the data base, it is an
issue which must be addressed.

Multi-user capability requires a hard disk. A number of data base software
manufacturers have adapted their products for use in limited multi-user
environments. These include R:base 6000 and DB Master Advanced Edition. (DB
Master is a File Manager, not a relational data base.) So far, most
microcomputer multi-user applications include "read only" capability (hence,
the term "limited"). This means that a variety of users can access the system

3-3

and "read" data simultaneously, but they cannot "write" (i.e., update a file,
schedule a trip, etc.) simultaneously. A system of this type has been
installed at the Portland (Maine) Rural Transportation Program using DB Master
Advanced Edition.

Given the size of most rural paratransit operations, this Timited capability
may be all that is necessary or desirable. Unless the system has an unusually
high volume of telephone calls, there will usually not be a problem in having
a clerk read the client's file to check for eligibility while waiting for
another user to relinquish control of the "write" facility. In fact, this
capability of "shutting out" other users who want to write (the program will
not allow it) may actually be a positive feature in a small system where
multi-user writing might prove more confusing than helpful.

This is an area witnessing rapid technological advance so the user should be
willing to investigate the latest developments. It is important to remember,
however, that what becomes technologically possible may not necessarily be
operationally desirable. The user must determine what degree of interaction
is required for effective operation among the system's sites. For example,
leasing telephone lines for continuous communications can prove expensive. In
a small system, sporadic (dial up) communications may prove adequate if the
remote sites operate relatively independently with little need to coordinate
data on a reqular basis.

3.1.1.4 Customer Interaction

A final operational decision facing the user is which functions should be
accomplished interactively with a customer on the telephone. The options
include 1) checking eligibility, 2) booking a trip, and 3) updating the master
client file.

As described in Chapter 2.0, we recommend performing all three functions
interactively. The advantage of this approach is that it eliminates
time-consuming "middle steps" such as recording data temporarily either
manually or on the computer for later integration into the main files; and
calling back customers to inform them of the outcome of their trip request
(either the details of the booking or the unfortunate fact that a trip could
not be booked due to scheduling conflicts or eligibility problems).

In addition, the interactive approach (as the name implies), allows the
operator to interact with the customer to resolve scheduling conflicts,
eligibility questions, out-of-date client data and the like. The problem in
achieving successful interactive functioning is the need for processing

speed. To put it quite bluntly, customers have better things to do with their
time than wait on the telephone while an operator hunts-out information on a
computer.

Of the three potentially interactive functions, the least important is
updating the master client file. Clearly, this can be performed later at
minimum cost to operating efficiency. We feel that not to perform the other
functions interactively is not to take advantage of automating the scheduling
function. For that reason, the customizing example in Appendix C focuses on
these three functions. By customizing these applications, you will be able to

3-4

perform them far more quickly than using the standard R:base commands as
described in Chapter 2.0. For example, in Chapter 2.0 we recommend printing-
out a hard copy of the client master file for reference in checking client
eligibility. This can be an inefficient technique in a system with a large
number of clients. Customizing this application will enable you to perform
this function fast enough to effectively automate it.

3.1.2. File Attributes

Defined below are a number of alternative and additional attribute (field)
definitions which the user should consider in developing relations (files).
Included are choosing a key field, and selecting and defining client, trip and
vehicle specific fields.

3.1.2.1 Choice of Key Fields

As discussed in Chapter 2.0, the selection of key fields in R:base is not
crucial because data can be accessed by all fields. The only trade-off is
between processing speed and disk storage space. However, many other data
base managers require the. designation of primary and secondary key fields for
accessing data. Therefore, this is an important consideration for users in
beginning to automate their systems.

Clearly, you will want to access data by means of a reference to the client as
a unique entity. In Chapter 2.0, we assigned each client an ID number. For
all but the smallest systems, we recommend the use of ID numbers as the prime
means of accessing individual client data. Unlike a last name, you can
guarantee that it will be unique.

If you do use a client ID, we also recommend that you continue to use last
name as at least a secondary key. Many clients will not be able to provide an
ID number on the telephone. In such cases, you will have to revert to access
by last name.

Other fields which you might want to consider as keys include city/town/
county; human service program numbers; and trip purpose, pay code or passenger
classification. The selection of key fields is dependent on how you perceive
your data needs particularly in the area of cost allocation/billing and
performance evaluation. For example, if you bill human service programs and
potitical jurisdictions by ridership levels, you may want to rapidly access
data by town of origin or the client's human service program number.
Similarly, if knowing the number of elderly riders is important for evaluating
the success of your program, you may want to access data by passenger
classification.

3.1.2.2 Client Specific Fields

There are a number of options which the user might want to consider in
designing the master client file. For example, to economize on disk storage
space you might include only the client's first initial instead of full first
name. We do think that providing operators with client first names permits a
more personalized approach. Also, with a large client base, you may transport
several members of one family. Using initials can cause considerable
confusion.

3-5

For client address, we collected only street address since Cape Cod,
Massachusetts, is composed primarily of single family homes. If your service
area has a large number of apartment complexes, we recommend including a field
for apartment number. For political jurisdiction, we included "city" because
this is the basic unit of government on Cape Cod. You may prefer to
substitute or add county and/or neighborhood. If you provide service across
state lines, be certain to include a state field. Similarly, if you provide
service to more than one telephone area code, you will need a larger telephone
field than we included.

We included a "birthdate" rather than "age" field because it requires less
frequent update. An age field requires annual update so that you can track
when clients cross the elderly threshold. A birthdate field simply needs to
be checked each year.

Depending on your data collection requirements, you may want to add an
"unduplicated trip" field to the master client file. Many programs are
required to track the number of unique riders they carry each month. In other
words, while a system may make 1,000 trips per month, only 100 people may
account for those trips. As set-up in Chapter 2.0, the only way to count
unduplicated passenger trips would be to print-out all trips taken in the
month and sort by client ID. You would then have to go through the 1list
manually and count unduplicated riders. In a larger system, this could be
tedious.

An alternative is to create a one-column field in the master client file.

This field would have only a single possible data entry, either a "y" (yes),
“1", or "x". Each month, the appropriate value will be entered into each
client's record the first time they book a trip. For each subsequent call,
the operator can check to see whether an entry has been made in this field
(has the client already used the system this month?). At the end of the
month, you would simply need to select those records which contained the value
to obtain a Tist of unduplicated riders. The list could be added manually or
you could add a "counter" function similar to that included in some of the
reports in Section 2.4. This would add the trips automatically.

As a final step, you will need to delete all the entries to start fresh

during the next scheduling period (month or whatever). If you book trips over
more than one month simultaneously, you will need to use more than one coding
symbol (i.e., 1 = January, 2 = February).

3.1.2.3 Trip Specific Fields

There are a number of options available to the user in designing the vehicle
schedule files (prsched, realtime, etc.). As discussed in Section 2.3.3, you
may want to include a "trip day" code in the preschedule dummy file to assist
in projecting out date-specific preschedule files. The codes should relate to
whichever grouping method you have selected (daily, MWF, etc.).

Other simple code fields can be added to meet specific data requirements. For
example, suppose you wanted to measure unmet demand among realtime trip
requests (people whose travel needs cannot be served). This could be
accomplished through the addition of a one-column field to the realtime file.

3-6

When a caller requests a trip, the operator would automatically code all the
appropriate data fields and then add either a "y" (yes) or "n" (no) to the new
field to indicate whether the trip was actually booked or not. At the end of
the month, you would select those records where the value equals "y" to
measure actual ridership, and those with a value of "“n" to measure unmet
demand. Since the unmet demand category will contain all the relevant trip
data as if the trip had actually been booked, you can disaggregate unmet
demand by whatever criteria interest you (i.e., town of origin, destination,

age, customer).

Another data category which you might want to evaluate is "no-shows" (people
who book a trip and then don't show up for it). This might be of interest for
both realtime and prescheduled riders. Again, a one-column field could be
created to house a single value indicating "no-show". This value would, of
course, have to be entered after-the-fact of the trip when the drivers hand in
daily or weekly logs.

An issue which we considered briefly in Chapter 2.0 is the coding of trips for
which a client has multiple program eligibility. To handle this problem, we
created the "paycode" field. Thus, payment was determined not by whether the
client had a medicaid or Title XX number (or both), but by the specific value
in "paycode". This problem could also be handled by a priority scheme. For
example, local funding rules might hold that medicaid always take priority
over Title XX. Thus, a client eligible under both would be funded by
Medicaid. If the priority is not absolute but related to trip purpose, the
trip purpose field could be used in conjunction with this priority method to
determine funding. Either of these methods would eliminate the need for a
separate "paycode" field.

A variation on this problem is a trip which has several segments funded by
different programs. This would be difficult to handle in the system we
established in Chapter 2.0 since we combined both legs of a round-trip into a
single record. As discussed in Chapter 2.0, this method has the advantages of
reducing data entry time and disk storage requirements. The disadvantage is
its lack of responsiveness to non-symmetrical trip patterns. For example, a
three corner trip where a rider starts at home and goes to the doctor, the
hairdresser, and then home. Medicaid might be willing to pay for only the
first leg of the trip.

If you have frequent trips of this type, you should consider three options.
You may want to drop the single round-trip booking method and simply book each
leg of a trip separately. While this can be more time consuming and increase
your storage space requirements, it may be more responsiveness to your needs.

Another option is to add a third-leg to the single round-trip record. In
other words, instead of setting up records with round-trip fields as we did,
create fields which correspond to "trip leg 1", "trip leg 2", and "trip leg
3". This method will eliminate the need to reenter the client specific data
each time. For each leg, include the trip-specific fields which are required
for your operation. In particular, if you are apt to run into multiple
funding source complications, include a separate "paycode" field for each trip

leg.

3-7

A third option is to include at least one "return destination field". Because
we included only a single destination field, we pretty much limited ourselves
to the standard "home-destination-home" trip model. Including additional
destination fields would enable you to code the A to B to C type of trip.

This would not, however, resolve the problem of assigning each trip leg to a
different funding source.

Another field which you might want to consider adding, no matter how you
structure your trip schedule file, is drop-off time. Riders may need to know
approximate drop-off times and so including this field can be helpful in
providing more responsive customer service.

3.1.2.4 Vehicle Specific Fields

The automation of vehicle operations data ("vehops" relation) was not a major
feature of Chapter 2.0. Additional data fields which you might want to
consider include the following:

e Purchase order number

e Repair order number

e Next scheduled maintenance mileage
® Next scheduled maintenance level

The goal in the expansion of this file is to develop it into a truly active
preventative maintenance data base. A major weakness in keeping manual
vehicle records, no matter how well done, is retrieving and manipulating the
data for the development of an effective preventative maintenance program.
Through the addition of fields such as those listed above, and the data
manipulation capabilities of programs such as R:base, it will be possible to
develop a maintenance experience record for a fleet of vehicles. This will
enable you to anticipate and prevent significant maintenance problems.

3.1.3 Reporting Requirements

Section 2.4 describes the process of report generation in great detail and
provides some common examples of the types of reports you will likely want to
develop. Of course, the options here are literally infinite. In designing
your reporting requirements, you should consider the following questions:

e What are the goals and objectives of your system? When you understand
what you are trying to accomplish, you can better determine what you
need to measure and report on.

e MWhat is the function of your reports? For example, most systems will,
at various times, need to produce reports for one of three reasons:
1) provide billing and/or performance data to funding sources; 2)
conduct an internal evaluation of system operations; and 3) develop
political, institutional and community support for the continued
operation/expansion of the system. In designing your reports,
consider their ultimate purpose.

o What are the operating characteristics of your system? You want to
develop reports which are responsive to the unique design of your
system.,

3-8

e Are you interested in evaluating effectiveness or efficiency?
Effectiveness measures how well you are meeting the goals and
objectives of your system. For example, if your goal is to service
the elderly of your community, an effectiveness measurement would be
the number of elderly riders. Efficiency measures how well (i.e.,
cost-effectively) you produce the service. You could be meeting your
goals for elderly ridership at twice what it should be costing you.

Simply by using the fields created in Chapter 2.0 and the select/sort
capabilities of a program such as R:base, you can generate the following types
of reports:

e Client activity by age, sex, classification, town of origin, funding
program, and trip purpose.

e Vehicle utilization by time (compare the hourly driver records in
"vehops" to total vehicle availability).

e Any of the following performance measurements:

- Total vehicle miles

- Total vehicle hours

- Subsidy/passenger trip
- Trips/capita

- Revenue/passenger

- Revenue/hour

- Cost/hour

- Trips/vehicle

- Trips (by category)/vehicle
- Trips/day/vehicle

- Trips/hour/vehicle

You might also want to consider mileage-based performance measurements such as
passenger mile/vehicle or per vehicle mile; or vehicle miles/trip/(vehicle).
To do this, you need to create a mileage "look-up" table which ideally an
operator can use interactively while booking a trip. This table should be a
matrix of the type commonly found on route maps showing distances between
frequently used origins and destinations. In our case study, we would
probably use the various towns on Cape Cod for this purpose. You could also
use counties, neighborhoods, or activity centers. When the operator books a
trip, he/she would look-up the mileage on the table and enter it into a field
assigned for that purpose. Since mileages are static, it is probably easiest
to have the operator look it up from a permanent hard-copy print-out, rather
than calling the file up on the screen (although the latter can be done using
the customizing features described in Appendix C). After awhile, the
operators will tend to memorize the data anyway. You might also want to
assign codes to common 0-D pairs (i.e., Hyannis-Falmouth = 1). These codes
can then be converted to actual mileage figures in the report generation
process.

This feature can also be used for billing purposes. In fact, Call-A-Ride and
its successor did at times substitute a mileage-based fare for a flat fare due

to the tremendously large service area of Cape Cod. Instead of calculating

3-Y

client, program, and town bills simply by adding the number of trips, they
could also be calculated using the mileage involved in the trips. In
generating your reports, you can instruct the program to sum the mileage
totals in the same way that we summed total trips in Chapter 2.0. You can
then apply a per mile dollar value and instruct the program to multiply this
value times the total mileage for billing purposes.

3.2 OTHER DATA BASE APPLICATIONS

In this Manual, we concentrated on a limited number of applications for data
base management software; scheduling; maintaining a master client file for
recordkeeping and eligibility verification; vehicle maintenance recordkeeping;
and report generation for billing and performance measurement purposes. There
are many other uses for software of this type in paratransit management. In
selecting a software product, the user should carefully consider the uses to
which it will be put and select a product with the appropriate capabilities
and strengths. A sampling of other functions are described briefly below.

3.2.1 Financial Management

Spreadsheets for program budgeting and monthly program financial reports were
developed in Chapter 2.0. However, the formal systems for accounting (e.g.,
Cash Receipts Journal, Cash Disbursements Journal, and General Ledger) are
good candidates for customized development with a relational data base and/or
integrated spreadsheet.

While there are a number of commercially available microcomputer software
packages for home accounting or small business, they are not particularly
adaptable to small transit operations. In the former case, they are not
sophisticated enough. In the latter, the private-for-profit accounting
requirements for tax paying corporations are not proving particularly
compatible with public agency and public charity's financial management
systems.

For example, these packages are often designed to facilitate income tax
preparation, an orientation which will be of little use to the public agency
or private-non-profit which pays no income tax. On the other hand, the
capability to account for a variety of funding sources and allocate costs
accordingly (a crucial feature for the paratransit operator) may be
downplayed. These packages, like all software, are rapidly evolving and being
adapted to different uses, so the user is advised to compare their
capabilities to that of a multi-functional program like R:base.

3.2.2 Payroll

While technically payroll can be considered a component of the financial
management system, in the labor-intensive transit business, it has data
management significance on its own. In many instances, private non-profit
providers are dealing with the Social Security System since January 1, 1984,
for the first time.

3-10

Dynamic look-up tables and computed fields within records and reports allow
significant time saving for transit properties. Calculation of gross pay for
individuals based on hours worked, job classification, and hourly rate of pay
(the last two using look-up tables) are classic data base management
applications. In addition, subtractions from gross pay can be accomplished
quite efficiently. For example, Federal, state, and social security taxes can
be calculated and withheld using look-up tables. Locally, calculation of
payroll deductions for pension or tax sheltered plans, union dues or benefits,
Christmas Clubs and other employee-generated deductions, garnishments or
court-ordered payroll attachments can be accommodated with a computerized
payroll system.

Again, users should also investigate the potential of commercial payroll
packages. They need to be sufficiently flexible and sophisticated to meet the
unique requirements of government agencies/PNP's (for example, employee
deductions may be different than for a private sector employer), and capable
of integration with other features of your data base. For example, we built
our vehicle performance records from driver's logs which included work hours.
You would most likely want to avoid isolating a data item like "work hours" on
a separate payroll program and be unable to use it for other data base
applications.

3.2.3 Personnel Files

The personnel file is closely related to the Payroll File and would work well
together in a relational data base management system. Initially, the
personnel file acts as a master file for each employee employed by the
organization, and keeps basic information, such as: name of employee,
address, telephone number, date of employment, IRS W-4, salary information,
EEO0 and Affirmative Action base data, evaluation dates and history of actions,
and date of termination. With a relational data base interacting with the
Payroll File, accrual and use of Sick Leave, Annual Leave, Compensatory Time,
or Personal Leave are possible. Financial information for the individual,
such as year-to-date summaries on wages, taxes withheld, or special payroll
deductions are readily available.

Increasingly, personnel information is a major long-term responsibility of the
corporation or organization, with increasing legal implications for the
employer and employee. This is also an area that gets put off until there is
a crisis or litigation.

3.2.4 Fixed Asset Inventory

As paratransit operations mature, many programs are taking over preventative
maintenance and, to some degree, fleet repair, rather than contracting out for
these services. Inevitably, this means acquiring equipment and tools, as well
as consumable supplies. For recordkeeping purposes, these activities are
treated differently in tax-paying entities than they are in public sector
institutions. In part, this is due to the divergent views that the Internal
Revenue Service has of the concept of "capital asset" and the Urban Mass
Transportation Administration's determination of an item as "capital
equipment" eligible for "capital assistance". Since most commercial inventory
packages are written to satisfy the IRS requirements of tax paying sole

3-11

proprietorships or corporations, this could be an important area for
development on a data base management system, particularly since this is a
prime area for potential employee or contractor theft.

3.2.5 Complaints, Incidents, and Accidents

A variety of "other" information which a paratransit agency is usually
required to keep can be easily automated. These include complaints,
accidents, and other "incidents". The latter might include disputes between
employees and management or between employees and customers; medical
emergencies; traffic violations; weather-related problems and the like. Using
Chapter 2.0 as a model, files can be structured to enable the user to select
and sort data in a useful and convenient manner.

3-12

APPENDIX A
SELECTING A DATA BASE MANAGER

The purpose of this Appendix is to provide the user with a guide to conducting
a selection process for data base management software. Topics include
selection criteria; software packages available; characteristics of a good
DBMS; and procedures for reviewing products.

A-1 PRIORITIES AMONG THE SELECTION CRITERIA

Based on the needs of a typical paratransit agency, we have prioritized the
several criteria involved in the selection of a DBMS as follows:

) Ease of Use is considered to be the most important criteria,
assuming that the DBMS possesses the minimum functional criteria.
A1l DBMS packages require a minimum of several hours intensive work
to understand how they operate. We also assume a prior
understanding of record keeping systems, i.e., their design and
operation.

0 Capabilities of the DBMS, i.e., its type, size and functions that it
can perform. The DBMS should meet all the information needs of the
paratransit agency in terms of data storage, organization and
retrieval in an efficient manner (e.g., with help screens, menus,
and preformatted reports).

® Other Characteristics, such as:

- integration with other software (spreadsheet, word processors);

- transferability between machines;

- upgrade capabilities, i.e., floppy to hard disk storage; single to
multi-user environment;

- quality and readability of the documentation;

- customer support;

- manufacturer's reliability.

° Cost of the package - this criterion is of considerable importance
given the cost of associated hardware and software.

In summary, the DBMS should be easy to use by the agency staff, and have the
minimum threshold of capacity to meet its needs efficiently and at a

reasonable cost.
A-2 SOFTWARE AVAILABLE

More than 50 DBMS programs are offered in the microcomputer software market
today, and new ones appear each week. Figure A-1 lists nine of the most
popular programs. This is a representative set of the different types of DBMS
programs offered in the market.

A-1

PRODUCT

Data Base Manager II
Advanced DB Master
R:base 4000

T.I.M. IV
KnowledgeMan

Open Access

Condor 3

Probase

Sensible Solution
dBase I1I

MANUFACTURER

Alpha Software

Stoneware, Inc.

Microrim, Inc.

Innovative Software

Micro Data Base Systems
Software Products International
Condor Computer Corporation
Data Technology Industries
0'Hanlon Computer Systems
Ashton-Tate

FIGURE A-1. POPULAR DBMSs
A-3. REVIEW PROCEDURES
A thorough review of software should consist of three elements in the
following order: 1) literature search, 2) personal contact, and 3) field

testing. Through the literature search and personal contact, you should be
able to narrow the choices to a small number of likely programs.

There are two primary sources of written reviews and guidelines:
® Articles about DBMS concepts and evaluation in several computer

magazines such as "BYTE", "InfoWorld", "Popular Computing",
"Personal Computing" and "Interface Age", among others.

® Government publications such as: “Microcomputers in Transportation:

Selecting a Single User System", "Data Base Management Systems™.

Personal contacts should be made with the staffs of paratransit agencies,
university professors, and USDOT officials who have had direct experience with

specific DBMS products.

Based on these contacts and reviews, manufacturers can be contacted and asked
for a review of their product, using either the entire package, a "demo"
version or, in its absence, a complete set of specifications. Many companies
will send the entire package on a 30-day free trial offer. Demo packages
usually perform most system functions at minimal (under $50) cost. You should
be extremely reluctant to select a product which is not available for hands-on
review. The software industry is in general characterized by manufacturer
claims unsubstantiated by field experience and program "bugs" which only
become apparent in the field.

A-4 BACKGROUND ON DBMS CONCEPTS

A DBMS can be defined as a set of computer programs that provide data
definition, input, storage, retrieval, sorting and manipulation in a useful
and efficient manner. In other words, it is a tool for managing an
information resource.

A-2

The key elements in a data base are the following:

A field is the simplest unit in the data base. One item of informa-
tion is stored in each field (e.g., name of a client). Fields have
a defined length -- the number of bytes of information contained in
the field (e.g., a name field might contain 20 spaces, while a sex
field could only have 1). Fields also have a type, such as alpha-
numeric (combination of letters, numbers and symbols) and numeric
(only numbers).

A record is a collection of fields related to each other (e.g.,
client name + address + city + state + zip).

A file is a grouping of records with the same field structure (e.g.,
client file with name, address, etc. of all the clients).

Thus, a data base is the collection of all the files that have a meaningful
relationship to each other.

Three different types of DBMSs exist in the microcomputer environment,
according to the levels of sophistication of the data base:

A List Manager is the simplest DBMS. It is nothing more than a
"card™ fiTer program (each "card" holds only one record) that up-
dates, sorts and retrieves the information stored in each "card"
separately. In summary, it is something like an electronic
"RoTodex".

A File Management System is capable of working with only one file
(comprising several records) at a time. When data is modified in
one file, associated data in other files is not changed (i.e., the
files are NOT "related" to each other). Being menu driven, it is
easy to use, but still limited in capabilities. However, it has
certain advantages over a List Manager, such as: the speed of
access to the data, data manipulation capabilities using primary or
secondary keys (a key is a specially "marked" field used as the base
for sorting data), and powerful report generation capabilities.

A relational DBMS can operate on two or more data files at the same
time. The tields in one file are related to the fields in other

files. When the data in one of these fields is changed, data in the
related fields changes automatically, thus allowing the simultaneous
update to numerous pieces of information. This implies the
elimination of data redundancy, since fields have to be created only
once.

A-5 CHARACTERISTICS OF A GOOD DBMS

A good DBMS should have the following characteristics:

easy and accurate input of data

A-3

) data protection (e.g., user password to access the DBMS; fields
are read/write protected)

° data validation ("checking" for input of erroneous data)
° elimination of data redundancy

° quick search and easy update of the data

(] report and form generation capabilities

] easy transfer of data to other programs and environments

] availability/manufacturer support

Unfortunately, only a few DBMSs offer all these characteristics, and they are
usually difficult to learn and use. There is a clear trade-off between the
“power" of a DBMS and its ease of use.

A-6 SELECTION CRITERIA

The following critera should be used in the selection of a DBMS:

Ease of Use, as previously stated, is the single most important
characteristic in a DBMS, recognizing, however, the above mentioned
trade-off between "power" and ease of use. Along with the considerations
discussed in previous paragraphs, it is necessary to add that some DBMSs
are, in reality, designed to be used by a programmer as tools to create
finished applications programs. They are essentially code generators
that are meant to be used by the skillful user to create customized
programs with specific data requirements.

DBMS's Functional Capabilities (the power of the DBMS) as measured by:

- the characteristics (as mentioned in Section A-5) that it offers;

- its "size" in terms of number of fields/record, number of
records/file, number of files simultaneously open, etc.;

- its type (relational or not);

- data field types that it can handle.

Integration is one of the "hottest" topics in the microcomputer software
f1e|§ these days. Integrated software means software that provides a

high level of functionality and flexibility, passing information
effortlessly from one application program to the next, where user data
will be stored, shared and retrieved efficiently. The complete MIS would
integrate a DBMS, spreadsheet, word processor and graphics program, with
the DBMS acting as a starting point -- all current information being
entered into it.

Total integration as described above, however, is almost non-existent
today in available commercial microcomputer software. Only one package
of which we are aware ("Open Access") claims to integrate all these
programs. Open Access is just now becoming available in the market-

A-4

place. The other DBMS packages only provided a low level of integration,
consisting of the ability to read and/or write data files that can be
accessed by the other programs (spreadsheets, word processor).

(] Transferability means that the software should be written for a
recognized industry-standard operating system (e.g., MS-D0S, CP/M,
UCSD-p), compatible with the one used by the spreadsheet and word
processing programs, and compatible between different versions of the
operating system (if possible).

° Cost - although a DBMS can satisfy the information needs of a paratransit
agency more effectively and efficiently than manual methods, the cost of
a DBMS program should not be prohibitive. Therefore, a cost ceiling for
software procurement must be imposed which is realistic (taking into
account the cost of the hardware and other software also needed). The
average cost of the packages discussed here is near $500, with a minimum
of $295 and a maximum of $695.

A-7 CHARACTERISTICS OF SPECIFIC DBMSs

The characteristics of the DBMSs mentioned at the outset are displayed in
Table A-1, showing for each the following information:

® Name and manufacturer.
° Type: relational or file manager (not relational).
® “Size" of the data base, expressed as number of:

- records/file (number of records in a single file);

- fields/record (number of "pieces" of information that a record can
handle);

- characters/field (i.e., the maximum length of each field)

° The maximum number of different files simultaneously open. This is
an important concept, because if only one file can be open at any
time, quite a bit of "shuffling" will be necessary to update,
retrieve or enter different records.

] The different data field types that the data base can accept (some
accept special field formats such as Social Security number,
dollars, date, etc.).

) The Tevel of integration of the DBMS with other programs (spread-
sheet, word processor) as defined in the above paragraphs.

° The ease of use is, to some extent, a subjective judgement. We have
tried to classify the different programs from a non-technical user's
perspective, assuming, however, that the user is willing to spend
more than a couple of hours studying the user's manual and
tutorial. In this column:

A-5

9-v

TABLE A-1.

DBMSs CHARACTERISTICS

NAME REC./ FIELDS/|{CHAR./ | OPEN DATA DATA EASE
(MANUFACTURER) TYPE FILE REC. FIELD |FILES| TYPES | PROTECTION|INTEGRATION| OF USE |[PRICE
DB MANAGER II File Mgr. 100,000| 40 60 1 A,N,D N/A Read/Write Easy $295
(Alpha Software)
ADVANCED DB MASTER|File Mgr. |1,000,000| 250 220 1 A,N,D Yes Read/Write Easy $495
(Stoneware)) (+)
T.I.M. IV File Mgr. 32767 40 2400 1/2 |A,N,D,$ | Password |Read/Write | Easy $495
(Innoative Soft.) Other
R:BASE 4000 Relational . 400 1530 40 |A,N,D,$ Yes Read/Write | Easy $495
(Microrim) billion
(+)
KNOWLEDGEMAN Relational 65535| 255 65535 Unlim. [A,N,D,L Yes Spreadsheet [Difficult $500
(MDBS Systems) Read/Write [(Language)
OPEN ACCESS Relational 32000 55 40 5 A,N,D N/A Integrated | Easy $595
(S.P.1.) (+)
CONDOR 3 Relational 65534 | 127 127 2 |A,N,AN,D[N/A Read/Write |Somewhat $650
(Condor) Other Difficult
PROBASE Relational 65535| 64 64 3 A,N,D N/A N/A Difficult | $650
(Data Technology) (Language)
SENSIBLE SOLUTION [Relational 16 384 255 10 AGN,D Yes N/A Difficult | $695
(O'Hanlon) million
(+)
dBase II Relational 65535 32 254 2 AGN,L No N/A Difficult | $700
(Ashton-Tate) (Language)
NOTES: 2*% = Sophisticated File Manager Data Types: A = Alpha
+) = Claimed by manufacturer AN = Alphanumeric
N = Numeric
D = Date
$ = Dollar
L = Logical

- an "easy" program is one that is menu-driven and/or has "help"
screens (or lines), with clear documentation that is easy to read
and understand;

- a "somewhat difficult" to use program is one that does not provide

"help" screens, or is not menu-driven and has more or less obscure
documentation;

- a "difficult" to use program is a code-generator type of program
(a programming "language" by itself), is hard to learn and is
designed to be used by a programmer.

The current price for each package.

A-7

APPENDIX B
USING R:BASE ON FLOPPY DISKS

The key to using R:base on floppy disks is being able to estimate the size of
your data base. This process is explained in detail in Section 2.7 of the

R:base Manual. The main factors in the size of any data base are the
following:

e Number of columns occupied by each record
e Number of records in each relation

There are two other factors unique to R:base. Assigning "keys" to attributes
for faster processing adds considerably to the size of the data base. If your

data base is small enough to contemplate using floppy disks, the advantages of
key fields are minimal. We recommend using no more than one.

R:base also requires temporary holding space for sort files. Once the sort is
completed, this space is returned, but you must have enough room to perform
the sort.

As you build a data base, you can determine its size through the directory
function of your operating system. Each R:base data base consists of three
files. In our example, they are labelled as follows:

o CAR1.RBS
o CAR2.RBS
o CAR3.RBS

The first file contains the data base structure and is usually quite small.
The second file contains the data and directly relates to the amount of
information in your data base. The third file contains key fields. The size
of keys will depend on the size of attributes you designate as keys and the
amount of data you put in them. You can experiment with the key des1gnat1on
and check its impact and size relative to the data file.

The most important decision you need to make is whether or not to use the
"reload" function. As your data base evolves and records and relations are
deleted, the space they occupied remains occupied unless you reload the entire
data base. To reload, however, you must have available on disk sufficient
space for the new, reloaded data base. This data base will equal the size of
your original data base minus whatever you deleted. You may decide it is not
worth holding space for a reload and just plan to use the entire disk without
reloading. If you reload without sufficient space, the entire data base will
be killed! Make a back-up copy!

To reload, enter "reload new data base name". Be sure to reload to the "b:"
disk unless you have more storage space in the "a:" disk which contains the

R:base II diskette. If you do reload to the R:base diskette, you can later

use the copy function of your operating system to send the data base back to
the working diskette.

B-1

After reloading, use the delete command of your operating system to remove the
old data base and restore disk space. Then use the rename command to restore
the original data base name to the new data base.

The size of a given data base is dependent on the row length of each record
and on the number of records. The number of records can be easily estimated.
For example, the number of records in the master client file equals the number
of clients. The number of records in each of the vehicle schedule files used
in this Manual is based on the number of trips assigned to each file. 1In the
system which we set up, round-trips and one-way trips are each contained on a
single record. Based on ridership levels and operating procedures, the user
should be able to estimate the maximum number of records which will need to be
maintained on a given vehicle schedule file at any one time.

To estimate the length of a row, perform the following steps:

1. Add the length of all the attributes in each relation. For this purpose,
length is calculated by means of bytes. Attributes have the following
byte lengths:

Text: number of characters as assigned by user (minimum of 4 bytes)
Dollar: 8 bytes
Date: 4 bytes
Time: 4 bytes
Integer: 4 bytes
Real: 4 bytes

2. Add 6 bytes per row to the above total. Round odd lengths to an even
number.

3 Divide 1536 by the number of bytes in a row for each relation to find the
number of rows/block. Discard fractions.

4, Estimate the number of records in each relation.

5. Divide the number of records by the results of Step 3 for each relation
to find the number of blocks/relation (round up).

6. Multiply the total number of blocks by 1536 to find the number of bytes
in file 2 (b:car2.rbs) of your data base. Compare this amount to
available disk space.

R:base also creates temporary files for sorting which are deleted upon

completion of the sort. However, there must be sufficient room on disk to

perform the sort. To estimate the size of sort files, do the following:

(# of rows being sorted x (sum of length of attributes + 4)) x 2

B-2

APPENDIX C
CUSTOMIZING R:BASE

The new features incorporated in R:base (see Appendix F) make it easy to
customize the program for specific applications. This is particularly useful
when there are a series of commands to be executed repetitively. Operators
(such as dispatchers and clerks) who are unfamiliar with R:base commands will
be able to perform their particular applications by simply selecting an option
from a 1ist of menu choices (previously set up using command files and prompt
menus). Thus, the operator does not have to know (or remember) all the
commands needed to perform a particular task with R:base. He/she needs only
to choose an option from a menu and type whatever the terminal asks for.

Although the new features added to R:base in version 1.1 make it relatively
easy to customize, developing customized applications requires a slightly
greater degree of data processing sophistication than simply using R:base
off-the-shelf. In particular, a rudimentary knowledge of programming in BASIC
is helpful in understanding the concepts of command loops, "if" clauses, and
other elements of programming logic. Of necessity, the explanation which
follows is slightly more technical than the body of the manual.

Almost every step or task in R:base can be conveniently customized. The only
exceptions are loading R:base and opening the data base at the beginning of a
session. The customization is based on the creation of R:base command files.
Every application discussed in the manual includes specific procedures which
are executed over and over. Each of these procedures is associated with a
given sequence of commands (e.g. selecting a record with specific
conditions). Instead of typing the same sequence each time that a given
procedure is executed, one can put the commands into an R:base command file
and execute the entire sequence by using only the "input filename" command.
Thus, the commands are then processed as if they were typed in at the
terminal. In other words, the command file is a collection (batch) of R:base
commands that are executed simply by typing "input filename" inside R:base
("filename" is the name of the command file).

The utilities that R:base provides to facilitate the creation, editing,
listing and running of command files are the R:base commands "rbedit" (a text
editor), "type filename" (type and contents of the file at the terminal), and
“input filename" (run the command file). An additional feature of command
files is that if you put a "~" as the first and only character on a line in
the file, R:base will print the message "PRESS ANY KEY TO CONTINUE" at the
terminal when that line is encountered during execution of the command file.
This feature could be used to pause and step through a series of commands.
Command files may also be nested up to five levels deep. This means that you
can use a maximum of six command files at any one time (i.e., a maximum of six
files can be referenced to each other inside a command file).

The second keystone for the building of a customized application is the use of
a new R:base feature, local variables (see Appendix F). These are temporary
variables that exist within R:base but are not part of any data base. Each
time R:base is loaded, there will be no local variables (i.e., they are "lost"
when exiting R:base).

C-1

Local variables are created by assigning them a value with "set variable",
“fi11in" or "compute" commands. (These commands are explained in Appendix F.)
Once created, local variables remain active until exiting R:base. Their
values can be reset or recomputed at any time by using the same three
commands. The command "show variable" will display the names and values of
all the current local variables created since the beginning of the session.

Once created, local variables may be used in one of two ways. You can use the
value of a local variable within a command by preceding the variable name with
a period (.). Secondly, you may use local variables without the period in the
conditions of the "if" and "while" commands. (The "if" and "while" commands
are used in a command file to conditionally process a series of commands.)
These uses (and commands) will be clarified in the following example.

The example that follows demonstrates R:base's customizing capabilities, using
the above mentioned commands, local variables and command files. We have to

point out, however, that this is only an example of how to customize a
specific application. User should build their own customized application(s),
suited to meet their specific needs. Nevertheless, this is a useful example
of how to build a customized application in which several options can be
chosen by the operator, and, at the same time, providing useful insights into
the customization process.

C-1. STEP 1 - DEFINE THE APPLICATION TO CUSTOMIZE

The first step should always be to analyze and define the application that you
want to customize. In this case, our hypothetical application would be to
customize the process of checking the eligibility and updating (if necessary)
the information provided by a potential customer who requests service from the
paratransit agency. This process is described in Section 2.3.5 of the Manual.

Assume that the operator will use R:base interactively to:

e check if the call that he/she is receiving corresponds to a customer
who is listed in the master client file and is eligible for the
service requested (e.g., a trip);

o if the client is eligible for the service, add the new trip to the
trip file; and,

e update the customer's data, such as change of address, passenger
classification, Title XX units remaining, etc.

Also assume that we decide to use a "menu" format to perform each of the above
steps, where the operator can choose one of the options to be displayed on the
screen. The menu approach greatly reduces the potential for operator error
since instead of creating commands from memory as is standard R:base
procedure, the operator will respond to computer generated prompts with
computer-defined answers. This can also accelerate the process making it more
practical to perform these functions while on-line with a customer (hence the
term interactive processing).

C-2

C-2. STEP 2 - CREATE THE COMMAND FILES AND LOCAL VARIABLES

This step constitutes the "core" of the customization process. Figure C-11 at
the end of this Appendix summarizes the steps created in this section.

The first command file to be created is the file called "choicesl.cmd". 1It's
displayed in Figure C-1. As can be seen, this file is nothing more than a
list of R:base commands such as "newpage", "type", "fillin", etc. The first
command, "newpage", is used to clear the screen. Immediately after the screen
has been cleared, the command "type a:menul.dat" displays the contents of the
file called "menul.dat" on the screen. This file is a text file (not a
command one) that contains the text of the menu to be displayed on the screen
(see Figure C-2). ’ ~

Once the file "menul.dat" has been displayed on the screen, the next command
line is executed. This is the "fillin" command, used to define the local
variable called "msgl" and set its value to the one typed by the operator when
he/she makes a choice from the menu displayed (see Appendix F for an
explanation of this command).

As shown in Figure C-2, four options are presented to the operator (either
"1", "2", "3" or "Q"). The following command lines in Figure C-1 are a series
of logical if-endif loops to "branch" to other command files to perform the
operation(s) chosen accordingly. For instance, if the operator chooses "1",
then the value of "msgl" is set to 1, so the command file called “check.cmd"
is input and executed (this file contains the commands to perform the checking
of the customer data). The operator could have chosen "Q" instead, executing
the "newpage" and "quit" commands and leaving the customized application.

("2" and "3" should be chosen after having performed step "1", as explained
below.)

Assuming that the operator chooses option number 1, the command file
"check.cmd" (see Figure C-3) will be executed. The first two commands on this
file are used to set the null value to "N/A" and to clear the screen with a
“newpage" command. Then, a new local variable, "name", is defined, and its
value set to the last name of the customer calling, by means of the "fillin"
command. The message "PLEASE TYPE THE LAST NAME OF THE CUSTOMER:" is
displayed on the screen and the program waits for the operator to type that
last name, thus setting the value of "name" accordingly. After this, a
"newpage" command is executed to clear the screen again.

The following command instructs the program to display the customer's data on
the screen, using the "select" command, in order for the operator to verify
that the customer is eligible for the trip. Notice that this is very easy to
perform with the condition imposed: ‘'"where lastname = .name" (this is an
example of using local variables in a command line). R:base "knows" that the
value of "name" is set to the last name of the customer, so the program
searches all the records in the master client file for one with the “lastname"
field equal to the value of "name". After displaying the customer's data on
the screen, the "output" and "unload" commands are used to write an ascii data
file containing the customer's data. The purpose of this is to "store" this
useful information for later manipulation and to add this data to the realtime
trip file without typing the customer's data again.

C-3

newpage
type aimenul.dat

fillin msgl using “SLEASE CHOOSE ONME OF THE ABOVE (1, 2, 3 or): " +
at 16 8

if msgl eq 1 then

input a:check.cmd

endif

if msgl eq & then

input aschoices&.ocmd

endif

if msgl egq 3 then

input a:updat.cmd

endif

if msgl eq O then

newpage

Quit

endif

guit

newpage

FIGURE C-1. COMMAND FILE “CHOICES1.CMD"

PLEASE TYPE ONE OF THE FOLLOWING NUMBERS (OR LETTER) TO:

1 - Check if the customer is already listed in the master clienmt file and
then add the new trip to the trip fileg

r
I

Update the master client file and related files using a meruj
(this sould be performed AFTER step 1)

3 - Update the master client file and related files using a screen formg
(to be performed AFTER step 1)

Q@ — Quit this menu.

FIGURE C-2. TEXT FILE "MENU1l.DAT"

C-4

set rnull N/A

rnewpage
fillin rname using "PLEASE TYRE THE LABT NAME OF THE CUBTOMER: " +
at 5 1@

newpage

select clientid lastrame med# xx# xxunits termdate termwhy -+

from msclient where lastrname = .name

output a:trip.dat

unload data for msclient as ascii using clientid lastrname frstrname +
address city paxclass specrneed where lastrname = . name

output terminal

fillin yesno using "DO YOU WANT 7O CONTINUE AND ADD THIS NEW TRIE (Y/N)? 3" +
at 12 12

if yesrno eq Y then

input a:add.cmd

endif

input a:choicesl.comd

guit

FIGURE C-3. COMMAND FILE "CHECK.CMD"

C-5

The "fillin" command is used again to set the new local variable "yes/no" to
the value typed by the operator as an answer to-the question displayed: DO
YOU WANT TO CONTINUE AND ADD THIS NEW TRIP (Y/N)?. If the operator, upon
examination of the customer's data, decides that the customer is not eligible
for the trip, the answer would be "N". The command "input a:choicesl.cmd"
will be executed, displaying again . the file "menul.dat", without adding that
trip to the realtime trip file. Otherwise (answer "Y"), the command "input
a:add.cmd" will be performed and the file "add.cmd" executed.

The command file "add.cmd" (see Figure C-4) is used to add the customer's data
to the realtime trip file. It begins clearing the screen ("newpage") and
displaying the contents of the textfile "addtxt.dat" with the "type
a:addtxt.dat" command. This file (see Figure C-5) contains the message to be
displayed on the screen to inform the operator what to do next: to use the
form to be displayed to fill the remaining data of the customer's trip
characteristics (time, destination, etc.) to the realtime trip file. While
this message is displayed, the customer's data previously stored in the data
file "trip.dat" is being loaded to the "realtime" trip file by means of the
"load" command, thus automatically filling in those fields without the
operator having to retype them.

Thus, data common to both the master client and vehicle schedule files (name,
address, classification, etc.) are loaded automatically. As you recall, in
the example in the text, each attribute had to be loaded by the operator
individually. ;

The "set rules off" and "set messages off" commands are necessary in this
example to override the error message which we had created in the
establishment of the data base. As you recall, -we had created a rule not to
allow a trip to be scheduled before 7:00 a.m. When the client file data is
loaded automatically, no trip times have yet been established. R:base reads
trip time as having a "null" value which it interprets as preceding 7:00 a.m.
Thus, unless rules are turned off, our error message will be triggered. This
reaction frankly surprised us. Since we had not created a rule requiring a
pick-up time, we had assumed that R:base would simply ignore the null value.
After the]oad1ng has been comp]eted both rules and error messages are again
“turned on"

The """ character is used to display on the screen the message: PRESS ANY KEY
TO CONTINUE. The screen then clears and the "rtsched" form (set up with the
"realtime" relation) appears in the screen by means of the "edit using
rtsched" command, with the customer's data filled in because of the condition
"where lastname = .name" (and because of the previous "load" command). The
operator then "browses" through the form filling in the trip data and editing,
if necessary, the other fields in the form. Note that this can be done
interactively while communicating with the customer on the phone at the same
time. By pressing the "C" option, the trip data is added to the realtime trip
file. Then the command "input a:choicesl.cmd” brings up the file "menul.dat"
(i.e., our first menu) to the screen again.

Options "2" and "3" of the original menu provide the operator with the ability

to update the customer's data in the master client file due to a change of
address, classification, Title XX units, etc. This is accomplished with one

C-6

newpage
type a:addtxt.dat

set rules off

set messages off .

load realtime from astrip.dat as ascii using clientid lastrame frstrname +
address city paxclass specneed ’

set messapges on :

set rules on
~

set null --—- ,
edit using rtsched where lastrname = .name
input a:choicesl.omd

FIGURE C-4. . COMMAND FILE "ADD.CMD"

PLEASE USE THE FOLLOWING FORM
TO FILL IN THE BLANK FIELDS
AND THEN PRESS "C" TO ADD THE NEW TRIRF

TO THE REAL TIME TRIF FILE

FIGURE C-5. TEXT FlLE."ADDTXT.DAT"

C-7

of these two choices. Both are presented in this example to demonstrate the
various possibilities existing in the setup of a customized application.
Option "2" uses a "menu approach” in which the operator chooses the field that
has to be updated. Option "3" uses a form to display all the customer's data
and allowing the operator to "browse" through it, editing the fields to be
changed accordingly. Note that these options should be performed after option
"1" since both make use of the local variable "“name" set up in option "1".
Thus, if the operator chooses "2" or "3" as the first option, the local
variable "name" does not exist and the commands that use it have no effect.
The advantage of each approach is described below.

If the operator chooses option "2" then the command file “choices2.cmd" (see
Figure C-6) is executed (by means of the command "input a:choices2.cmd" 1in

the "choicesl.cmd" command file). After clearing the screen and setting the
number of lines per screen to 24 (in order to display the following menu), the
contents of the text file "menu2.dat" are displayed on the screen (see Figure
C-7). The operator then chooses one of the options and sets the value of the
new local variable "msg2" with the "fillin msg2 using..." command. Then the
command file "update.cmd" is input and executed.

The command file "update.cmd" (see Figure C-8) is used to update (change) the
value of the field chosen by the operator. It consists of several if-endif
logical loops that are performed depending on the value of the local variable
"msg2". For example, if the operator chooses to change the address of the
customer, then option "A" of the menu is chosen, thus setting "msg2" equal to
A. Then the first logical if-endif loop is performed. The screen is cleared
and a new local variable, "field", is defined using the command "fillin field
using “PLEASE ENTER THE NEW ADDRESS:"", its value equal to the string typed in
by the operator as the new address of the customer. Then the field "address"
is changed over all relations containing it by means of the command "change
address to .field where Tastname = .name". Notice the use of the previously
set (and still active) local variable "name". Note also the power of the
relational data base in permitting simultaneous update of a field across
several files.

The updating of the other fields is identical, setting first the value of
“field" to the string typed by the operator and then changing the value of the
particular field to the "field" value over all relations where the condition
"lastname = .name" holds (i.e., where the data corresponds to the customer's
data). After changing the field(s), the menu ("menu2.dat") will again be
displayed by means of the command "input a:choices2.cmd" in the "update.cmd"
command file. The operator can then change other fields or quit this process
by choosing "Q", thus leaving the customized application.

Our example ends with the last option ("3") that can be chosen from the first
menu ("menul.dat"). As said before, this option uses a form to change
(update) the customer's master file data. When the operator chooses "3" the
command file "updat2.cmd" is input (see Figure C-9) and executed (by means of
the command "input a:updat2.cmd" in the “choicesl.cmd" command file). After
the screen is cleared, the text file "message.dat" is displayed (see Figure
C-10) on the screen. Then, the "client" form (set up with the master client
file "msclient") is used to edit the customer's data using the command "edit
using client where lastname = .name".

C-8

newpage
set lines 24

type a:menuz.dat
fillin msge using

at 24 8

"PLEASE CHOOSE ONE OF THE ABOVE (A, T,Z,F,C, N, X, D, R ar &)

input a:update.cmd

FIGURE C-6. COMMAND FILE "CHOICES2.CMD"

PLERSE TYPE ONE OF THE LETTERS 7O UPDRTE THE FOLLOWING

FIELD(S)

A

T

IN THE MASTER CLIENT FILE AND RELATED FILES:

Change the customer’s address;

Change
Change
Change
Change
Charnge
Change
Change

Change

the

the

the

the

the

the

the

the

customer’s city/town of residence;
customer’s zip codeg

L
customer®s phorne rnumber;
customer?s passenger classificationg
customer?s special rneeds informationg
customer?s Title XX units;
customer’s termination dabte;

customer?s termination reason;g

To quit this menu.

FIGURE C-7. TEXT FILE "MENU2.DAT"

C-9

+

newpage
if msgs eq A then

fillin field usiwg "FLEASE ENTER THE NEW ADDREZSS: Y at I 12
change address to . field where lastrname = .name

endif '

if msgS eq T then

fillin field using “PLEASE ENTER THE NEW CITY/TOWN: " at I L@
charnge city to .field where lastrname = .name
endif

if msge eq Z then .
fillin field using "PLEARSE ENTER THE NEW ZIFP: " at & 1@

change zip to .field where lastrhname = .wname

endif

if msgE eq P then 4

fillin field using "PLEASE ENTER THZ NEW PHONE NUMERER: " at & 1@
change phorne to . field where lastrname = . rvame

endif

if msgs eq C then

fillin Tield using “"PLEASE ENTER THE NEW PASSENBER CLASS: " at © i@
change paxclass to . field where lastrame = .name

endif

if msgs eg N then

fillin field usirnng “PLEASE ENTER THE NEW SPECIAL NEEDS: " at § i@
change specrieed to .field where lastrame = .name

endi f

if msgs eq X then .

fillin field using "FPLEASE ENTER THE NEW TITLE XX UNITS: " at 5 1@
change xxunits to . field where lastriame = .name '

endif '

if msge eq D then

fillin field using "PLEASE ENTER THE NEW TERMINATION DATE: " at S 1@
change termdate to . field where lastrname = .name

endi f :

if msgs eq R then

fillin field using "PLEASE ENTER THE NEW TERMINATION REASON: " at S 1@

charnge termwhy to . field where lastrame = .nrname
endif

if msgs eq O then

quit

endif

input a:choicesc. cmd

FIGURE C-8. COMMAND FILE "UPDATE.CMD"

C-10

newpage
type a:message.dat

edit using client where lastrname = .name

set variable strt to address in msclient where lastrame = .name

set variable town to city in msclient where lastname = .name

set variable post to zip in msclient where lastname = .name

set variable bell to phone in msclient where lastname = . name

set variable class to paxclass in msclient where lastriame = . name
set variable need to specrneed in msclient where lastrname = .name
set variable unit to xxunits in msclient where lastrame = .name
set variable tdate to termdate in msclient where lastname = .name
set variable twhy to termwhy in msclient where lastrname = .name
change address to .strt where lastname = .name

change city to .town where lastrname = .hname

charnge zip to .post where lastname = . name

change phone to .bell where lastname = .name

change paxclass to .class where lastrname = .name
change specrieed to .rneed where lastrname = .name

change xxunits to .unit where lastname = .rame
change termdate to .tdate where lastrname = .rname
change termwhy to .twhy where lastrname = ,name
qQquit

FIGURE C-9. COMMAND FILE "UPDAT2.CMD"

PLERASE USE THE FOLLOWING FORM
TO CHANGE (EDIT) ANY OF THE
FIELDS OF THE MASTER CLIENT FILE

AND RELATED FILES

FIGURE C-10. TEXT FILE "MESSAGE.DAT"

C-11

The operator "browses" through the form, editing all the fields to be

updated. By pressing the "“C" option, the new data will be written to the
master client file, "msclient". In this way, only the "msclient" relation
will be updated. The other relations containing all or some of the same
fields that have been updated will be unchanged. To effectively change the
values of the new customer's data in all the other relations the following
groups of commands are used in the "updat2.cmd" command file. First, the new
local variables "strt", "town", "post", etc., are set equal to the new values
(just updated with the "client" form) of the fields "address", "city", "zip",
etc., in the "msclient" relation where "lastname = .name" (i.e., for the
customer's data). These new local variables are then used to change the
values of the "address", "city", "zip", etc., fields in all the other
relations by means of the commands "change address to .strt where lastname =
.name", etc. Thus, simply by editing the form displayed on the screen for the
master client file, all the fields changed are updated over all the relations
containing those fields for the specific customer that is calling. Note,
again, that this can be done interactively while the operator is communicating
with the customer.

The advantage of the menu approach (Option 2) is that the operator can quickly
update whichever field of data needs updating. It is most efficient for
updating single pieces of data because it eliminates the need to "browse"
through the entire “client" form to find the field which requires updating.

It also performs a true relational operation since it updates the field in all
relations in which it is contained. As discussed in the text, most of the
time this is a desirable feature.

The form approach (Option 3) is probably faster for updating several data
fields simultaneously. Instead of returning to the menu to call up each field
individually as in Option 2, the entire form is displayed for the operator,
who can browse through and selectively update. Since each form in R:base is
associated with ONE AND ONLY ONE relation (see Section 2.2.6.1), using this
approach will not normally result in a relational operation. The data will
only be changed in the one relation associated with the form. It is possible
to achieve a relational outcome with further manipulation as described above.

There may be occasions, however, where you will not want to update a field
across all relations. For example, suppose you bill towns on the basis of
trips by residents. If a client moves to a new town after having taken
several trips from his/her old address earlier in the month, you will want to
bill those trips to the original town of residence. Therefore, while you will
want to update the master client file, you will not want to update the master
vehicle schedule file which contains all completed trips for the month.

C-3 STEP 3 - REVIEW AND TEST

The final step in the customization process is to review the command and text
files that have been created by using the "rbedit" text editor to correct any
errors in the commands or text. After that, test the procedure to be sure
that it meets your requirements. To do this, execute the command files by
using the "input" command. To see the processing of these command files for

C-12

test purposes, it is useful to use the "set echo on" command. All commands in
the file will be executed in sequence and then control returned to the
terminal. If the test does not show the results expected, use the "rbedit"
text editor to analyze and correct any errors in the commands.

C-4 SUMMARY

As a summary of this customization example, the following flowchart (see
Figure C-11) shows all the steps to be performed for this particular
application, i.e., to add a new trip to the real time trip file and update the
customer's data interactively.

C-13

START

\

QUIT e

input a:choicesl.cmd

:

menul.dat
is displayed

\

NO

choose
option:
Iln.lsglll=

1

input a:check.cmd

/

input last name of client;
set "name" = last name

y

select attributes from "msclient"
where last name = .name

v

output and unload data for
those attributes and client

Y

Want
to add

Trip?

YES

\

input a:add.cmd

Y

addtxt.dat is displayed

edit using "rtsched"
form ("realtime"
relation) for the
client trip

Y

load "realtime" with
previously output data

{

FIGURE C-11.

SUMMARY OF CUSTOMIZING EXAMPLE

C-14

.

(see next pages)

“®

/

QUIT

input a:choices2.cmd

¥

menu2.dat
is displayed

i

choose option:
llmsgzll =

A thru R
y

input a:update.cmd

Y

set value of "field" to the new
value (of attribute to update)

i

change attribute value
over all relations to
new value for the client

/

FIGURE C-11.

SUMMARY OF CUSTOMIZING EXAMPLE (Continued)

C-15

/

input a:updat2.cmd

/

message.dat
is displayed

/

edit using "client" form
in "msclient" where
lastname = .name

\

set local variables values
to the new values just
edited in "client"

Y

change attribute values
to new edited values over
all relations for our client

\
QUIT

FIGURE C-11. SUMMARY OF CUSTOMIZING EXAMPLE (Concluded)

C-16

APPENDIX D
SCREEN FORMS

This Appendix contains all screen forms used to build the case study data
base, CAR, which forms the basis of this manual. You can utilize these forms
to replicate all of the functions performed in this manual. The following
forms are provided:

1. Relations

msclient (master client file)

prsched (prescheduled trip file)
realtime (dial-a-ride trip file)
vsched (union of prsched and realtime)
vehops (vehicle operations file)
vmaster (master vehicle file)

2. Rules
3. Forms

client (msclient relation)
schedule (prsched)

rtsched (realtime)

operate (vehops)

4. Reports

vehstats (vehops)
trips (vsched)
clfile (msclient)
bill (vsched)
citybill (vsched)
medbill (vsched)
vehsched (vsched)

D-1

D-1. RELATIONS

D-2

Relation: msclient
Read Password: YES
Modify Password: YES

Attributes

Name Type Length Key
1 clientid TEXT 4 characters yes
2 lastname TEXT 15 characters

3 frstname TEXT 12 characters

4 address TEXT 15 characters

S city TEXT 12 characters

6 zip TEXT 5 characters

7 phone TEXT 8 characters

8 paxclass TEXT 3 characters

9 sex TEXT 1 characters

12 brthdate DATE 1 value(s)

11 specneed TEXT 12 characters

12 med# TEXT & characters

13 xx# TEXT & characters

14 xxunits TEXT & characters

15 termdate DATE 1 value(s)

16 termwhy TEXT 15 characters

Rttributes
Name Type Length Key
17 editdate DATE 1 value(s)
Current number of rows: 141

FIGURE D-1. MSCLIENT RELATION

Relation: prsched
Read Password: YES
Modify Password: YES

Attributes

Name
tripdate
veh#
clientid
lastname
frstname
address
city
paxclass
specrneed
1@ putime
11 destinat
12 rt

13 rttime
14 trip#

15 trippurp
1& paycode

Uo~NOO>W -~ #

Type
DATE
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
INTEGER
TEXT
TEXT
INTEGER
INTEGER
TEXT
TEXT

Attributes

Name
17 editdate

Current number

Type
DATE

FIGURE D-2.

Length

1

E
4
15
i@
1S
i@

— -
P = S

value(s)

characters
characters
characters
characters
characters
characters
characters
characters
value(s)

characters
characters
vaiue(s)

value(s)

characters
characters

Length

of rows:

1

value(s)

=

i

PRSCHED RELATION

D-4

Hey

ves

Hey

Relation:
Read Password:
Modify Password:

U ~NO AW+~ 3

P T O T e
s I IO S PV I)

Current number of rows:

realtime

YES
YES

Attributes

Name
tripdate
veh#
clientid
lastname
frastname
address
city
paxclass
specneed
putime
destinat
rt
rttime
trip#
trippurp
paycode

Type
DATE
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
INTEGER
TEXT
TEXT
INTEGER
INTEGER
TEXT
TEXT

Attributes

Name
editdate

FIGURE D-3.

Type
DATE

D-5

Lerngth

1 value(s)

& characters

4 characters
characters
character:s
characters
characters
3 characters
characters
value(s)
characters
characters
value(s)
value(s)
characters
characters

Length
1 value(s)

38

REALTIME RELATION

Key

ves

Key

Relation: vsched
Read Password: YES
Madify FPassword: YES

Attributes

Name Type Length Hey
1 tripdate DATE 1 value(s)

2 veh# TEXT Z characters
3 clientid TEXT 4 characters
4 lastname TEXT 15 characters
3 frstrname TEXT i characters
6 putime INTEGER 1 value(s)

7 address TEXT 15 characters
8 city TEXT 1@ characters
9 destinat TEXT 15 characters
19 trip# INTEGER 1 value(s)
i1 »rt TEXT 1 characters
12 rttime INTEGER 1 value(s)
13 paxclass TEXT 3 characters
14 trippurp TEXT 3 characters
15 paycode TEXT 4 characters
16 specneed TEXT 12 characters

Attributes
Name Type Length Hey
17 editdate DATE 1 value(s)
18 med$# TEXT &€ characters
19 xx# TEXT & characters
Current number of rows: =53

FIGURE D-4. VSCHED RELATION

D-6

Relation:

vehops

Read Password: NO

Modify Password:

JoNOUD> W= H#®

[l o o S i
PN

Current number

YES

Attributes

Name Type
veh# TEXT
opsdate DATE
driver# TEXT
endmile INTEGER
stmile INTEGER
opsmile REAL
endhour INTEGER
sthour INTEGER
opshour REAL
fuelqty REAL
fuelcost REAL
mpg REAL
oilqty INTEGER
oilcost RERL
repair TEXT
repcost REAL
Attributes
Name Type

editdate DATE

FIGURE D-5.

D-7

Length

-
LS B e e e e el R L R 1]

Length

1

aof rows:

Key
characters
value (s)
characters
value(s)
value (s)
value(s)
value(s)
value(s)
value (s)
value(s)
value(s)
value(s)
value (s)
value(s)
characters
value(s)

Key
value(s)

29

VEHOPS RELATION

Relation:
Read Password:

vimaster

NO

Modify FPassword: YES

Attributes

Name Type Length

1 veh# TEXT & characters
2 vehid TEXT 1@ characters
3 lic# TEXT & characters
4 yrmfg TEXT 4 characters
S make TEXT & characters
6 model TEXT & characters
7 enigsz TEXT & characters
8 title TEXT i@ characters
9 lien TEXT 12 characters
1@ purdate DATE 1 value(s)
11 radio TEXT 1 characters
12 access TEXT 1 characters
13 #wchaivr INTEGER 1 value(s)
14 cap INTEGER 1 value(s)
15 GVW TEXT 4 characters
16 mipurch TEXT S characters

Attributes

Name Type Length

17 nowmiles INTEGER 1 value(s)
18 comment TEXT 15 characters
19 editdate DATE 1 value(s)

Current number of rows: S
FIGURE D-6. VMASTER RELATION

D-8

Hey

Hey

D-2. RULES

D-9

RULE checking = ON
RULE 1 zip ge O20@
and zip le 2299399
Message:Zip code is incorrect

RULE e clientid IN msclient nea clientid IN msclient
Message:Client ID is a duplicate

RULE 3 paxclass exis
Message:Missing passenger classification

RULE 6 putime ge @720
Message:Trip time is too early!

RULE 7 rt eq vy

or rt eg n
Message:Round trip code is incorrect
RULE a paxclass eq e
or paxclass eq eh
or paxclass eq h
o paxclass eq weh
or paxclass eq wh
Messapge:Passenger code is incorrect
RULE 9 trippurp eq hc
or trippurp eq nu
or trippurp eq mow
or trippurp eq se
or trippurp eq ft
or trippurp eq gt
or trippurp eq adc
or trippurp eq dl
Message:Trip code is incorrect

RULE 1@ endhour IN vehops gta sthour IN vehops
Message:End hours must be greater than start hou
RULE 11 endmile IN vehops gta stmile IN vehops
Message:End miles must be greater than start mil
RULE 12 endmile IN vehops gta stmile IN vehops
Message:End miles must be greater than start mil
RULE 13 endhour IN vehops gta sthour IN vehops

Message:End hours must be greater than start hou

FIGURE D-7. RULES

D-10

D-3. FORMS

D-11

Client ID S E

Last Name S E First Name S E
Address S E City S E 2ip S
Telephone S E
Passenger Class S E Sex E Birthdate S E
Special Needs S E
Medicaid # S E Title XX # S E Title XX units SE
Termination Date S E Reason S E
Edit Date S E
FIGURE D-8. CLIENT FORM
Trip Date S E Vehicle # SE
Client ID S E Last Name S E First Name S
Address S E City S E
Passenger Class S E Special Needs S E
Pick-Up Time S E Destination S E
Round Trip? E Return Time S E
Trip # S E
Trip Purpose S E Payment S E
Edit Date S E

FIGURE D-9. SCHEDULE FORM

D-12

Trip Date S

Client ID S E
Address S

Passenger Class
Pick-Up Time S
Round Trip? E
Trip # S
Trip Purpose S

Edit Date S

Vehicle # SE

End Mile S
End Hour S

Fuel Used S
0il Used S

Repair S

Edit Date S

E

S

E

E

Ops Date S

E
E

Vehicle # SE
Last Name S E First Name
E City po E
Special Needs S E
E Destination S
Return Time S
E
Payment S E
FIGURE D-10. RTSCHED FORM .
E Driver # SE
Start Mile S E Ops Miles
Start Hour S E Ops Hours
Cost S E MPG S
Cost S E
E Cost S

E
E

FIGURE D-11.

OPERATE FORM

D-13

S
S

S

D-4. REPORTS

D-14

MTTTMTT MM TTTTMT T TTMTTMIoOITIXT X

oOXITXXT XXX

M,

VEHICLE STATISTICS

Veh# Trip Date Hours Miles Fuel Cost L] 0il Cost Repair Cost
SE 8§ E S E S E § E § E E S E S E S E
Total: E § E S ES E S E
Average WP8: S E
Miles/Tript S E
Trips/Mile: § E
Trips/Howrs E
FIGURE D-12. VEHSTATS REPORT
RIDERSHIP BY CLIENT

ID Last Name First Name Rddress City Class Purpose Pay Trip Date Tripké Edit Date

SES ES E S E S E SE SE S E S E E S E

TOTAL TRIPS: E

FIGURE D-13. TRIPS REPORT

D-15

oOoXIXTrrrxrxxIrxTxTx

MMM MMM MOE T XX DT

MASTER CLIENT FILE
c u
1 n
a i
H t
Last Name First Name ID Address City s SpecNeed Med# XX8 s Term Date Term Why? EditDate
ES ESE S E S ESE § ES ES E S § E S ES E
FIGURE D-14. CLFILE REPORT
CLIENT BILL
Month: May
Name: S E S E ID: S E
Address: S E City: S E
Trip Date Destination Purpose Trip# Paycode
S E S E S E E S E

TOTAL TRIPS: S E

TOTAL COST: S E

Purpose Code: hc=health care; nu=site nutrition; mow=meals on wheels:;
sezspecial education; ft=field trips; gt=group trips:;
adc=adult day care; dl=dialysis

Trip# equals the number of trips taken on a given day. If you rode the

bus both ways, trip# will equal *"“2"”. If you were accompanied by an
escort, the escort’s trips will also be counted.

FIGURE D-15. BILL REPORT

D-16

oX ITXTITITX

MMM AT MM TMTM

oxxxxEZxTx

mmmm

CITY ASSESSMENT
City: S E
‘Month: May

ID Last Name First Name Address Tripdate Destination Tripé Class Purpose Pay

TOTAL TRIPS: § E

TOTAL COST: S E

E S E § E S E E SE SE

Purpose Code: hc = health care; nu = nutrition site; mow = meals on w
ft = field trips; gt = group tripsj adc = adult day car

Passenger Code: e = elderly; h = handicapped; eh = elderly handicappe
weh = wheelchair elderly handicapped.

Med# Last Name

TOTAL TRIPS: S

COST: S

FIGURE D-16. CITYBILL REPORT

MEDICAID INVOICE
Month: May

First Name Trip Date Destination Trip#

FIGURE D-17. MEDBILL REPORT

D-17

S E

oXxTxTXTITX

VEHICLE SCHEDULE

Vehicle #: SE

Date: § E
Tise Last Name First Name Address City Destination RT Time Class Purpose Special Needs
SES ES E S ES ES ESE SE SE] E

FIGURE D-18. VEHSCHED REPORT

D-18

D-5. COMPLETE MASTER CLIENT FILE

D-19

Last Name First Name
Abbott Cathaerine
Allen Helen
Allenson Herbert
Aries Rose
frmas Marie
Auld Grace
Auld Nellie
fAvallon Kathieen
Baker John
Barrett Robert
Battis £dith
Bensten Ellen
Berman Helen
Biden Manuel
Boggs Vickie
Boisvert Mildred
Boren Hilda
Boyd Thomas
Bradley Ruth
Buckley kargueriie
Buckner Marion
Buckner Eliza
Bumpers Blanche
Busheuff Kary
Cabrera Florence
Caliahan Arthur
Carmichael Lillian
Chaffee Claire
Chiles Bertha
Ciark Paula
Clear Alice
Ciemens Vanessa
Cohen Dora
Considine Gladys
Crain Helen
Craig Alice
Crawford filida
Curren Cindy
Cutler Miriam
Davis Eveiyn
Denny Charles

D
d264
2146
0154
2077
71
203!
8143
oe72
de01
2129
8135
2090
2006
8132
dee
0256
8148
816
8041
223t
2042
eec:
0143
8137
di62
2049
8027
2245
82
8118
2164
0063
8019
2026
8133
17
2183
8142
2032
81@2
#0235

Address

9722 Bridge
5@ Lawiner
53 Rustown

i3 Frincewcod
i2 Snow

27 Teaiford
{28 San Marcus
{ Vickie

65 Bass

66 Kenwood
481 Dates

4 Beachway
23 Sheryl

29 Coronation
13 Dyer

3 Alford

1@ Downing

339 Aster

5 Ryan

i@8 Syracuse
156 Sandra
129 Lance

128 Ocean Qve
4 Point East
73 Larry

688 Mercedes
19 Fairhaven
9 Woodwind

23 Eastwoos
1378 Samuell
39 Eastwood
43 Harper

28 Lucilie

15 Healy

79 Sidney
584 University
5 Little Pocket
62 Parkhurst
21 Woodale
201 Bella Vista
79 Patty

FIGURE D-19.

AASTER CLIENT FILE

1
a
5
City 5 Soecheed
Yaraouth e ne phove
Centervill eh
Cotuit wenh
Dennis e medicatic
Dennis e
Dannis eh
Falmouth en
Dernis e struciure
Dennis e
Falwouth e
Hyannis wen
Hyannis eh structure
Yarmouth o 2gicatin
Falmouth e
Aocasset eh
Lennis e
Falmouth e
Sandwich eh
Yarmouth en
Falmouth e escort
Yarmouth h
Hyarnis eh
Falmouth eh
Bourne en wmedicatia
Bourne weh
Yarmouth e
Yarmouth e
Dennis e
Harwich e
Falwouth n
¥ashoee eh
Yarmouth e
Yarmouth e
Yarmouth !
Falmouth eh redicatio
Harwich e
Yarsouth e
Falmouth h
Yarmouth o
Dennis e
Yarmouth e

D-20

"
M|

1

t
Yed# XX# 5
628982
251753 398

313952 275743 22
243904 35£433 34

293573
386152

473145

817228 111341 12
22116
328827
535163
(67177 497833 @2
Lb4eR2

176443 5@
278766
876847 277433 43

SQ935

415643 0

MASTER CLIENT FILE

Term Date

23/31/73

Term wkhy?
aoved
9/38/79

28/31/73
&3/33/73

€3/31/79 overdue biil

/31179

12/31/73

85/31/75
21/31/88

CEenEases

84/38/79

tditDate
25/31/79
85/86/79
35/14173
23/93/73
B¥3/16/73
#5/15/73
85/11/79
$5/17/75
85/21/73
23/ 11775
#5/15/73
85/12/73
96/11/73
9712773
35/17/739
25/85/73
35/31/73
85/:9/7%
25/23/79
25/13/19
85/24/73
25/89/75
25/@5/79
85/17/79
85/21/73
0S/04/75
25/12/73
85/38/75
35/85/79
85/23/79
35/31/78
85/12/75
25/87/79
85/31/713
85/28/73
#5/85/73
85/21/79
43/83/75
35/16/79
45/20/79
3S/28/79

Last Name
Denton
DiLuzio
Dodd
donadio
garl
tasier
£ast
Edelstein
Evans
Fischer
Fleishman
Fuoeco
Gedman
Gien
golden
Srieble
Griffin
Griswoid
Grollman
Suttierez
Haraan
Hawking
rieinz
Helims
Hillegass
roffinan
Hunahrey
Hunt

riunt
Hurst
Kastens
Kaufman
derry
Kiley
Lagon
Lawson
Leany
LOCKe
ioiselle
Long
Luger

First Nawe
¥iigred
Helen
Madeiine
£thel
John
Joachin
Sarah
Doroihy
Hilda
Florence
Glive
fndy
Corinne
Charictie
Janes
iarke
Genevigv
Ethe!l
iga
Isabelie
Rabert
Eiieen
Richard
Helen
Aores
Manuel
Bertha
Elizabeth
Yary
Anna
Gecrge
aereviev
Sheila
Milcred
Peter
Mageiine
Williaw
Cathleen
wuente
Yolanda
John

T
i

8136
@ea7
5243

2875
8163
2284
@267
2223
2037
3d34
3136
2259

#285
&u8?
2i4t
8837
2933
W12
2137
3id:
8273
oLi4
2238
dics
2128
ddce
2138
039
Bitl
2073
274
035
2131
23
2124
8216
2273
VRS
2123

Address

11 Woodale
196 Mayfiower
163 Deik

a7 Hiilglen
47 Zustic

B4 Fuller

12 Dunbarton
143 Ruth Ann
21 Lockhary
331 Joyce

9 Traillridge
1437 Live Jax
43 Angrea

23 Camp Drive
43 Eastwood
5@ Hermitage
4 Paany

57 fnita

63 Bedford
14 Marigoit
4p Wyatt

o4 Syracuse
1 Asaburton
128 Cowing
428 Highland
149 Firview
14 Northview
Tem's Trail
7: Belhaven
181 Albany

1338 Hurricane

24 Chesley
82 Grosvener
14 Clover
1531 B=arcon
58 Vailey
948 highland
17 Fringewood
14 Mark

3 Lewis
Fishfry

FIGURE D-19.

¥ASTER CLIENT FILE

City
Falmeuth
Yargouth
Haraich
Saganore
Dennis
Bowrne
Yarmouth
Yarmouth
Yarasouth
Dennis
Dennis
Pocasset
Hyannis
Brewster
Denris
Faimouth
Falmouthn
Dennis
Dernis
Yarmoutn
Falmouth
Yarnouth
dyannis
Yarsoush
Yarmouth
Falmouth
Dennis
Yaraicuth
Falmouth
Yarmoith
Dennis
Hyawrnis
ryannis
Yarmouth
Falmouth
Yarncuth
Centerviil
Yarncuth
Dernis
Mashzee
Falmouth

C u
: n
E] i
s t
5 Saoecheed Med# XK# 5

e

e 537443 @3

2 9/u drugs

h 87¢580

h

en nredicatio 278538

ah 184621

]

eh 443443 13

egh ascort

]

weh

Ash 241282

h

e escort

en structure 568302

e

e 236424 413833 @¢

]

weh

eh eascort 614760

e

wah 383379

2

e

eh 258133

e medicatio 137653 5@

e

eh 9659433 23

g 646443 42

&h

eh escort 3E283¢

]

h ro shone

ah

e

eh 526711

weh

weh

eh 837683 441043 &5

wh 525048

MASTER CLIENT FILE (CON'T)

D-21

Term Date

Tern khy?

EditDate

86/30/79
85/31/79

13/33/19

PSTRSTRS

25/31/79

86/33/88

29/38/719
83/31/8%

25/31/79

89/30/79

biil overdue

eligibility

woved

25/85/19
05/10/73
#5/31/19
25/04/79
25/01/73
05/21/73
85/07/79
#5/12/79
25/09/79
05/20/79
#5/16/79
85/16/79
25/14/79
05/08/79
25/08/79
25/04/79
25/02/79
25/15/79
#5/15/719
#5/31/79
25/04/79
#5/13/73
5/18/79
25/22/19
25/14/79
05/12/79
%/21/719
e5/10/79
85/03/79
05/17/79
05/25/79
05/15/79
35/19/79
#5/18/73
25/18/79
25/07/13
25/31/719
05/04/73
#5/04/79
25/14/79
35/16/79

Last Name FIrst Name
Lyons Joseon
marcus *ary
Markovsxy Nancy
Hatnias Miiton
meyer Raloh
®iils Ann
mitenelil Rhoda
Mondale Jazes
Monihar Heien
forris Eine:
moses doser
Mufsor Fiorence
mufson Doris
Aurry Gia
Newnar: James
Nichois Nichoias
Nunn Ann
Jieda Savisho
Ormsby Rosina
Parcnuke Riice
Peexe tary
Pel Mary
Pel: nell
Percy friorec
Derimutter ica
Proxgire =arry
Pryor Avis
Pryor Euzene
fuicne Melocy
Rana Irere
Remy farie
Rice Haron
Roth marion
Rudmar: Aeoert
Russc Rov
Sancman Theresa
Sarpannes Ricnard
Sasser cresodia
Seal farie
Sharff Irene
Sherwan niiton

&l61
8:47
a:37
2135
8246
#278
8113
8:32
2065
26

T
ad

e0az
2858
¢166
3833
@ige
B35
3126
2829
2286
dp4e
87
2311
g5
Riig
47
g.22
@:2:
2.8
Q.42
21e
LEst
2139
P
2833
¢147
PR
3143
3izh
235
2:13

Adaress

1945 warm Sorin
S Piper

9 San relipe
23 N

83 wesstsnore
81 Pinecrest
29 Shaw

3 Live Qak

49 Fermick

2 Sweeiwaier
i4 Laxecaie
14 Jurics

8 Mill River
7. washum

3 Fiamingo

& Paverick
54 Lorofeliow
128 Nashua
1335 Towreast
mitgmill Vilisz
11 Cumderiand
38 Barzara

¢ Samer

L £ast wnart
13 Aaisenavern
17 wancing

2 Filgria
26 Flouncer
Basalas
St Frarcis
15 Mahew

4 wyati

1882 Fermsy.ivan
137 ¥ain

288 Brocfielg
1587 vinewooo
46 Zrglewacc
1d: _obster
7¢ *orelard
61 Staiicup

el o
i Ceiz Ridg

(¥~ & 1}

FIGURE D-19.

MASTER CLIENT FILE

¢
a
s
City s
Sancwich en
Lenterviil e
Masnoee b
Pocasset wh
Hyantis en
Yarmoutn eh
Cotuit an
Buzzarcs B wa
Brewster wen
Dernis e
Hyamnis wn
nyannis 2
Yarsoutn ah
Hyannis €
Varmoutn 2
Yarsiouis e
Yaraguth e
Pccassei e
Yaracutn e
Dennis e
Yarmousn @
Yarmolsn en
Yaraouin e
Denris e
Lennis e
Yarmcuzn @
-a0asset a2n
rvarnis en
Orizars a
ralmodtn @
Yarmouth en
Harw.cn en
Centerviil weh
Cnatnax e
Yaruguth ah
hyannis b
Masnoes]
Faimouzn en
Centerviil en
Harwicn e
Sourne e

SpecNeec

¥ag3

n <t s

X# Tern Date

Tera any?

toitlate

i rxt goc

hg Ohnare

ng 2nane

7S ohone

structinz

ES201MT

structirs

no ohcne

strycture
i w/aun

medicatic

#37738

831584

3523328

236.68

86ds1e

743236

£3543%

iTaea
41278

3987H

483833 @ @2/28/73

MASTER CLIENT FILE (CON'T)

D-22

celzasec

5/23178
&3/2:/13
25/28/719
93/8/1S
3E/81779
e5/82/75
25/23/719
83/89/15
35/11/19
é3/12/19
£3/13/79
L3/06779
35/10/79
3/3./719
85/2:/79
S/IE/TE
35/8/19
€5/.3175
#3/:3.79
&5/89/79
/227719
&7/82/19
3/25/79
&5/14775
15/24/19
L3/82/775
3718779
&5/18/79
257867713
83/2:775
23/23/75
3783715
85/18/79
85/.7/15
&/1778
85/85/7S
/29779
85/87775
£3/15775
85/15/75
¥5/158/79

Last Name First Name
Smitn flzert
Soecter JonY:
Safford Julia
Stariey Aarrier
Staoiaton £iizamets
Stennis nelen
Stewart Bertna
Tanner fnn
Tratcner Kathryn
Theoboic Rogar
Tower Nicholas
waish Mary
warner Neille
weixer Catnerine
wirkier Jonn

wise Juiia
Young fargaret
Lukin Katherine

iD

Address

31 Housisy
&4 vinton
2382 Natura
191 Hiii gien
25 Clson

23 wyatt

14 Aorman

7 ¥onticelio
48 Ewerald
134 Forest
¢7 Sreaker
2€ Sinclair
13 Saarl

2i Caboy

23 Betn

198 Tahoe

48 Snervi
108 Lawther

FIGURE D-19.

MASTER CLIENT FiLE

Yarmouth
nyannis
Falmouth
Faimoutn
Dennis
Yarmoutn
HArWLON
dyannis
Denras
ryamnis
Focasset
dennis
Fa.moutn
Cotuit
Faimouth
Yarmouln
Yarmouth
Hyannis

c

a

[

5 Soecheec MecdE KA#
eh 111338
e
an 843343
WEN
wen 768833
e 263738 18443
]
eh mecicatic &:iZtc
an 111347
wel
wan
g 647543
en 543587
weh
en 232433
e

eh medicatis
en

D-23

283986

el

e §

b e

49

-d

o

MASTER CLIENT FILE (CON'T)

Ters Datz Term Wny? cditDate
23/31/75 85/22/79
85714773
B4/38/88 /173
23/@2173
05/38/75 ¢5/38/73
81/31/88 83/26/73
25/:4/19
€3/:.3775
Li/38/73 25/@1/73
&s/87/73
&R
d&/8:/79 /6175
25/86779
85/3.775
&9/32/73 85/:2175
25718775
85/31/79 overdue pill @5/11/79
85/06/75

APPENDIX E
BLANK FORMS

This Appendix contains blank forms for your use in manually designing your
R:base data base. The following forms are provided:

e Attribute Definition
e Report Layout

E-1

ATTRIBUTE DEFINITION FORM

Attribute * Name Type Length Key

FIGURE E-1. ATTRIBUTE DEFINITION FORM

E-2

€-3

FIELD NAME

LINE
NUMBER

ATTRIBUTE
OR VARIALBE
NAME

DATA
LINE
NOS.

BEGIN
NAME
coL.

END
NAME
coL.

NAME
WIDTH

BEGIN
DATA
coL.

END
DATA
CoL.

DATA
WIDTH

REPORT COMPUTATION

FIGURE E-2.

MANUALLY LAYOUT OUT THE REPORT DESIGN

APPENDIX F
NEW R:BASE FEATURES

F-1. INTRODUCTION

The new R:base version 1.11 is an upgrade of the original version 1.01,
incorporating several new interesting features that can be summarized as
follows:

e local variables can be used to support conditionals, computations, to
move data from one relation to another, and to read input from the
keyboard;

e conditional and "loop" processing commands to be used in creating
command files for customizing applications and repetitive processes;

e file processing commands to be used in creating command files and
looking at them, i.e., DOS commands available directly from R:base;

® a new relational command to add rows from one relation to the end of
another relation.

Each feature is explained below.
F-2. LOCAL VARIABLES
Local variables are created by assigning them a value with-the "set", "fillin"

or "compute" commands. Their values may be reset or recomputed at any time by
using the same three commands. The syntax of these commands is:

“SET VARIABLE varname TO [value] (IN relname) (WHERE...)"
varname

expression
attname

"FILLIN varname USING "prompt message" (AT x y)"
"COMPUTE varname AS [COUNT] attname FROM relname (WHERE...)"

MIN
MAX
AVE
SUM
ALL
Where:
e varname is the name given to the local variable (max. 8 characters);
e attname is the name of an attribute;
e relname is the name of a relation;
e '"prompt message" is the message used to prompt the operator to type

the value of the local variable being defined;
X, y are the coordinates (x<=24, y<=80) representing the row and
column where the prompt message will begin on the screen.

F-1

F-3. CONDITIONAL PROCESSING

The "IF" command is used in a command file to conditionally process a series
of commands. It tests a set of conditions and, if those conditions are met,
then all command lines up to the corresponding (and obligatory) "ENDIF"
command are processed once. The syntax is:

"IF conditionl ([AND] condition2...) THEN
SR M e

ENDIF"

The conditions are specified in the same way as in the WHERE clause, except
that local variables are tested, rather than attributes in a relation. The
conditions are formed by comparing a variable name to a value, another
variable name or an expression. The "WHILE" command has the same structure of
the "IF" command, substituting "IF" for "WHILE" and "ENDIF" for "ENDWHILE".
The difference is that all commands between the "WHILE" and the "ENDWHILE" are
processed repeatedly until the conditions in the "WHILE" statement are no
longer met.

The "QUIT" command is used to terminate all "WHILE" and "IF" blocks, exiting
the command file and returning control to the keyboard. The "QUIT" command
then closes all active command files.

F-4. FILE PROCESSING

The "DIR" command works the same as in MS-DOS, i.e., it provides a directory
of the files in the specified disk drive. The MS-DOS conventions about
wildcards, etc. are applicable here.

The "TYPE" command also works as in MS-D0S, displaying the contents of the
specified file on the screen.

The addition of these commands are major improvements. For example, under the
old system, it was necessary to exit R:base to check the file directory to
make sure file size was not too large to prevent specific operations. This
function can now be performed while remaining in R:base.

F-5. NEW RELATIONAL COMMAND

The "APPEND" command takes rows from one relation and appends them to the end
of another relation. Unlike the other relational commands, "APPEND" will not
create a new relation; instead, the destination relation is permanently
enlarged to include the new rows. The syntax is:

"APPEND relnamel TO relname2"

F-2

This command is very useful in adding a day's data entry onto a master
relation. For example, instead of "unioning" the various vehicle schedule
files to form yet a third file, you could simply combine two files into one.
This will greatly lessen the disk storage requirements of the scheduling
function.

F-3

-

T 8

HE 147.6 .C635 1984

07280

Commercial software
arrlications for v

SCRTD LIBRARY
425 SOUTH MAIN
LOS ANGELES, CA. 90013

DOT'I'84' 51 nr OROTH av 1 nnculus =
Com 1 5 ft pp P

6 .C65 1984

llIIIllI|I|||l|l||||ll||||||I||l||||||||||||||||Ill||||l||||l||l|ll||l

1000000k8

0”"""”1 rimna
S-Utiei e ‘*‘Nwﬁi‘i

TECRINOLOGY SHARING

A Program of the U.S. Department of Transportation

