Report No. OK-11-0003

BUS ROUTE DEMAND ANALYSIS

Allen R. Cook and Kenneth B. Morris
School of Civil Engineering and Environmental Science
The University of Oklahoma 202 West Boyd Street, Room 334
Norman, Oklahoma 73019

AUGUST 1985

Document is available to the U.S. public through the National Technical Information Service

Springfield, Virginia 22161

Prepared for

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

Technical Keport Documentation Page

METRIC CONVERSION FACTORS

EXECUTIVE SUMNARY

This final report is a review of the development of bus route demand models which make use of the TRANES computer prograns anc the 1980 Census. TRANES is an acronym for "Transportation Network Evaluation System." TRANES directly accesses U.S. Census Bureau STF-1 block level data tapes to compile demographic statistics within specified distances of individual bus stops. The Central Oklahoma Transportation and Parking Authority bus system of Oklahoma City was used as a case study to demonstrate several applications of TRANES in addition to the development of bus route demand models.

The TRANES computer programs were developed in San Diego, California, in the late 1970 s and have been used in a number of jurisdictions and by consulting firms. This report includes a iisting of all the TRANES programs used in the research (written in FORTRAN IV) as well as documentation on their use and transit route network coding. Early in the report the Census Bureau record system is discussed. TRANES can directly access city block level census statistics; but manual tabulation of the census statistics using census maps is necessary to capture the more extensive statistics contained at the larger census tract and block group level.

The report includes a literature review of past bus route demand models and a summary of the demographic characteristics of bus users and nonusers in Oklahoma City. Nine demographic variables were extracted from the block level census STF-1 tapes: total population, total black population, total population under 16 and over 64 years of age, and five housing variables. Block group level variables were determined manually within 1000 ft . of individual bus stops using maps and the STF-3 census tapes. Thirty-one demographic variables were thus collected: five categories each of race, total population by age, and female population ky age; seven categories of occupation; and seven ranges of household income.

The best bus route demand model based on the block level statistics was determined by regression analysis applied to the nine variables and ridership data from 23 bus routes. Each census variable was normalized by subtracting the mean from each variable observation and dividing this by the standard deviation. Regression equations for both $1,000 \mathrm{ft}$. and $2,500 \mathrm{ft}$. from the bus stop yielded R^{2} values of about 0.35 using the total population variable only. Forcing all nine block level variables into the equation improved the R^{2} to 0.742 for variable statistics within $1,000 \mathrm{ft}$. of the bus stops, comparable in performance to bus route demand models reported in the literature.

Principal components factor analysis with equamax orthogonal rotation was used with the block group level census variables to develop correlations between bus stop passenger loadings and cen-
sus statistics. Passenger loadings were counted at 372 bus stops along eight representative routes. The factor analysis yielded five factors which characterized the bus riders: high income professionals, race, youthful nonprofessionals, elderly, and middle-aged. These factors, except perhaps high income professionals, seemed to correlate with direct surveys of bus passengers corducted before this research was started. The five factors were then used in stepwise regression analysis along with bus travel time from each bus stop to the central business district. This produced a bus stop demand model with an R^{2} of 0.55 and all the factors except race.

These results indicated that TRANES should prove useful in the development and modification of bus stop locations, including route extensions or deletions. In Oklahoma City, at least, the correlation between census statistics at the block level and bus route demand was somewhat weak. The bus stop analyses with factor analysis and block group data has the disadvantage of requiring the manual determination of census statistics, unlike the fully automated application of TRANES to the much more limited block level data.

This report also includes several case study applications of TRANES to practical transit planning. New bus routes were designed for the suburb of Norman, Oklahoma, with the assistance of TRANES, where the objective was to serve the college and retirement age populations. The study required the development of a census data subset of the Oklahoma City metropolitan area data file. TRANES also is a convenient and sionificantly timesaving tool for compiling Federal Title VI civil rights reports. One possible problem with the latter application is that census statistics are "suppressed" (deleted from the data tapes) if too few minority households are located in a census block. This is done for considerations of household privacy but could lead to underreporting of thinly distributed minority populations.

Finally, this report documents the conversion of TRANES to microcomputer applications. A new version of TRANES was written in BASIC for a CP/M 2.2 Operating System which uses the dBase II Database Management System. The BASIC listing and instructions on its use are contained in the report.

Bus Route Demand Analysis was funded as project OK-11-0003 by the office of University Research and Training of the United States Urban Mass Transportation Administration in Washington, D.C. The support of the UMTA technical monitors, Nathaniel Jasper, Robert Trotter, and Thomas Hillegas, is gratefully acknowledged. Allen R. Cook served as principal investigator and Kenneth B. Morris was the senior research associate. Mr. Morris was responsible for implementing the TRANES computer programs and coordinating the efforts of the University of Oklahoma with local planning and transit agencies. He received a master of science degree in civil engineering in 1983, and his thesis project was derived from this research work.

The research investigators worked closely with officials of the Central Oklahoma Transportation and Parking Authority, whose transit system was used as the case study application of TRANES. The following COTPA officials are acknowledged for their support and guidance: John Terry Patillo, Executive Director; Mark Glandon, Director of Transportation; Kenneth Grantham, Coordinator of Planning and Marketing; John D. Shugart, Controller; and Michael Porter, Transportation Planner. In particular, the support of Ronnie Hull, Transportation Planner with COTPA, was vital to the success of the research. He was a former graduate student of the principal investigator and his enthusiastic support and willingness to provide all of the technical information needed were key factors which ensured the success of the research and facilitated the liaisons between COTPA and the University.

Mohsin A. Zaidi, Director of Community Development Planning and Services with the Association of Central Oklahoma Governments, provided support as needed. Mr. Morris worked part-time as a systems analyst with ACOG.

The TRANES computer programs were obtained by COTPA from the Comprehensive Planning Organization in San Diego, California, which originally developed the programs. Later versions of the programs and invaluable technical assistance were provided by Wesley R. Frysztacki and Robert Parrot of the Puget Sound Council of Govermments in Seattle, Washington. Both men had previously worked on the initial development of TRANES in San Diego. At the termination of the grant in 1983 Kenneth B. Morris joined the Puget Sound Council of Governments as a Transportation Systems Anaiyst where one of his assignments was to be the continued application of TRANES in Seattle.

At the University of Oklahoma the assistance of a colleague, Assistant Professor Thomas H. Maze, in the factor analysis of the bus route demand data is gratefully acknowledged. Bijan Badihian and Utpal Dutta were employed as research associates. Mr. Badihiar was in charge of the literature reviews, TRANES network
coding, and field bus rcute demand data collection. He wrote the first draft of Appendix C of this report. Mr. Dutta assisted in the network coding and performed most of the statistical analysis. They were assisted in the bus route field data collection efforts by student assistants Akraiy Abu-Salah, Sad Elgharaibeh, Walid Ishrug-Laban, and S. Mostaffa.

Elie J. Malouf, a senior student in civil engineering, prepared the Norman transit system case study as a senior design project under the direction of Kenneth B. Morris. He obtained operational and financial information from Mr. Ron Sweet, director of The University of Oklahoma Campus Area Rapid Transit bus system.

Finally, this report was ably word-processed by Betty Craig and Barbara Jones, proficient technical typists at the University. Joan P. Howeth of the University's Office of Grants and Contracts was responsible for the financial record-keeping.

TABLE OF CONTENTS

Page
METRIC CONVERSION FACTORS ii
EXECUTIVE SUMMARY iii
ACKNOWLEDGEMENTS V
INTKODUCTION 1.
TRANSPORTATION NETWORK EVALUATION SYSTEM (TRANES) 1
TRANES Overview 1
United States Census Records 2
GBF/DIME File System 4
TRANES Network Development and Coding 4
Report Overview. 6
DETERMINANTS OF BUS ROU'SE DEMAND 10
Bus Route Demand Models 10
Transit Trip Generation Determinants 11
Applications of U.S. Census Statistics 12
Walking Patterns to Bus Stops 12
Accuracy of Bus Route Demand Models 13
COTPA BUS SYSTEM CHARACTERISTICS AND ROUTE DEMAND 14
BUS ROUTE DEMAND ANALYSIS WITH TRANES 26
Network and Demand Data Development 26
Analysis with U.S. Census Block Data (STF1) 31
Analysis with U.S. Census Block Group Data (STF3) 38
Conclusions 43
CAGE STUDY APPLICATIONS OF TRANES 45
Demographic Reports by Bus Route 45
Norman Bus Route Analysis 45
Title VI Reporting Requirements 46
OI'HER POSSIBLE APELICATIONS OF TRANES 49
Successive Overlays 49
Route Modifications 49
Support for Other Bus Route Demand Models. 49
CONCLUSIONS AND SUGGFSTED RESEARCH 50
Table of Contents (continued)
Page
APPENDIX A: TRANSIT NETWORK EVALUATION SYSTEM (TRANES) 51
INPUT REQUIREMENTS 51
Preprocessor Programs 51
EXTRACTOR Program 53
TRANES INPUT FILES 54
TRANES PROGRAM 54
APPENDIX B: TRANES COMPUTER PROGRAM LISIING 56
Preprocessor Programs 57
NP1-1 (Extract Map/Node and Tract/Node Records) 57
NP1-3 (Selections of Unique Nodes for Maps and Tracts) 58
NP1-4 (Create Map/Node and Tract/Node Files and a Tract/Pointer File) 59
DIMECON 62
EXTRACTOR Program 64
LIST Program 70
TRANES Program 71
MAIN Program. 71
Subroutine INPUT 79
Subroutine DATAIN 85
Subroutine LINKER 86
APPENDIX C: T'RANES NETWORK DEVELOPMENT AND CODING 89
GBF/DIME FILES 89
TRANES NETWORK CODING 91
Metropolitan Map Series 91
Transit Network Route Information 91
Map Preparation Procedure 93
Nietwork DIME File Node Tabulation 93
Node Number Preprocessor 96
TRANES Node Number Extraction 96

Table of Conterts (continued)

Page
INPUTY DATA PREPARATION FOR THE TRANES PROGRAM 96
SUMMARY 101
APPENDIX D: TRANES TRANSIT EQUIVALENCY TABLES FOR NORMAN, OKLAHOMA 102
APPENDIX E: MICROTRANES 122
OVERVIEW 122
POTENTIAL APPLICATIONS 123
MICROTRANES SOFTWARE REQUIREMENTS 124
CP/M 2.2 Operating system 124
Microsoft BASIC 125
dBase II Database Management System 125
MICPOTRANES HARDWARE REQUIREMENTS 127
MICROTRANES PROGRAMS AND FILES 129
Menu of Capabilities 129
MICROTRANES Data Files 130
MICRO-EXTRACT Program 131
MICRO-DEMAND Program. 131
MICRO-LIST Program 132
Main Program 132
OPEPATIONAL USE OF MICROTRANES 133
APPENDIX $\mathrm{F}:$ MICROTRANES COMPUTER PROGRAM LISTING 134
BIBI IOGRAPHY 160

IITST OF ILLUSTRATIONS

number Titie Page
UNITED STATES BUREAU OF THE CENSUS GEOGRAPHY 3
2 CENSUS TRACTS FOR OKLAHOMA CITY URBENIZED AREA 5
DETAIL OF CENSUS TRACTS IN SOUTHERNOKLAHOMA CITY7SURVEY TRTP SHEET32
11 TRANES NODE NUMBER MATCHING FORM. 33
12 BUS ROUTE RIDERSHIP VS. TRANES TOTAL POPULATION WITHIN 1,000 FEET 36
13 BUS ROUTE RIDERSHIP VS. TRANES TOTAL POFULATION WITHIN 2,500 FEET 37
A-1 TRANES FROGRAMS AND THEIR ASSOCIATED DATA FILES 52
C-1 GBF/DIME STREET SEGMENT FILE RECORD 90
C-2 TRANES CODING MAP 92
C-3 TRANES NEIWORK CODING IN TRACT 1072.18 94
C-4 TRANES NETWORK CODING FORM 95
C-5 TRAIJES NETWORK CODING FORM FILLED IN 97
C-6 TRANES NETWORK CODING FORM FOR BUS ROUTE 13 99
D-1 CENSUS TRACTS FOR NORMAN, OKLAHOMA. 103
Number Title Page
COTPA BUS ROUTE DESIGNATIONS 16
10
INTERPRETATION OF ROTATED ORTHOGONAL FACTOR LOADINGS 4111C-1
C-2
PEAK HOUR LOAD FACTORS ON COTPA BUS ROUTES, MARCH 1983 19
1980 CENSUS PROFILE OF SELECTED DEMOGRAPHIC CHARACTERISTICS OF OKLAHOMA CITY 20
DEMOGRAPHIC PROFILE COMPARISONS 23
CENSUS BLOCK STATISTICS EXTRACTED FROM THE STF 1 CENSUS TAPE 27
CENSUS BLOCK GROUP STATISTICS EXTRACTED FROM THE STF3 CENSUS TAPE 28
1980 CENSUS TABUIsATION TOTALS BY ROUTE WITHIN 1,000 FEET OF BUS STOPS 34
1980 CENSUS TABULATION TOTALS BY ROUTE WITHIN 2,500 FEET OF BUS STOPS 35
ROTATED ORTHOGONAL FACTOR LOADINGS 39
REGRESSION EQUATION FOR BUS STOP DEMAND USING FACTORS AND TRAVEL TIME TO CBD 42
EXAMPLE TRANES EQUIVALENCY TABLES 98
TRANES NODE NUMBERS FOR COTPA BUS ROUTES 100

BUS ROUTE DEMAND ANAL.YSIS

* * *

INTRODUCTION

This final report is a review of the development of bus route demand models which make use of TRANES computer programs and their case study application to bus routes operated by the Central Oklahoma Transportation and Parking Authority in Oklahoma City, Oklahoma. The report includes a literature review of the state-of-the-art in bus route demand modeling and how past models compare with those developed in this research. Finally, potential applications of the TRANES computer programs are discussed.

TRANES Overview

TRANES is an acronym which stands for "Transit Network Evaluation System." The TRANES computer programs enable the bus transit planner to access U.S. Census Bureau data tapes and accumulate this information along individual bus routes and specific stops. For example, TRANES can report the total population, or any other available census statistic, living within a designated distance of a bus stop. This information can potentially be used in the design of bus stop and route locations or used merely to summarize demographic statistics by route.

In the case of the research reported in this report, the development of bus route demand models is investigated under the hypothesis that demand, at least in part, is a function of accessibility to the transit network. Alternatively, bus routes may be located where the propensity to use transit is highest, e.g., densely developed areas or areas populated with people who tend to regularly use transit.

The TRANES computer programs were developed in San Diego, California, in the late 1970 s (75). TRANES has been used by the Comprehensive Planning Organization in Sar Diego to plan route modifications and route alternatives (81). Similar uses have been made by the Puget Sound Council of Governments in Seattle, Washington, and elsewhere, although experience in general is rather limited. McDonald Transit Associates, Inc., a consulting firm, has used TRANES to report the demographic characteristics of bus routes (11).

The TRANES programs are described in more detail in Appendix A. Program listings as used in this research are contained in Appendix B. TRANES is written in FORTRAN IV, a high level engineering and scientific computer progranming language, and the programs have been run on several different main frame and mini-computers.

United States Census Records

A comprehensive census of the population is conducted every ten years in the United States by the Bureau of the Census, most recently in 1980. The research in this study made use of the 1980 census statistics, which are made available by the Bureau of the Census to interested parties on computer data tapes. The available statistics are reviewed in more detail later in this report, but the significant ones in travel demand analysis are population totals, household income, and automobile ownership.

Since TRANES essentially is a geographic data reporting system, it is important to understand the geographic reporting base structure of the Bureau of Census. This is summarized in Figure 1. In the 1980 Census metropolitan areas greater than 50,000 in total population have been designated as "Standard Metropolitan Statistical Areas", or SMSAs. The urbanized areas within the SMSA are subdivided into relatively homogeneous areas termed "census tracts." Census tracts typically contain 4,000 to 5,000 people and they are the smallest geographic unit in which all available census statistics are generally reported. In addition to being demographically homogeneous, tract boundaries follow streets and such other logical barriers as rivers and railroads. Census tracts respect political boundaries, including city and county lines, to enable aggregated statistical analysis of census data by political subdivision.

Each census tract is identified by a six digit number which is always a unique number within a county and generally within the entire SMSA. The first four digits are the basic tract number, and the remaining two digits are used if the tract is later subdivided because of population growth.

As evident in Figure 1, census tracts are too large for effective application to bus route demand analysis. Several bus routes and many stops can be contained within a tract and the boundaries, of course, do not correspond to bus routes except for the fact that arterial streets which have bus routes frequently form census tract boundaries as well.

Cersus tracts are subdivided into "block groups" and "blocks." The census block typically is the city block, formed entirely by streets and, occasionally, rivers or other geographic boundaries. Blocks are designated by a three digit number which is unique to the census tract. They are the smallest unit of census data aggregation, although, as detailed later, most census statistics are not available at the block level and the data that is available is subject to suppression (deleted from the data records) if it pertains to 15 or fewer individuals. The reason for this is individual privacy, since census records are anonymous. The household income characteristics of a small ethnic group, e.g., native Americans, may be unavailable for some blocks simply because there may be only one or several such households in a particular block. Thus, the investigator might be able to

CENSUS GEOGRAPHY

FIGURE 1

UNITED STATES BUREAU OF THE CENSUS GEOGRAPHY

Source: Reference 36, p. 21.
idertify specific households. In the larger urban region, such block-level statistics would be under-reported as a result.

The TRANES computer programs are specifically desigred to determine the minimum path along block faces to designated bus stops. For example, the programs can determine all of the block faces within 2,500 feet of the bus stop. The census data is reported simply by relating these blocks to the available census records, such as total population or total numbers of native Americans.

Since the census statistics at the block level are rather limited in number, this research also explored demand models which used "block group" statistics. As indicated in Figure 1, block groups are simply a group of contiguous blocks. Typically each census tract has two, three, or four block groups. The block group number is the first digit in the block number. Although block group census records are richer in available data, the group boundaries were not developed with bus routes in mind. Hence, their utility is that they are smaller tracts. Since TRANES cannot use block groups in minimum path determination, the bus route demand analyses done in this research with block groups was done with manually tabulated data. This is described in more detail later.

GBF/DIME File System

In order for the digital computer to access the above census geographies a machine-readable geographic coding system is needed. The U.S. Bureau of the Census developed the GBF/DIME file system as the geographic information system for census data analysis. GBF/DIME files are computerized representations of census geographical boundaries. GBF stands for "Geographic Base File," and DIME stands for "Dual Independent Map Encoding," the topological technique used for representing street networks and double-checking of the geocoding work. Each DIME file record inclucies street intersection node numbers, street name, address ranges, left and right block numbers, tract number, and usually, x and y grid coordinates to facilitate computer-based mapping.

The TRANES computer programs use the GBF/DIME file system to identify the block faces relative to the bus stops, and then to access the census records. The TRANES network development and coding is reviewed in detail in Appendix C along with a more thorough discussion of the GBF/Dime file system.

TRANES Network Development and Coding

A brief example of the coding of a TRANES network is presented here to clarify the above sections for the reader, and covered in more detail in Appendix C. Figure 2 indicates all of the census tracts in the Oklahoma City metropolitan area, the SMSA. There are 12,000 census blocks contained within these tracts.

F. closer view of the tracts in the southern part of Oklahoma City is depicted in Figure 3. While the tract boundaries typically follow major streets, several boundaries along rivers and railroads can be noted in the figure. As indicated earlier, census tracts are socio-economically homogeneous, hence the will Rogers Airport is isolated in its own tract. Finally, a six digit tract number, e.g., 1072.18, indicates that this tract is a subaivision of an earlier and larger tract once designated as 1072.

This census tract, 1072.18, is shaded in Figure 3 because it is used as an example in Appendix C. Figure 4 depicts a portion of the streets in this tract as well as that portion of COTPA's Route 2 which extends through the tract. Finally, Figure 5 depicts the census map which corresponds to the streets and bus route in Figure 4. This is an extract from the "Metropolitan Map Series" which shows the census tracts, blocks, node numbers, and other pertinent geographic features.

Figure 5 illustrates the TRANES network coding. The investigator simply designates the desired bus stops which are then related to GBF/DIME street intersection node numbers. Once processed by the computer, as illustrated in Appendix C, this information enables TRANES to access the census information in the blocks indicated in Figure 5. Finally, the designated bus stops determine the bus route, and TRANES can summarize the bus stop data by the total route or designated segments of the route.

Report Overview
The remainder of this report is organized as follows. A literature review of bus route demand modeling is presented in the next section, followed by more information on the bus routes of the case study system, the Central Oklahoma Transportation and Parking Authority. The demand model analyses are presented next. The report concludes with a review of potential applications of TRANES, some of which were demonstrated and implemented as part of the research, followed by suggestions for future research. The Appendices are reserved for detailed explanations in support of the main body of the report, notably computer programming aspects and network coding.

FIGURE 3
DETAIL OF CENSUS TRACTS IN SOUTHERN OKLAHOMA CITY

FIGURE 4

FIGURE 5
TRANES NETWORK CODING IN TRACT 1072.18

A literature review of previous work in bus route demand modeling was conducted as part of the effort to apply TRANES to the same topic. This is briefiy reported in the following sections which emphasize the types of models develop, the types of data used, specific uses of U.S. Census data in these models, walking patterns to bus stops, and the accuracy of previously reported mode?s.

Bus Route Demand Models

Menhard and Ruprecht (52) and Yuratovac (90, 95) have reviewed the state-of-the art in bus route demand modeling. Essentially, they identify four types of models:

1. Professional judgment,
2. Noncommittal potential ridership surveys,
3. Cross-sectional analysis (models which relate bus route ridership to level of service variables and socio-economic characteristics of the area served by the bus route), and
4. Time series analysis (models based on past ridership trends, largeiy pivot point and elasticity-based methods).

It seems evident that TRANES is applicable to both the professicnal judgement type of modeling and cross-sectional analysis. In the former case TRANES would be used merely to identify socio-economic statistics along the routes which, in turn, would be used by the transit planner to make judgments about the viability of a route and route segment. In this report, of course, TRANES is used to develop cross-sectional models.

Time series techniques and noncommittai surveys have no particular potential for application with TRANES, although TRANES could be used to augment a noncommittal survey. A number of investigators have developed time series models, including Benham (3), Kyte, $\in t$ al. (Box-Jenkins analysis techniques, 42), and Gaudry (18). Elasticity methods are a simpler form of time series analysis in that they predict changes in existing routes based on the elasticity of consumer response to changes in level of service factors (e.g., headway) or fare. None of the time series models seem appropriate for application with TRANES, in large part because the census data set is fixed in time.

Two types of cross-sectional bus route models dominate the literature, those which are patterned after the conventional four-step travel demand forecasting process, and direct demand models. Researchers who have investigated four-step models, which typicaliy include trip generation, distribution, and modal
split, include Horowitz and Metzger (31); Koppleman (40); Stopher, et al. (2); and UMTA-funded case studies in Cleveland and Portland, Oregon (91, 92). Stopher, et al., contend that UTPS can be safisfactorily used for route demand prediction with the addition of a special program. They reported accuracies in demand rrediction of ± 10 percent and said that their model configuration was particularly suitable for large bus systems.

The dominant form of cross-classification bus route demand model is direct demand, which essentially amounts to an emphasis on trip generation rather than consumer mode choice. This form of model is based on socio-economic characteristics of potential users, hence is the model category TRANES is best suited to. Among the direct demand bus route models found in the literature were models by Colangelo and Glaze (10), Golenberg and Pernaw (20), Nelson and o'Neil (56), and Shortreed (57). Regressicn anclysis predominates, either in the form of linear relationships or fricduct and log relationships between independent variables.

The bus route demand models in the literature typically predict demand for the entire route or along segments of routes. No models of individual bus stop demand were found, although Hobeika and Chu (28) report a supply/demand model which is sensitive to individual bus stops. Some demand models separate peak from off-peak conciitions. Most models address conventional fixedroute scrvice but scveral researchers have developed separate equations for different types of routes, e.g., radial, crosstown, and express. TRANES would not appear to be applicable to express services since the ridership is likely to come from a broadex coverage area when express routes cater to park-and-ride situations. In such cases demographic characteristics adjacent to park-and-ride bus stops are not likely to be relevant.

Tralsit Trip Generation Determinants
Three basic types of input variables predoninate in existing bus route demand models: socio-economic characteristics, level of service, and urban geographical statistics. Socio-economic characteristics typically include population, age, employment, and household characteristics such as income and auto ownership. Schmenner (64) devised a model which included race, schools, ard shopping centers.

Level of service variables are doriinated by the walking distance to bus stops (reported more fully in a following section), heacway, frequency of service, fare (in modal split and elasticity formulations), seats available, presence of transfers, and alternative competing services. Urban geographical statistics include route connectivity, service to activity centers, distance to the CBD, and such urban characteristics as city size, age, and geocraphic location.

In terms of correlations among variables, it is common to note correlations between household income and auto ownership
(10, 70, and 92). Brown (6) hypothesizes that the presence of bus service affects acjacent socio-economic patterrs, in that people with a propensity to use transit will gravitate to those corlidors where the service has a high level of service (i.e., transit level of service affects land use patterns). Among the variables he investigated were age, occupation, income, and auto cwnership.

fpplications of U.S. Census Statistics

U.S. Census statistics are commonly used to provide socioeconomic information, invariably census tract statistics. Since tracts are far too large to be useful for bus route analysis, jnvestigators typically lay out the bus route on a tract map and identify that portion of the tract which lies within a specified distance (typically $1 / 4 \mathrm{mile}$) of the route. The tract socioeconomic characteristics are assumed to be uniform throughout the tract and factored down to the region adjacent to the route. Past studies which have used census statistics in this manner include Fulton (17), Corradino (12, but with traffic zones instead of census tracts), Guest (23), Heathington and Brogan (27), Hobeika and Chu (28), Miller and Millar (53), and Peat, Marwick, Mitchell and $\overline{\mathrm{Co}}$. (85, 86, 87). Hunt, et al. (34) detailed their application of 1980 census data to Title VI compliance reporting using census tracts, a one-fourth-mile bus route service band, and interactive computer graphics. The computer determined what portion of the tracts were included within the service bands.

Walking Patterns to Bus Stops

Rus stop demand patterns have been investigated by a number of researchers. Demetsky and Iin (15) report the following bus stop impact distances as based on a survey of 67 transit agencies: 160 to $2,640 \mathrm{ft}$. in the CBD and 320 to $5,280 \mathrm{ft}$. in outlying areas. A common rule-of-thumb impact distance is $1 / 4$ milc or $1,320 \mathrm{ft}$. A synthesis report of bus route guidelines (77) suggests that bus stops should be spaced 0.25 to 0.375 miles apart (1,320 t.c 2,000 ft.) in urban areas (a five minute walk on average) or up to one mile (5,280 ft.) in outlying areas.

Bus ridership demand as a function of distarice to the bus stop has been investigated by Golenberg and Pernaw (20); Lam and Morrall (45); Lutin, et al. (48); and Levinson and Brown-West (46). Based on ridership surveys in Hartford, Conn., Levinson and Brown-west repurted that daily ridership per 100 dwelling units cecreased about 5 rides for every 100 ft . increase in distance, and even more with increased auto ownership. Their stucy of walking distances extended to $1,000 \mathrm{ft}$.

Lam and Morrall found that in Calgary, Alberta, Canada, 75 percent of the bus ridership lived within $1,476 \mathrm{ft}$. (450 m) of a bus stop and 95 percent within $2,600 \mathrm{ft}$. (800 m). The mean wall:ing distance was $1,073 \mathrm{ft}$. $(327 \mathrm{~m})$. These distances were
fourd to vary a little depending on season of the year and location within the urban area. Finally, Lutin, et al., determined that 75 percent of bus passengers lived within 1,100 ft. and 100 percent within about $2,000 \mathrm{ft}$. of bus stops, with a median distance of 700 ft .

Hsu and Surti (33, p. 456) commented: "Transit accessibility was the most important factor, while socio-economic factors suct as household income, automobile ownership, age, and ethnic factors did not have much effect on transit usage." Later in this report it was decided to focus on $1,000 \mathrm{ft}$. as an impact distance when using TRANES, although other distances extending to $2,500 \mathrm{ft}$. were also investigated.

Accuracy of Bus Route Demand Models
The accuracy of bus route demand models typically is reported ϵ ither in the percent error of direct estimates of route patronage, or the ccefficient of determination (R^{2}) of the models themselves. An approximate rule-of-thumb desired accuracy of demand predictions by route is ± 10 percent.

Route demand predictions in Portland, Oregon (91) tended to be over-estimated, with the over-estimates ranging from 4 percent to 122 percent and averaging 49 percent. In Cleveland (92) route prediction accuracy fanged from - 12.2 percent to +58.5 percent. Also in Cleveland R^{2} for varicus model formulations ranged from 0.355 to 0.826 .

Shortreed (67) reported that the route demand predictions of his regression models were accurate to within ± 25 percent by route. He developed 16 equations whose R^{2} ranged from 0.55 th 0.95. Schmonner (64) developed time series equations whose R^{2} ringed from 0.60 to 0.94 , with most R^{2} exceeding 0.70. Modeis developed by Hsu and Surti (32, 33) had R^{2} ranging from 0.575 to 0.656. Finally, Iuratovac (95) reported that his predictions of demand on segments of routes had percent errors ranging from - 21 percent to +76 percent, with a total route demand error of - 5 percert. He stated that other routes in his study had errors ranging from -2 to +8 percent.

At the time of this research in 1982/1983 the central OF:lahoma Trarsportation and Parking Authority (COTPA) maintained a fleet of 101 buses which had an average fleet age of 3.66 years. The fleet included five lift-equipped mini-buses for the taansport of the mobility impaired and four imitation trolley buses for downtown shuttle and charter service.

Seventy-one kuses provided regular daily service along 24 local and twelve express routes. These bus routes are depicted in Figure 6 and listed in Table 1. The majority of the local transit routes served the urbanized area of Oklahoma City, itself. The routes were interlocked and radial in configuration with a common downtown transfer location operated as a timed transfer pulse service. All of the local routes provided 30 min ute heacways. COTPA buses logged some 9,937 bus-miles each day, Monay through Friday, and 3,550 bus-miles on Saturdays.

System patronage trends are depicted in Figure 7 for the fiscal years 1980/1981, 1981/1982, and 1982/1983. Patronage had generally increased from 1980 through 1981 and then declined throughout 1982. In late 1982 headways were decreased from one hour to 30 minutes and patronage increased to about 11,500 patrons per day in 1983 when the studies of this report were conducted. No significant seasonal trends are evident although patrorage is hichest in the winter months, October to March.

Average daily passenger demand by route for the first five months of 1983 is depicted in Figure 8 and route load factors are listed in Table 2. This information was collected by COTPA personnel. (Figure 8 was derived from routine passenger ioading statistics collected every month) or consultants. By national transit standards the local routes are relatively underutilized ard some routes were barely justified in terms of demand. The most heavily patronized routes (e.g., routes $2,3,4,5$, and 8) tended to be radial routes serving the central portions of the metropolitian area, usually neighborhoods with concentrations of l.ow income or minority groups.

No specific surveys of the passenger composition were conducted as part of this research, but a study had been made by A'TE Management \& Service Company, Inc., in early 1982 (8). For the purposes of comparison, a 1980 census profile for $\overline{\mathrm{k}}$ lahoma City is presented in Table 3. Oklahoma City had a population of 404,014 in 1980, which was an increase of 9.7 percent over 1970. The population was 80 percent white, 14.6 percent black, 2.6 percent American Indian, and the remainder a scattering of minorities. Oklahoma City is relatively prosperous with a low rate of unemployment and jobs dominated by the government and service sectors. The city is the state capitol and the center of a large agricultural and petroleum industry service area. The dominant housing unit is the owner-occupied single family home.

FIGURE 6
COTPA BUS ROUTES, 1983

TABLE 1

(OrjPA BUS ROUTE DESICNATIONS

Route Number	Designation
1	Garden Day
2	NE 23rd \& Miramar
3	Park Estates
4	N Walker
5	N Western/Britton
6	48 th \& Classen/PenN Square
7	N Penn
8	NW 63rd \& Tulsa/Shepherd Mall
9	Windsor Hills/Bethany
10	NW 31st \& Portland/Crestwood
11	SW 36th \& Dumas
12	S May/ OCCC
13	S Blackwelder
14	S Shields/Crossroads Mall
15	Midwest/Del City
16	S Penn
19	NW 23rd St. Crosstown
20	SE OKC/Crossroads Mall
21	N May
22	NE 63rd \& Eastern/Zoo
23	Norman Express
26	NW Expressway Express
27	Downtown/OUHSC/State Capitol
28	First National Bank Farking Loop
29	FAA Express
30	Tinker Taxi Express
31	N Robinson/Musgrave
32	Western Electric Express
34	Midwest Miler Express
37	Edmond Express
38	I-40 \& Meridian
40	S Walker
44	Downtown Shuttle

MONTH
FIGURE

PASSENGERS PER DAY

FIGURE 8
PASSENGERS PER DAY ON COTPA BUS ROUTES

HEAK HOUR LOAD EACTORS ON COTPA BUE ROUTES, MARCH 1983

Route	$\begin{aligned} & \text { Number of } \\ & \text { Trip } \end{aligned}$	Number of seats	Number of L Passengers S	Load Factor Seats/Passengers
1*	3	133	72	. 54
2*	4	179	97	. 54
3*	2	87	54	. 62
4	2	91	27	. 30
5*	2	91	63	. 69
6	2	90	21	. 23
7	2	91	31	. 34
8	2	90	27	. 30
9*	4	181	127	. 70
10	2	91	38	. 42
11*	2	82	42	. 51
12	2	91	39	. 43
13	2	91	26	. 29
14	3	133	24	. 18
15*	1	46	47	1.02
16	3	137	40	. 29
18	2	82	21	. 26
19	2	91	19	. 21
20	-	91.	14	. 15
21*	2	45	54	. 60
22	2	90	36	. 40
23	1	41	17	. 41
25*	1	41	19	. 46
26*	3	127	106	. 83
27	2	82	3	. 04
28	3	135	28	. 21
29	2	86	37	. 43
30	2	87	25	. 29
31	2	91	35	. 38
32*,	3	127	54	. 43
33	1	45	17	. 38
34+	1	46	11	. 24
37*	2	86	68	. 79
38	2	91	25	. 27
40	1	45	20	. 44
44	1	24	6	. 25
			SYSTEM LOAD FACTOR	R . 41

NOTE: Load factor analysis represents data collected on Wednesday, March 16, 19\&3. Computations were made for all routes, within the entire syster, during the A.M. Peak Period from 5:45 a.m. - 9:15 a.m. Tre selected peak one-hour period was 6:10 a.m. - 7:10 a.m., which represents maximum ridership and peak direction (inbound) only.

[^0]
1980 CLNSUS PROFIIEE OF SETECRED DEMOGRAPHIC CHARACTERISTICS OF OKLAHOMA CITY

Charectoristic	Number	Percent
Total population:		
1980 (of rotal)	404,014	
1970 (8 of Total)	368,377	
Change	35,637	9.7

Age:

School Age $(5-17)$	77,112	19.1
65 and over	45,368	11.3
Median Fge	29.9	

Race:
White
322,374
80.0

Flack
American Tndian
Ethnicity, Spanish Origin
Household Income, 1979 (Base):
58,702
10,405
14.6

11,2.95
160,442
Less Than \$7,500
35,575
22.2
$\$ 70,000-\$ 19,999$
$\$ 20,000$ and over
Mediar:
49.462
30.8

19,350

Fiduc. Attainment (Persons 25+):
240,471
High School Graduates 82,173
34.2
une or More Yeaxs College
92,005
38.3

Median Years
12.7

Occupation (Employea persons 16+): 191,843
Menagerial a Prcfessional 45,694
23.8

Precision Prod., Craft \& Repair 25,597
13.3
oper., Fabricators \& iaborers
29.291
15.3

Industry (Employed Persons 16+): 191,843

Construction	11,485	6.0
Manufacturing	28,899	15.1
Fetail Tracie	32,214	16.8
Finance, Insurarce \& Real Estate	14,732	7.7
Frofessional\& Relatoc Services	35,847	18.7
Public Administration	16,050	8.4

TABLE:

1980 CENSLIS PFOFILE OF SEIECTED DEMOGRAPHIC CHARACTERISTICS OF OKLAHOMA (Continued)

Characteristic	Number	Percent
jotal Housing Units (Year Round):	177,088	
Single Family		
Multi-Family (3+ Units)		
Mobile Home	123,543	69.8
Total Households (100\% Sample):	42,248	23.9

ATL: did a random telephone survey of 900 oklahoma City metropuiitan area residents in February 1982 (8). They determined that CO'fPA had an unusually low user incidence rate; twelve percent of the adults surveyed had used COTPA services in the preceding twelve months. They attributed this to the low population densities in the sprawling metropolitan area and a "frontier" mertality which made most residents covet the mobility advantages of their automobiles.

The results of the telephone survey are summarized in Table 4 for demographic categories similar to those of Table 3. The statistics are separately listed for "frequent users," "infre-quent users," "potential users," and "staunch non-users" as defined in the table. ATE characterized the typical frequent CorPA patron as under 35 or over 55 years in age, female, white, inccme less than $\$ 20,000$ per year, unemployed or engaged in service or clerical work, working downtown, and more likely than not to have a driver's license and access to an automobile. The dominant trip purposes among frequent users were for work (71. percent) and shopping (39 percent).

Infrequent or potential users were much more likely to be unemployed and they cited economic necessity as reasons for taking the bus. These users were much less likely to be employed dowr.town, the node of greatest accessibility in the COTPA network. Staunch non-users had higher incomes and more education. They cited service inferior to that of their automobile as the dominant reason why they refused to use the bus service. Some 72 percent of the staunch non-users stated that there were no service changes CCTPA could make which would influence them to ride the bus.

TABLE

Frequent Users	Infrequent Users	Potential Users	Staunch Non-Üsers
$(\mathrm{N}=56)$	$(\mathrm{N}=61)$	$(\mathrm{N}=75)$	$(\mathrm{N}=708)$

SEX:

Male	30%	43%	5.1%	50%
Female	70	57	49	50

Ace:

Under 25	29%	24%	21%	21%
25 tc 34	29	24	10	25
35 to 44	8	10	14	13
45 tc 54	8	12	11	14
55 to 64	8	6	12	12
65 or over	16	22	31	13
No Response	1	2	1	4

Race:

White	66%	67%	75%	86%
Black	29	26	19	6
Hispanic	-	-	-	1
Oriental	2	-	3	-
Cther	4	5	1	2
Refused	2	2	3	4

Household Income:

Under $\$ 10,000$	25%	6%	32%	10%
$\$ 10$, coo to $\$ 14,000$	20	23	11	12
$\$ 15$, coc to $\$ 19,999$	8	14	17	11
$\$ 20$, to to $\$ 24,999$	13	14	9	14
$\$ 25$, ono or over	18	18	17	36
No Response	17	26	15	17

Education:

Some iigh School/Less	32%	21%	21%	14%
High School Gracuate	30	41	29	35
Some college	20	15	27	26
College crad./Plus	16	18	17	22
No Fesponse	2	5	5	3

(continued)

TABLE 4

DEMOGRAPHIC PROFILE COMPARISONS*
(continued)
Frequent Infrequent Potertial Staunch $(\mathrm{N}=56)$ $(\mathrm{N}=61)$ $(\mathrm{N}=75)$ $(\mathrm{N}=708)$

Employment:

Full-Time	59%	49%	33%	57%
Part-Time	13	10	12	9
Unemployec:	29	38	53	31
No Response	-	5	1	3

Occupation:

Professioral/Technical	7%	10%	12%	13%
Manageria]	11	7	7	10
Clerical	29	13	5	14
Sales	2	2	-	7
Craftsmen/Foremeri	2	7	4	8
Operatives	2	7	7	4
Lajoiers	4	-	2	
Service/Householci				5
\quad Workers	16	38	53	4
Not Employed	29	5	1	31
No Pesponse	-			3

Emplogment Location:

Dowlatorn	41%	30%	16%	15%
Outlying Area	30	30	27	51
Not Fmployed	29	38	53	31
No Response	-	5	4	3

Iength of Area
Resicience:

Less Thar 5 Months	-	4%	5%	2%
6 Months to 1 Year	9%	3	1	4
1 to 3 Years	5	10	7	8
3 to 5 Years	8	3	9	4
5 to io Years	15	2	9	10
10 Years or More	63	76	68	69
Driver's Licensf.				
Posscssion:				
Yes		90%	80%	94%
No	66%	8	17	5
No Response	34	2	1	2

TABLE 4

LEMCGRAPIIJ : PPOFILE COMPARISONS*	(continued)			
Frequent	Infrequent	Potential	Staunch Users	Users

Car evailability:

Yes	61%	80%	72%	93%
No	4	10	8	1
No Arswer/No Drivers License	34	10	19	6

Household Composition:

Married Couple	34%	46%	47%	60%
Single Male	9	10	17	10
Single Female	34	20	23	15
Roomrates	11	13	5	4
Other	13	10	7	7
Refused	-	2	3	4

Presence of Children
ice 15 or rounger:

Yes	39%	43%	21%	28%
No	59	56	75	70
Refused	2	2	3	2

* Telephone survey of 900 Oklahoma City metropolitan area residents conducted in February 1982.

Frequent user: Has used the bus 24 or more days in the 12 months preceding the survey.

Infrupuent User: his used the bus between I and 23 days in the past 12 months.

Potential User: Has not used the bus in the past 12 months but expresses a definite or probable intention to use the bus during the next 12 months.

Staunch Non-User: Hes not used the bus during the past 12 months and expresses a definite or probable intention not to use the bus during the next 12 months.

Scurce: Reference 8, pp. 95-97.

Network and Demana Data Development
Two data sets were created as part of the effort to develop bus route demand models based on census data and TRANES. The first data set was derived from census block data. The nine variables of Table 5 were taken from the STFl summary tape. Although they do not include all of the demographic statistics which can likely be correlated with bus route demand, they represent what is available at the census block level and, hence, what could be directly accessed by TRANES.

In order to broaden the list of variables available for analysis, manual compilation was undertaken of additional census variables on the STF3 summary tape. The selected variables are listed in Table 6. These variables are tabulated only to the census tract and census block group level. For eight representative COTPA routes this data was marually determined by first identifying what fractions of each block group were within 1.000 ft. of each bus stop along the eight routes using census tract maps. Then, assuming that the block groups were homogeneous in demorraphic character, the variables in Table 6 were determined for each bus stop using the data from the STF3 tape.

Two types of models were considered, models based on total route statistics and models based on bus stop demand patterns. The census variables in Tables 5 and 6 were correlated with route and bus stop ridership. For the total route models the average daily ridership on 23 local COTPA routes was derived from 12 months of operating statistics collected in 1982 and 1983 (Figure 8).

Eight representative local routes were selected for the analysis of transit demand at individual bus stops. These routes, numbers $2,5,8,9,11,13,18$, and 40 , are depicted in Figure 9. The routes were selected as being representative of all the local routes, particularly in terms of the urban corridors ther served, and for being spaced far enough apart so that these rcutes did not compete for passengers along substantial portions of their routes. Four of the routes were "interlocked," which moans that the same bus traverses two routes, changing route rumbers in the CBD. This proved to be a convenience for the student assistants who were observing passenger boardings and couid compile data on two routes while riding the same bus.

Bus stop boardings and departures were determined manualiy by having observers ride the eight selected bus routes for three days in April and May 1983. Statistics for 372 bus stops were collected anc at least one-fourth of all the riders using the eight selectec routes on the three analysis days were observed. On tour of the routes half of the daily patronage was observed.

TABLE
5

CENSUS BLOCK SYATISTICS EXTRACTED FROM
THE STF1 CENSUS TAPE

1.	Total Population
2.	Total black population
3.	Total population under 16 years
4.	Total population over 64 years
5.	Total housing--owner occupied
6.	Total housing--renter occupied
7.	Total housing--value less than $\$ 15,000$
8.	Total housing--value $\$ 15,000$ to $\$ 34,999$
9.	Total housing--value over $\$ 35,000$

235-RIDE

Central Oklanoma Transportation and Parking Authority
300 E Calitornia
Oklanoma City OK 231-2601

Routes 2 and 13 interlock.
These two routes are combined into one in order to eliminate rransterring anc to create more crosstown routes. The destination sign will read the final destination of the route the bus is traveling

$$
\text { ב } 0 .
$$

Routes 5 and 11 Interlock
 Mate:-ansterargandtocreat. ... vecrossin a "outes the tes:ination sign wht rad the timal ment mathon of the route ine ous is iraveling

Routes 8 and 40 Interlock.
ith -r. antontes aro combined into one in orcer to elimu nat'. \cdot, at'..: riny and to create morecross:own routes The ifrst "dinm 'isg *wit read the tinal destination of the route tiw t.en is Itavaling

Route $\# 40$

FIGURE 9 (continued)

The survey form depicted in Figure 10 was used to collect the passenger boarding information. The bus stop boardings were linted to the TRANES node numbers by using the form depicted in Figure 11. The information from the Figure 11 forms constituted the boarding data for the bus stop demand analysis work.

Finally, two types of statistical analyses were employed. Ore was step-wise regression analysis. The other was principal comporents factor analysis with equamax orthogonal rotation. Factor analysis was used to reduce the census variables to a set of factors which vould indicate the fundamental structure of the relationships among the census variables. A demand model would then be based on these factors which, in turn, should identify the key determinants of demand.

Factor analysis is fairly commonly used in transportātion analysis, particularly in the analysis of census statistics or other data sets with large numbers of variables, such as UMTA Sectior 15 performance measures (references 13, 14, 24, 57, 58, 93). For example, Guseman, et al. (24) applied factor analysis to transit level of service attributes in Beaumont and Waco, Texas. Constantino (13) related census tract statistics to transit attributes, yielding regression equations whose coefficients of determination (R^{2}) ranged from 0.47 to 0.74 . Perle, et al. (57, 58) used factor analysis to identify trip generation determinants based on census statistics adjacent to proposed rail rapid transit stations in Detroit. A factor analysis text by Cuertin (22) was used as reference for the following analysis and the factor analysis programs of the SAS Institute, Inc. ("Statistical Analysis System") were used for the computational analysis.

Analysis with U.S. Census Block Data (STF1)
As a first step in the analysis of COTPA route demand, the average daily ridership on 23 COTPA routes was directly correlated with the nine STFI census variables of Tables 7 and 8 for distances of $1,000 \mathrm{ft}$. and $2,500 \mathrm{ft}$., respectively, from the bus stops.

A plot of total population within $1,000 \mathrm{ft}$. of the bus stop versus average daily passenger route demand is depicted in Figure 12. Similarly, total population within $2,500 \mathrm{ft}$. of the bus stops versus route demand is depicted in Figure 13. The correlation was very weak, with an R^{2} of only 0.15 . It was even weaker for total population within $2,500 \mathrm{ft} . ; \mathrm{R}^{2}=0.05$.

Normalizing the census variables before doing the regression analysis improved the correlations to some extent. The normalization consisted of subtracting the mean of each variable from each variable observation, and dividing this by the standard deviation of the variable set. With this done, the following re.gression equations were determined for total population within 1,000 and $2,500 \mathrm{ft}$. of the bus stops along the 23 routes:

FIGURE 11
TRANES NODE NUMBER MATCHING FORM

1980 CENSUS TABULATION TOTALS BY ROUTE WITHIN 1,000 FEET OF BUS STOPS

COTPA Route	$\begin{aligned} & \text { Riders } \\ & \text { per } \\ & \text { Month } \end{aligned}$	Census Variable*								
		1	2	3	4	5	6	7	8	9
1	436	4100	2354	403	84	38	267	34	2647	411
2	716	4835	2482	693	135	319	427	64	3049	735
3	547	2303	1069	397	65	74	274	59	1356	435
4	478	4024	1787	799	76	162	455	39	2311	754
5	676	4316	2978	868	63	41	150	107	3883	1017
6	351	5237	2615	978	127	98	557	68	3351	853
7	409	2536	1496	472	45	27	191	25	1950	42.4
8	664	5309	3450	803	48	65	357	37	4037	782
9	439	6702	4305	1228	140	176	317	126	5503	1410
10	384	3731	1306	959	72	69	519	45	1920	868
11	505	4537	3627	383	95	61	161	96	4114	545
12.	447	4548	3047	578	121	12.5	255	62	3594	654
13	447	3269	2231	547	69	31	143	51	2804	646
14	314	1553	1318	127	24	3	39	45	1460	189
16	236	2820	1819	291	84	84	211	32	2040	303
18	109	4914	3723	818	88	43	92	95	4677	1042
19	237	2913	1620	794	74	28	158	63	2414	821
20	261	3953	2931	524	69	31	160	47	3434	594
22	445	6043	2267	1117	125	241	876	48	2799	861
27	80	2083	875	460	46	36	261	21	1241	318
31	290	2543	1106	641	45	93	268	49	1626	665
38	329	2794	1943	278	64	91	172	74	2232	405
40	320	3192	2109	28	61	92	164	43	2499	434
1. Total Population 6. Housing - Total renter occupied										
2.	Population -- Negro					7. Housing Values - Less than $\$ 15,000$				
3.	Population- Under 16 years oid					8. Housing Values - \$15,000-\$34,999				
4.	Porulation - Over 64 years old					9. Housing Values - Over \$35,000				
	Housing - Total owner occupied									

1980 CENSUS TABULATION TOTALS BY ROUTE WITHIN 2,500 FEET OF BUS STOPS

CTPE Route	$\begin{aligned} & \text { Riders } \\ & \text { per } \\ & \text { Horth } \end{aligned}$	Census Variable*								
		1	2	3	4	5	6	7	8	9
1	436	11023	7274	1121	223	287	628	203	8300	1320
2.	716	9482	5284	1295	256	504	766	112	6449	1312
3	547	5936	2485	1071	146	242	754	98	3221	922
4	478	6495	3315	1150	132	202	627	83	4125	1185
5	676	14050	10755	2024	266	141	358	346	13022	2642
6	351	7859	4442	1489	175	111	642	113	5705	1452
7	409	5447	3044	1013	98	130	434	55	4018	877
8	664	8981	6172	1278	101	112	478	80	7238	1292
9	439	17142	10458	2824	351	684	1029	278	12959	3058
10	384	6351	3173	1369	149	86	610	89	4253	1370
11	505	12288	7918	1705	230	316	811	196	9432	1853
12	447	12327	8158	1873	259	239	647	190	9932	2115
13	4.47	11145	8091	1534	230	217	411	228	9738	1936
14	31.4	4303	3385	493	76	44	127	98	3946	662
16	236	8650	5498	1112	187	163	630	113	6434	1068
18	109	12048	8182	2032	259	169	525	215	10284	2445
19	237	10898	7188	2030	219	179	460	189	9258	2169
20	261	10480	6794	1625	231	141	637	104	8161	1761
22	445	16133	8188	2348	348	586	1532	152	9766	2002
27	80	5010	1971	935	94	165	498	49	2639	759
31	290	6383	3668	1228	102	159	473	82	4703	1.258
38	329	12055	7283	1857	248	302	1029	228	8777	1787
40	320	6712	4391	1040	136	153	339	99	5421	1096

* 1. Total Population

2. Population - Negro
3. Population- Under 16 years old
4. Population - Over 64 years old
5. Housing - Total owner occupied
6. Housing - Total renter occupied
7. Housing Values - Less than $\$ 15,000$
8. Housing Values -- $\$ 15,000-\$ 34,999$
9. Housing Values - Over $\$ 35,000$

FIGURE 12

BUS ROUTE RIDERSHIP VS. TRANES TOTAL
POPULATION WITHIN 1,000 FEET

FIGURE 13

BUS ROUTE RIDERSHIP VS. TRANES TOTAL POPULATION WITHIN 2,500 FEET

$1,000 \mathrm{ft}:$.	$y=30.20-0.04 \mathrm{x}$,	$\mathrm{R}^{2}=0.346$
$2,500 \mathrm{ft}:$	$y=30.50-0.04 \mathrm{x}$,	$R^{2}=0.354$

where: $\quad y=$ normalized average daily ridership by route, $\mathrm{x}=$ normalized total population.

The negative signs on the total population variable indicate that these are not logical models. Forcing all nine of the Table 5 variables into the regression equation of $1,000 \mathrm{ft}$. improves the R^{2} to 0.742 . This is a respectable correlation but the resulting equation is large, cumbersome because the variables are normalized, and the coefficients tend to be negative. However, this equation is comparable in performance, in terms of R^{2}, to many of the bus route models found in the literature survey.

Total population is a significant contributor to this regression equation (95 percent degree of confidence), as is total population over 64 years of age, and total owner-occupied and rental housing. Total population and population over 64 years enter the equations first in step-wise linear regression.

The corresponding regression equations for $2,500 \mathrm{ft}$. distance from the bus stops yielded an R^{2} of only 0.476 when all 9 variables were forced into the equation. Total population was the only significant contributor to this equation.

Factor analysis was conducted on the nine Table 5 variables for the 372 bus stop demand data set. This was relatively unsuccessful, too. The analysis yielded three factors, but all nine variables loaded heavily onto the first factor which explained 56.4 percent of the total variance in the data. This is indicative of a poorly defined variable set. Applying the three factors to a regression model where the dependent variable was bus stop demand yielded an R^{2} of 0.177 .

In summary, it was not possible to develop an entirely satisfactory bus route demand model for Oklahoma City with just the variables in Table 5, the STFl census block data. The best indicator variable was total population, which suggests that simply using TRANES to count population along the routes can be useful for evaluating new or existing routes.

Analysis with U.S. Census Block Group Data (STF3)

Factor analysis was performed on the variables of Table 6 and the 372 bus stops for eight routes. Deleted from the analysis were bus stops with no boardings at all and bus stops with no population within $1,000 \mathrm{ft}$. (typically, downtown bus stops). Only inbound passenger loadings were considered. This was done because unsatisfactory factors were obtained when using all the data.

The factor analysis yielded five factors as indicated in Tabie 9. Different variables loaded onto each factor, suggesting a

TABLE 9
ROTATED ORTHOGONAL FACTOR LOADINGS

Variable	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Race:	0.11188	0.91356	0.05785	0.11918	0.17960
R1	0.00431	-0.93572	0.07611	-0.14735	-0.11267
R2	-0.29347	0.11513	-0.45758	0.13369	-0.29421
R3	0.10171	0.02364	0.03298	0.41803	0.09399
R4	-0.35228	0.17524	-0.23331	-0.18225	-0.03744
R5					
Age:					
A1	-0.40555	-0.07121	0.19667	-0.57998	0.36306
A.	-0.38278	0.05657	0.60626	-0.32786	-0.10765
A3	0.25594	0.46708	0.54983	0.06758	0.02086
A4	0.06592	0.26111	-0.00967	0.01863	0.88177
A5	-0.16690	0.08355	-0.05627	0.84256	0.00402

Female Age:

FA1	-0.40174	-0.00194	0.11166	-0.59406	0.40165
FAZ	-0.35842	0.01924	0.70638	-0.29231	0.03716
FA3	0.25950	0.47346	0.48831	-0.10915	0.10368
FAA	0.11927	0.24078	0.11349	0.00890	0.85746
FAS	-0.12423	0.04395	0.00027	0.86286	-0.02939
Occuvation:					
01	0.66890	0.43200	0.28961	0.12087	0.19835
02	0.69123	0.22232	0.37459	0.18317	0.15088
03	0.24835	-0.11062	0.47492	-0.02266	0.34251
04	0.54160	0.48507	0.41300	0.21694	0.18489
05	0.32781	0.26390	0.66289	0.16210	0.07537
06	-0.12353	-0.26405	0.28345	0.19852	-0.23503
07	-0.32111	-0.40611	-0.11752	0.00887	0.61026
08	-0.41974	0.56094	0.1212	-0.27550	0.16517
09	-0.62370	0.12902	0.02015	0.12321	-0.01654

Household

Incorie:						
M1		-0.46811	-0.21814	-0.43513	0.52969	-0.03155
I2	0.02212	0.45817	0.35297	0.39007	0.23884	
I3	0.14773	0.28967	0.49440	0.36076	0.28681	
I4	0.33878	0.37099	0.49072	-0.09580	0.25757	
I5	0.56587	0.31081	0.35345	-0.08926	0.33465	
I6	0.58589	0.29756	0.23612	0.05710	0.10867	
I7	0.60885	0.27892	-0.02063	0.06565	0.05380	

more satisfactory data set. Furthermore, the factors could be characterized in a plausible manner, based on a telephone survey of COTPA patrons conducted in 1982 and presented previously in Table 4. The characterizations, indicated below and in Table 10, tend to reflect COTPA patronage:

Factor 1:	High income professionals,
Factor 2:	Race,
Factor 3:	Youthful non-professionals,
Factor 4:	Elderly,
Factor 5:	Middle-aged.

These five factors explained 60.9 percent of the total variance in the data set. No one factor dominated. Interestingly, the first factor could be characterized as high income professional and managerial persons. In fact, a comparison of the statistics in Table 6 (1980 census profile for Oklahoma City) and Table 4 (ATE survey of frequent riders of COTPA) indicates that the bus service does attract nearly its share of professionals and managers.

The other factors sem to reflect the ridership composition noted by ATE: the "typical" patron tends to be female, white, under 35 or over 55 years of age, clerical, and works downtown. Factor 2 is strongly loaded by the total white population (R1), and negatively loaded by the black population (R2). The clerical occupation (05) loads onto Factor 3, and females load heavily onto Factors 3 (FA2--females aged 16 to 24), 4 (FA5--females aged 65 and over), and 5 (FA4--females aged 35 to 64).

The five factors identified in Table 10 were then used in a step-wise regression analysis where inbound passenger loadings per bus stop was the dependent variable. The travel time from each bus stop to the downtown transfer station was included as an additional independent variable. All of the factors and travel time were normalized in the manner indicated previously. The results of the step-wise regression analysis (using the SAS programs) are presented in Table 11.

All of the factors, except factor 2 ("race"), provea to be highly significant contributors to the regression equation. The final equation with all of the factors except factor 2 and travel time had an $R^{2}=0.55$. The order in which the independent variables entered the regression equation is as follows: factor 5 ("middle-aged"), factor 1 ("high income professionals"), factor 3 ("youthful non-professionals"), factor 4 ("elderly"), and travel time. Travel time was a marginally significant contributor to the final equation, as indicated in Table 11.

This was the best bus route demand model produced by the study. It was interesting that demand could be correlated to indivicual bus stops, although the correlation was mediocre. Actually, since past bus route demand models cited in the literature had K^{2} ranging from as low as 0.355 , this bus stop model

Tota amount of variance explained: 60.9
Only those variables with loadings greater than ± 0.5 are listed above for each factor.

REGRESSION EQUATION FOR BUS STOP DEMAND USING

FACTORS AND TRAVEL TIME TO CBD

Independent Variable*	Coefficient	t-statistic	Significance Level
Intexcept	0.0231		
F1	0.0268	7.04	0.0001
F3	-0.0327	-8.04	0.0001
F4	-0.0132	-4.46	0.0001
F5	-0.0237	-6.20	0.0001
T	0.0014	1.72	0.0880

* All of the dependent variables are normalized by subtracting from each the mean value of the variable, and dividing by the standard deviation of the variable.

F1, F3, F4, and F5 are the factors, normalized, of Table 10, while T is the normalized total travel tine from each bus stop to the CBD.

The dependent variable is inbound passenger loadings per bus stop.

$$
R^{2}=0.55
$$

performar:ce is encouraging. Models of entire routes or route segrients should do better statistically chan a model of bus stop demand.

It seems doubtful if better statistics could be obtained fron the Oklahoma City patronage, but the study indicated that similar model approäches are worth investigating in other metropolitan areas, particularly areas with substantially greater transit demand. However, the need to manually collect some of the census statistics to some extent defeats the purpose of an automated program such as TRANES.

Conciusions

An entirely satisfactory or convenient bus route demand model based on TRANES census statistics was not obtained with the Oklahoma City data. Inherent to the application of TRANES is the assumption that demographic statistics can be related to patronage if the statistics include those patrons living very near to the bus stops and for whom the transit level of service is particularly good. However, the straight-forward application of TRANES to census data directly accessible by the program (STFI tape) uncovered at best a weak positive correlation, largely with total population residing within $1,000 \mathrm{ft}$. of the bus stops to average daily route patronage.

Augmenting the census data with manually collected block Gxoup statistics from the STF3 tape significantly improved the correlation of census statistics with demand, although the statistical techniques are complex. However, two significant positive results were obtained. First, it was possible to correlate individual bus stop passenger loadings with census data. This implies that one useful application of TRANES is the development and modification of bus stop locations, including route extensions or deletions. Bus stop location is determined by a number of factors, but consideration of the demographic profile of the adjacent neighborhood appears to be a worthwhile exercise.

Second, the factor loadings had some correspondence with a previous direct survey of passengers. This reinforces the utility of demographic surveys of passengers and suggests that TRANES can be one aspect of a marketing program to promote transit. TRANES can be used to identify the locations of those patrons most likely to use transit, or confirm the validity of route plar.s intended to address specific markets. As an example based on the findings noted above, consider factor 1 , high income professionals. Although these patrons typically are not attracted to bus transit, the fact that they appeared as a factor suggests that when the level of service is high enough, they will ride the bus. In this case, these patrons lived very close $(1,000 \mathrm{ft}$. or less) to a bus stop where a bus would take them directly to the CEL. This cculd be addressed in design efforts to develop bus services attractive to these people. An option would be an express bus service which tours neighborhoods with these demograph-
is characteristics and ther proceeds directly to the CBD. Thiss is hardly a new idea, but TRANES may be a useful design tool in this regard.

Other applications for TRANES are suggested in the following section, with case study applications. Based on the Oklahoma City experience, it was not possible to devise a simple model to forecast patronage, but that does not mean that total population courts along routes or compilations of other demographic statistics are not worthwhile. Furthermore, demand models derived from TRANES may prove more feasible in larger cities and/or cities with higher levels of per capita ridership. In this regard, the findings in this study which correlated bus stop patronage to census statistics are particularly encouraging.

CASE S'TUDY APPLICATIONS OF 'IRANES

In addition to the demand analysis studies reported in the previous section, TRANES was applied to several different types or practical studies in the Oklahoma City metropolitan area. Three case studies are reported below: the use of TRANES to document population and socio-economic characteristics along existing COTPA bus routes, the analysis of new bus routes in suburban Norman, and the use of TRANES to satisfy Title VI reporting requirements.

Demographic Keports by Bus Route
TRANES was used to develop demographic tables for each of the 23 conventional bus routes operated by the Central Oklahoma Transportation and Parking Authority (COTPA). The metropolitan area served by the fixed-route bus system had a population of abcut 650,000 people in 1980. Within this area there were about 8,000 census blocks, 24,000 street links and 835 transit stops.

The TRANES programs used in the project have a theoretical capacity of 32,000 links, but it turned out that the network of 24,000 links could not be handled by the programs. Outlying counties in the metropolitan area, which bad little or no bus service anyway, were discarded from the network, which reduced the TRANES network to 14,000 links. This network worked fine in the computer compilations.

Of primary interest to COTPA were demographic reports for each of these lines. Nine population and housing variables, listed in Table 5, were extracted from the STF1 census tapes, and consisted of block-level statistics which could be directly extracted by the TRANES program. Bus stop and line summary reports were produced for each bus route at distances of 900 feet and 1,500 feet from each bus stop.

Potentially, this information can be used in the analysis of the market area covered by each route and applied to the design of new routes or modifications to exjsting routes. Such modifications could include changed bus stop locations, route extensions, and route deletions.

Two specific case studies of bus route design and analysis were carried out with the TRANES programs, the preliminary design of new bus routes in Norman, Oklahoma, and the development of Title VI reports for COIPA. These are reviewed in the following sections.

Norman Bus Route Analysis
Norman, Oklahoma, is a city of 74,000 people located within the metropolitan area of Oklahoma City. About 27 percent of the population consists of university students and 10 percent are 65 years of age or greater. Norman was separated from the Oklahoma

City metropolitan network noted above and separately coded.
The city of Norman has 193 square miles, but only the central 20 census tracts encompassing 12 square miles, were included in the network coding. These tracts are indicated in Figure $D-1$ of Appencix D. This appendix alsc provicles the TRANES node equivalency tables for all 20 census tracts. There were some 2,800 street links in the network used to develop bus routes for Norman.

TRANES was used to investigate the feasibility of expanded bus service in Norman, the expansion consisting of an augmentation of the campus bus service of the University of Oklahoma in Norman. The carmpus service applied for UMTA funding for the first time in 1983, and one of the reçuirements of Federal funding is that the transit system services the general population, not just a portion such as university students and staff.

The demographic characteristics of eight potential routes were explored using TRANES. The same variables listed in Table 5 were used, with emphasis on total population, population under 16 years of age, population greater than 64 years of age, and renter-occupied housing. These statistics were compiled for distances of 1,000 and 1,800 feet from proposed bus stops. Student assistants familiar with coding TRANES for Oklahoma City found no trouble in developing the Norman network.

The advantages of TRANES were evident: it enabled the easy preparation and analysis of many bus route alternatives and provided useful summary statistics. Per capita ridership levels borrowed from Oklahoma City were used to estimate demand levels for each route. This information, in turn, was used to estimate revenues for the service based on alternative fare structures which included discounts for the young and elderly.

TRANES is not a complete substitute for manual inspection of census maps and land use maps, but it proved to be a significant time-saver in evaluating route options. A manual survey of campus routes done a year previous to this work took an estimated 80 percon-hours to plot a 10 percent sample of all student addresses on strect maps (40 hours) and identify major apartment locations (ancther 40 hours).

In a uriversity enviromment it is important to identify apartment concentrations with large numbers of student residents. Developing new bus routes with TRANES amounted to a preliminary inspection of land use maps and other sources of student and elderjy resident lcation information, and the sketching out of routes for processing by TRANES.

Title VI Reporting Reguirements
Title VI of the U.S. Civil Rights Act of 1964 states:
"No person in the United States shall, on the grounds of race, color, or national origin, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving Federal financial assistance."

In terms of transit service this is interpreted by UNTA to mear that the services available to minority groups are comparable to those of the general population. UMTA also requires that transit route load factors identify those routes with concentrations of minorities. Finally, UMTA requires an enumeration of accessibility via transit to employment, shopping, medical, social services, and educational opportunities in terms of travel times for minority and non-minority populations. This information is to be obtained from representative sample census tracts.

Title VI reports need to be submitted once and then updated annually if significant changes in transit routing or other aspects of transit service planning and provision have changes. In 1983 COTPA staff members compiled a thorough Title VI report. Although no records were kept of the staff efforts involved, the efficrt involved several staff persons devoting most of their time to the task over a period of severai weeks. All of the tabulations were done manually using print-outs of census statistics and census tract maps.

The TRANES programs were run with the COTPA bus routes as a case study. Twenty-three local transit lines were coded for TRANES with a transit stop at every other census block. The program was run with the first twelve transit lines and then the remaining eleven transit lines to conserve on computer execution times.
interesting enough, the minority populations served within the transit service area were higher than anticipated, and higher thar the manual tabulations done a year previously. According to the 1980 census, approximately 370,000 persons live within the COTFA transit service area of which 167,460 persons or 44 percent live within 1,500 feet of a transit stop based on the TRANES reports. The results of TRANES showed that the Black population served was 26,478 persons or 37 percent of the Black population living within the transit service area, the American Indian population served was 3,435 persons or 24 percent of the American Indians living withing the transit service area, the Asian and Pacific Islanders served was 3,888 persons or a surprising 89 percent of the Asian and Pacific Islanders livirg within the transit service area, and finally, the Spanish Origjn portion of the population served was 2,303 persons or 16 percent of the per-sons of Spanish Origin.

The TRANES output should be more precise than a manual deterrination since TRANES counts census block statistics within a specified aistance of the bus stops while manual techniques assume that the tracts are homogeneous such that census statistics
are directly proporional to the fraction of the tract area within a specific distance of the bus stop. Manual work also is prone to errors ir tabulation given the magnitude and tedium of the task. Ancther advantage is that revised reports are easy to produce when route changes are made.

The disadvantage of using TRANES, apart from the effort involved in getting the information system data base developed, lies principally in the suppression of census data at the block level. Minority group statistics will be suppressed if fewer than 15 individuals reside within the record category--the block-- hence, thinly scattered minorities will be under-reported by TRANES. It is likely, for example, that TRANES under-reported the American Indian population (26 percent of the population in Oklänoma City), residing near bus lines.

OTHER POSSIBLE APPLICATIONS OF TRANES
The case study applications of TRANES presented in the preceding section should be sufficient to justify the addition of TRANES to the computer-based capabilities of most transit agencies, particularly those at least as large as COTPA, the transit operator in Oklahoma City. A number of other possible applications are reviewed below.

Successive Overlays
The analysis ard interpretation of graphical depictions of urban area statistics was promoted for planning purposes by McHarg (50), among others. Corradino, et al. (12) advocated the successive overlays technique for small city transit planning, as do Miller and Millar (53). TRANES, in fact, has been used to generate graphical depictions of potential transit ridership in Colorado Springs, Colorado (11). The project consultant developed a computer program which converted TRANES-generated demographic information within $1 / 4 \mathrm{mile}$ of bus stops to $1,000 \mathrm{ft}$. by $1,000 \mathrm{ft}$. subareas of the metropolitan area. The demographic information included total population, minority population, population over 65 years of age, low income households, households without cars, and handicapped population. The maps of these subareas depicted the extent to which the transit service was meeting the needs of potential users. The consultant concluded that "this represents the most detailed market segmentation evaluation presently available, given current computer software capabilities."

Route Modifications

As indicated previously, TRANES should be useful in planning bus route modifications, particularly those that entail the addition or deletion of bus stops. Larger transit agencies such as the Chicago Transit Authority may make 10 to 20 such route changes a year, and such modifications may invoive several weeks of staff analysis and preparation (77). In this report TRANES was shown to be sensitive to individual bus stop demands, and the literature indicates that a number of route segment demand prediction models have been developed. In fact, TRANES is probably as useful a tool as the transit planner is likely to find for supporting bus stop change considerations.
Support for Other Bus Route Demand Models
A number of previous bus route demand modeling efforts would seem to be able to make profitable use of TRANES. For example, Hobelka and Chu's (28) supply/demand model for bus routes could make use of the bus stop demographic data generated by TRANES. TRANES-generated data could also be used in model formulations devised by Boyle (5); Golenberg and Pernaw (20); Hsu and Surti (32); Ross and Wilosn (63); Turnquist, et $\overline{\mathrm{a} I .},(79,80)$; and Yuratovac (95).

TRANES has been shown to be a useful addition to the comput-er-rased analytical tools available to the transit planner. The collection of socio-economic information near bus stops is useful in planning new bus routes, making changes in existing routes, supplementing marketing surveys, and collecting bus route service impact statistics (e.g., satisfying Title VI reporting requiremicnts). TRANES has significant potential in the development of bus route demand models since route demand can be correlated with demographic statistics of potential patrons living within 1,000 ft . of bus stops. In this report TRANES-generated demographic data was found to have some correlation with total bus route patronage and bus stop demands. The correlations, while not strong, were comparable in performance to other bus route demand models found in the literature.

Suggestions for future research include the application of TRANES to demand models developed by other researchers. The application of TRANES to demand model development, following the lines of approach developed in this report, would be useful for larger metropolitan areas with greater levels of per capita transit ridership. It would appear that Oklahoma City's patronage was exploited to its limit in this report.

Finally, the TRANES programs, themselves, would be enhanced with improved user interaction at the computer terminal. Graphical enhancements appear feasible since all of the input data is in machine-readable form. Among the capabilities that should be useful to a TRANES user with a computer terminal and CRT screen include the graphical display of street and transit networks with bus stop locations, and the ability to activate and deactivate transit stops and lines at the terminal.

APPENDIX A

TRANSIT NETWORK EVALUATION PROGRAM (TPANES)

The Transit Network Evaluation (TRANES) Program was develcped on a Burroughs mainframe computer by the Comprehensive Planning Organization (CPO) in San Diego, California under an Urban Mass Transit Administration (UMTA) research grant in 1977-1978 (75). The research team was composed of Wesley R. Frysztacki and Lee Johrson of the CPO and Robert Parrot and Peter Loubal serving as consultants. The objective of the project was to develop a program, TRANES, which would allow the transit planner to retrieve census and survey data at the census block level of geography.

The transit network consists of census tract nodes taken from the GBF/DIME file and renumbered to form a unique TRANES network of nodes and interconnecting links. Each node in the network represents an existing or potential transit stop in the transit network. Census data files are linked to TRANES by using the GBF/DIME file record number as a random access key and associating it with the appropriate census block.

The various TRANES programs and their associated data files are diagrammed in Figure $A-1$ and briefly described below. The reader should consult reference 75 for more information and guidance on implementing the TRANES programs. A listing of the TRANES programs and subroutines is contained in Appendix B. They are written in FORTRAN IV, the predecessor to the current standard FOR'KAN 77 language. The programs were compiled and run on an IBN 2081 mainframe computer at The University of Oklahoma using the FORTRAN IV G1 compiler, version 2.

INPUT REQUIREMENTS

Preprocessor Programs

The preprocessor programs are used to prepare the regional poirter files used in the EXTRACTOR program. The pointer files are necessary to renumber the GBF/DIME file node numbers into a sequential order for efficient searching by TRANES. Additionally, the preprocessor programs create a file necessary for allocating the census block socio-economic information to the GBF/DIME street segments. The preprocessor programs are run only after major changes have been made to the regional GBF/DIME file. Therefore, the user will only have to run these programs occasionally. There are four steps in preprocessing, including a system sort utility used to create regional pointer files. In Figure $A-1$, the process of file creation can be traced from the preprocessor programs through to the TRANES program.

Preprocessor Step 1. In the first step, two files are created, one a condensed version of the GBF/DIME file (150 characters per record), the other containing two records for each

FIGURE A-I
TRANES PROGRAMS AND THEIR ASSOCIATED DATA FILES
street seçment ("nickel" file). The first file is called DIMECON and it is used by the EXTRACTOR program. The second file is used in Step 2 of the preprocessor program.

Preprocessor Step 2. In the second step, the nickel file is sorted in numerical order based on the GBF/DIME file record number and the census tract node number (numbers 1 to 699 and numbers greater than 5000) or metropolitan map series node numbers (numbers 700 to 4999 , which are the nodes along the census tract boundaries). After sorting, the program assigns new and unique node numbers for each census tract or census map node (if the node is on a tract boundary). The resultant file contains the unique GBF/DIME file record numbers, census tract interior node numbers , and cersus tract boundary node numbers.

Preprocessor Step 3. The unique node file is used as input into a fourth program which creates a TRACT/NODES file, a MAP/NODE File, and a TRACT/POINTER file which all are used as input to the EXTRACTOR program. The TRACT/NODES iile contains the lowest and highest node numbers for each census tract listed in numerical order. The MAP/NODES file contains the map number and the lowest and highest census tract boundary numbers in sequential order by map number. The TRACT/POINTER file points to the first record for each census tract prefix in the TRACT/NODES file.

Preprocessor Step 4. The fourth step in the preprocessor procram sequence is to create a binary census information or "demand" file. The binary demand file provides the censusderived information associated with each TRANES link segment. The TRANES program used in this research project is limited to crecting nine different categories of census items. This could include total population, housing units, ethnic composition, açe composition, household income, or other census information found on the STFl (census block) data tape. The 1980 U.S. Census statistics available at the census block level are listed in Table 5 of this report. Other data files which contain street addresses, such as employment or labor statistics, could also be geoprocessed by using the U.S. Census Bureau ADMATCH program along with the GBF/DIME file to obtain block level data matches asscciated with the GBF/DIME file record number.

EXTFACTOR Program

The purpose of the EXTRACTOR program is to create files for the TRANES Program and to give the user the ability to extract portions of the metropolitan region GBF/DIME file for the desired analysis (e.g., a transit corridor). The inputs for the EXTKACTOR program come from the preprocessor programs as indicated in the previous section. These files are shown in Figure A-1. The outputs from the EXTRACTOR program are a demand file, a link/pointer file, a node/pointer file, a coordinate file, and TRANES node number files.

Extracted Demand File. The demand file is a subset of the regional demand file which corresponds to the specific gecgraphic area or corridor under study. This file has the desired census information listed by GBF/DIME file record number and it retains the secquential order of the original GBF/DIME file. Censusderived or locally geocoded data can be used.

Extracted Lirk/Pointer File. The link/pointer file serves as both a unique link file for the specific subarea and a pointer to connected links. This is the main file used by TRANES to find transit paths.

Eytracted Node/Pointer File. The node/pointer file is used as a pointer file for all the unique nodes created in preprocessing. The node/pointer file also works in conjuriction with the link/pointer file ir the TRANES pathfinder algorithm.

Extracted Tract/Node File and Map/Node File. The tract/node and map/node files provide an equivalency listing for the census tract, census map, census node, and the unique TRANES node numbers. With these equivalency tables, the transit planner can convert GBF/DIME file nodes to TRANES nodes representing active transit stops. The actual coding of the transit lines is discussed in detail in Appenđix C.

TRANES INPUT FILES

The basic input files for TRANES consist of the link/pointer file, the node/pointer file, the subarea demand file, the command file, and the TRANES node number files. The first three files were created by the EXTRACTOR program while the command file must be created by the user with a text editor or word processor. The comrand file cortains input parameter values, node classifications, and transit line information as input for TRANES. The techrical details of coding the command file are given in the TRANES Technical Report (75).

A primary function of the EXTRACTOR program is to convert the GBE/DIME node numbers into unique sequential numbers for use by TRANES in pathfinding. The converted numbers are contained in two files, TRANE/NODES and TRANE/MNODES. The first file contains the criginal internal census tract numbers, and new TRANES numbers, x and y coordinates, and grid cell data for interactive applications. TRANE/MNODE contains the same information for those nodes located on the census tract boundaries.

TRANES PROGRAM

TRANES has two principal components, an ability to access census information at the block level within a specified distance along ar existing or projected transit route, and an ability to summarize this information for all of the bus stops along a designated route. The user of TRANES specifies the transit lines and stops to be evaluated, selects the census information to be
tabuiatec, specifies the access linits for the bus stops (e.g., walking distances), and formats the desired summary report.

Within TRANES a pathfinder algorithm determines all of the network links (census block faces) which can be accessed by a each desjgnated bus stop within the pre-specified "impedance" or walking distance. The pathfinder algorithm determines the optimal path to the far end of the link. It is noted that the pathfinder algorithm connects links rather than nodes. Hence, the reported census statistics are those for the block faces which comprise the links along the optimal paths emanating in all directions from the bus stop.

The TRANES program output consists of two reports, the transit stop report and the transit line report. The transit stop report gives a detailed list of census or transit data items by transit stop for two accessibility limits (e.g., walking distance to bus stops). A grand total is printed at the end of the transit stop report for all stops on all lines. The transit line report gives a summary of census or transit data items by transit line. This is done by adding up all of the transit stop data for each stop along each line. Common stops will be counted twice for each line using that particular stop. Also, if lines rur parallel alorg two adjacent streets, some census data will be courted twice if the selected accessibility limits are greater than the distances between the lines. When analyzing the output from TRANES, this needs to be taken into account.

APPENDIX B

TRANES COMPUTER PROGRAM LISTING

```
PROGRAM NAME : NP1-1
C ****************************************************************
```

C PROGRAM NAME : NPl-3

```
C ***********************************************************************
* FOR INPUT INTO THE FILE CREATION PROGRAM. *
C * WRITTEN BY KEN MORRIS
C * AUGUST ll, 1982 *
C
C ---VARIABLE NAMES---
C MAP OR MAFI - DIME FILE MAP NUMBER
C TRACT OR TRACTI - DIME FILE CENSUS TRACT NUMBER
    NODE OR NODEI - DIME FILE NODE NUMBER
    RECNUM OR RECI - DIME FILE RECORD NUMBER
    XCOOR OR XCOORI - DIME FILE STATE PLANE (X COORDINATE)
    YCOOR OR YCOORI - DIME FILE STATE PLANE (Y COORDINATE)
                                    NR - RECORD COUNTER FOR UNIQUE NODES
---INITIALIZE VARIABLES---
    IMPLICIT INTEGER(A-Z)
        NR = 0
C
C ----READ RECORDS FROM NODE DATA FILE---
    5 READ (2,10,END=99)MAP,TRACT,NODE,RECNUM,XCOOR,YCOOR
    10 FORMAT(I3,I6,I4,I5,2I7)
    15 READ(2,10,END=99)MAP1,TRACT1,NODE1,RECl,XCOOR1,YCOOR1
C
C ---IF CENSUS TRACT IS BLANK, COMPARE CENSUS MAP AND NODES
C ---FOR NODES < 700 WRITE UNIQUE TRACT/NODE RECORDS---
C ---FOR NODES > 700 WRITE UNITQUE MAP/NODE RECORDS---
        IF(TRACT.EC.0)GO TO 20
        IF(TRACT.EQ.TRACTI.AND.NODE.EQ.NODEI)GO TO 15
        GO TO 25
    20 IF(MAP.EQ.MAPI.AND.NODE.EQ.NODEI)GO TO 15
    25 IF(NODE.LT.700)WRITE (3,110)TRACT,NODE,RECNUM,XCOOR,YCOOR
        IF (NODE.GT.700) WRITE (3,120) MAP,NODE,RECNUM,XCOOR,YCOOR
C
C ----INCREMENT NODE RECORD COUNTER---
C ----REASSIGN COMPARISON REGISTER VARIABLES---
        NR = NR + I
        MAP = MAP1
        TRACT = TRACTI
        NODE = NODEI
        RECNUM = RECl
        XCOOR = XCOOR1
        YCOOR = YCOORI
        GO TO 15
C
C ----WRITE OUT NUMBER OF UNIQUE NODE RECORDS---
    99 WRITE(4,101)NR
    101 FORMAT(/IX,'OUTPUT RECORDS : ',I6)
    110 FORMAT (3X,I6,I4,I5,2I7)
    120 FORMAT(I3,6X,I4,I5,2I7)
        STOP
        END
```

```
C PROGRAM NAME : NPl-4
C
C * PROGRAM TO CREATE MAP/NODE & TRACT/NODE FILES *
C * AND A TRACT/POINTER FILE *
C * FOR INPUT INTO THE TRANES EXTRACTOR PROGRAM. *
C * WRITTEN BY KEN MORRIS *
C * AUGUST 11, 1982 *
C **********************************************************
C
C ---VARIABLE NAMES---
                LRN - LOW RECORD NUMBER
                    HRN - HIGH RECORD NUMBER
                        TRP - CENSUS TRACT POINTER RECORDS
                        NTP - NUMBER OF TRACT POINTER RECORDS
                        NTN - NUMBER OF TRACT/NODE RECORDS
                        NMN - NUMBER OF MAP/NODE RECORDS
        MAP OR MAPI - DIME FILE MAP NUMBERS
    TRACT OR TRACTI - DIME FILE CENSUS TRACT NUMBER
            NODE OR NODEI - DIME FILE NODE NUMBERS
C RECNUM OR RECI - DIME FILE RECORD NUMBERS
C XCOOR OR XCOORI - DIME FILE STATE PLANE (X COORDINATES)
C YCOOR OR YCOORI - DIME FILE STATE PLANE (Y COORDINATES)
C TCOMP OR TCOMPI - TRACT PREFIX COMPARISON VARIABLES
C
C ----INITIALIZE VARIABLES---
C
    IMPLICIT INTEGER(A-Z)
    LRN = 0
        HRN = 0
        TRP=0
        NTP=0
        NTN}=
        NMN = 0
C
C ---READ IN FIRST TRACT/NODE OR MAP/NODE RECORD---
C
        5 READ (2,10,END=99)MAP,TRACT,NODE,RECNUM,XCOOR,YCOOR
    10 FORMAT(I3,I6,I4,I5,2I7)
C
C ---DEFINE TRACT PREFIX BY TCOMP
C
    15 TCOMP = TRACT / 100
        NR=0
C
C ---INCREMENT RECORD COUNTER---
C
    NR = NR + I
C
C ----CHECK TRACT, IF ZERO, EXECUTE MAP ROUTINE---
C
    IF(TRACT.EQ.0)GO TO 40
```

```
C
C ---READ IN SECOND NODE RECORD TO BE COMPARED--
C
    20 READ (2,10,END=99)MAP1,TRACT1,NODE1,REC1,XCOOR1,YCOOR1
C
C ----DEFINE SECOND TRACT PREFIX BY TCOMPI
    TCOMPl = TRACT1 / 100
C ---COMPARE TRACT PREFIX'S, IF SAME, INCREMENT COUNTER, GO READ RECORD
C
    IF(TCOMP.EQ.TCOMPI)NR = NR + 1
    IF(TCOMP.EQ.TCOMPI)GO TO 20
C
C ----INCRMENT TRACT POINTER COUNTER---
C ----INCREMENT LOW RECORD COUNTER AND HIGH RECORD COUNTER
    TRP = TRP + 1
    LRN = HRN + l
    HRN = HRN + NR
C
C ---WRITE TRACT/POINTER RECORD---
C ---WRITE TRACT/NODE RECORD---
C
    WRITE (3,25)TRP
    25 FORMAT(I6)
        WRITE (4,35) TRACT,LRN,HRN
        35 FORMAT(3I6)
C
C ---REASSIGN TRACT AND MAP VALUES FOR COMPARISON---
C ----INCREMENT TRACT/NODE COUNTER AND TRACT/POINTER COUNTER---
C
        TRACT = TRACTI
        MAP = MAPI
        NTP = NTP + 1
        NTN = NTN + 1
        GO TO 15
C
C ---MAP/NODE CREATION ROUTINE----
C ----INITIALIZE VARIABLES---
C
    40 LRN = 0
        HRN = 0
        45 NR=0
C
C ---INCREMENT RECORD COUNTERT--
C
    NR = NR + I
C
C ---READ NODE RECORD FOR MAP/NODE COMPARISON---
C
    50 READ (2,10,END=99)MAPl,TRACT1,NODE1,REC1,XCOORI,YCOORI
```

```
C
C ----IF MAP AND MAPI SAME, INCREMENT COUNTER, READ ANOTHER RECORD--
C
    IF (MAP.EQ.MAPI)NR = NR + I
    IF (MAP.EQ.MAPI)GO TO 50
C
C ----INCREMENT LOW RECORD NUMBER AND HIGH RECORD NUMBER---
C
    LRN = HRN + l
    HRN = HRN + NR
C
C -----WRITE MAP/NODE RECORD----
C
    WRITE (8,35)MAP,LRN,HRN
C
C ----REASSIGN MAP VALUE FOR COMPARISON---
C
    MAP = MAPI
C
C ---INCREMENT MAP/NODE RECORD COUNTER---
C
    NMN = NMN + I
    GO TO 45
C
C ---WRITE NUMBER OF POINTER , TRACT/NODE , MAP/NODE RECORDS---
C
99 WRITE(9,101) NTP,NTN,NMN
l01 FORMAT(/lX,'POINTER RECORDS : ',I6/lX,'TRACT/NODE RECORDS : ',
    *I6/IX,'MAP/NODE RECORDS : ',I6)
        STOP
        END
```

```
~ PROGRAM NAME : DIMZCON
```



```
        VMI=0
    NPO = 0
C
~ N---INCREMENT INP
C----CHECR FOR NONE STREET FEATIIRES AND ZERJ COJRDINA=ES---
~
    IF:NSF.GT. 1)GO mo 5
    IF(CTL.GE. 2000.AND.CTR.GE. 2000) GJ IO }
    IF'FX.NE.O.AND.FY.NE.O) GO TO 1j
    TFITX.EQ.O.AND.TY.EQ.OI GO TO 5
C
    ---nFAJ IN MAPS,NRACTS,NODES, AND CJORDINATES FRJM DIME FILE
    5 F\capAD:2, 10, END=99) (ST:I),I=1,7),NSF,FM, IM,CLF,LLA,LHA,RLA,RHA, RN,
    *CD,CTL,CTR,ZL,ZR,FN,TN,PCL, PCR,CDL,BL, ZDR,SR,FY, FX,TY, IX
    1) FORYAT:6A4,A2,2X,I1,I46,2!I 3, 2X),I1,4I6,4X,It,I1, 2I6, 2I5, I123,
        *4I4,T144,T3,T152,I3,T163,I3,T171,I3,T231,4I7)
    ----KRITE DIME FILE INFORNATION TO DINECON FILE---
    15 WRITE:3,2J) FM,CTL,FN,TM,CMR, EN,NSF, (ST:(I),I=1,7), LLA,LAA, BE, ZL,
```



```
    20 FORMAI!2:I3,I6,I4),I1,6A4,A2,2:2IU,I3,2X,I5,I4,I3),I1,Ib,I1, 3X,
        *4T7)
こ
    ----INCREMENT OUTPUT RECORD COUNTER
    NRO = NRO + 1
\Xi
こ ----YRITE TO RECORD N!YMBRR/TRACT/BLOCK FILE---
C -----JSED TO MATCH DIME RECJRDS NJMBER *IIH DEYAND ?ILZ---
C
C
```

```
    IF(CTL.GT. 1000.AND. BL.GT.0)WRITE(4,40) &N,CIL, 2L
```

 IF(CTL.GT. 1000.AND. BL.GT.0)WRITE(4,40) &N,CIL, 2L
 IF(CTL.EQ.CTR.AND.BL.EQ.BR)GO }20
 IF(CTL.EQ.CTR.AND.BL.EQ.BR)GO }20
 TF:CTR.G2.1000.AND.BR.GT.0) NPITE:4,4J) &N,CTR, Eे:
 TF:CTR.G2.1000.AND.BR.GT.0) NPITE:4,4J) &N,CTR, Eे:
 40 FORMAT (2I6,I3)
 40 FORMAT (2I6,I3)
 GO TO }
 GO TO }
    ```
    WRITE OUN INPJT AND JUYPUT EECORD こOUNIS---
```

 WRITE OUN INPJT AND JUYPUT EECORD こOUNIS---
 99 NEITE (9,101)NRI,NRO
 99 NEITE (9,101)NRI,NRO
 101 FORMAT:/1X,'GBF RECORDS: ',I6/1X,'DINECON RECOROS: ',I6)
101 FORMAT:/1X,'GBF RECORDS: ',I6/1X,'DINECON RECOROS: ',I6)
STOD
STOD
ZND

```
    ZND
```

 DIMENSION IBMAP (2), ITRC (2), NODES(2), IY(2), IX(2)
 DIMENSION ITPTR (212), ITRACT (370), LOW! 370), IHIGH (37J)
 DIMENSION MAP? (50), MLOK (50), YHIGH(50)
 INTEGER*2 NEWMAP (20000), LDD,LD(70000),LD(70000),
 * NEWPT2 (70000) , NEWPTR!70000)
 TIMENSION LINKER(2)
 DIMENSION IDMD9 (9), IDMD9T!9)
 DIMENSION IEMP9 ?9), IEMP9T (9)
 EQUIVALENCE (LP (1), LDD (1, 1))
 * , (LD! 1), LDD(1,2)) ((NEWPT?!1),LDD!1,1)).
 * (NEWPT2(1). LDD \((1,3))\)
 गATA NUM,NEXT,IB,NONST, INODEM,IDYD9T/14*J/,LINKS/J/
 DATA NEWMAP/20000*0/
 DFFINE FILE \(3(20000,45, E, J D)\)
 DEPINE FILE 3:75000,45,E,JD)
 C DEFINE FILE 22(75000,45, E,J J)
C ***** INつJT FILES ***********

- 8- こENSUS LINKS
C 10- TRACT/POINTER
C 11- TRACT/NODES
C 12- VAP/NODES
= 16- DIMECON
こ 22- EMPL LINKS (OPTIONAL)
C ***** OUTPUT FILES **********
- 2- LINKTEST (USED AS INDUT TO PREP)
C 3- SIJB DEMAND
C 4-LINKPT
C 9- NOJPAC
c 13- COORDS
こ 20- rRANES/NODES
- 21- TRANES/MNODE
C 23- SUB EMPL (OPTIONAL)

IF(IOPT.NE. 2) GJ TO 1
PEAD (1,5000)LINKS,NEXT
GO Tก 310
$1 \mathrm{NEKT}=1$
D? $4 \quad I=1,500$
$4 \operatorname{READ}(10,1100, \operatorname{END}=5) \operatorname{ITPTR}(\mathrm{I})$
$5006 \quad I=1,370$
6 READ(11.5000, END=7) ITEACT (I), LOW(I), IHIGU (I)
7 DO $8 \quad I=1,38$
8 READ 12,5000 , END=9) MAPP (I), MLOW (I), MHISH (I)


```
9 DO \(200 \mathrm{JJ}=1,100000\)
    READ(16,1000,END=900) (IBMAP(K),ITRC (K),NODES(K), K=1,2),ITYPE,JD,
    \varepsilon !TY(LY),IX(LM),LM=1,2)
        NOM=NOM+1
```

33 DO $100 \mathrm{I}=1,2$
IPOW $=0$
ICOL=0
IF (NODES(I).GE. 700. AND. NNTES(I).LT. 5U00) GO T) 75
STEP 2.2.1 RENITBER TRACI NODES
$K P T R=1$
SEARCH ITRACT TABLE FOR THIS CENSUS TRACT
10 IF (KPTR.EQ. O.OR.KPTR. ST. 370) GO TO 200
IF (ITRACT(KPTR).EQ.ITRC (I)) GO TO 20
$K P T R=K P T R+1$
GO TO 10
20 ND=NODES (I)
REDJCE NODES ABOVE 4999
IF: NODES (I).GE. 5000)ND=700+(NODES (I)-4999)
NODPTR IS THE NODE NUMBER PLUS FGE LOAEST NJMEE?
in that trãt in sezuential ofjer for all tracts. THEN SUBTRACT 1.
NODPTR=ND+LOW:KPTR) - 1
IF (NODPTR.GT.IHIGH(KPTR)) GJ TO 195
IF NEW NUMBER ABOVE 70000 MUSI 30 TO NEW AKEAY FOK SPACE
IF (NODPTR.GT. 70000) GO TO 25
ELEMEIT OF NEWPTR ARRAY IS ASSUGNED NEXT AVAILABLE
NOMBER IP NOT ALREADY ASSIGNED
IF (NENPTR (NODPTR). NE.O) GO TO 30
NEWPTR (NODPTR) =NEXT
IE:IX'I). Еン.0.JR.IY(I).E2.) ; ; TO 21
$I P J W=(I Y(I)-50000) / 2000+1$
I ISOL $=$? $I X ?(I)-1500000) / 2000+1$
21 WRITE; 20,9000) ITRC: I), NODES (I), NEXI, IX (I), IY; I), IEOW, IZOL
$\widetilde{ }$
INCREMENT NEXT AND ASSIGN NEN NUMBER TJ LINKZR
NEYM=NEX"+1
$30 \operatorname{LINKER}(I)=N E W P T R(N O D P T R)$
GO TO 100
©
THE FOLLOWING STEP ARE SIMILAR TO THOSE ABJVE
EXCEPT THE ARPAY NEWPT2 IS USED EUR SPACE
25 NODPTP=NODPTR-70000
IF (NEWPT2 (NODPIR) .NE.O) GO TO 35
NEHPT2 (NODPTR) = NEXT
IF (IX (I).EQ.O.JP.IY (I).EQ.J) GO TO 31
$I R O W=(I Y(I)-50000) / 2000+1$
$I C O L=\{I X: I)-1500000) / 2000+1$
31 WःITE $(20,8000) \operatorname{ITRC}(I), N O D E S(I), N E X T, I X: I), I Y: I), I ? J K, I Z C L$
$N E X T=V E X T+1$
35 LINKER:I) $=$ NEWPT 2 (NODPTR)
GO TO 100
STEP 2.2.2 חENUGBERMAP VODES
CONVERT ALPHA MADS TJ NUYBERS
75 IMAP=0
8) IMAP $=$ IMAD +1
IF (IBMAP(I) EQQ.O) GO TO 200
$I F(M A P P$ (IMAP) © EO.O) GO \quad : O 200
IF (TBMAP(I), GT.MAPD (IMAP)) GO TO 80
IF (IBMAP(I).LT.MAPP (IMAP)) GO TO 2JJ
$こ$
THIS PROCESS IS THE SAME AS ABOVE EXCE? FOY , ADS
NODDTR $=($ NODES $(I)-700)+$ LOW (IMAP) -1
IF (NODPTR.ST.YHIGH (IMA?)) :O TO 135
IP:NEMMAP(NODPTR) 。NE.O) GD TO \&
NPWMAP(NODPTR) = NEXT
IF? IX (I).EQ.O.OR.IY (I).EQ.O) GO TO 4 (
$I R O W=$? IY (I) $-500001 / 2000+1$
$I C O L=(I X(I)-1500000) / 2000+1$
41 K?ITE! 21,8000) IBMAP(I), NODES:I), NEXI, IX (I), IY: I), IEOG, ICJL
VEXT=NEXT+1
40 LINKER (I) =NEWYAP (NODPTR)
100 CONTINUE
CALCULATE LINK DISTANZE, DACK DAIA
WRITE LINK FILE?2) AND DEMAND FIL?:3)

IDIST＝0
TF（IX（1）．F？．O．OR．IX（2）．EQ．O．OR．IY（1）．Z2．O．OR．IV（2）．E\％．））GO IO $1+0$
IXDIST＝IX！2）－IX（1）
IYDIST＝IY（2）－IY（1）
IDIST $=$ ：（IXDIST＊IXDIST）＋（IYDIST＊IYDISI））＊＊＊． $5+.5$
140 IF＇IDIST．LE．O．OR．IDIST．GT．5230）GU IO +5
30 TO 48
45 WRITE：6，6006）JD，IDISI IDIST $=300$
49 KDITE $(2,2400)$ IDIST，LINKER（1），LINKER（2） LINKS＝LINKS +1 IF（JD．GT． 35000 ）GO TO 142

```
    QEAD(Q:JJ,8100) IDMD3
C RFID(22,JD,8100) IFMPO
    GO TO 144
    142 INODEM=INODEM+1
        WPITE:6,6005) NUM,JD
        DO 143 I= 1,9
    14.3 ID4\9(I) =0
    144 गJ 145 KK=1.9
    IEMP9T (KK) = IEMP9T (KK) +IEMP9(KK)
    IDYD9T(KK) = IDMD9% (KK) + ID.MO7(KK)
    145 CONTINUE
C HPITE(3,8200)JD,IDMD9
    GO TO 200
    150 NFITE!6,4000) NUM,ITRC(I),NODES!I)
    GO TO 200
    175 NONST=,NONST+1
    GO TO 200
    195 WRITE (6,2300) NJM,NODPTR,IBMAP(I),ITRE(I),NODES(I)
    200 COVTINUE
    900 NEXT1=NEXT-1
```



```
こ
S T E P # 3
WRITE INFO AND GO TO PREP IF IOPT NE 1
C*************************************************************************C
    WPITE (6,2100) LINKS,NEXT }
    WFITE (6,2001) NUM
    WRITE!(6,2002)IB,INODFM,NONST
    WRITE (6,6001) (IDMD9T(I),I=1,9)
\approx WEITE:6,6002) (IEMP9T(I), I=1,9)
    6001 FORMAT! 1X,'CENSDS'/1X,9 (I7,5X))
    6002 FORMA"(1X,'EMPLOYMENT'/1X,9(I7,5X))
        IP'IOPT.EQ.1)GO TO 980.
    910 CALL PREP(LINKS,NEXT-1)
    980 CONTINIJE
```



```
C
FOR M A T S
こ***************************************#**********************************
    1000 FORMAT(2(I3,I6,I4),I1,85X,I6,4X,4I7)
    1100 FORYAT(I6)
    2001 FORMAT! 1X,'NUY= ',I5)
    2002 FORMAT(1X,'NO こOORD REC= ',I5,2X,'NO DEMAND aEES=',I5,
        * 1又,'NON STREETS=',I5)
    2100 FכRMAT!1X,'NUMBER OF LINKS=',IT/1X,'HISHEST NODE NTMSES=',I7)
    2300 FORMAT(1X,'HIGH DOINTER----REC # =',I6, 1X,'HPOINIE{=',I6,
        * 1%,'YAD=',I4,1X,' CT=',I6,' NODE=',I5)
    2400 FORMAT(3I5)
    3000 FORMAT(I1)
    4000 FORMAT!1X,'NO ?OINTER FOR REZ#=',IS,' こT=',I6,' NODE=',I5)
    5000 PORMAT(3I6)
    6003 EORMAT!1X,'NO COORDS REC#= ',I6)
    6005 FORMAT!1X,'NO DEMAND REC# ',I6,' LINK#=', 13,Ió
    6006 FORMAT(1X,'RECORD ',I6,' DISTANCE IN FEET=', I8)
    7001 FORMAT!I6,4I7)
    8J00 FORMAT(I6,I4,I5,2I7,2I3)
```

```
8900 FOSMAT:9I5)
8200 F\capOYAT(1)I5)
    ST0?
    OND
    SJRROUTINE PREP(LINKS,NUMNOD)
    COMYON LDD:70000,3)
    INTEGER*2 NP(60000),LDD,LP(70000),LJ(70000)
    EOUIVALENCE (LP(1),LDD(1,1)), !LD!1),LJD(1,2))
    DATA NP/60000*0/
    RENIND 2
```


C S T E P \# 1 C
च READ LINKS AND UNPAこK THEY
C INITIALIZE NP WITH NEJATIVES
C**************\#*** C
DO $1 \mathrm{JJ}=1$, LINKS
$\mathrm{J}=\mathrm{J} \mathrm{J} * 2$
I=J-1
READ (2, 2500)LD(JJ), LP(I),L?(J)
1 CONTIVUE
DO 5 YM $=1$, NUMNOD
$5 \mathrm{NP}(\mathrm{MY})=-\mathrm{MM}$
LN=2* LINKS
こ***
C S I E p \# 2 C
こ THIS lOOP DOES THE ACTUAL POINTES C?EITTOYS C

DO $10 \mathrm{I}=1$, LN
II $=\mathrm{L}$? (I)
$L P(I)=N P$ (II)
NP?(I) $=I$
10 conimivite
C
C CLOSE THE POIN:ER LOOP
\approx
20 $12 \mathrm{I}=1, \mathrm{LN}$
TF:LP'(I).GT.O) GO TO 12
$I I=-L$? (I)
$L P(I)=N P(I I)$
12 CONTINUS

C S TE P \# 3 C
こ DIVIDE DISTANCE SY 10, MAKE S NODE NESATIVE C
C FOR TRANES, WRITE LINK INEO OOEILE + AND NJJE C
C POINTER INFO TO 9. THEN RETJRN.

ก○ 11 JJ=1, LINKS
$J=J J * 2$
$\mathrm{I}=\mathrm{J}-1$
TC=LD (JJ) $/ 10$
LJK $=-\mathrm{L}$ P (J)
WRITE:4,2400)Iこ,LP(I), LDK
11 Continue
14 CONTINUE
DO $20 \mathrm{I}=1$, NUMNOD
20 WEITE: 3,7000$)$ NP (I)
2400 ГОスMAT (3I6)
2500 FORMAT:3I5)
7000 FOAMAT(I6)
RETURN
END

```
C PROGRAM NAME : LIST
```

DIMENSION NODE (1000),NEM (1000)
DATA NODE/1000*0/, NEW/1000*0/.IEND/O/

THIS PROGRAM READS IN THE SORTED TRANES NODES FILES
FILE 1=TBACT NODES PILE 2=GAP NODES FROM TRANES
AND PRODUCES A LISTING BYCT AND MAP SHEET OF
THE RENUMBERED NODES.

IF ILE=1
1 NUM=0
READ (IPILE, 1000 , END $=100$) ITRC, MODE, MEW
GO TO 20
5 READ (IFILE, $10 J 0, ~ Z N D=100$) JTRC, MODE, MEW
IF (JTRC.EQ.ITRC) GO TO 20
$7 K=N U M / 8+1$
$\mathrm{L}=1$
WRITE $\left.\begin{array}{l}6,1500 \\ \text { WRITE } \\ 6,4000\end{array}\right\}$
WRITE
IP
IF
IPILE
WRITE $\left\{\begin{array}{c}6.4000 \\ \text { WRITE } \\ 6500\end{array}\right.$
WRITE 6.3500)
WRITE $6, \begin{aligned} & 4200 \\ & \text { DO } \\ & =1, K\end{aligned}$
$\mathrm{L} 7=\mathrm{L}+7$
WRITE $(6,2000)(\operatorname{NODE}(J), N E W(J), J=L, L 7)$
$I O U T=10 U T+1$
$\mathrm{L}=\mathrm{L}+8$
10 CONTINOE
DO $15 \quad I=1$, NUM
NODESI) $=0$
NEH (1) = 0
15

NUM=0
ITRC=JTRC
$20 \mathrm{NUM}=\mathrm{NUM}+1$
NODE (NUY) = MODE
NEH (NUM) = MEK
100 IEND=1
GOTO 7
200 IF (IPILE.EQ. 2) GO TO 900
IFILE=
IEND=O
GO
TO

STOP

C PROGRAM NAME: TRANES
COMMON LINKS MNODZ NODES, MAXD LIMP, LIMS * LSN(1000)
*LIMENSION LIPC (150), LIST $(7) 07)$, LP ${ }^{1}{ }^{6}$), LX (9), ICC ${ }^{3}$),
INTEGER* 2 NET,NP,ISQ,NK,LSN,J,LCD,LCH, IA (4), IE (4), IC (4),

* iarray 50

DEPINE FILE
C
FILE 1=LINKPT
FILE 1=LINKPT
FILE 2=NODPAC
FILE 2=NODPAC
FILE 3=DEMAND
FILE 3=DEMAND
FILE 4=PATHS
FILE 4=PATHS
JI=0 INPOT
JI=0 INPOT

RRITE (6, 122)LINKS MNODE,NODES, MAXD,LIMF.IMMS
IF (MAXD:GT J) GO TO 2
MAXD=3000
2 DO $10 I=1$ NODES
$10 \underset{\mathrm{KEAT}=0}{\mathrm{READ}}(5,115) \mathrm{N}, \mathrm{NK}(\mathrm{N})$
C
C
C
C

$K=0$
RRITE (6:126)
11 READ (5,115) (LR (I), $I=1,16)$

II =
IP(LR (1).LT. ${ }^{\text {I }}$) GO TO 16
12
13 CONTINU
$14 \mathrm{KK}=\mathrm{I}-\mathrm{II}$
TRANSIT LINE CODING EXPANSION
$\mathrm{KY}=0$
DO $56 I=1, K K$
$K Y=K Y+1$
$J=I+I I-1$
KIF (LR (J), GT. O) GO TO 15

```
    KA=LR
    LA=LIPO(KI)
    DO 20 JK=1,I
    IFON{INN(JK).EQ.KI)GO TO 24
    HRITE }{6.125
    24 LB B=LLIPU(LIN (JK+1))-1
    DO 51 L=LA,L3
    IF(LIST(L):EQ.KA)GO TO 54
    51 CONTINUE
        125)
    GO TO g%
    53 KB=KA
    DO 55 M=LICKK,LB
    LIST (K+KY)=LIST(M)
    IF
    55 CONTNNIER =LR(
    So CONTINTE
        K=K+KY
        GO TO }1
C
    16 LL=-LR(1)
        LIPO(LL)=K+1
        II=2
        JI=JI +1
        LIN (JI) = LL
    C
    18 CONTINUE
    IF(IIPO (J) PGGT.0)
        HRITE (6,127) LIPO(LL)
        MIPOLL={IPOSLL)
C
    FILL IN EMPTY POINTER SPACES
    17 IF(LLEEQ.O) GO IO 19
    LL}=
    LIPO (LL) = K+1
    LLCK=LI-1
    DO 18 I=1, LLCK
    J=L L - I
    IF(LIPO(J) .GT.0) GO TO 18
```

C
C
C
READ COMMAND data
$19 \begin{aligned} M F & =0 \\ M S & =0\end{aligned}$
21 CALL INPUT (ICODE, IARRAY)

| | | |
| :---: | :---: | :---: |
| IP | 2) | IKS $=0$ |
| | | IK |
| F | OD | GO |

IFODICODE. LT.12) GO TO 23
$\begin{aligned} & \text { GO TO } \\ & \text { GO TO }\end{aligned}{ }_{9}^{4} 0,50,60,62,80,901$, TCODCK
$\stackrel{C}{C}$ CHECK WHETHER COMMAND EXPECTS VALUES

$25 \mathrm{JJ}=\mathrm{JJ}+1$
IF $=$ IAARRAY (JJT) .EQ. O) GO TO 21
IP (IARRAY $(J J+1)$-GE. ग Go TO 23
$\mathrm{JJ}=\mathrm{JJ}+1 \mathrm{I}$ ($\mathrm{J}+1$)
28 ICODCK $=$ ICODE-1
feinitialize values
$29 \begin{aligned} & M \mathrm{~F}=0 \\ & M S=0 \\ & \mathrm{GO} \mathrm{TO}\end{aligned}$
25
C C A C T I VATE L I N E
$\underset{C}{C}$ ACTIVATE LINE(S) IDENTIPIED BY VALGE OR VALUE BANGE

C ACTIVATE LINE UNLESS ALREIDY ACTIVATED
IF (LIPO (I). LT.O) GO TO 31
$\mathrm{K}=\mathrm{LIPO}(\mathrm{I})$
$K E=\operatorname{LDO}(I+1)-1$
IF KE,LT. O)KE=-KE-2
LIPO (I) =-ITPO (I)
IF (KE. LTT. K) GO TO 31
DO $43 \mathrm{IJ}=\mathrm{K}, \mathrm{KE}$
C
C
C AND alSo activate stops on line
NS=LIST(IJ)
IF $(N K(N S), G T, 1000)$ GO TO 43
NK NS) $=$ NK (NS) +1005
43 COATNOE
C


```
    32 IF (MS. EQ M NO) MS=MF
        lol
    33 CONTINUE
C
        34 IP(MS EQ 00)MS=MF
        DO 3S I= 1,MNODE
        IF
C C DESSACTTIVATEENODEES B Y C L A S S
    36 IP (MS. EQ O)MS=MF
        DO 37 I=1.MNODE (I) GO TO 37
```



```
    37 CONTKNUE
C
```



```
        DO 39 I=MF,MS MF
```



```
        L
        K=LIPO(I)
        IF(RE.IT.K) GO TO29
```

```NS = LTST
```

```
\[
+0 \text { DO } 41, I=1, M N O D E
\]
\[
41 \text { CONTINUE. GE. } 100 \text { ) NK }(I)=N K(I)-1000
\]
```

```
\[
\begin{aligned}
& 42 \text { CONTINUE } \\
& \text { GO TO } 21
\end{aligned}
\]
```



```
        49 CONTINIE
    C
```



```
        IKS=ME
        GO TO 29
        46 IP (MS. EQ.0) MS = MF
            DO \(47 \mathrm{I}=\mathrm{MF}, \mathrm{MS}\)
            ISS=0
            \({ }_{N}^{I F}\left(N_{K}(I)=T K \cdot G T+1000\right)\) ISS \(=1000\)
        47
            CONTINUE
        50 CONTINUE
```



```
            \(\mathrm{kX}=0\)
            GO TO 21
    \(155 \mathrm{IF}\left(M S_{0} E Q \cdot 0\right) \mathrm{MS}=M F\)
            \(I K L=I K L+1\)
        \(58 \mathrm{ICC}(I K L)=I\)
            GO To \(\frac{29}{29}\).EQ. 3)GO TO 19
```



```
    CLEAR ACCUMULATORS, If NECCESSARy
        бо DO \(61 \mathrm{~J}=1, \mathrm{KN}\) ?
            LSY \((I, J)=\delta^{6}\)
        61 CONTINOE
            DO \(65 \quad I=1\), LINKS
            \(\operatorname{IF}\) READ ( \(\left.3 \cdot\left(3, \frac{1}{3}\right)\right) 65,62.62\)
            62 READ (3:I; 3000 ) LX
            \(\mathrm{J}=\mathrm{NET}(1, \mathrm{~T})\)
            LCD \(=\) NET \(\left\{\frac{1}{2}, I\right)\)
            \(\mathrm{LCH}=\mathrm{NET}\left\{\begin{array}{l}\mathrm{I} \\ 3\end{array} \mathrm{I}\right.\)
            IF (LCD.GT.IIMF) GO TO 63
            Iワ \(=0\)
            64
            \(63 \underset{\mathrm{IF}=3}{\mathrm{IF}(\mathrm{LCD} . \mathrm{GT} . \operatorname{LIMS}) \text { GO TO } 65}\)
C
C
C
                            ADD TO APPROPRIATE ACこJMOLATDR, BASED JN FIRST OF SECOYD LIAIT
        64 DO \(66 \mathrm{~K}=1,3\)
            \(\operatorname{LSY}(K+I U, J)=\operatorname{LSY}(K+I \Pi, J)+\operatorname{LX}(\operatorname{ICC}(K)) / 4\)
        66 CONTINUE
        65 CONTINUE
            output allocation results
            WRITE \((6,114)\)
            WRITE \((6,139)\)
```

```
    69 WRITE NO 6Q f ¢ = 1, 118
    WOGTE I=1,KNT, LGSN(I), (LSY(J,I),J=1,6)
    DO 68 J=1,6
    NR(J)=NR(J)+LST(J,I)
    6 8
    MP=0
    IF (ICODE.EQ. 14) GO TO 21
```



```
        J=0
        DO 71 I= 1.10 
        J={\mp@code{ITPO(Ij.GE.O) GO TO }71
        J=\+1
        LLN (J)=I
    71 CONTINUE
C C
    KNL=J
    DO }70\textrm{I}=1,\textrm{KNm
    IU=ISN (I)
    NP(IU)=I
    7 0
        DO 75 J =1,KNL
        DO 72 I= 1, 6
    7 2
        LI=LLN
        K=LIPO (LI)
        KE=LIPO(LI+1)--1
        IF(KE.LT. )) KE=-KE-2
C IDENTIFY STORS ON LINE BY SEQUENCE NO OP SIOP
        IF(KF LT K) GO TO 75
        DO 74 M=K,KE
        MM=LISTSM)
C
    IF(NK(MM)}\cdotLT.LTM00) GO TO 74,
        DO 73 I=1.6
    ACCOMULATE ALLOCAIIONS rO ALL STOPS OR LINE
    73
    74
C
```

```
    WRITE (6,%1113)
                            (LIMP,LIMS,(ICC (I),I=1,3),(ICC(I),I=1,3))
    WKITV, (G,110)I,LLN(I).(LLY(J,I),J=1,5)
    78
    MF=0
C
    80
    NKITE (6, 111)
```



```
    DO 81 I= 1, LINKS
    IF
    IA
    KJ=IB (KK)
    IF(KJ.LE.KNT) GO TO 180
    GO TO 181
    180 IB (KK)=LSN(KJ)
C
    1.1 JA (KK) = I
        IF (KKK.LE,4 GOG TO 81
        NRITE (6,109) (JA (KI), IA (XI),IB(XI),IC(KI),KI=1,4)
        CONTINUE
        81
```



```
        MRITEG109) (JA, K
    109 FORMAT(4(3I6,I2))
        GO TO 21
c゙
```



```
        HRITE (0,124) NDIST.LIME.LIMS
    GO TO
    110 FORMAT (10I8)
```



```
    * N LINK DIST STOP N'ION N LINR DIST STCP N IINK
    113
    115
    110 FORMAT (2I5.I
    117
```



```
        1'0 PT:/{X,2OX,GENSUS CENSUS',
```

```
1<0 FORMAT(' GRAND TOTAL IS ', 6IB)
    121 FORMAT{: FU! CUMMANDS ARE, 1HI6)
122 FCRMAT{: RUN PABAMETERS ARE:,6IO)
    124 FORMAI : NEN PARAMETERS ARE', 3I8)
    125 FOPMAT & ERZ\capR IN REFERENCING COMMON TRA|SIT LINE ')
```



```
    138 FORMAT} VALUE EXPECTED AFTER COMMAND!
```



```
    13
    215
    22) FORMAT 3I5)
    555 FORMAT 1X 1'́(I6))
OうO FORMAT (9I 5)
    98 WRITE(6,138)
    9 9 ~ S T O P
    END
```

```
    SUBROUTINE INPUT (ICODE,IDIGIT)
    INTEGER*2 IDATA(SO), IEFROR (8?), IDIGIT (50),II,JJ
    INTEGER*2 A,C,D,I,N,O,P,R,S
    INTEGER*2 ZERO,ONN,NAO,THREEE,FOIJF,FIVE,SIT,SEVEN,EIGHT,NIGZ
    INTEGER*2 BLK,MNS,IDIG
```



```
    III=0
    DO }5\textrm{I}=1,5
    5 IDIGIT(I)=0
    IF(IECF.GT. \LGGO TO 800?
    CALL DATAIN (IDATA,IEOF)
    IF(IEOF.GT.0)GO TO 8000
C
    100 IF(IDATA(INDX).NE. BLK) GO TO 110
    INDX=INDX+1
    GO TO 10
C IR FIRSI CHARACTER NOT ALPHA IT'S AN ERROK.
    1 1 0
    IF(IDATA (INDX)= EO. A) GO TO 20? 
nn@r,
120 IPTR=0
    ISAVE=INDX
140 INDX=INDX+2
    IF{IDATA {INDX
    INDX=INDX+1
    IF(INDX.LE.80)GO TO 140
    INDX2=INDX-1
    DO 150 I=ISAVE,INDX2
    IDTR=IPTP+1
    IERROR(IPTR) =IDATA(I)
    CONTINOE
    CALI DATAIN (IDATA,IEOF)
    INDX=1
    ISAVE=1
    IF(IEOF.LE.O)GO TO 140
```

```
    160 IF(ISAVE.EQ.INDV)GO TO 17C
    IND又2=INDX-1
    DO 165 I=ISAVE,INDX2
    IPTF=IPTE+1
    IERROR (IPTR) =IDATA(I)
    155 CONTINUE
    170 IP(IPTR.LE,0)GO TO 180
    NRITE(6,200) )) (IERROF(I),I=1,IPTR)
    180 IPTR=)
    200 II=IDATA(INDX)
    IF(INDX.LT, 8D)GO TO 205
    NPLD=0
    IERROR(1)=0
    CALL DATAIN{IDATA, IEOF
    205 CONTINUE
    JJ=IDATA (INDX+1)
    IF}{\begin{array}{l}{IIIEQQ.A}\end{array}
C
C
    31) ICODE=6
C
    32) ICODE=4
    GO TO 1000
C
    330 ICODE=5
    GO TO 1200
C THE SECOND こHAZACTEE IS AN S. ** NOT YET IMPIE:USNTED **.
    340 GO TO 210
C(THE FIRST CHARACTER IS A こ. NEXT MUSI BE A, O.D JP R
```

```
C 400 IF (JJ.EQ.A) GO TO 410
C C
C+10 GO TO 210
C
    420 ICODE=2
        GO TO 1000
C C THE SECOND CHARACTER IS A D
    425 ICODE=9
```



```
C
    500 IF (JJ.EQ.A)\GO TO 510
C THE SECOND CHARACTER IS AN A.
    510 ICODE= 12
C C
    520 ICODE=7
C C THE SECOND CHARACTER IS AN L.
    530 ICODE= (GO TO 1000
C
540 ICODE=3
C CHE SECOND CHARACTER IS AN S. ** YOT YET IMOLEYENTED % %.
    550 GO TO 210
```



```
    IFSMINUS.GT. NFLDLGO TO 1240
    IDIGITTNFLD)=-IDLGIT(NFLD)
    1240 IF (IDATA (INDX). EO.BLK)GO TO
    IF IDATA (INDX) &NE.MNS} GO TO 1290
    MINUS=NFLD+1
    GO TO 1220
    1290 IF (MINUSGEQ.NFLD)IDIGIT (NFLD) =-IDIGIT(NFLD)
    132\ IF (NFLD.GT.O)GO TO 9000
    1400 IPTR=2
    IF (NPLD.LE. D)GO TO 1450
    IF (INDX. EQ.ISAVE)GO TO 1450
    INDX2=INDX-1
    DO 1410 I=ISAVE.INDX2
    IPTR=IPTR+1
    1410 CONTINNEPTR)=IDATA(I)
    1450 URITE (6,20000) (IERROR(I),I=1,IPTR)
    IF(ITOF.GT.0) GO TO 800.)
    8000 ICODE= -1
    90J0 RETUKN
20,000 PORMAT (1X,'ERROR 1,66A1)
```

```
            SUBROUTINE DATAIN (IDATA,IEOF)
            INTEGER*2 IDATA (80)
            READ (5,10\capO, END=806) IDATA
            WRITE (6,1100) IDATA
            IEOF=?
            G0 TO 900
800 IEOF=1
9.)O RETURN
1UOO FORMAT (8OA1)
1100 FORMAT (1X,' COMMAND CARD ',2X,8OA1)
```

```
            SUBROUTINE LINKER(KWTBOB,KNTBOBGKNLBOE,KLSBCB)
```



```
            *LSN (1700) L
                            INTEGGER*2 NET,LD,LPA,LPB,LST,I,LCH,IP,JJ,LPP,NP,ISQ,NK,LSA
C
    KLSBOB=0
    DO 5 I = 1, LINKS
    READ (1, 10)O, NND=7)(NET (N,I),N=1,3)
    5 \text { CONTINUE}
    REWIND 1
    READ(2,2000, END=4)NP(I)
    3 CONTINOE
    4 REHIND 2
C
20 ll}\begin{array}{l}{\mathrm{ DO 20 I= 1,MAXD}}\\{\textrm{ISQ(I) =0}}\\{KG=0}
    K月F=0
    LIS=0
    CHECK FOR INCORRECT POLNTEKS- TO SE ADDED LA?RK
    ALLOCATE LINKS AT STOPS
    FIND ACTIVE TKANSIT STOPS AND ALLOCAIE ADJACENE I.INKS
    KNTBOB=?
    DO 40 J=1,MNODE
    IF(NK(J).LT. 100?) GO TO 4.)
    I=NP(J)
    KNTBOB=KNTBOB+1
    LSN(KNTBOB)=J
    ACTIVE STOP PJUND DETEPMINE ADJACENT LINK
        25 L= (I+1)/2
    LD=NET{(1,L
    L?A=NET
    LPB=NET
    BY-2ASS IF ALREADY ALLOCATED
    IF(NET (3,L).LT.0) GO TO }3
32 LD=LD+200O
    NET (1, L) =IDD
    NET (2,L)=LPA
    IF (LPA.GE.I) GO TO 40
    I=LPA
    GO TO 25
    31 LPB=-LPB
    LST=KNTBOB
```

```
    NET (3,L) =ISQ (LD)
    LIS=LIS+1
    IF(LAB.EQ. 0) GO TO 30
    LPP=LDA
    LPA=LDB
    LPB=LPP
    30 NET { { { , L 
    FIND OTHER ADJACENT LINKS
    IF(LPB.GE.I) GO TO 40
    I=LPB
    GO TO 25
    40 CONTINUE
C 45 DO 45 I= 1, LINKS
6000 RITEA(6,{
    FORMAT (1X,4I6)
    GRITE (6,6001) LIS KNIBOB
6001 FORMAT (1X,'LIS, 15,'KNTBOB',I5)
```



```
    DO 49 I=1:3000
    IF{ISQ(I):EQ.O) GO TO 47
403
    WRITE(6,6003)I,ISQ(I)
    CONTINUE
    IF(KNTBOB.EQ.O) GO TO 98
ranon
    5 0
    CHECK WHETHEE IT COMDLETES LOOP ARUOND NEW
    p R O C E S S R E MAA I N INN G L IN N KNS
    INCREMENT POINTER AND CHECK FOR EXIS CUNDITIONG
            IF(IP,GT,MAXD) GO TO 99
    IF{ISQ(IP) ERQ:O) GO TO 50
C
    EXTRACT LINK AT NEW DISTANCE, SET HOOK, JETEEMINE ADJACONT LINK
            KHTBOB=ISQ (IP)
            NEW=KHTBOB
        60 LIS=LIS-1
            LST=NET(1,NEW)
            LCH=NET(3.NEW)
C
```



```
                            THE POLLO日ING STATEMENTS SHOULD BE ACTIVATED IF THE LINK CHAIN
```

 THE POLLO日ING STATEMENTS SHOULD BE ACTIVATED IF THE LINK CHAIN
 IS TO BE SAVED FOR SKIMMING OR FLU'A ASSIGNAENI
 IS TO BE SAVED FOR SKIMMING OR FLU'A ASSIGNAENI
 \(\mathrm{NP}(\mathrm{KLSBOB})=\mathrm{NE} \mathrm{E}\)
 \(\mathrm{NP}(\mathrm{KLSBOB})=\mathrm{NE} \mathrm{E}\)
 IF (KLSBOB EQ. IDIG) GO TO 97
 IF (KLSBOB EQ. IDIG) GO TO 97
 LIST OF LINKS IN SEQUENCE REACHED IS SAVED IN VECTOR IP
 LIST OF LINKS IN SEQUENCE REACHED IS SAVED IN VECTOR IP
 IDIM MUST BE SET TO MAX DIMENSION OF ND
 IDIM MUST BE SET TO MAX DIMENSION OF ND
 IF (LST.LT. 2000) GO IO 75
    ```
    IF (LST.LT. 2000) GO IO 75
```

```
    LST=LST-2000
    NET (3,NEW)=0
    NET (1:NEW)=LST
    NFTT2,NEW)=ID
    75 L= (I+1)/2
    80
    IF (L.EQ.NEW)GO TO82
```

IPA T (1 I)

```
    LPA=NET
    IF(NET(3,fo).LT.0) GC TO 78
    LD=LD+2080
    NET
    NET}{2,L}=LP
    I=LPA
    7 8
    LPB=-LPB
    LID=ID+LD
    IP(I/2*2.EQ.I) GO TO 77
    LPP=LPA
    LOB=LPP
C
    77 I=LPB
    IF(LID.GT. MAXD)GO TO 75
    PLACE LINK IN SEQUENCE TABLE. SHIMCY ZTAIN, INCBEAENT CUOYTEP
    JJ=ISQ (LID)
    NET
    IIS=LIIS+1
    79 NET NT (1,I L = LST
C
    GO TO 75
C CHECK WHETHER LAST LINK AT THAT CJYHLAITVE I:PEOANCE
    N2 NET (3, NEW)=2
        IF (I/2*2,EQ.I)NET (3,NEW)=1
        NET
        91 IF(LCH,EQ.0)GO TO 50
            NEW=LCH
        97 KRITE (6,102)
        GOTTE G9.100)
        98 WEITE (6,120) KISBOB,MAXD
    100 FORMAT(%NO ACTIVZNODE')
    109 FORMAI (10I 8)
    102 FORMAT ' INSUFFICIENT SDACE FOR CHAIN STOEAGE-MODIFY PRDGRAY')
    123 FORMAT (IG;'IINKS WERE RFACEED, YAXIYAL IYDEDANEE WAS',IGI
    1000 FORMAT (3I6)
2000 FORMAT (IG)
    RETURN
    END
```


APPENDIX C

TRANES NETWORK DEVELOPMENT AND CODING

This section describes the steps required to identify and code TRANES node numbers for transit stops along the desired transit routes for input to TRANES. This procedure includes map preparation, network DJME file node tabulation, and TRANES node number extraction. This section will begin by briefly introducing GBF/DIME files and elaborating on the quality of census data before describing the above procedure.

GBF/DIME FILES
GBF/DIME files are computerized representations of census maps. GBF stands for "Geographic Base File." DIME stands for "Dual Independent Map Encoding" the topological technique used for representing street networks and double checking the accuracy of the geocoding work. As a major geocoding innovation in 1970's, each DIME file record includes street intersection node numbers, street name, addresses, census block and tract numbers, and, usually x and y grid coordinates. The U. S. Census Bureau used GBF/DIME files as a primary geographic resource in metropolitar areas for the 1980 census. For each street segment a GBF/DIME file record (Figure $C-1$) contains the following information (81):

1) Street name (or other feature description such as river, railroad track, political boundary, etc.), type, (avenue, boulevard, drive, etc.), and direction;
2) address ranges for both sides of the street segment,
3) geographic area codes, census block and tract numbers and local political jurisdictions for both sides of the segment, and
4) the identification number of the node (intersection) at each end of the segment.
5) Geographic x and y coordinates for each node, typically based on state survey plane coordinates, to enable computer-generated mapping and sorting of GBF/DJME file information into grid or other geographic subareas.

TRANES uses the GBF/DIME file in two ways. First, it is the basis for coding the transit routes and stops on the urban street network for input to the TRANES programs. Second, the file is used to link census or other street address-based socioeconomic data with specific street segments along the transit network.

FIGURE C-1
GBF/DIME STREET SEGMENT FILE RECORD

TRANES NETWORK CODING

The material required for TRANES network coding consists of the appropriate census maps with DIME records and transit route street alignments and stop locations. The coding consists of defining the study area using the DIME file maps and drawing the transit routes which pass through the study area on these maps.

Metropolitan Map Series

The 1980 Metropolitan Map Series consus maps developed by the U. S. Cerisus Bureau were used in this research. The Metropolitan Map Series typically covers the urbanized area and often the remainder of the Standard Metropolitan Statistical Area (SMSA). The predominant scale for these maps is one inch equals 1,600 feet. In high density urbanized areas the scale may be one inch equals 800 feet. Other less common scales include one inch equals 1,667 feet and one inch equals 3,200 feet. The maps can be obtained from the Data User Services Division of the U. S. Bureau of the Census.

Copies of map sheets used by local agencies to prepare GBF/DIME files (referred to as DIME file maps) are available with a scale of one inch equals 800 feet. This is the map size and type that the TRANES coding is based on (Figure $C-2$). These maps inclucie the GBF/ DJME file node numbers and the scale is adequate for accurately reading the node and tract numbers and providing sufficient space to diraw the transit network. This is particularly important in central business districts or other areas where several transit routes intersect or closely parallel each other.

Mrarsit Network Route Information
Having current transit route information plays a crucial role in TRANES coding. It is very important that analysis begin with the latest updated version of network routes. Any attempt to incorporate subsequent changes to the routes after they have been drawn on the DIME file maps or in later stages of the analysis will prove tedious and time consuming. It will also result in maps that contain deleted or re-routed lines which may cause miscoding of the nodes.

Prior to drawing the transit routes on the maps, their termirals and paths should be clearly defined. This is especially important if the network contains "interlocking" (or "interline") routes. Interlocking means that a bus serving a particular route changes its route number and destination sign to serve another route. In such instances, combining both route numbers into one route is not recommended. Instead, it is preferable to consider the interlocked route as two separate routes designated by their route numbers. This is to prevent future confusion over the route numbers by the users of the system.

FIGURE C-2
TRANES CODING MAP

Map Preparation Procedure

The map preparation procedure begins by selecting the study area and obtaining the appropriate set of DIME file maps. At this stage and using the final description of the routes under consideration, each route can be plotted on the appropriate map (s) (Figure C-3). It is advised to differentiate each route by color. However, each route needs to be distinctly numbered at several points. As each route is drawn, the intersections that are to be coded as planned bus stops can be marked using a separate marker color, in order to distinguish them from other nodes along the route.

The scheme employed in this study consisted of marking the "outbourd" bus stops first (Figure C-3). This was done using a color marker (e.g., red) and marking the outbound bus stops with a slash (/) mark. Next, inbound bus stops were identified and marked with a slash of opposite incline ($($) and using a different color (e.g., green). This procedure results in the identification of the nodes that were outbound only (/), the inbound only nodes (\backslash), and those nodes which contained both inbound and outbound bus stops (s:).

Network DIME File Node Tabulation

Following the first stage of the coding procedure, where bus stop nodes and transit routes were determined and plotted on the DIME file maps, a table is created (referred to as the coding sheet) to tabulate the extracted network containing the GBF/DIME file node numbers (Figure C-4). The obtained numbers will be used in the final step, the designation of unique TRANES node numbers.

In tabulating the GBF/DIME file node numbers the following considerations are to be taken into account. Each route is coded starting from the established route terminal. For those nodes not on the tract boundary the tract and node number is recorded. For nodes on the tract boundaries, the map sheet number and node number are recorded as well. Special care needs to be taken to avoid confusing of the tract numbers or map numbers. However, such errors are often apparent when the TRANES program output is inspected. The quality control procedure for checking the tabulated numbers will vary according to the size of the network being coded. A simple means for checking node numbers along each route is to retrace the route pattern, checking for duplications and missing numbers.

Common transit route segments (routes that have common paths in some segments) can be established at this stage if common route coding is to be used. (This will be explained later under Input Data Preparations). This can be accomplished by making appropriate notes on the remarks column of the coding sheet (Figure C-4). For this purpose, the first common node, the last common node, and the common route number are identified. It is recommended that for each route the outbound route is tabulated

FIGURE C-3
TRANES NETWORK CODING IN TRACT 1072.18

MASSTRANS Coding 1982

| Semer | Consens reset | amp | come | cters | ${ }^{\text {neastrs }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | - | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| figure c-4 | | | | | ${ }_{\text {race }} \square$ |

first, specifying those nodes common with the inbound direction (designated as "B" in Figure C-5). In such a case, the inbound tabulations will consist of those nodes that are inbound only. Such a procedure will assist the user in activating or deactivating the outbound and/or inbound routes as desired. For example, activating route 13 (Figure $C-6$) but deactivating nodes designated as "O" would result in an inbound route (this will include nodes designated as "B" and "I").

Node Number Preprocessor
The node number preprocessor converts the GBF/DIME node numbers to unique sequential numbers for use in the EXTRACTOR and TRANES programs. The records produced by this program contain the tract and node number if the node is not a tract boundary. For census tract boundary nodes the record contains the map sheet number and node number. For each node in the file one separate record is produced. The TRANES equivalency tables produced by this preprocessor program are referred to as "look up" tables. Example extracts from the equivalency tables used in the coding example are presented in Table $\mathrm{C}-1$.

TRANES Node Number Extraction
Using the extracted network DIME file node numbers and the "look-up" tables produced by the preprocessor program, the final stage of coding can begin.

The procedure for TRANES node number extraction is straight forward. It consists of matching each GBF/DIME file node number recorded on the coding sheet (Figure $C-5$) with the appropriate record number in the node number equivalency tables (Table c-1) that contains the relevant tract and node number (or map sheet number and node). The newly obtained record numbers can be entered into the coding sheet in the space provided in the fifth column, "TRANES Node Numbers," as indicated in Figure C-6. The TRANES node numbers are the ones used by TRANES.

INPUT DATA PREPARATION FOR THE TRANES PROGRAM

The TRANES node numbers for each bus route are entered in a five-digit integer (I5) format in the computer data files, as indicated in Table $\mathrm{C}-2$. Each route number is distinguished from node numbers by a negative sign and entered in the first of 16 I5 fieids on the first input card. The line number is followed by a list of bus stop nodes (as TRANES node numbers) that make up that line. The successive node numbers fill the remaining 15 fields of the first card and then all 16 fields of the additional cards are needed. The TRANES program recognizes the next transit line when it encounters a negative number in the first I5 field of a card, which is the route number of the next transit route.

Common route coding (for routes that have common paths in some segments) may be used to reference any portion of a transit

MASSTRANS Coding 1982

| Route
 Number | Census Tract Nunber | $\begin{gathered} \because A P \\ \# \end{gathered}$ | Census DIMF
 Node Nunber | TRANES Node Number | Outbound/Inbound/Both* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | Begin Outbound |
| 13 | | 26 | 997 | | B |
| " | | " | 998 | | 0 |
| " | | " | 999 | | B |
| " | | " | 981 | | B |
| " | | " | 980 | | 0 |
| " | | " | 978 | | 0 |
| " | 1072.18 | | 6 | | 0 |
| " | 1072.18 | | 25 | | 0 |
| " | 1072.18 | | 41 | | 0 |
| " | | 26 | 1460 | | 0 |
| " | | " | 1459 | | 0 |
| " | : | " | 1463 | | B |
| | | | | | Begin Inbound |
| 13 | 1072.19 | | 82 | | I |
| " | 1072.19 | | 83 | | I |
| " | 1072.19 | | 84 | | I |
| " | | 26 | 1007 | | I |
| " | | " | 1005 | | I |
| " | | " | 1003 | | I |
| | | | | | |
| | | | | | |
| | | | | | |

[^1]FIGURE C-5
TRANES NETWORK CODING FORM FILLED IN

TABT,E C-1
EXAMIII: TRANES EQUJVAIENCY TALIES

CENSUS TPACT 107218

| $\begin{aligned} & \text { DIME } \\ & \text { NCDE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NONE } \end{aligned}$ | TRANES NODE: | $\begin{aligned} & \text { DIME } \\ & \text { NCDE } \end{aligned}$ | TRANES
 NODE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4367 | 21 | 9531 | 41 | 4933 |
| 2 | 4366 | 22 | 7785 | 42 | 4934 |
| 3 | 4365 | 23 | 4610 | 43 | 5031 |
| 4 | 4364 | 24 | 4609 | 44 | 5032 |
| 5 | 4363 | 25 | 4608 | 45 | 5033 |
| 6 | 4463 | 26 | 4707 | 46 | 5034 |
| 7 | 4464 | 27 | 4708 | 47 | 5035 |
| 8 | 4465 | 28 | 4709 | 48 | 9739 |
| 9 | $446 E$ | 29 | 7787 | 49 | ¢533 |
| 10 | 446% | 30 | 9454 | 50 | 5036 |
| 11 | 446.8 | 31 | 4937 | 51 | 10314 |
| 12 | 4469 | 32 | 9455 | 52 | 5037 |
| 13 | 4470 | 33 | 9738 | 53 | 5038 |
| 14 | 4471 | 34 | 9737 | 54 | 9458 |
| 15 | 4611 | 35 | 778 ¢ | 55 | 9459 |
| 16 | 7646 | 36 | 4936 | 56 | 4938 |
| 17 | -6.47 | 37 | 4935 | 57 | 4959 |
| 18 | 9463 | 38 | 4809 | 58 | 5811 |
| 19 | 10300 | 39 | 4808 | 59 | 4810 |
| 20 | 9532 | 40 | 4807 | EO | 4710 |
| | | | | 61 | 4711. |

| CENSUS MAF A | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DIME | TRENES | DIME | TPANES | DIME | TRANES |
| NCDE | NODE | NODE | NODE | NODF | NODE |
| 727 | 2.212 | 986 | 2630 | 1000 | 4061 |
| 728 | 2527 | 987 | 2774 | 1001 | 4062 |
| | ... | 988 | 2906 | 1002 | 4362 |
| 975 | 4263 | 989 | 3026 | 1003 | 4462 |
| 076 | 4264 | 990 | 3205 | 1004 | 4607 |
| 977 | 4260 | 991 | 3358 | 1005 | 4806 |
| 978 | 4259 | 992 | 3496 | 1006 | 5157 |
| 979 | 4258 | 993 | 3405 | 1007 | 5272 |
| 980 | 4257 | 994 | 3639 | 1008 | 5381 |
| 981 | 4256 | 995 | 3640 | 1009 | 5472 |
| 982 | 2187 | 996 | 3777 | 1010 | 5473 |
| 083 | 2186 | 997 | 3778 | | |
| 984 | 2307 | 998 | 3926 | 1458 | 5159 |
| 985 | 2504 | 999 | 3927 | 1459 | 5158 |

MASSTRANS Coding 1982

| Route
 Number | Census Trace Number | $\underset{\frac{M}{\pi}}{\operatorname{MAP}}$ | Census DIME
 Node Number | TRANES Node Number | Outbound/Inbound/Both* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | Begin Outbound |
| 13 | | 26 | 997 | 3778 | B |
| " | | " | 998 | 3926 | 0 |
| " | | " | 999 | 3927 | B |
| " | | " | 981 | 4256 | $\begin{aligned} & \text { Begin } \\ & \text { B } 1 \text { (out) } \end{aligned}$ |
| " | | " | 980 | - 4257 | 0 |
| " | | " | 978 | 4259 | 0 |
| " | 1072.18 | . | 6 | 4463 | 0 |
| " | 1072.18 | | 25 | 4608 | 0 |
| " | 1072.18 | | 41 | 4933 | 0 |
| " | | 26 | 1460 | 5386 | $\begin{aligned} & \text { End } \\ & 01 \text { (out) } \end{aligned}$ |
| " | | " | 1459 | 5158 | 0 |
| " | | " | 1463 | 5278 | B |
| | | | | | $\begin{aligned} & \text { Begin } \\ & \text { Inbound } \end{aligned}$ |
| 13 | 1072.19 | | 82 | - | I |
| " | 1072.19 | | 83 | - | I |
| " | 1072.19 | | 84 | -- | I |
| " | | 26 | 1007 | 5272 | I |
| " | | " | 1005 | 4806 | I |
| " | | " | 1003 | 4462 | I |
| | | | | | |
| | | | | | |
| | | | | | |
| * O: Outbound only
 I: Inbound only
 B: Both (Outbound and Inbound) | | | | | |

FIGURE C-6
TRANES NETWORK CODING FORM FOR BUS ROUTE 13

TABLE C－2

TRANES NODE NUMBERS FOR COTPA BUS ROUTES
Route
Number
TRANES Node Numbers

| 1 | －1 | 40 | 41 | 42 | $9 ?$ | 399 | 477 | 473 | 4×3 | 4134 | $48 ;$ | D． 26 | 628 | 630 | 634 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 639 | 895 | 1439 | 1442 | 1144 | 1449 | 16.65 | 1857 | 185） | 1539 | 145 ？ | $11+0$ | 1437 | 1174 | 100 | 0 |
| | 4.2 | 491 | 477 | 230 | | | | | | | | | | | | |
| 2 | －2 | 311 | 279 | 981 | 922 | 993 | 785 | 9388 | 973 | $8 \cdot 9$ | 1215 | 1532 | 1736 | 1；76 | 22お | 9714 |
| | 2535 | 2433 | 2435 | 2436 | 25.2 | 26.75 | 2676 | 2543 | 2244 | $22+7$ | 2243 | 2250 | 1791 | 1995 | 1；8） | 1997 |
| | 1986 | 1035 | 1955 | 1053 | 1951 | 1415 | 1135 | $8: 37$ | 931 | 934 | | | | | | |
| | －3 | 227 | 979 | 993 | 932 | 1546 | 1730 | 1967 | 1969 | 2225 | 2220 | 3539 | 3360 | 4073 | 4381 | ＋082 |
| 4 | 4093 | 4054 | 5104 | 5493 | 5471 | 5200 | 3392 | 1407 | $1: 07$ | 378 | | | | | | |
| | －4 | 255 | 425 | 1016 | 12.1 | 15，7\％ | 1761 | 203J1 | U65 3 | 2320 | 3）${ }^{\text {a }}$ | 3559 | 3700 | 3918 | 4383 | ＋654 |
| | 4854 | 5， 057 | 5312 | 5426 | 55.2 | 5.6 .77 | 56,72 | 5639 | 5.39 | 4339 | 4643 | $+637$ | 4070 | 4J75 | 4）74 | $+951$ |
| | 5294 | 5677 | 56133 | 5773 | 584？ | 5682 | 5081 | 5511 | 5373 | $47+2$ | $455 ;$ | 2200 | 1242 | 1317 | ju1 | 341 |
| | 257 | 101 | 177 | | | | | | | | | | | | | |
| 5 | －5 | $22+2$ | 255 | 426 | 575 | 1244 | 1469 | 1762 | 2031 | 2273 | 25，53 | 2921 | 3279 | 37）11 | 002． | 4539 |
| | 4359 | 5 Cn 2 | 5316 | $\bigcirc 515$ | 558n | と0ご6 | 2328 | 7619 | 8330 | 6,455 | 2． 391 | ＋120 | V094 | 7134 | 719．） | 7559 |
| | 7296 | 7306 | 74.1 | 7402 | 7415 | 7459 | 7482 | 9113 | 7502 | 75061 | 10476 | 7016 | 7523 | 7529 | 7533 | 75.32 |
| | 7509 | 7430 | 7371 | 7154 | 9037 | 7711 | 10585 | b 51,1 | 5253 | 5777 | ＋74＋ | ＋388 | 4132 | 3030 | 2033 | 2444 |
| | 2095 | 1471 | 1243 | 1138 | 1021 | 505 | 34.5 | 181 | 174 | | | | | | | |
| 6 | －5 | の2 +2 | $25 t$ | 426 | 7） | 702 | 9367 | 973 | 1141 | 1477 | 2301 | 2639 | 2958 | 3204 | 3565 | 3840 |
| | 4137 | 4373 | 4563 | 4964 | 50.67 | 5321 | 5519 | 5518 | 5433 | 5320 | 5322 | 4750 | 43.38 | $3) 31$ | 3700 | 2449 |
| | 697 | 5.91 | $3+1$ | 121 | 173 | | | | | | | | | | | |
| 7 | －7 | 9749 | 9751 | 9537 | 8.455 | 1.75 | 7777 | 9507 | 442 | | 019） | 915 | 1149 | $1+37$ | 2222 | 224 |
| | 2109 | 2307 | 26.21 | 29 f． 3 | $32 \geqslant 2$ | 3522 | 3353 | $+1+2$ | 43：3 | 4567 | 3903 | 3713 | 3570 | 3123 | $2+52$ | 2101 |
| | 1879 | 1675 | 1261 | 823 | 9679 | 265 | 7753 | 9755 | 96，13 | 8242 | | | | | | |
| 8 | －9 | 92.72 | 256 | 345 | 3.41 | $3+3$ | 345 | $3+6$ | 3617 | 7771 | 44） | 517 | 705 | 320 | $1) 27$ | 1250 |
| | 10225 | 2121 | 2307 | 231） | 2311 | 2314 | 2563 | 29：7 | 34？ 2 | 3717 | 4302 | ＋15 1 | 4153 | 4321 | 7.320 | 9821 |
| | 5063 | 90？？ | 5599 | 5694 | 5695 | 5697 | 5299 | 5701 | 5734 | 5706 | 5707 | 5710 | 5713 | 5703 | $573)$ | 5693 |
| | 5503 | 4977 | 4147 | 323b | 2337 | 2354 | 9，44．） | i459． | 265 | 253 | 257 | 257 | | | | |
| 9 | －9 | 97＋9 | 3751 | 9537 | 0439 | 9506 | 9759 | 24 | 35 | 37 | 25 | 114 | 0640 | 713 | 327 | 923 |
| | 922 | 924 | 927 | 327 | － 32 | 335 | 736 | 933 | 939 | 1174 | 1512 | 14．） 1 | 1590 | 2130 | 1780 | 2339 |
| | 2340 | 2343 | $23+5$ | 2344 | 2347 | 2349 | 2355 | 2477 | 2734 | 2395 | 3315 | 3457 | 36.03 | $+198$ | $4+36$ | 4539 |
| | 4529 | 4090 | 3317 | 2963 | 20～6 | 5542 | 4＋34 | 43.4 | 3391 | 3535 | 3383 | $32+7$ | 2352 | 2350 | $23+3$ | 2344 |
| | 2341 | 931 | 9251 | 10192 | 17% | 9752 | 7775 | 975 ${ }^{\text {a }}$ | 845： | 9753 | 9750 | 7513 | $82+2$ | | | |
| 10 | －10 | 224？ | 201 | 431 | 500 | 1748 | 1579 | 153） | 1521 | 1543 | 1385 | 1596 | 1597 | 1539 | 3595 | 1639 |
| | 1776 | 1777 | 1790 | 2019 | 24.94 | 2706 | 2.79 | 3432 | 3＋34 | 2331 | 212 J | 1531 | 1532 | 1138 | 1J21 | 535 |
| | 345 | 136 | | | | | | | | | | | | | | |
| 11 | -111 | 12461 | 34111 | 2443 | 265 57 | 7675 | 96.57 | 7544 | 1194 | 2199 | 2541 | 2543 | 2044 | 2640 | 1032 | 2073 |
| | 2211 | ？ 5 54 | 2931 | 3239 | 39.73 | $42: 5$ | 3304 | 1627 | 1325 | 206？ | 2521 | 2642 | 1953 | 3058 | 9147 | 9149 |
| | 2955 | 824？ | | | | | | | | | | | | | | |
| 12 | －12 | 0411 | 17443 | 555 | 9055 | 9711 | 1375 | 1527 | 1715 | 2112 | 2303 | 2773 | 3532 | 3215 | 3213 | 3225 |
| | 3222 | 3224 | 3225 | 3377 | 3773 | 4777 | 4524 | 49.39 | 5175 | 5371 | 5477 | 5022 | 5319 | 5921 | 6） 11 | 6122 |
| | 6273 | 6416 | 3143 | 7045 | 9957 | 7105 | 7347 | 6359 | 5977 | 9856 | $5+0+$ | 4722 | 4625 | 3510 | 1137 | 8652 |
| | 10351 | 8242 | | | | | | | | | | | | | | |
| 13 | -13 | 130 | 775 | $9 \varepsilon 2$ | 13651 | 10399 | 2055 | 21.12 | 2331 | 2493 | 2523 | 3198 | 3203 | 3202 | 3205 | 3495 |
| | 3925 | 4254 | 4257 | +259 5079 | 4453 | 4733 | 5159 | 4255 | 6254 | 6252 | 0251 | 6158 | $612 J$ | 6093 | Ejal | 5974 |
| | $\begin{array}{r} 6081 \\ 10351 \end{array}$ | 5023 | 5975 | 5879 | 541b | 5629 | 5ち59 | 5473 | 5272 | 5157 | 4905 | 3927 | 3354 | 32.94 | 3201 | 131 |
| 14 | $\begin{array}{r} 10351 \\ -14 \end{array}$ | 724？ | 2375 | 2931 | 3111 | 3467 | 3751 | 3934 | 4343 | 4593 | 4777 | 5014 | 5393 | 5246 | 5356 | 7600 |
| | 5783 | 5015 | 5015 | 5176 | 6216 | 6476 | 6755 | 6761 | 6763 | 6755 | 5765 | 5750 | 5）97 | 4032 | | |
| 16 | －16 | QR521 | 123541 | 10235 | 735 | 8 Bb 57 | 1195 | 1523 | 1717 | 2062 | $2+0 ;$ | $\angle 633$ | 3218 | 3503 | 3784 | 4472 |
| | 4712 | 4947 | 5154 | 5392 | 5620 | 5月171 | 10247 | b03．31 | $02+9$ | 626.1 | 0412 | 54G1 | bóós | 6770 | 6361 | 6945 |
| | 7017 | 7034 | 7295 | 7.983 | 7094 | 706 | | 15243 | 5743 | 0244 | 5273 | 9460 | 4812 | 4612 | 4265 | 3939 |
| | 7760 | 7784 | 96211 | 10351 | | | | | | | | | | | | |
| 18 | -13 | 10.324 | 295 | 8043 | 1289 | 1016 | 2145 | 2433 | 2607 | 2604 | 2523 | 2625 | 2527 | 2629 | 2331 | 2633 |
| | 2634 | 2636 | 2633 | 2640 | 2541 | 3512 | 3792 | 4071 | $4+91$ | 4716 | 4944 | 5158 | 5335 | 5555 | 6263 | 6266 |
| | 4617 | 4270 | 3371 | 2718 | 16.5 | 8045 | 207 | 3034 | | | | | | | | |
| 19 | －19 | 1728 | 1765 | 222 ？ | 2292 | 2301 | 2305 | 2307 | 23） 9 | 2310 | 2311 | 2317 | 2318 | 2322 | 2325 | 2331 |
| | 2332 2204 | 2333 | 2334 | 2336 | 1785 | 2339 | 234 | $23+3$ | $23+5$ | $23+7$ | $23+4$ | 2335 | 2327 | 2123 | 2306 | 2299 |
| 20 | －201 | 10137 | 2057 | 285 | 1290 | 1292 | 1294 | 1295 | 133j | 2154 | 2513 | 3052 | 3149 | 3143 | 3472 | 3755 |
| | 4036 | 4225 | 4587 | 4782 | 5017 | 5103 | 5101 | 5359 | 5553 | 5730 | 5311 | 5018 | 6155 | 6220 | 6222 | 6475 |
| | 6755 | 6017 | 5912 | 458 A | 4037 | 3619 | 3472 | 2155 | 1291 | 237 | | | | | | |
| 22 | －22 | P253 | 3057 | 47 | 140 | 149 | 155 | 155 | 160 | 9711 | 407 | 570 | 8549 | 9409 | 300 | 997 |
| | 1429 | 1654 | 1853 | 1997 | $22+4$ | 2676 | 2945 | 30.34 | 3540 | 4.388 | 5834 | 8555 | 6132 | 6528 | 6525 | 6524 |
| | 6523 | $89+4$ | 6131 | 59.37 | 55.1 | 3554 | 2543 | 15.57 | 1427 | $1+24$ | 990 | 799 | 634 | 495 | 418 | 412 |
| | 241 | 157 | 87 | 39 | | | | | | | | | | | | |
| 27 | －27 | 9357 | 47 | 478 | 430 | 4 ¢2 | 983 | 932 | 981 | 12J6 | 1545 | 2223 | 1728 | 1235 | 481 | 479 |
| | 476 | 229 | 97 | 37 | | | | | | | | | | | | |
| 31 | －31 | 1572 | 1675 | 1757 | 2232 | 3555 | 3982 | 6515 | 6365 | 6523 | 6951 | 94゙9 | 4070 | 4124 | $3 J 35$ | 3697 |
| | 3265 -38 | 1：5？ | 1237 697 | 1120 | 1013 702 | 993 | 911 | 696 | 572 | 337 | 253 | | | | | |
| 38 | -38 722 | 1317 699 | 637 678 | 70% 572 | 732 337 | 705 9747 | 797 252 | 711 | 715 | 717 | 719 | 7？ 6 | 115 | 991 | 13 | 3602 |
| 40 | －40 | 75 | 779 | 804 | 2393 | 2625 | 2525 | 2523 | 3752 | 3533 | 4055 | 4731 | 5267 | 54， 8 | 5355 | 5733 |
| | 5876 | ＋C 35 | 4.073 | $63 \mathrm{ki4}$ | $6+23$ | 565： | 7015 | 7200 | $73+3$ | 7339 | 712. | 7136 | 674 ； | 69ココ | 6030 | b25．） |
| | 6970 | 5143 | 4727 | 4797 | 4250 | 3199 | | | | | | | | | | － |

route that has previously been coded. The methodology consists of listing the beginning bus stop node in common with a transit route, the negative of the transit route being referred back to, and the last bus stop node in common.

SUMMARY

This section has described the steps involved in preparing the "line values" for input to TRANES, namely, map preparation, transit network GBF/DIME file nodes extraction, and TRANES node number extraction. The map type used, the procedure to plot the network and required considerations in tabulating the DIME file node numbers were discussed. Finally, the method of extracting TRANES rode numbers and preparing the input data for the TRANES program were explained.

It is estimated that a transit route with 50 bus stop nodes wi.l take an average of 90 to 120 minutes to be coded. This includes drawing the route on the DIME file map, identifying the bus stop nodes, tabulating the transit network DIME file nodes, and TRANES "line value" extraction.

APPENDIX D

TRANES TRANSIT EQUIVALENCY TABLES FOR NORMAN, OKLAHOMA

[^2]TRANESEQUIVALENCYTABLE

$($

C E N S U S T R A C T 200100

| DIME NODE | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES
 NODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2090 | 2 | 1973 | 3 | 1246 | 4 | 2089 | 5 | 1544 |
| 6 | 1833 | 7 | 918 | 8 | 917 | 9 | 1292 | 10 | 1291 |
| 11 | 1296 | 12 | 1245 | 13 | 1297 | 14 | 1298 | 15 | 1667 |
| 16 | 1666 | 18 | 1251 | 19 | 1665 | 20 | 1543 | 21 | 1659 |
| 22 | 916 | 23 | 854 | 24 | 853 | 25 | 852 | 26 | 860 |
| 27 | 861 | 28 | 862 | 29 | 1129 | 30 | 1128 | 31 | 1127 |
| 32 | 1126 | 33 | 1119 | 34 | 1120 | | | | |

C EN S U S TRAC T 200200

| $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | DIME NODE | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1871 | 2 | 1320 | 3 | 1172 | 4 | 1808 | 5 | 830 |
| 6 | 829 | 7 | 828 | 8 | 827 | 9 | 1809 | 10 | 1537 |
| 11 | 826 | 12 | 1536 | 13 | 1171 | 14 | 1319 | 15 | 1535 |
| 16 | 1870 | 17 | 1170 | 18 | 1924 | 19 | 825 | 20 | 1926 |
| 21 | 824 | 22 | 1225 | 23 | 1169 | 24 | 1224 | 25 | 1223 |
| 26 | 1412 | 27 | 1168 | 28 | 1413 | 29 | 823 | 30 | 239 |
| 31 | 238 | 32 | 237 | 33 | 236 | 34 | 235 | 35 | 234 |
| 36 | 1869 | 37 | 1294 | 38 | 1167 | 39 | 1295 | 40 | 822 |
| 41 | 279 | 42 | 859 | 43 | 280 | 44 | 688 | 45 | 832 |
| 46 | 858 | 47 | 1662 | 48 | 1166 | 49 | 1661 | 50 | 856 |
| 51 | 857 | 52 | 1122 | 53 | 1123 | 54 | 1124 | 55 | 689 |
| 56 | 903 | 57 | 904 | 58 | 281 | 59 | 690 | 60 | 2041 |
| 61 | 1174 | 62 | 1873 | 63 | 291 | 64 | 292 | 65 | 293 |
| 66 | 282 | 67 | 294 | 71 | 691 | 72 | 1175 | 73 | 1626 |
| 74 | 1925 | 75 | 1923 | | | | | | |

TRANESEQUIVALENCYTABLE

C ENS U S T R A C T 200300

| DIME NODE | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1486 | 2 | 1485 | 3 | 1484 | 5 | 2073 | 6 | 2044 |
| 23 | 990 | 24 | 935 | 25 | 939 | 26 | 934 | 27 | 2071 |
| 28 | 1840 | 29 | 2070 | 30 | 2045 | 31 | 1839 | 32 | 1838 |
| 33 | 2072 | 34 | 933 | 35 | 276 | 36 | 277 | 37 | 1732 |
| 38 | 1731 | 39 | 932 | 40 | 1730 | 41 | 931 | 42 | 1837 |
| 43 | 1928 | 44 | 1159 | 45 | 1929 | 46 | 1326 | 47 | 1158 |
| 48 | 1323 | 49 | 1324 | 50 | 930 | 51 | 929 | 52 | 928 |
| 53 | 927 | 54 | 1836 | 55 | 2126 | 56 | 1157 | 57 | 2043 |
| 58 | 1015 | 59 | 1014 | 60 | 1011 | 61 | 1012 | 62 | 926 |
| 63 | 1835 | 64 | 1547 | 65 | 1156 | 66 | 1946 | 67 | 1947 |
| 68 | 1091 | 69 | 1353 | 70 | 1351 | 71 | 1155 | 72 | 1349 |
| 73 | 1350 | 74 | 925 | 75 | 924 | 76 | 1753 | 77 | 1546 |
| 78 | 1154 | 79 | 1755 | 80 | 1389 | 81 | 1153 | 82 | 1386 |
| 83 | 1387 | 84 | 923 | 85 | 922 | 86 | 1533 | 87 | 1532 |
| 88 | 1531 | 89 | 1152 | 90 | 1538 | 91 | 1160 | 92 | 1545 |
| 93 | 1552 | 94 | 1834 | 95 | 921 | 96 | 920 | 97 | 1221 |
| 98 | 1220 | | | | | | | | |

C ENS U S T R A C T 200400

| $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1073 | 2 | 1072 | 3 | 1190 | 4 | 1249 | 5 | 1248 |
| 6 | 1189 | 7 | 1188 | 8 | 1247 | 9 | 1539 | 10 | 1187 |
| 11 | 1186 | 12 | 1049 | 13 | 1071 | 14 | 1377 | 15 | 1378 |
| 16 | 1921 | 17 | 1052 | 18 | 1051 | 19 | 1050 | 20 | 1417 |
| 21 | 1416 | 22 | 1184 | 23 | 1415 | 24 | 1343 | 25 | 1344 |
| 26 | 249 | 27 | 248 | 28 | 247 | 29 | 246 | 30 | 245 |
| 31 | 244 | 32 | 243 | 33 | 242 | 34 | 1002 | 35 | 1003 |
| 36 | 1004 | 37 | 1005 | 38 | 1006 | 39 | 307 | 40 | 306 |
| 41 | 1510 | 42 | 1509 | 43 | 1183 | 44 | 1508 | 45 | 1507 |
| 46 | 1064 | 47 | 1065 | 48 | 1760 | 49 | 1573 | 50 | 1182 |
| 51 | 1761 | 52 | 1762 | 53 | 305 | 54 | 304 | 55 | 1557 |
| 56 | 1556 | 57 | 386 | 58 | 1181 | 59 | 1555 | 60 | 1554 |
| 61 | 1037 | 62 | 1038 | 63 | 1039 | 64 | 385 | 65 | 384 |
| 66 | 1180 | 67 | 1572 | 68 | 2092 | 69 | 1300 | 70 | 1301 |
| 71 | 1179 | 72 | 383 | 73 | 1302 | 74 | 1185 | 75 | 1376 |
| 76 | 1414 | | | | | | | | | CENSUSTRACT 200500

| DIME
 NODE | TRANES
 NODE | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 1266 | 2 | 867 | 3 | 866 | 4 | 865 | 5 | 724 |
| 6 | 864 | 7 | 1131 | 8 | 833 | 9 | 725 | 10 | 1134 |
| 11 | 868 | 12 | 1135 | 13 | 1845 | 14 | 1192 | 15 | 1574 |
| 16 | 726 | 17 | 834 | 18 | 1092 | 19 | 1822 | 20 | 296 |
| 21 | 297 | 22 | 298 | 23 | 299 | 24 | 1823 | 25 | 1093 |
| 26 | 300 | 27 | 1704 | 28 | 1330 | 29 | 1322 | 30 | 1321 |
| 31 | 1728 | 32 | 1193 | 33 | 1553 | 34 | 727 | 35 | 1094 |
| 36 | 1824 | 37 | 621 | 38 | 320 | 39 | 1627 | 40 | 1253 |
| 41 | 1522 | 42 | 1080 | 43 | 1079 | 44 | 1078 | 45 | 1085 |
| 46 | 1040 | 47 | 321 | 48 | 1088 | 49 | 1087 | 50 | 1254 |
| 51 | 1692 | 52 | 322 | 53 | 622 | 54 | 2101 | 55 | 512 |
| 56 | 513 | 57 | 514 | 58 | 515 | 59 | 516 | 60 | 1590 |
| 61 | 553 | 62 | 984 | 63 | 983 | 64 | 982 | 65 | 600 |
| 66 | 601 | 67 | 602 | 68 | 644 | 69 | 603 | 70 | 1694 |
| 71 | 1693 | 72 | 1575 | 73 | 1194 | 74 | 1827 | 75 | 1828 |
| 77 | 673 | 78 | 1655 | 79 | 1654 | 80 | 1132 | 81 | 1133 |
| 82 | 819 | | | | | | | | |

TRANESEQUIVALENCYTABLE

C ENS US TRAC T 200600

| DIME NODE | TRANES | DIME NODE | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1549 | 2 | 1679 | 3 | 257 | 4 | 258 | 5 | 692 |
| 6 | 693 | 7 | 694 | 8 | 695 | 9 | 696 | 10 | 1999 |
| 11 | 1918 | 12 | 1919 | 13 | 2087 | 14 | 960 | 15 | 959 |
| 16 | 958 | 17 | 957 | 18 | 956 | 19 | 955 | 20 | 954 |
| 21 | 1559 | 22 | 797 | 23 | 937 | 24 | 1558 | 25 | 1550 |
| 26 | 1082 | 27 | 938 | 28 | 1083 | 29 | 798 | 30 | 1084 |
| 31 | 1163 | 32 | 799 | 33 | 1162 | 34 | 1161 | 35 | 1111 |
| 36 | 1112 | 37 | 1113 | 38 | 800 | 39 | 1114 | 41 | 1752 |
| 42 | 1751 | 43 | 1750 | 44 | 411 | 45 | 1920 | 46 | 1975 |
| 47 | 1739 | 48 | 878 | 49 | 879 | 50 | 1740 | 51 | 367 |
| 52 | 412 | 53 | 1640 | 54 | 1742 | 55 | 1641 | 56 | 1741 |
| 57 | 1653 | 58 | 1652 | 59 | 801 | 60 | 802 | 61 | 2093 |
| 62 | 1551 | 63 | 498 | 64 | 499 | 65 | 500 | 66 | 501 |
| 68 | 502 | 69 | 503 | 70 | 504 | 71 | 505 | 72 | 374 |
| 73 | 369 | 74 | 368 | 75 | 402 | 76 | 371 | 77 | 372 |
| 78 | 373 | 79 | 370 | 80 | 1804 | 81 | 1874 | 82 | 803 |
| 83 | 804 | 84 | 1807 | 85 | 1805 | 86 | 805 | 87 | 1806 |
| 8 | 375 | 89 | 1333 | 90 | 597 | 91 | 596 | 92 | 376 |
| , 3 | 595 | 94 | 594 | 95 | 593 | 96 | 592 | 97 | 773 |
| 98 | 774 | 99 | 748 | 100 | 308 | 101 | 309 | 102 | 1472 |
| 103 | 1471 | 104 | 1971 | 105 | 749 | 106 | 1115 | 107 | 806 |
| 108 | 807 | 109 | 750 | 110 | 1044 | 111 | 1646 | 112 | 1647 |
| 113 | 1733 | 114 | 1734 | 115 | 42 | 116 | 43 | 117 | 44 |
| 118 | 45 | 119 | 46 | 120 | 47 | 121 | 48 | 122 | 49 |
| 123 | 50 | 125 | 1993 | 126 | 1991 | 127 | 1992 | 128 | 526 |
| 129 | 527 | 130 | 528 | 131 | 1820 | 132 | 1819 | 133 | 703 |
| 134 | 702 | 135 | 701 | 136 | 2095 | 137 | 2008 | 138 | 2055 |
| 139 | 2003 | 140 | 2056 | 141 | 2050 | 142 | 2004 | 143 | 2009 |
| 144 | 227 | 145 | 226 | 146 | 225 | 147 | 2048 | 148 | 2049 |
| 149 | 2127 | 150 | 2005 | 151 | 2128 | 152 | 2123 | 153 | 2124 |
| 154 | 2006 | 155 | 508 | 156 | 507 | 157 | 506 | 158 | 224 |
| 159 | 1927 | 160 | 271 | 161 | 716 | 162 | 717 | 163 | 2007 |
| 164 | 251 | 165 | 1994 | 166 | 2125 | 167 | 2199 | 168 | 1996 |
| 169 | 1995 | 170 | 252 | 176 | 392 | 177 | 391 | 178 | 390 |
| 179 | 389 | 180 | 388 | 181 | 272 | 182 | 387 | 183 | 844 |
| 184 | 845 | 185 | 843 | 186 | 470 | 187 | 333 | 188 | 332 |
| 189 | 712 | 190 | 711 | 191 | 598 | 192 | 471 | 193 | 472 |
| 194 | 1650 | 195 | 1738 | 196 | 1906 | 197 | 1747 | 198 | 1648 |
| 199 | 1649 | 200 | 1803 | 201 | 2088 | 202 | 2060 | 206 | 2000 |
| 207 | 2001 | 208 | 2002 | | | | | | |

| DIME NODE | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DI ME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1280 | 2 | 1316 | 3 | 1317 | 4 | 1281 | 5 | 1318 |
| 6 | 705 | 7 | 704 | 8 | 1405 | 9 | 1282 | 10 | 315 |
| 11 | 314 | 12 | 316 | 13 | 1381 | 14 | 1380 | 15 | 1383 |
| 16 | 2121 | 17 | 2120 | 18 | 1382 | 19 | 2022 | 20 | 2023 |
| 21 | 1664 | 23 | 2011 | 24 | 2122 | 25 | 1278 | 26 | 1279 |

| DIME | TRANES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NODE |
| 18 | 1144 | 19 | 537 | 20 | 1145 | 21 | 1771 | 22 | 1770 |
| 23 | 1772 | 36 | 229 | 37 | 228 | 38 | 1366 | 39 | 536 |
| 40 | 1365 | 41 | 1364 | 42 | 1363 | 43 | 26 | 44 | 25 |
| 45 | 2157 | 46 | 2201 | 47 | 535 | 48 | 1367 | 49 | 1368 |
| 66 | 1972 | | | | | | | | |

TRANESEQUIVALENCYTABLE
***)
C ENSUS TRAC T 200900

| $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | DIME NODE | TRANES NODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 70 | 2 | 69 | 3 | 68 | 4 | 67 | 5 | 2046 |
| 6 | 1825 | 7 | 19 | 8 | 66 | 9 | 65 | 10 | 18 |
| 11 | 1749 | 12 | 1748 | 13 | 1008 | 14 | 1009 | 15 | 1010 |
| 16 | 64 | 17 | 1516 | 18 | 1515 | 19 | 1514 | 20 | 1513 |
| 21 | 619 | 22 | 620 | 23 | 618 | 24 | 1719 | 25 | 1718 |
| 26 | 617 | 27 | 2074 | 28 | 1212 | 29 | 1213 | 30 | 1210 |
| 31 | 1211 | 32 | 1214 | 33 | 63 | 34 | 1356 | 35 | 62 |
| 36 | 953 | 37 | 952 | 38 | 951 | 39 | 950 | 41 | 949 |
| 42 | 947 | 43 | 948 | 44 | 1636 | 45 | 1637 | 46 | 1721 |
| 47 | 1720 | 48 | 1491 | 49 | 1490 | 50 | 1489 | 51 | 1487 |
| 52 | 1488 | 53 | 1354 | 54 | 666 | 55 | 365 | 56 | 676 |
| 57 | 1116 | 58 | 678 | 59 | 312 | 60 | 313 | 61 | 1117 |
| 62 | 662 | 63 | 663 | 64 | 723 | 65 | 722 | 66 | 661 |
| 67 | 651 | 68 | 650 | 69 | 674 | 70 | 665 | 71 | 708 |
| 72 | 652 | 73 | 653 | 74 | 710 | 75 | 709 | 76 | 668 |
| 77 | 667 | 78 | 664 | 79 | 363 | 80 | 1054 | 81 | 362 |
| 82 | 1056 | 83 | 1007 | 84 | 361 | 85 | 360 | 86 | 1511 |
| 37 | 1512 | 88 | 2156 | 89 | 1207 | 90 | 1206 | 91 | 359 |
| 92 | 358 | 93 | 357 | 94 | 356 | 95 | 1205 | 96 | 1208 |
| 97 | 1390 | 98 | 1391 | 99 | 946 | 100 | 945 | 101 | 1997 |
| 102 | 943 | 103 | 944 | 104 | 1209 | 105 | 1203 | 106 | 355 |
| 107 | 354 | 108 | 353 | 109 | 1202 | 110 | 1445 | 111 | 1444 |
| 112 | 1055 | 113 | 2155 | 114 | 1204 | 115 | 2214 | 116 | 677 |
| 117 | 675 | 118 | 364 | 119 | 1053 | 120 | 1047 | 121 | 1048 |

TRANESEQUIVALENCYTABLE

CENSUS TRACT 201000

| $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1446 | 2 | 1447 | 3 | 641 | 4 | 640 | 5 | 100 |
| 6 | 101 | 7 | 82 | 8 | 83 | 9 | 1274 | 10 | 1328 |
| 11 | 1756 | 12 | 1519 | 13 | 1262 | 14 | 1998 | 15 | 2053 |
| 16 | 2052 | 17 | 2051 | 18 | 1268 | 19 | 284 | 20 | 285 |
| 21 | 286 | 22 | 287 | 23 | 1710 | 24 | 1426 | 25 | 1427 |
| 26 | 1712 | 27 | 1714 | 28 | 1715 | 29 | 1264 | 30 | 1263 |
| 31 | 1716 | 32 | 842 | 33 | 1329 | 34 | 1709 | 35 | 1273 |
| 36 | 84 | 37 | 102 | 38 | 1769 | 39 | 792 | 40 | 534 |
| 41 | 103 | 42 | 533 | 43 | 532 | 44 | 85 | 45 | 1272 |
| 46 | 633 | 47 | 632 | 48 | 1218 | 49 | 629 | 50 | 1217 |
| 51 | 2172 | 52 | 1520 | 53 | 660 | 54 | 659 | 55 | 658 |
| 56 | 657 | 57 | 656 | 58 | 655 | 59 | 654 | 60 | 2160 |
| 61 | 2206 | 62 | 1969 | 63 | 1588 | 64 | 1589 | 65 | 1705 |
| 66 | 1043 | 67 | 1680 | 68 | 1265 | 69 | 1359 | 70 | 1922 |
| 71 | 631 | 72 | 630 | 73 | 491 | 74 | 87 | 75 | 86 |
| 76 | 718 | 77 | 719 | 78 | 720 | 79 | 2094 | 80 | 721 |
| 81 | 793 | 82 | 394 | 83 | 393 | 84 | 334 | 85 | 335 |
| 16 | 1976 | 87 | 794 | 88 | 795 | 89 | 796 | 90 | 609 |
| 91 | 1074 | 92 | 608 | 93 | 1443 | 94 | 649 | 95 | 89 |
| 96 | 524 | 97 | 523 | 98 | 2161 | 99 | 1569 | 100 | 607 |
| 101 | 1542 | 102 | 606 | 103 | 1541 | 104 | 289 | 105 | 1757 |
| 106 | 1568 | 107 | 288 | 108 | 1540 | 109 | 522 | 110 | 521 |
| 111 | 520 | 112 | 519 | 113 | 518 | 114 | 517 | 115 | 1591 |
| 116 | 985 | 117 | 1592 | 118 | 986 | 119 | 988 | 120 | 648 |
| 121 | 647 | 122 | 1683 | 123 | 1695 | 124 | 1682 | 125 | 1681 |
| 126 | 1970 | 127 | 646 | 128 | 645 | 129 | 604 | 130 | 340 |
| 131 | 605 | 132 | 341 | 133 | 1696 | 134 | 1802 | 135 | 339 |
| 136 | 338 | 137 | 337 | 138 | 1606 | 139 | 1800 | 140 | 1801 |
| 141 | 1604 | 142 | 1607 | 143 | 1605 | 144 | 1582 | 145 | 1583 |
| 146 | 1711 | 147 | 1713 | 148 | 987 | 149 | 88 | 150 | 492 |
| 151 | 90 | 152 | 1075 | | | | | | |

TRANESEQUVALENCYTABLE

C ENSUSTRAC T 201101

| DIME NODE | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | DIME
 NODE | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1441 | 2 | 548 | 3 | 547 | 4 | 91 | 5 | 779 |
| 6 | 778 | 7 | 1355 | 8 | 92 | 9 | 546 | 10 | 93 |
| 11 | 469 | 12 | 468 | 13 | 1342 | 14 | 1151 | 15 | 94 |
| 16 | 1244 | 17 | 2024 | 18 | 1442 | 19 | 95 | 20 | 96 |
| 21 | 2116 | 22 | 2117 | 23 | 1164 | 24 | 1521 | 25 | 1165 |
| 26 | 97 | 27 | 98 | 28 | 99 | 29 | 1440 | 30 | 545 |
| 31 | 1399 | 32 | 1400 | 33 | 763 | 34 | 466 | 35 | 978 |
| 36 | 1401 | 37 | 467 | 38 | 1832 | 39 | 1341 | 40 | 1402 |
| 41 | 256 | 42 | 979 | 43 | 980 | 44 | 1701 | 45 | 1964 |
| 46 | 1965 | 47 | 1936 | 48 | 2030 | 49 | 1702 | 50 | 1700 |
| 51 | 1312 | 52 | 1311 | 53 | 1310 | 54 | 991 | 55 | 1309 |
| 56 | 1307 | 57 | 1308 | 58 | 756 | 59 | 757 | 60 | 758 |
| 61 | 1347 | 62 | 1348 | 63 | 2013 | 64 | 2012 | 65 | 992 |
| 66 | 489 | 67 | 1608 | 68 | 230 | 69 | 231 | 70 | 1609 |
| 71 | 490 | 72 | 994 | 73 | 993 | 74 | 771 | 75 | 2014 |
| 76 | 2015 | 77 | 772 | 78 | 2016 | 79 | 1398 | 80 | 1392 |
| 81 | 1393 | 82 | 1657 | 83 | 331 | 84 | 995 | 85 | 1656 |
| :6 | 232 | 87 | 330 | 88 | 328 | 89 | 329 | 90 | 1474 |
| 91 | 1473 | 93 | 1941 | 94 | 1940 | 95 | 1939 | 96 | 1560 |
| 97 | 1561 | 98 | 1724 | 99 | 1725 | 100 | 1603 | 101 | 1602 |
| 102 | 1601 | 103 | 1776 | 104 | 1727 | 105 | 1726 | 106 | 1942 |
| 107 | 2032 | 108 | 2135 | 109 | 2136 | 110 | 2017 | 111 | 1518 |
| 114 | 1777 | | | | | | | | |

| C E N S U S T R A C T 201102 , | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *** | | | | | | | | | |
| DIME | TRANES |
| NODE |
| 1 | 761 | 2 | 760 | 3 | 1913 | 4 | 447 | 5 | 448 |
| 6 | 463 | 7 | 759 | 8 | 464 | 9 | 1395 | 10 | 1394 |
| 11 | 789 | 12 | 2129 | 13 | 462 | 14 | 461 | 15 | 449 |
| 16 | 450 | 17 | 253 | 18 | 254 | 19 | 1396 | 20 | 790 |
| 21 | 415 | 22 | 416 | 23 | 2153 | 25 | 614 | 26 | 615 |
| 27 | 1846 | 28 | 1196 | 29 | 1577 | 30 | 1403 | 31 | 1197 |
| 32 | 1404 | 33 | 1110 | 34 | 1109 | 35 | 1108 | 36 | 1768 |
| 37 | 1336 | 38 | 1226 | 39 | 1337 | 40 | 612 | 41 | 613 |
| 42 | 2212 | 43 | 1847 | 44 | 1338 | 45 | 2213 | 47 | 881 |
| 48 | 880 | 49 | 1848 | 50 | 1849 | 51 | 1852 | 52 | 2163 |
| 53 | 2166 | 54 | 2165 | 55 | 2164 | 56 | 1853 | 57 | 1850 |
| 58 | 1141 | 59 | 1142 | 60 | 1778 | 61 | 1851 | 62 | 1707 |
| 63 | 2134 | 64 | 1708 | 65 | 477 | 66 | 476 | 67 | 1143 |
| 68 | 1691 | 69 | 1581 | 70 | 1580 | 71 | 1579 | | |

**)

$$
\text { CENSUS TRACT } 201201
$$

| $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | DIME
 NODE | TRANES NODE | DIME
 NODE | TRANES NODE | $\begin{aligned} & \text { DI ME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | DIME
 NODE | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1745 | 2 | 2096 | 3 | 1814 | 4 | 1818 | 5 | 1815 |
| 6 | 1813 | 7 | 1817 | 8 | 1746 | 9 | 588 | 10 | 589 |
| 11 | 590 | 13 | 1140 | 14 | 1598 | 15 | 1260 | 16 | 1610 |
| 17 | 1269 | 18 | 1611 | 19 | 1150 | 20 | 1149 | 21 | 1148 |
| 22 | 1147 | 23 | 1599 | 24 | 1261 | 25 | 1703 | 26 | 1270 |
| 27 | 1517 | 29 | 1177 | 30 | 395 | 31 | 1176 | 32 | 1271 |
| 33 | 1600 | 34 | 2081 | 35 | 396 | 36 | 1678 | 37 | 1506 |
| 38 | 397 | 39 | 398 | 40 | 818 | 41 | 1826 | 42 | 399 |
| 43 | 1821 | | | | | | | | |

TRANESEQUIVALENCYTABLE

C E N S U S T R A C T 201202

| DIME | TRANES
 NODE | DIME
 NODE | TRANES
 NODE | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 835 | 2 | 981 | 7 | 324 | 8 | 2119 | 9 | 2118 |
| 10 | 599 | 11 | 585 | 12 | 836 | 13 | 1095 | 14 | 1617 |
| 15 | 325 | 16 | 1618 | 17 | 1619 | 18 | 1096 | 19 | 837 |
| 20 | 838 | 21 | 1097 | 22 | 2 | 23 | 1 | 24 | 2200 |
| 25 | 4 | 26 | 5 | 27 | 6 | 28 | 1098 | 29 | 839 |
| 30 | 840 | 31 | 1099 | 32 | 10 | 33 | 9 | 34 | 966 |
| 35 | 8 | 36 | 967 | 37 | 1100 | | | | |

**)

$$
\text { CENSUS TRACT } 201203
$$

| DIME | tranes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NODE |
| 1 | 327 | 2 | 2132 | 3 | 2130 | 4 | 2131 | 5 | 901 |
| 6 | 900 | 7 | 764 | 8 | 765 | 9 | 766 | 10 | 767 |
| 11 | 768 | 12 | 769 | 13 | 770 | 15 | 1685 | 17 | 877 |
| 18 | 876 | 19 | 875 | 20 | 874 | 21 | 873 | 22 | 872 |
| 23 | 871 | 24 | 846 | 25 | 847 | 26 | 848 | 27 | 849 |
| 28 | 850 | 29 | 851 | 31 | 1686 | 32 | 672 | 33 | 671 |
| 34 | 670 | 36 | 887 | 37 | 886 | 38 | 885 | 39 | 884 |
| 40 | 883 | 41 | 882 | 42 | 1584 | 43 | 1042 | 44 | 1722 |
| 45 | 1723 | 46 | 1063 | 47 | 669 | 48 | 1688 | 49 | 1687 |
| 50 | 1689 | 51 | 2031 | 52 | 1530 | 53 | 529 | 54 | 530 |
| 55 | 746 | 56 | 747 | 59 | 697 | 60 | 52 | 61 | 53 |
| 62 | 2144 | 63 | 2143 | 64 | 2145 | 65 | 2146 | 66 | 1989 |
| 67 | 1990 | 68 | 2021 | | | | | | |

T RANESE E Q U I VALENCY TABLE

C ENSUS TRACT 201300

| $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | DIME NODE | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 809 | 2 | 1067 | 3 | 1057 | 4 | 1076 | 5 | 1077 |
| 6 | 1058 | 7 | 1068 | 8 | 1962 | 9 | 1643 | 10 | 1069 |
| 11 | 1409 | 12 | 1070 | 13 | 1644 | 14 | 1963 | 15 | 810 |
| 16 | 1645 | 17 | 1642 | 18 | 1410 | 20 | 1787 | 21 | 1788 |
| 22 | 1789 | 23 | 273 | 24 | 274 | 25 | 275 | 26 | 278 |
| 27 | 1107 | 28 | 1106 | 29 | 1105 | 30 | 1104 | 31 | 1790 |
| 32 | 1795 | 33 | 2162 | 34 | 1103 | 35 | 636 | 36 | 637 |
| 37 | 1786 | 38 | 1781 | 39 | 1782 | 40 | 1791 | 41 | 1966 |
| 42 | 1799 | 43 | 1783 | 44 | 1784 | 45 | 1785 | 46 | 1792 |
| 47 | 1578 | 48 | 1968 | 49 | 1967 | 50 | 1793 | 51 | 2100 |
| 52 | 1794 | 53 | 2099 | 55 | 811 | 56 | 345 | 57 | 642 |
| 58 | 996 | 59 | 997 | 60 | 317 | 61 | 318 | 62 | 319 |
| 63 | 1219 | 64 | 1139 | 65 | 1086 | 66 | 998 | 67 | 643 |
| 68 | 347 | 69 | 221 | 70 | 346 | 71 | 222 | 72 | 223 |
| 73 | 813 | 74 | 812 | 75 | 814 | 76 | 815 | 77 | 2034 |
| 78 | 2035 | 79 | 2033 | 80 | 816 | 81 | 1408 | | |

TRANESEQUIVALENCYTABLE

CENSUS TRACT 201400

| $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 1227 | 9 | 33 | 10 | 60 | 11 | 1228 | 14 | 116 |
| 15 | 117 | 28 | 138 | 34 | 137 | 45 | 963 | 46 | 962 |
| 47 | 961 | 48 | 1200 | 49 | 1199 | 50 | 1066 | 51 | 1198 |
| 53 | 2065 | 54 | 2064 | 55 | 2063 | 56 | 2062 | 57 | 136 |
| 58 | 132 | 59 | 131 | 60 | 1810 | 61 | 130 | 62 | 115 |
| 63 | 58 | 64 | 2061 | 65 | 30 | 78 | 59 | 86 | 32 |
| 97 | 1631 | 98 | 12 | 99 | 1632 | 100 | 1633 | 101 | 1938 |
| 102 | 1937 | 103 | 1634 | 104 | 11 | 105 | 13 | 107 | 1635 |
| 108 | 31 | 113 | 2210 | 114 | 1101 | 115 | 1102 | 116 | 1335 |
| 117 | 1334 | 118 | 2218 | 119 | 2182 | 120 | 2181 | 121 | 1585 |
| 122 | 1586 | 123 | 1587 | 124 | 965 | 125 | 964 | 126 | 2180 |
| 127 | 2217 | 128 | 2179 | 129 | 2202 | 130 | 1216 | 131 | 1981 |
| 132 | 1980 | 133 | 1215 | 134 | 1979 | 135 | 1978 | 136 | 2178 |
| 137 | 2177 | 138 | 2176 | 140 | 775 | 141 | 776 | 142 | 2215 |
| 144 | 777 | 145 | 1986 | 146 | 2149 | 147 | 2170 | 148 | 2108 |
| 149 | 15 | 150 | 16 | 151 | 17 | 152 | 2211 | 153 | 1982 |
| 158 | 29 | 159 | 28 | 160 | 1902 | 161 | 1901 | 162 | 1900 |
| 3 | 1565 | 164 | 2171 | 165 | 2169 | 166 | 2148 | 167 | 1985 |
| 168 | 1984 | 169 | 2209 | 170 | 2208 | 171 | 1983 | 172 | 2147 |
| 173 | 1423 | 174 | 1424 | 175 | 1425 | 176 | 1562 | 177 | 1905 |
| 178 | 1563 | 179 | 1564 | 186 | 2098 | 187 | 2109 | 188 | 1961 |
| 189 | 1346 | 190 | 1345 | 191 | 1888 | 192 | 1357 | 193 | 1889 |
| 194 | 1358 | 195 | 541 | 196 | 540 | 197 | 539 | 198 | 1904 |
| 199 | 1855 | 200 | 1903 | 201 | 538 | 202 | 2110 | 203 | 2097 |
| 204 | 2111 | 205 | 2112 | 206 | 1954 | 207 | 114 | 208 | 135 |
| 209 | 1955 | 221 | 134 | 222 | 133 | 236 | 2054 | 237 | 113 |
| 238 | 112 | 239 | 111 | | | | | | |

C E N S U S T R A C T 201501

| $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | DIME
 NODE | $\begin{gathered} \text { TRANES } \\ \text { NODE } \end{gathered}$ | DIME
 NODE | TRANES NODE | DIME
 NODE | TRANES NODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 488 | 2 | 487 | 3 | 486 | 4 | 485 | 5 | 1428 |
| 6 | 1429 | 7 | 1676 | 8 | 1677 | 9 | 551 | 10 | 1706 |
| 11 | 2133 | 12 | 1418 | 13 | 1419 | 14 | 550 | 15 | 1420 |
| 16 | 1421 | 17 | 1422 | 18 | 1499 | 19 | 1454 | 20 | 1455 |
| 21 | 1462 | 22 | 1498 | 23 | 1497 | 24 | 1907 | 25 | 2059 |
| 26 | 1908 | 27 | 413 | 28 | 1909 | 29 | 414 | 30 | 1910 |
| 31 | 1911 | 32 | 1912 | 33 | 120 | 34 | 121 | 35 | 1894 |
| 36 | 1916 | 37 | 1858 | 38 | 1896 | 39 | 1857 | 40 | 1895 |
| 41 | 1138 | 42 | 1137 | 43 | 1136 | 44 | 2207 | 45 | 1856 |
| 46 | 942 | 47 | 1651 | 48 | 941 | 49 | 403 | 50 | 404 |
| 51 | 1899 | 52 | 940 | 53 | 119 | 54 | 1496 | 55 | 1495 |
| 56 | 1460 | 57 | 1456 | 58 | 1494 | 59 | 1493 | 60 | 1893 |

TRANES EQUIVALENCYTABLE
C ENS US TRAC T 201502

| DIME NODE | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1505 | 2 | 1468 | 3 | 1457 | 4 | 1465 | 5 | 1466 |
| 6 | 1432 | 7 | 1435 | 8 | 128 | 9 | 1046 | 10 | 2040 |
| 11 | 127 | 12 | 126 | 13 | 1864 | 14 | 1863 | 15 | 1859 |
| 16 | 1860 | 17 | 1862 | 18 | 1861 | 19 | 2036 | 20 | 1438 |
| 21 | 1434 | 22 | 1437 | 23 | 1436 | 24 | 1461 | 25 | 1492 |
| 26 | 2174 | 27 | 2019 | 28 | 40 | 29 | 2010 | 30 | 2173 |
| 31 | 2018 | 32 | 483 | 33 | 1988 | 34 | 1987 | 35 | 482 |
| 36 | 481 | 42 | 480 | 43 | 39 | 44 | 1892 | 45 | 1891 |
| 46 | 1890 | 66 | 77 | 67 | 1236 | 68 | 38 | 69 | 1237 |
| 70 | 1062 | 71 | 788 | 72 | 76 | 73 | 75 | 74 | 1238 |
| 75 | 1239 | 76 | 1240 | 77 | 1241 | 78 | 1242 | 79 | 1243 |
| 80 | 125 | 81 | 142 | 82 | 159 | 83 | 158 | 84 | 141 |
| 85 | 2069 | 86 | 2085 | 87 | 1930 | 88 | 2084 | 89 | 2083 |
| 90 | 1934 | 91 | 1935 | 92 | 2086 | 93 | 2104 | 94 | 1931 |
| 95 | 584 | 96 | 583 | 97 | 124 | 98 | 1504 | 100 | 73 |
| 101 | 74 | 102 | 2068 | 103 | 2067 | 104 | 783 | 105 | 784 |
| 106 | 1255 | 107 | 785 | 108 | 1796 | 109 | 1797 | 110 | 1798 |
| 1 | 786 | 112 | 1061 | 113 | 787 | 114 | 1060 | 115 | 1059 |
| 119 | 37 | 120 | 36 | 125 | 715 | 126 | 714 | 127 | 713 |
| 128 | 1960 | 129 | 1766 | 130 | 2076 | 131 | 2075 | 132 | 1831 |
| 133 | 1765 | 134 | 999 | 135 | 1000 | 136 | 1001 | 137 | 1090 |
| 138 | 1089 | 139 | 1595 | 140 | 1596 | 141 | 1332 | 143 | 1717 |
| 144 | 1016 | 145 | 1017 | 146 | 1286 | 147 | 1025 | 148 | 1597 |
| 149 | 1259 | 150 | 1024 | 151 | 2159 | 152 | 1023 | 153 | 1887 |
| 154 | 1865 | 155 | 1866 | 156 | 1886 | 157 | 1331 | 158 | 2158 |
| 159 | 1764 | 160 | 1256 | 161 | 1257 | 162 | 1258 | 163 | 2113 |
| 164 | 1594 | 165 | 1767 | 166 | 72 | 167 | 562 | 168 | 560 |
| 169 | 561 | 170 | 563 | 171 | 1503 | 172 | 123 | 173 | 1290 |
| 174 | 140 | 175 | 157 | 176 | 1949 | 177 | 156 | 178 | 1385 |
| 179 | 1384 | 180 | 1289 | 181 | 1288 | 182 | 581 | 183 | 582 |
| 184 | 580 | 185 | 1361 | 186 | 1362 | 187 | 782 | 188 | 781 |
| 189 | 2204 | 190 | 700 | 191 | 707 | 192 | 706 | 193 | 579 |
| 194 | 578 | 195 | 1773 | 196 | 1774 | 197 | 699 | 198 | 1775 |
| 199 | 780 | 200 | 557 | 201 | 556 | 202 | 1868 | 203 | 2203 |
| 204 | 1812 | 205 | 1811 | 206 | 577 | 207 | 2137 | 208 | 576 |
| 209 | 2138 | 210 | 2139 | 211 | 564 | 212 | 565 | 213 | 1303 |
| 214 | 555 | 215 | 554 | 216 | 2115 | 217 | 2114 | 218 | 2142 |
| 219 | 2141 | 220 | 575 | 221 | 574 | 222 | 2140 | 223 | 382 |
| 224 | 378 | 225 | 379 | 226 | 2205 | 227 | 381 | 228 | 380 |
| 229 | 474 | 230 | 634 | 231 | 573 | 232 | 475 | 233 | 542 |
| 234 | 543 | 235 | 544 | 236 | 914 | 237 | 911 | 238 | 913 |
| 239 | 912 | 240 | 915 | 241 | 569 | 242 | 635 | 243 | 572 |
| 14 | 1285 | 245 | 571 | 246 | 525 | 247 | 405 | 248 | 406 |
| -49 | 407 | 250 | 552 | 251 | 408 | 252 | 409 | 253 | 568 |

TRANESEQUSVALENCYTABLE

| CENSUS TRAC T 201502 | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | |
| DIME | TRANES |
| NODE |
| 254 | 567 | 255 | 2042 | 256 | 1639 | 257 | 1898 | 258 | 1843 |
| 259 | 1314 | 260 | 1315 | 261 | 974 | 262 | 973 | 263 | 972 |
| 264 | 1313 | 265 | 1842 | 266 | 1844 | 267 | 1897 | 268 | 2197 |
| 269 | 2196 | 270 | 971 | 271 | 970 | 272 | 976 | 273 | 975 |
| 274 | 2216 | 275 | 2195 | 276 | 1501 | 277 | 1502 | 278 | 1431 |
| 279 | 1453 | 280 | 1452 | 281 | 155 | 282 | 2185 | 283 | 2184 |
| 284 | 2183 | 285 | 2186 | 286 | 1306 | 287 | 1305 | 288 | 752 |
| 289 | 1304 | 290 | 1885 | 292 | 1566 | 293 | 753 | 294 | 754 |
| 295 | 1854 | 296 | 2187 | 297 | 2198 | 298 | 2152 | 299 | 2151 |
| 300 | 2150 | 301 | 401 | 302 | 400 | 303 | 755 | 304 | 2189 |
| 305 | 2188 | 306 | 2190 | 307 | 2194 | 308 | 2193 | 310 | 1463 |
| 311 | 1467 | 312 | 611 | 313 | 104 | 314 | 610 | 315 | 1450 |
| 316 | 1459 | 317 | 1448 | 318 | 105 | 319 | 1625 | 320 | 106 |
| 321 | 107 | 322 | 1451 | 323 | 1449 | 324 | 1464 | 325 | 1458 |
| 326 | 549 | 327 | 108 | 328 | 109 | 329 | 110 | 330 | 2025 |

> TRANES EQUIVALENCY TABLE

C E N S U S T R A C T 202400

| DIME NODE | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | DIME
 NODE | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { TRANES } \\ & \text { NODE } \end{aligned}$ | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 218 | 3 | 220 | 4 | 219 | 5 | 217 | 6 | 216 |
| 7 | 2080 | 8 | 1933 | 9 | 2079 | 10 | 2078 | 11 | 1932 |
| 12 | 2038 | 13 | 2039 | 14 | 627 | 15 | 626 | 16 | 625 |
| 17 | 638 | 18 | 639 | 19 | 624 | 23 | 214 | 25 | 460 |
| 26 | 207 | 27 | 459 | 28 | 1567 | 29 | 679 | 30 | 199 |
| 31 | 177 | 32 | 458 | 33 | 1684 | 34 | 1284 | 35 | 457 |
| 36 | 1283 | 37 | 170 | 38 | 169 | 39 | 1287 | 40 | 168 |
| 41 | 176 | 50 | 1229 | 51 | 167 | 52 | 479 | 53 | 1406 |
| 54 | 1658 | 55 | 1231 | 56 | 1230 | 57 | 478 | 58 | 166 |
| 68 | 164 | 69 | 165 | 79 | 163 | 80 | 1956 | 81 | 909 |
| 82 | 908 | 83 | 907 | 84 | 906 | 85 | 1340 | 86 | 1339 |
| 87 | 905 | 88 | 1830 | 89 | 1570 | 90 | 1829 | 91 | 869 |
| 92 | 870 | 93 | 162 | 94 | 161 | 96 | 171 | 119 | 172 |
| 120 | 173 | 121 | 174 | 122 | 175 | 123 | 190 | 124 | 2168 |
| 125 | 189 | 126 | 2167 | 127 | 180 | 128 | 188 | 129 | 616 |
| 130 | 410 | 131 | 202 | 132 | 194 | 133 | 192 | 134 | 187 |
| 135 | 185 | 136 | 183 | 137 | 179 | 138 | 181 | 139 | 182 |
| 0 | 184 | 141 | 186 | 142 | 191 | 143 | 193 | 144 | 201 |
| 145 | 2107 | 146 | 2106 | 147 | 2105 | 148 | 2066 | 149 | 197 |
| 169 | 195 | 170 | 196 | 172 | 821 | 173 | 342 | 174 | 310 |
| 175 | 1977 | 176 | 343 | 177 | 344 | 178 | 311 | 179 | 1759 |
| 180 | 1758 | 181 | 1277 | 182 | 1276 | 183 | 1275 | 184 | 1744 |
| 185 | 302 | 186 | 303 | 187 | 1628 | 188 | 1629 | 189 | 1630 |
| 190 | 1743 | 191 | 198 | 192 | 820 | 193 | 206 | 194 | 1690 |
| 195 | 213 | 196 | 205 | 197 | 1480 | 198 | 204 | 199 | 352 |
| 200 | 212 | 201 | 1360 | 202 | 1375 | 203 | 1371 | 204 | 1374 |
| 205 | 1373 | 206 | 1372 | 207 | 211 | 208 | 210 | 209 | 1779 |
| 210 | 1780 | 211 | 1914 | 212 | 2047 | 213 | 1370 | 214 | 1369 |
| 215 | 1915 | 216 | 2192 | 217 | 1235 | 218 | 1234 | 219 | 1233 |
| 220 | 1232 | 221 | 2191 | 222 | 209 | 223 | 203 | 224 | 348 |
| 225 | 349 | 226 | 350 | 227 | 351 | 228 | 1021 | 229 | 1020 |
| 230 | 1867 | 231 | 1736 | 232 | 1737 | 233 | 1026 | 234 | 1027 |
| 235 | 1019 | 236 | 1022 | 237 | 1018 | 238 | 1735 | | |

```
TRANES EQUIVALENCY TABLE
* ********************************************************************************
C ENSUS M A P 3l
***************************************************************************************
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline DIME & TRANES & DIME & TRANES & DIME & TRANES & DIME & TRANES & DIME & TRANES \\
\hline NODE & NODE \\
\hline 702
712 & \[
\begin{array}{r}
178 \\
2037
\end{array}
\] & 703
713 & 200 & 708 & 208 & 709 & 215 & 710 & 628 \\
\hline
\end{tabular}
```


C E N S U S MA P

| DIME | TRANES
 NODE
 NODE | DIME
 NODE | TRANES
 NODE | DIME
 NODE | TRANES
 NODE | DIME
 NODE | TRANES
 NODE | DIME | NODE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | NRANES | NODE |
| :--- | :--- |

C E N S U S M A P 38

| $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | DIME NODE | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 702 | 484 | 703 | 2175 | 704 | 2020 | 705 | 41 | 706 | 559 |
| 707 | 1883 | 709 | 34 | 713 | 61 | 714 | 118 | 715 | 139 |
| 716 | 154 | 717 | 153 | 718 | 152 | 719 | 151 | 720 | 150 |
| 721 | 149 | 722 | 148 | 723 | 147 | 724 | 146 | 725 | 145 |
| 726 | 144 | 727 | 558 | 728 | 1882 | 729 | 1881 | 730 | 1880 |
| 731 | 1879 | 732 | 1878 | 733 | 1950 | 734 | 1951 | 735 | 14 |
| 736 | 1952 | 737 | 27 | 738 | 1953 | 739 | 57 | 747 | 56 |
| 748 | 55 | 749 | 23 | 750 | 24 | 751 | 1945 | 752 | 1944 |
| 753 | 687 | 754 | 831 | 755 | 1943 | 756 | 1173 | 757 | 1872 |
| 758 | 686 | 759 | 685 | 760 | 684 | 761 | 683 | 762 | 682 |
| 763 | 681 | 764 | 989 | 765 | 1729 | 766 | 1325 | 767 | 1013 |
| 768 | 1877 | 769 | 1352 | 770 | 1754 | 771 | 1388 | 772 | 1534 |
| 773 | 1876 | 774 | 1222 | 775 | 1957 | 776 | 1958 | 777 | 35 |
| 778 | 1959 | 779 | 1593 | 780 | 1948 | 781 | 1250 | 782 | 1191 |
| 33 | 1763 | 784 | 1379 | | | | | | |

TRANESEQUTVALENCYTABLE

C ENSUS MA P
 43

| DIME NODE | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE | $\begin{aligned} & \text { DIME } \\ & \text { NODE } \end{aligned}$ | TRANES NODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 701 | 250 | 702 | 427 | 703 | 426 | 704 | 425 | 705 | 424 |
| 706 | 423 | 707 | 422 | 708 | 421 | 709 | 420 | 710 | 419 |
| 711 | 418 | 712 | 366 | 713 | 1327 | 714 | 841 | 715 | 1675 |
| 716 | 1674 | 717 | 1673 | 718 | 1672 | 719 | 1671 | 720 | 1201 |
| 721 | 1267 | 722 | 417 | 723 | 1670 | 724 | 1178 | 725 | 1571 |
| 726 | 1669 | 727 | 1668 | 728 | 1299 | 729 | 2091 | 730 | 1036 |
| 731 | 1035 | 732 | 1034 | 733 | 1033 | 734 | 1032 | 735 | 1031 |
| 736 | 1028 | 737 | 1029 | 738 | 919 | 739 | 1030 | 740 | 233 |
| 741 | 1411 | 743 | 241 | 744 | 1875 | 745 | 1293 | 746 | 1660 |
| 747 | 855 | 748 | 1121 | 749 | 1884 | 750 | 936 | 751 | 1841 |
| 752 | 1548 | 754 | 1252 | 755 | 1974 | 756 | 2057 | 757 | 2058 |
| 758 | 1130 | 759 | 863 | 760 | 290 | 761 | 259 | 762 | 260 |
| 763 | 261 | 764 | 262 | 765 | 263 | 766 | 264 | 767 | 265 |
| 768 | 295 | 769 | 1917 | 770 | 1125 | 771 | 1663 | 772 | 902 |
| 773 | 240 | 774 | 680 | 775 | 22 | 776 | 21 | 777 | 266 |
| 778 | 267 | 779 | 20 | 780 | 268 | 781 | 269 | 782 | 270 |
| 783 | 54 | 786 | 79 | 787 | 1616 | 788 | 1615 | 789 | 473 |
| 790 | 51 | 791 | 1407 | 792 | 1614 | 793 | 377 | 794 | 1045 |
| 15 | 751 | 796 | 808 | 797 | 1613 | 798 | 1612 | 799 | 591 |
| 800 | 497 | 801 | 1081 | 802 | 496 | 803 | 495 | 804 | 494 |
| 805 | 493 | 806 | 1041 | 807 | 323 | 808 | 623 | 809 | 2102 |
| 810 | 509 | 811 | 510 | 812 | 511 | 813 | 728 | 814 | 586 |
| 815 | 729 | 817 | 2103 | 818 | 1816 | 819 | 587 | 820 | 1523 |
| 821 | 730 | 822 | 1576 | 823 | 1195 | 824 | 1620 | 825 | 1621 |
| 826 | 428 | 827 | 429 | 828 | 283 | 829 | 430 | 830 | 431 |
| 831 | 432 | 832 | 433 | 833 | 434 | 834 | 435 | 835 | 301 |
| 836 | 436 | 837 | 437 | 838 | 438 | 839 | 439 | 840 | 440 |
| 841 | 441 | 842 | 442 | 843 | 443 | 844 | 444 | 845 | 445 |
| 846 | 336 | 847 | 446 | 848 | 1622 | 849 | 1623 | 850 | 977 |
| 851 | 1624 | 852 | 762 | 853 | 465 | 854 | 1697 | 855 | 255 |
| 856 | 1698 | 857 | 1699 | 858 | 1397 | 859 | 791 | 860 | 2154 |
| 861 | 451 | 862 | 452 | 863 | 453 | 864 | 454 | 865 | 455 |
| 866 | 456 | 867 | 1479 | 868 | 1478 | 869 | 1477 | 870 | 731 |
| 871 | 732 | 872 | 733 | 873 | 734 | 874 | 735 | 875 | 736 |
| 876 | 737 | 877 | 738 | 878 | 739 | 879 | 740 | 880 | 741 |
| 881 | 742 | 882 | 743 | 883 | 744 | 884 | 745 | 885 | 531 |
| 892 | 698 | 893 | 2026 | 894 | 899 | 895 | 898 | 896 | 897 |
| 897 | 896 | 898 | 895 | 899 | 894 | 900 | 893 | 901 | 892 |
| 902 | 891 | 903 | 890 | 904 | 889 | 905 | 888 | 906 | 1529 |
| 907 | 1528 | 908 | 2082 | 909 | 326 | 910 | 1527 | 911 | 1526 |
| 912 | 968 | 913 | 7 | 914 | 1525 | 915 | 3 | 916 | 1524 |
| 917 | 1146 | 920 | 817 | 921 | 2027 | 922 | 2028 | 923 | 80 |
| 924 | 81 | 925 | 1475 | 926 | 1476 | 927 | 2029 | | |

APPENDIX E

MICROTRANES

The microcomputer will be associated with transit agencies moore and more as time goes on and will significantly contribute to transit planning efforts in the future. MICROTRANES is an interactive microcomputer version of TRANES written in Microsoft BASIC for transit planners interested in accessing transit or census information at selected transit stops and providing summary information by individual transit route within a regional transit system. The program was written to make the task of analyzing transit information easier for the non-technical transit person who can use MICROTRANES to evaluate transit route alternatives for several different sets of input data.

One advantage of MICROTRANES is the ability to do a detailed analysis of transit routes on an individual transit stop basis with a minimal amount of actual coding and file building. The MICROTRANES program does not require an excessive amount of disk storage computer and the computer processing (CPU) time is low. This allows the transit planner to interactively examine many alternatives in a short period of time.

Finally, MICROTRANES reduces the need to have access to a mainfranie computer and to code extensive transit networks in orCer to evaluate the performance of selected transit. routes. The transit planner does not compete with other users for computer time or disk space and is limited only by the limitations of the microcomputer being used.

OVERVIEW

MICRO'TRANES is applicable to any city which has GBF/DIME files available for transit network coding. However, MICROTRANES will accept any geographic base coordinate system, thus making it accessibie to any transit agency, even those lacking an established geographic base file. Cities without existing GBF/DIME files could establish and manually code the transit network. MICROTRANES can be utilized efficiently if the urban population is about 20,000 or more or if the fixed-route transit system consists of five or more vehicles. Cities without existing transit could utilize MICROTRANES for conducting feasibility studies of implementing a transit system.

The MICROTRANES programs are implemented through an interactive process of coding the geographic base file, coding the desired transit stop data, extracting the transit network, and analyzing different alternatives. MICROTRANES uses the dBASE II Database Management System (described in greater detail later) for coding the geographic base file and the transit stop data files. A MICROEXTRACT program selects that portion of the transit network desired by the user for analysis. The main MICROTRANES program is then used to link the transit network with
the census information ciata.
There are four input files for MICROTRANES: a link pointer file, a node pointer file, a census file, and a command file. These four files respectively tell MICROTRANES: 1) where each node in the network is located, 2) what the impedance of each link is, 3) the start ard end nodes for each link (A-NODE and B-NODE), and 4) the census information associated with each transit stop. Using this information, a path can be determined and census information assigned to each requested transit stop. The transit planner can analyze specific transit stops, transit route segements, or entire transit lines as desired.

The output from MICROTRANFS consists of two reports, a transit stop report and a transit line report. The transit stop report prints out a summary of census information by transit stop for two accessibility limits as specified by the user. The first accessibility limit would normally be within one to three blocks of the trarsit stop, and the second accessibility limit could be an additional three to five blocks. If total population were used with accessibility limits of 1,300 and 2,600 feet for typical Oklahoma City street networks, the first summary tabulation would list the total population within a walking distance of approximately three blocks of each bus stop. The second summary tabulation would iist the population residing an additional three blocks (1,300 to 2,600 feet in distance) away. Each summary tabulation can include three separate categories of census information, such as total population in three age ranges. A summary total for all the requested transit stops is printed out at the end of the transit stop report.

The transit line report sums up the census information for all of the transit. stops along an individual transit route. It is also possible to estimate any service area overlaps between transit lines which have common route segments or run closely parallel by comparing the difference in the transit line totals and the transit stop totals. The difference in these totals provides the amount of double coverage of transit stops by different transit routes.

POTENTIAL APPLICATIONS

The primary application of MICROTRANES would be to estimate the number of potential passengers along transit route corridors. The success of a transit system can be measured by comparing the actual number of passenger-miles versus the number of vehi-cle-miles. These and other performance indicators can be useful in determining which transit routes are productive. Also, the transit planner could use MICROTRANSES to evaluate what changes could be made to existing non-productive transit routes to make them more productive.

MICRORRANES could also be used to collect "market-segment" information. A target market, such as population over 64 years of age, could be identified using transit stop reports from MICROTRANES. MICROTRANES thus could be used to evaluate the accessibility of existing transit routes and for designing new services to serve specific market segments.

MICROTRANES SOFTWARE REQUIREMENTS

CP/M 2.2 Operating System

CP/M, a widely used microcomputer operating system, was chosen for liICROTRANES because of its flexibility and speed compared to other operating systems. The dBASE II program which operates under CP/M i.s one of the fastest and most flexible database management systems on the market. Many transit agercies are now using CP/M-based microcomputers for their transit planning needs.

The advartages of using CP/M depend on the specific tasks to be accomplished with the microcomputer. Some brands of microcomputers have their own operating system and do not allow prograns to be transferred from their system to another. This reduces the possibjlity of software piracy but it increases the system dependence of the user. This is not the case with a CP/M-based system. CP/M is available on many microcomputers, including the APPLE II, Radio Shack TRS-80, SUPERBRAIN, North Star, Heath, and Zenith. Microcomputer programs are transferable under CP/M as long as they are written in a higher level. language, such as FORTRAN, BASIC, or COBOL. Furthermore, some programs written in assembler languages can be transferred by charging a few addresses or some of the operational codes.

The following system programs are contained on the CP/M master diskette supplied by the manufacturer and are used in conjunction with the dBASE II and MICROTRANES programs. For a more detailec explanation of their functions, the user is referred to a CP/M user's manual.

CAT.COM - is a program which allows the user to look at his catalog and the space occupied by each file;

APDOS. COM - is a program which allows the user to convert APPLE II text files to CP/M text files;

NFT.COM - is a program to copy files on a single disk drive system;

BOOT.COM - is a program used to boot the system for either a thirteen sector or sixteen sector diskette;

COPY. COM - is used to copy every file on one diskette to another diskette on a single or double disk drive system;

CPM60.COM - is a program used to upgrade diskettes from a 48 K system to a 60 K system needed for dBASE II; and

AUTORUN.COM - is a program used in conjunction with compiled CP/M files so that when the operating system is booted, a program will automatically run without user intervention.

Microsoft BASIC

BASIC is an acronym for "Beginner's All-purpose Symbolic Instruction code." This high level language was developed by Dartmouth College in the mid-1960's to teach beginning students how to prograni. Though BASIC was derived from FORTRAN, the leading professional engineering and scientific language, it has a simpler syntax and tends to be more understandable to the casual programmer. It is widely used in microcomputer programming.

There are two types of BASIC programs, an "interpretive" version and a "compiled" version. With the interpretive version the user types in a BASIC command and the computer immediately executes ("interprets") the instruction. If the command syntax is in error, the computer indicates the error, allowing the user to interactively correct lines of incorrect code. The compiled version is a machine language file which the computer can execute significantly faster and more efficiently than the interpreted version, assuming that all of the code is correct. The compiled version should be used only after the user is confident that all of the program commands and logic are correct.

MICROTRANES was written in Microsoft BASIC, a language developed and supported by the Microsoft Corporation of Bellevue, Wastington. All of the MICROTRANES programs were initially developed in the interpretive mode and then later compiled with the Microsoft MBASIC compiler for faster execution and transit stop pathfinding.

dBASE II Database Management System

The dBASE II program, developed by Ashton-Tate of Culliver City, California, is a relational database management system which represents data in a two dimensional table with rows and column rather than as network heirarchies. The rows correspond tc data "records" and the columns represent fields within each record. dBASE II is available on most CP/M-based microcomputers.

Relational data structures tend to be easier to understand because most people have a common and intuitive idea of what a table is. The dBASE II program is a versatile database manaçement tool for the convenient manipulation of small and medium-sized data bases. With dBASE II it is possible to create data bases, modify and print or display the contents of each data set, manipulate data and perform mathematical computations, and generate data summary reports.

To run dBASE II, one types "dBASE" under the CP/M operating system and the microcomputer should respond with a query for today's date. Upon entering the correct date, a prompt appears on the terminal screen which looks like a period (.) and dBASE II is ready. To create a new database, type "CREATE." dBASE II will respond with an "ENTER FILENAME" query to which the user must reply with a file name. For example, a new GBF/DIME file might be named MINIDIME to ensure that the user and others can more readily remember and find the data file later.

Next the user must enter the data field name ("column" heading), the data type (alphanumerical characters such as a street name or numbers), and the field length for each field in the data base. After entering the last field, the user terminates the sequence by pressing the "return" button on the keyboard. This will save the file structure in a file called <filename.DBF> (e.g., MINIDIME.DBF). The dBASE II program will query the user with "INPUT DATA NOW (Y/N) ?" which allows the user to immediately enter data ("Y" for "yes") or just save the empty file on disk. The user enters new data in an existing file by using the APPEND command.

In editing ar existing dBASE II file the user must access the dBASE II program as indicated above and then enter the USE command, e.g. USE MINIDIME. The user then selects the record (a "row" in the data table) to be edited by entering "EDIT RECORD NUMBER" where the record number corresponds to the row number assigned by the user. If the user is not sure of the record number, the existing records can be viewed on the terminal screen with either the DISPLAY or LIST command. The DISPLAY command will display one record at a time and the LIST command lists every record in the file starting with the first one.

Saving a dBASE II file is accomplished by first accessing dBASE II (if not already done so) and the specific file (USE command). Next, the user types in the command COPY TO SDF. This creates a file with the file name <filename.TXT> (e.g., MINIDIME.TXT) which can be accessed by the BASIC programs.

MJCROTRANES HARDWARE REQUIREMENTS

A 48 K APPLE II computer was chosen for developing the MICRO-SRANES programs because: (1) it is a widely available machine, (2) it supports the BASIC language which is easy to program, thus facilitating the conversion of TRANES from FORTRAN to BASIC, (3) many trarsportation planning programs are available for the APPLE II ard therefore, many transportation and transit agencies are likely to have access to an APPLE II, and (4) the dBASE II database management system runs under the CP/M 2.2 operating system on the APPLE II and this was an important element of the MICROTRANES Cevelopment. The APPLE II is a versatile, 8-bit machine able to use either its own 6502 microprocessor for the APPLE DCS disk operatirg system or the $Z-80$ microprocessor for CP/M 2.2 programs.

A random access menory 64 K RAM Card is required to operate the dBASE II program and all of the MICROTRANES programs. The 64 K RAM Card essentially gives the user an additional 16 K of memory to run programs or perform file manipulations.

An 80 Column Card expands the APPLE II screen column display width from 40 to 80 characters. The expansion allows the use of full screen formating with dBASE II. Also, the MICROTRANES output program display formats are set up for a full 80 columns. If a 40 coiumn display is used the output tables will "wrap around" the screen in an almost unreadable fashion. The user can, if desired, modify the MICROTRANES output formats for 40 column display by changing the TAB functions in the program listings.

The $2-8 C$ card is the central processing unit (CPU) for the CP/A. operating system. This card must be installed in order to run dEASE II or any of the MBASIC programs. The $Z-80$ processor also controls the CP/M system utilities described previously.

The minimum disk configuration for accessing dBASE II and the MICROTRANES programs would be one disk drive and controller. However, it is suggested that the user have two disk drives for additional storage and easy copying of diskettes. The job of inserting and removing diskettes becomes tedious with a single disk drive system.

Mary alternative microcomputers are available on the market and can perform many functions for the transit planner, however, the one constraint that is most often faced it the initial capital cost of the microcomputer. The transit planner (in 1983) shovild be able to buy a reasonable microcomputer in a price range of $\$ 1000-\$ 3000$ which could be used to run dBASE II and MICEOTRANES.

A second criterion would be the primary use of the microcomputer. If the microcomputer is dedicated to planning only and not word processing or business management programs then the traisit planner should look for a computer with this in mind.

Howerer, it is useful to have a good word processor available for procram development and occasional documents. Word processing is more corvenient with $80-c o l u m n$ screen displays, the format sugcesfed previously for a MICROTRANES hardware configuration.

A final criterion for microcomputer selection is the ability to expand the system in the future. Transit agency and personal computing requirements, while possibly small at first, likely will be much larger in the near future as the agency finds more uses for them. Microcomputers will continue to become smaller and less expandable. This is a marketing strategy used by the computer manufacturers to ensure that when the existing machine is cutgrown it will be necessary to invest in a new machine. One advantage of the APPLE II computer, available since 1977, is that it can be expanded by simply replacing old circuit boards with appropriate new ones for new applications. The vigorous growth of the microcomputer industry has included the development of increasingly sophisticated software packages, a trend which should continue in the foresceable future.

MICYOTRANES PROGRAMS AND FILES

Menu of Capabilities
The purpose of the menu program, not included in this report, would be to allow the user to access any of the MICROTRANES programs with a single response. The menu dispiays all of the possible options to the user and then queries the user to select one of six options.

The first option would run the MICRO-EXTRACT program which creates the necessary files for MICROTRANES. The second option would run the interactive version of MICROTPANES and which procuces a second menu of fifteen options the user may select fror:. The third option would run the batch version of MICROTRANES where the user must have previously created a COMMAND file which tells MICROTRANES which functions to perform. The fourth option would run the LIS'T progran listing the equivalency tables between GBF/DJME File node numbers and the unique TRANES node numbers. The fifth option would access a census information demand file (created with dBASE IJ) and put it in binary format for use with MICROTRANES. And finally, the sixth option would allow the user to exit the MICROTRANES menu and return to the CP/M operating system.

Interactive Version. The interactive version of MICROTRANES allows the transit planner to try several alternative plans without re-running the MlCROTRANES program. The interactive version allows the transit planner to activate or deactive transit lines, trarsit stops, or classify transit stops. The transit planner can change any of the parameter values such as maximum impedance, first accessibility limit, or second accessibility limit at any time within the program. When these impedances are changed, however, the pathfirider routine must be run again with the new impedances. The planner may also change the transit stop classification and run the pathfinder routine again. When the transit planner runs the pathfinder routine, both a pathfinder report and a transit line report may be requested. The planner may also change the demand values and request a second transit stop or trarsit line report with the new values. This can be done as many times as desired with up to three different values at a time.

Batch Version. The batch version of MICROTRANES is very similar to the interactive version with the exception of the COMNAND file coding. In the batch version, the transit planner is required to code a command card as the last record in the COMMAND file. The command card is used to activate and deactivate transit lines, transit stops, and classify stops, to chavge parameters, stop classes, transit demand values and to output pathfinder, transit stop, and transit line reports. Some of these commands require numeric information after the command, e.g. when a transit line is activated or when transit demand values are changed. After the MICROTRANES program is run in the
batch mocie, the transit planner may make changes by accessing the COMMFN file with a word processor or text editor and changing the desired values.

MICROTRANES Data Files

The following data files are developed either prior to running MICROTRANES or are generated by the programs.

The MICRO-DIME file is used by the MICRO-EXTRACT program to create a link/pointer file and a node/pointer file for MICFOTRANES. The MICRO-DIME File provides the street network, i.e. links and nodics, used to create the transit network for the pathfincing algorithm used in MICROTRANES. It is suggested that the liser create this file interactively using dBASE II. However, the user may also download a small portion of a regional GBF/DIME file from a mainframe computer directiy to the microcomputer if those capabilities are available.

The Link/Pointer file serves as a unique link file for the MICROTRANES program and a pointer to connected links. This is one of the main files used by MICROTRANES. The Node/Pointer file created by the MICRO-EXTRACT program is used by MICROTRANES as \bar{c} unique node list which points to the link in the Link/Pointer file containing a specific node that the pathfinder algorithm is searching for. When the first link is found the Node/Pointer file directs the pathfinder to other adjacent links with the same unique node number.

The Tract/Pointer file can be created using dBASE II interactively. The user must find the number of interior census tract nodes for each census tract that the user plans to use in the MICRO-EXTRACT program. The user can accomplish this by using the COUNT command to determine the unique interior tract nodes. These nodes represent all the unique GBF/DIME File rodes within the interior of each census tract for the desired study area.

The Map/Pointer file can also be created using dBASE II interactively. The user must find the number of census tract boundary nodes for each census map to be used in the MICROEXTRACT program. The user can accomplish this by using the COUNT command to determine the number of unique census tract boundary nodes. These nodes represent all the unique GBF/DIME file nocies locatec along census tract boundaries for the desired study area.

The Tract/Node file contains for each MICRO-DIME node, a unicue MICROTRANES node number which provides an equivalency for the transit planner to code the existing or proposed transit lines. The file also contains the x-coordinate and y-coordinate of tach node in the study area.

The Map/Node file gives the same equivalency as the Tract/Node file except that the Map/Node file contains only census tract boundary nodes. The reason census tract boundary nodes are
separatec by map number is that they are unique for a specific map but not ariong the census tracts. Census tract boundary nodes numbers start at 700 and are numbered up to 49,999 within the same map but are never duplicated. The Map/Node file also contains the x-coordinate and y-coordinate of every census tract bourdary node in the study area.

MICFO-EXTRACT Program

The purpose of the MICRO-EXTRACT program is to create pointer files and a subarea demand file for use in the MICROTRANES program. The MICRO-EXTRACT program also creates two equivalency tables used in the coding of the transit network. The equivalency tables list the MICRO-DIME file node numbers and their equivalent MICPOTRANES code numbers.

MICRO-DEMAND Program

The purpose of the MICRO-DENAND program is to create a set of census statistics which represent the demographic or socioeconomic conditions along each individual transit line corridor. The MICRO-DEMAND program allocates census information to each unique MICRC-DIME street segment, i.e. the block face of the MICRO-DIME record. The demand file is then used in the MICROEXTRACT program to create a subarea census demand file.

The input data file requirements for the MICRO-DEMAND program are the MICRO-DIME file and a MICRO-DEMAND file, both created with dBASE II. The MICRO-DIME file is used to match census block records to individual MICRO-DIME segment records. The MICRO-DEMAND file must, therefore, contain data at the census block level of geography. The MICROTRANES program requires that each census data record be coded to a unique MICRO-DIME record number for random access of the segment or biock face data.

The transit planner should consider using the ADMA'TCH computer program for the automated geocoding of data files if the program is available and the demand file contains address specific data. The ADMATCH program was created by the U.S. Bureau of Census as an address matching program to "provide the capability of geocoding computer readable records containing street addresses" . It has been used on IBM mainframe computers since the early 1970 's with fairly good results.

The user of the MICROTRANES programs might consider implementing a version of ADMA'TCH on the microcomputer to do automated geocoding of data files. Either way, this procedure would give the best data for MICROTRANES, i.e. at the block face level of geosraphy, rather than trying to disaggregate the census data files from the blcck level to block face.

An alternative approach to creating the demand file would be to manually geocode the data rather than using an automated procedure. The disadvantage of manual geocoding is the time that it
takes to look up each record in a street adcress listing. However, if the data file is a reasonable size, say less than 100 records, then the manual geocoding approach could be used with satisfactory results.

MICRO-LIST Program

The purpose of the MICRO-LIST program is to provide a concise list of MICRO-DIME node numbers and their equivalent MICROTRANES node numbers. The list is then used to code the indivicual transit lines for input into MICROTRANES.

Main Program
The input for the main MICROTRANES program is the Link/ Pointer file, the Node/Pointer file, the subarea Demand file, the pathfinder file and the Command file. The Link/Pointer file and Nodeipointer file provide the network information used for pathbuilding. The Demand file provides the census or other data used for analysis of socio-economic, demographic, and potential ridership figures for each individual transit stop. The Pathfinder file is used to store the transit paths on the disk for later path skimming or flow assignment. The command file contains the initial parameter codes, transit node, and transit line information used to control the program inputs, outputs, and pathbuilding.

OPERATIONAL USE OF MICROTRANES

The transit planner is assumed to have some familiarity with the transit system being analyzed. The transit planner thus would know essentially where to and where not to put transit lines within a particular study area. The planner should also know where the high density corridors are as far as population and employment and concentrate on transit demand in those areas. Much less work and fewer computer runs will be required if good assumptions are made in the initial stages of analysis.

Once the transit planner has laid out a tentative transit system, an initial transit stop report can be produced. By starting with transit stop reports rather than transit lines summaries those stops where there are no demographic characteristics (e.g., insufficient total population) can be eliminated. The transit planner can then begin transit line analysis with the remaining transit stops. It should be noted, however, that some "dummy" transit stops may be required where no transit or census data exist in order to achieve the maximum impedance criteria. The transit stop reports will give the transit planner an idea of the demographic profiles along the transit corridor and through further analysis, determine if those characteristics have any influence on actual passenger ridership. When a relationship between demographic characteristics and passenger demand is established, usually through regression or correlation, the transit planner may then estimate demand by usircs equations which represent this relationship.

Transit travel times, transit schedules, actual on-board passenger counts, travel costs, and operational costs are just a few of the other data files which could be analyzed by MICROTRANES. This would assume, of course, that the transit planner would have this data by transit stop or transit link within the network. The transit travel times on each link could be used along with distance to set the impedance value associated with the transit line. This would be more realistic than using just distance to determine impedances. The travel cost could be used to evaiuate the overall performance of a transit line as far as productivity; i.e. transit lines heavily subsidized are not considered to be very productive. Finally, transit schedules could be compared with the computed total and individual transit travel times to determine if the schedules are realistic.

APPENDIX F

MICROTRANES COMPUTER PROGRAM LISTING

$M \mathrm{ICRO-EXTRACTPROGRAM}$
 WRITTEN BY KEN MORRIS
 MARCH 1983

1000 REM
1002 REM DIMENSION AND INITIALIZE VARIABLES
1004 REM
1006 OPTION BASE 1
1010 DIM NEWMAP (400), LP (400), LD (400)
1020 DIM NEWPT2 (400), NEWPTR(400),NP (400)
1030 DIM IBMAP (2), ITRC (2), NODES (2), IY (2), IX (2)
1040 DIM ITRACT (10), LOW(10), IHIGH (10)
1050 DIM MAPP (10), MLOW (10), MHIGH (10)
1060 DIM LINKER(2)
1070 DIM DM9 (9), DM9\$(9), IDMD9T(9)
1080 PRINT CHRS(12)
1090 PRINT : PRINT : PRINT
1100 PRINT TAB(20);"EXTRACTOR PROGRAM"
1110 PRINT
1120 PRINT TAB(20);" Please wait for menu ! "
1130 REM ******INPUT FILES ******
1140 REM I- LINKTEST (INPUT TO PREP)
1150 REM 4- DEMAND FILE
1160 REM 5- TRACT/NODES
1170 REM 6- MAP/NODES
1180 REM 7- DIMECON
1190 REM ****** OUTPUT FILES ******
1200 REM 2- LINKPT
1210 REM 3- NODPAC
1220 REM 8- TNODES
1230 REM 9- MNODES
1240 REM ***
1250 REM * S T E P \# 1 *
1260 REM * READ CONTROL CARDS AND TABLES *
1270 REM * IOPT $=0$ FOR FULL RUN *
1280 REM * IOPT = 1 FOR MAIN PROGRAM ONLY : *
1290 REM * IOPT $=2$ FOR SUBROUTINE PREP ONLY *
1300 REM
1310 OPEN "O", I, "LINKTEMP"
1320 OPEN "O", 2 ,"LINKPTR"
1330 OPEN "O",3,"NODEPTR"
1340 OPEN "R",4,"DEMAND"
1350 OPEN "I",5,"TRACNODE"
1360 OPEN "In, 6 ,"MAPNODE"
1370 OPEN "I",7,"DIMECON"
1380 OPEN "O", $8, " T-N O D E "$
1390 OPEN "O",9,"M-NODE"
1400 FIELD \#4, 6 AS DM9\$(1),6 AS DM9\$(2),6 AS DM9\$(3), 6 AS DM9 (4), 14026 AS DM9 $(5), 6$ AS DM9 $(6), 6$ AS DM9\$(7), 6 AS DM9\$(8),6 AS DM9\$(9).

1404
1406 REM 1408 REM
1410 PRINT CHRS(12)
1430
1440
1450
1460
1470
1480
1490 REM
1500 REM
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690

$$
1700
$$

1710
1720
1730
1740
1750 REM
1760 REM *
1770 REM
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
REM
Rem Clear screen and print menu

```
1420 PRINT "CHOOSE ONE OF THE FOLLOWING OPTIONS"
    PRINT " 0 - FULL RUN"
    PRINT " 1 - MAIN PROGRAM ONLY"
    PRINT " 2 - SUBROUTINE PREP ONLY"
    PRINT TAB(20);:INPUT "YOUR CHOICE (0-2) ",IOPT
    IF IOPT <> 2 THEN 1560
    REM
```

 REM
 PRINT
 INPUT "NUMBER OF LINKS IN FILE: ",LINKS
 PRINT
 INPUT "NUMBER OF NODES IN FILE: ",NXT
 GOSUB 3400 : END
 NXT \(=1\)
 PRINT
 INPUT "NUMBER OF CENSUS TRACTS IN TRNODE FILE: ",NTRAC
 PRINT
 INPUT "NUMBER OF CENSUS MAPS IN MAPNODE FILE: ",NMAP
 PRINT
 FOR I = 1 TO NTRAC
 INPUT \#5,B\$
 \(\operatorname{ITRACT}(I)=\operatorname{VAL}(\operatorname{MID} \$(B \$, 1,6))\)
 \(\operatorname{LOW}(I)=\operatorname{VAL}(\operatorname{MID} \$(B \$, 7,3))\)
 \(\operatorname{IHIGH}(\mathrm{I})=\operatorname{VAL}(\operatorname{MID}(\mathrm{B} \$, 10,3))\)
 NEXT I
 FOR I \(=1\) TO NMAP
 INPUT \#6,C\$
 \(\operatorname{MAPP}(I)=\operatorname{VAL}(\operatorname{MID}(C \$, 1,2))\)
 \(\operatorname{MLOW}(I)=\operatorname{VAL}(\operatorname{MID} \$(C \$, 3,3))\)
 \(\operatorname{MHIGH}(I)=\operatorname{VAL}(\operatorname{MID}(C \$, 6,3))\)
 NEXT I
 REM ***)
 REM * READ LINKS AND RENUMBER NODES
 INPUT "NUMBER OF DIME FILE SEGMENTS IN DIMECON FILE: ",NDIME
 FOR JJ = 1 TO NDIME
 \(\mathrm{K}=1\)
 IF EOF (7) THEN 3190
 INPUT \#7,A\$
 NUM \(=\) NUM +1
 \(\operatorname{ITRC}(\mathrm{K})=\operatorname{VAL}(\operatorname{MID} \$(\mathrm{~A} \$, 53,6))\)
 \(\operatorname{IBMAP}(K)=\operatorname{VAL}(\operatorname{MID} \$(A \$, 71,3))\)
 \(\operatorname{NODES}(K)=\operatorname{VAL}(\operatorname{MID} \$(A \$, 74,4))\)
 \(\operatorname{IX}(\mathrm{K})=\operatorname{VAL}(\operatorname{MIDS}(\mathrm{A} \$, 81,4))\)
 \(I Y(K)=\operatorname{VAL}(M I D \$(A \$, 88,4))\)
 \(\operatorname{ITRC}(\mathrm{K}+1)=\operatorname{VAL}(\operatorname{MID} \$(\mathrm{~A} \$, 62,6))\)
    ```
1900 IBMAP(K+1) = VAL(MID$(A$,92,3))
1910 NODES(K+1) = VAL(MID$(A$,95,4))
1920 IX (K+1) = VAL(MID$(A$,102,4))
1930 IY (K+1) = VAL (MID$(A$,109,4))
        JD = VAL (MID$ (A$,113,6))
        ITYPE = VAL(MID$(A$,119,1))
    IF JJ = 1 THEN JDLOW = JD
        JD = JD - JDLOW + I
    REM STEP 2.1 SKIP NON STREET LINKS,
    REM SKIP TRACTS AND NODE = 0
    REM
        IF ITYPE > O AND ITYPE < 8 THEN 3140
    IF ITRC(1) = 0 OR ITRC(2) = 0 THEN 3110
    IF NODES(1) = 0 OR NODES(2) = 0 THEN 3110
    IF IX(1) = 0 AND IY(1) = 0 THEN 2070
    IF IX(2) > 0 AND IY(2) > 0 THEN 2080
        IB = IB + I
    PRINT TAB(10);"NO COORDINATES FOR RECORD NUMBER: ";NUM
    REM
    REM
    REM
    FOR I = 1 TO 2
        IROW = 0
        ICOL = 0
    IF NODES(I) >= 700 AND NODES(I) < 5000 THEN 2600
    REM
    REM
    REM
        KPTR = 1
    REM SEARCH ITRACT TABLE FOR THIS CENSUS TRACT
        IF KPTR > NTRAC THEN 2760
        IF ITRACT(KPTR) = ITRC(I) THEN 2240
        KPTR = KPTR + I
            GOTO 2200
            ND = NODES(I)
    REM REDUCE NODES ABOVE 4999
        IF NODES (I) >= 5000 THEN ND = 700 + (NODES (I) -4999)
            NODPTR IS THE NODE NUMBER PLUS THE LOWEST NUMBER
                IN THAT TRACT IN SEQUENTIAL ORDER FOR ALL TRACTS.
                    THEN SUBTRACT 1.
            NODPTR = ND + LOW (KPTR) - I
        IF NODPTR > IHIGH(KPTR) THEN 3160
    REM IF NEW NUMBER ABOVE 400 MUST GO TO NEW ARRAY FOR SPACE
        IF NODPTR > 400 THEN 2480
                    ELEMENT OF NEWPTR ARRAY IS ASSIGNED NEXT AVAILABLE
                    NUMBER IF NOT ALREADY ASSIGNED
        IF NEWPTR(NODPTR) <> 0 THEN }244
        NEWPTR(NODPTR) = NXT
        REM CONVERT X AND Y TO GRIDS FOR LATER INTERACTIVE TRANES
        IF IX(I) = O OR IY(I) = 0 THEN 2410
        IROW = (IY(I)-13400) / 2000 + I
        PRINT #8,ITRC(I);",",NODES(I);",";NXT;",";IX(I);",";IY(I)
```

2420 REM
2430
2440
2450
2455 REM
2460 REM
2470 REM
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2852
2854
2856
2858 REM 2860 2870
2880

REM

REM

INCREMENT NEXT AND ASSIGN NEW NUMBER TO LINKER $\mathrm{NXT}=\mathrm{NXT}+1$
LINKER(I) $=$ NEWPTR(NODPTR)
GOTO 2760
THE FOLLOWING STEP ARE SIMILAR TO THOSE ABOVE EXCEPT THE ARRAY NEWPT2 IS USED FOR SPACE
NODPTR $=$ NODPTR -400
IF NEWPT2(NODPTR) <> 0 THEN 2560
NEWPT2 (NODPTR) = NXT
IF IX $(I)=0$ OR IY(I) $=0$ THEN 2540
$I R O W=(I Y(I)-13400) / 2000+1$
$I C O L=(I X(I)-15870) / 2000+1$
PRINT \#8, ITRC(I) ;",";NODES(I) ;",";NXT;",";IX(I);",";IY(I)
NXT $=$ NXT +1
$\operatorname{LINKER}(I)=$ NEWPT2(NODPTR)
GOTO 2760
STEP 2.2.2 RENUMBERMAP NODES
CONVERT ALPHA MAPS TO NUMBERS
$I M A P=1$
IF IMAP $>$ NMAP THEN 2760
IF IBMAP $(I)=\operatorname{MAPP}(I M A P)$ THEN 2660
$I M A P=I M A P+1$
GOTO 2610
THIS PROCESS IS THE SAME AS ABOVE EXCEPT FOR MAPS
NODPTR $=(\operatorname{NODES}(I)-700)+$ MLOW $(I M A P)-1$
IF NODPTR $>$ MHIGH (IMAP) THEN 3180
IF NEWMAP (NODPTR) <> 0 THEN 2750
NEWMAP (NODPTR) $=$ NXT
IF IX $(I)=0$ OR IY $(I)=0$ THEN 2730
$I R O W=(I Y(I)-13400) / 2000+1$
$I C O L=(I X(I)-15870) / 2000+1$
PRINT \#9, IBMAP(I);",";NODES(I);",";NXT;",";IX(I);",";IY(I)
NXT $=$ NXT +1
LINKER $(I)=$ NEWMAP (NODPTR)
NEXT I
CALCULATE LINK DISTANCE, PACK DATA
WRITE LINK FILE(2) AND DEMAND FILE(3)
IDIST $=0$
$\operatorname{IF} \operatorname{IX}(1)=0 \operatorname{OR} \operatorname{IX}(2)=0 \operatorname{OR} \operatorname{IY}(1)=0 \operatorname{OR} \operatorname{IY}(2)=0$ THEN 2840
$\operatorname{IXDIST}=I X(2)-I X(1)$
IYDIST $=I Y(2)-I Y(1)$
IDIST $=$ INT (SQR ((IXDIST*IXDIST) $+($ IYDIST*IYDIST) $)+.5)$
IF IDIST $<=0$ OR IDIST >5280 THEN 2860
GOTO 2880
ERROR MESSAGES FOR INCORRECT DISTANCE ON
RECORDS PROCESSED BY MICRO-EXTRACT
PRINT "RECORD NUMBER ";JD;"HAS A DISTANCE OF ";IDIST
IDIST $=300$
PRINT \#1,IDIST;",";LINKER(1);",";LINKER(2)
REM
REM

```
    LINKS = LINKS + I
    COMPUTE SUBAREA DEMAND AND CREATE SEPERATE FILE
    IF JD > 32000 THEN 3020
    GET #4,JD
    DM9(1) = CVS(DM9$(1))
    DM9(2) = CVS(DM9$(2))
    DM9(3) = CVS(DM9$(3))
    DM9(4) = CVS(DM9$(4))
    DM9 (5) = CVS(DM9$(5))
    DM9(6) = CVS(DM9$(6))
    DM9(7) = CVS(DM9$(7))
    DM9(8) = CVS(DM9$(8))
    DM9(9) = CVS(DM9$(9))
    GOTO 3070
    INODEM = INODEM + 1
    PRINT "NO DEMAND FOR RECORD NUMBER ";NUM;" LINK NUMBER ";JD
    FOR I = 1 TO 9
    DM9 (I) = 0
    NEXT I
    FOR KK = 1 TO 9
    IDMD9T(KK) = IDMD9T(KK) + DM9(KK)
    NEXT KK
    GOTO 3180
    PRINT "NO POINTER FOR RECORD ";NUM;" CENSUS TRACT ";ITRC(I);
    PRINT " NODE ";NODES(I)
    GOTO 3180
    NONST = NONST + I
    GOTO 3180
    PRINT "HIGH POINTER--RECORD NUMBER ";NUM;" HPOINTER ";NODPTR;
    PRINT " MAP # ";IBMAP(I);" TRACT # ";ITRC(I);" NODE # ";NODES(I)
    NEXT JJ
    NXTl = NXT - 1
    * S T E P # 3
    PRINT "NUMBER OF LINKS ";LINRS;" HIGHEST NODE NUMBER ";NXTI
    PRINT "NUM = ";NUM
    PRINT "NUMBER OF RECORDS WITH : "
    PRINT "NO COORDINATES ";IB;
    PRINT "NO DEMAND ";INODEM;" NON-STREET ";NONST
    PRINT "CENSUS ITEMS 1-9 TOTALS ";
    FOR I = 1 TO 9 : PRINT IDMD9T(I); : NEXT I
    PRINT
    IF IOPT = 1 THEN 3330
    GOSUB 3400
    END
```



```
00502 REM
00510 REM
00512 REM
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
0 0 6 7 0
00680
00690
00700
00710
00720
00730
20740
00750
00760
00770
0}078
00790
00800
00810
00820
00830
00840
00850 REM
0086 OREM
00870 REM
I)=LI
00930 GO TO 470
00940 REM
00950 REM
00960 REM
00970
00980
00990 KK=K
)1000
```

$\mathrm{LL}=-\mathrm{LR}(\mathrm{l})$
$\operatorname{LIPO}(L L)=K+1$
$I I=2$
$J I=J I+1$
LIN (JI) =LL
GO TO 470
REM
REM
REM
$\mathrm{LL}=\mathrm{LL}+1$
$\mathrm{KK}=\mathrm{K}$
LIPO (LL) $=K+1$

TRANSIT LINE CODING EXPANSION
$K Y=0$
FOR I $=1$ TO KK
$K Y=K Y+1$
$J=I+I I-1$
IF LR(J) >0 THEN 810
$K I=-L R(J)$
$K A=L R(J-1)$
$K B=L R(J+1)$
$L A=L I P O$ (KI)
FOR JK = 1 TO JI
IF LIN(JK) $=$ KI THEN 660
NEXT JK
PRINT "ERROR IN REFERENCING COMMON TRANSIT LINE"
GO TO 4260
$\operatorname{LBFLIPO}(\operatorname{LIN}(J K+1))-1$
FOR L $=\mathrm{LA}$ TO LB
IF LST $(L)=$ KA THEN 740
IF LST $(L)=$ KB THEN 730
NEXT L
PRINT "ERROR IN REFERENCING COMMON TRANSIT LINE"
GO TO 4260
$K B=999$
LLCK=L+1
FOR M = LLCK TO LB
$\operatorname{LST}(K+K Y)=\operatorname{LST}(M)$
IF LST $(M)=K B$ THEN $I=I+1$
IF LST $(M)=K B$ THEN 820
$K Y=K Y+1$
NEXT M
$\operatorname{LST}(K+K Y)=L R(J)$
NEXT I
$K=K+K Y$
GO TO 420
DETERMINE POINTERS,THEN RETURN TO PLACE NODE SEQUENCE INLIST

FILL IN EMPTY POINTER SPACES
IF LL $=0$ THEN 1190

```
J1010
01020
01030
01040
01050
01060
0l070
01080
01090
01092
01100 REM
01110 REM
01111 REM
01120REM
01130 REM
01160 REM
01170 REM
01180 REM
01190
01200
01210
01220
01230
01240
01250
11260
01270
01280
01290 REM
01300 REM
01310 REM
01320
01330
01340
01350
01360
01370
01380
0 1 3 9 0
01400
01410
01420 REM
01430 REM
01440 REM
01450
01460 MS=0
MF=0
01470 GO TO 1340
```

01480 REM
01490 REM 01500 REM 01510 REM

ACTIVATE LINES
ACTIVATE LINE(S) IDENTIFIED BY VALUE OR VALUE RANGE
IF MS $=0$ THEN MS $=M F$
FOR I = MF TOMS
ACTIVATE LINE UNLESS ALREADY ACTIVATED
IF LIPO(I) < 0 THEN 1710
$\mathrm{K}=\mathrm{LIPO}$ (I)
$K E=L I P O(I+1)-1$
IF KE < 0 THEN KE $=-\mathrm{KE}-2$
$\operatorname{LIPO}(I)=-\operatorname{LIPO}(I)$
IF KE < K THEN 1710
FOR IJ $=K$ TO KE
AND ALSO ACTIVATE STOPS ON LINE
NS=LST(IJ)
IF NK(NS) > 1000 THEN 1700
NK (NS) $=$ NK (NS) +1000
NEXT IJ
NEXT I
GO TO 1450
ACTIVATE NODES BY NAME
IF MS $=0$ THEN MS $=$ MF FOR $I=M F$ TO MS
IF NK(I) > 1000 THEN 1800
$\mathrm{NK}(\mathrm{I})=\mathrm{NK}(\mathrm{I})+1000$
NEXT I
GO TO 1450
ACTIVATENODES BY CLASS
IF MS $=0$ THEN \quad MS $=\mathrm{MF}$ FOR I = 1 TO MNODE
IF NR(I) < MF OR NK (I) > MS THEN 1890
$\mathrm{NK}(\mathrm{I})=\mathrm{NK}(\mathrm{I})+1000$
NEXT I
GO TO 1450
DEACTIVATENODES BY CLASS
IF MS $=0$ THEN MS $=$ MF
FOR I = 1 TO MNODE
IF NK (I) < 1000 THEN 2000
NK (I) $=$ NK (I) - 1000
IF NK(I) >= MF AND NK(I) <= MS THEN 2000
$\mathrm{NK}(\mathrm{I})=\mathrm{NK}(\mathrm{I})+1000$

```
02000
02010
02020 REM
02030 REM
02040 REM
02050
02060
02070
02080
02090
02100
02110
02120
02130
02140
02150
02160
02170
02180
02190 REM
02200 REM
02210 REM
02220
02230
02240
02250
02260
02270
02280
02290 REM
02300 REM
02305 REM
02310
02320
02330
02340
02350
02360
02365 REM
02370 REM
02375 REM
02380
02390
02400
02410
02420
02430
02440
02450
02460
02470
2480 REM ICODE = 2 AND IKS = 0
```

02490 02500 02510 REM 02520 02530 02540 02550 02560 02570 02575 02580
02590 02600 REM 02610 REM 02620 REM 02630 REM
02635
02637
02640
02650
02660
02670
02680
02690
02700
02710
02720
02730
02740
02750
02760
02770
02780
02790 REM
02800 RE 02810 REM 02820
$02830 \operatorname{LSY}(K+I U, J)=\operatorname{LSY}(K+I U, J)+\operatorname{LX}(\operatorname{ICC}(K))$
02840 NEXT K
02850
02855 REM
02860 REM
02870 REM
02880
02890
02892
02902
02904
02910
02920
02922
72930
GOSUB 7540 : REM CALL SUBROUTINE LINKER(KHT,KNT,KNL,KLS) ************
$\mathrm{KX}=0$
GO TO 1210
IF MS $=0$ THEN MS $=\mathrm{MF}$
FOR $I=M S$ TO MF
IKL=IKL+1
$\operatorname{ICC}(I K L)=I$
NEXT I
IF IKL $=3$ THEN 1190
GO TO 1450
OUTPUTALLOCATION TOSTOPS
CLEAR ACCUMULATORS, IF NECCESSARY
OPEN "R", 3,FILE3\$
FOR J = 1 TO KNT
FOR I $=1$ TO 6
$\operatorname{LSY}(I, J)=0$
NEXT I : NEXT J
FOR I $=1$ TO LINKS
IF NET(3,I) < 0 THEN 2850
GET \#3, I
$J=N E T(1, I)$
$\operatorname{LCD}=\operatorname{NET}(2, I)$
$\mathrm{LCH}=\mathrm{NET}(3, \mathrm{I})$
IF LCD > LIMF THEN 2770
$I U=0$
GO TO 2820
IF LCD $>$ LIMS THEN 2850
IU=3
ADD TO APPROPRIATE ACCUMULATOR, BASED ON FIRST ORSECONDLIMIT
FOR K $=1$ TO 3

NEXT K
NEXT I
OUTPUT ALLOCATION RESULTS
PRINT "TRANSITSTOPREPORT"
PRINT
PRINT "FIRST LIMIT $=$ ";LIMF;" SECOND LIMIT $=$ ";LIMS
FOR $I=1$ TO 6: PRINT SPC(5);"CENSUS";:NEXT I : PRINT
FORI $=1$ TO 6: PRINT SPC(5);TITLE\$(I);:NEXT I:PRINT
FOR J = 1 TO 6
$N R(J)=0$
NEXT J
FOR I = 1 TO KNT

FIELD \#3,9 AS C1\$,9 AS C2\$,9 AS C3\$,9 AS C4\$,9 AS C5\$,9 AS C6\$

```
02932
02940
02945 REM
02950 REM
02955 REM
02970
02980
02990
02992
03000
03010
03020 REM
03030 REM
03040 REM
03045 REM
03050
03060
03070
03080
03090
03100
03110 REM
03120 REM
03130 REM
03140
03150
03160
03170
03180
03190
03200
03210
03220
03230
03240
03250
03260
03270
03280 REM
03290 REM
03300 REM
03310
03320 FOR M = K TO KE
03330 MM = LST(M)
03340
03350 REM
03360 REM
03370 REM
0 3 3 8 0
03390
```

```
    FOR J = 1 TO 6
    PRINT USING "###,###.";I,LSN(I),LSY(J,I)
    SUM TOTALS
        NR(J)=NR(J)+LSY(J,I)
        NEXT J : NEXT I
    PRINT "GRAND TOTAL IS";
        FOR J = 1 TO 6 :PRINT USING "###,###.",NR(J); : NEXT J
    MF=0
    IF ICODE = 14 THEN 1210
    OUTPUUTALLLOCATION TONSNES
    IDENTIFY ACTIVE LINES AND CLEAR ACCUMULATORS
    J=0
    FOR I = I TO 100
    IF LIPO(I) >=0 THEN 3100
    J = J + I
    LLN(J) = I
    NEXT I
    REMEMBER NO. OF ACTIVE LINES
    KNL = J
    FOR I = I TO KNT
    IU = LSN(I)
    NP(IU) = I
    NEXT I
    FOR J = l TO KNL
    FOR I = 1 TO 6
    LLY(I,J) = 0
    NEXT I
    LI = LLN(J)
    K = LIPO(LI)
    KE = LIPO(LI+1) - I
    IF K<0 THEN K = -K
    IF KE < O THEN KE = -KE - 2
    IDENTIFY STOPS ON LINE BY SEQUENCE NO. OF STOP
    IU = NP(MM)
    CHECK IF STOP IS ACTIVE
    IF NK(MM) < 1000 THEN 3440
    FOR I = 1 TO 6
```

```
33400 REM
03410 REM
03420 REM
03430
03435
03440
03450
03460 REM
03470 REM
03475 REM
03480
03490
0 3 5 0 0
03505
03507
03510
03512
03520
03530
03540
03550
03560 REM
03570 REM
03580 REM
03590
3600
03610
03612
0 3 6 2 0
03630
03640
0 3 6 5 0
03660
0 3 6 7 0
03680 REM
03690 REM
03700 REM
03705 REM
03710 REM
03720 REM
03740 REM
03750 REM
03760 REM
03770 REM
03775 REM
03780 REM
03790 REM
0 3 7 9 5
03800
03810
03820
)3830
PATHFINDER
    PRINT "PATHFINDER REPORT"
    IF KNT = 0 THEN 3900
    PRINT " LINK DIST STOP N LINK DIST STOP N";
    PRINT "LINK DIST STOP N LINK DIST STOP N"
    KK=1
    FOR I = 1 TO LINKS
    IF NET(3,I) < O THEN 3860
    IB(KK)=NET(1,I)
        IA (KK) =NET(2,I)
    IC (KK) =NET (3,I)
    *******************PROGRAM CHANGE************************
    THE FOLLOWING STATEMENTS HAVE TO BE ACTIVATED TO OUTPUT
    STOP NODE NAME RATHER THAN SEQUENTIEL STOP NUMBER
    KJ = IB(KK)
    IFKJ<= KNT THEN 3770
        PRINT "IB(KK) = ";IB(KK);" IC(KK) = ";IC(KK);" LINK # = ";I
    IB(KK) = 999999
    GO TO 3800
    IB(KK) = LSNN(KJ)
    OPEN FILE FOR SAVING PATHS
    OPEN "O",4,FILE4$
    JA(KK) = I
    KK=KK + I
    IF KK <= 4 THEN 3860
    FOR KI = 1 TO 4
```

PRINT USING "\#\#\#\#.";JA(KI), IA(KI), IB(KI), IC(KI); PRINT \#4,JA(KI),IA(KI),IB(KI),IC(KI);

NEXT KI

$\mathrm{KK}=1$
NEXT I
FOR KI $=1$ TO 4 PRINT USING "\#\#\#\#.";JA(KI),IA(KI),IB(KI),IC(KI); PRINT \#4,JA(KI), IA(KI), IB(KI), IC(KI); NEXT KI
CLOSE 4
$\mathrm{MF}=0$
GO TO 1210

INPUT \#5,MDIST,LIMF,LIMS
PRINT "NEW PARAMETERS ARE ";
PRINT USING "\#\#\#\#\#.";MDIST,LIMF,LIMS GO TO 1210
PRINT "VALUE EXPECTED AFTER COMMAND" END

```
J4262 REM
04270 REM SUBROUTINE INPUT(ICODE,IDIGIT)
04272 REM
04280
04390
04400
04410
04420
04422
04440
04442
04450
04460
04480 REM
04490 REM
04500 REM
04510
04520
04530
04540 REM
04550 REM
04560 REM
04570
04580
04590
)}460
04610
04620 REM
04630REM
04640 REM
04650 REM
04660
04670
04680
04690
04700
04710
04720
04730
04740
04750
04760
04780
04790
04810
04820
04830
04840
04850
04860
04880
J4890
    DIM IERROR$(80),IDIGIT(50)
    II=0
    JJ=0
    FOR I = I TO 50
    IDIGIT(I) = 0
    NEXT I
    IF INDX <= 80 THEN 4510
    IF EOF(1) THEN 7390
    INPUT #5,IDATAS
    INDX=1
    LOOK FOR FIRST NON-BLANK CHARACTER.
    IF MID$(IDATAS,INDX,1) <> n" THEN 4570
    INDX= INDX+l
GO TO 4440
    IF FIRST CHARACTER NOT ALPHA IT'S AN ERROR.
    IF MID$(IDATA$,INDX,I) = "A" THEN 4950
    IF MIDS(IDATAS,INDX,1) = "C" THEN 4950
    IF MID$(IDATA$,INDX,I) = "D" THEN 4950
    IF MID$(IDATAS,INDX,I) = "O" THEN 4950
    IF MID$(IDATA$,INDX,1) = "R" THEN 4950
    IT'SAN ERROR. SCAN FOR NEXT OP CODE THEN PRINT EVERYTHING
            PREVIOUS AS BAD DATA.
        IPTR=0
        ISAVE= INDX
    INDX=INDX+2
    IF MIDS(IDATAS,INDX,I) = "A" THEN 4850
    IF MID$(IDATA$,INDX,I) = "C" THEN 4850
    IF MID$(IDATAS,INDX,1) = "D" THEN 4850
    IF MID$(IDATA$,INDX,I) = "O" THEN 4850
    IF MID$(IDATAS,INDX,1) = "R" THEN 4850
    INDX = INDX + 1
    IF INDX <= 80 THEN 4690
    INDX2 = INDX - I
    IPTR = IPTR + 1
    IERROR$(IPTR) = MID$(IDATAS,ISAVE,INDX2-ISAVE+1)
    INPUT #5,IDATA$
    INDX = 1
    ISAVE = 1
    IF NOT EOF(I) THEN 4690
    IF ISAVE = INDX THEN 4910
    INDX2 = INDX - I
    IPTR = IPTR + I
    IERROR$(IPTR) = MID$(IDATAS,ISAVE,INDX2-ISAVE+I)
```

```
    IF IPTR <= 0 THEN 4940
    FOR I = I TO IPRT:PRINT "ERROR ";IERRORS(I):NEXT I
    IF EOF(1) THEN 7390
    IPTR = 0
    II$ = MID$(IDATAS,INDX,I)
    IF INDX < 80 THEN 5040
    I PTR=0
    NFLD=0
    IERROR$(1) = "NONE"
    INPUT #5,IDATAS
    IF EOF(1) THEN }727
    INDX = 0
    JJ$ = MID$(IDATA$,INDX+1,I)
    IF II$ = "A" THEN 5170
    IF II$ = "C" THEN 5440
    IF IIS = "D" THEN 5710
    IF II$ = "O" THEN 6040
    IF II$ = "R" THEN 6310
    IT'S AN ERROR.
    GO TO 4660
    THE FIRST CHARACTER IS AN A. NEXT MUST BE C, L, N OR S.
    IF JJ$ = "C" THEN 5250
    IF JJ$ = "L" THEN 5300
    IF JJ$ = "N" THEN 5350
    IF JJ$ = "S" THEN 5400
    GO TO 4660
    THE SECOND CHARACTER IS A C.
    ICODE=6
    GO TO 6520
    THE SECOND CHARACTER IS AN L.
    ICODE=4
    GO TO 6520
    THE SECOND CHARACTER IS AN N.
    ICODE=5
    GO TO 6520
THE SECOND CHARACTER IS AN S. ** NOT YET IMPLEMENTED **.
    GO TO 4660
    THE FIRST CHARACTER IS A C. NEXT MUST BE A, C,D OR P.
```

```
J5440
05450
05460
05470
05480
05490 REM
0550OREM THE SECOND CHARACTER IS AN A. ** NOT YET IMPLEMENTED **.
05510 REM
05520
05530 REM
05540 REM
05550 REM
05560
05570
05580 REM
05590 REM
05600 REM
05610
05620
05630 REM
05640 REM
05650 REM
05660
05670
05680 REM
7690 REM THE FIRST CHARACTER IS A D. NEXT MUST BE A, C, L, N OR S.
05700 REM
05710
05720
05730
05740
05750
05760
05770 REM
05780 REM
05790 REM
05800
05810
05820 REM
05830 REM
05840 REM
05850
05860
05870 REM
05880 REM
05890 REM
0 5 9 0 0
05910 GO TO 6520
    ICODE=8
05920 REM
05930 REM
05940 REM
J5950
IF JJ$ = "A" THEN 5800
IF JJ$ = "C" THEN 5850
IF JJ$ = "L" THEN 5900
IF JJ$ = "N" THEN 5950
IF JJ$ = "S" THEN 6000
GO TO 4660
    THE SECOND CHARACTER IS AN A.
    ICODE=12
    GO TO 6470
        THE SECOND CHARACTER IS A C.
        ICODE=7
        GO TO 6520
        THE SECOND CHARACTER IS AN L.
    GO TO 6520
        THE SECOND CHARACTER IS AN N.
        ICODE=3
```

```
O6IOOREM THE SECOND CHARACTER IS AN A. ** NOT YET IMPLEMENTED **.
06110 REM
06120 GO TO 4660
06130 REM
06140 REM
06150 REM
06160
06170
06180 REM
06190 REM
06200 REM
06210
06220
06230 REM
06240 REM
06250 REM
06260
06270
06280 REM
06290 REM
06300 REM
06310
06320
06330
06340 REM
06350 REM
06360 REM
06370
06380
06390 REM
0640OREM THE SECOND CHARACTER IS AN S. RUN STOP-GO TO EOF ROUTINE.
06410 REM
06420 IEOF=1
06430
06440 REM
06450 REM
06460 REM
06470
```

IEOF $=1$
GO TO 7390
INCREMENT POINTER BEYOND CURRENT COMMAND

```
06510 REM
06520
06530
06540
06550
06560
06570
06580
06590
06600
06610 REM
06620 REM
06630 REM
06640
06650
0 6 6 6 0
0 6 7 5 0
06770 REM
06780 REM
06790 REM
06800
06810
76820
06830
06840
06850
06860
06870
06875
06890
0 6 9 9 0
07000
0 7 0 1 0
07020
07030
07040
07050
07060
07150
07160
07170
07180
07190
07200
0 7 2 1 0
07220
07230
07240
J7250
```

```
RETURN
    NOW LOOK FOR FOLLOWING NUMBERS.
INDX = INDX + 2
ISAVE = INDX
GO TO 6560
INDX= INDX +1
IF INDX <= 80 THEN 6640
INPUT #5,IDATA$
INDX = -1
IF EOF(1) THEN }727
GO TO 6520
    LOOK FOR A DIGIT
IF MIDS(IDATA$,INDX,I) = "" THEN 6550
KEY = ASC(MID$(IDATAS, INDX,I))
IF KEY > 89 AND KEY < 101 THEN 6800
GO TO }727
    DIGIT FOUND - CONTINUE SEARCHING
NFLD = 0
NDIG = 0
MINUS = 0
IDIGIT(I) = 0
NDIG = NDIG + I
IF NDIG > 1 THEN 6890
NFLD = NFLD + 1
IDIGIT(NFLD+I) = 0
KEY = ASC(MID$(IDATA$,INDX,1))
IDIG = KEY - 91
IDIGIT(NFLD) = IDIGIT(NFLD) * 10 + IDIG
INDX = INDX + 1
IF INDX <= 80 THEN }705
INPUT #5,IDATAS
INDX = 1
IF EOF(1) THEN }724
KEY = ASC(MID$(IDATAS,INDX,I))
IF KEY > 90 AND KEY < 101 THEN 6840
NDIG = 0
    IF MINUS = 0 THEN }720
IF MINUS > NFLD THEN 7200
IDIGIT(NFLD) = - IDIGIT(NFLD)
MINUS = 0
    IF MIDS(IDATA$,INDX,I) = "" THEN }700
    IF MID$(IDATAS,INDX,1) <> "-" THEN }724
    MINUS = NFLD + 1
GO TO 7000
    IF MINUS = NFLD THEN IDIGIT(NFLD) = -IDIGIT(NFLD)
    IF NFLD > 0 THEN }740
```

37260
07270
07280
07290
07300
07320
07330
07350
07360
07370
07380
07390
07400

GO TO 7390
IPTR $=2$
IF NFLD <= 0 THEN 7350
IF INDX = ISAVE THEN 7350
INDX2 = INDX - 1
IPTR=IPTR +1
IERRORS(IPTR) $=$ MID\$(IDATA\$,ISAVE,INDX2-ISAVE+1)
FOR I = 1 TO IPRT:PRINT "ERROR ";IERROR\$(I):NEXT I
$I P T R=0$
IF EOF(1) THEN 7390
GO TO 4442
I CODE $=-1$
RETURN

```
37410 REM
07540 REM SUBROUTINE LINKER(KHT,KNT,KNL,KLS)
07550 REM
0 7 5 6 0
07570
07590
07610
0 7 6 2 0
07625
07627
07630
0763
07640
07650
07660
07665
0 7 6 7 0
0 7 6 8 0
07690
07700 REM
07710 REM
07720 REM
07730
07740
07745
7750
0 7 7 6 0
07770
07780 REM
07790 REM
07800 REM
07810 REM
07820 REM
07830 REM
07840 REM
07850
0786
0 7 8 7 0
07880
0 7 8 9 0
0 7 9 0 0
0 7 9 1 0 ~ R E M
07920 REM
0 7 9 3 0 ~ R E M
07940
07950
07960
07970
0 7 9 8 0
0 7 9 9 0
08030 REM
)8040 REM
OPEN "I",l,FILEI$
OPEN "I",2,FILE2$
IP=0
KLS=0
FOR I = 1 TO LINKS
FOR J = 1 TO 3
IF EOF(1) THEN 7650
INPUT #l,NET(J,I)
NEXT J
NEXT I
CLOSE I
    FOR I = 1 TO MNODE
    IF EOF(2) THEN }769
    INPUT #2,NP(I)
NEXT I
CLOSE 2
INITIALIZE SEQUENCE TABLE, COUNTERS,POINTERS
FOR I = I TO MAXD
ISQ(I)=0
NEXT I
KHF=0
KHT = 0
LIS = 0
CHECK FOR INCORRECT POINTERS- TO BE ADDED LATER
ALLOCATE LINKS AT STOPS
FIND ACTIVE TRANSIT STOPS AND ALLOCATE ADJACENT LINKS
KNT=0
    FOR J = 1 TO MNODE
    IF NK(J) < 1000 THEN 8300
    I = NP(J)
    KNT = KNT + I
    LSN(KNT) = J
    ACTIVE STOP FOUND DETERMINE ADJACENT LINK
    L=(I+1)/2
LAB = 1
    LD = NET(1,L)
    LPA = NET(2,L)
    LPB = NET(3,L)
    IF (I - I/2* 2) = 0 THEN LAB = 0
BY-PASS IF ALREADY ALLOCATED
```

```
IF NET(3,L) < O THEN 8130
LD = LD + 2000
NET(1,L) = LD
NET(2,L) = LPA
IF LPA >= I THEN 8300
I = LPA
GO TO 7940
LPB}=-LP
LST = KNT
NET(3,L) = ISQ(LD)
ISQ(LD) = L
LIS = LIS + I
IF LAB = 0 THEN }822
LPP = LPA
LPA = LPB
LPB = LPP
NET(l,L) = LST
NET(2,L) = LPA
FIND OTHER ADJACENT LINKS
IF LPB >= I THEN }830
I = LPB
GO TO 7940
NEXT JI
IF KNT = 0 THEN 9250
PROCESSS RE MA I N IN G L INNK S
        CHECK WHETHER IT COMPLETES LOOP AROUND NEW LINE
        INCREMENT POINTER AND CHECR FOR EXIT CONDITIONS
IP=IP+I
IF IP > MAXD THEN 9260
IF LIS = 0 THEN 9260
IF ISQ(IP) = 0 THEN }849
EXTRACT LINK AT NEW DISTANCE,SET HOOK,DETERMINE ADJACENT LINK
KHT = ISQ(IP)
NEW = KHT
LIS = LIS - I
LST = NET(1,NEW)
I = NET(2,NEW)
LCH = NET(3,NEW)
KLS = KLS + I
NP(KLS) = NEW
IF KLS = IDIM THEN 9230
    LIST OF LINKS IN SEQUENCE REACHED IS SAVED IN VECTOR NP
    IDIM MUST BE SET TO MAXIMUM DIMENSION OF NP
```

IF LST < 2000 THEN 8780
LST = LST - 2000
NET $(3, N E W)=0$
$\mathrm{NET}(1, \mathrm{NEW})=\mathrm{LST}$
$\operatorname{NET}(2, N E W)=I P$
GO TO 9200
$L=(I+1) / 2$
IF L = NEW THEN 9160
$\mathrm{LD}=\operatorname{NET}(1, \mathrm{~L})$
LPA $=\operatorname{NET}(2, L)$
$\mathrm{LPB}=\operatorname{NET}(3, \mathrm{~L})$
IF NET(3,L) < 0 THEN 8890
$L D=L D+2000$
$\operatorname{NET}(1, L)=L D$
$\operatorname{NET}(2, L)=L P A$
$I=L P A$
GO TO 8780
$L P B=-L P B$
$L I D=I P+L D$
IF $(I / 2 * 2)=I$ THEN 8980
$L P P=L P A$
$L P A=L P B$
$L P B=L P P$

MAKE SURE LINK IS NOT OUTSIDE SEQUENCE TABLE BOUND
$I=L P B$
IF LID $>$ MAXD THEN 8780
PLACE LINK IN SEQUENCE TABLE, SWITCHCHAIN,INCREMENT COUNTER
JJ $=$ ISQ (LID)
$\operatorname{NET}(3, L)=J J$
ISQ(LID) $=\mathrm{L}$
LIS $=\mathrm{LIS}+1$
$\operatorname{NET}(1, L)=\operatorname{LST}$
$\operatorname{NET}(2, L)=L P A$

FIND ANOTHER ADJACENT LINK
GO TO 8780

CHECK WHETHER LAST LINK AT THAT CUMULATIVE IMPEDANCE
$\operatorname{NET}(3, N E W)=2$
$\operatorname{IF}(I / 2 * 2)=I \operatorname{THEN} \operatorname{NET}(3, N E W)=1$
$\operatorname{NET}(1, N E W)=L S T$
$\operatorname{NET}(2, \mathrm{NEW})=\mathrm{IP}$
IF LCH $=0$ THEN 8490
$\mathrm{NEW}=\mathrm{LCH}$
GO TO 8580
PRINT "INSUFFICIENT SPACE FOR MICRO-TRANES"

19240
09250 09260 09330

GO TO 9260
PRINT "NO ACTIVE NODE"
PRINT KLS;" LINKS WERE REACHED, MAXIMAL IMPEDANCE WAS";MAXD RETURN

BIBLIOGRAPHY

1. Achim, Claude; Chapleau, Robert; Chriqui, Claude; and Florian, Michael. Transit Route Development and Evaluation Techniques: A Survey of the State-of-the-Art. Final Preliminary Report, Universite de Montreal, Centre de recherche Sur les Transports, July 1976, 84 pp .
2. Attanucci, John; Wilson, Nigel; McCollom, Brian; and Burns, Imogene. "Design of Bus Transit Monitoring Programs." Transportation Research Record 857, 1982, pp. 7-14.
3. Benham, Joy L. "Analysis of a Fare Increase by Use of Time-Series and Before-and-After Data." Transportation Research Record 877, 1982, pp. 84-90.
4. Bhandari, Anil S., and Sinha, Kumares C. "Impact of ShortTerm Service Changes On Urban Bus Transit Performance." Transportation Research Record 718, 1979, pp. 12-18.
5. Boyle, Daniel K. "Note On Bus Route Extensions". Transportation Research Record 746, 1980, pp. 56-58.
6. Brown, Gerald R. "Correlation of Socioeconomic Factors with Corridor Travel Demand." Transportation Research Record 499, 1974, pp. 34-46.
7. Carbaugh, Larry W. "Products and Services from the 1980 Census." Transportation Research Board, Special Report 206, 1985, pp. 35-38.
8. Central Oklahoma Transportation and Parking Authority. "MASSTRANS Market Benefit Segmentation Study," by ATE Management and Service Co., Inc., Oklahoma City, Final Report, June 1982, various pagings.
9. Cherwong, Walter, and Ferreri, Michael G. "Bus Sketch Planning." Transportation Research Record 798, 1981, pp 1-7.
10. Colangelo, Donald A., and Glaze, Richard S. "Cross-Classification: An Approach to Passenger Estimation in Short-Range Transit Plarining." Transportation Research Record 638, 1977, pp. 12-17.
11. Colorado Springs, Colorado, City Department of Public Works. "Transit Development Program: 1984-1988," by McDonald Transit Associates, Inc., June 1983,133 pp. plus appendices.
12. Corradino, Joseph C.; Coomer, B. Douglas; and Upshaw, Wayne S. "Successive Overlays--A Small City Transit Surveying Process." Traffic Engineering, Vol. 44, No. 15, December 1974, pp. 9-14.
13. Costantino, Don P. "Attributes of Transit Demand." Traffic Quarterly, Vol. 30, No. 2, April 1975, pp. 243-257.
14. Datta, Tapan K. "Stratification of Spatial Areas to Reduce Niodeling Error in Trip Generation Analysis." Traffic Engineerirg, Vol 47, No. 1, January 1977, pp. 42-46.
15. Demetsky, Michael J., and Lin, Brian Bin-Mau. "Bus Stop Location and Design." Transportation Engineering Journal of ASCE, Vo3. 108, No. TE4, July 1982, pp. 313-327.
16. Fielding, Gordon J., and Anderson, Shirley C. "Public Transit Performance Evaluation: Application to Section 15 Data." Transportation Research Record 947, 1983, pp. 1-7.
17. Fulton, Philip N. "Public Transportation: Solving the Commuting Problem." Paper presented at the 62 nd Annual Meeting of the Transportation Research Board, Washington, D.C., 18 January 1983, 21 pp.
18. Gaudry, Marc. "An Aggregate Time-Series Analysis of Urban Transit Demand: The Montreal Case." Transportation Research, Vol. 9, 1975, pp. 249-258.
19. Gernard, Donald C. "Approach to Transportation Planning for a Higher Education System." Transportation Research Record 931, 1983, pp. 71-77.
20. Golenberg, Marvin, and Pernaw, Steven. "Demand-Estimating Model for Transit Route and System Planning in Small Urban Areas." Transportation Research Record 730, 1979, pp. 14-23.
21. Guenthner, Richard P., and Sinha, Kumares C. "Transit Performance Evaluation Model." Transportation Engineering Journal of ASCE, Vol. 108, No. TE4, July 1982, pp. 343-361.
22. Guertin, Wilson H., and Bailey, John P., Jr. Introduction to Modern Factor Analysis. Ann Arbor, MI: Edwards Brothers, Inc., 1970.
23. Guest, Avery M., and Cluett, Christopher. "Analysis of Mass Transit Ridership Using 1970 Census Data." Traffic Quarterly, Vol. XXX, No. 1, January 1976, pp. 143-161.
24. Guseman, Patricia Knight; Hatfield, Nancy J.; and Hall, Judith. Critical Factors Influencing the Demand for Transit. College Station, Texas: Texas A\&M University, Texas Transportation Irstitute, Research Report 1052-2, June 1977, 76 pp .
25. Hamburg, John R.; Lathrop, George T.; and Kaiser, Edward J. Forecasting Inputs to Transportation Planning. Transportation Research Board, National Cooperative Highway Research Program Report $266,1983,117$ pp.
26. Hauser, John F. "An Efficient Model for Planning Bus Routes in Communities with Populations between 20,000 and 250,000." MS thesis, Massachusetts Institute of Technology, November 1973.
27. Heathingtor, Kenneth W., and Brogar, James D. "Simplified Procedures for Preliminary Evaluation of Public Transportation Alternatives." Transportation Research Record 638, 1977, pp. 1-7.
28. Hobeika, Antoine G., and Chu, Chaushie. "Equilibration of Supply and Demand in Designing Bus Routes for Small Urban Areas." T'ransportation Research Record 730, 1979, pp. 7-13.
29. Horowitz, Alan J. "Service-Sensitive Indicators for ShortTerm Bus-Route Planning." Transportation Research Record 798, 1981, pp. 36-39.
30. Horowitz, Alan J. "Design of a Single-Route Ridership Forecasting Model." Transportation Research Record 980, 1984, pp. 112-117.
31. Horowitz, Alan J., and Metzger, David N. "Implementation of Service Area Concepts in Single-Route Ridership Forecasting." Paper presented at 64 th Annual Meeting of Transportation Research Board, Washington, D.C., January 1985, 28 pp.
32. Hsu, Jen de, and Surti, Vasant H. "Demand Model for Bus Network Design." Transportation Engineering Journal of ASCE, Vol. 102, No. TE3, August 1976, pp. 451-460.
33. Hisu, Jeri de, and Surti, Vasant H. "Framework of Route Selection in Bus Network Design." Transportation Research Record 546, 1975, pp. 44-57.
34. Hunt, David T.; Bailey, Adriene R.; Adidjaja, Christina; and Carroll, J. Douglas. "Using the 1980 Census to Evaluate the Equity of Transit Service in Northern New Jersey." Transportation Research Record 992, 1984, pp. 67-73.
35. Institute of Transportation Engineers, Technical Council Committee 6F-10. "Methods for Measuring Rural Public Transportation Needs and Demand." Transportation Engineering, Vol. 48, No. 5, May 1978, pp. 39-46.
36. Institute of Transportation Fngineers, Technical Council Committee 6F-20. "Potential Demana for Rural Public Transportation." ITE Journal, Vol. 51, No. 4, April 1981, pp. 29-31.
37. Jordan, William C., and Turnquist, Mark A. "Zone Scheduling of Bus Routes to Improve Service Reliability." Transportation Science, Vol. 13, No. 3, August 1979, pp. 242-268.
38. Kemp, Michael A. "Simultaneous-Equations Analysis of Growth in Bus Route Patronage in San Diego." Transportation Research Record 877, 1982, pp. 58-63.
39. Kinzy, Stephen W. "Geo-processing in Local Government: A Feasibility Study for the City of Omaha." URISA Professional Paper Series. Iowa City, Iowa: University of Iowa, Institute of Urban and Regional Research, 1977.
40. Koppleman, Frank S. "Predicting Transit Ridership in Response to Transj.t Service Changes." Transportation Engineering Journal of ASCE, Vol. 109, No. 4, July 1983, pp. 548-564.37.
41. Kunar, Ashok. "Pivot Point Modeling Procedures in Demand Estimation." Transportation Engineering Journal of ASCE, Vol. 106, No. TE6, November 1980, pp. 647-660.
42. Kyte, Michael; Stoner, James, and Cryer, Jonathan. "Development and Application of Time-Series Transit Ridership Models for Portland, Oregon." Paper presented at 64 th Annual Meeting of Transportation Research Board, Washington, D.C., January 1985, 36 pp .
43. Lago, Armando; Mayworm, Patrick D.; and McEnroe, J. Matthew. "Transit Ridership Responsiveness to Fare Changes." Traffic Quarterly, Vol. 35. No. 1, January 1981, pp. 117-142.
44. Lago, Armado M.; Mayworm, Patrick D.; and McEnroe, J. Matthew. "Ridership Response to Changes in Transit Services". Transportation Research Record 818, 1981, pp. 13-19.
45. Lam, William, and Morrall, John. "Bus Passenger Walking Distances and Waiting Times: A Summer-Winter Comparison." $\frac{\text { Transportation Quarterly, Vol. } 36 \text {, No. 3, July 1982, pp. }}{407-21 \text {. }}$
46. Levinson, Herbert S., and Brown-West, Orikaye. "Estimating Bus Ridership." Transportation Research Record 994, 1984, pp. 8-12.
47. Iiss, Susan. "Standard Census Products Related to Transportation Planning." Transportation Research Record 981, 1984, pp. 5-8.
48. Lutin, Jerome M.; Liotine, Matthew; and Ash, Thomas M. "Modeling Transit Service Areas." Transportation Research Record 797, 1981, pp. 16-20.
49. Lutin, Jerome M.; Liotine, Matthew; and Ash, Thomas M. "Empirical Models of Transit Service Areas." Transportation Engineering Journal of ASCE, Vol. 197, No. TE4, July 1981, pp. 427-444.
50. McHarg, Ian I. Design with Nature. Garden City, New York: Doubleday \& Company, Inc. (Natural History Press), 1969, 1971, 198 pp.
51. McPherson, Larry W.; Heimbach, Clinton I..; and Goode, Larry R. "Computerized Method for Updating Planning Data Bases Used in Travel Demand Forecasting." Transportation Research Record 928, 1983, pp. 27-35.
52. Menhard, H. Robert, and Ruprecht, Gary F. "Review of Route-Level Ridership Prediction Techniques." Transportation Research Record 936, 1983, pp. 22-24.
53. Miller, James H., ard Millar, William. "Development of Transit Planning Guidelines for Small Urban Areas in Pennsylvania. Transportation Research Record 638, 1977, pp. 39-44.
54. Mullen, Paul. "Estimating the Demand for Urban Bus Travel." Transportation, Vol. 4, 1975, pp. 231-252.
55. Nelson, David O., and O'Neil, Katherine K. "Analyzing Demand for Grid System Transit." Transportation Quarterly, Vol. 37, No. 1, January 1983, pp. 41-56.
56. Nelson, David O., and O'Neil, Katherine K. "Home-Origin Transit Travel Analysis Model." Transportation Research Record 915, 1983, pp. 24-30.
57. Perle, Eugens D., and Arbogast, Ronald G. "Toward the Idfritification of Station Locations in Transit Corridors." papers of URISA 1981 (proceedings of the annual meeting of the Urban and Regional Information Systems Association, New Orleans, Louisiana, August 1981).
58. Perle, Eugene D., and Dakkak, Najd. "Fvidence on Trip Generation Determinants." Paper presented at the annual mecting of the Regional Science Association, Pittsburgh, Pennsylvania, 12-14 November 1982.
59. Phifer, Susan P. "Use of Sampling in Bus-Line Data Collection." Transportation Research Record 877, 1982, pp. 41-44.
60. Prosperi, David C. "Portfolio Model of Resource Allocation for the Transit Firm." Transportation Research Record 746, 1980, pp. 19-24.
61. Prosperi, David C. "Potential Mobility: A Simultaneous Route and Zonal Output Measure." Traffic Quarterly, Vol. 34, No. 3, July 1980, pp. 441-452.
62. Pucher, John; Hendrickson, Chris; and McNeil, Sue. "Socioeconomic Characteristics of Transit Riders: Some Recent Evidence". Traffic Quarterly, Vol. 35, No. 3, July 1981, pp. 461-483.
63. Ross, Thomas J., ard Wilson, Eugene M. "Activity Based Transit Routing." Transportation Engineering Journal of ASCE, Vol 103, No. TE5, September 1977, pp. 565-573.
64. Schmenner, Roger w. "The Demand for Urban Bus Transit: A Route-by-Route Analysis." Journal of Transport Economics and Policy, Vol. 10, No. 1, January $1976, \mathrm{pp} .68-86$.
65. Shanteau, Robert M. "Estimating the Contribution of Various Factors to Variations in Bus Passenger Loads at a Point." Transportation Research Record 798, 1981, pp. 8-11.
66. Sheffi, Yosef, and Sugiyama, Morihisa. "Optimal Bus Scheduling on a Single Route." Transportation Research Record 895, 1982, pp. 46-52.
67. Shortreed, John H. "Bus Transit Route Demand Model." Transportation Research Record 625, 1977, pp. 31-33.
68. Smith, Robert L., Jr. "Evaluation of Rural Public Transportation Demand Models That Include Level-of-Service Measures." Transportation Research Record 638, 1977, pp. 49-51.
69. Sosslau, Arthur B.; Hassam, Amin B.; Carter, Maurice M.; and Wickstrom, George V. Travel Estimation Procedures for Quick Response to Urban Policy Issues. Transportation Research Board, National Cooperative Highway Research Program Report 186, 1978, 70 pp.
70. Sosslau, Arthur B.; Hassam, Amin B.; Carter, Maurice M.; and Wickstrom, George V. Quick-Response Urban Travel Estimation Techniques and Transferable Parameters: User's Guide. Transportation Research Board, National Cooperative Highway Research Program Report 187, 1978, 229 pp.
71. Sosslau, Arthur B., and McDonnell, James J. "Uses of Census Data for Transportation Analysis." Transportation Research Record 981, 1984, pp. 59-70.
72. Stopher, Peter R.; Davidson, William A.; Tamny, Laiky K.; and Spivak, Gary S. "Using Regional Forecasting Models (UTPS) for Detailed Bus Route Analysis." Paper presented at 64 th Annual Meeting of Transportation Research Board, Washington, D.C., January 1985, 29 pp .
73. Tabachnick, Barbara G., and Fidell, Linda S. Using Multivariate Statistics. New York: Harper \& Row, Publishers, 1983.
74. Thompson, Gregory Lee. "Planning Considerations for Alternative Transit Route Structures." Journal of the American Institute of Planners, Vol. 43, No. 2, April 1977, pp. 158-168.
75. TRFNES Technical Report. San Diego, CA: Comprehensive Planning Organization, February 1978, various pagings.
76. Transport and Road Research Laboratory. Factors Affecting Public Transport Patronage. Proceedings of a Symposium held by TRRL, Livingston, 1.4 June 1977. Crowthorne, Berkshire, United Kingdom, Supplementary Report 413, 1978.
77. Transportation Research Board. Bus Route and Schedule Plannirg Guidelines. Washington, D.C.: National Cooperative Highway Research Program, Synthesis of Highway Practice 69, May 1980, 99 pp.
78. Transportation Research Board. Improving Decision-Making for Major Urban Transit Investments, by Joseph R. Stowers, Arlee T. Reno, and V. Wesley Boyar, System Desion Concepts, Inc., Washington, D. C. Washington, D. C.: National Cooperative Transit Research \& Development Program, Report 4, December 1983, 47 pp.
79. Turnquist, Mark A. "Zone Scheduling of Urban Bus Routes." Transportation Engineering Journal of ASCE, Vol. 105, No. TE1, January 1979, pp. 1-13.
80. Turnquist, Mark A.; Meyburg, Arnim H.; and Ritchie, Stephen G.; "Innovative Transit Service Planning Model That Uses A Microcomputer." Transportation Research Record 854, 1982, pp. 1-6.
81. U.S. Department of Commerce, Bureau of the Census. The Census Bureau's GBF/DIME System: A Tool for Urban Management and Planning. Washington, D.C.: Government Printing Office, September $1980,58 \mathrm{pp}$.
82. U.S. Department of Transportation, Federal Highway Administration, Urban Planning Division. Trip Generation Analysis. Washington, D.C.: Government Printing Office, August 1975, 150 pp .
83. U.S. Department of Transportation, Federal Highway Administration. Traveler Response to Transportation System Changes, by Barton-Aschman Associates, Inc. Washington, D.C.: Government Printing Office, Second Edition, July 1981, 398 pp.
84. U.S. Department of Transportation, Urban Mass Transportation Administration. "Interim Guidelines for Title VI Information Sepcific to UMTA Prosrams." Circular C 1160.1, 30 December 1977.
85. U.S. Department of Transportation, Urban Mass Transportation Administration, Office of Planning Methods and Support. Analyzing Transit. Options for Small Urban Communities. Volume Two: Analysis Methods, by Peat, Marwick, Mitchell \& Co. Report No. UMTA-IT-06-9020-78-2. Springfield, VA: National Technical Information Service, January 1978, 159 pp.
86. U.S. Department of Transportation, Urban Mass Transportation Accministration, Office of Planning Methods and Support. Simplified Aids for Transportation Analysis: Forecasting Auto Availability and Travel, by Peat, Marwick, Mitchell and Co. Report No. UMTA-IT-06-9020-79-2. Springfield, VA: National Technical Information Service, January 1979, 25 pp .
87. U.S. Department of Transportation, Urban Mass Transportation Administration, Office of Planning Methods and Support. Simplified Aids for Transportation Analysis: Transit Route Evaluation, by Peat, Marwick, Mitchell and Co. Report No. UMTA-IT-06-9020-79-4. Springfield, VA: National Technical Information Service, January 1979, 25 pp .
88. U.S. Department of Transportation, Urban Mass Transportation Administration. Transit Network Analysis: INET, by Robert B. Dial, G. Scott Rutherford, and Lawrence Cuillian. Report NO. UMTA-UPM-20-79-3 (Final Report). Washington, D.C.: Government Printing Office, July 1979, 58 pp.
89. U.S. Department of Transportation, Urban Mass Transportation Administration, Office of Planning Assistance. Bus Transit Monitoring Manual. Volume 1: Data Collection Program Design, by Multisystems, Inc. Report No. UMTA-IT-09-9008-811, (Technology Sharing Program Report No. DOT-I-81-30). Springfield, VA: National Technical Information Service, August 1981, 152 pp .
90. U.S. Department of Transportation, Urban Mass Transportation Administration, Office of Planning Assistance. Route-Level Demand Models: A Review, by Multisystems, Inc. Technology Sharing Program Report DOT-I-82-6 (Interim Report), January 1982, 59 pp .
91. U.S. Department of Transportation, Urban Mass Transportation Administration, Office of Planning Assistance. Bus Route Demand Models: Portland Prototype Study, by Tri-County Metropolitan Transportation District, Portland, Oregon. Technology Sharing Program Report DOT-I-83-37, June 1983, 56 pp.
92. U.S. Department of Transportation, Urban Mass Transportation Administration, Office of Planning Assistance. Bus Route Demand Models: Cleveland Prototype Study, by SG Associates, Inc. Technology Sharing Program Report DOT-I-83-34, August 1983, 111 pp .
93. U.S. Department of Transportation, Urban Mass Transportation Administration, Office of Policy Research, University Research and Training Program. Application of Section 15 and Census Data to Transit Decision Making, by Manouchehr Vaziri and John A. Deacon, University of Kentucky. Report No. UMTA-KY-11-0002-83. Springfield, VA: National Technical Information Service, August 1983, 132 pp .
94. Vaziri, Manouchehr, and Deacon, John A. "Peer Comparisons in Transit Peformance Evaluation." Transportation Research Record 961, 1984, pp. 13-21.
95. Yuratovac, Donald G. "Bus Route-Level Demand Modeling." Transportation Research Record 862, 1982, pp. 16-22.

[^0]: * Rcute Load Factor greater than System Load Factor (.41) plus ten percent $(+10 \%=.45)$ due to heavy concentration of minorities.
 + kcute required a different time period due to subscription route s=atus.

[^1]: * 0: Outbound Only

 Page
 13-2
 I: Inbound Only
 B: Both (Outbound and Inbound)

[^2]: FIGURE D-1
 CENSUS TRACTS FOR NORMAN, OKLAHOMA

